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Preface

Computers are widely employed in almost all the activities of today’s modern
man. They are used by people of all ages in a variety of environments. We rec-
ognize the computer as a set of devices, such as the main case, monitor, key-
board, mouse, etc., collectively called the hardware. In one session’s work with
the computer, we turn it on, wait a few seconds until it is ready for use, and
then start asking the operating system to run our program of choice.
Therefore, it is correct to assume that every computer has an operating system.

The Operating System (OS) is the most essential program of all without
which it becomes absolutely cumbersome to work with a computer. It is the
interface between the hardware and us (i.e., computer user), making it much
easier and more pleasant to use the hardware. Familiarizing ourselves with the
operating system and its services helps us to utilize the computer in a more
effective manner and to do our jobs well. With this in mind, we need to know
the operating system’s services and how to make use of them. The operating
system itself has to be written so that it can exploit the hardware in the most
efficient way possible. Much effort has been put into this matter. Since the
computer was invented in the 1940s, many scientists have strived to make this
software user-friendly and efficient for the operation of the hardware. The net
result is truly a masterpiece that utilizes a multitude of innovations and the
fruit of much hard work.

There are tens of operating systems of different sizes and brands, and hun-
dreds of books instructing us how to use them. Also, many innovators and
authors have written books on explaining the design concepts of the operating
system. The expected readers of the latter are operating system professionals
and university students that are taking courses about similar subjects.

In this book, we first discuss a less clarified aspect of the operating system,
namely the way the operating system takes over the hardware and becomes the
real internal owner of the computer. This knowledge, plus a macro view of
what the operating system does and how it does it, provides an insight and
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xiv  Operating System

advantage to make better use of the overall facilities of the computer. It also
provides the basis for a more comprehensive understanding of the complex
aspects of the operating system. Then, we elaborate on concepts, methods, and
techniques that are employed in the design of operating systems.

This book is for everyone who is using a computer but is still not at ease
with the way the operating system manages programs and available resources
in order to perform requests correctly and speedily. High school and university
students will benefit the most as they are the ones who turn to computers for
all sorts of activities, including email, Internet, chat, education, programming,
research, playing games etc. Students would like to know more about the pro-
gram that helps out (in the background) to making everything flow naturally.
It is especially beneficial for university students of Information Technology,
Computer Science and Computer Engineering. In my opinion, this book must
definitely be read by students taking an operating systems course. It gives a
clear description on how advanced concepts were first invented and how they
are now implemented in modern operating systems. Compared to other uni-
versity text books on similar subjects, this book is downsized by eliminating
lengthy discussions on subjects that only have historical value.

In Chapter One, a simplified model of computer hardware is presented. We
refrained from including any detail that is not directly related to our goals. The
fetch-execute cycle of performing instructions is described in this chapter.

In Chapter Two, the role of Basic Input Output System (BIOS) in initial sys-
tem checking and the operating system boot process is explained. The layered
view of the operating system is elaborated on. The kernel (the essential part of
the seed of the operating system) and its role in helping fulfill the needs of
other layers of the operating system and computer users is talked about.
Another important issue called computer security and protection is explained.

Chapter Three describes the reasons behind multiprogramming, multitask-
ing, multiprocessing, and multithreading. The most fundamental require-
ments for facilitating these techniques are also discussed in this chapter. A brief
discussion on process states, the state transition diagram, and direct memory
access is provided. The basic foundations of multithreading methodology and
its similarities and dissimilarities to multiprogramming are highlighted.

Chapter Four is about processes. Important questions are answered in this
chapter, such as: What is a process? Why and how is a process created? What
information do we need to keep for the management of every process? How is
a process terminated? What is the relationship between a child process and its
parent process? When is a process terminated? A short discussion is included
on the properties of process-based operating systems. The real-life scenarios of
this chapter are based on the UNIX operating system which is a process-based
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operating system. This chapter emphasizes the process as the only living entity
of process-based operating systems. Possible state transitions of processes are
discussed and the role of the operating system in each transition is explained.

Chapter Five focuses on threads. Despite the existence of processes, the rea-
son for using threads is explained along with its relation to processes. Some
operating systems are thread-based. Kernel functions of this kind of operating
system are performed by a set of threads. In addition, a primary thread is gen-
erated as soon as a process is created. Other questions are studied in this chap-
ter, like: What is a thread? Why and how is a thread created? What information
do we need to manage every thread? How is a thread terminated? What is the
relationship between a child thread and its parent? When is a thread termi-
nated? Examples are taken from the Windows Operating System. Possible state
transitions of threads are discussed and the role of the operating system in
each transition is explained.

Scheduling is the subject of Chapter Six. It is one of the most influential
concepts in the design of efficient operating systems. First, related terms:
request time, processing time, priority, deadline, wait time, and preemptability
are defined here. Next, scheduling objectives are discussed: maximizing
throughput, meeting deadlines, reducing average turnaround time, reducing
average response time, respecting priorities, maximizing process utilization,
balancing systems, and being fair. Four categories of scheduling, namely high
level, medium level, low level, and I/O scheduling, are distinguished. Many
algorithms used in scheduling processes in single processor environments are
investigated. They include: first come first served, shortest job next, shortest
remaining time next, highest response ratio next, fair-share, and round robin.
Most of these scheduling algorithms are also usable in multiprocessor environ-
ments. Gang-scheduling is also examined for multiprocessor systems.
Intelligent rate-monotonic and earliest deadline first algorithms are widely
utilized algorithms in the scheduling of real-time systems. These schedulers
are introduced in this chapter. The case studies presented are based on the
Linux operating system.

Chapter Seven investigates memory management policies. It briefly intro-
duces older policies like single contiguous partition, static partition, dynamic
partition, and segmentation memory management. Non-virtual memory
management policies are discussed next. Relocatable partition memory man-
agement and page memory management are also two other subjects covered.
The emphasis of the chapter is on virtual memory management policies.
Above all is the page-based virtual memory management policy that is fol-
lowed by almost all modern operating systems. A good portion of this section
is devoted to page removal algorithms. The page table of large programs takes
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a great deal of memory space. We have presented multi-level page table organ-
ization as a method for making the application of virtual memory techniques
to page tables possible. Windows uses a two-level page table and this model is
investigated in detail, as a case study of the multi-level page table policy. We
carefully studied address translation techniques that are an essential part of
any page memory management as well as demand-page memory management
policies. Both internal and external fragmentations are looked into. At the end
of the chapter, a complementary section on cache memory management is fea-
tured. Real-life techniques of presented in this chapter are based on the UNIX
operating system.

Processes that run concurrently compete for computer resources. Every
process likes to grab its resources at the earliest possible time. A mediator has to
intervene to resolve conflicts. This mediator is the interprocess communica-
tion/synchronization subsystem of the operating system. Race condition, critical
region, and mutual exclusion concepts are first defined. It has been found that by
guaranteeing mutual exclusion, conflict-free resource sharing becomes possible.
Methods to achieve this are categorized into five classes, namely disabling inter-
rupt, busy-wait-based, semaphore-based, monitor-based, and message-based
methods. We have covered these approaches to process communication/syn-
chronization in Chapter Eight.

Deadlock is an undesirable side effect of guaranteeing mutual exclusion.
This concept is explained and the ways of dealing with deadlock are discussed.
Ignoring deadlock, deadlock prevention, deadlock avoidance, and deadlock
detection and recovery are four approaches discussed in Chapter Nine.
Another less important side effect is starvation. The dinning philosophers’
dilemma, as a classic example of interprocess communication problem, is
defined. It is shown that straightforward solutions may cause deadlock and
starvation. We have provided an acceptable deadlock and starvation-free solu-
tion to this problem. In this context, the concept of starvation is elucidated.

Chapter Ten is dedicated to operating system categorization and an intro-
duction to new methodologies in operating system design. With the
advances in software technology, operating system design and implementa-
tion have advanced, too. In this respect, monolithic operating systems, struc-
tured operating systems, object-oriented operating systems, and agent-based
operating systems are distinguished. Based on the acting entities, operating
systems are categorized as process-based, thread-based, and agent-based.
The differences of these categories are highlighted in this chapter. The kernel
is an important part of every operating system. We have differentiated
among macro-kernel, microkernel, and extensible kernels. Extensible kernel
design is a new research subject and much effort is going into producing
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commercial extensible kernels. One more categorization parameter is the
hardware structure on which an operating system sits. The platform could be
single-processor, multiprocessor, distributed system, or Internet. Properties
of the corresponding operating systems are described. Real-time systems
require special operating systems in order to provide the quality of service
necessary for these environments. Real-time and non-real-time operating
systems are the last topics that are investigated in this chapter.

I would like to express my gratitude to my wife, son, and daughter for their
encouragement and patience. Their support made the writing of this book a
pleasant task for me. In addition, I would like to thank Victoria Balderrama for
her assistance in proofreading the text.
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Chapter 1

Computer Hardware Organization

A computer is composed of a set of hardware modules properly connected
together to interact in such a way that the total system is reliable and performs
its duty in a correct manner. The operating system sits on top of the computer
hardware. It uses hardware facilities to do what it is supposed to do. To under-
stand the operating system, it is very helpful if a simplified view of the hard-
ware is shown first. Going into the details of modules and circuits is not
necessary and doing so will divert our attention from our main purposes.

A computer is a device that runs programs. A program is a set of instruc-
tions that is prepared to do a specific job. Different programs are written to do
different jobs. This makes a computer able to
do different things for us. A program is nor-
mally stored on a disk. This may be a Compact
Disc (CD), diskette, etc., but it has to be in the
computer’s Main Memory (MM) in order to
run. The main memory of a computer is usu-
ally called Random Access Memory (RAM)-see
side textbox. As soon as a program is ready for
running it is no longer called program, rather, it
is called a process. We will not be choosy, in this chapter, and however will use
program and process interchangeably.

What brings the program to the main memory? Of course, another pro-
gram called loader, with the help of the Operating System (OS). Using a com-
puter language, programs are written by human programmers. These
programs have to be translated to a computer friendly language that is usually
call machine language. What performs the translation? Once again, a program
called translator, with the help of the operating system, does this.

Main memory is called
random access because the
access time of all locations
is the same. It does not
matter whether the location
in the memory is at the
beginning, at the end, or
anywhere in between.
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1.1 The Fetch-Execute Cycle

The computer reads an instruction from the RAM and moves it to a temporary
place called the Instruction Register (IR) in the Central Processing Unit
(CPU). It then finds out what has to be done with respect to this instruction
and performs the action. The computer repeats this cycle of moving an
instruction from the main memory to the CPU and executing it over and over
again. A more detail course of action is shown in Figure 1.1.

Fetch cycle

Read the instruction pointed out
by the Program Counter (PC)
register from main memory and
move it to the CPU

Find out what this instruction is

v

Adjust PC for the next instruction

Execute cycle

Move the data upon which the
instruction has to be executed from
main memory to the CPU.

Execute the instruction, i.e.,
perform what is requested by the
instruction. Perhaps this may
readjust the PC.

Figure 1.1: A simplified functional model of a computer
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In Figure 1.1, the PC is the register
that keeps track of what instruction
has to be executed next. The PC is
automatically filled with an initial
value when the computer is started
and thereafter it is updated as shown
in the figure. Instructions come from
a program that is currently being exe-

A register is a temporary small
memory within the CPU.

In some texts, the PC is called the
Location counter (LC), but when
distinction is necessary, we will use LC
when talking about a pointer that points
to the next instruction of the current
program and PC when we mean the

cuted. Within a Prograén’ ﬁhen M| register within the CPU that holds the
nstruction 1s executed, the next current program’s LC.

instruction to be fetched is most likely To fetch means moving an

the one hi_m,mediatelly fo}}iowmg' instruction from the main memory to
However, this is not always the case. the CPU and performing some

Lﬁ’ ok at the piece of grogrjmf below | o eliminary actions like adjusting LC
thatis written in pseudo code format. | anq gecoding the instruction (finding
out what operation it is.)

I. IfA>B A pseudo-code is an algorithm (or
2. then print A piece of algorithm) expressed in a
3. elseprint B simplified language similar to that of a
4 endif programming language, but is not an

actual one.

Here, we would like the computer to either execute instruction 2 or instruc-
tion 3, but not both. There must be a way to jump over instruction 2 when we
do not want to execute it. This is actually done by a jump instruction. The exe-
cution of a jump instruction is to change the content of the PC to the address
of the next instruction that has to be executed.

The model presented in Figure 1.1 is for a IeeT
sequential computer, that is, roughly speak-
ing, a computer with one general processing
unit called the CPU. There are other comput-
ers called multiprocessor computers that are
much faster than sequential computers and
can run more than one programs simultane-
ously. Most of the computers that we are using, e.g., personal computers, are of
the sequential type.

During the execution of a program, instructions and data are taken from
main memory; therefore, it is necessary to have these ready beforehand. This
technique is called stored-program concept and was first documented by John
Von Neumann. According to this concept, programs, data, and results are

Von  Neumann,
Presper Eckert, John Mauchly,
and Hermann Goldstine are
on the list of scientists who
invented the first electronic
digital computer.
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stored in the same memory, as opposed to separate memories. The innovation
of stored-program was a giant step forward in advancing the field of computer
science and technology from punched cards to fast reusable memories.

The central processing unit of a computer is composed of the Arithmetic
Logic Unit (ALU), the Control Unit (CU), special registers, and temporary
memories. The ALU is the collection of all circuitry that performs arithmetic
and logic operations like addition, multiplication, comparison, and logical
“AND.” The CU is responsible for the interpretation of every instruction, the
designation of little steps that have to be taken to carry out the instruction, and
the actual activation of circuitries to do each step. We have already used special
registers. Two of which are the instruction register and the program counter.
There are other registers for holding current instruction’s results, computer
status, and so on. There are also one or more sets of registers that are reserved
for the program that is running, (i.e., being executed). Data that is needed fre-
quently, or will be needed in the near future, can be kept in these registers. This
way, we save time by not sending them back and forth to the main memory.
Cache memory is also an essential part of current computers. It is a relatively
larger temporary memory that can store a good portion of a program’s data
and instructions. They are actually copies of the same data and instructions
that reside in main memory.

1.2 Computer Hardware Organization

Within every computer there are many hardware devices. The control unit,
arithmetic-logic unit, cache memory, and main memory are basic internal
devices. Other devices are either installed internally or as external devices. All
of these devices collectively form the Input/Output Unit (IOU) of the com-
puter. Figure 1.2 illustrates a hardware model of a general-purpose computer.
Only essential connections are shown in this figure.

A general-purpose computer is able to run different programs. Therefore, it
can perform variety of tasks and it is not restricted to doing one (or very few)
tasks. On the other hand, we can think of special-purpose computers. A spe-
cial-purpose computer is designed and built to be used in a specific environ-
ment and do one or a few specific tasks, efficiently. In this kind of computer,
the program that it runs does not change very often. In reality, all modules of a
computer are connected via an internal bus.

The bus can be viewed as a three-lane highway, with each lane assigned to a
specific use. One lane is for transferring data, another for transferring
addresses and the third for controlling signals.
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Input Main Output
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Figure 1.2: Computer organization model
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We all know what data is. 123 is a datum, “John” is a datum, etc. If a
datum/instruction is needed from the main memory, the requesting device

must supply the address in the main
memory. The same is true for storing a
datum/instruction in the main memory.
Addresses travel via the address bus. An
address is the identity of a location in
the main memory. To access the main
memory we must supply the location to
be accesses. This is the essential property
of contemporary main memories.

In a computer every single micro-

Every byte (collection of cells) in
the main memory is given an
address that facilitates referring to
that byte. Addressing starts from
zero, which is assigned to the first
byte of the memory. By giving
consecutive integers to consecutive
locations, addressing continues up
to the last location of memory.

activity is performed under the control and supervision of the control unit.
The control unit commands are sent through the control bus. For its decision-
making, the control unit collects information from almost all devices that are
connected to the computer. For example, a command should not be sent to a
device that is not turned on. The control unit must make sure the device is
ready to accept the command. Such information is collected from the device

itself.

The majority of computer devices are not directly connected to the com-
puter’s internal bus. A device is inserted in a port that is connected to the bus.
There are mechanisms for possessing the address bus and data bus, otherwise

data and addresses from different devices could become mixed up. A model of

the bus-based computer organization is shown in Figure 1.3.
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Centra}l Main Monitor Mouse

Processing Memory

Unit (CPU) (MM)
Control bus
Address bus
Data bus

Hard Disk Internet
: o o 0
(HD) Connection

!

Figure 1.3: Bus-based computer organization

Hardware devices, other than the CPU and MM, have to be installed before
use. The mouse, diskette
device, light pen, etc. are some
of these devices. Installing a
device involves registering the
device with the operating sys-

A driveris a piece of software (program) that
is used as an interface between a hardware
device and the external world. It is usually
designed by the device manufacturer in such a
way that the device is used in a highly efficient

tem and providing a device
driver for communication
between the device and other
parts of the computer. The
installation process is started
either automatically by the

and appropriate way. This is a good reason for
using the manufacturer's provided driver.
Operating systems have drivers for almost all
devices however, due to these driver's
generality, they may not work as efficiently and

as fast as the manufacturer’s specified drivers.

operating system itself or
manually by the user. Today’s
operating systems are intelligent; and once the computer is turned on, the OS
recognizes almost all of newly connected hardware devices and immediately
begins the installation process. Therefore, a device for which the installation
process starts automatically by the operating system and which usually does
not require any human intervention, is called a plug-and-play device. Few
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hardware devices have the user manually initiate the installation process. If this
is the case, then the OS will interact with the user to complete the process.

Without any software, the computer is called a bare machine, having the
potential to perform many functions but no ability to do so in its present
state. We will add other features, in a layered fashion, to make our computer
handy and user friendly. The current view of our abstracted computer is
shown in Figure 1.3.

Computer
Hardware
(Bare Machine)

Figure 1.3: A bare machine

1.3 Summary

From the hardware point of view, a computer is composed of a set of devices,
each intended to perform a specific task. The modular design of computer sys-
tems has made the task of constructing it much easier and more reliable com-
pared with the monolithic design method. Nevertheless, the design of a
computer system is so complex that understanding it requires a certain back-
ground including many university courses. In any case, knowledge of all hard-
ware details is not needed to comprehend how an operating system is designed
and how it uses hardware facilities to help run programs correctly and effi-
ciently. A simple understanding of computer hardware is absolutely necessary
to cover topics in the coming chapters. The fetch-execute cycle explains the
microinstructions involved in executing each machine instruction and the
many devices and circuits involved in the execution of instructions. This
knowledge is immensely helpful for comprehending how programs are exe-
cuted and how program switching is done. A global organization for computer
hardware provides a basis for all kinds of communication among the essential
modules of the system.

1.4 Problems

1. The processor checks for an interrupt at the start of each fetch cycle. If there
is an unmasked interrupt, the processor has to handle the interrupt(s) first,
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before fetching the next instruction. Modify the first part of Figure 1.1 so
that it reflects this notion.

2. In the fetch-execute cycle, in order to adjust the PC for the next instruc-
tion, the length of current instruction, expressed in bytes, is added to the
PC. Categorize your computer’s processor instructions based on their
length.

3. What are the benefits of adjusting the PC register during the fetch cycle
even though we have to readjust it during the execute cycle for some
instructions?

4. For a processor that uses two different segments, i.e., the code segment
and data segments for instructions and data, respectively, how would you
explain the stored-program concept?

5.  Explain the advantages and disadvantages of bus-based organization ver-
sus point to point connection.

6. Suppose you have just bought a new personal computer. No operating
system is installed on it and you are supposed to do this. Is it presently a
bare machine? If not, what software does it have and for what purposes?

7. Suppose that your computer is a 32-bit one. Some instructions have no
operand and some have one operand field. The operand field is 24 bits
long and it can have an immediate value like 2958 or an address of a
datum in main memory.

a.  What is the maximum memory size that your computer can directly
address (without using a base register)?

b. Now suppose from these 24 bits, one bit is used for a base register. If
the content of this bit is zero, the base register is not used. The base
register is 32 bits long. An effective address in this case is the contents
of the base register plus the contents of the remaining 23 bits of the
address field. Now, if the address bus is 32 bits wide, what is the max-
imum memory size that your computer’s processor can directly
address?

Recommended References

The concept of stored program was developed by J. von Neumann, J. Presper
Eckert, John Mauchly, Arthur Burks, and others following the design of the
ENIAC computer [Bur63].
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There are many resources about computer organizations and architecture,
among which John P. Hayes [Hay03], William Stalling [Sta02], and H. A.
Farhat [Far03] have written additional excellent books on the subjects covered
in this chapter.



Chapter 2

The BIOS and Boot Process

The main memory, cache memory, and internal registers of the CPU are sup-

posed to be wvolatile. The
information that is stored in
these devices is lost when the
computer’s power is turned
off. From the previous chap-
ter, we learned that a com-
puter is a device that fetches
the instruction from main
memory that the PC register
points to. The computer then
executes the instruction. This
cycle is repeated over and over
again until the computer is
turned off. However, if we
have only volatile memories,
there is no instruction in the
main memory when the com-
puter is turned on. To over-
come this problem, a program

Volatile is a term for a storage device whose
contents are lost when its power is turned off.
Volatile storage can be made non-volatile by
connecting it to a battery. However, this is not an
assumption during the computer’s design.
Devices like magnetic disks and compact discs,
on the other hand, are non-volatile.

The Motherboard is a platform ready for
insertion of all the internal devices of the
computer. It has many ports which are
necessary for connecting external devices to
the computer. In simplified terms, we can think
of it as the computer bus.

A read-only memory (ROM) is a non-volatile
memory filled with the BIOS program by the
manufacturer. There are many varieties of
ROMs with similar functionality.

is designed and stored in a special memory called the Read Only Memory
(ROM) and it is installed into the computer’s motherboard (sometimes called
the main-board). This program is called the Basic Input Output System
(BIOS). When the computer is turned on, an address is automatically loaded
into the PC register. This is done by hardware circuitry. The address given is
the location of the first executable instruction of the BIOS. The journey starts

10
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from there. BIOSes are produced by many factories, but perform the same
basic functions.

2.1 BIOS Actions

The following is a list of actions that are both partially done automatically and
partially by the computer user, right after the computer is turned on:

e  Power-On Self Test
e BIOS manufacturer’s logo display
e  CMOS and setup modifications

2.1.1 Power-On Self Test

The Power-On Self Test (POST) is an important part of any BIOS. After the
computer is turned on, the POST takes over controlling the system. Before the
computer can proceed to execute any normal program, the POST checks to
make sure every immediately required device is connected and functional. In
this stage, the main memory, monitor, keyboard, the first floppy drive, the first
hard drive, the first Compact Disc (CD), and any other device from which the
OS can be booted are checked. A beeping sound will inform the user if some-
thing is wrong. A speaker does not have to be connected to the computer in
order to hear this sound. The beep comes from an internal primitive speaker
within the computer. As this sound occurs before any audio system could have
been installed.

2.1.2 BIOS Manufacturer’s Logo

At the earliest possible moment after the POST process, the BIOS manufac-
tures’ logo will be displayed on the monitor. There are many factories that pro-
duce BIOSes: Compaq, Phoenix, Intel, IBM, and Award plus a long list of
others. Depending on the brand of BIOS that is installed on your computer’s
motherboard, different logos and manufacturer information will appear on
the display.

CMOS and Setup Modifications

The date and time that we may see on our monitor comes from a part of the
BIOS called the CMOS BIOS. The CMOS stands for Complementary Metal
Oxide Semiconductor memory. This is one of the technologies used to make
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the CPU, Dynamic RAM and other chips
of the computer. It is a Read/Write (RW)

memory as opposed to a read only mem- the CMOS BIOS, its size is small,

ory. The possibility of a setup/modify usually around 64 bytes. CMOS
CMOS is required in order to be able to

change things like date and time in the
BIOS. Remember that there are many rea-
sons why we might need to change these
data, e.g., using local date and time in dif- | A \oce Memory (NVRAM).
ferent parts of the world. CMOS BIOS is

Operating System

Despite the large amount of
information that can be stored in

technology is an energy efficient
technology, i.e., it uses very little
electric  energy. CMOS s,
therefore, a Non-Volatile Random

connected to a small durable battery that works for many years.

At this stage, the system will let you define and/or change CMOS settings.
There are many possibilities and options that are categorized below. As seen,
the list is reasonably long indicating we can store a large amount of informa-
tion within CMOS. One interesting aspect of CMOS is that a checksum of all
the information within CMOS is also stored in CMOS. Checksum is a combi-
nation of all the information in CMOS. If an error occurs and some data is
corrupted, the system will recognize this from the checksum. When we make
changes to CMOS during the setup, the checksum is recalculated to represent
the new state and then restored within CMOS. The following is a brief list of
setup/modifications possible with the CMOS:

Setup/modify date, time and floppy and hard drive properties

Setup/modity the order in which non-volatile devices (floppy, hard,
CD, etc.) can be used for bringing the OS to main memory

Setup/modify power management allowing the monitor and disk
drives to be turned off when they are not in use for a long time. This
is to conserve energy. These devices will automatically turn back on
with the first activity of a user

Setup/modify on-board serial and parallel ports, which are used for
connecting peripheral devices

Setup/modify the user password. One user may be assigned as the
administrator of the computer. He/she has a password to
setup/modify CMOS data. Other users are prevented from entering
the CMOS setup/modify program.

We now have a computer with BIOS that can start, check itself, permit the
setup/modify of essential properties, etc. Therefore, our view of the overall sys-
tem must be modified, accordingly. Figure 2.1 illustrates the current view.
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Figure 2.1 shows the first step of a _
layered operating system design. This An operating system called
concept is defined in the first multipro- “THE”_'S the basis of most modern
gramming operating system called | Operating systems e.g., UNIX and

“THE”, the operating system by Edsger Windows.. . The THE gperating
Dijkstra. system utilized two very important

concepts, namely the hierarchical
operating system design and the
concept of multiprogramming. The
designer of “THE” operating system
is Edsger W. Dijkstra who was one
of the operating systems pioneers.

System BIOS

Computer
Hardware
(Bare Machine)
“Layer 0”

“Layer 17
Figure 2.1: A two-layer machine with system BIOS

2.2 The Operating System Boot Process

One of the functions of . ] .
the BIOS is to start the To Load s to bring a program to the main memory

and prepare it for execution. In other contexts, it may
also mean filling a register with a data, instruction, or
address.

Compaction is the process of transforming a file into
a format that requires less space, while preserving the
integrity of the information. The file must be expanded
before being used by the corresponding software.

process of loading the
operating system. The
OS is a giant program
that cannot be stored in
a small ROM memory.
Despite this, we would
like our computer to be
flexible so that we are
able to run any operating system we like. Therefore, the OS has to be installed
after the computer is purchased. The operating system is usually stored on a
CD and must be transferred to main memory in order to become functional.
Hard disk drives are much faster than CD drives, so we prefer to first perma-
nently transfer the OS from a CD to the hard disk. This will save a tremendous
amount of time in future OS usage. The process of transferring the entire OS
from a CD to a hard disk while expanding compressed files and initializing the
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whole system for use is called OS
installation. Under some circum-
stances, for example, when we have
already installed an OS and want to
install a second one, it is possible to
load the OS source from a CD to a
hard disk and then start the proper
program to do the installation. As
seen, either the OS performs the self-
installation process or a previously
installed OS helps to install a new
one.

For a moment, let’s examine an ordinary automobile. It is manufactured to
carry a driver and other passengers from one location to another. It has four
wheels, one engine, one chassis, two or more seats, etc. However, all ordinary
automobiles are not the same. Some are small, large, safe, dangerous, expen-
sive, or cheap. Some are designed well and yet others are poorly designed.
Similarly, not all operating systems are designed the same. BIOS does not
know all the properties and details of the operating system that is to be loaded.
Therefore, BIOS only starts the process of loading the OS and then transfers
control to the OS itself which completes the process. This sounds reasonable.
BIOS must at least know where the operating system is located. Is it on one or
more floppy disks, on a hard disk, on one or more CDs, etc.?

An Initial Program Load (IPL) device is a device that may have an operat-
ing system, like CD or hard disk. A device that contains the operating system,
and from which the OS can be loaded, is called a bootable device. If you
remember, the order in which non-volatile bootable devices are used to load
the OS can be defined or modified by the user during BIOS setup. There is an
IPL table and an IPL priority vector for this purpose in the BIOS CMOS. The
table lists all recognized bootable devices and the vector states the order in
which they have to be checked during the boot process.

The BIOS will load only one block of data from the first valid bootable
device to the main memory. This block of data is taken from a specific and fixed
place of the bootable device and is put in a specific and fixed place of main
memory. The size of the data is usually 512 bytes and is taken from block zero of
track zero of the bootable device. This is the first block of the device. The block
contains a small program that is sometimes called bootstrap. After loading the
bootstrap, control is then transferred to this little program. By doing so, BIOS
disqualifies itself from being the internal owner of the computer. This does not

Suppose that a CD drive is defined
as the first bootable device. If there is a
CD in the CD drive that either does not
have the OS or is not bootable, when
the computer is started, the system will
not be able to boot the OS. An error
message will be displayed on the
monitor by BIOS. This is the case for
other bootable devices in the order in
which they are checked by BIOS.




mean that we will not need BIOS
anymore. We will continue to use
the BIOS facilities, but under the
control of the operating system.
BIOS contains many other useful
procedures (little programs), espe-
cially ~ for interacting  with
input/output devices.

We now have a small part of the
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Every hard disk is organized into a
collection of coaxial plates. Every plate
has two surfaces. On every surface there
are many concentric rings called tracks
upon which information is stored. These
tracks may or may not be visible to us,
depending on the type of medium.

Every track is further divided into an

integer number of sections called
sectors. The number of sectors is the
same for all tracks, disrespectful of their
distances from the center and/or the
circumference of the track.

operating system loaded and run-
ning, in main memory. It is impor-
tant to know that this little program
(i.e., bootstrap) is different for

Windows, UNIX, Mac, etc. and 1is . ' )
tailor-made to fulfill the require- A block is a collection of either one or

ments of a specific operating sys- more sectors. It is the smallest unit of
tem. This program has the data that can be read or written during

responsibility of loading the next [ ON€acCcess to the disk.
big chunk of the operating system
and usually loads the whole kernel of respective operating system. A Kernel is
the essential part, or the inner part, of the seed of an operating system. On the
other hand, kernel is a program that is composed of a many routines for doing
activities that are not performed by any single operation of the computer
hardware. Every routine is built using machine instructions and/or BIOS func-
tions. In addition, kernel is composed of many essential processes (threads or
agents), each designed to carry out a responsibility of the operating system.

The booting process may stop here or it may perform one more step. If it is
to do one more step, it will transfer control to a program within the kernel that
will bring another chunk of the operating system to the main memory. With
the kernel being loaded, our hierarchical model of the operating system will
resemble what is shown in Figure 2.2.

A kernel primitive consists of very few instructions and/or BIOS functions.
A kernel primitive performs only one little task and it is allowed to access hard-
ware devices directly. In other words, the hierarchical structure that is depicted
in Figure 2.2 is not strict. The kernel can bypass BIOS and directly access the
hardware. As a matter of fact, nothing is safe from the kernel. Remember that,
the kernel is an essential part of the operating system and is designed with the
highest accuracy and precision. The concepts used in the kernel are theoreti-
cally proven to work well and do not produce any undesirable side effects.
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There are one or more other
layers of the operating system that
sit on top of the kernel. The num-
ber of layers varies from one oper-
ating system to another. The exact
number of layers is not important
for us for we are more interested in
the global structure and the way
the operating system is brought
into main memory. Actually, not
all parts of the OS are always resi-
dent in the main memory. During
one session working with the com-
puter, some parts of the operating
system may never be used.
Therefore, there is no need to
bring them into main memory. By

OS Kernel

System BIOS

Computer
Hardware
(Bare Machine)
“Layer 0”

“Layer 1”

Figure 2.2: A three-layer machine with

system BIOS and OS kernel

not loading them, users will have more space in the memory for their own pro-
grams. Since the system does not know which part of the OS will be used or
not used, non-essential parts are brought into main memory on request and
are removed when no longer needed. Our complete hierarchical model of a
modern computer is revealed in Figure 2.3.

The structure of
Windows 2000 is pre-
sented in Figure 2.4 as a
sample existing layered
operating system. In the
forthcoming  chapters,
we will study some of its
parts in detail as a gen-
eral operating system.

Other layers of the OS

OS Kernel

System BIOS

Computer
Hardware
(Bare Machine)
“Layer 0”

“Layer 17

“Lavyer 2”

Figure 2.3: A complete layered operating system
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System Services/User Applications: Service Controller, Remote Procedure
Call, C++ Compiler, Environmental Subsystems (Posix, OS/2, Win32), etc.

Input/ Virtual Process/ | Security Cache | Windows
Output Memory Thread | Reference Manager | Manager
Manager | Manager | Manager | Manager

DC.VICC Windows 2000 Kernel

Drivers

Hardware Abstraction Layer (HAL)

Hardware and Hardware Interfaces: Buses, CPU, Main Memory, Cache, /O
Devices, Timers, Clock, Direct Memory Access, Interrupts, Cache Controller, etc.

Figure 2.4: A simplified and layered structure of the Windows 2000.

Figure 2.4: The structure of Windows 2000

2.3 Protection Mechanisms

Our application programs sit on top of the operating system. They use the
facilities provided by all layers of the system in a systematic and secure way, to
do what these application programs are made to do. It is worth mentioning
again that, with the existing operating systems, programs cannot directly and
freely use the facilities within the lower layers. It is the operating system that
monitors the activities of every running program. In the absence of any pro-
tection mechanism, strange things could happen and the system could, in
short, become unreliable. In a multi-user system, one person’s process (pro-
gram) can change somebody else’s process, making it do something it should-
n't. A process can even modify the operating system itself, hence, making it
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useless and even harmful
to other programs. The
existence and propagation
of viruses, worms, Trojan
horses, etc. in computers is

A virus is program or a piece of code (not a
complete program) that is written to do something
damaging. It is transferred to our computers
without our knowledge and permission. A virus can
) ) replicate itself and can attach itself to our files,
directly related to the exis- | ¢ tminating them. Under certain circumstances,

tence of weak security | o s can activate itself and do what is made to
points within the operat- .

ing system. The existence
of these dangerous pro-
grams must not have us
believing that there are no
protection  mechanisms
within  the computer.
Rather, it should convince
us that protecting the sys-
tem from crackers and
hackers is a tough job.
Many operating system
and network researchers
are exclusively working to
make our systems less vul-
nerable.

Protection is currently
applied to all layers of the
system. Deep in the core of computer hardware, there are circuitries for per-
forming machine instructions. Every computer usually supports 256 (two to
the power eight) machine instructions. These instructions could be catego-
rized into a small number of classes. For example, in the “add” class we might
have: add two small integers, two medium integers, two large integers, two
medium real numbers, two large real numbers, two extra large real numbers,
contents of two registers, and add with carry, etc.

Not all machine instructions are available to computer users and even to
higher levels of the operating system. Every machine instruction belongs to
either non-privileged or privileged classes. In a reliable operating system, any
program can use a non-privileged instruction. However, the operating system
kernel (or core) is the only program that can use a privileged instruction. For
example, in Pentium 4, the machine instruction HLT stops instruction execu-
tion and places the processor in a halt state. An enable interrupt instruction

A worm is also a destructive program that can
replicate itself. Within a network, it can
autonomously move from one computer to another.
A worm does not need a host program to attach
itself to. When specified conditions are met and the
predetermined time arrives, the worm becomes
active and performs its malicious action.

A hacker is a person who tries to pass the
security and protection mechanisms of a computer
in order to steal information.

A cracker is a person that wishes to break the
security and protection systems of computers and
networks for the purpose of showing off and/or
stealing information.




(we will talk about interrupts in
the forthcoming chapter) or a
computer reset by the user can
resume the execution. Imagine if,
in a multiprogramming environ-
ment, one program decides to
execute a HLT operation and put
the computer to sleep. Then, all
other programs will also be
halted. By resetting the computer,
we will lose all that was done by
the previously running programs.

One other protection mecha-
nism is to forbid one program
from writing something in a loca-
tion of main memory that is
occupied by another program or
even by the operating system,
itself. Memory protection is also
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We computer specialists really like
powers of the number two. A memory cell
(called a bif) has two states: “zero” and
“one”. A byte is 8 bits, i.e., two to the power
3. A word is 32 (or 64) bits, i.e., two to the
power 5 (or 6). One K (kilo) byte is 1024
bytes, i.e., two to the power 10 bytes. One
Meg (Mega) byte is 1,048,576 bytes, i.e.,
two to the power 20. One Giga byte is
1,073,741,824 bytes, i.e., two to the power
30, One Tera byte is 1,099,511,627,776
bytes, i.e., two to the power 40. Almost
everything within a computer is made a
power of two long. A register, or a word, of
memory, is 32 (or 64) bits. There are
usually 256 machine instructions. RAM
memory contains a power of two bytes, etc.

realized through joint effort of the hardware and operating systems. In any
reliable operating system, the appropriate protection mechanisms are enforced

so that every program
is protected from other
programs that may try
to change something
within  its  address
space.

The kernel program
is protected from other
parts of the operating
system, too. However,

Kernel routines that are made available to
application programs are called system calls (or kernel
service). There are numerous system calls in each
operating system. Through system calls application
programs are able to directly use kernel and BIOS
routines, without observing the hierarchy of operating
systems layers. However, the operating system
guarantees that there will be no harm made to the
operating system or other processes running

kernel routines can be | concurrently with this application program.

used by other parts of

the operating system through a specific procedure. Every computer has at least
two modes of operation: One, in Kernel mode, or supervisor mode, all machine
instructions, whether privileged or non-privileged, are useable. Two, in user
mode, privileged instructions are not usable. One of the most remarkable fea-
tures of any operating system is the way mode transfer is made possible. While
running an application program, e.g., a simple accounting system written in say
C++, we are able to use some kernel routines. It is obvious that the program is
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running in user mode. It is also clear that the procedure called for is within the
kernel and therefore, could only be used while in kernel mode. This mode trans-
formation is done automatically by the operating system, in such a way that
while the user program is inside the kernel, it cannot do anything except execute
the specified kernel routine. As soon as the execution of the routine is finished,
the operating system will change the operation mode to user mode.

2.4 Think of Making Your Own Operating
System

It is a good initiative to think of
making your own little operating
system. By doing so, lots of ques-
tions will be raised, some of
which we will talk about in the
following chapters. It should be
clarified that with the knowledge
that we have gathered so far, it is
impossible to write an actual
operating system. This section is
actually a review of what we have
talked so far about. I would sug-
gest the following steps in writing
your own little, do nothing useful,
operating system.

An executable file is a ready to run
program. By double clicking on its icon (or
by using other means of activating it), an
executable file starts running. The file’s
attributes are stored in its beginning
sectors.

A command file is a pure machine
instruction program without any attribute
sector.

There are numerous file formats and
every application program works with
certain file formats. For example, MS-Word
produces and works with document (doc)
files, among many others.

1. Using a running computer, write a mini program to do something
over and over again. I would prefer this program to display the word
“Hello” on computer monitor. The size of the program is important
and its actual machine language size must be less than 512 bytes.
This program will be your operating system. To write this program
you have to know at least one programming language. Assembly lan-
guage is preferred, but C or C++ is acceptable. Let’s suppose you will
choose to write the program with C. After writing the program,
compile it and produce an executable file.

2. An executable file has two sections: (1) the file header and (2) the
actual machine language instructions. The header contains informa-
tion about the file, e.g., size of the file. Suppose the file header is 512
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bytes (it depends on the operating system and the C language being
used). Write a mini program to change your executable file into a file
without a header by removing the first 512 bytes of the executable
file. Let’s assume this file is called a “com” file.

3. Write a program to transfer the “com” file to sector zero of track zero
of a diskette.

4.  Prepare a diskette.

Transfer the “com” file to sector zero of track zero of the diskette. You
have successfully stored your operating system on the diskette.

6. Reset the computer and enter the BIOS setup/modify program.
Make the first floppy drive be the first bootable device.

7. Insert your own operating system diskette into the first floppy drive
of the computer and reset the computer again. Wait until your oper-
ating system comes up.

You have your own operating system running. Can it run any program? Does it
have any protection mechanism? Does it have any facilities like formatting
disks and copying files? No, but your operating system owns the computer
facilities and you know what it does exactly and how it is set up.

2.5 Summary

In following complex concepts and design issues of the operating system, a
good knowledge of how the operating system is loaded into main memory and
the process of overtaking the general management of systems is very construc-
tive. In addition, a brief introduction of its major responsibilities is helpful.
The layered structure of the OS provides a platform to study each layer and its
responsibilities, separately. BIOS is the only piece of software that is provided
with computer hardware. It has the ability to boot a small program from a
bootable media that supposedly has a small part of the operating system. This
new program will load another part of the operating system and so on, until
the essential parts of the operating system are completely loaded. Some parts
of the operating system are loaded upon request and may or may not be
loaded in one session’s work with the computer. The layered superstructure
also provides the basis for protection related issues. These issues can be dis-
cussed separately for hardware, kernel, and the other upper layers of the oper-
ating system.
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2.6 Problems

10.

Your personal computer definitely has a BIOS. Find out what company
has made it. Also, see whether or not its source is available for study. If the
source is available, list all procedures and their possible usages.

In your opinion, is BIOS part of the operating system or is it part of the
platform on top of which the operating system sits?

What are the disadvantages of storing all parts of the operating system in
a read only memory (if we utilize a large ROM), instead of storing the
BIOS?

Are there BIOS routines that are useable after the operating system is
installed? If yes, name a few of these routines and their applications.

Is the operating system kernel allowed to directly use hardware facilities
or must it to obey a strict hierarchical structure and use the facilities via
BIOS?

List all the privileged instructions of one of the modern processors with
which you are familiar. For each of these instructions, explain why it must
be privileged.

During the system startup process (i.e., IPL process), is the system in user
mode or kernel mode? Why? What about right after the IPL process?

By searching the Internet, find the source of a very small operating sys-
tem. Try to compile it, store it on a diskette, and make it work.

What does a device driver do?

In software engineering, a system is broken down into subsystems and
this process continues until the final subsystems are easy to implement. In
this chapter, an operating system, as a large piece of software, was divided
into layers. Compare these two approaches and discuss whether or not
they complement each other in the analysis, design and implementation
of operating systems.

Recommended References

The concept of a layered operating system design is defined by Edsger W.
Dijkstra [Dij68a]. It was used in the first multiprogramming operating system
called “THE” operating system. Prabhat K. Andleigh has covered the layered
structure of the UNIX operating system [And90].
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Protection and security issues are discussed by Silberschatz et al. [Sil02] and
Tanenbaum [TanO1] in their operating system books. Specific and detailed
treatment of the subjects are given by Graham and Denning [Gra72], Loscocco
and Smalley [Los01], Bishop [Bis02], Hsiao, et al. [Hsi79] and Pfleeger [PfI89].



Chapter 3

Multiprogramming and Multithreading

Within a computer there are many devices
with different speeds and different capabili-
ties. The trend is to make computer modules
faster than ever. Today’s speed will seem
obsolete tomorrow. It is not advisable to
quote actual device speeds in a textbook
because they may appear out of date by publi-
cation. On the other hand, giving vague

Hertz, or Hz, is a unit of
computer clock frequency
equal to one cycle per second.
It is named after Heinrich
Rudolf Hertz. One Giga Hz is
230 cycles per second.

One Millisecond is 103 of

information, or none at all, will not help in a Second-_ . 5
understanding the reason for switching from One Microsecondis 10 of
single-programming operating systems to a second. . g
multiprogramming ones. We will try to men- . SS;; glanosecond is 10 of

tion real speed values when possible, but it
must be understood that the numbers may
not be valid in all contexts.

The CPU of a personal computer runs at the speed of around ten Giga
hertz. Roughly speaking, on the average, the CPU executes one Giga machine
instruction every second. A human being will take around 20 seconds to add
together two ten-decimal digit numbers. This better done twice to make sure
the result is correct. Compared to a CPU, a human is much slower in compu-
tations. The cache memory access time, i.e., the time that it takes to store a
datum in cache or to read a datum from cache, is approximately 20 nanosec-
onds. In other words, for a personal computer, the number of cache memory
accesses per second reaches 5*107 times. The access time for a dynamic RAM
memory is around 50 nanoseconds. Hard disk access time is a few millisec-
onds. Access time increases as we go down the list of Digital Video Discs

24
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(DVD), compact disks, and floppy disks. The printing speed is much lower,
due to the mechanical movements involved. At the end of the speed spectrum
is the computer user, who may take seconds to enter a datum, provided that
he/she is available at the computer when the data is needed and does not need
to think about what to enter. In a single-programming environment, most of
the time the dominating speed for the whole system belongs to the slowest
device. It is clear that this is not an efficient way of using a powerful computer.

3.1 Process States in Single-Programming

In a single-programming environment, only one process can be live at any
given time. This process is born when a program is chosen for execution and
brought into main memory (perhaps partially) with its preliminary require-
ments fulfilled. Right after its birth, the system starts executing its instruction.
The instruction execution continues until the process needs to read some data
from an input device or wants to write some data on an output device. There
are special purpose processors called Input/Output (I/O) processors for trans-
ferring data from input devices to main memory and from main memory to
output devices. Different input/output device classes have different I/O
processors. An I/O processor is a special-purpose processor that is made to do
a specific task efficiently. It is understandable that such a processor will per-
form the specific task better than a general-purpose processor, i.e., CPU. While
an I/O operation is in progress, the CPU has to wait and do nothing. After the
I/O operation is completed, the CPU will resume execution of the instruc-
tions. This cycle, of going through process states of running and input/output,
may be repeated over and over, until the job is completed or, for some reason,
is aborted. The life cycle of a process in a single-programming environment is
shown in Figure 3.1.

Blocked for I/O
Process birth
Running @
I/O completed
Process
—> Terminati
‘ermination

Figure 3.1: The life cycle of processes in single-programming environments
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If the average execution time of a program in a single-programming envi-
ronment is equal to e and the average I/O time, i.e., the average total time spent

is called

on input/output operations of the program, is b, then the ratio 5
e+

the CPU wait fraction and is represented by:

w= (3.1)

e+b

This value (w), is actually the fraction of the time the CPU is idle. For
example, if the average execution time of programs is 10 seconds, of which, on
the average, 9 seconds is spent on I/O operations, then w = 9/10 = 0.9. This
means, on the average, 90% of the CPU time is wasted. It is not only the CPU’s
time that is wasted, but also when the system is under-loaded, that of other
devices, e.g., the memory, cache, and/or hard disk, will not be utilized well.
This is occurs while the computer user’s time may be wasted by not being able
to run other programs simultaneously.

e
The fraction 1-w, which is equal to L it is called the CPU busy fraction.

e+

How much is efficiency increased when we switch from single-program-

ming to multiprogramming? We will answer this question in terms of CPU
utilization in the next section.

3.2 The Multiprogramming Concept

Multiprogramming is the solution to the following two undesired situations:

I.  Suppose that a program is running. To continue, it needs a datum to
be entered by the computer user. An example of this could be an
accounting software that needs an invoice total while running. It will
display a message asking the user to enter the invoice total. Let’s say it
takes the user five seconds to read the message, analyze it, and enter
the number. During these five seconds, in a single-programming
environment, the CPU has to wait and is not able to do anything
useful. It could have executed, say, five billion instructions if it was
able to switch to a ready-to-execute process and then switch back to
the first process once the data is entered.

II. In another situation, suppose you need some information from the
Internet and have issued a request to your browser program. Due to
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the tremendous amount of processing involved and the low Internet
connection speed of your computer, this is taking a long time. What
would you do until the information is displayed? One thing we usu-
ally do in such situations is to stare at the monitor, which is definitely
not a constructive way to spend one’s time.

Multiprogramming is a technique that
allows more than one program to be ready
for execution (process) and provides the
ability to switch from one process to
another, even if the former is not yet com-
pleted. Of course, sometimes in the future
we will have to switch back to the first
process and resume (not restart) its com-
putation. This technique works for both
single-processor (like our personal com-
puters) and multiprocessor (such as large
main frame) computers. We know that
operating systems usually created a
process to run a program. This process
persists until either the execution of the program is normally completed or it is
aborted. In rare situations where a process is withdrawn from the system
before being completed or aborted does not interest us. We will, therefore,
respect this meaning of the program and process from now on.

If you think clearly, you will notice that we should have used multiprocess-
ing, instead of multiprogramming, in this chapter. This is true. Unfortunately,
the term “multiprogramming” is recognized for this technique of the operat-
ing system and we will stick to it. On the other hand, “multiprocessing” is used
for systems with more than one processor. Processors, in such a system, can
collectively run many tasks simultaneously.

The feature of multiprogramming is mainly accomplished by the operating
system. The hardware provides some specific circuitry that may be used by the
operating system in the course of facilitating multiprogramming.
Multiprogramming is very important as it may increase the utilization of the
computer by hundreds of times, depending on the computer we are using. For
a personal computer, this factor is much lower, but is still very desirable. In this
era of computer usage, every general-purpose operating system must have the
following three properties:

A computer with one CPU and
one or more input/output
processors or math coprocessors
is not @ multiprocessor computer.
A multiprocessor computer has to
have more than one general
processor. In a single-processor
system, the general processor is
called the CPU, but in a
multiprocessor  system each
general processor is called a
Processing Unit (PU).

1. It must provide an environment to run processes in a multiprogram-
ming fashion.
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2. It must act as a service provider for all common services that are
usually needed by computer users, such as copying files, making new
folders, compressing information, sending and receiving messages
from other computers in the network, etc.

3.  Its user interface must be easy to use and pleasant to work with.

Older operating systems, like DOS, that do not have all the aforementioned
properties, are no longer used and are being replaced by modern operating

systems.

To answer the question that was
raised at the end of the previous
section, i.e., how much is processor
utilization increased with multipro-
gramming, we will follow the case
of w=0.9. When there are two
processes in the system, the approx-
imate CPU wait time is computed
as;

w =w’=(0.9)°=0.81.

For this case we would say that
the degree of multiprogramming is
two. The CPU utilization is
increased by 9%. That is, (0.90 -
0.81) » 100 = 9%. The CPU wait
time becomes

w=w =(0.9)=0.59,

A more accurate CPU wait time
when there are n processes in the
system could be computed from

—)"

’ 1-w
- 1 w
”;[E(?w) ]

For a reasonably large n, the
approximate formula gives satisfactory
results, rendering the more accurate
formula to be seldom used.

The degree of multiprogramming is
defined as the maximum possible
number of simultaneous processes in
the system. For a multiprogramming
operating system, this value is large
enough not to worry about.

w

In

when there are five processes in the system. The general approximate formula is:

w=w

(3.2)

where 7 is the number of processes in the system.

It is worth mentioning that, by switching from single-programming to
multiprogramming, we expect a lower CPU wait factor than what is given by
(3.2). Take a simple example where w=0.5 in single programming. We expect
W’ to be zero for two process cases. This is not possible because there are situ-
ations when both processes are doing I/O operations and the CPU has to wait
and sit idle until at least one process completes its I/O. The CPU wait factor,
from equation (3.2), will be 0.25 which is much better than 0.50. It is a 50%
decrease in CPU wait factor, or a 25% increase in CPU utilization.




M. Naghibzadeh 29

Multiprogramming is the central issue in the design of any modern operat-
ing system. All technical materials are aimed at providing a multiprogramming
environment that is efficient, smooth, and where simultaneously running
processes do not interfere with each other. In this chapter, we will briefly dis-
cuss some of these subjects. There will be specific chapters for the areas not
covered in this chapter.

3.3 Process State Transition Diagram

The number of process states in a multiprogramming environment is at least
three. These states are: ready, running, and wait/blocked. This means that, at
any given time, a process is in one of these three states. The actual number of
states may vary from one operating system to another. If one knows the mean-
ing of these three essential states, the reasons for every state transition, and the
actual method with which a transition takes place, then the roles of new states
in a given operating system is easily comprehensible. Think of a human being.
He may be a child, i.e., a childhood state, a youngster, an adult, or an old per-
son. The difference between a process and a human being is that a process may
transit between the states many times, while a human being transits is only in
one direction with no returns. When a process is created, its state is ready. In
this state, the process is ready to use the processor (or one of the processors) to
execute its operations. In the running state, the process is actually executing its
instructions. This means, the processor is assigned to this process to execute its
instructions. In the wait/blocked state, the process has either blocked for its
input/output operations to be completed by an I/O processor or it is waiting
for some other event to occur before which further execution of its instruc-
tions is not possible. A transition from one state to another state takes place
when certain conditions are satisfied. For example, when the processor is free,
one of the processes (if there is any) from the ready state will be picked up for
execution and its state will be changed from ready to running. This is called a
state transition and it occurs when the processor becomes free.

In a multiprogramming environment, there can be more than one process
in the ready state. These processes are usually put in a queue, called ready
queue.

In a system with one general-purpose processor, i.e., a system with one
CPU, only one process can be in the running state. Under some circumstances,
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e.g., when there is no process in the system,
there may not be any processes in the run-
ning state. The technique of multiprogram-
ming is also used in systems with more than
one general-purpose processor. For this
kind of system, if there are n processors
there can be, at the most, n processes run-
ning at one time. A process may be with-
drawn from the running state and put back
into the ready state for many reasons. One
may be when the process has been using the
processor for an extended period of time
and as a result, other ready processes have
been waiting an extraordinary amount of
time for the chance to use the processor.

While running, a process may need a service that is given by a special-pur-
pose processor; it may require a device that is not presently available. It may
have to wait for certain circumstances to arise. In this case, it will be withdrawn
from the running state and changed to wait/blocked. The link that is connect-
ing the running to the wait/blocked state is a one-way connection. It therefore
is just not possible for a process to go from a wait/blocked state to a running
state. If a process’ intent is to transit to a running state from a wait/blocked
state then it must transit to the ready state and wait there until its turn to use
the processor. Figure 3.2 depicts the process state transition diagram.

Some researchers call the
state transition diagram in
Figure 3.2 a five-state model,
while we call it a three-state
model. They count the state
before process birth and the
termination state, too. We prefer
not to count these states
because they are not part of
process’s living period. Similarly,
the state before a human’s birth
and the state after his death are
not part of his life.

Process
Termination
A process is
picked to run Preempted for Needs I/O or
the interest of circumstance

) others
Process birth

Wait/Blocked

Running obstacle
is vanished

Figure 3.2: The process state transition diagram in multiprogramming
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3.4 Process Switching

To facilitate multiprogramming, the processor must be able to switch from
one process to another, while still not having completed the current process.
The general name for this task is context switching. If the processor is sup-
posed to switch from process A to process B, we might think of loading the
Program Counter (PC) register with the address of the first instruction that is
to be executed in process B. True, it would do the switching, but we would lose
all temporary values of process A that were in the CPU registers just before the
switch. Since we would not have saved process A’s Location Counter (LC), we
would not be able to switch back to process A and continue its execution, but
rather we would have to restart process A. It would not work well for process B
either, if it were not the first time it was picked for execution.

Assuming we want to switch
from process A to process B, the
following six steps must be taken
in the order provided for a sys-
tematic and correct course of
action to switch from one
process to another.

The stack pointer is a register that points
to a location of a special memory area called
stack. The stack, itself, is found in the main
memory in order to store managerial
information for a process. The type of
information stored in the stack is last-in-first-
out. For this type of information stack is the
best data structure. It is the responsibility of
the operating system to build one (or more)
stacks for every process. Stack construction
is performed during process creation.

The flags are a set of bits that explains

1. Current value of the
PC register is saved
and control is trans-
ferred to the operating
system.

All temporary data,
results, and control
values of process A are
saved in main mem-
ory. These values
include, but are not
restricted to: location
counter, stack point-
ers, flags, Program
Status Word (PSW),
and general register
contents.

the current status of the CPU and/or the
status of previously executed instruction. Not
all instructions affect flags. A flag that is
set/reset by the execution of some
instruction will always represent the effect of
the execution of the last such instruction.

The Program Status Word (PSW) is a
register that contains current operation
mode, flags, mask bits, LC, etc. of the
currently running process. In some
processors, this register may not exist, if all
of this information is provided by other
means.
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3. The state of process A is changed from “running” to either “ready” or
“wait/blocked,” depending on the reason for switching.

4. All temporary data, results, and control values of process B except its
LC are loaded into their proper places within the CPU. If it is the first
time that process B is given the chance to use that CPU, some of
these places will be initialized by the operating system.

The state of process B is changed to “running.”

The PC register is filled with the address of process B’s first instruc-
tion to be executed next.

Process switching is sometimes called context switching because conditions
that determine the course of action may change in order for the instructions of
a new process to be executed next.

3.5 The Interrupt System

In a multiprogramming environment, there are one or more general proces-
sors and many I/O processors. In addition, several processes may be active at
any given time. Of course, being active does not mean that the process is cur-
rently using the CPU.

Consider a process that was performing an I/O operation and that the oper-
ation has just finished. How could the CPU know that it has finished its I/O
operation, so as to schedule the remaining computational operations? In other
words, if you are a manager and have assigned a task to one of your employees,
how would you be informed that he or she has completed the task?

There are two general approaches to find
out when a task that was assigned to a periph-
eral processor, e.g., I/O processor, has been
completed. These are polling and Interrupt.
Polling means periodically checking the
peripheral processor to see when the assigned
task has been completed. Interrupt, on the
other hand, is a mechanism where the
peripheral processor sends a signal whenever
it finishes the task. Many of the device drivers
are interrupt-driven, but some are polled. We will provide further information
on how the interrupt system works after the meaning of interrupt and the sit-
uations in which interrupts occur are clarified.

A device driver is a
program that facilitates the
communications between the
corresponding device and the
device user. Every device type
has its own driver to maximize
device utilization efficiency
and accuracy.
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Interrupt is a signal that is sent to the CPU to capture its attention. It may
be issued by different sources, for example:

e By an I/O processor that
wants to inform the CPU
of the completion of the
assigned task

e By a user that may press
special keys like “break” at
any time

e By the real-time clock
that wants to inform the
CPU that it has been
working on the current
process for a long period
of time (perhaps one
thousandth of a second)
and that it is time to
switch to another process

e By a fault detecting hard-
ware that is trying to
informs the CPU of mal-
functioned circuit

e DBy a monitoring circuit
within the ALU that con-
trols the acceptability of
the data size for the oper-
ation being performed
and, consequently, the
operation result size

A clock is used to keep the time-of-
day. Every personal computer has a
battery-driven hardware clock. The clock
keeps working even if the computer is
turned off. We can adjust this clock by
means of CMOS update facilities or from
within the operating system. This clock is
called a hardware clock. Some operating
systems (like Linux) prefer to have a
software clock, too. The software clock is
set by the hardware clock during the
system startup and reset. From then on,
it is updated every time a specific
interrupt is generated, so as to show the
correct time. Accessing the software
clock takes less processing time than
accessing the hardware clock.

A timer is used to keep track of the
elapsed time since it was last reset. An
important usage of timers is to make sure
one process does not use the processor
for a long time. This kind of timer is called
an interval-timer. It is set to periodically
send an interrupt to the processor and to
remind it that it is the time for process
switching.

Interrupt signals are of different urgency and importance. While a hardware
error interrupt is highly urgent and crucial, an interrupt issued by an I/O
processor to inform the CPU of a task completion, is neither urgent nor very
important. It, therefore, makes sense that the CPU’s reaction differ according
to the type of interrupts.

Interrupts are usually categorized into a small number of classes, each of
which containing interrupts sharing equal priorities and/or a similar nature.

When the processor receives an interrupt and decides to process the inter-
rupt, it will have to switch from the current running process to a part of the
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operating system that is responsible for interrupt processing. This part is called
the interrupt handler. The interrupt handler has a collection of interrupt han-
dling routines, one per every interrupt class, or at times, one for every specific
interrupt. Safe switching from the running process to the interrupt handler
requires following the context switching steps. A must is to save the content of
the PC register (the currently running process’s LC.) This register points to the
next instruction of the running process that has to be executed when the
processor later switches back to it. When the process switches back, it will con-
tinue its execution by fetching and executing the instruction pointed out by
the LC. Therefore, the processor cannot cease the execution of the current
instruction at the exact time that an interrupt is received. First, it has to com-
plete the current instruction, first. Technically speaking, the interrupt signal
reaches the CPU and is stored in some flag. The flag is ignored until the execu-
tion of the current machine instruction is completed. This is disrespectable of
the interrupt’s priority or urgency. There are very few exceptions. One example
is the “move” instruction in some main frame computers that is suppose to
move a big chunk, say 256 bytes, of data from one location of main memory to
another. This instruction is a machine instruction, but it is of a multi-instruc-
tional nature as it includes many memory reads and writes.

The CPU always looks for interrupt signals just before fetching a new
instruction to execute. If there are any interrupt signals, the CPU handles them
in the order of priorities and urgencies.

What if you want to completely ignore some interrupts? Suppose you are
running a program and in your
program (process) there is a
“divide by zero” operation. This
would cause an interrupt and, as a
result, the system would cancel
your process. You may want to
know what happens if the pro-
gram ignores the “divide by zero”
operation and continues execu-
tion.

Some interrupt types can be
masked. Masking an interrupt
type means ignoring every inter-
rupt signal of the type. Of course,
there are interrupts that cannot be
masked by the programmer. For
example, a programmer cannot

An overflow occurs when the result of
an instruction is larger than the maximum
storable value of its corresponding data
type. For example, this occurs when two
numbers of large integer type (64 bits) are
added and the result is supposed to be
stored in a 64 bit location. The result,
however, is too big to be stored in that
location, causing an overflow. The ALU
circuitry recognizes this overflow and
sends an overflow interrupt signal to the
corresponding interrupt flag.

An underflow occurs for a negative
result that is not storable in the anticipated
location.
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mask the hardware error interrupts. These interrupts are called Non-Maskable
Interrupts (NMI). HOwever, there are many maskable interrupts like “divide
by zero” and overflow. A privileged instruction called a disable interrupt can
disable all interrupts, but it cannot be used in the user mode of operation. The
enable interrupt operation reactivates the interrupt system after it has been
disabled by a disable interrupt operation.

3.6 Direct Memory Access

The main memory of a computer is a shared place for all processes, their data
and results. In a multiprogramming environment, accessing the main memory
becomes a new challenge as one or more processors and many peripheral
processors are simultaneously active and trying to get into main memory to
read or store information. The following two basic solutions are used for colli-
sion-free access to main memory.

1. The Programmed Input-Output (PIO) method
2. The Direct Memory Access (DMA) method

In the PIO method, the CPU is the owner of the main memory. Any data
transfer between I/O devices and the main memory has to go through the
CPU. An example is when some information is to be transferred from the key-
board to the main memory. Whenever a key is pressed, an interrupt is gener-
ated and the CPU executes the corresponding interrupt handler. The interrupt
handler obtains the data (the pressed key) and transfers it to the CPU, from
which point the data goes to the main memory. This mode of operation is only
used for slow devices like mouse and keyboard.

In the DMA method, information is directly transferred from the device to
main memory and vice versa, without first going to the CPU. To facilitate this
mode of operation, a bus ownership resolution is required. In one approach, it
is assumed that the CPU is the bus owner and needy devices must steal bus
cycles, one cycle at a time, from the CPU. The device that possesses the bus will
use it and the main memory for one cycle, i.e., to transfer only one word of
data to or from main memory. This mode of operation is called cycle stealing.
For every bus cycle, the following operations have to be performed.

e  Every device that wants to use the next cycle of the bus (and main
memory) has to send a request to the bus arbiter. Here, a bus cycle is
assumed to be the same as a memory cycle, both in duration and
start/end.
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e The bus arbiter decides
which device will use the next
cycle of the bus to access
main memory. The decision
is based on the priorities that
are assigned to the devices
directly connected to the bus.
Because devices are assumed
to steal bus cycles from the
CPU, it is assumed that the
CPU has the highest priority.

The bus arbiter is the collection of
the hardware circuitry that is
responsible for choosing the device
that will use the next memory cycle
and, of course, the bus, to transfer
one datum from the main memory to
another device, or vice versa. It uses
fixed, rotating, or completely random
priorities for the requesting devices.
In the cycle-stealing mode, the CPU
is exempted from these priorities. The
e  The winning device is then | CPU always is given the highest

informed to use the next | priority over all other devices.
cycle of the bus and main

memory.

The operations involved in cycle stealing are all performed by hardware cir-
cuitry, once for every memory cycle. These operations do not noticeably
increase the memory cycle time.

The cycle stealing mode is not appropriate for fast devices like hard disk
drives, DVD drives, and high-resolution graphic cards. These devices may be
given more than one cycle of main memory per one request. These periods
may be as long as 32 memory cycles, or even longer, depending on the needs of
the device and system restrictions. When such a period is given, bestowed the
device can use the bus and main memory continuously for the whole duration.
This mode of operation is called burst mode. A process similar to the cycle
stealing mode of operation is followed to possess the bus and main memory.

A new mode of operation called ultra DMA has recently been invented.
With this mode of operation, more than one unit of data can be transferred in
each clock cycle.

3.7 Multitasking

When working with a computer, users like to have many application programs
simultaneously operational. This is necessary because some application pro-
grams require long processing times before the desired results can be pro-
duced. It is true that by having more than one application program
operational, the time that it takes for each process to complete its task increases
compared to when the application program runs alone. However, the overall
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system productivity and, as a result, overall user gain will increase. These
simultaneously executing programs are called tasks. Therefore, a system with
the capability of multitasking allows users to activate more than one task, or
application program, at a time. An Internet browser that searches for some
information is an example of a task. A word-processing software that is acti-
vated to perform the word-processing task is another application. The com-
puter user can switch back and forth between active tasks to see results, enter a
new request or data, etc. The operating system will switch between tasks based
on the tasks current states and their requirements.

Multitasking is only possible when the operating system supports multipro-
gramming, i.e.,, when multiprogramming is the fundamental capability of
simultaneously executing pieces of software. Multitasking and multiprogram-
ming are sometimes used interchangeably. Most modern operating systems,
like UNIX and Windows, support multitasking.

3.8 Multithreading

Up until now, a process has been the smallest identifiable functional object
within the computer and is created to run a program to perform a duty. What
if we need to perform two similar duties? One way to take care of this situation
is to create two of the exact same process; each assigned to handle one of the
two duties. Similarly, for more than two similar duties the appropriate number
of identical processes has to be produced. This is a correct solution, but it
spawns two major problems:

1.  Asthe numbers of duties increase, the number of processes increases
too, and very soon we will either run out of main memory or, in the
case of virtual memory, we may reach an inefficient state of main
memory, or, at least one with very low efficiency.

2. By increasing the number of processes, the number of objects that
compete for computer resources increases, too. This could lead to an
undesirable state of the system in which many processes cannot
complete their duty because they do not get the chance to use the
resources needed.

A better solution is suggested by thread methodology. Thread refers to a path
through a program’s instructions during its execution. We know that, the
instructions of a program are not executed in the same order of their physical
appearance within the process. Depending on the input and the environment
data, some instructions may never be executed and some may be executed over
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and over again. Without the multithreading methodology, there is only one
thread of execution per every process. At any point in time, the front of the
thread shows where we are right now and what the status of the related process
is, based on the current contents of registers and control signals.

Corresponding to every process is an address space. The address space of a
process is the set of all memory locations that the process is allowed to read
from and write to. This would also include the many CPU registers and flags
the process uses while running. In addition, the machine language instruc-
tions, data, results, and stacks, are parts of this address space. The physical
address space of a process is the set of all main memory locations occupied by
the process at any given time.

Multithreading methodology allows more than one thread of execution for
every process. All threads of a single process share the same address space.
They use the same global data, i.e., all data that is within the process but not
defined to be thread-specific. Threads of the same process use the same files
for storing and/or reading information. They also use the same resources that
are assigned to their corresponding process. For example, if a tape drive is
assigned to a process all its threads are able to use it.

A multithreading operating system is one that is capable of handling
processes and threads at the same time and in which every process is allowed to
generate more than one thread. In such an operating system, there must be
facilities for thread creation, deletion, switching, etc. Such an operating system
allows users to generate more than one request to a process at a time. For
example, a browser can be made to search simultaneously for more than one
topic, even though there is only one copy of the “browser program” in main
memory.

The multiprogramming methodology and technique are essential in the
implementation of multithreading. In this new environment, a thread
becomes the smallest functional object to which CPU (or PU) is assigned.

For more details about thread methodologies, benefits, and implementa-
tion techniques, please refer to Chapter 5.

3.9 Multiprocessing

A computer may have more than one processor. Every processor can inde-
pendently take a process for execution. A process scheduler is usually responsi-
ble for defining what process is to be executed by which processor. The main
memory, in such systems, is common to all processors and all processes (par-
tially) reside in main memory. Every processor may have its own small cache
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memory for holding a copy of some parts of processes. Because the cache size
is much smaller than the size of main memory, a cache can only store a limited
amount of data and/or code. Multiprocessing and multiprogramming can
simultaneously exist in one system. Compared to single-processing multipro-
gramming systems, in multiprocessing multiprogramming systems, there can
be more than one process in the running state. In such a situation each process
is using a different processor for executing its instructions. If there are, say, n
processors in the system, there could be at the most # running processes at any
given time.

3.10 Summary

The ultimate goal in the design and implementation of an operating system is
to produce a handy software program that manages computer resources in the
most efficient way so as to serve computer users correctly, reliably and fairly. It
is recognized that this is not achievable in single-programming environments.
Modern operating systems are built with the capabilities of multiprogram-
ming, multitasking, and multithreading. Providing these capabilities requires
many hardware and software methodologies and techniques. A good under-
standing of process creation, life cycle, and termination, along with its state
transition conditions is most essential in elucidating the needs of different
mechanisms within the operating system. Some of these mechanisms, namely
process switching, interrupt system and handling, and direct memory access,
are briefly explained in this chapter. Multithreading, as an offspring of multi-
programming, has become an essential part of all modern operating systems.

3.11 Problems

1. If the fraction of CPU idle time, w, is 0.25, what is the fraction of CPU
idle time when there are four processes in the system, using the approxi-
mate formula? What is it if we use the exact formula?

2. In a three-state state transition diagram, if the wait/blocked state is bro-
ken into two states, i.e., wait and blocked, develop a four-state state tran-
sition diagram.

3. Ifaninterrupt is generated while the processor is in the middle of execut-
ing (or fetching) a machine instruction, the interrupt will not be handled
before the instruction is completed. Are there any exceptions to this rule
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for your computer processor? If the answer is yes, and the interrupt
causes the processor switching, what does the system save for the location
counter of the process that it has switched from?

What are the differences between multiprogramming and multiprocess-
ing techniques?

Design a logic-level circuitry for diagnosing overflow, underflow and
dividing by zero.

Find out how many interrupt classes are there for the processor of your
personal computer. Name these classes in order of priority.

Research. Find a reference that has calculated a more accurate CPU-wait-
time formula for a multiprogramming environment. Make every effort to
comprehend the discussion.
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Chapter 4

Inside a computer there is a little
society of processes. Processes are
born, live, and die. Even the oper-
ating system, itself, is a set of
processes. When we turn the
computer on, we actually gener-
ate the booting process. It boots
the operating system process (see
the side box) and the booting
process fades away. Computer
users, application programs, or
application processes, and the
operating system may create new
processes or they may destroy
existing ones. This society of
processes needs a governing body
that is the operating system. The
governing body requires a com-
plete set of information for every

Process

There are three concepts upon which
operating system kernels are organized:
process, thread, and agent. Consequently,
we have process-based, thread-based and
agent-based operating systems. We will talk
about process-based operating systems in
this chapter. Thread-based operating
systems are covered in Chapter 5. Agent-
based operating system design is very new
and its concepts, methodologies and
techniques are still being developed. In a
process-based operating system, when the
system starts (or restarts), many operating
system processes are created to serve
application processes. Therefore, the
operating system is composed of, not only
one process, but a collection of processes.

process in the system, in order to identify and manage processes. This set of
information is collectively called process attributes.

41
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4.1 Process Attributes

Like in human societies, upon its creation, a process has to be registered.
Registration involves recording all information necessary to identify a process
and to differentiate it from other processes in the system. This information,
called process identification information, is recorded right after the process is
created or born. Usually, every process is also given a unique numeric identi-
fier, called a process ID, in order to make future references to it easier and
unambiguous. We can think of this ID of something similar to a person’s social
security number or a comparable national number. Process identification
information is usually static, which means it does not change as time goes by
and as the process moves from one state of life to another. Therefore, this
information does not reflect the current state of the process. For that purpose,
the system will record process state information. Process state information is
dynamic and it is frequently changed, especially when the process is not idle. It
includes, among others, temporary data of the process found in special and/or
process-visible registers (i.e., registers which can be directly used by a running
process), process status data, and pointers to different memory areas that are
used to build dynamic stacks for storing peripheral information about the
process. Yet this is not enough. The administrating body needs one more set of
information called process control information. This information is mainly
for management purposes. To control a process, the governing body should
know the current state of the process, what resources it has, and what it needs.
Although we will provide a typical process attributes table, in which informa-
tion is categorized into three sections, namely identification, state, and control
information, the goal is not to learn and/or memorize to which category each
piece of information belongs. Rather, our aim is, to clarify what types of infor-
mation are needed for every process and what purposes this information
serves. To summarize, we have identified the following three categories of
information that is recorded and kept up to date by the operating system for
every process in the system:

- Process identification information
- Process state information
- Process control information

A program is a collection of instructions and data. A process is an active pro-
gram. Hence, instructions, data, results, and temporary values are actual parts
of a process. On the other hand, for example, the numeric identifier of a
process, or process ID, is not an actual part of a process and is only attached to
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the process for the operating system’s sake in order to uniquely identify every
process. This data is called meta-data. It is similar to a person’s social security
or national number which is issued for official transaction. It is clear at least
that, process meta-data has to be kept by the operating system and not by the
process. Going back to the process attributes subject, we realize that some
attributes are parts of the process body while others are parts of the process
meta-data. The process body and its meta-data are collectively called the
process image.

Process attributes have to be stored and kept track of. The operating system
collects all the attribute information of every process in a structure called
Process Control Block (PCB). There is one PCB per process. Without being
very specific, a PCB will generally have the elements shown in Table 4.1.

When a process starts/restarts running, i.e., its state changes to running,
some PCB elements move to temporary locations of the CPU. For example, the
location counter moves to the program counter register and the process’ visi-
ble register contents move to corresponding CPU registers. While the process
is running, changes to these contents will not be immediately transferred to its
PCB, but the PCB will be updated periodically or whenever the process’ state is
changed from running to a new state.

The PCBs of all processes are embedded in a table called the Process Table
(PT). In other words, there is one process table within the operating system
body, with one entry for every process control block. The process table is a data
structure of the operating system. It is, therefore, part of the operating system
address space and not part of any process’s address space. Because of its fre-
quent usage, the process table is always kept in main memory and it is not
swapped out to auxiliary memory.

A real scenario will help us understand how different fields of the PCBs are
used to design and implement process management concepts. We provide an
example of how linking fields of the PCB is used to create a two-way link list
(double-linked list) in order to make a queue of all the processes in the ready
state. For this queue, there will be a variable that points to the rear of the queue
and one variable that points to the front of the queue. These variables are two
new operating system variables that must be taken care of. Otherwise, access to
the queue becomes impossible. Of course, these variables are not stored within
the process table, itself. This is to preserve the neat structural symmetry of the
process table.
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Table 4.1: Attribute fields generally kept for every process

Fields

Some possible usage

Process identification information

Process ID

Parent process

User identifier

Group identifier

For unique and simple referencing by the
operating system.

For accounting purposes of CPU time, I/O time
etc.

For process ownership resolution.

For process sharing between members of a

group.

Process state information

Process-visible registers

Location counter

Condition code flags

Stack pointers

To keep temporary values while process is
running.

Will be needed, as a continuation point, when
the process restarts running.

To reflect the state of some previously
executed instruction.

To point to the stack of procedure and system
calls that is used to keep track of sequence of
such calls.

Process control information
Status
Priority

Process start time

CPU time used

Children’s CPU time used

Scheduling parameters

Links

Process status (Ready, Running,...)

The precedence of the process with respect to
other processes, to be used for scheduling
purposes.

For accounting and scheduling purposes.

For response time calculation and scheduling
purposes.

For accounting and scheduling purposes.

To be used for scheduling the process to use
required resources and the CPU.

To make lists, queues, stacks etc. of processes
with respect to their future needs and the order
by which it will receive.
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Process privileges To be able to assign specific permits to specific
processes for using system resources.

Memory pointers To keep track of memory locations assigned to
the process.

Interprocess communication To keep track of pending signals, messages...

information from/to other processes to be taken care of,
later.

Devices assigned to the process To free all the resources possessed by the

process, before terminating the process.

Open files To flush all unwritten data to files and close
them before process termination.

Flags For different purposes, for example the
interrupt flag will inform the system of an
existing a pending interrupt signal that must be
processed in the future.

The threading of ready PCBs, i.e., rows of the process table with states being
ready, are two-sided to make the addition of a new process to the queue more
efficient that is when a process is born or the state of an existing process is
changed to ready and, similarly removal of a process from the queue more effi-
cient when the process is chosen to become the new running process.
Remember that, addition is to the rear and removal is from the front of a
queue. Figure 4.1 presents a process table composed of ten TCBs. If we repre-
sent p; as the process whose PCB is stored in row i of the process table, then
this figure shows the processes and their respective positions in the ready
queue. Symbol A stands for the end of a link thread. Since there are two link
threads, one from front to rear and one from rear to front, there are two A
symbols.
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Process properties State Link1 Link2

Properties of P1 | blocked

Propetties of Py ready Front of ready queue

Properties of Pz | blocked

Propertties of Py | running

Properties of Ps ready Al A ! A
Properties of Pg ready A
A K L/l v
Properties of Pz | blocked \ ‘ ll‘ ,{' s,
.
Propetties of Py ready ,' \‘\
Properties of Py ready v [Rear o\f\re o mp— |

Properties of Pyp | blocked

Figure 4.1: A simplified process table with links for implementing queues

In Figure 4.1 the threads connecting all processes in the ready queue are
drawn. The ready queue is organized in the form of a special queue with one
pointer to the front of the queue and one pointer to the rear of the queue. This
kind of list is appropriate for the First-In-First-Out (FIFO) process scheduling
method in which a newly arrived process to the ready queue will be added at
the rear of the ready queue and the next process to run is removed from the
front of the ready queue. The arrows of linkl show the order according to
which processes will be picked up to use one round of the CPU, based on FIFO
policy. The order will be Ps, Py, P,, Pg, and P¢. The pointer to the rear of the
queue helps in adding new items to the queue without having to start from the
front of the queue and finding out where the rear of the queue is. For example,
when process Ps is picked to use the CPU, the front of the ready queue pointer
is updated to point to process Pg. Similarly, if process Py, becomes ready, the
pointer to the rear of the queue (i.e., Link2 field) is updated to point to process
P, the link from Py is set to point to P; a link is created from Py (at Link1
field) to P, and the symbol A is moved to the Linkl field of P;.

The link fields of the process table can be used to thread blocked processes
and, depending on the reason for blocking, many queues may be set up using
these link fields.

When a process is terminated, its PCB is removed from the process table
and the space will be used for a new process in the future.



M. Naghibzadeh 47

4.2 System Calls

Great efforts are put into making a robust fault-free efficient kernel. With no
doubt, it is the kernel that makes some operating systems superior over others.
When the computer is up and running, many managerial processes, that are
not created by any application program are alive and on duty. Some of these
are created from the instructions embedded within the kernel. This is not the
only role of the kernel’s embedded instructions. There are codes, or instruc-
tions, that are usually asleep, or not a part of a live process which can be made
active when called on by either an operating system’s process or by a user
process. These codes are organized in a set of routines, each capable of per-
forming a little function. For example, a bunch of kernel instructions may be
organized to close an open file, when activated.

Although files are kept on disks (floppy, hard, CD, etc.) and not in main
memory, vital information like name, size, location on disk, etc. of every open
file is kept in main memory. One reason for closing a file when we are done
with it is to let the operating system, i.e., the close file routine of the kernel,
vacate main memory locations used by the file and use it for other processes
that need main memory. The “close” routine can be used by an operating sys-
tem process (including a kernel process) or by an application process that
feels responsible for closing its open files which are no longer needed, so as to
ensure its quota for the number of open files is not violated and the file is
safely closed before process termination. Therefore, we can think of the close
file routine as a more primitive set of instructions than an operating system
process or an application process. Although it is not an independent process,
other processes could use it and, by doing so, become part of the calling
process’ body. Routines like the close file routine are called kernel services.
Kernel services are carefully designed, implemented and tested to be correct
and to do exactly what they are meant to do, without any detrimental side
effects. To improve the efficiency of the kernel and to reduce its size, every
service is made to do only one action. For example, the kernel service open
file only does what is meant by opening a file. It is not made to do anything
else like reading something from a file or writing something on it.

Some kernel routines are usable by application programs and some are not.
Calling some routines directly from the user level is made possible even in a
highly hierarchical operating system, in which we expect higher level codes to
respect the hierarchy and access a kernel service via levels in between their own
level and the kernel level. In the design of operating systems, principles like
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layered,  structured, readable,
object-oriented, etc. are respected
as far as they do not decrease the
system efficiency, i.e., speed, size,
and minimal resource usage.
Calling a kernel service from the
application program’s layer, while
observing the layered structure, is a
very inefficient method, especially
when the need for doing so is
highly frequent. Writing kernel
services requires such a high degree
of expertise that most application
programmers lack the ability to
write routines that are similar to

Trap is one way of getting the
operating system’s attention. Interrupt is
another way of invoking the operating
system. A trap is issued by a running
process for asking the operating system
to execute a kernel service. The calling
process, i.e., the process that issues a
trap, provides enough information for the
operating system to identify the kernel
service. This information is stored in
registers and/or an operand of the trap
instruction. The operating system will
collect the trap instruction’s operand (if
any) from the instruction register.

kernel routines. Therefore, they

have to rely on prewritten primitives within the kernel.

Some kernel services are made available for direct use by application
processes. For kernel service, a system call or supervisor call (SVC) to a func-
tion is necessary. The function prepares the arguments and executes a trap
instruction. A trap instruction is a software interrupt that is generated by a

software application.

call a kernel service

I

Other
layers of
the
operating
system

Kernel Barrier

A kernel service

Kernel

Figure 4.2: The kernel barrier is busted twice as shown at points A and B
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Connecting the two different worlds of the kernel and application processes
requires a regulated mechanism called a protocol. Figure 4.2 demonstrates the
calling and hence, executing and returning of a system call from a user process.
When this is done, the barrier separating the user mode and the kernel mode
is busted twice: once when entering from the user mode to the kernel mode
and once when returning from the kernel mode to the user mode.

Having in mind that the kernel is a highly protected environment, the fol-
lowing steps must be observed for every kernel-routine execution.

1. The application programmer should know what system calls are
available for him and use these with correct syntax.

2. When translating the user program, the program translator (assem-
bler, compiler, etc.) will insert extra codes to prepare the system call
identification and its parameters for the kernel. This set of instruc-
tions will include the trap instruction. The trap instruction informs
the operating system that it wants to execute a kernel primitive.

3. During the execution of the user program and when the trap
instruction is executed, a software interrupt is generated. In
response to this interrupt, an interrupt service routine is activated to
change the mode of execution to the kernel mode and prepare for
the system call execution.

4.  The system call is executed.

The execution mode is changed to the user mode and a regular
return to the user program is performed.

Careful examination of steps 1 to 5 will reveal that it is not the application
process that goes into the kernel to execute a kernel service. Rather, after the
trap instruction, the user process has no control on what and how his request
is executed. It has to wait (or is perhaps blocked) until the return from the ker-
nel is completed by the operating system. Therefore, when a user process is in
control, it is always in the user mode with limited privileges corresponding to
that mode.

A brief list of some common system calls are given in the Table 4.2. To make
the list realistic, the system calls are taken from the UNIX operating system.
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Table 4.2: A brief list of UNIX system calls

System Call

Description

Process Management

pid = fork()

Create a child process similar to this process.

pid = waitpid (pid, &static,
options)

Wait for your child process with the numeric
identity “pid” to terminate.

s = execve (name, argv, envp)

Replace the process’s memory image with the
“name” process, i.e., run a new program in this
process.

exit (status)

Terminate this process and return the value of
status.

s = kill (pid, sig)

Send a signal to the process with the “pid”

identification.

pause ()

Suspend the calling process until the next signal.

wait (&status)

Wait for the child process to exit and get the

status.

alarm (sec)

Set the next SIGALRM for ““sec” seconds later.

Interprocess Communication

qid = msgget(queueid, rights)

Create a message queue or get the system-wide

identification of the existing queue “queueid”.

msgsnd(qid, &mymsg, size, flags)

Send my message of size “size” to the queue of
system-wide id “qid”.

msgrev(qid, &mymsg, size, type,
flags)

Receive a message from queue “qid” into
“&mymsg” buffer.

semid = semget(key, nsems,
rights)

Create a semaphore with key “key”, if it does not
already exists.

semop(semid, operation)

Perform the operation “operation” to semaphore
with identification “semid”.

File System

fd = create (name, mode)

Create a new file and return the handle for future

access.
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fd = open (file, how)

Open a file with the given handle for read and/or

write

s = close (fd)

Close the file with the given handle

n = read (fd, buffer, nbytes)

Read data from the file into the buffer

n = write (fp, buffer, nbytes)

Write data to the open file from the buffer

pos = Iseek (fd, offset, whence)

Move the file pointer to a new place within the
file

s = stat (name, &buf)

Read and return status information of “name” file

s = mkdir (path, mode)

Create a new directory

s = rmdir (path)

Remove the given directory

s = link (namel, name2)

Make a link from “namel” directory to “name2”

directory (or file)

s = unlink (name)

Remove the named directory (or file) link from

this directory

s = chdir (name)

Change to the named directory

s = chmode (name, mode)

Change the file’s protection mode

In this table, the return value of system calls is the integer 0, if the system
call is completed successfully. Otherwise, it is the integer -1. The abbreviation
pid is for process identification. fd is for file descriptor (the identifier that is
used to refer to a resource). opts is for options, execve for the execution of a
program with provided arguments and environment, argv is for the arguments
vector, envp for array of environment pointers, and & for pointer reference.

4.3 Process States and State Transition Model

In Section 3.3, we examined the process life cycle. Three states were recognized
and a state transition model, composed of these states, was developed. That
model is the most essential state transition model for all modern multipro-
gramming operating systems. New states can be added and corresponding
transitions may be developed to produce more complex models that are tai-
lored to reflect new requirements. Before doing so, we would like to talk about
rationales behind the need for dealing with process states and state transition
models.
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System analysis is an essential part of any software system development
process. The operating system could be looked at from the process’s point of
view to determine what could be done for a process to run correctly, smoothly,
and efficiently without doing any harm to other processes and the system. To
do so, it is essential to identify the different states of a process during its life
cycle and state transitions. Actually, we do not just recognize the states but
rather we, as the designer of the operating system, make the decision on what
states to use and what transitions to allow. This is the reason why all operating
systems are not exactly the same in regards to the state transition models.
Essentially, they all have the three indispensable states: ready, running, and
wait/blocked.

While a process resides in a specific state, it does not require a tremendous
amount of services from the operating system. However, services are consid-
erable when transferring from one state to another. Sometimes the process
dictates state transition, for example when a running process needs to read
some data from a disk. Sometimes, however, it is the operating system that
makes the decision to change the state of a process, e.g., when a process has
been using the CPU for a long time and there are other processes waiting to
use the CPU. In either case, it is the operating system that goes through all the
necessary formalities.

The basic three-state state transition model is redrawn in Figure 4.3. Most
contemporary operating systems utilize a state transition model with more
than three states. The purpose of this chapter is to develop a more detailed
model in which an operating system’s responsibilities becomes more apparent.
As a result, system design and implementation complexity reduces. This also
improves efficiency due to shorter and more specific data structures that keep
track of processes in the system. For example, UNIX uses a nine-state state
transition model with the following states: created, ready to run in memory,
ready to run swapped, kernel running, user running, sleep swapped, asleep in
memory, preempted, and zombie.
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Process
Termination

A process is
picked to run

Needs I/0 or
circumstance

Wait/Block

Running obstacle
is vanished

Preempted for
the interest of
others

Process birth

Figure 4.3: The three-state process state transition diagram

In UNIX process states, it is clear that the running state of the three-state
model is broken into kernel running and user running. Similarly, the blocked
state is divided into sleep swapped and asleep in memory. Furthermore, zom-
bie is similar to the terminate state and reflects the case in which the process is
no longer active and will not become active in the future, either. A trace of the
process is left for possible usage by the parent process. We can assume that the
state of the process in the process table is changed to zombie, i.e., a dead
process. However, its PCB is not cleared and may be used by the parent process
and/or the operating system. Table 4.3 presents a rough description of the
UNIX states and their mother state in the three-state model.
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Table 4.3: UNIX process states and their relations to the three essential states

State name Mother Meaning
state in the
3-state
model
Created | - Process is created, but with the fulfillment

of some other requirements will become
ready

Ready to run—in memory | Ready Process is ready to run, it is up to the
dispatcher when to make it run

Ready to run—swapped Ready Process is ready to run, but is currently
swapped out of the memory and if it is
swapped in, its state will become Ready to
run—in memory. It is then up to the
dispatcher to decide when to choose it for
running

Preempted Ready Process was in kernel running state before
the system decided to switch to another
process

Asleep—in memory Blocked Process is waiting for an I/O to be
completed, for a device to be granted,
and/or an event to occur

Sleep—swapped Blocked Process is waiting for an I/O to be
completed, for a device to be granted,
and/or an event to occur at the same time it
is swapped out of memory and it has to be
swapped in, first

User running Running The process is running.

Kernel running Running The process is executing a kernel service
routine, i.e., some kernel instructions are
being executed in behalf of the process
Zombie | - The execution of the process is completed
but its PCB and process table entry is not

removed, yet
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To exercise a practical design problem, let’s suppose we would like to break
the running state of the three-state model into two, namely kernel-running
and user-running. In other words, a process in the kernel mode having
extended privileges would be distinguished from a process in the user mode
which has restricted privileges. From Chapter Three, we learned that it is not
possible to directly change the mode of a process from user to kernel, thus
allowing the process to execute kernel procedures. This mode change is accom-
plished indirectly by the operating system as a response to a system call by: the
running process, a clock interrupt, or an I/O interrupt. Even then, the process
is not within the kernel to do whatever it desires to do. Rather some part of
kernel is executed on behalf of the process. In the kernel running state, things
may happen that cannot take place in the user running state. Also, the process
will need different services from the operating system than if it were in the user
running state. For example, the process may be in the kernel running state as a
result of an interrupt and then another interrupt may come about. This situa-
tion cannot arise in the user running state.

Let’s examine transitions that cause the entering and leaving of the running
state of a three-state transition model. We will see the equivalent transitions
for when the running state is broken into two states (kernel running and user
running) and when the terminate state is replaced by zombie.

1. Ready to running in the three-state model becomes ready to kernel
running, because initial
preparations  take place
within the kernel.

Context switching is the set of
actions taken to safely switch from the
running process (thread or agent) to a
ready to run process. This action
enables the system to run the latter
process from the exact point where its
execution was discontinued, if it is not
the first time it uses the CPU.
Moreover, the execution of the former

2. Running to ready in the
three-state model becomes
kernel running to ready, as
this happens in response to a
clock interrupt which is
processed within the kernel.

Running to terminate in the
three-state model changes to
kernel running to zombie,

process will be resumed when later in
the future when the scheduler picks
this process to swich to.

because final process termi-
nation operations are performed by the kernel. The system call used
for this purpose is either exit or abort. Zombie state in the UNIX
operating system represents the process execution termination.
Zombie is a state in which a process has died but is still not buried.
Such a process will be buried when some information, e.g., its total
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execution time, is collected. Therefore, the equivalent transition in
UNIX will be kernel running to zombie. The transition from run-
ning to zombie takes less processing time (for the time being) than
running to traditional terminate.

4.  While in the kernel running state, an interrupt can occur. To process
the interrupt a reentry to kernel running will be performed, hence
kernel running to kernel running transition takes place.

5. When a process is in the kernel running state in order to handle an
interrupt and then another interrupt occurs, a reentry to the kernel
running state takes place. After interrupt handling, the point of
return is where we left off for handling the latter interrupt, i.e., the
kernel running state. Hence, once again, there is the kernel running
to kernel running transition.

6. The running to wait/blocked in the three-state model becomes ker-
nel running to blocked. This is because the final stages of an I/O
operation are done within the kernel. If a transition must wait for an
event to occur, checking to see whether the event has taken place or
not is within the kernel.

7. To complete the diagram, whenever a process is in user running state
needs kernel service, the process state is changed to kernel running.
The process then returns to the user running state when kernel serv-
ice is completed.

The resulting state transition diagram is presented in Figure 4.4. We are now
very close to a real UNIX state transition model. We need to clarify three more
concepts before we can actually arrive at the complete model. These concepts
are: process creation, process swapping, and process preemption.

We will talk about process creation later in this chapter, but a brief discus-
sion here will explain why the created state in UNIX is different from the
“ready to run” state. In response to certain actions, a process is created. These
actions, in modern operating systems, are: system power on or system reset, a
process create system call like fork(), or a user launch of a program by a com-
mand or activation of an icon. In the UNIX operating system, the kernel per-
forms the following actions during process creation:

- Allocating a row in the process table for the process being created
- assigning a unique identification number for the process being created
- Allocating space for the process image

- Initializing the process control block of the process being created
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- Returning the numerical identification of the created process to the
creating process and a zero value to the created process.

The status of the newly created process will be “created.” It is neither “ready to
run—swapped nor “ready to run—in memory”. This is not because the
process cannot belong to one of the two ready states. Rather, it is because
UNIX operating system designers wanted to have a “created” state giving them
the opportunity of generating processes without yet scheduling them to run in

the future.

Primitive UNIX-like state transition Model

Process birth

—>

Preempted for the
interest of others

is vanished
A process
is picked
to run

Wait/Blocked

Needs I/O or
circumstance

Kernel
Running

System call
or interrupt

Process
Termination

Running obstacle

Corresponding states in
three-state model

Ready

Wait/Blocked

Running

Figure 4.4: A hypothetical state transition model with five states

Swapping out a process is the action of removing a process that has not yet
been terminated from main memory and transferring it to secondary memory.
Swapping in a process is the reverse action, bringing the process that has been
swapped out of the memory back again into main memory. Process swapping
(in and out) originates from a specific virtual memory methodology that was
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chosen for the UNIX operating system. The discussion of main memory man-
agement, especially when virtual memory is used, is a vital part of any operat-
ing system text book. It is considered in the forthcoming chapters.

Without delving into the memory management issue, the easiest way to
understand the need for process swapping is to investigate when swapping is
performed in the UNIX operating system. When free space is not available in
main memory and further execution of a running process depends on the
assignment of more free space, two phases of memory freeing are performed
one after the other. First, parts of main memory that are occupied by existing
processes and satisfy certain conditions are evacuated. The evacuation process
is done according to an algorithm called the page removal algorithm. Second,
if not enough memory is freed, then some processes are chosen and rolled out
of memory. UNIX calls such a process a “swapped out” process. A swapped out
process will be swapped in, in the future, to let it complete its task. Actually, the
UNIX operating system always likes to have certain amount of free memory to
prevent frequent process swapping. Therefore, once memory freeing starts, it
continues until a specific amount of memory is freed. The amount of freed
memory is often much more than what was immediately needed.

Let’s distinguish between two types of processes. One, which is ready to
immediately run and has not used the CPU since it was created or transferred
from a wait/blocked state to the ready state. The other, which was running and
could have continued running, but, for some reason, the CPU was forcefully
seized from it. The state of the former type processes is called the “ready to
run—in memory” and the state of the latter type processes is called “pre-
empted.” We can identify many reasons for differentiating between these two
states. For example, in an inferactive environment we wish to answer any short
query as soon as it arrives, without waiting for its “turn” to come. Once a
request is generate it is not clear whether the request is short or long. Therefore,
right after a request is generated (if possible) a process is created to take care of
the request. The state of this process is set to ready to run—in memory. CPU
scheduler immediately schedules this process to run for a predefined fixed time
slice. If the process is completed in one time slice the corresponding request is
considered a short one. Otherwise, it is considered a long request and the CPU
is taken away from the process and its state is changed to “preempted”. Processes
in the preempted state receive their turn to use the CPU according to a different
scheduling strategy. In another episode, a process that is forcefully evacuated
from the running state and put into preempted state has a higher desire to use
the CPU. Hence, we may prefer running such a process when CPU utilization is
low. Therefore, adding a new state called preempted opens up a new horizon for
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implementing better scheduling strategies that increase the performance of the
system.

Now, let’s turn to possible transitions in the nine-state UNIX model, the
states being created, ready to run-swapped, ready to run-in main memory, pre-
empted, sleep-swapped, asleep—in main memory, kernel running, user running,
and zombie.

A process is born in the created state when a means of running a program is
needed. If enough initial main memory is assigned to a created process it will
transfer from the created to the ready to run in memory state. Otherwise, the
process will transfer to the ready to run swapped state.

A ready to run in memory process may be swapped out of memory due to
a memory shortage and when indicated by the memory management algo-
rithm. Such a process is ready to run swapped. This process will be swapped in
when the scheduling algorithm decides to do so. Then, the process’ state will
again become ready to run in memory.

It is from ready to run in memory that a process can move to the running
state. The initial activities of a state transition are performed by kernel rou-
tines. Therefore, a process will transition to the kernel running state first and,
from there, to the user running state.

A user running process will move to the kernel running state to perform
any protected mode operations like system calls or interrupt handling.

Under certain conditions, some
scheduling policies like round robin may
attempt to force a process out of the user
running state. In this case, the process
will go through the kernel running state
to the preempted state. A Preempted
process is a ready to run in memory
process. It is neither newly created ready
to run process nor a process that has
needed an I/O operation or has had to
wait for some conditions before continu-
ing its execution in a previous round of CPU usage. Such a process is, roughly
speaking, called a CPU-bound process. The distinction between CPU-bound
and I/O0-bound processes will help to better schedule processes with the aim of
achieving a more balanced system, i.e., a system in which all devices are kept
busy working most of the time. A preempted process will be given CPU time
to continue its execution in the future and its state will become user running.

A user running process may need to read some data from input devices,
may output results to disks or other output devices, or wait for some event to

A CPU-bound process needs
processing time much more than
input/output time. This characteristic
identifies the process whose
performance is limited by CPU
usage.

An 1/O-bound process, on the
other hand, uses much more I/O
devices as oppose to the CPU.
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occur, for example receiving a message from some other process before contin-
uing its execution. In such a case, the process has to be evacuated from the user
running state and transferred to asleep in memory via the kernel running
state.

An asleep in memory process may be swapped out of memory due to mem-
ory shortage. It then becomes sleep swapped. When the wait/blocked reason is
gone the asleep in memory and sleep swapped processes will be transferred to
ready to run in memory and ready to run swapped, respectively.

When an interrupt occurs for a process, interrupt handling is performed
when the process’ state is changed to kernel running. A new unmasked inter-
rupt with higher priority than the one being processed forces a reentry into the
kernel running state. After this new interrupt is handled, the process will
return to the kernel running state again to complete the handling of the first
interrupt.

Note that, for the purpose of state model development, it is assumed that it
is not possible that two state changing events to occur simultaneously. For
example, a transition from the sleep swapped state to the ready to run in
memory state cannot happen, because it requires two events to occur at the
same time: the termination of the sleeping condition and the termination of
the main memory restriction for this process,.

Along with these transitions, the UNIX state transition is shown in Figure
4.5.
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Figure 4.5: The UNIX state transition diagram

An attractive feature of Figure 4.5 is that the states are divided into five
rows. For these, the equivalent state from the essential three-state transition
model is given, opposite the corresponding row.

4.4 Process Creation and Termination

The topic of process creation and termination is best dealt with by discussing
the answers to the following questions clearly, precisely, and on an individual



62 Operating System

basis. We will follow this guideline and will present the necessary information
in the order in which the questions are raised.

1. Why is processes created?

When is a process created?

What is done to create a process?

What are the tools for creating a process?

What is common in parent and child processes?

What is different between parent and child processes?

Nk v

How is a process terminated?

4.4.1 Why is a Processes Created?

Processes are the means of running programs to perform tasks. All required
processes are not created when the computer is started (restarted). As com-
puter users decide to run new programs, the system has to provide the proper
environments to do so, i.e., create processes. For example, if we plan to run an
Internet explorer program, the system must create a process to run this pro-
gram. The program has been (previously) compiled and linked and is, so
called, executable. Besides the code and data that have been embedded into the
program, many other requirements must be fulfilled to do the job. These facil-
ities are embedded into the process that runs the program (see Table 4.1).
Processes use hardware devices like the CPU and main memory to execute
instructions. They also rely on operating system facilities.

4.4.2 When is a Process Created?

Generally, processes are created due to these three circumstances:
1. Computer start or restart

2. Explicit request by a computer user to start a new process by double
clicking on or opening an executable program file, issuing a com-
mand to run a program, etc.

3. In response to a request from a running process to create a child
process

The first two process creations are often in response to an offline action and
seldom occur when the computer is automatically restarted. The third process
creation is an online action and occurs when a running process submits a
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request to the operating system to create a new process. This new process will
presumably carry out some duty for the process that requested its creation.

4.4.3 What is done to Create a Process?

There is a list of actions necessary to create a process. The following presents
these actions the order in which they are usually carried out, although this
order is not fixed and slight variations are possible. The first action is to make
sure we have not already reached the limit for the number of live processes.
Although advances in computer hardware and operating systems have enabled
us to set this limit, which is called the degree of multiprogramming, to a very
high number, we still must check to make sure it is observed. The next action is
to generate a process ID for future references that uniquely identifies the
process that is being created. This and the following step, the allocation of a
process control block, may be combined because the generation of the process
ID may somehow be related to where about the PCB is in the process table.

1.  Ensure the degree of multiprogramming, that is maximum possible
number of active processes, has not been exceeded

2. Generate a unique process ID number to be used for addressing the
process in the future

3. Allocate space for the process control block and the process context,
i.e., places to store CPU register contents and to initialize proper
fields

4. Allocate space for other preliminary structures like stacks and stack
pointers and initialize the related fields

5.  Put the process in one of the queues corresponding to process states,
in order for the operating system to be able to track the process

4.4.4 What are the Tools for Creating a Process?

Creating a process is one of the responsibilities of the operating system kernel.
A system call, or system service, is usually provided so that it can be used by
programmers and/or within the operating system to create a new process. The
name and arguments of this system call varies from one operating system to
another. For the UNIX operating system, the fork() system call creates new
processes. The syntax for the fork system call is:

retval = fork();
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When the fork() system call is called a child process is created for the calling
process. The process within which the fork() system call is called is actually the
parent process of the process being created. The child process is a copy of the
parent process, except for some attributes that are discussed later. The returned
value retval is the integer zero for the child process and it is the child’s process
ID for the parent process in order that the parent knows child’s process ID. The
parent and child processes will continue to execute the same code after the
fork() instruction. However, it is possible to check the retval value and let the
parent and child processes follow different paths of instructions. It is safe to
assume that an exact copy of the parent process’s data and code (program
instructions), is made for the child process. However, for the UNIX operating
system this is not quite true. In UNIX, a program and its data are broken into
pages of equal size, for example 2K bytes. A child process shares the same page
set of the parent process until a change in a page is going to be made by either
the parent or the child. Right before the change is made, a copy of the corre-
sponding page is made for the child process. This technique is called copy on
write. With this technique, main memory is better utilized as the parent and
child processes are logically (but not physically) memory-independent. Be
careful not to mix this technique with the thread methodology that will be dis-
cussed in the next chapter.

In the following, by using the fork() system call, a child process is created.
The parent process will then execute procedure “procl” and wait for the child
process to terminate. The child process will execute “proc2” and will exit with
the status “status”.

void main(void)
{
int pid;
int retval;
int status;  // Pointer to the value returned by the child process
pid = fork(); // Assume that, there is no obstacle in creating
// the child process
if (pid != 0) // This is the parent process
{
proc1; // Parent process will continue by running procedure proct
wait (&status); // Wait until the child process is terminated

]

else

{

proc2; // Child process will continue by running procedure proc2
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status = ...; // Provide a valid value for the returned status
// to the parent process
exit (status);
}
}

4.4.5 What is Common in Parent and Child Processes?

The most important piece of information that is the same (but not common)
for parent and child processes is the source code of the program that is exe-
cuted by both processes. It should be mentioned that when a child process is
created, a (logical) copy of this information is made for the child process dur-
ing its creation. From then on, each one will use its own piece of code. It is pos-
sible that the codes may differ as a result of replacing existing instructions with
new ones. This is because the stored program concept allows a process to
change its own code. It is possible for parent and child processes to follow dif-
ferent paths of execution and they may execute different procedures and even
different programs. The procedures are parts of the common code, but the
programs are not. Data and results that exist right before the creation of a child
process will be common for both parent and child processes. Once again, from
this point on, each of the processes may input its own data and/or may pro-
duce its own results that do not exist in the other process or are different from
the other process’s data and results. Code, data, and results are collectively
called process image.

For the UNIX operating system, a parent’s permissions and rights are
passed on to its children. Right after child process’ creation the working direc-
tory, root directory, and open files of both parent and child processes are the
same.

4.4.6 What is Different Between Parent and Child
Processes?

While a parent’s CPU usage is surely greater than zero when a child process is
created, the child’s CPU usage is set to zero.

A parent process can wait for a child process to complete its task using
wait()or waitpid() system calls, but a child process cannot wait for its parent to
complete a task. This means that a parent process is able to create a child
process to do a certain task and to report the status of its completion to the
parent. However, this is not possible the other way around.
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The child process does not inherit any locks and alarms that may have been
set by the parent. It will not have any pending signals right after being created.
Therefore, the child is not notified when an alarm, set by the parent, expires.

A child process can be made to run another program by using one of execve,
execv, execle, and execl system calls. If a child process starts to execute a new
program, it will have a new image and will no longer remember its previous
image. In this case, when the new program is completed, the child process
completes and exits. It will not return to the previous process image.

4.4.7 How is a Process Terminated?

When the execution of a process is completed, it is logically terminated. For
the physical termination of a process, all memory occupied as process images
and stacks are first freed. Then, the process control block is freed and the
process is removed from the process table. The physical termination of a
process is started after its parent process becomes informed of the logical ter-
mination of its child. The parent process might have been waiting for its child
to terminate by calling wait() or waitpid() system calls. Logical termination of
a process takes less processing time than its physical termination. For logical
termination it suffices to change the terminating process’s state to terminated
and to actually add this process to the set of terminated processes. Physical ter-
mination of a process, on the other hand, involves physical removal of the
process and the corresponding controlling information from main memory;,
registers, etc.

4.5 Process-Based Operating Systems

In a layered operating system like UNIX, Windows, Linux, etc., higher layers
of the operating system are organized as independent modules, each capable
of performing a major managerial function. The kernel may be a huge
“monolithic” process or it could be a collection of modules each capable of
performing one managerial function. Besides, it is consist of a set of primi-
tives used by many kernel modules, higher layer modules, and perhaps user
processes. Monolithic structuring of the kernel is a thing of the past and it is
no longer an acceptable method of kernel design. Therefore, for modern
operating systems, modules can be processes, threads, or agents. A process-
based operating system is an operating system in which the kernel is com-
posed of a set of independent processes and a collection of primitives. Each
process in such a system is given a unique responsibility. This concept does
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not mean that in such a system we cannot create threads. Rather, it clarifies
the way we look at the operating system in terms of design and implementa-
tion purposes. Although UNIX is a process-based operating system it pro-
vides a collection of application accessible procedures for creating user-level
threads.

In a process-based operating system, the centre of attention is the process.
We shall later provide managerial rules and regulations for processes, the syn-
chronization method of processes, the scheduling of processes, and so on.

4.6 Summary

Processes are one of the central issues of every operating system. Processes are
created, managed, and destroyed by the operating system. They are created as
an environment for running user programs. The process state transition dia-
gram is one way to model processes and to study the requirements within
every state and during transitions from one state to another. The request to
create a process could come from a user, an application process or the operat-
ing system itself. On the other hand, the same requesters could order the
destruction of a process or it could be terminated automatically when its duty
is finished. A process that requests the creation of another process becomes the
parent process and the created process is called the child process. A child
process goes its own way right after it is created. It is the parent process that
may wait until after the execution of its child process to collect, for example,
accounting information for an accounting system. As UNIX is a process-based
operating system, this chapter was able to use actual examples from this oper-
ating system.

4.7 Problems

1. What are the purposes of system calls?

2. Explain the reasons for the two transitions from the kernel to itself, in the
UNIX state transition diagram.

Kernel
running
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Write a program that creates two child processes. Each created (child)
process has to execute a separate executable program. Make the parent
process wait until both child processes are completed, before being termi-
nated.

Using system-calls like create, open, and read, develop a program to make
a copy of an existing file.

In order to find out whether system calls consume more CPU time than
regular procedures, develop a program that calls a kernel service one
thousand times and a procedure the same number of times. Calculate the
CPU time spent in each case. Compare the results and present an argu-
ment that supports the results. You should pick a system call that has
approximately the same number of instructions as the procedure.

Recommended References

Horning and Randal [Hor76] have treated the concept of process independent
of any operating system. For the general treatment of processes within UNIX
refer to Vahalia [Vah96]. McKusick et al present a specific treatment of
processes for Berkeley 4.4BSD UNIX [Mck96]. [Bac86] is a good reference for
the treatment of AT&T UNIX. Linux process management is discussed by Beck
et al [Bec98] and O’gorman [Ogo01].



Chapter 5

Thread

A system, that is composed of processes structured in a parent-child hierarchy
and a governing body named the operating system, works very well running
our programs. However, what are the problems with this type of system that
inspired operating system scientists introduce a new species of living objects
called threads?

Consider a situation in which a process
is needed by many users. It might be a file
server that is in constant demand by many
processes to create, open, read, write, see
and/or change attributes, copy, delete files
etc. What do we do when we have only
processes and no threads? For every
request to the file server, a child process of
a file server process is created and the
responsibility of handling the correspon-
ding request is passed on to it. As stated in
the previous chapter, to create a child
process a copy of the parent’s memory image must be made for the child. Even
if only parts of a parent’s image, for every child process, are retained, main
memory will soon be in high demand, thus decreasing its efficiency. Another
very important issue is resource allocation. Computer resources are limited. A
majority of the time, in multiprogramming environment resources are highly
sought after. In a multiprogramming single-processor system, there is only one
CPU, which many processes would like to snatch in order to conduct their
duties. A personal computer might have one hard disk, even though many
processes are in constant need to read or write on files. Even with more than

A file server is a software
program that provides file services
to users, usually within a network
of computers. A file server is a
kind of multi-user software that
takes requests from many
processes, does the requested file
service, and returns the results or
stores the information provided by
the users, on files.
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one hard disk, the situation may become challenging. A similar scenario may

arise for other resources and even for software resources like compilers.
Creating many processes and letting them compete for limited resources

causes the system to spend much time mediating and resolving conflicts. It

also increases the chance of deadlocks,
a situation where two or more
processes are each waiting for a
resource that another holds and the
waiting creates a loop. The thread
concept and technology was intro-
duced to solve these dilemmas. It also
has other benefits.

By using threads, we can make

Deadlock refers to a situation in
which two or more processes are each
waiting for a resource that is currently
in the possession of another process.
A closed loop is formed by the waiting.
Forcefully taking these resources from
the processes is not permitted. In such
a situation, an intervention by the

operating system is inevitable,
although this intervention may Kill
some processes out of interest for the
others. Although deadlock is a rare
event, it could be very harmful. Hence,
its prevention is very desirable.

many parts of a program execute con-
currently. This concurrency is more
effective when the system is of multi-
processor/multiprogramming nature.
In the case of multiprogramming sys-
tems with one processor, as described
in Chapter Three, the overall system
utilization also increases. When a system is better utilized in running a process,
the process will be completed in a shorter period. For instance, for a word-pro-
cessing software, one thread could be assigned for information input and dis-
play function, one thread for spelling check, one for periodical transfer of the
information to its permanent place on a disk, and yet another for pagination
purposes. All these threads can run concurrently or in a multiprogramming
fashion. A similar situation can be arranged using only processes. However, by
using threads, resources such as open files and main memory information, are
shared. One more benefit of threads is that, in sharing many resources of a
process, thread creation and destruction takes less system time which in turn
improves the overall system efficiency. A process’ threads are regularly set up to
cooperate and make the job faster and more appealing to the user, whenever
the computer user is present during a job. With this in mind, processes usually
work in a competitive, not cooperative manner. They try to grab more
resources and CPU time to get their own job finished sooner.
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5.1 Thread Types

The implementation of threads is not without difficulties. Any change to a
shared or, global variable, or the status of a resource, by one thread affects all
sibling threads, i.e., threads that share the same address space. For example, a
thread may free up a tape drive which some other thread will need in the
future. It is possible that there will be timing conflicts in using common
resources like data buffers. These are new challenges in the development of
thread-based operating systems.

Threads are sometimes called Lightweight Processes (LWP), because thread
creation and termination by the operating system is less time consuming than
process creation and termination. The name LWP has nothing to do with
threads being smaller than processes. We will stick with the preferred and more
commonly used term “thread” in our discussion.

There are three different views on thread implementation. Threads could be
implemented at the user level. A user-level thread is known only to the user or
the process that has created it. A process has to handle all aspects of managing
the threads it created. These applications include but are not restricted to: CPU
assignment, device assignment, state transition, etc. To be clearer, the operating
system will not know that a process has created any threads and hence cannot
help managing them. What the operating system does, in respect to user-level
threads is to provide a set of basic routines for creation, manipulation, and
destruction of threads. This can be used by the user whenever needed, without
any managerial responsibility as the part of the operating system.

The kernel-level thread, on the other hand, is a thread that is created by the
operating system in response to a request from a user. The operating system
knows this thread, has given it a unique identification number, and it takes
complete responsibility for managing it (compare to process management).

The third type of thread implementation is hybrid implementation that is a
combination of user-level and kernel-level threads.

User-level threads have many advantages and few disadvantages. We are not
planning to discuss the pro and con details of user-level threads. Rather, we
would like to ignore user-level and hybrid thread implementations and con-
centrate on kernel-level thread implementation. We think this is where the
operating system plays a significant role, which is worth considering in an
operating system context. Of course, by discussing kernel-level implementa-
tion of threads a great deal of hybrid thread implementation is covered. With
this in mind, the forthcoming discussion covers kernel-level methodologies
and design ideas.



72 Operating System

The discussion of threads is most natural within the context of a thread-
based operating system. In the previous chapter, we presented the process con-
cept and many of the actual situations discussed were taken from the UNIX
operating system, an agreed upon process-based operating system (with
thread supporting capabilities.) In this chapter, we will present actual exam-
ples from the contemporary Windows operating system which is the closest to
a completely thread-based operating system among commonly used operating
systems.

In a thread-based operating system, a process is no longer the active species
of the environment. Rather, the responsibility of running programs is trans-
ferred to threads. A process plays the role of a house in which threads live. As
there are no empty houses, as soon as a process is created a thread is also created
and assigned to that process. There is at least one thread for every process but
there might be more than one thread living in a house, i.e., a process. A hierar-
chy of parent-child processes is perfectly acceptable in thread-based operating
systems. To make the case simple and practical, we assume that all threads of a
process are siblings. There is no hierarchy among themselves even though a
parent-child relation may exist among some of them in regards to thread gen-
eration. This is a safe assumption since there is usually no difference between
the thread that is generated by a process (the primary thread) and threads that
are generated by other threads, as long as they are within one process.

A multithreading operating system
is the one that is capable of handling
many processes and threads at the
same time. Every process is allowed to
generate more than one thread. In
such an operating system, there exist
facilities for thread creation, deletion,
switching, etc. Such an operating sys-
tem allows users to generate more
than one request to one process at the
same time. For example, a browser can
be made to search simultaneously for
more than one topic, even though
there is only one copy of the “browser program” in main memory.

Multiprogramming methodology and technique are essential in the imple-
mentation of multithreading. In the new environment, a thread becomes the
unit to which the CPU (or PUs) is assigned.

Now that the fundamentals have been cover, we can continue with other
aspects.

In a thread-based operating
system, a process cannot execute a
program. To execute a program, the
system must create a thread. For
example, when a computer user
double clicks on an executable
program, a process is created.
Immediately after the creation of this
process, its first thread is created, too.
This first thread is usually called the
primary thread.
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5.2 Common Settings for Sibling Threads

The process that has generated sibling threads provides the common ground
on which these threads perform their tasks. Figure 5.1 shows the model of a
process and its threads. The process provides the address space and all shared
items, like global variables, open files, and other resources. Every thread has its
own private items like stacks, stack pointers, register contents, condition codes,
priority, CPU time usage, scheduling parameters, and various flags. The most
important piece of information, the program counter, shows the location in
the shared code where this thread is running or will run. All threads of one
process can access the process’ common address space without any restrictions
or protection. A thread’s private items are not part of the common settings.

Process
Shared Items
Thread 1 Prits |Privte Private
“\\ ftems |Iems items i
e R
_5 ;

Figure 5.1: The model of a multithread process

For all sibling threads, the corresponding process provides “sibling thread’s
common settings.” The settings are not the same as a process attributes. Rather,
they are the process’s code, data, open files, file attributes, and resources like
tapes, CDs, etc. Other process attributes may not be usable by its threads and
therefore do not belong to a sibling thread’s common settings. One example is
accounting information. A thread need not know the collective execution time
of all sibling threads. This may very well be the process’ private piece of infor-
mation. Table 5.1 summarizes sibling thread’s common setting.
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Table 5.1: Sibling threads common setting.

Subject Description
Address space Code, (parts of) data, and (parts of) results
Open files Open files, file attributes, and means of referencing to files
Resources Tapes, CDs, and many other hardware or software resources that
are assigned to the process

5.3 Thread Attributes

Similar to processes, threads have their own attributes. These attributes serve
three purposes: identification, status clarification, and thread controlling.
Typical information would be: register contents, stacks, stack pointers, condi-
tion codes, priority, CPU time usage, scheduling parameters, various flags, and
the location counter. The specific operating system’s designer may add new
items or even remove some depending on how the thread concept is to be
implemented in the operating system. Table 5.2 shows the fields used in
Windows 2000 (W2K) for thread attributes.

Table 5.2: Windows-2000 thread attributes.

Fields

Some possible usage

Thread identification information
Thread ID

For unique and simple referencing by the

operating system

Thread state information

Thread-visible registers

Location counter

Condition code flags

Stack pointers

To keep temporary values while thread is
running

Will be needed, as a continuation point, when
the thread restarts running

To reflect the state of some previously
executed instruction

To point to the stack of procedure and system
calls that is used to keep track of sequence of

such calls
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Thread control information
Base priority The lowest precedence of the thread’s dynamic
priority with respect to other threads to be used
for scheduling purposes
Dynamic priority The current precedence of the thread’s priority
with respect to other threads to be used for
scheduling purposes.
Thread processor affinity The set of processors that the thread is allowed
to be scheduled to use, for execution of its
instructions
Thread execution time Total execution time so far used for the thread,
for accounting and scheduling purposes
Suspension count Total number of times the threads execution
has been suspended and not yet resumed
Impersonation token A temporary authority token, to perform an
action on behalf of another process
Alert status An indicator of whether the thread has
executed an asynchronous procedure call and it
is in a position to be interrupted when the
results are ready
Termination port A channel to send a message to when the
thread is terminated
Thread exit status How the thread was terminated. Thread’s
completion condition, to be reported to its

creator

The corresponding process attributes of W2K are shown in Table 5.3. It is
worth mentioning that this section is not the proper place to show process
attributes. However, this is done to clarify that process attributes complement
thread attributes in order to make control and management of threads possible.
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Table 5.3: Windows-2000 process attributes.

Fields

Some possible usage

Process identification information

Process ID

For unique and simple referencing by the

operating system

Process control information

Security descriptor

Base priority

Default processor affinity

Quota limit

Execution time

1/O counters

VM operation counters

Exception/debugging port

Exit status

User who created the process, users who can
use it, and users who are forbidden to use it.
For security and protection purposes

The baseline priority for execution of threads
of the process. Priorities of threads are dynamic
but a baseline is respected

The set of processors that the thread of this
process is allowed to be scheduled to use, for
executing their instructions

Maximum number of resources, size of
memory and secondary memory, CPU time,
etc. the process or its threads are allowed to
use, collectively, to make sure it does not use
more than its credit.

Total execution time of all its threads, for
accounting and scheduling purposes

The number and types of I/O operations
performed by process’s threads

The number and types of virtual memory
operations performed by process’s threads

The port to which a message is sent per every
exceptions caused by the process’s threads

Shows how the process is terminated
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5.4 Thread States and the State Transition
Model

A thread can have states similar to process states. In addition, there is no need
to remove a state or add a new one. Ready, running, and wait/blocked states or
simple variations of these are just as fundamental to any active program as
they are for threads. State transition diagrams provide the basis for analyzing
an operating system’s requirements for handing threads. The procedure for
developing a thread state transition diagram will not be discussed here since it
is very similar to the procedure for developing a process state transition dia-
gram which was discussed in the previous chapter. Instead, we simply present
the thread state transition diagram of a contemporary operating system, such
as Windows 2000. A brief description of states and the interpretation of state
transitions is provided. In Windows-2000 (W2K), a thread could be in one of
the states listed in Table 5.4.

Table 5.4: Windows-2000 thread states

State Description
Ready The thread is ready to be picked up for execution.
Standby Ready and chosen to run on a particular processor, next.
Running Using a processor and executing program instructions
Waiting The thread is waiting for an event to occur

Transition | Ready to run but needs some resources other than processor

Terminated | Thread’s execution is finished, but it is not yet completely removed, from

the system
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The state transition model of W2K is depicted in Figure 5.2.

2000 Corresponding  state

Windows
in the 3-stae model

thread sates

Unblock,
resource not
assigned

Assign

Choose to
run

Ready
Unblock,
resource
assigned Run
Preempt Blocked
Block/Suspend
Running Running

Completed

Terminated

Figure 5.2: Windows 2000 thread state transition model

When a thread is first created, it is in the ready state. The scheduler can pick
a ready thread to be executed next in one of the processors. The state of this
thread is standby. From the standby state, the thread’s state changes to run-
ning when the corresponding processor picks the thread for execution. When
the thread uses its current share of processor time, it is preempted, i.e., the
processor is taken away from the thread.
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A running thread may need to input data, output results, or wait for some
event to occur, such as receiving a message from some other thread before fur-
ther continuing its execution. It such a case, the thread has to wait and its state
is changed to waiting. From this state, it can move to the ready state when the
reasons for waiting no longer exist and required resources are assigned. The
thread will move to the transition state if the reasons for waiting no longer
exist, but all the required resources are not assigned. From the transition state,
a thread moves to the Ready state when its required resources are assigned.

Finally, a thread terminates upon completing its execution.

5.5 Thread Creation and Termination

The philosophy behind thread creation and termination in a thread-based
operating system is similar to process creation and termination in a process-
based operating system. We will discuss this by providing the answers to the
following questions:

1.  Why create threads?

When is a thread created?

How is a thread created?

What are the tools for creating a thread?

How is a thread terminated?

AR I

What is done after thread termination?

5.5.1 Why Create Threads?

In a thread-based environment, threads are the only means of running pro-
grams. Without threads user tasks will not be accomplished.

In a process-based environment where multithreading is possible, threads
are created instead of child processes for resource sharing and address space
sharing among sibling threads. This technique increases the availability of
main memory and resource for other processes and threads. As a positive side
effect, the chance of deadlock is decreased because there are fewer processes to
compete for resources. Compare this to a similar system in which child
processes are created instead of threads. It should be noted that threads do not
compete for many types of resources. However, their parent processes do.
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5.5.2 When is a Thread Created?

When a process is created, its first thread, sometimes called the primary
thread, is created by the operating system. Refer to the previous chapter for a
discussion on when a process is created. There are other circumstances in
which threads are created. Regardless of the reason, a process or a thread may
make an explicit call to a system service that is designed to create threads.
Therefore, the following two circumstances cause thread creation:

1.  Whenever a process is created, its first thread, sometimes called the
primary thread, is created

2. Whenever a running process (in process-based operating systems),
or a running thread, explicitly requests the execution of a service call
that creates a thread.

5.5.3 How is a Thread Create?

Kernel-level threads, which are the focus of this chapter, are managed by the
operating system. As in process registration, any thread that is created must be
registered with the operating system for future references. Recall that a process
table was used to hold the process control block information of all processes in
the system. The identification, state, and control information of a thread are
kept within a structure (or an object) called the Thread Control Block (TCB).
There is one TCB for every thread in the system. There is one entry for every
thread in a structure called the Thread Table (TT). The thread table, like the
process table, is kept in main memory and is not swapped out to secondary
memory, in order to facilitate fast future references. Although the exact steps
taken for thread creating depend on the specific operating system, the follow-
ing are the general steps taken for this.

1.  Make sure the total number of threads created so far has not reached
the limit

2. Allocate a unique thread identification

Allocate space for the thread control block and thread context, i.e.,
places to store the CPU register contents and to initialize appropriate
fields

4. Allocate space for other initial structures like stacks and stack point-
ers and to initialize proper fields

5. Put the thread in one of the queues corresponding to the thread
states.
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We will still have the Process table and Process control blocks in both thread-
based operating systems and process-based operating systems with thread cre-
ating facilities.

5.5.4 What are the Tools for Creating a Thread?

It is customary to provide a system call for creating a thread. A system call, or
a system service as some operating system specialists call it, is a routine of the
operating system kernel that is made available for use within the kernel itself,
by the upper layers of the operating system and application programmers. To
generate a new thread, a system call is activated with proper arguments. The
calling method is the same whether called by a programmer or some part of
the operating system.

We have decided to provide a balanced view of Windows, UNIX, and Linux
operating system in this book. In accordance with this commitment, specific
examples of this chapter are based on Windows 2000 (and up) operating sys-
tem. The actual system call for creating a thread in W2K is not known.
Windows designers have not revealed system calls so that they are able to
change them at any time, without affecting user programs. The Win32-API
(Application Programmer Interface), sometimes called the 32-bit API, is an
environment for Windows application programs and contains hundreds of
procedures. As a Windows programmer, you will somehow tell the system that
you are using this environment. Within this environment, there is a procedure
called CreateThread for creating a new thread. Whether or not this is actually
a system call, reveals the different ways a thread creation routine is called
either by a programmer or by the operating system. If this is a system call, then
the inner layers of the operating system will also call CreateThread to create a
thread. However, if this is not a system call then it is a procedure, within which
one or more system calls will be called to create a new thread.

CreateThread has few arguments. Properties like who can access the thread,
the size of the thread’s stack, the program that the newly created thread will
run, etc, are passed on to the CreateThread procedure so that a thread with
specific properties is created. The calling statement looks like this:

HandleVar = CreateThread ("list of arguments separated by comma");

When a thread is created the system will return a pointer to the caller. In W2K
this pointer is called the thread handle. The handle is the means of accessing the
created thread. For example, if we want to destroy the thread later, we can iden-
tify that particular thread by its handle. In our example, HandleVar is chosen as
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the wvariable that will accept the created thread’s handle. Of course,
CreateThread is the name of the Win32-API procedure that creates a thread. All
arguments needed for the thread’s properties have to be listed inside a pair of
parenthesis and separated by comma. The CreateThread procedure can be
called from anywhere within a user’s program. Whether or not a procedure
with the same name is called from within the Win32-API to create our thread,
or many little system calls are called in a specific order to collectively create the
thread, is not clear.

The following is the implementation of a particular and simplified patient
monitoring system. In this system, a ward nurse is supposed to check her
patients every 15 minutes and regularly evaluate their vital signs. She is also
responsible for administering patient drugs based on their doctor’s recom-
mendations. Two threads are designed. First, a thread which beeps, displays a
message, sleeps for 15 minutes, and repeats this sequence. Second, a thread
which beeps, displays a message which is different from the message displayed
by the fist thread, asks the operator to input the time span to sleep before dis-
playing the next message, sleeps for the given period, and repeats this
sequence. Both threads are created and started by a main program.

#include <windows.h>
#include <stdio.h>
void RegAttendance (void) // Regular attendance
{
while (1)
{
Beep (500, 10); // Make a beep sound
printf (" It is the time for the regular patient attendance \n *);
Sleep (15*60*1000); // Sleep for 15 minutes
}
/
void ScheAttendance (void)  // Scheduled attendance
{
int TimeSpan;
while (1)
{
Beep (500, 10); // Make a beep sound
printf (" Enter the time span before next scheduled attendanceln ");
scanf (“%d”, &TimeSpan);
Sleep (TimeSpan*60*1000); // Sleep for "TimeSpan" minutes
/



/

int main(void)

{

HANDLE thread1, thread2;
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thread1=CreateThread(0,0,(LPTHREAD_START_ROUTINE)
RegAttendance,NULL,0,0);

thread2=CreateThread(0,0,(LPTHREAD_START_ROUTINE)
ScheAttendance,NULL,0,0);

Sleep(INFINITE);
return 0;

Program 5.1: Thread-based simplified patient monitoring system

Program 5.1 is an application program but similar schemes can be used to
create threads within the operating system. In W2K every process starts with
one thread called the primary thread, which can create other threads using
CreateThread. As seen in Program 5.1, threadl is directed to execute the
“RegAttendance” routine. Thread2. On the other hand, it will run the

“ScheAttendance” routine.

A thread can be created directly in the main body of the process or it can be
created in the body of a routine that is going to be executed by another thread.
We can talk about a parent-child hierarchical structure for threads that are
directly or indirectly created within the large body of a process. Often, threads
of one process are considered to be on the same level, or siblings, irregardless
of where and when they were created.

5.5.5 How is a Thread terminated?

All threads that are created
within the large body of a
process are terminated
when the process is termi-
nated. A thread can termi-
nate itself by explicitly
calling proper system calls
or Win32-API routines like
ExitThread. ~The  third
method for terminating a

Handle is a pointer that indirectly points to an
object, i.e., the pointer points to a pointer which, in
turn, points to the object. The benefit of using
handles in our program is that, if the address (or
location) of the object is changed by the operating
system, we can still use the handle to access the
object. This is possible by updating the contents of
the pointer that the handle points to.

thread is by calling Win32-API routines like TerminateThread form another
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thread in the same process, or another process if this process has the permis-
sion to do so, and has the handle to access the thread.

5.5.6 What is done After Thread Termination?

After thread termination, some handles used by the thread are freed and others
are freed when the thread’s corresponding process is terminated. The thread’s
TCB is freed and its corresponding entry in the thread table is removed. If a
thread is the last thread of a process to terminate, the process terminates, too.
Specific steps for process termination depend on the operating system used.

5.6 Thread-Based Operating Systems

All contemporary operating systems support thread methodology and tech-
nique. It is the designer of the operating system that decides on a process-
based or thread-based system. In a thread-based operating system, the thread
is the only active object and the process is just the container of threads.
Procedures, routines, primitives, etc. are all a passive collection of instructions
that are only useful when they become parts of a thread and are executed with
the thread execution. In a thread-based operating system, there is at least one
thread for every process, which is called the primary thread. This thread is cre-
ated as soon as its mother process is created. For an operating system to be
classified as thread-based’ this methodology must be well adhered to within
the kernel. Therefore, a thread-based operating system is an operating system
in which kernel activities are performed by a set of threads. Each thread
belongs to a process with a given responsibility. A kernel may still have many
primitives with very low level responsibilities. Every primitive can become a
part of many threads. By doing so, code reusability is achieved and kernel size
is reduced. Windows 2000 and its descendents are the most widely-used near
thread-based operating systems.

5.7 Summary

Threads, in a thread-based operating system, are active objects that follow pro-
gram instructions in order to perform tasks (or subtasks). Thread methodol-
ogy boosts operating system efficiency through better utilization of main
memory and reduction of competing objects for resources. At the same time,
thread methodology increases collaboration between related program objects.
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The threads of a process are not as independent as processes. Threads can
share many items like address space, resources, global variables, etc., while still
possessing their own location counter, status, stack, and stack pointer, etc.

Threading technique has its own difficulties, too. One thread may try to free
a resource although its sibling threads have yet not finished with the resource.
A thread may try to close a file that is needed by others. Another difficulty is
having a thread change a global variable while its sibling threads are unaware
of. In any case, we are sure the specialists will overcome these drawbacks.

5.8 Problems

1. Define the exact thread-creation steps taken by Windows 2000 or one of
its descendents.

2. The UNIX operating system uses the copy-on-write technique in order
for the parent and child processes to share memory until the point where
one of them tries to modify a page frame of the shared memory. Just
before the modification takes place, the system makes a copy of the frame
and allocates it to the child process. State the similarities and the differ-
ences of this technique as compared to thread methodology.

3. In a thread-based operating system, if the primary thread of a process

exits, is it possible for the other threads of this primary thread to continue
running?

Recommended References

For a conceptual treatment of thread methodology, read the text by Lewis and
Berg [Lew96]. See [Pha96] by Pham, [Sol98] by Solomon, and [Sol00] by
Solomon and Russinovich for threads in Windows. Mauro and McDougall
have described recent developments in threading in Solaris 2 kernel [Mau01].



Chapter 6

Scheduling

From a purely conceptual viewpoint, a job is a request for a computation.
However, from the scheduling point of view, a job is a computation that has to
be scheduled for execution. This computation is organized as a sequence of
instructions, collectively called a program. A program could be stored on
removable media, like floppy diskettes, compact disks, flash disks, etc., that
may or may not be online. A program may be stored as well on media like hard
disks or a disk pack that is currently connected to the computer. In any case, a
program is not an active object. When a program is activated, it becomes a
process. A process is therefore, a live creature that is made to follow the
instructions of a program in order to perform a task. In doing so, a process will
use many computer resources like the CPU, main memory, secondary memo-
ries, etc. In a thread-based system, the thread is the living object and the
process becomes the environment within which threads live, similar to a house
in which one or more people live in. In such an environment a process is com-
posed of the program, resources, open files, etc., that are used by its threads.
This much we already learned from previous chapters.

In job scheduling, the next job is selected from amongst a set of available
jobs to become a process. This involves determining the order in which jobs
become processes. Process scheduling is the policy of selecting the next process
to run from amongst ready processes. The order in which processes will run is
thus determined. In thread scheduling, the next thread to run is selected from
amongst ready threads. Consequently, the order in which threads will run is
determined. Job scheduling, process scheduling, and thread scheduling are
conceptually and technically different, but sometimes the term job scheduling
refers to all these concepts. We will make proper distinctions as necessary.

86
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There are many criteria that a job scheduler may be based upon. We will
first introduce these criteria, later talk about specific scheduling strategies and
then discuss their properties.

6.1 Scheduling Criteria

Scheduling criteria are properties of entities, like jobs, processes, and threads,
which can influence the order in which these entities are selected to use com-
puter resources especially the CPU. These criteria and a short description of
each one are discussed below.

6.1.1 Request Time

Request time is the exact time a demand to do a task is received. The task may
be to compile a source program. A process (or thread) has to be formed to do
the compilation. In this case, the compiler does the compiling process. A
request may be to find out whether a certain book is available at a library. A
request may require long or short execution time. Sometimes the actual time a
request is received is not important but its relative arrival time, in respect to
other requests’ arrival time, is an important scheduling criteria. It is usually the
case that the earlier the request time, the sooner the job must be done.

6.1.2 Processing Time

The processing time needed by a job is the time taken for its corresponding
process to be executed to completion. Often, a job with a shorter processing
time is executed sooner than a job with a longer processing time. A similar sit-
uation is frequently observed in every day life when one waits in a queue for
service. For example, in a supermarket checkout queue, a shopper with one or
two items may be given permission to checkout first.

6.1.3 Priority

It is possible to assign priorities to jobs. With a priority-based scheduler, a job
with higher priority has the opportunity to be scheduled before a job with a
lower priority. Sometimes, priorities are assigned to users. In such a case, a
request by a person with higher priority has preference to be executed sooner
than that of a person with lower priority. Static priority is when priority does
not change with time and is fixed under all circumstances. Priorities assigned
to users are usually of this type. Based on dynamic priority, the priority of a



88 Operating System

process may vary with time and changes in circumstances. Consider the case
where the priority of a task increases as its waiting time to service increases.
Sometimes, priorities describe the degree of urgency to do a task. For example,
on the Internet, the priority of a message determines how soon the message is
to be delivered. Voice messages for a videoconference over the Internet are
delivered sooner than ordinary search result messages.

6.1.4 Deadline

The deadline of a job is the time by which job execution must be completed. A
deadline is often expressed by either one of the two values: (1) the exact time
the execution of a job is requested and (2) the maximum time limit in which
the execution of the job must be completed. The latter is called the job’s dead-
line parameter.

6.1.5 Wait Time

The wait time of a request is the
time that has elapsed since the
request was submitted. Wait
time is a dynamic value and
increases as the time goes by. A
closely related factor to wait time
is the response time. This is the
length of time from the instant a
request is submitted until the
first reaction of the system to the
request. Usually, the reaction
must be visible by the requester.

A scheduling policy describes the
guideline for selecting the next process (job
or thread) from among all processes that
need a computer resource like the CPU.

A scheduling algorithm is a finite set of
clearly stated unambiguous stepwise
operations that when applied to a finite set of
processes that are waiting to use a
computer resource like the CPU, either one
or more of these processes are selected or
a time table for the resource usage is
produced. Similarly, there exists program,
thread, and 1/0 scheduling algorithms.

A scheduling mechanism determines
how to do every step of the scheduling
algorithm in order to reflect the actions

6.1.6 Preemptability

When a process is picked up for
execution, it may not be allowed

to switch to another process
before the execution of the for-
mer process is completely fin-
ished or the process is self
blocked. The inability to switch

needed. For example, the exact steps to be
taken to modify a process-queue and
process state are defined by a scheduling
mechanism.

to another process may depend on the nature of the process, in which case the
process is called non-preemtable. Inability, may also depend on the type of
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adapted scheduling policy. On the other hand, if the operating system is
allowed to switch from a running to another ready-to-run process before com-
pletion the running process is preemptable.

6.2 Scheduling Objectives

A scheduler deals with assigning specific times for processes to use computer
resources in order to perform their tasks and subtasks. Usually, there is an
enormous number of ways to schedule a set of processes to use a set of
resources, especially since every process needs many resources at different
times for varying time spans. Not all these options are of the same importance
and lead to an equal amount of system efficiency and utilization. Different
scheduling policies are designed to match different environments. A schedul-
ing strategy is usually designed to attain a defined objective, although multi-

objective strategies are also possible. Common scheduling objectives are listed
and briefly defined below.

6.2.1 Throughput

The number of requests that a system can complete in one unit of time is
called the system’s throughput. We may want to set up our scheduling policy
so that the total number of completed requests over a period of time is as high
as possible. At first, it may seem that such a policy is beneficial to all users and
that everyone get his/her work done sooner, but this is not so. Such a system
will favor shorter requests over longer ones and longer requests will not be exe-
cuted unless there are no shorter requests. This seems to be unfair. Tasks with
reasonable input/output handling are naturally long and will be postponed
when tasks with less input/output handling are present. This can reduce over-
all system utilization because I/O devices will be left idle most of the time and
only some hardware modules, like the CPU and main memory, will have high
utilizations. Therefore, overall system utilization is low when there is an
emphasis on high throughput.

6.2.2 Deadline

In some computing environments every request has a deadline, before which
time the request must be completed. Missing a deadline may in fact cause a
catastrophe. In these environments, the main scheduling objective is to devise
a time table or policy for the execution of requests in such a way that all dead-
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lines are met. Examples of such environments exist in aerospace, nuclear
power-plant, avionics, the automotive industry, multimedia etc. These are
called real-time environments. A major difference between commercial and
real-time systems is that a real-time system must not only be correct but it
must also be timely and predictable. Real-time systems can be classified into
hard real-time systems and soft real-time systems.

In a hard real-time system, there is an absolute requirement to executing all
requests before their deadlines. However, in a soft real-time system, the occa-
sional missing of a deadline will not cause a total system loss or catastrophe.
Even so, in a soft real-time system, the main objective is to meet all deadlines.

6.2.3 Turnaround Time

Excellent Quality of Service (QoS) is answering every request within a reason-
ably short time. Turnaround time of a request is the time span starting from
when a request is submitted to the system and ending whenever the requesting
execution is completed. The turnaround time of all requests is usually not the
same and may vary from one request to the next. It is not possible to judge on
the quality of a scheduling policy based on the turnaround time of one or a
few requests. A better measure would be the average turnaround time of
requests. This may be used to estimate the expected time length in which a
request is completed after being submitted to the system.

If a request requires 5 seconds to be executed, is picked for execution right
after its submission, and is executed without any interruption, its turnaround
time will be 5 seconds. Similarly, if a request requires one second of execution
time, is picked up for execution right after submission, and is executed without
any interruption, its turnaround time will be one second. Although our
response to both requests is exactly the same, i.e., every request is picked for
execution right after submission, the net result turnaround time is different.
Therefore, one way to achieve a better measure is to normalize the turnaround
time of all requests. A normalized turnaround time is obtained by dividing the
turnaround time of every request by its execution time. This normalized turn-
around time is called a weighted turnaround time. We now can recognize an
average weighted turnaround time as a positive objective in the design of a
scheduling policy. However, this objective has its own disadvantages. For
example, a newly arrived request is preferred over a request that has been wait-
ing its turn for execution. This is because such a decision leads to a better aver-
age weighted turnaround time. Shorter requests are also favored over longer
ones submitted at the same time.
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6.2.4 Response Time

Response time is a very similar factor to turnaround time. The response time
of a request is the time span from when the request is submitted to the system
until the first (user visible) reply to the request submitter is generated. When
this reply is received by the submitter, he will know the request is accepted by
the system and the system has started its execution.

6.2.5 Priority

Priority is one of the scheduling criteria that are described in the previous sec-
tion. Respecting priorities may be the sole scheduling objective. Priorities may
be given to either: user groups, users, jobs, processes, or threads. When priori-
ties are assigned to one of these entities, lower level entities will usually inherit
the same priority. For example, if priorities are assigned to users, then the jobs,
processes, and threads of a user will usually carry the priority of the user.
Sometimes priorities of lower level entities are not exactly the same as the pri-
ority that is assigned to their parent or ancestor entity. Rather, it may be com-
puted by a complex algorithm. When priorities are dynamic, there may be a
base priority that is inherited, but the actual priority may change as time pro-
gresses and circumstances change. On the other hand, if the priority is static,
the priority that is assigned to a process (or thread) stays the same for the life-
time of the process.

6.2.6 Processor Utilization

The most advanced technology and expensive materials are used to make
processors. Consequently, the processor is the most valuable module of every
computer. A scheduler can be designed to make computer processors utiliza-
tion as high as possible. Such a scheduler will have to favor CPU-bound
processes over I/O-bound ones. A quantitative measure of utilization is the
Utilization factor. If the processor is always busy by doing our requests for the
period of interest, the utilization factor for that period is one. In other words,
it is fully utilized. However, if the length of the period is r and the processor is
busy doing our requests for a total length of e in that period, then processor
utilization is e/r for the period.

6.2.7 System Balance

A good mix of processes can utilize most devices simultaneously, namely
devices like the processor, main memory, I/O processors, disk drives, printers,
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etc. A scheduler with the objective of balancing the utilization of system mod-
ules will have to distinguish I/O-bound from CPU-bound processes and
schedule them so that valuable devices are kept busy most of the time.

6.2.8 Fairness

It is difficult to design a set of scheduling rules so that system resources are
fairly distributed among all users. Actually, the concept of fair may mean dif-
ferent things in different environments. A user may write a program so that it
creates many processes (including child processes) and threads. These
processes will all independently compete with other user processes (and
amongst themselves) to grab system resources. Threads will also compete with
other user threads to obtain CPU time. Therefore, an application with many
processes and threads benefit from the ability to use more resources and CPU
time than an application with one or very few processes and threads.

One way to approach fairness is to use a method called fair share schedul-
ing. With this kind of scheduler, each user is assigned a share of the system,
especially a share of the processor or processors. This share is expressed in the
form of a fraction of resource utilization. However, it may not be easy to
ensure that every user will receive its exact share of resources.

6.3 Scheduling levels

The level of scheduling depends on the type of entities to be scheduled. The
system has to have a policy for accepting new requests from the outside world.
All the requests that are accepted by the system need computer resources, espe-
cially CPU time, in order to be answered. All requesters like to receive their
answers in the shortest possible time. There is a silent competition going on
among processes that are generated to fulfill their corresponding requests. The
scheduler also has the responsibility of preparing the order in which processes
use the processor or processors. All scheduling decisions are made having the
global scheduling objective in mind. Three levels of scheduling are described
next.

6.3.1 High-Level Scheduling

The decision to choose one or more jobs from amongst all available jobs and
to transform them into processes is called high-level scheduling. This level of
scheduling, also called long-term scheduling prepares subjects to be further
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scheduled for execution in the future. One important factor, that directly
affects the decision to choose or not to choose new jobs, is the degree of multi-
programming. This is the maximum number of processes (or threads in a
thread-based operating system) that can exist at the same time in the com-
puter. For contemporary operating systems, this number is so high that all
requests are usually accepted by the system as soon as they are received. As a
result, high-level scheduling is losing its importance compared to other levels
of scheduling. However, we always have to make sure this limit is respected,
because some hardware registers and operating system structures may have
been designed with this limitation in mind.

Some scheduling objectives may entail not accepting new jobs for execution
even though the system is not yet saturated with respect to its degree of multi-
programming. For example, where the objective is user priority, a job from a
low priority user may not be accepted if there exist processes from a high pri-
ority user in the system.

Many events may prompt new scheduling decisions. Such events include
the arrival of a new request from one of the users, the completion of a request,
and the state in which a fraction of processor idle time is more than a certain
predefined value. In an interactive environment, every new request is admitted
as soon as it is received and it is given one shot of CPU time at the earliest pos-
sible time. The admission of the request is a long-term scheduling decision
while permission to use the processor is a low-level scheduling decision.

6.3.2 Medium-level scheduling

For some operating systems, like Linux and UNIX, when there is an extreme
shortage of main memory, one or more processes may be removed from the
main memory and put into secondary memory. The operating system will
bring back the process into main memory when the circumstances are resolved
and other factors, like the degree of multiprogramming, allows us to do so.
When the process is brought back to main memory and is scheduled for exe-
cution, it will continue from where it left off. The act of temporarily removing
a process from main memory is called process swapping (or swapping out).
Many processes may be swapped out of main memory at one time in order to
increase the amount of free main memory to a certain level. The decision of
choosing which process or processes to swap out of main memory is a
medium-level scheduling decision.
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6.3.3. Low-level scheduling

Actual processor assignment to processes is determined by low-level sched-
ulers. Non-ready processes are not considered for scheduling at this level
rather, only ready processes are scheduled to use the processor. The scheduling
objective is the most influencing factor in the deployment of a specific sched-
uling policy. Without having this in mind, it is not productive to discuss
choosing a scheduling policy. However, there are some guidelines that are usu-
ally considered, disrespectful of what the specific scheduling algorithm is.

In an interactive environment, most queries are usually very short and it is
the nature of such an environment to execute a short query soon after it is
received. Otherwise, the system cannot be classified as an interactive system. To
accomplish this goal a CPU time-quantum, i.e., a very short period of the CPU
time is assigned for the execution of every newly received query. This is accom-
plished in the shortest possible time after the query is received. Recall that we
may not know whether the query is short or long when it is generated.

It is not customary to
assign a long continuous
time span to one process
when many other processes
are  awaiting  execution.
Assigning long continuous
time spans to some processes
my have negative effect on
criteria like response time,
turnaround time, deadline
meeting (if applicable), aver-
age wait time, etc. If these
criteria are used as perform-
ance measures, this directly
affects the overall system

A local area network is a collection of small
computers located in close vicinity of each other
and which are connected together using twisted
pairs or fiber optic cables. There are many
connecting topologies like the bus, ring, tree, efc.
Communication speed ranges from one megabit
per second to multiple megabits per second for
LAN. Every computer is a standalone
independent system with its own operating
system, system software, and application
programs. The overall system facilitates
information and resource sharing, electronic mail,
and multi-user application development.

A wide area network connects many
computers that may be geographically very far

f . o .
periormance away from each other. The communication media
includes among other devices, communication

6.3.4 Input/output processors, routers, bridges, telephone lines,

scheduling mobile devices, satellites, modems,
communication protocols, and routing algorithms
to facilitate message passing and information
exchange. WAN provides similar capabilities to
LAN but in an area as wide as the whole world.

Input/output scheduling, or
I/O scheduling for short,
encompasses the method-
ologies and techniques for
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the correct and efficient arrangement of input-output operations. It covers a
wide range of I/O devices such as the display, hard disk, flash disk, optical disk,
scanner, printer, floppy disk, mouse, light pen, keyboard, etc. The scheduling
of information transfer within the Local Area Network (LAN), Wide Area
Network (WAN), the Internet, etc. is also considered in I/O scheduling.
However, one general policy and one scheduling algorithm does not work
(well) for all devices and communication medias.

Three techniques, namely programmed I/O, interrupt-driven I/O, and
Direct Memory Access (DMA), are available for the actual implementation of
an I/O operation after it is scheduled.

With Programmed I/0, the process that has issued an I/O operation waits
until the operation is completed. While waiting for I/O completion, CPU time
that is assigned to this process is actually wasted. This type of waiting is called
busy-waiting.

Interrupt driven I/O is the second implementation technique of I/O opera-
tions. The process which has issued an I/O operation may continue its execu-
tion, but when the I/O operation is completed, the process is interrupted. After
the I/O operation is issued, the decision of either waiting or proceeding
depends on whether the operations following depend on this I/O operation or
not. If the process decides to wait, it will go to sleep and will be waken up after
the interrupt is received. The advantage of going to sleep is that, while sleeping
no CPU time is assigned to the process.

Direct memory access refers to a method of directly transferring blocks of
data between main memory and the I/O device. With this method, a (hard-
ware) module, called the DMA unit, takes care of transferring the data, inde-
pendent of both the CPU and the process that has requested the I/O operation.
When the I/O operation is completed, an interrupt is issued to the correspon-
ding process. The process could meanwhile go to sleep. The word “direct” in
the term direct memory access means that the data will not go through the
processor during the transfer, as opposed to the other two methods in which
data goes through the processor.

I/O devices are classified into three categories. The first category consists of
all dedicated devices. A dedicated device is a device that is assigned to only one
process at a time in a non-preemtable fashion. In other words, when a device
of this category is assigned to a process it will not be taken away from the
process until the process no longer needs it, upon which time the device is
released. The second category is for shared devices. A shared device is a device
which many processes concurrently use it in a time-sharing fashion. This
occurs within a reasonably long period of time when more than one process
uses the device. The device can be temporarily taken away from one process
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and assigned to another even though the former process has not yet finished
with it. The third kind of I/O devices is the virtual device. This is assigned to a
process in place of another device. The assigned device is a virtual device of the
original. The two devices do not necessarily have similar characteristics. For
example, a process is to originally transfer its output to a printer. However, a
file is assigned to the process instead. The file is then the virtual printer in this
context.

We will not be able to present all methodologies and techniques for all
kinds of devices, due to the vast amount of information that has to be covered
and the fact that this book is not intended to be an advanced course for com-
puter science graduate students. Disk I/O scheduler will be covered in a later
sections.

6.4 Scheduling Algorithms: Single-Processor
Systems

In this section, our focus is on medium-level or medium-term scheduling
algorithms, i.e., the policy for ordering the processes or threads to use the cen-
tral processing unit. Processes are generated from programs and threads are
generated from processes. A high level scheduler decides which programs to
pick to transform them into processes, before being scheduled by a medium or
low level scheduler. Scheduling criteria and objectives are discussed in previ-
ous sections and in this section we will present actual scheduling algorithms.
Real-life practical examples in this chapter will be taken from the Linux oper-
ating system. It is not quite possible to present actual scheduling algorithms
without any notion of states and the state transition diagram of the underlying
operating system. Figure 6.1 presents the state transition diagram for Linux.
Again, we have followed our guidelines of illustrating the diagram in a level-
based fashion so that, for every level, the corresponding state in the fundamen-
tal three-state diagram is evident.
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Linux State Transition diagram Equivalent state in
the three-state model
Create
Ready
Signal
Schedule
INTERRUPTABLE/
UNINTERRUPTABLE STOPPED Blocked
Preempt
Signal
Return
CPU KERNEL Running

System call/Interrupt

Terminate

Figure 6.1: The sate transition diagram of the Linux

The task control block of a Linux task contains the fields that are shown in
Table 6.1

Table 6.1: Linux process attributes.

Fields Some possible usage

Process identification

information
pid A unique ID which is hashed into process table
which in turn points to process structure (i.e.,
PCB)
uid The ID of the user who created this process
gid The ID of the group which process’ owner

belongs to
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Process state information
state

tss

exit_code

exit_signal

Current state of the process which is one of the
states shown in Linux state transition diagram
The save area structure which is used to save
all volatile information of the process (LC,
flags, user visible registers...) when the
process (temporarily) stops running

The exit (or termination) code of the process;
which is used by its parent

The exit signal, if the process was terminated
by a signal

Process control information
policy
priority
start_time
times
counter
*next_task
*prev_task

*next_run

*prev_run

*p_opptr
*p_cptr

*wait_chldexit
*pidhash_next
*files

*mm

*sig

signal
blocked

The policy is one of the SCHED_FIFO,
SCHED_RR, and SCHED_OTHER scheduling
policies

The static priority of the process that is
assigned when the process is created

Time when the process is started

Times spent in user mode and kernel mode
Number of remaining scheduling clock ticks in
this epoch

Pointer to the next task in the task structure
linked list

Pointer to the previous task in the task structure
linked list

Pointer to the next task in the running (i.e.,
ready in three-state methodology) queue
Pointer to the previous task in the running (i.e.,
ready) queue

Pointer to process which created this process
Pointer to the last created child process, for this
process

Pointer to a wait queue structure, for a process
that is waiting for its child to terminate

Points to the next item in the process table
which is a hash list

Pointer to the structure of open file list of this
process

Pointer to the structure of the complete
memory management pyramid of this process
Pointer to the structure of signal actions (i.e.,
signal handlers) of this process

Set of pending signals

Set of masked signals
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We could go about defining every term that is used in Table 6.1. Although this
is very informative and useful, it is not a part of our goal. Rather, we intend to
design a text-book that is short and at the same time discusses all the necessary
concepts for a first course on operating system methodologies and design.

6.4.1 First-Come-First-Served

The most natural scheduling algorithm is First-Come-First-Served (FCES).
Banks, airport check-ins, post offices, and barber shops are common places
that serve people according to the FCES policy, whenever there is more than
one person that requires service at one time. Based on the FCFS strategy, when
a person’s turn comes up, he must be completely served before starting to serve
the next person in line. Thus, this policy is inherently non-preemptive. We are
so accustomed to this policy that we believe it is the fairest. Any disregard of
this is considered cheating. Anyone waiting in a FCFS line is pleased if the serv-
ice is fast enough. However, people become concerned when one person takes
up more time from the server. After this person, the service to those in the
queue will be delayed by the amount of service time used by the person. This is
the major weakness of the FCFS algorithm.

A process has to be in the ready queue in order to be scheduled to use the
CPU. Otherwise, the process is either using the CPU, or it is not in the position
to immediately use the CPU, even if the CPU has been assigned to it.

Suppose that people who need service arrive on a regular basis. Either one
of the following two circumstances can arise:

1. The server, e.g., a CPU that gives processing services, is not capable
of serving people as fast as they arrive. In this case the queue will
become increasingly longer, with no limits, this is an indication that
a more powerful server is required

2. The server can serve people faster than their arrival rate. In this case,
a queue will not be formed if the server starts working no later than
the first person’s arrival time, which is usually the case.

Therefore, for regular arrival, either there is no need for a queue or the system
is not well-designed and a more powerful processor should replace the existing
one. The irregular arrival of requests is the main reason for exploiting queues.
It is usually the case that the arrival of service requests is not regular. During
lunch hour, more people go to restaurants than any other hour. Bank cus-
tomers arrive in higher numbers from 10:00am to 12:00pm compared to other
working hours. Similarly, computer users do not necessarily log on nor submit
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their requests on a regular basis. Therefore, a queue should be set up to hold
requests when they arrive at a faster rate.

The advantage of the FCFS policy is its nature of serving users according to
the turn of their request. From an implementation viewpoint, it is very simple
to implement a queue in which every newcomer is appended to the end of the
queue and the next user to be served is removed from the front of the queue.
This kind of structure is a linked list in which one pointer points to the rear of
the queue. The disadvantage of this structure is that, in order to remove an
item, the whole list has to be traversed to find the item at the front of the
queue. A better dynamic structure is a doubly linked list with two pointers, one
pointing to the rear of the list and one pointing to the front of the list. When
an item is removed from the front of the list the backward chain will help to
update the front pointer to point to the new item in front.

The disadvantage of the FCFS policy is when if the task at the front of the
queue requires a long execution time. Then, all other requests’ turnaround
times will be increased by this process” execution time. As a simple example,
consider two requests with execution times of 20 seconds and 1 second,
respectively. If the request with a 20 seconds execution time is received just
before the request with a one second execution time and these requests are
scheduled according to the FCFS policy, then the turnaround time for these
requests would be 20 and 21 seconds, respectively. The average turn around
time would be (20+21)/2 = 20.5 seconds. If, on the other hand, the order of
execution time is changed so that the request with a one second execution time
is served before the request with a 20 seconds execution time, then their turn-
around time would be 1 and 21 seconds, respectively. In this case, the average
turnaround time is (1+21)/2 = 11 seconds. A lower average turnaround time
means users are expected to wait a shorter time in order to obtain the required
service from the system.

FCEFS policy is one of the three policies that are used in the Linux operating
system. Linux calls it SCHED_FIFO. When a process is picked up for execu-
tion based on the SCHED_FIFO policy, it will continue running until comple-
tion unless it voluntarily goes to either STOPPED to wait for an event to occur,
or goes to the INTERRUPTABLE/UNINTERRUPTABLE state to wait for an
I/O operation to complete. It may also be preempted by a higher priority
process of the type SCHED_FIFO or SCHED_RR. When the process returns
from either the STOPPED or INTERRUPTABLE/UNINTERRUPTABLE state,
it has to compete with other processes in order to use the CPU again. The
SCHED_FIFO policy is reserved for real-time processes which are supposed to
be the most urgent processes. Since there are three scheduling policies in
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Linux, the priority of tasks is designed so that the priority of a non-real-time
process never becomes greater than the priority of a real-time process.

6.4.2 Shortest Job Next

The Shortest Job Next (SJN) policy is best applicable when there is prior
knowledge about the execution time of the processes that are waiting to use the
processor. SJN, or Shortest Job First (SJF), is a non-preemptive algorithm like
the FCEFS algorithm, in that when a request is picked for execution by a proces-
sor, it will not be put aside in favor of another request. We can think of a pre-
emptive version of the SJN if that policy allows a newly arrived process with a
shorter execution time into the ready queue to preempt the running process
with a longer execution time.

To implement the SJN policy we can make use of a double linked list with
two pointers that point to the two ends of the request list; one pointer is called
the front and the other the rear, similar to the FCFS algorithm request list. The
only difference is that the SJN list is in ordered of the execution time of the
requests, so that the request with the lowest execution time is always in front of
the list and the request with the highest execution time is at the rear of the list.
Keeping the list in proper order requires extra overhead from the system.
Whenever a request arrives at the ready queue, the list has to be scanned, start-
ing from the rear and going towards the front (or vise versa) in order to find
the proper place to insert the new request. For a long list, this search may take
a reasonably long time.

The advantage of the SN policy is the fact that it leads to the shortest pos-
sible average turnaround time. Therefore, the SJN policy is an optimal non-
preemptive scheduling policy with respect to the average turnaround time.
Another of its advantage is the throughput boost up. By serving the shortest
requests first, the chance of delaying the execution of long requests and even
not executing them at all increases. This results in execution of a higher num-
ber of requests in one unit of time. There are three disadvantages for the SJN
algorithm. First, we need to know upfront the execution time of the requests.
The second disadvantage is the extra time taken for the request queue to main-
tain its order based on execution time of requests. Third, in constantly favoring
short requests over longer ones, a long request can be pushed back to starva-
tion by continuously arriving shorter requests.
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6.4.3 Shortest Remaining Time Next

In a multiprogramming environment where preemption is allowed and a
process may repeatedly enter and leave the ready queue, the Shortest
Remaining Time Next (SRTN) policy can be used to schedule the processes in
the ready queue. This is done by selecting first the process with the shortest
time needed for completion. A newly arrived process to the ready queue may
preempt a process which is currently being executed because its remaining
execution time is lower than the one running.

An accurate implementation of the SRTN requires that, whenever a new
request arrives, the remaining execution time of the running process be
updated to reflect its current value. A decision is then made to continue the
former process or to start (or restart) the new process for running.

The advantages of the SRTN policy are very similar to the advantages of the
SIN policy, namely a short average turnaround time and a high throughput.
The disadvantages are also similar to the SJN algorithm. To be explicit, there is
(1) the prior need for the execution time of the requests, (2) the extra time it
takes for the request queue to maintain its order based on the requests’
remaining execution times, (3) the priority of short requests over longer ones
which constantly pushes back request, with long execution time, towards star-
vation when there are continuously arriving shorter requests, and (4) the over-
head involved in keeping the remaining execution time of the running process
(or running processes for multiprocessor systems) constantly updated and in
switching processes whenever the remaining execution time of one of the
processes in the ready queue is shorter than the remaining execution time of
the running process.

6.4.4 Highest Response Ratio Next

A major disadvantage of both SJN and SRTN is their disregards for requests
with longer execution times. Highest Response Ratio Next (HRRN) policy
tries to remove this disadvantage. With this policy, the waiting time of a
request directly affects its response ratio based on which requests are sched-
uled. The Response Ratio (RR) of a process is defined as:

RR = w+e

e

Where w is the length of the time in which process has been so far waiting, and
e is the expected execution time of the process. The RR of a process which has
just been requested is always one. However, just after that, when two processes



M. Naghibzadeh 103

are created simultaneously and have not yet received any execution time, the
one with a lower execution time will have a higher response time. The wait
time of a process increases as time passes. Therefore, even a process with an
expected long execution time will reach a point when it gets its turn for proces-
sor usage. As a matter of fact, the response ratio of a previously created process
is always greater than the response ratio of a just-created process, disrespectful
of their respective execution times.

The response ratio is a dynamic value. Both the passing of time and the
CPU usage by a process influence its response time. Thus, RR must periodi-
cally be updated.

Whenever the processor is ready to pick a new process from the ready
queue, in order to start or resume its execution, one process with the lowest
response time is selected. This means the HRRN policy can be used in a multi-
programming environment with preemptable and/or non-preemptable
processes. It does not matter whether it is scheduling processes or threads, the
HRRN policy works for both.

For the implementation of the HRRN policy, we must pay attention when
the RR of a non-running process becomes greater than the RR of the running
process. At this point, the running process is preempted and the process with a
shorter RR is started (or restarted).

The advantages of using the HRRN algorithm are: short average turn-
around time and high throughput. Its disadvantages are similar to the SRTN
algorithm, requiring more overhead for updating the RR than updating the
remaining execution time.

6.4.5 Fair-Share Scheduling

From the two previous chapters, we know that a user can write an application
program so that when it runs, many child processes are generated. All
processes that are generated for an application can compete with processes of
other users to receive more CPU time. As a result, an application with many
processes can usually consume more CPU time than an application with less
processes. The same thing is true for threads that are created for one applica-
tion in a thread-based operating system. In a multi-user environment, profes-
sional computer users can use this opportunity to increase their share of CPU
time and by doing so decrease the chance of nonprofessional users to get hold
of the CPU. Fair Share Scheduling (FSS) is based on defining the fraction of
CPU time to be used by every user, or a group of users and on trying to respect
this fraction. If the fraction is assigned to groups of users, a similar situation
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can arise in which some user within the group may be able to generate more
processes and consume more CPU time than others.

6.4.6 Round Robin

Perhaps one of the most widely used scheduling policies is Round Robin (RR).
A time quantum (or time slice) is defined and a real-time clock (i.e., interval
timer) is set to send an interrupt whenever the time quantum has passed, since
the timer is set or reset. In order to repeat this cycle, the interval timer is reset
again right after the interrupt is generated. Whenever the processor is ready to
pick a new process for execution, it picks the process from the front of the
ready queue. This can run for maximum of one time quantum and the real-
time clock will send an interrupt as soon as the time quantum has passed. In
response to this interrupt, the operating system stops the execution of this
process and inserts it at the end of the ready queue. The scheduler then picks
another process from the front of the ready queue. While a process is running
it may want to do an I/O operation, may need a device which is not available,
or may like to wait for an event to occur. The operating system will evacuate
such a process from the CPU even if its time quantum has not completed and
a new process will be picked up for immediate execution. To start a new time
quantum for this process, the interval timer will be reset right before the new
process is picked up.

The length of a time quantum is not dynamically changed but there are
ways to compensate for the unused portion of a time quantum given to a
process. One way is to insert the process somewhere within the ready queue
(not at the rear of the queue), when the process becomes ready to use the CPU
time again.

Practical schedulers of contemporary operating systems are often a com-
bined version of a few of the policies that are discussed in this section. It is pos-
sible to combine priority and round robin. We may define more than one
ready queue, one for every priority level. Then, round robin is only applied to
the highest non-empty priority level queue.

In an interactive environment, users like to receive prompt response to
short requests. One way to respect this need is to assign a time quantum to any
request as soon as it arrives and after the current quantum has finished. Since
there may be more than one such request at one time, we can plan a specific
queue for every process’ first time quantum.

The last point about the RR scheduling strategy is the choice of time quan-
tum length. An extremely long time quantum will practically change the RR
algorithm to a FCFS algorithm. A very short one, on the other hand, will
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reduce system efficiency. Efficiency could become very low depending on the
length of the time quantum. The faster the processor, the shorter the time
quantum is chosen. A good choice should be long enough to complete an aver-
age-length interactive transaction, in one CPU shot.

The implementation of the RR policy is reasonably simple. A doubly linked
list with two pointers to its rear and front, similar to the FCFS algorithm, can
be used to implement the ready queue. The real-time clock, or as it is some
times called interval timer, and its interrupt handler are also needed. The timer
is either implemented by hardware or by software. If it is implemented by soft-
ware, it is basically a down counter that down counts hardware timer ticks. If it
is set (reset) to say n, every time a hardware-timer tick is generated the counter
is decremented. When the counter becomes zero, a round robin interrupt is
generated and the counter is reset to n again. If it is implemented by hardware,
the ticks are generated by an oscillator and are sent to a register with down-
counting capability. Whenever the content of this register becomes zero, an
interval-timer interrupt is generated. The register is reloaded whenever it
becomes zero or as the system decides.

It seems that the RR scheduler has many positive properties: a quick
response to interactive requests, longer waiting times for processes that require
longer CPU times, the possibility of defining many priority levels, etc. The task
switching overhead is its main disadvantage.

The round robin scheduler is another one of the three scheduling policies
that is adapted to the Linux operating system. It is called SCHED_RR and is
used for real-time processes. The priority of a SCHED_RR process is static, or
fixed, and does not change during the lifetime of the process. The priority of
a SCHED_RR is assigned when the process is created. A round robin process,
i.e., a process that is to be scheduled based on the SCHED_RR, is considered
preemptable. This means that its execution can be stopped at any time and be
withdrawn from the CPU in favor of a higher priority process. Actually, a
running SCHED_RR process will run until one of the following events
occurs:

(1) Further execution of the process depends on some data or resource
which is not yet available, or if the process has to synchronize itself
with another process. In this case the reason for the discontinuation
of the execution is internal. This process will be moved out of the
ready-to-run queue.

(2) A higher priority process, a process which has to be executed before
this process, has just arrived to the ready-to-run queue. This lower
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priority process will be evacuated from the processor and will be
moved to ready-to-run queue.

(3) Tt has used up its current time quantum. Similar to Event (2), the
process will be evacuated from the processor and moved to the
ready-to-run queue.

The SCHED_FIFO is different from SCHED_RR in that only Event (1) and (2)
are applicable to SCHED_FIFO.

6.4.7 Priority scheduling

The only criteria for scheduling processes may be priority. At any scheduling
point the highest priority process amongst all priority-based processes is
picked for execution. A preemptive scheduling policy evacuates a running
process from the processor as soon as a higher priority process arrives at the
ready-to-run queue. Priorities can be either static (fixed), or dynamic (vari-
able.) In the dynamic priority case, the priority of processes is periodically
recalculated and updated.

The third scheduling policy of Linux is the priority scheduling policy called
SCHED_OTHER. It is designed for non-real-time processes. Every process is
given a static priority when created and will gain/lose credit as time goes by,
depending on whether it is waiting for execution or is being executed. The
overall scheduling goodness of a process, at any given time, is the sum of its
static priority and its gained credit. We can say that SCHED_OTHER is a
credit-based scheduling policy. The credit of a process could go as low as zero,
in which case it will not be eligible to use the processor until the system decides
to give new credit to it. Process scheduling in Linux, as a case-study, is dis-
cussed next, along with the discussion of the concept of scheduling goodness.

6.4.8 Process Scheduling in Linux

There are three scheduling policies in Linux, or we can say there are three types
of processes as discussed earlier in this chapter, SCHED_FIFO, SCHED_RR,
and SCHED_OTHER. The type of a process, or its scheduling policy, is stored
in the policy field of process attributes. Every process, no matter what type,
receives a fixed priority which is an integer in the range of, say, 1 to 99. The
static (fixed) priority of a process is stored in the priority field of process attrib-
utes. This fixed priority is not the only factor upon which the overall scheduler
picks a process to execute next. The overall measure is called scheduling good-
ness. A higher goodness value means that the corresponding process deserves to
be executed earlier than a process with a lower goodness. It does not necessarily
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mean that the process with a higher goodness value will be completed before a
process with a lower goodness value. The goodness value is static for both
SCHED_FIFO and SCHED_RR processes. It is dynamic for SCHED_OTHER
processes. To guarantee that the goodness value of a process of either of the
types SCHED_FIFO or SCHED_RR is always higher than the goodness value of
SCHED_OTHER processes, the goodness values of the former is defined as its
priority plus a large constant number, say, 1,000. For a SCHED_FIFO or
SCHED_RR process,

goodness = priority + 1000.

For a SCHED_OTHER process, we have to introduce a new parameter before
calculating its goodness. In Linux, time is divided into frames called epochs. At
the start of every epoch, the scheduler calculates every SCHED_OTHER
process’ CPU share of this epoch, by an integer number of scheduling-clock
ticks. For a process in the ready queue (or running queue in Linux), this value,
which is called the “credit” of the process, is equal to the static priority of the
process. The credit of a process is stored in the counter field of process’ attrib-
utes. The epoch length is considered to be a fixed value when processor share is
being calculated. However, for many reasons, it may end earlier or later than
what is calculated at the start of a new epoch. For example, a process may not
be able to use all its credit in this epoch because it needs some data to be read
from a disk. As a result, the process is evacuated from the ready-to-run queue.
This will cause the epoch to become shorter. In another case, a process may
arrive at the ready-to-run state coming form the STOPPED or INTERUPT-
ABLE/UNINTERRUPTABLE states. It deserves to get its processor share in
this epoch, if it has some credit left from its previous epoch. This will enlarge
the current epoch. For every scheduling-clock tick, the credit counter of the
process that is using the CPU is reduced by one, i.e., the process loses one
credit. A process with its counter equal to zero can no longer use the processor
in this epoch.

An epoch ends when the counter (credit) of all processes in the ready-to-
run state, i.e., RUNNING state in Linux terms, becomes zero. At this point,
another epoch starts and the scheduler will allocate new credits to processes.
The credit of a process in the ready-to-run state is set to its static priority.

The credit of a process in the wait queue, i.e., with a STOPPED or INTER-
RUPTABLE/UNINTERRUPTABLE state, will usually increase with respect to
its current credit, every time credit recalculation is performed. Its new credit is
computed as:
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. . .. credit
credit = priority +

Note that every time the credit of a waiting process is calculated one half of its
previous credits is forgotten. For example, if the credit of a waiting process is
12 and its priority is 8, successive recalculation of its credits at the beginning of
four consecutive epochs will produce 14, 15, 15, and 15, respectively.

To summarize, the goodness of ready-to-run real-time processes, i.e.,
SCHED_FIFO and SCHED_RR, are always well above other ready-to-run
processes. These processes will be executed before any SCHED_OTHER
process. The Linux scheduler is priority-based and higher goodness
SCHED_FIFO ready-to-run processes will be executed before any lower good-
ness SCHED_FIFO processes. Similarly, a higher goodness SCHED_RR ready-
to-run process will be executed before a lower goodness SCHED_RR process.
Equal goodness SCHED_RR processes are executed in a round-robin fashion
with each process receiving one time quantum every time its turn comes up. It
is obvious that a higher goodness SCHED_FIFO ready-to-run process will be
executed before a lower goodness SCHED_RR process and vise versa. Recall
that, for SCHED_FIFO and SCHED_RR processes, the difference between
goodness and priority is the constant number, 1,000. Therefore, in the absence
of SCHED_OTHER, for these sets of processes, the word “goodness” can safely
be replaced by “fixed priority.” For example, when we say a higher goodness
real-time process can preempt a lower goodness CPU-using process, we mean
a higher priority real-time process can preempt a lower priority CPU-using
process. We must make sure that in comparing real-time with non-real-time
processes, their goodness is compared.

SCHED_OTHER processes are scheduled when there is neither any
SCHED_FIFO nor any SCHED_RR processes. A SCHED_OTHER process can
use all its credit in every epoch, when its turn comes. In every epoch, all ready-to-
run SCHED_OTHER processes are scheduled to use the CPU, disrespectful of
their priority or goodness. The priority of such a process affects the number of
scheduling clock ticks of CPU time that it can use in this epoch. The goodness of
processes affects the order in which processes will be served during the epoch.

6.5 Analysis of Scheduling Algorithms

The objective of analyzing a scheduling algorithm is to evaluate its perform-
ance. One way to evaluate the performance of a scheduling algorithm is to
model the system in respect to the objective. This model hides unnecessary
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features of the system that are not related to the modeling objective and pro-
vides a simplified structure of the whole system. Queuing models are often
used for this purpose. The heart of this kind of model is composed of one or
more queues. However, for our discussion, we will concentrate on simpler
models with one queue. Arrival patterns to the queue, departure patterns from
the queue, service rates, and request rates are vital information to the analysis
of the system.

Arrival and service patterns are often assumed to obey Poisson distribu-
tion. The reason is that assumptions leading to Poisson distribution are rea-
sonable assumptions which are applicable to most computing systems under
investigation. These assumptions are:

(1) Arrival of new requests is independent of the history of the system
and the current status of the queue

(2) The number of arrivals in a time span depends only on the length of
the time span and it is proportional to this length

(3) We can always define df so small that the probability of more than
one arrival within any period (¢, t+dt) is negligible. The probability
of one arrival in such an interval is represented by Adt. Here, A is a
constant which is called arrival rate

With these assumptions it is possible to show that inter-arrival time distribu-
tion satisfies Poisson distribution.

Suppose that, t represents the inter-arrival time random variable and Py(t)
represents the probability that there is no arrival within the interval (0, t), i.e.,

Py(t) =Pr [ N(0,t) =0]. (6.1)

In (6.1), N(0, t) is the number of arrivals in the interval (0, ¢). Using this
notation for the interval (0, t+dt) we will get;

Py(t+dt) = Pr [ N(0, t+dt) = 0]
=Pr [ N(0,t) = 0 AND N(t, t+dt) = 0].

According to these assumptions, the probability of arrivals in two non-
overlapping intervals is independent, and hence:

Pr [ N(0,t) = 0 AND N(t, t+dt) = 0]

= Pr [ N(0,t)=0] Pr [ N(t, t+dt) = 0]
=Py(t) (I- A dt).
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Therefore:

Py(t+dt) = Py(t) (I- Adt)  (6.2)

Po(t+dt)—Po(t):_;tp(t) (6.3)
dr !

The left side of equation (6.3) is the definition of the derivative when dt
approaches zero, thus:

po(t) _
Fy@)

Or, from differential equations
InP()=—At+c  (6.4)

But P,(0) = 1 because it represents the probability of having no arrivals at the
exact time of zero. By replacing ¢ by zero in (6.4), we will get:

lnP(0)=—Ax0+c
Which leads to ¢ = 0 and (6.4) will become:
Unp()=—At
Or
P(n=e "

The distribution function of the random variable ¢ is defined as:

F(t)=Pr (T<t)
=1-Pr(T>t)

However, Pr(T > t) is the probability of interarrival time being greater than ¢
which is equal to P, (1), that is, the probability of no arrival within the interval
(0, t). Hence,
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F)=1-Py)=1-¢ "  (65)
The probability density function (pdf) of the above distribution is:
fO=F@®=Ae™ t>0,1>0 (6.6)

The expected value of the random variable  is:

- 1
E(t) = jo tfdr=— (67)

The net result is that the pdf of inter-arrival time is exponential and we expect

1

to receive a new arrival every E time.

To get a feeling of how an actual case is analyzed a system of n users and one
processor can be investigated and the average response time of the system cal-
culated. The average response time is an important measure of a scheduler’s
performance.

6.5.1 Average Response Time

A model of n computer users that continuously request services and one
processor that serves users by executing their requests is depicted in Figure 6.2.

_> _>

Figure 6.2: The multiprogramming model of 7 users and one processor

We have assumed that when a user starts to analyze the situation and gener-
ate a request it will generate it after a time #, a Poisson random variable with
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1
the expected value of I . After the request is submitted, it will take the system,

on the average, a period of length R to send a reply to the user.
The processor picks the requests from the queue in a FCFS fashion and the
execution time of every request is a Poisson random variable with the expected

value — .

u

The overall time of generating, waiting for the response, and analyzing the
response is:
1

—+R
A

The number of completed requests in one time unit for every terminal is:
1

1
—+R
A

Let’s assume that the probability of the queue being empty is P,. The processor

will be busy whenever there is at least one request in the queue (including the
one that is being executed). The probability of the queue being not empty is I-

P,. Since the processor’s service rate is i, the systems service rate is (L (1—F,) .

The system is a closed one which means a new user request cannot be generated
until his previous request is completed and the response is received by the user.
Therefore, in the steady state, the number of requests generated per unit of time
by n terminals (n users) is equal to the number of requests completed per unit
of time.

n
pad-R)y=4— (68
—+R
A
From (6.7), R is computed as:
n 1

R=——
ud-p) 2
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This section is presented with the goal of showing how sophisticated the
performance analysis of a scheduling algorithm can be. The analysis that was
shown here is for a very simple system that has only one queue. Real multi-
users, multiprogramming, multiprocessors, with multiple I/O processors
could have many queues and various interconnections of these queues.
Analyzing such a model for the purpose of calculating system parameters can
become a very complex job. Such an analysis is more appropriate for an
advanced book on operating systems, not this one.

6.6 Multiprocessor Scheduling

The environment under investigation is a multiprocessor, multiprogramming
environment that covers a wide range of systems. Some specific characteristics
of the environment, that influence the type of scheduling strategies to be
adapted, are first identified in the following sections.

6.6.1 Processor Types

Two general categories of multiprocessor systems are identifiable. Category
one covers multiprocessor systems that are built using only one type of proces-
sor. These processors must have exactly the same architecture, the same
resources like cache memory, the same speed etc. A computing system that
belongs to this category is called the Symmetric Multi-Processor (SMP) sys-
tem. An SMP system is also called a homogeneous system. In contrast, an
asymmetric multiprocessor is composed of more that one processor that are
not the same and is also called a heterogeneous system. Scheduling processes
in an SMP system is quite less complicated than in nonsymmetrical multi-
processor systems.

6.6.2 Processor Affinity

Another concept that has to be discussed regarding multiprocessor systems is
processor affinity. A process may be attracted to use a specific processor to run
its program. Such a process is said to have affinity toward that particular
processor. A hard affinity will force th e scheduler to only schedule the process
on that processor. A soft affinity, on the other hand, does not forbid the sched-
uler from letting another processor run the process. However, when there is
more than one processor available, the process will be scheduled on the
processor with affinity. When processor affinity is defined for processes, the
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threads of one process inherit the affinity of their creating process. No affinity
gives the scheduler the freedom to assign any processor to run any process or
thread. It is worth mentioning that the processor affinity concept is applicable
regardless of the type of multiprocessor computers, that is, SMP or
Asynchronous Multiprocessor (ASMP).

The soft affinity of a thread (or process) to a specific processor will increase
the chance of assigning the same processor to the thread over and over again.
As a result, if the processor has its own cache, the cache reloading overhead is
decreases. The benefit increases if the thread is CPU-bound one and, as a
result, is frequently scheduled to run. Another benefit of processor affinity is
when there are at least two threads which we do not want to run simultane-
ously. In this case, the hard affinity of both threads is defined to a unique
processor. Since there is at the most one thread running on one processor at
one time, the nonparallel execution of threads is guaranteed. Sometimes we
like to leave a certain amount of processing power for an application. We can
put aside as many processors as we like and define the processor affinity of
other processes to the remaining processors. Such a situation is more likely to
belapplicable when the system load is light. The disadvantage of hard affinity
is the possibility of an increased thread response time, creating a negative
effect on the overall system balance.

6.6.3 Synchronization Frequency

When a program is being run on more that one processor, we may have to
define rendezvous points where all or some parallel sections of the program
meet, before advancing forward. Three levels of synchronization are defined
based on how often parallel segments are synchronized. These levels are
expressed in terms of parallelism grain size.

(1) Independent parallelism: Here, processes are completely independ-
ent and they do not communicate with one another during the exe-
cution. It is not important whether they belong to one application or
more Or even one user or more, as long as there is no communica-
tion between them. These processes do not need to synchronize dur-
ing execution.

(2) Coarse-grain parallelism: For this type of application, processes are
suppose to synchronize every once in a while. The exact synchro-
nization period is not fixed but it is approximately every 1,000 or
more machine instructions. The usual synchronization tools, like
semaphores and messages, are applicable for these processes.
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(3) Fine-grain parallelism: Fine-grain parallelism occurs in applications
where frequent synchronization is required. Every few high-level
instructions all or some parallel executing sections have to reach a
common point to be synchronized and from there a new parallel
step may start. A common tool for implementing fine-grain parallel
applications is the thread tool. The programmer has to take care to
define parallel steps and synchronization points. For every set of
instructions that can run in parallel, a thread is defined. Once again,
the exact synchronization step size is not fixed and it could vary
from one program to another. It is safe to assume that parallel sec-
tions are less than 1,000 machine instructions each. If parallel sec-
tions are composed of very few machine instructions, say 10, then
the overall efficiency of the system will be very low. Consequently, we
do not gain a lower overall turnaround time compared to the non-
parallel version of the program.

6.6.4 Static Assignment versus Dynamic Assignment

A processor may be assigned to a process for the whole duration of its execu-
tion. If the processor assignment model is to assign a fixed processor to every
process and the process is only allowed to run on the specified processor, then
the model is called a static assignment. On the other hand, if the scheduler is
not required to always assign the same processor to a process whenever it is
ready to use that processor, then the scheduler is following a dynamic assign-
ment allocation.

The two concepts of static processor assignment and hard processor affinity
should not to be considered the same. Although they may look similar, there
are conceptual differences between them. The former is fixed while the latter is
dynamic. In hard processor affinity, it is possible to change the affinity of a
process (or thread) during its life time. In addition, a process’s hard affinity
may define a set of processors. The scheduler is allowed to choose any one of
these processors, whenever the process is to be scheduled to run. Processor
assignment helps in better analyzing the behavior of a scheduling strategy and
even in checking the safety of a real-time system. The hard affinity concept
looks for benefits like decreased cache reload, parallel execution of threads, etc.
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6.7 Scheduling Algorithms: Multi-Processor
Systems

The scheduling objectives of multiprocessor systems are similar to the ones in
single-processor systems. For a list of objectives refer to Section 6.2. As follow-
ing, some scheduling policies applicable to multiprocessor systems are pre-
sented. For those that were defined earlier in the single-programming
environment, only a brief discussion is given and the focus is on the ways these
policies are adapted to multiprocessor systems.

6.7.1 First-Come-First-Served

All processes are put in a single queue and when a processor is ready to pick a
process for execution, it picks the process that has arrived earlier than all
ready-to-run processes. This scheduling policy is non-preemptive. When the
execution of a process is started it will continue until either the process is ter-
minated or it is blocked due to waiting for some resource or an event to take
place. In other words, the cause of discontinuation is internal to the process.
When a processor becomes idle, a process with the earliest arrival time is cho-
sen to run on this processor.

6.7.2 Shortest Job Next

Based on this policy, the process that requires the least amount of time to com-
pletion will always be picked for execution. This policy is also considered non-
preemptive, i.e., the running of a process will not be halted in favor of a just
arrived process with a shorter execution time requirement than this process.
When a processor becomes idle, a process with the shortest execution time is
chosen to run on this processor. The preemptive version of this policy is called
shortest remaining time next, and is described next.

6.7.3 Shortest Remaining Time Next

This policy works like its counterpart for single-processor systems. However,
any process can be assigned to any processor, if it confers with processor affin-
ity restriction. The shortest remaining time next policy is preemptive. If the
newly arrived process to the ready-to-run queue has a shorter remaining time
to completion, the execution of the running process is stopped and its corre-
sponding processor is assigned to the newly arrived process, if processor
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affinity restrictions allow. In some versions, a scheduling decision period is
defined and at the end of each period, the remaining execution times of all
ready-to-run processes are compared and the process with the shortest one is
selected. This process will run, next.

6.7.4 Fair-Share Scheduling

The behavior of a fair-share scheduling policy for multiprocessor systems is
similar to that of the single-processor environment. However, processors alto-
gether are the resources that have to be shared fairly amongst all applications.

6.7.5 Round Robin

The round robin policy for multiprocessor systems is the natural extension of
the same policy for single-processor systems. A time quantum is assigned to
every qualified ready-to-run process. The scheduler could be central processor-
specific, depending on the general organization of the multiprocessor system.

6.7.6. Gang Scheduling

Parallel execution of a process, which is composed of many parallel threads, is
best achieved when all parallel threads are simultaneously scheduled to run on
different processors. Such scheduling has many benefits as opposed to sched-
uling these threads in a multiprogramming fashion on one processor.

(1) The time span from process start to process termination is shorter,
so time sensitive applications will run safer.

(2) The overall processing overhead is less because there will be fewer
context switching. In a multiprogramming environment, when two
threads are going to synchronize, one thread has to run to the point
of synchronization and then it must be preempted. The execution of
the other thread must be restarted to run to the point of synchro-
nization. This requires frequent thread switching, if there are many
scheduling points.

(3) Since resources are assigned to processes and resources that are
assigned to one process are shared among all threads of the process,
these resources will be utilized for a shorter duration of time and will
be used in a more efficient manner.

Simultaneous scheduling of threads of one process on different processors is
called gang scheduling. It is also called co-scheduling by some authors.
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Analytical performance evaluation of scheduling algorithms in a multi-
processor environment is more complex than a single-processor environment.
Thus, the system under investigation is usually simulated and performance
factors are measured. It is also possible to run an actual multiprocessor system
and to monitor its behavior for the purpose of performance evaluation.

6.7.7 SMP Process Scheduling in Linux

Linux could be used in a Symmetric Multi-Processor (SMP) system. In such
an environment, when a process becomes ready-to-run, the scheduler will first
check to see whether or not the processor that was used to run the process the
last time is available. If so, this processor will be allocated to the process. If it is
the first time that the process becomes ready-to-run, or if processor last used is
not available, but there is at least one other available processor, the scheduler
will allocate one processor to the process.

When no processors are available and a process with higher priority than
some CPU-using processes becomes ready-to-run, if the processor that was
last used by this process is running a lower priority preemptable process, then
the processor will be seized and assigned to this process. Otherwise, if all lower
priority CPU-using processes are non-preemptable, such as SCHED_FIFO,
then this process has to wait until a new scheduling situation arises. Otherwise,
if there are lower priority processes running on processors (other than the
processor that was last used by this process), the scheduler will check to see
whether it is worth preempting a process or not. One parameter to be consid-
ered is the hardware cache rewrite time, that is, the time that it takes to entirely
overwrite the hardware cache. If this is high, compared to the average time
quantum length of this process, preemption will not take place. In other
words, it is better to bind this process to the processor last used, for the time
being. Assigning a process to run on its last used processor has the benefit of
using previously cached information which has not been swapped out.

6-8 Scheduling Real-Time Processes

In real-time systems every request has a deadline before or at which time the
request must be completely executed. A real-time system must not only be cor-
rect but it also must be timely and predictable. Some systems are so sensitive
about missing deadlines that such an event may cause a catastrophe. This type
of system is called a hard real-time system. On the other hand, some systems
may afford some missed deadlines, which may lead to some computational
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inaccuracy, but no crash or other kind of catastrophe is expected. This kind of
system is called a soft real-time system.

Tasks can be periodic, a-periodic, or sporadic. A periodic task continuously
generates requests at fixed intervals called request interval. Different tasks need
not have the same request interval. The nature of a-periodic task’s requests is their
irregular occurrence. A sporadic task occasionally generates requests. The most
common type of real-time systems, especially industrial ones, is real-time systems
with periodic tasks. We will focus on these systems for the rest of this section.

In static priority assignment, priorities are assigned to tasks in advance,
before any execution begins. The scheduler will always respect these priorities.
Therefore, static priority assignment is a design-time action. Dynamic priority
assignment is, on the other hand, a continuous and online activity with the
scheduler making scheduling decisions as the system is running.

A preemptive scheduler can suspend the execution of the currently running
request in favor of a higher priority request. However, a non-preemptive
scheduler must execute the current request to completion before dispatching
another request to be executed. With preemption, there is extra overhead but
the chance of request overrun, i.e., a request not being executed in time, is
lower if the system load factor stays the same.

Due to a wide range of systems, in the following we assume that tasks are
independent and all start simultaneously. Request intervals and execution
times for requests from each task are fixed. Without loss of generality, we
assume, for a set of n periodic tasks that request intervals satisfy r;<r,<...<r,.

6.8.1 Rate-Monotonic Policy

With the Rate-Monotonic scheduling (RM) algorithm, priorities are statically
assigned to periodic tasks. A task with higher request rate, i.e., a shorter request
interval, is assigned a higher priority than a task with a lower request rate. This
is a static priority scheduler, in that, priorities are assigned to tasks and are
fixed. The priority of any request that is generated by a task is the priority of
the task. The RM scheduling algorithm has been applied to different real time
environments including control environments, fault-tolerant environments,
network environments (message scheduling) etc. It has been proved that the
least upper bound to processor load factor (i.e., processor utilization), for the
system to be safe, is:

U=n(2/n-]).

Processor load factor is defined as the sum of load factors of all tasks in the sys-
tem, i.e.,
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where r;, i=1,2,...,n, is the request interval of task 7, and e, i=1,2,...,n, is the
execution time of each request created by task ;.

In certain situations, unnecessary preemption could have a negative effect.
Consider a situation where a lower priority request is running while a higher pri-
ority request arrives. With the RM algorithm, the lower priority request is imme-
diately preempted, no matter what the situation is. If the lower priority request
has an earlier deadline than the higher priority request, it is better not to preempt
the running request coming from the lower priority task. With this modification,
the new policy is called Preemption-Intelligent Rate-Monotonic (IRM).

The IRM algorithm has the property of implementation simplicity, similar
to the RM algorithm, and improvement in performance compared to the RM
algorithm. It has been proved that a system of having two periodic tasks with
the IRM scheduling policy is safe if U<I. This leads to a 17% increase in the uti-
lization factor of the processor, compared to similar situations under the RM.

It has also been proved that any system that is safe under the RM algorithm
is also safe with the IRM algorithm. However, there are many systems that are
safe under the IRM policy yet unsafe with the RM policy.

Figure 6.2 shows the difference in the number of request overruns for IRM
and RM per 1,000,000 requests that are generated from tasks with randomly
chosen properties and U=1.

Comparison of IRM and RM algorithms
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Figure 6.2: Comparison of the number of request overruns in RM and IRM
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6.8.2 Earliest Deadline First Policy

Time critical tasks are very much sensitive to deadlines. A missed deadline may
cause the whole real-time system to collapse. It is clear that every scheduling
policy has to pay attention to request deadlines. Compared to other scheduling
policies, the Earliest Deadline First (EDF) pays the most attention to the exact
instant when the time limit for the complete execution of a request expires. In
that respect, EDF is a dynamic priority scheduler, as oppose to RM, which is a
static priority scheduler. Under the EDF, there are four circumstances in which
scheduling decisions have to be made. These circumstances are listed below
and the actions taken by EDF are explained.

(1) If the system has just started, the EDF algorithm picks the request
with the closest deadline for execution.

(2) When the execution of a request is completed, a request with the
closest deadline among all pending ready requests is picked up for
execution.

(3) If the processor is idle and more than one request arrives simultane-
ously, the EDF algorithm chooses the request with the closest dead-
line.

(4) Since the scheduler is preemptive, if the processor is busy running a
process that is taking care of a request and a new request with a
closer deadline than this request arrives, the running request is pre-
empted and the newly arrived request is picked up.

The oldest results on the analysis of the EDF policy were produced by C. L. Liu
and J. W. Layland. They proved that the EDF, or, as they called it, Relative
Urgency (RU), is an optimal scheduling policy for single-processor systems. In
other words, if a real-time system runs safely, with no request missing under
any scheduling algorithm, then it will run safely under the EDF algorithm, too.
In their proof the system overhead was considered to be nil. Another result
reached by the same people is that any single-processor system composed of n
real-time periodic tasks, with which the processor load factor is at most one,
will run safely when requests are scheduled by the EDF algorithm.

The major disadvantage of the EDF algorithm is the overhead that is
imposed on the system by scheduling actions.
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6.8.3 Least Laxity First Policy

The Least Laxity First (LLF) policy makes its scheduling decisions based on
the maximum time span that a request can tolerate before being picked up for
execution.

The laxity of a request at any given moment is the time span that it can tol-
erate before which time it has to be picked up for execution; otherwise its
deadline will definitely be missed. As a request is being executed, its laxity, or
slack, does not change. However, the laxity of a request decreases as the request
waits (either in the ready-to-run queue or elsewhere). Its chances of being
overrun increase. When the laxity of a request becomes zero, it can no longer
tolerate waiting.

The laxity of a request is a dynamic value that changes as the circumstances
change. Four values affect its computation: (1) the absolute time of the
moment when we want to compute the laxity of the request, T, (2) the absolute
value of the deadline of this request, D, (3) the execution time of this request,
E, and (4) the execution time that has been spent on this request since it was
generated, C. The following is the simple formula for computing the laxity of a
request with the aforementioned values.

L=D-T- (E-C)

Similar to the EDF algorithm, the LLF is an optimal scheduling policy. Also,
a single-processor system that serves a set of periodic tasks with a load factor
less than or equal to one with the LLF scheduler, is overrun-free, if the over-
head is considered to be nil. The LLF belongs to the class of dynamic priority
and preemptive algorithms. It has an advantageous property that it can detect
request overrun before an actual overrun. Although this property is not bene-
ficial for hard real-time systems, it could be of good value for soft real-time
systems. If the system detects a request will overrun, it will not start (or restart)
the execution of the request. This will save the system some execution time
which can be spent on other pending requests. Thus, the number of future
overruns is reduced. The major disadvantage of the LLF is its excess overhead
to keep the laxity of all requests updated. Recall that as a request is waiting its
laxity constantly changes. Since it is not possible to constantly update the lax-
ity of a request, the system has to periodically (very short periods) change the
laxity of the non-running processes and check to see whether or not there is a
request with shorter laxity than that of the running process. The fact that it is
not possible to continuously change the laxity of all non-running processes
overcomes the attractive theoretical property of LLF being optimal. Recall
that, if two processes with the least laxity have equal laxities (at some point in
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time), the processor has to continuously switch between these two processes,
under the LLE. However, there is a simple solution for defining a practical but
approximate LLF algorithm. When a request is going to be picked up for exe-
cution, scheduler can find out whether or not the laxity of any other request is
going to become zero during the execution of this task. If so, a timer is set to
interrupt the execution of this task at the exact time that the laxity of such
requests becomes zero. Whenever a request is to be chosen for execution, the
scheduler chooses one of them with the lowest laxity. A running process is pre-
empted by any process whose laxity has become zero. Similarly, the laxity of a
newly arrived process may become zero during execution of currently running
process. Therefore, the approximate LLF scheduler must consider this request,
too.

6.7 Disk I/O Scheduling

Scheduling policies are also used to assign resources other than processors. For
example, to write outputs on a printer,
care must be taken in order not to
interleave results of processes that are
running simultaneously on different
processors, or even processes that run
in multiprogramming manner and
use a common printer to output their
results. Secondary storages, like hard
disks and disk packs, are I/O devices to
which many simultaneous outputs are
sent or from which many simultane-
ous readouts are demanded. It is not
always wise to read or write data in the
same order that is requested. There are

Secondary storage is a mass
nonvolatile storage that is used to
keep information for a long time.
Primary storage (i.e., main memory) is
a volatile storage that is not supposed
to keep its information if the computer
is shut down. All our programs and
data have to be stored in secondary
storage which is a permanent device.
Floppy Disk (FD), Hard Disk (HD),
Compact Disc (CD), Digital Video Disc
(DVD), and Flash Disk (FD) are all
different types of secondary storage.

better policies, in many circumstances.
Unfortunately, without illustrating
and explaining the hardware and soft-

To run, a program must first be
(partially) transferred to main memory
from secondary memory.

ware structures of a secondary storage
media, it is not possible to talk about I/O scheduling policies. In this section,
we will first give a description of the structure of a one-plate hard disk and
then present some I/O scheduling policies and corresponding algorithms.

A simple hard disk is a flat round plate with two surfaces. On every surface
there is a set of concentric (imaginary or real) circles on which information is
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stored. Every circle is called a track. The capacity of all tracks of a disk is the
same (of course, the storing density is different). A track is divided into an
integer number of sectors. The capacity of all sectors of a disk is the same. A
sector is the basic read/write unit. Its size is a power of 2 bytes, for example 1K
bytes. To read or write information on a disk it has to be mounted on a disk
drive (a hardware device) and be revolving at a constant speed, say 8,000 revo-
lutions per minute. If there are not enough read/write heads (one per track),
then the head(s) have to move from track to track to be able to read/write
information on different tracks. Figure 6.2 shows a model of a one-plate one-
surface disk with one moving head.

Sector

Moving head
Track

Figure 6.2: A model of a disk surface

The logical read and write unit for secondary storage is a block. Block size is
an integer multiple of sector size, which, we assume it is, at the most, equal to
the size of one track for the purpose of our discussion in this chapter. We will
also assume that no block of data will cross a track boundary;, i.e., every block
of data is enclosed within only one track. The following parameters affect the
reading or writing of a block of data:

(1) Seektime: This is the time length that it takes for the read/write head
to move from its current position to the destination track from/to
which data has to be transferred. This time span depends on the
number of tracks to be passed over when going from the current
position of the head to the destination track. With a disk of 200
tracks per surface, the longest seek time is when the head has to
move from track zero to track 199 or vice versa. The seek time is
composed of three parts: the initial start-up time, the traversal time
from current track to the destination track, and the settling time on
the destination track. The movement of the disk arm is not uniform
and has to accelerate at the beginning and slow down near the end.
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Rotational delay: Rotational delay is the amount of time that it takes
for the beginning of data to reach the read/write head, after the head
has settled on the desired track. With a disk that rotates 8,000 rounds
per minutes (rpm), one complete rotation takes 7.5 ms. The upper
bound for rotation delay is 7.5 ms, in this case. The average rota-
tional delay is usually considered to be half the time that one com-
plete disk rotation takes, 3.75 ms in this case. Recall that the system
will not start processing requests before the disk rotation achieves its
desired constant speed, 8000 rpm in our example. Therefore, for the
rotational delay, there will not be any other timing considered,
except for the exact time that it takes the head to go from its current
position to the beginning of the data block. Note that the worst sce-
nario is when the head has just passed the beginning of the data
block and the best is when the head is positioned at the beginning of
the data block, right after seek has been performed.

Transfer time: The time that it takes to transfer (i.e., read or write)
one block of data depends on the rotation speed, track capacity, and
block size. This is equal to:

Block size

Block transfer time =

Rotational delay and transfer time is
similar for all disk I/O schedulers.
Thus, to evaluate their performances,
we will concentrate on seek time
only. To do so, in the rest of this sec-
tion we will examine the efficiency of
an I/O scheduler based on total seek
length, i.e., the total number of track
borders crossed for writing (or read-
ing) one block per every track of a

Track capacity

X Rotation time

A track trace is a list of a secondary
storage tracks corresponding to a block
trace that is created by running
processes, collectively, to be read or
written.

A track trace is dynamically
changing as new device I/O requests
are generated or requests are served.

track trace or track list. It is important to note that the track list is not pro-
duced by one process. Rather, all read/write requests (from all processes), for a
specific secondary storage, are put in one queue to be processed in an order
that is defined by the corresponding I/O scheduler.
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6.9.1 First-In-Fist-Out

As the name suggests, tracks are accessed in the same order as their arrival.
Suppose a track list (or track trace), just as it is received by the device driver of
a 200-track disk, is: 34, 57, 28, 65, 190, 120, 163, 163, 180, and 46. To process
this list and find out what the total number of track borders crossed is, we
must know upon what track the head of the disk surface has been settled, right
before starting to process this list. Let’s suppose it was on track 50. From track
50 to track 34 the seek length is |50-34|=16; from track 34 to track 57 it is |34-
57|=23, etc. The First-In-First-Out (FIFO) algorithm is the most natural algo-
rithm to serve requests. It is simple and efficient to implement, too. The
disadvantage is that, in some cases, the head may have to do long zigzag moves
thus increasing the total seek length. Table 6.2 shows the order of visiting
tracks of the given track trace and the total seek length.

Table 6.2: FIFO for the 34, 57, 28, 65, 190, 120, 163, 163, 180, 46 track trace

From 50 [ 34 [ 57 [28 | 65 | 190 ) 120 | 163 | 163 | 180
To 34 | 57 [ 28 165|190 | 120 | 163 | 163 | 180 | 46
Seeklength | 16 | 23 | 29 | 37 | 125 | 70 | 43 0 17 | 134 | Total =494

The shortest seek length (that is, the number of track boarders crossed for
two consecutively served requests) for FIFO is zero. This is true for a request
that is just behind the last served request in the FIFO queue of requests and it
is for the same track as the last request. The longest seek length is n-1, where n
is the number of tracks on the disk surface. This occurs when, for example, a
request for track 0 has just been served and the next request to be served is for
track n-1.

6.9.2 Last-In-Fist-Out

Based on the Last-In-First-Out (LIFO) policy, the last I/O request is always
picked to be served first. LIFO performs well when a process requires fast
access to consecutive blocks that are stored on consecutive tracks while there
are some unprocessed requests from other processes. Table 6.3 is based on the
assumption that the given track trace is ready at the time of scheduling and no
new request is received until the processing ends.
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Table 6.3: LIFO for the 34, 57, 28, 65, 190, 120, 163, 163, 180, 46 track trace

From 50 [ 46 | 180 | 163 | 163 [ 120 | 190 | 65 | 28 | 57
To 46 | 180 | 163 | 163 | 120 | 190 | 65 | 28 | 57 | 34
Seek length | 4 | 134 | 17 0 43 | 70 | 125 | 37 | 29 | 23 | Total =482

The shortest seek length for LIFO is zero and occurs for a request that has
just arrived for the same track as the just completed request. The longest seek
length is n-1. This happens when, for example, a request for track 0 has just
been served and the next request to be served is for track #n-1. LIFO may cause
starvation for some requests. A request that already exists may never get the
chance to be executed because new requests keep coming in making the
read/write head continuously busy.

6.9.3 Shortest Service Time First

This policy chooses the track that is closest to the current location of the next
read/write head. It is a greedy approach in selecting the best next move. Greedy
algorithms are usually simple to implement and often pretend optimal,
depending on the nature of the problem that they are used for. However, for
the disk I/O scheduling, it does not lead to an overall optimal policy. The
Shortest Service Time First (SSTF) tends to work around the current location
of the read/write head and forgets about long waiting requests that are for far
away tracks. Before discussing its best and worst seek length, refer to its behav-
ior on the track list in Table 6.4.

Table 6.4: SSTF for the 34, 57, 28, 65, 190, 120, 163, 163, 180, 46 track trace

From 50 [46 [ 57 [ 65|34 28 | 120 | 163 | 163 | 180
To 46 | 57 16513428120 | 163 | 163 | 180 | 190

Seeklength | 4 | 11| 8 |31 ] 6 | 92 | 43 0 17 10 | Total =222

The shortest seek length for the SSTF is zero and applies to a request that is
for the same track as the last served request. The longest seek length is n-1. This
occurs when, for example, a request for track 0 has just been served and all
remaining requests are for track n-1. SSTF may cause starvation for some
requests. A request that is far away from the current track of the read/write
head may never get the chance to be executed because new requests, closer to
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the current track of the read/write head, keep appearing, thus making the
read/write head continuously busy.

6.9.4 Scan

With the Scan policy, the read/write head of the disk surface moves in its cur-
rent direction up (or down) and serves all awaiting service requests on the way,
until (and including) the last servable request (in that direction). It then
changes direction and moves back down (or up) while serving all servable
requests on the way, up to (and including) the last such request. The Scan
repeats this cycle as there are any requests to be served. Then, the head rests on
the last track that was accessed, awaiting further requests. The behavior of the
Scan algorithm is very much similar to how elevators operate and, hence, is
also called the Elevator policy. An ordinary elevator moves in its current direc-
tion, loading and unloading passengers on requested floors (tracks), until
there is no servable request in this direction. Then, it changes direction and
goes on to do the same again.

For the Scan algorithm, if a request is for the track which the head has just
been passed and the track position is close to the returning point of the
read/write head the track will be served very soon while a previously generated
request may be served much later. This could be a major disadvantage of the
Scan algorithm, in that the Scan algorithm favors requests that are close to the
returning point of the read/write head. Also, a newly received request which is
for the currently served track will be served immediately. Although this is a
drawback of the Scan algorithm, a similar situation occurs with other algo-
rithms, too. Table 6.5 illustrates the Scan algorithm. It is assumed that the head
starts from track 50 and its current direction is towards higher track numbers.

Table 6.5: Scan for the 34, 57, 28, 65, 190, 120, 163, 163, 180, 46 track trace

From 50 | 57| 65 | 120 | 163 [ 163 | 180 | 190 | 46 | 34

To 57 [ 65| 120 | 163 | 163 | 180 [ 190 | 46 | 34 | 28

Seeklength | 7 | 8 | 55 | 43 0 17 10 | 144 | 12 [ 6 | Total =302

The shortest seek length for the Scan is zero and occurs when a request is
for the same track as the last served request. The longest seek length is n-1 and
it happens when, for example, a request for track 0 has just beenserved and all
remaining requests are for track n-1, where n is the number of tracks on the
disk surface.
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6.9.5 Circular-Scan

The Circular-Scan (SC), or C-Scan, algorithm acts very much similar to the
Scan algorithm but with one difference. Although the read/write head moves in
both directions, it only serves requests in one direction. The serving direction is
either towards higher track numbers or towards lower track numbers. Here, we
will assume it is towards higher track numbers. When scanning is in the direc-
tion of higher track numbers, it executes all requests on the way, up until the
last servable request. It will then go straight back to the track with the lowest
number amongst available requests. The algorithm repeats the same process in
order to serve existing and/or coming requests. Since the lowest-numbered
request is logically considered to be after the highest-number served track, we
can think of this method as a circular method and, hence, Circular-Scan. The
benefit that we get from C-Scan compared with Scan is that C-Scan does not
favor requests around the returning point of the read/write head. The behavior
of this algorithm on our standard track trace is demonstrated in Table 6.6.
Again, we have started from track 50 and moving up.

Table 6.6: C-Scan for 34, 57, 28, 65, 190, 120, 163, 163, 180, 46 track trace

From 50 [ 57 ] 65 | 120 ) 163 | 163 | 180 | 190 | 28 | 34

To 57 [ 65 ] 120 | 163 | 163 | 180 | 190 | 28 | 34 | 46

Seek length | 7 8 | 55 ] 43 0 17 10 [ 162 | 6 | 12 | Total =320

The shortest seek length for C-Scan is zero and it occurs when the request is
for the same track as the last served request. The longest seek length is n-1,
where # is the number of tracks on the disk surface. This happens, for example,
when a request for track 0 has just been served and the next servable request is
for the highest possible track number, or n-1.

6.10 Summary

It is not always the case that every service request arrives after the previous
service request has been completely served. Service requests may pile up, in
which case we would like to serve requests in such an order so as to increase
some metrics. This process is called scheduling. Scheduling methodologies
and algorithms for single-processor systems, multiprocessor systems, and disk
(or disc) I/O scheduling were studied in this chapter. Performance comparison
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of different algorithms for similar environments was carried out. The Linux
operating system was selected to present real-world schedulers.

6.11 Problems

1. The following table gives the arrival times and CPU times of five
processes. If the process scheduler is round robin, compute the average
turnaround time of the processes.

Process 1 2 3 4 5
Arrival time 0 0 2 3 3
CPU time 8 10 6 9 12

2. Given a set of jobs that have to run in a non-preemptive single-program-
ming fashion, which one of the two job schedulers, FCFS and SJF, always
gives a better (or at least as good as the other) average turnaround time?
Can you prove that this policy is optimal? Hint: look under at the greedy
methods in the design and analysis of algorithms.

3. With respect to average turnaround time, if processes do not have any I/O
needs, it is not clear whether single-programming or multiprogramming
performs better.

a.  Provide an example that shows single-programming performs better.

b. Now, provide another example that shows multi-programming per-
forms better.

4. To implement the round-robin scheduling policy for a multiprogram-
ming environment, an interval timer keeps track of how much time is left
of the current time quantum.

a.  Can you sketch the design of such a timer?

b. If the currently running process needs to do I/O before its time
quantum is used up, how would the timer be set to start a new quan-
tum for the next process to run?

5.  Suppose that the interval timer that is used for the round-robin scheduler
internally uses an oscillator with a frequency rate of one Giga Hertz. If the
timer has to generate an interrupt signal every one millisecond and we
use a down counter that receives the decrement signals from the oscillator
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and generates an interrupt as soon as it becomes zero, what is the content
of this counter at the beginning of every new quantum?

6. Three processes are running concurrently. For w = 0.6 (in other words,
the CPU wait ratio of each one of these processes when running alone is
0.6), the following Gantt chart shows the execution start and termination
of each process.
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a. Compute the CPU usage of every process.
b. Compute the average turnaround time of these processes.
Hint: Use the approximate value of w for multiprogramming.

7. The Gantt chart of the execution start and termination of two processes in
a multiprogramming environment is shown below. If we know that the
CPU time used by these processes is 4.8 seconds and 3.2 seconds, respec-
tively, what is w, or the CPU wait ratio of each one of these processes if run-
ning alone? Hint: Use the approximate value of w for multiprogramming.
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8. Is the Linux scheduling policy adequate for hard real-time systems?
Explain.

9. Consider a system that runs two periodic tasks with request intervals of
8.0 and 10.0 and execution times of 2.0 and 6.01, respectively, under the
rate-monotonic algorithm. Show that this is not safe and that a request
overrun occurs if the two tasks start simultaneously.
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10.

11.

12.

Operating System

Consider a system that runs two periodic tasks with request intervals of
8.0 and 10.0 and execution times of 2.0 and 7.5, respectively, under the
preemption-intelligent rate-monotonic algorithm. Show that this system
is safe (you can assume that the two tasks start simultaneously).

The I/O scheduler of a one-surface-one-head disk schedules requests
according to Circular-Scan algorithm. On what track must the head be if
the total seek length (expressed in number of tracks) for serving the fol-
lowing track trace is 60.

38 12 84 36 95

The head of a one-surface hard disk is on track 250 and its moving direc-
tion is upward (i.e., towards higher number tracks). The scheduler is
Shortest Seek Time First (SSTF). If going from one track to its adjacent
track takes two microseconds, what is the total seek time to access all
tracks of the following track-trace?

231 256 245 133 283

Recommended References

For scheduling algorithms which are used in the Linux operating system, see
[Boy01] by Boyet and Cesati and O’Gorman [Ogo01]. Similarly, for Solaris
and Windows 2000 scheduling algorithms, see [Mau0l] by Mauro and
McDougall and [Sol00]. For the details of Linux kernel implementation, see
[Bar00] by M. Bar. The operating system principles book by Per Brinch
Hansen [Han73] is a good text for theoretical aspects of scheduling. For real-
time scheduling, see [Liu73, Nag01, Nag02, Nag03].



Chapter 7

Memory Management

Main memory is a precious computer resource and perhaps the second most
valuable resource, after the CPU. As opposed to the CPU, which only one
process (or thread) owns it at any given time, numerous processes and/or
threads may coexist in main memory at any point of time. While many main
memory manufacturers compete to produce larger sized, lower priced, higher
speed, and lower energy consuming main memories, it has not been possible to
provide enough main memory to fulfill the requirement of handling all ready
and running processes at all times. Recall that with the advancement of tech-
nology, computer users expectations have been raised, too. They anticipate run-
ning more concurrent tasks with larger sizes and more resource demanding.

Memory management policies and techniques have tremendously changed
throughout the years. They have gone from single contiguous memory man-
agement technique to multilevel page table page-based memory management
with virtual memory and caching capabilities. The following table lists major
memory management techniques, roughly in order by the invention and usage
era in operating systems. For every technique, its important properties, bene-
fits, and restrictions (when applicable) are listed. It is quite obvious that some
readers may not be familiar with certain concepts used in this table, which will
be explained later in the chapter. The table acts as a reference and you may
want to refer back to it when the concepts are explained.

We will not give a detailed discussion of all techniques mentioned in Table
7.1, because some are no longer usable and studying some of these old tech-
niques does not contribute to a better understanding of contemporary tech-
niques. The only benefit might be to become familiar with the evolutionary
steps of memory management methodologies and implementation. For these
methodologies, a short paragraph describing the intuition is provided but to
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tulfill your curiosity for detailed methodologies and techniques, older operat-
ing system textbooks could be studied.

Table 7.1: Memory management policies

Memory Management Policy Properties, benefits, and restrictions

Single contiguous partition MM | Single-programming, easy to implement,
high memory waste, low overall system
utilization (especially low CPU utilization),
program size limited to the size of the
partition

Static partition MM Multiprogramming, better system
utilization, memory waste, program size
limited to the size of the largest partition

Dynamic partition MM Multiprogramming, better memory
utilization, memory fragmentation,
program size limited to the size of main
memory

Multiple partition MM Multiprogramming,  multiple = memory

partitions for program modules, memory
fragmentation, program size limited to the
size of main memory

Segmentation MM Multiprogramming,  multiple — memory
segments (data, code, stacks, modules) for
every process, memory fragmentation,
overhead for address translation, program
size limited to the size of main memory

Relocatable partition MM Multiprogramming, good memory
utilization, no external memory
fragmentation, extra overhead for
relocation, program size limited to the size
of main memory

Page (non-virtual memory) MM | Multiprogramming, good memory
utilization, no external memory
fragmentation, overhead for address
translation, program size limited to the size
of main memory
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Page-based virtual memory MM | Multiprogramming, very good memory
utilization, little extra overhead for address
translation, virtually no limit on program
size, space requirement for page tables

Multilevel page table page-based | Multiprogramming, very good memory
virtual memory MM utilization, little extra overhead for address
translation, virtually no limit on program
size, virtual memory for page tables, space
requirement for page tables

* MM stands for memory management

7.1 Older Memory Management Policies

The simplest memory management policy is single contiguous partition. The
main memory of the computer is divided into two parts. One part is reserved
for the operating system and the other for a program. The latter is called user
memory. The user memory can hold only one program at a time and this pro-
gram is kept in the memory until it is terminated. This policy is only useful for
a single-programming environment, something that is completely obsolete
even in personal computers. A personal computer user expects to run multiple
tasks simultaneously these days. It could be useful for some special purpose
computer that is used in special environments. The single contiguous policy
has benefits from its simplicity of implementation, but it has major drawbacks
that are mainly because of the single-programming restriction of this memory
management model. Processor utilization is very low, especially when
processes are I/O-bound. Similarly, memory utilization is low because a small
size process occupies only a small part of the user’s main memory while the
rest goes unused. A program larger than the user’s main memory will not be
able to run on this computer. Recall that this model does not support virtual
memory. When an I/O operation is performed by an I/O processor, the central
processor is idle. The utilization of other devices are also low since with one
process only one device (including the CPU) is active at one time and other
devices all remain idle. If there are many programs to run, the average turn-
around time, a wait time until completion, is very high.

Static partition memory management goes one step forward in better uti-
lizing the overall system. It is a fact that memory management policy particu-
larly very much affects system utilization. In this policy, the user’s main
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memory is statically partitioned into fixed numbers of partitions, each being a
potential for keeping a process. The first step in the realization of the multi-
programming scheme is to be able to have more than one active process in
main memory. This creates a foundation to switch the processor to another
process when the current process needs to do an I/O operation. The number of
partitions depends on many factors, for example: CPU speed, total size of the
main memory, the average size of programs, the number and type of I/O
processors. Partition sizes are fixed and cannot be changed while the system is
executing programs, although an offline modification is possible. The parti-
tion sizes are usually not all the same in order to be able to allocate smaller par-
titions to shorter programs and to have larger partitions for larger programs.
The number of partitions determines the degree of multiprogramming.

The static partition policy is also beneficial from the simplicity of imple-
mentation. It makes multiprogramming possible and hence increases overall
system utilization. Average turnaround time is improved compared to that of
the single contiguous memory management policy. On the other hand, there
may be a program which could have been executed if the main memory had
not been partitioned. It could not run, now as the size of a runable program is
limited to the size of the largest partitions. There is also some memory waste
when a process that is allocated to a partition does not completely fill the par-
tition. If the average program size is s and there are currently »n processes in the
system, memory waste is:

MemoryWaste = m - ns.
where m is the size of main memory. Memory waste fraction is thus:
MemoryWasteFraction = (m-ns)/m.

The next memory management model is the dynamic partition memory
management model. This model is similar to the static partition memory
model with the exception that
partition sizes are not fixed. When
the computer is turned on, the
whole user memory area forms
one free (available) partition. If
the first program becomes avail-
able for processing and its size is
less than the size of the free parti-
tion, the free partition splits into
two partitions. One partition is

External fragmentation occurs when all
free memory spaces combined are large
enough to load a program into, but these
spaces do not form a contiguous partition.
Partition and segment-based memory
management policies fragment main
memory. In the absence of complementary
compression  mechanisms,  external
fragmentation exists.
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allocated to the program and the other becomes the new free partition. If the
size of the program is exactly equal to the size of free partition, the whole par-
tition is allocated to the program. Similarly, for newly arriving programs, other
partitions will be allocated. When a program is completed, its memory area is
seized and becomes available to be assigned to another program. In order to
prevent free partitions from becoming smaller and smaller, when an allocated
partition becomes free, it will be combined with its neighboring free partitions
(if any) to form a larger free partition. Since processes do not usually finish in
the same order as their arrival, free and allocated partitions could interleave. In
pure dynamic partition memory management, we are not allowed to move all
allocated partitions to either the top or the bottom of user memory in order to
combine all free partitions into one large partition. Therefore, there are cases
that we would like to load a program into main memory and its required size
is less than or equal to the size of all free partitions together. However, since
none of these partitions is big enough to accept the program and we are not
able to combine a few of them to make enough room for the program, this
program will not be accepted for execution for the time being. We then say that
memory is fragmented. Memory fragmentation is a weakness of dynamic par-
tition memory management. This type of fragmentation is called External
Fragmentation. If the degree of multiprogramming is 7 there could be, at the
most, n allocated partitions and, at the most, n free partitions, if considering
an allocated partition in one extreme end of main memory for the operating
system itself. If the average size of a free partition is F kilobytes the total exter-
nal fragmentation would be m«F kilobytes, when m is the number of free par-
titions. To compute average external fragmentation, we must take into
consideration that the number of free partitions is usually lower than the
number of allocated partitions. This is because two adjacent free partitions
merge together and become one partition while two adjacent allocated parti-
tions hold two different programs and cannot merge into one partition. It is
even possible to have three or even more adjacent allocated partitions.

On the average, the number of free partitions considered to be one half of
the number of allocated partitions. This is called the 50% rule. With this rule,
on the average, one-third of main memory is fragmented and is wasted. The
one-third rule is applicable if we assume the average program size (allocated
partition) and free partition size are equal. If, for example, we take

C = (average free partition size)/(average program size),

then average external fragmentation will be:
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1
ExternalFragmentation = 5 *kxC*r

The fraction of memory that is wasted by external fragmentation is:

1
EkCr _ C
;kCr+kr C+2

where k is the number of processes in a situation when no other process is
acceptable by the system and r is the average process size.

The memory allocation unit is neither a byte nor a word. It is an integer
multiple of one kilobyte. Let’s assume it is one kilobyte. Therefore, if a pro-
gram requires 1,025 bytes the system will give it two kilobytes. The 1,023 extra
bytes that are given to the program are wasted. This kind of memory waste is
called internal fragmentation. For the allocation unit of 1K bytes, maximum
internal fragmentation and minimum internal fragmentation per process is
1,023 and zero, respectively. On the average, the internal fragmentation for
every process is one half the size of the allocation unit.

There may be more than one partition to accept a program for which a free
partition is wanted. In such a case, a partition selecting (or placement) algo-
rithm is needed. The first-fit algorithm assigns the first qualified partition to
the program. A qualified partition is a free partition that is at least as large as
the size of the program. The search starts with the first free partition and goes
towards the last free partition. If, for example, the free partitions are kept in a
linked list, the list has to be scanned from the front of the list towards its rear.
When the partition is selected, its upper (lower) part is assigned to the pro-
gram and the lower (upper) part (if any) will become a new free partition.

The next-fit algorithm is very much similar to the first-fit algorithm except
that, every time we want to look for a qualified partition, the search starts from
where it left off the previous time. The performance of the next-fit algorithm is
better than the first-fit algorithm, because it usually requires less time to find a
qualified partition.

The best-fit algorithm picks a qualified partition amongst all qualified parti-
tions whose size is closest to the size of the program. If free partitions are ordered
from the smallest size to the largest size, when scanning from the beginning to
the end, the first qualified partition will be the best-fitted partition.

The worst-fit algorithm works opposite of the best-fit algorithm. It selects
the largest qualified partition and splits it into two partitions (if it is longer
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than the program size). One is for the program and the other is a new free par-
tition. Here, the goal is to allow the leftover partition to be large enough to
accept other programs.

One more partition allocation policy is the buddy system. The size of a
buddy is 21K and it must be a contiguous partition. A partition size of 2L.K
could be split into two partitions of the size 2i-1.K which are called buddies,
hence, the buddy system policy. A buddy therefore cannot start from any arbi-
trary address. All free and allocated partitions are of the size 21K, with i being a
positive integer in the buddy system. If the smallest buddy is considered to be
32K, for example, for a main memory of the size of 512M, the bubby types are
32K, 64K...256M, and 512M. A program the size of 70K, for example, will be
given a buddy the size of 128K. When this program arrives, if the smallest
buddy greater than 70K is a buddy the size of 1M the buddy splits into two bud-
dies the size of 512K. One is kept and the other is split into two buddies the size
of 256K, one of which is kept and the other split into two buddies the size of
128K, one of which is kept and the other allocated to the program. When a pro-
gram terminates, its space is returned to the free partition data structure.
However, if its matching buddy (i.e., the buddy that it was originally separated
from) is also free, the two will join to form a larger free partition. The process of
joining matching buddies continues until no further unions are possible. The
state of main memory, in the buddy system, can be represented as a binary tree.
The lower level of the three (that is, the level with a lower number) represent
larger partitions. Figure 7.1 shows certain state of a main memory which is
512M bytes large. In this figure, a black circle represents a partition that has
been broken and no longer exists. Dark circles represent a partition that is occu-
pied by a program. An unfilled circle represents a free (available) partition.

512M

256M

128M -Q

64M . : Processed

3I2M O : Allocated
Q : Available

Figure 7.1: The tree representation of partitions in buddy system allocation
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Internal fragmentation is usually high in buddy systems. External fragmen-
tation exists when there are free buddies that cannot be combined because
they are either not adjacent or not the same size (non-matching buddies).
Neither of these has enough room for the program to be loaded, if they were to
combine, there would be enough room for the program.

Multiple partition memory management is an extended version of
dynamic partition memory management. With this policy, a program can
occupy more than one contiguous partition of main memory. Since a large
program is composed of many modules, it is not necessary to load all modules
next to each other. Theoretically, every module can have its own memory par-
tition. It is necessary to link all modules of the program in respect to their load
area in main memory. When multiple partition policy is used for memory
management dynamic linking becomes possible. We do not need to link all
modules of a program together before loading the program. A module could
be linked to its calling module the first time it is actually called during run
time. Right before linking, a partition is assigned to load the module. On the
fly linking is another name for dynamic linking methodology. This partition
need not be adjacent to the partition of its caller.

From your software development experience, you have noticed that, in large
software systems, not all the modules will be used every time the software sys-
tem is executed. Some modules are error handling modules that may seldom
be used. Some modules are so that the execution of one excludes the execution
of others. The “if” and “case” structures within which different modules are
called, are programming structures that incorporate such modules. The cohe-
siveness of statements within a module is stronger than the cohesiveness of
statements within different modules. Statements within a module share many
things, especially variables and control of execution. This is the reason for
breaking programs when a new module starts and not breaking them when a
memory partition fills. Multiple partition memory management benefits from
the reality of not needing a free partition which is as large as the whole pro-

gram to be able to run the program.
There are three common techniques for maintaining free partition infor-

mation. The simplest method is to use a two-dimensional array in which every
row stores the information of one free partition. A linked-list in which every
node stores the information of one free partition and related link(s) is the next
technique. The third technique is called the bitmap method. If memory is allo-
cated to processes in multiples of blocks (with each block being an integer
multiple of 1K bytes) and the size of main memory is n blocks, an array of n
bits is used to show which blocks are free and which ones are allocated. If a bit
value is zero, its corresponding block is free. Otherwise, it is allocated. To find
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mK

a partition of at least mK bytes of free memory, we must find —— of
BlockSize

consecutive zeros in the bit-array.

7.2 Non-virtual Memory Management Policies

A non-virtual memory management policy tries to completely load the pro-
gram and related procedures and libraries onto main memory, before starting
its execution. It does not swap out the modules to secondary memory during
execution. Some non-virtual memory management policies adopt the initia-
tive that the loading of every independent module of the program, except for
the main program, can be delayed until it is first usage during execution. When
such a module is linked with the calling module(s) and is moved to main
memory, it will remain in main memory until the program is terminated. The
policies that are presented in section 7.1 are all non-virtual memory manage-
ment policies. However, they are considered out of date and obsolete policies
that are no longer used in contemporary operating systems. Their short intro-
duction in this chapter is just to show the trend of memory management evo-
lution. Other non-virtual memory management policies follow in this section.
Fundamental methodologies of these policies are still employed in some exist-
ing operating systems.

7.2.1 Segmentation Memory Management

Consider a simple program that reads an amount of data, processes it, and pro-
duces a result for every datum. The number of results is not known in advance
as the amount of data was not known. If instructions, data, and results are
interleaved in main memory so that they form one sequential array of informa-
tion, then, in order to keep all the results together, it is necessary to shift the
contents of all memory locations following the first results to get free spaces for
new results. This is a time consuming process that decreases system perform-
ance. Note that reserving enough storage to accommodate worst-case scenarios
is not an efficient solution. Segmentation is the solution to this problem. The
address space of a program is considered to be a collection of segments. We can
think of each segment as a linear array of bytes which can grow to a maximum
size. With this methodology, code segment, data segment, and procedure calls
stack and return addresses could each form a separate segment. A logical
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address is now composed of two parts: (1) the segment number and (2) the off-
set from the beginning of the segment. See Figure 7.2.

\ Program
Offset address
space
Segment 2
Segment n
Segment 1
Segment 3

Figure 7.2: The logical addresses as a two-dimensional array

The logical view of program addresses as a two dimensional array of bytes,
in that there is segment number for the first dimension and an offset for the
second dimension, has to be mapped into main memory, which is (usually) a
one dimensional array of bytes. The operating system makes use of a segment
table, which could be a simple one dimensional array of base addresses. The ith
entry of the array stores the start address of the ith segment. The implicit index
of the array serves as segment number. A better solution would be to have a
two dimensional array for the base addresses and their sizes. In every row of
the table, the base address of a segment and its size are stored. A logical address
is composed of two parts: the segment number and the offset. The system, that
is the combination of the hardware and operating system, has to convert every
logical address to its corresponding physical address. That is, it has to convert a
two-dimensional program address to a one dimensional main memory
address. To do so, the segment number will act as an index in a segment base-
table to find the segment’s base address. The offset is then added to this base to
produce the corresponding main memory address. The hardware usually pro-
vides a register to hold the start address of the segment-base table or Segment
Table Base Register (STBR). If the size of every row of the segment table is e
bytes, then

Content(Content(STBR) + ex (segment number) )+ offset

is the physical address corresponding to the logical address. It is worth men-
tioning that we have assumed that the index of the segment base-table starts
from zero.
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This computation has to be performed in the most efficient way, because,
for almost every address that is generated by the running process, this compu-
tation has to be performed. Therefore, a segment-base table is stored in a faster
memory than main memory. When the maximum possible number of seg-
ments is low, a set of hardware registers is used; otherwise a cache memory has
to be utilized. Segmentation methodology has many disadvantages. The pro-
grammer will become involved in memory management matters that should
be transparent. It is expected that the programmer should not care whether
main memory is one or two dimensional. Address translation, or calculating
the main memory address from the logical address, reduces the overall system
performance. There will still be both external and internal fragmentation.

7.2.2 Relocatable Partition Memory Management

Relocatable partition memory management is an extension of dynamic parti-
tion memory management. The difference is that process relocation is allowed
in this new policy. When a program is ready to be loaded, if there is no quali-
fied partition (or a free partition which is as large as the size of the program),
but the total size of all free partitions combined is as large as the size of pro-
gram, all processes are moved to one end of main memory. The program is
then loaded into the beginning (end) of the newly created partition. From
assembly language, we know that process relocation is only possible if address
references are computed with respect to a base address value. If a process was
stored in main memory starting from location L, then the base address of this
process would be L;. Every relocatable address reference is computed as L;+D,
where D could be an operand address or an instruction address or any other
relocatable address. The system is careful not to add L; to absolute addresses.
One example of an absolute address is a memory location that corresponds to
data or the status location of an input or output device. This location is fixed
for a given device. When a process is moved from location L; to location L,,
the base address of the process will become L, and future (relocatable) address
adjustment is made accordingly, i.e., L,+D. As in segmentation memory man-
agement, the base address of processes is kept in a table called the partition
base-table which can be similarly used to the segment base-table.

Memory is also broken into interleaved empty and full partitions with relo-
catable partition memory management. However, because of relocation, there
is possibly no external fragmentation. We may still talk about unusable mem-
ory. On the average, unusable memory is half the average size of programs.
The main disadvantage of this policy is the processing overhead due to process
relocation. For a gigantic contemporary main memory, moving all processes to
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one end of main memory takes an intolerable amount of time. Thus relocation
is usually done when it is absolutely necessary, that is when a program has to
be loaded and none of the partitions is large enough. By compressing allocated
partitions, a large enough free partition will be created. Also, when relocation
starts, it is better to move all allocated partitions to one end of main memory
in order to create one large single free partition. This way, there will be enough
free memory to accept many new programs without restarting the relocation
process soon.

Relocatable partition memory management is the most efficient policy
amongst non-virtual memory management policies, if its relocation overhead
is ignored. Since relocation overhead for contemporary memories is very high
this policy is not applicable to user main memory. However, it is an effective
policy for small memories of operating system data structures. For example,
this is often used for managing memory areas that are assigned to page tables
(see page memory management policy).

7.2.3 Page Memory Management

Relocatable partition memory management has the attractive property of hav-
ing no external fragmentation. Internal fragmentation is at the lowest possible
level, too. In terms of memory alone, relocatable partition memory offers the
highest possible utilization amongst non-virtual policies. Its major drawback
is the excessive processing overhead due to frequent relocation of programs.
Page memory management is another policy with advantages similar to relo-
catable partition memory management. It does not produce any external frag-
mentation either and the size of unusable main memory is often equal to that
of relocatable partition memory management.

Think of a program which has passed the primary steps of compile and link
and the executable code is ready to be loaded in main memory. To load the
program, or the executable code, it is chopped up, from the beginning, into
small equal sized pieces called page. The main memory is also divided into
holes of equal sizes with the size of every hole equal to the size of a page. These
holes are called page frames. The size of a page and, hence, a page frame is a
power of two kilobytes. The smallest page size is 20K bytes, or 1K bytes. Figure
7.3 shows a small model of a main memory that is composed of 60 page frames
and a program that has 12 pages. Pages of the program are numbered from 0 to
11 and page frames are numbered from 0 to 59. To save space, the main mem-
ory is depicted in a two dimensional model, but we know that the main mem-
ory is a one dimensional arrays of bytes. The frame number of the top left page
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frame is zero and consecutive integers are assigned to page frames from row

zero to the last row and in every row from left to right.

Page frame 0O _P
Page frame 6 _b

(a) Main memory

[ 4— Page 0

; Page 11

(b) A program

Figure 7.3: A main memory with 60 page frames and a program with 12 pages.

To load a program, we start from its beginning and pages are picked up
one by one. Every page can be loaded into any available page frame. Before
starting the loading process, we have to check whether there exists enough
available page frames or not. A simple operating system variable is used to
show the total number of available page frames at any moment. Every time
the computer is started (or restarted), this variable is set to the total number
of main memory page fames. With every page that is loaded in main memory,
this variable is decremented by one. For every page that is removed from main

memory (when a process terminates), the
variable is incremented by one. As every
page is loaded, its corresponding page
frame number is stored in a table called
the page table. Every page table entry is a
two-dimensional structure whose main
field is a page frame number. Other fields,
like protection, may be included depend-
ing on the specific memory management
used. Page number is used as an index into
this table. Every process has its own page
table. Figure 7.4 depicts the page table of a

Page no. Page frame no.

0
1
2
3

4

12

13

46

Figure 7.4: The page table of a
four-page program
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small program that is four pages long. As shown in the figure, program pages
are loaded in page frames 4, 12, 13, and 46, respectively.

An important aspect of page memory management is address translation.
To load a program into main memory using page memory management, no
address modification is done. Even
the address of the first executable
instruction is not changed. If, for
example, this logical address is zero,
or the first location of the executable
code, the program counter is set at
zero to start the execution of the pro-
gram. It is obvious that the chance of
page zero being loaded in page frame
zero is very low, if not zilch. The
actual location of this instruction
depends on the page frame number
where this page is loaded. The
process of calculating the main
memory address of a logical address
is called address translation.

Address translation is needed for
all instruction addresses and all
operand addresses that are not absolute. There is at least one address transla-
tion for every machine instruction. This is for the instruction’s address. The
translation is performed before the instruction is fetched. The total number of
address translations for every instruction is one plus the number of its non-
absolute memory operands. This discussion shows that address translation has
to be very fast, otherwise the instruction execution time will be high and over-
all program execution will be very slow. To fulfill this goal, address translation
has to be performed by hardware, whenever possible. The module that does
address translation is called Memory Management Unit (MMU). The input to
MMU is a logical address and its output is a physical address (or real address).
This address is then sent to the memory address register to read or write the
location. For the time being, let’s suppose that for the computer under consid-
eration, a logical address is 32 bits long. This means a program could be as
large as 232 bytes, or 4 Giga bytes. Also, suppose a page is 2K bytes. If we
assume there is an imaginary vertical line after the eleventh bit of a logical
address (counting bits from right to left), then Figure 7.5 shows a model for
the logical address.

A logical address is any address
which is generated by a running
program. This address could be the
address of an instruction or an operand.
The program expects to find its required
instruction or datum (for storing the
information) at the memory location
which is expressed by the logical
address.

A physical address, on the other
hand, corresponds to a logical address.
It is the actual main memory location
that is accessed to load (or store)
information. A physical address is not
necessarily the same as a logical
address.
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313029 1110 9 ... 210
| Page number | Byte within page |

Figure 7.5: A logical address broken into page number and offset

Every logical address from 0 to 2,047 can be represented by 11 bits. For such
an address, the left most 21 bits of the 32-bit logical address will be zero. From
2,048 to 4,095 the content of the left most 21 bits of the 32-bit logical address
is one and so on. Therefore, it is correct to interpret the left most 21 bits of a
logical address as the page number and the right most 11 bits of a logical
address as the offset (or byte within the page). When a page is loaded into a
page frame, since the order of bytes in the page do not change, the address
translation only affects the left most 21 bits of the logical address. As a matter
of fact, to translate a logical address to a physical address, it is only necessary to
replace the page number with its corresponding page frame number. Recall
that every process has its own page table which is filled when the correspon-
ding program is loaded. This data structure can be used within the MMU to
translate logical addresses to physical addresses. Figure 7.6 shows a simplified
model of a MMU.

| Page number | Offset | Logical address

v

A fast Offset is directly
memory copied from
module logical address to

physical address

| Page frame number | Offset |  Physical address

Figure 7.6: The model of a MMU

Details of the MMU design will be discussed later when we talk about page-
based virtual memory management. Page memory management (without vir-
tual memory) is no longer used very often. Instead, basic ideas serve as a
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platform to design a popular virtual memory management policy. We will dis-
cuss many problems not presented here when we talk about paged-based vir-
tual memory management.

Page memory management is as efficient as relocatable partition memory
management with respect to memory utilization. It does not have the disad-
vantage of periodically compressing main memory and thus consuming heaps
of processing time. Instead, page memory management has the disadvantage
of adding per instruction overhead due to address translation. Also, another
disadvantage of page memory management is the space that is required to
hold the page tables of all processes in the system. Since virtual memory is not
available for page memory management, all page tables are kept in the main
memory. Page tables are data structures of the operating system itself and are
kept within the address space of the operating system. A program the size of 4
Giga bytes has a page table the length of:

4Gi
PageTableLength= % =2Mega

If every entry of the table is 4 bytes long, 8 Mega bytes is needed for the page
table of a program the size of 4 Giga bytes. It is not advisory to reserve the
maximum size page table for small processes. Rather, it is better to reserve as
much space as is exactly needed by every process. Since we only need space for
in-memory programs, the sum of all page tables of all processes (in-memory
programs) will require 8 Mega bytes of memory, for a main memory the size of
4 Giga bytes and page table entries of 4 bytes long. Management of this 8Mega
bytes memory for all page tables (that might be hundreds) is a difficult mem-
ory management problem, itself. This area could be managed using, for exam-
ple, relocatable partition memory management policy.

Although there is no external fragmentation with paged memory manage-
ment, we can discuss unusable memory. The average unusable memory is one
half the size of the average program. Also, on the average, per every process,
one half of a page is lost due to internal fragmentation. The page table is a con-
sequence of using the page memory management policy and not what the pro-
gram needs it. Therefore, it is also a kind of memory overhead.

Optimal page size

A large page size reduces the size of a page table but it increases the size of
internal fragmentation. On the other hand, a small page size increases the size
of the page table but decreases internal fragmentation. Based on unused mem-
ory, internal fragmentation and page table size, an optimal page size could be
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selected. To do so, let’s suppose the page size is p bytes, program size is r bytes,
and page table entry length is e bytes. Total memory waste per process due to
internal fragmentation and page table space is:

MemoryWaste =r/2+ p/2+(r/ p)*e. (7.1)

Recall that, memory waste, due to inadequate memory space to load the next pro-
gram, does not depend on page size and is equal to r/2. Thus, it does not affect
page size. If we take the derivative of the equation (7.1), with p as the only variable
parameter, and make it equal to zero, the optimal value of p is calculated from:

re
1/2--5=0.
Or,
p=~+2re (7.2)
7.3 Virtual Memory

Previous memory management policies all have disadvantages. Because of
this, they are seldom used as a general policy in contemporary operating sys-
tems. These disadvantages are:

(1) There is some portion of the main memory that is unused in the
form of external
fragmentation (none
of the free partitions
are large enough to
hold a process), or
the total size of all
free page frames is
short of holding a
complete program.

Some primitive techniques like memory
overlaying were able to run programs that are
larger than physical memory. The memory
overlaying technique was based on having
different memory maps for different phases of
a program execution. For example, during the
Phase one of a program execution, we may
use main memory to store the program code
and array A. During Phase two we use the
(2) The maximum size | main memory to store the program code and

of every program | array B. The sizes of arrays A and B need not

and its data is lim- | pe equal. In this case; we will have two

ited to the size of | memory overlays. In Phase two of program
execution, array B replaces array A in main
memory.
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user main memory. Longer programs are never executed. See side
box.

(3) The belief that we could still increase the average number of live
processes and improve the overall system efficiency, if better main
memory management policies are used.

(4) When a program comes into main memory, it remains there until
termination even though part of the program, and/or data and
results, might have been unused for a long time. The space that is
occupied by these parts could have been used to load new programs.

The solution to all aforementioned deficiencies is virtual memory.

7.4 Page-Based Virtual Memory Management

All basic ideas that were discussed for page memory management are applicable
to page-based virtual memory management. Every program is logically sliced
into equal size pieces called pages (no physical action is taken). The main mem-
ory is also logically broken into equal size pieces called page frames. The size of
page frame and page are equal. Any acceptable page size (and, hence, page
frame size) is a power of two kilobytes. Any page of a process can be loaded into
any available page frame of main memory. Address translation in page-based
virtual memory management is similar to that in page memory management,
of which we will provide more details in this section. The only major difference
is in loading a program into main memory. In page-based virtual memory
management, for a program to start running it is not necessary to completely
load the program into main memory, while it is necessary in page memory
management. This and the next section focus on methodologies and techniques
for efficient exploitation of both main memory and secondary memory in
order to implement the virtual aspect of memory management.

Page-based memory management is customarily called demand page mem-
ory management. The reason is that, in the early days, a page of the process
was only brought to main memory if there was a request for it. In this system,
the first executable page, or the first page that encompasses the first executable
instruction of the process, is identified by the assembler or compiler and as
passed forward for execution. The loader receives this information from the
linker and the linker gets it from the compiler (or the assembler or the inter-
preter). When the execution of the program starts, every instruction that is
executed may produce new logical addresses for the operands and a new
address for the next instruction to be executed. Any new logical address (or, as
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we can now say, virtual address) may be part of a page that is in main memory,
in which case, a new page is not needed. Or, the new logical address may be
part of a page that is not in main memory, thus, considered to be a demand for
bringing a new page into main memory. In modern operating systems, some
pages may be pre-fetched even though there have not been a request for them,
yet. Therefore, as the term demand-page memory management does not reflect
the state of the art we use page-based virtual memory, instead.

When a page is in main memory, it will remain in main memory until a
page removal algorithm decides to remove it. There are many page removal
algorithms, each with its advantages and disadvantages. These algorithms will
be discussed in the next section.

For virtual memory models, main memory is considered to be a temporary
place for a process or parts of a process. A page that is brought into main mem-
ory may be changed. At a later time, the system may decide to remove it. In
order not to lose the changes made, the page has to be copied to its permanent
place on the disk. Therefore, a disk is where the complete image of a process is
kept and the main memory acts as a temporary location. A page on a disk and
its copy in main memory need not be the same at all times; the copy reflects
the latest changes in the page content. Since the copy may be removed before
the program is terminated, main memory cannot act as the process main base.
In non-virtual memory, the original version of the program is on a secondary
storage. However, as soon as it is loaded into main memory, all changes to
instructions and/or data are kept in the main memory until the process is ter-
minated. In both cases, a program may produce results that are written on files
or it may read input data from files.

There is much interaction between main memory and secondary memory
where the permanent place of the process exists due to frequent loading and
unloading of process pages. If the secondary memory, which holds the exe-
cutable program, is slow, the turnaround time of the process will increase
tremendously. Compact discs, DVDs, and floppy diskettes are types of slow
secondary storage. A program that is stored on one of these media has to be
moved to a faster secondary storage, like a hard disk, before starting its execu-
tion. A special area, called the virtual memory area, located on one of the
fastest secondary storages is thus reserved as the permanent copy of executable
programs for the duration of their execution. Any program on a slow media,
like a diskette, is copied to this area first and then a process is created for this
program to be executed. A program which is in one of the fastest secondary
storages need not be copied to the virtual area. However, but the decision to
make a copy of it or not depends on the specific operating system.
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In theory, with a page-based virtual memory, a very small main memory is
adequate to run a very large program and to implement a multiprogramming
technique. In fact, the size of main memory could be as small as a few page
frames. When the system wants to execute an instruction the instruction and
its operands have to be present in main memory. Otherwise, a page fault
occurs and the process is suspended until the page is brought to main memory.
If more than one page is needed, that is not present in main memory, more
than one successive page fault will occur for that instruction. Every time a page
fault occurs, the process is suspended and if the system is multi-programmed a
new process may be selected to use the CPU. The state of the suspended
process is changed to blocked because it has to wait for the I/O operation to
execute the instruction in order to bring the page to main memory. An instruc-
tion that has k memory operands may need as many as k+I pages if the
instruction and its operands are all on different pages. It may even need more
than that if the instruction, and/or operand(s) cross page boundaries.
Therefore, for every instruction execution, there will be at least zero and at the
most k+1 page faults, where k is the number of memory operands of the
instruction, assuming that neither the instruction nor any of its operands cross
a page boundary. Considering even one page fault per every instruction and
the fact that, for every page fault, the process has to be suspended and wait for
the page to be brought to main memory, we realize that the system is domi-
nated by overhead time and rendered practically inefficient.

If the processor spends most of its time suspending and resuming processes
due to frequent page faults, then a thrashing condition occurs. Thrashing is a
situation that must be avoided. The chance of thrashing is higher when main
memory is not large enough for the number of processes, or active programs.
The other extreme is when the main memory is large enough to hold all
processes all the time. In such a case, when all pages of a process are loaded
into main memory, no further page fault will take place for the process as all
page references are successful.

A reference to a logical address which has already been loaded into main
memory is referred to as page success. On the other hand, if a reference to a
logical address is made, and the corresponding page is not in main memory, a
page fault occurs.

Page-based virtual memory management does not work well for processes
that are designed as a single module, or very few modules, having many run-
time long distance jumps. Such processes refer to almost all their pages within
a short period of time. Modern programs are written either in a structured,
modular manner or by using object oriented tools. In either case, when a block
or a module of a program is being executed, the program refers to a small
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number of pages. This phenomenon is called locality of reference and suggests
that not all pages of a process are to be loaded in main memory at all times.
The process will keep on working within a small part of the program, with its
data and results being limited to a few pages. Many modules and data struc-
tures of a large process are never used in one execution of a program. Error
handling and exception processing modules, along with their corresponding
data structures, belong to this category. The execution of a module may
exclude the execution of others. If a module is called in the then clause of a if
then else structure, it is unlikely to appear in the else clause of the structure and
vice versa. Similar situations arise for different options of the case structure.
On the other hand, there is no reason to keep portions of the program if it will
not be referred to in main memory for a long period of time in the future.
These are rationales for a virtual memory management policy.

To make room in main memory for an incoming page, three fundamental
techniques are available: (1) swap out a page of a process, (2) swap out a seg-
ment of a process, and (3) swap out a complete process. Some operating sys-
tem designers employ two or all three of these techniques to design a memory
management algorithm. In this section, we will concentrate on algorithms
with only page swapping possibilities. Later, we will discuss the UNIX virtual
memory management case study which exploits both page swapping and
process swapping.

Upon creation of a process, the logical address of the process’ first exe-
cutable instruction which is passed from the source to the compiler or assem-
bler and from there to the linker, is stored in the location counter field of the
process control block. This is the most important piece of data to start the exe-
cution of a program.

To start or restart the execution of a process, the content of the process con-
trol block’s location counter is transferred to the program counter register.
This is assumed to be a logical address which has to be translated to a physical
address by the Memory Management Unit (MMU), similar to what is done for
page memory management. During the translation, if the page is not present
in main memory, a page fault interrupt is issued. In response to this interrupt,
the process, for which the interrupt is issued, is suspended and its state is
changed to “blocked.” The process has to wait until the page is moved to main
memory and its page table and other data structures are updated. Then, the
state of the process will change to “ready.” The process must then wait again for
its turn to be picked for execution resumption. As compared to a page table of
a page memory management model, every page table entry in page-based vir-
tual memory management has a new field called absent/present. This field
could be a bit with value of zero, meaning that the page is absent from main
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memory. Value one would mean that the page is present in main memory. In
order to support page removal algorithms that are discussed in the next sec-
tion, other fields may be added to every entry of a page table.

Another useful data structure for page-based virtual memory is the Page
Frame Table (PFT), or the Inverted page Table (IPT), which represents the sta-
tus of memory page frames. Every entry of this table shows whether the corre-
sponding page frame is available, that is free, or occupied. If it is occupied,
which page of what process is stored in the page frame is indicated. For exam-
ple, row number i (i=0, 1, 2,..., n-1) of this table represents the state of the
page frame number i of main memory. If this page frame is occupied by page
number j of process number k, then row i of the table will have the informa-
tion: k, j, “occupied”. The field which represents whether or not the page frame
is occupied can be implemented by one bit and is not a character field. The
page frame number serves as the index to the table. This index starts from zero
and continues up to the number of the page frames of the main memory
minus one. Depending on the page removal algorithm that is used, for every
entry of page frame table there can be other fields. One such field is the pro-
tection field. This is a control field that allows some processes to access the
information stored in the corresponding page frame of main memory while
forbidding other processes from accessing it. The protection field can also
allow some kinds of access (like read) and restrict some kinds (like write). The
actual structure of the IPT will be explained when we talk about page removal
algorithms. There is only one inverted page table for the whole system and its
size is fixed. Recall that there is one page table for every live program, or
process. The number of page tables can grow very high when the degree of
multiprogramming is very high.

With a main memory the size of say 4 Giga byes and a page frame size of 2K,
then

4Giga
number of page frame table rows = K =2Mega .

If every row of the inverted page table is 4 bytes, then the IPT will occupy 8
Mega bytes of main memory. An inverted page table is used to implement
some page removal algorithms. It could also be used to find out what page
frames of main memory are not occupied, or free. This information helps in
loading new pages into main memory. It also assists in removing all pages of a
process when the process terminates. Without IPT, free page frames are usually
threaded together to form a linked list and other information is extracted from
the process page tables.
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7.4.1 Address Translation

There are three basic schemes for address translation. The first one relies on
page tables in the main memory, using the page table, or parts of the page
table, of the running process in the core of the Memory Management Unit
(MMU). The second method relies on an inverted page table in the main
memory. Utilizing inverted page table, or parts of inverted page table, in the
core of this module. The last method relies on page tables in the main memory.
However, this method takes advantage of a structure similar to the inverted
page table within the MMU.

Address translation using page table

The address translation method in page-based virtual memory management is
very much similar to the address translation method in page memory manage-
ment. The difference arises when a logical address is not in main memory. The
non-existence of the logical address has to be recognized by the MMU module
and an interrupt issued. See Figure 7.7.

| Page number | Offset |
* Logical address

Page map table
of the running
process with
present/absent
field in each

entry

Offset is directly
copied from
logical address to
physical address

Interrup

\ 4

Page frame number | Offset |

Physical address

Figure 7.7: The model of MMU using the page table of the running process
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As the MMU is part of the
CPU, it has to be reasonably
small. Based on Figure 7.7,
the MMU memory could
grow so large that it no longer
fits the specification of the
CPU. The solution is to have
an actual page table in main
memory and utilize a cache
memory within the MMU. In
this case, the main memory
acts as a virtual memory for
the MMU cache. Although a
specific cache memory man-
agement method will be dis-
cussed later, usual virtual

The cache hit ratio is defined as the number
of successful cache references divided by the
total number of successful and unsuccessful
cache references. a unsuccessful cache
reference occurs when the system tries to
access the cache but the corresponding
address is not in the cache. The system will then
transfer (the content of) that address, plus
adjacent addresses, to the cache and then a
secondary reference is issued. For the purpose
of the cache hit ratio calculation, secondary
access is neither counted as a successful nor
an unsuccessful reference. The cache hit ratio is
only calculated based on primary references.

The cache miss ratio is defined as the
number of successful (primary) cache

memory management meth-
ods could also be used for
cache memory management.
One characteristic of cache
memory is its efficient way of finding out whether a main memory address, or
actually its content, is in cache or not. Therefore, we can say cache memory is a
fast read/write random access memory having the above mentioned quality.

The cache size is usually smaller than the size of the running process’s page
table. However, it should not be so small that the hit ratio becomes very low. It
is worth mentioning that the cache hit ratio depends not only on cache size
and page table length, but also on the control structure of the program. A pro-
gram with frequent run-time jumps is likely to refer to a variety of pages and,
as a consequence, refer to a variety of page table entries. Therefore, new page
table entries have to be frequently cached. As a result, the cache miss ratio will
be high and the hit ratio low.

references divided by the total number of
successful and unsuccessful (primary) cache
references.

Address translation using inverted page table

The type of memory that is used within MMU to translate a virtual address to
its equivalent real address is associative memory. An associative memory, or
content-addressable memory, is a special purpose memory with the ability of
read, write and simultaneous, or parallel, comparison of a given datum with the
content of all its words. It is the latter capability that makes associate memory
advantageous for address translation. An associative memory that is used in the



context of address translation is
called a Translation Lookaside
Buffer (TLB). Due to its simul-
taneous comparison capability,
a content-addressable memory
has many more electronic ele-
ments than a RAM memory or a
cache memory of the same size.
Since an associative memory has
to be part of every processor, we
are unable to use one that is as
large as the whole inverted page
table. Therefore, only limited
parts of an inverted page table
are kept in TLB, at any given
time. One way to cut the effec-
tive size of inverted page table is
to load its rows belonging to the
currently  running  process.
When translating a virtual
address, if the corresponding
row of the currently running
process’ page numbers is in TLB,
the parallel comparison mecha-
nism finds the actual page frame
number. This is then concate-
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A content addressable memory is a very
fast hardware device for information
searching. It can be used in database
computers to accelerate information retrieval.
The memory address register, the memory
data register, the comparand register, which
is filled with the information that we would like
to find, and a mask register are this memory’s
interface to the external world. With the mask
register, we can exclude some parts of each
word of memory from participating in the
parallel comparison of the information that we
are looking for. For example, we can search
for all four-byte data that starts with the
character “a” With this query, the first eight
bits of every 32-bit word will participate in the
comparisons. There may be more than one
word that matches the query. Therefore, an
array of bits (one per every word) is
embedded to keep the results of each
comparison. For our applications, at the most,
one word can have the data that we are
looking for. This is because each page of
every program is, at the most, in one page
frame of main memory.

nated with the offset field of the virtual address to produce the physical address.
If the corresponding address of the virtual address’ page number is not in the
TLB, the tuple (process, page#) is looked for in the inverted page table in main
memory. A hash table is used to reduce the search time in IPT. A TLB miss will
cause the system to load the corresponding row of the IPT into the TLB, for
future usage. This method does not need the page table data structure for
address translation.

Address translation using hybrid structures

Perhaps the most common address translation method utilizes page tables that
are kept in the main memory, which can even be swapped out, plus a structure
similar to an inverted page table, which is produced on the fly, within MMU.
This IPT-like structure inside the MMU is produced from the running
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process’s page table. Compared to an actual inverted page table, it lacks the
process ID, or number, in every entry. If the row number 7 of a page table has j
as its corresponding page frame number, then a row of the TLB within the
MMU can be formed using the tuple (3, j). Other necessary fields are directly
copied from the page table. Figure 7.8 shows a sample format of such a TLB’s
entries.

Virtual page# | Page frame#| Protection | Free/Allocated Other fields

Figure 7.8: Translation Lookaside buffer format

To translate a logical address, the virtual page number is first looked for in
the TLB. If it is present, the page frame number is retrieved and is concatenated
with the offset value of the logical address in order to produce the physical
address. If the page frame number is not found, a direct page table lookup is
performed and the corresponding page frame is taken from the page table of
the currently running process. At the same time, from the page table entry that
has just been referred to and perhaps some neighboring entries, a TLB entry is
built and moved to the TLB. If there are not enough free entries for newly arriv-
ing items, a replacement algorithm decides which entries to reallocate. It is pos-
sible that a page table may not be completely present in main memory. This
may occur when the system also allows the application of virtual memory tech-
niques to page tables. A complete discussion on virtual memory page tables will
later be given later when we talk about multilevel page tables. Similar methods
are possible in the single-level page tables that have been presented so far.

7.4.2 Page Removal Algorithms

The philosophy behind virtual memory is to eliminate the size of main mem-
ory as a restricting parameter for the number of processes in the system. With
virtual memory, we are able to have more processes in the system than if we
were to completely load every process in main memory. Page-based virtual
memory is one of the methods for the realization of the virtual memory phi-
losophy. With virtual memory;, it is possible for a running process to refer to an
address within its address space even though this address is not in main mem-
ory and there is also no free page frame available in main memory. What is
usually done in such circumstances is to evacuate one of the page frames
which are currently occupied by one of the processes in the system. This
process is called page removal because we are actually removing a page from
that page frame to make room for a new page. Some page removal algorithms
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remove pages even before the appearance of an incoming page which has no
place to sit. These algorithms want to ensure that most of the time there is a
page frame for every page coming to main memory. Page swapping and page
replacement are other names for page removal. These names refer to the two
actions of removing a page and loading a new page into the evacuated page
frame. It is the page removal that requires an algorithm. We will discuss these
algorithms in the rest of this section.

Before discussing page removal algorithms, some essential concepts are
defined as follows. Each of these concepts is used in one or more page removal
algorithms.

Working set

The set of pages referred to in the last At CPU time of a process is called the
working set of a process. The working set can be expressed in terms of the
number of pages or in terms of the total storage size of all pages in the set. For
example, if a process’ working set is calculated as, say, six pages and page size is
2K, then its working set is, obviously, 12K. At is a virtual time which differs
from a real time span because the system is running in a multiprogramming
mode and the CPU time is shared among many processes. The working set is
an engineering problem that involves careful selection (by proper selection of
At) to reduce overall page faults. Therefore, the exact length of At is not
defined. Sometimes, At is expressed in terms of the number of memory refer-
ences. If so, the working set of a process is defined as the set of pages the
process has referred to in the last » memory accesses. Memory references act as
a window that slides forward as the program refers to new pages. n is the
widow size. Once again, the exact value of # is not defined and is left as imple-
mentation dependent. The working set of a process may vary for different
intervals of length At, but it is a non-decreasing function meaning that, as At
increases, the working set either stays the same or increases. The working set
concept can be used is assigning a certain number of page frames to every
process. A process with a higher working set is assigned a higher number of
page frames than a process with a lower working set.

Without working set information, assignments of page frames to processes
are of a fixed allocation nature. Every process is given a fixed number of page
frames at the time it is created. The process has to execute using no more than
its allocated frames in main memory. If a page fault occurs, two situations are
possible. On the other hand, the process may have not used up its allocated
frames in which case the system will provide a new frame for the process. The
process may have used up its allocated frames, in which case, a resident page of
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the process has to be removed and the coming page take its place. If the work-
ing set is considered a lower bound of the memory size that a process can use,
the system guarantees that this lower bound is observed at all times. However,
main memory is not reserved for the process. The process’ lower bound main
memory acts as a credit which may or may not be used by the process. The
unused credit is not put aside for the process. Rather, the system guarantees
that whenever a process needs more memory space, it will provide it even if the
main memory has to be forcefully taken away from other processes.

A variable allocation method is devised using the working set information
of processes. At first, when the process is created, there is no information about
its working set, thus, a fixed number of frames is allocated to the process. As
information is gathered, the process’ share of main memory is adjusted to
reflect this information.

Per process vs. overall page replacement

If page frame allocation is fixed, when a process has used up its quota a new
arriving page has to replace a previously loaded page from the same process.
This method is called per process page replacement, or local page replace-
ment. On the other hand, if the page to be replaced is chosen amongst all pages
in the main memory, the method is called overall page replacement, or global
page replacement.

It is simpler to implement the per process page replacement method than
the overall page replacement method. The overhead is also lower for per
process page replacement. On the other hand, overall page replacement pro-
duces less page faults than per process page replacement.

Page locking

There are many circumstances that require locking a page into main memory
when it is loaded, and forbidding its removal until the process is terminated.
When a page fault occurs, the page fault handler will take care of bringing the
needed page to main memory. If parts of the page fault handler are swapped
out of main memory, a new page fault will occur during the execution of the
handler which will cause re-entry into the handler. An infinite re-entry cycle
will be formed and the needed page will not be loaded into main memory. To
prevent this cycle, the pages occupied by the page fault handler are locked into
main memory and are never removed. Another scenario is for I/O processors
that lack a memory management unit. In other words, they do not have the
circuitry for address translation. Physical addresses are used for the source
and/or the destination of I/O operations that are performed by this kind of
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processor. 1/O processors transfer data on the behalf of processes, thus, the
source and/or destination of data transfer is one or more pages of a process.
These pages have to be locked into main memory until the I/O operation is
complete. Otherwise, the data will be transferred from or to a place which does
not belong to the address space of the correct process.

It is desirable to lock into main memory pages that are very frequently used.
Usually, instruction pages of a short program that manipulate a large set of
data are heavily used. A matrix multiplication program that is used to multiply
large matrices and a program to numerically solve a set of linear equations are
examples of such programs. A heavily used routine in an application program
has a similar property. As most operating system kernel routines are very heav-
ily used, most pages of the kernel are locked into main memory.

What to do with removed pages?

Recall that a program, as a whole, is kept in secondary storage and only tem-
porary copies of some pages are brought to main memory. A page in main
memory may contain instructions and/or data, either of which could change
while in main memory. A page which has changed is no longer an exact copy of
the corresponding page in secondary storage. Therefore, if it is removed from
main memory, such a page has to be copied back to its original place in sec-
ondary storage. Otherwise some execution results will not be reflected in the
original transcript of the program. A page that has not been modified since
coming to main memory need not be copied back to its original place. Due to
the extra overhead and transfer time, we prefer not to copy a page back to its
original place, if it has not changed.

To distinguish between modified and non-modified pages a flag bit called a
modified bit, represented by M (or C for a changed bit) is used. This is added
to every entry of every page table, every entry of an inverted page table, or even
every physical memory page frame, depending on the hardware architecture of
the computer and the removal algorithm used. The M bit of a page is set when-
ever something is stored in the corresponding page frame. It is initialized to
zero when the page is brought to main memory from secondary memory. A
page whose M bit is set to one is copied back to its original place whenever it is
removed from main memory. If the M bit is zero, this page will not be copied.

First-In-First-Out policy

One of the simplest page removal methods is the First-In-First-Out (FIFO)
method. As the name suggests, when we want to remove a page from main
memory, the page that has been in main memory for the longest duration of
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time is removed. A time stamp is attached to each page whenever the page is
loaded in main memory. The time stamp can either represent the exact time
that the page was loaded or a logical time. The logical time does not represent
an exact physical time. Rather, it is a number that is designed to show the order
in which pages are loaded. To remove a page, the page with lowest time stamp
is chosen. From a practical view point, it is not possible to search all page
frames for the one with the lowest time stamp as it would take an unacceptable
amount of time. However, a doubly-linked list with two pointers pointing to
the front and the rear of the list, respectively, is a practical data structure for
implementing FIFO method. As a page is loaded into main memory, a node
for the list is build with some of the page information (for example, the page’s
corresponding page frame number). The node is then added to the rear of the
list. To remove a page, the page pointed by the front of the list is chosen. This
node is then deleted from the list and the front pointer is updated. To prevent
too many data structures, the list can be built within the inverted page table
and even within the page tables. The fields comprising the structure of the
node are added to the page table or inverted page table’s entries. The pointers
to the front and the rear of the list are then kept as new variables of the mem-
ory management algorithm. One disadvantage is extra space that is needed for
the double-linked list to practically implement the FIFO algorithm is one of its
disadvantages. Another FIFO algorithm disadvantage is that a newly removed
page might be needed in the near future. In other words, there is no reason to
think a page will not be referred to in the near future.

A major disadvantage of
the FIFO algorithm is its
Belady’s anomaly. For any
page trace, a rational page
removal algorithm does not
produce more page faults, if
the number of memory page
frames increases. However, an
algorithm exhibits abnormal
behavior if there exists a page
trace (or page reference
string) for which the algo-
rithm produces more page
faults if the number of mem-
ory page frames is increased.
the algorithm produces more
page faults. This anomaly is called Belady’s anomaly, or, in the case of FIFO,

A page trace or page reference string is an
ordered set of page numbers that is generated
when a program is executed (or a set of
programs are executed in a multiprogramming
and/or multiprocessing fashion). As the
execution of program(s) proceeds, this string of
page numbers is dynamically generated. For
the purpose of showing the behavior of different
page replacement algorithms, we have no
choice but to assume the page trace is known
in advance. Except for a theoretical algorithm
called optimal, all page replacement algorithms
studied in this chapter make their page removal
decision based on the set of pages that have
been references up to this time.
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FIFO anomaly. An example of a page trace is shown in Figure 7.9. Part (a) of
the figure represents the performance of FIFO for a three-page frame memory.
The first row of each table is the page trace. The next three lines represent three
page frames of main memory, one for every page frame. Each column shows
an instant of main memory. In every instant, the requested page is on top of
the column and next three items are pages occupying three page frames, with
the older pages closer to the bottom of the column. The last item shows
whether the required page was already in main memory or not. A plus (+) sign
represents a hit, meaning the required page was in main memory, while a
minus (-) sign indicates a miss. This is a simple graphic representation of
FIFO’s behavior. Note that, in reality, pages in main memory do not move
from one page frame to another. In this figure, H represents the number of hits
and M represents the number of misses, h indicates hit ratio (the number of
hits divided by the number of pages in the page trace), and m shows the miss
ratio, that is, the number of misses divided by the number of pages in the page
trace.

Pagetrace |1 |2 |3 (4(1|2|5|1|2|3|4|5
PageframeO |1 |2 |3 |4 |1 |2 |5|5(5(3(|4|4
Page frame 1 1123 (4(1]2]2]2]5]|3]|3
Page frame 2 112|341 ]1|1[2]5]5

Hit? S I N BN BN R I N S

(a) FIFO behavior with three page frames, H=3, M=9, h=3/12, and m=9/12.

Pagetrace (1|2 (3|4 |1|2(5]1(2|3[4]|5
PageframeO | 1 [2 (3|4 |4 |4 |5|1|2|3|4]|5
Page frame 1 1{2|3(3(3|4|5(1]2]3]|4
Page frame 2 11221234 (5]1]2]3
Page frame 3 1111234 |5]1]2

Hit? S R N B N B 3 IR IR R R R

(b) FIFO behavior with four page frames, H=2, M=10, h=2/12, and m=10/12.

Figure 7.9: A sample page trace that shows FIFO anomaly
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An algorithm not having Belady’s anomaly is said to have stack property. In
other words, for such an algorithm there does not exists a page trace for which
if the number of page frames is increased then the number of page faults is also
increased. FIFO does not have stack property.

Clock policy

This algorithm makes use of the reference bit, R. The R bit shows whether or
not a successful reference was made to the corresponding page after the bit was
reset. For the clock algorithm, when a page is first moved to main memory, its
reference bit is set to one. It may seem unnecessary to set the reference bit to
one when a page is moved to main memory, as any successful reference to the
page in main memory will automatically set the reference bit to one. However,
if the reference bit is not set, it is possible for a page that has just moved to
main memory to be removed before being used. Every page (or page frame,
depending on the implementation) has a reference bit of its own. The clock
algorithm assumes that all pages in main memory form a circle and a pointer,
similar to a clock hand, points to one of the pages. To remove a page, the algo-
rithm examines the page that the pointer is pointing to. If its reference bit is
one then the reference bit is reset to zero and the pointer moves clockwise to
the next page. If the reference bit is zero, the page is removed from main mem-
ory, the corresponding page frame is chosen to load the incoming page and the
pointer is moved to the next page. A reference bit with a value of one means
that either the page has recently moved to main memory or a successful refer-
ence has been made to the page as the page reference bit was reset by the algo-
rithm. When a page has just been loaded to main memory;, its R bit is set to one
to prevent its removal before use. In the worst case, when all reference bits are
one, the pointer will make a complete cycle setting all reference bits to zero,
stopping at the point where it started. The corresponding page is then chosen
for removal. The clock algorithm scans all pages in a circular fashion and
leaves pages whose reference bits are one to stay in main memory for the next
round. The clock algorithm favors pages that are recently referenced and
removes the first encountered page whose R bit equal to zero.

Second Chance policy

Another page removal algorithm which uses the reference bit, R, in its core
decision making is the second chance algorithm. It is generally similar to the
FIFO algorithm, with the exception of the candidate page for removed whose
R bit is one. In this case, the page is not removed and both its timer and R bit
are reset to zero. Afterwards, the next candidate is looked for. In the worst case,
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when the reference bit of all pages is one, the algorithm will make a complete
cycle, examining all pages, setting all reference bits to zero, resetting all timers
to zero and stopping at the point where it started. The first page is then chosen
for removal. In this case, the second chance algorithm acts like a simple FIFO
algorithm, in that it degenerates into FIFO. As discussed earlier, working with
timers is not practical. A more practical approach to the design of a second
chance algorithm is to make use of a double-linked list similar to what was dis-
cussed for the FIFO algorithm. If the R bit of the page to be removed (at the
front of the list) is one, then the page is not removed. Instead, its R bit is reset
to zero. With the page itself, being removed from the front of the list and
inserted at the rear of the list. Otherwise, the algorithm works like FIFO. Figure
7.10 shows a graphic example of a second chance algorithm. In this figure, the
subscript next to page number is the R bit.

Pagetrace |4 |0 |2 | 3 0|4 312 4
Page frame O | 4; | Oy [ 21 [ 40| 00| 20|31 |31 | 00|41 |41]|30]21 |2
Page frame 1 4100121141001 2012013110010 411|301 30
Page frame 2 410,12 14010010, 1201311310014 |4

Hit? -l - -] - + | - + | - +

Figure 7.10: Second chance behavior with three page frame, H=3, M=6,
h=3/9, and m=6/9

Second chance and clock algorithms are conceptually the same. The differ-
ence is in implementation. In the former, we can assume a pointer is moving
(clockwise) from one node to the other in a circular list to find the proper page
to remove. In the latter, we can assume that a circular list is being moved
(clockwise) under a fixed pointer so that the pointer can find the proper page
to remove.

Least Recently Used policy

Imagine a timer that is attached to each page being transferred to main mem-
ory. The timer is reset to zero when either the page is first transferred to main
memory or whenever it is referred to in main memory. The timer keeps track
of the time length passed since it was last reset. To remove a page, the LRU
picks the page with the largest timer value. In other words, the page that has
not been referred to for the longest period of time is always removed.
Attaching an actual timer, or even a virtual timer, to every page and keeping it
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constantly updated is a time consuming process which makes the Least
Recently Used (LRU) algorithm impractical. A more efficient approach is to
organize a doubly-linked list with two pointers pointing to its front and rear,
similar to what was designed for the FIFO algorithm. The difference is that the
list must always be organized so that the page referred to later is closer to the
front of the list. The algorithm always removes the page pointed to by the front
pointer of the list. Even this approach requires an unacceptable amount of
overhead, thus making the LRU algorithm impractical. To keep the list in
order, every time a page is successfully referred to, the algorithm has to find the
page in the list. If the page is not already at the rear of the list, it is moved there.
Figure 7.11 shows the behavior of LRU for Figure 7.9’s page trace and a main
memory with three page frames.

Pagetrace |1|2(3(4|1|2|5|1|2|3|4]|5
PageframeO [ 1 |2 |3 (4|1 |2 |51 |2|3|4]|5
Page frame 1 112341251234
Page frame 2 1121341 |2]5]1(2]3

Hit? EI I e B B o G N N B

Figure 7.11: LRU with a main memory of three frames, H=3, M=9, h=3/12,
and m=9/12

LRU does not have Belady’s anomaly as LRU is a stack algorithm. To get
feeling for this, see Figure 7.12 for the LRU performance for Figure 7.11’s page
trace with a main memory of four page frames.

Pagetrace |1[(2|3(4|1(2|5(1(2|3|4|5
PageframeO |1 2|3 |41 |2 |5|1]|2]3|4]|5
Page frame 1 11234 (1(2(5(1|2]3]|4
Page frame 2 1123141251123
Page frame 3 1|12(3(4|4(4|5(|1]|2

Hit? EI BT N N I T R I O S I N

Figure 7.12: LRU behavior with four page frames, H=4, M=8, h=4/12, and
m=8/12
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By comparing Figures 7.11 and 7.12, we realize that their first three rows
(below the page trace) are exactly the same. It is clear that at any instant, the last
three pages referred to do not change whether or not there are three or four
frames in main memory both figures show exactly the same pages in the first
three rows. Actually, at any instant, the last m pages referred to (for example the
first three rows of the LRU visualization) do not change whether or not there
are m or n (n>m) frames in main memory. In the case of n page frames, there
are extra opportunities to encounter a page hit for the next page reference. This
is the reason why LRU has stack property. Because of LRU’s impracticality, on
the one hand, and its attractive stack property, on the other hand, many LRU-
approximate algorithms are developed. Not recently used, least frequently used,
most frequently used, not frequently used, and aging are all approximations to
the LRU algorithm.

Not Recently Used policy

This algorithm makes use of both referenced, R, and modified, M, bits. The
combination of these two bits makes up the following four classes:

Class 1: (0, 0): not referenced and not modified

Class 2: (0, 1): not referenced but modified

Class 3: (1, 0): referenced but not modified

Class 4: (1, 1): referenced and modified
Periodically, the R bit of all pages is reset to zero. The R bit of every page that
has been successfully accessed is set to one. When a page is moved to main
memory its M bit is reset to zero. This bit is set to one whenever something has
been stored in its corresponding page, as it is not worth it to check whether the
page was actually changed or not. A one value for R indicates that the corre-
sponding page has been successfully accessed in the current period. A one
value for M means that the page was “changed” since it was loaded into main
memory. Pages are always removed from the lowest numbered nonempty
class. When there are more than one candidate pages to remove, any one of the
candidates may be chosen. The R bit of a page that has just been moved to
main memory is set to one to prevent it from being removed before actually
being used.

This classification is made so that the R bit has a preference over the M bit.
The Not Recently Used (NRU) algorithm tries to leave the most recently
accessed pages in main memory.
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Least Frequently Used policy

In this policy, a counter field is added to every page table entry (or inverted
page table, depending on the memory management policy in effect.) When a
page is transferred to main memory, its counter is reset to zero. Every time a
page is referenced, its counter is incremented. To remove a page, the Least
Frequently Used (LFU) algorithm selects the page (or one of the pages) with
the smallest count. There are few disadvantages to this algorithm. A counter
may soon reach its limit where a further increment is not possible. If a page is
heavily used during a period of time, its counter will show a high number. This
will prevent the page from being removed even though it has not been used
lately. Due to the high overhead of choosing the page with the smallest count,
it is not possible to use this algorithm within a real operating system. A possi-
ble approximate LFU exists if a threshold is used to remove a page. The thresh-
old, in this case, is a value which is much less than the maximum counter
value. A pointer moves around the circular page list like a clock algorithm. The
first page whose counter value is less than the threshold is removed.

Most Frequently Used policy

This algorithm is the exact opposite of the LFU algorithm. Most Frequently
Used (MFU) selects the page with the largest count for removal. The rationale
for this approach is the likelihood that pages with smaller counts have been
brought in recently and will, therefore, be needed in the future.

Not Frequently Used policy

Counters are often implemented in software. With this kind of counter, it is
very time consuming to count the exact number of times every page in main
memory was successfully accessed. A more relaxed approach is to count the
number of intervals in which every page in main memory was successfully
accessed. The interval length is implementation dependent. This interval is
called the reference counter update interval. At the beginning of every refer-
ence counter update interval, which is announced by an interval timer inter-
rupt, the R bit of every page in main memory is added to its corresponding
counter and the R bit is reset to zero. If the R bit of a page is one, it means that
the page was successfully accesses in the interval. The number of times the
page was successfully accessed within the interval does not matter. To remove a
page, the Not Frequently Used (NFU) algorithm selects the page (or one of the
pages) with the smallest count. Like least frequently used algorithm, NFU does
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not forget the history of references to pages. This is a disadvantage that is erad-
icated in the aging algorithm.

Aging policy

The fundamental requirements of the aging algorithm are similar to the NFU
algorithm. Aging utilizes the R bit and a counter for every page, plus an inter-
rupting interval timer for reference-count updates. Also, to remove a page, the
aging algorithm selects the page (or one of the pages) with the smallest count.
Instead of adding all R bits to their corresponding counter, at the beginning of
every interval, the aging algorithm shifts every bit to its corresponding
counter. The shift moves all the bits of the counter one place to the right and
the corresponding R bit is inserted into the leftmost bit of the counter. The
rightmost bit of the counter is lost in every shift. If counters are # bits long, the
history of references to pages are kept only for #n intervals. Consider two
counter values: 0100 and 0010. Both counters show that their corresponding
pages have been successfully accessed one time (to be correct, in one interval)
during the last four intervals. However, the decimal equivalence of 0100 is four
while the decimal value of 0010 is two. In other words, the value of the first
counter is larger that the value of the second counter. One more point is that
the page corresponding to the first counter was referenced later than the page
corresponding to the second counter. The page whose counter value is smaller
has a higher possibility to be removed from main memory. The conclusion is
that the algorithm favors later references. Figure 7.13 shows how the aging
algorithm works for a given page trace and a main memory with three frames.
It is assumed that for every three memory references, the clock will interrupt
to perform “counters” to update operations. In this figure, subscripts to page
numbers are their R value and the binary number beneath the page numbers
are their corresponding counters. Every counter is four bits long. The disad-
vantage of aging is that a newly loaded page may be removed before its corre-
sponding counter becoming nonzero.
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Pagetrace | 2 | 3 | 2 413 |4 5112 3|5
2l 21 21 20 20 20 20 20 5l 1 1 2l 20 20 20

Page frame 1
0000 | 0000 [ 0000 | 1000 | 1000 | 1000 | 1000 | 0100 | 0000 | 0000 | 0000 | 1000 | 1000 | 1000
300310303031 [31]30]30|30]30]3|31]3

Page frame 2
0000 | 0000 | 1000 | 1000 | 1000 | 1000 | 1100 | 1100 | 1100 | 1100 | 0110 [ 0110 | 0110
4[4 |4 |4 4|40 |4 |4 |4 |5

Page frame 3
0000 | 0000 | 0000 [ 1000 | 1000 | 1000 | 1000 [ 0100 | 0100 | 0000
Hit? - -+ -+ |+ - -] - + | -

Figure 7.13: Aging algorithm for counters of four bits long

Optimal page replacement policy

There is no realistic algorithm that is always optimal. A theoretical and non-
realistic optimal algorithm is defined as one which assumes that the whole
page trace is known in advance. This algorithm removes the page which will be
referred to in the farthest future. Belady showed that this algorithm leads to the
fewest number of page faults. For a visual demonstration of how this algo-
rithm works, we can count the number of memory references to the next ref-
erence of every page in main memory and then remove the page with the
largest count. Figure 7.14 shows a sample example of a page trace and the
behavior of the optimal page replacement algorithm for a memory the size of

three frames. The “optimal” algorithm does not have Belady’s anomaly.

Pagetrace |2 |3 (4|1 |5|2|3|5|4|2]|1
Pageframe 1 | 2 | 2 |23(2,| 2|2 (23|22 |2 |1
Page frame 2 3134133333155 ]5 15
Page frame 3 41754 |4 |44 )44

Hit? SOl R BT I R B B O R I I S

The letter “i” stands for infinity, in this table.

Figure 7.14: “Optimal” algorithm for memory size of three frames
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7.4.3 Optimal Page Size

A large page size reduces the size of a page table, but it increases internal frag-
mentation. On the other hand, a small page size increases the size of a page
table but decreases internal fragmentation. For page-based memory manage-
ment (without virtual memory) we compute the optimal page size based on
internal fragmentation and page table size. This is not so for page-based virtual
memory, the reason being that the last page of a live process may or may not be
in main memory. In addition, parts of page tables may be swapped out of main
memory. Let’s assume that all page tables are memory resident and the proba-
bility of being in main memory is the same for all pages of a process. Let’s also
assume that the total size of main memory is m and there are 7 live processes.
Every process share of main memory is m/n, if we consider the average process
size. If the page size is p bytes, then the probability of the last page of a program
being in main memory is:

pi2 _ pn
min 2m

If the average size of programs is r bytes and each page table entry is e bytes,
then the total memory waste per process is:

2
PP T, T e

MemoryWaste =
2m 2 p 4m p

If we take the derivative of the equation (7.3) with p as the only variable
parameter and make it equal to zero, the optimal value of p is calculated using:

w_re_y
2m p
Or,
2mre
P =3 (7.4)
n

Equation 7.4 is applicable if the sum of the sizes of all processes is at least equal
to m (the size of main memory).



172 Operating System

7.4.4 Multilevel Page-Table Page-Based Virtual Memory

The page table of a running process is an essential part of many address trans-
lation methods. If the required page number is not in the memory manage-
ment unit, that is, the page number is not in the internal cache or the
translation look-aside buffer of the MMU (depending on the technique used),
then the page number is directly looked up from the page table of the running
process. So far, every page table is assumed to be a linear array for which the
page number is the index, with the mechanism expecting to see the running
process’ page table in main memory. In other words, without adding new data
structures and extending address translation methods, it is not possible to
apply the virtual memory technique to page tables. The page table of the run-
ning process has to be locked in main memory in order to translate logical
addresses into physical addresses. A multilevel page table is a methodology
which makes it possible to apply the virtual memory technique to page tables.
For an n-level page table every logical address is divided into n+1 parts. Part
one (counting from left to right) is the highest level of page table directory.
Part number n+1 is the offset from the beginning of a logical page. Part one of
a logical address points to a directory, with every entry of this directory point-
ing to another directory and so on. The nth part of a logical address points to a
page frame of main memory. The whole superstructure is called a multilevel
page table structure or page table structure, for short. Towards the end of this
chapter, a detailed implementation of multilevel page table methodology for
Windows NT is presented. It uses a two-level page table structure. The reader
is urged to study this case study on memory management policy. Should we
ignore this section, the discussion of multilevel page table methodology would
not complete.

7.5 Segmentation with Paged Virtual Memory

Segmentation (without paged) memory management is very much similar to
multiple partition memory management, but there are some differences.
These methods are similar in that every program portion (that is, the main
program, every procedure, and every data structure) is considered a logical
entity that requires physical memory space during execution. A program (or
data) portion, called a segment, can be loaded into a physical partition of main
memory. A partition can hold more than one program portion. The difference
is that multiple partition memory management is an operating system process
performed without the knowledge of the programmer. The programmer does
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not know of what program portion is loaded into what partition of main
memory. On the other hand, with segmentation memory management, the
programmer has explicit information on what portion of the program is in
what segment. With multiple partition memory management, the program-
mer’s view of a program is a sequential array of instructions and data. With
segmentation memory management, the programmer’s view of a program is a
collection of sequential arrays of instructions and data. This view enables the
programmer to explicitly work with every segment within its program. Some
processors, like the Intel family, provide special hardware to materialize the
programmer’s view and provide special hardware for address translation.

Segmentation memory management, similar to multiple partition memory
management, suffers from external fragmentation. The combined segmenta-
tion and paged virtual memory method has the benefits of segmentation and
at the same time, eliminates external fragmentation.

Segmentation with paged virtual memory management greatly increases
the complexity of memory management, but in return, offers many advan-
tages that make this method worthwhile.

(1) Every program portion can dynamically grow. The programmer
need not know in advance the size of program portions. Segment
size is an attribute of segments and is kept in the segment table. It is
updated as the size changes.

(2) Protection can be defined for individual segments. One segment
could be read only while the other may be read/update.

(3) Segment sharing between processes becomes possible. Therefore,
simultaneously executing processes can then define shared data
areas.

(4) Every module can independently be compiled and linked, without
any side effects on other modules’ start address.

Segmentation, in the segmentation with paged virtual memory, is a logical
concept. Physical memory is a collection of page frames, as in page-based vir-
tual memory. Every memory page frame can be assigned to any page of any
segment of any process. In other words, pages of one segment need not be
loaded into contiguous page frames of main memory. As a matter of fact, it is
not necessary to load all pages of a segment into main memory before needed.
Logically speaking, every process is composed of one or more segments and
every segment is composed of one or more pages.

In segmentation with paged virtual memory, the format of a logical address
is shown in Figure 7.17.
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Segment number | Page number Offset |

Figure 7.17: Logical address format in segmentation with page policy

Every process has its own segment table, in that there is one segment table
per process and every segment has a corresponding page table. The main func-
tion of a segment table entry is to register the base address of its corresponding
page table. It may also include protection, sharing, and present/absent. See
Figure 7.18.

|Segment number | Segment length | Page table address | Protection | | |

Present/
Absent

Figure 7.18: Logical address format in segmentation with page policy

Schematically, address translation is similar to two-level page table page-
based virtual memory with the segment number replacing the partial page
table number, which is discussed towards the end of this chapter.

7.6 Cache Memory

Computer architects and producers are in continuous demand to increase the
processing speed of
computers. They have

Two or more data that express exactly the same

to constantly exploit
novel ideas and new
technologies to fulfill
computer user
demands.  Memory
access time is one tar-
get to focus on,
because instructions
and data are fetched
from main memory,
which is, thus, contin-
uously in use. Not only
processor(s) use main

phenomenon and must, therefore, be the same at all
times may be stored as different values in computer
memories (or storages). For example, suppose you
have received a promotion at work and your job title has
changed as a result. The company’s web-site is
modified accordingly, but the payroll system has not yet
updated. This discrepancy in data reflects an
inconsistency. We cannot avoid inconsistency among
redundant information in secondary storage, main
memory, and cache memory. The focus should be on
producing correct results even though there may be
information inconsistency.
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memory. I/O processors usually utilize each memory cycle that is not being
used by the processor(s). Reducing main memory access time directly
improves overall system performance. Integrating cache memory into storage
superstructures is one way to improve effective memory access time. As a
result, a new level is thus added to the hierarchy of memory. Cache memory is
a special read/write memory with extra hardware to recognize whether a copy
of the content of a given address of main memory is in cache or not. It actually
checks for the address not the content.

The content of every location in cache is a copy of a content of a location in
main memory. There is the possibility that this copy may have been modified
since it moved to cache. If this copy is changed, it must be written back to its
corresponding location in main memory in order to eliminate cache and main
memory inconsistencies. In the presence of a cache memory, the memory hier-
archy is illustrated in Figure 7.19. In this model, the CPU is shown in the top
level because it is the main user of memory information. The CPU has regis-
ters to which information is moved, from either cache or main memory and
vice versa.

CPU (registers)

4

Cache memory

4

Main memory

4

Secondary storage

>

> CETTTTTTY

Figure 7.19: Memory hierarchy of contemporary computers

Information transfer between main memory and cache is in units of blocks.
A block is different from a page or a page frame. It is an independent unit that
is specifically used for cache memory management. A block is usually smaller
than a page, in size, and has a power of two bytes, e.g., 128 bytes. When the
CPU needs to access a main memory location, the cache hardware memory
will immediately inform it whether the corresponding block is in cache or not.
If it is, the desired word is fetched from cache. If not, the block is transferred to
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cache and, at the same time, the needed word is directly transferred to the CPU
from main memory. The dotted arrow from main memory to the CPU is to be
able to transfer information to the CPU directly, when the information is not
in cache. If a structure does not have this dotted line, the needed data must be
transferred to cache and from there to the CPU. Any store operation in cache
memory, by the CPU, may change the content of the corresponding word in
cache. In this case, if the data is simultaneously stored in main memory, to pre-
vent cache and main memory inconsistencies, a technique called write-
through cache is utilized. For this, the dotted line from the CPU to the main
memory is required. Otherwise, the modified block will be copied into its per-
manent place in main memory at a later time and the dotted line from the
CPU to main memory is not necessary.

There are many cache management methodologies and techniques, most of
which are similar to main memory management methodologies and tech-
niques. We will discuss a simple method which is not derived from any main
memory management method.

Let’s assume we have 1Mega bytes of cache memory and the block frame
size is 128 bytes. In addition, an address (this time we are talking about physi-
cal or real addresses) is 32 bits wide, meaning main memory could be 4Giga
bytes large. Think of main memory as a two dimensional array of blocks. For
our hypothetical sizes, there will be 213 columns in every row, if we consider
the total size of every row of main memory to be equal to the total size of cache
memory (i.e., 1Mega bytes, in this case.) If every block frame is 27 bytes, then
213,27=220=1Mega. There could be 212 rows in the main memory array
because 212,220=232, Let’s also assume that a physical address has three parts:
(1) the right most 7 bits (i.e., 27=128) defines the offset (that is, the displace-
ment from the beginning of a block), (2) the middle 13 bits identifies the col-
umn number of the main memory block that corresponds to this address, and
(3) the leftmost 12 bits indicating the row number of the main memory block
that corresponds to this address. See Figure 7.20.

12 bits 13 bits 7 bits

| Row number | Column number | Offset |

Figure 7.20: Structure of a physical address with respect to cache memory

How does cache hardware know whether or not a given main memory
address is in cache? A hardware array of 213 registers (the number of columns
in main memory) keep track of what blocks of main memory are in cache at
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any given time. In the simplest method, at any given time, only one block of
every column of main memory can be in cache and a block of column i, i=0,
1,..., 213-1, of main memory may only be loaded in block frame i of cache. The
register number i will contain the row number of that block of main memory.
See Figure 7.21.

| | | VA | | Cache memory

0 O 234
0
1
2
Main
memory
221

2 |

Reaister arrav
L | |

I Phvsical address

Yes, address
in cache

No, address
not in cache

Figure 7.21: The structure to check whether a physical address is in cache

To summarize, if a cache miss occurs when accessing an address that is in the
block of row r and column ¢ of main memory, the block is transferred to block
frame c of cache memory, that is after the previously occupying block is removed
and register c is filled with r. An address composed of row r, column ¢ and offset
fis in cache if and only if the content of register c is equal to . This comparison
is done automatically by cache hardware. There are two more points. First, when
the computer is first started (or at every restart) if the content of all cache regis-
ters is reset to zero, the interpretation is that all blocks of row zero of main mem-
ory are in cache. This is not true. To fix this problem, registers are assumed to be
13 bits long and the extra bit of every register is for the purpose of showing
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whether the content of the register is valid or not (zero for not valid and one for
valid). The extra bit of all registers is reset to zero whenever the system starts or
restarts. It is set to one whenever a block is transferred to a corresponding block
frame of cache. Second, we may decide to remove all blocks of a process from
cache memory when it terminates. In this case, for every block frame that is
emptied, the extra bit of its corresponding register is reset to zero.

7.6 Windows Two-Level Page-Table Structure

The address register of Pentium processors is , _
32 bits wide and the address bus is also 32 Windows NT was gesigned

bits wide. A logical address is thus at most 32 to fulfll the needs _Of its era. Itis
bits, which allows the address space of a pro- no,t a new version of older
gram to grow to 4Giga (ie., 232) bytes. Wm,dows_’ but rather a new
Windows NT and later versions (e.g., de3|gn with noyel ideas. Later
Windows 2000 and Window 2003) utilize all versions  of W'ndows Al ,a”
4Giga bytes of address space. The page size bas?_d on W',ndows NT with
and therefore page frame size for these aditions and improvements.
Windows are 4K bytes, making the offset

part of a logical address 12 bits. If a one-level page table is used, the page table
will have 1Mega (i.e., 220) entries. If every entry is 4 bytes long, the page table
of a 4Giga byte program will require 4Mega bytes of main memory to reside
in. This is quite a large real memory to spare for a process page table, especially
being part of an operating system’s address space, which would increase the
run-time size of the operating system.

The two-level superstructure of a page table in Windows divides a logical
address into three parts. Parts one (counting from left to right) and two are
each 10 bits long. Part three is the offset and is 12 bits long. Every value of part
one (if used) refers to one entry of a table called “directory” by Windows.
Therefore, the directory is a table of 1,024 (i.e., 210) entries. Each entry of the
directory points to a table of 1,024 entries, if used. Each one of these tables is
called a partial page table. There are 1,024 partial page tables for the largest
possible program. Every entry of a partial page table points to a page frame of
the main memory. Figure 7.15 shows the three parts of a logical address.

3130 222120 121110 ... 210
| Partial Page table | Page number | Offset |

Figure 7.15: A schematic address structure
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Any unsuccessful access to the directory, or partial page tables, will cause an
interrupt. In response to this, an I/O operation for bringing the required page
to main memory is performed. Figure 7.16 depicts a structural view of the
address translation schema in Windows.

| Partial page table number | Page number | Offset |

¢ Logical address

Ye
No

Interrupt
Directory

The partial page table
corresponding to left
most 10 bits of the
logical address

No

Yes Interrupt

h 4

Page frame number | Offset |

Physical address

Figure 7.16: Address translation schematic in Windows
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If the page table superstructure is fully exploited and every entry of the
directory and partial page tables uses four bytes, then the total page table
superstructure will need:

1024 * 4 + 1024 * 1024 * 4 bytes
Or,
4Mega + 4K bytes

If we compare the total size of a one-level page table and a two-level page
table for the largest possible program, with equal entry lengths, the result is
that the one-level page table will need 4K less storage area. Therefore, we do
not save storage space by using a two-level page table structure. Instead, the
benefit is in making use of the virtual memory concept for page tables. The
directory of the running process is kept in main memory, but partial page
tables can be in secondary storage. How does the system know whether the
wanted partial page table is in main memory or secondary storage? A field in
every directory entry shows whether the corresponding partial page table is
present (in main memory) or absent.

In order to complete the memory management policy of contemporary
Windows operating system, we have to clarify a few other guidelines.

Windows uses the concept of “working set”. It assigns a default fixed num-
ber of pages as a working set to every new process. This working set is adjusted
as the execution of the process continues. It makes use of per process page
removal. When a page has to come to main memory, if the list of free page
frames is empty, pages are removed from processes that are using more page
frames than their minimum working set size. FIFO is the page removal algo-
rithm. It uses the page frame table structure to keep track of the status of all
page frames of main memory. Free page frames are linked together to form a
list of free frames. Many other lists are formed within the page frame table. The
page frame table is called the page frame dataset in Windows. It makes use of
the locality of reference concept. If a page fault occurs, the memory manager
intentionally generates page faults for neighboring pages in order to force the
system to pre-fetch these pages. According to the locality of the reference con-
cept, if a page is referred to now, there is a great possibility that neighboring
pages will be referred to in the near future. By pre-fetching the adjacent pages,
the probability of a miss is usually decreased for these pages.
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7.7 The UNIX Memory Management Policy

Many versions of the UNIX operating system have been developed since the
first version was announced in 1969 by Bell laboratories. The UNIX System V
Release 4 (SVR4, by the UNIX support group for distribution within AT&T),
4.4BSD (by the University of California-Berkeley), OSF/1 (Open System
Foundation/1 by DEC Company), and Solaris 2 (by SUN Microsystems) are
some newer versions of UNIX. UNIX versions vary and memory management
policies are not exactly the same in all versions. In this section, we will discuss
general methods that are used for memory management. For any specific algo-
rithm explained, the UNIX version which uses it is introduced.

The most important data structure for memory management is the page
table. As usual, there is one page table for every process. This table is indexed
by page number, with the page frame number being the most important piece
of information in every entry. Another important structure is the page frame
table, called the page frame dataset in UNIX. Every entry of this table describes
the state of its corresponding page frame in physical memory. Entries with
similar states are linked together to form a list. For example, entries that corre-
spond to free memory frames are linked together to form a list of free frames.
This list is also used to assign frames to incoming pages.

UNIX likes to have a certain number of free (or unallocated) page frames
available all the times. This does not mean that violations cannot occur.
However, if they do, the memory manager will take proper actions. The desired
minimum number of page frames is called minfree (sometimes called low
water level). The exact value of this parameter is calculated based on the main
memory size upon system boot time. If the number of free page frames
becomes lower than minfree, memory manager will try to free page frames
until the number of page frames reaches lotsfree (sometimes called high water
level). It is clear that lotsfree is grater than minfree. The page replacement algo-
rithm decides which pages are to be removed from main memory. To get a feel-
ing of what minfree and lotsfree are, think of a control system that monitors
the temperature of an office during winter. The system may turn the heating
device on when the temperature goes lower than 20 degrees. The heating
device may run until the temperature reaches 25 degree before being turned
off. In this analogy, number 20 corresponds to minfree and number 25 corre-
sponds to lotsfree. It is clear that if the difference between these two numbers
is high the heating system will be turned on less frequently. However, when the
heating is turned back on, it has to work for a long time to reach the desired
temperature. On the other hand, if the difference between these two numbers
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is low, the heating system will be turned on and off more frequently. When it is
turned on again, the heating will work for a short time before being turned off.

When the number of free page frames falls below minfree, the page removal
process (called pagedaemon in the 4.3BSD version) is activated. This process
uses a modified version of the clock algorithm to decide which pages to
remove. Recall that the original clock algorithm removes one page at a time.
However, its modified version, which is discussed here, removes many pages
every time it is activated. It begins sweeping the page frame data set starting
from where the clock hand is pointing. If the reference, R, bit of the frame that
is pointed to is zero, this frame is evacuated and added to the free list. The
modified (or dirty) bit of the outgoing page has to be checked. If it is dirty, it
must be copied back to its permanent place in virtual memory. Note that, the
page removal process cannot remove locked-in-memory pages. The clock
hand then moves to the next frame. If the reference, R, bit is one, it is changed
to zero and the clock hand moves on to the next frame. The page removal
process continues until the number of free frames reaches lotsfree, or until
enough frames are scanned, as defined by the memory manager.

The process swapper complements the page removal process. If the page
removal process is not able to remove enough pages, some of the processes will
be swapped out of memory. This may be because most in-memory pages are
frequently being used or if there are some processes that are not very active. A
swapped-out process will be swapped back in when the situation changes and
the memory shortage pressure has lessened.

7.8 Summary

There are variety of memory management methods ranging from single con-
tiguous memory management to multilevel page table page-based virtual
memory with segmentation and cache. Contemporary computers use virtual
memory methods while special purpose computers for sensitive environments
use non-virtual memory management methods. With virtual memory it is
possible to lock some pages in main memory to prevent their removal. This
may be thought of as a combined virtual-nonvirtual memory management
method. With virtual memory management, comes a variety of page removal
methods with different complexity and efficiency. It is not possible to devise an
optimal page removal algorithm which, at the same time, is also practical.
Although cache memory is not part of main memory, contemporary comput-
ers use it to improve overall main memory access time. A short discussion on
cache memory was also presented in this chapter. Two case studies, UNIX and
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Windows memory management, were presented in this chapter and fit in very
well into our discussions.

7.9 Problems

1.  Suppose we use a singly-linked list to implementing each of the following
placement algorithms in a dynamic partition memory management pol-
icy. If we want to look for certain size partition and we know that such a
partition exists, what is the average search length for each one of the fol-
lowing algorithms?
(1) first-fit
(2) next-fit
(3) best-fit
(4) worst-fit

2. If a double-linked list is used to implement the FIFO page replacement
algorithm and the list is built within every process’ page-table, is it possi-
ble to implement overall page replacement? Explain.

3. With the buddy system, when a program terminates, its occupied space is
returned to the free partition data structure. However, if its matching
buddy (the buddy that it was originally separated from) is also free, the
two join to form a larger buddy. In buddy system, why can’t any two adja-
cent partitions the size of 214K, join to form a partition the size of 21t1.K
partition?

4. Consider a system that uses relocation partition memory management
for the page table area within the operating system. The size of memory
that is managed is 512K. Every time the memory is 90% full, the reloca-
tion process is activated. If moving one word of main memory from one
location to another takes 200 nanoseconds, how long does it take to relo-
cate all allocated memory, every time the relocating process is activated?

5. For page-based (non-virtual) memory management, (a) clearly explain
the difference between a logical and physical address. And (b) when a
program runs, does it produce a logical address or a physical address?
Explain.

6. Can you imagine the page size that is not of the power of 2? What are the
disadvantages of such a page size?
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For page-based (non-virtual) memory management, we can think of two
techniques to keep track of free pages: (1) Using a link list that has one
node per every free block and (2) using a bit map technique with one bit
for every block of main memory. If main memory is 1Giga bytes, page
size is 2K bytes, and every node of the free block list is four bytes long, for
what number of free blocks is the space overhead of these two techniques
the same?

For some machine instructions, the operand(s) could be very long. For
example, the operands of the move character (MVC) instruction could be
as long as 256 characters. If the system starts to execute this instruction
and either of the operands straddles a page boundary midway through
the execution of the instruction, we may find out that the rest of the
operand is not available. As a result, a page fault is generated. When the
page comes to the main memory, we have to restart the execution of the
instruction. How can we avoid this situation of restarting the execution of
partially executed instruction?

For page-based virtual memory management, with the average program
size of two mega bytes and a page-table entry size of 4 bytes, what is the
optimal page size with respect to memory waste due to page tables and
internal fragmentation?

For a page-based memory management system that can run programs as
large as one Giga bytes, if the size of pages is 2K:

a. [llustrate the format of the logical addresses

b. Illustrate the format of the physical address

c.  Illustrate the format of the page table entries

d.  What is the maximum possible length of a page table?

For page-based virtual memory management, with an average program
size of two mega bytes and a page-table entry size of 4 bytes, what is the
optimal page size with respect to memory waste due to the page table and
internal fragmentation?

A binary search program for an array of 220 elements, indexed from zero
to 220-1, is supposed to be executed under page-based virtual memory
management. Every element of the array is four bytes long. Every page is
1K bytes. In addition, the whole program, without the data array, is 1K
bytes, or one page. When moved to main memory, the page is locked so it
will not be removed until the execution of the program finishes. The
main memory has only three page frames and there will not be any other
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process in the system when this process is executing. If the process
searches for data that does not exist in the array:

a. How many page faults will the process generate, if the page removal
algorithm is LRU?

b.  Will the number of page faults differ if the page removal algorithm is
FIFO? Why?
A system with page-based virtual memory management has only six page
frames. This system is running two processes in a multiprogramming
manner. At the beginning, every process’s quota is three page frames,
which has to be observed at all times. A process quota may change under
certain conditions. If the number of page faults of one process becomes
twice the number of page faults of the other process, its page frame quota
is increased by one. The page frame quota of the other process is decreased
by one. These quotas remain intact until the current page fault ratio once
again changes. The page removal algorithm is per process LRU. The fol-
lowing page trace is generated during the execution of these processes. The
pages of process two are underlined. How many page faults are generated?

2554423265445475332354

The following procedure calculates the sum of two arrays, A and B, and
stores the results in array C. The code size of this program and the vari-
able 7 are exactly 1K bytes. Every element of the arrays is four bytes. Page-
based virtual memory management, with a memory size of four page
frames is used to run this procedure.

a. How many page faults will the FIFO page replacement algorithm
generate?

b. How many page faults will the second chance page replacement
algorithm generate?

void summat(int A[ ], int B[ ], int C[ ])
{
for (int i =0; i<512; i++)
Cli] = Afi] + B[i;
/

For the following page trace and a main memory of five page frames,
the main memory management policy is page-based virtual memory.
The page replacement algorithm is NFU. Two processes, P1 and P2, are
running concurrently and neither is allowed to use more than three
page frames at any time. How many page faults will be generated for the
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following page trace? The notation pj stands for page p of process k. A
clock tick is supposed to be issued per every three memory references,
in order to process the R bits.

1213, 2 % 1 3 204 31 2 4 L 5 L
Consider a three-level page table organization as shown in the figure below.

If a program is 4 Giga bytes, what is the total space needed for its page table
(that is, the total space needed by directories and partial page tables)?

4 bits 8 bits 8 bits 12 bits

The main memory management policy is a page-based virtual memory
and the replacement algorithm is the clock algorithm. If the R bit of a
page that has just been moved to main memory is not set to one, provide
an example in which this page is removed from main memory before
being actually accessed.

For the problem at hand, the main memory management policy is a page-
based virtual memory and the replacement algorithm is NFU. Page refer-
ence counters are two bits. If a counter reaches its maximum, it will no
longer be incremented. If the number of page frames is three, how many
page faults are generated for the following page trace?

2112230312024

The page replacement algorithm in page-based memory management is
per-process second chance. Main memory consists of four frames and
there are two processes in the system. Initially, all memory frames are free.
The set of frames, which each process seizes from the initial free frames of
main memory, belongs to the process for its lifetime. Each process is
allowed to replace the content of its own frames with new pages, if there is
a page fault for that process. What is the page fault ratio for the following
page trace? The pages of process two are underlined.

2710510270130302412631523
A program 2Giga bytes long is going to run under a page-based virtual

memory management policy. The page frame size of main memory is 4K
bytes. How many entries does the program’s page table have?

We presented the optimal page replacement algorithm in this chapter.
Can you develop a page replacement algorithm which always gives the
highest number of page faults?
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To translate a logical address into a physical address, the memory man-
agement unit (MMU) utilizes a TLB memory. TLB access time is 20
nanoseconds and its hit ration is .95. If a TLB miss occurs, the system
directly uses the page table that resides in main memory.

a. If main memory access time is 60 nanoseconds, what is the effective
time for translating a logical address to a physical address?

b.  What is the effective time to access a memory location through the
MMU?

To translate a logical address into a physical address, the memory man-
agement unit utilizes a cache memory. Cache access time is 20 nanosec-
onds and its hit ratio is .95. If a cache miss occurs, the requested page
table entry is moved to the cache memory. For this, one extra main mem-
ory access and one extra cache memory access is needed.

a.  What is the effective time for translating a logical address to a physi-
cal address?

b.  What is the effective time to access a memory location?

The system under investigation uses a page-based virtual memory policy.
Main memory consists of only 5 page frames that are currently empty.
For a size 10 page reference string in which there are only 7 different
pages:

a.  What is the upper bound for the number of page faults?

b.  What is the lower bound for the number of page faults?

c. For i page frames, j different pages, and a page trace of length h,
express your answers to question (a) and (b).

The average instruction execution time is 100 nanoseconds and every
fault imposes n extra nanoseconds on the system. If, on the average, for
every k instructions, there is one page fault, what is the effective average
instruction execution time?

In the memory management method of the UNIX operating system, what
are the rationales for stopping the page removal procedure when “enough”
frames are scanned and activating the process swapper procedure?
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Chapter 8

Interprocess
Communication/Synchronization

Communication is essential among all societies, be they human, bees, ants, etc.
Not all entities of all societies have the same level of intelligence nor do they all
communicate the same way. Humans are the most intelligent species, commu-
nicating essentially through languages. Ants, on the other hand, communicate
using pheromone. One can say that processes (or threads) form a society in the
world inside computers. Processes inhabit the computer environment along
with the CPU, main memory, secondary memory, peripheral devices, software
modules, etc. They communicate by using a variety of techniques, like shared
memory and message passing. Dependent processes have to synchronize their
activities. We even have to synchronize independent processes for using shared
resources in order not to interfere with one another. Improper synchroniza-
tion of processes may lead to deadlock. Deadlock is a situation in which two or
more processes are stuck in a circular wait. Each process is waiting for some-
thing (or some action) from the next process in the circular-wait chain in
order to proceed. In this chapter, methodologies and tools for safe and efficient
communication between processes (or threads) are discussed.

8.1 Why Process
Communication/Synchronization?

If there were enough (hardware and software) resources and if the operating sys-
tem assigned all the required resources of for every newly generated process at
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the time of generation, perhaps there would be no need for independent
processes to synchronize their use of resources. Because there are not enough
resources to fulfill the needs of all processes all the time, we have to consider
sharing resources. Process communication/synchronization is necessary for two
types of processes. The first is dependent processes, or processes that are part of
one application. These are each given a specific responsibility, which includes the
sharing of processing results or synchronization at certain points. This kind of
communication/synchronization is a part of the application’s specifications and
must be designed and implemented. The second type of processes which require
communication/synchronization is independent processes. Whether processes
are parts of one application or otherwise, they have to share computer resources
during execution. The most essential assertion which must hold for these
processes is conflict-free resource usage. This dictates the existence of a correct
and reliable mechanism for acquiring and releasing resources. With contempo-
rary operating systems, simultaneously running processes have to share com-
puter resources. Thus, process communication/synchronization is inevitable.

8.1.1 Race Condition

Failure to correctly share resources among processes can lead to incorrect and
even unexpected results from processes. For clarification, a simple example is
discussed in the following.

The lost update problem: Suppose two transactions are issued against a single
bank account. Transaction one wants to clear a check for the amount of $1,000
against account number 123 and transaction two wants to clear a check for the
amount of $2,000 against the same account. Suppose the account balance is
$10,000 right before receiving the transactions. The bodies of transactions are
as follows:

Transaction 1: Transaction 2:

1-1 Read account 123’s record 2-1 Read account 123’s record
1-2 Subtract $1000 from balance 2-2 Subtract $2000 from balance
1-3 Write account 123’s record 2-3 Write account 123’s record

Without any form of process (transaction) synchronization to use the
shared resource (the account 123’s record, in this case), we cannot be sure that
transactions statements are properly ordered to produce the correct results.
Suppose the execution of statements is interleaved as follows:
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1-1 Read account 123’s record //Balance is $10000

1-2 Subtract $1000 from balance //Balance is $9000 but not saved
2-1 Read account 123’s record //Balance is $10,000

2-2 Subtract $2000 from balance //Balance is $8,000 but not saved
2-3 Write account 123’s record //Balance is $8,000

1-3 Write account 123’s record //Balance is $9,000

The net result is that the transaction Two’s update is lost. Another arrange-
ment of the execution of statements would have led to a correct execution of
the transactions, making the final balance of the account $7,000. Nowadays,
Database Management Systems (DBMS) takes care of correct transaction pro-
cessing by using proper transaction management mechanisms. In the absence
of correct synchronization mechanisms similar errors may occur within the
operating system.

Suppose that a client-server system is set up to save the picture of all people
that enter or leave a museum having highly valuable objects. The museum has
one entry and one exit. There are two cameras, one for the entrance and one
for the exit, which photographs every person entering or leaving the museum.
There are two processes (clients), one controlling the entrance camera and the
other controlling the exit camera. These processes communicate with another
process (the server) that is mainly responsible for saving pictures in archive
files and keeping track of the exact number of people in the museum at all
times. Communication from clients to the server is done by sending messages.
A message has at least three parts: a sender, a receiver, and data (i.e., a picture).
A server subsystem will put all received messages in a queue to be processed in
a first-in first-out fashion. This is because matching pictures against a database
of suspected people and saving pictures in secondary storage is a slow process,
in which the system may fall behind during busy hours. A “count” variable in
the server process keeps track of the number of people inside the museum at
any given time. This is updated every time a message is removed from the
queue. Just before closing the museum at the end of working hours, the queue
must be empty (that is, all messages must have been processed) and the
counter should be exactly equal to five (the number of after hour security per-
sonnel). The queue is (supposedly) an infinite array of message frames and
client and server processes running in a multiprogramming manner.

Suppose the pointer to the rear of the queue is the variable r which is actu-
ally an index to the array of message frames. If it is, say 10, this means there are
10 unprocessed messages in the queue. Each one of these messages is either
from the entrance or exit door. To enter a message in the queue, the following
steps are taken in that order:
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1. Transfer r to register R;

2. Increment Ry

3. Store message in frame number R,
4. Store Ry in variable r

Now, suppose that r is equal to 10 and the execution of two client processes (P1
for the entry process and P2 for the exit process) is interleaved in the following
way:

P2-1. Transfer r to register Ry, //Every process has its own set of registers
P1-1. Transfer r to register Ry, //Every process has its own set of registers
P2-2. Increment Ry, //R1 becomes 11

P2-3. Store message in frame number R;, //Pic. from P2 stored in frame 11
P2-4. Store R in variable r. //r=11

P1-2. Increment Ry, //R1 for process P1 becomes 11

P1-3. Store message in frame number R;, //Pic. from P1 stored in frame 11
P1-4. Store R in variable r. //r=11

It is clear that, a message from P2 is lost. This means one person is left in the
museum, but the system failed to respond correctly. As a result, at the end of
the working hours, the system will show 6 people in the museum although the
correct number is 5. Security will keep looking for a person who does not
really exist. The system has produced an incorrect and misleading result or a
race condition. This is a situation in which more than one parallel (or multi-
programmed) processes work with one or more shared resources and the
result depending on how instructions that manipulate the shared resource(s)
are interleaved. In our case, if process P2 had completely finished its opera-
tions before process P1 started, both messages would have been properly
inserted in the queue.

What is the role of the operating system? It seems that the above scenario is
part of an application program and has nothing to do with the operating sys-
tem. This may be the way it looks.

In contemporary operating systems, processes can communicate using
message passing methodology. A message is roughly composed of three parts
(sender, receiver, load). The load is what the sender wants to pass on to the
receiver. To do so, the sender calls on an operating system procedure (or
method) called “send,” providing the aforementioned arguments. On the
other end, the receiver calls on an operating system procedure (or method)
called “receive”. It is the responsibility of the operating system to correctly
transfer every message from the source to the destination. The details of
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message passing implementation are application transparent. Therefore, for
our example, manipulation of the message queue is performed by the oper-
ating system.

A major difficulty in designing an InterProcess Communication (IPC)
technique is that, in a multiprocessor and/or multiprogramming environ-
ment, instructions for different processes may interleave in numerous ways at
amachine instruction level. A simple increment operation on a shared variable
(or resource) by two processes may lead to unacceptable results, as seen earlier.
A simple increment in the C++ programming language for a variable k is writ-
ten as k++, but this is translated to three assembly language instructions (or
machine instructions) roughly as follows:

Load R1, k  //load the content of k into register R1
Inc R1
Store R1, k // Store R1 to k

The system only guarantees that when a machine instruction is started by
one processor, the processor will not be interrupted before completing this
instruction. In other words, when the execution of a machine instruction is
started, the processing of any incoming interrupt to this processor is sus-
pended until this instruction is completed. That is, every processor looks at the
interrupt vector right before starting every machine instruction, not during its
execution. There are some limited exceptions to this rule. For example, a move
instruction, that moves large chunks of information from one location of
main memory to another location, may be interrupted in some systems. We
will not consider this limited number of exceptions in our discussion. With
this in mind, two increments of one variable by two processes can lead to
either a correct result or an incorrect result depending on how the increment
instructions of the two processes are interleaved.

8.1.2 Critical Region

In the previous section we encountered a situation that led to a race condition,
which, in turn, caused the processes to produce incorrect overall results.
Although, one process was not finished using a shared resource (the message
queue), another process started to use the same resource. The update of the
queue by the former process was not completed before the latter process
attempted to access the queue. The former process was in a “critical” situation,
in which the intervention of another process could affect the outcome of the
process. In our example, the message buffer is a critical resource. If it is not
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used in a controlled way, incorrect results could result. A critical resource is
thus a long-term shared resource that has to be used exclusively in the short
term. When a process takes over this kind of resource, no other process is
allowed to use it until the first process frees the resource. The critical region
(or critical section) is therefore the portion of a program that uses a critical
resource. We have to devise methods for the operating system to ensure that,
when a program is executing its critical section, no other program can enter
that critical section. To enter a critical region, every process must first get the
permission. It can then enter the critical region and use the resource. To leave a
critical region, the process must inform the system that it has freed the
resource. These three steps for the proper running of every critical section are
listed in order as follows:

e  Get permission to enter critical region
e  Enter critical region and use the resource

e  Leave the critical region and free the resource

8.1.3 Mutual Exclusion

Different processes within the operating system ought to use short-term exclu-
sive devices in such a way that no more than one process, at any given time,
uses any such a device. A process is said to be using a device if that device has
been assigned to the process and has not yet been freed. For example, it is cus-
tomary to introduce printers as short-term exclusive devices. It is not correct
to send outputs of more than one simultaneously (parallel or multipro-
grammed) executing processes to a unique printer. If done, the outputs of the
processes would be mixed-up and incorrect printouts produced, that is, the
outputs does not match any process’s requests. The concept of mutual exclu-
sion is not well describable using printers, because, in reality, mutual exclusion
is not applicable to printers. These days, printing problems are solved using a
special approach. During the execution of a process, if a printer is needed, a
real printer is not assigned to the process. Instead, one or more virtual printers
are assigned to the process, with the outputs written on the virtual printers.
Files or datasets are virtual printers and different processes are given different
files. In this way, the outputs of different processes are not interleaved. When a
process completes, its output file(s) is closed and sent to a print queue to be
printed one at a time. The print-queue is a perfect example of where mutual
exclusion must be enforced. Otherwise, race conditions may occur and prob-
lems like lost update are likely to happen. Therefore, processes must exclude
each other in using print-queue through the enforcement of mutual exclusion.
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The concept of mutual exclusion may be extended to be applicable to all
devices that can be used by more than one process at any given time, but with
the number of processes bounded by a fixed number. For example, a 1/16
demultiplexing device can have one output line and 16 input lines. The system
must ensure that no more than 16 users (processes) are simultaneously make
use of this device.

The operating system has the responsibility to ensure that application pro-
grams use their resources mutually exclusive. There are many methods of this,
each better applicable to one or more resources. Mutual exclusion enforcement
of computer resources that are directly managed by the operating system is
thus transparent to computer users.

One way to enforce mutual exclusion is to have only one process at any
given time, thus preventing the creation of other processes (or child processes)
before process termination. The process does not have to compete with any
other process to grab a desired resource. Nor are resources used by more than
one process at any given time. This method guarantees mutual exclusion but it
provides a single-programming environment that is inefficient and impracti-
cal for contemporary operating systems. Therefore, not all methods of enforc-
ing mutual exclusion are acceptable. For a method to be acceptable, it must
have four properties:

1. The number of processes that are inside a critical region (for a critical
resource usage) must be, at the most, equal to the maximum number
of allowable processes (that is, one for a majority of resources).

2. Mutual exclusion must be upheld disrespectful of relative execution
speed of processes and the number of processors.

3. A process may only block other processes from using a resource
when it is inside its critical region using the resource.

4. A process does not have to wait forever to get its chance to use a
needed critical resource.

8.2 IPC and Synchronization Techniques

In this section, race-free InterProcess Communication (IPC) techniques are
presented in three categories. A busy-wait-based technique keeps checking
some parameters to make sure it is safe to enter the critical region. This param-
eter is shared among all processes that want to use the same resource and is
usually updatable by all these processes. This technique is called busy-wait
because it consumes processing time by repeatedly checking the state of the



196  Operating System

parameter. No progress can be made until the parameter state indicates it is
safe for the process in the busy-wait state to use the corresponding resource.

A semaphore-based technique uses an abstract data type composed of a
counter and two operations. These can be used for obtaining permission to use a
shared resource and for freeing the resource once it has been used. This tech-
nique checks if the resource is safe to use. It is not, the process is blocked until the
resource is available. Therefore, by using this method, busy-waiting is prevented.

The third technique for interprocess communication/synchronization is
message-based. To use a resource, the resource-seeking process must grab a
message which acts as a permission to use a resource. When grabbed, the seek-
ing process can go ahead and use the resource; otherwise it has to wait.

An important point about interprocess communication and synchroniza-
tion technique is that just using them does not guarantee correct and race-free
implementation of interprocess communication and synchronization of com-
peting processes. Rather, only proper usage of these techniques can result in
correct and race-free solutions.

8.2.1 Disabling Interrupt Method

A running process (or thread) keeps running until it is terminated or an
unmask interrupt is received by the processor running the process. In a multi-
programming environment, when a process is running, if it disables the whole
interrupt system, the process can keep running until it is terminated. This fact
suggests a method for enforcing mutual exclusion. Right before using a critical
resource, the “disable interrupt” operation is executed. The successful execu-
tion of this operation guarantees that the process will be the only running
process. Therefore, the process can safely use a shared resource (that is a
resource shared over a long time span but must be used exclusively by the
process or thread that gains control of it until the resource is freed by the
process). When finished with this resource, the process enables the interrupt
system. Every processor in a multiprocessor system has its own interrupt sys-
tem. Disabling the interrupt system will only disable the interrupt system of
the processor which executed the “disable interrupt” operation. Thus disabling
interrupt thus cannot be used to enforce mutual exclusion in a multiprocessor
environment. The steps to insure exclusive usage of a critical resource in a sin-
gle-processor multiprogramming environment are:

1. Disable interrupt
2.  Use the critical resource

3. Enable interrupt
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This technique has two problems:
I.  Itis notapplicable in multiprocessor environments.

II. During the time span in which the interrupt is disabled, the system
works in single programming manner.

Because of the second disadvantage, overall system performance may drop
very low. This is the reason for restricting its usage. As a result, its usage is not
permitted by application programmers. To enforce this, the disable interrupt is
made privileged. Its usage within the operating system is also restricted to the
kernel. Even there, its usage is restricted to critical regions with very few
machine instructions.

8.2.2 Busy-Wait-Based IPC

A busy-wait-based technique allows a process which needs a long-term shared
resource to keep checking until it is safe to use it. If it is in a busy-wait state the
processor time that is assigned to this process is, therefore, wasted in doing
unproductive operations. This is the major disadvantage of this method. The
first simple method is two-process strict alternation.

Strict alternation method

This technique is designed only for two processes. It makes use of a global vari-
able for the two processes which takes one of two values, zero and one or any
other two values. Each value is reserved for one of the processes. The global
variable is given an initial value in accordance with the nature of the synchro-
nization that defines which process has to first take hold of the resource. The
processes are presumably continuously alternately using the shared resource.
The Strict alternation method is best described if we suppose there are two
processes, one to input data and the other to process data and print results.
Every time a datum is read, it is put in a buffer of size one (i.e., the shared
resource). Before the first process can put a new datum, the previous datum
must be picked up by the second process. If the global variable’s name is turn,
it must be globally initialized to define which process must use its turn first.
Suppose it is set to zero, as follows:

turn = 0;

To get permission to use the shared resource, the inline code (a set of
instructions not in the form of a procedure call within a program) for the
process zero (the process that corresponds to furn=0) could be:
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GetPermission: If (turn!= 0) goto GetPermission;

Although the goto statement is not well accepted within application pro-
grams, structures like while and do...until are implemented using branch
machine instructions. The direct equivalent of this instruction in high level
languages is the goto statement. To implement operating system primitives as a
short inline piece of code, we do not hesitate to use the goto statement. An
equivalent of a non-goto piece of a program would be:

GetPermission: while (turn!= 0);

For this statement, the semicolon symbol signifies a null statement. To free the
resource, process 0 could utilize the following inline code

turn = 1;

A similar code is used by process 1.

Suppose processes 0 and 1 want to indefinitely use a resource in an alternat-
ing mode. The following would be the body of the processes. For the rest of
this chapter, it is assumed that variable “true” is a Boolean variable which rep-
resents the logical value “true”.

// Process 0
while (true) {
GetPermission: if (turn I= 0) goto GetPermission;
/* Critical section where the resource is used by this process */
turn = 1; //Set turn to process 1 to get permission and use the resource

]

// Process 1
while (true) {
GetPermission: if (turn I= 1) goto GetPermission;
/* Critical section where the resource is used by this process */
turn = 0; // Set turn to process 0 to get permission and use the resource

]

This solution has three essential disadvantages: (1) it suffers from busy-
waiting; (2) it is only good for two processes; (3) processes must alternate to
using the resource. It is not possible to design two communicating processes
for which one process is able to use the shared resource for more than one
round when the other process is not interested in using it for the time being.



M. Naghibzadeh 199

However, having in mind its restriction, this solution is a practical technique
for the design of safe interprocess communication for two processes.

Peterson’s method

The alternation property of the aforementioned technique is removed by a tech-
nique that was invented by Peterson [Dij65]. His initiative was to use a local vari-
able in each process that shows the process’ intent to use or not use the shared
resource, for the time being. If the value of this variable is true, the process will
want, or desire, to use the resource; otherwise, it does not want to. When one
process intends to use the resource and the other does not, the former process
can keep using the shared resource over and over again. The difficulty arises
when both processes want to use the shared resource. In such a situation, one
process enters a busy-waiting loop until the other process leaves its critical
region. To make this possible, the global variable turn is utilized. Based of that
the system decides who can use the resource. It is worth mentioning that for
every round a resource is used, the using process has to free the resource. If it is
interested in using the resource again, the process must go through the proce-
dure of getting the resource again. The “get permission” and “free resource”
actions are designed as standalone procedures with one argument “process.” The
argument process is either zero or one, in that one process is identified by the
number zero and the other by the number one. The variable turn is an integer
and the array desire is a Boolean array, both are declared globally as follows:

int turn;
int desire [2];  //whether or not process wants to use the resource

The following is the “get permission” procedure. When there are two
processes who want to use the resource simultaneously, the “while” statement
will cause one of the processes to keep executing the loop over and over again
until the loop condition becomes “false.” The semicolon symbol indicates that
there is no explicit operation within the loop.

void GetPermission (int process)

{
int other; //Variable Other defines other process's number
other = 1-process;
desire [process] = true; //This process wants to use the resource
turn = process;
while (turn== process && desire [other] == true) ; //Busy-wait
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To relinquish the resource, the process who owns the resource calls the fol-
lowing procedure.

void FreePermission (int process)

{
/

desire [process] = false;

For process zero to use the resource, it has to execute the following state-
ments. Similar statements have to be executed within process one. If the
resource is not available (because it is being used by the other process) the
requesting process will stick in “GetPermission” procedure.

GetPermission(0);
// Use the resource
FreePermission (0);

The Peterson’s method is restricted to two users and has the disadvantage
of busy-waiting.

Dekker’s method

A very similar solution to the Peterson’ solution is given by Dekker. It makes
use of a global array of type Boolean and the global variable turn of type inte-
ger that are defined as follows:

int desire[2]= {0,0};
int turn =0;

Because of its similarity to Petersons solution, without discussing the
details of this procedure Dekker’s method is presented in the following.
GetPermission and FreePermission are the procedures for obtaining permission
to use the resource and for freeing this permission to let other processes use
the resource. 1-process identifies the other process in these procedures.

void GetPermission( int process)

{

desire[process] = true;
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while ( desire[1-process] == true) {
if ( turn I= process) desire[process] = false;
while (turn = process);
desire [process] =true;

J

void FreePermission(int process)
{

turn =1-process;

desire [process] = false;

J

The deficiencies of Dekker’s solution are the same as the deficiencies of
Peterson’s solutions. Recall that the GetPermission and the FreePermission
routines are for the permission to use the resource and the release of this per-
mission, respectively, in order for the other to have the chance of using the
resource. To do a repetitive job a proper loop of actions must be designed. In
the following, a hypothetical body for process zero is provided. Process one
may have a similar structure.

void ProcessZero(void)

{
int zero = 0;
while (1){
GetPermission(zero);
// Permission is granted; use the resource
FreePermission (zero);
/
/
Test and set lock method

The techniques presented up to now, in this section, are all limited to two-
process synchronization and communication. The Test and Set Lock (TSL)
method does not have this limitation, but relies on a specific machine instruc-
tion that is included in contemporary processors mainly for the purpose of
implementing this kind of IPC technique. In one machine instruction, the
test and set lock instruction does the equivalent of two (or more) machine
instructions. Although the details of the operations are machine dependent,
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the contents of a memory location is loaded in a processor register. If the con-
tent of the memory location is zero it is changed to one. Therefore, the effect
of the tsl instruction shown below is the same as the two instructions in front
of it. It is assumed that the storage location tested will be either zero or one.
After the execution of the tsl instruction, the contents of the variable being
tested will be one and the contents of the register used will be the previous
value of the variable.

tsl  register, x ) load register, x
g { store #1, x // Store integer 1 into x
The following is a sample implementation of the inline version of the “get per-
mission” and “free resource” operations.
GetPermission: tsl register, x FreePermission: store #0, x
cmp register, #0
Jjnz GetPermission

The procedure-based implementation of these two operations will look like:

void GetPermission (void) void FreePermission (void)
{ {
ASM:; x=0;
fop: tsl register, x }
cmp register, #0
jnz top
ENDASM;
}

Like other solutions in this section, the tsl solution suffers from busy-wait.
The hardware must support a tsl-like machine instruction for us to be able to
implement this technique. For example, some IBM processors have the “TS”
(test and set) instruction which checks a byte of main memory and (if the con-
tent is zero) stores the value one in the byte. This instruction sets the
Condition Code (CC) flags of the processor based on the previous value of the
byte during the checking process. CC shows whether the byte was zero, posi-
tive, or negative. Based on this instruction, an actual inline implementation of
the get permission and free resource are as follows:
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GetPermission FreePermission
TS «x MVl x,'00’
BNZ *-4 //Go back 4 bytes, if not zero

Pentium processors use BTS (bit test and set). A bit is moved to CF (carry
flag) and the bit is set to one if it is zero. The instructions JC (jump if carry flag
is one) and JNC (jump if carry flag is not one) can be used to implement the
get permission and free resource operations.

Some Motorola processors have TAS (test and set operand) machine
instructions for this purpose.

Test and set lock is not restricted to two processes, but it also suffers from
busy-wait.

Swap (or exchange) method

Yet another method for enforcing mutual exclusion is the swap method. A
global variable acts as the key for using a shared resource. Whoever gets the key
first, takes the resource. The key is available when the variable is zero. It is not
available if its value is one. Every process tries to get the key by exchanging the
global variable’s zero value (accessing the variable when it is zero) with a one
value provided by the process, all in one operation. If successful, the global
variable’s value becomes zero. So, every process has a one value ready and con-
tinuously tries to exchange its one value with the global variable. If the global
variable is one, nothing happens. If it is zero, the process gets the permission to
use the shared resource and blocks the other competing processes from getting
the resource. Suppose the global variable’s name is S and its initial value is set
to zero. The following two procedures for getting permission and freeing the
resource would be respectively:

void GetPermission (void) void FreePermission(void)
{ {

intp=1; S=0;

while (p I= false) exchange (p, S); }
/

Note that, for this method to work correct, the exchange operation must be
done atomically (see side box). There are specific machine operations to
exchange the contents of two memory locations. For example, byte swap,
BSWAP, in the Pentium family is for this purpose. Having a machine language
operation for this purpose guarantees its atomic execution.
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The exchange method is applicable in the single-processor or multiproces-
sor environment. It is
applicable for IPC imple-
mentation for two or more
processes. This is a robust
method, especially when

An operation is executed in an atomic manner
if its execution once started is not interrupted until
it is fully completed. As explained earlier, machine
instructions are performed in an atomic manner

there is a machine instruc-
tion for the exchange oper-
ation. Its one weakness is
busy-wait. Worth mention-
ing in multiprogramming,
which runs many pro-
grams  “simultaneously,”
only those processes that
are executing their busy-
wait loop waste the proces-

(with very few exceptions). However, special
techniques must be used to ensure the atomicity
of user-defined operations (operations that are
done by more than one machine instruction or
roughly speaking, procedure). In database
environments, the definition of atomicity is slightly
different. There, the execution of an atomic
operation can be interrupted. However, we are
interested in its effect on the database. This must
be either equal to the effect of not executing the

operation or fully executing the operation. In other
words, partial execution of an operation that is
supposed to be atomic is not acceptable.

sor’s time. All others use
the processor’s time in per-
haps a more productive
way.

8.2.3 Semaphore-Based IPC

The most technical way to think of semaphore is to imagine it being an
Abstract Data Type (ADT); see the side

box. An abstract data type is composed
of one or more data and zero or more
operations that are all packaged
together. A realization of a semaphore
ADT has a variable of a type limited
positive integer upon which operations
wait and signal are applicable. The
variable is supposed to be private and
can be manipulated only by wait and
signal operations (all of which are
encapsulated). The ADT concept has

An abstract data type is user-
defined (as oppose to programming
language-defined). It includes data
objects and operations on these data
objects. The whole entity is
encapsulated this is to prevent
manipulation of the data objects by
any operation except for the
operations defined on the data object
within the abstract data type.

evolved into a “class” in object-oriented programming languages. The ADT
gives us a better understanding of what a semaphore is, but the concept is not
exactly implemented for semaphores. Operating system implementers define a
semaphore as an integer variable usually called a counter. The wait and signal
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operations are implicitly available to manipulate this variable. The variable is
not protected against manipulation by regular operations like addition and
subtraction. With the ADT concept in mind, we will follow the implementer’s
steps in our examples. Operations wait and signal are, in some systems, called
down and up, respectively. Wait and signal are atomic non-interruptible oper-
ations. A technique like a “disabling interrupt” can be used to implement these
operations within the operating system kernel. In the UNIX operating system,
the operations wait and signal are defined as follows. In other operating sys-
tems, they may be defined a little bit differently.

Wait. Checks the content of the semaphore variable; if it is grater than
zero decrements the counter by one and continues (In other words, the
permission to enter the critical region is granted). Otherwise, puts the
process in the queue of processes waiting for this semaphore and sus-
pends the execution of the process, or putting it to sleep.

Signal. Increments the content of semaphore variable by one; if there is
any process waiting for this semaphore wakes one up to continue its
execution. The process that has just wakened up must do the wait oper-
ation again.

We can talk of two kinds of semaphores: binary and integer. A binary sem-
aphore can only take one of the values, either zero or one. An integer sema-
phore, on the other hand, can take any integer greater than or equal to zero.
However, it must be bounded to a predefined value. Often the initial value of
an integer semaphore is the maximum value that the semaphore can take.

Producer-consumer problem

A classic IPC problem that is analyzed and designed using semaphores in
almost all operating system books is the produces-consumer problem. In
operating system terms, it can be used for print-queue management which was
mentioned at the beginning of this chapter in the discussion about race.
Processes that run in a multiprogramming or parallel manner are producers of
output files to be printed. The printing process or processes, in case there is
more than one printer, are consumers. The print-queue which has a limited
number of slots is the shared resource. The implementation that is given below
could be used for many similar problems. Like the print-queue problem, pro-
ducer and consumer are general names for certain types of communicating
processes. Producer process(es) produce entities and put them in the shared
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queue. Consumer(s) take entities from the shared queue and use them for
whatever purpose they are designed to do.

To design the system, we start by listing the constraints and assigning a sem-
aphore to each constraint that a semaphore can enforce. As you will see, sema-
phores are not only used to enforce mutual exclusion but also to enforce other
constraints.

1. Enforce mutual exclusion by using the entity-buffer
2. Make sure not to put new entities in a full buffer
3. Make sure not to remove articles from an empty buffer

The mutual exclusion enforcing semaphore is considered to be mutex. The
variable available shows the current number of available slots in the buffer. It is
also used to check whether or not the buffer is empty. The variable occupied
indicates how many slots of the buffer are occupied at any given time. It is also
used to check whether or not the buffer is full. A semaphore is explicitly
defined as an integer variable and operations wait and signal are implicit appli-
cable operations for it.

An important issue that must be carefully handled is the initial value
assignment to semaphores. For our case study, the initial value of the available
semaphore is the size of the buffer which is expressed in terms of slots. This
makes sense as it represents the number of available buffer slots at the start-up
of the producer-consumer processes. Similarly, the initial value of the occupied
semaphore is zero. Related statements are globally defined. The semaphore-
based solution of the producer-consumer problem follows.

#define true 1

#define BC 1000 //Buffer capacity

typedef int semaphore; //Defines the keyword semaphore
semaphore available = BC; //All buffer slots are available
semaphore occupied! = 0; //Buffer is empty

semaphore mutex =1; //Shared Resource is not in use

The following is the producer procedure.

void producer (void)
{
struct buffer_slot entity;
while (true) {
produce_an_entity(&entity);
wait (&available); //Wait for a free slot
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wait (&mutex); //Get permission
insert_the_entity(&entity); //Put entity in queue
signal (&mutex); //Free resource
signal (&occupied); //One slot is filled

/
/

Look at the producer procedure. The shared buffer is grabbed after the
entity is produced and is ready to be inserted in the buffer. Also, right after the
entity is finished with the buffer; it is freed to be used by others. Deciding to
keep a shared resource for a longer time span forces other processes that also
need the resource to wait for a longer time. A good solution must always make
sure not to keep a shared resource longer than necessary.

In producer procedure, every signal primitive corresponds to its nearest
wait primitive, from the inner most block outward. When a procedure is
designed with this property, its correctness analysis becomes straightforward.
However, if we have to force this property all the times, we may not be able to
design all IPC problems. Now, let’s see the consumer procedure.

void consumer (void)
{
struct buf_slot entity;
while (true) {
wait (&occupied); //Wait until there is an entity
wait (&mutex);
remove_the_entity(&entity);
signal (&mutex);
signal (&available);
consume_the_entity(&entity);

/
/

We have learned from producer-consumer that when a process sleeps, other
processes have to wake it up. Although there are examples, it is usually not pos-
sible for a process to wake itself up, after having fallen asleep. In the statement
wait(&available), a producer goes to sleep when the buffer is full. A consumer
wakes up the sleeping producer with the statement signal(eavailable). A
reverse situation occurs when a consumer goes to sleep and a producer wakes
1t up.
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Producer and consumer are two procedures that can perform predefined
operations indefinitely. Two processes (or threads) have to be generated and
each must be assigned to run one of these procedures in order to start the pro-
duce-consume process. The following is the main program for this purpose.

void main (void)
{
int pid;
pid = fork();
if (pid = 0) producer;
else consumer;

]

Dijkstra’s P and V

The semaphore was first introduced by Dijkstra. The following is the original
implementation of “GetPermission” and “FreeResource”, which was called P
and V, respectively. The semaphore name is s and P and V have to be imple-
mented atomically.

P(s)
§$=6-1;
ifs <0 wait (s);

V(s)
S=5+1;
if s <0 signal(s);

In this implementation, wait puts the process that is, the same process that
executes the wait primitive, to sleep on the specified semaphore. The signal
wakes one of the sleeping processes from the queue of processes that are sleep-
ing on the corresponding semaphore. Here, when a semaphore value is zero or
less than zero, new processes that execute the P operation will cause the sema-
phore value to decrement. In other words, the semaphore value could go lower
than zero. If a semaphore value is, for example -5, it means there are 5
processes waiting on this semaphore. That is, if a semaphore value is negative,
the same numbers of processes as the absolute value of the semaphore value
are waiting on the semaphore. On the other hand, if a semaphore value is pos-
itive, the same number of processes as the semaphore value can pass the P-bar-
rier and continue their execution.
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The semaphore method provides an almost perfect way of implementing
IPC problems. It does not suffer from busy-wait. It is not restricted to two
processes. It can be used in multiprocessor environments. The only weakness
of this method is said to be its difficulty of understanding and properly solving
IPC problems. Within the operating system, this weakness is not crucial
because operating system implementers are highly skilled professionals. To
overcome the complexity of using semaphores to enforce mutual exclusion in
application programs (or even within operating systems), another concept
called monitor has been introduced by Per Brinch Hansen. We will discuss this
concept next.

8.2.4 Monitor-Based IPC

The inspiration behind the monitor concept is simplifying the implementa-
tion of mutual exclusion. The monitor concept is not usable for constraints
other than mutual exclusion. For example, to make sure a new entity has not
been inserted into a queue which is full, other tools must be used. The goal is
to design a structure which includes all routines for working on a given critical
routine. The structure will make sure only one routine at any given time can be
used by only one process (or thread). This is what mutual exclusion actually
means. Within a monitor, a process which is executing one of the routines may
need to execute a wait primitive. Wait and signal primitives are methods, or
routines, of the semaphore ADT. Semaphores may be combined with monitors
to enforce mutual exclusion and other constraints at the same time. Variables
upon which wait and signal may be executed inside a monitor (i.e., sema-
phores) are distinguished from other variables by a syntax called condition.
Further discussion is presently postponed until a monitor-based IPC imple-
mentation of producer-consumer is presented.

class insert_remove: public monitor
{

private:

condition available, occupied;

int count;

public:

insert (struct buffer_slot &entity);

{
if (count == BC) wait (&available);
insert_entity(&entity);
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count = count +1;
if (count ==1) signal(&occupied)

/

remove (struct buffer_slot &entity)
{
if (count == 0) wait (&cooupied);
remove_entity(&entity);
count =count - 1;
if (count = BC-1) signal(&available);
}
Insert_remove (condition available=BC, condition occupied=0,
int count=0);

/

insert_remove IR;

class producer_consumer
{
private:
struct buffer_slot entity;
public:
producer()
{
while (true) {
produce_entity (&entity);
IR.insert (&entity)
/
/

consumer()
{
while (true) {
IR.remove(&entity);
consume_entity(&entity);
/
/

producer_consumer (struct buffer_slot entity ="");
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To activate two processes to start producing and consuming, the following
main program is used.

void main (void)

{
int pid;
producer_consumer  PC;
pid = fork();
if (pid I= 0) PC.producer;
else PC.consumer;

}

8.2.5 Message-Based IPC

Message is a concept which is mainly used for information interchange
between different processes in a distributed system environment. A message is
a data structure composed of many fields like sender’s address, receiver’s
address, data load, error correcting data etc. One process in one computer
sends a message, which one or more processes in one or more computers are
supposed to receive. The concept of message is extended to non-distributed
system (i.e., standalone multiprocessor or single-processor computers).
Message can also be used to transfer information between processes within a
standalone computer. All contemporary operating systems support message
passing techniques. As a matter of fact, message-based information transfer is
so essential that primitive procedures for implementation of the message con-
cept are realized in the kernel of every operating system.
Two of the most important primitive procedures are called as:

send (source, destination, message);
receive (source, destination, message);

In these statements, source is the sender process, destination is the receiver
process, and message is the data load to be transferred. This syntax may change
from one operating system to another and the number of arguments may vary.
It is to be understood that these primitives are called from the upper layers of
the operating system. The designer of the kernel defines how the primitives to
be called. It is the responsibility of the kernel to pass every message to its desti-
nation(s). Before sending a message towards its destination, the kernel supplies
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complementary fields like error
correcting bits according to the
message-passing protocol used.
Similar to the regular paper mail,
there are different message-passing
protocols. Although full synchro-
nization of the sender and receiver
of a message is not always neces-
sary, every party is usually aware of
the other party’s intention con-
cerning messages. This implies
some degree of synchronization
between the sender and receiver(s).
To simplify the matter we clarify
those aspects that are essential for our discussion. Sending or receiving a mes-
sage could be blocking or non-blocking.

A communication protocol (or protocol,
for short) is a set of rules for connecting
computers (and other digital devices) and
enabling them to communicate with each
other. A protocol is designed to provide a
standard means for connecting digital
devices and letting them interchange
information by using the (software)
facilities that are provided by the protocol.
Protocols make information interchange
easy, reliable, fast, and most important of
all, collision-free.

Blocking send: In blocking send, the sender process is blocked, that is,
its execution is suspended, until the message is delivered and the
receiver informs the sender of the matter.

Nonblocking send: The sender, in this method, executes the send primi-
tive and relies on the local kernel to deliver its message. It does not wait
until the message is delivered and continues to execute the next state-
ments. The sender will become aware of whether or not the message was
actually delivered.

Blocking receive: The receiver(s) of a message executes a receive primi-
tive and waits until the message is fully received, before proceeding to
execute the next instructions.

Non-blocking receive: The receiver of a message executes a receive prim-
itive and continues to execute the next instructions. When the message
is received the kernel will take care of it and perhaps will send an inter-
rupt to the corresponding process.

Two methods of sending and two methods of receiving make four combi-
nation methods.

How do we use messages to enforce mutual exclusion? Suppose there is a
common mailbox with one message in it. Whichever process grabs the mes-
sage first is allowed to execute its critical region or use the critical resource.
After the execution of its critical section is completed, the process sends back
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the message, which is a similar message to what it had received, to the mail-
box. Proper send and receive statements for this purpose would be:

receive (mailbox, message);
send (mailbox, message);

A very common practical system that
uses this idea to enforce mutual exclusion
is the token-ring network. The bus that
connects all computers in this network is
the critical resource. A token (i.e., a spe-
cial short message) moves from one com-
puter to another in a circular manner.
The computer which owns the token is
allowed to use the communication
media, or the shared bus. When this com-
puter sends all its pending messages, the
token is passed to the next computer.
Using the message-based IPC method,
the producer-consumer problem is
implemented in the following:

#define true 1
#define BC 1000  //Buffer capacity

void producer (void)
{
struct buffer_slot entity;
message msg1, msg2;
while (true) {
produce_an_entity(&entity);

receive (consumer, producer, &msg1);
//Get permission to use the entity-queue

receive (mailbox,&msg2);

A token-ring network is a local
area network based on a closed
ring wiring concentrators called
Multistation Access Unit (MSAU).
This network was developed by
IBM. Up to eight workstations can
form a star-shape cluster which is
connected to an MSAU. The
network follows the IEEE 802.5
protocol. It can support up to 72
devices using standard telephone
wiring. With Shielded Twisted Pair
(STP) up to 256 devices can be
connected.

//Wait for consumer's message

insert_the_entity(&entity);  //Put entity in queue

send (mailbox, &msg2);
send (producer, consumer,&msg1);
/
/

void consumer (void)

//Free the resource, i.e., queue
//One slot is filled
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struct buf_slot entity;
message msg1, msg2;
for (i=0; i<BC; i++) send (consumer, producer, &msg1); /BC slots are free
while (true) {
receive (producer, consumer, &msg1);  //Wait until there is an entity
receive (mailbox, &msg2);
remove_the_entity(&entity);
send (maibox, msg2);
send (consumer, producer,msg1);
consume_the_entity(&entity);

/
]

void main (void)

{
int pid;
message msg2;
send (mailbox, &msg2);
pid = fork();
if (pid != 0) producer;
else consumer;

8.3 Summary

If the allowable number of processes simultaneously using a resource is lower
than the number of processes that have attempted to use the resource, then the
Uncontrolled attempts by concurrently running processes (or threads) to use a
shared resource causes a collision of processes over the shared resource. This
collision causes a race condition and thus the processes that are participating in
the race condition may produce incorrect results. There is numerous hardware
and software shared resources within every multiprogramming operating sys-
tem. These resources have to be used in a collision-free manner for the operat-
ing system and application processes to work properly. In this chapter, many
methods were introduced that are effective under different circumstances to
guarantee mutual exclusive (race-free) resource usage. The disabling interrupt
method works well for single processor systems. This can only run in a pro-
tected mode because the corresponding machine instruction is privileged. A
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strict alternation method is for synchronizing two processes. Processes have had
to alternate when using a shared resource. Peterson and Dekker methods
remove the restriction of alternate shared resource usage by processes. The test-
and-set-lock method accomplishes the same thing but with the help of a
machine instruction provided only for this purpose. Yet another similar
method is the swap method. This tries to obtain the permission to use a shared
resource by swapping the value of a local variable with the value of a global
variable (that acts as the permission). This is done by running an atomic rou-
tine called swap. Some processors have a machine instruction that can swap the
contents of two memory locations in one shot (by one machine instruction).
These methods (except the disable interrupt) all suffer from busy-wait con-
sumption of CPU time. A semaphore-based method is a busy-wait free form of
guaranteeing mutual exclusion. Due to its generality and efficiency, it is used by
many operating systems. The concept of monitor complements semaphore
through the implementation of multi-constraint synchronization problems.
The message-based method is borrowed from distributed operating systems,
but it works on centralized systems, as well.

8.4 Problems

1. For the processor of your personal computer see whether or not there is a
machine instruction that performs operations that is required by the test
and set lock concept. Note that, it must do two actions; (1) test (or load)
the content of a memory location and (2) set its value to one, all in one
machine instruction. If there is, name this instruction and explain what it
does, exactly.

2. Express the reasons for insisting on doing these two actions: (1) test (or
load) the content of a memory location and (2) set its value to one using
one machine instruction, in order for this instruction to be useful in
implementing mutual exclusion.

3. For the processor of your personal computer, check whether or not there
is a machine instruction that exchanges the contents of two memory loca-
tions. If there is, name this instruction.

4. Show that if Peterson’s method is correctly used to enter and leave a criti-
cal region, then only one process at a time can be in its critical region.

5. Suppose Peterson’s method is modified so that, instead of using the global
variable turn a random number generator is called upon to return one of
the zero or one values. Comment on this solution.
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void GetPermission (int process)
{
int other;
other = 1-process;
desire [process] = trug;
while (desire[process] & desire [other] &&rand(0,1)!=process);

/

void FreePermission (int process)

{

desire [process] = false;
/

Suppose that we replace the “turn=process” to “turn=other” in Peterson’s
solution to mutual exclusion. Will the new solution work well all the
time? If not, what will go wrong?

See the following program. This is suggested by Hyman [Hyn66] as a
method for guaranteeing mutual exclusion. Although published by
Communications of the ACM, it is incorrect. Show that, this program
does not work right all the time. This exercise shows how difficult it is to
verify and prove the correctness of mutual exclusion solutions.

#define true 1

#define false 0

int blocked[2];

int turn;

void main(void)

{ intpid;
blocked|[0]=false;
blocked[1]=false;
turn=0;
pid=fork();  //Suppose that a child process is successfully created
if (pid==0) p(0);
else p(1);

/

void p(int id)

{

while (true)

{
blocked[id]=true;
while (turn != i)
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{
while (blocked][1-id]) turn=id;

/
/[Critical section

blocked|id] = false;
//Other computation

/
/

In the semaphore-based solution of the producer-consumer problem,
what are the consequences of interchanging the two statements
wait(¢available) and wait(émutex) in the producer procedure?

The following two processes are running concurrently. These two
processes use two global variables x and y. Assume that the execution of
each assignment statement is atomic (that is when started, it continues
until completion without being interrupted).

a.  If the values of x and y are 1 and 3 respectively before the processes
start, list all the possible values of x and y after the two processes finish.

b.  List all possible values of x and y, if the assumption of the atomicity
of the assignment statements is removed. Hint: it is better to first
translate the body of each process to assembly language.

Void proc1(void) void proc2(void)
{ {
X=x+5 X=X+7,
y=y+25 y=y+31;
/ /

Suppose that 10 processes are running concurrently. Two of these
processes want to use a shared resource. Each of these two processes
repeatedly performs a little computation, busy waits for the shared
resource, uses the resource, and then releases the resource. If the schedul-
ing policy is round-robin, what percentage of the CPU time is wasted due
to busy-wait?

Four processes are going to use a common buffer the size of 1500 bytes.
The following table shows the maximum and allocated requirements of
the first three processes. A process cannot finish unless its complete
requirements are allocated.
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Process Total required space Allocated space
P1 700 bytes 450 bytes
P2 600 bytes 400 bytes
P3 600 bytes 150 bytes

a. Ifthe fourth process enters with a total requirement of 600 bytes and
it immediately requests 250 bytes, is this request safe (with respect to
deadlock)?

b.  If the fourth process enters with a total requirement of 600 bytes and
it immediately requests 350 bytes, is this request safe?

With the Test-and-Set-Lock (tsl) mechanism of guaranteeing mutual
exclusion, if five processes repeatedly need a shared resource is there a
possibility of starvation?

Two processes, A and B, are being executing in a multiprogramming (or
multiprocessing) manner. Process A has only one instruction, a=1, and
process B has two instructions, b=a and c=a. List all possible sets of values
for a, b, and c. Variables a, b, and ¢ are global and the initial value of a is zero.

Initial values of semaphores x and y are 0 and 1, respectively. What is the
typical output that is generated by processes P1 and P2 when executing
concurrently?

P1
while(1){
P(x);
print ("A");
V(y);
/
P2
while(1){
P(y);
print("B");
V(x);
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Three processes P1, P2, and P3 are concurrently running. To use shared
resources, these processes execute the following set of down and up prim-
itives on semaphore s in the same sequence that is shown in the following
table. At the end, what is the state of every process?

P1 P2 P3 P2 P1 P3 P2 P2 P3 P1

down(&s)[down(&s)|up(&s)|down(&s)|up(&s) up(&s) down(&s)down(&s) up(&s)|down(&s)

16.

17.

18.

The Initial values of semaphores x, y,and z are 1, 5, and 10, respectively. At
the most, how many processes may be awaiting each of these semaphores,
with respect to the following pseudo code?

aéwn(&z),'
down(&y);
down(&x);

up(é.’(').();
up(&y);
up(&z);

Three processes are concurrently running. There are three type Rl
resources, two type R2 resources, and two type R3 resources. These
processes are currently holding one R1, two R2, and one R1 resources,
respectively. If the following requests arrived in the order below, would
the system be safe?

- Pl requests one R2
- P2requests one R1 and one R3
- P3requests one R1.

[Han73] Suppose that we have a synchronization primitive called await
which delays a process executing the primitive until a Boolean expression
becomes true. For example, await B delays the process executing this
primitive until B becomes true. Of course, a concurrently executing
process has to manipulate B; otherwise the waiting process will wait
indefinitely. Design a solution for the producer-consumer problem using
the await construction.
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Chapter 9

Deadlock and Starvation

Methods for enforcing mutual exclusion were discussed in the previous chap-
ter. As explained, enforcing mutual exclusion prevents race condition. That is,
processes will not produce incorrect results due to uncontrolled use of critical
resources. However, some processes, in the first palace, may never terminate to
produce correct results. In the following sections, undesirable standstill situa-
tions that might occur to processes are discussed, plus and methods for pre-
venting or curing this.

9.1 Deadlock

Imagine a situation in which every person needs one chair and one desk in
order to do an assignment, whatever it might be. There is only one chair and
one desk available that are long-term shared critical resources that people have
to use in a short term exclusive manner. A mutual exclusion-free solution will
guarantee that no more than one person will ever sit on the chair at any given
time. Similarly, no more than one person will ever use the desk at any given
time. However, what if one person gets a hold of the chair and another person
grabs the desk. Neither of these people would be able to do their assignment
nor, by the method that guarantees mutual exclusion, would they be able to let
go of what they have taken in order to break the standstill. This standstill is
called a deadlock. Therefore, deadlock is a situation in which two or more
processes are unable to proceed with their execution because of waiting for
another process. Without external intervention this waiting situation will not
end.

221
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9.1.1 Deadlock Conditions and Modeling

A single process cannot cause a deadlock by itself. A process may be stuck in a
situation in which it needs a resource which is not ready right now and it will not
become ready in the future. For example, a printer may be off and the system has
posted a warning for the user to turn the printer on, even though the user is not
planning to do so. Although this process will wait indefinitely, this situation does
not match the definition of deadlock. The possibility of a deadlock exists only if
the following three conditions are simultaneously present in an environment.

1.

Mutual exclusion: There are resources in the system for which
mutual exclusion is enforced to prevent race condition. However, if
such resources exist but mutual exclusion is not enforced, there will
not be any deadlocks. That is, we may prevent deadlocks at the price
of letting race condition occur. By doing so, the overall results are
unreliable and the integrity of the system is questionable.

Hold and wait: This refers to a situation in which a process is hold-
ing one or more resources and is also waiting for one or more other
resources that are not available for the time being. In this context,
there is no difference between a hard resource like a printer, proces-
sor, main memory, etc. and a soft resource like a message, a datum, a
procedure, etc. In the case of independent processes, when a system
accepts a process only if it can supply all its resources upon creation,
a hold and wait cannot occur. That is, whenever the system cannot
supply resources the process is not accepted. It must be clear that if
processes are dependent and for example, communicate with each
other by sending messages, then each one of the processes may
simultaneously need a message from another. This situation leads to
a deadlock if the message-passing protocol is receive-blocking.

Non-preemptable resources: A non-preemptable resource is a
resource that cannot be forcefully taken away from the process that is
holding it. The existence of such resources in a system points to a
deadlock condition. A device like a tape drive is a non-preemptable
resource. Operating systems are designed so that when a device of
this kind is given to a process, the process keeps it until the device is
intentionally given back to the operating system. On the other hand,
with page-based virtual memory management a page frame that is
owned by a process can be taken away from the process whenever the
page replacement algorithm wants to. Page frames, in this context,
are preemptable resources.
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The three conditions discussed above fulfill the necessary requirements for
deadlocks to occur. In almost all contemporary environments, these three con-
ditions are always met, unless the operating system’s designer intentionally
removed one of these from the system to make sure deadlock will not occur. If
the following condition also exists, in addition to the three previously men-
tioned conditions, a deadlock has occurred and it is too late to keep it from
happening.

4.

Circular wait: A set of two or more processes form a closed chain in
which each process needs a resource that is held by the next process
in the chain. This closed chain is said to form a circular wait chain.
In our previous example of one chair and one desk, if one person
takes the chair and another takes the table, nobody can do his assign-
ment. Each person is waiting for the other to let go of what he has
taken. Depending on the generosity of the processes the situation
creates a circular waiting chain. In fact, the heart of a deadlock is the
circular wait; when this happens, we know that a deadlock has
occurred. This means that the other three conditions hold, as a cir-
cular wait could not occur otherwise. The definition of circular wait
matches that of a deadlock. As a matter of fact, if there is a circular-
wait, then there is a deadlock. Recall that, in a circular-wait, the other
three conditions definitely hold, too.

To show a pictorial representation of a deadlock Holt suggested using the
following four symbols [Hol72]:

Q A process
I:I A resource

A process waiting for a
resource

A resource in possession of a
process

Figure 9.1: Deadlock modeling symbols
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Suppose there are two processes, A and B. A holds the CD drive and waits to
get the floppy drive. B holds the floppy drive and waits to get the CD drive.
This circular wait is depicted in Figure 9.2.

~

CD Floppy
f\

Figure 9.2: A process-resource circular wait graph

Figure 9.2 represents a process-resource wait-for graph, or a wait-for graph,
for short. Sometimes resources are removed from this type of figures and only
processes are used to show a possible circular wait graph.

The last action that closes a wait chain is always a request that is made by
one of the processes to use a resource which is possessed by another process.
This request reflects the need of the requesting process to continue its execu-
tion. Presumably, the requesting process cannot ignore its need for the
resource. Solutions to the deadlock problem are categorized into four classes.

1. Ignoring Deadlock

2. Deadlock Avoidance
3. Deadlock Prevention
4

Deadlock Detection and Recovery

9.1.2 Ignoring Deadlock

Although we are aware of the possibility of a deadlock, we may intentionally
ignore it altogether. There are reasons for doing so. Some environments are not
very sensitive to minor malfunctions of a system. For example, in an educa-
tional environment if two or more processes are trapped in a circular wait, the
user will notice it. He or she will probably reset the computer and try to catch
up with what he was doing, without incurring any serious harm to fatal data.
On the other hand, the cost of preventing deadlock or recovering from dead-
lock may be very high and the operating system designers, for some versions of
the operating system, may decide to ignore the possibility of deadlock.
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By ignoring deadlock, we are not actually suggesting a solution, but rather
erasing a problem statement. It is possible that deadlock may occur and the com-
puter user has no option but to turn the computer off or to reset it. In some envi-
ronments, the side effects of such an action could be very harmful. For example,
if a process is supposed to transfer a large sum of money from one bank account
to another. What will happen if a deadlock occurs when the money is withdrawn
from the first account but not yet deposited into the second account? It is, there-
fore, not wise to ignore deadlock in sensitive applications.

9.1.3 Deadlock Prevention

For deadlock to be possible, all three necessary deadlock conditions must be
simultaneously met. Besides, to achieve an actual deadlock, the fourth condi-
tion must also exist. Therefore, for deadlock prevention, we can arrange that at
least one of the necessary conditions is not satisfied. If we cannot ensure this,
then circular wait, the fourth condition, can be prevented. The three condi-
tions necessary for the possibility of deadlock are always satisfied in contem-
porary operating system environments. Removing one of these conditions
greatly reduces the performance of the system. It is, thus, not recommended to
remove one of these conditions. However, in some rare cases, for which these
solutions are acceptable, we shall discuss the methods used.

Removing the mutual exclusion condition

By not enforcing mutual exclusion, we allow race conditions to occur. It fol-
lows that, as a consequence of race condition, processes may produce unac-
ceptable results. It is obvious that this is not acceptable by any computer user.
One environment that does not require mutual exclusion is the single-pro-
gramming single-processing environment. Not more than one active program
(i.e., process or thread) runs at any given time and this process does not have
any resource competitor for its whole life time. There are also rare resources
for which we do not have to enforce mutual exclusion. As this is a property of
the resource, we do not actually do anything to prevent a deadlock. For exam-
ple, a block of main memory may have fatal operating system data that is
needed by many processes to read. However, only one process of the operating
system is allowed to modify it. This block of main memory can be used by
many reading processes simultaneously, without violating any constraint.
Therefore, mutual exclusion is not necessary to impose on this resource. For
reading processes, a circular wait will not occur when this resource is involved.
Once again, we have not done a specific action to prevent deadlock, but, rather,
the property of the resource is such that it excludes deadlock.
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Removing the hold-and-wait condition

Another necessary condition for deadlock is hold-and-wait. To prevent deadlock,
we must prevent hold and wait. In other word, a process should not be allowed to
request a new resource, which is possessed by another process, while holding
other resources. Therefore to prevent hold and wait, there are two suggestions:

1. Make sure no process needs more than one resource simultaneously,
a restriction that the system has to enforce. This suggestion is almost
impossible and very rare processes satisfy this condition. Enforcing
this condition will prevent many processes from being executed.

2. Allocate all the needed resources of each process right after its gener-
ation or else do not accept it at that time. The process may be regen-
erated in the future when there are enough resources available. By
doing so, the hold and wait situation will not occur because no
process will request a new resource during its execution. This
method has many disadvantages. Every process must list its complete
resource requirement, including hard and soft resources, before its
execution. This is almost impossible for contemporary processes
with their vast dynamic resource requirements. Some resources may
not be needed at the beginning of the execution or they may be
needed at the end of execution. However, the system will assign these
resources long before being used. It is clear that the resource utiliza-
tion will be very low. In order to return a resource when it is no
longer needed, the process has to make sure it will not require the
resource in the future. This will force an overhead on the system.
Although this is possible, it is not practical.

Removing the non-preemptability condition

The third necessary condition for deadlock is the existence of non-preempt-
able resources. If all resources are preemptable, then this condition is not met
and there will be no deadlock in the system. However, if some resources are
non-preemptable, i.e., the system cannot forcefully and safely regain the
resource from the process which owns it for the time being, this condition has
met and deadlock possibility depends on other conditions. Although preempt-
ability, here, is an attribute of resources and cannot be overruled. We can put
restrictions on processes that are supposed to use these resources. One method
is for the system to force a process possessing some non-preemptable resources
and needing another resource to be suspended and to relinquish its possessed
resources. Later in the future, and, if safe, the system will resume the execution
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of this process, at the same time, hand over all of the process’ previously owned
resources along with the resource requested. Another method is for a process
that possesses some non-preemptable resources and requires another non-
preemptable resource which is owned by another process. The latter process is
suspended and its resources are claimed by the system. The system will resume
the execution of the suspended process later, and if safe, give all of the process’
previously owned resources back. There are limitations to these methods,
namely: (1) processes must be preemptable and (2) it must be possible to
return non-preemptable resources to the state they were before, when the exe-
cution of the corresponding process is resumed. For example, if process A is
using a CD-drive to make a backup copy, suspend its execution when the cur-
rent file is completely copied and lend the device to another process. When the
latter process releases the CD-drive reactivate the former process to copy the
remaining files. As you may notice, this is a difficult task and it requires the
user’s cooperation for inserting and removing CDs.

Removing the circular-wait condition

What is left for preventing deadlines is to prevent circular wait. Note that if a
circular wait has occurred, we are faced with a deadlock and it is too late to
prevent it. To prevent deadlock, we must propose methods that prove a circu-
lar wait will not develop. One method is to use resource ordering. All (non-
preemptable) computer resources are classified into #n ordered classes. If a
process is given a resource from class i, it can only request resources from
classes of a higher order, i.e., i+1, i+2,..., n. A simultaneous request for more
than one resource from one class is acceptable as long as it does not contradict
the assignment ordering with respect to previously allocated resources to this
process. To show that this method prevents deadlock, consider two processes
that have respected these rules and yet a circular wait occurred; see Figure 9.3.

4ﬁ 1

R2 R1
,3\ 2

Figure 9.3: Two processes with a circular wait situation
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From (4) and (1) in Figure 9.3, we conclude that A possesses R2 and A has
requested R1 thus RI>R2. From (2) and (3) in Figure 9.3, we conclude that B
possesses R1 and B has requested R2; thus R2>R1. These two results contradict
each other and so the circular wait assumption is impossible. Although this is
not complete proof, it gives a feeling of what could go wrong if we assume
there can be a circular wait for this method. The disadvantage of this is that
sometimes we are forced to assign a resource which will be needed much later.
For example, if a process needs a resource from class 5 and it will later request
a resource from class 3, we have to assign the resource from class 3 before
assigning the resource from class 5. Such circumstances reduce the utilization
of the resources and the overall efficiency of the system.

9.1.4 Deadlock Avoidance

Similar to deadlock prevention, deadlock avoidance ensures that deadlock will
not occur. To make it clear, out of the four deadlock handling strategies, dead-
lock prevention and deadlock avoidance guarantee that deadlock will not
occur. However, in ignoring deadlock and deadlock detection and recovery,
deadlock may occur. The term “deadlock avoidance” appears to be very close to
“deadlock prevention” in a linguistic context, but they are very much different
in the context of deadlock handling. As we saw in the previous section, dead-
lock prevention does not require examining what will happen in the future if a
request for a resource is accepted and the resource is allocated. This method
does not need to know in advance the total resource requirements of every
process. With available information at the time of a request, the system can
decide whether or not to allocate the requested resource.

Deadline avoidance is based on careful analysis of every request by examin-
ing what will happen in the future if the requested resource is allocated. The
resource is allocated if the system is safe and will not be allocated otherwise.
The requesting process has to resubmit its request at a later time.

One of the most respected deadline avoidance methods is the banker’s algo-
rithm. Think of a bank branch that has certain amount of capital in the form
of cash. Its capital will not increase for the purpose of our discussion. The
bank manager (i.e., banker) grants credit to customers who need to invest in
their respected businesses. He knows that the probability of all customers
requesting all their credit simultaneously is very low. If that happens, he can
postpone lending to some customer for a later time. Therefore, the total sum of
all credits can be greater than the bank’s capital. A customer may start to pay
back a loan having received all his credit. Customers may claim all their credit
at one time or this can be done in a number of installments. The banker is not
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allowed to forcibly collect the money from a customer. In other words, the
money resource is not preemptable. The banker carefully checks every request
from every customer to make sure that, by lending the requested amount to
the customer the banker will not encounter deadlock. A deadlock will occur
when lending a requested amount leads to a situation in which there is no way
to complete total needs of all customers, no matter what the future ordering of
the requests would be. This can be avoided if the total needs of every customer
is known in advance. The Banker’s Algorithm was formalized by Dijkstra
[Dij65]. In the context of an operating system, a process is a customer and all
hardware/software resources of a specific type, say all printers, correspond to
the capital to be lent. Every process has to declare all its resource needs, at the
start time. A process is accepted by the system if its total needs do not exceed
the total number of resources. For every resource request, the banker’s algo-
rithm executes these steps in the following order:

Banker’s algorithm:

1. If the number of requested resources is greater than the number of
available resources no resource is given to the process. The process has to
resubmit its request at a later time in the hopes that some resources will
be freed and that there will be enough available. Otherwise,

2. Suppose that the required resources are given to the process (it is not
actually given to the process)

3. See if there is a process that can complete its job. If there is one, mark it
as completed. Take away all of its resources and add them to available
resources. Repeat this step for unmarked processes until there are no
more unmarked processes or there is no process left that can complete its
job with the available resources.

4. Ifall processes are marked, it is safe to allocate the requested resources to
the process. Otherwise, the allocation is not safe. Do not allocate the
resources to the process. In this case, the process has to resubmit its
request at a later time.

If we start with a safe state, the above explained algorithm guarantees that
there will be no deadlock with respect to the controlled resource type. A safe
state is a system condition in which all processes, in some order, can receive
their needed resources from the resource type that is being controlled and that
they can complete their jobs. A process that has completed its work is sup-
posed to return all of the resources it possesses of the resource type. To check
for the safety of a state, Step 3 of the Banker’s Algorithm is executed and all
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processes must be marked at the end. Sometimes, checking for the safety of a
state is called deadlock detection, although deadlock detection is usually used
when we talk about the detection and recovery method. If the current state of
the system is unsafe, a deadlock has occurred. The processes that are not
marked are in deadlock.

A scenario of the Banker’s Algorithm used to avoid deadlock is presented as
follows. Although the controlled resource type is usually considered to be
printers, tapes, or scanners, in our scenario it is “opened files”. You have proba-
bly been faced with a restriction on the number of opened files. Perhaps, you
have encountered the illogical behavior of your operating system in cases
where the number of opened files exceeds the limit. If the Banker’s Algorithm
is used, the system’s behavior can become more predictable.

Example 9.1: Suppose the number of simultaneously opened files is restricted
to 128 and there are four processes in the system that need to open, at the most,
55, 95, 10, and 80 files, respectively. Neither of the processes must open more
than 128 processes (which is the maximum number of possible opened files).
Thus all four processes are accepted for execution. Each process may open one
or more files in every step. When a file is opened by a process, it will remain
open to the end of process execution, although it may be closed when it is no
longer needed. The sequence of requests to open files follows. This sequence
corresponds to the order in which requests are submitted to the system that is, a
request that arrives earlier is listed before a request that arrives later.

1. Process p1 needs to open 20 files
2. Process p3 needs to open 2 files
3. Process p1 needs to open 15 files
4. Process p4 needs to open 25 files
5. Process p3 needs to open 3 files
6. Process p2 needs to open 47 files

8. Process p3 needs to open 5 files

9. Process p2 needs to open 33 files
10. Process p1 needs to open 20 files
11. Process p4 needs to open 30 files
12. Process p4 needs to open 18 files
13 Process p2 needs to open 15 files

7. Process p4 needs to open 7 files

Table 9.1 summarizes the state of the system after every request is generated.
Step 0 is the initial state when the system has just started and no request has
arrived yet. The table is developed until Step 7 when the state of the system
becomes unsafe. Therefore, the request from p4 in Step 7 is not safe and the
system will not give the required resources to that process. The process may
regenerate its request at a later time.
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Table 9.1: Banker’s algorithm applied to a four-process system.

Step no. | Process | Request | Given, | Will need | Available, | Safety
so far | in the future overall

0 128 Safe
1 P1 20 0 35 128 Safe
2 p3 2 0 8 108 Safe
3 pl 15 20 20 106 Safe
4 p4 25 0 55 91 Safe
5 p3 3 2 5 66 Safe
6 p2 47 0 48 63 Safe
7 p4 7 25 48 16 Unsafe

In Step 1, if 20 files are opened for Process 1, 108 options will remain. With
these, Process 1 can complete its job and then return all its resources, making
the number of resources 128. With 128 resources, Process 2 can complete its
job and return all its resources. Similarly, Processes 3 and 4 can complete their
jobs one after the other. Thus, the assignment is safe and the system can allo-
cate 20 resources to Process 1, meaning Process 1 can open 20 files. In Step 6,
for example, if 47 resources are given to Process 2, 16 resources will remain.
With that, Process 3 can complete its job and return all its resources. The num-
ber of available resources then becomes 21. Now, Process 1 can complete its job
and return all its resources. We will have 51 resources and, at this time, Process
2 can complete its job and return all its resources. With 98 available resources
Process 4 can complete its job, too. Therefore, the assignment is safe and
Process 2 is allowed to open 47 files. In Step 7 if 7, resources are given to
Process 4; the remaining number of resources will be 9. With that, Process 3
can complete its job and return all its resources. We will have 14 resources now
and no other process can complete any jobs. Thus the assignment is unsafe and
this request is not accepted. Process 4 may regenerate its request at a later time.

The Banker’s Algorithm for deadlock avoidance can be used for multiple
types of resources. The algorithm steps that are designed for a single type of
resource have to be modified, a little bit, so as to be applicable for multiple
resource types. Step one can be specially modified as:

“If the number of requested resources from each type is greater than the
number of available resources of the corresponding type, no resource is
given to the process. The process has to resubmit its request at a later time
in hopes that some resources will be freed and there will be enough
resources available. Otherwise,”
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A process is not created if the number of requested resources of at least one
resource type is greater than that resource type’s total number of resources in
the system. Every process can request one or more resources from one or more
resource type. The request is either accepted as a whole or it is rejected. In the
following, we present a short scenario of two types of resource system with
three processes. There are 10 CD drives in the system and, at the most, 20 files
can be opened simultaneously. The maximum number of simultaneously
required resources of every type for each process has to be declared at the
process creation time. In this case, Process 1 will need to open 6 files and use 4
CD drives. Process 2 will need to open 8 files and use 4 CD drives, and Process
3 will need to open 5 files and use 3 CD drives. The following is the actual list
of requests in the order of their arrival. The total requirements of processes are
summarized in Table 9.2.

Table 9.2: Total requirements of processes

Process ID | Number of open files | Number of CDs
Pl 6 4
P2 8 4
P3 5 3

Process p1 needs to open 2 files and use 3 CD drives
Process p2 needs to open 4 files and use 2 CD drives
Process p1 needs to open 3 files

Process p3 needs to open 5 files

Process p3 needs to use 2 CD drives

Process p2 needs to open 4 files and 1 CD drives

Process p1 needs to open 1 file and use 1 CD drive

® N U » =

Process p2 needs to use 1 CD drive

The following table shows the statuses of the system right after each request is
made but before the required resources is given away. There are 8 CD drives in
the system and not more than 20 files can be opened simultaneously at any
given time.
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Table 9.3: Banker’s algorithm applied to a multiple resource system.

Step no. | Process | Request | Given, Will need | Available, | Safety
so far | in the future | overall
0 20 files Safe
8 CDs
1 pl 2 files 0 4 files 20 files Safe
3 CDs 0 1 CD 8 CDs
2 p2 4 files 0 4 files 18 files Safe
2 CDs 0 2 CDs 5 CDs
3 pl 3 files 2 files 1 file 14 files Safe
3 CDs 1 CD 3 CDs
4 p3 5 files 0 3 CDs 11files Safe
3 CDs
5 p3 2 CDs 5 files 1 CD 6 files Safe
3 CDs
6 p2 4 files 4 files 1CD 6 files Unsafe
1 CD 2CD 1 CD

Steps 1 through 5 are all safe. For example, to analyze Step 5 we assume that
two CDs are given to Process 3. The system is left with 6 files and one CD. With
that, p1 can complete and return 2 files and 3 CDs. The system will have 8 files
and 4 CDs. With that, Process 2 can complete its job and return 4 files and 2
CDs, which brings the total available resources to 12 files and 6 CDs. Process 3
can also complete its job because it needs one more CD drive. Therefore, the
allocation is safe and 2 CDs are allocated to Process 3. Step 6 is not safe
because, if the resources are allocated, the system will end up with 2 files and
no CDs. However, each of the processes needs one more CD to complete.
Therefore, the allocation is not safe. The system has to ignore this request and
process other requests. Process p2 has to wait to regenerate its requests. We can
continue examining Steps 7 and 8.

Deadlock avoidance methods guarantee that no deadlock will take place in
the system, but the price of this assurance is very high. Every process makes
tens of requests and there are tens of simultaneous processes in multi-user sys-
tems at any given time. For every request, a time-consuming process of check-
ing whether or not the system would be safe if the requested resource(s) is
assigned away takes a tremendous amount of time which increases the overall
system overhead. This, in turn, increases the average waiting time of the com-
puter users. An alternative solution to deadlock detection and deadlock avoid-
ance is deadlock detection and recovery. This policy allows deadlocks to
happen, but tries to detect them and recover from the situation.
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9.1.5 Deadlock Detection and Recovery

In this policy, we allow deadlocks to occur, but a deadlock monitoring process,
called deadlock detection, will recognize the occurrence of every deadlock and
notify the system whenever such an event occurs. The system recovers from
this situation by killing a process, or rolling back one of the transactions,
which is in the process-resource
wait cycle. At the beginning of
deadlock section in this chapter,
we clarified that three condi-
tions are necessary for a dead-
lock to occur: mutual exclusion,
hold and wait, and non-pre-
emptable resources. The exis-
tence of the fourth condition,
circular wait, is sufficient alone
for occurrence of a deadlock. If
one of the three necessary con-
ditions is not present, we do not
have to worry about deadlock.
Unfortunately, in almost all cir-
cumstances, for contemporary
computers, these conditions are
present. Therefore, a method for
detecting deadlocks must con-
centrate on detecting a circular
wait. If a circular wait is detected we have a deadlock. After a deadlock has
occurred, there is no choice but to cure the system. We will concentrate, in this
section, on describing methods to detect circular wait. By implementing these
methods, actual deadlocks can be detected. Deadlock recovery is not fully cov-
ered in this section. This requires careful examinations of all processes that are
participating in the circular wait. This must be done to find out which process
to kill in order to break the circular wait.

When a request arrives and the required resource is already assigned to one
of the processes in the chain, a process-resource wait chain closes and turns into
a circular process-resource wait chain. Therefore, to check for a deadlock, a cir-
cular-wait finding algorithm must be executed, for every request to use a non-
preemptable resource. The algorithm is simple and does not consume a lot of
processor time compared to what is done in deadlock avoidance case. The
graphical representation of the process-resource chain or cycle is beneficial but

Transaction is an essential concept in
operating  systems and  database
management systems. A transaction is a
piece of work that has to be done either
completely or not at all. The incomplete
execution of a transaction is not accepted.
The underlying system must guarantee that
transactions are executed correctly. For
example, if a person issues a banking query
to transfer $1,000 dollars from his checking
account to his savings account, this piece of
work is indivisible and must be done as a
whole. If, after the execution of part of this
query, a deadlock occurs and the process is
killed, the $1,000 may have been withdrawn
from his checking account but not deposited
to his saving account. As a result, this person
has lost his money, for the time being.
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it is not applicable within the computer. A simple and efficient method of
implementation must be used.

Circular-wait detection method

The method that is presented here uses existing data structures with minor
additions to detect deadlock. In Chapter 4 we talked about the process table,
PT. It is a table that directly or indirectly stores information that is necessary to
identify and control all processes in the system. For the purpose of circular
wait detection, a column called “waiting for” is added to this table. This field is
filled for the purpose of circular wait detection. Similarly, a resource table, RT,
is used to identify and control the resources in the system. A field called “pos-
sessing process” is added to the resource table to show what process (if any) is
currently holding this resource. Values are assigned to this field during the exe-
cution of the circular wait detection process. The “waiting for” field of all
processes in the process table, PT, and the “possessing process” field of all
resources in the resource table, RT, must be initialized to become null, during
the system start or restart. The addition of a process to the process table and
the introduction of a new resource to the system require the initialization of
the corresponding fields. When a resource is released by a process, the resource
table must be updated so that this resource becomes available again.

The following is the detection algorithm. This algorithm is executed every
time a resource is requested by a process.

Circular-wait detection algorithm

Suppose that a process, whose ID is p, has requested the possession of a
resource whose ID is r. The following steps are executed to update PT and RT
and to detect a deadlock.

Step 1. If the resource r is available, allocate it to Process p and place p in the
possessing field of this resource in the resource table. A circular-wait
cannot occur when the required resource is available. Return from
this algorithm. Otherwise,

Step 2. Place r in the “waiting for” field of Process p in the process table.

Step 3. Assign p to pl and r to rl.

Step 4. Look at the resource table and assign the process that possesses
resource 71 to p2. If p2 is the same as p, a circular wait has occurred.

Announce this and return from this algorithm. Otherwise, go to the
process table. If process p2 is not waiting for a resource, a circular wait
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does not exist; return from this algorithm. Otherwise, assign the
resource for which p2 is waiting to r2.
Step 5. Replace pI by p2 and r1 by r2; repeat from Step 4 on.

Since a long example will consume too much space to explain the details of
computations, a very short example can serve the purpose of understanding
how the circular-wait detection algorithm works. See Example 9.2.

Example 9.2: Consider a multiprogramming or multiprocessing system that
runs two processes. Each process will require one CD drive and one set of
speakers to complete its job. There is only one CD drive and one set of speakers
in the system. For simplicity, process IDs are 1 and 2, respectively; the CD
drive’s ID is 1 and the ID for the set of speakers is 2. The sequence of requests is:

1. Process1  requests CD drive

2. Process2  requests Speaker set
3. Process1  requests Speaker set
4

Process2  requests CD drive

The detail of actions taken for the detection of circular-wait is as follows.
Once again, the process IDs of Process 1 and Process 2 are 1 and 2, respectively,
and the resource IDs of the CD drive and speaker set are 1 and 2, respectively.

1. Process1 requeststhe CD drive
Step 1: The CD Drive is assigned to Process 1.

Process table, PT Resource table, RT
Process ID | Waiting for | Other Resource ID | Possessing | Other
attributes process | attributes
1 1
2 2

2. Process2 requests the speaker set

Step 1: The speaker set is assigned to Process 2.
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Process ID | Waiting for |  Other Resource ID | Possessing |  Other
attributes process | attributes
1 1
2 2 2

3. Process1

requests the speaker set

Step 1: No action.
Step 2: Process 1 waits for resource 2, i.e., the speaker set.
Step 3: pl=1,and r1=2.
Step 4: p2=2, but process 2 is not waiting for a resource, so there is no
circular wait.
Process ID | Waiting for |  Other Resource ID | Possessing [  Other
attributes process | attributes
2 1 1
2 2 2

4. Process?2

requests the CD drive

Step 1: No action.

Step 2: Process 2 waits for resource 1, i.e., the CD drive.

Step 3: pl=2,and r1=1.

Step 4: p2=1,r2=1.

Step 5: pl=1,ri=1.

Step 4: p2=2, i.e., p2 becomes equal to p, thus a circular-wait exists,
which means a deadlock has occurred. The identity of the
processes that are involved in the circular-wait can be saved
during the execution of the algorithm.

Process ID | Waiting for |  Other Resource ID | Possessing [  Other
attributes process | attributes
2 1 1
2 2 2

The circular-wait detection algorithm works well when there is one resource
of each type. Minor considerations must be taken into account when, for some
resource types, there is more than one resource. First, if there is more than one
resource available, a process that is requesting a resource from a resource type



238  Operating System

can possess any of the available resources of that type. Second, if a process has
to wait for a resource of a resource type, it does not matter which resource it
waits for. Therefore, in the process of detecting a circular-wait, whenever a
process has to wait for a resource type, we have to exhaustively check to see
whether there exits a resource of this type so that if the process waits for, a cir-
cular-wait will not occur. If such a resource does not exist, circular-wait is
inevitable and, thus, a deadlock has occurred. Otherwise, we may have a cycle of
processes and resource types but not a circular wait chain. Figure 9.4 shows a
cycle of processes and resource types which does not represent a deadlock.
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Figure 9.4: A cycle which does not represent a deadlock

Figure 9.5 depicts a sample scenario of a process-resource wait-for graph with
one resource type, which includes two resources and two other resource types,
each with one resource. This demonstrates a real deadlock. Whichever resource
of type one that Process p, waits for, it leads to a cycle. Therefore, a circular-wait
has occurred and a deadlock is present. In this case, two cycles p,—r1;—ps—
1,—p, and p,—1—p;—TI3—p3—TI,—P, are necessary to form a deadlock.
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Figure 9.5: As p, requests a resource of type one a deadlock occurs
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9.2 Starvation

In a multiprogramming and/or multiprocessing system, processes or threads
have to compete for resources. The constant competition of processes may
force a process to indefinitely wait without being able to possess its requested
resource(s). Starvation is the condition in which one process indefinitely waits
for one or more resources. Without these resources its execution cannot pro-
ceed. We can usually check for the possibility of starvation but not the actual
one. This is because it is not possible to evaluate system behavior for an infinite
length of time, especially since the future is usually impossible to foretell. How
can we know how many new user requests we will have in the next two hours?

In a priority-based system, the scheduler always picks the task with the high-
est priority to be executed next. Therefore, the execution of a low priority task
may be delayed indefinitely, if new higher priority tasks keep arriving at a rate
that gives no chance to the lower priority task to execute. In this situation, the
possibility of starvation for the low priority task exists. The possibility of starva-
tion is not restricted to scheduling algorithms, or processor allocation algo-
rithms. It can occur to almost all resource allocation algorithms, if they are not
designed to be starvation-proof. Memory allocation, device allocation, and com-
munication link allocation are some examples. InterProcess Communication
(IPC) solutions are sensitive to both deadlock and starvation. They must be
carefully checked in order to detect deadlocks and, thus remove the possibility of
starvation. The following is a classic example of a hypothetical problem is
defined, which many researchers have carefully studied and presented deadlock
and starvation free solutions for. The comical nature of the problem is an advan-
taging attraction for students to think about the possible ways to analyze this
problem and, by doing so, experience the difficulty of providing correct, or
deadlock and starvation free, solutions.

9.3 A Classic Example of IPC

The dining philosopher problem was first made up by Dijkstra, though comical
and unreal, it is one of the simplest problems that best conveys the difficulty of
designing deadlock and starvation-free solutions to the complex problems in
modern operating system to correctly and efficiently share resources.

A round table with five chairs, five spaghetti plates, and five forks is set. Each
fork is located between two spaghetti plates, and vice versa. Five philosophers sit
at the table while each has his or her own spaghetti plate automatically refilled
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as it is eaten. A philosopher’s life is simplified into two states: think and eat.
Every philosopher indefinitely repeats these states. A philosopher cannot con-
tinuously eat or think and must change his or her state every once in a while.
The case becomes complicated when the rule that every philosopher has to use
two forks to eat spaghetti must be observed to arrive at an acceptable solution.
In order for a philosopher to eat, she or he must seize the two forks at the right
and left side of her spaghetti plate. If each philosopher is compared to a com-
puter process, the forks become the shared resources. In the absence of shared
resources, when there are enough forks, the processes are independent and
there is no need for interprocess communication/synchronization. Every
process, or philosopher, can go about its business, thinking and eating when-
ever he or she wishes. Figure 9.6 shows the table setup for the five philosophers.

Figure 9.6: The philosophers’ dining-table model

In Figure 9.6, plates are numbered in a counter clockwise direction from 0
to 4 and philosopher i, i=0, 1,..., and 4, is sitting at the table so as to use plate
number 1. Forks are numbered so that fork number i, =0, 1,..., 4, is next to
philosopher i at his or her left side. For most of our discussion the number of
philosophers is of no importance, so, sometimes we may talk about #, n>2,
philosophers, instead of 5. The following is the first attempted solution.
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Attempt 1. The first solution that comes to mind is to let every philosopher
take his or her forks one at a time and start eating. That is, if two forks are suc-
cessfully grabbed. When through eating, the philosopher puts down the forks
one at a time. It does not really matter which fork is taken first by a philoso-
pher, so, we will assume the fork on his or her heft hand side is grabbed first.
Let’s suppose two primitives grab(int fork_no) and put (int fork_no) are avail-
able for grabbing and putting down the nominated fork, respectively. Proper
care is taken, in writing these procedures, to avoid race conditions when grab-
bing or putting down a fork. The following procedure is executed by each
philosopher. The grab_fork and put_fork procedures are assumed to be race-
free procedures.

void philosopher (int i) /i =0,1,...,n-1, is the philosopher number

{
while (1) { // Do this loop forever
think; // Think for a while
grab_fork(i); // Grab left fork
grab_fork((i+1)%n);  // Grab right fork
eat; // Eat as you like
put_fork(i);  // Put left fork
put_fork((i+1)%n);  // Put right fork
/
/

In a multiprogramming and/or multiprocessing environment, it is possible
that all philosopher processes get to the point where each one has taken the left
fork and tries to take the right fork, executing grab_fork((i+1)%n). In such cir-
cumstances, no fork is available and all philosophers will enter a wait state.
This will result in a circular-wait condition which in turn indicates a deadlock.
In another scenario, Processes o and 3 and 2 and 4 are so synchronized that
whenever o and 3 are eating, 2 and 4 are thinking and as soon as 0 and 3 put
down their forks, 2 and 4 grab them immediately. Also, whenever 2 and 4 put
down their forks, 0 and 3 grab them immediately. If this cycle repeats forever,
Philosopher 1 will starve to death and, thus, a starvation state is possible.

Attempt 2. In this attempt, we will focus on removing the possibility of dead-
lock from the Attempt 1’s solution. In order to do so, one way is to remove the
possibility of a hold-and-wait situation. If a philosopher gets either both forks,
when he or she wants to eat, or gets neither of them, then the possibility of
hold-and wait is removed. Suppose we prepare a new race-free procedure,
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called grab_forks(int philosopher_no), to grab both forks at one time, whenever
possible. The resulting algorithm is:

void philosopher (int i) //i=0,1,...,n-1, is the philosopher number

while (1) { // Do this loop forever
think; // Think for a while
grab_forks(i);  // Grab both forks
eat; // Eat as you like

put_fork(i); // Put left fork down
put_fork((i+1)%n); // Put right fork down
/
/

This algorithm removes the possibility of a hold-and-wait situation. Hence,
it is deadlock free. If put_fork(i) simply puts a fork down, the starvation possi-
bility persists, similar to Attempt 1.

The Dining philosopher’s solution: In the following algorithm, in order for a
philosopher to access any fork, a down(&mutex) is first executed. As soon as
the access is completed, an up(&mutex) is executed. The critical section of
accessing forks is kept as short as possible in order to make sure that the effec-
tive degree of concurrent execution by philosophers is not reduced. Mutex is a
binary variable semaphore whose initial value is set to 1 to allow the first
attempt to access to be successful. The proper use of down(dmutex) and
up(&mutex) ensures that no more than one philosopher will try to simultane-
ously grab forks or put down forks. A philosopher may have to wait because
either or both forks next to him or her are being used by a neighbor(s). To pro-
vide for this possibility, an array of #, (the number of philosophers in our solu-
tion) semaphores, called “available,” is supplied. When a philosopher decides
to eat he or she has to make sure that the two forks next to him or her are avail-
able. If they are, the philosopher can go ahead and start eating. Otherwise, he
or she has to wait for the corresponding semaphore. Each philosopher’s neigh-
bor has to signal to the philosopher when he or she puts down her forks. Upon
receiving a signal from a neighbor, the philosopher is allowed to eat. Note that
before signaling, the philosopher putting down his or her forks will make sure
that his or her neighbor can eat.
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#definen 5

semaphore mutex=1;

semaphore available[n]={0}; // All elements of available are set to zero
int forks[n] ;

int waiting[n]; // Is the philosopher waiting?
void main (void)
{
int pid;
for (int i=0; i<n; i++)
forks[i] = 1;
for (int i=0; i<n; i++)
{
pid = fork(); // Create one philosopher process
if (pid==0)philosopher(i); // This is the created philosopher
/
/

void philosopher (int i) //i=0,1,...,n-1, is the philosopher number
{

while (1) { // Do this loop forever
think; // Think for a while
grab_forks(i); // Grab both forks
eat; // Eat as you like

put_forkL(i);  // Put left fork down
put_forkR(i); // Put right fork down

}
}
void grab_forks (int i)
{
int success = 0; // To be set to one if both forks are available
down (&mutex); // Forks are protected

waiting[i]=0;  // To be set to one if philosopher has to wait
If (fork[i] && fork([i+1]%n) { // If both forks are available

fork[i] = 0; // Grab left fork
fork[(i+1)%n] = 0; // Grab right fork
success = 1;

/

else waiting[il=1; // The philosopher has to wait
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up (&mutex); // Leave forks critical region
if (Isuccess) down (&available[i]); // The philosopher has to await forks

/
void put_forkL (int i)

down (&mutex) // Forks are protected
if (waiting[(i-1)%n] && fork[(i-1)%n])
{
fork[(i-1)%n]=0; waiting[(i-1)%n] = 0;
up(&available[(i-1)%n]);

/

else fork[il = 1, // Return this fork

up (&mutex); // Leave forks critical region
/
void put_forkR (int i)
{

down (&mutex)  // Forks are protected
if (waiting[(i+1)%n] && fork[(i+2)%n])
{

fork[(i+2) %n]=0; waiting[(i+1)%n] = 0;
up(&available[(i+1)%n);

/
else fork[(i+1)%n] =1,  // Return this fork
up (&mutex); // Leave forks critical region

]

The final solution to the dining philosopher, that is presented here, is dead-
lock and starvation free. Deadlock is prevented by grabbing both forks when
available, at one time and preventing a hold-and-wait condition. The starva-
tion freeness is guaranteed by the way the waiting neighbor(s) are alerted when
a philosopher puts down her forks. This is accomplished by checking whether
or not both forks of the neighboring philosophers are available whenever a
philosopher puts down forks. In any case, in terms of simplicity and efficiency,
this seems to be the best possible solution, compared to other deadlock and

starvation free solutions.
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9.4 Summary

The controlled usage of shared resources, by guaranteeing mutual exclusion to
prevent race condition causes two undesirable side effects called deadlock and
starvation. There are four different policies for attacking deadlocks: ignoring
deadlock, deadlock prevention, deadlock avoidance, and deadlock detection
and recovery. The first policy erases the problem statement altogether. The sec-
ond and third policy forestall deadlock from happening, even though the sys-
tem usually pays a high price for this. The last method monitors the system. If
a deadlock occurs it is detected and, in response, the operating system can take
proper actions.

9.5 Problems

1. Three processes are running concurrently. There are four types of
resources in the system. The current status of the system is as follows: The
“available” vector shows the number of available resource types. The
“request’ matrix shows the total number of resource types that will be
simultaneously needed by each process. Row i, i=1, 2, and 3, of this matrix
is for process i. The “allocated” matrix shows the number of resources of
types that are already allocated to each process. Is the current state of the
system safe, that is, without deadlock? If the system is unsafe, which
processes are deadlocked?

Available=[0 0 1 1]

3102 1101
Request=|1 0 2 1 Allocated= |1 0 1 1
1231 1121

2. What are the circumstances under which priority-inversion occurs?
Which process is in a busy-wait situation? Why does busy-wait cause this
situation?

3. The following procedures are proposed to obtain permission for entering
and leaving critical sections. If used properly, is mutual exclusion guaran-
teed? Can it cause starvation? Array desire is global and all its components
are initially zero.
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void enter-region(int process)
{
int other;
L: desire[process]=0;
if (desire[other] I= 0) goto L;
desire[process] = 1;
if (desire[other] 1=0) goto L;
/

leave-region(int process)

{

desire[process] = 0;
/

Four processes are concurrently running. These processes compete for
two reusable resources. Each process needs two resources to complete, but
it can request the resources one at a time. How many different ways can
deadlock occur?

[Hol71] Three processes are competing for four reusable resources. Each
process needs two resources to complete, but it can request and release
resources one at a time. Is there a possibility of deadlock? Why or why
not?

[Hol71] n processes are competing for m reusable resources. Each process
needs, at the most, m resources to complete, but it can request and release
the resources one at a time. The sum of the maximum need of all
processes is less than m+n. Show that a deadlock cannot occur.

A system is running m processes. It consists of #n shared resources of the
same type. If every process needs two resources to complete and it can
request resources one at a time, what is the minimum number of
resources to avoid deadlock?

A barber shop can be modeled as a barber, a barber chair, # customer
waiting chairs, and customers who come to cut their hair. If there is no
customer the barber goes to sleep. If a customer comes and all chairs are
occupied (including the barber chair), the customer leaves the shop. If the
barber chair is occupied but there is at least one unoccupied customer-
waiting chair, the customer sits in one of the available chairs. If the barber
is asleep, the customer wakes up the barber. Write a synchronization algo-
rithm for the sleeping-barber problem.
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Recommended References

Deadlock modeling notations can be found in [Hol72]. He also discussed star-
vation in the same paper. For deadlock prevention and avoidance algorithms
consult [Hav68, Hab69]. For the resource ordering method, see [Hav68]. Read
the paper by Coffman et al for deadlock detection methods [Cof71]. The sleep-
ing barber problem is introduced in [Dij65] by Dijkstra. The dinning philoso-
pher was first discussed by Dijkstra in [Dij71].



Chapter 10

Operating System Categories

This chapter is dedicated to reviewing some concepts that are explained in pre-
vious chapters and some new concepts in the area of operating system catego-
rization. We will try to mention ongoing research activities in newer fields of
operating systems. This chapter will be kept short. Readers that are interested
in the areas touched upon in this chapter are urged to refer to other specialized
documents, some of which are listed in the “Recommended References” sec-
tion of this chapter.

10.1 Software Technology and Operating
Systems

Software development technology has advanced tremendously, especially dur-
ing the last two decades. The development of the operating system, which is a
gigantic and complex piece of software, has benefited very much from these
advances. The operating system has changed from a monolithic nonstructural
hard-to-follow source into a well structured modular software system. This
trend is roughly described in the following pages.

10.1.1 Monolithic Operating Systems

A small noncomplex application can perhaps be developed in the form of one
main program, or a main program and a collection of procedures. Each proce-
dure can be called from the main program, and/or other procedures, without
any structural limitations. Such a method of application development corre-
sponds to the state of the art techniques in system development of the 1950s,
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before the structured programming era. Even now, one may decide to develop
small applications using monolithic techniques but not an application that is
composed of millions of instructions as in contemporary operating systems.
The operating systems of the early days were unstructured and thus were
called Monolithic Operating Systems. The advantages and disadvantages of
monolithic operating systems compared to structured operating systems are
similar to those of unstructured programs versus structured programs. In
short, a monolithic operating system is difficult to debug, difficult to modify,
difficult to substitute parts with new program sections, difficult to document,
difficult to implement because of its using many programming teams, etc.
When applicable, however, monolithic kernels are efficient and fast. Any pro-
cedure can be called from anywhere within the kernel, without the need to
observe any structure and/or hierarchy.

10.1.2 Structured Operating Systems

Writing huge software like operating system demands an organized mind and
a well structured technique to analyze, design, and implement. The structured
implementation of such software requires a structured programming lan-
guage. Structured programming languages are designed to eliminate the diffi-
culties in writing and supporting applications using spaghetti logic, or
unstructured control, programming languages. A structured programming
language is based on the philosophy of creating applications consisting of a
number of modules interconnected in a manner to form a hierarchy of mod-
ules. Each module is recognized so that it performs one independent task. In
order to prevent undesirable modification of these variables, a module is sup-
posed to use local data and avoid using global data. Code reusability is
achieved, to a certain degree, by the proper identification of modules for use in
many other processes. Of interest are the many benefits structured program-
ming among which is the possibility of individually testing every module, of
easily replacing every module, and of using well defined modules in many
applications. Another more important benefit of structured programming is
the capability of defining the interface of a module and assigning the develop-
ment of the module to another programmer or group of programmers. This
capability is very efficient in the development of huge programs like the oper-
ating system. In contrast to a monolithic operating system, a Structured
Operating Systems has the aforementioned advantages. It is much easier to
maintain and extend a structured operating system than a monolithic operat-
ing system. Operating systems are very frequently revised. It is usually the case
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that just after releasing a new version, or even before that, the work on the next
version has already started.

10.1.3 Object-Oriented Operating Systems

Compared with structured programming, object-orientation is one step for-
ward in the direction of program structuring and abstraction. In structured
programming, little attention is paid to structuring data similar to that of
structuring the control of the application. There, we emphasize that every
module (or block) better rely on its local data and try not to use global data. In
object-oriented programming, an object is composed of public data, private
data, methods for manipulating data to perform proper functions, and
implicit mechanisms for protecting private data from being manipulated by
methods other than those within the object. The hiding of information is
another aspect of object-oriented application development. By this we mean,
the internal representation of data and algorithms that methods follow to per-
form the required functions which are not exposed to the application user.
Objects better represent entities of the real world. Implementation of real
applications becomes more natural. Objects can be used in many applications
that deal with their corresponding real world entities. Therefore, code reusabil-
ity, or object reusability, is extending. Objects modules are much more suitable
for re-use in other applications than the process modules of structured pro-
gramming. Other benefits of Object-Oriented Programming (OOP) are the
reduction of correctness verification efforts, the robustness of the application
that is developed and the improved extensibility of the application. An Object-
Oriented Operating System is designed and developed with object-orienta-
tion in mind and by using object-oriented programming tools and languages.
As a result, object modification and replacement is simplified and better main-
tained. Presumably, the machine language translation of such an operating
system will include all the necessary codes for private data protection and
information hiding, all of which will make the code a little slower.

10.1.4 Agent-Oriented Operating Systems

Agent-Oriented Programming (AOP) is a new programming technique in
which the concept “agent” plays a fundamental role. Let’s suppose an agent is
an encapsulated entity of code, data, and execution context that can be
extended with the abilities to migrate autonomously, follow an aim to reach a
goal, interact with other agents, react sophisticatedly to external events,
autonomously decide what to do in response to changes in the environment,
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etc. Although agents are natural successors of objects in object-oriented pro-
gramming, they are not direct extensions of objects. For example, the inheri-
tance property of objects is not defined for an agent. Agent-oriented
programming reveals new horizons for building a piece of software that is
proactive and need not be activated by another process to do certain work. A
set of agents can collectively cooperate to tackle a problem.

Agents have been used in operating systems since the UNIX operating sys-
tem made use of a concept called daemon. A daemon is a process that listens to
a communication port. When a request is received, the daemon processes it
and performs the proper action. For example a daemon may be used to take
care of telnet or ftp requests. Daemons are clearly reactive since they listen to
communication ports to see whether something has arrived that they can react
to. Daemons are autonomous because they do their tasks without the supervi-
sion of other processes. Some can be even social and communicate with the
requester to clarify any confusion in the request. There are other properties of
agents, like collaboration, intelligence, etc. The degree of agents varies from
one entity to another depending on the type and number of properties that
each one has. We could definitely say that an agent is a fuzzy term rather than
a crisp one. In an Agent-Oriented Operating System, the system is designed
using agent technology via an agent programming language. Such a system
will have all the advantages and disadvantages of agent programming.

10.2 Acting Entities and Operating Systems

A program is a set of instructions that is prepared to do a specific job, if exe-
cuted. The software entity that runs a program, by using a processor, may be a
process, a thread, or an agent. This software entity has many properties like a
location counter, stack pointers, current contents of registers, current status,
etc. these are all properties of the acting entity, such as the entity that runs a
program. Note that we are not talking about a hardware entity, like a processor,
but rather a software entity.

10.2.1 Process-Based Operating Systems

In a structured operating system, subsystems, modules, and procedures are
interconnected so that the whole superstructure is capable of performing the
duty of the operating system. Whatever superstructure is used during the
analysis or the design of an operating system, a layered structure is usually
used to extend the capabilities of the operating system, going from the lowest
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level, that is, the layer closest to the hardware, to the highest level, or the appli-
cation level. In layered operating systems, higher layers are independent mod-
ules, each capable of performing a major managerial function. A well defined
boundary separates the inner layers of the operating systems, where privileged
instructions are allowed from the outer layers, where privileged instructions
are forbidden. The inner layers are collectively called the kernel. The kernel
may be a giant monolithic program or it could be a collection of modules each
capable of performing one managerial function, plus a set of primitives that
are used by many kernel modules, higher layer modules and, perhaps, user
processes. The monolithic structuring of the kernel is a thing of the past and is
no longer an acceptable method of kernel design. Therefore, for modern oper-
ating systems modules can be “processes,” “threads,” or “agents” A process-
based operating system is an operating system in which the kernel is
composed of a collection of processes, a collection of procedures, and a collec-
tion of primitives. Procedures and primitives are passive entities. Each process
in such a system is given a unique responsibility. This concept does not mean
that, in a process-based operating system we cannot create threads. Rather, it
clarifies the way we look at the operating system, for the purposes of design
and implementation. In a process-based operating system the centre of atten-
tion is the process. We try to provide managerial rules and regulations for
processes, process synchronization methods, process scheduling, process com-
munication protocols, and so on.

10.2.2 Thread-Based Operating Systems

A thread-base operating system is an operating system in which kernel activi-
ties are performed by a set of threads. Each thread belongs to a process with a
given responsibility. A single process may produce many threads to do similar
or even different jobs. A kernel can still have many primitives with very low
level functionalities. Every primitive could become part of many threads. By
doing so, code reusability is achieved and kernel size is reduced. Threads are
not only the active entities of the kernel, but they are also the only active enti-
ties of the outer parts of the operating system. The concept extends to applica-
tion programs, too. When a new process or child process, is created, a primary
thread is immediately created to do the job, or run the program.

In a thread-based operating system, although a process is not an active
entity, but it persists to exist. A process plays the role of a house where all
threads, that are created based on the process, live within it. Since a primary
thread is created right after a process is created, there are no empty houses, that
is, processes with no thread. A hierarchy of parent-child processes is perfectly
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acceptable by thread-based operating systems and each process in this hierar-
chy can have one or more threads of its own. If there is no parent-child relation
within the threads of a process, then all threads of that process are called sib-
ling threads. Although there may be a parent-child relation between some
threads of a process, most thread-based operating systems do not recognize
this structure and treat all threads of a process as siblings.

All contemporary operating systems support the thread methodology and
technique. It is the thinking backbone of the operating system’s designer which
makes an operating system process-based or thread-based. In a thread-based
operating system, the thread is the only active object and the process is just the
container for its threads. Procedures, routines, primitives, etc. are all a passive
collection of instructions that are only useful when they become parts of a
thread and are executed with the thread execution. To summarize, for an oper-
ating system to be classifies as a thread-based, the thread methodology must be
well respected within the kernel. Windows 2000 and its descendents are the
most widely-used near thread-based operating system.

10.2.3 Agent-Based Operating Systems

Agents have many exciting properties that can be utilized in agent-based oper-
ating systems. Think of an operating system whose essential duties are per-
formed by a set of agents. The overall control of the operating system is
distributed among these agents and there is no need for a central control mod-
ule. Every agent does its duty without the need for another entity to tell it when
and how to do it. It is intelligent in the sense that it can make proper decisions
in response to new events that are sensed, or received, from the environment.
Larger tasks are collectively carried out by many agents. To do so, they can
intelligently communicate and decide how to perform such tasks. If it feels it is
necessary, an agent is able to move from one computer to another. These abili-
ties and many more make an agent an ideal acting entity for the implementa-
tion of operating systems. One disadvantage is the facilitation of every one of
these properties as a substantial amount of source codes must be produced.
Too many codes lead to the low overall performance of the system. The inner
part of the operating system, the kernel, is composed of a set of agents, in
Agent-Based Operating Systems (ABOS). Procedures and primitives within
the kernel are passive entities. Much ongoing research is in progress to effi-
ciently develop agent-based operating systems. Similar to process-based and
thread-based operating systems, we expect that an agent-based operating sys-
tem to produce agents will run user programs. That is, when a user double
clicks on a program icon, this kind of operating system will generate an agent



254  Operating System

to run the program. However, in current (experimental) agent-based operat-
ing systems process is generated instead.

10.3 Kernel Types of Operating Systems

In this section, kernels are categorized into three classes: macro-kernel (or sim-
ply, kernel), microkernel, and extensible kernel. Most general-purpose operat-
ing systems rely on regular kernels, that is, the macro-kernel. However, this
trend may switch in the near future to extensible kernels. Microkernels are
being used in multiprocessor computers and/or distributed systems. A brief
introduction of kernel types follows.

10.3.1 Macro-kernel Operating Systems

Although in some literature the phrases “macro-kernel” and “monolithic ker-
nel” are used interchangeably, I would like to distinguish between the magni-
tude and the structure of operating system kernels. In regards to this
viewpoint, when we talk about the macro-kernel we are focusing on its size
and how much code and functionality it is composed of. Most functions of the
operating system are implemented within the kernel, in a microkernel operat-
ing system. The layer above the kernel is usually a shell, which receives the
commands, interprets them, interacts with users if necessary, and passes the
command to the kernel for processing. Linux is a macro-kernel operating sys-
tem. All essential managers, including the process manager, memory manager,
scheduler, information manager (file system), communication manager, etc.
are parts of the Linux kernel. The ability to use all machine instructions
including privileged ones within the kernel can be a privilege when imple-
menting an efficient kernel. The macro-kernel is not usable in multiprocessor
systems in which the management of local resources, like cache and read/write
memory, is performed locally. It is not possible to install a gigantic-size kernel
in every processor’s local memory because most kernel functions will not be
usable. Most embedded systems require a minimal operating system and the
main functionality is achieved through a special-purpose software. Airplane
control systems, medical digital systems, and robot control subsystems are
some of the systems with an embedded computer-based subsystem. For these
kinds of systems, a macro-kernel operating system is not appropriate. Large
central computers, which are either single processor or multiprocessor with
minimal local resources, are best suitable for macro-kernel operating systems.
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10.3.2 Microkernel Operating Systems

Some special purpose computers may run without an operating system. As
soon as this kind of computer starts or restarts, it begins running a stored pro-
gram in its read-only memory. As there is no operating system in this kind of
computer, there is no kernel either. On the other hand, in some commercial
computers, the operating system may be huge with extensive functionality and
ease of use. If the kernel of such a computer encompasses most of the func-
tionality of the operating system, it will be huge in size. The kernel size of an
operating system can vary from zero to the overall size of the operating system.
In the previous section, we talked about macro-kernels, or large size kernels. In
this section, we discuss the microkernel, or small size kernels.

The microkernel philosophy aims at defining a thin abstraction layer on
top of the computer hardware. This layer consists of a set of primitives, a set of
procedures and a set of processes, or threads, depending on whether the oper-
ating system is process-based or thread-based. Some essential tasks are not
possible to move out of the kernel area. We keep these tasks within the kernel,
for example, guaranteeing the atomic execution of some program sections in
order to achieve mutual exclusion and using the disable interrupt/enable inter-
rupt possibility. These must be done within the kernel. Recall that the disable
interrupt instruction is a privileged instruction and cannot be executed it out-
side the kernel area. Actually, we can define a kernel based on privileged
instructions. A kernel is that part of operating system within which we, as
operating system designers, may use all instructions including privileged
instructions. System calls (or kernel services) are procedures that are imple-
mented within the kernel. Once again, in the implementation of most of these
services, privileged instructions are used. A kernel service is usable (sometimes
indirectly) by all upper layers of the operating system and even by any applica-
tion program. It is the responsibility of the kernel to transfer messages among
different concurrently running processes or threads of one computer or differ-
ent computers. A process that wants to send a message to another process will
pass the message to the kernel. The kernel will do all the address resolutions
(finding the physical destination) and will then pass the message to the
receiver’s kernel. The microkernel, being an abstract thin layer, is the best place
to perform address resolutions. Communication protocols, like TCP/IP,
become part of the kernel address space after they are installed. Low-level
thread or process management, low-level memory management, cache man-
agement, etc. must be part of the kernel. In the microkernel philosophy, we try
to move as much functionality out of the kernel as possible and leave as little
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code as possible. Only essential functionalities, like those mentioned above, are
left by such kernels.

Mach is one example of microkernels. It was developed at the Carnegie-
Mellon University (CMU). GNU and MacOS X operating systems are devel-
oped on top of this microkernel. Mach provides a limited number of basic
primitives to support process management, interprocess communication,
message passing, memory management, and input/output operations.

10.3.3 Extensible Kernel Operating Systems

The Extensible kernel is yet another step towards downsizing kernels. The
heart of extensible kernels is limited to protection and resource sharing facili-
ties. Everything else is either moved to upper layers of the operating system or
clustered into several libraries, each of which is used as a supplement to the
kernel, as needed. It is assumed that computer users are computer profession-
als who can decide which libraries best match their specific needs. Computer
users are given the opportunity to directly access computer hardware. The ker-
nel no longer acts as a hardware abstraction layer. Theoretically speaking, an
extensible kernel can be extended to become the kernel of the UNIX operating
system, or the Windows operating system or even MacOs operating system.
This means that, extensible kernel facilities are so basic that the extensible ker-
nel can grow into the kernel of any operating system, if proper complementary
libraries are patched to it. Extensible kernels are built to accept new libraries as
part of their internal structure. Similarly, it is possible to replace an existing
library with a new one. The idea of the extensible kernel started at universities
like MIT, where the Exokernel was developed, and Cambridge. Several proto-
types have emerged out of these along with other similar projects and experi-
mental extensible kernel-based applications.

10.4 Hardware Structures and Operating
Systems

A particular operating system cannot be used on all types of hardware struc-
tures. The efficiency of a system very much depends on the type of operating
system being utilized. If an operating system that supports only one processor
is installed on a multiprocessor system, the whole system is reduced to a sin-
gle processor system and system, thus diminishing system utilization. In the
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following, four types of hardware structures are discussed and proper operat-
ing systems are identified.

10.4.1 Single-Processor Operating Systems

Most personal computers have only one processor which is called the CPU, for
the time being. Most operating systems that support one processor are suitable
for these computers. Contemporary work stations, mini computers, main
frame computers, and supercomputers support more than one processor and,
s0, a Single-Processor Operating System is not suitable for these computers.
Even for personal computers, the trend is changing and future PCs will have
more than one processor. Newly developed operating systems and even new
versions of old operating systems support computers with more than one
processor. A single processor operating system runs multiple processes, or
threads, in a multiprogramming fashion. It is possible to have concurrently
running processes within single-processor operating systems, but this does not
mean that more than one process is simultaneously using the CPU. Although,
these processes are all living within the computer, they are in different states of
life, such as ready, wait, blocked, etc. Some might be printing their output, oth-
ers might be doing disk I/O and yet others might be waiting for an event to
occur. Compared to other types of operating systems, single-processor operat-
ing systems are simpler to analyze and implement.

10.4.2 Multiprocessor Operating Systems

It is the new trend for all operating systems, even for personal computer oper-
ating systems, to support multiprocessors just as personal computer main-
boards facilitate having more than one processor. When talking about
operating systems for multiprocessor systems, three categories of hardware
structures come to mind:

1. Separate kernel organization: Every processor has a copy of the
operating system kernel. The system is composed of a set of
autonomous processors. Processor interactions are at a low level. To
use common resources, the system makes use of common variables
and memory areas. For example, using a common variable and a
swap or exchange operation is a suitable way to guarantee mutual
exclusion. The separate kernel organization cannot support concur-
rent execution of related tasks. On the positive side, losing one or
more processors does not bring down the whole system.
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Master-slave organization: The master processor only has a copy of
the operating system kernel. This configuration is called master-
slave organization. A processor is distinguished and it is given the
responsibility of running the operating system. By having only one
copy of the operating system, operating system duties are performed
in the simplest possible form. Resource sharing, interprocess com-
munication, network communication, etc. are performed very simi-
larly to single-processor multiprogramming systems. There is only
one pool of requests and process or thread generation is done by
using master processors. The master processor has the responsibility
of assigning processors to processes, or threads, for execution.
Besides the operating system, the master processor can execute other
processes in a multiprogramming fashion. The disadvantage of mas-
ter-slave systems is that they are vulnerable to the master processor
becoming the bottleneck of the system as it is not fast enough to take
care of all operating system duties in time. In such a case, the whole
system efficiency suffers because the operating system is not able to
fully utilize computer resources, especially slave processors. The
master processor is also the single source of failure of the whole sys-
tem, but this is less critical as hardware failures are very rare.

Symmetric multiprocessor: All processors share the same operating
system kernel. The most common organization is the Symmetric
Multi-Processor (SMP) organization. There is only one copy of the
operating system, but every processor is able to run it. The one who
is executing the operating system at this time has the power, for
example, to assign new tasks to other processors or even pick a task
for itself. We can say this processor temporarily acts as the master
processor. This organization has all the nice properties of the other
two organizations. The failure of one processor cannot bring the
whole system down and it is possible to schedule a set of related tasks
to run simultaneously in this configuration. The current Windows
operating system supports SMP organization with 32 processors.

10.4.3 Distributed Operating Systems

A distributed organization is a set of computers that are connected together
using physical or wireless links. It is not necessary to have all computers locally
and they can geographically be far apart. Links are supposed to be fast enough
to facilitate efficient information interchange especially between concurrently
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running processes. The most important goal is to use the power of many com-
puters within the distributed system to run concurrent parts of a complex and
time-consuming process, like weather forecasting, in order to provide the
required information in time. It may seem more natural to do the same task by
using a centralized powerful supercomputer, but there are advantages, and of
course disadvantages, in using distributed systems. There are so many comput-
ers and personal computers that are connected together, but they are not being
used all the time. This potential processing power can be used to solve lengthy
problems. It is not only the processing power than can be used towards solving
a common problem, but rather most of the resources can be used, for this pur-
pose. The main memory of all computers may collectively be used as a com-
mon Distributed Shared Memory (DSM).

With the advances in computer hardware and communication, distributed
organization has become possible. The challenge is in the design of an efficient
operating system to utilize such a vast quantity of resources that is spread
around the world. The difficulty arises when we wish to design operating sys-
tems that perform this complex task without the intervention of computer
users and even without managerial activities being noticed by computer users.
Extensive research activities are underway to resolve transparency issues, those
dealing with operating system activities without the intervention and aware-
ness of users.

10.4.4 Internet Operating Systems

With more than half a billion computers connected to the Internet and the
growing trend of Internet users, a new technology, called Internet Operating
System (I0S), is emerging. Mobile computing has increased the already rapid
growth of the number of computers that are potentially accessible through
Internet. Not all the computers that are connected to the Internet are always
active. Even when they are active, they are not fully utilized. There is an unlim-
ited processing power, main memory capacity, file storage capacity, and
resources of all kinds that are available on the Internet and awaiting a capable
technology to correctly utilize them.

It is possible to develop an application using the Web services that are avail-
able on the Internet. This application may be composed of a vast collection of
threads that may be executed concurrently by using many computers around
the globe. It may require numerous amounts of resources that are not available
locally. During its execution, there should not be any undesired side effects by
other applications that are simultaneously running on the same platform.
Smooth and fast information interchange between threads of this application
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during execution is an absolute necessity. It is also necessary for the whole sys-
tem to be up and active for the duration of the application activity. We also
need a programming language that can efficiently interact with the underlying
Internet Operating System (IOS) to fulfill the requirements of the application
during its execution.

There is a lot of ongoing research in the areas of I0S. Establishing efficient
methods for resource discovery, especially processor power to run concurrent
tasks, is underway. Resource management is a related area of research. We must
make sure that an application running on the Internet does not have any
unwanted side effects on other applications running simultaneously; applica-
tions should be “isolated” from each other. Another area of research is to
assure that code and data can easily move from one computer to the other, so
that code and data mobility is achieved.

Preliminary internet operating system products have been developed.
NetKernel running on Java Virtual Machine (JVM), REBOL/IOS, and
Language for Advanced Network Architecture (Lana) are examples of these
products.

10.5 Timeliness and Operating Systems

Most operating systems do not guarantee that a submitted task will be exe-
cuted by a given deadlock. For example, the objective of an operating system
may be to maximize the throughput of the system. In other words, it must
maximize the average number of tasks being served in one unit of time: New
tasks are continuously being submitted and the system will always pick the task
with the shortest execution time to execute next. A task which requires a long
execution time will continuously be delayed in favor of tasks with shorter exe-
cution times tasks. Therefore, the longer task may indefinitely be delayed and
the system cannot guarantee its execution at a given time. On the other hand,
some applications require the system to execute time-critical tasks before a
predefined period of time has passed. If we want to forecast the next hour’s
weather, but the system completes our program two hours later, the execution
results are of no use.

10.5.1 Real-Time Operating Systems

In real-time systems, the correct (race-free) execution of processes is not ade-
quate. There are tasks that have to be executed after their request is generated
and before certain time span has passed. This is when in-time execution of real
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time tasks is an essential requirement of the system. In most real-time systems,
each software process is set up to monitor/control the behavior of a physical
device. For example, a process may be given the responsibility of periodically
checking the altitude of an object, say an airplane processing this data and
comparing it to a threshold. If the object is at a low altitude level the process
may be responsible for arranging an action or communicating the situation to
other processes.

In hard real-time systems, failure to execute a process in time may cause a
catastrophic situation in which people’s lives are lost, for example, when the
whole system (for example, a plane) has crashed, and/or capital investments
vanish. Therefore, we must make sure that every process is executed in time. To
do so, we are forced to use specific scheduling algorithms that are efficient and
at the same time, make overrun-freeness analysis possible. A soft real-time sys-
tem, on the other hand, might not crash as a result of a process being unable to
execute in time, but there may be other less important side-effects. For exam-
ple, in an Internet-based teleconference, parts of a conversation may be lost if
related voice packets are not delivered in time.

For real-time systems, it is important to provide efficient ways to capture
data, process them, and arrange actions. Fast and reliable methods for process
communications is also an absolute requirement. The system must respond
very quickly to important events. The most important of all is the scheduling
of processes, as explained above. Ordinary operating systems are not designed
to fulfill the requirements of a real-time system. For example, as explained in
Chapter 6, they may distinguish between real-time processes and non real-
time processes and give higher priority to real-time processes. However, that is
not enough. A set of real-time processes may safely execute if a certain sched-
uling policy is adopted although there might be some process overrun, or fail-
ure to execute the process in time, if a different scheduling policy is adopted.
Real-time operating systems are designed to be fast, efficient, timely, and reli-
able. At the same time, a real-time system is usually smaller than a regular
operating system. Windows CE, QNX, and VxWorks are examples of real-time
operating systems.

10.5.2 Non-Real-Time Operating Systems

The most important property of non-real-time operating systems is that
there is no guarantee of the system executing requests in time for execution
deadlines. Contemporary Non-real-time operating systems are designed to
accept all kinds of processes with their scheduling policies designed to be
“faire” to presumably everybody. Therefore, it is not possible to completely
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ignore non-real-time requests in favor of real-time requests. Here, rather than
executing real-time processes before their deadline, the scheduling goal may
be to reduce the average turnaround time while making sure that no request
will wait more than a maximum time span.

10.6 Summary

Covering all aspects of all operating systems entails many textbooks with vol-
umes upon volumes of information. A first book on operating system design
and implementation concepts and techniques can only touch upon principle
subjects of ordinary contemporary operating systems. It was the goal of this
chapter to introduce all categories of operating systems and within each cate-
gory, present the basic principle topics of investigation. Fortunately, we were
able to classify these topics into five major sections. Section One centered on
software technologies that are used within the operating system. Monolithic,
structured, object-oriented, and agent-oriented technologies fit into this cate-
gory. Differently acting entities within the operating system, and even within
the application programs, were covered in Section Two. Processes, threads, and
agents make up these acting entities. Kernel types were the subject of Section
Three. Macro-kernel, microkernel, and extensible kernels were talked about in
this section. Operating system design is not independent of the hardware upon
which it has to run. Single-processor, multiprocessor, distributed and Internet
organizations were discussed in Section Four. This chapter ends with the sub-
ject of timeliness and operating systems. Real-time and non-real-time operat-
ing systems were presented in Section Five.

Recommended References

There are many fine books on the general subject of operating system con-
cepts, methodology, design and implementation [Bac86, Cro97, Dav0l,
Han73, Mad74, Sil02, Sta04, Tan01, and Vah96]. The general theme of these
books is single-processor multiprogramming operating systems. These books
collectively cover all aspects like monolithic, structured, process-based, thread-
based, and macro-kernel operating systems. For the object-oriented benefits of
software design and implementation, see [Bo094, Jac93]. For the thread con-
cept and its application to operating systems, refer to references by Massalin
and Pu [Mas89] and Kogan and Rowson [Kog88]. For an introduction to
Mach microkernel see [Tan01] by A. Tanenbaum. For extensible kernels and
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Exo-kernel, look up [Ber95] by Bershad et al and [Eng94] by Engler et al. The
book by Singhal and Shivarati describes distributed and multiprocessor oper-
ating system concepts [Sin94]. For real-time topics, study Buttazzo [But04].
Also, see the papers on real-time concepts by Liu and Layland [Liu73],
Naghibzadeh and Fathi [Nag01], Naghibzadeh [Nag02], and Naghibzadeh and
Kim [Nag03]. Back et al’s book is a good reference on the design of the Java
Operating System [Bac00].
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Interval timer, 104
Inverted Page Table (IPT), 154

J

Java Virtual Machine (JVM), 260
K

Kernel, 15, 252
mode, 19
primitive, 15

Kernel mode, 49

Kernel service, 47
close file, 47

Kerner service
open file, 47

L

Language for Advanced Network
Architecture (Lana), 260
Least Frequently Used (LFU), 168

Least Laxity First (LLF), 122
Life cycle, 25

Loader, 1

Local Area Network (LAN), 95
Locality of reference, 153
Location Counter (LC), 31
Logical address, 146

Logical time, 162

Lost update problem, 190

M

Mach, 256
Machine language, 1
Macro-kernel, 254
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Master-slave organization, 258
Master-slave system, 258
Memory
dynamic, 24
random access, 1
read/write, 12, 175
volatile, 10
Memory fragmentation, 137
Memory management
demand page, 150
dynamic partition, 136
multiple partition, 140
page, 144
page-based virtual, 150
segmentation, 141
single contiguous, 135
static partition, 135
Memory Management Unit (MMU),
146, 153
Microkernel, 255
Miss ratio, 163
Model, 108
Modified bit, 161
Monitor, 209
Most Frequently Used (MFU), 168
Multilevel page table, 172
Multiprocessing, 27, 39
Multiprocessor, 27
Multiprogramming, 19, 24, 27, 37
Multitasking, 37
Multithreading, 38
Mutual exclusion, 194
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Netkernel, 260

Next-fit, 138

Non-Maskable Interrupt (NMI), 35
Non-real time operating system, 261
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Object-Oriented Programming (OOP),
250

On-the-fly linking, 140

Operating system
agent-based, 253
installation, 14
Linux, 96
monolithic, 249
multithreading, 38, 72
object-oriented, 250
process-based, 252
single-processor, 257
structured, 249
thread-based, 252

Oprating system
agent-oriented, 251

P

Page fault, 152
Page fault interrupt, 153
Page frame dataset, 180, 181
Page Frame Table (PFT), 154
Page locking, 160
Page reference string, 162
Page removal, 158
Page removal algorithm, 58, 151
Page removal process, 182
page replacement
Not Frequently Used(NFU), 168
Page replacement, 159
aging, 169
clock algorithm, 164
global, 160
Lease Frequently Used(LRU), 168
least recently used, 166
Least recently Used (LRU), 166
local, 160
most
Most Frequently Used(MFU), 168

Not Recently Used(NRU), 167
optimal, 170
overall, 160
per process, 160
second chance, 164
stack algorithm, 166
Page success, 152
Page swapper, 182
Page swapping, 159
Page table, 145, 153
Page trace, 162
Parallelism
Coarse-grain, 114
fine-grain, 115
independent, 114
Partial page table, 178
Plug-and-play device, 6
Poisson distribution, 109
Polling, 32
Port, 5
Power On Self Test (POST), 11
Preemption-intelligent rate monotonic,
120
Prefetch, 180
Priority
dynamic, 87
static, 87
Privileged instruction, 35
probability density function (pdf), 111
Process
attributes, 41, 42
control information, 42
creation, 56
identification information, 42
image, 65
lightweight, 71
preemption, 56
state information, 42
swapping, 56, 57
swapping out, 57



Process control block, 80, 81
Process image, 43
Process state, 29

ready, 29

running, 29

wait/blocked, 29
Process states, 25

running, 4
Process switching, 31
Process table, 80, 81, 235
Process Table (PT), 43
Processor affinity, 113
Processor utilization, 91
Process-resource wair-for graph, 224
Process-resource wait cycle, 234
Producer-consumer problem, 205
program, 251
Program, 1
Program Counter (PC), 31
Program Status Word (PSW), 31
Programmed 1/O, 95
Programmed Input Output (PIO), 35
Protection, 17
Pseudo code, 3
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Quality of Service, 90
Quality of Service (QoS), 90
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Race condition, 190, 192
Rate-Monotonic scheduling, 119
Read Only Memory (ROM), 10
Real-time, 90

hard, 90
Real-time process, 100
Real-time system

hard, 118

soft, 119
REBOL/IOS, 260
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blocking, 212
non-blocking, 212
Reference bit, 164
Reference counter update interval, 168
Relative Urgency (RU) scheduling, 121
Resident page, 159
Resource table, 235
Response Ratio (RR), 102
Response time, 88, 91
average, 111
Rotation delay, 125
Round Robin (RR) scheduling, 104
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fair share, 92
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input/output, 94
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Linux
SCHED_OTHER, 106
SCHED-RR, 105
SHED_FIFO, 100
long-term, 93
low-level, 94
medium-level, 93
Scheduling goodness, 106
Sector, 124
Seek length, 126
Seek time, 124
Segment Table Base Register (STBR), 142
Segmentation, 174
Semaphore, 204
binary, 205
down, 205
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signal, 204
up, 205
wait, 204
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Seperate kernel organization, 257
Shared device, 95
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Sibling threads, 253
Single-processor, 27
Single-programming, 24
Software interrupt, 49
Starvation, 239
State transition, 29
Stored-program concept, 3
Supervisor Call (SVC), 48
Supervisor mode, 19
Symmetric MultiProcessor (SMP), 113,
118, 258

System balance, 91
System calls, 51

fork(), 63
System service, 80

T

Task, 37
TCP/IP, 255
Test and Set lock (TSL), 201
The 50% rule, 137
Thrashing, 152
Thread, 37, 69
attributes, 74
hybrid implementation, 71
kernel-level, 71
primary, 83
sibling, 72
state transition diagram, 77
user-level, 71
Thread Control Block (PCB), 80
Thread handle, 81

Throughput, 89
Time stamp, 162
Time-quantum, 94
Token-ring network, 213
Track, 123
Track trace, 125
Translation Lookaside Buffer (TLB), 157
translator, 1
Trap, 48
Turnaround time, 90
average, 90
average weighted, 90
normalized, 90
weighted, 90

Ultra DMA, 36
UNIX, 37
system calls, 50
UNIX process states, 52
asleep in memory, 52
created, 52
kernel running, 52
preempted, 52
ready-to-run in memory, 52
ready-to-run swapped, 52
sleep swapped, 52
user running, 52
zombie, 52
UNIX system calls
wait(), 65
waitpid(), 65
Unusable memory, 143
User memory, 135
User mode, 19, 49
Utilization factor, 91
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Variable allocation, 160
Virtual address, 151



Virtual device, 96

Virtual memory, 57
Virtual memory area, 151
Virtual time, 159
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Wait-for graph, 224
WideArea Network, 95
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Windows, 37

Windows NT, 172
Working set, 159
Worst-fit, 138

Write through cache, 176
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