

Objective-C for
iPhone® Developers
A Beginner’s Guide

James A. Brannan

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright
Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-170329-1

MHID: 0-07-170329-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-170328-4, MHID: 0-07-170328-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and
to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right
to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of
liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

For my wife and kids.

About the Author
James A. Brannan has more than 15 years of experience
working in IT. He has programmed using everything from
AWK to Objective-C, including stints as a web designer
and Oracle PL/SQL developer. He currently works full time
independently on both his own and clients’ iPhone and iPad
projects. He is only 999,700 dollars from being the next App
Store instant millionaire.

About the Technical Editor
Billy Myers has been programming for about 15 years, and
his most recent work of note is his task manager program
for the iPhone called To Do’s by AustinBull Software, which
is one of the most popular free task managers available in
Apple’s App Store. He began writing code in junior high and
high school, and is now working on completing a second
degree in Computer Science at Texas A&M Commerce in
Commerce, TX.

Contents at a Glance

 1 Exploring the iPhone SDK and Basic Programming 1

 2 Primitive Data Types and Operators . 27

 3 Flow Control Statements, Arrays, and Structures . 47

 4 Classes, Objects, and Messaging . 75

 5 Memory Management and Properties . 111

 6 Inheritance . 145

 7 Protocols and Categories . 173

 8 Some Foundation Framework Classes . 213

 9 File Handling . 237

 10 Property Lists, NSCopy, and Archiving . 265

 11 Selectors and Targets . 295

 12 The Model-View-Controller Design Pattern . 315

 Index . 353

v

This page intentionally left blank

vii

Contents

ACKNOWLEDGMENTS . xi
INTRODUCTION. xiii

 1 Exploring the iPhone SDK and Basic Programming 1
Downloading the SDK . 3
Documentation and Getting Help . 5

SDK Documentation . 5
Apple’s Online Documents and Forums . 6
Google . 6
Wikipedia . 6
The iPhone Dev SDK Forum . 7

Basic Programming Concepts Using C . 10
A Simple C Program . 10
Variables . 12
Functions . 13
Objective-C’s Main Method . 15
Header Files and Source Files . 18

Pointers . 21
Xcode Fundamentals . 21

Configuring Xcode’s Display . 23
Exploring Xcode Further . 26

 viii Objective-C for iPhone Developers: A Beginner’s Guide

 2 Primitive Data Types and Operators . 27
Primitive Data Types . 28

Numeric Types: Integers . 29
Numeric Types: Float and Double . 33
Characters . 35
The BOOL Data Type . 36

Operators . 36
Arithmetic Operators . 36
Unary Operators . 38
Equality and Logical Operators . 39
Assignment Operators . 40
Data Type Conversions . 41

The UIWindow Application Template . 42

 3 Flow Control Statements, Arrays, and Structures . 47
Boolean Expressions . 49
Looping . 50

The For Loop . 50
The While Loop . 51
The Do While Loop . 52

True or False and BOOL . 56
Conditional Statements . 56

The If Statement . 57
The If Else Structure . 59
The If Else If Else Structure . 59
The Switch Statement . 61
The Break and Continue Statements . 64

Arrays and Structures . 65
Arrays . 66
The Struct Keyword . 68

The UIViewController’s Life-Cycle Methods . 71

 4 Classes, Objects, and Messaging . 75
Object-Oriented Programming vs. Procedural Programming . 77
Procedural Programming . 77
Object-Oriented Programming: Classes and Objects . 79

Object-Oriented Analysis . 81
Classes and Objects . 82

Objective-C Classes . 83
The @interface . 83
The @implementation . 84

Object-Oriented Programming: Behavior . 84
Class Interaction . 85
The @class Directive . 90

 Contents ix

Methods and Messaging . 95
Class and Instance Methods . 96
Allocating and Initializing Objects . 99
Initializing Objects . 100
Writing Custom Initializers . 100
Multiple Argument Methods . 103

 5 Memory Management and Properties . 111
Memory Management . 112

Manual Memory Management . 113
Encapsulation and Memory Management . 121
Properties . 125

Declaring Properties . 125
Dot Notation . 126
Property Attributes . 127

Ownership and Properties Revisited . 131
Autorelease and Pools . 132

Autorelease and Custom Classes . 133
IBOutlet and Interface Builder . 138
Deallocating and Nil Revisited . 143

 6 Inheritance . 145
Inheritance . 146

Inheritance Explained . 146
Ancestry Inheritance . 156
Inheriting Properties . 156
Extension . 159
Overriding Methods . 162

Replacing a Parent’s Method . 162
Extending a Parent’s Method . 163

No Overriding Instance Variables and No Overloading . 166
No Overriding Instance Variables . 167
No Method Overloading . 167

Inheritance and UIViewController . 168

 7 Protocols and Categories . 173
Protocols . 174

Modeling Protocols . 175
Syntax . 175
Adopting a Protocol . 176
Properties and Protocols . 186
Optional Methods . 188
Protocols and id . 192
Adopting Multiple Protocols . 193
Extending Protocols . 197
Protocols and Delegates in UIKit . 201

 x Objective-C for iPhone Developers: A Beginner’s Guide

Categories . 207
Categories Explained . 208

 8 Some Foundation Framework Classes . 213
NSString and NSMutableString . 215
NSNumber . 220
NSDate and NSDateFormatter . 222

Collections . 224
NSArray and NSMutableArray . 224
NSEnumerator and Fast Enumeration . 228
NSDictionary and NSMutableDictionary . 231

 9 File Handling . 237
iPhone Directories . 238

NSHomeDirectory . 239
NSSearchPathForDirectoriesInDomains . 239
NSTemporaryDirectory . 240
NSBundle . 240

File Handling . 241
NSFileManager . 241
NSString, Paths, and Text Files . 248
NSData . 254

 10 Property Lists, NSCopy, and Archiving . 265
Property Lists . 266

Writing a Property List . 267
Reading a Property List . 268

Archiving . 278
NSCoding Protocol . 279
NSKeyedArchiver and NSKeyedUnarchiver . 279

 11 Selectors and Targets . 295
Selectors . 296

Delaying a Selector or Running in Background . 300
Notifications . 301

Delegates . 307
Target-Action . 311

 12 The Model-View-Controller Design Pattern . 315
The Model-View-Controller Design Pattern . 316
Persistence . 324

Multiple Xibs . 328

 Index . 353

xi

Acknowledgments

Thanks to all the folks who helped me with this book—particularly the technical editor,
Billy Myers, who had infinite patience when correcting my memory leaks over and

over again. Thanks to Neil Salkind, my book agent, for helping keep my foot out of my
mouth and finding the opportunity for me to write this book. Also, thanks to the entire
McGraw-Hill staff, including: Emilia Thiuri, Joya Anthony, Roger Stewart, Janet Walden,
Robert Campbell, and the rest of the staff. And of course, as always, thanks to Everaldo
and his open-source Crystal Project icons (www.everaldo.com). Your icons truly add
the finishing touch to my books and software. Finally, thanks to the high-school student,
Daniel Shaffer, for letting me profile him in the book’s introduction.

www.everaldo.com

This page intentionally left blank

xiii

Introduction

Apple opened the App Store on July 11, 2008. Since then it has offered over 100,000
 Apps. An App’s price can range from free to $999.99 U.S. Individuals, small

companies, and large companies can all release Apps on the App Store. The App Store
truly makes software development a cottage industry for many developers.

But you must remember that the iPhone, iPod touch, and iPad are all computers.
Computers require programs to make them do something interesting. Apple’s language of
choice is Objective-C, a superset of C. In this book, the goal is getting you comfortable
with basic programming, the C programming language, and the Objective-C programming
language.

About This Book
This book’s focus is Objective-C, not developing iPhone applications using the iPhone
SDK. However, it uses the iPhone SDK to teach Objective-C. Throughout the book you
use simple iPhone SDK template applications to illustrate the chapter’s presented topics.
The goal is that by the book’s end, you will be knowledgeable and comfortable enough
with Objective-C and the iPhone SDK to begin working through an iPhone SDK book
such as my iPhone SDK Programming: A Beginner’s Guide (McGraw-Hill/Professional,
2009).

 xiv Objective-C for iPhone Developers: A Beginner’s Guide

Each Chapter’s Content
Chapter 1 begins the book by exploring the iPhone SDK and presenting a few basic
programming concepts. You must be a registered iPhone developer to download and
begin using the SDK. You must be a paid developer to test applications on your device
and to upload applications to the App store. You should note that in this book, I present no
examples requiring paid membership; all projects are developed for the iPhone simulator
only.

After presenting the essentials, Chapter 1 then jumps into a crash course on beginning
programming using the C programming language. The material is terse, so if you have
never programmed before, you should consult some of the other referenced material in the
chapter for more help.

Chapters 2 and 3 discuss basic programming concepts in Objective-C. The material
should be familiar to you if you have some C or Java experience. Chapter 2 begins the
book’s Objective-C coverage by discussing the language’s primitive data types and
operators. As Objective-C is a superset of C, if you know some C, then much of the
material should prove familiar. Chapter 3 discusses Objective-C’s flow control statements,
arrays, and structures. This chapter, much like Chapter 2, should be familiar to you if you
have some C programming experience.

Chapter 4 begins Objective-C’s departure from standard C by discussing classes,
objects, and messaging. The chapter begins by demonstrating procedural programming
and then switches to object-oriented programming. It also uses simple Unified Modeling
Language (UML) diagrams throughout to help illustrate the chapter’s content.

Chapter 5 discusses memory management and properties. If you come from a Java
or scripting language background such as PHP or ColdFusion, then you would be well
advised to pay particular attention to this chapter. You must understand Objective-C’s
memory management if you wish to program quality iPhone applications. Remember, the
iPhone has much less memory than a desktop computer; if you fail to manage memory
properly, your application will crash when running on an iPhone.

Chapters 6 and 7 explore object-oriented programming using Objective-C. Chapter 6
explores the object-oriented principle of inheritance. Inheritance allows much code reuse
and makes your programs easier to build, debug, and maintain. Chapter 7 discusses
Objective-C’s protocols and categories. If you are familiar with Java, then simply think of
protocols as interfaces; they are fundamentally the same concept. Categories, though, are
something of an afterthought in Objective-C and have no corresponding Java construct.
Categories let you arbitrarily extend a class’ functionality without inheriting from the
class. If this doesn’t make sense, it should by the end of Chapter 7.

Chapters 8, 9, and 10 introduce you to several Foundation framework concepts.
Beginning with Chapter 8, the book diverges from presenting Objective-C language
concepts and begins presenting fundamental classes and concepts for programming for
the iPhone. These classes are all part of the Foundation framework, a collection of Apple-
provided code that makes writing applications easier. The concepts presented are tailored
to iPhone development, so no desktop-only classes or concepts are discussed. Chapter 8
explores several Foundation framework classes. These classes make string manipulation,
managing collections of objects, and reading and writing from files much easier. Chapter 9
presents the Foundation framework classes used for reading and writing to files. The
chapter also discusses the iPhone directories you have available and provides specific
code examples for working with those directories. Chapter 10 continues presenting
Foundation framework classes. In this chapter you learn about property lists, the NSCopy
protocol, and how to archive and de-archive your application’s objects to a file.

Chapter 11 introduces you to selectors and targets. Selectors and targets are initially
one of Objective-C’s more confusing aspects. However, you should take the time to
carefully learn these concepts, as they allow significant programming flexibility. In
essence, what these concepts allow is for a program to dynamically decide at runtime
what objects and methods to call. If you are familiar with Java’s reflection, then selectors
should not appear foreign. In fact, having worked extensively with both, I find using
Objective-C’s selectors and targets much easier than working with Java’s reflection.

Chapter 12 returns to basic object-oriented principles by discussing the Model-
View-Controller (MVC) design pattern. I end the book with the MVC for good reason.
It is fundamental to how you write programs for the iPhone SDK. Moreover, this design
pattern has a rich history and is arguably the single most influential concept leading to the
Mac and Windows operating systems. Without MVC, we just might still all be using DOS
prompts.

Accompanying Tutorial Videos
This book is only one of many books recently released on the Objective-C programming
language. Moreover, it is relatively late to arrive, as there are several other high-quality
beginner books already on the shelves. So why buy this book? First, as the author, of
course I believe this book to be superior to the other books. But more objectively, this
book offers video tutorials for all its Try This examples. Oftentimes, steps get lost in a
numbered list of printed steps. Moreover, small details are often missed. By offering video
tutorials, I hope to reinforce the tutorials presented in the book.

 Introduction xv

 xvi Objective-C for iPhone Developers: A Beginner’s Guide

The tutorials are available through my web site at www.jamesabrannan.com and are
offered free of charge. Links to the video and the Xcode projects are provided. The videos
themselves are hosted on Vimeo at www.vimeo.com. You can watch the embedded videos
online; however, if you wish to download the video to watch offline, you need to sign up
as a Vimeo member. Vimeo’s basic membership is free.

The tutorials are also packaged as both an iPad application and an iPhone/iPod touch
application. Both are downloadable from Apple’s App Store for a nominal charge. The
App bundles all the videos into an organized tutorial that follows the book’s Try This
steps. You should note, though, that the written Try This steps are not presented in the
App. For that you should buy the book. The tutorial Apps are intended as a supplement
to this book, not a replacement. As an aside, I know that as a reader, I rarely actually
complete a book’s tutorials. Well, in this book you don’t have to; you can just watch them
after reading the steps. Of course, officially, I recommend completing all examples using
Xcode.

Realistic Expectations
You are probably not going to get rich writing iPhone Apps. The iPhone App Store is
maturing, and instant sales because of the App Store’s novelty is no longer the norm.
Or is it? Before I try to instill an understanding of what I consider reality, consider an
application like “Pocket Girlfriend” by Atrium Designs LLC.

www.jamesabrannan.com
www.vimeo.com

The application is rated two-and-a-half stars. A typical review says, “it blows” or
“don’t buy” or “a waste.” Of course, there are 7728 reviews as of December 12, 2009,
and at 99 cents a download, that is over $3500 earned from people who hate the game.
Moreover, for every review, there are probably countless folks who bought the App and
didn’t leave a review. Not bad for a product that folks universally condemn as dumb and a
waste of time. The reviews literally warn you not to buy it, but folks—presumably men—
do anyway.

But before you say, “aha, sex sells,” search the App Store using the keyword “girls.”
You will be disappointed; there are pages of time-wasting Apps featuring bikini-clad
figures, most of which make the authors little to no money. So even if you do write the
next “virtual girlfriend” App, having it stand out from all the others will prove difficult
and time consuming. That’s the App Store’s reality. Moreover, every few months you hear
of Apple purging the store of questionable material, so why risk it?

Getting noticed these days requires a quality product, with advertising and exposure.
Although there are exceptions, you should approach iPhone development with a realistic
perspective. Getting rich writing iPhone Apps requires hard work. Moreover, the quality
of your App doesn’t necessarily ensure success. Just like any other product in any other
market, these days, most Apps require advertising. And advertising is not cheap. And even
then, chances are, you will not earn enough money to quit your job or drop out of school.
At least not immediately.

Getting rich writing an App presupposes a quality App. Writing a quality App requires
understanding the iPhone SDK and Cocoa Touch. Understanding the iPhone SDK and
Cocoa Touch requires understanding basic Objective-C. So before you rush out and
buy a book on “opening your iPhone business” you should first learn Objective-C’s
fundamentals. This book teaches those fundamentals.

A Teen Developer
But you can make money on the App Store; even if you’re in high school, with your
parents’ support, you can sell Apps on Apple’s App Store. Daniel Shaffer, a senior in high
school in NYC, has made over $14,000 and has sold over eleven Apps. His Apps include
iMprint illusions, Utilitybox, and several others.

 Introduction xvii

 xviii Objective-C for iPhone Developers: A Beginner’s Guide

Now true, 14K is not enough to support a family, but it beats working at the local
burger joint while in high school. At the very least, you can make enough money to help
pay for your hobby, and perhaps more.

Summary
Hopefully I wasn’t too discouraging. But you should have realistic expectations before
setting out to learn iPhone programming. The iPhone is a computer, and computers require
computer programming created using a computer language to get them to do something.
The iPhone OS X operating system uses Cocoa Touch, which is written using Objective-C.
Before developing an iPhone application of any complexity, you must have a basic
understanding of Objective-C.

In this book you learn Objective-C, not the iPhone’s SDK in depth. But you are
probably excited to begin programming the iPhone immediately, and so this book uses
very basic iPhone applications to illustrate Objective-C principles. You will not gain
a good understanding of the UIKit and how to develop a complex App, but you will
understand how to write a simple, single-view iPhone application. And more important,
you will obtain a solid understanding of Objective-C, as it applies to the iPhone SDK.

1

Chapter 1
Exploring the iPhone
SDK and Basic
Programming

 2 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Downloading and Installing the iPhone SDK

● Understanding Where to Get Help

● Understanding Basic Programming Concepts Using C

● Reviewing C’s Pointers

● Writing a Basic Objective-C Program in Xcode

● Understanding Where to Get More Information on Xcode

This chapter covers several topics needed prior to delving into Objective-C. The first
topic discussed is how to join the iPhone Developer’s Center. The chapter then

discusses several resources you can use to help you as you learn Objective-C and iPhone
programming. Chances are, you are ready to begin programming now, and not when
you have completed this book. So rather than waiting until the book’s end, I list several
resources up front. These resources are invaluable for both beginners and more advanced
developers, and they will help you get started immediately.

After covering the SDK and online resources, the chapter begins its Objective-C
discussion by discussing C. In this chapter, though, I only discuss the most basic C
concepts. For instance, I briefly discuss header files, preprocessor statements, comments,
and C pointers. The chapter does not do any single subject justice, and you should seek
out other beginner resources on C programming if you have never programmed using
C. However, if you can follow and understand this chapter’s simple examples, then you
should have no problems with the remainder of this book. Objective-C is much more
intuitive than C.

I do not presume that you know C or Java. However, writing a complete beginner’s
book, geared toward a novice, is a difficult task, and I’m afraid this book by itself might
be insufficient if you have never written a computer program before. So to help you
understand basic programming better, I reference several resources you might consult if
you have never programmed. These resources, combined with this book, should hopefully
prove sufficient for you to begin learning how to program. Programming the iPhone is
great fun, but Objective-C is not the easiest language for a beginner to learn.

 Chapter 1: Exploring the iPhone SDK and Basic Programming 3

After reviewing some basic C concepts, this chapter takes a brief Xcode tour. This tour
is not comprehensive, though. Its purpose is to merely introduce Xcode. I also instruct you
in configuring Xcode so that it matches the configuration used in this book. If you know
a little about debugging and using debuggers, you will notice this chapter does not cover
using Xcode’s debugger. This chapter’s purpose is simply to provide enough information
for you to begin using Xcode to complete this book’s Try This projects.

Downloading the SDK
I’m not going to begin this chapter by providing step-by-step instructions on downloading
the SDK. I’m certain you have the skills required to go to Apple’s web site and determine
how to register, download, and install the iPhone SDK. But I will help you get started. You
should then find Apple’s online installation instructions sufficient. As with most software,
you can find installation instructions in the download’s “readme” file (Figure 1-1).

NOTE
Installing the iPhone SDK requires an Intel-based Mac running OS X.

Before downloading the software, register as a developer at Apple’s iPhone Dev
Center (Figure 1-2). The URL is http://developer.apple.com/iphone. Registration is free
and allows you to download and install the SDK. Membership also provides access to
resources such as the iPhone SDK developer’s forum. If not a member already, you should
register now.

If you wish to install applications on your iPhone or iPod Touch, you must also join
the Individual iPhone Developer Program. Membership in this program is 99 dollars

Figure 1-1 Apple’s installation instructions

http://developer.apple.com/iphone

 4 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 1-2 The iPhone SDK Dev Center

 Chapter 1: Exploring the iPhone SDK and Basic Programming 5

and allows you access to the iPhone Developer Program Portal. Here you will find all
the information needed to install applications on your device and how to submit your
application to the App Store. You should pay the membership fee and enroll if you wish to
write programs you can run on your iPhone or iPod Touch.

In this book, only the free membership in the iPhone Dev Center is required. You will
not write any applications that use the Accelerometer, the iTunes media player, or any
other API that requires installing the application on a device to run.

TIP
Before continuing, if you have not registered with the iPhone Dev Center, do so now.
Then download and follow the instructions for installing the iPhone SDK. When this is
complete, continue reading.

Documentation and Getting Help
If you are just beginning programming, I have a secret to tell you. Most developers
are not necessarily all-knowing on the language for which they are developing, the
author included. A senior developer might claim in his or her book’s bio to have had
experience with OS X since in diapers, but in reality, most have not. What these senior
developers have learned, though, are the broader principles behind programming. They
have also learned how to access online help and distinguish between good help and bad
help. Moreover, they can translate the help into reaching their own particularly needed
solution. But believe me, except for the rare genius, a senior developer is not writing a
program by accessing his or her brain’s vast encyclopedic knowledge without consulting
documentation. I still have to consult my last book, iPhone SDK Programming: A
Beginner’s Guide (McGraw-Hill Professional, 2009), when writing iPhone applications.
There are simply too many things to know about the iPhone SDK for me to have
remembered them all. Keeping these limitations in mind, here are some information
sources I reference frequently.

SDK Documentation
The iPhone SDK comes with considerable documentation. Download it and read
it—books like the one you are reading now should supplement and not replace the
documentation. And if you prefer a book’s familiarity, the documentation has links
to related Apple manuals that are freely downloadable as PDFs. In fact, most of what
you need to know about Objective-C, the iPhone SDK, and Cocoa are covered in these
documents.

 6 Objective-C for iPhone Developers: A Beginner’s Guide

TIP
In the United States, the FedEx Store (formerly Kinko’s) charges about five dollars to
bind documentation. Print Apple’s PDF documents as you need them and have them
bound. As my wife will attest, I have these coil-bound documents scattered throughout
my home office, kitchen, bathroom, and bedroom. The printed documentation is
invaluable, as last time I checked, you would be ill-advised to take a PDF on your laptop
in the bath with you to read.

Apple’s Online Documents and Forums
Apple’s iPhone Dev Center contains all the documentation needed to begin. It also has
example applications that you can download. These applications are good as both learning
tools and sources to glean source code from for your own applications (provided you
comply with Apple’s code licensing). The site also features important content and lets you
search the site for specific content.

The iPhone Development forum on Apple’s site is another vital location for information.
These forums are where a developer can ask for help with specific problems he or she
might be having. Other developers then reply with solutions to the problem. You can
often find a solution to your problem by searching through previously solved problems
other developers might have had. You should note that Google does not seem to index
this forum very well, and so you cannot rely upon Google finding specific posts in these
forums. But the forum is particularly useful, as Apple has staff members who regularly
respond to many postings, so when faced with a problem, you should visit the forums, as
chances are someone else already had the problem and somebody posted an answer to it.

Google
Despite Apple’s comprehensive information, I usually “google” when faced with a
problem or I have a question about technology. Google searches usually return the
relevant documentation, any tutorials or blogs discussing the issue, and forum posts from
others with the same question you might have. The iPhone is currently a hot topic; you
will find many resources on the web. But be certain the information is current, as the
iPhone SDK has changed dramatically since its inception and will continue changing.

Wikipedia
Although Wikipedia contains much dubious information about your favorite actors and
athletes, its information on technology is usually accurate and in-depth. Its C coverage is

 Chapter 1: Exploring the iPhone SDK and Basic Programming 7

very good (Figure 1-3). Many times you will find yourself needing to understand some
simple C concept; Wikipedia is a good starting point for information on C.

Wikipedia also has some information on Objective-C. But the information is mostly
limited to fundamental Objective-C and not Apple’s particular flavor. You are better
served going to Apple’s developer site directly for any information related to Objective-C.

The iPhone Dev SDK Forum
The iPhone Dev SDK Forum, www.iphonedevsdk.com/forum, is my favorite location
for tutorials, asking questions, and conducting research on all things related to iPhone
programming (Figure 1-4). It has forums where both advanced developers and beginners

Figure 1-3 Wikipedia is a good source for C information.

www.iphonedevsdk.com/forum

 8 Objective-C for iPhone Developers: A Beginner’s Guide

can have their questions answered. It even has threads discussing other developers’
experiences submitting their applications to the App Store. This is invaluable, as you learn
firsthand what causes Apple to reject an application. You should bookmark this resource,
as I have found that any question I have has usually already been addressed on this site.

Figure 1-4 The iPhone Dev SDK forum

 Chapter 1: Exploring the iPhone SDK and Basic Programming 9

Figure 1-5 Advertisements for a few iPhone Apps

Q: Can I really write and sell an App on the App Store?

A: Yes, you can. Notice the applications listed at the page’s top in Figure 1-5. After reading
this book, there are several applications listed there that you could write if you wanted.
If you do not have the skills required to make your iPhone belch, pass gas, or display a
simple interface by this book’s end, I will personally reimburse your purchase price. Easily
programmed Apps with dubious value litter the App Store. You can write one too.

There is little barrier to your writing and selling Apps on Apple’s App Store. For
instance, consider my application, iStockMonkey (Figure 1-6).

To many, myself included, this application probably seems useless. You shake your
iPhone and it randomly selects a stock. You then click the banana with a check mark
and it fetches the stock from a free stock-quote web service. And that is all it does. The
application only took a weekend; the only difficult part was making the picker spin
automatically and calling the web service, and of course I had to randomly select a
stock. But, point is, it is a simple, silly application that took a weekend. Moreover, even
though I wrote it in August 2009, nobody else had thought of it first.

So yes, you can write Apps to sell on the App Store with little experience. Moreover,
there are still original ideas that have not yet been implemented.

Ask the Expert

TIP
Before you begin writing useless applications, note that the App Store’s novelty has
worn off; many novelty applications are falling flat. Apple is even rejecting some
novelty applications outright these days.

 10 Objective-C for iPhone Developers: A Beginner’s Guide

Basic Programming Concepts Using C
Enough on iPhones that break wind; this is a book on Objective-C! If you wish to write
iPhone Apps, you must know Objective-C. Objective-C is not hard, but its ancestor, C, is.
Luckily, you need to understand only a few basic programming principles before getting
started. In this section, I cover these principles.

TIP
If you have never programmed, a good reference is Absolute Beginner’s Guide to C
by Greg Perry (Second Edition, Sams, 1994). It teaches programming and C at about
the right level needed for this book. Try working through that book concurrently with
this book. Also, if you do not wish to purchase a beginner’s book on C, a good online
tutorial is “How C Programming Works” on the howstuffworks web site
(http://computer.howstuffworks.com/c.htm).

Objective-C is a superset of C. By calling Objective-C a superset, I mean that Objective-
C is C, with a few additions. Those few additions make Objective-C a fully functional object-
oriented programming language. Code usable in a C program is also usable in Objective-C. In
fact, you can freely mix C code in Objective-C, which you do throughout this book.

A Simple C Program
A computer program is an instruction list for a computer to follow. You write the program
using a language such as C or Objective-C. After writing the program, you compile

Figure 1-6 iStockMonkey

http://computer.howstuffworks.com/c.htm

 Chapter 1: Exploring the iPhone SDK and Basic Programming 11

Try This

the program. Compiling the program translates your human-readable code into machine-
readable code. Figure 1-7 illustrates the workflow involved in writing and compiling a
simple C program.

You first must write the text file containing the program’s code. After finishing, you
then compile the program using a compiler. In Figure 1-7 you are using the Gnu C Compiler
(GCC), which comes standard in most UNIX and Linux operating systems (Mac OS X is
a UNIX variant). The compiler preprocesses the text file and then compiles it. Usually a
program will use other, already-compiled code (called libraries), and so the compiler links
the program to the needed libraries. The final result is an executable program.

Writing a Simple C Program
 1. Open TextEdit and create a new file. Copy the code in Listing 1-1 to the file. From

TextEdit’s menu, select Format | Make Plain Text. Save the file as helloworld.c. Be
certain to save the file to your home directory. The home directory is the directory
named your username. For instance, my home directory is jamesbrannan.

 2. Navigate to your computer’s Utilities and open the Terminal application (Terminal.app
in the Utilities folder). Then, using the terminal’s command line, navigate to the folder
where you saved the file. On my computer, for instance, I type cd ~ to navigate to my
home directory.

 3. Type gcc helloworld.c –o helloworld to compile the program.

 4. Execute the program by typing ./helloworld.

Figure 1-7 Workflow for a simple C program

(continued)

 12 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 1-1 The helloworld program

#include <stdio.h>
int main(void) {
 printf("Hello World\n");
 return 0;
}

Every C program must have exactly one main function. This function is the first
method called by the operating system when running the program. The { and } symbols
delineate a code block. The printf function sends output to the terminal. In Listing 1-1,
the printf function writes “Hello World” to the terminal. When complete, main returns
zero, signifying success to the operating system.

Variables
Variables are locations in memory that hold values. When you create a variable, you are
telling the computer you wish to store something at that location in memory. Variables
have a name and a type. For instance, the following declares a variable named myvar of
type int:

int myvar;

You learn more on Objective-C’s primitive types in Chapter 2. For now, simply realize
an int is an integer, or a whole number.

You can also assign a variable a value.

myvar = 2;

If you wish, you can combine declaring and assigning a variable into one statement.

int myvar = 2;

Variables can be named almost whatever you wish, but they cannot begin with a
number and can include only letters, numbers, and underscores. You also cannot name
variables the same as an Objective-C reserved word such as int, enum, do, while, or
other words that have a specific meaning in an Objective-C program.

 Chapter 1: Exploring the iPhone SDK and Basic Programming 13

Try This

NOTE
Words used by a language, that you cannot use in your code, are called “reserved
words.”

Functions
Functions operate on variables; they are the instructions that tell your computer to do
something. Consider the following function:

int doubleIt(int valtodouble) {
 return valtodouble * 2;
}

The first line declares a function named doubleIt that returns an integer. It also declares
that doubleIt takes an integer named valtodouble as a parameter. Everything
occurring between the opening and closing braces is the function’s definition. Functions
that return values end with a return followed by the value to return.

Functions might also not return a value. You signify a function that doesn’t return a
value using the void keyword. For instance, consider the following function:

void sayhi() {
 printf("Hi");
}

The function does not return a value, and so there is no return statement. Moreover, in
the function’s declaration, notice the void keyword, which signifies there is no returned
value.

Programs operate by calling functions, which in turn call other functions. For instance,
in Listing 1-1 the main function calls the printf function. The printf function is
declared in the stdio.h header file (you learn about header files later). You can also write
and call your own functions, as the next Try This illustrates.

Modifying helloworld.c
 1. Open helloworld.c in TextEdit and modify the file to match Listing 1-2.

 2. Save, open Terminal, and navigate to the file’s location.

 3. Type gcc helloworld.c –o helloworld to compile the program.

 4. Execute the program by typing helloworld.

(continued)

 14 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 1-2 The helloworld program

#include <stdio.h>
int doubleIt(int amounttodouble) {

 return amounttodouble * 2;
}
int main(void) {
 int original = 5;
 int amount = doubleIt(original);
 printf("Hello World %i\n", amount);
 return 0;
}

The program first defines a function called doubleIt. The doubleIt function takes
an integer as a parameter and returns an integer. The main method declares a variable
named original that has the value 5. It then declares a variable named amount. Only
this time, rather than assigning amount a literal numerical value, it assigns amount
the results from calling doubleIt on original. The doubleIt function doubles 5,
returning 10, and the printf function prints “Hello World 10” to the terminal.

Do not worry if you do not understand everything in Listing 1-2. You will explore
each concept in detail later in this chapter and Chapter 2. What is important is that you
understand the program’s flow.

Q: What is the \n character used in Listings 1-1 and 1-2?

A: The \n character is what is called an escape sequence. You use an escape sequence to
indicate things such as a newline, tab, single quote, or backslash. The \n escape sequence
tells the computer that it should print a newline after printing “Hello World.” For more
information on escape sequences, refer to Wikipedia (http://en.wikipedia.org/wiki/Escape_
sequence).

Ask the Expert

http://en.wikipedia.org/wiki/Escape_sequence
http://en.wikipedia.org/wiki/Escape_sequence

 Chapter 1: Exploring the iPhone SDK and Basic Programming 15

Try This

Objective-C’s Main Method
Objective-C programs, like their C ancestors, begin with a main method. In fact all
applications you will write for the iPhone begin with a main method in the main.m file.
The main method is the first method called by the operating system when executing your
application. Rather than explaining main any further, the easiest way to get started is by
example; so complete the following Try This.

Understanding an iPhone Application’s
Starting Point

 1. Open Xcode and select File | New Project from the menu to open the New Project
dialog.

 2. Under iPhone OS, select Application and then View-based Application (Figure 1-8).
Click Choose.

Figure 1-8 Selecting View-based Application in the New Project dialog

(continued)

 16 Objective-C for iPhone Developers: A Beginner’s Guide

 3. Name the project HelloWorld and click Save. Xcode builds an iPhone application
named HelloWorld.

 4. Expand the Other Sources folder in Groups & Files and select main.m to reveal the
file’s content in the editor pane (Figure 1-9).

 5. Modify the file to appear like Listing 1-3.

 6. Select Build | Build and Debug from Xcode’s menu. Xcode first asks you if you
wish to save the file. Click Save All and Xcode saves the file, compiles, and runs the
application (Figure 1-10).

 7. If the debugger console is not visible, select Run | Console from Xcode’s menu.

Figure 1-9 Selecting main.m in Groups & Files

 Chapter 1: Exploring the iPhone SDK and Basic Programming 17

Listing 1-3 The main method in main.m is an iPhone application’s starting point.

int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 // Log hello world to the debugger console
 NSLog(@"Hello World");
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

Notice the main function is simply a C function. Like C’s main, it takes an integer
and an array of C strings. It also returns an integer, where 0 usually indicates success and
non-zero indicates an error. You almost never modify main when writing an Objective-C
program for the iPhone, but understanding how an iPhone program begins is fundamental.
Starting an iPhone application is the same as starting any other C or Objective-C
application; it all begins with main.

Figure 1-10 Running the application in the iPhone Simulator

 18 Objective-C for iPhone Developers: A Beginner’s Guide

NOTE
Apple slightly modifies the Xcode interface with every minor release. Your Xcode
interface will most likely appear slightly different than this book’s.

Header Files and Source Files
Objective-C, like C, consists of header files and source files. Header files contain method
prototypes and variable declarations and end with the .h file extension. Source files
contain method implementations and variable implementations and end with the .m file
extension. Objective-C, unlike C, uses header files to declare class interfaces and source
files to declare class implementations. Listings 1-4 and 1-5 illustrate an Objective-C
header file and source file defining a SayHello class.

Listing 1-4 An Objective-C Class interface in a header file

#import <UIKit/UIKit.h>

#define GREETING @"Dawg"
#define AGE 40
@interface SayHello : NSObject {
 NSString * test;
}
- (void) sayHello: (NSString *) name;
@end

Listing 1-5 An Objective-C Class implementation in a source file

#import "SayHello.h"
@implementation SayHello
- (void) sayHello: (NSString *) name {
 NSLog(@"Hello %@, %@. You are %i years old.", name, GREETING, AGE);
}
@end

Although Objective-C classes and class methods are not discussed until Chapter 4,
notice from the preceding two listings that Objective-C methods look different from C
functions and Java methods. As you will learn in greater detail in Chapter 4, Objective-C
uses what is called infix notation.

 Chapter 1: Exploring the iPhone SDK and Basic Programming 19

The code also uses #import rather than C’s #include. Objective-C uses #import;
the #import preprocessor directive is identical to #include but will not include the
same header file more than once. Also notice the compiler directives; Objective-C relies
heavily upon compiler directives.

Preprocessor Statements
The #include and #import statements are both preprocessor directives. When you
compile your program, the compiler’s preprocessor processes statements with a # sign
before compiling. For instance, #import <file.h> or #import "file.h" tells the
preprocessor to replace the statement with file’s contents.

You can also use preprocessor macros. For instance, the #define preprocessor
directive is a commonly used macro. In Listing 1-4, you defined two constants,
GREETING and AGE. When you compile this program, the preprocessor literally replaces
all GREETING and AGE occurrences with their respective values.

[Session started at 2009-08-08 16:53:47 -0400.]
2009-08-08 16:53:49.430 HelloWorld[745:20b] Hello James, Dawg. You are
40 years old.

Compiler Directives
Compiler directives are what make Objective-C different than C. A compiler directive,
like a preprocessor directive, instructs the compiler to do something before it
actually compiles. Compiler directives begin with the @ character. Objective-C has
its own preprocessor that processes these special directives. The @interface and
@implementation statements in Listings 1-4 and 1-5 are compiler directives, for
instance. You do not really need to understand how compiler directives work under the
covers. Just realize that compiler directives actually take your Objective-C code and turn
it into regular C code.

Preprocessor Directives and Compiler Directives
Preprocessor directives begin with a # character. Compiler directives begin with an @
character. Both are important to an Objective-C program’s structure.

 20 Objective-C for iPhone Developers: A Beginner’s Guide

TIP
Print and bind Apple’s “The Objective-C 2.0 Programming Language” document
and “Object-Oriented Programming with Objective-C.” Read both after reading this
book; but realize neither has much example code and both documents, although
comprehensive, are terse.

Q: What is a preprocessor?

A: A preprocessor is a separate program from the compiler that runs prior to the compiler
running. It handles preprocessor directives, replacing import statements with file contents,
executing conditional statements such as #if, and processing definitions. Preprocessors
can also conditionally compile code; however, that discussion is outside this chapter’s scope.

Ask the Expert

Comments
Objective-C comments are the same as Java and C comments. Single-line comments
begin with a double forward slash, while multiline comments begin with a forward slash
followed by a star. A multiline comment ends with a star followed by a forward slash.
The following code snippet illustrates:

// This is a single-line comment
/* This is a multiline
comment */

You use Objective-C comments the same as you would for most other programming
languages. You use them to annotate your code and to mark code that you do not wish
to delete but do not want the application to run. By commenting the code, you assure
that the compiler does not compile the commented code. Because the code is never
compiled, it never executes.

 Chapter 1: Exploring the iPhone SDK and Basic Programming 21

Pointers
Pointers are important in Objective-C. However, successfully using them in Objective-C
does not require a deep knowledge. In this section, I briefly discuss pointers.

A pointer points to a location in memory. Consider an iPhone’s memory as one large
cubbyhole; similar to the one you most likely had in kindergarten. Each cubbyhole is
a location in memory. The cubbyhole’s content is the actual value. For instance, the
following statement assigns a value to a cubbyhole’s content.

int cubbyHoleOne = 32;

But now suppose each cubbyhole is numbered by a row and column. A pointer points
to the cubbyhole’s address. So a pointer to cubbyHoleOne would look like the following:

int * pointerToCubbyHoleOne = &cubbyHoleOne;

This statement creates a pointer to an integer and then assigns the pointer
cubbyHoleOne’s address. Note that it is cubbyHoleOne’s address, not cubbyHoleOne’s
value. When declaring a pointer variable, you indicate that it is a pointer by using the
* operator. When you precede a variable by the & operator, you are indicating that you are
referring to the variable’s address and not the variable’s value. Finally, if you wish to refer
to the value a pointer points to you, precede it with a *. The following NSLog statement
illustrates accessing the pointerToCubbyHoleOne’s actual value.

NSLog("The value: %i", *pointerToCubbyHoleOne);

You do not really need to understand much more about pointers than that. In future
chapters, when you use objects, you will be strictly using pointers to objects, and not the
objects themselves. Basically, all you need to remember is that pointers allow Objective-C
to pass objects around by reference and not the actual object, saving considerable memory.

Xcode Fundamentals
Xcode is Apple’s Mac OS X integrated development environment (IDE). It comes
packaged with the OS X install DVDs as a separate install. You can also download it
from Apple’s Developer Connection. As of this book’s writing, Xcode is bundled with
the iPhone SDK. If you have not already downloaded and installed the iPhone SDK, you
should do so now. You can find Xcode in the /Developer/Applications folder. You should
add Xcode to your computer’s Dock so that you can access it easily. Figure 1-11 illustrates
Xcode’s Project window.

 22 Objective-C for iPhone Developers: A Beginner’s Guide

You use the toolbar to select what target you will compile to. For instance, in this
book you will only use the iPhone simulator in debug mode, and so you will always
choose Simulator – 3.0 | Debug. After you’ve chosen it once, unless you change it, Xcode
remembers your choice. The Groups & Files list contains the project’s source files,
resources such as images, and XIB files. The gutter is where you will add something
called breakpoints in later chapters. And the Content pane is the editor, or where you will
edit source files. For more comprehensive information on the editor, see the document
“Xcode Workspace Guide,” referenced later in this chapter.

Before using Xcode, you should configure it so that it matches your work style.
Figure 1-11 illustrates the project window displayed using what is called the Default
layout. This layout is not the layout you will use in this book’s remaining Try This
examples. Instead, you will use what is called the All-In-One layout. In the next Try
This example you configure Xcode to use the All-In-One layout.

Figure 1-11 Xcode’s Project window (Default layout)

 Chapter 1: Exploring the iPhone SDK and Basic Programming 23

Try This

Configuring Xcode’s Display
There are three ways you might configure Xcode’s layout: Default, Condensed, and All-
In-One. In the book iPhone SDK Programming: A Beginner’s Guide, I use the Default
layout. However, in this book, since you will be using the debugger console more
extensively, you should use the All-In-One layout.

Assigning Xcode the All-In-One Layout
 1. Open Xcode. From the menu, select Xcode | Preferences to display the preferences

dialog.

 2. Select General and then All-In-One from the Layout drop-down. Ensure the check
boxes are all selected (Figure 1-12).

 3. Click Apply.

 4. Select Text Editing and ensure the Show Gutter check box is selected (Figure 1-13).

 5. Click Apply and then OK.

 6. Open the HelloWorld project and Xcode should now show two small buttons at its
upper left (Figure 1-14).

(continued)

Figure 1-12 Selecting All-In-One for Xcode’s layout

 24 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 1-13 Ensuring Xcode shows the gutter

Figure 1-14 The edit and debug buttons

 Chapter 1: Exploring the iPhone SDK and Basic Programming 25

 7. Click Build And Debug to run the application in debug mode. If the button says Build
and Run, then select Build | Build and Debug from XCode’s menu. Notice Xcode’s
appearance changed (Figure 1-15). Notice the button with the spray can image is
depressed.

 8. Click the other button to the left and the editor pane is displayed. Toggle between the
two buttons a few times.

 9. Quit the application by clicking the red Tasks button. Notice that the iPhone Simulator
remains running.

 10. Select the simulator, and then end it by selecting iPhone Simulator | Quit iPhone
Simulator from the simulator’s menu.

(continued)

Figure 1-15 Xcode running in debug mode

 26 Objective-C for iPhone Developers: A Beginner’s Guide

Exploring Xcode Further
Apple has good documentation on using Xcode. You should read that documentation.
Apple’s “Xcode Workspace Guide” is a comprehensive Xcode document that you can read
online or download. You do not need to read it fully—I never have—but you should skim
it for things that can help you use Xcode more productively.

This document has many tidbits you might miss that make working with Xcode easier
and quicker. For instance, the document covers the keyboard shortcuts, how to reset
Xcode, and how to take a snapshot of your project. The document is worth reviewing.

TIP
You can take a snapshot of your work by selecting File | Make Snapshot. This saves
your project’s current state should you require reverting your project back to a previous
state. I use this feature religiously; many times I have made a complete mess of my
project and needed to restore it to a known, more stable state. Should you need to
restore, you select File | Snapshots from Xcode’s menu to display the Snapshots dialog.
You can then select the snapshot you wish to revert to.

Summary
If new to programming, you found much material to digest. Do not be concerned if you
do not understand all the concepts presented in this chapter. You should understand what
a header file and a source file are and how you create them. You should also understand
how to create a simple Xcode iPhone project from a template, compile it, and run it. And
you should understand that main.m contains a main method that is the starting point for
all iPhone applications. If you do not fully understand pointers, that is okay, as you will
learn more about them in the next couple chapters. For now, just remember that a pointer
points to a variable’s location and not the variable’s value. In future chapters, almost every
topic presented in this chapter will be covered in more depth. In the next chapter you
explore primitive data types.

27

Chapter 2
Primitive Data Types
and Operators

 28 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Integers

● Understanding Floats and Doubles

● Understanding the BOOL Data Type

● Understanding the Arithmetic Operators

● Understanding the Equality and Logical Operators

● Understanding the Assignment Operator

● Understanding the Conditional Operator

● Using the iPhone SDK’s Window-Based Application Template

In this chapter, you explore Objective-C’s primitive data types and operators. Objective-
C’s primitive data types and operators are the same as C’s. Therefore, if you understand
C’s primitive data types, you also understand Objective-C’s primitive data types. After
exploring Objective-C’s primitive data types, you explore Objective-C operators. Like the
primitive data types, Objective-C’s operators are the same as C’s operators.

Primitive Data Types
A data type tells a computer the data type a variable is to represent. By telling a computer
a variable’s type, the data type is informing the computer how much memory it must
reserve for a variable and the range of possible values a variable might contain.

NOTE
Realize that how much memory is required—and how many values a primitive data
type can represent—might vary on different platforms. However, in this book, as you
are using the iPhone SDK, I can assume you are using an Intel-based Mac running OS
X Snow Leopard. And so I can confidently state each data type’s size and value range.

 Chapter 2: Primitive Data Types and Operators 29

Numeric Types: Integers
An integer is any whole number. The integer data type is represented by the int keyword.
For instance, consider the following statement.

int x = 4;

The int keyword identifies the primitive’s type, an integer, and 4 is the literal. The
equal sign assigns x the literal value 4. You can also write the statement in two steps if
you prefer.

int x = 0;
x = 4;

Integers can be further defined using the short, long, and unsigned qualifiers
to form a short integer, a long integer, and an unsigned integer. Table 2-1 summarizes
Objective-C’s integer data types.

Type Range Bytes
Formats (printing
in NSLog)

short int –32,768 to 32,768 2 %hi

unsigned short int 0 to 65,535 2 %hu

unsigned int 0 to 4,294,967,295 4 %u

int –2,147,483,647 to 2,147,483,647 4 %i

long int –2,147,483,647 to 2,147,483,647 4 %li

unsigned long int 0 to 4,294,967,295 4 %lu

long long int –9223372036854775807 to
9223372036854775808

8 %lli

unsigned long long int 0 to 18446744073709551615 8 %llu

Table 2-1 Integer Data Types

 30 Objective-C for iPhone Developers: A Beginner’s Guide

Try This Exploring Integer Types and Using the
sizeof() C Method

 1. Open Xcode and select File | New Project from the File menu.

 2. Select Application | Window-based Application in the New Project dialog (Figure 2-1).

 3. Click Choose and then name the project ExploreIntegers.

Q: When will I ever use an unsigned long long?

A: You will actually use an unsigned long long if you use the iPhone’s MPMediaItem
class. Songs on an iPhone or iPod Touch are accessible to iPhone developers through the
MPMediaPlayer class. The MPMediaItem class encapsulates each of the media player’s
individual songs. The MPMediaItem has an id property. Every iTunes media item has a
persistent unique id called the MPMediaItemPropertyPersistentID. That id is an
unsigned long long.

Ask the Expert

Figure 2-1 New Project dialog

 Chapter 2: Primitive Data Types and Operators 31

 4. In Groups & Files, expand Other Sources and select main.m to reveal the file’s content
in the editor.

 5. Modify main.m to match Listing 2-1. Be certain you write the code before the
main method. Also, be certain you add code to the main method that calls the
exploreIntegers method (Listing 2-1).

 6. Click Build and Debug to compile and run the application in the iPhone Simulator.
The debugger console’s logging should resemble Listing 2-2 (I exclude the console’s
date, time, and filename prefix from the logging).

Listing 2-1 The explore_integers.c source file

#import <UIKit/UIKit.h>
void exploreIntegers(void) {
 short int y = SHRT_MIN;
 short yy = SHRT_MAX;
 int x = INT_MIN;
 int xx = INT_MAX;
 long int z = LONG_MIN;
 long zz = LONG_MAX;
 unsigned long p = 0;
 unsigned long int pp = ULONG_MAX;
 long long int q = LLONG_MIN;
 long long qq = LLONG_MAX;
 unsigned long long rr = 0;
 unsigned long long ss = ULLONG_MAX;
 NSLog(@"--- shorts ---");
 NSLog(@"y:%hi (sizeof):%i\n", y, sizeof(y));
 NSLog(@"yy:%hi (sizeof):%i\n", yy, sizeof(yy));
 NSLog(@"---int ---");
 NSLog(@"x:%i (sizeof):%i\n", x, sizeof(x));
 NSLog(@"xx:%i (sizeof):%i\n", xx, sizeof(xx));
 NSLog(@"---longs---");
 NSLog(@"z:%li (sizeof):%i\n", z, sizeof(z));
 NSLog(@"zz:%li (sizeof):%i\n", zz, sizeof(zz));
 NSLog(@"p:%lu (sizeof):%i\n", p, sizeof(p));
 NSLog(@"pp:%lu (sizeof):%i\n", pp, sizeof(pp));
 NSLog(@"---long longs---");
 NSLog(@"q:%lli (sizeof):%i\n", q, sizeof(q));
 NSLog(@"q:%lli (sizeof):%i\n", qq, sizeof(qq));
 NSLog(@"rr:%llu (sizeof):%i\n", rr, sizeof(rr));
 NSLog(@"ss:%llu (sizeof):%i\n", ss, sizeof(ss));
}

(continued)

 32 Objective-C for iPhone Developers: A Beginner’s Guide

int main(int argc, char *argv[]) {
 exploreIntegers();
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

Listing 2-2 The debugger console logging

[Session started at 2009-08-07 07:13:56 -0400.]
--- shorts ---
y:-32768 (sizeof):2
yy:32767 (sizeof):2
---int ---
x:-2147483648 (sizeof):4
xx:2147483647 (sizeof):4
---longs---
z:-2147483648 (sizeof):4
zz:2147483647 (sizeof):4
p:0 (sizeof):4
pp:4294967295 (sizeof):4
---long longs---
q:-9223372036854775808 (sizeof):8
q:9223372036854775807 (sizeof):8
rr:0 (sizeof):8
ss:18446744073709551615 (sizeof):8

The code illustrates the integer data types. For instance, the logging reports a short as
two bytes and an int as four bytes. The code also illustrates using the SHRT_MIN, SHRT_
MAX, and LONG_MIN constants in Listing 2-1. These constants are all defined in the C
header file, limits.h, which UIKit.h imports.

Another thing to notice is that when declaring a short, long, or long long, you can omit
the int keyword and the compiler interprets the type the same. This is important, as when
you see Objective-C or C code, you will usually see only the qualifier and not the qualifier
and int.

//you almost always see this
long x = 200000000;
//you don't usually see this
long int x = 200000000;

 Chapter 2: Primitive Data Types and Operators 33

TIP
You can use a short instead of an int or a long int to save memory. A short takes two
bytes, while an int and a long int both take four bytes.

Numeric Types: Float and Double
The float data type is a 32-bit (single precision) floating-point number. In computer
science, rather than saying decimal, you say floating-point, but you can just think of a
float as a small to medium-sized decimal number. A double, like a float, is also a floating-
point number; however, it is a 32-bit floating-point number. Think of a double as a large to
very large decimal number.

Q: In Step 5 of the previous Try This, you instructed me to be certain to place the
exploreIntegers method above the main method. Why?

A: As discussed in Chapter 1, Objective-C programs, like C programs, contain source
and header files. Source files end with a .m extension, while header files end with a .h
extension. Header files declare things, while source files implement them. One thing header
files can contain is function prototypes. A prototype lets the compiler know that a source
file will define a function. For instance, in the previous Try This you might have declared
the function exploreIntegers in a header file, explore_integers.h.

void exploreIntegers(void);

 You could have then modified main.m to import the header file by adding an import
statement to the file’s top.

#import "explore_integers.h"

 When compiling the code, the compiler would then know a source file is to define the
exploreIntegers function. You could then place the exploreIntegers method after
main if you preferred.

But in the previous Try This there is no header file, and so the compiler has no
way of knowing that exploreIntegers is to be defined. Therefore, you must
define exploreIntegers before calling it in the main method. Had you not placed
exploreIntegers before calling it, the compiler would have complained that the
method was undefined.

Ask the Expert

 34 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

You can use either, but a float uses less memory than a double. A float uses four bytes,
while a double uses eight bytes. Generally, unless you need scientific precision, you
should use a float because of the memory savings. Although not important on a desktop,
on an iPhone or iPod touch, this memory savings can be significant.

NOTE
You log doubles and floats to NSLog using %f.

Logging a Double and a Float to NSLog
 1. Open ExploreIntegers in Xcode and add the code in Listing 2-3 to main.m. As with

the exploreIntegers method in the previous Try This, be certain you place
exploreFloats before the main method.

 2. Replace the main method’s call to exploreIntegers with exploreFloats
(Listing 2-4).

 3. Click Build and Debug.

Listing 2-3 The exploreFloats method

void exploreFloats(void) {
 float x = FLT_MIN;
 float y = FLT_MAX;
 double z = DBL_MIN;
 double r = DBL_MAX;
 NSLog(@"x: %f sizeof:%i", x, sizeof(x));
 NSLog(@"y: %f sizeof:%i", y, sizeof(y));
 NSLog(@"z: %f sizeof:%i", z, sizeof(z));
 NSLog(@"r: %f sizeof:%i", r, sizeof(r));
}

Listing 2-4 The main function in main.m

int main(int argc, char *argv[]) {
 //exploreIntegers();
 exploreFloats();

 Chapter 2: Primitive Data Types and Operators 35

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

Listing 2-5 The debugger console logging

x: 0.000000 sizeof:4
y: 340282346638528860000000000000000000000.000000 sizeof:4
z: 0.000000 sizeof:8
r: 1797693134862315700000000000
--- snip 280 zeros omitted ---
0.000000 sizeof:8

As Listing 2-5 illustrates, the double type provides significantly greater precision than
a float. For most of your needs, a float is sufficient and saves you four bytes.

Characters
The char data type, actually one of the integers, stores a single character. For instance, the
following stores the letter c in the myChar variable.

char myChar = 'c';

You enclose char types in single quotes. You print a char to NSLog using %c.
When writing C programs you use characters, and character aggregations (C strings and
character arrays), extensively. When writing Objective-C programs for the iPhone, you
will rarely use characters or character aggregations. Instead you will use NSString. If not
familiar with NSString, do not worry, by book's end you will be.

NOTE
If you are coming from Java, note that neither Objective-C nor C has a byte data type.
Instead, C programmers use an unsigned char to represent a single byte. As you will
learn in later chapters, Objective-C programmers usually use a higher-level foundation
framework class called NSData.

 36 Objective-C for iPhone Developers: A Beginner’s Guide

The BOOL Data Type
The BOOL data type is an Objective-C addition. It is not a true data type, as it is a C
preprocessor definition. Whether BOOL is or is not a data type is unimportant here,
though; what is more important is how you use it.

A BOOL evaluates to YES or NO. You use a BOOL where you would normally use a
0 or 1 when using C. Later chapters, after you learn about classes and objects, will explain
BOOL further.

NOTE
BOOL is actually a type definition—typedef—for a signed char data type. If you look in
the objc.h header file, you will see the following preprocessor definitions and typedef:

typedef signed char BOOL;
#define YES (BOOL)1
#define NO (BOOL)2

Operators
You use operators with variables to create expressions that are more complex. Operators
operate on variables. In this chapter, I discuss arithmetic, unary, and assignment operators.

NOTE
This chapter omits bitwise operators, as you will probably rarely use them. This chapter
also omits memory operators (pointer-related operators).

Arithmetic Operators
Arithmetic operators work as you might expect. Table 2-2 summarizes them.

Q: What about C strings, are they char data types?

A: C strings are character arrays. I discuss arrays and C strings in Chapter 3.

Ask the Expert

 Chapter 2: Primitive Data Types and Operators 37

Try This Using Arithmetic Operators
 1. Open the preceding Try This project, ExploreIntegers, in Xcode.

 2. Replace exploreFloats with the method arithmetic in Listing 2-6.

 3. Click Build and Debug.

Listing 2-6 The arithmetic method

void arithmetic(void) {
 int x = 20; int z = 4;
 x = x + 2;
 NSLog(@"x:%i", x);
 x = x - z;
 NSLog(@"x:%i", x);
 x = x * z;
 NSLog(@"x:%i", x);
 NSLog(@"x:%i", x++);
 NSLog(@"x:%i", x);
 NSLog(@"x:%i", ++x);
 NSLog(@"x:%i", --x);

Table 2-2 Objective-C Arithmetic Operators

Operator Description

+ Addition

– Subtraction

++ Increment by 1

– – Decrement by 1

* Multiplication

/ Division

% Modulus, the remainder from division

(continued)

 38 Objective-C for iPhone Developers: A Beginner’s Guide

 x = x/2;
 NSLog(@"x:%i", x);
 x = x % 5;
 NSLog(@"x:%i", x);
}

Listing 2-7 The debugger console logging

x:22
x:18
x:72
x:72
x:73
x:74
x:73
x:36
x:1

The arithmetic method assigns x the value 20 and z the value 4. It then adds 2
to x, resulting in 22. It then subtracts z from x and x becomes 18. After subtracting, the
method multiplies x by z and the new value becomes 72.

The next line combines logging x’s value to the debugger console and incrementing
x by 1. However, note that the increment occurs after x’s value is printed, as the value
printed remains 72. Conversely, two lines down, x is incremented by 1 before being
printed and the value printed reflects the added value and prints 74.

Unary Operators
A unary operator is a preceding + or – that indicates a value is positive or negative.
Adding a unary operator in front of a variable essentially multiplies the variable by a
positive or negative 1. For instance, consider the following code and its output in the
debugger console:

int x = 40;
x = -x;
NSLog(@"x:%i", x);

x:-40

 Chapter 2: Primitive Data Types and Operators 39

Equality and Logical Operators
In Chapter 3, when you explore logical statements, you will use these operators.
I introduce them here, for completeness. You use these operators to test for equality.
Table 2-3 summarizes them. In later chapters, you will use these operators to test two
variables’ equivalence.

Although I do not introduce conditional statements until Chapter 3, consider the
following code:

int x = 20; int z = 4;
NSLog(@"x equals z: %i", x = = z);

The logging statement prints x equals z: 0 to the debugger console. The code,
x = = z, asks the question “does x equal z?” If it does, the program returns 1 (true). If
it does not, the program returns 0 (false). The same logic applies for the other equality
operators.

Now consider the following code containing a logical or operator.

int x = 20; int z = 4; int p = 20;
NSLog(@"x equals z: %i", x == z || x == p);

The logging statement prints x equals z: 1 to the debugger console because the
question is now “does x equal z or does x equal p?”

Operator Operator’s Meaning

< Less than

> Greater than

= = Equal to

<= Less than or equal to

>= Greater than or equal to

!= Is not equal to

&& Logical and

|| Logical or

Table 2-3 Equality and Logical Operators

 40 Objective-C for iPhone Developers: A Beginner’s Guide

Assignment Operators
An assignment operator assigns the value on the right of the assignment operator to the
variable on the right. For instance, the following three statements are all assignments:

int x = 19; int z = 4; int p = 20;

The first statement assigns x the value 19, the second assigns z the value 4, and the third
assigns p the value 20.

You can also combine the assignment operator with additive operators to create
compound assignment operators. For instance, consider the following statements and their
equivalent using one of the compound assignment operators (Listing 2-8).

Listing 2-8 Assignment operators example

int x = 20; int z = 4; int p = 20;
x = x + 2; //x = 22
x += 2; //x = 24
z = z - 2; //z = 2
z -= 2; //z = 0
p = p * 2; //p = 40
p *= 2; //p = 80
p = p/2; //p = 40
p /= 2; //p = 20

Table 2-4 illustrates the assignment operators. Note that in reality, you are combining
the arithmetic operator with the assignment operator, but out of convenience, just refer

Assignment
Operator Example Statement Statement’s Effect Equivalent Statement

= int myvar = 2; Assignment

+= myvar += 3; Add 3 to value myvar = myvar + 3;

–= myvar –= 3; Subtract 3 from value myvar = myvar –3;

/= myvar /= 2; Divide value by 2 myvar = myvar/2;

*= myvar *=2; Multiply value by 2 myvar = myvar * 2;

%= myvar %= 2; Obtain remainder from
division by 2

myvar = myvar % 2;

Table 2-4 Assignment Operators

 Chapter 2: Primitive Data Types and Operators 41

to these as assignment operators rather than an arithmetic operator combined with an
assignment operator.

TIP
You will often see op= in books when explaining the combined operators. The proper
term for this assignment is compound assignment.

Data Type Conversions
There are often times when you might wish to convert a primitive from one type to
another. For instance, you might have a situation where you sum sales figures.

int numberSold = 20;
float costPerItem = 23.22;
float amount = numberSold * costPerItem; //amount = 464.399994

The runtime knows to convert the integer to a float before multiplying. Programmers
call this a widening conversion because you can widen an int to a float with no information
loss. The converse is not true and often results in an incorrect value or a rounded value.
Programmers call this a narrowing conversion.

int amount = numberSold * costPerItem; //amount = 464, it rounds to int
double grams = DBL_MAX;
float amount = grams; //amount = #INF00 or infinity

TIP
When a value falls outside the range supported by the specific data type, you obtain
infinity, or #INF00.

Although a compiler can usually figure out your intentions, you should always cast if
you wish to convert a value to a narrower type. Casting is explicitly changing a variable’s
data type from one type to another when using the variable. Casting does not affect the
original variable’s type. Casting is essentially saying, “I know you are an integer, but for
this division I want you to temporarily be a float.” For instance, you might divide two
integers and assign the results to a float.

int points = 95;
int papers = 10;
float grade = points/papers;
NSLog(@"%f", (float)grade);

 42 Objective-C for iPhone Developers: A Beginner’s Guide

Because points and papers are both integers, the compiler throws away the 0.5
remainder. What the compiler is doing is saying, “Hmm, two integers, the result must be
an integer, so I’m throwing away the 0.5; oh, when I’m done I need to assign the result to
this float, so let me change it to a float.” However, the damage was done, and the 0.5 was
lost. Instead, you should cast the integers.

int points = 95;
int papers = 10;
float grade = (float)points/(float)papers;
printf(@"%f", (float)grade);

When casting the integers as floats the compiler now says, “Hmm, I need to treat these
as floats, so let me add a 0.000 to both, divide, and treat the result as a float.” As an aside,
note that you are not required to cast both points and papers as floats; you can cast one
and the compiler recognizes it should treat the result as a float.

If this all seems slightly confusing, do not worry about it. Just remember this rule:
always explicitly cast when using different data types in the same expression. Doing
this will prevent errors and make your code easier to read by other developers. Besides,
casting does not make your code any slower.

The UIWindow Application Template
In this chapter, without explanation, you used the Window-based Application template.
This template creates a bare-minimum iPhone project. It creates a xib containing the
Interface Builder graphical user interface components and a UIApplicationDelegate
class that handles the application’s life-cycle events. A life-cycle event is a system
event that affects your running application. For instance, the application running low
on memory, the phone receiving an incoming call, or the phone’s orientation changing
from portrait to landscape are all life-cycle events. Figure 2-2 illustrates a typical iPhone
application’s life cycle.

The main method in the main.m file starts the iPhone application. The application
loads the window and the window’s delegate. The window and delegate remain active
until the application terminates. As external events occur and affect the application, the
application’s delegate responds to those events. In reality it is slightly more involved than
Figure 2-2, but not much.

 Chapter 2: Primitive Data Types and Operators 43

Try This Using the Window-based
Application Template

 1. Open Xcode and open any previous Try This from this chapter.

 2. Expand Classes and select <projectName>AppDelegate.m; for instance, ExploreIntegers
is named ExploreIntegersAppDelegate. Notice the applicationDidFinishLaunching:
method.

 3. Expand Resources and double-click MainWindow.xib to open it in Interface Builder.

 4. Although you will probably see other windows, notice the document window and the
window’s canvas (Figure 2-3). Close Interface Builder.

 5. Click Build and Debug and the application should compile and launch in the iPhone
Simulator (Figure 2-4).

(continued)

Figure 2-2 An iPhone app’s life cycle

 44 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 2-3 The document window and canvas in Interface Builder

Figure 2-4 The blank window displayed in the iPhone Simulator

 Chapter 2: Primitive Data Types and Operators 45

The Window-based Application template creates an iPhone application consisting of
an application delegate and a window. Every iPhone application has a single window. That
window displays a single view at a time. As you shall see in later chapters, you can change
that view. But in the Try This projects in this chapter you created an empty window.
Notice that the template created files called <project name>AppDelegate.h and <project
name>AppDelegate.m. These files contain the project’s application delegate. As you will
see in later chapters, the header file contains the delegate’s interface, while the source file
contains the delegate’s implementation.

The application delegate responds to life-cycle events while your application is
running. If you wish to write code that responds to a life-cycle event, you place it in one
of this class’s methods. For a more detailed explanation, see Chapter 6 in iPhone SDK
Programming: A Beginner’s Guide.

Summary
In this chapter, you explored the primitive data types and operators available to you in
Objective-C. They are identical to the data types and operators available to you in C. This
is for good reason; Objective-C is a superset of C. In the next chapter, Chapter 3, you
put these primitives and operators to good use when you explore looping and conditional
statements. If you do not understand the primitive data types and operators, then you
should definitely consult more resources before continuing. Understanding the concepts
presented in this chapter is crucial for the remaining chapters. You ended the chapter by
learning about an iPhone project’s main window, the UIWindow. Although you haven’t
learned about classes and objects yet, UIWindow should hopefully seem intuitive. The
window is what will contain all views that you display in your application.

This page intentionally left blank

47

Chapter 3
Flow Control
Statements, Arrays,
and Structures

 48 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Boolean Expressions

● Understanding Looping Using the For Loop

● Understanding Looping Using the While and Do While Loops

● Understanding the Break and Continue Statements

● Understanding Conditionals Using If, Else If, and Else

● Understanding the Switch Statement

● Understanding Arrays and Structs

Much like Chapters 1 and 2, this chapter will seem like you are exploring C rather than
Objective-C. But that is because Objective-C’s control structures are the same as C’s.

In this chapter you explore Objective-C’s looping and conditional statements (control flow
statements).

A program’s control flow is the order that it executes its individual instructions.
Looping statements cause a program to repeat a code block. Conditional statements cause
a program to choose among alternative paths.

Both looping and conditional statements rely upon Boolean expressions. Although
it is outside this book’s scope to fully discuss Booleans (there are entire college classes
devoted to Boolean logic), this chapter does begin by discussing their fundamentals and
where you can obtain more information on them.

After exploring looping and conditional statements, you take a slight detour to
explore arrays and structs. You will probably rarely use either when programming using
Objective-C. Instead, you will use NSArray in lieu of arrays, and classes in lieu of structs.
But arrays and structs are the basis for many data structures you will come across in your
programming career. Moreover, if you do not understand a basic array, then you simply
cannot claim yourself as a programmer. Arrays are a fundamental programming concept.
Besides, in future chapters, when you explore the Foundation Framework’s NSArray and
NSMutableArray, you will need to understand arrays.

 Chapter 3: Flow Control Statements, Arrays, and Structures 49

Boolean Expressions
A Boolean expression results in a Boolean value—true or false. For example, the
expression “Apple equals Orange” evaluates to false, as an apple does not equal an
orange. Another example, 5 > 3 evaluates to true, as 5 is greater than 3. Both statements
result in a true or false value.

You can combine Boolean expressions to form more complex Boolean expressions.
For instance, you might write “Apple equals Orange AND 5 > 3.” It evaluates to false
because even though 5 is greater than 3, an apple is not an orange.

Boolean expressions joined by an AND must both be true. Boolean expressions joined
by an OR must have one or the other expression evaluate to true for the entire expression
to be true. For instance, the statement “Apple equals Orange OR 5 > 3” evaluates to true
because even though an apple is not an orange, 5 is greater than 3.

You might group Boolean expressions using parentheses. For instance, consider the
following Boolean expressions.

(3 > 5 AND 5 < 9) OR ("a" == "a" AND "b" == "b")
(4 == 4 AND 5 < 7) AND (7 == 7 AND 8 > 2)

The first statement evaluates whether it is true or false that 3 is greater than 5 and 5 is less
than 9. Because 3 is not greater than 5, the first expression grouping evaluates to false. But
the second grouping evaluates to true because a equals a and b equals b. A false or a true
evaluates to true, and so the Boolean expression is true.

The second statement evaluates if 4 equals 4 and if 5 is less than 7. Both are true,
and so it evaluates the first expression to true. The second expression is also true, as 7
equals 7 and 8 is greater than 2. Because both expression groupings are true, the Boolean
expression as a whole evaluates to true.

Understanding basic Boolean algebra is fundamental to understanding conditional
logic and control flow. If you have never taken a computer science course, then you
should seek out a tutorial or two on the web. A good place to start is Wikipedia’s page on
truth tables (http://en.wikipedia.org/wiki/Truth_table). A truth table is nothing more than
a table that evaluates True/False combinations and their ultimate Boolean evaluation. But
do not worry about the more difficult combinations, as they are not required for this book.
If you understand the little bit discussed in this section, you should be okay to continue
with looping and conditional statements. However, if you do not understand, be certain to
first seek out some other resources, as simple Boolean logic is fundamental to looping and
conditional statements.

http://en.wikipedia.org/wiki/Truth_table

 50 Objective-C for iPhone Developers: A Beginner’s Guide

Looping
Objective-C uses the same basic looping constructs as Java and C++. After all, all three
languages’ lineage is C, so it is only fitting they share the same looping constructs.
Objective-C, being a C superset, uses C’s for, while, and do while loops.

Loops allow repeating a block of code multiple times. For instance, a car engine left
running will idle until the car’s gas runs out. Or, for every roach in your kitchen, you
might wish to crush the roach. Loops allow a program to repeat some behavior while a
Boolean condition is true. In the next several pages you explore the for, while, and do
while loops. Each loop, although similar, allows slightly different behavior.

The For Loop
The for loop repeats a block of code and is under the control of a counter variable. A
for loop consists of the for statement followed by the loop body. A for statement has the
following form:

for(initialization; logical test; update){ <body> }

The for loop’s body is everything between the opening brace that immediately follows the
for statement and its accompanying closing brace. For instance, consider the following code:

for (int i = 0; i < 5; i++) {
 NSLog(@".");
}

The variable i is declared and assigned the value 0. Each loop logs a period to the
debugger console. Before each loop, i is tested to ensure it is less than 5. At the end of
each loop i is incremented by 1. The loop repeats five times.

You can omit parts of a for loop statement. Although I personally do not recommend
writing code this way, consider a few variations of the for loop.

int j = 0;
for(;j<=27;j++) {
 NSLog(@"x");
}

In the preceding example, the j variable is initialized before the for loop’s initialization;
therefore, you can skip initializing it in the for loop statement. Now consider a skipped
initialization and a different logical evaluation.

int q = 0;
for(;q != 7;) {

 Chapter 3: Flow Control Statements, Arrays, and Structures 51

 q++;
 NSLog(@"*");
}

The q variable is initialized before the for loop. Rather than looping while q is less
than some value, looping continues while q is not equal to 7. Remember, the evaluation
statement can be anything; the only requirement is that it evaluate to true or false.

Now, consider an error. The following for loop loops indefinitely:

int q = 0;
for(;q != -1;) {
 q++;
 NSLog(@"*");
}

The q variable’s initial value is 0. Each loop increments q by one. But the logical test
will always evaluate to “true” because q will never equal –1, and so the loop repeats
indefinitely.

Finally, consider the worst kind of for loop, something that hopefully you never do.
The following, although an endless loop, is perfectly valid C/Objective-C.

int q = 0;
for(;;) {
 q++;
 NSLog(@"*");
}

Because there is no evaluation, the loop continues indefinitely, eventually causing your
application to crash.

The previous three examples, though shown, are something in practice you
shouldn’t do. In my opinion, use a for loop only when you have a situation that requires
initialization, a logical test, and an update. Although a simplification, I like to think of it
as a situation where I repeat through n number of “things” and not a situation where I loop
until some condition changes.

for (int i = 0; i < 5; i++) {
 NSLog(@"Vanilla for loops are the best loops.");
}

The While Loop
The while loop has the following form:

while (logical test) {<body>}

 52 Objective-C for iPhone Developers: A Beginner’s Guide

The while loop, like the for loop, performs a logical test before entering the loop’s
body. If the test evaluates to not zero, or “true,” then the statements in the body are
executed. The loop then loops and evaluates the logical test again. This repeats until the
logical test evaluates to zero, or “false.” For instance, consider the following code snippet:

float r = 2.3;
while(r < 33.99) {
 r *= 1.2;
}

When executed as part of a program, the program first assigns the variable r the value 2.3.
The program then enters the while loop. The while loop then evaluates if r is less than
33.99. It is, and so the program multiplies r by 1.2. The while loop then continues looping
until r is not less than 33.99.

Notice that the while loop performs its logical test before executing the statements in
its body. If the logical test evaluates to false, then the while loop’s body is skipped. For
instance, the following while loop never executes the logging because t is equal to X and
so it skips the loop’s body.

char t = 'X';
while(t != 'X') {
 NSLog(@"I ran A.");
}

The Do While Loop
The do while loop is similar to the while loop, only it always executes its body statements
at least once and then performs the logical test. The do while loop has the following form:

do{ <body> } while(logical test);

Consider the following example.

char t = 'X';
do {
 NSLog(@"I ran B.");
} while(t != 'X');

When run as a program, the program first assigns t the value X. It then enters the do
while loop and executes the logging statement. After logging, the program evaluates the
logical test, which evaluates to false. Because the test failed, the program does not loop
but continues with the statements after the do while loop.

 Chapter 3: Flow Control Statements, Arrays, and Structures 53

Try This Using a For, While, or Do While Loop
 1. Open Xcode and create a new Utility Application (Figure 3-1). Name the project

LoopingExample.

 2. Open the file MainViewController.m in the editor and add the viewDidLoad method
(Listing 3-1).

 3. Build the application.

Figure 3-1 Utility Application template

(continued)

 54 Objective-C for iPhone Developers: A Beginner’s Guide

 4. Open the file FlipsideViewController.m in the editor and modify the viewDidLoad
method to match Listing 3-2. Don’t worry about the line setting the backgroundColor
that Xcode’s template created; you don’t need it for this example; it merely sets the
view’s background color.

 5. Add the method viewDidAppear in FlipsideViewController.m (Listing 3-3).

 6. Click Build And Go to build and run the application.

 7. Click the info button in the lower-right corner and then Done. Repeat several times.
Notice the logging in the logging console (Listing 3-4).

Listing 3-1 The viewDidLoad method in MainViewController.m

- (void)viewDidLoad {
 [super viewDidLoad];
 for(int i = 0; i < 5; i++) {
 NSLog(@"i's value:%i",i);
 }
 int i = 5;
 while(i++ < 8) {
 NSLog(@"i's value:%i",i);
 }
 i = 3;
 do {
 NSLog(@"i's value:%i",i);
 i++;
 } while(i < 3);
}

Listing 3-2 The viewDidLoad method in FlipsideViewController.m

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = [UIColor viewFlipsideBackgroundColor];
 int r = 9;
 do {
 NSLog(@"r's value:%i", r);
 r /= 3;
 } while(r != 3);
}

 Chapter 3: Flow Control Statements, Arrays, and Structures 55

Listing 3-3 The viewDidAppear method in FlipsideViewController.m

- (void) viewDidAppear: (BOOL) animated {
 [super viewDidAppear:animated];
 BOOL quit = NO;
 for(int i = 0;!quit;i++) {
 NSLog(@"an endless loop without break...%i",i);
 quit = YES;
 }
}

Listing 3-4 Debugger console logging

i's value:0
i's value:1
i's value:2
i's value:3
i's value:4
i's value:6
i's value:7
i's value:8
i's value:3
r's value:9
an endless loop without break...0
r's value:9
an endless loop without break...0
r's value:9
an endless loop without break...0

The logging in Listing 3-4 illustrates the method’s processing. When the method
executes, the for loop loops 4 times and logs 0 through 4 to the debugger console. The
while loop then logs 5 through 8 to the debugger console. Notice that the while loop
increments the i variable after evaluating if it is less than 8. This subtlety is important.
If you replaced the while loop with while(++i < 8), then i would be incremented
before being evaluated if it is less than 8. In that situation, the maximum value logged to
the debugger console would be 7. The viewDidLoad method then illustrates a do while
loop; it logs 3 to the debugger console.

When you click the info button, the application displays the FlipsideViewController.
When it loads into the window, it performs the do while loop and logs 9 to the debugger
console.

 56 Objective-C for iPhone Developers: A Beginner’s Guide

True or False and BOOL
Before continuing, pause to consider what “true” or “false” really means. C has no true
or false but instead has zero or not zero, where zero is “false” and not zero is “true.” You
must remember this fact when evaluating primitives.

A trick that C programmers often do is to define a typedef for a Boolean value. For
instance, consider the following:

typedef int bool;
#define FALSE 0
#define TRUE (1)

Now, in subsequent code a developer can write code that uses TRUE and FALSE.

for(;(q != 7) == TRUE);) {
 q++;
 NSLog(@"*");
}

TIP
For everything you wanted to know about Boolean data types and more, go to
Wikipedia’s page on the subject (http://en.wikipedia.org/wiki/Boolean_data_type).

Objective-C took this C programmer trick and defines a BOOL type. As you already
saw in Chapter 2, a BOOL is simply a typedef where 0 is false and 1 is true. It is important
you note, though, that only 1 is true, not every value but 0. More on BOOL after you learn
about classes in Chapter 4; using BOOL will be second nature by the book’s end.

Conditional Statements
There are often points in a program where it must make a choice and conditionally process
one set of statements or another. For instance, consider the following pseudocode.

If time is morning then prepare breakfast.
Else if time is afternoon then prepare lunch.
Else if time is evening then prepare dinner and go to bed.

The statement prior to the word “then” is the conditional statement. It tells the
program, “If this is true, then execute the following statement(s).” Conditional statements
control an application’s flow of execution.

http://en.wikipedia.org/wiki/Boolean_data_type

 Chapter 3: Flow Control Statements, Arrays, and Structures 57

The If Statement
The if statement is the most common conditional statement; it takes the following form:

if (logical test) { <body> }

The statement says, “If a logical test evaluates to true, then execute the statements in
the immediately following statement block.” Remember, the statement block is everything
between the opening brace immediately following the test and the corresponding closing
brace. If the logical test, or the condition, evaluates to false, then a program skips the
statement block immediately following the if statement. The following is a typical if
statement:

int x = 0;
if(x < 9) {
 NSLog(@"x < 9");
 NSLog(@"This was a test.");
}

When run as part of a program, the program first assigns x the value 0. It then tests if
x is less than 9. It is, and so it executes the two logging statements in the immediately
following statement block.

Nested If Statements
A statement block following an if statement can also contain if statements. These if
statements are called nested if statements. The compiler is smart enough to distinguish
which closing curly brace goes with which opening curly brace.

int x = 0;
int * p = &x;
if(x < 9) {
 NSLog("This is a test.");
 if(sizeof(p) == sizeof(x)) {
 NSLog("x < 9 and is the size of an int");
 }
}

CAUTION
When evaluating a logical condition, be certain to use == and not =. Remember, one
equal sign is assignment, while two is evaluation.

 58 Objective-C for iPhone Developers: A Beginner’s Guide

Compound If Statements
Sometimes multiple conditions must be met for a program to execute a code block. You
use the logical operators discussed in Chapter 2 (&&, ||) when writing compound if
statements. Consider the following two statements:

int x = 0;
int * p = &x;
if(x < 9 && sizeof(p) == sizeof(x)) {
 NSLog(@"compound if...and");
}
if(x < 9 || sizeof(p) == sizeof(x)) {
 NSLog(@"compound if...or");
}

The first statement says, “If x is less than 9 and the size of p is equal to the size of x,
then execute the following statement block.” The second statement says, “If x is less than
9 or the size of p is equal to the size of x, then execute the following statement block.”
You can combine the logical && and || operators to form complex conditional statements
if you wish.

Short-Circuit Evaluation
Objective-C, like C, short-circuits conditional statements. Short-circuiting relies upon
a technique called lazy evaluation. Lazy evaluation doesn’t perform unnecessary
computations. So, if evaluating a compound conditional statement, and the first part of the
statement evaluates to false, then—depending on whether the compound is an and or an
or statement—a program can skip evaluating the rest of the statement. For instance, the
following statement uses a logical && operator.

int x = 2;
if(x != 2 && (x/0)==7) {
 //never reached, no error
}

The program knows when executing that two conditions joined by an && must both
be true. However, x is equal to 2 and so the first condition is false. And so the program
knows the conditional statement will evaluate to false and it skips the immediately
following statement block.

Notice that the preceding code shows an interesting side effect of short-circuiting.
Division by zero is a runtime error, but because the statement is never evaluated, the
program never raises the error.

 Chapter 3: Flow Control Statements, Arrays, and Structures 59

Now consider two statements joined by a logical or operator.

int x = 2;
if(x != 2 || (x/0)==7) {
 //never reached error
}

The program knows when executing the conditional statement that both conditions must
be evaluated, as they are joined by an | | operator. After evaluating the first statement,
despite being false, the program evaluates the second condition, which divides by zero.
And so it raises an exception because division by zero is undefined.

The If Else Structure
Sometimes a program should do one thing if one conditional statement is true and another
thing if it is false. The else keyword allows this type of processing. Consider the following
code snippet.

if(x == 3) {
 NSLog(@"x == 3");
}
else {
 NSLog(@"x != 3");
}

The code snippet says, “If x is equal to 3, then log ‘x is equal to 3’ to the debugger
console; otherwise, log ‘x is not equal to 3’ to the debugger console.”

The If Else If Else Structure
You can also combine if and else to create more complex structures. Consider the
following code snippet:

if(x == 3) {
 NSLog(@"x == 3");
}
else if(x == 4) {
 NSLog(@"x == 4");
}
else {
 NSLog(@"x != 3 nor 4");
}

As the code illustrates, you can follow an if statement by as many else if statements as
desired.

 60 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

In summary, the if statement, combined with the else statement, takes the following
forms:

// Pseudo Code Objective-C/C
if condition then if (condition)
<statements> { <statements> }
else if condition then else if (condition)
<statements> { <statements> }
else if condition then else if (condition)
<statements> { <statements> }
... ...
else else
<statements> { <statements> }
end if

Using Conditional If Statements
 1. Open the previous Try This project, LoopingExample, in Xcode.

 2. Remove the viewDidLoad methods from both MainViewController.m and
FlipsideViewController.m (don’t worry, it doesn’t hurt anything).

 3. Build and Go just to prove to yourself that the application still works correctly.

 4. Open FlipsideViewController.m and implement the viewDidAppear method so that
it matches Listing 3-5. Also add a variable, named i, in FlipsideViewController.

 5. Build and Go. Navigate between the screens at least five times and notice the
debugging statements (Listing 3-6).

Listing 3-5 The viewDidAppear method

int i = 0;
- (void) viewDidAppear: (BOOL) animated {
 [super viewDidAppear:animated];
 if(i == 0) {
 NSLog(@"first time appearing...");
 }
 else if(i == 2) {
 NSLog(@"third time appearing...");
 }
 else if(i < 4) {
 NSLog(@"less than 4 times appearing...");
 }

 Chapter 3: Flow Control Statements, Arrays, and Structures 61

 else {
 NSLog(@"appearing...");
 }
 i++;
}

Listing 3-6 The debugger console logging

first time appearing...
less than 4 times appearing...
third time appearing...
less than 4 times appearing...
appearing...

The Switch Statement
The switch/case construct is an easier alternative to multiple if and else if statements when
evaluating simple integers. Listing 3-7 illustrates.

Listing 3-7 A switch statement

int x = 0;
while (x < 6) {
 switch(x) {
 case 1:
 break;
 case 2:
 printf("x:%i\n",x);
 break;
 case 3:
 break;
 case 4:
 case 5:
 printf("x:%i\n",x);
 break;
 default:
 printf("default\n");
 }
 x++;
 }
}

 62 Objective-C for iPhone Developers: A Beginner’s Guide

A switch statement evaluates an integer and routes a program’s execution flow
according to the integer’s value. A switch’s evaluation takes the following form:

switch(myInt){ <body> }

Within the body, several case statements provide values to test against the switch’s
variable to be tested. A case statement takes the following form:

case <value to test>:

If the case statement’s value matches the switch statement’s value, then the code block
following the case statement executes.

A switch statement might also have an optional default statement.

default:

If a switch statement has a default, then if there is no exact match, then the code following
the case statement executes.

Now, here is the tricky part with switch statements. Notice the keyword, break, in
Listing 3-7. The break keyword forces the switch statement to terminate, and control
returns to code following the switch statement. However, if you do not provide a break
statement in a case statement’s body, then upon completing the case statement, the switch
statement evaluates the next case statement. In the preceding code, although the following
case statements all evaluate to false, the default statement’s body is still entered and the
program executes the statements in default’s statement block. Unless you explicitly wish
following case statements to be evaluated by your program, always end a case statement’s
code block with a break statement.

Consider Listing 3-7’s behavior in more depth. Listing 3-7 illustrates a switch
statement and its control flow. When executed as part of a program, the program first
assigns x the value 0. It then enters the switch statement, using x to evaluate against the
case statements. On the first loop, x equals 0, and so that it matches none of the case
statements and the program executes the default statement’s logging statement. On the
second loop x equals 1, and so the first case statement evaluates to 0 and the program
executes its break statement. The break statement forces the program to exit the switch
statement immediately, and so the program never reaches the default statement. The
loop continues until x is not less than 6. With each loop, the program enters the switch
statement and performs the relevant processing.

 Chapter 3: Flow Control Statements, Arrays, and Structures 63

Try This Using a Switch Statement
 1. Open LoopingExample in Xcode and open FlipsideViewController in the editor.

 2. Add the viewDidDisappear method so that it matches Listing 3-8.

 3. Click Build And Go to build and run the application. Tap the info button and then the
Done button one time and the debugger console displays the statements in Listing 3-9.

Listing 3-8 The viewDidDisappear method

- (void) viewDidDisappear: (BOOL) animated {
 [super viewDidAppear:animated];
 int x = 0;
 while (x < 6) {
 switch(x) {
 case 1:
 break;
 case 2:
 NSLog("x:%i",x);
 break;
 case 3:
 break;
 case 4:
 case 5:
 NSLog("x:%i",x);
 break;
 default:
 NSLog("default");
 }
 x++;
 }
}

Listing 3-9 The debugger console logging

first time appearing...
default
x:2
x:4
x:5

 64 Objective-C for iPhone Developers: A Beginner’s Guide

The Break and Continue Statements
You can use the break keyword in other places than switch statements. When looping,
you can exit a loop early using the break statement. You also can force a loop to skip
the remaining statements in its body and continue to the next loop using the continue
statement.

The Break Statement
To exit a loop immediately, use the break statement. The following code snippet
illustrates:

for(int x = 0;x != 1000;x++) {
 if(x == 5) { break; }
 NSLog(@"x");
}

When executed as part of a program, under normal circumstances, the for loop in the
preceding code would loop 1000 times, from x = 0 to x = 999. Here, however, when
the x variable’s value reaches 5, the logical if statement evaluates to false. When false,
the program enters the code block preceding the if statement and executes the break
statement. The break statement forces the program to exit the for loop immediately. And
so the program only logs 0 through 4 to the debugger console. On the fifth iteration, the
program exits the for loop.

The Continue Statement
To exit a loop’s body and return to a loop’s logical test immediately, use the continue
statement. The following code snippet illustrates:

for(int x = 0; x < 10; x++) {
 if(x==3) { continue; }
 NSLog(@"x=%i",x);
}

When run as part of a program, the program loops 10 times. Each loop, except when
x reaches 3, logs the x variable’s value to the debugger console. When x evaluates to 3,
the logical if statement evaluates to true and executes the continue statement, which forces
the program to skip the remaining statements in the loop’s body and return to the loop’s
logical test.

 Chapter 3: Flow Control Statements, Arrays, and Structures 65

Try This Using the Break and Continue Statements
 1. Open LoopingExample in Xcode and open the FlipsideViewController.m file in the editor.

 2. Add a method called viewWillAppear to the file (Listing 3-10).

 3. Click Build And Go to run the application. Tap the info button one time and the
debugger console should log the statements in Listing 3-11.

Listing 3-10 The viewWillAppear method

- (void)viewWillAppear:(BOOL)animated {
 int i = 0;
 while(YES == YES) {
 i++;
 if(i == 3) continue;
 else if(i==5) break;
 NSLog(@"endless loop: %i", i);
 }
}

Listing 3-11 The debugger console logging

endless loop: 1
endless loop: 2
endless loop: 4
default
x:2
x:4
x:5

Arrays and Structures
C arrays and structures are valid in Objective-C. Although you will usually use Apple’s
NSArray when creating your own array and you will usually create your own class rather
than create a structure, there are situations where you might be required to use these
C data structures. Besides, understanding an array is fundamental to understanding the
Foundation Framework array classes.

 66 Objective-C for iPhone Developers: A Beginner’s Guide

Arrays
Sometimes you wish to use a series of values rather than a single value. Arrays help you
work with multiple values easily. For instance, you might have a time series representing
your expenses over the past ten days.

-(void) expenses() {
 float expenses[10];
 for(int i = 0; i < 10; i++) {
 expenses[i] = 100.0 + i;
 }
}

The function’s first line allocates space for ten float values. The for loop then assigns the value
100.02 + i to each of the values, the results being the series: 100.0, 101.0, 102.0, . . . , 109.
Note that i has the value 0 in the first loop, and so the value added to the expenses array
is n – 1.

After assigning values to individual array elements, you can refer to those elements
directly. For instance, the following code accesses the seventh array element and assigns it to
a variable, for which, from expenses’ preceding initialization, you know the value is 106.

float x = expenses[7];

Arrays and Pointers
One way C programmers often access array elements is through pointers. Accessing
arrays through pointers is important if you wish to understand C strings. If you wish to do
any substantial C programming, it also becomes important, as C programmers use pointers
in seemingly undecipherable ways.

Consider the following code:

void expenses() {
 float expenses[10];
 for(int i = 0; i < 10; i++) {
 expenses[i] = 100.00 + i;
 }
 float * expensePointer = &expenses;
 for(int i = 0; i < 10; i++) {
 printf("%f\n", *(expensePointer+i));
 }
}

The function’s first half assigns values to each array element. The function’s second
half then logs those values. However, the second half, rather than referring to each

 Chapter 3: Flow Control Statements, Arrays, and Structures 67

element by value, does so by reference. It first assigns a pointer to the array, which is the
address of the first element. Remember, the & character preceding a variable means it is
the variable’s address, not its value. The function then increments/moves the pointer by 1,
causing the pointer to point to the next element’s address in the array. With each loop, the
printf statement prints the value pointed to by the expensePointer. Remember the *
character preceding a variable means it is the variable’s value, not its address.

C Strings
C strings are arrays. They are arrays of the char data type. You can define a character
array as an actual array or as a pointer to an implicit array, the second of which is usually
referred to as a C string.

char firstname[] = {'J', 'A', 'M', 'E', 'S','\0'};
char * lastname = "BRANNAN";
printf("Name:%s %s\n",firstname,lastname);

The first line defines a character array. Each letter is an element in the array of six
elements. Note the null terminating character, \0. Character arrays that are to be used as
character strings must end with a terminating null character.

The second line uses a common shortcut by simply declaring a pointer to an array
created with the BRANNAN characters. Behind the scenes, the compiler creates a
character array from the string and then assigns the pointer to the array’s first element’s
address. For instance, the following code performs the same steps as the preceding code,
only manually:

char lastnamearray[] = {'B','R','A','N','N','A','N','\0'};
char * plastnamearray = lastnamearray;
printf("Name:%s %s\n",firstname,plastnamearray);

Multidimensional Arrays
Arrays need not be linear. You can also define multidimensional arrays when using
Objective-C. The following illustrates:

int myvalue [4][2];
for(int i = 0; i < 4; i++) {
 for(int ii = 0; ii < 2; ii++) {
 myvalue[i][ii] = i + ii;
 }
}

The first statement defines an array of four elements where each element has two
elements. The outer for statement loops through the four elements; each time it goes

 68 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

to a new element, it then enters another for loop that loops through the element’s two
subelements. It assigns the value of the ith + iith iteration to each subelement, writing
the following to the debugger console:

0,1
1,2
2,3
3,4
4,5

The Struct Keyword
Multidimensional arrays are not the only way to store an element that consists of multiple
subelements. For instance, suppose you wished to create a song identified by title, artist,
and id. A struct is one way you could represent this data type.

struct song {
 char * title;
 char * artist;
 long id;
};

A song struct consists of a title, an artist, and an id. After defining a struct, you can use
it to define other variables as a struct of that type. The following illustrates using the song
struct defined previously:

struct song asong;
asong.artist = "test artist";
asong.title = "test title";
asong.id = 200;
printf("Artist:%s Title:%s id:%l", asong.artist, asong.title, asong.id);

The first line declares that a variable, asong, is of the struct type song. The second,
third, and fourth lines assign values to each element in asong. The final line then logs the
struct’s values.

Using an Array and Structure
 1. Open LoopingExample in Xcode. Create a new C header file named

SongDataStructure (Figure 3-2).

 Chapter 3: Flow Control Statements, Arrays, and Structures 69

 2. Add the SongStruct struct and the Song typedef to the header file (Listing 3-12). Notice,
like a “real” C programmer, you are doing it in one statement; albeit a C programmer
would use pointers rather than passing values around by value, as you do here.

 3. Build the application. Open FlipsideViewController.h and import the newly created
header file by adding the following to the file’s top:

#import "SongDataStructure.h"

 4. Add the viewWillDisappear method to FlipsideViewController.m so that it
matches Listing 3-13.

Figure 3-2 Creating a C header file

(continued)

 70 Objective-C for iPhone Developers: A Beginner’s Guide

 5. Click Build And Go to run the application.

 6. Tap the info and then the Done button and the logging should appear similar to
Listing 3-14.

Listing 3-12 The SongDataStructure.h C header file

typedef struct SongStruct {
 char * name;
 char * artist;
} Song;

Listing 3-13 The viewWillDisappear method

-(void) viewWillDisappear: (BOOL) animated {
 Song song1;
 Song song2;
 Song song3;
 song1.name = "Hello";
 song1.artist = "The Foos";
 song2.name = "Hey now.";
 song2.artist = "The Hey Nows";
 song3.name = "GoodBye";
 song3.artist = "The Travelling FooBerries";
 Song songsArray[] = {song1, song2, song3};
 for(int i = 0;i < 3; i++) {
 Song curSong = songsArray[i];
 NSLog(@"song: %s artist: %s", curSong.name, curSong.artist);
 }
}

Listing 3-14 The debugger console logging

first time appearing...
song: Hello artist: The Foos
song: Hey now. artist: The Hey Nows
song: GoodBye artist: The Travelling FooBerries
default
x:2
x:4
x:5

 Chapter 3: Flow Control Statements, Arrays, and Structures 71

The UIViewController’s Life-Cycle Methods
Throughout this chapter, without any explanation, you used the Utility Application
template. This template creates a simple two-view application. The info button on the
application’s first view, when pressed, takes the user to the second screen.

The front view is the MainView, and its controller is the UIViewController. The
second view is the FlipsideView, and its controller is the FlipsideViewController. The
UIView represents a view, while a UIViewController represents a view’s controller. Every
view has a view controller that handles life-cycle events for the view. When creating a
view, you can either accept a view’s default view controller by not creating your own, or
you can override the default by creating your own view controller for a view. You create
your own view controller using something called inheritance, which you will learn in
Chapter 6.

Figure 3-3 illustrates how the Utility Application implements its views and
view controllers. Note that you can also create a custom view implementation, as
Figure 3-3 shows. For now, the important thing to understand from Figure 3-3 is that the
MainView and FlipsideView are both UIViews and that the MainViewController and
FlipsideViewController are both UIViewControllers. You should also understand that the
UIView and the UIViewController work together when displaying a view in an iPhone’s
window. The UIView handles displaying a view. The UIViewController handles life-cycle
methods and other “behind-the-scenes tasks” when displaying a view.

One “behind-the-scenes” job a UIViewController handles is allowing a program to
execute custom code when its UIView loads, appears, disappears, and unloads. When a

Work together

Is a Is a Is a Is a

Figure 3-3 UIView, UIViewController, and custom view controllers

 72 Objective-C for iPhone Developers: A Beginner’s Guide

view is first loaded, or when it is displayed, certain life-cycle methods are called by the
application (Figure 3-4).

As Figure 3-4 illustrates, when a view is first loaded into a window by an application,
the application fires the “viewDidLoad” event. If the view has a view controller that
implements the viewDidLoad method, then the viewDidLoad method executes its
custom code. When a view is first displayed, just before it is displayed the application
fires the “viewWillAppear” event. If the associated view controller implements the
viewWillAppear method, then the custom code written in this method is executed. In
this chapter, the custom code was simple looping and conditional statement examples. You
can, of course, use these methods for much more practical behavior.

NOTE
For more detail on a UIView, see my book iPhone SDK Programming: A Beginner’s
Guide (McGraw-Hill Professional, 2009).

Summary
In this chapter you explored looping and conditional statements. If you have ever
programmed using a modern computer language, then these should have been familiar. If
this is your first exposure to these concepts, then you should consult Wikipedia for more
information on these concepts. A beginning C book should also contain the necessary
information.

L

J

Custom code

Custom code

Figure 3-4 Life-cycle methods called when a view loads and is about to be displayed

 Chapter 3: Flow Control Statements, Arrays, and Structures 73

You use the for, while, and do while loops constantly when programming using any
modern programming language, and Objective-C is no different. These expressions
determine how often a program repeats a code block. You also use the if and else
keywords constantly when programming, and so you must understand these keywords and
their use too. The if and else if structures determine your program’s flow, depending upon
different conditions. At any point in time these conditions might be different and your
program could take a different path. Conditional statements are what allows programs to
be flexible to differing conditions when run.

After exploring looping and conditional statements, you then explored arrays and the
struct type. These two concepts, although sort of “tacked on” to this chapter, are important
to understand. Arrays are a fundamental computer science concept. Moreover, you will
use the NSArray and NSMutableArray Foundation classes throughout this book’s second
half, and these classes follow the same concept as simple arrays. You will probably rarely
use a struct in your code, but understanding them are important, as you will certainly see
them used in other programmers’ code.

In the next chapter you finally move to classes, objects, and object-oriented
programming. These are the exclusive realms of Objective-C. From Chapter 4 forward it
will not seem like you are learning C, but rather like you are learning Objective-C.

This page intentionally left blank

75

Chapter 4
Classes, Objects,
and Messaging

 76 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Procedural Programming

● Creating Simple Object Models

● Understanding Objects and Classes and Implementing Them Using
Objective-C

● Modeling Behavior Using a Sequence Diagram

● Creating a Class Diagram and a Simple Project from a Class Diagram

● Using Convenience Initializers

● Understanding Objective-C Methods

Objective-C is a full-featured object-oriented language. Using Objective-C requires
understanding basic object-oriented analysis and design. In this chapter you explore

writing classes and using objects created from those classes. Although not a full treatise
on object-oriented analysis and design, this chapter should provide more insight on how
you progress from object-oriented analysis and design to an Objective-C program. If you
understand the thought process behind object orientation, then implementing classes using
Objective-C should prove more intuitive; that’s this chapter’s thesis anyway.

NOTE
This chapter loosely uses a modeling language notation called the Unified Modeling
Language to perform object-oriented analysis and design. A good book on UML
you might consider purchasing is UML Demystified by Paul Kimmel (McGraw-Hill
Professional, 2005). It is a small and inexpensive book that makes understanding UML
easy. Note that this chapter’s UML usage is not formal but rather loosely uses UML’s
notation to express concepts here. By no means consider this chapter an authoritative
UML source.

 Chapter 4: Classes, Objects, and Messaging 77

Object-Oriented Programming
vs. Procedural Programming

Object-oriented programming is a programming paradigm that uses objects rather than
only functions. This is a profoundly different way of thinking and was a major advance
in computer science, but before considering object-oriented programming, consider its
predecessor, procedural programming.

Procedural Programming
Computer scientists call programs built from a system of communicating functions
procedural programs. The process behind creating these programs is called procedural
programming. Procedures, or methods, interact with one another to perform computational
steps. Figure 4-1 illustrates the execution flow of a typical C program.

void main Bake cake

Cake

Data
Data flow Step progression

Task/procedure

Cake

Cook in oven

Mix ingredients

Ingredients

Cake batter

Gather ingredients

Figure 4-1 Execution flow of a typical C program

 78 Objective-C for iPhone Developers: A Beginner’s Guide

TIP
Wikipedia has a good introduction to procedural programming at http://en.wikipedia
.org/Procedural_programming.

The program represented in Figure 4-1 simplifies the steps involved in cake baking.
First, like all C-based programs, it starts with main. Once deciding upon baking a cake,
presuming you have bought the ingredients, you set off into the kitchen to bake the cake.
However, multiple subtasks compose the “bake cake” task; moreover, you must perform
each task in order.

Tasks are not required to produce data, but in Figure 4-1 each task produces, or
transforms, data. For instance, gathering ingredients results in the ingredients. Mixing the
ingredients results in cake batter. Cooking the batter results in a cake, which is ultimately
returned from the overall “baking a cake” task.

Listing 4-1 implements Figure 4-1 using a simple Objective-C program. Although it
is an Objective-C program, you should note that it uses no Objective-C principles such as
classes. Instead it mixes C into the Objective-C to implement the program. Listing 4-2 is
the debugger console’s output when running the program.

Listing 4-1 Baking a cake

#import <Foundation/Foundation.h>
typedef struct ingredient_struct {
 BOOL mixed;
} ingredients;
typedef struct cake_struct {
 BOOL cooked;
} cake;
ingredients gather_ingredients(void) {
 NSLog(@"gathering....");
 ingredients myIngredients;
 myIngredients.mixed = NO;
 return myIngredients;
}
void mix_ingredients(ingredients * ptheIngredients) {
 NSLog(@"mixing....");
 ptheIngredients->mixed = YES;
}
cake cook_in_oven(ingredients theIngredients) {
 NSLog(@"cooking....");
 cake theCake;
 theCake.cooked = YES;
 return theCake;
}

http://en.wikipedia.org/Procedural_programming
http://en.wikipedia.org/Procedural_programming

 Chapter 4: Classes, Objects, and Messaging 79

cake bake_cake(void) {
 NSLog(@"baking....");
 ingredients myIngredients = gather_ingredients();
 mix_ingredients(&myIngredients);
 cake myCake = cook_in_oven(myIngredients);
 return myCake;
}
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 cake aCake = bake_cake();
 NSLog(@"Baked a cake %@",aCake.cooked?@"YES":@"NO");
 [pool drain];
 return 0;
}

Listing 4-2 Debugger console output

baking....
gathering....
mixing....
cooking....
Baked a cake YES

The program in Listing 4-1 has no classes, objects, or other object-oriented concepts.
Instead it is a purely procedural program. The program begins baking a cake by calling
the bake_cake function. This function in turn calls the gather_ingredients, mix_
ingredients, and cook_in_oven functions; there is a one-to-one correspondence
between the tasks in Figure 4-1 and the functions in Listing 4-1.

Also notice that structs, further refined as a typedef, define each data item. And finally,
notice that in the mix_ingredients function, unlike the other C functions used throughout
the last few chapters, you use a pointer; real C programmers use pointers.

Object-Oriented Programming:
Classes and Objects

Procedural programming was the norm until the 1990s, when object-oriented
programming languages such as Smalltalk and C++ became more popular. Object-
oriented programming, in contrast to procedural programming, uses data structures that
interact with each other. These data structures contain both data and methods that can operate
on that data. A program’s execution flow is from the interaction of these data structures.

 80 Objective-C for iPhone Developers: A Beginner’s Guide

Consider the activity diagram in Figure 4-2.
Suppose you wish to purchase a stock. The first task is to obtain a stock. Obtaining a

stock is nothing more than using its symbol to look up its name, last price, and last date
from an external stock trading system. After obtaining the stock, you determine how many
shares you can buy. You then reach a decision point: if you cannot buy at least one share,
then you are finished. If you can buy one or more shares, you continue to the next step,
buying shares. You then buy shares. After buying shares, you store the purchase in an
external data source such as a database, and then you are finished.

Lookup stock

Stock
symbol Stock

Shares

Buy shares

Online trading
(external)

Online trading
(external)Storage

Record sale

[count =< 1]
[count >= 1]

Determine
how many can

buy

Figure 4-2 Activity diagram for purchasing a stock

Q: Shouldn’t you explain an activity diagram?

A: An activity diagram analyzes a workflow. The ovals represent activities; the arrows
between activities represent transitions. Text labeling the transitions represents guard
conditions. A guard condition is something that must be true to progress to the next
activity. Figure 4-2 is an activity diagram modeling how I envision the process of buying
a stock. For more information on activity diagrams, refer to UML Demystified, or refer to
Wikipedia’s page on the subject (http://en.wikipedia.org/wiki/Activity_diagram).

Ask the Expert

http://en.wikipedia.org/wiki/Activity_diagram

 Chapter 4: Classes, Objects, and Messaging 81

Notice the data flow through Figure 4-2. Looking up a stock results in a stock, which
is the input for determining how many shares you can buy. Determining how many shares
you can buy results in a count. If the count is greater than 0, you buy shares. Buying
shares results in owned shares, and you record the sale and store it.

Like procedural analysis, object-oriented analysis often begins by reviewing activities
and data flow. However, unlike procedural analysis, it does not then implement the
activities as functions. Instead, object-oriented analysis first analyzes the objects, or
nouns, that compose an activity like Figure 4-2.

NOTE
Another form of analysis, typically performed before activity analysis, is called use case
analysis. Use case analysis typically occurs after you gather a client’s requirements but
before conducting activity analysis. Use cases are the basis for transforming written
requirements into more formal analysis and design. Refer to UML Demystified or
Wikipedia’s page on the subject (http://en.wikipedia.org/wiki/Use_case_diagram) for
more information on use case analysis.

Object-Oriented Analysis
After defining the problem, object-oriented analysis looks at a problem’s objects, or
its nouns. In Figure 4-2, first consider the broad data types used by defining the nouns.
The first noun I see is Stock, and so I know I need a Stock class. I also need a Share.
I can describe the entire activity as “purchasing a stock,” and so I surmise that I need a
Purchase class. Finally, I see two external systems, the trading system and the system
used to store the purchase; so I model both of these by creating a Storage class and a
TradingSystem class. Figure 4-3 is a simple model illustrating the classes and their
relationship with one another.

NOTE
Notice I use the pronoun “I” rather than “you” when analyzing Figure 4-2 to create
Figure 4-3. My pronoun use is intentional. Despite computer scientists’ attempts to make
object-oriented analysis and design scientific, it remains largely an artistic endeavor.
Figure 4-3 models how I see the activity in Figure 4-2, not necessarily how you see
the activity. You could do the exact same analysis as I did and derive a very different
diagram than Figure 4-3.

TIP
The best book I have read on object-oriented programming and UML is the book
Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
by Craig Larman. Prentice Hall published it in 1997, and it is still relevant and in press
today. For many years this book was the recommended study guide for IBM’s UML
certification test (before IBM’s acquisition of Rational).

http://en.wikipedia.org/wiki/Use_case_diagram

 82 Objective-C for iPhone Developers: A Beginner’s Guide

Classes and Objects
Before continuing, pause to consider the difference between a class and an object. Think
of a class as a template for an object. A class is the definition, or a pattern. An object is a
physical, live implementation of the pattern. A human being is a class; I am an object, as
I am an instance of a human being. Consider the following C typedef:

typedef struct stockstruct {
 char * symbol;
 char * name;
 char * lastdate;
 float price;
} stock;

CAUTION
A typedef is not a class; I am using a typedef and a struct as a transition to thinking
about classes and objects from C data structures. These data structures are in fact the
precursors to modern classes and objects.

The type definition of a stock is the “class.” Subsequent use of the stock typedef is
the “object.” For instance, the following code creates instances of the stock typedef; the
astock and mystock variables are “objects.”

stock astock = getastock("DFR");
stock mystock;

Purchase

Purchases

Records purchase of

Purchase shares of

TradingSystem

Looks up

Returns purchased

Stock

1

1

1

1

1

1

11

Stores

Storage Share

1

1...*

0...*

Figure 4-3 A class diagram capturing the objects from Figure 4-2

 Chapter 4: Classes, Objects, and Messaging 83

Like a struct, a human is a class, I am an instance of a class, or an object. Now
consider how Objective-C implements classes.

Objective-C Classes
Enough on C structs and typedefs; although helpful for understanding the difference
between classes and objects, they are not a class or an object. A true class encapsulates
both data and behavior.

Objective-C is an object-oriented language; as such, it relies upon classes and
object instances of classes, not structs and typedefs. An Objective-C class consists of an
interface, defined in a header file, and an implementation, defined in a source file. The
interface contains the class’ declarations, while the implementation contains the class’
definitions. Figure 4-4 illustrates the sections of an Objective-C interface.

The @interface
An interface declares the class, its data, and its methods. Like a C header file, it does not
implement methods but only declares them. At the file’s top go any import statements and
@class directives. The class’ declaration begins with the @interface directive. This
directive signals to the compiler that a class declaration has begun. Immediately following
the @interface directive is the class’ name and its parent type. Instance variables go
between the curly braces immediately following the class declaration statement. Methods
go after the closing curly brace, but before the @end compiler directive. The class’
declaration as a whole starts with the @interface compiler directive and ends with the
@end compiler directive.

Figure 4-4 Interface sections

#import <UIKit/UIKit.h>
#import "stockquote.h"

@interface StockQuoteWrapper:NSObject {

-(void)buildURL:(NSString*)symbol;
-(void)doStockQuote:(NSDictionary*)dictionary ;

@end

}

NSMutableString*stockURL;
NSMutableData*receivedData;
NSURLConnection*theConnection;
NSURL*theURL;
NSURLRequest*theRequest;

Import statements

Class name:parent class name

Instance variables

Method declarations

End directive

Interface directive

 84 Objective-C for iPhone Developers: A Beginner’s Guide

Note in Figure 4-4 that the method declarations look different than C function declarations.
Objective-C class methods begin with a minus sign if an instance method and a plus sign if a
class method. You learn more on instance and class methods later in this chapter. Also, notice
that rather than using parentheses, the method uses a colon and then lists its parameters. You
learn more on this different-looking syntax later in this chapter. The important concept to
take from this section is that the interface declares a class’ structure to the compiler. It lets the
compiler know what data variables and methods it will define in its implementation.

The @implementation
An implementation defines a class. It implements the methods declared in the class’
corresponding interface. For instance, Figure 4-5 contains the implementation for the
interface in Figure 4-4.

An implementation implements a class’ interface. For instance, the interface in
Figure 4-4 declares the doStockQuote and buildURL methods. The implementation in
Figure 4-5 defines the doStockQuote and buildURL methods. Method definitions go
between the @implementation directive and the @end directive. For now, don’t worry
about the method syntax; you examine that later in this chapter. The important concept
to take from this section is that the implementation defines a class to the compiler. The
implementation is where you write the code that makes the computer do something.

Object-Oriented Programming: Behavior
Now that you better understand an Objective-C class’ structure, consider how you
determine what methods and instance variables compose an Objective-C class. Determining
what instance variables and methods compose an Objective-C class requires you understand
that class’ behavior. Determining the behavior of classes in a model such as shown earlier
in Figure 4-2 is the next step when performing object-oriented analysis and design.

Figure 4-5 Implementation sections

#import"StockQuoteWrapper.h"

@implementation StockQuoteWrapper

-(void)doStockQuote:(NSDictionary*)dictionary

-(void)buildURL:(NSString*)symbol

--- snip ---

@end

{

{

}

}

Import interface file

Method definitions

End directive

Implementation directive

 Chapter 4: Classes, Objects, and Messaging 85

Unlike procedural programming and the C struct, a class can also have behavior. For
instance, you are an instance of a Human. You encapsulate the data required as a human;
you have a heart, lungs, bones, and muscle. However, you also exhibit behavior; you can
run, walk, skip, and jump. Nobody performs these tasks for you; you—the object instance
of a Human—perform these tasks. In an object-oriented program, classes are no different
than a Human—they encapsulate data and behavior into one construct. Objects are no
different than you and I, instances of a human.

After preliminarily analyzing a problem’s objects, as in Figure 4-3 earlier, you analyze
how those objects interact with one another. This analysis determines each object’s
behavior during a problem’s duration.

Class Interaction
After determining a problem’s basic activity (Figure 4-2) and a preliminary conceptual
object model (Figure 4-3), you should start analyzing how the objects interact with one
another to solve the problem. A good modeling technique/diagram for this analysis is a
sequence diagram. A sequence diagram models object interactions as a sequence of steps
to accomplish some larger task. Figure 4-6 models how I envision object instances from
the classes in Figure 4-3 interacting.

:aStock

:aTradingSystem :aStorage

getNumberToPurchase(money, price)

create(symbol)
Stock

Actor

purchase(symbol, money)

Object

Stock

addShareInfoToStock

recordSale(Stock)

buyShares(money, amount) : shares

Lifeline

Message

Message to self

Returned object

getStockDetails(Stock)

:aPurchase

Figure 4-6 A sequence diagram capturing the classes’ interactions

 86 Objective-C for iPhone Developers: A Beginner’s Guide

A user first initializes a purchase with a string containing the stock symbol and
an amount he or she has budgeted for purchasing stocks. This first interaction creates
a Purchase. The Purchase then calls the TradingSystem to get the Stock’s
information. The StockPurchase then determines how many stocks it can buy. If zero,
it returns immediately with no further processing. If not zero, it calls TradingSystem to
buy shares of the stock.

NOTE
Do not be alarmed at the slight variance between the activity diagram in Figure 4-2
and the sequence diagram in Figure 4-6. When performing object-oriented analysis
and design, your understanding of a problem often matures as you progress through
analysis and design.

After purchasing the stock, the TradingSystem returns how many shares were
purchased. Notice that since the number of purchased shares is actually just a count, the
sequence diagram does away with the Share class and instead makes it a property of the
Stock class. After recording the sale, the system returns the Stock to the initiator and
the sequence terminates.

The sequence diagram in Figure 4-6 captures the interaction of specific object
instances of your model’s classes. For instance, a Purchase instance gets a Stock
instance’s information by asking a TradingSystem instance to get information on
the stock. Together, these interactions, modeled in a sequence diagram, provide a more
complete understanding of the methods needed, and their sequence, to complete a
problem.

You use the interactions in a sequence diagram to create each class’ methods.
When creating methods, be certain you assign them to the appropriate class. For
instance, Purchase is asking TradingSystem for stock information. Therefore, the
getStockDetails method belongs to the TradingSystem class and not Purchase.
Going through all the interactions in the sequence diagram creates a class model like
Figure 4-7.

Unlike a sequence diagram or activity diagram, a class diagram is static and models a
class, not an object instance of a class. Think of this diagram as a blueprint for how you
will actually write code rather than a diagram helping you understand a problem better.

A class diagram like Figure 4-7, although similar to a conceptual class diagram
like Figure 4-3, is much more detailed. It captures a class, its instance variables, and
its methods.

 Chapter 4: Classes, Objects, and Messaging 87

In Figure 4-7 a class is a square. The top compartment contains the class name; the
next contains the class’ instance variables. The bottom compartment contains the class
methods. Note that you can omit a middle section if there are no instance variables.
The lines between classes are associations; associations model classes “knowing” about
each other so that they can solve a problem. Arrows indicate a one-way association; for
instance, Purchase must know about Stock, but Stock doesn’t require knowing about
Purchase. Notice that you can also omit a class’ middle or bottom section if it has no
instance variables or no methods.

With a class diagram completed, you can then begin to write an actual program.

Storage

recordSale(aStock:Stock)

Purchase
Stock:purchase (symbol:String, amountToSpend:float)
int:getNumberToPurchase (amountToSpend:float,priceOfStock:float)
addShareInfoToStock(shares:int)

Stock

<name>:<type>
name: String
symbol: String
price: float
shares: int

int:buyShares(aStock:Stock,amountToSpend:float,sharesToBuy:int)
getStockDetails(aStock:Stock)

TradingSystem

Method name

Return type Parameter name

int:buyShares(aStock:Stock,money
:float,sharesToBuy:int)

Parameter type

1

myTradingSystem

1

myStock

1

myStorage

Figure 4-7 A class diagram modeling purchasing a stock

 88 Objective-C for iPhone Developers: A Beginner’s Guide

Try This Creating Classes from a Class Diagram
Now that you have a class diagram, complete with methods, you can begin implementing
a program from that class model. In this Try This example, as I have not discussed
Objective-C methods yet, you only link the classes together. The following is based upon
the class diagram in Figure 4-7.

 1. Create a new View-based Application called StockPurchase.

 2. Disclose, or expand, the Classes folder in Groups & Files. Right-click Classes and
select Add | New Group from the pop-up menu. Name the new group model.

 3. Add four new Objective-C NSObject subclasses to Model. Name the classes
Purchase, Stock, TradingSystem, and Storage. Remember, shares was
downgraded from an object to an integer primitive that is a property of Stock and is
no longer a class.

 4. Review the interface and implementation generated for each class.

 5. Return to the relationships in Figure 4-7. A Purchase has a relationship with Stock,
Storage, and TradingSystem. To communicate with these classes, it must know
about them. To know about them it must import each class’ header. Import the Stock
and Storage classes into Purchase.h (Listing 4-1).

 6. For TradingSystem, rather than importing TradingSystem in Purchase.h, use the
@class directive.

 7. The arrows in Figure 4-7 are labeled. You turn those labels into object variables in
the class having the relationship with the other class. Purchase has a relationship
with Stock, Storage, and TradingSystem. Purchase’s relationship with Stock
is through an object instance of Stock called myStock. The diagram tells us there
is only one Stock instance Modify Purchase to have three instance variables:
myStock, myTradingSystem, and myStorage.

 8. Now, although there is no relationship between Stock and TradingSystem,
note that both the getStockDetails and buyShares methods require a Stock.
Therefore, TradingSystem must know about Stock. Change TradingSystem.h to
know about Stock using the @class directive in its interface (Listing 4-2).

 Chapter 4: Classes, Objects, and Messaging 89

 9. Also change Storage so that it knows about Stock and use the @class directive in
its interface and import Stock in its implementation (Listings 4-3 and 4-4).

 10. Build the application and run it if you wish, although it doesn’t do anything yet.

Listing 4-1 Purchase.h

#import <Foundation/Foundation.h>
#import "Stock.h"
#import "Storage.h"
@class TradingSystem;
@interface Purchase : NSObject {
 Stock * myStock;
 Storage * myStorage;
 TradingSystem * myTradingSystem;
}
@end

Listing 4-2 TradingSystem.h

#import <Foundation/Foundation.h>
@class Stock;
@interface TradingSystem : NSObject {
}
@end

Listing 4-3 Storage.h

#import <Foundation/Foundation.h>
@class Stock;
@interface Storage : NSObject {
}
@end

Listing 4-4 Storage.m

#import "Storage.h"
#import "Stock.h"
@implementation Storage
@end

(continued)

 90 Objective-C for iPhone Developers: A Beginner’s Guide

A class knowing about another class is no different than a function defined in one C
header file knowing about another function defined in a different header file. For the first
function to know about the other function, it must include the header file containing the
second function. Objective-C classes are no different, for one class to know about another,
it must import the second class’ interface in its interface.

Notice that one class knowing about another does not require importing the header;
instead, you might use a @class compiler directive. The next section and subsequent Try
This example illustrate how and why you use an @class compiler directive. For now, just
realize it is another way that one class can know about another.

NOTE
Sometimes class relationships are not a one-to-one relationship such as in
Figure 4-7. A class might have a relationship with multiple classes. For instance,
an AcademicDepartment has multiple Professors; therefore, an
AcademicDepartment aggregates Professors (Figure 4-8). In this situation you
would use a data structure such as an array, NSArray, or NSDictionary to implement
the relationship. For more information on aggregation, refer to UML Demystified.

The @class Directive
In the previous Try This you used the @class directive. The @class directive allows
you to tell the compiler that a class will be referring to another class by name, but that the
class doesn’t need to import the other class’ header file, Listing 4-1 illustrates using the
class directive. Purchase needs to “know” about TradingSystem so that it can “ask”
TradingSystem to get a Stock’s details and buy shares of a Stock. But Listing 4-1
doesn’t really require knowing anything about TradingSystem’s details, and so it
doesn’t import TradingSystem’s interface.

Now, although the @class directive allows Purchase to refer to the TradingSystem
class in its class interface, it does not allow Purchase to use TradingSystem in its class
implementation. For instance, Purchase refers to TradingSystem in Listing 4-1, but
to actually use TradingSystem in its implementation, the implementation must import
TradingSystem.

AcademicDepartment
dept professors

Professor
0..n1

Figure 4-8 An aggregation example

 Chapter 4: Classes, Objects, and Messaging 91

Try This

If you must still import the used class’ interface in a class’ implementation to use
the class, this begs the question, why should you use the @class directive instead of
the #import directive? Most texts will tell you to avoid needless compilation. Their
reasoning, although correct, is rarely going to be an issue when programming an iPhone
App. However, there is a more practical reason for using the @class directive. You use
the @class directive to mitigate circular dependencies.

A circular dependency is when two classes are both dependent upon each other. For
instance, Foo might need Bar to print “foobar” to the debugger console. Bar might need
Foo to print “barfoo” to the debugger console. Because they both rely upon one another,
they would normally need to import each other’s header file. But to build Foo, Bar.h must
be included in Foo.h, To build Bar, Foo.h must be included in Bar.h, and so the compiler
gets confused and refuses to compile. The @class directive mitigates this circular
dependency; the following Try This illustrates.

Mitigating a Circular Dependency
Using the @class Directive

Suppose you had two classes that both refer to one another, as in Figure 4-9, where both
classes must “know” about one another to do their jobs. In this Try This you mitigate the
problem of a circular dependency such as that in Figure 4-9 by using the @class directive.

NOTE
Notice in Figure 4-9 that there are arrows on both ends of the line connecting Foo
with Bar. Arrows indicate directionality in a relationship. For example, in Figure 4-7
Purchase must communicate with Stock, but Stock does not need to communicate
with Purchase, and so an arrow is added to the line end connecting to Stock. When
both classes must communicate with one another, arrows are either omitted or arrows
are added to both line ends. Figure 4-8 is an example of arrows having been omitted;
both AcademicDepartment and Professor must know about each other. In
Figure 4-9, the arrows are both included, indicating a bidirectional relationship.

Foo Bar
myFoo 1

1 myBar

Figure 4-9 Two classes in a circular dependency

(continued)

 92 Objective-C for iPhone Developers: A Beginner’s Guide

 1. Create a new View-based Application named Circular.

 2. Create two new Objective-C NSObject subclasses named Foo and Bar (Listings 4-5,
4-6, 4-7, and 4-8).

 3. Import Foo in Bar and Bar in Foo, and then implement both classes as in Listings 4-5
through 4-8.

 4. Try building the application and note that the application does not compile.

Listing 4-5 Foo.h (incorrect)

#import <Foundation/Foundation.h>
#import "Bar.h"
@interface Foo : NSObject {
 Bar * myBar;
}
- (void) sayFooBar;
- (NSString *) sayBarFoo;
@end

Listing 4-6 Foo.m (incorrect)

#import "Foo.h"
@implementation Foo
- (void) sayFooBar {
 myBar = [[Bar alloc] init];
 NSLog(@"sayFooBar:%@", [myBar sayBarFoo]);
}
- (NSString *) sayBarFoo {
 return @"sayBarFoo";
}
@end

Listing 4-7 Bar.h (incorrect)

#import <Foundation/Foundation.h>
#import "Foo.h";
@interface Bar : NSObject {
 Foo * myFoo;
}
- (NSString *) sayBarFoo;
@end

 Chapter 4: Classes, Objects, and Messaging 93

Listing 4-8 Bar.m (incorrect)

#import "Bar.h"
@implementation Bar
- (NSString *) sayBarFoo {
 myFoo = [[Foo alloc] init];
 return [myFoo sayBarFoo];
}
@end

 1. Modify Foo.h to refer to Bar using the @class directive and not import Bar.h
(Listings 4-9 and 4-10).

 2. Modify Bar.h to refer to Foo using the @class directive and not import Foo.h
(Listings 4-11 and 4-12).

 3. Try building the application and note that it compiles and runs, but notice the warning
received in both classes’ implementation (Figure 4-10).

 4. Modify both implementations so that they import each other; Foo.m should import
Bar.h and Bar.m should import Foo.h.

 5. Click Build And Debug and the application builds and runs, only this time the
compiler generates no warnings.

Listing 4-9 Foo.h (correct)

#import <Foundation/Foundation.h>
@class Bar;
@interface Foo : NSObject {
--- snip ---
@end

Listing 4-10 Foo.m (correct)

#import "Foo.h"
#import "Bar.h"
@implementation Foo
--- snip ---
@end

(continued)

 94 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 4-10 Compiler warning

 Chapter 4: Classes, Objects, and Messaging 95

Listing 4-11 Bar.h (correct)

#import <Foundation/Foundation.h>
@class Foo;
@interface Bar : NSObject {
--- snip ---
@end

Listing 4-12 Bar.m (correct)

#import "Bar.h"
#import "Foo.h"
@implementation Bar
--- snip ---
@end

Methods and Messaging
Up to now, I have glossed over Objective-C’s strange syntax. However, this strange syntax is
actually quite elegant. Figure 4-11 illustrates a typical method declaration in Objective-C.

A method declaration begins with a + or – sign. As you learn in the next section, this
indicates whether the method is a class method or instance method. The declaration then
specifies the method’s return type. For instance, in Figure 4-11 the method returns an
NSMutableString. Note that if a method does not return anything, you write void in the
parentheses, as the following code illustrates:

-(void) buildHelloString:(NSString *) personName;

Method name Argument type
and name

Method type

-(NSMutableString *)buildHelloString:(NSString *)personName;

Return type

Figure 4-11 An Objective-C method

 96 Objective-C for iPhone Developers: A Beginner’s Guide

Methods taking a parameter follow its name with a colon. Methods without a
parameter omit the colon. This distinction is important, as the colon becomes part of the
method’s name.

NOTE
Objective-C methods that take a parameter use a colon. That colon is part
of the method’s name. For instance, the method’s name in Figure 4-11 is not
buildHelloString, but rather, buildHelloString:—this is an important
distinction.

If a method has a colon, then the parameter’s type, in parentheses, follows the colon.
Following the parameter’s type is the parameter’s name, followed by a semicolon, which
ends the declaration.

An Objective-C class’ methods, when called by other objects, appear very different
than code calling C functions. This difference is because Objective-C uses something
called infix notation. Infix notation mixes operands and operators. Figure 4-12 illustrates
an Objective-C message.

An Objective-C message from one object to another begins with an opening square
brace and ends with a closing square brace. The message begins with an opening
square brace, followed by the object’s name (the receiver). The receiver is followed by
a space, and then the object’s method being called (the message). If a message takes a
parameter, then the method’s name includes a colon and a parameter value.

Class and Instance Methods
Instance methods begin with a minus sign, while class methods begin with a plus sign. If
you are familiar with Java, note that a class method is the same as a Java static method. A
class method occurs at the class level and does not apply to an object instance of the class.

Using a class method does not require first creating a class instance before using it. As
you saw earlier, alloc is a class method. You do not instantiate an instance and then call
alloc, but rather, use alloc to instantiate an instance of an instance.

Receiver Message

[myHelloSayer buildHelloString:@"Bob"]

Parameter value

Figure 4-12 An Objective-C message

 Chapter 4: Classes, Objects, and Messaging 97

Try This

While class methods operate at the class level, instance methods are tied to particular
instances of a class. Instance methods rely upon a class instance’s state. Instance methods,
unlike class methods, can refer to an object’s instance variables and the object itself.

Creating a Simple Class Method and
Instance Method

 1. Create a new View-based application named ClassInstanceExample in Xcode.

 2. Create a new Objective-C NSObject subclass in Classes named MyClass. In
MyClass.h add declarations for an instance method named sayHelloInstance and
a method named sayHelloClass (Listing 4-13). Also add a variable named myName.

 3. Implement the methods as in Listing 4-14. Try placing the same NSLog statement
from sayHelloInstance in sayHelloClass.

 4. Add the class and call the methods in main.m (Listing 4-15).

 5. Build and Debug to run the application. The application crashes. Notice the compiler
warning “instance variable ‘myName’ accessed in class method.”

 6. Change sayHelloClass so that it no longer refers to the myName instance variable
but instead simply logs “Hello.” Build and Debug and the application runs fine.

Listing 4-13 MyClass.h

#import <Foundation/Foundation.h>
@interface MyClass : NSObject {
 NSString * myName;
}
-(void) sayHelloInstance;
+(void) sayHelloClass;
@end

Listing 4-14 MyClass.m

#import "MyClass.h"
@implementation MyClass
- (id) init {

(continued)

 98 Objective-C for iPhone Developers: A Beginner’s Guide

 if([super init] == nil) return nil;
 myName = [[NSString alloc] initWithString:@"Hello"];
 return self;
}
-(void) sayHelloInstance {
 NSLog(myName);
}
+(void) sayHelloClass {
 //NSLog(myName);
 NSLog(@"Hello");
}
-(void) dealloc {
 [myName release];
 [super dealloc];
}
@end

Listing 4-15 The main.m file

#import <UIKit/UIKit.h>
#import "MyClass.h"
int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 MyClass * objMyClass = [[MyClass alloc] init];
 [objMyClass sayHelloInstance];
 [MyClass sayHelloClass];
 [objMyClass release];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

In this application you used both an instance method and a class method. Originally, in
Step 5, you tried accessing an instance variable in the class method. But this resulted in a
compiler error, as class methods cannot refer to any of a class’ properties or methods, only
other class methods. This restriction is logical, as you are not required to instantiate an
object instance of a class to use its class methods, and if there is no object instance, then
you cannot refer to properties or methods belonging to an object.

 Chapter 4: Classes, Objects, and Messaging 99

Allocating and Initializing Objects
Remember, a class is a template, while an object is an instance of that template. For
instance, an architect’s drawing tells a builder how to create an instance of a house defined
by the architect’s drawing. Moreover, a builder can create multiple instances of houses
based upon the drawing. Think of the architect’s drawing as the class and the houses as
objects that implement the drawing.

Creating a house from a drawing is considerable work; the builders must construct the
house to create an instance of it. Same with Objective-C, or any object-oriented program:
to create an object instance of a class, a running program must instantiate the object.

But before the builders can even begin, they must allocate land to build the house
upon. Again, same with an Objective-C program: it must first allocate memory to build
the object in. After allocating memory, the running program can then build the object.

Allocating Memory and Constructing
If you are familiar with Java or C++, note that unlike these languages, there is no new
keyword in Objective-C. In C++ and Java you use the new keyword to create a new object
instance of a class. For instance, the following Java creates a new object from a Foo class:

Foo myFoo = new Foo();
In C++ this line would be written
Foo *myFoo = new Foo();

This statement both allocates space and constructs and initializes the new object
in one statement. But Objective-C requires two steps to create an object instance. You
allocate an object and build a generic instance of the object using the alloc keyword.
Here is how alloc works. Every Objective-C class ultimately inherits from a base object
called NSObject (more on inheritance later). NSObject has a class method called
alloc (more on class methods later). The alloc method allocates the necessary space in
memory for the object. It also builds a generic instance of the object according to the class
template. The following code allocates space and builds a Foo instance:

Foo * myFoo = [Foo alloc];

Allocating memory instructs a running program to create space for an object instance
and construct a generic instance of a class.

 100 Objective-C for iPhone Developers: A Beginner’s Guide

Initializing Objects
Constructing identical object instances has limited value. In the real world, usually no
two instances of something are truly identical. Return to the house building analogy.
Once the house is built and sold, the owners usually modify it prior to moving in. This
modification, or initialization, makes the house the owners’ own unique house version.
Although all houses built using the same drawing are initially identical, owners initialize
the house. Same with Objective-C: after allocating space and building an object, you then
initialize it.

You initialize a class using the init method. Just like alloc, every Objective-C
class inherits NSObject’s init method. However, init is an instance method rather
than a class method (more on instance methods later). You call a class’ init method
immediately after allocating the class. For instance, the following code allocates an object
and then initializes it:

Foo * myFoo = [Foo alloc];
[myFoo init];

NOTE
As you shall notice throughout this book, you usually see an object’s allocation and
initialization written in a single line. The following line first allocates space for a Foo
instance, it then initializes that instance and returns an id. That id is assigned to myFoo.

Foo * myFoo = [[Foo alloc] init];

Writing Custom Initializers
Look through Apple’s documentation on Foundation classes and you will see numerous
methods like the following:

initWith<qualifier>

These initializers are called convenience initializers. For instance, NSString has over
15 custom init methods. If you wish to create an NSString from a C string, you might
write the following:

char * test = "Hello James";
NSString * myTest = [[NSString alloc] initWithUTF8String:test];

You can create custom initializers for your classes too; the following Try This
illustrates.

 Chapter 4: Classes, Objects, and Messaging 101

Try This Using a Convenience Initializer
 1. Open ClassInstanceExample in Xcode. Modify MyClass.m so that it has a

convenience initializer rather than init (Listing 4-16).

 2. Modify main.m so that it matches Listing 4-17.

 3. Click Build And Debug and the application uses the convenience initializer.

Listing 4-16 MyClass.m modified to contain a convenience initializer

#import "MyClass.h"
@implementation MyClass
- (id) initWithString: (NSString *) inputString {
 self = [super init];
 if(self != nil) {
 myName = inputString;
 [myName retain];
 }
 return self;
}
- (void) sayHelloInstance {
 NSLog(myName);
}
+ (void) sayHelloClass {
 NSLog(@"hello");
}
- (void) dealloc {
 [myName release];
 [super dealloc];
}
@end

Listing 4-17 The main.m file modified to use the convenience initializer

#import <UIKit/UIKit.h>

#import "MyClass.h"

int main(int argc, char *argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 MyClass * objMyClass = [[MyClass alloc] initWithString:@"This is hello."];

 [objMyClass sayHelloInstance];

(continued)

 102 Objective-C for iPhone Developers: A Beginner’s Guide

 [objMyClass release];

 int retVal = UIApplicationMain(argc, argv, nil, nil);

 [pool release];

 return retVal;

}

The initWithString: method in Listing 4-16 takes an NSString as a parameter.
It then calls its superclass’ init method. If init doesn’t return a null value, it initializes
its myName instance variable to inputString. Do not worry about the keyword
retain for now; you learn about that in Chapter 5. All it does is ensure that the pointer
to inputString remains valid. Remember, Objective-C passes around objects by
reference, not value, so myName is not a unique instance of an NSString, but rather a
pointer to the NSString inputString. As you will see in Chapter 5, retain ensures
that reference remains valid. The initializer ends by returning itself as an id.

CAUTION
Be certain you read the section on designated initializers in Chapter 7. Notice that if
you used either Foo’s or Bar’s init method (not initWithString), then the string
would be a null value and nothing would print to the debugger console. A designated
initializer avoids this problem.

Q: You talk about a superclass in the previous Try This. What is a superclass?

A: I haven’t discussed inheritance yet, but a superclass is a parent of a subclass. In object-
oriented programming languages classes can inherit the methods and instance variables of
a parent class. For instance, a Car class might inherit from a Vehicle class. A Vehicle
class might have a move method. The Car class, as a child of Vehicle, inherits the move
method. Parent classes can in turn inherit from a parent class, just as your parents inherit
from your grandparents. Every class you write will ultimately inherit from NSObject
as its base parent class. NSObject defines an init method, and so every child class of
NSObject is guaranteed to have an init method. You will learn more on inheritance in
Chapter 6.

Ask the Expert

 Chapter 4: Classes, Objects, and Messaging 103

Multiple Argument Methods
Methods can have more than one argument. Multiple argument methods are where
Objective-C really shines. Although at first confusing, Objective-C’s multiple argument
syntax makes it easier to read and maintain than other languages such as Java and C++.

NOTE
Parameter and argument are synonyms. They both refer to a value passed between
methods.

Consider the following C function being called, what exactly do the parameters mean?

doIt("Bill Cosby", "Leonard Part 6", 37);

Now consider the same function as an Objective-C message.

[myMultiple doIt:@"Bill Cosby" movieName:@"Leonard Part 6" timesSeen:37];

You know exactly what the last two methods mean, and you can infer what the first
method means. You are calling the method doIt with an actor name, a movie name, and
the number of times the movie was seen.

Objective-C methods that have more than one parameter use a space between
arguments. For instance, you might implement the preceding doIt method as follows:

- (void) doIt:(NSString *) actorName movieName: (NSString*) value timesSeen:
(int)times {
 NSLog(@"%@ is my favorite actor in the movie %@, I saw it %i times.",
actorName, value, times);
}

An Objective-C method’s first parameter is not named, while the remaining
parameters are named. This allows you to know exactly what the remaining parameters
mean. After the first argument, you specify each subsequent argument by an argument
name, a colon, the argument’s type, and the actual argument’s name referred to internally
by the implementing method. Figure 4-13 illustrates. Although this convention is initially
confusing, you will use multiargument methods so frequently when using Foundation
classes such as NSString, they will soon become second nature.

 104 Objective-C for iPhone Developers: A Beginner’s Guide

Try This Implementing the StockPurchase Program
in Objective-C

You haven’t learned about properties, inheritance, and many other object-oriented
principles yet, so any example is going to be contrived. For this Try This example,
suspend disbelief and implement the methods as presented in this example. Although
contrived, the methods do illustrate going from earlier Figures 4-7 and 4-8 to code.

 1. Open StockPurchase in Xcode.

 2. Refer to Figures 4-7 and 4-8 and begin with the Stock class. This class has four
instance variables, but no methods. Add the variables to Stock (Listing 4-18). Also
add a method called logStockInformation to Stock (Listings 4-18 and 4-19).
Also, as you have not learned about Objective-C’s properties yet, add accessor
methods for price and shares.

 3. Now refer to Figure 4-7 and notice that the Purchase class creates a Stock instance
by passing a stock symbol. To implement this behavior, you add an initWithSymbol
method, as in Listing 4-19.

 4. Now refer to Storage. This class has the recordSale method, and so you add it to
Storage’s interface and implementation (Listings 4-20 and 4-21).

 5. Refer to the TradingSystem class. This class has the buyShares and
getStockDetails methods. Implement both methods as in Listings 4-22 and 4-23.
Note that buyShares takes multiple arguments (parameters). The modeled argument
names in Figure 4-8 become the external argument names; this is why you made these
argument names descriptive in Figure 4-8.

 6. Move to the Purchase class. This class drives the overall program flow. Implement
the purchase, getNumberToPurchase, and addShareInfoToStock methods to
Purchase (Listings 4-24 and 4-25).

Argument name (external)

-(void)doIt:(NSString *)actorName movieName:(NSString*)
value timesSeen:(int)times;

Argument name (internal)

Figure 4-13 Multiple argument method declaration

 Chapter 4: Classes, Objects, and Messaging 105

 7. Now notice in Figure 4-7 that the actor calls only the purchase method. All
other method calls are messages from Purchase to other objects. Open
StockPurchaseAppDelegate.h (Listing 4-26) and import the Purchase class.
Then modify the applicationDidFinishLaunching: method in
StockPurchaseAppDelegate.m (Listing 4-27) so that it instantiates Purchase
and sends the purchase message to the Purchase instance.

 8. Click Build And Debug and the application compiles and runs.

Listing 4-18 Stock.h

#import <Foundation/Foundation.h>
@interface Stock : NSObject {
 NSString * name;
 NSString * symbol;
 float price;
 int shares;
}
- (id) initWithSymbol: (NSString *) aSymbol;
- (void) logStockInformation;
- (float) getPrice;
- (int) getShares;
@end

Listing 4-19 Stock.m

#import "Stock.h"
@implementation Stock
- (id) initWithSymbol: (NSString *) aSymbol {
 if([super init] == nil) return nil;
 symbol = aSymbol;
 [symbol retain];
 return self;
}
- (void) logStockInformation {
 NSLog(@"The stock:%@ price:%f shares:%i", symbol, price, shares);
}
- (float) getPrice {
 return 39.99F;
}

(continued)

 106 Objective-C for iPhone Developers: A Beginner’s Guide

- (int) getShares {
 return 22;
}
@end

Listing 4-20 Storage.h

#import <Foundation/Foundation.h>
@class Stock;
@interface Storage : NSObject {
}
-(void) recordSale: (Stock *) aStock;
@end

Listing 4-21 Storage.m

#import "Storage.h"
#import "Stock.h"
@implementation Storage
-(void) recordSale: (Stock *) aStock {
 NSLog(@"recording sale for stock.");
 [aStock logStockInformation];
}
@end

Listing 4-22 TradingSystem.h

#import <Foundation/Foundation.h>

@class Stock;

@interface TradingSystem : NSObject {

}

- (int) buyShares: (Stock *) aStock amountToSpend: (float) money sharesToBuy:

(int) shares;

- (void) getStockDetails: (Stock *) aStock;

@end

Listing 4-23 TradingSystem.m

#import "TradingSystem.h"

@implementation TradingSystem

- (int) buyShares: (Stock *) aStock amountToSpend: (float) money sharesToBuy:

 Chapter 4: Classes, Objects, and Messaging 107

(int) shares {

 NSLog(@"simulating buying shares with amount:%f to buy %i shares.", money,

shares);

 return 2;

}

- (void) getStockDetails: (Stock *) aStock {

 NSLog(@"simulating getStockDetails...");

}

@end

Listing 4-24 Purchase.h

#import <Foundation/Foundation.h>

#import "Stock.h"

#import "Storage.h"

@class TradingSystem;

@interface Purchase : NSObject {

 Stock * myStock;

 Storage * myStorage;

 TradingSystem * myTradingSystem;

}

-(Stock *) purchase: (NSString *) symbol amountToSpend: (float) money;

-(int) getNumberToPurchase: (float) amountToSpend priceOfStock: (float) price;

-(void) addShareInfoToStock: (int) shares;

@end

Listing 4-25 Purchase.m

#import "Purchase.h"

#import "Stock.h"

#import "TradingSystem.h"

@implementation Purchase

-(Stock *) purchase: (NSString *) symbol amountToSpend: (float) money {

 NSLog(@"purchase in Purchase...Symbol:%@ amountToSpend:%f", symbol, money);

 myStorage = [[Storage alloc] init];

 myTradingSystem = [[TradingSystem alloc] init];

 myStock = [[Stock alloc] initWithSymbol: @"IAG"];

 [myTradingSystem getStockDetails:myStock];

 int amountToBuy = [self getNumberToPurchase:money priceOfStock:[myStock

getPrice]];

 [myTradingSystem buyShares:myStock amountToSpend:money sharesToBuy:amountToBuy];

 [self addShareInfoToStock:[myStock getShares]];

(continued)

 108 Objective-C for iPhone Developers: A Beginner’s Guide

 [myStorage recordSale:myStock];

 [myStorage release];

 [myTradingSystem release];

 return myStock;

}

-(int) getNumberToPurchase: (float) amountToSpend priceOfStock: (float) price {

 NSLog(@"amountToSpend:%f and prices:%f", amountToSpend, price);

 return 2;

}

-(void) addShareInfoToStock: (int) shares {

 NSLog(@"addShareInfoToStock with shares:%i", shares);

}

@end

Listing 4-26 StockPurchaseAppDelegate.h

#import <UIKit/UIKit.h>

@class StockPurchaseViewController;

@interface StockPurchaseAppDelegate : NSObject <UIApplicationDelegate> {

 UIWindow *window;

 StockPurchaseViewController *viewController;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet StockPurchaseViewController

*viewController;

@end

Listing 4-27 StockPurchaseAppDelegate.m

#import "StockPurchaseAppDelegate.h"
#import "StockPurchaseViewController.h"
#import "Purchase.h"
@implementation StockPurchaseAppDelegate
@synthesize window;
@synthesize viewController;
- (void)applicationDidFinishLaunching:(UIApplication *)application {
 Purchase * myPurchase = [[Purchase alloc] init];
 [myPurchase purchase:@"AIG" amountToSpend:55.37F];
 [myPurchase release];
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

 Chapter 4: Classes, Objects, and Messaging 109

- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}
@end

The interaction in Figure 4-7 begins when the external actor, StockPurchaseApp
Delegate, sends the purchase message to its Purchase instance, myPurchase. The
interaction ends when myPurchase is finished purchasing the stock. Purchase creates
a Stock instance; however, in doing so it passes the symbol of the stock to create, and so
you implemented a convenience initializer that takes a stock’s symbol. Purchase then
gets the stock’s details from its TradingSystem instance, myTradingSystem. After
getting the stock’s details, it determines how many it can purchase. Note that you created
accessor methods in Stock so that you can obtain the values of its price and symbol
instance variables; this is contrived. In Chapter 5 you learn about properties and how these
make accessing a class’ instance variables trivial.

After determining how many shares it can purchase, myPurchase sends the
buyShares message to myTradingSystem. After buying shares, myPurchase adds the
number of shares purchased to the stock and then has myStorage record the sale. After
completing, myPurchase returns control to StockPurchaseAppDelegate.

Summary
In this chapter you explored classes and objects in Objective-C and in the process learned a
little about object-oriented analysis and design. Objective-C classes consist of an interface
and an implementation. The interface is declared in a header file, while the implementation
is defined in a source file. Remember, unlike a C source file, an Objective-C file uses a
.m extension rather than a .c extension.

Classes consist of data and behavior. A class encapsulates data as instance variables
while behavior is encapsulated as methods. Objective-C methods, although different in
appearance than C++ and Java methods, are elegant and descriptive, particularly when
passing multiple arguments to a method.

 110 Objective-C for iPhone Developers: A Beginner’s Guide

Notice that the instance variables in this chapter are not accessible to other classes
unless you use a method to get the value. Moreover, other classes cannot set a value in
another class unless you use a method to set the value. You call these getter and setter
methods accessor methods. There are particular nuances when getting and setting a class’
instance variables not covered in this chapter. This omission is intentional. In Chapter 5
you learn about Objective-C’s properties; properties make getting and setting a class’
instance variables trivial.

111

Chapter 5
Memory Management
and Properties

 112 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Manual Memory Management

● Understanding Encapsulation

● Using Properties

● Understanding “Ownership”

● Understanding Memory Management Using Autorelease

● Using IBOutlet

If your experience lies with a language such as Java, Visual Basic, or a scripting language,
and not a language such as C++ or C, then Objective-C’s memory management might
seem confusing at first. However, it will quickly seem intuitive. Problem is, once you start
coding—and more important, debugging—Objective-C’s memory management will seem
mystifying once again as you track down elusive memory-related errors. But then, as you
gain experience, it will start to seem more natural. In this chapter you explore how you
manage memory when programming using Objective-C on the iPhone.

After learning about managing memory, you learn about properties. Properties
are new to Objective-C 2.0 and simplify using instance variables in your classes.
Properties also simplify managing memory considerably. From this chapter on, you
use properties extensively, and so you must understand them. Properties are also used
with the IBOutlet keyword for connecting controls in Interface Builder with instance
variables in a class. For instance, you might have a label on a view that is connected to a
label property in a class. By using the IBOutlet keyword, you can have changes in code
correspond to changes in an associated view’s appearance.

Memory Management
Beginning with Mac OS X version 10.5, Cocoa offers automatic memory management
using something called garbage collection. Garbage collection makes memory management
trivial when developing applications or Mac OS X. Problem is the iPhone, as its resources
are more constrained, has no garbage collection. Instead you must manage memory
manually or use something called autorelease pools.

 Chapter 5: Memory Management and Properties 113

Manual Memory Management
Cocoa classes and Objective-C classes you create are subclasses of NSObject.
NSObject has several methods used for memory management. The class method alloc
allocates memory space for an object. The instance method dealloc deallocates an
object’s memory. But you should never call dealloc in your code, though, as the runtime
does that for you. Instead you use something called reference counting.

Along with alloc and dealloc, every object that inherits from NSObject also has
retain and release methods. The retain method increases an object’s retainCount
variable by 1. The release method decreases an object’s retainCount by 1.

When memory is allocated for an object using the alloc keyword, the runtime
increases an object’s retainCount variable by 1. During the object’s lifetime, you
might create other reference variables you wish to point to the same underlying object.
When you do that, you explicitly call retain, so the runtime knows the new reference is
pointing to the object and has a stake in the object’s existence. This is commonly referred
to as “ownership” by Objective-C developers.

Foo * myFooOne = [[Foo alloc] init]; //retain count is 1
Foo * myFooTwo = myFooOne; //myFooTwo points to original Foo

 //retain count remains 1
[myFooTwo retain]; //runtime now knows myFooTwo points to Foo,

 //retain count is 2

In the preceding code snippet, by calling retain, myFooTwo is expressing to the
runtime that it has an ownership stake in the original Foo. During an object’s lifetime,
many different reference variables might retain the object. However, reference variables
can also relinquish their ownership stake through the release method. The release
method tells the runtime that the reference variable is finished with the object and no
longer needs it, and so the object’s retainCount is decremented by one.

While an object has a retainCount of one or more, the runtime persists the object.
When an object’s retainCount is zero, the runtime deallocates the object and reclaims
its memory space.

Figure 5-1 illustrates a Foo object’s lifetime. The Foo object is first allocated in memory
by a myFooOne reference variable. At this point the Foo object’s retain count is 1.

Foo * myFooOne = [[Foo alloc] init];

 114 Objective-C for iPhone Developers: A Beginner’s Guide

A second reference variable is created that refers (points) to the Foo object. The
reference is then sent the retain message, which of course is the same as sending it to the
actual Foo object, and so the Foo object’s retain count is 2.

Foo * myFooTwo = myFooOne;
[myFooTwo retain];

Later, when myFooOne is no longer needed, myFooOne is sent the release message
and the Foo object’s retain count becomes 1 again.

[myFooOne release];

When myFooTwo is no longer needed, it too is sent the release message and the Foo
object’s retain count is zero. When the object’s retain count is zero, the runtime knows it
can destroy the Foo object and reclaim the memory used by Foo.

Memory Management Within a Method
It is helpful to consider memory management in two separate contexts. Within a method,
there are local variables, and you must manage those local variables. There are also
instance variables whose scope persists as long as a class persists. In this section you
consider memory management of local variables within a single method.

Figure 5-1 Objective-C manual memory management

 Chapter 5: Memory Management and Properties 115

You often declare and use objects within a method. For instance, consider the
following (incorrect) method:

-(void) myMethod {

 //incorrect method
 NSString * myString = [[NSString alloc] init]; //retainCount = 1
 Foo * myFoo = [[Foo alloc] initWithName:myString]; //retainCount = 1
 NSLog(@"Foo's Name:%@", [myFoo getName]);
}

In this method you allocate space for both myString and myFoo. At the method’s
end, both local variables are out of scope and the reference variables, myString and
myFoo, are no longer valid. However, the method never releases the objects, and so the
runtime never deallocates the space reserved for the objects. That memory is unavailable
until your program terminates. This is called a memory leak, because your program is
“leaking” memory.

To prevent a memory leak, whenever you allocate a new object or create a copy of an
object, you must explicitly send a release message to the object.

-(void) myMethod {
 NSString * myString = [[NSString alloc] init]; //retainCount=1
 Foo * myFoo = [[Foo alloc] initWithName:myString]; //retainCount=1
 NSLog("Foo's Name:%@", [myFoo getName]);

 [myFoo release]; //retainCount=0 so deallocate
 [myString release]; //retainCount=0 so deallocate
}

I cannot stress enough, when you allocate an object, you must release that object. If
you do not, your application will leak memory. When your application leaks memory,
your application will usually begin to slow. Ultimately, the iPhone’s runtime, sensing it is
running dangerously low on memory, will abruptly terminate your application.

Weak References and Retaining
Besides inheriting memory management methods such as retain and release from
NSObject, every object that traces its lineage to NSObject also has a retainCount
instance variable. The retain count is how the runtime determines if an object can
be destroyed. Unlike when writing C, you never explicitly destroy, or deallocate in
Objective-C terminology, an object. Instead you release it. Releasing an object decrements
the object’s retainCount. When the retainCount is zero, the runtime knows there are
no more owners and it deallocates the object.

 116 Objective-C for iPhone Developers: A Beginner’s Guide

Notice the word ownership in the previous paragraph. Ownership is important to
understanding Objective-C memory management. When you create a new reference to an
object instance, you must send the retain message to the object. Consider a method that
doesn’t call retain after obtaining a reference to an object.

-(void) myMethod {

 //an incorrect method

 Foo * myFooOne = [[Foo alloc] initWithName:@"James"]; //retainCount=1
 Foo * myFooTwo = myFooOne; //retainCount still 1
 [myFooOne release]; //retaincount=0 so deallocated
 NSLog("Name:%@", [myFooTwo printOutName]); //runtime error
}

In the preceding code, the myFooTwo reference variable is what’s termed a “weak
reference.” It’s called a weak reference because myFooTwo is never officially declared
a partial owner of the underlying Foo object by being sent a retain message. Figure 5-2
illustrates.

Figure 5-2 A weak reference

 Chapter 5: Memory Management and Properties 117

Try This

A new reference variable pointing to an object must specifically send a retain message
to the underlying object if it wishes to have a stake in the object’s life cycle. The following
code fixes the previous incorrect code:

-(void) myMethod {

 Foo * myFooOne = [[Foo alloc] initWithName:@"James"]; //retainCount=1
 Foo * myFooTwo = myFooOne; //retainCount still 1

 [myFooTwo retain]; //retain count=2
 [myFooOne release]; //retaincount=1
 NSLog("Name:%@", [myFooTwo printOutName]);
}

However, you should note that the preceding code is somewhat contrived, as you
never do something like that when writing production code. But it does illustrate using
retain. Just realize that creating a reference to an object does not cause an object’s
retainCount to be incremented; you must call retain to increase an object’s
retainCount.

Exploring an Object’s Retain Count
 1. Create a new command-line project using the Foundation Tool project template

(Figure 5-3). Name the project ExploreRetainCount.

 2. Create a new Objective-C class named Foo. Implement it as in Listings 5-1 and 5-2.

 3. Modify ExploreRetainCount.m to match Listing 5-3.

 4. Click Build And Debug to run the application and your debug log should print the
same retain counts as Listing 5-4.

Listing 5-1 Foo.h

#import <Foundation/Foundation.h>
@interface Foo : NSObject {
}
-(void) sayHello: (NSString *) personName;
@end

(continued)

 118 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 5-2 Foo.m

#import "Foo.h"

@implementation Foo

-(void) sayHello: (NSString *) personName {

 NSMutableString * myHelloString = [[NSMutableString alloc]

initWithString:@"Hello "];

 [myHelloString appendString:personName];

 NSLog(@"Hello %@", myHelloString);

 NSLog(@"retain count of myHelloString:%i", [myHelloString retainCount]);

 [myHelloString release];

}

@end

Listing 5-3 ExploreRetainCount.m

#import <Foundation/Foundation.h>
#import "Foo.h"
int main (int argc, const char * argv[]) {

Figure 5-3 Foundation Tool project template

 Chapter 5: Memory Management and Properties 119

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Foo * myFooOne = [[Foo alloc] init];
 NSLog(@"Foo retainCount at time t1:%i", [myFooOne retainCount]);
 Foo * myFooTwo = myFooOne;
 NSLog(@"Foo retainCount at time t2:%i", [myFooOne retainCount]);
 NSLog(@"Foo retainCount at time t2:%i", [myFooTwo retainCount]);
 [myFooOne sayHello:@"Tom"];
 [myFooTwo retain];
 NSLog(@"Foo retainCount at time t3:%i", [myFooOne retainCount]);
 NSLog(@"Foo retainCount at time t3:%i", [myFooTwo retainCount]);
 [myFooOne release];
 NSLog(@"Foo retainCount at time t3:%i", [myFooTwo retainCount]);
 [myFooTwo release];

 [pool drain];
 return 0;
}

Listing 5-4 Debugger console logging

Foo retainCount at time t1:1
Foo retainCount at time t2:1
Foo retainCount at time t2:1
Hello Hello Tom
retain count of myHelloString:1
Foo retainCount at time t3:2
Foo retainCount at time t3:2
Foo retainCount at time t3:1

The sayHello: method in Foo.m illustrates using release. The myHelloString
allocates an NSMutableString instance, which results in a retainCount of 1. When
finished, the method sends the release message to myHelloString, which results in a
retainCount of zero, and the runtime deallocates the underlying object.

In ExploreRetainCount.m the main method instantiates a Foo instance, setting the
reference myFooOne to the new object. At this point the debug console prints out a
retainCount of 1. The myFooTwo reference variable is then set to point to the same
object myFooOne points to. Note that the retainCount of the underlying Foo object
remains 1. After myFooTwo is sent the retain message, the object’s retain count becomes 2.

After myFooOne is released, the underlying object’s retainCount becomes 1. Then,
after myFooTwo is released, the retainCount becomes zero and the runtime can release
the underlying Foo object.

(continued)

 120 Objective-C for iPhone Developers: A Beginner’s Guide

5. Just for fun, add the following line just before the end of the main method:

[myFooOne sayHello:@"Terry"];

6. Build and Debug, and the application crashes.

objc[412]: FREED(id): message sayHello: sent to freed object=0x103330

7. Replace the line you just added with the following two lines:

Foo * myFooThree;
[myFooThree sayHello:@"James"];

8. Build and Debug, and the application crashes with a very cryptic error.

The Debugger has exited due to signal 11 (SIGSEGV). The Debugger
has exited due to signal 11 (SIGSEGV).

9. Change myFooThree to initialize the object to nil, and also release myFooThree.

Foo * myFooThree = nil;
[myFooThree sayHello:@"James"];
[myFooThree release];

10. Build and Debug and the application runs fine, although myFooThree’s sayHello
never executes.
The first error occurred because myFooOne was already released. Now consider the

second error. This is one of the more confusing errors for new developers. Creating a
variable, but not initializing it, and then sending a message to it is an error. However,
if you initialize it to nil, sending a message to it is not an error. In Objective-C it is
perfectly acceptable to send a message to nil. Also notice you can release it too, although
you aren’t truly releasing anything.

Q: What is the keyword nil and how do you use it?

A: The nil keyword is an Objective-C type that represents an object’s absence. Do not
confuse it with NULL, though; that is a C keyword. Moreover, you use nil with objects,
NULL with primitives or C-style pointers.

Ask the Expert

 Chapter 5: Memory Management and Properties 121

Try This

Encapsulation and Memory Management
In previous sections you examined memory management within a method using local
variables. In this section you explore memory management using an object’s instance
variables. Remember, an instance variable’s scope is the same as the object’s, and they
are declared in an object’s interface. Now, good object-oriented programmers never
reference these variables externally, instead using something called accessor methods.
To understand accessor methods better, first consider an object-oriented concept called
encapsulation.
Encapsulation is an object-oriented programming design tenet stating that instance

variables should be encapsulated from the outside world. In a nutshell, never access a
class’s instance variables directly. Instead you should set or get a class’s instance variables
using methods termed accessor methods. These methods are for getting and setting an
instance variable properly, and allow things such as validation to occur prior to setting an
object’s instance variable.

Accessor methods are also further loosely referred to as “getter” and “setter” methods.
A getter is for getting an instance variable from an object, while a setter is for setting
an instance variable in an object. Getters and setters take on increased importance in an
Objective-C program when you consider memory management and retain counts.

Creating Accessor Methods for an Object
and a Primitive

 1. Create a new Command Line Utility using the Foundation Tool template. Name the
project Accessors.

 2. Create a new class called Bar and implement it as in Listings 5-5 and 5-6.

 3. Create a new class called Foo and implement it as in Listings 5-7 and 5-8.

 4. Modify Accessors.m to match Listing 5-9.

 5. Build and run the application.

Listing 5-5 Bar.h

#import <Foundation/Foundation.h>
@interface Bar : NSObject {

(continued)

 122 Objective-C for iPhone Developers: A Beginner’s Guide

 int myAge;
 NSString * myName;
}
- (void) setMyAge: (int) theAge;
- (int) getMyAge;
-(void) setMyName: (NSString *) theName;
-(NSString *) getMyName;
- (void) sayNameAndAge;
@end

Listing 5-6 Bar.m

#import "Bar.h"
@implementation Bar
- (void) setMyAge: (int) theAge {
 myAge = theAge;
}
- (int) getMyAge {

 return myAge;
}
-(void) setMyName: (NSString *) theName {
 [myName release];
 myName = [theName copy];
}
-(NSString *) getMyName {

return myName;
}
- (void) sayNameAndAge {
 NSLog(@"My name is:%@ and my age is:%i", myName, myAge);
}
-(void) dealloc {
 [myName release];
 [super dealloc];
}
@end

Listing 5-7 Foo.h

#import <Foundation/Foundation.h>
@class Bar;
@interface Foo : NSObject {

 Chapter 5: Memory Management and Properties 123

 Bar * myBar;
}
- (void) setMyBar: (Bar *) theBar;
- (Bar *) getMyBar;
@end

Listing 5-8 Foo.m

#import "Foo.h"
#import "Bar.h"
@implementation Foo
- (void) setMyBar: (Bar *) theBar {
 [theBar retain];
 [myBar release];
 myBar = theBar;
}
- (Bar *) getMyBar {
 return myBar;
}
- (void) dealloc {
 [myBar release];
 [super dealloc];
}
@end

Listing 5-9 Accessors.m

#import <Foundation/Foundation.h>
#import "Foo.h"
#import "Bar.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Foo * myFoo = [[Foo alloc] init];
 Bar * myBar = [[Bar alloc] init];
 [myBar setMyAge:40];
 [myBar setMyName:@"James"];
 [myFoo setMyBar:myBar];
 [[myFoo getMyBar] sayNameAndAge];
 [myFoo release];
 [myBar release];
 [pool drain];
 return 0;
}

 124 Objective-C for iPhone Developers: A Beginner’s Guide

The Bar class is a simple class with two instance variables, myAge and myName. The
myAge variable is an integer, which is a primitive data type, and so there is no required
memory management. The setMyAge: method uses assignment to assign myAge to the
parameter theAge. Name, in contrast, is an object. In the setMyName: method you create
a copy of the theName variable passed as a parameter.

[myName release];

myName = [theName copy];

Creating a copy of an object creates a new object instance, and so myName references
a distinct object. Because you are creating a copy, you do not call retain, as copying
automatically sets the myName retainCount to 1.

Notice that you release myName before assigning the new value; if you did not, a
memory leak would occur. Remember, myName points to an actual object; switching the
address myName points to without releasing the underlying object would fail to decrement
the object’s retainCount.

Copying an object, like the myName variable, is not something you do frequently.
You only make an object copy when you wish to ensure that nobody else has a reference
to the object. You wish to have a unique object instance. More often, you simply create
a new reference to an object. Foo’s setMyBar illustrates how you typically accomplish
this task.

[theBar retain];
[myBar release];
myBar = theBar;

First you retain the passed parameter, theBar. Remember, once you set myBar
to theBar, it points to the same underlying Bar object; increasing theBar’s
retainCount is equivalent to increasing myBar’s retainCount. After retaining,
you release myBar so that if it points to another object instance, the runtime knows to
decrement the object’s retainCount. The method then sets myBar to refer to theBar,
which refers to the underlying object instance.

Notice that both getter methods, getMyName and getMyBar, return weak references
to each class’s respective instance variable. If you wished to persist a variable obtained via
one of these getters, then you would have to explicitly retain them.

 Chapter 5: Memory Management and Properties 125

Properties
Beginning with Objective-C 2.0, Apple introduced something called properties to the
language. Properties greatly simplify using class instance methods, removing the tedium
of writing accessor methods. Moreover, properties can handle retaining and releasing
instance variables for you. Like all Objective-C’s extensions to C, properties are
implemented using compiler directives.

Declaring Properties
Properties are declared in a class’s interface and defined in a class’s implementation. A
property’s declaration begins with the @property compiler directive. Immediately following
the @property directive is an optional list of attributes enclosed in parentheses. The instance
variable’s type and name then follows. Listing 5-10 illustrates a typical property declaration.

Listing 5-10 A typical property declaration

#import <Foundation/Foundation.h>
@interface FooBar : NSObject {
 NSString * myName;
}
@property (nonatomic,retain) NSString * myName;
@end

After declaring a property, you define the property in a class’s implementation. The
@synthesize directive goes in a class’s implementation (Listing 5-11). Defining a
property is trivial when using the @synthesize compiler directive. The @synthesize
compiler directive tells the compiler to create accessor methods for a property.

Listing 5-11 A typical @synthesize directive

#import "FooBar.h"
@implementation FooBar
@synthesize myName;
@end

The default getters and setters generated for a property are <propertyname> for
the getter and set<propertyname> for the setter. Note that if a property’s first letter is
lowercase, the method changes it to uppercase.

FooBar * myFooBar;

 126 Objective-C for iPhone Developers: A Beginner’s Guide

would capitalize the setter and getter as follows:

-(void) setMyFooBar: (FooBar*) aFooBar;
-(FooBar*) getMyFooBar;

For instance, you might write the code shown in Listing 5-12 in a main method to
refer to myName.

Listing 5-12 Using a property via its accessor methods

#import <Foundation/Foundation.h>
#import "FooBar.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 FooBar * myFooBar = [[FooBar alloc] init];
 [myFooBar setMyName:@"James"];
 NSLog(@"Name:%@", [myFooBar myName]);
 [myFooBar release];
 [pool drain];
 return 0;
}

Listing 5-12 illustrates using a setter and a getter. The @synthesize directive tells
the compiler to generate setter and getter methods for the myName property. Because the
compiler generates these methods at compile time, you can refer to the setter and getter as
in Listing 5-12.

You usually do not refer to an object’s properties using its accessor methods; instead,
you access properties using dot notation. Dot notation allows you to refer to a property’s
getter and setter directly using the property’s name.

Dot Notation
Objective-C has a dot operator that makes it easier to refer to a property. Depending upon
the context, the compiler knows you are actually accessing the property’s generated getter
or setter accessor method. The following code illustrates accessing a property’s setter
method:

self.myFoo = tempFoo;

The next code snippet illustrates getting a property using dot notation:

Foo * aFoo = myObject.myFoo;

 Chapter 5: Memory Management and Properties 127

This snippet accesses an object’s myFoo instance variable using the myFoo property’s
getter method.

Property Attributes
Properties usually have one or more attributes further specifying to the compiler how
to generate accessor methods for the property. Attributes are placed in parentheses
immediately following the @property declaration. For instance, consider the following
property declaration:

@property (nonatomic, retain) Foo * myFoo;

This line first declares that it is declaring a property. It then declares that the property
is nonatomic and that the setter for the property should call retain on the object.
Essentially, it is telling the compiler to generate the following setter:

-(void) setFoo : (Foo *) aFoo {
 [aFoo retain];
 [myFoo release];
 myFoo = aFoo;
}

Table 5-1 shows a list of property attributes you may use when declaring a property.

Table 5-1 Property Attributes You May Use When Declaring a Property

Attribute Description
Read/Write attributes. The default setting for a property is readwrite.

readwrite Tells the compiler the property may be read and written to.

readonly Tells the compiler that the property may only be read.

Setter attributes. The default setting for a property is assign.

assign Tells the compiler that the property uses assignment in the property’s setter.

retain Tells the compiler that the property’s setter should call retain on the property
when setting it.

copy Tells the compiler that the property’s setter should create a new copy of the object.

Other property attributes.

nonatomic Tells the compiler that the property’s accessor methods are not thread safe.

setter= Tells the compiler that you wish specifying a setter of your own name.

getter= Tells the compiler that you wish specifying a getter of your own name.

 128 Objective-C for iPhone Developers: A Beginner’s Guide

Writability
Not all properties need a setter. Moreover, some properties, such as primitive data types,
should use simple assignment, while other properties, such as objects, should either be
retained or have a new copy created. The readwrite and readonly properties tell the
compiler whether it should generate a setter or not. If not provided, the default behavior
is to generate a setter. If readonly, the compiler generates only a getter for the property,
making the property read-only. The following code snippet illustrates two read/write
property declarations and one read-only property declaration:

@property Foo * myFoo; //the default – read/write
@property (readwrite, retain) Foo * myFoo;
@property (readonly) Foo * myFoo;

Setter Attributes
The assign, retain, and copy attributes direct how the compiler generates setter
methods for a property. The assign attribute is for simple assignment and should only
be used with primitives. Note that assign is a property’s default behavior; therefore,
you should almost always specify a setter attribute. For instance, you might have an int
property that you specify uses simple assignment.

@property (assign) int myFooCount;

While assign is useful for primitives, the retain property is the attribute you
specify more often. The retain property tells the compiler that the setter should release
the old reference and retain the new reference. Remember, every object derived from
NSObject has an associated retain count that the runtime uses to decide if an object
should be released or not. When setting a property, the old reference must be released;
otherwise, a memory leak occurs. Consider the following property declaration (ignore the
nonatomic property for now):

@property (nonatomic, retain) Foo * myFoo;

When compiling, the compiler generates the following setter method:

-(void) setFoo : (Foo *) aFoo {
 [aFoo retain];
 [myFoo release];
 myFoo = aFoo;
}

 Chapter 5: Memory Management and Properties 129

Try This

This method first calls retain on the Foo instance passed to the method, increasing
its retain count by 1. It then releases its reference to the old Foo instance, decreasing
its retain count by 1. It then changes its myFoo reference to point to the Foo instance
referenced by aFoo.

The copy attribute specifies that a setter should make a bona fide object copy. It is
a unique object instance. The behavior is to release the previous object instance, create
a copy of the new object, and assign the instance variable the new copy. You can only
use copy with objects that implement the NSCopying protocol. As you haven’t learned
inheritance or how to copy an object yet, you will revisit the copy property attribute at the
end of Chapter 7.

Other Property Attributes
The nonatomic attribute tells the compiler not to generate locks in a property’s getter
and setter methods. Discussing threading, multithreaded programs, and mutexes (locks)
is beyond this chapter’s scope. But think of your computer’s hardware. Chances are you
have a dual-core processor. This means your computer can do more than one thing at the
same instance in time. As your skills progress, you can write programs that do more than
one thing at the same time—these different “things” are different threads in the same
program. These multiple threads can access a property using its accessor methods at the
same exact instance in time. A lock allows only one thread to access the variable at a time
and forces the others to wait their turn. Realize this is a simplification, however, it gives
you a general idea of how threading works. Until you start writing multithreaded iPhone
applications, just use nonatomic.

Exploring Properties and Property Attributes
 1. Create a new Foundation command-line project named ExploringProperties.

 2. Create a new class called FooBar.

 3. Implement FooBar as in Listings 5-13 and 5-14.

 4. Implement ExploringProperties.m as in Listing 5-15.

 5. Click Build And Debug to build and run the application.

(continued)

 130 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 5-13 FooBar.h

#import <Foundation/Foundation.h>
@interface FooBar : NSObject {
 NSString * myName;
 int myAge;
 NSNumber * myHeight;
 NSString * myGreeting;
}
@property (nonatomic, copy) NSString * myName;
@property (nonatomic, assign) int myAge;
@property (nonatomic, retain) NSNumber * myHeight;
@property (nonatomic,retain) NSString * myGreeting;
@end

Listing 5-14 FooBar.m

#import "FooBar.h"
@implementation FooBar
@synthesize myName;
@synthesize myAge;
@synthesize myHeight;
@synthesize myGreeting;
-(void) setMyGreeting: (NSString *) theGreeting {
 NSLog(@"in the custom greeting....");
 [theGreeting retain];
 [myGreeting release];
 myGreeting = theGreeting;
}
-(void) dealloc {
 [myName release];
 [myHeight release];
 [myGreeting release];
 [super dealloc];
}
@end

Listing 5-15 ExploringProperties.m

#import <Foundation/Foundation.h>
#import "FooBar.h"
int main (int argc, const char * argv[]) {
 //NOTE NO POOL CREATED
 //NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 Chapter 5: Memory Management and Properties 131

 FooBar * myFooBar = [[FooBar alloc] init];
 myFooBar.myAge = 40;
 NSNumber * tempNumber = [[NSNumber alloc] initWithFloat:5.9];
 myFooBar.myHeight = tempNumber;
 NSString * tempString = [[NSString alloc] initWithString:@"James"];
 myFooBar.myName = tempString;
 myFooBar.myGreeting = @"Hello World";
 NSLog(myFooBar.myGreeting);
 NSLog(@"Name:%@ and age:%i and height:%f", myFooBar.myName,
myFooBar.myAge, [myFooBar.myHeight floatValue]);
 [myFooBar release];
 [tempString release];
 [tempNumber release];
 //[pool drain];
 return 0;
}

Listing 5-16 shows the debugger console output. The FooBar object has three
instance variables: myName, myAge, and myHeight. The myAge is an integer, a primitive,
and so the property is set to assign. The myName property uses copy, and so myName is
always given its own NSString object. The NSNumber uses retain, and so it creates
a new reference to an underlying object.

Notice the sayMyGreeting: method in FooBar; synthesize is flexible, if the
compiler sees that you already created a setter or getter, it will use that accessor method
rather than generating it. Here, you created the setter method, and so the compiler does not
generate a setter but uses yours instead.

Listing 5-16 The debugger console

in the custom greeting....
Hello World
Name:James and age:40 and height:5.900000

Ownership and Properties Revisited
Two sections ago, you were presented the following code as an example illustrating a
property’s getter accessor.

Foo * aFoo = myObject.myFoo;

 132 Objective-C for iPhone Developers: A Beginner’s Guide

The code, though valid and not unusual, appears as if it should cause problems, as
you are not calling retain as you would expect. But it does not cause problems because
behind the scenes myFoo is retained by the accessor method before being returned to aFoo.

Now, had you called an instance variable directly, without calling retain, you obtain
a weak reference. For instance, the following code results in a runtime error because you
are calling release on the “real” Foo instance, without having first called retain.

Foo * aFoo = myFoo;

[aFoo release]; //this is incorrect
NSLog("%i", [myObject.myFoo retainCount]);

The reason for this runtime error is that the aFoo instance variable does not “own” the
underlying Foo instance; it is merely obtaining a weak reference to myFoo.

Avoiding weak references is another reason for using properties to get and set
an object’s instance variables. Properties generate code similar to the following for a
property’s getter method:

- (Foo *) myFoo {
 return [myFoo retain];
}

Autorelease and Pools
Objective-C offers an alternative to manually managing memory. If you wish, you can
use autorelease to manage memory. Even if you never explicitly use autorelease with your
own custom objects, you still use autorelease if you use a Cocoa object’s convenience
method. For instance, the following convenience method uses autorelease behind the
scenes:

NSString * myString = [NSString stringWithString:@"This is my
string."];

Notice that myString is a weak reference, as myString does not control its underlying
string’s lifetime. To persist the actual string myString points to, you would need to
explicitly retain it.

Also notice that the main method in the previous example (Listing 5-15) begins and
ends by referring to something named “pool.” The pool variable refers to something
called an NSAutoreleasePool. An autorelease pool is a pool for objects that are released
automatically by the runtime, freeing you from having to worry about managing the
objects yourself.

 Chapter 5: Memory Management and Properties 133

Try This

Autorelease and Custom Classes
When you wish an original object to use autorelease, you send it an autorelease message.
Listing 5-17 is Listing 5-15 rewritten to use autorelease.

Listing 5-17 ExploringProperties.m rewritten to use NSAutoreleasePool

#import <Foundation/Foundation.h>
#import "FooBar.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 FooBar * myFooBar = [[[FooBar alloc] init] autorelease];
 myFooBar.myAge = 40;
 NSNumber * tempNumber = [[[NSNumber alloc] initWithFloat:5.9]
autorelease];
 myFooBar.myHeight = tempNumber;
 NSString * tempString = [[[NSString alloc] initWithString:@"James"]
autorelease];
 myFooBar.myName = tempString';
 myFooBar.myGreeting = @"Hello World";
 NSLog(myFooBar.myGreeting);
 NSLog(@"Name:%@ and age:%i and height:%f", myFooBar.myName,
myFooBar.myAge,
[myFooBar.myHeight floatValue]);
 [pool drain];
 return 0;
}

The first thing main does is create a new autorelease pool. As this is a simple
Foundation command-line application, any objects created and sent the autorelease
message are added to the pool. At the end of main, the pool is drained and any object
added to the pool is released and cleaned up.

Using Autorelease in a Method
 1. Create a new Foundation command-line tool named AutoRelease.

 2. Create a new NSObject named Bar and implement it like Listings 5-18 and 5-19.

 3. Create a new NSObject named Foo and implement it like Listings 5-20 and 5-21.

(continued)

 134 Objective-C for iPhone Developers: A Beginner’s Guide

 4. Modify AutoRelease.m’s main method (Listing 5-22).

 5. Click Build And Debug to compile and run the application.

Listing 5-18 Bar.h

#import <Foundation/Foundation.h>
@interface Bar : NSObject {
}
- (void) sayHello;
@end

Listing 5-19 Bar.m

#import "Bar.h"
@implementation Bar
- (void) sayHello {
 NSLog(@"Say Hello");
}
@end

Listing 5-20 Foo.h

#import <Foundation/Foundation.h>
#import "Bar.h"
@interface Foo : NSObject {
}
-(Bar *) giveMeABar;
@end

Listing 5-21 Foo.m

#import "Foo.h"
@implementation Foo
- (Bar *) giveMeABar {
 Bar * tempBar = [[[Bar alloc] init] autorelease];
 return tempBar;
}
@end

 Chapter 5: Memory Management and Properties 135

Listing 5-22 AutoRelease.m

#import <Foundation/Foundation.h>
#import "Foo.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Foo * myFoo = [[[Foo alloc] init] autorelease];''''

 [[myFoo giveMeABar] sayHello];
 [pool drain];
 return 0;
}

The Foo giveMeABar method illustrates a common use of autorelease. Notice the
following line in AutoRelease.m:

[[myFoo giveMeABar] sayHello];

Nowhere are you releasing the Bar object reference returned by the giveMeABar
method; without using autorelease in giveMeABar, a memory leak would occur. Without
using autorelease in giveMeABar, you would have to replace the one-line call in main
with three lines.

Bar * myTempBar = [myFoo giveMeABar];
[myTempBar sayHello];
[myTempBar release];

Using autorelease avoids this and allows you to conveniently not worry about memory
management. Note that in this chapter you only used the auto-generated autorelease pools.
You find this autorelease pool in the project’s main method. In iPhone applications, the
runtime manages an autorelease pool for each runtime loop. Do not worry about the details
of that, just realize the iPhone handles the autorelease pools for you.

You should not rely upon autorelease too much. Instead, you should manually manage
your own retain count for your custom objects. And be careful when using convenience
methods. Although it is contrived, consider the following code snippet in Listing 5-23 and
its object allocation in Figure 5-4.

 136 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 5-23 A memory-gobbling main

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 int count = 0;

 while(count++ < 1000000000) {

 NSString * tempString = [NSString stringWithFormat:@"Test%i",count];

 NSLog(tempString);

 }

 [pool drain];

 return 0;

}

Figure 5-4 is the simple program in Listing 5-23 running using the Object Allocations
tool in Instruments. Notice the Net Bytes column value for CFString. The number of
objects created but not released steadily climbs. If you tried something like this in an
iPhone application, your application would become sluggish and would then be abruptly
terminated by the iPhone’s operating system.

Figure 5-4 The object allocation

 Chapter 5: Memory Management and Properties 137

The reason for this behavior is you are relying upon autorelease but an autorelease
pool doesn’t release its constituents until the pool is drained. Here the pool is not drained
until after the while loop, and so the temporary strings are not released and the memory
grows with each loop. Compare this with Listing 5-24 and Figure 5-5.

Listing 5-24 An efficient main

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 int count = 0;

 while(count++ < 1000000000) {

 NSString * tempString = [[NSString alloc] initWithFormat:@"Test%i",count];

Figure 5-5 Object allocations of an efficient main

 138 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

 NSLog(tempString);

 [tempString release];

 }

 [pool drain];

 return 0;

}

Listing 5-24 and Figure 5-5 illustrate an efficient main method. Although admittedly
contrived, the difference is striking. The number of string object instances during the
while loop remains constant. This code could run virtually forever on an iPhone and not
lead to the application crashing. Be very leery of autorelease and convenience methods
when developing applications for an iPhone.

IBOutlet and Interface Builder
You end this chapter by examining the IBOutlet compiler directive. IBOutlet connects
properties in code with controls in Interface Builder. IBOutlet is used by Interface Builder
when you are coding to recognize which properties you intend to be used with Interface
Builder components. Once compiled, IBOutlet resolves to void, and so it has no effect
upon the compiled code.

Using IBOutlet
 1. Create a new View-based application named OutletProgram.

 2. Modify OutletProgramViewController.h and OutletProgramViewController.m to use
a UILabel property called myGreetingLabel (Listings 5-25 and 5-26). Ensure you
use the IBOutlet keyword before the variable’s declaration.

 3. Implement viewDidLoad in OutletProgramViewController.m as in Listing 5-26.

 4. Compile, but do not run the application.

 5. Open OutletProgramViewController.xib in Interface Builder.

 6. Drag a UILabel from the Library to the view’s canvas (Figure 5-6).

 7. Resize the label (Figure 5-7).

 Chapter 5: Memory Management and Properties 139

Figure 5-6 Adding a UILabel to a view’s canvas

Figure 5-7 Resizing the UILabel

(continued)

 140 Objective-C for iPhone Developers: A Beginner’s Guide

 8. In the document window, right-click File’s Owner (Figure 5-8).

 9. Click in the little circle to the right of myGreetingLabel and drag and drop on the label
(Figure 5-9).

 10. Save and exit Interface Builder.

 11. Click Build And Debug and the application runs. The text set in
OutletProgramViewController.m displays in the simulator (Figure 5-10).

The IBOutlet makes connecting code in your Xcode methods to controls in your
Interface Builder xib.

Listing 5-25 OutletProgramViewControllerProgram.h

#import <UIKit/UIKit.h>
@interface OutletProgramViewController : UIViewController {
 IBOutlet UILabel * myGreetingLabel;
}
@property (nonatomic,retain) UILabel * myGreetingLabel;
@end

Figure 5-8 Right-clicking on File’s Owner

 Chapter 5: Memory Management and Properties 141

Figure 5-9 Dragging and dropping on the view’s canvas

(continued)

 142 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 5-26 OutletProgramViewControllerProgram.m

#import "OutletProgramViewController.h"
@implementation OutletProgramViewController
@synthesize myGreetingLabel;
- (void) viewDidLoad {
 myGreetingLabel.text = @"Hello World";
 [super viewDidLoad];
}
- (void)dealloc {
 [myGreetingLabel release];
 [super dealloc];
}
@end

Figure 5-10 The label displayed in the iPhone simulator

 Chapter 5: Memory Management and Properties 143

Deallocating and Nil Revisited
Before ending the chapter, there is one final thing to cover using properties and deallocating
an object. Throughout this chapter, and throughout this book in fact, all examples assume
that a class’s properties are set. For instance, consider the class in Listing 5-27.

Listing 5-27 Foo.m assuming properties are set

#import "Foo.h"
@implementation Foo
@synthesize myBar;
-(void) dealloc {
 [super dealloc];
 [self.myBar release];
}
@end

The code in Listing 5-27 appears sound, but if myBar is never allocated and initialized,
a runtime error results because you are trying to release an unallocated object. When using
properties, there are two easy ways to deal with this potential problem. The first way is
by implementing your own init method, where you initialize the class’s objects to nil
(Listing 5-28). Remember, sending a message such as release to nil is valid.

Listing 5-28 Foo.m initializing its property

#import "Foo.h"
@implementation Foo
@synthesize myBar;
-(void) init {
 self = [super init];
 self.myBar = nil;
}
-(void) dealloc {
 [super dealloc];
 [self.myBar release];
}
@end

 144 Objective-C for iPhone Developers: A Beginner’s Guide

However, a more common technique many developers use is to not release a property
at all but to instead assign it a nil value in the class’s dealloc method (Listing 5-29).

Listing 5-29 Foo.m assuming properties are set

#import "Foo.h"
@implementation Foo
@synthesize myBar;
-(void) dealloc {
 [super dealloc];
 self.myBar=nil;
}
@end

Remember, when setting a class’s property, the generated setter first releases the
property and then assigns the property the new value. After assigning the new value, the
setter retains the object. When you set a property with nil, the setter releases the old
value, assigns nil as the new value, and then sends retain to nil. Thus the property is
released, but at the same time, if the property is never allocated, no error is thrown. Of the
two techniques, the second is more popular because it is an easy way to ensure you release
all of an object’s properties without risking that the properties were never allocated.

Summary
In this chapter you explored memory management, properties, and IBOutlet. Properties
simplify respecting a class’s instance variable encapsulation by automatically creating
accessor methods. Always respect a class’s encapsulation by accessing an instance
variable through the property; avoid creating your own accessor methods and let
Objective-C do its job by making things easier for you through properties. Properties
simplify your code, make your programs less prone to memory leaks, and help reduce
program crashes.

IBOutlets are a directive to Interface Builder that connects controls in your Interface
Builder GUI to properties in your classes. IBOutlet compiles to void and so they are
meaningless when compiled. You use IBOutlets extensively when using Interface
Builder.

145

Chapter 6
Inheritance

 146 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Inheritance

● Modeling Inheritance

● Understanding Inheritance Syntax

● Understanding NSObject and Cocoa Classes

● Extending Classes with New Variables and Methods

● Overriding Parent Methods with Child Methods

● Understanding the dealloc Method and super Keyword

Inheritance
Inheritance is a powerful object-oriented concept for extending a class’ functionality. As
you have already seen in previous chapters, Objective-C uses inheritance extensively.
In this chapter you explore how Objective-C implements inheritance. You first learn
Objective-C’s inheritance syntax and how you can model inheritance. You then explore
how inheritance facilitates extending an ancestor class and also facilitates redefining an
ancestor class.

Inheritance Explained
Inheritance is an object-oriented principle that allows reusing existing code with less
modification. How it works is that a child class extends a base class. A base class is also
often referred to as the child class’ parent. The child class can then use the base class’
instance variables and methods. This reuse is called inheritance because child classes
inherit the methods and instance variables of its ancestor classes.

A child classes can extend a parent class’ functionality. And a child class can replace
a parent class’ functionality. For instance, all fruit have certain shared characteristics.
However, different fruit can have different characteristics that specialize a Fruit. All fruits
have skin, but apple, orange, and pear skins are all a little different. Or consider a living

 Chapter 6: Inheritance 147

organism. Both plants and animals are living organisms and both breathe. However, a
plant breathes carbon dioxide and animals breathe oxygen. You can model both these
examples using a diagram called a class diagram.

Modeling Inheritance
The Unified Modeling Language (UML) offers a convenient syntax for modeling
inheritance. Figure 6-1 illustrates a simple class diagram.

A child class’ relationship with a parent class is modeled using an arrow with an open
arrow. The arrow points from the child to the parent. In Figure 6-1, a Pear, Orange, and
Apple are all children of Fruit. You can also, of course, create a more detailed class
diagram, much as you did in Chapter 5 (Figure 6-2).

In Figure 6-2, a LivingOrganism is the parent, while Animal and Plant are
children of LivingOrganism. A class is modeled as a rectangle. The rectangle’s top
compartment contains the class’ name. The second compartment contains the class’
instance variables. The third compartment contains the class’ methods.

Figure 6-3 illustrates another inheritance principle. A child class inherits not only from
its immediate parent; it also inherits from every ancestor to its root class.

In Figure 6-3, a Fuji’s parent is Apple. An Apple’s parent is Fruit. A Fruit’s
parent is NSObject. NSObject is the root class. A Fuji inherits from Apple, Fruit,
and NSObject.

NOTE
A parent class is also often referred to as a superclass, and a child class is often
referred to as a subclass.

Figure 6-1 A UML class diagram modeling inheritance

 148 Objective-C for iPhone Developers: A Beginner’s Guide

Inheritance Syntax
Objective-C implements inheritance in an object’s interface. The following code
illustrates:

#import <Foundation/Foundation.h>
#import "MyParent.h"
@interface MyChild : MyParent {
 int state;
}

Figure 6-2 A more detailed UML class diagram modeling inheritance

Figure 6-3 A class inheritance hierarchy

 Chapter 6: Inheritance 149

Try This

You import the parent, and then you place a colon followed by the parent class on
the line with the @interface compiler declaration. Essentially the line containing the
@interface declaration tells the compiler that it is declaring a MyChild class that
inherits from MyParent. The following Try This illustrates Objective-C’s inheritance
syntax.

Examining Simple Inheritance
 1. Create a new View-based Application named SimpleInheritance.

 2. Create three new Objective-C classes named Fruit, Apple, and Orange. Have
Apple and Orange inherit from Fruit (Listings 6-1 through 6-6). Note that creating
a subclass requires you first create an Objective-C NSObject subclass. In the created
class, import the parent class header file and change the newly created object’s parent
from NSObject to the desired superclass.

 3. Create an integer as an instance variable, and name the variable state.

 4. Create two methods named getState and ripen, as in Listings 6-1 and 6-2.

 5. Create a class named Environment (Listings 6-7 and 6-8). Add an Apple
and Orange as properties and create two methods, handleTimeSecond and
startTime. Also, add an NSTimer to Environment.

 6. Implement the init and dealloc methods in Environment, as in Listing 6-8.

 7. Modify SimpleInheritanceViewController.h so that it imports the Environment class
and declares an Environment property named myEnvironment (Listing 6-9).

 8. Modify SimpleInheritanceViewController.m so that it creates and initializes a new
Environment instance in the applicationDidFinishLaunching: method
(Listing 6-10). Be certain to release myEnvironment in SimpleInheritanceView
Controller’s dealloc method.

 9. Click Build And Debug to run the application. You should see the debug statements in
Listing 6-11 print to the debugger console.

(continued)

 150 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 6-1 Fruit.h

#import <Foundation/Foundation.h>
#define UNRIPE 0
#define RIPE 1
#define VERY_RIPE 2
#define ROTTEN 3
#define VERY_ROTTEN 4
#define PUTRID 5
@interface Fruit : NSObject {
 int state;
}
- (NSString *) getState;
- (void) ripen;
@end

Listing 6-2 Fruit.m

#import "Fruit.h"
@implementation Fruit
- (void) ripen {
 state++;
}
- (NSString *) getState {
 switch (state) {
 case 0:
 return @"unripe";
 case 1:
 return @"ripe";
 case 2:
 return @"very ripe";
 case 3:
 return @"rotten";
 case 4:
 return @"very rotten";
 case 5:
 return @"putrid";
 default:
 return nil;
}
}
@end

 Chapter 6: Inheritance 151

Listing 6-3 Apple.h

#import <Foundation/Foundation.h>
#import "Fruit.h"
@interface Apple : Fruit {
}
@end

Listing 6-4 Apple.m

#import "Apple.h"
@implementation Apple
@end

Listing 6-5 Orange.h

#import <Foundation/Foundation.h>
#import "Fruit.h"
@interface Orange : Fruit {
}
@end

Listing 6-6 Orange.m

#import "Orange.h"
@implementation Orange
@end

Listing 6-7 Environment.h

#import <Foundation/Foundation.h>
@class "Fruit.h"
@class "Apple.h"
@class "Orange.h"
@interface Environment : NSObject {
 NSTimer * myTimer;
 Apple * myApple;
 Orange * myOrange;
}

(continued)

 152 Objective-C for iPhone Developers: A Beginner’s Guide

@property (nonatomic,retain) Apple * myApple;
@property (nonatomic,retain) Orange * myOrange;
- (void) handleTimeSecond;
- (void) startTime;
@end

Listing 6-8 Environment.m

#import "Environment.h"

#import "Apple.h"

#import "Orange.h"

#import "Fruit.h"

@implementation Environment

@synthesize myOrange;

@synthesize myApple;

- (id) init {

 if([super init] == nil) return nil;

 Apple * tempApple = [[Apple alloc] init];

 self.myApple = tempApple;

 [tempApple release];

 Orange * tempOrange = [[Orange alloc] init];

 self.myOrange = tempOrange;

 [tempOrange release];

 [self startTime];

 NSLog(@"is a kind of Fruit:%i", [self.myApple isKindOfClass:

[Fruit class]]);

 NSLog(@"is a subclass of Fruit:%i", [[Orange class] isSubclassOfClass:

[Fruit class]]);

 NSLog(@"does orange respond to ripen:%i", [self.myOrange

respondsToSelector:@selector(ripen)]);

 NSLog(@"does orange respond to foo:%i", [self.myOrange

respondsToSelector:@selector(foo)]);

 return self;

}

- (void) startTime {

 myTimer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self

selector:@selector(handleTimeSecond) userInfo:nil repeats:YES];

}

- (void) handleTimeSecond {

 [self.myApple ripen];

 NSLog(@"apple's state:%@", [self.myApple getState]);

 [self.myOrange ripen];

 NSLog(@"orange's state:%@", [self.myOrange getState]);

 if([[self.myApple getState] isEqualToString:@"putrid"] &&

[[self.myOrange getState] isEqualToString:@"putrid"]) {

 Chapter 6: Inheritance 153

 [myTimer invalidate];

 }

}

- (void) dealloc {

 [self.myApple release];

 [self.myOrange release];

 [super dealloc];

}

@end

Listing 6-9 SimpleInheritanceAppDelegate.h

#import <UIKit/UIKit.h>
#import "Environment.h"
@class SimpleInheritanceViewController;
@interface SimpleInheritanceAppDelegate : NSObject
<UIApplicationDelegate> {
 UIWindow *window;
 SimpleInheritanceViewController *viewController;
 Environment * myEnvironment;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet SimpleInheritanceViewController
*viewController;
@property (nonatomic, retain) Environment * myEnvironment;
@end

Listing 6-10 SimpleInheritanceAppDelegate.m

#import "SimpleInheritanceAppDelegate.h"
#import "SimpleInheritanceViewController.h"
@implementation SimpleInheritanceAppDelegate
@synthesize window;
@synthesize viewController;
@synthesize myEnvironment;
- (void)applicationDidFinishLaunching:(UIApplication *)application {
 Environment * tempE = [[Environment alloc] init];
 self.myEnvironment = tempE;
 [tempE release];
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

(continued)

 154 Objective-C for iPhone Developers: A Beginner’s Guide

- (void)dealloc {
 [viewController release];
 [window release];
 [myEnvironment release];
 [super dealloc];
}
@end

Listing 6-11 Debugger console logging

is a kind of Fruit:1
is a subclass of Fruit:1
does orange respond to ripen:1
does orange respond to foo:0
apple's state:ripe
orange's state:ripe
apple's state:very ripe
orange's state:very ripe
apple's state:rotten
orange's state:rotten
apple's state:very rotten
orange's state:very rotten
apple's state:putrid
orange's state:putrid

In this example, you created a base class of type Fruit (Listings 6-1 and 6-2). You
then created Apple and Orange child classes (Listings 6-3 through 6-6). You specified
each inherited from Fruit.

@interface Orange : Fruit {
@interface Apple : Fruit {

Due to the environment, all fruit eventually ripen. You modeled this natural process
as a method in the Fruit class, naming the method “ripen.” You also created the state
instance variable in Fruit to represent the fruit’s state of decay. Fruits progress from
unripened to putrid, and these states are defined as constants in Fruit’s header.

#define UNRIPE 0
#define RIPE 1
#define VERY_RIPE 2
#define ROTTEN 3
#define VERY_ROTTEN 4
#define PUTRID 5

 Chapter 6: Inheritance 155

Because both Apple and Orange inherit from Fruit, they both have the ripen and
getState methods and they both have the state variable available to them.

The Environment class models time using an NSTimer. When initialized, the
Environment class starts keeping the time. Time is represented using an NSTimer class.
A new timer is created that fires the handleTimeSecond method every one second.

myTimer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self
selector:@selector(handleTimeSecond) userInfo:nil repeats:YES];

Every second, the timer fires the handleTimeSecond method. The
handleTimeSecond method then sends a ripen message to Apple and Orange. Behind
the scenes, the runtime sees if myApple or myOrange can respond to the ripen message
sent by myEnvironment. Neither can, and so the runtime checks each class’ parent class
for the method, finds it, and calls it instead. It does the same with the getState method.
Figure 6-4 illustrates how the runtime handles inherited methods.

When an Orange instance is sent a ripen message, the runtime first checks to see if
Orange can respond to the message. If it cannot, then it checks Orange’s parent. The
runtime continues checking Orange’s ancestor hierarchy until it either finds a class that
can respond to the message or it reaches NSObject. If no ancestor class can react to the
message, then a runtime error occurs.

Figure 6-4 Runtime’s behavior handling inheritance

(continued)

 156 Objective-C for iPhone Developers: A Beginner’s Guide

NOTE
The official terminology for the runtime behavior in Figure 6-4 is “message
dispatching.”

Notice that just for fun, you threw in the isKindOfClass, isSubclassOfClass,
and respondsToSelector methods in Listing 6-9. The isKindOfClass method
checks if an object is an instance of a class or an instance of one of a class’ child
classes. The isSubclassOfClass checks if a class is a subclass of another class. The
respondsToSelector method checks if a class can respond to a method sent to it. In
this example, all three return 1, or YES. Note that neither Orange nor Fruit implements
a foo method, and so the respondsToSelector for foo returns 0, or NO.

The important concept to take from this example is how inheritance works. Child
classes inherit the instance variables and methods of their parent. They also inherit from
every one of their ancestors.

Ancestry Inheritance
If you haven’t surmised by now, child classes inherit the instance variables and methods
from every class in their ancestor hierarchy. Moreover, when a message is dispatched
to a child class, if the runtime doesn’t find the method, it searches the class’ inheritance
hierarchy until it finds the method or reaches the child’s root class. For instance, consider
Figure 6-5.

Suppose you had an object that sent the isKindOfClass: message to a Fuji
instance. When the runtime fails to find the method in Fuji, it then checks Apple. It then
continues searching up the inheritance hierarchy until it finds the method in NSObject
and calls it.

Inheriting Properties
Before discussing inheriting properties, note that in reality, a child class inherits its
parent’s instance variables and methods, not its properties. After all, properties are nothing
more than instance variables and accessor methods.

Good object-oriented programming dictates that you practice encapsulation even
between parent and child classes. You should not access a parent’s instance variables
directly. Instead, you should access them through accessor methods. Properties are the
easiest way to generate accessor methods for instance variables, and so the next example
illustrates using properties between classes.

 Chapter 6: Inheritance 157

Try This Adding Properties Through Inheritance
 1. Create a new Command Line Foundation Tool called BirdCall.

 2. Create a Bird class and a Seagull class (Listings 6-12 through 6-15). Make
Seagull a child of Bird.

 3. Add a property named call to Bird. Also add a custom init method to Seagull.

 4. Modify BirdCall.m as in Listing 6-16.

 5. Click Build And Go and run the application (Listing 6-17).

Listing 6-12 Bird.h

#import <Foundation/Foundation.h>
@interface Bird : NSObject {
 NSString * call;
}
@property (nonatomic, retain) NSString * call;
@end

Figure 6-5 Inheritance hierarchy

(continued)

 158 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 6-13 Bird.m

#import "Bird.h"
@implementation Bird
@synthesize call;
- (void) dealloc {
 self.call = nil;
 [super dealloc];
}
@end

Listing 6-14 Seagull.h

#import <Foundation/Foundation.h>
#import "Bird.h"
@interface Seagull : Bird {
}
@end

Listing 6-15 Seagull.m

#import "Seagull.h"
@implementation Seagull
- (id) init {
 if([super init]==nil) return nil;
 self.call = @"seagull call...";
 return self;
}
@end

Listing 6-16 BirdCall.m

#import <Foundation/Foundation.h>
#import "Bird.h"
#import "Seagull.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Seagull * aSeagull = [[[Seagull alloc] init] autorelease];

NSLog([aSeagull call]);
 [pool drain];
 return 0;
}

 Chapter 6: Inheritance 159

Try This

Listing 6-17 Debugger log

seagull call...

In this example you created a Bird parent class and the Seagull child class. You
suspended disbelief and assumed all birds have a “call.” Because all birds have a call, you
created the call property in Bird. Because Seagull inherits Bird’s instance variables
and methods, you can say that Seagull essentially inherits Bird’s properties, even
though it is really inheriting the instance variable and the accessor methods.

Extension
A child class can extend its parent class by adding additional methods and instance
variables to its parent. In this section you consider extending a class using methods.
There really is not much to explain; this section is only illustrating that you often define
new methods and instance variables to child classes that further refine a parent class. The
following Try This example illustrates.

Extending a Parent
 1. Create a new Command Line Tool project. Name the project DroidSimulation.

 2. Create a Droid superclass and two subclasses named HousekeeperDroid and
WarriorDroid (Listings 6-18 through 6-23).

 3. Create a speak method in Droid, a fireLaserCannon method in WarriorDroid,
and a mopFloor method in HousekeeperDroid.

 4. Change DroidSimulation.m to match Listing 6-24.

 5. Click Build And Go to run the application. Listing 6-25 illustrates the debugger
console logging.

(continued)

 160 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 6-18 Droid.h

#import <Foundation/Foundation.h>
@interface Droid : NSObject {
}
- (void) speak;
@end

Listing 6-19 Droid.m

#import "Droid.h"
@implementation Droid
- (void) speak {
 NSLog(@"hello, I'm speaking...");
}
@end

Listing 6-20 WarriorDroid.h

#import <Foundation/Foundation.h>
#import "Droid.h"
@interface WarriorDroid : Droid {
}
- (void) fireLaserCannon;
@end

Listing 6-21 WarriorDroid.m

#import "WarriorDroid.h"
@implementation WarriorDroid
- (void) fireLaserCannon {
 NSLog(@"firing lasers...");
}
@end

Listing 6-22 HouseKeeperDroid.h

#import <Foundation/Foundation.h>
#import "Droid.h"
@interface HouseKeeperDroid : Droid {
}

 Chapter 6: Inheritance 161

- (void) mopFloor;
@end

Listing 6-23 HouseKeeperDroid.m

#import "HouseKeeperDroid.h"
@implementation HouseKeeperDroid
- (void) mopFloor {
 NSLog(@"mopping floor...");
}
@end

Listing 6-24 DroidSimulation.m

#import <Foundation/Foundation.h>

#import "Droid.h"

#import "WarriorDroid.h"

#import "HouseKeeperDroid.h"

int main (int argc, const char * argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 WarriorDroid * myWarriorDroid = [[[WarriorDroid alloc] init] autorelease];

 HouseKeeperDroid * myHouseKeeperDroid = [[[HouseKeeperDroid alloc] init]

autorelease];

 [myWarriorDroid speak];

 [myWarriorDroid fireLaserCannon];

 [myHouseKeeperDroid speak];

 [myHouseKeeperDroid mopFloor];

 [pool drain];

 return 0;

}

Listing 6-25 Debugger console logging

hello, I'm speaking...
firing lasers...
hello, I'm speaking...
mopping floor...

This example doesn’t do anything new or dramatic, but it nicely illustrates adding new
functionality in a child class. In this example you created two Droids, a WarriorDroid,

(continued)

 162 Objective-C for iPhone Developers: A Beginner’s Guide

and a HouseKeeperDroid. The parent class, Droid, has a speak method, as all droids
speak. But a warrior droid’s other behavior is very different than a housekeeper’s. Only
warrior droids have laser cannons, and so you added a method to fire a cannon to the
warrior droid only. Only housekeeper droids have embedded mops, and so you added a
method for mopping a floor to housekeeper droid only.

This Try This is simply repeating what you learned in this chapter’s first few sections.
Inheritance is for sharing common attributes and behavior among different classes.
HousekeeperDroid and WarriorDroid both add new methods to their parent, Droid.
But because they both share the speak method, rather than repeating that code in each
class, you had both inherit from Droid and use Droid’s speak method.

Overriding Methods
A child object can also specialize a parent’s methods by overriding them. Child classes
can either replace a parent’s method outright or extend a parent method’s functionality.
You can redefine a parent’s method by re-implementing it in a child class. When another
object sends a message to the child, it sends the message to the child’s implementation
rather than its parent’s. If a child replaces its parent’s method, then the calling object only
invokes the child’s method. If a child extends its parent’s method, then the calling object
invokes the child’s method, which in turn invokes its parent’s method.

Replacing a Parent’s Method
You replace a parent’s method by implementing the same method in a child. For instance,
a Ball might have Football and Basketball child classes. Moreover, Ball might
implement a flyThroughAir method. That method could be replaced by Football and
Basketball. Listings 6-26 through 6-28 contain all three classes’ implementation.

Listing 6-26 Ball.m

#import "Ball.h"
@implementation Ball
- (void) flyThroughAir {
 NSLog(@"ball's flythroughair...");
}
@end

 Chapter 6: Inheritance 163

Listing 6-27 Basketball.m

#import "Basketball.h"
@implementation Basketball
-(void) flyThroughAir {
 NSLog(@"basketball's flythroughair...");
}
@end

Listing 6-28 Football.m

#import "Football.h"
@implementation Football
- (void) flyThroughAir {
 NSLog(@"flying through air football...");
}
@end

When an object sends a flyThroughAir message to Football, the runtime calls
Football’s flyThroughAir method. When a flyThroughAir message is sent to
Basketball, the runtime calls Basketball’s flyThroughAir method. Because
neither Football’s nor Basketball’s flyThroughAir method explicitly call Ball’s
flyThroughAir method, they replace Ball’s flyThroughAir method.

Extending a Parent’s Method
Although replacing a parent’s method with a child’s is useful, you more often extend
a parent’s method by adding additional functionality in a child rather than replacing a
parent’s method. A custom init method is a good illustration of extending functionality.

-(id) init {
 if([super init]==nil) return nil;
 //additional functionality here
 return self;
}

The init tries to first initialize its parent. If it returns nil, then the child returns nil.
If it doesn’t, then the child’s method performs additional initialization.

You can add additional functionality to your own custom methods, as Listing 6-29
illustrates.

 164 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

Listing 6-29 Football’s flyThroughAir method reimplemented

#import "Football.h"
@implementation Football
- (void) flyThroughAir {
 NSLog(@"flying through air football...");
 [super flyThroughAir];
}
@end

The flyThroughAir method in Listing 6-29 adds additional functionality rather
than replacing Ball’s flyThroughAir method. When an object invokes a Football
instance’s flyThroughAir method, the Football instance performs its own custom
processing. After finishing, it then invokes its parent’s flyThroughAir method.

Overriding Methods Through Inheritance
 1. Create a new Command Line Foundation Tool and name it OverridingMethods.

 2. Create an Animal class and two children, Fish and Cat (Listings 6-30 through 6-35).

 3. Define a breathe method in all three classes. Have Fish replace Animal’s
breathe method and have Cat enhance Animal’s breathe method.

 4. Implement OverridingMethods.m as in Listing 6-36.

 5. Click Build And Go to run the application.

Listing 6-30 Animal.h

#import <Foundation/Foundation.h>
@interface Animal : NSObject {
}
- (void) breathe;
@end

Listing 6-31 Animal.m

#import <Foundation/Foundation.h>
#import "Animal.h"

 Chapter 6: Inheritance 165

@implementation Animal : NSObject {
}
- (void) breathe {
 NSLog(@"animal breathing....");
}
@end

Listing 6-32 Fish.h

#import <Foundation/Foundation.h>
#import "Animal.h"
@interface Fish : Animal {
}
- (void) breathe;
@end

Listing 6-33 Fish.m

#import "Fish.h"
@implementation Fish
- (void) breathe {
 NSLog(@"fish breathing....");
}
@end

Listing 6-34 Cat.h

#import <Foundation/Foundation.h>
#import "Animal.h"
@interface Cat : Animal {
}
- (void) breathe;
@end

Listing 6-35 Cat.m

#import "Cat.h"
@implementation Cat
- (void) breathe {
 NSLog(@"cat breathing...");

(continued)

 166 Objective-C for iPhone Developers: A Beginner’s Guide

 [super breathe];
}
@end

Listing 6-36 OverridingMethods.m

#import <Foundation/Foundation.h>
#import "Animal.h"
#import "Fish.h"
#import "Cat.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Fish * myFish = [[Fish alloc] init];
 Cat * myCat = [[Cat alloc] init];
 [myFish breathe];
 [myCat breathe];
 [myCat release];
 [myFish release];
 [pool drain];
 return 0;
}

Listing 6-37 Debugger console logging

fish breathing....
cat breathing...
animal breathing...

In this simple example, Fish replaced Animal’s breathe method, while Cat added
additional functionality to it by extending it. After Cat completes its own processing in
breathe, it then invokes its parent, Animal, so that Animal can complete its processing.

No Overriding Instance Variables
and No Overloading

You cannot override instance variables and you cannot overload methods when using
Objective-C.

 Chapter 6: Inheritance 167

No Overriding Instance Variables
Remember, properties are nothing more than instance variables with accessor methods.
Although you can override accessor methods, you cannot override instance variables. For
instance, if you tried to create a count variable in Ball, Football, or Basketball, you
would obtain the following compiler error: “error: duplicate member ‘myCount’.” You
cannot redefine a parent’s instance variables with a child class’ instance variables.

No Method Overloading
In a language such as Java, you have an object-oriented principle called overloading.
Overloading allows creating a method of the same name, but with different parameters.
For instance, you might have the following two methods in a Java class:

public void playSound(String soundURL);
public void playSound(int soundID);

Although languages such as Java allow creating two methods with the same name,
Objective-C does not allow overloading methods. You cannot, for instance, have the
following two methods in the same Objective-C class.

-(void) playSound:(NSString*) soundURL;
-(void) playSound:(int) soundID;

Instead, you follow a loose convention that incorporates the parameter’s type into
the name. For instance, the playsound methods would be modified to incorporate the
parameters.

-(void) playSoundFromURL:(NSString*) soundURL;
-(void) playSoundFromInt:(int) soundID;

You see this pattern in the Foundation framework classes, particularly the init
method. For instance, the NSString’s initWithFormat: and initWithString:
are examples of this convention. Now, before you hold up a method such as NSString’s
initWithFormat: as an example of method overloading, recall the discussion on
method syntax from Chapter 5. NSString actually only has one initWithFormat
method; the other methods’ names are initWithFormat:arguments:,
initWithFormat:locale:, and initWithFormat:locale:arguments:. Each of
these is a distinct method name.

 168 Objective-C for iPhone Developers: A Beginner’s Guide

Inheritance and UIViewController
In this chapter you learned about Objective-C inheritance using plain NSObject classes.
When you write an iPhone application, you use inheritance extensively. For instance, every
control, such as a UIButton, UIBarButtonItem, or UIWebView, traces its lineage to
UIView.

You can see an object’s inheritance hierarchy when accessing its documentation as
Figure 6-6 illustrates.

A UIView is descended from UIResponder, which is descended from its root class,
NSObject.

Figure 6-6 UIView’s Class Reference

 Chapter 6: Inheritance 169

Try This

You can use inheritance to simplify creating iPhone application views as well as your
model classes. The following Try This illustrates.

Extending a UIViewController
 1. Create a new Utility Application named GreenView.

 2. Expand both MainViewController.h and FlipsideViewController.h; notice both are
children of UIViewController.

 3. Create a new UIViewController class called GreenViewController. Xcode
should generate a GreenViewController.h and a GreenViewController.m file. Be
certain that the check box to generate an XIB is not selected.

 4. Modify GreenViewController.h and GreenViewController.m so that it has a myColor
property, as in Listings 6-38 and 6-39.

 5. Change MainViewController.h so that it is a child of GreenViewController
(Listing 6-40).

 6. Implement the viewDidLoad method in MainViewController.m (Listing 6-41).

 7. Click Build And Go to run the application; MainView’s background color is green.

Listing 6-38 GreenViewController.h

#import <UIKit/UIKit.h>
@interface GreenViewController : UIViewController {
 UIColor * myColor;
}
@property (nonatomic,retain) UIColor * myColor;
@end

Listing 6-39 GreenViewController.m

#import "GreenViewController.h"
@implementation GreenViewController
@synthesize myColor;
- (void)viewDidLoad {
 self.myColor = [UIColor greenColor];

(continued)

 170 Objective-C for iPhone Developers: A Beginner’s Guide

 [super viewDidLoad];
}
- (void)dealloc {
 [myColor release];
 [super dealloc];
}
@end

Listing 6-40 MainViewController.h

#import "FlipsideViewController.h"
#import "GreenViewController.h"
@interface MainViewController : GreenViewController
<FlipsideViewControllerDelegate> {
}
- (IBAction)showInfo;
@end

Listing 6-41 MainViewController.m’s viewDidLoad method

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = self.myColor;
 }

The MainViewController is a child of GreenViewController rather than
UIViewController. Instead, UIViewController is MainViewController’s
“grandparent.” When the UIViewController first loads its associated view, it calls
viewDidLoad. Its viewDidLoad method first calls GreenViewController’s
viewDidLoad method. After GreenViewController is finished, control is returned
to MainViewController’s viewDidLoad method, which sets its view’s background
color to its myColor value. The myColor property, although declared and defined in
GreenViewController, is recognized as a property of MainViewController.

Admittedly, this is a trivial example; however, it does have real-world implications.
Suppose you were creating a large application with many views. Moreover, suppose a
back-end content management system drove the application’s appearance, and that different
“divisions” had different color schemes. By creating a parent UIViewController with
a myColor property, you only have to change the color once—presuming every other

 Chapter 6: Inheritance 171

UIViewController in your application inherits from the view controller implementing
the color property. You can use this inheritance to great effect when creating non-trivial
user interfaces.

Summary
In this chapter you explored how Objective-C implements inheritance. A child class
inherits its parent class’ instance variables and methods. Moreover, it inherits every
ancestor’s instance variables and methods. This allows efficient code reuse and makes
your applications less prone to error because it has less duplicated code.

A child class can both extend a parent and override a parent’s functionality. When
extending a parent, a child adds new functionality to a parent. When overriding a parent’s
functionality, it can either replace a parent’s functionality or add to it. But remember, you
can only replace a parent’s methods and not its instance variables.

You will use inheritance extensively when developing iPhone applications. All UIKit
graphical controls ultimately inherit from the UIView class. Moreover, when you create
a view’s view controller, you almost always create a UIViewController subclass. In
fact, when using the Foundation framework or the UIKit, unless working directly with
NSObject, you are always using a child class. Understanding inheritance is fundamental
to understanding Objective-C.

This page intentionally left blank

173

Chapter 7
Protocols and
Categories

 174 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Protocols

● Modeling Protocols Using UML

● Adopting Protocols

● Using Protocols

● Understanding Categories

● Using Categories

If you know anything about Java’s interfaces, then you already have a reasonable
understanding of Objective-C’s protocols. A protocol is a contract that specifies methods
that an adopting class must implement if it is to properly adopt the protocol. Protocols are
an important Objective-C programming concept that you must understand to successfully
write iPhone applications. In this chapter you learn about protocols.

Protocols
Protocols declare the behavior an object can exhibit or what other objects can do to an
object. For instance, suppose you had Bumblebee, Jet, and Bird classes. All three,
although unrelated, implement the flying behavior, and so you could say they are each
a Flyer. Also notice that you could shoot all three with a gun, and so you could also
say they are Shootable. In both situations you are using a concept to group unrelated
objects based upon behaviors. Protocols model these types of situations.

A class that wishes to adopt a protocol must implement the methods declared by
the protocol. By requiring the adopting class to implement methods, a protocol forms a
contract. That contract ensures the runtime that a class that adopts a protocol implements
the methods declared by the protocol.

 Chapter 7: Protocols and Categories 175

NOTE
If you come from a Java background, you are accustomed to classes implementing
interfaces. In Objective-C terminology classes do not implement protocols, but rather
they adopt them. But in reality adopt and implement have the same meaning.

Modeling Protocols
The UML class diagram has a convenient notation for modeling protocols (Figure 7-1).

In Figure 7-1 the Bird, Jet, and Bumblebee all adopt the Flyer protocol and so
you draw a dashed arrow with a white point from the adopter to the adopted. The Flyer,
being a protocol, is added the «protocol» stereotype. Don’t worry about a stereotype’s
definition; all that it means here is that you are using a symbol normally used for a class to
represent a protocol.

Syntax
A protocol’s syntax is similar to a class’ interface. But unlike when writing a class, you
only create a header file and do not create an implementation. A protocol begins with the
@protocol compiler directive and ends with the @end compiler directive. Between the two
compiler directives go any method declarations you wish an adopting class to implement.

@protocol Hopper
- (void) hop;
- (BOOL) setHopDistance: (long long) distance
@end

Figure 7-1 Modeling a protocol

 176 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

Here you are declaring a Hopper that declares the hop and setHopDistance
methods. Classes that wish to adopt a Hopper must implement the hop and
setHopDistance methods.

NOTE
In this chapter I focus on using protocols to model behavior. You can also use protocols
to model what you can do to an object. For instance, you can hunt, roast, and eat a
duck, and so you could have a Duck class adopt the Huntable, Roastable, and
Eatable protocols.

Adopting a Protocol
Classes adopt protocols. For instance, a Frog class might implement the Hopper protocol.
For Frog to adopt Hopper, it must first import the Hopper.h header file. It then includes
Hopper in its @interface compiler directive.

@interface Frog: Amphibian <Hopper>

A frog is an amphibian, and so it inherits from its Amphibian parent class.
Following the parent class is the protocol the frog adopts. The protocol’s name is
surrounded by angle brackets. The following Try This illustrates adopting a protocol.

Creating and Adopting a Simple Protocol
 1. Create a View-based application named SimpleFlyer.

 2. Create a new C header file called Flyer.h (Figure 7-2).

 3. Modify Flyer.h to be a Flyer protocol that declares a “fly” method (Listing 7-1).

 4. Create three new Objective-C classes named Bumblebee, Bird, and Jet. Change
all three so that they adopt the Flyer protocol (Listings 7-2 through 7-7).

 Chapter 7: Protocols and Categories 177

 5. Modify SimpleFlyerViewController.h so that it knows about all three classes and
the protocol by using the @class and @protocol precompiler directives. Also
declare a callFly method and create three properties for each of the three classes
(Listing 7-8). Also create a changeLabel method and be certain you precede the
method with the IBAction keyword rather than void.

 6. Create an IBOutlet for a UILabel and name the property myLabel.

Figure 7-2 Creating a C header file

(continued)

 178 Objective-C for iPhone Developers: A Beginner’s Guide

 7. Modify SimpleFlyerViewController.m so that it synthesizes the properties and
implements the callFly method (Listing 7-9). Do not forget to import the classes
from the interface.

 8. Double-click SimpleFlyerViewController.xib to open it in Interface Builder.

 9. Add a button to the view’s canvas (Figure 7-3). Double-click the button and change its
title to Fly.

Figure 7-3 Adding a button to a view

 Chapter 7: Protocols and Categories 179

 10. Add a label to the view’s canvas and resize the label (Figure 7-4).

 11. Connect the File’s Owner myLabel outlet to the label (Figure 7-5). Remember, the
“outlet” term is simply shorthand for referring to the IBOutlet.

Figure 7-4 Adding a label to a view

(continued)

 180 Objective-C for iPhone Developers: A Beginner’s Guide

 12. Connect the File’s Owner callFly: action to the button’s Touch Up Inside event
(Figure 7-6).

 13. Save and exit Interface Builder.

Figure 7-5 Connecting a label to an outlet

 Chapter 7: Protocols and Categories 181

 14. Click Build And Run to run the application. Remember, the button might say Build
And Debug. Or, if you have an older XCode version, it might even say Build And Go.

 15. Tap the button three times, and each time the application displays the relevant text
from each class’ fly method (Figure 7-7).

Figure 7-6 Connecting a button to an action

(continued)

 182 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 7-7 The application running in iPhone simulator

 Chapter 7: Protocols and Categories 183

Listing 7-1 Flyer.h

@protocol Flyer
- (NSString *) fly;
@end

Listing 7-2 Bumblebee.h

#import <Foundation/Foundation.h>
#import "Flyer.h"
@interface Bumblebee : NSObject <Flyer> {
}
@end

Listing 7-3 Bumblebee.m

#import "Bumblebee.h"
@implementation Bumblebee
- (NSString *) fly {
 return @"flying bumblebee...";
}
@end

Listing 7-4 Bird.h

#import <Foundation/Foundation.h>
#import "Flyer.h"
@interface Bird : NSObject <Flyer> {
}
@end

Listing 7-5 Bird.m

#import "Bird.h"
@implementation Bird
- (NSString *) fly {
 return @"flying bird...";
}
@end

(continued)

 184 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 7-6 Jet.h

#import <Foundation/Foundation.h>
#import "Flyer.h"
@interface Jet : NSObject <Flyer> {
}
@end

Listing 7-7 Jet.m

#import "Jet.h"
@implementation Jet
- (NSString*) fly {
 return @"flying jet...";
}
@end

Listing 7-8 SimpleFlyerViewController.h

#import <UIKit/UIKit.h>
@protocol Flyer;
@class Jet;
@class Bird;
@class Bumblebee
@interface SimpleFlyerViewController : UIViewController {
 Bumblebee * myBee;
 Bird * myBird;
 Jet * myJet;
 IBOutlet UILabel * myLabel;
}
@property (nonatomic,retain) Bumblebee * myBee;
@property (nonatomic,retain) Bird * myBird;
@property (nonatomic,retain) Jet * myJet;
@property (nonatomic,retain) UILabel * myLabel;
- (IBAction) changeLabel: (id) sender;
- (NSString*) callFly: (id <Flyer>) aFlyer;
@end

Listing 7-9 SimpleFlyerViewController.m

#import "SimpleFlyerViewController.h"
#import "Flyer.h"

 Chapter 7: Protocols and Categories 185

#import "Bumblebee.h"
#import "Bird.h"
#import "Jet.h"
@implementation SimpleFlyerViewController
@synthesize myBee;
@synthesize myBird;
@synthesize myJet;
@synthesize myLabel;
static int clicks = 0;
- (IBAction) changeLabel: (id) sender {
 if(clicks == 0) {
 self.myLabel.text = [self callFly:self.myBee];
 }
 else if(clicks == 1) {
 self.myLabel.text = [self callFly:self.myBird];
 }
 else {
 self.myLabel.text = [self callFly:self.myJet];
 }
 clicks++;
}
- (NSString *) callFly: (id <Flyer>) aFlyer {
 return [aFlyer fly];
}
- (void) viewDidLoad {
 [super viewDidLoad];
 self.myBee = [[Bumblebee alloc] init];
 self.myBird = [[Bird alloc] init];
 self.myJet = [[Jet alloc] init];
}
- (void)dealloc {
 [self.myJet release];
 [self.myLabel release];
 [self.myBee release];
 [self.myBird release];
 [super dealloc];
}
@end

This application illustrates how you adopt a protocol. Bumblebee, Bird, and Jet
are all very different, but all three fly. Because they all fly, you created a Flyer protocol
that declared the fly method. All three implemented the fly method.

(continued)

 186 Objective-C for iPhone Developers: A Beginner’s Guide

Rather than taking a concrete class as a parameter, the callFly: method takes a
Flyer protocol as a parameter. Because Flyer specifies that an adopter must implement
a fly method, the callFly: method is assured that regardless of the underlying class,
because the object implements the Flyer protocol, it has a fly method.

Notice the IBAction in Listings 7-8 and 7-9. An IBAction is how you connect
methods in your custom code to events that are fired by Interface Builder components.
Chapter 11 explains the IBAction keyword further. For now, just note how you used it
so that when a user clicks and releases the button, it calls the callFly: method in the
SimpleFlyerViewController.

Also notice the callFly: method takes a Flyer as a parameter (Listing 7-9).

-(IBAction) callFly: (id <Flyer>) aFlyer;

Remember, id is a generic pointer to any Objective-C class. Specifying id as a
parameter’s type allows passing any class as the parameter. However, in Listing 7-9 you
are limiting the id to only accept classes that adopt the Flyer protocol. Any class may
be passed as a parameter to the method, but only if it adopts the Flyer protocol.

Finally, notice that nowhere in the three class’ interface do you declare the fly
method. When using a protocol-declared method, you are not required to, as the method is
declared in the protocol.

Properties and Protocols
You can declare properties in a protocol. Any classes that then wish to adopt the protocol
either must implement custom accessor methods or must synthesize the property. A
property’s syntax in a protocol is similar to an interface, only you do not declare an
instance variable.

@protocol Countable
@property (nonatomic, retain) NSNumber * maximumDigit;
@end

By declaring a property in a protocol, you are informing the compiler that
implementing classes must either synthesize the property or create custom accessor
methods. But note, any class implementing the protocol must synthesize the property and
declare the property as an instance variable in the class’ header. The following Try This
illustrates.

 Chapter 7: Protocols and Categories 187

Try This Using Properties with Protocols
 1. Create a new Command Line Foundation program. Name the application SingingFool.

 2. Create a protocol named Singer and declare a method called sing and a property
called singerName (Listing 7-10).

 3. Create a Tenor class and have it adopt the Singer protocol (Listing 7-11). Have
Tenor adopt the sing method (Listing 7-12).

 4. Declare a singerName instance variable in Tenor’s interface.

 5. Synthesize the singerName property in Tenor’s implementation.

 6. Modify main in SingingFool.m to match Listing 7-13.

 7. Build and Run the application.

Listing 7-10 Singer.h

@protocol Singer
@property (nonatomic,retain) NSString * singerName;
- (void) sing;
@end

Listing 7-11 Tenor.h

#import <Foundation/Foundation.h>
#import "Singer.h"
@interface Tenor : NSObject <Singer> {
 NSString * singerName;
}
@end

Listing 7-12 Tenor.m

#import "Tenor.h"
@implementation Tenor
@synthesize singerName;

(continued)

 188 Objective-C for iPhone Developers: A Beginner’s Guide

- (void) sing {
 NSLog(@"%@, the singing tenor...", self.singerName);
}
@end

Listing 7-13 SingingFool.m

#import <Foundation/Foundation.h>
#import "Tenor.h"
#import "Singer.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Tenor * myTenor = [[[Tenor alloc] init] autorelease];
 myTenor.singerName = @"Jameserotti";
 [myTenor sing];
 [pool drain];
 return 0;
}

In this example you declared a property in a Singer protocol. You then declared the
singerName as an instance variable and synthesized the property (added accessor
methods) in the Tenor class, which adopted the protocol. Upon running the application,
the runtime calls the sing method and the following is logged to the debugger console:

Jameserotti, the singing tenor...

Note that, same as a normal class, you can implement the accessor methods yourself
and the compiler realizes that you are replacing the auto-generated accessor method.

Optional Methods
Objective-C allows developers considerable flexibility. Protocols can also declare optional
methods that adopters are not required to implement. The following protocol illustrates:

@protocol Fighter
@required
 -(void) punch;
 -(void) kick;
@optional
 - (void) cry;
@end

 Chapter 7: Protocols and Categories 189

An object that adopts Fighter must punch and kick. Because these methods are
required, they are preceded by the @required compiler directive. Any methods declared
after this compiler directive, but before any @optional compiler directive, must be
implemented by an adopting class. The @required compiler directive is the default;
methods without a preceding compiler directive are assumed required.

A Fighter doesn’t have to cry; this method declaration is preceded by the @optional
compiler directive. By using the @optional compiler directive, you can add method
declarations that are optional to adopting classes.

Optional methods require more thought than required methods. When trying to send
a message to a class adopting a protocol, you must now ensure the class adopting the
protocol implements the optional method. For instance, I might wish to implement the
following method in a class:

- (void) hitInFace: (id <Fighter>) aFighter;

When hit in the face, some Fighters might cry, while others might not. For instance,
the famous American fighter, Butterbean, would definitely not cry. The author, however,
would cry like a baby. The problem is, both Author and Butterbean adopt the Fighter
protocol, but only Author implements the cry method. If you wish to call an optional
protocol method in another method such as hitInFace, you must check for the method’s
existence in the adopting class.

- (void) hitInFace: (id <Fighter>) aFighter {
 if([aFighter respondsToSelector:@selector(cry)]) {
 [aFighter cry];
 }

The easiest way to ensure a class responds to an optional protocol method is through
the respondsToSelector: method. Notice you are using a compiler directive
@selector in this method. You haven’t learned about selectors yet, but you will in
Chapter 11. For now, simply realize you are telling the compiler to ensure the Fighter
passed to the method does in fact implement the cry method. As an aside, note that had
cry taken a parameter, you would have written the preceding line containing the selector
with a colon as part of the @selector compiler directive.

if([aFighter respondsToSelector:@selector(cry:)])

 190 Objective-C for iPhone Developers: A Beginner’s Guide

Try This Exploring Optional Methods
 1. Create a new Command Line Foundation Tool named EatingExample.

 2. Create a protocol named Eater (Listing 7-14).

 3. Create two classes that adopt the Eater protocol. Name one class Glutton and the
other Socialite (Listings 7-15 through 7-18).

 4. Have Glutton implement the belch method.

 5. Implement the main method in EatingExample.m as in Listing 7-19.

 6. Build and Run the application.

Listing 7-14 Eater.h

@protocol Eater
@required //default
- (void) eat;
@optional
- (void) belch;
@end

Listing 7-15 Glutton.h

#import <Foundation/Foundation.h>
#import "Eater.h"
@interface Glutton : NSObject <Eater> {
}
@end

Listing 7-16 Glutton.m

#import "Glutton.h"
@implementation Glutton
- (void) eat {
 NSLog(@"glutton eating...");
}
- (void) belch {
 NSLog(@"glutton belching...");
}
@end

 Chapter 7: Protocols and Categories 191

Listing 7-17 Socialite.h

#import <Foundation/Foundation.h>
#import "Eater.h"
@interface Socialite : NSObject <Eater> {
}
@end

Listing 7-18 Socialite.m

#import "Socialite.h"
@implementation Socialite
- (void) eat {
 NSLog(@"socialite is eating...");
}
@end

Listing 7-19 EatingExample.m

#import <Foundation/Foundation.h>
#import "Glutton.h"
#import "Socialite.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Glutton * myGlutton = [[[Glutton alloc] init] autorelease];
 Socialite * mySocialite = [[[Socialite alloc] init] autorelease];
 [myGlutton eat];
 [mySocialite eat];
 if([myGlutton respondsToSelector:@selector(belch)]) {
 [myGlutton belch];
 }
 if([mySocialite respondsToSelector:@selector(belch)]) {
 [mySocialite belch];
 }
 [pool drain];
 return 0;
}

 192 Objective-C for iPhone Developers: A Beginner’s Guide

Protocols and id
In Listing 7-9 you used a protocol as a method’s parameter. Although this is valid, you
often see methods that only take an id. In this section you learn three different syntaxes
you might use when declaring a method that accepts a protocol as a parameter. The
following three method declarations illustrate the syntax you might see:

- (void) doAttach: (id) aFloater;
- (void) detach: (<Floater>) aFloater;
- (void) sinkAFloater: (id <Floater>) aFloater;

The first method takes an id only, the second a protocol only, and the third an id and a
protocol. In reality, method declarations two and three are equivalent. Consider all three
in turn.

Using id Only
One way you can use a protocol as a method parameter is by using the id keyword. The
id type is a generic pointer that can point to any object.

- (void) doAttach: (id) aFloater {
 if([aFloater conformsToProtocol:@protocol(Floater)]) {
 [aFloater attach];
 }
}

In the doAttach: method the id points to an object adopting the Floater
protocol. Because any object could be sent to doAttach:, it first ensures the object
adopts the required protocol by using the conformsToProtocol: method. The
conformsToProtocol: method is inherited from NSObject and does exactly
what its name says it does: it checks if an object conforms to a protocol provided as a
parameter, returning YES or NO.

Using id with a Protocol Restriction
When writing your own custom classes, you will probably want your methods to accept
parameters more strongly typed than id. You can restrict a method’s parameter so that
it can still take an id, but only if that id’s object adopts the specified protocol. The
following detach method illustrates.

- (void) detach: (<Floater>) aFloater {
 [aFloater detach];
}

 Chapter 7: Protocols and Categories 193

Try This

In detach the id parameter is implicit. The method takes any object provided the
object implements the Floater protocol. You can also make the id explicit, as the
following sinkAFloater method illustrates.

- (void) sinkAFloater: (id <Floater>) aFloater {
 [aFloater sink];
}

Specifying a protocol as a parameter’s type forces the id to be an adopter of the
protocol.

Adopting Multiple Protocols
Sometimes you might wish to create a class that adopts multiple protocols. Consider ducks.
Ducks can fly and so they should adopt the Flyer protocol you declared earlier. But ducks
can also swim. Swimming, like flying, is a behavior shared by many unrelated entities, and
so you should probably create a Swimmer protocol with a swim method declaration.

Duck should adopt both protocols. Objective-C allows objects to adopt more than one
protocol. When a class adopts more than one protocol, you list the protocols as a comma-
separated list.

@interface Duck : NSObject <Flyer, Swimmer>

The Duck class adopts the Flyer and Swimmer protocols in the preceding code
snippet. A class is unlimited in how many protocols it can adopt. For instance, you might
have the following interface declaration for a Duck:

@interface Duck : NSObject <Flyer, Swimmer, Quacker, Roastable, Diver,
Eatable>

Adopting Multiple Protocols
 1. Open the SimpleFlyer project completed previously in Xcode.

 2. Add the Swimmer protocol to the project (Listing 7-20).

 3. Create and implement Duck so that it adopts the Swimmer protocol (Listings 7-21
and 7-22).

 4. Modify SimpleFlyerViewController so that it matches Listings 7-23 and 7-24.

 5. Build and Run.

(continued)

 194 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 7-20 Swimmer.h

@protocol Swimmer
- (NSString *) swim;
@end

Listing 7-21 Duck.h

#import <Foundation/Foundation.h>
#import "Flyer.h"
#import "Swimmer.h"
@interface Duck : NSObject <Flyer, Swimmer> {
}
@end

Listing 7-22 Duck.m

#import "Duck.h"
@implementation Duck
- (NSString *) fly {
 return @"flying duck...";
}
- (NSString *) swim {
 return @"swimming duck...";
}
@end

Listing 7-23 SimpleFlyerViewController.h

#import <UIKit/UIKit.h>
@class Duck;
@class Jet;
@class Bumblebee;
@class Bird;

@interface SimpleFlyerViewController : UIViewController {
 Bumblebee * myBee;
 Bird * myBird;
 Jet * myJet;
 Duck * myDuck;
 IBOutlet UILabel * myLabel;
}

 Chapter 7: Protocols and Categories 195

@property (nonatomic,retain) Bumblebee * myBee;
@property (nonatomic,retain) Bird * myBird;
@property (nonatomic,retain) Jet * myJet;
@property (nonatomic,retain) Duck * myDuck;
@property (nonatomic,retain) UILabel * myLabel;
- (IBAction) changeLabel: (id) sender;
- (NSString*) callFly: (id <Flyer>) aFlyer;
- (void) callSwim: (id) aFlyer;
@end

Listing 7-24 SimpleFlyerViewController.m

#import "SimpleFlyerViewController.h"
#import "Flyer.h"
#import "Bumblebee.h"
#import "Bird.h"
#import "Jet.h"
#import "Duck.h"
@implementation SimpleFlyerViewController
@synthesize myBee;
@synthesize myBird;
@synthesize myJet;
@synthesize myLabel;
@synthesize myDuck;
static int clicks = 0;
- (IBAction) changeLabel: (id) sender {
 id myObject = nil;
 if(clicks == 0) {
 self.myLabel.text = [self callFly:self.myBee];
 myObject = self.myBee;
 }
 else if(clicks == 1) {
 self.myLabel.text = [self callFly:self.myBird];
 myObject = self.myBird;
 }
 else if(clicks == 2) {
 self.myLabel.text = [self callFly:self.myJet];
 myObject = self.myJet;
 }
 else {
 self.myLabel.text = [self callFly:self.myDuck];
 myObject = self.myDuck;
 }
 [self callSwim:myObject];
 clicks++;
}

(continued)

 196 Objective-C for iPhone Developers: A Beginner’s Guide

- (NSString *) callFly: (id <Flyer>) aFlyer {
 return [aFlyer fly];
}
- (void) callSwim: (id) aFlyer {
 if ([aFlyer conformsToProtocol:@protocol(Swimmer)]) {
 NSLog([aFlyer swim]);
 }
}
- (void) viewDidLoad {
 [super viewDidLoad];
 self.myBee = [[[Bumblebee alloc] init] autorelease];
 self.myBird = [[[Bird alloc] init] autorelease];
 self.myJet = [[[Jet alloc] init] autorelease];
 self.myDuck = [[[Duck alloc] init] autorelease];
}
- (void)dealloc {
 [self.myJet release];
 [self.myBee release];
 [self.myBird release];
 [self.myDuck release];
 [self.mylabel release];
 [super dealloc];
}
@end

Bumblebee, Jet, Bird, and Duck all fly, and so they adopt the Flyer protocol.
However, only Duck swims, and so only Duck adopts the Swimmer protocol. The Duck
is treated as a Flyer and as a Swimmer. When a user taps the button, the first four taps
calls the Bee, Bird, Jet, and Duck fly method. This method is declared in the Flyer
protocol so all four classes have a fly method. SimpleFlyerViewController treats
Duck as a Flyer. But on the fifth tap, SimpleFlyerViewController treats Duck
as a Swimmer and invokes Duck’s swim method.

Notice that the callSwim method in Listing 7-24 takes an id as a parameter;
however, rather than using the respondsToSelector: method, it uses the
conformsToProtocol: method.

if ([aFlyer conformsToProtocol:@protocol(Swimmer)]) {

The conformsToProtocol method is another way you might ensure a class
implementing a protocol has a method prior to calling the method (unless the method
is optional in the protocol).

 Chapter 7: Protocols and Categories 197

Try This

Extending Protocols
You can also have protocols adopt other protocols. Suppose you had driftwood and a
duck. Both are buoyant, and so each adopts the “Floater” protocol. But only the duck
implements the swimming behavior. Now, it seems reasonable that a Swimmer must be
a Floater, otherwise how could a swimmer swim? And so you have the Swimmer
protocol adopt the Floater protocol.

The syntax for a protocol extending another protocol is as follows:

@protocol Swimmer <Floater>

You declare the protocol and then declare that it adopts the protocol you wish extending.
In the preceding code snippet you are declaring a Swimmer protocol that adopts the
Floater protocol. A class that adopts a child protocol automatically adopts the parent
protocol. This means the class must implement both protocol’s methods. Note that you are
not allowed to redefine methods in a protocol as you do with inherited classes.

Extending a Protocol
 1. Create a new Command Line Foundation Tool named DriftwoodDuck.

 2. Create a new protocol named Sinkable (Listing 7-25).

 3. Create a protocol named Floater (Listing 7-26). Import Sinkable and have
Floater adopt the Sinkable protocol.

 4. Create a new protocol named Swimmer (Listing 7-27). Import Floater and have
Swimmer adopt the Floater protocol.

 5. Create a class called Driftwood and a class called Duck (Listings 7-28 through 7-31).

 6. Have Driftwood adopt the Floater protocol and Duck adopt the Swimmer
protocol.

 7. Be certain to implement the swim, sink, and floatMe methods in Duck. Be
certain to implement the sink and floatMe methods in Driftwood.

 8. Create a third class named LeadWeight (Listings 7-32 and 7-33). Create a method
named sinkASinkable and have it take a Sinkable as a parameter.

(continued)

 198 Objective-C for iPhone Developers: A Beginner’s Guide

 9. Modify main in DriftwoodDuck.m to match Listing 7-34.

 10. Build and Run. Listing 7-35 contains the debugger console logging.

Listing 7-25 Sinkable.h

@protocol Sinkable
- (void) sink;
@end

Listing 7-26 Floater.h

#import "Sinkable.h"
@protocol Floater <Sinkable>
- (void) floatMe;
@end

Listing 7-27 Swimmer.h

#import "Floater.h"
@protocol Swimmer <Floater>
-(void) swim;
@end

Listing 7-28 Driftwood.h

#import <Foundation/Foundation.h>
#import "Floater.h"
@interface Driftwood : NSObject <Floater> {
}
@end

Listing 7-29 Driftwood.m

#import "Driftwood.h"
@implementation Driftwood
-(void) floatMe {
 NSLog(@"driftwood floating...");
}

 Chapter 7: Protocols and Categories 199

-(void) sink {
 NSLog(@"driftwood sinking....");
}
@end

Listing 7-30 Duck.h

#import <Foundation/Foundation.h>
#import "Swimmer.h"
@interface Duck : NSObject <Swimmer>{
}
@end

Listing 7-31 Duck.m

#import "Duck.h"
@implementation Duck
- (void) swim {
 NSLog(@"duck swimming...");
}
-(void) floatMe {
 NSLog(@"duck floating....");
}
- (void) sink {
 NSLog(@"duck sinking....");
}
@end

Listing 7-32 LeadWeight.h

#import <Foundation/Foundation.h>
#import "Floater.h"
@interface LeadWeight : NSObject {
}
- (void) sinkASinkable: (id <Sinkable>) aSinkable;
@end

(continued)

 200 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 7-33 LeadWeight.m

#import "LeadWeight.h"
@implementation LeadWeight
- (void) sinkASinkable: (id <Sinkable>) aSinkable; {
 [aSinkable sink];
}
@end

Listing 7-34 DriftwoodDuck.m

#import <Foundation/Foundation.h>
#import "Duck.h"
#import "Driftwood.h"
#import "LeadWeight.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Duck * myDuck = [[[Duck alloc] init] autorelease];
 [myDuck floatMe];
 [myDuck swim];
 Driftwood * myDriftwood = [[[Driftwood alloc] init] autorelease];
 [myDriftwood floatMe];
 LeadWeight * myWeight = [[[LeadWeight alloc] init] autorelease];
 [myWeight sinkASinkable:myDriftwood];
 [myWeight sinkASinkable:myDuck];
 [pool drain];
 return 0;
}

Listing 7-35 Debugger console logging

duck floating....
duck swimming...
driftwood floating...
driftwood sinking....
duck sinking....

 Chapter 7: Protocols and Categories 201

In main you treat Duck as a Swimmer and a Floater. In LeadWeight’s
sinkASinkable: method you treat Duck as a Sinkable. But notice that nowhere
in Duck’s interface or implementation do you specify Duck adopts the Sinkable or
Floater protocol. The same is true for Driftwood; nowhere do you specify that
Driftwood adopts the Sinkable protocol.

Because Swimmer adopts the Floater protocol, which adopts the Sinkable
protocol, the compiler understands that Duck adopts the Floater and Sinkable
protocols in addition to the Swimmer protocol. Because Driftwood adopts the
Floater protocol, the compiler understands that Driftwood also adopts the
Sinkable protocol.

Protocols and Delegates in UIKit
Enough about Ducks, Floaters, Swimmers, and Sinkables; you will use much
more pragmatic protocols extensively when developing iPhone applications. The UIKit
uses protocols to implement something called delegates.

A delegate is an object whose purpose is to help another object. The UIKit implements
these helpers as protocols and allows you to define the custom class implementing the
helper. There are many protocols that are predefined by the Foundation framework and the
UIKit framework. For instance, most delegates in the UIKit are protocols.

A UIWebView is for loading web pages and uses a delegate called a
UIWebViewDelegate. The UIWebView handles the layout and all the technical
aspects of making the page appear in your application. It does not handle events such as
a page beginning to load, loading, and then finishing loading. Instead, the UIKit provides
the UIWebViewDelegate protocol. Developers are responsible for implementing
that protocol should he or she wish to respond to page loading events. They then register
the specific protocol implementation with the UIWebView. In the following Try This
you implement a simple view that loads a webpage. You accomplish it by creating a
GuideViewController, which inherits from UIViewController and adopts the
UIWebViewDelegate (Figure 7-8).

 202 Objective-C for iPhone Developers: A Beginner’s Guide

Try This Adopting the UIWebViewDelegate
 1. Create a new View-based application and name the application Guide.

 2. Expand Classes and notice that the template created GuideViewController.h and
GuideViewController.m for you.

 3. Open GuideViewController.h in the editor and notice that the template also extended
UIViewController for you.

 4. Modify GuideViewController.h so that it adopts the UIWebViewDelegate
(Listing 7-36). Also add a property declaration for the UIWebView that you will
add as an IBOutlet.

 5. Build the project, but do not run. Alternatively, you can save GuideViewController.h.
You need to be certain that the newly added IBOutlet appears in Interface Builder.

 6. Open GuideViewController.xib in Interface Builder.

 7. Add a UIWebView from the library to the view’s canvas (Figure 7-9).

Figure 7-8 A view controller that adopts the UIWebViewDelegate protocol

 Chapter 7: Protocols and Categories 203

 8. Connect the File’s Owner myWebView outlet to the UIWebView you just added to
the canvas (Figure 7-10).

 9. Connect the UIWebView’s delegate property to the File’s Owner (Figure 7-11).

 10. Save and exit Interface Builder.

Figure 7-9 Adding a UIWebView to a view’s canvas

(continued)

 204 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 7-10 Connecting a UIWebView’s outlet to a UIWebView

 Chapter 7: Protocols and Categories 205

 11. Implement GuideViewController.m as in Listing 7-37.

 12. Click Build And Go to run the application. If you are connected to the Internet, your
application should appear similar to Figure 7-12. The debugger console logging should
appear like Listing 7-38.

Listing 7-36 GuideViewController.h

#import <UIKit/UIKit.h>

@interface GuideViewController : UIViewController <UIWebViewDelegate> {

 IBOutlet UIWebView * myWebView;

}

@property (nonatomic, retain) UIWebView * myWebView;

@end

Figure 7-11 Connecting a UIWebView’s delegate property

(continued)

 206 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 7-37 GuideViewController.m

#import "GuideViewController.h"

@implementation GuideViewController

@synthesize myWebView;

- (void)viewDidLoad {

 [super viewDidLoad];

 NSURL * url = [NSURL URLWithString:@"http://www.jamesabrannan.com"];

 NSURLRequest * req = [NSURLRequest requestWithURL:url];

 [self.myWebView loadRequest:req];

}

- (void)webViewDidStartLoad:(UIWebView *) webView {

 NSLog(@"I Started loading...");

}

- (void)webView:(UIWebView *) webView didFailLoadWithError:(NSError *) error {

 NSLog(@"I FAILED TO LOAD");

}

- (void) webViewDidFinishLoad: (UIWebView *) webView {

 NSLog(@"Finished Loading....");

}

Figure 7-12 The application loading www.jamesabrannan.com

www.jamesabrannan.com

 Chapter 7: Protocols and Categories 207

- (void)dealloc {

 [myWebView release];

 [super dealloc];

}

@end

Listing 7-38 Debugger console logging

I Started loading...
I Started loading...
I Started loading...
I Started loading...
I Started loading...
Finished Loading....
Finished Loading....
Finished Loading....
Finished Loading....
Finished Loading....

In this example you used a UIWebView and had it load a URL. You had
GuideViewController adopt the UIWebViewDelegate protocol.

@interface GuideViewController : UIViewController <UIWebViewDelegate>

You then connected the UIWebView’s delegate to GuideViewController in
Interface Builder. The web view, as it starts loading and finishes loading resources, sends
messages to its delegate’s webDidStartLoad: and webDidFinishLoad: methods.
Because GuideViewController adopts the protocol and was set as the web view’s
delegate, GuideViewController gets these messages. And so you can handle them
in your custom code.

Categories
Categories allow extending a class’ functionality without extending a class. Recall in
Chapter 6 when you learned that a child class can have methods in addition to its parent’s
methods; a child can extend its parent. If you wish, rather than using inheritance, you can
also use a category to add methods to another class.

 208 Objective-C for iPhone Developers: A Beginner’s Guide

Categories Explained
Listing 7-39 illustrates a simple category that adds additional functionality to the
NSMutableString Foundation framework class.

Listing 7-39 NSMutableString+FooBar.h

#import <Foundation/Foundation.h>
@interface NSMutableString (FooBar)
- (void) addFooBar;
@end

A category declares an interface of the same name it wishes to add to. For instance,
in Listing 7-39 the category declares an NSMutableString. It puts the name of the
category in parentheses following the original class. By convention, developers typically
name the header file the original class’ name + the category’s name. Listing 7-39 has a
filename of NSMutableString+FooBar.h, for instance.

The category’s implementation also uses the original class’ name followed by the
category’s name in parentheses (Listing 7-40).

Listing 7-40 NSMutableString+FooBar.m

#import "NSMutableString+FooBar.h"
@implementation NSMutableString (FooBar)
- (void) addFooBar {
 [self appendString:@" FooBar"];
}
@end

The category implements the new method, but at the same time “inherits” the original
class’ method. For instance, in Listing 7-41 you first import the header file declaring the
category. You then work with the original class by name, but because you imported the
category, the compiler is smart enough to add the additional functionality to the name. The
main method treats NSMutableString as an NSMutableString, but behind the
scenes, it knows that it is a FooBar category and adds the additional method.

 Chapter 7: Protocols and Categories 209

Try This

Listing 7-41 CategoryExample.m

#import <Foundation/Foundation.h>
#import "NSMutableString+FooBar.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSMutableString * myMutString = [NSMutableString
stringWithString:@"This is a string"];
 [myMutString addFooBar];
 NSLog(myMutString);
 [pool drain];
 return 0;
}

Extending a Duck with a Better Duck
 1. Open the DriftwoodDuck project in Xcode.

 2. Create a new class named BetterDuck+Duck; Xcode generates BetterDuck+Duck.h
and BetterDuck+Duck.m files.

 3. Open BetterDuck+Duck.h and change the interface declaration to match Listing 7-42.

 4. Also change the implementation to match Listing 7-43.

 5. Modify main in DriftwoodDuck.m so that it imports BetterDuck+Duck.h rather than
the Duck.h header file (Listing 7-44).

 6. Also modify main so that it sends a message to the duck telling it to quack.

 7. Build and Run.

Listing 7-42 BetterDuck+Duck.h

#import <Foundation/Foundation.h>
#import "Duck.h"
@interface Duck (BetterDuck)
 -(void) quack;
@end

(continued)

 210 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 7-43 BetterDuck+Duck.m

#import "BetterDuck+Duck.h"
@implementation Duck (BetterDuck)
- (void) quack {
 NSLog(@"quack...");
}
@end

Listing 7-44 DriftwoodDuck.m

#import <Foundation/Foundation.h>
//#import "Duck.h"
#import "Driftwood.h"
#import "LeadWeight.h"
#import "BetterDuck+Duck.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Duck * myDuck = [[[Duck alloc] init] autorelease];
 [myDuck float];
 [myDuck swim];
 Driftwood * myDriftwood = [[[Driftwood alloc] init] autorelease];
 [myDriftwood float];
 LeadWeight * myWeight = [[[LeadWeight alloc] init] autorelease];

 [myWeight sinkASinkable:myDriftwood];
 [myWeight sinkASinkable:myDuck];
 Duck * myBetterDuck = [[[Duck alloc] init] autorelease];
 [myBetterDuck float];
 [myBetterDuck swim];
 [myBetterDuck quack];
 [pool drain];
 return 0;
}

Changing from Duck to BetterDuck does not change the preexisting code’s
behavior. A BetterDuck is seen as a Duck, only now you have the additional quack
method.

 Chapter 7: Protocols and Categories 211

Notice what this example also illustrates: poor design. Categories allow ad hoc additions
to classes; but ad hoc additions are a poor substitute for correctly designing your application.
In a real project you should return to the original class and add the quack method to Duck.
But sometimes this isn’t an option, for instance, when using the NSMutableString
Foundation class. When changing the original class isn’t an option, you can either extend the
original class with a new child class or you can use a category.

Summary
In this chapter you explored protocols and categories. Protocols are an important object-
oriented concept that allows grouping related and unrelated objects based upon their
behavior. In this chapter you used simplistic, real-world examples; however, you will see
protocols used extensively when programming iPhone applications.

The UIWebView and its UIWebViewDelegate is just one example of an iPhone
application using a protocol to implement a class’ delegate. A UIWebView has a delegate
property. When certain life-cycle methods occur, such as a page loading, it invokes the
applicable delegate’s method. Because the class assigned to the delegate property adopts
the UIWebViewDelegate protocol, it implements the delegate methods called by the
UIWebView.

Categories are a way you might add functionality to an existing class. When developing
your application, you should not rely upon categories. For instance, if during a project,
you find that you require a “BetterDuck,” as in the Try This example, then you are better
off modifying Duck than using a BetterDuck category. Categories should not be a
license to add additional functionality to poorly thought-out classes.

Where categories are useful, though, is when extending preexisting classes, such
as Foundation framework classes. Often you do not wish to create a subclass of a class
such as NSString. Instead, you only wish to add one or two additional methods. In this
situation, you might consider using a category.

This page intentionally left blank

213

Chapter 8
Some Foundation
Framework Classes

 214 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Mutable and Nonmutable Objects

● Using NSString and NSMutableString

● Understanding Objective-C Numbers

● Using Dates in Objective-C

● Using NSArray and NSMutableArray

● Using NSDictionary and NSMutableDictionary

The Foundation framework is a collection of Objective-C classes that make working with
primitive data elements and data structures such as arrays easier by wrapping them in

an Objective-C class. The Foundation framework contains many classes that you can use
when developing your application. In this chapter you explore several of the Foundation
framework classes that you will use most often when developing an iPhone application.
But this chapter cannot possibly do the Foundation framework justice, and you should at
least skim the Foundation framework’s online documentation at Apple’s web site so that
you have a better understanding of everything the Foundation framework has to offer. You
cannot be a good iPhone developer unless you understand this framework.

Although there are many Foundation framework classes available, in this chapter you only
explore a few of those classes; namely the NSString, NSMutableString, NSNumber,
NSDate, NSArray, NSMutableArray, NSDictionary, and NSMutableDictionary
classes. These classes all make working with data easier. For instance, the NSNumber class
wraps numeric primitives and provides many functions for manipulating its underlying
primitive value. The NSString makes working with C character arrays much easier by
providing many data manipulation functions. And the NSArray and NSDictionary
classes make handling an Objective-C object collection easier. These eight classes are arguably
the most important Foundation framework classes, and you should understand them all.

NOTE
Using any of the Foundation framework classes only requires that you import the
Foundation framework header file. You have already done this throughout this book.

#import <Foundation/Foundation.h>

You also must ensure you link against the framework, but Xcode does this for you when
developing an iPhone project.

 Chapter 8: Some Foundation Framework Classes 215

NSString and NSMutableString
The NSString and NSMutableString classes store string values. The NSString class is
immutable, meaning you cannot change its value once initialized. The NSMutableString
class is mutable, meaning you can change it after initialized. Each of these classes has many
methods for modifying its values. In this section you explore both these classes and several
of their methods.

TIP
If you OPTION-CLICK an Objective-C class in Xcode, you will get a pop-up window that
summarizes the class (Figure 8-1). If you then click the icon that looks like an open book in
the window’s upper-right corner, the documentation on your computer opens (Figure 8-2).

Figure 8-1 OPTION-CLICKING an Objective-C class

 216 Objective-C for iPhone Developers: A Beginner’s Guide

NSString
You are already familiar with creating an NSString. You can initialize a string by simply
assigning it a value, allocating and then initializing it, or using a convenience constructor.

NSString * myString = @"My String.";
NSString * myString2 = [[NSString alloc] initWithString:@"My String."];
NSString * myString3 = [NSString stringWithString:@"My String."];

Figure 8-2 Documentation for NSString

 Chapter 8: Some Foundation Framework Classes 217

TIP
When using a convenience constructor, always be certain you call retain if you wish
to persist the object.

NSString * myString = @"My String.";

The myString variable is a weak reference to the underlying string.

You can also initialize a string with a C string. For instance, the following initializes a
UTF8-encoded C string.

char * myCString = "This is a test.";
NSString * myString = [NSString stringWithUTF8String:myCString];

You can covert an NSString to a C string.

NSString * myString = @"This is my string.";
char * myCString = [myString getUTF8String];

NOTE
UTF-8 encoding is a Unicode character encoding. This encoding allows using
languages such as Japanese. Don’t worry too much about it; just realize that all your
strings use this encoding.

You might also initialize a string with the contents of a URL or the contents of a file.
You will see an example of initializing an NSString with a file’s content in Chapter 9,
when you explore file handling.

Yet another commonly used string initialization is stringWithFormat.

NSString * myString = [[NSString alloc] initWithFormat:@"I am %i years old.",41];

This method allows you to easily add a number or some other value to a string, much
like you would when using the NSLog method. For those with prior C/C++ experience,
it’s a lot like printf.

NOTE
See “String Format Specifiers” in Apple’s “String Programming Guide for Cocoa” for a
complete listing of formats.

 218 Objective-C for iPhone Developers: A Beginner’s Guide

Once you have a string, there are many things you might do with it. For instance, if the
string contains a string representation of a double, you can convert the string to a double.

NSString * myString = @"33.4444";
double mydouble = [myString doubleValue];

Or if your string contains an integer, you can convert the string to an integer.

NSString * myString = [NSString stringWithString:@"41"];
int myage = [myString intValue];

You can also compare two strings.

NSString * myStringOne = [[NSString alloc] initWithString:@"James"];
NSString * myStringTwo = [NSString stringWithString:@"James"];
if([myStringOne equalsString:myStringTwo] == YES) {
NSLog(@"They are the same.");

You can also create a new string by appending a string.

NSString * myStringOne = @"My name is ";
NSString * myStringTwo = [myStringOne stringByAppendingString:@"James"];

NOTE
There are many string functions related to file paths. You explore these methods in
Chapter 9.

NSString: Obtaining Substrings
Obtaining substrings is a little more involved than in other string methods. The
methods you use are the substringFromIndex:, substringToIndex:, and
substringWithRange: methods. The substringToIndex: method starts at a
string’s beginning and gets the characters to the index value. For instance, the following
copies the first five characters from the string, creating the string "James". Note that
strings begin with an index of zero, so the fifth character is at position 4.

NSString * myName = @"James Brannan";
NSString * myFirstName = [myName substringToIndex:4];

The substringFromIndex: begins at the index and goes to the string’s end. For
instance, the following example’s substring is "Brannan".

NSString * myName = @"James Brannan";
NSString * myLastName = [myName substringFromIndex:5];

 Chapter 8: Some Foundation Framework Classes 219

Notice that the substring starts at the next character after the index. But in the preceding
example, that character is a blank, so you specify 5 so that the substring begins at the sixth
index and does not include the blank.

Often you want to get a substring from the middle of a string. To do this, you must use
another data type called an NSRange. An NSRange, although named like a class, is a
structure that has a location and a length. You use NSRange, combined with NSString,
to locate and extract a substring from a string. The following code illustrates:

NSString * myName = @"James A. Brannan";
NSRange myRange = [myName rangeOfString:@"A."];
if (myRange.location != NSNotFound) {
 NSString * myInitial = [myName substringWithRange:myRange];
}

The NSString class has a method called rangeOfString that returns the range
of a substring that matches the string passed as a parameter. The range returned in the
preceding code snipped has a location of 6 and a length of 2, which obtains the substring
"A.". If the string fails to find the string, it returns an NSNotFound as the range’s
location. If the substring is found, then you use the range to create a new string from the
original string, as in the proceeding code.

NSMutableString
Oftentimes you wish to manipulate a string and change its value depending upon differing
circumstances. To accomplish this functionality, you should use the NSMutableString
class rather than NSString. The NSMutableString is a subclass of NSString;
it inherits all of NSString’s methods, but it also adds several methods for appending
strings to itself without requiring you to declare a new string. You initialize it the same
way you would a regular string, only you use the mutable version.

NSMutableString * myFullName = [[NSMutableString alloc] initWithString
:@"James"];

Because you created a mutable rather than immutable string, you can modify the
original string without creating a new string. The following code illustrates the difference:

NSMutableString * myFullName = [[NSMutableString alloc] initWithString:@"James"];

[myFullName appendString:@" A. Brannan"]; //James A. Brannan

NSString * myFirstName = [[NSString alloc] initWithString:@"James"];

NSString * fullName = [myFirstName stringByAppendingString:@"Brannan"];

//James A. Brannan

 220 Objective-C for iPhone Developers: A Beginner’s Guide

You can also append a format to a mutable string:

[myFullName appendFormat:@" and my age is:%i", 41]; //James A. Brannan and
my age is:41

When using a string that you will modify, you should use the NSMutableString
class rather than NSString.

NSNumber
The NSNumber class is a Cocoa wrapper around numeric primitives. Wrapping a numeric
primitive with an Objective-C class allows you to send messages to the number. You
typically create an NSNumber instance by using a numberWith<type>: convenience
constructor. For instance, if wrapping a float, you would write the following.

NSNumber * myNumber = [NSNumber numberWithFloat:5.2];

You would then access that primitive value using an accessor method.

float myfloat = [myNumber floatValue];

Table 8-1 lists NSNumber convenience constructors. Note that each method in
Table 8-1 also has a corresponding init method. For instance, rather than using the
convenience method to create the myNumber value in the previous code fragment, you
could have allocated the number and then initialized it using the initWithFloat:
method.

NSNumber * myNumber = [[NSNumber alloc] initWithFloat:5.2]];

Like the convenience constructors, every primitive numeric type has its own init
method in NSNumber.

You compare two NSNumbers using the compare: or isEqualToNumber:
method. The compare: method compares if a number is less than, greater than, or equal
to another number.

NSNumber * myNumber1 = [NSNumber numberWithInt:10];
NSNumber * myNumber2 = [[NSNumber alloc] initWithInt:20];
if ([myNumber1 compare:myNumber2) == NSOrderedAscending) {
NSLog(@"%i is < "%i", [myNumber1 intValue], [myNumber2 intValue]);

When comparing two numbers, there are three possible results: NSOrderedAscending,
NSOrderedSame, and NSOrderedDescending. If the message sender is less than
the message receiver, the result is NSOrderedAscending. If the message sender is

 Chapter 8: Some Foundation Framework Classes 221

greater than the message receiver, the result is NSOrderedDescending. If both are the
same, the result is NSOrderedSame.

Sometimes you only wish to check if two numbers are equal. For this, NSNumber
provides the isEqualToNumber: method. This method return YES if the two numbers
are equal and NO if they are not.

if([myNumber1 isEqualToNumber:myNumber2] == YES) {
NSLog(@"They are equal.");

Besides initializing an NSNumber with a primitive value, you can also obtain that
primitive value from the NSNumber.

NSNumber * myNumber1 = [NSNumber numberWithInt:10];
NSLog("int Value:%i", [myNumber1 intValue];
NSNumber * myNumber2 = [NSNumber numberWithFloat:33.45];
NSLog("int value:%f", [myNumber2 floatValue];

Table 8-2 lists the methods for obtaining primitives from NSNumber.

Table 8-1 NSNumber Convenience Constructors and init Methods

NSNumber Convenience Constructors NSNumber init Methods
numberWithBool: initWithBool:

numberWithChar: initWithChar:

numberWithDouble: initWithDouble:

numberWithFloat: initWithFloat:

numberWithInt: initWithInt:

numberWithInteger: initWithInteger:

numberWithLong: initWithLong:

numberWithLongLong: initWithLongLong:

numberWithShort: initWithShort:

numberWithUnsignedChar: initWithUnsignedChar:

numberWithUnsignedInt: initWithUnsignedInt:

numberWithUnsignedInteger: initWithUnsignedInteger:

numberWithUnsignedLong: initWithUnsignedLong:

numberWithUnsignedLongLong: initWithUnsignedLongLong:

numberWithUnsignedShort: initWithUnsignedShort:

 222 Objective-C for iPhone Developers: A Beginner’s Guide

Accessor Methods

boolValue

charValue

decimalValue

floatValue

intValue

integerValue

longLongValue

longValue

shortValue

unsignedCharValue

unsignedIntegerValue

unsignedIntValue

unsignedLongLongValue

unsignedLongValue

unsignedShortValue

Table 8-2 Methods to Obtain Primitives from NSNumber

Q: Say I have an NSNumber that stores an int and I ask for a double—what happens?

A: You obtain a the number cast as a double value; NSNumber casts its primitive values
appropriately.

Ask the Expert

NSDate and NSDateFormatter
The NSDate class encapsulates a date and time. It has several convenience methods,
including the date and dateWithString: methods. As with other Foundation
framework classes, you can allocate and initialize dates using init methods.

NSDate * today1 = [NSDate date];
NSDate * today2 = [[NSDate alloc] init];

 Chapter 8: Some Foundation Framework Classes 223

Try This

The NSDateFormatter formats a date and time for displaying it. For instance, the
following code formats a string before logging it.

NSDate * today1 = [NSDate date];
NSDateFormatter * myFormat = [[NSDateFormatter alloc] init];
[myFormat setDateFormat:"yyyy-MM-dd"];
NSString * myValue = [myFormat stringFromDate:myDate];
NSLog(@"the date:%@", myValue);

NOTE
Refer to the Unicode Technical Standard #35, Locale Data Markup Language (LDML),
for a complete listing of date format patterns. This resource is available online at The
Unicode Technical Reports web site (www.unicode.org/reports).

Using an NSDate and NSDateFormatter
to Display a Date

 1. Create a new Command Line Foundation Tool named DatePrinter.

 2. Open DatePrinter.m and modify the main method as in Listing 8-1.

 3. Build and Run. Listing 8-2 is the debugger’s logging.

Listing 8-1 DatePrinter.m

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSDate * now = [[NSDate alloc] init];
 NSDateFormatter * formatOne = [[NSDateFormatter alloc] init];
 [formatOne setDateFormat:@"yy/MM/dd"];
 NSLog(@"First date: %@", [formatOne stringFromDate:now]);
 [formatOne setDateFormat:@"EEEE MMMM d','yyyy"];
 NSLog(@"Second date: %@", [formatOne stringFromDate:now]);
 [formatOne setDateFormat:@"yyyy-MM-dd HH:mm"];
 NSLog(@"Third date: %@", [formatOne stringFromDate:now]);
 [formatOne setDateFormat:@"hh:mm a"];
 NSLog(@"Fourth date: %@", [formatOne stringFromDate:now]);

(continued)

www.unicode.org/reports

 224 Objective-C for iPhone Developers: A Beginner’s Guide

 [now release];
 [pool drain];
 return 0;
}

Listing 8-2 Debugger console logging

First date: 09/10/18
Second date: Sunday October 18,2009
Third date: 2009-10-18 20:29
Fourth date: 08:29 PM

Listing 8-1 illustrates four different ways you might format a date. Each of these
formats uses the Unicode technical standard. For instance, the first format formatted the
date so it printed yy/mm/dd.

[formatOne setDateFormat:@"yy/MM/dd"];

After setting the format, you applied it to the date, which returns an NSString.

NSLog(@"First date: %@", [formatOne stringFromDate:now]);

Collections
Wikipedia defines a collection as “a grouping of some variable number of data items
(possibly zero) that have some shared significance to the problem being solved and need
to be operated upon together in some controlled fashion.” An array is a collection, for
instance, as it is an ordered grouping of some values with the same data type. Typical
collections in most programming languages include sets, arrays, and dictionaries. In
this section you explore the NSArray, NSMutableArray, NSDictionary, and
NSMutableDictionary classes. These four classes, although not all the Objective-C
collections classes, are the most important, as you will use them in almost every
application you write.

NSArray and NSMutableArray
The NSArray and NSMutableArray are collection classes for holding an ordered
collection of Objective-C objects. The NSArray is immutable, meaning it cannot be
changed, while the NSMutableArray is mutable and can be changed.

 Chapter 8: Some Foundation Framework Classes 225

The NSArray and NSMutableArray can only hold Objective-C objects, and
cannot hold C primitives, or C constructs such as structs. But that is where the Objective-C
wrapper classes are useful. If you wish to store a primitive in an NSArray or
NSMutableArray, simply store the primitive in the wrapper class before adding it to
the array.

NSNumber * myAge = [[NSNumber alloc] initWithInt:41];
[myFamilyAgesArray addObject:myAge];

Initializing an Array
Arrays provide several convenience constructors for creating an NSArray. One
convenience constructor that you use often is the arrayWithObjects: method.

NSArray * myArray = [NSArray arrayWithObjects: @"A", @"B", @"C",nil];

This method takes an object list, terminated by nil, and creates a new array that
contains the objects. The nil value indicates the array’s end; however, it is not included as
part of the array. In the preceding code snippet, the array’s length is 3; nil is excluded.

Rather than using the arrayWithObjects: convenience method, you could have
allocated the array and then initialized it.

NSArray * myArray = [[NSArray alloc] initWithObjects: @"A", @"B", @"C", nil];

Other convenience constructors you might use to create an array include the
arrayWithArray:, arrayWithContentsOfFile:, arrayWithContents
OfURL:, arrayWithObject:, arrayWithObjects:, and arrayWithObjects:
count: methods. As with most other Foundation framework classes, each of these
convenience constructors have a corresponding init method if you prefer to manage
memory yourself by allocating the array and then initializing it.

NOTE
Remember, if you use a convenience constructor, the convenience constructor adds
the object instance created to the autorelease pool. The runtime, not you, manages
these objects’ life cycle. If you allocate and then initialize the object, you must manage
the object’s life cycle. If you wish to manage an object’s lifetime that was created using a
convenience constructor, then you must explicitly call retain on the object. But note, if
you set a property to an object created using a convenience constructor you are calling
retain, making this note moot. For instance, the following line retains the string even
though you use a convenience constructor, assuming myString is a property with the
retain attribute in its @property compiler directive.

foo.myString = [NSString stringWithString:"A Test"];

 226 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

Initializing a Mutable Array
The NSArray is immutable. Once initialized, you cannot modify it. In contrast, the
NSMutableArray allows modifying an array after creating it. Because it allows adding
and removing objects from the array, the NSMutableArray has another convenience
method named arrayWithCapacity:. This method allows creating a mutable array
and allocating space in advance for a given number of objects to be added to the array.

NSMutableArray * myArray = [NSMutableArray arrayWithCapacity:3];

Note that the array in the preceding code snippet is not limited to three objects. The
arrayWithCapacity: method allocates enough space for three objects; however,
you can add more objects if needed. Moreover, note that you are not required to use the
arrayWithCapacity: method when creating an NSMutableArray instance;
any of the other NSArray convenience constructors or init methods work. The
arrayWithCapacity: method is simply more efficient by allocating the needed space
when created. When adding objects later, the runtime isn’t required to allocate the space
for the objects.

Adding, Removing, and Replacing Objects
When using an NSMutableArray, you can add, remove, and replace objects that are in
the array. For instance, the addObject: and insertObject:atIndex: methods
allow adding an object, the removeObjectAtIndex: method allows removing an
object at a location in an array, and the replaceObject:atIndex: method allows
replacing an object.

Using an NSMutableArray
 1. Create a new Command Line Foundation Tool unnamed MutableArrayExample.

 2. Create a new class called Foo and add an NSString as a property (Listings 8-3
and 8-4).

 3. Modify MutableArrayExample.m as in Listing 8-5.

 4. Build and Run the application. Listing 8-6 contains the debugger console logging.

Listing 8-3 Foo.h

#import <Foundation/Foundation.h>
@interface Foo : NSObject {

 Chapter 8: Some Foundation Framework Classes 227

 NSString * myName;
}
@property (nonatomic, retain) NSString * myName;
@end

Listing 8-4 Foo.m

#import "Foo.h"
@implementation Foo
@synthesize myName;
- (void) dealloc {
 [self.myName release];
 [super dealloc];
}
@end

Listing 8-5 MutableArrayExample.m

#import <Foundation/Foundation.h>

#import "Foo.h"

#define FOOS_MAX 5

int main (int argc, const char * argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSMutableArray * myMutableArray = [[NSMutableArray alloc]

initWithCapacity:FOOS_MAX];

 for (int i = 0; i < FOOS_MAX; i++) {

 Foo * tempFoo = [[Foo alloc] init];

 tempFoo.myName = [NSString stringWithFormat:@"Sam%i", i];

 [myMutableArray addObject:tempFoo];

 [tempFoo release];

 }

 NSLog(@"There are %i Foo objects in the array.", [myMutableArray count]);

 for (int i = 0; i < [myMutableArray count]; i++) {

 NSLog(@"Foo's name:%@ at index:%i", ((Foo*)[myMutableArray

objectAtIndex:i]).myName, i);

 }

 [myMutableArray removeObjectAtIndex:FOOS_MAX-2];

 Foo * objRalph = [[Foo alloc] init];

 objRalph.myName = @"Ralph";

 [myMutableArray replaceObjectAtIndex:1 withObject:objRalph];

 [objRalph release];

 NSLog(@"There are %i Foo objects in the array.", [myMutableArray count]);

 for (int i = 0; i < [myMutableArray count]; i++) {

(continued)

 228 Objective-C for iPhone Developers: A Beginner’s Guide

 NSLog(@"Foo's name:%@ at index:%i", ((Foo*)[myMutableArray

objectAtIndex:i]).myName, i);

 }

 [myMutableArray release];

 [pool drain];

 return 0;

}

Listing 8-6 Debugger console logging

There are 5 Foo objects in the array.
Foo's name:Sam0 at index:0
Foo's name:Sam1 at index:1
Foo's name:Sam2 at index:2
Foo's name:Sam3 at index:3
Foo's name:Sam4 at index:4
There are 4 Foo objects in the array.
Foo's name:Sam0 at index:0
Foo's name:Ralph at index:1'
Foo's name:Sam2 at index:2
Foo's name:Sam4 at index:3

In this example you first create a mutable array. You initialize it with the number of
objects you wish to add to the array. After adding the objects, a second loop prints each
object’s myName property. Rather than using the FOOS_MAX constant for the loop’s upper
bound, it uses the array’s count method. This method returns the array’s object count.

[myMutableArray count]);

The objectAtIndex: method returns the object in the array at the specified index.
Because an array can store any object, the method returns an id. To use the object and
call its methods, you cast it to the appropriate class first.

((Foo*)[myMutableArray objectAtIndex:i]).myName

After casting the object, you use it as a Foo instance.

NSEnumerator and Fast Enumeration
In previous code in this chapter you used a for loop to iterate through an array. Another
way, arguably better, is using the NSEnumerator Foundation framework class. The
NSEnumerator class is what is called an enumerator. An enumerator is for iterating

 Chapter 8: Some Foundation Framework Classes 229

through an array’s elements. In this section you explore enumeration, and a related
technique called fast enumeration.

NSEnumerator
The NSArray and NSMutableArray both have an objectEnumerator property
that holds an NSEnumerator. You obtain an array’s enumerator by getting this property.

NSEnumerator * myEnumerator = myArray.myEnumerator;

After obtaining the enumerator, you then iterate through each value in the array. For
instance, in Listing 8-5 you used a for loop to iterate through the array’s values.

for (int i = 0; i < [myMutableArray count]; i++) {
 NSLog(@"Foo's name:%@ at index:%i", ((Foo*)[myMutableArray
objectAtIndex:i]).myName, i);
}

Instead, you could use an enumerator.

NSEnumerator * myEnumerator = myMutableArray.objectEnumerator;
id object;
while(object = [myEnumerator nextObject]) {
 NSLog(@"Foo's name:%@", ((Foo*)object).myName);
}

Note that in the preceding code snippet the enumerator’s nextObject method
returns an id, so you declare an id to refer to the object. To use the object as a Foo, you
first cast it to a Foo type before accessing the myName property.

Fast Enumeration
Fast enumeration is another way you can enumerate through an array’s objects. Any
class that adopts the NSFastEnumeration protocol can be enumerated over
using fast enumeration. For instance, both NSNumber and NSString adopt the
NSFastEnumeration protocol. Consider the program in Listing 8-7.

Listing 8-7 Program using fast enumeration

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSMutableArray * myArray = [[NSMutableArray alloc] init];
 for(int i = 0; i < 10; i++) {
 NSNumber * temp = [[NSNumber alloc] initWithInt:i];

 230 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

 [myArray addObject:temp];
 [temp release];
 }
 for(NSNumber * myNumber in myArray) {
 NSLog(@"Value:%i", [myNumber intValue]);
 }
 [pool drain];
return 0;
}

The NSNumber method implements the NSFastEnumeration protocol, and so
you can use it to iterate through the NSNumbers in the array.

Fast enumeration also works with any object, provided you use id rather than a typed
value. For instance, in Listing 8-7 you strongly typed the enumerator as an NSNumber.
You are not required to strongly type the enumerator; instead, you can use an id. You can
rewrite the loop in Listing 8-7 as the following:

id myValue;
for(myValue in myArray) {
 NSLog(@"Value:%i", [((NSNumber*)myNumber) intValue]);
 }

When you use an id rather than a typed value, you can use fast enumeration with any
object, as the following Try This illustrates.

Iterating Through an NSMutableArray
Using Fast Enumeration

 1. Create a new Command Line Foundation Tool application named Iterating.

 2. Create a new class named Foo and add an integer as a property (Listings 8-8 and 8-9).

 3. Implement Iterating.m as in Listing 8-10.

 4. Build and Run the application and the debugger console logs ten Foo values.

Listing 8-8 Foo.h

#import <Foundation/Foundation.h>
@interface Foo : NSObject {

 Chapter 8: Some Foundation Framework Classes 231

 int value;
}
@property (nonatomic,assign) int value;
@end

Listing 8-9 Foo.m

#import "Foo.h"
@implementation Foo
@synthesize value;
@end

Listing 8-10 Iterating.m

#import <Foundation/Foundation.h>
#import "Foo.h"
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSMutableArray * myArray = [[NSMutableArray alloc] init];
 for(int i = 0; i < 10; i++) {
 Foo * temp = [[Foo alloc] init];
 temp.value = i;
 [myArray addObject:temp];
 [temp release];
 }
 id myValue;
 for(myValue in myArray) {
 NSLog(@"Value:%i", ((Foo*)myValue).value);
 }
 [pool drain];
 return 0;
}

NSDictionary and NSMutableDictionary
The NSDictionary and NSMutableDictionary store data sorted by keys. If
familiar with Java, then you have probably heard of a hashmap; an NSDictionary is
the Foundation framework’s equivalent to a hashmap. If you haven’t heard of a hashmap,
then think of a dictionary. A dictionary has a definition and a keyword. A dictionary
orders its words alphabetically. Moreover, it has helpful things like lettered tabs that
make finding a word easier. Once you find the value, you read its definition.

 232 Objective-C for iPhone Developers: A Beginner’s Guide

Now, imagine a dictionary where its definitions are in random order, much as they
would be if you randomly placed objects in an NSArray. Finding a word would require
you to iterate through every value until you found the word you were searching for. Real
dictionaries, in contrast, let you thumb to the letter, and then let you thumb to the first few
letters of a word. You can then scan the page and find the exact word.

A dictionary, or hashmap, lets your application do the same thing. Using some
underlying search algorithms, the NSDictionary can search for a particular value
more efficiently than you could by iterating through an array. This efficiency results in
less wasted resources and quicker applications.

Dictionary Keys
In an NSDictionary, for each entry there are two objects stored, the key and the value.
The key is how you find an object stored in the dictionary; it is the “word.” For instance,
the following code fragment searches a dictionary for a Foo object with the NSString
key having a value "firstFoo". Because the objectForKey: method returns an
id, you cast the value before setting it to a concrete class type.

NSString * myKey = @"firstFoo";
Foo * myFoo = (Foo*)[myDictionary objectForKey:myKey];

A key does not require its class to be an NSString. Any class that inherits from
NSObject can be a key. The NSObject class implements a method called isEqual:.
This method checks if two objects are equivalent. The NSDictionary will call the
object’s isEqual: method to see if the object is equal to the key.

- (BOOL)isEqual:(id)anObject

For instance, the NSNumber class checks to see if another number is the same value
as it, not if both NSNumbers point to the same underlying object.

NSNumber * myNumber1 = [NSNumber numberWithInt:2];
NSNumber * myNumber2 = [NSNumber numberWithInt:2];
if([myNumber2 isEqual:myNumber1];

Using another Foundation framework object as a key is straightforward. For instance,
the following code snippet uses an NSNumber that contains an integer as a key:

NSNumber * myNumberKey = [NSNumber numberWithInt:22];
Foo * myFoo = (Foo*)[myDictionary objectForKey:myNumberKey];

 Chapter 8: Some Foundation Framework Classes 233

NOTE
If you wish to use a custom object as a key, you must adopt the NSCopying protocol.
This means that any class you use as a key must implement the copyWithZone:
zone: method. You must also override the isEqual: and hash methods in
NSObject. For more information, refer to Apple’s documentation on the NSCopying
protocol. It is much easier to just use a primitive value in a Foundation framework class
as your key, though, and it will be sufficient for 99 percent of the code you write.

Creating a Dictionary
There are several ways to create an NSDictionary. Using the dictionaryWith
Objects:forKeys: is one way you might create a dictionary. For instance, the
following code fragment declares an array of values and an array of keys. It then uses
them to create a dictionary.

NSArray * myKeys = [NSArray arrayWithObjects: @"firstkey", @"secondkey",
@"thirdkey", nil];
NSArray * myObjects = [NSArray arrayWithObjects: @"valueone", @"valuetwo",
@"valuethree", nil];
NSDictionary * myDictionary = [NSDictionary dictionaryWithObjects:myObjects
forKeys:myKeys];

You can also create an NSMutableDictionary using the
dictionaryWithCapacity: method. Like the NSMutableArray’s
arrayWithCapacity: method, the dictionaryWithCapacity: method
creates a dictionary and allocates memory for the dictionary.

NSMutableDictionary * myDictionary = [NSMutableDictionary
dictionaryWithCapacity:3];

You can then add objects to the dictionary as needed.

[myDictionary setObject:@"valueone" forKey:@"firstkey"];
[myDictionary setObject:@"valuetwo" forKey:@"secondkey"];
[myDictionary setObject:@"valuethree" forKey:@"thirdkey"];

As when working with other Foundation framework classes, rather than using a
convenience method, you can allocate and initialize an NSDictionary.

NSDictionary * myDictionary = [[NSDictionary alloc] initWithObjects:myObjects
forKeys:myKeys];

 234 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

Besides obtaining objects using the objectForKey: method, you can also remove
a single object, or multiple objects, as needed.

[myDictionary removeObjectForKey:"@firstkey"];
NSArray * keysToRemove = [NSArray arrayWithObjects:@"secondkey", @"thirdkey"];
[myDictionary removeObjectsForKey:keysToRemove];

When you need to store objects and then later obtain them based upon some key,
such as an ID (not to be confused with an Objective-C id), you should consider using an
NSDictionary or NSMutableDictionary.

Creating a Mutable Dictionary
and Accessing the Values

 1. Create a new Command Line Foundation Tool application named Dictionary.

 2. Create a new class called Foo and implement it the same as you did previously in
Listings 8-8 and 8-9.

 3. Implement Dictionary.m as in Listing 8-11.

 4. Build and Run the application. Listing 8-12 contains the debugger console logging.

Listing 8-11 Dictionary.m

#import <Foundation/Foundation.h>

#import "Foo.h"

int main (int argc, const char * argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSMutableDictionary * myDictionary = [[NSMutableDictionary alloc] init];

 for (int i = 0; i < 5; i++) {

 Foo * temp = [[Foo alloc] init];

 temp.value = i + 10;

 [myDictionary setObject:temp forKey:[NSNumber numberWithInt:i]];

 [temp release] ;

 }

 NSLog(@"The value for key:3 is %i", ((Foo*)[myDictionary objectForKey:

[NSNumber numberWithInt:3]]).value);

 NSEnumerator * myKeyEnumerator = [myDictionary keyEnumerator];

 id curKey;

 while (curKey = [myKeyEnumerator nextObject]) {

 Chapter 8: Some Foundation Framework Classes 235

 Foo * temp = (Foo *)[myDictionary objectForKey:curKey];

 NSLog(@"key:%@ Value:%i", curKey, temp.value);

 }

 [myDictionary release];

 [pool drain];

 return 0;

}

Listing 8-12 Debugger console logging

The value for key:3 is 13
key:0 Value:10
key:3 Value:13
key:2 Value:12
key:1 Value:11
key:4 Value:14

In this example you create a mutable dictionary that contains Foo class instances as
the objects and integers, wrapped in the NSNumber class, as the keys. After creating the
dictionary, you access the value stored with the key having the value of 3.

NSLog(@"The value for key:3 is %i", ((Foo*)[myDictionary objectForKey:
[NSNumber numberWithInt:3]]).value);

But note, 3 is the key and does not imply any index location in the dictionary. For
instance, after obtaining the value, you then get all the keys as an enumerator and then
loop through the keys. In the loop’s body you fetch the value from the original dictionary
by key. But as you can see in Listing 8-12, the values are not stored in order of the key’s
value.

Summary
In this chapter you explored several Objective-C Foundation framework classes. These
classes all wrapped primitive data objects or more basic C constructs such as arrays.
NSString and NSMutableString make working with strings easier. NSNumber
wraps primitive numeric values and makes working with numbers easier. NSDate
allows working with dates. The NSArray, NSMutableArray, NSDictionary, and

 236 Objective-C for iPhone Developers: A Beginner’s Guide

NSMutableDictionary classes are for storing Objective-C classes. Arrays store
objects as an ordered set of objects. Dictionaries store objects by a key.

All classes covered in this chapter are Foundation framework classes that you will
use frequently when developing iPhone applications. However, this chapter was not
a comprehensive discussion of the Foundation framework classes. There are many
more Foundation framework classes. For instance, NSSet and NSMutableSet are
collection classes that implement a set. NSData, which you will see used in Chapter 10,
wraps binary data. For more complete Foundation framework coverage, refer to Apple’s
“Foundation Framework Reference,” available online.

237

Chapter 9
File Handling

 238 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding an iPhone App’s Directories

● Handling Directories and Files with the NSFileManager Class

● Understanding the NSBundle

● Using the NSString’s File Handling Methods

● Using NSData and UIImage

● Reading and Writing a Binary File

In this chapter you explore file handling. As with most topics in this book, there are far too
many topics to adequately cover in a beginner’s book. However, you do explore the file
handling aspects most relevant to getting started as an iPhone developer. Like the wrapper
classes in Chapter 8, the Foundation framework makes working with files much easier
than if you used lower-level C file handling functions.

You first explore the directories you may write to when writing an iPhone application.
You then learn basic path manipulation using the NSFileManager class. After that you
learn several of NSString’s methods for working with paths and files. You also explore
NSData and using it to read and write binary data. Again, although not a comprehensive
treatise on any single file handling subject, the chapter is enough to get you started.

iPhone Directories
The iPhone operating system limits applications to only accessing files in its own
directories. These directories are part of an application’s sandbox. It is called a sandbox
because the operating system isolates the application and its files from the rest of the
operating system. Things inside the sandbox cannot interact with things outside the
sandbox, except through Apple-crafted APIs.

When installed, an application is placed in its own root directory. Under this directory
are the Documents, Preferences, Caches, and tmp directories. These are the directories
available to you as a developer:

<Application Root>/Documents
<Application Root>/Preferences

 Chapter 9: File Handling 239

<Application Root>/Caches
<Application Root>/tmp

You write your application’s preferences to the Preferences folder. You write
temporary files to the tmp folder. Data written to the tmp folder is not persisted between
application invocations and is not backed up by iTunes on a user’s desktop. You write
your application’s data to the Documents directory. This directory’s content is persisted
between invocations and is backed up by iTunes on a user’s desktop or laptop.

NSHomeDirectory
Every iPhone application has a home directory. The home directory is your application’s
root directory. The following code illustrates how you obtain the path to your root
directory.

NSString * pathToHome = NSHomeDirectory(void);

But obtaining your application’s home directory isn’t very useful, though, as you do
not write to this directory. Moreover, resources such as images and text files that you place
in your Xcode project’s Resources group are placed in your application’s bundle and are
more easily accessed using the NSBundle, as you will see in a couple sections. It is also
not very useful for obtaining your application’s temporary, cache, or documents directory,
as the easiest and most robust way to obtain one of these subdirectories is through the
NSSearchPathForDirectoriesInDomains C function.

NSSearchPathForDirectoriesInDomains
Obtain your application’s documents or caches directory using the NSSearchPathFor
DirectoriesInDomains method. This method takes three parameters: the directory
to begin the search, the search path domain mask, and a flag indicating if tildes should be
converted to actual paths. The method returns an array of NSStrings for all found paths.
Although on a desktop computer the method returns more than one path in the array, on
the iPhone the method always returns an array with only one element. The following code
snippet illustrates using the NSSearchPathForDirectoriesInDomains method
to obtain an application’s documents directory:

NSArray * myPaths = NSSearchPathForDirectoriesInDomains (NSDocumentDirectory,
NSUserDomainMask, YES);
NSString * myDocPath = [myPaths objectAtIndex:0];

Other values you might use for the directory parameter include NSApplication
Directory, NSCachesDirectory, and NSApplicationSupportDirectory.

 240 Objective-C for iPhone Developers: A Beginner’s Guide

NSTemporaryDirectory
Obtaining your application’s temporary directory is straightforward. You use the
NSTemporaryDirectory method.

NSString * myTempDirector = NSTemporaryDirectory(void);

This method returns the path to your application’s temporary directory. You use this
directory to store temporary data that does not require persisting between application
invocations. This directory is also not backed up by iTunes when synchronizing a device.

NSBundle
When you develop your app, you add resources to the Resources group in your iPhone
project (Figure 9-1). These files are part of your application’s bundle. iPhone applications
are bundled in a directory with a <filename>.app name. Although it appears and acts like a
standard executable, it is actually a directory storing the application and resources.

Figure 9-1 You store resources in your project’s Resources group.

 Chapter 9: File Handling 241

The easiest way to obtain resources stored in an application’s bundle is through the
NSBundle class. The following code snippet illustrates obtaining a file path from an
application’s bundle.

NSString * pathToMyFile = [[NSBundle mainBundle] pathForResource:@"winesales"
 ofType:@"csv"];

Although this is useful for obtaining a resource in your application’s bundle, note that
you must move the resource to another directory before modifying it. An application’s
bundle is read only.

File Handling
Once you obtain a path to a file, you usually wish to manipulate it in some way. The
NSFileManager class has many methods you can use to manipulate both directories
and files.

NSFileManager
The NSFileManager class has many methods for manipulating files. Table 9-1 summarizes
several of NSFileManager’s methods. For more complete NSFileManager coverage,
and a listing of all methods, you should refer to Apple’s NSFileManager Class Reference.

Method Name Description

fileExistsAtPath: Determines if the path specified exists.

fileExistsAtPath:isDirectory: Determines if the path specified exists and if it is a directory.

contentsOfDirectoryAtPath:error: Returns directories and files of the directory passed as a parameter.

enumeratorAtPath: Returns an NSDirectoryEnumerator to enumerate a
directory’s content.

moveItemAtPath:toPath:error: Moves the directory or file to a different location.

copyItemAtPath:toPath:error: Copies a directory or file to a different location.

removeItemAtPath:error: Deletes a directory or file.

currentDirectoryPath Returns the current directory path.

changeCurrentDirectoryPath: Changes the current directory path to the path specified in
parameter.

Table 9-1 Several NSFileManager Methods

 242 Objective-C for iPhone Developers: A Beginner’s Guide

NOTE
Remember, to access NSFileManager, just open Xcode, open Help, and type
NSFileManager in the Search field at the help screen’s upper right.

Determining if a File Exists
Determine if a file exists by using the fileExistsAtPath: or fileExistsAtPath:
isDirectory: method. The first checks if the provided path specifies a file or directory,
while the second checks that the provided path both exists and is a directory.

NSString * myFile = [NSTemporaryDirectory() stringByAppendingPathComponent:
@"test.xml"
BOOL hasFile = [[NSFileManager defaultManager] fileExistsAtPath:myFile];

The code snippet first creates a path to the file you wish to determine exists, test
.xml, in the application’s temporary directory. If the file exists, it returns YES; otherwise,
it returns NO. Note the stringByAppendingPathComponent: method. This is
an NSString method discussed later in this chapter; however, the method’s name is
intuitive.

You can also check if the path is to a directory, as the following code illustrates:

BOOL isDir;
BOOL isADirectory = [[NSFileManager defaultManager] fileExistsAtPath:
NSTemporaryDirectory() isDirectory:&isDir];
if(isADirectory && isDir) {
 NSLog(@"yes is a directory");
}

This code checks if the path to a file exists and is also a directory. Notice that you are
not passing a BOOL, but rather an address of a BOOL, which is admittedly strange. You
then check that the method returns YES and that the isDir is YES. If both are true, then
the path exists and is a directory.

Listing a Directory’s Content
NSFileManager also has techniques for listing a directory’s contents. Listing 9-1
illustrates using the contentsOfDirectoryAtPath:error: method, and
Listing 9-2 illustrates using an NSDirectoryEnumerator class.

Listing 9-1 Using the contentsOfDirectoryAtPath:error: method

- (void) viewDidLoad {
 [super viewDidLoad];
 NSString * bundleDir = [[NSBundle mainBundle] resourcePath];

 Chapter 9: File Handling 243

 NSError * myError = nil;
 NSArray * myContents = [[NSFileManager defaultManager]
contentsOfDirectoryAtPath:bundleDir error:&myError];
 id myiter;
 for(myiter in myContents) {
 NSLog(@"name:%@", myiter);
 }
}

Listing 9-2 Using the NSDirectoryEnumerator

- (void) viewDidLoad {
 NSString * homeDir = NSHomeDirectory();
 NSLog(@"the home directory:%@", homeDir);
 NSDirectoryEnumerator * dEnum;
 dEnum = [[NSFileManager defaultManager] enumeratorAtPath:homeDir];
 id curItem;
 while (curItem = [dEnum nextObject]) {
 NSLog(@"path:%@", curItem);
 }
}

The contentsOfDirectoryAtPath:error: method returns an NSArray
containing the directory’s content as an NSString. It does not return the items’ paths,
only the name. For instance, the following is the output from Listing 9-1, if run in an
application named CheckIfWritable. As an aside, notice the .nib and absence of a .xib.
Once compiled, the application’s .xib file becomes a .nib file, which is why you see the
Interface Builder file referred to as both “the xib” and “the nib” interchangeably.

name:CheckIfWritable
name:CheckIfWritableViewController.nib
name:Info.plist
name:MainWindow.nib
name:PkgInfo
name:test1.txt

If you wish to obtain an array of the items as a path, use the NSDirectory
Enumerator. This class enumerates through all items in a specified directory. Moreover,
it returns each item as a fully qualified path. Listing 9-2 illustrates, while Listing 9-3 lists
the output to the debugger console.

 244 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 9-3 Debugger console logging from running Listing 9-2

the home directory:/Users/jamesbrannan/Library/Application Support/iPhone

Simulator/User/Applications/2BD08609-9C3A-4A72-9B11-0C07C863D402

path:CheckIfWritable.app

path:CheckIfWritable.app/CheckIfWritable

path:CheckIfWritable.app/CheckIfWritableViewController.nib

path:CheckIfWritable.app/Info.plist

path:CheckIfWritable.app/MainWindow.nib

path:CheckIfWritable.app/PkgInfo

path:CheckIfWritable.app/test1.txt

path:Documents

path:Documents/test.txt

path:Library

Library/.DS_Store

path:Library/Caches

path:Library/Preferences

path:Library/Preferences/.GlobalPreferences.plist

path:Library/Preferences/com.apple.PeoplePicker.plist

path:tmp

Moving, Copying, and Deleting Files
You often require moving, copying, and deleting files. The code in Listing 9-4 illustrates
accomplishing all three.

Listing 9-4 Code illustrating several file manipulation methods

- (void) viewDidLoad {

 NSString * fileDir = [[NSBundle mainBundle] pathForResource:@"test1"

ofType:@"txt"];

 NSError * myError = nil;

 NSArray * myPaths = NSSearchPathForDirectoriesInDomains (NSDocumentDirectory,

NSUserDomainMask, YES);

 NSString * myDocPath = [[myPaths objectAtIndex:0]

stringByAppendingPathComponent:@"test.txt"];

 if([[NSFileManager defaultManager] fileExistsAtPath:myDocPath]) {

 [[NSFileManager defaultManager] removeItemAtPath:myDocPath error:&myError];

 }

 if(myError != nil) {

 NSLog([myError localizedDescription]);

 [myError release];

 }

 Chapter 9: File Handling 245

Try This

 else {

 [[NSFileManager defaultManager] copyItemAtPath:fileDir toPath:myDocPath

error:&myError];

 if(myError != nil) {

 NSLog([myError localizedDescription]);

 [myError release];

 }

 else {

 if([[NSFileManager defaultManager] fileExistsAtPath:myDocPath])

 NSLog(@"file exists");

 }

 }

}

The code in Listing 9-4 first checks to see if the file exists by using the
fileExistsAtPath: method. Trying to copy a file to a location where the file already
exists is an error, and so you delete the file if it exists using the removeItemAtPath:
error: method.

if([[NSFileManager defaultManager] fileExistsAtPath:myDocPath]) {
 [[NSFileManager defaultManager] removeItemAtPath:myDocPath error:&myError];
}

The code in Listing 9-4 then copies the file to the documents directory.

[[NSFileManager defaultManager] copyItemAtPath:fileDir toPath:myDocPath
error:&myError];

There is also a moveItemAtPath:toPath:error: method if you wish to move
an item rather than copy it. The following Try This illustrates moving and copying a file.

Moving and Copying a File from the Bundle
to Documents Directory

 1. Create a new View-based application. Name the application UsingFileManager.

 2. Add two text files, named test1.txt and test2.txt, to the Resources group in your file.
Create the files by selecting Other | Empty File from the New File dialog (Figure 9-2).

 3. Open UsingFileManagerViewController.m and modify the viewDidLoad method so
that it moves test1.txt to the application’s documents directory (Listing 9-5).

(continued)

 246 Objective-C for iPhone Developers: A Beginner’s Guide

 4. Implement the viewDidAppear:animated: method so that it moves test2.txt to
the documents directory.

 5. Build and Run the application. Listing 9-6 contains the debugger console logging.

Listing 9-5 UsingFileManagerViewController.m

#import "UsingFileManagerViewController.h"

@implementation UsingFileManagerViewController

- (void) viewDidLoad {

 NSString * pathToFileOne = [[NSBundle mainBundle] pathForResource:@"test1"

ofType:@"txt"];

 NSLog(@"Path to test1.txt in bundle:%@", pathToFileOne);

 NSArray * myPaths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,NSUserDomainMask, YES);

 NSString * pathToDoc = [[myPaths objectAtIndex:0]

stringByAppendingPathComponent:@"test1.txt"];

Figure 9-2 Creating a text file

 Chapter 9: File Handling 247

 if(![[NSFileManager defaultManager] fileExistsAtPath:pathToDoc]) {

 NSError * myError = nil;

 [[NSFileManager defaultManager] copyItemAtPath:pathToFileOne toPath:pathToDoc

error:&myError];

 if(myError != nil) {

 NSLog([myError localizedDescription]);

 [myError release];

 }

 else {

 BOOL fileExistsInDoc = [[NSFileManager defaultManager]

fileExistsAtPath:[pathToDoc stringByAppendingPathComponent:@"test1.txt"]];

 NSLog(@"Was the file moved successfully:%i", fileExistsInDoc);

 }

 }

}

- (void) viewDidAppear:(BOOL)animated {

 [super viewDidAppear:animated];

 NSString * pathToFileTwo = [[NSBundle mainBundle] pathForResource:@"test2"

ofType:@"txt"];

 NSLog(@"Path to test2.txt in bundle:%@", pathToFileTwo);

 NSArray * myPaths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,NSUserDomainMask, YES);

 NSString * pathToDoc = [[myPaths objectAtIndex:0]

stringByAppendingPathComponent:@"test2.txt"];

 if([[NSFileManager defaultManager] fileExistsAtPath:pathToDoc]==NO &&

[[NSFileManager defaultManager] fileExistsAtPath:pathToFileTwo]==YES) {

 NSError * myError2 = nil;

 [[NSFileManager defaultManager] moveItemAtPath:pathToFileTwo toPath:pathToDoc

error:&myError2];

 if(myError2 != nil) {

 NSLog([myError2 localizedDescription]);

 [myError2 release];

 }

 }

}

- (void)dealloc {

 [super dealloc];

}

@end

(continued)

 248 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 9-6 Debugger console logging

2009-12-05 13:03:36.111 UsingFileManager[567:207] Path to test1.txt in
bundle:/Users/jamesbrannan/Library/Application Support/iPhone
Simulator/User/Applications/00AE5314-B3E7-4D22-B04A-
F197AC851527/UsingFileManager.app/test1.txt
2009-12-05 13:03:36.114 UsingFileManager[567:207] Was the file moved
successfully:0
2009-12-05 13:03:36.116 UsingFileManager[567:207] Path to test2.txt in
bundle:/Users/jamesbrannan/Library/Application Support/iPhone
Simulator/User/Applications/00AE5314-B3E7-4D22-B04A-
F197AC851527/UsingFileManager.app/test2.txt

The viewDidLoad method copies test1.txt.

[[NSFileManager defaultManager] copyItemAtPath:pathToFileOne toPath:pathToDoc
error:&myError];

The viewDidAppear method moves test2.txt.

[[NSFileManager defaultManager] moveItemAtPath:pathToFileTwo toPath:pathToDoc
error:&myError2];

Note that the move method moves the file, and the file no longer exists in the bundle.
The copy method, in contrast, makes a file copy, and so it still exists in the bundle.

NSString, Paths, and Text Files
The NSString class has many methods that make manipulating paths easier. It also
has methods for loading a file’s text content into a string. In this section you explore
NSString’s file-related methods.

NSString from a File
You can initialize a string using the stringWithContentsOfFile:encoding:
error: convenience constructor or the initWithContentsOfFile:
usedEncoding:error:init method. The usedEncoding parameter specifies
the text file’s encoding. For more information on this method refer to NSString’s reference
guide. For most purposes, if not all, on the iPhone you use NSUTF8StringEncoding.
The following code illustrates using the initializer method.

NSString * secondString = [[NSString alloc] initWithContentsOfFile:filePath
encoding:NSUTF8StringEncoding error:&myError];

 Chapter 9: File Handling 249

stringByAppendingPathComponent:
You have already used the stringByAppendingPathComponent: method. This
method safely appends a path component to a preexisting path. If you have ever worked
with paths, then you realize this method’s importance. For instance, suppose you had a
string that contains a path. Does the path end with the last directory name or a forward
slash?

/Users/James/myfolder
/Users/James/myfolder/

If the path ends with a slash, and you wished to add “test.txt” to the path, you would
append only “test.txt” to the path. But if the path ends with the directory name, you would
append “/test.txt” to the path. You avoid this problem using the stringByAppending
PathComponent: method. The following code snippet illustrates a pattern you repeat
often when programming iPhone applications.

NSArray * myPaths =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,NSUserDomainMask, YES);
NSString * pathToDoc = [[myPaths objectAtIndex:0]
stringByAppendingPathComponent:@"test.txt"];

The preceding code first gets the path to an application’s document directory. It then
appends the filename test.txt to the path. You can then access the file using the path.

isAbsolutepath
The isAbsolutePath method checks if a string’s value is a fully qualified path. The
following code illustrates:

NSString * homeDir = NSHomeDirectory();
NSLog(@"the home directory:%@", homeDir);
if([pA isAbsolutePath]== YES)
 NSLog(@"It is an absolute path.");

lastPathComponent
The lastPathComponent method strips the last path component from an NSString
that contains a path. For instance, the last path component of the following path is Library:

/Users/jamesbrannan/Library

If an NSString contains the string "/Users/jamesbrannan/Library/",
then the last path component would be /. Of course this method is most useful for

 250 Objective-C for iPhone Developers: A Beginner’s Guide

obtaining a filename from a path. The following code snippet would log “test1.txt” to the
debugger console:

NSString * pathToFile = [[NSBundle mainBundle] pathForResource:|
@"test1" ofType:@"txt"];
NSLog(@"last path comp:%@", [pathToFile lastPathComponent]);

pathComponents
You can also obtain the path components of an NSString as an NSArray. The
following code illustrates:

NSString * pathToFile = [[NSBundle mainBundle] pathForResource:@"test1"
ofType:@"txt"];
NSArray * components = [pathToFile pathComponents];
NSString * myEnum = nil;
for(myEnum in components) {...}

pathExtension
The pathExtension method is an NSString method for extracting a file extension
from a path in an NSString. For instance, the following code creates a string with a path
to the test1.txt file and then extracts txt from the string.

NSString * pathToFile = [[NSBundle mainBundle] pathForResource:@"test1"
ofType:@"txt"];
NSLog(@"path extension:%@", [pathToFile pathExtension]);

writeToFile:atomically:encoding:error:
NSString can write its content directly to a file using the writeToFile:
atomically:encoding:error: method.

[myString writeToFile:filePath atomically:NO encoding:NSUTF8StringEncoding
error:&myError];

NOTE
The atomically parameter specifies if the string should first write to a temporary file,
before moving the data to the specified file. This helps avoid data corruption.

 Chapter 9: File Handling 251

Try This Writing a Simple Text File
 1. Create a new View-based application named FileReader.

 2. Open FileReaderViewController.h and add a UITextView as an outlet (Listing 9-7).

 3. Save the file and open FileReaderViewController.xib in Interface Builder.

 4. Drag a UITextView from the library to the view’s canvas (Figure 9-3).

Figure 9-3 Adding a UITextView

(continued)

 252 Objective-C for iPhone Developers: A Beginner’s Guide

 5. Connect File’s Owner myTextView outlet to the text view just added to the canvas.

 6. Save and exit Interface Builder.

 7. Open FileReaderViewController.m in Xcode and implement the viewDidLoad
method (Listing 9-8). Do not forget to synthesize myTextView.

 8. Build and Run the application. The text in the UITextView is the text from the
viewDidLoad method (Figure 9-4).

Listing 9-7 FileReaderViewController.h

#import <UIKit/UIKit.h>
@interface FileReaderViewController : UIViewController {
 IBOutlet UITextView * myTextView;
}
@property (nonatomic, retain) UITextView * myTextView;
@end

Figure 9-4 The text view containing the text set in viewDidLoad

 Chapter 9: File Handling 253

Listing 9-8 FileReaderViewController.m

#import "FileReaderViewController.h"

@implementation FileReaderViewController

@synthesize myTextView;

- (void) viewDidLoad {

 [super viewDidLoad];

 NSString * filePath = [NSTemporaryDirectory()

stringByAppendingPathComponent:@"simple.txt"];

 NSString * myString = @"This is my string.\nIt has three lines.\nIt is not

long.";

 NSError * myError = nil;

 [myString writeToFile:filePath atomically:NO encoding:NSUTF8StringEncoding

error:&myError];

 if(myError == nil) {

 NSString * secondString = [[NSString alloc] initWithContentsOfFile:filePath

encoding:NSUTF8StringEncoding error:&myError];

 if(myError == nil) {

 self.myTextView.text = secondString;

 }

 }

}

- (void)dealloc {

 [self.myTextView release];

 [super dealloc];

}

@end

Listing 9-8 illustrates several string file–related functions. In the viewDidLoad
method, the view controller first obtains a path to the temporary directory and then
appends a filename to the path.

NSString * filePath = [NSTemporaryDirectory()
stringByAppendingPathComponent:@"simple.txt"];

After creating a string containing three lines, it writes the file. Note that you do not
first check to ensure the file does not exist; the temporary directory is cleared each time
you run the application, and so you are guaranteed the file doesn’t exist.

[myString writeToFile:filePath atomically:NO encoding:NSUTF8StringEncoding
error:&myError];

(continued)

 254 Objective-C for iPhone Developers: A Beginner’s Guide

After writing the file, it reads the file into another string and then sets the UITextView’s
text to the newly created string.

NSString * secondString = [[NSString alloc] initWithContentsOfFile:filePath
encoding:NSUTF8StringEncoding error:&myError];

Not very practical, but it illustrates reading and writing using an NSString.

NSData
The NSData class holds binary data. As with NSString, you can initialize NSData
with the contents of a file; only instead of loading the file as text data, it loads the data as
binary. Because it loads the file as binary data, you can load any file into NSData. Thus,
NSData is useful for working with images and multimedia.

The NSData class has convenience constructors. One you use often is the
dataWithContentsOfFile: method. This method creates and initializes an
NSData object with the binary content of a file. For instance, the following code snippet
obtains the image file, babelfish.png, from an application’s bundle and then creates an
NSData instance with the file’s content.

NSData * tempData = [NSData dataWithContentsOfFile:[[NSBundle mainBundle]
pathForResource:@"babelfish" ofType:@"png"]];

NOTE
Both NSString and NSData have several methods for working with URLs in addition
to files. Refer to both classes’ documentation for more detail.

The NSData class can hold anything, as everything is binary. One common
development pattern you use when developing an iPhone application is placing your app’s
images in the bundle. You then dynamically load a UIImageView control with an image
obtained from the bundle.

Audio data is something you work with often as binary data. For instance, suppose
you wished to play a system sound. You must load the data into an NSData class first.
The following Try This illustrates.

NOTE
For more information on Audio handling, refer to iPhone SDK Programming:
A Beginner’s Guide and Apple’s online documentation.

 Chapter 9: File Handling 255

Try This Reading and Writing a Binary File
 1. Create a new View-based application named ImageWriting.

 2. Add the AudioToolbox framework to your application’s Frameworks group.
Right-click Frameworks and choose Add | Existing Frameworks and then select
AudioToolbox.framework from the frameworks list (Figure 9-5).

 3. Add bug.png and beginworkout.aiff to the application’s Resources group.

 4. Open ImageWritingViewController.h in Xcode and add a UIImageView as a
property (Listing 9-9). Also import the audio toolbox header files.

 5. Add a declaration for an IBAction named playSound.

 6. Save the file and then open ImageWritingViewController.xib in Interface Builder.

Figure 9-5 Adding the AudioToolbox framework

(continued)

 256 Objective-C for iPhone Developers: A Beginner’s Guide

 7. Add a UIImageView and a button to the view’s canvas (Figure 9-6).

 8. Connect the File’s Owner myImageView outlet to the UIImageView added to the
canvas.

 9. Connect the playSound action to the button’s Touch Up Inside event.

 10. Save and exit Interface Builder.

 11. Open ImageWritingViewController.m in Xcode and synthesize myImageView. Also
implement the playSound method (Listing 9-10).

 12. Build and Run the application. Tap the button and the image appears and the sound
plays (Figure 9-7).

Listing 9-9 ImageWritingViewController.h

#import <UIKit/UIKit.h>
#import <AudioToolbox/AudioToolbox.h>
@interface ImageWritingViewController : UIViewController {

Figure 9-6 The UIImageView and button on the view’s canvas

 Chapter 9: File Handling 257

 IBOutlet UIImageView * myImageView;
}
@property (nonatomic,retain) UIImageView * myImageView;
- (IBAction) playSound:(id) sender;
@end

Listing 9-10 ImageWritingViewController.m

#import "ImageWritingViewController.h"

@implementation ImageWritingViewController

@synthesize myImageView;

- (IBAction) playSound:(id) sender {

 NSData * myImage = [NSData dataWithContentsOfFile:[[NSBundle mainBundle]

pathForResource:@"bug" ofType:@"png"]];

 self.myImageView.image = [UIImage imageWithData:myImage];

 NSString *pathBegin = [[NSBundle mainBundle] pathForResource:@"beginworkout"

ofType:@"aiff"];

Figure 9-7 Running the application in the simulator

(continued)

 258 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

 NSData * myData = [NSData dataWithContentsOfFile:pathBegin];

 [myData writeToFile:[NSTemporaryDirectory()

stringByAppendingString:@"beginworkout.aiff"] atomically:NO];

 SystemSoundID soundID;

 NSURL *filePath = [NSURL fileURLWithPath:[NSTemporaryDirectory()

stringByAppendingString:@"beginworkout.aiff"] isDirectory:NO];

 AudioServicesCreateSystemSoundID((CFURLRef)filePath, &soundID);

 AudioServicesPlaySystemSound(soundID);

}

- (void)dealloc {

 self.myImageView = nil;

 [super dealloc];

}

@end

The NSData class can also load an image into a UIImage using the UIImage’s
initWithContentsOfFile: method. The following Try This illustrates. However,
it also illustrates one of the more confusing things for new iPhone developers; there are
multiple ways to do everything. For instance, when you create a UIImage, there are at
least three different ways you might initialize the image.

Loading a UIImage Three Different Ways
 1. Create a new View-based application named ImageMoving.

 2. Add the babelfish.png, bug.png, and katuberling.png images to the project’s Resources
folder.

 3. Open ImageMovingViewController.h in Xcode and add a UIImageView as an
IBOutlet. Also add a IBAction declaration named changeImage (Listing 9-11).

 4. Save the file.

 5. Open ImageMovingViewController.xib in Interface Builder.

 6. Add a UIImageView to the view’s canvas and size it so it takes the top half of the
canvas.

 7. Select babelfish.png for the UIImageView’s image (Figure 9-8).

 8. Add a UIButton to the view’s bottom half (Figure 9-9).

 Chapter 9: File Handling 259

Figure 9-8 Adding a UIImageView to a view’s canvas

Figure 9-9 Adding a UIButton

(continued)

 260 Objective-C for iPhone Developers: A Beginner’s Guide

 9. Connect the File’s Owner myImageView outlet to the image view added to the
canvas (Figure 9-10).

 10. Connect the File’s Owner changeImage action to the button’s Touch Up Inside event.

 11. Save and exit Interface Builder.

Figure 9-10 Connecting the myImageView outlet

 Chapter 9: File Handling 261

 12. Open ImageMovingViewController.m and synthesize the myImageView. Also
implement the changeImage method (Listing 9-12).

 13. Build and Run. Click the button and notice the application loops through the images
(Figure 9-11).

Listing 9-11 ImageMovingViewController.h

#import <UIKit/UIKit.h>
@interface ImageMovingViewController : UIViewController {
 IBOutlet UIImageView * myImageView;
}
@property (nonatomic, retain) UIImageView * myImageView;
- (IBAction) changeImage:(id) sender;
@end

Figure 9-11 The application running in the simulator

(continued)

 262 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 9-12 ImageMovingViewController.m

#import "ImageMovingViewController.h"

@implementation ImageMovingViewController

@synthesize myImageView;

static int clicks = 0;

- (IBAction) changeImage:(id) sender {

 UIImage * tempImage = nil;

 switch (clicks) {

 case 0:

 tempImage = [UIImage imageNamed:@"bug.png"];

 break;

 case 1:

 tempImage = [[[UIImage alloc] initWithContentsOfFile:[[NSBundle mainBundle]

pathForResource:@"katuberling" ofType:@"png"]] autorelease];

 break;

 case 2: {

 NSData * tempData = [NSData dataWithContentsOfFile:[[NSBundle mainBundle]

pathForResource:@"babelfish" ofType:@"png"]];

 tempImage = [UIImage imageWithData:tempData];

 clicks = -1;

 break;

 }

 }

 clicks++;

 self.myImageView.image = tempImage;

}

- (void)dealloc {

 [myImageView release];

 [super dealloc];

}

@end

The code illustrates three different ways to load a UIImage. If the image is in
the resource bundle, then you can obtain the image directly using the imageNamed:
method.

tempImage = [UIImage imageNamed:@"bug.png"];

You can also use the image’s convenience initializer.

tempImage = [[[UIImage alloc] initWithContentsOfFile:[[NSBundle mainBundle]
pathForResource:@"katuberling" ofType:@"png"]] autorelease];

 Chapter 9: File Handling 263

This code snippet loads a path for the image in the resource bundle. It then initializes
the UIImage by opening the file specified by the path.

If you wished, you might create an image from NSData.

NSData * tempData = [NSData dataWithContentsOfFile:[[NSBundle mainBundle]
pathForResource:@"babelfish" ofType:@"png"]];
tempImage = [UIImage imageWithData:tempData];

There is no single correct way to load an image. Of course, as you gain experience,
differing circumstances will dictate using different methods. For instance, the UIImage
imageNamed method loads an image into a cache that the operating system can then
quickly reference the image from, so you should use this method only if you wish the
operating system to cache an image while your program is running.

Summary
In this chapter you explored file handling on the iPhone. When you write an iPhone
application, you can only write files to directories in your application’s sandbox.
The NSFileManager has many methods for working with files and directories.
The NSString and NSData classes both have methods for working with files and
directories also.

An application’s bundle is where Xcode places items in the Resources grouping in
Xcode. You obtain these resources using the NSBundle. But before you can modify a
resource in your application’s bundle, you must copy or move the resource to another
directory such as your documents or tmp directory.

You could, of course, always use the C lower-level file handling functions, but the
higher-level Foundation framework classes are easier to work with. You barely scratched
the surface of the Foundation framework’s many file handling techniques. For more
information you should refer to each class’ relevant documentation.

This page intentionally left blank

265

Chapter 10
Property Lists, NSCopy,
and Archiving

 266 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Property-List Objects

● Serializing Objects Using writeToFile:atomically:

● Deserializing Objects Using readFromFile:atomically:

● Writing Your Own Serializable Classes

In the last chapter you saw how to easily write data stored in an NSString or NSData
object to a file. As you learn in this chapter, you could do that because these classes are
both property-list classes. A property-list object is an instance of a class that you can
persist and reconstitute from a property-list file. In this chapter you explore property-list
classes. You also learn how to persist several classes together as a single property list.
Property lists are an easy means of storing your application’s state to a file so that its state
can easily be reconstituted the next time a user runs your application.

After learning property lists, you then learn how to persist your own custom objects
using archiving. Archiving allows you to persist custom objects that implement the
NSCoding protocol. You can persist both single objects and also an arbitrary number of
objects using archiving. In this chapter you do both.

Property Lists
Mac and iPhone applications often rely heavily upon property lists. A property list is
an object hierarchy that you can persist and reconstitute from a file for the NSArray,
NSDictionary, NSString, NSData, NSDate, and NSNumber classes (or their
mutable equivalents). When persisting one of the collection classes, its constituents must
also be one of the property-list classes.

When you persist an array or dictionary (i.e., a property list with multiple values), the
plist’s underlying format is XML. For instance, Listing 10-1 shows an NSArray and its
corresponding XML file.

Listing 10-1 An array and its plist

NSArray * myArray = [[NSArray alloc] initWithObjects:@"first", @"second",

@"third",nil];

 Chapter 10: Property Lists, NSCopy, and Archiving 267

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<array>

 <string>first</string>

 <string>second</string>

 <string>third</string>

</array>

</plist>

Because the file is XML, you can modify the file easily using other languages’ XML
APIs. Table 10-1 lists the Foundation classes that are serializable to a plist and each
element’s corresponding XML element.

Writing a Property List
Each class listed in Table 10-1 can be serialized to a property list using the class’
writeToFile:atomically:error: method. Property lists can also be de-serialized
into the appropriate property-list object using the <datatype>WithContentsOfFile:
convenienience constructor or equivalent initializer method.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag
- (id)initWithContentsOfFile:(NSString *)aPath

Foundation Class XML Element

NSArray <array>

NSDictionary <dict>

NSData <data>

NSDate <date>

NSNumber – storing integer <integer>

NSNumber – storing float <real>

NSNumber – storing Boolean <true/> or <false/>

Table 10-1 Property-List Classes

 268 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

Note that there is some slight variation in NSString’s writeToFile:
atomically: method, which is actually the writeToFile:atomically:
encoding:error: method, as you must specify the string’s encoding.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile
encoding:(NSStringEncoding)enc error:(NSError **)error

Note that NSNumber and NSDate have no methods for reading and writing to a file.
Property lists are meant for preserving lists of values; writing a single numeric value or date
to a file doesn’t really make sense. Besides, you really should simply use NSString instead.

NSString * myValue = [myNumber stringValue];
[myValue writeToFile:"xyz.plist" atomically:NO error:nil];

NOTE
You can also write to a URL using a property-list object’s writeToURL:atomically:
method.

Reading a Property List
You can read the property list back into its representative property-list object(s) using
either a convenience constructor or a custom initializer method. For instance, to
reconstitute an NSArray from a plist file, you could use either technique.

NSArray * myArray = [NSArray arrayWithContentsOfFile:myPathToPlistFile];
NSArray * myArray = [[NSArray alloc] initWithContentsOfFile:myPathToPlistFile];

Remember, though, the convenience constructor doesn’t give you ownership of the
underlying object. You must explicitly retain it if you wish to persist the object for any
time period. Of course, if you set the value to a property, behind the scenes Objective-C
handles that for you in the property’s setter method.

The following Try This illustrates persisting and reconstituting an NSArray from a
property list.

Preserving an NSArray to a Property List
 1. Create a new Utility Application named PropertiesExample.

 2. Right-click Resources and then select Add | New File and select Property List from the
New File dialog (Figure 10-1). Name the file myproperties; this creates a file named
myproperties.plist.

 Chapter 10: Property Lists, NSCopy, and Archiving 269

 3. Open the file in Xcode and click the Root element to highlight it and change its type to
Array.

 4. Click the button with three small lines that is to the right of the Root row to add
a new row.

 5. Change the element’s value to “Tom” and then add two more rows with “Sue” and
“Beth” as the values (Figure 10-2).

 6. Open MainViewController.m and implement the viewDidAppear: and
viewDidDisappear: methods so that they read and then write the array to a
property list (Listing 10-2).

 7. Build and Run the application. Navigate between the two screens and note that the
values logged to the debugger console change (Listing 10-3).

Figure 10-1 Creating a property list in Xcode

(continued)

 270 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 10-2 MainViewController.m

#import "MainViewController.h"

#import "MainView.h"

@implementation MainViewController

- (void) viewDidAppear: (BOOL) animated {

 [super viewDidAppear:animated];

 NSString * originalPath = [[NSBundle mainBundle] pathForResource:@"myproperties"

ofType:@"plist"];

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:@"myproperties.plist"];

 if(![[NSFileManager defaultManager] fileExistsAtPath:path]) {

 [[NSFileManager defaultManager] moveItemAtPath:originalPath toPath:path

error:nil];

 }

 NSString * tempValue;

 NSArray * myArray = [NSArray arrayWithContentsOfFile:path];

 NSEnumerator * myEnum = [myArray objectEnumerator];

Figure 10-2 Property list in Xcode

 Chapter 10: Property Lists, NSCopy, and Archiving 271

 while(tempValue = [myEnum nextObject]) {

 NSLog(@"The value:%@", tempValue);

 }

}

- (void) viewDidDisappear: (BOOL) animated {

 [super viewDidDisappear:animated];

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:@"myproperties.plist"];

 NSArray * myArray = [[NSArray alloc] initWithObjects:@"James", @"Roger",

@"Steve", nil];

 [myArray writeToFile:path atomically:NO];

}

- (void)flipsideViewControllerDidFinish:(FlipsideViewController *)controller {

 [self dismissModalViewControllerAnimated:YES];

}

- (IBAction)showInfo {

 FlipsideViewController *controller = [[FlipsideViewController alloc]

initWithNibName:@"FlipsideView" bundle:nil];

 controller.delegate = self;

 controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;

 [self presentModalViewController:controller animated:YES];

 [controller release];

}

- (void)dealloc {

 [super dealloc];

}

@end

Listing 10-3 Debugger console logging

The value:Tom
The value:Sue
The value:Beth
The value:James
The value:Roger
The value:Steve

The first time the view appears, the application copies the plist file from the
application’s bundle to the Documents directory. Remember, an application’s bundle
is read-only and so you must copy the file to the application’s Documents directory.

[[NSFileManager defaultManager] moveItemAtPath:originalPath toPath:path
error:nil];

(continued)

 272 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

The application then initializes an NSArray with the file’s contents.

NSArray * myArray = [NSArray arrayWithContentsOfFile:path];

When the main view disappears, the application writes the array’s content to the
myproperties.plist file. This overwrites the previous plist with the new values.

NSArray * myArray = [[NSArray alloc] initWithObjects:@"James", @"Roger",
@"Steve", nil];
[myArray writeToFile:path atomically:NO];

Don’t take the preceding Try This to suggest that you must create a plist using Xcode.
In the next Try This you programmatically create and then reconstitute a dictionary using
a property list.

Creating and Reading a Property List
Programmatically

 1. Create a new View-based application named MyProperties.

 2. Open MyPropertiesViewController.h and add IBOutlets for a
UIBarButtonItem and two UITextFields (Listing 10-4).

 3. Create a method declaration named loadPersistProperties and another named
doneEditing. Make both IBActions.

 4. Open MyPropertiesViewController.m and synthesize the created properties (Listing
10-5).

 5. Save or build the application and then open MyPropertiesViewController.xib in
Interface Builder.

 6. Add two UITextFields and a UIToolbar to the view’s canvas (Figure 10-3).
Double-click the bar button to change its title to “Load Properties.”

 Chapter 10: Property Lists, NSCopy, and Archiving 273

 7. Connect the File’s Owner text fields to the text fields on the view’s canvas. Do the
same for the button.

 8. Connect the button to the File’s Owner loadPersistProperties action.

 9. Connect the doneEditing action to both text fields and select the “Did End On
Exit” option for both fields (Figure 10-4).

 10. Build and Run the application. Enter a comma-delimited list of names and jobs
(Figure 10-5).

 11. Tap the button and nothing happens. Although not acceptable in a real-world
application, just tap the button a second time and the application persists the data.

 12. Shut down the application and restart it. Click the button and it loads the data from the
last time you ran the application.

Figure 10-3 Adding two buttons and a toolbar

(continued)

 274 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 10-4 Connecting a UITextField to the doneEditing action

Figure 10-5 Entering text in the text fields

 Chapter 10: Property Lists, NSCopy, and Archiving 275

Listing 10-4 MyPropertiesViewController.h

#import <UIKit/UIKit.h>
@interface MyPropertiesViewController : UIViewController {
 IBOutlet UITextField * myNamesTextField;
 IBOutlet UITextField * myJobsTextField;
 IBOutlet UIBarButtonItem * myButton;
}
@property (nonatomic, retain) UITextField * myNamesTextField;
@property (nonatomic, retain) UITextField * myJobsTextField;
@property (nonatomic, retain) UIBarButtonItem * myButton;
- (IBAction) loadPersistProperties: (id) sender;
- (IBAction) doneEditing: (id) sender;
@end

Listing 10-5 MyPropertiesViewController.m

#import "MyPropertiesViewController.h"

#define MY_PROPERTIES @"my_properties"

@implementation MyPropertiesViewController

@synthesize myNamesTextField;

@synthesize myJobsTextField;

@synthesize myButton;

static BOOL loaded;

- (void) persist {

 NSArray * myNames = [self.myNamesTextField.text

componentsSeparatedByString:@","];

 NSArray * myJobs = [self.myJobsTextField.text

componentsSeparatedByString:@","];

 NSDictionary * myDict = [NSDictionary dictionaryWithObjects:[NSArray

arrayWithObjects:myNames,myJobs,nil]

 forKeys:[NSArray arrayWithObjects:@"names",@"jobs",nil]];

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:MY_PROPERTIES];

 [myDict writeToFile:path atomically:NO];

}

- (void) load {

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

 stringByAppendingPathComponent:MY_PROPERTIES];

(continued)

 276 Objective-C for iPhone Developers: A Beginner’s Guide

 NSDictionary * myProperties = [NSDictionary dictionaryWithContentsOfFile:path];

 if(myProperties) {

 NSArray * myNames = [myProperties valueForKey:@"names"];

 NSArray * myjobs = [myProperties valueForKey:@"jobs"];

 self.myNamesTextField.text = [myNames componentsJoinedByString:@","];

 self.myJobsTextField.text = [myjobs componentsJoinedByString:@","];

 }

}

- (IBAction) loadPersistProperties: (id) sender {

 if(loaded == YES) {

 [self persist];

 }

 else {

 [self load];

 self.myButton.title = @"Persist Properties";

 loaded = YES;

 }

}

- (IBAction) doneEditing: (id) sender {

 [sender resignFirstResponder];

}

-(void) viewDidLoad {

 [super viewDidLoad];

 loaded = NO;

}

- (void)viewDidUnload {

 [super viewDidUnload];

 [self persist];

}

- (void)dealloc {

 self.myJobsTextField = nil;

 self.myNamesTextField = nil;

 self.myButton = nil;

 [super dealloc];

}

@end

Writing an application such as the one in Listings 10-4 and 10-5 on the job would
likely get you fired. A preferred behavior would, of course, be to have the application
load the data automatically when the view appears and persist the data when the view
disappears. But suspend disbelief and accept the application.

 Chapter 10: Property Lists, NSCopy, and Archiving 277

TIP
Remember, when using nil in a class’ dealloc method, be certain you access the
property using its accessor and not directly. The following code releases the object:

self.myObject = nil;

But the following code does not release the object:

myObject = nil;

The first time you run the application and tap the button, there is no file containing the
dictionary’s data and so nothing happens. However, after you enter data and then tap the
button, the application serializes the dictionary to a file.

Notice that just for fun you turned the string into an array before storing it in the dictionary.

NSArray * myJobs = [self.myJobsTextField.text
componentsSeparatedByString:@", "];

You could have simply left the data as an NSString, but I thought turning it into
an array would be more interesting. Besides, turning an NSString into an array is
something you will definitely do at some point in your Objective-C career.

After persisting the data, if you open the my_properties file in the TextEdit application you
will see that it is XML (Listing 10-6). Note the elements match the elements in Table 10-1.

TIP
Refer to XML: A Beginner’s Guide by Steven Holzer (McGraw-Hill Professional, 2008) to
learn more about XML.

Listing 10-6 The my_properties XML file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>jobs</key>
 <array>
 <string>diswasher</string>
 <string>author</string>
 <string>cyclist</string>
 <string>cook</string>
 </array>
 <key>names</key>

(continued)

 278 Objective-C for iPhone Developers: A Beginner’s Guide

 <array>
 <string>James</string>
 <string>Roger</string>
 <string>alan</string>
 <string>Mary</string>
 </array>
</dict>
</plist>

The second time you start the application and then tap the button it loads the
my_properties file’s data. Before setting the text field’s value with the data,
you turn it into a single string.

NSArray * myNames = [myProperties valueForKey:@"names"];
NSArray * myjobs = [myProperties valueForKey:@"jobs"];
self.myNamesTextField.text = [myNames componentsJoinedByString:@", "];
self.myJobsTextField.text = [myjobs componentsJoinedByString:@", "];

Persisting a property-list object is straightforward. However, notice what they cannot
do; they cannot persist custom classes to a file. For instance, if you had an NSArray of
Foo class instances, you could not persist the NSArray as a property list because Foo
isn’t one of the property-list classes.

Persisting an NSArray containing Foo instances requires using archiving. This
chapter’s remainder discusses archiving. Archiving is a powerful way to persist custom
objects between instances of your application running.

TIP
Refer to Apple’s “Property List Programming Guide,” available online, for more
information on property lists.

Archiving
You can only serialize and deserialize property-list objects when using the writeToFile:
atomically: and readFromFile:atomically: methods. But you can serialize
and deserialize other objects, including multiple objects, using archiving.

The NSKeyedArchiver class creates keyed archives. Each field archived has its
own name, or key. When you archive an object, you save its field value with its key. This
key/value combination is saved to a file. You can then later reconstitute the object from
the file using the NSKeyedUnarchiver class. The NSKeyedUnarchiver class
reads archives and reconstitutes objects from the archived objects.

 Chapter 10: Property Lists, NSCopy, and Archiving 279

NSCoding Protocol
Archiving an object requires that the object adopt the NSCoding protocol. The
NSCoding protocol requires a class to implement the encodeWithCoder: and
initWithCoder: methods. You encode an object using the encodeWithCoder:
method, and you decode an object using the intWithCoder: method.

- (void) encodeWithCoder: (NSCoder*) encoder
-(id) initWithCoder:(NSCoder*) decoder

Your class implementing the NSCoding protocol encodes other objects that adopt
NSCoding using the NSCoder’s encodeObject:forKey: method. It decodes these
objects using the decodeObject:forKey: method. The NSCoder can also encode
and decode primitive objects; for instance, to encode and decode a float, you would use
the encodeFloat:forKey: and decodeFloat:forKey: methods.

NSKeyedArchiver and NSKeyedUnarchiver
The NSKeyedArchiver and NSKeyedUnarchiver classes archive and unarchive
objects that adopt the NSCoding protocol. The NSKeyedArchiver encodes objects
into a key/value archive, where you can later retrieve the values based upon the objects’
keys. The NSKeyedUnarchiver class reconstitutes a class, or classes, from an archive.

You can archive a single class, or you can archive multiple classes. When archiving a
single class, you can also archive classes the class has a relationship with, provided those
classes also adopt the NSCoding protocol.

Archiving a Single Class
When archiving and unarchiving a single object, and its constituents, you can use
NSArchiver’s archiveRootObject:toFile: class method to archive the
object and unarchiveObjectWithFile class method to unarchive the object.
These methods provide an easy means of archiving and unarchiving a single object
hierarchy. To archive directly to a file, use the archiveRootObject:toFile:
method.

+ (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path

To unarchive directly from a file, use the unarchiveObjectWithFile:
convenience method.

 + (id)unarchiveObjectWithFile:(NSString *)path

 280 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

The following Try This first illustrates archiving and unarchiving a single object
containing no constituent objects. It then modifies the project so that it archives and
unarchives a single object that has relationships with other classes.

Archiving and Unarchiving an Object
 1. Create a new Utility Application named MyArchive.

 2. Create a new class named Foo. Have the Foo class adopt the NSCoding protocol
(Listing 10-7).

 3. Create an NSString and an NSNumber as properties.

 4. Open Foo.m and synthesize the properties (Listing 10-8).

 5. Implement the encodeWithCoder: and initWithCoder: methods.

 6. Open MainViewController.h and add Foo and two UILabels as properties
(Listing 10-9). Make the two UILabels IBOutlets.

 7. Build the application.

 8. Open MainView.xib in Interface Builder. Add two UILabels to the view’s canvas
(Figure 10-6). Connect them to the respective outlets in the view’s view controller.
Change the view’s background color to white.

 9. Save and exit Interface Builder.

 10. Open MainViewController.m and implement the viewDidLoad: and
viewDidUnload: methods as in Listing 10-10.

 11. Build and Run the application. Flip between views and each time the first view
appears it increments the label’s value.

Listing 10-7 Foo.h

#import <Foundation/Foundation.h>
@interface Foo : NSObject <NSCoding> {
 NSString * name;
 NSNumber * quantity;
}
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSNumber * quantity;
@end

 Chapter 10: Property Lists, NSCopy, and Archiving 281

Listing 10-8 Foo.m

#import "Foo.h"
@implementation Foo
@synthesize name;
@synthesize quantity;
- (void) encodeWithCoder:(NSCoder *)aCoder {
 [aCoder encodeObject:name forKey:@"name"];
 [aCoder encodeInt:[quantity intValue] forKey:@"quantity"];
}
-(id) initWithCoder:(NSCoder *)aDecoder {
 if((self = [super init])!=nil) {
 self.name = [aDecoder decodeObjectForKey:@"name"];
 self.quantity = [NSNumber numberWithInt:[aDecoder
decodeIntForKey:@"quantity"]];
 }
 return self;
}
@end

Figure 10-6 Adding two labels to the view’s canvas

(continued)

 282 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 10-9 MainViewController.h

#import "FlipsideViewController.h"
@class Foo;
@interface MainViewController : UIViewController
<FlipsideViewControllerDelegate> {
 Foo * myFoo;
 IBOutlet UILabel * name;
 IBOutlet UILabel * quantity;
}
@property (nonatomic, retain) UILabel * name;
@property (nonatomic, retain) UILabel * quantity;
@property (nonatomic,retain) Foo * myFoo;
- (IBAction)showInfo;
@end

Listing 10-10 MainViewController.m

#import "MainViewController.h"

#import "MainView.h"

#import "Foo.h"

@implementation MainViewController

@synthesize myFoo;

@synthesize name;

@synthesize quantity;

static int incrementer = 0;

- (void) viewDidAppear: (BOOL) animated {

 [super viewDidAppear:animated];

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:@"foo.archive"];

 self.myFoo = nil;

 self.myFoo = [NSKeyedUnarchiver unarchiveObjectWithFile:path];

 if(self.myFoo == nil) {

 NSLog(@"myFoo had no archive...");

 self.myFoo = [[Foo alloc] init];

 self.myFoo.name = [NSString stringWithFormat:@"Tom %i",incrementer];

 self.myFoo.quantity = [NSNumber numberWithInt:incrementer];

 }

 self.name.text = myFoo.name;

 self.quantity.text = [myFoo.quantity stringValue];

 incrementer = [myFoo.quantity intValue] + 1;

}

- (void) viewDidDisappear: (BOOL) animated {

 Chapter 10: Property Lists, NSCopy, and Archiving 283

 [super viewDidDisappear:animated];

 if(incrementer % 2 == 0) self.myFoo.name = @"Tom";

 else self.myFoo.name = @"Sally";

 self.myFoo.quantity = [NSNumber numberWithInt:incrementer];

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:@"foo.archive"];

 [NSKeyedArchiver archiveRootObject:self.myFoo toFile:path];

}

- (void)flipsideViewControllerDidFinish:(FlipsideViewController *)controller {

 [self dismissModalViewControllerAnimated:YES];

}

- (IBAction)showInfo {

 FlipsideViewController *controller = [[FlipsideViewController alloc]

initWithNibName:@"FlipsideView" bundle:nil];

 controller.delegate = self;

 controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;

 [self presentModalViewController:controller animated:YES];

 [controller release];

}

- (void)dealloc {

 self.myFoo = nil;

 self.name = nil;

 self.quantity = nil;

 [super dealloc];

}

@end

Archiving and unarchiving a single object, although useful, hides archiving’s true power.
Often a class inherits from parent classes and contains references to other classes. In the
following steps you modify the application so that Foo inherits from a parent class that
implements the NSCoding protocol. You also create a new class that Foo has a reference to.

 1. Create a new class called SuperFoo and add an NSString as a property (Listing 10-11).
Have SuperFoo adopt the NSCoding protocol.

 2. Implement SuperFoo (Listing 10-12).

 3. Modify Foo.h so that it inherits from SuperFoo (Listing 10-13). Be certain
you modify the initWithCoder: method so that it first calls SuperFoo’s
initWithCoder: method (Listing 10-14). Also be certain to call its superclass’
encodeObject: method.

(continued)

 284 Objective-C for iPhone Developers: A Beginner’s Guide

 4. Create a new class called Bar that adopts the NSCoding protocol and has an
NSString as a property (Listings 10-15 and 10-16).

 5. Add Bar to Foo as a property and modify Foo’s encodeWithCoder: and
initWithCoder: methods so that they encode and decode Bar.

 6. Modify the viewDidAppear: and viewDidDisappear: methods so that they
log SuperFoo’s and Bar’s content to the debugger console (Listing 10-17).

 7. Click and run the application. If you didn’t delete the application from your iPhone
simulator, then you will probably see SuperFoo’s and Bar’s names as null.

 8. Stop the application without stopping the iPhone simulator. Just as on a real device,
click and hold the MyArchive icon on the simulator’s springboard. Click the small x to
delete the application from the iPhone simulator (Figure 10-7).

 9. Build and Run the application. Flip back and forth between the views and the
application behaves as expected.

Figure 10-7 Deleting the application from the simulator’s springboard

 Chapter 10: Property Lists, NSCopy, and Archiving 285

Listing 10-11 SuperFoo.h

#import <Foundation/Foundation.h>
@interface SuperFoo : NSObject <NSCoding> {
 NSString * mySuperName;
}
@property (nonatomic,retain) NSString * mySuperName;
@end

Listing 10-12 SuperFoo.m

#import "SuperFoo.h"
@implementation SuperFoo
@synthesize mySuperName;
- (void) encodeWithCoder:(NSCoder *)aCoder {
 [aCoder encodeObject:mySuperName forKey:@"superName"];
}
-(id) initWithCoder:(NSCoder *)aDecoder {
 if((self = [super init])!=nil) {
 self.mySuperName = [aDecoder decodeObjectForKey:@"superName"];
 }
 return self;
}
- (void)dealloc {
 [super dealloc];
 [mySuperName release];
}
@end

Listing 10-13 Foo.h modified to inherit from SuperFoo

#import <Foundation/Foundation.h>
#import "SuperFoo.h"
@class Bar;
@interface Foo : SuperFoo <NSCoding> {
 NSString * name;
 NSNumber * quantity;
 Bar * myBar;
}
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSNumber * quantity;
@property (nonatomic, retain) Bar * myBar;
@end

(continued)

 286 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 10-14 Foo.m modified to inherit from SuperFoo and using Bar

#import "Foo.h"
#import "Bar.h"
@implementation Foo
@synthesize name;
@synthesize quantity;
@synthesize myBar;
- (void) encodeWithCoder:(NSCoder *)aCoder {
 [super encodeWithCoder:aCoder];
 [aCoder encodeObject:name forKey:@"name"];
 [aCoder encodeInt:[quantity intValue] forKey:@"quantity"];
 [aCoder encodeObject:self.myBar forKey:@"bar"];
}
-(id) initWithCoder:(NSCoder *)aDecoder {
 if((self = [super initWithCoder:aDecoder])!=nil) {
 self.name = [aDecoder decodeObjectForKey:@"name"];
 self.quantity = [NSNumber numberWithInt:[aDecoder
decodeIntForKey:@"quantity"]];
 self.myBar = [aDecoder decodeObjectForKey:@"bar"];
 }
 return self;
}
- (void)dealloc {
 [name release];
 [quantity release];
 [myBar release];
 [super dealloc];
}
@end

Listing 10-15 Bar.h

#import <Foundation/Foundation.h>
@interface Bar : NSObject <NSCoding> {
 NSString * barName;
}
@property(nonatomic,retain) NSString * barName;
@end

Listing 10-16 Bar.m

#import "Bar.h"
@implementation Bar
@synthesize barName;

 Chapter 10: Property Lists, NSCopy, and Archiving 287

- (void) encodeWithCoder:(NSCoder *)aCoder {
 [aCoder encodeObject:barName forKey:@"barName"];
}
-(id) initWithCoder:(NSCoder *)aDecoder {
 if((self = [super init])!=nil) {
 self.barName = [aDecoder decodeObjectForKey:@"barName"];
 }
 return self;
}
- (void)dealloc {
 [barName release];
 [super dealloc];
}
@end

Listing 10-17 MainViewController.m modified

#import "MainViewController.h"

#import "MainView.h"

#import "Foo.h"

#import "SuperFoo.h"

#import "Bar.h"

@implementation MainViewController

@synthesize myFoo;

@synthesize name;

@synthesize quantity;

static int incrementer = 0;

- (void) viewDidAppear: (BOOL) animated {

 [super viewDidAppear:animated];

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:@"foo.archive"];

 self.myFoo = nil;

 self.myFoo = [[NSKeyedUnarchiver unarchiveObjectWithFile:path] retain];

 if(self.myFoo == nil) {

 NSLog(@"myFoo had no archive...");

 self.myFoo = [[Foo alloc] init];

 self.myFoo.name = [[NSString alloc] initWithFormat:@"Tom %i",incrementer];

 self.myFoo.quantity = [[NSNumber alloc] initWithInt:incrementer];

 self.myFoo.mySuperName = [[NSString alloc] initWithString:@"Tom's Dad"];

 Bar * tempBar = [[Bar alloc] init];

 tempBar.barName = [[NSString alloc] initWithString:@"John"];

 self.myFoo.myBar = tempBar;

 }

(continued)

 288 Objective-C for iPhone Developers: A Beginner’s Guide

 else {

 NSLog(@"SuperFoo's Name:%@", self.myFoo.mySuperName);

 NSLog(@"Bar's Name:%@", self.myFoo.myBar.barName);

 }

 self.name.text = myFoo.name;

 self.quantity.text = [myFoo.quantity stringValue];

 incrementer = [myFoo.quantity intValue] + 1;

}

- (void) viewDidDisappear: (BOOL) animated {

 [super viewDidDisappear:animated];

 if(incrementer % 2 == 0) self.myFoo.name = [[NSString alloc]

initWithString:@"Tom"];

 else self.myFoo.name = [[NSString alloc] initWithString:@"Sally"];

 self.myFoo.quantity = [[NSNumber alloc] initWithInt:incrementer];

 NSString * path = nil;

 path = [(NSString *) [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:@"foo.archive"];

 [NSKeyedArchiver archiveRootObject:self.myFoo toFile:path];

}

- (void)flipsideViewControllerDidFinish:(FlipsideViewController *)controller {

 [self dismissModalViewControllerAnimated:YES];

}

- (IBAction)showInfo {

 FlipsideViewController *controller = [[FlipsideViewController alloc]

initWithNibName:@"FlipsideView" bundle:nil];

 controller.delegate = self;

 controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;

 [self presentModalViewController:controller animated:YES];

 [controller release];

}

- (void)dealloc {

 [myFoo release];

 [name release];

 [quantity release];

 [super dealloc];

}

@end

As this example illustrates, you can persist other objects the root object has relationships
with, provided those objects also implement the NSCoding protocol. In Foo’s encode
WithCoder: method it encodes its Bar instance. Doing this invokes Bar’s encodeWith
Coder: method.

[aCoder encodeObject:self.myBar forKey:@"bar"];

 Chapter 10: Property Lists, NSCopy, and Archiving 289

In Foo’s initWithCoder: method it decodes its Bar instance, which invokes
Bar’s decodeObjectForKey: method.

self.myBar = [aDecoder decodeObjectForKey:@"bar"];

Also notice that if an archivable object inherits from a parent, the initWithCoder:
method should call the parent’s initWithCoder: method.

if((self = [super initWithCoder:aDecoder])!=nil)

The child object should also invoke its parent’s encodeWithCoder: method.

[super encodeWithCoder:aCoder];

Archiving Multiple Classes
Although archiving a single object and the classes it has a relationship with is useful,
there are many times when you might wish to archive multiple unrelated objects at the
same time. You archive multiple objects at once by using a mutable data buffer and an
NSKeyedArchiver. What you do is create a data buffer that you can add data to.

NSMutableData * theData = [NSMutableData data];

You then initialize the NSKeyedArchiver with the data buffer.

 NSKeyedArchiver * archiver = [[NSKeyedArchiver alloc]
initForWritingWithMutableData:theData];

After initializing the archiver, you encode the objects.

[archiver encodeObject:myFoos forKey:@"myFoos"];
 [archiver encodeObject:myName forKey:@"myName"];

After encoding all the objects you wish to encode, you send a message to the archiver
telling it that you are finished encoding. And you then write the data buffer to a file.

[archiver finishEncoding];
 [theData writeToFile:pathToFile atomically:NO]

Reconstituting the objects from the archive is a similar process. You first read the data
into an NSData object.

NSData * data = [NSData dataWithContentsOfFile:pathToFile];

 290 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

You then create an NSKeyedUnarchiver and initialize it with the NSData
instance.

NSKeyedUnarchiver * unarchiver = [[NSKeyedUnarchiver alloc]
initForReadingWithData:data];

You then decode the data into the respective classes.

myFoos = [unarchiver decodeObjectForKey:@"myFoos"];
myName = [unarchiver decodeObjectForKey:@"myName"];

After reconstituting the objects from the NSData instance, you then send a message
to the unarchiver, telling it that you are finished decoding, and you then release the
unarchiver.

[unarchiver finishDecoding];
 [unarchiver release];

You can archive and unarchive any class that adopts the NSCoding protocol using
this technique. Moreover, you can archive and unarchive as many of those objects as you
wish to a single archive file. This flexibility makes archiving an easy, yet powerful way to
persist your application’s objects.

NOTE
If you unarchive a nonexistent object, the archiver returns zero for numeric values and
nil for objects.

Creating an Archive with Multiple
Object Types

 1. Create a View-based application named AdvancedArchive.

 2. Create a new NSObject class named Foo and implement name and quantity
properties, as in the previous example (Listings 10-18 and 10-19).

 3. Open AdvancedArchiveAppDelegate.h and add two properties, an NSMutableArray
and an NSString (Listing 10-20).

 4. Open AdvancedArchiveAppDelegate.m, synthesize the two properties, and implement
the applicationDidFinishLaunching: and applicationWillResign
Active: methods as in Listing 10-21.

 Chapter 10: Property Lists, NSCopy, and Archiving 291

 5. Build and Run the application. The application logs its output to the debugger console
(Listing 10-22).

Listing 10-18 Foo.h

#import <Foundation/Foundation.h>
@interface Foo : NSObject <NSCoding> {
 NSString * name;
 NSNumber * quantity;
}
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSNumber * quantity;
@end

Listing 10-19 Foo.m

#import "Foo.h"
@implementation Foo
@synthesize name;
@synthesize quantity;
- (void) encodeWithCoder:(NSCoder *)aCoder {
 [aCoder encodeObject:name forKey:@"name"];
 [aCoder encodeInt:[quantity intValue] forKey:@"quantity"];
}
-(id) initWithCoder:(NSCoder *)aDecoder {
 if((self = [super init])!=nil) {
 self.name = [aDecoder decodeObjectForKey:@"name"];
 self.quantity = [NSNumber numberWithInt:[aDecoder
decodeIntForKey:@"quantity"]];
 }
 return self;
}
@end

Listing 10-20 AdvancedArchiveAppDelegate.h

#import <UIKit/UIKit.h>
@class AdvancedArchiveViewController;

@interface AdvancedArchiveAppDelegate : NSObject <UIApplicationDelegate> {

 UIWindow *window;

 AdvancedArchiveViewController *viewController;

(continued)

 292 Objective-C for iPhone Developers: A Beginner’s Guide

 NSMutableArray * myFoos;;

 NSString * myName;;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet AdvancedArchiveViewController

*viewController;

@property (nonatomic,retain) NSMutableArray * myFoos;

@property (nonatomic,retain) NSString * myName;

@end

Listing 10-21 AdvancedArchiveAppDelegate.m

#import "AdvancedArchiveAppDelegate.h"

#import "AdvancedArchiveViewController.h"

#import "Foo.h"

@implementation AdvancedArchiveAppDelegate

@synthesize window;

@synthesize viewController;

@synthesize myFoos;

@synthesize myName;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 self.myFoos = nil;

 self.myName = nil;

 NSString * pathToFile =

[[NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask,

YES) objectAtIndex:0] stringByAppendingPathComponent:@"myarchive.archive"];

 NSData * data = [NSData dataWithContentsOfFile:pathToFile];

 if([data length] > 0) {

 NSKeyedUnarchiver * unarchiver = [[NSKeyedUnarchiver alloc]

initForReadingWithData:data];

 self.myFoos = [unarchiver decodeObjectForKey:@"myFoos"];

 self.myName = [unarchiver decodeObjectForKey:@"myName"];

 [unarchiver finishDecoding];

 [unarchiver release];

 }

 else {

 Foo * aFoo = [[Foo alloc] init];

 aFoo.name = @"widgets";

 aFoo.quantity = [NSNumber numberWithInt:32];

 Foo * aFoo2 = [[Foo alloc] init];

 aFoo2.name = @"plates";

 aFoo2.quantity = [NSNumber numberWithInt:300];

 self.myFoos = [[NSMutableArray alloc] initWithObjects:aFoo, aFoo2, nil];

 self.myName = @"Bob";

 [aFoo release];

 [aFoo2 release];

 }

 Chapter 10: Property Lists, NSCopy, and Archiving 293

 for(int i = 0; i < [myFoos count]; i++) {

 NSLog(@"There are %i %@ in stock.", [((Foo*)[myFoos objectAtIndex:i])

.quantity intValue], ((Foo*)[self.myFoos objectAtIndex:i]).name);

 }

 NSLog(@"My name is: %@", myName);

 [window addSubview:viewController.view];

 [window makeKeyAndVisible];

}

- (void) applicationWillTerminate:(UIApplication *)application {

 NSString * pathToFile = [[NSSearchPathForDirectoriesInDomains(

NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0]

stringByAppendingPathComponent:@"myarchive.archive"];

 Foo * aFoo = [[Foo alloc] init];

 aFoo.name = @"ipods";

 aFoo.quantity = [NSNumber numberWithInt:44];

 [self.myFoos addObject:aFoo];

 [aFoo release];

 NSMutableData * theData = [NSMutableData data];

 NSKeyedArchiver * archiver = [[NSKeyedArchiver alloc]

initForWritingWithMutableData:theData];

 [archiver encodeObject:myFoos forKey:@"myFoos"];

 [archiver encodeObject:myName forKey:@"myName"];

 [archiver finishEncoding];

 if([theData writeToFile:pathToFile atomically:NO] == NO) {

 NSLog(@"archiving failed...");

 }

 [archiver release];

}

- (void)dealloc {

 [viewController release];

 [window release];

 [self.myFoos release];

 [self.myName release];

 [super dealloc];

}

@end

Listing 10-22 Debugger console logging

There are 32 widgets in stock.
There are 300 plates in stock.
There are 44 ipods in stock.
My name is: Bob

 294 Objective-C for iPhone Developers: A Beginner’s Guide

This application illustrates archiving and unarchiving multiple objects. As described
earlier, you archive several classes together into a single file. Although the Foos are all
constituents of NSArray, the NSString is totally unrelated to the Foos in the array.
Using this technique allows archiving unrelated objects together in a single archive.

TIP
Refer to Apple’s “Archives and Serializations Programming Guide for Cocoa” for more
information on archiving.

Summary
Property lists and archiving is an easy way to persist your application’s data between users
running your application. When using property lists and archives, be certain you persist
the data to your Documents directory, as this directory is persisted by iTunes. If you only
wish to persist primitive values, use a property list. If you wish to persist objects, then use
archiving. Both techniques are easy ways to persist your application’s data.

If storing large amounts of data, you should use the SQLite database that comes
with the iPhone or you should use Core Data. Both topics are outside this book’s scope,
but for more information on using both in an iPhone application, refer to iPhone SDK
Programming: A Beginner’s Guide.

295

Chapter 11
Selectors and Targets

 296 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding Selectors

● Using the performSelector Methods

● Performing Long-Running Tasks Using a Selector

● Using a Notification with a Selector

● Using a Delegate with a Selector

● Using a Target with a UIControl

If you have ever programmed using Cold Fusion, PHP, or Java, then this chapter will seem
intuitive. Objective-C allows developers to dynamically invoke a method at runtime. In this
chapter you explore an Objective-C concept called selectors. Selectors are arguably one of
the most important topics in Objective-C, and allow developers significant flexibility.

Selectors
Objective-C allows varying a message dynamically at runtime. Moreover, rather than
invoking a method directly, or in Objective-C speak, sending a message to another object
directly, you can use something called a selector to choose which method to invoke
dynamically at runtime.

NOTE
If you know C or C++, think of selectors as Objective-C’s equivalent to function pointers,
only much easier to understand and use—at least to an ex-Java developer like the
author.

The @selector() directive is a compiler directive that when compiled replaces
the method with a SEL type. A SEL identifies a method and can be used directly in your
code. Then, rather than calling a method directly, you can call the selector. The following
code illustrates creating a selector:

SEL sinkFloatable;
sinkFloatable = @selector(sinkDuck);

 Chapter 11: Selectors and Targets 297

Try This

You are first declaring a selector sinkFloatable. You are then setting it to point to
the actual method sinkDuck by using the @selector compiler directive.

Every NSObject has seven performSelector methods. In this chapter you learn
four of those methods: performSelector:, performSelector:withObject:,
performSelector:withObject:withObject:, and performSelector:
withObject:afterDelay. You also learn to use NSObject’s instanceRespond
ToSelector: class method.

The performSelector: method sends a message to a receiver and returns the
method’s results as an id. This is an important distinction from regular methods that can
return various types—a selector only returns an id. Of course, do not be troubled by this
restriction, as an id can be any object, so it really isn’t a restriction at all, other than that
you cannot return a primitive from a selector.

- (id)performSelector:(SEL)aSelector

The performSelector:withObject: and performSelector:withObject:
withObject: methods perform the same function as performSelector:, only
they allow passing objects to the method. The following Try This illustrates using all three
performSelector variants.

Using a Selector
 1. Create a new Command Line Foundation Tool named SimpleSelector.

 2. Create a new NSObject named Foo (Listings 11-1 and 11-2).

 3. Implement four methods: run, echoNames:, testme:nameString:, and
echoHello as in Listing 11-2. Have the run method call echoHello and
echoNames: using a selector.

 4. Modify SimpleSelector.m to match Listing 11-3. Notice that SimpleSelector.m calls
Foo’s testme:nameString: using a selector.

 5. Build and Run the application.

Listing 11-1 Foo.h

#import <Foundation/Foundation.h>
@interface Foo : NSObject {
}

(continued)

 298 Objective-C for iPhone Developers: A Beginner’s Guide

- (void) run;
-(void) echoNames: (id) objectArray;
- (void) testMe: (id) objectArray nameString: (id) nameString;
- (void) echoHello;
@end

Listing 11-2 Foo.m

#import "Foo.h"

@implementation Foo

- (void) run {

 [self performSelector:@selector(echoHello)];

 NSArray * myArray = [NSArray arrayWithObjects:@"A",@"B",@"C",@"D",nil];

 [self performSelector:@selector(echoNames:) withObject:myArray];

}

- (void) testMe: (id) objectArray nameString: (id) nameString {

 NSLog(@"The Name:%@", nameString);

 NSLog(@"The count of the array:%i", [objectArray count]);

}

-(void) echoNames: (id) objectArray {

 NSArray * theArray = (NSArray *)objectArray;

 for(int i = 0; i < [theArray count]; i++) {

 NSLog(@"The Name:%@", [theArray objectAtIndex:i]);

 }

}

- (void) echoHello {

 NSLog(@"Hello...");

}

@end

Listing 11-3 SimpleSelector.m

#import <Foundation/Foundation.h>

#import "Foo.h"

int main (int argc, const char * argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 Foo * myFoo = [[Foo alloc] init];

 [myFoo run];

 NSArray * myArray = [NSArray arrayWithObjects:@"A", @"B", @"C",nil];

 NSString * correctString = @"This is correct.";

 [myFoo performSelector:@selector(testMe:nameString:) withObject:myArray

withObject:correctString];

 [myFoo release];

 Chapter 11: Selectors and Targets 299

 [pool drain];

 return 0;

}

Foo’s run method calls two methods using a selector. First it calls performSelector,
passing only the method’s name.

[self performSelector:@selector(echoHello)];

The run method then creates an array and passes it to the performSelector:
withObject: method.

NSArray * myArray = [NSArray arrayWithObjects:@"A",@"B",@"C",@"D",nil];
[self performSelector:@selector(echoNames:) withObject:myArray];

The echoNames:objectArray: method takes an id, which is actually an
NSArray. To help developers pass the correct object type, the method names its
parameter objectArray. However, to be safe you should probably test that the
parameter is an array before using it.

TIP
Remember, a method without a parameter is the method’s name. A method with a
parameter has a trailing colon. A method with multiple parameters includes applicable
parameter names in its name. The following two lines are not equivalent, as they are
two distinct methods:

@selector(myMethod);
@selector(myMethod:);

The main method in SimpleSelector illustrates another way you can call a
selector. However, rather than calling the performSelector method on itself, it calls
it on the Foo instance. It also passes two objects, an array and an NSString.

[myFoo performSelector:@selector(testMe:nameString:) withObject:myArray
withObject:correctString];

The Foo instance, myFoo, is calling the testMe:nameString: method, passing
an array and a string to the method.

 300 Objective-C for iPhone Developers: A Beginner’s Guide

Delaying a Selector or Running in Background
The performSelector:withObject:afterDelay: method allows calling a
method after a short delay. Although at first glance, this might seem like a useless method,
it allows you to easily accomplish things that might other require multithreading.

Suppose you wished to send a message to an object after a delay, then you could use
the performSelector:withObject:afterDelay: method. The following code
illustrates:

[myFoo performSelector:@selector(sayFooName:) withObject:@"Ralph"
afterDelay:20];

The preceding code line calls myFoo’s sayFooName: method after a twenty-second
delay. It also passes the string "Ralph" as a parameter.

Another method you might use is the performSelectorInBackground:
withObject: method, which allows calling a method using a different thread, the
background thread.

SEL mySelector = @selector(sayFooName:);
[myFoo performSelectorInBackground:mySelector withObject:@"Ralph"];

The performSelectorInBackground:withObject: method calls the selector
immediately but does so on a new background thread.

Multithreading
A single-threaded application can only do one thing at a time. Imagine if you could only
do one thing at a time—you couldn’t drink your morning coffee and read the newspaper at
the same time; you would have to wait until you were finished drinking your coffee before
reading the paper. A multithreaded application, in contrast, allows you to do multiple
things simultaneously; you can drink your coffee and read the newspaper at the same time.

Multithreaded applications are more difficult to write than single-threaded applications,
but there are many times when you might need a multithreaded application. For instance,
suppose you were loading an iPhone screen’s view and part of loading that view required
loading a long-running method. The view wouldn’t load until the method completed
running because the same thread that is running the long-running method is also loading
the view, and a single thread can only do one thing at a time.

But using the performSelectorInBackground:withObject: method, you
can create a new thread and run the method on a different thread than the thread loading
the view. You could also mimic the same behavior by using the performSelector:
withObject:afterDelay: method.

 Chapter 11: Selectors and Targets 301

CAUTION
If you use a performSelector variant that runs a method on a different thread, note
that the thread does not use the application’s main autorelease pool. You must either
manually manage the memory of all methods called in the new thread or create a new
autorelease pool for the thread.

Consider the following code in a UIViewController’s viewWillAppear:
method.

[self performSelector:@selector(reallyLongMethod) withObject:nil
afterDelay:.05];

In this code, you are using the performSelector:withObject:afterDelay:
method to perform the selector after a 0.05 second delay. This might seem short to you
and me, but to a computer processor, this is a lifetime. The end result is that the long-
running method is fired milliseconds after the view-loading code—the view is visible to
the user—and the application seems quicker and more responsive. This is a common trick
that you will use many times as you develop iPhone applications.

You could also use the performSelectorInBackground:withObject:
method to perform the selector on a different thread than the thread loading the display.

[self performSelectorInBackground:@selector(reallyLongMethod)
withObject:nil];

Instead of waiting the 0.05 seconds to begin processing, it processes immediately. But
remember, be careful with your memory management when using this method, as your
application’s autorelease pool is not managing the thread’s memory.

But there is a problem using both methods. Suppose the view’s display depended
upon the reallyLongMethod method’s results. The problem is that the view is
already loaded before the selector completes. What you need to be able to do is somehow
communicate to the view that the selector is finished processing and that you can update
its display.

Two ways you might accomplish this are by using notifications or by using a delegate.
In the next two sections you learn both techniques.

Notifications
A notification broadcasts information about events to whoever wishes to receive the
notification. For instance, you might register for an e-mail alert when a stock value
changes. If you have experience with Java, you might be familiar with its event listeners.
Mac and iPhone applications have a similar functionality called notifications.

 302 Objective-C for iPhone Developers: A Beginner’s Guide

Notifications allow your code to broadcast events, and information about events, to
other classes that are registered to listen for those events. It accomplishes this functionality
using an NSNotificationCenter.

Every application has a notification center called the default center. You obtain it using
the following code:

NSNotificationCenter * tempCenter = [NSNotificationCenter default];

After obtaining the notification center, you can send notifications to it. You send
notifications using the NSNotification class. You might send an “I’m finished
performing a long method” notification, for example.

[[NSNotification defaultCenter] postNotificationName:@"LongMethodDone"
object:self];

The code first obtains the default center and then posts a notification named
“LongMethodDone” to the notification center. The object parameter allows you to pass the
notification’s sender. There is also a method variant that allows posting an NSDictionary
containing more information you might wish to send along with the notification.

NSDictionary * myInfo = [NSDictionary dictionaryWithObject:@"information"
forKey:@"information_key"];
[[NSNotification defaultCenter] postNotificationName:@"LongMethodDone"
object:self userInfo:myInfo];

Other classes that wish to receive the “LongMethodDone” notification can register as
listeners with the notification center.

[[NSNotificationCenter defaultCenter] addObserver: self
selector:@selector(handleLongMethodDone:) name:@"LongMethodDone" object:nil];

In this code an object is registering itself as an observer of the “LongMethodDone”
notification; it is also specifying that when it receives the notification, the handleLong
MethodDone: method should be invoked. The object parameter restricts the notification
center to only informing the registrant for events in a particular object. For instance,
suppose Foo and Bar both fire the “LongMethodDone” event. Or, suppose you have
many Foo instances, but you only wish to receive a notification for a particular Foo
instance. In these situations, you would pass the object to the center. The center would
then only inform the registrant of “LongMethodDone” events for the passed Foo.

Objects that register as event observers can also deregister themselves as listeners.

[[NSNotificationCenter defaultCenter] removeObserver:self];

 Chapter 11: Selectors and Targets 303

Try This

You should always deregister a listener in its dealloc method if it is registered as a
listener.

NOTE
It is beyond this book’s scope to present complete coverage of notifications. There
is much you can do with notifications. For complete coverage, refer to Apple’s
“Notification Programming Topics for Cocoa” document, available online.

Using a Selector in a Background Thread
Using a Notification

 1. Create a new View-based application named SelectorDelay.

 2. Create a new object named FooBar.

 3. Declare a method named longMethod (Listing 11-4) and implement it as in
Listing 11-5. Note that the method loops through 5000 values.

 4. Open SelectorDelayViewController.h and create a UIActivityIndicatorView
as an IBOutlet (Listings 11-6 and 11-7).

 5. Save or build the application and then open SelectorDelayViewController.xib in
Interface Builder.

 6. Drag a UIActivityIndicatorView to the view’s canvas (Figure 11-1).

 7. Select the activity indicator and in the inspector, change its type to “Large White” and
select the Hides When Stopped and Animating check boxes.

 8. Connect the File’s Owner myActivity outlet to the activity indicator on the canvas.

 9. Save and exit Interface Builder.

 10. Open SelectorDelayViewController.m and implement the viewWillAppear
method. Have the method invoke FooBar’s longMethod.

 11. Build and Run the application. Note that the view and the activity indicator doesn’t
appear until after longMethod iterates through 5000 loops.

(continued)

 304 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 11-4 FooBar.h

#import <Foundation/Foundation.h>
@interface FooBar : NSObject {
}
- (void) longMethod;
@end

Listing 11-5 FooBar.m

#import "FooBar.h"
@implementation FooBar
- (void) longMethod {
 int x = 0;
 while (x++ < 5000) {
 NSLog(@".");
 }
}
@end

Figure 11-1 A UIActivityIndicatorView on a view’s canvas

 Chapter 11: Selectors and Targets 305

Listing 11-6 SelectorDelayViewController.h

#import <UIKit/UIKit.h>
@class FooBar;
@interface SelectorDelayViewController : UIViewController {
 IBOutlet UIActivityIndicatorView * myActivity;
 FooBar * fb;
}
@property (nonatomic,retain) UIActivityIndicatorView * myActivity;
@property (nonatomic, retain) FooBar * fb;
@end

Listing 11-7 SelectorDelayViewController.m

#import "SelectorDelayViewController.h"
#import "FooBar.h"
@implementation SelectorDelayViewController
@synthesize myActivity;
@synthesize fb;
- (void) viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 self.fb = [[[FooBar alloc] init] autorelease];
 [fb longMethod];
}
- (void)dealloc {
 [fb release];
 [myActivity release];
 [super dealloc];
}
@end

 12. Modify viewWillAppear: so that it uses the performSelector:
afterDelay: method to invoke longMethod (Listing 11-8).

 13. Build and Run the application. The view appears before the longMethod finishes
iterating thorough its values. But notice the activity indicator never disappears from
the view’s canvas.

(continued)

 306 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 11-8 Modifying the viewWillAppear method

- (void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 self.fb = [[[FooBar alloc] init] autorelease];

 //[fb longMethod];

 [fb performSelectorInBackground:@selector(longMethod) withObject:nil];

}

 14. Open FooBar.m and modify longMethod so that it posts a notification named
“longMethodDone” to the application’s notification center (Listing 11-9).

 15. Open SelectorDelayViewController.m and implement the viewDidLoad method so that
it registers itself as an observer of the “longMethodDone” notification (Listing 11-10).

 16. Modify SelectorDelayViewController’s dealloc method so that it
removes itself as an observer from the application’s notification center (Listing 11-11).

 17. Build and Run the application and the activity view is removed from the view after the
longMethod finishes.

Listing 11-9 Modifying longMethod to send a notification

- (void) longMethod {
 int x = 0;
 while (x++ < 5000) {
 NSLog(@".");
 }
 [[NSNotificationCenter defaultCenter] postNotificationName:@"longMethodDone"
object:nil];
}

Listing 11-10 Modifying viewDidLoad to register as an observer

- (void) viewDidLoad {
 [super viewDidLoad];
 [[NSNotificationCenter defaultCenter] addObserver:self.myActivity
selector:@selector(stopAnimating) name:@"longMethodDone" object:nil];
}

 Chapter 11: Selectors and Targets 307

Listing 11-11 Modifying dealloc to removeObserver

- (void)dealloc {

 [fb release];

 [[NSNotificationCenter defaultCenter] removeObserver:self.myActivity];

 [myActivity release];

 [super dealloc];

}

In this example SelectorDelayViewController registers itself as an observer
of all “longMethodDone” notifications. When SelectorDelayViewController’s
view appears, it fully loads the view because it runs the longMethod on the background
thread.

[fb performSelectorInBackground:@selector(longMethod) withObject:nil];

Notice that the longMethod has no memory management needs. It loops through 5000
iterations, logging a period to the debugger console. In the meantime, while it is processing,
your application is still responsive. You could have used the performSelector:
withObject:afterDelay: method to achieve the same results.

Delegates
Notifications are one way you might alert another object that a particularly long method
has completed. Another technique, arguably better, is using a delegate. How it works
is that you have a class adopt a protocol, where the protocol is the delegate. Then in
the performSelector: method, you pass the delegate as a parameter. The method
invoked by the selector then sends a message to the delegate when completed.

Recall how you declare a method that takes a protocol as a parameter.

- (void) longMethod: (id<FooBarDelegate>) delegate;

You can invoke a method using the performSelector: method, then
pass the delegate as the object parameter. Because you know the method adopts
the FooBarDelegate protocol, the invoked method can then invoke one of
FooBarDelegate’s methods, without worrying about the passed object not
implementing it. The following Try This illustrates.

 308 Objective-C for iPhone Developers: A Beginner’s Guide

Try This Using a Selector with a Delay
and a Delegate

 1. Copy the preceding Try This project to a new location, as you are modifying this project.

 2. Remove the code related to NSNotification from SelectorDelayView
Controller and FooBar. The lines you should find and remove are as follows.

[[NSNotificationCenter defaultCenter] postNotificationName:@"longMethodDone"
object:nil];
[[NSNotificationCenter defaultCenter] removeObserver:self.myActivity];
[[NSNotificationCenter defaultCenter] addObserver:self.myActivity
selector:@selector(stopAnimating) name:@"longMethodDone" object:nil];

 3. Build and Run the application. The activity indicator should never disappear.

 4. Create a new C header file named FooBarDelegate. Make the file a protocol
declaration, as in Listing 11-12.

 5. Open FooBar.h and modify longMethod’s signature so that it takes a
FooBarDelegate as a parameter (Listings 11-13 and 11-14).

 6. Open SelectorDelayViewController.h and modify it so that it adopts the
FooBarDelegate protocol (Listing 11-15),

 7. Open SelectorDelayViewController.m and implement the longMethodDone:
in SelectorDelayViewController, as in Listing 11-16; also modify
viewWillAppear so that SelectorDelayViewController passes itself as
the delegate to longMethod:.

 8. Build and Run the application. The activity indicator disappears and the dictionary
content is logged to the debugger console. But there is a problem: you forgot to manage
memory using a different autorelease pool for the longMethod: code. Remember,
it runs in a different thread. In longMethod: you used the NSDictionary’s
convenience constructor, which uses autorelease, and so the memory leaks because
there is no pool in place. You should also see something similar to the warning in
Listing 11-17 in the debugger console.

 9. To fix this memory leak, you have three main options. You could use the
performSelector:withObject:afterDelay: method; create your own
NSAutoReleasePool; or change the code in FooBar and SelectorDelayView
Controller to explicitly allocate, initialize, and release all objects.

 Chapter 11: Selectors and Targets 309

 10. But in this example, rather than fixing the code’s memory handling, simply change
the performSelectorInBackground:withObject method to use
performSelector:withObject:afterDelay.

//[self.fb performSelectorInBackground:@selector(longMethod:) withObject:self];
[self.fb performSelector:@selector(longMethod:) withObject:self afterDelay:.01];

 11. Build and Run the application and there are no warnings. Moreover, the end results are
the same visually.

Listing 11-12 FooBarDelegate.h

@protocol FooBarDelegate
- (void) longMethodDone: (NSDictionary *) data;
@end

Listing 11-13 FooBar.h

#import <Foundation/Foundation.h>
@protocol FooBarDelegate;
@interface FooBar : NSObject {
}
- (void) longMethod: (id<FooBarDelegate>) delegate;
@end

Listing 11-14 FooBar.m

#import "FooBar.h"

#import "FooBarDelegate.h"

@implementation FooBar

- (void) longMethod: (id<FooBarDelegate>) delegate {

 int x = 0;

 while (x++ < 5000) {

 NSLog(@".");

 }

 NSDictionary * data = [NSDictionary dictionaryWithObjectsAndKeys:@"5000 loops",

@"msg1", @"while loop",@"msg2",nil];

 [delegate longMethodDone:data];

}

@end

(continued)

 310 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 11-15 SelectorDelayViewController.h

#import <UIKit/UIKit.h>
#import "FooBarDelegate.h"
@class FooBar;
@interface SelectorDelayViewController : UIViewController <FooBarDelegate> {
 IBOutlet UIActivityIndicatorView * myActivity;
 FooBar * fb;
}
@property (nonatomic,retain) UIActivityIndicatorView * myActivity;
@property (nonatomic, retain) FooBar * fb;
@end

Listing 11-16 SelectorDelayViewController.m

#import "SelectorDelayViewController.h"

#import "FooBar.h"

@implementation SelectorDelayViewController

@synthesize myActivity;

@synthesize fb;

- (void) viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 self.fb = [[[FooBar alloc] init] autorelease];

 [self.fb performSelectorInBackground:@selector(longMethod:) withObject:self];

}

- (void) longMethodDone: (NSDictionary *) data {

 [self.myActivity stopAnimating];

 NSEnumerator * myKeys = [data keyEnumerator];

 id curKey;

 for (curKey in myKeys)

 NSLog(@"The key:%@ and the value:%@", curKey, [data objectForKey:curKey]);

}

- (void)dealloc {

 [self.fb release];

 [self.myActivity release];
 [super dealloc];
}
@end

Listing 11-17 Debugger warning

*** _NSAutoreleaseNoPool(): Object 0x3b12890 of class NSCFDictionary autoreleased

with no pool in place - just leaking

 Chapter 11: Selectors and Targets 311

Try This

Target-Action
Throughout this book you graphically connected IBActions in code to events fired by
controls in Interface Builder. Although this ability is useful, there are many times when
you must dynamically assign an IBAction to a control in your code. You can easily add
a target to the control using the addTarget method. For instance, the following code
adds the changeMyLabelText: method as an action for a UIButton for the “Touch
Up Inside” event.

[self.myButtonOne addTarget:self action:@selector(changeMyLabelText:)
forControlEvents:UIControlEventTouchUpInside];

All iPhone controls inherit from the UIControl class. This class has a method called
addTarget:action:forControlEvents: that allows tying a control event to an
action in code.

- (void)addTarget:(id)target action:(SEL)action forControlEvents:
(UIControlEvents)controlEvents

The target is the object the action that receives the action. The action is a selector
identifying the method that should be invoked. The controlEvents are the control’s
events that should fire the selector. The following Try This illustrates how to programmatically
connect an action to a control event using code.

Connecting a Control to an Action
Programmatically

 1. Create a new View-based application named TargetAction.

 2. Create a new object named FooBar (Listings 11-18 and 11-19). Have FooBar
implement a method named play.

 3. Create two buttons and a label as an IBOutlet to TargetActionViewController.h
(Listing 11-20). Also add FooBar as a property.

 4. Save or build the application and then open TargetActionViewController.xib in
Interface Builder.

 5. Add two buttons and a label to the canvas (Figure 11-2). Connect them to the outlets in
the File’s Owner.

(continued)

 312 Objective-C for iPhone Developers: A Beginner’s Guide

 6. Save and exit Interface Builder.

 7. Open TargetActionViewController.m and implement the viewDidLoad method
so that it connects the buttons to the changeMyLabelText: and play methods
(Listing 11-21). Also implement the changeMyLabelText: method.

 8. Build and Run the application.

Listing 11-18 FooBar.h

#import <Foundation/Foundation.h>
@interface FooBar : NSObject {
}
- (void) play;
@end

Figure 11-2 Adding two buttons and a label to the canvas

 Chapter 11: Selectors and Targets 313

Listing 11-19 FooBar.m

#import "FooBar.h"
@implementation FooBar
- (void) play {
 NSLog(@"FooBar play method invoked...");
}
@end

Listing 11-20 TargetActionViewController.h

#import <UIKit/UIKit.h>
@class FooBar;
@interface TargetActionViewController : UIViewController {
 IBOutlet UIButton * myButtonOne;
 IBOutlet UIButton * myButtonTwo;
 IBOutlet UILabel * myLabel;
 FooBar * myFooBar;
}
@property (nonatomic, retain) UIButton * myButtonOne;
@property (nonatomic,retain) UIButton * myButtonTwo;
@property (nonatomic,retain) UILabel * myLabel;
@property (nonatomic,retain) FooBar * myFooBar;
-(void) changeMyLabelText: (id) sender;
@end

Listing 11-21 TargetActionViewController.m

#import "TargetActionViewController.h"
#import "FooBar.h"
@implementation TargetActionViewController
@synthesize myButtonOne;
@synthesize myButtonTwo;
@synthesize myLabel;
@synthesize myFooBar;
- (void) viewDidLoad {
 [super viewDidLoad];
 self.myFooBar = [[FooBar alloc] init];
 [self.myButtonOne addTarget:self action:@selector(changeMyLabelText:
)
forControlEvents:UIControlEventTouchUpInside];

(continued)

 314 Objective-C for iPhone Developers: A Beginner’s Guide

 [self.myButtonTwo addTarget:self.myFooBar action:@selector(play)
forControlEvents:UIControlEventTouchUpInside];
}
-(void) changeMyLabelText: (id) sender {
 self.myLabel.text = @"Hello World";
}
- (void)dealloc {
 [self.myFooBar release];
 [myButtonOne release];
 [myButtonTwo release];
 [myLabel release];
 [super dealloc];
}
@end

Summary
This chapter touched on several topics normally reserved for more advanced discussions.
However, as you progress as an iPhone developer, you will see the topics presented here
repeatedly, so it’s best to at least get an introduction to them. Using an activity indicator
to tell a user to “please wait” or using a progress view to tell a user to “please wait and
you have this much time remaining” are typically used when a long-running task is to
be performed. Problem is, that task usually blocks the thread loading the view, and the
application “freezes” until the task completes. Using the two performSelector
variants in this chapter avoids this application “freezing.”

The easiest method to use is the performSelector:withObject:
afterDelay: method, as you don’t need to worry about memory management. But
don’t think that this is a substitute for multithreading, as it is not. But it does allow
avoiding multithreading for many trivial tasks.

You learned about using both notifications and delegates to inform the class invoking
the selector that the selector’s method had finished processing. Although both work, in
general, you should reserve notifications for general messages to multiple observers,
and use delegates for pointed “notifications” to a particular class in a particular point in
time. Delegates are the more robust way for a particular class invoking perform
SelectorInBackground:withObject: or performSelector:withObject:
afterDelay: to be notified that the selector’s method has completed.

315

Chapter 12
The Model-View-
Controller Design
Pattern

 316 Objective-C for iPhone Developers: A Beginner’s Guide

Key Skills & Concepts

● Understanding the Model-View-Controller Design Pattern

● Using Property Lists

● Sharing Data Between Views

Anybody can write a simple program. However, crafting a well-designed program
 that works well is a much more difficult endeavor. In this chapter you learn about the

Model-View-Controller design pattern and how to apply it to your iPhone development
efforts using Objective-C. The Model-View-Controller design pattern is arguably one of
the biggest advances in computer science, so you would do well by learning it.

The Model-View-Controller Design Pattern
The MVC design pattern separates a program’s objects based upon responsibility.
The model is responsible for your program’s logical objects. These classes hold an
application’s data and its business logic. Recall the silly classes used in previous chapters.
Duck, Driftwood, and Glutton are all examples of model classes. They are logical
objects with data and behavior. Their behavior is unrelated to how your application’s user
interface operates. Instead, logic was related to their business functions; hence the term
business logic. Nowhere do these objects define an application’s appearance. These are
logical objects that reside behind the scenes.

Now consider the UIView and UIViewController classes that you extended
in previous Try This projects. The UIView is your view, and the view controller is
your application’s controller. The view’s responsibility is to control the application’s
appearance. The view controller’s responsibility is to handle the view’s life cycle methods
and serve as a “middleman” between the view and the model. Figure 12-1 illustrates a
typical MVC architecture.

The view displays your application’s interface to its users. When a user interacts with
the view, those events are forwarded to the controller. The controller then updates the state
of any related model objects and updates the view. Figure 12-2 illustrates the MVC and an
iPhone application.

A UIView displays the iPhone application’s user interface. A UIView has an
associated UIViewController that responds to a user’s interactions with its UIView.
For instance, suppose you had a simple game where a penguin waddles across a screen.

 Chapter 12: The Model-View-Controller Design Pattern 317

When a user taps the penguin, it places a large red X on the penguin and the penguin
stops waddling. When tapped again, the application removes the X and the penguin starts
waddling again.

A Penguin class represents the penguin, which is a model class. In Figure 12-3
a penguin waddles across the screen. When a user clicks the penguin, the view calls
the view controller’s shootPenguin: action. The penguin, a property of the view
controller, is “killed” and the penguin’s state is updated to dead. The view controller also
updates the view’s display by stopping the animation and placing a red X on the penguin.

Figure 12-1 Model-View-Controller (MVC) architecture

Figure 12-2 MVC architecture and iPhone applications

 318 Objective-C for iPhone Developers: A Beginner’s Guide

Try This Creating a Simple MVC Game
 1. Create a new View-based application named PenguinHunting.

 2. Create a new class called Penguin (Listings 12-1 and 12-2). Have the Penguin
implement the shoot and revive methods.

 3. Add a property called state to Penguin and define two constants, STATE_ALIVE
and STATE_DEAD.

 4. Open PenguinHuntingViewController.h in Xcode and add an IBOutlet for a
UIButton named penguinImageButton (Listing 12-3). Add an NSTimer
named myTimer and a Penguin class named myPenguin. Make all three
properties.

 5. Open PenguinHuntingViewController.m and implement as in Listing 12-4.

 6. Save and open PenguinHuntingViewController.xib in Interface Builder.

 7. Connect the penguinImageButton in File’s Owner to a button on the view’s
canvas.

Figure 12-3 Hypothetical penguin game

 Chapter 12: The Model-View-Controller Design Pattern 319

 8. Select the button and change its type to custom and image to tux.png (Figure 12-4).

 9. Connect the button’s Touch Up Inside event to the shootThePenguin: method.

 10. Build and Run the application.

Figure 12-4 Creating a custom button to display the penguin

(continued)

 320 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 12-1 Penguin.h

#import <Foundation/Foundation.h>
#define STATE_ALIVE 1
#define STATE_DEAD 2
@interface Penguin : NSObject{
 int state;
}
@property (nonatomic, assign) int state;
- (void) shoot;
- (void) revive;
@end

Listing 12-2 Penguin.m

#import "Penguin.h"
@implementation Penguin
@synthesize state;
- (id) init {
 id toRet = [super init];
 self.state = STATE_ALIVE;
 return toRet;
}
- (void) shoot {
 NSLog(@"penguin is shot...");
'"" self.state = STATE_DEAD;
}
- (void) revive {
 NSLog(@"penguin is revived...");
 self.state = STATE_ALIVE;
}
@end

Listing 12-3 PenguinHuntingViewController.h

#import <UIKit/UIKit.h>
#import "Penguin.h"
@interface PenguinHuntingViewController : UIViewController {
 IBOutlet UIButton * penguinImageButton;
 NSTimer * myTimer;
 Penguin * myPenguin;
}
@property (nonatomic, retain) Penguin * myPenguin;

 Chapter 12: The Model-View-Controller Design Pattern 321

@property (nonatomic,retain) NSTimer * myTimer;
@property (nonatomic,retain) UIButton * penguinImageButton;
- (IBAction) shootThePenguin: (id) sender;
@end

Listing 12-4 PenguinHuntingViewController.m

#import "PenguinHuntingViewController.h"
@implementation PenguinHuntingViewController
@synthesize penguinImageButton;
@synthesize myTimer;
@synthesize myPenguin;
- (void) viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 self.myTimer = [NSTimer scheduledTimerWithTimeInterval:.03 target: self
selector:@selector(secondIncrement) userInfo: nil repeats: YES];
 self.myPenguin = [[Penguin alloc] init];
}
static BOOL movingRight = YES;
static BOOL movingDown = YES;
- (void) secondIncrement {
 CGRect frame = self.penguinImageButton.frame;
 if(frame.origin.x > 210) {
 movingRight = NO;
 }
 else if (frame.origin.x < 20) {
 movingRight = YES;
 }
 if(frame.origin.y > 380) {
 movingDown = NO;
 }
 else if(frame.origin.y < 20) {
 movingDown = YES;
 }
 if(movingDown) frame.origin.y += 2;
 else frame.origin.y -= 2;
 if(movingRight) frame.origin.x += 2;
 else frame.origin.x -= 2;
 self.penguinImageButton.frame = frame;
}
- (IBAction) shootThePenguin: (id) sender {
 if(self.myPenguin.state == STATE_ALIVE) {
 [self.myTimer invalidate];
 self.myTimer = nil;
 [self.penguinImageButton setImage:[UIImage imageNamed:@"tux_dead.png"]
forState:UIControlStateNormal];
 [self.myPenguin shoot];
 }

(continued)

 322 Objective-C for iPhone Developers: A Beginner’s Guide

 else {
 self.myTimer = [NSTimer scheduledTimerWithTimeInterval:.03 target: self
selector:@selector(secondIncrement) userInfo: nil repeats: YES];
 [self.penguinImageButton setImage:[UIImage imageNamed:@"tux.png"]
forState:UIControlStateNormal];
 [self.myPenguin revive];
 }
}
- (void)dealloc {
 [penguinImageButton release];
 [self.myPenguin release];
 [self.myTimer release];
 [super dealloc];
}
@end

In this application you first build the model class, Penguin. Penguin has the
penguin’s state and two methods that change its state. The PenguinHuntingView
Controller is the application’s controller and the UIView in the PenguinHunting
ViewController xib is the view. The view controller coordinates between the view
and the model. When the view appears, it sends a message to the view controller’s
viewDidAppear method. The viewDidAppear method starts a timer and creates
a Penguin instance.

The timer in the view controller fires every 0.03 seconds, calling the
secondIncrement method. Note that this is not an Apple-defined method; you
could use any method name provided you assign it as a selector. Assigning a selector
to the timer allows the timer to fire the named method every 0.03 seconds.

The secondIncrement method moves the button around on the canvas by moving
the button’s x and y origins (Figure 12-5). To keep the image from going off the screen, the
button’s movement changes direction when moving too far in any direction. It is not true
animation, but it works. Incidentally, using the CGRect as in the secondIncrement
method is an easy way to move a control on a view programmatically.

When a user taps the button, the view calls the view controller’s shootThePenguin
action. This method changes the penguin’s state; if alive, it stops the timer, which causes
the penguin to stop moving. It also changes the button’s image with a penguin image
with an X through it (Figure 12-6). When the user taps the button again, the view calls the
shootThePenguin method, which replaces the button’s image with the original image
and starts a new timer, so the button starts moving again.

Notice how the application illustrates the quintessential MVC design pattern in an
iPhone. The view knows nothing about the penguin. The penguin knows nothing about the
view; the penguin actually knows nothing about the controller either.

 Chapter 12: The Model-View-Controller Design Pattern 323

Figure 12-5 The penguin moving on the canvas

Figure 12-6 The “dead” penguin

 324 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

Persistence
Models are often persisted between running an application. Typically a model class
is persisted and reconstituted as needed. The iPhone offers several different ways you
can persist an application’s data. One way is through using the iPhone’s built-in sqlite
database. Another way is through Core Data. Yet another way is through using a property
list. The easiest way to persist small amounts of data is through property lists and
archiving. In the following Try This you expand upon the model in the last Try This by
persisting it between application invocations.

Adding Persistence Using a Property List
 1. Open PenguinHunting from the previous Try This application in Xcode.

 2. Modify Penguin.h and Penguin.m so that it implements persistPenguinState:
and initializePenguinState methods (Listings 12-5 and 12-6).

 3. Modify Penguin’s init method so that it uses the initializePenguinState
method to initialize its state.

 4. Open PenguinHuntingViewController.m and implement the viewDidDisappear:
method (Listing 12-7). Also modify the viewDidAppear: method so that it
initializes the button’s behavior depending upon the penguin’s state.

 5. Build and Run the application. Click the penguin so that it is “dead” and then stop the
application in the iPhone simulator.

 6. Start the application again in the simulator and the penguin is “dead.” Click the penguin
to reanimate it and stop the application. Start it again and the penguin is “alive.”

Listing 12-5 Penguin.h with persistence

#import <Foundation/Foundation.h>
#define STATE_ALIVE 1
#define STATE_DEAD 2
@interface Penguin : NSObject{
 int state;
}
@property (nonatomic, assign) int state;
- (void) shoot;
- (void) revive;

 Chapter 12: The Model-View-Controller Design Pattern 325

- (void) persistPenguinState: (int) theState;
- (int) initializePenguinState;
@end

Listing 12-6 Penguin.m with persistence

#import "Penguin.h"
@implementation Penguin
@synthesize state;
- (id) init {
 id toRet = [super init];
 self.state = [self initializePenguinState];
 return toRet;
}
- (void) shoot {
 NSLog(@"penguin is shot...");
 self.state = STATE_DEAD;
}
- (void) revive {
 NSLog(@"penguin is revived...");
 self.state = STATE_ALIVE;
}
- (void) persistPenguinState: (int) theState {
 NSString *plistPath = [[NSSearchPathForDirectoriesInDomains(
NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0]
stringByAppendingPathComponent:@"properties.plist"];
 NSDictionary *plistDict = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects: [NSNumber numberWithInt:theState], nil]
forKeys:[NSArray arrayWithObjects: @"state", nil]];
 NSData *plistData = [NSPropertyListSerialization dataFromPropertyList:
plistDict format:NSPropertyListXMLFormat_v1_0 errorDescription:nil];
 [plistData writeToFile:plistPath atomically:YES];
}
- (int) initializePenguinState {
 NSPropertyListFormat format;
 NSString *plistPath = [[NSSearchPathForDirectoriesInDomains(
NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0]
stringByAppendingPathComponent:@"properties.plist"];
 if([[NSFileManager defaultManager] fileExistsAtPath:plistPath] == NO) {
 return 1;
 }
 else {
 NSData * plistData = [NSData dataWithContentsOfFile:plistPath];
 NSDictionary * props = (NSDictionary *)[NSPropertyListSerialization
propertyListFromData:plistData mutabilityOption:NSPropertyListImmutable
format:&format errorDescription:nil];

(continued)

 326 Objective-C for iPhone Developers: A Beginner’s Guide

 return [((NSNumber*)[props objectForKey:@"state"]) intValue];
 }
}
@end

Listing 12-7 PenguinHuntingViewController.h

#import "PenguinHuntingViewController.h"
@implementation PenguinHuntingViewController
@synthesize penguinImageButton;
@synthesize myTimer;
@synthesize myPenguin;
- (void) viewDidAppear:(BOOL)animated {
 self.myPenguin = [[Penguin alloc] init];
 if(self.myPenguin.state == STATE_DEAD) {
 [self.penguinImageButton setImage:[UIImage imageNamed:@"tux_dead.png"]
forState:UIControlStateNormal];
 }
 else {
 self.myTimer = [NSTimer scheduledTimerWithTimeInterval:.03 target: self
selector:@selector(secondIncrement) userInfo: nil repeats: YES];
 }
}
- (void) viewDidDisappear: (BOOL) animated {
 [self.myPenguin persistPenguinState:self.myPenguin.state];
 [super viewDidDisappear:animated];
}
static BOOL movingRight = YES;
static BOOL movingDown = YES;
- (void) secondIncrement {
 CGRect frame = self.penguinImageButton.frame;
 if(frame.origin.x > 210) {
 movingRight = NO;
 }
 else if (frame.origin.x < 20) {
 movingRight = YES;
 }
 if(frame.origin.y > 380) {
 movingDown = NO;
 }
 else if(frame.origin.y < 20) {
 movingDown = YES;
 }
 if(movingDown) frame.origin.y += 2;
 else frame.origin.y -= 2;
 if(movingRight) frame.origin.x += 2;
 else frame.origin.x -= 2;
 self.penguinImageButton.frame = frame;
}

 Chapter 12: The Model-View-Controller Design Pattern 327

- (IBAction) shootThePenguin: (id) sender {
 if(self.myPenguin.state == STATE_ALIVE) {
 [self.myTimer invalidate];
 self.myTimer = nil;
 [self.penguinImageButton setImage:[UIImage imageNamed:@"tux_dead.png"]
forState:UIControlStateNormal];
 [self.myPenguin shoot];
 }
 else {
 self.myTimer = [NSTimer scheduledTimerWithTimeInterval:.03 target: self
selector:@selector(secondIncrement) userInfo: nil repeats: YES];
 [self.penguinImageButton setImage:[UIImage imageNamed:@"tux.png"]
forState:UIControlStateNormal];
 [self.myPenguin revive];
 }
}
- (void)dealloc {
 [self.penguinImageButton release];
 [self.myTimer release];
 [self.myPenguin release];
 [super dealloc];
}
@end

The Penguin class persists itself to a property list named properties.plist. Because
you specified NSPropertyListXMLFormat_v1_0 as the file’s format, it persists the data as
an XML text document (Listing 12-8).

Listing 12-8 Persisting the data as XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>state</key>
 <integer>2</integer>
</dict>
</plist>

Notice the controller knows nothing about how the penguin persists itself; it merely
sends a message to the penguin to persist itself. The view, of course, is oblivious to the
model’s persistence. There is a strict separation between the model, view, and controller.

 328 Objective-C for iPhone Developers: A Beginner’s Guide

Try This

Multiple Xibs
Most iPhone applications consist of multiple xibs. Each xib contains a single view. As a
user navigates through an application, each xib is loaded as needed and displays its view.
This saves memory, as your application only loads the xib’s content as needed. If all views
were in one xib, then all views are loaded regardless of whether they are needed.

Sharing Data Between Xibs
 1. Create a new Tab Bar application named TabsMultiple (Figure 12-7).

 2. Create a new class named MyAnswers (Listings 12-9 and 12-10).

 3. Open FirstViewController.h and import MyAnswers.

 4. Create two IBOutlets for UITextFields and one IBOutlet for MyAnswers
(Listings 12-11 and 12-12). Also create an IBAction named getAnswer.

 5. Create a new UIViewController named SecondViewController
(Listings 12-13 and 12-14).

Figure 12-7 Creating a Tab Bar application

 Chapter 12: The Model-View-Controller Design Pattern 329

 6. Be certain that you do not check the “With XIB for user interface” check box. Instead
you will use this controller for the template-created SecondView.xib file.

 7. Open SecondViewController and add two UILabels as IBOutlets. Also
add an IBOutlet for the MyAnswers class.

 8. Create another class named MyTabBarController that implements the
UITabBarController (Listings 12-15 and 12-16). Add a property for the
MyAnswers class named myMyAnswers.

 9. Build and then open MainWindow.xib in Interface Builder.

 10. Drag an object from the Library to the project’s main window and change the object’s
class to MyAnswers (Figure 12-8).

Figure 12-8 Adding an object to main window

(continued)

 330 Objective-C for iPhone Developers: A Beginner’s Guide

 11. Add two UITextFields to the first view’s canvas (Figure 12-9.). Change the
topmost text field’s tag value to 1 in the text field’s inspector.

Figure 12-9 Adding two text fields to the canvas

 Chapter 12: The Model-View-Controller Design Pattern 331

 12. Connect the two IBOutlets in FirstViewController to the UITextFields
on the canvas (Figure 12-10).

Figure 12-10 Connecting the IBOutlets

(continued)

 332 Objective-C for iPhone Developers: A Beginner’s Guide

 13. Connect the getAnswer IBAction to both UITextView’s Did End on Exit
events (Figure 12-11).

Figure 12-11 Connecting getAnswer IBAction to the text view’s Did End on Exit event

 Chapter 12: The Model-View-Controller Design Pattern 333

 14. Connect the MyAnswers object to the myMyAnswers IBOutlet in
FirstViewController (Figure 12-12).

 15. Select Second View Controller (Second) and change its class to
SecondViewController (Figure 12-13).

Figure 12-12 Connecting MyAnswers object to the myMyAnswers outlet

(continued)

 334 Objective-C for iPhone Developers: A Beginner’s Guide

 16. Connect the MyAnswers object to the myMyAnswers IBOutlet in
SecondViewController.

 17. Select MyTabBarController and change its class to MyTabBarController
(Figure 12-14).

Figure 12-13 Changing Second View Controller

 Chapter 12: The Model-View-Controller Design Pattern 335

 18. Connect the MyTabBarController’s myMyAnswers IBOutlet to the MyAnswers
object (Figure 12-15).

 19. Save and exit Interface Builder.

Figure 12-14 Changing the Tab Bar Controller’s class

(continued)

 336 Objective-C for iPhone Developers: A Beginner’s Guide

 20. Open SecondView.xib in Interface Builder. Change the File’s Owner type from
UIViewController to SecondViewController.

 21. Add two UILabels to the view’s canvas and connect them to File’s Owner
labelOne and labelTwo IBOutlets.

 22. Save and exit Interface Builder.

 23. Build and Run the application. Enter text into the top field and tap return. Enter text
into the second field and tap return. After finishing, click the Second tab; the entered
values appear on the second view’s canvas (Figure 12-16).

Listing 12-9 MyAnswers.h

#import <Foundation/Foundation.h>
@interface MyAnswers : NSObject {
 NSString * myName;
 NSString * myFavoriteApp;
}
@property (nonatomic,retain) NSString * myName;
@property (nonatomic,retain) NSString * myFavoriteApp;
@end

Figure 12-15 Connecting the myMyAnswers outlet to the object

 Chapter 12: The Model-View-Controller Design Pattern 337

Listing 12-10 MyAnswers.m

#import "MyAnswers.h"
@implementation MyAnswers
@synthesize myName;
@synthesize myFavoriteApp;
-(void) dealloc {
 self.myFavoriteApp = nil;
 self.myName = nil;
 [super dealloc];
@end

Figure 12-16 Entering the text and having it appear on the second view

(continued)

 338 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 12-11 FirstViewController.h

#import <UIKit/UIKit.h>
#import "MyAnswers.h"
@interface FirstViewController : UIViewController {
 IBOutlet MyAnswers * myMyAnswers;
 IBOutlet UITextField * myName;
 IBOutlet UITextField * myFavoriteApp;
}
@property (nonatomic,retain) MyAnswers * myMyAnswers;
@property (nonatomic,retain) UITextField * myName;
@property (nonatomic, retain) UITextField * myFavoriteApp;
- (IBAction) getAnswer: (id) sender;
@end

Listing 12-12 FirstViewController.m

#import "FirstViewController.h"
@implementation FirstViewController
@synthesize myMyAnswers;
@synthesize myName;
@synthesize myFavoriteApp;
- (IBAction) getAnswer: (id) sender {
 [sender resignFirstResponder];
 if([sender tag] == 1) {
 self.myMyAnswers.myName = self.myName.text;
 }
 else {
 self.myMyAnswers.myFavoriteApp = self.myFavoriteApp.text;
 }
}
- (void)dealloc {
 self.myMyAnswers = nil;
 self.myName = nil;
 self.myFavoriteApp = nil;
 [super dealloc];
}
@end

Listing 12-13 SecondViewController.h

#import <UIKit/UIKit.h>
#import "MyAnswers.h"
@interface SecondViewController : UIViewController {

 Chapter 12: The Model-View-Controller Design Pattern 339

 IBOutlet MyAnswers * myMyAnswers;
 IBOutlet UILabel * labelOne;
 IBOutlet UILabel * labelTwo;
}
@property (nonatomic, retain) MyAnswers * myMyAnswers;
@property (nonatomic,retain) UILabel * labelOne;
@property (nonatomic, retain) UILabel * labelTwo;
@end

Listing 12-14 SecondViewController.m

#import "SecondViewController.h"
@implementation SecondViewController
@synthesize myMyAnswers;
@synthesize labelOne;
@synthesize labelTwo;
-(void) viewDidLoad {
 NSLog(@"loading");
}
- (void) viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 NSLog(@"name:%@", self.myMyAnswers.myName);
 self.labelOne.text = self.myMyAnswers.myName;
 self.labelTwo.text = self.myMyAnswers.myFavoriteApp;
}
- (void)dealloc {
 self.labelOne = nil;
 self.labelTwo = nil;
 self.myMyAnswers = nil;
 [super dealloc];
}
@end

Listing 12-15 MyTabBarController.h

#import <UIKit/UIKit.h>
#import "MyAnswers.h"
@interface MyTabBarController : UITabBarController {
 IBOutlet MyAnswers * myMyAnswers;
}
@property (nonatomic, retain) MyAnswers * myMyAnswers;
@end

(continued)

 340 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 12-16 MyTabBarController.m

#import "MyTabBarController.h"
@implementation MyTabBarController
@synthesize myMyAnswers;
- (void)dealloc {
 self.myMyAnswers = nil;
 [super dealloc];
}
@end

In this example you created an application whose only coupling is in ViewHandler.
MultipleXibsViewController knows nothing about SecondViewController.
You share the data between the view controllers using the model, not the individual
UILabel’s value. Although here this distinction is trivial, consider what happens if a view
with many controls must share data with another view. The amount of sharing becomes
unmanageable. By passing a single model object, sharing data becomes manageable.

In some respects, this example is a bit extreme. Usually coupling view controllers is
acceptable. However, this example does illustrate that you can totally decouple views,
view controllers, and views in xibs. Moreover, you can share data between them. The only
coupling is that both view controllers must know about the MyModel data object. And of
course the ViewHandler class is coupled with both view controllers.

In the preceding Try This you shared data between two xibs by using a shared data
object that was added to the xib in Interface Builder. However, often you will wish to
share an object between two xibs programmatically. Moreover, when using code to create
views you do not have this option of sharing data. Instead, you must manually share
data between xibs. Sharing data between xibs programmatically is arguably even more
straightforward than using Interface Builder. The following Try This illustrates.

 Chapter 12: The Model-View-Controller Design Pattern 341

Try This Sharing Data Between Xibs Programatically
 1. Create a new Window-based application named MonkeySee.

 2. Create two UIViewControllers named MonkeySeeViewController and
MonkeyDoViewController. Be certain to check “With XIB for user interface”
when creating both so that you create xib files.

 3. Create an Objective-C class named Monkey.

 4. Open MainWindow.xib in Interface Builder and add a UINavigationController
to the main window (Figure 12-17).

 5. Expand the Navigation Controller. Select the “View Controller (Root View
Controller)” and change its class to MonkeySeeViewController (Figure 12-18).

Figure 12-17 Adding UINavigationController to the main window

(continued)

 342 Objective-C for iPhone Developers: A Beginner’s Guide

 6. Change its NIB Name to MonkeySeeViewController (Figure 12-19).

 7. Save and exit Interface Builder.

Figure 12-18 Changing the class to MonkeySeeViewController

 Chapter 12: The Model-View-Controller Design Pattern 343

 8. Open Monkey.h and add a property as an NSString (Listings 12-17 and 12-18).

 9. Open MonkeyDoViewController.h, import Monkey.h, and add Monkey as a property
(Listings 12-19 and 12-20). Also add an IBOutlet for a UILabel.

 10. Also implement MonkeyDoViewController’s viewDidLoad method so that it
sets the label’s text to the monkey’s name.

 11. Open MonkeySeeViewController.h and add a UILabel as an IBOutlet. Add a
UIBarButtonItem as an outlet. Also add a method declaration for an IBAction
named gotoNext: (Listing 12-21). Import the MonkeyDoViewController.h header
file.

 12. Open MonkeySeeViewController.m and synthesize the label. Also implement the
gotoNext: method and implement the viewDidLoad method (Listing 12-22).

 13. Open MonkeySeeViewController.xib in Interface Builder and add a UILabel to the
view’s canvas. Change the label’s text to be a name, like Ralph.

 14. Connect the File’s Owner myMonkeyName to the label added to the view
(Figure 12-20).

(continued)

Figure 12-19 Changing the NIB Name

 344 Objective-C for iPhone Developers: A Beginner’s Guide

Figure 12-20 Connecting myMonkeyName outlet to the label

 Chapter 12: The Model-View-Controller Design Pattern 345

 15. Drag a Bar Button Item from the library to the main window. Change the button’s title
to Next (Figure 12-21).

 16. Connect the button to the File’s Owner nextButton outlet (Figure 12-22).

Figure 12-21 Dragging a button from library to the main window

(continued)

 346 Objective-C for iPhone Developers: A Beginner’s Guide

 17. Connect the gotoNext: action to the newly added button (Figure 12-23).

 18. Save and exit Interface Builder.

 19. Open MonkeyDoViewController.xib in Interface. Add a UILabel to the canvas and
connect it to the File’s Owner myMonkeyNameLabel outlet.

 20. Save and exit Interface Builder.

Figure 12-22 Connecting to the nextButton outlet

Figure 12-23 Connecting to the gotoNext: action

 Chapter 12: The Model-View-Controller Design Pattern 347

Figure 12-24 Connecting to the navigation controller

 21. Open MonkeySeeAppDelegate.h and add the navigationController as an
IBOutlet (Listing 12-23).

 22. Open MonkeySeeAppDelegate.m, synthesize the navigation controller, and add it to
the window in the applicationDidFinishLaunching: method (Listing 12-24).

 23. Open MainWindow.xib in Interface Builder. Connect the MonkeySeeApp
Delegate’s navigationController to the navigation controller in the
main window (Figure 12-24).

 24. Build and Run. The first screen shows the monkey’s name (Figure 12-25). When you
click Next, the next screen also shows the monkey’s name.

Listing 12-17 Monkey.h

#import <Foundation/Foundation.h>
@interface Monkey : NSObject {
 NSString * myName;
}
@property (nonatomic,retain) NSString * myName;
@end

(continued)

 348 Objective-C for iPhone Developers: A Beginner’s Guide

Listing 12-18 Monkey.m

#import "Monkey.h"
@implementation Monkey
@synthesize myName;
-(void) dealloc {
 self.myName = nil;
 [super dealloc];
@end

Listing 12-19 MonkeyDoViewController.h

#import <UIKit/UIKit.h>
#import "Monkey.h"
@interface MonkeyDoViewController : UIViewController {
 Monkey * myMonkey;

Figure 12-25 Running the application in iPhone simulator

 Chapter 12: The Model-View-Controller Design Pattern 349

 IBOutlet UILabel * myMonkeyNameLabel;
}
@property (nonatomic,retain) Monkey * myMonkey;
@property (nonatomic,retain) UILabel * myMonkeyNameLabel;
@end

Listing 12-20 MonkeyDoViewController.m

#import "MonkeyDoViewController.h"
@implementation MonkeyDoViewController
@synthesize myMonkey;
@synthesize myMonkeyNameLabel;
- (void) viewDidLoad {
 [super viewDidLoad];
 self.myMonkeyNameLabel.text = myMonkey.myName;
}
- (void)dealloc {
 [myMonkey release];
 [myMonkeyNameLabel release];
 [super dealloc];
}
@end

Listing 12-21 MonkeySeeViewController.h

#import <UIKit/UIKit.h>
#import "MonkeyDoViewController.h"
@interface MonkeySeeViewController : UIViewController {
 IBOutlet UILabel * myMonkeyName;
 IBOutlet UIBarButtonItem * nextButton;
}
@property (nonatomic, retain) IBOutlet UILabel * myMonkeyName;
@property (nonatomic,retain) IBOutlet UIBarButtonItem * nextButton;
- (IBAction) gotoNext: (id) sender;
@end

Listing 12-22 MonkeySeeViewController.m

#import "MonkeySeeViewController.h"

@implementation MonkeySeeViewController

@synthesize myMonkeyName;

@synthesize nextButton;

(continued)

 350 Objective-C for iPhone Developers: A Beginner’s Guide

-(void) viewDidLoad {

 self.navigationItem.rightBarButtonItem = self.nextButton;

}

- (IBAction) gotoNext: (id) sender {

 MonkeyDoViewController * monkeyDo = [[MonkeyDoViewController alloc]

initWithNibName:@"MonkeyDoViewController" bundle:nil];

 Monkey * aMonkey = [[Monkey alloc] init];

 monkeyDo.myMonkey = aMonkey;

 monkeyDo.myMonkey.myName = myMonkeyName.text;

 [self.navigationController pushViewController:monkeyDo animated:YES];

 [monkeyDo release];

 [aMonkey release];

}

- (void)dealloc {

 [myMonkeyName release];

 [nextButton release];

 [super dealloc];

}

@end

Listing 12-23 MonkeySeeAppDelegate.h

#import <UIKit/UIKit.h>
@interface MonkeySeeAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 UINavigationController *navigationController;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController
*navigationController;
@end

Listing 12-24 MonkeySeeAppDelegate.m

#import "MonkeySeeAppDelegate.h"
@implementation MonkeySeeAppDelegate
@synthesize window;
@synthesize navigationController;
- (void)applicationDidFinishLaunching:(UIApplication *)application {
 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
}

 Chapter 12: The Model-View-Controller Design Pattern 351

- (void)dealloc {
 [navigationController release];
 [window release];
 [super dealloc];
}
@end

In this application the two views shared data with each other programmatically using
the gotoNext: method.

- (IBAction) gotoNext: (id) sender {
 MonkeyDoViewController * monkeyDo = [[MonkeyDoViewController alloc]
initWithNibName:@"MonkeyDoViewController" bundle:nil];
 Monkey * aMonkey = [[Monkey alloc] init];
 monkeyDo.myMonkey = aMonkey;
 monkeyDo.myMonkey.myName = myMonkeyName.text;
 [self.navigationController pushViewController:monkeyDo animated:YES];
 [monkeyDo release];
 [aMonkey release];
}

Both view controllers are subviews of the navigation controller. The first view’s
bar button invokes the gotoNext: action when tapped. This method loads the
MonkeyDoViewController, creates a Monkey instance, and then assigns it to
the newly created MonkeyDoViewController’s myMonkey property. After doing
this, it pushes the MonkeyDoViewController to the navigation controller and the
MonkeyDoViewController is displayed with the data passed to it before being
displayed.

If you do not fully understand the navigation controller, or how the view was
displayed, don’t worry; for this example it is not important. What is important is that
you understand how you passed the data between the xibs. The controller in the first xib
instantiated the controller in the second xib. It then set the second controller’s relevant
properties. After setting the properties, it passed control to the second view controller,
which loaded its view.

 352 Objective-C for iPhone Developers: A Beginner’s Guide

Summary
In this chapter you learned about the Model-View-Controller (MVC) design pattern,
as implemented on the iPhone. As you encounter tutorials on the Web, you will see
many examples that mix the controller with the model. Realize this mixture is out of
convenience and not intended as production code. Always separate your model from your
controller. It allows easier debugging and modification, and makes your code easier to
understand.

Model data is often persisted between application invocations. On the iPhone, you
can persist data using the sqlite C-based database, using property lists, by archiving,
and through Core Data. You could, of course, implement your own persistence scheme;
however, these four techniques are much easier. As this is a book on Objective-C and not
the iPhone SDK, this chapter did not cover sqlite nor Core Data in any depth. You are
encouraged to review both these topics in more depth.

Another problem that perplexes beginning developers is passing data between views.
It is not as problematic as it might seem. The easiest way to accomplish this data passing
is by passing a data object to a view controller after it has been initialized from the xib,
but before the view has been loaded. Then, when the view calls its view controller’s
viewDidLoad, viewWillAppear:, and viewDidAppear: methods, the data
object has already been set and the view can initialize itself accordingly.

353

Index

Symbols
' ' (single quotes), char types, 35
/* (double forward slash), comments, 20
// (double forward slash), comments, 20
/n escape sequence, 14
: (colon), 95, 299
|| (logical or) operator, 39, 58–59
== (double equal signs), 57
= (single equal sign), 57
&& (logical and) operators, 39, 58
character, preprocessor directives, 19
%c, printing character to NSLog, 35
@ character, compiler directives, 19
{ } (curly brackets), 12

A
Absolute Beginner’s Guide to C (Perry), 10
accessor methods

creating for objects and primitives,
121–124

defined, 121
inheriting properties, 156–159
obtaining primitives from NSNumber,

221–222
using properties via, 125–126
using properties with protocols, 186–188

actions. See also IBActions, 311–314
activity diagrams, 80, 86
addTarget method, 311–314
adopting protocols

multiple, 176–186
overview of, 193–196
UIWebViewDelegate, 202–207

AdvancedArchiveAppDelegate.h,
290–294

All-In-One layout, Xcode, 23–24
alloc method

allocating objects, 99
creating accessor methods for objects and

primitives, 121–124
defined, 113
preventing memory leaks, 115

 354 Objective-C for iPhone Developers: A Beginner’s Guide

ancestry inheritance, 155–156
AND, joining Boolean expressions, 49
Apple’s App Store, 9–10
Apple’s iPhone Dev Center, 3–6
Applying UML and Patterns: An Introduction

to Object-Oriented Analysis and Design
(Larman), 81

archiveRootObject:toFile:
method, 279

archiving
creating with multiple objects, 290–294
multiple classes, 289–290
NSCoding protocol and, 279
NSKeyedArchiver and

NSKeyedUnarchiver classes
and, 279

overview of, 278
and unarchiving single object, 280–289

arguments, as synonym for parameters, 103
arithmetic operators, 36–38
arrays. See also NSArray class;
NSMutableArray class

C strings as, 67
enumerating through objects, 229–231
multidimensional, 67–68
pointers and, 66–67
structs and, 68–69
understanding, 66

arrayWithObjects: method,
NSArray, 225

arrows, 91
assign attributes, properties, 127–128
assignment operators, 40–41
attributes, property, 127–131
audio handling, 254, 255–258
autorelease pools, memory management with,

132–138, 308

B
background threads, 300–301, 303–307
base class, 146, 154

behavior
handling inheritance at runtime, 155
modeling with protocols, 175–176
understanding class, 84–87

binary data, 254–258
books. See resources, book
BOOL data type, 36, 56
Boolean expressions, 49
break keyword, 61–64
buttons. See also UIButton

adding to view, 178
assigning Xcode All-in-one layout,

23–25
connecting to action, 180–181
sharing data between xibs

programatically, 345–346
byte data type, 35

C
C, programming concepts

/n escape sequence, 14
comments, 20
compiler directives, 19
functions, 13
header files, 18
main method, 15–18
modifying helloworld.c, 13–14
overview of, 10
pointers, 21
preprocessor, defined, 20
preprocessor statements, 19
simple C program, 10–12
source files, 18
summary review, 21–26
variables, 12
Xcode fundamentals, 21–26

C strings
as character arrays, 36
converting NSString to, 217
initializing strings with, 217
understanding, 67

 Index 355

case statement, 61–63
casting, 41–42
categories, 207–211
char data type, 35–36, 67
child class

extending parent class, 159–162
inheritance hierarchy, 148–149
inheriting properties, 156–159
modeling inheritance, 147–148
replacing parent’s method, 162–163
simple inheritance and, 149–156
understanding, 147

@class compiler directive, 90–95, 177
class diagrams, 86–90, 147–148
class methods

alloc. See alloc method
beginning with plus sign, 84, 95–96
categories and, 208
creating simple, 97–98
creating using sequence diagram, 86
infix notation and, 96
overview of, 96–97

classes. See also Foundation framework
classes; inheritance

adopting protocols, 176–186, 193–196
behavior, 84–87
creating custom initializers for, 100–102
creating from class diagrams, 88–90
determining behavior of, 84–87
methods, 95–96
object-oriented analysis, 81–82
object-oriented programming and, 79–81
Objective-C, 82–83
objects vs., 82–83
overview of, 82–83
procedural programming, 77–79
property list, 267
using categories, 208–211
using @class directive, 90–95
using in lieu of structs, 48

code block symbols, 12

collections
defined, 223
NSArray and NSMutableArray,

224–228
NSDictionary and
NSMutableDictionary, 231–235

NSEnumerator and fast enumeration,
229–231

colon (:), 95, 299
comments, 20
compare: method, NSNumbers, 220–221
compiler directives, 19
compilers, 11
compound if statements, 58–59
conditional statements

break and continue, 64–65
if, 57–61
overview of, 56
short-circuit evaluation and, 58–59
switch, 61–63

conformsToProtocol: method, 196
contentsOfDirectoryAtPath:error

method, 242
continue statement, 64–65
controls

connecting to actions programatically,
311–314

tracing lineage of, 168–169
convenience constructors

initializing strings, 216–217
NSArray, 225
NSData, 254
NSNumber, 220–221
reading property lists, 268
working with, 225

convenience initializers, 100–102, 262–263
conversions, primitive data type, 41–42
copy attributes, properties, 127–128
copying files, 244–248
curly brackets ({ }), 12

 356 Objective-C for iPhone Developers: A Beginner’s Guide

D
dates, 222–224
dealloc method, 113, 143–144, 149–156
debug mode, Xcode, 24–25
default center, notifications, 302
#define preprocessor directive, 19
delegates, 201–203, 307–310
deleting files, 244–245
dictionaries. See NSDictionary class
dictionaryWithCapacity: method, 233
dictionaryWithObjects:forKeys:

method, 233
directories, iPhone, 238–241, 242–244
do while loops, 52–55
documentation

iPhone SDK, 6–10
opening on computer, 215–216
tracing inheritance hierarchy of

object in, 168
Xcode, 26

doneEditing action, 273–274
dot notation, 126–127
double data type, 33–35
double forward slash (//), comments, 20
double forward slash (/*), comments, 20

E
edit button, Xcode, 24
encapsulation, 121, 156
encodeWithCoder: method, 279–280
@end compiler directive, 83–84, 175
enumerator, 228–231
Environment class, 155
equal signs, 57
equality operator, 39
escape sequences, 14
expressions, 36–41
extending

parent class, 159–162
parent’s method, 163–164

protocols, 197–201
UIViewController, 169–171

F
false values, 49, 56
fast enumeration, 229–231
file handling

initializing string, 217
iPhone directories, 238–241
loading UIImage, 258–263
moving and copying file from bundle,

245–248
NSData, 254
NSFileManager, 241–245
NSString, 248–250
reading and writing binary file, 255–258
writing simple text file, 251–254

fileExistsAtPath: method, 242, 245
fileExistsAtPath:isDirectory:

method, 242
FileManagerViewController.m,

246–248
FileReaderViewController.h,

251–254
float data type, 33–35
flow control statements

Boolean expressions, 49
conditional statements. See conditional

statements
looping, 50–55
overview of, 48
true or false and BOOL, 56

for loops, 50–51, 53–55
for statement, 50
forums, 6–8
Foundation framework classes

importing header file to use, 214
NSArray and NSMutableArray,

224–228
NSDate and NSDateFormatter,

222–224

 Index 357

NSDictionary and
NSMutableDictionary, 231–235

NSEnumerator and fast enumeration,
229–231

NSNumber, 220–222
NSString and NSMutableString,

215–220
overview of, 224
writing to property list, 267–268

functions, C programming, 13–14

G
garbage collection, 112
GCC (Gnu C compiler), 11
getter= attributes, properties, 128
getter method, 121–126
Google, help, 6
gotoNext:action, 346, 351
guard conditions, 80
GuideViewController, 202–207

H
hashmaps, 231
header files, 18, 33, 214
helloworld.c, 11–14
help, getting, 5–8

I
IBActions

adopting multiple protocols, 195
adopting protocols, 177, 184–185
defined, 186
dynamically assigning to controls,

311–314
sharing data between xibs, 328, 332
sharing data between xibs

programatically, 343

IBOutlet compiler directive
adopting protocols, 177, 179
adopting UIWebViewDelegate,

202–204
creating and reading plist

programmatically, 272
Interface Builder and, 138–142
sharing data between xibs, 328–329,

331–333
sharing data between xibs

programatically, 343
id keyword

fast enumeration with, 230
as pointer to any class, 186
protocols and, 192–193
selectors only returning, 297

if statements, 57–61
ImageMovingViewController.h,

258–263
imageNamed: method, 262
ImageWritingViewController.h,

255–258
@implementation directive, 83–84
#import preprocessor directive, 19, 214
#include preprocessor directive, 19
Individual iPhone Developer program, 3–5
infinity, and data type conversion, 41
infix notation, 18, 95
inheritance

adding properties through, 156–159
ancestry, 156
extending parent, 159–162
modeling, 147–148
no method overloading in, 167
no overriding instance variables in, 167
overriding methods through, 162–166
simple, 149–156
superclasses, 102
syntax, 148–149
UIViewController and, 168–171
understanding, 146–147

 358 Objective-C for iPhone Developers: A Beginner’s Guide

init methods
initializing objects, 100–102
NSDate, 222
NSNumber, 220–221
simple inheritance, 149–156

initialization
array, 225–226
object, 100–102
string, 216–217

initWithCoder: method, 279, 280
initWIthContentsOfFile:
usedEncoding:error:init, 248

instance methods
beginning with minus sign, 84, 95
creating, 97–98
dealloc, 113, 143–144, 149–156
init. See init methods
understanding, 96–97

instance variables
accessor methods for object and

primitive, 121–124
extending parent class, 159–162
inheriting properties, 156–159
no overriding of, 167
setting or getting for class, 121

int keyword, 29, 31–33
integer data type, 29–32, 35–36
Interface Builder

adopting protocols, 178–180
adopting UIWebViewDelegate,

202–203
IBOutlet and, 138–142
using Window-based application

template, 43–44
@interface compiler directive, 83–84,

149–156, 176
adopting protocols, 176
simple inheritance, 149–156
understanding, 83–84

iPhone Dev SDK Forum, 7–8
iPhone Developer Program Portal, 5

iPhone SDK
directories, 238–241
documentation, 5–6
downloading and installing, 3–5
help, 5–10
introduction, 2–3
starting point, 15–17
using Window-based application

template, 42–45
writing Apps with C. See C,

programming concepts
Xcode bundled with, 21

iPhone SDK Programming: A Beginner’s Guide
(McGraw-Hill Professional, 2009), 5, 45,
72, 254

isAbsolutePath method, 249
isEqualToNumber: method, 220–221

K
keys, NSDictionary, 232–233

L
labels. See UILabels
lastPathComponent method, 249–250
lazy evaluation, 58–59
LDML (Locale Data Markup Language), 223
life-cycle events, 42–45
life-cycle methods, 71–72
loadPersistProperties action, 273
logical operators, 39, 58
long qualifier, integers, 29, 31–33
loops

do while, 52
for, 50–51
overview of, 50
relying on Boolean expressions, 49
while, 51–52

 Index 359

M
macros, preprocessor, 19
main method

integer types and, 31
logging double and float to NSLog,

34–35
overview of, 15–17
using Window-based application

template, 42–43
MainViewController.h, 280
MainViewController.m, 268–272,

280–281
manual memory management. See memory

management, manually
memory

pointers to location of, 21
primitive data types and, 28

memory management
with autorelease pools, 132–138
creating accessor methods, 121–124
encapsulation and, 121
overview of, 112
using properties. See properties

memory management, manually
exploring object’s retain count, 117–120
within method, 114–115
overview of, 113–114
using nil keyword with objects,

120–121
weak references and retaining, 115–117

message dispatching, 156
messaging. See methods and messaging
methods

class, 84
creating class, 86
declaring, 95
initializing arrays, 225
instance and class, 95–96
memory management within, 114–115
multiple argument, 103–104

naming conventions when with/without
parameters, 299

no overloading of, 167
NSFileManager class, 241–242
NSObject memory management, 113
Objective-C, 18
obtaining substrings, 218–219
overriding. See overriding methods
using autorelease in, 133–138
using colon to take parameter, 95

methods and messaging
allocating objects, 99
class and instance methods, 96–98
implementing StockPurchase

program, 104–109
initializing objects, 100
multiple argument methods, 103
overview of, 95–96
superclasses, 102
writing custom initializers, 100–102

model classes
adding persistence to, 324–327
creating simple MVC game, 318–323
creating using inheritance, 169–171
MVC architecture, 316–318

modeling
inheritance, 147–148
protocols, 175

moveItemAtPath:toPath:error:
method, 245

moving files, 244–248
multidimensional arrays, 67–68
multithreaded applications, 300–301
MVC (Model-View-Controller) design pattern

adding persistence, 324–327
creating simple game with, 318–323
iPhone applications and, 316–318
multiple xibs, 328
sharing data between xibs, 328–340
sharing data between xibs

programatically, 341–351

 360 Objective-C for iPhone Developers: A Beginner’s Guide

myChar variable, 35
MyPropertiesViewController.h,

272–278

N
naming conventions, variables, 12
narrowing conversions, 41
navigation controller, 341–351
nested if statements, 57
New File dialog, 268–269
New Project dialog, 15–16, 30–32
.nib files, 243
nil keyword, 120–121, 143–144, 277
nonatomic attributes, properties,

127, 129–130
notifications, 301–307
NPMediaPlayer class, 30
NSArray class

and its plist, 266–267
and NSEnumerator, 229
overview of, 224–225
preserving to property list, 268–272
using in lieu of arrays, 48

NSBundle class, 240–241
NSCoding protocol, archiving, 279, 280
NSCopying protocol, 233
NSData class

defined, 35
holding binary data, 254
loading image into UIImage, 257–258,

262–263
NSDate class, 222–224, 268
NSDateFormatter class, 222–224
NSDictionary class, 231–235, 302
NSDirectoryEnumerator class, 243
NSEnumerator, 229–231
NSFastEnumeration protocol, 229–231
NSFileManager class

determining if file exists, 242
listing content of directory, 242–244

methods, 241–242
moving, copying and deleting files,

244–248
NSHomeDirectory class, iPhone, 239
NSKeyedArchiver class, 278–279, 289–290
NSKeyedUnarchiver class, 278–279, 290
NSMutableArray class

adding, removing, replacing objects, 226
defined, 224
initializing mutable array, 226
iterating using fast enumeration, 230–231
and NSEnumerator, 229
using, 226–228

NSMutableDictionary class, 231–235
NSMutableString class, 208–211,

215–220
NSNotification class, 302
NSNotificationCenter, 302
NSNumber class, 220–222, 230, 268
NSObject class

allocating objects, 99
ancestry inheritance, 155
inheriting properties, 157, 160
initializing objects, 100
memory management, 113–115
modeling inheritance, 147–155
overriding methods through inheritance,

164–165
performSelector methods, 297
UIView class reference, 168
understanding inheritance, 102
using selectors, 297–299
weak references and retaining, 115–117

NSOrderedAscending result, 220
NSOrderedDescending result, 220–221
NSOrderedSame result, 220–221
NSRange data type, 219
NSSearchPathForDirectoriesInDoma
ins method, 239

NSString class
file-related methods, 242, 248–250
as immutable, 215

 Index 361

initializing strings, 216–217
NSMutableString, 219–220
obtaining substrings, 218–219
opening documentation, 215–216
working with strings, 218
writing Objective-C programs for

iPhone, 35
writing to property list, 268

NSTemporaryDirectory method, 240
NSUTF8StringEncoding, 248
NULL keyword, 121
numbers. See also NSNumber class, 220–222
numberWith<type>: convenience

constructor, 220
numeric types

char, 35–36
float and double, 33–35
integer, 29–33
NSNumber and, 220

O
object-oriented analysis, 81–82
object-oriented programming

activity diagrams, 80
classes vs. objects, 82–83
determining class behavior, 84–87
object-oriented analysis, 81–82
Objective-C classes, 83–84
overview of, 79–81

objectAtIndex: method, 228
objectForKey: method, NSDictionary,

232, 234
objects

adding to main window, 329–330
classes vs., 82–83
creating accessor methods for, 121–124
object-oriented programming and, 79–81
serializing using writeToFile:

atomically:, 267–268
online resources. See resources, online

operators, primitive data types, 36–41
OPTION-CLICK, 215–220
@optional compiler directive, 189
optional methods, protocols, 188–191
OR, joining Boolean expressions, 49
overriding instance variables, 167
overriding methods, 162–166
ownership

memory management and, 116
properties and, 131–132
understanding, 113

P
parameters

arguments as synonym for, 103
methods using colons when taking, 95
multiple argument method declaration,

103–104
naming conventions for methods with/

without, 299
parent class

extending, 159–162
inheritance hierarchy, 148–149
inheriting properties, 156–159
modeling inheritance, 147–148
in simple inheritance, 149–156
understanding, 147

pathComponent method, NSString, 249
pathExtension method, NSString, 249
paths, file

NSString methods, 248–250
obtaining, 238–241
string functions related to, 218

PenguinHuntingViewController,
318–323, 324–327

performSelector methods, NSObject,
297–299

performSelectorInBackground:
withObject: method, 300, 309

 362 Objective-C for iPhone Developers: A Beginner’s Guide

performSelector:withObject:
afterDelay: method, 300–301, 305–309

persistence, adding, 324–327
playSound method, 256–257
pointers, 21, 66–67
pools, autorelease, 132–138
preprocessor, 20
preprocessor directives, 19
primitive data types

BOOL data type, 36
char data type, 35–36
conversions, 41–42
creating accessor methods, 121–124
numeric types: float and double, 33–35
numeric types: integers, 29–33
and operators, 36–41
overview of, 28
UIWindow application template, 42–45

printf function, 12
printing, Apple’s PDF documentation, 6
procedural programming, 77–79, 81
properties

adopting protocols, 177–178
attributes, 127–131
deallocating and nil, 143–144
declaring, 125–126
declaring in protocols, 186–188
inheriting, 156–159
overview of, 125
understanding ownership, 131–132
using dot notation to get, 126–127
using IBOutlet and Interface Builder,

138–142
property lists

adding persistence using, 324–327
creating and reading programmatically,

272–278
overview of, 266–267
preserving NSArray to, 268–272
reading, 268
writing, 267–268

@protocol compiler directive
adopting protocols, 177
property attributes, 127–131
property declaration, 125
protocol syntax, 175

protocols
adopting, 176–186
adopting multiple, 193–196
adopting UIWebViewDelegate,

202–207
defined, 174
and delegates in UIKit, 201–203
extending, 197–201
as method parameters with id, 192–193
modeling using UML, 175
optional methods, 188–191
syntax, 175–176
understanding, 174–175
using properties with, 186–188

prototypes, 33

R
rangeOfString method, NSString, 219
reading, property lists, 268
readonly property, 127–128
readwrite attributes, properties,

127–128
reference counting, 113
registration, Apple’s iPhone Dev Center, 3
release method, 113, 115, 121–124
removeItemAtPath: method,
NSFileManager, 245

@required compiler directive, 189
resources, book

activity diagrams, 80
beginner’s book on C, 10
creating and reading plist

programmatically, 277–278
iPhone SDK programming, 5
UIView, 72

 Index 363

UML, 76
UML and object-oriented

programming, 81
use case analysis, 81

resources, online
activity diagrams, 80
Apple’s iPhone Dev Center, 3
BOOL data type, 56
Boolean algebra, 49
escape sequences, 14
iPhone Dev SDK Forum, 7–8
notification programming, 303
procedural programming, 78
property lists, 278
use case analysis, 81

resources, storing in project’s Resource group,
240–241

respondsToSelector: method, 189
retain attributes, properties, 127–132
retain method, 113, 122–124, 217
retainCount variable

creating accessor methods, 121–124
exploring object’s retain count,

117–120
understanding, 113
weak references and, 115–117

return values, functions and, 13
root directory, 239

S
sandboxes, defined, 238
SEL type, 296
@selector compiler directive, 189, 296–297
SelectorDelayViewController,

303–310
selectors

creating, 296–297
delaying or running in background,

300–301
using, 297–299
using delegate with, 307

using in background thread with
notification, 303–307

using notifications with, 301–303
using with delay and delegate, 308–310

sequence diagrams, 85–86
serializing objects, 267
Setter attributes, 127–129
setter= attributes, properties, 128
setter method, 121–126
short-circuit evaluation, 58–59
short qualifier, integers, 29, 31–33
single quotes (' '), char types, 35
sizeof() method, 31–32
snapshots, project, 26
source files, 18, 33
StockPurchase program, 104–109
“String Programming Guide for Cocoa,” 217
stringByAppendingPathComponent:

method, 242, 244, 246–247, 249
stringWithContentsOfFile:
encoding:error method, 248

structs, 68–70
subclasses. See child class
substringFromIndex: method,

218–219
substrings, obtaining, 218–219
superclasses. See also parent class, 102
switch statement, 61–63
@synthesize directive, 125–126, 186–187

T
Tab Bar application, creating, 328–340
target-action, 311–314
TargetActionViewController,

311–314
tasks, procedural programming, 78–79
text fields, 272–278, 330
text files

creating, 246–248
NSString methods, 248–250
writing simple, 251–254

 364 Objective-C for iPhone Developers: A Beginner’s Guide

TextEdit, 11, 13–14
time, 222–224
true values, 49, 56
truth tables, Boolean evaluation, 49
typedefs, 82

U
UIActivityIndicatorView, 303–307
UIBarButtonItem, 168, 272, 275, 343, 349
UIButton

adding, 258–259
connecting control to action

programatically, 311–314
creating simple MVC game, 318,

320–321
tracing lineage of, 168

UIControl class, 311–314
UIImageView control, 255–263
UIKit, 201–203
UILabels

adding to view’s canvas, 179
archiving and unarchiving object,

280–281
connecting controls to actions

programatically, 311–314
properties, 179–180
sharing data between xibs, 329, 336, 340
sharing data between xibs

programatically, 343–344, 346
using IBOutlet and Interface Builder,

138–142
UINavigationController, 341, 350
UITextFields, 272–274, 330–331
UITextView, 251–254
UIToolbar, 272–273
UIView

creating simple MVC game, 318–323
inheritance and, 168–171
MVC architecture and, 316–318
overview of, 71–72

UIViewController
adopting UIWebViewDelegate,

202–207
creating simple MVC game, 318–323
inheritance and, 168–171
life-cycle methods, 71–72
MVC architecture and, 316–318
sharing data between xibs, 328–340
sharing data between xibs

programatically, 341–351
UIWebView, 201–204
UIWebViewDelegate protocol, 201–207
UML Demystified (Kimmel), 76, 80–81
UML (Unified Modeling Language)

modeling inheritance, 147–148
modeling protocols, 175
object-oriented programming and, 81
overview of, 76

unarchiveObjectWithFile method, 279
unary operators, 38
unsigned qualifier, integers, 29–33
URLs, initializing strings, 217
use case analysis, 81
UTF-8 encoding, 217
Utility Application template, 53, 71–72

V
values

assigning variable, 12
Boolean expressions resulting in

Boolean, 49
functions and, 13
using arrays for multiple, 66–68

variables
C programming, 12
creating expressions with, 36–41
representing data types. See primitive

data types
viewDidAppear: method, 269, 322
viewDidDisappear: method, 269

 Index 365

viewDidLoad: method, 280–281, 306, 312,
343–344

viewDidUnload: method, 280–281
ViewHandler class, 340
viewWillAppear method, 303–306,

308–310

W
weak references, 116–117, 132
while loop, 51–55
Wikipedia, 6–7
Window-based application template, 30–32,

42–45
workflows, 11, 80
writeToFile:atomically:encoding:
error method, 249, 268

writeToFile:atomically:error:
method, 267–268

writing, property lists, 267–268

X
Xcode

configuring, 22–24
creating property list in, 269–270
interface, 18
iPhone starting point, 15–17
overview of, 21
Project window, 21–22

xibs, 243, 328–340
XML, 266–267, 277
XML: A Beginner’s Guide (Holzer), 277

	Contents
	Acknowledgments
	Introduction
	1 Exploring the iPhone SDK and Basic Programming
	Downloading the SDK
	Documentation and Getting Help
	SDK Documentation
	Apple’s Online Documents and Forums
	Google
	Wikipedia
	The iPhone Dev SDK Forum

	Basic Programming Concepts Using C
	A Simple C Program
	Variables
	Functions
	Objective-C’s Main Method
	Header Files and Source Files

	Pointers
	Xcode Fundamentals
	Configuring Xcode’s Display
	Exploring Xcode Further

	2 Primitive Data Types and Operators
	Primitive Data Types
	Numeric Types: Integers
	Numeric Types: Float and Double
	Characters
	The BOOL Data Type

	Operators
	Arithmetic Operators
	Unary Operators
	Equality and Logical Operators
	Assignment Operators
	Data Type Conversions

	The UIWindow Application Template

	3 Flow Control Statements, Arrays, and Structures
	Boolean Expressions
	Looping
	The For Loop
	The While Loop
	The Do While Loop

	True or False and BOOL
	Conditional Statements
	The If Statement
	The If Else Structure
	The If Else If Else Structure
	The Switch Statement
	The Break and Continue Statements

	Arrays and Structures
	Arrays
	The Struct Keyword

	The UIViewController’s Life-Cycle Methods

	4 Classes, Objects, and Messaging
	Object-Oriented Programming vs. Procedural Programming
	Procedural Programming
	Object-Oriented Programming: Classes and Objects
	Object-Oriented Analysis
	Classes and Objects

	Objective-C Classes
	The @interface
	The @implementation

	Object-Oriented Programming: Behavior
	Class Interaction
	The @class Directive

	Methods and Messaging
	Class and Instance Methods
	Allocating and Initializing Objects
	Initializing Objects
	Writing Custom Initializers
	Multiple Argument Methods

	5 Memory Management and Properties
	Memory Management
	Manual Memory Management

	Encapsulation and Memory Management
	Properties
	Declaring Properties
	Dot Notation
	Property Attributes

	Ownership and Properties Revisited
	Autorelease and Pools
	Autorelease and Custom Classes

	IBOutlet and Interface Builder
	Deallocating and Nil Revisited

	6 Inheritance
	Inheritance
	Inheritance Explained

	Ancestry Inheritance
	Inheriting Properties
	Extension
	Overriding Methods
	Replacing a Parent’s Method
	Extending a Parent’s Method

	No Overriding Instance Variables and No Overloading
	No Overriding Instance Variables
	No Method Overloading

	Inheritance and UIViewController

	7 Protocols and Categories
	Protocols
	Modeling Protocols
	Syntax
	Adopting a Protocol
	Properties and Protocols
	Optional Methods
	Protocols and id
	Adopting Multiple Protocols
	Extending Protocols
	Protocols and Delegates in UIKit

	Categories
	Categories Explained

	8 Some Foundation Framework Classes
	NSString and NSMutableString
	NSNumber
	NSDate and NSDateFormatter
	Collections
	NSArray and NSMutableArray
	NSEnumerator and Fast Enumeration
	NSDictionary and NSMutableDictionary

	9 File Handling
	iPhone Directories
	NSHomeDirectory
	NSSearchPathForDirectoriesInDomains
	NSTemporaryDirectory
	NSBundle

	File Handling
	NSFileManager
	NSString, Paths, and Text Files
	NSData

	10 Property Lists, NSCopy, and Archiving
	Property Lists
	Writing a Property List
	Reading a Property List

	Archiving
	NSCoding Protocol
	NSKeyedArchiver and NSKeyedUnarchiver

	11 Selectors and Targets
	Selectors
	Delaying a Selector or Running in Background

	Notifications
	Delegates

	Target-Action

	12 The Model-View-Controller Design Pattern
	The Model-View-Controller Design Pattern
	Persistence
	Multiple Xibs

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

