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Preface

Building a computer operating system is like weaving a fine tapestry. In each
case, the ultimate goal is a large, complex artifact with a unified and pleasing design,
and in each case, the artifact is constructed with small, intricate steps. As in a tapestry,
small details are essential because a minor mismatch is easily noticed — like stitches in
a tapestry, each new piece added to an operating system must fit the overall design.
Therefore, the mechanics of assembling pieces forms only a small part of the overall
process; a masterful creation must start with a pattern, and all artisans who work on the
system must follow the pattern.

Ironically, few operating system textbooks or courses explain underlying patterns
and principles that form the basis for operating system construction. Students form the
impression that an operating system is a black box, and textbooks reenforce the
misimpression by explaining operating system features and focusing on how to use
operating system facilities. More important, because they only learn how an operating
system appears from the outside, students are left with the feeling that an operating sys-
tem consists of a set of interface functions that are connected by a morass of mysterious
code containing many machine-dependent tricks.

Surprisingly, students often graduate with the impression that work on operating
systems is over: existing operating systems, constructed by commercial companies and
the open source community, suffice for all needs. Nothing could be further from the
truth. Ironically, even though fewer companies are now producing conventional operat-
ing systems for personal computers, the demand for operating system expertise is rising
and companies are hiring students to work on operating systems. The demand arises
from inexpensive microprocessors embedded in devices such as smart phones, video
games, iPods, Internet routers, cable and set-top boxes, and printers.

When working in the embedded world, knowledge of principles and structures is
essential because a programmer may be asked to build new mechanisms inside an
operating system or to modify an operating system for new hardware. Furthermore,
writing applications for embedded devices requires an appreciation for the underlying
operating system — it is impossible to exploit the power of small embedded processors
without understanding the subtleties of operating system design.

This book removes the mystery from operating system design, and consolidates the
body of material into a systematic discipline. It reviews the major system components,
and imposes a hierarchical design paradigm that organizes the components in an order-
ly, understandable manner. Unlike texts that survey the field by presenting as many al-
ternatives as possible, the reader is guided through the construction of a conventional
process-based operating system, using practical, straightforward primitives. The text



xx Preface

begins with a bare machine, and proceeds step-by-step through the design and imple-
mentation of a small, elegant system. The system, called Xinu, serves as an example
and a pattern for system design.

Although it is small enough to fit into the text, Xinu includes all the components
that constitute an ordinary operating system: memory management, process manage-
ment, process coordination and synchronization, interprocess communication, real-time
clock management, device-independent I/O, device drivers, network protocols, and a file
system. The components are carefully organized into a hierarchy of layers, making the
interconnections among them clear and the design process easy to follow. Despite its
size, Xinu retains much of the power of larger systems. Xinu is not a toy — it has been
used in many commercial products by companies such as Mitsubishi, Lexmark, HP,
IBM, and Woodward (woodward.com), Barnard Software, and Mantissa Corporation.
An important lesson to be learned is that good system design can be as important on
small embedded systems as on large systems and that much of the power arises from
choosing good abstractions.

The book covers topics in the order a designer follows when building a system.
Each chapter describes a component in the design hierarchy, and presents example
software that illustrates the functions provided by that level of the hierarchy. The ap-
proach has several advantages. First, each chapter explains a successively larger subset
of the operating system than the previous chapters, making it possible to think about the
design and implementation of a given level independent of the implementation of
succeeding levels. Second, the details of a chapter can be skipped on first reading — a
reader only needs to understand the services that the level provides, not how those ser-
vices are implemented. Third, reading the text sequentially allows a reader to under-
stand a given function before the function is used to build others. Fourth, intellectually
deep subjects like support for concurrency arise early, before higher-level operating sys-
tem services have been introduced. Readers will see that the most essential functionali-
ty only occupies a few lines of code, which allows us to defer the bulk of the code (net-
working and file systems) until later when the reader is better prepared to understand
details and references to basic functions.

Unlike many other books on operating systems, this text does not attempt to re-
view every alternative for each system component, nor does it survey existing commer-
cial systems. Instead, it shows the implementation details of one set of primitives, usu-
ally the most popular set. For example, the chapter on process coordination explains
semaphores (the most widely accepted process coordination primitives), relegating a
discussion of other primitives (e.g., monitors) to the exercises. Our goal is to remove
all the mystery about how primitives can be implemented on conventional hardware.
Once the essential magic of a particular set of primitives is understood, the implementa-
tion of alternative versions will be easy to master.

The example code in the text runs on a Linksys E2100L Wireless Router, which is
marketed as a consumer product at retail stores. We do not use the Linksys hardware as
a wireless router. Instead, we open the device, connect a serial line to the console port,
use the serial line to interrupt the normal bootstrap process, and enter commands that
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Preface xxi

cause the hardware to download and run a copy of Xinu. In essence, we ignore the
software that the vendor supplies, take over the underlying hardware, and run Xinu in-
stead.

The book is designed for advanced undergraduate or graduate-level courses, and
for computing professionals who want to understand operating systems. Although there
is nothing inherently difficult about any topic, there is more than enough material for a
semester course. Few undergraduates are adept at reading sequential programs, and
fewer still understand the details of a run-time environment or machine architecture.
Thus, they need to be guided through the chapters on process management and process
synchronization carefully. If time is limited, I recommend covering Chapters 1–7 (pro-
cess management), 9 (basic memory management), 12 (interrupt processing), 13 (clock
management), 14 (device-independent I/O), and 19 (file systems). For a full semester
undergraduate course, it is important for students to see basic remote access, such as the
remote file system in Chapter 20. In a graduate course, students should read the entire
book, and class discussion should focus on subtleties, tradeoffs, and comparison of al-
ternatives. Two topics should be included in all classes: the change during initialization
when a running program is transformed into a process and the transformation in the
shell when a sequence of characters on an input line become string arguments passed to
a command process.

In all cases, learning improves dramatically if students have hands-on experience
with the system in a lab. Ideally, they can start to use the system in the first few days
or weeks of the class before they try to understand the internal structure. Chapter 1 pro-
vides a few examples and encourages experimentation. (It is surprising how many stu-
dents take operating system courses without ever writing a concurrent program or using
system facilities.)

Covering most of the material in one semester demands an extremely rapid pace
usually unattainable by undergraduates. Choosing items to omit depends largely on the
background of students who take the course. In system courses, class time will be
needed to help students understand the motivation as well as the details. If students
have taken a data structures course that covers memory management and list manipula-
tion, Chapters 4 and 9 can be skipped. If students will take a course in networking,
Chapter 17 on network protocols can be skipped. The text includes chapters on both a
remote disk system (18) and a remote file system (20); one of the two can be skipped.
The chapter on a remote disk system may be slightly more pertinent because it intro-
duces the topic of disk block caching, which is central in many operating systems.

In grad courses, class time can be spent discussing motivations, principles, trade-
offs, alternative sets of primitives, and alternative implementations. Students should
emerge with a firm understanding of the process model and the relationship between in-
terrupts and processes as well as the ability to understand, create, and modify system
components. They should have a complete mental model of the entire system, and
know how all the pieces interact.

Programming projects are strongly encouraged at all levels. Many exercises sug-
gest modifying or measuring the code, or trying alternatives. The software is available
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for free download, and a link to instructions for building a Linksys lab can also be
found on the website:

www.xinu.cs.purdue.edu

Because the Linksys hardware is inexpensive, a lab can be constructed at very low
cost. Alternatively, versions of the software are available for other hardware platforms,
including the x86, and as of publication, a limited version for ARM.

Many of the exercises suggest improvements, experiments, and alternative imple-
mentations. Larger projects are also possible. Examples that have been used with vari-
ous hardware include: a virtual memory system, mechanisms to synchronize execution
across computers, and the design of a virtual network. Other students have transported
Xinu to various processors or built device drivers for various I/O devices.

A background in basic programming is assumed. A reader should understand basic
data structures, including linked lists, stacks, and queues, and should have written pro-
grams in C.

Furthermore, I encourage designers to code in high-level languages whenever pos-
sible, reverting to assembly language only when necessary. Following this approach,
most of Xinu has been written in C. A few machine-dependent functions, such as the
context switch and lowest levels of the interrupt dispatcher are written in assembly
language. The explanations and comments accompanying the assembly code makes it
possible to understand without learning assembly language in detail. Versions for other
platforms are available, making it possible to compare the amount of code required on a
MIPS processor to the code required for other processor architectures, such as an x86.

I owe much to my experiences, good and bad, with commercially available operat-
ing systems. Although Xinu differs internally from existing systems, the fundamental
ideas are not new. Although many concepts and names have been taken from Unix,
readers should be aware that many of the function arguments and the internal structure
of the two systems differ dramatically — applications written for one system will not
run on the other without modification.

I gratefully acknowledge the help of many people who contributed ideas, hard
work, and enthusiasm to the Xinu project. Over the years, many graduate students at
Purdue have worked on the system, ported it, and written device drivers. The version in
this book represents a complete rewrite that started with the original system (now thirty
years old), and retains the elegance of the original design. Dennis Brylow ported Xinu
to the Linksys platform, and created many of the low-level pieces, including the startup
code, context switch, and the Ethernet driver. Dennis also designed the rebooter mecha-
nism we are using in the lab at Purdue. Special thanks go to my wife and partner,
Christine, whose careful editing and suggestions made many improvements throughout.

Douglas E. Comer

August, 2011

www.itpub.net

http://www.xinu.cs.purdue.edu


About The Author

Douglas Comer, Distinguished Professor of Computer Science at Purdue Universi-
ty, is an internationally recognized expert on computer networking, the TCP/IP proto-
cols, the Internet, and operating systems design. The author of numerous refereed arti-
cles and technical books, he is a pioneer in the development of curriculum and labora-
tories for research and education.

A prolific author, Dr. Comer’s popular books have been translated into sixteen
languages, and are used in industry as well as computer science, engineering, and busi-
ness departments around the world. His landmark three-volume series Internetworking
With TCP/IP revolutionized networking and network education. His textbooks and in-
novative laboratory manuals have shaped and continue to shape graduate and undergra-
duate curricula.

The accuracy and insight of Dr. Comer’s books reflect his extensive background in
computer systems. His research spans both hardware and software. He has created
Xinu, a complete operating system, written device drivers, and implemented network
protocol software for conventional computers as well as network processors. Software
that has resulted from Dr. Comer’s research has been used by industry in a variety of
products.

Dr. Comer has created and teaches courses on network protocols, operating sys-
tems, and computer architecture for a variety of audiences, including courses for en-
gineers as well as academic audiences. His innovative educational laboratories allow
him and his students to design and implement working prototypes of large, complex
systems, and measure the performance of the resulting prototypes. He continues to
teach at companies, universities, and conferences around the world. In addition, Dr.
Comer consults for industry on the design of computer networks and systems.

For twenty years, Professor Comer served as editor-in-chief of the research journal
Software — Practice and Experience. While on an extended leave from Purdue, he
served as Vice President of Research at Cisco Systems. He is a Fellow of the ACM, a
Fellow of the Purdue Teaching Academy, and a recipient of numerous awards, includ-
ing a Usenix Lifetime Achievement award.

Additional information about Dr. Comer can be found at:

www.cs.purdue.edu/ people/ comer

and information about his books can be found at:

www.comerbooks.com

http://www.cs.purdue.edu/
http://www.comerbooks.com


Chapter Contents

1.1 Operating Systems, 1
1.2 Approach Used In The Text, 3
1.3 A Hierarchical Design, 3
1.4 The Xinu Operating System, 5
1.5 What An Operating System Is Not, 6
1.6 An Operating System Viewed From The Outside, 7
1.7 Remainder Of The Text, 8
1.8 Perspective, 8
1.9 Summary, 9

www.itpub.net



1

Introduction and Overview

Our little systems have their day.

— Alfred, Lord Tennyson

1.1 Operating Systems

Hidden in every intelligent device and computer system is the software that con-
trols processing, manages resources, and communicates with devices such as display
screens, computer networks, disks, and printers. Collectively, the code that performs
control and coordination chores has been referred to as an executive, a monitor, a task
manager, or a kernel; we will use the broader term operating system.

Computer operating systems are among the most complex objects created by
mankind: they allow multiple computational processes and users to share a CPU simul-
taneously, protect data from unauthorized access, and keep independent input/output
(I/O) devices operating correctly. The high-level services an operating system offers
are all achieved by issuing detailed commands to intricate hardware. Interestingly, an
operating system is not an independent mechanism that controls a computer from the
outside — it consists of software that is executed by the same processor that executes
applications. In fact, when a processor is executing an application, the processor cannot
be executing the operating system and vice versa.

Arranging mechanisms that guarantee an operating system will always regain con-
trol after an application runs complicates system design. The most impressive aspect of
an operating system, however, arises from the difference in functionality between ser-
vices and hardware: an operating system provides high-level services over extremely
low-level hardware. As the book proceeds, we will understand how crude the underly-
ing hardware can be, and see how much system software is required to handle even a
simple device such as a serial interface. The philosophy is straightforward: an operating

1
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system should provide abstractions that make programming easier rather than abstrac-
tions that reflect the underlying hardware. Thus, we conclude:

An operating system is designed to hide low-level hardware details
and to create an abstract machine that provides applications with
high-level services.

Operating system design is not a well-known craft. In the beginning, because
computers were scarce and expensive, only a few programmers had an opportunity to
work on operating systems. Now that advances in micro-electronic technology have re-
duced fabrication costs and made microprocessors inexpensive, operating systems are
commodities, and few programmers work on them. Interestingly, microprocessors have
become so inexpensive that most electronic devices are now constructed from pro-
grammable processors rather than from discrete logic. As a result, designing and imple-
menting software systems for microcomputers and microcontrollers is no longer a task
reserved for a few specialists; it has become a skill expected of competent systems pro-
grammers.

Fortunately, our understanding of operating systems has grown along with the
technology used to produce new machines. Researchers have explored fundamental is-
sues, formulated design principles, identified essential components, and devised ways
that components can work together. More important, researchers have identified
abstractions, such as files and current processes, that are common to all operating sys-
tems, and have found efficient implementations for the abstractions. Finally, we have
learned how to organize the components of an operating system into a meaningful struc-
ture that simplifies system design and implementation.

Compared to its early counterparts, a modern system is simple, clean, and portable.
A well-designed system follows a basic pattern that partitions software into a set of
basic components. As a result, a modern system can be easier to understand and modi-
fy, can contain less code, and has less processing overhead than early systems.

Vendors that sell large commercial operating systems include many extra software
components along with an operating system. For example, a typical software distribu-
tion includes compilers, linkers, loaders, library functions, and a set of applications. To
distinguish between the extras and the basic system, we sometimes use the term kernel
to refer to the code that remains resident in memory and provides key services such as
support for concurrent processes. Throughout the text, we will assume the term operat-
ing system refers to the kernel, and does not include all additional facilities. A design
that minimizes the facilities in a kernel is sometimes called a microkernel design; our
discussions will concentrate on a microkernel.
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1.2 Approach Used In The Text

This book is a guide to the structure, design, and implementation of operating sys-
tem kernels. Instead of merely listing operating system features and describing systems
abstractly, the book takes an engineering approach. It shows how each abstraction can
be built and how the abstractions can be organized into an elegant, efficient design.

Our approach provides two advantages. First, because the text covers every part of
the system, a reader will see how an entire system fits together, not merely how one or
two parts interact. Second, because source code is available for all pieces described in
the text, no mystery remains about any part of the implementation — a reader can ob-
tain a copy of the system to examine, modify, instrument, measure, extend, or transport
to another architecture. By the end of the book, a reader will see how each piece of an
operating system fits into the design, and will be prepared to understand alternative
design choices.

Our focus on implementation means that the software forms an integral part of the
text. In fact, the code provides a centerpiece for discussion; one must read and study
the program listings to appreciate the underlying subtlety and engineering detail. The
example code is minimal, which means a reader can concentrate on concepts without
wading through many pages of code. Some of the exercises suggest improvements or
modifications that require a reader to delve into details or invent alternatives; a skillful
programmer will find additional ways to improve and extend the system.

1.3 A Hierarchical Design

If designed well, the interior of an operating system can be as elegant and clean as
the best conventional program. The design described in this book achieves elegance by
partitioning system functions into eight major categories, and organizing the com-
ponents into a multi-level hierarchy. Each level of the system provides an abstract ser-
vice, implemented in terms of the abstract services provided by lower levels. The ap-
proach offers a property that will become apparent: successively larger subsets of the
levels can be selected to form successively more powerful systems. We will see how a
hierarchical approach provides a model for designers that helps reduce complexity.

Another important property of our approach arises from run-time efficiency — a
designer can structure pieces of an operating system into a hierarchy without introduc-
ing extra overhead. In particular, our approach differs from a conventional layered sys-
tem in which a function at level K can only invoke functions at level K – 1. In our
multi-level approach, the hierarchy only provides a conceptual model for a designer —
at runtime, a function at a given level of the hierarchy can invoke any of the functions
in lower levels directly. We will see that direct invocation makes the entire system effi-
cient.

Figure 1.1 illustrates the hierarchy used in the text, gives a preview of the com-
ponents we will discuss, and shows the structure into which all pieces are organized.
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HARDWARE

MEMORY MANAGER

PROCESS MANAGER

PROCESS COORDINATION

INTERPROCESS COMMUNICATION

REAL-TIME CLOCK MANAGER

DEVICE MANAGER AND DEVICE DRIVERS

INTERMACHINE COMMUNICATION

FILE SYSTEM

USER PROGRAMS

Figure 1.1  The multi-level organization used in the text.

At the heart of the hierarchy lies the computer hardware. Although not part of the
operating system itself, modern hardware includes features that allow tight integration
with an operating system. Thus, we think of the hardware as forming level zero of our
hierarchy.

Building out from the hardware, each higher level of operating system software
provides more powerful primitives that shield applications from the raw hardware. A
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memory manager controls and allocates memory. Process management forms the most
fundamental component of the operating system, and includes a scheduler and context
switch. Functions in the next level constitute the rest of the process manager, providing
primitives to create, kill, suspend, and resume processes. Just beyond the process
manager comes a process coordination component that implements semaphores. Func-
tions for real-time clock management occupy the next level, and allow application
software to delay for a specified time. On top of the real-time clock level lies a level of
device-independent I/O routines that provide familiar services, such as read and write.
Above the device routines, a level implements network communication, and the level
above that implements a file system.

The internal organization of a system should not be confused with the services the
system provides. Although components are organized into levels to make the design
and implementation cleaner, the resulting hierarchical structure does not restrict system
calls at run-time. That is, once the system has been built, facilities from all levels of
the hierarchy can be exposed to applications. For example, an application can invoke
semaphore functions, such as wait and signal, that reside in the process coordination
level just as easily as it can invoke functions such as putc that reside in an outer level.
Thus, the multi-level structure describes only the internal implementation, and does not
restrict the services the system provides.

1.4 The Xinu Operating System

Examples in the book are taken from the Xinu† operating system. Xinu is a small,
elegant system that is intended for use in an embedded environment, such as a cell
phone or an MP3 player. Typically, Xinu is loaded into memory along with a fixed set
of applications when the system boots. Of course, if memory is constrained or the
hardware architecture uses a separate memory for instructions, Xinu can be executed
from flash or another read-only memory. In a typical system, however, executing from
main memory produces higher performance.

Xinu is not a toy; it is a powerful operating system that has been used in commer-
cial products. For example, Xinu was used in pinball games sold under the
Williams/ Bally brand (the major manufacturer), Woodward Corporation uses Xinu to
control large gas/steam and diesel/steam turbine engines, and Lexmark Corporation used
Xinu as the operating system in many of its printers. In each case, when the device was
powered on, the hardware loaded a memory image that contained Xinu.

Xinu contains the fundamental components of an operating system, including: pro-
cess, memory, and timer management mechanisms, interprocess communication facili-
ties, device-independent I/O functions, and Internet protocol software. Xinu can control
I/O devices and perform chores such as reading keystrokes from a keyboard or keypad,
displaying characters on an output device, managing multiple, simultaneous computa-
tions, controlling timers, passing messages between computations, and allowing applica-
tions to access the Internet.

��������������������������������
†The name stands for Xinu Is Not Unix. As we will see, the internal structure of Xinu differs completely

from the internal structure of Unix (or Linux). Xinu is smaller, more elegant, and easier to understand.



6 Introduction and Overview Chap. 1

Xinu illustrates how the hierarchical design that is described above applies in prac-
tice. It also shows how all the pieces of an operating system function as a uniform, in-
tegrated whole, and how an operating system makes services available to application
programs.

1.5 What An Operating System Is Not

Before proceeding into the design of an operating system, we should agree on what
we are about to study. Surprisingly, many programmers do not have a correct intuitive
definition of an operating system. Perhaps the problem arises because vendors and
computer professionals often apply the terminology broadly to refer to all software sup-
plied by a vendor as well as the operating system itself, or perhaps confusion arises be-
cause few programmers access system services directly. In any case, we can clarify the
definition quickly by ruling out well-known items that are not part of the operating sys-
tem kernel.

First, an operating system is not a language or a compiler. Of course, an operating
system must be written in some language, and languages have been designed that incor-
porate operating systems features and facilities. Further confusion arises because a
software vendor may offer one or more compilers that have been integrated with their
operating system. However, an operating system does not depend on an integrated
language facility — we will see that a system can be constructed using a conventional
language and a conventional compiler.

Second, an operating system is not a windowing system or a browser. Many com-
puters and electronic devices have a screen that is capable of displaying graphics, and
sophisticated systems permit applications to create and control multiple, independent
windows. Although windowing mechanisms rely on an operating system, a windowing
system can be replaced without replacing the operating system.

Third, an operating system is not a command interpreter. Embedded systems often
include a Command Line Interface (CLI); some embedded systems rely on a CLI for all
control. In a modern operating system, however, the command interpreter operates as
an application program, and the interpreter can be changed without modifying the
underlying system.

Fourth, an operating system is not a library of functions or methods. Application
programs that send email, process documents, provide database access, or communicate
over the Internet all use library routines, and the software found in libraries can offer
significant functionality. Although many library routines use operating system services,
the underlying operating system remains independent of the libraries.

Fifth, an operating system is not the first code that runs after a computer is
powered on. Instead, the computer contains firmware (i.e., a program in non-volatile
memory) that initializes various pieces of hardware, loads a copy of the operating sys-
tem into memory, and then jumps to the beginning of the operating system. On a PC,
for example, the firmware is known as the Basic Input Output System (BIOS).
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1.6 An Operating System Viewed From The Outside

The essence of an operating system lies in the services it provides to applications.
An application accesses operating system services by making system calls. In source
code, a system call appears to be a conventional function invocation. However, when
invoked at run-time, a system call transfers control to the operating system, which per-
forms the requested service for the application. Taken as a set, system calls establish a
well-defined boundary between applications and the underlying operating system that is
called an Application Program Interface (API). The API defines the services that the
system provides as well as the details of how an application uses the services.

To appreciate the interior of an operating system, one must first understand the
characteristics of the API and see how applications use the services. This chapter intro-
duces a few fundamental services, using examples from the Xinu operating system to il-
lustrate the concepts. For example, the Xinu procedure putc writes a single character to
a specified I/O device. Putc takes two arguments: a device identifier and a character to
write. File ex1.c contains an example C program that writes the message “hi” on the
console when run under Xinu:

/* ex1.c - main */

#include <xinu.h>

/*------------------------------------------------------------------------

* main -- write "hi" on the console

*------------------------------------------------------------------------

*/

void main(void)

{

putc(CONSOLE, ’h’); putc(CONSOLE, ’i’);

putc(CONSOLE, ’\r’); putc(CONSOLE, ’\n’);

}

The code introduces several conventions used throughout Xinu. The statement #in-
clude <xinu.h> inserts a set of declarations in a source program that allows the program
to reference operating system parameters. For example, the Xinu configuration file de-
fines symbolic constant CONSOLE to correspond to a console serial device a program-
mer uses to interact with the embedded system. Later we will see that xinu.h includes
other include files, and we will learn how names like CONSOLE become synonymous
with devices; for now, it is sufficient to know that the include statement must appear in
any Xinu application.

To permit communication with an embedded system (e.g., for debugging), the seri-
al device on the embedded system can be connected to a terminal application on a con-
ventional computer. Each time a user presses a key on the computer’s keyboard, the



8 Introduction and Overview Chap. 1

terminal application sends the keystroke over the serial line to the embedded system.
Similarly, each time the embedded system sends a character to the serial device, the ter-
minal application displays the character on the user’s screen. Thus, a console provides
two-way communication between the embedded system and the outside world.

The main program listed above writes four characters to the console serial device:
“h”, “i”, a carriage return, and a line feed. The latter two are control characters that
move the cursor to the beginning of the next line. Xinu does not perform any special
operations when the program sends control characters — control characters are merely
passed on to the serial device just like alphanumeric characters. Control characters have
been included in the example to illustrate that putc is not line-oriented; in Xinu, a pro-
grammer is responsible for terminating a line.

The example source file introduces two important conventions followed throughout
the book. First, the file begins with a one-line comment that contains the name of the
file (ex1.c). If a source file contains multiple functions, the name of each appears on
the comment line. Knowing the names of files will help you locate them in a machine-
readable copy of Xinu. Second, the file contains a block comment that identifies the
start of a procedure (main). Having a block comment before each procedure makes it
easy to locate functions in a given file.

1.7 Remainder Of The Text

The remainder of the text proceeds through the design of a system that follows the
multi-level organization that Figure 1.1 illustrates. Chapter 2 describes concurrent pro-
gramming and the services an operating system supplies. Successive chapters consider
the levels in roughly the same order as they are designed and built: from the innermost
outward. Each chapter explains the role of one level in the system, describes new
abstractions, and illustrates the details with source code. Taken together, the chapters
describe a complete, working system and explain how the components fit together in a
clean and elegant design.

Although the bottom-up approach may seem awkward at first, it shows how an
operating system designer builds a system. The overall structure of the system will start
to become clear by Chapter 9. By the end of Chapter 15, readers will understand a
minimal kernel capable of supporting concurrent programs. By Chapter 20, the system
will include remote file access, and by Chapter 23, the design will include a complete
set of operating system functions.

1.8 Perspective

Why study operating systems? It may seem pointless because commercial systems
are widely available and relatively few programmers write operating system code.
However, a strong motivation exists: even in small embedded systems, applications run
on top of an operating system and use the services it provides. Therefore, understand-
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ing how an operating system works internally helps a programmer appreciate concurrent
processing and make sensible choices about system services.

1.9 Summary

An operating system is not a language, compiler, windowing system, browser,
command interpreter, or library of procedures. Because most applications use operating
system services, programmers need to understand operating system principles. Pro-
grammers who work on programmable electronic devices need to understand operating
system design.

The text takes a practical approach. Instead of describing components and features
of an operating system abstractly, an example system, Xinu, is used to illustrate con-
cepts. Although it is small and elegant, Xinu is not a toy — it has been used in com-
mercial products. Xinu follows a multi-level design in which software components are
organized into eight conceptual levels. The text explains one level of the system at a
time, beginning with the raw hardware and ending with a working operating system.

EXERCISES

1.1 Should an operating system make hardware facilities available to application programs?
Why or why not?

1.2 What are the advantages of using a real operating system in examples?

1.3 What are the eight major components of an operating system?

1.4 In the Xinu multi-level hierarchy, can a file system function depend on a process manager
function? Can a process manager function depend on a file system function? Explain.

1.5 Explore the system calls available on your favorite operating system, and write a program
that uses them.

1.6 Various programming languages have been designed that incorporate OS concepts such as
processes and process synchronization primitives. Find an example language, and make a
list of the facilities it offers.

1.7 Search the web, and make a list of the major commercial operating systems that are in use.

1.8 Compare the facilities in Linux and Microsoft’s Windows operating systems. Does either
one support functionality that is not available in the other?

1.9 The set of functions that an operating system makes available to application programs is
known as the Application Program Interface or the system call interface. Choose two ex-
ample operating systems, count the functions in the interface that each makes available, and
compare the counts.

1.10 Extend the previous exercise by identifying functions that are available in one system but
not in the other. Characterize the purpose and importance of the functions.

1.11 How large is an operating system? Choose an example system, and find how many lines of
source code are used for the kernel.
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2

Concurrent Execution And
Operating System Services

From an article on a new operating system for the IBM
PC: Real concurrency — in which one program actually
continues to function while you call up and use another
— is more amazing but of small use to the average
person. How many programs do you have that take
more than a few seconds to perform any task?

– New York Times, 25 April 1989

2.1 Introduction

This chapter considers the concurrent programming environment that an operating
system provides for applications. It describes a model of concurrent execution, and
shows why applications that operate concurrently need mechanisms to coordinate and
synchronize. It introduces basic concepts, such as processes and semaphores, and ex-
plains how applications use such facilities.

Instead of describing operating systems abstractly, the chapter uses concrete exam-
ples from the Xinu system to illustrate concepts such as concurrency and synchroniza-
tion. The chapter contains trivial applications that capture the essence of concurrent ex-
ecution in a few lines of code. Later chapters expand the discussion by explaining in
detail how an operating system implements each of the facilities described.

11
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2.2 Programming Models For Multiple Activities

Even small computing devices are designed to handle multiple tasks at the same
time. For example, while a voice call is connected, a cell phone can display the time of
day, listen for other incoming calls, and allow the user to adjust the volume. More
complex computing systems allow a user to run multiple applications that execute at the
same time. The question arises: how should the software in such systems be organized?
Three basic approaches can be used:

d Synchronous event loop

d Asynchronous event handlers

d Concurrent execution

Synchronous event loop. The term synchronous refers to events that are coordinat-
ed. A synchronous event loop uses a single, large iteration to handle coordination.
During a given iteration of the loop, the code checks each possible activity and invokes
the appropriate handler. Thus, the code has a structure similar to the following:

while (1) { /* synchronous loop runs forever */
Update time-of-day clock;
if (screen timeout has expired) {

turn off the screen;
}
if (volume button is being pushed) {

adjust volume;
}
if (text message has arrived) {

Display notification for user;
}
...

}

Asynchronous event handlers. A second alternative is used in systems where the
hardware can be configured to invoke a handler for each event. For example, the code
to adjust volume might be placed in memory at location 100, and the hardware is con-
figured so that when the volume button is pressed, control transfers to location 100.
Similarly, the hardware can be configured so that when a text message arrives, control
transfers to location 200, and so on. A programmer writes a separate piece of code for
each event, and uses global variables to coordinate their interactions. For example, if a
user presses the mute button, the code associated with the mute event turns off the audio
and records the status in a global variable. Later, when the user adjusts the volume,
code associated with the volume button checks the global variable, turns on the audio,
and changes the global variable to indicate that audio is on.
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Concurrent execution. The third architecture used to organize multiple activities is
the most significant: software is organized as a set of programs that each operate con-
currently. The model is sometimes called run-to-completion because each computation
appears to run until it chooses to stop. From a programmer’s point of view, concurrent
execution is a delight. Compared to synchronous or asynchronous events, concurrent
execution is more powerful, easier to understand, and less error-prone.

The next sections describe operating systems that provide the support needed for
concurrency, and characterize the concurrent model. Later chapters examine the under-
lying operating system mechanisms and functions that enable a concurrent programming
model.

2.3 Operating System Services

What are the main services that an operating system supplies? Although the de-
tails vary from system to system, most systems supply the same basic services. The
services (with the chapters of the text that describe them) are:

d Support for concurrent execution (5, 6)

d Facilities for process synchronization (7)

d Inter-process communication mechanisms (8)

d Protection among running applications (9, 10)

d Management of address spaces and virtual memory (10)

d High-level interface for I/ O devices (12–14)

d Network communication (17)

d A file system and file access facilities (19–21)

Concurrent execution is at the heart of an operating system, and we will see that
concurrency affects each piece of operating system code. Thus, we begin by examining
the facilities an operating system offers for concurrency, and use concurrency to show
how an application program invokes services.

2.4 Concurrent Processing Concepts And Terminology

Conventional programs are called sequential because a programmer imagines a
computer executing the code statement by statement; at any instant, the machine is exe-
cuting exactly one statement. Operating systems support an extended view of computa-
tion called concurrent processing. Concurrent processing means that multiple computa-
tions can proceed “at the same time.”

Many questions arise about concurrent processing. It is easy to imagine N in-
dependent programs being executed simultaneously by N processors or N cores, but it is
difficult to imagine a set of independent computations proceeding simultaneously on a
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computer that has fewer than N processing units. Is concurrent computation possible
even if a computer has a single core? If multiple computations each proceed simultane-
ously, how does the system keep one program from interfering with others? How do
the programs cooperate so that only one takes control of an input or output device at a
given time?

Although many CPUs do incorporate some amount of parallelism, the most visible
form of concurrency, multiple independent applications that execute simultaneously, is a
grand illusion. To create the illusion, an operating system uses a technique, called mul-
tiprogramming — the operating system switches the available processor(s) among mul-
tiple programs, allowing a processor to execute one program for only a few mil-
liseconds before moving on to another. When viewed by a human, the programs appear
to proceed concurrently. Multiprogramming forms the basis of most operating systems.
The only exceptions are a few systems that operate basic devices such as a simplistic re-
mote control used with a television and safety-critical embedded systems, such as flight
avionics and medical device controllers, that use a synchronous event loop to guarantee
that tight time constraints can be met absolutely.

Systems that support multiprogramming can be divided into two broad categories:

d Timesharing

d Real-time

Timesharing. A timesharing system gives equal priority to all computations, and
permits computations to start or terminate at any time. Because they allow computa-
tions to be created dynamically, timesharing systems are popular for computers that hu-
man users operate. A timesharing system allows a human to leave an email application
running while using a browser to view a web page and to leave a background applica-
tion playing music. The chief characteristic of a timesharing system is that the amount
of processing a computation receives is inversely proportional to the load on the system
— if N computations are executing, each computation receives approximately 1 / N of
the available CPU cycles. Thus, as more computations appear, each proceeds at a
slower rate.

Real-time. Because it is designed to meet performance constraints, a real-time sys-
tem does not treat all computations equally. Instead, a real-time system assigns priori-
ties to computations, and schedules the processor carefully to insure that each computa-
tion meets its required schedule. The chief characteristic of a real-time system arises
from its ability to give the CPU to high-priority tasks, even if other tasks are waiting.
For example, by giving priority to voice transmission, a real-time system in a cell phone
can guarantee that the conversation is uninterrupted, even if a user runs an application
to view the weather or an application to play a game.

Designers of multiprogramming systems have used a variety of terms to describe a
single computation, including process, task, job, and thread of control. The terms pro-
cess or job often connote a single computation that is self-contained and isolated from
other computations. Typically, a process occupies a separate region of memory, and the
operating system prevents a process from accessing the memory that has been assigned
to another process. The term task refers to a process that is declared statically. That is,
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a programming language allows a programmer to declare a process similar to the way
one declares a function. The term thread refers to a type of process that shares an ad-
dress space with other threads. Shared memory means that members of the set can ex-
change information efficiently. Early scientific literature used the term process to refer
to concurrent execution in a generic sense; the Unix operating system popularized the
idea that each process occupied a separate address space. The Mach system introduced
a two-level concurrent programming scheme in which the operating system allows a
user to create one or more processes that each operate in an independent region of
memory, and further allows a user to create multiple threads of control within a given
process. Linux follows the Mach model. To refer to a Linux-style process, the word
Process is written with an uppercase P.

Because it is designed for an embedded environment, Xinu permits processes to
share an address space. To be precise, we might say that Xinu processes follow a
thread model. However, because the term process is widely accepted, we will use it
throughout the text to refer generically to a concurrent computation.

The next section helps distinguish concurrent execution from sequential execution
by examining a few applications. As we will see, the difference plays a central role in
operating system design — each piece of an operating system must be built to support
concurrent execution.

2.5 Distinction Between Sequential And Concurrent Programs

When a programmer creates a conventional (sequential) program, the programmer
imagines a single processor executing the program step-by-step without interruption or
interference. When writing code for a concurrent program, however, a programmer
must take a different view and imagine multiple computations executing simultaneously.
The code inside an operating system provides an excellent example of code that must
accommodate concurrency. At any given instant, multiple processes may be executing.
In the simplest case, each process executes application code that no other process is ex-
ecuting. However, an operating system designer must plan for a situation in which mul-
tiple processes have invoked a single operating system function, or even a case where
multiple processes are executing the same instruction. To further complicate matters,
the operating system may switch the processor among processes at any time; no guaran-
tee can be made about the relative speed of computation in a multiprogramming system.

Designing code to operate correctly in a concurrent environment provides a tough
intellectual challenge because a programmer must insure that all processes cooperate, no
matter what operating system code they execute or in which order they execute. We
will see how the notion of concurrent execution affects each line of code in an operating
system.

To understand applications in a concurrent environment, consider the Xinu model.
When it boots, Xinu creates a single process of execution that starts running the main
program. The initial process can continue execution by itself, or it can create new
processes. When a new process is created, the original process continues to execute,
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and the new process executes concurrently. Either the original process or a new process
can create additional processes that execute concurrently.

For example, consider the code for a concurrent application that creates two
processes. Each process sends characters over the console serial device: the first pro-
cess sends the letter A, and the second sends the letter B. File ex2.c contains the source
code, which consists of a main program and two functions, sndA and sndB.

/* ex2.c - main, sndA, sndB */

#include <xinu.h>

void sndA(void), sndB(void);

/*------------------------------------------------------------------------

* main -- example of creating processes in Xinu

*------------------------------------------------------------------------

*/

void main(void)

{

resume( create(sndA, 1024, 20, "process 1", 0) );

resume( create(sndB, 1024, 20, "process 2", 0) );

}

/*------------------------------------------------------------------------

* sndA -- repeatedly emit ’A’ on the console without terminating

*------------------------------------------------------------------------

*/

void sndA(void)

{

while( 1 )

putc(CONSOLE, ’A’);

}

/*------------------------------------------------------------------------

* sndB -- repeatedly emit ’B’ on the console without terminating

*------------------------------------------------------------------------

*/

void sndB(void)

{

while( 1 )

putc(CONSOLE, ’B’);

}
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In the code, the main program never calls either function directly. Instead, the
main program calls two operating system functions, create and resume. Each call to
create forms a new process that will begin executing instructions at the address speci-
fied by its first argument. In the example, the first call to create passes the address of
function sndA, and the second call passes the address of function sndB.† Thus, the code
creates a process to execute sndA and a process to execute sndB. Create establishes a
process, leaves the process ready to execute but temporarily suspended, and returns an
integer value that is known as a process identifier or process ID. The operating system
uses the process ID to identify the newly created process; an application uses the pro-
cess ID to reference the process. In the example, the main program passes the ID re-
turned by create to resume as an argument. Resume starts (unsuspends) the process, al-
lowing the process to begin execution. The distinction between normal function calls
and process creation is:

A normal function call does not return until the called function com-
pletes. Process creation functions create and resume return to the
caller immediately after starting a new process, which allows execu-
tion of both the existing process and the new process to proceed con-
currently.

In Xinu, all processes execute concurrently. That is, execution of a given process
continues independent of other processes unless a programmer explicitly controls in-
teractions among processes. In the example, the first new process executes code in
function sndA, sending the letter A continuously, and the second executes code in func-
tion sndB, sending the letter B continuously. Because the processes execute concurrent-
ly, the output is a mixture of As and Bs.

What happens to the main program? Remember that in an operating system, each
computation corresponds to a process. Therefore, we should ask, “What happens to the
process executing the main program?” Because it has reached the end of the main pro-
gram, the process executing the main program exits after the second call to resume. Its
exit does not affect the newly created processes — they continue to send As and Bs. A
later section describes process termination in more detail.

2.6 Multiple Processes Sharing A Single Piece Of Code

The example in file ex2.c shows each process executing a separate function. It is
possible, however, for multiple processes to execute the same function. Arranging for
processes to share code can be essential in an embedded system that has a small
memory. To see an example of processes sharing code, consider the program in file
ex3.c.

��������������������������������
†Other arguments to create specify the stack space needed, a scheduling priority, a name for the process,

the count of arguments passed to the process, and (when applicable) the argument values passed to the pro-
cess; we will see details later.
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/* ex3.c - main, sndch */

#include <xinu.h>

void sndch(char);

/*------------------------------------------------------------------------

* main -- example of 2 processes executing the same code concurrently

*------------------------------------------------------------------------

*/

void main(void)

{

resume( create(sndch, 1024, 20, "send A", 1, ’A’) );

resume( create(sndch, 1024, 20, "send B", 1, ’B’) );

}

/*------------------------------------------------------------------------

* sndch -- output a character on a serial device indefinitely

*------------------------------------------------------------------------

*/

void sndch(

char ch /* character to emit continuously */

)

{

while ( 1 )

putc(CONSOLE, ch);

}

As in the previous example, a single process begins executing the main program.
The process calls create twice to start two new processes that each execute code from
function sndch. The final two arguments in the call to create specify that create will
pass one argument to the newly created process and a value for the argument. Thus, the
first process receives the character A as an argument, and the second process receives
character B.

Although they execute the same code, the two processes proceed concurrently
without any effect on one another. In particular, each process has its own copy of argu-
ments and local variables. Thus, one process emits As, while the other process emits
Bs. The key point is:

A program consists of code executed by a single process of control.
In contrast, concurrent processes are not uniquely associated with a
piece of code; multiple processes can execute the same code simul-
taneously.

www.itpub.net



Sec. 2.6 Multiple Processes Sharing A Single Piece Of Code 19

The examples provide a hint of the difficulty involved in designing an operating
system. Not only must each piece be designed to operate correctly by itself, the
designer must also guarantee that multiple processes can execute a given piece of code
concurrently without interfering with one another.

Although processes can share code and global variables, each process must have a
private copy of local variables. To understand why, consider the chaos that would
result if all processes shared every variable. If two processes tried to use a shared vari-
able as the index of a for loop, for example, one process might change the value while
another process was in the midst of executing the loop. To avoid such interference, the
operating system creates an independent set of local variables for each process.

Function create also allocates an independent set of arguments for each process, as
the example in file ex3.c demonstrates. In the calls to create, the last two arguments
specify a count of values that follow (1 in the example), and the value that the operating
system passes to the newly created process. In the code, the first new process has char-
acter A as an argument, and the process begins execution with formal parameter ch set
to A. The second new process begins with ch set to B. Thus, the output contains a
mixture of both letters. The example points out a significant difference between the
sequential and concurrent programming models.

Storage for local variables, function arguments, and a function call
stack is associated with the process executing a function, not with the
code for the function.

The important point is: an operating system must allocate additional storage for
each process, even if the process shares the same code that other process(s) are using.
As a consequence, the amount of memory available limits the number of processes that
can be created.

2.7 Process Exit And Process Termination

The example in file ex3.c consists of a concurrent program with three processes:
the initial process and the two processes that were started with the system call create.
Recall that when it reached the end of the code in the main program, the initial process
ceased execution. We use the term process exit to describe the situation. Each process
begins execution at the start of a function. A process can exit by reaching the end of
the function or by executing a return statement in the function in which it starts. Once
a process exits, it disappears from the system; there is simply one less computation in
progress.

Process exit should not be confused with normal function call and return or with
recursive function calls. Like a sequential program, each process has its own stack of
function calls. Whenever it executes a call, an activation record for the called function
is pushed onto the stack. Whenever it returns, a function’s activation record is popped



20 Concurrent Execution And Operating System Services Chap. 2

off the stack. Process exit occurs only when the process pops the last activation record
(the one that corresponds to the top-level function in which the process started) off its
stack.

The system routine kill provides a mechanism to terminate a process without wait-
ing for the process to exit. In a sense, kill is the inverse of create — kill takes a process
ID as an argument, and removes the specified process immediately. A process can be
killed at any time and at any level of function nesting. When terminated, the process
ceases execution and local variables that have been allocated to the process disappear;
in fact, the entire stack of functions for the process is removed.

A process can exit by killing itself as easily as it can kill another process. To do
so, the process uses system call getpid to obtain its own process ID, and then uses kill
to request termination:

kill( getpid() );

When used to terminate the current process, the call to kill never returns because the
calling process exits.

2.8 Shared Memory, Race Conditions, And Synchronization

In Xinu, each process has its own copy of local variables, function arguments, and
function calls, but all processes share the set of global (external) variables. Sharing data
is sometimes convenient, but it can be dangerous, especially for programmers who are
unaccustomed to writing concurrent programs. For example, consider two concurrent
processes that each increment a shared integer, n. In terms of the underlying hardware,
incrementing an integer requires three steps:

d Load the value from variable n in memory into a register
d Increment the value in the register
d Store the value from the register back into the memory location for n

Because the operating system can choose to switch from one process to another at
any time, a potential race condition exists in which two processes attempt to increment
n at the same time. Process 1 might start first and load the value of n into a register.
But just at that moment, the operating system switches to process 2, which loads n, in-
crements the register, and stores the result. Unfortunately, when the operating system
switches back to process 1, execution resumes with the original value of n in a register.
Process 1 increments the original value of n and stores the result to memory, overwrit-
ing the value that process 2 placed in memory.

To see how sharing works, consider the code in file ex4.c. The file contains code
for two processes that communicate through a shared integer, n†. One process repeat-
edly increments the value of the shared integer, while the other process repeatedly prints
the value.

��������������������������������
†The code uses the type name int32 to emphasize that variable n is a 32-bit integer; a later section ex-

plains conventions for type names.
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/* ex4.c - main, produce, consume */

#include <xinu.h>

void produce(void), consume(void);

int32 n = 0; /* external variables are shared by all processes */

/*------------------------------------------------------------------------

* main -- example of unsynchronized producer and consumer processes

*------------------------------------------------------------------------

*/

void main(void)

{

resume( create(consume, 1024, 20, "cons", 0) );

resume( create(produce, 1024, 20, "prod", 0) );

}

/*------------------------------------------------------------------------

* produce -- increment n 2000 times and exit

*------------------------------------------------------------------------

*/

void produce(void)

{

int32 i;

for( i=1 ; i<=2000 ; i++ )

n++;

}

/*------------------------------------------------------------------------

* consume -- print n 2000 times and exit

*------------------------------------------------------------------------

*/

void consume(void)

{

int32 i;

for( i=1 ; i<=2000 ; i++ )

printf("The value of n is %d \n", n);

}

In the code, global variable n is a shared integer, initialized to zero. The process
executing produce iterates 2000 times, incrementing n; we call this process the produc-



22 Concurrent Execution And Operating System Services Chap. 2

er. The process executing consume also iterates 2000 times. It displays the value of n
in decimal; we call this process the consumer.

Try running file ex4.c — its output may surprise you. Most programmers suspect
that the consumer will print at least a few, perhaps all, of the values between 0 and
2000, but it does not. In a typical run, n has the value 0 for the first few lines; after
that, its value becomes 2000.† Even though the two processes run concurrently, they
do not require the same amount of CPU time per iteration. The consumer process must
format and write a line of output, an operation that requires hundreds of machine in-
structions. Although formatting is expensive, it does not dominate the timing; output
does. The consumer quickly fills the available output buffers, and must wait for the
output device to send characters to the console before it can proceed. While the con-
sumer waits, the producer runs. Because it executes only a few machine instructions
per iteration, the producer runs through its entire loop and exits in the short time it takes
the console device to send a line of characters. When the consumer resumes execution
again, it finds that n has the value 2000.

Production and consumption of data by independent processes is common. The
question arises: how can a programmer synchronize producer and consumer processes
so the consumer receives every data value produced? Clearly, the producer must wait
for the consumer to access the data item before generating another. Likewise, the con-
sumer must wait for the producer to manufacture the next item. For the two processes
to coordinate correctly, a synchronization mechanism must be designed carefully. The
crucial constraint is:

In a concurrent programming system, no process should use the CPU
while waiting for another process.

A process that executes instructions while waiting for another is said to engage in
busy waiting. To understand our prohibition on busy waiting, think of the implementa-
tion. If a process uses the CPU while waiting, the CPU cannot be executing other
processes. At best, the computation will be delayed unnecessarily, and at worst, the
waiting process will use all the available CPU time in a single-CPU processor and wind
up waiting forever.

Many operating systems include coordination functions that applications can use to
avoid busy waiting. Xinu provides a semaphore abstraction — the system supplies a
set of system calls that allow applications to operate on semaphores and to create sema-
phores dynamically. A semaphore consists of an integer value that is initialized when
the semaphore is created and a set of zero or more processes that are waiting on the
semaphore. The system call wait decrements a semaphore and adds the calling process
to the set of waiting processes if the result is negative. The system call signal performs
the opposite action by incrementing the semaphore and allowing one of the waiting pro-
cess to continue, if any are waiting. To synchronize, a producer and consumer need two
semaphores: one on which the consumer waits and one on which the producer waits. In
Xinu, semaphores are created dynamically with the system call semcreate, which takes

��������������������������������
†The example assumes a 32-bit architecture in which each operation affects the entire 32-bit integer;

when run on an 8-bit architecture, some bytes of n may be updated before others.
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the desired initial count as an argument, and returns an integer identifier by which the
semaphore is known.

Consider the example in file ex5.c. The main process creates two semaphores,
consumed and produced, and passes them as arguments to the processes it creates. Be-
cause the semaphore named produced begins with a count of 1, wait will not block the
first time it is called in cons2. So, the consumer is free to print the initial value of n.
However, semaphore consumed begins with a count of 0, so the first call to wait in
prod2 blocks. In effect, the producer waits for semaphore consumed before increment-
ing n to guarantee that the consumer has printed it. When the example executes, the
producer and consumer coordinate, and the consumer prints all values of n from 0
through 1999.

/* ex5.c - main, prod2, cons2 */

#include <xinu.h>

void prod2(sid32, sid32), cons2(sid32, sid32);

int32 n = 0; /* n assigned an initial value of zero */

/*------------------------------------------------------------------------

* main -- producer and consumer processes synchronized with semaphores

*------------------------------------------------------------------------

*/

void main(void)

{

sid32 produced, consumed;

consumed = semcreate(0);

produced = semcreate(1);

resume( create(cons2, 1024, 20, "cons", 2, consumed, produced) );

resume( create(prod2, 1024, 20, "prod", 2, consumed, produced) );

}

/*------------------------------------------------------------------------

* prod2 -- increment n 2000 times, waiting for it to be consumed

*------------------------------------------------------------------------

*/

void prod2(

sid32 consumed,

sid32 produced

)

{

int32 i;
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for( i=1 ; i<=2000 ; i++ ) {

wait(consumed);

n++;

signal(produced);

}

}

/*------------------------------------------------------------------------

* cons2 -- print n 2000 times, waiting for it to be produced

*------------------------------------------------------------------------

*/

void cons2(

sid32 consumed,

sid32 produced

)

{

int32 i;

for( i=1 ; i<=2000 ; i++ ) {

wait(produced);

printf("n is %d \n", n);

signal(consumed);

}

}

2.9 Semaphores And Mutual Exclusion

Semaphores provide another important purpose, mutual exclusion. Two or more
processes engage in mutual exclusion when they cooperate so that only one of them ob-
tains access to a shared resource at a given time. For example, suppose two executing
processes each need to insert items into a shared linked list. If they access the list con-
currently, pointers can be set incorrectly. Producer–consumer synchronization does not
handle the problem because the two processes do not alternate accesses. Instead, a
mechanism is needed that allows either process to access the list at any time, but
guarantees mutual exclusion so that one process will wait until the other finishes.

To provide mutual exclusion for use of a resource such as a linked list, the
processes create a single semaphore that has an initial count of 1. Before accessing the
shared resource, a process calls wait on the semaphore, and calls signal after it has com-
pleted access. The calls to wait and signal can be placed at the beginning and end of
the procedures designed to perform the update, or they can be placed around the lines of
code that access the shared resource. We use the term critical section to refer to the
code that cannot be executed by more than one process at a time.
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For example, file ex6.c shows a function that adds an item to an array that is
shared by multiple concurrent processes. The critical section consists of the single line:

shared[n++] = item;

which references the array and increments the count of items. Thus, the code for mutu-
al exclusion only needs to surround one line of code. In the example, the critical sec-
tion has been placed in a function, additem, which means the calls to wait and signal
occur at the beginning and end of the function.

The code in additem calls wait on semaphore mutex before accessing the array, and
calls signal on the semaphore when access is complete. In addition to the function, the
file contains declarations for three global variables: an array, ary, an index for the array,
n, and the ID of the semaphore used for mutual exclusion, mutex.

/* ex6.c - additem */

#include <xinu.h>

sid32 mutex; /* assume initialized with semcreate */

int32 shared[100]; /* an array shared by many processes */

int32 n = 0; /* count of items in the array */

/*------------------------------------------------------------------------

* additem -- obtain exclusive access to array ary and add an item to it

*------------------------------------------------------------------------

*/

void additem(

int32 item /* item to add to array ary */

)

{

wait(mutex);

shared[n++] = item;

signal(mutex);

}

The code assumes that global variable mutex will be assigned the ID of a sema-
phore before any calls to additem occur. That is, during initialization, the following
statement was executed:

mutex = semcreate(1);

The code in file ex6.c provides a final illustration of the difference between the
way one programs in sequential and concurrent environments. In a sequential program,
a function often acts to isolate changes to a data structure. By localizing the code that
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changes a data structure in one function, a programmer gains a sense of security — only
a small amount of code needs to be checked for correctness because nothing else in the
program will interfere with the data structure. In a concurrent execution environment,
isolating the code into a single function is insufficient. A programmer must guarantee
that execution is exclusive because interference can come from another process execut-
ing the same function at the same time.

2.10 Type Names Used In Xinu

Data declarations in the code above illustrate conventions used throughout the text.
For example, semaphores are declared using the type name sid32. This section explains
the reasoning for the choice.

Two important questions arise when programming in C. When is it appropriate to
define a new type name? How should a type name be chosen? The questions require
careful thought because types fill two conceptual roles.

d Size. A type defines the storage associated with a variable and the
set of values that can be assigned to the variable.

d Use. A type defines the abstract meaning of a variable and helps a
programmer know how a variable can be used.

Size. The sizes of variables are especially important in an embedded system be-
cause a programmer must design data structures that fit in the memory available. Furth-
ermore, choosing a size that does not match the underlying hardware can result in unex-
pected processing overhead (e.g., arithmetic operations on large integers can require
multiple hardware steps). Unfortunately, C does not specify the exact size of concrete
types, such as int, short, and long. Instead, the size of items depends on the underlying
computer architecture. For example, a long integer can occupy 32 bits on one computer
and 64 bits on another computer. To guarantee sizes, a programmer can define and use
a set of type names, such as int32, that specify data size.

Use. The classic purpose of a type arises from the need to define the purpose of a
variable (i.e., to tell how the variable is used). For example, although semaphore IDs
are integers, defining a type name such as semaphore makes it clear to anyone reading
the code that a variable holds a semaphore ID and should only be used where a sema-
phore ID is appropriate (e.g., as an argument to a function that operates on a sema-
phore). Thus, although it consists of an integer, a variable of type semaphore should
not be used as a temporary value when computing an arithmetic expression, nor should
it be used to store a process ID or a device ID.

Include files further complicate type declarations in C. In principle, one would ex-
pect each include file to contain the type, constant, and variable declarations related to a
single module. Thus, one would expect to find the type for a process identifier declared
in the include file that defines items related to processes. In an operating system, how-
ever, many cross-references exist among modules. For example, we will see that the in-
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clude file for semaphores references the process type, and the include file for processes
references the semaphore type.

We have chosen an approach in which types accommodate the need to define size
as well as the need to define use. Instead of using the C form of char, short, int, and
long, the code uses the types that Figure 2.1 lists.

For types that correspond to operating system abstractions, each name combines a
short mnemonic that identifies the purpose plus a numeric suffix that identifies the size.
Thus, a type that defines a semaphore ID to be a 32-bit integer has been assigned the
name sid32, and a type that defines a queue ID to be a 16-bit integer has been assigned
the name qid16.

���������������������������������������
Type Meaning���������������������������������������
byte unsigned 8-bit value���������������������������������������

bool8 8-bit value used as a Boolean���������������������������������������
int16 signed 16-bit integer���������������������������������������

uint16 unsigned 16-bit integer���������������������������������������
int32 signed 32-bit integer���������������������������������������

uint32 unsigned 32-bit integer�����������������������������������������
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Figure 2.1  Basic type names for integers used throughout Xinu.

To permit cross-references of types among modules, a single include file, kernel.h,
contains declarations for all type names, including the types listed in Figure 2.1. Thus,
each source file must include kernel.h before referencing any type name. In particular,
an include for kernel.h must precede the includes for other modules. For convenience, a
single include file, xinu.h, includes all header files used in Xinu in the correct order.

2.11 Operating System Debugging With Kputc And Kprintf

The examples in this chapter use Xinu functions putc and printf to display output
on the CONSOLE. Although such functions work well once an operating system has
been completed and tested, they are not used during construction or debugging because
they require many components of the operating system to functioning correctly. What
do operating system designers use?

The answer lies in polled I/O. That is, a designer creates a special I/O function
that does not need interrupts to be working. Following Unix tradition, we call the spe-
cial function kputc (i.e., a version of putc suitable for use inside the operating system
kernel). Kputc takes a character, c, as an argument and performs four steps:
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d Disable interrupts

d Wait for the CONSOLE serial device to be idle

d Send character c to the serial device

d Restore interrupts to their previous status

Thus, when a programmer invokes kputc, all processing stops until the character
has been displayed. Once the character has been displayed, processing resumes. The
important idea is that the operating system itself does not need to be working because
kputc manipulates the hardware device directly.

Once kputc is available, it is easy to create a function that can display formatted
output. Again following Unix tradition, we call the function kprintf. Basically, kprintf
operates exactly like printf except that instead of invoking putc to display each charac-
ter, kprintf invokes kputc.†

Although it is not important to understand the exact details of how polled I/O
operates, it is essential to use polled I/O when debugging:

Whenever they modify or extend the operating system, programmers
should use kprintf to display messages rather than printf.

2.12 Perspective

Concurrent processing is one of the most powerful abstractions in Computer Sci-
ence. It makes programming easier, less error prone, and in many cases, yields higher
overall performance than code that attempts to switch among tasks manually. The ad-
vantages are so significant that once concurrent execution was introduced, it rapidly be-
came the primary choice for most programming.

2.13 Summary

An understanding of an operating system begins with the set of services the system
provides to applications. Unlike a conventional, sequential programming environment,
an operating system provides concurrent execution in which multiple processes proceed
at the same time. In our example system, as in most systems, a process can be created
or terminated at run-time. Multiple processes can each execute a separate function, or
multiple processes can execute a single function. In a concurrent environment, storage
for arguments, local variables, and a function call stack is associated with each process
rather than with the code.

��������������������������������
†Debugging operating system code is difficult because disabling interrupts can change the execution of a

system (e.g., by preventing clock interrupts). Thus, a programmer must be extremely careful when using
kprintf.
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Processes use synchronization primitives, such as semaphores, to coordinate execu-
tion. Two primary forms of coordination are producer–consumer synchronization and
mutual exclusion.

EXERCISES

2.1 What is an API, and how is an API defined?

2.2 To what does multiprogramming refer?

2.3 List the two basic categories of multiprogramming systems, and state the characteristics of
each.

2.4 What characteristics are generally associated with the terms process, task, and thread?

2.5 How is a process ID used?

2.6 How does calling function X differ from calling create to start a process executing function
X?

2.7 The program in file ex3.c uses three processes. Modify the code to achieve the same
results using only two processes.

2.8 Test the program in file ex4.c repeatedly. Does it always print the same number of zeroes?
Does it ever print a value of n other than 0 or 2000?

2.9 In Xinu, what is the difference in storage between global variables and local variables?

2.10 Why do programmers avoid busy waiting?

2.11 Suppose three processes attempt to use function additem in file ex6.c at the same time. Ex-
plain the series of steps that occur, and give the value of the semaphore during each step.

2.12 Modify the producer–consumer code in file ex5.c to use a buffer of 15 slots, and have the
producer and consumer synchronize in such a way that a producer can generate up to 15
values before blocking and a consumer can extract all values in the buffer before blocking.
That is, arrange for the producer to write integers 1, 2, ... in successive locations of the
buffer, wrapping around to the beginning after filling the last slot, and have the consumer
extract values and print them on the console. How many semaphores are needed?

2.13 In file ex5.c, the semaphore produced is created with a count of 1. Rewrite the code so
produced is created with a count of 0 and the producer signals the semaphore once before
starting the iteration. Does the change affect the output?

2.14 Find the documentation for the serial port (or console device hardware) on a platform to
which you have access. Describe how to construct a polled I/O function, kputc() that uses
the device.
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An Overview Of The
Hardware and Run-Time
Environment

One machine can do the work of fifty ordinary men.
No machine can do the work of one extraordinary
man.

— Elbert Hubbard

3.1 Introduction

Because it deals with the details of devices, processors, and memory, an operating
system cannot be designed without knowledge of the capabilities and features of the
underlying hardware. The example system in this text runs on a small embedded
hardware platform, the E2100L Linksys wireless router. We chose the Linksys router
because it offers simplicity, a well-known instruction set, availability, and low cost.
The system is small enough to allow readers to understand most of the hardware, and
sufficiently complex to illustrate how an operating system works on a general-purpose
system. Finally, the E2100L allows programmers to download and run code without re-
quiring a sophisticated hardware lab and without replacing ROM chips.

The remainder of the chapter introduces the Linksys hardware, describing pertinent
features of the processor, memory, and I/O devices. The chapter explains the architec-
ture, memory address space, the run-time stack, the interrupt mechanism, and device ad-
dressing. Although the details refer to the E2100L, the basic concepts apply broadly to
most computer systems.

31
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3.2 Physical And Logical Organizations Of The E2100L

Physically, a Linksys router consists of a small self-contained box that uses a
separate power cube. Because Linksys markets the E2100L as a consumer product, the
router comes completely assembled. Furthermore, most of the major components are
contained in a single VLSI chip that is known as a System On a Chip (SoC).

Although the circuit board contains pins for a serial interface, no external connec-
tion is supplied. Before the serial interface can be used, an inexpensive serial converter
must be connected to pins on the board. Information about a serial connection and in-
structions describing how to attach a serial connector can be found on the web site:

http:// www.xinu.cs.purdue.edu

Logically, the E2100L follows the same overall architecture as most general-
purpose computer systems. The components on the SoC include a processor, co-
processor, memory interface, and I/O device interfaces. The I/O devices of interest in-
clude wired and wireless network devices.

One wired network interface connects to a controller that acts as a hub with four
RJ-45 sockets that can connect to local computers.† The other wired network interface,
intended for an Internet connection, attaches to a single RJ-45 socket. An internal bus,
known as a system backplane, provides a central interconnect that allows components to
interact. Figure 3.1 illustrates the conceptual organization.

system backplane (a parallel bus)

memoryFlash
ROM

MIPS
core

wired
network
device 1

wired
network
device 2

wireless
network
device

Ethernet
switch

to antenna

wired Ethernets
(local computers)

wired
Ethernet
(Internet)

contains processor
plus co-processor

Figure 3.1  The logical organization of major components in the E2100L.

��������������������������������
†Hardware components on the chip can be reconfigured to provide alternative logical organizations. The

chapter and the remainder of the text describe the default hardware configuration that is available when the de-
vice is powered on without giving details about alternatives.
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The next sections consider features of the E2100L that are pertinent to an operating
system. For now, we will focus on the overall design of each component and how the
components fit together. Later chapters discuss additional details, explain how an
operating system interacts with the hardware, and provide examples.

3.3 Processor Organization And Registers

Like many embedded systems, the E2100L uses a RISC† processor. The processor
implements a MIPS instruction set. Except for a few special cases, an operating system
does not need to focus on the instruction set because a compiler generates the necessary
code.

The processor contains thirty-two general-purpose registers. Each register is 32
bits wide, and can hold an integer, an address, or four 8-bit characters. As in most
RISC processors, many MIPS operations take arguments in registers and leave the result
of the operation in a register. Despite being classified as general-purpose, individual re-
gisters are assigned specific uses by the compiler. For example, one of the registers is
used as a stack pointer that is changed to allocate space for an activation record when-
ever a function call occurs. Figure 3.2 lists the registers by giving the name used to
reference a register and the meaning assigned.

������������������������������������������������������������������
Name Meaning������������������������������������������������������������������

0 Always contains zero������������������������������������������������������������������
AT Assembler temporary (reserved for assembler to use)������������������������������������������������������������������

V0 and V1 Return values from a function call������������������������������������������������������������������
A0 – A3 Argument registers for first 4 arguments������������������������������������������������������������������
T0 – T9 Temporary (i.e., not preserved) across a function call������������������������������������������������������������������
S0 – S9 Saved (i.e., preserved) across a function call������������������������������������������������������������������

K0 and K1 Kernel registers used by interrupt hardware������������������������������������������������������������������
SP Stack pointer (stack grows downward)������������������������������������������������������������������
RA Return address during a function call��������������������������������������������������������������������
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Figure 3.2  The general-purpose registers and the meaning of each.

��������������������������������
†RISC stands for Reduced Instruction Set Computer.
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A co-processor contains a set of special-purpose registers that support many extra
features. For example, because a RISC processor cannot perform division in one cycle,
the co-processor handles 64-bit division. Consequently, the co-processor has a pair of
registers that each store half of a 64-bit value. One register stores the high 32 bits and
the other stores the low 32 bits. Similarly, the co-processor has registers that store: the
current interrupt mask (telling whether interrupts are enabled), a return address for inter-
rupts or exceptions, and debugging information. Chapter 12 on interrupt processing
will show how an operating system uses specific co-processor registers.

3.4 Bus Operation: The Fetch-Store Paradigm

The bus, known as a system backplane, provides the primary path between the pro-
cessor and other components, namely the memory, I/O devices, and other interface con-
trollers. The system backplane uses a fetch-store paradigm typical of most computer
system buses. For example, when it needs to access memory, the processor places an
address on the bus and issues a fetch request to obtain the corresponding value. The
memory hardware responds to the request by looking up the address in memory, placing
the data value on the bus, and signalling the processor that the value is ready. Similar-
ly, to store a value in memory, the processor places an address and value on the bus and
issues a store request; the memory hardware extracts the value and stores a copy in the
specified memory location. Bus hardware handles many details of the fetch-store para-
digm, including signals that the processor and other components use to communicate
and control access to the bus. We will see that an operating system can use a bus
without knowing many details of the underlying hardware.

The system uses memory-mapped I/O, which means that each I/O device is as-
signed a set of addresses in the bus address space, and the processor uses the same
fetch-store paradigm to communicate with I/O devices as with memory. As we will
see, communication with a memory-mapped I/O device resembles data access. First,
the processor computes the address associated with a device. Second, to access the de-
vice, the processor either stores a value to the address or loads a value from the address
into a register.

3.5 Direct Memory Access

Some I/O devices on the E2100L offer Direct Memory Access (DMA), which
means the device contains hardware that can use the bus to communicate directly with
memory. The key idea is that DMA allows I/O to proceed quickly because it does not
interrupt the CPU frequently nor does it require the processor to control each data
transfer. Instead, a processor can give the I/O device a list of operations, and the device
proceeds from one to the next. Thus, DMA allows a processor to continue running
code while the device operates.

www.itpub.net
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As an example, consider how a network device uses DMA. To receive a packet,
the operating system allocates a buffer in memory and starts the network device. When
a packet arrives, the device hardware transfers the packet directly into the buffer in
memory and interrupts the processor. To send a packet, the operating system places the
packet in a buffer in memory and starts the device. The device fetches the packet from
the buffer in memory and transmits the packet on the network.

In addition to single packet transfers, DMA hardware on the E2100L allows the
processor to request multiple operations. In essence, the processor creates a list of
packets to be sent and a list of buffers to be used for incoming packets. The network
interface hardware uses the lists to send and receive packets without requiring the pro-
cessor to restart the device after each operation. As long as the processor consumes in-
coming packets faster than they arrive and adds fresh buffers to the list, the network
hardware device will continue to read packets. Similarly, as long as the processor con-
tinues to generate packets and add them to the list, the network hardware device will
continue to transmit them. Later chapters explain more DMA details, and the example
code illustrates how a device driver in the operating system allocates I/O buffers and
controls DMA operations.

3.6 The Bus Address Space

The system backplane uses a 32-bit bus address space, with addresses ranging from
0x00000000 through 0xFFFFFFFF. Some of the addresses in the address space
correspond to memory, some to FlashROM, and others to I/O devices. To accommo-
date operating systems that support memory protection and virtual memory, the address
space is divided in half, with the lower half (addresses 0x00000000 0x7FFFFFFF)
comprising a user space and the upper half (addresses 0x80000000 through
0xFFFFFFFF) comprising the kernel space, which is further divided into segments.
Figure 3.3 illustrates the organization.

Memory on the E2100L is divided into 8-bit bytes, with a byte being the smallest
addressable unit. The C language uses the term character in place of byte because each
byte can hold one ASCII character. Although a 32-bit bus can address 4 Gbytes, the
E2100L does not contain 4 Gbytes of memory. Instead, the physical memory occupies
16 Mbytes that appear to be repeated in the address space. The next section explains
the replication.
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user
segment

KSEG0

KSEG1

KSEG2

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xFFFFFFFF

kernel
space

(2 Gbytes)

user
space

(2 Gbytes)

Figure 3.3 The division of the bus address space into user and kernel areas,
with further division into segments.

3.7 Contents Of Kernel Segments KSEG0 and KSEG1

Segments KSEG0 and KSEG1 are fundamental to the operating system, and have
special meaning. The operating system resides in KSEG0. The highest addresses of the
segment are reserved for I/O devices; lower addresses correspond to physical memory.
Figure 3.4 illustrates the layout of KSEG0.

Although KSEG0 contains addresses for 512 Mbytes, the physical memory on the
E2100L comprises only 16 Mbytes. The physical memory appears to be replicated
through the address space. For example, physical memory occupies relative addresses
0x0000000 through 0x000FFFFF. The same physical memory appears again in loca-
tions 0x00100000 through 0x001FFFFF. That is, the hardware ignores high-order bits
of an address when mapping the address to memory.†

��������������������������������
†Although embedded systems tend to ignore high-order address bits, many computer systems restrict ad-

dresses to physical memory, and classify other references as errors.
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memory

...

0x00000000
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0x00100000

0x00200000

0x18000000

KSEG0
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physical memory
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throughout the region

I/O region occupies
the top fourth of the

segment address space

Figure 3.4  The KSEG0 address space.

The important point is:

Referencing an address beyond physical memory may not cause an er-
ror to occur. Instead, high-order bits of the address are ignored, and
the address may map into a valid reference as if the physical memory
is replicated.

3.8 Bus Startup Static Configuration

Desktop computers contain complex bus hardware that allows a processor to dis-
cover components that attach to the bus. Each component is assigned a unique identi-
fier that specifies the vendor and the specific type. At startup, an operating system
probes the bus to determine which components are present, and each component returns
its ID. The mechanism makes it possible for an operating system to configure itself
dynamically, allowing a copy of the system to run on a variety of hardware platforms.

Unlike desktop systems, embedded systems often use static configuration. That is,
the complete hardware configuration is known when an operating system is designed,
and the system does not discover hardware at startup, nor does it reconfigure. Chapter
24 discusses system configuration in more detail, and shows an example of static con-
figuration.
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3.9 Calling Conventions And The Run-Time Stack

Function invocation forms a key aspect of operating systems. Application pro-
grams use function calls to invoke operating system services such as creating concurrent
processes and performing I/O. As it switches context from one process to another, the
operating system must manage separate sets of function calls. The following para-
graphs define key concepts related to function invocation.

Calling conventions. The steps taken during a function call and return are known
as calling conventions. The term convention arises because the hardware does not dic-
tate all details. Instead, the hardware design places some constraints on possible ap-
proaches, and leaves many choices to a compiler writer. We will see that because it
calls functions to process interrupts and switches from one running process to another,
the operating system must understand and follow the same conventions as the compiler.

Run-time stack. A statically scoped language, such as C, uses a run-time stack to
store the state associated with a function call. The compiler allocates enough space on
the stack to hold an activation record for the called function. The allocated space is
known as a stack frame. Each activation record contains space for the local variables
associated with the function, temporary storage needed during computation, a return ad-
dress, and other miscellaneous items. Also by convention, a stack grows downward
from higher memory addresses to lower memory addresses. Thus, when a function call
occurs, the stack grows downward in memory to hold the activation record for the func-
tion call.

Arguments. When a function is called, the caller supplies a set of actual arguments
that correspond to parameters. Most RISC architectures arrange a fixed number of ar-
guments to be passed in registers and the remaining arguments to be passed in memory.
The example code uses registers A0 through A3 to pass the first four arguments; argu-
ments beyond the first four are placed in the activation record on the stack.

Stack frame contents. A compiler computes the size needed for a stack frame, and
handles assigning space to each local variable. However, an operating system needs to
know exactly how arguments are stored. In the example code in the text, the highest
word in each stack frame is used to store a return address, the lowest four words are
reserved as an argument save area, and successive words beyond the argument save area
contain arguments beyond the first four arguments. Figure 3.5 illustrates the format.

Interestingly, the argument save area that occupies the lowest four words of a stack
frame for function, f, is not used by f. Instead, the area is reserved for use by functions
that f calls. In the figure, if function X calls function Y, the lowest four words of the
stack for function X will be used by function Y.

To understand why an argument save area is needed, observe that the first four ar-
guments are passed in registers A0 through A3. For example, suppose function X calls
function Y, and passes an argument q. Register A0 will contain the value of q when Y
begins execution. If function Y calls function Z and passes argument r, register A0 will
be used. That is, to pass argument r to function Z, Y must overwrite the value q that it
received from X. To insure that q is not lost, Y saves the value of 2 on the stack before
calling Z, and then restores the value after the call returns. In theory, Y could save A0
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at any location in memory — saving arguments in the caller’s stack frame is merely a
convention adopted by the compiler being used.

unused
RA

unused
RA

locals for
function X

locals for
function Y

Arg 4 for Y
Arg 5 for Y

stack frame
for function X

(caller)

stack frame
for function Y

(called)

return address to
which X returns

return address to
which Y returns

save area for A0 - A3
used by function Y

reserved save area used by
functions that Y calls

locations used for extra arguments
when function Y makes a call

current stack pointer

Figure 3.5  Format of two stack frames when function X calls function Y.

As a further convention, the frame pointer register is not used. Instead, the com-
piler computes the exact size of the stack frame that will be needed for each function
(including the four word argument save area), and arranges code to decrement the stack
pointer by the appropriate size when a function is called. Because a RISC processor
does not include instructions that push values onto the stack, the compiler can compute
the address of each local variable as a fixed offset beyond the stack pointer.

To summarize:

When referencing local variables or arguments on the run-time stack,
the operating system follows the calling conventions used by the com-
piler. In the example code throughout the text, all references are
given as offsets beyond the stack pointer register.
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3.10 Interrupts And Interrupt Processing

Modern processors provide mechanisms that allow external I/O devices to interrupt
computation. Often, a processor has a related exception mechanism that is used to in-
form the software when an error or fault occurs (e.g., an application attempts division
by zero or references a page in virtual memory that is not present in memory). From an
operating system’s point of view, interrupts are fundamental because they allow the
CPU to perform computation at the same time I/O proceeds.†

Any of the I/O devices connected to a bus can interrupt the processor when the de-
vice needs service. To do so, the device places a signal on one of the bus control lines.
During normal execution of the fetch-execute cycle, hardware in the processor monitors
the control line and initiates interrupt processing when the control line has been sig-
naled. In the case of a RISC processor, the main processor does not contain the
hardware to handle interrupts. Instead, a co-processor performs much of the basic bus
interaction and interrupt processing on behalf of the main processor.

For example, when a device interrupts, a MIPS processor performs three key steps:

d Sets a control bit that disables further interrupts

d Records the address of the instruction that is about to execute

d Jumps to the reserved location 0x80000180

The first step insures that while it is processing an interrupt from one device, the
operating system will not be interrupted by another device. The second step provides a
way for an operating system to return to normal execution once the interrupt has been
processed. The third step allows the operating system to gain control whenever an in-
terrupt occurs. Before an interrupt occurs, the operating system must store interrupt
processing code at the reserved location (0x80000180). The compiler and loader start
the operating system at location 0x80010000 (i.e., above the interrupt location), which
guarantees that code can be stored in the reserved location without affecting other
values in the operating system. At system startup, our example system stores a few in-
structions starting at the reserved location, which causes the processor to jump to an
operating system interrupt function whenever an interrupt occurs.

While it manipulates global data structures and I/O queues, an operating system
must prevent interrupts from occurring. The hardware supplies mechanisms to control
interrupts. For example, one of the registers in the co-processor is an interrupt mask
that the operating system uses to specify which devices are permitted to interrupt. Each
bit in the mask corresponds to an interrupt source in the system; a source can consist of
devices on the system bus, internal timers, or can arise from the execution of special
processor opcodes. The initial value of all bits is zero, which means the corresponding
source cannot interrupt. When it starts an I/O device, the operating system sets the
corresponding mask bit to one, which allows the device to interrupt.

In addition to an individual bit for each device, the interrupt mask contains a glo-
bal interrupt status bit. Setting the global bit to zero prevents all interrupts, despite the

��������������������������������
†Later chapters explain how an operating system manages interrupt processing, and show how the high-

level I/O operations a user performs relate to low-level device hardware mechanisms.
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individual device bits. We will see that functions disable and restore manipulate the
global status bit to allow the operating system to prevent interrupts temporarily and later
re-enable interrupts.

Figure 3.6 lists the co-processor registers associated with interrupt processing and
describes the purpose of each.

�����������������������������������������������������������������
Register Purpose�����������������������������������������������������������������
STATUS Interrupt status, including an EXL bit that specifies

whether an interrupt is currently being processed, a
global bit that tells whether all interrupts are
disabled, and one interrupt enable bit for each source�����������������������������������������������������������������

CAUSE Bits that identify the cause of an exception or the
the source of an interrupt�����������������������������������������������������������������

EPC Exception Program Counter that specifies the address
at which normal processing should resume after an
interrupt has been handled�������������������������������������������������������������������
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Figure 3.6 Hardware registers in the co-processor associated with interrupt
processing.

The processor interrogates co-processor control registers to determine which device
caused the interrupt, and then interacts with the device. Once the interrupt has been
handled, the processor can execute an interrupt return instruction to resume normal pro-
cessing. Later chapters provide examples of interrupt processing and the steps taken to
interact with various devices.

3.11 Exception Processing

Although exceptions are generated by the processor rather than by a separate I/O
device, the MIPS hardware integrates exception handling with interrupt handling. That
is, an exception causes the hardware to take the same steps as an interrupt: setting the
EXL bit to disable further interrupts, recording the address of the instruction that caused
the exception in the EPC register, and jumping to location 0x80000180.

One minor difference occurs between the way the processor handles interrupts and
exceptions. When an interrupt occurs, the processor has completed executing one in-
struction, and is about to execute another. Thus, the hardware uses the EPC register to
record the address of the next instruction to be executed. When an exception occurs,
however, an instruction is currently being executed when the exception arises. Thus,
the hardware uses the EPC register to record the address of the instruction being execut-
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ed. When the processor returns from the exception, the instruction will be restarted.
For example, if a page fault occurs, the exception handler reads the missing page from
memory, and returns to the same point at which the exception occurred to restart the in-
struction that caused the fault.

3.12 Timer Hardware

In addition to external I/O devices, the E2100L hardware includes a timer device.
When it expires, the timer generates an interrupt, which means that once it has enabled
timer interrupts, the processor must be prepared to handle an interrupt.

On some embedded systems, all timer functions are implemented using a real-time
hardware clock that generates interrupts regularly (e.g., 60 times per second). On the
E2100L, however, the timer consists of two registers that the processor can load:

d Counter: the counter register is set to an initial value

d Limit: the limit register specifies the length of time to wait

The hardware uses the CPU clock, and increments the counter register once per cycle.
When the counter reaches the limit, the hardware generates a timer interrupt.

Both the real-time clock approach and the E2100L’s timer mechanism have advan-
tages. The chief advantage of the timer mechanism arises from fewer interrupts — un-
like a real-time clock, which interrupts continually, a timer only interrupts when a
preset timeout has occurred. The real-time clock approach has the advantage of being
able to relate interrupts directly to actual time instead of processor clock cycles. Of
course, if one knows the processor clock rate, it is possible to convert to real time. Un-
fortunately, the calculation depends on the CPU speed, which means the operating sys-
tem cannot be ported to a faster processor without changing the constant used in the
conversion.

3.13 Serial Communication

Serial communication devices are among the simplest I/O devices available, and
have been used on computers for decades. The E2100L contains an RS-232 serial com-
munication device that is used as a system console. As with most serial devices, the
serial hardware on the E2100L handles both input and output (i.e., both transmission
and reception of characters). When an interrupt occurs, the processor must examine a
device register to determine whether the output side has completed transmission or the
input side has received a character. Chapter 15 examines serial interrupts in detail.
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3.14 Polled vs. Interrupt-Driven I/O

Most I/O performed by an operating system uses the interrupt mechanism. The
operating system interacts with the device to start an operation (either input or output),
and then proceeds with computation. When the I/O operation completes, the device in-
terrupts the processor, and the operating system can choose to start another operation.

Although they optimize concurrency and permit multiple devices to proceed in
parallel with computation, interrupts cannot always be used. For example, consider
displaying a startup message for a user before the operating system has initialized inter-
rupts and I/O. Also consider a programmer who needs to debug new I/O code. In ei-
ther case, interrupts cannot be used.

The alternative to interrupt-driven I/O is known as polled I/O. When using polled
I/O, the processor starts an I/O operation, but does not enable interrupts. Instead, the
processor enters a loop that repeatedly checks a device status register to determine
whether the operation has completed. We have already seen an example of how an
operating system designer can use polled I/O when we examined functions kputc and
kprintf in Chapter 2.

3.15 Memory Cache And KSEG1

Recall that although KSEG1 follows KSEG0 in the address space, memory loca-
tions appear to be replicated. Thus, the first byte of KSEG1 points to the same physical
memory as the first byte of KSEG0.

Despite the appearance of replication, the hardware enforces an important distinc-
tion between the two memory segments:

When the processor references an address in KSEG0, the reference
goes to the L1 memory cache before being passed to the bus (i.e., sys-
tem backplane); when the processor references an address in KSEG1,
the reference is passed directly to the bus.

For normal data references, a memory cache provides an important optimization —
if the processor makes multiple references to an address within a short time span, the
cache hardware returns the value faster than a memory reference. When performing
I/O, however, a cache produces incorrect results. For example, consider the code that
checks the status of a device when using a polled I/O paradigm. If a cache remembers
and returns the previous value without accessing the device, the processor will not re-
ceive an accurate report of the device status. Thus, an operating system adheres to the
following straightforward rule:
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To avoid obtaining stale values from the memory cache, each I/O
reference, including addresses specified for DMA, must use KSEG1.

3.16 Storage Layout

When it compiles a program, a C compiler partitions the resulting image into four
memory segments:

d Text segment

d Data segment

d Bss segment

d Stack segment

The text segment, which includes code for the main program and all functions, oc-
cupies the lowest part of the address space. The data segment, which contains all ini-
tialized data, occupies the next region of the address space. The uninitialized data seg-
ment, called the bss segment, follows the data segment. Finally, the stack segment oc-
cupies the highest part of the address space and grows downward. Figure 3.7 illustrates
the conceptual organization.

text data bss stackfree space

etext edata end

lowest address SP

Figure 3.7  Illustration of memory segments created by a C compiler.

The symbols etext, edata, and end in the figure refer to global variables that the
loader inserts into the object program. The names are initialized to the first address
beyond the text, data, and bss segments, respectively. Thus, a running program can
determine how much memory remains between the end of the bss segment and the
current top of stack by subtracting the address of end from the stack pointer, SP.

Chapter 9 explains memory allocation for multiple processes. Although all
processes share the text, data, and bss segments, a separate stack segment must be allo-
cated for each process. If three processes are executing, the stacks are allocated con-
tiguously from the highest memory address downward as Figure 3.8 illustrates.

As the figure indicates, each process has its own stack pointer. At a given time,
the stack pointer for process i must point to an address within the stack that has been al-
located for process i. Later chapters explain the concept in detail.
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text data bss heap stack1stack2stack3
free

etext edata end

lowest address SP1SP2SP3

Figure 3.8  Illustration of memory with stack segments for three processes.

3.17 Memory Protection

The memory hardware available on the E2100L has multiple segments that can be
used to provide protection for an operating system. Applications can be configured to
run in user mode, which means they cannot read or write kernel memory. When an ap-
plication makes a system call, control transfers to the kernel and the privilege level is
increased to kernel mode until the call returns. The key to understanding protection is
to remember that control can only transfer to the operating system at the specific entry
points that the operating system designer provides. Thus, a designer can insure that an
application only receives carefully controlled services.

Like most embedded systems, our example system avoids the complexity and run-
time overhead of memory protection. Instead the code runs completely in KSEG0, and
each process runs with kernel privilege. The lack of protection means a programmer
must be careful because any process can access any memory location, including the
memory allocated to operating system structures or memory allocated to another
process’s stack. If a process overflows the allocated stack area, the process’s run-time
stack will overwrite data in another process’s stack. A later chapter discusses one tech-
nique software can use to help detect overflow.

3.18 Perspective

The hardware specifications for a processor or I/O device contain so many details
that studying them can seem overwhelming. Fortunately, many of the differences
among processors are superficial — fundamental concepts apply across most hardware
platforms. Therefore, when learning about hardware, it is important to focus on the
overall architecture and design principles rather than on tiny details.

EXERCISES

3.1 Some systems use a programmable interrupt address mechanism that allows the system to
choose the address to which the processor jumps when an interrupt occurs. What is the ad-
vantage of a programmable interrupt address?
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3.2 DMA introduces the possibility of unexpected errors. What happens if a DMA operation
that transfers N bytes of data begins at a memory location less than N bytes from the
highest memory address?

3.3 Read about hardware that uses multi-level interrupts. Should an interrupt at one level be
able to interrupt the system while it is processing an interrupt from another level? Explain.

3.4 What are the advantages of the memory layout shown in Figure 3.7? Are there disadvan-
tages? What other layouts might be useful?

3.5 Embedded hardware often includes multiple independent timers, each with its own interrupt
source. Why might multiple timers be helpful? Can a system with only a single timer ac-
complish the same tasks as a system with multiple timers? Explain.

3.6 If you are familiar with an assembly language, read about the calling conventions that are
used to permit recursive function calls. Build a function that makes recursive calls, and
demonstrate that your function works correctly.
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List and Queue
Manipulation

As some day it may happen that a victim must be
found, I’ve got a little list ....

— W. S. Gilbert

4.1 Introduction

Linked list processing is fundamental in operating systems, and pervades each
component. Linked structures enable a system to manage sets of objects efficiently
without searching or copying. As we will see, process management is especially impor-
tant.

This chapter introduces a set of functions that form the backbone of a linked list
manipulation system. The functions represent a unified approach — a single data struc-
ture and a single set of nodes used by all levels of the operating system to maintain lists
of processes. We will see that the data structure includes functions to create a new list,
insert an item at the tail of a list, insert an item in an ordered list, remove the item at
the head of a list, or remove an item from the middle of a list.†

The linked list functions are easy to understand because they assume that only one
process executes a list function at a given time. Thus, a reader can think of the code as
being part of a sequential program — there is no need to worry about interference from
other processes executing concurrently. In addition, the example code introduces
several programming conventions used throughout the text.

��������������������������������
†Although linked list manipulation is usually covered in texts on data structures, the topic is included

here because the data structure is unusual and because it forms a key part of the system.
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4.2 A Unified Structure For Linked Lists Of Processes

A process manager handles objects called processes. Although at any time a pro-
cess appears on only one list, a process manager moves a process from one list to
another frequently. In fact, a process manager does not store all details about a process
on a list. Instead, the process manager merely stores a process ID, a small, nonnegative
integer used to reference the process. Because it is convenient to think of placing a pro-
cess on a list, we will use the terms process and process ID interchangeably throughout
the chapter.

An early version of Xinu had many lists of processes, each with its own data struc-
ture. Some consisted of first-in-first-out (FIFO) queues, and others were ordered by a
key. Some lists were singly linked; others needed to be doubly linked to permit items
to be inserted and deleted at arbitrary positions efficiently. After the requirements had
been formulated, it became clear that centralizing the linked-list processing into a single
data structure would reduce code size and eliminate many special cases. That is, in-
stead of six separate sets of linked list manipulation functions, a single set of functions
was created to handle all situations.

To accommodate all cases, a representation was selected with the following proper-
ties:

d All lists are doubly linked, which means a node points to its prede-
cessor and successor.

d Each node stores a key as well as a process ID, even though a key
is not used in a FIFO list.

d Each list has head and tail nodes; the head and tail nodes have the
same memory layout as other nodes.

d Non-FIFO lists are ordered in descending order; the key in a head
node is greater than the maximum valid key value, and the key
value in the tail node is less than the minimum valid key.

Figure 4.1 illustrates the conceptual organization of a linked list data structure by
showing an example list with two items.

– –4 25 2 14

HEAD TAIL

previous process key next

greater than maximum key less than minimum key

Figure 4.1 The conceptual organization of a doubly-linked list containing
processes 4 and 2 with keys 25 and 14, respectively.

www.itpub.net



Sec. 4.2 A Unified Structure For Linked Lists Of Processes 51

As expected, the successor of the tail and the predecessor of the head are null.
When a list is empty, the successor of the head is the tail and the predecessor of the tail
is the head, as Figure 4.2 illustrates.

– –

HEAD TAIL

greater than maximum key less than minimum key

Figure 4.2  The conceptual form of an empty linked list.

4.3 A Compact List Data Structure

One of the key design goals in an embedded system involves reducing the memory
used. Instead of using a conventional implementation of a linked list, Xinu optimizes
the memory required in two ways:

d Relative pointers

d Implicit data structure

To understand the optimizations, it is important to know that most operating sys-
tems place a fixed upper bound on the number of processes in the system. In Xinu,
constant NPROC specifies the number of processes, and process identifiers range from 0
through NPROC – 1. In most embedded systems, NPROC is small (less than 50); we
will see that a small limit makes each optimization work well.

Relative pointers. To understand the motivation for relative pointers, consider the
space a conventional pointer occupies. On a 32-bit architecture, each pointer occupies
four bytes. If the system contains fewer than 50 nodes, however, the size required can
be reduced by placing nodes in contiguous memory locations and using a value between
0 and 49 as a reference. That is, the nodes can be allocated in an array, and the array
index can be used instead of a pointer.

Implicit data structure. The second optimization focuses on omitting the process
ID field from all nodes. Such an omission is feasible because:

A process appears on at most one list at any time.

To omit the process ID, use an array implementation and use the ith element of the array
for process ID i. Thus, to put process 3 on a particular linked list, insert node 3 onto
the list. Thus, the relative address of a node is the same as the ID of the process being
stored.
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Figure 4.3 illustrates how the linked list in Figure 4.1 can be represented in an ar-
ray that incorporates relative pointers and implicit identifiers. Each entry in an array
has three fields: a key, the index of the previous node, and the index of the next node.
The head of the list has index 60, and the tail has index 61.

...

...

...

KEY PREV NEXT

0

1

2

3

4

5

60

61

25 60 2

14 4 61

MAXKEY

MINKEY

–

–

4

2

NPROC – 1

each row corresponds
to a single process

pairs of rows form the
head and tail of a list

Head of example list

Tail of example list

conceptual boundary

Figure 4.3  The list from Figure 4.1 stored in the queue table array.

Because a NEXT or PREV field contains a relative pointer (i.e., an array index), the
size of the field depends on the size of the array. For example, if the array contains
fewer than 256 items, a single byte can be used to store an index.

Xinu uses the term queue table to refer to the array. The key to understanding the
structure is to observe that array elements with an index less than NPROC differ from
elements with a higher index. Positions 0 through NPROC–1 each correspond to one
process in the system; positions NPROC and higher are used to hold head and tail
pointers for lists. Such a data structure is only feasible because the maximum number
of processes and the maximum number of lists are each known at compile time and a
process can only appear on one list at a given time.
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4.4 Implementation Of The Queue Data Structure

To place process i on a list, the node with index i is linked into the list. A closer
look at the code will make the operations clear. In Xinu, the queue table pictured above
is named queuetab, and declared to be an array of qentry structures. File queue.h con-
tains the declarations of both queuetab and qentry:

/* queue.h - firstid, firstkey, isempty, lastkey, nonempty */

/* Queue structure declarations, constants, and inline functions */

/* Default # of queue entries: 1 per process plus 2 for ready list plus */

/* 2 for sleep list plus 2 per semaphore */

#ifndef NQENT

#define NQENT (NPROC + 4 + NSEM + NSEM)

#endif

#define EMPTY (-1) /* null value for qnext or qprev index */

#define MAXKEY 0x7FFFFFFF /* max key that can be stored in queue */

#define MINKEY 0x80000000 /* min key that can be stored in queue */

struct qentry { /* one per process plus two per list */

int32 qkey; /* key on which the queue is ordered */

qid16 qnext; /* index of next process or tail */

qid16 qprev; /* index of previous process or head */

};

extern struct qentry queuetab[];

/* Inline queue manipulation functions */

#define queuehead(q) (q)

#define queuetail(q) ((q) + 1)

#define firstid(q) (queuetab[queuehead(q)].qnext)

#define lastid(q) (queuetab[queuetail(q)].qprev)

#define isempty(q) (firstid(q) >= NPROC)

#define nonempty(q) (firstid(q) < NPROC)

#define firstkey(q) (queuetab[firstid(q)].qkey)

#define lastkey(q) (queuetab[ lastid(q)].qkey)

/* Inline to check queue id assumes interrupts are disabled */

#define isbadqid(x) (((int32)(x) < 0) || (int32)(x) >= NQENT-1)
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/* Queue function prototypes */

pid32 getfirst(qid16);

pid32 getlast(qid16);

pid32 getitem(pid32);

pid32 enqueue(pid32, qid16);

pid32 dequeue(qid16);

status insert(pid32, qid16, int);

status insertd(pid32, qid16, int);

qid16 newqueue(void);

The queuetab array contains NQENT entries. As Figure 4.3 indicates, an important
implicit boundary occurs between element NPROC–1 and element NPROC. Each ele-
ment below the boundary corresponds to a process ID, and elements queuetab[NPROC]
through queuetab[NQENT] correspond to the heads or tails of lists.

File queue.h introduces several features of C and conventions used throughout the
book. Because the name ends in .h, the file will be included in other programs (“h”
stands for header). Such files often contain the declarations for global data structures,
symbolic constants, and inline functions (macros) that operate on the data structures.
File queue.h defines queuetab to be an external variable (i.e., global), which means that
every process will be able to access the array. The file also defines symbolic constants
used with the data structure, such as constant EMPTY that is used to define an empty
list.

Symbolic constant NQENT, which defines the total number of entries in the
queuetab array, provides an example of conditional definition. The statement #ifndef
NQENT means “compile the code down to the corresponding #endif, if and only if
NQENT has not been defined previously.” Thus, the code in queue.h assigns a value to
NQENT only if it has not been defined previously. The value assigned,

NPROC+4+NSEM+NSEM

allocates enough entries in queuetab for NPROC processes plus head and tail pointers
for NSEM semaphore lists, a ready list, and a sleep list. Conditional compilation is
used to permit the size of the queuetab array to be changed without modifying the .h
file.

The contents of entries in the queuetab array are defined by structure qentry. The
file contains only a declaration of the elements in the queuetab array; Chapter 22 ex-
plains how data structures are initialized at system startup. Field qnext gives the rela-
tive address of the next node on a list, field qprev points to the previous node, and field
qkey contains an integer key for the node. When a field, such as a forward or backward
pointer, does not contain a valid index value, the field is assigned the value EMPTY.
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4.5 Inline Queue Manipulation Functions

The functions isempty and nonempty are predicates (Boolean functions) that test
whether a list is empty or not empty, given the index of its head as an argument.
Isempty determines whether a list is empty by checking to see if the first node on the
list is a process or the list tail; nonempty makes the opposite test. Remember that an
item is a process if and only if its index is less than NPROC.

The other inline functions should also be easy to understand. Functions firstkey,
lastkey, and firstid return the key of the first process on a list, the key of the last process
on a list, or the queuetab index of the first process on a list. Usually, these functions
are applied to nonempty lists, but they do not abort even if the list is empty because the
qkey field is always initialized.

4.6 Basic Functions To Extract A Process From A List

Consider extracting a process from a list.† Recall that extracting an item from the
head of a FIFO queue results in removing the item that has been in the queue the long-
est. For a priority queue, extracting from the head produces an item with highest priori-
ty. Similarly, extracting an item from the tail of the queue produces an item with
lowest priority. As a result, we can construct three basic functions that are sufficient to
handle extraction:

d getfirst — extract the process at the head of a list

d getlast — extract the process at the tail of a list

d getitem — extract a process at an arbitrary point

The code for the three basic functions can be found in file getitem.c.

��������������������������������
†We will consider insertion into a list later.
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/* getitem.c - getfirst, getlast, getitem */

#include <xinu.h>

/*------------------------------------------------------------------------

* getfirst - Remove a process from the front of a queue

*------------------------------------------------------------------------

*/

pid32 getfirst(

qid16 q /* ID of queue from which to */

) /* remove a process (assumed */

/* valid with no check) */

{

pid32 head;

if (isempty(q)) {

return EMPTY;

}

head = queuehead(q);

return getitem(queuetab[head].qnext);

}

/*------------------------------------------------------------------------

* getlast - Remove a process from end of queue

*------------------------------------------------------------------------

*/

pid32 getlast(

qid16 q /* ID of queue from which to */

) /* remove a process (assumed */

/* valid with no check) */

{

pid32 tail;

if (isempty(q)) {

return EMPTY;

}

tail = queuetail(q);

return getitem(queuetab[tail].qprev);

}

/*------------------------------------------------------------------------

* getitem - Remove a process from an arbitrary point in a queue

*------------------------------------------------------------------------
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*/

pid32 getitem(

pid32 pid /* ID of process to remove */

)

{

pid32 prev, next;

next = queuetab[pid].qnext; /* following node in list */

prev = queuetab[pid].qprev; /* previous node in list */

queuetab[prev].qnext = next;

queuetab[next].qprev = prev;

return pid;

}

Getfirst takes a queue ID as an argument, verifies that the argument identifies a
nonempty list, finds the process at the head of the list, and calls getitem to extract the
process from the list. Similarly, getlast takes a queue ID as an argument, checks the ar-
gument, finds the process at the tail of the list, and calls getitem to extract the process.
Each of the two functions returns the ID of the process that has been extracted.

Getitem takes a process ID as an argument, and extracts the process from the list in
which the process is currently linked. Extraction consists of making the previous node
point to the successor and the successor point to the previous node. Once a process has
been unlinked from a list, getitem returns the process ID as the value of the function.

4.7 FIFO Queue Manipulation

We will see that many of the lists a process manager maintains consist of a First-
In-First-Out (FIFO) queue. That is, a new item is inserted at the tail of the list, and an
item is always removed from the head of the list. For example, a scheduler can use a
FIFO queue to implement round-robin scheduling by placing the current process on the
tail of a list and switching to the process on the head of the list.

Functions enqueue and dequeue, found in file queue.c, implement FIFO operations
on a list. Because each list has both a head and tail, both insertion and extraction are
efficient. For example, enqueue inserts a process just prior to the tail of a list, and de-
queue extracts an item just after the head of the list. Dequeue takes a single argument
that gives the ID of the list to use. Enqueue takes two arguments: the ID of the process
to be inserted and the ID of a list on which to insert it.
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/* queue.c - enqueue, dequeue */

#include <xinu.h>

struct qentry queuetab[NQENT]; /* table of process queues */

/*------------------------------------------------------------------------

* enqueue - Insert a process at the tail of a queue

*------------------------------------------------------------------------

*/

pid32 enqueue(

pid32 pid, /* ID of process to insert */

qid16 q /* ID of queue to use */

)

{

int tail, prev; /* tail & previous node indexes */

if (isbadqid(q) || isbadpid(pid)) {

return SYSERR;

}

tail = queuetail(q);

prev = queuetab[tail].qprev;

queuetab[pid].qnext = tail; /* insert just before tail node */

queuetab[pid].qprev = prev;

queuetab[prev].qnext = pid;

queuetab[tail].qprev = pid;

return pid;

}

/*------------------------------------------------------------------------

* dequeue - Remove and return the first process on a list

*------------------------------------------------------------------------

*/

pid32 dequeue(

qid16 q /* ID queue to use */

)

{

pid32 pid; /* ID of process removed */

if (isbadqid(q)) {

return SYSERR;

} else if (isempty(q)) {

return EMPTY;
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}

pid = getfirst(q);

queuetab[pid].qprev = EMPTY;

queuetab[pid].qnext = EMPTY;

return pid;

}

Function enqueue calls isbadpid to check whether its argument is a valid process
ID. The next chapter shows that isbadpid consists of an inline function that checks
whether the ID is in the correct range and that a process with that ID exists.

File queue.c includes xinu.h, which includes the complete set of Xinu include files:

/* xinu.h - include all system header files */

#include <kernel.h>

#include <conf.h>

#include <process.h>

#include <queue.h>

#include <sched.h>

#include <semaphore.h>

#include <memory.h>

#include <bufpool.h>

#include <clock.h>

#include <mark.h>

#include <ports.h>

#include <uart.h>

#include <tty.h>

#include <device.h>

#include <interrupt.h>

#include <file.h>

#include <rfilesys.h>

#include <rdisksys.h>

#include <lfilesys.h>

#include <ag71xx.h>

#include <ether.h>

#include <mips.h>

#include <nvram.h>

#include <gpio.h>

#include <net.h>

#include <arp.h>

#include <udp.h>

#include <dhcp.h>

#include <icmp.h>
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#include <name.h>

#include <shell.h>

#include <date.h>

#include <prototypes.h>

Combining the set of header files into a single include file helps programmers be-
cause it insures that all pertinent definitions are available and guarantees that the set of
include files are processed in a valid sequence. Later chapters consider the contents of
each include file.

4.8 Manipulation Of Priority Queues

A process manager often needs to select from a set of processes the process that
has highest priority. Consequently, the linked list routines must be able to maintain
lists of processes that each have an associated priority. In our example system, a priori-
ty is an integer value assigned to the process. In general, the task of examining a pro-
cess with highest priority is performed frequently compared with the tasks of inserting
and deleting processes. Thus, a data structure used to manage lists of processes should
be designed to make finding the highest priority process efficient compared to insertion
or deletion.

A variety of data structures has been devised to store a set of items that can be
selected in priority order. Any such data structure is known generically as a priority
queue. Our example system uses a linear list to store a priority queue where the priority
of a process serves as a key in the list. Because the list is ordered in descending order
by key, the highest priority process can always be found at the head of the list. Thus,
finding the highest priority process takes constant time. Insertion is more expensive be-
cause the list must be searched to determine the location at which a new item should be
inserted.

In a small embedded system where one only expects two or three processes to be
on a given priority queue at any time, a linear list suffices. For a large system where
many items appear in a given priority queue or where the number of insertions is high
compared to the number of times items are extracted, a linear list can be inefficient. An
exercise considers the point further.

Deletion from an ordered list is trivial: the first node is removed from the list.
When an item is inserted, list order must be maintained. Insert, which is shown below,
inserts a process on a list ordered by priority. The function takes three arguments: the
ID of a process to be inserted, the ID of a queue on which to insert the process, and an
integer priority for the process. Insert uses the qkey field in queuetab to store the
process’s priority. To find the correct location in the list, insert searches for an existing
element with a key less than the key of the element being inserted. During the search,
integer curr moves along the list. The loop must eventually terminate because the key
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of the tail element contains a value less than the smallest valid key. Once the correct
location has been found, insert changes the necessary pointers to link the new node into
the list.

/* insert.c - insert */

#include <xinu.h>

/*------------------------------------------------------------------------

* insert - Insert a process into a queue in descending key order

*------------------------------------------------------------------------

*/

status insert(

pid32 pid, /* ID of process to insert */

qid16 q, /* ID of queue to use */

int32 key /* key for the inserted process */

)

{

int16 curr; /* runs through items in a queue*/

int16 prev; /* holds previous node index */

if (isbadqid(q) || isbadpid(pid)) {

return SYSERR;

}

curr = firstid(q);

while (queuetab[curr].qkey >= key) {

curr = queuetab[curr].qnext;

}

/* insert process between curr node and previous node */

prev = queuetab[curr].qprev; /* get index of previous node */

queuetab[pid].qnext = curr;

queuetab[pid].qprev = prev;

queuetab[pid].qkey = key;

queuetab[prev].qnext = pid;

queuetab[curr].qprev = pid;

return OK;

}
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4.9 List Initialization

The procedures described above all assume that although it may be empty, a given
queue has been initialized. We now consider the code that creates an empty list. It is
appropriate that the code to create an empty list occurs at the end of the chapter because
it brings up an important point about the design process:

Initialization is the final step in design.

It may seem strange to defer initialization because a designer cannot postpone
thinking about initialization altogether. However, the general paradigm can be stated as
follows: first, design the data structures needed when the system is running, and then
figure out how to initialize the data structures. Partitioning the “steady state” aspect of
the system from the “transient state” helps focus the designer’s attention on the most
important aspect, and avoids the temptation of sacrificing good design for easy initiali-
zation.

Initialization of entries in the queuetab structure is performed on demand as entries
are needed. A running process calls function newqueue to create a new list. The sys-
tem maintains a global pointer to the next unallocated element of queuetab, which
makes it easy to allocate the list.

In theory, the head and tail of a list could be allocated from any of the unused en-
tries in queuetab. In practice, however, choosing arbitrary locations would require a
caller to store two items: the indices of the head and tail. To optimize storage, we make
the rule that:

The head and tail nodes for a list, X, are allocated from successive
locations in the queuetab array, and list X is identified by the index of
the head.

In the code, newqueue allocates a pair of adjacent positions in the queuetab array
to use as head and tail nodes, and initializes the list to empty by pointing the successor
of the head to the tail and the predecessor of the tail to the head. Newqueue assigns the
value EMPTY to unused pointers (i.e., the successor of the tail and the predecessor of
the head). When it initializes a list, newqueue also sets the key fields in the head and
the tail to the maximum and minimum integer values, respectively, with the assumption
that neither value will be used as a key. Only one allocation function is needed because
a list can be used to implement a FIFO queue or a priority queue.

Once it finishes with initialization, newqueue returns the index of the list head to
its caller. The caller only needs to store one value because the ID of the tail can be
computed by adding 1 to the ID of the head.
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/* newqueue.c - newqueue */

#include <xinu.h>

/*------------------------------------------------------------------------

* newqueue - Allocate and initialize a queue in the global queue table

*------------------------------------------------------------------------

*/

qid16 newqueue(void)

{

static qid16 nextqid=NPROC;/* next list in queuetab to use */

qid16 q; /* ID of allocated queue */

q = nextqid;

if (q > NQENT) { /* check for table overflow */

return SYSERR;

}

nextqid += 2; /* increment index for next call*/

/* initialize head and tail nodes to form an empty queue */

queuetab[queuehead(q)].qnext = queuetail(q);

queuetab[queuehead(q)].qprev = EMPTY;

queuetab[queuehead(q)].qkey = MAXKEY;

queuetab[queuetail(q)].qnext = EMPTY;

queuetab[queuetail(q)].qprev = queuehead(q);

queuetab[queuetail(q)].qkey = MINKEY;

return q;

}

4.10 Perspective

Using a single data structure for process lists makes it possible to create general-
purpose linked list manipulation functions, which reduce the size of the code by avoid-
ing duplication. Using an implicit data structure with relative pointers reduces the
memory used. For small embedded systems, compacting code and data is necessary.
What about systems that have plenty of memory? Interestingly, a general principle ap-
plies: unless care is taken, successive generations of software expand to fill whatever
memory is available. Thus, thinking carefully about a design is always important: there
are never sufficient resources to justify wasteful inefficiency.
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4.11 Summary

The chapter describes linked-list functions found in a process manager. In our ex-
ample system, linked lists of processes are kept in a single, uniform data structure, the
queuetab array. Functions that manipulate lists of processes can produce FIFO queues
or priority queues. All lists have the same form: they are doubly linked, each has both
a head and tail, and each node has an integer key field. Keys are used when the list is a
priority queue; keys are ignored if the list is a FIFO queue.

To reduce the size required, the Xinu implementation uses relative pointers and an
implicit data structure. A node in the data structure either corresponds to a process or
to a list head or tail.

EXERCISES

4.1 In what sense is the queue structure described here an implicit data structure?

4.2 If priority values range from –8 to +8, how many bits are required to store each key in
queuetab?

4.3 Create a separate set of functions that allows one to create a singly-linked list, and insert
items in either FIFO or priority order. By how much does the second set of routines in-
crease memory usage? Does having a separate set of routines decrease CPU usage? Ex-
plain.

4.4 Does insert work correctly for all possible key values? If not, for which key(s) does it fail?

4.5 Implement procedures to manipulate lists using pointers instead of indices into an array of
structures. What is the difference in memory use and CPU time?

4.6 Compare the complexity of functions like isempty implemented with pointers and with ar-
ray indexing.

4.7 Larger systems sometimes use a data structure known as a heap to contain a priority queue.
What is a heap? Will its use be more or less expensive than an ordered, doubly linked list
when the list size is between 1 and 3?

4.8 Functions getfirst, getlast, and getitem do not check whether their argument is a valid queue
ID. Modify the code to insert the appropriate checks.

4.9 The code generated to convert a subscript into a memory address may use multiplication.
Try padding the size of a qentry to a power of two bytes, and examine the resulting code to
see if the compiler uses a shift instead of multiplication.

4.10 In the previous exercise, measure a series of insertions and deletions to determine the
difference in speed between the padded and unpadded versions of the data structure.

4.11 If a structure contains data items that are not multiples of four bytes on an architecture with
strict word alignment (such as MIPS), the code a compiler generates to access a structure
member may include masking and shifting. Try altering the fields of qentry so that
members are aligned on machine word boundaries, and examine the impact on the size of
the queue table and the resulting code for accessing members.

4.12 Modify newqueue to check for an error caused by attempting to allocate more than NQENT
entries.
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5

Scheduling and Context
Switching

What is called a sincere work is one that is endowed
with enough strength to give reality to an illusion.

— Max Jacob

5.1 Introduction

An operating system achieves the illusion of concurrent execution by rapidly
switching a processor among several computations. Because the speed of the computa-
tion is extremely fast compared to that of a human, the effect is impressive — multiple
activities appear to proceed simultaneously.

Context switching, which lies at the heart of the juggling act, consists of stopping
the current process, saving enough information so it may be restarted later, and starting
another process. What makes such a change difficult is that the CPU cannot be stopped
during a context switch — the CPU must continue to execute the code that switches to
a new process.

This chapter describes the basic context switching mechanism, showing how an
operating system saves the state information from one process, chooses another process
to run from among those that are ready, and relinquishes control to the new process.
The chapter describes the data structure that holds information about processes that are
not currently executing, and explains how the context switch uses the data structure.
For the present, we will ignore the questions of when and why processes choose to
switch context. Later chapters answer the questions, showing how higher levels of the
operating system use the context switch described here.
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5.2 The Process Table

An operating system keeps all information about processes in a data structure
known as a process table. A process table contains one entry for each process that
currently exists. We will see that a new entry must be allocated each time a process is
created and an entry is removed when a process terminates. Because exactly one pro-
cess is executing at any time, exactly one of the entries in a process table corresponds to
an active process — the saved state information in the process table is out of date for
the executing process. Each of the other process table entries contains information
about a process that has been stopped temporarily. To switch context, the operating
system saves information about the currently running process in its process table entry,
and restores information from the process table entry corresponding to the process it is
about to execute.

Exactly what information must be saved in the process table? The system must
save any values that will be destroyed when the new process runs. Consider the stack.
Because each process has its own separate stack memory, a copy of the entire stack
need not be saved. However, when it executes, a process will change the hardware
stack pointer register. Therefore, the contents of the stack pointer register must be
saved when a process temporarily stops executing, and must be restored when the pro-
cess resumes execution. Similarly, copies of other general-purpose registers must be
saved and restored. In addition to values from the hardware, an operating system keeps
meta-information in the process table. We will see how operating system functions use
the meta-information for resource accounting, error prevention, and other administrative
tasks. For example, the process table on a multi-user system stores the user ID of the
user who owns the process. Similarly, if the operating system places policy limits on
the memory that a process can allocate, the limit might be placed in the process table.
The details of items in the process table will become clear in later chapters as we exam-
ine operating system functions that operate on processes.

The process table in our example system, proctab, consists of an array with
NPROC entries. Each entry in proctab consists of a procent structure that defines the
information kept for a process. Figure 5.1 lists key items found in a process table entry.

Throughout the operating system, each process is identified by an integer process
ID. The following rule gives the relationship between process IDs and the process
table:

A process is referenced by its process ID, which is the index of the
proctab entry that contains the process’s saved state information.
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������������������������������������������������������������
Field Purpose������������������������������������������������������������

prstate The current status of the process (e.g., whether
the process is currently executing or waiting)������������������������������������������������������������

prprio The scheduling priority of the process������������������������������������������������������������
prstkptr The saved value of the process’s stack pointer

when the process is not executing������������������������������������������������������������
prstkbase The address of the highest memory location in

the memory region used as the process’s stack������������������������������������������������������������
prstklen A limit on the maximum size that the process’s

stack can grow������������������������������������������������������������
prname A name assigned to the process that humans

use to identify the process’s purpose��������������������������������������������������������������
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Figure 5.1  Key items found in the Xinu process table.

As an example, consider how the code finds information about a process. The
state information for a process with ID 3 can be found in proctab[3], and the state infor-
mation for a process with ID 5 can be found in proctab[5]. Using the array index as an
ID makes locating information efficient.

Each entry in proctab is defined to be a struct of type procent. The declaration of
struct procent can be found in file process.h along with other declarations related to
processes. Some fields in the process table contain information that the operating sys-
tem needs to manage the process (e.g., the information needed to free the process’s
stack memory when the process completes). Other fields are used only for debugging.
For example, field prname contains a character string that identifies the process; the
field is not used except when a human tries to debug a problem.



70 Scheduling and Context Switching Chap. 5

/* process.h - isbadpid */

/* Maximum number of processes in the system */

#ifndef NPROC

#define NPROC 8

#endif

/* Process state constants */

#define PR_FREE 0 /* process table entry is unused */

#define PR_CURR 1 /* process is currently running */

#define PR_READY 2 /* process is on ready queue */

#define PR_RECV 3 /* process waiting for message */

#define PR_SLEEP 4 /* process is sleeping */

#define PR_SUSP 5 /* process is suspended */

#define PR_WAIT 6 /* process is on semaphore queue */

#define PR_RECTIM 7 /* process is receiving with timeout */

/* Miscellaneous process definitions */

#define PNMLEN 16 /* length of process "name" */

#define NULLPROC 0 /* ID of the null process */

/* Process initialization constants */

#define INITSTK 65536 /* initial process stack size */

#define INITPRIO 20 /* initial process priority */

#define INITRET userret /* address to which process returns */

/* Reschedule constants for ready */

#define RESCHED_YES 1 /* call to ready should reschedule */

#define RESCHED_NO 0 /* call to ready should not reschedule */

/* Inline code to check process ID (assumes interrupts are disabled) */

#define isbadpid(x) ( ((pid32)(x) < 0) || \

((pid32)(x) >= NPROC) || \

(proctab[(x)].prstate == PR_FREE))

/* Number of device descriptors a process can have open */

#define NDESC 5 /* must be odd to make procent 4N bytes */
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/* Definition of the process table (multiple of 32 bits) */

struct procent { /* entry in the process table */

uint16 prstate; /* process state: PR_CURR, etc. */

pri16 prprio; /* process priority */

char *prstkptr; /* saved stack pointer */

char *prstkbase; /* base of run time stack */

uint32 prstklen; /* stack length in bytes */

char prname[PNMLEN]; /* process name */

uint32 prsem; /* semaphore on which process waits */

pid32 prparent; /* id of the creating process */

umsg32 prmsg; /* message sent to this process */

bool8 prhasmsg; /* nonzero iff msg is valid */

int16 prdesc[NDESC]; /* device descriptors for process */

};

/* Marker for the top of a process stack (used to help detect overflow) */

#define STACKMAGIC 0x0A0AAAA9

extern struct procent proctab[];

extern int32 prcount; /* currently active processes */

extern pid32 currpid; /* currently executing process */

5.3 Process States

To record exactly what each process is doing and to validate operations performed
on the process, each process is assigned a state. An operating system designer defines
the set of possible states as the design proceeds. Because many of the system functions
that operate on processes use the state to determine whether an operation is valid, the
set of states must be completely defined before the system can be implemented.

Xinu uses field prstate in the process table to record state information for each pro-
cess. The system defines seven valid states and a symbolic constant for each. The sys-
tem also defines an additional constant that is assigned when a given table entry is
unused (i.e., no process has been created to use that particular entry). File process.h
contains the definitions; Figure 5.2 lists the symbolic state constants and the meaning of
each.

Because it runs as an embedded system, Xinu keeps the code and data for all
processes in memory at all times. In larger operating systems, where a process executes
an application program, the system can move a process to secondary storage when the
process is not currently executing. Thus, in those systems, the process state also deter-
mines whether the process must reside in memory or can be moved to disk temporarily.
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�������������������������������������������������������
Constant Meaning�������������������������������������������������������
PR_FREE The entry in the process table is unused

(not really a process state)�������������������������������������������������������
PR_CURR The process is currently executing�������������������������������������������������������

PR_READY The process is ready to execute�������������������������������������������������������
PR_RECV The process is waiting for a message�������������������������������������������������������
PR_SLEEP The process is waiting for a timer�������������������������������������������������������
PR_SUSP The process is suspended�������������������������������������������������������
PR_WAIT The process is waiting on a semaphore�������������������������������������������������������

PR_RECTIM The process is waiting for a timer
or a message, whichever occurs first��������������������������������������������������������
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Figure 5.2 The seven symbolic constants that can be assigned to the state of a
process.

5.4 Ready And Current States

Later chapters will explain each process state in detail, and show how and why
system functions change a process’s state. The remainder of this chapter focuses on the
current and ready states.

Almost every operating system includes ready and current process states. A pro-
cess is classified ready if the process is ready (i.e., eligible) for CPU service but is not
currently executing; the single process receiving CPU service is classified as current.

5.5 A Scheduling Policy

Switching from the currently executing process to another process consists of two
steps: selecting a process from among those that are eligible to use the CPU, and giving
control of the CPU to the selected process. Software that implements the policy for
selecting a process is called a scheduler. In Xinu, function resched makes the selection
according to the following well-known scheduling policy:

At any time, the highest priority process eligible for CPU service is
executing. Among processes with equal priority scheduling is round-
robin.
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Two aspects of the policy deserve attention:

d The currently executing process is included in the set of eligible
processes. Thus, if process p is currently executing and has a
higher priority than any of the other processes, process p will con-
tinue to execute.

d The term round-robin refers to a situation in which a set of k
processes all have the same priority and the priority of processes in
the set is higher than the priority of other processes. The round-
robin policy means that members of the set will receive service one
after another so all members of the set have an opportunity to exe-
cute before any member has a second opportunity.

5.6 Implementation Of Scheduling

The key to understanding a scheduler lies in knowing that a scheduler is merely a
function. That is, the operating system scheduler is not an active agent that picks up the
CPU from one process and moves it to another. Instead, a running process invokes the
scheduler:†

A scheduler consists of a function that a running process calls to will-
ingly give up the CPU.

Recall that a process priority consists of a positive integer, and the priority for a
given process is stored in the prprio field of the process’s entry in the process table. A
user assigns a priority to each process to control how the process will be selected for
CPU service. A variety of complex scheduling policies have been proposed and meas-
ured, including schedulers that adjust the priority of processes dynamically, based on
the observed behavior of each process. For most embedded systems, however, process
priorities remain relatively static (typically, the priority does not change after a process
has been created).

To make the selection of a new process fast, our example system stores all ready
processes on a list known as a ready list. Processes on a ready list are stored in des-
cending order by priority. Thus, a highest priority process is immediately accessible at
the head of the list.

In the example code, the ready list is stored in the queuetab array described in
Chapter 4, and the scheduler uses functions from Chapter 4 to update and access the
list. That is, the key in each element on the ready list consists of the priority for the
process to which the element corresponds. Global variable readylist contains the queue
ID for the ready list.

��������������������������������
†Later chapters explain how and why a process invokes the scheduler.
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Should the current process be kept on the ready list? The answer depends on de-
tails of the implementation. Either approach is feasible provided an entire system fol-
lows one approach or the other. Xinu implements the following policy:

The current process does not appear on the ready list; to provide fast
access to the current process, its ID is stored in global integer vari-
able currpid.

Consider what happens when the CPU switches from one process to another. The
currently executing process relinquishes the CPU. Often, the process that was executing
remains eligible to use the CPU again. In such situations, the scheduler must change
the state of the current process to PR_READY and insert the process onto the ready list,
insuring that it will be considered for CPU service again later. In other cases, however,
the current process does not remain ready to execute, which means the process should
not be placed on the ready list.

How does the scheduler decide whether to move the current process onto the ready
list? In Xinu, the scheduler does not receive an explicit argument that specifies the
disposition of the current process. Instead, the system functions use an implicit argu-
ment: if the current process should not remain ready, before calling resched, the current
process’s prstate field must be set to the desired next state. Whenever it prepares to
switch to a new process, resched checks the prstate field of the current process. If the
state still specifies PR_CURR, resched assumes the process should remain ready, and
moves the process to the ready list. Otherwise, resched assumes the next state has al-
ready been chosen. The next chapter shows an example.

In addition to moving the current process to the ready list, resched completes every
detail of scheduling and context switching except saving and restoring machine registers
(which cannot be done directly in a high-level language like C). Resched selects a new
process to run, updates the process table entry for the new process, removes the new
process from the ready list, marks it current, and updates currpid. It also resets the
preemption counter, something we will consider later. Finally, resched calls function
ctxsw to save the hardware registers of the current process and restore the registers for
the new process. The code can be found in file resched.c:

/* resched.c - resched */

#include <xinu.h>

/*------------------------------------------------------------------------

* resched - Reschedule processor to highest priority eligible process

*------------------------------------------------------------------------

*/

void resched(void) /* assumes interrupts are disabled */

{
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struct procent *ptold; /* ptr to table entry for old process */

struct procent *ptnew; /* ptr to table entry for new process */

/* If rescheduling is deferred, record attempt and return */

if (Defer.ndefers > 0) {

Defer.attempt = TRUE;

return;

}

/* Point to process table entry for the current (old) process */

ptold = &proctab[currpid];

if (ptold->prstate == PR_CURR) { /* process remains running */

if (ptold->prprio > firstkey(readylist)) {

return;

}

/* Old process will no longer remain current */

ptold->prstate = PR_READY;

insert(currpid, readylist, ptold->prprio);

}

/* Force context switch to highest priority ready process */

currpid = dequeue(readylist);

ptnew = &proctab[currpid];

ptnew->prstate = PR_CURR;

preempt = QUANTUM; /* reset time slice for process */

ctxsw(&ptold->prstkptr, &ptnew->prstkptr);

/* Old process returns here when resumed */

return;

}

Resched begins by checking global variable Defer.ndefers to see whether
rescheduling is deferred. If so, resched sets global variable Defer.attempt to indicate
that an attempt was made during the deferral period and returns to the caller. Deferred
rescheduling is provided to accommodate device drivers for hardware that requires a
driver to service multiple devices on a single interrupt. For now, it is sufficient to
understand that rescheduling can be deferred temporarily.
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Once it passes the test for deferral, resched examines an implicit parameter: the
state of the current process. If the state variable contains PR_CURR and the current
process’s priority is the highest in the system, resched returns and the current process
remains running. If the state specifies that the current process should remain eligible to
use the CPU but the current process does not have the highest priority, resched adds the
current process to the ready list. Resched then removes the process at the head of the
ready list (the highest priority process), and performs a context switch.

It may be difficult to envision how context switching occurs because each con-
current process has its own instruction pointer. To see how concurrency operates, sup-
pose that process P1 is running and calls resched. If resched chooses to switch to pro-
cess P2, process P1 will be stopped in the call to ctxsw. However, process P2 is free to
run, and can execute arbitrary code. At a later time when resched switches back to pro-
cess P1, execution will resume where it left off — in the call to ctxsw. The location at
which P1 is executing does not change just because P2 used the CPU. When process P1

runs, the call to ctxsw will return to resched. A later section considers additional de-
tails.

5.7 Implementation Of Context Switching

Because registers and hardware status cannot be manipulated directly with a high-
level language, resched calls an assembly language function, ctxsw, to switch context
from one process to another. The code for ctxsw is, of course, machine dependent. The
last step consists of resetting the program counter (i.e., jumping to the location in the
new process at which execution should resume). In Xinu, the text segment for the new
process will be present in memory because Xinu keeps all parts of the program resident.
The point is that the operating system must load all other state variables for the new
process before jumping to the new process. Some architectures contain two atomic in-
structions used in context switching: one that stores processor state information in suc-
cessive memory locations and another that loads processor state from successive
memory locations. On such architectures, context switching code executes a single in-
struction to save the processor state on the current process’s stack and another instruc-
tion to load the processor state for the new process. Of course, each instruction takes
many cycles. RISC architectures implement ctxsw with a long sequence of instructions,
but each instruction executes quickly.

5.8 State Saved In Memory

To understand how ctxsw saves processor states, imagine that we can look at the
memory of a system that has three active processes: two of which are ready and one of
which is currently executing. Each process has a stack. The process that is currently
executing is using its stack. When it calls a function, the executing process must allo-
cate space on the stack for local variables and argument storage. When it returns from
a function, the variables are popped off the stack. If the context switching function is
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designed to store a copy of the machine state for a process on the process’s stack, we
will find that when they were running, the other two processes each pushed values on
their stack because they each performed a context switch when they were last executing.
Figure 5.3 illustrates the configuration.

memory

(a)

(b)

(c)

unused

unused

unused

stack space for current process

stack space for ready process 1

stack space for ready process 2

stack pointer (sp) points here

used

saved state for process 1

used

saved state for process 2

used

Figure 5.3 Illustration of stacks in memory for (a) and (b) processes on the
ready list, and (c) a process that is currently executing.

5.9 Context Switch On A MIPS Processor

On a RISC architecture, such as MIPS, each instruction can store only one register.
Thus, N instructions must be executed to save N registers. Like most operating sys-
tems, Xinu follows the convention of saving state on a process’s stack. As a conse-
quence, our MIPS version of ctxsw performs four basic steps:

d Execute a sequence of instructions that pushes the contents of the
processor registers on the stack of the process that is running when
ctxsw is called.

d Save the stack pointer in the process table entry for the current pro-
cess, and load the stack pointer for the “new” process.
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d Execute a sequence of instructions that reload the processor regis-
ters from values previously saved on the new process’s stack.

d Jump to the location in the new process at which execution should
resume.

Because context switching involves the direct manipulation of processor registers,
the code is written in assembly language. To save the contents of processor registers,
ctxsw allocates CONTEXT bytes on the stack; the allocated area is sufficient to hold all
the saved register values. Ctxsw then stores register values in successive words of the
allocated region.

The second step, saving and restoring stack pointers, is straightforward, and only
requires two instructions. Ctxsw receives two pointers as arguments: the address of the
location in the process table where the current process stack pointer should be stored
and the address in the process table that contains the new stack pointer. Thus, a single
instruction stores the stack pointer at the location given by the first argument, and
another loads the stack pointer from the address given by the second argument.

After the second step, the stack pointer points to the new process’s stack. Ctxsw
extracts the set of values that was saved on the stack for the process, and loads the
values into processor registers. Once the values have been loaded, ctxsw removes CON-
TEXT bytes from the stack. File ctxsw.S contains the code.

/* ctxsw.S - ctxsw */

#include <mips.h>

.text

.align 4

.globl ctxsw

/*------------------------------------------------------------------------

* ctxsw - Switch from one process context to another

*------------------------------------------------------------------------

*/

.ent ctxsw

ctxsw:

/* Build context record on the current process’ stack */

addiu sp, sp, -CONTEXT

sw ra, CONTEXT-4(sp)

sw ra, CONTEXT-8(sp)

/* Save callee-save (non-volatile) registers */

sw s0, S0_CON(sp)
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sw s1, S1_CON(sp)

sw s2, S2_CON(sp)

sw s3, S3_CON(sp)

sw s4, S4_CON(sp)

sw s5, S5_CON(sp)

sw s6, S6_CON(sp)

sw s7, S7_CON(sp)

sw s8, S8_CON(sp)

sw s9, S9_CON(sp)

/* Save outgoing process’ stack pointer */

sw sp, 0(a0)

/* Load incoming process’ stack pointer */

lw sp, 0(a1)

/* At this point, we have switched from the run-time stack */

/* of the outgoing process to the incoming process */

/* Restore callee-save (non-volatile) registers from new stack */

lw s0, S0_CON(sp)

lw s1, S1_CON(sp)

lw s2, S2_CON(sp)

lw s3, S3_CON(sp)

lw s4, S4_CON(sp)

lw s5, S5_CON(sp)

lw s6, S6_CON(sp)

lw s7, S7_CON(sp)

lw s8, S8_CON(sp)

lw s9, S9_CON(sp)

/* Restore argument registers for the new process */

lw a0, CONTEXT(sp)

lw a1, CONTEXT+4(sp)

lw a2, CONTEXT+8(sp)

lw a3, CONTEXT+12(sp)

/* Remove context record from the new process’ stack */

lw v0, CONTEXT-4(sp)

lw ra, CONTEXT-8(sp)
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addiu sp, sp, CONTEXT

/* If this is a newly created process, ensure */

/* it starts with interrupts enabled */

beq v0, ra, ctxdone

mfc0 v1, CP0_STATUS

ori v1, v1, STATUS_IE

mtc0 v1, CP0_STATUS

ctxdone:

jr v0

.end ctxsw

As comments in the code suggest, a newly created process should execute with in-
terrupts enabled; other processes will return from the call to context switch and execute
resched with interrupts disabled. Because the MIPS design uses a co-processor to han-
dle interrupts, the context switch must use the co-processor to enable interrupts explicit-
ly. Our implementation uses a trick: when a process is created, the values stored at lo-
cations CONTEXT–4(sp) and CONTEXT–8(sp) differ, and for other processes, they are
the same. As the last step, ctxsw compares the two values and enables interrupts if they
differ.

5.10 An Address At Which To Restart A Process

A potential problem arises in context switching: the processor continues to execute
during the context switch, which means registers can change. Thus, the code must be
written carefully to insure that once a given register has been saved, the register is not
changed (or the value will be lost when the process restarts). The program counter
represents a special dilemma because storing the value means that when the process re-
starts, execution will continue at exactly the point in the code at which the instruction
pointer was stored. If the context switch has not completed when the instruction pointer
is stored, the process will restart at a point before the context switch has occurred. The
code in ctxsw reveals how to resolve the situation: instead of saving the value of the
program counter while ctxsw is running, choose an address at which the process should
resume when restarted.

To understand how an appropriate address is chosen, think of an executing process.
The process has called resched which has then called ctxsw. Instead of trying to save
the program counter at a point in ctxsw, the code saves a value as if the process had just
returned from the call to ctxsw. That is, the saved value of the program counter is taken
from the return address, the address to which ctxsw would return if it were a normal
procedure. Consequently:
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When a process restarts, the process begins executing in resched im-
mediately following the call to ctxsw.

All processes call resched to perform context switching, and resched calls ctxsw.
Thus, if one were to freeze the system at an arbitrary instant and examine memory, the
saved program counter for each ready process will have the same value — an address
just after the call to ctxsw in resched. However, each process has its own stack of func-
tion calls, which means that when a given process resumes execution and returns from
resched, the return may go to a different caller than the return in another process.

The notion of function return forms a key ingredient in keeping the system design
clean. Function calls proceed downward through each level of the system, and each call
returns. To enforce the design at all levels, the scheduler, resched, and the context
switch, ctxsw, have each been designed to behave like any other procedure and return.
To summarize:

In Xinu, each function, including the scheduler and context switch,
eventually returns to its caller.

Of course, rescheduling allows other processes to execute, and the execution may
take arbitrarily long (depending on process priorities). Thus, a considerable delay may
elapse between a call to resched and the time the call returns and the process runs
again.

5.11 Concurrent Execution And A Null Process

The concurrent execution abstraction is complete and absolute. That is, an operat-
ing system views all computation as part of a process — there is no way that the CPU
can temporarily stop executing processes and execute a separate piece of code. The
scheduler design reflects the following principle: the scheduler’s only function is to
switch the processor among the set of processes that are current or ready. The
scheduler cannot execute any code that is not part of a process, and cannot create a new
process. Figure 5.4 illustrates the possible state transitions.

READY CURRENT

resched

resched

Figure 5.4 Illustrations of state transitions for processes between the ready
and current states.
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We will see that a given process does not always remain ready to execute. For ex-
ample, a process stops executing when it waits for I/O to complete or when it needs to
use a shared resource that is already in use. What happens if all processes wait for I/O?
Resched will fail because the code has been designed to assume at least one process will
be eligible to execute at any time. When the currently executing process blocks,
resched removes the first process from the ready list without verifying that the list is
nonempty. If the list is empty, an error results. To summarize:

Because an operating system can only switch the CPU from one pro-
cess to another, at least one process must remain ready to execute at
all times.

To insure that at least one process always remains ready to execute, Xinu uses a
standard technique: it creates an extra process, called the null process, when the system
boots. The null process has process ID zero and priority zero (a lower priority than any
other process). The null process code, which will be shown in Chapter 22, consists of
an infinite loop. Because all other processes must have a priority greater than zero, the
scheduler switches to the null process only when no other process remains ready to run.
In essence, the operating system switches the CPU to the null process when all other
processes are blocked (e.g., waiting for I/O).†

5.12 Making A Process Ready And The Scheduling Invariant

When resched needs to move the current process onto the ready list, it manipulates
the list directly. Making a process eligible for CPU service occurs so frequently that we
designed a function to do just that. The function is named ready.

Ready takes two arguments: a process ID and a Boolean argument that controls
whether resched should be called. Calls to ready use symbolic constants
RESCHED_YES and RESCHED_NO to make the purpose of the argument clear in calls.

Consider the second argument. Our scheduling policy specifies that at any time,
the highest priority eligible process must be executing. Thus, if it places a high priority
process on the ready list, ready should call resched to insure that the policy is followed.
We say that each operating system function should maintain a scheduling invariant: a
function assumes the highest priority process was executing when the function was
called, and must insure that the highest priority process is executing when the function
returns. Thus, if a function changes the state of processes, the function must call
resched to reestablish the invariant. Ready is an exception. To understand why, it is
essential to know that some operating system functions move multiple processes onto
the ready list (e.g., multiple timer events can occur at the same time). Rescheduling in
the midst of such a move can result in incomplete operations. The solution consists of
temporarily suspending the scheduling policy and allowing multiple calls of ready with
argument RESCHED_NO. Once the entire set of processes has been added, a single

��������������������������������
†Some CPUs include a special instruction that can be placed in a null process that stops the CPU until an

interrupt occurs; using the special instruction may reduce the energy that the CPU consumes.
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call to resched must be made to reinstate the policy and assure that the highest priority
ready process is executing. We will see an example use of ready in Chapter 7.
Meanwhile, it is sufficient to see how ready avoids rescheduling if the second argument
is RESCHED_NO. File ready.c contains the code.

/* ready.c - ready */

#include <xinu.h>

qid16 readylist; /* index of ready list */

/*------------------------------------------------------------------------

* ready - Make a process eligible for CPU service

*------------------------------------------------------------------------

*/

status ready(

pid32 pid, /* ID of process to make ready */

bool8 resch /* reschedule afterward? */

)

{

register struct procent *prptr;

if (isbadpid(pid)) {

return(SYSERR);

}

/* Set process state to indicate ready and add to ready list */

prptr = &proctab[pid];

prptr->prstate = PR_READY;

insert(pid, readylist, prptr->prprio);

if (resch == RESCHED_YES) {

resched();

}

return OK;

}

5.13 Deferred Rescheduling

Recall that resched uses global variable Defer.ndefers to determine whether
rescheduling is currently deferred.† Function sched_cntl provides an interface that is
used to control deferral. A caller invokes:

��������������������������������
†The code for resched can be found on page 74.
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sched_cntl(DEFER_START);

to defer rescheduling, and

sched_cntl(DEFER_STOP);

to end a deferral period. To accommodate systems in which interrupt processing can be
interrupted by a higher priority device, global variable Defer.ndefers acts as a reference
count that is incremented whenever a process requests deferral to start and decremented
whenever a process ends its deferral period. When the count reaches zero, sched_cntl
tests global variable Defer.attempt to see if resched was called during the deferral
period. If so, sched_cntl invokes resched before returning to its caller. File sched.h de-
fines constants and variables used for deferral.

/* sched.h */

/* Constants and variables related to deferred rescheduling */

#define DEFER_START 1 /* start deferred rescehduling */

#define DEFER_STOP 2 /* stop deferred rescehduling */

/* Structure that collects items related to deferred rescheduling */

struct defer {

int32 ndefers; /* number of outstanding defers */

bool8 attempt; /* was resched called during the */

/* deferral period? */

};

extern struct defer Defer;

File sched_cntl.c contains the code to control deferral.

/* sched_cntl.c - sched_cntl */

#include <xinu.h>

struct defer Defer;

/*------------------------------------------------------------------------

* sched_cntl - control whether rescheduling is deferred or allowed

*------------------------------------------------------------------------

*/

status sched_cntl( /* assumes interrupts are disabled */

int32 def /* either DEFER_START or DEFER_STOP */

)
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{

switch (def) {

/* Process request to defer: */

/* 1) Increment count of outstanding deferral requests */

/* 2) If this is the start of deferral, initialize Boolean */

/* to indicate whether resched has been called */

case DEFER_START:

if (Defer.ndefers++ == 0) { /* increment deferrals */

Defer.attempt = FALSE; /* no attempts so far */

}

return OK;

/* Process request to stop deferring: */

/* 1) Decrement count of outstanding deferral requests */

/* 2) If last deferral ends, make up for any calls to */

/* resched that were missed during the deferral */

case DEFER_STOP:

if (Defer.ndefers <= 0) { /* none outstanding */

return SYSERR;

}

if (--Defer.ndefers == 0) { /* end deferral period */

if (Defer.attempt) { /* resched was called */

resched(); /* during deferral */

}

}

return OK;

default:

return SYSERR;

}

}

5.14 Other Process Scheduling Algorithms

Process scheduling was once an important topic in operating systems, and many
scheduling algorithms have been proposed as alternatives to the round-robin scheduler
in Xinu. For example, one policy measures the amount of I/O a process performs and
gives the CPU to the process that spends the most time doing I/O. Proponents of the
policy argue that because I/O devices are slower than processors, choosing a process
that performs I/O will increase the total throughput of the system.
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Because scheduling is confined to a few functions, it is easy to experiment with the
scheduling policy in Xinu. Changing resched and ready changes the basic scheduler.
Of course, if the new policy uses data that Xinu does not already gather (e.g., the
amount of time spent doing I/O), other functions may need to change to record the ap-
propriate data.

5.15 Perspective

The most interesting aspect of scheduling and context switching arises because
they are embedded as part of normal computation. That is, instead of the operating sys-
tem implemented separately from the processes it controls, the operating system code is
executed by the processes themselves. Thus, the system does not have an extra process
that can stop the processor from executing one application and move it to another,
scheduling and context switching occur as the side effect of a function call.

We will see that using processes to execute operating system code affects the
design. When a programmer writes an operating system function, the programmer must
accommodate execution by concurrent processes. Similarly, using processes to execute
operating system code affects how the system interacts with I/O devices and how it han-
dles interrupts.

5.16 Summary

Scheduling and context switching form a foundation for concurrent execution.
Scheduling consists of choosing a process from among those that are eligible for execu-
tion. Context switching consists of stopping one process and starting a new one. To
keep track of processes, the system uses a global data structure called a process table.
Whenever it temporarily suspends a process, the context switch saves the processor state
for the process on the process’s stack and places a pointer to the stack in the process
table. To restart a process, the context switch reloads the processor state information
from the process’s stack, and resumes execution in the process at the point the call to
the context switch function returns.

To allow functions to determine when an operation is permitted, each process is as-
signed a state. A process that is using the CPU is assigned the current state, and a pro-
cess that is eligible to use the CPU, but is not currently executing, is assigned the ready
state. Because at least one process must remain eligible to execute at any time, the
operating system creates an extra process at startup known as the null process. The null
process has priority zero, and all other processes have priority greater than zero. Conse-
quently, the null process only runs when no other process is eligible.

The chapter presents three functions that perform transitions between the current
and ready states. Function resched performs scheduling, function ctxsw performs con-
text switching, and function ready makes a process eligible to execute.
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EXERCISES

5.1 If the operating system contains a total of N processes, how many processes can be on the
ready list at a given time? Explain.

5.2 How do operating system functions know which process is executing at a given time?

5.3 Rewrite resched to have an explicit parameter giving the disposition of the currently exe-
cuting process, and examine the assembly code generated to determine the number of in-
structions executed in each case.

5.4 What are the basic steps performed during a context switch?

5.5 Investigate another hardware architecture (e.g., the Intel x86), and determine what informa-
tion needs to be saved during a context switch.

5.6 How much memory is needed to store processor state for a MIPS processor? Which regis-
ters must be saved, and why? How does the standard calling convention for a processor af-
fect the answer?

5.7 Suppose process k has been placed on the ready list. When process k becomes current,
where will execution start?

5.8 Why is a null process needed?

5.9 Consider a modification to the code that stores processor state in the process table instead
of on the process’s stack (i.e., assume the process table entry contains an array that holds
the contents of registers). What are the advantages of each approach?

5.10 In the previous exercise, does saving registers in the process table reduce or increase the
number of instructions executed during a context switch?

5.11 Devise a scheduling policy for a dual-core processor (i.e., a processor that contains two
separate CPUs that can execute in parallel).

5.12 Extend the previous exercise: show that executing resched on one core may require chang-
ing the process that is running on the other core. (Note: many operating systems for dual-
core processors avoid the problem by specifying that all operating system functions, includ-
ing scheduling, run on one of the two cores.)

5.13 The code contains two mechanisms used to defer rescheduling: ready has an argument that
allows the caller to avoid rescheduling and sched_cntl sets a global bit that makes resched
ignore calls. Why are both mechanisms included? Hint: compare the efficiency and over-
head.
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More Process Management

When men willingly suspend fear, science flourishes.

— Anonymous

6.1 Introduction

Chapter 5 discusses the concurrent execution abstraction and processes of execu-
tion. The chapter explains how an operating system stores information about processes
in a table, and how each process is assigned a state. Chapter 5 also explains the con-
cepts of scheduling and context switching. It shows how a scheduler implements a
scheduling policy, and explains how a process moves between the ready and current
states.

This chapter extends our study of process management. The chapter explains how
a new process comes into existence, and what happens when a process exits. The
chapter also examines a process state that allows a process to be suspended temporarily,
and explores functions that move processes among the current, ready, and suspended
states.

6.2 Process Suspension And Resumption

We will see that operating system functions sometimes need to temporarily stop a
process from executing and at a later time resume execution. We say that a stopped
process has been placed in a state of “suspended animation.” Suspended animation can
be used, for example, when a process waits for one of several restart conditions without
knowing which will occur first.

89
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The first step in implementing operating system functionality consists of defining a
set of operations. In the case of suspended animation, only two conceptual operations
provide all the functionality that is needed:

d Suspend stops a process and places the process in suspended ani-
mation (i.e., makes the process ineligible to use the CPU).

d Resume continues execution of a previously suspended process
(i.e., makes the process eligible to use the CPU again).

Because it is not eligible to use the CPU, a suspended process cannot remain in ei-
ther the ready or current states. Thus, a new state must be invented. We call the new
state suspended, and add the new state and associated transitions to the state diagram.
Figure 6.1 shows the extended state diagram, which summarizes how suspend and
resume affect the state. The resulting diagram documents the possible transitions
among the ready, current, and suspended states.

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

Figure 6.1  Transitions among the current, ready, and suspended states.

6.3 Self-Suspension And Information Hiding

Although each state transition in Figure 6.1 has a label that specifies a particular
function, process suspension differs from scheduling in a significant way: instead of act-
ing on the current process, suspend allows one process to suspend another process.
More important, because a suspended process cannot resume itself, resume must allow
an executing process to resume a previously suspended process. Thus, suspend and
resume each take an argument that specifies the ID of a process on which the operation
should be performed.

Can a process suspend itself? Yes. To do so, a process must obtain its process ID
and then pass the ID as an argument to suspend. An implementation may seem obvi-
ous. Because global variable currpid contains the process ID of the currently executing
process, a self-suspension can be achieved with:
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suspend( currpid );

However, a well-designed operating system design adheres to the principle of in-
formation hiding: implementation details are not generally revealed. Thus, instead of
permitting processes to access global variables like currpid directly, Xinu includes a
function named getpid that a process can call to obtain its ID. Thus, to suspend itself, a
process calls:

suspend( getpid( ) );

The present implementation of getpid merely returns the value of currpid, which
may seem like unnecessary overhead. However, the advantage of information hiding
becomes clear when one considers modifying the operating system. If all processes call
getpid, a designer can change the details of where and how the current process ID is
stored without changing other code.

The point is:

A good system design follows the principle of information hiding,
which states that implementation details are not revealed unless
necessary. Hiding such details makes it possible to change the imple-
mentation of a function without rewriting code that uses the function.

6.4 The Concept Of A System Call

In theory, process resumption is straightforward. The process must be placed in
the ready state and inserted in the correct position on the ready list. The ready function
described in the previous chapter performs both tasks, so it may seem that resume is un-
necessary. In practice, however, resume adds an extra layer of protection: it makes no
assumptions about the caller or the correctness of the arguments. In particular, an arbi-
trary process can invoke resume at an arbitrary time with arbitrary arguments.

We used the term system call to distinguish a function like resume from internal
functions like ready. In general, we think of the set of system calls as defining a view
of the operating system from the outside — application processes invoke system calls to
obtain services. In addition to adding a layer of protection, the system call interface
provides another example of information hiding: application processes remain unaware
of the internal implementation, and can only use the set of system calls to obtain ser-
vice. We will see that the distinction between system calls and other functions appears
throughout an operating system. To summarize:

System calls, which define operating system services for applications,
protect the system from illegal use and hide information about the
underlying implementation.
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To provide protection, system calls handle three aspects of computation that under-
lying functions do not:

d Check all arguments

d Insure that changes leave global data structures in a
consistent state

d Report success or failure to the caller

In essence, a system call cannot make any assumptions about the process that is
making the call. Thus, instead of assuming that the caller has supplied correct and
meaningful argument values, a system call checks each argument. More important,
many system calls make changes to operating system data structures, such as the pro-
cess table and lists of processes stored in the queue structure. A system call must
guarantee that no other process will attempt to change data structures at the same time,
or inconsistencies can result. Because it cannot make assumptions about the conditions
under which it will be invoked, a system call must take steps to prevent other processes
from executing concurrently while data structures are being changed. There are two as-
pects:

d Avoid invoking any functions that voluntarily relinquish the CPU

d Disable interrupts to prevent involuntarily relinquishing the CPU

To prevent voluntarily relinquishing the CPU, a system call must avoid direct or
indirect calls to resched. That is, while changes are in progress, a system call cannot
invoke resched directly and cannot invoke any function that calls resched. To prevent
involuntarily relinquishing the CPU, a system call disables interrupts until a change is
complete. In Chapter 12, we will understand the reason: hardware interrupts can result
in rescheduling because some interrupt routines call resched.

An example system call will help clarify the two aspects. Consider the code for
resume that is contained in file resume.c.

/* resume.c - resume */

#include <xinu.h>

/*------------------------------------------------------------------------

* resume - Unsuspend a process, making it ready

*------------------------------------------------------------------------

*/

pri16 resume(

pid32 pid /* ID of process to unsuspend */

)

{
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intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

pri16 prio; /* priority to return */

mask = disable();

prptr = &proctab[pid];

if (isbadpid(pid) || (prptr->prstate != PR_SUSP)) {

restore(mask);

return (pri16)SYSERR;

}

prio = prptr->prprio; /* record priority to return */

ready(pid, RESCHED_YES);

restore(mask);

return prio;

}

6.5 Interrupt Control With Disable And Restore

As expected, the code in resume checks argument pid to insure that the caller has
supplied a valid process ID and the specified process is in the suspended state. Before
it performs any computation, however, resume guarantees that no interrupts will occur
(i.e., no context switching can occur until resume invokes an operating system function
that causes a context switch). To control interrupts, resume uses a pair of functions:†

d Function disable disables interrupts and returns the previous inter-
rupt status to its caller.

d Function restore reloads an interrupt status from a previously saved
value.

As expected, resume disables interrupts immediately upon entry. Resume can re-
turn in two ways: because an error is detected or because resume finishes the requested
operation successfully. In either case, resume must call restore before returning to reset
the interrupt status to the same value the caller was using when the call began.

Programmers who do not have experience writing code for operating systems often
expect a system call to enable interrupts before returning. However, restore provides
more generality. To see why, observe that because it restores interrupts rather than sim-
ply enabling them, resume works correctly whether it is called with interrupts enabled
or disabled. On the one hand, if a function has interrupts disabled when it calls resume,
the call will return with interrupts disabled. On the other hand, if a function has inter-
rupts enabled when it calls resume, the call will return with interrupts enabled.

��������������������������������
†Chapter 12 explains the details of interrupt handling.
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System calls must disable interrupts to prevent other processes from
changing global data structures; using a disable / restore paradigm in-
creases generality.

6.6 A System Call Template

Another way to look at interrupt handling focuses on an invariant that a system
function must maintain:

An operating system function always returns to its caller with the
same interrupt status as when it was called.

To insure the invariant is maintained, operating system functions follow the gen-
eral approach that Figure 6.2 illustrates.

syscall function_name(args) {

intmask mask; /* interrupt mask */

mask = disable(); /* disable interrupts at start of function */

if ( args are incorrect ) {

restore(mask); /* restore interrupts before error return */

return(SYSERR);

}

...other processing...

if ( an error occurs ) {

restore(mask); /* restore interrupts before error return */

return(SYSERR);

}

...more processing...

restore(mask); /* restore interrupts before normal return */
return( appropriate value );

}��
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Figure 6.2  Illustration of the general form of an operating system function.
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6.7 System Call Return Values SYSERR And OK

We will see that some system calls return a value that relates to the function being
performed and others merely return a status to indicate that the call was successful.
Resume provides an example of the former: it returns the priority of the process that has
been resumed. In the case of resume, care must be taken to record the priority before
calling ready because the resumed process may have higher priority than the currently
executing process. Thus, as soon as ready places the specified process on the ready list
and calls resched, the new process may begin executing. In fact, an arbitrary delay can
occur between the time resume calls ready and execution continues after the call. Dur-
ing the delay, an arbitrary number of other processes can execute and processes may
terminate. Thus, to insure that the returned priority reflects the resumed process’s prior-
ity at the time of resumption, resume makes a copy in local variable prio before calling
ready. Resume uses the local copy as the return value.

Xinu defines two constants that are used as return values throughout the system. A
function returns SYSERR to indicate that an error occurred during processing. That is, a
system function returns SYSERR if the arguments are incorrect (e.g., outside the accept-
able range) or the requested operation could not be completed successfully. A function
such as ready that does not compute a specific return value uses constant OK to indicate
that the operation was successful.

6.8 Implementation Of Suspend

As the state diagram indicates, suspend can only be applied to a process that is
current or ready. Suspension of a ready process is trivial: the process must be removed
from the ready list and its state must be changed to suspended. No further action is re-
quired. Thus, after deleting the process from the ready list and changing the process’s
state to PR_SUSP, suspend can restore interrupts and return to its caller. The suspended
process will remain ineligible to use the CPU until it has been resumed.

Suspending the current process is almost as easy. Following the steps outlined in
Chapter 5, suspend must change the state of the current process to PR-SUSP and call
resched. That is, suspend sets the state of the current process to the desired next state.

The code for function suspend can be found in file suspend.c.



96 More Process Management Chap. 6

/* suspend.c - suspend */

#include <xinu.h>

/*------------------------------------------------------------------------

* suspend - Suspend a process, placing it in hibernation

*------------------------------------------------------------------------

*/

syscall suspend(

pid32 pid /* ID of process to suspend */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

pri16 prio; /* priority to return */

mask = disable();

if (isbadpid(pid) || (pid == NULLPROC)) {

restore(mask);

return SYSERR;

}

/* Only suspend a process that is current or ready */

prptr = &proctab[pid];

if ((prptr->prstate != PR_CURR) && (prptr->prstate != PR_READY)) {

restore(mask);

return SYSERR;

}

if (prptr->prstate == PR_READY) {

getitem(pid); /* remove a ready process */

/* from the ready list */

prptr->prstate = PR_SUSP;

} else {

prptr->prstate = PR_SUSP; /* mark the current process */

resched(); /* suspended and reschedule */

}

prio = prptr->prprio;

restore(mask);

return prio;

}

Like resume, suspend is a system call, which means the function disables interrupts
when it is invoked. In addition, suspend checks argument pid to verify that it is a valid
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process ID. Because suspension is only valid for a process that is ready or current, the
code verifies that the process is in one of the two valid states. If an error is detected,
suspend restores interrupts and returns SYSERR to the caller.

6.9 Suspending The Current Process

The code for suspending the currently executing process raises two interesting
points. First, the currently executing process will stop executing, at least temporarily.
Thus, before suspending itself, the current process must prearrange for some other pro-
cess to resume it (or it will remain suspended forever). Second, because it will be
suspended, the current process must allow another process to execute. Thus, when
suspending the current process, suspend must call resched. The key idea is that when a
process suspends itself, the process remains executing until the call to resched selects
another process and switches context.

Note that when a process is suspended, resched does not place the process on the
ready list. In fact, a suspended process is not on a list of suspended processes analo-
gous to the ready list. Ready processes are only kept on an ordered list to speed the
search for the highest priority process during rescheduling. Because the system never
searches through suspended processes looking for one to resume, the set of suspended
processes need not be kept on a list. Thus, before suspending a process, a programmer
must arrange a way for the process to be resumed.

6.10 Suspend Return Value

Suspend, like resume, returns the priority of the suspended process to its caller. In
the case of a ready process, the value returned will reflect the priority the process had
when suspend was called. (Once suspend disables interrupts, no other process can
change priorities in the system, so the priority can be recorded at any time before
suspend restores interrupts.) In the case of the current process, however, a question
arises: should suspend return the priority that was in effect when suspend was invoked
or the priority the process has after the process has been resumed (i.e., when suspend re-
turns)? In terms of the code, the question is whether the local copy of the priority
should be recorded before the call to resched or afterward (the version above records it
afterward).

To understand one possible motivation for returning the priority at the time of
resumption, consider how the priority can be used to convey information. Suppose, for
example, that a process needs to suspend until one of two events occurs. A programmer
can assign a unique priority value to each event (e.g., priorities 25 and 26), and arrange
the calls to resume to set the priority accordingly. The process can then use the priority
to determine why it was resumed:
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newprio = suspend( getpid() );
if (newprio == 25) {

... event 1 occurred...
} else {

... event 2 occurred...
}

6.11 Process Termination And Process Exit

Although it freezes a process temporarily, suspend saves information about a pro-
cess so the process can be resumed later. Another system call, kill, implements process
termination by completely removing a process from the system. Once it has been
killed, a process cannot be restarted because kill eradicates the entire record and frees
the process table entry for reuse by a new process.

The actions taken by kill depend on the process state. Before writing the code, a
designer needs to consider each possible process state and what it means to terminate a
process in that state. We will see, for example, that a process in the ready, sleeping, or
waiting states is stored on one of the linked lists in the queue structure, which means
kill must dequeue the process. In the next chapter, we will see that if a process is wait-
ing for a semaphore, kill must adjust the semaphore count. Each of the cases will be-
come clear once we have examined the process state and the functions that control the
state. For now, it is sufficient to understand the overall structure of kill and see how it
handles processes that are current or ready. The code for kill appears in file kill.c on
page 99.

Kill checks its argument, pid, to ensure that it corresponds to a valid process other
than the null process (the null process cannot be killed because it must remain running).
Kill then decrements prcount, a global variable that records the number of active user
processes, and calls function freestk to free memory that has been allocated for the
process’s stack. The remaining actions depend on the process’s state. For a process
that is in the ready state, kill removes the process from the ready list and then frees the
process table entry by assigning value PR_FREE to the process’s state. Because it no
longer appears on the ready list, the process will not be selected for rescheduling; be-
cause it has state PR_FREE, the entry in the process table can be reused.

Now consider what happens when kill needs to terminate the currently executing
process. We say that the process exits. As before, kill validates its argument and decre-
ments the count of active processes. If the current process happens to be the last user
process, decrementing prcount makes it zero, so kill calls function xdone, which is ex-
plained below. After it marks the current process’s state free, kill calls resched to pass
control to another ready process.
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/* kill.c - kill */

#include <xinu.h>

/*------------------------------------------------------------------------

* kill - Kill a process and remove it from the system

*------------------------------------------------------------------------

*/

syscall kill(

pid32 pid /* ID of process to kill */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

int32 i; /* index into descriptors */

mask = disable();

if (isbadpid(pid) || (pid == NULLPROC)

|| ((prptr = &proctab[pid])->prstate) == PR_FREE) {

restore(mask);

return SYSERR;

}

if (--prcount <= 1) { /* last user process completes */

xdone();

}

send(prptr->prparent, pid);

for (i=0; i<3; i++) {

close(prptr->prdesc[i]);

}

freestk(prptr->prstkbase, prptr->prstklen);

switch (prptr->prstate) {

case PR_CURR:

prptr->prstate = PR_FREE; /* suicide */

resched();

case PR_SLEEP:

case PR_RECTIM:

unsleep(pid);

prptr->prstate = PR_FREE;

break;

case PR_WAIT:



100 More Process Management Chap. 6

semtab[prptr->prsem].scount++;

/* fall through */

case PR_READY:

getitem(pid); /* remove from queue */

/* fall through */

default:

prptr->prstate = PR_FREE;

}

restore(mask);

return OK;

}

When the last user process exits, kill calls xdone. In some systems, xdone powers
down the device. In our example, xdone merely prints a message on the console serial
line, turns off the LED that indicates the system is running, and halts the processor.
The code is found in file xdone.c.

/* xdone.c - xdone */

#include <xinu.h>

/*------------------------------------------------------------------------

* xdone - Print system completion message as last thread exits

*------------------------------------------------------------------------

*/

void xdone(void)

{

kprintf("\r\n\r\nAll user processes have completed.\r\n\r\n");

gpioLEDOff(GPIO_LED_CISCOWHT); /* turn off LED "run" light */

halt(); /* halt the processor */

}

Why should kill invoke function xdone? Doing so may seem unnecessary because
the code is trivial and could easily be incorporated into kill itself. The motivation for
using a function stems from a desire to separate functionality: a programmer can change
the action taken when all processes exit without modifying kill.

A more serious question arises because xdone is invoked before the last user pro-
cess has been removed from the system. To understand the problem, consider a fault-
tolerant design that restarts processes in the case all processes exit. With the current
implementation, one of the process table slots remains in use when xdone is called. The
exercises consider an alternative implementation.

www.itpub.net



Sec. 6.12 Process Creation 101

6.12 Process Creation

As we have seen, processes are dynamic — a process can be created at any time.
The system call create starts a new, independent process. In essence, create builds an
image of the process as if it had been stopped while running. Once the image has been
constructed and the process has been placed on the ready list, ctxsw can switch to it.

A look at the code in file create.c explains most of the details. Create uses func-
tion newpid to search the process table for a free (i.e., unused) slot. Once a slot has
been found, create allocates space for the new process’s stack, and fills in the process
table entry. Create calls getstk to allocate space for a stack (Chapter 9 discusses
memory allocation).

The first argument to create specifies the initial function at which the process
should start execution. Create forms a saved environment on the process’s stack as if
the specified function had been called. Consequently, we refer to the initial config-
uration as a pseudo call. To build a pseudo call, create allocates a context on the
process’s stack, stores initial values for the registers, and then stores the stack pointer in
the corresponding entry of the process table. When ctxsw switches to it, the new pro-
cess begins executing the code for the designated function, obeying the normal calling
conventions for accessing arguments and allocating local variables. In short, the initial
function for a process behaves exactly as if it had been called.

What value should create use as a return address in the pseudo call? The value
determines what action the system will take if a process returns from its initial (i.e.,
top-level) function. Our example system follows a well-known paradigm:

If a process returns from the initial (top-level) function in which its
execution started, the process exits.

To be precise, we should distinguish between a return from the function itself and
a return from the initial call. To see why, observe that C permits recursive function
calls. Thus, if a process begins in function X which recursively calls X, the first return
merely pops one level of recursion and returns to the initial call without causing the
process to exit. If the process returns again (or reaches the end of X) without making
further calls, the process will exit.

To arrange for an exit to occur when the initial call returns, create assigns the ad-
dress of function userret as the return address in the pseudo call. The code uses sym-
bolic constant INITRET, which has been defined to be function name userret.† If dur-
ing the initial call the process reaches the end of the function or explicitly invokes re-
turn, control will pass to userret. Function userret terminates the current process by
calling kill. File userret.c, shown below, contains the code.

Create also fills in the process table entry. In particular, create makes the state of
the newly created process PR_SUSP, leaving it suspended, but otherwise ready to run.
Finally, create returns the process ID of the newly created process; the process must be
resumed before it can execute.

��������������������������������
†Using a symbolic constant allows the choice to be overridden in a configuration file rather than requir-

ing the code to be changed.
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Many of the process initialization details depend on the C run-time environment —
one cannot write the code to start a process without understanding the details. For ex-
ample, create arranges for initial arguments to be placed in registers and successive ar-
guments to be placed on the stack. The code that pushes arguments may be difficult to
understand because create copies the arguments directly from its own run-time stack
onto the stack that it has allocated for the new process. To do so, it finds the address of
the arguments on its own stack and moves through the list using pointer arithmetic.
The details depend on both the processor architecture and the compiler being used.

/* create.c - create, newpid */

#include <xinu.h>

#include <mips.h>

static pid32 newpid(void);

/*------------------------------------------------------------------------

* create, newpid - Create a process to start running a procedure

*------------------------------------------------------------------------

*/

pid32 create(

void *funcaddr, /* address of function to run */

uint32 ssize, /* stack size in bytes */

pri16 priority, /* process priority */

char *name, /* process name (for debugging) */

uint32 nargs, /* number of args that follow */

...

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

uint32 *saddr; /* stack address */

uint32 *savargs; /* pointer to arg save area */

pid32 pid; /* ID of newly created process */

uint32 *ap; /* points to list of var args */

int32 pad; /* padding needed for arg area */

uint32 i;

void INITRET(void);

mask = disable();

if ( (ssize < MINSTK)

|| (priority <= 0)

|| (((int32)(pid = newpid())) == (int32) SYSERR)

|| ((saddr = (uint32 *)getstk(ssize)) == (uint32 *)SYSERR)) {
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restore(mask);

return SYSERR;

}

prcount++;

prptr = &proctab[pid];

/* Initialize process table entry for new process */

prptr->prstate = PR_SUSP; /* initial state is suspended */

prptr->prprio = priority;

prptr->prstkptr = (char *)saddr;

prptr->prstkbase = (char *)saddr;

prptr->prstklen = ssize;

prptr->prname[PNMLEN-1] = NULLCH;

for (i=0 ; i<PNMLEN-1 && (prptr->prname[i]=name[i])!=NULLCH; i++)

;

prptr->prparent = (pid32)getpid();

prptr->prhasmsg = FALSE;

/* Set up initial device descriptors for the shell */

prptr->prdesc[0] = CONSOLE; /* stdin is CONSOLE device */

prptr->prdesc[1] = CONSOLE; /* stdout is CONSOLE device */

prptr->prdesc[2] = CONSOLE; /* stderr is CONSOLE device */

/* Initialize stack as if the process was called */

*saddr = STACKMAGIC;

*--saddr = pid;

*--saddr = (uint32)prptr->prstklen;

*--saddr = (uint32)prptr->prstkbase - prptr->prstklen

+ sizeof(int);

if (nargs == 0) { /* compute padding */

pad = 4;

} else if ((nargs%4) == 0) { /* pad for A0 - A3 */

pad = 0;

} else {

pad = 4 - (nargs % 4);

}

for (i = 0; i < pad; i++) { /* pad stack by inserting zeroes*/

*--saddr = 0;

}
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for (i = nargs; i > 0; i--) { /* reserve space for arguments */

*--saddr = 0;

}

savargs = saddr; /* loc. of args on the stack */

/* Build the context record that ctxsw expects */

for (i = (CONTEXT_WORDS); i > 0; i--) {

*--saddr = 0;

}

prptr->prstkptr = (char *)saddr;

/* Address of process entry point */

saddr[(CONTEXT_WORDS) - 1] = (uint32) funcaddr;

/* Return address value */

saddr[(CONTEXT_WORDS) - 2] = (uint32) INITRET;

/* Copy arguments into activation record */

ap = (uint32 *)(&nargs + 1); /* machine dependent code to */

for (i = 0; i < nargs; i++) { /* copy args onto process stack */

*savargs++ = *ap++;

}

restore(mask);

return pid;

}

/*------------------------------------------------------------------------

* newpid - Obtain a new (free) process ID

*------------------------------------------------------------------------

*/

local pid32 newpid(void)

{

uint32 i; /* iterate through all processes*/

static pid32 nextpid = 1; /* position in table to try or */

/* one beyond end of table */

/* Check all NPROC slots */

for (i = 0; i < NPROC; i++) {

nextpid %= NPROC; /* wrap around to beginning */
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if (proctab[nextpid].prstate == PR_FREE) {

return nextpid++;

} else {

nextpid++;

}

}

return (pid32) SYSERR;

}

/* userret.c - userret */

#include <xinu.h>

/*------------------------------------------------------------------------

* userret - Called when a process returns from the top-level function

*------------------------------------------------------------------------

*/

void userret(void)

{

kill(getpid()); /* force process exit */

}

Create introduces an initial transition in the state diagram: a newly created process
starts in the suspended state. Figure 6.3 illustrates the augmented state diagram.

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

Figure 6.3 The state diagram showing an initial transition to the suspended
state.
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6.13 Other Process Manager Functions

Three additional system calls help manage processes: getpid, getprio, and chprio.
As we have seen, getpid allows the current process to obtain its process ID, and getprio
allows a caller to obtain the scheduling priority of an arbitrary process. Another useful
system call, chprio, allows a process to change the priority of an arbitrary process. The
implementation of each of the three functions is straightforward. For example, consider
the code for getprio. After checking its argument, getprio extracts the scheduling prior-
ity for the specified process from the process table entry, and returns the priority to the
caller.

/* getprio.c - getprio */

#include <xinu.h>

/*------------------------------------------------------------------------

* getprio - Return the scheduling priority of a process

*------------------------------------------------------------------------

*/

syscall getprio(

pid32 pid /* process ID */

)

{

intmask mask; /* saved interrupt mask */

uint32 prio; /* priority to return */

mask = disable();

if (isbadpid(pid)) {

restore(mask);

return SYSERR;

}

prio = proctab[pid].prprio;

restore(mask);

return prio;

}

Because global variable currpid contains the ID of the currently executing process,
the code for getpid is trivial:

/* getpid.c - getpid */

#include <xinu.h>

/*------------------------------------------------------------------------

* getpid - Return the ID of the currently executing process
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*------------------------------------------------------------------------

*/

pid32 getpid(void)

{

return (currpid);

}

Function chprio allows the scheduling priority of any process to be changed. The
code is found in chprio.c.

/* chprio.c - chprio */

#include <xinu.h>

/*------------------------------------------------------------------------

* chprio - Change the scheduling priority of a process

*------------------------------------------------------------------------

*/

pri16 chprio(

pid32 pid, /* ID of process to change */

pri16 newprio /* new priority */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

pri16 oldprio; /* priority to return */

mask = disable();

if (isbadpid(pid)) {

restore(mask);

return (pri16) SYSERR;

}

prptr = &proctab[pid];

oldprio = prptr->prprio;

prptr->prprio = newprio;

restore(mask);

return oldprio;

}

The implementation of chprio seems to do exactly what is needed. It checks to be
sure the specified process exists before changing the priority field in its process table
entry. As the exercises point out, however, the code contains two omissions.
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6.14 Summary

The chapter expands the support for concurrent execution by adding a layer of pro-
cess management software on top of a scheduler and context switch. The new layer in-
cludes routines to suspend and resume execution as well as routines that create a new
process or kill an existing process. The chapter also examines three additional functions
that obtain the ID of the current process (getpid), the scheduling priority of the current
process (getprio), or change the scheduling priority of an arbitrary process (chprio).
Despite its brevity, the code built thus far forms the basis of a process manager. With
proper initialization and support routines, our basic process manager can multiplex a
CPU among multiple concurrent computations.

Function create forms a new process, and leaves the process in the suspended state.
Create allocates a stack for the new process, and places values on the stack and in the
process table such that ctxsw can switch to the process and begin execution. The initial
values are arranged in a pseudo call, as if the process was called from userret. If the
process returns from its top-level function, control passes to userret, which calls kill to
terminate the process.

EXERCISES

6.1 As the text suggests, a process can tell which of several events triggered resumption if its
priority is set to a unique value for each separate call to resume. Use the method to create
a process that suspends itself and determines which of two other processes resumes it first.

6.2 Why does create build a pseudo-call that returns to userret at process exit instead of one
that calls kill directly?

6.3 Global variable prcount tells the number of active user processes. Carefully consider the
code in kill and tell whether the count in prcount includes the null process?

6.4 As the text mentions, kill calls xdone before the last process has been terminated. Change
the system so the null process monitors the count of user processes and calls xdone when
all processes complete.

6.5 In the previous exercise, what restrictions does the new implementation impose on xdone
that were not in the current implementation?

6.6 Some hardware architectures use a special instruction to allow an application program to in-
voke a system call. Investigate such an architecture, and describe exactly how a system
call passes to the correct operating system function.

6.7 Create leaves the new process suspended instead of running. Why?

6.8 Function resume saves the resumed process’s priority in a local variable before calling
ready. Show that if it references prptr->prprio after the call to ready, resume can return a
priority value that the resumed process never had (not even after resumption).

6.9 In function newpid, the variable nextproc is a global integer that tells the next process table
slot to check for a free one. Starting the search from where it left off eliminates looking
past the used slots again and again. Speculate on whether the technique is worthwhile in an
embedded system.
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6.10 Function chprio contains two design flaws. The first arises because the code does not in-
sure that the new priority value is a positive integer. Describe what happens if the priority
of a process is set to –1.

6.11 The second design flaw in chprio violates a fundamental design principle. Identify the
flaw, describe its consequences, and repair it.
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7

Coordination Of Concurrent
Processes

The future belongs to him who knows how to wait.

— Russian Proverb

7.1 Introduction

Previous chapters introduce pieces of a process manager, including scheduling,
context switching, and functions that create and terminate processes. This chapter con-
tinues the exploration of process management by discussing functions that independent
processes use to coordinate and synchronize their actions. The chapter explains the
motivation for such primitives and their implementation. The chapter also considers
coordination of multiple processors, such as those on a multicore chip.

The next chapter extends our discussion of a process manager by describing a
low-level message passing mechanism. Later chapters show how synchronization func-
tions are used to perform I/O.

7.2 The Need For Synchronization

Because they execute concurrently, processes need to cooperate when sharing glo-
bal resources. In particular, an operating system designer must insure that only one pro-
cess attempts to change a given variable at any time. For example, consider the process
table. When a new process is created, a slot in the table must be allocated and values

111



112 Coordination Of Concurrent Processes Chap. 7

inserted. If two processes each attempt to create a new process, the system must
guarantee that only one of them can execute create at a given time, or errors can result.

The previous chapter illustrates one approach system functions can take to guaran-
tee that no other process interferes with them: a function disables interrupts and avoids
using any functions that call resched. Indeed, system calls such as suspend, resume,
create, and kill each use the approach.

Why not use the same solution whenever a process needs to guarantee non-
interference? The answer is that disabling interrupts has an undesirable global effect on
all parts of the system: it stops all activity except for one process, and limits what the
process can do. In particular, no I/O can occur while interrupts are disabled. We will
learn later that disabling interrupts too long can cause problems (e.g., if packets contin-
ue to arrive over a network while interrupts are disabled, the network interface will start
to discard them). Therefore, we need a general purpose coordination mechanism that
permits arbitrary subsets of the processes to coordinate the use of individual data items
without disabling device interrupts for long periods of time, without interfering with
processes outside the subset, and without limiting what the running process can do. For
example, it should be possible for one process to prohibit changes to a large data struc-
ture long enough to format and print the data, without stopping processes that do not
need to access the data structure. The mechanism should be transparent: a programmer
should be able to understand the consequences of process coordination. Thus, further
synchronization mechanisms are needed that:

d Allow a subset of processes to contend for access to a resource

d Provide a policy that guarantees fair access

The first item insures that coordination is local: instead of disabling all interrupts,
only those processes contending for a given resource will block waiting for access.
Other parts of the system can continue to operate unaffected. The second item insures
that if K processes all attempt to access a given resource, each of the K will eventually
receive access (i.e., no process is starved).

Chapter 2 introduces the fundamental mechanism that solves the problem: counting
semaphores. The chapter also provides examples that show how processes use sema-
phores to coordinate. As Chapter 2 indicates, semaphores provide an elegant solution
for two problems:

d Mutual exclusion

d Producer–consumer interaction

Mutual exclusion. The term mutual exclusion is used to describe a situation where
a set of processes need to guarantee that only one of them operates at a given time.
Mutual exclusion includes access to shared data, but can also include access to an arbi-
trary shared resource, such as an I/O device.
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Producer–consumer interaction. We use the term producer–consumer interaction
to refer to a situation where processes exchange data items. In the simplest form, one
process acts as a producer by generating a sequence of data items, and another process
acts as a consumer by accepting the data items. In more complex forms, one or more
processes can act as producers and one or more processes can act as consumers. The
key to coordination is that each item produced must be received by exactly one consum-
er (i.e., no items are lost and no items are duplicated).

Both forms of process coordination arise throughout an operating system. For ex-
ample, consider a set of applications that are producing messages to be displayed on the
console. The console device software must coordinate processes to insure that charac-
ters do not arrive faster than the hardware can display them. Outgoing characters can
be placed in a buffer in memory. Once the buffer fills, the producer must be blocked
until space becomes available. Similarly, if the buffer becomes empty, the device stops
sending characters. The key idea is that a producer must be blocked when the consumer
is not ready to receive data, and a consumer must be blocked when a producer is not
ready to send data.

7.3 A Conceptual View Of Counting Semaphores

A counting semaphore mechanism that solves both problems described above has a
surprisingly elegant implementation. Conceptually, a semaphore, s, consists of an in-
teger count and a set of blocked processes. Once a semaphore has been created,
processes use two functions, wait and signal, to operate on the semaphore. A process
calls wait(s) to decrement the count of semaphore s, and signal(s) to increment the
count. If the semaphore count becomes negative when a process executes wait(s), the
process is temporarily blocked and placed in the semaphore’s set of blocked processes.
From the point of view of the process, the call to wait does not return for a while. A
blocked process becomes ready to run again when another process calls signal to incre-
ment the semaphore count. That is, if any processes are blocked waiting for a sema-
phore when signal is called, one of the blocked processes will be made ready and al-
lowed to execute. Of course, a programmer must use semaphores with caution: if no
process ever signals the semaphore, the blocked processes will wait forever.

7.4 Avoidance Of Busy Waiting

What should a process do while waiting on a semaphore? It might seem that after
it decrements the semaphore count, a process could repeatedly test the count until the
value becomes positive. On a single CPU system, however, such busy waiting is unac-
ceptable because other processes will be deprived of the CPU. If no other process re-
ceives CPU service, no process can call signal to terminate the wait. Therefore, operat-
ing systems avoid busy waiting. Instead, semaphore implementations follow an impor-
tant principle:
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While a process waits on a semaphore, the process does not execute
instructions.

7.5 Semaphore Policy And Process Selection

To implement semaphores without busy waiting, an operating system associates a
process list with each semaphore. Only the current process can choose to wait on a
semaphore. When a process waits on semaphore s, the system decrements the count as-
sociated with s. If the count becomes negative, the process must be blocked. To block
a process, the system places the process on the list associated with the semaphore,
changes the state so the process is no longer current, and calls resched to allow other
processes to run.

Later, when signal is called on semaphore s, the semaphore count is incremented.
In addition, the signal examines the process list associated with s. If the list is not emp-
ty (i.e., at least one process is waiting on the semaphore), signal extracts a process from
the list and moves the process back to the ready list.

A question arises: if multiple processes are waiting, which one should signal
select? Several policies have been used:

d Highest scheduling priority

d Longest waiting time

d Random

d First-come-first-served

Although it may seem reasonable, selecting the highest priority waiting process
violates one of our fundamental principles: fair access. To see why, consider a set of
low-priority and high-priority processes that are using a shared resource. Suppose each
process uses the resource repeatedly. If the semaphore system always selects a high-
priority process and the scheduling policy always gives the CPU to high-priority
processes, the low-priority processes can be blocked forever.

Selecting the process that has been waiting longest can lead to a priority inversion
in the sense that a high-priority process can be blocked while a low-priority process ex-
ecutes. In addition, it can lead to a synchronization problem discussed in an exercise.
One way to avoid such problems consists of choosing among waiting processes at ran-
dom. The chief disadvantage of random selection lies in the resources needed. For ex-
ample, random number generation usually requires multiplication.

Considering the above, many implementations choose a first-come-first-served pol-
icy. That is, the system uses a queue to store the set of processes waiting for a given
semaphore. When it needs to block a process, wait inserts the process at one end of the
queue; when it needs to unblock a process, signal extracts a process from the other end
of the queue. The resulting policy is:
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Semaphore process selection policy: if one or more processes are
waiting for semaphore s when a signal operation occurs for s, the
process that has been waiting the longest becomes ready.

7.6 The Waiting State

In what state should a process be placed while it is waiting for a semaphore? Be-
cause it is neither using the CPU nor eligible to run, the process is neither current nor
ready. The suspended state, introduced in the previous chapter cannot be used because
functions suspend and resume, which move processes in and out of the suspended state,
have no connection with semaphores. More important, processes waiting for sema-
phores appear on a list, but suspended processes do not — kill must distinguish the two
cases when terminating a process. Because existing states do not adequately encompass
processes waiting on a semaphore, a new state must be invented. We call the new state
waiting, and use symbolic constant PR_WAIT in the code. Figure 7.1 shows the ex-
panded state transition diagram.

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

Figure 7.1  State transitions including the waiting state.
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7.7 Semaphore Data Structures

The example system stores semaphore information in a global semaphore table,
semtab. Each entry in semtab corresponds to one semaphore. The entry contains an in-
teger count and the ID of a queue that can be used to hold waiting processes. The de-
finition of an entry is given by structure sentry. File semaphore.h contains the details.

/* semaphore.h - isbadsem */

#ifndef NSEM

#define NSEM 45 /* number of semaphores, if not defined */

#endif

/* Semaphore state definitions */

#define S_FREE 0 /* semaphore table entry is available */

#define S_USED 1 /* semaphore table entry is in use */

/* Semaphore table entry */

struct sentry {

byte sstate; /* whether entry is S_FREE or S_USED */

int32 scount; /* count for the semaphore */

qid16 squeue; /* queue of processes that are waiting */

/* on the semaphore */

};

extern struct sentry semtab[];

#define isbadsem(s) ((int32)(s) < 0 || (s) >= NSEM)

In structure sentry, field scount contains the current integer count of the sema-
phore. The list of processes waiting for a semaphore resides in the queue structure, and
field squeue gives the index of the head of the list for a given semaphore. The state
field, sstate, tells whether the entry is currently used (i.e., allocated) or free (currently
unallocated).

Throughout the system, semaphores are identified by an integer ID. As with other
identification values, semaphore IDs are assigned to make lookup efficient: the sema-
phore table is an array, and each ID is an index in the array. To summarize:

A semaphore is identified by its index in the global semaphore table,
semtab.
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7.8 The Wait System Call

Recall that the two primary operations on a semaphore are wait and signal. Wait
decrements the count of a semaphore. If the count remains nonnegative, wait returns to
the caller immediately. In essence, a process executing wait on a semaphore with a
nonpositive count voluntarily gives up control of the CPU. That is, wait enqueues the
calling process on the list for the semaphore, changes the process state to PR_WAIT,
and calls resched to switch to a ready process. Also recall that our policy maintains the
list of processes as a FIFO queue, which means a new process is inserted at the tail of a
list. File wait.c contains the code.

/* wait.c - wait */

#include <xinu.h>

/*------------------------------------------------------------------------

* wait - Cause current process to wait on a semaphore

*------------------------------------------------------------------------

*/

syscall wait(

sid32 sem /* semaphore on which to wait */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

struct sentry *semptr; /* ptr to sempahore table entry */

mask = disable();

if (isbadsem(sem)) {

restore(mask);

return SYSERR;

}

semptr = &semtab[sem];

if (semptr->sstate == S_FREE) {

restore(mask);

return SYSERR;

}

if (--(semptr->scount) < 0) { /* if caller must block */

prptr = &proctab[currpid];

prptr->prstate = PR_WAIT; /* set state to waiting */

prptr->prsem = sem; /* record semaphore ID */

enqueue(currpid,semptr->squeue);/* enqueue on semaphore */

resched(); /* and reschedule */

}
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restore(mask);

return OK;

}

Once enqueued on a semaphore list, a process remains in the waiting state (i.e., not
eligible to execute) until the process reaches the head of the queue and some other pro-
cess signals the semaphore. When the call to signal moves a waiting process back to
the ready list, the process becomes eligible to use the CPU, and eventually resumes exe-
cution. From the point of view of the waiting process, its last act consisted of a call to
ctxsw. When the process restarts, the call to ctxsw returns to resched, the call to
resched returns to wait, and the call to wait returns to the location from which it was
called.

7.9 The Signal System Call

Function signal takes a semaphore ID as an argument, increments the count of the
specified semaphore, and makes the first process ready, if any are waiting. Although it
may seem difficult to understand why signal makes a process ready even though the
semaphore count remains negative or why wait does not always enqueue the calling
process, the reason is both easy to understand and easy to implement. Wait and signal
maintain the following invariant regarding the count of a semaphore:

Semaphore invariant: a nonnegative semaphore count means that the
queue is empty; a semaphore count of negative N means that the
queue contains N waiting processes.

In essence, a count of positive N means that wait can be called N more times be-
fore any process blocks. Because wait and signal each change the semaphore count,
they must each adjust the queue length to reestablish the invariant. When it decrements
the count, wait examines the result, and adds the current process to the queue if the new
count is negative. Because it increments the count, signal examines the queue and re-
moves a process from the queue if the queue is nonempty.

/* signal.c - signal */

#include <xinu.h>

/*------------------------------------------------------------------------

* signal - Signal a semaphore, releasing a process if one is waiting

*------------------------------------------------------------------------

*/

www.itpub.net



Sec. 7.9 The Signal System Call 119

syscall signal(

sid32 sem /* id of semaphore to signal */

)

{

intmask mask; /* saved interrupt mask */

struct sentry *semptr; /* ptr to sempahore table entry */

mask = disable();

if (isbadsem(sem)) {

restore(mask);

return SYSERR;

}

semptr= &semtab[sem];

if (semptr->sstate == S_FREE) {

restore(mask);

return SYSERR;

}

if ((semptr->scount++) < 0) { /* release a waiting process */

ready(dequeue(semptr->squeue), RESCHED_YES);

}

restore(mask);

return OK;

}

7.10 Static And Dynamic Semaphore Allocation

An operating system designer must choose between two approaches for semaphore
allocation:

d Static allocation: a programmer defines a fixed set of semaphores
at compile time; the set does not change as the system runs

d Dynamic allocation: the system includes functions that allow sema-
phores to be created on demand and deallocated when they are no
longer needed

The advantage of static allocation lies in saving space and reducing CPU overhead
— the system only contains memory for the needed semaphores, and the system does
not require functions to allocate or deallocate semaphores. Thus, the smallest embedded
systems use static allocation.

The chief advantage of dynamic allocation arises from the ability to accommodate
new uses at run time. For example, a dynamic allocation scheme allows a user to
launch an application that allocates a semaphore, terminate the application, and then
launch another application. Thus, larger embedded systems and most large operating
systems provide dynamic allocation of resources, including semaphores. The next sec-
tions show that dynamic allocation does not introduce much additional code.
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7.11 Example Implementation Of Dynamic Semaphores

Xinu provides a limited form of dynamic allocation: processes can create sema-
phores dynamically, and a given process can create multiple semaphores, provided the
total number of semaphores allocated simultaneously does not exceed a predefined max-
imum. Furthermore, to minimize the allocation overhead, the system preallocates a list
in the queue structure for each semaphore when the operating system boots. Thus, only
a small amount of work needs be done when a process creates a semaphore.

Two system calls, semcreate and semdelete, handle dynamic semaphore allocation
and deallocation. Semcreate takes an initial semaphore count as an argument, allocates
a semaphore, assigns the semaphore the specified count, and returns the semaphore ID.
To preserve the semaphore invariant, the initial count must be nonnegative. Therefore,
semcreate begins by testing its argument. If the argument is valid, semcreate searches
the semaphore table, semtab, for an unused entry and initializes the count. To search
the table, semcreate calls procedure newsem, which iterates through all NSEM entries of
the table. If no free entry is found, newsem returns SYSERR. Otherwise, newsem
changes the state of the entry to S_USED, and returns the table index.

Once a table entry has been allocated, semcreate only needs to initialize the count
and return the index of the semaphore to its caller; the head and tail of a queue used to
store waiting processes have been allocated when the operating system boots. File
semcreate.c contains the code for function newsem as well as function semcreate. Note
the use of a static index variable nextsem to optimize searching (i.e., allow a search to
start where the last search left off).

/* semcreate.c - semcreate, newsem */

#include <xinu.h>

local sid32 newsem(void);

/*------------------------------------------------------------------------

* semcreate - create a new semaphore and return the ID to the caller

*------------------------------------------------------------------------

*/

sid32 semcreate(

int32 count /* initial semaphore count */

)

{

intmask mask; /* saved interrupt mask */

sid32 sem; /* semaphore ID to return */

mask = disable();

if (count < 0 || ((sem=newsem())==SYSERR)) {
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restore(mask);

return SYSERR;

}

semtab[sem].scount = count; /* initialize table entry */

restore(mask);

return sem;

}

/*------------------------------------------------------------------------

* newsem - allocate an unused semaphore and return its index

*------------------------------------------------------------------------

*/

local sid32 newsem(void)

{

static sid32 nextsem = 0; /* next semaphore index to try */

sid32 sem; /* semaphore ID to return */

int32 i; /* iterate through # entries */

for (i=0 ; i<NSEM ; i++) {

sem = nextsem++;

if (nextsem >= NSEM)

nextsem = 0;

if (semtab[sem].sstate == S_FREE) {

semtab[sem].sstate = S_USED;

return sem;

}

}

return SYSERR;

}

7.12 Semaphore Deletion

Function semdelete reverses the actions of semcreate. Semdelete takes the index of
a semaphore as an argument and releases the semaphore table entry for subsequent use.
Deallocating a semaphore requires three steps. First, semdelete verifies that the argu-
ment specifies a valid semaphore ID and that the corresponding entry in the semaphore
table is currently in use. Second, semdelete sets the state of the entry to S_FREE to in-
dicate that the table entry can be reused. Finally, semdelete iterates through the set of
processes that are waiting on the semaphore and makes each process ready. File
semdelete.c contains the code.
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/* semdelete.c - semdelete */

#include <xinu.h>

/*------------------------------------------------------------------------

* semdelete -- Delete a semaphore by releasing its table entry

*------------------------------------------------------------------------

*/

syscall semdelete(

sid32 sem /* ID of semaphore to delete */

)

{

intmask mask; /* saved interrupt mask */

struct sentry *semptr; /* ptr to semaphore table entry */

mask = disable();

if (isbadsem(sem)) {

restore(mask);

return SYSERR;

}

semptr = &semtab[sem];

if (semptr->sstate == S_FREE) {

restore(mask);

return SYSERR;

}

semptr->sstate = S_FREE;

while (semptr->scount++ < 0) { /* free all waiting processes */

ready(getfirst(semptr->squeue), RESCHED_NO);

}

resched();

restore(mask);

return OK;

}

If processes remain enqueued on a semaphore when the semaphore is deallocated,
an operating system must handle each of the processes. In the example implementation,
semdelete places each waiting process back on the ready list, allowing the process to
resume execution as if the semaphore had been signaled. The example only represents
one strategy, and other strategies are possible. For example, some operating systems
consider it an error to attempt to deallocate a semaphore on which processes are wait-
ing. The exercises suggest exploring alternatives.

www.itpub.net



Sec. 7.12 Semaphore Deletion 123

Note that the code to make processes ready does not reschedule after a process has
been placed on the ready list. Instead, each call to ready specifies RESCHED_NO.
After all waiting processes have been moved to the ready list, the code calls resched ex-
plicitly to reestablish the scheduling invariant.

7.13 Semaphore Reset

It is sometimes convenient to reset the count of a semaphore without incurring the
overhead of deleting an old semaphore and acquiring a new one. The system call sem-
reset, shown in file semreset.c below, resets the count of a semaphore.

/* semreset.c - semreset */

#include <xinu.h>

/*------------------------------------------------------------------------

* semreset -- reset a semaphore’s count and release waiting processes

*------------------------------------------------------------------------

*/

syscall semreset(

sid32 sem, /* ID of semaphore to reset */

int32 count /* new count (must be >= 0) */

)

{

intmask mask; /* saved interrupt mask */

struct sentry *semptr; /* ptr to semaphore table entry */

qid16 semqueue; /* semaphore’s process queue ID */

pid32 pid; /* ID of a waiting process */

mask = disable();

if (count < 0 || isbadsem(sem) || semtab[sem].sstate==S_FREE) {

restore(mask);

return SYSERR;

}

semptr = &semtab[sem];

semqueue = semptr->squeue; /* free any waiting processes */

while ((pid=getfirst(semqueue)) != EMPTY)

ready(pid,RESCHED_NO);

semptr->scount = count; /* reset count as specified */

resched();

restore(mask);
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return(OK);

}

Semreset must preserve the semaphore invariant. Rather than build a general-
purpose solution that allows a caller to specify an arbitrary semaphore count, our imple-
mentation takes a simplified approach by requiring the new count to be non-negative.
As a result, once the semaphore count has been changed, the queue of waiting processes
will be empty. As with semdelete, semreset must be sure that no processes are already
waiting on the semaphore. Thus, after checking its arguments and verifying that the
semaphore exists, semreset iterates through the list of waiting processes, removing each
from the semaphore queue and making the process ready to execute. Once all waiting
processes have been removed, semreset assigns the new value to the semaphore count,
reschedules (in case a waiting process had higher priority), and returns to its caller.

7.14 Coordination Across Parallel Processors (Multicore)

The semaphore system described above works well on a computer that has a single
CPU. However, many modern processor chips include multiple cores. One core is usu-
ally dedicated to run operating system functions, and other cores are used to execute
user applications. On such systems, using semaphores supplied by the operating system
to coordinate processes can be inefficient. To see why, consider what happens when an
application running on core 2 needs exclusive access to a specific memory location.
The application process calls wait, which must pass the request to the operating system
on core 1. Core 2 must interrupt core 1 to make the request. Furthermore, while it runs
an operating system function, core 1 disables interrupts, which defeats one of the rea-
sons to use semaphores.

Some multiprocessor systems supply hardware primitives, known as spin locks,
that allow multiple processors to contend for mutually exclusive access. The hardware
defines a set of K spin locks (K might be less than 1024). Conceptually, each of the
spin locks is a single bit, and the spin locks are initialized to zero. Each processor in-
cludes a special instruction called a test-and-set that performs two operations atomical-
ly: it sets a spin lock to 1 and returns the value of the spin lock before the operation.
The hardware guarantee of atomicity means that if two or more processors attempt to
set a given spin lock simultaneously, one of them will receive 0 as the previous value
and the others will receive 1. Once it finishes, the processor that obtained the lock
resets the value to 0, allowing another processor to obtain the lock.

To see how spin locks work, suppose two processors need exclusive access to a
shared data item and are using spin lock 5. When a processor wants to obtain mutually
exclusive access, the processor executes a loop:†

��������������������������������
†Because it uses hardware instructions, test-and-set code is usually written in assembly language; it is

shown in pseudo code for clarity.
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while (test_and_set(5)) {
;

}

The loop repeatedly uses the test-and-set instruction to set spin lock 5. If the lock was
set before the instruction executed, the instruction will return 1, and the loop will con-
tinue. If the lock was not set before the instruction executed, the hardware will return
0, and the loop terminates. If multiple processors are all trying to set spin lock 5 at the
same time, the hardware guarantees that only one will be granted access. Thus,
test_and_set is analogous to wait.

Once a processor finishes using the shared data, the processor executes an instruc-
tion that clears the spin lock:

clear(5);

On multiprocessor machines that do not have spin lock hardware, vendors include
instructions that can be used to create a spin lock. For example, Intel multicore proces-
sors rely on an atomic compare-and-swap instruction in memory. If multiple cores at-
tempt to execute the instruction at the same time, one of them will succeed and the oth-
ers will all find that the comparison fails. A programmer can use such instructions to
build the equivalent of a spin lock.

It may seem that a spin lock is wasteful because a processor merely blocks in a
loop until access is granted. However, if the probability of two processors contending
for a spin lock at the same time is low, the mechanism is much more efficient than a
system call. Therefore, a programmer must be careful in choosing when to use spin
locks and when to use system calls.

7.15 Perspective

The counting semaphore abstraction is significant for two reasons. First, it pro-
vides a powerful mechanism that can be used to control both mutual exclusion and
producer–consumer synchronization, the two primary process coordination paradigms.
Second, the implementation is surprisingly compact and extremely efficient. To appre-
ciate the small size, reconsider functions wait and signal. If the code to test arguments
and returns results is removed, only a few lines of code remain. As we examine the im-
plementation of other abstractions, the point will become more significant: despite their
importance, only a trivial amount of code is needed to implement counting semaphores.

7.16 Summary

Instead of disabling interrupts, which stops all activities other than the current pro-
cess, operating systems offer synchronization primitives that allow subsets of processes
to coordinate without affecting other processes. A fundamental coordination mecha-
nism, known as a counting semaphore, allows processes to coordinate without using
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busy-waiting. Each semaphore consists of an integer count plus a queue of processes.
The semaphore adheres to an invariant that specifies a count of negative N means the
queue contains N processes.

The two fundamental primitives, signal and wait, permit a caller to increment or
decrement the semaphore count. If a call to wait makes the semaphore count negative,
the calling process is placed in the waiting state and the CPU passes to another process.
In essence, a process that waits for a semaphore voluntarily enqueues itself on the list of
processes waiting for the semaphore, and calls resched to allow other processes to exe-
cute.

Either static or dynamic allocation can be used with semaphores. The example
code includes functions semcreate and semdelete to permit dynamic allocation. If a
semaphore is deallocated while processes are waiting, the processes must be handled.
The example code makes the processes ready as if the semaphore had been signaled.

Multiprocessors can use a mutual exclusion mechanism known as spin locks.
Although spin locks seem inefficient because they require a processor to repeatedly test
for access, they can be more efficient than an arrangement where one processor inter-
rupts another to place a system call.

EXERCISES

7.1 The text notes that some operating systems consider semaphore deletion to be in error if
processes remain enqueued waiting for the semaphore. Rewrite semdelete to return
SYSERR for a busy semaphore.

7.2 As an alternative to the semaphore deletion mechanism illustrated in the chapter, consider
deferral. That is, rewrite semdelete to place a deleted semaphore in a deferred state until
all processes have been signaled. Modify signal to release the semaphore table entry when
the last waiting process has been removed from the queue.

7.3 In the previous exercise, can deferred deletion have unexpected side effects? Explain.

7.4 As a further alternative to the deferred deletion of an active semaphore, modify wait to re-
turn a value DELETED if the semaphore was deleted while the calling process was waiting.
(Choose a value for DELETED that differs from SYSERR and OK.) How can a process
determine whether the semaphore on which it was waiting has been deleted? Be careful:
remember that a high priority process can execute at any time. Thus, after a low-priority
process becomes ready, a higher priority process can obtain the CPU and create a new
semaphore that reuses the semaphore table entry before the low-priority process completes
execution of wait. Hint: consider adding a sequence field to the semaphore table entry.

7.5 Instead of allocating a central semaphore table, arrange to have each process allocate space
for semaphore entries as needed, and use the address of an entry as the semaphore ID.
Compare the approach to the centralized table in the example code. What are the advan-
tages and disadvantages of each?

7.6 Wait, signal, semcreate, and semdelete coordinate among themselves for use of the sema-
phore table. Is it possible to use a semaphore to protect use of the semaphore table? Ex-
plain.

www.itpub.net



Exercises 127

7.7 Why does semdelete call ready without rescheduling?

7.8 Consider a possible optimization: arrange for semdelete to examine the priority of each
waiting process before the process is placed on the ready list. If none of the processes has
higher priority than the current process, do not call resched. What is the cost of the optimi-
zation and what is the potential savings?

7.9 Construct a new system call, signaln(sem, n) that signals semaphore sem n times. Can you
find an implementation that is more efficient than n calls to signal? Explain.

7.10 The example code uses a FIFO policy for semaphores. That is, when a semaphore is sig-
naled, the process that has been waiting the longest becomes ready. Imagine a modification
in which the processes waiting for a semaphore are kept on a priority queue ordered by pro-
cess priority (i.e., when a semaphore is signaled, the highest priority waiting process be-
comes ready). What is the chief disadvantage of a priority approach?

7.11 Languages meant specifically for writing concurrent programs often have coordination and
synchronization embedded in the language constructs directly. For example, it might be
possible to declare procedures in groups such that the compiler automatically inserts code
to prohibit more than one process from executing a given group. Find an example of a
language designed for concurrent programming, and compare process coordination with the
semaphores in the Xinu code. When a programmer is required to manipulate semaphores
explicitly, what types of mistakes can a programmer make?

7.12 When it moves a waiting process to the ready state, wait sets field prsem in the process
table entry to the ID of the semaphore on which the process is waiting. Will the value ever
be used?

7.13 If a programmer makes a mistake, it is more likely that the error will produce 0 or 1 than
an arbitrary integer. To help prevent errors, change newsem to begin allocating semaphores
from the high end of the table, leaving slots 0 and 1 unused until all other entries have been
exhausted. Suggest better ways of identifying semaphores that increase the ability to detect
errors.

7.14 Function semdelete behaves in an unexpected way when deleting a semaphore with a non-
negative count. Identify the behavior and rewrite the code to correct it.

7.15 Draw a call graph of all operating system functions from Chapters 4 through 7, showing
which functions a given function invokes. Can a multi-level structure be deduced from the
graph? Explain.
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Message Passing

The message of history is clear: the past lies before us.

— Anonymous

8.1 Introduction

Previous chapters explain the basic components of a process manager, including:
scheduling, context switching, and counting semaphores that provide coordination
among concurrent processes. The chapters show how processes are created and how
they terminate, and explain how an operating system keeps information about each pro-
cess in a central table.

This chapter concludes our examination of basic process management facilities.
The chapter introduces the concept of message passing, describes possible approaches,
and shows an example of a low-level message passing system. Chapter 11 explains
how a high-level message passing facility can be built using the basic process manage-
ment mechanisms.

8.2 Two Types Of Message Passing Services

We use the term message passing to refer to a form of inter-process communica-
tion in which one process transfers (usually a short amount of) data to another. In some
systems, processes deposit and retrieve messages from named pickup points that are
sometimes called mailboxes. In other systems, a message must be addressed directly to
a process. Message passing is both convenient and powerful, and some operating sys-
tems use it as the basis for all communication and coordination among processes. For
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example, an operation such as transmitting data across a computer network can be im-
plemented using message passing primitives.

Some message passing facilities provide process coordination because the mecha-
nism delays a receiver until a message arrives. Thus, message passing can replace pro-
cess suspension and resumption. Can message passing also replace synchronization
primitives such as semaphores? The answer depends on the implementation of message
passing. There are two types:

d Synchronous. If a receiver attempts to receive a message before
the message has arrived, the receiver blocks; if a sender tries to
send a message before a receiver is ready, the sender blocks. Send-
ing and receiving processes must coordinate or one can become
blocked waiting for the other.

d Asynchronous. A message can arrive at any time, and a receiver is
notified. A receiver does not need to know in advance how many
messages will arrive or how many senders will send messages.

Although it may lack generality and convenience, a synchronous message passing
facility can serve in place of a semaphore mechanism. For example, consider a
producer–consumer paradigm. Each time it generates new data, a producer process can
send a message to the consumer process. Similarly, instead of waiting on a semaphore,
the consumer can wait for a message. Using message passing to implement mutual ex-
clusion is more complex, but usually possible.

The chief advantage of a synchronous message passing system arises because it fits
well with a traditional computational paradigm. To receive a message in a synchronous
system, a process calls a system function, and the call does not return until a message
arrives. In contrast, an asynchronous message passing system either requires a process
to poll (i.e., check for a message periodically) or requires a mechanism that allows the
operating system to stop a process temporarily, allow the process to handle a message,
and then resume normal execution. Although it introduces additional overhead or com-
plexity, asynchronous message passing can be convenient if a process does not know
how many messages it will receive, when the messages will be sent, or which processes
will send messages.

8.3 Limits On Resources Used By Messages

Xinu supports two forms of message passing that illustrate a completely synchro-
nous paradigm and a partially asynchronous paradigm. The two facilities also illustrate
the difference between direct and indirect message delivery: one provides a direct ex-
change of messages among processes, and the other arranges for messages to be ex-
changed through rendezvous points. This chapter begins the discussion by examining a
facility that provides direct communication from one process to another. Chapter 11
discusses a second message passing facility. Separating message passing into two in-
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dependent pieces has the advantage of making low-level message passing among
processes efficient, while allowing a programmer to choose a more complex rendezvous
approach when needed.

The Xinu process-to-process message passing system has been designed carefully
to ensure that a process does not block while sending a message, and waiting messages
do not consume all of memory. To make such guarantees, the message passing facility
follows three guidelines:

d Limited message size. The system limits each message to a small,
fixed size. In our example code, each message consists of a single
word (i.e., an integer or a pointer).

d No message queues. The system permits a given process to store
only one unreceived message per process at any time. There are no
message queues.

d First message semantics. If several messages are sent to a given
process before the process receives any of them, only the first mes-
sage is stored and delivered; subsequent senders do not block.

The concept of first message semantics makes the mechanism useful for determin-
ing which of several events completes first. A process that needs to wait for events can
arrange for each event to send a unique message. The process then waits for a message,
and the operating system guarantees that the process will receive the first message that
is sent.

8.4 Message Passing Functions And State Transitions

Three system calls manipulate messages: send, receive, and recvclr. Send takes a
message and a process ID as arguments, and delivers the message to the specified pro-
cess. Receive, which does not require arguments, causes the current process to wait un-
til a message arrives, and then returns the message to its caller. Recvclr provides a
non-blocking version of receive. If the current process has received a message when
recvclr is called, the call returns the message exactly like receive. If no message is
waiting, however, recvclr returns the value OK to its caller immediately, without delay-
ing to wait for a message to arrive. As the name implies, recvclr can be used to remove
an old message before engaging in a round of message passing.

The question arises: in what state should a process be while waiting for a message?
Because waiting for a message differs from being ready to execute, waiting for a sema-
phore, waiting for the CPU, suspended animation, or current execution, none of the ex-
isting states suffices. Thus, another state must be added to our design. The new state,
receiving, is denoted in the example software with the symbolic constant PR_RECV.
Adding the state produces the transition diagram illustrated in Figure 8.1.
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READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

Figure 8.1  Illustration of state transitions including the receiving state.

8.5 Implementation Of Send

A message passing system requires agreement between senders and receivers be-
cause a sender must store a message in a location from which the receiver can extract
the message. A message cannot be stored in the sender’s memory because a sending
process can exit before the message is received. Most operating systems do not permit
a sender to place a message in a receiver’s address space because allowing a process to
write into the memory allocated to another process poses a security threat. In our ex-
ample system, restrictions on the size of messages eliminate the problem. Our imple-
mentation reserves space for one message in field prmsg of the recipient’s process table
entry.

To deposit a message, function send first checks that the specified recipient process
exists. It then checks to insure the recipient does not have a message outstanding. To
do so, send examines field prhasmsg in the recipient’s process table entry. If the reci-
pient has no outstanding message, send deposits the new message in the prmsg field and
sets prhasmsg to TRUE to indicate that a message is waiting. As a final step, if the re-
cipient is waiting for the arrival of a message (i.e., the recipient process has state
PR_RECV or state PR_RECTIM), send calls ready with argument RESCHED_YES to
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make the process ready and re-establish the scheduling invariant. In the case of
PR_RECTIM, which is discussed later in the text, send must first call unsleep to remove
the process from the queue of sleeping processes. File send.c contains the code.

/* send.c - send */

#include <xinu.h>

/*------------------------------------------------------------------------

* send - pass a message to a process and start recipient if waiting

*------------------------------------------------------------------------

*/

syscall send(

pid32 pid, /* ID of recipient process */

umsg32 msg /* contents of message */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

mask = disable();

if (isbadpid(pid)) {

restore(mask);

return SYSERR;

}

prptr = &proctab[pid];

if ((prptr->prstate == PR_FREE) || prptr->prhasmsg) {

restore(mask);

return SYSERR;

}

prptr->prmsg = msg; /* deliver message */

prptr->prhasmsg = TRUE; /* indicate message is waiting */

/* If recipient waiting or in timed-wait make it ready */

if (prptr->prstate == PR_RECV) {

ready(pid, RESCHED_YES);

} else if (prptr->prstate == PR_RECTIM) {

unsleep(pid);

ready(pid, RESCHED_YES);

}

restore(mask); /* restore interrupts */

return OK;

}
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8.6 Implementation Of Receive

A process, calls receive (or recvclr) to obtain an incoming message. Receive ex-
amines the process table entry for the current process, and uses the prhasmsg field to
determine whether a message is waiting. If no message has arrived, receive changes the
process state to PR_RECV, and calls resched, to allow other processes to run. When
another process sends the receiving process a message, the call to resched returns.
Once execution passes the if statement, receive extracts the message, sets prhasmsg to
FALSE, and returns the message to its caller. File receive.c contains the code:

/* receive.c - receive */

#include <xinu.h>

/*------------------------------------------------------------------------

* receive - wait for a message and return the message to the caller

*------------------------------------------------------------------------

*/

umsg32 receive(void)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

umsg32 msg; /* message to return */

mask = disable();

prptr = &proctab[currpid];

if (prptr->prhasmsg == FALSE) {

prptr->prstate = PR_RECV;

resched(); /* block until message arrives */

}

msg = prptr->prmsg; /* retrieve message */

prptr->prhasmsg = FALSE; /* reset message flag */

restore(mask);

return msg;

}

Look carefully at the code and notice that receive copies the message from the pro-
cess table entry into local variable msg and then returns the value in msg. Interestingly,
receive does not modify field prmsg in the process table. Thus, it may seem that a
more efficient implementation would avoid copying into a local variable and simply re-
turn the message from the process table:

return proctab[currpid].prmsg;
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Unfortunately, such an implementation is incorrect; an exercise asks readers to consider
why the implementation can produce incorrect results.

8.7 Implementation Of Non-Blocking Message Reception

Recvclr operates much like receive except that it always returns immediately. If a
message is waiting, recvclr returns the message; otherwise, recvclr returns OK.

/* recvclr.c - recvclr */

#include <xinu.h>

/*------------------------------------------------------------------------

* recvclr - clear incoming message, and return message if one waiting

*------------------------------------------------------------------------

*/

umsg32 recvclr(void)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

umsg32 msg; /* message to return */

mask = disable();

prptr = &proctab[currpid];

if (prptr->prhasmsg == TRUE) {

msg = prptr->prmsg; /* retrieve message */

prptr->prhasmsg = FALSE;/* reset message flag */

} else {

msg = OK;

}

restore(mask);

return msg;

}

8.8 Perspective

Like the counting semaphore abstraction in the previous chapter, the code for a
basic message passing facility is extremely compact and efficient. Look at the functions
and notice how few lines of code perform each operation. Furthermore, observe that
storing the message buffer in the process table is important because doing so isolates
message passing from memory management and allows message passing to be posi-
tioned at a low level in the hierarchy.
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8.9 Summary

Message passing facilities provide inter-process communication that allows a pro-
cess to send information to another process. A completely synchronous message pass-
ing system blocks either the sender or receiver, depending on how many messages have
been sent and received. Our example system includes two facilities for message pass-
ing: a low-level mechanism that provides direct communication among processes, and a
high-level mechanism that uses rendezvous points.

The Xinu low-level message passing mechanism limits the message size to a single
word, restricts each process to at most one outstanding message, and uses first-message
semantics. Message storage is associated with the process table — a message sent to
process P is stored in the process table entry for P. The use of first-message semantics
allows a process to determine which of several events occurs first.

The low-level message facility comprises three functions: send, receive, and
recvclr. Of the three functions, only receive is blocking — it blocks the calling process
until a message arrives. A process can use recvclr to remove an old message before
starting an interaction that uses message passing.

EXERCISES

8.1 Write a program that prints a prompt, and then loops printing the prompt again every 8
seconds until someone types a character. (Hint: sleep(8) delays the calling process for 8
seconds.)

8.2 Assume send and receive do not exist, and build code to perform message passing using
suspend and resume.

8.3 The example implementation uses first-message semantics. What facilities exist to handle
last-message semantics?

8.4 Implement versions of send and receive that record up to K messages per process (make
successive calls to send block).

8.5 Investigate systems in which the innermost level of the system implements message passing
instead of context switching. What is the advantage? The chief liability?

8.6 Consider the modification of receive mentioned in the text that returns the message directly
from the process table entry:

return proctab[currpid].prmsg;

Explain why such an implementation is incorrect.

8.7 Implement a version of send and receive that define a fixed set of thirty-two possible mes-
sages. Instead of using integers to represent messages, use one bit of a word to represent
each message, and allow a process to accumulate all thirty-two messages.

8.8 Observe that because receive uses SYSERR to indicate an error, sending a message with the
same value as SYSERR is ambiguous. Furthermore, recvclr returns OK if no message is
waiting. Modify recvclr to return SYSERR if no message is waiting, and modify send so it
refuses to send SYSERR (i.e., checks its argument and returns an error if the value is
SYSERR).
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Basic Memory Management

Memory is the ghost of experience.

— Anonymous

9.1 Introduction

Previous chapters explain concurrent computation and the facilities that an operat-
ing system provides to manage concurrent processes. The chapters discuss process
creation and termination, scheduling, context switching, coordination, and inter-process
communication.

This chapter begins the discussion of a second key topic: facilities that an operat-
ing system uses to manage memory. The chapter focuses on basics: dynamic allocation
of stack and heap storage. It presents a set of functions that allocate and free memory,
and explains how an embedded system handles memory for processes. The next
chapter continues the discussion of memory management by describing address spaces,
high-level memory management facilities, and virtual memory.

9.2 Types Of Memory

Because it is essential for program execution and data storage, main memory ranks
high among the important resources that an operating system manages. An operating
system maintains information about the size and location of available free memory
blocks, and allocates memory to concurrent programs upon request. The system recov-
ers the memory allocated to a process when the process terminates, making the memory
available for reuse.
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In most embedded systems, main memory consists of a contiguous set of locations
with addresses 0 through N – 1; the code and data remain resident in memory. A small
embedded system can use two memory technologies:

d Read-Only Memory (ROM), which may include Flash, used to store
program code and constants

d Random Access Memory (RAM) used to hold variables that can
change during execution

In terms of the addresses used, the two types of memory occupy separate locations. For
example, addresses 0 through K – 1 might correspond to ROM, and addresses K through
N – 1 might correspond to RAM.†

Some systems further distinguish regions of memory by using specific types of
memory technologies. For example, RAM can be divided into two regions that use:

d Static RAM (SRAM): faster, but more expensive

d Dynamic RAM (DRAM): less expensive, but slower

Because SRAM is more expensive, systems usually have a small amount of SRAM
and a larger amount of DRAM. If memory types differ, a programmer must carefully
place variables and code that are referenced the most frequently in SRAM, and items
that are referenced less often in DRAM.

9.3 Definition Of A Heavyweight Process

Large operating systems provide protection mechanisms that prevent an application
from reading or modifying areas of memory that have been assigned to another applica-
tion. In particular, Chapter 10 discusses how a separate virtual address space can be as-
signed to each computation. The approach, which is known as a heavyweight process
abstraction, creates an address space, and then creates a process to run in the address
space. Usually, code for a heavyweight process is loaded dynamically — an application
must be compiled and stored in a file on disk before the application can be used in a
heavyweight process. Thus, when creating the heavyweight process, a programmer
specifies the file on disk that contains compiled code, and the operating system loads
the specified application into a new virtual address space and starts a process executing
the application.

Interestingly, some operating systems that support a heavyweight process abstrac-
tion use a hybrid approach that includes a lightweight process abstraction (i.e., threads
of execution). Instead of a single process executing in an address space, the operating
system permits a user to create multiple threads that each execute in the address space.

In a hybrid system, a thread is similar to a process in Xinu. Each thread has a
separate run-time stack used to hold local variables and function calls; the stacks are al-
located from the data area in the heavyweight process’s address space. All the threads

��������������������������������
†Usually, K and N are each a power of 2.
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within a given heavyweight process share global variables; the global variables are allo-
cated in the data area of the heavyweight process’s address space. Sharing implies the
need for coordination — threads within a heavyweight process must use synchroniza-
tion primitives, such as semaphores, to control access to the variables they share. Fig-
ure 9.1 illustrates a hybrid system.

. . . . . . . . . . . . . . . . . .

heavyweight process’s
address space

shared variables
and thread stacks

lightweight processes
(threads)

data in process

code in process

Figure 9.1 Illustration of a heavyweight process abstraction concept with
multiple lightweight processes (threads) sharing the address
space.

9.4 Memory Management In A Small Embedded System

The largest embedded systems, such as those used in video game consoles, have
secondary storage and the memory management hardware needed to support virtual ad-
dress spaces. On the smallest embedded systems, however, the hardware cannot support
multiple address spaces, nor can it protect processes from one another. As a conse-
quence, the operating system and all processes occupy a single address space.

Although running multiple processes in a single address space does not offer pro-
tection, the approach has advantages. Because they can pass pointers among them-
selves, processes can share large amounts of data without copying from one address
space to another. Furthermore, the operating system itself can easily dereference an ar-
bitrary pointer because the interpretation of an address does not depend on the process
context. Finally, having just one address space makes the memory manager much
simpler than the memory managers found in more sophisticated systems.
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9.5 Program Segments And Regions Of Memory

When Xinu is compiled for a small embedded system, the memory image is divid-
ed into four contiguous regions:

d Text segment

d Data segment

d Bss segment

d Free space

Text segment. The text segment, which begins at memory location zero, contains
compiled code for each of the functions in the memory image. The text segment may
also contain constants (e.g., string constants). If the hardware includes a protection
mechanism, addresses in the text segment are classified as read-only, which means that
an error occurs if the program attempts to store into any of the text locations at run-
time.

Data segment. The data segment, which follows the text segment, contains storage
for all global variables that are assigned an initial value. Values in the data segment
may be accessed or modified (i.e., read or written).

Bss segment. The term bss abbreviates block started by symbol, and is taken from
the assembly language of a PDP-11, the computer on which C was designed. The bss
segment, which follows the data segment, contains global variables that are not initial-
ized explicitly. Following C conventions, Xinu writes zero into each bss location be-
fore execution begins.

Free space. Memory beyond the bss segment is considered free (i.e., unallocated)
when execution begins. The next sections describe how the operating system uses the
free space.

As described in Chapter 3, a C program loader defines three external symbols,
etext, edata, and end,† that correspond to the first memory location beyond the text seg-
ment, the first memory location beyond the data segment, and the first memory location
beyond the bss segment. Figure 9.2 illustrates the memory layout when Xinu begins to
execute and the three external symbols.

text data bss free space

0 etext edata end

maxaddr

Figure 9.2  Illustration of the memory layout when Xinu begins.

The external symbols shown in Figure 9.2 are not variables, but instead are names
assigned to memory locations when the image is linked. Thus, a program should only

��������������������������������
†External symbol names have an underscore prepended by the loader. Thus, etext becomes _etext.

www.itpub.net



Sec. 9.5 Program Segments And Regions Of Memory 143

use one of the external symbols to reference a location and should not load a value. For
example, the text segment occupies memory locations 0 through etext – 1. To compute
the size, a program declares etext to be an external integer, and references &etext in an
expression.

How can a program determine the size of the free space? The operating system
must either be configured with the highest physical memory address or must probe ad-
dresses at startup.† At startup, our system places the highest valid memory address in
global variable maxheap. Thus, to compute the initial size of the free space, the
memory management code can take the difference between the address in variable max-
heap and the value &end.

9.6 Dynamic Memory Allocation In An Embedded System

Although they are allocated fixed locations in the address space and must remain
resident in physical memory at all times, program text and global variables only account
for part of the memory used by an executing process. The other two types of memory
are:

d Stack

d Heap

Stack. Each process needs space for a stack that holds the activation record associ-
ated with each function the process invokes. In addition to arguments, an activation
record contains storage for local variables.

Heap. A process or set of processes may also use heap storage to hold dynamical-
ly allocated variables that persist independent of specific function calls.

Xinu accommodates both types of dynamic memory. First, when creating a new
process, Xinu allocates a stack for the process. Stacks are allocated from the highest
address of free space. Second, whenever a process requests heap storage, Xinu allocates
the necessary amount of space from the low end of free space. Figure 9.3 shows an ex-
ample of the memory layout when three processes are executing and heap storage has
been allocated.

text data bss heap stack1stack2stack3
free

0 etext edata end

Figure 9.3  Illustration of memory after three processes have been created.

��������������������������������
†Because physical memory is replicated in the E2100L address space, probing memory is difficult.
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9.7 Design Of The Low-Level Memory Manager

A set of functions and data structures are used to manage free memory. The low-
level memory manager provides four functions:

d getstk — allocate stack space when a process is created

d freestk — release a stack when a process terminates

d getmem — allocate heap storage on demand

d freemem — release heap storage as requested

Our design treats free space as a single, exhaustable resource — the low-level
memory manager allocates space provided a request can be satisfied. Furthermore, the
low-level memory manager does not partition the free space into memory available for
process stacks and memory available for heap variables. Requests of one type can take
the remaining free space, and leave none for the other type. Of course, such an alloca-
tion only works if processes cooperate. Otherwise, a given process can consume all free
memory, leaving no space for other processes. Chapter 10 illustrates an alternative ap-
proach by describing a set of high-level memory management functions that prevent ex-
haustion by partitioning memory among subsystems. The high-level memory manager
also demonstrates how processes can block until memory becomes available.

Functions getstk and freestk are not intended for general use. Instead, when it
forms a new process, create calls getstk to allocate a stack. Getstk obtains a block of
memory from the highest address of free space, and returns a pointer to the block.
Create records the size and location of the allocated stack space in the process table en-
try, and places the stack address in a CONTEXT area on top of the stack. Later, when
the process becomes current, the context switch accesses the CONTEXT area and loads
the address of the stack into the stack pointer register. Finally, when the process ter-
minates, kill calls function freestk to release the process’s stack and return the block to
the free list.

Functions getmem and freemem perform analogous functions for heap storage. Un-
like the stack allocation functions, getmem and freemem allocate blocks from the lowest
address of the free space.

9.8 Allocation Strategy And Memory Persistence

Because only create and kill allocate and free process stacks, the system can
guarantee that the stack space allocated to a process will be released when the process
exits. However, the system does not record the set of blocks that a process allocates
from the heap by calling getmem. Therefore, the system does not automatically release
heap storage. As a consequence, the burden of returning heap space is left to the pro-
grammer:
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Heap space persists independent of the process that allocates the
space. Before it exits, a process must explicitly release storage that it
has allocated from the heap, or the space will remain allocated.

Of course, returning allocated heap space does not guarantee that the heap will
never be exhausted. On one hand, demand can exceed the available space. On the oth-
er hand, the free space can become fragmented into small, discontiguous pieces that are
each too small to satisfy a request. The next chapter continues the discussion of alloca-
tion policies, and shows one approach to avoiding fragmentation of the free space.

9.9 Keeping Track Of Free Memory

A memory manager must keep information about all free memory blocks. To do
so, the memory manager forms a list, where each item on the list specifies a memory
address at which a block starts and a length. Initially, the list contains only one item
that corresponds to the block of memory between the end of the program and the
highest point in memory. When a process requests a block of memory, the memory
manager searches the list, finds a free area, allocates the requested size block, and up-
dates the list to show that more of the free memory has been allocated. Similarly,
whenever a process releases a previously allocated block of memory, the memory
manager adds the block to the list. Figure 9.4 illustrates an example set of four free
memory blocks.

������������������������������
Block Address Length������������������������������

1 0x84F800 4096
2 0x850F70 8192
3 0x8A03F0 8192
4 0x8C01D0 4096��������������������������������
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Figure 9.4  A conceptual list of free memory blocks.

A memory manager must examine each transaction carefully to avoid generating an
arbitrarily long list of blocks. When a block is released, the memory manager scans the
list to see if the released block is adjacent to the end of one of the existing free blocks.
If so, the size of the existing block can be increased without adding a new entry to the
list. Similarly, if the new block is adjacent to the beginning of an existing block, the
entry can be updated. Finally, if a released block exactly fills the gap between two free
blocks on the list, the memory manager will combine the two existing entries on the list
into one giant block that covers all the memory from the two on the list plus the
released block. We use the term coalesce to describe combining entries. The point is:
if a memory manager is built correctly, once all allocated blocks have been released, the
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free list will be back to the initial state where there is one entry that corresponds to all
free memory between the end of the program and the highest memory address.

9.10 Implementation Of Low-Level Memory Management

Where should the list of free memory blocks be stored? Our example implementa-
tion follows a standard approach by using free memory itself to store the list. After all,
a free memory block is not being used, so the contents are no longer needed. Thus, the
free memory blocks can be chained together to form a linked list by placing a pointer in
each block to the next block.

In the code, global variable memlist contains a pointer to the first free block. The
key to understanding the implementation lies in the invariant maintained at all times:

All free blocks of memory are kept on a linked list; blocks on the free
list are ordered by increasing address.

The conceptual list in Figure 9.4 shows two fields associated with each entry: the
address and a size. In our linked list implementation, each node in the list points to
(i.e., gives the address) of the next node. However, we must also store the size of each
block. Therefore, each block of free memory contains two items: a pointer to the next
free block of memory and an integer that gives the size of the current block. Figure 9.5
illustrates the concept.

z x y

free block of x bytes free block of y bytesglobal variable memlist

structure memblk
imposed on free block

Figure 9.5 Illustration of a free memory list that contains two memory blocks.

Structure memblk, defined in file memory.h, gives the shape of a structure that can
be imposed on each free node. In struct memblk, field mnext points to the next block on
the list or contains the value NULL to indicate that a block is the final block on the list.
Field mlength specifies the length of the current block in bytes, including the header.
Note that the length is declared to be an unsigned long, which accommodates any size
block up to the entire physical address space.
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Variable memlist, which constitutes the head of the list, is defined as consisting of
a memblk structure. Thus, the head of the list has exactly the same form that we impose
on other nodes in the list. However, the mlength field (used to store the size of a block)
is not meaningful in variable memlist because the size of memlist is sizeof(struct
memblk). Consequently, we can use the length field for another purpose. Xinu uses the
field to store the total size of free memory (i.e., a sum of the length field in each block).
Having a count of the free memory can help when debugging or to assess whether the
system is approaching the maximum possible size.

Note that each block on the free list must hold a complete memblk structure (i.e.,
eight bytes). The design choice has a consequence: a memory manager cannot store a
free block of less then eight bytes. How can we guarantee that no process attempts to
free a smaller amount of memory? We can tell programmers that they must free exactly
the same amount they request, and allow the memory management routines to insure all
requests are at least eight bytes. But another problem can arise if the memory manager
extracts a piece from a free block: subtraction can leave a remainder of less than eight
bytes. To solve the problem, our memory manager rounds all requests to a multiple of
memblk structures. Two inline functions, roundmb and truncmb, perform the task.
Function roundmb rounds requests to multiples of eight bytes, and truncmb is used to
truncate a memory size to a multiple of eight bytes. Truncation is only used once: the
initial size of free space must be truncated rather than rounded. The key point is:

Rounding all requests to multiples of the memblk structure insures
that each request satisfies the constraint and guarantees that no free
block will ever be too small to link into the free list.

File memory.h contains declarations related to memory management, including def-
initions of the two inline functions, roundmb and truncmb. To make the implementa-
tion efficient, the code for the two functions uses constants and Boolean operations rath-
er than the sizeof function and division. Using Boolean operations is only possible be-
cause the size of a memory block is a power of two.
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/* memory.h - roundmb, truncmb, freestk */

#define PAGE_SIZE 4096

#define MAXADDR 0x02000000 /* 160NL has 32MB RAM */

/*----------------------------------------------------------------------

* roundmb, truncmb - round or truncate address to memory block size

*----------------------------------------------------------------------

*/

#define roundmb(x) (char *)( (7 + (uint32)(x)) & (~7) )

#define truncmb(x) (char *)( ((uint32)(x)) & (~7) )

/*----------------------------------------------------------------------

* freestk -- free stack memory allocated by getstk

*----------------------------------------------------------------------

*/

#define freestk(p,len) freemem((char *)((uint32)(p) \

- ((uint32)roundmb(len)) \

+ (uint32)sizeof(uint32)), \

(uint32)roundmb(len) )

struct memblk { /* see roundmb & truncmb */

struct memblk *mnext; /* ptr to next free memory blk */

uint32 mlength; /* size of blk (includes memblk)*/

};

extern struct memblk memlist; /* head of free memory list */

extern void *maxheap; /* max free memory address */

extern void *minheap; /* address beyond loaded memory */

/* added by linker */

extern int end; /* end of program */

extern int edata; /* end of data segment */

extern int etext; /* end of text segment */

9.11 Allocating Heap Storage

Function getmem allocates heap storage by finding a free block that is sufficient for
the request. Our implementation uses a first-fit allocation strategy by allocating the first
block on the free list that satisfies a request. Getmem subtracts the requested memory
from the free block and adjusts the free list accordingly. File getmem.c contains the
code.
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/* getmem.c - getmem */

#include <xinu.h>

/*------------------------------------------------------------------------

* getmem - Allocate heap storage, returning lowest word address

*------------------------------------------------------------------------

*/

char *getmem(

uint32 nbytes /* size of memory requested */

)

{

intmask mask; /* saved interrupt mask */

struct memblk *prev, *curr, *leftover;

mask = disable();

if (nbytes == 0) {

restore(mask);

return (char *)SYSERR;

}

nbytes = (uint32) roundmb(nbytes); /* use memblk multiples */

prev = &memlist;

curr = memlist.mnext;

while (curr != NULL) { /* search free list */

if (curr->mlength == nbytes) { /* block is exact match */

prev->mnext = curr->mnext;

memlist.mlength -= nbytes;

restore(mask);

return (char *)(curr);

} else if (curr->mlength > nbytes) { /* split big block */

leftover = (struct memblk *)((uint32) curr +

nbytes);

prev->mnext = leftover;

leftover->mnext = curr->mnext;

leftover->mlength = curr->mlength - nbytes;

memlist.mlength -= nbytes;

restore(mask);

return (char *)(curr);

} else { /* move to next block */

prev = curr;

curr = curr->mnext;
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}

}

restore(mask);

return (char *)SYSERR;

}

After verifying that its argument is valid and the free list is not empty, getmem
uses roundmb to round the memory request to a multiple of memblk bytes, and then
searches the free list to find the first block of memory large enough to satisfy the re-
quest. Because the free list is singly linked, getmem uses two pointers, prev and curr,
to walk the list. Getmem maintains the following invariant during the search: when
curr points to a free block, prev points to its predecessor on the list (possibly the head
of the list, memlist). As it runs through the list, the code must insure the invariant
remains intact. Consequently, when a free block is discovered that is large enough to
satisfy the request, prev will point to the predecessor.

At each step, getmem compares the size of the current block to nbytes, the size of
the request. There are three cases. If the size of the current block is less than size re-
quested, getmem moves to the next block on the list and continues the search. If the
size of the current block exactly matches the size of the request, getmem merely re-
moves the block from the free list (by making the mnext field in the predecessor block
point to the successor block), and returns a pointer to the current block. If the size of
the current block is greater than the size requested, getmem partitions the current block
into two pieces: one of size nbytes that will be returned to the caller, and a remaining
piece that will be left on the free list. To perform the division, getmem computes the
address of the remaining piece, and places the address in variable leftover. Computing
such an address is conceptually simple: the leftover piece lies nbytes beyond the begin-
ning of the block. However, adding nbytes to pointer curr does not produce the desired
result because C performs pointer arithmetic. To force C to use integer arithmetic in-
stead of pointer arithmetic, curr is changed to an unsigned integer with a cast (i.e.,
(uint32)curr ) before adding nbytes. Once a sum has been computed, the result is
changed back into a pointer to a memory block using another cast. After leftover has
been computed, the mnext field of the prev block is updated, and the mnext and mlength
fields in the leftover block are assigned.

The code relies on a fundamental mathematical relationship: subtracting two multi-
ples of K will produce a multiple of K. In the example, K is the size of a memblk struc-
ture. Thus, if the system begins by using roundmb to round the size of free memory,
and always uses roundmb to round requests, each free block and each leftover piece will
be large enough to hold a memblk structure.
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9.12 Allocating Stack Storage

Function getstk allocates a block of memory for a process stack. We will see that
getstk is invoked whenever a process is created. The code appears in file getstk.c.

Because the free list is kept in order by memory address and stack space is allocat-
ed from the highest available block, getstk must search the entire list of free blocks.
During the search, getstk records the address of any block that satisfies the request,
which means that after the search completes, the last recorded address points to the free
block with the highest address that satisfies the request.† As with getmem, getstk main-
tains the invariant that during the search, variables next and prev point to a free block of
memory and the predecessor of the free block, respectively. Whenever a block is found
that has sufficient size to satisfy the request, getstk sets variable fits to the address of the
block and sets variable fitsprev to the address of predecessor. Thus, when the search
completes, fits points to the usable free block with the highest memory address (or will
remain equal to NULL if no block satisfies the request).

Once the search completes and a block has been found, two cases arise, analogous
to the cases in getmem. If the size of the block on the free list is exactly the size re-
quested, getstk unlinks the block from the free list and returns the address of the block
to its caller. Otherwise, getstk partitions the block into two pieces, allocating a piece of
size nbytes, and leaves the remainder on the free list. Because getstk returns the piece
from the highest part of the selected block, the computation differs slightly from that in
getmem.

��������������������������������
†The strategy of allocating the block with the highest address that satisfies a request is known as the

last-fit strategy.
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/* getstk.c - getstk */

#include <xinu.h>

/*------------------------------------------------------------------------

* getstk - Allocate stack memory, returning highest word address

*------------------------------------------------------------------------

*/

char *getstk(

uint32 nbytes /* size of memory requested */

)

{

intmask mask; /* saved interrupt mask */

struct memblk *prev, *curr; /* walk through memory list */

struct memblk *fits, *fitsprev; /* record block that fits */

mask = disable();

if (nbytes == 0) {

restore(mask);

return (char *)SYSERR;

}

nbytes = (uint32) roundmb(nbytes); /* use mblock multiples */

prev = &memlist;

curr = memlist.mnext;

fits = NULL;

while (curr != NULL) { /* scan entire list */

if (curr->mlength >= nbytes) { /* record block address */

fits = curr; /* when request fits */

fitsprev = prev;

}

prev = curr;

curr = curr->mnext;

}

if (fits == NULL) { /* no block was found */

restore(mask);

return (char *)SYSERR;

}

if (nbytes == fits->mlength) { /* block is exact match */

fitsprev->mnext = fits->mnext;

} else { /* remove top section */

fits->mlength -= nbytes;
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fits = (struct memblk *)((uint32)fits + fits->mlength);

}

memlist.mlength -= nbytes;

restore(mask);

return (char *)((uint32) fits + nbytes - sizeof(uint32));

}

9.13 Releasing Heap And Stack Storage

Once it finishes using a block of heap storage, a process calls function freemem to
return the block to the free list, making the memory eligible for subsequent allocation.
Because blocks on the free list are kept in order by address, freemem uses the block’s
address to find the correct location on the list. In addition, freemem handles the task of
coalescing the block with adjacent free blocks. There are three cases: the new block of
memory can be adjacent to the previous block, adjacent to the succeeding block, or ad-
jacent to both. When any of the three cases occurs, freemem combines the new block
with adjacent block(s) to form one large block on the free list. Coalescing helps avoid
memory fragmentation.

The code for freemem can be found in file freemem.c. As in getmem, two pointers,
prev and next, run through the list of free blocks. Freemem searches the list until the
address of the block to be returned lies between prev and next. Once the correct posi-
tion has been found, the code performs coalescing.

Coalescing is handled in three steps. The code first checks for coalescing with the
previous block. That is, freemem adds the length of the previous block to the block’s
address to compute the address one beyond the previous block. Freemem compares the
result, which is found in variable top, to the address of the block being inserted. If the
address of the inserted block equals top, freemem increases the size of the previous
block to include the new block. Otherwise, freemem inserts the new block in the list.
Of course, if the previous pointer points to the head of the memlist, no coalescing can
be performed.

Once it has handled coalescing with the previous block, freemem checks for
coalescing with the next block. Once again, freemem computes the address that lies one
beyond the current block, and tests whether the address is equal to the address of the
next block. If so, the current block is adjacent to the next block, so freemem increases
the size of the current block to include the next block, and unlinks the next block from
the list.

The important point is that freemem handles all three special cases:

When adding a block to the free list, the memory manager must check
to see whether the new block is adjacent to the previous block, adja-
cent to the next block, or adjacent to both.
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/* freemem.c - freemem */

#include <xinu.h>

/*------------------------------------------------------------------------

* freemem - Free a memory block, returning the block to the free list

*------------------------------------------------------------------------

*/

syscall freemem(

char *blkaddr, /* pointer to memory block */

uint32 nbytes /* size of block in bytes */

)

{

intmask mask; /* saved interrupt mask */

struct memblk *next, *prev, *block;

uint32 top;

mask = disable();

if ((nbytes == 0) || ((uint32) blkaddr < (uint32) minheap)

|| ((uint32) blkaddr > (uint32) maxheap)) {

restore(mask);

return SYSERR;

}

nbytes = (uint32) roundmb(nbytes); /* use memblk multiples */

block = (struct memblk *)blkaddr;

prev = &memlist; /* walk along free list */

next = memlist.mnext;

while ((next != NULL) && (next < block)) {

prev = next;

next = next->mnext;

}

if (prev == &memlist) { /* compute top of previous block*/

top = (uint32) NULL;

} else {

top = (uint32) prev + prev->mlength;

}

/* Insure new block does not overlap previous or next blocks */

if (((prev != &memlist) && (uint32) block < top)

|| ((next != NULL) && (uint32) block+nbytes>(uint32)next)) {

restore(mask);
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return SYSERR;

}

memlist.mlength += nbytes;

/* Either coalesce with previous block or add to free list */

if (top == (uint32) block) { /* coalesce with previous block */

prev->mlength += nbytes;

block = prev;

} else { /* link into list as new node */

block->mnext = next;

block->mlength = nbytes;

prev->mnext = block;

}

/* Coalesce with next block if adjacent */

if (((uint32) block + block->mlength) == (uint32) next) {

block->mlength += next->mlength;

block->mnext = next->mnext;

}

restore(mask);

return OK;

}

Because free memory is treated as a single resource that can be used for stacks or
heap storage, releasing stack memory follows the same algorithm as releasing heap
storage. The only difference between heap and stack allocations arises because getmem
returns the lowest address of an allocated block and getstk returns the highest address.
In the current implementation, freestk is an inline function that invokes freemem. Be-
fore calling freemem, freestk must convert its argument from the highest address in a
block to the lowest. The code is found in memory.h.† Although the current implemen-
tation uses a single underlying list, keeping freestk separate from freemem maintains a
conceptual distinction, and makes it easier to modify the implementation later. The
point is:

Although the current implementation uses the same underlying func-
tion to release heap and stack storage, having separate system calls
for freestk and freemem maintains the conceptual distinction and
makes the system easier to change later.

��������������������������������
†File memory.h can be found on page 148.
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9.14 Perspective

Although the mechanisms are relatively straightforward, the design of a memory
management subsystem reveals one of the most surprisingly subtle problems in operat-
ing systems. The problem arises from a fundamental conflict. On one hand, an operat-
ing system is designed to run without stopping. Therefore, operating system facilities
must be resource-preserving: when a process finishes with a resource, the system must
recapture the resource and make it available to other processes. On the other hand, any
memory management mechanism that allows processes to allocate and free blocks of ar-
bitrary size is not resource-preserving because memory can become fragmented, with
free memory divided into small, discontiguous blocks. Thus, a designer must be aware
that the choice represents a tradeoff. Allowing arbitrary-size allocations makes the sys-
tem easier to use, but also introduces a potential for problems.

9.15 Summary

Large operating systems offer complex memory management schemes that allow
the demand for memory to exceed the physical memory size. Such systems store infor-
mation on secondary storage, and move it to main memory when a reference occurs.
Sophisticated memory management systems support multiple virtual address spaces that
allow each application to address memory starting at location zero; each virtual address
space maps to a different region of physical memory, meaning that the system protects a
given application from other applications. We use the term heavyweight process to
refer to an application that runs in a separate address space; a lightweight process
abstraction permits one or more processes to run in each virtual space. Paging is the
most widely used technology used to provide virtual address spaces and multiplex them
onto physical memory.

Small embedded systems usually keep all code and data in physical memory. An
image contains three segments: a text segment consisting of compiled code, a data seg-
ment that contains initialized data values, and a bss segment that contains uninitialized
variables. When a system starts, physical memory not allocated to the three segments is
considered free, and a low-level memory manager allocates the free memory on
demand.

The low-level memory manager in Xinu maintains a linked list of free memory
blocks; both stack and heap storage is allocated from the list as needed. Heap storage is
allocated by finding the first free memory block that satisfies the request (i.e., the free
block with the lowest address). A request for stack storage is satisfied from the highest
free memory block that satisfies the request. Because the list of free memory blocks is
singly linked in order by address, allocating stack space requires searching the entire
free list.

The low-level memory manager treats free space as an exhaustable resource with
no partition between stack and heap storage. Because the memory manager does not
contain mechanisms to prevent a process from allocating all free memory, a program-
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mer must plan carefully to avoid starvation. A higher-level memory manager discussed
in the next chapter illustrates how memory can be partitioned into regions and how a
set of processes can block waiting for memory to become available.

EXERCISES

9.1 An early version of the low-level memory manager had no provision for returning blocks of
memory to the free list. Speculate about embedded systems: are freemem and freestk
necessary? Why or why not?

9.2 Replace the low-level memory management functions with a set of functions that allocate
heap and stack memory permanently (i.e., without providing a mechanism to return storage
to a free list). How do the sizes of the new allocation routines compare to the sizes of
getstk and getmem?

9.3 Does the approach of allocating stack and heap storage from opposite ends of free space
help minimize fragmentation? To find out, consider a series of requests that intermix allo-
cation and freeing of stack storage of 1000 bytes and heap storage of 500 bytes. Compare
the approach described in the chapter to an approach that allocates stack and heap requests
from the same end of free space (i.e., an approach in which all allocation uses getmem).
Find a sequence of requests that result in fragmentation if stack and heap requests are not
allocated from separate ends.

9.4 Can the memory management system described here allocate arbitrarily small amounts of
memory? Why or why not?

9.5 Many embedded systems go through a prototype stage, in which the system is built on a
general platform, and a final stage, in which minimal hardware is designed for the system.
In terms of memory management, one question concerns the size of the stack needed by
each process. Modify the code to allow the system to measure the maximum stack space
used by a process and report the maximum stack size when the process exits.
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High-Level Memory
Management and Virtual
Memory

Yea, from the table of my memory I’ll wipe away all
fond trivial records.

— William Shakespeare

10.1 Introduction

Previous chapters consider abstractions that an operating system uses to manage
computation and I/O. The previous chapter describes a low-level memory management
facility that treats memory as an exhaustable resource. The chapter discusses address
spaces, program segments, and functions that manage a global free list. Although they
are necessary, low-level memory management facilities are not sufficient for all needs.

This chapter completes the discussion of memory management by introducing
high-level facilities. The chapter explains the motivation for partitioning memory
resources into independent subsets. It presents a high-level memory management mech-
anism that allows memory to be divided into independent buffer pools, and explains
how allocation and use of the memory in a given pool does not affect the use of
memory in other pools. The chapter also describes virtual memory, and explains how
virtual memory hardware operates.

159
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10.2 Partitioned Space Allocation

Functions getmem and freemem that were described in the previous chapter consti-
tute a basic memory manager. The design places no limit on the amount of memory
that a given process can allocate, nor do the functions attempt to divide free space “fair-
ly.” Instead, the allocation functions merely honor requests on a first-come-first-served
basis until no free memory remains. Once free memory has been exhausted, the func-
tions reject further requests without blocking processes or waiting for memory to be
released. Although it is relatively efficient, a global allocation strategy that forces all
processes to contend for the same memory can lead to deprivation, a situation in which
one or more processes cannot obtain memory because all memory has been consumed.
As a consequence, global memory allocation schemes do not work well for all parts of
the operating system.

To understand why a system cannot rely on global allocation, consider software for
network communication. Packets arrive at random. Because a network application
takes time to process a given packet, additional packets may arrive while one is being
handled. If each incoming packet is placed in a memory buffer, exhaustive allocation
can lead to disaster. Incoming messages pile up waiting to be processed, and each takes
memory. In the worst case, all the available space will be allocated to packet buffers,
and none will be available for other operating system functions. In particular, if disk
I/O uses memory, all disk I/O may stop until memory becomes available. If the appli-
cation processing network packets attempts to write to a file, deadlock can occur: the
process blocks waiting for a disk buffer, but all memory is used for network buffers and
no network buffer can be released until disk I/O completes.

To prevent deadlocks, higher-level memory management must be designed to parti-
tion free memory into independent subsets, and insure that allocation and deallocation
of a given subset remains independent from the allocation and deallocation of other sub-
sets. By limiting the amount of memory that can be used for a particular function, the
system can guarantee that excessive requests will not lead to global deprivation. Furth-
ermore, the system can assume that memory allocated for a particular function will al-
ways be returned, so it can arrange to suspend processes until their memory request can
be satisfied, eliminating the overhead introduced by busy waiting. Partitioning cannot
guarantee that no deadlocks will occur, but it does limit unintentional deadlocks that
arise when one subsystem takes memory needed by another subsystem.

10.3 Buffer Pools

The mechanism we have chosen to handle partitioned memory is known as a buffer
pool manager. Memory is divided into a set of buffer pools. Each buffer pool contains
a fixed number of memory blocks, and all blocks in a given pool are the same size.
The term buffer was chosen to reflect the intended use in I/O routines and communica-
tion software (e.g., disk buffers or buffers for network packets).
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The memory space for a particular set of buffers is allocated when the pool is
created; once a pool has been allocated, there is no way to increase the number of
buffers in the pool or to change the buffer size.

Each buffer pool is identified by an integer, known as a pool identifier or buffer
pool ID. Like other IDs in Xinu, a buffer pool ID is used as an index into the buffer
pool table, buftab. Once a pool has been created, a process uses the pool ID whenever
it requests a buffer from a pool or releases a previously allocated buffer back to a pool.
Requests to allocate or release a buffer from a pool do not need to specify the length of
a buffer because the size of buffers is fixed when the pool is created.

The buffer pool mechanism differs from the low-level memory manager in another
way: the mechanism is synchronous. That is, a process that requests a buffer will be
blocked until the request can be satisfied. As in many of the previous examples, the
implementation uses semaphores to control access to a buffer pool. Each buffer pool
has a semaphore, and the code that allocates a buffer calls wait on a pool’s semaphore.
The call returns immediately if buffers remain in the pool, but blocks the caller if no
buffers remain. Eventually, when another process returns a buffer to a pool, the sema-
phore is signaled, which allows a waiting process to obtain the buffer and resume exe-
cution.

The data structure used to hold information about buffer pools consists of a single
table. Each entry in the table holds a buffer size, a semaphore ID, and a pointer to a
linked list of buffers for the pool. Pertinent declarations can be found in file bufpool.h:
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/* bufpool.h */

#ifndef NBPOOLS

#define NBPOOLS 20 /* Maximum number of buffer pools */

#endif

#ifndef BP_MAXB

#define BP_MAXB 8192 /* Maximum buffer size in bytes */

#endif

#define BP_MINB 8 /* Minimum buffer size in bytes */

#ifndef BP_MAXN

#define BP_MAXN 2048 /* Maximum number of buffers in a pool */

#endif

struct bpentry { /* Description of a single buffer pool */

struct bpentry *bpnext;/* pointer to next free buffer */

sid32 bpsem; /* semaphore that counts buffers */

/* currently available in the pool */

uint32 bpsize; /* size of buffers in this pool */

};

extern struct bpentry buftab[];/* Buffer pool table */

extern bpid32 nbpools; /* current number of allocated pools */

Structure bpentry defines the contents of an entry in the buffer pool table, buftab.
The buffers for a given pool are linked into a list, with field bpnext pointing to the first
buffer on the list. Semaphore bpsem controls allocation from the pool, and integer
bpsize gives the length of buffers in the pool.

10.4 Allocating A Buffer

Three functions provide an interface to buffer pools. A process calls function
mkpool to create a buffer pool and obtain an ID. Once a pool as been created, a process
can call function getbuf to obtain a buffer, and function freebuf to release a buffer back
to the pool.

Getbuf works as expected, waiting on the semaphore until a buffer is available, and
then unlinking the first buffer from the list. The code is found in file getbuf.c:
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/* getbuf.c - getbuf */

#include <xinu.h>

/*------------------------------------------------------------------------

* getbuf -- get a buffer from a preestablished buffer pool

*------------------------------------------------------------------------

*/

char *getbuf(

bpid32 poolid /* index of pool in buftab */

)

{

intmask mask; /* saved interrupt mask */

struct bpentry *bpptr; /* pointer to entry in buftab */

struct bpentry *bufptr; /* pointer to a buffer */

mask = disable();

/* Check arguments */

if ( (poolid < 0 || poolid >= nbpools) ) {

restore(mask);

return (char *)SYSERR;

}

bpptr = &buftab[poolid];

/* Wait for pool to have > 0 buffers and allocate a buffer */

wait(bpptr->bpsem);

bufptr = bpptr->bpnext;

/* Unlink buffer from pool */

bpptr->bpnext = bufptr->bpnext;

/* Record pool ID in first four bytes of buffer and skip */

*(bpid32 *)bufptr = poolid;

bufptr = (struct bpentry *)(sizeof(bpid32) + (char *)bufptr);

restore(mask);

return (char *)bufptr;

}
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Observant readers may have noticed that getbuf does not return the address of the
buffer to its caller. Instead, getbuf stores the pool ID in the first four bytes of the allo-
cated space, and returns the address just beyond the ID. From a caller’s point of view,
a call to getbuf returns the address of a buffer; the caller does not need to worry that
earlier bytes hold the pool ID. The system is transparent: when the pool is created, ex-
tra space is allocated in each buffer to hold the pool ID. When a buffer is released,
freebuf uses the hidden pool ID to determine the pool to which a buffer belongs. The
technique of using hidden information to identify a buffer pool turns out to be especial-
ly useful when buffers are returned by a process other than the one that allocated the
buffer.

10.5 Returning Buffers To The Buffer Pool

Function freebuf returns a buffer to the pool from which it was allocated. The
code is found in file freebuf.c:

/* freebuf.c - freebuf */

#include <xinu.h>

/*------------------------------------------------------------------------

* freebuf -- free a buffer that was allocated from a pool by getbuf

*------------------------------------------------------------------------

*/

syscall freebuf(

char *bufaddr /* address of buffer to return */

)

{

intmask mask; /* saved interrupt mask */

struct bpentry *bpptr; /* pointer to entry in buftab */

bpid32 poolid; /* ID of buffer’s pool */

mask = disable();

/* Extract pool ID from integer prior to buffer address */

bufaddr -= sizeof(bpid32);

poolid = *(bpid32 *)bufaddr;

if (poolid < 0 || poolid >= nbpools) {

restore(mask);

return SYSERR;

}
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/* Get address of correct pool entry in table */

bpptr = &buftab[poolid];

/* Insert buffer into list and signal semaphore */

((struct bpentry *)bufaddr)->bpnext = bpptr->bpnext;

bpptr->bpnext = (struct bpentry *)bufaddr;

signal(bpptr->bpsem);

restore(mask);

return OK;

}

Recall that when it allocates a buffer, getbuf stores the pool ID in the four bytes
that precede the buffer address. Freebuf moves back four bytes from the beginning of
the buffer, and extracts the pool ID. After verifying that the pool ID is valid, getbuf
uses the ID to locate the entry in the table of buffer pools. It then links the buffer back
into the linked list of buffers, and signals the pool semaphore bpsem, allowing other
processes to use the buffer.

10.6 Creating A Buffer Pool

Function mkbufpool creates a new buffer pool and returns its ID. Mkbufpool takes
two arguments: the size of buffers in the pool and the number of buffers.



166 High-Level Memory Management and Virtual Memory Chap. 10

/* mkbufpool.c - mkbufpool */

#include <xinu.h>

/*------------------------------------------------------------------------

* mkbufpool -- allocate memory for a buffer pool and link the buffers

*------------------------------------------------------------------------

*/

bpid32 mkbufpool(

int32 bufsiz, /* size of a buffer in the pool */

int32 numbufs /* number of buffers in the pool*/

)

{

intmask mask; /* saved interrupt mask */

bpid32 poolid; /* ID of pool that is created */

struct bpentry *bpptr; /* pointer to entry in buftab */

char *buf; /* pointer to memory for buffer */

mask = disable();

if (bufsiz<BP_MINB || bufsiz>BP_MAXB

|| numbufs<1 || numbufs>BP_MAXN

|| nbpools >= NBPOOLS) {

restore(mask);

return (bpid32)SYSERR;

}

/* Round request to a multiple of 4 bytes */

bufsiz = ( (bufsiz + 3) & (~3) );

buf = (char *)getmem( numbufs * (bufsiz+sizeof(bpid32)) );

if ((int32)buf == SYSERR) {

restore(mask);

return (bpid32)SYSERR;

}

poolid = nbpools++;

bpptr = &buftab[poolid];

bpptr->bpnext = (struct bpentry *)buf;

bpptr->bpsize = bufsiz;

if ( (bpptr->bpsem = semcreate(numbufs)) == SYSERR) {

nbpools--;

restore(mask);

return (bpid32)SYSERR;

}

bufsiz+=sizeof(bpid32);

for (numbufs-- ; numbufs>0 ; numbufs-- ) {
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bpptr = (struct bpentry *)buf;

buf += bufsiz;

bpptr->bpnext = (struct bpentry *)buf;

}

bpptr = (struct bpentry *)buf;

bpptr->bpnext = (struct bpentry *)NULL;

restore(mask);

return poolid;

}

Mkbufpool begins by checking its arguments. If the buffer size is out of range, the
requested number of buffers is negative, or the buffer pool table is full, mkbufpool re-
ports an error. Mkbufpool computes the size of memory required to hold the buffers,
and calls getmem to allocate the needed memory. If the memory allocation succeeds,
mkbufpool allocates an entry in the buffer pool table, and fills in entries. It creates a
semaphore, saves the buffer size, and stores the address of the allocated memory in the
linked list pointer, bpnext.

Once the table entry has been initialized, mkbufpool iterates through the allocated
memory, dividing the block into a set of buffers. It links each buffer onto the free list.
Note that when mkbufpool creates the free list, each block of memory contains the size
of the buffer the user requested plus the size of a buffer pool ID (four bytes). Thus,
after the buffer pool ID is stored in the block, sufficient bytes remain for the buffer that
the user requested. After the free list has been formed, mkbufpool returns the pool ID to
its caller.

10.7 Initializing The Buffer Pool Table

Function bufinit initializes the buffer pool table. The code, found in file bufinit.c,
is trivial:
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/* bufinit.c - bufinit */

#include <xinu.h>

struct bpentry buftab[NBPOOLS]; /* buffer pool table */

bpid32 nbpools;

/*------------------------------------------------------------------------

* bufinit -- initialize the buffer pool data structure

*------------------------------------------------------------------------

*/

status bufinit(void)

{

nbpools = 0;

return OK;

}

All that bufinit needs to do is set the global count of allocated buffer pools. In the
example code, buffer pools can be allocated dynamically. However, once it has been
allocated, a pool cannot be deallocated. An exercise suggests extending the mechanism
to permit dynamic deallocation.

10.8 Virtual Memory And Memory Multiplexing

Most large computer systems virtualize memory and present an application with an
idealized view. Each application appears to have a large memory that can exceed the
size of physical memory. The operating system multiplexes physical memory among
all processes that need to use it, moving all or part of the application into physical
memory as needed. That is, code and data for processes are kept on secondary storage
(i.e., disk), and moved into main memory temporarily when the process is executing.
Although few embedded systems rely on virtual memory, many processors include vir-
tual memory hardware.

The chief design question in virtual memory management systems concerns the
form of multiplexing. Several possibilities have been used:

d Swapping

d Segmentation

d Paging

Swapping refers to an approach that moves all code and data associated with a par-
ticular computation into main memory when the scheduler makes the computation
current. Swapping works best for a long-running computation, such as a word proces-
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sor that runs while a human types a document — the computation is moved into main
memory, and remains resident for a long period.

Segmentation refers to an approach that moves pieces of the code and data associ-
ated with a computation into main memory as needed. One can imagine, for example,
placing each function and the associated variables in a separate segment. When a func-
tion is called, the operating system loads the segment containing the function into main
memory. Seldom-used functions (e.g., a function that displays an error message)
remain on secondary storage. In theory, segmentation uses less memory than swapping
because segmentation allows pieces of a computation to be loaded into memory as
needed. Although the approach has intuitive appeal, few operating systems use dynam-
ic segmentation.

Paging refers to an approach that divides each program into small, fixed-size
pieces called pages. The system keeps the most recently referenced pages in main
memory, and moves copies of other pages to secondary storage. Pages are fetched on
demand — when a running program references memory location i, the memory
hardware checks to see whether the page containing location i is resident (i.e., currently
in memory). If the page is not resident, the operating system suspends the process (al-
lowing other processes to execute), and issues a request to the disk to obtain a copy of
the needed page. Once the page has been placed in main memory, the operating system
makes the process ready. When the process retries the reference to location i, the refer-
ence succeeds.

10.9 Real And Virtual Address Spaces

In many operating systems, the memory manager supplies each computation with
an independent address space. That is, an application is given a private set of memory
locations that are numbered 0 through M – 1. The operating system works with the
underlying hardware to map each address space to a set of memory locations in
memory. As a result, when an application references address zero, the reference is
mapped to the memory location that corresponds to zero for the process. When another
application references address zero, the reference is mapped to a different location.
Thus, although multiple applications can reference address zero, each reference maps to
a separate location, and the applications do not interfere with one another. To be pre-
cise, we use the term physical address space or real address space to define the set of
addresses that the memory hardware provides, and the term virtual address space to
describe the set of addresses available to a given computation. A memory manager
maps one or more virtual address spaces onto the underlying physical address space.
For example, Figure 10.1 illustrates how three virtual address spaces of K locations can
be mapped onto an underlying physical address space that contains 3K locations.
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Figure 10.1 Illustration of three virtual address spaces mapped onto a single
underlying physical address space.

From the point of view of a running computation, only addresses in the virtual ad-
dress space can be referenced. Furthermore, because the system maps each address
from a given virtual space to a specific region of memory, the running computation can-
not accidentally read or overwrite memory that has been allocated to another computa-
tion. As a result, a system that provides each computation with its own virtual address
space helps detect programming errors and prevent problems. The point can be sum-
marized:

A memory management system that maps each virtual address space
into a unique block of memory prevents one computation from reading
or writing memory allocated to another computation.

In Figure 10.1, each virtual address space is smaller than the underlying physical
address space. However, most memory management systems permit a virtual address
space to be larger than the memory on the machine. For example, a demand paging
system only keeps pages that are being referenced in main memory, and leaves copies
of other pages on disk.

www.itpub.net



Sec. 10.10 Hardware For Demand Paging 171

10.10 Hardware For Demand Paging

An operating system that maps between virtual and real addresses cannot operate
without hardware support. To understand why, observe that each address, including ad-
dresses generated at run-time, must be mapped. Thus, if a program computes a value C
and then jumps to location C, the memory system must map C to the corresponding real
memory address. Only a hardware unit can perform the mapping efficiently.

The hardware needed for demand paging consists of a page table and an address
translation unit. A page table resides in kernel memory, and there is one page table for
each process. Typically, the hardware contains a register that points to the current page
table and a second register that specifies the length; after it has created a page table in
memory, the operating system assigns values to the registers and turns on demand pag-
ing. Similarly, when a context switch occurs, the operating system changes the page
table registers to point to the page table for the new process. Figure 10.2 illustrates the
arrangement.

Process 1
Page Table

Process N
Page Table

Process 2
Page Table

(active)

. . .

L

Page Table Base Register

Page Table Length Register

L

Figure 10.2 Page tables in memory and hardware registers that specify which
page table to use at a given time.

10.11 Address Translation With A Page Table

Conceptually, a page table consists of an array of pointers to memory locations. In
addition to a pointer, each entry contains a bit that specifies whether the entry is valid
(i.e., whether it has been initialized). Address translation hardware uses the current
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page table to translate a memory address; translation is applied to the instruction ad-
dresses as well as addresses used to fetch or store data. Translation consists of array
lookup: the hardware treats the high-order bits of an address as a page number, uses the
page number as an index into the page table, and follows the pointer to the location of
the page in memory.

In practice, a page table entry does not contain a complete memory pointer. In-
stead, pages are restricted to start in memory locations that have zeroes in the low-order
bits, and the low-order bits are omitted from each page table entry. For example, sup-
pose a computer has 32-bit addressing and uses 4096-byte pages (i.e., each page con-
tains 212 bytes). If memory is divided into a set of 4096-byte frames, the starting ad-
dress of each frame (i.e., the address of the first byte in the frame) will have zeroes in
the 12 low-order bits. Therefore, to point to a frame in memory, a page table entry only
needs to contain the upper 20 bits.

To translate an address, A, the hardware uses the upper bits of A as an index into
the page table, extracts the address of a frame in memory where the page resides, and
then uses the low-order bits of A as an offset into the frame. We can imagine that the
translation forms a physical memory address as Figure 10.3 illustrates.

P O

F O

F

page table

Pth Entry in Page
Table (20 bits)

Virtual Address
(32 bits)

Resulting Physical
Address (32 bits)

Page Number (20 bits) Offset (12 bits)

Figure 10.3  An example of virtual address translation used with paging.

Our description implies that each address translation requires a page table access
(i.e., a memory access). However, such overhead would be intolerable. To make trans-
lation efficient, a processor employs a special-purpose hardware unit known as a Trans-
lation Look-aside Buffer (TLB). The TLB caches recently accessed page table entries
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and can look up the answer much faster than a conventional memory access.† With a
TLB, a processor can operate as fast with address translation as it can with address
translation disabled.

10.12 Metadata In A Page Table Entry

In addition to a frame pointer, each page table entry contains three bits of metadata
that the hardware and operating system use. Figure 10.4 lists the bits and their mean-
ing.
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Figure 10.4  The three metabits in each page table entry and their meanings.

10.13 Demand Paging And Design Questions

The term demand paging refers to a system where an operating system places the
pages for all processes on disk, and only reads a page into memory when the page is
needed (i.e., on demand). Special processor hardware is needed to support demand pag-
ing: if a process attempts to access a page that is not resident in memory, the hardware
must suspend execution of the current instruction and notify the operating system by
signaling a page fault exception. When a page fault occurs, the operating system finds
an unused frame in memory, reads the needed page from disk, and then instructs the
processor to resume the instruction that caused the fault.

When a computer first starts, memory is relatively empty, which makes finding a
free frame easy. Eventually, however, all frames in memory will be filled and the
operating system must select one of the filled frames, copy the page back to disk (if the
page has been modified), fetch the new page, and change the page tables accordingly.
The selection of a page to move back to disk forms a key problem for operating sys-
tems designers.

The questions surrounding paging design center on the relationship of pages and
processes. When process X encounters a page fault, should the operating system move
one of process X’s pages back to disk or should the system select a page from another
process? While a page is being fetched from disk, the operating system can run another

��������������������������������
†To achieve high speed, a TLB uses Content-Addressable Memory (CAM).
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process. How can the operating system insure that at least some process has enough
pages to run without also generating a page fault?† Should some pages be locked in
memory? If so, which ones? How will the page selection policy interact with other
policies, such as scheduling? For example, should the operating system guarantee each
high-priority process a minimum number of resident pages? If the system allows
processes to share memory, what policies apply to the shared pages?

An interesting tradeoff arises in the design of a paging system. Paging overhead
and the latency a process experiences can be reduced by giving a process the maximal
amount of physical memory when the process runs. However, many processes are I/O-
bound, which means that a given process is likely to block waiting for I/O. When one
process blocks, overall performance is maximized if another process is ready to execute
and the operating system can switch context. That is, CPU utilization and overall
throughput of a system can be increased by having many processes ready to execute.
So the question arises: should a given process be allowed to use many frames of
memory or should memory be divided among processes?

10.14 Page Replacement And Global Clock

Various page replacement policies have been proposed and tried:

d Least Recently Used (LRU)

d Least Frequently Used (LFU)

d First In First Out (FIFO)

Interestingly, a provably optimal replacement policy has been discovered. Known
as Belady’s optimal page replacement algorithm, the policy chooses to replace the page
that will be referenced farthest in the future. Of course, the method is totally impracti-
cal because the operating system cannot know how pages will be used in the future.
However, Belady’s algorithm allows researchers to assess how well replacement poli-
cies perform.

In terms of practical systems, a single algorithm has become the de facto standard
for page replacement. Known as global clock or second chance, the algorithm was dev-
ised as part of the MULTICS operating system and has relatively low overhead. The
term global means that all processes compete with one another (i.e., when process X
generates a page fault, the operating system can choose a frame from another process,
Y). The alternative name of the algorithm arises because global clock is said to give
used frames a “second chance” before they are reclaimed.

Global clock starts running whenever a page fault occurs. The algorithm maintains
a pointer that sweeps through all the frames in memory, stopping when a free frame is
found. The next time it runs, the algorithm starts at the frame just beyond where it left
off.

To determine whether to select a frame, global clock checks the Use and Modify
bits in the page table of the frame. If the Use / Modify bits have value (0,0), global
clock chooses the frame. If the bits are (1,0), global clock resets them to (0,0) and by-

��������������������������������
†If insufficient frames exist in memory, a paging system can thrash, which means the frequency of page

faults becomes so high that each the system spends all its time paging and each process spends long periods
waiting for pages.
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passes the frame. Finally, if the bits are (1,1), global clock changes them to (1,0) and
bypasses the frame, keeping a copy of the modified bit to know whether the page has
been modified. In the worst case, global clock sweeps through all frames twice before
reclaiming one.

In practice, most implementations use a separate process to run the global clock al-
gorithm (which allows the clock to perform disk I/O). Furthermore, global clock does
not stop immediately once a frame has been found. Instead, the algorithm continues to
run, and collects a small set of candidate pages. Collecting a set allows subsequent
page faults to be handled quickly and avoids the overhead associated with running the
global clock algorithm frequently (i.e., avoids frequent context switching).

10.15 Perspective

Although address space management and virtual memory subsystems comprise
many lines of code in an operating system, the most significant intellectual aspects of
the problem arise from the choice of allocation policies and the consequent tradeoffs.
Allowing each subsystem to allocate arbitrary amounts of memory maximizes flexibility
and avoids the problem of a subsystem being deprived when free memory exists. Parti-
tioning memory maximizes protection and avoids the problem of having one subsystem
deprive other subsystems. Thus, a tradeoff exists between flexibility and protection.

Despite years of research, no general solution has emerged, the tradeoffs have not
been quantified, and no general guidelines exist. Similarly, despite years of research on
virtual memory systems, no demand paging algorithms exist that work well for small
memories. Fortunately, economics and technology have made many of the problems as-
sociated with memory management irrelevant: DRAM chip density increased rapidly,
making huge memories inexpensive. As a result, computer vendors avoid memory
management altogether by making the memory on each new product so much larger
than the memory on the previous product that operating systems never need to invoke
demand paging.

10.16 Summary

Low-level memory allocation mechanisms treat all of free memory as a single, ex-
haustible resource. High-level memory management facilities that allow memory to be
partitioned into separate regions provide guarantees that prevent one subsystem from us-
ing all available memory.

The high-level memory management functions in Xinu use a buffer pool paradigm
in which a fixed set of buffers is allocated in each pool. Once a pool has been created,
a group of processes can allocate and free buffers dynamically. The buffer pool inter-
face is synchronous: a given process will block until a buffer becomes available.
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Large operating systems use virtual memory mechanisms to allocate separate ad-
dress spaces for application processes. The most popular virtual memory mechanism,
paging, divides the address space into fixed-size pages, and loads pages on demand.
Hardware is needed to support paging because each memory reference must be mapped
from a virtual address to a corresponding physical address.

EXERCISES

10.1 Design a new getmem that subsumes getbuf. Hint: allow the user to suballocate from a
previously allocated block of memory.

10.2 Mkbufpool forms a linked list of all buffers in a pool. Explain how to modify the code
so it allocates memory but does not link buffers together until a call to getbuf requires a
new buffer to be allocated.

10.3 Is freebuf more efficient than freemem? Justify your answer.

10.4 Revise the buffer pool allocation mechanism to allow deallocation of buffer pools.

10.5 The current implementation of buffer pools hides a pool ID in memory just prior to the
buffer. Rewrite freebuf to eliminate the need for a pool ID. Insure your version of
freebuf will detect an invalid address (i.e., will not return a buffer to a pool unless the
buffer was previously allocated from the pool).

10.6 Suppose a processor has support for paging. Describe paging hardware that can be used
to protect a process’s stack from access by other processes, even if demand paging is not
implemented (i.e., all pages remain resident and no replacement is performed).

10.7 Implement the scheme devised in the previous exercise to protect stacks in Xinu.
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High-Level Message
Passing

I’m always uneasy with messages.

— Neil Tennant

11.1 Introduction

Chapter 8 describes a low-level message passing facility that permits a process to
pass a message directly to another process. Although it provides a useful function, the
low-level message passing system cannot be used to coordinate multiple receivers, nor
can a given process participate in several message exchanges without interference
among them.

This chapter completes the discussion of message passing by introducing a high-
level facility that provides a synchronous interface for buffered message exchange. The
message mechanism allows an arbitrary subset of processes to pass messages without
affecting other processes. It introduces the concept of named rendezvous points that ex-
ist independent of processes. The implementation uses the buffer pool mechanism from
the previous chapter.

11.2 Inter-Process Communication Ports

Xinu uses the term inter-process communication port to refer to a rendezvous point
through which processes can exchange messages. Message passing through ports
differs from process-to-process message passing described in Chapter 8 because ports
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allow multiple outstanding messages, and processes accessing them are blocked until re-
quests can be satisfied. Each port is configured to hold up to a specified number of
messages; each message occupies a 32-bit word. Once it has produced a message, a
process can use function ptsend to send the message to a port. Messages are deposited
in a port in FIFO order. Once a message has been sent, the sending process can contin-
ue to execute. At any time, a process can call function ptrecv to receive the next mes-
sage from a port.

Both message sending and receiving are synchronous. As long as space remains in
a port, a sender can deposit a message with no delay. Once a port becomes full, how-
ever, each sending process is blocked until a message has been removed and space be-
comes available. Similarly, if a process tries to receive a message from an empty port,
the process will be blocked until a message arrives. Requests are also handled in FIFO
order. For example, if multiple processes are waiting on an empty port, the process that
has been waiting the longest will receive the message. Similarly, if multiple processes
are blocked waiting to send, the process that has been waiting the longest is allowed to
proceed when a space becomes available.

11.3 The Implementation Of Ports

Each port consists of a queue to hold messages and two semaphores. One of the
semaphores controls producers, blocking any process that attempts to add messages to a
full port. The other semaphore controls consumers, blocking any process that attempts
to remove a message from an empty port.

Because ports can be created dynamically, it is impossible to know the total count
of items that will be enqueued at all ports at any given time. Although each message is
small (one word), the total space required for port queues must be limited to prevent the
port functions from using all the free space. To guarantee a limit on the total space
used, the port functions allocate a fixed number of nodes to hold messages, and share
the set among all ports. Initially, the message nodes are linked into a free list given by
variable ptfree. Function ptsend removes a node from the free list, stores the message
in the node, and adds the node to the queue associated with the port to which the mes-
sage has been sent. Function ptrecv extracts the next message from a specified port, re-
turns the node containing the message to the free list, and delivers the message to its
caller.

In file ports.h, structure ptnode defines the contents of a node that contains one
message. The two fields in ptnode are expected: ptmsg holds a 32-bit message, and
ptnext points to the next message.

Structure ptentry defines the contents of an entry in the port table. Fields ptssem
and ptrsem contain the IDs of semaphores that control sending and receiving. Field
ptstate specifies whether the entry is currently being used, and field ptmaxcnt specifies
the maximum messages that are allowed in the port at any time. Fields pthead and
pttail point to the first node on the message list and the last, respectively. We will dis-
cuss the sequence field, ptseq, later.
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/* ports.h - isbadport */

#define NPORTS 30 /* maximum number of ports */

#define PT_MSGS 100 /* total messages in system */

#define PT_FREE 1 /* port is free */

#define PT_LIMBO 2 /* port is being deleted/reset */

#define PT_ALLOC 3 /* port is allocated */

struct ptnode { /* node on list of messages */

uint32 ptmsg; /* a one-word message */

struct ptnode *ptnext; /* ptr to next node on list */

};

struct ptentry { /* entry in the port table */

sid32 ptssem; /* sender semaphore */

sid32 ptrsem; /* receiver semaphore */

uint16 ptstate; /* port state (FREE/LIMBO/ALLOC)*/

uint16 ptmaxcnt; /* max messages to be queued */

int32 ptseq; /* sequence changed at creation */

struct ptnode *pthead; /* list of message pointers */

struct ptnode *pttail; /* tail of message list */

};

extern struct ptnode *ptfree; /* list of free nodes */

extern struct ptentry porttab[]; /* port table */

extern int32 ptnextid; /* next port ID to try when */

/* looking for a free slot */

#define isbadport(portid) ( (portid)<0 || (portid)>=NPORTS )

11.4 Port Table Initialization

Because initialization code is designed after basic operations have been implement-
ed, we have been discussing initialization functions after other functions. In the case of
ports, however, we will discuss initialization first, because doing so will make the
remaining functions easier to understand. File ptinit.c contains the code to initialize
ports along with declaration of the port table. Global variable ptnextid gives the index
in array porttab at which the search will start when a new port is needed. Initialization
consists of marking each port free, forming the linked list of free nodes, and initializing
ptnextid. To create a free list, ptinit uses getmem to allocate a block of memory, and
then moves through the memory, linking individual message nodes together to form a
free list.



182 High-Level Message Passing Chap. 11

/* ptinit.c - ptinit */

#include <xinu.h>

struct ptnode *ptfree; /* list of free message nodes */

struct ptentry porttab[NPORTS]; /* port table */

int32 ptnextid; /* next table entry to try */

/*------------------------------------------------------------------------

* ptinit -- initialize all ports

*------------------------------------------------------------------------

*/

syscall ptinit(

int32 maxmsgs /* total messages in all ports */

)

{

int32 i; /* runs through port table */

struct ptnode *next, *prev; /* used to build free list */

ptfree = (struct ptnode *)getmem(maxmsgs*sizeof(struct ptnode));

if (ptfree == (struct ptnode *)SYSERR) {

panic("pinit - insufficient memory");

}

/* Initialize all port table entries to free */

for (i=0 ; i<NPORTS ; i++) {

porttab[i].ptstate = PT_FREE;

porttab[i].ptseq = 0;

}

ptnextid = 0;

/* Create free list of message pointer nodes */

for ( prev=next=ptfree ; --maxmsgs > 0 ; prev=next )

prev->ptnext = ++next;

prev->ptnext = NULL;

return(OK);

}
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11.5 Port Creation

Port creation consists of allocating an entry in the port table from among those that
are free. Function ptcreate performs the allocation and returns a port identifier (port
ID) to its caller. Ptcreate takes an argument that specifies the maximum count of out-
standing messages that the port will allow. Thus, when a port is created, the calling
process can determine how many messages can be enqueued on the port before any
sender blocks.

/* ptcreate.c - ptcreate */

#include <xinu.h>

/*------------------------------------------------------------------------

* ptcreate -- create a port that allows "count" outstanding messages

*------------------------------------------------------------------------

*/

syscall ptcreate(

int32 count

)

{

intmask mask; /* saved interrupt mask */

int32 i; /* counts all possible ports */

int32 ptnum; /* candidate port number to try */

struct ptentry *ptptr; /* pointer to port table entry */

mask = disable();

if (count < 0) {

restore(mask);

return(SYSERR);

}

for (i=0 ; i<NPORTS ; i++) { /* count all table entries */

ptnum = ptnextid; /* get an entry to check */

if (++ptnextid >= NPORTS) {

ptnextid = 0; /* reset for next iteration */

}

/* Check table entry that corresponds to ID ptnum */

ptptr= &porttab[ptnum];

if (ptptr->ptstate == PT_FREE) {

ptptr->ptstate = PT_ALLOC;

ptptr->ptssem = screate(count);
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ptptr->ptrsem = screate(0);

ptptr->pthead = ptptr->pttail = NULL;

ptptr->ptseq++;

ptptr->ptmaxcnt = count;

restore(mask);

return(ptnum);

}

}

restore(mask);

return(SYSERR);

}

11.6 Sending A Message To A Port

The basic operations on ports, sending and receiving messages, are handled by
functions ptsend and ptrecv. Each requires the caller to specify the port on which the
operation is to be performed by passing a port ID as an argument. Function ptsend adds
a message to those that are waiting at the port. It waits for space in the port, enqueues
the message given by its argument, signals the receiver semaphore to indicate another
message is available, and returns. The code is found in file ptsend.c:

/* ptsend.c - ptsend */

#include <xinu.h>

/*------------------------------------------------------------------------

* ptsend -- send a message to a port by adding it to the queue

*------------------------------------------------------------------------

*/

syscall ptsend(

int32 portid, /* ID of port to use */

umsg32 msg /* message to send */

)

{

intmask mask; /* saved interrupt mask */

struct ptentry *ptptr; /* pointer to table entry */

int32 seq; /* local copy of sequence num. */

struct ptnode *msgnode; /* allocated message node */

struct ptnode *tailnode; /* last node in port or NULL */

mask = disable();

if ( isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC ) {
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restore(mask);

return SYSERR;

}

/* Wait for space and verify port has not been reset */

seq = ptptr->ptseq; /* record orignal sequence */

if (wait(ptptr->ptssem) == SYSERR

|| ptptr->ptstate != PT_ALLOC

|| ptptr->ptseq != seq) {

restore(mask);

return SYSERR;

}

if (ptfree == NULL) {

panic("Port system ran out of message nodes");

}

/* Obtain node from free list by unlinking */

msgnode = ptfree; /* point to first free node */

ptfree = msgnode->ptnext; /* unlink from the free list*/

msgnode->ptnext = NULL; /* set fields in the node */

msgnode->ptmsg = msg;

/* Link into queue for the specified port */

tailnode = ptptr->pttail;

if (tailnode == NULL) { /* queue for port was empty */

ptptr->pttail = ptptr->pthead = msgnode;

else { /* insert new node at tail */

tailnode->ptnext = msgnode;

ptptr->pttail = msgnode;

}

signal(ptptr->ptrsem);

restore(mask);

return OK;

}

The initial code in ptsend merely verifies that argument portid specifies a valid
port ID. What happens next is more interesting. Ptsend makes a local copy of the se-
quence number, ptseq, and then processes the request. It waits on the sender sema-
phore, and then verifies that the port is still allocated and that the sequence number
agrees. It may seem odd that ptsend verifies the port ID a second time. However, if
the port is already full when ptsend runs, the calling process can be blocked. Further-
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more, while the process is blocked waiting to send, the port may be deleted (and even
recreated). To understand how the sequence number helps, recall that ptcreate incre-
ments the sequence number when a port is created. The idea is to have waiting
processes verify that the wait did not terminate because the port was deleted. If it did,
the port will either remain unused or the sequence number will be incremented. Thus,
the code following the call to wait verifies that the original port remains allocated.

The implementation of ptsend enqueues messages in FIFO order. It relies on pttail
to point to the last node on the queue if the queue is nonempty. Furthermore, ptsend al-
ways makes pttail point to a new node after the node has been added to the list. Final-
ly, ptsend signals the receiver semaphore after the new message has been added to the
queue, allowing a receiver to consume the message.

As in earlier code, an invariant helps a programmer understand the implementation.
The invariant states:

Semaphore ptrsem has a nonnegative count n if n messages are wait-
ing in the port; it has negative count –n if n processes are waiting for
messages.

The call to panic also deserves comment because this is its first occurrence. In our
design, running out of message nodes is a catastrophe from which the system cannot re-
cover. It means that the arbitrary limit on message nodes, set to prevent ports from us-
ing all the free memory, is insufficient. Perhaps the programs using ports are perform-
ing incorrectly. Perhaps, through no fault of the user, the system cannot honor a valid
request; there is no way to know. Under such circumstances it is often better to an-
nounce failure and stop rather than attempt to go on. Panic is designed for such situa-
tions; it prints the specified error message and halts processing. If the user chooses to
continue execution, the call to panic may return, but often the user will restart the sys-
tem or change the program instead. (The exercises suggest alternative ways of handling
the problem.)

11.7 Receiving A Message From A Port

Function ptrecv implements a basic consumer operation. It removes a message
from a specified port and returns the message to its caller. The code is found in file
ptrecv.c:

/* ptrecv.c - ptrecv */

#include <xinu.h>

/*------------------------------------------------------------------------

* ptrecv -- receive a message from a port, blocking if port empty
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*------------------------------------------------------------------------

*/

uint32 ptrecv(

int32 portid /* ID of port to use */

)

{

intmask mask; /* saved interrupt mask */

struct ptentry *ptptr; /* pointer to table entry */

int32 seq; /* local copy of sequence num. */

umsg32 msg; /* message to return */

struct ptnode *msgnode; /* first node on message list */

mask = disable();

if ( isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC ) {

restore(mask);

return (uint32)SYSERR;

}

/* Wait for message and verify that the port is still allocated */

seq = ptptr->ptseq; /* record orignal sequence */

if (ptptr->ptstate != PT_ALLOC || wait(ptptr->ptrsem) == SYSERR

|| ptptr->ptseq != seq) {

restore(mask);

return (uint32)SYSERR;

}

/* Dequeue first message that is waiting in the port */

msgnode = ptptr->pthead;

msg = msgnode->ptmsg;

if (ptptr->pthead == ptptr->pttail) /* delete last item */

ptptr->pthead = ptptr->pttail = NULL;

else

ptptr->pthead = msgnode->ptnext;

msgnode->ptnext = ptfree; /* return to free list */

ptfree = msgnode;

signal(ptptr->ptssem);

restore(mask);

return msg;

}
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Ptrecv checks its argument, waits until a message is available, verifies that the port
has not been deleted or reused, and dequeues the message node. It records the value of
the message in local variable msg before returning the message node to the free list, and
then returns the value to its caller.

11.8 Port Deletion And Reset

It is sometimes useful to delete or to reset a port. In both cases, the system must
dispose of waiting messages, return message nodes to the free list, and permit waiting
processes to continue execution. How should the port system dispose of waiting mes-
sages? It could choose to throw them away, or to return them to the processes that sent
them. Often, the user can describe a meaningful disposition, so the design presented al-
lows the user to specify disposition. Functions ptdelete and ptreset perform port dele-
tion and reset operations. Both take as an argument a function that will be called to
dispose of each waiting message. The code is found in files ptdelete.c and ptreset.c:

/* ptdelete.c - ptdelete */

#include <xinu.h>

/*------------------------------------------------------------------------

* ptdelete -- delete a port, freeing waiting processes and messages

*------------------------------------------------------------------------

*/

syscall ptdelete(

int32 portid, /* ID of port to delete */

int32 (*dispose)() /* function to call to dispose */

) /* of waiting messages */

{

intmask mask; /* saved interrupt mask */

struct ptentry *ptptr; /* pointer to port table entry */

mask = disable();

if ( isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC ) {

restore(mask);

return(SYSERR);

}

_ptclear(ptptr, PT_FREE, dispose);

ptnextid = portid;

restore(mask);

return(OK);

}
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/* ptreset.c - ptreset */

#include <xinu.h>

/*------------------------------------------------------------------------

* ptreset -- reset a port, freeing waiting processes and messages and

leaving the port ready for further use

*------------------------------------------------------------------------

*/

syscall ptreset(

int32 portid, /* ID of port to reset */

int32 (*dispose)() /* function to call to dispose */

) /* of waiting messages */

{

intmask mask; /* saved interrupt mask */

struct ptentry *ptptr; /* pointer to port table entry */

mask = disable();

if ( isbadport(portid) ||

(ptptr= &porttab[portid])->ptstate != PT_ALLOC ) {

restore(mask);

return SYSERR;

}

_ptclear(ptptr, PT_ALLOC, dispose);

restore(mask);

return OK;

}

Both ptdelete and ptreset verify that their arguments are correct, and then call
_ptclear to perform the work of clearing messages and waiting processes.† While it
proceeds to clear a port, _ptclear places the port in a “limbo” state (PT_LIMBO). The
limbo state guarantees that no other processes can use the port — functions ptsend and
ptrecv will refuse to operate on a port that is not allocated, and pcreate will not allocate
the port unless it is free. Thus, _ptclear can allow interrupts to remain enabled while it
clears a port.

Before declaring a port eligible for use again, _ptclear calls dispose repeatedly,
passing it each waiting message. Finally, after all messages have been removed,
_ptclear deletes or resets the semaphores as specified by its second argument. Before
disposing of messages, _ptclear increments the port sequence number so that waiting
processes can tell that the port has changed when they awaken. The code is found in
file ptclear.c:

��������������������������������
†The name _ptclear begins with an underscore to indicate that the function is internal to the system and

is not intended to be called by a user.
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/* ptclear.c - _ptclear */

#include <xinu.h>

/*------------------------------------------------------------------------

* _ptclear -- used by ptdelete and ptreset to clear or reset a port

* (internal function assumes interrupts disabled

* and arguments have been checked for validity)

*------------------------------------------------------------------------

*/

void _ptclear(

struct ptentry *ptptr, /* table entry to clear */

uint16 newstate, /* new state for port */

int32 (*dispose)(int32)/* disposal function to call */

)

{

struct ptnode *walk; /* pointer to walk message list */

/* Place port in limbo state while waiting processes are freed */

ptptr->ptstate = PT_LIMBO;

ptptr->ptseq++; /* reset accession number */

walk = ptptr->pthead; /* first item on msg list */

if ( walk != NULL ) { /* if message list nonempty */

/* Walk message list and dispose of each message */

for( ; walk!=NULL ; walk=walk->ptnext) {

(*dispose)( walk->ptmsg );

}

/* Link entire message list into the free list */

(ptptr->pttail)->ptnext = ptfree;

ptfree = ptptr->pthead;

}

if (newstate == PT_ALLOC) {

ptptr->pttail = ptptr->pthead = NULL;

sreset(ptptr->ptssem, ptptr->ptmaxcnt);

sreset(ptptr->ptrsem, 0);

} else {

sdelete(ptptr->ptssem);
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sdelete(ptptr->ptrsem);

}

ptptr->ptstate = newstate;

return;

}

11.9 Perspective

Because it provides a synchronous interface, our port mechanism allows a process
to wait for the next message to arrive. A synchronous interface can be powerful — a
clever programmer can use the mechanism to coordinate processes (e.g., to implement
mutual exclusion). Interestingly, the ability to coordinate processes also introduces a
potential problem: deadlock. That is, a set of processes that uses ports to exchange
messages can end up with all processes in the set blocked, waiting for a message to ar-
rive with no processes left running to send a message. Therefore, a programmer using
ports must be careful to guarantee that such deadlocks cannot occur.

11.10 Summary

The chapter introduces a high-level message passing mechanism, called communi-
cation ports, that permits processes to exchange messages through rendezvous points.
Each port consists of a fixed length queue of messages. Function ptsend deposits a
message at the tail of the queue, and function ptrecv extracts an item from the head of
the queue. Processes that attempt to receive from an empty port are blocked until a
message arrives; processes that attempt to send to a full port are blocked until space be-
comes available.

EXERCISES

11.1 Consider the primitives send—receive and ptsend—ptrecv. Is it possible to design a sin-
gle message passing scheme that encompasses both? Explain.

11.2 An important distinction is made between statically allocated and dynamically allocated
resources. For example, ports are dynamically allocated while inter-process message
slots are statically allocated. What is the key problem with dynamic allocation in a
multi-process environment?

11.3 Change the message node allocation scheme so that a semaphore controls nodes on the
free list. Have ptsend wait for a free node if none exists. What potential problems, if
any, does the new scheme introduce?

11.4 Panic is used for conditions like internal inconsistency or potential deadlock. Often the
conditions causing a panic are irreproducible, so their cause is difficult to pinpoint. Dis-
cuss what you might do to trace the cause of the panic in ptsend.
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11.5 As alternatives to the call to panic in ptsend, consider allocating more nodes or retrying
the operation. What are the liabilities of each?

11.6 Rewrite ptsend and ptrecv to return a special value when the port is deleted while they
are waiting. What is the chief disadvantage of the new mechanism?

11.7 Modify the routines in previous chapters that allocate, use, and delete objects so they use
sequence numbers to detect deletion as the communication port functions do.

11.8 Ptsend and ptrecv cannot transmit a message with value equal to SYSERR because ptrecv
cannot distinguish between a message with that value and an error. Redesign the func-
tions to transmit any value.
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Interrupt Processing

The joy of music should never be interrupted by a
commercial.

— Leonard Bernstein

12.1 Introduction

Previous chapters focus on processor and memory management. The chapters on
processor management introduce the concept of concurrent processing, show how
processes are created and terminated, and how processes coordinate. The chapters on
memory management illustrate low-level mechanisms used to manage dynamic alloca-
tion and the release of stack and heap storage.

This chapter begins a discussion of input and output (I/O) facilities. The chapter
reviews the concept of an interrupt, and introduces the overall software architecture that
an operating system uses to handle interrupts. It describes an interrupt dispatching
mechanism that passes control to the appropriate interrupt handler when an interrupt oc-
curs. More important, the chapter explains the complex relationship between interrupts
and the operating system abstraction of concurrent processes, and gives general guide-
lines that interrupt code must follow to provide a correct and safe implementation of
concurrent processes in the presence of interrupts. Later chapters continue the discus-
sion by examining how interrupt handlers are designed for specific devices, including a
real-time clock device that enables preemptive process scheduling.
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12.2 The Advantage Of Interrupts

The interrupt mechanism invented for third-generation computer systems provides
a powerful facility that separates I/O activities from processing. Many of the services
an operating system offers would not be possible without an interrupt facility.

The motivation for an interrupt mechanism is parallel operation. Instead of relying
on the CPU to provide complete control over I/O, each individual device contains
hardware that can operate independently. The CPU is only required to start or stop a
device — once started, a device proceeds to transfer data without further help. Because
most I/O proceeds much slower than computation, the CPU can start multiple devices
and allow the operations to proceed in parallel. After starting I/O, the CPU can proceed
with other computation (i.e., execute another process) until the device interrupts to sig-
nal completion. The key idea is:

An interrupt mechanism permits the processor and I/O devices to
operate in parallel. Although the details differ, the hardware includes
a mechanism that automatically “interrupts” normal processing and
informs the operating system when a device completes an operation or
needs attention.

12.3 Interrupt Dispatching

Hardware in the processor performs three basic steps when an interrupt occurs:

d Immediately changes the state of the processor to prevent further
interrupts from occurring while an interrupt is being processed

d Saves sufficient state to allow the processor to resume execution
transparently after the interrupt has been handled

d Branches to a predetermined memory location where the operating
system has placed code to process the interrupt

Each processor includes details that complicate interrupt processing. For example,
when it saves state, the hardware in most systems does not save a complete copy of all
processor registers. Instead, the hardware records a few basic values, such as a copy of
the instruction pointer,† and requires the operating system to save all other registers that
will be used during interrupt processing. The operating system is also required to re-
store the values before returning to normal processing after the interrupt handling is
complete.

��������������������������������
†The instruction pointer contains the address of the instruction to be executed next; some architectures

use the term program counter.
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12.4 Vectored Interrupts

When an interrupt occurs, the operating system must have a way to identify which
device caused the interrupt. A variety of hardware mechanisms have been invented that
handle device identification. For example, on some hardware, the operating system
must use the bus to ask a device to identify itself. On others, the hardware built into
the CPU handles the task automatically. After considering other aspects of interrupt
handling, we will discuss an example.

How should a device identify itself? The most popular technique is known as a
vectored interrupt. Each device is assigned a unique integer, 0, 1, 2, and so on. The
integer is called an interrupt vector number or interrupt request number (IRQ). When
an interrupt occurs, the device specifies its number. The hardware or the operating sys-
tem uses the interrupt number as an index into an interrupt vector array in memory.
The operating system loads each location in the interrupt vector array with a pointer to a
function that handles the interrupt associated with that vector. Thus, if a device with in-
terrupt vector number i interrupts, control branches to:

interrupt_vector[i]

Figure 12.1 illustrates the array of interrupt vector pointers in memory.

interrupt vectors
in memory

...

code to handle device 0

code to handle device 1

code to handle device 2

code to handle device 3

Figure 12.1 Interrupt vectors in memory, where each entry contains a pointer
to the code to handle one device.

12.5 Assignment Of Interrupt Vector Numbers

The details of interrupt vector assignment differ widely among computer architec-
tures. Early systems required each device to be assigned a unique interrupt value manu-
ally before the device was plugged into a computer (e.g., using switches or wire
jumpers on the circuit board). Some systems assigned each device two interrupt vector
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numbers: one to be used when the device completed an input operation and the other to
be used when the device completed an output operation. Manual assignment had the
problems of being tedious and error-prone — if a computer owner accidentally assigned
the same interrupt vector number to two different devices, the devices could not operate
correctly. Later systems adopted an approach that was less prone to errors. A computer
contained sockets into which an I/O device could be plugged, and a unique interrupt
vector number was associated with each socket rather than with each device. No matter
how the assignment was accomplished, the interrupt address associated with a device
had to be coordinated with the operating system because an operating system initializes
the interrupt vectors in memory.

Interrupt vector assignments on modern systems are often more dynamic. For ex-
ample, some devices permit the interrupt number to be programmable. When it boots,
the operating system uses the bus to determine which I/O devices are present. The sys-
tem iterates through the set of available devices and chooses a unique interrupt vector
number for each device. The system uses the bus to inform the device of its interrupt
number, and initializes the interrupt vector in memory to point to the correct handler for
the device.

A final approach is used to permit devices to be plugged into a computer while the
operating system is running. For example, consider USB devices. The operating sys-
tem assigns a single hardware interrupt for the USB controller, and configures a device
driver for the controller. The driver can load additional driver code for each specific
device dynamically. Thus, when a new device is attached, the controller loads the
driver for the device and records the driver location. Later, when the device interrupts,
the controller receives the interrupt and forwards it to the appropriate driver code.

12.6 Interrupt Hardware

Where in memory is the interrupt vector located? What part of interrupt process-
ing does the hardware handle? Approaches vary widely; the details depend on the com-
puter system. Many large computer systems allow an operating system to choose a lo-
cation for the interrupt vector array. When it boots, the operating system chooses the
location, and then informs the hardware of the location by storing the address in an
internal hardware register.

On large systems, the hardware handles many of the details without using the
CPU. For example, the hardware can use the bus to ask the interrupting device for an
interrupt vector number, use the vector number as an index, and branch directly to the
interrupt code for the device. On smaller systems, however, the processor must use the
bus to determine the interrupt vector number — the processor issues a bus request, and
the interrupting device returns its unique interrupt number.

The smallest embedded systems often employ a simplistic interrupt mechanism: a
single interrupt location is hardwired, either by being built into the processor chip or the
motherboard. Once the interrupt occurs, the operating system must determine which de-
vice interrupted, and use the interrupt vector number to jump to the interrupt function
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for the specific device. As Chapter 3 describes, the example hardware uses the
hardwired approach: whenever a device interrupts, the processor jumps to location
0x80000180. Fortunately, the example system includes a co-processor that handles
many details. When an interrupt occurs, the co-processor uses the bus to identify the
device. It places a value in the CAUSE register to identify the interrupt. Therefore,
when it processes an interrupt, the processor does not need to interact directly with the
bus hardware or devices. Instead, the processor merely loads the value from the co-
processor’s CAUSE register, and uses the value to determine which device requested the
interrupt.

12.7 IRQ Limits And Interrupt Multiplexing

Many processors place a limit on the unique interrupt vector numbers that can be
assigned (a typical limit is 8). How can a computer have an arbitrary number of de-
vices if the interrupt system limits the vector size? The answer lies in a technique
known as interrupt multiplexing: a single interrupt number is assigned to multiple de-
vices. When an interrupt occurs, the dispatcher must determine which of the devices
assigned the same number needs service.

Interrupt multiplexing works best in situations where multiple devices use a single
hardware interface. For example, consider USB devices. From a computer’s point of
view, a USB hub appears to function as a device connected to the computer’s bus. In
fact, the USB hub merely provides an additional bus interface to which multiple devices
can attach. Whenever a USB device needs service, the device uses the interrupt number
associated with the USB, and the operating system passes control to the USB handler.
The USB handler can then determine which device needs service and further dispatch
control to the code that handles the device.

The Linksys hardware provides another example of interrupt multiplexing. A
MIPS processor only permits eight unique interrupt numbers to be assigned, and some
are reserved for specific purposes. To meet constraints, the E2100L hardware multi-
plexes all devices on the system backplane into a single interrupt vector, hardware inter-
rupt 4. When it receives interrupt 4, the hardware interrogates the system backplane to
determine which device caused the interrupt. For example, if a serial device caused the
interrupt, the hardware will identify the interrupt as coming from device 3 on the back-
plane.

12.8 Interrupt Software And Dispatching

Once it has identified the device that caused the interrupt, the operating system
calls the function that handles interrupts for the device. We say that the operating sys-
tem dispatches the interrupt to the appropriate interrupt handler, and we use the term
dispatcher to refer to the operating system code that performs the dispatching function.
Even on computers in which the hardware can follow the interrupt vector automatically,
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many operating systems fill all interrupt vectors with the address of an interrupt
dispatcher so the dispatcher can enforce the scheduling invariant and other global sys-
tem policies. Figure 12.2 illustrates the conceptual division of interrupt processing
between a dispatcher and a set of handlers.

dispatcher

H1

H2

H3

hardware interrupt

handlers for
individual devices

Figure 12.2  The conceptual organization of interrupt processing software.

In practice, several details lead to a more complex organization. For example, be-
cause it interrogates co-processor hardware registers and uses a special instruction to re-
turn from an interrupt, some pieces of a MIPS interrupt dispatcher must be written in
assembly language. It may seem logical to extend the assembly language code to in-
clude all interrupt processing. However, interrupt code accounts for a significant por-
tion of the operating system, and assembly language code is difficult to understand and
modify. Therefore, to keep the system code readable, most operating system designers
divide a dispatcher into two pieces. The system arranges for a hardware interrupt to
branch to a small, low-level piece of code written in assembly language. The low-level
code handles tasks such as saving and restoring registers, communicating with the co-
processor to identify the interrupting device, and using a special instruction to return
from the interrupt once processing is complete. The low-level piece is minimal — as
soon as registers have been saved, the low-level piece calls a high-level dispatcher func-
tion that is written in C. The high-level dispatcher can examine the interrupt vector ar-
ray or use other operating system data structures to choose a handler for the interrupting
device. Once the address of the handler has been computed, the high-level dispatcher
calls the handler function. Despite being divided into two pieces, a dispatcher is small
— all the code that communicates with a given device is placed in an interrupt handler
rather than in the dispatcher itself.
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Our example system implements one additional detail. To understand the struc-
ture, recall that the example interrupt hardware always transfers to location 0x80000180,
and the operating system is loaded at location 0x80001000. Thus, when it boots, the
operating system must place code at the reserved location, 0x80000180. Rather than
copy the entire low-level interrupt handler to the reserved location, our system stores a
single jump instruction at the location which causes the processor to jump to the low-
level interrupt dispatcher (label intdispatch in the code) whenever an interrupt occurs.
Figure 12.3 illustrates the code layout after the operating system has finished initializa-
tion.

H2

H1

H3

H4

jump to
intdispatch intdispatch dispatch

hardware
interrupt

dispatcher

device
handlers

jump instruction
written in assembly and
copied to 0x80000180

high-level
piece written

in C

low-level piece
written in
assembly

Figure 12.3  The organization of interrupt code used in the example system.

When it begins, intdispatch allocates space on the current run-time stack, and saves
each of the processor registers so they can be restored before the interrupt returns. Be-
cause the high-level function, dispatch, is written in C, intdispatch must use C calling
conventions. Therefore, after saving registers, intdispatch extracts the value from the
co-processor CAUSE register to determine the cause of the interrupt, and pushes the
value on the stack as an argument to dispatch. Intdispatch also pushes the address of
the saved stack frame as a second argument.

The four interrupt handlers depicted in the figure might correspond to the major
device types found on the example system:

d Serial line device (console)

d Wired network device (Ethernet)

d Wireless network (Wi-Fi)

d Real-time clock device (timer)
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12.9 The Lowest Level Of The Interrupt Dispatcher

An examination of the example code will clarify many of the details. File
intdispatch.S contains the code for the low-level piece of the dispatcher:

/* intdispatch.S - intdispatch */

#include <mips.h>

#include <interrupt.h>

.text

.align 4

.globl intdispatch

/*------------------------------------------------------------------------

* intdispatch - low-level piece of interrupt dispatcher

*------------------------------------------------------------------------

*/

.ent intdispatch

intdispatch:

.set noreorder

.set noat

j savestate /* Jump to low-level handler */

nop

savestate:

addiu sp, sp, -IRQREC_SIZE /* Allocate space on stack */

sw AT, IRQREC_AT(sp) /* Save assembler temp reg first*/

mfc0 k0, CP0_CAUSE /* Save interrupt CAUSE value */

mfc0 k1, CP0_EPC /* Save interrupted PC value */

sw k0, IRQREC_CAUSE(sp)

mfc0 k0, CP0_STATUS /* Save co-processor STATUS */

sw k1, IRQREC_EPC(sp)

sw k0, IRQREC_STATUS(sp)

.set at

.set reorder

sw v0, IRQREC_V0(sp) /* Save all general purpose regs*/

sw v1, IRQREC_V1(sp)

sw a0, IRQREC_A0(sp)

sw a1, IRQREC_A1(sp)

sw a2, IRQREC_A2(sp)

sw a3, IRQREC_A3(sp)

sw t0, IRQREC_T0(sp)

sw t1, IRQREC_T1(sp)

sw t2, IRQREC_T2(sp)
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sw t3, IRQREC_T3(sp)

sw t4, IRQREC_T4(sp)

sw t5, IRQREC_T5(sp)

sw t6, IRQREC_T6(sp)

sw t7, IRQREC_T7(sp)

sw s0, IRQREC_S0(sp)

sw s1, IRQREC_S1(sp)

sw s2, IRQREC_S2(sp)

sw s3, IRQREC_S3(sp)

sw s4, IRQREC_S4(sp)

sw s5, IRQREC_S5(sp)

sw s6, IRQREC_S6(sp)

sw s7, IRQREC_S7(sp)

sw t8, IRQREC_T8(sp)

sw t9, IRQREC_T9(sp)

sw k0, IRQREC_K0(sp)

sw k1, IRQREC_K1(sp)

sw gp, IRQREC_S8(sp)

sw sp, IRQREC_SP(sp)

sw fp, IRQREC_S9(sp)

sw ra, IRQREC_RA(sp)

sw zero, IRQREC_ZER(sp)

mfhi t0 /* Save hi and lo */

mflo t1

sw t0, IRQREC_HI(sp)

sw t1, IRQREC_LO(sp)

lw a0, IRQREC_CAUSE(sp) /* Pass cause and state info to */

move a1, sp /* high-level dispatcher */

jal dispatch

restorestate: /* On return from dispatcher */

lw t0, IRQREC_HI(sp) /* restore all state */

lw t1, IRQREC_LO(sp)

mthi t0

mtlo t1

lw ra, IRQREC_RA(sp) /* Restore general purpose regs */

lw fp, IRQREC_S9(sp)

lw gp, IRQREC_S8(sp)

lw t9, IRQREC_T9(sp)

lw t8, IRQREC_T8(sp)

lw s7, IRQREC_S7(sp)

lw s6, IRQREC_S6(sp)

lw s5, IRQREC_S5(sp)

lw s4, IRQREC_S4(sp)
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lw s3, IRQREC_S3(sp)

lw s2, IRQREC_S2(sp)

lw s1, IRQREC_S1(sp)

lw s0, IRQREC_S0(sp)

lw t7, IRQREC_T7(sp)

lw t6, IRQREC_T6(sp)

lw t5, IRQREC_T5(sp)

lw t4, IRQREC_T4(sp)

lw t3, IRQREC_T3(sp)

lw t2, IRQREC_T2(sp)

lw t1, IRQREC_T1(sp)

lw t0, IRQREC_T0(sp)

lw a3, IRQREC_A3(sp)

lw a2, IRQREC_A2(sp)

lw a1, IRQREC_A1(sp)

lw a0, IRQREC_A0(sp)

lw v1, IRQREC_V1(sp)

lw v0, IRQREC_V0(sp)

.set noreorder

.set noat

lw k0, IRQREC_EPC(sp) /* Restore interrupted PC value */

lw AT, IRQREC_AT(sp) /* Restore assembler temp reg */

mtc0 k0, CP0_EPC

lw k1, IRQREC_STATUS(sp) /* Restore global status reg */

addiu sp, sp, IRQREC_SIZE /* Restore stack pointer */

mtc0 k1, CP0_STATUS

nop /* Delay for co-processor */

eret /* Return from interrupt */

nop

nop

.set at

.set reorder

.end intdispatch

12.10 The High-Level Interrupt Dispatcher

Once it has saved a copy of the processor registers and interrogated the co-
processor register to determine which device caused the interrupt, the low-level piece of
the dispatcher calls function dispatch, passing arguments that specify the device and a
pointer to the frame that contains the saved status. Dispatch uses the cause argument to
identify the appropriate interrupt handler, and then calls the handler. Once the interrupt
handler returns, dispatch returns to the low-level piece of the dispatcher, which restores
processor registers and returns from the interrupt. File dispatch.c contains the code.
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/* dispatch.c */

#include <xinu.h>

#include <mips.h>

#include <ar9130.h>

/* Initialize list of interrupts */

char *interrupts[] = {

"Software interrupt request 0",

"Software interrupt request 1",

"Hardware interrupt request 0, wmac",

"Hardware interrupt request 1, usb",

"Hardware interrupt request 2, eth0",

"Hardware interrupt request 3, eth1",

"Hardware interrupt request 4, misc",

"Hardware interrupt request 5, timer",

"Miscellaneous interrupt request 0, timer",

"Miscellaneous interrupt request 1, error",

"Miscellaneous interrupt request 2, gpio",

"Miscellaneous interrupt request 3, uart",

"Miscellaneous interrupt request 4, watchdog",

"Miscellaneous interrupt request 5, perf",

"Miscellaneous interrupt request 6, reserved",

"Miscellaneous interrupt request 7, mbox",

};

/*------------------------------------------------------------------------

* dispatch - high-level piece of interrupt dispatcher

*------------------------------------------------------------------------

*/

void dispatch(

int32 cause, /* identifies interrupt cause */

int32 *frame /* pointer to interrupt frame that */

/* contains saved status */

)

{

intmask mask; /* saved interrupt status */

int32 irqcode = 0; /* code for interrupt */

int32 irqnum = -1; /* interrupt number */

void (*handler)(void);/* address of handler function to call */

if (cause & CAUSE_EXC) exception(cause, frame);
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/* Obtain the IRQ code */

irqcode = (cause & CAUSE_IRQ) >> CAUSE_IRQ_SHIFT;

/* Calculate the interrupt number */

while (irqcode) {

irqnum++;

irqcode = irqcode >> 1;

}

if (IRQ_ATH_MISC == irqnum) {

uint32 *miscStat = (uint32 *)RST_MISC_INTERRUPT_STATUS;

irqcode = *miscStat & RST_MISC_IRQ_MASK;

irqnum = 7;

while (irqcode) {

irqnum++;

irqcode = irqcode >> 1;

}

}

/* Check for registered interrupt handler */

if ((handler = interruptVector[irqnum]) == NULL) {

kprintf("Xinu Interrupt %d uncaught, %s\r\n",

irqnum, interrupts[irqnum]);

while (1) {

; /* forever */

}

}

mask = disable(); /* Disable interrupts for duration */

exlreset(); /* Reset system-wide exception bit */

(*handler) (); /* Invoke device-specific handler */

exlset(); /* Set system-wide exception bit */

restore(mask);

}

/*------------------------------------------------------------------------

* enable_irq - enable a specific IRQ

*------------------------------------------------------------------------

*/
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void enable_irq(

intmask irqnumber /* specific IRQ to enable */

)

{

int32 enable_cpuirq(int);

int irqmisc;

uint32 *miscMask = (uint32 *)RST_MISC_INTERRUPT_MASK;

if (irqnumber >= 8) {

irqmisc = irqnumber - 8;

enable_cpuirq(IRQ_ATH_MISC);

*miscMask |= (1 << irqmisc);

} else {

enable_cpuirq(irqnumber);

}

}

Function enable_irq can be called to enable a specific interrupt. Recall that the
hardware uses interrupt multiplexing so that an interrupt from any device on the back-
plane raises hardware interrupt 4. Our operating system uses an interesting technique to
store the locations of handlers for backplane devices. Although the hardware only uses
eight interrupts (corresponding to locations zero through seven in an interrupt vector ar-
ray), our code builds a larger interrupt vector in memory and uses locations above 7 for
backplane devices. That is, location 8 in the array corresponds to backplane device 0,
location 9 corresponds to backplane device 1, and so on. When the serial device inter-
rupts, hardware interrupt 4 is raised to indicate that a backplane device caused the inter-
rupt. The system interrogates the backplane hardware and determines that backplane
device 3 caused the interrupt. The code then adds eight to the device number, and
fetches the handler address from interrupt vector location 11. It may seem that the
dispatcher could maintain a separate array for the backplane devices, but placing the in-
formation in a single data structure helps keep the system uniform and allows a single
piece of code in the dispatcher to invoke any handler, independent of whether interrupt
multiplexing was used.

To summarize:

Interrupt multiplexing allows multiple devices to share a single inter-
rupt vector; the dispatcher in an operating system can hide dispatch-
ing and use a single mechanism to invoke a handler.
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12.11 Disabling Interrupts

Because interrupt functions examine and modify global data structures, such as I/O
buffers, the operating system must prevent other processes from executing while an in-
terrupt is being processed. As we have seen, when an interrupt occurs, the hardware
disables further interrupts, which means interrupt processing is not interruptable. Inter-
rupts remain disabled when the low-level piece of the interrupt dispatcher calls the
high-level piece and when the high-level piece calls a handler. When the high-level in-
terrupt dispatcher returns, control passes back to the low-level interrupt dispatcher,
which restores the processor state and uses a special assembly language instruction to
return to the place at which processing was originally interrupted. During the final step,
when the low-level dispatcher returns, interrupts are enabled again. The point can be
summarized:

Interrupts are disabled before the dispatcher calls a high-level inter-
rupt handler; the high-level handler keeps interrupts disabled while it
changes global data structures.

Although it may seem obvious, the interrupt policy stated above has subtle conse-
quences. Hardware places strict constraints on the number of instructions that can be
executed while interrupts are disabled. If an operating system leaves interrupts disabled
arbitrarily long, devices will fail to perform correctly. For example, if a processor does
not accept a character from an input device before additional characters arrive, one or
more characters can be lost. Therefore, interrupt routines must complete processing as
quickly as possible and resume executing the code that had interrupts enabled. More
important, interrupts are global — if the handler for one device leaves interrupts dis-
abled, all devices are affected. Thus, when creating interrupt code, a programmer must
be aware of the constraints on all devices in the system, and must accommodate the de-
vice with the smallest time constraint.

The maximum time that a handler for device D can leave interrupts
disabled cannot be computed by examining device D. Instead, the
time is computed by choosing the smallest constraint across all de-
vices in the system.

12.12 Constraints On Functions That Interrupt Code Invokes

In addition to insuring that interrupt code accommodates the device with the tight-
est time constraints, an operating system designer must build interrupt code to be exe-
cuted by an arbitrary process. That is, interrupt code is executed by whichever process
is running when the interrupt occurs.
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The process seems irrelevant until one considers two facts:

d An interrupt handler can invoke operating system functions.

d Because the scheduler assumes at least one process will remain
ready to run, the null process must remain in the current or ready
states.

The null process is designed to be an infinite loop that does not make function
calls. However, an interrupt can be thought of as occurring “between” two successive
instructions. Thus, if an interrupt occurs while the null process is executing, the null
process will remain running while the handler executes. The most important conse-
quence is:

Interrupt routines can only call operating system functions that leave
the executing process in the current or ready states.

Thus, interrupt routines may invoke functions such as send or signal, but may not in-
voke functions such as wait that move the executing process to a non-eligible state.

12.13 The Need To Reschedule During An Interrupt

Consider the question of rescheduling during an interrupt. To see why reschedul-
ing is needed, observe the following:

d The scheduling invariant specifies that at any time, a highest priori-
ty eligible process must be executing.

d When an I/O operation completes, a high-priority process may be-
come eligible to use the processor.

For example, suppose a high-priority process, P, chooses to read a packet from the
network. Even though it has high priority, P must block to wait for a packet. While P
is blocked, some other process, Q, will be running when a packet arrives and an inter-
rupt occurs. If the interrupt handler merely moves P to the ready state and returns, pro-
cess Q will continue to execute. If Q has lower-priority than P, the scheduling invariant
will be violated.

As an extreme case, consider what happens if a system only contains one applica-
tion process, and the application blocks to wait for I/O. The null process will be run-
ning when the interrupt occurs. If the interrupt handler does not reschedule, the inter-
rupt will return to the null process and the application will never execute. The key idea
is:
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To insure that processes are notified promptly when an I/O operation
completes and to maintain the scheduling invariant, an interrupt
handler must reschedule whenever it makes a waiting process ready.

12.14 Rescheduling During An Interrupt

The interaction between the scheduling and interrupt policies creates a complex
question. We said that interrupt routines must keep interrupts disabled while processing
an interrupt. We also said that an interrupt handler must re-establish the scheduling in-
variant whenever a process becomes ready. However, consider what can happen during
rescheduling. Suppose the process that is selected to execute has been executing with
interrupts enabled. Once it begins to execute, the process will enable interrupts. Thus,
it might seem that an interrupt handler should not be allowed to reschedule because
switching to a process that has interrupts enabled could start a cascade of further inter-
rupts. We must convince ourselves that rescheduling during an interrupt is safe as long
as global data structures are valid.

To understand why rescheduling is safe, consider the series of events leading to a
call of resched from an interrupt handler. Suppose a process U was running with inter-
rupts enabled when the interrupt occurred. The low-level interrupt dispatch code uses
U’s stack to save the state, and leaves process U running with interrupts disabled while
the high-level dispatcher executes. Interrupts remained disabled when the high-level
dispatcher calls the interrupt handler. Suppose that during the sequence, the code calls
resched, which switches to another process, T. If T happens to enable interrupts (e.g.,
by returning from a system call), another interrupt may occur. What prevents an infi-
nite loop where unfinished interrupts pile up until a stack overflows with interrupt pro-
cedure calls? Recall that each process has its own stack. Process U had one interrupt
on its stack when it was stopped by the context switch. The new interrupt occurs while
the processor is using T’s stack. Before another interrupt can pile up on U’s stack, it
must regain control of the CPU and enable interrupts. Recall, U was running with in-
terrupts disabled when it called the scheduler and context switch. The context switch
saved U with interrupts disabled, so when it switches back to U, the context switch
code will restore the interrupt status, and U will continue execution with interrupts dis-
abled.

Interrupts remain disabled as resched returns to the interrupt handler and as the in-
terrupt handler returns to the dispatcher. Interrupts only become enabled again when
the dispatcher returns to the location at which the original interrupt occurred. So, no
additional interrupts can occur while process U is executing interrupt code (even though
an interrupt can occur if U switches to another process and the other process runs).
That is, only one interrupt can be in progress for a given process at any time. Because
only a finite number of processes exist in the system at a given time and each process
can have at most one outstanding interrupt, the number of outstanding interrupts is
bounded. The key point is:
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Rescheduling during interrupt processing is safe provided that (1) in-
terrupt routines leave global data in a valid state before rescheduling,
and (2) no function enables interrupts unless it disabled them.

The rule explains why all operating systems functions use disable/restore rather
than disable/enable. A function that disables interrupts upon entry always restores them
before returning to its caller; no routine ever enables interrupts explicitly. Because in-
terrupts are disabled upon entry to the interrupt dispatcher, they are restored when it re-
turns. The only exception to our rule about disabling and restoring interrupts is found
in the initialization function which enables interrupts at system startup.

12.15 Perspective

The relationship between interrupts and processes is among the most subtle and
complex aspects of operating systems. Interrupts are low-level mechanisms — they are
part of the underlying hardware and are defined in terms of sequential notions such as
the fetch-execute cycle. Processes are high-level abstractions — they are imagined by
operating system designers and defined by a set of system functions. Consequently, it
is easiest to think of interrupts without thinking about concurrent processes and easiest
to understand concurrent processes without thinking about interrupts.

Unfortunately, combining the abstract world of processes and the concrete world of
interrupts is intellectually challenging. If the interactions between interrupts and
processes does not seem incredibly complex, you have not thought about it deeply. If it
seems too complex to grasp, console yourself that you are not alone, and with careful
thought you will be able to master the basics.

12.16 Summary

To process an interrupt, the operating system saves a copy of the processor state,
determines which device requested the interrupt, and invokes a handler for the device.
Because a high-level language such as C does not provide facilities to manipulate pro-
cessor or co-processor registers directly, some interrupt processing code cannot be writ-
ten in C. Rather than write all interrupt code in assembly language, the example system
divides the interrupt dispatcher into two pieces: a small, low-level piece written in as-
sembly language and a high-level piece written in C.

A dispatcher catches interrupts, saves machine registers, determines which device
requested the interrupt, and passes control to an appropriate high-level interrupt handler.
When the high-level handler returns, control passes back to the dispatcher which reloads
registers and executes special instructions that restore the state and return to the inter-
rupted program.
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Several rules control interrupt processing. First, interrupt code must not leave in-
terrupts disabled arbitrarily long or devices will fail to operate correctly. The length of
time an interrupt can be delayed depends on all devices attached to the system, not only
on the device being serviced. Second, because it can be executed by the null process,
interrupt code must never call a function that will move the executing process out of the
current or ready states. Third, an interrupt handler must not enable interrupts explicitly.

Despite the prohibition on enabling interrupts, a handler must reschedule whenever
a waiting process becomes ready. Doing so re-establishes the scheduling invariant and
also means that if a process is waiting for I/O to complete, the process will be informed
promptly. Of course, the code must insure that global data structures are in a valid state
before rescheduling. Rescheduling does not cause a cascade of interrupts because each
process can have at most one interrupt on its stack.

EXERCISES

12.1 Suppose an interrupt handler contains an error that explicitly enables interrupts.
Describe how a system might fail.

12.2 Modify interrupt handlers to enable interrupts, and see how long a system can run before
crashing. Are you surprised? Determine exactly why the system crashes. (Note: for this
exercise, disable the timer device that is described in the next chapter.)

12.3 Imagine a processor where the hardware automatically switches context to a special “in-
terrupt process” whenever an interrupt occurs. The only purpose of the interrupt process
is to run interrupt code. Does such a design make an operating system easier or more
difficult to design? Explain. Hint: will the interrupted process be permitted to
reschedule?

12.4 As the chapter points out, some computer systems allow the system to assign a separate
interrupt location to each device and arrange for the hardware to pass control directly to
the hander. Thus, no dispatching software is needed. What is the chief disadvantage of
such a scheme?

12.5 Calculate how many microseconds can be spent per interrupt assuming eight serial de-
vices each receive characters at 115 Kbaud (115 thousand bits per second, or approxi-
mately 11,500 characters per second).
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Real-Time Clock
Management

We haven’t the time to take our time.

— Eugene Ionesco

13.1 Introduction

Earlier chapters describe two major pieces of an operating system: a processor
management system that provides concurrent processing and a memory manager that al-
lows blocks of memory to be allocated and released dynamically. The previous chapter
introduces interrupt processing. The chapter states rules for interrupt processing,
describes how the operating system captures control when an interrupt occurs, and ex-
plains how control passes through a dispatcher to a device-specific interrupt handler.

This chapter continues the discussion of interrupts by describing timing hardware
and explaining how an operating system uses a real-time mechanism to provide
processes with the ability to control timed events. The chapter introduces two funda-
mental concepts: a delta list data structure and process preemption. It explains how an
operating system uses a clock to provide round-robin service to a set of equal-priority
processes. Later chapters extend the study of interrupts by exploring other I/O devices.
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13.2 Timed Events

Many applications use timed events. For example, an application might create a
window to display a message, leave the window on the screen for five seconds, and
then remove the window. An application that prompts for a password might choose to
exit unless a password is entered within thirty seconds. Parts of an operating system
also use timed events. For example, many network protocols require a sender to re-
transmit a request if no response is received within a specified time. Similarly, an
operating system might choose to inform a user if a peripheral, such as a printer,
remains disconnected for more than a few seconds. On small embedded systems that do
not have a separate hardware mechanism, an operating system uses timed events to
maintain the current date and time of day.

Because time is fundamental, most operating systems provide facilities that make it
easy for an application to create and manage a set of timed events. Some systems use a
general-purpose asynchronous event paradigm in which a programmer defines a set of
event handlers and the operating system invokes the appropriate handler when an event
occurs. Timed events fit into the asynchronous paradigm easily: a running process re-
quests that a specific event occur T time units in the future. Other systems follow a
synchronous event paradigm in which the operating system only provides delay and a
programmer creates extra processes as needed to schedule events. Our example system
uses the synchronous approach.

13.3 Real-Time Clocks And Timer Hardware

Four types of hardware devices relate to time:

d Processor clock

d Real-time clock

d Time-of-day clock

d Interval timer

Processor clock. The term processor clock refers to a hardware device that emits
pulses (i.e., square waves) at regular intervals with high precision. The processor clock
controls the rate at which the processor executes instructions. To minimize hardware,
low-end embedded systems often use the processor clock as a source of timing informa-
tion. Unfortunately, a processor clock rate is often inconvenient (i.e., the clock pulses
rapidly, and the rate is not a power of ten).

Real-time clock. A real-time clock operates independent of the CPU, and pulses in
fractions of a second (e.g., 1000 times per second), generating an interrupt for each
pulse. Usually real-time clock hardware does not count pulses — if an operating sys-
tem needs to compute an elapsed time, the system must increment a counter when each
clock interrupt occurs.
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Time-of-day clock. Technically, a time-of-day clock is a chronometer that com-
putes elapsed time. The hardware comprises an internal real-time clock and a counter
that tallies the pulses. Like a normal clock, the time can be changed; once set, how-
ever, the mechanism runs independent of the processor, and continues as long as the
system receives power (some units include a small battery to keep the clock active even
if the external power is removed). Unlike other clocks, a time-of-day clock does not in-
terrupt — the processor must set or interrogate the counter.

Interval timer. An interval timer, sometimes called a count-down timer or simply a
timer, consists of an internal real-time clock and a counter. To use a timer, the system
initializes the counter to a positive value. The timer decrements the count once for each
real-time clock pulse, and generates an interrupt when the count reaches zero. A variant
known as a count-up timer requires the operating system to initialize the count to zero
and set a limit. As the name implies, a count-up timer increments the counter, and in-
terrupts the operating system when the counter reaches the limit value.

The chief advantage of a timer over a real-time clock lies in lower interrupt over-
head. A real-time clock interrupts regularly, even if the next event is many time units
in the future. A timer only interrupts when an event is scheduled. Furthermore, a timer
is more flexible than a real-time clock because a timer can emulate a real-time clock.
To emulate a real-time clock with a rate of R pulses per second, for example, a timer is
set to interrupt in 1/ R seconds. When an interrupt occurs, the timer is reset to the same
value. To summarize:

The hardware available for timed events consists of real-time clocks
and interval timers. An operating system can use a timer to emulate a
real-time clock by computing a time between pulses, T, and resetting
the timer to T on each interrupt.

The E2100L hardware includes an interval timer as described above. The example
code, described later in the chapter, illustrates that using the timer to emulate a real-time
clock is straightforward.

13.4 Handling Real-Time Clock Interrupts

We said that a real-time clock interrupts once per pulse without counting or accu-
mulating interrupts. Similarly, if a timer is used to emulate a real-time clock, the timer
does not accumulate interrupts. In either case, if a processor fails to service a clock in-
terrupt before the clock pulses again, the processor will not receive the second interrupt.
More important, the hardware does not detect or report the error:

If a processor takes too long to service a real-time clock interrupt or
if it operates with interrupts disabled for more than one clock cycle, a
clock interrupt will be missed and no error will be reported.
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The operation of real-time clock hardware has two significant consequences for
system designers. First, because it must be able to execute many instructions between
real-time clock interrupts, a processor must operate significantly faster than the real-
time clock. Second, real-time clock interrupts can be a source of hidden errors. That is,
if an operating system runs too long with interrupts disabled, clock interrupts will be
missed and timing will be affected. Such errors can easily go undetected.

Obviously, systems must be designed to service clock interrupts quickly. Some
hardware helps by giving highest priority to real-time clock interrupts. Thus, if an I/O
device and a clock device each request an interrupt at the same time, the processor re-
ceives the clock interrupt first, and only receives the I/O interrupt after the clock has
been serviced.

13.5 Delay And Preemption

We will focus on two ways that an operating system uses time:

d Timed delay

d Preemption

Timed delay. An operating system allows any process to request a timed delay.
When a process requests a timed delay, the operating system moves the process from
the current state into a new state (which we call sleeping), and schedules a wakeup
event to restart the process at the specified time. When the wakeup event occurs, the
process becomes eligible to use the processor, and executes according to the scheduling
policy. Later sections explain how a process is put to sleep and how it is reawakened at
the correct time.

Preemption. The process manager in an operating system uses a preemption mech-
anism to implement time slicing that guarantees equal-priority processes receive service
round-robin, as specified by the scheduling policy in Chapter 5. The system defines a
maximum time slice, T, that a process can execute without allowing other processes to
execute. When it switches from one process to another, the scheduler schedules a
preemption event T time units in the future. When a preemption event occurs, the event
handler simply calls resched.

To understand how preemption works, observe that a system may contain multiple
processes with the same priority. Thus, while one process executes, other processes of
equal priority may be enqueued on the ready list, eligible to run. In such cases, a call to
resched places the current process at the end of the ready list, behind other processes
with equal priority, and switches to the first process on the list. Therefore, if k equal-
priority processes are ready to use the processor, all k execute for at most one time slice
before any process receives more service.

How long should a time slice be? We say that the choice of a time slice controls
the granularity of preemption. Using a short time slice makes the granularity small by
rescheduling often. Small granularity tends to keep all equal priority processes proceed-
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ing at approximately the same pace. However, a small granularity introduces higher
overhead because the system switches context often. A large granularity reduces the
overhead of context switching, but allows a process to hold the processor longer before
allowing other processes to execute.

It turns out that in most systems, a process seldom uses the processor long enough
for preemption to occur. Instead, a process usually performs I/O or executes a system
function, such as wait, that causes rescheduling. In essence, a process voluntarily gives
up control of the processor before the timeslice ends. More important, because input
and output are slow compared to processing, processes spend most of their time waiting
for I/O to complete. Despite the expected case, preemption provides important func-
tionality:

Without a preemptive capability, an operating system cannot regain
control from a process that executes an infinite loop.

13.6 Emulating A Real-Time Clock With A Timer

We use the term clock tick to refer to a real-time clock interrupt, and the term tick
rate to refer to the rate at which a clock ticks. Because it uses timer hardware to emu-
late a real-time clock, our example system has the ability to choose a convenient tick
rate. We have chosen to make the clock tick every millisecond. Thus, when a timer in-
terrupt occurs, the system resets the timer delay to a millisecond (i.e., one-thousandth of
a second), which will cause another interrupt a millisecond later.

Unfortunately, the timer hardware on the E2100L uses the same technique as many
small embedded devices: the hardware uses the processor clock to increment the
counter. That is, the interval timer measures time in processor cycles — if the proces-
sor clock has a rate of P cycles per second, the timer will count P times in a second.
To count a millisecond, we must set the timer to the number of processor cycles in a
millisecond.

Fortunately, the speed of the processor clock in the E2100L hardware is known,
making it easy to compute the number of processor cycles that will elapse in one mil-
lisecond. In the example code, the value has been precomputed and stored in symbolic
constant CLKCYCS_PER_TICK. When a timer interrupt occurs, the timer is reset to the
previous value plus CLKCYCS_PER_TICK, which will cause another interrupt in one
millisecond.

13.7 Implementation Of Preemption

The example code implements both preemption and timed delays; before examin-
ing the code, we will discuss each. Preemption is the easiest to understand. Defined
constant QUANTUM specifies the number of clock ticks in a single time slice. When-
ever it switches from one process to another, resched sets global variable preempt to
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QUANTUM. Each time the emulated clock ticks, the clock interrupt handler decrements
preempt. When preempt reaches zero, the clock interrupt handler resets preempt to
QUANTUM and calls resched. Following the call to resched, the handler returns from
the interrupt.

The call to resched has two possible outcomes. First, if the currently executing
process remains the only process at the highest priority, resched will return immediate-
ly, the interrupt handler will return, and the current process will continue executing at
the point of the interrupt. Second, if another ready process has the same priority as the
current process, resched will switch to the new process. Eventually, resched will switch
back to the interrupted process. The assignment of QUANTUM to preempt handles the
case where the current process remains running. The assignment is needed because
resched only resets the preemption counter when it switches to a new process.† Reset-
ting the preemption counter prevents the counter from underflowing in cases where a
single process executes indefinitely.

13.8 Efficient Management Of Delay With A Delta List

To implement delay, the operating system must maintain a set of processes that
have requested a delay. Each process specifies a delay relative to the time at which it
places a request, and additional processes can make a request at any time. When the
delay for a process expires, the system makes the process ready and calls resched.

How can an operating system maintain a set of processes that have each requested
a specific delay? The system cannot afford to search through arbitrarily long lists of
sleeping processes on each clock tick. Therefore, an efficient data structure is needed
that only requires a clock interrupt handler to execute a few instructions on each clock
tick while accommodating a set of processes that have each requested a specific delay.

The solution lies in a data structure that we call a delta list. A delta list contains a
set of processes, and the list is ordered by the time at which a process should awaken.
The fundamental insight needed to make computation efficient lies in the use of relative
rather than absolute times. That is, instead of storing a value that specifies the time a
process should awaken, a key in the delta list stores the additional time a process must
delay beyond the preceding process:

The key of the first process on a delta list specifies the number of
clock ticks a process must delay beyond the current time; the key of
each other process on a delta list specifies the number of clock ticks
the process must delay beyond the preceding process on the list.

As an example, suppose processes A, B, C, and D request delays of 6, 12, 27, and
50 ticks, respectively. Further suppose the requests are made at approximately the same
time (i.e., within one clock tick). Figure 13.1 illustrates the delta list that will result.

��������������������������������
†The code for resched can be found on page 74.
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6 A 23 D6 B 15 C

key process next

Figure 13.1 Conceptual form of a delta list with four processes that have de-
lays 6, 12, 27, and 50 ticks, respectively.

Given a delta list, one can find the time at which each process will awaken by
computing partial sums of keys. In the figure, the delay before process A awakens is 6,
the delay before process B awakens is 6 + 6, the delay before process C awakens is
6 + 6 + 15, and the delay before D awakens is 6 + 6 + 15 + 23.

13.9 Delta List Implementation

Like other lists of processes, the delta list of delayed processes resides in the
queuetab structure. Global variable sleepq contains the queue ID of the delta list for
sleeping processes. On each clock tick, the clock interrupt handler decrements the key
on the first item in sleepq. If the value reaches zero, the clock handler calls function
wakeup to awaken the first process because its delay has expired.

Recall that the first process on the sleeping process queue is a process with least
delay, and its key specifies the remaining delay in clock ticks until the process must
awaken. Because all successive delays in the list are relative to the first delay, the clock
interrupt routine only needs to decrement the first key, and does not need to scan the
list.

Functions to manipulate a delta list seem straightforward, but the implementation
can be tricky. Therefore, a programmer must pay close attention to details. Function
insertd, shown below, takes three arguments: a process ID, pid, a queue ID, q, and a de-
lay given by argument key. Insertd computes a relative delay, and inserts the specified
process in sleepq at the appropriate location. In the code, variable next scans the delta
list searching for the place to insert the new process.

Observe that the initial value of argument key specifies a delay relative to the
current time. Thus, argument key can be compared to the key in the first item on the
delta list. However, successive keys in the delta list specify delays relative to their
predecessor. Thus, the key in successive nodes on the list cannot be compared directly
to the value of argument key. To keep the delays comparable, insertd subtracts the rela-
tive delays from key as the search proceeds, maintaining the following invariant:
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At any time during the search, both key and queuetab[next].qkey
specify a delay relative to the time at which the predecessor of “next”
awakens.

/* insertd.c - insertd */

#include <xinu.h>

/*------------------------------------------------------------------------

* insertd - Insert a process in delta list using delay as the key

*------------------------------------------------------------------------

*/

status insertd( /* assumes interrupts disabled */

pid32 pid, /* ID of process to insert */

qid16 q, /* ID of queue to use */

int32 key /* delay from "now" (in ms.) */

)

{

int next; /* runs through the delta list */

int prev; /* follows next through the list*/

if (isbadqid(q) || isbadpid(pid)) {

return SYSERR;

}

prev = queuehead(q);

next = queuetab[queuehead(q)].qnext;

while ((next != queuetail(q)) && (queuetab[next].qkey <= key)) {

key -= queuetab[next].qkey;

prev = next;

next = queuetab[next].qnext;

}

/* Insert new node between prev and next nodes */

queuetab[pid].qnext = next;

queuetab[pid].qprev = prev;

queuetab[pid].qkey = key;

queuetab[prev].qnext = pid;

queuetab[next].qprev = pid;

if (next != queuetail(q)) {

queuetab[next].qkey -= key;

}
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return OK;

}

Although insertd checks for the tail of the list explicitly during the search, the test
could be removed without affecting the execution. To understand why, recall that the
key value in the tail of a list is assumed to be greater than any key being inserted. As
long as the assertion holds, the loop will terminate once the tail has been reached. Be-
cause insertd does not check its argument, keeping the test provides a safety check.

After it has identified a location on the list where the relative delay of the item be-
ing inserted is smaller than the relative delay of an item on the list, insertd links the
new item into the list. Insertd must also subtract the extra delay that the new item in-
troduces from the delay of the rest of the list. To do so, insertd decrements the key in
the next item on the list by the key value being inserted. The subtraction is guaranteed
to produce a non-negative value because the loop termination condition guarantees that
the key inserted is less than the key on the list.

13.10 Putting A Process To Sleep

An application does not call insertd, nor does the application access the sleep
queue directly. Instead, an application invokes system call sleep or sleepms to request a
delay. The only difference between the two functions arises from the granularity of
their arguments: an argument to sleepms specifies a delay in milliseconds, and an argu-
ment to sleep specifies a delay in seconds. On a 32-bit processor, measuring delay in
milliseconds provides an adequate range of delay. An unsigned 32-bit integer accom-
modates delays over 1100 hours (49 days). On embedded systems that use 16-bit in-
tegers, however, millisecond delays mean that a caller can only express a delay of
thirty-two seconds. Thus, an operating system designed for a 16-bit processor usually
uses a larger granularity measurement (e.g., tenths of seconds).

To avoid duplicating code, function sleep multiplies its argument by 1000 and in-
vokes sleepms. The only interesting aspect of sleep is a check on its argument size: to
avoid integer overflow, sleep limits the delay to a value that can be represented as a
32-bit unsigned integer. If the caller specifies a larger value, sleep returns SYSERR.

Sleepms inserts the calling process into the delta list of sleeping processes. When
it has been moved to the list of sleeping processes, a process is no longer ready or
current. In what state should it be placed? Sleeping differs from suspension, waiting to
receive a message, or waiting for a semaphore. Thus, because none of the existing
states suffices, a new process state must be added to the design. We call the new state
sleeping, and denote it with symbolic constant PR_SLEEP. Figure 13.2 illustrates state
transitions that include the sleeping state.
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READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

SLEEPING
sleepwakeup

Figure 13.2  State transitions including the sleeping state.

The implementation of sleepms, shown below in file sleep.c, includes a special
case: if a process specified a delay of zero, sleepms calls resched immediately. Other-
wise, sleepms uses insertd to insert the current process in the delta list of sleeping
processes, changes the state to sleeping, and calls resched to allow other processes to
execute.

/* sleep.c - sleep sleepms */

#include <xinu.h>

#define MAXSECONDS 4294967 /* max seconds per 32-bit msec */

/*------------------------------------------------------------------------
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* sleep - Delay the calling process n seconds

*------------------------------------------------------------------------

*/

syscall sleep(

uint32 delay /* time to delay in seconds */

)

{

if (delay > MAXSECONDS) {

return(SYSERR);

}

sleepms(1000*delay);

return OK;

}

/*------------------------------------------------------------------------

* sleepms - Delay the calling process n milliseconds

*------------------------------------------------------------------------

*/

syscall sleepms(

uint32 delay /* time to delay in msec. */

)

{

intmask mask; /* saved interrupt mask */

mask = disable();

if (delay == 0) {

yield();

restore(mask);

return OK;

}

/* Delay calling process */

if (insertd(currpid, sleepq, delay) == SYSERR) {

restore(mask);

return SYSERR;

}

proctab[currpid].prstate = PR_SLEEP;

resched();

restore(mask);

return OK;

}
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13.11 Timed Message Reception

Xinu includes a mechanism that is especially useful in computer networking: timed
message reception. In essence, the mechanism allows a process to wait for a specified
time or for a message to arrive, whichever occurs first. That is, the mechanism operates
like the synchronous receive function with an additional provision that places a bound
on the maximum time the process will wait.

The fundamental concept behind timed message reception is disjunctive wait: a
process blocks until one of two events occurs. Many network protocols use disjunctive
wait to implement timeout-and-retransmission, a technique senders employ to handle
packet loss. When it sends a message, a sender also starts a timer, and then waits for a
reply to arrive or the timer to expire, whichever occurs first. If a reply arrives, the net-
work cancels the timer. If the message or the reply is lost, the timer expires, and the
protocol software retransmits a copy of the request.

In Xinu, when a process requests a timed receive, the process is placed on the
queue of sleeping processes, exactly like any other sleeping process. Instead of assign-
ing the process state PR_SLEEP, however, the system places the process in state
PR_RECTIM to indicate that it is engaged in a receive with timeout. If the sleep timer
expires, the process is awakened like any other sleeping process. If a message arrives
before the delay expires, send calls unsleep to remove the process from the queue of
sleeping processes, and proceeds to deliver the message. Once it resumes execution, the
process checks its process table entry to see if a message has arrived. If no message is
present, the timer must have expired.

Figure 13.3 shows the state diagram with a new state, TIMED-RECV, for timed
message reception.
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resched
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sleepwakeup

TIMED-RECV
recvtimewakeup

Figure 13.3  State transitions including the timed receive state.

As we have seen, the send† function in Chapter 8 handles the case where a process
is in the timed receive state. Thus, we only need to examine the code for function recv-
time and unsleep. Function recvtime is almost identical to function receive‡ except that
before calling resched, recvtime calls insertd to insert the calling process on the queue
of sleeping processes and assigns state PR_RECTIM instead of state PR_RECV. File
recvtime.c contains the code.

��������������������������������
†Function send can be found in file send.c on page 133.
‡Function receive can be found in file receive.c on page 134.
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/* recvtime.c - recvtime */

#include <xinu.h>

/*------------------------------------------------------------------------

* recvtime - wait specified time to receive a message and return

*------------------------------------------------------------------------

*/

umsg32 recvtime(

int32 maxwait /* ticks to wait before timeout */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* tbl entry of current process */

umsg32 msg; /* message to return */

if (maxwait < 0) {

return SYSERR;

}

mask = disable();

/* Schedule wakeup and place process in timed-receive state */

prptr = &proctab[currpid];

if (prptr->prhasmsg == FALSE) { /* if message waiting, no delay */

if (insertd(currpid,sleepq,maxwait) == SYSERR) {

restore(mask);

return SYSERR;

}

prptr->prstate = PR_RECTIM;

resched();

}

/* Either message arrived or timer expired */

if (prptr->prhasmsg) {

msg = prptr->prmsg; /* retrieve message */

prptr->prhasmsg = FALSE;/* reset message indicator */

} else {

msg = TIMEOUT;

}

restore(mask);

return msg;

}
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Function unsleep removes a process from the queue of sleeping processes. If other
processes are present on the queue, unsleep must adjust the delay on subsequent
processes to compensate for the process being removed (i.e., must add the process’s de-
lay to the next process). File unsleep.c contains the code.

/* unsleep.c - unsleep */

#include <xinu.h>

/*------------------------------------------------------------------------

* unsleep - Remove a process from the sleep queue prematurely by

* adjusting the delay of successive processes

*------------------------------------------------------------------------

*/

syscall unsleep(

pid32 pid /* ID of process to remove */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

pid32 pidnext; /* ID of process on sleep queue */

/* that follows the process that*/

/* is being removed */

mask = disable();

if (isbadpid(pid)) {

restore(mask);

return SYSERR;

}

/* Verify that candidate process is on the sleep queue */

prptr = &proctab[pid];

if ((prptr->prstate!=PR_SLEEP) && (prptr->prstate!=PR_RECTIM)) {

restore(mask);

return SYSERR;

}

/* Increment delay of next process if such a process exists */

pidnext = queuetab[pid].qnext;

if (pidnext < NPROC) {
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queuetab[pidnext].qkey += queuetab[pid].qkey;

}

getitem(pid); /* unlink process from queue */

restore(mask);

return OK;

}

13.12 Awakening Sleeping Processes

The clock interrupt handler decrements the count of the first key on sleepq on each
clock tick, calling wakeup to awaken the process when the delay reaches zero. Wakeup
must handle the case where multiple processes are scheduled to awaken at the same
time. Thus, wakeup iterates through all processes that have a key of zero, removing the
process from sleepq and calling ready to make the process eligible for CPU service
again. Because it has been called from an interrupt dispatcher, wakeup assumes that in-
terrupts have been disabled upon entry. Thus, wakeup does not explicitly disable inter-
rupts before calling ready. Once it finishes moving processes to the ready list, wakeup
calls resched to re-establish the scheduling invariant and allow another process to exe-
cute.

/* wakeup.c - wakeup */

#include <xinu.h>

/*------------------------------------------------------------------------

* wakeup - Called by clock interrupt handler to awaken processes

*------------------------------------------------------------------------

*/

void wakeup(void)

{

/* Awaken all processes that have no more time to sleep */

while (nonempty(sleepq) && (firstkey(sleepq) <= 0)) {

ready(dequeue(sleepq), RESCHED_NO);

}

resched();

return;

}
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13.13 Clock Interrupt Processing

We are now ready to examine the clock interrupt handler, clkhandler, which is
called each time the emulated clock interrupts. As described above, the clock interrupt
handler decrements the time remaining on the first process in sleepq (provided sleepq is
nonempty). If the remaining delay reaches zero, clkint calls wakeup to remove all
processes with zero delay from the sleep queue and make them ready. Finally, clkint
decrements the preemption counter, calling resched if the preemption counter reaches
zero.

/* clkhandler.c - clkhandler */

#include <xinu.h>

/*------------------------------------------------------------------------

* clkhandler - handle clock interrupt and process preemption events

* as well as awakening sleeping processes

*------------------------------------------------------------------------

*/

interrupt clkhandler(void)

{

clkupdate(CLKCYCS_PER_TICK);

/* record clock ticks */

clkticks++;

/* update global counter for seconds */

if (clkticks == CLKTICKS_PER_SEC) {

clktime++;

clkticks = 0;

}

/* If sleep queue is nonempty, decrement first key; when the */

/* key reaches zero, awaken a sleeping process */

if (nonempty(sleepq) && (--firstkey(sleepq) <= 0)) {

wakeup();

}

/* Check to see if this proc should be preempted */

if (--preempt <= 0) {

preempt = QUANTUM;

resched();
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}

return;

}

13.14 Clock Initialization

The clock initialization routing, clkinit, performs four main functions. First, it allo-
cates a queue to hold the delta list of sleeping processes, and stores the queue ID in glo-
bal variable sleepq. Second, it starts the one-second timer at zero. Third, the code
stores the address of the clock interrupt handler in array interruptVector, which allows
the interrupt dispatcher to associate clkhandler with a timer interrupt. Finally, clkinit
calls clkupdate to update the interval timer. The initialization code can be found in file
clkinit.c.

/* clkinit.c */

#include <xinu.h>

#include <interrupt.h>

#include <clock.h>

uint32 clkticks = 0; /* ticks per second */

uint32 clktime = 0; /* current time in seconds */

qid16 sleepq; /* queue of sleeping processes */

uint32 preempt; /* preemption counter */

/*------------------------------------------------------------------------

* clkinit - initialize the clock and sleep queue at startup

*------------------------------------------------------------------------

*/

void clkinit(void)

{

sleepq = newqueue(); /* allocate a queue to hold the delta */

/* list of sleeping processes */

clkticks = 0; /* start counting one second */

/* Add clock interrupt handler to interrupt vector array */

interruptVector[IRQ_TIMER] = &clkhandler;

/* Enable clock interrupts */

enable_irq(IRQ_TIMER);
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/* Start interval timer */

clkupdate(CLKCYCS_PER_TICK);

}

13.15 Interval Timer Management

On the E2100L, the interval timer can only be accessed or controlled through the
co-processor. Thus, code to control the timer has been written in assembly language.

Recall that the timer hardware uses the processor clock and interrupts are
scheduled on each millisecond. To further understand the timer management code, it is
important to know that the hardware uses a count-up approach. The timer always keeps
counting and the operating system sets a threshold value N units above the current
count. When the count reaches the threshold, the timer interrupts.

In theory, emulating a millisecond real-time clock is trivial: when an interrupt oc-
curs, the threshold only needs to be incremented by N, where N is a constant equal to
the number of cycles the timer will accumulate in one millisecond. To see why, recall
that the timer hardware always keeps counting. Setting the threshold to N beyond the
last timer interrupt schedules the next interrupt for exactly one millisecond later.

In practice, however, the simplistic approach of always adding N units to the previ-
ous threshold may not work. To see why, observe that interrupts might be disabled
when the timer expires (e.g., because the processor is handling another device). After
the current interrupt finishes, a small amount of additional time passes before the
dispatcher calls the clock interrupt handler and the handler updates the timer. Thus, a
small amount of time can pass between the timer expiring and the interrupt handler
resetting the interval timer. If a millisecond passes, the timer will have already reached
a value equal to the previous threshold plus N, and the timer will need to wrap around
before reaching the threshold. To handle the situation, the timer management code adds
N to the previous threshold and compares the value to the time count. If the calculated
threshold has already passed, the code resets the threshold to the current count plus N.
File clkupdate.S contains the code:



234 Real-Time Clock Management Chap. 13

/* clkupdate.S - clkupdate, clkcount */

#include <mips.h>

.text

.align 4

.globl clkupdate

.globl clkcount

/*------------------------------------------------------------------------

* clkupdate - update the timer by a specified number of cycles

*------------------------------------------------------------------------

*/

/* Note: there are two cases

* Normal case: COMPARE is increased by N cycles and stored as the

* new threshold (N cycles beyond previous threshold)

* Abnormal case: the timer has already accumulated more than N cycles

* beyond the previous threshold. Start over by making

* the threshold equal to the current count + N

*/

clkupdate:

mfc0 v0, CP0_COMPARE /* v0 = COMPARE */

mfc0 v1, CP0_COUNT /* v1 = COUNT */

addu v0, v0, a0 /* v0 = COMPARE + cycles */

bleu v0, v1, compare_up /* v0 <= COUNT, then goto compare_up*/

mtc0 v0, CP0_COMPARE /* Update COMPARE */

jr ra

/* Abnormal case: timer is beyond the next interrupt count; reset */

compare_up:

addu a0, v1, a0 /* a0 = COUNT + cycles */

mtc0 a0, CP0_COMPARE /* COMPARE = a0 */

jr ra

/*------------------------------------------------------------------------

* clkcount return the count from the free-running clock

*------------------------------------------------------------------------

*/

clkcount:

mfc0 v0, CP0_COUNT

jr ra
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13.16 Perspective

Clock and timer management are both technically and intellectually challenging.
On the one hand, because clock or timer interrupts occur frequently and have high
priority, the total time a CPU spends executing clock interrupts is large and other inter-
rupts are prevented. Thus, the code for an interrupt handler must be optimized to
minimize the time taken to handle a given interrupt. On the other hand, an operating
system that allows processes to request timed events can schedule many events to occur
at exactly the same time, which means that the time taken for a given interrupt can be
arbitrarily long. The conflict can become especially important in real-time embedded
systems where the processor is relatively slow and other devices need prompt service.

Most systems allow arbitrary events to be scheduled and defer processing when
multiple events collide — a cell phone may not update the display exactly when an ap-
plication starts, or a text message may take longer to deliver when multiple applications
are running. The intellectual questions are: how can an operating system best provide
the illusion of precise timing within hardware constraints and inform users when re-
quests cannot be serviced? Should events be assigned priorities? If so, how should
event priorities interact with scheduling priorities? There are no easy answers.

13.17 Summary

A real-time clock interrupts the CPU at regular intervals. The design described
uses a timer to emulate real-time clock interrupts. The interrupt handler processes the
interrupt and resets the timer for the next interrupt.

The operating system uses the clock to handle preemption and process delay. A
preemption event, scheduled every time the system switches context, forces a call to the
scheduler after a process has used the processor for QUANTUM clock ticks. Preemp-
tion guarantees that no process uses the CPU forever, and enforces the scheduling poli-
cy by insuring round-robin service among equal-priority processes.

A wakeup event, scheduled when a process requests a timed delay, causes the run-
ning process to enqueue itself on the delta list of sleeping processes. The interrupt
handler awakens a sleeping process when its delay expires by moving the process back
to the ready list and rescheduling. A delta list provides a very efficient way to manage
sleeping processes.

EXERCISES

13.1 Modify the code to generate clock interrupts ten times faster, and arrange for the clock
interrupt handler to ignore nine interrupts before processing one. How much extra over-
head do the additional interrupts generate?
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13.2 Conduct an experiment to determine whether the system ever misses a clock interrupt
and, if so, how often interrupts are missed. When an interrupt occurs, read the accumu-
lated count from the timer and compare to the “comparison” value to see how many ad-
ditional cycles have accumulated beyond those that were expected.

13.3 Trace the series of calls starting with a clock interrupt that awakens two sleeping
processes, one of which has higher priority than the currently executing process.

13.4 Explain what can fail if QUANTUM is set to 1. Hint: consider switching back to a pro-
cess that was suspended by resched while processing an interrupt.

13.5 Does sleepms(3) guarantee a minimum delay of 3 milliseconds, an exact delay of 3 mil-
liseconds, or a maximum delay of 3 milliseconds?

13.6 Carefully consider the code for kill and identify a problem that is caused when kill re-
moves a process from the queue of sleeping processes. Rewrite kill to correct the prob-
lem.

13.7 What might happen if wakeup calls wait?

13.8 An operating system that attempts to record the exact amount of processor time a pro-
cess consumes faces the following problem: when an interrupt occurs, it is most con-
venient to let the current process execute the interrupt routine even though the interrupt
is unlikely to be related to the current process. Investigate how operating systems charge
the cost of executing interrupt routines like wakeup to the processes that are affected.

13.9 If the code in this chapter is ported to an identical processor that runs at a higher clock
rate, what will happen? Why?

13.10 Design an experiment to see if preemption ever causes the system to reschedule. Be
careful: the presence of a separate process testing a variable or performing I/O can inter-
fere with the experiment by generating calls to resched.

13.11 Suppose a system contains three processes: a low-priority process, L, that is sleeping,
and two high-priority processes, H1 and H2, that are eligible to execute. Further suppose
that immediately after the scheduler switches to process H1, a clock interrupt occurs, pro-
cess L becomes ready, and the interrupt handler calls resched. Although L will not run,
resched will switch from H1 to H2 without giving H1 its quantum. Propose a modifica-
tion to resched that insures a process will not lose control of the processor unless a
higher-priority process becomes ready or its time slice expires.
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Device–Independent Input
and Output

We have been left so much to our own devices — after
a while, one welcomes the uncertainty of being left to
other people’s.

— Tom Stoppard

14.1 Introduction

Earlier chapters explain concurrent process support and memory management.
Chapter 12 discusses the key concept of interrupts. The chapter describes interrupt pro-
cessing, gives an architecture for interrupt code, and explains the relationship between
interrupt handling and concurrent processes. Chapter 13 expands the discussion of in-
terrupts by showing how real-time clock interrupts can be used to implement preemp-
tion and process delay.

This chapter takes a broader look at how an operating system implements I/O. The
chapter explains the conceptual basis for building I/O abstractions, and presents an ar-
chitecture for a general-purpose I/O facility. The chapter shows how processes can
transfer data to or from a device without understanding the underlying hardware. It de-
fines a general model, and explains how the model incorporates device-independent I/O
functions. Finally, the chapter examines an efficient implementation of an I/O subsys-
tem.

239
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14.2 Conceptual Organization Of I/O And Device Drivers

Operating systems control and manage input and output (I/O) devices for three rea-
sons. First, because most device hardware uses a low-level interface, the software inter-
face is complex. Second, because a device is a shared resource, an operating system
provides access according to policies that make sharing fair and safe. Third, an operat-
ing system defines a high-level interface that hides details and allows a programmer to
use a consistent and uniform set of operations when interacting with devices.

The I/O subsystem can be divided into three conceptual pieces: an abstract inter-
face consisting of high-level I/O functions that processes use to perform I/O, a set of
physical devices, and device driver software that connects the two. Figure 14.1 illus-
trates the organization.

I/O operations available to processes

User processes

device 1

device
driver

upper-half
(device 1)

device
driver

lower-half
(device 1)

device 2

device
driver

upper-half
(device 2)

device
driver

lower-half
(device 2)

device 3

device
driver

upper-half
(device 3)

device
driver

lower-half
(device 3)

device n

device
driver

upper-half
(device n)

device
driver

lower-half
(device n)

. . .
device

drivers

Figure 14.1 The conceptual organization of the I/O subsystem with device
driver software between processes and the underlying device
hardware.

As the figure indicates, device driver software bridges the gap between high-level,
concurrent processes and low-level hardware. We will see that each driver is divided
into two conceptual pieces: an upper half and a lower half. Functions in the upper half
are invoked when a process requests I/O. Upper-half functions implement operations
such as read and write by transferring data to or from a process. The lower half con-
tains functions that are invoked by interrupts. When a device interrupts, the interrupt
dispatcher invokes a lower-half handler function. The handler services the interrupt, in-
teracts with the device to transfer data, and may start an additional I/O operation.
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14.3 Interface And Driver Abstractions

The ultimate goal of an operating system designer lies in creating convenient pro-
gramming abstractions and finding efficient implementations. With respect to I/O, there
are two aspects:

d Interface abstraction

d Driver abstractions

Interface abstraction. The question arises: what I/O interface should an operating
system supply to processes? There are several possibilities, and the choice represents a
tradeoff among goals of flexibility, simplicity, efficiency, and generality. To understand
the scope of the problem, consider Figure 14.2, which lists a set of example devices and
the types of operations appropriate for each.

������������������������������������������������������������������
Device I/O paradigm������������������������������������������������������������������

hard drive move to a position and transfer a block of data������������������������������������������������������������������
keyboard accept individual characters as entered������������������������������������������������������������������

printer transfer an entire document to be printed������������������������������������������������������������������
audio output transfer a continuous stream of encoded audio������������������������������������������������������������������

wireless network send or receive a single network packet��������������������������������������������������������������������
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Figure 14.2  Example devices and the paradigm that each device uses.

Early operating systems provided a set of I/O operations for each individual
hardware device. Unfortunately, building device-specific information into software
means the software must be changed when an I/O device is replaced by an equivalent
device from another vendor. A slightly more general approach defines a set of opera-
tions for each type of device, and requires the operating system to perform the appropri-
ate low-level operations on a given device. For example, an operating system can offer
abstract functions send_network_packet and receive_network_packet that can be used to
transfer network packets over any type of network. A third approach originated in Mul-
tics and was popularized by Unix: choose a small set of abstract I/O operations that are
sufficient for all I/O.

Driver abstractions. We think of the second category of abstraction as providing
semantics. One of the most important semantic design questions focuses on synchrony:
does a process block while waiting for an I/O operation to complete? A synchronous
interface, similar to the one described earlier, provides blocking operations. For exam-
ple, to request data from a keyboard in a synchronous system, a process invokes an
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upper-half routine that blocks the process until a user presses a key. Once a user makes
a keystroke, the device interrupts and the dispatcher invokes a lower-half routine that
acts as a handler. The handler unblocks a waiting process and reschedules to allow the
process to run. In contrast, an asynchronous I/O interface allows a process to continue
executing after the process initiates an I/O operation. When the I/O completes, the
driver must inform the requesting process (e.g., by invoking the event handler function
associated with the process). We can summarize:

When using a synchronous I/O interface, a process is blocked until the
operation completes. When using an asynchronous I/O interface, a
process continues to execute and is notified when the operation com-
pletes.

Each approach has advantages. An asynchronous interface is useful in situations
where a programmer needs to control the overlap of I/O and computation. A synchro-
nous approach has the advantage of being easier to program.

Another design issue arises from the format of data and the size of transfers. Two
questions arise. First, will data be transferred in blocks or bytes? Second, how much
data can be transferred in a single operation? Observe that some devices transfer indivi-
dual data bytes, some transfer a variable-size chunk of data (such as a network packet or
a line of text), and others operate on fixed-size blocks of data. Because a general-
purpose operating system must handle a variety of I/O devices, an I/O interface may re-
quire both single-byte transfers as well as multi-byte transfers.

A final design question arises from the parameters that a driver supplies and the
way a driver interprets individual operations. For example, does a process specify a lo-
cation on disk and then repeatedly request the next disk block, or does the process
specify a block number in each request? The example device driver illustrates how
parameters can be used.

The key idea is:

In a modern operating system, the I/O interface and device drivers are
designed to hide device details and present a programmer with con-
venient, high-level abstractions.

14.4 An Example I/O Interface

Experience has shown that a small set of I/O functions is both sufficient and con-
venient. Thus, our example system contains an I/O subsystem with nine abstract I/O
operations that are used for all input and output. The operations have been derived
from the I/O facilities in the Unix operating system. Figure 14.3 lists the operations
and the purpose of each.
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��������������������������������������������������������
Operation Purpose��������������������������������������������������������

close Terminate use of a device��������������������������������������������������������
control Perform operations other than data transfer��������������������������������������������������������

getc Input a single byte of data��������������������������������������������������������
init Initialize the device at system startup��������������������������������������������������������

open Prepare the device for use��������������������������������������������������������
putc Output a single byte of data��������������������������������������������������������
read Input multiple bytes of data��������������������������������������������������������
seek Move to specific data (usually a disk)��������������������������������������������������������
write Output multiple bytes of data����������������������������������������������������������
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Figure 14.3  The set of abstract I/O interface operations used in Xinu.

14.5 The Open-Read-Write-Close Paradigm

Like the programming interface in many operating systems, the example I/O inter-
face follows an open-read-write-close paradigm. That is, before it can perform I/O, a
process must open a specific device. Once it has been opened, a device is ready for the
process to call read to obtain input or write to send output. Finally, once it has finished
using a device, the process calls close to terminate use.

To summarize:

The open-read-write-close paradigm requires a process to open a de-
vice before use and close a device after use.

Open and close allow the operating system to manage devices that require ex-
clusive use, prepare a device for data transfer, and stop a device after transfer has end-
ed. Closing a device may be useful, for example, if a device needs to be powered down
or placed in a standby state when not in use. Read and write handle the transfer of mul-
tiple data bytes to or from a buffer in memory. Getc and putc form a counterpart for
the transfer of a single byte (usually a character). Control allows a program to control a
device or a device driver (e.g., to check supplies in a printer or select the channel on a
wireless radio). Seek is a special case of control that applies to randomly accessible
storage devices, such as disks. Finally, init initializes the device and driver at system
startup.
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Consider how the operations apply to a console window. Getc reads the next char-
acter from the keyboard, and putc displays one character in the console window. Write
can display multiple characters with one call, and read can read a specified number of
characters (or all that have been entered, depending on its arguments). Finally, control
allows the program to change parameters in the driver to control such things as whether
the system stops echoing characters as a password is entered.

14.6 Bindings For I/O Operations And Device Names

How can an abstract operation such as read act on an underlying hardware device?
The answer lies in a binding. When a process invokes a high-level operation, the
operating system maps the call to a device driver function. For example, if a process
calls read on a console device, the operating system passes the call to a function in the
console device driver that implements read. In doing so, the operating system hides
both the hardware and device driver details from application processes and presents an
abstract version of devices. By using a single abstract device for a keyboard and a win-
dow on the display, an operating system can hide the fact that the underlying hardware
consists of two separate devices. Furthermore, an operating system can hide device de-
tails by presenting the same high-level abstraction for the hardware from multiple ven-
dors. The point is:

An operating system creates a virtual I/O environment — a process
can only perceive peripheral devices through the abstractions that the
interface and device drivers provide.

In addition to mapping abstract I/O operations onto driver routines, an operating
system must map device names onto devices. A variety of mappings have been used.
Early systems required a programmer to embed device names in source code. Later
systems arranged for programs to use small integers to identify devices, and allowed a
command interpreter to link each integer with a specific device when the application
was launched. Many modern systems embed devices in a file naming hierarchy, allow-
ing an application to use a symbolic name for each device.

Early and late binding each have advantages. An operating system that waits until
run-time to bind the name of an abstract device to a real device and a set of abstract
operations to device driver functions is flexible. However, such late binding systems
incur more computational overhead, making them impractical in the smallest embedded
systems. At the other extreme, early binding requires device information to be specified
when an application is written. Thus, the essence of I/O design consists of synthesizing
a binding mechanism that allows maximum flexibility within the required performance
bounds.

Our example system uses an approach that is typical of small embedded systems:
information about devices is specified before the operating system is compiled. For
each device, the operating system knows exactly which driver functions correspond to
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each of the abstract I/O operations. In addition, the operating system knows the under-
lying hardware device to which each abstract device corresponds. Thus, the operating
system must be recompiled whenever a new device is added or when an existing device
is removed. Because application code does not contain information about specific de-
vice hardware, application code can be ported from one system to another easily. For
example, an application that only performs I/O operations on a CONSOLE serial port
will work on any Xinu system that offers a CONSOLE device and the appropriate
driver, independent of the physical device hardware and interrupt structure.

14.7 Device Names In Xinu

In Xinu, the system designer must specify a set of abstract devices when the sys-
tem is configured. The configuration program assigns each device name a unique in-
teger value known as a device descriptor. For example, if a designer specifies a device
name CONSOLE, the configuration program might assign descriptor zero. The config-
uration program produces a header file that contains #define statements for each name.
Thus, once the header file has been included, a programmer can reference CONSOLE in
the code. For example, if CONSOLE has been assigned descriptor zero, the call:

read(CONSOLE, buf, 100);
is equivalent to:

read(0, buf, 100);

To summarize:

Xinu uses a static binding for device names. Each device name is
bound to an integer descriptor at configuration time before the
operating system is compiled.

14.8 The Concept Of A Device Switch Table

Each time a process invokes a high-level I/O operation such as read or write, the
operating system must forward the call to the appropriate driver function. To make the
implementation efficient, Xinu uses an array known as a device switch table. The in-
teger descriptor assigned to a device is an index into the device switch table. To under-
stand the arrangement, imagine a two-dimensional array. Conceptually, each row of the
array corresponds to a device, and each column corresponds to an abstract operation.
An entry in the array specifies the driver function to use to perform the operation.

For example, suppose a system contains three devices defined as follows:

d CONSOLE, a serial device used to send and receive characters

d ETHER, an Ethernet interface device

d DISK, a hard drive
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Figure 14.4 illustrates part of a device switch table that has a row for each of the
three devices and a column for each I/O operation. Items in the table represent the
names of driver functions that perform the operation given by the column on the device
given by the row.

open close read write getc

. . .

..

.

CONSOLE

ETHER

DISK

conopen conclose conread conwrite congetc

ethopen ethclose ethread ethwrite ethgetc

dskopen dskclose dskread dskwrite dskgetc

Figure 14.4 Conceptual organization of the device switch table with one row
per device and one column per abstract I/O operation.

As an example, suppose a process invokes the write operation on the CONSOLE
device. The operating system goes to the row of the table that corresponds to the CON-
SOLE device, finds the column that corresponds to the write operation, and calls the
function named in the entry: conwrite.

In essence, each row of the device switch table defines how the I/O operations ap-
ply to a single device, which means I/O semantics can change dramatically among de-
vices. For example, when it is applied to a DISK device, a read might transfer a block
of 512 bytes of data. However, when it is applied to a CONSOLE device, read might
transfer a line of characters that the user has entered.

The most significant aspect of the device switch table arises from the ability to de-
fine a uniform abstraction across multiple physical devices. For example, suppose a
computer contains a disk that uses 1 Kbyte sectors and a disk that uses 4 Kbyte sectors.
Drivers for the two disks can present an identical interface to applications, while hiding
the differences in the underlying hardware. That is, a driver can always transfer 4
Kbytes to a user, and convert each transfer into four 1 Kbyte disk transfers.

14.9 Multiple Copies Of A Device And Shared Drivers

Suppose a given computer has two devices that use identical hardware. Does the
operating system need two separate copies of the device driver? No. The system con-
tains one copy of each driver routine and uses a parameter to distinguish between the
two devices. Parameters are kept in columns of the device switch table in addition to
the functions that Figure 14.4 illustrates. For example, if a system contains two Ether-
net interfaces, each will have its own row in the device switch table. Most entries in
the two rows will be identical. However, one column will specify a unique Control and
Status Register (CSR) address for each device. When it invokes a driver function, the
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system passes an argument that contains a pointer to the row in the device switch table
for the device. Thus, a driver function can apply the operation to the correct device.
The point is:

Instead of creating a device driver for each physical device, an
operating system maintains a single copy of the driver for each type of
device and supplies an argument that permits the driver to distinguish
among multiple copies of the physical hardware.

A look at the definition of the device switch table, devtab, will clarify the details.
Structure dentry defines the format of entries in the table; the declaration can be found
in file conf.h.†

/* conf.h (GENERATED FILE; DO NOT EDIT) */

/* Device switch table declarations */

/* Device table entry */

struct dentry {

int32 dvnum;

int32 dvminor;

char *dvname;

devcall (*dvinit) (struct dentry *);

devcall (*dvopen) (struct dentry *, char *, char *);

devcall (*dvclose)(struct dentry *);

devcall (*dvread) (struct dentry *, void *, uint32);

devcall (*dvwrite)(struct dentry *, void *, uint32);

devcall (*dvseek) (struct dentry *, int32);

devcall (*dvgetc) (struct dentry *);

devcall (*dvputc) (struct dentry *, char);

devcall (*dvcntl) (struct dentry *, int32, int32, int32);

void *dvcsr;

void (*dvintr)(void);

byte dvirq;

};

extern struct dentry devtab[]; /* one entry per device */

/* Device name definitions */

#define CONSOLE 0 /* type tty */

#define NOTADEV 1 /* type null */

#define ETHER0 2 /* type eth */

��������������������������������
†File conf.h also contains #define statements that define constants used throughout the system; Chapter 24

describes Xinu configuration and explains how the constants appear.



248 Device–Independent Input and Output Chap. 14

#define RFILESYS 3 /* type rfs */

#define RFILE0 4 /* type rfl */

#define RFILE1 5 /* type rfl */

#define RFILE2 6 /* type rfl */

#define RFILE3 7 /* type rfl */

#define RFILE4 8 /* type rfl */

#define RFILE5 9 /* type rfl */

#define RDISK 10 /* type rds */

#define LFILESYS 11 /* type lfs */

#define LFILE0 12 /* type lfl */

#define LFILE1 13 /* type lfl */

#define LFILE2 14 /* type lfl */

#define LFILE3 15 /* type lfl */

#define LFILE4 16 /* type lfl */

#define LFILE5 17 /* type lfl */

#define TESTDISK 18 /* type ram */

#define NAMESPACE 19 /* type nam */

/* Control block sizes */

#define Nnull 1

#define Ntty 1

#define Neth 1

#define Nrfs 1

#define Nrfl 6

#define Nrds 1

#define Nram 1

#define Nlfs 1

#define Nlfl 6

#define Nnam 1

#define DEVMAXNAME 24

#define NDEVS 20

/* Configuration and Size Constants */

#define NPROC 100 /* number of user processes */

#define NSEM 100 /* number of semaphores */

#define IRQ_TIMER IRQ_HW5 /* timer IRQ is wired to hardware 5 */

#define IRQ_ATH_MISC IRQ_HW4 /* Misc. IRQ is wired to hardware 4 */

#define MAXADDR 0x02000000 /* 32 MB of RAM */

#define CLKFREQ 200000000 /* 200 MHz clock */

#define FLASH_BASE 0xBD000000 /* Flash ROM device */

#define LF_DISK_DEV TESTDISK
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Each entry in devtab corresponds to a single device. The entry specifies the ad-
dress of functions that constitute the driver for the device, the device CSR address, and
other information used by the driver. Fields dvinit, dvopen, dvclose, dvread, dvwrite,
dvseek, dvgetc, dvputc, and dvcntl hold the addresses of driver routines corresponding to
the high-level operations. Field dvminor contains an integer index into the control
block array for the device. A minor device number is essential if the underlying
hardware includes a set of identical hardware devices — the minor number means a
driver can have a separate control block entry for each device. Field dvcsr contains the
hardware CSR address for the device. Each entry in the control block array holds addi-
tional information for the particular instance of the device and the driver. The contents
of a control block depend on the device, but may include such things as input or output
buffers, device status information (e.g., whether a wireless networking device is current-
ly in contact with another wireless device), or accounting information (e.g., the total
amount of data received over a network device since the system booted).

14.10 The Implementation Of High-Level I/O Operations

Because it isolates high-level I/O operations from underlying details, the device
switch table allows high-level functions to be created before any device drivers have
been written. One of the chief benefits of such a strategy arises because a programmer
can build pieces of the I/O system without requiring specific hardware devices to be
present.

The example system contains a function for each high-level I/O operation. Thus,
the system contains functions open, close, read, write, getc, putc, and so on. However,
a function such as read does not perform I/O. Instead, each high-level I/O function
operates indirectly: the function uses the device switch table to find and invoke the ap-
propriate low-level device driver routine to perform the requested function. The point
is:

Instead of performing I/O, high-level functions such as read and write
use a level of indirection to invoke a low-level driver function for the
specified device.

An examination of the code will clarify the concept. Consider the read function
found in file read.c:
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/* read.c - read */

#include <xinu.h>

/*------------------------------------------------------------------------

* read - read one or more bytes from a device

*------------------------------------------------------------------------

*/

syscall read(

did32 descrp, /* descriptor for device */

char *buffer, /* address of buffer */

uint32 count /* length of buffer */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvread) (devptr, buffer, count);

restore(mask);

return retval;

}

The arguments to read consist of a device descriptor, the address of a buffer, and
an integer that gives the maximum number of bytes to read. Read uses the device
descriptor, descrp, as an index into devtab, and assigns pointer devptr the address of the
device switch table entry. The return statement contains code that performs the task of
invoking the underlying device driver function and returning the result to the function
that called read. The code:

(*devptr->dvread) (devptr, buffer, count)

performs the indirect function call. That is, the code invokes the driver function given
by field dvread in the device switch table entry, passing the function three arguments:
the address of the devtab entry, devptr, the buffer address, buffer, and a count of charac-
ters to read, count.
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14.11 Other High-Level I/O Functions

The remaining high-level transfer and control functions operate exactly as read:
they use the device switch table to select the appropriate low-level driver function, in-
voke the function, and return the result to the caller. Code for each function is shown
below.

/* control.c - control */

#include <xinu.h>

/*------------------------------------------------------------------------

* control - control a device or a driver (e.g., set the driver mode)

*------------------------------------------------------------------------

*/

syscall control(

did32 descrp, /* descriptor for device */

int32 func, /* specific control function */

int32 arg1, /* specific argument for func */

int32 arg2 /* specific argument for func */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvcntl) (devptr, func, arg1, arg2);

restore(mask);

return retval;

}
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/* getc.c - getc */

#include <xinu.h>

/*------------------------------------------------------------------------

* getc - obtain one byte from a device

*------------------------------------------------------------------------

*/

syscall getc(

did32 descrp /* descriptor for device */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvgetc) (devptr);

restore(mask);

return retval;

}

/* putc.c - putc */

#include <xinu.h>

/*------------------------------------------------------------------------

* putc - send one character of data (byte) to a device

*------------------------------------------------------------------------

*/

syscall putc(

did32 descrp, /* descriptor for device */

char ch /* character to send */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();
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if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvputc) (devptr, ch);

restore(mask);

return retval;

}

/* seek.c - seek */

#include <xinu.h>

/*------------------------------------------------------------------------

* seek - position a random access device

*------------------------------------------------------------------------

*/

syscall seek(

did32 descrp, /* descriptor for device */

uint32 pos /* position */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvseek) (devptr, pos);

restore(mask);

return retval;

}
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/* write.c - write */

#include <xinu.h>

/*------------------------------------------------------------------------

* write - write one or more bytes to a device

*------------------------------------------------------------------------

*/

syscall write(

did32 descrp, /* descriptor for device */

char *buffer, /* address of buffer */

uint32 count /* length of buffer */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvwrite) (devptr, buffer, count);

restore(mask);

return retval;

}

The functions listed above are designed to allow user processes to access I/O de-
vices. In addition, the system provides one high-level I/O function that is intended only
for the operating system to use: init. We will see that when it boots, the operating sys-
tem calls init for each device. Like the other I/O functions, init uses the device switch
table to invoke the appropriate low-level driver function. Thus, the initialization func-
tion in each driver can initialize the hardware device, if necessary, and can also initial-
ize the data structures used by the driver (e.g., buffers and semaphores). We will see
examples of driver initialization later. For now, it is sufficient to understand that init
follows the same approach as other I/O routines:

/* init.c - init */

#include <xinu.h>

/*------------------------------------------------------------------------
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* init - initialize a device and its driver

*------------------------------------------------------------------------

*/

syscall init(

did32 descrp /* descriptor for device */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvinit) (devptr);

restore(mask);

return retval;

}

14.12 Open, Close, And Reference Counting

Functions open and close operate similar to other I/O functions by using the device
switch table to call the appropriate driver function. One motivation for using open and
close arises from their ability to establish ownership of a device or prepare a device for
use. For example, if a device requires exclusive access, open can block a subsequent
user until the device becomes free. As another example, consider a system that saves
power by keeping a disk device idle when the device is not in use. Although a designer
could arrange to use the control function to start or stop a disk, open and close are more
convenient. Thus, a disk can be powered on when a process calls open, and powered
off when a process calls close.

Although a small embedded system might choose to power down a disk whenever
a process calls close on the device, larger systems need a more sophisticated mechanism
because multiple processes can use a device simultaneously. Thus, most drivers employ
a technique known as reference counting. That is, a driver maintains an integer variable
that counts the number of processes using the device. During initialization, the refer-
ence count is set to zero. Whenever a process calls open, the driver increments the
reference count, and whenever a process calls close, the driver decrements the reference
count. When the reference count reaches zero, the driver powers down the device.

The code for open and close follows the same approach as the code for other
high-level I/O functions:
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/* open.c - open */

#include <xinu.h>

/*------------------------------------------------------------------------

* open - open a device (some devices ignore name and mode parameters)

*------------------------------------------------------------------------

*/

syscall open(

did32 descrp, /* descriptor for device */

char *name, /* name to use, if any */

char *mode /* mode for device, if any */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvopen) (devptr, name, mode);

restore(mask);

return retval;

}

/* close.c - close */

#include <xinu.h>

/*------------------------------------------------------------------------

* close - close a device

*------------------------------------------------------------------------

*/

syscall close(

did32 descrp /* descriptor for device */

)

{

intmask mask; /* saved interrupt mask */

struct dentry *devptr; /* entry in device switch table */

int32 retval; /* value to return to caller */

www.itpub.net



Sec. 14.12 Open, Close, And Reference Counting 257

mask = disable();

if (isbaddev(descrp)) {

restore(mask);

return SYSERR;

}

devptr = (struct dentry *) &devtab[descrp];

retval = (*devptr->dvclose) (devptr);

restore(mask);

return retval;

}

14.13 Null And Error Entries In Devtab

An interesting dilemma arises from the way I/O functions operate. On one hand,
high-level functions, such as read and write, use entries in devtab without checking
whether the entries are valid. Thus, a function must be supplied for every I/O operation
for each device. On the other hand, an operation may not be meaningful on all devices.
For example, seek is not an operation that can be performed on a serial device, and getc
is not meaningful on a network device that delivers packets. Furthermore, a designer
may choose to ignore an operation on a particular device (e.g., a designer may choose to
leave the CONSOLE device open at all times, which means the close operation has no
effect).

What value can be used in devtab for operations that are not meaningful? The
answer lies in two special routines that can be used to fill in entries of devtab that have
no driver functions:

d ionull — return OK without performing any action

d ioerr — return SYSERR without performing any action

By convention, entries filled with ioerr should never be called; they signify an ille-
gal operation. Entries for unnecessary, but otherwise innocuous operations (e.g., open
for a terminal device), point to function ionull. The code for each of the two functions
is trivial.
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/* ionull.c - ionull */

#include <xinu.h>

/*------------------------------------------------------------------------

* ionull - do nothing (used for "don’t care" entries in devtab)

*------------------------------------------------------------------------

*/

devcall ionull(void)

{

return OK;

}

/* ioerr.c - ioerr */

#include <xinu.h>

/*------------------------------------------------------------------------

* ioerr - return an error status (used for "error" entries in devtab)

*------------------------------------------------------------------------

*/

devcall ioerr(void)

{

return SYSERR;

}

14.14 Initialization Of The I/O System

How is a device switch table initialized? How are driver functions installed? In a
large, complex operating system, device drivers can be managed dynamically. Thus,
when a user plugs in a new device, the operating system can identify the hardware and
search for an appropriate driver, and install the driver without rebooting.

A small embedded system does not have a collection of drivers available on secon-
dary storage, and may not have sufficient computational resources to install drivers at
run time. Thus, most embedded systems use a static device configuration in which the
set of devices and the set of device drivers are specified when the system is compiled.
Our example follows the static approach by requiring the system designer to specify a
set of devices and the set of low-level driver functions that constitute each driver. In-
stead of forcing a programmer to enter explicit declarations for the entire device switch
table, however, a separate application program is used that reads a configuration file and
generates a C file that contains a declaration of devtab with an initial value for each
field. The point is:
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Small embedded systems use a static device specification in which a
designer specifies the set of devices plus the device driver functions
for each; a configuration program can generate code that assigns a
value to each field of the device switch table.

File conf.c contains an example of the C code generated by the configuration pro-
gram. For now, it is sufficient to examine one of the entries in devtab and observe how
each field is initialized.

/* conf.c (GENERATED FILE; DO NOT EDIT) */

#include <xinu.h>

extern devcall ioerr(void);

extern devcall ionull(void);

/* Device independent I/O switch */

struct dentry devtab[NDEVS] =

{

/**

* Format of entries is:

* dev-number, minor-number, dev-name,

* init, open, close,

* read, write, seek,

* getc, putc, control,

* dev-csr-address, intr-handler, irq

*/

/* CONSOLE is tty */

{ 0, 0, "CONSOLE",

(void *)ttyInit, (void *)ionull, (void *)ionull,

(void *)ttyRead, (void *)ttyWrite, (void *)ioerr,

(void *)ttyGetc, (void *)ttyPutc, (void *)ttyControl,

(void *)0xb8020000, (void *)ttyInterrupt, 11 },

/* NOTADEV is null */

{ 1, 0, "NOTADEV",

(void *)ionull, (void *)ionull, (void *)ionull,

(void *)ionull, (void *)ionull, (void *)ioerr,

(void *)ionull, (void *)ionull, (void *)ioerr,

(void *)0x0, (void *)ioerr, 0 },
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/* ETHER0 is eth */

{ 2, 0, "ETHER0",

(void *)ethInit, (void *)ethOpen, (void *)ioerr,

(void *)ethRead, (void *)ethWrite, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)ethControl,

(void *)0xb9000000, (void *)ethInterrupt, 4 },

/* RFILESYS is rfs */

{ 3, 0, "RFILESYS",

(void *)rfsInit, (void *)rfsOpen, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)rfsControl,

(void *)0x0, (void *)ionull, 0 },

/* RFILE0 is rfl */

{ 4, 0, "RFILE0",

(void *)rflInit, (void *)ioerr, (void *)rflClose,

(void *)rflRead, (void *)rflWrite, (void *)rflSeek,

(void *)rflGetc, (void *)rflPutc, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* RFILE1 is rfl */

{ 5, 1, "RFILE1",

(void *)rflInit, (void *)ioerr, (void *)rflClose,

(void *)rflRead, (void *)rflWrite, (void *)rflSeek,

(void *)rflGetc, (void *)rflPutc, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* RFILE2 is rfl */

{ 6, 2, "RFILE2",

(void *)rflInit, (void *)ioerr, (void *)rflClose,

(void *)rflRead, (void *)rflWrite, (void *)rflSeek,

(void *)rflGetc, (void *)rflPutc, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* RFILE3 is rfl */

{ 7, 3, "RFILE3",

(void *)rflInit, (void *)ioerr, (void *)rflClose,

(void *)rflRead, (void *)rflWrite, (void *)rflSeek,

(void *)rflGetc, (void *)rflPutc, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* RFILE4 is rfl */

{ 8, 4, "RFILE4",

(void *)rflInit, (void *)ioerr, (void *)rflClose,
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(void *)rflRead, (void *)rflWrite, (void *)rflSeek,

(void *)rflGetc, (void *)rflPutc, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* RFILE5 is rfl */

{ 9, 5, "RFILE5",

(void *)rflInit, (void *)ioerr, (void *)rflClose,

(void *)rflRead, (void *)rflWrite, (void *)rflSeek,

(void *)rflGetc, (void *)rflPutc, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* RDISK is rds */

{ 10, 0, "RDISK",

(void *)rdsInit, (void *)rdsOpen, (void *)rdsClose,

(void *)rdsRead, (void *)rdsWrite, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)rdsControl,

(void *)0x0, (void *)ionull, 0 },

/* LFILESYS is lfs */

{ 11, 0, "LFILESYS",

(void *)lfsInit, (void *)lfsOpen, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* LFILE0 is lfl */

{ 12, 0, "LFILE0",

(void *)lflInit, (void *)ioerr, (void *)lflClose,

(void *)lflRead, (void *)lflWrite, (void *)lflSeek,

(void *)lflGetc, (void *)lflPutc, (void *)lflControl,

(void *)0x0, (void *)ionull, 0 },

/* LFILE1 is lfl */

{ 13, 1, "LFILE1",

(void *)lflInit, (void *)ioerr, (void *)lflClose,

(void *)lflRead, (void *)lflWrite, (void *)lflSeek,

(void *)lflGetc, (void *)lflPutc, (void *)lflControl,

(void *)0x0, (void *)ionull, 0 },

/* LFILE2 is lfl */

{ 14, 2, "LFILE2",

(void *)lflInit, (void *)ioerr, (void *)lflClose,

(void *)lflRead, (void *)lflWrite, (void *)lflSeek,

(void *)lflGetc, (void *)lflPutc, (void *)lflControl,

(void *)0x0, (void *)ionull, 0 },
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/* LFILE3 is lfl */

{ 15, 3, "LFILE3",

(void *)lflInit, (void *)ioerr, (void *)lflClose,

(void *)lflRead, (void *)lflWrite, (void *)lflSeek,

(void *)lflGetc, (void *)lflPutc, (void *)lflControl,

(void *)0x0, (void *)ionull, 0 },

/* LFILE4 is lfl */

{ 16, 4, "LFILE4",

(void *)lflInit, (void *)ioerr, (void *)lflClose,

(void *)lflRead, (void *)lflWrite, (void *)lflSeek,

(void *)lflGetc, (void *)lflPutc, (void *)lflControl,

(void *)0x0, (void *)ionull, 0 },

/* LFILE5 is lfl */

{ 17, 5, "LFILE5",

(void *)lflInit, (void *)ioerr, (void *)lflClose,

(void *)lflRead, (void *)lflWrite, (void *)lflSeek,

(void *)lflGetc, (void *)lflPutc, (void *)lflControl,

(void *)0x0, (void *)ionull, 0 },

/* TESTDISK is ram */

{ 18, 0, "TESTDISK",

(void *)ramInit, (void *)ramOpen, (void *)ramClose,

(void *)ramRead, (void *)ramWrite, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)ioerr,

(void *)0x0, (void *)ionull, 0 },

/* NAMESPACE is nam */

{ 19, 0, "NAMESPACE",

(void *)namInit, (void *)namOpen, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)ioerr,

(void *)ioerr, (void *)ioerr, (void *)ioerr,

(void *)0x0, (void *)ioerr, 0 }

};

14.15 Perspective

Device-independent I/O is now an integral part of main-stream computing, and the
advantages seem obvious. However, it took decades for the computing community to
reach consensus on device-independent I/O and to devise a set of primitives. Some of
the contention arose because programming languages each define a set of I/O abstrac-
tions. For example, FORTRAN used device numbers and required a mechanism that
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could bind each number to an I/O device or file. Operating system designers wanted to
accommodate all languages because a large volume of code has been written in each.
So, the question arises: have we chosen the best set of device-independent I/O functions
or have we merely become so accustomed to using them that we fail to look for alterna-
tives?

14.16 Summary

An operating system hides the details of peripheral devices, and provides a set of
abstract, device-independent functions that can be used to perform I/O. The example
system uses nine abstract functions: open, close, control, getc, putc, read, write, seek,
and an initialization function, init. In our design, each of the I/O primitives operates
synchronously, delaying a calling process until the request has been satisfied (e.g., func-
tion read delays the calling process until data has arrived).

The example system defines an abstract device name (such as CONSOLE) for each
device, and assigns the device a unique integer device descriptor. The system uses a
device switch table to bind a descriptor to a specific device at run-time. Conceptually,
the device switch table contains one row for each device and one column for each
abstract I/O operation; additional columns point to a control block for the device, and a
minor device number is used to distinguish among multiple copies of a physical device.
A high-level I/O operation, such as read or write, uses the device switch table to invoke
the device driver function that performs the requested operation on the specified device.
Individual drivers interpret the calls in a way meaningful to a particular device; if an
operation makes no sense when applied to a particular device, the device switch table is
configured to invoke function ioerr, which returns an error code.

EXERCISES

14.1 Identify the set of abstract I/O operations available in Linux.

14.2 Find a system that uses asynchronous I/O, and identify the mechanism by which a run-
ning program is notified when the operation completes. Which approach, synchronous
or asynchronous, makes it easier to program? Explain.

14.3 The chapter discusses two separate bindings: the binding from a device name (e.g.,
CONSOLE) to a descriptor (e.g., 0) and the binding from a device descriptor to a specif-
ic hardware device. Explain how Linux performs the two bindings.

14.4 Consider the implementation of device names in the example code. Is it possible to
write a program that allows a user to enter a device name (e.g., CONSOLE), and then
open the device? Why or why not?

14.5 Assume that in the course of debugging you begin to suspect that a process is making in-
correct calls to high-level I/O functions (e.g., calling seek on a device for which the
operation makes no sense). How can you make a quick change to the code to intercept
such errors and display the process ID of the offending process? (Make the change
without recompiling the source code.)
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14.6 Are the abstract I/O operations presented in the chapter sufficient for all I/O operations?
Explain. (Hint: consider socket functions found in Unix.)

14.7 Xinu defines the device subsystem as the fundmental I/O abstraction and merges files
into the device system. Unix systems define the file system as the fundamental abstrac-
tion and merge devices into the file system. Compare the two approaches and list the
advantages of each.
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An Example Device Driver

It’s hard to find a good driver these days, one with
character and style.

— Unknown

15.1 Introduction

Chapters in this section of the text explore the general structure of an I/O system,
including interrupt processing and real-time clock management. The previous chapter
presents the organization of the I/O subsystem, a set of abstract I/O operations, and an
efficient implementation using a device switch table.

This chapter continues the exploration of I/O. The chapter explains how a driver
can define an I/O service at a high level of abstraction that is independent of the under-
lying hardware. The chapter also elaborates on the conceptual division of a device
driver into upper and lower halves by explaining how the two halves share data struc-
tures, such as buffers, and how they communicate. Finally, the chapter shows the de-
tails of a particular example: a driver for an asynchronous character-oriented serial de-
vice.

15.2 The Tty Abstraction

Xinu uses the name tty to refer to the abstraction of an interface used with
character-oriented serial devices such as a serial interface or a keyboard and text win-
dow.† In broad terms, a tty device supports two-way communication: a process can
send characters to the output side and/or receive characters from the input side.
Although the underlying serial hardware mechanism operates the input and output in-

��������������������������������
†The name tty is taken from early Unix systems that used an ASCII Teletype device that consisted of a

keyboard and an associated printer mechanism.
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dependently, the tty abstraction allows the two to be connected. For example, our tty
driver supports character echo, which means that the input side of the driver can be
configured to transmit a copy of each incoming character to the output. Echo is espe-
cially important when a user is typing on a keyboard and expects to see characters
displayed on a screen as keys are pressed.

The tty abstraction illustrates an important feature of many device drivers: multiple
modes that can be selected at run-time. In our tty driver, the three modes focus on how
the driver processes incoming characters before delivering them to an application. Fig-
ure 15.1 summarizes the three modes and gives their characteristics.

�������������������������������������������������������������������
Mode Meaning�������������������������������������������������������������������

The driver delivers each incoming character as it arrives
raw without echoing the character, buffering a line of text,

performing translation, or controlling the output flow�������������������������������������������������������������������
The driver buffers input, echoes characters in a readable

cooked form, honors backspace and line kill, allows type-ahead,
handles flow control, and delivers an entire line of text�������������������������������������������������������������������
The driver handles character translation, echoing, and

cbreak flow control, but instead of buffering an entire line of text,
the driver delivers each incoming characters as it arrives���������������������������������������������������������������������
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Figure 15.1  Three modes supported by the tty abstraction.

Cooked mode is intended to handle interactive keyboard input. Each time it re-
ceives a character, the driver echoes the character (i.e., transmits a copy of the character
to the output), which allows a user to see characters as they are typed. Echo is not
mandatory. Instead, the driver has a parameter to control character echoing, which
means an application can turn off echo to prompt for a password. Cooked mode sup-
ports line buffering, which means that the driver collects all characters of a line before
delivering them to a reading process. Because the tty driver performs character echo
and other functions at interrupt time, a user can type ahead, even if no application is
reading characters (e.g., a user can type the next command while the current command
is running). The chief advantage of line buffering arises from the ability to edit the
line, either by backspacing or typing a special character that erases the entire line and
allows the user to begin entering the line again.

Cooked mode provides two additional functions. First, it handles output flow con-
trol, allowing a user to temporarily stop and later restart output. When flow control is
enabled, typing control-s stops output and typing control-q restarts output. Second,
cooked mode handles input mapping. In particular, some computers or applications use
a two-character sequence of carriage return (cr) and linefeed (lf) to terminate a line of
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text, and others use only a single character. Cooked mode contains a crlf† parameter
that controls how the driver handles line termination. When a user presses the key la-
beled ENTER or RETURN, the driver consults the parameter to decide whether to pass a
linefeed (also called a NEWLINE) character to the application or to map the linefeed
into a pair of characters, carriage return followed by linefeed.

Raw mode is intended to give applications access to input characters with no pre-
processing. In raw mode, the tty driver merely delivers input without interpreting or
changing characters. The driver does not echo characters nor does it handle flow con-
trol. Raw mode is useful when handling non-interactive communication, such as down-
loading a binary file over a serial line or using a serial device to control a sensor.

Cbreak mode provides a compromise between cooked and raw modes. In cbreak
mode, each character is delivered to the application instantly, without waiting to accu-
mulate a line of text. Thus, the driver does not buffer input, nor does the driver support
backspace or line kill functions. However, the driver does handle both character echo
and flow control.

15.3 Organization Of A Tty Device Driver

Like most device drivers, the example tty driver is partitioned into an upper half
that contains functions called by application processes (indirectly through the device
switch table), and a lower half that contains functions invoked when the device inter-
rupts. The two halves share a data structure that contains information about the device,
the current mode of the driver, and buffers for incoming and outgoing data. In general,
upper-half functions move data to or from the shared structure and have minimal in-
teraction with the device hardware. For example, an upper-half function places outgo-
ing data in the shared structure where a lower-half function can access and send the data
to the device. Similarly, the lower half places incoming data in the shared structure
where an upper-half function can extract it.

The motivation for driver partitioning can be difficult to appreciate at first. We
will see, however, that dividing a driver into two halves is fundamental because the
division allows a system designer to decouple normal processing from hardware inter-
rupt processing and understand exactly how each function is invoked. The point is:

When creating a device driver, a programmer must be careful to
preserve the division between upper-half and lower-half functions be-
cause upper-half functions are called by application processes and
lower-half functions are invoked by interrupts.

��������������������������������
†Pronounced curl-if.
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15.4 Request Queues And Buffers

The shared data structure in a driver usually contains two key items:

d A queue of requests

d Input and output buffers

Request queue. In principle, the most important item found in the data structure
shared by upper-half and lower-half functions is a queue into which the upper half
places requests. Conceptually, the request queue connects high-level operations that ap-
plications specify and low-level actions that must be performed on the device. Each
driver has its own set of requests, and the contents of elements on a request queue
depend on the underlying device as well as the operations to be performed. For exam-
ple, requests issued to a disk device specify the direction of transfer (read or write), a
location on the disk, and the amount of data to be transferred. Requests issued to a net-
work device might specify a set of packets to transmit over the network. Our example
driver does not need a separate request queue because the only operations are to
transmit an outgoing character or receive an incoming character. Thus, the queue of
outgoing characters serves as a transmission request, and space in the queue of incom-
ing characters serves as a reception request.

Buffers. A driver uses an output buffer to hold data being sent to the device. An
outgoing data item remains in the buffer from the time an application sends the item un-
til the device is ready to accept it. An input buffer holds data that has arrived from a
device, and an incoming item remains in the buffer from the time the device deposits
the item until a process requests it.

Buffers are important for several reasons. First, a driver can accept incoming data
and place it in an input buffer before a user process reads the data. Input buffering is
especially important for devices like a network interface or a keyboard because packets
can arrive at any time and a user can strike a key at any time. Second, for a device
such as a disk that transfers data in blocks, the operating system must obtain an entire
block, even if an application only reads one character. By placing the block in a buffer,
the system can satisfy subsequent requests from the buffer. Third, buffering permits the
driver to perform I/O concurrently with processing. When a process writes data, the
driver copies the data into an output buffer, starts an output operation, and allows the
process to continue executing.

The example tty driver uses three circular character buffers for each serial device:
one for input, one for output, and one for echoed characters. Echoed characters are kept
in a buffer separate from normal output because echoed characters have higher priority.
We think of each buffer as a conceptual queue, with characters being inserted at the tail
and removed from the head. Figure 15.2 illustrates the concept of a circular output
buffer, and shows the implementation with an array of bytes in memory.
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Figure 15.2 (a) A circular output buffer acting as a queue, and (b) the imple-
mentation with an array of bytes.

Output functions deposit characters to be sent in the output buffer and return to
their caller. When it places characters in the output buffer, an upper-half function must
also start output interrupts on the device. Whenever the device generates an output in-
terrupt, the lower half extracts up to sixteen characters from the output buffer, and depo-
sits the characters in the device’s output FIFO. Once all characters have been transmit-
ted, the device will interrupt again. Thus, output continues until the output buffer be-
comes empty at which time the driver stops output and the device becomes idle.

Input works the other way around. Whenever it receives characters, the device in-
terrupts and the interrupt dispatcher calls a lower-half function (i.e., ttyInterrupt). The
interrupt handler extracts the characters from the device FIFO and deposits them in the
circular input buffer. When a process calls an upper-half function to read input, the
upper-half function extracts characters from the input buffer.

Conceptually, the two halves of a driver only communicate through shared buffers.
Upper-half functions place outgoing data in a buffer and extract incoming data from a
buffer. The lower half extracts outgoing data from the buffer and sends it to the device,
and places incoming data in the buffer. To summarize:

Upper-half functions transfer data between processes and buffers; the
lower half transfers data between buffers and the device hardware.

15.5 Synchronization Of Upper Half And Lower Half

In practice, the two halves of the driver usually need to do more than manipulate a
shared data structure. For example, an upper-half function may need to start an output
transfer if a device is idle. More important, the two halves need to coordinate opera-
tions on the request queue and the buffers. For example, if all slots in the output buffer
are full when a process tries to write data, the process must be blocked. Later, when
characters have been sent to the device and buffer space becomes available, the blocked
process must be allowed to proceed. Similarly, if the input buffer is empty when a pro-
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cess attempts to read from a device, the process must be blocked. Later, when input has
been received and placed in the buffer, the process that is waiting for input must be al-
lowed to proceed.

At first glance, synchronization between the upper half and lower half of a driver
appears to consist of two instances of producer–consumer coordination that can be
solved easily with semaphores. On output, the upper-half functions produce data that
the lower-half functions consume, and on input, the lower half produces input data that
the upper-half functions consume. Input poses no problem for the producer–consumer
paradigm; a semaphore can be created that handles coordination. When a process calls
an upper-half input function, the process waits on the input semaphore until the lower
half produces an input data item and signals the semaphore.

Output poses an added twist. To understand the problem, recall our restriction on
interrupt processing: because it can be executed by the null process, an interrupt routine
cannot call a function that moves the executing process to any state other than ready or
current. In particular, lower-half routines cannot call wait. Consequently, a driver can-
not be designed in which a semaphore allows upper-half functions to produce data and
lower-half functions to consume data.

How can upper– and lower–half functions coordinate to control output? Surpris-
ingly, a semaphore solves the problem easily. The trick is to turn around the call to
wait by changing the purpose of the output semaphore. Instead of having a lower-half
routine wait for the upper half to produce data, we arrange for the upper half to wait for
space in the buffer. Thus, we do not view the lower half as a consumer. Instead, a
lower-half output function acts as a producer to generate space (i.e., slots) in the buffer,
and signals the output semaphore for each slot. To summarize:

Semaphores can be used to coordinate the upper half and lower half
of a device driver. To avoid having lower-half functions block, output
is handled by arranging for upper-half functions to wait for buffer
space.

15.6 Hardware Buffers And Driver Design

The design of the hardware can complicate driver design. For example, consider
the Universal Asynchronous Transmitter and Receiver hardware in the E2100L. The
device contains two onboard buffers, known as FIFOs. One FIFO handles incoming
characters, and the other handles outgoing characters. Each FIFO holds sixteen charac-
ters. The device does not interrupt each time a character arrives. Instead, the hardware
generates an interrupt when the first character arrives, but continues to add characters to
the input FIFO if they arrive before the interrupt has been serviced. Thus, when it re-
ceives an input interrupt, the driver must repeatedly extract characters from the FIFO
until the FIFO is empty.
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How do multiple input characters affect the driver design? Consider the case
where a process is blocked on an input semaphore, waiting for a character to arrive. In
theory, once it extracts a character from the device and places the character in the input
buffer, the driver should signal the semaphore to reschedule to indicate that a character
is available. However, doing so may cause an immediate context switch, leaving addi-
tional characters in the FIFO unprocessed. To avoid the problem, our driver uses
sched_cntl† to defer rescheduling temporarily. After all characters have been extracted
from the input FIFO and processed, the driver again calls sched_cntl to permit other
processes to run.

15.7 Tty Control Block And Data Declarations

Recall that if a system contains multiple copies of a given hardware device, the
operating system keeps one copy of the device driver code, but creates a separate shared
data structure for each device. Some systems use the term control block to describe the
shared data structure, and say that one control block is allocated per physical device.
When it runs, a device driver function receives an argument that identifies the control
block to use. Thus, if a particular system has three serial devices that use the tty
abstraction, the operating system contains only one copy of the functions that read and
write to a tty device, but contains three separate copies of a tty control block.

A control block stores information about the device, the driver, and the request
queue. The control block either contains buffers or contains pointers to buffers in
memory‡. Control blocks also store information that the upper half and lower half use
to coordinate. For example, because the example tty driver uses a semaphore to coordi-
nate access to the output buffer and a semaphore to coordinate access to the input
buffer, the tty control block stores the two semaphore IDs.

The code in file tty.h contains the declaration of the tty control block structure,
which is named ttycblk:

��������������������������������
†The code for sched_cntl can be found on page 84.
‡On some systems, I/O buffers must be placed in a special region of memory to permit devices to access

the buffers directly.



274 An Example Device Driver Chap. 15

/* tty.h */

#define TY_OBMINSP 20 /* min space in buffer before */

/* processes awakened to write */

#define TY_EBUFLEN 20 /* size of echo queue */

/* Size constants */

#ifndef Ntty

#define Ntty 1 /* number of serial tty lines */

#endif

#ifndef TY_IBUFLEN

#define TY_IBUFLEN 128 /* num. chars in input queue */

#endif

#ifndef TY_OBUFLEN

#define TY_OBUFLEN 64 /* num. chars in output queue */

#endif

/* Mode constants for input and output modes */

#define TY_IMRAW ’R’ /* raw mode => nothing done */

#define TY_IMCOOKED ’C’ /* cooked mode => line editing */

#define TY_IMCBREAK ’K’ /* honor echo, etc, no line edit*/

#define TY_OMRAW ’R’ /* raw mode => normal processing*/

struct ttycblk { /* tty line control block */

char *tyihead; /* next input char to read */

char *tyitail; /* next slot for arriving char */

char tyibuff[TY_IBUFLEN]; /* input buffer (holds one line)*/

sid32 tyisem; /* input semaphore */

char *tyohead; /* next output char to xmit */

char *tyotail; /* next slot for outgoing char */

char tyobuff[TY_OBUFLEN]; /* output buffer */

sid32 tyosem; /* output semaphore */

char *tyehead; /* next echo char to xmit */

char *tyetail; /* next slot to deposit echo ch */

char tyebuff[TY_EBUFLEN]; /* echo buffer */

char tyimode; /* input mode raw/cbreak/cooked */

bool8 tyiecho; /* is input echoed? */

bool8 tyieback; /* do erasing backspace on echo?*/

bool8 tyevis; /* echo control chars as ^X ? */

bool8 tyecrlf; /* echo CR-LF for newline? */

bool8 tyicrlf; /* map ’\r’ to ’\n’ on input? */

bool8 tyierase; /* honor erase character? */

char tyierasec; /* erase character (backspace) */
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bool8 tyeof; /* honor EOF character? */

char tyeofch; /* EOF character (usually ^D) */

bool8 tyikill; /* honor line kill character? */

char tyikillc; /* line kill character */

int32 tyicursor; /* current cursor position */

bool8 tyoflow; /* honor ostop/ostart? */

bool8 tyoheld; /* output currently being held? */

char tyostop; /* character that stops output */

char tyostart; /* character that starts output */

bool8 tyocrlf; /* output CR/LF for LF ? */

char tyifullc; /* char to send when input full */

};

extern struct ttycblk ttytab[];

/* Characters with meaning to the tty driver */

#define TY_BACKSP ’\b’ /* Backspace character */

#define TY_BELL ’\07’ /* Character for audible beep */

#define TY_EOFCH ’\04’ /* Control-D is EOF on input */

#define TY_BLANK ’ ’ /* Blank */

#define TY_NEWLINE ’\n’ /* Newline == line feed */

#define TY_RETURN ’\r’ /* Carriage return character */

#define TY_STOPCH ’\023’ /* Control-S stops output */

#define TY_STRTCH ’\021’ /* Control-Q restarts output */

#define TY_KILLCH ’\025’ /* Control-U is line kill */

#define TY_UPARROW ’^’ /* Used for control chars (^X) */

#define TY_FULLCH TY_BELL /* char to echo when buffer full*/

/* Tty control function codes */

#define TC_NEXTC 3 /* look ahead 1 character */

#define TC_MODER 4 /* set input mode to raw */

#define TC_MODEC 5 /* set input mode to cooked */

#define TC_MODEK 6 /* set input mode to cbreak */

#define TC_ICHARS 8 /* return number of input chars */

#define TC_ECHO 9 /* turn on echo */

#define TC_NOECHO 10 /* turn off echo */

The key components of the ttycblk structure consist of the input buffer, tyibuff, an
output buffer, tyobuff, and a separate echo buffer, tyebuff. Each buffer used in the tty
driver is implemented as an array of characters. The driver treats each buffer as a circu-
lar list, with location zero in an array treated as if it follows the last location. Head and
tail pointers give the address of the next location in the array to fill, and the next loca-
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tion in the array to empty, respectively. Thus, a programmer can remember an easy
rule:

A character is always inserted at the tail and taken from the head, in-
dependent of whether a buffer is used for input or output.

Initially, the head and tail each point to location zero, but there is never any confu-
sion about whether an input or output buffer is completely empty or completely full be-
cause each buffer has a semaphore that gives the count of characters in the buffer.
Semaphore tyisem controls the input buffer, and a non-negative count n means the
buffer contains n characters. Semaphore tyosem controls the output buffer, and a non-
negative count n means the buffer contains n unfilled slots. The echo buffer is an ex-
ception. Our design assumes echo is used for a human typing, which means that only a
few characters will ever occupy the echo queue. Therefore, we assume that no overflow
will occur, which means that no semaphore is needed to control the queue.

15.8 Minor Device Numbers

We said that the configuration program assigns each device in the system a unique
device ID. It is important to know that although a system can contain multiple physical
devices that use a given abstraction, the IDs assigned to the devices may not be contigu-
ous values. Thus, if a system has three tty devices, the configuration program may as-
sign them device IDs 2, 7, and 8.

We also said that the operating system must allocate one control block per device.
For example, if a system contains three tty devices, the system must allocate three
copies of the tty control block. Many systems employ a technique that permits efficient
access of a control block for a given device. The system assigns a minor device number
to each copy of the device, and chooses minor device numbers to be integers starting at
zero. Thus, if a system contains three tty devices, they will be assigned minor device
numbers 0, 1, and 2.

How does assigning minor device numbers sequentially make access efficient? A
minor device number can be used as an index into an array of control blocks. For ex-
ample, consider how tty control blocks are allocated. As file tty.h illustrates, the control
blocks are placed in array ttytab. The system configuration program defines constant
Ntty to be the number of tty devices, which is used to declare the size of array ttytab.
The configuration program assigns each tty device a minor device number starting at 0
and ending at Ntty-1. The minor device number is placed in the device switch table en-
try. Both interrupt-driven routines in the lower half and driver routines in the upper
half can access the minor device number and use it as an index into array ttytab.
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15.9 Upper–Half Tty Character Input (ttyGetc)

Four functions, ttyGetc, ttyPutc, ttyRead, and ttyWrite, form the main foundation
for the upper half of the tty driver. The functions correspond to the high-level opera-
tions getc, putc, read, and write described in Chapter 14. The simplest driver routine is
ttyGetc. The code can be found in file ttyGetc.c.

/* ttyGetc.c - ttyGetc */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyGetc - read one character from a tty device (interrupts disabled)

*------------------------------------------------------------------------

*/

devcall ttyGetc(

struct dentry *devptr /* entry in device switch table */

)

{

char ch;

struct ttycblk *typtr; /* pointer to ttytab entry */

typtr = &ttytab[devptr->dvminor];

/* Wait for a character in the buffer */

wait(typtr->tyisem);

ch = *typtr->tyihead++; /* extract one character */

/* Wrap around to beginning of buffer, if needed */

if (typtr->tyihead >= &typtr->tyibuff[TY_IBUFLEN]) {

typtr->tyihead = typtr->tyibuff;

}

if ( (typtr->tyimode == TY_IMCOOKED) && (typtr->tyeof) &&

(ch == typtr->tyeofch) ) {

return (devcall)EOF;

}

return (devcall)ch;

}
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When called, ttyGetc first retrieves the minor device number from the device
switch table, and uses it as an index into array ttytab to locate the correct control block.
It then executes wait on the input semaphore, tyisem, blocking until the lower half has
deposited a character in the buffer. When wait returns, ttyGetc extracts the next charac-
ter from the input buffer and updates the head pointer to make it ready for subsequent
extractions. Normally, ttyGetc returns the character to its caller. However, one special
case arises: if the driver is honoring end-of-file and the character matches the end-of-file
character (field tyeofch in the control block), ttyGetc returns constant EOF.

15.10 Generalized Upper–Half Tty Input (ttyRead)

The read operation can be used to obtain multiple characters in a single operation.
The driver function that implements the read operation, ttyRead, is shown below in file
ttyRead.c. TtyRead is conceptually straightforward: it calls ttyGetc repeatedly to obtain
characters. When the driver is operating in cooked mode, ttyRead returns a single line
of input, stopping after a NEWLINE or RETURN character; when operating in other
modes, ttyRead reads characters without testing for an end-of-line.

/* ttyRead.c - ttyRead */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyRead - read character(s) from a tty device (interrupts disabled)

*------------------------------------------------------------------------

*/

devcall ttyRead(

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer of characters */

int32 count /* count of character to read */

)

{

struct ttycblk *typtr; /* pointer to tty control block */

int32 avail; /* characters available in buff.*/

int32 nread; /* number of characters read */

int32 firstch; /* first input character on line*/

char ch; /* next input character */

if (count < 0) {

return SYSERR;

}

typtr= &ttytab[devptr->dvminor];

if (typtr->tyimode != TY_IMCOOKED) {
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/* For count of zero, return all available characters */

if (count == 0) {

avail = semcount(typtr->tyisem);

if (avail == 0) {

return 0;

} else {

count = avail;

}

}

for (nread = 0; nread < count; nread++) {

*buff++ = (char) ttyGetc(devptr);

}

return nread;

}

/* Block until input arrives */

firstch = ttyGetc(devptr);

/* Check for End-Of-File */

if (firstch == EOF) {

return (EOF);

}

/* read up to a line */

ch = (char) firstch;

*buff++ = ch;

nread = 1;

while ( (nread < count) && (ch != TY_NEWLINE) &&

(ch != TY_RETURN) ) {

ch = ttyGetc(devptr);

*buff++ = ch;

nread++;

}

return nread;

}

The semantics of how read operates on terminals illustrates how the I/O primitives
can be adapted to a variety of devices and modes. For example, an application that uses
raw mode may need to read all the characters available from the input buffer without
blocking. TtyRead cannot simply call ttyGetc repeatedly because ttyGetc will block
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once the buffer is empty. To accommodate non-blocking requests, our driver allows
what might otherwise be considered an illegal operation: it interprets a request to read
zero characters as a request to “read all characters that are waiting.”

The code in ttyRead shows how the zero length requests are handled in raw mode:
the driver uses semcount to obtain the current count of the input semaphore, tyisem. It
then knows exactly how many calls can be made to ttyGetc without blocking.

For cooked mode, the driver blocks until at least one character arrives. It handles
the special case of an end-of-file character, and then calls ttyGetc repeatedly to read the
rest of the line.

15.11 Upper–Half Tty Character Output (ttyPutc)

The upper-half output routines are almost as simple as the upper-half input rou-
tines. TtyPutc waits for space in the output buffer, deposits the specific character in the
output queue, tyobuff, and increments the tail pointer, tyotail. File ttyPutc.c contains the
code.

/* ttyPutc.c - ttyPutc */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyPutc - write one character to a tty device (interrupts disabled)

*------------------------------------------------------------------------

*/

devcall ttyPutc(

struct dentry *devptr, /* entry in device switch table */

char ch /* character to write */

)

{

struct ttycblk *typtr; /* pointer to tty control block */

typtr = &ttytab[devptr->dvminor];

/* Handle output CRLF by sending CR first */

if ( ch==TY_NEWLINE && typtr->tyocrlf ) {

ttyPutc(devptr, TY_RETURN);

}

wait(typtr->tyosem); /* wait for space in queue */

*typtr->tyotail++ = ch;

/* Wrap around to beginning of buffer, if needed */
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if (typtr->tyotail >= &typtr->tyobuff[TY_OBUFLEN]) {

typtr->tyotail = typtr->tyobuff;

}

/* Start otuput in case device is idle */

ttyKickOut(typtr, (struct uart_csreg *)devptr->dvcsr);

return OK;

}

In addition to the processing mentioned above, ttyPutc honors one of the tty
parameters, tyocrlf, and starts output. When tyocrlf is TRUE, each NEWLINE should
map to the combination RETURN plus NEWLINE. To write the RETURN character,
ttyPutc calls itself recursively.

15.12 Starting Output (ttyKickOut)

Just before it returns, ttyPutc calls ttyKickOut to start output. In fact, ttyKickOut
does not perform any output to the device because all output is handled by the lower-
half function when an output interrupt occurs. To understand how ttyKickOut works, it
is necessary to know how an operating system interacts with the device hardware. It
may seem that when a character becomes ready for output, ttyPutc would take the fol-
lowing steps:

Interact with the device to determine whether the device is busy;
if (the device is not busy) {

send the character to the device;
} else {

instruct the device to interrupt when output finishes;
}

Unfortunately, a device operates in parallel with the processor. Therefore, between
the time the processor obtains the status and the time it instructs the device to interrupt,
the device can finish.

To avoid a race condition, device hardware allows the operating system to request
an interrupt without testing the device. Making a request is trivial: the driver merely
needs to set a bit in one of the device control registers. The point is that no race condi-
tion occurs because setting the bit causes an interrupt whether the device is currently
sending characters or idle. If the device is busy, the hardware waits until output fin-
ishes and the on-board buffer is empty before generating an interrupt; if the device is
currently idle, the device interrupts immediately.
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Setting the interrupt bit in the device only requires a single assignment statement;
the code can be found in file ttyKickOut.c:

/* ttyKickOut.c - ttyKickOut */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyKickOut - "kick" the hardware for a tty device, causing it to

* generate an output interrupt (interrupts disabled)

*------------------------------------------------------------------------

*/

void ttyKickOut(

struct ttycblk *typtr, /* ptr to ttytab entry */

struct uart_csreg *uptr /* address of UART’s CSRs */

)

{

/* Set output interrupts on the UART, which causes */

/* the device to generate an output interrupt */

uptr->ier = UART_IER_ERBFI | UART_IER_ETBEI | UART_IER_ELSI;

return;

}

15.13 Upper–Half Tty Multiple Character Output (ttyWrite)

The tty driver also supports multiple-byte output transfers (i.e., writes). Driver
function ttyWrite, found in file ttyWrite.c, handles the output of one or more bytes.
TtyWrite begins by checking the argument count, which specifies the number of bytes to
write. A negative count is invalid, and a count of zero is allowed, but means no charac-
ters are written.

Once it has finished checking argument count, ttyWrite enters a loop. On each
iteration through the loop, ttyWrite extracts the next character from the user’s buffer and
calls ttyPutc to send the character to the output buffer. As we have seen, ttyPutc will
proceed until the output buffer is full, at which time the call to ttyPutc will block until
space becomes available.
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/* ttyWrite.c - ttyWrite, writcopy */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyWrite - write character(s) to a tty device (interrupts disabled)

*------------------------------------------------------------------------

*/

devcall ttyWrite(

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer of characters */

int32 count /* count of character to write */

)

{

if (count < 0) {

return SYSERR;

} else if (count == 0){

return OK;

}

for (; count>0 ; count--) {

ttyPutc(devptr, *buff++);

}

return OK;

}

15.14 Lower–Half Tty Driver Function (ttyInterrupt)

The lower half of the tty driver is invoked when an interrupt occurs. It consists of
function ttyInterrupt, shown below in file ttyInterrupt.c:
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/* ttyInterrupt.c - ttyInterrupt */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyInterrupt - handle an interrupt for a tty (serial) device

*------------------------------------------------------------------------

*/

interrupt ttyInterrupt(void)

{

struct dentry *devptr; /* pointer to devtab entry */

struct ttycblk *typtr; /* pointer to ttytab entry */

struct uart_csreg *uptr; /* address of UART’s CSRs */

int32 iir = 0; /* interrupt identification */

int32 lsr = 0; /* line status */

/* For now, the CONSOLE is the only serial device */

devptr = (struct dentry *)&devtab[CONSOLE];

/* Obtain the CSR address for the UART */

uptr = (struct uart_csreg *)devptr->dvcsr;

/* Obtain a pointer to the tty control block */

typtr = &ttytab[ devptr->dvminor ];

/* Decode hardware interrupt request from UART device */

/* Check interrupt identification register */

iir = uptr->iir;

if (iir & UART_IIR_IRQ) {

return;

}

/* Decode the interrupt cause based upon the value extracted */

/* from the UART interrupt identification register. Clear */

/* the interrupt source and perform the appropriate handling */

/* to coordinate with the upper half of the driver */

iir &= UART_IIR_IDMASK; /* Mask off the interrupt ID */

switch (iir) {
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/* Receiver line status interrupt (error) */

case UART_IIR_RLSI:

lsr = uptr->lsr;

return;

/* Receiver data available or timed out */

case UART_IIR_RDA:

case UART_IIR_RTO:

sched_cntl(DEFER_START);

/* For each char in UART buffer, call ttyInter_in */

while (uptr->lsr & UART_LSR_DR) { /* while chars avail */

ttyInter_in(typtr, uptr);

}

sched_cntl(DEFER_STOP);

return;

/* Transmitter output FIFO is empty (i.e., ready for more) */

case UART_IIR_THRE:

lsr = uptr->lsr; /* Read from LSR to clear interrupt */

ttyInter_out(typtr, uptr);

return;

/* Modem status change (simply ignore) */

case UART_IIR_MSC:

return;

}

}

Recall that a handler is invoked indirectly — the interrupt dispatcher calls the
handler whenever the device interrupts. We will see that the tty initialization routine ar-
ranges the connection between the dispatcher and ttyInterrupt. For now, it is sufficient
to know that the handler will be invoked whenever: the device has received (one or
more) incoming characters, or the device has sent all the characters in its output FIFO
and is ready for more.
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After obtaining the device’s CSR address from the device switch table, ttyInterrupt
loads the device CSR address into uptr, and then uses uptr to access the device. The
key step consists of reading the interrupt identification register and using the value to
determine the exact reason for the interrupt. The two reasons of interest are an input in-
terrupt (data has arrived) or an output interrupt (i.e., the transmitter FIFO is empty and
the driver can send additional characters).

15.15 Output Interrupt Processing (ttyInter_out)

Output interrupt processing is the easiest to understand. When an output interrupt
occurs, the device has transmitted all characters from the onboard FIFO and is ready for
more. TtyInterrupt clears the interrupt and calls ttyInter_out to restart output. The code
for ttyInter_out can be found in file ttyInter_out.c

/* ttyInter_out.c - ttyInter_out */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyInter_out - handle an output on a tty device by sending more

* characters to the device FIFO (interrupts disabled)

*------------------------------------------------------------------------

*/

void ttyInter_out(

struct ttycblk *typtr, /* ptr to ttytab entry */

struct uart_csreg *uptr /* address of UART’s CSRs */

)

{

int32 ochars; /* number of output chars sent */

/* to the UART */

int32 avail; /* available chars in output buf*/

int32 uspace; /* space left in onboard UART */

/* output FIFO */

/* If output is currently held, turn off output interrupts */

if (typtr->tyoheld) {

uptr->ier = UART_IER_ERBFI | UART_IER_ELSI;

return;

}

/* If echo and output queues empty, turn off output interrupts */
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if ( (typtr->tyehead == typtr->tyetail) &&

(semcount(typtr->tyosem) >= TY_OBUFLEN) ) {

uptr->ier = UART_IER_ERBFI | UART_IER_ELSI;

return;

}

/* Initialize uspace to the size of the transmit FIFO */

uspace = UART_FIFO_SIZE;

/* While onboard FIFO is not full and the echo queue is */

/* nonempty, xmit chars from the echo queue */

while ( (uspace>0) && typtr->tyehead != typtr->tyetail) {

uptr->buffer = *typtr->tyehead++;

if (typtr->tyehead >= &typtr->tyebuff[TY_EBUFLEN]) {

typtr->tyehead = typtr->tyebuff;

}

uspace--;

}

/* While onboard FIFO is not full and the output queue */

/* is nonempty, xmit chars from the output queue */

ochars = 0;

avail = TY_OBUFLEN - semcount(typtr->tyosem);

while ( (uspace>0) && (avail > 0) ) {

uptr->buffer = *typtr->tyohead++;

if (typtr->tyohead >= &typtr->tyobuff[TY_OBUFLEN]) {

typtr->tyohead = typtr->tyobuff;

}

avail--;

uspace--;

ochars++;

}

if (ochars > 0) {

signaln(typtr->tyosem, ochars);

}

return;

}

TtyInter_out makes a series of tests before starting output. For example, output
should not be started if a user has entered control-S. Similarly, there is no need to start
output if both the echo and output queues are empty. To understand how ttyInter_out
starts output, recall that the underlying hardware has an onboard FIFO that can hold
multiple outgoing characters. Once it has determined that output should proceed,
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ttyInter_out can send up to UART_FIFO_SIZE (16) characters to the device. Characters
are sent until the FIFO is full or the buffers are empty, whichever occurs first. The
echo queue has highest priority. Therefore, ttyInter_out first sends characters from the
echo queue. If slots remain, ttyInter_out sends characters from the output queue.

Conceptually, each time it removes a character from the output queue and sends
the character to the device, ttyInter_out should signal the output semaphore to indicate
that another space is available in the buffer. However, because a call to signal can
reschedule, ttyInter_out does not call signal immediately. Instead, it merely increments
variable ochars to count the number of additional slots being created in the output
queue. Once it has filled the FIFO (or has emptied the output queue), ttyInter_out calls
signaln to indicate that space is available in the buffer.

15.16 Tty Input Processing (ttyInter_in)

Input interrupt processing is more complex than output processing because the on-
board input FIFO can contain more than one character. Thus, to handle an input inter-
rupt, ttyInterrupt† enters a loop: while the onboard FIFO is not empty, ttyInterrupt calls
ttyInter_in, which extracts and processes one character from the UART’s input FIFO.
To prevent rescheduling until the loop completes and all characters have been extracted
from the device, ttyInterrupt uses sched_cntl. Thus, although ttyInter_in calls signal to
make each character available, no rescheduling occurs until all available characters have
been extracted from the device.

Processing individual input characters is the most complex part of the tty device
driver because it includes code for details such as character echo and line editing.
Function ttyInter_in handles the processing for raw, cbreak, and cooked modes. File
ttyInter_in.c contains the code.

/* ttyInter_in.c ttyInter_in, erase1, eputc, echoch */

#include <xinu.h>

local void erase1(struct ttycblk *, struct uart_csreg *);

local void echoch(char, struct ttycblk *, struct uart_csreg *);

local void eputc(char, struct ttycblk *, struct uart_csreg *);

/*------------------------------------------------------------------------

* ttyInter_in -- handle one arriving char (interrupts disabled)

*------------------------------------------------------------------------

*/

void ttyInter_in (

struct ttycblk *typtr, /* ptr to ttytab entry */

struct uart_csreg *uptr /* address of UART’s CSRs */

)

��������������������������������
†The code for ttyInterrupt can be found on page 284.
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{

char ch; /* next char from device */

int32 avail; /* chars available in buffer */

ch = uptr->buffer; /* extract char. from device */

/* Compute chars available */

avail = semcount(typtr->tyisem);

if (avail < 0) { /* one or more processes waiting*/

avail = 0;

}

/* Handle raw mode */

if (typtr->tyimode == TY_IMRAW) {

if (avail >= TY_IBUFLEN) { /* no space => ignore input */

return;

}

/* Place char in buffer with no editing */

*typtr->tyitail++ = ch;

/* Wrap buffer pointer */

if (typtr->tyotail >= &typtr->tyobuff[TY_OBUFLEN]) {

typtr->tyotail = typtr->tyobuff;

}

/* Signal input semaphore and return */

signal(typtr->tyisem);

return;

}

/* Handle cooked and cbreak modes (common part) */

if ( (ch == TY_RETURN) && typtr->tyicrlf ) {

ch = TY_NEWLINE;

}

/* If flow control is in effect, handle ^S and ^Q */

if (typtr->tyoflow) {
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if (ch == typtr->tyostart) { /* ^Q starts output */

typtr->tyoheld = FALSE;

ttyKickOut(typtr, uptr);

return;

} else if (ch == typtr->tyostop) { /* ^S stops output */

typtr->tyoheld = TRUE;

return;

}

}

typtr->tyoheld = FALSE; /* Any other char starts output */

if (typtr->tyimode == TY_IMCBREAK) { /* Just cbreak mode */

/* If input buffer is full, send bell to user */

if (avail >= TY_IBUFLEN) {

eputc(typtr->tyifullc, typtr, uptr);

} else { /* Input buffer has space for this char */

*typtr->tyitail++ = ch;

/* Wrap around buffer */

if (typtr->tyitail>=&typtr->tyibuff[TY_IBUFLEN]) {

typtr->tyitail = typtr->tyibuff;

}

if (typtr->tyiecho) { /* are we echoing chars?*/

echoch(ch, typtr, uptr);

}

}

return;

} else { /* Just cooked mode (see common code above) */

/* Line kill character arrives - kill entire line */

if (ch == typtr->tyikillc && typtr->tyikill) {

typtr->tyitail -= typtr->tyicursor;

if (typtr->tyitail < typtr->tyibuff) {

typtr->tyihead += TY_IBUFLEN;

}

typtr->tyicursor = 0;

eputc(TY_RETURN, typtr, uptr);

eputc(TY_NEWLINE, typtr, uptr);

return;
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}

/* Erase (backspace) character */

if ( (ch == typtr->tyierasec) && typtr->tyierase) {

if (typtr->tyicursor > 0) {

typtr->tyicursor--;

erase1(typtr, uptr);

}

return;

}

/* End of line */

if ( (ch == TY_NEWLINE) || (ch == TY_RETURN) ) {

if (typtr->tyiecho) {

echoch(ch, typtr, uptr);

}

*typtr->tyitail++ = ch;

if (typtr->tyitail>=&typtr->tyibuff[TY_IBUFLEN]) {

typtr->tyitail = typtr->tyibuff;

}

/* Make entire line (plus \n or \r) available */

signaln(typtr->tyisem, typtr->tyicursor + 1);

typtr->tyicursor = 0; /* Reset for next line */

return;

}

/* Character to be placed in buffer - send bell if */

/* buffer has overflowed */

avail = semcount(typtr->tyisem);

if (avail < 0) {

avail = 0;

}

if ((avail + typtr->tyicursor) >= TY_IBUFLEN-1) {

eputc(typtr->tyifullc, typtr, uptr);

return;

}

/* EOF character: recognize at beginning of line, but */

/* print and ignore otherwise. */
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if (ch == typtr->tyeofch && typtr->tyeof) {

if (typtr->tyiecho) {

echoch(ch, typtr, uptr);

}

if (typtr->tyicursor != 0) {

return;

}

*typtr->tyitail++ = ch;

signal(typtr->tyisem);

return;

}

/* Echo the character */

if (typtr->tyiecho) {

echoch(ch, typtr, uptr);

}

/* Insert character in the input buffer */

typtr->tyicursor++;

*typtr->tyitail++ = ch;

/* Wrap around if needed */

if (typtr->tyitail >= &typtr->tyibuff[TY_IBUFLEN]) {

typtr->tyitail = typtr->tyibuff;

}

return;

}

}

/*------------------------------------------------------------------------

* erase1 -- erase one character honoring erasing backspace

*------------------------------------------------------------------------

*/

local void erase1(

struct ttycblk *typtr, /* ptr to ttytab entry */

struct uart_csreg *uptr /* address of UART’s CSRs */

)

{

char ch; /* character to erase */

if ( (--typtr->tyitail) < typtr->tyibuff) {
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typtr->tyitail += TY_IBUFLEN;

}

/* Pick up char to erase */

ch = *typtr->tyitail;

if (typtr->tyiecho) { /* Are we echoing? */

if (ch < TY_BLANK || ch == 0177) { /* Nonprintable */

if (typtr->tyevis) { /* Visual cntl chars */

eputc(TY_BACKSP, typtr, uptr);

if (typtr->tyieback) { /* erase char */

eputc(TY_BLANK, typtr, uptr);

eputc(TY_BACKSP, typtr, uptr);

}

}

eputc(TY_BACKSP, typtr, uptr);/* bypass up arrow*/

if (typtr->tyieback) {

eputc(TY_BLANK, typtr, uptr);

eputc(TY_BACKSP, typtr, uptr);

}

} else { /* A normal character that is printable */

eputc(TY_BACKSP, typtr, uptr);

if (typtr->tyieback) { /* erase the character */

eputc(TY_BLANK, typtr, uptr);

eputc(TY_BACKSP, typtr, uptr);

}

}

}

return;

}

/*------------------------------------------------------------------------

* echoch -- echo a character with visual and output crlf options

*------------------------------------------------------------------------

*/

local void echoch(

char ch, /* character to echo */

struct ttycblk *typtr, /* ptr to ttytab entry */

struct uart_csreg *uptr /* address of UART’s CSRs */

)

{

if ((ch==TY_NEWLINE || ch==TY_RETURN) && typtr->tyecrlf) {

eputc(TY_RETURN, typtr, uptr);

eputc(TY_NEWLINE, typtr, uptr);

} else if ( (ch<TY_BLANK||ch==0177) && typtr->tyevis) {



294 An Example Device Driver Chap. 15

eputc(TY_UPARROW, typtr, uptr); /* print ^x */

eputc(ch+0100, typtr, uptr); /* make it printable */

} else {

eputc(ch, typtr, uptr);

}

}

/*------------------------------------------------------------------------

* eputc - put one character in the echo queue

*------------------------------------------------------------------------

*/

local void eputc(

char ch, /* character to echo */

struct ttycblk *typtr, /* ptr to ttytab entry */

struct uart_csreg *uptr /* address of UART’s CSRs */

)

{

*typtr->tyetail++ = ch;

/* Wrap around buffer, if needed */

if (typtr->tyetail >= &typtr->tyebuff[TY_EBUFLEN]) {

typtr->tyetail = typtr->tyebuff;

}

ttyKickOut(typtr, uptr);

return;

}

15.16.1  Raw Mode Processing

Raw mode is the easiest to understand, and accounts for only a few lines of code.
In raw mode, ttyInter_in checks the input buffer to verify that space remains. To do so,
it compares the count of the input semaphore (i.e., the number of characters that are
available in the buffer) to the buffer size. If no space remains in the buffer, ttyInter_in
merely returns (i.e., it discards the character). If space remains, ttyInter_in deposits the
character at the tail of the input buffer, moves to the next buffer position, signals the in-
put semaphore, and returns.

15.16.2  Cbreak Mode Processing

Cooked and cbreak mode share code that maps RETURN to NEWLINE and handles
output flow control. Field tyoflow of the tty control block determines whether the
driver currently honors flow control. If it does, the driver suspends output by setting
tyoheld to TRUE when it receives character tyostop, and restarts output when it receives
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character tyostart. Characters tyostart and tyostop are considered “control” characters,
so the driver does not place them in the buffer.

Cbreak mode checks the input buffer, and sends character tyifullc if the buffer is
full. Normally, tyifullc is a “bell” that causes the terminal to sound an audible alarm;
the idea is that a human who is typing characters will hear the alarm and stop typing
until characters have been read and more buffer space becomes available. If the buffer
is not full, the code places the character in the buffer, and wraps around the pointer, if
necessary. Finally, cbreak mode calls echoch to perform character echo.

15.16.3  Cooked Mode Processing

Cooked mode operates like cbreak mode except that it also performs line editing.
The driver accumulates lines in the input buffer, using variable tyicursor to keep a count
of the characters on the “current” line. When the erase character, tyierasec, arrives,
ttyInter_in decrements tyicursor by one, backing up over the previous character, and
calling function erase1 to erase the character from the display. When the line kill char-
acter, tyikillc, arrives, ttyInter_in eliminates the current line by setting tyicursor to zero
and moving the tail pointer back to the beginning of the line. Finally, when a NEW-
LINE or RETURN character arrives, ttyInter_in calls signaln to make the entire input
line available. It resets tyicursor to zero for the next line. Note that the test for buffer
full always leaves one extra space in the buffer for the end-of-line character (i.e., NEW-
LINE).

15.17 Tty Control Block Initialization (ttyInit)

Function ttyInit, shown below in file ttyInit.c, initializes fields in the tty control
block. TtyInit uses dvirq as an index into the interrupt vector array, and assigns the
vector the address of the interrupt function. TtyInit then initializes the control block to
cooked mode, creates the input and output semaphores, and sets the buffer head and tail
pointers. After driver parameters, buffers, and interrupt vectors have been initialized,
ttyInit clears the receiver buffer in the hardware, enables receiver interrupts, and dis-
ables transmitter interrupts.

TtyInit initializes a tty to cooked mode, assuming it connects to a keyboard and
display that a human will use. The parameters chosen work best for a video device that
can backspace over characters on the display and erase them rather than a device that
uses paper. In particular, the parameter tyieback causes ttyInter_in to echo three charac-
ters, backspace-space-backspace, when it receives the erase character, tyierasec. On a
display screen, sending the three-character sequence gives the effect of erasing charac-
ters as the user backs over them. If you look again at ttyInter_in,† you will see that it
carefully backs up the correct number of spaces, even if the user erases a control char-
acter that has been displayed as two printable characters.

��������������������������������
†The code for ttyInter_in can be found on page 288.
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/* ttyInit.c - ttyInit */

#include <xinu.h>

struct ttycblk ttytab[Ntty];

/*------------------------------------------------------------------------

* ttyInit - initialize buffers and modes for a tty line

*------------------------------------------------------------------------

*/

devcall ttyInit(

struct dentry *devptr /* entry in device switch table */

)

{

struct ttycblk *typtr; /* pointer to ttytab entry */

struct uart_csreg *uptr; /* address of UART’s CSRs */

typtr = &ttytab[ devptr->dvminor ];

/* Initialize values in the tty control block */

typtr->tyihead = typtr->tyitail = /* set up input queue */

&typtr->tyibuff[0]; /* as empty */

typtr->tyisem = semcreate(0); /* input semaphore */

typtr->tyohead = typtr->tyotail = /* set up output queue */

&typtr->tyobuff[0]; /* as empty */

typtr->tyosem = semcreate(TY_OBUFLEN); /* output semaphore */

typtr->tyehead = typtr->tyetail = /* set up echo queue */

&typtr->tyebuff[0]; /* as empty */

typtr->tyimode = TY_IMCOOKED; /* start in cooked mode */

typtr->tyiecho = TRUE; /* echo console input */

typtr->tyieback = TRUE; /* honor erasing bksp */

typtr->tyevis = TRUE; /* visual control chars */

typtr->tyecrlf = TRUE; /* echo CRLF for NEWLINE*/

typtr->tyicrlf = TRUE; /* map CR to NEWLINE */

typtr->tyierase = TRUE; /* do erasing backspace */

typtr->tyierasec = TY_BACKSP; /* erase char is ^H */

typtr->tyeof = TRUE; /* honor eof on input */

typtr->tyeofch = TY_EOFCH; /* end-of-file character*/

typtr->tyikill = TRUE; /* allow line kill */

typtr->tyikillc = TY_KILLCH; /* set line kill to ^U */

typtr->tyicursor = 0; /* start of input line */

typtr->tyoflow = TRUE; /* handle flow control */

typtr->tyoheld = FALSE; /* output not held */

typtr->tyostop = TY_STOPCH; /* stop char is ^S */
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typtr->tyostart = TY_STRTCH; /* start char is ^Q */

typtr->tyocrlf = TRUE; /* send CRLF for NEWLINE*/

typtr->tyifullc = TY_FULLCH; /* send ^G when buffer */

/* is full */

/* Initialize the UART */

uptr = (struct uart_csreg *)devtab[CONSOLE].dvcsr;

/* Set baud rate */

uptr->lcr = UART_LCR_8N1; /* 8 bit char, No Parity, 1 Stop*/

uptr->fcr = 0x00; /* Disable FIFO for now */

/* OUT2 value is used to control the onboard interrupt tri-state*/

/* buffer. It should be set high to generate interrupts */

uptr->mcr = UART_MCR_OUT2; /* Turn on user-defined OUT2 */

/* Enable interrupts */

/* Enable UART FIFOs, clear and set interrupt trigger level */

uptr->fcr = UART_FCR_EFIFO | UART_FCR_RRESET

| UART_FCR_TRESET | UART_FCR_TRIG2;

/* Register the interrupt handler for the dispatcher */

interruptVector[devptr->dvirq] = (void *)devptr->dvintr;

/* Ready to enable interrupts on the UART hardware */

enable_irq(devptr->dvirq);

ttyKickOut(typtr, uptr);

return OK;

}

15.18 Device Driver Control

So far we have discussed driver functions that handle upper-half data transfer
operations (e.g., read and write), functions that handle lower-half input and output inter-
rupts, and an initialization function that sets parameters at system startup. The I/O in-
terface defined in Chapter 14 provides another type of non-transfer function: control.
Basically, control allows an application to control the device driver or the underlying
device. In our example driver, function ttyControl, found in file ttyControl.c, provides
basic control functions:
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/* ttyControl.c - ttyControl */

#include <xinu.h>

/*------------------------------------------------------------------------

* ttyControl - control a tty device by setting modes

*------------------------------------------------------------------------

*/

devcall ttyControl(

struct dentry *devptr, /* entry in device switch table */

int32 func, /* function to perform */

int32 arg1, /* argument 1 for request */

int32 arg2 /* argument 2 for request */

)

{

struct ttycblk *typtr; /* pointer to tty control block */

char ch; /* character for lookahead */

typtr = &ttytab[devptr->dvminor];

/* Process the request */

switch ( func ) {

case TC_NEXTC:

wait(typtr->tyisem);

ch = *typtr->tyitail;

signal(typtr->tyisem);

return (devcall)ch;

case TC_MODER:

typtr->tyimode = TY_IMRAW;

return (devcall)OK;

case TC_MODEC:

typtr->tyimode = TY_IMCOOKED;

return (devcall)OK;

case TC_MODEK:

typtr->tyimode = TY_IMCBREAK;

return (devcall)OK;

case TC_ICHARS:

return(semcount(typtr->tyisem));
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case TC_ECHO:

typtr->tyiecho = TRUE;

return (devcall)OK;

case TC_NOECHO:

typtr->tyiecho = FALSE;

return (devcall)OK;

default:

return (devcall)SYSERR;

}

}

Function TC_NEXTC allows an application to “lookahead” (i.e., find out which
character is the next one waiting to be read without actually reading the character).
Three of the control functions (TC_MODER, TC_MODEC, and TC_MODEK) allow a
user to set the mode of the tty driver. Functions TC_ECHO and TC_NOECHO control
character echo, allowing a caller to turn off echo, accept input, and then turn echo back
on. Finally, function TC_ICHARS allows a user to query the driver to determine how
many characters are waiting in the input queue.

Observant readers may have noticed that neither parameter arg1 nor arg2 is used
in function ttyControl. They have been declared, however, because the device-
independent I/O routine control always provides four arguments when calling ttyCon-
trol. Although the compiler cannot perform type-checking on indirect calls, omitting
the argument declarations makes the code less portable and more difficult to understand.

15.19 Perspective

The length of the code in the chapter reveals an important point about device
drivers. To understand the point, compare the amount of code used for a trivial serial
device to the code used for message passing and process synchronization primitives
(i.e., semaphores). Although message passing and semaphores each provide a powerful
abstraction, the code is relatively small.

Why does a trivial device driver contain so much code? After all, the driver only
makes it possible to read and write characters. The answer lies in the difference
between the abstraction the hardware supplies and the abstraction the driver provides.
The underlying hardware merely transfers characters, and the output side is independent
of the input side. Thus, the hardware does not handle flow control or character echo.
Furthermore, the hardware knows nothing about end-of-line translation (i.e., the crlf
mapping). Consequently, a driver must contain code that handles many details.

Although it may seem complex, the example driver in this chapter is trivial. A
production device driver may comprise more than ten thousand lines of source code,
and may contain hundreds of functions. Drivers for devices that can be plugged in at
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run time (e.g., a USB device) are even more complex than drivers for static devices.
Thus, one should appreciate that taken as a whole, code for device drivers is both huge
and extremely complex.

15.20 Summary

A device driver consists of a set of functions that control a peripheral hardware de-
vice. The driver routines are partitioned into two halves: an upper half that contains the
functions called from applications, and a lower half that contains functions that the sys-
tem calls when a device interrupts. The two halves communicate through a shared data
structure called a device control block.

The example device driver examined in this chapter is referred to as a tty driver. It
manages input and output over serial line hardware, such as the connection to a key-
board. Upper-half functions in the example driver implement read, write, getc, putc,
and control operations. Each upper-half function is called indirectly through the
device-switch table. Lower-half functions in the example driver handle interrupts. Dur-
ing an output interrupt, the lower half fills the onboard FIFO from the echo or output
queues. During an input interrupt, the lower half extracts and processes characters from
the input FIFO.

EXERCISES

15.1 Predict what would happen if two processes executed ttyRead concurrently when both
requested a large number of characters. Experiment and see what happens.

15.2 Kprintf uses polled I/O: it disables interrupts, waits until the device is idle, displays its
message, and then restores interrupts. What happens if the output buffer is full and
kprintf is called repeatedly to display a NEWLINE character? Explain.

15.3 Some systems partition asynchronous device drivers into three levels: interrupt level to
do nothing but transfer characters to and from the device, upper level to transfer charac-
ters to and from the user, and a middle level to implement a line discipline that handles
details like character echo, flow control, special processing, and out of band signals.
Convert the Xinu tty driver to a three-level scheme, and arrange for processes to execute
code in the middle layer.

15.4 Suppose two processes both attempt to use write() on the CONSOLE device concurrent-
ly. What will the output be? Why?

15.5 Implement a control function that allows a process to obtain exclusive use of the CON-
SOLE device and another control function that the process can use to release its use.

15.6 TtyControl handles changes of mode poorly because it does not reset the cursor or buffer
pointers. Rewrite the code to improve it. What happens to partially entered lines when
changing from cooked to raw mode?
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15.7 When connecting two computers, it is useful to have flow control in both directions.
Modify the tty driver to include a “tandem” mode that sends Control-S when the input
buffer is nearly full, and then sends Control-Q when the buffer is half-empty.

15.8 When a user changes the mode of a tty device, what should happen to characters already
in the input queue (which were accepted before the mode changed)? One possibility is
that the queue is discarded. Modify the code to implement discard during a mode
change.
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DMA Devices And Drivers
(Ethernet)

Modern hardware is stunningly difficult to deal with.

— James Buchanan

16.1 Introduction

Previous chapters consider a general paradigm for I/O, and explain how a device
driver is organized. Chapter 15 shows an example tty driver that illustrates how an
upper half and a lower half interact.

This chapter extends our discussion of I/O by considering the design of device
drivers for hardware devices that can transfer data from or to memory. The chapter
uses an Ethernet interface as an example to show how the CPU informs the device
about available buffers, and how the device accesses the buffers without requiring the
processor to transfer data over the bus.

16.2 Direct Memory Access And Buffers

Although a bus can only transfer a word of data at one time, a block-oriented de-
vice, such as a disk or a network interface, needs to transfer multiple words of data to
fill a given request. The motivation for Direct Memory Access (DMA) is parallelism:
adding intelligence to an I/O device allows the device to perform multiple bus transfers
without interrupting the CPU. Thus, a disk with DMA capability can transfer an entire
disk block between memory and the device before interrupting the CPU, and a network
interface can transfer an entire packet before interrupting the CPU.

303
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DMA output is the easiest to understand. As an example, consider DMA output to
a disk device. To write a disk block, the operating system places the data to be written
in a buffer in memory, passes the buffer address to the disk device with a write request,
and allows the CPU to continue executing. While the CPU executes, the disk DMA
hardware uses the bus to transfer successive words of data from the buffer to the disk.
Once an entire block has been read from memory and written to disk, the DMA
hardware interrupts the CPU. If an additional disk block is ready for output, the operat-
ing system can start another DMA operation to transfer the block.

DMA input works the other way around. To read a disk block, the operating sys-
tem allocates a buffer in memory and passes the buffer address to the device along with
a request to read the block. After starting the DMA transfer, the operating system con-
tinues executing. Simultaneous with CPU execution, the DMA hardware uses the bus
to transfer the block from the disk to the buffer in memory. Once the entire block has
been written into the memory buffer, the DMA hardware interrupts the CPU. Thus,
with DMA, only one interrupt occurs per block transferred.

16.3 Multiple Buffers And Rings

DMA devices are more complex than described above. Instead of passing the de-
vice the address of a buffer, the operating system allocates multiple buffers, links them
together on a linked list, and passes the device the address of the list. The device
hardware is designed to follow the linked list without waiting for the CPU to restart an
operation. For example, consider a network interface that uses DMA hardware for in-
put. To receive packets from the network, the operating system allocates a linked list of
buffers that can each hold a network packet, and passes the address of the list to the net-
work interface device. When a packet arrives, the network device moves to the next
buffer on the list, uses DMA to copy the packet into the buffer, and then generates an
interrupt. As long as buffers remain on the list, the device continues to accept incoming
packets and place each packet in a buffer.

What happens if a DMA device reaches the end of a buffer list? Interestingly,
most DMA devices never reach the end of the linked list because the hardware uses a
circular linked list, called a buffer ring. That is, the last node on the list points back to
the first. Each node in the list contains two values: a pointer to a buffer and a status bit
that tells whether the buffer is ready for use. On input, the operating system initializes
each node on the list to point to a buffer and sets the status to indicate EMPTY. When
it fills a buffer, the DMA hardware changes the status to FULL and generates an inter-
rupt. The device driver function that handles interrupts extracts the data from all
buffers that are full, and clears the status bits to indicate that each buffer is EMPTY. On
the one hand, if the operating system is fast enough, it will be able to process each in-
coming packet and mark the buffer EMPTY before another packet arrives. Thus, the
DMA hardware will keep moving around the ring without ever encountering a buffer
that is marked FULL. On the other hand, if the operating system cannot process pack-
ets as fast as they arrive, the device will eventually fill all the buffers and will encounter
a buffer marked FULL. If it travels completely around the ring and encounters a full
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buffer, the DMA hardware sets an error indicator (typically an overflow bit) and gen-
erates an interrupt to inform the operating system.

Most DMA hardware also uses a circular linked list of buffers for output. The
operating system creates the ring with each buffer marked EMPTY. When it has a pack-
et to send, the operating system places the packet in the next available output buffer,
marks the buffer FULL, and starts the device if the device is not currently running. The
device moves to the next buffer, extracts the packet, and transmits the packet. Once
started, the DMA hardware continues to move around the ring until it reaches an empty
buffer. Thus, if applications generate data fast enough, the DMA hardware will
transmit packets continuously without ever encountering an empty buffer.

16.4 An Example Ethernet Driver Using DMA

An example will clarify the discussion above. Our example driver is written for an
Atheros AG71xx Ethernet interface,† the Ethernet interface used in the Linksys E2100L.
Although many of the details are specific to the Atheros device, the interaction between
the processors and device is typical of most DMA devices.

The AG71xx performs both input and output, and the chip uses a separate DMA
engine for each. That is, a driver must create two rings — one ring points to buffers
used to receive packets, and the other points to buffers used to send packets. The de-
vice has separate registers that a driver uses to pass pointers to the rings, and the
hardware allows input and output to proceed simultaneously. Despite operating in-
dependently, both input and output interrupts use a single interrupt vector. Therefore,
when an interrupt occurs, device driver software must interact with the device to deter-
mine whether the interrupt corresponds to an input or output operation.

16.5 Device Hardware Definitions And Constants

File ag71xx.h defines constants and structures for the AG71xx hardware. The file
contains many details and may seem confusing. For now, it is sufficient to know that
the definitions are taken directly from the vendor’s manual for the device.

��������������������������������
†The characters xx in the name indicate that the manufacturer offers a series of products that all have the

same API.
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/* ag71xx.h - Definitions for an Atheros ag71xx Ethernet device */

/* Ring buffer sizes */

#define ETH_RX_RING_ENTRIES 64 /* Number of buffers on Rx Ring */

#define ETH_TX_RING_ENTRIES 128 /* Number of buffers on Tx Ring */

#define ETH_PKT_RESERVE 64

/* Control and Status register layout for the ag71xx */

struct ag71xx {

volatile uint32 macConfig1; /* 0x000 MAC configuration 1 */

#define MAC_CFG1_TX (1 << 0) /* Enable Transmitter */

#define MAC_CFG1_SYNC_TX (1 << 1) /* Syncronize Transmitter */

#define MAC_CFG1_RX (1 << 2) /* Enable Receiver */

#define MAC_CFG1_SYNC_RX (1 << 3) /* Syncronize Receiver */

#define MAC_CFG1_LOOPBACK (1 << 8) /* Enable Loopback */

#define MAC_CFG1_SOFTRESET (1 << 31) /* Software Reset */

volatile uint32 macConfig2; /* 0x004 MAC configuration 2 */

#define MAC_CFG2_FDX (1 << 0) /* Enable Full Duplex */

#define MAC_CFG2_CRC (1 << 1) /* Enable CRC appending */

#define MAC_CFG2_PAD (1 << 2) /* Enable padding of short pkts */

#define MAC_CFG2_LEN_CHECK (1 << 4) /* Enable length field checking */

#define MAC_CFG2_HUGE (1 << 5) /* Enable frames longer than max*/

#define MAC_CFG2_IMNIBBLE (1 << 8) /* "nibble mode" interface type */

#define MAC_CFG2_IMBYTE (2 << 8) /* "byte mode" interface type */

volatile uint32 pad00[2];

volatile uint32 pad01[4];

volatile uint32 pad02[4];

volatile uint32 pad03[4];

volatile uint32 macAddr1; /* 0x040 MAC Address part 1 */

volatile uint32 macAddr2; /* 0x044 MAC Address part 2 */

volatile uint32 fifoConfig0; /* 0x048 MAC configuration 0 */

#define FIFO_CFG0_WTMENREQ (1 << 8) /* Enable FIFO watermark module */

#define FIFO_CFG0_SRFENREQ (1 << 9) /* Enable FIFO system Rx module */

#define FIFO_CFG0_FRFENREQ (1 << 10) /* Enable FIFO fabric Rx module */

#define FIFO_CFG0_STFENREQ (1 << 11) /* Enable FIFO system Tx module */
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#define FIFO_CFG0_FTFENREQ (1 << 12) /* Enable FIFO fabric Tx module */

volatile uint32 fifoConfig1; /* 0x04C MAC configuration 1 */

volatile uint32 fifoConfig2; /* 0x050 MAC configuration 2 */

volatile uint32 fifoConfig3; /* 0x054 MAC configuration 3 */

volatile uint32 fifoConfig4; /* 0x058 MAC configuration 4 */

volatile uint32 fifoConfig5; /* 0x05C MAC configuration 5 */

volatile uint32 pad06[72];

volatile uint32 txControl; /* 0x180 Tx Control */

#define TX_CTRL_ENABLE (1 << 0) /* Enable Tx */

volatile uint32 txDMA; /* 0x184 Tx DMA Descriptor */

volatile uint32 txStatus; /* 0x188 Tx Status */

#define TX_STAT_SENT (1 << 0) /* Packet Sent */

#define TX_STAT_UNDER (1 << 1) /* Tx Underrun */

volatile uint32 rxControl; /* 0x18C Rx Control */

#define RX_CTRL_RXE (1 << 0) /* Enable receiver */

volatile uint32 rxDMA; /* 0x190 Rx DMA Descriptor */

volatile uint32 rxStatus; /* 0x194 Rx Status */

#define RX_STAT_RECVD (1 << 0) /* Packet Received */

#define RX_STAT_OVERFLOW (1 << 2) /* DMA Rx overflow */

#define RX_STAT_COUNT (0xFF << 16) /* Count of packets received */

volatile uint32 interruptMask; /* 0x198 Interrupt Mask */

#define IRQ_TX_PKTSENT (1 << 0) /* Packet Sent */

#define IRQ_TX_UNDERFLOW (1 << 1) /* Tx packet underflow */

#define IRQ_TX_BUSERR (1 << 3) /* Tx Bus Error */

#define IRQ_RX_PKTRECV (1 << 4) /* Rx Packet received */

#define IRQ_RX_OVERFLOW (1 << 6) /* Rx Overflow */

#define IRQ_RX_BUSERR (1 << 7) /* Rx Bus Error */

volatile uint32 interruptStatus; /* 0x19C Interrupt Status */

};

/* Receiver header struct and constants */

#define ETH_RX_FLAG_OFIFO 0x0001 /* FIFO Overflow */
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#define ETH_RX_FLAG_CRCERR 0x0002 /* CRC Error */

#define ETH_RX_FLAG_SERR 0x0004 /* Receive Symbol Error */

#define ETH_RX_FLAG_ODD 0x0008 /* Frame has odd number nibbles */

#define ETH_RX_FLAG_LARGE 0x0010 /* Frame is > RX MAX Length */

#define ETH_RX_FLAG_MCAST 0x0020 /* Dest is Multicast Address */

#define ETH_RX_FLAG_BCAST 0x0040 /* Dest is Broadcast Address */

#define ETH_RX_FLAG_MISS 0x0080 /* Received due to promisc mode */

#define ETH_RX_FLAG_LAST 0x0800 /* Last buffer in frame */

#define ETH_RX_FLAG_ERRORS ( ETH_RX_FLAG_ODD | ETH_RX_FLAG_SERR | \

ETH_RX_FLAG_CRCERR | ETH_RX_FLAG_OFIFO )

/* Header on a received packet */

struct rxHeader {

uint16 length; /* Length of packet data */

uint16 flags; /* Receive flags */

uint16 pad[12]; /* Padding */

};

/* Ethernet DMA descriptor */

#define ETH_DESC_CTRL_LEN 0x00001fff /* Mask for length field */

#define ETH_DESC_CTRL_MORE 0x10000000 /* More fragments */

#define ETH_DESC_CTRL_EMPTY 0x80000000 /* Empty descriptor */

/* Descriptor for the DMA engine to determine where to */

/* find a packet buffer. */

struct dmaDescriptor {

uint32 address; /* Stored as physical address */

uint32 control; /* DMA control bits */

uint32 next; /* Next descriptor in the ring */

};

#define RESET_CORE 0xB806001C /* Atheros bus core reset reg */

#define RESET_E0_MAC (1 << 9) /* Reset Ethernet zero MAC */

#define RESET_E1_MAC (1 << 13) /* Reset Ethernet one MAC */

Struct ag71xx specifies the format of control and status registers for the AG71xx
hardware. Many of the fields are labeled volatile to inform the compiler that each refer-
ence to the field must result in a fetch operation (i.e., the compiler cannot apply an op-
timization that fetches the item once, stores the value in a register, and reuses the value
from the register).
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16.6 Rings And Buffers In Memory

From a device’s perspective, an input or output ring consists of a linked list in
memory. Each node on the list is defined using struct dmaDescriptor, which contains
three items: a pointer to a buffer in memory, a status word used to tell whether the
buffer currently contains data, and a pointer to the next node on the list. Figure 16.1 il-
lustrates how the transmit and receive rings are organized and how each node in the
ring contains a pointer to a buffer.

. . . . . .

. . . . . .

Transmit ring Receive ring

Transmit buffers Receive buffers

Figure 16.1 Illustration of the transmit and receive rings used with the exam-
ple DMA hardware device.

As the figure illustrates, each ring consists of a circular linked list with a pointer
from a node to its successor (and the final node pointing back to the first). When read-
ing the code, it will be important to remember that the Ethernet device views the rings
as a linked list (i.e., the device follows the pointer in a node to get to the next node on
the list). The reason the distinction is important arises from the way our driver code al-
locates storage. The driver places ring nodes in contiguous storage (i.e., nodes of the
list are allocated in an array). Therefore, the driver can use array indexing to move
through nodes. Figure 16.2 shows the structure of a node and illustrates how nodes of a
ring are stored in an array.
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Ptr. To Next Node

Status

Ptr. To Buffer

EMPTY

EMPTY

EMPTY

EMPTY

buffer 1

buffer 2

buffer 3

buffer N

(a)

(b)

...

Figure 16.2 (a) The contents of a node on a receive or transmit ring, and (b) a
ring stored in an array with the second node shaded.

16.7 Definitions Of An Ethernet Control Block

File ether.h defines constants and data structures used by the Ethernet driver, in-
cluding the format of an Ethernet packet header, the layout of a packet buffer in
memory, and the contents of an Ethernet control block.

/* ether.h */

/* Ethernet packet format:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Dest. MAC (6) | Src. MAC (6) |Type (2)| Data (46-1500)... |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

*/

#define ETH_ADDR_LEN 6 /* Length of Ethernet (MAC) address */

/* Ethernet packet header */
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struct etherPkt {

byte dst[ETH_ADDR_LEN]; /* Destination Mac address */

byte src[ETH_ADDR_LEN]; /* Source Mac address */

uint16 type; /* Ether type field */

byte data[1]; /* Packet payload */

};

#define ETH_HDR_LEN 14 /* Length of Ethernet packet header */

/* Ethernet Buffer lengths */

#define ETH_IBUFSIZ 1024 /* input buffer size */

/* Ethernet DMA buffer sizes */

#define ETH_MTU 1500 /* Maximum transmission unit */

#define ETH_VLAN_LEN 4 /* Length of Ethernet vlan tag */

#define ETH_CRC_LEN 4 /* Length of CRC on Ethernet frame */

#define ETH_MAX_PKT_LEN ( ETH_HDR_LEN + ETH_VLAN_LEN + ETH_MTU )

#define ETH_RX_BUF_SIZE ( ETH_MAX_PKT_LEN + ETH_CRC_LEN \

+ sizeof(struct rxHeader) )

#define ETH_TX_BUF_SIZE ( ETH_MAX_PKT_LEN )

/* State of the Ethernet interface */

#define ETH_STATE_FREE 0 /* control block is unused */

#define ETH_STATE_DOWN 1 /* interface is currently inactive */

#define ETH_STATE_UP 2 /* interface is currently active */

/* Ethernet device control functions */

#define ETH_CTRL_CLEAR_STATS 1 /* Reset Ethernet Statistics */

#define ETH_CTRL_SET_MAC 2 /* Set the MAC for this device */

#define ETH_CTRL_GET_MAC 3 /* Get the MAC for this device */

#define ETH_CTRL_SET_LOOPBK 4 /* Set Loopback Mode */

#define ETH_CTRL_RESET 5 /* Reset the Ethernet device */

#define ETH_CTRL_DISABLE 6 /* Disable the Ethernet device */

/* Ethernet packet buffer */

struct ethPktBuffer {
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byte *buf; /* Pointer to a packet buffer */

byte *data; /* Start of data within the buffer */

int32 length; /* Length of data in the packet buffer */

};

/* Ethernet control block */

#define ETH_INVALID (-1) /* Invalid data (virtual devices) */

struct ether {

byte state; /* ETH_STATE_... as defined above */

struct dentry *phy; /* physical ethernet device for Tx DMA */

/* Pointers to associated structures */

struct dentry *dev; /* address in device switch table */

void *csr; /* addr.of control and status regs. */

uint32 interruptMask; /* interrupt mask */

uint32 interruptStatus;/* interrupt status */

struct dmaDescriptor *rxRing;/* array of receive ring descrip. */

struct ethPktBuffer **rxBufs;/* Rx ring array */

uint32 rxHead; /* Index of current head of Rx ring */

uint32 rxTail; /* Index of current tail of Rx ring */

uint32 rxRingSize; /* size of Rx ring descriptor array */

uint32 rxirq; /* Count of Rx interrupt requests */

uint32 rxOffset; /* Size in bytes of rxHeader */

uint32 rxErrors; /* Count of Rx errors */

struct dmaDescriptor *txRing;/* array of transmit ring descrip.*/

struct ethPktBuffer **txBufs;/* Tx ring array */

uint32 txHead; /* Index of current head of Tx ring */

uint32 txTail; /* Index of current tail of Tx ring */

uint32 txRingSize; /* size of Tx ring descriptor array */

uint32 txirq; /* Count of Tx interrupt requests */

byte devAddress[ETH_ADDR_LEN]; /* MAC address */

byte addressLength; /* Hardware address length */

uint16 mtu; /* Maximum transmission unit (payload) */

uint32 errors; /* Number of Ethernet errors */

uint16 ovrrun; /* Buffer overruns */

sid32 isema; /* I/0 semaphore for Ethernet input */
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uint16 istart; /* Index of packet in the input buffer */

uint16 icount; /* Count of packets in the input buffer */

struct ethPktBuffer *in[ETH_IBUFSIZ]; /* Input buffer */

int inPool; /* Buffer pool ID for input buffers */

int outPool; /* Buffer pool ID for output buffers */

};

extern struct ether ethertab[]; /* array of control blocks */

int32 colon2mac(char *, byte *);

int32 allocRxBuffer(struct ether *, int32);

int32 waitOnBit(volatile uint32 *, uint32, const int32, int32);

16.8 Device And Driver Initialization

At system startup, the operating system calls function ethInit to initialize the Ether-
net device and the device driver data structures. File ethInit.c contains the code.
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/* ethInit.c - ethInit */

#include <xinu.h>

struct ether ethertab[Neth]; /* Ethernet control blocks */

/*------------------------------------------------------------------------

* udelay - microsecond delay loop (CPU loop)

*------------------------------------------------------------------------

*/

void udelay(uint32 n) {

uint32 delay; /* amount to delay measured in */

/* clock cycles */

uint32 start = 0; /* clock at start of delay */

uint32 target = 0; /* computed clk at end of delay */

uint32 count = 0; /* current clock during loop */

delay = 200 * n; /* 200 CPU cycles per usec */

start = clkcount(); /* Get current clock */

target = start + delay; /* Compute finish time */

if (target >= start) {

while (((count = clkcount()) < target) &&

(count >= start)) {

; /* spin doing nothing */

}

} else {

/* need to wrap around counter */

while ((count = clkcount()) > start) {

; /* spin doing nothing */

}

while ((count = clkcount()) < target) {

; /* spin doing nothing */

}

}

}

/*------------------------------------------------------------------------

* mdelay - millisecond delay loop (CPU loop)

*------------------------------------------------------------------------

*/
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void mdelay(uint32 n) {

int i;

for (i = 0; i < n; i++) {

udelay(1000);

}

}

/*------------------------------------------------------------------------

* ethInit - Initialize Ethernet device structures

*------------------------------------------------------------------------

*/

devcall ethInit (

struct dentry *devptr

)

{

struct ether *ethptr;

struct ag71xx *nicptr;

uint32 *rstptr;

uint32 rstbit;

/* Initialize structure pointers */

ethptr = &ethertab[devptr->dvminor];

memset(ethptr, ’\0’, sizeof(struct ether));

ethptr->dev = devptr;

ethptr->csr = devptr->dvcsr;

/* Get device CSR address */

nicptr = (struct ag71xx *)devptr->dvcsr;

rstptr = (uint32 *)RESET_CORE;

if (devptr->dvminor == 0) { /* use E0 on first device only */

rstbit = RESET_E0_MAC;

} else {

rstbit = RESET_E1_MAC;

}

ethptr->state = ETH_STATE_DOWN;

ethptr->rxRingSize = ETH_RX_RING_ENTRIES;

ethptr->txRingSize = ETH_TX_RING_ENTRIES;

ethptr->mtu = ETH_MTU;

ethptr->interruptMask = IRQ_TX_PKTSENT | IRQ_TX_BUSERR

| IRQ_RX_PKTRECV | IRQ_RX_OVERFLOW | IRQ_RX_BUSERR;
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ethptr->errors = 0;

ethptr->isema = semcreate(0);

ethptr->istart = 0;

ethptr->icount = 0;

ethptr->ovrrun = 0;

ethptr->rxOffset = ETH_PKT_RESERVE;

colon2mac(nvramGet("et0macaddr"), ethptr->devAddress);

ethptr->addressLength = ETH_ADDR_LEN;

/* Reset the device */

nicptr->macConfig1 |= MAC_CFG1_SOFTRESET;

udelay(20);

*rstptr |= rstbit;

mdelay(100);

*rstptr &= ~rstbit;

mdelay(100);

/* Enable transmit and receive */

nicptr->macConfig1 = MAC_CFG1_TX | MAC_CFG1_SYNC_TX |

MAC_CFG1_RX | MAC_CFG1_SYNC_RX;

/* Configure full duplex, auto padding CRC, */

/* and interface mode */

nicptr->macConfig2 |= MAC_CFG2_FDX | MAC_CFG2_PAD |

MAC_CFG2_LEN_CHECK | MAC_CFG2_IMNIBBLE;

/* Enable FIFO modules */

nicptr->fifoConfig0 = FIFO_CFG0_WTMENREQ | FIFO_CFG0_SRFENREQ |

FIFO_CFG0_FRFENREQ | FIFO_CFG0_STFENREQ | FIFO_CFG0_FTFENREQ;

nicptr->fifoConfig1 = 0x0FFF0000;

/* Max out number of words to store in Receiver RAM */

nicptr->fifoConfig2 = 0x00001FFF;

/* Drop any incoming packet with errors in the Rx stats vector */

nicptr->fifoConfig4 = 0x0003FFFF;
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/* Drop short packets (set "don’t care" on Rx stats vector bits */

nicptr->fifoConfig5 = 0x0003FFFF;

/* Buffers should be page-aligned and cache-aligned */

ethptr->rxBufs = (struct ethPktBuffer **)getstk(PAGE_SIZE);

ethptr->txBufs = (struct ethPktBuffer **)getstk(PAGE_SIZE);

ethptr->rxRing = (struct dmaDescriptor *)getstk(PAGE_SIZE);

ethptr->txRing = (struct dmaDescriptor *)getstk(PAGE_SIZE);

if ( ( (int32)ethptr->rxBufs == SYSERR )

|| ( (int32)ethptr->txBufs == SYSERR )

|| ( (int32)ethptr->rxRing == SYSERR )

|| ( (int32)ethptr->txRing == SYSERR ) ) {

return SYSERR;

}

/* Translate buffer and ring pointers to KSEG1 */

ethptr->rxBufs = (struct ethPktBuffer **)

(((uint32)ethptr->rxBufs - PAGE_SIZE +

sizeof(int32)) | KSEG1_BASE);

ethptr->txBufs = (struct ethPktBuffer **)

(((uint32)ethptr->txBufs - PAGE_SIZE +

sizeof(int32)) | KSEG1_BASE);

ethptr->rxRing = (struct dmaDescriptor *)

(((uint32)ethptr->rxRing - PAGE_SIZE +

sizeof(int32)) | KSEG1_BASE);

ethptr->txRing = (struct dmaDescriptor *)

(((uint32)ethptr->txRing - PAGE_SIZE +

sizeof(int32)) | KSEG1_BASE);

/* Set buffer pointers and rings to zero */

memset(ethptr->rxBufs, ’\0’, PAGE_SIZE);

memset(ethptr->txBufs, ’\0’, PAGE_SIZE);

memset(ethptr->rxRing, ’\0’, PAGE_SIZE);

memset(ethptr->txRing, ’\0’, PAGE_SIZE);

/* Initialize the interrupt vector and enable the device */

interruptVector[devptr->dvirq] = devptr->dvintr;

enable_irq(devptr->dvirq);
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return OK;

}

The hardware requires specific delays between certain initialization steps (to give
the hardware on the device sufficient time to perform the step). Because the operating
system is not running when the initialization code executes, delay functions such as
sleep are not available. Therefore, the code defines two delay functions, udelay and
mdelay, that delay for a specified number of microseconds and milliseconds. In each
case, the code consists of a loop that keeps the CPU occupied for the specified time.
Both functions are platform dependent because the number of times a loop must iterate
depends on the clock speed of the CPU. More important, the rate clock on a given
copy of the hardware may differ slightly from the clock rate on another. To accommo-
date differences, our implementation uses the real-time clock to adjust the delay. That
is, a delay function reads the clock, estimates the number of times a loop should exe-
cute, and runs the loop. It then re-reads the clock to determine whether additional delay
is needed.

When it is called, ethInit initializes fields in the device control block, and then ini-
tializes the hardware. Many of the details depend on the specific Ethernet hardware, but
one item applies broadly to most DMA hardware devices: the addressing mode. As on
most systems, a DMA hardware device on the E2100L uses the underlying bus directly.
Thus, the hardware device will use physical addresses rather than the segment addresses
used by the operating system. Consequently, when passing an address to the device, the
operating system must convert all addresses to physical addresses. In particular, physi-
cal addresses must be stored in the buffer rings and must be used when passing the ad-
dress of a buffer ring to the device. In the code, translation from a segment address to a
physical address is achieved by an inline function that computes the logical or of an ad-
dress with the constant KSEG1_BASE. Although the details of translation vary among
platforms (and may require the operating system to use MMU hardware), the concept
remains the same: when linked lists are used with DMA, each address must be translat-
ed to a form the hardware can understand.

As a final step, ethInit enables device interrupts (i.e., allows the device to begin to
receive and store packets and generate interrupts). Enabling device interrupts does not
mean that interrupts can occur: during initialization, the operating system runs a mode
where all CPU interrupts are disabled. Thus, the device can request an interrupt, but the
CPU will not process the interrupt. Once the operating system enables CPU interrupts,
the device will be able to interrupt the CPU and deliver packets that have accumulated.

16.9 Allocating An Input Buffer

Before a packet can be read, the driver must allocate a buffer to hold the packet
and link the buffer into the ring used for DMA input. Our driver uses a utility function,
allocRxBuffer to allocate a buffer from the buffer pool and link the buffer into the DMA
ring. File allocRxBuffer.c contains the code.
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/* allocRxBuffer.c - allocRxBuffer */

#include <xinu.h>

/*------------------------------------------------------------------------

* allocRxBuffer - allocate an Ethernet packet buffer structure

*------------------------------------------------------------------------

*/

int32 allocRxBuffer (

struct ether *ethptr, /* ptr to device control block */

int32 destIndex /* index in receive ring */

)

{

struct ethPktBuffer *pkt;

struct dmaDescriptor *dmaptr;

/* Compute next ring location modulo the ring size */

destIndex %= ethptr->rxRingSize;

/* Allocate a packet buffer */

pkt = (struct ethPktBuffer *)getbuf(ethptr->inPool);

if ((uint32)pkt == SYSERR) {

kprintf("eth0 allocRxBuffer() error\r\n");

return SYSERR;

}

pkt->length = ETH_RX_BUF_SIZE;

pkt->buf = (byte *)(pkt + 1);

/* Data region offset by size of rx header */

pkt->data = pkt->buf + ethptr->rxOffset;

ethptr->rxBufs[destIndex] = pkt;

/* Fill in DMA descriptor fields */

dmaptr = ethptr->rxRing + destIndex;

dmaptr->control = ETH_DESC_CTRL_EMPTY;

dmaptr->address = (uint32)(pkt->buf) & PMEM_MASK;

return OK;

}
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In our conceptual description of DMA, we said that each node in a ring contains a
bit that tells whether the buffer is full or empty. The AG71xx hardware uses the con-
trol field in the DMA descriptor (struct dmaDescriptor) to contain the bit. Symbolic
constant ETH_DESC_CTRL_EMPTY specifies that the bit is 1 when the buffer is empty
and 0 when the buffer contains a packet.

Thus, when it allocates a buffer and links the buffer into a ring slot, allocRxBuffer
must set bit ETH_DESC_CTRL_EMPTY to indicate that the buffer is empty; the device
hardware will set the bit to 0 when a packet has arrived and been placed in the buffer.
AllocRxBuffer takes two arguments: a pointer to the Ethernet control block and the in-
dex of the ring slot to use. After it allocates a buffer, allocRxBuffer computes the ad-
dress of the ring slot, places the buffer address in the header, and sets the control field.

16.10 Reading From An Ethernet Device

Because the DMA engine uses the input ring to store incoming packets in succes-
sive buffers, reading from an Ethernet device does not involve much interaction with
the device hardware. Instead, the driver uses a semaphore to coordinate reading: an ap-
plication process waits on the semaphore, and the interrupt code signals the semaphore
when a packet arrives. Thus, if no packet is available, a caller will block on the sema-
phore. Once a packet is available, the interrupt handler signals the semaphore, and the
caller proceeds. The packet will have been placed in the next ring buffer. The driver
function that handles reading merely needs to copy the packet from the ring buffer to
the caller’s buffer and return. File ethRead.c contains the code:

/* ethRead.c - ethRead */

#include <xinu.h>

/*------------------------------------------------------------------------

* ethRead - read a packet from an Ethernet device

*------------------------------------------------------------------------

*/

devcall ethRead (

struct dentry *devptr, /* entry in device switch table */

void *buf, /* buffer to hold packet */

uint32 len /* length of buffer */

)

{

struct ether *ethptr; /* ptr to entry in ethertab */

struct ethPktBuffer *pkt; /* ptr to a packet */

uint32 length; /* packet length */

ethptr = &ethertab[devptr->dvminor];
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if (ETH_STATE_UP != ethptr->state) {

return SYSERR; /* interface is down */

}

/* Make sure user’s buffer is large enough to store at least */

/* the header of a packet */

if (len < ETH_HDR_LEN) {

return SYSERR;

}

/* Wait for a packet to arrive */

wait(ethptr->isema);

/* Pick up packet */

pkt = ethptr->in[ethptr->istart];

ethptr->in[ethptr->istart] = NULL;

ethptr->istart = (ethptr->istart + 1) % ETH_IBUFSIZ;

ethptr->icount--;

if (pkt == NULL) {

return 0;

}

length = pkt->length;

memcpy(buf, (byte *)(((uint32)pkt->buf) | KSEG1_BASE), length);

freebuf((char *)pkt);

return length;

}

After verifying that the Ethernet device is up and checking its arguments, ethRead
waits on the input semaphore. The call to wait blocks until at least one packet is avail-
able. Once the function proceeds beyond the call to wait, the function only needs to lo-
cate the next available ring buffer, copy the packet to the caller’s buffer, and return.
Field istart in the device driver control block gives the index of the ring buffer to use.
(Remember that even though the device hardware views the buffer ring as a linked list,
the driver uses array indexing.) Once it uses the entry, ethRead moves istart to the next
ring buffer by adding 1 modulo the number of ring buffers.
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16.11 Writing To An Ethernet Device

Using DMA makes output as straightforward as input. An application calls write
to send a packet, which invokes function ethWrite. As with input, the output side only
interacts with the ring buffers: ethWrite copies the caller’s buffer to the next available
output buffer. File ethWrite.c contains the code:

/* ethWrite.c - etherWrite */

#include <xinu.h>

/*------------------------------------------------------------------------

* ethWrite - write a packet to an Ethernet device

*------------------------------------------------------------------------

*/

devcall ethWrite (

struct dentry *devptr, /* entry in device switch table */

void *buf, /* buffer to hold packet */

uint32 len /* length of buffer */

)

{

struct ether *ethptr;

struct ag71xx *nicptr;

struct ethPktBuffer *pkt;

struct dmaDescriptor *dmaptr;

uint32 tail = 0;

byte *buffer;

buffer = buf;

ethptr = &ethertab[devptr->dvminor];

nicptr = ethptr->csr;

if ((ETH_STATE_UP != ethptr->state)

|| (len < ETH_HDR_LEN)

|| (len > (ETH_TX_BUF_SIZE - ETH_VLAN_LEN))) {

return SYSERR;

}

tail = ethptr->txTail % ETH_TX_RING_ENTRIES;

dmaptr = &ethptr->txRing[tail];

if (!(dmaptr->control & ETH_DESC_CTRL_EMPTY)) {

ethptr->errors++;
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return SYSERR;

}

pkt = (struct ethPktBuffer *)getbuf(ethptr->outPool);

if ((uint32)pkt == SYSERR) {

ethptr->errors++;

return SYSERR;

}

/* Translate pkt pointer into uncached memory space */

pkt = (struct ethPktBuffer *)((int)pkt | KSEG1_BASE);

pkt->buf = (byte *)(pkt + 1);

pkt->data = pkt->buf;

memcpy(pkt->data, buffer, len);

/* Place filled buffer in outgoing queue */

ethptr->txBufs[tail] = pkt;

/* Add the buffer to the transmit ring. Note that the address */

/* must be physical (USEG) because the DMA engine will used it */

ethptr->txRing[tail].address = (uint32)pkt->data & PMEM_MASK;

/* Clear empty flag and write the length */

ethptr->txRing[tail].control = len & ETH_DESC_CTRL_LEN;

/* move to next position */

ethptr->txTail++;

if (nicptr->txStatus & TX_STAT_UNDER) {

nicptr->txDMA = ((uint32)(ethptr->txRing + tail))

& PMEM_MASK;

nicptr->txStatus = TX_STAT_UNDER;

}

/* Enable transmit interrupts */

nicptr->txControl = TX_CTRL_ENABLE;

return len;

}
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After checking its arguments, ethWrite waits for a free slot in the output ring and
copies a packet from the caller’s buffer into the ring buffer. If the device is currently
idle, ethWrite must start the device. Starting a DMA device is trivial: ethWrite assigns
constant TX_CTRL_ENABLE to the device’s transmit control register. If the device is
already running, the assignment has no effect; if the device is idle, the assignment starts
the device at the next ring slot (i.e., the slot into which the driver placed the packet to
be transmitted).

16.12 Handling Interrupts From An Ethernet Device

One of the advantages of a DMA device arises because the DMA engine on the de-
vice handles many of the details. As a result, interrupt processing does not involve
much interaction with the device. An interrupt occurs when an input or output opera-
tion completes successfully or when the DMA engine encounters an error. The inter-
rupt handler interrogates the device to determine the cause of an interrupt. For a suc-
cessful input interrupt, the handler calls function rxPackets, and for a successful output
interrupt, the handler calls function txPackets. Errors conditions are handled directly.
File ethInterrupt.c contains the code:

/* ethInterrupt.c - ethInterrupt */

#include <xinu.h>

/*------------------------------------------------------------------------

* rxPackets - handler for receiver interrupts

*------------------------------------------------------------------------

*/

void rxPackets (

struct ether *ethptr, /* ptr to control block */

struct ag71xx *nicptr /* ptr to device CSRs */

)

{

struct dmaDescriptor *dmaptr; /* ptr to DMA descriptor */

struct ethPktBuffer *pkt; /* ptr to one packet buffer */

int32 head;

/* Move to next packet, wrapping around if needed */

head = ethptr->rxHead % ETH_RX_RING_ENTRIES;

dmaptr = &ethptr->rxRing[head];

if (dmaptr->control & ETH_DESC_CTRL_EMPTY) {

nicptr->rxStatus = RX_STAT_RECVD;
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return;

}

pkt = ethptr->rxBufs[head];

pkt->length = dmaptr->control & ETH_DESC_CTRL_LEN;

if (ethptr->icount < ETH_IBUFSIZ) {

allocRxBuffer(ethptr, head);

ethptr->in[(ethptr->istart + ethptr->icount) %

ETH_IBUFSIZ] = pkt;

ethptr->icount++;

signal(ethptr->isema);

} else {

ethptr->ovrrun++;

memset(pkt->buf, ’\0’, pkt->length);

}

ethptr->rxHead++;

/* Clear the Rx interrupt */

nicptr->rxStatus = RX_STAT_RECVD;

return;

}

/*------------------------------------------------------------------------

* txPackets - handler for transmitter interrupts

*------------------------------------------------------------------------

*/

void txPackets (

struct ether *ethptr, /* ptr to control block */

struct ag71xx *nicptr /* ptr to device CSRs */

)

{

struct dmaDescriptor *dmaptr;

struct ethPktBuffer **epb = NULL;

struct ethPktBuffer *pkt = NULL;

uint32 head;

if (ethptr->txHead == ethptr->txTail) {

nicptr->txStatus = TX_STAT_SENT;

return;

}

/* While packets remain to be transmitted */
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while (ethptr->txHead != ethptr->txTail) {

head = ethptr->txHead % ETH_TX_RING_ENTRIES;

dmaptr = &ethptr->txRing[head];

if (!(dmaptr->control & ETH_DESC_CTRL_EMPTY)) {

break;

}

epb = &ethptr->txBufs[head];

/* Clear the Tx interrupt */

nicptr->txStatus = TX_STAT_SENT;

ethptr->txHead++;

pkt = *epb;

if (NULL == pkt) {

continue;

}

freebuf((void *)((bpid32)pkt & (PMEM_MASK | KSEG0_BASE)));

*epb = NULL;

}

return;

}

/*------------------------------------------------------------------------

* ethInterrupt - decode and handle interrupt from an Ethernet device

*------------------------------------------------------------------------

*/

interrupt ethInterrupt(void)

{

struct ether *ethptr; /* ptr to control block */

struct ag71xx *nicptr; /* ptr to device CSRs */

uint32 status;

uint32 mask;

/* Initialize structure pointers */

ethptr = &ethertab[0]; /* default physical Ethernet */

if (!ethptr) {

return;

}

nicptr = ethptr->csr;

if (!nicptr) {

return;
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}

/* Obtain status bits from device */

mask = nicptr->interruptMask;

status = nicptr->interruptStatus & mask;

/* Record status in ether struct */

ethptr->interruptStatus = status;

if (status == 0) {

return;

}

sched_cntl(DEFER_START);

if (status & IRQ_TX_PKTSENT) { /* handle transmitter interrupt */

ethptr->txirq++;

txPackets(ethptr, nicptr);

}

if (status & IRQ_RX_PKTRECV) { /* handle receiver interrupt */

ethptr->rxirq++;

rxPackets(ethptr, nicptr);

}

/* Handle errors (transmit or receive overflow) */

if (status & IRQ_RX_OVERFLOW) {

/* Clear interrupt and restart processing */

nicptr->rxStatus = RX_STAT_OVERFLOW;

nicptr->rxControl = RX_CTRL_RXE;

ethptr->errors++;

}

if ((status & IRQ_TX_UNDERFLOW) ||

(status & IRQ_TX_BUSERR) || (status & IRQ_RX_BUSERR)) {

panic("Catastrophic Ethernet error");

}

sched_cntl(DEFER_STOP);

return;

}
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Note that a transmit underflow or bus error should not occur unless the hardware
malfunctions, and there is no way for the driver to correct the problem. Therefore, our
driver code calls panic.

16.13 Ethernet Control Functions

The Ethernet driver supports three control functions: a caller can fetch the MAC
address from the device, set the MAC address, and set loopback mode, which is used
for testing. We usually think of an Ethernet MAC address as being hardwired into the
device. At the lowest level, however, a manufacturer does not want to assign a per-
manent address until the hardware has been tested. Therefore, the example system is
typical of small embedded designs: instead of being burned onto the Ethernet interface
chip, the MAC address is loaded into non-volatile RAM. When it starts, the system
must extract the address and load it into the device.

Because the underlying bus uses 32-bit transfers, the device divides a 48-bit MAC
address into two pieces. To set the MAC address, ethControl must set both values.
The code starts by picking up the first four bytes of the MAC address the user specifies,
shifting each byte into its position within a 32-bit integer, and storing the result on the
device. It then picks up the last two bytes of the MAC address, shifts them into posi-
tion, and stores the result in the second integer on the device.

Obtaining a MAC address from the device works the opposite way from storing a
MAC address. EthControl starts by obtaining an integer value from the device. It then
shifts and masks each byte, which it stores in the array the caller specifies. Once the
first four bytes have been stored, ethControl reads the second integer and extracts the fi-
nal two bytes. File ethControl.c contains the code.

/* ethControl.c - ethControl */

#include <xinu.h>

/*------------------------------------------------------------------------

* ethControl - implement control function for an Ethernet device

*------------------------------------------------------------------------

*/

devcall ethControl (

struct dentry *devptr, /* entry in device switch table */

int32 func, /* control function */

int32 arg1, /* argument 1, if needed */

int32 arg2 /* argument 2, if needed */

)

{

struct ether *ethptr; /* ptr to control block */

struct ag71xx *nicptr; /* ptr to device CSRs */
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byte *macptr; /* ptr to MAC address */

uint32 temp; /* temporary */

ethptr = &ethertab[devptr->dvminor];

if (ethptr->csr == NULL) {

return SYSERR;

}

nicptr = ethptr->csr;

switch (func) {

/* Program MAC address into card. */

case ETH_CTRL_SET_MAC:

macptr = (byte *)arg1;

temp = ((uint32)macptr[0]) << 24;

temp |= ((uint32)macptr[1]) << 16;

temp |= ((uint32)macptr[2]) << 8;

temp |= ((uint32)macptr[3]) << 0;

nicptr->macAddr1 = temp;

temp = 0;

temp = ((uint32)macptr[4]) << 24;

temp |= ((uint32)macptr[5]) << 16;

nicptr->macAddr2 = temp;

break;

/* Get MAC address from card */

case ETH_CTRL_GET_MAC:

macptr = (byte *)arg1;

temp = nicptr->macAddr1;

macptr[0] = (temp >> 24) & 0xff;

macptr[1] = (temp >> 16) & 0xff;

macptr[2] = (temp >> 8) & 0xff;

macptr[3] = (temp >> 0) & 0xff;

temp = nicptr->macAddr2;

macptr[4] = (temp >> 24) & 0xff;

macptr[5] = (temp >> 16) & 0xff;

break;

/* Set receiver mode */
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case ETH_CTRL_SET_LOOPBK:

if (TRUE == (uint32)arg1) {

nicptr->macConfig1 |= MAC_CFG1_LOOPBACK;

} else {

nicptr->macConfig1 &= ~MAC_CFG1_LOOPBACK;

}

break;

default:

return SYSERR;

}

return OK;

}

16.14 Perspective

DMA devices present an interesting irony to a programmer who must write a de-
vice driver. On the one hand, DMA hardware can be incredibly complex, and the docu-
mentation (which is called a data sheet) is often so difficult to understand that program-
mers find it impenetrable. Unlike a device with a few simple control and status regis-
ters, a DMA device requires a programmer to create complex data structures in memory
and to communicate their location to the device. Furthermore, a programmer must
understand exactly how and when the hardware sets response bits in the data structures
and how the hardware interprets the requests that the operating system generates. On
the other hand, once a programmer masters the documentation, the resulting driver code
is usually smaller than the code for a non-DMA device. Thus, DMA devices have a
steep learning curve, but offer the reward of both higher performance and smaller driver
code.

16.15 Summary

A device that uses Direct Memory Access (DMA) can move an arbitrary block of
data between the device and memory without using the CPU to fetch individual words
of data. A DMA device typically uses a buffer ring in memory, where each node in the
ring points to one buffer. Once the driver points the hardware to a node of the ring, the
DMA engine performs the operation and moves to the next node on the ring automati-
cally.

The chief advantage of a DMA device lies in lower overhead: the device only
needs to interrupt the CPU once per block instead of once per byte or once per word.
The driver code for a DMA device is simpler than the code for a conventional device
because the driver does not need to perform low-level operations.

www.itpub.net



Exercises 331

EXERCISES

16.1 The driver code uses array indexing to move from one node to the next. If the code is
modified to follow a link instead of using array indexing, does the driver become more
or less efficient?

16.2 Read about Ethernet packets and find the minimum packet size. At 100 Mbps, how
many packets can arrive per second?

16.3 Build a test program that transmits Ethernet packets as fast as possible. How many large
packets can you send per second? How many small packets?

16.4 The current driver is complex and the code is somewhat difficult to read. Rewrite the
code to use arrays for the transmit and receive rings. Allocate packet buffers statically.
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A Minimal Internet Protocol
Stack

The lure of the distant and the difficult is deceptive.
The great opportunity is where you are.

— John Burroughs

17.1 Introduction

Because most embedded systems use a network to communicate, network protocol
software has become a standard part of even small embedded operating systems. The
previous chapter describes a basic Ethernet device driver that can send and receive
packets. Although an Ethernet device can transfer packets, additional communication
software is required to permit applications to communicate across the Internet. In par-
ticular, most systems use the TCP/Internet Protocol Suite, the protocols that define In-
ternet communication. The protocols are organized into conceptual layers, and an im-
plementation is known as a protocol stack.

A complete TCP/IP stack contains many protocols, and requires much more than a
single chapter to describe. Therefore, this chapter describes a minimal implementation
that is sufficiently powerful to support the remote disk and remote file systems covered
later in the book. It provides a brief description without delving into the details of the
protocols; the reader is referred to other texts from the author that explain the protocol
suite and a full implementation.
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17.2 Required Functionality

Our implementation of Internet protocols allows a process running on Xinu to
communicate with an application running on a remote computer in the Internet (e.g., a
PC, Mac, or Unix system, such as Linux or Solaris). It is possible to identify a remote
computer and exchange messages with the computer. The system includes a timeout
mechanism that allows a receiver to be informed if no message is received within a
specified timeout.

In terms of protocols, our implementation supports:

d IP Internet Protocol
d UDP User Datagram Protocol
d ARP Address Resolution Protocol
d DHCP Dynamic Host Configuration Protocol
d ICMP Internet Control Message Protocol

IP. The Internet Protocol defines the format of an internet packet, which is known
as a datagram. Each datagram is carried in the data area of an Ethernet frame. The In-
ternet Protocol also defines the address format. Our implementation does not support IP
options or features such as fragmentation (i.e., it is not a complete implementation).
Packet forwarding follows the pattern used in most end systems: our IP software knows
the computer’s IP address, address mask for the local network, and a single default
router address; if a destination is not on the local network, the packet is sent to the de-
fault router.

UDP. The User Datagram Protocol defines a set of 16-bit port numbers that an
operating system uses to identify a specific application program. Communicating appli-
cations must agree on the port numbers they will use. Port numbers allow simultaneous
communication without interference: an application can interact with one remote server
while a second application interacts with another. Our software allows a process to
specify a port number at run-time.

ARP. The Address Resolution Protocol provides two functions. Before another
computer can send IP packets to our system, the computer must send an ARP packet
that requests our Ethernet address and our system must respond with an ARP reply.
Similarly, before our system can send IP packets to another computer, it first sends an
ARP request to obtain the computer’s Ethernet address, then uses the Ethernet address
to send IP packets.

DHCP. The Dynamic Host Configuration Protocol provides a mechanism that a
computer can use to obtain an IP address, an address mask for the network, and the IP
address of a default router. The computer broadcasts a request, and a DHCP server
running on the network sends a response. Usually, DHCP is invoked at startup because
the information must be obtained before normal Internet communication is possible.
Our implementation does not invoke DHCP immediately at startup. Instead, it waits
until a process attempts to obtain a local IP address.
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ICMP. The Internet Control Message Protocol provides error and informational
messages that support IP. Our implementation only handles the two ICMP messages
used by the ping program: Echo Request and Echo Reply. Because the code for ICMP
is large, we describe the structure of the protocol software without showing all the de-
tails; the code is available on the web site for the text.†

17.3 Simultaneous Conversations, Timeouts, And Processes

How should protocol software be organized? How many processes are needed? A
full stack includes many protocols and permits them to be used simultaneously. To ac-
commodate simultaneous use, many implementations use multiple processes, with one
process assigned to each protocol. Other implementations use software interrupts as an
alternative to processes. As we will see, our minimal software can implement the set of
protocols described above with only two extra processes. This section describes the
process structure, and later sections of the chapter examine the code.

Why are processes needed? The answer lies in a technique that is fundamental to
network protocol design. Known as timeout-and-retransmission, the technique handles
situations where packets are lost (e.g., because the queue at a server overflows). To use
timeout-and-retransmission, a protocol must be designed so the receiver sends a
response to each message. When it transmits a message, a sender starts a timer. If the
timer expires before a response arrives, the sender assumes that the message was lost
and retransmits a second copy.

Our software uses an elegant design that has a single network input process, named
netin.‡ The design uses function recvtime to handle all timeouts. That is, after transmit-
ting a message, a sender calls recvtime to wait for a response. When a response arrives,
the network input process, netin, sends a message to the waiting process, and recvtime
returns the message. If the timer expires, recvtime returns value TIMEOUT. To make
the system work, a sender must coordinate with the netin process. That is, before it
transmits a message, a sender must store its process ID in a location that the netin pro-
cess knows. For ARP messages, the process ID is stored in the ARP table entry for the
address being resolved. For UDP messages, the process ID is stored with a packet
queue in the UDP table entry for the port being used. Figure 17.1 illustrates how the
netin process stores an incoming UDP packet in a UDP queue or extracts information
from an incoming ARP packet and places the information in an ARP table entry. In ei-
ther case, if a process is waiting, netin sends a message to the waiting process.

��������������������������������
†URL: xinu.cs.purdue.edu
‡The code for netin can be found later in the chapter on page 348.
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Figure 17.1  The conceptual function of the netin process.

On output, our design allows application processes to invoke output functions.
The only exception arises from ICMP echo: a separate ICMP output process is used to
handle ping replies. The exception is required because we must decouple ICMP input
and output, allowing the network input process to continue running while ICMP sends a
reply. Decoupling is needed because an ICMP reply travels in an IP packet, and send-
ing an IP packet may require an ARP exchange. For ARP to work, the network input
process must continue to execute (i.e., must read and handle incoming ARP replies).
Thus, if the network input process blocks waiting for an ARP response, the system will
deadlock. Figure 17.2 illustrates the decoupling by showing how the netin process
places outgoing ICMP packets in a queue for the ICMP output process.

ping
request
arrives netin

process

queue of
ICMP packets ICMP

output
process

ping
reply
sent

Figure 17.2  The process structure used to handle ping replies.

17.4 ARP Functions

Before two computers on an Ethernet can communicate using the Internet Protocol,
they must learn each other’s Ethernet addresses. The protocol exchanges two messages:
computer A broadcasts an ARP request that contains an IP address. Whichever comput-
er on the network has the IP address in the request sends an ARP response that specifies
its Ethernet address. When a response arrives, an entry is added to a table that is
known as an ARP cache. The entry contains the remote computer’s IP address and its
Ethernet address. Subsequent transmissions to the same destination extract the informa-
tion from the ARP cache without sending another request.
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Our implementation stores ARP information in array arpcache. Struct arpentry
defines the contents of each entry in the array to consist of: a state field (which specifies
whether the entry is currently unused, being filled in, or already filled in), an IP address,
the corresponding Ethernet address, and a process ID. If the entry is in the pending
state, the process ID field contains the ID of the process that is waiting for the informa-
tion to arrive. File arp.h defines the ARP packet format (when used on an Ethernet)
and the format of an ARP cache entry.

/* arp.h */

/* Items related to ARP - definition of cache and the packet format */

#define ARP_HALEN 6 /* size of Ethernet MAC address */

#define ARP_PALEN 4 /* size of IP address */

#define ARP_HTYPE 1 /* Ethernet hardware type */

#define ARP_PTYPE 0x0800 /* IP protocol type */

#define ARP_OP_REQ 1 /* Request op code */

#define ARP_OP_RPLY 2 /* Reply op code */

#define ARP_SIZ 16 /* number of entries in a cache */

#define ARP_RETRY 3 /* num. retries for ARP request */

#define ARP_TIMEOUT 200 /* retry timer in milliseconds */

/* State of an ARP cache entry */

#define AR_FREE 0 /* slot is unused */

#define AR_PENDING 1 /* resolution in progress */

#define AR_RESOLVED 2 /* entry is valid */

#pragma pack(2)

struct arppacket { /* ARP packet for IP & Ethernet */

byte arp_ethdst[ETH_ADDR_LEN];/* Ethernet dest. MAC addr */

byte arp_ethsrc[ETH_ADDR_LEN];/* Ethernet source MAC address */

uint16 arp_ethtype; /* Ethernet type field */

uint16 arp_htype; /* ARP hardware type */

uint16 arp_ptype; /* ARP protocol type */

byte arp_hlen; /* ARP hardware address length */

byte arp_plen; /* ARP protocol address length */

uint16 arp_op; /* ARP operation */

byte arp_sndha[ARP_HALEN]; /* ARP sender’s Ethernet addr. */

uint32 arp_sndpa; /* ARP sender’s IP address */
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byte arp_tarha[ARP_HALEN]; /* ARP target’s Ethernet addr. */

uint32 arp_tarpa; /* ARP target’s IP address */

};

#pragma pack()

struct arpentry { /* entry in the ARP cache */

int32 arstate; /* state of the entry */

uint32 arpaddr; /* IP address of the entry */

pid32 arpid; /* waiting process or -1 */

byte arhaddr[ARP_HALEN]; /* Ethernet address of the entry*/

};

extern struct arpentry arpcache[];

ARP uses the same packet format for both requests and responses; a field in the
header specifies the type as a request or response. In each case, the packet contains the
sender’s IP address and Ethernet address as well as the target’s IP address and Ethernet
address. In a request, the target’s Ethernet address is unknown, so the field contains
zeroes.

Our ARP software consists of four functions, arp_init, arp_resolve, arp_in, and
arp_alloc. All four functions reside in a single source file, arp.c:

/* arp.c - arp_init, arp_resolve, arp_in, arp_alloc */

#include <xinu.h>

struct arpentry arpcache[ARP_SIZ]; /* ARP cache */

sid32 arpmutex; /* Mutual exclusion semaphore */

/*------------------------------------------------------------------------

* arp_init - initialize ARP mutex and cache

*------------------------------------------------------------------------

*/

void arp_init(void) {

int32 i; /* ARP cache index */

arpmutex = semcreate(1);

for (i=1; i<ARP_SIZ; i++) { /* initialize cache to empty */

arpcache[i].arstate = AR_FREE;

}

}

/*------------------------------------------------------------------------

www.itpub.net



Sec. 17.4 ARP Functions 339

* arp_resolve - use ARP to resolve an IP address into an Ethernet address

*------------------------------------------------------------------------

*/

status arp_resolve (

uint32 ipaddr, /* IP address to resolve */

byte mac[ETH_ADDR_LEN] /* array into which Ethernet */

) /* address should be placed */

{

struct arppacket apkt; /* local packet buffer */

int32 i; /* index into arpcache */

int32 slot; /* ARP table slot to use */

struct arpentry *arptr; /* ptr to ARP cache entry */

int32 msg; /* message returned by recvtime */

byte ethbcast[] = {0xff,0xff,0xff,0xff,0xff,0xff};

if (ipaddr == IP_BCAST) { /* set mac address to b-cast */

memcpy(mac, ethbcast, ETH_ADDR_LEN);

return OK;

}

/* Insure only one process uses ARP at a time */

wait(arpmutex);

for (i=0; i<ARP_SIZ; i++) {

arptr = &arpcache[i];

if (arptr->arstate == AR_FREE) {

continue;

}

if (arptr->arpaddr == ipaddr) { /* adddress is in cache */

break;

}

}

if (i < ARP_SIZ) { /* entry was found */

/* Only one request can be pending for an address */

if (arptr->arstate == AR_PENDING) {

signal(arpmutex);

return SYSERR;

}

/* Entry is resolved - handle and return */

memcpy(mac, arptr->arhaddr, ARP_HALEN);
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signal(arpmutex);

return OK;

}

/* Must allocate a new cache entry for the request */

slot = arp_alloc();

if (slot == SYSERR) {

signal(arpmutex);

return SYSERR;

}

arptr = &arpcache[slot];

arptr->arstate = AR_PENDING;

arptr->arpaddr = ipaddr;

arptr->arpid = currpid;

/* Release ARP cache for others */

signal(arpmutex);

/* Hand-craft an ARP Request packet */

memcpy(apkt.arp_ethdst, ethbcast, ETH_ADDR_LEN);

memcpy(apkt.arp_ethsrc, NetData.ethaddr, ETH_ADDR_LEN);

apkt.arp_ethtype = ETH_ARP; /* Packet type is ARP */

apkt.arp_htype = ARP_HTYPE; /* Hardware type is Ethernet */

apkt.arp_ptype = ARP_PTYPE; /* Protocol type is IP */

apkt.arp_hlen = 0xff & ARP_HALEN; /* Ethernet MAC size in bytes */

apkt.arp_plen = 0xff & ARP_PALEN; /* IP address size in bytes */

apkt.arp_op = 0xffff & ARP_OP_REQ;/* ARP type is Request */

memcpy(apkt.arp_sndha, NetData.ethaddr, ARP_HALEN);

apkt.arp_sndpa = NetData.ipaddr; /* Local IP address */

memset(apkt.arp_tarha, ’\0’, ARP_HALEN); /* Target HA is unknown*/

apkt.arp_tarpa = ipaddr; /* Target protocol address */

/* Send the packet ARP_RETRY times and await response*/

msg = recvclr();

for (i=0; i<ARP_RETRY; i++) {

write(ETHER0, (char *)&apkt, sizeof(struct arppacket));

msg = recvtime(ARP_TIMEOUT);

if (msg == TIMEOUT) {

continue;

} else if (msg == SYSERR) {

return SYSERR;
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} else { /* entry is resolved */

break;

}

}

/* Verify that entry has not changed */

if (arptr->arpaddr != ipaddr) {

return SYSERR;

}

/* Either return hardware address or TIMEOUT indicator */

if (i < ARP_RETRY) {

memcpy(mac, arptr->arhaddr, ARP_HALEN);

return OK;

} else {

arptr->arstate = AR_FREE; /* invalidate cache entry */

return TIMEOUT;

}

}

/*------------------------------------------------------------------------

* arp_in - handle an incoming ARP packet

*------------------------------------------------------------------------

*/

void arp_in (void) { /* currpkt points to the packet */

struct arppacket *pktptr; /* ptr to incoming packet */

struct arppacket apkt; /* Local packet buffer */

int32 slot; /* slot in cache */

struct arpentry *arptr; /* ptr to ARP cache entry */

bool8 found; /* is the sender’s address in */

/* the cache? */

/* Insure only one process uses ARP at a time */

wait(arpmutex);

pktptr = (struct arppacket *)currpkt;

/* Search cache for sender’s IP address */

found = FALSE;
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for (slot=0; slot < ARP_SIZ; slot++) {

arptr = &arpcache[slot];

/* Ignore unless entry valid and address matches */

if ( (arptr->arstate != AR_FREE) &&

(arptr->arpaddr == pktptr->arp_sndpa) ) {

found = TRUE;

break;

}

}

if (found) { /* Update sender’s hardware address */

memcpy(arptr->arhaddr, pktptr->arp_sndha, ARP_HALEN);

/* Handle entry that was pending */

if (arptr->arstate == AR_PENDING) {

arptr->arstate = AR_RESOLVED;

/* Notify waiting process */

send(arptr->arpid, OK);

}

}

/* For an ARP reply, processing is complete */

if (pktptr->arp_op == ARP_OP_RPLY) {

signal(arpmutex);

return;

}

/* ARP request packet: if local machine is not the target, */

/* processing is complete */

if ((! NetData.ipvalid) || (pktptr->arp_tarpa!=NetData.ipaddr)) {

signal(arpmutex);

return;

}

/* Request has been sent to local machine: add sender’s info */

/* to cache, if not already present */
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if (! found) {

slot = arp_alloc();

if (slot == SYSERR) { /* cache overflow */

signal(arpmutex);

return;

}

arptr = &arpcache[slot];

arptr->arstate = AR_RESOLVED;

arptr->arpaddr = pktptr->arp_sndpa;

memcpy(arptr->arhaddr, pktptr->arp_sndha, ARP_HALEN);

}

/* Hand-craft an ARP reply packet and send */

memcpy(apkt.arp_ethdst, pktptr->arp_sndha, ARP_HALEN);

memcpy(apkt.arp_ethsrc, NetData.ethaddr, ARP_HALEN);

apkt.arp_ethtype= ETH_ARP; /* Frame carries ARP */

apkt.arp_htype = ARP_HTYPE; /* Hardware is Ethernet */

apkt.arp_ptype = ARP_PTYPE; /* Protocol is IP */

apkt.arp_hlen = ARP_HALEN; /* Ethernet address size*/

apkt.arp_plen = ARP_PALEN; /* IP address size */

apkt.arp_op = ARP_OP_RPLY; /* Type is Reply */

/* Insert local Ethernet and IP address in sender fields */

memcpy(apkt.arp_sndha, NetData.ethaddr, ARP_HALEN);

apkt.arp_sndpa = NetData.ipaddr;

/* Copy target Ethernet and IP addresses from request packet */

memcpy(apkt.arp_tarha, pktptr->arp_sndha, ARP_HALEN);

apkt.arp_tarpa = pktptr->arp_sndpa;

/* Send the reply */

write(ETHER0, (char *)&apkt, sizeof(struct arppacket));

signal(arpmutex);

return;

}

/*------------------------------------------------------------------------

* arp_alloc - find a free slot or kick out an entry to create one

*------------------------------------------------------------------------

*/
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int32 arp_alloc (void) {

static int32 nextslot = 0; /* next slot to try */

int32 i; /* counts slots in the table */

int32 slot; /* slot that is selected */

/* Search for free slot starting at nextslot */

for (i=0; i < ARP_SIZ; i++) {

slot = nextslot++;

if (nextslot >= ARP_SIZ) {

nextslot = 0;

}

if (arpcache[slot].arstate == AR_FREE) {

return slot;

}

}

/* Search for resolved entry */

slot = nextslot + 1;

for (i=0; i < ARP_SIZ; i++) {

if (slot >= ARP_SIZ) {

slot = 0;

}

if (arpcache[slot].arstate == AR_RESOLVED) {

return slot;

}

}

/* All slots are pending */

kprintf("ARP cache size exceeded\n\r");

return SYSERR;

}

Arp_init. Function arp_init is called once when the system starts. It marks each
entry in the ARP cache free and creates a mutual exclusion semaphore that insures only
one process will attempt to change the ARP cache (e.g., insert an entry) at any time.
Functions arp_resolve and arp_in are used to handle address lookup for outgoing IP
packets and to process incoming ARP packets, respectively. The final function,
arp_alloc, is called to allocate an entry in the table whenever a new item must be ad-
ded.
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Arp_resolve. Function arp_resolve is called when an IP packet is ready to be sent.
Arp_resolve takes two arguments: the first specifies the IP address of a computer for
which an Ethernet address is needed; the second is a pointer to an array that will hold
the Ethernet address.

Although the code may seem complex, there are only three cases: the IP address is
a broadcast address, the information is already in the ARP cache, or the information is
not known. For an IP broadcast address, arp_resolve copies the Ethernet broadcast ad-
dress into the array specified by the second argument. If the information is present in
the cache, arp_resolve finds the correct entry, copies the Ethernet address from the en-
try into the caller’s array, and returns to the caller without sending any packets over the
network.

In the case where the requested mapping is not in the cache, arp_resolve must send
packets over the network to obtain the information. The exchange involves sending a
request and waiting for a reply. Arp_resolve creates an entry in the table, marks the en-
try AR_PENDING, forms an ARP request packet, broadcasts the packet on the local net-
work, and then waits for a reply. As discussed above, arp_resolve uses recvtime to
wait. The call to recvtime will return if a response arrives or the timer expires, which-
ever occurs first. In the next section, we will describe how an incoming packet is pro-
cessed and how a message is sent to a waiting process.

The code is more complex than we have described because arp_resolve does not
merely give up if a timeout occurs. Instead, our implementation is designed to retry the
operation: it sends a request and waits for a reply ARP_RETRY times before it returns
TIMEOUT to the caller.

Arp_in. The second major ARP function runs when an incoming ARP packet ar-
rives. The netin process examines the type field in each incoming Ethernet packet. If it
finds the ARP packet type (0x806), netin calls function arp_in to handle the packet.
Arp_in must handle two cases: either the packet is a request that was initiated by anoth-
er computer or it is a reply, possibly to a request that we have sent.

The protocol specifies that when either type of packet arrives, ARP must examine
the sender’s information (IP address and Ethernet address), and update the local cache
accordingly. If a process is waiting for the reply, arp_in sends a message to the pro-
cess.

Because an ARP request is broadcast, all computers on the network receive each
request. Therefore, after it updates the sender’s information, arp_in checks the target IP
address in a request to determine whether the request is for the local system or some
other computer on the network. If the request is for another computer, arp_in returns
without taking further action. If the target IP address in the incoming request matches
the IP address of the local system, arp_in sends an ARP reply. Arp_in forms a reply in
variable apkt. Once all fields of the packet have been filled in, the code calls write on
the Ethernet device to transmit the reply back to the requester.
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17.5 Definition Of A Network Packet

Our minimal implementation of network protocols combines IP, UDP, ICMP, and
Ethernet. That is, we use a single data structure, named netpacket, to describe an Ether-
net packet that carries an IP datagram which either carries a UDP message or an ICMP
message. File net.h defines netpacket as well as other constants and data structures.

/* net.h */

/* Constants used in the networking code */

#define ETH_ARP 0x0806 /* Ethernet type for ARP */

#define ETH_IP 0x0800 /* Ethernet type for IP */

#define IP_BCAST 0xffffffff /* IP local broadcast address */

#define IP_THIS 0xffffffff /* "this host" src IP address */

#define IP_ICMP 1 /* ICMP protocol type for IP */

#define IP_UDP 17 /* UDP protocol type for IP */

#define IP_ASIZE 4 /* bytes in an IP address */

#define IP_HDR_LEN 20 /* bytes in an IP header */

/* Format of an Ethernet packet carrying IPv4 and UDP */

#pragma pack(2)

struct netpacket {

byte net_ethdst[ETH_ADDR_LEN];/* Ethernet dest. MAC address */

byte net_ethsrc[ETH_ADDR_LEN];/* Ethernet source MAC address */

uint16 net_ethtype; /* Ethernet type field */

byte net_ipvh; /* IP version and hdr length */

byte net_iptos; /* IP type of service */

uint16 net_iplen; /* IP total packet length */

uint16 net_ipid; /* IP datagram ID */

uint16 net_ipfrag; /* IP flags & fragment offset */

byte net_ipttl; /* IP time-to-live */

byte net_ipproto; /* IP protocol (actually type) */

uint16 net_ipcksum; /* IP checksum */

uint32 net_ipsrc; /* IP source address */

uint32 net_ipdst; /* IP destination address */

union {

struct {

uint16 net_udpsport; /* UDP source protocol port */

uint16 net_udpdport; /* UDP destination protocol port*/
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uint16 net_udplen; /* UDP total length */

uint16 net_udpcksum; /* UDP checksum */

byte net_udpdata[1500-42];/* UDP payload (1500-above)*/

};

struct {

byte net_ictype; /* ICMP message type */

byte net_iccode; /* ICMP code field (0 for ping) */

uint16 net_iccksum; /* ICMP message checksum */

uint16 net_icident; /* ICMP identifier */

uint16 net_icseq; /* ICMP sequence number */

byte net_icdata[1500-42];/* ICMP payload (1500-above)*/

};

};

};

#pragma pack()

extern struct netpacket *currpkt; /* ptr to current input packet */

extern bpid32 netbufpool; /* ID of net packet buffer pool */

struct network {

uint32 ipaddr; /* IP address */

uint32 addrmask; /* Subnet mask */

uint32 routeraddr; /* Address of default router */

bool8 ipvalid; /* Is IP address valid yet? */

byte ethaddr[ETH_ADDR_LEN]; /* Ethernet address */

};

extern struct network NetData; /* Local network interface */

17.6 The Network Input Process

At startup, Xinu creates the network input process, netin. Therefore, netin starts
running before any application processes. After it creates a buffer pool and initializes
global variables, netin calls initialization functions arp_init, udp_init, and icmp_init. It
then allocates an initial network buffer and enters an infinite loop that repeatedly reads
and processes packets. When it reads a packet from the Ethernet, netin uses the Ether-
net type field in the packet to determine whether the Ethernet packet is carrying an ARP
message or an IP datagram. In the case of ARP, netin calls arp_in to handle the packet.
In the case of an IP datagram, netin verifies that the IP header checksum is valid, veri-
fies that the destination IP address matches the broadcast address or the local address,
and then uses the type field in the IP header to verify that the datagram is carrying UDP
or ICMP. If any of the tests fail, netin goes on to the next packet. If the tests indicate
that the information is valid, netin calls icmp_in or udp_in to process the packet. File
netin.c contains the code.
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/* netin.c - netin */

#include <xinu.h>

bpid32 netbufpool; /* ID of network buffer pool */

struct netpacket *currpkt; /* packet buffer being used now */

struct network NetData; /* local network interface */

/*------------------------------------------------------------------------

* netin - continuously read the next incoming packet and handle it

*------------------------------------------------------------------------

*/

process netin(void) {

status retval; /* return value from function */

netbufpool = mkbufpool(PACKLEN, UDP_SLOTS * UDP_QSIZ +

ICMP_SLOTS * ICMP_QSIZ + ICMP_OQSIZ + 1);

if (netbufpool == SYSERR) {

kprintf("Cannot allocate network buffer pool");

kill(getpid());

}

/* Copy Ethernet address to global variable */

control(ETHER0, ETH_CTRL_GET_MAC, (int32)NetData.ethaddr, 0);

/* Indicate that IP address, mask, and router are not yet valid */

NetData.ipvalid = FALSE;

NetData.ipaddr = 0;

NetData.addrmask = 0;

NetData.routeraddr = 0;

/* Initialize ARP cache */

arp_init();

/* Initialize UDP table */

udp_init();
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/* Initialize ICMP table */

icmp_init();

currpkt = (struct netpacket *)getbuf(netbufpool);

/* Do forever: read packets from the network and process */

while(1) {

retval = read(ETHER0, (char *)currpkt, PACKLEN);

if (retval == SYSERR) {

panic("Ethernet read error");

}

/* Demultiplex on Ethernet type */

switch (currpkt->net_ethtype) {

case ETH_ARP:

arp_in(); /* Handle an ARP packet */

continue;

case ETH_IP:

if (ipcksum(currpkt) != 0) {

kprintf("checksum failed\n\r");

continue;

}

if (currpkt->net_ipvh != 0x45) {

kprintf("version failed\n\r");

continue;

}

if ( (currpkt->net_ipdst != IP_BCAST) &&

(NetData.ipvalid) &&

(currpkt->net_ipdst != NetData.ipaddr) ) {

continue;

}

/* Demultiplex ICMP or UDP and ignore others */

if (currpkt->net_ipproto == IP_ICMP) {

icmp_in(); /* Handle an ICMP packet*/
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} else if (currpkt->net_ipproto == IP_UDP) {

udp_in(); /* Handle a UDP packet */

}

continue;

default: /* Ignore all other Ethernet types */

continue;

}

}

}

/*------------------------------------------------------------------------

* ipcksum - compute the IP checksum for a packet

*------------------------------------------------------------------------

*/

uint16 ipcksum(

struct netpacket *pkt /* ptr to a packet */

)

{

uint16 *hptr; /* ptr to 16-bit header values */

int32 i; /* counts 16-bit values in hdr */

uint32 cksum; /* computed value of checksum */

hptr= (uint16 *) &pkt->net_ipvh;

cksum = 0;

for (i=0; i<10; i++) {

cksum += (uint32) *hptr++;

}

cksum += (cksum >> 16);

cksum = 0xffff & ~cksum;

if (cksum == 0xffff) {

cksum = 0;

}

return (uint16) (0xffff & cksum);

}

Our implementation of netin relies on a global variable, currpkt that always points
to the packet currently being processed. That is, currpkt points to a buffer that is used
for the current packet. Before the loop starts, netin calls getbuf to obtain a buffer, and
assigns the buffer address to currpkt. On each iteration, netin reads a packet into the
current buffer. Thus, when netin calls either arp_in or udp_in, currpkt points to the
packet that should be processed. Arp_in extracts information from the packet, and
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leaves currpkt pointing to a buffer that can be reused. In the case of udp_in, the incom-
ing packet may need to be enqueued in one of the UDP table entries. If it does enqueue
the current packet, udp_in allocates a new buffer and assigns the address of the buffer to
currpkt before returning to netin. The system is designed to have enough network
buffers to allow network processing to continue even if all UDP queues are full.

17.7 Definition Of The UDP Table

UDP maintains a table that specifies the set of UDP endpoints that are currently in
use. Each endpoint consists of an IP address and a UDP port number. An entry in the
table has four fields that specify two endpoint pairs, one for a remote computer and one
for the local computer.

To act as a server that can receive a packet from an arbitrary remote computer, a
process allocates a table entry, fills in the local endpoint information, and leaves the re-
mote endpoint unspecified. To act as a client that communicates with a specific remote
computer, a process allocates a table entry and fills in both the local and remote end-
point information.

In addition to endpoint information, each entry in the UDP table contains a queue
of packets that have arrived from the remote system (i.e., packets where the endpoints
specified in the packet match those in the table entry). Each entry in the UDP table is
described by struct udpentry; file udp.h defines the structure as well as associated sym-
bolic constants.
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/* udp.h - declarations pertaining to User Datagram Protocol (UDP) */

#define UDP_SLOTS 6 /* num. of open UDP endpoints */

#define UDP_QSIZ 8 /* packets enqueued per endpoint*/

#define UDP_DHCP_CPORT 68 /* port number for DHCP client */

#define UDP_DHCP_SPORT 67 /* port number for DHCP server */

/* Constants for the state of an entry */

#define UDP_FREE 0 /* entry is unused */

#define UDP_USED 1 /* entry is being used */

#define UDP_RECV 2 /* entry has a process waiting */

#define UDP_HDR_LEN 8 /* bytes in a UDP header */

struct udpentry { /* entry in the UDP endpoint tbl*/

int32 udstate; /* state of entry: free/used */

uint32 udremip; /* remote IP address (zero */

/* means "don’t care") */

uint32 udlocip; /* local IP address */

uint16 udremport; /* remote protocol port number */

uint16 udlocport; /* local protocol port number */

int32 udhead; /* index of next packet to read */

int32 udtail; /* index of next slot to insert */

int32 udcount; /* count of packets enqueued */

pid32 udpid; /* ID of waiting process */

struct netpacket *udqueue[UDP_QSIZ];/* circular packet queue */

};

extern struct udpentry udptab[]; /* table of UDP endpoints */

17.8 UDP Functions

In our system, applications use UDP for all communication. Therefore, the UDP
interface is designed to allow an application to send and receive UDP messages and to
act as either a client or a server. Our UDP software includes seven functions: udp_init,
udp_in, udp_register, udp_recv, udp_recvaddr, udp_send, and udp_release. The func-
tions are collected into a single file, udp.c. Following the file, the text describes each
UDP function.
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/* udp.c - udp_init udp_in udp_register udp_recv udp_recvaddr udp_send */

/* udp_release */

#include <xinu.h>

struct udpentry udptab[UDP_SLOTS]; /* table of UDP endpts */

/*------------------------------------------------------------------------

* udp_init - initialize UDP endpoint table

*------------------------------------------------------------------------

*/

void udp_init(void) {

int32 i; /* table index */

for(i=0; i<UDP_SLOTS; i++) {

udptab[i].udstate = UDP_FREE;

}

return;

}

/*------------------------------------------------------------------------

* udp_in - handle an incoming UDP packet

*------------------------------------------------------------------------

*/

void udp_in(void) { /* currpkt points to the packet */

int32 i; /* index into udptab */

struct udpentry *udptr; /* pointer to udptab entry */

for (i=0; i<UDP_SLOTS; i++) {

udptr = &udptab[i];

if ( (udptr->udstate != UDP_FREE) &&

(currpkt->net_udpdport == udptr->udlocport) &&

((udptr->udremport == 0) ||

(currpkt->net_udpsport == udptr->udremport)) &&

( ((udptr->udremip==0) ||

(currpkt->net_ipsrc == udptr->udremip))) ) {

/* Entry matches incoming packet */

if (udptr->udcount < UDP_QSIZ) {

udptr->udcount++;

udptr->udqueue[udptr->udtail++] = currpkt;
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if (udptr->udtail >= UDP_QSIZ) {

udptr->udtail = 0;

}

currpkt = (struct netpacket *)getbuf(netbufpool);

if (udptr->udstate == UDP_RECV) {

udptr->udstate = UDP_USED;

send (udptr->udpid, OK);

}

return;

}

}

}

/* no match - simply discard packet */

return;

}

/*------------------------------------------------------------------------

* udp_register - register a remote (IP,port) and local port to receive

* incoming UDP messages from the specified remote site

* sent to a specific local port

*------------------------------------------------------------------------

*/

status udp_register (

uint32 remip, /* remote IP address or zero */

uint16 remport, /* remote UDP protocol port */

uint16 locport /* local UDP protocol port */

)

{

int32 i; /* index into udptab */

struct udpentry *udptr; /* pointer to udptab entry */

/* See if request already registered */

for (i=0; i<UDP_SLOTS; i++) {

udptr = &udptab[i];

if (udptr->udstate == UDP_FREE) {

continue;

}

if ((remport == udptr->udremport) &&

(locport == udptr->udlocport) &&

(remip == udptr->udremip ) ) {

/* Entry in table matches request */
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return SYSERR;

}

}

/* Find a free slot and allocate it */

for (i=0; i<UDP_SLOTS; i++) {

udptr = &udptab[i];

if (udptr->udstate == UDP_FREE) {

udptr->udstate = UDP_USED;

udptr->udlocport = locport;

udptr->udremport = remport;

udptr->udremip = remip;

udptr->udcount = 0;

udptr->udhead = udptr->udtail = 0;

udptr->udpid = -1;

return OK;

}

}

return SYSERR;

}

/*------------------------------------------------------------------------

* udp_recv - receive a UDP packet

*------------------------------------------------------------------------

*/

int32 udp_recv (

uint32 remip, /* remote IP address or zero */

uint16 remport, /* remote UDP protocol port */

uint16 locport, /* local UDP protocol port */

char *buff, /* buffer to hold UDP data */

int32 len, /* length of buffer */

uint32 timeout /* read timeout in msec */

)

{

intmask mask; /* interrupt mask */

int32 i; /* index into udptab */

struct udpentry *udptr; /* pointer to udptab entry */

umsg32 msg; /* message from recvtime() */

struct netpacket *pkt; /* ptr to packet being read */

int32 msglen; /* length of UDP data in packet */

char *udataptr; /* pointer to UDP data */
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mask = disable();

for (i=0; i<UDP_SLOTS; i++) {

udptr = &udptab[i];

if ((remport == udptr->udremport) &&

(locport == udptr->udlocport) &&

(remip == udptr->udremip ) ) {

/* Entry in table matches request */

break;

}

}

if (i >= UDP_SLOTS) {

restore(mask);

return SYSERR;

}

if (udptr->udcount == 0) { /* No packet is waiting */

udptr->udstate = UDP_RECV;

udptr->udpid = currpid;

msg = recvclr();

msg = recvtime(timeout); /* Wait for a packet */

udptr->udstate = UDP_USED;

if (msg == TIMEOUT) {

restore(mask);

return TIMEOUT;

} else if (msg != OK) {

restore(mask);

return SYSERR;

}

}

/* Packet has arrived -- dequeue it */

pkt = udptr->udqueue[udptr->udhead++];

if (udptr->udhead >= UDP_SLOTS) {

udptr->udhead = 0;

}

udptr->udcount--;

/* Copy UDP data from packet into caller’s buffer */

msglen = pkt->net_udplen - UDP_HDR_LEN;

udataptr = (char *)pkt->net_udpdata;
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for (i=0; i<msglen; i++) {

if (i >= len) {

break;

}

*buff++ = *udataptr++;

}

freebuf((char *)pkt);

restore(mask);

return i;

}

/*------------------------------------------------------------------------

* udp_recvaddr - receive a UDP packet and record the sender’s address

*------------------------------------------------------------------------

*/

int32 udp_recvaddr (

uint32 *remip, /* loc to record remote IP addr.*/

uint16 *remport, /* loc to record remote port */

uint16 locport, /* local UDP protocol port */

char *buff, /* buffer to hold UDP data */

int32 len, /* length of buffer */

uint32 timeout /* read timeout in msec */

)

{

intmask mask; /* interrupt mask */

int32 i; /* index into udptab */

struct udpentry *udptr; /* pointer to udptab entry */

umsg32 msg; /* message from recvtime() */

struct netpacket *pkt; /* ptr to packet being read */

int32 msglen; /* length of UDP data in packet */

char *udataptr; /* pointer to UDP data */

mask = disable();

for (i=0; i<UDP_SLOTS; i++) {

udptr = &udptab[i];

if ( (udptr->udremip == 0 ) &&

(locport == udptr->udlocport) ) {

/* Entry in table matches request */

break;

}

}

if (i >= UDP_SLOTS) {

restore(mask);
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return SYSERR;

}

if (udptr->udcount == 0) { /* no packet is waiting */

udptr->udstate = UDP_RECV;

udptr->udpid = currpid;

msg = recvclr();

msg = recvtime(timeout); /* wait for packet */

udptr->udstate = UDP_USED;

if (msg == TIMEOUT) {

restore(mask);

return TIMEOUT;

} else if (msg != OK) {

restore(mask);

return SYSERR;

}

}

/* Packet has arrived -- dequeue it */

pkt = udptr->udqueue[udptr->udhead++];

if (udptr->udhead >= UDP_SLOTS) {

udptr->udhead = 0;

}

udptr->udcount--;

/* Record sender’s IP address and UDP port number */

*remip = pkt->net_ipsrc;

*remport = pkt->net_udpsport;

/* Copy UDP data from packet into caller’s buffer */

msglen = pkt->net_udplen - UDP_HDR_LEN;

udataptr = (char *)pkt->net_udpdata;

for (i=0; i<msglen; i++) {

if (i >= len) {

break;

}

*buff++ = *udataptr++;

}

freebuf((char *)pkt);

restore(mask);

return i;

}
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/*------------------------------------------------------------------------

* udp_send - send a UDP packet

*------------------------------------------------------------------------

*/

status udp_send (

uint32 remip, /* remote IP address or IP_BCAST*/

/* for a local broadcast */

uint16 remport, /* remote UDP protocol port */

uint32 locip, /* local IP address */

uint16 locport, /* local UDP protocol port */

char *buff, /* buffer of UDP data */

int32 len /* length of data in buffer */

)

{

struct netpacket pkt; /* local packet buffer */

int32 pktlen; /* total packet length */

static uint16 ident = 1; /* datagram IDENT field */

char *udataptr; /* pointer to UDP data */

byte ethbcast[] = {0xff,0xff,0xff,0xff,0xff,0xff};

/* Compute packet length as UDP data size + fixed header size */

pktlen = ((char *)pkt.net_udpdata - (char *)&pkt) + len;

/* Create UDP packet in pkt */

memcpy(pkt.net_ethsrc, NetData.ethaddr, ETH_ADDR_LEN);

pkt.net_ethtype = 0x800; /* Type is IP */

pkt.net_ipvh = 0x45; /* IP version and hdr length */

pkt.net_iptos = 0x00; /* Type of service */

pkt.net_iplen= pktlen - ETH_HDR_LEN;/* total IP datagram length */

pkt.net_ipid = ident++; /* datagram gets next IDENT */

pkt.net_ipfrag = 0x0000; /* IP flags & fragment offset */

pkt.net_ipttl = 0xff; /* IP time-to-live */

pkt.net_ipproto = IP_UDP; /* datagram carries UDP */

pkt.net_ipcksum = 0x0000; /* initial checksum */

pkt.net_ipsrc = locip; /* IP source address */

pkt.net_ipdst = remip; /* IP destination address */

/* compute IP header checksum */

pkt.net_ipcksum = 0xffff & ipcksum(&pkt);

pkt.net_udpsport = locport; /* local UDP protocol port */

pkt.net_udpdport = remport; /* remote UDP protocol port */
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pkt.net_udplen = (uint16)(UDP_HDR_LEN+len); /* UDP length */

pkt.net_udpcksum = 0x0000; /* ignore UDP checksum */

udataptr = (char *) pkt.net_udpdata;

for (; len>0; len--) {

*udataptr++ = *buff++;

}

/* Set MAC address in packet, using ARP if needed */

if (remip == IP_BCAST) { /* set mac address to b-cast */

memcpy(pkt.net_ethdst, ethbcast, ETH_ADDR_LEN);

/* If destination isn’t on the same subnet, send to router */

} else if ((locip & NetData.addrmask)

!= (remip & NetData.addrmask)) {

if (arp_resolve(NetData.routeraddr, pkt.net_ethdst)!=OK) {

kprintf("udp_send: cannot resolve router %08x\n\r",

NetData.routeraddr);

return SYSERR;

}

} else {

/* Destination is on local subnet - get MAC address */

if (arp_resolve(remip, pkt.net_ethdst) != OK) {

kprintf("udp_send: cannot resolve %08x\n\r",remip);

return SYSERR;

}

}

write(ETHER0, (char *)&pkt, pktlen);

return OK;

}

/*------------------------------------------------------------------------

* udp_release - release a previously-registered remote IP, remote

* port, and local port (exact match required)

*------------------------------------------------------------------------

*/

status udp_release (

uint32 remip, /* remote IP address or zero */

uint16 remport, /* remote UDP protocol port */

uint16 locport /* local UDP protocol port */

)

{

www.itpub.net



Sec. 17.8 UDP Functions 361

int32 i; /* index into udptab */

struct udpentry *udptr; /* pointer to udptab entry */

struct netpacket *pkt; /* ptr to packet being read */

for (i=0; i<UDP_SLOTS; i++) {

udptr = &udptab[i];

if (udptr->udstate != UDP_USED) {

continue;

}

if ((remport == udptr->udremport) &&

(locport == udptr->udlocport) &&

(remip == udptr->udremip ) ) {

/* Entry in table matches */

sched_cntl(DEFER_START);

while (udptr->udcount > 0) {

pkt = udptr->udqueue[udptr->udhead++];

if (udptr->udhead >= UDP_SLOTS) {

udptr->udhead = 0;

}

freebuf((char *)pkt);

udptr->udcount--;

}

udptr->udstate = UDP_FREE;

sched_cntl(DEFER_STOP);

return OK;

}

}

return SYSERR;

}

Udp_init. The initialization function is easiest to understand. The system calls
udp_init once during startup, and udp_init sets the state of each entry in the UDP table
to indicate that the entry is unused.

Udp_in. The netin process calls function udp_in when a packet arrives carrying a
UDP message. Global pointer currpkt points to the incoming packet. Udp_in searches
the UDP table to see if an entry in the table matches the port numbers and IP addresses
in the current packet. If there is no match, the incoming packet is dropped — udp_in
simply returns, which means netin will use the same buffer to read the next packet. If a
match does occur, udp_in inserts the incoming packet in the queue associated with the
table entry. If the queue is full, udp_in merely returns, which means the packet will be
dropped and the buffer will be used to read the next packet. When it inserts a packet in
the queue, udp_in checks to see if a process is waiting for a packet to arrive (state
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UDP_RECV), and sends a message to the waiting process. Note that at any time, only
one process can be waiting for an entry in the table; if multiple processes need to use an
entry to communicate, they must coordinate among themselves.

Udp_register. Before it can use UDP to communicate, an application must call
udp_register to specify that it expects to receive incoming packets sent to a specific
protocol port. The application can act as a client by specifying a remote IP address or
can act as a server to accept packets from an arbitrary sender. Udp_register allocates an
entry in the UDP table, records the remote and local protocol port and IP address infor-
mation in the entry, and creates a queue to hold incoming packets.

Udp_recv. Once a local port number has been registered, an application can call
udp_recv to extract a packet from a table entry. Arguments to the call specify a remote
port and IP address as well as a local port. The three items specified in a call of
udp_recv must match the items in a table entry (i.e., the combination of local and re-
mote port and IP address must have been registered previously). Udp_recv uses the
same paradigm as ARP. If no packet is waiting (i.e., the queue for the entry is empty),
udp_recv blocks and waits for the amount of time specified by the last argument. When
a UDP packet arrives, netin calls udp_in. The code in udp_in finds the appropriate en-
try in the UDP table, and if an application process is waiting, sends a message to the
waiting process. Thus, if a packet arrives within the specified time, udp_recv copies the
UDP data to the caller’s buffer and returns the length. If the timer expires before a
packet arrives, udp_recv returns TIMEOUT.

Udp_recvaddr. When it acts as a server, a process must learn the address of the
client that contacted it. A server process calls udp_recvaddr, which acts like udp_recv
except that the call returns both an incoming packet and the address of the sender. The
server can use the address to send a reply.

Udp_send. A process calls udp_send to transmit a UDP message. Arguments
specify the remote and local protocol port numbers for the packet, the remote and local
IP addresses, the address of a message in memory, and the length of the message.
Udp_send creates an Ethernet packet that contains an IP datagram carrying the specified
UDP message. Care must be taken to use valid addresses and port numbers because
udp_send merely copies information into the packet without checking that the informa-
tion is valid.

Udp_release. Once a process has finished using an UDP endpoint, the process can
call udp_release to release the table entry. If packets are enqueued in an entry,
udp_release returns each to the buffer pool before marking the table entry free.

17.9 Internet Control Message Protocol

Our implementation of ICMP only handles the two message types used by the ping
program: ICMP Echo Request and ICMP Echo Reply. Despite the restriction on mes-
sage types, the code contains seven major functions: icmp_init, icmp_in, icmp_out,
icmp_register, icmp_send, icmp_recv, and icmp_release.
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As with other parts of the protocol stack, the network input function initializes
ICMP by calling icmp_init. The network input process calls icmp_in when an ICMP
packet arrives. An application process calls icmp_register to register its use of a remote
IP address, then uses icmp_send to send a ping request and icmp_recv to receive a re-
ply. Finally, once it has finished, the application calls icmp_release to release the re-
mote IP address and allow other processes to use it.

Although the ICMP code is not shown,† the functions follow the same general
structure as the UDP functions. A trick is used to associate ping replies with requests:
the identification field in an outgoing ping packet is an index in the ping table. When a
reply arrives, the reply contains the same identification, which icmp_in uses as an index
into the array. Thus, unlike UDP, the ICMP code never needs to search the table. Of
course, the identification field alone is not sufficient: once a table entry has been identi-
fied, icmp_in verifies that the IP source address in the reply matches the IP address in
the entry.

Icmp_out runs as a separate process. Given an ICMP message to send, icmp_out
uses ARP to resolve the IP address of the destination, and sends the packet over the
Ethernet. Recall from the discussion above that a separate process is needed to insure
that netin can continue to run even if ICMP output requires the icmp_out process to
block waiting for an ARP reply.

17.10 Dynamic Host Configuration Protocol

When it boots, a computer must obtain its IP address and the IP address of a de-
fault router. The protocol used to obtain information at startup is known as the Dynam-
ic Host Configuration Protocol (DHCP). Although a DHCP packet contains many
fields, the basic packet exchange is straightforward. A computer, known as a host,
broadcasts a DHCP Discover message. A DHCP server on the local network replies by
sending a DHCP Offer message that contains an IP address for the host, a 32-bit subnet
mask for the local network, and the address of a default router.

Instead of engaging in a DHCP exchange when the system boots, our code waits
until an IP address is needed. An application calls getlocalip to obtain the local IP ad-
dress. If the IP address has been fetched previously, the code merely returns the value.
If the host’s IP address is unknown, getlocalip uses DHCP to obtain the address. The
code starts by creating and sending a DHCP Discover message. It then uses udp_recv
to wait for a reply.

File dhcp.h defines the structure of a DHCP message. The entire DHCP message
will be carried in the payload of a UDP message, which is carried in an IP datagram,
which is carried in an Ethernet packet.

��������������������������������
†The code can be obtained from the website xinu.cs.purdue.edu
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/* dhcp.h - Definitions related to DHCP */

#define DHCP

#pragma pack(2)

struct dhcpmsg {

byte dc_bop; /* DHCP bootp op 1=req 2=reply */

byte dc_htype; /* DHCP hardware type */

byte dc_hlen; /* DHCP hardware address length */

byte dc_hops; /* DHCP hop count */

uint32 dc_xid; /* DHCP xid */

uint16 dc_secs; /* DHCP seconds */

uint16 dc_flags; /* DHCP flags */

uint32 dc_cip; /* DHCP client IP address */

uint32 dc_yip; /* DHCP your IP address */

uint32 dc_sip; /* DHCP server IP address */

uint32 dc_gip; /* DHCP gateway IP address */

byte dc_chaddr[16]; /* DHCP client hardware address */

byte dc_bootp[192]; /* DHCP bootp area (zero) */

uint32 dc_cookie; /* DHCP cookie */

byte dc_opt[1024]; /* DHCP options area (large */

/* enough to hold more than */

/* reasonable options */

};

#pragma pack()

extern struct netpacket *currpkt; /* ptr to current input packet */

extern bpid32 netbufpool; /* ID of net packet buffer pool */

#define PACKLEN sizeof(struct netpacket)

extern uint32 myipaddr; /* IP address of computer */

If the local IP address has not been initialized, function getlocalip creates and
sends a DHCP Discover message, waits to receive a reply, extracts the IP address, sub-
net mask, and default router address from the reply and stores them in Netdata, and re-
turns the IP address. The code can be found in file dhcp.c:

/* dhcp.c - getlocalip */

#include <xinu.h>

/*------------------------------------------------------------------------

* getlocalip - use DHCP to obtain an IP address

*------------------------------------------------------------------------

*/
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uint32 getlocalip(void)

{

struct dhcpmsg dmsg; /* holds outgoing DHCP discover */

/* message */

struct dhcpmsg dmsg2; /* holds incoming DHCP offer */

/* and outgoing request message */

uint32 xid; /* xid used for the exchange */

int32 i; /* retry counter */

int32 len; /* length of data read */

char *optptr; /* pointer to options area */

char *eop; /* address of end of packet */

int32 msgtype; /* type of DCHP message */

uint32 addrmask; /* address mask for network */

uint32 routeraddr; /* default router address */

if (NetData.ipvalid) { /* already have an IP address */

return NetData.ipaddr;

}

udp_register(0, UDP_DHCP_SPORT, UDP_DHCP_CPORT);

memcpy(&xid, NetData.ethaddr, 4);

/* use 4 bytes from MAC as XID */

/* handcraft a DHCP Discover message in dmsg */

dmsg.dc_bop = 0x01; /* Outgoing request */

dmsg.dc_htype = 0x01; /* hardware type is Ethernet */

dmsg.dc_hlen = 0x06; /* hardware address length */

dmsg.dc_hops = 0x00; /* Hop count */

dmsg.dc_xid = xid; /* xid (unique ID) */

dmsg.dc_secs = 0x0000; /* seconds */

dmsg.dc_flags = 0x0000; /* flags */

dmsg.dc_cip = 0x00000000; /* Client IP address */

dmsg.dc_yip = 0x00000000; /* Your IP address */

dmsg.dc_sip = 0x00000000; /* Server IP address */

dmsg.dc_gip = 0x00000000; /* Gateway IP address */

memset(&dmsg.dc_chaddr,’\0’,16);/* Client hardware address */

memcpy(&dmsg.dc_chaddr, NetData.ethaddr, ETH_ADDR_LEN);

memset(&dmsg.dc_bootp,’\0’,192);/* zero the bootp area */

dmsg.dc_cookie = 0x63825363; /* Magic cookie for DHCP */

dmsg.dc_opt[0] = 0xff & 53; /* DHCP message type option */

dmsg.dc_opt[1] = 0xff & 1; /* option length */

dmsg.dc_opt[2] = 0xff & 1; /* DHCP Dicover message */

dmsg.dc_opt[3] = 0xff & 0; /* Options padding */
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dmsg.dc_opt[4] = 0xff & 55; /* DHCP parameter request list */

dmsg.dc_opt[5] = 0xff & 2; /* option length */

dmsg.dc_opt[6] = 0xff & 1; /* request subnet mask */

dmsg.dc_opt[7] = 0xff & 3; /* request default router addr. */

dmsg.dc_opt[8] = 0xff & 0; /* options padding */

dmsg.dc_opt[9] = 0xff & 0; /* options padding */

dmsg.dc_opt[10]= 0xff & 0; /* options padding */

dmsg.dc_opt[11]= 0xff & 0; /* options padding */

len = (char *)&dmsg.dc_opt[11] - (char *)&dmsg + 1;

udp_send(IP_BCAST, UDP_DHCP_SPORT, IP_THIS, UDP_DHCP_CPORT,

(char *)&dmsg, len);

/* Read 3 incoming DHCP messages and check for an offer or */

/* wait for three timeout periods if no message arrives. */

for (i=0; i<3; i++) {

if ((len=udp_recv(0, UDP_DHCP_SPORT, UDP_DHCP_CPORT,

(char *)&dmsg2, sizeof(struct dhcpmsg),

3000)) == TIMEOUT) {

continue;

}

/* Check that incoming message is a valid response (ID */

/* matches our request) */

if ( (dmsg2.dc_xid != xid) ) {

continue;

}

eop = (char *)&dmsg2 + len - 1;

optptr = (char *)&dmsg2.dc_opt;

msgtype = addrmask = routeraddr = 0;

while (optptr < eop) {

switch (*optptr) {

case 53: /* message type */

msgtype = 0xff & *(optptr+2);

break;

case 1: /* subnet mask */

memcpy(&addrmask, optptr+2, 4);

break;
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case 3: /* router address */

memcpy(&routeraddr, optptr+2, 4);

break;

}

optptr++; /* move to length octet */

optptr += (0xff & *optptr) + 1;

}

if (msgtype == 0x02) { /* offer - send request */

dmsg2.dc_opt[0] = 0xff & 53;

dmsg2.dc_opt[1] = 0xff & 1;

dmsg2.dc_opt[2] = 0xff & 3;

dmsg2.dc_bop = 0x01;

udp_send(IP_BCAST, UDP_DHCP_SPORT, IP_THIS,

UDP_DHCP_CPORT, (char *)&dmsg2,

sizeof(struct dhcpmsg) - 4);

} else if (dmsg2.dc_opt[2] != 0x05) { /* if not an ack*/

continue; /* skip it */

}

if (addrmask != 0) {

NetData.addrmask = addrmask;

}

if (routeraddr != 0) {

NetData.routeraddr = routeraddr;

}

NetData.ipaddr = dmsg2.dc_yip;

NetData.ipvalid = TRUE;

udp_release(0, UDP_DHCP_SPORT, UDP_DHCP_CPORT);

return NetData.ipaddr;

}

kprintf("DHCP failed to get response\r\n");

udp_release(0, UDP_DHCP_SPORT, UDP_DHCP_CPORT);

return (uint32)SYSERR;

}

A DHCP server responds to the initial Discover message by sending the requested
information. When it receives a reply, getlocalip examines the options area of the mes-
sage. DHCP is unusual because the options carry information. In particular, the type of
the DHCP message is stored in the options area as well as information that a computer
system uses to initialize network parameters. Three options are crucial to our imple-
mentation: option 53 defines the type of a DHCP message, option 1 specifies a subnet
mask used on the local network, and option 3 specifies the address of a default router.
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If the options are present, getlocalip can extract the needed information from the reply,
store the information for successive calls, and return the IP address to the caller.

The details of DHCP are beyond the scope of this text. However, it is sufficient to
understand that the DHCP code uses the UDP interface exactly the same way that other
applications use it. That is, before communication can begin, getlocalip must call
udp_register to register the port that DHCP will use. Once the port has been registered,
getlocalip can create a DHCP Discover message and call udp_send to broadcast the
message. The DHCP Discover message causes a DHCP server to respond, and the sys-
tem can obtain its IP address.

17.11 Perspective

The implementation of Internet protocols described in this chapter is indeed
minimalistic. Many details have been omitted, and the code takes many shortcuts. For
example, the structures used to define message formats combine multiple layers of the
protocol stack and assume that the underlying network is always an Ethernet. There-
fore, you should not view the code as typical of a protocol implementation nor should
you assume that the same structure will suffice for a complete protocol stack.

Despite its limitations, the code does illustrate the importance of timed operations.
In particular, the availability of a timed receive function simplifies the overall structure
of the code and makes the operation much easier to understand. If the system did not
provide a timed receive, multiple processes would be needed — one process would im-
plement a timer function and another would handle responses.

17.12 Summary

Even small embedded systems use Internet protocols to communicate. As a conse-
quence, most operating systems include software known as a protocol stack.

The chapter examines a minimal protocol stack that supports limited versions of
IP, UDP, ICMP, ARP, and DHCP running over an Ethernet. The above protocols are
closely interrelated. Both ICMP and UDP messages travel in an IP datagram; a DHCP
message travels in a UDP packet.

To accommodate asynchronous packet arrivals, our protocol implementation uses a
network input process, netin. The netin process repeatedly reads an Ethernet packet,
validates header fields, and uses header information to determine how to process the
packet. When an ARP packet arrives, netin calls arp_in to handle the packet, when a
UDP packet arrives, netin calls udp_in, and when an ICMP packet arrives, netin calls
icmp_in. For all other packets, netin ignores the packet. When receiving packets, our
implementation allows a process to specify the maximum time to wait for a packet to
arrive. The timeout mechanism can be used to implement retransmission: if a response
does not arrive before the timeout occurs, a process can retransmit the request.
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EXERCISES

17.1 Rewrite the code to eliminate the need for a separate ICMP output process. Hint: keep a
queue of outgoing IP packets with each ARP table entry and arrange for the packets to
be sent once an ARP reply arrives.

17.2 The UDP functions each require a caller to specify endpoint information, such as IP ad-
dresses and protocol port numbers. Rewrite the code to change the paradigm: have
udp_register return the index of an entry in the table, and have other functions, such as
udp_recv take the index as an argument.

17.3 Redesign the UDP protocol software to use timer processes instead of recvtime. How
many processes are needed? Explain.

17.4 Xinu uses a device paradigm for abstract devices as well as hardware devices. Rewrite
the UDP code to use a device paradigm in which a process calls open on a UDP master
device to specify protocol port and IP address information, and receives the descriptor of
a pseudo-device that can be used for communication.

17.5 Can the device paradigm described in the previous exercise handle all of ICMP? Does
the answer change if the question is restricted to ICMP echo (i.e., ping)? Explain.
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A Remote Disk Driver

For my purpose holds ... To strive, to seek, to find,
and not to yield.

— Alfred, Lord Tennyson

18.1 Introduction

Earlier chapters explain I/O devices and the structure of a device driver. Chapter
16 describes how block-oriented devices use DMA, and shows an example Ethernet
driver.

This chapter considers the design of a device driver for secondary storage devices
known as disks or hard drives. The chapter focuses on basic data transfer operations.
The next chapter describes how higher levels of the system use disk hardware to pro-
vide files and directories.

18.2 The Disk Abstraction

Disk hardware provides a basic abstraction in which a disk is a storage mechanism
that has the following properties.

d Nonvolatile: data persists even if power is removed.

d Block-oriented: the interface provides the ability to
read or write fixed-size blocks of data.

d Multi-use: a block can be read and written many
times.

d Random-access: blocks can be accessed in any order.

371
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Like the Ethernet hardware described in Chapter 16, disk hardware typically uses
Direct-Memory-Access (DMA) to allow the disk to transfer an entire block before inter-
rupting the CPU. Also like the Ethernet driver, a disk driver does not understand or ex-
amine the contents of data blocks. Instead, the driver merely treats the entire disk as an
array of data blocks.

18.3 Operations A Disk Driver Supports

At the device driver level, a disk consists of fixed-size data blocks that can be ac-
cessed randomly using three basic operations:

d Fetch: Copy the contents of a specified block from the disk to a
designated location in memory.

d Store: Copy the contents of memory to a specified block on the
disk.

d Seek: Move to a specified block on the disk. The seek option is
most important for electro-mechanical devices (i.e., a magnetic
disk) because it can be used as an optimization that positions the
disk head where it will be needed in the future. Thus, as solid state
disks become widely used, seek may become less important.

The block size of a disk is derived from the size of a sector on magnetic disks.
The industry has settled on a de facto standard block size of 512 bytes; throughout the
chapter, we will assume 512-byte blocks.†

18.4 Block Transfer And High-Level I/O Functions

Because the hardware provides block transfer, it makes sense to design an interface
that allows read and write to transfer an entire block. The question becomes how to in-
clude a block specification in the existing high-level I/O operations. We might use
seek: require a programmer to call seek to move to a specific block before calling read
or write to access data in the block. Unfortunately, requiring a user to call seek before
each data transfer is clumsy and error prone. Therefore, to keep the interface simple,
we will stretch the usual meaning of arguments to read and write: instead of interpret-
ing the third argument as a buffer size, we will assume the buffer is large enough to
hold a disk block, and use the third argument to specify a block number. For example,
the call:

read ( DISK0, buff, 5 )

requests the driver to read block five from the disk into memory starting at location
buff.

��������������������������������
†Although modern disks often use an underlying block size of 4K bytes, the hardware presents an inter-

face that uses 512-byte blocks.
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Our driver will supply basic operations: read, which copies a single block from the
disk into memory; write, which copies data from memory onto a specified disk block.
In addition, our driver will supply control functions that can be used to erase a disk
(i.e., destroy all saved data) and to synchronize write requests (i.e., insure that all
cached data is written to the disk).

18.5 A Remote Disk Paradigm

Because the E2100L hardware does not include a local disk, we will examine
software that follows a remote disk paradigm. Our remote disk system will provide the
same abstraction as a local disk by allowing processes to read and write disk blocks.
Instead of using disk hardware, however, our system will send requests over a network
to a remote disk server that runs on another computer.

Driver software for the remote disk will be organized in the same general way as a
driver for a traditional disk: driver functions are partitioned into an upper half and a
lower half that communicate through a shared data structure. Instead of using DMA
hardware to implement the lower half, however, our remote disk driver will use a high-
priority process that communicates over a network with a server by sending requests
and receiving responses. Figure 18.1 illustrates the organization.

upper-half functions

shared
data structures

write read

network communication
with remote server

process that provides
lower-half functionality

Figure 18.1  Organization of a remote disk driver.

Like a traditional disk driver, the shared data structure in our example contains two
key items:

d A cache of recently accessed blocks

d A list of pending requests
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A cache of recently accessed blocks. Because a disk operates much slower than a
processor, a disk driver must be optimized to avoid making unnecessary transfers. The
primary optimization technique consists of a cache kept in the shared data area. The
cache stores recently accessed blocks, which allows subsequent operations on the same
block to be performed on the copy in the cache. For example, if a user edits a docu-
ment, stores a copy on disk, and then returns later to edit the same document, it is likely
that the disk blocks containing the document will be in the cache, meaning that the doc-
ument editing application can start much faster than if blocks had to be read from disk.

A list of pending requests. Like a traditional driver, our remote disk system allows
multiple processes to access a disk, and implements synchronous read operations and
asynchronous write operations. That is, when it reads a block, a process must wait until
the data has been fetched. When it writes a block, however, a process does not block
— the driver places a copy of the outgoing disk block on a request list and allows the
process to continue execution. The lower-half process, which handles communication
with the remote server, continually takes the next item off the request queue and per-
forms the specified operation. Thus, at some time in the future, data will be written to
the disk.

18.6 Semantics Of Disk Operations

Although it can employ optimizations such as caching and delayed execution, a
disk driver must always preserve the appearance of a synchronous interface. That is,
the driver must always return the data that was written most recently.

If we envision the read and write operations on a given block, they form a se-
quence:

op1, op2, op3, ... opn

If opt is a read operation for block i, the driver must deliver the data that was written to
the block in opk, where k is the highest index of a write operation less than t (i.e., all the
operations between opk and opt are read operations). To complete the definition, we as-
sume an implicit write occurs at time zero before the system starts. Thus, if a system
attempts to read a block before any calls to write the block, the driver returns whatever
data was on the disk when the system booted.

We use the term last-write semantics to capture the concept, and insist that:

A disk driver can use techniques such as caching to optimize perfor-
mance provided the driver guarantees last-write semantics.

The example driver uses queuing to enforce last-write semantics: the request list is
a FIFO queue. That is:

www.itpub.net



Sec. 18.6 Semantics Of Disk Operations 375

Items are inserted at the tail of the request queue; the lower-half pro-
cess continually selects and performs the item at the head of the
queue.

Because items are always inserted at the tail, the driver handles requests in the
same order they were made. Thus, if process A reads block five and process B writes
block five later, the two requests will appear in the correct order in the queue. The read
request will be serviced first, followed by the write request.

We will see that the queue discipline is extended to the cache: driver functions al-
ways start at the head when searching the cache. Our code relies on the discipline to in-
sure that a process receives data according to last-write semantics.

18.7 Definition Of Driver Data Structures

File rdisksys.h defines the constants and data structures used by the remote disk
system. The file defines the format of a disk buffer. Each buffer includes a header that
specifies the number of the disk block stored in the buffer and fields that are used to
link the buffer onto the request list, cache, or free list. In addition, the file defines the
contents of the device control block and the format of messages sent to the remote
server.
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/* rdisksys.h - definitions for remote disk system pseudo-devices */

#ifndef Nrds

#define Nrds 1

#endif

/* Remote disk block size */

#define RD_BLKSIZ 512

/* Global data for the remote disk server */

#ifndef RD_SERVER_IP

#define RD_SERVER_IP "255.255.255.255"

#endif

#ifndef RD_SERVER_PORT

#define RD_SERVER_PORT 33124

#endif

#ifndef RD_LOC_PORT

#define RD_LOC_PORT 33124 /* base port number - minor dev */

/* number is added to insure */

/* that each device is unique */

#endif

/* Control block for remote disk device */

#define RD_IDLEN 64 /* Size of a remote disk ID */

#define RD_BUFFS 64 /* Number of disk buffers */

#define RD_STACK 8192 /* Stack size for comm. process */

#define RD_PRIO 200 /* Priorty of comm. process */

/* Constants for state of the device */

#define RD_FREE 0 /* device is available */

#define RD_OPEN 1 /* device is open (in use) */

#define RD_PEND 2 /* open is pending */

/* Operations for request queue */

#define RD_OP_READ 1 /* Read operation on req. list */

#define RD_OP_WRITE 2 /* Write operation on req. list */

#define RD_OP_SYNC 3 /* Sync operation on req. list */
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/* Status values for a buffer */

#define RD_VALID 0 /* Buffer contains valid data */

#define RD_INVALID 1 /* Buffer does not contain data */

/* Definition of a buffer with a header that allows the same node to be */

/* used as a request on the request queue, an item in the cache, or a */

/* node on the free list of buffers */

struct rdbuff { /* Request list node */

struct rdbuff *rd_next; /* ptr to next node on a list */

struct rdbuff *rd_prev; /* ptr to prev node on a list */

int32 rd_op; /* operation - read/write/sync */

int32 rd_refcnt; /* reference count of processes */

/* reading the block */

uint32 rd_blknum; /* block number of this block */

int32 rd_status; /* is buffer currently valid? */

pid32 rd_pid; /* process that initiated a */

/* read request for the block */

char rd_block[RD_BLKSIZ]; /* space to hold one disk block */

};

struct rdscblk {

int32 rd_state; /* state of device */

char rd_id[RD_IDLEN]; /* Disk ID currently being used */

int32 rd_seq; /* next sequence number to use */

/* Request queue head and tail */

struct rdbuff *rd_rhnext; /* head of request queue: next */

struct rdbuff *rd_rhprev; /* and previous */

struct rdbuff *rd_rtnext; /* tail of request queue: next */

struct rdbuff *rd_rtprev; /* (null) and previous */

/* Cache head and tail */

struct rdbuff *rd_chnext; /* head of cache: next and */

struct rdbuff *rd_chprev; /* previous */

struct rdbuff *rd_ctnext; /* tail of cache: next (null) */

struct rdbuff *rd_ctprev; /* and previous */

/* Free list head (singly-linked) */

struct rdbuff *rd_free; /* ptr to free list */

pid32 rd_comproc; /* process ID of comm. process */
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sid32 rd_availsem; /* semaphore ID for avail buffs */

sid32 rd_reqsem; /* semaphore ID for requests */

uint32 rd_ser_ip; /* server IP address */

uint16 rd_ser_port; /* server UDP port */

uint16 rd_loc_port; /* local (client) UPD port */

bool8 rd_registered; /* has UDP port been registered?*/

};

extern struct rdscblk rdstab[]; /* remote disk control block */

/* Definitions of parameters used during server access */

#define RD_RETRIES 3 /* times to retry sending a msg */

#define RD_TIMEOUT 2000 /* wait two seconds for reply */

/* Control functions for a remote file pseudo device */

#define RDS_CTL_DEL 1 /* Delete (erase) an entire disk*/

#define RDS_CTL_SYNC 2 /* Write all pending blocks */

/************************************************************************/

/* Definition of messages exchanged with the remote disk server */

/************************************************************************/

/* Values for the type field in messages */

#define RD_MSG_RESPONSE 0x0100 /* Bit that indicates response */

#define RD_MSG_RREQ 0x0010 /* Read request and response */

#define RD_MSG_RRES (RD_MSG_RREQ | RD_MSG_RESPONSE)

#define RD_MSG_WREQ 0x0020 /* Write request and response */

#define RD_MSG_WRES (RD_MSG_WREQ | RD_MSG_RESPONSE)

#define RD_MSG_OREQ 0x0030 /* Open request and response */

#define RD_MSG_ORES (RD_MSG_OREQ | RD_MSG_RESPONSE)

#define RD_MSG_CREQ 0x0040 /* Close request and response */

#define RD_MSG_CRES (RD_MSG_CREQ | RD_MSG_RESPONSE)

#define RD_MSG_DREQ 0x0050 /* Delete request and response */

#define RD_MSG_DRES (RD_MSG_DREQ | RD_MSG_RESPONSE)

#define RD_MIN_REQ RD_MSG_RREQ /* Minimum request type */

#define RD_MAX_REQ RD_MSG_DREQ /* Maximum request type */
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/* Message header fields present in each message */

#define RD_MSG_HDR /* Common message fields */\

uint16 rd_type; /* message type */\

uint16 rd_status; /* 0 in req, status in response */\

uint32 rd_seq; /* message sequence number */\

char rd_id[RD_IDLEN]; /* null-terminated disk ID */

/************************************************************************/

/* Header */

/************************************************************************/

/* The standard header present in all messages with no extra fields */

#pragma pack(2)

struct rd_msg_hdr { /* header fields present in each*/

RD_MSG_HDR /* remote file system message */

};

#pragma pack()

/************************************************************************/

/* Read */

/************************************************************************/

#pragma pack(2)

struct rd_msg_rreq { /* remote file read request */

RD_MSG_HDR /* header fields */

uint32 rd_blk; /* block number to read */

};

#pragma pack()

#pragma pack(2)

struct rd_msg_rres { /* remote file read reply */

RD_MSG_HDR /* header fields */

uint32 rd_blk; /* block number that was read */

char rd_data[RD_BLKSIZ]; /* array containing one block */

};

#pragma pack()

/************************************************************************/

/* Write */

/************************************************************************/

#pragma pack(2)

struct rd_msg_wreq { /* remote file write request */

RD_MSG_HDR /* header fields */

uint32 rd_blk; /* block number to write */

char rd_data[RD_BLKSIZ]; /* array containing one block */

};

#pragma pack()
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#pragma pack(2)

struct rd_msg_wres { /* remote file write response */

RD_MSG_HDR /* header fields */

uint32 rd_blk; /* block number that was written*/

};

#pragma pack()

/************************************************************************/

/* Open */

/************************************************************************/

#pragma pack(2)

struct rd_msg_oreq { /* remote file open request */

RD_MSG_HDR /* header fields */

};

#pragma pack()

#pragma pack(2)

struct rd_msg_ores { /* remote file open response */

RD_MSG_HDR /* header fields */

};

#pragma pack()

/************************************************************************/

/* Close */

/************************************************************************/

#pragma pack(2)

struct rd_msg_creq { /* remote file close request */

RD_MSG_HDR /* header fields */

};

#pragma pack()

#pragma pack(2)

struct rd_msg_cres { /* remote file close response */

RD_MSG_HDR /* header fields */

};

#pragma pack()

/************************************************************************/

/* Delete */

/************************************************************************/

#pragma pack(2)

struct rd_msg_dreq { /* remote file delete request */

RD_MSG_HDR /* header fields */

};
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#pragma pack()

#pragma pack(2)

struct rd_msg_dres { /* remote file delete response */

RD_MSG_HDR /* header fields */

};

#pragma pack()

18.8 Driver Initialization (rdsInit)

Although initialization is completed after the other pieces of the driver have been
designed, we have chosen to examine the initialization function now because it will help
us understand the shared data structures. File rdsInit.c contains the driver initialization
code:

/* rdsInit.c - rdsInit */

#include <xinu.h>

struct rdscblk rdstab[Nrds];

/*------------------------------------------------------------------------

* rdsInit - initialize the remote disk system device

*------------------------------------------------------------------------

*/

devcall rdsInit (

struct dentry *devptr /* entry in device switch table */

)

{

struct rdscblk *rdptr; /* ptr to device contol block */

struct rdbuff *bptr; /* ptr to buffer in memory */

/* used to form linked list */

struct rdbuff *pptr; /* ptr to previous buff on list */

struct rdbuff *buffend; /* last address in buffer memory*/

uint32 size; /* total size of memory needed */

/* buffers */

/* Obtain address of control block */

rdptr = &rdstab[devptr->dvminor];

/* Set control block to unused */
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rdptr->rd_state = RD_FREE;

rdptr->rd_id[0] = NULLCH;

/* Set initial message sequence number */

rdptr->rd_seq = 1;

/* Initialize request queue and cache to empty */

rdptr->rd_rhnext = (struct rdbuff *) &rdptr->rd_rtnext;

rdptr->rd_rhprev = (struct rdbuff *)NULL;

rdptr->rd_rtnext = (struct rdbuff *)NULL;

rdptr->rd_rtprev = (struct rdbuff *) &rdptr->rd_rhnext;

rdptr->rd_chnext = (struct rdbuff *) &rdptr->rd_ctnext;

rdptr->rd_chprev = (struct rdbuff *)NULL;

rdptr->rd_ctnext = (struct rdbuff *)NULL;

rdptr->rd_ctprev = (struct rdbuff *) &rdptr->rd_chnext;

/* Allocate memory for a set of buffers (actually request */

/* blocks and link them to form the initial free list */

size = sizeof(struct rdbuff) * RD_BUFFS;

bptr = (struct rdbuff *)getmem(size);

rdptr->rd_free = bptr;

if ((int32)bptr == SYSERR) {

panic("Cannot allocate memory for remote disk buffers");

}

buffend = (struct rdbuff *) ((char *)bptr + size);

while (bptr < buffend) { /* walk through memory */

pptr = bptr;

bptr = (struct rdbuff *)

(sizeof(struct rdbuff)+ (char *)bptr);

pptr->rd_status = RD_INVALID; /* buffer is empty */

pptr->rd_next = bptr; /* point to next buffer */

}

pptr->rd_next = (struct rdbuff *) NULL; /* last buffer on list */

/* Create the request list and available buffer semaphores */
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rdptr->rd_availsem = semcreate(RD_BUFFS);

rdptr->rd_reqsem = semcreate(0);

/* Set the server IP address, server port, and local port */

if ( dot2ip(RD_SERVER_IP, &rdptr->rd_ser_ip) == SYSERR ) {

panic("invalid IP address for remote disk server");

}

/* Set the port numbers */

rdptr->rd_ser_port = RD_SERVER_PORT;

rdptr->rd_loc_port = RD_LOC_PORT + devptr->dvminor;

/* Specify that the server port is not yet registered */

rdptr->rd_registered = FALSE;

/* Create a communication process */

rdptr->rd_comproc = create(rdsprocess, RD_STACK, RD_PRIO,

"rdsproc", 1, rdptr);

if (rdptr->rd_comproc == SYSERR) {

panic("Cannot create remote disk process");

}

resume(rdptr->rd_comproc);

return OK;

}

In addition to initializing data structures, rdsInit performs three important tasks. It
allocates a set of disk buffers and links them onto the free list, it creates the high-
priority process that communicates with the server, and it creates two semaphores that
control processing. One semaphore, rd_reqsem, guards the request list. The semaphore
starts with count zero, and is signaled each time a new request is added to the request
queue. The communication process waits on rd_reqsem before extracting an item from
the list, which means the process will block if the list is empty.

Another semaphore, rd_availsem, counts the number of buffers that are available
for use (i.e., free or in the cache). Initially, RD_BUFFS buffers are on the free list and
rd_availsem has a count equal to RD_BUFFS. When a buffer is needed, a caller waits
on the semaphore. The cache poses a special case because not all buffers in the cache
are available. Instead, some buffers must remain in the cache because processes are
waiting to extract data. We will see how the cache and the semaphore are used later.
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18.9 The Upper–Half Open Function (rdsOpen)

The remote disk server allows multiple clients to access the server simultaneously.
Each client supplies a unique identification string which allows the server to distinguish
among clients. Instead of using a hardware value (e.g., an Ethernet address) as the
unique string, the example code allows a user to specify the ID string by calling open
on the disk device. The chief advantage of separating the ID from the hardware is por-
tability — the remote disk ID can be bound to the operating system image, which
means that moving the image from one physical computer to another does not change
the disk that the system is using.

When a process calls open for a remote disk device, the second argument is inter-
preted as an ID string. The string is copied into the device control block, and the same
ID is used as long as the device remains open. It is possible to close the remote disk
device and reopen it with a new ID (i.e., connect to a different remote disk). However,
most systems are expected to open a remote disk device once and never close it. File
rdsOpen.c contains the code:

/* rdsOpen.c - rdsOpen */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdsOpen - open a remote disk device and specify an ID to use

*------------------------------------------------------------------------

*/

devcall rdsOpen (

struct dentry *devptr, /* entry in device switch table */

char *diskid, /* disk ID to use */

char *mode /* unused for a remote disk */

)

{

struct rdscblk *rdptr; /* ptr to control block entry */

struct rd_msg_oreq msg; /* message to be sent */

struct rd_msg_ores resp; /* buffer to hold response */

int32 retval; /* return value from rdscomm */

int32 len; /* counts chars in diskid */

char *idto; /* ptr to ID string copy */

char *idfrom; /* pointer into ID string */

rdptr = &rdstab[devptr->dvminor];

/* Reject if device is already open */
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if (rdptr->rd_state != RD_FREE) {

return SYSERR;

}

rdptr->rd_state = RD_PEND;

/* Copy disk ID into free table slot */

idto = rdptr->rd_id;

idfrom = diskid;

len = 0;

while ( (*idto++ = *idfrom++) != NULLCH) {

len++;

if (len >= RD_IDLEN) { /* ID string is too long */

return SYSERR;

}

}

/* Verify that name is non-null */

if (len == 0) {

return SYSERR;

}

/* Hand-craft an open request message to be sent to the server */

msg.rd_type = htons(RD_MSG_OREQ);/* Request an open */

msg.rd_status = htons(0);

msg.rd_seq = 0; /* rdscomm fills in an entry */

idto = msg.rd_id;

memset(idto, NULLCH, RD_IDLEN);/* initialize ID to zero bytes */

idfrom = diskid;

while ( (*idto++ = *idfrom++) != NULLCH ) { /* copy ID to req. */

;

}

/* Send message and receive response */

retval = rdscomm((struct rd_msg_hdr *)&msg,

sizeof(struct rd_msg_oreq),

(struct rd_msg_hdr *)&resp,

sizeof(struct rd_msg_ores),

rdptr );

/* Check response */
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if (retval == SYSERR) {

return SYSERR;

} else if (retval == TIMEOUT) {

kprintf("Timeout during remote file open\n\r");

return SYSERR;

} else if (ntohs(resp.rd_status) != 0) {

return SYSERR;

}

/* Change state of device to indicate currently open */

rdptr->rd_state = RD_OPEN;

/* Return device descriptor */

return devptr->dvnum;

}

18.10 The Remote Communication Function (rdscomm)

As one of the steps in opening the local remote disk device, rdsOpen exchanges a
message with the remote server. It places an open request message in local variable
msg, and calls rdscomm to forward the message to the server. Rdscomm takes argu-
ments that specify an outgoing message, a buffer for a reply, and the length of each. It
sends the outgoing message to the server, and awaits a reply. If the reply is valid,
rdscomm returns the length of the reply to the caller; otherwise, it returns SYSERR to in-
dicate that an error occurred, or TIMEOUT to indicate that no response was received.
File rdscomm.c contains the code:

/* rdscomm.c - rdscomm */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdscomm - handle communication with a remote disk server (send a

* request and receive a reply, including sequencing and

* retries)

*------------------------------------------------------------------------

*/

status rdscomm (

struct rd_msg_hdr *msg, /* message to send */

int32 mlen, /* message length */
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struct rd_msg_hdr *reply, /* buffer for reply */

int32 rlen, /* size of reply buffer */

struct rdscblk *rdptr /* ptr to device control block */

)

{

int32 i; /* counts retries */

int32 retval; /* return value */

int32 seq; /* sequence for this exchange */

uint32 localip; /* local IP address */

int16 rtype; /* reply type in host byte order*/

bool8 xmit; /* Should we transmit again? */

/* For the first time after reboot, register the server port */

if ( ! rdptr->rd_registered ) {

retval = udp_register(0, rdptr->rd_ser_port,

rdptr->rd_loc_port);

rdptr->rd_registered = TRUE;

}

if ( (int32)(localip = getlocalip()) == SYSERR ) {

return SYSERR;

}

/* Assign message next sequence number */

seq = rdptr->rd_seq++;

msg->rd_seq = htonl(seq);

/* Repeat RD_RETRIES times: send message and receive reply */

xmit = TRUE;

for (i=0; i<RD_RETRIES; i++) {

if (xmit) {

/* Send a copy of the message */

retval = udp_send(rdptr->rd_ser_ip, rdptr->rd_ser_port,

localip, rdptr->rd_loc_port, (char *)msg, mlen);

if (retval == SYSERR) {

kprintf("Cannot send to remote disk server\n\r");

return SYSERR;

}

} else {

xmit = TRUE;

}
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/* Receive a reply */

retval = udp_recv(0, rdptr->rd_ser_port,

rdptr->rd_loc_port, (char *)reply, rlen,

RD_TIMEOUT);

if (retval == TIMEOUT) {

continue;

} else if (retval == SYSERR) {

kprintf("Error reading remote disk reply\n\r");

return SYSERR;

}

/* Verify that sequence in reply matches request */

if (ntohl(reply->rd_seq) < seq) {

xmit = FALSE;

} else if (ntohl(reply->rd_seq) != seq) {

continue;

}

/* Verify the type in the reply matches the request */

rtype = ntohs(reply->rd_type);

if (rtype != ( ntohs(msg->rd_type) | RD_MSG_RESPONSE) ) {

continue;

}

/* Check the status */

if (ntohs(reply->rd_status) != 0) {

return SYSERR;

}

return OK;

}

/* Retries exhausted without success */

kprintf("Timeout on exchange with remote disk server\n\r");

return TIMEOUT;

}
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Rdscomm obtains the local IP address (for use with UDP), assigns the next se-
quence number to the message, and enters a loop that iterates RD_RETRIES times. On
each iteration, rdscomm calls udp_send to transmit a copy of the message to the server,
and calls udp_recv to receive a reply. If a reply arrives, rdscomm verifies that the type
of the reply matches the type of the request, that the sequence number of the reply
matches the sequence number of the request that was sent, and that the status value in-
dicates success (i.e., is zero). If the reply is valid, rdscomm returns OK to the caller;
otherwise, it returns an error indication.

18.11 The Upper–Half Write Function (rdsWrite)

Because the remote disk system provides asynchronous write operations, the
upper-half write function is easiest to understand. File rdsWrite.c contains the code:

/* rdsWrite.c - rdsWrite */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdsWrite - Write a block to a remote disk

*------------------------------------------------------------------------

*/

devcall rdsWrite (

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer that holds a disk blk */

int32 blk /* block number to write */

)

{

struct rdscblk *rdptr; /* pointer to control block */

struct rdbuff *bptr; /* ptr to buffer on a list */

struct rdbuff *pptr; /* ptr to previous buff on list */

struct rdbuff *nptr; /* ptr to next buffer on list */

bool8 found; /* was buff found during search?*/

/* If device not currently in use, report an error */

rdptr = &rdstab[devptr->dvminor];

if (rdptr->rd_state != RD_OPEN) {

return SYSERR;

}

/* If request queue already contains a write request */

/* for the block, replace the contents */
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bptr = rdptr->rd_rhnext;

while (bptr != (struct rdbuff *)&rdptr->rd_rtnext) {

if ( (bptr->rd_blknum == blk) &&

(bptr->rd_op == RD_OP_WRITE) ) {

memcpy(bptr->rd_block, buff, RD_BLKSIZ);

return OK;

}

bptr = bptr->rd_next;

}

/* Search cache for cached copy of block */

bptr = rdptr->rd_chnext;

found = FALSE;

while (bptr != (struct rdbuff *)&rdptr->rd_ctnext) {

if (bptr->rd_blknum == blk) {

if (bptr->rd_refcnt <= 0) {

pptr = bptr->rd_prev;

nptr = bptr->rd_next;

/* Unlink node from cache list and reset*/

/* the available semaphore accordingly */

pptr->rd_next = bptr->rd_next;

nptr->rd_prev = bptr->rd_prev;

semreset(rdptr->rd_availsem,

semcount(rdptr->rd_availsem) - 1);

found = TRUE;

}

break;

}

bptr = bptr->rd_next;

}

if ( !found ) {

bptr = rdsbufalloc(rdptr);

}

/* Create a write request */

memcpy(bptr->rd_block, buff, RD_BLKSIZ);

bptr->rd_op = RD_OP_WRITE;

bptr->rd_refcnt = 0;
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bptr->rd_blknum = blk;

bptr->rd_status = RD_VALID;

bptr->rd_pid = getpid();

/* Insert new request into list just before tail */

pptr = rdptr->rd_rtprev;

rdptr->rd_rtprev = bptr;

bptr->rd_next = pptr->rd_next;

bptr->rd_prev = pptr;

pptr->rd_next = bptr;

/* Signal semaphore to start communication process */

signal(rdptr->rd_reqsem);

return OK;

}

The code first considers the case where the request queue already contains a pend-
ing write request for the same block. Note: there can only be one write request for a
given block on the request queue at a time, which means the queue can be searched in
any order. The code searches the queue from the head toward the tail. If it finds a
write request for the block, rdsWrite replaces the contents of the request with the new
data, and returns.

After searching the request queue, rdsWrite checks the cache. If the specified
block is in the cache, the cached copy must be invalidated. The code searches the cache
sequentially. If it finds a match, rdsWrite removes the buffer from the cache. Instead
of moving the buffer to the free list, rdsWrite uses the buffer to form a request. If no
match is found, rdsWrite calls rdsbufalloc to allocate a new buffer for the request.

The final section of rdsWrite creates a write request and inserts it at the tail of the
request queue. To help with debugging, the code fills in all fields of the request, even
if they are not needed. For example, the process ID field is set, but is not used.

18.12 The Upper–Half Read Function (rdsRead)

The second major upper-half function corresponds to the read operation. Reading
is more complex than writing, because input is synchronous: a process that attempts to
read from the disk must wait until the data is available. Synchronization of a waiting
process uses send and receive. A node in the request queue contains a process ID field.
When a process calls read, the driver code creates a read request that includes the
caller’s process ID. It then inserts the request on the request queue, and calls receive to
wait for a response. When the request reaches the head of the queue, the remote disk
communication process sends a message to the server and receives a response that con-
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tains the specified block. The communication process copies the block into the buffer
that contains the original request, moves the buffer to the cache, and uses send to send a
message to the waiting process with the buffer address. The waiting process receives
the message, extracts a copy of the data, and returns to the function that called read.

As described, the above scheme is insufficient because buffers are used dynamical-
ly. To understand the problem, imagine that a low-priority process is blocked waiting
to read block 5. Eventually, the communication process obtains block 5 from the
server, stores block 5 in the cache, and sends a message to the waiting process. How-
ever, assume that while the request is on the request queue, higher-priority application
processes begin to execute, meaning that the low-priority process will not run. Unfor-
tunately, if the high-priority processes continue to use disk buffers, the buffer holding
block 5 will be allocated.

The problem is exacerbated because the remote disk system permits concurrent ac-
cess: while one process is waiting to read a block, another process can attempt to read
the same block. Thus, when the communication process finally retrieves a copy of the
block from the server, multiple processes may need to be informed.

The example code uses a reference count technique to handle multiple requests for
a block: the header with each buffer contains an integer that counts the number of
processes reading the block. When a process finishes making a copy, the process decre-
ments the reference count. The code in file rdsRead.c shows how a process creates a
request, enqueues it at the tail of the request list, waits for the request to be filled, and
copies data from the request to each caller’s buffer; later in the chapter, we will see how
the reference count is managed.

/* rdsRead.c - rdsRead */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdsRead - Read a block from a remote disk

*------------------------------------------------------------------------

*/

devcall rdsRead (

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer to hold disk block */

int32 blk /* block number of block to read*/

)

{

struct rdscblk *rdptr; /* pointer to control block */

struct rdbuff *bptr; /* ptr to buffer possibly on */

/* the request list */

struct rdbuff *nptr; /* ptr to "next" node on a */

/* list */

struct rdbuff *pptr; /* ptr to "previous" node on */
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/* a list */

struct rdbuff *cptr; /* ptr used to walk the cache */

/* If device not currently in use, report an error */

rdptr = &rdstab[devptr->dvminor];

if (rdptr->rd_state != RD_OPEN) {

return SYSERR;

}

/* Search the cache for specified block */

bptr = rdptr->rd_chnext;

while (bptr != (struct rdbuff *)&rdptr->rd_ctnext) {

if (bptr->rd_blknum == blk) {

if (bptr->rd_status == RD_INVALID) {

return SYSERR;

}

memcpy(buff, bptr->rd_block, RD_BLKSIZ);

return OK;

}

bptr = bptr->rd_next;

}

/* Search the request list for most recent occurrence of block */

bptr = rdptr->rd_rtprev; /* start at tail of list */

while (bptr != (struct rdbuff *)&rdptr->rd_rhnext) {

if (bptr->rd_blknum == blk) {

/* If most recent request for block is write, copy data */

if (bptr->rd_op == RD_OP_WRITE) {

memcpy(buff, bptr->rd_block, RD_BLKSIZ);

return OK;

}

break;

}

bptr = bptr->rd_prev;

}

/* Allocate a buffer and add read request to tail of req. queue */

bptr = rdsbufalloc(rdptr);
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bptr->rd_op = RD_OP_READ;

bptr->rd_refcnt = 1;

bptr->rd_blknum = blk;

bptr->rd_status = RD_INVALID;

bptr->rd_pid = getpid();

/* Insert new request into list just before tail */

pptr = rdptr->rd_rtprev;

rdptr->rd_rtprev = bptr;

bptr->rd_next = pptr->rd_next;

bptr->rd_prev = pptr;

pptr->rd_next = bptr;

/* Prepare to receive message when read completes */

recvclr();

/* Signal semaphore to start communication process */

signal(rdptr->rd_reqsem);

/* Block to wait for message */

bptr = (struct rdbuff *)receive();

if (bptr == (struct rdbuff *)SYSERR) {

return SYSERR;

}

memcpy(buff, bptr->rd_block, RD_BLKSIZ);

bptr->rd_refcnt--;

if (bptr->rd_refcnt <= 0) {

/* Look for previous item in cache with the same block */

/* number to see if this item was only being kept */

/* until pending read completed */

cptr = rdptr->rd_chnext;

while (cptr != bptr) {

if (cptr->rd_blknum == blk) {

/* Unlink from cache */

pptr = bptr->rd_prev;

nptr = bptr->rd_next;

pptr->rd_next = nptr;
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nptr->rd_prev = pptr;

/* Add to the free list */

bptr->rd_next = rdptr->rd_free;

rdptr->rd_free = bptr;

}

}

}

return OK;

}

RdsRead begins by handling two special cases. First, if the requested block is
found in the cache, rdsRead extracts a copy of the data and returns. Second, if the re-
quest list contains a request to write the specified block, rdsRead extracts a copy of the
data from the buffer and returns. Finally, rdsRead creates a read request, enqueues the
request at the tail of the request queue, and waits for a message from the communica-
tion process as described above.

The code handles one more detail: the case where the reference count reaches zero
and a subsequent read for the same block has placed a more recent buffer in the cache.
If this happens, the more recent version will be used for subsequent reads. Therefore,
rdsRead must extract the old buffer from the cache and move it to the free list.

18.13 Flushing Pending Requests

Because write does not wait for data transfer, the driver does not inform a process
when a write operation completes. However, it may be important for the software to
know when data is safely stored. For example, an operating system usually insures that
write operations are completed before shutdown.

To allow a process to guarantee that all disk transfers have occurred, the driver in-
cludes a primitive that will block the calling process until existing requests have been
performed. Because “synchronizing” the disk is not a data transfer operation, we use
the high-level operation control. To flush pending requests, a process calls:

control ( disk_device, RD_SYNC )

The driver suspends the calling process until existing requests have been satisfied on the
specified device. Once pending operations complete, the call returns.
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18.14 The Upper–Half Control Function (rdsControl)

As discussed above, the example driver offers two control functions: one to erase
an entire disk and one to synchronize data to the disk (i.e., forcing all write operations
to complete). File rdsControl.c contains the code:

/* rdsControl.c - rdsControl */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdsControl - Provide control functions for the remote disk

*------------------------------------------------------------------------

*/

devcall rdsControl (

struct dentry *devptr, /* entry in device switch table */

int32 func, /* a control function */

int32 arg1, /* argument #1 */

int32 arg2 /* argument #2 */

)

{

struct rdscblk *rdptr; /* pointer to control block */

struct rdbuff *bptr; /* ptr to buffer that will be */

/* placed on the req. queue */

struct rdbuff *pptr; /* ptr to "previous" node on */

/* a list */

struct rd_msg_dreq msg; /* buffer for delete request */

struct rd_msg_dres resp; /* buffer for delete response */

char *to, *from; /* used during name copy */

int32 retval; /* return value */

/* Verify that device is currently open */

rdptr = &rdstab[devptr->dvminor];

if (rdptr->rd_state != RD_OPEN) {

return SYSERR;

}

switch (func) {

/* Synchronize writes */

case RDS_CTL_SYNC:
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/* Allocate a buffer to use for the request list */

bptr = rdsbufalloc(rdptr);

if (bptr == (struct rdbuff *)SYSERR) {

return SYSERR;

}

/* Form a sync request */

bptr->rd_op = RD_OP_SYNC;

bptr->rd_refcnt = 1;

bptr->rd_blknum = 0; /* unused */

bptr->rd_status = RD_INVALID;

bptr->rd_pid = getpid();

/* Insert new request into list just before tail */

pptr = rdptr->rd_rtprev;

rdptr->rd_rtprev = bptr;

bptr->rd_next = pptr->rd_next;

bptr->rd_prev = pptr;

pptr->rd_next = bptr;

/* Prepare to wait until item is processed */

recvclr();

resume(rdptr->rd_comproc);

/* Block to wait for message */

bptr = (struct rdbuff *)receive();

break;

/* Delete the remote disk (entirely remove it) */

case RDS_CTL_DEL:

/* Handcraft a message for the server that requests */

/* deleting the disk with the specified ID */

msg.rd_type = htons(RD_MSG_DREQ);/* Request deletion */

msg.rd_status = htons(0);

msg.rd_seq = 0; /* rdscomm will insert sequence # later */

to = msg.rd_id;

memset(to, NULLCH, RD_IDLEN); /* initialize to zeroes */
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from = rdptr->rd_id;

while ( (*to++ = *from++) != NULLCH ) { /* copy ID */

;

}

/* Send message and receive response */

retval = rdscomm((struct rd_msg_hdr *)&msg,

sizeof(struct rd_msg_dreq),

(struct rd_msg_hdr *)&resp,

sizeof(struct rd_msg_dres),

rdptr);

/* Check response */

if (retval == SYSERR) {

return SYSERR;

} else if (retval == TIMEOUT) {

kprintf("Timeout during remote file delete\n\r");

return SYSERR;

} else if (ntohs(resp.rd_status) != 0) {

return SYSERR;

}

/* Close local device */

return rdsClose(devptr);

default:

kprintf("rfsControl: function %d not valid\n\r", func);

return SYSERR;

}

return OK;

}

The code for each function should seem familiar. The code to delete an entire disk
is similar to the code in rdsOpen — it creates a message for the server and uses
rdscomm to send the message. The code to synchronize disk writes is similar to the
code in rdsRead — it creates a request, enqueues the request, and calls receive to wait
for a response. Once the response arrives, rdsControl invokes rdsClose to close the lo-
cal device, and returns to its caller.
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18.15 Allocating A Disk Buffer (rdsbufalloc)

As we have seen, driver functions call rdsbufalloc when they need to allocate a
buffer. File rdsbufalloc.c contains the code:

/* rdsbufalloc.c - rdsbufalloc */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdsbufalloc - allocate a buffer from the free list or the cache

*------------------------------------------------------------------------

*/

struct rdbuff *rdsbufalloc (

struct rdscblk *rdptr /* ptr to device control block */

)

{

struct rdbuff *bptr; /* ptr to a buffer */

struct rdbuff *pptr; /* ptr to previous buffer */

struct rdbuff *nptr; /* ptr to next buffer */

/* Wait for an available buffer */

wait(rdptr->rd_availsem);

/* If free list contains a buffer, extract it */

bptr = rdptr->rd_free;

if ( bptr != (struct rdbuff *)NULL ) {

rdptr->rd_free = bptr->rd_next;

return bptr;

}

/* Extract oldest item in cache that has ref count zero (at */

/* least one such entry must exist because the semaphore */

/* had a nonzero count) */

bptr = rdptr->rd_ctprev;

while (bptr != (struct rdbuff *) &rdptr->rd_chnext) {

if (bptr->rd_refcnt <= 0) {

/* Remove from cache and return to caller */
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pptr = bptr->rd_prev;

nptr = bptr->rd_next;

pptr->rd_next = nptr;

nptr->rd_prev = pptr;

return bptr;

}

bptr = bptr->rd_prev;

}

panic("Remote disk cannot find an available buffer");

return (struct rdbuff *)SYSERR;

}

Recall that a semaphore counts available buffers either on the free list or in the
cache with a reference count of zero. After waiting on the semaphore, rdsbufalloc
knows that a buffer will exist in one of the two places. It checks the free list first. If
the free list is not empty, rdsbufalloc extracts the first buffer and returns it. If the free
list is empty, rdsbufalloc searches the cache for an available buffer, extracts the buffer,
and returns it to the caller. If the search completes without finding an available buffer,
the count of the semaphore is incorrect, and rdsbufalloc calls panic to halt the system.

18.16 The Upper–Half Close Function (rdsClose)

A process invokes close to close the remote disk device and stop all communica-
tion. File rdsClose.c contains the code:

/* rdsClose.c - rdsClose */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdsClose - Close a remote disk device

*------------------------------------------------------------------------

*/

devcall rdsClose (

struct dentry *devptr /* entry in device switch table */

)

{

struct rdscblk *rdptr; /* ptr to control block entry */

struct rdbuff *bptr; /* ptr to buffer on a list */

struct rdbuff *nptr; /* ptr to next buff on the list */

int32 nmoved; /* number of buffers moved */

/* Device must be open */
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rdptr = &rdstab[devptr->dvminor];

if (rdptr->rd_state != RD_OPEN) {

return SYSERR;

}

/* Request queue must be empty */

if (rdptr->rd_rhnext != (struct rdbuff *)&rdptr->rd_rtnext) {

return SYSERR;

}

/* Move all buffers from the cache to the free list */

bptr = rdptr->rd_chnext;

nmoved = 0;

while (bptr != (struct rdbuff *)&rdptr->rd_ctnext) {

nmoved++;

/* Unlink buffer from cache */

nptr = bptr->rd_next;

(bptr->rd_prev)->rd_next = nptr;

nptr->rd_prev = bptr->rd_prev;

/* Insert buffer into free list */

bptr->rd_next = rdptr->rd_free;

rdptr->rd_free = bptr;

bptr->rd_status = RD_INVALID;

/* Move to next buffer in the cache */

bptr = nptr;

}

/* Set the state to indicate the device is closed */

rdptr->rd_state = RD_FREE;

return OK;

}
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To close a remote disk device, all buffers must be moved back to the free list (re-
creating the conditions immediately following initialization) and the state field in the
control block must be assigned RD_FREE. Our implementation removes buffers from
the cache, but does not handle the request list. Instead, we require a user to wait until
all requests have been satisfied and the request list is empty before calling rdsClose.
The synchronization function, RDS_CTL_SYNC,† provides a way to wait for the request
queue to drain.

18.17 The Lower–Half Communication Process (rdsprocess)

In the example implementation, each remote disk device has its own control block,
its own set of disk buffers, and its own remote communication process. Thus, a given
remote disk process only needs to handle requests from a single queue. Although the
code may seem long and filled with details, the general algorithm is straightforward: re-
peatedly wait on the request semaphore, examine the type of the request at the head of
the queue, and either perform a read, a write, or a synchronization operation. File
rdsprocess.c contains the code:

/* rdsprocess.c - rdsprocess */

#include <xinu.h>

/*------------------------------------------------------------------------

* rdsprocess - high-priority background process that repeatedly extracts

* an item from the request queue and sends the request to

* the remote disk server

*------------------------------------------------------------------------

*/

void rdsprocess (

struct rdscblk *rdptr /* ptr to device control block */

)

{

struct rd_msg_wreq msg; /* message to be sent */

/* (includes data area) */

struct rd_msg_rres resp; /* buffer to hold response */

/* (includes data area) */

int32 retval; /* return value from rdscomm */

char *idto; /* ptr to ID string copy */

char *idfrom; /* ptr into ID string */

struct rdbuff *bptr; /* ptr to buffer at the head of */

/* the request queue */

struct rdbuff *nptr; /* ptr to next buffer on the */

/* request queue */

��������������������������������
†The synchronization code is found in file rdsControl.c on page 396.
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struct rdbuff *pptr; /* ptr to previous buffer */

struct rdbuff *qptr; /* ptr that runs along the */

/* request queue */

int32 i; /* loop index */

while (TRUE) { /* do forever */

/* Wait until the request queue contains a node */

wait(rdptr->rd_reqsem);

bptr = rdptr->rd_rhnext;

/* Use operation in request to determine action */

switch (bptr->rd_op) {

case RD_OP_READ:

/* Build a read request message for the server */

msg.rd_type = htons(RD_MSG_RREQ); /* read request */

msg.rd_status = htons(0);

msg.rd_seq = 0; /* rdscomm fills in an entry */

idto = msg.rd_id;

memset(idto, NULLCH, RD_IDLEN);/* initialize ID to zero */

idfrom = rdptr->rd_id;

while ( (*idto++ = *idfrom++) != NULLCH ) { /* copy ID */

;

}

/* Send the message and receive a response */

retval = rdscomm((struct rd_msg_hdr *)&msg,

sizeof(struct rd_msg_rreq),

(struct rd_msg_hdr *)&resp,

sizeof(struct rd_msg_rres),

rdptr );

/* Check response */

if ( (retval == SYSERR) || (retval == TIMEOUT) ||

(ntohs(resp.rd_status) != 0) ) {

panic("Failed to contact remote disk server");

}

/* Copy data from the reply into the buffer */
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for (i=0; i<RD_BLKSIZ; i++) {

bptr->rd_block[i] = resp.rd_data[i];

}

/* Unlink buffer from the request queue */

nptr = bptr->rd_next;

pptr = bptr->rd_prev;

nptr->rd_prev = bptr->rd_prev;

pptr->rd_next = bptr->rd_next;

/* Insert buffer in the cache */

pptr = (struct rdbuff *) &rdptr->rd_chnext;

nptr = pptr->rd_next;

bptr->rd_next = nptr;

bptr->rd_prev = pptr;

pptr->rd_next = bptr;

nptr->rd_prev = bptr;

/* Initialize reference count */

bptr->rd_refcnt = 1;

/* Signal the available semaphore */

signal(rdptr->rd_availsem);

/* Send a message to waiting process */

send(bptr->rd_pid, (uint32)bptr);

/* If other processes are waiting to read the */

/* block, notify them and remove the request */

qptr = rdptr->rd_rhnext;

while (qptr != (struct rdbuff *)&rdptr->rd_rtnext) {

if (qptr->rd_blknum == bptr->rd_blknum) {

bptr->rd_refcnt++;

send(qptr->rd_pid,(uint32)bptr);

/* Unlink request from queue */

pptr = qptr->rd_prev;

nptr = qptr->rd_next;

pptr->rd_next = bptr->rd_next;
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nptr->rd_prev = bptr->rd_prev;

/* Move buffer to the free list */

qptr->rd_next = rdptr->rd_free;

rdptr->rd_free = qptr;

signal(rdptr->rd_availsem);

break;

}

qptr = qptr->rd_next;

}

break;

case RD_OP_WRITE:

/* Build a write request message for the server */

msg.rd_type = htons(RD_MSG_WREQ); /* write request*/

msg.rd_blk = bptr->rd_blknum;

msg.rd_status = htons(0);

msg.rd_seq = 0; /* rdscomm fills in an entry */

idto = msg.rd_id;

memset(idto, NULLCH, RD_IDLEN);/* initialize ID to zero */

idfrom = rdptr->rd_id;

while ( (*idto++ = *idfrom++) != NULLCH ) { /* copy ID */

;

}

for (i=0; i<RD_BLKSIZ; i++) {

msg.rd_data[i] = bptr->rd_block[i];

}

/* Unlink buffer from request queue */

nptr = bptr->rd_next;

pptr = bptr->rd_prev;

pptr->rd_next = nptr;

nptr->rd_prev = pptr;

/* Insert buffer in the cache */

pptr = (struct rdbuff *) &rdptr->rd_chnext;

nptr = pptr->rd_next;

bptr->rd_next = nptr;

bptr->rd_prev = pptr;

pptr->rd_next = bptr;

nptr->rd_prev = bptr;
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/* Declare that buffer is eligible for reuse */

bptr->rd_refcnt = 0;

signal(rdptr->rd_availsem);

/* Send the message and receive a response */

retval = rdscomm((struct rd_msg_hdr *)&msg,

sizeof(struct rd_msg_wreq),

(struct rd_msg_hdr *)&resp,

sizeof(struct rd_msg_wres),

rdptr );

/* Check response */

if ( (retval == SYSERR) || (retval == TIMEOUT) ||

(ntohs(resp.rd_status) != 0) ) {

panic("failed to contact remote disk server");

}

break;

case RD_OP_SYNC:

/* Send a message to the waiting process */

send(bptr->rd_pid, OK);

/* Unlink buffer from the request queue */

nptr = bptr->rd_next;

pptr = bptr->rd_prev;

nptr->rd_prev = bptr->rd_prev;

pptr->rd_next = bptr->rd_next;

/* Insert buffer into the free list */

bptr->rd_next = rdptr->rd_free;

rdptr->rd_free = bptr;

signal(rdptr->rd_availsem);

break;

}

}

}
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When examining the code, remember that the remote disk process has higher prior-
ity than any application process. Thus, the code does not need to disable interrupts or
use a mutual exclusion semaphore when accessing the request queue, cache, or free list.
However, rdsprocess must leave all data structures in a valid state before using
rdscomm to exchange messages with the server because message reception blocks the
calling process (which means other processes can run). In the case of a read operation,
rdsprocess leaves the buffer on the request queue until the request can be satisfied. In
the case of a write operation, rdsprocess extracts a copy of the data and moves the
buffer to the cache before calling rdscomm.

18.18 Perspective

Conceptually, a remote disk system only needs to provide two basic operations:
read a block and write a block. In practice, however, the issues of synchrony, caching,
and sharing dominate the design. Our example simplifies most design decisions be-
cause we assume a single Xinu system acts as a client. Thus, the client code manages
its local cache, and does not need to coordinate with other Xinu systems. Similarly, the
lack of sharing simplifies the question of synchrony: the client only needs local infor-
mation to enforce last-write semantics.

If the system is extended to permit multiple Xinu systems to share a disk, the en-
tire design must change. A given client cannot cache blocks unless the client coordi-
nates with the server. Furthermore, last-write semantics must be enforced across all
systems, which means read operations need a centralized mechanism to insure that they
occur in order. The point is:

Extending the remote disk system to include sharing across multiple
Xinu systems will result in significant changes to the structure of the
system.

18.19 Summary

We considered the design of a remote disk system in which an application can
read and write disk blocks, and the driver uses a network to communicate with a remote
server that performs the operation. The driver views a disk as an array of randomly ac-
cessible data blocks, and does not provide files, directories, or any index techniques to
speed searching. Reading consists of copying data from a specified block on disk into
memory; writing consists of copying data from memory onto a specified disk block.

Driver code is divided into upper-half functions that are called by application
processes and a lower half that executes as a separate process. Input is synchronous; a
process blocks until a request can be satisfied. Output is asynchronous; the driver ac-
cepts an outgoing data block, enqueues the request, and returns to the caller immediate-
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ly without blocking. A process can use the control function to flush previous writes to
disk.

The driver uses three main data structures: a queue of requests, a cache of recently
used blocks, and a free list. Although it relies on caching, the driver guarantees last-
write semantics.

EXERCISES

18.1 Redesign the implementation to keep the buffers separate from the nodes used on the re-
quest list and the cache (i.e., define nodes for each list and arrange for each node to have
a pointer to a buffer). What are the advantages and disadvantages of each approach?

18.2 Redesign the remote disk system to use a “buffer exchange” paradigm in which applica-
tions and driver functions share a single buffer pool. To write a disk block, arrange for
an application to allocate a buffer, fill the buffer, and pass the buffer when calling write.
Have read return a buffer pointer which the application must free once the data has been
extracted.

18.3 It is possible to configure a system with multiple remote disk devices. Modify the code
in rdsOpen to check each open remote disk device to insure that a disk ID is unique.

18.4 Build a version of a remote disk system that does not use a cache, and measure the
difference in performance of the two versions.

18.5 Should requests from high-priority processes take precedence over requests from low-
priority processes? Explain why or why not.

18.6 Investigate other algorithms like the “elevator” algorithm that can be used to order disk
requests for an electro-mechanical disk.

18.7 Verify that a request to “synchronize” will not return until all pending requests have
been satisfied. Is there a bound on the time it can be delayed?
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File Systems

Filing is concerned with the past; anything you
actually need to see again has to do with the future.

— Katharine Whitehorn

The previous chapter discusses disk devices, and describes a hardware interface
that allows the system to read and write individual blocks. Although disks have the ad-
vantage of providing long-term, non-volatile storage, the block-oriented interface is
cumbersome.

This chapter introduces the file system abstraction. It shows how an operating sys-
tem manages a set of dynamically changing file objects, and how the system maps files
onto the underlying disk hardware.

19.1 What Is A File System?

A file system consists of software that manages permanent data objects whose
values persist longer than the processes that create and use them. Permanent data is
kept in files, which are stored on secondary storage devices, primarily disks. Files are
organized into directories (also called folders). Conceptually, each file consists of a se-
quence of data objects (e.g., a sequence of integers). The file system provides opera-
tions that create or delete a file, open a file given its name, read the next object from an
open file, write an object onto an open file, or close a file. If a file system allows ran-
dom access, the file interface also provides a way a process can seek to a specified loca-
tion in a file.

411
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Many file systems do more than manipulate individual files on secondary storage
— they provide an abstract namespace and high-level operations to manipulate objects
in that space. The file namespace consists of the set of valid file names. A namespace
can be as simple as “the set of strings formed from at least one but fewer than nine al-
phabetic characters,” or as complex as “the set of strings that form a valid encoding of
the network, machine, user, subdirectory, and file identifiers in a specified syntax.” In
some systems, the syntax of names in the abstract space conveys information about their
type (e.g., text files end in “.txt”). In others, names give information about the organi-
zation of the file system (e.g., a file name that begins with the string “M1_d0:” might
reside on disk 0 of machine 1). We will defer a discussion of file naming to Chapter
21, and concentrate on file access.

19.2 An Example Set Of File Operations

Our example system uses a straightforward approach motivated by a desire to unify
the interface between devices and files and to keep the file system software small. File
semantics are taken from Unix according to the following principle:

The file system considers each file to be a sequence of zero or more
bytes; any further structure must be enforced by application programs
that use the file.

Treating a file as a stream of bytes has several advantages. First, the file system
does not impose a type on the file and does not need to distinguish among file types.
Second, the code is small because a single set of file system functions suffices for all
files. Third, the file semantics can be applied to devices and services as well as to con-
ventional files. Fourth, application programs can choose an arbitrary structure for data
without changing the underlying system. Finally, file contents are independent of the
processor or memory (e.g., an application may need to distinguish among a 32-bit and
64-bit integer stored in a file, but the file system does not).

Our system will use exactly the same high-level operations for files that are used
for devices. Thus, the file system will support open, close, read, write, putc, getc, seek,
init, and control functions. When applied to conventional files, the operations produce
the following results. Init initializes data structures at startup. Opening a named file
connects an executing process with the data on disk, and establishes a pointer to the
first byte. Operations getc and read retrieve data from the file and advance the pointer;
getc retrieves one byte, and read can retrieve multiple bytes. Operations putc and write
change bytes in the file and move the pointer along, extending the file length if new
data is written beyond the end; putc changes one byte, and write can change multiple
bytes. The seek operation moves the pointer to a specified byte position in the file; the
first byte is at position zero. Finally, close detaches the running process from the file,
leaving the data in the file on permanent storage.
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19.3 Design Of A Local File System

A file is said to be local to a given computer if the file resides on a disk that is
connected to the computer. The design of software that manages such files is nontrivi-
al; it has been the subject of much research. Although the file operations may seem
straightforward, complexity arises because files are dynamic. That is, a single disk can
hold multiple files, and a given file can grow arbitrarily large (until disk space is ex-
hausted). To permit dynamic file growth, a system cannot pre-allocate disk blocks for a
file. Thus, dynamic data structures are needed.

A second form of complexity arises from concurrency. To what extent should the
system support concurrent file operations? Large systems usually allow arbitrary
numbers of processes to read and write arbitrary numbers of files concurrently. The
chief difficulty with multiple access lies in specifying exactly what it means to have
multiple processes writing and reading a file at the same time. When will data become
available for reading? If two processes attempt to write to the same data byte in the
file, which will be accepted? Can a process lock pieces of a file to avoid interference?

The generality of allowing multiple processes to read and write a file is usually not
necessary on small embedded systems. Thus, to limit the software complexity and
make better use of disk space, small systems can constrain the ways in which files can
be accessed. They may limit the number of files that a given process can access simul-
taneously, or limit the number of processes that can access a given file simultaneously.

Our goal is to design efficient, compact file system software that allows processes
to create and extend files dynamically without incurring unnecessary overhead. As a
compromise between generality and efficiency, we will allow a process to open an arbi-
trary number of files until resources are exhausted. However, the system limits a file to
one active open. That is, if a file is open, successive requests to open it will fail until
the file has been closed. Each file has a mutual exclusion semaphore to guarantee that
only one process at a time can attempt to write a byte to the file, read a byte from the
file, or change the current file position. Furthermore, the directory has a mutual exclu-
sion semaphore to guarantee that only one process at a time can attempt to create a file
or otherwise change a directory entry. Although concurrency requires attention to de-
tail, the most significant consequence of our design arises from its support for dynamic
file growth: data structures will be needed to allocate space on a disk dynamically. The
next section explains the data structures used.

19.4 Data Structures For The Xinu File System

To support dynamic growth and random access, the Xinu file system allocates disk
blocks dynamically and uses an index mechanism to locate the data in a given file
quickly. The design partitions a disk into three separate areas as Figure 19.1 illustrates:
a directory, an index area, and a data area.
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dir. index data area

Figure 19.1 Illustration of a disk partitioned into three areas for the Xinu file
system.

The first sector of the disk holds a directory that contains a list of file names along
with a pointer to the list of index blocks for the file. The directory also contains two
other pointers: one to a list of free (unused) index blocks and another to a list of free
data blocks. The directory entry for a file also contains an integer that gives the current
size of the file measured in bytes.

Following the directory, the disk contains an index area that holds a set of index
blocks, abbreviated i-blocks. Each file has its own index, which consists of a singly-
linked list of index blocks. Initially, all index blocks are linked onto a free list from
which the system allocates one as needed; index blocks are only returned to the free list
if a file is truncated or deleted.

Following the index area, remaining blocks of the disk comprise a data area. Each
block in the data area is referred to as a data block, abbreviated d-block, because a
block contains data that has been stored in a file. Once a data block has been allocated
to a file, the block only can contain data. A data block does not contain pointers to oth-
er data blocks, nor does it contain information that relates the block to the file of which
it is a part; all such information resides in the file’s index.

Similar to index blocks, when a disk is initialized, the data blocks are linked onto a
free list. The file system allocates data blocks from the free list as needed, and returns
data blocks to the free list when a file is truncated or deleted.

Figure 19.2 illustrates the conceptual data structure used for a Xinu file system.
The figure is not drawn to scale: in practice a data block is much larger than an index
block and occupies one physical disk block.
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. . .

index block
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index block
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index block
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index block
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index block

filename 1

filename 2

...

directory

16 data blocks

Figure 19.2 Illustration of the Xinu file system, where each file consists of a
linked list of index blocks that each contain pointers to data
blocks.

The important idea is that the data structure illustrated in the figure resides on disk.
We will see that at any given time, only a few pieces of the structure are present in
memory — the file system must create and maintain an index without reading the struc-
ture into memory.

19.5 Implementation Of The Index Manager

Conceptually index blocks form a randomly-accessible array that is mapped onto a
contiguous area of the disk. Thus, index blocks are numbered from zero through K, and
the software uses the number to refer to a given index block. Because an index block is
smaller than a physical disk block, the system stores seven index blocks into each phys-
ical block, and the software handles the details of reading and writing an individual in-
dex block.

Because the underlying hardware can only transfer an entire disk block at a time,
the file system cannot transfer an individual index block without transferring others that
reside in the same physical disk block. Therefore, to write an index block, the software
must read the entire physical disk block in which it resides, copy the new index block
into the correct position, and write the resulting physical block back to disk. Similarly,
to read an index block, the software must read the physical disk block in which it re-
sides, and then extract the index block.

Before we examine the code to handle index blocks, we need to understand basic
definitions. File lfilesys.h defines constants and data structures used throughout the lo-
cal file system, including struct lfiblk which defines the contents of an index block.



416 File Systems Chap. 19

/* lfilesys.h - ib2sect, ib2disp */

/************************************************************************/

/* */

/* Local File System Data Structures */

/* */

/* A local file system uses a random-access disk composed of 512-byte */

/* sectors numbered 0 through N-1. We assume disk hardware can read or */

/* write any sector at random, but must transfer an entire sector. */

/* Thus, to write a few bytes, the file system must read the sector, */

/* replace the bytes, and then write the sector back to disk. Xinu’s */

/* local file system divides the disk as follows: sector 0 is a */

/* directory, the next K sectors constitute an index area, and the */

/* remaining sectors comprise a data area. The data area is easiest to */

/* understand: each sector holds one data block (d-block) that stores */

/* contents from one of the files (or is on a free list of unused data */

/* blocks). We think of the index area as holding an array of index */

/* blocks (i-blocks) numbered 0 through I-1. A given sector in the */

/* index area holds 7 of the index blocks, which are each 72 bytes */

/* long. Given an i-block number, the file system must calculate the */

/* disk sector in which the i-block is located and the byte offset */

/* within the sector at which the i-block resides. Internally, a file */

/* is known by the i-block index of the first i-block for the file. */

/* The directory contains a list of file names and the i-block number */

/* of the first i-block for the file. The directory also holds the */

/* i-block number for a list of free i-blocks and a data block number */

/* of the first data block on a list of free data blocks. */

/* */

/************************************************************************/

#ifndef Nlfl

#define Nlfl 1

#endif

/* Use the remote disk device if no disk is defined (file system */

/* *assumes* the underlying disk has a block size of 512 bytes) */

#ifndef LF_DISK_DEV

#define LF_DISK_DEV SYSERR

#endif

#define LF_MODE_R F_MODE_R /* mode bit for "read" */

#define LF_MODE_W F_MODE_W /* mode bit for "write" */

#define LF_MODE_RW F_MODE_RW /* mode bits for "read or write"*/

#define LF_MODE_O F_MODE_O /* mode bit for "old" */
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#define LF_MODE_N F_MODE_N /* mode bit for "new" */

#define LF_BLKSIZ 512 /* assumes 512-byte disk blocks */

#define LF_NAME_LEN 16 /* length of name plus null */

#define LF_NUM_DIR_ENT 20 /* num. of files in a directory */

#define LF_FREE 0 /* slave device is available */

#define LF_USED 1 /* slave device is in use */

#define LF_INULL (ibid32) -1 /* index block null pointer */

#define LF_DNULL (dbid32) -1 /* data block null pointer */

#define LF_IBLEN 16 /* data block ptrs per i-block */

#define LF_IDATA 8192 /* bytes of data indexed by a */

/* single index block */

#define LF_IMASK 0x00001fff /* mask for the data indexed by */

/* a single index block (i.e., */

/* bytes 0 through 8191). */

#define LF_DMASK 0x000001ff /* mask for the data in a data */

/* block (0 through 511) */

#define LF_AREA_IB 1 /* first sector of i-blocks */

#define LF_AREA_DIR 0 /* first sector of directory */

/* Structure of an index block on disk */

struct lfiblk { /* format of index block */

ibid32 ib_next; /* address of next index block */

uint32 ib_offset; /* first data byte of the file */

/* indexed by this i-block */

dbid32 ib_dba[LF_IBLEN];/* ptrs to data blocks indexed */

};

/* Conversion functions below assume 7 index blocks per disk block */

/* Conversion between index block number and disk sector number */

#define ib2sect(ib) (((ib)/7)+LF_AREA_IB)

/* Conversion between index block number and the relative offset within */

/* a disk sector */

#define ib2disp(ib) (((ib)%7)*sizeof(struct lfiblk))

/* Structure used in each directory entry for the local file system */
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struct ldentry { /* description of entry for one */

/* file in the directory */

uint32 ld_size; /* curr. size of file in bytes */

ibid32 ld_ilist; /* ID of first i-block for file */

/* or IB_NULL for empty file */

char ld_name[LF_NAME_LEN]; /* null-terminated file name */

};

/* Structure of a data block when on the free list on disk */

struct lfdbfree {

dbid32 lf_nextdb; /* next data block on the list */

char lf_unused[LF_BLKSIZ - sizeof(dbid32)];

};

/* Format of the file system directory, either on disk or in memory */

#pragma pack(2)

struct lfdir { /* entire directory on disk */

dbid32 lfd_dfree; /* list of free d-blocks on disk*/

ibid32 lfd_ifree; /* list of free i-blocks on disk*/

int32 lfd_nfiles; /* current number of files */

struct ldentry lfd_files[LF_NUM_DIR_ENT]; /* set of files */

char padding[20]; /* unused chars in directory blk*/

};

#pragma pack()

/* Global data used by local file system */

struct lfdata { /* local file system data */

did32 lf_dskdev; /* device ID of disk to use */

sid32 lf_mutex; /* mutex for the directory and */

/* index/data free lists */

struct lfdir lf_dir; /* In-memory copy of directory */

bool8 lf_dirpresent; /* True when directory is in */

/* memory (first file is open) */

bool8 lf_dirdirty; /* Has the directory changed? */

};

/* Control block for local file pseudo-device */

struct lflcblk { /* Local file control block */

/* (one for each open file) */

byte lfstate; /* Is entry free or used */
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did32 lfdev; /* device ID of this device */

sid32 lfmutex; /* Mutex for this file */

struct ldentry *lfdirptr; /* Ptr to file’s entry in the */

/* in-memory directory */

int32 lfmode; /* mode (read/write/both) */

uint32 lfpos; /* Byte position of next byte */

/* to read or write */

char lfname[LF_NAME_LEN]; /* Name of the file */

ibid32 lfinum; /* ID of current index block in */

/* lfiblock or LF_INULL */

struct lfiblk lfiblock; /* In-mem copy of current index */

/* block */

dbid32 lfdnum; /* Number of current data block */

/* in lfdblock or LF_DNULL */

char lfdblock[LF_BLKSIZ]; /* in-mem copy of current data */

/* block */

char *lfbyte; /* Ptr to byte in lfdblock or */

/* address one beyond lfdblock */

/* if current file pos lies */

/* outside lfdblock */

bool8 lfibdirty; /* Has lfiblock changed? */

bool8 lfdbdirty; /* Has lfdblock changed? */

};

extern struct lfdata Lf_data;

extern struct lflcblk lfltab[];

/* Control functions */

#define LF_CTL_DEL F_CTL_DEL /* Delete a file */

#define LF_CTL_TRUNC F_CTL_TRUNC /* Truncate a file */

#define LF_CTL_SIZE F_CTL_SIZE /* Obtain the size of a file */

As the file shows, each index block contains a pointer to the next index block, an
offset that specifies the lowest position in the file indexed by the block, and an array of
sixteen pointers to data blocks. That is, each entry in the array gives the physical disk
sector number of a data block. Because a sector is 512 bytes long, a single index block
indexes sixteen 512-byte blocks or 8,192 bytes of data.

How does the software know where to find an index block given its address? In-
dex blocks are contiguous, and occupy contiguous disk sectors starting at sector
LF_AREA_IB. In our design, the directory occupies disk block zero, which means that
the index area starts at sector one. Thus, index blocks zero through seven lie in sector
one, eight through fifteen lie in sector two, and so on. Inline function ib2sect converts
an index block number into the correct sector number, and inline function ib2disp con-
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verts an index block number to a byte displacement within a physical disk block. Both
functions can be found in file lfilesys.h above.

19.6 Clearing An Index Block (lfibclear)

Whenever it allocates an index block from the free list, the file system must read
the index block into memory and clear the block to remove old information. In particu-
lar, all data block pointers must be set to a null value, so they will not be confused with
valid pointers. Furthermore, the offset in the index block must be assigned the ap-
propriate offset in the file. Function lfibclear clears an index block; file lfibclear.c con-
tains the code.

/* lfibclear.c - lfibclear */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfibclear -- clear an in-core copy of an index block

*------------------------------------------------------------------------

*/

void lfibclear(

struct lfiblk *ibptr, /* address of i-block in memory */

int32 offset /* file offset for this i-block */

)

{

int32 i; /* indexes through array */

ibptr->ib_offset = offset; /* assign specified file offset */

for (i=0 ; i<LF_IBLEN ; i++) { /* clear each data block pointer*/

ibptr->ib_dba[i] = LF_DNULL;

}

ibptr->ib_next = LF_INULL; /* set next ptr to null */

}

19.7 Retrieving An Index Block (lfibget)

To read an index block into memory, the system must map the index block number
to a physical disk block address, read the physical disk block, and copy the appropriate
area from the physical block into the specified memory location. File lfibget.c contains
the code, which uses inline function ib2sect to convert the index block number to a disk
sector, and function ib2disp to compute the location of the index block within the disk
sector.
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/* lfibget.c - lfibget */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfibget -- get an index block from disk given its number (assumes

* mutex is held)

*------------------------------------------------------------------------

*/

void lfibget(

did32 diskdev, /* device ID of disk to use */

ibid32 inum, /* ID of index block to fetch */

struct lfiblk *ibuff /* buffer to hold index block */

)

{

char *from, *to; /* pointers used in copying */

int32 i; /* loop index used during copy */

char dbuff[LF_BLKSIZ]; /* ibuff to hold disk block */

/* Read disk block that contains the specified index block */

read(diskdev, dbuff, ib2sect(inum));

/* Copy specified index block to caller’s ibuff */

from = dbuff + ib2disp(inum);

to = (char *)ibuff;

for (i=0 ; i<sizeof(struct lfiblk) ; i++)

*to++ = *from++;

return;

}

19.8 Storing An Index Block (lfibput)

Storing an index block is more complicated than retrieving one because the code
must first read the appropriate disk sector, copy the index block into the appropriate
area, and then write the sector back to disk. File lfibput.c contains the code, which uses
the same inline functions as lfibget:
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/* lfibput.c - lfibput */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfibput -- write an index block to disk given its ID (assumes

* mutex is held)

*------------------------------------------------------------------------

*/

status lfibput(

did32 diskdev, /* ID of disk device */

ibid32 inum, /* ID of index block to write */

struct lfiblk *ibuff /* buffer holding the index blk */

)

{

dbid32 diskblock; /* ID of disk sector (block) */

char *from, *to; /* pointers used in copying */

int32 i; /* loop index used during copy */

char dbuff[LF_BLKSIZ]; /* temp. buffer to hold d-block */

/* Compute disk block number and offset of index block */

diskblock = ib2sect(inum);

to = dbuff + ib2disp(inum);

from = (char *)ibuff;

/* Read disk block */

if (read(diskdev, dbuff, diskblock) == SYSERR) {

return SYSERR;

}

/* Copy index block into place */

for (i=0 ; i<sizeof(struct lfiblk) ; i++) {

*to++ = *from++;

}

/* Write the block back to disk */

write(diskdev, dbuff, diskblock);

return OK;

}
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19.9 Allocating An Index Block From The Free List (lfiballoc)

The file system allocates an index block from the free list whenever it needs to ex-
tend the index for a file. Function lfiballoc obtains the next free index block and re-
turns its identifier. The code, which is found in file lfiballoc.c, assumes that a copy of
the directory for the file system has been read into memory and placed in global vari-
able Lf_data.lf_dir.

/* lfiballoc.c - lfiballoc */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfiballoc - allocate a new index block from free list on disk

* (assumes directory mutex held)

*------------------------------------------------------------------------

*/

ibid32 lfiballoc (void)

{

ibid32 ibnum; /* ID of next block on the free list */

struct lfiblk iblock; /* buffer to hold index block */

/* Get ID of first index block on free list */

ibnum = Lf_data.lf_dir.lfd_ifree;

if (ibnum == LF_INULL) { /* ran out of free index blocks */

panic("out of index blocks");

}

lfibget(Lf_data.lf_dskdev, ibnum, &iblock);

/* Unlink index block from the directory free list */

Lf_data.lf_dir.lfd_ifree = iblock.ib_next;

/* Write a copy of the directory to disk after the change */

write(Lf_data.lf_dskdev, (char *) &Lf_data.lf_dir, LF_AREA_DIR);

Lf_data.lf_dirdirty = FALSE;

return ibnum;

}
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19.10 Allocating A Data Block From The Free List (lfdballoc)

Because an index block contains a “next” pointer field, linking them into a free list
is straightforward. For data blocks, however, the free list is less obvious because a data
block does not usually contain a pointer field. The Xinu design uses a singly-linked
free list, which means that only one pointer is needed. When a data block is on the free
list, the system uses the first four bytes of the data block to store a pointer to the next
block on the list. Structure lfdbfree, found in file lfilesys.h above, defines the format of
a block on the free list. Whenever it extracts a data block from the free list, the file
system uses the structure definition. Of course, once a block has been removed from
the free list and allocated to a file, the block is treated as an array of bytes.

Function lfdballoc, which allocates a data block from the free list and returns the
block number, illustrates how the system uses struct lfdbfree. The code can be found in
file lfdballoc.c.

/* lfdballoc.c - lfdballoc */

#include <xinu.h>

#define DFILL ’+’ /* char. to fill a disk block */

/*------------------------------------------------------------------------

* lfdballoc - allocate a new data block from free list on disk

* (assumes directory mutex held)

*------------------------------------------------------------------------

*/

dbid32 lfdballoc (

struct lfdbfree *dbuff /* addr. of buffer to hold data block */

)

{

dbid32 dnum; /* ID of next d-block on the free list */

int32 retval; /* return value */

/* Get the ID of first data block on the free list */

dnum = Lf_data.lf_dir.lfd_dfree;

if (dnum == LF_DNULL) { /* ran out of free data blocks */

panic("out of data blocks");

}

retval = read(Lf_data.lf_dskdev, (char *)dbuff, dnum);

if (retval == SYSERR) {

panic("lfdballoc cannot read disk block\n\r");

}
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/* Unlink d-block from in-memory directory */

Lf_data.lf_dir.lfd_dfree = dbuff->lf_nextdb;

write(Lf_data.lf_dskdev, (char *)&Lf_data.lf_dir, LF_AREA_DIR);

Lf_data.lf_dirdirty = FALSE;

/* Fill data block to erase old data */

memset((char *)dbuff, DFILL, LF_BLKSIZ);

return dnum;

}

A corresponding function, lfdbfree, returns a block to the free list. The code can
be found in file lfdbfree.c.

/* lfdbfree.c - lfdbfree */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfdbfree -- free a data block given its block number (assumes

* directory mutex is held)

*------------------------------------------------------------------------

*/

status lfdbfree(

did32 diskdev, /* ID of disk device to use */

dbid32 dnum /* ID of data block to free */

)

{

struct lfdir *dirptr; /* pointer to directory */

struct lfdbfree buf; /* buffer to hold data block */

dirptr = &Lf_data.lf_dir;

buf.lf_nextdb = dirptr->lfd_dfree;

dirptr->lfd_dfree = dnum;

write(diskdev, (char *)&buf, dnum);

write(diskdev, (char *)dirptr, LF_AREA_DIR);

return OK;

}

To place a block on the free list, lfdbfree first makes the block point to the current
free list, and then makes the current free list point to the block. Because a pointer has
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been inserted, the block must be written to disk; because the free list in the directory
has been changed, a copy of the directory must be written to disk.

19.11 Using The Device-Independent I/O Functions For Files

The file system software must establish connections between running processes and
disk files to allow operations like read and write to be mapped onto the correct file.
Exactly how the system performs this mapping depends on both the size and generality
needed. To keep our system small, we will avoid introducing new functions by using
the device switch mechanisms already in place.

Imagine that a set of file pseudo-devices has been added to the device switch table
such that each pseudo-device can be used to control an open file. As with conventional
devices, a pseudo-device has a set of driver functions that perform read, write, getc,
putc, seek, and close operations. When a process opens a disk file, the file system
searches for a currently unused pseudo-device, sets up the control block for the pseudo-
device, and returns the ID of the pseudo-device to the caller. After the file has been
opened, the process uses the device ID with operations getc, read, putc, write, and seek.
The device switch maps each high-level operation to the appropriate driver function for
file pseudo-devices exactly as it maps high-level operations onto device drivers for
physical devices. Finally, when it finishes using a file, a process calls close to break the
connection and make the pseudo-device available for use with another file. The details
will become clear as we review the code.

Designing a pseudo-device driver is not unlike designing a device driver for a con-
ventional hardware device. Just like other drivers, the pseudo-device driver creates a
control block for each pseudo-device. The control block for a file pseudo-device uses
struct lflcblk, which is defined in file lfilesys.h. Conceptually, the control block con-
tains two types of items: fields that hold information about the pseudo-device and fields
that hold information from the disk. Fields lfstate and lfmode are the former type: the
state field specifies whether the device is currently in use, and the mode field specifies
whether the file has been opened for reading, writing, or both. Fields lfiblock and
lfdblock are of the latter type: when a file is being read or written they contain a copy of
the index block and the data block for the current position in the file measured in bytes
(which is given by field lfpos).

When a file is opened, the position (field lfpos in the control block) is assigned
zero. As processes read or write data, the position increases. A process can call seek to
move to an arbitrary position in the file, and lfpos is updated.

19.12 File System Device Configuration And Function Names

What interface should be used to open a file and allocate a pseudo-device for read-
ing and writing? Because Xinu tends to map all functions into the device space, the lo-
cal file system uses the approach of defining a master local file device, LFILESYS. Cal-
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ling open on the LFILESYS device causes the system to allocate a pseudo-device and re-
turn the device ID of the pseudo-device. File pseudo-devices are named LFILE0,
LFILE1, ..., but the names are used only in the configuration file. Figure 19.3 shows
how the master and file pseudo-devices are configured.

/* Local File System master device type */

lfs: on disk
-i lfsInit -o lfsOpen -c ioerr
-r ioerr -g ioerr -p ioerr
-w ioerr -s ioerr -n rfsControl
-intr NULL

/* Local file pseudo-device type */

lfl: on lfs
-i lflInit -o ioerr -c lflClose
-r lflRead -g lflGetc -p lflPutc
-w lflWrite -s lflSeek -n ioerr
-intr NULL

Figure 19.3 Configuration of types for a local file system master device and
local file pseudo-device.

As the figure shows, driver functions for the master file system device have names
that begin with lfs, and driver functions for a file pseudo-device have names that begin
with lfl. We will see that support functions used by either set of driver functions have
names that begin with lf.

19.13 The Local File System Open Function (lfsOpen)

Figure 19.4 shows the configuration for the master local file device and a set of lo-
cal file pseudo-devices. Because a pseudo-device is used for each open file, the number
of local file pseudo-devices provides a bound on the number of files that can be opened
simultaneously.
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/* Local file system master device (one per system) */

LFILESYS is lfs on disk

/* Local file pseudo-devices (many per system) */

LFILE0 is lfl on lfs
LFILE1 is lfl on lfs
LFILE2 is lfl on lfs
LFILE3 is lfl on lfs
LFILE4 is lfl on lfs
LFILE5 is lfl on lfs
LFILE6 is lfl on lfs

Figure 19.4 Configuration of a local file system master device and a set of lo-
cal file pseudo-devices.

The above configuration means that a process can use the master device to open a
local file, and then use the pseudo-device to access the file. For example, to open a lo-
cal file named myfile for reading and writing, a programmer codes:

fd = open(LFILESYS, "myfile", "rw");

Assuming the open succeeds, descriptor fd can be used to write data to the file, as in the
following:

char buffer[1500];

... code to fill buffer ...

fd = write(fd, buffer, 1500);

Device LFILESYS is only used to open a file. Therefore, the master file system de-
vice driver only needs functions for open and init; all other I/O operations map to ioerr.
Function lfsOpen performs the open operation; the code can be found in file lfsOpen.c.

/* lfsOpen.c - lfsOpen */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfsOpen - open a file and allocate a local file pseudo-device

*------------------------------------------------------------------------

*/

devcall lfsOpen (

struct dentry *devptr, /* entry in device switch table */

char *name, /* name of file to open */

char *mode /* mode chars: ’r’ ’w’ ’o’ ’n’ */

)
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{

struct lfdir *dirptr; /* ptr to in-memory directory */

char *from, *to; /* ptrs used during copy */

char *nam, *cmp; /* ptrs used during comparison */

int32 i; /* general loop index */

did32 lfnext; /* minor number of an unused */

/* file pseudo-device */

struct ldentry *ldptr; /* ptr to an entry in directory */

struct lflcblk *lfptr; /* ptr to open file table entry */

bool8 found; /* was the name found? */

int32 retval; /* value returned from function */

int32 mbits; /* mode bits */

/* Check length of name file (leaving space for NULLCH */

from = name;

for (i=0; i< LF_NAME_LEN; i++) {

if (*from++ == NULLCH) {

break;

}

}

if (i >= LF_NAME_LEN) { /* name is too long */

return SYSERR;

}

/* Parse mode argument and convert to binary */

mbits = lfgetmode(mode);

if (mbits == SYSERR) {

return SYSERR;

}

/* If named file is already open, return SYSERR */

lfnext = SYSERR;

for (i=0; i<Nlfl; i++) { /* search file pseudo-devices */

lfptr = &lfltab[i];

if (lfptr->lfstate == LF_FREE) {

if (lfnext == SYSERR) {

lfnext = i; /* record index */

}

continue;

}

/* Compare requested name to name of open file */
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nam = name;

cmp = lfptr->lfname;

while(*nam != NULLCH) {

if (*nam != *cmp) {

break;

}

nam++;

cmp++;

}

/* See if comparison succeeded */

if ( (*nam==NULLCH) && (*cmp == NULLCH) ) {

return SYSERR;

}

}

if (lfnext == SYSERR) { /* no slave file devices are available */

return SYSERR;

}

/* Obtain copy of directory if not already present in memory */

dirptr = &Lf_data.lf_dir;

wait(Lf_data.lf_mutex);

if (! Lf_data.lf_dirpresent) {

retval = read(Lf_data.lf_dskdev,(char *)dirptr,LF_AREA_DIR);

if (retval == SYSERR ) {

signal(Lf_data.lf_mutex);

return SYSERR;

}

Lf_data.lf_dirpresent = TRUE;

}

/* Search directory to see if file exists */

found = FALSE;

for (i=0; i<dirptr->lfd_nfiles; i++) {

ldptr = &dirptr->lfd_files[i];

nam = name;

cmp = ldptr->ld_name;

while(*nam != NULLCH) {

if (*nam != *cmp) {

break;

}
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nam++;

cmp++;

}

if ( (*nam==NULLCH) && (*cmp==NULLCH) ) { /* name found */

found = TRUE;

break;

}

}

/* Case #1 - file is not in directory (i.e., does not exist) */

if (! found) {

if (mbits & LF_MODE_O) { /* file *must* exist */

signal(Lf_data.lf_mutex);

return SYSERR;

}

/* Take steps to create new file and add to directory */

/* Verify that space remains in the directory */

if (dirptr->lfd_nfiles >= LF_NUM_DIR_ENT) {

signal(Lf_data.lf_mutex);

return SYSERR;

}

/* Allocate next dir. entry & initialize to empty file */

ldptr = &dirptr->lfd_files[dirptr->lfd_nfiles++];

ldptr->ld_size = 0;

from = name;

to = ldptr->ld_name;

while ( (*to++ = *from++) != NULLCH ) {

;

}

ldptr->ld_ilist = LF_INULL;

/* Case #2 - file is in directory (i.e., already exists) */

} else if (mbits & LF_MODE_N) { /* file must not exist */

signal(Lf_data.lf_mutex);

return SYSERR;

}

/* Initialize the local file pseudo-device */
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lfptr = &lfltab[lfnext];

lfptr->lfstate = LF_USED;

lfptr->lfdirptr = ldptr; /* point to directory entry */

lfptr->lfmode = mbits & LF_MODE_RW;

/* File starts at position 0 */

lfptr->lfpos = 0;

to = lfptr->lfname;

from = name;

while ( (*to = *from++) != NULLCH ) {

;

}

/* Neither index block nor data block are initially valid */

lfptr->lfinum = LF_INULL;

lfptr->lfdnum = LF_DNULL;

/* Initialize byte pointer to address beyond the end of the */

/* buffer (i.e., invalid pointer triggers setup) */

lfptr->lfbyte = &lfptr->lfdblock[LF_BLKSIZ];

lfptr->lfibdirty = FALSE;

lfptr->lfdbdirty = FALSE;

signal(Lf_data.lf_mutex);

return lfptr->lfdev;

}

After verifying that the length of the file name is valid, lfsOpen calls lfgetmode to
parse the mode argument and convert it to a set of bits. The mode argument consists of
a null-terminated string that contains zero or more of the characters from Figure 19.5.
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n File must be “new” (i.e., must not exist)�������������������������������������������������������

�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Figure 19.5  Characters permitted in a mode string and their meaning.

Characters in the mode string may not be repeated, and the combination of “o” and
“n” is considered illegal. Furthermore, if neither “r” nor “w” is present, lfgetmode al-
lows a default of both reading and writing. File lfgetmode.c contains the code.

/* lfgetmode.c - lfgetmode */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfgetmode - parse mode argument and generate integer of mode bits

*------------------------------------------------------------------------

*/

int32 lfgetmode (

char *mode /* string of mode characters */

)

{

int32 mbits; /* mode bits to return */

char ch; /* next char in mode string */

mbits = 0;

while ( (ch = *mode++) != NULLCH) {

switch (ch) {

case ’r’: if (mbits&LF_MODE_R) {

return SYSERR;

}

mbits |= LF_MODE_R;

continue;

case ’w’: if (mbits&LF_MODE_W) {

return SYSERR;
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}

mbits |= LF_MODE_W;

continue;

case ’o’: if (mbits&LF_MODE_O || mbits&LF_MODE_N) {

return SYSERR;

}

mbits |= LF_MODE_O;

break;

case ’n’: if (mbits&LF_MODE_O || mbits&LF_MODE_N) {

return SYSERR;

}

mbits |= LF_MODE_N;

break;

default: return SYSERR;

}

}

/* If neither read nor write specified, allow both */

if ( (mbits&LF_MODE_RW) == 0 ) {

mbits |= LF_MODE_RW;

}

return mbits;

}

Once the mode argument has been parsed, lfsOpen verifies that the file is not al-
ready open, verifies that a file pseudo-device is available, and searches the file system
directory to see if the file exists. If the file exists (and the mode allows opening an ex-
isting file), lfsOpen fills in the control block of a file pseudo-device. If the file does not
exist (and the mode allows creating a new file), lfsOpen allocates an entry in the file
system directory, and then fills in the control block of a file pseudo-device. The initial
file position is set to zero. Control block fields lfinum and lfdnum are set to the ap-
propriate null value to indicate that neither the index block nor the data block are
currently used. More important, field lfbyte is set to a value beyond the end of the data
block buffer. We will see that setting lfbyte is important because the code uses the fol-
lowing invariant when accessing data:

When lfbyte contains an address in lfdblock, the byte to which it
points contains the data that is in the file at the position given by
lfpos; when lfbyte contains an address beyond lfdblock, values in
lfdblock cannot be used.
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The details will become clear when we examine data transfer functions, such as lflGetc
and lflPutc.

19.14 Closing A File Pseudo-Device (lflClose)

When an application finishes using a file, the application calls close to terminate
use and make the pseudo-device available for other uses. In theory, closing a pseudo-
device is trivial: change the state to indicate that the device is no longer in use. In prac-
tice, however, caching complicates closing because the control block may contain data
that has not been written to the file. Thus, function lflClose must check bits in the con-
trol block that specify whether the index block or data block have been changed since
they were written to disk. If changes have occurred, lflClose calls function lfflush to
write the items to disk before it changes the state of the control block. File lflClose.c
contains the code.

/* lflClose.c - lflClose.c */

#include <xinu.h>

/*------------------------------------------------------------------------

* lflClose -- close a file by flushing output and freeing device entry

*------------------------------------------------------------------------

*/

devcall lflClose (

struct dentry *devptr /* entry in device switch table */

)

{

struct lflcblk *lfptr; /* ptr to open file table entry */

/* Obtain exclusive use of the file */

lfptr = &lfltab[devptr->dvminor];

wait(lfptr->lfmutex);

/* If file is not open, return an error */

if (lfptr->lfstate != LF_USED) {

signal(lfptr->lfmutex);

return SYSERR;

}

/* Write index or data blocks to disk if they have changed */
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if (lfptr->lfdbdirty || lfptr->lfibdirty) {

lfflush(lfptr);

}

/* Set device state to FREE and return to caller */

lfptr->lfstate = LF_FREE;

signal(lfptr->lfmutex);

return OK;

}

19.15 Flushing Data To Disk (lfflush)

Function lfflush operates as expected. It receives a pointer to the control block of
the pseudo-device as an argument, and uses the pointer to examine “dirty” bits in the
control block†. If the index block has changed, lfflush uses lfibput to write a copy to
disk; if the data block has changed, lfflush uses write to write a copy to disk. Fields lfi-
num and lfdnum contain the index block number and data block number to use. The
code can be found in file lfflush.c.

/* lfflush.c - lfflush */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfflush - flush data block and index blocks for an open file

* (assumes file mutex is held)

*------------------------------------------------------------------------

*/

status lfflush (

struct lflcblk *lfptr /* ptr to file pseudo device */

)

{

if (lfptr->lfstate == LF_FREE) {

return SYSERR;

}

/* Write data block if it has changed */

if (lfptr->lfdbdirty) {

write(Lf_data.lf_dskdev, lfptr->lfdblock, lfptr->lfdnum);

lfptr->lfdbdirty = FALSE;

}

��������������������������������
†The term dirty bit refers to a Boolean (i.e., a single bit) that is set to TRUE to indicate that data has

changed.
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/* Write i-block if it has changed */

if (lfptr->lfibdirty) {

lfibput(Lf_data.lf_dskdev, lfptr->lfinum, &lfptr->lfiblock);

lfptr->lfibdirty = FALSE;

}

return OK;

}

19.16 Bulk Transfer Functions For A File (lflWrite, lflRead)

Our implementation adopts a straightforward approach to writing and reading files:
a loop that uses the appropriate character transfer function. For example, function
lflWrite, which implements the write operation, calls lflPutc repeatedly. File lflWrite.c
contains the code.

/* lflWrite.c - lfWrite */

#include <xinu.h>

/*------------------------------------------------------------------------

* lflWrite -- write data to a previously opened local disk file

*------------------------------------------------------------------------

*/

devcall lflWrite (

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer holding data to write */

int32 count /* number of bytes to write */

)

{

int32 i; /* number of bytes written */

if (count < 0) {

return SYSERR;

}

for (i=0; i<count; i++) {

if (lflPutc(devptr, *buff++) == SYSERR) {

return SYSERR;

}

}

return count;

}
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Function lflRead implements the read operation. To satisfy a request, lflRead re-
peatedly calls lflGetc, receives a byte for each call, and places the byte in the next loca-
tion of the caller’s buffer. An interesting part of the code concerns how lflRead handles
an end-of-file condition. When it reaches the end of the file, lflGetc returns constant
EOF. If lflRead has already extracted one or more bytes of data from the file when it
receives an EOF from lflGetc, lflRead stops the loop, and returns a count of the bytes
that have been read. If no data has been found when an end-of-file is received, lflRead
returns constant EOF to its caller. File lflRead.c contains the code.

/* lflRead.c - lfRead */

#include <xinu.h>

/*------------------------------------------------------------------------

* lflRead -- read from a previously opened local file

*------------------------------------------------------------------------

*/

devcall lflRead (

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer to hold bytes */

int32 count /* max bytes to read */

)

{

uint32 numread; /* number of bytes read */

int32 nxtbyte; /* character or SYSERR/EOF */

if (count < 0) {

return SYSERR;

}

for (numread=0 ; numread < count ; numread++) {

nxtbyte = lflGetc(devptr);

if (nxtbyte == SYSERR) {

return SYSERR;

} else if (nxtbyte == EOF) { /* EOF before finished */

if (numread == 0) {

return EOF;

} else {

return numread;

}

} else {

*buff++ = (char) (0xff & nxtbyte);

}

}

www.itpub.net



Sec. 19.16 Bulk Transfer Functions For A File (lflWrite, lflRead) 439

return numread;

}

19.17 Seeking To A New Position In the File (lflSeek)

A process can call seek to change the current position in a file. Our system uses
function lflSeek to implement seek, and restricts the position to a valid point in the file
(i.e., it is unlike Unix, which allows an application to seek beyond the end of the file).

Seeking to a new position consists of changing field lfpos in the file control block
and setting field lfbyte to an address beyond lfdblock (which, according to the invariant
above, means that the pointer cannot be used to extract data until the index block and
data block are in place). File lflSeek.c contains the code.

/* lflSeek.c - lfSeek */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfseek - seek to a specified position in a file

*------------------------------------------------------------------------

*/

devcall lflSeek (

struct dentry *devptr, /* entry in device switch table */

uint32 offset /* byte position in the file */

)

{

struct lflcblk *lfptr; /* ptr to open file table entry */

/* If file is not open, return an error */

lfptr = &lfltab[devptr->dvminor];

wait(lfptr->lfmutex);

if (lfptr->lfstate != LF_USED) {

signal(lfptr->lfmutex);

return SYSERR;

}

/* Verify offset is within current file size */

if (offset > lfptr->lfdirptr->ld_size) {

signal(lfptr->lfmutex);

return SYSERR;

}
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/* Record new offset and invalidate byte pointer (i.e., */

/* force the index and data blocks to be replaced if */

/* an attempt is made to read or write) */

lfptr->lfpos = offset;

lfptr->lfbyte = &lfptr->lfdblock[LF_BLKSIZ];

signal(lfptr->lfmutex);

return OK;

}

19.18 Extracting One Byte From A File (lflGetc)

Once a file has been opened and both the correct index block and data block have
been loaded into memory, extracting a byte from the file is trivial: it consists of treating
lfbyte as a pointer to the byte, extracting the byte, and advancing the buffer pointer to
the next byte. Function lflGetc, which performs the operation, can be found in file
lflGetc.c.

/* lflGetc.c - lfGetc */

#include <xinu.h>

/*------------------------------------------------------------------------

* lflGetc -- Read the next byte from an open local file

*------------------------------------------------------------------------

*/

devcall lflGetc (

struct dentry *devptr /* entry in device switch table */

)

{

struct lflcblk *lfptr; /* ptr to open file table entry */

struct ldentry *ldptr; /* ptr to file’s entry in the */

/* in-memory directory */

int32 onebyte; /* next data byte in the file */

/* Obtain exclusive use of the file */

lfptr = &lfltab[devptr->dvminor];

wait(lfptr->lfmutex);
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/* If file is not open, return an error */

if (lfptr->lfstate != LF_USED) {

signal(lfptr->lfmutex);

return SYSERR;

}

/* Return EOF for any attempt to read beyond the end-of-file */

ldptr = lfptr->lfdirptr;

if (lfptr->lfpos >= ldptr->ld_size) {

signal(lfptr->lfmutex);

return EOF;

}

/* If byte pointer is beyond the current data block, */

/* set up a new data block */

if (lfptr->lfbyte >= &lfptr->lfdblock[LF_BLKSIZ]) {

lfsetup(lfptr);

}

/* Extract the next byte from block, update file position, and */

/* return the byte to the caller */

onebyte = 0xff & *lfptr->lfbyte++;

lfptr->lfpos++;

signal(lfptr->lfmutex);

return onebyte;

}

If the file is not open, lflGetc returns SYSERR. If the current file position exceeds
the file size, lflGetc returns EOF. In other cases, lflGetc checks pointer lfbyte to see
whether it currently points outside of the data block in lfdblock. If so, lflGetc calls
lfsetup to read the correct index block and data block into memory.

Once the data block is in memory, lflGetc can extract a byte. To do so, it derefer-
ences lfbyte to obtain a byte and places the byte in variable onebyte. It increments both
the byte pointer and the file position before returning the byte to the caller.
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19.19 Changing One Byte In A File (lflPutc)

Function lflPutc handles the task of storing a byte into a file at the current position.
As with lflGetc, the code that performs the transfer is trivial and only occupies a few
lines. Pointer lfbyte gives a location in lfdblock at which the byte should be stored; the
code uses the pointer, stores the specified byte, increments the pointer, and sets lfdbdirty
to indicate that the data block has been changed. Note that lflPutc merely accumulates
characters in a buffer in memory; it does not write the buffer to disk each time a change
occurs. The buffer will only be copied to disk when the current position moves to
another disk block.

Like lflGetc, lflPutc examines lfbyte on each call. If lfbyte lies outside of data
block lfdblock, lflPutc returns SYSERR. However, a subtle difference exists in the way
lflPutc and lflGetc treat an invalid file position. LflGetc always returns EOF if the file
position exceeds the last byte of the file. LflPutc returns SYSERR when the file position
is more than one byte beyond the end of the file, but if the position is exactly one byte
beyond the end, it allows the operation to proceed. That is, it allows a file to be extend-
ed. When a file is extended, the file size, found in the directory entry for the file, must
be incremented. File lflPutc.c contains the code.

/* lflPutc.c - lfPutc */

#include <xinu.h>

/*------------------------------------------------------------------------

* lflPutc - write a single byte to an open local file

*------------------------------------------------------------------------

*/

devcall lflPutc (

struct dentry *devptr, /* entry in device switch table */

char ch /* character (byte) to write */

)

{

struct lflcblk *lfptr; /* ptr to open file table entry */

struct ldentry *ldptr; /* ptr to file’s entry in the */

/* in-memory directory */

/* Obtain exclusive use of the file */

lfptr = &lfltab[devptr->dvminor];

wait(lfptr->lfmutex);

/* If file is not open, return an error */

if (lfptr->lfstate != LF_USED) {
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signal(lfptr->lfmutex);

return SYSERR;

}

/* Return SYSERR for an attempt to skip bytes beyond the */

/* current end of the file */

ldptr = lfptr->lfdirptr;

if (lfptr->lfpos > ldptr->ld_size) {

signal(lfptr->lfmutex);

return SYSERR;

}

/* If pointer is outside current block, set up new block */

if (lfptr->lfbyte >= &lfptr->lfdblock[LF_BLKSIZ]) {

/* Set up block for current file position */

lfsetup(lfptr);

}

/* If appending a byte to the file, increment the file size. */

/* Note: comparison might be equal, but should not be greater. */

if (lfptr->lfpos >= ldptr->ld_size) {

ldptr->ld_size++;

}

/* Place byte in buffer and mark buffer "dirty" */

*lfptr->lfbyte++ = ch;

lfptr->lfpos++;

lfptr->lfdbdirty = TRUE;

signal(lfptr->lfmutex);

return OK;

}

19.20 Loading An Index Block And A Data Block (lfsetup)

Once a file position has been assigned to field lfpos, function lfsetup loads a copy
of the index block and data block associated with the position from the disk. Lfsetup
begins by obtaining pointers to data structures. If the existing index or data blocks have
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changed, lfsetup calls lfflush to write them to disk. It then examines the index block in
the file control block.

The first step in loading data for the current file position consists of loading an in-
dex block that either precedes or coincides with the current position. There are two
cases. If no index block has been loaded (i.e., the file was just opened), lfsetup obtains
one. For a new file, lfsetup must allocate an initial index block from the free list; for an
existing file, it loads the first index block for the file. If an index block has already
been loaded, lfsetup must handle the case where the block corresponds to a portion of
the file that lies after the current file position (e.g., a process has issued a seek to an ear-
lier position). To handle the case, lfsetup replaces the index block with the initial index
block for the file.

Once it has loaded an index block, lfsetup enters a loop that moves along the
linked list of index blocks until it reaches the index block that covers the current file
position. At each iteration, lfsetup uses field ib_next to find the number of the next in-
dex block on the list, and then calls lfibget to read the index block into memory.

Once the correct index block has been loaded, lfsetup must determine the data
block to load. To do so, it uses the file position to compute an index (from 0 through
15) for the data block array. Because each index block covers exactly 8K bytes (i.e., 213

bytes) of data and each slot in the array corresponds to a block of 512 bytes (29), binary
arithmetic can be used. Lfsetup computes the logical and of the LF_IMASK (the low-
order 13 bits) and then shifts the result right 9 bits.

Lfsetup uses the result of the above computation as an index into array ib_dba to
obtain the ID of a data block. There are two cases that require lfsetup to load a new
data block. In the first case, the pointer in the array is null, which means lflPutc is
about to write a new byte on the end of the file and no data block has been assigned for
the position. Lfsetup calls lfdballoc to allocate a new data block from the free list, and
records the ID in the entry of array ib_dba. In the second case, the entry in array
ib_dba specifies a data block other than the data block currently loaded. Lfsetup calls
read to fetch the correct data block from disk.

As the final step before returning, lfsetup uses the file position to compute a posi-
tion within the data block, and assigns the address to field lfbyte. The careful arrange-
ment of making the data block size a power of two means that the indices from 0
through 511 can be computed by selecting the low-order 9 bits of the file position. The
code uses a logical and with mask LF_DMASK. File lfsetup.c contains the code.

/* lfsetup.c - lfsetup */

#include <xinu.h>

/*------------------------------------------------------------------------

* lfsetup - set a file’s index block and data block for the current

* file position (assumes file mutex held)

*------------------------------------------------------------------------

*/
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status lfsetup (

struct lflcblk *lfptr /* ptr to slave file device */

)

{

dbid32 dnum; /* data block to fetch */

ibid32 ibnum; /* i-block number during search */

struct ldentry *ldptr; /* ptr to file entry in dir. */

struct lfiblk *ibptr; /* ptr to in-memory index block */

uint32 newoffset; /* computed data offset for */

/* next index block */

int32 dindex; /* index into array in an index */

/* block */

/* Obtain exclusive access to the directory */

wait(Lf_data.lf_mutex);

/* Get pointers to in-memory directory, file’s entry in the */

/* directory, and the in-memory index block */

ldptr = lfptr->lfdirptr;

ibptr = &lfptr->lfiblock;

/* If existing index block or data block changed, write to disk */

if (lfptr->lfibdirty || lfptr->lfdbdirty) {

lfflush(lfptr);

}

ibnum = lfptr->lfinum; /* get ID of curr. index block */

/* If there is no index block in memory (e.g., because the file */

/* was just opened), either load the first index block of */

/* the file or allocate a new first index block */

if (ibnum == LF_INULL) {

/* Check directory entry to see if index block exists */

ibnum = ldptr->ld_ilist;

if (ibnum == LF_INULL) { /* empty file - get new i-block*/

ibnum = lfiballoc();

lfibclear(ibptr, 0);

ldptr->ld_ilist = ibnum;

lfptr->lfibdirty = TRUE;
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} else { /* nonempty - read first i-block*/

lfibget(Lf_data.lf_dskdev, ibnum, ibptr);

}

lfptr->lfinum = ibnum;

/* Otherwise, if current file position has been moved to an */

/* offset before the current index block, start at the */

/* beginning of the index list for the file */

} else if (lfptr->lfpos < ibptr->ib_offset) {

/* Load initial index block for the file (we know that */

/* at least one index block exists) */

ibnum = ldptr->ld_ilist;

lfibget(Lf_data.lf_dskdev, ibnum, ibptr);

lfptr->lfinum = ibnum;

}

/* At this point, an index block is in memory, but may cover */

/* an offset less than the current file position. Loop until */

/* the index block covers the current file position. */

while ((lfptr->lfpos & ~LF_IMASK) > ibptr->ib_offset ) {

ibnum = ibptr->ib_next;

if (ibnum == LF_INULL) {

/* allocate new index block to extend file */

ibnum = lfiballoc();

ibptr->ib_next = ibnum;

lfibput(Lf_data.lf_dskdev, lfptr->lfinum, ibptr);

lfptr->lfinum = ibnum;

newoffset = ibptr->ib_offset + LF_IDATA;

lfibclear(ibptr, newoffset);

lfptr->lfibdirty = TRUE;

} else {

lfibget(Lf_data.lf_dskdev, ibnum, ibptr);

lfptr->lfinum = ibnum;

}

lfptr->lfdnum = LF_DNULL; /* Invalidate old data block */

}
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/* At this point, the index block in lfiblock covers the */

/* current file position (i.e., position lfptr->lfpos). The */

/* next step consists of loading the correct data block. */

dindex = (lfptr->lfpos & LF_IMASK) >> 9;

/* If data block index does not match current data block, read */

/* the correct data block from disk */

dnum = lfptr->lfiblock.ib_dba[dindex];

if (dnum == LF_DNULL) { /* allocate new data block */

dnum = lfdballoc((struct lfdbfree *)&lfptr->lfdblock);

lfptr->lfiblock.ib_dba[dindex] = dnum;

lfptr->lfibdirty = TRUE;

} else if ( dnum != lfptr->lfdnum) {

read(Lf_data.lf_dskdev, (char *)lfptr->lfdblock, dnum);

lfptr->lfdbdirty = FALSE;

}

lfptr->lfdnum = dnum;

/* Use current file offset to set the pointer to the next byte */

/* within the data block */

lfptr->lfbyte = &lfptr->lfdblock[lfptr->lfpos & LF_DMASK];

signal(Lf_data.lf_mutex);

return OK;

}

19.21 Master File System Device Initialization (lfsInit)

Initialization for the master file system device is straightforward. Function lfsInit
performs the task, which consists of recording the ID of the disk device, creating a
semaphore that provides mutual exclusion to the directory, clearing the in-memory
directory (merely to help with debugging), and setting a Boolean to indicate that the
directory has not been read into memory. Data for the master file system device is kept
in the global structure Lf_data. File lfsInit.c contains the code.
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/* lfsInit.c - lfsInit */

#include <xinu.h>

struct lfdata Lf_data;

/*------------------------------------------------------------------------

* lfsInit -- initialize the local file system master device

*------------------------------------------------------------------------

*/

devcall lfsInit (

struct dentry *devptr /* entry in device switch table */

)

{

/* Assign ID of disk device that will be used */

Lf_data.lf_dskdev = LF_DISK_DEV;

/* Create a mutual exclusion semaphore */

Lf_data.lf_mutex = semcreate(1);

/* Zero directory area (for debugging) */

memset((char *)&Lf_data.lf_dir, NULLCH, sizeof(struct lfdir));

/* Initialize directory to "not present" in memory */

Lf_data.lf_dirpresent = Lf_data.lf_dirdirty = FALSE;

return OK;

}

19.22 Pseudo-Device Initialization (lflInit)

When it opens a file, lfsOpen initializes many of the entries in the control block for
the file pseudo-device. However, some initialization is performed at system startup. To
indicate that the device is not in use, the state is assigned LF_FREE. A mutual exclu-
sion semaphore is created to guarantee that at most one operation will be in progress on
the file at a given time. Most other fields in the control block are initialized to zero
(they will not be used until a file is opened, but initializing to zero can make debugging
easier). File lflInit.c contains the code.
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/* lflInit.c - lflInit */

#include <xinu.h>

struct lflcblk lfltab[Nlfl]; /* control blocks */

/*------------------------------------------------------------------------

* lflInit - initialize control blocks for local file pseudo-devices

*------------------------------------------------------------------------

*/

devcall lflInit (

struct dentry *devptr /* Entry in device switch table */

)

{

struct lflcblk *lfptr; /* Ptr. to control block entry */

int32 i; /* Walks through name array */

lfptr = &lfltab[ devptr->dvminor ];

/* Initialize control block entry */

lfptr->lfstate = LF_FREE; /* Device is currently unused */

lfptr->lfdev = devptr->dvnum; /* Set device ID */

lfptr->lfmutex = semcreate(1);

lfptr->lfdirptr = (struct ldentry *) NULL;

lfptr->lfpos = 0;

for (i=0; i<LF_NAME_LEN; i++) {

lfptr->lfname[i] = NULLCH;

}

lfptr->lfinum = LF_INULL;

memset((char *) &lfptr->lfiblock, NULLCH, sizeof(struct lfiblk));

lfptr->lfdnum = 0;

memset((char *) &lfptr->lfdblock, NULLCH, LF_BLKSIZ);

lfptr->lfbyte = &lfptr->lfdblock[LF_BLKSIZ]; /* beyond lfdblock */

lfptr->lfibdirty = lfptr->lfdbdirty = FALSE;

return OK;

}

19.23 File Truncation (lftruncate)

We will use file truncation as a way to show how file data structures are deallocat-
ed. To truncate a file to zero length, each of the index blocks for the file must be
placed on the free list of index blocks. Before an index block can be released, however,
each of the data blocks to which the index block points must be placed on the free list
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of data blocks. Function lftruncate performs file truncation; file lftruncate.c contains
the code.

/* lftruncate.c - lftruncate */

#include <xinu.h>

/*------------------------------------------------------------------------

* lftruncate - truncate a file by freeing its index and data blocks

* (assumes directory mutex held)

*------------------------------------------------------------------------

*/

status lftruncate (

struct lflcblk *lfptr /* ptr to file’s cntl blk entry */

)

{

struct ldentry *ldptr; /* pointer to file’s dir. entry */

struct lfiblk iblock; /* buffer for one index block */

ibid32 ifree; /* start of index blk free list */

ibid32 firstib; /* first index blk of the file */

ibid32 nextib; /* walks down list of the */

/* file’s index blocks */

dbid32 nextdb; /* next data block to free */

int32 i; /* moves through data blocks in */

/* a given index block */

ldptr = lfptr->lfdirptr; /* Get pointer to dir. entry */

if (ldptr->ld_size == 0) { /* file is already empty */

return OK;

}

/* Clean up the open local file first */

if ( (lfptr->lfibdirty) || (lfptr->lfdbdirty) ) {

lfflush(lfptr);

}

lfptr->lfpos = 0;

lfptr->lfinum = LF_INULL;

lfptr->lfdnum = LF_DNULL;

lfptr->lfbyte = &lfptr->lfdblock[LF_BLKSIZ];

/* Obtain ID of first index block on free list */

ifree = Lf_data.lf_dir.lfd_ifree;
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/* Record file’s first i-block and clear directory entry */

firstib = ldptr->ld_ilist;

ldptr->ld_ilist = LF_INULL;

ldptr->ld_size = 0;

Lf_data.lf_dirdirty = TRUE;

/* Walk along index block list, disposing of each data block */

/* and clearing the corresponding pointer. A note on loop */

/* termination: last pointer is set to ifree below. */

for (nextib=firstib; nextib!=ifree; nextib=iblock.ib_next) {

/* Obtain a copy of current index block from disk */

lfibget(Lf_data.lf_dskdev, nextib, &iblock);

/* Free each data block in the index block */

for (i=0; i<LF_IBLEN; i++) { /* for each d-block */

/* Free the data block */

nextdb = iblock.ib_dba[i];

if (nextdb != LF_DNULL) {

lfdbfree(Lf_data.lf_dskdev, nextdb);

}

/* Clear entry in i-block for this d-block */

iblock.ib_dba[i] = LF_DNULL;

}

/* Clear offset (just to make debugging easier) */

iblock.ib_offset = 0;

/* For the last index block on the list, make it point */

/* to the current free list */

if (iblock.ib_next == LF_INULL) {

iblock.ib_next = ifree;

}

/* Write cleared i-block back to disk */
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lfibput(Lf_data.lf_dskdev, nextib, &iblock);

}

/* Last index block on the file list now points to first node */

/* on the current free list. Once we make the free list */

/* point to the first index block on the file list, the */

/* entire set of index blocks will be on the free list */

Lf_data.lf_dir.lfd_ifree = firstib;

/* Indicate that directory has changed and return */

Lf_data.lf_dirdirty = TRUE;

return OK;

}

The approach used is straightforward: if the file already has length zero, return to
the caller. Otherwise, walk along the file’s index block list. Read each index block
into memory, and call lfdbfree to free each data block to which the index block points.

Once the final index block has been reached, add all the index blocks for the file to
the free list. To do so, observe that all index blocks for the file are already linked.
Thus, only two pointer changes are needed. First, change the next pointer in the final
index block of the file to point to the current free list. Second, change the free list to
point to the first index block of the file.

19.24 Initial File System Creation (lfscreate)

A final initialization function will complete details of the file system. Function
lfscreate creates an initial, empty file system on a disk. That is, it forms a free list of
index blocks, a free list of data blocks, and a directory that contains no files. File
lfscreate.c contains the code.

/* lfscreate.c - lfscreate */

#include <xinu.h>

#include <ramdisk.h>

/*------------------------------------------------------------------------

* lfscreate -- Create an initially-empty file system on a disk

*------------------------------------------------------------------------

*/
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status lfscreate (

did32 disk, /* ID of an open disk device */

ibid32 lfiblks, /* num. of index blocks on disk */

uint32 dsiz /* total size of disk in bytes */

)

{

uint32 sectors; /* number of sectors to use */

uint32 ibsectors; /* number of sectors of i-blocks*/

uint32 ibpersector; /* number of i-blocks per sector*/

struct lfdir dir; /* Buffer to hold the directory */

uint32 dblks; /* total free data blocks */

struct lfiblk iblock; /* space for one i-block */

struct lfdbfree dblock; /* data block on the free list */

dbid32 dbindex; /* index for data blocks */

int32 retval; /* return value from func call */

int32 i; /* loop index */

/* Compute total sectors on disk */

sectors = dsiz / LF_BLKSIZ; /* truncate to full sector */

/* Compute number of sectors comprising i-blocks */

ibpersector = LF_BLKSIZ / sizeof(struct lfiblk);

ibsectors = (lfiblks+(ibpersector-1)) / ibpersector; /* round up*/

lfiblks = ibsectors * ibpersector;

if (ibsectors > sectors/2) { /* invalid arguments */

return SYSERR;

}

/* Create an initial directory */

memset((char *)&dir, NULLCH, sizeof(struct lfdir));

dir.lfd_nfiles = 0;

dbindex= (dbid32)(ibsectors + 1);

dir.lfd_dfree = dbindex;

dblks = sectors - ibsectors - 1;

retval = write(disk,(char *)&dir, LF_AREA_DIR);

if (retval == SYSERR) {

return SYSERR;

}

/* Create list of free i-blocks on disk */

lfibclear(&iblock, 0);
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for (i=0; i<lfiblks-1; i++) {

iblock.ib_next = (ibid32)(i + 1);

lfibput(disk, i, &iblock);

}

iblock.ib_next = LF_INULL;

lfibput(disk, i, &iblock);

/* Create list of free data blocks on disk */

memset((char*)&dblock, NULLCH, LF_BLKSIZ);

for (i=0; i<dblks-1; i++) {

dblock.lf_nextdb = dbindex + 1;

write(disk, (char *)&dblock, dbindex);

dbindex++;

}

dblock.lf_nextdb = LF_DNULL;

write(disk, (char *)&dblock, dbindex);

close(disk);

return OK;

}

19.25 Perspective

File systems are among the most complex pieces of an operating system. Our im-
plementation avoids one of the most challenging problems, sharing, by imposing a res-
triction: a file can only be opened once at a given time. If the restriction is relaxed, a
file system must coordinate operations among multiple file descriptors that can refer to
the same file. Sharing raises the question of semantics: how should overlapping write
operations be interpreted? In particular, if a process attempts to write bytes 0 through N
of a file and another process simultaneously attempts to write bytes 2 through N-1 of
the same file, what should happen? Should the file system guarantee that one of the
two operations occurs first? Should the file system allow bytes to be intermingled?
How should the file system manage a shared cache to make operations efficient?

A second form of complexity arises from the implementation. All operations on
files must be translated into operations on disk blocks. As a result, basic data struc-
tures, such as linked lists, can be complex to manipulate. Interestingly, much of the
complexity arises when disk blocks are shared. For example, because a given disk
block can hold index blocks from multiple files, two processes may need to access the
same disk block simultaneously. Most file systems arrange to cache disk blocks, mak-
ing such access efficient.

A final form of complexity arises from the need for safety and recovery. Users as-
sume that once data has been written to a file, the data is “safe” even if the power fails.
However, a file system cannot afford to write to disk each time an application stores a
byte in a file. Thus, one of the grand challenges of file system design arises from the
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tradeoff between efficiency and safety — a designer looks for ways to minimize the risk
of losing data while also looking for ways to maximize efficiency.

19.26 Summary

A file system manages objects on nonvolatile storage. To insure the interface to
files is the same as the interface to devices, our example system is organized into a
master file system device and a set of file pseudo-devices. To access a file, a process
opens the master device; the call returns the descriptor of a pseudo-device for the file.
Once a file has been opened, functions read, write, getc, putc, seek and close can be
used on the file.

Our design allows files to grow dynamically; the data structures for a file consist
of a directory entry and a linked list of index blocks that each point to a set of data
blocks. When a file is used, the driver software loads an index block and data block
into memory. Subsequent accesses or changes to a file affect the data block in memory.
When the file position moves outside the current block, the file system writes the data
block back to disk and allocates another data block. Similarly, when the file position
moves outside the data covered by the current index block, the system writes the current
index block to disk and allocates a new index block.

EXERCISES

19.1 Redesign routines lflRead and lflWrite to perform high-speed copies (i.e., copy bytes
from or to the current data block without making repeated calls to lflGetc or lflPutc.
Redesign the system to permit multiple processes to open the same file simultaneously.
Coordinate all writes to insure that a given byte in the file always contains the data writ-
ten last.

19.2 Free data blocks are chained together on a singly-linked list. Redesign the system to
place them in a file (i.e., reserve index block 0 to be an unnamed “file” in which index
blocks point to free data blocks). Compare the performance of the new and original
designs.

19.3 What are the maximum number of disk accesses necessary to allocate and free a data
block under the original design and the new design in the previous exercise?

19.4 The number of index blocks is important because having too many wastes space that
could be used for data, while having too few means data blocks will be wasted because
there are insufficient index blocks to use them. Given that there are 16 data block
pointers in an index block and 7 index blocks fill a disk block, how many index blocks
might be needed for a disk of n total blocks if the directory can hold k files?

19.5 Current index block IDs are 32 bits long. Redesign the system to use 16-bit index block
IDs. What are the tradeoffs of the two approaches?
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19.6 Redesign the system so it closes all files that have been opened by a process when the
process terminates.

19.7 Change the system to have a file switch table separate from the device switch table.
What are the advantages and disadvantages of each approach?

19.8 After changing the free list, function lfiballoc writes a copy of the directory to disk. As
an alternative, lfiballoc could mark the directory “dirty” and defer the write operation
until later. Discuss the advantages and disadvantages of each approach.

19.9 Consider two processes attempting to write to a single file. Suppose one process repeat-
edly writes 20 bytes of character A and the other process repeatedly writes 20 bytes of
character B. Describe the order in which characters might appear in the file.

19.10 Create a control function for the file pseudo-device driver that allows a caller to invoke
lftruncate.

19.11 Create a control function for the master file system device that allows a caller to invoke
lfscreate.
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A Remote File Mechanism

Networking makes the far-away the here-and-now.

— Unknown

20.1 Introduction

Chapter 16 discusses a network interface and a device driver that uses the hardware
interface to send and receive packets. Chapter 18 considers disk hardware and the
block transfer paradigm. Chapter 19 explains how a file system creates high-level
abstractions, including dynamic files, and shows how files can be mapped onto a disk.

This chapter expands the discussion of file systems by considering an alternative
that uses a remote file server. That is, instead of implementing the file abstraction
directly on hardware, the operating system relies on a separate computer called a server.
When an application requests a file operation, the operating system sends a request to
the server and receives a response. The next chapter extends the discussion by showing
how a remote and local file system can be integrated.

20.2 Remote File Access

A remote file access mechanism requires four conceptual pieces. First, an operat-
ing system must contain a device driver for a network device (such as an Ethernet).
Second, the operating system must also contain protocol software (such as UDP and IP)
that handles addressing so the packets can reach the remote server and replies can re-
turn. Third, the operating system must have remote file access software that becomes a
client (i.e., forms a request, uses the network to send the request to the server and re-
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ceive a response, and interprets the response). Whenever a process invokes an I/O
operation on a remote file (e.g., read or write), the remote file access software forms a
message that specifies the operation, sends the request to the remote file server, and
processes the response. Fourth, a computer on the network must be running a remote
file server application that honors each request.

In practice, many questions arise about the design of a remote file access mecha-
nism. What services should a remote file server provide? Should the service permit a
client to create hierarchical directories, or should the server only permit a client to
create data files? Should the mechanism allow a client to remove files? If two or more
clients send requests to a given server, should the files be shared or should each client
have its own files? Should a file be cached in the memory of the client machine? For
example, when a process reads a byte from a remote file, should the client software re-
quest one-thousand bytes and hold the extra bytes in a cache to avoid sending requests
to the remote server for successive bytes?

20.3 Remote File Semantics

One of the primary design considerations surrounding remote file systems arises
from heterogeneity: the operating system on the client and server machines may differ.
As a result, the file operations available to the remote server may differ from the file
operations used on the client machine. For example, because the remote file server
used with Xinu runs on a Unix system (e.g., Linux or Solaris), the server supplies func-
tionality from the Unix file system.

Most of the Xinu file operations map directly to Unix file operations. For exam-
ple, Xinu uses the same semantics for read as Unix — a request specifies a buffer size
and read specifies the number of data bytes that were placed in the buffer. Similarly, a
Xinu write operation follows the same semantics as a Unix write.

However, Xinu semantics do differ from Unix semantics in many ways. Each
Unix file has an owner that is identified by a Unix userid; Xinu does not have userids,
and even if it did, they would not align with the userids used by the server. Even small
details differ. For example, the mode argument used with a Xinu open operation allows
a caller to specify that the file must be new (i.e., must not exist) or that the file must be
old (i.e., must exist). Unix allows a file to be created, but does not test whether the file
already exists. Instead, if the file exists, Unix truncates the file to zero bytes. Thus, to
implement the Xinu new mode, a remote server running on a Unix system must first test
whether the file exists and return an error indication if it does.

20.4 Remote File Design And Messages

Our example remote file system provides basic functionality: a Xinu process can
create a file, write data to the file, seek to an arbitrary position in the file, read data
from the file, truncate a file, and delete a file. In addition, the remote file system allows
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a Xinu process to create or remove directories. For each operation, the system defines a
request message (sent from a Xinu client to the remote file server) and a response mes-
sage (sent from the server back to the Xinu client). Each message begins with a com-
mon header that specifies the type of the operation, a status value (used in responses to
report errors), a sequence number, and the name of a file. Each outgoing request is as-
signed a unique sequence number, and the remote file software checks a reply to insure
that an incoming reply matches the outgoing request. Our implementation defines a
structure for each message type. To avoid nested structure declarations, the code uses a
preprocessor definition, RF_MSG_HDR, for the header fields, and then includes the
header in each struct. File rfilesys.h contains the code.

/* rfilesys.h - definitions for remote file system pseudo-devices */

#ifndef Nrfl

#define Nrfl 10

#endif

/* Control block for a remote file pseudo-device */

#define RF_NAMLEN 128 /* Maximum length of file name */

#define RF_DATALEN 1024 /* Maximum data in read or write*/

#define RF_MODE_R F_MODE_R /* Bit to grant read access */

#define RF_MODE_W F_MODE_W /* Bit to grant write access */

#define RF_MODE_RW F_MODE_RW /* Mask for read and write bits */

#define RF_MODE_N F_MODE_N /* Bit for "new" mode */

#define RF_MODE_O F_MODE_O /* Bit for "old" mode */

#define RF_MODE_NO F_MODE_NO /* Mask for "n" and "o" bits */

/* Global data for the remote server */

#ifndef RF_SERVER_IP

#define RF_SERVER_IP "255.255.255.255"

#endif

#ifndef RF_SERVER_PORT

#define RF_SERVER_PORT 33123

#endif

#ifndef RF_LOC_PORT

#define RF_LOC_PORT 33123

#endif

struct rfdata {

int32 rf_seq; /* next sequence number to use */

uint32 rf_ser_ip; /* server IP address */
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uint16 rf_ser_port; /* server UDP port */

uint16 rf_loc_port; /* local (client) UPD port */

sid32 rf_mutex; /* mutual exclusion for access */

bool8 rf_registered; /* has UDP port been registered?*/

};

extern struct rfdata Rf_data;

/* Definition of the control block for a remote file pseudo-device */

#define RF_FREE 0 /* Entry is currently unused */

#define RF_USED 1 /* Entry is currently in use */

struct rflcblk {

int32 rfstate; /* entry is free or used */

int32 rfdev; /* device number of this dev. */

char rfname[RF_NAMLEN]; /* Name of the file */

uint32 rfpos; /* current file position */

uint32 rfmode; /* mode: read access, write */

/* access or both */

};

extern struct rflcblk rfltab[]; /* remote file control blocks */

/* Definitions of parameters used when accessing a remote server */

#define RF_RETRIES 3 /* time to retry sending a msg */

#define RF_TIMEOUT 1000 /* wait one second for a reply */

/* Control functions for a remote file pseudo device */

#define RFS_CTL_DEL F_CTL_DEL /* Delete a file */

#define RFS_CTL_TRUNC F_CTL_TRUNC /* Truncate a file */

#define RFS_CTL_MKDIR F_CTL_MKDIR /* make a directory */

#define RFS_CTL_RMDIR F_CTL_RMDIR /* remove a directory */

#define RFS_CTL_SIZE F_CTL_SIZE /* Obtain the size of a file */

/************************************************************************/

/* */

/* Definition of messages exchanged with the remote server */

/* */

/************************************************************************/

/* Values for the type field in messages */
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#define RF_MSG_RESPONSE 0x0100 /* Bit that indicates response */

#define RF_MSG_RREQ 0x0001 /* Read Request and response */

#define RF_MSG_RRES (RF_MSG_RREQ | RF_MSG_RESPONSE)

#define RF_MSG_WREQ 0x0002 /* Write Request and response */

#define RF_MSG_WRES (RF_MSG_WREQ | RF_MSG_RESPONSE)

#define RF_MSG_OREQ 0x0003 /* Open request and response */

#define RF_MSG_ORES (RF_MSG_OREQ | RF_MSG_RESPONSE)

#define RF_MSG_DREQ 0x0004 /* Delete request and response */

#define RF_MSG_DRES (RF_MSG_DREQ | RF_MSG_RESPONSE)

#define RF_MSG_TREQ 0x0005 /* Truncate request & response */

#define RF_MSG_TRES (RF_MSG_TREQ | RF_MSG_RESPONSE)

#define RF_MSG_SREQ 0x0006 /* Size request and response */

#define RF_MSG_SRES (RF_MSG_SREQ | RF_MSG_RESPONSE)

#define RF_MSG_MREQ 0x0007 /* Mkdir request and response */

#define RF_MSG_MRES (RF_MSG_MREQ | RF_MSG_RESPONSE)

#define RF_MSG_XREQ 0x0008 /* Rmdir request and response */

#define RF_MSG_XRES (RF_MSG_XREQ | RF_MSG_RESPONSE)

#define RF_MIN_REQ RF_MSG_RREQ /* Minimum request type */

#define RF_MAX_REQ RF_MSG_XREQ /* Maximum request type */

/* Message header fields present in each message */

#define RF_MSG_HDR /* Common message fields */\

uint16 rf_type; /* message type */\

uint16 rf_status; /* 0 in req, status in response */\

uint32 rf_seq; /* message sequence number */\

char rf_name[RF_NAMLEN]; /* null-terminated file name */

/* The standard header present in all messages with no extra fields */

/************************************************************************/

/* */

/* Header */

/* */

/************************************************************************/
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#pragma pack(2)

struct rf_msg_hdr { /* header fields present in each*/

RF_MSG_HDR /* remote file system message */

};

#pragma pack()

/************************************************************************/

/* */

/* Read */

/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_rreq { /* remote file read request */

RF_MSG_HDR /* header fields */

uint32 rf_pos; /* position in file to read */

uint32 rf_len; /* number of bytes to read */

/* (between 1 and 1024) */

};

#pragma pack()

#pragma pack(2)

struct rf_msg_rres { /* remote file read reply */

RF_MSG_HDR /* header fields */

uint32 rf_pos; /* position in file */

uint32 rf_len; /* number of bytes that follow */

/* (0 for EOF) */

char rf_data[RF_DATALEN]; /* array containing data from */

/* the file */

};

#pragma pack()

/************************************************************************/

/* */

/* Write */

/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_wreq { /* remote file write request */

RF_MSG_HDR /* header fields */

uint32 rf_pos; /* position in file */

uint32 rf_len; /* number of valid bytes in */

/* array that follows */

char rf_data[RF_DATALEN]; /* array containing data to be */
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/* written to the file */

};

#pragma pack()

#pragma pack(2)

struct rf_msg_wres { /* remote file write response */

RF_MSG_HDR /* header fields */

uint32 rf_pos; /* original position in file */

uint32 rf_len; /* number of bytes written */

};

#pragma pack()

/************************************************************************/

/* */

/* Open */

/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_oreq { /* remote file open request */

RF_MSG_HDR /* header fields */

int32 rf_mode; /* Xinu mode bits */

};

#pragma pack()

#pragma pack(2)

struct rf_msg_ores { /* remote file open response */

RF_MSG_HDR /* header fields */

int32 rf_mode; /* Xinu mode bits */

};

#pragma pack()

/************************************************************************/

/* */

/* Size */

/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_sreq { /* remote file size request */

RF_MSG_HDR /* header fields */

};

#pragma pack()

#pragma pack(2)
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struct rf_msg_sres { /* remote file status response */

RF_MSG_HDR /* header fields */

uint32 rf_size; /* size of file in bytes */

};

#pragma pack()

/************************************************************************/

/* */

/* Delete */

/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_dreq { /* remote file delete request */

RF_MSG_HDR /* header fields */

};

#pragma pack()

#pragma pack(2)

struct rf_msg_dres { /* remote file delete response */

RF_MSG_HDR /* header fields */

};

#pragma pack()

/************************************************************************/

/* */

/* Truncate */

/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_treq { /* remote file truncate request */

RF_MSG_HDR /* header fields */

};

#pragma pack()

#pragma pack(2)

struct rf_msg_tres { /* remote file truncate response*/

RF_MSG_HDR /* header fields */

};

#pragma pack()

/************************************************************************/

/* */

/* Mkdir */
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/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_mreq { /* remote file mkdir request */

RF_MSG_HDR /* header fields */

};

#pragma pack()

#pragma pack(2)

struct rf_msg_mres { /* remote file mkdir response */

RF_MSG_HDR /* header fields */

};

#pragma pack()

/************************************************************************/

/* */

/* Rmdir */

/* */

/************************************************************************/

#pragma pack(2)

struct rf_msg_xreq { /* remote file rmdir request */

RF_MSG_HDR /* header fields */

};

#pragma pack()

#pragma pack(2)

struct rf_msg_xres { /* remote file rmdir response */

RF_MSG_HDR /* header fields */

};

#pragma pack()

In the file, constants that begin RF_MSG_ define a unique type value for each mes-
sage. For example, RF_MSG_RREQ defines the type value used in a read request mes-
sage, and RF_MSG_RRES defines the type value used in a read response message. The
implementation uses a trick to improve efficiency: rather than define arbitrary integers,
the type of a response is formed by a logical or of the request type and constant
RF_MSG_RESPONSE, which is defined to be 0x0100. That is, a response has the same
type value as a request except that the low-order bit of the second byte is turned on.

The size of a message depends on the type. Many of the messages only need
fields in the common header. For example, a file deletion request only requires a type
(to indicate that it is a deletion request), a file name, and a sequence number. Thus, the
struct that defines a deletion request, rf_msg_dreq, only contains header fields. How-
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ever, a write request message must include a file offset, the number of data bytes in the
request, and the data to be written. Consequently, the struct that defines a write request
message, rf_msg_wreq, includes three additional fields beyond the common header.

20.5 Remote File Server Communication

Our remote file system software follows a principle that works well in many cases:
the functionality is separated into two levels of software. A lower level handles details
of communication with the remote server — it sends a message, waits for a response,
and handles retransmission, if necessary. An upper level handles message semantics —
it forms a message, passes the message to the lower level for transmission, receives a
response, and interprets the response. The important idea is that because it only handles
transmission and reception, the lower level does not need to understand or interpret the
contents of a message. Consequently, a single function provides all lower-level func-
tionality.

Examining the code will clarify the idea. Function rfscomm performs the action of
sending a message to the remote file server and receiving a response. File rfscomm.c
contains the code:

/* rfscomm.c - rfscomm */

#include <xinu.h>

/*------------------------------------------------------------------------

* rfscomm - handle communication with RFS server (send request and

* receive a reply, including sequencing and retries)

*------------------------------------------------------------------------

*/

int32 rfscomm (

struct rf_msg_hdr *msg, /* message to send */

int32 mlen, /* message length */

struct rf_msg_hdr *reply, /* buffer for reply */

int32 rlen /* size of reply buffer */

)

{

int32 i; /* counts retries */

int32 retval; /* return value */

int32 seq; /* sequence for this exchange */

int16 rtype; /* reply type in host byte order*/

/* For the first time after reboot, register the server port */

if ( ! Rf_data.rf_registered ) {
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retval = udp_register(0, Rf_data.rf_ser_port,

Rf_data.rf_loc_port);

Rf_data.rf_registered = TRUE;

}

/* Assign message next sequence number */

seq = Rf_data.rf_seq++;

msg->rf_seq = htonl(seq);

/* Repeat RF_RETRIES times: send message and receive reply */

for (i=0; i<RF_RETRIES; i++) {

/* Send a copy of the message */

retval = udp_send(Rf_data.rf_ser_ip, Rf_data.rf_ser_port,

NetData.ipaddr, Rf_data.rf_loc_port, (char *)msg,

mlen);

if (retval == SYSERR) {

kprintf("Cannot send to remote file server\n\r");

return SYSERR;

}

/* Receive a reply */

retval = udp_recv(0, Rf_data.rf_ser_port,

Rf_data.rf_loc_port, (char *)reply, rlen,

RF_TIMEOUT);

if (retval == TIMEOUT) {

continue;

} else if (retval == SYSERR) {

kprintf("Error reading remote file reply\n\r");

return SYSERR;

}

/* Verify that sequence in reply matches request */

if (ntohl(reply->rf_seq) != seq) {

continue;

}

/* Verify the type in the reply matches the request */
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rtype = ntohs(reply->rf_type);

if (rtype != ( ntohs(msg->rf_type) | RF_MSG_RESPONSE) ) {

continue;

}

return retval; /* return length to caller */

}

/* Retries exhausted without success */

kprintf("Timeout on exchange with remote file server\n\r");

return TIMEOUT;

}

The four arguments specify the address of a message that should be sent to the
server, the length of the message, the address of a buffer that will hold a response mes-
sage, and the length of the buffer. After assigning a unique sequence number to the
message, rfscomm enters a loop that iterates RF_RETRIES times. On each iteration,
rfscomm uses function udp_send to send a copy of the request message over the net-
work† and function udp_recv to receive a response.

Udp_recv allows a caller to specify a maximum time to wait for a response;
rfscomm specifies RF_TIMEOUT.‡ If no message arrives within the specified time,
udp_recv returns the value TIMEOUT, and the loop continues by transmitting another
copy of the request. If no response arrives after RF_RETRIES attempts, rfscomm re-
turns TIMEOUT to its caller.

If a response does arrive, rfscomm verifies that the sequence number matches the
sequence number in the outgoing request and the message type in the incoming message
is the response for the outgoing request. If either test fails, the server formed the mes-
sage incorrectly or the message was intended for another client on the network. In ei-
ther case, rfscomm continues the loop, sending another copy of the request and waiting
for a response to arrive. If the two tests succeed, the incoming message is a valid
response, and rfscomm returns the length of the response to its caller.

20.6 Sending A Basic Message

To understand how rfscomm functions, consider a message that only requires the
common header fields. For example, the request and response messages used for a
truncate operation consist of a message header. Because multiple message types only
have the common header fields, function rfsndmsg has been created to send such a mes-
sage. File rfsndmsg.c contains the code.

��������������������������������
†We say that rfscomm sends a copy of the message because the original message remains unchanged.
‡RF_TIMEOUT is defined to be 1000 milliseconds (i.e., one second), which is ample time for a client to

transmit a message across a network to a server and a server to send a response back to the client.
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/* rfsndmsg.c - rfsndmsg */

#include <xinu.h>

/*------------------------------------------------------------------------

* rfsndmsg - Create and send a message that only has header fields

*------------------------------------------------------------------------

*/

status rfsndmsg (

uint16 type, /* message type */

char *name /* null-terminated file name */

)

{

struct rf_msg_hdr req; /* request message to send */

struct rf_msg_hdr resp; /* buffer for response */

int32 retval; /* return value */

char *to; /* used during name copy */

/* Form a request */

req.rf_type = htons(type);

req.rf_status = htons(0);

req.rf_seq = 0; /* rfscomm will set sequence */

to = req.rf_name;

while ( (*to++ = *name++) ) { /* copy name to request */

;

}

/* Send message and receive response */

retval = rfscomm(&req, sizeof(struct rf_msg_hdr),

&resp, sizeof(struct rf_msg_hdr) );

/* Check response */

if (retval == SYSERR) {

return SYSERR;

} else if (retval == TIMEOUT) {

kprintf("Timeout during remote file server access\n\r");

return SYSERR;

} else if (ntohl(resp.rf_status) != 0) {

return SYSERR;

}

return OK;

}
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Rfsndmsg takes two arguments that specify the type of the message to send and the
name of a file. To create a request message, the code assigns a value to each field of
variable req. It then calls rfscomm to transmit the message and receive a response. If
rfscomm reports an error or timeout or if the status in the response indicates an error,
rfsndmsg returns SYSERR to its caller. Otherwise, rfsndmsg returns OK.

20.7 Network Byte Order

Remote file access raises an important consideration: the format of integers (i.e.,
endianness) depends on the computer architecture. If one were to transfer an integer
from the memory of one computer directly to the memory on another, the numeric value
of the integer on the second computer may differ from the numeric value on the first.
To accommodate differences, software that sends data over a computer network follows
the convention of converting integers from the local byte order to a standard known as
network byte order, and software that receives data from a computer network converts
integers from network byte order to the local byte order. We can summarize:

To accommodate differences in endianness, an integer value sent from
one computer to another is converted to network byte order before
sending and converted to local byte order upon reception. In our
design, upper-level functions perform the conversion.

Xinu follows the Unix naming convention for byte-order transform functions.
Function htonl (htons) transforms an integer (a short integer) from local host byte order
to network byte order; function ntohl (ntohs) transforms an integer (a short integer)
from network byte order to local byte order. For example, function rfsndmsg uses htons
to convert the integers that specify the message type and status from local byte order to
network byte order.

20.8 A Remote File System Using A Device Paradigm

As we have seen, Xinu uses a device paradigm for both devices and files. The re-
mote file system follows the pattern. Figure 20.1 shows an excerpt from the Xinu Con-
figuration file that defines the type of a remote file system master device and a set of
remote file pseudo-devices.
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/* Remote File System master device type */

rfs:
on udp

-i rfsInit -o rfsOpen -c ioerr
-r ioerr -g ioerr -p ioerr
-w ioerr -s ioerr -n rfsControl
-intr NULL

/* Remote file pseudo-device type */

rfl:
on rfs

-i rflInit -o ioerr -c rflClose
-r rflRead -g rflGetc -p rflPutc
-w rflWrite -s rflSeek -n ioerr
-intr NULL

Figure 20.1 Excerpt from a Xinu Configuration file that defines the two de-
vice types used by the remote file system.

Figure 20.2 contains an excerpt from the Configuration file that defines a remote
file system master device (RFILESYS) and a set of six remote file pseudo-devices
(RFILE0 through RFILE5).

/* Remote file system master device (one per system) */

RFILESYS is rfs on udp

/* Remote file pseudo-devices (many instances per system) */

RFILE0 is rfl on rfs
RFILE1 is rfl on rfs
RFILE2 is rfl on rfs
RFILE3 is rfl on rfs
RFILE4 is rfl on rfs
RFILE5 is rfl on rfs

Figure 20.2 Excerpt from a Xinu Configuration file that defines devices used
by the remote file system.
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When an application calls open on the remote file system master device, the call
allocates one of the remote file pseudo-devices and returns the device ID of the allocat-
ed pseudo-device. The application uses the device ID in calls to read and write, and
eventually calls close to deallocate the pseudo-device. The next sections define the de-
vice driver functions used for both the remote file system master device and the remote
file pseudo-devices.

20.9 Opening A Remote File

To open a remote file, a program calls open on device RFILESYS, supplying a file
name and mode argument. Open invokes function rfsOpen, which forms a request and
uses rfscomm to communicate with the remote file server. If it succeeds, the call to
open returns the descriptor of a remote file pseudo-device that is associated with the
open file (i.e., can be used to write data into the file or read data from the file). File
rfsOpen.c contains the code:

/* rfsOpen.c - rfsOpen */

#include <xinu.h>

/*------------------------------------------------------------------------

* rfsOpen - allocate a remote file pseudo-device for a specific file

*------------------------------------------------------------------------

*/

devcall rfsOpen (

struct dentry *devptr, /* entry in device switch table */

char *name, /* file name to use */

char *mode /* mode chars: ’r’ ’w’ ’o’ ’n’ */

)

{

struct rflcblk *rfptr; /* ptr to control block entry */

struct rf_msg_oreq msg; /* message to be sent */

struct rf_msg_ores resp; /* buffer to hold response */

int32 retval; /* return value from rfscomm */

int32 len; /* counts chars in name */

char *nptr; /* pointer into name string */

char *fptr; /* pointer into file name */

int32 i; /* general loop index */

/* Wait for exclusive access */

wait(Rf_data.rf_mutex);
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/* Search control block array to find a free entry */

for(i=0; i<Nrfl; i++) {

rfptr = &rfltab[i];

if (rfptr->rfstate == RF_FREE) {

break;

}

}

if (i >= Nrfl) { /* No free table slots remain */

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Copy name into free table slot */

nptr = name;

fptr = rfptr->rfname;

len = 0;

while ( (*fptr++ = *nptr++) != NULLCH) {

len++;

if (len >= RF_NAMLEN) { /* File name is too long */

signal(Rf_data.rf_mutex);

return SYSERR;

}

}

/* Verify that name is non-null */

if (len==0) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Parse mode string */

if ( (rfptr->rfmode = rfsgetmode(mode)) == SYSERR ) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Form an open request to create a new file or open an old one */

msg.rf_type = htons(RF_MSG_OREQ);/* Request a file open */

msg.rf_status = htons(0);

msg.rf_seq = 0; /* rfscomm fills in seq. number */
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nptr = msg.rf_name;

memset(nptr, NULLCH, RF_NAMLEN);/* initialize name to zero bytes*/

while ( (*nptr++ = *name++) != NULLCH ) { /* copy name to req. */

;

}

msg.rf_mode = htonl(rfptr->rfmode); /* Set mode in request */

/* Send message and receive response */

retval = rfscomm((struct rf_msg_hdr *)&msg,

sizeof(struct rf_msg_oreq),

(struct rf_msg_hdr *)&resp,

sizeof(struct rf_msg_ores) );

/* Check response */

if (retval == SYSERR) {

signal(Rf_data.rf_mutex);

return SYSERR;

} else if (retval == TIMEOUT) {

kprintf("Timeout during remote file open\n\r");

signal(Rf_data.rf_mutex);

return SYSERR;

} else if (ntohs(resp.rf_status) != 0) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Set initial file position */

rfptr->rfpos = 0;

/* Mark state as currently used */

rfptr->rfstate = RF_USED;

/* Return device descriptor of newly created pseudo-device */

signal(Rf_data.rf_mutex);

return rfptr->rfdev;

}

Before proceeding to check its arguments, rfsOpen checks the remote devices to in-
sure that one is available. The code then checks the file name to insure that the name is
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less than the maximum allowed and the mode string to insure that the specification is
valid.

Before it allocates the remote file device, rfsOpen must communicate with the re-
mote server to insure the file can be opened. The code creates a request message, and
uses rfscomm to send the message to the server. If a positive response arrives, rfsOpen
marks the control block entry for the remote file device as being used, sets the initial
file position to zero, and returns the descriptor to the caller.

20.10 Checking The File Mode

When it needs to check the file mode argument, rfsOpen calls function rfsgetmode,
passing the mode string as an argument. The code can be found in file rfsgetmode.c:

/* rfsgetmode.c - rfsgetmode */

#include <xinu.h>

/*------------------------------------------------------------------------

* rfsgetmode - parse mode argument and generate integer of mode bits

*------------------------------------------------------------------------

*/

int32 rfsgetmode (

char *mode /* string of mode characters */

)

{

int32 mbits; /* mode bits to return (in host */

/* byte order) */

char ch; /* next character in mode string*/

mbits = 0;

while ( (ch = *mode++) != NULLCH) {

switch (ch) {

case ’r’: if (mbits&RF_MODE_R) {

return SYSERR;

}

mbits |= RF_MODE_R;

continue;

case ’w’: if (mbits&RF_MODE_W) {

return SYSERR;

}
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mbits |= RF_MODE_W;

continue;

case ’o’: if (mbits&RF_MODE_O || mbits&RF_MODE_N) {

return SYSERR;

}

mbits |= RF_MODE_O;

break;

case ’n’: if (mbits&RF_MODE_O || mbits&RF_MODE_N) {

return SYSERR;

}

mbits |= RF_MODE_N;

break;

default: return SYSERR;

}

}

/* If neither read nor write specified, allow both */

if ( (mbits&RF_MODE_RW) == 0 ) {

mbits |= RF_MODE_RW;

}

return mbits;

}

Rfsgetmode extracts characters from the mode string, insures each is valid, and
checks for illegal combinations (e.g., a mode string cannot specify both new and old
modes). As it parses the mode string, rfsgetmode sets the bits in integer mbits. Once it
has finished examining the string and checking the combinations, rfsgetmode returns in-
teger mbits to the caller.

20.11 Closing A Remote File

Once a process has finished using a file, the process can call close to release the
remote file device and make it available for the system to use for another file. For a re-
mote file device, close invokes rflClose. In our implementation, closing a remote file is
trivial. Function rflClose.c contains the code:
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/* rflClose.c - rflClose */

#include <xinu.h>

/*------------------------------------------------------------------------

* rflClose - Close a remote file device

*------------------------------------------------------------------------

*/

devcall rflClose (

struct dentry *devptr /* entry in device switch table */

)

{

struct rflcblk *rfptr; /* pointer to control block */

/* Wait for exclusive access */

wait(Rf_data.rf_mutex);

/* Verify remote file device is open */

rfptr = &rfltab[devptr->dvminor];

if (rfptr->rfstate == RF_FREE) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Mark device closed */

rfptr->rfstate = RF_FREE;

signal(Rf_data.rf_mutex);

return OK;

}

After verifying that the device is currently open, rflClose sets the state of the con-
trol block entry to RF_FREE. Note that this version of rflClose does not inform the re-
mote file server that the file is closed. The exercises suggest redesigning the system to
inform the remote server when a file is closed.

20.12 Reading From A Remote File

Once a remote file has been opened, a process can read data from the file. Driver
function rflRead performs the read operation. The code can be found in file rflRead.c:
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/* rflRead.c - rflRead */

#include <xinu.h>

/*------------------------------------------------------------------------

* rflRead - Read data from a remote file

*------------------------------------------------------------------------

*/

devcall rflRead (

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer of bytes */

int32 count /* count of bytes to read */

)

{

struct rflcblk *rfptr; /* pointer to control block */

int32 retval; /* return value */

struct rf_msg_rreq msg; /* request message to send */

struct rf_msg_rres resp; /* buffer for response */

int32 i; /* counts bytes copied */

char *from, *to; /* used during name copy */

int32 len; /* length of name */

/* Wait for exclusive access */

wait(Rf_data.rf_mutex);

/* Verify count is legitimate */

if ( (count <= 0) || (count > RF_DATALEN) ) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Verify pseudo-device is in use */

rfptr = &rfltab[devptr->dvminor];

/* If device not currently in use, report an error */

if (rfptr->rfstate == RF_FREE) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Verify pseudo-device allows reading */
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if ((rfptr->rfmode & RF_MODE_R) == 0) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Form read request */

msg.rf_type = htons(RF_MSG_RREQ);

msg.rf_status = htons(0);

msg.rf_seq = 0; /* rfscomm will set sequence */

from = rfptr->rfname;

to = msg.rf_name;

memset(to, NULLCH, RF_NAMLEN); /* start name as all zero bytes */

len = 0;

while ( (*to++ = *from++) ) { /* copy name to request */

if (++len >= RF_NAMLEN) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

}

msg.rf_pos = htonl(rfptr->rfpos);/* set file position */

msg.rf_len = htonl(count); /* set count of bytes to read */

/* Send message and receive response */

retval = rfscomm((struct rf_msg_hdr *)&msg,

sizeof(struct rf_msg_rreq),

(struct rf_msg_hdr *)&resp,

sizeof(struct rf_msg_rres) );

/* Check response */

if (retval == SYSERR) {

signal(Rf_data.rf_mutex);

return SYSERR;

} else if (retval == TIMEOUT) {

kprintf("Timeout during remote file read\n\r");

signal(Rf_data.rf_mutex);

return SYSERR;

} else if (ntohs(resp.rf_status) != 0) {

signal(Rf_data.rf_mutex);

return SYSERR;

}
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/* Copy data to application buffer and update file position */

for (i=0; i<htonl(resp.rf_len); i++) {

*buff++ = resp.rf_data[i];

}

rfptr->rfpos += htonl(resp.rf_len);

signal(Rf_data.rf_mutex);

return htonl(resp.rf_len);

}

RflRead begins by checking argument count to verify that the request is in range.
It then verifies that the pseudo-device has been opened and the mode allows reading.
Once the checking is complete, rflRead performs the read operation: it forms a mes-
sage, uses rfscomm to transmit a copy to the server and receive a response, and inter-
prets the response.

If rfscomm returns a valid response, the message will include the data that has been
read. RflRead copies the data from the response message into the caller’s buffer, up-
dates the file position, and returns the number of bytes to the caller.

20.13 Writing To A Remote File

Writing to a remote file follows the same general paradigm as reading from a re-
mote file. Driver function rflWrite performs the write operation; the code can be found
in file rflWrite.c:

/* rflWrite.c - rflWrite */

#include <xinu.h>

/*------------------------------------------------------------------------

* rflWrite - Write data to a remote file

*------------------------------------------------------------------------

*/

devcall rflWrite (

struct dentry *devptr, /* entry in device switch table */

char *buff, /* buffer of bytes */

int32 count /* count of bytes to write */

)

{

struct rflcblk *rfptr; /* pointer to control block */

int32 retval; /* return value */

struct rf_msg_wreq msg; /* request message to send */
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struct rf_msg_wres resp; /* buffer for response */

char *from, *to; /* used to copy name */

int i; /* counts bytes copied into req */

int32 len; /* length of name */

/* Wait for exclusive access */

wait(Rf_data.rf_mutex);

/* Verify count is legitimate */

if ( (count <= 0) || (count > RF_DATALEN) ) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Verify pseudo-device is in use and mode allows writing */

rfptr = &rfltab[devptr->dvminor];

if ( (rfptr->rfstate == RF_FREE) ||

! (rfptr->rfmode & RF_MODE_W) ) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Form write request */

msg.rf_type = htons(RF_MSG_WREQ);

msg.rf_status = htons(0);

msg.rf_seq = 0; /* rfscomm will set sequence */

from = rfptr->rfname;

to = msg.rf_name;

memset(to, NULLCH, RF_NAMLEN); /* start name as all zero bytes */

len = 0;

while ( (*to++ = *from++) ) { /* copy name to request */

if (++len >= RF_NAMLEN) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

}

while ( (*to++ = *from++) ) { /* copy name into request */

;

}

msg.rf_pos = htonl(rfptr->rfpos);/* set file position */

msg.rf_len = htonl(count); /* set count of bytes to write */
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for (i=0; i<count; i++) { /* copy data into message */

msg.rf_data[i] = *buff++;

}

while (i < RF_DATALEN) {

msg.rf_data[i++] = NULLCH;

}

/* Send message and receive response */

retval = rfscomm((struct rf_msg_hdr *)&msg,

sizeof(struct rf_msg_wreq),

(struct rf_msg_hdr *)&resp,

sizeof(struct rf_msg_wres) );

/* Check response */

if (retval == SYSERR) {

signal(Rf_data.rf_mutex);

return SYSERR;

} else if (retval == TIMEOUT) {

kprintf("Timeout during remote file read\n\r");

signal(Rf_data.rf_mutex);

return SYSERR;

} else if (ntohs(resp.rf_status) != 0) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

/* Report results to caller */

rfptr->rfpos += ntohl(resp.rf_len);

signal(Rf_data.rf_mutex);

return ntohl(resp.rf_len);

}

As with a read operation, rflWrite begins by checking the count argument, verify-
ing that the pseudo-device is open and the mode allows writing. RflWrite then forms a
request message and uses rfscomm to send the message to the server.

Unlike a read request, a write request contains data. Thus, when forming the re-
quest, rflWrite copies data from the user’s buffer into the request message. When a
response arrives, the response message does not contain a copy of the data that has been
written. Thus, rflWrite uses the status field in the message to determine whether to re-
port success or failure to the caller.
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20.14 Seek On A Remote File

How should a seek operation be implemented for our remote file system? There
are two possibilities. In one design, the system sends a message to the remote server
and the remote server seeks to the specified location in the file. In the other design, all
location data is kept on the local computer and each request to the server contains an
explicit file position.

Our implementation uses the latter: the current file position is stored in the control
block entry for a remote file device. When read is called, rflRead requests data from
the server and updates the file position in the control block entry accordingly. The re-
mote server does not record a position because each request includes explicit position
information.

Because all file position information is stored on the client, a seek operation can be
performed locally. That is, the software stores the file position in the control block en-
try for use on the next read or write operation. Function rflSeek performs the seek
operation on a remote file device. The code can be found in file rflSeek.c:

/* rflSeek.c - rflSeek */

#include <xinu.h>

/*------------------------------------------------------------------------

* rflSeek - change the current position in an open file

*------------------------------------------------------------------------

*/

devcall rflSeek (

struct dentry *devptr, /* entry in device switch table */

uint32 pos /* new file position */

)

{

struct rflcblk *rfptr; /* pointer to control block */

/* Wait for exclusive access */

wait(Rf_data.rf_mutex);

/* Verify remote file device is open */

rfptr = &rfltab[devptr->dvminor];

if (rfptr->rfstate == RF_FREE) {

signal(Rf_data.rf_mutex);

return SYSERR;

}
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/* Set the new position */

rfptr->rfpos = pos;

signal(Rf_data.rf_mutex);

return OK;

}

The code is trivial. After obtaining exclusive access, rflSeek verifies that the
device has been opened. It then stores the file position argument in field rfpos of the

control block, signals the mutual exclusion semaphore, and returns.

20.15 Character I/O On A Remote File

Using a remote file server to read and write individual bytes of data is expensive
because a message must be sent to the server for each character. Rather than prohibit
character I/O, our implementations of getc and putc merely invoke the remote file func-
tions rflRead and rflWrite, respectively. Thus, we allow a programmer to decide wheth-
er the cost is reasonable. Files rflGet.c and rflPutc.c contain the code.

/* rflGetc.c - rflGetc */

#include <xinu.h>

/*------------------------------------------------------------------------

* rflGetc - read one character from a remote file (interrupts disabled)

*------------------------------------------------------------------------

*/

devcall rflGetc(

struct dentry *devptr /* entry in device switch table */

)

{

char ch; /* character to read */

int32 retval; /* return value */

retval = rflRead(devptr, &ch, 1);

if (retval != 1) {

return SYSERR;

}

return (devcall)ch;

}

www.itpub.net



Sec. 20.15 Character I/O On A Remote File 487

/* rflPutc.c - rflPutc */

#include <xinu.h>

/*------------------------------------------------------------------------

* rflPutc - write one character to a remote file (interrupts disabled)

*------------------------------------------------------------------------

*/

devcall rflPutc(

struct dentry *devptr, /* entry in device switch table */

char ch /* character to write */

)

{

struct rflcblk *rfptr; /* pointer to rfl control block */

rfptr = &rfltab[devptr->dvminor];

if (rflWrite(devptr, &ch, 1) != 1) {

return SYSERR;

}

return OK;

}

20.16 Remote File System Control Functions

Several file operations are needed beyond open, read, write, and close. For exam-
ple, it may be necessary to delete a file. The Xinu remote file system uses the control
function to implement such functions. The table in Figure 20.3 lists the set of symbolic
constants used for control functions along with the meaning of each.

������������������������������������������������������������
Constant Meaning������������������������������������������������������������

RFS_CTL_DEL Delete the named file������������������������������������������������������������
RFS_CTL_TRUNC Truncate a named file to zero bytes������������������������������������������������������������
RFS_CTL_MKDIR Make a directory������������������������������������������������������������
RFS_CTL_RMDIR Remove a directory������������������������������������������������������������
RFS_CTL_SIZE Return the current size of a file in bytes��������������������������������������������������������������
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Figure 20.3  Control functions used with the remote file system.
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A control operation is performed on device RFILESYS, the master device for the
remote file system, rather than on an individual remote file device. Driver function
rfsControl implements the control operation; the code can be found in file rfsControl.c:

/* rfsControl.c - rfsControl */

#include <xinu.h>

/*------------------------------------------------------------------------

* rfsControl - Provide control functions for the remote file system

*------------------------------------------------------------------------

*/

devcall rfsControl (

struct dentry *devptr, /* entry in device switch table */

int32 func, /* a control function */

int32 arg1, /* argument #1 */

int32 arg2 /* argument #2 */

)

{

int32 len; /* length of name */

struct rf_msg_sreq msg; /* buffer for size request */

struct rf_msg_sres resp; /* buffer for size response */

struct rflcblk *rfptr; /* pointer to entry in rfltab */

char *to, *from; /* used during name copy */

int32 retval; /* return value */

/* Wait for exclusive access */

wait(Rf_data.rf_mutex);

/* Check length and copy (needed for size) */

rfptr = &rfltab[devptr->dvminor];

from = rfptr->rfname;

to = msg.rf_name;

len = 0;

memset(to, NULLCH, RF_NAMLEN); /* start name as all zeroes */

while ( (*to++ = *from++) ) { /* copy name to message */

len++;

if (len >= (RF_NAMLEN - 1) ) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

}
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switch (func) {

/* Delete a file */

case RFS_CTL_DEL:

if (rfsndmsg(RF_MSG_DREQ, (char *)arg1) == SYSERR) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

break;

/* Truncate a file */

case RFS_CTL_TRUNC:

if (rfsndmsg(RF_MSG_TREQ, (char *)arg1) == SYSERR) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

break;

/* Make a directory */

case RFS_CTL_MKDIR:

if (rfsndmsg(RF_MSG_MREQ, (char *)arg1) == SYSERR) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

break;

/* Remove a directory */

case RFS_CTL_RMDIR:

if (rfsndmsg(RF_MSG_XREQ, (char *)arg1) == SYSERR) {

signal(Rf_data.rf_mutex);

return SYSERR;

}

break;

/* Obtain current file size (non-standard message size) */

case RFS_CTL_SIZE:

/* Hand-craft a size request message */
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msg.rf_type = htons(RF_MSG_SREQ);

msg.rf_status = htons(0);

msg.rf_seq = 0; /* rfscomm will set the seq num */

/* Send the request to server and obtain a response */

retval = rfscomm( (struct rf_msg_hdr *)&msg,

sizeof(struct rf_msg_sreq),

(struct rf_msg_hdr *)&resp,

sizeof(struct rf_msg_sres) );

if ( (retval == SYSERR) || (retval == TIMEOUT) ) {

signal(Rf_data.rf_mutex);

return SYSERR;

} else {

signal(Rf_data.rf_mutex);

return ntohl(resp.rf_size);

}

default:

kprintf("rfsControl: function %d not valid\n\r", func);

signal(Rf_data.rf_mutex);

return SYSERR;

}

signal(Rf_data.rf_mutex);

return OK;

}

For all the control functions, argument arg1 contains a pointer to a null-terminated
file name. After it obtains exclusive access and checks the length of the file name,
rfsControl uses the function argument to choose among several cases that correspond to
file deletion, file truncation, directory creation, directory deletion, or a file size request.
In each case, rfsControl must send a message to the remote server and receive a
response.

Except for a file size request, all messages to the server only include the common
header fields. Therefore, for all functions except a size request, rfsControl uses func-
tion rfsndmsg to generate and send a request to the remote server. For a size request,
rfsControl creates a message in variable msg, and uses rfscomm to send the message
and receive a response. To avoid scanning the file name twice, rfsControl copies the
file name into the name field of variable msg as it checks the length of the name. Thus,
no extra copy is needed when rfsControl creates a size request. If a valid response ar-
rives to a size request, rfsControl extracts the file size from the response, converts it to
local byte order, and returns the size to the caller. In all other cases, rfsControl returns
a status of either OK or SYSERR.
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20.17 Initializing The Remote File Data Structure

Because the design includes both a remote file system master device and a set of
remote file pseudo-devices, two initialization functions are needed. The first, rfsInit, in-
itializes the control block associated with the master device. File rfsInit.c contains the
code:

/* rfsInit.c - rfsInit */

#include <xinu.h>

struct rfdata Rf_data;

/*------------------------------------------------------------------------

* rfsInit - initialize the remote file system master device

*------------------------------------------------------------------------

*/

devcall rfsInit(

struct dentry *devptr /* entry in device switch table */

)

{

/* Choose an initial message sequence number */

Rf_data.rf_seq = 1;

/* Set the server IP address, server port, and local port */

if ( dot2ip(RF_SERVER_IP, &Rf_data.rf_ser_ip) == SYSERR ) {

panic("invalid IP address for remote file server");

}

Rf_data.rf_ser_port = RF_SERVER_PORT;

Rf_data.rf_loc_port = RF_LOC_PORT;

/* Create a mutual exclusion semaphore */

if ( (Rf_data.rf_mutex = semcreate(1)) == SYSERR ) {

panic("Cannot create remote file system semaphore");

}

/* Specify that the server port is not yet registered */

Rf_data.rf_registered = FALSE;
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return OK;

}

Data for the master device is kept in global variable Rf_data. RfsInit fills in fields
of the structure with the remote server’s IP address and UDP port number. It also allo-
cates a mutual exclusion semaphore and stores the semaphore ID in the structure.
RfsInit sets field rf_registered to FALSE, indicating that before communication with the
server is possible, the UDP port of the server must be registered with the network code.

Function rflInit handles initialization of individual remote file devices. The code
can be found in file rflInit.c:

/* rflInit.c - rflInit */

#include <xinu.h>

struct rflcblk rfltab[Nrfl]; /* rfl device control blocks */

/*------------------------------------------------------------------------

* rflInit - initialize a remote file device

*------------------------------------------------------------------------

*/

devcall rflInit(

struct dentry *devptr /* entry in device switch table */

)

{

struct rflcblk *rflptr; /* ptr. to control block entry */

int32 i; /* walks through name arrary */

rflptr = &rfltab[ devptr->dvminor ];

/* Initialize entry to unused */

rflptr->rfstate = RF_FREE;

rflptr->rfdev = devptr->dvnum;

for (i=0; i<RF_NAMLEN; i++) {

rflptr->rfname[i] = NULLCH;

}

rflptr->rfpos = rflptr->rfmode = 0;

return OK;

}

RflInit sets the state of the entry to RF_FREE to indicate that the entry is currently
unused. It also zeroes the name and mode fields. If the state is marked RF_FREE, no
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references should occur to other fields of the entry. Placing zeroes in the fields aids de-
bugging.

20.18 Perspective

As with a local file system, the most complex decision involved in the design of a
remote file system arises from the need to choose a balance between efficiency and
sharing. To understand the choice, imagine multiple applications running on multiple
computers all sharing a single file. At one extreme, to guarantee last-write semantics on
a shared file, each file operation must be sent to the remote server so the requests can
be serialized and operations can be applied to the file in the order they occur. At the
other extreme, efficiency is maximized when a computer can cache files (or parts of
files) and access items from the local cache. The goal is to devise a remote file system
that maximizes performance when no sharing occurs, guarantees correctness in the pres-
ence of sharing, and transitions gracefully and automatically between the two extremes.

20.19 Summary

A remote file access mechanism allows applications running on a client computer
to access files stored on a remote server. The example design uses a device paradigm
in which an application calls open on the remote file system master device to obtain the
ID of an individual remote file pseudo-device. The application can then use read and
write on the pseudo-device.

When an application accesses a remote file, the remote file software creates a mes-
sage, sends the message to the remote file server, waits for a response, and interprets the
response. The software transmits each request multiple times in case the network drops
a packet or the server is too busy to answer.

Operations such as file deletion, file truncation, creating and removing directories,
and determining the current size of a file are handled with the control function. As with
data transfer operations, each call to control results in the transmission of a request mes-
sage and a response from the server.

EXERCISES

20.1 Modify the remote file server and rflClose. Arrange to have rflClose send a message to
the server when a file is closed, and have the server send a response.

20.2 The underlying protocol limits a read request to RF_DATALEN bytes, and rflRead re-
jects any call that specifies more. Modify rflRead to allow a user to request an arbitrary
size, but still limit the size in a request message to RF_DATALEN (i.e., don’t reject large
requests, but limit the data returned to RF_DATALEN bytes).
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20.3 As an alternative to the exercise above, devise a system in which rflRead permits a caller
to specify an arbitrary size read and sends multiple requests to the server to satisfy the
request.

20.4 The code in rflGetc calls rflRead directly. What potential problem does such a direct
call introduce? Modify the code to use the device switch table when making the call.

20.5 Consider an alternative design for the remote file system that improves efficiency. Ar-
range rflRead so it always requests RF_DATALEN bytes, even if the caller requests
fewer. Place extra bytes in a cache, making them available to subsequent calls.

20.6 In the previous exercise, what is the chief disadvantage of caching data for subsequent
reads? (Hint: consider shared access to the server.)

20.7 Consider what happens if two clients attempt to use the remote file server at the same
time. When the clients boot, they each start their packet sequence number at 1, which
makes the probability of conflict high. Revise the system to use a random starting se-
quence number (and revise the server to accept arbitrary sequence numbers).
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A Syntactic Namespace

A rose by any other name ...

— William Shakespeare

21.1 Introduction

Chapter 14 outlines a set of device-independent I/O operations, including read and
write, and shows how a device switch table provides an efficient mapping between
high-level operations and the driver functions for each device. Later chapters describe
how device drivers are organized, and provide examples. The previous chapters illus-
trate how a file system fits into the device paradigm, and illustrates the concept of
pseudo-devices.

This chapter considers a generalization of device names. It explains how names
can be viewed syntactically, and shows that both devices and files can be represented in
a single unified namespace.

21.2 Transparency And A Namespace Abstraction

Transparency forms one of the fundamental principles in operating system design:

Whenever possible, applications should remain unaware of implemen-
tation details such as the location of an object or its representation.
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For example, when an application creates a new process, the application does not
need to know the location of the stack that is allocated. Similarly, when an application
opens a local file, the application does not need to know the disk blocks the file occu-
pies.

In terms of file access, the Xinu paradigm seems to violate the principle of trans-
parency because it requires the user to specify a file system name when opening a file.
For example, the master device for the local file system is named LFILESYS. When a
Xinu system includes a remote file system, the violation of transparency becomes obvi-
ous: a programmer must also know the master device for the remote file system,
RFILESYS, and must choose between local and remote files. Furthermore, a file name
must be chosen to match the naming convention used on the specified file system.

How can we add transparency to file and device naming? The answer lies in a
high-level abstraction called a namespace. Conceptually, a namespace provides a uni-
form set of names that knits together apparently diverse file naming schemes into a sin-
gle unified whole, allowing users to open files and devices without knowing their loca-
tion. The Unix operating system uses the file system to provide a namespace abstrac-
tion: local files, remote files, and devices are each assigned names in a hierarchical file
namespace. For example, the name / dev/ console usually corresponds to the system
console device and the name / dev/ usb corresponds to the USB device.

Xinu takes a novel approach to the namespace abstraction by separating the
namespace mechanism from the underlying file systems. Furthermore, Xinu uses a syn-
tactic approach, which means that the namespace examines names without understand-
ing their meaning. What makes our implementation of the namespace especially fas-
cinating is its combination of simplicity and power. By thinking of names as strings,
we can understand their similarity. By using the relationship between prefix strings and
trees, we can manipulate names easily. By following the principle of access transpar-
ency, we can improve the system dramatically. Adding just a small layer of software to
existing mechanisms will allow us to unify naming completely.

Before looking at namespace mechanisms, we will review a few examples of file
naming to understand the problem at hand. Following the discussion of file names, we
will look at a general purpose syntactic naming scheme, and then examine a simpler,
less general solution. Finally, we will examine an implementation of the simplified
scheme.

21.3 Myriad Naming Schemes

The problem designers face when inventing a namespace is simple: they must glue
together myriad unrelated naming schemes, each of which has evolved into a self-
contained system. On some systems, file names specify the storage device on which the
file resides. On others, the filename includes a suffix that tells the type of the file (old-
er systems used suffixes to specify a version for the file). Other systems map all files
into a single flat namespace in which each name is merely a string of alphanumeric
characters. The following sections give examples of file names on several systems, and
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help the reader understand the types and formats of names our namespace must accom-
modate.

21.3.1  MS-DOS

Names in MS-DOS consist of two parts: a device specification and a file name.
Syntactically, an MS-DOS name has the form X:file, where X is a single letter that
designates the disk device on which the file resides and file is the name of the file.
Typically, the letter C denotes the system hard disk, which means a name like C:abc
refers to file abc on the hard disk.

21.3.2  UNIX

UNIX organizes files into a hierarchical, tree structured directory system. A file
name is either relative to the current directory or a full path name that specifies a path
from the root of the directory tree to a file.

Syntactically, full path names consist of slash-separated components, where each
intermediate component specifies a directory and the final component specifies a file.
Thus, the UNIX name /homes/xinu/x refers to file x in subdirectory xinu, which is found
in subdirectory homes, which is contained in the root directory. The root directory itself
is named by a single slash (/). Notice that the prefix /homes/xinu/ refers to a directory,
and that the names of all files in that directory share the prefix.

The importance of the prefix property will become apparent later. For now, it is
sufficient to remember that the tree structure relates to a name prefix:

When components in a file name specify a path through a tree-
structured directory, the names of all files that reside in the same
directory share a common prefix that denotes the directory.

21.3.3  V System

A research operating system known as the V system allowed a user to specify a
context and a name; the system used the context to resolve the name. The syntax used
brackets to enclose the context. Thus, [ctx] abc refers to file abc in context ctx. Usual-
ly, one thinks of each context as a set of files on a particular remote file server.

21.3.4  IBIS

The research operating system, IBIS, provides yet another syntax for multiple-
machine connections. In IBIS, names have the form machine:path, where machine
denotes a particular computer system, and path is the file name on that machine (e.g., a
UNIX full path name).



500 A Syntactic Namespace Chap. 21

21.4 Naming System Design Alternatives

We seek a single naming system that provides a unified view of all possible file
names, independent of the location of the file or the operating system under which it re-
sides. It seems that a designer could choose between two basic approaches in solving
the problem: define yet another file naming scheme, or adopt an existing naming
scheme. Surprisingly, the Xinu namespace uses neither of these two approaches. In-
stead, it adds a syntactic naming mechanism that accommodates many underlying nam-
ing schemes, while allowing the user to choose a uniform interface to the naming
software. The namespace software maps names that the user supplies into names ap-
propriate for the underlying system.

A naming mechanism that accommodates many underlying schemes has several
advantages. First, it allows the designer to integrate existing file systems and devices
into a single, uniform namespace, even when implemented by remote servers on a set of
heterogeneous systems. Second, it permits designers to add new devices or file systems
without requiring recompilation of the application programs that use them. Third, it
avoids two unattractive extremes. At one extreme, choosing the simplest naming
scheme ensures that all file systems can handle the names, but means that the user can-
not take advantage of the complexity offered by some servers. At the other extreme,
choosing a naming scheme that encompasses the most complex cases means that an ap-
plication which takes advantage of the complexity may not be able to run on a less so-
phisticated file system.

21.5 A Syntactic Namespace

To understand how to handle names, think of them syntactically: a name is merely
a string of characters. A namespace can be created that transforms strings. The
namespace does not need to provide files nor directories, nor does it need to understand
the semantics of each underlying file system. Instead, the namespace maps strings from
a uniform representation chosen by the user into strings appropriate for each particular
subsystem. For example, the namespace might translate the string alf into the string
C:a_long_file_name.

What makes a syntactic namespace powerful? Syntactic manipulation is both natu-
ral and flexible. Thus, it is easy to specify and understand as well as easy to adapt to
many underlying naming schemes. A user can imagine a consistent set of names and
use the namespace software to translate them into the forms required by underlying file
systems. For example, suppose a system has access to a local file system that uses
MS-DOS naming and a remote file system that uses UNIX full path names. The user
might adopt the UNIX full path name syntax for all names, making the local disk names
start with /local. In such a scheme, the name /local/abc would refer to file abc on the
local hard drive, while the name /etc/passwd would refer to a remote file. The
namespace must translate /local/abc into C:abc so the local MS-DOS file system can
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understand it, but would pass /etc/passwd on to the remote Unix file system without
change.

21.6 Patterns And Replacements

Exactly how should a syntactic namespace operate? One convenient method uses a
pattern string to specify the name syntax and a replacement string to specify the map-
ping. For example, consider the pattern replacement pair:

"/local" "C:"

which means “translate all occurrences of the string /local into the string C: ”.

How should patterns be formed? Patterns that consist of literal strings cannot
specify replacement unambiguously. In the previous example, the pattern works well
on strings like /local/x, but it fails on strings like /homes/local/bin because /local is an
internal substring that should not be changed. To be effective, more powerful patterns
are needed. For example, Unix pattern matching tools introduce meta-characters that
specify how matching should be performed. A carat (sometimes called up-arrow)
matches the beginning of a string. Thus, the Unix pattern:

"̂ /local" "C:"

specifies that /local only matches at the beginning of a string. Unfortunately, imple-
mentations that allow arbitrary patterns and replacements tend to be cumbersome and
the patterns become difficult to read. A more efficient solution is needed.

21.7 Prefix Patterns

The problem at hand is to find a useful pattern-replacement mechanism that allows
the user to specify how names map onto a subsystem without introducing more com-
plexity than is needed. Before thinking about complex patterns, consider what can be
done with patterns that consist of literal strings. The key is to imagine files organized
into a hierarchy, and to use the prefix property to understand why patterns should speci-
fy prefixes.

In a hierarchy, name prefixes group files into subdirectories, making it easy to de-
fine the relationship between names and the underlying file systems or devices. Furth-
ermore, each prefix can be represented by a literal string. The point is:

Restricting name replacement to prefixes means it is possible to use
literal strings to separate underlying file systems into distinct parts of
a name hierarchy.
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21.8 Implementation Of A Namespace

A concrete example will clarify the details of how a syntactic namespace uses the
pattern-replacement paradigm, and will show how the namespace hides subsystem de-
tails. In the example, patterns will consist of fixed strings, and only prefixes will be
matched. Later sections discuss alternative implementations and generalizations.

The example implementation of a namespace consists of a pseudo-device,
NAMESPACE, that programs use to open a named object. An application program in-
vokes open on the NAMESPACE device, passing a name and mode as arguments. The
NAMESPACE pseudo-device uses a set of prefix patterns to transform the name into a
new name, and then passes the new name to the appropriate underlying device through
a call to open. We will see that all files and devices can be part of the namespace,
meaning that an application never needs to open a device other than the NAMESPACE
pseudo-device.

The next sections present the namespace software, beginning with declarations of
the basic data structures, and culminating in the definition of the NAMESPACE
pseudo-device. Following the declarations, two functions are presented that transform
names according to the prefix patterns. The functions form the basis of the most impor-
tant piece of namespace software: the function that implements open for the
NAMESPACE pseudo-device.

21.9 Namespace Data Structures And Constants

File name.h contains declarations for the data structures and constants used in the
Xinu namespace.

/* name.h */

/* Constants that define the namespace mapping table sizes */

#define NM_PRELEN 64 /* max size of a prefix string */

#define NM_REPLLEN 96 /* maximum size of a replacement*/

#define NM_MAXLEN 256 /* maximum size of a file name */

#define NNAMES 40 /* number of prefix definitions */

/* Definition of the name prefix table that defines all name mappings */

struct nmentry { /* definition of prefix table */

char nprefix[NM_PRELEN]; /* null-terminated prefix */

char nreplace[NM_REPLLEN]; /* null-terminated replacement */

did32 ndevice; /* device descriptor for prefix */

};
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extern struct nmentry nametab[]; /* table of name mappings */

extern int32 nnames; /* num. of entries allocated */

The principle data structure is array nametab, which holds up to NNAMES entries.
Each entry consists of a prefix pattern string, a replacement string, and a device ID.
External integer nnames holds a count of the valid entries in nametab.

21.10 Adding Mappings To The Namespace Prefix Table

Function mount is used to add mappings to the prefix table. As expected, mount
takes three arguments: a prefix string, a replacement string, and a device ID. File
mount.c contains the code.

/* mount.c - mount, namlen */

#include <xinu.h>

/*------------------------------------------------------------------------

* mount - add a prefix mapping to the name space

*------------------------------------------------------------------------

*/

syscall mount(

char *prefix, /* prefix to add */

char *replace, /* replacement string */

did32 device /* device ID to use */

)

{

intmask mask; /* saved interrupt mask */

struct nmentry *namptr; /* pointer to unused table entry*/

int32 psiz, rsiz; /* sizes of prefix & replacement*/

int32 i; /* counter for copy loop */

mask = disable();

psiz = namlen(prefix, NM_PRELEN);

rsiz = namlen(replace, NM_REPLLEN);

if ((psiz == SYSERR) || (rsiz == SYSERR) || isbaddev(device)) {

restore(mask);

return SYSERR;

}
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if (nnames >= NNAMES) { /* if table full return error */

restore(mask);

return SYSERR;

}

/* Allocate a slot in the table */

namptr = &nametab[nnames]; /* next unused entry in table */

/* Copy prefix and replacement strings and record device ID */

for (i=0; i<psiz; i++) { /* copy prefix into table entry */

namptr->nprefix[i] = *prefix++;

}

for (i=0; i<rsiz; i++) { /* copy replacement into entry */

namptr->nreplace[i] = *replace++;

}

namptr->ndevice = device; /* record the device ID */

nnames++; /* increment number of names */

restore(mask);

return OK;

}

/*------------------------------------------------------------------------

* namlen - compute the length of a string stopping at maxlen

*------------------------------------------------------------------------

*/

int32 namlen(

char *name, /* name to use */

int32 maxlen /* maximum length (including a */

/* NULL byte) */

)

{

int32 i; /* counter */

/* Search until a null terminator or length reaches max */

for (i=0; i < maxlen; i++) {

if (*name++ == NULLCH) {

return i+1;
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}

}

return SYSERR;

}

If any of the arguments are invalid or the table is full, mount returns SYSERR.
Otherwise, it increments nnames to allocate a new entry in the table and fills in the
values.

21.11 Mapping Names With The Prefix Table

Once a prefix table has been created, name translation can be performed. Mapping
consists of finding a prefix match and substituting the corresponding replacement string.
Function nammap performs translation. The code can be found in file nammap.c:

/* nammap.c - nammap, namrepl, namcpy */

#include <xinu.h>

status namcpy(char *, char *, int32);

did32 namrepl(char *, char[]);

/*------------------------------------------------------------------------

* nammap - using namespace, map name to new name and new device

*------------------------------------------------------------------------

*/

devcall nammap(

char *name, /* a name to map */

char newname[NM_MAXLEN], /* buffer for mapped name */

did32 namdev /* ID of the namespace device */

)

{

did32 newdev; /* device descriptor to return */

char tmpname[NM_MAXLEN]; /* temporary buffer for name */

int32 iter; /* number of iterations */

/* Place original name in temporary buffer and null terminate */

if (namcpy(tmpname, name, NM_MAXLEN) == SYSERR) {

return SYSERR;

}
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/* Repeatedly substitute the name prefix until a non-namespace */

/* device is reached or an iteration limit is exceeded */

for (iter=0; iter<nnames ; iter++) {

newdev = namrepl(tmpname, newname);

if (newdev != namdev) {

namcpy(tmpname, newname, NM_MAXLEN);

return newdev; /* either valid ID or SYSERR */

}

}

return SYSERR;

}

/*------------------------------------------------------------------------

* namrepl - use the name table to perform prefix substitution

*------------------------------------------------------------------------

*/

did32 namrepl(

char *name, /* original name */

char newname[NM_MAXLEN] /* buffer for mapped name */

)

{

int32 i; /* iterate through name table */

char *pptr; /* walks through a prefix */

char *rptr; /* walks through a replacement */

char *optr; /* walks through original name */

char *nptr; /* walks through new name */

char olen; /* length of original name */

/* including the NULL byte */

int32 plen; /* length of a prefix string */

/* *not* including NULL byte */

int32 rlen; /* length of replacment string */

int32 remain; /* bytes in name beyond prefix */

struct nmentry *namptr; /* pointer to a table entry */

/* Search name table for first prefix that matches */

for (i=0; i<nnames; i++) {

namptr = &nametab[i];

optr = name; /* start at beginning of name */

pptr = namptr->nprefix; /* start at beginning of prefix */
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/* Compare prefix to string and count prefix size */

for (plen=0; *pptr != NULLCH ; plen++) {

if (*pptr != *optr) {

break;

}

pptr++;

optr++;

}

if (*pptr != NULLCH) { /* prefix does not match */

continue;

}

/* Found a match - check that replacement string plus */

/* bytes remaining at the end of the original name will */

/* fit into new name buffer. Ignore null on replacement*/

/* string, but keep null on remainder of name. */

olen = namlen(name ,NM_MAXLEN);

rlen = namlen(namptr->nreplace,NM_MAXLEN) - 1;

remain = olen - plen;

if ( (rlen + remain) > NM_MAXLEN) {

return (did32)SYSERR;

}

/* Place replacement string followed by remainder of */

/* original name (and null) into the new name buffer */

nptr = newname;

rptr = namptr->nreplace;

for (; rlen>0 ; rlen--) {

*nptr++ = *rptr++;

}

for (; remain>0 ; remain--) {

*nptr++ = *optr++;

}

return namptr->ndevice;

}

return (did32)SYSERR;

}
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/*------------------------------------------------------------------------

* namcpy - copy a name from one buffer to another, checking length

*------------------------------------------------------------------------

*/

status namcpy(

char *newname, /* buffer to hold copy */

char *oldname, /* buffer containing name */

int32 buflen /* size of buffer for copy */

)

{

char *nptr; /* point to new name */

char *optr; /* point to old name */

int32 cnt; /* count of characters copied */

nptr = newname;

optr = oldname;

for (cnt=0; cnt<buflen; cnt++) {

if ( (*nptr++ = *optr++) == NULLCH) {

return OK;

}

}

return SYSERR; /* buffer filled before copy completed */

}

The most interesting aspect of nammap arises because it allows multiple mappings.
In particular, because the namespace is a pseudo-device, it is possible for a user to
specify a mapping back onto the NAMESPACE device. For example, consider the fol-
lowing two entries in nametab:

"/local/" "" LFILESYS
"LFS:" "/local/" NAMESPACE

The first entry specifies that if a name begins with /local/, the prefix is removed and the
name is passed to the local file system. The second entry specifies that LFS: is an ab-
breviation for /local/. That is, the prefix LFS: is replaced by /local/ and the resulting
string is passed back to the NAMESPACE device for another round of mapping.

Of course, recursive mapping can be dangerous. Consider what can happen if a
user adds the following to the namespace:

"/x" "/x" NAMESPACE

When presented with a name /xyz, a naive implementation will find prefix /x, make the
substitution, and call open on the NAMESPACE device, causing an infinite recursion.
To avoid the problem, our implementation iterates through NAMESPACE replacements
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and limits the total iterations. In particular, the code only permits one iteration for each
prefix in nametab (i.e., each prefix can be substituted at most once). Of course, nam-
map also limits the size of a name: if a replacement would expand the name to more
than NM_MAXLEN characters, nammap stops and returns SYSERR.

Nammap begins by copying the original name into local array tmpname. It then
iterates until the name has been mapped to a device other than the NAMESPACE or the
iteration limit is reached. During each iteration, nammap calls function namrepl to look
up the current name and form a replacement.

Function namrepl implements a basic replacement policy. Our example replace-
ment policy is simplistic: namrepl searches the table linearly. A search always begins
with the first entry in the table, and stops as soon as a prefix in the table matches the
string supplied by argument name. Once searching has stopped, nammap forms a
mapped name in argument newname by appending the unmatched portion of the origi-
nal name onto the replacement string. It then returns the device ID from the table entry.
A later section explains that the design has consequences for users.

21.12 Opening A Named File

Once nammap is available, constructing the upper-half open routine for the
namespace pseudo-device becomes trivial. Recall that the basic goal is to define a
namespace pseudo-device, NAMESPACE, such that opening the device causes the sys-
tem to open the appropriate underlying device. Once a name has been mapped and a
new device identified, namopen merely invokes open. The code is contained in file
namopen.c.
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/* namopen.c - namopen */

#include <xinu.h>

/*------------------------------------------------------------------------

* namopen - open a file or device based on the name

*------------------------------------------------------------------------

*/

devcall namopen(

struct dentry *devptr, /* entry in device switch table */

char *name, /* name to open */

char *mode /* mode argument */

)

{

char newname[NM_MAXLEN]; /* name with prefix replaced */

did32 newdev; /* device ID after mapping */

/* Use namespace to map name to a new name and new descriptor */

newdev = nammap(name, newname, devptr->dvnum);

if (newdev == SYSERR) {

return SYSERR;

}

/* Open underlying device and return status */

return open(newdev, newname, mode);

}

21.13 Namespace Initialization

How should the prefix table be initialized? There are two possible approaches:
provide an initialization mechanism and require a user to fill in entries in the namespace
table, or provide initial entries for the table. The mechanism answer is easy. Because
the namespace has been designed as a pseudo-device, the system carries out initializa-
tion at startup when it calls init.

Deciding how to initialize a prefix table can be difficult. Therefore, we will exam-
ine the initialization function to see how it constructs a prefix table, and defer the dis-
cussion of actual prefixes until later sections. File naminit.c contains the code for the
naminit function:
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/* naminit.c - naminit */

#include <xinu.h>

#ifndef RFILESYS

#define RFILESYS SYSERR

#endif

#ifndef FILESYS

#define FILESYS SYSERR

#endif

#ifndef LFILESYS

#define LFILESYS SYSERR

#endif

struct nmentry nametab[NNAMES]; /* table of name mappings */

int32 nnames; /* num. of entries allocated */

/*------------------------------------------------------------------------

* naminit - initialize the syntactic namespace

*------------------------------------------------------------------------

*/

status naminit(void)

{

did32 i; /* index into devtab */

struct dentry *devptr; /* ptr to device table entry */

char tmpstr[NM_MAXLEN]; /* string to hold a name */

status retval; /* return value */

char *tptr; /* ptr into tempstring */

char *nptr; /* ptr to device name */

char devprefix[] = "/dev/"; /* prefix to use for devices */

int32 len; /* length of created name */

char ch; /* storage for a character */

/* Set prefix table to empty */

nnames = 0;

for (i=0; i<NDEVS ; i++) {

tptr = tmpstr;

nptr = devprefix;
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/* Copy prefix into tmpstr*/

len = 0;

while ((*tptr++ = *nptr++) != NULLCH) {

len++;

}

tptr--; /* move pointer to position before NULLCH */

devptr = &devtab[i];

nptr = devptr->dvname; /* move to device name */

/* Map device name to lower case and append */

while(++len < NM_MAXLEN) {

ch = *nptr++;

if ( (ch >= ’A’) && (ch <= ’Z’)) {

ch += ’a’ - ’A’;

}

if ( (*tptr++ = ch) == NULLCH) {

break;

}

}

if (len > NM_MAXLEN) {

kprintf("namespace: device name %s too long\r\n",

devptr->dvname);

continue;

}

retval = mount(tmpstr, NULLSTR, devptr->dvnum);

if (retval == SYSERR) {

kprintf("namespace: cannot mount device %d\r\n",

devptr->dvname);

continue;

}

}

/* Add other prefixes (longest prefix first) */

mount("/dev/null", "", CONSOLE);

mount("/remote/", "remote:", RFILESYS);

mount("/local/", NULLSTR, LFILESYS);

mount("/dev/", NULLSTR, SYSERR);

mount("~/", NULLSTR, LFILESYS);

mount("/", "root:", RFILESYS);

mount("", "", LFILESYS);
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return OK;

}

Ignore the specific prefix and replacement names and look only at how straightfor-
ward initialization is. After setting the number of valid entries to zero, naminit calls
mount to add entries to the prefix table, where each entry contains a prefix pattern, re-
placement string, and device id. The for loop iterates through the device switch table.
For each device, it creates a name of the form /dev/xxx, where xxx is the name of the de-
vice mapped into lower case. Thus, it creates an entry for /dev/console that maps to the
CONSOLE device. Thus, if a process calls:

d = open(NAMESPACE,"/dev/console","rw");

the namespace will invoke open on the CONSOLE device and return the result.

21.14 Ordering Entries In The Prefix Table

The Xinu name replacement policy affects users. To understand how, recall that
namrepl uses sequential lookup. Therefore, a user must mount names so that sequential
lookup produces the expected outcome. In particular, our implementation does not
prohibit overlapping prefixes, and does not warn users if overlaps occur. Consequently,
if overlapping prefixes occur, a user must insure that the longest prefix appears earlier
in the table than shorter prefixes. As an example, consider what happens if the table
contains two entries as Figure 21.1 illustrates.

���������������������������������������
Prefix Replacement Device���������������������������������������
"x" "" (null string) LFILESYS���������������������������������������
"xyz" "" (null string) RFILESYS�����������������������������������������
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Figure 21.1 Two entries in a prefix table; the order must be swapped or the
second entry will never be used.

The first entry maps prefix x to a local file system, and the second entry maps pre-
fix xyz to a remote file system. Unfortunately, because namrepl searches the table
sequentially, any file name that starts with x will match the first entry and will be
mapped to the local file system. The second entry will never be used. If the two are
reversed, however, file names starting with xyz will map onto the remote file system,
and other names starting with x will map to the local file system. The point is:
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Because our implementation searches the table of prefixes sequential-
ly and does not detect overlapping prefixes, a user must insert prefixes
in reverse order by length, insuring that the system will match the
longest prefix first.

21.15 Choosing A Logical Namespace

It is tempting to think of a namespace as merely a mechanism that can be used to
abbreviate long names. However, focusing on the mechanism can be misleading. The
key to choosing meaningful prefix names lies in thinking of a hierarchy into which files
can be placed. Then, the namespace design defines the organization of the hierarchy.

Rather than thinking of the namespace as a mechanism that abbrevi-
ates names, we think of all names being organized into a hierarchy.
Entries in the namespace are chosen to implement the desired hierar-
chy.

Imagine, for a minute, a system that can access files on a local disk as well as files
on a remote server. Do not think about how to abbreviate specific file names; think in-
stead of how to organize the files. Three possible organizations come to mind as Figure
21.2 shows.

R LL R

(a) (b) (c)

Figure 21.2 Three possible hierarchical organizations of local and remote
files: (a) local and remote files at the same level, (b) remote files
in a subdirectory of local files, and (c) local files as a subdirec-
tory of remote files.

As in the figure, local and remote files could be placed at equal, but distinct posi-
tions in the hierarchy. Alternatively, the local system could form the main part of the
hierarchy with remote files in a sub-hierarchy, or the remote files could form the main
hierarchy with local files as a sub-hierarchy. Among the choices, the size of the two
file systems and the frequency of access may help determine which organization is
preferable. For example, if the remote file system has thousands of files while the local
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file system has only ten, it may be natural to think of the remote file system as the main
hierarchy with the local files grafted onto a sub-hierarchy.

21.16 A Default Hierarchy And The Null Prefix

The Xinu namespace software design can easily support any of the hierarchies
shown in Figure 21.2. In particular, mount permits the user to choose one subsystem as
the default, and organize the remaining files with respect to that hierarchy.

How does a subsystem become the default? First, the prefix for the subsystem
must be such that it matches all names not matched by other table entries. The null pre-
fix provides guaranteed matching for our example namespace. Second, the default en-
try, which carries the null prefix, must be examined only after all other prefixes have
been tested. Because nammap searches the prefix table sequentially, the default must be
placed at the end of the table. If any other entry matches, namrepl will follow the
match.

Look at naminit again to see how the local file system becomes the default. The
final call to mount inserts the default mapping with a null prefix. Thus, any name that
does not match another prefix will refer to the local file system.

21.17 Additional Object Manipulation Functions

Although it appears to organize all names into a single, unified hierarchy, the
namespace illustrated above does not provide all needed functionality. To understand
why, observe that the code only handles the case of opening a named object. Other
operations on named objects are also possible:

d Testing the existence of an object
d Changing the name of an object
d Deleting an object

Testing the existence of an object. Often software needs to test the existence of an
object without otherwise affecting the object. It may seem that the following test could
be used to determine whether an object exists.

dev = open(NAMESPACE", "object", "r");

if (dev == SYSERR) {

...object does not exist
} else {

close(dev);

...object exists
}
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Unfortunately, a call to open can have side effects. For example, opening a network in-
terface device can cause the system to declare the interface to be available for packet
transfer. Thus, opening and then closing the device may cause packet transfer to begin,
even if a process has specifically disabled the interface. To avoid side effects, addition-
al functionality is needed.

Changing the name of an object. Most file systems allow a user to rename files.
However, two problems arise when the namespace is used. First, because users view all
files through the namespace, requests to rename files can be ambiguous: should the
name of the underlying file be changed or should the mapping in the namespace be
changed? Although it is possible to include an escape mechanism that allows a user to
distinguish between abstract names and names used in the underlying system, doing so
is dangerous because changes to underlying names may no longer map through the
namespace. Second, if a user specifies changing name α to name β, it may turn out that
string β maps to a local file system and α maps to a remote file system. Thus, even
though a user sees a unified hierarchy, a renaming operation may not be allowed (or
may involve a file copy).

Deleting an object. The reasoning given above applies to object deletion as well.
That is, because a user views all names through the namespace, a request to delete an
object must map the name through the namespace to determine the underlying file sys-
tem.

How should deletion, renaming, and testing the existence of an object be imple-
mented? Three possibilities arise: separate functions could be created for each opera-
tion, the device switch table could be expanded, or the control functions could be aug-
mented with additional operations. To understand the first approach, separate functions,
imagine a function DeleteObj that takes a name as an argument. The function would
use the namespace to map the name to an underlying device, and then invoke the ap-
propriate deletion operation on the device. The second approach consists of expanding
the device switch table to add additional high-level functions, such as delete, rename,
and an existence test. That is, in addition to open, read, write, and close operations, add
new operations that implement the additional functionality. The third approach consists
of adding functionality to the control function. For example, we could specify that if a
subsystem implements object deletion, the driver function that implements control must
honor a DELETE request. Xinu uses a mixture of the first and third approaches. Exer-
cises ask the reader to consider the advantages and disadvantages of expanding the de-
vice switch table.

21.18 Advantages And Limits Of The Namespace Approach

A syntactic namespace isolates programs from the underlying devices and file sys-
tems, allowing a naming hierarchy to be imagined or changed without changing the
underlying systems. To appreciate the power of a namespace, consider a system that
keeps temporary files on a local disk and uses the prefix /tmp/ to distinguish them from
other files. Moving temporary files to the remote file system consists of changing the
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namespace entry that specifies how to handle prefix /tmp/. Because programs always
use the namespace when they refer to files, all programs continue to operate correctly
with no change to the source code. The key point is:

A namespace permits the conceptual naming hierarchy to be reorgan-
ized without requiring recompilation of programs that use it.

Namespace software that uses only prefix patterns cannot handle all hierarchical
organizations or file mappings. For example, in some UNIX systems, the name /dev/tty
refers to a process’s control terminal, which a server should not use. The namespace
can prevent accidental access by mapping the prefix /dev/tty onto device ID SYSERR.
Unfortunately, such a mapping prevents the client from accessing other entries that
share the same prefix (e.g., /dev/tty1).

Using fixed strings as prefix patterns also prevents the namespace from changing
separator characters when they occur in the middle of names. For example, suppose a
computer has two underlying file systems, one of which follows the UNIX convention
of using the slash character to separate components along a path, while the other uses
the backslash character to separate components. Because it deals only with prefix pat-
terns, our example namespace cannot map slashes to backslashes or vice versa unless all
possible prefixes are stored in the namespace.

21.19 Generalized Patterns

Many of the namespace limitations can be overcome by using more general pat-
terns that were described near the beginning of the chapter. For example, if it is possi-
ble to specify a full string match instead of just a prefix match, the problem of distin-
guishing a name like /dev/tty from the name /dev/tty1 can be solved. Full match and
prefix match can be combined: mount can be modified to have an additional argument
that specifies the type of match, and the value can be stored in the table entry.

Generalizing patterns to allow more than fixed strings solves additional problems
and keeps all matching information in the pattern itself. For example, suppose charac-
ters have special meanings in a pattern as defined in Figure 21.3:†

Character Meaning������������������������������������������������
↑ match beginning of string
$ match end of string
. match any single character
* repeat 0 or more of a pattern
\ take next character in pattern literally

other self match as in a fixed string

Figure 21.3  An example definition of generalized patterns.

��������������������������������
†The pattern matching given here corresponds to that used in the UNIX sed command.



518 A Syntactic Namespace Chap. 21

Thus, a pattern like ↑/dev/tty $ specifies a full match of the string /dev/tty, while a pat-
tern like \$ matches a dollar sign that may be embedded in the string.

Two additional rules are necessary to make generalized pattern matching useful in
the namespace. First, we assume the left-most possible match will be used. Second,
we assume that among all left-most matches, the longest will be selected. The exercises
suggest how to use these generalized patterns to map the names that fixed prefixes can-
not handle.

21.20 Perspective

The syntax of names has been studied and debated extensively. At one time, each
operating system had its own naming scheme, and a variety of naming schemes flour-
ished. However, once hierarchical directory systems became prevalent, most operating
systems adopted a hierarchical naming scheme, and the only differences arise over small
details, such as whether a forward slash or backslash is used to separate components.

As our design points out, naming is conceptually separate from the underlying file
and I/O systems, and allows a designer to impose a consistent namespace across all
underlying facilities. However, the use of a syntactic approach has disadvantages as
well as advantages. The chief problems arise from semantics: although it provides the
appearance of uniformity, the namespace introduces ambiguity and confuses semantics.
For example, if an object is renamed, should the namespace be modified or should the
name of the underlying object be changed? If the namespace maps two prefixes to the
same underlying file system, applications that use separate prefixes could inadvertently
access the same object. If two names map to different underlying file systems, an
operation such as move that references the names may not be possible or may not work
as expected. Even an operation such as delete may have unexpected semantics (e.g.,
deleting a local object may move it to the trash, while deleting a remote object per-
manently removes the object).

21.21 Summary

Dealing with file names is difficult, especially if the operating system supports
multiple underlying naming schemes. One way to solve the naming problem employs a
layer of namespace software between applications and the underlying file systems. The
namespace does not implement files itself, but merely treats names as strings, mapping
them into forms appropriate for underlying systems based on information in a mapping
table.

We examined the implementation of a syntactic namespace that uses a pattern-
replacement scheme in which patterns are fixed strings representing name prefixes. The
software includes functions mount and unmount† that manipulate the mapping table, as
well as functions like nammap that map names into their target form. Our example
namespace comprises a NAMESPACE pseudo-device that users specify when opening a

��������������������������������
†Function unmount, which is not shown in the chapter, removes a prefix from the namespace.
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file. The NAMESPACE pseudo-device maps the specified file name, and then opens the
designated file.

The namespace software is both elegant and powerful. With only a few functions
and the simplistic notion of prefix matching, it can accommodate many naming
schemes. In particular, it accommodates a remote file system, a local file system, and a
set of devices. However, our simplistic version cannot handle all possible mappings. To
provide for more complex naming systems, the notion of pattern must be generalized.
One possible generalization assigns special meaning to some characters in the pattern.

EXERCISES

21.1 Should users have access to both nammap and namrepl? Why or why not?

21.2 Is it possible to modify mount so it refuses to mount prefix-replacement pairs that can
potentially cause an infinite loop? Why or why not?

21.3 What is the minimum number of prefix-replacement pairs that can cause nammap to
exceed the maximum string length?

21.4 Minimize the code in namopen by replacing the body with a single statement consisting
of two procedure calls.

21.5 Implement an upper-half control function for the NAMESPACE pseudo-device, and
make nammap a control function.

21.6 Implement generalized pattern matching. Refer to the UNIX sed command for addition-
al ways to define pattern match characters.

21.7 Build a namespace that has both prefix matches and full string matches.

21.8 Suppose a namespace uses fixed string patterns, but allows full string matching in addi-
tion to the current prefix matching. Are there instances when it makes sense to have a
full string pattern identical to a prefix pattern? Explain.

21.9 What additional file manipulation primitives might be needed beside rename, delete, and
existence test?
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System Initialization

Only by avoiding the beginning of things can we
escape their end.

— Cyril Connolly

22.1 Introduction

Initialization is the last step of the design process. Designers create a system by
thinking about the system in an executing state, postponing the details of how to get the
system started. Thinking about initialization early has the same bad effect as worrying
about optimization early: it tends to impose unnecessary constraints on the design, and
diverts the designer’s attention from important issues to trivial ones.

This chapter describes the steps required to initialize the system, and explains the
conceptual leap that initialization code makes in switching from a program that executes
sequentially to a system that supports concurrent processes. We will see that no special
hardware steps are involved, and understand that concurrency is an abstraction created
entirely by the operating system.

22.2 Bootstrap: Starting From Scratch

Our discussion of initialization begins with a consideration of system termination.
Everyone who has worked with a computer system knows that errant programs or mal-
functions in the hardware lead to catastrophic failures popularly called crashes. A crash
occurs when the hardware attempts an invalid operation because code or data for a
given operation is incorrect. Users know that when a crash occurs, the contents of
memory are lost and the operating system must be restarted, which often takes consider-
able time.

521
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How can a computer that is devoid of operating system code spring into action and
begin executing? It cannot. Somehow a program must be available before a computer
can start. On the oldest machines, restarting was a painful process because a human
operator entered the initial program through switches on the front panel. Switches were
replaced by keyboards, then by I/O devices such as tapes and disks, and eventually by
Read-Only Memory (ROM).

Some embedded devices do more than store an initial program in ROM; they store
the entire operating system, which means that the device can start executing immediate-
ly after receiving power (e.g., after the batteries are changed or the device is powered
on). However, most computers take multiple steps when restarting. When power is ap-
plied, the hardware executes an initial startup program from ROM. Although it may in-
clude mechanisms that allow engineers to debug the hardware, an initial program is usu-
ally quite small — its primary function consists of loading and running a larger pro-
gram. In a typical personal computer, for example, the startup program powers on de-
vices (e.g., a display, keyboard, and disk), copies the operating system image from disk
into memory, and then jumps to the entry point of the operating system.

Computer systems linked to a network may perform an additional step: the initial
startup program may load an intermediate program that initializes the network interface,
and then uses the network to download the operating system image from a remote
server.

Programs in a sequence that load ever larger programs are often called bootstraps,
and the entire process is called booting the system.† Older names for the bootstrap pro-
cess include Initial Program Load (IPL) and cold start.

22.3 Operating System Initialization

Of course, the work of initialization does not end when the CPU begins to execute
the operating system. The system must perform the following tasks:

d Initialize the memory management hardware and the free memory
list

d Initialize each operating system module

d Load (if not present) and initialize each of the device drivers

d Start (or reset) each I/O device

d Transform from a sequential program to a concurrent system

d Create a null process

d Create a process to execute user code (e.g., a desktop)

The most important step occurs once basic initialization completes: the operating
system must undergo a metamorphosis, changing itself from a program that executes
sequentially into an operating system that runs processes and supports concurrent execu-
tion. In the next sections, we will see what happens when an E2100L boots, understand

��������������������������������
†The terminology derives from the phrase “pulling one’s self up by one’s bootstraps,” a seemingly im-

possible task.
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how Xinu is loaded onto the hardware, review the sequence of steps Xinu takes when
execution begins, and see exactly how the transformation occurs.

22.4 Booting An Alternative Image On The E2100L

When used as a wireless router, the E2100L follows the steps outlined above.
After it is powered on, the router executes an initial startup program in ROM. Once it
has initialized devices, the startup program runs a version of embedded Linux (the
Linux code is also kept in ROM). After it boots, Linux launches applications that turn
the system into a wireless router. For example, one application uses standard network
protocols, such as IP, UDP, and DHCP, to talk over an Ethernet connection to an Inter-
net Service Provider (ISP). Another honors requests that the router receives from local
computers over the wired or wireless networks. Once Linux is running, all input and
output is controlled by built-in Linux processes, and the device can only act as a router;
there is no way to replace or augment the software.

If an E2100L is designed to run a built-in operating system and applications, how
can one make it boot Xinu? Fortunately, the vendor has included a way to interrupt the
normal startup sequence and gain control before Linux boots. To gain control, one uses
the console serial line (which is hidden from the user unless they remove the cover and
connect directly to the circuit board). Typing characters on the serial line during
bootstrap causes the initial startup program to stop before it loads Linux and to begin
accepting commands from the console. That is, the program issues the prompt:

ar7100>

and expects the user to enter a command. After executing the command, the startup
program sends the prompt again and waits for another command.

The startup program honors several commands that are used to download an im-
age. For example, the loadb command can be used to download a binary image over
the console serial line using the kermit protocol. Fortunately, the E2100L also includes
a bootp command that uses standard protocols BOOTP and TFTP to download an image
over the network. The bootp command takes an argument that specifies where to load
the image; Xinu is loaded into kernel space at location 0x81000000 with the command:

bootp 0x81000000

The E2100L sends a BOOTP request packet. The network must have a BOOTP
server running that has been configured to answer the request. Among other items, the
answer specifies the name of a file to download and the address of a server from which
to obtain the file. The E2100L sends a sequence of TFTP request packets to the server
to obtain the file. The network must also have a TFTP server running that has been
configured to respond to each request packet by sending the requested piece of the file.

Once it has downloaded a file and placed the file in memory, the startup program
again issues a prompt on the console line and waits for a command. If the user enters
the command

bootm
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the startup program branches to location 0x81000000 (i.e., begins running the Xinu
code that was downloaded into memory).

22.5 Xinu Initialization

Before it can become an operating system, Xinu must establish the runtime en-
vironment needed for C, initialize operating system modules, and enable interrupts. On
the E2100L, the bootstrap startup program handles some of the low-level hardware ini-
tialization tasks. For example, by the time Xinu runs, the startup program has initial-
ized the system bus. The startup program has also initialized the console serial device
(e.g., set the baud rate), making it possible for Xinu code to send and receive characters
over the console line immediately.

Although some low-level initialization is completed before Xinu boots, an assem-
bly language initialization function is still required. In our code, execution begins at la-
bel _start, found in file start.S:

/* start.S _start, memzero */

/************************************************************************/

/* */

/* External symbol start (_start in assembly language) gives the */

/* location where execution begins after the bootstrap loader has */

/* placed a Xinu image in memory and is ready to execute the image. */

/* */

/* After initializing the hardware and establishing a run-time */

/* environment suitable for C (including a valid stack pointer), the */

/* code jumps to the C function nulluser. */

/************************************************************************/

#include <interrupt.h>

#include <mips.h>

#define NULLSTK 8192 /* Safe size for NULLSTK */

.extern flash_size

.text

.align 4

.globl _minheap

.globl _start
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/*------------------------------------------------------------------------

*

* _start - set up interrupts, initialize the stack pointer, clear the

* null process stack, zero the BSS (uninitialized data)

* segment, and invoke nulluser

*------------------------------------------------------------------------

*/

.ent _start

_start:

/* Pick up flash size from a3 (where the boot loader leaves it) */

sw a3, flash_size

/* Clear Xinu-defined trap and interrupt vectors */

la a0, IRQ_ADDR

la a1, IRQVEC_END

jal memzero

/* Copy low-level interrupt dispatcher to reserved location. */

la a0, IRQ_ADDR /* Reserved vector location */

la a1, intdispatch /* Start of dispatch code */

lw v0, 0(a1)

sw v0, 0(a0) /* Store jump opcode */

/* Clear interrupt related registers in the coprocessor */

mtc0 zero, CP0_STATUS /* Clear interrupt masks */

mtc0 zero, CP0_CAUSE /* Clear interrupt cause reg. */

/* Clear and invalidate the L1 instruction and data caches */

jal flushcache

/* Set up Stack segment (see function summary) */

li s0, NULLSTK /* Stack is NULLSTK bytes */

la a0, _end

addu s0, s0, a0 /* Top of stack = _end+NULLSTK */

/* Word align the top of the stack */
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subu s1, s0, 1

srl s1, 4

sll s1, 4

/* Initialize the stack and frame pointers */

move sp, s1

move fp, s1

/* Zero NULLSTK space below new stack pointer */

move a1, s0 /* note; a0 still points to _end */

jal memzero

/* Clear the BSS segment */

la a0, _bss

la a1, _end

jal memzero

/* Store bottom of the heap */

la t0, minheap

sw s0, 0(t0)

j nulluser /* jump to the null process code */

.end _start

/*------------------------------------------------------------------------

* memzero - clear a specified area of memory

*

* args are: starting address and ending address

*------------------------------------------------------------------------

*/

.ent memzero

memzero:

sw zero, 0(a0)

addiu a0, a0, 4

blt a0, a1, memzero

jr ra

.end memzero
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22.6 System Startup

A single program, not an operating system, is running when the processor jumps to
the C function nulluser. The program initializes important operating system data struc-
tures, devices, semaphores, and processes. The code is found in file initialize.c. If
there is drama in the system, it lies here, where the transformation from program to sys-
tem begins.

/* initialize.c - nulluser, sysinit */

/* Handle system initialization and become the null process */

#include <xinu.h>

#include <string.h>

extern void _start(void); /* start of Xinu code */

extern void *_end; /* end of Xinu code */

/* Function prototypes */

extern void main(void); /* main is the first process created */

extern void xdone(void); /* system "shutdown" procedure */

static void sysinit(void); /* initializes system structures */

/* Declarations of major kernel variables */

struct procent proctab[NPROC]; /* Process table */

struct sentry semtab[NSEM]; /* Semaphore table */

struct memblk memlist; /* List of free memory blocks */

/* Active system status */

int prcount; /* Total number of live processes */

pid32 currpid; /* ID of currently executing process */

/* Memory bounds set by startup.S */

void *minheap; /* start of heap */

void *maxheap; /* highest valid memory address */

/*------------------------------------------------------------------------

* nulluser - initialize the system and become the null process

*

* Note: execution begins here after the C run-time environment has been
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* established. Interrupts are initially DISABLED, and must eventually

* be enabled explicitly. The code turns itself into the null process

* after initialization. Because it must always remain ready to execute,

* the null process cannot execute code that might cause it to be

* suspended, wait for a semaphore, put to sleep, or exit. In

* particular, the code must not perform I/O except for polled versions

* such as kprintf.

*------------------------------------------------------------------------

*/

void nulluser(void)

{

kprintf("\n\r%s\n\n\r", VERSION);

sysinit();

/* Output Xinu memory layout */

kprintf("%10d bytes physical memory.\r\n",

(uint32)maxheap - (uint32)addressp2k(0));

kprintf(" [0x%08X to 0x%08X]\r\n",

(uint32)addressp2k(0), (uint32)maxheap - 1);

kprintf("%10d bytes reserved system area.\r\n",

(uint32)_start - (uint32)addressp2k(0));

kprintf(" [0x%08X to 0x%08X]\r\n",

(uint32)addressp2k(0), (uint32)_start - 1);

kprintf("%10d bytes Xinu code.\r\n",

(uint32)&_end - (uint32)_start);

kprintf(" [0x%08X to 0x%08X]\r\n",

(uint32)_start, (uint32)&_end - 1);

kprintf("%10d bytes stack space.\r\n",

(uint32)minheap - (uint32)&_end);

kprintf(" [0x%08X to 0x%08X]\r\n",

(uint32)&_end, (uint32)minheap - 1);

kprintf("%10d bytes heap space.\r\n",

(uint32)maxheap - (uint32)minheap);

kprintf(" [0x%08X to 0x%08X]\r\n\r\n",

(uint32)minheap, (uint32)maxheap - 1);

/* Enable interrupts */

enable();

/* Create a process to execute function main() */
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resume(create

((void *)main, INITSTK, INITPRIO, "Main process", 0, NULL));

/* Become the Null process (i.e., guarantee that the CPU has */

/* something to run when no other process is ready to execute) */

while (TRUE) {

; /* do nothing */

}

}

/*------------------------------------------------------------------------

*

* sysinit - intialize all Xinu data structures and devices

*

*------------------------------------------------------------------------

*/

static void sysinit(void)

{

int32 i;

struct procent *prptr; /* ptr to process table entry */

struct dentry *devptr; /* ptr to device table entry */

struct sentry *semptr; /* prr to semaphore table entry */

struct memblk *memptr; /* ptr to memory block */

/* Initialize system variables */

/* Count the Null process as the first process in the system */

prcount = 1;

/* Scheduling is not currently blocked */

Defer.ndefers = 0;

/* Initialize the free memory list */

maxheap = (void *)addressp2k(MAXADDR);

memlist.mnext = (struct memblk *)minheap;

/* Overlay memblk structure on free memory and set fields */

memptr = (struct memblk *)minheap;
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memptr->mnext = NULL;

memptr->mlength = memlist.mlength = (uint32)(maxheap - minheap);

/* Initialize process table entries free */

for (i = 0; i < NPROC; i++) {

prptr = &proctab[i];

prptr->prstate = PR_FREE;

prptr->prname[0] = NULLCH;

prptr->prstkbase = NULL;

prptr->prprio = 0;

}

/* Initialize the Null process entry */

prptr = &proctab[NULLPROC];

prptr->prstate = PR_CURR;

prptr->prprio = 0;

strncpy(prptr->prname, "prnull", 7);

prptr->prstkbase = minheap;

prptr->prstklen = NULLSTK;

prptr->prstkptr = 0;

currpid = NULLPROC;

/* Initialize semaphores */

for (i = 0; i < NSEM; i++) {

semptr = &semtab[i];

semptr->sstate = S_FREE;

semptr->scount = 0;

semptr->squeue = newqueue();

}

/* Initialize buffer pools */

bufinit();

/* Create a ready list for processes */

readylist = newqueue();

/* Initialize real time clock */

clkinit();
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/* Initialize non-volative RAM storage */

nvramInit();

for (i = 0; i < NDEVS; i++) {

if (! isbaddev(i)) {

devptr = (struct dentry *) &devtab[i];

(devptr->dvinit) (devptr);

}

}

return;

}

Nulluser itself is exceedingly simple. It calls procedure sysinit to initialize the sys-
tem data structures. When sysinit returns, the running program has become the null
process (process 0), but interrupts remain disabled and no other processes exist. After
printing a few introductory messages, nulluser enables interrupts, and calls create to
start a process running the user’s main program.

Because the program executing nulluser has become the null process, it cannot
exit, sleep, wait for a semaphore, or suspend itself. Fortunately, the initialization func-
tion does not perform any action that takes the caller out of the current or ready states.
If such actions were needed, sysinit would have created another process to handle the
action. Once initialization is complete and a process has been created to execute the
user’s main program, the null process falls into an infinite loop, giving resched a pro-
cess to schedule when no user processes are ready to run.

22.7 Transforming A Program Into A Process

Function sysinit handles the task of system initialization. It initializes the system
data structures, such as the semaphore table, the process table, and the free memory list.
It also calls clkinit to initialize the real-time clock. Finally, sysinit iterates through the
devices that have been configured and calls the initialization function for each device.
To do so, it extracts field dvinit from the device switch table entry, treats the value as
an address, and invokes the function at that address.

The most interesting piece of initialization code occurs about half-way through
sysinit when it fills in the process table entry for process zero. Many of the process
table fields, such as the process name field, can be left uninitialized — they are filled in
merely to make debugging easier. The real work is done by the two lines that set the
current process ID variable, currpid, to the ID of the null process, and assign PR_CURR
to the process state field of the process table entry. Until currpid and the state have
been assigned, rescheduling is impossible. Once they have been assigned, the program
becomes a currently running process that resched can identify as the process with ID
zero.
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To summarize:

After it fills in the process table entry for process zero, the code sets
variable currpid to zero, which transforms the sequential program into
a process.

Once the null process has been created, all that remains is for sysinit to initialize
the other pieces of the system before it returns so that all services are available when
function nulluser starts a process executing the user’s main program.

22.8 Perspective

The intellectually significant aspects of operating system design arise when new
abstractions are created on top of low-level hardware. In the case of system initializa-
tion, the details are not as important as the conceptual transformation: the processor
starts a fetch-execute cycle running instructions sequentially, and the initialization code
self-transforms into a concurrent processing system. The important point is that the ini-
tial code does not create a separate, concurrent system and then jump to the new sys-
tem. No leap is made to reach the abstraction, and the original sequential execution is
not abandoned. Instead, the running code declares itself to be a process, fills in the sys-
tem data structures needed to support the declaration, and eventually allows other
processes to execute. Meanwhile, the processor continues the fetch-execute cycle, and
the new abstraction emerges without any disruption.

22.9 Summary

Initialization is the last step of system design; it should be postponed to avoid
changing the design simply to make initialization easier. Although initialization in-
volves many details, the most conceptually interesting part involves the transformation
from a sequential program to a system that supports concurrent processing. To make it-
self correspond to the null process, the code fills in the process table entry for process
zero and sets variable currpid to zero.

EXERCISES

22.1 If you were designing a bootstrap loader program, what additional functionality would
you include? Why?

22.2 Is the order of initialization important for the process table, semaphore table, memory
free list, devices, and ready list? Explain.
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22.3 On many systems, it is possible to create a function sizmem that finds the highest valid
memory address by probing memory until an exception occurs. Is such a function possi-
ble on the E2100L? Why or why not?

22.4 Explain, by tracing through the functions involved, what would go wrong if nulluser en-
abled interrupts before calling sysinit.

22.5 The network code, remote disk driver, and remote file system driver each create a pro-
cess. Should the processes be created in sysinit? Why or why not?

22.6 Most operating systems arrange for the network code to run and obtain an IP address be-
fore the system starts any user processes. Design a way for Xinu to create a network
process, wait for the network process to obtain an IP address, and then create a process
to run the main program? (Careful: the null process cannot block.)
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Exception Handling

I never make exceptions. An exception disproves the
rule.

— Sir Arthur Conan Doyle

23.1 Introduction

This chapter discusses the topic of exception handling. Because the underlying
hardware dictates exactly how an exception is reported, the techniques an operating sys-
tem uses to handle exceptions depend entirely on the hardware. Therefore, we will
describe how exceptions are handled on the example E2100L, and leave readers to ex-
plore other systems and architectures.

In general, exception handling is concerned with details rather than concepts.
Therefore, the chapter contains fewer broad concepts than earlier chapters. The reader
should think of it as an example, and be aware that both the details and techniques may
change if another hardware system is used.

23.2 Exceptions, Traps, And Illegal Interrupts

Arranging an operating system to correctly associate device addresses, interrupt
vector locations, and interrupt dispatchers is a tedious task that plagues most imple-
menters. Mismatches between the hardware and operating system configuration can
cause devices to interrupt at vector locations other than those expected by the operating
system. When a new device is added to an embedded system, the operating system
software must be reconfigured to include a driver for the device.
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A related problem occurs when bugs in a program cause it to generate an excep-
tion, sometimes called a trap. An exception might occur, for example, if a program at-
tempts to fetch or store a word from memory using an address that is not a multiple of
four or if a program attempts to divide by zero. Recall that when a program attempts
an illegal instruction, the hardware handles the problem similar to the way it handles a
device interrupt. That is, the hardware temporarily stops the fetch execute cycle, and
uses the address found in an exception vector to pass control to the operating system
function that handles exceptions.

When an unexpected interrupt occurs, the problem lies in the system configuration
— the operating system must be reconfigured to handle the extra device. Exceptions
are more complex. Exception handling depends on the size and purpose of the system.
It also depends on whether the exception arose while the processor was executing
operating system code (in which case the operating system vendor must correct the
problem) or an application written by a third party (in which case the application vendor
must correct the problem).

In a conventional system, when an application causes an exception, the operating
system can terminate the process running the application and inform the user that a
problem has occurred. For an embedded system, however, recovery is difficult or im-
possible. Even if the system allows interaction with a user, the user can do little to
correct the problem. Thus, most embedded systems either reboot or power down.

Our example code follows the Unix tradition, and uses the name panic for the
function that handles exceptions. Our version of panic takes a string as an argument. It
displays the argument string on the console, and calls function halt to halt the processor.
The code is minimal: panic does not attempt to recover, nor does it attempt to identify
the offending process.

Because many hardware-specific details are involved, a version of panic that
displays registers or processor state may need to be written in assembly language. For
example, an exception can occur because a stack pointer is invalid, and a panic function
may need to avoid using the stack. Consequently, to work under all circumstances,
panic code cannot merely attempt to push a value on the stack or execute a function
call. Similarly, because entries in the device switch table may be incorrect, a panic
function that extracts information about the CONSOLE device from the device switch
table may not work. Fortunately, most of these cases are extreme. Therefore, many
operating system designers start with a basic version of the panic function that works as
long as the bulk of the operating system and run-time environment remain intact.

23.3 Implementation Of Panic

Our version of a panic function is simplistic: it displays a message on the CON-
SOLE, turns off the “run” light (i.e., the front-panel LED), and calls halt. Because the
MIPS architecture does not provide an instruction to stop the processor, our implemen-
tation of halt merely enters a tight loop. File panic.c contains the code:
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/* panic.c - panic */

#include <xinu.h>

/*------------------------------------------------------------------------

* panic - display a message and stop all processing

*------------------------------------------------------------------------

*/

void panic (

char *msg /* message to display */

)

{

intmask mask; /* saved interrupt mask */

mask = disable();

kprintf("\n\n\rpanic: %s\n\n\r", msg);

gpioLEDOff(GPIO_LED_CISCOWHT); /* turn off LED "run" light */

halt(); /* halt the processor */

}

23.4 Perspective

The question of how to handle exceptions is more complex than it may seem. To
see why, consider what happens after an application makes a system call: although it
remains running, the application process executes operating system code. If an excep-
tion occurs, the exception should be considered an operating system problem and should
not invoke the exception handler for the process. Similarly, if an exception occurs
while an application is executing code from a shared library, the exception should not
be treated differently than an exception caused by the application. Such distinctions re-
quire the operating system to keep track of exactly what an application is currently do-
ing.

Another type of complexity arises because exceptions can be caused by the interac-
tion of processes. For example, if a Xinu process inadvertently writes into another
process’s address space, the second process may experience an exception that the first
process caused. Thus, even if the system provides a mechanism to catch exceptions, the
exception handler for the second process may not anticipate the problem and may have
no way to recover.
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23.5 Summary

Trapping and identifying exceptions and unexpected interrupts are important be-
cause they help isolate bugs that arise as an operating system is being implemented.
Hence, building error detection functions early is essential, even if the implementation
is crude and unsophisticated.

In embedded systems, an exception usually causes the system to reboot or power
down. Our example implementation of panic assumes much of the operating system
remains intact. The code disables interrupts, prints a message on the console, and calls
halt to stop further processing.

EXERCISES

23.1 Rewrite Xinu to make the code serially reusable, and modify panic to wait 15 seconds
and then jump back to the starting location (i.e., reboot Xinu).

23.2 How many locations does panic require on the run-time stack to process an exception?

23.3 Design a mechanism that allows an executing process to catch exceptions.

23.4 An old LSI-11 computer included an exception for power-fail, and the authors once saw
Xinu print a power-fail message. See if you can find a processor that detects imminent
power failures, and find out how many instructions can be executed between the loss of
power and system shutdown.

23.5 Make a list of the requirements for the example implementation of panic to operate.
(Hint: is a stack required?)
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System Configuration

No pleasure endures unseasoned by variety.

— Publilius Syrus

24.1 Introduction

This chapter concludes the discussion of basic operating system design by answer-
ing a practical question: how can the code built in earlier chapters be transformed to
make it suitable for a given computer that has a specific set of peripheral devices?

The chapter discusses the motivation for configuration, tradeoffs between static and
dynamic configuration, and presents a basic configuration program that takes a descrip-
tion of the system and generates source files tailored to the description.

24.2 The Need For Multiple Configurations

The earliest computers were designed as monolithic systems. The hardware and
software were designed together. A designer chose the details of the CPU, memory,
and I/O devices, and an operating system was built to control the hardware. Later gen-
erations of computers added options, allowing a customer to choose between a large or
small memory and a large or small disk. As the industry matured, third-party vendors
began selling peripheral devices that could be attached to a computer. Current comput-
ers have many options — an owner can choose from among hardware devices sold by
many vendors. Thus, a given computer can have a combination of hardware devices
unlike other computers.
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Designers use two approaches to accommodate combinations of devices:

d Static system configuration

d Dynamic device drivers

Static system configuration. Static configuration is used for small embedded sys-
tems that are “self-contained.” For a typical embedded system, an operating system is
created that supports the available hardware and does not contain any extra modules.
To create such a system, the designer writes a specification that describes the exact peri-
pherals on the system. The specification becomes input to a configuration program that
manages operating system source code. The configuration program uses the specifica-
tion to select the modules that are needed for the target hardware, and excludes modules
for other hardware. When the resulting code has been compiled and linked, we say it is
configured for the hardware.

Dynamic device drivers. Dynamic device drivers are used for large systems that
have plenty of resources. The basic operating system starts running without an exact
knowledge of the hardware. The system probes the hardware, determines which devices
are present, and loads drivers for the devices automatically. Of course, the driver
software must be available on a local disk, must be supplied by the device, or must be
downloaded over the Internet. Furthermore, dynamic configuration takes time (i.e., ex-
tends the time required for bootstrap).

Static configuration is a form of early binding. The chief advantage is that the
memory image only contains modules for the hardware that exists. Another advantage
arises because the system does not spend time identifying hardware during the bootstrap
process; the information is bound into the code. The chief disadvantage of early config-
uration is that a system configured for one machine cannot run on another unless the
two are identical, including details such as the size of memory and all the devices.

Deferring configuration until system startup allows the designer to build more
robust code because a single system can operate on several hardware configurations.
During startup, the system can adapt itself to the hardware. More important, dynamic
reconfiguration allows a system to adapt to changes in the hardware without stopping
(e.g., when a user attaches or detaches a USB device).

24.3 Configuration In Xinu

Because it runs as an embedded system, Xinu follows a static configuration ap-
proach, with the majority of configuration occurring when the system is compiled and
linked. Of course, even in some embedded systems, part of the configuration can be
postponed until system startup. For example, some versions of Xinu calculate the size
of memory and detect the presence of a real-time clock after Xinu begins. Interrupt
vector initialization also occurs at system startup, when the system calls the driver ini-
tialization routines.
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Xinu uses a configuration program to automate the selection of device driver
modules. Named config, the program is not part of the operating system, and we do not
need to examine the source code. Instead, we will look at how config operates: it takes
an input file that contains specifications, and produces output files that become part of
the operating system code. The next sections explain the configuration program and
show examples.

24.4 Contents Of The Xinu Configuration File

The config program takes as input a text file named Configuration. It parses the
input file and generates two output files, conf.h and conf.c. We have already seen the
output files, which contain defined constants for devices and a definition of the device
switch table.†

File Configuration is divided into three sections by occurrences of the separator
characters “%%”:

d Section 1: type declarations for device types

d Section 2: device specifications for specific devices

d Section 3: automatically generated symbolic constants

24.4.1  Section 1: Type Declarations

The motivation for a type declaration arises because a system may contain more
than one copy of a particular hardware device. For example, if a system has two UART
devices that both use the tty abstraction, the set of functions that comprise a tty driver
must be specified for each UART. Entering the specification many times manually is
error-prone, and can lead to inconsistencies. Thus, the type section allows the specifica-
tion to be entered once and assigned a name that is used with both devices in the device
specification section.

Each type declaration defines a name for the type, and lists a set of default device
driver functions for the type. The declaration also allows one to specify the type of
hardware with which the device is associated. For example, the type declaration:

tty:
on uart

-i ttyInit -o ionull -c ionull
-r ttyRead -g ttyGetc -p ttyPutc
-w ttyWrite -s ioerr -n ttyControl
-intr ttyInterrupt -irq 11

defines a type named tty that is used on a UART device. Neither tty nor uart is a key-
word or has any meaning. Instead they are simply names that the designer chose. The

��������������������������������
†File conf.h can be found on page 247, and conf.c can be found on page 259.
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remaining items specify the default driver functions for type tty. Each driver function is
preceded by a keyword that begins with a minus sign. Figure 24.1 lists the possible
keywords and gives their meaning. Note: a given specification does not need to use all
keywords.

�����������������������������������������������
Keyword Meaning�����������������������������������������������

-i function that performs init
-o function that performs open
-c function that performs close
-r function that performs read
-w function that performs write
-s function that performs seek
-g function that performs getc
-p function that performs putc
-n function that performs control

-intr function that handles interrupts
-csr control and status register address
-irq interrupt vector number�������������������������������������������������
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Figure 24.1  Keywords used in the Xinu configuration file and their meaning.

24.4.2  Section 2: Device Specifications

Section 2 of file Configuration contains a declaration for each device in the sys-
tem. A declaration gives a name for the device (e.g., CONSOLE), and specifies the set
of functions that constitute a driver. Note that in Xinu, a device is an abstract concept,
not necessarily tied to a physical hardware device. For example, in addition to devices
like CONSOLE and ETHERNET that each correspond to underlying hardware, the de-
vice section can list pseudo-devices, such as a FILE device used for I/O.

Declaring a device serves two purposes. First, it allocates a slot in the device
switch table, allowing the high-level I/O primitives to be used with the device rather
than requiring a programmer to call specific driver functions. Second, it allows config
to assign each device a minor device number. All devices with the same type are as-
signed minor numbers in sequence starting at zero.

When a device is declared, specific values can be supplied as needed or driver
functions can be overridden. For example, the declaration:

CONSOLE is tty on uart -csr 0xB8020000

declares CONSOLE to be a device of type tty that runs on UART hardware. In addi-
tion, the declaration specifies a CSR address of 0xB8020000.
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If a programmer wanted to test a new version of ttyGetc, the programmer might
change the specification to:

CONSOLE is tty on uart -csr 0xB8020000 -g myttyGetc

which uses the default driver functions from the tty declaration given above, but over-
rides the getc function and uses myttyGetc. Note that having a configuration makes it
easy to change one function without modifying or replacing the original file.

The example type declaration includes the phrase on uart. To understand the pur-
pose of specifying the underlying hardware, observe that designers sometimes wish to
use the same abstraction for multiple pieces of hardware. For example, suppose a sys-
tem contains two types of UART hardware. The on keyword allows a designer to use
the tty abstraction for hardware types, and to allocate a single array of control blocks
even though some of the low-level hardware details differ and the set of driver func-
tions used for one type of hardware differs from the set used for another.

24.4.3  Automatically Generated Symbolic Constants

In addition to defining the structure of the device switch table, conf.h contains con-
stants that specify the total number of devices and the number of each type. The config
program generates the constants to reflect the specification found in file Configuration.
For example, constant NDEVS is an integer that tells the total number of devices that
have been configured. The device switch table contains NDEVS devices, and device-
independent I/O routines use NDEVS to test whether a device id corresponds to a valid
device.

Config also generates a set of defined constants that specify the number of devices
of each type. Driver functions can use the appropriate constant to declare the array of
control blocks. Each constant has the form Nxxx, where xxx is the type name. For ex-
ample, if file Configuration defines two devices of type tty, conf.h will contain the fol-
lowing line:

#define Ntty 2

24.5 Computation Of Minor Device Numbers

Consider the files that config produces. Conf.h contains the declaration of the de-
vice switch table, and conf.c contains the code that initializes the table. For a given de-
vice, its devtab entry contains a set of pointers to the device driver routines that
correspond to high-level I/O operations like open, close, read, and write. The entry also
contains the interrupt vector address, and the device’s CSR address. All information in
the device switch table is derived from file Configuration in a straightforward manner.
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As mentioned above, each entry in the device switch table also contains a minor
device number. Minor device numbers are nothing more than integers that distinguish
among multiple devices that each use the same type of control block. Recall that device
driver functions use the minor device number as an index into the array of control
blocks to associate a specific entry with each device. In essence, the config program
counts devices of each type. That is, each time it encounters a device, config uses the
device type to assign the next minor device number (numbers start at zero). For exam-
ple, Figure 24.2 shows how device IDs and minor numbers are assigned on a system
that has three tty devices and two eth devices.

��������������������������������������������
device device device minor
name identifier type number��������������������������������������������

CONSOLE 0 tty 0��������������������������������������������
ETHERNET 1 eth 0��������������������������������������������
COM2 2 tty 1��������������������������������������������
ETHER2 3 eth 1��������������������������������������������
PRINTER 4 tty 2����������������������������������������������
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Figure 24.2  An example of device configuration.

Notice that the three tty lines have minor numbers zero, one, and two, even though their
device IDs happen to be zero, two, and four.

24.6 Steps In Configuring A Xinu System

To configure a Xinu system, the programmer edits file Configuration, adding or
changing device information and symbolic constants as desired. When run, program
config first reads and parses the file, collecting the information about each device type.
It then reads device specifications, assigns minor device numbers, and produces the out-
put files conf.c and conf.h. Finally, config appends definitions of symbolic constants
from the third section of the specifications onto conf.h, making them available for
operating system functions to include.

After config produces a new version of conf.c and conf.h, conf.c must be recom-
piled, as must all system functions that include conf.h.
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24.7 Perspective

The history of operating systems is one of moving from static configuration to
dynamic configuration. The interesting question is whether the benefits of dynamic
configuration outweigh the costs. For example, compare booting Xinu to booting a
large commercial operating system, such as Windows. Although the underlying com-
puter hardware does not usually change, a commercial operating system always goes
through the steps of polling the bus to find the devices that are present, loading drivers,
and interacting with each device. If the operating system were only reconfigured when
the hardware changed, the system could boot almost instantaneously, close to the boot
time for Xinu. Now that you understand operating systems, you can think of the trade-
off whenever you are forced to wait for an operating system to boot.

24.8 Summary

Instead of building a monolithic operating system tailored to specific hardware,
designers look for ways to make systems configurable. Static configuration, a form of
early binding, selects modules when the system is compiled and linked. The alternative,
dynamic configuration, loads modules such as device drivers at run-time.

Because it is designed for an embedded environment, Xinu uses static config-
uration. Program config reads file Configuration and produces files conf.h and conf.c
that define and initialize the device switch table. The separation of device types from
device declarations allows config to compute minor device numbers.

EXERCISES

24.1 Create a function myttyRead that calls ttyGetc repeatedly to satisfy a request. To test
your code, modify file Configuration to substitute your code in place of ttyRead.

24.2 Find out how other systems are configured. What happens, for example, when Windows
boots?

24.3 If every operating system function includes conf.h, any change to file Configuration
means a new version of conf.h will be generated, and the entire system must be recom-
piled. Redesign the config program that separates constants into several different include
files to eliminate unnecessary recompilation.

24.4 Discuss whether a configuration program is worthwhile. Include some estimate of the
extra effort required to make a system easily configurable. Remember that a program-
mer is likely to have little experience or knowledge about a system when it is first con-
figured.

24.5 In theory, many aspects of a system may need to change when porting the system from
one computer to another. In addition to devices, for example, one might consider the
processor (not only the basic instruction set, but the extra instructions found on some
models), the availability of co-processors (including floating point), the real-time clock
or time resolution, and the endianness of integers. Argue that if a configuration system
has parameters for all the above, the resulting system is untestable.
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An Example User Interface:
The Xinu Shell

A man has to learn that he cannot command things...

— James Allen

25.1 Introduction

Previous chapters explain an operating system as a set of functions that applica-
tions can invoke to obtain services. However, a typical user never encounters system
functions. Instead, users invoke applications and allow the applications to access func-
tions in the underlying system.

This chapter examines a basic interface known as a shell† that allows a user to
launch applications and control their input and output. Following the pattern estab-
lished by other parts of the system, our design emphasizes simplicity and elegance rath-
er than features. We concentrate on a few fundamental ideas that make the shell power-
ful without requiring large amounts of code. The chapter shows examples of both
software that interprets user commands and applications that a user can invoke.
Although it only offers basic functionality, our example interpreter illustrates several
important concepts.

��������������������������������
†The term shell and many of the ideas used in the Xinu shell come from UNIX.
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25.2 What Is A User Interface?

A user interface consists of the hardware and software with which users interact to
perform computational tasks and observe the results. Thus, user interface software lies
between a human who specifies what must be done and a computer system that per-
forms the specified tasks.

The goal of user interface design is to create an environment in which users can
perform computational tasks conveniently and productively. For example, most modern
user interfaces employ a graphical representation that presents a set of icons from which
the user selects to launch an application. The use of graphics makes application selec-
tion quick, and relieves the user from memorizing a set of application names.

Small embedded systems typically offer two levels of user interface: one for the
end user and another for a system builder. The E2100L, our example system, provides
both levels: a web interface for customers and a console interface for programmers.
When a customer uses the wireless router as the vendor intended, the customer boots
the router and then uses a conventional browser to interact with the device. The web
interface allows a customer to set passwords, control the wireless network hardware,
and configure routing. However, the web interface cannot be used to download
software or otherwise change the system. To perform such tasks, a programmer must
use the console interface and interact over a serial line.

25.3 Commands And Design Principles

Industry uses the term Command Line Interface (CLI) to describe a user interface
that allows a user to enter a series of textual commands; many embedded system pro-
ducts offer a command-line interface. Usually, each line of input corresponds to a com-
mand, and the system processes a line before reading the next line. The term command
arises because most CLIs follow the same syntactic form in which a line starts with a
name that specifies an action to be taken and is followed by parameters that control the
details of the action and the item(s) to which the action applies. For example, if we can
imagine a system that uses a command named config to control settings associated with
a network interface, the command to set the MTU parameter of interface number 0 to
1500 might be:

config 0 MTU=1500

The set of all available commands determines the functionality available to a user
(i.e., defines the power of the computing system). However, a good design does not
merely collect random commands. Instead, the design adheres to the following princi-
ples:

d Functionality: sufficient for all needs
d Orthogonality: only one way to perform a given task
d Consistency: commands follow a consistent pattern
d Least astonishment: a user should be able to predict results

www.itpub.net



Sec. 25.3 Commands And Design Principles 551

25.4 Design Decisions For A Simplified Shell

When a programmer designs a shell, the programmer must choose among many al-
ternatives. The following paragraphs list decisions a programmer faces, and describe
the choices made for a simplified Xinu shell.

Handling input. Should our interface allow the terminal device driver to handle
the details of backspacing, character echoing, and line erasing, or should it handle those
details itself? The choice is important because it determines the extent to which the
shell can control input. For example, a modern Unix shell allows Control-B and
Control-F to move the cursor backward and forward while editing a line of input.†
However, the Xinu tty driver does not provide such editing features. Despite its limita-
tions, our example shell uses the tty driver to simplify the design and reduce the amount
of code.

Foreground or background execution. Does the shell wait while a command com-
pletes execution before starting another? Our shell follows the Unix tradition of allow-
ing a user to decide whether the shell waits or the command executes in background.

Control of input and output. Also like Unix, our example shell allows a user to
specify a source of input and destination for output when the command is invoked. The
technique, known as I/O redirection, allows each command to function as a general-
purpose tool that can be applied to a variety of files and I/O devices. Providing redirec-
tion in the shell also means that I/O specifications are uniform — a single mechanism
for redirection applies to all commands.

Typed or untyped arguments. The question is whether the shell understands the
number and type of arguments for a given command. Following the Unix tradition, our
example shell does not understand arguments, and does not interpret them. Instead, the
shell treats each argument as a text string, and the set of arguments is passed to the
command. Consequently, each command must check whether its arguments are valid.

25.5 Shell Organization And Operation

A shell is organized as a loop that repeatedly reads a line of input and executes the
command on the line. Once a line has been read, the shell must extract a command
name, arguments, and other items, such as the specifications of I/O redirection or back-
ground processing. Following standard practice for syntactic analysis, we will divide
the code into two functions: one that handles lexical analysis by grouping characters
into tokens, and another that examines whether the set of tokens form a valid command.

Using a separate lexical function may seem unnecessary for the trivial syntax of
our sample shell. However, we chose the organization because it permits future expan-
sion.

��������������������������������
†The use of Control-B and Control-F is derived from the Emacs editor.
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25.6 The Definition Of Lexical Tokens

At the lexical level, our shell scans a line of input and groups characters into syn-
tactic tokens. Figure 25.1 lists the lexical tokens that the scanner recognizes and the
four lexical types the scanner uses when classifying tokens.

������������������������������������������������������������������������
Token Type (num. value) Character Description������������������������������������������������������������������������
SH_TOK_AMPER (0) & ampersand������������������������������������������������������������������������
SH_TOK_LESS (1) < less-than symbol������������������������������������������������������������������������
SH_TOK_GREATER (2) > greater-than symbol������������������������������������������������������������������������
SH_TOK_OTHER (3) ’.. . ’ quoted string (single quotes)������������������������������������������������������������������������
SH_TOK_OTHER (3) "..." quoted string (double-quotes)������������������������������������������������������������������������
SH_TOK_OTHER (3) other sequence of non-whitespace��������������������������������������������������������������������������
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Figure 25.1  Lexical tokens used by the example Xinu shell.

The use of quoted strings allows a user to specify an argument (or a file name) that
contains arbitrary characters, including the special characters recognized by the shell.
Each quoted string starts with either a single or double quote, and contains all charac-
ters, including blanks and tabs, up to the first occurrence of the opening quote. Thus,
the string:

’a string’

contains eight total characters including a blank, and the string

"don’t blink"

contains eleven characters, including a single quote. The lexical scanner removes the
surrounding quotes, and classifies the resulting sequence of characters to be a single to-
ken of type SH_TOK_OTHER.

The lexical scanner defines whitespace to consist of blanks or tab characters. At
least one whitespace character must separate two tokens of type SH_TOK_OTHER.
Otherwise, whitespace is ignored.

25.7 The Definition Of Command-Line Syntax

Once a line has been scanned and divided into a series of lexical tokens, the shell
parses the tokens to verify that they form a valid sequence. The syntax is:

command_name args* [ redirection ] [ background ]
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Brackets [ ] denote an optional occurrence and asterisk indicates zero or more repetitions
of an item. The string command_name denotes the name of a command, args* denotes
zero or more optional arguments, the optional redirection refers to input redirection,
output redirection, or both, and the optional background indicates background execu-
tion. Figure 25.2 contains a grammar that defines the set of valid inputs in terms of to-
kens.

command → name [args] [redirection] [background]

name → SH_TOK_OTHER

args → SH_TOK_OTHER [args]

redirection → input_redirect [output_redirect]

redirection → output_redirect [input_redirect]

input_redirect → SH_TOK_LESS SH_TOK_OTHER

output_redirect → SH_TOK_GREATER SH_TOK_OTHER

background → SH_TOK_AMPER

Figure 25.2 A grammar that specifies valid sequences of tokens for the exam-
ple shell.

In essence, a command consists of a sequence of one or more “other” tokens op-
tionally followed by requests to redirect the input and/or output (in either order), option-
ally followed by a specification that the command should run in background. The first
token on the line must be the name of a command.

25.8 Implementation Of The Xinu Shell

Our examination of the implementation begins with the definition of constants and
variables used by the shell. File shell.h contains the declarations.
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/* shell.h - declarations and constants used by the Xinu shell */

/* Size constants */

#define SHELL_BUFLEN TY_IBUFLEN+1 /* length of input buffer */

#define SHELL_MAXTOK 32 /* maximum tokens per line */

#define SHELL_CMDSTK 8192 /* size of stack for process */

/* that executes command */

#define SHELL_ARGLEN (SHELL_BUFLEN+SHELL_MAXTOK) /* argument area */

#define SHELL_CMDPRIO 20 /* process priority for command */

/* Message constants */

/* Shell banner (assumes VT100) */

#define SHELL_BAN0 "\033[1;31m"

#define SHELL_BAN1 "------------------------------------------"

#define SHELL_BAN2 " __ __ _____ _ _ _ _ "

#define SHELL_BAN3 " \\ \\ / / |__ __| | \\ | | | | | | "

#define SHELL_BAN4 " \\ \\/ / | | | \\| | | | | | "

#define SHELL_BAN5 " / /\\ \\ _| |_ | \\ | | | | | "

#define SHELL_BAN6 " / / \\ \\ | | | | \\ | \\ -- / "

#define SHELL_BAN7 " -- -- ----- - - ---- "

#define SHELL_BAN8 "------------------------------------------"

#define SHELL_BAN9 "\033[0;39m\n"

/* Messages shell displays for user */

#define SHELL_PROMPT "xsh $ " /* prompt */

#define SHELL_STRTMSG "Welcome to Xinu!\n" /* Welcome message */

#define SHELL_EXITMSG "Shell closed\n" /* shell exit message */

#define SHELL_SYNERRMSG "Syntax error\n" /* syntax error message */

#define SHELL_CREATMSG "Cannot create process\n"/* command error */

#define SHELL_INERRMSG "Cannot open file %s for input\n" /* input err */

#define SHELL_OUTERRMSG "Cannot open file %s for output\n"/* output err */

#define SHELL_BGERRMSG "Cannot redirect I/O or background a builtin\n"

/* builtin cmd err */

/* Constants used for lexical analysis */

#define SH_NEWLINE ’\n’ /* New line character */

#define SH_EOF ’\04’ /* Control-D is EOF */

#define SH_AMPER ’&’ /* ampersand character */

#define SH_BLANK ’ ’ /* blank character */

#define SH_TAB ’\t’ /* tab character */

#define SH_SQUOTE ’\’’ /* single quote character */
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#define SH_DQUOTE ’"’ /* double quote character */

#define SH_LESS ’<’ /* less-than character */

#define SH_GREATER ’>’ /* greater-than character */

/* Token types */

#define SH_TOK_AMPER 0 /* ampersand token */

#define SH_TOK_LESS 1 /* less-than token */

#define SH_TOK_GREATER 2 /* greater-than token */

#define SH_TOK_OTHER 3 /* token other than those */

/* listed above (e.g., an */

/* alphanumeric string) */

/* Shell return constants */

#define SHELL_OK 0

#define SHELL_ERROR 1

#define SHELL_EXIT -3

/* Structure of an entry in the table of shell commands */

struct cmdent { /* entry in command table */

char *cname; /* name of command */

bool8 cbuiltin; /* is this a builtin command? */

int32 (*cfunc)(int32,char*[]);/* function for command */

};

extern uint32 ncmd;

extern const struct cmdent cmdtab[];

The final section of file shell.h defines table cmdtab that holds information about
shell commands. Each entry in the table is struct cmdent which contains three items: a
name for the command, a Boolean indicating whether the command is restricted to run
as a builtin, and a pointer to a function that implements the command. Later sections
discuss how the command table is initialized and how it is used.

25.9 Storage Of Tokens

The data structures that our shell uses are somewhat unexpected. An integer array,
toktyp, is used to record the type of each token. The tokens are stored as null-
terminated strings, packed in contiguous locations of character array tokbuf. An integer
array, tok, is used to store the index of the start of each token. The shell depends on
two counters: ntok counts the number of tokens found so far, and variable tlen counts
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the characters that have been stored in array tokbuf. To understand the data structures,
consider the example input line:

date > file &

The line contains four tokens. Figure 25.3 shows how the lexical analyzer fills in the
data structures to hold the tokens that have been extracted from the input line.

toktyp tok

d

0

a t e Φ >

5

Φ f

7

i l e Φ &

12

Φ

0

5

7

12

tokbuf

3

2

3

0

tlen = 13

ntok = 4

Figure 25.3 Contents of variables tokbuf, toktyp, tok, ntok, and tlen for the in-
put line: date > file &

As the figure shows, the tokens themselves are placed in array tokbuf with all
whitespace removed. A null character terminates each token. Array tok contains in-
tegers that are each an index into tokbuf — the ith location of array tok gives the index
in tokbuf of the string for the ith token. Finally, the ith location of array toktyp specifies
the type of the ith token. For example, the third token on the line, file, has type 3
(SH_TOK_OTHER†), and starts at location 7 in array tokbuf.

25.10 Code For The Lexical Analyzer

Because our shell syntax is straightforward, we have chosen to use an ad hoc im-
plementation for the lexical analyzer. File lexan.c contains the code.

��������������������������������
†Figure 25.1 on page 552 lists the numeric values for each token type.
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/* lexan.c - lexan */

#include <xinu.h>

/*------------------------------------------------------------------------

* lexan - ad hoc lexical analyzer to divide command line into tokens

*------------------------------------------------------------------------

*/

int32 lexan (

char *line, /* input line terminated with */

/* NEWLINE or NULLCH */

int32 len, /* length of the input line, */

/* including NEWLINE */

char *tokbuf, /* buffer into which tokens are */

/* stored with a null */

/* following each token */

int32 *tlen, /* place to store number of */

/* chars in tokbuf */

int32 tok[], /* array of pointers to the */

/* start of each token */

int32 toktyp[] /* array that gives the type */

/* of each token */

)

{

char quote; /* character for quoted string */

uint32 ntok; /* number of tokens found */

char *p; /* pointer that walks along the */

/* input line */

int32 tbindex; /* index into tokbuf */

char ch; /* next char from input line */

/* Start at the beginning of the line with no tokens */

ntok = 0;

p = line;

tbindex = 0;

/* While not yet at end of line, get next token */

while ( (*p != NULLCH) && (*p != SH_NEWLINE) ) {

/* If too many tokens, return error */

if (ntok >= SHELL_MAXTOK) {
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return SYSERR;

}

/* Skip whitespace before token */

while ( (*p == SH_BLANK) || (*p == SH_TAB) ) {

p++;

}

/* Stop parsing at end of line (or end of string) */

ch = *p;

if ( (ch==SH_NEWLINE) || (ch==NULLCH) ) {

*tlen = tbindex;

return ntok;

}

/* Set next entry in tok array to be an index to the */

/* current location in the token buffer */

tok[ntok] = tbindex; /* the start of the token */

/* Set the token type */

switch (ch) {

case SH_AMPER: toktyp[ntok] = SH_TOK_AMPER;

tokbuf[tbindex++] = ch;

tokbuf[tbindex++] = NULLCH;

ntok++;

p++;

continue;

case SH_LESS: toktyp[ntok] = SH_TOK_LESS;

tokbuf[tbindex++] = ch;

tokbuf[tbindex++] = NULLCH;

ntok++;

p++;

continue;

case SH_GREATER: toktyp[ntok] = SH_TOK_GREATER;

tokbuf[tbindex++] = ch;

tokbuf[tbindex++] = NULLCH;

ntok++;

p++;
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continue;

default: toktyp[ntok] = SH_TOK_OTHER;

};

/* Handle quoted string (single or double quote) */

if ( (ch==SH_SQUOTE) || (ch==SH_DQUOTE) ) {

quote = ch; /* remember opening quote */

/* Copy quoted string to arg area */

p++; /* Move past starting quote */

while ( ((ch = *p++) != quote) && (ch != SH_NEWLINE)

&& (ch != NULLCH) ) {

tokbuf[tbindex++] = ch;

}

if (ch != quote) { /* string missing end quote */

return SYSERR;

}

/* Finished string - count token and go on */

tokbuf[tbindex++] = NULLCH; /* terminate token */

ntok++; /* count string as one token */

continue; /* go to next token */

}

/* Handle a token other than a quoted string */

tokbuf[tbindex++] = ch; /* put first character in buffer*/

p++;

while ( ((ch = *p) != SH_NEWLINE) && (ch != NULLCH)

&& (ch != SH_LESS) && (ch != SH_GREATER)

&& (ch != SH_BLANK) && (ch != SH_TAB)

&& (ch != SH_AMPER) && (ch != SH_SQUOTE)

&& (ch != SH_DQUOTE) ) {

tokbuf[tbindex++] = ch;

p++;

}

/* Report error if other token is appended */
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if ( (ch == SH_SQUOTE) || (ch == SH_DQUOTE)

|| (ch == SH_LESS) || (ch == SH_GREATER) ) {

return SYSERR;

}

tokbuf[tbindex++] = NULLCH; /* terminate the token */

ntok++; /* count valid token */

}

*tlen = tbindex;

return ntok;

}

The first two arguments of lexan give the address of an input line and the length of
the line. Succeeding arguments give pointers to the data structures that Figure 25.3 il-
lustrates. Lexan initializes the number of tokens found, a pointer to the input line, and
an index into array tokbuf. It then enters a while loop that runs until pointer p reaches
the end of the file.

To process a token, lexan skips leading white space (i.e., blanks and tabs), stores
the current index of tokbuf in array tok, and then uses a switch statement to choose the
action appropriate for the next input character. For any of the three single-character to-
kens (i.e., an ampersand, less-than symbol, or greater-than symbol), lexan records the
token type in array toktyp, places the token followed by a null character in the tokbuf ar-
ray, increments ntok, moves to the next character in the string, and continues the while
loop, which will start to process the next input character.

For a character that is not one of the three single-character tokens, lexan records
the token type as SH_TOK_OTHER and falls through the switch statement. There are
two cases: the token is a quoted string or the token consists of contiguous characters up
to the next special character or whitespace. Lexan recognizes either a single-quote or a
double-quote character; the string ends at the first occurrence of a matching quote or the
end-of-line, whichever occurs first. If it encounters an end-of-line condition, lexan re-
turns SYSERR. Otherwise, it copies characters from the string to tokbuf unchanged and
uninterpreted, which means that a string can contain arbitrary characters, including
whitespace and the other quote mark character. Once the copy has been completed, lex-
an appends a null character to define the end of the token. It then continues the outer
while loop to look for the next token.

The final section of code handles a token that is composed of contiguous characters
other than the single token characters and quotes. The code loops until it encounters a
special character or whitespace, placing characters in successive locations of tokbuf.
Before moving on to the next token, the code checks for an error where two tokens oc-
cur with no whitespace between them.
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Once lexan reaches the end of the input line, it returns a count of the number of to-
kens found. If an error is detected during processing, lexan returns SYSERR to its call-
er, making no attempt to recover or repair the problem. That is, the action to be taken
when an error occurs is coded into lexan. The exercises discuss the choice of error han-
dling and suggest alternatives.

25.11 The Heart Of The Command Interpreter

Although a command interpreter must handle many details, the basic algorithm is
not difficult to understand. In essence, the code consists of a loop that repeatedly reads
a line of input, uses lexan to extract tokens, checks the syntax, arranges a way to pass
arguments, redirects I/O if necessary, and runs a command in foreground or background
as specified. The loop terminates if a user enters the end-of-file character (control-d), or
if a command returns a special exit code.

As with the lexical analyzer, our interpreter implementation uses an ad hoc imple-
mentation. That is, the code does not resemble a conventional compiler, nor does it
contain independent code to verify that the sequence of tokens is valid. Instead, error
checking is built into each step of processing. For example, after it has processed back-
ground and I/O redirection, the shell verifies that remaining tokens are all of type
SH_TOK_OTHER.

Examining the code will make the approach clear. Function shell performs com-
mand interpretation; file shell.c, shown below, contains the code. Note that the file also
includes the declaration of array cmdtab which specifies the set of commands and the
function used to implement each. The code also sets external variable ncmd to the
number of commands in the table.

Conceptually, the set of commands is independent from the code that processes
user input. Thus, it may make sense to divide shell.c into two files: one that specifies
commands and another that contains code. In practice, however, the two have been
combined because the example set of commands is so small that an additional file is un-
necessary.
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/* shell.c - shell */

#include <xinu.h>

#include <stdio.h>

#include "shprototypes.h"

/************************************************************************/

/* Xinu shell commands and the function associated with each */

/************************************************************************/

const struct cmdent cmdtab[] = {

{"argecho", TRUE, xsh_argecho},

{"arp", FALSE, xsh_arp},

{"cat", FALSE, xsh_cat},

{"clear", TRUE, xsh_clear},

{"date", FALSE, xsh_date},

{"devdump", FALSE, xsh_devdump},

{"echo", FALSE, xsh_echo},

{"ethstat", FALSE, xsh_ethstat},

{"exit", TRUE, xsh_exit},

{"help", FALSE, xsh_help},

{"ipaddr", FALSE, xsh_ipaddr},

{"kill", TRUE, xsh_kill},

{"led", FALSE, xsh_led},

{"memdump", FALSE, xsh_memdump},

{"memstat", FALSE, xsh_memstat},

{"nvram", FALSE, xsh_nvram},

{"ping", FALSE, xsh_ping},

{"ps", FALSE, xsh_ps},

{"sleep", FALSE, xsh_sleep},

{"udpdump", FALSE, xsh_udpdump},

{"udpecho", FALSE, xsh_udpecho},

{"udpeserver", FALSE, xsh_udpeserver},

{"uptime", FALSE, xsh_uptime},

{"?", FALSE, xsh_help}

};

uint32 ncmd = sizeof(cmdtab) / sizeof(struct cmdent);

/************************************************************************/

/* Xinu shell - provide an interactive user interface that executes */

/* commands. Each command begins with a command name, has */

/* a set of optional arguments, has optional input or */

/* output redirection, and an optional specification for */

/* background execution (ampersand). The syntax is: */
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/* */

/* command_name [args*] [redirection] [&] */

/* */

/* Redirection is either or both of: */

/* */

/* < input_file */

/* or */

/* > output_file */

/* */

/************************************************************************/

process shell (

did32 dev /* ID of tty device from which */

) /* to accept commands */

{

char buf[SHELL_BUFLEN]; /* input line (large enough for */

/* one line from a tty device */

int32 len; /* length of line read */

char tokbuf[SHELL_BUFLEN + /* buffer to hold a set of */

SHELL_MAXTOK]; /* contiguous null-terminated */

/* strings of tokens */

int32 tlen; /* current length of all data */

/* in array tokbuf */

int32 tok[SHELL_MAXTOK]; /* index of each token in */

/* tokbuf */

int32 toktyp[SHELL_MAXTOK]; /* type of each token in tokbuf */

int32 ntok; /* number of tokens on line */

pid32 child; /* process ID of spawned child */

bool8 backgnd; /* run command in background? */

char *outname, *inname; /* ptrs to strings for file */

/* names that follow > and < */

did32 stdinput, stdoutput; /* descriptors for redirected */

/* input and output */

int32 i; /* index into array of tokens */

int32 j; /* index into array of commands */

int32 msg; /* message from receive() for */

/* child termination */

int32 tmparg; /* address of this var is used */

/* when first creating child */

/* process, but is replaced */

char *src, *cmp; /* ptrs using during name */

/* comparison */

bool8 diff; /* was difference found during */

/* comparison */

char *args[SHELL_MAXTOK]; /* argument vector passed to */

/* builtin commands */
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/* Print shell banner and startup message */

fprintf(dev, "\n\n%s%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n",

SHELL_BAN0,SHELL_BAN1,SHELL_BAN2,SHELL_BAN3,SHELL_BAN4,

SHELL_BAN5,SHELL_BAN6,SHELL_BAN7,SHELL_BAN8,SHELL_BAN9);

fprintf(dev, "%s\n\n", SHELL_STRTMSG);

/* Continually prompt the user, read input, and execute command */

while (TRUE) {

/* Display prompt */

fprintf(dev, SHELL_PROMPT);

/* Read a command (for tty, 0 means entire line) */

len = read(dev, buf, sizeof(buf));

/* Exit gracefully on end-of-file */

if (len == EOF) {

break;

}

/* If line contains only NEWLINE, go to next line */

if (len <= 1) {

fprintf(dev,"\n");

continue;

}

buf[len] = SH_NEWLINE; /* terminate line */

/* Parse input line and divide into tokens */

ntok = lexan(buf, len, tokbuf, &tlen, tok, toktyp);

/* Handle parsing error */

if (ntok == SYSERR) {

fprintf(dev,"%s\n", SHELL_SYNERRMSG);

continue;

}
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/* If line is empty, go to next input line */

if (ntok == 0) {

fprintf(dev, "\n");

continue;

}

/* If last token is ’&’, set background */

if (toktyp[ntok-1] == SH_TOK_AMPER) {

ntok-- ;

tlen-= 2;

backgnd = TRUE;

} else {

backgnd = FALSE;

}

/* Check for input/output redirection (default is none) */

outname = inname = NULL;

if ( (ntok >=3) && ( (toktyp[ntok-2] == SH_TOK_LESS)

||(toktyp[ntok-2] == SH_TOK_GREATER))) {

if (toktyp[ntok-1] != SH_TOK_OTHER) {

fprintf(dev,"%s\n", SHELL_SYNERRMSG);

continue;

}

if (toktyp[ntok-2] == SH_TOK_LESS) {

inname = &tokbuf[tok[ntok-1]];

} else {

outname = &tokbuf[tok[ntok-1]];

}

ntok -= 2;

tlen = tok[ntok] - 1;

}

if ( (ntok >=3) && ( (toktyp[ntok-2] == SH_TOK_LESS)

||(toktyp[ntok-2] == SH_TOK_GREATER))) {

if (toktyp[ntok-1] != SH_TOK_OTHER) {

fprintf(dev,"%s\n", SHELL_SYNERRMSG);

continue;

}

if (toktyp[ntok-2] == SH_TOK_LESS) {

if (inname != NULL) {
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fprintf(dev,"%s\n", SHELL_SYNERRMSG);

continue;

}

inname = &tokbuf[tok[ntok-1]];

} else {

if (outname != NULL) {

fprintf(dev,"%s\n", SHELL_SYNERRMSG);

continue;

}

outname = &tokbuf[tok[ntok-1]];

}

ntok -= 2;

tlen = tok[ntok] - 1;

}

/* Verify remaining tokens are type "other" */

for (i=0; i<ntok; i++) {

if (toktyp[i] != SH_TOK_OTHER) {

break;

}

}

if ((ntok == 0) || (i < ntok)) {

fprintf(dev, SHELL_SYNERRMSG);

continue;

}

stdinput = stdoutput = dev;

/* Lookup first token in the command table */

for (j = 0; j < ncmd; j++) {

src = cmdtab[j].cname;

cmp = tokbuf;

diff = FALSE;

while (*src != NULLCH) {

if (*cmp != *src) {

diff = TRUE;

break;

}

src++;

cmp++;

}

if (diff) {

continue;
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} else {

break;

}

}

/* Handle command not found */

if (j >= ncmd) {

fprintf(dev, "command %s not found\n", tokbuf);

continue;

}

/* Handle built-in command */

if (cmdtab[j].cbuiltin) { /* no background or redirection */

if (inname != NULL || outname != NULL || backgnd) {

fprintf(dev, SHELL_BGERRMSG);

continue;

} else {

/* Set up arg vector for call */

for (i=0; i<ntok; i++) {

args[i] = &tokbuf[tok[i]];

}

/* Call builtin shell function */

if ((*cmdtab[j].cfunc)(ntok, args)

== SHELL_EXIT) {

break;

}

}

continue;

}

/* Open files and redirect I/O if specified */

if (inname != NULL) {

stdinput = open(NAMESPACE,inname,"ro");

if (stdinput == SYSERR) {

fprintf(dev, SHELL_INERRMSG, inname);

continue;

}

}

if (outname != NULL) {
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stdoutput = open(NAMESPACE,outname,"w");

if (stdoutput == SYSERR) {

fprintf(dev, SHELL_OUTERRMSG, outname);

continue;

} else {

control(stdoutput, F_CTL_TRUNC, 0, 0);

}

}

/* Spawn child thread for non-built-in commands */

child = create(cmdtab[j].cfunc,

SHELL_CMDSTK, SHELL_CMDPRIO,

cmdtab[j].cname, 2, ntok, &tmparg);

/* If creation or argument copy fails, report error */

if ((child == SYSERR) ||

(addargs(child, ntok, tok, tlen, tokbuf, &tmparg)

== SYSERR) ) {

fprintf(dev, SHELL_CREATMSG);

continue;

}

/* Set stdinput and stdoutput in child to redirect I/O */

proctab[child].prdesc[0] = stdinput;

proctab[child].prdesc[1] = stdoutput;

msg = recvclr();

resume(child);

if (! backgnd) {

msg = receive();

while (msg != child) {

msg = receive();

}

}

}

/* Close shell */

fprintf(dev,SHELL_EXITMSG);

return OK;

}
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The main loop calls lexan to divide the input line into tokens, and begins process-
ing the command. First, the code checks the last token to see if the user appended an
ampersand. If so, the shell sets Boolean backgnd to TRUE; otherwise, backgnd is set to
FALSE. The variable is used later to determine whether to run the command in back-
ground.

After the background token has been removed, the shell checks for I/O redirection.
Input and output redirection can both be specified, and the specifications can occur in
either order, but must be the last of the remaining tokens. Therefore, the shell checks
for redirection twice. If two specifications occur, the shell verifies that they do not both
specify input or both specify output. At this point in processing the line, the shell mere-
ly saves a pointer to the file name without attempting to open the file (the files are
opened later).

Once the shell has removed tokens that specify I/O redirection, the only tokens that
remain correspond to a command name and arguments to the command. Thus, before it
continues to process the command, the shell iterates through remaining tokens to verify
that they are of type “other” (SH_TOK_OTHER). If any are not, the code prints an er-
ror message and moves to the next input line. Once all checks have been performed,
the shell looks up the command and executes the corresponding function.

25.12 Command Name Lookup And Builtin Processing

The first token on the line is a command name. Recall that the example code
stores information about commands in array cmdtab. Thus, lookup is straightforward
— the shell searches the array sequentially looking for an exact match between the first
token and one of the command names. If no match is found, the code prints an error
message and moves to the next command.

Our shell supports two types of commands: builtin and non-builtin. The difference
arises from the way the commands are executed: the shell uses the conventional func-
tion call mechanism to execute a builtin command, and creates a separate process to ex-
ecute a non-builtin command. The distinction means that a user cannot specify back-
ground processing and cannot redirect I/O for a builtin command.†

To test whether a command should execute as a builtin, the shell examines field
cbuiltin of the entry in cmdtab. For a builtin command, no redirection or background
processing is allowed. So, the shell verifies that neither was specified, creates an argu-
ment array in variable args, and calls the command function. The next section explains
how command arguments are constructed.

��������������������������������
†An exercise suggests a way to blur the distinction between builtin and non-builtin commands.
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25.13 Arguments Passed To Commands

Our example shell uses the same argument passing mechanism as a Unix shell.
When a command is invoked, the shell passes tokens from the command line as uninter-
preted, null-terminated strings. The shell does not know how many arguments a given
command expects, nor does the shell understand whether the arguments make sense.
Instead, the shell merely passes all arguments from the command line, and allows the
command to check and interpret them.

Conceptually, the shell passes an arbitrary number of string arguments, where the
number is only limited by the length of an input line. To make programming simple
and uniform, the shell creates an array of pointers and only passes two values when it
invokes a command: a count of command-line arguments and an array of pointers to
character strings that constitute the arguments. Unix uses the names argc and argv for
the two arguments a command receives from the shell; Xinu uses the names nargs and
args. The names are only a convention — a programmer can choose arbitrary names
for arguments when writing a function that implements a command.

The example shell adopts another convention from Unix: the first item in the args
array is a pointer to the command name. An example will clarify the details. Consider
the command line:

date -f illegal

Although the argument illegal is not permitted by the Xinu date command, the shell
simply passes the string and allows the function that implements the date command to
check its arguments. Figure 25.4 illustrates the two items the shell passes to the date
function.

argsnargs

3 d a t e Φ

- f Φ

i l l e g a l Φ
Φ

nargs

entries

Figure 25.4 Illustration of the two arguments (nargs and args) the shell
passes to the date command for an input line: date -f illegal

Although passing an integer, such as nargs, to a command is trivial, the args array
is more complex. In essence, the shell must construct the args array, and then pass its
address to the command. There are two cases: builtin commands and non-builtin com-
mands. We will consider builtins first.

After the shell has parsed the command line and removed tokens for I/O redirec-
tion and background processing, variable ntok will contain the count of remaining to-
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kens, which is exactly the count needed for nargs. Furthermore, array tok contains the
index in tokbuf where each token begins. Therefore, the shell can create an args array
by computing the starting address of each token.

To form the args array, the code iterates through ntok tokens and for the ith token
computes the expression:

&tokbuf[tok[i]]

That is, it sets args[i] equal to the address of the ith token in tokbuf. Once array args
has been initialized, the shell calls the function that implements the builtin command.

25.14 Passing Arguments To A Non-Builtin Command

The second case, non-builtin commands, is more complex. Our shell creates a
separate process to execute commands that are not builtin, and the command can exe-
cute in background (i.e., the shell can continue to read and handle new input lines while
the command process runs in background). The question arises: what mechanism
should the shell use to pass arguments to a process? The shell cannot use the same ap-
proach as with builtin commands because a command running in background needs a
separate copy of its arguments that will not change as the shell goes on to process
another command.

There are two ways to solve the problem of argument passing for a non-builtin
command: the shell can allocate separate storage to arguments or the shell can hide the
arguments in storage already allocated for the process. Because Xinu does not automat-
ically release heap storage when a process terminates, the first approach requires the
shell to keep a record of the argument storage allocated for each command so it can free
the memory once the process completes. Thus, we have chosen the second approach:

After creating a process to execute a command, the shell places a
copy of arguments in the stack area of the process and then allows the
process to execute.

Where on the process’s stack should arguments be placed? Although it might be
possible to rewrite create so it leaves space at the top of the stack, doing so is messy.
Thus, we have chosen to use the area at the bottom of the stack. The shell stores a
copy of the args array followed by a copy of the strings in tokbuf in the stack. Of
course, pointers in the copy of the args vector must be assigned the addresses of strings
in the copy of tokbuf. Figure 25.5 illustrates how the data from Figure 25.4 is arranged
in contiguous memory locations.
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d a t e Φ - f Φ i l l e g a l ΦΦ

lowest byte
of stack

start of
args array

Figure 25.5 A copy of the args array and argument strings in a process’s
stack.

Rather than incorporate code into the shell that copies items into the process’s
stack, our implementation uses a separate function, addargs. File addargs.c contains
the code.

/* addargs.c - addargs */

#include <xinu.h>

#include "shprototypes.h"

/*------------------------------------------------------------------------

* addargs - add local copy of argv-style arguments to the stack of

* a command process that has been created by the shell

*------------------------------------------------------------------------

*/

status addargs(

pid32 pid, /* ID of process to use */

int32 ntok, /* count of arguments */

int32 tok[], /* index of tokens in tokbuf */

int32 tlen, /* length of data in tokbuf */

char *tokbuf, /* array of null-term. tokens */

void *dummy /* dummy argument that was */

/* used at creation and must */

/* be replaced by a pointer */

/* to an argument vector */

)

{

intmask mask; /* saved interrupt mask */

struct procent *prptr; /* ptr to process’ table entry */

uint32 aloc; /* argument location in process */

/* stack as an integer */

uint32 *argloc; /* location in process’s stack */

/* to place args vector */
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char *argstr; /* location in process’s stack */

/* to place arg strings */

uint32 *search; /* pointer that searches for */

/* dummy argument on stack */

uint32 *aptr; /* walks through args array */

int32 i; /* index into tok array */

mask = disable();

/* Check argument count and data length */

if ( (ntok <= 0) || (tlen < 0) ) {

restore(mask);

return SYSERR;

}

prptr = &proctab[pid];

/* Compute lowest location in the process stack where the */

/* args array will be stored followed by the argument */

/* strings */

aloc = (uint32) (prptr->prstkbase

- prptr->prstklen + sizeof(uint32));

argloc = (uint32*) ((aloc + 3) & ~0x3); /* round multiple of 4 */

/* Compute the first location beyond args array for the strings */

argstr = (char *) (argloc + (ntok+1)); /* +1 for a null ptr */

/* Set each location in the args vector to be the address of */

/* string area plus the offset of this argument */

for (aptr=argloc, i=0; i < ntok; i++) {

*aptr++ = (uint32) (argstr + tok[i]);

}

/* Add a null pointer to the args array */

*aptr++ = (uint32)NULL;

/* Copy the argument strings from tokbuf into process’s stack */

/* just beyond the args vector */

memcpy(aptr, tokbuf, tlen);
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/* Find the second argument in process’s stack */

for (search = (uint32 *)prptr->prstkptr;

search < (uint32 *)prptr->prstkbase; search++) {

/* If found, replace with the address of the args vector*/

if (*search == (uint32)dummy) {

*search = (uint32)argloc;

restore(mask);

return OK;

}

}

/* Argument value not found on the stack - report an error */

restore(mask);

return SYSERR;

}

Once a process has been created, the process table entry contains both the address
of the top of the stack and the stack size. Because a stack grows downward in memory,
addargs can compute the lowest memory address assigned to the stack by subtracting
the stack size from the address of the stack top. However, a few details complicate the
code. For example, because pointers must be aligned, addargs computes a starting lo-
cation in the stack that is a multiple of four bytes. As a result, the final byte of the last
argument string may end up to three bytes before the lowest byte of the stack. Further-
more, the code adds an extra null pointer to the end of the args array as shown in Fig-
ure 25.5.

Most of code in addargs operates as expected by computing the address in the
stack at which the args array starts and then copying both the args array and the argu-
ment strings into the stack. However, the final for loop, which iterates through the
process’s stack may seem unusual: it finds the second argument that has been passed to
the process and replaces it with a pointer to the args array. When the process is creat-
ed, the shell uses a dummy value for the argument and then passes the value to addargs
in parameter dummy. Thus, addargs searches the stack until it finds the value and re-
places it.

Why does our implementation use a dummy argument and a search? The alterna-
tive consists of having addargs calculate the location of the second argument. Although
calculating a location may seem cleaner, such a calculation requires addargs to under-
stand the format of the initial process stack. Using a search means that only create
needs to understand the details of process creation and the format of the stack. Of
course, using a search has a disadvantage: the shell must choose a dummy argument
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that will not occur early in the stack. Rather than choosing an arbitrary integer, our
shell implementation uses the address of variable tmparg.

25.15 I/O Redirection

Once a process has been created to execute a command and the shell has called ad-
dargs to copy arguments into the process stack, all that remains is to handle I/O redirec-
tion and start the process executing. To redirect I/O, the shell assigns device descriptors
to the array prdesc in the process table entry. The two key values are prdesc[0] and
prdesc[1], which the shell sets to stdin and stdout.

How do variables stdin and stdout receive values? Recall that the shell initializes
them to dev, the device descriptor that was passed as an argument when the shell was
invoked. Usually, the shell is invoked with device CONSOLE. Thus, if the user does
not redirect I/O, the process executing a command will “inherit” the console device for
input and output. If a user does redirect I/O, the shell sets variables inname and/or out-
name to the name that was specified on the command line. Otherwise inname and out-
name are set to NULL. Before assigning stdin and stdout to the command process, the
shell checks inname and outname. If inname is non-null, the shell calls open to open
inname for reading and sets stdin to the descriptor. Similarly, if outname is non-null,
the shell calls open to open outname for writing, and sets stdout to the descriptor.

When should descriptors be closed? Our example code assumes that the command
will close standard input and standard output descriptors before it exits; the shell does
not clean up descriptors after the command completes. Forcing all commands to close
their standard I/O devices before exiting has the disadvantage of making commands dif-
ficult to understand and difficult to program correctly because command code must
remember to close devices even though the code does not open them. Having the shell
monitor command processes and close standard I/O devices is also difficult because
command processes are independent and multiple command processes can exit at the
same time. The exercises suggest another alternative.

The final section of code in the shell runs the command process. There are two
cases. To run the process in foreground, the shell calls resume to start the process, and
then calls receive to wait for a message that the process has completed (when the pro-
cess exits, kill sends a message to the shell). For the background case, the shell starts
the command process but does not wait. Instead, the main shell loop continues and the
shell reads the next command. The exercises suggest a modification of the code to im-
prove correctness.

25.16 An Example Command Function (sleep)

To understand how a command processes arguments, consider function xsh_sleep,
which implements the sleep command.† Sleep is trivial — it delays for the number of
seconds specified by its argument. Thus, the delay is achieved by a single line of code

��������������������������������
†By convention, the function that implements command X is named xsh_X.
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that calls the sleep system function; the code is presented here merely to illustrate how
arguments are parsed and how a command function prints a help message. File
xsh.sleep.c contains the code.

/* xsh_sleep.c - xsh_sleep */

#include <xinu.h>

#include <stdio.h>

#include <string.h>

/*------------------------------------------------------------------------

* xsh_sleep - shell command to delay for a specified number of seconds

*------------------------------------------------------------------------

*/

shellcmd xsh_sleep(int nargs, char *args[])

{

int32 delay; /* delay in seconds */

char *chptr; /* walks through argument */

char ch; /* next character of argument */

/* For argument ’--help’, emit help about the ’sleep’ command */

if (nargs == 2 && strncmp(args[1], "--help", 7) == 0) {

printf("Use: %s\n\n", args[0]);

printf("Description:\n");

printf("\tDelay for a specified number of seconds\n");

printf("Options:\n");

printf("\t--help\t display this help and exit\n");

return 0;

}

/* Check for valid number of arguments */

if (nargs > 2) {

fprintf(stderr, "%s: too many arguments\n", args[0]);

fprintf(stderr, "Try ’%s --help’ for more information\n",

args[0]);

return 1;

}

if (nargs != 2) {

fprintf(stderr, "%s: argument in error\n", args[0]);

fprintf(stderr, "Try ’%s --help’ for more information\n",

args[0]);

return 1;

www.itpub.net



Sec. 25.16 An Example Command Function (sleep) 577

}

chptr = args[1];

ch = *chptr++;

delay = 0;

while (ch != NULLCH) {

if ( (ch < ’0’) || (ch > ’9’) ) {

fprintf(stderr, "%s: nondigit in argument\n",

args[0]);

return 1;

}

delay = 10*delay + (ch - ’0’);

ch = *chptr++;

}

sleep(delay);

return 0;

}

25.17 Perspective

The design of a shell introduces many choices. A designer has almost complete
freedom because a shell operates as an application that lies outside the rest of the sys-
tem and only the command functions depend on the shell. Thus, as our example shows,
the argument passing paradigm used by a shell can differ dramatically from the argu-
ment passing paradigm used throughout the rest of the system. Similarly, a designer
can choose a syntax for command-line input as well as a semantic interpretation without
affecting other parts of the system.

Perhaps the most interesting aspect of shell design arises from the choice of how
much knowledge about commands is bound into the shell. On the one hand, if a shell
knows all commands and their arguments, the shell can complete command names and
check the command arguments, making the code that implements commands much
simpler. On the other hand, allowing late binding means more flexibility because the
shell does not need to change when new commands are created, but the tradeoff is that
each command must check its arguments. Furthermore, a designer can choose whether
to build each command function into the shell or to leave each command in a separate
file, as Unix does.

Our example shell demonstrates one of the most important principles in shell
design: a relatively small amount of code can provide powerful abstractions for a user.
For example, consider how little code is needed to interpret input or output redirection,
and the small amount of code needed to recognize an ampersand at the end of the line
as a request to run a command in background. Despite their compact implementation,
facilities for I/O redirection and background processing make a shell much more power-
ful and user-friendly than a shell in which each command interacts with a user to
prompt for input and output information or whether to run in background.
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25.18 Summary

We have examined a basic command-line interpreter called a shell. Although the
example code is small, it supports concurrent command execution, redirection of input
and output, and arbitrary string argument passing. The implementation is divided into
two conceptual pieces: a lexical analyzer that reads a line of text and groups characters
into tokens, and a shell function that checks the sequence of tokens and invokes a com-
mand.

The example code demonstrates the relationship between a user interface and the
facilities provided by the underlying system. For example, although the underlying sys-
tem provides support for concurrent processes, the shell makes concurrent execution
available to a user. Similarly, although the underlying system provides the ability to
open devices or files, the shell makes I/O redirection available to the user.

EXERCISES

25.1 Rewrite the shell to use cbreak mode and handle all keyboard input. Arrange for
Control-P to move to the “previous” shell command, and interpret Control-B and
Control-F as moving backward and forward through a line as Unix ksh or bash do.

25.2 Rewrite the grammar in Figure 25.2 to remove the optional notation [ ].

25.3 Modify the shell to allow I/O redirection on builtin commands. What changes are neces-
sary?

25.4 Devise a modified version of create that handles string arguments for the shell, automati-
cally performing the same function as addargs when creating the process.

25.5 Modify the shell so it can be used as a command. That is, allow the user to invoke com-
mand shell and start with a new shell process. Have control return to the original shell
when the subshell exits. Be careful.

25.6 Modify the shell so it can accept input from a text file (i.e., allow the user to build a file
of commands and then start a shell interpreting them).

25.7 Modify the shell to allow a user to redirect standard error as well as standard output.

25.8 Read about shell variables in a UNIX shell, and implement a similar variable mechanism
in the Xinu shell.

25.9 Find out how the UNIX shell passes environment variables to command processes, and
implement a similar mechanism in the Xinu shell.

25.10 Implement inline input redirection, allowing the user to type

command << stop

followed by lines of input terminated by a line that begins with the sequence of charac-
ters stop. Have the shell save the input in a temporary file and execute the command
with the temporary file as standard input.
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25.11 It would be possible to extend the command table to include information on the number
and types of arguments each command requires, and to have the shell check arguments
before passing them to the command. List two advantages and two disadvantages of
having the shell check arguments.

25.12 Suppose the designer decided to add a for statement to the shell so a user could execute
a command repeatedly as in:

for 1 2 3 4 5 6 7 8 9; command-line

where for is a keyword, and command-line is a command line exactly like commands the
shell now accepts. Should the designer modify the shell syntax and parser or try to
make for a builtin command? Explain.

25.13 Add command expansion to the shell by having the user type a unique prefix of a com-
mand followed by ESC; have the shell type out the completed command and wait for the
user to add arguments and press the Enter key.

25.14 UNIX allows command lines of the form:

command_1 | command_2 | command_3

where the symbol |, called a pipe, specifies that the standard output of one command is
connected to the standard input of the next command. Implement a pipe device for
Xinu, and modify the shell to allow a pipeline of commands.

25.15 Modify the tty device driver and shell so that pressing CONTROL-c kills the currently
executing process.

25.16 Modify the tty device driver and shell so that pressing CONTROL-z places the currently
executing process in background.

25.17 Modify the design to permit I/O redirection and background processing for builtin com-
mands: if redirection or background processing is needed, treat the command as a normal
command and create a separate process.

25.18 The text describes the problem of closing device descriptors when a command exits.
Modify the system so kill automatically closes a process’s descriptors when the process
exits.

25.19 The example shell calls receive to wait for a foreground process to exit, but does not
check the message received. Show a sequence of events that can cause the shell to
proceed before a foreground command has completed.

25.20 Modify the code in the shell to repair the problem in the previous exercise.



Appendix 1

Porting An Operating
System

Progress, far from consisting in change, depends upon
retentiveness ....

— George Santayana

A1.1 Introduction

Previous chapters focus on the interior of an operating system. They present
abstractions, discuss design tradeoffs, show how the code fits into a hierarchical organi-
zation, and examine implementation details. Chapter 24 examines how a system can be
configured to allow the code to run on systems with a variety of peripheral devices.

This appendix examines two larger questions. First, how can an existing operating
system be ported to a new machine or to a hardware platform that differs in a funda-
mental way? Second, can an operating system be written in a way that makes porting
easier? To answer the first question, the appendix discusses cross-development and
downloading, outlines the steps involved in understanding hardware, and provides prac-
tical advice about how to proceed. To answer the second question, the appendix
discusses techniques that have been used to make an operating system adaptable.

580
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A1.2 Motivation: Evolving Hardware

Although work on operating systems demands the ability to grasp high-level
abstractions, design efficient mechanisms, and understand small details, the most signi-
ficant challenge facing operating system designers does not arise from the intellectual
difficulty of the task. Instead, it arises from the constant changes in technology and the
consequent economic pressure for vendors to create new products or to add features to
existing products. In a fourteen-month period after we started a revision of this text, for
example, a hardware vendor changed models twice. In one case, the change was
dramatic — the processor chip, instruction set, memory organization, and I/O devices
were completely replaced.

Because an operating system interfaces directly with the underlying hardware, even
small changes in the hardware can have an overwhelming effect on the system. For ex-
ample, if a vendor changes the hardware to reserve a piece of the memory address space
for Flash ROM, the memory management software in the operating system must be
modified. Although such modification may seem straightforward, the details may in-
volve changes to page tables and the code that interacts with the MMU hardware as
well as the code that allocates memory on demand. If a significant amount of the ad-
dress space becomes reserved, the operating system’s allocation policy may need to
change. The point is:

Because both technological and economic factors cause continual
changes in hardware, an operating system designer must be prepared
to port systems to new platforms.

A1.3 Steps Taken When Porting An Operating System

Despite the effects of hardware change, moving an existing operating system to a
new platform is much easier than designing and building a new system from scratch. In
particular, if an operating system has been written in a high-level language, porting the
system to a new platform is easy because a compiler can do most of the work.

Consider Xinu. Most of the code is written in C. If a C compiler is available for
the new platform, many of the functions can be compiled without making changes in
the source. If a given function deals with basic data structures, such as integers, charac-
ters, arrays, and structures, a compiler may be able to compile the code without change,
and the resulting binary program may run correctly. Even in cases where change is
needed, the modifications may be minor (e.g., to accommodate slight differences in
compilers). Thus, a principle is:

An operating system written in a high-level language, such as C, is
much easier to port to a new platform than a system written in assem-
bly language.
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We will assume that, whenever possible, an operating system has been written in
C, and we will consider the steps taken when porting to a new platform. Specifically,
Figure A1.1 lists steps taken when porting Xinu.

������������������������������������������������������������������������
Step Description������������������������������������������������������������������������

1. Learn about the new hardware������������������������������������������������������������������������
2. Build cross-development tools������������������������������������������������������������������������
3. Learn the compiler’s calling conventions������������������������������������������������������������������������
4. Build a bootstrap mechanism������������������������������������������������������������������������
5. Devise a basic polled output function������������������������������������������������������������������������
6. Load and run a sequential program������������������������������������������������������������������������
7. Port and test the basic memory manager������������������������������������������������������������������������
8. Rewrite the context switch and process creation functions������������������������������������������������������������������������
9. Port and test the remaining process manager functions������������������������������������������������������������������������

10. Build an interrupt dispatcher������������������������������������������������������������������������
11. Port and test the real-time clock functions������������������������������������������������������������������������
12. Port and test a tty driver������������������������������������������������������������������������
13. Either port or create drivers for other devices������������������������������������������������������������������������
14. Once a disk is available, port a file system������������������������������������������������������������������������
15. Once a network driver is operational, port protocol software������������������������������������������������������������������������
16. Port a shell and other applications��������������������������������������������������������������������������
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Figure A1.1  The steps taken when porting Xinu to a new platform.

Note the relationship between the steps listed and the Xinu hierarchy. In essence,
porting follows the same pattern as design: lower levels of the hierarchy are ported first,
and successive levels are then added. The next sections highlight each step.

www.itpub.net



Sec. A1.3 Steps Taken When Porting An Operating System 583

A1.3.1  Learning About The Hardware And Compile

Step 1 may seem straightforward. Unfortunately, some vendors are reluctant to re-
veal details about their commercial hardware or software. Even if generic information
is available (e.g., the processor instruction set), a vendor may choose to keep details
secret (e.g., a map of the bus address space, the hardware initialization sequence, or the
details about devices). Nevertheless, throughout the remainder of this appendix, we will
assume that the needed information can be obtained.

A1.3.2  Cross Development

If the target hardware platform already runs a fully-functional operating system, it
may be possible to skip steps 1 through 6, and use the existing mechanisms to compile
and boot a new system. In most cases, however, the target platform will be new, may
lack the power needed for a production system, or may not be available for develop-
ment. Thus, an operating system designer usually does not rely on the target platform
to support software development. Instead, a designer uses a cross-development ap-
proach in which the compiler and linker are designed to produce code for the target
machine, but the development tools run on a conventional computer.

One of the most widely used cross-development environments consists of the Gnu
C Compiler, gcc. A copy of gcc can be downloaded and used at no cost from:

http://gcc.gnu.org

After downloading the source code for gcc, a programmer must select configuration op-
tions to specify details, such as the target processor type and the endianness of the tar-
get machine. The programmer runs the Unix utility make to build a version of the com-
piler, assembler, and linker that will produce code for the target machine.

A1.3.3  Calling Conventions

Function invocation forms one of the most important aspects of porting. To build
a context switch, for example, a programmer must precisely understand all details of the
calling conventions. Although hardware designers include subroutine invocation mech-
anisms, understanding the hardware is not enough because a compiler can impose addi-
tional requirements.

It may seem that using an open source compiler means the calling conventions are
obvious. However, an operating system designer needs to know about special cases,
and the answers to questions may be difficult to find. Fortunately, information is often
available on the web.

http://gcc.gnu.org
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A1.3.4  Bootstrap Mechanisms

Once it has been compiled and linked, a program image must be downloaded into
the target platform. Early embedded hardware required that the image be burned into
ROM, and ROM installed in a socket. Fortunately, modern systems use alternative
mechanisms that require much less effort. Typically, the hardware includes bootstrap
functionality that can read an image from a CD-ROM, accept an image over a console
serial line, or download an image over a network. The bootstrap procedure is usually
intended for system developers, and may not generally be known.

For example, consider the Linksys E2100L wireless router used as the platform for
code in the text. Access to the boot loader is not available unless one opens the case,
connects a serial line, and uses the serial line to send characters during the power-up se-
quence. Once the normal boot sequence has been interrupted, the boot loader presents a
prompt and offers a variety of ways to download an image (e.g., multiple formats are
available for downloading over the console serial line as well as network bootstraps
available for downloading over an Ethernet interface). Whatever method is chosen, it is
essential to find a way to place a copy of an image in memory on the target machine.

A1.3.5  Polled Output

The next step in porting requires a programmer to devise a way for a running pro-
gram to output characters. Until some basic I/O is available, a programmer must work
in the dark — hoping that the image has been downloaded and started correctly. Basic
I/O is invaluable: once even basic I/O is available, a programmer can determine how
much of the system is working, and can isolate problems quickly.

Because early test programs do not include interrupt processing, the basic I/O
mechanism must use polling. That is, a programmer creates a function similar to kputc
that waits for an I/O device to become ready and then transmits a character. Both ends
must agree on details such as the baud rate and bits per character, which can make de-
bugging tedious. To simplify the code, the first version of kputc can be written in as-
sembly language and can have information about the device (e.g., the CSR address and
the baud rate) hardwired into the program.

A1.3.6  Sequential Program Execution

Once an image can be downloaded and run, the next step consists of building an
environment that permits a sequential program to execute. In particular, successful exe-
cution of a C program requires that memory permissions are set correctly (the program
text is readable and data locations can be read and written) and a run-time stack exists
(which is needed for function calls).

Initializing the environment may seem trivial, but it requires knowledge of many
hardware details. For example, on the E2100L, physical memory is replicated in the ad-
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dress space. To set a stack pointer to a high physical memory address, it is not suffi-
cient merely to determine that a particular address is valid; one must also determine
how each address corresponds to physical addresses.

A1.3.7  Basic Memory Management

Once the layout of memory is known and a sequential program can be downloaded
and run on the target hardware, a programmer can port and test the four basic memory
management functions: getmem, freemem, getstk, and freestk. In addition to basic allo-
cation and deallocation tests, a programmer should concentrate on alignment. Some
hardware platforms require all memory accesses to be word aligned and some allow
unaligned access. On machines that require alignment, a programmer should insure that
the memory free list has been initialized in such a way that alignment works correctly
(i.e., all allocated blocks begin on the appropriate boundary).

A1.3.8  Process Creation And Context Switch

Once basic memory management is working, a programmer can begin to port the
process manager functions. In particular, a programmer starts with context switch,
scheduling, and process creation. A giant step forward occurs once the three fundamen-
tal process management functions are in place: instead of a sequential program, the code
will be a fledgling operating system that supports concurrent execution.

There are two difficult parts in the design. Creating the saved information for a
process requires an intricate knowledge of the machine state and the operation of the
context switch. Building a context switch is tricky because it involves finding a way to
save all the state associated with a process and reload all the state from another process.
It can be easy to overlook details or inadvertently to destroy state while saving a copy
(e.g., clobber a register). Unfortunately, debugging can be extremely difficult because
problems may not be discovered until the system attempts to reload saved state.

A1.3.9  Synchronization And Other Process Management Functions

Once process creation, scheduling, and context switching are working, other pro-
cess management functions can be added easily. Semaphores functions can be ported
and tested, as can message passing. Beyond the context switch level, most process
management functions do not depend on the hardware. Of course, various data types
may change, depending on the underlying hardware. For example, when moving from a
32-bit computer to a 64-bit computer, the msg32 type may be changed to msg64.
Nevertheless, porting the semaphore and message passing functions is a relatively
straightforward task.
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A1.3.10  Interrupt Dispatching And Real-Time Clock

The last big hardware hurdle concerns interrupts. Building an interrupt dispatcher
requires a detailed knowledge of the hardware. How do the processor, co-processor,
and bus interact? Exactly what state does the hardware save when an interrupt occurs,
and what state is the operating system required to save? How does the dispatcher deter-
mine which device interrupted? How does a dispatcher return to the running program
when the interrupt ends? What addresses are used for the bus and devices?

The details of interrupts are surprisingly subtle. On many systems, for example,
I/O is memory mapped. Thus, I/O devices (and perhaps the bus hardware) are mapped
into specific addresses. To access I/O facilities, however, an operating system may
need to disable or avoid the memory cache because each I/O access must go to the
underlying hardware rather than the cache.

In any case, once interrupt dispatching is in place, an example is needed to test the
mechanism. It is logical to start by testing the real-time clock. On some systems build-
ing a real-time clock handler first is necessary because the clock cannot be stopped — if
the system has interrupts enabled, clock interrupts will occur. Clock interrupts mean
that processes can call sleep() to delay for a specified time, and that time slicing is in
effect.

A1.3.11  Tty Device Driver

Clock interrupts are distinct from other devices because a clock does not perform
output. A serial line is perhaps the simplest type of device that has both input and out-
put (some hardware separates input and output interrupt handling). Thus, the tty driver
will exercise both input and output, and insure that all basic interrupt processing works.

Fortunately, most systems include a serial line, and many use the same UART
hardware as described in the text. Thus, much of the tty driver code, including the
lower half, can simply be recompiled and used. Basic device parameters, which will
have been worked out in Step 5, can be added to the device switch table or the lower
half as appropriate.

A1.3.12  Other I/O Software And Device Drivers

Once input and output have been tested, more complex device drivers can be port-
ed. Devices that use DMA (e.g., disks and network interfaces) require buffer pools to
be in place, and may require a deeper understanding of how DMA interacts with a
memory cache. However, having a basic system in place makes debugging much easier
because a programmer can focus on one device at a time.
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A1.3.13  File System

Given an operational disk driver, porting a basic file system is straightforward.
The first step consists of porting and testing functions that read and write index blocks;
the second step consists of porting and testing code that builds the free lists of index
and data blocks. Once the basic allocation functions are in place, a directory can be ad-
ded and the file system tested.

A1.3.14  Protocol Software

A basic network device driver can be tested by sending and receiving raw packets
(e.g., over an Ethernet). However, testing network connectivity and performance under
load usually requires higher layers of protocol software, at least IP and UDP. With
UDP in place, for example, a programmer can run an application on a conventional sys-
tem that sends and receives a stream of packets.

A1.3.15  Shell And Applications

Although applications are convenient, special programs are used to test each part of
the operating system and exercise special cases. Once the system is running, the final
step consists of porting a shell and more general-purpose applications.

A1.4 Programming To Accommodate Change

How should operating system designers contend with constant change? Can we
anticipate future hardware? Can a system be designed and implemented to make
changes easier? Designers have been considering the questions for decades. Most early
operating systems were created to match the hardware and written in assembly
language. Each system was designed and built from scratch, with new abstractions and
new mechanisms. As I/O devices (such as disks) and operating system abstractions
(such as files) became standardized, designing a new system from scratch became much
more expensive than adapting an existing system. Modern systems employ two tech-
niques to accommodate change:

d Compile time: write source code that can generate multiple versions.

d Run-time: design facilities that allow an operating system to change

dynamically.

Compile time. One way to make a system adaptable consists of writing source
code that uses conditional compilation to allow a given source program to be used on
multiple systems. As a simplistic example, consider writing an operating system that
must run on hardware with a real-time clock or hardware that has no real-time clock. A
programmer can use the C preprocessor to conditionally compile source code according
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to the hardware. For example, if preprocessor variable RT_CLOCK has been defined,
functions that use the clock should be compiled as usual. Otherwise, functions that
depend on a clock should be replaced by versions that report an error. The sleep func-
tion from Chapter 13 illustrates the concept. To accommodate both situations, the code
can be rewritten as follows:

syscall sleep(

uint32 delay /* time to delay in seconds */

)

{

#ifdef RT_CLOCK

if (delay > MAXSECONDS) {

return(SYSERR);

}

sleepms(1000*delay);

return OK;

#else

return SYSERR;

#endif

}

If constant RT_CLOCK has been defined, the C preprocessor generates the source
code shown in Chapter 13, which is then compiled. If RT_CLOCK has not been de-
fined, the C preprocessor eliminates the body of the sleep function and generates a sin-
gle line of source code:

return SYSERR;

The chief advantage of conditional compilation lies in its efficiency: instead of using a
test at run-time, the source code can be tailored to the specific hardware. Furthermore,
the system does not contain extra code that is never used (which can be important in
embedded systems).

Run-time. The simplest way to increase run-time portability consists of using con-
ditional execution. When it starts, the operating system gathers information about the
hardware and places the information in a global data structure. For example, a Boolean
variable in the global data structure might specify whether the hardware includes a
real-time clock. Each operating system function is written to interrogate the data struc-
ture and act accordingly. The chief advantage of using a run-time approach lies in gen-
erality — an image can be run without being recompiled.

The idea of run-time adaptation has been generalized by separating an operating
system into two parts: a microkernel that contains basic process management functional-
ity and a series of dynamically loaded kernel modules that extend the functionality. In
theory, porting a microkernel to a new environment is easier than porting a complete
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system because porting can be done piecemeal. That is, the microkernel is ported first,
and modules are ported later, as needed.

A1.5 Summary

Portability is important because hardware continues to change. The steps required
to port an operating system to a new environment follow the same pattern as the origi-
nal design: port the lower levels of the system first, and then port successively higher
levels.

Operating system code can be written to increase portability. A compile-time ap-
proach that uses conditional compilation achieves highest efficiency. A run-time ap-
proach that uses conditional execution allows a single image to run on multiple versions
of a platform. The most advanced run-time approach uses a microkernel plus dynamic
kernel modules, which allows modules to be ported only if they are needed.



Appendix 2

Xinu Design Notes

A2.1 Introduction

This appendix contains a set of informal notes that characterize Xinu and the
underlying design. The notes are not intended as a tutorial, nor are they a complete
description of the system. Instead, they provide a concise summary of characteristics
and features.

A2.2 Overview

Embedded paradigm. Because it is intended for use in embedded systems, Xinu
follows a cross-development paradigm. A programmer uses a conventional computer
(typically one running a Unix operating system, such as Linux) to write, edit, cross-
compile and cross-link Xinu software. Output from cross-development software is an
exact memory image. Once such an image has been created, a programmer downloads
the image to the target system (typically over a computer network). Finally, the pro-
grammer starts the image running on the target embedded system.

Source code organization. Xinu software is organized into a handful of directories
that follow the organization used with various Unix systems. Instead of placing all files
for each module in a separate directory, files are grouped into a few directories. For ex-
ample, all include files are placed in one directory and files that constitute the kernel
sources are placed in another. Device drivers are the exception — source files for a
given device driver are placed in a subdirectory named for the device type. The direc-
tories are organized as follows:

590
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compile The Makefile with instructions needed to compile
and link an image

include All include files

config Source for the configuration program and a
Makefile that builds and installs conf.h and
conf.c

system Source code for Xinu kernel functions

devices Source code for device drivers, organized into
one directory for each device type

tty Source code for the tty driver

rfs Source code for the remote file access system,
including the master remote file system device
and remote file pseudo-devices

ether Source code for the Ethernet driver

A2.3 Xinu Design Notes

Xinu characteristics. These are the notes kept during implementation; they are not
intended to be a tutorial introduction to Xinu.

– The system supports multiple concurrent processes.

– Each process is known by its process ID.

– The process ID is used as an index into the process table.

– The system includes counting semaphores.

– Each semaphore is known by its ID, which is used as an index into the
semaphore table.

– The system supports a real-time clock that is used for round-robin
scheduling of equal-priority processes and timed delays.

– Each process is assigned a priority, which is used in scheduling; a pro-
cess priority can be changed dynamically.

– The system supports multiple I/O devices and multiple types of I/O de-
vices.

– The system includes a set of device-independent I/O primitives.

– The console device uses a tty abstraction in which characters are
queued both during input and output.

– The tty driver supports modes; cooked mode includes character echo,
erasing backspace, etc.
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– The system includes an Ethernet driver that can send and receive Eth-
ernet packets; the driver uses DMA.

– Xinu includes a local file system that supports concurrent growth of
files without preallocation; the local file system only has a single-level
directory structure.

– Xinu also includes a remote file system mechanism that allows access
to files on a remote server.

– The system includes a message passing mechanism used for inter-
process communication; each message is one word long.

– Processes are dynamic — a process can be created, suspend and res-
tarted, or killed.

– Xinu includes a low-level memory manager used to allocate and free
heap areas or process stacks, and a high-level memory manager used to
create buffer pools, where each pool contains a set of fixed-size
buffers.

– Xinu includes a configuration program that generates a Xinu system
according to the specifications given; the configuration program allows
one to choose a set of devices and set system parameters.

A2.4 Xinu Implementation

Functions and modules. The system sources are organized as a set of functions.
In general, each file corresponds to a system call (e.g., file resume.c contains system
call resume). In addition to the system call function, a file may contain utility functions
needed by that system call. Other files are listed below with a brief description:

Configuration A text file containing device information and constants
that describe the system and the hardware. The config
program takes file Configuration as input and produces
conf.c and conf.h.

conf.h Generated by config, it contains declarations and con-
stants including defined names of I/O devices, such as
CONSOLE.

conf.c Generated by config, it contains initialization for the
device switch table.

kernel.h General symbolic constants and type declarations used
throughout the kernel.

prototypes.h Prototype declarations for all system functions.

xinu.h A master include file that includes all header files in
the correct order. Most Xinu functions only need to in-
clude xinu.h.
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process.h Process table entry structure declaration; state con-
stants.

semaphore.h Semaphore table entry structure declaration; semaphore
constants.

tty.h Tty line discipline control block, buffers, excluding
sizes.

bufpool.h Buffer pool constants and format.

memory.h Constants and structures used by the low-level memory
manager.

ports.h Definitions by the high-level inter-process communica-
tion mechanism.

sleep.h Definitions for real-time delay functions.

queue.h Declarations and constants for the general-purpose pro-
cess queue manipulation functions.

resched.c The Xinu scheduler that selects the next process to run
from the eligible set; resched calls the context switch.

ctxsw.S The context switch that changes from one executing
process to another. It consists of a small piece of as-
sembler code that uses a trick: when the state of a pro-
cess is saved, the execution address at which the pro-
cess will restart is the instruction following the call to
ctxsw.

initialize.c General initialization and code for the null process
(process 0).

userret.c The function to which a user process returns if the pro-
cess exits. Userret must never return. It must kill the
process that executed it because the stack does not con-
tain a legal frame or return address.

A2.5 Major Concepts And Implementation

Process states. Each process has a state given by field prstate in its process table entry.
Constants that define process states have names of the form PR_xxxx. PR_FREE means
the process entry is unused. PR_READY means the process is linked into the ready list
and is eligible for the CPU. PR_WAIT means the process is waiting on a semaphore
(given by prsem). PR_SUSP means the process is in hibernation; it is not on any list.
PR_SLEEP means the process is in the queue of sleeping processes and will awaken
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after a timeout. PR_CURR means that the process is (the only one) currently running.
The currently running process is not on the ready list. PR_RECV means the process is
blocked waiting to receive a message; PR_RECTIM is like PR_RECV except the pro-
cess is also sleeping for a specified time and will awaken if the timer expires or a mes-
sage arrives, whichever happens first.

Counting semaphores. Semaphores reside in the array semtab. Each entry in the array
corresponds to a semaphore and has a count (scount) and state (sstate). The state is
S_FREE if the semaphore slot is unassigned, and S_USED if the semaphore is in use.
If the count is negative P then the head and tail fields of the entry in the semaphore
table point to the head and tail of a FIFO queue of P processes waiting for the sema-
phore. If the count is nonnegative P then no processes are waiting and the queue is
empty.

Blocked processes. A process that is blocked for any reason is not eligible to use the
CPU. Any action that blocks the current processes forces it to relinquish the CPU and
allow another process to execute. A process that is blocked on a semaphore is on the
queue for the semaphore, and a process blocked for a timed delay is on the queue of
sleeping processes. Other blocked processes are not on a queue. Function ready moves
a blocked process to the ready list and makes the process eligible to use the CPU.

Sleeping processes. A process calls sleep to delay for a specified time. The process is
added to a delta list of sleeping processes. A process may only put itself to sleep.

Process queues and ordered lists. There is a single data structure used for all process
lists. The structure contains entries for the head and tail of each list as well as an entry
for each process. The first NPROC entries in the table (0 to NPROC-1) correspond to
the NPROC processes in the system; successive entries in the table are allocated in
pairs, where each pair forms the head and tail of a list.

The advantage of keeping all heads and tails in the same data structure is that enqueu-
ing, dequeuing, testing for empty/nonempty, and removing from the middle (e.g., when
a process is killed) are all handled by a small set of functions (files queue.c and
queue.h). An empty queue has the head and tail pointing to each other. Testing wheth-
er a list is empty is trivial. Lists can be ordered or may be FIFO; each entry has a key
that is ignored if the list is FIFO.

Null process. Process 0 is a null process that is always available to run or is running.
Care must be taken so that process 0 never executes code that could cause it to block
(e.g., it cannot wait for a semaphore). Because the null process may be running during
interrupts, interrupt code may never wait for a semaphore. When the system starts, the
initialization code creates a process to execute main and then becomes the null process
(i.e., executes an infinite loop). Because its priority is lower than that of any other pro-
cess, the null process loop executes only when no other process is ready.
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