David Chisnall

ESSENTIAL CODE AND COMMANDS

Objective-C

David Chisnall

ESSENTIAL CODE AND COMMANDS

Objective-C

PHRASEBOOK

ey
N

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been print-
ed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.
The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or cus-
tom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com
For sales outside the United States, please contact:

International Sales

international@pearson.com
Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data is on file.
Copyright © 2011 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is pro-
tected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc

Rights and Contracts Department

501 Boylston Street, Suite 900

Boston, MA 02116

Fax (617) 671-3447
ISBN-13: 978-0-321-74362-6
ISBN-10: 0-321-74362-8
Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville,
Indiana.
First printing February 2011

Editor-in-Chief Managing Editor Proofreader Cover Designer
Mark Taub Kristy Hart Charlotte Kughen Gary Adair
Acquisitions Editor Project Editor Publishing Compositor
Mark Taber Anne Goebel Coordinator Gloria Schurick
Development Copy Editor Vanessa Evans

Editor Bart Reed

Michael Thurston

Table of Contents

Introduction Xiv
1 The Objective-C Philosophy 1
Understanding the Object Model 2
A Tale of Two Type Systems 4
C Is Objective-C 5
The Language and the Library 7
The History of Objective-C 9
Cross-Platform Support 12
Compiling Objective-C Programs 14
2 An Objective-C Primer 17
Declaring Objective-C Types 18
Sending Messages 22
Understanding Selectors 26
Declaring Classes 28
Using Protocols 33
Adding Methods to a Class 35
Using Informal Protocols 38
Synthesizing Methods with
Declared Properties 39
Understanding self, _cmd, super 44
Understanding the isa Pointer 47
Initializing Classes 50
Reading Type Encodings 53

Using Closures 56

iv Contents

3 Memory Management 59
Retaining and Releasing 60
Assigning to Instance Variables 61
Avoiding Retain Cycles 63
Autorelease Pools 64
Using Autoreleased Constructors 66
Autoreleasing Objects in Accessors 67
Supporting Automatic

Garbage Collection 68
Interoperating with C 70
Using Weak References 71
Allocating Scanned Memory 73

4 Common Objective-C Patterns 75
Supporting Two-Stage Creation 76
Copying Objects 78
Archiving Objects 80
Creating Designated Initalizers 84
Enforcing the Singleton Pattern 87
Delegation 89
Providing Facades 91
Creating Class Clusters 93
Using Run Loops 96

5 Numbers 99
Storing Numbers in Collections 101

Performing Decimal Arithmetic 105

Converting Between Strings
and Numbers

Reading Numbers from Strings

Manipulating Strings
Creating Constant Strings
Comparing Strings

Processing a String One
Character at a Time

Converting String Encodings
Trimming Strings

Splitting Strings

Copying Strings

Creating Strings from Templates
Storing Rich Text

Working with Collections
Using Arrays
Manipulating Indexes

Storing Unordered Groups
of Objects

Creating a Dictionary
Iterating Over a Collection
Finding an Object in a Collection

Subclassing Collections

Dates and Times
Finding the Current Date
Converting Dates for Display

Contents

108
110

113
114
115

119
122
125
126
128
130
133

135
137
139

141
143
145
149
152

157
158
160

Vi Contents

10

11

12

Calculating Elapsed Time
Parsing Dates from Strings

Receiving Timer Events

Working with Property Lists

Storing Collections in
Property Lists

Reading Data from
Property Lists

Converting Property List Formats
Storing User Defaults

Storing Arbitrary Objects in
User Defaults

Interacting with the Environment
Getting Environment Variables
Parsing Command-Line Arguments
Accessing the User's Locale

Supporting Sudden Termination

Key-Value Coding
Accessing Values by Key
Ensuring KVC Compliance
Understanding Key Paths
Observing Keys

Ensuring KVO Compliance

Handling Errors

Runtime Differences for Exceptions

163
165
166

169

170

173
176
178

182

185
186
188
190
191

195
196
197
201
203
205

209
210

13

14

15

Throwing and Catching Exceptions
Using Exception Objects

Managing Memory with Exceptions
Passing Error Delegates

Returning Error Values

Using NSError

Accessing Directories
and Files

Reading a File

Moving and Copying Files
Getting File Attributes
Manipulating Paths

Determining if a File or
Directory Exists

Working with Bundles
Finding Files in System Locations

Threads

Creating Threads
Controlling Thread Priority
Synchronizing Threads
Storing Thread-Specific Data
Waiting for a Condition

Blocks and Grand Central
Binding Variables to Blocks
Managing Memory with Blocks

Performing Actions in the Background

Contents

214
216
218
221
222
223

227
228
230
232
234

236
238
240

245
246
247
250
252
255

259
260
264
267

vii

viii

Contents

16

17

18

19

Creating Custom Work Queues

Notifications
Requesting Notifications
Sending Notifications
Enqueuing Notifications

Sending Notifications
Between Applications

Network Access

Wrapping C Sockets
Connecting to Servers

Sharing Objects Over a Network
Finding Network Peers

Debugging Objective-C
Inspecting Objects
Recognizing Memory Problems
Watching Exceptions
Asserting Expectations

Logging Debug Messages

The Objective-C Runtime
Sending Messages by Name
Finding Classes by Name

Testing If an Object
Understands a Method

Forwarding Messages
Finding Classes

269

273
274
276
277

278

283
284
286
289
292

297
298
300
302
304
306

309
310
312

313
315
318

Inspecting Classes

Creating New Classes

Index

Contents

320
322

325

This page intentionally left blank

About the Author

David Chisnall is a freelance writer and consultant.
While studying for his PhD, he co-founded the
Etoilé project, which aims to produce an open-
source desktop environment on top of GNUstep,
an open-source implementation of the OpenStep
and Cocoa APIs. He is an active contributor

to GNUstep and is the original author and
maintainer of the GNUstep Objective-C 2
runtime library and the associated compiler
support in the Clang compiler.

After completing his PhD, David hid in academia
for a while, studying the history of programming
languages. He finally escaped when he realized
that there were places off campus with an
equally good view of the sea and without

the requirement to complete quite so much
paperwork. He occasionally returns to collaborate
on projects involving modeling the semantics of
dynamic languages.

David has a great deal of familiarity with
Objective-C, having worked both on projects
using the language and on implementing the
language itself. He has also worked on implementing
other languages, including dialects of Smalltalk
and JavaScript, on top of an Objective-C
runtime, allowing mixing code between all of
these languages without bridging.

When not writing or programming, David enjoys
dancing Argentine Tango and Cuban Salsa,
playing badminton and ultimate frisbee, and
cooking.

Acknowledgments

When writing a book about Objective-C, the
first person I should thank is Nicolas Roard.

I got my first Mac at around the same time I
started my PhD and planned to use it to write
Java code, not wanting to learn a proprietary
language. When I started my PhD, I found
myself working with Nicolas, who was an
active GNUstep contributor. He convinced

me that Objective-C and Cocoa were not

just for Macs and that they were both worth
learning. He was completely right: Objective-
C is a wonderfully elegant language, and the
accompanying frameworks make development
incredibly easy.

The next person to thank is Fred Kiefer. Fred is
the maintainer of the GNUstep implementation
of the AppKit framework. He did an incredibly
thorough (read: pedantic) technical review of
this book, finding several places where things
were not explained as well as they could have
been. If you enjoy reading this book, then Fred
deserves a lot of the credit.

Finally, I need to thank everyone else who was
involved in bringing this book from my text
editor to your hands, especially Mark Taber who
originally proposed the idea to me.

We Want to Hear from You

As the reader of this book, you are our most
important critic and commentator. We value
your opinion and want to know what we’re doing
right, what we could do better, what areas you’d
like to see us publish in, and any other words of
wisdom you're willing to pass our way.

You can email or write me directly to let me
know what you did or didn’t like about this
book——as well as what we can do to make our
books stronger.

Please note that I cannot help you with technical
problems related to the topic of this book, and
that due to the high volume of mail I receive, I
might not be able to reply to every message.

When you write, please be sure to include this
book’s title and author as well as your name and
phone or email address. I will carefully review
your comments and share them with the author
and editors who worked on the book.

E-mail: mark.taber@pearson.com
Mail: Mark Taber
Associate Publisher
Addison Wesley Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at
informit.com/aw for convenient access to any
updates, downloads, or errata that might be
available for this book.

Introduction

Blaise Pascal once wrote, “I didn’t have time

to write a short letter, so I wrote a long one
instead.” This phrasebook, at under 350 (small)
pages, is the shortest book I've written, and
trying to fit everything that I wanted to say into
a volume this short was a challenge.

When Mark Taber originally suggested that I
write an Objective-C Phrasebook, I was not
sure what it would look like. A phrasebook for
a natural language is a list of short idioms that
can be used by people who find themselves in
need of a quick sentence or two. A phrasebook
for a programming language should fulfil a
similar role.

This book is not a language reference. Apple
provides a competent reference for the Objective-
C language on the http://developer.apple.
com site. This is not a detailed tutorial; unlike
my other Objective-C book, Cocoa Programming
Developer’s Handbook, you won'’t find complete
programs as code examples. Instead, you’ll find
very short examples of Objective-C idioms,
which hopefully you can employ in a wide range
of places.

One of the most frustrating things in life is
finding that code examples in a book don’t
actually work. There are two sorts of code
listings in this book. Code on a white background
is intended to illustrate a simple point. This

code may depend on some implied context and

http://developer.apple.com
http://developer.apple.com

should not be taken as working, usable examples.

The majority of the code you will find in this
book is on a gray background. At the bottom of
each of these examples, you will find the name
of the file that the listing was taken from. You
can download these from the book’s page on
InformIT’s website: http://www.informit.com/
title/0321743628

A Note About Typesetting

This book was written in Vim, using semantic
markup. From here, three different versions

are generated. Two are created using pdflatex.
If you are reading either the printed or PDF
version, then you can see one of these. The only
difference between the two is that the print
version contains crop marks to allow the printer
to trim the pages.

The third version is XHTML, intended for
the ePub edition. This is created using the
EtoileText framework, which first parses the
LaTeX-style markup to a tree structure, then
performs some transformations for handling
cross-references and indexing, and finally
generates XHTML. The code for doing this is
all written in Objective-C.

If you have access to both, you may notice

that the code listings look slightly nicer in the
ePub edition. This is because EtoileText uses
SourceCodeKit, another Etoilé framework, for

http://www.informit.com/title/0321743628
http://www.informit.com/title/0321743628

syntax highlighting. This uses part of Clang, a
modern Objective-C compiler, to mark up the
code listings. This means that ranges of the code
are annotated with exactly the same semantic
types that the compiler sees. For example, it can
distinguish between a function call and a macro
instantiation.

You can find all of the code for doing this in the
Etoilé subversion repository: http://svn.gna.
org/viewcvs/etoile/trunk/Etoile/

http://svn.gna.org/viewcvs/etoile/trunk/Etoile/
http://svn.gna.org/viewcvs/etoile/trunk/Etoile/

The Objective-C
Philosophy

To understand Objective-C, you need to understand
the philosophy behind its creation. Unlike C++4,

D, or Java, which were designed to be new, C-

like languages, Objective-C is a hybrid language.

It is a pure superset of C, meaning that every

valid C program is also a valid Objective-C
program, but it also allows some Smalltalk-like
syntax and semantics.

One of the designers of Objective-C, Tom

Love, described the square bracket syntax as

a signpost reminding you that you were leaving
C and entering “object land.” The original idea
behind Objective-C was a way of packaging C
libraries that encouraged loose coupling between
components.

One of the fundamental design decisions in
Objective-C was that there should be no magic.
All of the details of the implementation are

The Objective-C Philosophy

exposed to the programmer. Unlike C++, where
the details of the vtable are private, Objective-C
lets you inspect and modify everything about
objects and classes.

With older runtime libraries, Objective-C classes
were represented by C structures with a public
definition. You could modify them directly, or
even create new ones and register them with

the runtime system. With newer ones, these
structures are private and there is a set of public
functions for manipulating them as opaque

types.

Understanding the Object Model

Objective-C has a Smalltalk-like object model. If
you come from Java, you will find this very easy
to understand. If you come from a Simula-family
language, such as C++4, you may find it a bit
more difficult.

Alan Kay described the idea of objects as a
simple exercise in reduction. When solving a
problem, you want to decompose it into simple
parts. The simplest thing that can run a part
of a program is the same thing that can run
the whole of a program: a computer. Objects,
in Alan Kay’s vision, are simple models of
computers that communicate by exchanging
messages.

This is exactly how objects in Objective-C,
and its parent Smalltalk, behave. They are

Understanding the Object Model

isolated parts of a program that pass messages
between each other. Typically, these messages
are delivered synchronously, so they behave a bit
like a function call, but it’s important to realize
that they are different.

Messages are a higher level of abstraction than
function calls. A function call is very simple.

On many architectures it is a single instruction.
On more RISC-like architectures, you push the
return address onto the stack and then jump. In
all cases, the destination address is fixed.

When you send a message, it is entirely up to
the receiver how to handle it. The most typical
way is to invoke the method with the same name
as the message, but there are other alternatives.
Proxy objects may forward the message to
another object, and they may perform some
substitution on the message arguments before
they do.

Simula did not use the term “object orientation,”
but a lot of Simula-like languages that postdate
Smalltalk have adopted the term, leading to
some confusion. Languages in this family, such
as C++, use virtual function tables (vtables) to
implement something that is superficially similar.

A Simula-style object contains a pointer to its
vtable, or vtables if it has superclasses. When
you call a virtual function, the compiler creates
an offset into the vtable and then a call to the
function at this offset.

One of the side effects of this difference is

3

The Objective-C Philosophy

that pointer casting in Objective-C and C++
have very different semantics. When you cast

a pointer to one object type to another in
Objective-C, no code is generated. The cast

is just a hint to the compiler’s type checker.

In C++, however, a pointer cast performs

some pointer arithmetic so that code that is
passed the cast pointer can find the vtable at
the correct location. This means that you can
cast any object type to any other object type in
Objective-C, whereas in C++ you need to use a
special kind of cast.

This distinction is very important. In Objective-
C, the only thing that affects the method lookup
is the type of the object. In C++ and other
Simula-family languages, the lookup is also
affected by what the compiler thinks the type of
the object is.

A Tale of Two Type Systems

One of the things that can confuse people
coming to Objective-C is that it has two type
systems. This makes sense if you consider the
original implementation as a preprocessor.
The Objective-C preprocessor would perform
Strongtalk-like! type checking and then the C

1StrongTalk is a dialect of Smalltalk that adds
optional static type checking. The team that created
the language later went to work on Java. It’s worth
noting that, although StrongTalk was one of the fastest
Smalltalk implementations, the compiler did not use

C Is Objective-C

compiler would perform C type checking.

C has a structural type system. Type equivalence
for primitive types is based on whether two types
have the same representation. Complex types are
never regarded as equivalent.

Objective-C adds an algebraic type system. The
type of an object is defined by its signature: the
messages that it claims it will respond to. You
can implicitly cast an Objective-C object to its
superclass, because it is guaranteed to respond
to all of the messages that the superclass
understands.

You can explicitly cast objects to other types.
You could, for example, cast a dictionary object
to an array object. As long as you then only
send it messages that are understood by both
dictionaries and arrays, this will work.

C Is Objective-C

One of the most important features of Objective-
C is that it is a pure superset of C. You can

think of C as a domain-specific language embedded
in Objective-C for low-level tasks and a subset

of Smalltalk as a domain-specific language
embedded in Objective-C for high-level tasks.

There is nothing wrong with solving a problem
using pure C. One of the mistakes that a lot of
people make when learning Objective-C is to

static type information for optimization.

CHAPTER 1: The Objective-C Philosophy

assume that they must stop using C. For a lot
of things, the C solution is the correct one.

Note: Objective-C also has a sister language,
Objective-C++, which has the same relationship
to C++ that Objective-C has to C. Objective-
C++ is a pure superset of C+4 and allows you
to call C++ code from Objective-C objects, and
vice versa. Because they have very different object
models, you cannot subclass an Objective-C class
with C++, or the converse; however, you can use
pointers to Objective-C objects as fields in C+-+
objects and pointers to C++ objects as instance
variables in Objective-C objects.

You can see this in the Cocoa frameworks.

Not everything is an object. If you ask for a
range of characters in a string, you will use an
NSRange structure. This is a C structure—mnot an
Objective-C object—containing a location and
a length. Points, rectangles, and several other
things are represented in a similar way. If these
were objects, then you would use more memory,
make manipulating them slower, and not really
gain any flexibility.

The Ingalls test? for object orientation says
that you should be able to create a new kind

of integer and use this in positioning a window
on the screen. Objective-C fails this test, but

2Named after Dan Ingalls, one of the designers of
Smalltalk, who proposed it.

The Language and the Library

it’s not a very useful example in the real world,
because most of the time designing new kinds of
integers would break a lot of things that expect
integers to have the standard behavior.

In Objective-C, you don’t have to use the
dynamic behavior, such as late binding and
polymorphism, in cases where it isn’t useful.

The Language and the Library

It’s difficult with very dynamic languages to
draw the line between the language and the
library. In Smalltalk, there is no equivalent of
an if statement in the language. The standard
library defines True and False singleton classes,
which respond to -ifTrue: messages taking a
closure as an argument. All complex flow control
structures, such as loops or enumeration, are
implemented in terms of this.

Objective-C inherits flow control from C, but

all of the dynamic behavior is supplied by the
runtime library. This is different from C or
C++. You can compile a freestanding C or C++
binary that doesn’t call any functions in libc or
libstdc++. Every Objective-C program that isn’t
a pure C program, however, must link against
libobjc to work.

This library traditionally provides three classes:
a simple root class, a class for constant strings,
and a class for protocols. The first of these
provides functionality including object allocation

7

The Objective-C Philosophy

that is part of the language in C++, Java, and
similar environments. The other two are classes
that may be generated by the compiler.

Most of the time, you will not use any of these
classes. Almost all Objective-C code written in
the last decade or two uses an implementation of
the OpenStep Foundation framework. OpenStep
was a specification jointly worked out by NeXT
and Sun to provide a modern object-oriented
framework for cross-platform application development.
NeXT implemented it on their OPENSTEP
operating system and on Windows NT, whereas
Sun shipped an implementation for Solaris. A
little bit later, the GNU project shipped a third
implementation: GNUstep.

OpenStep defined two frameworks: the Foundation
Kit and Application Kit, typically shortened to
Foundation and AppKit. The Foundation Kit
provides the core functionality that developers
need for all applications, such as collection

classes, run loops, notification delivery, OS
abstraction, and so on. The Application Kit is
built on top of this and provides extra support

for building graphical applications.

Sun’s implementation didn’t see much development
after the initial release. Apple bought NeXT a

few years later and renamed the OpenStep
environment Yellow Box, shipping it as a
developer environment both in Rhapsody and

on Windows. With the release of OS X, it was
renamed yet again, this time to Cocoa.

The History of Objective-C

The GNUstep project is still actively developed,
but now tracks Apple’s enhancements to the
OpenStep specification, as well as the core
specification. This means that the Foundation
framework is usable pretty much anywhere,
although some of the newest classes and methods
are missing with the GNUstep implementation.

You can think of the Foundation framework as
the Objective-C standard library. It provides a
lot of features that are required for nontrivial
programs. Several of the Objective-C 2 features
are designed specifically to work with Foundation.
You can use them without Foundation, but only
if you implement something equivalent.

The History of Objective-C

The term “object oriented” was coined by

Alan Kay in the 1960s, and Smalltalk was

the language that he and others created to
demonstrate this style of programming. Smalltalk
was developed during the 1970s, with the most
widespread version being released in 1980.

Smalltalk, however, was very slow. To run it
properly, you needed a powerful computer such
as the Xerox Alto, with 512KB of RAM and
ideally at least a 2MHz processor.

Brad Cox liked the idea of Smalltalk, but wanted
a language that he could use on computers

that people could afford. His idea was to marry
Smalltalk, a high-level language encouraging

10

The Objective-C Philosophy

encapsulation, loose coupling, and code reuse,
with C. C was right at the other end of the
spectrum, with little by way of encapsulation, no
dynamic dispatch, but with one big advantage:
It was fast.

C was based heavily on the PDP-11 instruction
set. A very naive C compiler could produce quite
fast code. This is true even today. Compilers
such as LLVM, XLC, and ICC put a lot of effort
into optimization, but PCC, which does almost
none, still produces reasonably fast code.

Brad Cox and Tom Love set up StepStone in
1986, selling a product based on Brad’s earlier
Object Oriented Precompiler. This product,
Objective-C, was a preprocessor and a small
Objective-C runtime library. The preprocessor
generated C code that you could compile with
your platform’s C compiler. As recently as
2010, I came across a company still using the
StepStone compiler in a commercial product.

In 1988, NeXT bought a license to StepStone’s
code and bought the Objective-C trademark
outright. NeXT then rewrote the preprocessor
as a front end to the GNU Compiler Collection
(GCC). After some legal wrangling, the Free
Software Foundation forced them to release this
code, but they kept the runtime library private.

The GNU project then wrote a replacement for
the runtime library, but made some changes.
One was that selectors in the GNU runtime
had a type associated with them. On NeXT

The History of Objective-C

(and Apple) platforms, selectors are just strings.
This means that the GNU runtime can catch,
at run time, some stack corruption caused by
programmer errors that are invisible to the
NeXT runtime.

The other change was in how message sending
works. When you send a message with the NeXT
runtime, the compiler turns the message send
into a call to the objc_msgSend() function.

This looks up the method and then calls it.
Unfortunately, it is not possible to implement
this function in C. It has to be written in
assembly for every platform and for every calling
convention on that platform. The GNU solution
was to replace this with a objc_msg_lookup()
function, which returns a pointer to the function.
This is slightly slower, but means that the same
code can work on all platforms.

Objective-C didn’t change much from this point.
NeXT was purchased by Apple in 1997 and
Objective-C adopted as the primary development
language for the Yellow Box on their new
Rhapsody operating system. These were later
renamed Cocoa and OS X, respectively. In 2003,
Apple added some Java-like exception handling
primitives to the language.

The next set of upgrades came in 2007, when
Apple introduced Objective-C 2. This was

slightly confusing to older Objective-C programmers,

because the previous version—the one that
NeXT had shipped—had been Objective-C 4.

11

12

The Objective-C Philosophy

Fortunately, the belief that 2 is the number
immediately following 4 does not seem to have
made its way into any of the sorting code in
Cocoa.

Objective-C 2 added a few bits of syntactic

sugar. It provided a new way of doing enumeration,

a way of synthesizing accessor methods, and
introduced garbage collection. Objective-C 2
is more of a marketing buzzword than a real
language. You won'’t find a compiler switch
for selecting it. Some of the features, such as
non-fragile instance variables, are only available
on some runtimes. Others, such as garbage
collection, are not available on the iPhone.
Declared properties and fast enumeration

are the only Objective-C 2 features that work
everywhere, including non-Apple platforms.

Cross-Platform Support

Forcing NeXT to release the Objective-C front
end for GCC as Free Software was something
of a PR coup for the Free Software Foundation.
Unfortunately, it was not so good from the
perspective of long-term cross-platform support.
The code that NeXT released was terrible and,
for the last ten years, has been largely ignored
by the GCC team.

GCC has moderately good support for NeXT-
era Objective-C, and also supports the newer
exception-handling keywords. The GNUstep

Cross-Platform Support

project provides implementations of the Foundation
and AppKit frameworks that are the core of
NeXT and Mac development.

In 2007, Apple began work on a new compiler.
Clang is a front end for the Low Level Virtual
Machine (LLVM), for C-family languages: C,
Objective-C, and C++. It is much more modular
than GCC, and is designed to be used for code
completion, syntax highlighting, and static
analysis as well as just compilation. Clang has
clean separation between the code used in the
different layers and isolates the runtime-specific
code into separate classes.

The compiler is only half of an Objective-C
implementation. The other half is the runtime
library. The GNU runtime was developed with
GCC and did not implement the functions
required for Objective-C 2. To remedy this,

I wrote a framework as part of Etoilé that
implemented most of the missing functionality
and implemented the public runtime APIs that
Apple introduced with OS X 10.5.

This framework is now part of GNUstep.
Another copy of it has been merged with a

fork of the GCC runtime, also developed as part
of the GNUstep project. This is referred to as
either the GNUstep runtime or libobjc2.

With Clang, and the runtime provided by the
GNUstep project, you get full support for most
Objective-C 2 features, including non-fragile
instance variables. This means that you can

13

14

CHAPTER 1: The Objective-C Philosophy

use Objective-C 2 on Windows, Linux, *BSD,
Solaris, and so on. At least one person has been
testing it on QNX, and it may also work on
Symbian.

If you use the GCC version of the runtime,
along with the Objective-C 2 framework in
GNUstep, then you get some things, such as fast
enumeration and declared properties, but you do
not get any of the benefits of the new ABL.

Compiling Objective-C Programs

$ gcc scanner.m
Undefined symbols:
"_OBJC_CLASS_$_NSAutoreleasePool", referenced
from:
__objc_classrefs_ DATA@O in ccoRpalq.o
"_objc_msgSend", referenced from:
_main in ccoRpaJqg.o

On 0S X

gcc -framework Foundation scanner.m

On other platforms

gce “gnustep-config --objc-flags --base-libs’
scanner.m

The Clang front end is intended as a drop-in
replacement for GCC, so anywhere you see gcc
in some instructions, you can substitute clang.
On OS X, GCC is installed in /usr/bin/gcc, so it
is on your path. With slightly older versions

of the XCode tools, Clang was installed in

Compiling Objective-C Programs

/Developer/usr/bin/clang, so you may need to
either specify the full path or add this location
to your path. On other platforms you will
generally find both on your path, if they are
installed.

If you are familiar with compiling C or C++
with either of these compilers, you will find
compiling Objective-C very familiar. If you just
specify a source file on the command line, the
compiler will attempt to compile and link it as
an executable.

Most of the time, this will not work. Objective-
C programs require some other libraries. On OS
X, the compiler drivers support an extra option;
-framework, which specifies a framework bundle

containing headers and a shared library. This is
both a linker and preprocessor option.

The examples in this book all use the Foundation
framework. On other platforms, this is typically
implemented by the GNUstep Base library.
These platforms typically don’t support the
-framework option. The gnustep-config tool
provides an alternative. This will print the
compiler options needed for compiling Objective-
C and for linking against the base (Foundation)
or gui (AppKit) libraries.

As with C and C++, you can specify -c to just
compile the file but not link and -o to specify
the name of the output. If you are compiling
more than one file, you probably want to use
something a bit more advanced than running the

15

16

The Objective-C Philosophy

compiler from the command line.

On OS X, you will probably use the XCode IDE.
This lets you create projects with a number of
different template types. If you need to compile
these on other platforms, you can find a tool in
the GNUstep repository called pbxbuild, which
will compile them.

If you are working on some other platform, you
can use GNUstep Make to build. This also works
on OS X, so whichever option you choose, you
should not have portability problems caused by
your build system.

An Objective-C
Primer

Objective-C is a very small set of additions to
C. The first version of Smalltalk was created as
a bet that it was possible to specify an entire
general-purpose language on a single piece of
paper. The Objective-C extensions to C are
slightly more complicated than Smalltalk, but
not by much.

If you already know C, then learning the Objective-
C language will take an afternoon—Iess if

you already understand Smalltalk-style object
orientation. That’s slightly misleading, of course.
If learning Objective-C was really that simple,
you’d feel a bit ripped off buying a book about
it. Like Smalltalk, much of the reason that the
Objective-C language is so simple is that it
delegates a lot to the library.

The standard library for the original StepStone
version of Objective-C was very small. It was

18

CHAPTER 2: An Objective-C Primer

intended to be used with C libraries, rather

than as a standalone language. Now, most
Objective-C code uses something based on the
NeXT Foundation framework—either Apple’s
Foundation, the GNUstep Base library, or
libFoundation—as a standard library. This
provides things like reference-counted memory
management, standard data structures, forwarding
mechanisms, and so on.

Much of what you would think of as part of
the Objective-C language is really provided by
the Foundation framework. It is possible to use
Objective-C without Foundation, but it’s the
sort, of thing people do to prove that they can,
not because it’s actually an intelligent thing to
do.

Declaring Objective-C Types

NSMutableArray *mutableArray = [NSMutableArray
newj ;
NSArray =array = mutableArray;

NSObject *object = array;

id obj = mutableArray;

mutableArray (NSMutableArray=)object;
mutableArray obj;

From: cast.m

Objective-C, as its name implies, adds objects to
C. Specifically, objects following the Smalltalk
model, which are instances of classes. Objects
are always allocated on the heap and so are

Declaring Objective-C Types

always referenced by pointer.

In the first implementations of Objective-C,
which produced pure C from Objective-C, classes
were turned into structure definitions describing
the layout of the objects. You can still see some
legacy of this in GCC error messages, which will
occasionally refer to objects as “structures.”

In C, you need an explicit cast to turn any
structure pointer into any other kind of structure
pointer. This rule is relaxed slightly for Objective-
C. The layout of any object is defined by the
instance variables (ivars) in the root class, then
by the instance variables in each subsequent
class down the hierarchy. Subclasses can only
add new instance variables, not remove or
rearrange ones from the superclasses. This
means that it is always safe, in terms of memory
layout, to cast a pointer to an instance of one
class to a pointer to an instance of another.

It is also safe from the perspective of the
object-oriented type system; any subclass will
always respond to all of the messages that the
superclass responds to.

Object pointers in Objective-C are identified

by the name of the class, followed by a star,

just as structure pointers are in C, although
without the struct keyword. You can always
cast a pointer to an instance of one class to a
pointer to an instance of its superclass implicitly.
This works even for indirect superclasses. For
example, NSMutableArray is a subclass of

19

20

An Objective-C Primer

NSArray, which is a subclass of NSObject. You
can cast an NSMutableArray to an NSArray or to
an NSObject. Casting in the opposite direction,
however, requires an explicit cast.

Objective-C also introduces a new pointer type:
id. This is roughly analogous to void+, when it
comes to casting rules. You may cast any object
pointer to id and you may cast id to any object
pointer type, implicitly.

If you are used to an untyped language, such

as Smalltalk, Ruby, or Python, then it can

be tempting to use the id type exclusively.

This is mostly safe, although there is one
exception. Objective-C uses the name of a
message for lookup, and does not include any
type information. This means that you can
declare two different methods (on different
classes) with the same name but different types.
When the compiler is generating a message send,
it uses the type of the receiver to determine

the layout of the stack frame. When there is
only one method advertised anywhere with that
name, the type information is not required.
Static typing is also required if you want to
access instance variables from outside an object,
but doing this is generally considered bad style.

Although specifying static type information
is not required, it is often a good idea. Aside
from the one case just mentioned, it will not
affect code generation, but it is used by the
semantic analysis phase of the compiler. This

Declaring Objective-C Types

can help catch some errors at compile time.

For example, if you try adding an object to an
NSArray instance, the compiler will warn you
that the object does not respond to the relevant
message. This lets you check whether you really
meant NSMutableArray, or if you need to make a
mutable copy of the array.

Note: In C++, it is common to use the const
keyword to describe objects as immutable. In
Objective-C, const is effectively useless. It
specifies that the instance variables of an object
may not be modified directly, but this is rarely
done. It does not alter the messages that can be
sent to an object, so an object that is declared as
const remains mutable.

Most of the time when the distinction between
mutable and immutable instances is required,
Objective-C programmers use the mutable subclass
pattern, where an immutable class has a mutable
subclass. You can cast the mutable version to the
immutable version implicitly, but you cannot make
an immutable instance mutable.

The Class type is similar to id, but it may refer
to classes. In Objective-C, a class is an object, so
you can always use id instead of Class, just as
you can use id instead of a specific object type.

Two other types are defined in the standard
Objective-C headers.! The SEL type is used

LIf you are compiling with Clang, most of these types

21

22

10

11

12

CHAPTER 2: An Objective-C Primer

for selectors, which we’ll look at later in this
chapter.

The last one is IMP, which stands for Instance
Method Pointer. This type refers to a pointer
to an Objective-C method. Most of the time,
you won’t need to use this type at all. It is only
used for some of the very dynamic features of
Objective-C, and for optimization. We’ll look at
some places where you might use it in Chapter
19.

Sending Messages

[anObject autorelease];
[anObject addObject: anotherObject];

[anObject setObject: anotherObject
forKey: aThirdObject];

From: exampleMessages.m

The most important addition to C that Objective-
C makes is sending messages. A message, as

I said in the last chapter, is a high-level flow
control construct.

This is the bit of Objective-C that tends to
intimidate people coming from languages such
as C++ and Java, because the syntax is taken
straight from Smalltalk and looks quite alien
to people more familiar with C syntax. This is
intentional. There is nothing in C that behaves
the same way as an Objective-C message send,

have built-in definitions, so the headers are optional.

Sending Messages

so having new syntax highlights the fact that
you also have new semantics. Remember that
Tom Love described it has a hybrid language,
with a clear syntax separation between the
pure C parts and “object land,” which has
Smalltalk-like syntax to accompany Smalltalk-
like semantics.

The simplest kind of message send takes no
arguments. An example of this might be the
—-count message sent to an array. Note the
minus sign before the message name. This is the
convention used in Objective-C documentation
to indicate a message that is sent to an instance.
A plus sign is used to indicate a message sent to
a class, such as +new or +arrayWithObject:.

size = [anArray count];

This snippet gets the number of elements in an
array and stores it in the variable size. In a
language such as C++4 or Java, the equivalent
would be something like this:

size = anArray.size();

This same syntax in Objective-C would be used
if anArray were a C structure and the size field
were a function pointer. Because this means
something very different to sending a message
to an object, the designers thought it would be
confusing to use the same syntax.

Messages that take one argument look very
similar. If you wanted to add an object to an
Objective-C array, you’d use something like this:

23

24

An Objective-C Primer

[anArray addObject: anObject];

Things start to become a bit different when
messages have more than one argument. As with
Smalltalk, every argument has a separate name,
so you’d insert the object at a specific index, like
this:

[anArray insertObject: anObject
atIndex: anIndex];

This makes Objective-C code very easy to

read when you understand the basic syntax,
because every message tells you what each
argument is for. If you came across this message
in documentation, it would be written like this:
-insertObject:atIndex:. You can see from
the two colons that it takes two arguments and
from the text before the two colons what those
arguments should be. As before, the minus
sign indicates that this is a message sent to an
instance.

If you send a message to an object that doesn’t
have a method to implement it, then a number
of fallback methods are used. In the default
implementation, the last of these will throw an
exception (which you can catch at run time and
work around). You can also ask an object before
you send a message whether it knows how to
handle it. We’ll take a look at how to do this

in Chapter 19.

In Objective-C, like Smalltalk, classes are objects
too. You can send them messages, just as you

Sending Messages

Note: If you send a message to nil, a constant
defined as (id)O0, you do not get an error. Instead,
you get a 0 value returned. This is very useful
because you can send a string of messages to the
result of previous message sends, and if one of
them returns nil in the middle, then the rest will
still work. This eliminates the need for a lot of
tests for NULL in Objective-C code.

The behavior of sending a message that returns

a structure to nil is undefined. If you do this in
code compiled with GCC on SPARC, your program
will crash with an illegal instruction signal. On OS
X, the structure will be filled with random values,
just like an uninitialized structure on the stack.
You should always be careful to check that an
object is not nil before sending it a message that
returns a structure.

would send an object a message. You use the
class’s name as the receiver when you do this.
The most common reason to send a message

to a class is to create an instance of that class.
Classes are responsible for creating their own
instances in Objective-C. There is no equivalent
of the new keyword in C++ or Java. The closest
equivalent is the +new message, which you can
send to a class. For example, you might create a
new mutable array like this:

id anArray = [NSMutableArray new];

Although this looks quite similar, the language

25

26

CHAPTER 2: An Objective-C Primer

makes no guarantees about what this message
will do. Some classes may create instances of

a subclass, and some may return a singleton
instance. It’s only by convention that this gives
you a new instance of the receiver.

Understanding Selectors

SEL new = @selector(new);
SEL set =

@selector(setObject:forKey:);

From: selector.m

In C, you refer to functions by name. A function
name can also be used as a pointer to that
function. When you compile C code to assembly,
the function becomes a label, which can be
reached via a call instruction or instruction
sequence.

Flow control in Objective-C is more dynamic.
You can take a pointer to a method, but most
of the time you want to send a specific message
to an object, rather than call a specific method.
If you call a specific method, you have to make
absolutely certain that the receiver really is the
class that you expect.

In C, you will often use function pointers

as arguments to other functions. The called
function will then call the one that is passed to
it. A common example of this is the gsort()
function in the C standard library. This sorts

Understanding Selectors

an array, using a function to define the ordering
between the items.

In an Objective-C version, you might want to
compare objects by sending them a -compare:
message, rather than by using a function pointer.
Ideally, then, you’d want to pass the name of the
message to send in to the method implementing
the sort.

The name of a message is referred to as the
selector. This is an abstract representation of the
message name, and it has the SEL type, which is
an opaque type. You can create a selector with
the @selector () directive. This takes a constant
string representation of a message name and
turns it into a selector for that message name.

You can use selectors to call a method by name,
as we’ll see in Chapter 19. A number of methods
in the Foundation framework take selectors as
arguments. These are used in much the same
way as C functions that take function pointers
as arguments, for delayed execution, callbacks,
sorting collections, and so on.

27

28 CHAPTER 2: An Objective-C Primer

Declaring Classes

@interface Integer : NSObject
{
int integer;
}
- (int)intValue;
- (void)addInteger: (Integerx)other;
@end

@implementation Integer
- (int)intValue { return integer; }
- (void)addInteger: (Integer=)other
{

integer += [other intValue];
}
@end

From: integer.m

When you create a new class, you need to do
two things: describe its public interface and
write its private implementation. You will
need three Objective-C keywords: @interface,
@implementation, and @end.

Note that all new Objective-C keywords start
with an @ sign. This is because this symbol is
not allowed in C identifiers. Contrast this with
C++, which introduces identifiers such as class,
which breaks any C code that uses class as a
variable name.

Objective-C inherits the C compilation model,
where the compiler expects a single file

and separation is accomplished by making
the preprocessor combine various files. By
convention, interfaces to Objective-C classes

Declaring Classes

are put in header files, with a .h extension,

and implementations go in .m files. No one can
remember why .m was chosen. The Objective-C
designers have suggested that it might stand for
“module,” “methods,” or “messages.”

Because header files are inserted into the
compilation unit by the preprocessor, before the
Objective-C compiler sees them, this separation
is not enforced. The same is true of C++ and
opaque data types in C.

One slightly surprising aspect of Objective-C is
that instance variables (what Java and C++ call
“fields”) are declared as part of the interface, not
the implementation. This is an artifact of how
early versions of Objective-C were implemented.
Every object was converted to a C structure
whose first field was a pointer to the class. To
generate this structure, the compiler needed to
be able to see all of the instance variables for

all superclasses. One unfortunate side effect of
this approach was that modifying the layout of a
class meant that you had to recompile all of its
subclasses.

Now, with the non-fragile ABI, you can hide
private instance variables from the subclasses.
Every reference to them goes via an indirection
layer. The offset is now a variable, not a
compile-time constant.

By default, Objective-C instance variables are
protected, meaning that they are only accessible
by the class or its subclasses. If you prefix them

29

30

CHAPTER 2: An Objective-C Primer

with @private they are only available to the
class, and with @ublic they are accessible
anywhere. This is quite uncommon. There is
little run-time checking of the access, and there
are a few mechanisms for bypassing the access
controls, so it’s common to leave everything
protected, only making instance variables public
in private classes.

Note: Apple's non-fragile ABI restricts the
visibility of ivar offset variables, creating a hard
error if you try to access a private instance variable
from a different compilation unit. It is still possible
to access private instance variables by using
runtime introspection and this protection is not
available with other runtimes.

The basic structure of a class interface contains
three parts. First is the definition of the place of
the new class in the hierarchy:

@interface ClassName : Superclass <protocols>

The name of the class immediately follows the
@interface keyword. Next there is a colon, and
then the name of the superclass. It is possible to
design new root classes, but it is quite complex
to do correctly, so most of the time you will just
use NSObject or NSProxy as your superclass.

After that, you may optionally specify a list
of protocols, separated by commas, in angle
brackets. Protocols in Objective-C are like

Declaring Classes

interfaces in Java. They define lists of methods
that the object must implement.

Next comes the list of instance variables. This
follows the same syntax as defining a structure
in C. A simple class definition with just instance
variables and no methods would look like this:

@interface NoMethods : NSObject
{

int integer;
NSObject =object;
float floatingPoint;

}
@end

Anything that is valid in a C structure definition
is valid here. If you are using Objective-C++,
you may also add pointers to C++ objects and
C++ objects that have a trivial constructor.

Finally, you list the public methods that the
class implements. Rather than making some
up for this, let’s look at some real method
declarations:

+ (id)new;

- (void)appendString: (NSString=+)aString;

The plus sign in front of the first method
declaration indicates that this is a method
attached to the class. You can send a +new
message to the class and it will give you an
object pointer back. The id type is a new type
introduced with Objective-C, roughly similar to
the void* type in C, but restricted to pointing
to Objective-C objects.

31

32

An Objective-C Primer

Note that the return type and the types of the
parameters use the same syntax as type casts.
This highlights another important difference
between message sends and C function calls. The
method is compiled down to a C function and
the pointer to it is cast to these types before it is
called.

The implementation part of the class

definition is much simpler. This starts with

the @implementation directive and contains
definitions of all of the class’s methods, like this:

@implementation NewClass
+ (int)classVersion

{

return 2;
}
- (void)log
{
fprintf(stderr, "log message received");

}
@end

One important point to note is that you do not
have to declare all of the methods that a class
implements. Methods that are not declared in
the class interface are considered to be private.
Calling them will generate a compile-time
warning, and a future version of the class may
stop responding to them altogether.

Using Protocols

Using Protocols

Like classes, protocols in Objective-C are
objects. The behavior of protocols was one

of the things that Apple changed with the
modern runtime. Previously, protocols were
identified by name, and two protocols were
considered equivalent if they had the same name.
This meant that if you had two protocols with
the same name declared in different libraries,
you couldn’t tell which of them an object
implemented. More importantly, you couldn’t
look up a protocol and see what methods it
required.

With Objective-C 2, protocols are now unique.
You can now get a protocol by name and inspect
it. This sometimes worked with the old model,
but it depended on whether the compiler had
already emitted a full definition of it.

You can get a reference to a protocol with the
@protocol() keyword. The main reason for
doing this is to test protocol conformance.

if (![delegate conformsToProtocol: @protocol(
DelegateProtocol)])

{
testIndividualMethods = NO;

}

You might use something like this snippet in
a method that sets a delegate. If the delegate
conforms to the protocol, it is guaranteed to
implement all of the methods in that protocol,

33

34

An Objective-C Primer

so you don’t need to test each one. If it doesn’t,
you may need to test each message before you
send it.

Protocols give you both compile-time and run-
time type checking. You can require an object
to conform to a protocol by putting the name
in angle brackets after the type name. Here are
some examples:

id <NSCopying> a;
id <NSObject,NSCopying> b;
NSObject<NSCopying> =*c;

Here, you can assign any object that implements
the NSCopying protocol to a. Objects assigned
to b must also implement the NSObject protocol,
which any object that inherits from NSObject or
NSProxy will automatically. Finally, ¢ must be

a subclass of NSObject and must implement the
NSCopying protocol.

The compiler will generate a warning—not an
error—if you assign an object to a variable that
requires it to conform to a protocol that is not
in the list that it is declared as conforming

to. This is not a hard error because it may

still implement all of the methods required by
the protocol, even though it doesn’t advertise
protocol conformance.

Adding Methods to a Class

Adding Methods to a Class

@interface NSObject (Logging)

- (void)log;

@end

@implementation NSObject (Logging)
- (void)log

{

NSLog(@"%@", self);

}
@end

From: logging.m

One of the biggest differences between Objective-
C and a language such as C++ or Java is

the idea of categories. These were present in
Smalltalk, but as a way of grouping methods
together for documentation. In Objective-C,
they allow you to add methods to a class, even
if you don’t have access to the source code.

Category definitions are similar in structure to
class definitions. A category cannot change the
instance variables of a class, nor its superclass,
so these parts of the @interface directive are
omitted. A category name is added in brackets
after the class name. In the preceding code,

you can see a simple category interface and
implementation that adds a -1log method to
NSObject. You can then send a -log message

to any object and have it dumped to the console.

Note that both the interface and implementation
of the category are optional. In the next section,
we’ll look at why specifying a category interface

35

36

An Objective-C Primer

without a corresponding implementation can be
useful. Specifying an implementation without
an interface is useful if you want to just replace
methods in an object.

Methods declared in a category will replace
methods of the same name declared in the
class. This ordering is guaranteed, so if there
is a conflict, the category will always take
precedence. If there are two categories that
define the same method, the one that is used is
undefined.

One of the less-documented features of categories
is that they let you add protocol conformance

to a class. In the Foundation framework, the
various collections have no common superclass
and do not implement a common protocol.

In the EtoileFoundation framework, we add
categories to them all, making them adopt the
ETCollection protocol. This lets us use this
protocol in places where we need some collection,
but don’t care exactly which type.

The collection.m example shows a (very)
simplified version of this. The Collection
protocol is added to both the NSSet

and NSArray classes. If you send a
-conformsToProtocol: message to an

instance of either of these classes, with
@protocol(Collection) as the argument, it will
return YES.

There is a special case for categories, where you
declare a category interface with no name. This

15
16
17
18

Adding Methods to a Class

@protocol Collection

- (BOOL)isEmpty;

@end

@interface NSArray (Collection) <Collection> @end
@interface NSSet (Collection) <Collection> @end
@implementation NSArray (Collection)

- (BOOL)isEmpty

{

return [self count] == 0;
}
@end
@implementation NSSet (Collection)
- (BOOL)isEmpty
{
return [self count] == 0;

}
@end

From: collection.m

is referred to as a class extension. Unlike other
categories, which should be accompanied by a
separate @implementation directive specifying
the category name, methods declared in class
extensions are expected to appear in the main
@implementation directive for the class. You
can use this for forward-declaring private
methods.

With the most recent Objective-C compilers, you
may also declare instance variables inside class
extensions. For this to work, you need to specify
the -fobjc-nonfragile-abi2 flag when compiling.

37

CHAPTER 2: An Objective-C Primer

Using Informal Protocols

@interface NSObject (InformalProtocol)
- (did)doSomething;

@end

// Objective-C 2 only:

@protocol InformalProtocol
@optional

- (id)doSomething;

@end

From: informalProtocol.m

Quite often, you want to define a set of methods
that you’d like a class to implement, but that
are optional. This is particularly common for
delegates, where you will test whether the
delegate implements a given method before
sending it a message.

With Objective-C 2, protocols can contain
methods that are declared as optional, but prior
to that it was common to implement informal
protocols using categories. If you create an
interface for a category on NSObject but don’t
provide an interface definition for it, then the
compiler will assume that every NSObject
subclass responds to the messages declared

in the interface and therefore won’t generate

a warning when you send any of them to an
object.

Of course, not every object really will implement
these methods, so you need to make sure you
use -respondsToSelector: to test whether an
object really does, before you send the message.

S B O)

Synthesizing Methods with Declared Properties

Synthesizing Methods with
Declared Properties
@interface Integer : NSObject

@property (nonatomic,assign) int integer;
@end

@implementation Integer
@synthesize integer;
@end

From: synth.m

One of the big additions to Objective-C 2 was
declared properties. These let you define some
aspects of the semantics of an accessor and then
synthesize the relevant methods if you don’t
need any special handling.

Properties also introduce some new syntax.
They are implemented in terms of message
sends. The example at the start of this chapter
will create both -integer and -setInteger:
methods. You can call these just as you would
any other methods, but you can also use the dot
notation, like this:

obj.integer = 12;
int i = obj.integer;
obj.integer += 42;

The last case is the most useful. Expanding this
to the traditional Objective-C message syntax
would look like so:

[obj setInteger: [obj integer] + 42];

39

40

CHAPTER 2: An Objective-C Primer

It’s worth remembering that both of these will
generate precisely the same code. The first looks
more efficient, but it is not. In both cases, you
have two message sends and one addition. This
is significantly more expensive than if obj were a
C structure.

Note: The term “property” is used in Smalltalk
documentation to refer to any instance variable
that can be manipulated via accessors. It is used

in slightly older Objective-C documentation in the
same way. Specifying declared properties, rather
than just properties, helps reduce this ambiguity.

A property declaration contains two parts: an
interface and an implementation. The interface
defines the name and type of the property, as
you’d expect, but it also defines some high-level
semantics.

Properties are atomic by default. This incurs
some overhead, so you probably want to specify
nonatomic in most properties that you create.
Atomicity of accessor methods does not make an
object thread-safe, and you are almost always
better off using some higher-level locking for
sharing objects between a thread.

Consider the nonatomic.m example. This
declares an atomic property. You then use a
single increment operation in the code. You’d
expect this to be an atomic increment, but it
isn’t. This single statement expands to two

© 0 N o oA W

Synthesizing Methods with Declared Properties

message sends with an increment in between
them.

@interface NotReallyAtomic : NSObject
@property int a;
@end

int add(NotReallyAtomic =obj)

{
obj.a += 1;
}

From: nonatomic.m

All that atomic means, in the context of
properties, is that both the set and get methods
will try to acquire the same lock, when not using
garbage collection, so the object will not be
accidentally deallocated if you try setting it in
one thread and getting it in the other thread.

In garbage collected mode, and for non-object
properties, the nonatomic has no meaning.

Properties can be either readwrite or readonly,
indicating whether assigning to them is
supported. If you define a readwrite property
and are not using garbage collection, you also
need to define the setter’s semantics.

There are three options for setter behavior:
assign, retain, and copy. The first of these is
usually only used for delegates, where retaining
them would create a retain cycle. The latter two
options are only valid for Objective-C objects.
For all primitive C types, assign is the only

41

42

CHAPTER 2: An Objective-C Primer

Note: Sometimes, you will want to have a
read-write property, but only make it readable

in the public interface. Class extensions provide

a mechanism for doing this. If you declare

the property read-only in the main interface,

but then redeclare it read-write in the class
extension, an @synthesize directive in the main
@implementation will create the setter and getter.
However, attempts to use the setter anywhere
that the class extension is not visible will create a
compiler error.

option, for a reason that is hopefully obvious:
Things that are not objects do not respond to
-retain or —copy messages.

One exception to this is C pointer types that
are declared with __attribute__((NSObject)).
This attribute tells the compiler that the C type
is really an Objective-C object. Core Foundation
objects and blocks (see the “Using Closures”
section) are common examples of this. They

are exposed in headers that may be included in
C programs, so they do not explicitly expose
Objective-C types, but they may be used as
Objective-C objects in Objective-C.

Which of the other two options to use generally
depends on the property type. If it doesn’t
implement the NSCopying protocol retain is
your only option. If it does, you should decide
whether aliasing of the property will break your

Synthesizing Methods with Declared Properties

code. If it will, use copy; otherwise, use retain.
For immutable objects, which return self in
response to a —copyWithZone: message, these
will be equivalent.

Once you have declared a property interface, you
must provide an implementation. Properties are
just a way of defining accessor methods. The
property a in the last example is implemented
with -a and -setA: methods. The first returns
the value of the property, and the second sets it
to a new value.

Note: The dot syntax is one of the most
controversial changes that Apple has made to
Objective-C. It violates one of the core principles of
Objective-C—that new semantics should always use
new syntax—by reusing the structure field accessor
syntax for message sending. The dot syntax is also
very useful for hiding bad design; it encourages
very indirect references, which violate the Law of
Demeter.

You can implement these methods yourself. You
might also inherit them from a superclass. If this
is the case, the compiler might not be able to

see them and will generate a warning. You can
suppress this by providing an @dynamic line for
the property. This tells the compiler that the
methods do really exist and will be resolved at
run time.

Alternatively, you can use @synthesize to tell

43

44

CHAPTER 2: An Objective-C Primer

the compiler to generate the accessor methods
for you. Synthesized property methods refer to
the instance variable with the same name as the
property. These methods call a runtime library
function with the offset of the instance variable
and some flags indicating the kind of property.

With older Objective-C ABIs, instance variables
all needed to be declared in the @interface
description so that the compiler could turn them
into C structures. With a non-fragile ABI, this

is not the case. The @synthesized directive can
create new instance variables that are not part of
the class’s public interface.

Understanding self, _cmd, super

id method(id self, SEL _cmd, ...);

From: object.m

Every Objective-C method is compiled to a
function. This has two hidden arguments: self
and _cmd. The first of these is quite obvious: It’s
the receiver of the message. If it’s an instance
message self will be an instance of the class. If
it’s a class message, it will be the class itself.

In C++, the this keyword is almost equivalent
to self in Objective-C, but with one crucial
difference: self is not a keyword. It is the name
of an argument. Assigning to this in C++ will
cause an error. Assigning to self in Objective-C
is permitted.

Understanding self, _cmd, super

The second hidden argument is the selector for
the message. This is required for things such

as forwarding to work correctly. When you

send a message to an object that the object
doesn’t know how to handle, it will construct an
NSInvocation object encapsulating the message
and then pass it to -forwardInvocation:.

Because neither of these hidden arguments

are keywords, you may use them both outside
of methods as identifiers, although the C
specification reserves identifiers that start with
an underscore for the implementation, so it is
probably best not to use _cmd. The normal
scoping rules apply, so you can also declare a
variable called self inside of a method and
have it hide the version that was passed as a
parameter. The compiler will generate a warning
if you do this, because it’s a stupid thing to do,
but it is semantically valid.

The super pseudo-variable is a bit more
complicated. This is only valid when used as the
receiver of a message. It will generate a message
send where self is the receiver but where the
method is looked up in the superclass, not the
current class. This is how you call methods that
you have overridden.

Sending messages to super uses a different
method lookup function that takes a pointer to
an objc_super structure as the argument. This
structure contains both the target class and the
target object.

45

46

An Objective-C Primer

The superclass is fixed at compile time. When
you compile an Objective-C class, all messages
to super will be looked up on the class that is
defined as the superclass in the class interface.

For most code, this doesn’t matter, but it’s
something that you need to remember if you
are using the runtime library functions to add
methods to a class. If the method you are
attaching to a new class sends messages to
super, it will send them to the wrong class.

It’s also worth noting that message sends to

the superclass are implemented differently

in categories with the GNU runtime. The

class implementation context is in the same
compilation unit as the class structure, because
the class structure is generated by the compiler
from the code contained in the @implementation
context. The superclass pointer can be

found just by looking this up and getting the
superclass field.

In a category, the class structure is not available.
It must be looked up at run time. This makes
superclass messages slower when sent from
methods defined in categories. The Apple
runtimes work around this by making the linker
resolve the external class reference.

The reason for the dynamic lookup is to support
class posing, a technique where one class replaces
the definition of another at run time. With the
Modern Apple runtime, class posing is no longer
supported. Every class exports its structure as a

[o NS T N

Understanding the isa Pointer

public symbol, so the linker will resolve the class
pointers at load time.

The interaction between class posing and
categories is subtly different between the legacy
Apple runtime and the GNU runtimes, but

you can avoid worrying about this by simply
avoiding using class posing. This is a good idea
anyway. There are lots of corner cases where
posing doesn’t behave quite as you might expect,
and it’s very easy to use it to write code that
works fine for you but doesn’t work on an almost
identical machine.

Understanding the isa Pointer

typedef struct objc_object =id;

struct objc_object

{
id isa;

};

From: object.m

In C++, classes are structures. You can subclass
a C structure as a C++ class. When you call a
method on a C++ class, you are really calling a
C function with a mangled name and a pointer
to the structure as the first (hidden) argument.

In Objective-C, structures and classes are very
different. Before the introduction of non-fragile
ABISs, you could use the @defs keyword in a
structure definition to create a structure with

47

48

An Objective-C Primer

the same layout as a class, but you could not use
classes and structures interchangeably.

The difference between an object and a structure
is that you can send a message to a class. This
works because the first instance variable in a
structure is a pointer to the class structure. This
instance variable is, by convention, called isa, as
in “this object is a....” If you define a new root
class, you must remember to add this instance
variable.

As with the self and _cmd hidden arguments,
the isa pointer is just another instance variable;
it is not a keyword. Contrast this with calling

a virtual method in C++. A C++ object

that has virtual methods contains a (hidden)
pointer to a vtable. This is a simple array of
function pointers. When you call the method,
the compiler dereferences the vtable pointer and
calls the function at the correct offset.

You cannot use the vtable to find anything out
about the object, and its layout is part of the
target platform’s ABI definition, not part of the
language. The isa pointer is very different. It is
an explicit instance variable, and therefore it’s
accessible just like any other instance variable. It
points to a Class, which is a typedef provided
by the Objective-C runtime headers? and defined
as either an opaque type or a pointer to a public
C structure, depending on the runtime.

2Clang treats it as a built-in type if a definition is not
provided.

Understanding the isa Pointer

On runtimes where the exact layout of the
class structure is private, you will still find
functions for inspecting it. These can tell you
the offsets of instance variables, the names and
type signatures of methods and properties, the
superclass, and so on.

You can look at the isa pointer on other
objects. The id type is defined as a C structure
(with no access control) containing just the
pointer to the class, so you can read it just as
you would any other field in a structure. Doing
this is strongly discouraged.

Objective-C objects may forward messages, and
the object pointer that you have might be a
proxy. If you want to get another object’s class,
you should send it a -class message instead.
This is slower, but it won’t break in the presence
of proxies.

You can test whether an object is a proxy by
sending it an -isProxy message, but if you're
sending one message anyway, you may as well
just send one to get the class.

49

50 CHAPTER 2: An Objective-C Primer

Initializing Classes

@implementation Init
+ (void)load
{
NSLog(@"+load called");
}
+ (void)initialize
{
NSLog(@"+initialize called");
}
- (id)init
{
NSLog(@"-init called");
return self;
}
@end

int main(void)

{
[NSAutoreleasePool new];
NSLog(@"main() entered");
id init = [[Init alloc] init];
init = [[Init alloc] init];
return O;

From: classlnit.m

In C++, you can perform static initialization
by assigning the result of a function to a global
or static variable. In C, you can use extensions
such as GCC’s _attribute__((constructor))
to achieve the same result. These both cause

a particular function to be called before the
main() function.

It’s difficult to use these correctly. The order in

Initializing Classes

which they are called is undefined. Objective-C
has an equivalent. The +load method on a class
is called when the class is registered with the
runtime, before the main() function.

It is not safe to send arbitrary messages

from this method. The class itself, all of its
superclasses, and the constant string class are all
guaranteed to have been loaded. Other classes
might have been, but this is not guaranteed, and
even if it works for you, it might not work if the
load order changes slightly.

A safer alternative is the +initialize method.
This is called automatically, by the runtime,
when the first message is sent to the class.
Typically, the first message will be something
like +alloc, to create an instance of the class,
but it might be something requesting the class
name or a singleton instance.

The +initialize method lets you perform lazy
initialization of things the class needs. This
won’t be called before the main() function,

so everything will be loaded already and the
process will be in a well-defined state.

If you implement both of these methods, you
can see the order of execution. First the +1oad
method is called, as soon as the class is loaded.
When the run-time loader finishes, it calls the
main() function. When you send a message to
the class, the +initialize method is called,
then the method you actually called, and then
you can send an -init message to the returned

51

52

ok W N R

An Objective-C Primer

instance.

.out[2690:903] +load called
.out[2690:903] main() entered
.out[2690:903] +initialize called
.out[2690:903] -init called
.out[2690:903] -init called

[I SR T I)

Output from: classinit.m

Note that the +initialize method is only
called once. The second time you send a
message to the class, it is delivered directly. The
+initialize method call is also thread-safe. If
you send two messages to the same class at the
same time from different threads, one will block
until the other finishes running the +initialize
method, and then both will continue.

Reading Type Encodings 53

Reading Type Encodings

typedef struct _s
{
int i;
float f;
NSArray =a;
char =*str;
unsigned short shorts[5];

} s;

int main(void)

{
const char =encoding = @encode(s);
printf("Encoding: %s\n", encoding);
return 0;

3

From: type.m

Much of Objective-C depends on run-time
introspection. Objective-C objects can be
introspected by sending the messages, but this

is not the case for C types. To help with this,
Objective-C defines a way of encoding C types as
strings. Each of the primitive types is encoded
as a single character. For example, int encodes
as "i", whereas unsigned long long encodes
as "Q". The convention of uppercase letters
representing the unsigned version and lowercase
letters representing the signed version is applied
across all of the integers.

These type encodings can include arbitrarily
complex C types, as you can see from the output
of the type.m example.

54

1

An Objective-C Primer

Encoding: {_s=if@+[5S]}

Output from: type.m

This example gives the type encoding of a
structure that contains primitive C types,

an Objective-C object, and a C array. The

type encoding is generated by the compiler, in
response to the @encode() directive, which is
used in a similar way to sizeof(), taking a type
as an argument and returning a type encoding.

The structure itself is represented by a pair of
braces. Inside this is the name of the structure,
followed by an equals sign and then the type
encodings of each of the elements.

The next four characters show the type
encodings of the first four fields. There are two
things to note here. The first is that Objective-
C objects are all encoded as "@", irrespective of
their static type information. The second is that
char+ is encoded as *. All other pointers are
encoded as A followed by the pointee type, but C
strings get special treatment.

The remainder of this encoding is the array.
This is in square brackets, with the number
of elements followed by the type of a single
element.

Objective-C type encodings crop up anywhere

you do any kind of introspection on the level
of C types. If you ask for the types of a

Reading Type Encodings

Note: One of the major differences between the
Apple and GNU implementations of Objective-C is
that the GNU implementation uses typed selectors.
Selectors are the names used to look up methods

in a message send. In GNU Objective-C, they also
include the encoding of the argument types of the
message. This allows functions to check that they
were called with the right argument types, which is
very useful for distributed objects and a few other
things.

method or an instance variable, you will get

the type encoding. This is very useful. In the
EtoileSerialize framework, I use this information
to iterate over the type encodings of instance
variables and automatically serialize them.

55

56 CHAPTER 2: An Objective-C Primer

Using Closures

int(AgetCounter(void)) (void)
{
__block int counter;
int(Ablock) (void) =
A(void) { return counter++; };
return _Block_copy(block);
}

int main(void)

{
int(2Ablock) (void) = getCounter();
block(); block();
NSCAssert(block() == 2,

@"Block counted incorrectly');
int(~block2) (void) = getCounter();
block2(); block2();
NSCAssert(block2() == 2,

@"Block didn’t start from 0");
return 0;

From: block.m

With 10.6, Apple introduced blocks to the C
language. Although these are a C language
extension, they are most often used in
conjunction with Objective-C.

Blocks are closures. The name comes from
Smalltalk, where the BlockClosure class
encapsulates closures. The syntax for creating
blocks is quite ugly. It is based on the C syntax
for function pointers, but with a caret replacing
the asterisk.

Blocks can be used almost exactly like function

Using Closures

pointers. You can call them just like functions,
but you can’t cast them to function pointers
because they have a different calling convention.
Just like methods, a block has a hidden
argument.

In the example, the getCounter() function
returns a new block that implements a counter.
Every time you call this block, it returns a value
one greater than the last time you called it. This
works because the counter variable in the scope
where the block was created is declared with the
__block specifier.

Any variables on the stack that blocks reference
will be copied to the heap and reference counted.
When you call _Block_copy(), the block itself is
copied to the heap if it’s on the stack, or has its
reference count incremented if it is not.

Each block returned by the getCounter()
function in the example has a copy of the
counter variable, because it is an automatic
(stack) variable, and so subsequent calls to the
function are creating a new version.

In the latest version of the Foundation
framework, you will find a lot of methods
that take blocks as arguments. You can, for
example, iterate over an array with a block as
an argument.

Blocks don’t add any expressiveness to the C
language. A block is just a function pointer and
a data pointer hidden inside a single structure,
with some extra logic in the compiler to insert

57

58

An Objective-C Primer

the data pointer as a hidden argument to the
function when it is called.

This doesn’t mean that blocks are not useful.
After all, the same is true of Objective-C; it
doesn’t let you do anything that you can’t do in
C, it just adds some syntactic sugar that makes
some things easier.

Like Objective-C objects, blocks have an isa
pointer and can be sent messages. They are
instances of the NSBlock private abstract class,
which implements the NSCopying protocol.

Most of the object-like behavior of blocks is
undocumented. You can store them in Objective-
C collections, but don’t depend on their ability
to understand any specific messages. With the
latest versions of Clang, blocks also support
introspection, exposing their types as Objective-
C type encodings.

We'll look at blocks in more detail in Chapter
15.

Memory
Management

If you come from a C or C++ background,
you’re probably used to tracking ownership of
objects and manually allocating and destroying
them. If you're coming from a language such as
Java, you’re probably accustomed to having the
garbage collector take care of all of this for you.

Objective-C does not, at the language level,
provide anything for allocating or deallocating
objects. This is left up to C code. You
commonly allocate objects by sending their class
a +alloc message. This then calls something like
malloc() to allocate the space for the object.
Sending a -dealloc message to the instance will
then clean up its instance variables and delete it.

The Foundation framework adds reference
counting to this simple manual memory
management. This makes life much easier, once
you understand how it works.

60

CHAPTER 3: Memory Management

Retaining and Releasing

NSArray =anArray = [NSArray array];

anArray = [[NSArray alloc] init];
[anArray release];

From: retainRelease.m

Every object that inherits from NSObject has

a reference count associated with it. When this
reference count reaches 0, it is destroyed. An
object created with +alloc or any of the related
methods, such as +new or +allocWithZone:,
begins life with a reference count of one.

To control the reference count of an object, you
send it -retain and -release messages. As
their names would imply, you should use these
messages when you want to retain a reference
to an object, or when you want to release

an existing reference. The -retain message
increments the object’s reference count, and the
-release message decrements it.

You can also send a -retainCount message

to an object to determine its current reference
count. It’s tempting to use this for optimization
and invoke some special cases when you are sure
there is only one reference to an object. This is a
very bad idea. As the name implies, this method
tells you the number of retained references to
the object, not the number of references. It

is common not to bother sending a -retain
message to objects when you create a pointer

to them on the stack. This means that an object

Assigning to Instance Variables

may be referenced in two or more places, even
though its retain count is only one.

Assigning to Instance Variables

- (void)setStringValue: (NSStringx)aString
{

id tmp = [aString retain];

[string release];
string = tmp;

From: ivar.m

There are a few things that you have to be
careful about when using reference counting
in this way. Consider the following simple set
method:

- (void)setStringValue: (NSStringx)aString
{

[string release];

string = [aString retain];

3

From: ivar.m

This looks sensible. You release the reference

to the old value, then retain the new value and
assign it. Most of the time, this will work, but in
a few cases it won’t, and that can be confusing
to debug.

What happens if the value of aString and
string are the same? In this case, you are

61

62

Memory Management

sending the same object a -release message
then a -retain message. If some other code
holds references to this object, it will still work,
but if not then the first message will cause the
object to be destroyed and the second will be
sent to a dangling pointer.

A more correct implementation of this method
would retain the new object first, as shown at
the start of this section. Note that you should
assign the result of the -retain message because
some objects will return another object when
you retain them. This is very rare, but it does
happen on occasion.

Finally, this method is not thread-safe. If

you want a thread-safe set method, you need

to retain the new value, perform an atomic
exchange operation on the result and the
instance variable, and then release the old value.
In general, however, it is almost impossible to
reason about code that supports this kind of
fine-grained concurrency, and the amount of
cache churn it causes will offset any performance
gains from parallelism, so it’s a terrible idea.

If you really need it, it’s better to use declared
properties to synthesize the accessor than try to
write it yourself.

Avoiding Retain Cycles

Avoiding Retain Cycles

- (void)setDelegate: (id)aDelegate
{

delegate = aDelegate;
}

From: ivar.m

The problem with pure reference counting is that
it doesn’t detect cycles. If you have two objects
that retain references to each other, then neither
will ever be freed.

In general, this is not a major problem.
Objective-C data structures tend to be acyclic,
but there are some common cases where
cycles are inevitable. The most common is the
delegation pattern. In this pattern, an object
typically implements some mechanisms and
delegates policy to another object. Most of
AppKit works in this way.

The delegate needs a reference to the object, and
the object needs a reference to its delegate. This
immediately creates a cycle. The common idiom
that addresses this problem is that objects do
not retain their delegates. If you pass an object
as an argument to a -setDelegate: method,
you need to make sure that some other object
holds a reference to it, or it will be deleted
prematurely.

63

64 CHAPTER 3: Memory Management

Autorelease Pools

id returnObject(void)

{

return [[NSObject new] autoreleasel];

3

int main(void)
{
NSAutoreleasePool *pool = [NSAutoreleasePool
new];
id object = returnObject();
[object retain];
[pool drain];
// Object becomes invalid here.
[object releasel];
return 0;

From: autorelease.m

Aside from cycles, the biggest problem with
reference counting is that there are short
periods when no object really owns a particular
reference. In C, deciding whether the caller or
callee is responsible for allocating memory is a
problem.

In something like the sprintf() function, the
caller allocates the space. Unfortunately, the
caller doesn’t actually know how much space is
needed, so the snprintf() variant was added to
let the callee know how much space is available.
This can still cause problems, so the asprintf()
version was added to let the callee allocate the
space.

If the callee is allocating the space, who

Autorelease Pools

is responsible for freeing it? The caller,
presumably, but because the caller didn’t create
it, anything that checks for balanced malloc()
and free() calls will fail to spot the leak.

In Objective-C, this problem is even more
common. Lots of methods may return temporary
objects. If you're returning a temporary object,
it needs to be freed, but if you're returning a
pointer to an instance variable, it doesn’t. You
could retain such a pointer first, but then you
need to remember to release every single object
that is returned from a method. This quickly
gets tiresome.

The solution to this problem is the autorelease
pool. When you send an object an —autorelease
message, it is added to the currently active
NSAutoreleasePool instance. When this
instance is destroyed, every object added to it

is sent a -release message.

The -autorelease message is a deferred
-release message. You send it to an object
when you no longer need a reference to it but
something else might.

If you are using NSRunLoop, an autorelease pool
will be created at the start of every run loop
iteration and destroyed at the end. This means
that no temporary objects will be destroyed

until the end of the current iteration. If you

are doing something that creates a lot of
temporary objects, you may wish to create a new
autorelease pool, like so:

65

66

NS

CHAPTER 3: Memory Management

id pool = [NSAutoreleasePool new];
[anObject doSomethingThatCreatesLotsOfObjects
1;

[pool drain];

Note that you send an autorelease pool a -drain
message rather than a release message when
you destroy it. That is because the Objective-

C runtime will ignore -release messages when
you are in garbage collected mode. The -drain
message in this mode provides a hint to the
collector, but does not destroy the pool, when
you are in garbage collected mode.

Using Autoreleased Constructors

+ (id)object
{

return [[[self alloc] init] autorelease];

3

From: namedConstructor.m

I said in the last section that objects created
with +alloc have a retain count of one. In fact,
all objects are created with a retain count of one,
but objects created with a named constructor,
such as +stringWithFormat: or +array, are also
autoreleased.

If you create an object with one of these
mechanisms, you must send it a -retain
message if you want to keep it. If you don’t, it
will be collected later when the autorelease pool

Autoreleasing Objects in Accessors

is destroyed.

This is a convention that is important to observe
in your own classes. If someone creates an
instance of one of your classes with a named
constructor, he will expect not to have to

release it. A typical named constructor would
look something like the one at the start of this
section.

Note that, because this is a class method, the
self object will be the class. By sending the
+alloc message to self rather than to the class
name, this method can work with subclasses
automatically.

Autoreleasing Objects in
Accessors

- (NSString=)stringValue
{

return [[string retain] autorelease];

3

From: ivar.m

Another common issue with reference counting,
as implemented in Foundation, is that you
commonly don’t retain objects that you only
reference on the stack. Imagine that you have
some code like this:

NSString *o0ldString = [anObject stringValue];
[anObject setStringValue: newString];

67

68

CHAPTER 3: Memory Management

If the -setStringValue: method is implemented
as I suggested earlier, this code will crash
because the object referenced by 0ldString

will be deleted when you set the new string
value. This is a problem. There are two possible
solutions, both involving autorelease pools. One
is to autorelease the old value when you set

the new one. The other is the definition of the
-stringValue method from the start of this
section.

This ensures that the string will not be
accidentally destroyed as a result of anything
that the object does. Another common idiom

is to substitute a —copy message for -retain.
This is useful if the instance variable might

be mutable. If it’s immutable, —-copy will be
equivalent to -retain. If it’s mutable, the caller
will get an object that won’t change as a result
of other messages sent to the object.

Supporting Automatic Garbage
Collection

$ gcc -c¢ -framework Cocoa -fobjc-gc-only
collected.m

$ gcc -c¢ -framework Cocoa -fobjc-gc collected.m

Starting with OS X 10.5, Apple introduced
automatic garbage collection to Objective-C.
This can make life easier for programmers,

Supporting Automatic Garbage Collection

but in most cases it comes with a performance
penalty. Apple’s collector uses a lot of memory
to track live references and therefore is not
available on the iPhone. It is also not supported
with older versions of OS X and has only limited
support with GNUstep, so you should avoid
using garbage collection if you want to write
portable code.

If you compile your code in garbage collected
mode, all -retain, -release, and -autorelease
messages will be ignored. The compiler will
automatically insert calls to functions in the
runtime for every assign operation to memory

on the heap.

Code must be compiled with garbage collection
support to use the garbage collector. This will
insert calls to a set of functions that, on the
Mac runtime, are declared in objc-auto.h on any
assignment to memory on the heap.

These functions make sure that the garbage
collector is aware of the write. These are
required because the collector is concurrent. It
will run in a background thread and will delete
objects when it can no longer find references to
them. The collector must be notified of updated
pointers, or it might accidentally delete an object
that you have just created a reference to.

You have two options when compiling for
garbage collection. If you compile with the
-fobjc-gc-only flag your code will only support
garbage collection. If you compile with the

69

70

Memory Management

/* Write barriers. Used by the compiler. =/

OBJC_GC_EXPORT id objc_assign_strongCast(id val,
id *dest);

OBJC_GC_EXPORT id objc_assign_global(id val, id =
dest);

OBJC_GC_EXPORT id objc_assign_ivar(id value, id
dest, ptrdiff_t offset);

OBJC_GC_EXPORT void *objc_memmove_collectable(
void *dst, const void *src, size_t size);

OBJC_GC_EXPORT id objc_read_weak(id *location);
OBJC_GC_EXPORT id objc_assign_weak(id value, id =
location);

From: objc-auto.h

-fobjc-gc flag, the code will support both
reference counting and automatic garbage
collection. This is useful when you are compiling
a framework. You must still remember to add
-retain and -release calls in the correct
places, but users of your framework can then use
it with or without collection.

Interoperating with C

In garbage collected mode, not all memory is
scanned. Anything allocated by malloc() is
invisible to the garbage collector. If you pass
an object pointer as a void* parameter to a
C function, which then stores it in malloc()’d
memory, it becomes invisible to the collector
and may be freed even though there are still

© 0 N o v oA W N

m
o

Using Weak References

references to it.

Normally, you would send a -retain message
to the object before doing this, but that won’t
work in garbage collected mode. Instead, you
have to use the CFRetain() function. This
will increment the object’s reference count,
irrespective of whether the collector is running.
The collector will only free objects when their
retain count is zero and it can not find any
references to them in traced memory.

When you have finished with a reference that

is outside of the collector’s scope, you need to
call CFRelease(). Unfortunately, this isn’t the
only case when you need to use these functions.
You also need to use them when you are passing
an object as a argument for a callback in some
cases.

Using Weak References

@interface WeakDelegate : NSObject
{

__weak id delegate;

}

@property __weak id delegate;
@end

@implementation WeakDelegate
@synthesize delegate;

@end

From: gc.m

One of the nicest things about Apple’s garbage

71

72

CHAPTER 3: Memory Management

collection implementation is the existence of
zeroing weak references. Pointers that are not
retained are often referred to as “weak” in
Objective-C documentation that predates the
garbage collector. These are references that are
allowed to persist beyond the lifetime of the
object. Unfortunately, there is no automatic way
of telling whether they are still valid.

Note: Weak references in a reference counted
environment, such as those referencing delegates,
are commonly used to eliminate retain cycles.
These are not needed in a tracing environment,
so you can use strong references for pointers to
delegates and anywhere else you might have a
retain cycle.

If you declare an object pointer __weak in
garbage collected mode, you get a zeroing weak
reference. This is not counted by the garbage
collector when determining if an object is still
live. If all of the references to an object are
weak, it can be destroyed. Afterwards, reading
the weak references will return nil.

Weak references are most commonly used in
connection with things such as notifications. You
will keep a weak reference to an object and keep
sending it messages as long as it is referenced
elsewhere, then you can have it cleaned up
automatically later.

Cocoa now comes with some collections that let

15
16
17
18

Allocating Scanned Memory

you store weak references. Older versions of the
Foundation framework provide NSMapTable and
NSHashTable as opaque C types, with a set of C
functions to use them. These interfaces are still
available, but with 10.5, Apple made these two C
types into classes.

The NSMapTable type is a general form of
NSDictionary that can be used to store any
pointer-sized types as both values and keys.
With garbage collection, you can use this class
to store mappings to and from strong or weak
object pointers as well. This is useful for things
such as NSNotificationCenter, so that objects
can be collected while they are still registered to
receive notifications and can be automatically
removed from the notification center when this
happens.

Allocating Scanned Memory

id +buffer =
NSAllocateCollectable(

10 * sizeof(id),
NSScannedOption);

From: gc.m

If you allocate memory with malloc(), it is
invisible to the garbage collector. This is a
problem if you want, for example, something
like a C array containing objects. We've already
looked at one solution to this. You can call
CFRetain() on the object you are about to store

73

74

Memory Management

and CFRelease() on the old value, and then
swap them over.

This is not ideal, although it will work.

The other option is to allocate a region of
memory from the garbage collector. The
NSAllocateCollectable() function is similar

to malloc(), but with two important differences.

The first is that the memory that it returns is
garbage collected. There is no corresponding
NSFreeCollectable() function. When the last
pointer to the buffer disappears, the buffer will
be collected.

Note: The Apple collector does not support
interior references, so you must make sure you
keep a pointer to the start of the region. Pointers
to somewhere in the middle of the buffer will not
prevent it from being freed.

The second difference is that the second
parameter to this function defines the kind of
memory that you want. If you are going to be
using the buffer for storing C types, you can just
pass zero here. If you pass NSScannedOption,
the returned buffer will be scanned as a

possible location of object pointers, as well as
pointers to other memory regions returned by
NSAllocateCollectable().

Common
Objective-C
Patterns

Every programming language encourages a
different set of design patterns. Understanding
the common ones used throughout the
Foundation framework makes understanding the
framework as a whole, and writing Objective-C
code, a lot easier.

This chapter provide an overview of some of the
most common patterns in Objective-C. If you
want to read more, you can find a much more
detailed overview in Cocoa Design Patterns,

by Erik M. Buck and Donald A. Yacktman
(Addison-Wesley, 2009).

CHAPTER 4: Common Objective-C Patterns

Supporting Two-Stage Creation

NSMutableString xbuffer =
[[NSMutableString alloc] init];

NSMutableArray =*array =
[[NSMutableArray alloc]
initWithObject: buffer];

From: alloclnit.m

One of the patterns you’ve probably already seen
is the two-stage creation pattern. In traditional,
pre-NeXT, Objective-C, you create an object

by sending the class a +new message. When you
implemented a new class, you would override
+new to call the superclass implementation and
then perform that class’s initialization.

NeXT changed this, splitting object creation and
object initialization into two different methods.
The +new method still works, but now it sends

a +alloc message to the class and a -init
message to the returned object.

The +alloc method itself, by default, calls
+allocWithZone:. This takes an NSZone

as an argument. This is an opaque type
encapsulating an allocation zone. This was used
very heavily on NeXT systems, to make efficient
use of the very small amount of memory that
these machines came with. It does not work
particularly well on OS X, and is not properly
supported by all classes, so it’s something of a
vestigial feature in a lot of modern Objective-C
code.

Supporting Two-Stage Creation

When you create a new class, you override the
-init method, or provide a new designated
initializer.

Note: You can still find some evidence of the
old-style creation in GCC. When +new was used to
create objects, it was common to create the new
instance and then assign it to self in the class
method. There is some code in GCC to support
this, allowing instance variable access from class
methods. This feature was deprecated a long time
ago, so you now get a warning when you try it.

It is very rare to override +alloc. Occasionally,
people do this to implement per-class pools or
enforce singletons, but it’s quite unusual. If you
are implementing a singleton class, you may
override +alloc to return an existing instance
if one exists. We'll look at that later in this
chapter.

77

78 CHAPTER 4: Common Objective-C Patterns
Copying Objects

@interface Pair : NSObject <NSCopying>
@property (nonatomic, retain) id first, second;
@end

@implementation Pair

@synthesize first, second;

- (dd)copyWithZone: (NSZone+*)aZone

{

Pair *new

= [self->isa allocWithZone: aZone];
new.first = first;
new.second = second;
return new;

}
@end

From: copy.m

The Foundation framework includes a function
called NSCopyObject(). You might logically
expect that this will copy an object, and you’d
be almost right. It creates a new object with
the same class as the original and then uses
something like memcpy () to copy the instance
variables over.

This works fine for objects that only have
primitive C types as their instance variables, but
not so well for others. Object pointers need to be
sent a -retain message when they are copied.

C pointers may need some other things done

to them, particularly if they are opaque types
returned from some other library.

Without information about exactly what the
relationship between objects is, the copy function
cannot create a true copy automatically. Some

Copying Objects

objects should not even support copying. What,
for example, would you expect the semantics of
copying an object that encapsulates a socket to
be? Would you get two objects encapsulating the
same socket?

The only thing that really knows how to make

a copy of an object is the object itself. If the
object implements the NSCopying protocol, you
can send it a —copyWithZone: message to get
the copy. This takes an NSZone as the argument.

Most code these days doesn’t bother with
NSZone. NSObject provides a —copy method,
which just calls —copyWithZone: with the
default zone as the argument. Although you
may always call -copy, you should implement
-copyWithZone:.

This method normally begins by sending an
+allocWithZone: message to the receiver’s isa
pointer, which creates a new instance. It may
then call an initializer, or it might fill in the
instance variables itself.

Note: If you are inheriting from a superclass
that implements the NSCopying protocol, you
should send a —copyWithZone: message to super
in your —copyWithZone: implementation and
then only copy the instance variables your subclass
added.

An object returned by -copy (or
-copyWithZone:) should be treated in the

79

80

CHAPTER 4: Common Objective-C Patterns

same way as one returned by +alloc (or
+allocWithZone:). Its initial retain count will
be one, so you must remember to send it a
-release or —autorelease message at some
point, to avoid memory leaks.

Archiving Objects

void roundTripWithArchiver(id object, Class coder
, Class decoder)
{
NSData *data = [coder
archivedDataWithRootObject: object];
id copy = [decoder unarchiveObjectWithData:
datal;
NSCAssert(data, @"Archiving failed");

NSCAssert(copy, @"Unarchiving failed");
NSCAssert(([object integer] == [copy integer]),
@"Integer wasn’t copied correctly");
NSCAssert([[object string] isEqual: [copy
string]],
@"String wasn’t copied correctly");

From: archive.m

Often, you need some parts of your program’s
state to persist for longer than a single
invocation. You can store some pure-data object
types in property lists, as we’ll see in Chapter 7,
but what about storing arbitrary objects?

You can write data out in some custom (or
public) format and then re-create the objects
from this. Defining new file formats just because
you want a few objects to persist is a bit more

Archiving Objects

effort than most programmers want to exert,
however.

Fortunately, Foundation provides the
answer in the NSCoding protocol. This
defines two methods: -initWithCoder: and
-encodeWithCoder:. A lot of the standard
classes implement this protocol, and it’s
relatively easy to implement yourself.

The object passed as an argument to these
methods is a coder. This is a class that
encapsulates some data representation. On older
systems, this was typically NSArchiver, but on
newer ones it will usually be NSKeyedArchiver.
The older NSArchiver interface just let you
write a stream of (typed) values. Keyed archives,
however, support storing something more like

a dictionary. They let you store key-value pairs
and then read them back in a different order.

There are two parts to supporting archiving.
Your object must be able to write itself to an
archive, and it must be able to read itself back.
In the -encodeWithCoder: method, you must
write all of the object’s state to the coder.

This does not necessarily mean all of the
object’s instance variables. Some objects have
instance variables that are just used for caching
information that can be reconstructed from
elsewhere. It is generally better to reconstruct
these after awaking than to store them.

It’s a good idea to support both keyed and
non-keyed coders. Often, non-keyed archivers

81

82

34

Common Objective-C Patterns

- (void)encodeWithCoder: (NSCoder=*)aCoder
{
if ([aCoder allowsKeyedCoding])
{
[aCoder encodeInt: integer
forKey: @"integer'];
[aCoder encodeObject: string
forKey: @"string"];
}

else
{
[aCoder encodeValueOfObjCType: @encode(int)
at: &integer];
[aCoder encodeObject: string];

¥
3

From: archive.m

are used for transient encodings (for example,
transmission over a network), whereas keyed
coders are used for persistent data.

Keyed archivers have more convenient methods
for archiving primitive C types. You can send
things such as-encodelInt:forKey: messages.
The older-style archivers only have one method
for storing primitive C types, which takes the
Objective-C type encoding and a pointer to the
variable.

The corresponding method for loading can be a
bit more complicated. The archiver stores the
class version for every object that it stores. You
should set this in +initialize by sending a

23

24
25
26
27
28

29

31
32
33

{

3

Archiving Objects

(id)initWithCoder: (NSCoder=)aCoder

if ([aCoder versionForClassName: [self
className]] !'= 0)

{
[self release];
return nil;
}
if ([aCoder allowsKeyedCoding])
{
integer =
[aCoder decodeIntForKey: @"integer'];
string = [aCoder decodeObjectForKey: @"string
3
}
else
{
[aCoder decodeValueOfObjCType: @encode(int)
at: &integer];
string = [aCoder decodeObject];
}

string = [string retain];
return self;

From: archive.m

+setVersion: message to self when you change
an object’s instance variable layout.

The -initWithCoder: method might need

to load archives from older versions of your
program, so it should check the version and
handle the archive differently if it corresponds
to an old version.

It’s also important to remember to call the
superclass implementation of both of these

83

84

CHAPTER 4: Common Objective-C Patterns

methods if, and only if, the superclass conforms
to the NSCoding protocol. If it doesn’t, but does
have some state that you wish to persist, you
are responsible for archiving this as well as your
subclass’s instance variables.

Creating Designated Initalizers

(id)initWithSelectorName: (NSString=)aSel
arguments: (NSArrayx)args

if (nil == (self = [super init]))
{ return nil; }

selector = [aSel copy];

arguments = [args mutableCopy];

return self;

(id)initWithSelectorName: (NSString=)aSel
return
[self initWithSelectorName: aSel

arguments: nil];

(id)init

return [self initWithSelectorName: nil];

From: designatedInit.m

Most of the classes we’ve looked at so far have
been initialized using the -init method. This
method is the designated initializer in NSObject.
If you subclass NSObject, you will usually
override this method.

When a new NSObject subclass is created,

Creating Designated Initalizers

all of its instance variables are set to zero.
Your initializer may then set some of them to
something else, and acquire any other resources
that the object requires.

Note: The -init method in NSObject

does not do anything, it just returns self. This
means that it is tempting to avoid sending an
-init message to super in direct subclasses

of NSObject. This is generally considered bad
practice, because a category on NSObject might
replace this method with one that actually does
something.

Not all classes retain -init as their designated
initializer. By convention, the initializer that
takes the most arguments is the designated
initializer. All other initializer methods will call
this one.

This approach makes subclassing much easier.

A lot of classes provide a number of convenience
methods for initialization. If you had to override
all of these in every subclass, you would end up
with a lot of code that didn’t add any value.

If the superclass uses the designated initializer
pattern, you only need to override one initializer.
The example in this section is taken from the
LKMessageSend class in LanguageKit. This

is an abstract syntax tree node representing

a message send operation. The superclass’s
designated initializer is -init, so this class calls

85

86

Common Objective-C Patterns

that from its own designated initializer. This
class overrides -init, but the overridden version
calls this class’s designated initializer.

If you subclass this class,

you just have to override the
-initWithSelectorName:arguments:

method, and you only need to do that if you add
instance variables that need initialization. People
sending a -init message to your class will get
an initialized instance back.

Enforcing the Singleton Pattern

Enforcing the Singleton Pattern

dimplementation Singleton
static Singleton *sharedInstance;
+ (void)initialize
{
if ([Singleton class] == self)
{
sharedInstance = [self new];
}
I
+ (Singletonx)sharedInstance
{
return sharedInstance;
+
+ (id)allocWithZone: (NSZonex)aZone
{
if (sharedInstance &&
[Singleton class] == self)
{

[NSException raise: NSGenericException
format: @"May not create more than
one instance of singleton."];

3

return [super allocWithZone: aZone];

by

dend

From: singleton.m

Singletons are the object-oriented version of
global variables. A singleton class only has one
instance. There are lots of these in Objective-C,
but they all follow the same general pattern.

The example at the start of this section is

a skeleton class that only permits a single
instance of itself to be created. This follows the
convention of returning the singleton instance

87

88

Common Objective-C Patterns

in response to a +sharedInstance message. A
lot of singleton classes put the class name in this
message name, in place of Instance.

To get the shared application object in an
AppKit application, for example, you will

send a +sharedApplication message to
NSApplication. This class is a special case of
a singleton, because it stores its shared instance
in the global NSApp variable. If the application
has already started, you can use this variable
directly, avoiding the message send to get the
application object.

The most common mistake with singletons is
to introduce a race condition in creation. This
particular singleton is storing an instance of
itself in a private variable. It it tempting to
create this in the +sharedInstance method.
That will work fine for single-threaded
applications, but what about multithreaded
ones?

If you send the +sharedInstance message
simultaneously from two threads, what happens?
Both might test the variable, find that it hasn’t
been created, and then create it. To get around
this, you could use a lock.

A much simpler solution is to create the
instance in the +initialize method. This
method is called by the runtime the first time a
message is sent to the class. It is the runtime’s
responsibility to ensure that this method
completes before any messages are delivered to

Delegation

the class by other threads.!

Note: The Apple documentation

recommends using @synchronized(self) in the
+sharedInstance method for creating singletons.
That approach is both significantly slower and
requires more code than the approach proposed in
this section, so it has little to recommend it.

You don’t need to override +allocWithZone: in
a singleton, but it provides a little bit extra run-
time checking if you do. The sample code will
throw an exception if you try to allocate a new
instance of the class after the singleton instance
has been created.

Note the tests in both the +allocWithZone:
and +initialize methods. These are needed
for subclassing. You don’t want to throw an
exception if someone creates a subclass of your
singleton object. Subclassing singletons is quite
tricky, so you may skip this extra test if you
don’t want to support it.

Delegation

Objective-C doesn’t support multiple
inheritance. This is not a huge limitation,
because it’s very hard to use multiple inheritance

IThere is a long-standing bug in the GCC runtime
that prevents this from working correctly, but it’s fixed in
the GNUstep runtime.

89

90

Common Objective-C Patterns

well, but with some problems it seems like the
natural solution.

The idea behind the delegation pattern is similar
to that behind inheritance and prototypes: You
allow one object to define some subset of the
behavior of another object.

You won'’t see this in the Foundation framework
much, but it’s very common in AppKit or UIKit
code. Each user interface object uses delegation
to allow you to define what happens in response
to user interface events.

Several patterns are related to delegation, and
they are all related to the general rule that you
should favor object composition over inheritance.
This is important for loose coupling, because it
makes it much easier to reuse the code.

If you have a C++ class with three superclasses
providing some aspects of its behavior, then it is
a lot harder to modify than an Objective-C class
delegating aspects of its functionality to three
other classes.

Providing Facades

Providing Facades

dinterface Control : View

aimplementation Control
- (dd)selectedCell

return cell;

(BOOL)isEnabled

return [[self selectedCell] isEnabled];
(void)setEnabled: (BOOL)flag

[[self selectedCell] setEnabled: flag];
[self setNeedsDisplay: YES];
I

dend

From: facade.m

One very common use for delegation is the
facade pattern. This wraps one or more private
or semi-private objects in a public interface. This
is very commonly used in Objective-C to provide
something like multiple inheritance, where an
object combines behavior from several distinct
objects, delegating some of its functionality to
each one.

The NSControl hierarchy in AppKit is a good
example of this. Classes in this hierarchy inherit
behavior from NSView and delegate behavior to
an NSCell subclass. NSView provides features

91

92

Common Objective-C Patterns

such as a graphics context, event handling, and
interaction with the view hierarchy. The cell
provides features such as drawing. The example
at the top of this section is a (very) simplified
version of NSControl.

When you click on a button in OS X, you are
usually clicking on an instance of NSButton,
which is an NSControl subclass using an
NSButtonCell for its implementation. As

a programmer, you can use controls almost
interchangeably and you can also reuse the cells
that they contain. If you see a button in a table
or outline view, for example, this is drawn with
an NSButtonCell, not with an NSButton.

In Chapter 19, we’ll look at using the Objective-
C forwarding mechanisms to quickly and

easily implement this kind of facade. It’s also
possible—and common—to implement them
simply by calling the methods in the wrapped
object or objects directly.

This approach is much more flexible than
multiple inheritance, because it allows the same
class to be used with lots of different delegates.
In C++, you would use template classes to
achieve the same effect. These have different
advantages. The Objective-C version generates

a lot less code, which translates to better
instruction cache usage. The C++ version makes
certain categories of optimization (primarily
inlining) easier at compile time.

Creating Class Clusters 93

Creating Class Clusters

static Pair *placeHolder;
+ (void)initialize
{
if ([Pair class] == self)
{
placeHolder = [self alloc];
}

(id)allocWithZone: (NSZone*)aZone

if ([Pair class] == self)
{
if (nil == placeHolder)
{
placeHolder =

[super allocWithZone: aZone];

}

return placeHolder;
}
return [super allocWithZone: aZone];

(Pair=*)initWithFloat: (float)a float: (float)b

return [[FloatPair alloc] initWithFloat: a
float: b];

(Pair*)initWithInt: (int)a int: (int)b

return [[IntPair alloc] initWithInt: a int: b];

From: classCluster.m

Class clusters are very common in Objective-C.
A lot of the Foundation classes are class clusters,
and you may find it useful to implement some
more of your own.

94

Common Objective-C Patterns

A class cluster is an abstract superclass that
hides concrete subclasses. This is easier in
Objective-C than many other languages, because
there is no keyword for object creation. When
you send a message to a class asking for a new
instance, the class may return an instance of
itself, but it may also return an instance of some
subclass.

If you create an NSArray using
+arrayWithObjects:, you may get a subclass
that wraps a simple C array. If you create one
using +arrayWithArray:, you are likely to get
one that just references the other array.

Another good example is NSNumber. This wraps
a single C primitive value. You could implement
this with two instance variables: a union of all
of the possible value types and another saying
which one it is. This would waste a lot of space
and be quite complicated. A simpler solution is
to implement a different subclass for each type
that you support.

Most class clusters provide named constructors,
such as +numberWithFloat:, that create a

new instance of the correct subclass. If you
create them with +alloc, you typically get a
placeholder class returned and then get the real
object in response to the initialize message.

The example is a Pair class. This does not
declare any instance variables and is never used
directly. If you send a +alloc message to this
class, you get a singleton instance. When you

75
76
7

Creating Class Clusters

send it an initialization message, you get an
instance of one of the two private subclasses.

@implementation IntPair
- (Pair*)initWithInt: (int)a int: (int)b
{

first = a;

second = b;

return self;

(NSString+)description

return [NSString stringWithFormat: @"(%d, %d)",
first, second];

- (float)firstFloat { return (float)first; }
(float)secondFloat { return (float)second; }
- (int)firstInt { return first; }

- (int)secondInt { return second; }

@end

From: classCluster.m

Each of these concrete subclasses is quite simple.
They both declare two instance variables: ints
in one, floats in the other. They each provide
a single initializer, which is called only from the
superclass, and they then override the methods.

This example doesn’t provide any useful
methods in the superclass. In a real
implementation, you might see methods for
comparison or arithmetic implemented in the
superclass, in terms of the four methods that
are shown here. Alternatively, they might be
provided in a separate category.

95

96

18

CHAPTER 4: Common Objective-C Patterns

The class cluster hides all of the details of the
implementation. You can change any aspect

of the private subclasses without needing to
modify or even recompile code that uses them.
This is one of the reasons why code reuse is a lot
more common in Objective-C than in languages
like C++. It is very easy to produce code in
Objective-C that has a public interface and

a private implementation, without any code
that uses it depending on any aspects of the
implementation.

Subclassing a class cluster usually requires
implementing a small number of primitive
methods. The other methods in the superclass
are all implemented in terms of this core
functionality. We’ll look at this in more detail

in the Subclassing Collections section in Chapter

7.

If you want to create a new subclass of
NSString, for example, you must implement
-length and -characterAtIndex:. All other
methods in this class just call these two. A more
efficient implementation will also implement
-getCharacters:range:.

Using Run Loops

[[NSRunLoop currentRunLoop] run];

From: timer.m

The design pattern that defines the structure

Using Run Loops

of most nontrivial Objective-C programs is the
run loop. A run loop, in the general case, waits
for data from one or more event sources, and
then executes code in response to them, giving
an event driven programming model.

The Foundation framework provides a run loop
implementation in the NSRunLoop class. If you
are writing an application, you will typically get
an instance of this created for you automatically.
You may also create one explicitly in command-
line tools.

The main run loop in an application listens for
events from the window server, corresponding

to keypresses, mouse movements, touch events,
and so on. Various other classes add event
sources to the run loop implicitly. The NSTimer
class, which we’ll look at in Chapter 8, adds a
timer event source to the run loop, for example,
allowing you to perform some action at a specific
time.

The notification mechanism, covered in Chapter
16, lets you deliver notifications of arbitrary
events within your program via the run loop,
and you can also register for notifications of
activity on file descriptors with NSFileHandle.

The run loop itself is related to memory
management. Each run loop iteration has its
own autorelease pool. This means that objects
that are sent an -autorelease message during
a run loop iteration will be destroyed (unless
retained elsewhere) at the end of the iteration.

97

98

Common Objective-C Patterns

Because of this, and the fact that the run loop is
used for delivering events from user input, it is a
good idea to keep the amount of work done in a
single run loop iteration as small as possible.

In most programs, you won’t need to interact
with the run loop directly. It sits in the
background, while other classes provide a more
convenient interface.

Numbers

One of the big differences between Objective-C
and Smalltalk is that Objective-C inherits the
full range of primitive (non-object) C types.
These are, in ascending order of size, char,
short, int, long and long long integers, with
both signed and unsigned variants, as well as
two floating-point types: float and double.

These all behave exactly as they do in C,
complete with type promotion rules. You'll
also find that Objective-C compilers support
a long double type, which is architecture-
dependent.

Note that this is very similar to Java, where

you have a small selection of non-object types,
but with some very important differences. In
Java, the intrinsic types are defined to be a fixed
size. In C, they are defined to have a minimum
precision. For example, the specification says
that an int has “the natural size suggested by
the architecture of the execution environment,”

100

Numbers

whereas in Java it is explicitly defined as a “32-
bit signed two’s complement integer.”

As well as the primitive types, C supports
defining new names for the existing types via
the typedef keyword. The most common reason
for this is that the specification does not require
a particular size for any of the standard types,
merely that each must be at least as big as the
previous one. In particular, there are platforms
currently deployed where int is 16, 32, and 64
bits, so you can’t rely on any specific size for
these.

OS X supports ILP32 and LP64 modes. This
shorthand is used to describe which of the C
types have which sizes. ILP32 means that ints,
longs, and pointers are 32 bits. LP64 means
that longs and pointers are 64-bit quantities,
and that, implicitly, other values are smaller.
Microsoft Windows, in contrast, is an LLP64
platform on 64-bit architectures; both int and
long remain 32 bits and only pointers and

long longs are 64 bits. This causes a problem if
you assumed that you could safely cast a pointer
to long—something that works on almost every
platform in the world, including Win32, but does
not work on Win64.

The problem of casting a pointer to an integer is
a serious one. The long long type is at least 64
bits, so on any current platform it is guaranteed
to be big enough to store any pointer, but on
any 32- or 16-bit platform it can be much too

Storing Numbers in Collections

big. C99 introduced the intptr_t typedef,
which is exactly the size of a pointer. Apple
introduced an equivalent: NSInteger. This is
used throughout the Cocoa frameworks and is
always the same size as a pointer. There is also
an unsigned version, NSUInteger.

In GUI code, you will often come across CGFloat
or NSFloat. These are equivalent to each other.
Both are the size of a pointer, making them
floats on 32-bit platforms and doubles on 64-
bit ones.

Storing Numbers in Collections

y = [NSMutableArray array];

[NSNumber numberWithInt: 12]];

From: numberinArray.m

All of the standard Objective-C collection classes
let you store objects, but often you want to store
primitive types in them as well. The solution to
this is bozing—wrapping a primitive type up in
an object.

The NSValue class hierarchy is used for this.
NSValue is a class designed to wrap a single
primitive value. This class is quite generic,

and is an example of a class cluster. When

you create an instance of an NSValue, you will
get back some subclass, specialized for storing
different kinds of data. If you store a pointer in
an NSValue, you don’t want the instance to take

101

102

Numbers

up as much space as one containing an NSRect—
a C structure containing four NSFloats.

One concrete subclass of NSValue is particularly
important: NSNumber. This class is intended

to wrap single numerical values and can be
initialized from any of the C standard integer
types.

The designated constructor for both of these
classes is +valueWithBytes:objCType. The first
argument is a pointer to some value and the
second is the Objective-C' type encoding of the
type. Type encodings are strings representing

a particular type. They are used a lot for
introspection in Objective-C; you can find out
the types of any method or instance variable in
a class as a type encoding string and then parse
this to get the relevant compile-time types.

You can get the type encoding of any type with
the @encode() directive. This is analogous to
sizeof () in C, but instead of returning the size
as an integer it returns the type encoding as a C
string. One very convenient trick when working
with type encodings is to use the typeof ()
GCC extension. This returns the type of an
expression. You can combine it with @encode(),
like this:

NSValue =#value =
[NSValue valueWithBytes: &aPrimitive
objCType: @encode(typeof(aPrimitive))];

This snippet will return an NSValue wrapping
aPrimitive, and will work regardless of the type

Storing Numbers in Collections

of the primitive. You could wrap this in a macro,
but be careful not to pass it an expression with
side effects if you do.

Note that you have to pass a pointer to the
primitive value. This method will use the type
encoding to find out how big the primitive type
is and will then copy it.

More often, you will use one of the other
constructors. For example, if you want to create
an NSNumber instance from an integer, you would
do so like this:

NSNumber =*twelve = [NSNumber numberWithInt:
127;

The resulting object can then be added

to a collection. Unlike NSValue, NSNumber
instances are ordered, so you can sort collections
containing NSNumber instances.

NSArray *a = [NSArray arrayWithObjects:
[NSNumber numberWithUnsignedLongLong:
ULLONG_MAX],
[NSNumber numberWithInt: -2],
[NSNumber numberWithFloat: 300.057],
[NSNumber numberWithInt: 1],
[NSNumber numberWithDouble: 200.0123],
[NSNumber numberWithLongLong: LLONG_MIN],
nil];
NSArray *sorted =
[a sortedArrayUsingSelector: @selector(compare
3135
NSLog(@"%@", sorted);

From: numberArray.m

103

104

N

® N o oo W

Numbers

The numberArray.m example stores a group of
NSNumber instances in an array and then sorts
them using the -compare: selector. As you can
see from the output, the ordering is enforced
irrespective of how the number was created.

2010-03-15 14:50:48.166 a.out[51465:903] (
"-9223372036854775808",
n_gm
1,
"200.0123",
"300.057",
18446744073709551615
)

Output from: numberArray.m

© 0 N o

Performing Decimal Arithmetic

Performing Decimal Arithmetic

NSDecimalNumber #one =
[NSDecimalNumber one];
NSDecimalNumber =fortyTwo =
[NSDecimalNumber decimalNumberWithString: @"42"
13
NSDecimalNumber #sum =
[one decimalNumberByAdding: fortyTwol];
NSDecimal accumulator = [sum decimalValue];
NSDecimal temp = [fortyTwo decimalValue];
NSDecimalMultiply(&accumulator, &accumulator, &
temp, NSRoundPlain);
temp = [one decimalValue];
NSDecimalAdd(&accumulator, &accumulator, &temp,
NSRoundPlain);
NSDecimalNumber *result =
[NSDecimalNumber decimalNumberWithDecimal:
accumulator];

From: decimal.m

C gives you two options for working with
numbers: integers and floating-point values.
Floating-point values are made of two
components: a mantissa and an exponent.
Their value is two to the power of the exponent,
multiplied by the mantissa.

The problem with floating-point values is that
they are binary. This means that their precision
is defined in terms of binary digits, which is

not always what you want. For a financial
application, for example, you may need to store
amounts to exactly four decimal places. This is
not possible with floating-point values; a value
such as 0.1 cannot be represented by any finite

105

106

Numbers

binary floating-point, just as 0.1 in base three
(one third) cannot be represented by any finite
decimal sequence.

A binary number is the sum of a set of powers
of two, just as a decimal number is a sum of
powers of ten. With fractional values, the digits
after the radix point indicate halves, quarters,
eighths, and so on. If you try to create a value of
0.1 by adding powers of two, you never succeed,
although you get progressively closer. Exactly
the same thing happens when you try to create
a third by adding powers of ten (a three tenths,
plus three hundredths, plus three thousands, and
S0 on).

One solution is to use fixed-point arithmetic.
Rather than storing dollars, you might store
hundredths of a cent. You must then remember
to normalize your values, and you are limited
by the range of an integer type. Objective-C
provides another option: decimal floating-point
types.

The NSDecimal type is a C structure that
represents a decimal value. Somewhat strangely,
there is no C API for creating these. You must
create an NSDecimalNumber instance and then
send it a ~decimalValue message.

You then have two choices for arithmetic.
NSDecimalNumber instances are immutable.
You can create new ones as a result of
arithmetic—for example, by sending a
decimalNumberByAdding: message to one.

Performing Decimal Arithmetic

Alternatively, you can use the C API, which
modifies the value of the structure directly.

If you are just performing one arithmetic
operation and then storing the result in an
object, the first option is simpler. If you are
doing a number of steps then it is faster to use
the C APIs. Because these modify the structure,
they do not require you to create a new object
for each intermediate step.

Note: The C1X specification includes decimal
number types, and some compilers support these
as an extension. The NSDecimal type is not
compatible with these. On most platforms this is
not important. If you are targeting something like
IBM's POWER®G, which has hardware for decimal
arithmetic, then it is better to use the decimal
types directly.

Neither of these is especially fast. The decimal
number is represented as an array of digits, and
these are operated on in pairs, after the two
numbers have been normalized. You can expect
to get similar performance to a software floating-
point implementation—possibly slightly worse as
NSDecimal is not widely used and therefore has
not been the focus of much optimization effort.

NSDecimalNumber is a subclass of NSNumber,

so all of the ways of converting NSNumbers to
strings that we’ll look at in the next section
work as expected. You can also convert them to

107

108

CHAPTER 5: Numbers

C primitive types using the standard methods
for accessing these on number objects, but
these methods may truncate or approximate the
decimal value.

Converting Between Strings and
Numbers

int answer = [@"42" intValue];
NSString *answerString =

[NSString stringWithFormat: @"%d", answer];
NSNumber #boxedAnswer =

[NSNumber numberWithInt: answer];
NSCAssert([answerString isEqualToString:
[boxedAnswer stringValue]],
@"Both strings should be the same");

From: strtonum.m

There are several ways of converting between
a number and a string. A lot of objects

that represent simple data have methods

like -intValue, for returning an integer
representation of the receiver.

NSString has several methods in this family.

If you have a string that contains a numerical
value, you can send it a —~doubleValue,
-floatValue, -intValue, or -longLongValue
message to convert it to any of these types. In
64-bit safe versions of Foundation, you can also
send it an -integerValue message. This will
return an NSInteger.

There are a few ways of going in the

Converting Between Strings and Numbers

opposite direction, getting a string from an
integer. We look at one in Chapter 6: The
+stringWithFormat: method on NSString lets
you construct a string from any primitive C
types, just as you would construct a C string
with sprintf().

If you already have a number in an NSNumber
instance, there are two ways of getting a string,
one of which is a wrapper around the other. The
-descriptionWithLocale: method returns

a string generated by formatting the number
according to the specified locale.

In fact, this doesn’t do the translation itself. It
sends an -initWithFormat:locale: message to
a new NSString. The format string depends on
the type of the number: for example, a double
will be converted using the @"%0.16g" format
string. This uses up to 16 significant figures and
an exponent if required.

The decimal separator depends on the locale.

If you send an NSNumber a -stringValue
message, this is the equivalent to sending a
-descriptionWithLocale: message with nil
as the argument. This uses the canonical locale,
which means without any localization, so the
result will be the same on any platform.

109

110 CHAPTER 5: Numbers

Reading Numbers from Strings

NSScanner #*parser =
[NSScanner scannerWithString: @"1 plus 2"];

int operands[2];
NSString #operation;

[parser setCharactersToBeSkipped:

[NSCharacterSet whitespaceCharacterSet]];

[parser scanInt: operands];
[parser scanCharactersFromSet:
[NSCharacterSet letterCharacterSet]
intoString: &operation];
[parser scanInt: operands+1];

From: scanner.m

Two of the first things any C programmer learns
to use are the printf() and scanf() functions.
These are very, very similar—one is almost an
inverse of the other—and they let you construct
formatted strings and parse data from them.
We've already seen that NSString has a rough
analogue of sprintf(), so you can construct
strings from format strings and variables, but
what is the Objective-C equivalent of sscanf()?
How, given a string, do we parse values from it?

The answer lies in the NSScanner class. This
class is a very powerful tokenizer class. You
create an instance of NSScanner attached to

a string and then scan values from it, one at a
time.

The messages you send to a scanner all have the

Reading Numbers from Strings

same form. They take a pointer to a variable
and return a BOOL, indicating whether they
succeeded. The scanner stores the current
scanning index in the string, and only increments
it on a successful scan, so you can try parsing
the next characters in different ways. You can
also implement read-ahead and backtracking
quite easily with NSScanner. If you send it a
-scanLocation message, it returns the current
index in the string. You can then try scanning
a few things, get to an error, and backtrack
by sending it a -setScanLocation: message,
resetting the old index.

One of the most powerful methods in NSScanner
is —scanCharactersFromSet:intoString:. This
reads a string from the current scanning point
until it encounters a character not present in the
specified set. As we will see in Chapter 6, you
can construct NSCharacterSet instances with
any arbitrary set of characters, or you can use
one of the standard ones.

The example at the start of this section reads a
number, then a word, then another number from
a string. The number is read using the built in
-scanInt: method, but the word is a bit more
complex. It uses an NSCharacterSet, in this
case the set of all letters.

This isn’t the only NSCharacterSet used in this
example. This scanner is also configured to skip
whitespace. The setCharactersToBeSkipped:
message sent to the scanner tells it to ignore any

111

112

Numbers

characters in the set passed as the argument.
Passing the whitespace character set tells it to
skip any whitespace that occurs between calls.
If there are characters in this set at the position
where the scanner starts reading when you send
it a scan message, it will skip past them. It will
not skip these characters while parsing a token,
so putting “1 2” in the string would be read as
two separate numbers, not as 12.

Manipulating
Strings

Objective-C provides two sorts of strings: C
strings and Objective-C strings, also called string
objects. As a compiler extension, GCC also lets
you use Pascal strings, but these are rare and
are only supported for compatibility with Pascal
libraries.

A C string is a very primitive data type. It is
an array of characters, terminated by a NULL
byte. It has no concept of character encodings,
and can be used to store any sequence of bytes
that does not contain a zero byte. UTF-8 was
specifically designed to be usable with C strings:
It is a variable-width encoding that does not use
zero bytes, even in multibyte sequences.

An Objective-C string is a higher-level
abstraction. It is accessed as a sequence of UTF-
16 characters, but its internal representation is
private. If you compile Objective-C for the GNU

114

CHAPTER 6: Manipulating Strings

runtime, constant strings are represented by an
instance of a class with three instance variables:
the isa pointer, a pointer to a C string, and an
integer containing the length of the C string.
The runtime library will set the isa pointer to
the correct class when the module is loaded.

When you access individual characters in an
Objective-C string, you use the unichar type.
This represents a single UTF-16 character. Note
that UTF-16 is also a variable-length encoding,
and that a single Unicode character may be more
than one UTF-16 character. To make matters
more confusing, combining marks like accents
may mean that more than one Unicode character
is used to represent a single glyph.

Creating Constant Strings

const charx cstring = "C string”;
NSString #objcstring = @"Objective-C string";

CFStringRef cfstring = CFSTR("Core Foundation
string');

From: constantStrings.m

On OS X, Objective-C strings are toll-free
bridged with Core Foundation (CF) strings.
Constant CF strings are represented in a similar
way to GNU runtime Objective-C strings, but
with a few differences. Their isa pointer is set
to an external reference present in the Core
Foundation framework, so they don’t require the
Objective-C runtime or Foundation framework

Comparing Strings

to be linked in order to work. They also have a
flags field, allowing their internal representation
to be either UTF-8 or UTF-16, depending on
which is more efficient for their contents.

Constant Objective-C strings are created by
prefixing a constant C string literal with an at
symbol, as in @"string"”. You can also create
constant Core Foundation strings by using the
CFSTR() macro, in both C and Objective-C code.
This macro calls a compiler built-in function
which generates a constant string object.

Comparing Strings

NSString =twelve = @"12";
NSString »twelveFromInt =

[NSString stringWithFormat: @"%d", 12];
NSNumber xnumberTwelve =

[NSNumber numberWithInt: 12];

if ([twelve isEqualToString: twelveFromInt])

NSLog(@"Both strings are equal");
if (twelve == twelveFromInt)
NSLog(@"Both strings are identical");
if (twelve == @"12")
NSLog(@"Constant strings are identical");
if ([twelve isEqual: numberTwelve])
NSLog(@"String is equal to number");

From: CompareStrings.m

The simplest and most obvious way of
comparing strings for equality is to use the C
comparison operator, ==. Unfortunately, this
actually does work sometimes, which can lead

115

116

Manipulating Strings

to some subtle bugs. It will test whether two
objects are identical, rather than equal. It will
test whether they are the same object, not
whether they are objects with equal values.

Comparing two pointers is much faster than
comparing two strings, and even faster than
sending a message. In some cases, it may be
faster to try a pointer comparison first. The
result of the pointer comparison is the knowledge
that the two strings are the same or that they
might be the same. It won’t ever tell you that
they are definitely different. This can make code
faster, if you are comparing identical strings

a lot, but is usually an example of premature
optimization.

If you want to test two strings for equality, you
should use the -isEqualToString: method.
Note that this expects the argument to be
another Objective-C string. You can compare
any two Objective-C objects by sending them
-isEqual: messages, but it is up to the receiver
to decide which other objects it considers to be
equal.

In the sample at the start of this section, the
compiler will typically combine the constant
strings, so that twelve and the literal @"12" will
be the same object. This is not guaranteed, but
there is no good reason for the compiler not to
do it.

The comparison between the string and the
NSNumber instance is more interesting. You’d

Comparing Strings

expect this to compare the string to the result
of sending -stringValue to the number, but it
doesn’t.

This is important, because equality has to be
commutative. If [a isEqual: b], then a lot of
code will assume that [b isEqual: a]. This is
especially true in collection classes. If you insert
two objects into an NSMutableSet, for example,
where the equality holds in one direction but not
the other, then the result is undefined.

Often, when you want to compare strings—

or, indeed, any objects—you want to find out
not just whether they are equal, but their
ordering. This is where things start to get

a little complicated for strings. Given two
numbers, there is a single canonical ordering
between them. For strings, there are several well-
defined strong orderings. Which order should
“etoile,” “Etoilé,” and “Etoile” be arranged in?

If you are doing a case-insensitive comparison,
the first and last ones will have equal rank.
Whether accented letters come immediately
before or after their unaccented variants, or
before or after all unaccented letters, depends

on your locale. When you have a list of files, the
user might get irritated if you sort “file10” before
“file2,” even though that’s the dictionary order
of the two filenames.

For simple comparisons, based solely on the
character values, you can use the -compare:
method. This, like all other comparison

117

118

Manipulating Strings

results, returns an NSComparisonResult,

an enumerated type with three possible

values: NSOrderedAscending, NSOrderedSame,
and NSOrderedDescending. If you are
presenting data to the user, you should use
-localizedCompare: instead. This will return
the ordering of the two strings according to the
rules defined for the user’s chosen language.
Both of these are wrappers around this general
comparison method:

- (NSComparisonResult)
compare: (NSString)aString
options: (NSStringCompareOptions)mask
range: (NSRange)range
locale: (id)locale;

This allows you to specify a set of options, such
as NSNumericSearch for sorting 10 after 9, and
NSCaselInsensitiveSearch for ignoring case.
Passing a range as the third parameter allows
you to restrict the comparison to a substring in
the receiver, and passing a locale lets you specify
the ordering rules for non-ASCII characters. It’s
worth noting that normally passing nil as a
locale means either use the current locale or the
canonical locale. In this case, passing nil means
use the canonical locale and perform numeric
comparisons on the character values.

Processing a String One Character at a Time

Processing a String One
Character at a Time
for (NSUInteger i=0 ; i<[aString length] ; i++)

{

unichar c =

[aString characterAtIndex: i];
// Process c

From: stringlterateSlow.m

The NSString class is a class cluster. It is

an abstract class, and when you create one

you get an instance of some private subclass.
Two primitive methods must be implemented
by any NSString subclass: -length and
—-characterAtIndex:. The first of these returns
the length, and the second returns the character
at a specific index in the string.

If you need to do something with every character
in the string, you can iterate over it in a simple
loop, calling this method repeatedly. This is
quite inefficient, because it requires a message
send for each character. This is significantly
more expensive than accessing characters in

a C string. This version also sends a -length
message for every character, which is only
required if the length might change during
iteration.

One alternative is to get a C string and work
on that. You could, for example, send a
-UTF8String message to the string and then

119

120

Manipulating Strings

process the returned C string. Although this
sounds reasonable, remember that the string
may be quite large and it may not be stored

in UTF-8, so the object may need to convert

its internal representation to UTF-8, allocate
memory to store it, and then have that memory
cleaned up by the autorelease pool (or the
garbage collector) later.

The most efficient way of accessing

the characters in a string is
-getCharacters:range:. Methods in Objective-
C that start with get usually take a pointer to
some space allocated by the caller and return the
data in that. In this case, the first argument is

a pointer to a buffer of unichars, which must

be big enough to store the requested number of
characters.

The next example uses this mechanism to count
the number of semicolons in the source file. First
it loads the source code into a string, then it gets
the characters ten at a time. Note the double
loop structure. The outer loop gets blocks of
characters and then the inner loop iterates over
the block. This same structure is generated by
the compiler when you use fast enumeration to
iterate over a collection.

This requires one message send for every ten
characters. You can trade some more speed

for a bit more space by increasing the size of
the buffer. Note that this buffer is allocated
on the stack. This is fast, but you should be

11
12
13
14

15

17
18
19
20
21

22

33

Processing a String One Character at a Time

int semicolons = 0;

NSUInteger length = [str length];

NSRange range = { 0, 10 };

while (range.location < length)

{
unichar buffer[10];
if (range.location + range.length > length)
{

range.length = length - range.location;

}
[str getCharacters: buffer range: rangel];
range.location += 10;
for (unsigned i=0 ; i<range.length ; i++)
{

unichar c¢ = buffer[i];

if (c = ’;)
{
semicolons++;
}
}
}
printf("Source file contained %d semicolons\n",
semicolons);

From: Stringlterate.m

careful to make sure you correctly set the range.
Otherwise, you might potentially introduce some
security holes into your application.

Remember that string objects hide their
encoding. This code will work irrespective of
how the string is stored internally. If it is 7-bit
ASCII or UTF-8, converting most characters to
UTF-16 is very fast. If it’s something like Mac
Roman, it may take slightly longer, but it’s still

121

122 CHAPTER 6: Manipulating Strings
quite quick.

Converting String Encodings

NSString *str =
[NSString stringWithUTF8String:
"some text in a C string"]l;
const char »utfl6 =
[str cStringUsingEncoding:
NSUTF16StringEncoding];

const char »utf32 =
[str cStringUsingEncoding:
NSUTF32StringEncoding];
const char xmacRoman =
[str cStringUsingEncoding:
NSMacOSRomanStringEncoding];

From: encodings.m

In OpenStep, two of the most common

methods on NSString were -cString and
+stringWithCString:. These converted between
a C string and an Objective-C string. The
problem with these methods was that C strings
are not encoding aware.

A C string is an array of bytes. You can store
any kind of character data in them that you
like. All of the operations on them are defined
externally, so the knowledge of the character
encoding is extrinsic to the string. This is the
opposite of how an Objective-C string works.

When you converted a C string to or from an
Objective-C string, it had to know what the
encoding of the C string was. The C standard

Converting String Encodings

library functions check an environment variable
to find out what this should be. Unfortunately,
this causes all sorts of problems. If you read
some data from a socket or a file and then
construct an Objective-C string from it with
these functions, you get whatever text encoding
your user picked, not the encoding selected by
the person who created the file.

These methods are all now deprecated, and in
their place are methods that take an explicit
encoding parameter. One thing to remember is
that the default for any multibyte encoding is
big-endian, which made sense on the Motorola
68000 series and RISC workstations where
Objective-C gained popularity, but is less
sensible on little-endian x86 processors.

The most common text encoding in countries
that use some variant of the Latin alphabet

is UTF-8. This lets you represent any of the
ASCII characters in a single byte and most
other common characters in two.! NSString
has convenience methods for getting and
setting UTF-8 encoded data: -UTF8String and
+stringWithUTF8String:. In most code, you
can use these whenever you are converting to or
from C strings.

To create a string object from a C string
in some other encoding, you use the
+stringWithCString:encoding: method.

LIf you are using ideographic characters, UTF-8 is
quite inefficient.

123

124 Manipulating Strings

The first argument to this is the C string,
and the second is a member of an enumerated
type representing the encoding. If the data

is coming from an older Mac, you may

want to use NSMacOSRomanStringEncoding,
which was the default encoding before Mac
OS got Unicode support. If you need to
interoperate with old Windows systems,
NSWindowsCP1252StringEncoding is the
encoding that you will need in most of the
world. Newer Windows systems will use UTF-
16, but they prefer the little-endian version,
NSUTF16LittleEndianStringEncoding.

If you are storing string data in a particular
encoding, you will often use instances of NSData,
rather than pointers. This is a very simple

class, which encapsulates a region of memory:

a pointer and a size. Because it is an object,
you can introspect it, use reference counting to
handle destruction, and store it in collections.
This makes it more convenient, in a number of
cases, than using pointers directly.

Trimming Strings
Trimming Strings

NSString #str =
@" a String with leading spaces "
str = [str
stringByTrimmingCharactersInSet:
[NSCharacterSet whitespaceCharacterSet]];

str = [str substringFromIndex: 2];
NSCAssert([str isEqualToString:
@"String with leading spaces'],
@"Trimming failed");

From: trim.m

Often, when you have a string, you want to trim
the ends, removing either a fixed number of
characters or characters from a particular set. A
common example of the second case is removing
leading and trailing whitespace from a string.

Objective-C string objects support quite a few
methods for doing this. If you just want to
remove the trailing or leading characters from

a string, the -substringWithRange: method

on NSString is the most useful. This will

create a new string object containing a range of
characters in another string. This is a very cheap
operation on immutable strings; it just returns

a string object that references the data in the
original string, it doesn’t copy the string. When
you call it on a mutable string, however, it must
copy the characters.

To remove characters from a particular set, you
need to understand NSCharacterSet objects. As
its name implies, this class encapsulates a set of

125

126

CHAPTER 6: Manipulating Strings

characters. You can create these from a string,
but there are also a number of predefined ones
that represent a particular well-defined set of
characters.

This class is used in a similar way to the

ctype.h functions in C. You can send it a
-characterIsMember: message to test whether
a single character is a member of the set. Calling
the ispunct() C library function, for example, is
equivalent to sending a -characterIsMember:
message to the object obtained by sending

a +punctuationCharacterSet message to
NSCharacterSet.

The Objective-C version is more verbose, but

is more generic. Character set objects can be
passed around your code easily. The NSString
class uses them in a number of places. You can
ask for the range within a string of characters in
a given set, or split a string using a character set
to define the separators, for example.

Splitting Strings

NSString =#str =
@"A String with\twords and spaces'";
NSArray =wordsWithTab = [str

componentsSeparatedByString: @" "];
NSArray #*words = [str
componentsSeparatedByCharactersInSet:
[NSCharacterSet whitespaceCharacterSet]];

From: split.m

Splitting Strings

There are three ways of splitting strings in
Objective-C. The first is obvious: Simply

iterate over the characters until you find

a convenient place for a split and then use
-substringWithRange: to create the new token.
This will work in the general case, but is quite a
lot of effort for something that should be trivial.

In C, you can use the strsep() function,

or the deprecated strtok() function,

to split a string anywhere that a

character in a specific set is found. The
-componentsSeparatedByCharactersInSet:
method on NSString works in almost exactly the
same way, although it takes an NSCharacterSet
as an argument instead of a string.

You can make this method

behave like strtok_r() by

constructing a character set using
+characterSetWithCharactersInString:.
The NSString method returns an NSArray with
the substrings. This works exactly like the C
functions; you get empty strings wherever there
are two adjacent separator characters.

Alternatively, you can split a string based on
occurrences of a specific substring. This is very
useful when you have separators composed of
several characters.

127

128 CHAPTER 6: Manipulating Strings
Copying Strings

NSString *staticString = @"a string";

NSString *constantString =
[staticString copy];

NSString =stringAlias =
[constantString retain];

NSMutableString *mutableString =
[stringAlias mutableCopy];
NSMutableString *mutableStringAlias =
[mutableString retain];

From: stringcopy.m

One of the places were C++ tends to be much
slower than it should is in the handling of
strings. In any environment where you have
pure manual memory management, there is a
tendency to defensively copy objects to maintain
clear ownership rules.

In Objective-C, this is less common, and more
code suffers from the opposite problem: retaining
references to mutable objects when it should
have copies. When you send a -copy message

to an NSString, it has the same effect as sending
-retain.

Why, you might be wondering, do we have two
methods that do the same thing? The answer
is simple: NSMutableString is a subclass of
NSString. If you send a -retain message to an
NSMutableString, you increment the reference
count. If you send a -copy message, you get a
new object. It can be even more complex than
that because some NSMutableString concrete

Copying Strings

subclasses support copy-on-write behavior, so
you will get two objects referencing the same
data, and only get a real copy made when you
modify one of them.

Because NSMutableString is a subclass

of NSString, you can pass a pointer to an
NSMutableString anywhere that expects an
NSString pointer. If you expect an immutable
string and are given one, it doesn’t matter
whether you copy the object or just make
another reference to it. If, on the other hand,
you are given a mutable string, you don’t want
to just keep a reference to it or you might end
up with it being modified later.

It’s important to remember that sending a
-copy message to any NSString subclass will
always return an immutable string. If you want
a mutable string, you must use -mutableCopy
instead.

Note: If you are coming from Java, remember
that NSString is roughly equivalent to the Java
String class and NSMutableString is roughly
equivalent to the Java StringBuffer class.
Objective-C has no equivalent of the final
keyword, so NSString may—and does—have
subclasses, and you can use mutable strings
anywhere you would otherwise use an immutable
string.

This pattern is found in several places in the

129

130

CHAPTER 6: Manipulating Strings

Foundation framework. Most classes that have
an immutable superclass and a mutable subclass
will implement the NSMutableCopying protocol.
Sending mutable or immutable instances of them
a -mutableCopying message will give you an
instance of the mutable subclass.

Creating Strings from Templates

int a = 12;

float b = 42.0;

const char #cString = "words";
id object = [NSObject new];

NSString #string =
[NSString stringWithFormat:
@"%d, %f, %s, %a",
a, b, cString, object];

From: formatstringl.m

If you come from a C background, one of the
first functions you learned about was probably
printf (). This is a variadic function that
takes a format string as the first argument. The
contents of the format string then define the
types of the other arguments.

Objective-C, as a descendant of C, inherits the
idea of a format string. Objective-C format
strings are almost exactly like C format strings,
but with one addition. The %@ format specifier
indicates that the matching argument is an
object.

Objects are expected to know how to describe

Creating Strings from Templates

themselves. Every object should respond

to a -description message, which returns

an NSString describing the object. A lot of
classes inherit this from NSObject, which just
returns the class name and the object’s address
in memory. Others provide something more
convenient. For example, the collection classes
dump their contents as NeXT-style property lists.

Note: The GNU debugger (gdb) has some
built-in support for ~description methods. When
you use the print-object command (which can be
abbreviated to po) on an object, it will call its
-description method. Be careful when doing
this, because it will run some code in the debugged
process, which may also contain bugs. However,
when it works, it can be very helpful. We'll look at
debugging more in Chapter 18.

You can create Objective-C string objects from
format strings using a variadic method that
behaves like asprintf(). The first argument

is an Objective-C string containing some format
specifiers, and the remaining arguments are the
variables that will be used in place of the format
specifiers. The formatstring.m example shows
how you can use format strings with NSString.

This example constructs a string from the
arguments provided to the executable and then
writes it to the standard error. Note that we
need to create an NSAutoreleasePool at the

131

132

Manipulating Strings

int main(int argc, char =xargv)
{
[NSAutoreleasePool new];
NSMutableString =str =
[NSMutableString stringWithFormat:
@"%d arguments: ", argc];
for (int i=0 ; i<argc ; i++)

{
[str appendFormat: @"%s ", argv[i]];
3
NSLog(@"%@", str);
return 0;

3

From: formatstring.m

start of this program. Using format strings
creates some temporary objects, which are
autoreleased. If you don’t have an autorelease
pool, you will get a warning that these objects
are leaked. In this trivial program, they are
leaked anyway; there’s no point in telling the
autorelease pool to collect them because the
operating system will reclaim the memory when
the process exits anyway.

This example first creates a mutable string
containing the number of arguments passed to
the program. It then loops over the remaining
arguments, appending each (as a C string) to the
mutable string. Finally, it passes the result to
NSLog().

The NSLog() function also uses format strings.
It’s tempting to just pass str as the first

Storing Rich Text

argument. This will work fine until someone
uses a string with a percent symbol in it as an
argument to this program. Then the function
will look at the second argument and try to
interpret it. Unfortunately, there is no second
argument, so will read a random value from

a register. If it’s interpreting this as some
kind of number, it’s not a big problem. If it’s
interpreting it as a pointer (to a C string or
Objective-C object), it will almost certainly
crash. By passing @"%@" we tell NSLog() that
there is only one real argument, and that it’s an
object.

Storing Rich Text

NSDictionary xkeyword = [[NSDictionary
dictionaryWithObject: @"keyword"
forKey: @"type"] retain];
NSMutableAttributedString #program =
[NSMutableAttributedString new];

NSAttributedString *fragment =
[[NSAttributedString alloc]
initWithString: @"int"
attributes: keyword];
[program appendAttributedString: fragment];

From: richText.m

A string is just a list of characters. Before

you display a string, you generally need some
other attributes. These attributes describe the
typeface, the size, the alignment and underline

133

134

Manipulating Strings

styles, and so on.

If you are writing something that deals with
structured text—for example, HTML or another
form of semantic markup such as DocBook—
then these attributes might be a level 1 heading,
or ordered list.

Foundation provides a class for assigning
arbitrary attributes to strings. The
NSAttributedString class lets you attach
dictionaries to ranges in attributed strings.
These dictionaries can contain any arbitrary
information that you want, including semantic
markup.

AppKit uses this class and defines a few keys
for the dictionaries for providing presentation
markup. You can use this to attach an NSFont
instance to a range of text and have the text
system in AppKit display that range of the text
in the specified font.

The example constructs a fragment of a program
as an attributed string, defining attributes

for defining keywords. You might then have

a transform that takes this attributed string

and generates one using presentation attributes
for display in a text view, or another one for
generating HTML from this markup.

It’s important to remember that
NSAttributedString is generic. You can use

it for attaching any attributes that you want to
define to ranges in a string.

Working with
Collections

As with other things we’ve looked at, there are
two kinds of collections in Objective-C: the
object-oriented versions and the primitive C
types. The former, as usual, is built on top of
the latter.

In C, there are two kinds of compound data
types: arrays and structures. Arrays are just
blocks of memory containing the same sort of
data. Structures have a fixed layout and may
contain different types as elements.

C composite types are a very thin layer of
syntactic sugar on pointer arithmetic. When
you access an element in an array, the compiler
multiplies the array index by the size of one
element and adds this to the pointer to the start
of the array. When you access an element in a
structure, the compiler adds a fixed offset to the
pointer to the start of the structure.

136

Working with Collections

Objective-C collections are higher-level
constructs. Each Objective-C collection, like
most of the other additions made by Objective-
C, is an object. You communicate with them by
sending them messages.

The Foundation framework includes a number
of collection classes for storing ordered and
unordered data, as well as maps or sets of
indexes. Most of the collection classes in
Objective-C store objects. Unlike C++ STL
collections, which need refining for the types
they may contain, Objective-C collections are
heterogeneous. They may store any kind of
Objective-C object.

Most Objective-C collections, like strings, use the
mutable subclass pattern, where the superclass
implements behavior for an immutable collection
and a subclass provides a mutable version.

All of the classes that follow this pattern
implement the NSMutableCopying protocol,
meaning that you can send a -mutableCopy
message to a collection and get a copy that is
mutable, even if the original isn’t.

Most collections are also class clusters. When
you create one, you will get some private
subclass. The public classes are typically
abstract. The user-friendly methods are all
implemented in terms of a small number of
primitive methods. If you create your own
subclass, you will need to implement these
methods yourself.

10

11

Using Arrays
Using Arrays

NSArray *array = [NSArray arrayWithObjects:
@"array", @"containing", @"string", @"objects",
nil];
NSMutableArray *mutable = [array mutableCopy];
[mutable sortUsingSelector: @selector(

localizedCompare:)];

[mutable addObject: [NSNumber numberWithInteger:
1217;

[mutable removeAllObjects];

From: nsarray.m

In addition to C arrays, Foundation provides
the NSArray class and its mutable subclass
NSMutableArray. These implement an abstract
data type that maps from integers, in a
contiguous range starting at zero, to objects.
Internally, it may be implemented by C

arrays, skip lists, or some other data structure,
depending on how it was created.

For example, if you create an array by appending
two immutable arrays, you may get a composite
array that doesn’t store anything internally, and
just accesses the other two arrays. Or you might
get a completely new array, depending on what
the people implementing the relevant NSArray
subclass thought would be more efficient for that
specific case.

The easiest way of creating an Objective-

C array is to use the +arrayWithObjects:
method, implemented by both NSArray and
NSMutableArray. This is another example of

137

138

Working with Collections

a variadic method, taking a list of objects as
arguments and using nil to signify the end

of the list. You must be careful, when using
variables as arguments to this method, that none
of the variables are nil, or the array will see
that as the end of the argument list and ignore
the later values.

Note: Most Objective-C collections don’t
allow you to store nil as a value. If you need
to signify a null value, rather than an absence
of a value, you can use the NSNull class. This
provides a singleton object that can be accessed
with [NSNull null].

Arrays are class clusters. The two primitive
methods in NSArray are -objectAtIndex

and -count. All of the other methods are
implemented in terms of these. Some concrete
subclasses, of course, will implement more
efficient versions, but if you want to create a new
NSArray subclass, you must implement these two
methods if you want the other methods in the
superclass to work.

Subclassing NSMutableArray is a bit harder;
it adds another six primitive methods. Most
of the time, however, you will be using
arrays, not subclassing them. You can insert
an object into a mutable array with either
-addObject:, which adds it at the end, or
-insertObject:atIndex:, which inserts it at

13
14
15
16
17
18

Manipulating Indexes

the specified index. The latter method moves
all subsequent objects along by one in the
array to make room. To replace an object, use
-replaceObjectAtIndex:withObject:.

Manipulating Indexes

NSMutableIndexSet *indexSet =
[NSMutableIndexSet indexSetWithIndex: 1];
[indexSet addIndexesInRange:

NSMakeRange (5, 20)];
[array removeObjectsAtIndexes:
indexSet];

From: indexset.m

Arrays are indexed by integers. Often, you want
to do some operation on a group of values in

an array. A special class, called NSIndexSet, is
used for storing groups of indexes. Internally,
this stores a set of ranges, so can be quite dense.

A very common use for index sets is to collect a
group of indexes while enumerating an array and
then remove them at the end. Removing objects
from a collection while enumerating it is a bad
idea, and will throw an exception in most cases.
If you add each index that you want to remove
to an index set, you can remove them all at once
when you finish the enumeration.

Operations involving index sets are usually
more efficient than the corresponding operations
involving individual indexes. This is true even
in a relatively naive implementation, because

139

140 Working with Collections

you need fewer message sends. You also get to
avoid some range checking. Each operation on
an Objective-C array is bounds checked to make
sure that it doesn’t refer to an index beyond the
end of the array. With an index set, the receiver
just has to compare the result of -lastIndex
with the last index in the array, and then it can
operate on every single element in the index set
without range checking.

Like other collections, index sets come in
mutable and immutable flavors. Most of

the time you will use the mutable version.
You manipulate it by adding and removing
either individual indexes (NSUIntegers) or
ranges. You can use index sets for storing
indexes to anything, but they are most useful
in conjunction with NSArrays, which have
several methods designed to take index sets
as arguments. You can often use them as an
alternative to creating a subarray if you just
want to work on some arbitrary subset of the
elements in an array.

Storing Unordered Groups of Objects

Storing Unordered Groups of
Objects

NSArray =array = [NSArray arrayWithObjects:
@"set", @"object", @"containing",
@"seven", @"objects", @"not",

@"eight", @"objects", nil];

NSSet #set = [NSSet setWithArray: array];
NSMutableSet *mSet = [set mutableCopy];
NSCountedSet *cSet =

[NSCountedSet setWithArray: array];

From: nsset.m

If you want to store a collection of objects
without a defined order, you can use NSSet
and its mutable subclass. This models a
mathematical set, so inserting the same object
twice will only store one copy of it.

How NSSet determines equality between objects
is quite complex. Equality is not the same as
identity; it will not store two copies of the same
object, but it will also not store two objects
with the same value. It determines whether
two objects are equal by sending one of them
an -isEqual: message with the other as an
argument.

The simplest way of implementing NSSet would
be to compare every new object to every existing
object. This would be painfully slow, however,

so fortunately NSSet doesn’t work this way.
Instead, it uses the -hash method. Every object
is expected to implement this method and return

141

142

Working with Collections

an integer hash value.

If two objects are equal, they must have the
same hash. Collections such as NSSet put objects
into buckets based on their hash values. When
testing whether an object is already in the set,

it just has to test the objects that have the same
hash.

A good hash is, therefore, important for

good performance of these collection classes.
Fortunately, NSString, which is the most
commonly used object in this kind of collection,
already has a good hash implementation.

One slight problem with this approach is that
an object must not change its hash while it is
in a collection. This is impossible to enforce for
mutable objects without breaking some of the
other rules. It is, therefore, important not to
modify objects while they are stored in a set.

One other kind of set is NSCountedSet, which is
a subclass of NSMutableSet that supports adding
the same object multiple times. This adds one
method to NSMutableSet, -countForObject:,
which returns the number of times a particular
object has been added to the collection.

Note: In Java, and some other languages, a
counted set is called a bag.

It’s worth noting that, because NSCountedSet
is a subclass of NSSet, some of its methods are
designed to allow NSCountedSet instances to be

© 0 N o

Creating a Dictionary

used in place of NSSet instances. If you send a
—-count message to any of the sets created in the
example at the start of this section, you will get
the same value. If you iterate over any of the
sets, you will get seven objects. You can only tell
if an object is in the counted set more than once
by sending a -countForObject: message to the
set.

Creating a Dictionary

NSMutableDictionary #dict = [NSMutableDictionary
dictionaryWithObjectsAndKeys: @"One", @"1",

@"two", @"2", nil];
[dict setObject: @"three" forKey: @"3"];

From: dictionary.m

A dictionary, often called a map or associative
array, provides a collection of objects indexed by
other objects. Most commonly, dictionaries are
indexed by strings. This is not the only option,
but there are some restrictions on the classes
that can be used as keys in dictionaries.

Dictionaries are similar to sets, and the same
constraints apply. Objects used as keys must
implement the ~hash and -isEqual: methods,
returning YES on comparison and the same hash
value if they are equal. The hash value must not
change as long as they are in the collection.

Additionally, keys must implement the
NSCopying protocol. When you add a key-value

143

144

Working with Collections

pair to a dictionary, the value will be retained,
but the key will be copied. This is done to
prevent it from being modified accidentally.

If you pass an immutable object, such as an
NSString, this has the same effect as retaining
it. If you pass an NSMutableString, then the
dictionary will use an immutable copy.

Finally, it’s worth remembering that only
dictionaries that use strings as keys will work
with key-value coding (see Chapter 11). You
should also be very careful when using different
classes as keys in the same dictionary that their
comparison methods return the correct values
when passed instances of the other classes.

The most common method you will use on a
dictionary is -objectForKey:, which returns
the object associated with the given key, or
nil if there is no object set for that key. For
mutable dictionaries, you will typically use the
-setObject:forKey: method to set key-value
pairs in a dictionary.

Iterating Over a Collection

Iterating Over a Collection

NSLog(@"The Objective-C 1 way:");
NSEnumerator xe=[a objectEnumerator];
for (id obj=[e nextObject] ;
nil!=obj ;
obj=[e nextObject])

{

[obj print];
}
NSLog(@"Fast enumeration:");
for (id obj in a)
{

[obj print];
}
NSLog(@"Using blocks:");
[a enumerateObjectsUsingBlock:

A(id obj, NSUInteger idx, BOOL =*stop)

{

[obj print];

315
NSLog(@"Avoiding enumeration:");
[a makeObjectsPerformSelector: @selector(print)];

From: enum.m

One of the most common tasks you perform with
collections is to iterate over every element in the
collection and do some processing. There are a
lot of ways of doing this in Objective-C. Because
it’s such a common task, new ways of doing it
keep being added.

For arrays, you can go through every single
index from 0 to [array count] and send

an -objectAtIndex: message. This is very
inefficient. The traditional way of enumerating
over a collection is to use an enumeration; an

145

146

Working with Collections

instance of an NSEnumerator subclass.

Note: If you are coming from Java, mentally
substitute the word iterator for enumerator and you
will find most of the patterns you are familiar with
still work.

You can get an enumerator for a collection by
sending it an -objectEnumerator message. This
object is very simple. It responds to only two
messages, and you’re only ever likely to use one
of them: -nextObject. This returns the next
object in the collection, or nil if you've already
enumerated all of the objects that a collection
contains.

With Objective-C 2, Apple introduced

fast enumeration. You can use this

with any collections that implement the
NSFastEnumeration protocol. This protocol
defines a method for getting several objects
with a single message send. The exact number
is defined by the caller and the receiver. The
compiler allocates a buffer and passes a pointer
to it to the receiver. The receiver may then copy
some objects into this buffer or, if it stores data
internally as a C array (or a group of arrays),
return a pointer to its internal store.

The method in this protocol is used by a new
flow-control construct, the for..in loop. When
you use this, the compiler will produce two
nested loops. In the outer loop, it will call the

Iterating Over a Collection

fast enumeration method, getting the next few
objects from the collection. In the inner loop, it
will iterate over this C array.

You can use fast enumeration without compiler
support. The GSFastEnumeration.h header in
GNUstep provides FOR_IN and END_FOR_IN
macros that expand to produce the same code
the compiler will use for for. .in loops. These
macros are quite complicated, so it’s better to
not try calling the fast enumeration methods
yourself.

With OS X 10.6, Apple introduced another new
way of iterating over collections: using blocks.
Blocks are a new language extension to C, but
designed for close interoperation with Objective-
C. Like Objective-C objects, blocks have an
isa pointer. This points to a private class that
implements the NSObject protocol, so you can
store blocks in collections. They also support
introspection using Objective-C type encodings,
although this support is not yet part of their
public interface on OS X.

Most of the collection classes now implement
methods for enumeration using blocks. Using
these can be convenient, although it does

limit the portability of your code. You can
perform concurrent enumerations with blocks,
by passing NSEnumerationConcurrent as

the first argument to a method such as
-enumerateObjectsWithOptions:usingBlock:.
This is generally only likely to give a

147

148

Working with Collections

performance gain if the block will take a long
time to execute on each element.

Each collection has different methods for
enumeration via blocks. The version for arrays
takes the index of the object as an argument, the
version for dictionaries takes both the key and
value, and so on. These methods will be slower
than the other alternatives, because they require
the block to be called for each object (which has
the same overhead as calling a function), but
they can be more convenient.

In some cases, you can avoid enumeration
entirely. NSArray, for example, implements

a -makeObjectsPerformSelector method,

and another version that takes an object as a
second argument. If all that you are doing while
enumerating is sending a message to each object,
you can use these methods instead of creating a
loop.

Finding an Object in a Collection

Finding an Object in a
Collection

NSArray +array = [NSArray arrayWithObjects:
@"a", @"group”, @"of",
@"string", @"objects", nil];

NSSet #set = [NSSet setWithArray: array];

NSUInteger i =

[array indexOfObjectIdenticalTo: @"group"];
if (NSNotFound == i)

i = [array indexOfObject: @'"group"];
NSString xoriginal = [set member: @"string"];

From: getObject.m

Both NSArray and NSSet implement the
—-containsObject: method, which returns YES
if the collection contains an object that is equal
to the argument. This uses the same notion

of equality we’ve already covered in relation

to collection classes: Two objects are equal if
sending one an -isEqual: message with the
other as the argument returns YES.

In an array, you probably want to know

exactly where the object is, rather than simply
whether it is present. There are two methods
for telling you this: -indexOfObject: and
-index0fObjectIdenticalTo:. The second

of these uses pointer comparison to determine
equality.

All of these are slow in arrays. They all require a
linear search, and most of them require sending
a message to each object. In general, you should
only use them in small arrays or infrequently

149

150

Working with Collections

called code paths. If you need to perform this
reverse mapping often, you're better off using
a dictionary or something similar to store the
inverse relationship.

With sets, the performance is somewhat
different. Because sets store objects in buckets
according to their hash, a set can quickly
discount a lot of objects as being different.
Obviously, because sets are unordered, there

is no set method for looking up the index of an
object. There is, however, a method for looking
up the stored object that is equal to an object.

The -member: method on NSSet returns the
stored object that is equal to the argument. This
is very useful for ensuring uniqueness in objects.
The unique.m example shows a method that
constructs unique constant string objects from

C strings. If you pass the same C string to this
method twice, you will get the same NSString
instance returned both times.

Note that this function is not thread-safe. There
is a potential race between testing whether the
string is in the set and adding the new one if it
isn’t. A thread-safe version of this would require
you to acquire a lock after the -member: call,
send this message again, and then finally release
the lock after adding the new object.

If you are creating a new immutable class, you
may wish to implement something like this in
your constructor. This will trade some speed for
memory usage in construction, but will mean

15
16
17
18

20

Finding an Object in a Collection

static NSMutableSet *unique_strings;

NSString *uniqueString(const char =*str)

{
NSString *new = [[NSString alloc]
initWithUTF8String: str];

NSString =old =
[unique_strings member: new];

if (nil !'= old)
{
[new release];
return old;
}
[unique_strings addObject: new];
return new;

3

From: unique.m

that you can always use pointer comparisons to
determine equality, which can be a big speed win
overall in some cases.

151

152 CHAPTER 7: Working with Collections

Subclassing Collections

- (NSUInteger)count
{
return [realArray count];

}
- (id)objectAtIndex: (NSUInteger)anIndex

{
return
[realArray objectAtIndex: anIndex];

From: checkedArray.m

All of the standard collections are class clusters.

This means that creating a new subclass of them
is nontrivial. The superclass is abstract, and

the concrete subclasses are private (so you can’t

subclass them).

Each of the collections documents the methods
you must implement in a subclass. The simplest
way of doing this is via delegation: just have an
object that is the same type as the collection
you are subclassing as an instance variable. The
typedArray.m example uses this approach.

The TypedArray class is a subclass of
NSMutableArray. The realArray instance
variable in this class is an NSMutableArray. This
is created in the class’s designated initializer
and, just like any other code that creates an
NSMutableArray, will really get an instance of
one of the concrete subclasses of this class. The
other instance variable is a Class, which is used
to type check objects that are inserted into the

10

12
13
14
15
16

17

19
20
21
22
23
24

Subclassing Collections

array.

(id)initWithType: (Class)aClass

if (nil == (self = [super init]))
{

return nil;
}

type = aClass;
realArray = [NSMutableArray new];
return self;

(void)dealloc

[realArray release];
[super dealloc];

3

From: checkedArray.m

Unlike the standard array classes, which are
heterogeneous, this version requires every object
you insert to be an instance (or subclass of) the
class passed to the initializer. This version will
silently fail if you try to insert other objects, but
you could easily modify it to throw an exception.

A number of the methods in this class

are trivial. The -removeObjectAtIndex:
method, for example, just passes the same
message to the wrapped array. Others, such as
-insertObject:atIndex:, do the type checking
and then call the real array.

This example implements all seven of the

primitive methods in NSMutableArray. This
means that all of the other methods declared on

153

154

34
35
36
37
38
39

41
42
43
44
45
46
47

CHAPTER 7: Working with Collections

- (void)insertObject: (id)anObject
atIndex: (NSUInteger)anIndex

{
if (![anObject isKindOfClass: type])

{

return;

}
[realArray insertObject: anObject
atIndex: anIndex];

}
- (void)removeObjectAtIndex: (NSUInteger)idx

{

[realArray removeObjectAtIndex: idx];

3

From: checkedArray.m

NSArray or NSMutableArray will work correctly.

Note: In C4++, the primitive methods would be
pure virtual methods in the superclass, and the
compiler would prevent you from instantiating

the superclass directly, or any subclass that

did not implement these methods. There is no
corresponding facility in Objective-C.

A more common reason for subclassing is that
you want to implement a different data structure
for the underlying representation. For example,
if you are going to insert objects at one end of an
array and then remove them from the other, you
might want to use a resizable ring buffer as your
array implementation.

Subclassing Collections

If this is the case, you should still override the
same methods, but this time replace them with
an implementation in terms of your own storage
mechanism. You can then still use your subclass
anywhere that the superclass can be used—
including passing it to other libraries—but your
own storage will be used.

155

This page intentionally left blank

Dates and Times

In Objective-C, two concepts fall under the
general umbrella of time. One is absolute times,
the other is time intervals. Time intervals are
easy to work with. They are simple scalar
quantities, typically measured in seconds. The
NSTimeInterval type is used to store time
intervals. This is usually defined as a double-
precision floating-point value, which gives enough
precision for most uses.

You will find some other ways of representing
time intervals in various frameworks. One
example is the QTKit on OS X, which stores
time intervals as rational numbers. This

allows you to repeatedly add them without
encountering drift due to floating-point rounding
errors, which is very important when dealing
with media. Over the length of a film, compound
floating-point errors can make the video and
audio tracks drift noticeably out of sync.

Time intervals give the difference between two

158

CHAPTER 8: Dates and Times

absolute times. The definition of an absolute
time is quite difficult. Things such as time zones
and even different calendars make it relatively
difficult to define an absolute time. Much of

the code related to times and dates in the
Foundation framework is designed to solve this
problem.

Finding the Current Date

NSDate *now = [NSDate date];
now =

[NSDate dateWithTimeIntervalSincel970: time(
NULL)];

From: date.m

The NSDate class encapsulates an absolute time
value. This is stored as two components. One is
a well-defined fixed point: the epoch date. The
other is a time interval since that epoch.

Two standard epoch dates are supported by
NSDate, both defined in terms of the Gregorian
calendar. One is the UNIX Epoch, the first of
January, 1970. This epoch date was defined
with the first UNIX systems and was later
incorporated into the ISO C standard. The

C time() function will return the number of
seconds since that date.

The other Epoch time was defined as part of

the OpenStep specification, and is referred
to as the reference date. This one is a little

Finding the Current Date

bit less arbitrary; it is the start of the current
millennium: the first day of 2001.

Part of the point of NSDate is to free you

from having to know which reference date

you are using. You can compare two dates
using -compare: or any of the related methods
irrespective of what epoch they are using
internally.

If you create a new date with +alloc/-init

or with +date, it will be set to the current

time. Dates are mutable objects, but it’s
generally better to treat them as if they are not.
There is only one method for modifying dates:
-addTimeInterval:. This is deprecated in OS
X 10.6 and can cause problems in older code,
because a lot of people tend to forget that it’s
possible to modify dates and just retain them,
rather than copying them.

159

160 CHAPTER 8: Dates and Times

Converting Dates for Display

NSDate *now = [NSDate date];
NSCalendar *cal = [NSCalendar currentCalendar];

unsigned int components = NSYearCalendarUnit;
NSInteger year =
[[cal components: components
fromDate: now] year];

NSString =date = [NSDateFormatter
localizedStringFromDate: now
dateStyle:
NSDateFormatterLongStyle
timeStyle:
NSDateFormatterNoStyle];

From: calendar.m

An NSDate stores an absolute time, but your
users would probably object if you presented
them with the number of seconds since 1970-01-
01 or 2001-01-01. Unless, of course, your target
market is robots.

Most of the western world standardized on the
Gregorian calendar at some point over the last
few hundred years. The earliest adopters, who
presumably got to experience all of the bugs,
included Spain, Portugal, and Italy in 1582. The
most recent was China, in 1929.

This causes some significant problems for
localization. If you have a date that represents
the 120 years before the UNIX epoch, how do
you display it? It would be the first of January,
1850 in the Gregorian calendar, but what

Converting Dates for Display

happens if your user’s locale is a country that
didn’t adopt the Gregorian calendar until after
this date?

A concrete example of this is the October
Revolution in Russia, which took place on the
seventh of November, 1917. If you present
this date to Russian users, it will be incorrect,
because Russia was still using the Julian
calendar at this point, which is why they call
something that happened in November the
October Revolution.

Other locales may not use the Gregorian
calendar at all. Most people who own computers
probably have some experience with the
Gregorian calendar, but forcing your users to
perform the conversion themselves is not a good
idea.

Note: The NSCalendarDate was the

older OpenStep way of representing dates for
display. This class is now deprecated. Unlike

an NSDate, which stored an abstract time, an
NSCalendarDate stored a date in the Gregorian
calendar.

You might need to use one of two classes when
converting a date for display. If you need to
get at the individual components of the date
in a particular calendar, you need to use the
NSCalendar class. If you want to generate a
string value, you should use NSDateFormatter

161

162 Dates and Times

instead.

The NSCalendar class encapsulates a calendar,
a way of mapping between absolute times and
segmented time periods containing numbered
years, months, and so on. You use this class
to create an NSDateComponents object from
an NSDate. The NSDateComponents object
encapsulates the components of a date with
respect to a particular calendar.

The date components object does not store the
calendar that it is relative to, and so there is no
defined way of comparing two date components
objects. This is intentional. If you are comparing
dates, you should compare absolute times

using NSDate objects and only localize them

for display. This is a significant change from
NSCalendarDate, which was a subclass of
NSDate, so did define comparisons.

If you have a date components object, you

can then construct a date for display using
NSString’s +stringWithFormat:. This is a bad
idea. If you generate a date such as 1/2/2012,
people in the USA, who use middle-endian
format dates, will interpret this as the second

of January, while the rest of the world, which
uses little-endian dates, will read it as the first of
February.

The NSDateFormatter class solves this problem

for you. It has a convenient class method,
+localizedStringFromDate:dateStyle:timeStyle:,
that returns a string containing the localized

© o N o

Calculating Elapsed Time

date and time. The second and third arguments
describe the level of detail required for the date
and time components, respectively. This can
range from not displaying anything, through

a very terse numeric description, to a long
description with the month and day name
written out in full.

Calculating Elapsed Time

NSDate *start = [NSDate date];
sleep(1);

NSTimeInterval elapsed =
0 - [start timeIntervalSinceNow];

From: elapsed.m

You can find the difference between

two date objects by sending one a
-timeIntervalSinceDate: message with the
other as the argument. Alternatively, to find
how long ago a date was, you can send it a
-timeIntervalSinceNow message. This will give
a negative number if the date is in the past, so
to find out how much time has elapsed since a
date was created with +date or +new, you should
subtract this value from zero.

This is not the fastest way of calculating the
elapsed time. The gettimeofday() system
call will return the system time in a structure.
This avoids the cost of creating an object and
of sending the message, but it’s a bit more
work because you need to handle the structure

163

164

Dates and Times

yourself. This structure stores the number of
seconds and microseconds in separate fields,
so the subtraction is more effort than just
comparing two scalar values.

Parsing Dates from Strings

Parsing Dates from Strings

NSDate =isoDate =
[NSDate dateWithString:
@"1982-06-15 06:10:00 +0000"7];

NSLocale *gb = [[NSLocale alloc]
initWithLocaleIdentifier:@"en_GB"];
NSDateFormatter =formatter =
[NSDateFormatter new];
[formatter setLocale: gb];
[formatter setDateStyle:
NSDateFormatterShortStyle];
[formatter setTimeStyle:
NSDateFormatterNoStyle];
NSDate =*britishDate =
[formatter dateFromString:
@"15/06/1982"1;

From: stringdate.m

The NSDate class has a constructor that lets
you construct dates from ISO 8601-formatted
strings. This is useful when you are parsing
dates from files used for interchange, but is not
so useful when dealing with user-provided data.

If you want to create a date from a

localized string, you need to return to the
NSDateFormatter class. This class encapsulates
some description of date formats and can
perform bidirectional conversions between date
and string objects.

When you create a date formatter, you can set
the locale either to an explicit locale, or leave it
set to the user’s current locale. You can then
either use one of the standard time and date

165

166 CHAPTER 8: Dates and Times

formats for that locale, or specify one explicitly
with the -setDateFormat: method. This takes
a template string as an argument, but its use
is discouraged in most code because it does not
account for the locale.

You have one final option for reading dates.
If you want to read dates from some custom
format, you can use NSScanner to read the
components from the string, then construct
an NSDateComponents object and pass this to
NSCalendar to create the date. NSScanner is
covered in Chapter 5.

Receiving Timer Events

(void)periodic: (NSTimer=)theTimer

NSLog(@"Timer fired");

(void)start

SEL sel = @selector(periodic:);
[NSTimer scheduledTimerWithTimeInterval:
target: self
selector: sel
userInfo: nil
repeats: YES];
[[NSRunLoop currentRunLoop] run];

3

From: timer.m
The NSTimer class encapsulates an event source

that generates events at a specific time. This is
similar in principle to the alarm() system call,

Receiving Timer Events

although you can have several timers scheduled
at once.

You will almost always construct timers using
the method from the example at the start of this
section. This method will create and schedule a
new timer in the same operation.

When the time interval elapses, the timer will
fire. It will then send a message to an object.
The simplest way of defining this message is by
passing a selector, a target, and a dictionary
when you create the timer. The selector must
be for a method that takes one argument:

an NSTimer instance. You can retrieve the
dictionary by sending a -userInfo message to
the timer.

There is another constructor that takes an
NSInvocation as the argument. This is more
difficult to use, but is more powerful because it
allows any message with any arguments to be
used.

The timer object will be autoreleased when you
create it like this, but it will be retained by

the run loop object. You can only use timers
when you are using NSRunLoop. The run loop
object sits waiting for events from the kernel—
for example, timers or data becoming available
on file descriptors—and then sends messages in
response to these events.

If you are using AppKit or UIKit, you will
be using a run loop automatically. The
NSApplication and UIApplication classes both

167

168

Dates and Times

create a run loop instance internally. These
classes register with the run loop to receive
notifications of user interface events from the
display server and then pass them on to windows
and so on.

If you are writing a command-line application

or a server, you can still use NSRunLoop. It is
part of the Foundation framework, but you must
create it manually and tell it to run. This is very
simple, and is done in the last line of the -start
method in the preceding example.

Working with
Property Lists

Property lists are a way of storing structured
data. You can store two of the standard
Foundation collection classes (arrays and
dictionaries) in property lists, as well as most of
the data types, such as strings, numbers, dates,
and so on.

Property lists are intended to be abstract. They
are not tied to a particular language or to a
particular representation. There are currently
three defined serializations for property lists.
The oldest is the OpenStep property list format.
This is a very dense, human-readable format.

Unfortunately, OS X cannot write the old-
style property lists. It can read them, but the
specification does not define a way of storing
dates, or a few other things, so writing to
them does not work. GNUstep extended the
OpenStep property list format to allow you to

170

CHAPTER 9: Working with Property Lists

store everything that the newer formats support.

With OS X, Apple introduced an XML and a
binary property list format. The XML format is
incredibly verbose, but has the advantage that
it can be parsed by other XML-compatible tools
and can be embedded in other XML documents.

The binary representation is very fast to parse
and very dense but, being binary, is not human-
readable.

Some libraries for other languages can

handle property lists. The WINGS library in
WindowMaker can read and write them, as can
a library included with NetBSD. Apple’s Core
Foundation framework, and their open-source
CFLite library, can also use them from C code.

Storing Collections in Property
Lists

NSArray +array = [NSArray arrayWithObjects:
@"array", @"containing", @"string",
@"objects", nil];

[array writeToFile: @"example.plist" atomically:

NO];

NSMutableArray xcycle = [array mutableCopy];

[cycle addObject: cycle];

[cycle writeToFile: @"failure.plist" atomically:
NoJ;

From: writeplist.m

The array and dictionary classes implement a
-writeToFile:atomically: method. These let

© ® N o T os W

o

Storing Collections in Property Lists

you trivially dump the contents of the collection
in a file using the default property list format.

These methods are not magic. They will only
work if the collections do not contain any types
that cannot be stored in a property list.

If you pass YES as the second parameter, the
method will ensure that the representation
on disk is always consistent. It will write the
property list to a temporary file and will then
rename this file when the writing is finished.

Running the code from the start of this section
will generate an example.plist file that contains
an array as the root element and four strings
inside it.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DID PLIST 1.0//
EN" "http://www.apple.com/DIDs/PropertyList
-1.0.dtd">
<plist version="1.0">
<array>
<string>array</string>
<string>containing</string>
<string>string</string>
<string>objects</string>
</array>
</plist>

From: example.plist

With current versions of OS X, this approach
will use the XML property list format. As
you can see, this is quite verbose. The older
OpenStep property list format used brackets

171

172

Working with Property Lists

for arrays and double quotes for strings, so it
would have been a bit less than half the size.
Converting this to the binary format reduces the
file size from 294 bytes to 82.

For a property list this small, the space
reduction is irrelevant. Both formats are likely to
fit into a single allocation unit on disk, so they
will take the same amount of on-disk space. The
parsing time will be trivial for both.

This is not true with larger property lists,
however. Safari, for example, stores your history
in a binary property list. At the moment, mine
is 15MB. If T convert it to the XML format,

it becomes 34MB. The parsing overhead also
increases, both in terms of CPU time and
memory usage.

Unfortunately, the collection classes

won’t write out property list versions of
themselves in anything other than the default
(XML) format. Instead, you must use the
NSPropertyListSerialization class, which
we’ll look at over the next few sections.

The property list formats are all hierarchical.
They do not support writing cyclical data
structures. The second array in this example
contains a pointer to itself. The behavior when
writing this to a property list is undefined. On
OS X, only the elements before the recursive
pointer are stored in the file. Any objects
appearing after it are ignored.

Reading Data from Property Lists

Reading Data from Property
Lists

NSArray +*array =
[NSArray arrayWithContentsOfFile:
@"example.plist"];
NSData *data = [NSData dataWithContentsOfFile:
@"example.plist"];
NSMutableArray *mutable =
[NSPropertyListSerialization
propertylListFromData: data
mutabilityOption:
NSPropertyListMutableContainersAndLeaves
format: NULL
errorDescription: NULL];
NSCAssert([mutable isKindOfClass:
[NSMutableArray class]],
@"Should have read a mutable array");
[[mutable objectAtIndex: 0]
appendString: @"suffix"];

From: readplist.m

There are two ways of reading in a property
list. The first is to use the inverse of the
method that we just looked at for writing
them. Both of the collection classes that
support property list serialization have an
-initWithContentsOfFile: initializer, as well
as a corresponding constructor.

This sounds easy, but there are some
complications. The most important one is that
property lists do not store any information
about mutability. An NSString and an
NSMutableString, for example, are stored in
exactly the same way.

173

174

CHAPTER 9: Working with Property Lists

When you read back a property list, which
should you get? If you read back an array

by sending an +arrayWithContentsOfFile:
message to the NSArray class, you get an
immutable array. If you send the same message
to an NSMutableArray, you will get a mutable
array.

That’s fine for the outer element in the property
list, but what about the objects inside the array?
In both of these cases, you will get arrays filled
with immutable objects. This may not be what
you want.

If you want to read back mutable objects, you
need to use NSPropertyListSerialization.
This class handles reading and writing property
lists and provides much finer-grained control
than the various collection classes.

Note: If you read the latest version of Apple's
documentation, you will see that the method we
use on NSPropertylListSerialization is marked
for future deprecation. This is because it was
introduced in the period when Apple started using
error: parameters, but before they introduced the
NSError class. Unfortunately, the method that is
recommended to replace it does not yet provide
equivalent functionality.

When you read a property list using this class,
you can pass a mutability option as a parameter.
There are three possible options for this. The

Reading Data from Property Lists

default is for all of the objects to be immutable.
The option used in the example at the start of
this chapter goes to the other extreme, making
everything mutable. Appending a suffix to one of
the strings in the array demonstrates this.

The third option is somewhere in the middle.

It makes container objects mutable, but other
objects (strings, numbers, dates, and so on)
immutable. This is useful when you want to
modify the structure of the property list but not
any of the leaf elements.

When you read a property list in this way, the
property list serialization class will tell you what
the format of the property list was.

175

176

24
25
26

27

CHAPTER 9: Working with Property Lists

Converting Property List
Formats

NSString =file =
[NSString stringWithUTF8String: argv[1]];
NSData *data = [NSData dataWithContentsOfFile:
filel;
NSPropertyListFormat fmt;
id plist = [NSPropertylistSerialization
propertylListWithData: data
options: 0
format: &fmt
error: NULL];
if (fmt == NSPropertyListBinaryFormat_v1l_0)
{
return 0;
}
data = [NSPropertylListSerialization
dataWithPropertyList: plist
format:
NSPropertyListBinaryFormat_vl|

options: 0
error: NULL];

[data writeToFile: file atomically: NOJ;

From: makebinaryplist.m

On OS X, you cannot write property lists in
the OpenStep format, but you can still use the
two other forms. In general, you should use the
binary format for storing private data and the
XML format for anything that the user might
want to edit with other tools.

These are not hard-and-fast rules. The point of
the property list format is that you can losslessly

Converting Property List Formats

convert between the representations, so you
might use the binary format everywhere—
because it is denser and faster to parse—and
expect the user to convert the property list if
he wants to modify them.

You can choose which format you

use when you write a file using
NSPropertyListSerialization. This class
also, helpfully, tells you what the format of the
property list is currently when you read it in.

Note: The methods used in the example at the
start of this section were introduced with OS X
10.6. If you are using an older version of OS X,
you can replace the read method that we looked

at in the last section and the corresponding write
method.

It’s quite common to want to store property lists
in binary format for efficiency. Your users will
then decide that they want to poke these files

in a text editor, so they’ll use the plutil tool to
convert them to XML format. They will then,
of course, forget to convert them back, so your
program will read them back slowly the next
time.

If you are not going to modify a property

list every time your program runs, it’s worth
checking whether the format is still binary when
you load it and then rewriting it in this format if
it isn’t.

177

178 CHAPTER 9: Working with Property Lists

Storing User Defaults

NSUserDefaults =def =

[NSUserDefaults standardUserDefaults];
id persistentString =

[def stringForKey: @"example'];
NSLog(@"01d value: %@", persistentString);
if (argc > 1)
{

NSString #new =
[NSString stringWithUTF8String:
argv[1]];
[def setObject: new
forKey: @"example'];
[def synchronize];

3

From: defaults.m

The user defaults system is one of the biggest
users of property lists. If you look in the

~ /Library/Preferences directory, you will see a lot
of property list files. These files store preferences
for the current user. There is a corresponding
global directory in /Library/Preferences.

Every application has its own defaults domain,
typically a reverse-DNS notation string

(for example com.apple.TextEdit). The
NSUserDefaults class can access data from this
domain.

The user defaults system will read data from
a variety of sources. One of the most useful is
the command line. You can specify key-value
pairs as command-line arguments to any OS
X application, which is incredibly useful when

Storing User Defaults

debugging.

The defaults system is exposed as a single
dictionary, with a few convenience methods. In
general, you can pretend that the user defaults
object really is a persistent dictionary.

Note: The defaults system is comparable to
the Windows registry, but with a few important
differences. Both support multiple levels of keys
(user, system, and network), but the defaults
system hides all of this from the programmer.
Although both look like tree structures, the registry
is a single database, whereas the defaults system
stores data in separate files for each domain. This
makes it easy to modify defaults with third-party
tools and means that it scales better because

you never need to read more than one or two of
these files into memory at once. The downside is
that operations on defaults are not transactional.
Modifying the same domain from two programs
simultaneously is undefined.

Unlike a dictionary, the defaults object has some
convenience methods for accessing non-object
types and for type-checking object types. In the
current example, we send it a -stringForKey:
message. This wraps the —objectForKey:
method, but ensures that the return value is a
string.

There are other convenience methods, such

as -floatForKey: and -setFloat:ForKey:,

179

180

Working with Property Lists

which take primitive C types and wrap them in
NSNumber instances before storing them in the
defaults system.

The code in this example ends by sending a
-synchronize message to the defaults object.
This is not usually necessary. The defaults
object will be periodically synchronized with the
on-disk storage. In this example, however, we are
not using a run loop (so timers will not work)
and are exiting immediately after modifying the
defaults, so our changes will never be committed
to disk without this.

Running this example, you can see that the
initial value is nil, because there isn’t anything
stored in defaults. The value passed as an
argument to the short program is stored in
defaults and retrieved automatically the next
time it is run.

This also demonstrates using NSArgumentDomain.
There are several sources for defaults, which are
loaded in order and overwrite the previous ones.
The last, and therefore highest priority, defaults
are the arguments. Specifying an -example
command-line option sets the @"example" key in
defaults to whatever is passed as the argument.

This does not replace the persistent value, it just
overrides it in this particular run of the program.
You can see that when we run the program
again, without the command-line argument, the
old value from two invocations ago is used. This
was committed to disk on the third run of the

16

18
19
20

21

Storing User Defaults

$./a.out persistent

a.out[72216:903] 01d value: (nil)

$./a.out new

a.out[72216:903] 01d value: persistent

$./a.out -example arg store

a.out[72362:903] 01d value: arg

$./a.out -example arg

a.out[72363:903] 01d value: arg

$./a.out new

a.out[72363:903] 01d value: store

$ plutil -convert xmll \
~/Library/Preferences/a.out.plist

$ cat ~/Library/Preferences/a.out.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DID PLIST 1.0//

EN" "http://www.apple.com/DIDs/PropertyList
-1.0.dtd"™>

<plist version="1.0">

<dict>
<key>example</key>
<string>new</string>

</dict>

</plist>

Output from: defaults.m

program, but was not used on the fourth run
because an argument replaced it. On the fifth
run, with no -example argument, it is visible
again. You can look in individual domains
explicitly with NSUserDefaults, but it’s rare
to want to.

If you are writing a command-line tool, this
provides a very convenient way of parsing
command-line arguments. You can store default
values for command-line arguments in the

181

182

CHAPTER 9: Working with Property Lists

defaults system and have them automatically
overridden by the user, without needing any
parsing code.

Storing Arbitrary Objects in
User Defaults

NSUserDefaults =def =
[NSUserDefaults standardUserDefaults];
NSData =#serialized = [def objectForKey: @"color'
i

"

id favoriteColor =
[NSKeyedUnarchiver unarchiveObjectWithData:
serialized];

if (nil == favoriteColor)
{
favoriteColor = [NSColor blackColor];
serialized = [NSKeyedArchiver
archivedDataWithRootObject: favoriteColor];
[def setObject: serialized
forKey: @"color"];
[def synchronize];

From: colordefault.m

Quite often, you want to store something in
defaults other than the basic Foundation data
types. A common example is colors. If you allow
users to customize the interface in any way, you
typically want their selected colors to persist
between program invocations. This is easy; just
store the NSColor object in defaults.

Storing Arbitrary Objects in User Defaults

Well, it would be easy if property lists and, by
extension, user defaults supported NSColor
objects. Unfortunately, they don’t. You can,
however, store NSData instances in defaults. If
you have some mechanism for turning an object
into data, you can store it in defaults.

Fortunately, there is a generic way that a lot
of common objects support. Any object that
implements the NSCoding protocol can be
serialized and deserialized using an NSCoder
subclass.

Unlike property lists, the NSCoder mechanism
supports arbitrary objects and cycles.
Unfortunately, it requires the object to
implement the two methods in the NSCoding
protocol, so it doesn’t work on all objects. It
does work on a lot, however, and it’s trivial to
reuse for storing objects in defaults.

If you are doing this a lot, it’s very easy to
write a category on NSUserDefaults that
adds -colorForKey: and -setColor:forKey:
methods. These can take an NSColor instance,
serialize it with a coder, and then restore it.

If you want an even more general solution,

you could add a -setEncodedObject:forKey:
method. This would take an id<NSCoding> as
its argument and store it using the code from the
example at the start of this chapter.

If you want to store some object that doesn’t
support the NSCoding protocol in defaults, you
have two options. First, you can add NSCoding

183

184

Working with Property Lists

support to it. This involves implementing the
-encodeWithCoder: and -initWithCoder:
methods, which you can do in a category.

The second is to do some other kind

of transformation. A lot of object have
-stringValue and -initWithString: methods.
You can store these in defaults simply by turning
them into strings before storing them and
creating new objects from strings when you read
them from defaults.

10

Interacting with
the Environment

Objective-C is generally used on UNIX-like
platforms, and it inherits the notion of an
environment from there. This includes concepts
such as a working directory, environment
variables, and so on.

In a traditional Objective-C environment, you
were expected to get these values in exactly
the same way you would from a C program.
With OpenStep, Sun and NeXT introduced the
NSProcessInfo class, which provides a higher
level of abstraction.

Part of the motivation for this was the fact
OpenStep programs were expected to run on
OPENSTEP, Solaris, and Windows NT. All of
these have subtle differences in their idea of an
environment, and some abstraction was required
to hide them.

186 CHAPTER 10: The Environment

Getting Environment Variables

int main(int argc, char #xargv, char #xenvp)
{
// The C way
while (*envp)
{
printf("%s\n", *envp);
envp++;
}
printf("Working Directory: %s\n", getenv("PWD'")
);

// The Objective-C way
[NSAutoreleasePool new];
NSDictionary xenv =
[[NSProcessInfo processInfo] environment];
for (NSString +key in env)
{

NSLog(@"%@ = %@", key, [env objectForKey: key
D

}

NSLog(@"Working Directory: %@\n",
[env objectForKey: @"PWD"]);

return O;

From: env.m

Environment variables can be accessed in three
ways on OS X. Two of them will work anywhere,
whereas the third will only work on some
platforms.

0OS X, like Windows and a lot of UNIX systems,
passes the environment into processes as a third
argument to the main() function. This is a
NULL-terminated C array of C strings. The C

Getting Environment Variables

and POSIX standards don’t require this third
argument to work, so it’s a bad idea to rely on it
in portable code.

When a program starts, the run time loader
will load all required shared libraries and then
jump to a special function in the C standard
library, typically called _start. This then calls
main(), but before it does it stores a pointer to
the environment variables.

You can access this storage by calling the
getenv() C standard function. Alternatively,
you can access environment variables by sending
an -environment message to the singleton
process info object. This returns a dictionary
containing the environment.

Note: There is no way of setting environment
variables using Objective-C code. Modifying the
environment is typically done in C code as a
preliminary to calling one of the exec() family of
functions. This only works on UNIX-like platforms
and not, for example, on Windows or Symbian
systems. Therefore, it is discouraged. You can

set a new dictionary that will be used as the
environment of a new child process by sending

a -setEnvironment: message to NSTask.

187

188 CHAPTER 10: The Environment

Parsing Command-Line
Arguments

int main(int argc, char =xargv)
{
[NSAutoreleasePool new];
NSUserDefaults =d =
[NSUserDefaults standardUserDefaults];
NSString *file = [d stringForKey: @"file"];
if (nil == file)
{

fprintf(stderr,
"USAGE: %s -file {filename}", argv[0]);
return 1;
+
NSLog(@"Using file %@", file);
return 0;

From: args.m

Standard C does not provide a way of getting

at program arguments outside of the main()
function. The GNU C standard library provides
some extensions for accessing them after
program start, and on most UNIX-like platforms
you can read them from the /proc filesystem,
but there’s no simple way of getting them in a
portable way from C code.

With Objective-C, you can always get at the
arguments by sending an -arguments message
to NSProcessInfo. This returns an NSArray
containing Objective-C strings for all of the
options. You can then process the arguments
in any way you like.

Parsing Command-Line Arguments

It’s quite unusual to access arguments this way.
The simplest way of parsing command-line
arguments, as we saw in the last chapter, is to
use the NSArgumentDomain in NSUserDefaults.
When an Objective-C program is started, the
command-line arguments are all read and
inserted into a dictionary, which is used by the
defaults system.

This makes it very easy to provide a set

of command-line arguments along with
(configurable) default values. You never interact
with the arguments directly when you use this
approach. Instead, you ask the defaults system
for a value for a key, and it returns something
that may be from a persistent storage location or
from the command line.

In the EtoileFoundation framework, we provide
an ETGetOptionsDictionary() function, which
wraps the standard getopt () function. This
provides an Objective-C way of using UNIX-style
command-line arguments. You can use this if
you are writing a UNIX-style tool in Objective-
C. Otherwise, it is better to use the defaults
system.

189

190 CHAPTER 10: The Environment

Accessing the User’s Locale

NSLocale *1 =
[NSLocale autoupdatingCurrentLocale];
NSString *language =
[1 objectForKey: NSLocaleIdentifier];

NSString xhumanReadableLanguage =
[1 displayNameForKey: NSLocaleIdentifier
value: language];

From: locale.m

If your program interacts with the user directly
in any way, you will probably want to localize it
at some point. Objective-C provides a lot of rich
facilities for doing this.

The NSLocale object encapsulates a locale.
There are several ways of getting instances

of this class. If you send it a +systemLocale
message, you will get the system locale.
However, this is not something you should
normally use. It is the fallback locale for when
the user’s locale does not work correctly.

You can get the user’s current locale in two
ways. Sending a +currentLocale message
returns a locale object that encapsulates the
current locale. If the user selects a new locale,

a NSCurrentLocaleDidChangeNotification will
be posted, and you can get a new locale object
for the new locale.

Alternatively, you can send an
+autoupdatingCurrentLocale message to the
class. This returns a locale object that will

11
12
13
14
15
16
17
18
19

Supporting Sudden Termination

always represent the current locale, even if it
changes. This can be slightly confusing because
two subsequent calls to the same method with
the same argument on this object might return
different values.

It is important to avoid caching data returned
from locale objects, if you want to support
changing locale while the program is running. If
you are presenting things to the user that remain
on the screen, you should make sure that you
monitor the notification and update them, even
if you are using an autoupdating locale object.

Supporting Sudden Termination

NSProcessInfo #p =

[NSProcessInfo processInfo];
[p enableSuddenTermination];
// Do initialization

[p disableSuddenTermination];
// Do other things that can’t
// be interrupted here.
modifyFiles();

[p enableSuddenTermination];

From: suddenDeath.m

Traditionally, there are two options for process
termination. A process can exit gracefully, by
reaching a safe place to stop and then calling
exit() or reaching the return statement in
the main() function. Alternatively, it can exit
abruptly, by receiving an unhandled signal,
including something like a segmentation fault.

191

192

The Environment

In both cases, the kernel will reclaim all of its
shared resources, but in the case of abrupt
termination some of these resources may have
been left in an inconsistent state. A typical
example of this is a file in the course of being
modified.

This used to be a big problem with complex
applications, such as word processors. They
would open the file for writing, start modifying
it, then crash, leaving the file in a state where
it was very difficult to recover the contents.
You can avoid this by using the atomic writing
facilities on most Foundation objects, which
write to a temporary file and then rename it,
so the write either succeeds entirely or fails
entirely—it doesn’t even half succeed.

With OS X 10.6, Apple introduced the sudden
termination mechanism. The theory behind this
was that a lot of programs spend a lot of time on
exit running destructors for objects that have

no effects other than to release memory that

the operating system will reclaim anyway. With
sudden termination, a process can advertise that
it doesn’t have any unsaved data. The operating
system is then free to kill it abruptly, rather
than request that it exit gracefully.

This is particularly useful for long-running
background tasks that are idle for a long time.
They will generally be swapped out by the
kernel. When you ask them to exit gracefully,
a lot of code and data needs to be paged in to

Supporting Sudden Termination

handle the exit. With sudden termination, the
pages in the swap file will just be flagged as
available for reuse.

Supporting sudden termination in your
application is very easy. You call two methods
on NSProcessInfo, one on either side of some
action that can’t be interrupted.

Note: If you use AppKit with the NSDocument
infrastructure, you don't need to do anything.
Your application will be marked as not supporting
sudden termination when any documents have
unsaved data.

These methods are called
-disableSuddenTermination and
-enableSuddenTermination, but the names are
slightly misleading. They don’t actually enable
and disable sudden termination, they modify

a counter. When the counter reaches 0, the
application is marked as being killable.

This means that you can use them in different
threads or nest them without any problems. The
counter starts set to one, so you must explicitly
send an -enableSuddenTermination message

to the process info object to enable it. If you

are creating an application, you can avoid this
by setting a key in the application bundle’s
property list file.

Cocoa applications, as opposed to command-
line tools, are typically distributed as bundles.

193

194

The Environment

These are directories that should be treated

as files by graphical file managers. NeXT

used them very effectively to store binaries

for different operating systems in the same
application, allowing a file server to contain

a single application for OPENSTEP, Solaris,
and even Windows. One of the things that

this bundle contains is a property list, called
info.plist, which describes some attributes about
the application, such as the name of its principle
class, the resources to load at startup, and so
on. The initial sudden termination state is one of
these attributes.

11
Key-Value Coding

A lot of code in a typical program is involved
with accessing and modifying aspects of an
object’s state.

The key-value coding (K'VC) mechanism is
intended to provide an abstract interface for
setting and getting properties on objects. It is
combined with the key-value observing (KVO)
mechanism, which provides an abstract way of
observing changes in a particular property of
another object.

KVC lets you interact with every object as if it
were a dictionary. You use the same mechanism
for reading and writing properties, irrespective of
how they are stored. The main advantage is that
it eliminates a lot of the need to write custom
controller classes to fit model objects to views.

A view class generally needs to get and set
properties on a model object. With KVC, there
is a generic, parameterized mechanism for doing
this. You can just provide a view object with

196

CHAPTER 11: Key-Value Coding

a key or key path and have it automatically
retrieve the data from the model, without
needing to know any details of the model’s
implementation, or even its interface beyond the
fact that it supports KVC.

Accessing Values by Key

[object setValue: @"42"
forKey: @"integer"];
int value =
[[object valueForKey: @"integer"]

intValue];
NSCAssert(value == 42,
@"Value set and retrieved");

From: kve.m

Objects manipulated via KVC look much like
dictionaries. The NSDictionary class is, itself,
KVC compliant, although you typically don’t use
the KVC methods when using it.

The two most common methods for interacting
with KVC-compliant objects are -valueForKey:
and -setValue:forKey:. The -objectForKey:
method on NSDictionary behaves in almost
the same way for retrieving values. The two

set methods on NSDictionary work slightly
differently.

The first thing you will notice is that
you get a compile-time warning if

you use -setObject:forKey: on an
immutable dictionary. You won’t if you

Ensuring KVC Compliance

use -setValue:forKey:. This method is
implemented by NSObject. It will fail at

run time when you call it on an immutable
dictionary, but there will be no hint of this at
compile time.

The other big difference is the use of nil. If you
use nil as the value with -setValue:forKey:,
it will delete that key. If you do the same for
-setObject:forKey:, you get an exception.

Ensuring KVC Compliance
@interface KeyPublic : NSObject @end
@implementation KeyPublic @end

@interface KeyIVar : KeyPublic
{

int integer;
}
@end
@implementation KeyIVar @end

From: kve.m

When you use the KVC methods, you almost
always call the implementations in NSObject.
These then try to work out how the property
should really be accessed.

The first place they will look is at accessor
methods. By convention, Objective-C classes
provide -property and -setProperty: methods
for reading and setting the “property.” If your
class provides these, they will be called. KVC

197

198 Key-Value Coding

will also look for a few other methods, including
things such as -isProperty for a Boolean

property.

13 @interface KeyAccessor : KeyIVar @end
14 @implementation KeyAccessor

15 - (int)integer

16 {

17 return integer;

18 }

19 - (void)setInteger: (int)aValue
20 {

21 integer = aValue;

22 }

23 @end

24 @interface KeyProperty : KeyPublic
25 @property int integer;

26 @end

27 @implementation KeyProperty

28 @synthesize integer;

29 @end

From: kve.m

If this fails, the class will be sent an
+accessInstanceVariablesDirectly message.
If this returns YES, the KVC methods will

look for an instance variable that matches

the name of the property and use that. The
implementation of this method in NSObject does
return YES, so you only need to override it if you
want to prevent KVC from looking at instance
variables.

Finally, if this fails, the KVC code will call
one of two fallback methods, depending on

31
32
33
34
35
36

38
39
40
41
42
43
44
45
46
47

Ensuring KVC Compliance

whether you are setting or getting the property.
These are -valueForUndefinedKey: and
-setValue: forUndefinedKey:.

@interface KeyFallback : KeyPublic
{
NSMutableDictionary =dict;
}
@end
@implementation KeyFallback
- (id)valueForUndefinedKey: (NSString+)aKey
{

return [dict valueForKey: aKey];
}
- (void)setValue: (did)aValue
forUndefinedKey: (NSString)aKey
{
[dict setValue: aValue
forKey: aKey];
}
@end

From: kve.m

These methods are the last chance to support
KVC. If you implement them, you should call
the superclass implementation for all keys

you don’t support directly. This will throw an
exception if called on the root class, indicating
that you don’t properly handle the key.

If you use declared properties to synthesize
accessor methods, you will get KVC compliance
for free. The kvc.m example shows all of the
different ways in which you can implement the
same KVC property.

199

200

Key-Value Coding

This example uses one public class and a
number of private subclasses that all support the
property. You can use instances of all of these
classes interchangeably, at least when it comes to
storing that key. More importantly, you can use
something like the KeyIVar or KeyFallback class
for prototyping and then switch to something
else later.

The fallback method is especially useful when
prototyping. When you start working, create a
private dictionary instance variable and access
all of the properties on the object via KVC.
Once you've determined the properties your
class really needs, you can replace the fallback
implementation with a set of accessors and, as a
separate step, replace the KVC calls with direct
message sends.

One thing that you might have noticed about
this example is that KVC only deals with
objects, but the instance variable is an int.
Somehow, this still works. This is because
KVC performs auto-boxing. We set this
property by passing @"12" as an argument to
-setValue:forKey:. The KVC code sent an
-intValue message to the string object, after
finding that the property was an integer.

In the other direction, it constructed an
NSNumber encapsulating the primitive value. If
the instance variable or accessor methods use
object types, this code is bypassed. Note that
KVC only accesses the runtime type information

Understanding Key Paths

and all object types are encoded as "@" in type
encodings.

This means you can use KVC to set an
NSString instance as the value for an instance
variable declared as an NSArray. KVC won’t
generate any errors when you try this, and
neither will the compiler. The receiver, however,
will get an exception the next time it sends a
message such as -objectAtIndex: to the string.

If you are writing KVC accessors for object
types, you might want to add an assert
statement checks whether the object has a
compatible class.

Understanding Key Paths

So far, we’ve looked at getting and setting values
for an individual key. This is quite useful, but it
doesn’t quite demonstrate the full flexibility of
KVC.

Most of what we’ve used KVC for could be done
quite easily without KVC. If you want one object
to access a particular property of another object,
and don’t want to hard code it, you could just
store a selector and use the normal Objective-C
message-sending mechanism to call it.

This works fine if the property is stored on that
object, but what happens if you want an indirect
property? You could store an array of selectors,
and use each one to get the intermediate object,
but that is cumbersome.

201

202

CHAPTER 11: Key-Value Coding

With KVC, you can use key paths. These are
simple strings containing key names, separated
by dots. If you want to access a property of a
property of an object, then you can do so in a
single operation using key paths.

Note: The dot notation for accessing declared
properties looks very similar to the KVC notation,
and it's very easy to confuse the two. This is
unfortunate, because they are entirely unrelated.
The dot notation generates message sends to
accessor methods directly. The KVC methods
taking key paths are a higher-level abstraction.
This is one of the reasons why the dot notation is
widely disliked.

The similarity is, unfortunately, intentional. Before
the public release, Apple employees were referring
to declared properties using the KVC terminology,
and the two were probably meant to be more
closely related.

The big advantage of key paths is that a generic
view object, for example, only needs to store
one pointer to the model object. It doesn’t need
pointers to various components inside the model,
it can access these via key paths.

For example, if you had a view for displaying
information about a person, you could join
copies in a family tree using the @"father" and
@"mother" key paths. You could then use the
same view in something displaying grandparent

Observing Keys

relations with the @"father.mother" key path,
and so on.

Key paths are used a lot with Cocoa bindings.
These are generic controller classes that connect
models to views.

Observing Keys

+ (void)observeValueForKeyPath:
(NSString*)keyPath
ofObject: (id)object
change: (NSDictionary*)change
context: (voidx)context
{
NSLog(@"%@.%@ is now %@", object, keyPath,
[change objectForKey: NSKeyValueChangeNewKey
D;
}
+ (void)watchChange
{
NSMutableDictionary =dict =
[NSMutableDictionary new];
[dict addObserver: self
forKeyPath: @"aKey"
options:
NSKeyValueObservingOptionNew
context: NULL];

[dict setObject: @"set as object"
forKey: @"aKey"];

[dict removeObserver: self
forKeyPath: @"aKey"];

From: kvo.m

Having a uniform mechanism for setting and

203

204

Key-Value Coding

getting keys is useful, but it’s not particularly
special. The real power of KVC comes from
KVO, which lets you monitor keys for changes.

The bindings mechanism uses KVC and KVO
to eliminate the need for controllers in a lot of
cases. When a view wants to modify a model, it
uses KVC. When the model changes, the view
gets the notification from KVO and updates
itself to reflect the change. The combination of
these two—closely related—technologies allows
you to have tight connections between objects
without tight coupling of their designs.

Registering as a KVO observer is a lot like
registering to receive notifications (see Chapter
16), but with a few differences. One of the most
important is that KVO notifications are always
sent to the same method. The first method in
the sample code at the start of this section shows
what this should look like.

In this example, it’s a class method. Most of
the time, you will use instance methods, but it’s
important to remember that classes are objects
in Objective-C, so you can use them in almost
any place where you’d normally use an object.
This implementation is quite simple; it just logs
the new value for the key. The second method
shows how to register for the notification. The
change argument in the notification method is
a dictionary, which, in this version, contains the
new value for the key. It only contains the new
value because that’s all that we asked for.

34
35
36
37
38
39

Ensuring KVO Compliance

The options: parameter in the method for
adding the observer is a bitfield. You can request
just the new value, just the old value, or both.
You can also request notifications both before
and after the change.

This lets you easily perform tasks such as
recording the changes made to an object, which
is helpful for implementing undo support. If
your model objects are KVO compliant, you

can get notifications of every change, save the
old value, and then revert it (using KVC) later.
The logic for implementing undo like this can be
completely decoupled from the implementation
details of your model objects.

Ensuring KVO Compliance

[self setValue: @"42"
forKey: @"aKey"];
self.akey = 12;

[self willChangeValueForKey: @"aKey'"];
aKey = 47;
[self didChangeValueForKey: @"aKey"];

From: kvo2.m

KVO, like the rest of Objective-C, is not magic.
If you set a key using the KVC accessors, it’s
trivial for notifications to be sent to observers.
What happens if you set an instance variable
directly? Unfortunately, the answer is quite
simple: Nothing.

Setting an instance variable directly is just a

205

206

Key-Value Coding

store into memory. There is no easy way of
automatically detecting when a single value in
memory has been modified. This means you
must bracket direct accesses to instance variables
with the two calls shown in the snippet at the
start of this section.

These will fire off the KVO notifications, if
required. Note that you do not need to send
these messages if you are calling an accessor
method. This is one of the advantages of the late
binding that you find in Objective-C.

The code that implements KVO is quite complex
and uses some of the more advanced features

of Objective-C. When you register an observer
for a key, the set method for that key will be
replaced by a special version that will handle the
notifications.

KVO is probably the part of the Foundation
framework that seems the most like magic. It’s
worth remembering that KVO does nothing that
your own code can’t. It does not rely on any
undocumented interfaces, compiler modifications,
or similar tricks. You can implement something
equivalent in your own code if you want to. You
can look at the GNUstep implementation to see
how this might be done.

On both GNUstep and OS X, the KVO
mechanism is implemented using isa-swizzling.
This is a trick whereby the isa pointer of an
object is switched to point to a different class
after the object’s creation. Typically, this trick is

Ensuring KVO Compliance

combined with run-time class creation, so you
insert a new class as a leaf node of the class
hierarchy, and make the object’s isa pointer
point to it.

Fortunately, the point of systems such as KVO
being part of the Foundation framework is to
free you from needing to know exactly how they
work, unless you are particularly interested.
There is one important side-effect of KVO (and
other things) being implemented using isa-
swizzling, however. It means you should not
depend on an object’s isa pointer pointing to

a specific class or being unmodified.

If you want to test whether an object

is an instance of a particular class, use
-isMemberOfClass: or -isKindOfClass:. Send
an object a -class message to get its class,
don’t just inspect the isa pointer.

207

This page intentionally left blank

12

Handling Errors

Most code contains bugs. Good code is aware of
this and will handle them gracefully. Really good
code uses formal methods to prove that there are
no bugs, but most people can’t afford really good
code.

Most of the sample code in this book pretends
that errors never happen. This book has quite
small pages, and proper error-handling code

for any of the examples would fill them up very
quickly with things that are largely irrelevant to
the point of the example.

Most errors that can be detected at run time
come from one function or method calling
another with invalid inputs. The best way of
handling this depends a lot on the language.

For example, Erlang discourages defensive
programming at the module level; if your module
is in an undefined state, you should kill it and
create a new version. In C, you are encouraged
to validate every input and check every return

210

Handling Errors

value. In Java, you can defer error handling

by using exceptions. Lisp and Smalltalk let

you inspect the stack when an error occurs

and dynamically fix the code that gave you the
wrong input.

Objective-C fits somewhere between C and Java
in this respect. Some errors are best handled
very close to their cause, whereas others can only
be handled by reporting the cause and exiting.

Objective-C has had things called exceptions
since the NeXT days, but they’ve only behaved
like exceptions in other languages for the last few
years. As a superset of C, however, Objective-C
has support for all of the forms of error reporting
that you find in C.

Runtime Differences for
Exceptions

Exception handling is quite difficult to
implement. When you throw an exception,

you need to unwind every stack frame between
where the exception was thrown and where it is
caught. There are a few ways of doing this. In a
language with stack introspection like Smalltalk,
it’s relatively easy. The exception can look at
each stack frame and perform the unwinding.

In Java and similar languages, it is commonly
implemented by returning two values. In a

typical Java VM, one register will be reserved
for returning the exception object. After every

Runtime Differences for Exceptions

call, the JVM will check that this register is zero,
and branch to the exception-handling code if it
isn’t.

This is not possible in Objective-C, because you
need to be able to interoperate with C. Some of
the stack frames between where the exception is
thrown and where it is caught might be C, and
you can’t expect all C code on the system to be
modified to return another value if an exception
is thrown.

Another option is something like Microsoft’s
structured exception handling (SEH), where a
linked list of cleanup code addresses is pushed
and popped as exception-handling blocks are
entered and left. When an exception is thrown,
this stack is used to find the cleanup code to run
and to jump to the correct location in the stack.
This would have been an option for Objective-
C, but it’s quite expensive. It requires you to
run some code whenever you enter and exit an
exception-handling block, then some more when
you throw an exception.

C does include a pair of calls that let you do
something like stack unwinding, though. The
setjmp() call stores the current CPU registers,
including the stack and frame pointers. The
longjmp () call reloads them. This has the
effect of resetting the stack to the state when
setjmp() was called. This is how Objective-C
exceptions were traditionally implemented.

As you can imagine, this was far from ideal.

211

212

Handling Errors

There was no support for performing cleanup
actions in intervening stack frames. If your
Objective-C code called some C++ code, which
then called Objective-C code again, you could
longjmp () over the C++ code, preventing it
from running destructors.

The GNU runtime got C++-compatible
exception handling back in 2004. Every function
compiled in this mode, irrespective of the source
language, had some DWARF debugging data
exported describing the layout of the stack
frame and how to unwind it. This is often
called zero-cost exception handling because it
doesn’t impose any run-time penalty on code
that doesn’t use exception handling. If you
compile C code in this mode, the binary is a bit
bigger from the extra unwinding information,
but this extra data isn’t even swapped in unless
an exception is thrown through the C code.

With this support, it was possible to run cleanup
code in C++ when an Objective-C exception
was thrown through C++ stack frames, and

vice versa. It’s also possible to register cleanup
code in C, using the __attribute__((cleanup))
GCC extension.

Apple adopted this change with the 64-bit
runtime. This changed the performance
characteristics of exceptions quite significantly.
With setjmp()/longjmp() exceptions, entering
an exception-handling region was expensive (it
required saving all registers) but throwing an

Runtime Differences for Exceptions

exception was quite fast. It was, however, also
unsafe, so the documentation recommended that
catching an exception should usually be followed
by aborting the program. Exceptions were to

be used for semi-graceful abnormal termination,
unless they were caught very close to where they
were thrown.

With zero-cost exceptions, it costs nothing to
enter an exception-handling block. Throwing
an exception is very expensive, but safe. This
means that you can put @try blocks in your
code without slowing anything down and throw
exceptions whenever something exceptional
happens.

If you need compatibility with Apple’s 32-

bit runtime, it’s still a good idea to avoid
exceptions; they will add a lot of overhead if you
frequently use @try blocks.

Note: When using the older-style exceptions,
you must be careful to specify volatile for any
local variables you need to access after catching
the exception. If you don't, they may be restored
to the value they held when setjmp() was
called.

213

214 CHAPTER 12: Handling Errors

Throwing and Catching
Exceptions

NSArray #array = [NSArray array];
@try
{
[array objectAtIndex: 0];
3
@catch (NSException =e)
{

NSLog(@"Caught exception %@", e);
}

From: exception.m

Old Objective-C code is likely to contain blocks
that start NS_DURING. These are the old macros
that defined the setjmp()-style exception
handling. With newer versions of the Foundation
framework, they are defined in NSException.h to
use the new exception-handling keywords.

These old macros have a couple of limitations,
even when they are being used as wrappers
around the new keywords. First, they only allow
NSException instances to be caught. Second,
they have no equivalent of @finally, which runs
cleanup code and then continues unwinding,
although you can simulate this by catching an
exception and then rethrowing it.

These macros were quite inconvenient to use.
You were required to use NS_VALUERETURN

or NS_VOIDRETURN to return from inside an
NS_DURING block, to make sure that you removed
the cleanup code from the exception-handling

67
68

69
70
71

Throwing and Catching Exceptions

stack.

#define NS_DURING @try {

#define NS_HANDLER } @catch (NSException =
localException) {

#define NS_ENDHANDLER }

#define NS_VALUERETURN(v,t) return (v)

#define NS_VOIDRETURN return

From: NSException.h

Now, exception-handling code looks a lot like
Java or C++. There are a few restrictions.
Throwing objects other than NSException may
work, but it’s unsupported. On OS X, this is
because an object thrown when compiled with
the legacy runtime may still be caught with
the old NS_HANDLER macro, which expects an
NSException instance. With the GCC runtime
(but not the GNUstep runtime), it is possible to
throw an instance of a class that has not been
registered properly with the runtime, causing a
crash in the unwinding library. Throwing non-
object types is not supported at all.

The best way of throwing an exception is still
to send a -raise message to an NSException
instance. You may also use the @throw keyword
to throw an arbitrary object, but don’t be too
surprised if it doesn’t work. If you are using the
GNU runtime or the modern Apple runtime it
probably will work, but you’re doing something
that isn’t well tested.

215

216

CHAPTER 12: Handling Errors

Using Exception Objects

[NSException raise: NSGenericException

format: @"This is an example"];

From: throwexception.m

The NSException class used to implement a
stack of longjmp() buffers and jump to the
top one on the stack when required. Now,
the unwinding is all done by the runtime and
unwinding libraries, but NSException is still
used to encapsulate exceptions.

Exceptions have three components: a name, a
reason, and a user info dictionary. The name

is a unique identifier for this type of exception.
This is just a string, but it is common to use a
symbolic constant, such as NSRangeException,
so that you can do a pointer comparison on the
exception name when you catch an exception.

The description is a human-readable description.
This is generally only used for debugging, so
localization isn’t important. It’s more important
that you understand what happened than that
your users do. Finally, the user info dictionary
is an NSDictionary containing some key-value
pairs. It’s entirely up to the code throwing the
exception to decide what goes in here, although
most exception-throwing methods document
what they will put in their user info dictionaries.

You can use this for passing arbitrary
information up to wherever the exception is

Using Exception Objects

caught. Because it is a dictionary, you can
decide to add some extra keys later without
breaking binary compatibility with existing code.
This is one of the cases where it’s common to
use an immutable dictionary—an NSDictionary,
rather than an NSMutableDictionary—because
the catching code does not expect to be able to
modify it. You will often use NSDictionary’s
+dictionaryWithValuesAndKeys: constructor
to create a single-use immutable dictionary to
throw, if you are attaching a dictionary to the
exception.

On recent versions of OS X, the exception
object also has some extra information

that is useful for debugging. Sending it a
-callStackReturnAddresses message will give
you an NSArray containing NSNumbers pointing
to the return addresses of all of the functions on
the stack. This is not particularly useful, but the
—-callStackSymbols method, introduced with
OS X 10.6, is. It gives you the names of all of
the functions or methods on the stack when the
exception was created.

This latter method is used by the unhandled
exception handler, which is called

whenever unwinding an exception is not
caught, to print a stack trace before the
program aborts. You may want to use the
NSSetUncaughtExceptionHandler () function
to replace this handler with something of your
own. If you have an error reporting mechanism,

217

218 CHAPTER 12: Handling Errors

then having the back trace from an unhandled
exception can be very useful.

Managing Memory with

Exceptions
12 id pool = [NSAutoreleasePool new];
13 id array = [NSArray new];
14 @try
15 {
16 throw(array);
17 ¥
18 @catch (id e)
19 {
20 NSLog(@"Caught exception %@", e);
21 e = [e retain];
22 [pool drain];
23 [e autorelease];
24 pool = nil;
25 @throw;
26 }
27 @finally
28 {
29 [array release];
30 [pool drain];

31 ¥

From: releaseexcept.m

Exception handling makes memory management
a bit more difficult. If you create a new object
in a method and then release it at the end, you
must take into account the fact that exceptions
are a thinly disguised non-local goto and that
there are suddenly lots of ways to return from
your method. Every single function call or

Managing Memory with Exceptions

message send becomes a potential return path.

You can fix this quite easily by adding an
@finally block at the end of the @try block.
Code in this block will always be executed,
whether you exit the @try block by reaching the
end or by throwing an exception.

Note: In Java, you can use exceptions as a
local goto as well, advertising a code path to the
VM as being unusual, by throwing an exception
and catching it in the same method. This is

also possible in Objective-C, but it's incredibly
inefficient. The @throw() statement will call the
objc_exception_throw() function, which will
call an unwind library function.

This will then read the DWARF data for the stack
frame and call the Objective-C personality function.
This function will then read more of the DWARF
data, compare the class of the exception against
the class of the catch block, and then set the
instruction pointer to the address of the catch
statement.

In Java, the VM will just translate this into

an unconditional jump to the catch block. If

you must use this pattern, then use a C goto
statement in Objective-C. It's generally better to
avoid it altogether, however, and find a solution
that doesn't ignore the ideas of structured
programming.

The other problem you may encounter with

219

220

Handling Errors

exceptions is in rethrowing the exception object.
Exception objects are usually autoreleased. This
means that, with manual memory management,
they will be deleted when the current autorelease
pool is deleted.

This is not a problem in most code. The
autorelease pool you are most commonly
using persists for the duration of the run loop.
Sometimes, however, you will create your own
autorelease pool.

If you drained your autorelease pool in an
@finally block, as appears to be the obvious
solution, you would encounter a problem.

The exception object would be deleted while
unwinding through your stack frame, and the
next stack frame up would probably crash,
dereferencing an orphaned pointer while looking
up the type of the exception.

To avoid this, you need to make sure you
retain the exception object before you delete
the autorelease pool and then autorelease it
again afterward. This is one of the reasons why
it’s a bad idea to throw anything other than
an NSException object. Anyone who follows
the suggestion in Apple’s documentation for
doing this will end up with code that only
correctly handles NSException objects and will
prematurely destroy any other object type.

To implement this correctly, you need a catch-all
clause: an @catch clause with a id type. This
will catch all Objective-C exceptions. Remember

23

24
25
26

Passing Error Delegates

that C++ exceptions will still not be caught in
this block, so you still need an @finally block
to handle cleanup if you are unwinding with a
foreign exception. You can set the pointer to the
autorelease pool to nil in the @catch clause to
prevent it from being released twice.

Passing Error Delegates

NSFileManager =fm = [NSFileManager defaultManager
1;

[fm copyPath: source
toPath: destination
handler: [ErrorHandler new]];

From: errordelegate.m

In Common Lisp, you have the idea of resumable
exceptions. These are contrasted with unwinding
exceptions like those found in Objective-C, Java,
C++, and so on. A resumable exception does
not unwind the stack; it runs the exception-
handling code and then continues.

In Objective-C there is no direct analogue, but
you can achieve the result by passing an error
delegate as an argument to a method. The
older APIs in NSFileHandle work this way.
The last argument to them is an object that is
sent messages when the operation encounters a
problem.

This method returns a BOOL indicating whether
the operation should proceed. You can combine

221

222

CHAPTER 12: Handling Errors

this with unwinding exceptions in your code by
throwing an exception if the error delegate did
not handle the conditions.

I used this pattern in the LanguageKit
framework for reporting compiler errors and
warnings. When the compiler encounters an
error, it calls a method in the error delegate.
The default implementation of this just

dumped the message to the console, but other
implementations transform the abstract syntax
tree to remove the error. If this returns YES, the
compiler backtracks and tries the check again. If
it returns NO the compiler throws an exception,
which is caught by the code that invoked the
compiler.

In general, you should use this pattern anywhere
you might encounter a fixable problem in the
middle of an operation. For example, you could
use it while loading a file that references other
files. If one of the referenced files is missing the
default option would be to abort. However, an
error delegate could provide a new path, either
by using some fixed translation or by prompting
the user.

Returning Error Values

- (BOOL)trySomething;
- (id)tryToDoSomethingWithObject: (id)anObject

error: (NSErrorxx)e;

Using NSError

From: errorReturn.m

In C, a common pattern is to return zero on
success and some nonzero value to indicate an
error condition. This is much less popular in
Objective-C, but it is relatively common to
return a BOOL value representing whether an
operation succeeded.

Most of the time, this is done with methods that
mutate the receiver in some way. When you call
this kind of method, it is to affect some kind of
change in the object, not to get a value, so the
return value is not being used for anything else.

An example of this pattern is the
-setProperty: forKey: method on NSStream.
This tries to set a property of the stream and
returns YES if it succeeded. Note that this is the
opposite of the C pattern, which returns true on
failure.

Using NSError

NSError =error = nil;
NSStringEncoding enc;
NSString #str = [NSString

stringWithContentsOfFile:
usedEncoding:

error:

if (nil != error)
{
NSLog(@"Error: %@",

@"DoesNotExist"
&enc
&error];

[error localizedDescription]);

223

224

Handling Errors

From: nserror.m

A few of the methods that Apple introduced
with OS X 10.2 take an NSString++ as an
argument. This is used to return a second value
reporting an error. If the variable that this
points to is nil after the call, the operation
succeeded. If not, it contains a string describing
error.

This had some obvious limitations. A string

is fine for reporting to the user, but it’s not
particularly useful for recovering from the error.
If you want to handle the error in code, you need
to parse the string somehow.

When Apple released Safari, with 10.2.7, they
added a new class: NSError. This is almost
always returned via a pointer passed as the
last argument to a method. The error object
looks quite similar to the exception object. It
has a name (called a domain) and a dictionary
associated with it.

Unlike the exception object, the dictionary

has several predefined keys. These include the
localized error description. You can present this
to the user without any extra processing.

Error objects also sometimes include a recovery
strategy. The recovery attempter object can

try to automatically recover from an error. For
some errors this is not possible, but often you
get an error when you try to do something that
is possible, but unsafe. When this happens, you
should present the error to the user and then call

Using NSError

the recovery attempter.

If you have used Common Lisp, this pattern will
seem familiar as an ad-hoc form of restartable
exception.

225

This page intentionally left blank

13

Accessing
Directories and
Files

If you’re using AppKit, you have two options
for most filesystem-related tasks. The
NSFileManager class, from the Foundation
framework, provides a lot of low-level methods
for manipulating files and directories. The
NSWorkspace class from the Application Kit
provides more abstract forms.

A number of the functions of NSWorkspace

are delegated to the workspace process. On

old NeXT systems, this was a single program,
whereas on OS X, various bits of its functionality
are implemented by the window server and the
Finder.

Because of this, it doesn’t make sense to think
about using the higher-level versions when

228

CHAPTER 13: Accessing Directories and Files

the workspace process is not guaranteed to be
present—for example, in command-line tools
that might be run over a remote connection or
in server code.

The UIKit framework doesn’t have an equivalent
of NSWorkspace. If you are targeting Cocoa
Touch, you have to use the lower-level APIs.

Reading a File

NSData *copy =

[NSData dataWithContentsOfFile: file];
NSData =mapped =

[NSData dataWithContentsOfMappedFile: file];

NSData *read = [[NSFileHandle
fileHandleForReadingAtPath: file]
readDataToEndOfFile];

From: readFile.m

UNIX systems typically offer two ways of
accessing a file: The read() and mmap() system
calls. Most other systems—at least those that
run on hardware with a memory management
unit (MMU)—have equivalents of these. The
first copies a stream of bytes from a file into a
buffer. The second maps the file’s data into a
region of memory.

Foundation provides two classes that correspond
roughly to these operations. The NSData class
encapsulates a region of memory containing
untyped data. You can create instances of this
class from files with a variety of options.

Reading a File

For small files, you can just use the version that
wraps the read() call and reads a copy of the

file’s data into memory. For larger files, you may
wish to use +dataWithContentsOfMappedFile:.

The advantage of the latter approach is that it
interacts very well with the operating system’s
virtual memory subsystem. If you run out of
physical memory, you don’t need to allocate
swap space for evicting pages that contain data
from a mapped file; you can just discard them
and read them back in the next time they are
accessed.

This is very useful if you are on a platform with
very little memory and no virtual memory. The
iPhones before the 3GS, for example, only have
128MB of RAM, and none of them have any
swap space. If you read a 4MB file into memory,
you have used up a large chunk of the space
available to your application.

If, in contrast, you create a mapped data object
representing the file, the system will read in

the data in 4KB chunks, as it’s needed, and
evict it when it is no longer required. If you run
out of memory when creating a new object, for
example, the kernel will evict the mapped file
from memory to make space. It can’t do this if
you had read the file, so it would just run out of
memory and kill your application.

If you only want to read a bit of a file at a time,
you should use NSFileHandle. This class wraps
a file descriptor and implements Objective-C

229

230

CHAPTER 13: Accessing Directories and Files

versions of the same basic operations that the

C standard library supports. You can read all of
the data from a file handle in a single operation,
but more often you will read the next available
bit.

You can read a fixed-size chunk of data by
sending the file handle a -readDataOfLength:
message. Most of the other methods on this class
are not particularly interesting for reading data
from a file; they are intended for interacting with
sockets. We’ll look at this class again in Chapter
17.

Moving and Copying Files

NSFileManager #«fm = [NSFileManager new];
if (shouldMove)
{
[fm copyItemAtPath: source
toPath: destination
error: nil];
}
else

{

[fm moveItemAtPath: source
toPath: destination
error: nil];

From: fileCopy.m

The NSFileManager class encapsulates the
filesystem as a whole and lets you manipulate
it. This class exposes to Objective-C developers

Moving and Copying Files

the same kind of features that Apple’s Finder
and the Windows Explorer expose to the user.

Prior to OS X 10.5, the methods you used
took an object as the last parameter. This
object was then sent messages while the copy
or move operation proceeded. These messages,
for example, asked whether to proceed after an
error.

With 10.5, Apple decided to change the interface
considerably. The methods now use the new
error-reporting pattern that we discussed in
Chapter 12, so the last argument is a pointer

to an NSError= used to return an error. The
messages are now sent to the object’s delegate.

This means that you must now only use an
NSFileManager from a single thread. Prior to
10.5, this class was an example of the singleton
pattern. It was very common to cache the return
value from the +defaultManager method, which
returned the singleton instance. Now, this is
unsafe if code that uses the cached version might
be called from different threads.

If you are writing new code, you should make
sure you create a new NSFileManager instance
every time you want to use it and destroy it
afterward, otherwise you may end up with
messages being sent to the wrong delegate. If
you don’t, two threads can concurrently set the
delegate for the singleton file manager and one
receive all of the notifications, rather than each
receive the notifications it’s interested in.

231

232 CHAPTER 13: Accessing Directories and Files

Note: This is an example of thoughtless
software design. A better solution would have
been to store the delegate in the thread dictionary
(see Chapter 14). If you are ever in the position
of making similar changes to a singleton class,
consider this approach, or simply retain the extra
parameter for a callback. Don't require invasive
changes to existing code to support your new
interfaces.

If you use the old, deprecated methods on the
file manager, it is thread safe with the singleton.
If you are not calling any methods that send
delegate messages, it is also safe to use the
singleton. This is unfortunate, because it means
you may need to create a new NSFileManager
instance when you copy a file, even if you
already have a pointer to the singleton instance.

Getting File Attributes

6 NSFileManager +#«fm = [NSFileManager defaultManager
13

7 NSDictionary =attrs =

8 [fm attributesOfItemAtPath: @"fileAttributes.m"
9 error: NULL];

10 NSString =fileType = [attrs fileTypel;

11 NSNumber =xcreator =

12 [attrs objectForKey: NSFileHFSCreatorCode];

From: fileAttributes.m

Getting File Attributes

The NSFileManager class wraps most of the
standard POSIX filesystem manipulation
functions. In C, you would typically use the
stat() function to find information about a file.
This function takes a pointer to a structure as an
argument and fills it in with information about
the file.

The limitation of this is obvious: You can’t

add new fields to the structure without

breaking all existing code that uses it. The
NSFileManager version is much more flexible.
The -attributesOfItemAtPath:error: method
returns an NSDictionary, and it is trivial to add
extra entries to a dictionary without breaking
binary compatibility.

One thing you will note from this example is
that we can send a -fileType message to the
dictionary to get the value. This method is part
of NSDictionary and returns the dictionary
entry that corresponds to the NSFileType

key. There are a few other, similar dictionary
methods.

On OS X, you have a few more bits of file
metadata than on other POSIX platforms.
HFS+ stores a creator code and a type code for
each file. These are not used as much now, but
on Classic MacOS they were used instead of file
extensions to determine the correct application
to open a file.

233

CHAPTER 13: Accessing Directories and Files

Manipulating Paths

NSString xhome @a"~";
NSString =full

[home stringByExpandingTildeInPath];
NSString xusers =

[full stringByDeletingLastPathComponent];

NSString =file =
[users stringByAppendingPathComponent: @"users"”
13
NSString xfileWithExtension =
[file stringByAppendingPathExtension: @"db"];

From: path.m

A lot of UNIX code manipulates paths by using
the sscanf() and sprintf() functions. This
then causes a lot of problems when you come
to port the code to Windows or Symbian, for
example, where the filesystem layout and path
separator are different.

OpenStep was designed from the start to be
portable across different operating system
families. The NSString class provides a few
methods designed for manipulating paths.

Although these manipulate strings, they expose
an interface that is more abstract. You can add
or remove path components, which are single
entries in a path (either files or directories). You
can also modify the file extension.

On OS X, like any UNIX system, there is a
single root folder, represented by a single slash.
Subdirectories are separated by a slash, and file
extensions are separated by a dot. On Windows,

Manipulating Paths

there are multiple roots, path components are
separated by a backslash, but file extensions are
still separated by a dot.

If you use the path manipulation methods
on NSString, your code will work correctly
irrespective of the filesystem conventions.

Unfortunately, NSMutableString does not

have a corresponding set of operations. You

can avoid some of the overhead of creating

lots of temporary objects by using the
+pathWithComponents: and -pathComponents
methods, which construct a string from an array
of path components, and create an array of path
components, respectively.

It’s not worth worrying too much about
efficiency in code that deals with paths. Pretty
much any operation on the filesystem will

be a lot more expensive than creating a few
temporary objects.

235

236

10
11
12
13
14
15
16
i7
18
19
20

21

CHAPTER 13: Accessing Directories and Files

Determining if a File or
Directory Exists

NSFileManager +*fm =
[NSFileManager defaultManager];
BOOL isDir;
if ([fm fileExistsAtPath: path
isDirectory: &isDir])
{
if (isDir)

printf("Folder exists\n");
else
printf("File exists\n");

}
else
printf("File does not exist\n");

From: fileExists.m

The simplest way of determining whether a file
exists is to try to access it and then check for
errors. This isn’t particularly elegant, although
it is often the safe way to work. If you want to
provide some feedback to the user about whether
an operation is expected to work, before trying
it, you need an explicit test.

The -fileExistsAtPath:isDirectory: method
does exactly this. The method’s name is a bit
misleading. It tests whether a file or directory
exists at the specified path, and tells you if it is
a directory.

The second parameter is a pointer to a BOOL. If
you're coming from C or C++, this will seem
quite familiar, but for people coming from

Determining if a File or Directory Exists

Note: Don't use this mechanism to create
temporary files. If you do, there is a potential

race condition between testing whether the file
exists and creating it. Use the C library mkstemp()
function instead. The EtoileFoundation framework
has a wrapper around this that you can use if you
want to stay in object land.

languages like Java it may seem a bit unusual.

C, and by extension Objective-C, only supports
returning a single value, but this method needs
to return two things: whether something exists
and whether it is a directory. There are a few
ways of implementing this. One would be to
define an enumerated type, with nothing exists,
file exists, and directory exists elements.

This would have made all of the code that uses
this method simpler, so it’s not immediately
obvious why it wasn’t done. The answer becomes
apparent when you realize that you can pass
NULL as the second argument. If you do this,

the method will not bother testing whether

the object at that path is a directory. This is a
relatively small saving, so it’s not clear that this
was a sensible design choice.

237

238 CHAPTER 13: Accessing Directories and Files

Working with Bundles

NSBundle *mainBundle =
[NSBundle mainBundle];
NSLog(@"%@ links against: %@",

[mainBundle executablePath],
[NSBundle allFrameworks]);

From: bundles.m

On Apple System 7 and earlier, the filesystem
supported two forks: a code fork and a data
fork. The data fork was used to store arbitrary
resources. With Mac OS 8.1, Apple introduced
HFS+, which supported an arbitrary number
of forks, making files effectively the same as
directories in their ability to contain arbitrary
numbers of children. NTFS has the same
functionality.

OS X still supports resource forks and will store
the data in a hidden file on filesystems that do
not support them, such as UFS and FAT, but
their use is not recommended. Copying files that
contain forks to other filesystems is a problem.
If you copy a file to a FAT disk with OS X and
then copy it from that disk with Windows, you
will not copy the hidden file, so the data in the
fork will be lost.

Meanwhile, NeXT went in a different direction.
If forks make files like directories, why not just
use directories instead? NeXTSTEP provided
functionality like forks on top of a standard
UNIX filesystem, just by using directories in

Working with Bundles

place of files.

Directories that are supposed to be treated as
files are called bundles. To primitive low-level
filesystem operations, and to other operating
systems, they look like directories. If you copy
an OS X application bundle, for example, to a
USB drive and then look at it on Windows, it
will just look like any other directory. When you
look at it in the Finder, however, it will look like
a single file.

The two kinds of bundles you will use in almost
any Objective-C program are frameworks

and applications. These both contain some
executable code (a program or a shared library)
and a set of resources.

The exact layout depends on the system.
GNUstep uses the older NeXT-style bundle
layout, whereas OS X uses a slightly simpler one.
You can quite easily produce bundles that have
both the GNUstep and Cocoa layouts, allowing
the same .app bundle to be portable between
systems without recompiling.

You can get the main bundle for an application
by sending a +mainBundle message to NSBundle.
This is a class that is used to encapsulate
bundles. It keeps track of all dynamically loaded
bundles.

Bundles are naturally localizable. Resources

are stored in different subdirectories for each
locale and can be loaded on demand. The
-pathForResource:ofType: method will return

239

240

11
12
13
14
15

CHAPTER 13: Accessing Directories and Files

Note: Command-line tools are typically not
stored in bundles. They still have a main bundle
object, however. This object has the directory
containing the main executable as its path.

the localized version of a named resource, with
the specified extension, in the bundle’s resources
directory.

You can use this in your code to get the
localized version of a resource file stored in your
application bundle or from any loaded bundles.
If your code is in a framework, you might want
to get resources from the framework bundle.
This is slightly more complicated than getting
code from the main bundle.

The +bundleForClass: method will give you
the bundle that contains the code for a specified
class. If you think you might move a class into a
framework in the future, it’s a good idea to use
this method when loading resources.

Finding Files in System
Locations

NSArray =dirs =
NSSearchPathForDirectoriesInDomains (

NSLibraryDirectory,
NSAllDomainsMask,
YES) ;

Finding Files in System Locations

From: frameworklLoader.m

On OS X, the filesystem layout is quite well
defined. You can probably hard-code paths and
expect things to work. If you port your code to
other platforms, you will find that things break
quite significantly.

This was one of the problems that OpenStep
programmers encountered quite often. Porting
code between Solaris, OPENSTEP, and Windows
NT, for example, required changing a lot of
hard-coded paths for each platform.

After Apple bought NeXT, they released a
new version of OPENSTEP with a MacOS
compatibility layer and a new user interface
called Rhapsody. This used the same NeXT
filesystem hierarchy as OPENSTEP, complete
with a /NeXT folder in the root containing the
non-UNIX-like parts of the hierarchy.

With Rhapsody DR2, Apple made some
significant changes to the directory layout and
introduced the layout that is now familiar to
OS X users. To make life easier, and to support
YellowBox (Cocoa) for Windows, a product that
was discontinued soon after, they introduced
the NSSearchPathForDirectoriesInDomains()
function.

This function returns an array of directories for
a specific use. When you call this function, the
first argument describes the kind of directory
you want. This might be an applications
directory, a library directory, and so on. The

241

242

Accessing Directories and Files

second is the filesystem domain.

0OS X, like OPENSTEP, divides the filesystem
hierarchy into a number of domains that all have
roughly the same contents, but for different uses.
These are ordered, so you should prefer files in
higher-priority domains. The four domains are as
follows:

User This domain is inside the user’s home
directory. Files here are private to the user
and completely under the user’s control.

Local The domain containing files local to the
machine. On OS X, this includes things
such as the /Library directory that may be
modified by the local system administrator.

Network It is quite rare to see anything in this
domain. You will not see it on stand-alone
machines, or on machines that are part
of a heterogeneous network. It is used
for directories controlled by the network
administrator.

System The final domain contains system files.
In general, you should never write to any
location in this domain, although you can
read from it. Any modifications that you
make may be reverted the next time the
user updates the system.

Not every type of directory exists in every
domain. For example, there is no documents

Finding Files in System Locations

directory in the system domain, and it would
not make sense if there were.

The final argument tells the function whether
to expand tildes in the paths. You will almost
always pass YES here.

The frameworkLoader.m example shows several

of the things we’ve looked at in this chapter.
This example loads a named framework. Because
frameworks are bundles, you can use NSBundle
for loading them.

This example first gets a list of all of the
Library directories in the system. It then looks
in them in order to test whether a directory
exists in each of them that has the name of the
framework and the .framework extension.

If something with the right name exists, the
example program tells NSBundle to load it. You
can use this code to lazily load frameworks at
run time, rather than linking to them explicitly.
Alternatively, you can modify it to look in a
plugins directory for your application in the
library directory, in which case you should look
in NSApplicationSupportDirectory. If you
build plugins as bundles, you will load them in
exactly the same way.

243

244

11
12
13
14
15
16
17
18

19

20

21
22

23
24
25
26
27
28

29

31
32
33
34
35

36

Accessing Directories and Files

NSArray =dirs =
NSSearchPathForDirectoriesInDomains(
NSLibraryDirectory,
NSAllDomainsMask,
YES) ;
for (NSString *dir in dirs)
{
NSString *f =
[[[dir stringByAppendingPathComponent: @"
Frameworks']
stringByAppendingPathComponent: framework]
stringByAppendingPathExtension: @"
framework'];
// Check that the framework exists and is a
directory.
BOOL isDir = NO;
if ([fm fileExistsAtPath: f
isDirectory: &isDir]
&& isDir)
{
NSBundle *bundle =
[NSBundle bundleWithPath: f];
if ([bundle load])
{
NSLog(@"Loaded bundle %@", f);
return YES;
}
}
}

From: frameworklLoader.m

14

Threads

The original NeXT operating system was

built on top of Mach, just as OS X is. Mach
supported threads from the very start and was
one of the first UNIX-like systems to do so.
More recently, the POSIX threading APIs have
provided a cross-platform way of creating and
manipulating threads.

On OS X, POSIX threads are implemented on
top of Mach threads and Objective-C threads
are implemented on top of POSIX threads.

You will almost certainly not want to use Mach
threads directly—they do not quite match up to
the UNIX process model and are tricky to use
correctly—but you may wish to use some of the
POSIX threading functions directly.

246 CHAPTER 14: Threads

Creating Threads

- (void)processInNewThread

{
SEL sel = @selector(process:);
[NSThread

detachNewThreadSelector: sel
toTarget: self
withObject: nil];

From: thread.m

Threads in Objective-C are encapsulated in
NSThread objects. These wrap a POSIX thread
and provide some convenience methods.

As of 10.5, there are two ways of creating
new threads. The traditional one is similar to
the standard way of creating POSIX threads,
whereas the second is intended to be more
familiar to Java programmers.

When you create a new POSIX thread, you call
a function with a void+* parameter in a new
thread. When you create a new thread using
NSThread, you do something similar, sending a
message to an object, taking another object as
an argument.

The more Java-like way of creating a new thread
is to subclass NSThread and override the -main
method. You can then create a new instance of
your thread object and send it a -start message
to start it running.

When you create a new thread, it does not

Controlling Thread Priority

have an autorelease pool in place, so the most
common thing to do first is either create an
autorelease pool, or create a new run loop for
the thread.

Creating a new thread is a relatively expensive
operation in Objective-C, just as it is in C. The
process must get some new memory for the

new thread’s stack from the kernel, create all

of the userspace and kernel data structures for
scheduling it, and map some additional space for
thread-local storage. It’s therefore a good idea
to keep threads around for a while once you’ve
created them.

Creating a new run loop in the thread is a good
way of doing this. You can then register timers
to fire, monitor file descriptors for new data, and
use an event-driven style of programming in the
new thread.

Controlling Thread Priority

double oldPriority =
[NSThread threadPriority];
[NSThread setThreadPriority: 0];

[[NSThread mainThread]
setThreadPriority: 1];

From: threadPriority.m
The NSThread implements threadPriority and

setThreadPriority methods as both class and
instance methods. When sent to the class, they

247

248

Threads

control the priority of the current thread. When
sent to an instance, they control the priority of
the thread encapsulated by that object.

The priority of a thread determines how much
CPU time it will get and how long it has to
wait between being given access to the CPU.
With the lower-level POSIX APIs for controlling
thread priority, you can also set the scheduler
policy. The functions for doing this are all part
of the POSIX realtime extensions, which also
provide signal queues and so on. This is not
exposed (yet) by the Objective-C APIs.

Priorities set with this API are double-precision
floating-point values between 0 and 1. These
will be scaled to some integer range that the
scheduler understands, so you should remember
that small differences will be rounded.

The POSIX specification defines two contention
scopes for threads. A thread’s priority defines

a base value for whether it should be allowed
CPU time, which is scaled based how much it
has already had and how long since it last had
any. The contention scope determines which
threads compete for CPU time. With a system
contention scope, the thread competes with all
other threads in the system. With a process
contention scope, it only competes with threads
owned by the same process.

OS X only implements the system scope, which
means that a high-priority thread will steal
processor time away from threads in other

Controlling Thread Priority

processes at a lower priority. If you set a thread
priority greater than 0.5, remember that this can
have an adverse affect on the rest of the system.

This still won’t cause complete starvation. With
OS X 10.6, the highest thread priority gives

a little bit more than double the amount of

CPU time that the lowest priority is awarded,

in purely CPU-bound tasks. Most tasks will
involve some time waiting for data from the disk.
Threads in a blocking state do not consume any
CPU time irrespective of their priority.

The scheduling policy on OS X contradicts

the traditional UNIX model, where only the
superuser can raise the priority of a process.
Somewhat interestingly, the thread priority on
recent versions of OS X actually has a greater
impact on the amount of CPU time a thread
gets than the priority of the process that owns
it. This means that, although you cannot raise
the process’s priority, you can achieve the same
effect by raising the priority of all of the threads
in your process.

The original design to prevent normal users from
increasing process priority was to prevent one
user from getting an unfair amount of CPU time.
OS X systems tend to be single-user machines,
so this is less of an issue, but you can still take
processor time away from more important tasks
owned by the same user. A live video capture,
for example, is performance sensitive and the
user would probably be very irritated if your

249

250

CHAPTER 14: Threads

program decided to set its priority high enough
to cause the capturing application to drop
frames.

Be considerate when setting thread priorities. In
general, you should only use the range between

0 and 0.5. Only set a thread above the default
level if you have absolutely no other option.
Don’t do it just because you are doing something
CPU-bound and you want it to be fast.

Synchronizing Threads

static NSLock =lock;
static NSMutableArray *messages;

void recordLogMessage(NSString *msg)
{
[lock lock];
@try
{
[messages addObject: msg];
NSLog(@"%@", msg);
}
@finally
{
[lock unlock];
}
}

From: lock.m

You can synchronize two threads in several
ways. The classes that perform this kind of
synchronization all conform to the NSLocking
protocol. This defines two methods: -lock and

Synchronizing Threads

-unlock.

The simplest lock class is NSLock, which
implements a mutual exclusion lock (mutez).
One thread can lock this at a time, so sending
it a -lock message will cause any other thread
that sends the same object a -1lock message to
block until you send a corresponding -unlock
message.

This is useful for protecting critical sections
that are short. For longer critical sections,
NSRecursiveLock is often more useful. If you
send two -lock messages to an NSLock in the
same thread, you have a deadlock. You can
send as many -lock messages as you want to an
NSRecursiveLock as long as you send the same
number of —unlock messages. This is useful in
methods that may be called from code that has
already acquired the lock, as well as from code
that hasn’t.

The problem with these classes, traditionally, is
that they didn’t integrate well with exception
handling. If you acquired a lock and then
called something that threw an exception, you
would have problems. The lock would never be
released.

When Apple introduced the new exception-
handling keywords, they also introduced
@synchronized. This will lock on an arbitrary
object and make sure that the lock is released if
an exception is thrown.

Generally speaking, it is a bad idea to use

251

252

© ® N o

CHAPTER 14: Threads

this keyword. Although it makes life a little
easier, and is familiar to Java programmers, the
implementation is very inefficient. It needs to
associate a lock with the object, and it always
uses a recursive lock even when this isn’t ideal.
You can achieve the same effect by making
sure that you send the —unlock message in an
@finally block.

You can avoid the @try and @finally block if
you are sure that none of the called methods or
functions will throw an exception, but with the
GNU and Modern Apple runtimes they don’t
have any run-time penalty.

Storing Thread-Specific Data

NSMutableDictionary #threadDict =
[[NSThread currentThread] threadDictionary];

[threadDict setObject: @"default"
forKey: @"NewKey'"];

From: threadDict.m

Once you have threads, you often want to

store some data privately to the thread. An
example of this in Cocoa is the current graphics
context, which must be available to any code
that is drawing, but must not be shared between
threads.

Typically, you implement this using the
pthread_set_specific() function, which stores
a pointer associated with the current thread.

Storing Thread-Specific Data

This is commonly implemented by storing the
address of a region of memory in a register and
using a fixed offset from the start of that region
for each bit of thread-specific data. That means
you need to have space for every thread-local
pointer in every thread, even if you only set one
of them to something other than NULL.

If Cocoa stored the graphics context like this,
every single thread would require one word of
space, even though most programs only need a
valid graphics context in one, or possibly two,
threads.

The solution to this is the thread dictionary.
This is a mutable dictionary associated with the
thread. You only need one word per thread to
store this pointer, but you can store as many
objects in it as you want. Only threads that
have a value associated with a given key need
to have space to store it.

The thread dictionary is accessed by sending
a —threadDictionary message to the current
thread. You can then manipulate it like any
other dictionary. When the thread exits, the
dictionary is destroyed. Because dictionaries
retain their arguments, this means that

any objects only referenced from the thread
dictionary will be freed, after their destructors
run.

You can use this to run code when a thread
exits, but it’s not recommended. Threads will
post an NSThreadWillExitNotification before

253

254

CHAPTER 14: Threads

they exit, so you can just observe this if you
want to run some cleanup code.

Note: On most platforms, you can use the
__thread keyword, a GCC extension that stores
variables in thread-local storage. The Darwin
loader does not support thread-local sections, so
this is not possible on OS X. This will probably
change soon, as similar functionality is in the next
versions of both the C and C++ standards.

The thread dictionary provides a good way

of passing parameters between nested stack
frames. Sometimes you want to set some semi-
global state that will persist for the duration of
a method call and be accessible from all methods
inside that scope.

The classical Cocoa example is the graphics
context object, which is set at the root of the
view hierarchy and then modified and used

by all nested calls. In LanguageKit, I use the
same pattern to allow AST nodes to access

the compiler object. In both cases, the lack of
tight coupling means that the same method—on
the same object—can be called in two different
threads, with different contexts.

Waiting for a Condition

Waiting for a Condition

- (void)addToQueue
{
[condition lock];
queueSize++;
[condition signall;
[condition unlock];
}
- (void)main
{
while (1)
{
id pool = [NSAutoreleasePool new];
[condition lock];
while (queueSize == 0)
{
[condition wait];
}
queueSize--;
[condition unlock];
NSLog(@"Processed data from queue");
[pool release];

From: condition.m

Quite often, you want to have one thread
sleep and wake up when another thread does
something. The POSIX thread API provides
condition variables for this.

A condition variable is paired with a mutex.
When you wait on a condition variable, you
first acquire the mutex, then atomically release
it and sleep on the condition variable. When
the condition variable is signalled, you wake and

255

256

Threads

atomically reacquire the mutex. You can think of
condition variables as a way of passing a mutex
between threads.

The OpenStep specification included a

class encapsulating this low-level primitive:
NSConditionLock. Unlike the POSIX version,
which needs to be associated with a mutex on
each call, this class contains its own mutex and
implements the NSLocking protocol.

This means that you can use a condition lock
as a lock, although that would be wasteful. As
well as the lock, the condition lock also has an
integer variable associated with it, representing
the condition. When you sleep on a condition
lock, you can specify a value. Your thread will
then not be awoken until the condition lock is
signalled with this value.

The condition lock is quite convenient when

the condition you are waiting for is an integer
value, but less so in other cases. Often, you want
a thread to wake up when an object enters a
particular state. This is quite easy with the low-
level POSIX functions, because they expect you
to test the condition yourself, but is less easy
with the NSConditionLock.

To address this, Apple introduced the
NSCondition class. This is a simple wrapper
around a POSIX mutex and condition variable.
You can lock it, sleep on it releasing the lock,
and then signal it from another thread to wake it

up.

Waiting for a Condition

When you wake after sleeping on an
NSCondition, the condition object will be
locked. You must test your condition and then
either unlock the condition object or go back to
sleep.

You use the same pattern with condition
variables in almost every case you will use them.
Generally, they let you establish a producer-
consumer relationship between threads. The
consumer thread needs to sleep until there is
some data waiting for it. The producer threads
need to wake up the consumer thread when there
is some data for it.

The example at the start of this section showed
two methods on a class. The -addToQueue
method is expected to be called from a producer
thread, whereas the -main method implements
the consumer thread.

The consumer thread code shows several
important features of a threaded object. Rather
than using an NSRunLoop, this implements its
own run loop, an infinite loop, and creates and
destroys an autorelease pool at every iteration
explicitly. In each iteration, it first locks the
condition and then, if there is no data waiting,
releases the lock and sleeps.

A producer thread can then acquire the lock
and signal the condition. When this happens,
the consumer thread will be poised to wake
up as soon as the lock becomes available. The
producer permits this by releasing the lock.

257

258

CHAPTER 14: Threads

The consumer thread then gets the next bit of
data to process and releases the lock. In this
example, incrementing and decrementing a
shared variable is used as a proxy for adding
some data to a shared data structure.

Note: The sequence of operations required to
wake a thread from a condition variable is quite
expensive, so it's worth avoiding if possible. For
communicating between two threads, | generally
prefer to use a lockless ring buffer that switches to
a locked mode after it has been empty for a while.
Apple's Grand Central Dispatch implements this
model internally, so you can use it without having
to write the ring buffer code yourself.

15

Blocks and Grand
Central

One of the most recent additions to Objective-

C is support for blocks, also known as closures.
Blocks were part of Smalltalk, but omitted in
Objective-C for several reasons. Smalltalk used
them for flow control, while Objective-C inherits
C flow control primitives, so does not require
them. The extra complexity in the compiler and
runtime library, along with the speed penalty,
meant that they were not a high priority for
Objective-C, initially.

A closure is a function that can be created inside
some other scope and can refer to variables
inside that scope. Normally, a function may refer
to three things: globals, arguments, and local
variables. It may only exist in the global scope.
In contrast, a block may be declared inside a
function, or even inside another block. It may
refer to any variables that are visible where the

260

N o ooa W

CHAPTER 15: Blocks and Grand Central
block is declared.

Binding Variables to Blocks

int (2add)(int, int) =
A(int a, int b)

{

return a + b;

bE

From: blockScope.m

You can think of functions as a special case

of blocks. A function, conceptually, is a block
that is declared in the global scope. They are
implemented in a slightly different way, but the
differences are very small in this case.

The simplest case for a block, therefore,

is equivalent to a function. It takes some
arguments, produces some output, and doesn’t
refer to anything outside of its own scope. The
snippet at the start of this section shows an
example of this kind of block. This declaration is
at the global scope, and looks like a very verbose
form of a function declaration.

The next kind of block refers to things in the
scope of the function where it was declared.
You can see a block of this kind in the rest of
blockScope.m.

This block refers to two variables. counter is a

static variable, which means that it is stored in
some memory mapped from the program image,

Binding Variables to Blocks

Note: Although there is only one type of block
exposed to the programmer, there are two in the
implementation. You can find out which kind of
block you have by inspecting the isa pointer,
although this is not guaranteed by the public API
and is subject to change without notice.

If you create a block that does not refer to
anything other than its parameters or global
variables, then the block is statically allocated,
and every time it is conceptually created, you will
get a pointer to the same object.

If you create a block that refers to things on

the stack, then the blocks runtime will create a
new copy of it on the heap every time that it is
created.

just like a global. The reference to this in the
block will work just like a reference to any other
static or global; only one copy of the variable
exists.

The other variable, c, is a local variable. This

is allocated on the stack in the getCounter()
function. When that function returns, the
variable is destroyed. The block still exists, but
it refers to a copy of the variable. This means
that c inside the block always contains the value
that ¢ had when the block was created. You

can see in the output how this works. Each
block prints the value of the counter when it was
created and the current value.

261

262 Blocks and Grand Central

H

o void(AgetCounter(void)) (void)

11 {

12 static int counter;

13 int ¢ = counter;

14 void(Ablock) (void) = A(void)
15 {

16 printf("current: %d ", counter);
17 printf("old: %d\n", c);

18 };

19 counter++;

20 return _Block_copy(block);
21}

23 int main(void)

24 |

25 void(Ablock) (void) = getCounter();
26 block(); block();

27 void(Ablock?2) (void) = getCounter();
28 block2(); block2();

29 block(); block();

30 return O;

31}

From: blockScope.m

1 current: 1 old: O
2> current: 1 old: O
3 current: 2 old: 1
4 current: 2 old: 1
5 current: 2 old: 0
6 current: 2 old: O

Output from: blockScope.m

A traditional closure refers to the real variables
in the enclosing scope, not copies. You can get

15
16
17
18

20
21

22

Binding Variables to Blocks

this behavior by declaring the variable with
the __block qualifier. The implementation of
this is very complicated. The variable is moved
from the stack into a reference counted bit of
code in heap memory. This means that every
reference to it will refer to the same variable.
The blockCapture.m example demonstrates
this, with a function that creates two, linked,
counters.

typedef int(Acounter_t)(void);

void linkedCounters(counter_t *a, counter_t =b)

{
__block int c = 0;
*a = A(void) { return c++; };

*b = A(void) { return ++c; };
*a = _Block_copy(*a);

xb = _Block_copy(*b);

C++;

}

int main(void)
{
counter_t pre, post;
linkedCounters(&post, &pre);
printf("%d %d, %d, %d\n",
pre(), post(), pre(), post());
return 0;

}
From: blockCapture.m
Both of these counters refer to the same variable

in memory: one returns it then increments it;
the other increments it then returns it. When

263

264

© N o wu

CHAPTER 15: Blocks and Grand Central

you run this program, you will see that calling
one block affects the return value the next time
that you call the other.

22,4, 4

Output from: blockCapture.m

The next time that you call the
linkedCounters() function, you will get a
new pair of blocks, referring to a new counter
variable. Note the difference between the
static and __block storage qualifiers. Both
have a similar effect, moving a variable off the
stack, and allowing it to persist longer than the
function, but they work very differently.

When you declare a variable as static, every
single reference to it will refer to the same piece
of memory. When you declare a variable as
__block, every reference to it from the same
scope will refer to the same bit of memory, but
you will get a new copy every time that you
enter the scope in which it is declared.

Managing Memory with Blocks

__block int counter;
int(Ablock) (void) =
A(void) { return counter++; };

block = [block retain];
_Block_release(block);

Managing Memory with Blocks

From: blockMemory.m

Memory management in Cocoa traditionally uses
reference counting. Blocks work in the same
way. There are two functions controlling the
reference count of a block. The _Block_copy()
function increases its reference count, while the
_Block_release() function decreases it.

The first function is not called
_Block_retain(), to make it explicit that the
returned block may not be the block passed
as an argument. In some situations, the block
might be allocated on the stack, then copied
onto the heap when it is copied.

In Objective-C, you can also send blocks
-retain, -release, and -autorelease
messages, just as you can any other object. In
fact, you can send blocks any messages that
you want, but they only respond to a few. The
compiler won’t give a warning if you send any
messages to blocks, but you will get a run-time
exception.

Memory management of variables referenced by
blocks can be more difficult to understand. The
blockRetain.m example shows two blocks that
both refer to objects. The first gets a copy of the
object pointer, the second gets a shared reference
because of the __block storage qualifier.

When you retain the block that has a copy of
the object pointer, the object is also implicitly
retained, automatically. Note that this only
happens once. When you retain the block

265

266

© N o o

©

11
12
13
14
15
16

Blocks and Grand Central

id a = [@"a" mutableCopy];
__block id b = [@"b" mutableCopy];
unsigned long(ArefCountA)() = A()

{ return [a retainCount]; };
unsigned long(ArefCountB)() = A()

{ return [b retainCount]; };
printf("%1d %ld\n", refCountA(), refCountB());
refCountA = _Block_copy(refCountA);
refCountB = _Block_copy(refCountB);
printf("%1ld %1d\n", refCountA(), refCountB());
[refCountA release]; [refCountB release];
printf("%1ld %1d\n", [a retainCount], [b

retainCount]);

From: blockRetain.m

a second time, it is not. When the block is
destroyed, the object is released.

1
2
1

R R

15292150460684697 5

Output from: blockRetain.m

This is not the case for the second block. This
block has been freed, so sending it a message
has undefined behavior. In this particular run,
it returned some data from a random memory
location. It might alternatively crash.

It is your responsibility to ensure that the object
remains valid for as long as one or more of

the blocks persists. This is very difficult to do
correctly, because blocks, unlike objects, do not

Performing Actions in the Background

have a way of registering cleanup code.

This is also a problem when a block refers to
other pointers. Even if a pointer does not have
the __block storage qualifier, the memory that
it references is not copied. This means that you
have to keep track of it just as you would any
other memory in C, with the added complication
that the block, containing a reference to it, may
persist for a long time.

Performing Actions in the
Background

dispatch_queue_t q =
dispatch_get_global_queue(0,0);

__block int count;

dispatch_async(q, A(void){ count++; });

sleep(1);
NSCAssert(count == 1,
@"Counter incremented in background");

From: libdispatch.m

If you are using Cocoa on OS X 10.6 or
GNUstep on FreeBSD, then you have the
option of using libdispatch, branded by Apple
as Grand Central Dispatch, for concurrent
processing. This library was written by Apple
and released under the Apache 2 license. If
you use libdispatch, you don’t manage threads
manually, you manage work queues.

Work queues execute work units of code and

267

268

Blocks and Grand Central

data. There are two sorts of queue, concurrent
and FIFO. A concurrent queue will start
executing work units in the order that they are
added to the queue, but may execute more than
one concurrently. A FIFO queue will wait for
each unit to complete before starting the next
one.

Queues do not have a 1:1 mapping with threads.
Concurrent queues may execute on several
threads and one thread may run work units from
several queues. The optimal number of threads
to use is determined by the kernel based on the
number of cores and the system load.

Context switching between threads is relatively
expensive. It obviously costs at least as much as
setjmp (), because it needs to save the current
CPU state and restore it later, but there are
also some non-obvious costs. Different threads
are likely to be accessing different bits of the
program’s data at the same time, so switching
threads also causes a lot of cache and TLB
misses.

With the work queue model, a single thread can
run one work unit from one queue, then run

one from another, without constantly switching
between the two working sets. If you have more
cores, you can increase the degree of concurrency
to take advantage of them without increasing the
number of context switches. When the system

is busy, you may reduce the number of threads
that one application is using so that it can use

Creating Custom Work Queues

one core effectively while another application
uses another. This is all done automatically by
libdispatch.

Grand Central does not depend on blocks, but it
is much easier to use in conjunction with blocks.
In the simplest case, you just push blocks into

a work queue and have them executed in the
background. That’s what the example at the
start of this section does. It gets a handle to the
default queue for the normal priority and pushes
a block into it. The queue will then execute this
in the background as soon as there is some spare
CPU time.

Creating Custom Work Queues

dispatch_queue_t q =
dispatch_queue_create("Example”,0);

__block int count;

dispatch_async(q, A(void){ count++; });

dispatch_async(q, A(void){ count++; });

dispatch_async(q, A(void){ count++; });

dispatch_async(q, A(void){ printf("%d\n", count)
i)

From: libdispatchFIFO.m

Grand Central comes with three concurrent
queues, which are created by default. These are
registered at three priority levels: low, default,
and high. The number of things that will run
concurrently on each of these depends on the
load of the system and the number of CPU

269

270

Blocks and Grand Central

cores available. You can get a handle to one of
these with the dispatch_get_global_queue()
function that we saw in the last section.

There is no point in creating a new concurrent
queue. Blocks pushed into a concurrent queue
will begin executing in the order that they were
pushed, but they may complete in an arbitrary
order, and any number of them might be running
at once.

There is also one special queue, which

is intended to run on the main thread.

You can get a reference to this with
dispatch_get_main_queue(). This queue is
used on OS X 10.6 to implement the run loop.

This queue is a FIFO queue, and you may

wish to create similar queues. A FIFO

queue is similar to a lightweight thread. It
executes sequentially, one block at a time. The
relationship between threads and queues is
variable. All of your queues may end up running
concurrently on separate threads, or all may be
executed on a single OS thread, depending on
various factors.

You create a new FIFO queue by calling
dispatch_queue_create(). This is useful
when you have a number of things that need
to execute in a defined order, but are largely
independent of the rest of the program.

This helps reduce the need for explicit
synchronization.

The example at the start of this chapter pushed

Creating Custom Work Queues

three blocks that incremented a counter and one
that printed its final value into a new queue.
These blocks are all related; executing them in
the wrong order is a very bad idea. With this
approach, they all execute in a guaranteed order
with respect to each other, but not with regard
to the rest of the program. This means that you
don’t need to put any lock around the counter
variable, unless you plan on accessing it from
outside of the queue.

271

This page intentionally left blank

16
Notifications

Objective-C encourages loose coupling, and
nothing in the Foundation framework better
epitomizes this than the notification mechanism.
Notifications are a simple way of implementing
callbacks for arbitrary numbers of listeners.

You can listen for notifications with a specific
name, from a specific object, or both. The
notification itself has a sender, a name, and a
dictionary associated with it, so objects can pass
arbitrary amounts of information to things that
are listening for notifications.

If you use notifications, you make it very easy to
reuse your classes. Rather than expecting every
class that wants to listen for events from your
classes to implement a particular interface, you
just post notifications. Any number of classes
can listen for notifications from the same object,
and your class doesn’t have to implement any of
the logic for storing references to them.

274 CHAPTER 16: Notifications

Requesting Notifications

(void)notify: (NSNotification=)note

NSLog(@"Received %@", note);

(void)registerListener

NSNotificationCenter #*nc =
[NSNotificationCenter defaultCenter];
[nc addObserver: self
selector: @selector(notify:)
name: @"Example"
object: nil];

(void)dealloc

NSNotificationCenter #nc =
[NSNotificationCenter defaultCenter];

[nc removeObserver: self];

[super dealloc];

From: notify.m

To listen for notifications, you need to

register an interest for them with the
NSNotificationCenter object for your thread.
This is the routing point for notifications.
When a notification is posted, it is sent to the
notification center and the notification center
then forwards it to all of the interested parties.

Most of the time, you will be using the
default notification center. It is possible

to create different notification centers for
different uses, but most commonly you
will use the standard one. This is obtained

Requesting Notifications

by sending a +defaultCenter message to
NSNotificationCenter.

To register for a notification, you then send an
-addObserver:selector:name:object: message
to the center. Note the selector argument in this
message. A single object may receive different
notifications on different methods. This is quite
useful, because it means that you don’t need to
test what kind of notification you’ve received and
can cleanly separate out different event handlers
into different methods.

Either the object or the notification name can be
nil when registering an observer. This lets you
register either to receive all messages sent by a
specific object, or all notifications of a specific
type, irrespective of their sender.

These are more useful for debugging than
anything else. You can, for example, write a
logging aspect that listens for all notifications
of a particular type and logs the sender.

One important thing to remember when you
listen for a notification is that the notification
center does not retain your object. If your object
is still registered to receive notifications when it
is destroyed, then your program will crash the
next time one of these notifications is sent.

To avoid this, make sure that you send the
notification center a -removeObserver: message
in your -dealloc method. If you forget this, the
crash will not be obvious. You will see a lot of
strange things in the back trace, including the

275

276

33
34
35
36
37

CHAPTER 16: Notifications
notification center.

Sending Notifications

NSNotificationCenter #*nc =
[NSNotificationCenter defaultCenter];
[nc postNotificationName: @"Example"

object: @"sender"
userInfo: nil];

From: notify.m

Posting notifications is even easier than
registering to listen for them. The canonical way
of posting a notification object is to construct an
NSNotification object and then send it.

In practice, I don’t think that I’ve ever seen code
that does this. The notification center has some
convenience methods that construct and post
notifications in a single operation.

The most common way of

sending a notification is the
-postNotificationName:object:userInfo:
method. There is also a simplified version of
this that omits the userInfo: parameter and is
equivalent to passing nil as the final parameter.

Note that the object—the sender of the
notification—is specified as a parameter. That
means that it is possible to send notifications
claiming to be from another object. This means
that, for example, facades or C code can send
notifications on behalf of other objects.

Enqueuing Notifications

Enqueuing Notifications

NSNotificationQueue #nq =
[NSNotificationQueue defaultQueue];
NSNotification *note = [NSNotification
notificationWithName: @"Example"

object: @"sender"];
[ng enqueueNotification: note
postingStyle: NSPostWhenlIdle];
[[NSRunLoop currentRunLoop] run];

From: notify.m

Sometimes, your code might be generating a lot
of notifications, or may be generating ones that
do not need to be handled immediately. The
NSNotificationQueue class solves both of these
problems.

Notification queues can both defer delivery of
notifications and can coalesce them. Unlike
NSNotificationCenter, the queue does not
have convenience methods for constructing the
notifications, you must do this yourself. The
notification is then posted with one of three
posting styles.

In this example, the notification’s delivery is
deferred until there are no other events in the
run loop. Timers and data becoming ready
on file descriptors take priority. Alternatively,
you can post in the next run loop iteration or
immediately.

If you send a lot of notifications of the same

type then it is a good idea to cache the
notification object. Passing the same object to

277

278

CHAPTER 16: Notifications

the notification queue repeatedly is quite cheap,
and it can automatically send the notification
just once.

If you use the longer method for queuing
notifications, one of the parameters is
coalesceMask:, which determines how
notifications should be combined. You can
combine notifications with the same name,
notifications with the same sender, or both.

Coalescing is most useful with the
NSPostWhenIdle posting style. You can send the
same notification a lot of times when your code
is busy and then, when there are no other events
left to handle, the notification queue will post
just one copy of the notification. This is ideal for
bits of code that trigger some low-priority book-
keeping work.

Sending Notifications Between
Applications

e addObserver: self
selector:
@selector(newCopyStarted:)
name: ProcessDidStart

object: nil
suspensionBehavior:
NSNotificationSuspensionBehaviorHold];

From: distributedNotify.m
The loose coupling provided by notifications is so

Sending Notifications Between Applications

useful that it is extended within the Foundation
framework to provide a (simple) mechanism

for communication between applications. The
NSDistributedNotificationCenter class

is a subclass of NSNotificationCenter that
broadcasts notifications to other applications.

This extension requires some changes. A normal
notification has a sender associated with it,
which is a pointer to some object. A pointer to
an object is not particularly useful in a process
with another address space, so distributed
notifications use a string as the sender. This can
be anything that you like, but it’s usually the
application name.

Notifications can have dictionaries associated
with them. Within an application, these
dictionaries can contain any objects, but for
broadcast they are restricted to objects that can
be stored in property lists (see Chapter 9).

Note: On OS X, there is only a single type of
distributed notification center, sending notifications
to applications owned running with the same user
ID as the sender. GNUstep provides two others,
one for communicating with all applications on

a computer, irrespective of the user, and one

for broadcasting notifications across the local
network.

The delivery semantics for distributed
notifications are also somewhat different. When

279

280

Notifications

you post a (normal) notification, it is delivered
synchronously. The sending object already has
control of the CPU. The stack frame for its
method is at the top of the stack and it is free
to delegate program flow to the notification
center, which then delegates it to the notification
listeners.

With a distributed notification, this is not the
case. You can’t just interrupt whatever another
process is doing in the middle of a function' and
S0 you must wait until a convenient point.

Distributed notifications handle this by
interfacing with the run loop. To receive
distributed notifications, you must be using
NSRunLoop. The distributedNotify.m example
is a simple program that writes a log message
whenever a new instance of itself is started.

The -init method of this class does all of the
real work. First, it registers an observer for a
distributed notification. The object is nil, so it
will receive this notification from any sender.
Then it constructs the notification. The user
info dictionary contains a single key-value pair
storing the process ID.

After it’s posted the notification, it starts

the run loop. The program will then sit in

a blocking state until some run loop events
happen. Only one event has a handler defined
in this program, so all that it will ever do is

LWell, you can; signals do exactly that, but the things
you can do from a signal handler are quite limited.

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38
39

Sending Notifications Between Applications

- (id)init
{
NSDistributedNotificationCenter *c =
[NSDistributedNotificationCenter

defaultCenter];
[c addObserver: self
selector:

@selector(newCopyStarted:)
name: ProcessDidStart
object: nil
suspensionBehavior:
NSNotificationSuspensionBehaviorHold];

NSProcessInfo *pinfo =
[NSProcessInfo processInfo];
NSNumber *pid = [NSNumber numberWithInt:
[pinfo processIdentifier]];
NSDictionary *userInfo = [NSDictionary
dictionaryWithObject: pid
forKey: @"pid"];

[c postNotificationName: ProcessDidStart
object: [pinfo processName]
userInfo: userInfo
options: 0];
[[NSRunLoop currentRunLoop] run];

3

From: distributedNotify.m

receive a —-newCopyStarted: message whenever a
ProcessDidStart notification is posted, which
will only happen when another copy of this
program is run.

If you compile and run this example, you will see
that it receives its own notification, so it will tell

281

282

Notifications

you that it has started. If you run another copy,
you will get a log message from each running
instance telling you about the new one.

This is quite a trivial example, but it’s easy to
use distributed notifications for more complex
events. I use them in XMPPKit, for example,
to notify all running applications when the user
changes online state. Other programs listen for
this and can push the new status message to
microblogging sites.

17

Network Access

The standard cross-platform way of writing
network-aware applications is the Berkeley
Sockets API. This was written as part of the
same grant that developed the TCP/IP and is
designed to be protocol-agnostic.

Most languages have an implementation of this
API. In Objective-C, you are, as always, free
to use the C version, which provides all of the
power of the low-level interfaces.

Most of the time, however, this is a lot of effort
for very little gain. The Foundation framework
provides several classes that make it easier

to write networked applications. Using these
abstractions sometimes loses you some of the
power of the lower-level APIs, but not much.

284

42
43
44
45
46

CHAPTER 17: Network Access

Wrapping C Sockets

return
[[[NSFileHandle alloc]

initWithFileDescriptor: s
closeOnDealloc: YES]
autorelease];

From: NSFileHandle+Socket.m

We looked briefly at the NSFileHandle class in
Chapter 13 and I mentioned that it wrapped

a file descriptor. The socket API was designed
based on the UNIX everything-is-a-file-even-
when-it-doesn’t-make-sense model, so sockets
are also file descriptors. You can use the same
function calls for reading from and writing to
a socket that you can use with any other file
descriptor.

You can also use an NSFileHandle to wrap a
socket. This lets you use the low-level APIs

to create a socket to your exact specifications,
then use a more abstract way of interacting
with the created socket. If you need to use

any parts of the low-level socket API that are
not conveniently exposed by the higher-level
APIs then this is the only solution that you
can use. In other cases, it is still often the most
convenient one.

The biggest advantage of wrapping your socket
in a file descriptor object is that you can easily
integrate it with the run loop. This lets you very
easily write event-driven socket code. The other

Wrapping C Sockets

Note: Remember that the aim of Objective-
C was to make life easier for C programmers.
Don't use Objective-C APIs just for the sake of it,
only use them when they make more sense as a
solution to your specific problem than the C APlIs.
Using an Objective-C API that is just a trivial
wrapper around the C API adds overhead and
complexity, but doesn’'t make your code any easier
to maintain.

big advantage is that you can use Objective-C
reference counting for your socket. If you pass
YES as the argument to the closeOnDealloc:

argument when you create the NSFileHandle,
then the file descriptor will be closed when the
object is deallocated.

If you send a
-waitForDataInBackgroundAndNotify
message to your object, it will be added to the
list of file descriptors that the run loop polls.
At the next run loop iteration, if there is data
waiting then the NSFileHandle object will post
a notification. If you have registered a handler
for this notification, then you can read the new
data.

The documentation for this method is somewhat
misleading. It claims that this method will
create another thread. In fact, on OS X the run
loop uses the kqueue() API! and calling this

1GNUstep may use poll() or select() instead.

285

286

CHAPTER 17: Network Access

method just adds another file descriptor to the
list that it waits for. With OS X 10.6, this is
implemented using Grand Central Dispatch to
post the notification, but the core functionality is
the same.

One final advantage is that you are freed from
thinking about buffers. When you read data
from a socket, you typically have to allocate a
buffer and then pass a pointer to it to a read()
or recv() system call. With a file descriptor
object, you read NSData instances.

If you are writing a lot of strings, then you
might want to consider adding a category on
NSFileHandle that provides -writeUTF8String:
and -readUTF8String methods, or equivalent
methods for the encoding that your protocol
uses, allowing you to get and send strings
directly.

Connecting to Servers

NSInputStream +*in;

NSOutputStream *out;

NSHost *host = [NSHost hostWithName:
@"example.com"];

[NSStream getStreamsToHost: host
port: 80
inputStream: &in
outputStream: &out];

[in open];

From: nsstream.m

Connecting to Servers

Objective-C provides a set of Java-like stream
classes for network communication, as well as the
low-level UNIX interfaces. Unfortunately, the
stream versions are not particularly useful. They
don’t provide a clean way of adding filters like
compression or of negotiating encryption in the
middle of a connection, which a lot of modern
protocols require.

The most distressing limitation, however, is
that they don’t make it easy to support SRV
records. These are DNS records that advertise a
service to port mapping, as well as a hostname
to IP address mapping. They are used by DNS-
SD, but the IP address shortage makes them
increasingly common in hierarchical DNS on the
public Internet.

If you look up a server address on OS X using
the POSIX getaddrinfo() function, then you
provide a host name and service name. The
system then maps these to network addresses
and port numbers on any of the supported
protocols.

When you construct an NSStream, you must
specify the port number as an integer. This
means that it will fail on any service that uses
DNS SRV records. If you use getaddrinfo()
and then wrap the resulting socket in an
NSFileHandle, however, it will work correctly.
In EtoileFoundation, we provide a category on
NSFileHandle that allows you to create file
handles directly from a host name and protocol

287

288 Network Access

name, wrapping this call.

16 hints.ai_family = PF_UNSPEC;
17 hints.ai_socktype = SOCK_STREAM;

18 //Ask for a stream address.

19 error = getaddrinfo(server, service, &hints, &
res0);

20 if (error) { return nil; }

21

22 int s = -1;

23 for (struct addrinfo *res = resO;

24 res != NULL && s < 0 ;

25 res = res->ai_next)

26 {

27 s = socket(res->ai_family, res->ai_socktype,

28 res->ai_protocol);

29 //If the socket failed, try the next address

30 if (s < 0) { continue ; }

31

32 //If the connection failed, try the next

address
33 if (connect(s, res->ai_addr, res->ai_addrlen) <
0)

34 {

35 close(s);

36 s = -1;

37 continue;

38 }

30 ¥

40 freeaddrinfo(res0);

From: NSFileHandle+Socket.m

This category is shown in the
NSFileHandle+Socket.m example. When

you call getaddrinfo(), you provide the server
and service type as C strings and a set of hints
indicating the kind of socket that you want. You

Sharing Objects Over a Network

then get an array of addrinfo structures back,
containing the information required to construct
a connected socket.

These are arranged in the order that the resolver
thinks is best, so you typically try each on in
turn, until you find one that works. If you have
both IPv6 and v4 connectivity, then this code
will try both if there are DNS entries pointing at
both.

Sharing Objects Over a Network

NSMutableDictionary #object =
[NSMutableDictionary new];

NSConnection *conn =
[NSConnection new];

[conn setRootObject: object];
if ([conn registerName: @"sharedDict"])
{

[[NSRunLoop currentRunLoop] run];

3

From: doPublish.m

One of the most powerful, and most underused,
parts of Objective-C is the distributed objects
system. If you send a message to an object, and
the object doesn’t understand how to handle

it, then it will receive a —forwardInvocation:
message, with an object encapsulating the
message as an argument.

Like everything else in Objective-C, you can
introspect this object. It will tell you the

289

290 Network Access

selector, the number of arguments, and the types
and values of all of the arguments.

The Foundation framework includes a class,
NSDistantObject, which makes use of this. A
distant object is a proxy that forwards messages
to a remote object. The remote objects can

be in a different process, or even on a different
computer.

If you pass objects as arguments to a message
sent to a distant object, then they may be
copied, or a remote proxy may be created at the
far end forwarding message back.

Using distributed objects is very simple. There
are two parts of any program that uses them: a
client and a server. The server offers objects to
other processes and the client connects to the
server and accesses them.

By default, objects are just shared on the local
machine. To share them across the network,
you must use the use NSSocketPortNameServer
when registering the object.

6 NSMutableDictionary #object = (id)[NSConnection
7 rootProxyForConnectionWithRegisteredName:

8 @"sharedDict"

9 host: nil]l;
10 NSLog(@"Object: %@", object);

11 [object setObject: @"aValue"

12 forKey: @"aKey"];

13 NSLog(@"Object: %@", object);

From: doAccess.m

ST N VR

Sharing Objects Over a Network

The example from the start of this chapter
shows a simple program that shares an
NSMutableDictionary instance between
processes. Note that you must be using
NSRunLoop to serve distributed objects. The
distributed objects system adds the IPC
channel (a Mach port or a socket) used for
communication to the run loop. When another
process sends a message to that port, some data
arrives through that channel and the DO system
is notified.

It then constructs an NSInvocation from the
data received and invokes it, then returns the
result.

doAccess[85613:903] Object: {

}

doAccess[85613:903] Object: {
aKey = aValue;

}

Output from: doAccess.m

291

292

CHAPTER 17: Network Access

Finding Network Peers

NSProcessInfo *pi = [NSProcessInfo processInfo];
NSString #name =
[NSString stringWithFormat: @"%@/%@",
[pi hostName],
NSFullUserName()];

NSNetService #service =
[[NSNetService alloc]
initWithDomain: @""
type: type
name: name
port: 123];
[service publish];

NSNetServiceBrowser #*sb =
[NSNetServiceBrowser new];
[sb setDelegate: self];
[sb searchForServicesOfType: type
inDomain: @""];

From: netservice.m

Over the years, lots of protocols have been used
for finding services on the local network. Both
NetBIOS and AppleTalk were common on local
networks until the mid '90s, until they started to
be phased out in favor of TCP /IP.

The TCP/IP protocol stack didn’t include
anything for doing this. The closest it came was
the broadcast address. If you send a packet to
the broadcast address then it will be sent to
everyone on the local segment. This has a lot

of problems; it only works on the local physical
segment, it’s inefficient on modern switched

Finding Network Peers

networks, and it’s a very low-level approach.

The IETF’s ZeroConf working group proposed
multicast DNS (mDNS) as the solution to this.
DNS is a scalable way of publishing mappings.
It is most commonly used for mapping from
host names to IP addresses, but it can be used
for things like telephone numbers, geolocation
information, and a host of other things.

With mDNS; individual computers may publish
DNS records in the .local domain. This is then
used as the foundation for DNS service discovery
(DNS-SD), which describes a way of advertising
arbitrary services over DNS. You can use this
standard with traditional hierarchical DNS too,
but it is most useful with mDNS.

The combination of the two standards is often
referred to as Bonjour and is exposed to
Objective-C via the NSNetService class. This
allows applications to publish DNS-SD records
and find all of the records for a particular
service.

Lots of applications use this on OS X. Safari
uses it to share bookmarks; iChat uses it to find
contacts for serverless messaging; iTunes uses

it for sharing music; and the system uses it for
finding shared folders and printers. If you are
writing any kind of networked application, you
may find it helpful to advertise to peers using
NSNetService.

When you advertise a service, you must specify
a unique name. If you are using distributed

293

294

Network Access

objects, which we’ll look at towards the end of
this chapter, then you can use this as the name
of the object that you are serving, and ignore
the DNS-related underpinnings of the Bonjour
system. For other things, the port that you
publish is often more useful and the name will
be something that you will present to users.

You search for peers using the
NSNetServiceBrowser class. This is a little bit
more tricky to use correctly. Publishing services
is synchronous; you send a -publish message
to your NSNetService instance and the service
is published. Searching is asynchronous and
requires a run loop to be active.

When you send the search message to the
browser, it will transmit a DNS request. It

may take a while to get the response back and
you probably don’t want to stop the user from
doing anything while you search, so this method
returns immediately.

When it receives a response, this class will

send a message to its delegate with a new
NSNetService instance describing each server
that it finds. It will then keep listening until you
send it a -stop message.

In a lot of cases, you will never send this
message. You can just leave the browser running
in the background for the lifetime of your
process and get notifications whenever a new
peer pops up on the local network. You can then
trigger an update in your user interface showing

Finding Network Peers 295

the new peer. This is what something like iTunes
does, adding new shared playlists to the library
as they appear on the network.

This page intentionally left blank

18

Debugging
Objective-C

There are two sorts of programmers; those
that always write perfect code the first time,
and those that really exist. If you are in the
former category, you can skip this chapter. If
you’re in the latter category, then there will
be times when you will try running your code
and discover that it doesn’t work perfectly as
expected.

This is an irritating experience, but it is a lot
less irritating when you can quickly fix the
problem. In this chapter, we’ll look at some of
the techniques for spotting the cause of bugs in
Objective-C programs.

208 CHAPTER 18: Debugging Objective-C

Inspecting Objects

@interface DebugObject : NSObject @end
@implementation DebugObject

- (NSString=)description

{

return @"Not a very helpful message";
}
@end
void debug(id anObject) {}

From: description.m

Most of the time, when you debug an Objective-
C program, you will be using the GNU debugger
(GDB), which has some built-in support for
Objective-C. If you are using XCode then you
are using GDB via a graphical front end. You
can access the command-line interface from the
Run menu. This is often useful because XCode
only provides a GUI for the most common
functions of the debugger, not for everything.

There are two features in GDB that make it well
suited to Objective-C. The first is that it comes
with simple Objective-C parser and interpreter,
so you can write Objective-C expressions in the
debugger and inspect variables in that way. The
second is the print-object command.

This prints an object. It does this by sending
a -description message to the object, which
returns an NSString describing the object. This
means that it will only work on valid objects. If
you try using this command with objects that
are prematurely deallocated or whose memory is

Inspecting Objects

$ gdb ./a.out

(gdb) break debug

Breakpoint 1 at 0x100000e4d: file description.m,
line 10.

(gdb) r

Starting program: a.out

Breakpoint 1, debug (anObject=0x100111bc0) at
description.m:10

10 void debug(id anObject) {}

(gdb) print anObject

$1 = (id) 0x100111bcO

(gdb) print-object anObject

Not a very helpful message

(gdb) print-object [NSObject new]

<NSObject: 0x100111c30>

(gdb) print-object [anObject class]

DebugObject

(gdb) print-object [anObject className]

DebugObject

(gdb) print-object anObject->isa

DebugObject

Output from: description.m

corrupted then the debugger will either crash, or
catch a segmentation violation signal.

The default implementation of this method,
in NSObject, just prints the class name and
address. Various other standard objects
implement it in different ways. Collection
classes, for example, print their contents in
property list format. This example returned a
very unhelpful message, but in your code you
should try to provide something a bit more
helpful.

299

300

CHAPTER 18: Debugging Objective-C

Recognizing Memory Problems

id pool = [NSAutoreleasePool new];
NSMutableString #*str = [NSMutableString
stringWithString: @"example"];

[pool drain];
pool = [NSAutoreleasePool new];
NSSet #set = [NSSet setWithObject: str];

From: prematureDealloc.m

One of the most common problems in Objective-
C is premature deallocation. If you omit a
-retain message somewhere, then you hang
onto a pointer without increasing its reference
count. If something else has a reference to it, or
it was autoreleased, then this pointer can remain
valid for a long time before suddenly becoming
invalid.

When the pointer becomes invalid, you will
usually get a crash inside objc_msgSend() with
the Mac runtime, or objc_msg_lookup() with
the GNU runtime. This happens because the
runtime tries to look up the method to handle a
message, but the class pointer is now pointing to
something invalid.

You can find the object that was deallocated
quite easily in the debugger by moving up the
stack until you find the message receiver. You
can also use the NSZombie class. When the
NSZombieEnable environment variable is set,
objects won’t be deallocated. Instead, they will
have their class set to NSZombie, which just logs

N

[N I N

21
22
23
24

Recognizing Memory Problems

$ gcc -framework Cocoa -g prematureDealloc.m &&
./a.out
Segmentation fault
$ gdb ./a.out
(gdb) r
Starting program: a.out
Program received signal EXC_BAD_ACCESS, Could not
access memory.
Reason: KERN_INVALID_ADDRESS at address: 0
x0000000720000010
0x00007f££8296111c in objc_msgSend ()
(gdb) up 6
#6 0x0000000100000eef in main () at
prematureDealloc.m:9
9 NSSet xset = [NSSet setWithObject: str];
(gdb) print-object str
Program received signal EXC_BAD_ACCESS, Could not
access memory.
(gdb) print =str
$2 = {
<NSString> = {
<NSObject> = {
isa = 0x7a0000000
}, <No data fields>}, <No data fields>}
(gdb) print-object str->isa
Cannot access memory at address 0x7a0000000
(gdb) quit
$ NSZombieEnabled=YES ./a.out
a.out[39571:903] #+* -[CFString hash]: message
sent to deallocated instance 0x100112f00

Output from: prematureDealloc.m

a message whenever it is sent a message.

Finding the object is, of course, only part of
the problem. You also need to work out why it
was prematurely freed. Often, you can do this

301

302

N o ok w

CHAPTER 18: Debugging Objective-C

quickly by just looking in the relevant source
files and checking all -retain and -release
messages. The static analyzer part of clang can
(hopefully) do this automatically. If that doesn’t
work, then try overriding the class’s -retain and
-release methods, adding a breakpoint on them
in the debugger, and looking at where it is really
retained and released.

Watching Exceptions

int throw(void)

{

[NSException raise: @"ExampleException"
format: @"Watch this"];

From: throw.m

If you read the documentation on NSException,
you will see this in the -raise method:

All other methods that raise an
exception invoke this method, so
set a breakpoint here if you are
debugging exceptions.

This was true, until OS X 10.5, and remains true
on GNUstep. Unfortunately, on newer versions
of OS X it is untrue, which also makes it more
effort if you want to write a category that alters
the behavior of exception throwing.

Now, the various exception-throwing bits of

N

oo w

10
11
12

13

15

16

17

18

Watching Exceptions

OS X Foundation use @throw directly. This

is a tiny bit of syntactic sugar, which calls

the objc_exception_throw() function. This
function then invokes the unwinding library code
to run all code in @finally blocks and find the
correct handler for the exception.

(gdb) break [NSException raise]

Breakpoint 1 at 0x51eb851ebl4ald

(gdb) r

Starting program: a.out

2010-03-11 14:52:54.519 a.out[39782:a0f] ##=*
Terminating app due to uncaught exception
ExampleException’, reason: ’'Watch this’

terminate called after throwing an instance of ’
NSException’

Program received signal SIGABRT, Aborted.

0x00007fff81c3afe6 in __kill ()

(gdb) break objc_exception_throw

Breakpoint 2 at 0x7fff829660da

(gdb) r

Starting program: a.out

Breakpoint 2, 0x00007fff829660da in
objc_exception_throw ()

(gdb) bt

#0 0x00007fff829660da in objc_exception_throw ()

#1 0x00007fff81fd0267 in +[NSException raise:
format :arguments:] ()

#2 0x00007fff81fd01f4 in +[NSException raise:
format:] ()

#3 0x0000000100000ea9 in throw () at throw.m:5

#4 0x0000000100000eca in main () at throw.m:12

Output from: throw.m

If you set a breakpoint on
objc_exception_throw(), then you will

303

304

o ook W

12
13
14
15
16
17
18
19
20
21
22

23

CHAPTER 18: Debugging Objective-C

catch all exceptions, irrespective of how they
are thrown. This will also catch things like
@throw @"string"; which are not officially
supported on OS X, but still work.

Asserting Expectations

@interface IgnoreAsserts : NSAssertionHandler
@end
@implementation IgnoreAsserts
- (void)handleFailureInFunction: (NSString+)
functionName
file: (NSStringx)fileName
lineNumber: (NSInteger)line
description: (NSString =)format,
{
NSLog(@"Ignoring assert on line %d of %@() in %
@", line, functionName, fileName);
}
@end

int main(void)

{

[NSAutoreleasePool new];
[[[NSThread currentThread] threadDictionary]
setObject: [[IgnoreAsserts new] autorelease]
forKey: NSAssertionHandlerKey];
NSCAssert(1l == 2, @"This might not be true");
return 0;

From: assert.m

In C code, the standard library provides an
assert() macro, which logs a message and calls
abort() when the predicate argument evaluates
to false. The Objective-C versions are slightly

"

N

Asserting Expectations

more useful.

Foundation provides two macros, NSAssert ()
and NSCAssert(). If you are using C99

(which you should be) then these are variadic,
otherwise you will need to use the variants,

like NSAssertl(), that take fixed numbers of
arguments. NSAssert() references self and

so can only be used in an Objective-C method
body. NSCAssert() can be used in C functions.

Unlike the C variants, these do not abort

when the assertion is false. Instead, they

send a message to a per-thread assertion
handler object. This object is, by default, an
instance of NSAssertionHandler and throws an
NSInternalConsistencyException when you
hit an assertion. You can catch this and recover,
but most often it will reach the top of the stack
and cause the program to abort.

You can create your own subclass of
NSAssertionHandler and override one or both
of the assertion-handling methods if you want
some other behavior. This example ignores
assertions in C functions, just logging a message
when they are encountered.

$./a.out
a.out[40031:903] Ignoring assert on line 21 of
main in $@

Output from: assert.m

It’s quite unusual to want to override this, but

305

306

CHAPTER 18: Debugging Objective-C

there are some good reasons why you might.
One of the most obvious is error reporting.
When an assertion is encountered, it means
that something has gone badly wrong with

your program. You may want to collect some
information about the conditions that cause this
and upload it to a bug-tracking system, rather
than just crash.

You can disable asserts by defining the
NS_BLOCK_ASSERTS macro. This is generally only
worth doing in performance-critical code. It’s
usually better to waste a little bit of CPU time
than it is to continue in an undefined state.

Logging Debug Messages

- (void)log
{
NSLog(@"%s:%d:%s (%@) Log message", __FILE__,

__LINE__, __PRETTY_FUNCTION self);

From: nslog.m

We’ve used the NSLog() function in quite a bit
of code already. When you run an application in
the terminal, messages passed to NSLog() go to
the standard error stream. On OS X, NSLog()
in graphical applications sends messages to the
system console. On Microsoft Windows, with
GNUstep, they go to the system event monitor.

The NSLog() function writes a format string,

n

Logging Debug Messages

prepended by the date, time, process name,
and process ID. When you put the %@ format
specifier in a format string, it uses exactly the
same method as the debugger to get a string
representation of the object.

Note: The GNUstep Additions framework
provides a set of logging macros, the
NSDebugLog () family. These wrap NSLog()

but only log when a specific value is set in

user defaults. These make it very easy to turn
debug logging on and off on a per-aspect or per-
framework basis.

You can also use the special macros that

the compiler defines when constructing the
format string. The __FILE__ macro is a C
string containing the name of the current

source file. The __LINE__ macro is an integer
containing the current line number. Finally, the
__PRETTY_FUNCTION__ macro expands to a C
string containing the current method or function
name.

./a.out

2010-03-11 15:57:43.200 a.out[40861:903] nslog.m
:9:-[Log log] (<Log: 0x100112b70>) Log
message

Output from: nslog.m

307

This page intentionally left blank

19

The Objective-C
Runtime

As T said at the start of this book, an Objective-
C implementation consists of two parts: the
compiler and the runtime library. The compiler
takes source code and turns the dynamic bits
into calls to the runtime library.

The runtime library is written in C, which means
that it is written in a subset of Objective-C. All
of the interfaces to the runtime library, including
the ones that are called by code generated by the
compiler, are accessible to Objective-C code.
Everything dynamic in Objective-C is
implemented by the runtime library. The most
obvious example of this is message sending.
When you send a message, the runtime is
responsible for deciding what should handle it.

This is not the only responsibility of the runtime
library. It also handles all of the introspection

310

© o N o «

CHAPTER 19: The Objective-C Runtime

features of the language. It keeps track of all of
the class and protocol metadata and exposes this
to programmers.

When you use key-value coding, you are
(indirectly) using Objective-C runtime functions
to look up methods and instance variables on the
receiver.

Sending Messages by Name

id obj = [NSObject new];
SEL sel =

NSSelectorFromString(@"release");
IMP release = [obj methodForSelector: sel];
release(obj, sel);

From: methodByName.m

Objective-C methods are C functions that

are called via an indirection layer. Exactly

how this is implemented varies a bit between
runtimes. With the NeXT and Apple runtimes,
simple message sends are implemented using the
objc_msgSend() function.

Unfortunately, this is not the only function
that you need. This function is declared as
returning an id and will work with any kind of
method that has the same calling convention.
On Darwin/x86, for example, object pointers
are returned in the eax register. If you return a
floating point value, it is returned in a floating
point register. If you return a structure, space

Sending Messages by Name

for it is allocated in the caller and a pointer is
passed in as a hidden argument.

You have to remember to call

either objc_msgSend_sret() or
objc_msgSend_fpret(). This is quite messy,
because it means that you have to be aware of
the calling conventions on your target platform.

With the GNU runtimes, this is much simpler.
There is no objc_msgSend() function. Instead,
you call objc_msg_lookup() and then call the
returned function pointer, after casting it to the
correct types.

The easiest way of doing this that is

portable between runtimes is to use the
-methodForSelector: method on NSObject.
This returns a pointer to the function used to
implement the method, which you can then call.
This takes two hidden arguments; the receiver
and the selector.

This is almost enough to call a method by
name. The missing part is some mechanism

for turning strings into selectors. The
NSSelectorFromString() function does exactly
this. It takes an NSString as an argument

and returns a selector. You can then pass this
to -methodForSelector:, and as the second
argument to the returned function.

311

312 CHAPTER 19: The Objective-C Runtime

Finding Classes by Name

Class nsview = NSClassFromString(@"NSView");
if (Nil == nsview)
{

NSLog(@"Not linked against AppKit");

}
else
{
id view = [nsview new];
NSLog(@"View: %@", view);
}

From: weakClass.m

One of the runtime’s responsibilities is storing
a table of all loaded classes. You can enumerate
this table, looking at every class in turn, or you
can use it to look up a class by name.

The latter is particularly useful for implementing
weak class references. These are supported
directly by the Modern Apple runtime, but the
support is not yet exposed via the language, so
it’s not particularly useful. The idea behind a
weak class reference is that you can optionally
use a class.

You might, for example, write some code in

a framework that used Foundation classes

and could use AppKit classes if you linked
against AppKit. This framework would

then work anywhere that had a Foundation
implementation, but would take advantage of
AppKit features if they were available. You can
also use this mechanism to avoid a dependency

12
13
14
15
16

Testing If an Object Understands a Method

on third-party frameworks.

$ gcc -framework Foundation -g -std=c99 weakClass
.m && ./a.out

a.out[53194:903] Not linked against AppKit

$ gcc -framework Cocoa -g -std=c99 weakClass.m &&
./a.out

a.out[53184:903] View: <NSView: 0x1001163b0>

Output from: weakClass.m

Note the difference in outputs when this example
is linked against Cocoa (which links against
AppKit and Foundation) and just Foundation. If
the NSView class is present, it creates an instance
of it. If it isn’t, then it just logs a message.

You can also use this in code that must be
backwards-compatible with old versions of a
framework. If you look up new classes using this
mechanism then you get a Nil value that you
can handle when they are not present.

Testing If an Object
Understands a Method

SEL sel = @selector(delegateMethod:);
if ([delegate respondsToSelector: sel])
{

[delegate delegateMethod: self];
}

From: respondsToSelector.m

Objective-C code tends to make use of informal

313

314

The Objective-C Runtime

protocols. These are groups of messages that a
delegate may, optionally, implement.

When you write code that uses them, you need
to test whether the class actually implements the
method before sending it.

Note: This isn't quite true. You can just

send the message in an @try block and catch the
exception that's thrown if it doesn’t understand
the method. Given the cost of throwing exceptions,
however, this is not a recommended approach.

Fortunately, this is very simple to do. NSObject
implements a -respondsToSelector: method
that tests whether the receiver can handle
messages with a given selector.

This method is not just implemented by
NSObject, it’s also part of the NSObject
protocol. Other root classes will also implement
it. This is very important for forwarding.

This method, in NSObject, calls the
class_respondsToSelector() runtime function.
In other classes, the implementation is different.
If you use the runtime functions directly, then
you will have quite fragile code.

Most of the time, you want to know whether the
object that you are going to send the message
to can handle the message, not whether it has a
method that handles the message. These are the
same in some languages, such as C++, but in
Objective-C they are very different concepts.

Forwarding Messages

When you send a -respondsToSelector:
message to a proxy, it will test whether the real
object has a method for that selector. The object
wrapped by the proxy might be yet another
proxy, which will then forward the request.

You can also test for protocol conformance by
sending a -conformsToProtocol: message to a
class. Note that this only tests whether the class
was declared as adopting the protocol. Classes
can adopt protocols without implementing all

of their methods (although they shouldn’t),

but more commonly classes can implement all
of the methods in a protocol without explicitly
conforming to the protocol.

Forwarding Messages

dinterface Facade : NSObject
{
id delegate;
}
dend
dimplementation Facade
- (id)forwardingTargetForSelector: (SEL)aSel
{

return delegate;

i
- (void)forwardInvocation: (NSInvocation+)anInv
{
[anInv invokeWithTarget: delegatel];
+

dend

315

316

The Objective-C Runtime

From: forward.m

Messages in Objective-C are intended to be
similar to Smalltalk messages, rather than C
functions. They are late-bound and can be
introspected. At the lowest level, they are
implemented using C functions, but this is an
implementation detail. You can pretend that
messages are objects that are passed between
other objects, introspected, and then handled by
methods.

When you send a message to an object that

does not correspond to a method on that object,
there are still some ways for the object to handle
it. These have evolved a lot over the life of
Objective-C.

In old Objective-C code, the object’s -forward: :
method was called. This was a variadic method
and required the receiver to know the structure
of the stack frame. NeXT replaced this with
-forwardInvocation:. This method is passed
an object that encapsulates the message send.

The -forwardInvocation: mechanism is
very flexible, but it does not have particularly
good performance. Creating the object

and deconstructing the stack frame costs
several hundred times more than a normal
message send, meaning that you shouldn’t
use this mechanism in anything even vaguely
performance-critical.

If you use this forwarding mechanism,
then you must implement a

Forwarding Messages

-methodSignatureForSelector: method.
This returns an object that represents the
structure of the call frame associated with the
message. The NSInvocation class will use
this when creating an object encapsulating the
message.

With 10.5, Apple introduced a new, faster,
forwarding mechanism. If your object
implements a -forwardingTargetForSelector:
method, this will be called with the selector

for the missing method. It can then return an
object, and the message will be delivered to that
object instead.

Note: The two-stage message-sending
mechanism used by the GNU runtime does not
support this new mechanism, and neither do

old versions of the Apple runtime. If you use it,

it is a good idea to provide fallback code using
-forwardInvocation:. If you are using a recent
Apple runtime, or the GNUstep runtime with the
non-fragile ABI, you will get the benefit of extra
speed. If not, then your code will still work, it will
just be slow.

This makes things like the fagade pattern very
easy. You can quickly delegate any method
that you don’t understand to your delegate.

If you need to do some extra handling before
or after calling a delegate method, then just
implement that method and call the delegate

317

318

10
11
12
13
14
15
16
17
18
19
20
21
22

23

CHAPTER 19: The Objective-C Runtime
method explicitly.

Finding Classes

int classCount =
objc_getClassList(NULL, 0);
Class *classList =
calloc(classCount, sizeof(Class));
objc_getClassList(classList,
classCount);
for (int i=0 ; i<classCount ; i++)

{

[classes addObject:
NSStringFromClass(
classList[i])];

}

free(classList);

[classes sortUsingSelector:
@selector(compare:)];

From: classTree.m

There are two ways of finding an Objective-

C class. If you know the name, then you can
just use the NSClassFromString() function.
This takes a string object as the argument and
returns the class, or Nil if there is no registered
class with that name.

If you don’t know the name of the class, then
you need to do something different. There are a
few cases when you might want to know a class
but do not already know its name. For example,
if you have a plugin architecture, then you might
allow the user to specify bundles to load and
then want to collect all of the subclasses of a

Finding Classes

particular class, or all of the classes that conform
to a given protocol.

Note: When you are testing classes for

protocol conformance, it's a good idea to use

the runtime functions, rather than sending them

a +conformsToProtocol: message. Lots of
classes use +initialize for lazy initialization,

and sending them a message will cause this code to
be run even if you aren't actually using the class.

The objc_getClassList() function will give
you an array of classes. This takes two pointers
as arguments, one is the array that will be used
to return the classes, the other is the size of
the buffer. If you call it with NULL as the first
argument, then it won’t return any classes, but
it will let you know how many there are.

Once you have this array, you can iterate over it
and inspect the classes. In this example, I just
store the class names in an array and then sort
it. In the next section, you'll see how to take the
class names and print the instance variables and
methods for each class.

If you were searching for classes that conform
to a specific protocol, then you would instead
use the class_conformsToProtocol() function.
This will tell you whether the class conforms to
the specified protocol. If it does, then you can
add it to the list of loaded plugins.

319

320

CHAPTER 19: The Objective-C Runtime

Inspecting Classes

const char #name = [className UTF8String];
printf("%s\n\tIvars:\n", name);
Class cls = NSClassFromString(className);
unsigned int ivarCount;
Ivar =ivars =

class_copylIvarList(cls, &ivarCount);
for (unsigned int i=0 ; i<ivarCount ; i++)
{

printf("\t\t%s\n", ivar_getName(ivars[i]));
}
free(ivars);
unsigned int methodCount;
Method *methods =

class_copyMethodList(cls, &methodCount);
printf("%s\n\tMethods:\n", name);
for (unsigned int i=0 ; i<methodCount ; i++)
{

printf("\t\t%s\n",

sel_getName(method_getName(methods[i])));

From: classTree.m

Once you have a pointer to a class, either

by enumerating all classes, sending a

-class message to an object, or using
NSClassFromString(), you can inspect it. The
class structure contains a lot of information
about Objective-C classes, all of which is
available to the programmer.

With older runtimes, Class was a typedef for
struct objc_class, which was defined in a
header. On more modern systems, Class is an
opaque type and you are expected to interact
with it via a set of public functions. This makes

Inspecting Classes

it easier to evolve the ABI over time. The layout
of the class structure can be changed just by
modifying the compiler and runtime, without
needing changes to any other code.

The classTree.m example prints the instance
variables and methods for all of the classes in
the system. There is a lot more metadata that
you can access. For example, instance variables
store their type and the offset from the start of
the object.

This information is used in the implementation
of KVC. When you set a value for a key, and
KVC is permitted to directly access instance
variables, then it will first find an instance
variable with the matching name. It will then
find the type and determine whether it needs to
unbox the object. Finally, it will add the ivar
offset to the object pointer and then perform the
assignment at this address.

It does something similar with accessor methods.
Methods store their name, their types, and

their method pointer. The type information

is important, because it allows other code to
construct a call frame. By checking the types

of an accessor method, the KVC code can cast
the method pointer to the correct type and then
call it, setting or getting a particular property.
With the newer runtimes, there is metadata
stored for declared properties as well. Almost
anything that you set about a class can be
inspected by calling runtime functions. The only

321

322

© ® N v oA W N

CHAPTER 19: The Objective-C Runtime

thing that you can’t do is retrieve the source
code for individual methods.

Creating New Classes

#include <objc/runtime.h>

id fakeDealloc(id self, SEL _cmd, ...)
{

NSLog(@"%@ sent a -dealloc message", self);
}

void makeIndestructible(id obj)
{
Class new =
objc_allocateClassPair(obj->isa, "Fake", 0);
class_addMethod(new, @selector(dealloc),
fakeDealloc, "v@:");
objc_registerClassPair(new);
obj->isa = new;

From: newClass.m

Creating new classes at run time is quite rare,
but it does provide a lot of opportunities for very
dynamic behavior or optimization. We already
looked at a bit of the Foundation framework that
does this. The key-value observing mechanism
creates new classes to intercept accessor method
calls.

The most important thing about creating classes
at run time is that it demonstrates one of the
core principles of Objective-C; that nothing the
compiler does is magic. You can generate in

Creating New Classes

your own C code everything that the compiler
generates from Objective-C code. Of course,

the compiler will probably do a better job of
optimizing the result, and the Objective-C
version will be simpler. If this were not the case,
there wouldn’t be much point in Objective-C.

Creating a new class involves three steps.
First you allocate the class pair, then you add
methods, instance variables, and protocols,
and finally you register the class pair with the
runtime.

Note: The term class pair can seem confusing.
Every Objective-C class in your source code is
compiled to two classes at run time. An object

is an instance of the class, and the class is an
instance of the metaclass. Instance methods

are attached to the class and class methods are
attached to the metaclass. When you send a
message to the class, the metaclass is used to look
up the corresponding method.

When you allocate the class pair, you must
provide the superclass, the name of the new
class, and the amount of space added on the
end of the class structure. The name of the new
class must be unique. The example code for this
section will not work if you call the function
twice. The simplest way of working around

this is to keep a counter in a static variable,
increment it atomically every time that you

323

324

The Objective-C Runtime

create a new class, and append it to the class
name string.

The extra space on the end of the class can be
very useful when you combine class creation
with isa-swizzling. Changing the isa pointer
of an existing class lets you add methods,

but not instance variables. You can, however,
create some space on the end of the class
structure and store extra data there. Calling
object_getIndexedIvars() with the class as
the argument will give you the address of the
start of this data.

You can use this functionality to implement
other object models. I've used it, for example,
to add prototype-based object orientation to
Objective-C, allowing closures to be used as
methods and added to a single object.

Index

A

abstract superclass,
94

associative array,

143
auto-boxing, 200

autorelease pool,
65

bag, 142

blocks, 56, 147,
259

Bonjour, 293

boxing, 101
bundles, 239
C

C integers, 100

canonical locale,
109, 118

category, 35, 183

CF, see Core
Foundation

Clang, 13

class cluster, 93,
101, 119, 136,
138, 152

class extension, 37
class version, 82
closures, 56, 259

Cocoa bindings,
203

condition variables,
255

contention scopes,
248

Core Foundation,
114

D

declared properties,
39

326

Index

defaults domain,
178

delegation pattern,
63, 90

designated
initializer, 84

distributed objects,
289

DNS service
discovery, 293

DNS-SD, see DNS
service discovery

E

error delegate, 221
error domain, 224

error recovery
attempter, 224

event driven
programming, 97

exceptions, 210

F

fast enumeration,
120, 146

facade pattern, 91

filesystem domain,
242

format string, 130
forwarding, 316

G

garbage collection,
12

GCC, see GNU
Compiler
Collection

GDB, see GNU
debugger

gdb, see GNU
debugger

GNU Compiler
Collection, 10

GNU debugger,
131, 298

GNUstep runtime,
13, 89, 317

gnustep-config
tool, 15

Grand Central
Dispatch, 286

Index

ILP32, 100
IMP type, 22

informal protocols,
313

Instance Method
Pointer, 22

instance variables,
19

intrinsic types, 99

isa-swizzling, 206,
324

iterator, 146

ivars, see instance
variables

K

libdispatch, 267

libobjc2, see
GNUstep
runtime

LLVM, see Low
Level Virtual
Machine

Low Level Virtual
Machine, 13

LP64, 100

M

key paths, 202

key-value coding,
144, 195

key-value
observing, 195

KVC, see key-value
coding

KVO, see key-value
observing

map, 143

mDNS, see
multicast DNS

memory
management
unit, 228

message
forwarding, 316

metaclass, 323

MMU, see memory
management
unit

multicast DNS, 293

327

328

Index

mutable subclass
pattern, 21, 136

mutex, see mutual
exclusion lock

mutual exclusion
lock, 251

N

nonatomic, 41
notification, 273

NSApplication
class, 167

NSArchiver class,
81

NSArray class, 20,
137

NSAssert() macro,
305

NSAssertion-
Handler class,
305

NSAttributedString
class, 134

NSAutoreleasePool
class, 65, 131

NSBundle class,
239, 243

NScCalendar class,
161, 166

NSCAssert()
macro, 305

NSCharacterSet
class, 111, 125

NSCoder class, 183

NSCoding protocol,
81, 183

NSComparisonRe-
sult type,
117

NSConditionLock
class, 256

NSControl class, 91

NSCopying
protocol, 79, 143

NSCountedSet
class, 142

NSData class, 124,
228

NSDate class, 158

NSDateCompo-

nents class, 162,
166

NSDateFormatter
class, 161, 165

NSDecimal type,
106

NSDecimalNumber
class, 106

NSDictionary class,
196, 217, 233

NSDistantObject
class, 290

NSDistributed-
Notification-
Center class,
279

NSDocument class,
193

NSEnumerator
class, 146

NSError class, 174,
224

NSException class,
214, 302

NSFast-
Enumeration
protocol, 146

NSFileHandle class,
97, 221, 229,
284

NSFileManager
class, 227, 230,
233

Index

NSFont class, 134

NSIndexSet class,
139

NSinteger type,
100

NSInvocation class,
45, 167, 291,
317

NSLocale class,
190

NSLog() function,
132, 306

NSMutableArray
class, 19, 137

NSMutableCopying
protocol, 129,
136

NSMutableString
class, 128

NSNetService
class, 293

NSNetService-
Browser class,
294

NSNotification
class, 276

329

330

Index

NSNotification-
Queue class,
277

NSNull class, 138

NSNumber class,
94, 102, 200

NSObject class, 20,
30, 34, 60, 84,
131, 197

NSObject
debugging
support, 299

NSObject protocol,
314

NSProcessinfo
class, 185

NSPropertyList-
Serialization
class, 172, 174,
177

NSProxy class, 30,
34

NSRecursiveLock
class, 251

NSRunLoop class,
65, 97, 167, 257,
280, 291

NSScanner class,
110, 166

NSSet class, 141

NSStream class,
223, 287

NSString class,
119, 142, 234

NSTask class, 187

NSThread class,
246

NSTimelnterval
type, 157

NSTimer class, 97,
166

NSUserDefaults
class, 178, 189

NSValue class, 101
NSView class, 91

NSWorkspace
class, 227

NSZombie class,

300
NSZone type, 76

0]

Objective-C
runtime library,
10, 309

Objective-C type
encoding, 102

P

plutil tool, 177

premature
optimization, 116

primitive methods,
96

property lists, 80,
131, 279

pure virtual
methods, 154

R

reference date, 158

replace methods,
36

resumable
exceptions, 221

run loop, 97, 167,
180, 294

S

SEL type, 21, 27

selector, 27, 45,
311, 316

Index 331

singleton pattern,
87, 94, 231

string objects, 113

sudden
termination, 192

T

thread dictionary,
232

toll-free bridging,
114

two-stage creation
pattern, 76

typed selectors, 55
U

UlApplication class,
167

unichar type, 114
\'

variadic function,
130

variadic method,
131, 138

virtual function
tables, 3

332

Index

vtables, see virtual
function tables

W

X

weak class
references, 312

workspace process,
227

XCode, 16, 298

V4

zero-cost exception
handling, 212

zeroing weak
references, 72

	Table of Contents
	Introduction
	1 The Objective-C Philosophy
	Understanding the Object Model
	A Tale of Two Type Systems
	C Is Objective-C
	The Language and the Library
	The History of Objective-C
	Cross-Platform Support
	Compiling Objective-C Programs

	2 An Objective-C Primer
	Declaring Objective-C Types
	Sending Messages
	Understanding Selectors
	Declaring Classes
	Using Protocols
	Adding Methods to a Class
	Using Informal Protocols
	Synthesizing Methods with Declared Properties
	Understanding self, _cmd, super
	Understanding the isa Pointer
	Initializing Classes
	Reading Type Encodings
	Using Closures

	3 Memory Management
	Retaining and Releasing
	Assigning to Instance Variables
	Avoiding Retain Cycles
	Autorelease Pools
	Using Autoreleased Constructors
	Autoreleasing Objects in Accessors
	Supporting Automatic Garbage Collection
	Interoperating with C
	Using Weak References
	Allocating Scanned Memory

	4 Common Objective-C Patterns
	Supporting Two-Stage Creation
	Copying Objects
	Archiving Objects
	Creating Designated Initalizers
	Enforcing the Singleton Pattern
	Delegation
	Providing Façades
	Creating Class Clusters
	Using Run Loops

	5 Numbers
	Storing Numbers in Collections
	Performing Decimal Arithmetic
	Converting Between Strings and Numbers
	Reading Numbers from Strings

	6 Manipulating Strings
	Creating Constant Strings
	Comparing Strings
	Processing a String One Character at a Time
	Converting String Encodings
	Trimming Strings
	Splitting Strings
	Copying Strings
	Creating Strings from Templates
	Storing Rich Text

	7 Working with Collections
	Using Arrays
	Manipulating Indexes
	Storing Unordered Groups of Objects
	Creating a Dictionary
	Iterating Over a Collection
	Finding an Object in a Collection
	Subclassing Collections

	8 Dates and Times
	Finding the Current Date
	Converting Dates for Display
	Calculating Elapsed Time
	Parsing Dates from Strings
	Receiving Timer Events

	9 Working with Property Lists
	Storing Collections in Property Lists
	Reading Data from Property Lists
	Converting Property List Formats
	Storing User Defaults
	Storing Arbitrary Objects in User Defaults

	10 Interacting with the Environment
	Getting Environment Variables
	Parsing Command-Line Arguments
	Accessing the User’s Locale
	Supporting Sudden Termination

	11 Key-Value Coding
	Accessing Values by Key
	Ensuring KVC Compliance
	Understanding Key Paths
	Observing Keys
	Ensuring KVO Compliance

	12 Handling Errors
	Runtime Differences for Exceptions
	Throwing and Catching Exceptions
	Using Exception Objects
	Managing Memory with Exceptions
	Passing Error Delegates
	Returning Error Values
	Using NSError

	13 Accessing Directories and Files
	Reading a File
	Moving and Copying Files
	Getting File Attributes
	Manipulating Paths
	Determining if a File or Directory Exists
	Working with Bundles
	Finding Files in System Locations

	14 Threads
	Creating Threads
	Controlling Thread Priority
	Synchronizing Threads
	Storing Thread-Specific Data
	Waiting for a Condition

	15 Blocks and Grand Central
	Binding Variables to Blocks
	Managing Memory with Blocks
	Performing Actions in the Background
	Creating Custom Work Queues

	16 Notifications
	Requesting Notifications
	Sending Notifications
	Enqueuing Notifications
	Sending Notifications Between Applications

	17 Network Access
	Wrapping C Sockets
	Connecting to Servers
	Sharing Objects Over a Network
	Finding Network Peers

	18 Debugging Objective-C
	Inspecting Objects
	Recognizing Memory Problems
	Watching Exceptions
	Asserting Expectations
	Logging Debug Messages

	19 The Objective-C Runtime
	Sending Messages by Name
	Finding Classes by Name
	Testing If an Object Understands a Method
	Forwarding Messages
	Finding Classes
	Inspecting Classes
	Creating New Classes

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

