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INTRODUCTION 

Without its software, a computer is basically a useless lump of metal. With 
its software, a computer can store, process, and retrieve information; display mul- 
timedia documents; search the Internet; and engage in many other valuable activi- 
ties to earn its keep. Computer software can be divided roughly into two kinds: 
system programs, which manage the operation of the computer itself, and applica- 
tion programs, which perform the actual work the user wants. The most funda- 
mental system program is the operating system, which controls dl the 
computer's resources and provides the base upon which the application prbgrams 
can be written, 

A modern computer system consists of one or more processors, some main 
memory (often known as RAM-Random Access Memory), disks, printers, net- 
work interfaces, and other input/output devices. All in all, a complex system. 
Writing programs that keep track of all these components and use them correctly, 
let aIone optimally, is an extremely difficult job. If every programmer had to be 
concerned with how disk drives work, and with all the dozens of things that could 
go wrong when reading a disk block, it is unlikely that many programs could be 
written at all. 

Many years ago it became abundantly clear that some way had to be found to 
shield programmers from the complexity of the hardware. The way that has 
evolved gradually is to put a layer of software on top of the bare hardware, to 
manage all parts of the system, and present the user with an interface or virtual 
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machine that is easier to understand and program. This layer of software is the 
operating system and forms the subject of this book. 

The situation is shown in Fig. 1-1. At the bottom is the hardware, which, in 
many cases, is itself composed .of two or more layers. The lowest layer contains 
physical devices, consisting of integrated circuit chips, wires, power supplies, 
cathode ray tubes, and similar physical devices. How these are constructed and 
how they work is the province of the electrical engineer. 

Operating system 

Banking 
system 

1 Machine language I 
Microprogramming 

Airline 
reservation 

I Physical devices I 

Web 
browser - Application programs 

. Hardware 

Figure 1-1. A computer system consists of hardware, system programs, and ap- 
plication programs. 

Next (on some machines) comes a layer of primitive software that directly 
controls these &vices and provides a cleaner interface to the next layer. This 
software, called the microprogram, is usually located in read-only memory. It is 
actually an interpreter, fetching the machine language instructions such as ADD, 
MOVE, and JUMP, and carrying them out as a series of little steps. To carry out 
an ADD instruction, for example, the microprogram must determine where the 
numbers to be added are located, fetch them, add them, and store the result some- 
where. 7be set of instructions that the microprogram inte'prets defines the 
machine language, which is not really part of the hard machine at all, but com- 
puter manufacturers always describe it in their manuals as such, so many people 
think of it as being the real "machine." 

Some computers, called RISC (Reduced Instruction Set Computers) 
machines, do not have a microprogramming level. On these machines, the 
hardware executes the machine language instructions dimctly. As examples, the 
Motorola 680x0 has a microprogramming level, but the IBM PowerPC does not. 

The machine language typically has between 50 and 300 instructions, mostly 
for moving data around the machine, doing arithmetic, and comparing values. In 
this layer, the input/output dqvices are controlled by loading values into special 
device registers. For example, a disk can be commanded to read by loading the 
values of the disk address, main memory address, byte count, and direction 
(READ or WRITE) into its registers. In practice, many more parameters are 
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needed, and the status returned by the drive after an operation is highly complex. 
Furthermore, for many I/0 devices, timing plays an important role in the program- 
ming. 

A major function of the operating system is to hide all this complexity and 
give the programmer a more convenient set of instructions to work with. For 
example, READ BLOCK FROM FlLE is conceptually simpler than having to 
worry about the details of moving disk heads, waiting for them to settle down, and 
SO on. 

On top of the operating system is the rest of the system software. Here we 
find the command interpreter (shell), window systems, compilers, editors, and 
similar application-independent programs, It is important to realize that these 
programs are definitely not part of the operating system, even though they are typ- 
ically supplied by the computer manufacturer. This is a crucial, but subtle, point. 
The operating system is that portion of the software that runs in kernel mode or 
supervisor mode. f t  is protected from user tampering by the hardware (ignoring 
for the moment some of the older microprocessors that do not have hardware pro- 
tection at aH). Compilers and editors run in user mode. If a user does not like a 
particular compiler, he? is free to write his own if he so chooses; he is not free to 
write his own disk intcrmpt handier, which is part of the operating system and is 
normally protected by hardware against attempts by users to modify it. 

Finally, above the system programs come the application programs. These 
programs are purchased or written by the users to solve their particular problems, 
such as word processing, spreadsheets, engineering calculations, or game playing. 

1.1 WHAT IS AN OPERATING SYSTEM? 

Most computer users have had some experience with an operating system, but 
it is difficutt to pin down precisely what an operating system is. Part of the prob- 
lem is that operating systems perfom, two basically unrelated functions, and 
depending on who is doing the talking, you hear mostly about one function or the 
other. Let us now look at both. 

1.1.1 The Operating System as an Extended Machine 

As mentioned earlier, the architecture (instruction set, memory organization, 
110, and bus structure) of most computers at the machine language level is primi- 
tive and awkward to program, especially for input/output. To make this point 
more concrete, let us briefly look at how floppy disk VO is done using the NEC 
PD765 (or equivalent) controller chip, which is used on most personal computers. 
(Throughout this book we will use the terms "floppy disk" and "diskette" 

' "He" should be read as "he or she" throughout the book. 
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interchangeably.) The PD765 has 16 commands, each specified by loading 
between 1 and 9 bytes into a device register. These commands are for reading 
and writing data, moving the disk arm, and formatting tracks, as well as initializ- 
ing, sensing, resetting, and recalibrating the controller and the drives. 

The most basic commands are READ and WRITE, each of which requires 13 
parameters, packed into 9 bytes. These parameters specify such items as the 
address of the disk block to be read, the number of sectors per track, the recording 
mode used on the physical medium, the intersector gap spacing, and what to do 
with a deleted-data-address-mark. If you do not understand this mumbo jumbo, 
do not worry; that is precisely the point-it is rather esoteric. When the operation 
is completed, the controller chip returns 23 status and error fields packed into 7 
bytes. As if this were not enough, the floppy disk programmer must also be con- 
stantly aware of whether the motor is on or off. If the motor is off, it must be 
turned on (with a long startup delay) before data can be read or written. The 
motor cannot be left on too long, however, or the floppy disk will wear out. The 
programmer is thus forced to deal with the trade-off between long startup delays 
versus wearing out floppy disks (and losing the data on them). 

Without going into the real details, it should be clear that the average pro- 
grammer probably does not want to get too intimately involved with the program- 
ming of floppy disks (or hard disks, which are just as complex and quite dif- 
ferent). Instead, what the programmer wants is a simple, high-level abstraction to 
deal with. In the case of disks, a typical abstraction would be that the disk con- 
tains a collection of named files. Each file can be opened for reading or writing, 
then read or written, and finally closed. Details such as whether or not recording 
should use modified frequency modulation and what the cunent state of the motor 
is should not appear in the abstraction presented to the user. 

The program that hides the truth about the hardware from the programmer and 
presents a nice, simple view of named files that can be read and written is, of 
course, the operating system. Just as the operating system shields the programmer 
from the disk hardware and presents a simple file-oriented interface, it aIso con- 
ceals a lot of unpleasant business concerning interrupts, timers, memory manage- 
ment, and other low-level features. In each case, the abstraction offered by the 
operating system is simpler and easier to use than the underlying hardware. 

In this view, the function of the operating system is to present the user with 
the equivalent of an extended machine or virtual machine that is easier to pro- 
gram than the underlying hardware, How the operating system achieves this goal 
is a long story, which we will study in detail throughout this book. 

1.1.2 The Operating System as a Resource Manager 

The concept of the operating system as primarily providing its users with a 
convenient interface is a top-down view. An alternative, bottom-up, view holds 
that the operating system is there to manage aH the pieces of a complex system. 
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Modem computers consist of processors, memories, timers, disks, mice, network 
interfaces, laser printers, and a wide variety of other devices. In the alternative 
view, the job of the operating system is to provide for an orderly and controlled 
allocation of the processors, memories, and I/0 devices among the various pro- 
grams competing for them. 

Imagine what would happen if three programs running on some computer all 
tried to print their output simultaneously on the same printer. The first few lines 
of printout might be from program I ,  the next few from program 2, then some 
from program 3, and so forth, The result would be chaos. The operating system 
can bring order to the potential chaos by buffering all the output destined for the 
printer on the disk. When one program is finished, the operating system can then 
copy its output from the disk file where it has been stored to the printer, while at 
the same time the other program can continue generating more output, oblivious 
to the fact that the output is not really going to the printer (yet). 

When a computer (or network) has multiple users, the need for managing and 
protecting the memory, FIO devices, and other resources is even greater, since the 
users might otherwise interfere with one another. In addition, users often need to 
share not only hardware, but information (files, data bases, etc.) as well. In short, 
this view of the operating system holds that its primary task is to keep track of 
who is using which resource, to grant resource requests, to account for usage, and 
to mediate conflicting requests from different programs and users. 

1.2 HISTORY OF OPERATING SYSTEMS 

Operating systems have been evolving through the years. In the following 
sections we will briefly look at this development. Since operating systems histori- 
cally have been closely tied to the architecture of the computers on which they 
run, we will look at successive generations of computers to see what their operat- 
ing systems were like. This mapping of operating system generations to computer 
generations is crude, but it does provide some structure where there would other- 
wise be none. 

The first true digital computer was dcsigned by the English mathematician 
Charles Babbage (1792-1871). Although Babbage spent most of his life and for- 
tune trying to build his "analytical engine," he never got it working properly 
because it was purely mechanical, and the technology of his day could not pro- 
duce the required wheels, gears, and cogs to the high precision that he needed. 
Needless to say, the analytical engine did not have an operating system. 

As an interesting historical aside, Babbage realized that he would need 
software for his analytical engine, so he hired a young woman, named Ada 
Lovelace, who was the daughter of the famed British poet, Lord Byron, as the 
world's first programmer. The programming language ~ d a @  is named after her. 
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1.2.1 The First Generation (1945-55) Vacuum Tubes and Plugboards 

After Babbage' s unsuccessful efforts, little progress was made in constructing 
digital computers until World War 11. Around the mid-1940s, Howard Aiken at 
Harvard, John von Neumann at the Institute for Advanced Study in Princeton, J. 
Presper Eckert and William Mauchley at the University of Pennsylvania, and 
Konrad Zuse in Germany, among others, all succeeded in building calculating 
engines using vacuum tubes. These machines were enormous, filling up entire 
rooms with tens of thousands of vacuum tubes, but were much slower than even 
the chehs t  personal computer available today. 

In these early days, a single group of people designed, built, programmed, 
operated, and maintained each machine. All programming was done in absolute 
machine language, often by wiring up plugboards to control the machine's basic 
functions. Programming lang(uages were unknown (not even assembly language). 
Operating systems were unheard of. The usual mode of operation was for the pro- 
grammer to sign up for a block of time on the signup sheet on the wall, then come 
down to the machine room, insert his or her plugboard into the computer, and 
spend the next few hours hoping that none of the 20,000 or so vacuum tubes 
would bum out during the run. Virtudly all the problems were straightforward 
numerical, calculations, such as grinding out tables of sines and cosines. 

By the early 1 9 5 0 ~ ~  the routine had improved somewhat with the introduction 
of punched cards. It was now possible to write programs on cards and read them 
in, instead of using plugboards; otherwise the procedure was the same. 

1.2.2 The Second Generation (1955-65) Transistors and Batch Systems 

The introduction of the transistor in the mid-1950s changed the picture radi- 
cally. Computers became reliable enough that they could be manufactured and 
sold to paying customers with the expectation that they would continue to func- 
tion long enough to get some useful work done. For the first time, there was a 
clear separation between designers, builders, operators, programmers, and mainte- 
nance personnel. 

These machines were locked away in specially air conditioned computer 
rooms, with staffs of professional operators to run them. Only big corporations, or 
major government agencies or universities could afford the multimillion dollar 
price tag. To run a job (i.e., a program or set of programs), a programmer would 
first write the program on paper (in FORTRAN or assembler), then punch it on 
cards. He would then bring the card deck down to the input room and hand it to 
one of the operators. 

When the computer finished whatever job it was currently running, an opera- 
tor would go over to the printer and tear off the output and carry it over to the out- 
put room, so that the programmer could collect it later. Then he would take one 
of the card decks that had been brought from the input room and read it in. If the 
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FORTRAN compiler was needed, the operator would have to get it from a file 
cabinet and read it in, Much computer time was wasted while operators were 
walking around the machine room. 

Given the high cost of the equipment, it is not surprising that people quickly 
looked for ways to reduce the wasted time. The solution generally adopted was 
the batch system. The idea behind it was to collect a tray full of jobs in the input 
room and then read them onto a magnetic tape using a small, (relatively) inexpen- 
sive computer, such as the IBM 1401, which was very good at reading cards, 
copying tapes, and printing output, but not at all good at numerical calculations. 
Other, much more expensive machines, such as the IBM 7094, were used for the 
real computing. This situation is shown in Fig. 1-2. 

Tape 
drive 

System 
Input t a p  Output 

Figure 1-2. An early batch system. (a) Programmers bring cards to 1401. (b) 
1401 reads batch of jobs onto tape. (c) Operator carries input tape to 7094. (d) 
7094 does computing. (e) Operator canies output tape to 1401. (f) 1401 prints 
output. 

After about an hour of collecting a batch of jobs, the tape was rewound and 
brought into the machine room, where it was mounted on a tape drive. The opera- 
tor then loaded a special program (the ancestor of today's operating system), 
which read the first job from tape and ran it. The output was written onto a 
second tape, instead of being printed. After each job finished, the operating sys- 
tem automatically read the next job from the tape and began running it. When the 
whole batch was done, the operator removed the input and output tapes, replaced 
the input tape with the next batch, and brought the output tape to a 1401 for print- 
ing off line (i.e., not connected to the main computer). 

The structure of a typical input job is shown in Fig. 1-3. It started out with a 
$JOB card, specifying the maximum run time in minutes, the account number to 
be charged, and the programmer's name. Then came a $FORTRAN card, telling 
the operating system to load the FORTRAN compiler from the system tape. It 
was followed by the program to be compiled, and then a $LOAD card, directing 
the operating system to load the object program just compiled. (Compiled pro- 
grams were often written on scratch tapes and had to be loaded explicitiy.) Next 
came the $RUN card, telling the operating system to run the program with the 
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data following it. Finally, the $END card marked the end of the job. These prim- 
itive control cards were the forerunners of modern job control languages andcom- 
mand interpreters. 

SEND 

Data for program 

Fortran Program 

- 
- 

, MARVIN TANENBAUM 

Figure 1-3. Structure of a typical FMS job. 

Large second-generatian computers were used mostly for scientific and 
engineering calculations, such as solving partial differential equations. They were 
largely programmed in FORTRAN and assembly language. Typical operating 
systems were FMS (the Fortran Monitor System) and IBSYS, IBM's operating sys- 
tem for the 7094. 

1.2.3 The Third Generatien (1!hS1980): ICs and Multiprogramming 

By the early 1960~~ mast computer manufacturers had two distinct, and totally 
incompatible, product lines. On the one hand there were the word-oriented, 
large-scale scientific computers, such as the 7094, which were used for numerical 
calculations in science and engineering. On the other hand, there were the 
character-oriented, commercial computers, such as the 1401, which were widely 
used for tape.sorting and printing by banks and insurance companies. 

Developing and maintaining two completely different product lines was an 
expensive proposition for the manufacturers. In addition, many new computer 
customers initially needed a small machine but later outgrew it and wanted a 
bigger machine that would run all their old programs, but faster. 

IBM attempted to solve both of these problems at a single stroke by introduc- 
ing the Systed360. The 360 was a series of software-compatible machines 
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ranging from 1401-sized to much more powerful than the 7094, The machines 
differed only in price and performance (maximum memory, processor speed, 
number of W 0  devices permitted, and so forth.). Since all the machines had the 
same architecture and instruction set, programs written for one machine could run 
on all the others, at least in theory. Fulthermore, the 360 was designed to handle 
both scientific and commercial computing. Thus a single family of machines 
could satisfy the needs of all customers. In subsequent years, IBM has come out 
with compatible successors to the 360 line, using more modem technology, 
known as the 370,4300,3080, and 3090 series. 

The 360 was the first major computer line to use (small-scale) Integrated Cir- 
cuits (ICs), thus providing a major prioe/performance advantage over the second- 
generation machines, which were built up from individual transistors. It was an 
immediate success, and the idea of a family of compatible computers was soon 
adopted by all the other major manufacturers. The descendants of these machines 
are still in use at scattered computer centers today, but their use is declining 
rapidly. 

The greatest strength of the "one family" idea was simultaneously its greatest 
weakness. The intention was that all software, including the operating system, 
had to work on all models. It had to run on smail systems, which often just 
replaced 1401s for copying cards to tape, and on very large systems, which often 
replaced 7094s for doing weather forecasting and other heavy computing. It had 
to be good on systems with few peripherals and on systems with many peri- 
pherals. It had to work in commercial environments and in scientific environ- 
ments. Above all, it had to be efficient for all of these different uses. 

There was no way that IBM (or anybody else) could write a piece of software 
to meet all those conflicting requirements. The result was an enormous and 
extraordinarily complex operating system, probably two to three orders of magni- 
tude larger than FMS. It consisted of millions of lines of assembly langwge writ- 
ten by thousands of programmers, and contained thousands upon thmands of 
bugs, which necessitated a continuous stream of new releases in an &tempt to 
correct them. Each new release fixed some bugs and introduced new ones, so the 
number of bugs probably remained constant in time. 

One of the designers of 0~/360, Fred Brooks, subsequently wrote a witty and 
incisive book (Brooks, 1975) describing his experiences with OSf360. While it 
would be impossible to summarize the book here, suffice it to say that the cover 
shows a herd of prehistoric beasts stuck in a tar pit. The cover of Silberschatz and 
Galvin' s book ( 1994) makes a similar point. 

Despite its enormous size and problems, OW360 and the similar third- 
generation operating systems produced by other computer manufacturers actually 
satisfied most of their customers reasonably well. They also popularized several 
key techniques absent in second-generation operating systems. Probably the most 
important of these was multiprogramming. On the 7094, when the current job 
paused to wait for a tape or other L/O operation to complete, the CPU simply sat 
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idle until the I/0 finished. With heavily CPU-bound scientific calculations, VO is 
infrequent, so this wasted time is not significant. With commercial data process- 
ing, the 110 wait time can often be 80 or 90 percent of the total time, so something 
had to be done to avoid havina the CPU be idle so much. 

The solution that evolved was to partition memory into several pieces, with a 
different job in each partition, as shown in Fig. 1-4. While one job was waiting 
for VO to complete, another job could be using the CPU. If enough jobs could be 
held in main memory at once, the CPU could be kept busy nearly 1 0 0  percent of 
the time. Having multiple jobs in memory at once requires special hardware to 
protect each job against snooping and mischief by the other ones, but the 3M) and 
other t&d-generation systems were equipped with this hardyare. 

Figure 1-4. A multiprogramming system with three jobs in memory. 

Another major feature present in third-generation operating systems was the 
ability to mid jobs from cards onto the disk as soon as they were brought to the 
computer room. Then, whenever a running job finished, the operating system 
could load a new job from the disk into the now-empty partition and run it. This 
technique is called spooling (from Simultaneous Peripheral Operation On Line) 
and was also used for output. With spooling, the 1401s were no longer needed, 
and much carrying of tapes disappeared. 

Although third-generation operating systems were well-suited for big scien- 
tific calculations and massive commercial data processing runs, they were still 
basically batch systems. Many programmers pined for the first-generation days 
when they had the machine all to themselves for a few hours, so they could debug 
their programs quickly. With $hid-generation systems, the time between submit- 
ting a job and getting back * output was often several hours, 90 a single mis- 
placed comma could cause a compilation to fail, and the programmer to waste 
half a day. 

This desire for quick response time paved the way for timesharing, a variant 
of multiprograming, in which each user has an on-line terminal. In a timeshar- 
ing system, if 20 users are logged in and 17 of them are thinking or talking or 
drinking coffee, the CPU can be allocated in turn to the three jobs that want ser- 
vice. Since people debugging programs usually issue short commands (e.g., com- 
pile a five-page procedure) rather than long ones (e.g., sort a million-record file), 
the computer can provide fast, interactive service to a number of users and 
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perhaps also work on big batch jobs in the background when the CPU is otherwise 
idle. Although the first serious timesharing system (CTSS) was developed at 
M.I.T. on a specially modified 7094 (Corbato et al., 1962), timesharing did not 
really become popular until the necessary protection hardware became 
widespread during the third generation. 

After the success of the CTSS system, MIT, Bell Labs, and General Electric 
(then a major computer manufacturer) decided to embark on the development of a 
"computer utility," a machine that would support hundreds of simultaneous 
timesharing users. Their model was the electricity distribution system-when you 
need electric power, you just stick a plug in the wall, and within reason, as much 
power as you need will be there. The designers of this system, known as MUL- 
TICS (MULTiplexed Information and Computing Service), envisioned one huge 
machine providing computing power for everyone in Boston. The idea that 
machines far more powerful than their GE-645 would be sold as personal comput- 
ers for a few thousand dollars only 30 years later was pure science fiction at the 
time. 

To make a long story short, MULTES introduced many seminal ideas into the 
computer literature, but building it was a lot harder than anyone had expected. 
Bell Labs dropped out of the project, and General Electric quit the computer busi- 
ness altogether. Eventually, MULI'ICs ran well enough to be used in a production 
environment at MIT and dozens of sites elsewhere, but the concept of a computer 
utility fizzled out as computer prices plummeted. Still, MULTICS had an enormous 
influence on subsequent systems. It is described in (Corbam et al., 1972; Corbato 
and Vyssotsky, 1965; Daley and Dennis, 1968; Organick, 1972; Saltzer, 1974). 

Another major development during the third generation. was the phenomenal 
growth of minicomputers, starting with the DEC PDP- 1 in 196 1. The PDP-1 had 
only 4K of 1 8-bit words, but at $120,000 per machine (less than 5 percent of the 
price of a 7094), they sold like hotcakes. For certain kinds of nornumerical work, 
it was almost as fast as the 7094, and gave birth to a whole new industry. It was 
quickly followed by a series of other PDPs (unlike IBM's family, all incompati- 
ble) culminating in the PDP- 1 1. 

One of the computer scientists at Bell Labs who had worked on the MULTICS 
project, Ken Thompson, subsequently found a small PDP-'7 minicomputer that no 
one was using and set out to ,write a strip d-down, one-user vmion of MULTICS. 
This work later developed into the ~ ~ C p e r a t i n ~  system, which became p o p -  
lar in the academic world, with government agencies, and with many companies. 

The history of WIX has been told elsewhere (e.g., Salus, 1994). Suffice it to 
say, that because the source code was widely available, various organizations 
developed their own (incompatible) versions, which led to chaos. To make it pos- 
sible to write programs that could run on any uMx system, IEEE developed a 
standard for UNIX, called POSIX, that most versions of UNIX now support. Posrx 
defines a minimal sytern call interface that conformant UNIX systems must sup- 
port. In fact, some other operating systems now also suppoa the posIx interface. 
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1.2.4 The Fourth Generation (1980-Present): Persond Computers 

With the development of LSI (Large Scale Integration) circuits, chips contain- 
ing thousands of transistors on a square centimeter of silicon, the age of the per- 
sonal computer dawned. In terms of architecture, personal computers were not 
that different from minicomputers of the PDP-11 class, but in terms of price they 
certainly were different. Where the minicomputer made it possible for a depart- 
ment in a company or university to have its own computer, the microprocessor 
chip made it possible for a single individual to have his or her own personal com- 
puter. The most powerful personal computers used by businesses, universities, 
and government installations are usually called workstations, but they are really 
just large personal computers. Usually, they are connected together by a network. 

The widespread availability of computing power, especially highly interactive 
computing power usually with excellent graphics, led to the growth of a major 
industry producing software for personal cornputers. Much of this software was 
userfriendly meaning that it was intended for users who not only knew nothing 
about computers but furthermore had absolutely no intention whatsoever of learn- 
ing. This was certainly a major change from OS1360, whose job control language, 
JCL, was so arcane that entire books were written about it (e.g., Cadow, 1970). 

Two operating systems initially dominated the personal computer and work- 
station scene: Microsoft's MS-DOS and ~ I X .  MS-DOS was widely used on the IBM 
PC and other machines using the InteI 8088 CPU and its successors, the 80286, 
80386, and 80486 (which w.e will refer to henceforth as the 286, 386, and 486, 
respectively), and later the Pentium and fentium Pro. Although the initial version 
of MS-DOS was relatively primitive, subsequent versions have included more 
advanced features, including many taken from U N H .  Microsoft's successor to 
MS-WS, WINDOWS, origidly ran on t o p < ~ f  MS-DoS (k, it was more like a shell 
than a m e  operatin system), but starting in 1995 a freestanding version of WIN- 5 DOWS, WINDOWS 95 , was released, so MS-DOS is no longer needed to support it. 
Another Microsoft operating system is WINDOWS m, which is compatible with 
WINDOWS 95 at a certain level, but a complete rewrite from scratch inter'nally. 

The other major contender is Wm, which is dominant on workstations and 
other high-end computers, such as network servers. It is especially popular on 
machines powered by high-performance RISC chips. These machines usually 
have the computing power of a minicomputer, even though they are dedicated to a 
single user, so it is logical that they are equipped with an operating system origi- 
nally designed for minicomputers, namely UNIX. 

An interesting development that began taking place during the mid-1980s is 
the growth of networks of personal computers running network operating sys- 
tems and distributed operating systems (Tanenbaurn, 1995). In a network 
operating system, the users are aware of the existence of multiple computers and 
can log in to remote machines and copy files from one machine to another. Each 
machine runs its own local operating system and has its own local user (or users). 
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Network operating systems are not fundamentally different from single- 
processor operating systems. They obviously need a network interface controller 
and some low-level software to drive it, as well as programs to achieve remote 
login and remote file access, but these additions do not change the essential struc- 
ture of the operating system. 

A distributed operating system, in contrast, is one that appears to its users as a 
traditional uniprocessor system, even though it is actually composed of multiple 
processors. The users should not be aware of where their programs are being run 
or where their files are located; that should all be handled automatically and effi- 
ciently by the operating system. 

True distributed operating systems require more than just adding a little code 
to a uniprocessor opemting system, because distributed and centralized system 
differ in critical ways. Distributed systems, for example, often allow applications 
to nm on several processors at the same time, thus requiring more complex pro- 
cessor scheduling algorithms in order to optimize the amount of parallelism. 

Communication delays within the network often mean that these (and other) 
algorithms must run with incomplete, outdated, or even incorrect information. 
This situation is radically different from a single-processor system in whichw$he 
operating system has complete information about the system state. 

1.2.5 History of M I N ~  

When UNIX was young (Version 6), the source code was widely available, 
under AT&T license, and frequently studied John Lions, of the University of 
New South Wales in Australia, even wrote a little booklet describing its operation, 
line by line (Lions, 1996). This booklet was used (with permission of AT&T) as a 
text in many university .operating system courses. 

When AT&T released Version 7, it began to realize that WNH was a valuable 
commercial product, so it issued Version 7 with a license that prohibited the 
source code from being studied in courses, in order to avoid endangering its status 
as a trade secret. Many universities complied by simply dropping the study of 
UNIX and teaching only theory. 

Unfortunately, teaching only theory leaves the student with a lopsided view of 
what an operating system is really like. The theoretical topics that are usually 
covered in great detail in courses and books on operating systems, such as 
scheduling algorithms, are in practice not really that important. Subjects that 
really are important, such as I/0 and file systems, are generally neglected because 
there is little theory about them. 

To remedy this situation, one of the authors of this book (Tanenbaum) decided 
to write a new operating system from sera tch that would be compatible with UNIX 
from the user's point of view, but completely different on the inside. By not using 
even one line of AT&T code, this system avoids the licensing restrictions, so it 
can be used for class or individual study. In this manner, readers can dissect a 
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real operating system to see what is inside, just as biology students dissect frogs. 
The name MINIX stands for mini-WIX because it is small enough that even a 
nonguru can understand how it works. 

In addition to the advantage of eliminating the legal problems, MINIX has 
another advantage over UMx. It was written a decade after UNIX and has been 
structured in a more modular way. The M~MX file system, for example, is not part 
of the operating system at all but runs as a user program. Another difference is 
that LINE was designed to be efficient; MINIX was designed to be readable 
(inasmuch as one can speak of any program hundreds of pages long as being read- 
able). The MINIX code, for example, has thousands of comments in it. 

MINIX was originally designed for compatibility with Version 7 (V7) UNIX. 
Version 7 was used as the model because of its simplicity and elegance. It is 
sometimes said that Version 7 was not only an improvement over all its predeces- 
sors, but also over all its successors. With the advent of FOSIX, M m  began 
evolving toward the new standard, while maintaining backward compatibility with 
existing programs. This kind of evolution is common in the computer industry, as 
no vendor wants to introduce a new system that none of its existing customers can 
use without great upheaval. The version of MINM described in this book is based 
on the POSIX standard (unlike the version described in the First Edition, which was 
V7 based). 

Like UNIX, MINIX was written in the C programming language and was 
intended to be easy to port to various computers. The initial implementation was 
for the IBM PC, because this computer is in widespread use. It was subsequently 
ported to the Atari, Amiga, Macintosh, and SPARC computers. In keeping with 
the "Small is Beautiful" philosophy, MINUZ originally did not even require a hard 
disk to run, thus bringing it within range of many students' budgets (amazing as it 
may seem now, in the mid-1980s when M M X  first saw the light of day, hard disks 
were still an expensive novelty). As MINIX grew in functionality and size, it even- 
tually got to the point that a hard disk is needed, but in keeping with the MmrX 
philosophy, a 30-megabyte partition is sufficient. In contrast, some commercial 
UNIX systems now recommend at least a 20eMB disk partition as the bare 
minimum. 

To the average user sitting at an IBM PC, running MINlX is similar to running 
UNIX. Many of the basic programs, such as cat, grep, Is, make, and the shell are 
present and perform the same functions as their UNIX counterparts. Like the 
operating system itself, all these utility programs have been rewritten completely 
from scratch by the author, his students, and some other dedicated people. 

Throughout this book MINIX will be used as an example. Most of the com- 
ments about MINIX, however, except those about the actual code, also apply to 
UNIX. Many of them also apply to other systems as well. This remark should be 
kept in mind when reading the text. 

As an aside, a few words about LINUX and its relationship to MINIX may be of 
interest to some readers. Shortly after MINIX was released, a USENET newsgroup 
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was formed to discuss it. Within weeks, it had 40,000 subscribers, most of whom 
wanted to add vast numbers of new features to MINIX to make it bigger and better 
(well, at least bigger). Every day, several hundred of them offered suggestions, 
ideas, and snippets of code. The author of MINIX successfully resisted this 
onslaught for several years, in order to keep MINIX small enough and clean 
enough for students to understand. Ever so gradually, it began to become clear 
that he really meant it. At that point, a Finnish student, Linus Torvalds, decided 
to write a MINIX clone intended to be a feature-heavy production system, rather 
than an educational tool. Thus was L ~ N U X  born. 

1.3 OPERATING SYSTEM CONCEPTS 

The interface between the operating system and the user programs is defined 
by the set of "extended instructions" that the operating system provides. These 
extended instructions have been traditionally known as system calls, although 
they can be implemented in several ways now. To really understand what operat- 
ing systems do, we must examine this interface closely. The calls available in the 
interface vary from operating system to operating system (although the underlying 
concepts tend to be similar). 

We are thus forced to make a choice between (1) vague generalities ("operat- 
ing systems have system calls for reading files") and (2) some specific system 
("MINIX has a READ system call with three parameters: one to specify the file, one 
to tell where the data are to be put, and one to tell how many bytes to read"). 

We have chosen the latter approach. It's more work that way, but it gives 
more insight into what operating systems really do. In See. 1.4 we will look 
closely at the system calls present in both W I X  and MINIX. For simplicity's sake, 
we wiH refer only to MINIX, but the corresponding WIX system calls are based on 
POSIX in most cases. Before we look at the actual system calls, however, it is 
worth taking a bird's-eye view of MINIX, to get a general feel for what an operat- 
ing system is all about. This overview applies equally well to UNIx, 

The MINIX system calls fall roughly in two broad categories: those dealing 
with processes and those dealing with the file system. We will now examine each 
of these in turn. 

1.3.1 Processes 

A key concept in MINIX, and in all operating systems, is the process. A pro- 
cess is basically a program in execution. Associated with each process is its 
address space, a list of memory locations from some minimum (usually 0) to 
some maximum, which the process can read and write. The address space con- 
tains the executable program, the program's data, and its stack. Also associated 
with each process is some set of registers, including the program counter, stack 
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pointer, and other hardware registers, and all the other information needed to run 
the program. 

We will come back to the process concept in much more detail in Chap. 2, but 
for the time being, the easiest way to get a good intuitive feel for a process is to 
think about timesharing systems. Periodically, the operating system decides to 
stop running one process and start running another, for example, because the first 
one has had more than its share of CPU time in the past second. 

When a process is suspended temporarily like this, it must later be restarted in 
exactly the same state it had when it was stopped. This means that all information 
about the process must be explicitly saved somewhere during the suspension. For 
example, the process may have several files open for reading. Associated with 
each of these files is a pointer giving the current position (i.e., the number of the 
byte or record to be read next). When a process is temporarily suspended, all 
these pointers must be saved so that a READ call executed after the process is res- 
tarted will read the proper data. In many operating systems, all the information 
about each process, other than the contents of its own address space, is stored in 
an operating system table called the process table, which is an array (or linked 
list) of structures, one for each process currently in existence. 

Thus, a (suspended) process consists of its address space, usually called the 
core image (in honor of the magnetic core memories used in days of yore), and its 
process table entry, which contains its registers, among other things. 

The key process management system calls are those dealing with the creation 
and termination of processes. Consider a typical example. A process called the 
command interpreter or shell reads commands from a terminal. The user has 
just typed a command requesting that a program be compiled. The shell must 
now create a new process that will run the compiler. When that process has fin- 
ished the compilation, it executes a system call to terminate itself. 

If a process can create one or more other processes (referred to as child 
processes) and these processes in turn can create child processes, we quickly 
arrive at the process tree .structure of Fig. 1-5. Related processes that are 
cooperating to get some job done often need to communicate with one another 
and synchronize their activities. This communication is called interprocess com- 
munication, and will be addressed in detail in Chap. 2. 

Figure 1-5. A process tree. Process A created two child processes, B and C.  
Process B created three child processes. Dl E, and F. 
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Other process system calls are available to request more memory (or release 
unused memory), wait for a child process to terminate, and overlay its program 
with a different one. 

Occasionally, there is a need to convey information to a running process that 
is not sitting around waiting for it. For example, a process that is communicating 
with another process on a different computer does so by sending messages over a 
network. To guard against the possibility that a message or its reply is lost, the 
sender may request that its own operating system notify it after a specified 
number of seconds, so that it can retransmit the message if no acknowledgement 
has been received yet. After setting this timer, the program may continue doing 
other work. 

When the specified number of seconds has elapsed, the operating system 
sends a signal to the process. The signal causes the process to temporarily 
suspend whatever it was doing, save its registers on the stack, and start running a 
special signal handling procedure, for example, to retransmit a presumably lost 
message. When the signal handler is done, the running process is restarted in the 
state it was in just before the signal. Signals are the software analog of hardware 
interrupts and can be generated by a variety of causes in addition to timers expir- 
ing. Many traps detected by hardware, such as executing an illegal instruction or 
using an invalid address, are also converted into signals to the guilty process. 

Each person authorized to use MINIX is assigned a uid (user identification) by 
the system administrator. Every process started in MINIX has the uid of the person 
who started it. A chiid process has the same uid as its parent. One uid, called the 
super-user, has special power, and may violate many of the protection rules. In 
large installations, only the system administrator knows the password needed to 
become super-user, but many of the ordinary users (especially students) devote 
considerable effort to trying to find flaws in the system that allow them to become 
super-user without the password. 

1.3.2 Files 

The other broad category of system calls relates to the file system. As noted 
before, a major function of the operating system is to hide the peculiarities of the 
disks and other UO devices and present the programmer with a nice, clean abstract 
model of device-independent files. System calls are obviously needed to create 
files, remove files, read files, and write files. Before a file can be read, it must be 
opened, and after it has been read it should be closed, so calls are provided to do 
these things. 

To provide a place to keep files, MINIX has the concept of a directory as a 
way of grouping files togkther. A student, for example, might have one directory 
for each course he was taking (for the programs needed for that course), another 
directory for his electronic mail, and still another directory for his World Wide 
Web home page. System calls are then needed to create and remove directories. 
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Calls are also provided to put an existing file in a directory, and to remove a file 
from a directory. ~ i r e c t o q  entries may be either files or other directories. This 
model also gives rise to a hierarchy-the file system-as shown in Fig. 1-6. 

Root directory 
0 

Figure 1-6. A file system for a university department. 

The process and fife hierarchies both are organized as trees, but the similarity 
stops there. Process hierarchies usually are not very deep (more than three levels 
is unusual), whereas file hierarchies are commonly four, five, or even more levels 
deep. Process hierarchies are typically short-lived, generally a few minutes at 
most, whereas the directory hierarchy may exist for years. Ownership and protec- 
tion also differ for processes and files. Typically, only a parent process may con- 
trol or even access a child process, but mechanisms nearly always exist to allow 
files and directories to be read by a wider group than just the owner. 

Every file within the directory hierarchy can be specified by giving its path 
name from the top of the directory hierarchy, the root directory. Such absolute 
path names consist of the list of directories that must be traversed from the root 
directory to get to the file, with slashes separating the components. In Fig. 1-6, 
the path for file CSlOl is /Faculty/Pro~ Brown/Courses/CSIO1. The leading slash 
indicates that the path is absolute, that is, starting at the root directory. 

At every instant, each process has a current working directory, in which path 
names not beginning with a slash are looked for. As an example, in Fig. 1-6, if 
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/Faculty/Pro$Brown were the working directory, then use of the path name 
Courses/CSlOj would yield the same file as the absolute path name given above. 
Processes can change their working directory by issuing a system call specifying 
the new working Qirectory . 

Files and directories in MINlX are protected by assigning each one a %bit 
binary protection code. The protection code consists of three 3-bit fields, one far 
the owner, one for other members of the owner's group (users are divided into 
groups by the system adminjstrator), and one for everyone else. Each field has a 
bit for read access, a bit f& write access, and i bit for execute access. These 3 
bits are known as the rwx bits. For example, the protection code rwxr-x--x means 
that the owner can read, write, or execute the file, other group members can read 
or execute (but not write) the file, and everyone else can execute (but not read or 
write) the file. For a directory, x indicates search permission. A dash means that 
the corresponding permission is absent. 

Before a file can be read or written, it must he opened, at which time the per- 
missions are checked. If the access is permitted, the system returns a small 
integer called a file descriptor to use in subsequent operations. If the access is 
prohibited, an error code is returned. 

Another important concept in MINIX is the mounted file system. Nearly all 
personal computers have one or more floppy disk drives into which floppy disks 
can be inserted and removed. To provide a clew way to deal with these remov- 
able media (and also CD-ROMs, which are also removable), MINIX allows the file 
system on a floppy disk to be attached to the main tree. Consider the situation of 
Fig. 1-7(a). Before the MOUNT call, the RAM disk (simulated disk in hain 
memory) contains the primary, or root file system, and drive 0 contains a floppy 
disk containing another file'system. 

Root Drive 0 

Figure 1-7. (a) Before mounting, the files on drive 0 are not accessible. (b) 
After mounting, they are part of the file hierarchy. 

However, the file system on drive 0 cannot be used, because there is no way 
to specify path names on it. MINIX does not allow path names to be prefixed by a 
drive name or number; that would be precisely the kind of device dependence that 
operating systems ought to eliminate. Instead, the MOUNT system call allows the 
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file system on drive 0 to be attached to the root file system wherever the program 
wants it to be. In Fig. 1-7(b) the file system on drive 0 has been mounted on 
directory 6, thus allowing access to files h / x  and h / y .  If directory b had con- 
tained any files they would not be accessible while drive 0 was mounted, since A5 
would refer to the root directory of drive 0. (Not being able to access these files is 
not as serious as it at first seems: file systems are nearly always mounted on 
empty directories.) 

Another important concept in M ~ I X  is the special file. Special files are pro- 
vided in order to make UO devices look like files. That way, they can be read and 
written using the same system calls as are used for reading and writing files. Two 
kinds of special files exist: block special files and character special files. Block 
special file&ue used to model devices that consist of a collection of randomly 
addressable'~locks, such as disks. By opening a block special file and reading, 
say, block 4, a program can directly access the fourth block on the device, without 
regard to the structure of the file system contained on it. Similarly, character spe- 
cial files are used to model printers, modems, and other devices that accept or out- 
put a character stream. 

The last feature we will discuss in this overview is one that relates to both 
processes and files: pipes. A pipe is a sort of pseudofile that can be used to con- 
nect two processes together, as shown in Fig. 1-8. When process A wants to send 
data to process B, it writes on the pipe as though it were an output file. Process B 
can read the data by reading from the pipe as though it were an input file. Thus, 
communication between processes in MINIX looks very much like ordinary file 
reads and writes. Stronger yet, the only way a process can discover that the out- 
put file it is writing on is not really a file, but a pipe, is by making a specid sys- 
tem call. - 

Process Process 

Figure 1-8. Two processes connected by a pipe. 

1.3.3 The Shell 

The MINIX operating system is the code that carries out the systern calls. Edi- 
tors, compilers, assemblers, linkers, and command interpreters definitely are not 
part of the operating system, even though they are important and useful. At the 
risk of confusing things somewhat, in this section we will look briefly at the 
MINIX command interpreter, called the shell, which, although not part of the 
operating system, makes heavy use of many operating system features and thus 
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serves as a good example of how the system calls can be used. It is also the pri- 
mary interface between a user sitting at his terminal and the operating system. 

When any user logs in, a shell is started up. The shell has the terminal as 
standard input and standard output. It starts out by typing the prompt, a character 
such as a dollar sign, which tells the user that the shell is waiting to accept a com- 
mand, If the user now types 

date 

for example, the shell creates a child process and runs the date program as the 
child. While the child process is running, the shell waits for it to terminate. 
When the child finishes, the shell types the prompt again and tries to read the next 
input line. 

The user can specify that standard output be redirected to a file, for example, 

date >file 

Similarly, standard input can be redirected, as in 

sort <file1 >file2 

which invokes the sort program with input taken from file1 and output sent to 
file2. 

The output of one program can be used as the input for another program by 
connecting them with a pipe. Thus 

cat file1 file2 file3 I sort >/dev/ip 

invokes the cat program to concatenate three files and send the output to sort to 
arrange all the lines in alphabetical order. The output of sort is redirected to the 
file /dev/lp, which is a typical name for the special character file for the printer. 
(By convention, all the special files are kept in the directory /dev.) 

If a user puts an ampersand after a command, the shell does not wait for it to 
complete. Instead it just gives a prompt immediately, Consequently, 

cat file1 file2 file3 1 sort >/dev/lp & 

starts up the sort as a background job, allowing the user to continue working nor- 
mally while the sort is going on. The shell has a number of other interesting 
features that we do not have space to discuss here. See any of the suggested refer- 
ences on UNIX for more information about the shell. 

1.4 SYSTEM CALLS 

Armed with our general knowledge of how MINIX deals with processes and 
files, we can now begin to look at the interface between the operating system and 
its application programs, that is, the set of system calls. Although this discussion 
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specifically refers to POSIX (International Standard 9945- I), hence also to MINIX, 
most other modem operating systems have system calls that perform the same 
functions, even if the details differ. Since the actual mechanics of issuing a sys- 
tem call are highly machine dependent, and often must be expressed in assembly 
code, a procedure library is provided to make it possible to make system calls 
from C programs. 

To make the system call mechanism clearer, let us take a quick look at READ. 
It has three parameters: the first one specifying the file, the second one specifying 
the buffer, and the third one specifying the number of bytes to read. A call to 
READ from a C program might look like this: 

count = read(file, buffer, nbytes); 

The system call (and the library procedure) return the number of bytes actually 
read in count. This value is normally the same as nbytes, but may be smaller, if, 
for example, end-of-file is encountered while reading. 

If the system call cannot be canied out, either due to an invalid parameter or a 
disk error, count is set to -1, and the emor number is put in a global variable, 
ermo. Programs should always check the results of a system cdl  to see if an error 
occurred. 

MmIX has a total of 53 system calls These are listed in Fig. 1-9, grouped for 
convenience in six categories. In the following sections we wiIl briefly examine 
each call to see what it does. To a large extent, the services offered by these calls 
determine most of what the operating system has to do, since the resource 
management on personal computers is minimal (at least compared to big 
machines with many users). 

As an aside, it is worth pointing out that what constitutes a system call is open 
to some interpretation. The POSIX standard specifies a number of procedures that 
a conformant system must supply, but it does not specify whether they are system 
calls, library calls, or something else. In some cases, the C SIX procedures are 
supported as library routines in M m .  In others, several required procedures are 
only minor variations of one another, and one system call handles all of them. 

1.4.1 System Calls for Process Management 

The first group of calls deals with process management. FORK is a good place 
to start the discussion. FORK is the only way to create a new process. It creates an 
exact duplicate of the original process, including all the file descriptors, 
registers-verything. After the FORK, the original process and the copy (the 
parent and child) go their separate ways. All the variables have identical values at 
the time of the FORK, but since the parent's data are copied to create the child, 
subsequent changes in one of them do not affect the other one. (The text, which is 
unchangeable, is shared between parent and child.) The FORK call returns a value, 
which is zero in the child, and equal to the child's process identifier or pid in the 
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Process uunagcmmt pid = fork() Create a child pmcess idchtical to the parent 
pid = waitpid(pid, &statlac. opts) Wait for a child to terminate 
s = Wrrit(&suhls) Old version of waitpid 
s = execve(name, argv. envp) Replw a pmcess core image 
exit(slplus) Terminate process execution and return stiltus 
size = brk(addr) Set Ihc size of the dam segment 
pid = gapid() Return the caller's p m e s  id 

pid = gttpgrp0 Rehrm the id of the caller's process group 
pid = setsid() Create a new session and return Its process group ic 
I = puacdrcq, pid, ddr ,  dab) Used for debugging 

w b  s = sigaction(sig, &act. &oldact) &fHY iution to take on signals 
s = siyturn(kcontcxt) Return from a signal 
s'= sigprocmask(how, &set, &old) Examine or change the signal mask 
s = sigpcnding(set) Get the set of blocked signals 
s = sigsuspend(sigmask) Replace the signal mask and suspcnd the process 
s = kill(pid, sig) Send a signal to a p r o d s  
residual = alarm(sc.conds) Set the alarm clock 
s = pause() Suspend the callcr until the next signd 

File Managemeot 17 fd = creat(name, mode) Obsolete way ro creak a new file 
fd = mknod(nam5, mcde, ad&) Create a regular, special. or directory i-node 
fd = open(file, how, ... ) Open a fil; Tor reading. writing or hoth 

I 
s = close(fd) Close an opcn R k  
n = read(fd, buffer, nbytes) Read data from a file into a buffer 

I n = write(fd, buffer, nbytes) Write data from a buffer intna file 
pos = lseek(fd. offset. whence) Move the file pointer 

! 
s = sWm, &buf) Ger a file's status information 
s = fstnt(fd, &but) Get a fde's status information 
fd = duprfd) Allocate a new file descriptor for ;in open file 
s = pipe(&fdfO]) Create a pipe 
s = ioctl(fd. request, argp) Perform special operations on a file 
s = acceas(name. amode) Check a file's wcessibilifiy 
s = rmame(old. new) Givr a file a new name 
s = fcntl(fd, cmd, ... ) rtw locking id other operations 

Mroctory & Flk System Manrgewnt s = mkdir(name, mode) Create a new directory 
s .: rmdir(namc) Remove an empy directory 
r = link(nunc I ,  name2) Create a new entry. -2, pointing to namel 
s = unlink(n&) Remove a directory entry 
s = mount(special. name, flag) Mount a file system 
s = umwnt(spccial) Unmount a file system 
s = sync0 flush d l  cached blocks to the disk 
s = chdir(dimune) Change the working directory 
s = chmot(dimame) Change the ma direcuny 

Protcetiw s = chmod(name, mode) Change a file's protection bits 
uid = getuid0 Get the cdler's uid 

gid = gagid() Get thc caller's gid 
s = rtuid(uid) Set the caller's uid 
s = rtgid(gid) Set the caller's gid 
s = Ehown(nvnc, owner, grwp) Change a file's ow- and group 
oldmask = um;lpk(cmplrnode) Changc h e  mode mask 

TlmtMllugumat seconds = tirne(&seconds) Get he e k p d  time since Jan. 1, 1970 
s = stimc(tp) Set the ebtpcd time since Jan 1. 1970 
s = utim(filc, timcp) Set a file's "last acccso" time 
s = times(buFfcr) Get the user and system times used sa far 

Figure 1-9. The MINlX system calls. The return code s is - 1  if an error has oc- 
curred; fd is a file descriptor; grid n is a byte count. The other return codes are 
what the name suggests. 
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parent. Using the returned pid, the two processes can see which one is the parent 
process and which one is the child process. 

In most cases, after a FORK, the child will need to execute different code from 
the parent. Consider the case of the shell. It reads a command from the terminal, 
forks off a child process, waits for the child to execute the command, and then 
reads the next command when the child terminates. To wait for h e  child to fin- 
ish, the parent executes a WAITPID system call, which just waits until the child ter- 
minates (any child if more than one exists). WAITPID can wait for a specific child, 
or for any old child by setting the first parameter to -1. When W A ~ ~ P I D  com- 
pletes, the address pointed to by the second parameter will be set to the child's 
exit status (normal or abnormal termination and exit value). Various options are 
also provided. The WAITPID call replaces the previous WAIT call, which is now 
obsolete but is provided for reasons of backward compatibility. 

Now consider how FORK is used by the shell. When a command is typed, the 
shell forks off a new process. This child process must execute the user command. 
It does this by using the EXEC system call, which causes its entire core image to be 
replaced by the file named in its first parameter. A highly simplified shell illus- 
trating the use of FORK, WAITPID, and EXEC is shown in Fig. 1-10. 

while (TRUE) ( /* repeat forever */ 
read-comrnand(comrnand, parameters); I* read input from terminal */ 

if (fork() != 0) { /* fork off child process */ 
I* Parent code. */ 
waitpid(-I , &status, 0); /* wait for child to exit */ 

) else { 
/* Child code:*/ 
execve(comrnand, parameters, 0); /* execute command */ 

1 
1 

Figure 1-10. A stripped-down shell. Throughout this book, TRUE is assumed 
to be defined as 1. 

In the most general case, EXEC has three pahneters: the name of the file to be 
executed, a pointer to the argument array, and a pointer to the environment array. 
These will be described shortly. Various library routines, including execl, execv, 
execle, and execve are provided to allow the parameters to be omitted or specified 
in various ways. Throughout this book we will use the name EXEC to represent 
the system call invoked by all of these. 

Let US consider the case of a command such as 

used to copy file1 to fiki After the shell has forked, the child process locates and 
executes the file cp and passes to it the names of the source and target files. 
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The main program of cp (and main program of most other programs) contains 
the declaration 

main(argc, argv, envp) 

where argc is a count of the number of items on the command line, including the 
program name. For the example above, argc is 3. 

The second parameter, argv, is a pointer to an array. Element i of that array is 
a pointer to the i-th string on the command line. In our example, argv[O] would 
point to the string "cp." (As an aside, the string pointed to contains two charac- 
ters, a "c" and a "p," although, if you look closely at the previous sentence you 
will also see a period inside the quotes. The period ends the sentence, but the 
rules of English punctuation require most punctuation marks to be inside the 
quotes, even though this is totally illogical. Hopefully, this will not cause any 
confusion.) Similarly, argv[l] would point to the 5-character string "filel" and 
argv[2] would point to the 5-character string "file2." 

The third parameter of main, envp, is a pointer to the environment, an array of 
strings containing assignments of the form name = value used to pass information 
such as the terminal type and home directory name to a program. In Fig. 1-10, no 
environment is passed to the child, so the third parameter of execve is a zero. 

If EXEC seems complicated, do not despair; it is the most complex system call. 
All the rest are much simpler. As an example of a simple one, consider EXIT, 
which processes should use when they are finished executing. It has one pararne- 
ter, the exit status (0 to 255), which is returned to the parent in the variable status 
of the WAIT or WAITPID system call. The low-order byte of slatus contains the ter- 
mination status, with 0 being normal termination and the other values being vari- 
ous error conditions. The high-order byte contains the child's exit status (0 to 
255). For example, if a parent process executes the statement 

n = waitpid(-1 , &status, options); 

it will be suspended until some child process terminates. If the child exits with, 
say, 4 as the parameter to exit, the parent will be awakened with n set to the 
child's pid and status set to 0x0400 (the C convention of prefixing hexadecimal 
constants with Ox will be used throughout this book). 

Processes in MINIX have their memory divided up into three segments: the 
text segment (i.e., the program code), the data segment (i.e., the variables), and 
the stack segment. The data segment grows upward and the stack grows down- 
ward, as shown in Fig. 1-1 1. Between them is a gap of unused address space. 
The stack grows into the gap automatically, as needed, but expansion of the data 
segment is done explicitly by using the BRK system call. It has one parameter, 
which gives the address where the theta segment is to end. This address may be 
more than ihe current value (data segment is growing) or less than the current 
value (data segment is shrinking). The parameter must, of course, be less than the 
stack pointer or the data and stack segments would overlap, which is forbidden. 
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Address (hex) 
FFFF 

FEgure 1-1 1. Processes have three segments: text, data, and stack. In this exarn- 
ple, all three are in one address space, but separate instruction and data space is 
also supported. 

As a convenience to the programmer, a library routine sbrk is provided that 
also changes the size of the data segment, only its parameter is the number of 
bytes to add to the data segment (negative parameters make the data segment 
smaller). It works by keeping track of the current size of the data segment, which 
is the value returned by BRK, computing the new size, and making a call asking 
for that number of bytes. BRK and SBRK were considered too implementation 
dependent and are not part of POSIX. 

The next process system call is also the simplest, GETPID. It just returns the 
caller's pid. Remember that in FORK, only the parent was given the child's pid. If 
the child wants to find out its own pid, it must use GETPID. The GETPGRP call 
returns the pid of the caller's process group. SETSID creates a new session and sets 
the process group's pid to the caller's. Sessions are related to an optional feature 
of POSTX called job control, which is not supported by MINIX and which will not 
concern us further. 

The last process management system call, PTRACE, is used by debugging pro- 
grams to control the program being debugged. It allows the debugger to read and 
write the controlled process' memory and manage it in other ways. 

1.4.2 System Calls for Signaling 

Although most forms of interprocess communication are planned, situations 
exist in which unexpected communication is needed. For example, if a user 
accidently tells a text editor to list the entire contents of a very long file, and then 
realizes the error, some way is needed to interrupt the editor. In MINIX, the user 
can hit the DEL key on the keyboard, which sends a signal to the editor. The edi- 
tor catches the signal and stops the print-out. Signals can also be used to report 
certain traps detected by the hardware, such as illegal instruction or floating point 
overflow. Timeouts are also implemented as signals. 

When a signal is sent to a process that has not announced its willingness to 
accept that signal, the process is simply killed without further ado. To avoid this 
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fate, a process can use the SIGACnoN system call to announce that it is prepared 
to accept some signal type, and to provide the address of the signal handling pro- 
cedure and-a place to store the address of the current one. After a s~GACTION call, 
if a signal of the relevant type (e.g., the DEL key) is generated, the state of the 
process is pushed onto its own stack, and then the signal handler is called. It may 
run for as long as it wants to and perform any system calls it wants to. In practice, 
though, signal handlers are usudly fairly short. When the signal handling pro- 
cedure is done, it calls SIGRETURN to continue where it left off before the signal. 
The SICACTION call replaces the older SIGNAL call, which is now provided as a 
library procedure, however, for backward compatibility. 

Signals can be blocked in MINIX. A blocked signal is held pending until it is 
unblocked. It is not delivered, but also not lost. The SIGPROCMASK call allows a 
process to define the set of blocked signals by presenting the kernel with a bit 
map. It is also possible for a process to ask for the set of signals currently pending 
but not allowed to be delivered due to their being blocked. The SIGPENDING call 
returns this set as a bit map. Finally, the SIGSUSPEND call allows a process to 
atomically set the bit map of blocked signals and suspend itself. 

Instead of providing a function to catch a signal, the program may also specify 
the constant SIG-IGN to have all subsequent signals of the specified type 
ignored, or SIG-DFL to restore the default action of the signal when it occurs. 
The default action is either to kill the process or ignore the signal, depending upon 
the signal. As an example of how SIG-IGN is used, consider what happens when 
the shell forks off a background process as a result of 

command & 

It would be undesirable for a DEL signal from the keyboard to affect the back- 
ground process, so after the FORK but before the EXEC, the shell does 

sigaction(SIGINT, SIG-IGN, NULL); 

and 

sigaction(SIGQUIT, SIG J G N ,  NULL); 

to disable the DEL and quit signals. (The quit signal is generated by CTRL-\; it is 
the same as DEL except that if it is not caught or ignored, it makes a core dump of 
the process killed.) For foreground processes (no ampersand), these signals are 
not ignored. 

Hitting the DEL key is not the only way to send a signal. The KLL system 
call allows a process to signal another process (provided they have the same 
uid-unrelated processes cannot signal each other). Getting back to the example 
of background processes used above, suppose a background process is started up, 
but later it is decided that the process should be terminated. SIGINT and 
SIGQUIT have been disabled, so something else is needed. The solution is to use 
the kill program, which uses the KILL system call to send a signal to any process. 
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By sending signal 9 (SIGKILL), to a background process, that process can be 
killed. SIGKILL cannot be caught or ignored. 

For many real-time applications, a process needs to be interrupted after a 
specific time interval to do something, such as to retransmit a potentially lost 
packet over an unreliable communication line. To handle this situation, the 
ALARM system caH has been provided. The parameter specifies an interval, in 
seconds, after which a SIGALRM signal is sent to the process. A process may 
only have one alarm outstanding at any instant. If an ALARM call is made with a 
parameter of 10 seconds, qnd then 3 seconds later another ALARM call is made 
with a parameter of 20 seconds, only one signal will be generated, 20 seconds 
after the second call. The first signal is canceled by the second call to ALARM. If 
the parameter to ALARM is zero, any pending alarm signal is canceled. If an alarm 
signal is not caught, the default action is taken and the signaled process is killed. 

It sometimes occurs that a process has nothing to do until a signal arrives. For 
example, consider a computer-aided-instruction program that is testing reading 
speed and comprehension. It displays some text on the screen and then calls 
ALARM to signal it after 30 seconds. While the student is reading the text, the pro- 
gram has nothing to do. It could sit in a tight loop doing nothing, but that would 
waste CPU time that another process or user might need. A better idea is to use 
PAUSE, which tells MINIX toJsuspend the process until the next signal. 

1.4.3 System Calls for File Management 

Many system calls relate to the file system. In this section we will look at 
calls that operate on individual files; in the next one we will examine those that 
involve directories or the file system as a whole. To create a new file, the CREAT 
call is used (why the call is CREAT and not CREATE has been lost in the mists of 
time). Its parameters provide the name of the file and the protection mode. Thus 

creates a file called abc with mode 075 1 octal (in C, a leading zero means that a 
constant is in octal). The low-order 9 bits of 0751 specify the rwx bits for the 
owner (7 means read-write-execute permission), his group (5 means read- 
execute), and others (1 means execute only). 

CREAT not only creates a new file but also opens it for writing, regardless of 
the file's mode. The file descriptor returned, fd, can be used to write the file. If a 
CREAT is done on an existing file, that file is truncated to length 0, provided, of 
course, that the permissions are all right. The CREAT call is obsolete, as OPEN can 
now create new files, but it has been included for backward compatibility. 

Special files are created using MKNOD rather than CREAT. A typical call is 

fd = m knod("/dev/ttyc2,0207~, 0x0402); 

which creates a file named /dev/ttyc2 (the usual name for console 2) and gives it 
mode 020744 octal (a character special file with protection bits rwxr--r--). The 
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third parameter contains the major device (4) in the high-order byte and the minor 
device (2) in the low-order byte. The major device could have been anything, but 
a file named /dev/ttyc2 ought to be minor device 2. Calls to MKNOD fail unless 
the caller is the super-user. 

To read or write an existing file, the file must first be opened using OPEN. 
This call specifies the file name to be opened, either as an absolute path name or 
relative to the working directory, and a code of 0-RDONLY. 0-WRONLY, or 
0-RDWR, meaning open for reading, writing, or both. The file descriptor 
returned can then be used for reading or writing. Afterward, the file can he closed 
by CLOSE, which makes the file descriptor available for reuse on a subsequent 
CREAT or OPEN. 

The most heavily used calls are undoubtedly READ and WRITE. We saw READ 
earlier. WRITE has the same parameters. 

Although most programs read and write files sequentially, for some applica- 
tions programs need to be able to access any part of a file at random. Associated 
with each file is a pointer that indicates the current position in the file. When 
reading (writing) sequentially, it normally points to the next byte to be read (writ- 
ten). The LSEEK call changes the value of the position pointer, so that subsequent 
calls to READ or WRITE can begin anywhere in the file, or even beyond the end. 

LSEEK has three parameters: the first is the file descriptor for the file, the 
second is a file position, and the third tells whether the file position is relative to 
the beginning of the file, the current position, or the end of the file. The value 
returned by LSEEK is the absolute position in the file after changing the pointer. 

For each file, MINIX keeps track of the file mode (regular file, special file, 
directory, and so on), size, time of last modification, and other information. Pro- 
grams can ask to see this information via the STAT and FSTAT system calls. These 
differ only in that the former specifies the file by name, whereas the latter takes a 
file descriptor, making it useful for open files, especially standard input and stan- 
dard output, whose names may not be known. Both calls provide as the second 
parameter a pointer to a structure where the information is to be put. The struc- 
ture is shown in Fig. 1 - 12. 

When manipulating file descriptors, the DUP call is occasionally helpful. Con- 
sider, for example, a program that needs to close standard output (file descriptor 
l), substitute another file as standard output, call a function that writes some out- 
put onto standard output, and then restore the original situation. ~us ic los in~  file 
descriptor 1 and then opening a new file will make the new file standard output 
(assuming standard input, file descriptor 0, is in use), but it will be impossible to 
restore the original situation later. 

The solution is first to execute the statement 

which uses the DUP system call to allocate a new file descriptor, fd, and arrange 
for it to correspond to the same file as standard output. Then standard output can 
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stwct stat { 
short st-dev; 
unsigned short st-ino; 
unsigned short st-mode; 
short st-nlink; 
short st-uid; 
short st-gid; 
short st- dev; 
long st-size; 
long st-atidje; 
long st-mtime; 
long st-ctime; 

1; 

/* device where i-node belongs */ 
/* i-node number *I 
I* mode word */ 
I* number of finks */ 
I* user id */ 
I* group id */ 
/* majorhinor device for special files *I 
/* file size */ 
I* time of last access */ 
I* time of last modification *I 
/* time of last change to i-node */ 

Figure 1-12. The structure used to return information for the STAT and FSTAT 

system calls. In the actual code. symbolic names are used for some of the types. 

be closed and a new file opened and used. When it is time to restore the original 
situation, file descriptor 1 can be closed, and then 

executed to assign the lowest file descriptor, namely, 1, to the same file as jd. 
Finally, fd can be closed and we are back where we started. 

The DUP call has a variant that allows an arbitrary unassigned file descriptor 
to be made to refer to a given open file. It is called by 

where fd refers to an open fde and fd2 is the unassigned file descriptor that is to be 
made to refer to the same file as fd. Thus if fd refers to standar$ input (file 
descriptor 0) and fd2 is 4, after the call, file descriptors 0 and 4 will both refer to 
standard input, 

Interprocess communication in MINIX uses pipes, as described earlier. When 
a user types 

cat file1 file2 I sort 

the shell creates a pipe and arranges for standard output of the first process to 
write to -the pipe, so standard input of the second process can read from it. The 
PWE system call creates a pipe and returns two file descriptors, one for writing and 
one for reading. The call is 

where fd is an array of two integers and fd[O) is the file descriptor for reading and 
fd [I] is the one for writing. Typically, a FORK comes next, and the parent closes 
the file descriptor for reading and the child closes the file descriptor for writing 
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(or vice versa), so when they are done, one process can read the pipe and the other 
can write on it. 

Figure 1- 13 depicts a skeleton procedure that creates two processes, with the 
output of the first one piped into the second one. (A more redistic example would 
do error checking and handle arguments.) First a pipe is created, and then the pro- 
cedure forks, with the parent eventually becoming the first process in the pipeline 
and the child process becoming the second one. Since the files to be executed, 
process] and process2, do not know that they are part of a pipeline, it is essential 
that the file descriptors be manipulated so that the first process' standard output be. 
the pipe and the second one's standard input be the pipe. The parent first closes 
off the file descriptor for reading from the pipe. Then it closes standard output 
and does a DUP call that allows file descriptor 1 to write on the pipe. It is impor- 
tant to realize that DUP always returns the lowest available file descriptor, in this 
case, 1 . Then the program closes the other pipe file descriptor. 

After the EXEC call, the process started will have file descriptors 0 and 2 be 
unchanged, and file descriptor 1 for wnting on the pipe. The child code is analo- 
gous. The parameter to exec1 is repeated because the first one is the file to be exe- 
cuted and the second one is the first parameter, which most programs expect to be 
the file name. 

The next system call, IOCTL, is potentially applicable to all special files. It is, 
for instance, used by block device drivers like the SCSI driver to control tape and 
CD-ROM devices. Its main use, however, is with special character files, primarily 
terminals. POSIX defines a number of functions which the library translates into 
IOCTL calls. The tcgetattr and tcserattr library functions use mCTL to change the 
characters used for correcting typing errors on the terminal, changing the terminal 
mode, and so forth. 

Cooked made is the normal terminal mode, in which the erase and kill char- 
acters work normally, CTRL-S and CTRL-Q can be used for stopping and starting 
terminal output, CTRL-D means end of file, DEL generates an interrupt signal, 
and CTRL-\ generates a quit signal to force a core dump. 

In raw mode, all of these functions are disabled; every character is passed 
directly to the program with no special processing. Furthermore, in raw mode, a 
read from the terminal will give the program any characters that have been typed, 
even a partial Iine, rather than waiting for a complete line to be typed, as in 
cooked d e .  

Cbreak mode is in between. The erase and kiIl characters for editing are dis- 
abled, as is CTRL-D, but CTRL-S, CTRL-Q, DEL, and CTRL-\ are enabled. 
Like raw mode, partial lines can be returned to programs (if intrdine editing is 
turned off there is no need to wait until a whole line has been received-the user 
cannot change his mind and delete it, as he can in cooked mode). 

POSEX does not use the terms cooked, raw, and cbreak. Tn pclSiX terminology 
canonical mode corresponds to cooked mode. i n  this mode there are eleven spe- 
cial characters defined, and input is by lines. In noncanonical mode a minimum 
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I* file descriptor for standard input */ 
/* file descriptor for standard output */ 

pipeline(process1, process2) 
char *processl, *process2; /* pointers to program names *I 

int fd[2]; 

pip~(&fdCOI); /* create a pipe *I 
if (fork() != 0) { 

/* The parent process executes these statements. */ 
close(fd[O 1); /* process 1 does not need to read from pipe */ 
close(STD -OUTPUT); /* prepare for new standard output *! 
dup(fd[l]); I* set standard output to fd[l] */ 
close(fd[l 1); /* this file descriptor n d  needed any more */ 
execl(process1, process1 , 0 ) ;  

) else { 
/* The child process executes these statements. */ 
close(fd[l I); /* process 2 does not need to write to pipe */ 
closq(STD ANPUT); /* prepare for new standard input *I 
dup(fd[O]); /* set standard input to fd[O] */ 

, close(fd[O]); /* this file descriptor not needed any more */ 
execl(process2, process2,O); 

1 
J 

Figure 1-13. A skeleton for sening up a two-process pipeline. 

number of characters to accept and a time, specified in units of WOth of a second, 
determine how a read will be satisfied. Under POSIX there is a great deal of flexi- 
bility, and various flags can be set to make noncanonical mode behave like either 
cbreak or raw mode. The oIcEer terms are more descriptive, and we will continue 
to use them informally. 

IOC~L has three parameters, for example a call to tcsetattr to set terminal 
parameters will result in 

ioctl(fd, TCSETS, &terrnios); 

The first parameter specifies a file, the second one specifies an operation, and the 
third one is the address of the POSIX structure that contains flags and the array of 
control characters. Other operation cudes can postpone the changes until all out- 
put has been sent, cause unread input to be discarded, and return the current 
values. 

The ACCESS system call is used to determine whether a certain file access is 
permitted by the protection system. It is needed because some programs can run 
using a different user's uid. This SETUID mechanism will be described later. 
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The RENAME system call is used to give a file a new name. The parameters 
specific the old and new names. 

Finally, the FCNTL call is used to control files, somewhat analogous to IOCTL 
(i.e., both of them are homble hacks). It has several options, the most important 
of which is for advisory file locking. Using FCNTL, it is possible for a process to 
lock and unlock parts of files and test part of a file to see if it is locked. The call 
does not enforce any lock semantics. Programs must do this themselves. 

1.4.4 System Calls for Directory Management 

In this section we wilI look at some system calls that relate more to directories 
or the file system as a whole, rather than just to one specific file as in the previous 
section. The first two calls, MKDIR and RMDIR, create and remove empty direc- 
tories, respectively. The next call is LINK. Its purpose is to allow the same file to 
appear under two or more names, often in different directories. A typical use is to 
allow several members of the same programming team to share a common file, 
with each of them having the file appear in his own directory, possibly under dif- 
ferent names. Sharing a file is not the same as giving every team member a 
private copy, because having a shared file means that changes that any member of 
the team makes are instantly visible to the other members-there is only one file. 
When copies are made of a file, subsequent changes made to one copy do not 
affect the other ones. 

To see how LINK works, consider the situation of Fig. 1-14(a). Here are two 
users, ast and jim, each having tklr  own directories with some files. If ast now 
executes a program containing the system call 

the file memo in jim's directory is now entered into ast's directory under the name 
note. Thereafter, /usr/jim/memo and /usr/astlnote refer to the same file. 

Figure 1-14. (a) Two directories before linking /usr/jim/merno to ast's directo- 
ry. (b) The same directories after linking. 

Understanding how LINK works will probably make it clearer what it does. 
Every file in MINIX has a unique number, its i-number, that identifies it. This i- 
number is an index into a table of i-nodes, one per file, telling who owns the file, 
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where its disk blocks are, and so on. A directory is simply a file containing a set 
of (i-number, ASCII name) pairs. In Fig. 1-14, mail has i-number 16, and so on. 
What LINK does is simply create a new directory entry with a (possibly new) 
name, using the i-number of an existing file. In Fig. 1 - 14(b), two entries have the 
same i-number (70), and thus refer to the same file. If either one is later removed, 
using the UNLINK system call, the other one remains. If both are removed, MINIX 
sees that no entries to the file exist (a field in the i-node keeps track of the number 
of directory entries pointing to the file), so the file is removed from the disk. 

As we have mentioned earlier, the MOUNT system call allows two file systems 
to be merged into one. A common situation is to have the root file system, con- 
taining the binary (executable) versions of the common commands and other 
heavily used files, on the RAM disk. The user can then insert a floppy disk, for 
example, containing user programs, into drive 0. 

By executing the MOUNT system call, the drive 0 file system can be attached 
to the root file system, as shown in Fig. 1-15. A typical statement in C to perform 
the mount is 

where the first parameter is the name of a block special file for drive 0 and the 
second parameter is the place in the tree where it is to be mounted. 

Figure 1-15. (a) File system before the mount. (b) File system after the mount. 

After the MOUNT call, a file on drive 0 can be accessed by just using its path 
from the root directory or the working directory, without regard to which drive it 
is on. In fact, second, third, and fourth drives can also be mounted anywhere in 
the tree. The MOUNT command makes it possible to integrate removable media 
into a single integrated file hierarchy, without having to worry about which device 
a file is on. Although this example involves floppy disks, hard disks or portions 
of hard disks (often called partitions or minor devices) can also be mounted this 
way. When a file system is no  Ionger needed, it can be unmounted with the 
UMOUNT system call. 

MINIX maintains a cache of recently used blocks in main memory to avoid 
having to read them from the disk if they are used again quickly. If a block in the 
cache 3 s modified (by a WRITE on a file) and the system crashes before the modi- 
fied block is written out to disk, the file system will be damaged. To limit the 
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potential damage, it is important to flush the cache periodically, so that the 
amount of data lost by a crash will be small. The system call SYNC tells MINIX to 
write out all the cache blocks that have been modified since being read in. When 
MINIX is started up, a program called update is started as a background process to 
do a SYNC every 30 seconds, to keep flushing the cache. 

Two other calls that relate to directories are CHDIR and CHROOT. The former 
changes the working directory and the latter changes the root directory. After the 
call 

an open on the file xyz will open /usr/ast/test/xyz. CHROOT works in an analogous 
way. Once a process has told the system to change its root directory, all absolute 
path names (path names beginning with a "/") will start at the new root. Only 
super-users may execute CHROOT, and even super-users do not do it very often. 

L415 System Calk for Protection 

In MINIX every file has an 1 l-bit mode used for protection. Nine of these bits 
are the read-wnte-execute bits for the owner, group, and others. The CHMOD sys- 
tem call makes it  possible to change the mode of a file. For example, to make a 
file read-only by everyone except the owner, one could execute 

The other two protection bits, 02000 and 04000, are the SETGID. (set-group- 
id) and SETUID (set-user-id) bits, respectively. When any user executes a pro- 
gram with the SETUID bit on, for the duration of that process the user's effective 
uid is changed to that of the file's owner. This feature is heavily used to allow 
users to execute programs that perform super-user only functions, such as creating 
directories. Creating a directory uses MKNOD, which is for the super-user only. 
By arranging for the rnkdjr program to be owned by the super-user and have mode 
04755, ordinary users can be given the power to execute MKNOD but in a highly 
restricted way. 

When a process executes a file that has the SETUID or SETGID bit on in its 
mode, it acquires an effective uid or gid different from its real uid or gid. It is 
sometimes important for a process to find out what its real and effective uid or gid 
is. The system calls GETUID and GETGrD have been provided to supply this infor- 
mation. Each calI returns both the real and effective uid or gid, so four library 
routines are needed to extract the proper information: getuid, getgid, geteuid, and 
getegid. The first two get the real uidgid, and the last two the effective ones. 

Ordinary users cannot change their uid, except by executing programs with 
the SETUID bit-on, but the super-user has another possibility: the SETUID system 
call, which sets both the effective and real uids. SETGID sets both gids. The 
super-user can also change the owner of a file with the CHOWN system call. In 
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short, the super-user has plenty of opportunity for violating all the protection 
rules, which explains why so many students devote so much of their time to trying 
to become super-user. 

The last two system calls in this category can be executed by ordinary user 
processes. The first one, UMASK, sets an internal bit mask within the system, 
which is used to mask off mode bits when a file is created. After the call 

umas k(022); 

the mode supplied by CREAT and MKNOD will have the 022 bits masked off before 
being used. Thus the call 

will set the mode to 0755 rather than 0777. Since the bit mask is inherited by 
child processes, if the shell does a UMASK just after login, none of the user's 
processes in that session will accidently create files that other people can write on. 

When a program owned by the root has the SETUID bit on, it can access any 
file, because its effective uid is the super-user. Frequently it is useful for the pro- 
gram to know if the person who called the program has permission to access a 
given file. If the program just tries the access, it will always succeed, and thus 
learn nothing. 

What is needed is a way to see if the access is permitted for the real uid. The 
ACCESS system call provides a way to find out. The mode parameter is 4 to check 
for read access, 2 for write access, and 1 for execute access. Combinations are 
also allowed, fur example, with mode equal to 6, the call rerums 0 if both read and 
write access are allowed for the real uid; otherwise -1 is returned. With mode 
equal to 0, a check is made to see if the file exists and the directories leading up to 
it can be searched. 

1.4.6 System Calls for Time Management 

MMIX has four system calls that involve the time-of-day clock. TIME just 
returns the current time in seconds, with 0 corresponding to Jan. 1, 1970 at mid- 
night (just as the day was starting, not ending). Of course, the system clock must 
be set at some point in order to allow it to be read later, so STIME has been pro- 
vided to let the clock be set (by the super-user). The third time call is uTIME, 
which allows the owner of a file (or the super-user) to change the time stored in a 
file's i-node. Application of this system call is fairly limited, but a few programs 
need it, for example, touch, which sets the file's time to the current time. 

Findly, we have ~ M E S ,  which returns the accounting information to a pro- 
cess, so it can see how much CPU time it has used directly, and how much CPU 
time the system itself has expended on its behalf (handling its system calls). The 
total user and system times used by all of its children combined are also returned. 
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1.5 OPERATING SYSTEM STRUCTURE 

Now that we have seen what operating systems look like on the outside (i.e, 
the programmer's interface), it is time to take a look inside. In the following sec- 
tions, we will examine four different structures that have been tried, in order to 
get some idea of the spectrum of possibilities. These are by no means exhaustive, 
but they give an idea of some designs that have been tried in practice. The four 
designs are monolithic systems, layered systems, virtual machines, and client- 
server systems. 

1.5.1 Monolithic Systems 

By far the most common organization, this approach might well be subtitled 
"The Big Mess." The structure is that there is no structure. The operating system 
is written as a collection of procedures, each of which can call any of the other 
ones whenever it needs to. When this technique is used, each procedure in the 
system has a well-defined interface in terms of parameters and results, and each 
one is free to call any other one, if the latter provides some useful computation 
that the former needs. 

To construct the actual object program of the operating system when this 
approach is used, one first compiles all the individual procedures, or files contain- 
ing the procedures, and then binds them all together into a single objectale using 
the system linker. In terms of information hiding, there is essentially no+-very 
procedure is visible to every other procedure (as opposed to a structure chaining 
modules or packages, in which much of the information is hidden away inside 
modules, and only the officially designated entry points can be called from out- 
side the module). 

Even in monolithic systems, however, it is possible to have at least a little 
structure. The services (system calls) provided by the operating system are 
requested by putting the parameters in well-defined places, such as in registers or 
on the stack, and then executing a special trap instruction known as a kernel call 
or supervisor call. 

This instruction switches the machine from user mode to kernel mode and 
transfers control to the operating system, shown as event (1) in Fig. 1-16. (Most 
CPUs have two modes: kernel mode, for the operating system, in which all 
instructions are allowed; and user mode, for user programs, in which I/0 and cer- 
tain other instructions are not allowed.) 

The operating system then examines the parameters of the call to determine 
which system call is,to be carried out, shown as (2) in Fig. 1-16. Next, the operat- 
ing system indexes into a table that contains in slot k a pointer to the procedure 
that carries out system call k. This operation, shown as (3) in Fig. 1- 16, identifies 
the service procedure, which is then called. When the work has been completed 
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I I User program 1 I I 
user program 
run in 
user mode 

Operating 
system 
runs in 
kernel rode 

Flpre 1-16. How a systrm call can be made: ( 1 )  User program traps to the ker- 
nel. (2) Operating system determines service number required. (3) Operating 
system calls service procedure. (4) Control is retumd to user program. 

and the system call is firushad, control is given back to the user program (step 4), 
so it can continue execution with the statement following the system call. 

This organization suggests a basic structure for the operating system: 

1. A main program that invokes the requested service procedure. 

2. A set of service procedures that carry out the system calls. 

3. A set of utility procedures that help the service procedures. 

In this model, for each system call there is one service procedure that takes care 
of it. The utility procedure$ do things that are needed by several service pro- 
cedures, such as fetching data from user programs. This division of the pro- 
cedures into three layers is shown in Fig. 1 - 17. 

f7 Main 

Figure 1-17. A simple structuring model. for a monolithic system. 
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1 S.2 Layered Systems 

A generalization of the approach of Fig. 1 - 17 is to organize the operating sys- 
tem as a hierarchy of layers, each one constructed upon the one Mow it. The first 
system constructed in this way was the THE system built at the Technische 
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his stu- 
dents. The THE system was a simple batch system for a Dutch computer, the 
Electrologica X8, which had 32K of 27-bit words (bits were expensive back then). 

The system had 6 layers, as shown in Fig. 1-18. Layer 0 dealt with allocation 
of the processor, switching be tween processes when interrupts occurred or timers 
expired. Above layer 0, the system consisted of sequential processes, each of 
which could be proflammed without having to wony about the fact that multiple 
processes were running on a single processor. In other words, layer 0 provided 
the basic multiprogramming of the CPU. 

I b ~ r  1 Function I 

4 User programs 
I 

3 1 lnput/output management 
I 4 

2 1 Operator-process communication 
I 

F'@m 1-18. Structure of the THE operating system. 

1 

0 

Layer 1 did the memory management. It dlocated space for processes in  
main memory and on a 512K word dnlm used for holding parts of processes 
(pages) for which there was no room in main memory. Above layer 1, processes 
did not have to worry about whether they were in memory or on the drum; the 

Memory and drum management 

Processor dlocation and muhiprogramming 

layer 1 software took-care of making sure pages were brought into memory when- 
ever they were needed. 

Layer 2 handled co'munication between each process and the operator con- 
sole. Above this Iayer each process effectively had its own operator console. 
Layer 3 took care of managing the I/0 devices and buffering the information 
streams to and from them. Above Iayer 3 each process could deal with abstract 
l/0 devices with nice properties, instead of real devices with many peculiarities. 
Layer 4 was where the user programs were found. They did not have to worry 
about process, memory, console, or VO management. The system operator pro- 
cess was located in layer 5. 

A further generalization of the layering concept was present in the MULTICS 
system. Instead of layers, MULTICS was organized as a series of concentric rings. 
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with the inner ones being more privileged than the outer ones. When a procedure 
in an outer ring wanted to call a procedure in an inner ring, it had to make the 
equivalent of a system call, that is, a TRAP instruction whose parameters were 
carefully checked for validity before allowing the call to proceed. Although the 
entire operating system was part of the address space of each user process in MUL- 
ncs, the hardware made it possible to designate individual procedures (memory 
segments, actually) as protected against reading, writing, or executing. 

Whereas the THE layering scheme was really only a design aid, because all the 
parts of the system were ultimately linked together into a single object program, 
in MULTICS, the ring mechanism was very much present at run time and enforced 
by the hardware. The advantage of the ring mechanism is that it can easily be 
extended to structure user subsystems. For example, a professor could write a 
program to test and grade student programs and run this program in ring n, with 
the student programs running in ring n + I so that they could not change their 
grades. 

1 S.3 Virtual Machines 

The initial releases of OSl360 were strictly batch systems. Nevertheless, many 
360 users wanted to have timesharing, so various groups, both inside and outside 
IBM decided to write timesharing systems for it. The official IBM timesharing 
system, TSS/360, was delivered late, and when it finally arrived it was so big and 
slow that few sites converted over to it. It was eventually abandoned after its 
development had consumed some $50 million (Graham, 1970). But a group at 
IBM's Scientific Center in Cambridge, Massachusetts, produced a radically dif- 
ferent system that IBM eventually accepted as a product, and which is now widely 
used on its remaining mainframes. 

This system, originally called CPICMS and later renamed VM/370 (Seawright 
and MacKinnon, 1979), was based on an astute observation: a timesharing system 
provides (1) multiprogramming and (2) an extended machine with a more con- 
venient interface than the baze hardware. The essence of VM/370 is to completely 
separate these two functions. 

The heart of the system, known as the virtual machine monitor, runs on the 
bare hardware and does the multiprogramming, providing not one, but several vir- 
tual machines to the next layer up, as shown in Fig. 1-19. However, unlike all 
other operating systems, these virtual machines are not extended machines, with 
files and other nice features. Instead, they are exact copies of the bare hardware, 
includihg kernelher mode, y0, intempts, and everything else the real machine 
has. 

Because each virtual machine is identical to the true hardware, each one can 
run any operating system that will run directly on the bare hardware. Different 
virtual machines can, and frequently do, run different operating systems. Some 
run one of the descendants of OW360 for batch or transaction processing, while 
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Virtual 370s 

r - System calls here 
instructions here - 7 CMS CMS CMS t* - Trap here 
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" 

Figure 1-19. The structure of v m 7 0  with CMS. 

other ones run a single-user, interactive system called CMS (Conversational Moni- 
tor System) for timesharing users. 

When a CMs program executes a system call, the call is trapped to the operat- 
ing system in its own virtual machine, not to VM70, just as it would if it were 
running on a real machine instead of a virtual one. CMS then issues the normal 
hardware W 0  instructibns for reading its virtual disk or whatever is needed to 
carry out the call. These UO instructions are trapped by VMB70, which then per- 
forms them as part of its simulation of the real hardware. By making a complete 
separation of the functions of multiprogramming and providing an extended 
machine, each of the pieces can be much simpler, more flexible, and easier to 

s maintain. 
The idea of a virtual machine is heavily used nowadays in a different context: 

running old MS-DOS programs on a Pentium (or other 32-bit Intel CPU). When 
designing the Pentium and its software, both Intel and Microsoft realized that 
there would be a big demand for running old software on new hardware, For this 
reason, Intel provided a virtual 8086 mode on the Pentium. In this mode, the 
machine acts like an 8086 (which is identical to am 8088 from a software point of 
uiew),-including 1 6-bit addressing with a 1 -MB limit. 

This mode is used by WIND~WS, OsM, and other operating systems for running 
MS-DOS programs. mese programs are started up in virtual 8086 mode. As long 
as they execute normal instructions, they run on the bare hardware. However, 
when a program tries to trap to the operating system to make a system call, or tries 
to do protected U 0  directly, a trap to the virtual machine monitor occurs. 

Two variants on this design are possible. In the f ~ s t  one, MS-DOS itself is 
loaded into the virtual 8086's address space, so the virtual machine monitor just 
reflects the trap back to MS-DOS, just as would happen on a real 8086. When MS- 
ms later tries to do the iJO itself, that operation is caught and carried out by the 
virtual machine monitor. 

In the other variant, the virtual machine monitor just catches the first trap and 
does the YO itself, since it knows what all the MS-DOS system calls are and thus 
knows what each trap is supposed to do. This variant is less pure than the first 
one, since it only emulates MS-DOS correctly, and not other operating systems, as 
the first one does. On the other hand, it is much faster, since it saves the troubk 
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of starting up MS-DOS to do the I/O. A further disadvantage of actually running 
MS-DOS in virtual 8086 mode is that MS-DOS fiddles around with the interrupt 
enableldisable bit quite a lot, all of which must be emulated at considerable cost. 

It is worth noting that neither of these approaches are really the same as 
VM/370, since the machine being emulated is not a full Pentium, but only an 8086. 
With the VM/370 system, it is possible to run VMt370, itself, in the virtual machine. 
With the Pentium, it is not possible to run, say, WINDOWS in the virtual 8086 
because no version of WINDOWS runs on an 8086; a 286 is the minimum for even 
the oldest version, and 286 emulation is ncrt provided (let alone Pentium emula- 
tion). 

With -1lM1370, each user process gets an exact copy of the actual computer. 
With virtual 8086 made on the Pentium, each user process gets an exact copy of a 
different computer. Going one step further. researchers at M.I.T. have built a sys- 
tem that gives each user a clone of the actual computer, but with a subset of the 
resources (Engler et d., 1995). Thus one virtual machine might get disk blocks 0 
to 1023, the next one might get blocks 1024 to 2047, and so on. 

At the bottom layer, mming in kernel mode, is a program called the exoker- 
nel. Its job is to allocate resources to virtual machines and then check attempts to 
use them to make sure no machine is trying to use somebody else's resources. 
Each user-level virtual machine can run its own operating system, as on VW370 
and the Pentium virtual 8086s, except that each one is restricted to using only the 
resources it bas asked for and h e n  allocated.. 

The advantage of the exokernel scheme is that it saves a layer of mapping. In 
the other designs, each virtual machine thinks it has its own disk, with blocks run- 
ning from 0 to some maximum, so the virtual machine monitor must maintain 
tables to remap disk addresses (and all other resources). With the exokernel, this 
remapping is not needed. The exokernel need only keep track of which virtual 
machine has been assigned which resource. This method still has the advantage 

separating the multiprog~amming (in the exohmel) from the user operating 
system code (in user space), but with less overhead, since all the exokernel has to 
do is keep the virtual ,machines out of each other's hair. 

1 S.4 Client-Server Model 

VMl370 gains much in simplicity by moving a large part of the tradidonal 
operating system code (implementing the extended machine) into a higher layer, 
CMS. Nevertheless, VM/370 itself is still a complex program because simulating a 
number of virtual 370s is not that simple (especially if you want to do it reason- 
ably efficiently). - 

A trend in modern operqting systems is to take this idza of moving code up 
into higher layers even further and remove as much as possible from the operating 
system, leaving a minimal kernel. The usual approach is to implement most of 
the operating system functions in user processes. To request a service, such as 
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reading a block of a file, a user process (now known as the client process) sends 
the request to a server process, which then does the work and sends back the 
answer. 

#' I \ 
Kernel I 

', ' Client ~ w i n s  
~ 8 ~ k e  by 
sending messages 
to server processes 

Figure 1-20. The client-server model. 

I 

In this model, shown in Fig, 1-20, all the kernel does is handle the cornmuni- 
cation between clients and servers. By splitting the operating system up into 
parts, each of which only handles one facet of the system, such as fde service, 
process service, terminal service, or memory service, each part becomes small 
and manageable. Furthermore, because all the servers run as user-mode 
processes, and not in kernel mode, they do not have direct access to the hardware. 
As a consequence, if a bug in the file server is triggered, the file service may 
crash, but this will not usually bring the whole machine down. 

Another advantage of the client-server model is its adaptability to use in dis- 
tributed systems (see Fig. 1-21). If a client communicates with a server by send- 
ing it messages, the client need not know whether the message is handled locally 
in its own machine, or whether it was sent across a network to a server on a 
remote machine. As far as the client is concerned, the same thing happens in both 
cases: a request was sent and a reply came back. 
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Figure 1-21. The client-server model in a distributed system 

File 
server 

The picture painted above of a kernel that handles only the transport of rnes- 
sages from clients to servers and back is not completely realistic. Some operating 
system functions (such as loading commands into the physical VO device regis- 
ters) are difficult, if not impossible, to do from user-space'programs. There are 
two ways of dealing with this problem. One way is to have some critical server 

Memory 
server 
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processes (e.g., VO device drivers) actually run in kernel mode, with complete 
access to all the hardware, but still communicate with other processes using the 
normal message mechanism. 

The other way is to build a minimal amount of mechanism into the kernel but 
leave the policy decisions up to servers in user space. For example, the kernel 
might recognize that a message sent to a certain special address means to take the 
contents of that message and load it into the VO device registers for some disk, to 
start a disk read. In this example, the kernel would not even inspect the bytes in 
the message to see if they were valid or meaningful; it would just blindly copy 
them into the disk's device registers. (Obviously, some scheme for limiting such 
messages to authorized processes only must be used.) The split between mechan- 
ism and policy is an important concept; it occurs again and again in operating sys- 
tems in various contexts. 

1.6 OUTLINE OF THE REST OF THIS BOOK 

Operating systems typically have four major components: process manage- 
ment, VO device management, memory management, and file management. 
MINIX is also divided into these four parts. The next four chapters deal with these 
four topics, one topic per chapter. Chapter 6 is a list of suggested readings and a 
bibliography. 

The chapters on processes, V0, memory management, and file systems have 
the same general structure. First the general principles of the subject are laid out. 
Then comes an overview of the corresponding area of MINIX (which also applies 
to UNIX). Finally, the MINIX implementation is discussed in detail. The imple- 
mentation section may be skimmed or skipped without loss of continuity by 
readers just interested in the principles of operating systems and not interested in 
the MINIX code. Readers who are interested in finding out how a real operating 
system (MINIX) works should read all the sections. 

1.7 SUMMARY 

Operating systems can be viewed from two viewpoints: resource managers 
and extended machines. in the resource manager view, the operating system's job 
is to efficiently manage the different parts of the system. In the extended machine 
view, the job of the system is to provide the users with a virtual machine that is 
more convenient to use than the actual machine. 

Operating systems have a long history, starting from the days when they 
replaced the operator, to modem multiprogramming systems. 

The heart of any operating system is the set of system calls that it can handle. 
These tell what the operating system really does. For MINK, these calls can be 
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divided into six groups.' The first group of system calls relates to process creation 
and termination. The second group handles signals. The third group is for read- 
ing and writing files. A fourth group is for directory management. The fifth 
group protects information, and the sixth group i s  about keeping track of time. 

Operating systems can be structured in several ways. The most common ones 
are as a monolithic system, as a hierarchy of layers, as a virtual machine system 
and using the client-server model. 

PROBLEMF 

1. What are the two main functions of an operating system? 

2. What is multiprogramming? 

3. What is spooling? Do you think that advanced personal computers will have spooling 
as a standard feature in the future? 

4. On early computers, every byte of data read or written was directly handled by the 
CPU (i.e., there was no DMA-Direct Memory Access). What implications does this 
organization have for multiprogramming? 

5. Why was timesharing not widespread on second-generation computers? 

6. Which of the following instructions should be allowed only in kernel mode? 

(a) Disable all interrupts. 
(b) Read the time-of-day clock. 
(c) Set the time-of-day dock. 
(d) Change the memory map. 

7. List some differences between personal computer operating systems and mainframe 
operating systems. 

8. A MINIX file whose owner has uid = 12 and gid = 1 has mode rwxr-x---. Another user 
with uid = 6, gid = 1 tries to execute the file. What will happen? 

9. In view of the fact that the mere existence of a super-user can lead to all kinds of secu- 
rity problems, why does such a concept exist? 

10. The client-server model is popular in distributed systems. Can it also be used in a 
single-computer system? 

11. Why is the process table needed in a timesharing system? Is it also needed in personal 
computer systems in which only one process exists, that process taking over the entire 
machine until it is finished? 

12. What is the essential difference between a block special file and a character special 
file? 

13. In MINIX, if user 2 links to a file owned by user 1, then user 1 removes the file, what 
happens when user 2 tries to read the file? 
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14. Why is the CHROOT system call limited to the super-user? (Hint: Think about protec- 
tion problems.) 

15. Why does MINIX have the program update running in the background all the time? 

16. Does it ever make any sense to ignore the SIGALRM signal? 

17. Write a program (or series of programs) to test all the MMIX system calls. For each 
call, try various sets of parameters, including some incorrect ones, to see if they are 
detected. 

18. Write a shell that is similar to Fig. 1-10 but contains enough code that it actually 
works so you can test it. You might also add some features such as redirection of 
input and output, pipes, and background jobs. 



PROCESSES 

We are now about to embark on a detailed study of how operating systems, in 
general, and MINIX, in particular, are designed and constructed. The most central 
concept in any operating system is the process: an abstraction of a running pro- 
gram. Everything else hinges on this concept, and it is important that the operat- 
ing system designer [and student) know what a process is as early as possible. 

2.1 INTRODUCTION TO PROCESSES 

All modern computers can do several things at the same time. While running 
a user program, a computer can also be reading from a disk and outputting text to 
a screen or printer. In a multiprogramming system, the CPU also switches from 
program to program, running each for tens or hundreds of milliseconds. While, 
strictly speaking, at any instant of time, the CPU is running only one program, in 
the course of 1 second, it may work on several programs, thus giving the users the 
illusion of parallelism. Sometimes people speak of pseudoparallelism to mean 
this rapid switching back and forth of the CPU between programs, to contrast i t  
with the true hardware parallelism of muMprocessor systems (which have two or 
more CPUs sharing the same physical memory). Keeping track of multiple, paral- 
lel activities is hard for people to do. Therefore, operating system designers over 
the years have evolved a model (sequential processes) that makes parallelism 
easier to deal with. That model and its uses are the subject of this chapter. 
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2.1.1 The Process Model 

In this model, all the runnable software on the computer, often including the 
operating system, is organized into a number of sequential processes, or just 
processes for short. A process is just an executing program, including the current 
values of the program counter, registers, and variables. Conceptually, each pro- 
cess has its own virtual CPU. In reality, of course, the real CPU switches back 
and forth from process to process, but to understand the system, it is much easier 
to think about a collection of processes running in (pseudo) parallel, than to try to 
keep track of how t h e  CPU switches from program to program. This rapid 
switching back and forth is called multiprogramming, as we saw in the previous 
chapter. - 

In Fig. 2-l(a) we see a computer multiprogramming four programs in 
memory. In Fig. 2-l(b) we see four processes, each with its own flow of control 
(i-e., its own program counter), and each one running independently of the other 
ones. In Fig. 2-l(c) we see that viewed over a long enough time interval, all the 
processes have made progress, but at any given instant only one process is actu- 
ally running. 

One program counter I 

P mess 
switch 

Four program counters 

I 

Time - 
Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of 
four independent, sequential processes. ( c )  Only one program is active at any 
instant. 

With the CPU switching back and forth among the processes, the rate at 
which a process performs its computation will not be uniform, and probably not 
even reproducible if the same processes are run again. Thus, processes must not 
be programmed with built-in assumptions about timing. Consider, for example, 
an I/O process that starts a streamer tape to restore backed up files, executes an 
idle Imp 10,000 times to let it  get up to speed, and then issues a command to read 
the first record. If the CPU decides to switch to another process during the idle 
loop, the tape process might not run again until after the first record was already 
past the read head. When a process has critical real-time requirements like this, 
that is, particular events must occur within a specified number of milliseconds, 
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special measures must be taken to ensure that they do occur. Normally, however, 
most processes are not affected by the underlying multiprogramming of the CPU 
or the relative speeds of different processes. 

The difference between a process and a program is subtle, but crucial. An 
analogy may help make this point clearer. Consider a culinary-minded computer 
scientist who is baking a birthday cake for his daughter. He has a birthday cake 
recipe and a kitchen well-stocked with the necessary input: flour, eggs, sugar, 
extract of vanilla, and so on. In this analogy, the recipe is the program (i.e., an 
algorithm expressed in some suitable notation), the computer scientist is the pro- 
cessor (CPU), and the cake ingredients are the input data. The process is the 
activity consisting of our baker reading the recipe, fetching the ingredients, and 
baking the cake. 

Now imagine that the computer scientist's son comes running in crying, say- 
ing that he has been stung by a bee. The computer scientist records where he was 
in the recipe (the state of the current process is saved), gets out a first aid book, 
and begins following h e  directions in it. Here we see the processor being 
switched from one process (baking) to a higher priority process (administering 
medical care), each having a different program (recipe vs. first aid book). When 
the bee sting has been taken cNe of, the computer scientist goes back to his cake, 
continuing at the point where he left off. 

The key idea here is that a process is an activity of some kind. It has a pro- 
gram, input, output, and a state. A single processor may be shared among several 
processes, with some scheduling algorithm being used to determine when to stop 
work on one process and service a different one. 

Process Hierarchies 

Operating systems that support the process concept must provide some way to 
create all the processes needed. In very simple systems, or in systems designed 
for running only a single application (e-g., controlling a device in real time), it 
may be possible to have all the processes that will ever be needed be present when 
the system comes up. In most systems, however, some way is needed to create 
and destroy processes as needed during operation. In MINIX, processes are created 
by the FORK system call, which creates an identical copy of the calling process. 
The child process can also execute FORK, so it is possible to get a whole tree of 
processes. In other operating systems, system calls exist to create a process, load 
its memory, and start it running. Whatever the exact nature of the system call, 
processes need a way to create other processes. Note that each process has one 
parent but zero, one, two, or more children. 

As a simple example of how process trees are used, let us look at how MINIX 
initializes itself when it is started. A special process, called init, is present in the 
boot image. When it starts running, it reads a file telling how many terminals 
there are. Then it forks off one new process per terminal. These processes wait 
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for someone to log in. If a login is successful, the login process executes a shell 
to accept commands. These commands may start up more processes, and so forth. 
Thus, all the processes in the whole system belong to a single tree, with inir at the 
root. (The code for init is not listed in the book: neither is the shell. The line had 
to be drawn somewhere.) 

Process States 

Although each process is an independent entity, with its own program counter 
and internal state, processes often need to interact with other processes. One pro- 
cess may generate some output that another process uses as input. In the shell 
command 

cat chapter1 chapter2 chapter3 1 grep tree 

the first process, running cat, concatenates and outputs three files. The second 
process, running grep, selects all lines containing the word "tree." Depending on 
the relative speeds of the two processes (which depends on both the relative com- 
plexity of the programs and how much CPU time each one has had), it may hap- 
pen that grep is ready to run, but there is no input waiting for it. It must then 
block until some input is available. 

When a process blocks, it does so because logically it cannot continue, typi- 
cally because it is waiting for input that is not yet available. It is also possible for 
a process that is conceptually ready and able to run to be stopped because the 
operating system has decided to allocate the CPU to another process for a while. 
These two conditions are completely different. In the first case, the suspension is 
inherent in the problem (you cannot process the user's command line until it has 
been typed). In the second case, it is a technicality of the system (not enough 
CPUs to give each process its own private processor). In Fig. 2-2 we see a state 
diagram showing the three states a process may be in: 

I .  Running (actually using the CPU at that instant). 

2. Ready (runnable; temporarily stopped to let another process run). 

3. Blocked (unable to run until some external event happens). 

Logically, the first two states are similar. In both cases the process is willing to 
run, only in the second one, there is temporarily no CPU available for it. The 
third state is different from the first two in that the process cannot run, even if the 
CPU has nothing else to do. 

Four transitions are possible among these three states, as shown. Transition I 
occurs when a process discovers that it cannot continue. In some systems the pro- 
cess must execute a system call, BLOCK, to get into blocked state. In other sys- 
tems, including MINIX, when a process reads from a pipe or special file (e.g., a ter- 
minal) and there is no input available, the process is automatically blocked. 
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1. Process blocks for input 
2. Scheduler picks another process 
3. Scheduler picks this process 
4. Input becomes available 

Figure 2-2. A process can be in running, blocked, or ready state. Transitions 
between these states are as shown. 

Transitions 2 and 3 are caused by the process scheduler, a part of the operat- 
ing system, without the process even knowing about them. Transition 2 occurs 
when the scheduler decides that the running process has run long enough, and it is 
time to let another process have some CPU time. Transition 3 occurs when all the 
other processes have had their fair share and it is time for the first process to get 
the CPU to run again. The subject of scheduling, that is, deciding which process 
shauld run when and for how long, is an important one; we will look at it later in 
this chapter. Many algorithms have been devised to try to balance the competing 
demands of efficiency for the system as a whole and fairness to individual 
processes. 

Transition 4 occurs when the external event for which a process was waiting 
(such as the arrival of some input) happens, If no other process is running at that 
instant, transition 3 will be triggered immediately, and the process will start run- 
ning. Otherwise it may have to wait in ready state for a little while until the CPU 
is available. 

Using the process model, it becomes much easier to think a b u t  what is going 
on inside the system. Some of the processes run programs that carry out com- 
mands typed in by a user. Other processes are part of the system and handle tasks 
such as carrying out requests for file services or managing the details of w i n g  a 
disk or a tape drive. When a disk interrupt occurs, the system makes a decision to 
stop running the current process and run the disk process, which was blocked 
waiting for that interrupt. Thus, instead of thinking about interrupts, we can think 
about user processes, disk processes, terminal processes, and so on, which block 
when they are waiting for something to happen. When the disk block has been 
read or the character typed, the process waiting for it is unblocked and is eligible 
to run again. 

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of 
the operating system is the scheduler, with a variety of processes on top of it. All 
the interrupt handling and details of actually starting and stopping processes are 
hidden away in the scheduler, which is actually quite small. The rest of the 
operating system is nicely structured in prmess form. The model of Fig. 2-3 is 
used in MINIX, with the understanding that "scheduler" really means not just pro- 
cess scheduling, but also interrupt handling and all the interprocess communica- 
tion. Nevertheless, to a first approximation, it does show the basic structure. 
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CHAP. 2 

I Scheduler I 
Figure 2-3. The lowest layer of a process-structured operating system handles 
intempts and scheduling. Above that layer are sequential processes. 

2.1.2 Implementation of Processes 

To implement the process model, the operating system maintains a table (an 
array of structures), called the process table, with one entry per process. This 
entry contains information about the process' state, its program counter, stack 
pointer, memory allocation, the status of its open files, its accounting and schedul- 
ing information, and everything else about the process that must be saved when 
the process is switched from running to ready state so that it can be restarted later 
as if it had never been stopped. 

in MINlX the process management, memory management, and file manage- 
ment are each handled by separate modules within the system, so the process table 
is partitioned, with each module maintaining the fields that i t  needs. Figure 2-4 
shows some of the more important fields. The fields in the first column are the 
only ones relevant to this chapter. The other two columns are provided just to 
give an idea of what information is needed elsewhere in the system, 

Now that we have looked at the process table, it is possible to explain a little 
more about how the illusion of multiple sequential processes is maintained on a 
machine with one CPU and many VO devices. What follows is technically a 
description of how the "scheduler" of Fig. 2-3 works in MINIX but most modern 
operating systems work essentially the same way. Associated with each I/0 
device class (e.g., floppy disks, hard disks, timers, terminals) is a location near the 
bottom of memory called the interrupt vector. It contains the address of the 
interrupt service procedure. Suppose that user process 3 is running when a disk 
intempt occurs. The program counter, program status word, and possibly one or 
more registers are pushed onto the (current) stack by the intermpt hardware. The 
computer then jumps to the address specified in the disk intempt  vector. That is 
all the hardware does. From here on, it is up to the software. 

The interrupt service procedure starts out by saving all the registers in the pro- 
cess table entry for the current process. The current process number and a pointer 
to its entry are kept in global variables so they can be found quickly. Then the 
information deposited by the interrupt is removed from the stack, and the stack 
pointer is set to a temporary stack used by the process handler. Actions such.as 
saving the registers and setting the stack pointer cannot even be expressed in C, so 
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Process management 

Registers 
Program counter 
Program status word 
Stack pointer 
Process state 
Time when process started 
CPU time used 
Children's CPU time 
Time of next alarm 
Message queue pointers 
Pending signal bits 
Process id 
Various flag bits 

Memory management 

Pointer to text segment 
Pointer to data segment 
Painter to bss segment 
Exit status 
Signal status 
Process id 
Parent process 
Process group 
Real uid 
Effective 
Real gid 
Effective gid 
Bit maps for slgnals 
Various flag bits 

File management 

UMASK mask 
Root directory 
Working directory 
File descriptors 
Effective uid 
Effective gid 
System call parameters 
Various flag bits 

Figure 2-4. Some of the fields of the MINIX process table. 

they are performed by a small assembly language routine. When this routine is 
finished, it calls a C procedure to do the rest of the work. 

Interprocess communication in MI?JIX is via messages, so the next step is to 
build a message to be sent to the disk process, which will be blocked waiting for 
it. The message says that an intenupt occurred, to distinguish it from messages 
from user processes requesting disk blocks to be read and things like that. The 
state of the disk process is now changed from blocked to r~ady  and the scheduler 
is called. In MINIX, different processes have different priorities, to give better ser- 
vice to YO device handlers than to user processes. If the disk process is now the 
highest priority runnable process, it will be scheduled to run. If the process that 
was interrupted is just as impntt;i:lt or more so, then it will be scheduled to run 
.again, and the disk process will $we to wait a little while. 

Either way, the C procedure called by the assembly language interrupt code 
now returns, and the assembly language code loads up the registers and memory 
map for the now-current process and starts it running. Interrupt handling and 
scheduling are summarized in Fig. 2-5. It is worth noting that the details vary 
slightly from system to system. 

2.1.3 Threads 

In a traditional process, of the type we have just studied, there is a single 
thread of control and a single program counter in each process. However, in some 
modern operating systems, support is provided for multiple threads of control 
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1. Hardware stacks program munter, etc. 
2. Hardware loads new program counter from interrupt vector. 
3. Assembly language procedure saves registers. 
4. Assembly language procedure sets up new stack. 
5. C interrupt service runs (typically reads and buffers input). 
6. Scheduler marks waiting task as ready. 
7. Scheduler decides which process is to run next. 
8. C procedure returns to the assembly code. 
9. Assembly language procedure starts up new current process. 

Figure 2-5. Skeleton of what the lowest level of the operating system does 
when an intempt occurs. 

within a process. These threads of control are usually just called threads, or 
occasionally lightweight processes. 

In Fig. 2-6(a) we see three traditional processes. Each process has its own 
address space and a single thread of control. In contrast, in Fig. 2-6(b) we see a 
single process with three threads of control. Although in both cases we have three 
threads, in Fig. 2-6(a) each of them operates in a different address space, whereas 
in Fig. 2-6(b) all three of them share the same address space. 

Computer 
I 1 

Program Thread Process 
counter 

(a) 

Computer 
I I 

Figure 2-6. (a) Three processes each with one thread. (b) One process with 
three threads. 

As an example of where multiple threads might be used, consider a file server 
process. It receives requests to read and write files and sends back the requested 
data or accepts updated data. To improve performance, the server maintains a 
cache of recently used files in memory, reading from the cache and writing to the 
cache when possible. 

This situation lends itself well to the model of Fig. 2-6(b). When a request 
comes in, it is handed to a thread for processing. If that thread blocks part way 
through waiting for a disk transfer, other threads are still able to run, so the server 
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can keep processing new requests even while disk V 0  is taking place. The model 
of Fig. 2-6(a) is not suitable, because it is essential that all file server threads 
access the same cache, and the three threads of Fig. 2-6(a) do not share the same 
address space and thus cannot share the same memory cache. 

Another example of where threads are useful is in browsers for the World 
Wide Web, such as Netscape and Mosaic. Many Web pages contain multiple 
small images. For each image on a Web page, the browser must set up a separate 
connection to the page's home site and request the image. A great deal of time is 
wasted establishing and releasing all these connections. By having multiple 
threads within the browser, many images can be requested at the same time, 
greatly speeding up performance in most cases, since with small images, the set- 
up time is the limiting factor, not the speed of the transmission line. 

When multiple threads are present in the same address space, a few of the 
fields of Fig. 2-4 are not per process, but per thread, so a separate thread table is 
needed, with one entry per thread. Among the per-thread items are the program 
counter. registers, and state. The program counter is needed because threads, like 
processes, can be suspended and resumed. The registers are needed because when 
threads are suspended, their registers must be saved. Finally, threads, like 
processes, can be in running, ready, or blocked state. 

In some systems, the operating system is not aware of the threads. In other 
words, they are managed entirely in user space. When a thread is about to block, 
for example, it chooses and starts its successor before stopping. Several user- 
level threads packages are in common use, including the POSIX f-threads and 
Mach C-threads packages. 

In other systems, the operating system is aware of the existence of multiple 
threads per process, so when a thread blocks, the operating system chooses the 
next one to run, either from the same process or a different one. To do schedul- 
ing, the kernel must have a thread table that lists all the threads in the system, 
analogous to the process table. 

Although these two alternatives may seem equivalent, they differ consider- 
ably in performance. Switching threids is much faster when thread management 
is done in user space than when a kernel call is needed. This fact argues strongly 
for doing thread management in user space. On the other hand, when threads are 
managed entirely in user space and one thread blocks (e.g., waiting for W 0  or a 
page fault to be handled), the kernel blocks the entire process, since it is not even 
aware that other threads exist. This fact argues strongly for doing thread manage- 
ment in the kernel. As a consequence, both systems are in use, and various hybrid 
schemes have been proposed as well (Anderson et a]., 1992). 

No rfiatter whether threads are managed by the kernel or in user space, they 
introduce a raft of problems that must be solved and which change the prograrn- 
ming model appreciably. To start with, consider the effects of the FORK system 
call. If the parent process has multiple threads, should the child also have them? 
If not, the process may not function properly, since all of them may be essential. 
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However, if the child process gets as many threads as the parent, what hap- 
pens if a thread was blocked on a READ call, say, from the keyboard. Are two 
threads now blocked on the keyboard? When a line is typed, do both threads get a 
copy of it? Only the parent? Only the child? The same problem exists with open 
network connections. 

Another class of problems is related to the fact that threads share many data 
structures. What happens if one thread closes a file while another one is still read- 
ing from it? Suppose that one thread notices that there is too little memory and 
starts allocating more memory. Then, part way through, a thread switch occurs, 
and the new thread also notices that there is too little memory and also starts allo- 
cating more memory. Does the allocation happen once or twice? In nearly all 
systems that were not designed with threads in mind, the libraries (such as the 
memory allocation procedure) are not reentrant, and will crash if a second call is 
made while the first one is still active. 

Another problem relates to error reporting. In UNIX, after a system call, the 
status of the call is put into a global variable, errno. What happens if a thread 
makes a system call, and before it is able to read ermo, another thread makes a 
system call, wiping out the original value? 

Next, consider signals. Some signals are logically thread specific, whereas 
~ t h e r s  are not. For example, if a thread calls ALARM, it makes sense for the result- 
ing signal to go to the thread that made the call. When the kernel is aware of 
threads, it can usually make sure the right thread gets the signal. When the kernel 
is not aware of threads, somehow the threads package must keep track of a l m s .  
An additional complication for user-level threads exists when (as in UNIX) a pro- 
cess may only have one alarm at a time pending and several threads call ALARM 
independently. . 

Other signals, such as keyboard interrupt, are not thread specific. Who should 
catch them? One designated thread? All the threads? A newly created thread? 
All these solutions have problems. Furthermore, what happens if one thread 
changes the signal handlers without telling other threads? - 

One last problem introduced by thread: is stack management. In many sys- 
tems, when stack ovefflow occurs, the kernel just provides more stack, automati- 
cally. When a process has multiple threads, it must aIso have multiple stacks. If 
the kernel is not aware of all these stacks, it cannot grow them automatically upon 
stack fault. In fact, it may not even realize that a memory fault is related to stack 
growth. 

These problems are certainly not insurmountable, but they do show that just 
introducing threads into an existing system without a fairly substantial system 
redesign is not going to work at all. The semantics of system calls have to be 
redefined and libraries have to be rewritten, at the very least. And all of these 
things must be done in such a way as to remain backward compatible with exist- 
ing programs for the limiting case of a process with only one thread. For addi- 
tional information about threads. see (Hauser et al., 1993; and Marsh et al., 199 1 ). 
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2.2 INTERPROCESS COMMUNICATION 

Processes frequently need to communicate with other processes. For exam- 
ple, in a shell pipeline, the output of the first process must be passed to the second 
process, and so on down the line. Thus there is a need for communication 
between processes. preferably in  a well-structured way not using interrupts. In 
the foIlowing sections we will look at some of the issues related to this Interpro- 
cess Communication or IPC. 

Very briefly, there are three issues here. The first was alluded to above: how 
one process can pass information to another. The second has to do with making 
sure two or more processes do not get into each other's way when engaging in 
critical activities (suppose two processes each try to grab the last IOOK of 
memory). The third concerns proper sequencing when dependencies are present: 
if process A produces data and process B prints it, B has to wait until A has pro- 
duced some data before starting to print. We will examine all three of these issues 
starting in the next section. 

2.2.1 Race Conditions 

In some operating systems, processes that are working together may share 
some common storage that each one can read and write. The shared storage may 
be in main memory or it may be a shared file; the location of the shared memory 
does not change the nature of the communication or the problems that arise. To 
see how interprocess communication works in practice, let us consider a simple 
but common example, a print spooler. When a process wants to print a file, it 
enters the file name in a specla1 spooler directory. Another process, the printer 
daemon, periodically checks to see if there are any files to be printed, and if there 
are it prints them and then removes their names from the directory. 

Imagine that our spooler directory has a large (potentially infinite) number of 
slots, numbered 0, 1 ,  2, ..., each one capable of holding a file name. Also imagine 
that there are two shared variables, out, which points to the next file to be printed, 
and in, which points to the next free dot in the directory. These two variables 
might well be kept on a two-word file available to all processes. At a certain 
instant, slots 0 to 3 are empty (the files have already been printed) and slots 4 to 6 
are full (with the names of file; queued for printing). More or less simultane- 
ously, processes A and $ decide they want to queue a file for printing. This situa- 
tion is shown in Fig, 2-7. 

In jurisdictions where Murphy's law7 is applicable, the following might hap- 
pen. - Process A reads in and stores the value, 7, in a local variable called 
next-free-slos. Just then a dock interrupt occurs and the CPU decides that pro- 
cess A has run long enough, so it switches to process B. Process B also reads in, 
t If something can go wrong, it will. 
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Figure 2-7. Two processes want to access shared memory at the same ne. 

Spooler 
directory 

and also gets a 7, so it stores the name of its file in slot 7 and updat.. in to be an 
8. Then it goes off and does other things. 

Eventually, process A runs again, starting from the place it left off. It looks at 
next-free-slot, finds a 7 there, and writes its file name in slot 7, erasing the name 
that process B just put there. Then it computes next-free-slot + 1, which is 8, 
and sets in to 8. The spooler directory is now internally consistent, so the printer 
daemon will not notice anything wrong, but process B will never get any output. 
Situations like this, where two or more processes are reading or writing some 
shared data and the final result depends on who runs precisely when, are called 
race conditions. Debugging programs containing race conditions is no fun at all. 
The results of most test runs are fine, but once in a rare while something weird 
and unexplained happens. 

4 

2.2.2 Critical Sections 

a 

abc 

How do we avoid race conditions? The key to preventing trouble here and in 
many other situatioqs involving shared memory, shared files, and shared every- 
thing else is to find some way.to prohibit more than one process from reading and 
writing the shared data at the same time. Put in other words, what we need is 
mutual exdusion-some way of making sure that if one process is using a shared 
variable or file, the other processes will be' excluded from doing the same thing. 
The difficulty above occurred because process B started using one of the shared 
variables before process A was finished with it. The choice of appropriate primi- 
tive operations for achieving mutual exclusion is a major design issue in any 
operating system, and a subject that we will examine in great detail in the follow- 
ing sections. 

The problem of avoiding race conditions can also be formulated in an abstract 
way. Part of the time, a process is busy doing internal computations and other 

Process A - 5 prog. c 

6 prog. n 
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things that do not lead to race conditions. However, sometimes a process may be 
accessing shared memory or files, or doing other critical things that can lead to 
races. That part of the program where the shared memory is accessed is called the 
critical region or critical section. If we could arrange matters such that no two 
processes were ever in their critical regions at the same time, we could avoid race 
conditions. 

Although this requirement avoids race conditions, this is not sufficient for 
having parallel processes cooperate correctly and efficiently using shared data. 
We need four conditions to hold to have a good solution: 

1. No two processes may be simultaneously inside their critical regions. 

2. No assumptions may be made about speeds or'the number of CPUs. 

3. No process running outside its critical region may block other processes. 

4. No process should have to wait forever to enter its critical region. 

2.2.3 Mutual Exclusion with Busy Waiting 

In this section we will examine various proposals for achieving mutual exclu- 
sion, so that while one process is busy updating shared rnemory in its critical 
region, no other process will enter its critical region and cause trouble. 

Disabling Interrupts 

The simplest solution is to have each process disable all intermpts just after 
entering its critical region and re-enable them just before leaving it, With inter- 
rupts disabled, no clock intenvpts can occur. The CPU is only switcbd from pro- 
cess to process as a result of clock or other interrupts, after all, and with intempts 
turned off the CPU will not be switched to another process. Thus, once a process 
has disabled interrupts, it can examine and update the shared memory without fear 
that any other process will intervene. 

This approach is generally unattractive because it is unwise to give user 
processes the power to turn off interrupts. Suppose that one of them did it, and 
never turned them on again? That could be the end of the system. Furthermore, if 
the system is a multiprocessor, with two or more CPUs, disabling intermpts 
affects only the CPU that executed the disable instruction. The other ones will 
continue running and can access the shared memory. 

On the other hand, it is frequently convenient for the kernel itself to disable 
intempts for a few instructions while it is updating variables or lists. If an inter- 
rupt occurred while the list of ready processes, for example, was in an inconsistent 
state, race conditions could occur. The conclusion is: disabling interrupts is often 
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a useful technique within the operating system itself but is not appropriate as a 
general mutual exclusion mechanism for user processes. 

Lock Variables 

As a second attempt, let us look for a software solution. Consider having a 
single, shared, (lock) variable, initially 0. When a process wants to enter its criti- 
cal region, it first tests the lock. If the lock is 0, the process sets it to I and enters 
the critical region. If the lock is already 1, the process just waits until it becomes 
0. Thus, a 0 means that no process is in its critical region, and a 1 means that 
some process is in its critical region. 

Unfortunately, this idea contains exactly the same fatal flaw that we saw in 
the spooler directory. Suppose that one process reads the lock and sees that it is 0. 
Before itxan set the lock to 1, another process is scheduled, runs, and sets the lock 
to I .  W&n the first process runs again, it will also set the lock to 1, and two 
processes will be in their critical regions at the same time. 

Now you might think that we could get around this problem by first reading 
out the lock value, then checking it again just before storing into it, but that really 
does not help. The race now occurs if the second process modifies the lock just 
after the first process has finished its second check. 

Strict Alternation 

A third approach to the mutual exclusion problem is shown in Fig. 2-8. This 
program fragment, like nearly all the others in this book, is written in C. C was 
chosen here because real operating systems are commonly written in C (or occa- 
sionally C u ) ,  but hardly ever in languages like Modula 2 or Pascal. 

while (TRUE) { while (TRUE) { 
while (turn != 0) /* wait */ ; while (turn I= 1) /* wait */ ; 
critical region(); critical-region(); 
turn = 1 ; turn = 0; 
noncritical - region(); 

1 

Figure 2-8. A proposed solution to the critical region problem. 

In Fig. 2-8, the integer variable rum, initially 0, keeps track of whose turn it is 
to enter the critical region and examine or update the shared memory. Initially, 
process 0 inspects turn, finds it to be 0, and enters its critical region. Process 1 
also finds it to be 0 and therefore sits in a tight loop continually testing turn to see 
when it becomes 1. Continuously testing a variable until some vdue appears is 
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called busy waiting. It should usually be avoided, since it wastes CPU time. 
Only when there is a reasonable expectation that the wait will be short is busy 
waiting used. 

When process 0 leaves the critical region, it sets turn to I ,  to allow process 1 
to enter its critical region. Suppose that process I finishes its critical region 
quickly, so both processes are in their noncritical regions, with turn set to 0. Now 
process 0 executes its whole Ioop quickly, coming back to its noncritical region 
with turn set to 1. At this point, process 0 finishes its noncritical region and goes 
back to the top of its loop. Unfortunately, it is not permitted to enter its critical 
region now, because turn is I and process 1 is busy with its noncritical region. 
Put differentIy, taking turns is not a good idea when one of the processes is much 
slower than the other. 

This situation violates condition 3 set out above: process 0 is being blocked by 
a process not in its critical region. Going back to the spooler directory discussed 
above, if we now associate the critical region with reading and writing the spooler 
directory, process 0 would not be allowed to print another file because process 1 
was doing something else. 

In fact, this solution requires that the two processes strictly alternate in enter- 
ing their critical regions, for example, in spooling files. Neither one would be 
permitted to spool two in a row. While this algorithm does avoid all races, it is 
not really a serious candidate as a solution because it violates condition 3. 

Peterson's Solution 

By combining the idea of taking turns with the idea of lock variables and 
warning variables, a Dutch mathematician, T. Dekker, was the first one to devise 
a software solution to the mutual exclusion problem that does not require strict 
alternation. For a discussion of Dekker's algorithm, see (Dijkstra, 1965). 

In 1981, G.L. Peterson discovered a much simpler way to achieve mutual 
exclusion, thus rendering Dekker's solution obsolete. Peterson's algorithm is 
shown in Fig. 2-9. This algorithm consists of two procedures written in ANSI C, 
brhich means that function prototypes should be supplied for all the functions 
defined and used. However, to save space, we will not show the prototypes in this 
or subsequent examples. 

Before using the shared variables (i-e., before entering its critical region), 
each process calls enter-region with its own process number, 0 or 1, as parame- 
ter. This call will cause it to wait, if need be, until it is safe to enter. After it has 
finished with the shared variables, the process calls leave-region to indicate that 
it is done and to allow the other process to enter, if it so desires. 

Let us see how this solution works. Initially neither process is in its critical 
region. Now process 0 calls enter-region. It indicates its interest by setting its 
array element and sets turn to 0. Since process 1 is not interested, enter-region 
returns immediately. If process 1 now calls enter-region, it will hang there until 
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#define FALSE 0 
#define TRUE 1 
#define N 2 

int turn; 
int interesled[N]; 

/* number of processes */ 

I* whose turn is it? */ 
I* all values initially 0 (FALSE) */ 

void enter-region(int process); /* process is 0 or 1 */ 

int other; /* number of the other process */ 

other = 1 - process; /* the opposite of process */ 
interested[process] = TRUE; /* show that you are interested */ 
turn = process; /* set flag */ 
while (turn == process && interested[other] == TRUE) /* null statement */ ; 

1 

void leave-region(int process) . I* process: who is leaving */ 
{ 
interested[process] = FALSE; I* indicate departure from critical region *I 

1 
Figure 2-9. Peterson's solution for achieving mutual exclusion. 

interested[O] goes to FALSE, an event that only happens when process 0 calls 
leave-region to exit the critical region. 

Now consider the case that both processes call enter-region almost simul- 
taneously. Both will store their process number in turn. Whichever store is done 
last is the one that counts; the first one is lost. Suppose that process 1 stores last, 
so turn is 1. When both processes come to the while statement, process 0 executes 
it zero times and enters its critical region. Process 1 loops and does not enter its 
critical region. 

The TSL Instruction 

Now let us look at a proposal that requires a little help from the hardware. 
Many computers, especially those designed with multiple processors in mind, 
have an instruction TEST AND SET LOCK (TSL) that works as follows. It reads the 
contents of the memory word into a register and then stores a nonzero value at 
that memory address. The -rations of reading the word and storing into it are 
guaranteed to be indivisible-no other processor can access the memory word 
until the instruction is finished. The CPU executing the TSL instructi.on locks the 
memory bus to prohibit other CPUs from accessing memory until it is done. 
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To use the TSL instruction, we will use a shared variable, lack, to coordinate 
access to shared memory. When lock is 0, any process may set it to 1 using the 
TSL instruction and then read or write the shared memory. When it is done, the 
process sets lock back to 0 using an ordinary MOVE instruction. 

How can this instruction be used to prevent two processes from simultane- 
ously entering their critical regions? The solution is given in Fig. 2-10. There a 
four-instruction subroutine in a fictitious (but typical) assembly language is 
shown. The first instruction copies the old value of lock to the register and then 
sets lock to 1. Then the old value is compared with 0. If it is nonzero, the lock 
was already set, so. the program just goes back to the beginning and tests it again. 
Sooner or later it will become 0 (when the process currently in its critical region is 
done with its critical region), and the subroutine returns, with the lock set. Clear- 
ing the lock is simple. The program just stores a 0 in lock. No specid instruc- 
tions are needed. 

enter-region: 
tsl register,lock 
cmp register,#O 
jne enter-region 
ret 

leave - region: 
move lock,#O 
ret 

I copy lock to register and set lock to 1 
I was lock zero? 
I if it was non zero, lock was set, so loop 
I return to caller; critical region entered 

I store a 0 in lock 
I return to caller 

Figure 2-10. Setting and clearing locks using TSL. 

One solution to the critical region problem is now straightforward. Before 
entering its critical regi~n, a process calls enter- region, which does busy waiting 
until the lock is free; then it acquires the lock and returns. After the critical region 
the process calls leave,region, which stores a 0 in lock. As with all solutions 
based on critical regions, the processes must call enter -region and leave - region 
at the correct times for the method to work. If a process cheats, the mutual exclu- 
sion will fail. 

2.2.4 Sleep and Wakeup 
C 

Both Peterson's solution and the solution using TSL are correct, but both have 
the defect of requiring busy waiting. In essence, what these solutions do is this: 
when a process wants to enter its critical region, it checks to see if the entry is 
allowed. If it is not, the process just sits in a tight loop waiting until it is. 

Not only does this approach waste CPU time, but it can also have unexpected 
effects. Consider a computer with two processes, H, with high priority and L, 
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with low priority. The scheduling rules are such that H is run whenever it is in 
ready state. At a certain moment, with L in its critical region, H becomes ready to 
run (e.g., an UO operation completes). H now begins busy waiting, but since L is 
never scheduled while H is running, L never gets the chance to leave its critical 
region, so H loops forever. This situation is sometimes referred to as the priority 
inversion problem. - 

Now let us look at some interprocess communication primitives that block 
instead of wasting CPU time when they are not aIlowed to enter their critical 
regions. One of the simplest is the pair SLEEP and WAKEUP. SLEEP is a system 
call that causes the caller to block, that is, be suspended until another process 
wakes it up. The WAKEUP call has one parameter, the process to be awakened. 
Alternatively, both SLEEP and WAKEUP each have one parameter, a memory 
address used to match up SLEEPS with WAKEUPs. 

The Producer-Consumer Problem 

As an example of how these primitives can be used, let us consider the 
producer-consumer problem (also known as the bounded buffer problem). 
Two processes share a common, fixed-size buffer. One of them, the producer, 
puts information into the buffer, and the other one, the consumer, takes it out. (It 
is also possible to generalize he problem to have rn producers and n consum6rs, 
but we will only consider the case of one producer and one consumer because this 
assumption simplifies the solutions). 

Trouble arises when the producer wants to put a new item in the buffer, but it 
is already full. The solution is for the producer to go to sleep, to be awakened 
when the consumer has removed one or more items, Similarly, if the consumer 
wants to remove an item from the buffer and sees that the buffer is empty, it goes 
to sleep until the producer puts something in the buffer and wakes it up. 

This approach sounds simple enough, but it leads to the same kinds of race 
conditions we saw earlier with the spooler directory. To keep track of the number 
of items in the buffer, we will need a variable, c o w .  If the maximum number of 
items the buffer can hold is N, the producer's code will first test to see if count is 
N. If it is, the producer will go to sleep; if it is not, the producer will.add an item 
and incrernen t count. 

The consumer's code is similar: first test count to see if it is 0. If it is, go to 
sleep; if it is nonzero, remove an item and decrement the counter. Each of the 
processes also tests to see if the other should be sleeping, and if not, wakes it up. 
The code for both producer and consumer is shown in Fig, 2- 1 1. 

To express system calls such as SLEEP and WAKEUP in C, we will show them 
as calls to library routines. They are not part of the standard C library but presum- 
ably would be available on any system that actually had these system calls. The 
procedures enter-item and remove-item, which are not shown, handle the book- 
keeping of putting items into the buffer and taking items out of the buffer. 
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#define N 1 OC, 
int count = 0; 

void producer(void) 

while (TRUE) { 
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I* number of slots in the buffer *I  
/* number of items in the buffer */ 

/* repeat forever */ 
produce- item(); I* generate next item *I 
if (count == N) sleep(); I* if buffer is full, go to sleep */ 
enter-itern(); I* put item in buffer *i 
count = count + 1 ; /* increment count of items in buffer *I 
if (count == 1) wakeup(consumer); I* was buffer empty? */ 

void consumer(void) 
C 
while (TRUE) { 

if (count == 0) sleep(); 
/* repeat forever */ 
I* if buffer is empty, got to sleep */ 

remove-item(); /* take item out of buffer */ 
count = count - 1 ; /* decrement count of items in buffer */ 
if (count == N-1) wakeup(producer); /* was buffer full? */ 
consume-item(); /* print item */ 

1 
1 

Figure 2-11. The producer-consumer problem with a fatal race condition. 

Now let us get back to the race condition. It can occur because access to 
count is unconstrained. The following situation could possibly occur, The buffer 
is empty and the consumer has just read count to see if it is 0. At that instant, the 
scheduler decides to stop running the consumer temporarily and start running the 
producer. The producer enters an item in the buffer, increments count, and 
notices that it is now 1. Reasoning that count was just 0, and thus the consumer 
must be sleeping, the producer calls wakeup to wake the consumer up. 

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal 
is lost. When the consumer next runs, it will test the value of count it  previously 
read, find it to be 0, and go to sleep. Sooner or later the producer will fill  up the 
buffer and also go to sleep. Both will sleep forever. 

The essence of the problem here is that a wakeup sent to a process that is not 
(yet) sleeping is lost. If it were not lost, everything would work. A quick fix is to 
modify the rules to add a wakeup waiting bit to the picture. When a wakeup is 
sent to a process that is still awake, this bit is set. Later, when the process tries to 
go to sleep, if the wakeup waiting bit is on, it will be turned off, but the process 
will stay awake. The wakeup waiting bit is a piggy bank for wakeup signals. 
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While the wakeup waiting bit saves the day in this simple example, it is easy 
to construct examples with three or more processes in which one wakeup waiting 
bit is insufficient. We could make another patch, and add a second wakeup wait- 
ing bit, or maybe 8 or 32 of them, but in principle the problem is still there. 

2.2.5 Semaphores 

This was the situation in 1965, when E. W. Dijkstra (1965) suggested using an 
integer variable to count the number of wakeups saved for future use. In his pro- 
posal, a new variable type, called a semaphore, was introduced. A semaphore 
could have the value 0, indjcating that no wakeups were saved, or some positive 
value if one or more wakeups were pending. 

Dijkstra proposed having two operations, DOWN and UP (generalizations of 
SLEEP and WAKEUP, respectively). The DOWN operation on a semaphore checks 
to see if the value is greater than 0. If so, it decrements the value (i-e., uses up 
one stored wakeup) and just continues. If the value is 0, the process is put to sleep 
without completing the DOWN for the moment. Checking the value, changing it, 
and possibly going to sleep is all done as a single, indivisible, atomic action. It is 
guaranteed that once a semaphore operation has started, no other process can 
access the semaphore until the operation has completed or blocked. This atomi- 
city is absolutely essential to solving synchronization problems and avoiding race 
conditions. 

The UP operation increments the value of the semaphore addressed. If one or 
more processes were sleeping on that semaphore, unable to complete an earlier 
D ~ W N  operation, one of them is chosen by the system (e-g., at random) and is 
allowed to complete its ~ W N .  Thus, after an UP on a semaphore with processes 
sleeping on it, the semaphore will still be 0, but there will be one fewer process 
sleeping on it. The operation of incrementing the semaphore and waking up one 
process is also indivisible. No process ever blocks doing an UP, just as no process 
ever blocks doing a WAKEUP in the earlier model. 

As an aside, in Dijkstra's original paper, he used the names p and v instead of 
D ~ W N  and UP, respectively, but since these have no mnemonic significance to 
people who do not speak Dutch (and only marginal significance to those who do), 
we will use the terms DOWN and UP instead. These were first introduced in Algol 
68. 

Solving the Producer-Consumer Problem using Semaphores 

Semaphores solve the lost-wakeup problem, as shown in Fig. 2- 12. It is 
essential that they be implemented in an indivisible way, The normal way is to 
implement UP and DOWN as system calls, with the operating system briefly disa- 
bling all interrupts while it is testing the semaphore, updating it, and putting the 
process to sleep, if necessary. As ail of these actions take only a few instructions, 
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no harm is done in disabling interrupts. If multiple CPUs are being used, each 
semaphore should be protected by a lock variable, with the TSL instruction used to 
make sure that only one CPU at a time examines the semaphore. Be sure you 
understand that using TSL to prevent several CPUs from accessing the semaphore 
at the same time is quite different froni busy waiting by the producer or consumer 
waiting for the other to empty or fill the buffer. The semaphore operation will 
only take a few microseconds, whereas the producer or consumer might take arbi- 
trarily long. 

#define N 100 
typedef- int semaphore; 
semaphore mutex = 1 ; 
semaphore empty = N; 
semaphore full = 0; 

I* number of slots in the buffer */ 
/* semaphores are a special kind of int */ 
I* controls access to critical region */ 
/* counts empty buffer slots */ 
/* counts full buffer slots *I 

void producer(void) 
{ 
int item; 

while (TRUE) { /* TRUE is the constant 1 *I 
produce-itern(&item); /* generate something to put in buffer *I 
down(&empty); I* decrement empty count */ 
down(&mutex); I* enter critical region *I 
enter-item(itern); /* put new item in buffer */ 
up(&mutex); I* leave critical region */ 
up(&full); /* increment count of full slots *I 

void consumer(void) 
I: 
int item; 

while (TRUE) { /* infinite loop *I 
down(&full); /* decrement full count */ 
down(&rnutex); I* enter critical region *I 

/* take item from buffer *I remove-item(&item); 
up(&mutex); I* leave critical region */ 
~ P ( & ~ W W ) ;  I* increment count of empty slots *I 
consume-item(item); /* do something with the item *I 

Figure 2-12. The producer-consumer problem using semaphores. 
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This solution uses three semaphores: one called full for counting the number 
of slots that are full, one called empzy for counting the number of slots that are 
empty, and one called rnutex to make sure the producer and consumer do not 
access the buffer at the same time. Full is initially 0, empty is initially equal to 
the number of slots in the buffer, and mutex is initially 1. Semaphores that are ini- 
tialized to 1 and used by two or more processes to ensure that only one of them 
can enter its critical region at the same time are called binary semaphores. If 
each process does a DOWN just before entering its critical region and an UP just 
after leaving it, mutual exclusion is guaranteed. 

Now that we have a good interprocess communication primitive at our dispo- 
sal, let us go back and look at the interrupt sequence of Fig. 2-5 again. In a sys- 
tem using semaphores, the natural way to hide interrupts is to have a semaphore, 
initially set to 0, associated with each VO device. Just after starting an I/O device, 
the managing process does a DOWN on the associated semaphore, thus blocking 
immediately. When the interrupt comes in, the interrupt handler then does an UP 
on the associated semaphore, which makes the relevant process ready to run 
again. In this model, step 6 in Fig. 2-5 consists of doing an Up on the device's 
semaphore, so that in step 7 the scheduler will be able to run the device manager. 
Of course, if several processes are now ready, the scheduler may choose to run an 
even more important process next. We will look at how scheduling is done later 
in this chapter. 

In the example of Fig. 2-12, we have actually used semaphores in two dif- 
ferent ways. This difference is important enough to make explicit. The mutex 
semaphore is used for mutual exclusion, It is designed to guarantee that only one 
process at a time will be reading or writing the buffer and the associated variables. 
This mutual exclusion is required to prevent chaos. 

The other use of semaphores is for synchronization. The full and empty 
semaphores are needed to guarantee that certain event sequences do or do not 
occur. In this case, they ensure that the producer stops running when the buffer is 
full, and the consumer stops running when it is empty. This use is different from 
mutual exclusion. 

Although semaphores have been around for more than a quarter of a century, 
people are still doing research about their use. As an example, see (Tai and 
Carver, 1996). 

2.2.6 Monitors 

With semaphores interprocess communication looks easy, right? Forget it. 
Look closely at the order of the DOWNS before entering or removing items from 
the buffer in Fig. 2-12. Suppose that the two DOWNS in the producer's code were 
reversed in order, so mutex was decremented before empp instead of after it. If 
the buffer were completely full, the producer would block, with rnutex set to 0. 
Consequently, the next time the consumer tried to access the buffer, it would do a 
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DOWN on mutex, now 0, and block too. Both processes would stay blocked for- 
ever and no more work would ever be done. This unfortunate situation is called a 
deadlock. We will study deadlocks in detail in Chap. 3. 

This problem is pointed out to show how careful you must be when using 
semaphores. One subtle error and everything comes to a grinding halt. It is like 
programming in assembly language, only worse, because the errors are race con- 
di tions, deadlocks, and other forms of unpredictable and irreproducible behavior, 

To make it easier to write correct programs, Hoare (1974) and Brinch Hansen 
(1975) proposed a higher level synchronization primitive called a monitor. Their 
proposals differed slightly, as described below. A monitor is a collection of pro- 
cedures, variables, and data structures that are all grouped together in a special 
kind of module or package. Processes may call the procedures jn a monitor when- 
ever they want to, but they cannot directly access the monitor's internal data 
structures from procedures declared outside the monitor. Figure 2-13 illustrates a 
monitor written in an imaginary language, pidgin Pascal. ' 

monitor example 
integer i; 
condition c ;  

procedure producer(x); 

end; 

procedure consumer(x); 

end; 
end monitor; 

Figure 2-13. A monitor. 

Monitors have an important property that makes them useful for achieving 
mutual exclusion: only one process can be active in a monitor at any instant. 
Monitors are a programming language construct, so the compiler knows they are 
special and can handle calls to monitor procedures differently from other pro- 
cedure calls. Typically, when a process calls a monitor procedure, the first few 
instructions of the procedure will check to see if any other process is currently 
active within the monitor. If so, the calling process will be su.spended until the 
other process has left the monitor. If no other process is using the monitor, the 
calling process may enter. 

It is up to the compiler to implement the mutual exclusion on monitor entries, 
but a common way is to use a binary semaphore. Because the compiler, not the 
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programmer, is arranging for the mutual exclusion, it is much less likely that 
something will go wrong. In any event, the person writing the monitor does not 
have to be aware of how the compiler arranges for mutual exclusion. It is suffi- 
cient to know that by turning all the critical regions into monitor procedures, no 
two processes will ever execute their critical regions at the same time. 

Although monitors provide an easy way to achieve mutual exclusion, as we 
have seen above, that is not enough. We also need a way for processes to block 
when they cannot proceed. In the producer-consumer problem, it is easy enough 
to put aH the tests for buffer-full and buffer-empty in monitor procedures, but how 
should the producer block when it finds the buffer full? 

The solution lies in the introduction of condition variables, along with two 
operations on them, WAIT and SIGNAL. When a monitor procedure discovers that 
it cannot continue (e.g., the producer finds the buffer full), it does a WAIT on some 
condition variable, say, full. This action causes the calling process to block. It 
also allows another process that had been previously prohibited from entering the 
monitor to enter now. 

This other process, for example, the consumer, can wake up its sleeping 
partner by doing a SIGNAL on the condition variable that its partner is waiting on. 
To avoid having two active processes in the monitor at the same time, we need a 
rule telling what happens after a SIGNAL. Hoare proposed letting the newly awak- 
ened process run, suspending the other one. Brinch Hansen proposed finessing 
the problem by requiring that a process doing a SIGNAL must exit the monitor 
immediately. In other words, a SIGNAL statement may appear only as the final 
statement in a monitor procedure. We will use Brinch Hansen's proposal because 
it is conceptually simpler and is also easier to implement. If a SIGNAL is done on 
a condition variable on which several processes are waiting, only one of them, 
determined by the system scheduler, is revived. 

Condition variables are not counters. They do not accumulate signals for later 
use the way semaphores do. Thus if a condition variable is signaled with no one 
waiting on it, the signal is lost. The WAIT must come before the SIGNAL. This 
rule makes the implementation much simpler. In practice it is not a problem 
because it is easy to keep tmck of the state of each process with variables, if need 
be. A process that might otherwise do a SIGNAL can see that this operation is not 
necessary by looking at the variables. 

A skeleton of the producer-consumer problem with monitors is given in 
Fig. 2-14 in pidgin Pascal. 

You may be thinking that the operations WAIT and SIGNAL look similar to 
SLEEP and WAKEUP, which we saw earlier had fatal race conditions. They are 
very similar, but with one crucial difference: SLEEP and WAKEUP failed because 
while one process was trying to go to sleep, the other one was trying to wake it 
up. With monitors, that cannot happen. The automatic mutual exclusion on mon- 
itor procedures guarantees that if, say, the producer inside a monitor procedure 
discovers that the buffer is full, it will be able to complete the WAIT operation 
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monitor ProducerConsumer 
condition full, empty; 
integer count; 

procedure enter; 
rn 
if count = N then waitCfirll); 
enteritem; 
count := count + 1 ; 
if count = I then sigW(empfy) 

end; 

procedure remove; 
begin 

if count = 0 then waityempty); 
removeitem; 
count := count - 1 ; 
if count = N - 1 then signaYfitl1) 

end; 

count := 0; 
end monitor; 

procedure producer; 
besin 

while true do - 
produceLtem; 
ProducerConsurner. enter 

end 
end; 

procedure consumer; 
besin 

while true do 
besin 

ProducerConsurner. remove; 
consume-i fern 

end 
end ; 

F i r e  2-14. An outline of the producerconsumer problem with monitors. 
Onty one monitor procedure at a time is active. The buffer has N slots. 
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without having to worry about the possibility that the scheduler may switch to the 
consumer just before the WAIT completes. The consumer will not even be let into 
the monitor at all until the WAIT is finished and the producer has been marked as 
no longer runnable. 

By making the mutual exclusion of critical regions automatic, monitors make 
parallel programming much less error-prone than with semaphores. Still, they too 
have some drawbacks. It is not for nothing that Fig. 2- 14 is written in a strange 
kind of pidgin Pascal rather than in C, as are the other examples in this book. As 
we said earlier, monitors are a programming language concept. The compiler 
must recognize them and arrange for the mutual exclusion somehow. C, Pascal, 
and most other languages do not have monitors, so it is unreasonable to expect 
their compilers to enforce any mutual exclusion rules. In fact, how could the 
compiler even know which procedures were in monitors and which were not? 

These same languages do not have semaphores either, but adding semaphores 
is easy: All you need to do is add two short assembly code routines to the library 
to issue the UP and DOWN system calls. The compilers do not even have to know 
that they exist. Of course, the operating systems have to know about the sema- 
phores, but at least if you have a semaphore-based operating system, you can still 
write the user programs for it in C or C++ (or even BASIC if you are masochistic 
enough). With monitors, you need a language that has them built in. A few 
languages, such as Concurrent Euclid (Holt, 1983) have them, but they are rare. 

Another problem with monitors, and also with semaphores, is that they were 
designed for solving the mutual exclusion problem on one or more CPUs that all 
have access to a common memory. By putting the semaphores in the shared 
memory and protecting them with TSL instructions, we can avoid races. When we 
go to a distributed system consisting of multiple CPUs, each with its own private 
memory, connected by a local area network, these primitives become inapplica- 
ble. The conchsion is that semaphores are too low level and monitors are not 
usable except in a few programming languages. Also, none of the primitives pro- 
vide for information exchange between machines. Something else is needed. 

2.2.7 Message Passing 

That something else is message passing. This method of interprocess com- 
munication uses two primitives SEND and RECEIVE, which, like semaphores and 
unlike monitors, are system calls rather than language constructs. As such, they 
can easijy be put into library procedures, such as 

and 

The former call sends a message to a given destination and the latter one receives 
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a message from a given source (or from ANY, if the receiver does not care). If no 
message is available, the receiver'could block until one an-ives. Alternatively, it 
could return immediately with an error code. 

Design Issues for Message Passing Systems 

Message passing systems have many challenging problems and design issues 
that do not arise with semaphores or monitors, especidiy if the communicating 
processes are on different machines connected by a network. For example, mes- 
sages can be lost by the network. To guard against lost messages, the sender and 
receiver can agree that as soon as a message has been received, the receiver will 
send back a special acknowledgement message. If the sender has not received 
the acknowledgement within a certain time interval, it retransmits the message. 

Now consider what happens if the message itself is received correctly, but the 
acknowledgement is lost. The sender will retransmit the message, so the receiver 
will get it twice. It is essential that the receiver can distinguish a new message 
from the retransmission of an old me. Usually, this problem is solved by putting 
consecutive sequence numbers in each original message. If the receiver gets a 
message bearing the same sequence number as the previous message, it knows 
that the message is a duplicate that can be ignored. 

Message systems also have to deal with the question of how processes are 
named, so that the process specified in a SEND or RECEIVE call is unambiguous. 
Authentication is also an issue in message systems: how can the client tell that he 
is communicating with the real file server, and not with an imposter? 

At the other end of the spectrum, there are also design issues that are impor- 
tant when the sender and receiver are on the same machine. One of these is per- 
formance. Copying messages from one process to another is aiways slower than 
doing a semaphore operation or entering a monitor. Much work has gone into 
making message passing efficient. Cheriton (1984), for example, has suggested 
Iimiting message size to what wilI f i t  in the machine's registers, and then doing 
message passing using the registers. 

The Producer-Consumer Pmblem with Message Passing 

Now let us see how the producer-consumer problem can be solved with mes- 
sage passing and no shared memory. A solution is given in Fig, 2-15. We assume 
that all messages are the same size and that messages sent but not yet received are 
buffered automatically by the operating system. In this sohtion, a total of N mes- 
sages is used, analogous to the N slots in a shared memory buffer. The consumer 
starts out by sending N empty messages to the producer. Whenever the producer 
has an item to give to thetconsumer, it takes an empty message and sends back a 
full one. In this way, the total number of messages in the system remains constant 
in time, so they can be stored in a given amount of memory known in advance. 
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If the producer works faster than the consumer, all the messages will end up 
full, waiting for the consumer; the producer will be blocked, waiting for an empty 
to come back. If the consumer works faster, then the reverse happens: all the 
messages will be empties waiting for the producer to fill them up; the consumer 
will be blocked, waiting for a full message. 

#define N 100 I* number of slots in the buffer */ 

' void producer(void) 
{ 

int item; 
message m; /* message buffer */ 

while (TRUE) { 
prod,uce-item(&itern); /* generate something to put in buffer */ 
rec~e(consurner, &m); I* wait for an empty to arrive * I  
build- rnessage(&m, item); /* construct a message to send */ 
send(consumer, &m); /* send item to consumer *I 

1 
1 

void consumer(void) 
{ 

int item, i; 
message m; 

for (i = 0; i < N; i++) send(producer, am); /* send N empties */ 
while (TRUE) { 

receive(producer, &m); /* get message containing item *I 
extract -itern(&m, &item); I* extract item from message * I  
send(producer, &m); I* send back empty reply *I 
consume-item(item); /* do something with the item */ 

Figure 2-15. The producer-consumer problem with N messages. 

Many variants are possible with message passing. For starters, let us look at 
how messages are addressed. One way is to assign each process a unique address 
and have messages be addressed to processes. A different way is to invent a new 
data structure, called a mailbox. A mailbox is a place to buffer a certain number 
of messages, typically specified when the mailbox is created. When mailboxes 
are used, the address parameters in the SEND and RECEIVE calls are mailboxes, not 
processes. When a process tries to send to a mailbox that is full, it is suspended 
until a message is removed from that maiIbox, making room far a new one. 
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For the producer-consumer problem, both the producer and consumer would 
create mailboxes large enough to hold lV messages. The producer would send 
messages containing data to the consumer's mailbox, and the consumer would 
send empty messages to the producer's mailbox. When mailboxes are used, the 
buffering mechanism is clear: the destination mailbox holds messages that have 
been sent to the destination process but have nat yet been accepted. 

The other extreme from having mailboxes is to eliminate all buffering. When 
this approach is followed, if the SEND is done before the RECEIVE, the sending 
process is blocked until the RECEIVE happens, at which time the message can be 
copied directly from the sender to the receiver, with no intermediate buffering. 
Similarly, if the RECEIVE is done first, the receiver is blocked until a SEND hap- 
pens. This strategy is often known as a rendezvous. It is easier to implement 
than a buffered message scheme but is less flexible since the sender and receiver 
are forced to run in lockstep. 

The interprocess communication between user processes in MINIX (and UNIX) 
is via pipes, which are effectively mailboxes. The only real difference between a 
message system with maiIboxes and the pipe mechanism is that pipes do not 
preserve message boundaries. In other words, if one process writes 10 messages 
of 100 bytes to a pipe and another process reads 1 0 0 0  bytes from that pipe, the 
reader will get all 10 messages at once. With a true message system, each READ 
should return only one message. Of course, if the processes agree always to read 
and write fixed-size messages from the pipe, or to end each message with a spe- 
cial character (e.g., linefeed), no problems arise. The processes that make up the 
MlNlX operating system itself use a true message scheme with fixed size messages 
for communication among themselves. 

2.3 CLASSICAL P C  PROBLEMS 

The operating systems literature is full of interesting problems that have been 
widely discussed and analyzed. In the following sections we will examine three 
of the better-known problems. 

2.3.1 The Dining Philosophers Problem 

In 1965, Dijkstra posed and solved a synchronization problem he called the 
dining philosophers problem. Since that time, everyone inventing yet another 
synchronization primitive has felt obligated to demonstrate how wonderful the 
new primitive is by showing how elegantly it solves the dining philosophers prob- 
lem. The problem can be stated quite simply as follows. Five philosophers are 
seated around a circular table. Each phiIosopher has a plate of spaghetti. The 
spaghetti is so slippery that a philosopher needs two forks to eat it. Between each 
pair of plates is one fork. The layout of the table is illustrated in Fig. 2-16. 
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Figure 2-16. Lunch time in the Philosophy Department. 

The life of a philosopher consists of alternate periods of eating and thinking. 
(This is something of an abstraction, even for philosophers, but the other activities 
are irrelevant here.) When a philosopher gets hungry. she tries to acquire her left 
and right fork. one at a time, in either order. If successful in acquirir~g two forks, 
she eats for a while, then puts down the forks and continues to think. The key 
question is: Can you write a program for each philosopher that does what it is sup- 
posed to do and never gets stuck'? (It has been pointed out that the two-fork 
requirement is somewhat artificial; perhaps we should switch from Italian to 
Chinese food, substituting rice for spaghetti and chopsticks for forks.) 

Figure 2-17 shows the obvious solution. The procedure take-fork waits until 
the specified fork is available and then seizes it. Unfortunately. the obvious solu- 
tion is wrong. Suppose that all five philosophers take their left forks simultans- 
ously. None will be able to take their right forks. and there will be a deadlock. 

We could modify the program so that after taking the left fork, the program 
checks to see if the right fork is available. If it is not. the philosopher puts down 
the left one, waits for some time. and then repeats the whole process. This propo- 
4 too, fails. although for a different reason. With a little bit of bad luck. all the 
philosophers could start the algorithm simultaneously, picking up their left forks, 
seeing that their right forks were not available, putting down their left forks, wait- 
ing. picking up their left forks again simultaneously, and so on, forever. A situa- 
tion like this. in which all the programs continue to run indefinitely but fail to 
make any progress is called starvation. (It is called starvation even when the 
problem does not occur in an Italian or a Chinese restaurant.) 

Now you might think, "If the philosophers would just wait a random time 
instead of the same time after failing to acquire the right-hand fork, the chance 
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#define N 5 
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I* number of philosophers *I 

void philosopher(int i) I* i: philosopher number, from 0 to 4 */ 
{ 

while (TRUE) { 
think(); I* philosopher is thinking *I 
take-fork(i); /* take left fork *I 
take-fork((i+l) % N); I* take right fork; % is modulo operator */ 
eat(); I* yum-yum, spaghetti *I 
put-fork(i); /* put left fork back on the table */ 
put-fork((i+l) % N); I* put right fork back on the table */ 

Figure 2-17. A nonsolution to the dining philosophers problem. 

that everything would continue in lockstep for even an hour is very small." This 
observation is true, but in some applications one would prefer a solution that 
always works and cannot fail due to an unlikely series of random numbers. 
(Think about safety control in a nuclear power plant.) 

One improvement to Fig. 2-17 that has no deadlock and no starvation is to 
protect the five statements following the call to think by a binary semaphore. 
Before starting to acquire forks, a philosopher would do a DOWN on mutex. After 
replacing the forks, she would do an up on mutex. From a theoretical viewpoint, 
this solution is adequate. From a practical one, it has a performance bug: only on6 
philosopher can be eating at any instant. With five forks available, we should be 
able to allow two philosophers to eat at the same time. 

The solution presented in Fig. 2-18 is correct and also allows the maximum 
parallelism for an arbitrary number of philosophers. It uses an array, state, to 
keep track of whether a philosopher is eating, thinking, or hungry (trying to 
acquire forks). A philosopher may move only into eating state if neither neighbor 
is eating. Philosopher i's neighbors are defined by the macros LEFT and RIGHT. 
In other words, if i is 2, LEFT is 1 and RIGHT is 3. 

The program uses an array of semaphores, one per philosopher, so hungry 
philosophers can block if the needed forks are busy. Note that each process runs 
the procedure philosopher as its main code, but the other procedures, fake - forks, 
pur-forks, and test are ordinary procedures and not separate processes. 

2.3.2 The Readers and Writers Problem 

The dining philosophers problem is useful for modeling processes that are 
competing for exclusive access to a limited number of resources, such as Il0 
devices. Another famous problem is the readers and writers problem (Courtois et 
al., l !UI) ,  which models access ro a data base. Imagine, for example, an airline 
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#define N 5 
#define LEFT (i-1 )%N 
#define RIGHT (i+l)%N 
#define THINKING 0 
#define HUNGRY 1 
#define EATING 2 

typedef int semaphore; 
int state[N]; 
semaphore mutex = 1 ; 
semaphore SIN]; 

void philosopher(int i) 
{ 
while (TRUE) { 

think(); 
take,forks(i); 
eat(); 
put-forks(i); 

1 

void take-forks(int i) 
C 
;down(&mutex); 
state[i] = HUNGRY; 
test(i); 
up(&mutex); 
down(&s[i]); 

1 
void put -forks(i) 

down(&mutex); 
state[i] = THINKING; 
test(LEFT); 
test(RIGHT); 
up(&mutex); 

1 

void test(i) 
{ 

/* number of philosophers */ 
/* number of i's left neighbor */ 
/* number of i's right neighbor */ 
I* philosopher is thinking *I 
/* philosopher is trying to get forks *I 
/* philosopher is eating */ 

I 

/* semaphores are a special kind of int */ 
I* array to keep track of everyone's state */ 
I* mutual exclusion for critical regions */ 
/* one semaphore per philosopher *I 

/* i: philosopher number, from 0 to N-I *I 

I* repeat forever *I 
/* philosopher is thinking *I 
/* acquire two forks or block */ 
I* yum-yum, spaghetti *I 
/* put both forks back on table */ 

I* i: philosopher number, from 0 to N-1 */ ' 

/* enter critical region */ 
/* record fact that philosopher i is hungry */ 
/* try to acquire 2 forks */ 
I* exit critical region */ 
/* block i f  forks were not acquired */ 

/* i: philosopher number, from 0 to N-1 */ 

I* enter critical region */ 
/* philosopher has finished eating *I 
/* see if left neighbor can now eat */ 
/* see if right neighbor can now eat */ 
/* exit critical region *I 

/* i: philosopher number, from 0 to N-1 *I 

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHq != EATING) { 
state[i] = EATING; 
up(&s[iJ); 

1 
1 

Figure 2-18. A solution to the dining philosopher's problem. . 
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reservation system, with many competing processes wishing to  red and write it. 
It is acceptable to  have multiple processes reading the data base at the same time. 
but if one process is updating (writing) the data base, no other processes may have 
access to the data base, not even readers. The question is how do  you program the 
readers and the writers? One solution is shown in Fig. 2- f 9. 

typedef int semaphore; 
semaphore rnutex = 1 ; 
semaphore db = 1 ; 
int re = 0; 

void reader(void) 
I 
while (TRUE) { 

down(&mutex); 
rc= rc + 1; 
if (rc == 1) down(&db); 
up(&rnutex); 
read-data- base(); 
down(&mutex); 
rc= rc - 1; 
if (rc == 0) up(&db); 
up(&rnutex); 
use-data-read(); 

1 
1 

I* use your imagination *I 
f* controls access to 'rc' */ 
/* controls access to the data base */ 
i* # of processes reading or wanting to */ 

l* repeat forever *I 
/* get exclusive access to 'rc' */ 
I* one reader more now *l 
I* if this is the first reader ... */ 
I* release exclusive access to 'rc' *I 
I* access the data *I 
/* get exclusive access to 'rc' */ 
I* one reader fewer now */ 
/* if this is the last reader ... *I 
I* release exclusive access to 'rc' */ 
/* noncritical region *I 

void writer(void) 
C 
while (TRUE) { I* repeat forever */ 

think- up-data(); I* noncritical region */ 
down(&db) ; /* get exclusive access *I 
write -data - base(); /* update the data *I  
up(&db); I* release exclusive access *I 

1 
1 

Figure 2-19. A solution to the readers and writers problem. 

In this solution, the first reader to get access to the data base does a DOWN on 
the semaphore db. Subsequent readers merely increment a counter, re, As 
readers leave, they decrement the counter and the last one out does an UP on the 
semaphore, allowing a blocked writer, if there is one, to get in. 

The solution presented here implicitly contains a subtle decision that is worth 
commenting on. Suppose that while a reader is using the data base, another 
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reader comes along. Since having two readers at the same time is not a problem, 
the second reader is admitted. A third and subsequent readers can also be admit- 
ted if they come along. 

Now suppose that a writer comes along. The writer cannot be admitted to the 
data base, since writers must have exclusive access, so the writer is suspended. 
Later, additional readers show up. As long as at least one reader is still active, 
subsequent readers are admitted. As a consequence of this strategy, as long as 
there is a steady supply of readers, they will all get in as soon as they arrive. The 
writer will be kept suspended until no reader is present. If a new reader arrives, 
say, every 2 seconds, and each reader takes 5 seconds to do its work, the writer 
will never get in. 

To prevent this situation, the program could be written slightly differently: 
when a reader arrives and a writer is waiting, the reader is suspended behind the 
writer instead of being admitted immediately. In this way, a writer has to wait for 
readers that were active when it arrived to finish but does not have to wait for 
readers that came along after it. The disadvantage of this solution is that it 
achieves less concurrency and thus lower performance. Courtois et  al. present a 
solution that gives priority to writers. For details, we refer you to the paper. 

2.3.3 The Sleeping Barber Problem 

Another classical IPC problem takes place in a barber shop. The barber shop 
has one barber, one barber chair, and n chairs for waiting customers, if any, to sit 
on. If there are no customers present, the barber sits down in the barber chair and 
falls asleep, as illustrated in Fig. 2-20. When a customer arrives, he has to wake 
up the sleeping barber. If additional customers arrive while the barber is cutting a 
customer's hair, they either sit down (if there are empty chairs) or leave the shop 
(if all chairs are full). The problem is to program the barber and the customers 
without getting into race conditions. 

Our solution uses three semaphores: customers, which counts waiting custo- 
mers (excluding the customer in the barber chair, who is not waiting), barbers, the 
number of barbers who are idle, waiting for customers (0 or I ) ,  and mutex, which 
is used for mutual exclusion. We also need a variable, waiting, wfiich also counts 
the waiting customers. It is essentially a copy of customers. The reason for hav- 
ing waiting is that there is no way to read the current value of a semaphore. In 
this solution, a customer entering the shop has to count the number of waiting cus- 
tomers. If it is less than the number of chairs, he stays; otherwise, he leaves. 

Our solution is shown in Fig. 2-2 1. When the barber shows up for work in the 
morning, he executes the procedure barber, causing him to block on the sema- 
phore customers until somebody arrives. He then goes to sleep as shown in 
Fig. 2-20. 

When a customer arrives, he executes customer, starting by acquiring mutex 
to enter a critical region. If another customer enters shortly thereafter, the second 
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I 

Figure 2-20. The sleeping barber. 

one will not be able to do anything until the first one has released mutex. The cus- 
tomer then checks to see if the number of waiting customers is less than the 
number of chairs. If not, he releases rnutex and leaves without a haircut. 

If there is an available chair, the customer increments the integer variable, 
waiting. Then he does an UP on the semaphore customers, thus waking up the 
barber. At this point, the cusjomer and barber are both awake. When the custo- 
mer releases rnutex, the barber grabs it, does some housekeeping, and begins the 
haircut. 

When the haircut is over, the customer exits the procedure and leaves the 
shop. Unlike our earlier examples, there is no loop for the customer because each 
oRe gets only one haircut. The barber loops, however, to try to get the next custo- 
mer. If one is present, another haircut is given, If not, the barber goes to sleep. 

As an aside, it is worth pointing out that although the readers and writers and 
sleeping barber problems do not involve data transfer, they are still belong to the 
area of IPC because they involve synchronization between multiple processes. 
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#define CHAIRS 5 

typedef int semaphore; 

semaphore customers = 0; 
semaphore barbers = 0; 
semaphore rnutex = 1 ; 
int waiting = 0; 

void barber(void) 
{ 
while (TRUE) { 

down(customers); 
down(mutex); 
waiting = waiting - 1 ; 
up(barbers); 
up(mutex); 
cut- hair(); 

void customer(void) 
{ 
down(mutex); 
if (waiting < CHAIRS) { 

waiting = waiting + 1 ; 
up(customers); 
up(mutex); 
down(barbers); 
get- haircut(); 

) else { 
up(mutex); 

1 
1 

/* #.chairs for waiting customers *I 

/* use your imagination */ 

/* # of customers waiting for service */ 
/* # of barbers waiting for customers */ 
I* for mutual exclusion */ 
/* customers are waiting (not being cut) */ 

I* go to sleep if # of customers is 0 */ 
/* acquire access to 'waiting' */ 
/* decrement count of waiting customers */ 
/* one barber is now ready to cut hair */ 
/* release 'waiting' */ 
/* cut hair (outside critical region) * I  

/* enter critical region */ 
/* if there are no free chairs, leave */ 
/* increment count of waiting customers */ 
/* wake up barber if necessary */ 
/+ release access to 'waiting' */ 
/* go to sleep i f  # of free barbers is 0 */ 
/* be seated and be serviced */ 

I* shop is full; do not wait */ 

Figure 2-21. A solution to the sleeping barber problem. 

2.4 PROCESS SCHEDULING 

In the examples of the previous sections, we have often had situations in 
which two or more processes (e.g,, producer and consumer) were logically run- 
nable. When more than one process is runnable, the operating system must decide 
which one to run first. The part of the operating system that makes this decision 
is called the scheduler; the algorithm it uses is called the scheduling algorithm. 
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Back in the old days of batch systems with input in the form of card images 
on a magnetic tape, the scheduling algorithm was simple: just mn the next job on 
the tape. With timesharing systems, the scheduling algorithm is more complex, as 
there are often multiple users waiting for service, and there may be one or more 
batch streams as well (e-g., at an insurance company, for processing claims). 
Even on personal computers, there may be several user-initiated processes com- 
peting for the CPU, not to mention background jobs, such as network or electronic 
mail daemons sending or receiving e-mail. 

Before looking at specific scheduling algorithms, we should think about what 
the scheduler is trying to achieve. After all, the scheduler is concerned with de- 
ciding on policy, not providing a mechanism. Various criteria come to mind as to 
what constitutes a good scheduling algorithm. Some of the possibilities include: 

1. Fairness-make sure each process gets its fair share of the CPU. 

2. Efficiency-keep the CPU busy 100 percent of the time. 

3. Response time-minimize response time for interactive users. 

4. Turnaround-minimize the time batch users must wait for output. 

5. Throughput-maximize the number of jobs processed per hour. 

A little thought will show that some of these goals are contradictory. To minim- 
ize response time for interactive users, the scheduler should not run any batch jobs 
at all (except maybe between 3 A.M. and 6 A.M., when all the interactive users are 
snug in their beds). The batch users probably will not like this algorithm, how- 
ever; it violates criteriop 4. It can be shown (Kleinrock, 2975) that any scheduling 
algorithm that favors some class of jobs hurts another class of jobs. The amount 
of CPU time available is finite, after all. To give one user more you have to give 
another user less. Such is life. 

A complication that schedulers have to deal with is that every process is 
unique and unpredictable. Some spend a lot of time waiting for file 110, while 
others would use the CPU for hours at a time if given the chance. When the 
scheduler starts running some process, it never knows for sure how long it will be 
until that process blocks, either for IIO, or on a semaphore, or for some other rea- 
son. To make sure that no process runs too long, nearly all computers have an 
electronic timer or clock built in, which causes an interrupt periodically. A fre- 
quency of 50 or 60 times a second (called 50 or 60 Hertz and abbreviated Hz) is 
common, but on many computers the operating system can set the timer frequency 
to anything it wants. At each clock interrupt, the operating system gets to run and 
decide whether the currently rhnning process should be allowed to continue, or 
whether it has had enough CPU time for the moment and should be suspended to 
give another process the CPU. 

The strategy of allowing processes that are logically runnable to be tem- 
porarily suspended is called preemptive scheduling, and is in contrast to the run 
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to completion method of the early batch systems. Run to completion is also 
called nanpreemptive scheduling. As we have seen throughout this chapter, a 
process can be suspended at an arbitrary instant, without warning, so another pro- 
cess can be run.  This leads to race conditions and necessitates semaphores, moni- 
tors, messages, or some other sophisticated method for preventing them. On the 
other hand, a policy ofvletting a prdcess run as long as it wanted to would mean 
that some process computing x: to a billion places could deny service to all other 
processes indefinitely. 

Thus although nonpreemptive scheduling algorithms are simple and easy to 
implement, they are usually not suitable for general-purpose systems with multi- 
ple competing users. On the other hand, for a dedicated system, such as a data 
base server, it may well be reasonable for the master process to start a child pro- 
cess working on a request and let it run until it completes or blocks. The differ- 
ence from the general-purpose system is that all processes in the data base system 
are under the control of a single master, which knows what each child is going to 
do and about how long it will take. 

2.4.1 Round Robin Scheduling 

Now let us look at some specific scheduling algorithms. One of the oldest, 
simplest, fairest, and most widely used algorithms is round robin. Each process 
is assigned a time interval, called its quantum, which it is allowed to run. If the 
process is still running at the end of the quantum, the CPU is preempted and given 
to another process. If the process has blocked or finished before the quantum has 
elapsed, the CPU switching is done when the process blocks, of course. Round 
robin is easy to implement. A11 the scheduler needs to do is maintain a list of 
runnable processes, as shown in Fig. 2-22(a). When the process uses up its quan- 
tum, i t  is put on the end of the list, as shown in Fig. 2-22(b). 

Current Next 
process process 

Current 
process 

Figure 2-22. Round robin scheduling. (a) The list of runnable processes. (b) 
The list of runnable processes after B uses up its quantum. 

The only interesting issue with round robin is the length of the quantum. 
Switching from one process to another requires a certain amount of time for doing 
the administration-saving and loading registers and memory maps, updating 
various tabIes and lists, etc. Suppose that this process switch or context switch, 
as it is sometimes called, takes 5 msec. Also suppose that the quantum is set at 20 
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msec. With these parameters, after doing 20 msec of useful work, the CPU will 
have to spend 5 msec on process switching. Twenty percent of the CPU time will 
be wasted on administrative overhead. 

To improve the CPU efficiency, we could set the quantum to, say, 500 msec. 
Now the wasted time is less than I percent. But consider what happens on a 
timesharing system if ten interactive users hit the carriage return key at roughly 
the same time. Ten processes will be put on the list of runnable processes. If the 
CPU is idle, the first one will start immediately, the second one may not start until 
about 112 sec later, and so on. The unlucky last one may have to wait 5 sec before 
getting a chance, assuming all the others use their full quanta. Most users will 
perceive a 5-sec response to a short command as terrible. The same problem can 
occur on a personal computer that supports multiprogramming. 

The conclusion can be formulated as follows: setting the quantum too short 
causes too many process switches and lowers the CPU efficiency, but setting it 
too Iong may cause poor response to short interactive requests. A quantum 
around 1 0  msec is often a reasonable compromise. 

2.4.2 Priority Scheduling 

Round robin scheduling makes the implicit assumption that all processes are 
equally important. Frequently, the people who own and operate multiuser com- 
puters have different ideas on that subject. At a university, the pecking order may 
be deans first, then professors, secretaries, janitors, and finally students. The need 
to take external factors into account leads to priority scheduling. The basic idea 
is straightforward: each process is assigned a priority, and the runnable process 
with the highest priority is allowed to run. 

Even on a PC with a single owner, there may be multiple processes, some 
more important than others. For example, a daemon process sending electronic 
mail in the background should be assigned a lower priority than a process display- 
ing a video film on the screen in real time. 

To prevent high-priority processes from running indefinitely, the scheduler 
may decrease the priority of the currently running process at each clock tick (i.e., 
at each clock interrupt). If this action causes its priority to drop below that of the 
next highest process, a process switch occurs. Alternatively, each process may be 
assigned a maximum quantum that it is allowed to hold the CPU continuously. 
When this quantum is used up, the next highest priority process is given a chance 
to run. 

Priorities can be assigned to processes statically or dynamically. On a mili- 
tary computer, processes started by generals might begin at priority 100, processes 
started by colonels at 90, majors at 80, captains at 70, lieutenants at 60, and so on. 
Alternatively, at a commercial computer center, high-priority jobs might cost 100 
dollars an hour, medium priority 75 dollars an hour, and low priority 50 dollars an - 
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hour. The UNlX system has a command, nice, which allows a user to voluntarily 
reduce the priority of his process, in order to be nice to the other users. Nobody 
ever uses it. 

Priorities can also be assigned dynamically by the system to achieve certain 
system goals. For example, some processes are highly VO bound and spend most 
of their time waiting for 110 to complete. Whenever such a process wants the 
CPU, it should be given the CPU immediately, to let it start its next I 1 0  request, 
which can then proceed in parallel with another process actually computing. 
Making the VO bound process wait a long time for the CPU will just mean having 
it around occupying memory for an unnecessarily long time. A simple algorithm 
for giving good service to I/0 bound processes is to set the priority to l/f, where f 
is the fraction of the last quantum that a process used. A process that used only 2 
msec of its 100 msec quantum would get priority 50, while a process that ran 50 
msec before blocking would get priority 2, and a process that used the whole 
quantum would get priority 1. 

It is often convenient to group processes into priority classes and use priority 
scheduling among the classes but round-robin scheduling within each class. Fig- 
ure 2-23 shows a system with four priority classes. The scheduling algorithm is as 
fdlows: as long as there are runnable processes in priority class 4, just run each 
one for one quantum, round-robin fashion, and never bother with lower priority 

. classes. If priority class 4 is empty, then run the class 3 processes round robin. If 
classes 4 and 3 are both empty, then run class 2 round robin, and so on. If priori- 
ties are not adjusted occasionally, lower priority classes may all starve to death. 

Queue RunaMe processes 
headers A 

(Highest priority) 

I Priority 1 I (Lowest priority) 

Figure 2-23. A scheduling algorithm with four priority classes. 

2.4.3 Multiple Queues 

One of the earliest priority schedulers was in CTSS (Corbato et al., 1962). 
CTSS had the problem that process switching was very slow because the 7094 
could hold only one process in memory. Each switch meant swapping the current 
process to disk and reading in a new one from disk. The CTSS designers quickly 
realized that it was more efficient to give CPU-bound processes a large quantum 
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once in a while, rather than giving them small quanta frequently (to reduce swap- 
ping). On the other hand, giving all processes a large quantum would mean poor 
response time, as we have already seen. Their solution was to set up priority 
classes. Processes in the highest class were run for one quantum. Processes in 
the next highest class were run for two quanta. Processes in the next class were 
run for four quanta, and so on. Whenever a process used up all the quanta allo- 
cated to it, it was moved down one class. 

As an example, consider a process that needed to compute continuously for 
100 quanta. It would initially be given one quantum, then swapped out. Next 
time it would get two quanta before being swapped out. On succeeding runs it 
would get 4, 8, 16, 32, and 64 quanta, although it would have used only 37 of the 
final 64 quanta to complete its work. Only 7 swaps would be needed (including 
the initial load) instead of 100 with a pure round-robin algorithm. Furthermore, as 
the process sank deeper and deeper into the priority queues, it would be run less 
and less frequently, saving the CPU for short, interactive processes. 

The following policy was adopted to prevent a process that needed to run for a 
long time when it first started but became interactive later, from being punished 
forever. Whenever a carriage return was typed at a terminal, the process belong- 
ing to that terminal was moved to the highest priority class, on the assumption that 
it was about to become interactive. One fine day some user with a heavily CPU- 
boupd process discovered that just sitting at the terminal and typing carriage 
returns at random every few seconds did wonders for his response time. He told 
dl his friends. Moral s f  the story: getting it right in practice is much harder than 
getting it right in principle. 

Many other algorithms have been used for assigning processes to priority 
classes. For example, the influential XDS 940 system (Lampson, 1968), built at 
Berkeley, had four priority classes, called terminal, VO, short quantum, and long 
quantum. When a process that was waiting for terminal input was finally awak- 
ened, it went into the highest priority class (terminal). When a process waiting for 
a disk block became ready, it went into the second class. When a process was still 
running when its quantum ran out, it was initially placed in the third class. How- 
ever, if a process used up its quantum too many times in a row without blocking 
for terminal or other YO, it was moved down to the bottom queue. Many other 
systems use something similar to favor interactive users and processes over back- 
ground ones. 

2.4.4 Shortest Job First 

Most of the above algorithms were designed for interactive systems. Now let 
us look at one that is especially appropriate for batch jobs for which the run times 
are known in advance. In an insurance company, for example, people can predict 
quite accurately how long it will take to run a batch of 1000 claims, since similar 
work is done every day. When several equally important jobs are sitting in the 
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input queue waiting to be started, the scheduler should use shortest job first. 
Look at Fig. 2-24. Here we find four jobs A,  B, C, and D with run times of 8,4, 4, 
and 4 minutes, respectively. By running them in that order, the turnaround time 
for A is 8 minutes, for B is 12 minutes, for C is 16 minutes, and forcD is 20 
minutes for an average of 14 minutes. 

Figure 2-24. An example of shortest job first scheduling. 

Now let us consider running these four jobs using shortest job first, as shown 
in Fig. 2-24(b). The turnaround times are now 4, 8, 12, and 20 minutes for an 
average of 1 1 minutes. Shorkst job first is provably optimal. Consider the case 
of four jobs, with run times of a, 6, c, and d, respectively. The first job finishes at 
time a, the second finishes at time a + b, and so on. The mean turnaround time' is 
(Qa + 36 + 2c + d)/4. It is clear that a contributes more to the average than the 
other times, so it should be the shortest job, with b next, then c and finally d as the 
longest as it affects only its own turnaround time. The same argument applies 
equally well to any number of jobs. 

Because shortest job first always produces the minimum average response 
time, it would be nice if it could be used for interactive processes as well. To a 
certain extent, it can be. Interactive processes generally follow the pattern of wait 
for command, execute command, wait for command, execute command, and so 
on. If we regard the execution of each command as a separate "job," then we 
could minimize overall response time by running the shortest one first. The only 
problem is figuring out which of the currently mnnable processes is the shortest 
one. 

One approach is to make estimates based on past behavior and run the process 
with the shortest estimated running time. Suppose that the estimated time per 
command for some terminal is To. Now suppose its next run is measured to be 
T I .  We could update our estimate by taking a weighted sum of these two 
numbers, that is, aTo + (1 - a)T Through the choice of a we can decide to have 
the estimation process forget old runs quickly, or remember them for a long time. 
With a = 1 /2, we get successive estimates of 

After three new runs, the weight of To in the new estimate has dropped to 1/8. 
The technique of estimating the next value in a series by taking the weighted 

average of the current measured value and the previous estimate is sometimes 
called aging. It is applicable to many situations where a prediction must be made 
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based on previous values. Aging is especially easy to implement when a = 1/2. 
All that is needed is to add the new value to the current estimate and divide the 
sum by 2 (by shifting it right 1 bit). 

It is worth pointing our that the shortest job first algorithm is only optimal 
when' all the jobs are available sirnultarmeously. As a counterexample, consider 
five jobs, A through E, with run times of 2, 4, 1, 1, and 1, respectively. Their 
arrival times are 0,0,3, 3, and 3. 

Initially, only A or B can be chosen, since the other three jobs have not arrived 
yet. Using shortest jab first we will run the jobs in the order A, B, C, D, E, for an 
average wait of 4.6. However, running them in the order B, C, D, E, A has an 
average wait of 4.4. 

2.4.5 Guaranteed Scheduling 

A completely different approach to scheduling is to make real promises to the 
user about performance and then live up to them. One promise that is realistic to 
make and easy to live up to is this: If there are n users logged in while you are 
working, you will receive about I/n of the CPU power. Similarly, on a single- 
user system with n processes running, all things being equal, each one should get 
l/n of the CPU cycles. 

To make good on this promise, the system must keep track of how much CPU 
each process has had since its creation. It then computes the amount of CPU each 
one is entitled to, namely the time since creation divided by n. Since the amount 
of CPU time each process has actually had is also known, it is straightforward to 
compute the ratio of actual CPU had to CPU time entitled. A ratio of 0.5 means 
that a process has only had half of what it should have had, and a ratio of 2.0 
means that a process has had twice as much as it was entitled to. The algorithm is 
then to run the process with the lowest ratio until its ratio has moved above its 
closest competitor. 

2.4-6 Lottery Scheduling 

While making promises to the users and then Iiving up ta them is a fine idea, 
it is difficult to implement. However, another algorithm can be used to give simi- 
larly predictable results with a much simpler implementation. It is called lottery 
scheduling (Waldspurger and Weihl, 1994). 

The basic idea is to give processes lottery tickets for various system 
resources, such as CPU time. Whenever a scheduling decision has to be made, a 
lottery ticket is chosen at random, and the process holding that ticket gets the 
resource. When applied to CPU scheduling, the system might hold a lottery 5Q 
times a second, with each winner getting 20 msec of CPU time as a prize. 

To paraphrase George Orwell: "All processes are equal, but some processes 
are more equal." More important processes can be given extra tickets, to increase 
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their odds of winning. If there are 100 tickets outstanding, and one process holds 
20 of them, it will have a 20 percent chance of winning each lottery. In the long 
run, it will get about 20 percent of the CPU. In contrast to a priority scheduler, 
where it is very hard to state what having a priority of 40 actually means, here the 
rule is clear: a process holding a fraction f of the tickets will get about a fraction f 
of the resource in question. 

Lottery scheduling has several interesting properties. For example, if a new 
process shows up and is granted some tickets, at the very next lottery it will have 
a chance of winning in proportion to the number of tickets it holds. In other 
words, lottery scheduling is highly responsive. 

Cooperating processes may exchange tickets if they wish. For example, when 
a client process sends a message to a server process and then blocks, it  may give 
all of its tickets to the server, to increase the chance of the server running next. 
When the server is finished, it returns the tickets so the client can run again. In 
fact, in the absence of clients, servers need no tickets at all. 

Lottery scheduling can be used to solve problems that are difficult to handle 
with other methods. One example is a video server in which several processes are 
feeding video streams to their clients, but at different frame rates. Suppose that 
the processes need frames at 10. 20, and 25 framedsec. By allocating these 
processes 10, 20, and 25 tickets, respectively, they will automatically divide the 
CPU in the correct proportion. 

2.4.7 Real-Time Scheduling 

A real-time system is one in which time plays an essential role. Typically, 
one or more physical devices external to the computer generate stimuli, and the 
computer must react appropriately to them within a fixed amount of time. For 
example, the computer in a compact disc player gets the bits as they come off the 
drive and must convert them into music within a very tight time interval. If the 
calculation takes too long, the music will sound peculiar. Other real-time systems 
are patient monitoring in a hospital intensive-care unit, the autopilot in an aircraft, 
and safety control in a nuclear reactor. In a11 these cases, having the right answer 
but having it too late is often just as bad as not having it at all. 

Real-time systems are generally categorized as hard real time, meaning there 
are absohte deadlines that must be met, or else, and soft real time, meaning that 
missing an occasional deadline is tolerable. In both cases, real-time behavior is 
achieved by dividing the program into a number of processes, each of whose 
behavior is predictable and: known in advance. These processes are generally 
short lived and can run to completion in under a second. When an external event 
is detected, it is the job of the scheduler to schedule the processes in such a way as 
that all deadlines are met. 

The events that a real-time system may have to respond to can be further 
categorized as periodic (occurring at regular intervals) or aperiodic (occurring 
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unpredictably). A system may have to respond to multiple periodic event streams. 
Depending on how much time each event requires for processing, it may not even 
be possible to handle them all. For example, if there are m periodic events and 
event i occurs with per id  Pi and requires Ci seconds of CPU time to handle each 
event, then the load can only be handled if 

A real-time system that meets this criteria is said to be schedulable. 
As an example, consider a soft real-time system with three periodic events, 

with periods of 100, 200, and 5 0 0  msec, respectively. If these events require 50, 
30, and 100 msec of CPU time per event, respectively, the system is schedulable 
because 0.5 + 0.15 + 0.2 < 1. If a fourth event with a period of 1 sec is added, the 
system will remain schedulable as long as this event does not need more than 150 
rnsec of CPU time per event. Implicit in this calculation is the assumption that the 
context-switching overhead is so small that it can be ignored. 

Real-time scheduling algorithms can be dynamic or static. The former make 
their scheduling decisions at run time; the latter make them before the system 
starts running. Let us briefly consider a few of the dynamic real-time scheduling 
algorithms. The classic algorithm is the rate monotonic algorithm (Liu and Lay- 
land, 1973). In advance, it assigns to each process a priority proportional to the 
frequency of occurrence of its triggering event. For example, a process to run 
every 20 msec gets priority 50 and a process to run every 100 msec gets priority 
10. At run  time, the scheduler always runs the highest priority ready process, 
preempting the running process if need be. Liu and Layland proved that this algo- 
rithm is optimal. 

Another popular real- time scheduling algorithm is earliest deadline first. 
Whenever an event is detected, its process is added to the list of ready processes. 
The list is kept sorted by deadline, which for a periodic event is the next 
occurrence of the event, The algorithm runs the first process on the list, the one 
with the closest deadline. 

A third algorithm first computes for each process the amount of time it has to 
spare, called its laxity. If a process requires 200 msec and must be finished in 250 
rnsec, its laxity is 50 msec. The algorithm, called least laxity, choses the process 
with the smallest amount of time to spare. 

While in theory it is possible to turn a general-purpose operating system into a 
real-time system by using one of these scheduling algorithms, in practice the 
context-switching overhead of general-purpose systems is so large that real-time 
performance can only be achieved for applications with easy time constraints. As 
a consequence, most real-time work uses special real-time operating systems that 
have certain important properties. Typically these include a small size, fast inter- 
rupt time, rapid context switch, short interval during which interrupts are disabled, 
and the ability to manage multiple timers in the mil1isecond or microsecond range. 
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2.4-8 Two-level Scheduling 

Up until now we have more or less assumed that all runnable processes are in 
main memory. If insufficient main memory is available, some of the rumable 
processes will have to be kept on the disk, in whole or in part. This situation has 
major implications for scheduling, since the process switching time to bring in 
and run a process from disk is orders of magnitude more than switching to a pro- 
cess already in main memory. 

A more practical way of dealing with swapped out processes is to use a two- 
level scheduler. Some subset of the mnnable processes is first loaded into main 
memory, as shown in Fig. 2-25(a). The scheduler then restricts itself to only 
choosing pro&sses from this subset for a while. Periodically, a higher-level 
scheduler is invoked to remove processes that have been in memory long enough 
and to load processes that have been on disk too long. Once the change has been 
made, as in Fig. 2-25(b), the lower-level scheduler again restricts itself to only 
running processes that are actually in memory. Thus, the lower-level scheduler is 
concerned with making a choice among the runnable processes that are in 
memory at that moment, while the higher-level scheduler is concerned with shut- 
tling processes back and forth between memory and disk. 

Processes in pt- main -jTl 
memory 

Figure 2-25. A two-level scheduler must move processes between disk and 
memory and also choose processes to run from among those in memory. Three 
different instants of time are represented by (a), (b), and (c) . 

Among the criteria that the higher-level scheduler could use to make its deci- 
sions are the following ones: 

1. How long has it been since the process was swapped in or out? 

2. How much CPU time has the process had recently? 

3. How big is the process? (Small ones do  not get in the way.) 

4. How high is the priority of the process? 

Again here we could use round-robin, priority scheduling, or any of various other 
methods. The two schedulers may or may not use the same algorithm, 
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2.4.9 Policy versus Mechanism 

Up until now, we have tacitly assumed that all the processes in the system 
belong to different users and are thus competing for the CPU. While this is often 
true, sometimes it happens that one process has many children running under its 
control. For example, a data base management system process may have many 
children. Each child might be working on a different request, or each one might 
have some specific function to perform (query parsing, disk access, etc.). It is 
entirely possible that the main process has an excellent idea of which of its chil- 
dren are the most important (or time critical) and which the least. Unfortunately, 
none of the schedulers discussed above accept any input from user processes 
about scheduling decisions. As a result, the scheduler rarely makes the best 
choice. 

The solution to this problem is to separate the scheduling mechanism from 
the scheduling policy. What this means is that the scheduling algorithm is 
parameterized in some way, but the parameters can be filled in by user processes. 
Let us consider the data base example again. Suppose that the kernel uses a prior- 
ity scheduling algorithm but provides a system call by which a process can set 
(and change) the priorities of its children. In this way the parent can control in 
detail how its children are scheduled, even though it itself does not do the 
scheduling. Here the mechanism is in the kernel but the policy is set by a user 
process. 

2.5 OVERVIEW OF PROCESSES IN MINIX 

Having completed our study of the principles of process management, inter- 
process communication, and scheduling, we can now take a look at how they are 
applied in MINIX. Unlike W I X ,  whose kernel is a monolithic program not split up 
into modules, MINIX itself is a collection of processes that communicate with each 
other and with user processes using a single interprocess communication 
primitive--message passing. This design gives a more modular and flexible struc- 
ture, making it easy, for example, to replace the entire file system by a completely 
different one, without having even to recompile the kernel. 

2.5.1 The Internal Structure of MINIX 

Let US begin our study of MINIX by taking a bird's-eye view of the system. 
MINIX is structured in four layers, with each layer performing a well-defined func- 
tion. The four layers are illustrated in Fig. 2-26 

The bottom layer catches 1-11] interrupts and traps, does scheduling, and pro- 
vides higher layers with a model of independent sequential processes that corn- 
municate using messages. The code in this layer has two major functions. The 
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Figure 2-26. MINIX is structured in four layers. 

Init 

first is catching the traps and interrupts, saving and restoring registers, scheduling, 
and h e  general nuts and bolts of actually making the process abstraction provided 
to the higher layers work. The second is handling the mechanics of messages; 
checking for legal destinations, locating send and receive buffers in physical 
memory, and copying bytes from sender to receiver. That part of the layer dealing 
with the lowest level of interrupt handling is written in assembly language. The 
rest of the layer and all of the higher layers, are written in C. 

Layer 2 contains the UO processes, one per device type. To distinguish them 
from ordinary user processes, we will call them tasks, but the differences between 
tasks and processes are minimal. In many systems the 110 tasks are called device 
drivers; we will use the terms "task" and "device driver" interchangeably. A 
task is needed for each device type, including disks, printers, terminals, network 
interfaces, and clocks. If other I/O devices are present, a task is needed for each 
one af those, too. One task, the system task, is a little different, since it does not 
correspond to any I/O device. We will discuss the tasks in the next chapter. 

All of the tasks in layer 2 and all the code in layer 1 are linked together into a 
singIe binary program called the kernel. Some of the tasks share common sub- 
routines, but otherwise they are independent from one another, are scheduled 
independently, and communicate using messages. Intel processors starting with 
the 286 assign one of four levels of privilege to each process. Although the tasks 
and the kernel are compiled together, when the kernel and the,interrupt handlers 
are executing, they are accorded more privileges than the tasks. Thus the true ker- 
nel code can access any part of memory and any processor register--essentially, 
the kernel can execute any instruction using data from anywhere in the system. 
Tasks cannot execute all machine level instructions, nor can they access all CPU 
registers or all parts of memory. They can, however. access memory regions 
belonging to less-privileged processes, in order to perform l/O for them. One 
task, the system task. does not do I/0 in the normal sense but exists in order to 
provide services. such as copying between different memory regions, for 
processes which are not allowed to do such things for themselves. On machines 
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which do not provide different privilege levels, such as older Intel processors, 
these restrictions cannot be enforced, of course. 

Layer 3 contains processes that provide useful services to the user processes. 
These server processes run at a less privileged level than the kernel and tasks and 
cannot access VO ports directly. They also cannot access memory outside the seg- 
ments allotted to them, The memory manager (MM) carries out all the M I N ~  
system calls that involve memory management, such as FORK, EXEC, and BRK. 
The file system (FS) carries out all the file system calls, such as READ, MOUNT, 
and CHDZR. 

As we noted at the start of Chap. 1, operating systems do two things: manage 
resources and provide an extended machine by implementing system calls. In 
MlNIX the resource management is largely in the kernel (layers 1 and 2), and sys- 
tem call interpretation is in layer 3. The file system has been designed as a file 
"server" and can be moved to a remote machine with almost no changes. This 
also holds for the memory manager, although remote memory servers are not as 
useful as remote file servers. 

Additional servers may also exist in layer 3. Figure 2-26 shows a network 
server there. Although MrNIX as described in this book does not include the net- 
work server, its source oode is part of the standard MINIX distribution. The system 
can easily be recompiled to include it. 

This is a good place to note that although the seners are independent 
processes, they differ from user processes in that they are started when the system 
is started, and they never terminate while the system is active. Additionally, 
although they run at the same privilege level as the user processes in terms pf the 
machine instructions they are allowed to execute, they receive higher execution 
priority than user processes. To accommodate a new server the kernel must be 
recompiled. The 4kernel startup code installs the servers in privileged slots in the 
process table before any user processes are allowed to run. 

Fmally, layer 4 contains all the user processes-shells, editors, compilgn, and 
user-written cz.out programs. A running system usually has some processes that 
are started when the system is booted and which r u n  forever. For example, a dae- 
mon is a background process that executes periodically or always waits for some 
event, such as a packet arrival from the network. In a sense a daemon is a server 
that is started independently and runs as a user process. However, unlike me 
servers installed in privileged slots, such programs can not get the special treat- 
ment from the kernel that the memory and file server processes receive. 

2.5.2 Process Management in MINIX 

Processes in MINIX follow the general process model described at some length 
earlier in this chapter. Processes can create subprocesses, which in turn can create 
more subprocesses, yielding a tree of processes. In fact. all the user processes in 
the whole system are part of a single tree with init (see Fig. 2-26) at the root. 
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How does this situation come about? When the computer is turned on, the 
hardware reads the first sector of the first track of the boot disk into memory and 
executes the code it finds there. The details vary depending upon whether the boot 
disk is a diskette or a hard disk. On a diskette this sector contains the bootstrap 
program. It is very small, since it has to fit in one sector. The MINIX bootstrap 
loads a larger program, boot, which then loads the operating system itself. 

In contrast, hard disks require an intermediate step. A hard disk is divided 
into partitions, and the first sector of a hard disk contains a small program and 
the disk's partition table. Collectively these are called the master boot record. 
The program part is executed to read the partition table and to select the active 
partition. The active partition has a bootstrap on its first sector, which is then 
loaded and executed to find and start a copy of boot in the partition, exactly as is 
done when booting from a diskette. 

In either case, boot looks for a multipart file on the diskette or partition and 
loads the individual parts into memory at the proper locations. The parts include 
the kernel, the memory manager, the file system, and init, the first user process. 
This startup process is not a trivial operation. Operations that are in the realms of 
the disk task and the file system must be performed by boot before these parts of 
the system are active. In a later section we will return to the subject of how MINIX 
is started. For now suffice it to say that once the loading operation is complete the 
kernel starts running. 

During its initialization phase, the kernel starts the tasks, and then the memory 
manager, the file system, and any other servers that run in layer 3. When all these 
have run and initialized themselves, they will block, waiting for something to do. 
When all tasks and servers are blocked, init, the first user process, will be exe- 
cuted. It is already in memory, but it could, of course, have been loaded from the 
disk as a separate program since everything else is working by the time it is 
started. However, since init is started only this one time and is never reloaded 
from the disk, it is easiest just to include it in the system image file with the ker- 
nel, tasks, and servers. 

Init starts out by reading the file /etc/ttytab, which lists a11 potential terminal 
devices. Those devices that can be used as login terminals (in the standard distri- 
bution, just the console) have an entry in the getty field of /etc/ttytab, and init 
forks off a child process for each such terminal. Normally, each child executes 
/usrhidgetty which prints a message, then waits for a name to be typed. Then 
/usr/bin/login is called with the name as its argument. If a particular terminal re- 
quires special treatment (e.g., a dial-up line) /etc/ttytab can specify a command 
(such as /usr/bidstty) to be executed to initialize the line before running get@. 

After a successful login, h i d o g i n  executes the user's shell (specified in the 
/etc/passwd file, and normally h i d s h  or /usr/bin/ash). The shell waits for com- 
mands to be typed and then forks off a new process for each command. In this 
way, the shells are the children of init, the user processes are the grandchildren of 
init, and all the user processes in the system are part of a single tree. 
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The two principal MINIX system calls for process management are FORK and 
EXEC. FORK is the only way to create a new process. EXEC allows a process to 
execute a specified program. When a program is executed, it is allocated a portion 
of memory whose size is specified in the program file's header. If keeps this 
amount of memory throughout its execution, although the distribution among data 
segment, stack segment, and unused can vary as the process runs. 

All the information about a process is kept in the process table, which is 
divided up among the kernel, memory manager, and file system, with each one 
having those fields that it needs. When a new process comes into existence (by 
FORK), or an old process terminates (by EXIT or a signal), the memory manager 
first updates its part of the process table and then sends messages to the file sys- 
tem and kernel telling them to do likewise. 

25.3 Interprocess Communication in MINIX 

Three primitives are provided for sending and receiving messages. They are 
called by the C library procedures 

to send a message to process dest, 

to receive a message from process source (or ANY), and 

send- rec(src-dst, &message); 

to send a message and wait for a reply from the same process. The second pararn- 
eter in each call is the local address of the message data. The message passing 
mechanism in the kernel copies the message from the sender to the receiver. The 
reply (for send-rec) overwrites the original message. In principle this kernel 
mechanism could bk replaced by a function which copies messages over a net- 
work to a corresponding function on another machine, to implement a distributed 
system. In practice this would be complicated somewhat by the fact that message 
contents are sometimes pointers to large data structures, and a distributed system 
would also have to provide for copying the data itself over the network. 

Each process or task can send and receive messages from processes and tasks 
in its own layer, and from those in the layer directly below it. User ljrocesses may 
not communicate directly with the VO tasks. The system enforces this restriction. 

When a (which also includes the tasks as a special case) sends a mes- 
sage to a process that is not currently waiting for a message, the sender blocks 
until the destination does a RECEIVE. In other words, MINIX uses the rendezvous 
method to avoid the problems of buffering sent, but not yet received, messages. 
Although less flexible than a scheme with buffering, it turns out to be adequate fix 
this system, and much simpler because no buffer management is needed. 
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2.5.4 Process Scheduling in MINIX 

The interrupt system is what keeps a multiprogramming operating system 
going. Processes block when they make requests for input, allowing other 
processes to execute. When input becomes available, the current running process 
is interrupted by the disk, keyboard, or other hardware. The clock also generates 
interrupts that are used to make sure a running user process that has not requested 
input eventually relinquishes the CPU, to give other processes their chance to run. 
It is the job of the lowest layer of MINIX to hide these interrupts by turning them 
into messages. As far as processes (and tasks) are concerned, when an VO device 
completes an operation it sends a message to some process, waking it up and mak- 
ing it runnable. 

Each time a process is interrupted, whether from a conventional UO device or 
from the clock, there is an opportunity to redetermine which process is most 
deserving of an opportunity to run. Of course, this must be done whenever a pro- 
cess terminates, as well, but in a system like MINIX interruptions due to VO opera- 
tions or the clock occur more frequently than process termination. The MINIX 
scheduler uses a multilevel queueing system with three levels, corresponding to 
layers 2, 3, and 4 in Fig. 2-26. Within the task and server levels processes run 
until they block, but user processes are scheduled using round robin. Tasks have 
the highest priority, the memory manager and file server are next, and user proc- 
esses are last. 

When picking a process to run, the scheduler checks to see if any tasks are 
ready. If one or more are ready, the one at the head of the queue is run. If no tasks 
are ready, a server (MM or FS) is chosen, if possible; otherwise a user is run. If no 
process is ready, the IDLE process.is chosen. This is a loop that executes until the 
next interrupt occurs. 

At each clock tick, a check .is made to see if the current process is a user pro- 
cess that has run more than 100 msec. If it is, the scheduler is called to see if 
anotfier user process is waiting for the CPU. If one is found, the current process is 
moved to the end of its scheduling queue, and the process now at the head is run. 
Tasks, the memod manager, and the file system are never preempted by the 
clock, no matter how long they have been running. 

2.6 IMPLEMENTATION OF PROCESSES IN MINIX 

We are now moving closer to looking at the actual code, so a few words about 
the notation we will use are in order, The terms "procedure," "function," and 
"routine" will 6e used interchangeably. Names of variables, procedures, and files 
will be written in italics, as in rw-Jag. When a variable, procedure, or file name 
starts a senten$, it will be capitalized, but the actual names all begin with lower 
case letters. System calls will be in smdl caps, for example, READ. 
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The book and the software, both of which are continuously evolving, did not 
"go to press" on the same day, so there may be minor discrepancies between the 
references to the code, the printed listing, and the CD-ROM version. Such differ- 
ences generally only affect a line or two, however. The source code printed in the 
book has also been simplified by eliminating code used to compile options that 
are not discussed in the book. 

2.6.1 Organization of the MINIX Source Code 

Logically, the source code is organized as two directories. The full paths to 
these directories on a standard MINIX system are /usr/include/ and /usr/src/ (a 
trailing "I" in a path name indicates that it refers to a directory). The actual loca- 
tion of the directories may vary from system to system, but normally the structure 
of the directories below the topmost level will be the same on any system. We 
will refer to these directories as include/and src/ in this text. 

The include/ directory contains a number of POSIX standard header files. In 
addition. it has three subdirectories: 

1. sys/ - this subdirectory contains additional POSIX headers. 

2. minix/ - includes header files used by the operating system. 

3. i b d  - includes header files with IBM PC-specific definitions. 

To support extensions to MINIX and programs that run in the MINiX environment, 
other files and subdirectories are also present in include/ as provided on the CD- 
ROM or over the Internet. For instance, the include/net/ directory and its sub- 
directory includehet/gen/ support network extensions. However, in this text only 
the files needed to compile the basic MINIX system are printed and discussed. 

The srr/ directory contains three important subdirectories containing the 
operating system sburce code: 

I .  kerneW - lay,ers 1 and 2 (processes, messages, and drivers). 

2. mm/ - the code for the memory manager. 

3. fs/ - the code for the file system. 

There are three other source code directories that are not printed or discussed in 
the text, but which are essential to producing a working system: 

1. src/lib/ - source code for library procedures (e-g., open, read). 

2. s'rc/too/s/ - source code for the init program, used to start MINIX. 

3. src/boot/ - the code for booting and installing MINIX. 

The standard distribution of MINIX includes several more source directories. An 
operating system exists, of course, to support commands (programs) that will run 
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on it, so there is a large src/commands/directory with source code for the utility 
programs (e.g., cat, cp, dare, is, pwd). Since MINIX is an educational operating 
system, meant to be modified, there is a src/test/ directory with programs 
designed to test thoroughly a newly compiled MINIX system. Finally, the /src/inef/ 
directory includes source code for recompiling MINIX with network support. 

For convenience we will usually refer to simple file names when it will be 
clear from the context what the complete path name is. It should be noted, how- 
ever, that some file names appear in more than one directory. For instance, there 
are several files named const. h in which constants relevant to a particular part of 
the system are defined. The filer in a particular directory will be discussed 
together, so there should not be a.ly confusion. The files are listed in Appendix A 
in the order they me discussed in the text, to make it easier to follow along. 
Acquisition of a couple of bookmarks might be of use at this point. 

Also worth noting is that Appendix B contains an alphabetical list of all files 
described in Appendix A, and Appendix C contains a list of where to find the 
definitions of macros, global variables, and procedures used in MINIX. 

The code for layers 1 and 2 is contained in the directory srckerneV. In this 
chapter we will study the files in this direct~ry which support process manage- 
ment, the lowest layer of the MINIX structure we saw in Fig. 2-26. This layer 
includes functions which handle system initialization, interrupts, message passing 
and process scheduling. ln Chap. 3, we will look at the rest of the files in this 
directory, which support the various tasks, the second layer in Fig. 2-26. In Chap. 
4, we will look at the memory manager files in src/mm/, and in Chap. 5, we will 
study the file system, whose source files are located in src/fs/. 

When MINIX is compiled, all the source code files in src/kernel/, src/mm/, and 
src/fs/ are compiled to object files. All the object files in src/kemel/ are linked to 
form a single executable program, kernel. The object files in src /md are also 
Iinked together to form a single executable program, k m .  The same holds for fs. 
Extensions can be added by adding additional servers, for instance network s u p  
port is added by modifying include/minix/config.h to enable compilation of the 
files in src/inet/ to form inat. Another executable program, init, is built in 
src/tools/. The program installboot (whose source is in src/boot/) adds names to 
each of these programs, pads each one out so that its length is a multiple of the 
disk sector size (to make it easier to load the parts independently), and concaten- 
ates them onto a single file. This new file is the binary of the operating system and 
can be copied onto the root directory or the h i n i d  directory of st floppy disk or 
hard disk partition. Later, the boot monitor program can load and execute the 
operating system. Figure 2-27 shows the layout of memory after the concatenated 
programs are separated and loaded. Details, of course, depend upon the system 
configuration. The example in the figure is for a MINIX system configured to take 
advantage of a computer equipped with several megabytes of memory. This 
makes it possible to dtllocate a large number of file system buffers, but the result- 
ing large file system does not fit in the lower range of memory, below WOK. If 
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the number of buffers is reduced dras'tically it is possible to make the entire sys- 
tem fit into less than WOK of memory, with room for a few user processes as 
well. 

src/tools/init 

srdnethnet (optional) 

Limit of memory 
Memory 

: available for 
us,,,, T 

2383 K 

2372 K 
lnet task 

2198 K ( h n d s  on number 
of buffers included 
in file system) 

Memory 
available for 

user programs 
129 K (Depends on number 

Ethernet task ------------ of 110 tasks) 

Printer task ------------ 
Terminal task 

Memory task ------------ 
Clock task ----_------- 
Disk task 

------I-"--- 

Kernel 
2 K Start of kernel 

lnteru pt vectors 
0 

Figure 2-27. Memory layout after MINIX has been loaded from the disk into 
merftory. The four (or five, with network support) independently compiled and 
linked parts are clearly distinct. -The sizes are approximate, depending on the 
configuration. 

It is important to realize that MINIX consists of three or more totally indepen- 
dent programs that communicate only by passing messages. A procedure called 
panic in src/fs/ does not conflict with a procedure called panic in src/mm/ because 
they ultimately are linked into different executable files. The only procedures that 
the three pieces of the operating system have in common are a few of the library 
routines in lib/. This modular structure makes it very easy to modify, say, the file 
system, without having these changes affect the memory manager. It also makes it 
straightforward to remove the file system altogether and to put ibon a different 
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machine as a file server, communicating.with user machines hy sending messages 
over a network. 

As another example of the modularity of MINIX, compiling the system with or 
without network support makes absolutely no difference to the memory manager 
or the file system and affects the kernel only because the Ethernet task is com- 
piled there, along with support for other 110 devices. When enabled, the network 
server is integrated into the MINIX system as a server with the same level of prior- 
ity as the memory manager or the file server. Its operation can involve the transfer 
of large quantities of data very rapidly, and this requires higher priority than a 
user process would receive. Except for the Ethernet task, however, network func- 
tions could be performed by user level processes. Network functions are not tradi- 
tional operating system functions, and detailed discussion of the network code is 
beyond the scope of this book. In succeeding sections and chapters the discussion 
will be based on a MINIX system compiled without network support. 

2.62 The Common Header Files 

The directory include/ and its subdirectories contain a collection of files 
defining constants, macros, and types. The msrx standard requires many of these 
definitions and specifies in which files of the main include/ directory and its sub- 
directory include/sys/ each required definition is to be found. The files In these 
directories are header or include files, identified by the suffix .h, and used by 
means of #include statements in C source files. These statements are a feature of 
the C language. Include files make maintenance of a large system easier. 

Headers likely to be needed far compiling user programs are found in mcludd 
whereas irtciude/sys/ traditionally is used for files that are used primarily for com- 
piling system programs and utilities. The distinction is not terribly important, and 
a typical compilation, whether of a user program or part of the operating system, 
will inch& files from both of the& directories. We will discuss here the files that 
are needed to compile the standard MINIX sySteM, first treating those in include/ 
and then those in include/sys/. In the next section we will discuss all the files in 
the includ~/mmix/ and i n c l u d h b d  directories, which, as the directory names 
indicate, are unique to MINlX and its implementation on IBM-type computers. 

The first headers to be considered are truly general purpose ones, so much so 
that they are not referenced directly by any of the C language source files for the 
MlNlX system. Rather, they are themselves included in other header files, the mas- 
ter headers src/krrrtrl/kernel. h ,  srdrndmm. h, and src/fs/fs.s.h for each of the three 
main parts of the M N X  system, which in turn are included in every compilation. 
Each master header is tailored to the needs ~f the corresponding part of the MINIX 
system, but each one starts with a section like the ope shown in Fig. 2-28. The 
master headers will be discussed again in other sections of the book. This preview 
is to emphasize that headers from several directories are used together. In this sec- 
tion and the next one we will mention each of the files referenced in Fig. 2-28. 
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/* MUST be first */ 
/* MUST be second */ 

Figure 2-28. Part of a master header which ensures inclusion of header files 
needed by alt C source files. 

Let us start with the first header in include/, ansi.h (line 0000). This is the 
second header that is processed whenever any part of the MINIX system is com- 
piled; only include/mini;o/config. h is processed earlier. The purpose of ansi. h is to 
test whether the compiler meets the requirements of Standard C, as defined by the 
International Organization for Standards. Standard C is also called ANSI C, since 
the standard was originally developed by the American National Standards Insti- 
tute before gaining international recognition. A Standard C compiler defines 
several macros that can then be tested in programs being compiled, --STDC-- is 
such a macro, and it is defined by a standard compiler to have a value of 1, just as 
if the C preprocessor had read a line like 

The compiler distributed with current versions of MINIX conforms to Standard C, 
but older versions of MINM were developed before the adoption of the standard, 
and it is still possible to compile mNIx with a classic (Kernighan & Ritchie) C 
compiler. It is intended that MINIX should be easy to port to new machines, and 
allowing older compilers is part of this. At lines 0023 to 0025 the stdement 

is processed if a Standard C compiler is in use. Ansi-h defines several macros in 
different ways, depending upon whether the A N S I  macro is defined. 

The most important macro in this file is , P R O T O W E .  This macro allows 
us to write function prototypes in the form 

_PROTOTYPE (return-type functionmame, (argument-type argument, ... ) ) 
and have this transformed by the C preprocessor into 

return-type function-name(argument-type, argument, ...) 

if the compiler is an ANSI Standard C compiler, or 

return-type function-name() 

if the compiler is an old-fashioned (i.e., Kernighan & Ritchie) compiler. 
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Before we leave ansi.h let us mention one more feature. The entire file is 
enclosed between lines that read 

and 

On the line immediately following the #ifndef -ANSI-H itself is defined. A 
header file should be included only once in a compilation; this construction 
ensures that the contents of the file will be ignored if it is included multiple times. 
We will see this technique used in all the header files in the includddirectory. 

The second file in include/ that is indirectly included in every MINIX source 
file is the 1imits.h header (line 0100). This file defines many basic sizes, both 
language types such as the number of bits in an integer, as well as operating sys- 
tem limits such as the length of a file name, Errno-h (line 0200), is also included 
by all the master headers. It contains the error numbers that are returned to user 
programs in the global variable errno when a system cali fails. Errno is also used 
to identify some internal errors, such as trying to send a message to  a nonexistent 
task. The error numbers are negative to  mark them as error codes within the MINIX 
system, but they must be made positive before being returned to user programs. 
The trick that is used is that each error code is defined in a line like 

#define EPERM ( S I G N  1) 

(line 0236). The master header for each part of the operating system defines the 
macro -SYSTEM, but -SYSTEM is never defined when a user program is com- 
piled. If -SYSTEM is defined, then ,SIGN is defined as "-"; otherwise it is given 
a null definition. 

The next group of files to be considered are not included in all the master 
headers, but are nevertheless used in many source files in all parts of the MINIX 
system. The most important is unistd.h (line 0400). This header defines many 
constants, most of which are required by POSIX. In addition, it includes prototypes 
for many C functions, including all those used to access MINIX system calls. 
Another widely used file is stringah (line 0600), which provides prototypes for 
many C functions used for string manipulation. The header signa1.h (line 0700) 
defines the standard signal names. It also contains prototypes for some signal- 
related functions. As we will see later, signal handling involves all parts of MINIX. 

Fcnt1.h (line 0900) symbolically defines many pirarneters used in file control 
operations. For instance, it allows one to use the macro 0-RDONLY instead of 
the numeric value 0 as a parameter to a open call. Although this file is referenced 
most by the file system, its definitions are also needed in a number of places in the 
kernel and the memory manager. 

The remaining files in include/ are not as widely used as the ones already 
mentioned. Stdlib. h (line 1000) defines types, macros, and function prototypes 
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that are likely to be needed in the compilation of all but the most simple of C pro- 
grams. it is one of the most frequently used headers in compiling user programs, 
although within the MINIX system source it is referenced by only a few files in the 
kernel. 

As we will see when we look at the tasks layer in Chap. 3, the console and 
terminal interface of an operating system is complex, because many different 
types of hardware have to interact with the operating system and user programs in 
a standardized way. The terrnios-h (line 1100) header defines constants, macros, 
and function prototypes used for control of terminal-type I10 devices. The most 
important structure is the termim structure. It contains flags to signal various 
modes of operation, variables to set input and output transmission speeds, and an 
array to hold special characters, such as the INTR and KILL characters. This struc- 
ture is required by POSIX, as are many of the macros and function prototypes 
defined in this file. 

However, as all-encompassing as the POSIX standard is meant to be, it does 
not provide everything one might want, and the last part of the file, from line 1241 
onward, provides extensions to POSIX. Some of these are of obvious value, such 
as extensions to define standard baud rates of 57,600 baud and higher, and support 
for terminal display screen windows. The pos~x standard does not forbid exten- 
sions, as no reasonable standard can ever be all-inclusive. But when writing a pro- 
gram in the MINIX environment which is intended to be portable to other environ- 
ments, some caution is q u i r e d  to avoid the use of definitions specific to MINIX. 
This is easy to do. In this file and other files that define ~ I ~ I ~ - s p e c i f i c  extensions 
the use of the extensions is controlled by an 

statement. If -MINIX is not defined, the compiler will not even see the M I N ~ X  
extensions. 

The last file we wilt consider in include/ is a.0ut.h (line 1400), a header which 
defines the format of the files in which executable programs are stored on disk, 
including the header structure used to start' a file executing and the symbol table 
structure produced by the compiler. It is referenced only by the file system. 

Now let us go on to the subdirectory includdsyd. As shown in Fig. 2-28, the 
master headers for the main parts of the MrNIX system all include sys/typss.h (line 
1600) immediately after reading ansi-h. This header defines many data types used 
by MINIX. Errors that could arise from misunderstanding which fundamental data 
types are used in a particular situation can be avoided by using the definitions pro- 
vided here. Fig. 2-29 shows the way the sizes, in bits, of a few types defined in 
this file differ when compiled for 16-bit or 32-bit processors. Note that all type 
names end with "Y. This is not just a convention; it is a requirement of the 
POSlX standard. This is an an example of a reserved suffix, and it should not be 
used as a suffix of any name which is not a type name. 
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Figure 2-29. The size, in bits, of some types on 16-bit and 32-bit systems. 

Although it is not so widely used that it is included in the master headers for 
each section, sys/ioctl.h (line 1800) defines many macros used for device control 
operations. It also contains the prototype for the IOCTL system call. This call is 
not directly invoked by programmers in many cases, since the POSIX-defined func- 
tions prototyped in include/termios.h have replaced many uses of the old ioctl 
library function for dealing with terminals, consoles, and similar devices. 
Nevertheless, it is still necessary. In fact, the POSJX functions for control of termi- 
nal devices are converted into IOCTt system calls by the library. Also, there are 
an ever-increasing number of devices, all of which need various kinds of control, 
which can be interfaced with a modem computer system. For instance, near the 
end of this file there are severaI operation codes defined that begin with DSPIO, 
for controlling a digital signal processor. Indeed, the main difference between 
MINIX as described in this book and other versions is that for purposes of the book 
we describe a MINIX with relatively few input/output devices. Many others, such 
as network interfaces, CD-ROM drives, and sound cards, can be added; control 
codes for all of these are defined as macros in this file. 

Several other files in this directory are widely used in the MINIX system. The 
file sys/sigcontext. h (line 2000) defines structures used to preserve and restore 
normal system operation before and after execution of a signal handling routine 
and is used both in the kernel and the memory manager. There is support in 
MINIX for tracing executables and analyzing core dumps with a debugger pro- 
gram, and sys/ptrace.h (line 2200) defines the various operations possible with the 
PTRACE system call. Sys/stat.h (line 2300) defines the structure which we saw in 
Fig. 1-1 2, returned by the STAT and FSTAT system calls, as well as the prototypes 
of the functions stat and fstat and other functions used to manipulate file proper- 
ties. It is referenced in sever4 parts of the file system and the memory manager. 

The last two files we wiU discuss in this section are not as widely referenced 
as the ones discussed above. Sys/dir.h (line 2400) defines the structure of a MINIX 
directory entry. It is only referenced directly once, but this reference includes it in 
another header that is widely used in the file system. It is important because, 
among other things, it tells how many characters a file name may contain. 
Finally, the sys/wait,h (line 2500) header defines macros used by the WAIT and 
WAlTPlD system calls, which are implemented in the memory manager. 
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2.6.3 The MINIX Header Files 

The subdirectories inc1uddrnini.d and includdibd contain header files 
specific to MINIX. Files in incErrde/minlW are needed for an implementation of 
MINIX on any platform, although there are platform-specific alternative definitions 
within some of them. The files in include/ibm/ define structures and macros that 
are specific to MINIX as implemented on IBM-type machines. 

We will start with the minix/ directory. In the previous section, it was noted 
that configah (line 2600) is included in the master headers for dl parts of the 
MINIX system, and is thus the first file actually processed by the compiler. On 
many occasions, when differences in hardware or the way the operating system is 
intended to be used require changes in the configuration of MINIX, editing this file 
and recompiling the system is all that must be done. The user-settable parameters 
are all in the first part of the file. The first of these is the MACHINE parameter, 
which can take values such as IBM-PC, SUN-4, MACINTOSH, or other values, 
depending on the type of machine for which MINIX is being compiled. Most of the 
code for M I N I X  is independent of the type of machine, but an operating system 
always has some system-dependent code. In the few places in this book where we 
discuss code that is written differently for different systems we will use as our 
examples code for IBM PC-type machines with advanced processor chips (80386, 
80486. Pentium, Pentium Pro) that use 32-bit words. We will refer to d l  of thqse 
as Intel 32-bit processors. MINIX can also be compiled for older IBM PCs with a 
16-bit word size, and the machine-dependent parts of MINIX must be coded dif- 
ferently for these machines. On a PC, the compiler itself determines the machine 
type for which MINIX will be compiled. The standard PC MINIX compiler is the 
Amsterdam Compiler Kit (ACK) compiler. It identifies itself by defining, in addi- 
tion to the --STDC-- macro, the - - A M - -  macro. It also defines a macro 
-EM-WSIZE which is the word size (in bytes) for its target machine. In lines 
2626 to 2628 a macro -WORD-SME is assigned the value of -EM.-WSIZE. 
Fur&her along in the file and at various places in the other MINIX source files these 
definitions are used. For example, lines 2647 to 2650 begin with the test 

#if (MACHINE == IBM-PC && -WORD,SIZE == 4) 

and define a size for the file system's buffer cache on 32-bit systems. 
Other definitions in config. h allow customjzation for other needs in a particu- 

lar installation. For instance, there is a section that allows various types of device 
drivers to be included when the MINIX kernel is compiled. This is likely to be the 
rnoHt often edited part of the MlNIX source code. This section starts out with: 

#define ENABLE-NETWORKING 0 
#define ENABLEAT- WIN1 1 
#define ENABLE-BIOS-WIN1 0 

By changing the 0 in the first line to 1 we can compile a MINIX kernel for a 
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machine that needs network support. By defining ENABLE-AT-WIN1 as 0 and 
ENABLE-BIOS-WINI as I ,  we can eliminate the AT-type (i.e., EDE) hard disk 
driver code and use the PC BIOS for hard disk support. 

The next file is const.h (line 29001, which illustrates another common use of 
header files. Here we find a variety of constant definitions that are not likeIy to be 
changed when compiling a new kernel but that are used in a number of places. 
Defining them here helps to prevent errors that could be hard to track down if 
inconsistent definitions were made in multiple places. There are other files 
named c0nst.h in the MINIX source tree, but they are for more limited use. Defini- 
tions that are used only in the kernel are included in src&enei/const.h. Defini- 
tions that are used only in the file system are included in src/fs/const.h. The 
memory manager uses src/mm/const.h for its local definitions. Only those defini- 
tions that are used in more than one part of the MINIX system are included in 
include/minix/const. h. 

A few of the definitions in const.h are noteworthy. EXTERN is defined as a 
macro expanding into extern (line 2906). Global variables that are declared in 
header files and included in two or more files are declared EXTERN, as in 

EXTERN int who; 

If the variable were declared just as 

int who; 

and included in two or more files, some linkers would complain about a multiply 
defined variabte. Furthermore, the C reference manual (Kernighan and Ritchie, 
1988) explicitly forbids this construction. 

To avoid this problem, it is necessary to have the declaration read 

extern int who; 

in all places but one. Using EXTERN prevents this problem by having it expand 
into extern everywhere that c0nst.h is included, except following an explicit rede- 
finition of EXTERN as the null string. This is done in each part of MINIX by put- 
ting global definitions in a special file called glo.h, for instance, src/kernel/glo.h, 
which is indirectly included in every compilation. Within each g1o.h there is a 
sequence 

#ifclef -TABLE 
#undef. EXTERN 
#define EXTEAN 
#endif 
and in the table.c files of each part of MINIX there is a line 

preceding the #include section. Thus when the header files are included and 
expanded as part of the compilation of tabkc, extern is not inserted anywhere 
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(because EXTERN is defined as the null string within tab1e.c) and storage for the 
global variables is reserved only in one place, in the object file tab1e.o. 

If you are new to C programming and do not quite understand what is going 
on  here, fear not; the details are really not important. Multiple inclusion of header 
fifes can cause problems for some linkers because it can lead to multiple declara- 
tions for included variables. The E X T .  business is simply a way to make 
MINIX more portable so it can be linked on machines whose linkers do not accept 
multiply defined variables. 

PRIVATE is defined as a synonym for static. Procedures and data that are not 
referenced outside the file in which they are declared are always declared as 
PRIVATE to prevent their names from being visible outside the file in which they 
are declared. .As a general rule, all variables and procedures should be declared 
with as lacal a scope as possible. PUBLIC is defined as the null string. Thus, the 
declaratjon 

PUBLIC void free-zone(Dev-t dev, zone-1 numb) 

comes out of the C preprocessor as 

void free-zone(Dev-t dev, zone-t numb) 

which, according to the C scope rules, means that the name free-zone is exported 
from the file and can be used in other files. PRIVATE and PUBLIC are not neces- 
sary but are attempts to undo the damage caused by the C scope rules (the default 
is that names are exported outside the file; it should be just the reverse). 

The rest of c0nst.h defines numerical constants used throughout the system. A 
section of c0nst.h is devoted to machine or configuration-dependent definitions. 
For instance, throughout the source code the basic unit of memory size is the 
click. The size of a click depends upon the processor architecture, and alternatives 
for Intel, Motorola 68000, and Sun SPARC architectures are defined on lines 
2957 to 2965. This file also contains the macros MAX and MIN, so we can say 

z = MAX(x, y); 

to assign the larger of x and y to z. 
Type.h (line 3100) is another file that is included in every compilation by 

means of the master headers. It contains a number of key type definitions, along 
with related numerical values. The most important definition in this file is mes- 
sage on lines 3 135 to 3146. While we could have defined message to be an array 
of some number of bytes, it is better programming practice to have it be a struc- 
ture containing a union of the various message types that are possible. Six mes- 
sage formats, mess-1 through mess-6, are defined. A message is a structure con- 
taining a field m-source, telling who sent the message, a field rn-vpe, telling 
what the message type is (e.g., GET-TIME to the clock task) and the data fields. 
The six message types are shown in Fig. 2-30. In the figure the first and second 
message types seem identical, as do the fourth and sixth types. This is true for 
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MINIX as implemented on an Intel CPU with a 32-bit word size, but would not be 
the case on a machine where ints, longs and pointers were different sizes. Defin- 
ing six distinct formats makes it easier to recompile for a different architecture. 

m-source m-source 

m-tupe 

m4J1 

- 

m4-I2 

m4-13 

rn4-14 

m4J5 

msource 1 msource 

m v p e  

m6-i 1 

m6J2 

m6-i3 

rn6-11 

m6-f 1 

Figure 2-30. The six messages types used in MINIX. The sizes of message ele- 
ments will vary, depending upon the architecture of the machine; this diagram il-  
lusthtes sizes on a machine with 32-bit pointers, such as the Pentium (Pro). 

When it is necessary to send a message containing, say, three integers and 
three pointers (or three integers and two pointers), then the first format in Fig. 2- 
30 is the one to use. The sank applies to the other formats. How does one assign a 
value to the first integer in the first format? Suppose that the message is called x.  
Then xrn-u refers to the union portion of the message struct. To refer to the first 
of the six alternatives in the union, we use x,m-u.m-ml.  Finally, to get at the 
first integer in this struct we say x.m-u.m-ml.mli/ .  This is quite a mouthful, so 
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somewhat shorter field names are defined as macros after the definition of mes- 
sage itself. Thus x m l - i l  can be used instead of x.m-u.m-ml.mlil .  The short 
names all have the form of the letter m, the format number, an underscore, one or 
two letters indicating whether the field is an integer, pointer, long, character, char- 
acter array, or function, and a sequence number to distinguish multiple instances 
of the same type within a message. 

As an aside, while discussing message formats, this is a good place to note 
that an operating system and its compiler often have an "understanding" about 
things like the layout of structures', and this can make the implementor's life 
easier. In MIMX the int fields in messages are sometimes used to hold unsigned 
data types. In some cases this could cause overflow, but the code was written 
using the knowledge that the MINIX compiler copies unsigned types to ints and 
vice versa without changing the data or generating code to detect overflow. A 
more compulsive approach would be to replace each int field with a union of an 
int and an unsigned. The same applies to the long fields in the messages; some of 
them may be used to pass unsigned long data. Are we cheating here? Perhaps, 
one might say, but if you wish to port MINIX to a new platform, quite clearly the 
exact format of the messages is something to which you must pay a great deal of 
attention, and now you have been alerted that the behavior of the compiler is 
another factor that needs attention. 

There is one other file in include/minix: that is universally used, by means of 
inclusion in the master headers. This is syslib.h (tine 3300), which contains proto- 
types for C library functions called from within the operating system to access 
other operating system services. The C libraries are not discussed in detail in this 
text, but many of them are standard and will be available for any C compiler. 
However, the C functions referenced by sys1ib.h are of course quite specific to 
MINIX and a port of MINIX to a new system with a different compiler requires port- 
ing these library functions. Fortunately this is not difficuit, since these functions 
simply extract the parameters of the function call and insert them into a message 
structure, then send the message and extract the results from the reply message. 
Many of these library functions are defined in a dozen or fewer lines of C code. 

When a process needs to execute a MrNIX system call, it sends a message to 
the memory manager (MM for short) or the file system (FS for short). Each mes- 
sage contains the number of the system call desired. These numbers are defined in 
the next file, calinr. h (line 3400). 

The file c0rn.h (line 3500) mostly contains common definitions used in mes- 
sages from MM and FS to the I/0 tasks. The task numbers are also defined. To 
distinguish them from process numbers, task numbers are negative. This header 
also defines the message types (function codes) that can be sent to each task. For 
example, the clock task accepts codes SET-ALARM (which is used to set a timer), 
CLOCK-TICK (when a clock interrupt has occurred), GET-TIME (request for 
the real time), and SET-TIME (to set the current time of day). The value 
REAL-TIME is the message type for the reply to the GET-TIME request. 



112 PROCESSES CHAP. 2 

Finally, iraclude/minix/ contains several more specialized headers. Among 
these are booth (line 3700), which is used by both the kernel and file system to 
define devices and to access parameters passed to the system by the boot program. 
Another example is keymap.h (line 38001, which defines the structures used to 
implement specialized keyboard layouts for the character sets needed for different 
languages. It is also needed by programs which generate and load these tables. 
Some files here, like partition. h (line 4000), are used only by the kernel, and not 
by the file system or the memory manager. In an implementation with support for 
additional: I/0 devices there are more header files like this, supporting other 
devices. Their placement in this directory needs explanation. Ideally all user pro- 
grams would access devices only through the operating system, and files like this 
would be placed in src/kerneU. However, the realities of system management 
require that there be some user commands that access system-level structures, 
such as commands to make disk partitions. It is to support such utility programs 
that such specialized header files are placed in the include/ directory tree. 

The last specialized header directory we will consider, include/ibm/, contains 
two files which provide definitions related to the IBM PC family of computers. 
One of these is diskparm.h, which is needed by the floppy disk task. Although this 
task is included in the standard version of MINIX, its source code is not discussed 
in detail in this text, since it is so similar to the hard disk task, The other file in 
this directory is partition.h (line 4100), which defines disk partition tables and 
related constants as used on IBM compatible systems. These are placed here to 
facilitate porting MINIX to another hardware platform. For different hardware 
include/ibdparrition. h would have to be replaced, presumably with a par1ition.h 
in another appropriately named directory, but the structure defined in the file 
include/minapartition.h is internal to MINIX and should remain unchanged in a 
MINIX hosted on a different hardware platform. 

2.6.4 Process Data Structures and Header Files 

Now let us dive in and see what the code in src/kernel/ looks like. In the pre- 
vious two sections we structured our discussion around an excerpt from a typical 
master header; we will look first at the real master header for the kernel, kerne1.h 
(line 4200). It begins by defining three macros. The first, -POSIX,SOURCE is a 
feature test macro defined by the POSIX standard itself. All such macros are 
required to begin with the underscore character, "-". The effect of defining the 
-POSIX,SOURCE macro is to ensure that all symbols required by the standard 
and any that are explicitly permitted, but not required, will be visible, while hid- 
ing any additional symbols that are unofficial extensions to POSIX, We have 
already mentioned the next two definitions: the -MINIX macro overrides the 
effect of -POSIX-SOURCE for extensions defined by MINIX, aid  -SYSTEM can 
be tested wherever i t  is important to do something differently when compiling 
system code, as opposed to user code, such as changing the sign of error codes. 
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Kerne1.h then includes other header files from include/ and its subdirectories 
include/sys/ and include/minid, including all those referred to in Fig. 2-28. We 
have discussed all of these files in the previous two sections. Finally, four more 
headers from the local directory, src/kenzel/, are included, 

This is a good place to point out for newcomers to the C language how file 
names are quoted in a #include statement. Every C compiler has a default direc- 
tory in which it looks for include files. Usually, this is /usr/include/, as it is in a 
standard MINIX system. When the name of a file to be included is quoted between 
less-than and greater-than symbols ("c ... >") the compiler searches for the file in 
the default include directory or in a specified subdirectory of the default directory. 
When the name is quoted between ordinary quote characters (" " ... "") the file is 
searched for first in the current directory (or a specified subdirectory) and then, if 
not found there, in the default directory. 

Kerne1.h makes it possible to guarantee that d l  source files share a large 
number of important definitions by writing the single line 

#include "kernel. h" 

in each of the other kernel source files. Since the order of inclusion of header files 
is sometimes important, kemebh also ensures that this ordering is done correctly, 
once and forever. This carries to a higher level the "get it right once, then forget 
the details" technique embodied in the header file concept. There are similar 
master headers in the source directories for the file system and the memory 
manager. 

Now let us proceed to look at the four local header files included in kerne1.h 
Just as we have files canst.h and type.h in the common header directory 
include/minix/, we also have files c0nst.h. and type.h in the kernel source direc- 
tory, src/kernel/. The files in include/minid are placed there btkause they are 
needed by many parts of the system, including programs that run under the control 
of the system. The files in src/kerneU provide definitions needed only for compi- 
lation of the kernel. The FS and MM source directories also contain c0nst.h and 
0pe.h files to define constants and types needed only for those parts of the sys- 
tem. The other two files included in the master header, proto.h and g h h ,  have no 
counterparts in the main include/ directories, but we will find that they, too, have 
counterparts used in compiling the file system and the memory manager. 

C0nst.h (line 4300) contains a number of machine-dependent values, that is, 
values that apply to the Intel CPU chips, but that are likely to be different when 
MINIX is compiled f o ~  different hardware. These values are enclosed between 

#if (CHIP == INTEL) 

and 

statements (lines 4302 to 4396) to bracket them. 
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When compiling M I N ~ X  for one of the Intei chips the macros CHIP and INTEL 
are defined and set equal in include/minix/confg.h (line 2768), and thus the 
machine-dependent code will be compiled. When MINIX was' ported to a system 
based on the Motorola 68000, the people doing the port added sections of code 
bracketed by 

#if (CHIP == M68000) 

and 

and made appropriate changes in include/minLdcon~g. h so a line reading 

#define CHIP M68000 

would be effective. In this way, MINIX can deal with constants and code that are 
specific to one system. This construction does not especially enhance readability, 
so it should be used as little as possible. In fact, in the interest of readability, we 
have removed many sections of machine-dependent code for 68000 and other pro- 
cessors from the version of the code printed in this text. The code distributed on 
the CD-ROM and via the Internet retains the code for other platforms. 

A few of the definitions in c0nst.h deserve special mention. Some of these are 
machine dependent, such as important intempt vectors and field values used for 
resetting the interrupt controller chip after each interrupt. Each task within the 
kernel has its own stack, but while handling interrupts a special stack of size 
K-STACK-BYTES, defined here on line 4304, is used. This is also defined within 
the machine-dependent section, since a different architecture could require more 
or less stack space. 

Other definitions are mqchine-independent, but needed by many parts of the 
kernel code. For instance, the MINIX scheduler has NQ (3) priority queues, named 
TASK-Q (highest priority), SERVER-Q (middle priority), and USER-Q (lowest 
priority). The names are used to make the source code understandable, but the 
numeric values defined by these macros are actually compiled into the executable 
program. Finally, the last line of c0nst.h defines printf as a macro which will 
evaluate as printk. This allows the kernel to print messages, such as error mes- 
sages, on the console using a procedure defined within the kernel. This bypasses 
the usual mechanism, which requires passing messages from the kernel to the file 
system, and then from the file system to the printer task. During a system failure 
this might not work. We will see calls to p r ing  alias printk, in a kernel procedure 
called panic, which, as you might expect, is invoked when fatal errors are 
detected. 

The file type.h (line 4500) defines several prototypes and structures used in 
any implementation of MINIX. The tasktab structure defines the structure of an 
eIement of the tasktab array and the memory structure (lines 45 13 to 45 16) defines 
the two quantities that uniquely specify an area of memory. This is a good place 
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to mention some concepts used in referring to memory. A click is the basic unit of 
measurement of memory; in MINIX for Intel processors a click is 256 bytes. 
Memory is measured as phys-clicks, which can be used by the kernel to access 
any memory element anywhere in the system, or as vir-clicks, used by processes 
OW than the kernel. A vir-clicks memory reference is always with respect to the 
base of a segment of memory assigned to a particular process, and the kernel often 
has to make translations between the two. The inconvenience of this is offset by 
the fact that a process can do all its own memory references in vir,clicks. One 
might suppose that the same unit could be used to specify the size of either type of 
memory, but there is an advantage to using vir-clicks to specify the size of a unit 
of memory allocated to a process, since when this unit is used a check is done to 
be sure that no memory is accessed outside of what has been specifically assigned 
to the current process. This is a major feature of the protected mode of modern 
Intel processors, such as the Pentium and Pentiurn Pro. Its absence in the early 
8086 and 8088 processors caused some headaches in the design of earlier versions 
of MINIX. 

Type. h also contains several machine-dependent type definitions, such as the 
port-t segm-t, and reg-t types (lines 4525 to 4527) used on Intel processors, 
used, respectively, to address U 0  ports, memory segments, and CPU registers. 

Structures, too, may be machine-dependent. On lines 4537 to 4558 thc 
stack$rame -s structure, which defines how the machine registers are saved on tht 
stack, is defined for Intel processors. This structure is extremely important-it i! 
used to save and restore the internal state of the CPU whenever a process is put 
into or taken out of the "running" state of Fig. 2-2. Defining it in a form that can 
be efficiently read or written by assembly language code reduces the time 
required for a context switch. Segdesc-s is another structure related to the archi- 
tecture of Intel processors. It is pm of the protection mechanism that keeps 
processes from accessing memory regions outside those assigned to them. 

To illustrate differences between platforms a few definitions for the Motorola 
68000 family of processors were retained in this file. The Intel processor family 
includes some models with 16-bit registers and others with 32-bit registers, so the 
basic reg-t type is unsigned,for the Intel architecture. For Motorola processors 
reg,€ is defined as the u32-t type. These processors also need a stackframe-s 
structure (lines 4583 to 4603), but the layout is different, to make the assembly 
d e  operations that use it as fast as possible. The Motorola architecture has no 
need at all for the port-t and segm-t types, or for the segdesc-s structure. There 
are also several structures defined for the Motorola architecture that have no Intel 
counterparts. 

The next file, prot0.h (line 4700), is the longest header file we will see. Proto- 
types of a11 functions that must be known outside of the file in which they are 
defined are in this file. Ail are written using the -PROTOTYPE macro discussed 
in the previous section, and thus the MINIX kernel can be compiled either with a 
classic C (Kernighan and Ritchie) compiler, such as the original MINIX C 
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compiler, or a modern ANSI Standard C compiler, such as the one which is part 
of the MINIX Version 2 distribution. A number of these prototypes are system- 
dependent, including intempt and exception handlers and functions that are writ- 
ten in assembly language. Prototypes of functions needed by drivers not dis- 
cussed in this text are not shown. Conditional code for Motorola processors has 
also been deleted from this and the remaining files we will discuss. 

The last of the kernel headers included in the master header is g1o.h (line 
5000) Here we find the kernel's global variables. The purpose of the macro 
EXTERN was described in the discussion of include/minixkonst.h. It normally 
expands into extern. Note that many definitions in g1o.h are preceded by this 
macro. EXTERN is forced to be undefined when this file is included in  table.^, 
where the macro -TABLE is defined. Including giah in other C source files 
makes the variables in tab1e.c known to the other modules in the kernel. 
Held-head and held-tail (lines 5013 and 5014) are pointers to a queue of pending 
interrupts. Proc-ptr (line 5018) points to the process rable entry for the current 
process. When a system call or interrupt occurs, it tells where to store the registers 
and processor state. Sig-prom (line 5021) counts the number of processes that 
have signals pending that have not yet been sent to the memory manager for pro- 
cessing. A few items in g1o.h are defined with extern instead of EXTERN. These 
include sizes, an array filled in by the boot monitor, the task table, tasktab, and the 
task stack, t-stack. The last two are initialized variables, a feature of the C 
language. The use of the EXTERN macro is not compatible with C-style initializa- 
tion, since a variable can only be initialized once. 

Each task has its own dack within t-stack. During interrupt handling, the 
kernel uses a separate stack, but it is not declared here, since it is only accessed by 
the assembly language level routine that handles interrupt processing, and does 
not need to be known globally. 

There are two more kernel header files that are widely used, although not SO 

much that they are included in kernel. h .  The first of these is proc. h (line 5 loo), 
which defines a process table entry as a struct proc (lines 5 110 to 5 148). Later on 
in the same file, it defines the process table itself as an array of such structs, 
proc[NR-TASKS + NR-PROCS] (line 5186). In the C language this reuse of a 
name is permitted. The macro NR- TASKS is defined in include/minix/const. h 
(line 2953) and NR PROCS is defined in include/minidconfig. h (line 2639). 
Together these set the size of the process table. NR-PROCS can be changed to 
create a system capable of handling a larger number of users. Because the process 
table is accessed frequently, and calculating an address in an array requires slow 
multiplication operations, an array of pointers to the process table elements, 
pproc-addr (line 5 187), is used to allow speedy access. 

Each table entry contains storage for the process' registers, stack pointer, 
state, memory map, stack limit, process id, accounting, alarm time, and message 
information. The first part of each process table entry is a stackframe-s structure. 
A process is put into execution by loading its stack pointer with the address of its 
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process table entry and popping all the CPU registers from this structure. When a 
process cannot complete a SEND because the destination is not waiting, the sender 
is put onto a queue pointed to by the destination's p-callerq field (line 5137). 
That way, when the destination finally does a RECEIVE, it is easy to find all the 
processes wanting to send to it. The p-sendlink field (line 5138) is used to link 
the members of the queue together. 

When a process does a RECEIVE and there is no message waiting for it, it 
blocks and the number of the process it wants to RECEIVE from is stored in 
p-getfrorn. The address of the message buffer is stored in p-messbuf. The last 
three fields in each process table slot are p-nexrready, p-pending, and 
p-pendcount (lines 5143 to 5145). The first is of these used to link processes 
together on the scheduler queues, and the second is a bit map used to keep track of 

- signals that have not yet been passed to the memory manager (because the 
memory manager is not waiting for a message). The last field is a count of these 
signals. 

The flag bits in p-flags define the state of each table entry. If any of the bits 
is set, the process cannot be run. The various flags are defined and described on 
lines 5 154 to 5160. If the slot is not in use, P-SLOT-FREE is set. After a FORK, 
NO-MAP is set to prevent the child process from running until its memory map 
has been set up. SENDING and RECEIVING indicate that the process is blocked 
trying to send or receive a message, PENDING and SIG-PENDING indicate that 
signals have been received, and P-STOP provides support for tracing, during 
debugging. 

The macro proc-addr (line 5 179) is provided because it is not possible to 
have negative subscripts in C. Logically, the array proc should go from 
-NR-TASKS to +NR,PROCS. Unfortunately, in C it must start at 0, so proc[O] 
refers to the most negative task, and so forth. To make it easier to keep track of 
which slot goes with which process, we can write 

to assign to rp the address of the process slot for process n, either positive or 
negative. 

Bill-ptr (line 5191) points to the process being charged for the CPU. When a 
user process calls the file system, and the file system is running, proc-ptr (in 
g1o.h) points to the file system process. However, bill-ptr will point to the user 
making the calI, since CPU time used by the file system is charged as system time 
to the caller. 

The two arrays rdy-head and rdy-tail are used to maintain the scheduling 
queues. The first process on, for example, the task queue is pointed to by 
rdy-head[TASK-QJ. 

Another header that is included in a number of different source files is 
pr0tect.h (line 5200). Almost everything in this file deals with architecture details 
of the Intel processors that support protected mode (the 80286, 80386, 80486, 
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Pentium, and Pentium Pro). A detailed description of these chips is beyond the 
scope of this book. Suffice it to say that they contain internal registers that point 
to descriptor tables in memory. Descriptor tables define how system resources 
are used and prevent processes from accessing memory assigned to other 
processes. In addition the processor architecture provides for four privilege lev- 
els, of which MINIX takes advantage of three. These are defined symbolically on 
lines 5243 to 5245. The most central parts of the kernel, the parts that run during 
interrupts and that switch processes, run with INTR-PRIVILEGE. There is no 
part of memory or register in the CPU that cannot be accessed by a process with 
this privilege Ievel. The tasks run at TASK-PRIVILEGE level, which allows 
them to access VO but not to use instructions that modify special registers, like 
those that point to descriptor tables. Servers and user processes run at 
USER-PRIVILEGE level. Processes executing at this level are unable to execute 
certain instructions, for instance those that access YO potis, change memory 
assignments, or change privilege levels themselves. The concept of privilege lev- 
els will be familiar to those who are farniliat with the architecture of modern 
CPUs, but those who have learned computer architecture through study of the 
assembly language of low-end microprocessors may not have encountered such 
restrictions. 

There are several other header files in the kernel directory, but we will men- 
tion only two more here. First, there is sconsr.h (line 5400), which contains con- 
stants, used by assembler code, These are all offsets into the stackfirurne-s struc- 
ture portion of a process table entry, expressed in a form usable by the assembler. 
Since assembler code is not processed by the C compiler, it is simpler to have 
such definitions in a separate file. Also, since these definitions are all machine 
dependent, isolating them here simplifies the process of porting MINIX to another 
processor which will need a different version of sconsth. Note that many offsets 
are expressed as the previous value plus W, which is set equal to the word size at 
line 5401. This allows the same file to serve for compiling a 16-bit or 32-bit ver- 
sion of MINIX. 

There is a potential problem here. Header files are supposed to allow one to 
provide a single correct set of definitions and then proceed to use them in many 
places without devoting a lot of further attention to the details. Obviously, dupli- 
cate definitions, like those in sconst.h, violate that principle. This is a special 
case, of course, but as such, special attention is required if changes are made 
either to this file or to proc.h, to ensure the two files are consistent. 

The final header we will mention here is assert.h (line 5500). The MsIx stan- 
dard requires the availability of an assert function, which can be used to make a 
run-time test and abort a program, printing a message. In fact, posIx requires that 
an assert. h header be provided in the include/ directory, and one is provided there. 
So why is there another version here? The answer is that when something goes 
wrong in a user process, the operating system can be counted upon to provide ser- 
vices such as printing a message to the console. But if something goes wrong in 
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the kernel itself, the normal system resources cannot be counted upon. The kernel 
thus provides its own routines to handle assert and print messages, independently 
of the versions in the normal system library. 

There are a few header files in kernel/ we have not discussed yet. They sup- 
port the YO tasks and will be described in the next chapter where they are 
relevant. Before passing on to the executable code, however, let us look at tab1e.c 
(line 5600), whose compiled object file will contain all the kernel data structures. 
We have already seen many of these data structures defined, in g1o.h and proc.h, 
On line 5625 the macro -TABLE is defined, immediately before the #include 
statements. As explained earlier, this definition causes EXTERN to become 
defined as the null string, and storage space to be allocated for all the data 
declarations preceded by EXTERN, In addition to the structures in g1o.h and 
proc. h,  storage for a few global variables used by the terminal task, defined in 
tty.h, is also allocated here. 

In addition to the variables declared in header files there are two other places 
where global data storage is allocated. Some definitions are made directly in 
tab1e.c. On lines 5639 to 5674 stack space is 'allocated for each task. For each 
optional task the corresponding ENABLE-XXX macro (defined in the file 
include/rninia$config.h) is used to cdculate the stack size. Thus no space is allo- 
cated for a task that is not enabled. Following this, the various ENABLE-XXX 
macros are used to determine whether each optional task will be represented in 
the tasktab array, composed of tasktab structures, as declared earlier in 
src/kerneWtype.h (lines 5699 to 5731). There is an element for each process that 
is started during system initialization, whether task, server, or user process (i.e., 
init). The array index implicitly maps between task numbers and the associated 
startup procedures. Tasktab also specifies the stack space needed for each process 
and provides an identification string for each process. It has been put here rather 
than in a header file because the trick with EXTERN used to prevent multiple 
declarations does not work with initialized variables; that is, you may not say 

extern int x = 3; 

anywhere. The previous definitions of stack size also permit allocation of stack 
space for all of the tasks on line 5734. 

Despite trying to isolate all user-settable configuration information in 
include/minixAconfig.h, an error is possible in matching the size of the tasktab 
array to NR-TASKS. At the end of tab1e.c a test is made for this error! using a lit- 
tle trick. The array dummy-tasktab is declared here. in such a way that its size 
will be impossible and will trigger a compiler error if a mistake has been made. 
Since the dummy array is declared as extern, no space is allocated for it here (or 
anywhere). Since it is not referenced anywhere else in the code, this will not 
bother the compiler. 

The other place where global storage is allocated is at the end of the.assembly 
language file mpx386.s (line 6483). This allocation, at the label -sizes, puts a 
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magic number (to identify a valid MINIX kernel) at the very beginning of the 
kernel's data segment. Additional space is allocated here by the .space pseudoin- 
struction. Reservation of storage in this way by the assembly language program 
makes it possible to force the -sizes array to be physically located at the begin- 
ning of the kernel's data segment, making it easy to program boot to put the data 
in the right place. The boot monitor reads the magic number and, if it is correct, 
overwrites it to initialize the ,sizes array with the sizes of different parts of the 
MINIX system. The kernel uses these data during initialization. At startup time, as 
far as the kernel is concerned, this is an initialized data area. However, the data 
the kernel eventually finds there are not available at compilation time. They are 
patched in by the boot monitor just before the kernel is started. This is all sorne- 
what unusual normaIly one does not need to write programs that know about the 
internal structure of other programs. But the period of time after power is applied, 
but before the operating system'is running, is nothing if not unusual and requires 
unusual techniques. 

2.6.5 Bootstrapping MINIX 

it is almost time to start looking at the executable code. But before we do that 
let us take a few moments to understand how MINIX is loaded into memory. It is, 
of course, loaded from a disk. F~gure 2-3 1 shows how diskettes and partitioned 
disks are laid out. 

Figure 2-31. Disk structures used for bootstrapping. (a) Unpartitioned disk. 
The first sector i s  the bootblock. (b) Partitioned disk. The first sector is the mas- 
ter boot record. 
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When the system is started, the hardware (actually, a program in ROM) reads 
the first sector of the boot disk and executes the code found there. On an unparti- 
tioned MINIX diskette the first sector is a bootblock which loads the boot program, 
as in Fig. 2-3 1(a). Hard disks are partitioned, and the program on the first sector 
reads the partition table, which is also in the first sector, and loads and executes 
the first sector of the active partition, as shown in Fig. 2-31(b). (Normally one 
and only one partition is marked active). A MlNtX partition has the same structure 
as an unpartitioned MINIX diskette, with a bootblock that loads the boot program. 

The actual situation can be a little more complicated than the figure shows, 
because a partition may contain subpartitions. In this case the first sector of the 
partition will be another master boot record containing the partition table for the 
subpartitions. Eventually, however, control will be passed to a boot sector, the 
first sector on a device that is not further subdivided. On a diskette the first sector 
is always a boot sector. MINIX does allow a form of partitioning of a diskette, but 
only the first partition may be booted; there is no separate master boot record, and 
subpartitions are not possible. This makes it possible for partitioned and nonparti- 
tioned diskettes to be mounted in exactly the same way. The main use for a parti- 
tioned floppy disk is that it provides a convenient way to divide an installation 
disk into a root image to be copied to a RAh4 disk and a mounted portion that can 
be dismounted when no longer needed, in order to free the diskette drive for con- 
tinuing the installation process. 

The MINlX boot sector is modified at the time it is written to the disk by patch- 
ing in the sector numbers needed to find a program called boot on its partition or 
subpartition. This patching is necessary because previous to loading the operating 
system there is no way to use the directory and file names to find a file. A special 
program called installboot is used to do the patching and writing of the boot sec- 
tor. Boot is the secondary loader for MINIX. It can do more than just load the 
operating system however, as it is a monitor program that allows the user to 
change, set, and save various parameters. Boot looks in the second sector of its 
partition to find a set of parameters to use. MIKIX, like standard u N K ,  reserves the 
first 1 K block of every disk device as a bootblock, but only one 5 12-byte sector is 
loaded by the ROM boot loader or the master boot sector, so 5 1 2 bytes are avail- 
able for saving settings. These control the boot operation, and are also passed to 
the operating system itself. The default settings present a menu with one choice, 
to start MINIX, but the settings can be modified to present a more complex menu 
allowing other operating systems to be started (by loading and executing boot sec- 
tors from other partitions), or to start MINIX with various options. The default set- 
tings can also be modified to bypass the menu and start MINIX immediately. 

Boot is not a part of the operating system, but it is smart enough to use the file 
system data structures to find the actual operating system image. By default, boot 
looks for a file called /minix, or, if there is a /minix/ directory, for the newest file 
within it, but the boot parameters can be changed to look for a file with any name. 
This degree of flexibility is unusual, and most operating systems have a 
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predefined file name for the system image. But, MINIX is an unusual operating 
system that encourages users to modify it and create experimental new versions. 
Prudence demands that users who do this should have a way to select multiple 
versions, in order to be able to return to the last version that worked correctly 
when an experiment fails. 

The MINIX image loaded by boot is nothing more than a concatenation of the 
individual files produced by the compiler when the kernel, memory manager, file 
system, and init programs are compiled. Each of these includes a short header of 
the type defined in include/a.out.h, and from the information in the header of each 
part, boot determines how much space to reserve for uninitialized data after load- 
ing the executable code and the initialized data for each part, so the next part can 
be loaded at the proper address. The -sizes array mentioned in the previous sec- 
tion also receives a copy of this information so the kernel itself can have access to 
the locations and sizes of all' the modules loaded by boot. The regions of memory 
available for loading the bootsector, boot itself, and MINIX will depend upon the 
hardware. Also, some machine architectures may require adjustment of internal 
addresses within executable code to correct them for the actual address where a 
program is loaded. The segmented architecture of Intel processors makes this 
unnecessary. Since details of the loading process differ with machine type, and 
boot is not itself part of the operating system, we will not discuss it further here. 
The important thing is that by one means or another the operating system is 
loaded into memory. Once the loading is complete, control passes to the execut- 
able code of the kernel. 

As an aside, we should mention that operating systems are not universally 
loaded from local disks. Diskless wotkstations may load their operating systems 
from a remote disk, over a network connection. This requires network software in 
ROM, of course. Although details vary from what we have described here, the 
elements of the process are likely to be similar. The ROM code must be just 
smm enough to get an executable file over the net that can then obtain the corn- 
plete operating system. If MINIX were loaded this way, very little would need to 
be changed in the initialization process that occurs once the operating system code 
is loaded into memory. It would, of course, need a network server and a modified 
file system that could access files via the network. 

2.6.6 System Initialization 

MINIX for IBM PC-type machines can be compiled in 16-bit mode if compati- 
bility with older processor chips is required, or in 32-bit mode for better perfor- 
mance on 80386+ processors. The same C source code is used and the compiler 
generates the appropriate output depending upon whether the cokpiler itself is the 
16-bit or 32-bit version of the compiler. A ma- defined by the compiler itself 
determines the definition of the - WORD-SIZE macro in include/minix/confSg. h . 
The first part of MINIX to execute is written in assembly language, and different 
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source code files must be used for the 16-bit or 32-bit compiler. The 32-bit ver- 
sion of the initialization code is in mpx386.s. The alternative, for 16-bit systems, 
is in mnpx88.s. Both of these also include assembly language support for other 
low-level kernel operations. The selection is made automatically in mpxs.  This 
file is so short that the entire file can be presented in Fig. 2-32. 

Figure 2-32. How alternative assembly language source files are selected. 

Mpx-s shows an unusual use of the C preprocessor #include statement. Cus- 
tomarily #include is used to include header files, but it can also be used to select 
an alternate section of source code, Using #if statements to do this would require 
putting a11 the code in both of the large files mpx88.s and mpx386.s into a single 
file. Not only would this be unwieldy; it would also be wasteful of disk space, 
since in a particular installation it is likely that one or the other of these two files 
will not be used at all and can be archived or deleted. In the following discussion 
we will use the 32-bit mpx386,s as our example. 

Since this is our first look at executable code, let us start with a few words 
about how we will do this throughout the book. The multiple source files used in 
compiling a large C program can be hard to follow. In general, we will keep dis- 
cussions confined to a single file at a time, and we will go in order through the 
Fhes. We will start with the entry point for each part of the MINIX system, and we 
will follow the main line of execution. When a call to a supporting-function is 
encountered, we will say a few words about the purpose of the call, but normally 
we will not go into a detailed description of the internals of the function at that 
point, leaving that until we arrive at the definition of the called function. Impor- 
tant subordinate functions are usually defined in the same file in which they are 
called, following the higher-level calling functions, but small or general-purpose 
functions are sometimes collected in separate files. Also, an attempt has been 
made to put machine-dependent code in separate files from machine-independent 
code to facilitate portability to other platforms. A substantial amount of effort has 
been made to organize the code, and, in fact, many files were rewritten in the 
course of writing this text in order to organize them better for the reader. But a 
large program has many branches, and sometimes understanding a main function 
requires reading the functions it calls, so having a few slips of paper to use as 
bookmarks and deviating from our order of discussion to look at things in a dif- 
ferent order may be helpful at times. 

Having laid out our intended way of organizing the discussion of the code, we 
must start off by immediately justifying a major exception. The startup of MINIX 
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involves several transfers of control between the assembly language routines in 
mpx386.s and routines written in C and found in the files start.c and rnain.~. We 
will describe these routines in the order that they are executed, even though that 
involves jumping from one file to another. 

Once the bootstrap process has loaded the operating system into memory, 
cmtrol is transferred to the label MINIX (in mpx386.s, line 6051). The first 
instruction is a jump over a few bytes of data: this includes the boot monitor flags 
(line 6054), used by the boot monitor to identify various characteristics of the ker- 
nel, most importantly, whether it is a 16-bit or 32-bit system. The boot monitor 
always starts in 16-bit mode, but switches the CPU to 32-bit mode if necessary. 
This happens before control passes to MINIX. The monitor also sets up a stack. 
There is a substantial amount of work to be done by the assembly language code, 
setting up a stack frame to provide the proper environment for code compiled by 
the C compiler, copying tables used by the processor to define memoxy segments, 
and setting I& various processor registers. As soon as this work is complete, the 
initialization process continues by calling (at line 6109) the C function cstart. 
Note that it is referred to as xsrart in the assembly language code. This is 
because all functions compiled by the C compiler have an underscore prepended 
to their names in the symbol tables, and the linker looks for such names when 
separately compiled modules are linked. Since the assembler does not add under- 
scores, the writer of an assembly language program must explicitly add one in 
order for the linker to be able to find a corresponding name in the object file com- 
piled by the C compiler. Cstart calls another routine to initialize the Global 
Descriptor Table, the central data structure used by Intel 32-bit processors to 
oversee memory protection, and the Interrupt Descriptor Table, used to select 
the code to be executed for each possible interrupt type. Upon returning from 
cstart the lgdt and lidt instructions (lines 61 15 and 61 16) make these tables effec- 
tive by loading the dedicated registers by which they are addressed. The following 
instruction, 

jmpf CS-SELECT0R:csinit 

looks at first glance iike a no-operation, since it transfers control to exactly where 
control would be if there were a series of nop instructions in its place. But this is 
an important part of the initialization process. This jump forces use of the struc- 
tures just initialized. After some more manipulation of the processor registers, 
MINIX terminates with a jump (not a call) at line 6131 to the kernel's main entry 
point (in  main.^). At this point the initialization code in mpx386.s is complete. 
The rest of the file contains code to start or restart a task or process, interrupt 
handlers, and other support routines that had to be written in assembly language 
for efficiency. We will return to these in the next section. 

We will now look at the top-level C initialization functions. The general stra- 
tegy is to do as much as possible using high-level C code. There are already two 
versions of the mpx code, as we have seen, and anything that can be off-loaded to 
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C code eliminates two chunks of assembler code. Almost the first thing done by 
csrart (in start.c, line 6524) is to set up the CPU's protection mechanisms and the 
interrupt tables, by calling pror-init. Then it does such things as copying the boot 
parameters to the kernel's part of memory and converting them into numeric 
values. It also determines the type of video display, size of memory, machine 
type, processor operating mode (real or protected), and whether a return to the 
boot monitor is possible. All information is stored in appropriate global variables, 
for access when needed by any part of the kernel code. 

Main (in maimc. line 6721), completes initialization and then starts normal 
execution of the system. It configures the interrupt control hardware by calling 
intr-init. This is done here because it can not be done until the machine type is 
known, and the procedure is in a separate file because it is so dependent upon the 
hardware. The parameter (1) in the call tells intr-init that it is initializing for 
MINIX. With a parameter (0) it can be called to reinitialize the hardware to the 
original state. The call to intr-init also takes two steps to insure that any inter- 
rupts that occur before initialization is complete have no effect. First a byte is 
written to each intermpt controller chip that inhibits response to external input. 
Then all entries in the table used to access device-specific interrupt handlers are 
filled in with the address of a routine that will harmlessly print a message if a 
spurious interrupt is received. Later these table entries will be replaced, one by 
one, with pointers to the handler routines, as each of the I/O tasks runs its own ini- 
tialization routine. Each task then will reset a bit in the interrupt controller chip to 
enable its own intermpt input. 

Mem-init is called next. It initializes an array that defines the location and 
size of each chunk of memory available in the system. As with the initialization of 
the interrupt hardware, the details are hardwaredependent and isolation of 
mem-init as a function in a separate file keeps main itself free of code that is not 
portable to different hardware. 

The largest part of rnairz's code is devoted to setup of the process table, so that 
when the first tasks and processes are scheduled, their memory maps and registers 
will be set correctly, All slots in the process table are marked as free, and the 
ppror-a~'dr array that speeds access to the process table is initialized by the loop 
o~ t  lines 6745 to 6749. The code on line 6748, 

(pproc-addr + NR-TASKS)[t] = rp; 

could just as well have been defined as 

pproc-addr[t + NR-TASKS] = rp; 

because in the C language a[ i ]  is just another way of writing *(a+i). So it does not 
make much difference if you add a constant to a or to i .  Some C compilers gen- 
erate slightly better code if you add a constant to the array instead of the index. 

The largest part of main, the long loop o n  lines 6762 to 6815, initializes the 
process table with the necessary information to run the tasks, servers, and init. A11 
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of these processes must be present at startup time and none of them will terminate 
during normal operation. At the start of the loop, rp is assigned the address of a 
process' table entry (line 6763). Since rp is a pointer to a structure, the elements 
of the structure can be accessed using notation like rp->p-name, as is done on 

' line 6765. This notation is used extensively in the MINIX source code. 
The tasks, of course, are all compiled into the same file as the kernel, and the 

information about their stack requirements is in the tasktab array defined in 
table-c. Since tasks are compiled into the kernel and can call code and access 
data located anywhere in the kernel's space, the size of an individual task is not 
meaningful, and the size field for each of them is filled with the sizes for the ker- 
nel itself. The array sizes contains the text and data sizes in clicks of the kernel, 
memory manager, file system, and init. This information is patched into the 
kernel's data area by bmt before the kernel starts executing and appears to the 
kernel as if the compiler had provided it. The first two elements of sizes are the 
kernel's text and data sizes; the next two are the memory manager's, and so on. If 
any of the four programs does not use separate I and D space, the text size is 0 and 
the text and data are lumped together as data. Assigning sizeindex a value of zero 
(line 6775) for each of the tasks assures that the zeroth element of sizes at lines 
6783 and 6784 will be accessed for all of the tasks. The assignment to sizeindex 
at line 6778 gives each of the sewers and init its own index into sizes. 

The design of the original JBM PC placed read-only rnemory at the top of the 
usable range of memory, which is limited to 1 MB on an 8088 CPU. Modern 
PC-compatible machines always have more memory than the original PC, but for 
compatibility they still have read-only memory at the same addresses as the older 
machines. Thus, the read-write memory is discontinuous, with a block of ROM 
between the lower 640 KB and the upper range above 1 MB. The boot monitor 
loads the servers and init into the memory range above the ROM if possible. This 
is primarily for the benefit of the file system, so a very large block cache can be 
used without bumping into the read-only memory. The conditional code at lines 
6804 to 6810 ensures that this use of the high memory area is recorded in the pro- 
cess table. 

Two entries in the process table correspond to processes that do not need to be 
scheduled in the ordinary way. These are the IDLE and HARDWARE processes. 
IDLE is a do-nothing loop that is executed when there is nothing else ready to run, 
and the HARDWARE process exists for bookkeeping purposes-it is credited with 
the time used while servicing an interrupt. All other processes are put on the 
appropriate queues by the code in Iine 681 1. The function called, lock-ready, 
sets a lock variable, switching, before modifying the queues and then removes the 
lock. when the queue bas been modified. The locking and unlocking are not 
required at this point, when nothing is running yet, but this is the standard method, 
and there is no point in creating extra code to be used just once. 

The last step in initializing each slot in the process table is to call 
alloc,segments. This procedure is part of the system task, but of course no tasks 
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are running yet, and it is called as an ordinary procedure at line 68 14. It is a 
machine-dependent routine that sets into the proper fields the locations, sizes, and 
permission levels for the memory segments used by each process. For older Intel 
processors that do not support protected mode, it defines only the segment loca- 
tions, It would have to be rewritten to handie a processor type with a different 
method of allocating memory. 

Once the process table is initialized for all the tasks, the servers, and inir, the 
system is almost ready to roll. The variable bill-ptr tells which process gets billed 
for processor time; it needs to have an initial value set at line 6818, and IDLE is 
an appropriate choice. Later on it may be changed by the next function called, 
lock-pick-proc. All of the tasks are now ready to run and bill-ptr will be 
changed when a user process runs. Lock-pick-prac's other job is to make the 
variable proc-ptr point to the entry in the process table for the next process to  be 
run. This selection is made by examining the task, server, and user process 
queues, in that order. In this case, the result is to  point proc-ptr to the entry point 
for the console task, which is always the first one to be started. 

Finally, main has run its course. In many C programs main is a loop, but in the 
MINIX kernel its job is done once the initialization is complete. The call to restart 
on line 6822 starts the first task. Control will never return to main. 

-Restart is an assembly language routine in mpx386.s. In fact, -restart is not 
a, complete function; it is an intermediate entry point in a larger procedure. We 
will discuss it in detail in the next section; for now we will just say that -restart 
causes a context switch, so the process pointed to by proc-ptr will run. When 
-resfart has executed for the first time we can say that MINIX is running-it is 
executing a process. -Restart is executed again and again as tasks, servers, and 
user processes are given their opportunities to run and then are suspended, either 
to wait for input or to give other processes their turns. 

The task queued first (the one using slot 0 of the process table, that is, the one 
with the most negative number) is always the console task, so other tasks can use 
it to report progress or problems as they start. It runs until it blocks trying to 
receive a message. Then the next task will run until it, too, blocks trying to 
receive a message. Eventually, all the tasks will be blocked, so the memory 
manager and file system can run. Upon running for the first time, each of these 
will do some initialization, but both of them will eventually block, also. Finally 
init wiu fork off a gery process for each terminal. These processes will block 
until input is typed at some terminal, at  which point the first user can log in. 

We have now traced the startup of MINIX through three files, two written in C 
and one in assembly language. The assembly language file, mpx386.s, contains 
additional code used in handling interrupts, which we will look at in the next sec- 
tion. However, before we g o  on let us wrap up with a brief description of the 
remaining routines in the two C files. The other procedures in start.c are k-atoi 
(line 6594), which converts a string to an integer, and k-getenv (line 6606), which 
is used to find entries in the kernel's environment, which is a copy of the boot 
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parameters. These are both simplified versions of standard library functions which 
are rewritten here in order to keep the kernel simple. The only remaining pro- 
cedure in m h c  is panic (line 6829). It is called when the system has discovered 
a condition that makes it impossible to continue. Typical panic conditions are a 
critical disk block being unreadable, an inconsistent internal state being detected, 
or one part of the system calling another part with invalid parameters.  hi calls 
to pr in~here  are actually calls to the kernel routine printk, so the kernel can print 
on the console even if normal interprocess communication is disrupted. 

2.6.7 Interrupt Handling in MINIX 

The details of interrupt hardware are system dependent, but any system must 
have elements functionally equivalent to those to be described for systems with 
32-bit Intel CPUs. Interrupts generated by hardware devices are electrical signals 
and are handled in the first place by an intermpt controller, an integrated circuit 
that can sense a number of such signals and for each one generate a unique data 
pattern on the processor's data bus. This is necessary because the processor itself 
has only one input for sensing all these devices, and thus cannot differentiate 
which device needs service. PCs using Intel 32-bit processors are normally * 

equipped with two such controller chips. Each can handle eight inputs, but one is 
a slave which feeds its output to one of the inputs of the master, so fifteen distinct 
6xternal devices can be sensed by the combination, as shown in Fig. 2-33. 

Interrupt -i+- 

Interrupt 
INTA Irk 

1 - 
IRQ 0 clock) 

INT a IRQ 1 [keyboard) - 
I Master + 

interrupt : 

b .controller - 
4 _. - ACK - 

IRQ 8 (real time clock) 
IRQ 9 (redirected IRQ 2)  

4 I Slave b IRQ 10 
/' interrupt 

\r 
IRQ 11 

controller IRQ 12 
IRQ 1 3 (FPU exception) 
IRQ 14 (AT Winchester) BACK e I R Q 1 5  

Figure 2-33. Intempt processing hardware on a 32-bit Intel PC. 
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In the figure, interrupt signals arrive on the various IRQ n lines shown at the 
right. The connection to the CPU's INT pin tells the processor that an interrupt 
has occurred. The INTA (interrupt acknowledge) signal from the CPU causes the 
controller responsible for the interrupt to put data on the system data bus telling 
the processor which service routin; to execute. The interrupt controller chips are 
programmed during system initialization, when main calls in tr- init. The pro- 
gramming determines the output sent to the CPU for a signal received on each of 
the input lines, as well as various other parameters of the controller's operation. 
The data put on the bus is an 8-bit number, used to index into a table of up to 256 
elements. The MINIX table has 56 elements. Of these, 35 are actually used; the 
others are reserved for use with future Intel processors or for future enhancements 
to MINIX, On 32-bit Intel processors this table contains interrupt gate descriptors, 
each of which is an 8-byte structure with several fields. 

There are several possible modes of response to interrupts; in the one used by 
MINIX the fields of most concern to us in each of the interrupt gate descriptors 
point to the service routine's executable code segment and the starting address 
within it. The CPU executes the code pointed to by the selected descriptor. The 
result is exactly the same as execution of an 

assembly language instruction. The only difference is that in the case of a 
hardware interrupt the <nnn> originates from a register in the interrupt controller 
chip, rather than from an instruction in program memory. 

The task-switching mechanism of a 32-bit Intel processor that is called into 
play in response to an interrupt is complex, and changing the program counter to 
execute another function is only a part of it. When the CPU receives an interrupt 
while running a process it sets up a new stack for use during the interrupt service. 
The location of this stack is determined by an entry in the Task State Segment 
(TSS). There is one such structure for the, entire system, initialized by cstart's 
call to prot-init, and modified as each process is started. The effect is that the 
new stack created by an interrupt always starts at the end of the stackframe -s 
structure within the process table entry of the interrupted process. The CPU 
automatically pushes several key registers onto this new stack, including those 
necessary to reinstate the interrupted process' own stack and restore its program 
counter. When the interrupt handler code starts mnni5g; it uses this area in the 
process table as its stack, and much of the information needed to return to the 
interrupted process will have already been stored. The interrupt handler pushes 
the contents of additional registers, filling the stackframe, and then switches to a 
stack provided by the kernel while it does whatever must be done to service the 
interrupt. 

Termination of an interrupt service routine is done by switching the stack 
from the kernel stack back to a stackframe in the process table (but not necessarily 
the same one that was created by the last interrupt), explicitly popping the 
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additional registers, and executing an iretd (return from interrupt) instruction. 
lretd restores the state that existed before an interrupt, restoring the registers that 
were pushed by the hardware and switching back to a stack that was in use before 
an interrupt. Thus an interrupt stops a process, and completion of the interrupt 
service restarts a process, possibly a different one from the one that was most 
recently stopped. Unlike the simpler interrupt mechanisms that are the usual sub- 
ject of assembly language programming texts, nothing is stored on the interrupted 
process' working stack during an intermpt. Furthermore, because the stack is 
created anew in a known location (determined by the TSS) after an interrupt, con- 
trol of multiple processes is simplified. To start a different process all that is 
necessary is to point the stack pointer to another process' stackframe, pop the 
registers that were explicitly pushed, and execute an iretd instruction. 

The CPU disables all interrupts when it receives an interrupt. This guarantees 
that nothing can occur to cause the stackframe within a process table entry to 
overflow. This is automatic, but assembly-level instructions exist to disable and 
enable interrupts, as well. The interrupt handler reenables interrupts after switch- 
ing to the kernel stack, located outside the process table. It must disable all inter- 
rupts again before it switches back to a stack within the process table, of course, 
but while it is handling an interrupt other interrupts can occur and be processed. 
The CPU keeps track of nested interrupts, and employs a simpler method of 
switching to an intermpt service routine and returning from one when an interrupt 
handler is interrupted. When a new interrupt is received while a handler (or other 
kernel code) is executing, a new stack is not created. Instead, the CPU pushes the 
essential registers needed for resumption of the interrupted code onto the existing 
stack. When an iretd is encountered while executing kernel code, a simpler return 
mechanism is used, too. The processor can determine how to handle the iretd by 
examining the code segment selector that is popped from the stack as part of the 
iretd's action. 

The privilege levels mentioned earlier control the different responses to inter- 
rupts received while a process is running and while kernel code (including inter- 
rupt service routines) is executing. The simpler mechanism is used when the 
privilege level of the interrupted code is the same as the privilege level of the 
code to be executed in response to the interrupt. It is only when the interrupted 
code is less privileged thpn the interrupt service code that the more elaborate 
mechanism, using the TSS and a new stack, is employed. The privilege level: of a 
code segment is recorded in the code segment selector, and as this is one of the 
items stacked during an interrupt, it can be examined upon return from the inter- 
rupt to determine what the iretd instruction must do. Another service is provided 
by the hardware when a new stack is created to use while servicing an interrupt. 
The hardware checks to make sure the new stack is big enough for at least the 
minimum quantity of information that must be placed on it. This protects the 
more privileged kernel code from being accidentally (or maliciously) crashed by a 
user process making a system call with an inadequate stack. These mechanisms 
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are built into the processor specifically for use in the implementation of operating 
systems that support multiple processes. 

This behavior may be confusing if you are unfamiliar with the internal work- 
ing of 32-bit Intel CPUs. Ordinarily we try to avoid describing such details, but 
understanding what happens when an interrupt occurs and when an iretd instruc- 
tion is executed is essential to understanding how the kernel controls the transi- 
tions to and from the "running" state of Fig. 2-2. The fact that the hardware han- 
dles much of the work makes life much easier for the programmer, and presum- 
ably makes the resulting system more efficient. All this help from the hardware 
does, however, make if hard to understand what is happening just by reading the 
software. 

Only a tiny part of the MINIX kernel actually sees hardware interrupts. This 
code is in mpx386.s. There is an entry point for each interrupt. The source code at 
each entry point, -hwznt00 to -hwint07, (lines 6164 to 6193) Iooks like a call to 
hwint-master (line 6143), and the entry points -hwint08 to -hwintl5 (lines 6222 
to 625 1) Iook like calls to hwint-slave (line 6199). Each entry point appears to 
pass a parameter in the call, indicating which device needs service. In fact, these 
are really not calls, but macros, and eight separate copies of the code defined by 
the macro definition of hwint-master are assembled, with only the irq parameter 
different. Similarly. eight copies of the hwint-slave macro are assembled. This 
may seem extravagant, but assembled code is very compact, The object code for 
each expanded macro occupies less than 40 bytes. In servicing an interrupt, speed 
is important, and doing it this way eliminates the overhead of executing code to 
load a parameter, call a subroutine, and retrieve the parameter. 

We will continue the discussion of hwint-master as if it really were a single 
function, rather than a macro that is expanded in eight different places. Recall 
that before hwint-master begins to execute, the CPU has created a new stack in 
the interrupted process' stackframe-s, within its process table slot, and that 
several key registers have already been saved there. The first action of 
hwint-master is to call save (line 6144). This subroutine pushes all the other 
registers necessary to restart the interrupted process. Save could have been writ- 
ten inljne as part of the macro to increase speed, but this would have more than 
doubled the size of the macro, and in any case save is needed for calls by other 
functions. As we shall see, save plays tricks with the stack. Upon returning to 
hwint-master, the kernel stack, not a stackframe in the process table, is in use. 
The next step is to manipulate the intermpt controller, to prevent it from receiving 
another interrupt from the source that generated the current intermpt (lines 6145 
to 6147). This operation masks the ability of the controller chip to respond to a 
particular input; the CPU's ability to respond to all interrupts is inhibited inter- 
nally when it first receives the intermpt signal and has not yet been restored at this 
point. 

The code on lines 6148 to 6150 resets the interrupt controller and then enables 
the CPU to again ~eceive interrupts from other sources. Next, the number of the 
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interrupt being serviced is used by the indirect call instruction on line 6152 to 
index into a table of addresses of the device-specific low-level routines. We call 
these low-level routines, but they are written in C, and they typically perform 
operations like servicing an input device 'and transferring the data to a buffer 
where it can be accessed when the corresponding task has its next chance to run. 
A substantial amount of processing may happen before the return from this call. 

We will see examples of low-level driver code in the next chapter. However, 
in order to understand what is happening here in hwint-master, we now mention 
that the low-level code may call interrupt (in prucc, which we will discuss in the 
next section), and that interrupt transforms the intempt into a message to the task 
that services the device that caused the intempt. Furthermore, a call to interrupt 
invokes the scheduler and may select this task to run next. Upon returning from 
the call to the device-specific code, the processor's ability to respond to all inter- 
rupts is again disabled, by the cli instruction on line 6154, and the interrupt con- 
troller is prepared to be able to respond to the particular device that caused the 
current interrupt when all interrupts are next reenabled (lines 6 157 to 6 159). Then 
hwint-master terminates with a ret instruction (line 6160). It is not obvious that 
something tricky happens here. If a process was interrupted, the stack in use at 
this point is the kernel stack, and not the stack within a process table that was set 
up by the hardware before hwint-master was started. In this case, manipulation 
of the stack by save will have left the address of -resrart on the kernel stack. This 
results in a task, server, or user process once again executing. It may not be, and 
in fact is unlikely to be, the same process as was executing originally. This 
depends upon whether the processing of the message created by the device- 
specific interrupt service routine caused a change in the process scheduling 
queues. This, then, is the heart of the mechanism which creates the illusion of 
multiple processes executing simultaneously. 

To be complete, let us mention that when an interrupt occurs while kernel 
code is executing, the kernel stack is already in use, and save leaves the address of 
restart1 on the kernel stack. In this case, whatever the kernel was doing previ- 
ously continues after the ret at the end of hwint-master. Thus interrupts may be 
=sted, but when all the low-level service routines are complete -restart will 
finally execute, and a process different from the one that was intempted may be 
put into execution! 

Hwint-slave (line 6199) is very similar to hwint-master, except that it must 
reenable both the master and slave controllers, since both of them are disabled by 
receipt of an interrupt by the slave. There are a few subtle aspects of assembly 
language to be seen here. First, on line 6206 there is a line 

which specifies a jump whose target address is the immediately following instruc- 
tion. This instruction is placed here solely to add a small delay. The authors of the 
original IBM PC BIOS considered a delay necessary between consecutive 110 
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instructions, and we are following their example, although it may not be necessary 
on all current IBM PC-compatible computers. This kind of fine tuning is one rea- 
son why programming hardware devices is considered an esoteric craft by some. 
On line 62 14 there is a conditional jump to an instruction with a numeric label, 
0: ret 

to be found on line 6218. hole that the line 
jz Of 
does not specify a number of bytes to jump over, as in the previous example. The 
Of here is not a hexadecimal number. This is the way the assembler used by the 
MINIX compiler specifies a local label; the gfmeans a jump forward to the next 
numeric label 0. Ordinary label names are not permitted to begin with numeric 
characters, Another interesting and possibly confusing point is that the same label 
occurs elsewhere in the same file, on line 6160 in hwint-master. The situation is 
even more complicated than it looks at first glance since these labels are within 
macros and the macros are expanded before the assembler sees this code. Thus 
there are actually sixteen 0: labels in the code seen by the assembler. The possible 
proliferation of labels declared within macros is, indeed, the reason why the 
assembly language provides local labels; when resolving a local label the assem- 
bler uses the nearest one that matches in the' specified direction, and additional 
occurrences of a local label are ignored. 

Now let us move on to look at save (line 6261), which we have already men- 
tioned several times. Its name describes one of its functions, which is to save the 
context of the interrupted process on the stack provided by the CPU, which is a 
stackframe within the process table. Save uses the variable -k-reenter to count 
and determine the level of nesting of interrupts. If a process was executing when 
the current interrupt occurred, the 

mov esp, k-stktop 

instruction on line 6274 switches to the kernel stack, and the following instruction 
pushes the address of -restart (line 6275). Otherwise, the kernel stack is already 
in use, and the address of restart1 is pushed instead (line 6281). In either case, 
with a possibly different stack in use from the one that was in effect upon entry, 
and with the return address in the routine that called it buried beneath the registers 
that have just been pushed, an ordinary return instruction is not adequate for 
returning to the caller. The 

jmp RETADR-P-STACKBASE(eax) 

instructions that terminate the two exit points of save, at line 6277 and line 6282, 
use the address that was pushed when save was called. 

The next procedure in mpx386.s is -s_call,  which begins on line 6288. 
Before looking at its internal details, look at how it ends. There is no ret or jmp at 
its end. After disabling interrupts with the cli on line 63 15, execution continues at 
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-restart. -S-call is the system call counterpart of the interrupt handling mechan- 
ism. Control arrives at -s-call following a software interrupt, that is, execution 
of an int nnn instruction, Software interrupts are treated like hardware interrupts, 
except of course the index into the Interrupt Descriptor Table is encoded into the 
nnn part of an int nnn instruction, rather than being supplied by an interrupt con- 
troller chip. Thus, when -s-call is entered, the CPU has already switched to a 
stack inside the process table (supplied by the Task State Segment), and several 
registers have already been pushed onto this stack. By falling through to -restart, 
the call to -s-call ultimately terminates with an iretd instruction, and, just as with 
a hardware interrupt, this instruction will start whatever process is pointed to by 
proc-ptr at that point. Figure 2-34 compares the handling of a hardware interrupt 
and a system call using the software intempt mechanism. 

Device: 
Send electrical signal to interrupt controller. 

Controller: 
1,  Interrupt CPU. 
2. Send digital identification of interrupting 

device. 

Caller: 
1. Put message pointer and destination of 

message into CPU registers. . 
2. Execute software interrupt instruction. 

I 

Kernel: 
1. Save registers. 
2. Execute driver software to read 110 device. 
3. Send message. 
4. Restart a process (not necessarily 

interrupted process). 

Kernel: 
1. Save registers. 
2. Send andlor receive message. 
3. Restart a process (not necessarily calling 

process). 

Figure 2-34. (a) How a hardware interrupt is processed. (b) How a system call 
is made. 

Let us now look at some details of -s-call. The alternate label, -p-s-call, is 
a vestige of the 16-bit version of MINIX, which has separate routines for protected 
mode and real mode operation. In the 32-bit version all calls to either label end up 
here. A programmer invoking a MINIX system call writes a function call in C that 
looks like any other function call, whether to a locally defined function or to a 
routine in the C library. The library code supporting a system call sets up a mes- 
sage, loads the address of the message and the process id of the destination into 
CPU registers, and then invokes an int SYS386-VECTOR instruction. As 
described above, the result is that control passes to the start of -s-call, and 
several registers have already been pushed onto a stack inside the process table. 
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The first part of the -s-call code resembles an inline expansion of save and 
saves the additional registers that must be preserved. Just as in save, a 

rnov esp, k-stktop 

instruction then switches to the kernel stack, and interrupts are reenabled. (The 
similarity of a software interrupt to a hardware interrupt extends to both disabling 
all interrupts). Following this comes a call to -sys-call, which we will discuss in 
the next section. For now we just say that it causes a message to be delivered, and 
that this in turn causes the scheduler to run. Thus, when -sys-call returns, it is 
probable that proc-ptr will be pointing to a different process from the one that 
inititated the system call. Before execution falls through to restart, a cli instruc- 
tion disables interrupts to protect the stackframe of the process that is about to be 
restarted. 

We have seen that -restart (line 6322) is reached in several ways: 

1. By a call from main when the system starts. 

2. By a jump from hwint-master or hwint-slave after a hardware interrupt. 

3. By falling through from -s-call after a system call. 

In every case interrupts are disabled at this point. -Restart calls unhold if it 
detects that any unserviced interrupts have been held up because they arrived 
while other interrupts were being processed. This allows the other interrupts to be 
converted into messages before any process is restarted. This temporarily reen- 
ables interrupts, but they are disabled again before unhold returns. By Line 6333 
the next process to run has been definitively chosen, and with interrupts disabled 
it cannot be changed. The process table was carefully constructed so it begins 
with a stack frame, and the instruction on this line, 

mov esp, (-proc-ptr) 

points the CPU's stack pointer register at the stack frame. The 

lldt P- LDT-SEL(esp) 

instruction then loads the processor's local descriptor table register from the stack 
frame. This prepares the processor to use the memory segments belonging to the 
next process to be run. The following instruction loads the address in the next 
process' process table entry that where the stack for the next interrupt will be set 
up, and the following instruction stores this address into the TSS. The first pa t  of 
-restart is not necessary after an interrupt that occurs when kernel code, (includ- 
ing interrupt service code) is executing, since the kernel stack will be in use and 
termination of the interrupt service should allow the kernel code to continue. The 
label restart1 (line 6337) marks the point where execution resumes in this case. 
At this point k-reenter is decremented to record that one level of possibly nested 
interrupts has been disposed of,. and the remaining instructions restore the 

b 
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processor to the state it was in when the next process executed last. The penulti- 
mate instruction modifies the stack pointer so the return address that was pushed 
when save was called is ignored. If the last interrupt occurred when a process was 
executing, the final instruction, iretd, completes the return to execution of what- 
ever process is being allowed to run next, restoring its remaining registers, includ- 
ing its stack segment and stack pointer. If, however, this encounter with the iretd 
came via restartl, the kernel stack in use is not a stackframe, but the kernel stack, 
and this is not a return to an interrupted process, but the completion of an interrupt 
that occurred while kernel code was executing. The CPU detects this when the 
code segment descriptor is popped from the stack during execution of the iretd, 
and the complete action of the iretd in this case is to retain the kernel stack in use. 

There are a few more things to discuss in mpx386.s. In addition to hardware 
and software interrupts, various error conditions internal to the CPU can cause the 
initiation of an exception. Exceptions are not always bad. They can be used to 
stirnulate the operating system to provide a service, such as providing more 
memory for a process to use, or swapping in a currently swapped-out memory 
page, although such services are not implemented in standard MINIX. But, when 
an exception occurs, i t  should not be ignored. Exceptions are handled by the same 
mechanism as interrupts, using descriptors in the interrupt descriptor table. These 
entries in the table point to the sixteen exception handler entry points, beginning 
with -divide-error and ending with -copr-error, found near the end of 
mpx386,s, on lines 6350 to 6412. These all jump to exception (line 6420) or 
errexception (line 6431) depending upon whether the condition pushes an error 
code onto the stack or not. The handling here in the assembly code is similar to 
that we have already seen, registers are pushed and the C routine -exception (note 
the underscore) is called to handle the event. The consequences of exceptions 
vary. Some are ignored, some cause panics, and some result in sending signals to 
processes. We will examine -exception in a later section. 

There is one other entry point that is handled like an interrupt, -1evelO-call 
(line 6458). Its function will be discussed in the next section, when we discuss 
the code to which it jumps, -1evelO-func. The entry point is here in mpx386.s 
with the interrupt and exception entry points because it too is invoked by execu- 
tion of an int instruction. Like the exception routines, it calls save, and thus even- 
tually the code that is jumped to here will terminate by a ret that leads to -restart. 
The last executable function in mpx386.s is ,idle-task (line 6465). This is a do- 
nothing loop that is executed whenever there is no other process ready to run. 

Finally, some data storage space is reserved at the end of the assembly 
language file. There are two different data segments defined here, The 

declaration at line 6478 ensures that this storage space is allocated at the very 
beginning of the kernel's data segment. The compiler puts a magic number here 
so boot can verify that the file it loads is a valid kernel image. Boot then 
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overwrites the magic number and subsequent space with the -sizes array data, as 
described in the discussion of kernel data structures. Enough space is reserved 
here for a -sizes may  with a total of sixteen entries, in case additional servers are 
added to MINIX. The other data storage area defined at the 

(line 6483) declaration reserves space in the kernel's normal uninitialized variable 
area for the kernel stack and for variables used by the exception handlers. Servers 
and ardinay processes have stack space reserved when an executable file is 
linked and depend upon the kernel to properly set the stack segment descriptor 
and the stack pointer when they are executed. The kernel has to do this for itself. 

26.8 Interprocess Communication in MI NU^ 

Processes in MINIX communicate by messages, using the rendezvous princi- 
ple. When a process does a SEND, the lowest layer of the kemel checks to see if 
the destination is waiting for a message from the sender (or from ANY sender). If 
so, the message is copied from the sender's buffer to the receiver's buffer, and 
both processes are marked as runnable. If the destination is not waiting for a rnes- 
sage from the sender, the sender is marked as blocked and put onto a queue of 
processes waiting to send to the receiver. 

When a process does a RECEIVE, the kernel checks to see if any process is 
qqeued trying to send to it. If so, the message is copied from the blocked sender to 
the receiver, and both a= marked as runnable. If no process is queued trying to 
send to it, the receiver blocks until a message arrives. 

The high-level code for interprocess communication is found in pr0c.c. The 
kernel's job is to translate either a hardware intempt or a software interrupt into a 
message. The former are generated by hardware and the latter are the way a re- 
quest for system services, that is, a system call, is communicated to the kernel. 
These cases are similar enough that they could have been handled by a single 
function, but it was more efficient to create two speciaIized functions. 

First we will look at interrupt (line 6938). It is called by the low-level inter- 
rupt service routine for a device after receipt of a hadware interrupt. Interrupt's 
function is to convert the intempt into a message for the task that handles the 
interrupting device, and typically very little processing is done before calling 
interrupt. For example, the entire low-level interrupt handler for the Hard disk 
driver co~sists of just these three lines: 

w-status = in-byte(w-wn->base + REGSTATUS); I* acknowledge interrupt */ 
interrupt(W1NCHESTER); 
return 1; 

If it were not necessary to read an I/O port on the hard disk cuntroller to obtain the 
status, the call to interrupt could have been in mpx386. s instead of at- wini. c .  The 
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first thing interrupt does is check if an interrupt was already being serviced when 
the current interrupt was received, by looking at the variable k-reenter (line 
6962). In this case the current interrupt is queued and interrupt returns. The 
current interrupt will be serviced laterr when unhuld is called. The next action is 
to check whether the task is waiting for an interrupt (lines 6978 to 6981). If the' 
task is not ready to receive, its p-int-blocked flag is set-we wit1 see later that 
this makes it possible to recover the lost interrupt-and no message is sent. If this 
test is passed, the message is sent. Sending a message from HARDWARE to a 
task is simple, because the tasks and the kernel are c ~ r ~ p i l e d  into the same file 
and can access the same data areas. The code on lines 6989 to 6992 sends the 
message, by filling in the destination task's message buffer source and type fields, 
resetting the destination's RECEIVING flag, and unblocking the task. Once the 
message is ready the destination task is scheduled to run. We will discuss schedul- 
ing in more detail in the next section, but the code in interrupr on lines 6997 to 
7003 provides a preview of what we will w-this is an inline substitute for the 
ready procedure that is called to queue a process. It is simple here, since messages 
originating from intempts go only to tasks, and thus there is no need to determine 
which of the three process queues needs to be changed. 

The next function in proc. c is sys-call. It has a similar function to interrupr: 
it converts a software intempt (the int SYS386-VECTOR instruction by which a 
system ;calI is initiated) into a message, But since there are a wider range of pos- 
sible sources and destinations in this case, and since the call may require either 
sending or receiving or both sending and receiving a message, sys-call has more 
work to do. As is often the case, this means the code for sys,caZl is short and sim- 
ple, since it does most of its work by calling other procedures. The first such call 
is to isoksrc-&st, a macro defined in prock (line 5172), which incarporates yet 
another macro, isokprocn, also defined in pr0c.h (line 5171). The effect is to 
check to make sure the process specified as the source or destination of the mes- 
sage is valid. At line 7026 a similar test, isuserp (also a macro defined in pmc.h), 
is performed to make sure that if the call is from a user process it is asking to send 
a message and then receive a reply, the only kind of call permitted to user 
processes. Such errors are unlikely, but the tests are easily done, as ultimately 
they compile into code to perform comparisons of small integers. At this most 
basic level of the operating system testing for even the most unlikely errors is 
advisable. This code is likely to be executed many times each second during every 
second that the computer system on which it runs is active. 

Finally, if the call requires sending a message, mini-send is called (line 
7031), and if receiving a message is required, mini-rec is called (line 7039). 
These functions are the heart of the normal message passing mechanism of MINIX 
and deserve careful study. 

Mini-send (line 7045) has three parameters: the caller, the process to be sent 
to, and a pointer to the buffer where the message is. It performs a number of tests. 
First, it makes sure that user processes try to send messages only to FS or MM. In 
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line 7060 the parameter caller-ptr is tested with the macro isuserp to determine if 
the caller is a user process, and the parameter dest is tested with a similar func- 
tion, issysentn, to determine if it is FS or MM. If the combination is not permitted 
mini-send terminates with an error. 

Next a check is made to be sure the destination of the message is an active 
process, not an empty slot in the process table (line 7062). On lines 7068 to 7073 
mini-send checks to see if the message falls entirely within the user's data seg- 
ment, code segment, or the gap between them. If not, an error code is returned. 

The next test is to check for a possible deadlock. On line 7079 is a test to 
make sure the destination of the message is not trying to send a message back to 
the caller. 

The key test in mini-send is on lines 7088 to 7090. Here a check is made to 
see if the destination is blocked on a RECEIVE, as shown by the RECEIVING bit in 
the p-flags field of its process table entry. If it is waiting, then the next question 
is: "Who is it waiting for?" If it is waiting for the sender, or for ANY, CopyMess 
is executed to copy the message and the receiver is unblocked by resetting its 
RECEIVING bit. CopyMess is defined as a macro on line 6932. It calls the 
assembly language routine cp-mess in klib386.s. 

If, on the other hand, the receiver is' not blocked, or is blocked but waiting for 
a message from someone else, the code on lines 7098 to 7 1 1 1 is executed to block 
and queue the sender. All processes wanting to send to a given destination are 
strung together on a linked list, with the destination's p-callerq field pointing to 
the process table entry of the process at the head of the queue. The example of 
Fig. 2-35(a) shows what happens when process 3 is unable to send to process 0. If 
process 4 is subsequently also unable to send to process 0, we get the situation of 
Fig. 2-35(b). 

Figure 2-35. Queueing of processes trying to send to process 0. 

Mini-rec (line 61 19) is called by sys-call when its function parameter is 
RECEIVE or BOTH. The loop on lines 7137 to 7 151 searches through all the 
processes queued waiting to send to the receiver to see if any are acceptable. If 
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one is found, the message is copied from sender to receiver; then the sender is 
unblocked, made ready to run, and removed f m  the queue of processes trying to 
send to the receiver. 

If no suitable sender is found, a check is made to see if the receiving process' 
p-kt-blocked flag indicates that an interrupt for this destination was previously 
bIocked (line 7154). If so a message is constructed at this point-since messages 
from HARDWARE have no content other than HARDWARE in the source field 
and HARDLINT in the type field there is no need to call CopyMess in this case. 

If a blocked interrupt is not found the process' source and buffer address are 
saved in its process table entry, and it is marked as blocked with its RECEIVING 
bit set. The call to unready on line 7165 removes the receiver from the scheduler's 
queue of runnable processes. The call is conditional to avoid blocking the process 
just yet if there is another bit set in its p-flags; a signal may be pending, and the 
process should have another chance to run soon to deal with the signal. 

The penultimate statement in mini-rec (lines 7 17 1 and 7172) has to do with 
how the kernel-generated signals SIGINT, SIGQUIT, and SIGALRM are handled. 
When one of these occurs, a message is sent to the memory manager, if it is wait- 
ing for a message from ANY. If not, the signal is remembered in the kernel until 
the memory manager finally tries to receive from ANY. That is tested here, and, 
if necessary, inform is called to informed it of the pending signals. 

2.6.9 Scheduling in MINIX 

MINIX uses a multilevel scheduling algorithm that closely follows the stnrc- 
ture shown in Fig. 2-26. In that figure we see UO tasks in layer 2, server proc- 
esses in layer 3, and user processes in layer 4. The scheduler maintains three 
queues of runnable processes, one for each layer, as shown in Fig. 2-36. The 
array rdy-head has one entry for each queue, with that entry pointing to the pro- 
cess at the head of the queue. Similarly, rdy-tail is an array whose entries point to 
the last process on each queue. Both of these arrays are defined with the EXTERN 
macro in pr0c.h (lines 5192 and 5 193). 

USER-Q I 
SERVER-Q 

TASKQ 

Figure 2-36. The scheduler maintains three queues, one per priority level. 

Whenever a blocked process is awakened, it  is appended to the end of its 
queue. The existence of the may rdy-tail makes adding a process to the end-of a 
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queue efficient. Whenever a running process becomes blocked, or a runnable pro- 
cess is killed by a signal, that process is removed from the scheduler's queues. . 
Only runnable processes are queued. 

Given the queue structures just described, the scheduling algorithm is simple: 
find the highest priority queue that is not empty and pick the process at the head 
of that queue. If all the queues are empty, the idle routine is run. In Fig, 2-36 
TASK-Q has the highest priority. The scheduling code is in pr0c.c. The queue is 
chosen in pick-proc (line 7179). This function's major job is to set proc-prr. 
Any change to the queues that might affect the choice of which process to run 
next requires pick-proc to be called again. Whenever the current process blocks, 
pick-proc is called to reschedule the CPU. 

Pick-proc is simple. There is a test for each queue. TASK-Q is tested first, 
and if a process on this queue is ready, pick-proc sets proc-prr and returns 
immediately. Next, SERVER-Q is tested, and, again, if a process is ready 
pick-pror sets proc-ptr and returns. If there is a ready process on the USER-Q 
queue, bill-ptr is changed to charge the user process for the CPU time it is about 
to be given (line 7198). This assures that the last user process to run is charged 
for work done on its behalf by the system. If  none of the queues have a ready task 
line 7204 transfers billing to the IDLE process and schedules it. The process 
chosen to run is not removed from its queue merely because it has been selected. 

The procedures ready (line 7210) and unready (line 7258) are called to enter a 
runnable process on its queue and remove a no-longer runnable process from its 
queue, respectively. Ready is called from both mini-send and mini-rec, as we 
have seen. It could also have been called from interrupt, but in the interest of 
speeding up interrupt processing its functional equivalent was written into inter- 
rupt as inline code. Ready manipulates one of the three process queues. It 
straightforwardly adds the process to the tail of the appropriate queue. 

Unready also manipulates the queues. Normally, the process it removes is at 
the heap of its queue, since a process must be running in order to block. In such a 
case unready calls pick-proc before returning, as, for example, in  line 7293. A 
user process that is not running can also become unready if it is sent a signal, and 
if the process is not found at the head of one of the queues, a search is made 
through the USER-Q for it, and it is removed if found. 

Although most scheduling decisions are made when a process blocks or 
unblocks, scheduling must also be done when the clock task notices that the 
current user process has exceeded its quantum. In this case the clock task calls 
sched (line 73 1 1) to move the process at the head of USER-Q to the end of that 
queue. This algorithm results in running user processes in a straight round-robin 
fashion. The file system, memory manager, and IiO tasks are never put on the 
end of their queues because they have been running too long. They are trusted to 
work property, and to block after having finished their work. 

There are a few more routines in pr0c.c that support process scheduling. Five 
of these, lock -mini-send, lock-pick-proc, lock-ready, lock-unready, and 
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lock-sched, set a lock, using the variable switching before calling the correspond- 
ing function and then release the lock upon completion. The last function in this 
file, unhold (line 7400), was mentioned in our discussion of -restart in mpx386. s .  
It loops through the queue of held-up interrupts, calling interrupt for each one, in 
order to get ail pending interrupts converted to messages before another process is 
allowed to run. 

In summary, the scheduling algorithm maintains three priority queues, one for 
the VO tasks, one for the server processes, and one for the user processes. The 
first process on the highest priority queue is always run next. Tasks and servers 
are always allowed to run until they block, but the clock task monitors the time 
used by user processes. If a user process uses up its quantum, it is put at the end 
of its queue, thus achieving a simple round-robin scheduling among the competing 
user processes. 

2.6.10 Hardware-Dependent Kernel Support 

There are several C functions that are very dependent upon the hardware. To 
facilitate porting MINIX to other systems these functions are segregated in the files 
to be discussed in this section, exception.c, i8259.c, and proteci-c, rather than 
being included in the same files with the higher-level code they support. 

Exception. c containfilr, cmption handler, exception (line 75 12), which is 
called (as -exception) by the assembly language part of the exception handling 
code in nzpx386.s. Exceptions originating from user processes are converted to 
signals. Users are expected to make mistakes in their own programs, but an 
exception originating in the operating system indicates something is seriously 
wrong and causes a panic. The array ex-data (li'nes 7522 to 7540) determines the 
error message to be printed in case of panic, or the signal to be sent to a user pro- 
cess for each exception: Earlier Intel processors do not generate all the exceptions, 
and the third field in each entry indicates the minimum processor model that is 
capable of generating each one. This m a y  provides an interesting summary of the 
evolution of the Intel family of processors upon which MINIX has been imple- 
mented. On line 7563 an alternate message is printed if a panic results from an 
interrupt that would not be expected from the processor in use. 

The three functions in i8259.c are used during system initialization to initial- 
ize the Intel 8259 interrupt controller chips. Intr-init (line 7621) initializes the 
controllers. It writes data to several port locations, On a few lines a variable de- 
rived from the boot parameters is tested, for instance, the first port writes on line 
7637, to accommodate different computer models. On line 7638, and again on 
line 7644, the parameter mine is tested, and a value appropriate either for MMIX or 
for the 810s ROM is written to the port. When leaving MINIX intr-init can be 
called io restore the BIOS vectors, allowing a graceful exit back to the boot moni- 
tor. Mine selects the mode to use. FuHy understanding what is going on here 
would require study of the documentation for the 8259 integrated circuit, and thus 
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we will not dwell on the details. We will point out that the out-byte call on line 
7642 makes the master controller unresponsive to any input except from the slave, 
and the similar operation on line 7648 inhibits the response of the slave to all of 
its inputs. Also, the final line of the function preloads the address of spurious-irq, 
the next function in the file (line 7657), into each slot in irq-table. This ensures 
that any interrupt generated before the real handlers are installed will do no harm. 

The last function in i8259.c is put-irq-handler (line 7673). At initialization 
each task that must respond to an interrupt calls this to put its own handler address 
into the interrupt table, overwriting the address of spurious-irq. 

 protect.^ contains routines related to protected mode operation of Intel pro- 
cessors. The Global Descriptor Table (GDT), Local Descriptor Tables 
(LDTs), and the Interrupt Descriptor Table, all located in memory, provide pro- 
tected access to system resources. The GDT and IDT are pointed to by special 
registers within the CPU, and GDT entries point to LDTs. The GDT is available 
to all processes and holds segment descriptors for memory regions used by the 
operating system. There is normally one LDT for each process, holding segment 
descriptors for the memory regions used by the process. Descriptors are 8-byte 
structures with a number of  components, but the most important parts of a seg- 
ment descriptor are the fields that describe the base address and the limit of a 
memory region. The IDT is also composed of 8-byte descriptors, with the most 
important part being the address of the code to be executed when the correspond- 
ing interrupt is activated. 

Prof-inir (line 7767) is called by start.c to set up the GDT on lines 7828 to 
7845. The IBM PC BlOS requires that it be ordered in a certain way, and all the 
indices into it are defined in protect-h. Space for an LDT for each process is allo- 
cated in the process table. Each contains two descriptors, for a code segment and 
a data segment-recall we are discussing here segments as defined by the 
hardware; these are not the same as the segments managed by the operating sys- 
tem, which considers the hardware-defined data segment to be further divided into 
data and stack segments. On lines 7851 to 7857 descriptors for each LDT are 
built in the GDT. The functions init-dataseg and init-codeseg actually build 
these descriptors. The entries in the LDTs themselves are initialized when a pro- 
cess' memory map is changed (i,e., when an EXEC system call is made). 

Another processor data structure that needs initialization is the Task State 
Segment (TSS)# The structure is defined at the start of this file (lines 7725 to 
7753) and provides space for storage of processor registers and other information 
that must be saved when a task switch is made. MINIX uses only the fields that 
define where a new stack is to be built when an interrupt occurs. The call to 
init-dataseg on line 7867 ensures that it can be located using the GDT. 

To understand how MINIX works at the lowest level, perhaps the most irnpor- 
tant thing is to understand how exceptions, hardware intenupts. or int <nnn> 
instructions lead to the execution of the various pieces of code that has been writ- 
ten to service them. ,This is accomplished by means of the intermpt gate descriptor 



144 PROCESSES CHAP. 2 

table. The array gate-table (lines 7786 to 7818), is initialized by the compiler 
with the addresses of the routines that handle exceptions and hardware interrupts 
and then is used in the loop at lines 7873 to 7877 to initialize a large part of this 
table, using calls to the int-gate function. The remaining vectors, SYS-VECTOR, 
SYS386,VECTOR, and LEVELO-VECTOR, require different privilege levels and 
are initialized following the loop. 

There are good reasons for the way the data are structured in the descriptors, 
based on details of the hardware and the need to maintain compatibility between 
advanced processors and the 16-bit 286 processor. Fortunateiy, we can normalIy 
leave these details to Intel's processor designers. For the most part the C 
language allows us to avoid the details. However, in implementing a real operat- 
ing system the details must be faced at some point. Figure 2-37 shows the internal 
structure of . ~ n e  kind of segment descriptor. Note that the base address, which C 
programs c& refer to as a simple 32-bit unsigned integer, is split into three parts, 
two of which are separated by a number of I - ,  2-, and 4-bit quantities. The limit 
is a 20-bit quantity stored as separate 16-bit and 4-bit chunks. The limit is inter- 
preted as either a number of bytes or a number of 4096-byre pages, based on the 
value of the G (granularity) bit. Other descriptors, such as those used to specify 
how intempts are handled, have different, but equally complex structures. We 
discuss these structures in more detail in Chapter 4. 

I Base 0-1 5 I Limit 0-15 I 

Base 24-31 

I I 

-= 32 Bits - Relative 
- address 

Figure 2-37. The format of an Intel segment descriptor. 

Most of the other functions defined in protec8.c are devoted to converting 
between variables used in C programs and the rather ugly forms these data take in 
the machine readable descriptors such as the one in Fig. 2-37. Init-codeseg (line 
7889) and init-dataseg (line 7906) are similar in operation and are used to con- 
vert the parameters passed to them into segment descriptors. They each, in turn, 
call the next function, sdesc (line 7922), to complete the job. This is where the 
messy details of the structure shown in Fig. 2-37 are dealt with. Init-codeseg and 
init-data-seg are not used just at system initialization. In addition, they are also 
called by the system task whenever a new process is started up, in order to allo- 
cate the proper memory segments for the process to use. Seg2phys (line 7947), 
called only from  start.^, performs an operation which is the inverse of that of 
sdesc, extracting the base address of a segment from a segment descriptor. 
Int-gate (line 7969) performs a similar function to init-codeseg and init-dataseg 
in building entries for the interrupt descriptor table. 
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The final function in  protect.^, enable-iop (line 7988) performs a dirty trick. 
We have pointed out in several places that one function of an operating system is 
to protect system resources, and one way MINIX does so is by using privilege lev- 
els to make certain kinds of instructions off limits to user programs. However, 
MINIX is also intended to be run on small systems, which are likely to have only 
one user or perhaps just a few trusted users. On such a system a user could very 
well want to write an application program that accesses UO ports, for instance, for 
use in scientific data acquisition. The file system has a little secret built into it- 
when the files /dev/mem or /dev/kmem are opened, the memory task calls 
enable-iop, which changes the privilege level for VO operations, allowing the 
current process to execute instructions which read and write VO ports. The 
description of the purpose of the function is more complicated than the function 
itself, which just sets two bits in the word in the stack frame entry of the calling 
process that will be loaded into the CPU status register when the process is next 
executed. There is no need for another function to undo this, as it will apply only 
to the calling process. 

2.6.11 Utilities and the Kernel Library 

Finally, the kernel has a library of support functions written in assembly 
language that are included by compiling k1ib.s and a few utility programs, written 
in C, in the file rniscc. Let us first look at the assembly language files. K1ib.s 
(line 8000), is a short file similar to mpx.s, which selects the appropriate 
machine-specific version based upon the definition of WORD-SIZE. The code 
we will discuss is in klib386.s (line 8100). This contains about two dozen utility 
routines that are in assembly code, either for efficiency or because they cannot be 
written in C at all. 

-Munitor (line 8166) makes it possible to return to the boot monitor. From the 
point of view of the boot monitor all of MINIX is just a subroutine, and when 
MINIX is started, a return address to the monitor is left on the monitor's stack. 
-Monitor just has to restore the various segment selectors and the stack pointer 
that was saved when MINIX was started, and then return as from any other subrou- 
tine. 

The next function, -check-mem (line 8198), is used at startup time to deter- 
mine the size of a block of memory. It performs a simple test on every sixteenth 
byte, using two patterns which test every bit with both "0" and " 1" values. 

Although -phys-copy (see below) could have been used for copying mes- 
sages, -cp-mess (line 8243), a faster specialized procedure, has been provided for 
that purpose. It is called by 

cp -mess(source, src-clicks, src-offset, dest -clicks, dest -offset); 

where source is the sender's process number, which is copied into the rn-source 
field of the receiver's buffer. Both the source and destination addresses are 
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specified by giving a cIick number, typrcally the base of the segment containing 
the buffer, and an offset from that click. This form of specifying the source and 
destination is more efficient than the 32-bit addresses used by -phys-copy. 

-Exit, -_exit, and -,-exit (lines 8283 to 8285) are defined because some 
library routines that might be used in compiling MINIX make calls to the standard 
C function exit. An exit from the kernel is not a meaningful concept; there is 
nowhere to go. The solution here is to enable interrupts and enter an endless loop. 
Eventually, an I10 operation or the dock wilI cause an interrupt and normal sys- 
tem operation will resume. The entry point for ---main (line 8289) is another 
attempt to deal with a compiler action which, while it might make sense while 
compiling a user program, does not have any purpose in the kernel. It points to an 
assembly language ret (return from subroutine) instruction. 

-In-byte (line 8300), -in-word ( h e  83141, -out-byte (line 8328), and 
-out,word (line 8342) provide access to 110 ports, which on Intel hardware 
occupy a separate address space from memory and use different instructions from 
memory reads and writes. -Port-read (line 8359), -purr-read-byte (line 8386), 
-port-write (line 8412), and -port-write-byte (line 8439) handle transfers of 
blocks of data between W 0  ports and memory; they are used primarily for 
transfers to and from the disk which must be done more rapidly than is possible 
with the other VO calls. The byte versions read 8 bits rather than 16 bits in each 
operation to accommodate older $-bit peripheral devices. 

Occasionally, it is necessary for a task to disable all CPU interrupts tem- 
porarily. It does this by calling -lock (line 8462). When interrupts can be reen- 
abled, the task can call -unlock (line 8474) to enable interrupts. A single machine 
instruction performs each one of these operations. In contrast, the code for 
- Enable-irq (line 8488) and -disable-irq (line 8521) is more complicated. 
They work at the IeveI of the interrupt controller chips to enable and disable indi- 
vidual hardware intermpts. 

-Phys-copy (line 8564) is called in C by 

phys -copy(source -address, destination -address, bytes); 

and copies a block of data from anywhere in physical memory to anywhere else. 
Both addresses are absolute, that is, address 0 really means the first byte in the 
entire address space, and all three parameters are unsigned longs. 

The next two short functions are very specific to Intel processors. 
-Mem-rdw (line 8608) returns a 16-bit word from anywhere in memory. The 
result is zero-extended into the 32-bit ear register. The -reset function (line 8623) 
resets the pEocessor. It does this by loading the processor's interrupt descriptor 
table register with a null pointer and then executing a software interrupt. This has 
the same effect as a hardware reset. 

The next two routines support the video display and are used by the console 
task. -Mem-vid-copy (line 8643) copies a string of words containing alternate 
character and attribute bytes from the kernel's memory region to the video display 
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memory, -Vid-vid-copy (line 8696) copies a block within the video memory 
itself. This is somewhat more complicated, since the destination block may over- 
Iap the source block. and the direction of the move is important. 

The last function in this file is -level0 (line 8773) It allows tasks to have the 
most privileged permission level, level zero, when necessary. It is used for such 
things as  resetting the CPU or accessing the PC's ROM BIOS routines. 

The C language utilities in miscc are specialized. Mem-inir (line 8820) is 
called only by main, when MNX is first started. There can be two or three disjoint 
regions of memory on an IBM-PC compatible computer. The size of the lowest 
range, known to PC users as "ordinary" memory, and of the memory range that 
starts above the PC ROM area ("extended" memory) are reported by the BIOS to 
the boot monitor, which in turn passes the values as boot parameters, which are 
interpreted by cstart and written to low,memsize and ext-rnernsize at boot time. 
The third region is "shadow'' memory, into which the BIOS ROM may be copied 
to provide an improvement in performance, since ROM memory is usually slower 
than writeable memory. Since MINIX does not normally use the BIOS, mem-init 
attempts to locate this memory and add it to  the pool of memory available for its 
use. It does this by calling check-mem to test the memory region where this 
memory may sometimes be found. 

The next routine, env-purse (line 8865) is also used at startup time. The b ~ o t  
monitor can pass arbitrary strings like "DPETHO=300:10" to MINIX in the boot 
parameters. Env-parse tries to find a string whose first field matches its first 
argument, env, and then to extract the requested field. The comments in the code 
explain the use of the function. It is provided primarily to aid the user who wants 
to add new drivers which may need to  be provided with parameters. The example 
"DPETHO" is used to pass configuration information to an Ethernet adapter when 
networking support is compiled into MINIX. 

The last two routines we will discuss in this chapter are bad-assertion (line 
8935) and bad-compare (line 8947). They are compiled only if the macro 
DEBUG is defined as ?RUE. They support the macros in assert.h. Although they 
are not referenced in any of the code discussed in this text, they may be useful for 
debugging to the reader who wants to create a modified version of MINIX. 

2.7 SUMMARY 
* 

To hide the effects of interrupts, operating systems provide a conceptual 
model consisting of sequential processes running in parallel. Processes can com- 
municate with each other using interprocess communication primitives, such as 
semaphores, monitors, or messages. These primitives are used to ensure that no 
two processes are ever in their critical sections at the same time. A process can be 
running, runnable, or blocked and can change state when it or  another process 
executes one of the interprocess communication primitives. 
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Interprocess communication primitives can be used to solve such problems as 
the producer-consumer, dining philosophers, reader-writer, and sleeping barber. 
Even with these primitives, care has to be taken to avoid errors and deadlocks. 
Many scheduling algorithms are known, including round-robin, priority schedul- 
ing, mu1 tilevel queues, and policy-driven sc hedulers. 

MINIX supports the process concept and provides messages for interprocess 
communication, Messages are not buffered, so a SEND succeeds only when the 
receiver is waiting for it. Similarly, a R K E I V E  succeeds only when a message is 
already available. If either operation does not succeed, the caller is blocked. 

When an interrupt occurs, the lowest Level of the kernel creates and sends a 
message to the task associated with the interrupting device. For example, the disk 
task calls receive and is blocked after writing a command to the disk controller 
hardware requesting it to read a block of data. The controller hardware causes an 
interrupt to occur when the data are ready. The low-level software then builds a 
message for the disk task and marks it as runnable. When the scheduler chooses 
the disk task to run, it gets and processes the message. It is also possible for the 
interrupt handler to do some work directly, such as a clock interrupt updating the 
time. 

Task switching may follow an interrupt. When a process is interrupted, a 
stack is created within the process table entry of the process, and all the informa- 
tion needed to restart it is put on the new stack. Any process can be restarted by 
getting the stack pointer to point to its process table entry and initiating a sequence 
of instructions to restore the CPU registers, culminating with an iretd instruction. 
The scheduler decides which process table entry to put into the stack pointer. 

Interrupts also occur when the kernel itself is running. The CPU detects this, 
and the kernel stack, rather a stack within the process table, is used. Thus nested 
interrupts can occur, and when a later interrupt service routine terminates, the one 
below it can complete. When d l  interrupts have been serviced, a process is re- 
started. 

The MINIX scheduling algorithm uses three priority queues, the highest one for 
tasks, the next one for the file system, memory manager, and other servers, if any, 
and the lowest one for user processes. User processes are run round robin for one 
quantum at a time. All the others are run until they block or are preempted. 

PROBLEMS 

1. Suppose that you were to design an advanced computer architecture that did process 
switching in hardware, instead of having interrupts. What information would the CPU 
need? Describe how the hardware process switching might work. 

2. On all current computers, at least part of the intermpt handlers are written in assembly 
language. Why? 
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3. In the text it was stated that the model of Fig. 2-6(a) was not suited to a file server 
using a cache in memory. Why not? Could each process have its own cache? 

4. In a system with threads, is there one stack per thread or one stack per process'? 
Explain. 

5. What is a race condition? 

6. Write a shell script that produces a file of sequential numbers by reading the last 
number in the file, adding 1 to it, and then appending to the file. Run one instance of 
the script in the background and one in the foreground, each accessing the same file. 
How long does it take before a race condition manifests itself? What is the critical 
section? Modify the script to prevent the race (hint: use 

In file file.lock 

to lock the data file). 

7. Is a statement like 

In file file.lock 

an effective locking mechanism for a user program like the scripts used in the previ- 
ous problem? Why (or why not)? 

8. Does the busy waiting solution using the turn variable (Fig. 2-8) work when the two 
processes are running on a shared-memory multiprocessor, that is, two CPUs, sharing 
a common memory? 

9. Consider a computer that does not have a TEST AND SET LOCK instruction but does 
have an instruction to swap the contents of a register and a memory word in a single 
indivisible action. Can that be used to write a routine enter-region such as the one 
found in Fig. 2- 1 O? 

10. Give a sketch of how an operating system that can disable interrupts could implement 
semaphores. 

11. Show how counting semaphores (i-e., semaphores that can hold an arbitrarily large 
value) can be implemented using only binary semaphores and ordinary machine 
instructions. 

12. In Sec. 2.2.4, a situation with a high-priority process, H ,  and a low-priority process, L, 
was described, which led to H looping forever. Does the same problem occur if 
round-robin scheduling is used instead of priority scheduling? Discuss. 

13. Synchronization within monitors uses condition variables and.two special operations, 
WAIT and SIGNAL. A more general form of synchronization would be to have a sin- 
gle primitive, WAITUNTIL that had an arbitrary Boolean predicate as parameter. 
Thus, one could say, for example, 

WAITUNTIL x < 0 or y + t < n 

The SIGNAL primitive would no longer be needed. This scheme is clearly more gen- 
eral than that of Hoare or Brinch Hansen, but i t  is not used. Why not? (Hint: think 
about the implementation.) 
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14. A fast food restaurant has four kinds of employees: ( I )  order takers, who take 
customer's orders; (2) cooks, who prepare the food; (3) packaging specialists, who 
stuff th2 food into bags; and (4) cashiers, who give the bags to customers and take 
their money. Each employee can be regarded as a communicating sequential process. 
What form of interprocess communication do they use? Relate this model to 
processes in MINIX. 

15. Suppose that we have a message-passing system using mailboxes. When sending to a 
full mailbox or trying to receive from an empty one, a process does not block. 
Instead, it gets an error code back. The process responds to the error code by just try- 
ing again, over and over, until it succeeds. Does this scheme lead to race conditions? 

16. In the solution to the dining philosophers problem (Fig. 2-20), why is the state variable 
set to HUNGRY in the procedure take-forks? 

17. Consider the procedure put-forks in Fig. 2-20. Suppose that the variable stateli] was 
set to THINKING ajler the two calls to test, rather than before. How would this 
change affect the solution for the case of 3 philosophers? For 100 philosophers? 

18. The readers and writers problem can be formulated in several ways with regard to 
which category of processes can be started when. Carefully describe three different 
variations of the problem, each one favoring (or not favoring) some category of 
processes. For each variation, specify what happens when a reader or a writer 
becomes ready to access the data base, and what happens when a process is finished 
using the data base. 

19. The CDC 6600 computers could handle up to 10 VO processes simultaneously using 
an interesting forrn of round-robin scheduling called processor sharing. A process 
switch occurred after each instruction, so instruction 1 came from process 1, instruc- 
tion 2 came from process 2, etc. The process switching was done by special hardware, 
and the overhead was zero. If a process needed T sec to complete in the absence of 
competition, how much time would it need if processor sharing was used with n 
processes? 

20. Round robin schedulers normally maintain a list of all runnable processes, with each 
process occurring exactly once in the list. What would happen if a process occurred 
twice in the list? Can you think of any reason for allowing this? 

21. Measurements of a certain system have shown that the average process runs for a time 
T before blocking on VO. A process switch requires a time S, which is effectively 
wasted (overhead). For round-robin scheduling with quantum Q, give a formula for 
the CPU efficiency for each of the following. 

22. Five jobs are waiting to be run. Their expected run times are 9,6 ,  3, 5, and X. In what 
order should they be run to minimize average response time? (Your answer will 
depend on X.) 
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23. Five batch jobs A through E,  arrive at a computer center at almost the same time. 
They have estimated running times of 10, 6.  2, 4. and 8 minutes. Their (externally 
determined) priorities are 3, 5. 2, 1 .  and 4, respectively, with 5 being the highest prior- 
ity. For each of the following scheduling algorithms, determine the mean process tur- 
naround time. Ignore process switching overhead. 

(a) Round robin. 
(b) Priority scheduling. 
(c) First-come, first-served (run in order 10, 6. 2, 4,8). 
(d) Shortest job first. 

For (a), assume that the system is multiprogramrned, and that each job gets its fair 
share of the CPU.. For (b) through (d) assume that only one job at a time runs, until it 
finishes. All jobs are completely CPU bound. 

24. A process running on CTSS needs 30 quanta to complete. How many times must it be 
swapped in, including the very first time (before it has run at all)? 

25. The aging algorithm with a = 1/2 is being used to predict run times. The previous four 
runs, from oldest to most recent, are 40, 20, 40, and 15 msec. What is the prediction 
of the next time? 

26. A soft real-time system has four periodic events with periods of 50, 100, 200, and 250 
rnsec each. Suppose that the four events require 35, 20, 10, and x msec of CPU time, 
respectively. What is the largest value of x for which the system is schedulable? 

27. Explain why two-level scheduling is commonly used. 

28. During execution, MlNIX maintains a variable p r o c p t r  that points to the process table 
entry for the current process. Why? 

29. MINIX does not buffer messages. Explain how this design decision causes problems 
with clock and keyboard interrupts. 

30. When a message is sent to a sleeping process in MIYIX, the procedure reudjl is called 
to put that process on the proper scheduling queue. This procedure starts out by disa- 
bling interrupts. Explain. 

31. The MINIX procedure mini-rec contains a loop. Explain what it is for. 

32. MINIX essentially uses the scheduling method in Fig. 2-23, with different priorities for 
classes. The lowest class (user processes) has round-robin scheduling, but the tasks 
and servers always are allowed to run until they block. Is it possible for processes i n  
the lowest class to starve? Why (or why not)? 

33. k M l N l X  suitable for real-time applications. such as data logging? If not, what could 
be done to make it so? 

34. Assume that you have an operating system that provides semaphores. Implen~ent a 
message system. Write the procedures for sending and receiving messages. 

35. A student majoring in anthropology and minoring in computer science has embarked 
on a research project to see if African baboons can be taught ahout deadlocks. He 
locates a deep canyon and fastens a ropc across it. so the baboons can cross hand- 
over-hand. Several baboon\ .:,iil . I ! ,,, . ! t;~: .*!me time. provided that they dre all 
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going in the same direction. If eastward moving and westward moving baboons ever 
get onto the rope at the same time, a deadlock will result (the baboons will get stuck in 
the middle) because it is impossible for one baboon to climb over another one while 
suspended over the canyon. If a baboon wants to cross the canyon, he must check to 
see that no other baboon is currently crossing in the opposite direction. Write a pro- 
gram using semaphores that avoids deadlock. Do not worry about a series of eastward 
moving baboons holding up the westward moving baboons indefinitely. 

36. Repeat the previous problem, but now avoid starvation. When a baboon that wants to 
cross to the east amves at the rope and finds baboons crossing to the west, he waits 
until the rope is empty, but no more westward moving baboons are allowed to start 
until at least one baboon has crossed the other way. 

37, Solve the dining philosophers problem using monitors instead of semaphores. 

38. Add code to the MINIX kernel to keep track of the number of messages sent from pro- 
cess (or task) i to process (or task) j. Print this matrix when thi: F4 key is hit. 

39. Modify the MINIX scheduler to keep track of how much CPU time each user procegs 
has had recently. When no task or  server wants to run, pick the user process that has 
had the srnallest share of the CPU. 

40. Redesign MINIX so each process has a priority level field in its process table that can 
be used to give higher or lower priorities to individual processes. 

41. Modify the hwint-master and hwint-slave macros i n  mpx386.s so the operations now 
performed by the save function are performed inline. What is the cost in code size? 
Can you measure an increase in performance? 



One of the main functions of an operating system is to control all the corn- 
puter's I/O (Input/Output) devices. It must issue commands to the devices, catch 
interrupts, and handle errors. It should also provide an interface between the de- 
vices and the rest of the system that is simple and easy to use. To the extent pos- 
sible, the interface should be the same fur all devices (device independence). The 
I/O code represents a significant fraction of the total operating system. How the 
operating system manages VO is the subject of this chapter. 

An outline of the chapter is as follows. First we will look briefly at some of 
the principles of U 0  hardware, and then we will look at VO software in general. 
1/0 software can be structured in layers, with each layer having a well-defined 
task to perform. We will look at these layers to see what they do and how they fit 
together. 

After that comes a section on deadlocks. We will define deadlocks precisely, 
show how they are caused, give two models for analyzing them, and discuss some 
algorithms for preventing their occurrence. 

Then we will take a bird's-eye view of 110 in MINIX. Following that introduc- 
tion, we will look at four W 0  devices in detail-the RAM disk, the hard disk, the 
cIock, and the terminal. For each device we will 4ook at its hardware, software, 
and implementation in MINIX. Finally, the chapter closes with a short discussion 
of a little piece of MINIX that is located in the same layer as the YO tasks but is it- 
self not an VO task. It provides some services to the memory manager and file 
system, such as fetching blocks of data from a user process. 
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3.1 PRINCIPLES OF UO HARDWARE 

Different people look at I10 hardware in different ways. Electrical engineers 
look at i t  in terms of chips, wires, power supplies, motors, and all the other physi- 
cal components that make up the hardware. Programmers look at the interface 
presented to the software-the commands the hardware accepts, the functions it 
carries out, and the errors that can be reported back. In this book we are con- 
cerned with programming I/O devices, not designing, building, or maintaining 
them, so our interest will be restricted to how the hardware is programmed, not 
how it works inside. Nevertheless, the programming of many VO devices is often 
intimately connected with their internal operation. In the next three sections we 
will provide a little general background on VO hardware as it relates to pro- 
gramming. 

3.1.1 I/0 Devices 

110 devices can be roughly divided into two categories: block devices and 
character devices. A block device is one that stores information in fixed-size 
blocks, each one with its own address. Common block sizes range from 512 bytes 
to 32,768 bytes. The essential property of a block device is that it is possible to 
read or write each block mdcpcndently of all the other ones. Disks are the most 
common block devices. 

If you look closely, the boundary between devices that are block addressable 
and those that are not is not well defined. Everyone agrees that a disk is a block 
addressable device because no matter where the arm cumently is, it is always pos- 
sible to seek to another cylinder and then wait 'for the required block to rotate 
under the head. Now consider an 8mm or DAT tape drive used for making disk 
backups. Its tapes generally contain fixed-size blocks. If the tape drive is given a 
command to read block N, it can always rewind the tape and go forward until it 
comes to block N. This operation is analogous to a disk doing a seek, except that 
it takes much longer. Also, it may or may not be possible to rewrite one block in 
the middle of a tape. Even if it were possible to use tapes as random access block 
devices, that is stretching the point somewhat: they are normally not used that 
way. 

The other type of I/0 device is the character device. A character device 
delivers or accepts a stream of characters, without regard to any block structure. 
It is not addressable and does not have any seek operation. Printers, network 
interfaces, mice (for pointing), rats (for psychoiogy lab experiments), and most 
other devices that are not disk-like can be seen as character devices. 

This classification scheme is not perfect. Some devices just do not fit in. 
Clocks, -for example, are not block addressable. Nor do they generate or accept 
character streams. All they do is cause interrupts at well-defined intervals. 
Memory-mapped screens do not fit the model weil either. Still, the model of 
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block and character devices is general enough that it can be used as a basis for 
making some of the operating system software dealing with I/O device indepen- 
dent. The file system, for example, deals just with abstract block devices and 
leaves the device-dependent part to lower-level software called device drivers. 

3.1.2 Device Controilers 

I/O units typically consist of a mechanical component and an electronic com- 
ponent. It is often possible to separate the two portions to provide a more modular 
and general design. The electronic component is called the device controller or 
adapter. On personal computers, it  often takes the form of a printed circuit card 
that can be inserted into a slot on the computer's parentboard (previously 
incorrectly called a motherboard). The mechanical component is the device itself. 

The controller card usually has a connector on it, into which a cable leading to 
the device itself can be plugged. Many controllers can handle two, four, or even 
eight identical devices. If the interface between thd controller and device is a 
standard interface, either an official standard such as ANSI, IEEE, or ISO, or a de 
facto one, then companies can make controllers or devices that fit that interface. 
Many campanies, for example, make disk drives that match the IDE (Integrated 
Drive Electronics) or SCSl (Small Computer System Interface) disk controller 
interfaces. 

We mention this distinction between controller and device because the operat- 
ing system nearly always deals with the controller, not the device. Most small 
computers use the single bus model of Fig. 3-1 for communication between the 
CPU and the controllers. Large mainframes often use a different model, with 
multiple buses and specialized VO computers called W 0  channels taking some of 
the load off the main CPU. 

Figure 3-1. A model for connecting the CPU, memory, controIlers, and 110 devices. 

Disk drives Printer 
Controller-device 

interface 

The interface between the controller and the device is often a very low-level 
interface. A disk, for example, might be formatted with 16 sectors of 5 12 bytes 
per track. What actually comes off the drive, however, is a serial bit stream, start- 
ing with a preamble, then the 4096 bits in a sector, and finally a checksum, also 
called an Error-Correcting Code (ECC). The preamble is written when the disk 
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is formatted and contains the cylinder and sector number, the sector size, and sim- 
ilar data, as well as synchronization information. 

The controller's job is to convert the serial bit stream into a block of bytes and 
perform any error correction necessary. The block of bytes is typically first 
assembled, bit by bit, in a buffer inside the controller. After its checksum has 
been verified and the block declared to be error free, i t  can then be copied to main 
memory. 

The controller for a CRT terminal also works as a bit serial device at an 
equally low level, It reads bytes containing the characters to be displayed from 
memory and generates the signals used to modulate the CRT beam to cause it to 
write on the screen. The controller also generates the signals for making the CRT 
beam do a horizontal retrace after it has finished a scan line, as well as the signals 
for making it do a vertical retrace after the entire screen has been scanned. If it 
were not for the CRT controller, the operating system programmer would have to 
explicitly program the analog scanning of the tube. With the controller, the 
operating system initializes the controller with a few parameters, such as the num- 
ber of characters per line and number of lines per screen, and lets the controller 
take care of actually driving the beam. 

Each controller has a few registers that are used for communicating with the 
CPU. On some computers, these registers are part of the regular memory address 
space. This scheme is called memory-mapped UO. The 680x0, for example, 
uses this method. Other computers use a special address space for YO, with each 
controller allocated a certain portion of it. The assignment of I10 addresses to de- 
vices is made by bus decoding logic associated with the controller. Some 
manufacturers of so-called IBM PC compatibles use different I10 addresses from 
those IBM uses, In addition to UO ports, many controllers use interrupts to tell 
the CPU when they are ready to have their registers read or written. An interrupt 
is, in the first place, an electrical event. A hardware Interrupt ReQuest line (IRQ) 
is a physical input to the intempt controller chip. The number of such inputs is 
limited; Pentiurn-class PCs have only 15 available for I/0 devices. Some con- 
trollers are hard-wired onto the system parentboard, as is, for instance, the key- 
board controller of an TBM PC. In the case of a controller that plugs into the 
backplane, switches or wire jumpers on the device controller sometimes can be 
used to select which IRQ the device wilt use, in order to avoid conflicts (although 
with some boards, such as Plug 'n Play, the IRQs can be set in software). The in- 
terrupt controller chip maps each IRQ input to an interrupt vector, which locates 
the corresponding interrupt service software. Figure 3-2 shows the UO addresses, 
hardware interrupts, and interrupt vectors allocated to some of the controllers on 
an IBM PC, as an example. MINIX uses the same hardware intempts, but the 
MINIX interrupt vectors are different from those shown here for MS-DOS. 

The operating system performs VO by writing commands into the controller's 
registers. The IBM PC floppy disk controller, for example, accepts 15 different 
commands, such as READ, WRITE, SEEK, FORMAT, and RECALIBRATE. Many of the 
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I UO controller I UO address I Hardware IRQ I Interrupt vector1 

/ Secondary RS232 1 2F8 - 2FF 3 I 11 I 

Clock 

Keyboard 

Hard disk 

I printer 1 378- 3 7 ~  1 7 I 15 1 
I Floppy disk I 3FO-3F7 I 6 1 14 / 

040 - 043 

060 - 063 

1FO - IF7  

Figure 3-2. Some examples of controllers, their I 1 0  addresses, their hardware 
interrupt lines, and their intenupt vectors on a typical PC running MS-DOS. 
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commands have parameters, which are also loaded into the controller's registers. 
When a command has been accepted, the CPU can leake the controller alone and 
go off to do other work. When the command has been completed, the controller 
causes an interrupt in order to allow the operating system to gain control of the 
CPU and test the results of the operation. The CPU gets the results and device 
status by reading one or more bytes of information from the controller's registers. 

0 

9 

118 

3,1.3 Direct Memory Access (DMA) 

3F8 - 3FF 4 

Many controllers, especially those for block devices, support Direct Memory 
Access or DMA, To explain how DMA works, let us first look at how disk reads 
occur when DMA is not used. First the controller reads the block {one or more 
sectors) from the drive serially, bit by bit, until the entire block i's in the con- 
troller's internal buffer. Next, it computes the checksum to verify that no read 
errors have occurred. Then the controller causes an interrupt. When the operating 
system starts running, it can read the disk block from the controller's buffer a byte 
or a word at a time by executing a loop, with each iteration reading one byte or 
word from a controller device register and storing it in memory. 

Naturally, a programmed CPU loop to read the bytes one at a time from the 
controller wastes CPU time. DMA was invented to free the CPU from this low- 
level work. When it is used, the CPU gives the controller two items of informa- 
tion, in addition to the disk address of the block: the memory address where the 
block is to go, and the number of bytes to transfer, as shown in Fig. 3-3. 

After the controller has read the entire block from the device into its buffer 
and verified the checksum, it copies the first byte or word into the main memory 
at the address specified by the DMA memory address. Then it increments the 
DMA address and decrements the DMA count by the number of bytes just trans- 
ferred. This process is repeated until the DMA count becomes zero, at which time 

12 
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Figure 3-3. A DMA transfer is done entirely by the controller. 

the controller causes an interrupt. When the operating system starts up, it does 
not have to copy the block to memory; it is already there. 

You may be wondering why the controller does not just store the bytes in 
main memory as soon as it gets them from the disk. In other words, why does it 
need an internal buffer? The reason is that once a disk transfer has started, the 
bits keep arriving from the disk at a constant rate, whether the controller is ready 
for them or not. If the controller tried to write data directly to memory, it would 
have to go over the system bus for each word transferred. If the bus were busy 
due to some other device using it, the controller would have to wait. If the next 
disk word arrived before the previous one had been stored, the controller would 
have to store it somewhere. If the bus were very busy, the controller might end up 
storing quite a few words and having a lot of administration to do as well. When 
the block is buffered internally, the bus is not needed until the DMA begins, so 
the design of the controller is much simpler because the DMA transfer to memory 
is not time critical. (Some older controllers did, in fact, go directly to memory 
with only a small amount of internal buffering, but when the bus was very busy, a 
transfer might have had to be terminated with an overrun error.) 

The two-step buffering process described above has important impkations 
for IiO performance. While the data are being transferred from the controller to 
the memory, either by the CPU or by the controller, the next sector will be passing 
under the disk head and the bits arriving in the controller. Simple controllers just 
cannot cope with doing input and output at the same time, so while a memory 
transfer is taking place, the sector passing under the disk head is lost. 

As a result, the controller will be able to read only every other block. Read- 
ing a complete track will then require two full rotations, one for the even blocks 
and one for the odd blocks. If the time to transfer a block from the controller to 
memory over the bus is longer than the time to read a block from the disk, it may 
be necessary to read one block and then skip two (or more) blocks. 

Skipping blocks to give the controller time to transfer data to memory is 
called interleaving. When the disk is formatted, the blocks are numbered to take 
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account of the interleave factor, In Fig. 3-4(a) we see a disk with 8 blocks per 
track and no interleaving. In Fig. 3-4i.b) we see the same disk with single inter- 
leaving. In Fig. 3-4(c) double interleaving is shown. 

Figure 3-4. (a) No interleaving. (b) Single interleaving. (c)  Double interleaving. 

The idea of numbering the blocks this way is to allow the operating system to 
read consecutively numbered blocks and still achieve the maximum speed of 
which the hardware is capable. If  the blocks were numbered as in Fig. 3-4(a) but 
the controller could read only alternate blocks, an operating system that allocated 
an 8-block file in consecutive disk blocks would require eight disk rotations to 
read blocks 0 through 7 in order. (Of course, if the operating system knew about 
the problem and allocated its blocks differently, it could solve the problem in soft- 
ware, but it is better to have the controller worry about the interleaving.) 

Not all computers use DMA. The argument against it is that the main CPU is 
often far faster than the DMA controller and can do the job much faster (when the 
limiting factor is not the speed of the I/O device). If there is no other work for i t  
to do, having the (fast) CPU wait for the (slow) DMA controller to finish is point- 
less. Also, getting rid of the DMA controller and having the CPU do all the work 
in software saves some money. 

3.2 PRINCIPLES OF I/0 SOFTWARE 
Let us turn away from the hardware and now look at how the 1/0 software is 

structured. The general goals of the VO software are easy to state. The basic idea 
is to organize the software as a series of layers, with the lower ones concerned 
with hiding the peculiarities of the hardware from the upper-ones, and the upper 
ones concerned with presenting a nice, clean, regular interface to the users. In the 
following sections we will look at these goals and how they are achieved. 

3.2.1 Goals of the VO Software 

A key concept in the design of I/O software is known as device indepen- 
dence. What i t  Incans ih that it  should be possible to write programs that can read 
fiics rlrr a l!c?ppv disk. on a Isard disk. or on a CD-ROM, without having to modify 
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the programs for each different device type. One should be able to type a corn- 
mand such as 

sort <input >output 

and have it work with input coming from a floppy disk, a hard disk, or the key- 
board, and the output going to the floppy disk, the hard disk, or even the screen. It 
is up to the operating system to take care of the problems caused by the fact that 
these devices really are different and require very different device drivers to actu- 
aliy write the data to the output device. 

Clokly related to device independence is the goal of uniform naming. The 
name of a. file or a device should simply be a string or an integer and not depend 
on the device in any way. In UNIX, all disks can be integrated together in the file 
system hierarchy in arbitrary ways so the user need not be aware of which name 
corresponds to which device. For example, a floppy disk can be mounted on top 
of the directory /usr/ast;/backup so that copying a file to /usr/ast/backup/moaday 
copies the file to the floppy disk. In this way, all files and devices are addressed 
the same way: by a path name. 

Another important issue for VO software is error handling. In general, errors 
should be handled as close to the hardware as possible. If the controller discovers 
a read error, it should try to correct the error itself if it can. If it cannot, then the 
device driver should handle it, perhaps by just trying to read the block again. 
Many errors are transient, such as read errors caused by specks of dust on the read 
head, and will go away if the operation is repeated. Only if the lower layers are 
not able to deal with the problem should the upper layers be told about it. In 
many cases, error recovery can be done transparently at a low level without the 
upper levels even knowing about the error. 

Still another key issue is synchronous (blocking) versus asynchronous (inter- 
rupt-driven) transfers. Most physical 110 is asynchronous-the CPU starts the 
transfer and goes off to do something else until the interrupt arrives. User pro- 
grams are much easier to write if the YO operations are blocking-after a READ 
command the program is automatically suspended until the data are available in 
the buffer. It is up to the operating system to make operations that are actually in- 
tempt-driven look blocking to the user programs. 

The final concept that we will deal with here is sharable versus dedicated de- 
vices. Some YO devices, such as disks, can be used by many users at the same 
time. N o  problems are caused by multiple users having open files on the same 
disk at the same time. Other devices, such as tape drives, have to be dedicated to 
a single user until that user is finished. Then another user can have the tape drive. 
Having two or more users writing blocks intermixed at random to the same tape 
wit1 definiteIy not work. Introducing dedicated (unshared) devices also introduces 
a variety of problems. Again, the operating system must be able to handle both 
shared and dedicated devices in a way that avoids problems. 
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These goals can be achieved in a comprehensible and efficient way by struc- 
turing the I10 software in four layers: 

I .  Interrupt handlers (bottom). 

2. Device drivers. 

3. Device-independent operating system software. 

4. User-level software (top). 

These four layers iue (not accidently) the same four layers that we saw in Fig. 2- 
26. In the followirrg sections we will look at each one in turn, starting at the bot- 
tom. The emphasis in this chapter is on the device drivers (layer 2), but we will 
summarize the rest of the VO software to show how the various pieces of the VO 
system fit together. 

3.2.2 Interrupt Handlers 

Interrupts are an unpleasant fact of life. They should be hidden away, deep in 
the bowels of the operating system, so that as little of the system as possible 
knows about them. The best way to hide them is to have every process starting an 
I10 o g e r a t i o n ~ t i l  the I/0 has compteted and the interrupt occurs. The 
process can block itself by doing a DOWN on a semaphore, a WAIT on a condition 
variable, orma RECEIVE on a message, for example. 

When the interrupt happens, the interrupt procedure does whatever it has to in 
order to unblock the process that started it. In some systems i t  will do an UP on a 
semaphore. In others it will do a SIGNAL on a condition variable in a monitor. In 
still others, it will send a message to the blocked process. In all cases the net 
effect of the interrupt will be that a process that was previously blocked will now 
be able to run. 

3.2.3 Device Drivers 

All the device-dependent code goes in the device drivers. Each device driver 
handles one device type, or at most, one class of closely related devices. For ex- 
ample, it would probably be a good idea to have a single terminal driver, even if 
the system supported several different brands of terminals, all slightly different. 
On the other hand, a dumb, mechanical hardcopy terminal and an intelligent bit- 
map graphics terminal with a mouse are so different that different drivers should 
be used. 

Earlier in this chapter we looked at what device controllers do. We saw that 
each controller has one or more device registers used to give it commands. The 
device drivers issue these commands and check that they are carried out properly. 
Thus, the disk driver is the only part of the operating system that knows how 
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many registers that disk controller has and what they are used for. It alone knows 
about sectors. tracks. cylinders, heads, arm motion. interleave factors, motor 
drives. head settling times, and all the other mechanics of making the disk work 
properly. 

In general terms, the job of a device driver is to accept abstract requests from 
the device-independent software above it and see to it that the request is executed. 
A typical request is to read block n. If the driver is idle at the time a request 
comes in, it starts carrying out the request immediately. If, however, it is already 
busy with a request, it will normally enter the new request into a queue of pending 
requests to be dealt with as soon as possible. 

The first step in actually carrying out an 110 request, say, for a disk, is to 
translate it from abstract to concrete terms. For a disk driver, this means figuring 
out where an the disk the requested block actually is, checking to see if the drive's 
motor is running, determining if the arm is positioned on the proper cylinder, and 
sc! on. In short, it must decide which controller operations are required and in 
what sequence. 

Once it has determined which commands to issue to the controller, it starts 
issuing them by writing into the controller's device registers. Some controllers 
can handle only one command at a time. Other controllers are willing to accept a 
linked list of commands, which they then carry out by themselves without fixther 
help from the operating system. 

After the command or commands have been issued, one of two situations will 
apply. In many cases the device driver must wait until the controller does some 
work for i t ,  so i t  blocks itself until the interrupt comes in to unblock it. In ~ t h e r  
cases, however, the operation finishes without delay, so the driver need not block. 
As an example of the latter situation, scrolling the screen on some terminals re- 
quires just writing a few bytes into the controller's registers. N o  mechanical 
motion is needed, so the entire operation can be completed in a few microseconds. 

In the former case, the blocked driver will be awakened by the intempt. In  
the latter case, it will never g o  to sleep. Either way, after the operation has been 
completed, it must check for errors. If everything is all right, the driver may have 
data to pass to the device-independent software (e.g., a block just  read). Finally, 
i t  returns some status information for error reporting back to its caller. If any 
other requests are queued, one of them can now be selected and started. If noth- 
ing is queued, the driver blocks waiting for the next request. 

3.2.4 Device-Independent VO Software 

Although some of the I/0 software is device specific, a large fraction of it is 
device independent. The exact boundary between the drivers and the device- 
independent software is system dependent, because some functions that could be 
done in a device-independent way may actually be done in the drivers, for effi- 
ciency or other reasons. The functions shown in Fig. 3-5 are typically done in the 
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device-independent software. In MINIX, most of the device-independent software 
is part of the file system, in layer 3 (Fig. 2-26). Although we will study the file 
system in Chap. 5, we will take a quick look at the device-independent software 
here, to provide some perspective on I/0 and show better where the drivers fit in. 

Uniform interfacing for device drivers 

Device naming --I 
Device protection -----! 

I Providing a device-independent block size 1 
1 Buffering 1 
I Storage allocation on block devices 1 

and releasing dedicated devices 

Figure 3-5. Functions of the device-independent IIO software. 

The basic function of the device-independent software is to perform the UO 
functions that are common to all devices and to provide a uniform interface to the 
user-level software. 

A major issue in an operating system is how objects such as files and I/O de- 
vices are named. The device-independent software takes care of mapping sym- 
bolic device names onto the proper driver. In UNIX a device name, such as 
/dev/tt~OO, uniquely specifies the i-node for a special file, and this i-node contains 
the major device number, which is used to locate the appropriate driver. The i -  
node also contains the minor device number, which is passed as a parameter to 
the driver to specify the unit to be read or written. 

Closely related to naming is protection. How does the system prevent users 
from accessing devices that they are not entitled to access? In most personal com- 
puter systems, there is no protection at all, Any process can do anything it wants 
to. In most mainframe systems, access to YO devices by user processes is com- 
pletely forbidden. In UNIX, a more flexible scheme is used. The special files 
corresponding to I/0 devices are protected by the usual rwx bits. The system 
administrator can then set the proper permissions for each device. 

Different disks may have different sector sizes. It is up to the device-indep- 
endent software to hide this fact and provide a uniform block size to higher layers, 
for example, by treating several sectors as a single logical block. In this way, the 
higher layers only deal with abstract devices that all use the same logical block 
size, independent of the physical sector size. Similarly, some character devices 
deliver their data one byte at a time (e-g., modems), while others deliver theirs in 
larger units (e.g., network interfaces). These differences must also be hidden. 
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Buffering is also an issue, both for block and character devices. For block de- 
vices, the hardware generally insists upon reading and writing entire blocks at 
once, but user processes are free to read and write iz arbitrary units. If a user 
process writes half a block, the operating system will normally keep the data 
around internally until the rest of the data are written, at which time the block can 
go out to the disk. For character devices, users can write data to the system faster 
than it can be output, necessitating buffering. Keyboard input that arrives before 
it is needed also requires buffering. 

When a file is created and filled with data, new disk blocks have to be allo- 
cated to the file. To perform this allocation, the operating system needs a list or 
bit map of free blocks per disk, but the algorithm for locating a free block is de- 
vice independent and can be done above the level of the driver. 

Some devices, such as CD-ROM recorders, can be used only by a single proc- 
ess at any given moment. It is up to the operating system to examine requests for 
device usage and accept or reject them, depending on whether the requested de- 
vice is available or not. A simple way to handle these requests is to require proc- 
esses to perform OPENS on the special files for devices directly. If the device is 
unavailable, the OPEN will fail. Closing such a dedicated device would then 
release it. 

Error handling, by and large, is done by the drivers. Most errors are highly 
device dependent, so only the driver knows what to do (e-g., retry, ignore it, 
panic). A typical error is caused by a disk block that has been damaged and can- 
not be read any more. After the driver has tried to read the block a certain number 
of times, it gives up and informs the device-independent software. How the error 
is treated from here on is device independent. If theerror occurred while reading 
a user file, it may be sufficient to report the error back to the caller. However, if it 
occurred while reading a critical system data structure, such as the block contain- 
ing the bit map showing which blocks are free, the operating system may have no 
choice but to print an error message and terminate. 

3.2.5 User-Space VO Software 

Although most of the VO software is within the operating system, a small por- 
tion of it consists of libraries linked together with user programs, and even whole 
programs running outside the kernel. System calls, including the 1/0 system calls, 
are normally made by library procedures. When a C program contains the call 

count = write(fd, buffer, nbytes); 

the library procedure write will be linked with the program and contained in the 
binary program present in memory at run time. The collection of all these library 
procedures is clearly part of the I/O system. 

While these procedures do l~ttle more than put their parameters in the 
appropriate place for the system call, there are other I10 procedures that actually 
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do real work. In particular, formatting of input and output is done by library pro- 
cedures. One example from C is prinzf, which takes a format string and possibly 
some variables as input, builds an ASCII string, and then calls WRITE to output the 
string. An example of a similar procedure for input is scanf which reads input and 
stores it into variables described in a format string using the same syntax as printf, 
The standard I/0 library contains a number of procedures that involve VO and all 
run as part of user programs. 

Not all user-level 1/0 software consists of library procedures. Another impor- 
tant category is the spooling system. Spooling is a way of dealing with dedicated 
UO devices in a multiprogramming system. Consider a typical spooled device: a 
printer. Although it would be technically easy to let any user process open the 
character special file for the printer, suppose a process opened it and then did 
nothing for hours. No other process could print anything. 

Instead what is done is to create a special process, called a daemon, and a 
special directory, called a spooling directory. To print a file, a process first gen- 
erates the entire file to be printed and puts it in the spooling directory. It is up to 
the daemon, which is the only process having permission to use the printer's spe- 
cial file, to print the files in the directory. By protecting the special file against 
direct use by users, the problem of having someone keeping it open unnecessarily 
long is eliminated. 

Spooling is not only used for printers. It is also used in other situations. For 
exampIe, fiIe transfer over a network often uses a network daemon. To send a file 
somewhere, a user puts it in a network spooling directory. Later on, the network 
daemon takes it out and transmits it. One particular use of spooled file transmis- 
sion is the Internet eIectronic mail system. This network consists of millions of 
machines around the world communicating using many computer networks. To 
send mail to someone, you call a program such as send, which accepts the letter to 
be sent and then deposits it in a spooling directory for transmission later. The en- 
tire mail system runs outside the operating system. 

Figure 3-6 summarizes the I/0 system, showing all the layers and the princi- 
pal functions of each layer. Starting at the bottom, the layers are the hardware, 
interrupt handlers, device drivers, device-independent software, and finally the 
user processes. 

The arrows in Fig. 3-6 show the flow of control. When a user program tries to 
read a block from a file, for example, the operating system is invoked to carry out 
the call. The device-independent software looks in the block cache, for example. 
If the needed block is not there, it calls the device driver to issue the request to the 
hardware. The process is then blocked until the disk operation has been com- 
pleted. 

When the disk is finished, the hardware generates an interrupt. The interrupt 
handler is run to discover what has happened, that is, which device wants atten- 
tion right now. It then extracts the status from the device and wakes up the sleep- 
ing process to finish off the I/0 request and let the user process continue. 
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3.3 DEADLOCKS 

Computer systems are full of resources that can only be used by one process 
at a time. Common examples include flatbed plotters, CD-ROM readers, CD- 
ROM recorders, 8mm DAT tape drive backup systems, imagesetters, and slots in 
the system's process table. Having two processes simultaneously writing to the 
printer leads to gibberish. Having two processes using the same slot in the pro- 
cess table will probably lead to a system crash. Consequently, all operating sys- 
tems have the ability to (temporarily) grant a process exclusive access to certain 
resources, 

For many applications, a process needs exclusive access to not one resource, 
but several. Consider, for example, a marketing company that specializes in rnak- 
ing large, detailed demographic maps of the United States on a I-meter wide 
flatbed plotter. The demographic information comes from CD-ROMs containing 
census and other data. Suppose that process A asks for the CD-ROM drive and 
gets it. A moment later, process B asks for the flatbed plotter and gets it, too. 
Now process A asks for the plotter and blocks waiting for it. Finally, process B 
asks for the CD-ROM drive and also blocks. At this point both processes are 
blocked and will remain so forever. This situation is called a deadlock. 
Deadlocks are not a good thing to have in your system. 

Deadlocks can occur in many situations besides requesting dedicated 110 de- 
vices. In  a data base system, for example, a program may have to lock several 
records it is using, to avoid race conditions. If process A locks record R l  and 
process B locks record R2, and then each process tries to lock the other one's 
record, we also have a deadlock. Thus deadlocks can occur on hardware re- 
sources or on software resources. 

In this seutirm wt. will examlne deadlocks more closely to see how they arise 
and h o w  !;ley can he pr-e~~entrd or d\.aided. A5 exarnfzlc\. we nil1 talk about 

User processes 
- 1  

t Device-independent I + 1 software 

t Device drivers 
+. 

Interrupt handlers 

I 
Hardware 

Make 110 call; format I/O; spooling 

Naming, protection, blocking, buffering, allocation 

Set up device registers; check status 

Wake up driver when 110 completed 

Perform 1 1 0  operation 
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acquiring physical devices such as tape drives, CD-ROM drives, and plotters, 
because these are easy to visualize, but the principles and algorithms hold equally 
well for other kinds of deadlocks. 

3.3.1 Resources 

Deadlocks can occur when processes have been granted exclusive access to 
devices, files, and so forth. To make the discussion of deadlocks as general as 
possible, we will refer to the objects granted as resources. A resource can be a 
hardware device (e.g., a tape drive) or a piece of information (e.g., a locked 
record in a data base). A computer will normally have many different resources 
that can be acquired. For some resources, several identical instances may be 
available, such as three tape drives. When several copies of a resource are avail- 
able, any one of them can be used to satisfy any request for the resource. In short, 
a resource is anything that can only be used by a single process at any instant. 

Resources come in two types: preemptable and nonpreemptable. A preempt- 
able resource is one that can be taken away from the process owning it with no ill 
effects. Memory is an example of a preemptable resource. Consider, for ex- 
ample, a system with 5 12K of user memory, one printer, and two 5 12K processes 
that each want to print something. Process A requests and gets the printer, then 
starts to compute the values to print. Before it has finished with the computation, 
it exceeds its time quantum and is swapped out. 

Process B now runs and tries, unsuccessfully, to acquire the printer. Poten- 
tially. we now have a deadlock situation, because A has the printer and B has the 
memory, and neither can proceed without the resource held by the other. For- 
tunately, it is possible to preempt (take away) the memory from B by swapping it 

out and swapping A in. Now A can run, do its printing, and then release the 
printer. No deadlock occurs. 

A nonpreemptable resource, in contrast, is one that cannot be taken away 
from its current owner without causing the computation to fail. If a process has 
begun to print output, taking the printer away from it and giving it to another 
process will result in garbled output. Printers are not preemptable. 

In general, deadlocks involve nonpreemptable resources. Potential deadlocks 
that involve preemptable ones can usually be resolved by reallocating resources 
from one process to another. Thus our treatment will focus on nonpreemptable re- 
sources. 

The sequence of events required to use a resource is: 

1. Request the resource. 

2. Use the resource. 

3. Release the resource. 

If the resource is not available when it is requested, the requesting process is 
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forced to wait. In some operating systems, the process is automatically blocked 
when a resource request fails and awakened when it becomes available. In other 
systems, the request fails with an error code, and it is up to the calling process to 
wait a little while and try again. 

3.3.2 Principles of Deadlock 

Deadlock can be defined formally as follows: 

A set of processes is deadlocked if each process in the set is waiting for an 
evenr that only another process in the set can cause. 

Because all the processes are waiting, none of them will ever cause any of the 
events that could wake up any of the other members of the set, and all the proc- 
esses continue to wait forever. 

In most cases, the event that each process is waiting for is the release of some 
resource currently possessed by another member of the set. In other words, each 
member of the set of deadlocked processes is waiting for a resource that is owned 
by a deadlocked process. None of the processes can run, none of them can release 
any regources, and none of them can be awakened. The number of processes and 
the number and kind of resources possessed and requested are unimportant. 

Conditions for Deadlock 

Coffrnan et al. (1971) showed that four conditions must hold for there to be a 
deadlock: 

I. Mutual exclusion condition. Each resource is either currently 
assigned to exactly one process or is available. 

2. Hold and wait condition. Processes currently holding resources 
granted earlier can request new resources. 

3. No preemption condition. Resources previously granted cannot be 
forcibly taken away from a process. They must be explicitly 
released by the process holding them. 

4. Circular wait condition. There must be a circular chain of two or 
more processes, each of which is waiting for a resource held by the 
next member of the chain. 

All four of these conditions must be present for a deadlock to occur. If one or 
more of these conditions is absent, no deadlock is possible. 
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Deadlock Modeling 

Holt (1972) showed how these four conditions can be modeled using directed 
graphs. The graphs have two kinds of nodes: processes, shown as circles, and re- 
sources, shown as squares. An arc from a resource node (square) to a process 
node (circle) means that the resource previously has been requested by, granted 
to, and is currently held by that process. In Fig. 3-7(a), resource R is currently 
assigned to process A. 

Figure 3-7. Resource allocation graphs. (a) Holding a resource. (b) Requesting 
a resource. (c) Deadlock. 

An arc from a process to a resource means that the process is currently 
blocked waiting for that resource. In Fig. 3-7(b) process B is waiting for resource 
S. In Fig. 3-7(c) we see a deadlock: process C is waiting for resource T, which is 
currently held by process D. Process D is not about to release resource T because 
it is waiting for resource U, held by C. Both processes will wait forever. A cycle 
i n  the graph means that there is a deadlock involving the processes and res*&rces 
i n  the cycle. In this example, the cycle is C-T-D-I/-C. 

Now let us look at an example of how resource graphs can be used. lmagine 
that we have three processes, A,  B, and C, and three resources, R, S, and T. The 
requests and releases of the three processes are given in Fig. 3-8(a)-(c). The 
operating system is free to run any unblocked process at any instant, so it could 
decide to run A until A finished a11 its work, then run B to completion, and finally 
run C .  

This ordering does not lead to any deadlocks (because there is no competition 
for resources) but it also has no parallelism at all, In addition to requesting and 
releasing resources, processes compute and do U0. When the processes are run 
sequentially, there is no possibility that while one process is waiting for VO, 
another can use the CPU. Thus running the processes strictly sequentially may 
not be optimal. On the other hand, if none of the processes do any I/0 at all, shor- 
test job first is better than round robin, so under some circumstances running all 
processes sequentially may be the best way. 

Let us now suppose that the processes do both I/0 and computing, so that 
round robin is a reasonable scheduling algorithm. The resource requests might 
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occur in the order of Fig. 3-8(d). If these six requests are carried out in that order, 
the six resulting resource graphs are shown in Fig. 3-8(e)-(j). After request 4 has 
been made, A blocks waiting for S, as shown in Fig. 3-8(h). In the next two steps 
B and C also block, ultimately leading to a cycle and the deadlock of Fig. 3-8Cj). 

However, as we have already mentioned, the operating system is not required 
to run the processes in any special order. In particular, if granting a particular re- 
quest might lead to deadlock, the operating system can simply suspend the proc- 
ess without granting the request ( i x . ,  just not schedule the process) until it is safe. 
In Fig. 3-8, if the operating system knew about the impending deadlock, it could 
suspend B instead of granting it S. By running only A and C, we would get the re- 
quests and releases of Fig. 3-8(k) instead of Fig. 3-8(d). This sequence leads to 
the resource graphs of Fig, 3-8(1)-(q), which do not lead to deadlock. 

After step (q), process B can be granted S because A is finished and C has 
everything it needs. Even if B should eventually block when requesting T, no 
deadlock can occur. B will just wait until C is finished. 

Later in this chapter we will study a detailed algorithm for making allocation 
decisions that do not lead to deadlock. The point to understand now is that re- 
source graphs are a tool that let us see if a given requesthelease sequence leads to 
deadlock, We just carry out the requests and releases step by step, and after every 
step check the graph to see if it contains any cycles. If so, we have a deadlock; if 
not, there is no deadlock. Although our treatment of resource graphs has been for 
the case of a single resource of each type, resource graphs can also be generalized 
to handle multiple resources of the same type (Holt, 1972). 

In  general, four strategies are used for dealing with deadlocks. 

1. Just ignore the problem altogether. 

2. Detection and recovery. 

3. Dynamic avoidance by careful resource allocation. 

4. Prevention, by structurally negating one of the four required conditions. 

We will examine each of these methods in turn in the next four sections. 

3.3.3 The Ostrich Algorithm 

The simplest approach is the ostrich algorithm: stick your head in the sand 
and pretend there is no  problem at all. Different people react to this strategy in 
different ways. Mathematicians find it totally unacceptable and say that dead- 
locks rnwt be prevented at all costs. Engineers ask how often the problem is 
expected, how often the system crashes for other reasons, and how serious a dead- 
lock is. If deadiocks occur on the average once every 50 years, but system 
crashes due to hardware failures, compiler errors, and operating system bugs 
occur once a month, most engineers would not be willing to pay a large penalty in 
performance or convenience to eliminate deadlocks. 
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1. A requests R 
2, 0 requests S 
3. C requests T 
4. A requests S 
5. B requests T 
6. C requests R 

deadlock 

A 
Request R 
Request S 
Release R 
Release S 

(4 

B 
Request S 
Request f 
Release S 
Release T 

C 
Request T 
Request R 
Release T 
Release R 

(a 

1. A requests R 
2. C requests T 

5. A releases R 
6. A releases S 

no deadlock 

(0)  (P) (9) 

Figure 3-8. An examp!e of how deadlock occurs and how it can be avoided. 
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To make this contrast more specific, UNIX (and MINIX) potentially suffer from 
deadlocks that are not even detected, let alone automatically broken. The total 
number of processes in the system is determined by the number of entries in the 
process table. Thus process table slots are finite resources. If a FORK fails 
because the table is full, a reasonable approach for the program doing the FORK is 
to wait a random time and try again. 

Now suppose that a UNIX system has 100 process slots. Ten programs are 
running, each of which needs to create 12 (sub)processes. After each process has 
created 9 processes, the 10 original processes and the 90 new processes have 
exhausted the table. Each of the 10 original processes now sits in an endless loop 
forking and faiIing-a deadlock. The probability of this happening is minuscule, 
but it could happen. Should we abandon processes and the FORK call to eliminate 
the problem? 

The maximum number of open files is similarly restricted by the size of the i- 
node table, so a similar problem occurs when it  fills up. Swap space on the disk is 
another limited resource. In fact, almost every table in the operating system 
represents a finite resource. Should we abolish all of these because it might hap- 
pen that a collection of 12 processes might each claim I /n  of the total, and then 
each try to claim another one? 

The UNIX approach is just to ignore the problem on the assumption that most 
users would prefer an occasional deadlock to a rule restricting all users to one 
process. one open file, and one of everything. If deadlocks could be eliminated 
for free, there would not be much discussion. The problem is that the price is 
high, mostly in terms of putting inconvenient restrictions on processes, as we wifl 
see shortly. Thus we are faced with an unpleasant trade-off between convenience 
and correctness, and a great deal of discussion about which is more important. 

3.3.4 Detection and Recovery 

A second technique is detection and recovery. When this technique is used, 
the system does not do anything except monitor the requests and releases of re- 
sources. Every time a resource is requested or released, the resource graph is 
updated, and a check is made to see if any cycles exist, If a cycle exists, one of 
the processes in the cycle is killed. If this does not break the deadlock, another 
process is killed, and so on until the cycle is broken. 

A somewhat cruder method is to not even maintain the resource graph but in- 
stead periodically check to see if there are any processes that have been continu- 
ously blocked for more than say, 1 hour. Such processes are then killed. 

Detection and recovery is the strategy often used on large mainframe com- 
puters, especially batch systems in which killing a process and then restarting i t  is 
usuaIIy acceptable. Care must be taken to restore any modified files to their origi- 
nal state, however, and undo any other side effects that may have occurred. 
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3.3.5 Deadlock Prevention 

The third deadlock strategy is to impose suitable restrictions on processes so 
that deadlocks are structurally impossible. The four conditions stated by Coffman 
et al. (1971) provide a clue to some possible solutions. If we can ensure that at 
least one of these conditions is never satisfied, then deadlocks will be impossible 
(Havender, 1968). 

First let us attack the mutual exclusion condition. If no resource were ever 
assigned exclusively to a single process, we would never have deadlocks. How- 
ever, it is equally clear that allowing two processes to write on the printer at the 
same time will lead to chaos. By spooling printer output, several processes can 
generate output at the same time. In  this model, the only process that actually re- 
quests the physical printer is the printer daemon. Since the daemon never re- 
quests any other resources, we can eliminate deadlock for the printer. 

Unfortunately, not all devices can be spooled (the process table does not lend 
itself well to being spooled). Furthermore, competition for disk space for spool- 
ing can itself lead to deadlock. What would happen if two processes each filled 
up half of the available spooling space with output and neither was finished? If 
the daemon were programmed to begin printing even before all the output were 
spooled, the printer might lie idle if an output process decided to wait several 
hours after the first burst of output. For this reason, &demons are normally pro- 
grammed to print only after the compIete output file is available. Neither process 
will ever finish, so we have a deadlock on the disk. 

The second of the conditions stated by Coffman et al. looks more promising. 
If we can prevent processes that hold resources from waiting for more resources, 
we can eliminate deadlocks. One way to achieve this goal is to require all proc- 
esses to request all their resources before starting execution. If everything were 
available. the process would be allocated whatever it needed and could run to 
completion. If one or more resources were busy. nothing would be allocated and 
the process would just wait. 

An immediate problem with this approach is that many processes do not know 
how many resources they will need until they have started running. Another prub- 
lem is that resources will not be used optimally with this approach. Take. as an 
example, a process that reads data from an input tape. analyzes it for an hour, and 
then writes an output tape as well as plots the results. If all resources must be re- 
quested in advance, the process will tie up the output tape drive and the plotter for 
an hour. 

A slightly different way to break the hold-and-wait condition is to require a 
process requesting a resource to first temporarily release all the resources it cur- 
rently holds. Only if the request is successful can i t  get the original resources 
back. 

Attacking the third condition (no preemption) is even less promising than 
attacking the second one. If a process has been assigned the printer and is in the 
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middle of printing its output, forcibly taking away the printer because a needed 
plotter i h  not available will lead to a mess. 

Only one condition is left. The circular wait can be eliminated in several 
ways. One way is simply to have a rule saying that a process is entitled only to a 
single resource at any moment. If it needs a second one, it must release the first 
one. For a process that needs to copy a huge file from a tape to a printer, this res- 
triction is unacceptable. 

Another way to avoid the circular wait is to provide a global numbering of all 
the resources, as shown in Fig. 3-9(a). Now the rule is this: processes can request 
resources whenever they want to, but all requests must be made in numerical 
order. A process may request first a printer and then a tape drive, but it may not 
request first a plotter and then a printer. 

1. CD-ROM 
2. Printer 
3. Plotter 
4. Tape drive 
5. Robot arm 

Figure 3-9. (a) Numerically ordered resources. (b) A resource graph. 

With this rule, the resource allocation graph can never have cycles. Let us see 
why this is true for the case of two processes, in Fig. 3-9(b). We can get a dead- 
lock only if A requests resource j and B requests resource i. Assuming i and j are 
distinct resources, they will have different numbers. If i > j, then A is not allowed 
to request j. If i < j, then B is not allowed to request i. Either way, deadlock is 
impossible. 

With multiple processes the same logic holds. At every instant, one of the 
assigned resources will be highest. The process holding that resource will never 
ask for a resource already assigned, It will either finish, or at worst, request even 
higher numbered resources, all of which are available. Eventually, i t  will finish 
and free its resources. At this point, some other process will hold the highest re- 
source and can also finish. In short, there exists a scenario in which all processes 
finish, so no deadlock is present. 

A minor variation of this algorithm is to drop the requirement that resources 
be acquired in strictly increasing sequence and merely insist that no process re- 
quest a resource lower than what it is already holding. If a process initially re- 
quests 9 and 10, and then releases both of them, it is effectively starting all over, 
so there is no reason to prohibit it from now requesting resource 1 .  

Although numerically ordering the resources eliminates the problem of dead- 
locks, i t  may be impossible to find an ordering that satisfies everyone. When the 
resources include procesi; table slots, disk spooier space, locked data base records. 
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and other abstract resources, the number of potential resources and different uses 
may be so large that no ordering could possibly work. 

The various approaches to deadlock prevention are summarized in Fig. 3- 1 0. 

I Mutual exclusion / Spool everything 

Condition 

I Hold and wait Request all resources initially 

Approach 

No preemption 

Figure 3-10. Summary of approaches to deadlock prevention. 

Take resources away 

Circular wait 

3.3.6 Deadlock Avoidance 

Order resources numerically 

In Fig. 3-8 we saw that deadlock was avoided not by imposing arbitrary rules 
on processes but by carefully analyzing each resource request to see if it could be 
safely granted. The question arises: is there an algorithm that can always avdd 
deadlock by making the right choice all the time? The answer is a qualified 
yes-we can avoid deadlocks, but only if certain information is available in 
advance. In this section we examine ways to avoid deadlock by careful resource 
allocation. 

The Banker's Algorithm for r Single Resource 

A scheduling algorithm that can avoid deadlocks is due to Dijkstra ( 1965) and 
is known as the banker's algorithm. [t is modeled on the way a small-town 
banker might deal with a group of customers to whom he has granted lines of 
credit. In Fig. 3- l l (a) we see four customers, each of whom has been granted a 
certain number of credit units (e-g., I unit is 1K dollars). The banker knows that 
not all customers will need their maximum credit immediately, so he has only 
reserved 10 units rather than 22 to service them. (In this analogy, customers are 
processes, units are, say, tape drives, and the banker is the operating system.) 

The customers go about their respective businesses, making loan requests 
from time to time. At a certain moment, the situation is as shown in Fig. 3- 1 1 (b). 
A list of customers showing the money already loaned (tape drives already 
assigned) and the maximum credit available (maximum number of tape drives 
needed at once later) is called the state of the system with respect to resource al- 
location. 

A state is said to be a safe state if there exists a sequence of other states that 
leads to all the customers getting loans up to their credit limits (all the processes 
getting all their resources and terminating). The state of Fig. 3-1 l(b) is safe 
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Used Maximum 

Barbara 

Marvin 

Suzanne 4 7 

Available: 1 

Figure 3-11. Three resource allocation states: (a) Safe. (b) Safe. (c) Unsafe. 

because with two units left, the banker can delay any requests except Marvin's, 
thus letting Marvin finish and release all four of his resources. With four units in 
hand, the banker can let either Suzanne or Barbara have the necessary units, etc. 

Consider what would happen if a request from Barbara for one more unit were 
granted in Fig. 3- 1 1(b). We would have the situation of Fig. 3- 1 l(c), which is 
unsafe. If all the customers suddenly asked for their maximum loans, the banker 
could not satisfy any of them, and we would have a deadlock. An unsafe state 
does not have to lead to deadlock, since a customer might not need the entire 
credit line available, but the banker cannot count on this behavior. 

The banker's algorithm is thus to consider each request as it occurs and see if 
granting it leads to a safe state. If it does, the request is granted; otherwise, it is 
postponed until later. To see if a state is safe, the banker checks to see if he has 
enough resources to satisfy the customer closest to his or her maximum. If so, 
those loans are assumed to be repaid, and the customer now closest to his or her 
limit is checked, and so on. If all loans can eventually be repaid, the state is safe 
and the initial request can be granted. 

Resource Trajectories 

The above algorithm was described in terms of a single resource class ( e g ,  
only tape drives or only printers, but not some of each). In  Fig. 3-12 we see a 
model for dealing with two processes and two resources, for example, a printer 
and a plotter. The horizontal axis represents the number of instructions executed 
by process A. The vertical axis represents the number of instructions executed by 
process B. At I ,  A requests: a printer; at J 2  it needs a plotter. The printer and 
plotter are released at I 3  and respectivety. Process B needs the plotter from 
to 1, and the printer from l6 to I *. 

Every point in the diagram represents a joint state of the two processes. Ini- 
tially, the state is at p, with neither process having executed any instructions. If 
the scheduler chooses to run A first, we get to the point q, in which A has executed 
some number of instructions, but B has executed none. At point q the trajectory 
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Printer 

Plotter 

DEADLOCKS 

u (Both processes I / / I finished) 

Printer = c 

+ = Plotter 

Figure 3-12. Two process resource trajectories. 

becomes vertical, indicating that the scheduler has chosen to run B. With a single 
processor, all paths must be horizontal or vertical, never diagonal, Furthermore, 
motion is always to the north or east. never to the south or  west (processes cannot 
run backward). 

When A crosses the I ,  line on the path from r to s. it requests and is granted 
the printer. When B reaches point t, it requests the plotter. 

The regions that are shaded are especially interesting. The region with lines 
slanting from southwest to northeast represents both processes having the printer. 
The mutual exclusion rule makes it impossible to enter this region. Similarly, the 
region shaded the other way represents both processes having the plotter and is 
equally impossible. 

lf the system ever enters the box bounded by I and I 2  on the sides and I 5  and 
ih top and bottom, it will eventually deadlock when it gets to the intersection of 
i2 and If,. At this point, A is requesting the plotter and B is requesting the printer, 
and both are already assigned. The entire box is unsafe and must not be entered. 
At point r the only safe thing to do is run process A until it gets to 14. Beyond 
that, any trajectory to u will do. 

The Banker's Algorithm for Multiple Resources 

This graphical model is difficult to apply to the general case of an arbitrary 
number of processes and an arbitrary number of resource classes, each with multi- 
ple instances (e-g., two plotters, three tape drives). However, the banker's algo- 
rithm can be generalized to do the job. Figure 3- 13 shows how it works. 

In Fig. 3-13 we see two matrices. The one on the left shows how many of 
each resource is currently assigned to each of the five processes. The matrix on 
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Resources assigned Resources still needed 

Figure 3-13. The banker's algorithm with multiple resources. 

the right shows how many resources each process still needs in order to complete. 
As in the single resource case. processes must state their total resource needs be- 
fore executing, so that the system can compute the right-hand matrix at each step. 

The three vectors at the right of the figure show the existing resources, E, the 
possessed resources, P,  and the available resources, A,  respectively. From E we 
see that the system has six tape drives, three plotters, four printers, and two CD- 
ROMs. Of these, five tape drives, three plotters, two printers, and two CD-ROMs 
are currently assigned. This fact can be seen by adding up the four resource 
colurnns in the left-hand matrix. The available resource vector is simply the 
difference between what the system has and what is currently in  use. 

The algorithm for checking to see if a state is safe can now be stated. 

I .  Look for a row, R, whose unmet resource needs are all smaller than 
or equal to A. If no such row exists, the system will eventually dead- 
lock since no process can run to completion. 

2. Assume the process of the row chosen requests all the resources it 
needs (which is guaranteed to be possible) and finishes. Mark that 
process as terminated and add all its resources to the A vector. 

3. Repeat steps 1 and 2 until either all processes are marked terminated, 
in which case the initial state was safe, or until a deadlock occurs, in 
which case it was not. 

If several processes are eligible to be chosen in step I ,  it does not matter which 
one is selected: the resource pool either gets larger, or at worst, stays the same. 

Now let us get back to the example of Fig. 3- 13. The current state is safe. 
Suppose that process B now requests a printer. This request can be granted 
because the resulting state is still safe (process D can finish, and then processes A 
or E, followed by the rest). 

Now imagine that after giving B one of the two remaining printers, E wants to 
have the last printer. Granting that request would reduce the vector of available 
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resources to (1 0 0 0), which leads to deadlock. Clearly E's request may not be 
satisfied immediately and must be deferred for a while. 

This algorithm was first published by Dijkstra in 1965. Since that time, 
nearly every book on operating systems has described it in detail. Innumerable 
papers have been written about various aspects of it. Unfortunately, few authors 
have had the audacity to point out that although in theory the algorithm is wonder- 
ful, in practice it is essentially useless because processes rarely know what their 
maximum resource needs will be in advance. In addition, the number of proc- 
esses is not fixed, but dynamically varying as new users log in and out. Further- 
more, resources that were thought to be available can suddenly vanish (tape drives 
can break). 

In summary, the schemes described earlier under the name "prevention" are 
overly restrictive, and the algorithm described here as "avoidance" requires infor- 
mation that is usually not available. If you can think of a general-purpose algo- 
rithm that does the job in practice as well as in theory, write it up and send it to 
your local computer science journal. 

For specific applications, many excellent special-purpose algorithms are 
known. As an example, in many data base systems, an operation that occurs fre- 
quently is requesting locks on several records and then updating all the locked 
records. When multiple processes are running at the same time, there is a real 
danger of deadlock. 

The approach often used is called two-phase locking. In the first phase, the 
process tries to lock all the records it needs, one at a time. If it succeeds, it per- 
forms its updates and releases the locks. If some record is already locked, it 
releases the locks it already has and just starts all over. In a certain sense, this 
approach is similar to requesting all the resources needed in advance, or at Ieast 
before anything irreversible is done. 

However, this strategy is not applicable in general. In real-time systems and 
process control systems, for example, i t  is not acceptable to just terminate a proc- 
ess partway through because a resource is not available and start dl over again. 
Neither is it acceptable to start over if the process has read or written messages to 
the network, updated files, or anything else that cannot be ,safely repeated. The 
algorithm works only in those situations where the programmer has very carefully 
arranged things so that the program can be stopped at .any point during the first 
phase and restarted. Unfortunately, not all applications can be structured in this 
way. 

3.4 OVERVIEW OF VO IN MINIX 

MINIX l/O is structured as shown in Fig. 3-6. The top four layers of that fig- 
ure correspond to the four-layered structure of M I N ~ X  shown in Fig. 2-26. In the 
follow~ng sections we will look briefly at each of the layers, with the emphasis on 
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the device drivers. Interrupt handling was covered in the previous chapter, and 
the device-independent VO wiIl be discussed when we come to the file system, in 
Chap, 5. 

3.4.1 Interrupt Handlers in MINIX 

Many of the device drivers start some I/O device and then block, waiting for a 
message to arrive. That message is usually generated by the interrupt handler for 
the device. Other device drivers do not start any physical l/0 (e.g., reading from 
RAM disk and writing to a memory-mapped display), do not use interrupts. and 
do not wait for a message from an W 0  device. In the previous chapter the 
mechanism by which interrupts generate messages and cause rask switches has 
been presented in great detail, and we will say no more about it here. But inter- 
rupt handlers may do more than just generate a message. Frequently they also do 
some work in processing input and output at the lowest level. We will discuss this 
in a general way here and then return to the details when we look at the code for 
various devices. 

For disk devices. input and output is generally a matter of commanding a de- 
vice to perform its operation, and then waiting until the operation is complete. 
The disk controller does most of the work, and very little is required of the inter- 
rupt handler. We saw that the entire interrupt handler for the hard disk task con- 
sists of just three lines of code, with the only 1/0 operation being the reading of a 
single byte to determine the status of the controller. Our lives would be simple 
indeed if all interrupts could be handled so easily. 

However, there is sometimes more for the low-level handler to do. The mes- 
sage passing mechanism has a cost. When an intempt may occur frequently but 
the amount of I/O handled per interrupt is small, it may pay to make the handler 
itself do somewhat more work and to postpone sending a message to the task until 
a subsequent intempt. when there is more for the task to do. MINIX handles inter- 
rupts from the clock this way. On many clock ticks there is very little to be done, 
except for maintaining the time. This can be done without sending a message to 
the clock task itself. The clock handler increments a bariable, appropriately 
named pending-ticks. The current time is the sum of the time recorded when the 
clock task itself last ran plus the value of pending-ticks. When the clock task 
receives a message and wakes up, it adds pending-ticks to its main timekeeping 
variable and then zeroes perrdittg-ticks. The clock interrupt handler examines 
some other variables and sends a message to the clock task only when it  detects 
the task has actual work to do, such as delivering an alarm or scheduling a new 
process to execute. It may also send a message to the terminal task. 

In the terminal task we see another variation on the theme of interrupt hand- 
lers. This task handles several different kinds of hardware, including the key- 
board and the RS-232 lines. These each have their own interrupt handler. The 
keyboard exactly fits the description of a device where there maybbe relatively 
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little VO to do in response to each interrupt. On a PC an interrupt occurs each 
time a key is pressed or released. This includes special keys like the SHIFT and 
CTRL keys, but if we ignore them for the moment, we can say that on the average 
half a character is received per interrupt. Since there is not much the terminal 
task can do with half a character, it makes sense to send it a message only when 
something worthwhile can be accomplished. We will examine the details later; 
for now we will just say that the keyboard intermpt handler does the low-level 
reading of data from the keyboard and then filters out events it can ignore, such as 
the release of an ordinary key. (The release of a special key, for instance, the 
SHIFT key, cannot be ignored.) Then codes representing all nonignored events 
are placed in a queue for later processing by the terminal task itself. 

The keyboard interrupt handler differs from the simple paradigm we have 
presented of the interrupt handler that sends a message to its associated task, 
because the intermpt handler sends no message at all. Instead, when it adds a 
code to the queue, it modifies a variable, tty-timeout, that is read by the clock in- 
terrupt handler. When an interrupt does nor change the queue, try-tirneorrt is not 
changed either. On the next clock tick the clock handler sends a message to the 
terminal task if there have been changes to the queue. Other terminal-type inter- 
rupt handlers, for instance those for the RS-232 lines, work the same way. A mes- 
sage to the terminal task will arrive soon after a character is received, but a mes- 
sage is not necessarily generated for each character when characters are arriving 
rapidly. Several characters may accumulate and then be processed in response to 
a single message. Moreover, a11 terminal devices are checked each time a mes- 
sage is received by the terminal task. 

3.4.2 Device Drivers in MINIX 

For each class of VO device present in a MINIX system, a separate I/O task 
(device driver) is present. These drivers are full-fledged processes, each with its 
ow? state, registers, stack, and so on. Device drivers communicate with each 
other (where necessary) and with the file system using the standard message pass- 
ing mechanism used by all MINIX processes. Simple device drivers are written as 
single source files, such as cl0ck.c. For other drivers, such as the drivers for the 
RAM disk, the hard disk, and the floppy disk, there is a source file to supporf each 
type of device, as well as a set of common routines in  driver.^ to support all of the 
different hardware types. In a sense this divides the device driver level of Fig. 3-6 
into two sublevels. This separation of the hardware-dependent and hardware- 
independent parts of the software makes for easy adaptation to a variety of dif- 
ferent hardware configurations. Although some common source code is used, the 
driver for each disk type runs as a separate process, in order to support rapid data 
transfers. 

The terminal driver source code is organized in a similar way, with hard- 
ware-independent code in t5.c and source code to support difhent devices, such 
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as memory-mapped consoles, the keyboard, serial lines, and pseudo terminals in 
separate files. In this case, however,, a single process supports all of the different 
device types. 

For groups of devices such as disk devices and terminals, for which there are 
several source files, there are also header files. Driver.h supports all the block de- 
vice drivers. T t y h  provides common definitions for all the terminal devices. 

The main difference between device drivers and other processes is that the de- 
vice drivers are linked together in the kernel, and thus all share a common address 
space. As a result, if several device drivers use a common procedure, only one 
copy will be linked into the MINIX binary. 

This design is highly modular and moderately efficient. It is also one of the 
few places where MrNiX differs from UNiX in an essential way. In MINIX a process 
reads a file by sending a message to the file system process. The file system, in 
turn, may send a message to the disk driver asking it to read the needed block. 
This sequence (dightly simplified from reality) is shown in Fig. 3-14(a). By mak- 
ing these interactions via the message mechanism, we force various parts of the 
system to interface in standard ways with other parts. Nevertheless, by putting all 
the device drivers in the kernel address space, they have easy access to the proc- 
ess table and other key data structures when needed. 

Process-structured system 

Processes I t  

Device 

system process & 
I 

1-4 are request 
and reply messages 
between three 
independent 
processes. 

I 
tlser space 

1 
t 

Kernel 
space 

1 

Monolithic system 

The user-space park 
calls the kernel-space part 
by trapping. The file system 
calls the device driver as a 
procedure. The ent~re 
operating system is part 
of each process 

(W 

Kgure 314.  I 'wo ways of str~~cturing user-system communication. 

In U N ~ X  all processes have two parts: a user-space part and a kernel-space 
par!, as shown in Fig. 3-14(b). When a system call is made, the operating system 
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switches from the user-space part to the kernel-space part in a somewhat magical 
way. This structure is a remnant of the MULTICS design, in which the swilch was 
just an ordinary procedure call, rather than a trap followed by saving the state of 
the user-part, as it is in UNIX. 

Device drivers in UNIX are simply kernel procedures that are called by the 
kernel-space part of the process. When a driver needs to wait for an interrupt, i t  
calls a kernel procedure that puts it to sleep until some interrupt handler wakes it 
up. Note that it is the user process itself that is being put to sleep here, because the 
kernel and user parts are really different parts of the same process. 

Among operating system designers, arguments about the merits of monolithic 
systems, as in UNIX, versus process-structured systems, as in MINIX, are endless. 
The MINIX approach is better structured (more modular), has cleaner interfaces 
between the pieces, and extends easily to distributed systems in which the various 
processes run on different computers. The UNIX approach is more efficient, 
because procedure calls are much faster than sending messages. MINrX was split 
into many processes because we believe that with increasingly powerful personal 
computers available, cleaner software structure was worth making the system 
slightly slower. Be warned that many operating system designers do not share this 
belief. 

In this chapter, drivers for RAM disk, hard disk, clock, and terminal are his- 
cussed. The standard MINlX configuration also includes drivers for floppy disk and 
printer, which are not discussed in detail. The MINIX software distribution con- 
tains source code for additional drivers for RS-232 serial lines, a SCSI interface, 
CD-ROM, Ethernet adapter, and sound card. These may be included by recompil- 
ing MINIX. 

All of these tasks interface with other parts of the MINlX system in the same 
way: request messages are sent to the tasks. The messages contain a variety of 
fields used to hold the operation code (e.g., READ or WRITE) and its parameters. A 
task attempts to fulfill a request and returns a reply message. 

For block devices, the fields of the request and reply messages are shown in 
Fig. 3-15. The request message includes the address of a buffer area containing 
data to be transmitted or in which received data are expected. The reply includes 
status information so the requesting process can verify that its request was prop- 
erly carried out. The fields for the character devices are basically similar but can 
vary slightly from task to task. Messages to the clock task, for example, contain 
times, and messages to the terminal task can contain the address of a data struc- 
ture which specifies all of the many configurable aspects of a terminal, such as the 
characters to use for the intraline editing functions erase-charac ter and kill-line. 

The function of each task is to accept requests from other processes, normally 
the file system, and carry them out. All the block device tasks have been written 
to get a message, carry it  out, and send a reply. Among other things, this decision 
means that these tasks are strictly sequential and do not contain any internal 
multiprogramming, to keep them simple. When a hardware request has been 
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Flgure 3-15. Fields of the messages sent by the file system to the block device 
drivers and fields of the replies sent back. 

issued, the task does a RECEIVE operation specifying that it is interested only in 
accepting intermpt messages, not new requests for work. Any new request mes- 
sages are just kept waiting until the current work has been done (rendezvous prin- 
ciple). The terminal task is slightly different, since a single task services several 
devices. Thus, it is possible to accept a new request for input from the keyboard 
while a request to read from a serial line is still being fulfilled. Nevertheless, for 
each device a request must be completed before beginning a new one. 

The main program for each block device driver is structuraliy the same and is 
outlined in Fig. 3-16. When the system first comes up, each of the drivers is 
started up in turn to give each a chance to initialize internal tables and similar 
things. Then each driver task blocks by trying to get a message. When a message 
comes in, the identity of the caller is saved, and a procedure is called to carry out 
the work, with a different procedure invoked for each operation available. After 
the work has been finished, a reply is sent back to the caller, and the task then 
goes back to the top of the loop to wait for the next request. 

Each of the d e v - x u  procedures handles one of the operations of which the 
driver is capable. It returns a status code telling what happened. The status code, 
which is included in the reply message as the field REP-STATUS, is the count of 
bytes transferred (zero or positive) if all went well, or the error number (negative) 
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message mess; /* message buffer */ 

void io-task() { 
initialize(); /* only done once, during system init. */ 
while (TRUE) ( 

receive(ANY, &mess); /* wait for a request for work *I 
caller = mess.source; I* process from whom message came */ 
switch(mess.type) ( 

case READ: rcode = dev~ead(8mess); break; 
case WRITE: rcode = dev-write(&mess); break; 
/* Other cases go here, including OPEN, CLOSE, and IOCTL */ 
default: rcode = ERROR; 

1 
mess-type = TASKREPLY; 
mess.status = rcode; I* result code */ 
send(caller, &mess); /* send reply message back to caller */ 

Figure 3-16. Outline of the main procedure of an V 0  task. 

if something went wrong. This count may differ from the number of bytes re- 
quested. When the end of a file is reached, the number of bytes available may be 
less than number requested. On terminals at most one line is returned, even if the 
count requested is larger. 

3.4.3 Device-Independent VO Software in MINIX 

In MINIX the file system process contains all the device-independent I/O code. 
The I/0 system is so closely related to the file system that they were merged into 
one process. The functions performed by the file system are those shown in Fig. 
3-5, except for requesting and releasing dedicated devices, which do not exist in 
MINIX as it is presently configured, They could, however, easily be added to the 
relevant device drivers should the need arise in the future. 

In addition to handling the interface with the drivers, buffering, and block al- 
location, the file system also handles protection and the management of i-nodes, 
directories, and mounted file systems. It will be covered in detail in Chap. 5. 

3.4.4 User-level I/O Software in MINIX 

The general model outlined earlier in this chapter also applies here. Library 
procedures are available for making system calls and for all the C functions re- 
quired by the POSIX standard, such as the formatted input and output functions 
printf and scunf. The standard MINIX configuration contains one spooler daemon, 
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Ipd, which spools and prints files passed to it by the Ip command. The standard 
MINIX software distribution contains a number of daemons that support various 
network functions. Network operations require some operating system support 
that is not part of M N X  in the configuration described in this book, but MlMX can 
easily be recompiled to add the network server. It runs at the same priority as the 
memory manager and the file system, and like them, it runs as a user process. 

3.4.5 Deadlock Handling in MmIX 

True to its heritage, MINIX follows the same path as UNrx with respect to 
deadlocks: it just ignores the problem altogether. MlNIX contains no dedicated 110 
devices, although if someone wanted to hang an industry standard DAT tape drive 
on a PC, making the software for it would not pose any special problems. In short, 
the only place deadlocks can occur are with the implicit shared resources, such as 
process table slots, i-node table slots, and so on. None of the known deadlock al- 
gorithms can deal with resources like these that are not requested explicitly. 

Actually, the above is not strictly true. Accepting the risk that user processes 
could deadlock is one thing, but within the operating system itself a few places do 
exist where considerable care has been taken to avoid probtems. The main one is 
the interaction between the file system and the memory manager. The memory 
manager sends messages to tbe file system to read the binary f le (executable pro- 
gram) during an EXEC system call, as well as in other contexts. If the file system is 
not idle when the memory manager is trying to send to it, the memory manager 
will be blocked. If the file system should then try to send a message to the memo- 
ry manager, it too would discover that the rendezvous fails and would block, lead- 
ing to a deadlock. 

This problem has been avoided by constructing the system in such a way that 
the file system never sends request messages to the memory manager, just replies, 
with one minor exception. The exception is that upon starting up, the file system 
reports the size of the RAM disk to the memory manager, which is guaranteed to 
be waiting for the message. 

it is possible to lock devices and files even without operating system support. 
A file name can serve as a truly global variable, whose presence or absence can 
be noted by all other processes. A special directory, /usr/spooVlocks/, is usually 
present on MINIX systems, as on most UNIX systems, where processes can create 
lock files, to mark any resources they we using. The MINlX file system also sup- 
ports POS1x-style advisory file locking. But neither of these mechanisms is 
enforceable. They depend upon the good behavior of processes, and there is noth- 
ing to prevent a program from using a resource that is locked by another process. 
This is not exactly the same thing as preemption of the resource, because it does 
not prevent the tirst process from attempting to continue its use of the resource. 
In other words, there is no mutual exclusion. The result of such an action by an 
ill-behaved process is likely to be a mess, but no deadlock results. 
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3.5 BLOCK DEVICES IN MINIX 

In the following sections we will return to the device drivers, the main topic 
of this chapter, and study several of them in detail. MINIX supports sever4 dif- 
ferent block devices, so we will begin by discussing common aspects of all block 
devices. Then we will discuss the RAM disk, the hard disk, and the floppy disk. 
Each of these is interesting for a different reason. The RAM disk is a good ex- 
ample to study because it has all the properties of block devices in general except 
the actual I/O-because the "disk" is actually just a portion of memory. This sim- 
plicity makes it a good place to start. The hard disk shows what a real disk driver 
looks like. One might expect the floppy disk to be easier to support than the hard 
disk, but, in fact, it is not. We will not discuss all the details of the floppy disk, but 
we will point out several of the complications to be found in the floppy disk 
driver. 

Following the discussion of block drivers, we will discuss other driver classes. 
The clock is important because every system has one, and because it is completely 
different from all the other drivers. It is also of interest as an exception to the rule 
that all devices are either block or character devices, because it does not fit into 
either category. Finally, we will discuss the terminal driver, which is important on 
all systems, and, furthermore, is a good example of a character device driver. 

Each of these sections describes the relevant hardware, the software principles 
behind the driver, an overview of the implementation, and the code itself. This 
structure makes the sections useful reading even for those readers who are not 
interested in the details of the code itself. 

3.5.1 Overview of Biock Device Drivers in MINIX 

We mentioned earlier that the main procedures of all I/O tasks have a similar 
structure. MINIX always has at least three block device tasks (the RAM disk 
driver, the floppy disk driver, and one of several possible hard disk drivers) com- 
pifed into the system. In addition, a CD-ROM task and a SCSI (Small Computer 
Standard Interface) driver may be compiled in, if support for such devices is 
needed. Although the driver for each of these executes as an independent process, 
the fact that they are all compiled as part of the kernel executable makes it pos- 
sible to share a considerable amount of the code, especially the utility procedures. 

Each block device driver has to do some initialization, of course. The RAM 
disk driver has to reserve some memory, the hard disk driver has to determine the 
parameters of the hard disk hardware, and so on. All of the disk drivers are called 
individually for hardware-specific initialization, but after doing whatever may be 
necessary, each driver then calls the function containing the common main loop. 
This loop is executed forever; there is no return to the caller. Within the main loop 
a message is received, a function to perform the operation needed by each mes- 
sage is called, and then a reply message is generated. 
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The common main loop called by each disk driver task is not just a copy of a 
library function compiled into each driver. There is only one copy of the main 
loop code in the MINIX binary. The technique used is to have each of the indivi- 
dual drivers pass to the main loop a parameter consisting of a pointer to a table of 
the addresses of the functions that driver will use for each operation and then call 
these functions indirectly. This technique also makes it possible for drivers to 
share functions. Figure 3-17 shows an outline of the main loop, in  a form similar 
to that of Fig. 3- 16. Statements like w 

code = (*entry-points->aev-read)(&mess); 

are indirect function calls. A different dev-read function is callet 1 by each driver, 
even though each driver is exe&ing the same main loop. But some other opera- 
tions, for example CLOSE, are simple enough that more than one device can call 
the same function. 

message mess; /* message buffer */ 

void shared-io-task(struct driver-table *entry-points) { 
/* initialization is done by each task before calling this */ 

while (TRUE) { 
receive(ANY, &mess); 
caller = mess.source; 
switch(rness.type) ( 

case READ: rcode = ('entry-points->dev_read)(&mess); break; 
case WRITE: rcode = (*entry-points->dm-write)(&mess); break; 
I* Other cases go here, including OPEN, CLOSE, and IOCTL */ 
default: rcode = ERROR; 

1 
mess-type = TASK-REPLY; 
mess.status = rcode; I* result code */ 
send(caller, &mess); 

1 
1 

Figure 3-17. A shared I/O task main procedure using indirect calls. 

This use of a single copy of the loop is a good illustration of the process con- 
cept that we introduced in Chap. I and discussed at length in Chap 2. There is 
only one copy of the executable code in memory for the main loop of the block 
device drivers, but i t  is executed as thz main loop of three or more distinct proc- 
esses. Each of these processes is probably at a different point in the code at a 
given instant, and each is operating upon its own set of data and has its own stack. 

There are six possible operations that can be requested of any device driver. 
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These correspond to the possible values that can be found in the rn-m-type field 
of the message of Fig. 3-15. They are: 

1. OPEN 

2. CLOSE 

3. READ 

4. WRITE 

5. IOCTL 

6. SCATTERED-I0 

Most of these operations are probably familiar to readers with programming 
experience. At the device driver level most operations are related to system calls 
with the same name. For instance, the meanings of READ and WRITE should be 
clear. For each of these operations, a block of data is transferred from the device 
to the memory of the process that initiated the call, or vice versa. A READ opera- 
tion normally does not result in a return to the caller until the data transfer is corn- 
plete, but an operating system may buffer data transferred during a WRITE for 
actual transfer to the destination at a later time, and return to the caller immediate- 
ly. That is fine as far as the caller is concerned; it is then free to reuse the buffer 
from which the operating system has copied the data to write. OPEN and CLOSE 
for a device have similar meanings to the way the OPEN and CLOSE system calls 
apply to operations on files: an OPEN operation should verify that the device is 
accessible, or return an error message if not, and a CLOSE should guarantee that 
any buffered data that were written by the caller is completely transferred to their 
final destination on the device. 

The IOCTL operation may not be so familiar. Many I/0 devices have opera- 
tionaI parameters which occasionally must be examined and perhaps changed. 
IOCTL operations do this. A familiar example is changing the speed of transmis- 
sion or the parity of a communications line. For block devices, IOCTL operations 
are less common. Examining or changing the way a disk device is partitioned is 
done using an IOCTL operation in MINIX (although it could just as well have been 
done by reading and writing a block of data). 

The SCATTERED-I0 operation is no doubt the least familiar of these. Except 
with exceedingly fast disk devices (for example, the RAM disk), satisfactory disk 
110 performance is difficult to obtain if all disk requests are for individual blocks, 
one at a time. A SCAiTERED-10 request allows the file system to make a 
request to read or write multiple blocks. In the case of a READ operation, the 
additional blocks may not have been requested by the process on whose behalf the 
call is made; the operating system attempts to anticipate future requests for data. 
In such a request not all the transfers requested are necessarily honored by the de- 
vice driver. The request for each block may be modified by a flag bit that tells the 
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device driver that the request is optional. In effect the file system can say, "It 
would be nice to have all these data, but I do not really need them ail right now." 
The device can do what is best for it. The floppy disk driver, for instance, will re- 
turn all the data blocks it can read from a single track, effectively saying, "1 will 
give you these, but it takes too long to move to another track; ask me again Iater 
for the rest.'' 

When data must be written, there is no question of its being optional whether 
or not to write a particular block. Nevertheless, the operating system may buffer a 
number of write requests in the hope that writing multiple blocks can be done 
more efficiently than handling each request as it comes in. In a SCATTERED-I0 
request, whether for reading or writing, the list of blocks requested is sorted, and 
this makes the operation more efficient than handling the requests randomly. In 
addition, making only one call to the driver to transfer multiple blocks reduces the 
number of messages sent within MINIX. 

3.5.2 Common Block Device Driver Software 

Definitions that are needed by all the block device drivers are located in 
driver.h. The most important thing in this file is the driver structure, on lines 
90 10 to 9020, which is used by each driver to pass a list of the addresses of the 
functions it will use to perform each part of its job. Also defined here is the de- 
vice structure (lines 9031 to 9034) which holds the most important information 
about partitions, the base address, and the size, in byte units. This format was 
chosen so no conversions are necessary when working with memory-based de- 
vices, maximizing speed of response. With real disks there are so many other fac- 
tors delaying access that converting to sectors is not a significant inconvenience. 

The main loop and shared functions of all the block driver tasks are in 
driver-c. After doing whatever hardware-specific initialization may be necessary, 
each driver calls driver-task, passing a driver structure as the argument to the 
call. After obtaining the address of a buffer to use for DMA operations the main 
bop (lines 9158 to 9199) is entered. This loop is executed forever; there is no re- 
turn to the caller. 

The file system is the only process that is supposed to send a message to a 
driver task. The switch on lines 9165 to 91 75 checks for this; A leftover interrupt 
from the hardware is ignored, any other misdirected message results only in print- 
ing a warning on the screen, This seems innocuous enough, but of course the 
process that sent the erroneous message is probably permanently blocked waiting 
for a reply. In the switch in the main loop, the first three message types, 
DEV-OPEN, DEV-CLOSE, and DEV-IOCTL, result in indirect calls using ad- 
dresses passed in the driver structure. The DEV-READ, DEV-WRITE, and 
SCATTERED-I0 messages result in direct calls to do-rdwt or do-vrdwt. How- 
Fver, the driver structure is passed as an argument by all the calls from within the. 
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switch, whether direct or indirect, so all the cdled routines can make further use 
of it as needed. 

After doing whatever is requested in the message, some sort of cleanup may 
be necessary, depending upon the nature of the device. For a floppy disk, for 
instance, this might involve starting a timer to turn off the disk drive motor if 
an~ther request does not arrive soon. An indirect call is used for this as well. Fol- 
lowing the cleanup, a reply message is constructed and sent to the caller (lines 
9194 to 9198). 

The first thing each task does after entering the main loop is to call init-bufler 
(line 9205), which assigns a buffer for use in DMA operations. The same buffer is 
used by all the driver tasks, if they use it all-some drivers do not use DMA. The 
initializations for each entry after the first are redundant but do no harm. It would 
be more cumbersome to code a test to see whether the initialization should be 
skipped. 

That this initialization is even necessary at all is due to a quirk of the hard- 
ware of the original IBM PC, which requires that the DMA buffer not cross a 64K 
boundary. That is, a ZK DMA buffer may begin at 64510, but not at 64514 
because a buffer starting at the latter address extends just beyond the 64K boun- 
dary at 65536. 

This annoying rule occurs because the IBM PC used an old DMA chip, the 
Intel 8237A, which contains a 16-bit counter. A bigger counter is needed because 
DMA uses absolute addresses, not addresses relative to a segment register. On 
older machines that can address only 1M of memory, the low-order 16 bits of the 
DMA address are loaded into the 8237A, and the high-order 4 bits are loaded into 
a 4-bit latch. Newer machines use an 8-bit latch and can address 16M. When the 
8237A goes from OxFFFF to 0x0000, it does not generate a carry into the latch, so 
the DMA address suddenly jumps down by 64K in memory. 

A portable C program cannot specify an absolute memory location for a data 
structure, so there is no way to prevent the compiler from placing the buffer in an 
unusable location. The solution is to allocate an array of bytes twice as large as 
necessary at bufer (line 9135) and to reserve a pointer tmp-buf (line 9136) to use 
for act&dly accessing this array. hit-buffer makes a trial setting of tmp-buf 
pointing to the beginning of buffer, then tests to see if that allows enough space 
before a 64K boundary is hit. If the trial setting does not provide enough space, 
tmp-buf is incremental by the number of bytes actually required. Thus some 
space is always wasted at one end or the other of the space allocated in bufer, but 
there is never a failure due to the buffer falling on a 64K boundary. 

Newer computers of the IBM PC family have better DMA controllers, and 
this code could be simplified, and a small amount of memory reclaimed, if one 
could be sure that one's machine were immune to this problem. If you are consid- 
ering this, however, consider how the bug will manifest itself if you are wrong. If 
a 1 K DMA buffer is desired, the chance is I in 64 that there will be a problem on 
a machine with the old DMA chip. Every time the kernel source code is modified 
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in a way that changes the size of the compiled kernel, there is the same probability 
that the problem will manifest itself. Most likely, when the failure occurs next 
month or next year, it will be attributed to the code that was last modified. Unex- 
pected hardware "features'Yike this can cause weeks of time spent looking for 
exceedingly obscure bugs (all the more so when, like this one, the technical refer- 
ence manuaI says nary a word about them). 

Do-rdwt is the next function in  driver.^. It, in turn, may call three device- 
dependent functions pointed to by the dr-prepare, dr-schedule, and dr-finish 
fields in the driver structure. In what follows we will use the C language notation 
*function-pointer to indicate we are taIking about the function pointed to by func- 
tion -pointer. 

After checking to see that the byte count in the request is positive, do-rdwt 
calls *dr-prepare. This should succeed, since *dr-prepare can fail only if an 
invalid device is specified in an OPEN operation. Next, a standard iorequest-s 
structure (defined on line 3 194 in include/minixAype. h ) is filled in. Then comes 
another indirect call, this time to *dr-schedule. As we will see in the discussion 
of disk hardware in the next section, responding to disk requests in the order they 
are received can be inefficient, and this routine allows a particular device to hand- 
le requests in the way that is best for the device. The indirection here masks much 
possible variation in the way individual devices perform, For the RAM disk, 
dr-schedule points to a routine that actually performs the UO, and the next 
indirect call, to *dr-finish, is a do-nothing operation. For a real disk, dr-finish 
points to a routine that carries out all of the pending data transfers requested in all 
previous calls to *dr-schedde since the last call to *dr-finish. As we will see, 
however, in some circumstances the call to *drJnish may not result in a transfer 
of all the data requested. 

In whichever call does an actual data transfer, the io-nbytes count in the iore- 
quest-s structure is modified, returning a negative number if there was an error or 
a positive number indicating the difference between the number of bytes in the 
original request and the number successfully transferred. It is not necessarily an 
error if no bytes are transferred; this indicates that the end of the device has been 
rea~hed. Upon returning to the main loop, the negative error code is returned in 
the reply message REP-STATUS field if there was an error. Otherwise the bytes 
remaining to be transferred are subtracted from the original request in the COUNT 
field of the message (line 9249), and the result (the number actually transferred) is 
returned in REP-STATUS ih the reply message from driver-task. 

The next function, do- vrdwt, handles dl scattered I/0 requests. A message 
that requests a scattered 1/0 request uses the ADDRESS field to paint to an array 
of iorequest-s type structures, each of which specifies the information needed for 
one request: the addrms of the buffer, the offset on the device, the number of 
bytes, and whether the operation is a read or a write. All the operations in one re- 
quest will be for either reading or writing, and they will be sorted into block order 
on the device. There is more work to do than for the simple read or write 
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performed by do-rdwt, since the array of requests must be copied into the 
kernel's space, but once this has been done, the same three indirect calls to the de- 
vice-dependent *dr+prepare, *dr-schedule, and *dr-finish routines are made. 
The difference is that the middle call, to *dr-schedule, is done in a loop, once for 
each request, or until an error occurs (lines 9288 to 9290). After termination of 
the loop, *dr-finish is called once, and then the m a y  of requests is copied back 
where it came from. The io-nbytes field of each element in the array will have 
been changed to reflect the number of bytes transferred, and although the total is 
not passed back directly in the reply message that driver-task constructs, the call- 
er can extract the total from this array. 

In a scattered YO read request, not all the transfers requested in the call to 
*dr-schedule are necessarily honored when the final call to *dr-finish is made, 
as we discussed in the previous section. The io-request field in the iorequest-s 
structure contains a flag bit that tells the device driver if a request for that block is 
optional. 

The next few routines in  driver.^ are for general support of the above apera- 
tions. A *dr-name call can be used to return the name of a device. For a device 
with no specific name the no-name function retrieves the device's name from the 
table of tasks. Some devices may not require a particular service, for instance, a 
RAM disk does not require that anything special be done upon a DEV-CLOSE re- 
quest. The do-nop function fills in here, returning various codes depending upon 
the kind of request. The following functions, nop-fmish, and nop-cleanup, are 
similar dummy routines for devices that need no *dr-finish or *dr- cleanup ser- 
vices. 

Some disk device functions require delays, for example, to wait for a floppy 
disk motor to come up to speed. Thus  driver.^ is a good place for the ne4,func- 
tion, clock-mess, used to send messages to the clock task. It is called-with the 
number of clock ticks to wait and the address of a function to call $hen the 
timeout period is complete. 

Finally, do-diocntl (line 9364) carries out DEV-[OCTL requests for a block de- 
vice. It is an error if any DEV-IOCTL operation other than reading (DIOGETP) 
or writing (DIOSETP) partition information is requested. Do-diocntl calls the de- 
vice's *dr-prepare function to verify the device is valid and to get a pointer to 
the device structure that describes the partition base and size in byte units. On a 
request to read, it calls the device's *dr-geometry function to get the last cylin- 
der, head, and sector information about the partition. 

3.5.3 The Driver Library 

The files drv1ib.k and drv1ib.c contain system-dependent code that supports 
disk partitions on IBM PC compatible computers. 

Partitioning allows a single storage device to be divided up into subdevices. It 
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is most commonly used with hard disks, but MINIX provides support for parti- 
tioning floppy disks, as weH. Some reasons to partition a disk device are: 

I .  Disk capacity is cheaper per unit in large disks. If two or more 
operating systems with different file systems are used, it is more 
economical to partition a single large disk than to install multiple 
smaller disks for each operating system. 

2. Operating systems may have limits to the device size they can hand- 
le. The version of MINIX discussed here can handle a I-GB file sys- 
tem, but older versions are limited to 256 MB. Any disk space 
beyond that is wasted. 

3. Two or mare different file systems may be used by an operating sys- 
tem. For example, a standard file system may be used for ordinary 
files and a differently structured file system may be used for virtual 
memory swap space. 

4. It may be convenient to put a portion of a system's files on a separate 
logical device. Putting the MINIX root file system on a small device 
makes it easy to back up and facilitates copying it to a RAM disk at 
boot time. 

Support for disk partitions is platform specific. This specificity is not related 
to the hardware. Partition support is device independent. But if more than one 
operating system is to run on a particular set of hardware, all must agree on a for- 
mat for the partition table. On IBM PCs the standard is set by the Ms-m fdisk 
command, and other OSs, such as MINIX, O W ,  and Linux, use this format so they 
can coexist with MS-DOS. When MINIX is ported to another machine type, it 
makes sense to use a partition table format compatible with other operating sys- 
tems used on the new hardware. Thus the MINIX source code to support partitions 
on IBM computers is put in drvlib.~, rather than being included in  driver.^, to 
make it easier to port MINlX to different hardware. 

The basic data structure inherited from the firmware designers is defined in 
include/ibdpartition.h, which is included by a #include statement in drvli6.h. 
This includes information on the cylinder-head-sector geometry of each partition, 
as well as codes identifying the type of file system on the partition and an active 
flag indicating if i t  is bootable. Most of this information is not needed by MINIX 
once the file system is verified. 

The partition function (in drvlib.~, line 9521) is called when a block device is 
first opened. Its arguments include a driver structure, so it can call device-specific 
functions, an initial minor device number, and a parameter indicating whether the 
partitioning style is floppy disk, primary partition, or subpartition. It calls the de- 
vice-specific *dr-prepare function to verify the device is valid and to get the base 
address and the size into a device structure of the type mentioned in the previous 
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section. Then it calls get-part-table to determine if a partition table is present 
and, if so, to read it. If there is no partition table, the work is done. Otherwise the 
minor device number of the first partition is computed, using the rules for num- 
bering minor devices that apply to the style of partitioning specified in the original 
call. In the case of primary partitions the partition table is sorted so the order of 
the partitions is consistent with that used by other operating systems. 

At this point another call is made to *dr-prepare, this time using the newly 
calculated device number of the first partition. If the subdevice is valid, then a 
loop is made over a11 the entries in the table, checking that the values read from 
the table on the device are not out of the range obtained earlier for the base and 
size of the entire device. If there is a discrepancy, the table in memory is adjusted 
to conform. This may seem paranoid, but since partition tables may be written by 
different operating systems, a programmer using another system may have clev- 
erly tried to use the partition table for something unexpected or there could be 
garbage in the table on disk for some other reason. We put the most trust in the 
numbers we calculate using MINIX. Better safe than sony. 

Still within the Ioop, for all partitions on the device, if the partition is identi- 
fied as a MINiX partition, partition is called recursively to gather subpartition in- 
formation. If a partition is identified as an extended partition, the next function in 
the file, extparririon, is called instead. 

Extpartition (line 9593) really has nothing to do with the MINIX operating sys- 
tem, so we will not discuss its details. MS-DOS uses extended partitions, which are 
just another mechanism for creating subpartitions. In order to support MINIX corn- 
rnands that can read and write MS-M)S files, we need to know about these subpar- 
ti tions. 

Ger-part-table (line 9642) calls do-rdwt to get the sector on a device (or 
subdevice) where a partition table is located. The offset argument is zero if it is 
called to get a primary partition or nonzero for a subpartition. It checks for the 
magic number (OxAA59) and returns true or false status to indicate whether a 
valid partition table was found. If a table is found, it copies it to the table address 
that was passed as an argument. 

Finally, sort (line 9676) sorts the entries in a partition table by lowest sector. 
Entries that are marked as having no partition are excluded from the sort, so they 
come at the end, even though they may have a zero value in their low sector field. 
The sort is a simple bubble sort; there is no need to use a fancy algorithm to sort a 
list of four items. 

3.6 RAM DISKS 

Now we will get back to the individual block device drivers and study several 
of them in detail. The first one we will look at is the RAM disk driver. It can be 
used to provide access to any part of memory. Its primary use is to allow a part of 
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memory to be reserved for use like an ordinary disk. This does not provide per- 
manent storage, but once files have been copied to this area they can be accessed 
extremely quickly . 

In a system such as MINIX, which was designed to work even on computers 
with only one floppy disk, the RAM disk has another advantage. By putting the 
root device on the RAM disk, the one floppy disk can be mounted and unmounted 
at will, allowing for removable media. Putting the root device on the floppy disk 
would make it impossible to save files on floppies, since the root device (the only 
floppy) cannot be unmounted. In addition, having the root device on the RAM 
disk makes the system highly flexible: any combination of floppy disks or .hard 
disks can be mounted on it. Although most computers now have hard disks, 
except computers used in embedded systems, the RAM disk is useful durmg in- 
stallation, before the hard disk is ready for use by MINIX, or when it is desired to 
use MINIX temporarily without doing a full installation. 

3.6.1 RAM Disk Hardware and Software 

The idea behind a RAM disk is simple. A block device is a storage medium 
with two commands: write a block and read a block. Normally these blocks are 
stored on rotating memories, such as floppy disks or hard disks. A RAM disk is 
simpler. It just uses a preallocated portion of the main memory for storing the 
blocks. A RAM disk has the advantage of having instant access (no seek or rota- 
tionaL delay), making it suitable for storing programs or data that are frequently 
accessed. 

As an aside, it is worth briefly pointing out a difference between systems that 
support mounted file systems and those that do not (e.g., MS-DOS and WINDOWS). 
With mounted file systems, the root device is always present and in a fixed loca- 
tion, and removable file systems (i.e., disks) can be mounted in the file tree to 
form an integrated file system. Once everything has been mounted, the user need 
not worry at all about which device a file is on. 

In contrast, with systems like MS-DOS, the user must specify the location of 
each file, either explicitly as in B:\DIR\FILE or using certain defaults (current de- 
vice,. current directory, and so on). With only one or two floppy disks, this burden 
is manageable, but on a large computer system, with dozens of disks, having to 
keep track of devices all the time would be unbearable. Remember that UNIX runs 
on systems ranging from an IBM PC, through workstations and supercomputers 
up to the Cray-2; MS-DOS runs only on small systems. 

Figure 3-1 8 shows the idea behind a RAM disk. The RAM disk is split up into 
n blocks, depending on how much memory has been allocated for it. Each block 
is the same size as the block size used on the real disks. When the driver receives 
a message to read or write a block, it just computes where in the RAM disk mem- 
ory the requested b l ~ c k  lies and reads from it or writes to it, instead of from or to 
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a floppy or hard disk. The transfer is done by calling an assembly language pro- 
cedure that copies to or from the user program at the maximum speed of which 
the hardware is capable. 

Main Memory (RAM) 

RAM disk block t 
Read and Mites of RAM block 0 
use this memory 

Operating 
system 

Figure 3-18. A RAM disk. 

A RAM disk driver may support several areas of memory used as RAM disk, 
each distinguished by a different minor device number. Usually these areas are 
distinct, but in some situations it may be convenient to have them overlap, as we 
shall see in the next section. 

3.6.2 Overview of the RAM Disk Driver in MINIX 

The RAM disk driver is actually four closely related drivers in one. Each 
message to it specifies a minor device as follows: 

The first special file listed above, /dev/ram, is a true RAM disk. Neither its 
size nor its origin is built into the driver. They are determined by the file system 
when MINIX is booted. By default a RAM disk of the same size as the root file 
system image device is created, so the root file system can be copied to it. A boot 
parameter can be used to speci'fy a RAM disk larger than the root file system, or if 
the root is not to be copied to the RAM, the specified size may be any value that 
fits in memory and leaves enough memory for system operation. Once the size is 
knownm a block of memory big enough is found and removed from the memory 
pool, even before the memory manager begins its work. This strategy makes it 
possible to increase or reduce the amount of RAM disk present without having to 
recompile the operating system. 

The next two minor devices are used to read and write physical memory and 
kernel memory, respectively. When /dev/mern is opened and read, it yields the 
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contents of physical memory locations starting at absolute address zero (the real- 
mode interrupt vectors). Ordinary user programs never do this, but a system pro- 
gram concerned with debugging the system might need this facility. Opening 
/dev/mem and writing on it will change the interrupt vectors. NeeAl~rs t=; ,ay, this 
should oniy be done with the greatest of caution by an experienced user who 
knows exactly what he is doing. 

The special file /dev/kmem is like /dev/mem, except that byte 0 of this file is 
byte 0 of the kernel's data memory, a location whose absolute address varies, 
depending on the size of the MINIX kernel code. It too is used mostly for debug- 
ging and very special programs. Note that the RAM disk areas covered by these 
two minor devices overlap. If you know exactly how the kernel is placed in mem- 
ory, you can open /dev/mem, seek to the beginning of the kernel's data area, and 
see exactly the same thing as reading from the beginning of /devhem. But, if 
you recompile the kernel, changing its size, or if in a subsequent version of MINIX 
the kernel is moved somewhere else in memory, you will have to seek a different 
amount in /dev/mern to see the same thing you see at the start of/dev/kmern. Both 
of these special files should be protected to prevent everyone except the super- 
user from using them. 

The last file in this group, /dev/null, is a special file that accepts data and 
throws them away. It Is commonly used in  shell commands when the program 
being called generates output that is not needed. For example, 

runs the program a.out but discards its output. The RAM disk driver effectively 
treats this minor device as having zero size, so no data areever copied to or from 
it. 

The code for handling /dev/ram, /dewimam, and /dev/kmem is identical. The 
only difference among them is that each one corresponds to a different portion of 
memory, indicated by the arrays ram-origin and ram-limit, each indexed by 
minor device number. 

3.6.3 Implementation of the RAM Disk Driver in MINIX 

As with other disk drivers the main loop of the RAM disk is in the file 
driverx. The device-specific support for memory devices is in rnenaory.c. The 
array m-geom (line 9721) holds the base and size of each of the four memory &- 
vices. The driver structure m-dtab on lines 9733 to 9743 defines the memory de- 
vice calls that will be made from the main loop. Four of the entries in this table 
are do-little or do-nothing routines in  driver.^, a sure clue that the operation of a 
RAM disk is not terribly complicated. The main procedure mem-task (line 9749) 
calls one function to do some local initialization. After that, it calls the main loop, 
which gets messages, dispatches to the appropriate procedure, and sends the 
replies. There is no return to mem-task upon completion. 
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On a read or write operation the main loop makes three calls: one to prepare a 
device, one to schedule the I/O operations, and one to finish the operation. For a 
memory device a call to m-prepare is the first of these. It checks that a valid 
minor device has been requested and then returns the address of the structure that 
holds the base address and size of the requested R A M  area. The second call is for 
m-schedule (line 9774). This does all the work. For memory devices the name of 
this function is a misnomer; by definitioa, any location is as accessible as any 
other in random access memory, and thus there is no need to do any scheduling, 
as there would be with a disk having a moving arm. 

The RAM disk's operation is so simple and fast there is never any reason to 
postpone a request, and the first thing done by this function is to clear the bit that 
may be set by a scattered VO call to indicate completion of an operation is 
optional. The destination address passed in the message points to a location in the 
caller's memory space, and the code at lines 9792 to 9794 converts this into an 
absolute address in the system memory and then checks that it is a valid address. 
The actual data transfer takes place on line 9818 or line 9820 and is a straightfor- 
ward copying of data from one place to another. 

A memory device does not need a third step to finish a read or write opera- 
tion, and the corresponding slot in m-dtab is a call to nop-finish. 

Opening a memory device is done by m-do-open (line 9829). The main job 
is done by calling m-prepare to check that a valid device is being referenced. In 
the case of a reference to /dev/mern or /dewhem, a call to enable-iop (in the file 
 protect.^) is made to change the CPU's current privilege level. This is not neces- 
sary to access memory. It is a trick to deal with another problem. Recall that 
Pentiurn-class CPUs implement four privilege levels. User programs are at the 
least privileged level. Intel processors atso have an architectural feature that is 
not present in many other systems, a separate set of instructions to address V 0  
ports. On these processors I/0 ports are treated separately from memory. Nor- 
mally, an attempt by a user process to execute an instruction that addresses an VO 
port causes a general protection exception. However, there are valid reasons for 
MINIX to allow users to write programs that can access ports, especially on small 
systems. Thus enable-iop changes the CPU' s I/0 Protection Level (IOPL) bits to 
permit this. The effect is to allow a process permitted to open /dev/rnem or 
/dev/kmern the additional privilege of access to UO ports. On an architecture 
where V 0  devices are addressed as memory locations, the m x  bits for these de- 
vices automatically cover access to VO. If this feature were hidden, it might be 
considered a security flaw, but now you know about it. If you plan to use MINIX 
to control a bank security system, you might want to recompile the kernel without 
this function. 

The next function, rn-init (line 9849), is called only once, when mem-task is 
called for the first time. It sets up the base address and size of /dewamem and it 
also sets the size of /dev/mem to 1 MB, 16 MB, or 4 GB-1, depending upon 
whet he^ MINIX is running in 8088, 80286, or 80386 mode. These sizes are the 
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maximum sizes supported by MINIX and do not have anything to do with how 
much RAM is installed in the machine. 

The RAM disk supports several Iom operations in m-ioctl (line 9874). The 
MIOCRAMSIZE is a convenient way for the file system to set the RAM disk size. 
The MIOCSPSINFO operation is used by both the file system and the memory 
manager to set the addresses of their parts of the process table into the psinfo 
table, where the utility program ps can retrieve it using a MlOCGPSINFO opera- 
tion. Ps is a standard UNIX program whose implementation is complicated by 
MINIX'S microkernel structure, which puts the process table information needed 
by the program in several different places. The IWTL system call is a convenient 
way to handle this problem. Otherwise a new version of ps would have to be 
compiled each time a new version of MINIX were compiled. 

The last function in memorye is m-geometry (line 9934). Memory devices 
do not have a geometry of cylinders, tracks, and sectors per track like mechanical 
disk drives, but in case the RAM disk is asked it will oblige by pretending it does. 

3.7 DISKS 

The RAM disk is a good introduction to disk drivers (because it is so simple), 
but real disks present a number of issues that we have not yet touched upon. In the 
following sections we will first say a few words about disk hardware and then 
take a look at disk drivers in general and the M I N ~ X  hard disk driver in particular. 
We will not examine the floppy disk driver in detail, but we will go over some of 
the ways a floppy disk driver differs from a hard disk driver. 

3.7.1 Disk Hardware 

All real disks are organized into cylinders, each one containing as many 
tracks as there are heads stacked vertically. The tracks are divided into sectors, 
with the number of sectors around the circumference typically being 8 to 32 on 
floppy disks, and up to several hundred on some hard disks. The simplest designs 
have the same number of sectors on each track. All sectors contain the same num- 
ber of bytes, although a little thought will make it clear that sectors close to the 
outer rim of the disk will be physically longer than those close to the hub. The 
time to read or write each sector will be same, however. The data'density is obvi- 
ously higher on the innermost cylinders, and some disk designs require a change 
in the drive current to the read-write heads for the inner tracks. This is handled by 
the disk controller hardware and is not visible to the user (or the implementor of 
an operating system). 

The difference in data density between inner and outer tracks means a sacri- 
fice in capacity, and more sophisticated systems exist. Floppy disk designs that 
rotate at higher speeds when the heads are over the outer tracks have been tried. 
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This allows more sectors on those tracks, increasing disk capacity. Such disks are 
not supported by any system for which MINlX is currently available, however. 
Modem large hard drives also have more sectors per track on outer tracks than on 
inner tracks. These are IDE (Integrated Drive Electronics) drives, and the 
sophisticated processing done by the drive's built-in electronics masks the details. 
To the operating system they appear to have a simple geometry with the same 
number of seaors on each track. 

The drive and controller electronics are as important as the mechanical hard- 
ware, The main element of the controller card that is plugged into the computer's 
backplane is a specialized integrated circuit, really a small microcomputer. For a 
hard disk the controller card circuitry may be simpler than for a floppy disk, but 
this is because the hard drive itself has a powerful electronic controller built in. A 
device feature that has important implications for the disk driver is the possibility 
of a controller doing seeks on two or more drives at the same time. These are 
known as overlapped seeks. While the controller and software are waiting for a 
seek to complete on one drive, the controller can initiate a seek on another drive. 
Many controllers can also read or write on one drive while seeking on one or 
more other drives, but a floppy disk controller cannot read or write on two drives 
at the same time. (Reading or writing requires the controller to move bits on a 
microsecond time scale, so one transfer uses up most of its computing power.) 
The situation is different for hard disks with integrated controllers, and in a sys- 
tem with more than one of these hard drives they can operate simultaneously, at 
least to the extent of transferring between the disk and the controller's buffer 
memory. Only one transfer between the controller and the system memory is pos- 
sible at once, however. The ability to perform two or more operations at the same 
time can reduce the average access time considerably. 

Figure 3- 19 compares parameters of double-sided, double-density diskettes, 
the standard storage medium for the original IBM PC, with parameters of a typi- 
cal medium-capacity hard drive such as might be found on a Pentium-based corn- 
puter. MINIX uses 1K blocks, so with either of these disk formats the blocks used 
by the software consist of two consecutive sectors, which are always read or writ- 
ten together as a unit. 

One thing to be aware of in looking at the specifications of modern hard disks 
is that the geometry specified, and used by the driver software, may be different 
than the physical format. The hard disk described in Fig. 3-19, for instance, is 
specified with "recommended setup parameters" of 1048 cylinders, 16 heads, and 
63 sectors per track. The controller electronics mounted on the disk converts the 
logical head and sector parameters supplied by the operating system to the physi- 
cal ones used by the disk. This is another example of a compromise designed to 
maintain compatibility with older systems, in this case old firmware. The 
designers of the original IBM PC only allotted a 6-bit field for the BIOS ROM's 
sector count, and a disk that has more than 63 physical sectors per track must 
work with- an artificial set of logical disk parameters. In this case the vendor's 
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Figure 3-19. Disk parameters for the original IBM PC 360-KB floppy disk and 
a Western Digital WD AC2540 540-MB hard disk. 

Time to transfer 1 sector 1 22 m s e ~  

specifications state that there are really four heads, and thus it would appear that 
there are really 252 sectors per track, as indicated in the figure. This is an over- 
simplification, because disks like these have more sectors on the outermost tracks 
than on the inner tracks. The disk described in the figure does have four physical 
heads, but there are actually slightly over 3000 cylinders. The cylinders are 
grouped in a dozen zones which bave from 57 sectors per track in the innermost 
zones to 105 cylinders per track an the outermost cylinders. These numbers are 
not to be found in the disk's specifications, and the translations done by the 
drive's electronics make it unnecessary for us to know such details. 

53 pS8C 

3.7.2 Disk Software 

In this sectiop we will look at some issues related to disk drivers in general. 
First, consider how long it takes to read or write a disk block. The time required is 
determined by three factors: 

I .  The seek time (the time to move the arm to the proper cylinder). 

2. The rotational delay (the time for the proper sector to rotate under 
the head). 

3. The actual data transfer time. 

For most disks, the seek time dominates the other two times, so reducing the mean 
seek time can improve system performance substantially. 
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Disk devices are prone to errors. Some kind of error check, a checksum or a 
cyclic redundancy check, is always recorded along with the data in each sector on 
a disk. Even the sector addresses recorded when the disk is formatted have check 
data. Floppy disk controller hardware can report when an error is detected, but the 
software must then decide what to do about it. Hard disk controllers often take on 
much of this burden. 

Particularly with hard disks, the transfer time for consecutive sectors within a 
track can be very fast. Thus reading more data than is requested and caching them 
in memory can be very effective in speeding disk access. 

Disk Arm Scheduling Aigorithms 

If the disk driver accepts requests one at a time and carries them out in that 
o r e  that is, First-Come, First-Served (FCFS), little can be done to optimize seek 
time. -However, another strategy is possible when the disk is heavily loaded. It is 
likely that while the arm is seeking on behalf of one request, other disk requests 
may be generated by other processes. Many disk drivers maintain a table, indexed 
by cylinder number, with all the pending requests for each cylinder chained 
together in a linked list headed by the table entries. 

Given this kind of data structure, we can improve upon the first-come, first- 
served scheduling algorithm. To see how, consider a disk with 40 cylinders. A re- 
quest comes in to read a block on cylinder 11. While the seek to cylinder 11 is in 
progress, new requests come in for cylinders l ,36 ,  16, 34,9, and 12, in that order. 
They are entered into the table of pending requests, with a separate linked list for 
each cylinder. The requests are shown in Fig. 3-20. 

Initial Pending 
position requests 

0 5 10 15 20 25 30 35 Cylinder 

!! 
F Sequence of seeks 

I 

Figure 3-20. Shortest Seek First (SSF) disk scheduling algorithm. 

When the current request (for cylinder 11) is finished, the disk driver has a 
choice of which request to handle next. Using FCFS, it would go next to cylinder 
1, then to 36, and so on. This algorithm would require arm motions of 10, 35, 20, 
18, 25, and 3, respectively, for a total of 1 11 cylinders. 

Alternatively, it could always handle the closest request next, to minimize 
seek time. Given the requests of Fig. 3-20, the sequence is 12,9, 16, l ,  34, and 36, 
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as shown as the jagged line at the bottom of Fig. 3-20. With this sequence, the 
arm motions are 1, 3, 7, 15, 33, and 2, for a total of 61 cylinders. This algorithm, 
Shortest Seelr First (SSF), cuts the total arm motion almost in half compared to 
FCFS. 

Unfortunately, SSF has a problem. Suppose more requests keep coming in 
while the requests of Fig. 3-20 are being processed. For example, if, after going to 
cylinder 16, a new request for cylinder 8 is present, that request will have priority 
over cylinder I .  If a request for cylinder 13 then comes in, the arm will next go to 
13, instead of 1. With a heavily loaded disk, the arm will tend to stay in the mid- 
dle of the disk most of the time, so requests at either extreme will have to wait 
until a statistical fluctuation in the load causes there to be no requests near the 
middle. Requests far from the middle may get poor service. The goals of minimal 
respume time and fairness are in conflict here. 

~ i *  buildings also have to deal with this trade-off. The problem of scheduling 
an elevator in a tall building is similar to that of scheduling a disk arm. Requests 
cQme in continuously calling the elevator to floors (cylinders) at random. The 
microprocessor running the elevator could easily keep track of the sequence in 
which customers pushed the call button and service them using FCFS. It could 
also use SSF. 

However, most elevators use a different algorithm to reconcile the conflicting 
goals of efficiency and fairness. They keep moving in the same direction until 
there are no more outstanding requests in that direction, then they switch direc- 
tions. This algorithm, known both in the disk world and the elevator world as the 
elevator algorithm, requires the software to maintain 1 bit: the current direction 
bit, UP or DOWN. When a request finishes, the disk or elevator driver checks the 
bit. If it is UP, the arm or cabin is moved to the next highest pending request. If 
no requests are pending at higher positions, the direction bit is reversed. When the 
bit is set to DOWN, the move is to the next lowest requested position, if any. 

Figure 3-21 shows the elevator algorithm using the same seven requests as 
Fig. 3-20, assuming the direction bit was initially UP. The order in which the cyl- 
inders are serviced is 12, 16, 34, 36, 9, and 1 ,  which yields arm motions of 1, 4, 
18, 2, 27, and 8, for a total of 60 cylinders. In this case the elevator algorithm is 
slightly better than SSF, although it is usually worse. One nice property that the 
elevator algorithm has is that given any collection of requests, the upper bound on 
the total motion is fixed: it is just twice the number of cylinders. 

A slight modification of this algorithm that has a smaller variance in response 
times (Teory, 1972) is to always scan in the same direction. When the highest 
numbered cylinder with a pending request has been serviced, the arm goes to the 
lowest-numbered cylinder with a pending request and then continues moving in an 
upward direction. In effect, the lowest-numbered cylinder is thought of as being 
just above the highest-numbered cylinder. 

Some disk controllers provide a way for the software to inspect the current 
sector number under the head. With such a controller, another optimization is 
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Figure 3-21. The elevator algorithm for scheduling disk requests. 

possible. If two or more requests for the same cylinder are pending, the driver can 
issue a request for the sector that will pass under the head next. Note that when 
multiple tracks are present in a cylinder, consecutive requests can be for different 
tracks with no penalty. The controller can select any of its heads instantaneously, 
because head selection involves neither arm motion nor rotational delay. 

With a modem hard disk, the data transfer rate is so much faster than that of a 
floppy disk that some kind of automatic caching is necessary. Typically any re- 
quest to read a sector will cause that sector and up to the rest of the current track 
to be read, depending upon how much space is available in the conuoller's cache 
memory. The 540M disk described in Fig. 3- 19 has a 64K or l28K cache. The use 
of the cache is determined dynamically by the controller. In its simplest mode, the 
cache is divided into two sections, one for reads and m e  for writes. 

When several drives ue present, a pending request table should be kept for 
each drive separately. Whenever any drive is idle, a seek should be issued to 
move its arm to the cylinder where it will be needed next (assuming the controlbr 
allows overlapped seeks). When the current transfer finishes, a check can be made 
to see if any drives are positioned on the correct cylinder. If one or more are, the 
next transfer can be started on a drive that is already on the right cplindsr. I$ m n e  
of the arms is in the right place, the driver should issue a new seek on the drive 
that just completed a transfer and wait until the next intempt to see which arm 
gets to its destination first. 

Error Handling 

RAM disks do not have to worry about seek or rotatiand optimitation: at any 
instant all blocks can be read or written without any physical motion. Another 
area in which RAM disks are simpler than real disks is error handling. RAM disks 
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always work; real ones do not always work. They are subject to a wide variety of 
errors. Some of the more common ones are: 

1. Programming error (e.g., request for nonexistent sector). 

2. Transient checksum error (e.g., caused by dust on the head). 

3. Permanent checksum e m r  (e.g., disk block physically damaged). 

4. Seek error (e.g., the arm sent to cylinder 6 but it went to 7). 

5. Controller error (e-g., controller refuses to accept commands). 

It is up to the disk driver to handle each of these as best it can. 
Programming errors occur when the driver tells the controller to seek to a 

nonexistent cylinder, read from a nonexistent sector, use a nonexistent head, or 
transfer to or from nonexistent memory. Most controllers check the parameters 
given to them and complain if they are invalid. In theory, these errors should 
never occur, but what should the driver do if the controller indicates that one has 
happened? For a home-grown system, the best thing to do is stop and print a mes- 
sage like "Call the programmer" ,so the error can be tracked down and fixed. For 
a commercial software product in use at thousands of sites around the world, this 
approach is less attractive. Probably the only thing to do is terminate the current 
disk request with an error and hope it will not recur too often. 

Transient checksum errors are caused by specks of dust in the air that get be- 
tween the head and the disk surface. Most of the time they can be eliminated by 
just repeating the operation a few times. If the error persists, the block has to be 
marked as a bad block and avoided. 

One way to avoid bad blocks is to write a very special program that takes a 
list of bad blocks as input and carefully hand crafts a file containing all the bad 
blocks. Once this file has been made, the disk allocator will think these blocks are 
occupied and never allocate them. As long as no one ever tries to read the bad 
block file, no problems will occur. 

Not reading the bad block file is easier said than done. Many disks are backed 
up by copying their contents a track at a time to a backup tape or disk drive. If this 
procedure is followed, the bad blocks will cause trouble. Backing up the disk one 
file at a time is slower but will solve the problem, provided that the backup pro- 
gram knows the name of the bad block file and refrains from copying it. 

Another problem that cannot be solved with a bad block file is the problem of 
a bad block in a file system data structure that must be in a fixed location. Almost 
every file system has at least one data structure whose location is fixed, so it can 
be found easily. On a partitioned file system it may be possible to repartition and 
work around a bad track, but a permanent error in  the first few sectors of either a 
floppy or hard disk generally means the disk is unusable. 

"Intelligent '? controllers reserve a few tracks not normally available to user 
programs. When a disk drive is formatted, the controller determines which blocks 
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are bad and automaticaily substitutes one of the spare tracks for the bad one. The 
table that maps bad tracks to spare tracks is kept in the controller's internal mem- 
ory and on the disk. This substitution is transparent (invisible) to the driver, except 
that its carefully worked out elevator algorithm may perform poorly if the con- 
troller is secretly using cylinder 800 whenever cylinder 3 is requested. The tech- 
nology of manufacturing disk recording surfaces is better than it used to be, but it 
is still not perfect. However, the technology of hiding the imperfections from the 
user'has also improved. On hard disks such as the one described in Fig. 3-19, the 
controller also manages new errors that may develop with use, permanently 
assigning substitute blocks when it determines that an error is unrecoverable. With 
such disks the driver software rarely sees any indication that there any bad blocks. 

Seek errors are caused by mechanical problems in the arm. The controller 
keeps track of the arm position internally. To perform a seek, it issues a series of 
pulses to the arm motor, one pulse per cylinder, to move the arm to the new 
cylinder. When the arm gets to its destination, the controller reads the actual cyl- 
inder number (written when the drive was formatted). If the arm is in the wrong 
place, a seek error has occurred. 

Most hard disk controllers correct seek errors automatically, but many floppy 
controllers (including the IBM PCs) just set an error bit and leave the rest to the 
driver. The driver handks this error by issuing a RECALIBRATE command, to 
move the arm as far out as it will go and reset the controller's internal idea of the 
cumnt cylinder to 0. Usually this solves the problem. If it does not, the drive must 
be repaired. 

As we have seen, the controller is really a specialized little computer, com- 
plete with software, variables, buffers, and occasionally, bugs. Sometimes an 
unusual sequence of events such as an interrupt on one drive occurring simultane- 
ously with a RECALIBRATE command for another drive will trigger a bug and 
cause the controller to go into a loop or lose track of what it was doing. Controller 
designers usually plan for the worst and provide a pin on the chip which, when 
asserted, forces the controller to forget whatever it was doing and reset itself. If all 
else fails, the disk driver can set a bit to invoke this signal and reset the controller. 
If that does not help, a11 the driver can do is print a message and give up. 

Track-at-a-Time Caching 

The time required to seek to a new cylinder is usually much more than the 
rotational delay, and always much more than the transfer time. In other words, 
once the driver has  gone to the trouble of moving the arm somewhere, it hardly 
matters whether it reads one sector or a whole track. This effect is especially true 
if the controller provides rotational sensing, so the driver can see which sector is 
currently under the head and issue a request for the next sector, thereby making it 
possible to read a track in one rotation time. (Normally it takes half a rotation plus 
one sector time just to read a single sector, on the average.) 
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Some disk drivers take advantage of this property by maintaining a secret 
track-at-a-time cache, unknown to the device-independent software. If a sector 
that is in the cache is needed, no disk transfer is required. A disadvantage of 
track-at-a-time caching (in addition to the software complexity and buffer space 
needed) is that transfers from the cache to the caIling program will have to be 
done by the CPU using a programmed loop, rather than letting the DMA hardware 
do the job. 

Some controllers take this process a step further, and do track-at-a-time cach- 
ing in their own internal memory, transparent to the driver, so that transfer k- 
tween the controller and mernory can use DMA. if the controller works this way, 
there is little point in having the disk driver do it as well. Note that both the con- 
troller and the driver are in a good position to read and write entire tracks in one 
command, but that the device-independen t software cannot, because it  regards a 
disk as a linear sequence of blocks, without regard to how they are divided up into 
tracks and cylinders. 

3.7.3 Overview of the Hard Disk Driver in MINIX 

The hard disk driver is the first part of MINIX we have looked at that has to 
deal with a wide range of different types of hardware. Before we discuss the 
details of the driver, we will briefly consider some of the problems hardware 
differences can cause. The ,"IBM PC" is really a farnilyof different computers. 
Not only are different processors used in different members of the family, there 
are also some major differences in the basic hardware. The earliest members of 
the family, the original PC and the PC-XT, used an 8-bit bus, appropriate for the 
8-bit external interface of the 8088 processor. The next generation, the PC-AT, 
used a 16-bit bus, which was cleverly designed so older 8-bit peripherals could 
still be used. Newer 16-bit peripherals generally cannot be used on older PC-XT 
systems, however. The AT bus was originally designed for- systems using the 
80286 processor, and many systems based on the 80386, 80486, and Pentiurn use 
the AT bus. However, since these newer processors have a 32-bit interface, there 
are now several different 32-bit bus systems available, such as Intel's PC1 bus. 

For every bus there is a different family of UO adapters, which plug into the 
system parentboard. All: the peripherals for a particular bus design must be com- 
patible with the standards for that design but need not be compatible with older 
designs. In the IBM PC family, as in most other computer systems, each bus 
design also comes with firmware in the Basic VO System Read-Only Memory 
(the BlOS ROM) which is designed to bridge the gap between the operating sys- 
tem and the peculiarities of the hardware. Some peripheral devices may provide 
extensions to the BIOS in ROM chips on the peripheral cards themselves. The dif- 
ficulty faced by an operating system implementor is that the BIOS in IBM-type 
computers-.(certainly the early ones) was designed for an operating system, Ms- 
DO& that does not support multiprogramming and that runs in 16-bit real mode, 
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the lowest common denominator of the various modes of operation available from 
the 80x86 family of CPUs. 

The implementor of a new operating system for the IBM PC is thus faced 
with several choices. One is whether to use the driver support for peripherals in 
the BIOS or to write new drivers from scratch. This was not a hard choice in the 
original design of MINIX, since the BIOS was in many ways not suitable to the 
needs of MINIX. Of course, in order to get started, the MlNlX boot monitor uses the 
BIOS to do the initial loading of the system, whether from hard disk or floppy 
disk-there is no practical alternative to doing it this way. Once we have loaded 
the system, including our own VO drivers, we can do much better than the BIOS. 

The second choice then must be faced: without the BIOS support how are we 
going to make our drivers adapt to the varied kinds of hardware on different sys- 
tems? To make the discussion concrete, consider that there ire at least four funda- 
mentally different types of hard disk controllers that we might find on a system 
which is otherwise suitable for MINIX: the original 8-bit XT-type controller, the 
16-bit AT-type controller, and two different controllers for two different types of 
IBM PS/2 series computers. There are several possible ways to deal with this: 

1. Recompile a unique version of the operating system for each type of 
hard disk controller we need to accommodate. 

2. Compile several different hard disk drivers into the kernel and have 
the kernel automatically determine at startup time which one to use. 

3. Compile several different hard disk drivers into the kernel and gro- 
vide a way for the user to determine which one to use. 

As we shall see, these are not mutually exclusive. 
The first way is really the best way in the long run. For use on a particular in- 

stallation there is no need to use up disk and memory space with code for alterna- 
tive drivers that will never be used. However, it is a nightmare for the distributor 
of the software. Supplying four different startup disks and advising users on how 
to use them is expensive and difficult. Thus, one of the other alternatives is advis- 
able, at least for the initial installation. 

The second method is to have the operating system probe the peripherals, by 
reading the ROM on each card or writing and reading U 0  ports to identify each 
card. This is feasible on some systems but does not work well on IBM-type sys- 
tems, kcause there are too many nonstandard l/0 devices available. Probing V 0  
ports to identify one device may, in some cases, activate another device which 
seizes control and disables the system. This method complicates the startup code 
for each device, and yet still does not work very well. Operating systems that do 
use this method generally have to provide some kind of override, typically a 
mechanism such as we use with MINIX. 

The third method, used in MINIX, is to allow compilation of several drivers, 
with one of them being the default. The MINIX boot monitor allows various boot 
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parameters to be read at startup time. These can be entered by hand, or stored 
permanently on the disk. At startup time, if a boot parameter of the form 
hd = xt 

is found, this forces use of the XT hard disk driver. If no hd boot parameter is 
found, the default driver is used. 

There are two other things MlNrX does to try to minimize problems with multi- 
ple hard disk drivers. One is that there is, after all, a driver that interfaces between 
MINIX and the ROM BIOS hard disk support. This driver is almost guaranteed to 
work on any system and can be selected by use of an 
hd = bios 

boot parameter. Generally, this should be a last resort, however. MINIX runs in 
protected mode on systems with an 80286 or better processor, but the BIOS code 
always runs in real (8086) mode. Switching out of protected mode and back again 
whenever a routine in the BlOS is called is very slow. 

The other strategy MINIX uses in dealing with drivers is to postpone initializa- 
tion until the last possible moment. Thus, if on some hardware configuration none 
of the hard disk drivers work, we can still start MINIX from a floppy disk and do 
some useful work. MINIX will have no problems as long as no attempt is made to 
access the hard disk. This may not seem like a major breakthrough in user 
friendliness, but consider this: if all the drivers try to initialize immediately on 
system startup, the system can be totally paralyzed by improper configuration of 
same device we do not need anyway. By postponing initialization of each drieer 
until it is needed, the system can continue with whatever does work, while the 
user tries to resolve the problems. 

As an aside, we learned this lesson the hard way: earlier versions of MINIX 
tried to initialize the hard disk as soon as the system was booted. If no hard disk 
was present, the system hung. This behavior was especially unfortunate because 
MINIX will run quite happily on a system without a hard disk, albeit with restricted 
storage capacity and reduced performance. 

In the discussion in this section and the next, we will take as our model the 
AT-style hard disk driver, which is the default driver in the standard MINIX distri- 
bution. This is a versatile driver that handles hard disk controllers from the ones 
used in the earliest 80286 systems to modern ELDE (Extended Integrated Drive 
Electronics) controllers that handle gigabyte capacity hard disks. The general 
aspects of hard disk operation we discuss in this section apply to the other sup- 
ported drivers as well. 

The main loop of the hard disk task is the same shared code we have already 
discussed, and the standard six kinds of requests can be made. A DEV-OPEN re- 
quest can entail a substantial amount of work, as there are always partitions and 
may be subpartitions on a hard disk. These must be read when a device is opened, 
(i.e., when it is first accessed). Some hard disk controllers can also support CD- 
ROM drives, which have removable media, and on a DEV-OPEN the presence of 
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the medium must be verified. On a CD-ROM a DEV-CLOSE operation also has 
meaning: it requires that the door be unlocked and the CD-ROM ejected. There 
are other complications of removable media that are more applicable to floppy 
drives. so we will discuss these in a later section. For the hard disk, the 
DEV-IOCTL operation is used to set a flag to mark that the medium should be 
ejected upon a DEV-CLOSE. This feature is useful for CD-ROMs. It is also 
used to read and write partition tables, as we noted earlier. 

The DEV-READ, DEV- WRITE, and SCA ;ITERED-I0 requests are each 
handled in three phases, prepare, schedule, and finish, as we saw previously. The 
hard disk, unlike the memory devices, makes a real distinction between the 
schedule and finish phases. The hard disk driver does not use SSF or the elevator 
algorithm, but it does do a more limited form of scheduling, gathering requests for 
consecutive sectors. Requests normally come from the MINIX file system and are 
for multiples of blocks of I024 bytes, but the driver is abIe to handle requests for 
any multiple of a sector (512 bytes). As long as each request is for a starting sec- 
tor immediately following the last sector requested, each request is appended to a 
list of requests. The list is maintained as an array, and when it is full, or when a 
nonconsecutive sector is requested, a call is made to the finish routine. 

In a simple DEV-R&AD or DEV-WRITE request, more than a single block 
may be requested, but each call to the schedule routine is immediately followed 
by a call to the finish routine, which ensures the current request list is fulfitled. In 
the case of a SCAKKEREDAO request, there may be multiple calls to the 
schedule routine before the finish routine is called. As long as they are for con- 
secutive blocks of data, the list will be extended until the array becomes full. 
Recall that in a SCA?TERED,IO request a flag can signify that a request for a 
particular block is optional. The hard disk driver, like the memory driver, ignores 
the OPTIONAL flag and delivers all data requested. 

The rudimentary scheduling performed by the hard disk driver, postponing 
actual transfers while consecutive biocks are being requested, should be seen as 
the second step of a potential, three-step process of scheduling. The file SyMern it- 
self, by using scattered U0, can implement something similar to Teory's version 
of the elevator algorithm-recall that in a scattered IIO request the list of requests 
is sorted on the block number. The third step in scheduling takes place in the con- 
troller of a modern hard disk, like the one described in Fig. 3-19. Such controllers 
are "smart" and can buffer large quantities of data, using internally programmed 
algorithms to retrieve data is the most efficient order, irrespective of the order of 
receipt of the requests. 

3.7.4 Implementation of the Hard Disk Driver in Mrrvrx 

SmaH hard disks used on microcomputers are sometimes called "winchester" 
disks. There are several different stories about the origin of the name. It was 
apparently an IBM code name for the project that developed the disk technology 
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in which the read/write heads fly on a thin cushion of air and land on the record- 
ing medium when the disk stops spinning. One explanation of the name is that an 
early model had two data modules, a 30-Mbyte fixed and a 30-Mbyte removable 
one. Supposedly this reminded the developers of the Winchester 30-30 firearm 
which figures in many tales of the United States' western frontier. Whatever the 
origin of the name, the basic technology remains the same, although today's typi- 
cal microcomputer disk is much smaller and the capacity is much larger than the 
14-inch disks that were typical of the early 1970s when the winchester technology 
was developed. 

The file wini.c has the job of hiding the actual hard disk driver used from the 
rest of the kernel. This allows us to follow the strategy discussed in the previous 
section. compiling several hard disk drivers into a single kernel image, and select- 
ing the one to use at boot time. Later, a custom installation can be recompiled 
with only the one driver actually needed. 

W M . r  contains one data definition, hdmap (line 10013), an m a y  that associ- 
ates a name with the address of a function. The array is initialized by the compiler 
with as many elements as are needed for the number of hard disk drivers enabled 
in include/minix/config.h. The array is used by the function winchester-task, 
which is the name entered in the task-tab table used when the kernel is first ini- 
tialized. When winchester-task (line 10040) is called, it  tries to find an lad 
environment variable, using a kernel function that works similarly to the rnechan- 
ism used by ordinary C programs, reading the environment created by the MINIX 
boot monitor. If no Id value is defined, the first entry in the array is used; other- 
wise, the array is searched for a matching name. The corresponding function is 
then called indirectly. in the rest of this section we will discuss the 
at-winchester-task, which is the first entry in the hdmap array in the standard 
distribution of MINiX. 

The AT-style driver is in at-wini.c (line 10100). This is a complicated driver 
for a sophisticated device, and there are several pages of macro definitions speci- 
fying controller registers, status bits and commands, dat a structures, and proto- 
types. As with other block device drivers, a driver structure, w-drab (lined 10274 
to 10284). is initialized with pointers to the functions that actually do the work. 
Most of them are defined in at-wini .~,  but as the hard disk requires no special 
cleanup operation, its dr-cleanup entry points to the common nop-cleanup in 

' 

 driver.^, shared with other drivers that have no special cleanup requirement. The 
entry function, at-winchester-task (line 102941, calls a procedure that does hard- 
ware-specific initialization and then calls the main loop in  driver.^. This runs for- 
ever. dispatching calls to the various functions pointed to by the driver table. 

Since we are now dealing with real electromechanical storage devices, there 
is a substantial amount of work to be done to initialize the hard disk driver. Vari- 
ous parameters about the hard disks are kept in the wini array defined on lines 
102 14 to 10230. As part of the policy ~f postponing initialization steps that could 
fail until the first time they are truly necessary, init-params (line 10307), which is 
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called during kernel initialization, does not do anything that requires accessing the 
disk device itself. The main thing it does is to copy some information about the 
hard disk logical configuration into the wini array. This is information that is 
retrieved by the ROM BIOS from the CMOS memory that Pentiurn-class com- 
puters use to preserve basic configuration data. The BIOS actions take place when 
the computer is first turned on, before the first part of the MINIX loading process 
begins. It is not necessarily fatal if this information cannot be retrieved; if the disk 
is a modern one, the information can be retrieved directly from the disk. 

After the call to  the common main loop, nothing may happen for a while until 
an attempt is made to access the hard disk. Then a message requesting a 
DEV-OPEN operation is received and w-do-open (line 103%) is indirectly 
called. In turn, w-do-open calls w-prepare to determine if the device requested 
is valid, and then w-identib to identify the type of device and initialize some 
more parameters in the wini array. Finally a counter in the wini array is used to 
test whether this is first time the device has been opened since MINIX was started. 
After being examined, the counter is incremented. If it is the first DEV-OPEN 
operation, the partition function (in drv l ib .~ )  is called. 

The next function, w-prepare (line 10388), accepts an integer argument, de- 
vice, which is the minor device number of the drive or partition to be used, and re- 
turns a pointer to the device structure that indicates the base address and size of 
the device. In C the use of an identifier to name a structure does not preclude use 
of the same identifier to name a variable. Whether a device is a drive, a partition, 
or a subpartition can be determined from the minor device number. Once 
w-prepare has completed its job, none of the other functions used to read or write 
the disk need to concern themselves with partitioning. As we have seen, 
w-prepare is called when a DEV-OPEN request is made; it is also one phase of 
the prepare/schedule/finish cycle used by all data transfer requests. In that context 
its initialization of w-count to zero is important. 

Software-compatible AT-type disks have been in use for quite a while, and 
w-identify (line 10415) has to distinguish between a number of different designs 
that have been introduced over the years. The first step is to see that a readable 
and writeable I/O port exists where one should exist on all disk controllers in this 
family (lines 10435 to 10437). If this condition is met, the address of the hard 
disk interrupt handler is installed in the interrupt descriptor table and the interrupt 
controller is enabled to respond to that interrupt. Then an ATA -IDENTIFY com- 
mand is issued to the disk controller. If the result is OK, various pieces of infor- 
mation are retrieved, including a string that identifies the model of the disk, and 
the physical cylinder, head, and sector parameters for the device. (Note that the 
"physical" configuration reported may not be the true physical configuration, but 
we have no  alternative to accepting what the disk drive claims.) The disk inforrna- 
tion also indicates whether or not the disk is capable of Linear Block Addressing 
(LBA). If it is, the driver can ignore the cylinder. head, and sector parameters and 
can address the disk using absolute sector numbers, which is much simpler. 
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As we mentioned earlier, it is possible that init-params may not recover the 
logical disk configuration information from the BIOS tables. If that happens, the 
code at lines 10469 to 10477 tries to create an appropriate set of parameters based 
on what it reads from the drive itself. The idea is that the maximum cylinder, 
head, and sector numbers can be 1023,255, and 63 respectively, due to the num- 
ber of bits allowed for these fields in the originaI BIOS data structures. 

If the ATA-IDENTIFY command fails, it may simply mean that the disk is an 
older model that does not support the command. In this case the logical configura- 
tion values previously read by init-params are all we have. If they are valid, they 
are copied to the physical parameter fields of wini; otherwise an error is returned 
and the disk is not usable. 

Finally, MlNIX uses a u32-t variable to count addresses in bytes. The size of 
device the driver can handle, expressed as a count of sectors, must be limited if 
the product of cylinders x heads x sectors is too large (line 10490). Although at 
the time of writing this code devices of 4-GB capacity were rarely found on 
machines that one might expect to be used for MINIX, experience has taught that 
software should be written to test for limits such as this, unnecessary as such tests 
may appear at the time the code is written. The base and size of the whole drive 
are then entered into the wini array, and w-spec,@ is calIed, twice if necessary, to 
pass the parameters to be used back to the disk controller. Finally, the name of the: 
device (determined by w-name) and the identification string found by identify (if 
it is an advanced device) or the cylinder head and sector parameters reported by 
the BIOS (if an old device) are printed on the console. 

W-name (line 105 11) returns a pointer to a string containing the device name, 
which will be either "at-hdO," "at-hd5," "at-hd lo," or "at-hd 15." W-specifi 
(line 1053 I) ,  in addition to passing the parameters to the controller, also recali- 
brates the drive (if it is an older model), by doing a seek to cylinder zero. 

Now we are ready to discuss the functions called in satisfying a data transfer 
request. W-pre,pare, which we have already discussed, is called first. Its initiali- 
zation of the variable w-count to zero is important here. The next function called 
during a transfer is w_scheduk (line 10567). It sets up the basic parameters: 
where the data are to come from, where they are to go to, the count of bytes to 
transfer (which must be a multiple of the sector size, and is tested on line 10584), 
and whether tht: transfer is a read or write. The bit that may be present in a 
SCATTERED-I0 request to indicate an optional transfer is reset in the operation 
code to be passed to the controller (line 10595), but note that it is retained in the 
io-request field of the iorequest-s structure. For the hard disk an attempt is made 
to honor all requests, but, as we will see, the driver may later decide not to do so if 
there have been errors. The last thing in the setup is to check that the request does 
not go beyond the last byte on the device and to reduce the request if it does. At 
this point the first sector to be read can be calculated. 

On line 10602 the process of scheduling begins in earnest. If there are already 
requests pending (tested by seeing if w-corrrrt is greater than zero), and if the 
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sector to read next is not consecutive with the last one requested, then w-finish is 
called to complete the previous requests. Otherwise, w -nextblock, which holds 
the sector number of the next sector, is updated, and the loop on lines 1061 1 to 
10640 is entered to add new sector requests to the array of requests. Within max- 
imum allowable number of requests has been reached (line 106 14). The limit is 
kept in a variable, max-count, since, as we will see later, it is sometimes helpful 
to be able to adjust the limit. Here again, a call to w-finish may result. 

As we have seen, there are two places within w-prepare where a call to 
w-finish may be made. Normally w-prepare terminates without calling 
w-finish, but whether or not it is called from within w-prepare, w-finish (line 
10649) is always called eventually from the main loop in  driver.^. If it has just 
been called, it may have no work, so there is a test on lihe 10659 to check this. If 
there are stiI1 requests in the request array, the main part of w-finish is entered. 

As one might expect, since there. may be a considerable number of requests 
queued, the main part of w-finish is a loop, on lines 10664 to 10761. Before 
entering the loop, the variable r is'preset to a value signifying an error, to force 
reinitialization of the controller. If a call to w-specify succeeds the command 
structure, cmd is initialized to do a transfer. This structure is used to pass all the 
required parameters to the function that actually operates the disk controller. The 
cmd.precomp parameter. is used by some drives to compensate for differences in 
the performance of the magnetic recording rnediurn with differences in speed of 
passage of the medium under the disk heads as they move from outer to inner cyl- 
inders. It is always the same for a particular drive and is ignored by many drives. 
Cmd.count receives the number of sectors to transfer. masked to a quantity that 
fits in an 8-bit byte, since that is the size of all the command and status registers 
of the controller, The code on lines 10675 to 10689 specifies the first sector to 
transfer, either as a 28-bit logical block number (lines 10676 to 10679), or as cyl- 
inder, head, and sector parameters (lines 1068 1 to 10688). In either case the same 
fields in the cmd structure are used. 

Finally, the command itself, read or write, is loaded and corn-out is. called at 
line 10692 to initiate the transfer. The call to corn-our may fail if the controller is 
not ready or does not become ready within a preset timeout period. In this case the 
count of errors is incremented and the attempt is aborted if MAX-ERRORS is 
reached. Otherwise, the 

continue; 

statement on line 10697 causes the loop to start over again at line 10665. 
If the controller accepts the command passed in the call to corn -out, it may be 

a while before the data are available, so (assuming the command is DEV-READ) 
on line 10706 w-intr-wait is called. We will discuss this function in detail later, 
but for now just note that it calls receive, so at this point the disk task blocks. 

Some time later, more or less, depending upon whether a seek was involved, 
the call to w-intr-wait will return. This driver does not use DMA, although some 
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controllers support it. Instead, programmed I/O is used. If there is no error re- 
turned from w-intr-wait, the assembly language function port-read transfers 
SECTOR-SIZE bytes of data from the controller's data port to their final destina- 
tion, which should be a buffer in the file system's block cache. Next, various ad- 
dresses and counts are adjusted to account for the successful transfer. Finally, if 
the count of bytes in the current request goes to zero, the pointer to the array of re- 
quests is advanced to point to the next request (line 107 14). 

In the case of a DEV-WRITE command, the first part, setting up the corn- 
rnand parameters and sending the command-to the controller, is the same as for a 
read, except for the command operation code. The order of subsequent events is 
different for a write, however. First there is a wait for the controller to signal it is 
ready to receive data (line 10724). Waitfor is a macro, and normally will return 
very quickly. We will say more about it  later; for now we will just note that the 
wait will time out eventually, but that long delays are expected to be extremely 
rare. Then the data are transferred from memory to the controller data port using 
port-write (line 10729)- and at this point w-intr-wait is called and the disk task 
blocks. When the interrupt arrives and the disk task is awakened, the bookkeeping 
is done (lines 10736 to 10739). 

Finally, if there have been errors in reading or writing, they must be dealt 
with. If the controller informs the driver that the error was due to a bad sector, 
there is no point in trying again, but other types of errors are worth a retry, at least 
up to a point. That point is determined by counting the errors and giving up if 
MAX- ERRORS is reached. When MAX- ERR0RS.Q is reached, w -need-reset is 
called to force reinitialization when the retry is made. However, if the request was 
originally an optional one (made by a SCA7TERED-I0 request), no retry is 
attempted. 

Whether w-finish terminates without errors or because of an error, the vari- 
able w-command is always set to CMD-IDLE, This allows other functions to 
determine that the failure was not because of a mechanical or electrical malfunc- 
tion of the disk itself causing failure to generate an interrupt following an 
attempted operation. 

The disk controller is controlled through a set of registers, which could be 
memory mapped on some systems, but on an IBM compatible appear as VO ports. 
The registers used by a standard IBM-AT class hard disk controller are shown in 
Fig, 3-22. 

This is our first encounter with VO hardware, and it may be helpful to men- 
tion some ways VO ports may behave differently from memory addresses. In gen- 
eral, input and output registers that happen to have the same U0 port address are 
not the same register. Thus, the data written to a particular address cannot neces- 
sarily be retrieved by a subsequent read operation. For example, the last register 
address shown in Fig. 3-22 shows the status of the disk controller when read and 
is used to issue commands to the controller when written to. It is also common 
that the very act of reading or writing an 110 device register causes an action to 
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I Register / Read Function 1 Write Function 1 
I 0 \Data 1 Data 

I 1 1 €nor / Write Precompensation ~ 
/ 2 1 sector count I sector count 1 
1 3 I Sector Number (0-7) 1 Sector Number (0-7) 1 

4 / Cylinder Low (8-15) 

1 6 1 Select DrivdHead (24-27) ) Select DrivdHead (24-27) 1 

Cylinder Low (8-1 5) 

5 

1 7 1 status I Command I 

i 
Cylinder High (1 6-23) / Cylinder High (1623) 

I I LBA i 1 I D 1 HS3 1 HS2 I HS1 I HSO 1 

LBA: 0 = CylinderkIeadlSector Mode 
1 = Logical Block Addressing Mode 

0: 0 = master drive 
1 = slave drive 

HSn: CHS mode: Head Select in CHS mode 
LBA mode: Block select bits 24 - 27 

Figure 3-22. (a) The control registers of an IDE hard disk controller. The num- 
bers in parentheses are the bits of the logical block address selected by each reg- 
ister in LBA mode. (b) The fields of the Select Drive/Head register. 

occur, independently of the details of the data transferred. This is true of the com- 
mand register on the AT disk controller. In use, data are written to the lower-num- 
bered registers to select the disk address to be read from or written to, and then the 
command register is written last with an operation code. The act of writing the op- 
eration code into the command register starts the operation. 

It is also the case that the use of some registers or fieids in the registers may 
vary with different modes of operation. In the example given in the figure, writing 
a 0 or a 1 to the LBA bit, bit 6 of register 6, selects whether CHS (Cylinder- 
Head-Sector) or LBA (Linear Block Addressing) mode is used. The data written 
to or read from registers 3, 4, and 5, and the low four bits of register 6 are inter- 
preted differently according to the setting of the LBA bit. 
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Now let us look at how a command is sent to the controller by calling 
corn-nut (line 10771). Before changing any registers, the status register is read to 
determine that the controller is not busy. This is done by testing the STATUS-BSY 
bit. Speed is important here, and normally the disk controller is ready or will be 
ready in a short time, so busy waiting is used. On line 10779 waitfor is called to 
test STATUS-BSY. To maximize the speed of response, waitfor is a macro, de- 
fined on line 10268. It makes the required test once, avoiding an expensive func- 
tion call on most calls, when the disk is ready. On the rare occasions when a wait 
is necessary, it then calls w-waitfor, which executes the test in a loop until it is 
true or a predefined timeout period elapses. Thus the returned value will be true 
with the minimum possible delay if the controller is ready, true after a delay if it 
i s  temporarily unavailable, or false if it is not ready after the timeout period. We 
will have more to say about the tirneout when we discuss w-waitfor Itself. 

A controller can handle more than one drive, so once it is determined that the 
controller is ready, a byte is written to select the drive, head, and mode of opera- 
tion (line 10785) and then waivor is called again. A disk drive sometimes fails to 
carry out a command or to properly return an error code-it is, after all, a 
mechanical device that can stick, jam, or break internally-and as insurance a 
message is sent to the clock task to schedule a call to a wakeup routine. Following 
this, the command is issued by first writing all the parameters to the various regis- 
ters and finally writing the command code itself to the command register. The 
latter step and thesubsequent modification of the w-command and w-status vari- 
ables is a criticat section, so the entire seque-keted by calls to lock and 
unlock (lines 10801 to 10805) which disable and then reenable interrupts. 

The next several functions are short. We noted that w-need-reset (line 
108 13) is called by w-finish when the failure count hits half of MAX-ERRORS. 
It  is also called when timeouts occur while waiting for the disk to interrupt or 
become ready. The action of w-need-reset is just to mark the state variabIe for 
every drive in the wini array to force initialization on the next access. 

W-do-close (line 10828) has very little to do.for a conventional hard disk. 
When support is added for CD-ROMs or other removable devices, this routine 
will have to be extended to generate a command to unlock the door or eject the 
CD, depending upon what the hardware supports. 

Corn-simple is called to issue controller commands that terminate immediate- 
ly without a data transfer phase. Commands that fall into this category include 
those that retrieve the disk identification, setting of some parameters, and recali- 
bration. 

When corn-out calls the clock task to prepare for a possible rescue after a 
disk controller failure, it passes the address of w-timeout (line 10858) as the func- 
tion for the clock task to awaken when the timeout period expires. Usually the 
disk completes the requested operation and when the timeout occurs. w-command 
will be found to have the value CMD-IDLE, meaning the disk completed its oper- 
ation, and w-timeout can then terminate. If the command does not complete and 
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the operation is a read or write, it may help to reduce the size of PO requests. This 
is done in two steps, first reducing the maximum number of sectors that can be re- 
quested to 8, and then to I .  For all timeouts a message is printed, w-need-reset is 
called to force re-initialization of all drives on the next attempted access, and in- 
terrupt is called to deliver a message to the disk task and simulate the hardware- 
generated intermpt that should have occurred at the end of the disk operation. 

When a reset is required, w-reset (line f 0889) is called. This function makes 
use of a function provided by the clock driver, rnilli-delay. After an initial delay 
to give the drive time to recover from previous operations, a bit in the disk con- 
troller's control register is strobed-that is, brought to a logical 1 level for a 
definite period, then returned to the logical 0 level. Following this operation, wait- 
for is called to give the drive a reasonable period to signal it is ready. In case the 
reset does not succeed, a message is printed and an enor status returned. It is left 
to the caller to decide what to do next. 

Commands to the disk that involve data transfer normally terminate by gen- 
erating an intermpt, which sends a message back to the disk task. In fact, an inter- 
rupt is generated for each sector read or written. Thus, after issuing such a com- 
mand, w-intr-wait (line 10925) will always be called. In turn, w-intr-wait calls 
receive in a loop, ignoring the contents of each message, waiting for an intermpt 
that sets w-status to "not busy." Once such a message is received, the status of 
the request is checked. This is another critical section, so luck and unlock are used 
here to guarantee that a new interrupt will not occur and change w-starus before 
the various steps involved are complete. 

We have seen several places where the macro waitfor is called to do busy 
waiting on a bit in the disk controller status register. After the initial test, the 
waitfor macro calls w-waitjiur (line 10955), which calls rnilli-start to begin a 
timer and then enters a loop that alternately checks the status register and the 
timer. If a timeout occurs, w-need-reset is called to set things up for a reset of 
the disk controller the next time its services are requested. 

The TIMEOUT parameter used by w-waitfor is defined on line 102% as 32 
seconds. A similar parameter, WAKEUP (line 10193), used to schedule wakeups 
from the clock task, is set to 31 seconds. These are very long perids of time to 
spend busy waiting, when you consider that an ordinary process only gets 100 
msec to run before it will be evicted. But, these numbers are based upon the pub- 
lished standard for interfacing disk devices to AT-class computers, which states 
that up to 31 seconds must be allowed for a disk to "spin up" to speed. The fact 
is, of course, that this is a worst-case specification, and that on most systems spin 
up will only occur at power-on time, or possibly after long periods of inactivity. 
MINIX is still being developed. It is possible that a new way of handling timeouts 
may be called far when support for CD-ROMs (or other devices which must spin 
up frequently) is added. 

W-handler (line 10976) is the interrupt handler. The address of this function 
is put into the Intempt Descriptor Table by w-identifl when the hard disk task is 
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first activated. When a disk interrupt occurs, the disk controller status register is 
copied to ru-status and then the interrupt function in the kernel is cailed to 
reschedule the hard disk task. When this occurs, of course, the hard disk task is 
already blocked as a result of a previous call to receive from w-intr-wait after 
initiation of a disk operation. 

The last function in at-wini.c is w-geometry. It returns the logical maximum 
cylinder, head, and sector values of the selected hard disk device. In this case the  
numbers are real ones, not made up as they were for the RAM disk driver. 

3.7-5 Floppy Disk Handling 

The floppy disk driver is longer and more complicated than the hard disk 
driver. This may seem paradoxical, since floppy disk mechanisms would appear 
to be simpler than those of hard disks, but the simpler mechanism has a simpler 
controller that requires more attention from the operating system, and the fact that 
the medium is removable adds some complications. In this section we will 
describe some of the things an implementor has to consider in dealing with floppy 
disks. However, we will not go into the details of the MINIX floppy disk driver 
code. The most important parts are similar to those for the hard disk. 

One of the things we do not have to worry about with the floppy driver is the 
multiple types of controller to support that we had to deal with in the case of the 
hard disk driver. Although the high-density floppy disks currently used were not 
supported in the design of the original IBM PC, the floppy disk controllers of all 
computers in the 1BM PC family are supported by a single software driver. The 
contrast with the hard disk situation is probably due to lack of pressure to increase 
floppy disk performance. Floppy disks are rarely used as working storage during 
operation of a computer system; their speed and data capacity are too limited 
compared to those of hard disks. Floppy disks remain important for distribution of 
new software and for backup, so almost all small computer systems are equipped 
with at least one floppy drive. 

The floppy disk driver does not use the SSF or the elevator algorithm. It is 
strictly sequential, accepting a request and carrying it out before even accepting 
another request. In the original design of MINIX it was felt that, since MINIX was 
intended for use on personal computer, most of the time there would be only one 
process active, and the chance of a disk request arriving while another was being 
carried out was small. Thus there would be little to gain from the considerable 
increase in software complexity that would be required for queueing requests. It is 
even less worthwhile now, since floppy disks are rarely used for anything but 
transferring data into or out of a system with a hard disk. 

That said, even though there is no support in the driver software for reordering 
requests, the floppy driver, like any other block driver, can handle a request for 
scattered 110, and just like the hard disk driver, the floppy driver collects requests 
in an array and continues to collect such requests as long as sequential sectors are 
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requested. However, in the case of the floppy driver the array of requests is 
smaller than for the hard disk, limited to the maximum number of sectors per 
track on a floppy diskette. In addition, the floppy driver pays attention to the 
OPTIONAL flag in scattered I 1 0  requests and does not proceed to a new track if 
all current requests are optional. 

The simplicity of the floppy disk hardware is responsible for some of the 
complications in floppy disk driver software. Cheap, slow, low-capacity floppy 
drives do not justify the sophisticated integrated controllers that are part of 
modem hard drives, so the driver software has to deal explicitly with aspects of 
disk operation that are hidden in the operation of a hard drive. As an example of a 
complication caused by the simplicity of floppy drives, consider positioning the 
readwrite head to a particular track during a SEEK operation. No hard disk has 
ever required the driver software to explicitly call for a SEEK. For a hard disk the 
cylinder, head, and sector geometry visible to the programmer may not 
correspond to the physical geometry, and, in fact, the physical geometry may be 
quite complicated, with more sectors on outer cylinders than on inner ones. This 
is not visible to the user, however. Hard disks may accept Logical Block 
Addressing (LBA), addressing by the absolute sector number on the disk, as an 
alternative to cylinder, head, and sector addressing. Even if addressing is done by 
cylinder, head, and sector, any geometry that does not address nonexistent sectors 
may be used, since the integrated controller on the disk calculates where to move 
the read/write heads and does a seek operation when required. 

For a floppy disk, however, explicit programming of SEEK operations is 
needed. In case a SEEK fails, it is necessary to provide a routine to perform a 
RECAWBRATE operation, which forces the heads to cylinder 0. This makes it 
possible for the controller to advance them to a desired track position by stepping 
the heads a known number of times. Similar operations are necessary for the hard 
drive, of course, but the drive controller handles them without detailed guidance 
from the device driver software. 

Some characteristics of a floppy disk drive that complicate its driver are: 

1. Removable media. 

2. Multiple disk formats. 

3. Motor control. 

Some hard disk controllers provide for removable media, for instance, on a 
CD-ROM drive, but the drive controller is generally able to handle any complica- 
tions without much support in the device driver software. With a floppy disk, 
however, the built-in support is not there, and yet it is needed more. Some of the 
most common uses for floppy disks-installing new software or backing up 
files-are likely to require switching of disks in and out of the drives. It can cause 
grief if data that were intended for one diskette are written onto another diskette. 
The device driver should do what it can to prevent this, although this is not always 
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possible, as not all floppy drive hardware allows determination of whether the 
drive door has been opened since the last access. Another problem that can be 
caused by removable media is that a system can become hung up if an attempt is 
made to access a floppy drive that currently has no diskette inserted. This can be 
solved if an open door can be detected, but since this is not always possible some 
provision must be made for a timeout and an error return if an operation on a 
floppy disk does not terminate in a reasonable time. 

Removable media can be replaced with other media, and in the case of floppy 
disks there are many different possible formats. MINIX hardware supports both 
3.5-inch and 5.25-inch disk drives and the diskettes can be formatted in a variety 
of ways to hold from 360 KB up to 1.2 MB (on a 5.25-inch diskette) or 1 . 4 4  MB 
(on a 3.5-inch diskette). MINIX supports seven different floppy disk formats. 
There are two possible solutions to the problem this causes, and MINIX allows for 
both of them. One way is to refer to each possible format as a distinct drive and 
provide multiple minor devices. MINIX does this, and in the device directory you 
will find fourteen different devices defined, ranging from /dev/pcO, a 360K 5.25- 
inch diskette in the first drive, to /dev/PSI, a 1.44M 3.5-inch diskette in the 
second drive. Remembering the different combinations is cumbersome, and a 
second alternative is provided. When the first floppy disk drive is addressed as 
/dev/fdO, or the second as /&v/fdl, the floppy disk driver tests the diskette cur- 
rently in h e  drive when i t  is accessed, in order to determine the format. Some 
formats have more cylinders, and others have more sectors per track than other 
formats. Determination of the format of a diskette is done by attempting to read 
the higher numbered sectors and tracks. By a process of elimination the format 
can be determined. This does, of course, take time, and a disk with bad sectors 
could be misidentified. 

The final complication of the floppy disk driver is motor control. Diskettes 
cannot be read or written unless they are revolving. Hard disks are designed to 
run for thousands of hours on end without wearing out, but leaving the motors on 
all the time causes a floppy drive and diskette to wear out quickly. If the motor is 
not already on when a drive is accessed, it is necessary to issue a command to 
start the drive and then to wait about a half second before attempting to read or 
write data. Turning the motors on or off is slow, so MINIX leaves a drive motor on 
for a few seconds after a drive is used. If the drive is used again within this inter- 
val, the timer is extended for another few seconds. If the drive is not used in this 
interval, the motor is turned off. 

3.8 CLOCKS 

Clocks (also called timers) are essential to the operation of any timesharing 
system for a variety of reasons. They maintain the time of day and prevent one 
process from monopolizing the CPU, among other things. The clock software can 
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take the form of a device driver, even though a clock is neither a block device, 
like a disk, nor a character device, like a terminal. Our examination of clocks will 
follow the same pattern as in the previous sections: first a look at clock hardware 
and software in general, and then a closer look at how these ideas are applied in 
MINIX. 

3.8.1 Clock Hardware 

Two types of clocks are commonly used in computers, and both are quite dif- 
ferent from the clocks and watches used by people. The simpler clocks are tied to 
the 1 10- or 220-volt power line, and cause an interrupt on every voltage cycle, at 
50 or 60 Hz, 

The other kind of clock is built out of three components: a crystal oscillator, a 
counter, and a holding register, as shown in Fig. 3-23. When a piece of quartz 
crystal is properly cut and mounted under tension, it can be made to generate a 
periodic signal of very high accuracy, typically in the range of 5 to 100 MHz, 
depending on the crystal chosen. At least one such circuit is usually found in any 
computer, providing a synchronizing signal to the computer's various circuits. 
This signal is fed into the counter to make it count down to zero. When the count- 
er gets to zero, it causes a CPU interrupt. 

11111111!n-nTn?- Counter is decremented at each pulse 

1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1  ~dding register is used to load the counter 

EPgure 3-23. A programmable clock. 

Programmable clocks typically have several modes of operation. In one-shot 
mode, when the clock is started, it copies the value of the holding register into the 
counter and then decrements the counter at each pulse from the crystal. When the 
counter gets to zero, it causes an interrupt and stops until it is explicitly started 
again by the software. In square-wave mode, after getting to zero and causing the 
intempt, the holding register is automatically copied inta the counter, and the 
whole process is repeated again indefinitely. These periodic interrupts are cdled 
clock ticks. 

The -advantage of the programmable clock is that its interrupt frequency can 
be controlled by software. If a 1-MHz crystal is used, then the counter is pulsed 
every microsecond. With 16-bit registers, interrupts can be programmed to occur 
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at intervals from 1 microsecond to 65.536 milliseconds. Programmable clock 
chips usually contain two or three independently programmable clocks and have 
many other options as well (e.g., counting up instead of down, interrupts disabled, 
and more). 

To prevent the current time from being lost when the computer's power is 
turned off, most computers have a battery-powered backup clock, implemented 
with the kind of low-power circuitry used in digital watches. The battery clock 
can be read at startup. If the backup clock is not present, the software may ask the 
user for the current date and tirne. There is also a standard protocol for a 
networked system to get the current tirne from a remote host. In any case the time 
is then translated into the number of clock ticks since 12 A.M. Universal Coordi- 
nated Time (UTC) (formerly known as Greenwich Mean Time) on Jan. 1, 1970, 
as UNlX and MINIX do, or since some other benchmark. At every clock tick, the 
real time is incremented by one count. Usually utility programs are provided to 
manually set the system clock and the backup clock and to synchronize the two 
clocks. 

3.8.2 Clock Software 

All the clock hardware does is gen ierate interrupts at known intervals. Every- 
thing else involving time must be done by the software, the clock driver. The 
exact duties of the clock driver vary among operating systems, but usually include 
most of the following: 

1. Maintaining the time of day. 

2. Preventing processes from running longer than they are allowed to. 

3. Accounting for CPU usage. 

4. Handling the ALARM system call made by user processes. 

5. Providing watchdog timers for parts of the system itself. 

6. Doing profiling, monitoring, and statistics gathering. 

The first clock function, maintaining the time of day (also called the real 
time) is not difficult. It just requires incrementing a counter at each clock tick, as 
mentioned before. The only thing to watch out for is the number of bits in the 
time-of-day counter. With a clock rate of 60 Hz, a 32-bit counter will ovefflow in 
just over 2 years. Clearly the system cannot store the real time as the number of 
ticks shce Jan. 1, 1970 in 32 bits. 

Three approaches can be taken to solve this problem. The first way is to use a 
64-bit counter, although doing so makes maintaining the counter more expensive 
since it has to be done many times a second. The second way is to maintain the 
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time of day in seconds, rather than in ticks, using a subsidiary counter to count 
ticks until a whole second has been accumulated. Because 232 seconds is more 
than 136 years, this method will work until well into the twenty-second century. 

The third approach is to count in ticks, but to d o  that relatives to the time the 
system was booted, rather tha* relative to a fixed external moment. When the 
backup clock is read or  the user types in the real time, the system boot time is cal- 
culated from the current time-of-day value and stored in memory in any con- 
venient form. Later, when the time of day is requested, the stored time of day is 
added to  the counter to  get the current time of day. All three approaches are 
shown in Fig. 3-24. 

1- 61 bits ~ p - 1  32 bits 32 bits 

Time of day in ticks 

Time of day Number of ticks 
in seconds in current second 

System boot time 
in seconds 

Figure 3-24. Three ways to maintain the time of day. 

The second clock function is preventing processes from running too long. 
Whenever a process is started, the scheduler should initialize a counter to the 
value of that process' quantum in clock ticks. At every clock interrupt, the clock 
driver decrements the quantum counter by 1. When it gets to zero, the clock driver 
calls the scheduler to set up another process. 

The third clock function is doing CPU accounting. The most accurate,vpy to 
do it is to start a second timer, distinct from the main system timer, whenever a 
process is started. When that process is stopped, the timer can be read out to tell 
how long the process has run. To do things right, the second timer should be saved 
when an intempt occurs and restored afterward. 

A less accurate, but much simpler, way to do accounting is to maintain a 
pointer to  the process table entry for the currently running process in a global vari- 
able. At every clock tick, a field in the current process' entry is incrernented. In 
this way, every clock tick is "charged" to the process running at the time of the 
tick. A minor problem with this strategy is that if many interrupts occur during a 
process' run, it is still charged for a full tick, even though it did not get much 
work done. Properly accounting for the CPU during interrupts is too expensive 
and is never done. 

In MINIX and many other systems, a process can request that the operating 
system give it a warning after a certain interval. The warning is usually a signal, 
interrupt, message, or something similar. One application requiring such warnings 
is networking, in which a packet not acknowledged within a certain time h e r v a l  
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must be retransmitted. Another application is computer-aided instruction, where a 
student not providing a response within a certain time is told the answer. 

If the clock driver had enough clocks, it could set a separate clock for each re- 
quest. This not being the case, it must simulate multiple virtual clocks with a sin- 
gle physical clock. One way is to maintain a table in which the signal time for all 
pending timers is kept, as well as a variable giving the time of the next one. 
Whenever the time of day is updated, the driver checks to see if the closest signal 
has occurred. If it has, the table is searched for the next one to occur. 

If many signals are expected, it is more efficient to simulate multiple clocks 
by chaining all the pending clack requests together, sorted on time, in a linked list, 
as shown in Fig. 3-25. Each entry on the list tells how many clock ticks following 
the previous one to wait before causing a signal. In this example, signals are pend- 
ing for 4203,4207.42 1 3,42 1 5. and 42 16. 

Current time Next signal 

header '7 
Figure 3-25. Simulating muitiple timers with a single dock. 

In Fig. 3-25, the next interrupt occurs in 3 ticks. On each tick, Next signal is 
decremented. When it gets to 0, the signal corresponding to the first item on the 
list is caused, and that item is removed from the list, Then Next signal is set to the 
value in the entry now at the head of the list, in this example, 4. 

Note that during a clock interrupt, the clock driver has several things to do- 
increment the real time, decrement the quantum and check for 0, do CPU account- 
ing, and decrement the alarm counter. However, each of these operations has 
been carefully arranged to be very fast because they have to be repeated many 
times a second. 

Parts of the operating system also need to set timers. These are called watch- 
dog timers. When studying the hard disk driver, we saw that a wakeup call is 
scheduled each time the disk controller is sent a command, so an attempt at 
recovery can be made if the command fails completely. We also mentioned that 
floppy disk drivers have to wait for tlie disk motor to get up to speed and must 
shut down the motor if no activity occurs for a while. Some printers with a mov- 
able print head can print at 120 characterslsec (8.3 msedcharacter) but cannot re- 
turn the print head to the left margin in 8.3 msec, so the terminal driver must 
delay after typing a carriage return. 

The mechanism used by the clock driver to handle watchdog timers is the 
same as for user signals. The only difference is that when a timer goes off, instead 
of causing a signal. the clock driver calls a procedure supplied by the caller. The 
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procedure is part of the caller's code, but since all the drivers are in the same ad- 
dress space, the clock driver can call it anyway. The called procedure can do 
whatever is necessary, even causing an interrupt, although within the kernel inter- 
rupts are often inconvenient and signals do not exist. That is why the watchdog 
mechanism is provided. 

The last thing in our list is profiling. Some operating systems provide a 
mechanism by which a user program can have the system build up a histogram of 
its program counter, so it can see where it is spending its time. When profiling is a 
possibility, at every tick the driver checks to see if the current process is being 
profiled, and if so, computes the bin number (a range of addresses) corresponding 
to the current program counter. It then increments that bin by one. This mechan- 
ism can also be used to profile the system itself. 

3.8.3 Overview of the Clock Driver in MINIX 

The MINIX clock driver is contained in the file c1ock.c. The clock task accepts 
these six message types, with the parameters shown: 

1. HARD-INT 

2. GET- UPTIME 

3. GET-TIME 

4. SET-TIME (new time in seconds) 

5. SET-ALARM (process number, procedure to call, delay) 

6. SET-SYN- AL (process number, delay ) 

HARD-iNT is the message sent to the driver when a clock interrupt occurs 
and there is work to do, such as when an alarm must be sent or a process has run 
too long. 

GET-UPTIME is used to get the time in ticks since boot time, GET-TIME 
returns the current real time as the number of seconds elapsed since Jan. 1, 1970 
at 12:O A.M., and SET-TIME sets the real time. it can only be invoked by the 
super-user. 

Internal to the clock driver, the time is kept track of using the method of Fig. 
3-24(c). When the time is set, the driver computes when the system was booted. It 
can make this computation because it has the current real time and it also knows 
how many ticks the system has been running. The system stores the real time of 
the boot in a variable. Later, when GET-TlME is called, it converts the current 
value of the tick coqnter to seconds and adds it to the stored boot time. 

SERALARM allows a process to set a timer that goes off in a specified num- 
ber of clock ticks. When a user process does an ALARM call, it sends a message to 
the memory manager, which then sends this message to the clock driver. When 
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the alarm goes off, the clock driver sends a message back to the memory manager, 
which then takes care of making the signal .happen. 

SET-ALARM is also used by tasks that need to start a watchdog timer. When 
the timer goes off, the procedure provided is simply called. The clock driver has 
no knowledge of what the procedure does. 

SET-SYN-AL is similar to SET-ALARM, but is used to set a synchronous 
alarm. A synchronous alarm sends a message to a process, rather than generating 
a signal or calling a procedure. The synchronous alarm task handles dispatching 
messages to the processes that require them. Synchronous alarms will be dis- 
cussed in detail later. 

The clock task uses no major data structures, but there are several variables 
used to keep track of time. Only one is a global variable, lost-ticks, defined in 
g b . h  (line 5031). This variable is provided for the use of any driver that may be 
added to MINIX in the future that might disable interrupts long enough that one or 
more clock ticks could be lost. It currently is not used, but if such a driver were to 
be written the programmer could cause lost-ticks to be incrernented to compen- 
sate for the time during which clock intempts were inhibited. 

Obviously, clock intempts occur very frequently, and fast handling of the 
clock interrupt is important. MINIX achieves this by doing the bare minimum 
amount of processing on most clock interrupts. Upon receipt of an intempt the 
handler sets a local variable, ticks, to lost-ticks + I and then uses this quantity to 
update accounting times and pending-ticks (line 11079) and resets lost-ticks to 
zero. Pending-ticks is a PRIVATE variable, declared outside of all funition 
definitions, but known only to functions defined in c1ock.c. Another PRIVATE 
variable, sched-ticks, is decremented on each tick to keep track of execution 
time. The interrupt handler sends a message to the clock task only if an alarm is 
due or an execution quantum has been used. This scheme results in the interrupt 
handler returning almost immediately on most interrupts. 

When the clock task receives any message, it adds pending -ticks to the vari- 
able realrime (line 1 1067) and then zeroes pending-ticks. Realtime, together with 
the variable boot-time (line 11068), allows the current time of day to be com- 
puted. These are both PRJVATE variables, so the only way for any other part of 
the system to get the time is try sending a message to the clock task. Although at 
any instant realtime may be inaccurate, this mechanism ensures it is always accu- 
rate when seeded. 1f your watch is correct when you look at it, does i t  matter if it 
is incorrect when you are not looking? 

To handle a l m s ,  next-alarm records the time when the next signal or watch- 
dog call may happen. The driver has to be careful here, because the process re- 
questing the signal may exit or be killed before the signal happens. When it is 
time for the signal, a check is made to see if it is still needed. If it is not needed, it 
is not carried out. 

Each user process is allowed to have only one outstanding alarm timer. Exe- 
cuting an ALARM call while the timer is still running cancels the first timer. 
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Therefore, a convenient way to store the timers is to reserve one word in the proc- 
ess tabie entry for each process for its timer, if any. For tasks, the function to be 
called must also be stored somewhere, so an may, watch-dog, has been provided 
for this purpose. A similar array, syn-table, stores flags to indicate for each proc- 
ess if it is due to receive a synchronous alarm. 

The overall logic of the clock driver foILows the same pattern as the disk 
drivers. The main program is an endless loop that gets messages, dispatches on 
the message type, and then sends a reply (except for CLOCK-TICK). Each mes- 
sage type is handled by a separate procedure, following our standard naming con- 
vention of naming dl the procedures called from the main loop d o - ~ ~ ,  where 
x m  is different for each one, of course. As an aside, unfortunately, many linkers 
truncate procedure names to seven or eight characters, so the names do-set-time 
and do-set-alarm are potentially in conflict. The latter has been renamed 
do-setalarm. This problem occurs throughout MINIX and is usually solved by 
mangling one of the names. 

The Synchronous Alarm Task 

There is a second task to be discussed in this section, the synchronous alarm 
task. A synchronous alarm is similar to an alarm, but instead of sending a signal 
or calling a watchdog function when the timeout period expires, the synchronous 
alarm task sends a message. A signal may arrive or a watchdog task may be called 
without any relation to what part of a task is executing, so alarms of these types 
are asynchronous. In contrast, a message is received only when the receiver has 
executed a receive call. 

The synchronous alarm mechanism was added to MINIX to support the net- 
work server, which, like the memory manager and the file server, runs as a sepa- 
rate process. Frequently there is a need to set a limit on the time a process may be 
blocked while waiting for input. For instance, in a network, failure to receive an 
acknowledgement of a data packet within a definite period is probably due to a 
failure of transmission. A network server can set a synchronous alarm before it 
tries to receive a message and blacks. Since the synchronous alarm .is delivered as 
a message, it will unblock the server eventually if no message is received from the 
network. Upon receiving any message the server must first reset the alarm. Then 
by examining the type or origin of the message, it can determine a packet has 
arrived or if it has been unblocked by a timeout. If it is the latter, then the server 
can try to recover, usually by resending the last unacknowledged packet. 

A synchronous alarm is faster than an alarrn sent using a signal, which re- 
quites several messages and a considerable amount of processing. A watchdog 
function is fast, bul is only useful for tasks compded into the same address space 
as the clock task. When a process is waiting for a message, a synchronous alarrn is 
more appropriate and simpler than either signals or watchdog functions, and it is 
easily handled with little additional processing. 
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The Clock Interrupt Handler 

As described earlier, when a clock interrupt occurs, realtime is not updated 
immediately. The interrupt service routine maintains the pending-ticks counter 
and does simple jobs like charging the current tick to a process and decrementing 
thcquantum timer. A message is sent to the clock task only when more compli- 
cated jobs must be done. This is something of a compromise with the ideal of 
MINIX tasks that communicate totally by messages, but it is a practical concession 
to the reality that servicing clock ticks consumes CPU time. On a slow machine it 
was found that doing it this way resulted in a 15% increase in system speed rela- 
tive to an implementation that sent a message to the clack task on every clock in- 
terrupt. 

Millisecond Timing 

As another concession to reality, a few routines are provided in c10ck.c that 
provide millisecond resolution timing. Delays as short as a millisecond are needed 
by various I/O devices. There is no practical way to do this using alarms and the 
message passing interface. The functions here are meant to be called directly by 
tasks. The technique used is the oldest and simplest I/0 technique: polling. The 
counter that is used for generating the clock interrupts is read directly, as rapidly 
as possible, and the count is converted to milliseconds. The caller does this repeat- 
edly until the desired time has elapsed. 

Summary of Clock Services 

Figure 3-26 summarizes the various services provided by c1ock.c. There are 
several ways to access the clock, and several ways the request can be honored. 
Some services are available to any process, with results returned in a message. 

Uptime can be obtained by a function call from the kernel or a task, avoiding 
the overhead of a message. An alarm can be requested by a user process, with the 
eventual result being a signal, or by a task, causing activation of a watchdog func- 
tion. Neither of these mechanisms can be used by a server process, but a server 
can ask for a synchronous alarm. A task or the kernel can request a delay using 
the milliAeiay function, or it can incorporate cdIs to milliAapsed into a polling 
routine, for instance, while waiting for input from a port. 

3.8.4 Implementatioa of the Clock Driver in MINIX 

When MWIX starts up, all the drivers are called. Most of them just try to get a 
message and block. The clock driver, clock,task (line 11098), does that too, but 
fmt it caIIs init-clock to initialize the programmable clock frequency to 60 Hz. 
When any message is received, it adds pending-ticks to realtime and then resets 
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Figure 3-26. The clock code supports a number of time-related services. 
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pending-ticks before doing anything else. This operation could potentially con- 
flict with a clock interrupt, so calls to lock and unlock are used to prevent a race 
(lines I 1  1 15 to 1 1 1 18). Otherwise the main loop of the clock driver i s  essentially 
the same as the other drivers: a message is received, a function to do the required 
work is called, and a r-ge is sent. 

Do-clocktick (line 11 140) is not called on each tick of the clock, so its name 
is not an exact description of its function. It is called when the interrupt handler 
has determined there might be something imprlant to do. First a check is made to 
see if a signal or watchdog timer has gone off. If one has, all the alarm entries In 
the process table are inspected. Because ticks are not processed individually, sev- 
eral alarms may go off in one pass over the table. It is also possible that the proc- 
ess that was to receive the next alarm has already exited. When a process is found 
whose alarm is less than the current time, but not zero, the slot in the watch-dog 
array corresponding to that process is checked. In the C programming language a 
numeric vaiue also has a logical value, so the test on Iine 11 161 returns TRUE if a 
valid address is stored in the watch-dog slot, and the corresponding function is 
called indirectly on line 11 163. If a null pointer is found (represented in C by a 
vaiue of zero), the test evaluates to FALSE and cause-sig is called to send a 
SIGALRM signal. The watch-dug slot is also used when a synchronous alarm is 
needed. In that case the address stored is the address of cawe-alarm, rather than 
the address of a watchdog function belonging to a particular task. For sending a 
signal we could have stored the address of cause& but then we would have had 
to have written cause-sig differently, to expect no arguments and get the target 
process number from a global variable. Alternatively, we could have required all 
watchdog processes to expect an argument they do not need. 

We will discuss cause-sig when we discuss the system task in a subsequent 
section. Its job is to send a message to the memory manager. This requires a check 
to see if the memory manager is currently waiting for a message. If so, it sends a 
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message telling about the alarm. If the memory manager is busy, a note is made to 
inform it at the first opportunity. 

While looping through the process table inspecting the p-alarm value for 
each process, next-alarm is updated. Before starting the loop it is set to a very 
large number (line 11 151), and then, for each process whose alarm value is 
nonzero after sending alarms or signals, a comparison is made between the proc- 
ess' alarm and next-alarm, which is set to the smaller value (lines 11 171 and 
1 1 172). 

After processing alarms, do-clocktick goes on to see if it is time to schedule 
another process. The execution quantum is maintained in the PRIVATE variable 
sched-ticks, which is normally decremented by the clock interrupt handler on 
every clock tick. However, on those ticks when do_clocktick is activated, it is not 
decremented by the handler, allowing do-clocktick itself to do this and test for a 
zero result on line 11 178. Sched-ticks is not reset whenever a new process is 
scheduled (because the file system and memory manager are allowed to run to 
completion). Instead it is reset after every SCHED-RATE ticks. The comparison 
on line 11 179 is to make sure that the current process has actually run at least one 
full scheduler tick before taking the CPU away from it. 

The next procedure, d m - m e  (line 1 1  l89), is just one line; it puts the 
current value of realtime (the number of ticks since boot) into the proper field in 
the message to be returned. Any process can find the elapsed time this way, but 
the message overhead is a big price to ask of tasks, so a related function, 
get-uptime (line 1 1200) is provided that can be called directly by tasks. Since it is 
not invoked via a message to the clock task, it has to add pending ticks to the cur- 
rent realtime itself. Lock and unlock are necessary here to prevent a clock inter- 
rupt occurring while pending-ticks is being accessed. 

To get the current real time, do-get-time (line 11219) computes the current 
real time from realrime and boot-time (the system boot time in seconds). 
Do-set-tirne (line 11230) is its complement. It computes a new value for 
boot-fime based on the given current real time and number of ticks since booting. 

The procedures do-setalarm (line 1 1242) and do-setsyn-alrm (line 1 1269) 
are so sirn~lar we will discuss them together. Both extract the parameters that 
specify the process to be signaled and the time to wait from the message. 
Do-seralam also extracts a function* to call (line 11257), although a few lines 
farther on it replaces this value with a null pointer if the target process is a user 
process and not a task, We have already seen how this pointer is later tested in 
do-clocktick to determine whether the target should get a signal or a call to a 
watchdog. The time remaining to the alarm (in seconds) is also calculated by both 
functions and set into the return message. Both then call common-setalarm to fin- 
ish up. In the case of the do-setsyn-alarm call, the function parameter passed to 
common -setalann is always cause -alarm. 

Common-setalarm (line 11291) finishes the work started by either of the two 
functions just discussed. Then it stores the alarm time in the process tablt m d  the 
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pointer to the watchdog procedure (which may also be a pointer to cause-alarm 
or a null pointer) in the watch-dog array. Then it scans the entire process table to 
find the next alarm, just as is done by do-clockrick. 

Cause-alarm (line 11318) is simple; it sets to  TRUE an entry in the syn-table 
array corresponding to the target of the synchronous alarm. If the synchronous 
alarm task is not ative, it is sent a message to wake it up. 

Implementatian of the Synchronous Alarm Task 

The synchronous alarm task, syn-alum-task (line 11333), follows the basic 
model of all tasks. It initializes and then enters an endless loop in which it 
receives and sends messages. The initialization consists of declaring itself alive by 
setting the variable syn,al,alive to TRUE and then declaring that it has nothing 
to do by setting all the entries in syn-table to FALSE. There is a slot in syn-table 
for each slot in the process table. In begins its outer loop by declaring it has corn- 
pleted its work and then enters an inner loop where it checks all slots in 
syn-table. If it finds an entry indicating a synchronous alarm is expected, it 
resets the entry, sends a message of type CLOCK-INT to the appropriate process, 
and declares its work not complete. Ar the bottom of its outer loop it does not 
pause to wait for any new messages unless its work-done flag is set. A new mes- 
sage is not needed to tell it there is more work to do, since cause-alarm writes 
directly into sy-table- A message is needed only to wake it up after it has run 
out of work. The effect is h a t  it cycles very rapidly as long as there are a l m s  to 
be delivered. 

In fact, this task is not used by the distribution version of MINIX. If you 
recompile MINIX to add networking support, it will be used by the network server, 
however, which needs exactly this kind of mechanism to enforce rapid timeouts if 
packets are not received when expected. In addition to the need for speed;:'a server 
cannot be sent a signal, since servers must run forever, and the default &ion of 
most signals is to kill the target process. 

Implementation of the Clock Interrupt Handler 

The design of the dock interrupt handler is a compromise between doing very 
little (so the processing time will be minimized) and doing enough to make expen- 
sive activations of the clock task infrequent. It changes a few variables and tests a 
few others. Clock-handler (line 11374) starts off by doing system accounting. 
MINJX keeps track of both user time and system time. User time is charged 
against a process if it is running when the clock ticks. System time is charged if 
the file system or memory manager is running. The variable bill-ptr always 
points to the last user process scheduled (the two servers do not count). The bill- 
ing is done on lines 11447 and 11448. After billing is finished, the most impor- 
tant variable maintained by clock -handler, pending -ticks, is incrernented (line 
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1 1450). The real time must be known for testing whether clock-handler should 
wake up the tty or send a message to the clock task, but actually updating realtime 
itself is expensive, because this operation must be done using locks. To avoid 
this, the handler calculates its own version of the real time in the local variable 
now. There is a small chance that the result will be incorrect once in a while, but 
the consequences of such an error would not be serious. 

The rest of the handler's work depends upon various tests. The terminal and 
the printer both need to be awakened from time to time. Tty-timeout is a global 
variable. maintained by the terminal task, which holds the next time the tty should 
be awakened. For the printer several variables which are PRIVATE within the 
printer module need to be checked, and they are tested in the call to pr-restart, 
which returns quickIy even in the worst case of the printer being hung up. .On 
lines 11455 to l1458 a test is made that activates the clock task if an alarm is due 
or if it is time to schedule another task. The latter test is complex, a logical AND 
of three simpler tests. The 

code on line 11459 results in a HARD-INT message to the clock task. 
In discussing do,clocktick we noted that it decrements sched-ticks and tests 

for zero to see if the execution quantum has expired. Testing whether sched-ticks 
is equal to one is part of the complex test we mentioned above; if the clock task is 
not activated, it is still necessary to decrement sched-ticks within the interrupt 
handler and, if it reaches zero, reset the quantum. If this occurs, it is also time to 
note that the current process was active at the start of the new quantum; this is 
done by the assignment of the current value of bill-ptr to prev-ptr on line 1 1466. 

Time Utilities 

Finally, clock. c contains some functions that provide various kinds of support. 
Many of these are hardware specific and will need to be replaced for a port of 
MINIX to non-Intel hardware. We will only describe the function of these, without 
going into details of their internals. 

Init-clock (line 1 1474) is called by the timer task when it runs for the first 
t~me. It sets the mode and time delay of the timer chip to produce clock tick inter- 
rupts 60 times per second. Despite the fact that the "CPU speed" one sees in  
advertisements for PCs has increased from 4.77 Mhz for the original IBM PC to 
over 200 Mhz for modem systems, the constant TIMER-COUNT, used to initial- 
ize the timer, is the same no matter what PC model MINIX is run on. Every IBM 
compatible PC, no matter how fast its processor runs, provides a 14.3 Mhz signal 
for use by various devices that need a time reference. Serial communications 
lines and the video display also need such a timing reference. 

The complement of in i tdock  is clock-stop (line 11489). It is not realky 
necessary, but it is a concession to the fact that MINIX users may want to start 
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another operating system at times. It simply resets the timer chip parameters to the 
default mode of operation that MS-DOS and other operating systems may expect 
the ROM BIOS to have provided when they first start. 

Milli-delay (line 11502) is provided for use by any task that needs very short 
delays. It is written in C without any hardware-specific references, but it uses a 
technique one might expect to find only in a low-level assembly language routine. 
It initializes a counter to zero and then rapidly polls it until a desired value is 
reached. In Chapter 2 we said that this technique of busy waiting should generally 
be avoided, but the necessities of implementation can require exceptions to gener- 
al rules. The initialization of the counter is done by the next function, miZli-start 
(line 1 15 16), which simply zeroes two variables. The polling is done by calling 
the last function, milli-elapsed (line 1 1 j D ) ,  which accesses the timer hardware. 
The counter that is examined is the same one used to count down dock ticks, and 
thus it can underflow and be reset to its maximum value before the desired delay 
is complete. Milli-elapsed corrects for this. 

3.9 TERMINALS 

Every general purpose computer has one or more terminals used to communi- 
cate with it. Terminals come in an extremely large number of different forms. It 
is up to the terminal driver to hide all these differences, so that the device- 
independent part of the operating system and the user programs do not have to be 
rewritten for each kind of terminal. In the following sections we will follow our 
now-standard approach of first discussing terminal hardware and software in gem 
eral, and then discussing the MINIX software. 

3.9.1 Terminal Hardware 

From the operating system's point of view, terminals can be divided into three 
broad categories based on how the operating system communicates with them. 
The first category consists of memory-mapped terminals, which consist of a key- 
board and a display, both of which are hardwired to the computer. The second 
category consists of terminals that interface via a serial communication line using 
the RS-232 standard, most frequently over a modem. The third category consists 
of terminals that are connected to the computer via a network. This taxonomy is 
shown in Fig. 3-27. 

Memory-Mapped Terminals 

The first broad category of terminals named in Fig. 3-27 consists of memory- 
mapped terminals. These are an integral part of the computers themselves. 
Memory-mapped terminals are interfaced via a special memory called a video 
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Figure 3-27. Terminal types. 

RAM, which forms part of the computer's address space and is addressed by the 
CPU the same way as the rest of memory (see Fig. 3-28). 

Also on the video RAM card is a chip called a video controller. This chip 
pl'ls character codes out of the video RAM and generates the video signal used to 
drive the display (monitor). The monitor generates a beam of electrons that scans 
h0Tizon~11y across the screen, painting lines on it.  Typically the screen has 480 
to l a 4  lines from top to bottom, with 640 to 1200 points per line. These points 
are called pixels. The video controller signal modulates the electron beam. deter- 
mining whether a given pixel will be light or dark. Color monitors have three 
beams, for red, green, and blue, which are independently modulated. 
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Figure 3-28. Memory-mapped terminals write directly into video RAM. 

A simple monochrome display might fit each character in a box 9 pixels wide 
by 14 pixels high (including the space between characters), and have 25 lines of 
80 characters. The display would then have 350 scan lines of 720 pixels each. 
Each of these frames is redrawn 45 to 70  times a second. The video controller 
could be designed to fetch tbe first 80 characters from the video RAM, generate 
14 scan lines. fetch the next 80 characters from the video RAM, generate the 
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following 14 scan lines, and so on. In fact, most fetch each character once per 
scan line to eliminate the need for buffering in the controller. The 9-by-14 bit pat- 
terns for the characters are kept in a ROM used by the video controller. (RAM 
may also be used to support custom fonts.) The ROM is addressed by a 12-bit 
address, 8 bits from the character code and 4 bits to specify a scan line. The 8 bits 
in each byte of the ROM control 8 pixels; the 9th pixel between characters is 
always blank. Thus 14 x 80 = 1 120 memory references to the video RAM are 
needed per line of text on the screen. The same number of references are made to 
the character generator ROM. 

The IBM PC has several modes for the screen. In the simplest one. i t  uses a 
character-mapped display for the console. In Fig. 3-29(a) we see a portion of the 
video RAM. Each character on the screen of Fig. 3-29(b) occupies two characters 
in the RAM. The low-order character is the ASCII code for the character to be 
displayed. The high-order character is the attribute byte, which is used to specify 
the color, reverse video, blinking, and so on. The full screen of 25 by 80 charac- 
ters requires 4000 bytes of video RAM in this mode. 

Video RAM Screen 

k 60 characters -4 80 characters -4 

Figure 3-29. (a) A video RAM image for the IBM monochrome display. (b) 
The corresponding screen. The xs are attribute bytes. 

Bit-map terminals use the same principle, except that each pixel on the screen 
is individually controlled. In the simplest configuration. for a monochrome dis- 
play, each pixel has a corresponding bit in the video RAM. At the other extreme, 
each pixel is represented by a 24-bit number, with 8 biLs each for red, green. and 
blue. A 768 x 1024 color display with 24 bits per pixel requires 2 MB of RAM 
just to hold the image. 

. With a memory-mapped display, the keyboard is completely decoupled from 
the screen. It may be interfaced via a serial or parallel port. On every key action 
the CPU is interrupted, and the keyboard driver extracts the character typed by 
reading an I/O port. 

On the IBM PC, the keyboard contains an embedded microprocessor which 
communicates through a specialized serial port with a controller chip o n  the moth- 
erboard. An interrupt is generated whenever a key is struck and also when one is 



238 I NPUTIOUTPUT CHAP. 3 

released. Furthermore, all that the keyboard hardware provides is the key number, 
not the ASCII code. When the A key is struck, the key code (30) is put in an UO 
register. It is up to the driver to determine whether it is lower case, upper case, 
CTRL-A, ALT-A, CTRL-ALT-A, or some other combination. Since the driver 
can tell which keys have been struck but not yet released (e.g., shift), it has 
enough information to do the job. Although this keyboard interface puts the full 
burden on the software, it is extremely flexible. For example, user programs may 
be interested in whether a digit just typed came from the top row of keys or the 
numeric key pad on the side. In principle, the driver can provide this information. 

RS-232 Terminals 

RS-232 terminals are devices containing a keyboard and a display that com- 
municate using a serial interface, one bit at a time (see Fig. 3-30). These termi- 
nals use a 9-pin or 25-pin connector, of which one pin is used for transmitting 
data, one pin is for receiving data, and one pin is ground. The other pins are for 
various control functions, most of which are not used. To send a character to an 
RS-232 terminal, the computer must transmit it 1 bit at a time, prefixed by a start 
bit, and followed by 1 or 2 stop bits to delimit the character. A parity bit which 
provides rudimentary error detection may also be inserted preceding the stop bits, 
although this is commonly required only for communication with mainframe sys- 
tems. Common transmission rates are 9600, 19,200, and 38,400 bps. RS-232 term- 
minals are commonly used to communicate with a remote computer using a 
modem and a telephone line. 

18-232 1 
tarfmra Receive line 
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Bus UART UART 

Figure 3-30. An RS-232 terminal communicates with a computer over a com- 
munication line, one bit at a time. The computer and the terminal are completely 
independent. 

Since both computers and terminals work internally with whole characters but 
must communicate over a serial line a bit at a time, chips have been developed to 
do the character-to-serial and serial-to-character conversions. They are called 
UARTs (Universal Asynchronous Receiver Transmitters). U ARTS are attached 
to the computer by plugging RS-232 interface cards into the bus as illustrated in 
Fig. 3-3 1. RS-232 .terminals are gradually dying off, being replaced by PCs and X 
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terminals, but they are still encountered on older mainframe systems, especially in 
banking, airline reservation, and similar applications. 

To print a character, the terminal driver writes the character to the interface 
card, where it is buffered and then shifted out over the serial line one bit at a time 
by the UART. Even at 38,400 bps, ittakes just over 250 microsec to send a char- 
acter. As a result of this slow transmission rate, the driver generally outputs a 
character to the RS-232 card and blocks, waiting for the interrupt generated by the 
interface when the character has been transmitted and the UART is able to accept 
another character. The UART can simultaneously send and receive characters, as 
its name implies. An interrupt is also generated when a character is received, and 
usually a small number of input characters can be buffered. The terminal driver 
must check a register when an interrupt is received to determine the cause of the 
interrupt. Some interface cards have a CPU and memory and can handle multiple 
lines, taking over much of the VO load from the main CPU. 

RS-232 terminals can be subdivided into categories, as mentioned above. The 
simplest ones were hardcopy (printing) terminals. Characters typed on the key- 
board were transmitted to the computer. Characters sent by the computer were 
typed on the paper. These terminals are obsolete and rarely seen any more. 

Dumb CRT terminals work the same way, only with a screen instead of paper. 
These are often called "glass ttys" because they are functionally the same as 
hardcopy ttys. (The term "tty" is an abbreviation for ~ e l e t ~ p e @  a former com- 
pany that pioneered in the computer terminal business; "tty" has come to mean 
any terminal.) Glass ttys are also obsolete. 

Intelligent CRT terminals are in fact miniature, specialized computers. They 
have a CPU and memory and contain software, usually in ROM. From the operat- 
ing system's viewpoint, the main difference between a glass tty and an intelligent 
terminal is that the latter understands certain escape sequences. For example, by 
sending the ASCII ESC character (033), followed by various other characters, it 
may be possible to move the c m o r  to any position on the screen, insert text in the 
middle of the screen, and so forth. 

X Terminals 

The ultimate in intelligent terminals is a terminal that contains a CPU as 
powerful as the main computer, along with megabytes of memory, a keyboard, 
and a mouse. One common terminal of this type is the X terminal, which runs 
M.I.T.'s X Window System. Usually, X terminals talk to the main computer over 
an Ethernet. 

,An X terminal is a computer that runs the X software. Some products are 
dedicated to running only X; others are general-purpose computers that simply run 
X as one program among many others. Either way, an X terminal has a large bit- 
mapped screen, usually 960 x 1200 or better resolution, in black and white, gray- 
scale, or color, a full keyboard, and a mouse, normally with three buttons. 
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The program inside the X terminal that collects input from the keyboard or 
mouse and accepts commands from a remote computer is called the X server. It 
communicates over the network with X clients running on some remote host. It  
may seem strange to have the X server inside the terminal and the clients on the 
remote host, but the X server's job is to display bits, so it makes sense to be near 
the user. The arrangement of client and server is shown in Fig. 3-3 1. 

X terminal 

Remote host 1 

X terminal's 

ouse 

Network 

Figure 3-31. Clients avd servers in the M.I.T. X Window System. 

The screen of the X terminal contains some number of windows, each in the 
form of a rectangular grid of pixels. Each window usually has a title bar at the 
top, a scmH bar on the left, and a resizing box in the upper right-hand corner. One 
of the X clients is a program called a window manager. Its job is to control the 
creation, deletion, and movement of windows on the screen. To  manage win- 
dows, it sends commands to the X server telling what to do. These commands 
include draw point, draw line, draw rectangle, draw polygon, fill rectangle, fill 
polygon, and so on. 

The job of the X server is to coordinate input from the mouse, keyboard, and 
X clients and update the display accordingly. It has to keep track of which win- 
dow is currently selected (where the mouse pointer is), so it knows which client to 
send any new keyboard input to. 

3.9.2 Terminal Software 

The keyboard and display are almost independent devices, so  we will treat 
them separately here. (They are not quite independent, since typed characters 
must be dispIayed on the screen.) In MINIX the keyboard and screen drivers are 
part of the same task; in other systems they may be split into distinct drivers. 
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Input Software 

The basic job of the keyboard driver is to collect input from the keyboard and 
pass it to user programs when they read from the terminal. Two possible philoso- 
phies can be adopted for the driver. In the first one, the driver's job is just to 
accept input and pass it upward unmodified. A program reading from the terminal 
gets a raw sequence of ASCII codes. (Giving user programs the key numbers is 
too primitive, as well as being highly machine dependent.) 

This philosophy is well suited to the needs of sophisticated screen editors such 
as emacs, which allow the user to bind an arbitrary action to any character or 
sequence of characters. It does, however, mean that if the user types dste instead 
of date and then corrects the error by typing three backspaces and ate, followed 
by a carriage return, the user program will be given all I1 ASCII codes typed. 

Most programs do not want this much detail. They just want the corrected 
input, not the exact sequence of how it was produced. This observation leads to 
the second philosophy: the driker handles all the intraline editing, and just delivers 
corrected lines to the user programs. The first philosophy is character-oriented; 
the second one is line-oriented. Originally they were referred to as raw mode and 
cooked mode, respectively. The WSIX standard uses the less-picturesque term 
canonical mode to describe line-oriented mode. On most systems canonical mode 
refers to a well-defined configuration. Noncanonical mode is equivalent to raw 
mode, although many details of terminal behavior can be changed. POSIX- 

compatible systems provide several library functions that support selecting either 
mode and changing many aspects of terminal configuration. In MINIX the IOCTL 
system call supports these functions. 

The first task of the keyboard driver is to collect characters. If every key- 
stroke causes an intempt, the driver can acquire the character during the inter- 
rupt. If interrupts are turned into messages by the low-level software, it is pos- 
sible to put the newly acquired character in the message. Alternatively, it can be 
put in a small buffer in memory and the message used to tell the driver that some- 
thing has arrived. The latter approach is actually safer if a message can be sent 
only to b waiting process and there is some chance that the keyboard driver might 
still be busy with the previous character. 

Once the driver has received the character, it must begin processing it. If the 
keyboard delivers key numbers 'rather than the character codes used by application 
software, then the driver must convert between the codes by using a table. Not all 
IBM "compatibles" use standard key numbering, so if the driver wants to support 
these machines, it must map different keyboards with different tables. A simple 
approach is to compile a table that maps between the codes provided by the key- 
bo&d and ASCII (American Standard Code for Information Interchange) codes 
into the keyboard driver, but this is unsatisfactory for users of languages other 
than English. Keyboards are arranged differently in different countries, and the 
ASCII character set is not adequate even for the majority of people in the Western 
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Hemisphere, where speakers of Spanish, Portuguese, and French need accented 
characters and punctuation marks not used in English. To respond to the need for 
flexibility of keyboard layouts to provide for different languages, many operating 
systems provide for loadable keymaps or code pages, which make it possible to 
choose the mapping between keyboard codes and codes delivered to the applica- 
tion, either when the system is booted or later. 

If the terminal is in canonical (cooked) mode, characters must be stored until 
an entire line has been accumulated, because the user may subsequently decide to 
erase part of it. Even if the terminal is in raw mode, the program may not yet 
have requested input, so the characters must be buffered to allow type ahead. 
(System designers who do not allow users to type far ahead ought to be tarred and 
feathered, or worse yet, be forced to use their own system.) 

Two approaches to character buffering are common. In the first one, the 
driver contains a central pool of buffers, each buffer holding perhaps 10 charac- 
ters. Associated with each terminal is a data structure, which contains, among 
other items, a pointer to the chain of buffers for input collected from that terminal. 
As more characters are typed, more buffers are acquired and hung on the chain. 
When the characters are passed to a user program, the buffers are removed and 
put back in the central p o d  

The other approach is to do the buffering directly in the terminal data struc- 
ture itself, with no central pool of buffers. Since it is common for users to type a 
command that will take a littIe while (say, a compilation) and then type a few 
lines ahead, to be safe the driver should allocate something like 200 characters per 
terminal. In a large-scale timesharing system with 100 terminals, allocating 20K 
all the time for type ahead is clearly overkill, so a central buffer pool with space 
for perhaps 5K is probably enough. On the other hand, a dedicated buffer per ter- 
minal makes the driver simpler (no linked list management) and is to be preferred 
on personal computers with only one or two terminals. Figure 3-32 shows the 
difference between these two methods. 

Atthough the keyboard and display are logically separate devices, many users 
have grown accustomed to seeing the characters they have just typed appear on 
the screen. Some (older) terminals oblige by automatically displaying (in hard- 
ware) whatever has just been typed, which is not only a nuisance when passwords 
are being entered bur greatly limits the flexibility of sophisticated editors and 
other programs. Fortunately, most modern terminals display nothing when keys 
are typed. It is therefore up to the software to display the input. This process is 
called echoing. 

Echoing is complicated by the fact that a program may be writing to the 
screen while the user is typing. At the very least, the keyboard driver has to fig- 
ure out where to put the new input without it being overwritten by program aut- 
put. 

Echoing also gets complicated when more than 80-characters are typed on a 
terminal with 80-character lines. Depending on the application, wrappingwound 
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Figure 3-32. (a) Central buffer pool. (b) Dedicated buffer for each terminal. 

to the next line may be appropriate. Some drivers just truncate lines to 80 charac- 
ters by throwing away a11 characters beyond column 80. 

Another problem is tab handling. Most terminals have a tab key, but few can 
handle tab on output. It is up to the driver to compute where the cursor is cur- 
rently located, taking into account both output from programs and output from 
echoing, and compute the proper number of spaces to be echoed. 

Now we come to the problem of device equivalence. Logically, at the end of 
a line of text, one wants a carriage return, to move the cursor back to -column 1, 
and a linefeed, to advance to the next line. Requiring users to type botb.at the end 
of each line would not sell well (although some terminals have a key which gen- 
erates both, with a 50 percent chance of doing so in the order that the software 
wants them). It is up to the driver to convert whatever comes in to the standard 
internal format used by the operating system. 

If the standard form is just to store a linefeed (the MINIX convention), then 
carriage returns should be turned into linefeeds. If the internal format is to store 
both, then the driver should generate a linefeed when it gets a carriage return and 
a carriage return when it gets a linefeed. No matter what the internal convention, 
the terminal may require both a linefeed and a carriage return to be echoed in 
order to get the screen updated properly. Since a large computer may well have a 
wide variety of different terminals connected to it, it is up to the keyboard driver 
to get all the different carriage return/linefeed combinations converted to the 
internal system standard and arrange for all echoing to be done right. 

A related problem is the timing of carriage return and linefeeds. On some ter- 
minals, it may take longer to display a carriage return or linefeed than a letter or 
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number. If the microprocessor inside the terminal actually has to copy a large 
block of text to achieve scrolling, then linefeeds may be slow. If a mechanical 
print head has to be returned to the left margin of the paper, carriage returns may 
be slow. In both cases it is up to the driver to insert filler characters (dummy 
null characters) into the output stream or just stop outputting long enough for the 
terminal to catch up. The amount of time to delay is often related to the terminal 
speed, for example, at 4800 bps or slower, no delays may be, but at 9600 bps or 
higher one filler character might be required. Terminals with hardware tabs, espe- 
cially hardcopy ones, may also require a delay after a tab. 

When operating in canonical mode, a number of input characters have special 
meanings. Figure 3-33 shows all of the special characters required by POSIX and 
the additional ones recognized by MINIX. The defaults are all control characters 
that should not conflict with text input or codes used by programs, but all except 
the last two can be changed using the stty command, if desired. Older versions of 
UNIX used different defaults for many of these. 

Character I POSlX name I Comment I 
CTRL-D 

CTRL-H 

DEL 

CTRL-U 

CTRL-\ 

CTRL-Z 

Figure 3-33. Characters that are handled specially in  canonical mode. 

€OF 

EOL 

The ERASE character allows the user to rub out the character just typed. In 
MINIX it is the backspace (CTRL-H). It is not added to the character queue but in- 
stead removes the previous character from the queue. It should be echoed as a 
sequence of three characters, backspace, space, and backspace, in order to remove 

End of file 

End of line (undefined) 
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INTR 

KILL 

QUIT 

SUSP 

- - 
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Backspace one character 
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the previous character from the screen. If the previous character was a tab, eras- 
ing it requires keeping track of where the cursor was prior to the tab. In most sys- 
tems, backspacing will only erase characters on the current line. It will not erase 
a carriage return and back up into the previous line. 

When the user notices an error at the start of the Iine being typed in, it is often 
convenient to erase the entire line and start again. The KILL character (in MINlX 
CTRL-U) erases the entire line. MINIX makes the erased line vanish from the 
screen, but some systems echo i t  plus a carriage return and linefeed because some 
users like to see the old line. Consequently, how to echo KILL is a matter of taste. 
As with ERASE it is usually not possible to go further back than the current line. 
When a block of characters is killed, it may or may not be worth the trouble for 
the driver to return buffers to the pool, if one is used. 

Sometimes the ERASE or KILL characters must be entered as ordinary data. 
The LNEXT character serves as an escape character. In MINIX CTRL-V is the 
default. As an example, older UNIX systems often used the @ sign for KILL, but 
the Internet mail system uses addresses of the form linda@cs.washington.edu. 
Someone who feels more comfortable with older conventions might redefine 
KILL as @. but then need to enter an @ sign literally to address e-mail. This can 
be done by typing CTRL-V @. The CTRL-V itself can be entered literally by typ- 
ing CTRL-V CTRL-V. After seeing a CTRL-V, the driver sets a flag saying that 
the next character is exempt from special processing. The WVEXT character itself 
is not entered in the character queue. 

To allow users to stop a screen image from scrolling out of view, control 
codes are provided to freeze the screen and restart it later. In MINIX these are 
STOP, (CTRL-S) and START, (CTRL-Q), respectively. They are not stored but 
are used to set and clear a flag in the terminal data structure. Whenever output is 
attempted, the flag is inspected. If it  is set, no output occurs. Usually, echoing is 
also suppressed along with program output. 

It is often necessary to kill a runaway program being debugged. The INTR 
(DEL) and QUIT (CTRL-\) characters can be used for this purpose. In MINIX, 
DEL sends the SlGINT signal to all the processes started up from the terminal. 
Implementing DEL can be quite tricky. The hard part is getting the ~nformation 
from the driver to the part of the system that handles signals, which, after all, has 
not asked for this information. CTRL-\ is similar to DEL, except that it sends the 
SIGQUIT signal, which forces a core dump if not caught or ignored. When either 
of these keys is struck, the driver should echo a carriage return and linefeed and 
discard all accumulated input to allow for a fresh start. The default value for 
INTR is often CTRL-C instead of DEL, since many programs use DEL inter- 
changeably with the backspace for editing. 

Another special character is EOF (CTRL-D), which in MINIX causes any 
pending read requests for the terminal to be satisfied with whatever is available in 
the buffer, even if the buffer is empty. Typing CTRL-D at the start of a line 
causes the program to get a read of 0 bytes, which is conventionally interpreted as 
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end-of-file and causes most programs to act the same way as they would upon 
seeing end-of-file on an input file. 

Some terminal drivers allow much fancier intraline editing than we have 
sketched here. They have special control characters to erase a word, skip back- 
ward or forward characters or words, go to the beginning or end of the line being 
typed, and so  forth. Adding all these functions to the terminal driver makes it 
much larger and, furthermore, is wasted when using fancy screen editors that 
work in raw mode anyway. 

To allow programs to control terminal parameters, POSIX requires that several 
functions be available in the standard library, of which the most important are 
tcgetattr and tcsetattr. Tcgetattr retrieves a copy of the structure shown in 
Fig. 3-34, the temios structure, which contains all the information needed to 
change special characters, set modes, and modify other characteristics of a termi- 
nal. A program can examine the current settings and modify them as desired. 
Tcsetattr then writes the structure back to the terminal task. 

stnrct termios { 
tcf lag - t c-iflag; 
tcflag - t c-oflag; 
tcf lag _ t c-dlag ; 
tdlag - t c-lflag; 
speed-t c-ispeed; 
speed- t c-ospeed; 
cc-t c-cc[NCCS]; 

I; 

/* input modes *I 
I* output modes *I 
/* control modes */ 
/* local modes */ 
/* input speed */ 
/* output speed *I 
/* control characters */ 

Figure 3-34. The termios structure. In MINIX tc-flag-t is a short, speed-t is an 
int, cc-t is a char. 

POSIX does not specify whether its requirements should be implemented 
through library functions or  system calls. MINIX provides a system call, IOCTL, 
called by 

ioctl(file-descriptor, request, argp); 

that is used to examine and modify the configurations of many UO devices. This 
call is used to implement the tcgetartr and tcsetattr functions. The variable re- 
quest specifies whether the termios structure is to be read or written, and in the 
latter case, whether the request is to take effect immediately or should be deferred 
until all currently queued output is complete. The variable argp is a pointer to a 
termios structure in the calling program. This particular choice of communication 
between program and driver was chosen for its UNIX compatibility, rather than for 
its inherent beauty. 

A few notes about the termios structure are in order. The four flag words pro- 
vide a great deal of flexibility. The individual bits in c-iflag control various ways 
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input is handled. For instance, the ICRNL bit causes CR characters to be con- 
verted into NL on input. This flag is set by default in MINIX. The c-oflag holds 
bits that affect output processing. For instance, the OPOST bit enables output 
processing. It and the ONLCR bit, which causes NL characters in the output to be 
converted into a CR NL sequence, are also set by default in MINIX. The c-cflag is 
the control flag. The default settings for MINIX enable a line to receive 8-bit char- 
acters and cause a modem to hang up if a user logs out on the line. The c-lflag is 
the local mode flags field. One bit, ECHO, enables echoing (this can be turned off 
during a login to provide security for entering a password). Its most important bit 
is the ICANON bit, which enables canonical mode. With ICANON off, several 
possibilities exist. If all other settings are left at their defaults, a mode identical to 
the traditional cbreak mode is entered. In this mode characters are passed to the 
program without waiting for a full line, but the INTI?, QUIT, START, and STOP 
characters retain their effects. All of these can be disabled by resetting bits in the 
flags, however, to produce the equivalent of traditional raw mode. 

The various special characters that can be changed, including those which are 
MINlX extensions, are held in the c-cc m a y .  This array also holds two parameters 
which are used in noncanonical mode. The quantity MIN, stored in c - c c [ V M I ~ ,  
specifies the minimum number of characters that must be received to satisfy a 
READ call. The quantity TIME in c-cc[VTIME] sets a time limit for such calls. 
MIN and TIME interact as shown in Fig. 3-35. A call that asks for N bytes is 
illustrated. With TIME = 0 and MIN = 1, the behavior is similar to the traditional 
raw mode. 

Figure 3-35. MIN and TIME determine when a call to read returns in noncanon- 
ical mode. N is the number of bytes requested. 

MIN = 0 

MIN > 0 

Output Software 

Output is simpler than input, but drivers for RS-232 terminals are radically 
different from drivers for memory-mapped terminals. The method that is com- 
monly used for RS-232 terminals is to have output buffers associated with each 
terminal. The buffers can come from the same pool as the input buffers, or be 
dedicated, as with input. When programs write to the terminal, the output is first 
copied to the buffers. Similarly, output from echoing is also copied to the buffers. 
After all the output has been copied to the buffers (or the buffers are full), the first 

 YE = o 
Return immediately with whatever 
is available, 0 to N bytes 
Return with at least MlN and up to 
N bytes. Possible indefinite Mock. 

TIME > o 
Timer starts immediately. Return with first 
byte entered or with 0 bytes after timeout 
Interbyte timer starts after first byte. Return 
N bytes if received by timeout, or at least 
1 bvte at timeout. Possible indefinite block 
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character is output, and the driver goes to sleep. When the interrupt comes in, the 
next character is output, and so on. 

With memory-mapped terminals, a simpler scheme is possible. Characters to 
be printed are extracted one at a time from user space and put directly in the video 
RAM. With RS-232 terminals, each character to be output is just sent across the 
line to the terminal. With memory mapping, some characters require special 
treatment, among them, backspace, carriage return, linefeed, and the audible bell 
(CTRL-G). A driver for a memory-mapped termina1,must keep track in software 
of the current position in the video RAM, so that printable characters can be put 
there and the current position advanced. Backspace, carriage return, and linefeed 
all require this position to be updated appropriately. 

In particular, when a linefeed is output on the bottom line of the screen, the 
screen must be scrolled. To see how scrolling works, look at Fig. 3-29. If the 
video controller always began reading the RAM at OXBOO, the only way to 
scroll the screen would be to copy 24 x 80 characters (each character requiring 2 
bytes) from OxBOOAO to 0xB0000, a time-consuming proposition. 

Fortunately, the hardware usually provides some help here. Most video con- 
trollers contain a register that determines where in the video RAM to begin fetch- 
ing bytes for the top line on the screen. By setting this register to point to 
OxBOOAO instead of 0xB0000, the line that was previously number two moves to 
the top, and the whole screen scrolls up one line. The only other thing the driver 
must do is copy whatever is needed to the new bottom line, When the video con- 
troller gets to the top of the RAM, it just wraps around and continues fetching 
bytes starting at the lowest address. 

Another issue that the driver must deal with on a memory-mapped terminal is 
cursor positioning. Again, the hardware usually provides some assistance in the 
form of a register that tells where the cursor is to go. Finally, there is the problem 
of the bell. It is sounded by outputting a sine or square wave to the loudspeaker, a 
part of the computer quite separate from the video RAM. 

It is worth noting that many of the issues faced by the terminal driver for a 
memory-mapped display (scrolling, bell, and so on) are also faced by the 
microprocessor inside an RS-232 terminal. From the viewpoint of the microproc- 
essor, it is the main processor in a system with a memory-mapped display. 

Screen editors and many other sophisticated programs need to be able to 
update the screen in more complex ways than just scrolling text onto the bottom 
of the display. To accommodate them, many terminal drivers support a variety of 
escape sequences. Although some terminals support idiosyncratic escape 
sequence sets, it is advantageous to have a standard to facilitate adapting software 
from one system to another. The American National Standards Institute (ANSI) 
has defined a set of standard escape sequences, and MINIX supports a subset of the 
ANSI sequences, shown in Fig. 3-36, that is adequate for many common opera- 
tions. When the driver sees the character that starts the escape sequences, it sets a 
flag and waits until the rest of the escape sequence comes in. When everything 
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has arrived, the driver must carry it out in software. Inserting and deleting text 
require moving blocks of characters around the video RAM. The hardware is of 
no-help with anything except scrolling and displaying the cursor. 

[ r n : n ~  I Move cursor to (m. nl 

Escapesequence 

ESC [ n A  

ESC [nB 

ESC [nC 

ESC [nD 

Meaning 

Move up n lines 

Move down n lines 

Move right n spaces 

Move left n spaces 

ESC [nm I Enable rendition n (O=nonnal, 4=bold. 5=blinking. 7-reverse) 

ESC [ s J 

ESC [sK  

ESC [nL 

ESC [nM 

ESC [nP 

ESC I n @  

ESC M I Scroll the screen backward if the cursor is on the top line 

Clear screen from cursor (0 to end, 1 from start, 2 all) 

Clear line from cursor (0 to end, 1 from start, 2 all) -- 
Insert n lines at cursor 

Delete n lines at cursor 

Oelete n chars at cursor 

Insert n chars at cursor 

Figure 3-36. The ANSI escape sequences accepted by the terminal driver on 
output, ESC denotes the ASCII escape character (OxlB), and n, m, and s are op- 
tional numeric parameters. 

3.9.3 Overview of the Terminal Driver in MLNIX 

The terminal driver is contained in four C files (six if RS-232 and pseudo ter- 
minal support are enabled) and together they far and away constitute the largest 
driver in MINIX. The size of the terminal driver is partly explained by the observa- 
tion that the driver handles both the keyboard and the display, each of which is a 
complicated device in its own right, as well as two other optional types of termi- 
nals. Still, it comes as a surprise to most people to learn that terminal V 0  requires 
thirty times as much code as the scheduler. (This feeling is reinforced by looking 
at the numerous books on operating systems that devote thirty times as much 
space to scheduling as to all VO combined.) 

The terminal driver accepts seven message types: 

1. Read from the terminal (from FS on behalf of a user process). 

2. Write to the terminal (from FS on behalf of a user process). 

3. Set terminal parameters for IoCTL (from FS on behalf of a user process). 
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4. I/O occurred during last clock tick (from the clock interrupt). 

5. Cancel previous request (from the file system when a signal occurs). 

6. Open a device. 

7. Close a device. 

The messages for reading and writing have the same format as shown in Fig. 3-15, 
except that no POSITION field is needed. With a disk, the program has to specify 
which block it wants to read. With a terminal, there is no choice: the program 
always gets the next character typed in. Terminals do not support seeks. 

The POSIX functions tcgetattr and tcgetattr, used to examine and modify ter- 
minal attributes (properties), are supported by the I O ~  system call. Good pro- 
gramming practice is to use these functions and others in include/termios.h and 
leave it to the C library to convert library calls to IOCTL system calls. There are, 
however, some control operations needed by MINIX that are not provided for in 
Posrx, for example, loading an alternate keymap, and for these the programmer 
must use IOCTL explicitly. 

The message sent to the driver by an IWTL system call contains a function re- 
quest code and a pointer, For the tcsetattr function, an IOCTL call is made with a 
TCSETS, TCSETSW, or TCSETSF request type, and a pointer to a termios struc- 
ture like the one shown in Fig. 3-34. All such calls replace the current set of attri- 
butes with a new set, the differences being that a TCSET" request takes effect im- 
mediately, a TCSETSW request does not take effect until all output has been 
transmitted, and a TCSETSF waits for output to finish and discards all input that 
has not yet been read. Tcgetattr is translated into an IoCTL call with a TCGETS 
request type and returns a filled in termios structure to the caller, so the current 
state of a device can be examined. IOCTL calls that do not correspond to functions 
defined by POSIX, like the KIOCSMAP request used to load a new keymap, pass 
pointers to other kinds of structures, in this case to a keymap-t which is a 1536- 
byte structure (16-bit codes for 128 keys x 6 modifiers). Figure 3-43 summarizes 
how standard POSIX calls are converted into IOCTL system calls. 

The terminal driver uses one main data structure, tty-table, which is an array 
of tty structures, one per terminal. A standard PC has only one keyboard and dis- 
play, but MINIX can support up to eight virtual terminals, depending upon the 
amount of memory on the display adapter card. This permits the person at the 
console to log on multiple times, switching the display output and keyboard input 
from one "user" to another. With two virtual consoles, pressing ALT-F2 selects 
the second one and ALT-Fl returns to the first. ALT plus the arrow keys also can 
be used., In addition, serial lines can support two users at remote locations, con- 
nected by RS-232 cable or modem, and pseudo terminals can support users con- 
nected through a network. The driver has been written to make it easy to add addi- 
tional terminals. The standard configuration illustrated in the source code in this 
text has two virtual consoles, with serial lines and pseudo terminals disabled. 
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Each tty structure in tty-table keeps track of both input and output. For input, 
it holds a queue of all characters that have been typed but not yet read by the pro- 
gram, information about requests to read characters that have not yet been re- 
ceived, and timeout information, so input can be requested without the task block- 
ing permanently if no character is typed. For output, it holds the parameters of 
write requests that are not yet finished. Other fields hold various general vari- 
ables, such as the termios structure discussed above, which affects many proper- 
ties of both input and output, There is also a field in the tty structure to point to 
information which is needed for a particular class of devices but is not needed in 
the try-table entry for every device. For instance, the hardware-dependent part of 
the console driver needs the current position on the screen and in the video RAM, 
and the current attribute byte for the display, but this information is not needed to 
support an RS-232 line. The private data structures fox each device type are also 
where the buffers that receive input from the interrupt service routines are located. 
Slow devices, such as the keyboard, do not need buffers as large as those needed 
by fast devices. 

Terminal Input 

To better understand how the driver works, let us first look at how characters 
typed in on the terminal work their way through the system to the program that 
wants them. 

When a user logs in on the system console, a shell is created for him with 
/dev/console as standard input, standard output, and standard error. The shell 
starts up and tries to read from standard input by calling the library procedure 
read. This procedure sends a message that contains the file descriptor, buffer ad- 
dress, and count to the file system. This message is shown as (1) in Fig. 3-37. 
After sending the message, the shell blocks, waiting for the reply. (User proc- 
esses execute only the SEND-REC primitive, which combines a SEND with a 
W E I V E  from the process sent to.) 

The file system gets the message and locates the i-node corresponding to the 
specified file descriptor. This i-node is for the character special file /dev/console 
and contains the major and minor device numbers for the terminal. The major de- 
vice type for terminals is 4; for the console the minor device number is 0. 

The file system indexes into its device map, drnap, to find the number of the 
terminal task. Then it sends a message to the terminal task, shown as (2) in 
Fig. 3-37. Normally, the user will not have typed anything yet, so the terminal 
driver will be unable to satisfy the request. It sends a reply back immediately to 
unblock the file system and report that no characters are available, shown as (3). 
The file system records the fact that a process is waiting for terminal input in the 
consde's structure in tty-table and then goes off to get the next request for work. 
The user's shell remains blocked until the requested characters arrive, of course. 
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Figure 3-37. Read request from terminal when no characters are pending. FS i s  
the file system. TTY is the terminal task. The intermpt handler for the terminal 
queues characters as they are entered, but it is the clock interrupt handler that 
awakens TTY. 

When a character is finally typed on the keyboard, it causes two interrupts, 
one when the key is depressed and one when it is released. This rule also applies 
to modifier keys such as CTRL and SHIFT, which do not transmit any data by 
themselves but still cause two interrupts per key. The keyboard interrupt is IRQ 
1, and AwintOl in the assembly code file mpx386.s activates kbd-hw-int (line 
13123), which in turn calls scan-keyboard (line 13432) to extract the key code 
from the keyboard hardware. If the code is for an ordinary character, it is put into 
the keyboard input queue, ibuJ if the interrupt was generated by a key being 
depressed, but it is ignored if the intermpt was generated by the release of a key. 
Codes for modifier keys like CTRL and SHIFT are put into the queue for both 
types of interrupt but can be distinguished later by a bit that is set only when a key 
is released. Note that at this point the codes received and stored in ibuf are not 
ASCII codes; they are simply the scan codes produced by the IBM keyboard. 
Kbd-hw-inr then sets a flag, try-events (part of the keyboard's section of the 
try-table), calls force-timeuut, and returns. 

Unlike some other interrupt service routines, kbd-hw-int does not send a 
message to wake up the terminal task. The call to force-timeour is indicated by 
the dashed lines marked (4) in the figure. These are not messages. They set the 
rty-timeout variable in the address space common to the intenupt service rou- 
tines. On the next clock- intempt clock-handler finds that rty-timeout indicates it 
is time for a call to t t y -wakup  (line i 1452) which then sends a message (5) to 
the terminal task. Note that although the source code for tty-wakeup is in the file 
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try.c, it runs in response to the clock interrupt, and thus we say the clock interrupt 
sends the message to the terminal task. If input is arriving rapidly, a number of 
character codes may be queued this way, which is why multiple calls to 
force-timeout (4) are shown in  the figure. 

Upon receiving the wakeup message the terminal task inspects the fty-events 
flag for each terminal device, and, for each device which has the flag set, calls 
handle-events (line 12256). The tty-events flag can signal various kinds of 
activity (although input is the most likely), so handle-evehts always calls the de- 
vice-specific functions for both input and output. For input from the keyboard this 
results in a call to kb-read (line 13165)' which keeps track of keyboard codes that 
indicate pressing or releasing of the CTRL, SHIFT, and ALT keys and converts 
keyboard codes into ASCII codes. Kb-read in turn calls in-process (line 12367), 
which processes the ASCII codes, taking into account special characters and dif- 
ferent flags that may be set, including whether or not canonical mode is in effect. 
The effect is normally to add characters to the console's input queue in try-table, 
although some codes, for instance BACKSPACE, have other effects. Normally, 
also, in-process initiates echoing of the ASCII codes to the display. 

When enough characters have come in, the terminal task calls the assembly 
language procedure phys-copy to copy the data to the address requested by the 
shell. This operation also is not message passing and for that reason is shown by 
dashed lines (6) in Fig. 3-37. There is more than one such line shown because 
there may be more than one such operation before the user's request has been 
completely fulfilled. When the operation is finally complete, the terminal driver 
sends a message to the file system telling it that the work has been done (7), and 
the file system reacts to this message by sending a message back to the shell to 
unblock it (8). 

The definition of when enough characters have come in depends upon the ter- 
minal mode. In canonical mode a request is complete when a linef@, end-of- 
line, or end-of-file code is received, and, in order for proper input proceging to be 
done, a line of input cannot exceed the size of the input queue. In nod6anonical 
mode a read can request a much larger number of characters, and in-process may 
have to transfer characters more than once before a message is returned to the file 
system to indicate the operation is complete. 

Note that the terminal driver copies the actual characters directly from its own 
address space to that of the shell. It does not first go through the file system. With 
block U0, data do pass through the file system to allow it to maintain a buffer 
cache of the most recently used blocks. If a requested block happens to be in the 
cache, the request can be satisfied directly by the file system, without doing any 
disk YO. 

For terminal U0, a cache makes no sense. Furthermore, a request from the file 
system to a disk driver can always be satisfied in at most a few hundred mil- 
liseconds, so there is no real harm in having the file system just wait. Terminal 
I/O may take hours to complete, or may never be complete (in canonical mode the 
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terminal task waits for a complete line, and it may also wait a long time in non- 
canonicd mode, depending upon the settings of MIN and TIME). Thus, it is unac- 
ceptable to have the file system block until a terminal input request is satisfied. 

Later on, it may happen that the user has typed ahead, and that characters are 
available before they have been requested, from previous occurrences of events 4 
and 5. In that case, events 1, 2, 6, 7, and 8 all happen in quick succession after the 
read request; 3 does not occur at all. 

If the terrnmaj task happens to be running at the time of a clock interrupt, no 
message can be sent to it because it will not be waiting for one. However, in 
order to keep input and output flowing smoothly when the terminal task is busy, 
the tty-events flags for a11 terminal devices are inspected at several other times, 
for instance, immediately after processing and replying to a message. Thus, it is 
possible for characters to be added to the console queue without the aid of a 
wakeup message from the clock. If two or more clock interrupts occur before the 
terminal driver finishes what ~t is doing, all the characters are stored in ibuf, and 
tty Jags is repeatedly set. Ultimately, the terminal task gets one message; the rest 
are lost. But since all the characters are safely stored in the buffer, no typed input 
is lost. It is even possible that by the time a message is received by the terminal 
task the input is complete and a reply has already been sent to the user process. 

The problem of what to do in an unbuffered message system (rendezvous 
principle) when an interrupt routine wants to send a message to a process that is 
busy is inherent in this kind of design. For most devices, such as disks, interrupts 
occur only in response to commands issued by the driver, so only one interrupt 
can be pending at any instant, The only devices that generate interrupts on their 
own are the clock and terminals (and when enabled, the network). The clock is 
handled by counting pending ticks, so if the clock task does not receive a message 
from the clock intermpt, it can compensate later. Terminals are handled by hav- 
ing the interrupt routine accumulate the characters in a buffer and raising a flag to 
indicate characters have been received. If the terminal task is running, it checks 
all of these flags before it goes to sleep and postpones going to sleep if there is 
more work it can do, 

The terminal task is not awakened directly by terminal interrupts due to the 
excessive overhead doing so would entail. The clock sends an interrupt to the ter- 
minal task on the next tick following each terminal interrupt. At 100 words per 
minute a typist enters fewer than 10 characters per second. Even with a fast typist 
th;e terminal task will probably be sent an intempt message for each character 
typed at the keyboard, although some of these messages may be lost. If the buffer 
should fill before being emptied, excess characters are discarded, but experience 
shows that, for the keyboard, a 32-character buffer is adequate. In the case of 
other input devices higher data rates are probable-rates 1000 or more times fas- 
ter than those of a typist are possible from a serial port connected to a 28,800-bps 
modem. At that speed approximately 48 characters may be received between 
clock ticks by the modern, but to allow for data compression on the modem link 
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the serial port connected to the modem must be able to handle at least twice as 
many. For serial lines, MINIX provides a buffer of 1024 characters. 

We have some regrets that the terminal task cannot be implemented without 
some compromise of our general design principles, but the method we use does 
the job without too much additional software complexity and no loss in perfor- 
mance. The obvious alternative, to throw away the rendezvous principle and have 
the system buffer all messages sent to destinations not waiting for them, is much 
more complicated and dso slower. 

Real system designers are often faced with a trade-off between using the gen- 
eral case, which is elegant all the time but somewhat slow, and using simpler 
techniques, which are usually fast but in one or two cases require a trick to make 
them work properly. Experience is really the only guide to which approach is 
better under given circumstances. A considerable amount of experience on 
designing operating systems is summarized by Lampson ( 1984) and Brooks 
( I  975). While old, these references are still classics. 

We will complete our overview of terminal input by summarizing the events 
that occur when the terminal task is first activated by a read request and when it is 
reactivated after receipt of keyboard input (see Rg. 3-38). In the first case, when 
a message comes in to the terminal task requesting characters from the keyboard, 
the main procedure, tty-task (line 1 18 f 7) calls do-read (line 1 189 1) to handle the 
request. Do-read stores the parameters of the call in the keyboard's entry in 
tty-table, in case there are insufficient characters buffered to satisfy the request. 

Then it calls in-transfer (line 12303) to get any input already waiting, and 
then handle-events (line 12256) which in turn calls kb-read (line 13 165) and 
then in-transfer once again, in order to try to milk the input stream for a few 
more characters. Kb-read calls several other procedures not shown in Fig. 3-38 
to aaomplish its work. The result is that whatever is immediately available is 
copied to the user. If nothing is available, nothing is copied. If the read is com- 
pleted by in-transfer or by handle-events, a message is sent to the file system 
when all characters have been transferred, so the file system can unblock the call- 
er. If the read was not completed (no characters, or not enough characters) 
do-read reports back to the file system, telling it whether it should suspend the 
original caller, or, if a nonblocking read was requested, cancel the read. 

The right side of Fig. 3-38 summarizes the events that occur when the termi- 
nal task is awakened subsequent to an interrupt from the keyboard. When a char- 
acter is typed, the interrupt procedure kb-hw-i~ff (line 13 123) puts the character 
code received into the keyboard buffer, sets a flag to identify that the console de- 
vice has experienced an event, and then arranges for a timiout to occur on the 
next clock tick. The clock task sends a message to the terminal task telling it 
something has happened. Upon receiving this message, try-task checks the event 
flags of all terminal devices and caHs handle-event for each device with a raised 
flag. In the case of the keyboard, handle-event calls kb-read and in-transfer, 
just as was done on receipt of the original read request. The events shown on the 
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Receive message 7 
from user 

via FS / 
do-read 

i~transfer 

Receive message 

t r a n s f e r 2  

Other functions 

Other functions. 

Figure 3-38. Input handling in the terminal driver. The left branch of the tree is 
taken to process a request to read characters. The right branch is taken when a 
character-has-been-typed message is sent to the driver. 

right side of the figure may occur several times, until enough characters are re- 
ceived to fulfill the request accepted by do-read after the first message from the 
FS. If the FS tries to initiate a request for more characters from the same &vice 
before the first request is complete, an error is returned. Of course, each device is 
independent; a read request on behalf of a user at a remote terminal is processed 
separately from one for a user at the console. 

The functions not shown in Fig. 3-38 that are called by kb-read include 
map-key, which converts the key codes (scan codes) generated by the hardware 
into ASCII codes, make-break, which keeps track of the state of modifier keys - such as the SHIFT key, and in-process, which handles complications such as 
attempts, by the user to backspace over input entered by mistake, other special 
characters, and options available in different input modes. In -process also calls 
echo (line 1253 I) ,  so the typed characters will be displayed on the screen. 

Terminal Output 

In general, console output is simpler than terminal input, because the operat- 
ing system is in control and does not need to be concerned with requests for out- 
put arriving at inconvenient times. Also, because the MlNrX console is a memory- 
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mapped display, output to the console is particularly simple. No interrupts are 
needed; the basic operation is to copy data from one memory region to another. 
On the other hand, all the details of managing the display, including handling 
escape sequences, must be handled by the driver software. As we did with key- 
board input in the previous section we will trace through the steps involved in 
sending characters to the console display. We will assume in this example that the 
active display is being written; minor complications caused by virtual consoles 
will be discussed later. 

When a process wants to print something, it generally calls p r i n ~ .  Printf calls 
WRITE to send a message to the file system. The message contains a pointer to the 
characters to be printed (not the characters themselves). The file system then 
sends a message to the terminal driver, which fetches them and copies them to the 
video RAM. Figure 3-39 shows the main procedures involved in output. 

do-write 8 
'Easyll 

characters 

Rgure 3-39. Major procedures used on terminal output. The dashed line indi- 
cates characters copied directly to ramqueue by cons-write. 

When a message comes in to the terminal task requesting it to write on the 
screen, do-write (line 11964) is called to store the parameters in the console's tty 
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struct in the fty-table. Then handle-evenrs (the same function called whenever 
the tty-events flag is found set) is called. On every call this function calls both 
the input and output routines for the device selected in its argument. In the case 
of the console display this means that any keyboard input that is waiting is proc- 
essed first. If there is input waiting, characters to be echoed are added to what- 
ever characters are already awaiting output. Then a call is made to cons- write 
(line 13729), the output procedure for memory-mapped displays. This procedure 
uses phys-copy to copy blocks of characters from the user process to a Iocd buff- 
er, possibly repeating this and the following steps a number of times, since the 
local buffer holds only 64 bytes. When the local buffer is full, each 8-bit byte is 
transferred to another buffer, ramqueue. This is an array of 16-bit words. Alter- 
nate bytes are filled in with the current value of the screen attribute byte, which 
determines foreground and background colors and other attributes. When pos- 
sible, characters are transferred directly into ramqueue, but certain characters, 
such as control characters or characters that are parts of escape sequences. need 
special handling. Special handling is also required when a character's screen 
position would exceed the width of the screen, or when ramqueue becomes full. 
In these cases o u t - c h r  (line 13809) is called to transfer the characters and take 
whatever additional action is called for. For instance, scroll-screen (line 13896) 
is called when a linefeed is received while addressing the last line of the screen, 
and parse-escape handles characters during an escape sequence. Usually 
out-char calls flush (line 13951) which copies the contents of ramqueue to the 
video display memory, using the assembly language routine mem-vid-copy. 
Flush is also called after the last character is transferred into ramqueue to be sure 
all output is displayed. The final result of flush is to command the 6845 video 
controller chip to display the cursor in the correct position. 

Logically, the bytes fetched from the user process could be written into the 
video RAM one per Ioop iteration. However, accumulating the characters in ram- 
queue and then copying the block with a call to mem-vid-copy are more efficient 
in the protected memory environment of Pentium-class processors. Interestingly, 
this technique was introduced in early versions of MINJX that ran on older proc- 
essors without protected memory. The precursor of mem-vid-copy dealt with a 
timing problem-with older video displays the copy into the video memory had to 
be done when the screen was blanked during vertical retrace of the CRT beam to 
avoid generating visual garbage all over the screen. MlNIX no longer provides this 
support for obsolete equipment as the performance penalty is too great. However, 
the modern version of ~ N I X  benefits in other ways from copying ramqueue as a 
block. 

The video RAM available to a console is delimited in the console structure by 
the fields c-start and c-limit. The current cursor position is stored in the 
c_coIumn and c-row fields. The coordinate (0,O) is in the upper left corner of 
the screen, which is where the hardware starts to fill the screen. Each video scan 
begins at the address given by c-org and continues for 80 x 25 characters (4000 
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bytes). In other words, the 6845 chip pulls the word at offset c-org from the 
video RAM and displays the character byte in the upper left-hand corner, using 
the attribute byte to control color, blinking, and so forth. Then it fetches the next 
word and displays the character at (1,O). This process continues until it gets to 
(79, O), at which time it begins the second tine on the screen, at coordinate (0, 1). 

When the computer is first started, the screen is cleared, output is written into 
the video RAM starting at location c-start, and c-org is assigned the same value 
as c-start. Thus the first line appears on the top line of the screen. When output 
must go to a new h e ,  either because the first line is full or because a newline 
character is detected by out-char, output is written into the location given by 
c-start plus 80. Eventually all 25 lines are filled, and scrolling of the screen is re- 
quired. Some programs, editors, for example, require scrolling in the downward 
direction too, when the cursor is on the top line and further movement upward 
within the text is required. 

There are two ways scrolling the screen can be managed. In software scroll- 
ing the character to be displayed at position (0,O) is always in the first location in 
video memory, word 0 relative to the position pointed to by c-start, and the video 
controller chip is commanded to display this location first by keeping the same 
address in c-org. When the screen is to be scrolled, the contents of relative loca- 
tion 80 in the video RAM, the beginning of the second line on the screen, is 
copied to relative location 0, word 8 1 is copied to relative location 1, and so on. 
The scan sequence is unchanged, putting the data at location 0 in the memory at 
screen position (0,O) and the image on the screen appears to have moved up one 
line. The cost is that the CPU has moved 80 x 24 = 1920 words. In hardware 
scroling the data are not moved in the memory; instead the video controller chip 
is instructed to start the display at a different point, for instance, with the data at 
word 80. The bookkeeping is done by adding 80 to the contents of c-org, saving 
it for future reference, and writing this value into the correct register of the video 
controller chip. This requires either that the controller be smart enough to wrap 
around the video RAM, taking data from the beginning of the RAM (the address 
in c-start) when it reaches the end (the address in c-limit), or that the video 
RAM have more capacity than just the 80 x 2000 words necessary to store a sin- 
gle screen of display. Odder display adapters generally have smaller memory but 
are able to wrap around and do hardware scrolling. Newer adapters generally have 
much more memory than needed to display a single screen of text, but the con- 
trollers are not able to wrap. Thus an adapter with 32768 bytes of display memory 
can hold 204 complete lines of 160 bytes each, and can do hardware scrolling 1 79 
times before the inability to wrap becomes a problem. But, eventually a memory 
copy operation will be needed to move the data for the last 24 lines back to loca- 
tion 0 in the video memory. Whichever method is used, a row of blanks is copied 
to the video RAM to ensure that the new line at the bottom of the screen is empty. 

When virtual consoles are configured, the available memory within a video 
adapter is divided equally between the number of consoles desired by properly 
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initializing the c-start and c-limit fields for each console. This has an effect 
upon scrolling. On any adapter large enough to support virtual consoles, software 
scrolling takes place every so often, even though hardware scrolling is nominally 
in effect. The smaller the amount of memory available to each console display, 
the more frequently software scrolling must be used. The limit is reached when 
the maximum possible number of consoles is configured. Then every scroll oper- 
ation will be a software scroll operation. 

The position of the cursor relative to the start of the video RAM can be de- 
rived from c-column and c-row, but it is faster to store it explicitly (in c-cur). 
When a character is to be printed, it is put into the video RAM at location c-cur, 
which is then updated, as is c-column. Figure 3-40 summarizes the fields of the 
console structure that affect the current position and the display origin. 

1 Field I Meaning I 
I c-stae I Star3 of video memory for this console I 

Figure 3 4 .  Fields of the console structure that relate to the current screen 
position. 

c-limit 

c-column 

c-row 

C-cur 

c-org 

The characters that affect the cursor position (e.g., linefeed, backspace) are 
handled by adjusting the values of c-column, c-row, and c-cur. This work is 
done at the end of flush by a call to set-6845 which sets the registers in the video 
controller chip. 

The terminal driver supports escape sequences to allow screen editors and 
other interactive programs to update the screen in a flexible way. The sequences 
supported are a subset of an ANSI standard and should be adequate to allow many 
programs written for other hardware and other operating systems to be easily 
ported to MINIX. There are two categories of escape sequences: those that never 
contain a variable parameter, and those that may contain parameters. In the first 
category the only representative supported by MNIx is ESC M, which reverse 
indexes the screen, moving the cursor up one tine and scrolling the screen down- 
ward if the cursor is already on the first line. The other category can have one or 
two numeric parameters. Sequences in this group all begin with ESC [. The "[" 
is the control sequence introducer. A table of escape sequences defined by the 
ANSI standard and recognized by MINIX was shown in Fig. 3-36. 

Parsing escape sequences is not trivial. Valid escape sequences in MINIX can 
be as short as two characters, as in ESC M, or up to 8 characters long in the case 

Lidt  of video memory for this console 

Current column (0-79) with 0 at left 

Current row (0-24) with 0 at top 

Offset into video RAM for cursor -- 
Location in RAM pointed to by 6845 base register 
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of a sequence that accepts two numeric parameters that each can have a two-digit 
values as in ESC [20;#H, which moves the cursor to line 20, column 60. In a 
sequence that accepts a parameter, the parameter may be omitted, and in a 
sequence that accepts two parameters either or both may be omitted. When a pa- 
rameter is omitted or one that is outside the valid range is used, a default is substi- 
tuted. The default is the lowest valid value. 

Consider the following ways one could construct a sequence to move to the 
upper-left comer of the screen: 

1. ESC [H is acceptable, because if no parameters are entered the 
lowest valid parameters are assumed. 

2, ESC [ l ;  IH will correctly send the cursor to row 1 and column 1 
(with ANSI, the row and column numbers start at I). 

3. Both ESC I1;H and ESC [;lH have an omitted parameter, which de- 
faults to 1 as in the first example. 

4. ESC [O;OH will do the same, since each parameter is less than the 
minimum valid value the minimum is substituted. 

These examples are presented not to suggest one should deliberately use invalid 
parameters but to show that the code that parses such sequences is nontrivial. 

MINIX implements a finite state automaton to do this parsing. The variable 
c-escstate in the console structure normally has a value of 0. When out-chur 
detects an ESC character, it changes c-escstate to 1, and subsequent characters 
are processed by parse-escape (line 13986); If the next character is the control 
sequence introducer, state 2 is entered; otherwise the sequence is considered com- 
plete, and do-escape (line 14045) is called. In state 2, as long as incoming char- 
acters are numeric, a parameter is calculated by multiplying the previous value of 
the pmrneter (initially 0) by 10 and adding the numeric value of the current char- 
acter. The parameter values are kept in an array and when a semicolon is detected 
the processing shifts to the next cell in the array. (The array in MINIX has only 
two elements, but the principle is the same). When a nonnumeric character that is 
not a semicolon\ is encountered the sequence is considered complete, and again 
do-escape is called. The current character on entry to do-escape then is used to 
select exactly what action to take and how to interpret the parameters, either the 
defaults or those entered in the character. stream. This is illustrated in Fig. 3-48. 

Loadable Keymaps 

The IBM PC keyboard does not generate ASCII codes directly. The keys are 
each identifed with a number, starting with the keys that are located in the upper 
Ieft of the original PC keyboard-l for the "ESC" key, 2 for the "I", and so on. 
Each key is assigned a number, including modifier keys like the left SHIFT and 
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right SHIm keys, numbers 42 and 54. When a key is pressed, MINIX receives the 
key number as a scan code. A scan code is also generated when a key is released. 
but the code generated upon release has the most significant bit set (equivalent to 
adding 128 to the key number). Thus a key press and a key release can be dis- 
tinguished. By keeping track of which modifier keys have been pressed and not 
yet released, a large number of combinations are possible. For ordinary purposes, 
of course, two-finger combinations, such as SHIFT-A or CTRL-D, are most 
manageable for two-handed typists, but for special occasions three-key (or more) 
combinations are possible, for instance, CTRL-SHUT-A, or the well-known 
CTRL-ALT-DEL combination that PC users recognize as the way to reset and 
reboot the system. 

The complexity of the PC keyboard allows for a great deal of flexibility in 
how it used. A standard keyboard has 47 ordinary character keys defined (26 
alphabetic, 10 numeric, and 11 punctuation). If we are willing to use three- 
fingered modifier key combinations, such as CTRL-ALT-SHIFT, we can support 
a character set of 376 (8 x 47) members. This is by no means the limit of what is 
possible, but for now let us assume we do not want to distinguish between the left- 
and right-hand modifier keys, or use any of the numeric keypad or function keys. 
Indeed, we are not limited to using just the CTRL, ALT, and SHIFT keys as 
modifiers; we could retire some keys from the set of ordinary keys and use them 
as modifiers if we desired to write a driver that supported such a system. 

Operating systems that use such keyboards use a keymap to determine what 
character code to pass to a program based upon the key being pressed and the 
modifiers in effect. The MlNlX keymap logically is an array of 128 rows, r ep  
resenting possible scan code values (this size was chosen to accommodate 
Japanese keyboards; U.S. and European keyboards do not have this many keys) 
and 6 columns. The columns represent no modifier, the SHIFT key, the Control 
Icesthe left ALT key, the right ALT key, and a combination of either' ALT key 
plus the SHIFT key. There are thus 720 ((128 - 6) x 6) character codes that can 
be generated by this scheme, given an adequate keyboard. This requires that each 
entry in the table be a 16-bit quantity. For U.S. keyboards the ALT and ALT2 
columns are identical. ALT2 is named ALTGR on keyboards for other languages, 
and many of these keymaps support keys with three symbols by using this key as 
a modifier. 

A standard keymap (determined by the line 

in keyb0ard.c)-is compiled into the MINIX kernel at compilation time, but an 

ioctl(0, KIOCSMAP, keymap) 

call can be used to load a different map into the kernel at address keymap. A full 
keymap occupies 1536 bytes (128 x 6 x 2). Extra keymaps are stored in 
compressed form. A program called genmag is used to make a new compressed 
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. keymap. When compiled, genmap includes the keymup.src code for a particular 
keymap, so the map is compiled within genmap. Normally, genmap is executed 
immediately after being compiled, at which time it outputs the compressed ver- 
sion to a file, and then the genmap binary is deleted. The command loadkeys 
reads a compressed keymap, expands it internally, and then calls r m L  to transfer 
the keymap into the kernel memory. MINIX can execute loadkeys automatically 
upon starting, and the program can also be invoked by the user at any time. 

- 1  
Scan code Character Regular SHIFT ALT+SHln CTRL ] 

Figure 3-41. A few entries from a keymap source file. 

01 

02 

13 

16 

28 

29 

The source code for a keymap defines a large initialized array, and in the 
interest of saving space a keymap file is not printed with the source code. Figure 
3-41 shows in tabular form the contents of a few lines of src/kernev;keymaps/us- 
std.src which ilhstrate several aspects of keyrnaps. There is no key on the IBM- 
PC keyboard that generates a scan code of 0. The entry for code 1, the ESC key, 
shows that the value returned is unchanged when the SHIFT key or CTRL key are 
pnssed, but that a different code is returned when an ALT key is pressaQ simul- 
taneously with the ESC key. The values compiled into the various col&ns are 
determined by macros defined in include/minL&eymap. h: 

#defineC(c) ((c)&OxlF) I* Map to control code */ 
#define A(c) ((c) I 0x80) /* Set eight bit (ALT) */ 
#define CA(c) A(C(c)) I* CTRL-ALT */ 
#define L(c) ((c) I HASCAPS) /* Add "Caps Lock has effect' attribute */ 

ESC 

'1' 
'-1 - 

The first three of these macros manipulate bits in the code for the quoted character 
to produce the necessary code to be returned to the application, The last one sets 
the HASCAPS bit in the high byte of the 16-bit value. This is a flag that indicates 
that the state of the capslock variable has to be checked and the code possibly 
madified before being returned. In the figure, the entries for scan codes 2, 13, and 
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16 show how typical numeric, punctuation, and alphabetic keys are handled. For 
code 28 a special feature is seen-normally the ENTER key produces a CR 
(OxOD) code, represented here as C('M'). Because the newline character in UNrX 
files is the LF (OxOA) code, and it is sometimes necessary to enter this directly, 
this keyboard map provides for a CTRL-ENTER combination, wbich produces 
this code, C('J'). 

Scan code 29 is one of the modifier cades and must be recognized no matter 
what other key is pressed, so the CTRL value is returned regardless of any other 
key that may be pressed. The function keys do not return ordinary ASCII values, 
and the row for scan code 59 shows symbolically the values (defined in 
inciude/minix/keymap.h) that are returned for the F1 key in combination with 
other modifiers. These values are F1: 0x01 10, SF1 : Ox 10 10, AF1: 0x08 10, ASF 1 : 
OxOC 10, and CFI: 0x0210. The last entry shown in the figure, for scan code 127, 
is typical of many entries near the end of the array. For many keyboards, certainly 
most of those used in Europe and the Americas, there are not enough keys to gen- 
erate all the possible codes, and these entries in the table are filled with zeroes. 

Loadable Fonts 

Early PCs had the patterns for generating characters on a video screen stored 
only in ROM, but the displays used on modern systems provide RAM on the 
video display adapters into which custom character generator patterns can be 
loaded. This is supported by MINIX with a 

ioctl(0, TIOCSFON, font) 

IOCTL operation. MINIX supports an 80 lines x 25 rows video mode, and font files 
contain 4096 bytes. Each byte represents a line of 8 pixels that are illuminated if 
the bit value is 1, and 16 such lines are needed to map each character. However 
the video display adapter uses 32 bytes to map each character, to provide higher 
resolution in modes not currently supported by MINIX. The loadfont cominand is 
provided to convert these files into the 8 192-byte font structure reference&:by the 
IoCTL call and to use that call to load the font. As with the keyrnaps, a font'can be 
loaded at startup time, or at any time during normal operation. However, every 
video adapter has a standard font built into its ROM that is available by default. 
There is no need to compile a font into MINIX itself, and the only font support 
necessary in the kernel is the code to carry out the TIOCSFON lOCTL operation. 

3.9.4 X~mplementation of the Device-Independent Terminal Driver 

In this section we will begin to look at the source code of the terminal driver 
in detail. We saw when we studied the block devices that multiple tasks s u p  
porting several different devices could share a common base of software. The 
case with the terminal devices is similar, but with the difference that there is one 
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terminal task that supports several different kinds of terminal device. Here we will 
start with the device-independent code. In later sections we will look at the de- 
vice-dependent code for the keyboard and the memory-mapped console display. 

Terminal Task Data Structures 

The file t0.h contains definitions used by the C files which implement the ter- 
minal drivers. Most of the variables declared in this file are identified by the pre- 
fix tty-. There is also one such variable declared in g1o.h as EXTERN. This is 
tty-timeout, which is used by both the clock and terminal interrupt handlers. 

Within tty.h, the definitions of the O-NOC77Y and 0-NONBLOCK flags 
(which are optional arguments to the OPEN call) are duplicates of definitions in 
include/fcnt.h but they are repeated here so as not to require including another 
file. The devfun-t and devfunarg-t types (lines 1161 1 and 1 1612) are used to 
define pointers to functions, in order to provide for indirect calls using a mechan- 
ism similar to what we saw in the code for the main loop of the disk drivers. 

The most important definition in ttyh is the tty structure (lines 1 1614 to 
11668). There is one such structure for each terminal device (the console display 
and keyboard together count as a single terminal). The first variable in the tty 
structure, tty-events, is the flag that is set when an interrupt causes a change that 
requires the terminal task to attend to the device. When this flag is raised, the glo- 
bal variable tty-timeout is also manipulated to tell the clock interrupt handler to 
awaken the terminal task on the next clock tick. 

The rest of the tty structure is organized to group together variables that deal 
with input, output, status, and information about incomplete operations. In the 
input section, tty -inhead and try -in tail define the queue where received charac- 
ters are buffered. Tty-incount counts the number of characters in this queue, and 
try-eotct counts lines or characters, as explained below. All device-specific calls 
are done indirectly, with the exception of the routines that initialize the terminals, 
which are called to set up the pointers used for the indirect calls. The tty-devread 
and tty-icancel fields hold pointers to device-specific code to perform the read 
and input cancel operations. Tty-min is used in comparisons with tty-eotct. 
When the latter becomes equal to the former, a read operation is complete. Dur- 
ing canonicd input, tty-min is set to 1 and tty-eotct counts lines entered. During 
noncanonical input, tty-eotct counts characters and tty-min is set from the MZN 
field of the temios structure. The comparison of the two variables thus tells when 
a line is ready or when the minimum character count is reached, depending upon 
the mode. 

Tty-time holds the timer value that determines when the terminal task should 
be awakened by the clock interrupt handler, and tty-timsnext is a pointer used to 
chain the active tty-time fields together in a linked list. The list is sorted when- 
ever a timer is set, so the clock interrupt handler only has to look at the first e n q .  
MINIX can support many remote terminals, of which only a few may have timers 
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set at any time. The list of active timers makes the job of the clock handler easier 
than it would be if it had to check each entry in tw-table. 

Since queueing of output is handled by the device-specific code, the output 
section of tfy declares no variables and consists entirely of pointers to device-spe- 
cific functions that write, echo, send a break signal, and cancel output. In the stat- 
us section the flags tty-reprint, tty -escaped, and t ty  -inhibited indicate that the 
last character seen has a special meaning; for instance, when a CTRL-V (LNEXT) 
character is seen, tty-escaped is set to 1 to indicate that any special meaning of 
the next character is to be ignored. 

The next part of the structure holds data about DEV-READ, DEV-WRITE, 
and DEV-IOCTL operations in progress. There are two processes involved in 
each of these operations. The server managing the system call (normally FS) is 
identified in rty-incaller ( h e  1 1644). The server calls the tty task on behalf of 
another process that needs to do an I/O operation, and this client is identified in 
tty-inproc (line 11645). As described in Fig. 3-37, during a READ, characters are 
transferred directly from the terminal task to a buffer within the memory space of 
the original caller. Tty-inproc and tfy-in-vir locate this buffer. The next two 
variables, tfy -inlefr and tty-incum, count the characters still needed and those 
already transferred. Similar sets of variables are needed for a WRITE system call. 
For I= there may. be an immediate transfer of data between the requesting 
process and the task, so a virtual address is needed, but there is no need for vari- 
ables to mark the progress of an operation. An I W ~  request may be postponed, 
for instance, until current output is complete, but when the time is right the re- 
quest is carried out in a single operation. Finally, the tty structure includes some 
variables that fall into no other category, including pointers to the functions to 
handle the DEV-IOCTL and DEV-CLOSE operations at the device level, a 
P O S I X - S ~ ~ ~ ~  termios structure, and a winsize structure that provides support for 
window-oriented screen displays. The last part of the structure provides storage 
for the input queue itself in the array tty-inbuf. Note that this is an array of 
u16-t, not of 8-bit char characters. Although applications and devices use 8-bit 
codes for characters, the C language requires the input function getchar to work 
with a larger data type so it can return a symbolic EOF value in addition to all 256 
possible byte values. 

The tty-table, an array of tty structures, is declared using the EXTERN macro 
(line 1 t 670). There is one element for each terminal enabled by the NR-CONS, 
NR-RS-WNES, and NR- P U S  definitions in include/minix/config. h . For the 
configuration discussed in this book, two consoles are enabled, but MINIX may be 
recompiled to add up to 2 serial lines, and up to 64 pseudo terminals. 

There is one other EXTERN definition in tty.h. Tty-timelist (line 11690) is a 
pointer used by the timer to hold the head of the linked list of tty-time fields. The 
t2y.h header file is included in many files and storage for tty-fable and 
try-rimelist is allocated during compilation of  table.^, in the same way as the 
EXTERN variables that are defined in the g lah  header file. 
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At the end of tty.h two macros, bujkn and bufend, are defined. These are 
used frequently in the terminal task code, which does much copying of data into 
and out of buffers. 

The Device-Independent Terminal Driver 

The main terminal task and the device-independent supporting functions are 
all in ttyc. Since the task supports many different devices, the minor device num- 
bers must be used to distinguish which device is being supported on a particular 
call, and they are defined on lines 11760 to 11764. Following his there are a 
number of macro definitions. If a device is not initialized, the pointers to that de- 
vice's device-specific functions will contain zeroes put there by the C compiler. 
This makes it possible to define the tty-active macro (line 11774) which returns 
FALSE if a null pointer is found. Of course, the initialization code for a device 
cannot be accessed indirectly if part of its job is to initialize the pointers that make 
indirect access possible, On lines 11777 to 11783 are conditional macro defini- 
tions to equate initialization calls for RS-232 or pseudo terminal devices to calls 
to a null function when these devices are not configured. Do-pry may be simi- 
larly disabled in this section. This makes it possible to omit the code for these de- 
vices entirely if it is not needed. 

Since there are so many configurable parameters for each terminal, and there 
may be quite a few terminals on a networked system, a termios,befaults structure 
is declared and initialized with default values (all of which are defined in 
include/temios.h) on lines 1 1803 to 1 18 10. This structure is copied into Qe 
tty-table entry for a terminal whenever it is necessary to initialize or reinitialize 
it. The defaults for the special characters were shown in Fig. 3-33. Figure 3-42 
shows the default values for the various flags. On the following line the 
winsize-defaults structure is similarly declared. It is left to be initialized to all 
zeroes by the C compiler. This is the proper default action; it means "window 
size is unknown, use /etchemcap." 

Field I Default values I 

Figure 3-42. Default termios flag values. 
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The entry point for the termina! task is tty-task (line 1 18 17). Before entering 
the main loop, a call is made to tty-init for each configured terminal (in the loop 
on line 1 1826), and then the MINIX startup message is displayed (lines 1.1 829 to 
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1183 1). Although the source code shows a call to printf, when this code is com- 
piled the macro that converts calls to the printf library routine into calls to prrntk 
is in effect. Printk uses a routine called putk within the console driver, so the FS 
is not involved. This message goes only to the primary console display and cannot 
be redirected. 

The main loop on lines 11833 to 11884 is, in principle, like the main loop of 
any task-it receives a message, executes a switch on the message type to call the 
appropriate function, and then generates a return message, However, there are 
some compkations. First, much work is done by low-level interrupt routines, 
especially in handling terminal input. In the previous section we saw that indivi- 
dual characters from the keyboard are accepted and buffered without sending a 
message to the terminal task for each character. Thus, before attempting to 
receive a message, the main loop always sweeps through the entire tty-table, 
inspecting each terminal's tp-xty-events flag and calling handle-events as 
necessary (lines 11835 to 11837), to take care of unfinished business. Only when 
there is nothing demanding immediate attention is a call made to receive. If the 
message received is from the hardware a continue statement short-circuits the 
loop, and the check for events is repeated. 

Second, this task services several devices. If a received message is from a 
hardware interrupt, the device or devices that need service are identified by 
checking the tp->tty-events flags. If the interrupt is not a hardware interrupt the 
TTY_LINE field in the message is used to determine which device should respond 
to the message. The minor device number is decoded by a series of comparisons, 
by means of which tp is pointed to the correct entry in the try-table (lines 1 1845 
to 11864). If the device is a pseudo terminal, do-pry (in pty.c) is called and the 
main loop is restarted. In this case do-pry generates the reply message. Of course, 
'if pseudo terminals are not enabled, the call to do-pry uses the dummy macro de- 
fined earlier. One would hope that attempts to access nonexistent devices would 
not occur, but it is always easier to add another check than to verify that there are 
no errors elsewhere in the system. In case the device does not exist or is not con- 
figured, a reply message with an ENXIO error message is generated and, again, 
control returns to the top of the loop. 

The rest of the task resembles what we have seen in the main loop of other 
tasks, a switch on the message type (lines 1 1874 to 1 1883). The appropriate func- 
tion for the type of request, do-read, do-write, and so on, is called. In each case 
the called function generates the reply message, rather than pass the information 
needed to construct the message back to the main Ioop. A reply message is gen- 
erated at the end of the main loop only if a valid message type was not received, 
in which case an ElNVAL error message is sent. Because reply messages are sent 
from many different places within the terminal task a common routine, tty-reply, 
is called to handle the details of constructing reply messages. 

If the message received by try-task is a valid message type, not the result of 
an interrupt, and does not come from a pseudo terminal, the switch at the end of 
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the main loop will dispatch to one of the functions do-read, do-write, do-ioctl, 
do-open, do-close, or do-cancel. The arguments to each of these calls are tp, a 
pointer to a try structure, and the address of the message. Before looking at each 
of them, we will mention a few general considerations. Since tty-task may ser- 
w e  multiple terminal devices, these functions must return quickly so the main 
loop can continue. However, do-read, do-write, and do-ioctl may not be able to 
complete immediately all the requested work. In order to allow FS to service 
other calls, an immediate reply is required. If the request cannot be completed 
immediately, the SUSPEND code is returned in the status field of the reply mes- 
sage. This corresponds to the message marked (3) in Fig. 3-37 and suspends the 
process that initiated the call, while unblocking the FS . Messages corresponding 
to (7) and (8) in the figure will be sent later when the operation can be completed. 
If the request can be fully satisfied, or an error occurs, either the count of bytes 
transferred or the error code is returned in the status field of the return message to 
the FS. In this case a message will be sent immediately from the FS back to the 
process that made the original call, to wake it up. 

Reading from a terminal is fundamentally different from reading from a disk 
device. The disk driver issues a command to the disk hardware and eventually 
data will be returned, barring a mechanical or electrical failure. The computer can 
display a prompt upon the screen, but there is no way for it to force a person sit- 
ting at the keyboard to start typing. For that matter, there is no guarantee that any- 
body will be sitting there at all. In order to make the speedy return that is re- 
quired, do-read (line I 1  891) starts by storing information that will enable the re- 
quest to be completed later, when and if input arrives. There are a few error 
checks to be made first. It  is an error if the device is still expecting input to fulfill 
a previous request, or if the parameters in the message are invalid (Lines 1 1901 to 
1 1908). If these tests are passed, information about the request is copied into the 
proper fields in the device's tp->try-rable entry on lines 1191 1 to 11915. The 
last step, setting tp->fly-inleft to the number of characters requested, is impor- 
tant. This variable is used to determine when the read request is satisfied. In 
canonical mode tp->tty-inleft is decremented by one for each character returned, 
until an end of line is received, at which point it is suddenly reduced to zero. In 
noncanonical mode it is handled differently, but in any case it is reset to zero 
whenever the call is satisfied, whether by a timeout or by receiving at least the 
minimum number of bytes requested. When tp->try-inlefi reaches zero, a reply 
message is sent. As we will see, reply messages can be generated in several 
places. It is sometimes necessary to check whether a reading process still expects 
a reply: a nonzero value of tp->tty-inleft serves as a flag for that purpose. 

In canonical mode a terminal device waits for input until either the number of 
chardcters asked for in the call has been received, or the end of a line or the end of 
the file- is reached. The ICANON bit in the rermios structure is tested on line 
1 1917 to see if canonical mode is in effect for the terminal. If it  is not set, the ter- 
mios MIN and TIME values are checked to determine what action to take. 
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In Fig. 3-35 we saw how MhV and TIME interact to provide different ways a 
read calf can behave. TIME is tested on Iine 1191 8. A value of zero corresponds 
to the left-hand column in Fig. 3-35, and in this case no further tests are needed at 
this point. If TIME is nonzero, then MIN is tested. If it is zero, settimer is called 
on to start the timer that will terminate the DEV-READ request after a delay, 
even if no bytes have been received. Tp->tty-min is set to 1 here, so the call will 
terminate immediately if one or more bytes are received before the timeout. At 
this point no check for possible input has yet been made, so more than one charac- 
ter may already be waiting to satisfy the request. In that case, as many characters 
as are ready, up to the number specified in the READ call, will be returned as soon 
as the input is found. If both TlME and MIN are nonzero, the timer has a different 
meaning. The timer is used as an inter-character timer in this case. It is started 
only after the first character is received and is restarted after each successive char- 
acter. Tp->try-eotct counts characters in noncanonical mode, and if it is zero at 
line 1 193 1, no characters have been received yet and the inter-byte timer is inhi- 
bited. Lock and unlock are used to protect both of these calls to settimer, to 
prevent clock interrupts when settimer is running. 

In any case, at line 1 194 1, in-transfer is called to transfer any bytes already 
in the input queue directly to the reading process. Next there is a call to hand- 
le-events, which may put more data into the input queue and which calls 
in- transfer again. This apparent duplication of calls requires some explanation. 
Although the discussion so far has been in terms of keyboard input, do-read is in 
the device-independent part of the code and also services input from remote ter- 
minals connected by serial lines. It is possible that previous input has filled the 
RS-232 input buffer to the point where input has been inhibited. The first call to 
in-transfer does not start the flow again, but the call to handle-events can have 
this effect. The fact that it then causes a second call to in-transfer is just a bonus. 
The important thing is to be sure the remote terminal is allowed to send again. 
Either of these cails may result in satisfaction of the request and sending of the 
reply message to the FS. Tp->try-inlefr is used as a flag to see if the reply has 
been sent; if it is still nonzero at line 11944, do-read generates and sends the 
reply message itself. This is done on lines 11949 to 1 1957. If the original request 
specified a nonblocking read, the FS is told to pass an EAGAIN error code back to 
original caller. If the call is an ordinary blocking read, the FS receives a 
SUSPEND code, unblocking it but telling it to leave the original caller blocked. 
In this case the terminal's tp->tty,inrepcode field is set to REVIVE. When and 
if the READ is later satisfied, this code will be placed in the reply message to the 
FS to indicate that the original caller was put to sleep and needs to be revived. 

Do-write (line '1 1964) is similar to do-read, but simpler, because there are 
fewer options to be concerned about in handling a WRITE system cdl.  Checks 
similar to those made by do-read are made to see that a previous write is not still 
in progress and that the message parameters are valid, and then the parameters of 
the request are copied into the try structure. Handle-events is then called, and 
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tp- >tty-outleft is checked to see if the work was done (lines 1 199 1 and 1 1 992). 
If so, a reply message already has been sent by handle-events and there is nothing 
left to do. If not, a reply message is generated. with the message parameters 
depending upon whether or not the original WRITE call was called in nonblocking 
mode. 
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Figure 3-43. POSIX calls and IOCTL operations. 
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The next function, do-ioctl (line 12012), is a long one, but not difficult to 
understand. The body of do-iactl is two switch statements. The first determines 
the size of the parameter pointed to by the pointer in the request message (lines 
12033 to 12064). If the size is not zero, the parameter's validity is tested. The 
contents cannot be tested here, but what can be tested is whether a structure of the 
required size beginning at the specified address fits within the segment it is speci- 
fied to be in. The rest of the function is another switch on the type of I O ~ L  oper- 
ation requested (lines 12075 to 12 t 61 ). Unfortunately, supporting the POSIX-re- 
quired operations with the KXTL call meant that names for roCTL operations had 
to be invented that suggest, but do not duplicate, names required by POSIX. Figure 
3-43 shows the relationship between the POSIX request names and the names used 
by the MINIX IOCTL call. A TCGETS operation services a tcgetattr call by the user 
and simply returns a copy of the terminal device's tp->tty,termios structure. The 
next four request types share code. The TCSETSW, TCSETSF, and TCSETS re- 
quest types correspond to user calls to the P~S~X-defined function tcsetattr, and all 
have the basic action of copying a new termios structure into a terminal's tty 
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structure. The copying is done immediately for TCSETS calls and may be done for 
TCSETSW and TCSETSF calls if output is complete, by a phys-copy call to get 
the data from the user, followed by a call to setartr, on lines 12098 and 12099. Jf 
tcsetattr was called with a modifier requesting postponement of the action until 
completion of current output, the parameters for the request are placed in the ter- 
minal's try structure for later processing if the test of tp->tty-outleft on line 
12084 reveals output is not cor&lete. ~idrain suspends a program until output is 
complete and is translated into an IOCTL call of type TCDRAZN. If output is 
already complete, it has nothing more to do. If not, it also must leave information 
in the tty structure. 

The POSIX tcflush function discards unread input and/or unsent output data, 
according to its argument, and the [WTL translation is straightforward, consisting 
of a call t o  the f t y ~ i c o n c e l  function that services all terminals, and/or the device- 
specific function pointed to by tp-  >try-ocancel (lines I 2 102 to 12 109). Tcflorv is 
similarly translated in a straightforward way into an IOCTL call. To suspend or res- 
tart output, it sets a TRUE or FALSE value into tp->try-inhibited and then sets 
the rp->!ty-events flag. To  suspend or restart input, it sends the appropriate 
STOP (normally CTRL-S) or START (CTRL-Q) code to the remote terminal, 
using the device-specific echo routine pointed to by tp->try-echo (lines 12 120 to 
12125). 

Most of the rest of the operations handled by do-ioctl are handled in one line 
of code, by calling an appropriate function. In the cases of the KIOCSMAP (load 
keymap) and TIOCSFON (load font) operations, a test is made to be sure the de- 
vice realIy is a console, since these operations do not apply to other terminals. If 
virtual terminals are in use the same keymap and font apply to all consoles, the 
hardware does not permit any easy way of doing otherwise. The window size op- 
erations copy a winsize structure between the user process and the terminal task. 
Note, however, the comment under the code for the TIOCSW/NSZ operation. 
When a process changes its window size, the kernel is expected to send a 
SIG WINCH signaI to the process group under some versions of UNlx. The signal 
is not required by the Posrx standard. But, anyone thinking of using these struc- 
tures should cbnsider adding code here to initiate this signal. 

The last two cases in do-iuctl support the POSIX required fcgetpgrp and 
rcsepgrp functions. There is no action associated with these cases, and they 
always return an error. There is nothing wrong with this. These functions support 
job control, the ability to suspend and restart a process from the keyboard. Job 
controI is not required by posix and is not supported by MINIX. However, POSIX 
requires rhese functions, even when job control is not supported, to ensure porta- 
bility of programs. 

Do-open (line 1217 1)  has a simple basic action to perform-it increments the 
variable tp->try-openct for the device so i t  can be verified that i t  is open. How- 
ever, there are some tests to be done first. POSIX specifies that for ordinary termi- 
nals the first process to open a terminal is the session leader, and when a session 
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leader dies, access to the terminal is revoked from other processes in its group. 
Daemons need to be able to write error messages, and if their error output is not 
redirected to a file, it should go to a display that cannot be closed. For this puc- 
pose a device called /devhg exists in MINIX. Physically it is the same device as 
/dev/console, but it is addressed by a separate minor device number and is treated 
differently. It is a write-only device, and thus do-open returns an EACCESS error 
if an attempt is made to open it for reading ( h e  12183). The other test done by 
do-open is to test the 0-NOCTTY flag. If it  is not set and the device is not 
/dev/Zog, the terminal becomes the controlling terminal for a process group. This 
is done by putting the process number of the caller into the tp->tty-pgrp field of 
the tty-table entry. Following this, the tp->try-openct variable is incrernented 
and the reply message is sent. 

A terminal device may be opened more than once, and the next function, 
do-close (line 12198), has nothing to do except decrement tp->tty-openct. The 
test on line 12204 foils an attempt to close the device if it happens to be /dev/iog. 
If this operation is the last close, input is canceled by calling tp->ty-icancel. 
Device-specific routines pointed to by tp- >try -cxancel and tp- >try-close are 
also called. Then various fields in the tty structure for the device are set back to 
their default values and the reply message is sent. 

The last message type handler is do-cancel (line 12220). This is invoked 
when a signal is received for a process that is blocked trying to read or write. 
There are three states that must be checked: 

1. The process may have been reading when killed. 

2. The process may have been writing when killed, 

3. The process may have been suspended by tcdrain until its output was 
complete. 

A test is made for each case, and the general tp- >try-icancel, or the device-spe- 
cific routine pointed to by tp->try-ocancel, is called as necessary. In the igst case 
the only action required is to reset the flag fp->tp-ioreq, to indicate the IUCTL 
operation is now complete. Finally. the tp->try-events flag is set and a reply 
message is sent. 

Terminal Driver Support Code 

Now that we have looked at the top-level functions called in the main loop of 
ttj-task, it is time to took at the code that supports them. We will start with 
handle-events (line 12256). As mentioned earlier, on each pass through the main 
loop of the terminal task, the tp->try-even13 flag for each terminal device is 
checked and handle-events is called if it shows that attention is required for a 
particular terminal. Do-rend and do-write also call handle-event$. This routine 
must work fast. I t  resets the tp->ttj-events flag and then calls device-specific 
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routines to read and write, using the pointers to the functions tp->tr_v-dewread 
and tp->try-devwrire (lines 12279 to 12282). These are called unconditionally, 
because there is no way to test whether a read or a write caused the raising of the 
flag-a design choice was made here, that checking two flags for each device 
would be more expensive than making two calls each time a device was active. 
Also. most of the time a character received from a terminal must be echoed, so 
both calls will be necessary. As noted in the discussion of the handling of 
tcsetattr calls by do-iocrl, POSIX may postpone control operations on devices until 
current output is complete, so immediately after calling the device-specific 
try-devwrite function is a good time take care of ioctl operations. This is done on 
line 12285, where dev-ioctl is called if there is a pending control request. 

Since the tp->try-events flag is raised by interrupts, and characters may 
arrive in a rapid stream from a fast device, there is a chance that by the time the 
calls to. the device-specific read and write routines and dev-ioctl are completed, 
another interrupt will have raised the flag again. A high priority is placed on get- 
ting input moved along from the buffer where the intempt routine places it ini- 
tially. Thus handle-events repeats the calls to the device-specific routines as long 
as the tp->tb-events flag is found raised at the end of the loop (line 12286). 
When the flow of input stops (it also could be output, but input is more likely to 
make such repeated demands), in-transfer is called to transfer characters from the 
input queue to the buffer within the process that called for a read operation. 
In-transfer itself sends a reply message if the transfer completes the request, 
either by transferring the maximum number of characters requested or by reaching 
the end of a line (in canonical mode). If it does so, tp->tty-left will be zero upon 
the return to handle-events. Here a further test is made and a reply message is 
sent if the number of characters transferred has reached the minimum number re- 
quested. Testing tp->tty-inlefl prevents sending a duplicate message. 

Next we wiII look at in-transfer (line 12303), which is responsible for mov- 
ing data from the input queue in the task's memory space to the buffer of the user 
process that requested the input. However, a straightforward block copy is not 
possible. The input queue is a circular buffer and characters have to be checked 
to see that the end of the file has not been reached, or, if canonical mode is in 
effect. that the transfer only continues up through the end of a line. Also, the 
input queue is a queue of 16-bit quantities, but the recipient's buffer is an array of 
8-bit characters. Thus an intermediate local buffer is used. Characters are 
checked one by one as they are placed in the local buffer, and when it fills up or 
when the input queue has been emptied, phys-copy is called to move the contents 
of the local buffer to the receiving process' buffer (lines 1231 9 to 12345). 

Three variables in the try structure, tp-  >try-inlefr, tp- >ttj-eotct, and 
tp- >try-min, are used to decide whether in-transfer has any work to do, and the 
first two of these control its main loop. As mentioned earlier, tp->tfy-inlefi is set 
initially to the number of characters requested by a REAT) call. Normally, it is 
decremented by one whenever a character is transferred ;out it may be abruptly 
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decreased to zero when a condition signaling the end of input is reached. When- 
ever it becomes zero, a reply message to the reader is generated, so it also serves 
as a flag to indicate whether or not a message has been sent. Thus in the test on 
line 123 14, finding that tp->try,inlefi is already zero is a sufficient reason to 
abort execution of in-transfer without sending a reply. 

In the next part of the test, tp->tty-eotct and tp->tty-min are compared. In 
canonical mode both of these variables refer to complete lines of input, and in 
noncanonical mode they refer to characters. Tp- >tty,eotct is incremented when- 
ever a "line break" or a byte is placed in the input queue and is decremented by 
in-transfer whenever a line or byte is removed from the queue. Thus it counts the 
number of lines or bytes that have been received by the terminal task but not yet 
passed on to a reader. Tp->tty-min indicates the minimum number of lines (in 
canonical mode) or characters (in noncanonical mode) that must be transferred to 
complete a read request. Its value is always t in canonical mode and may be any 
value from 0 up to MAX-INPUT (255 in MINIX) in noncanonical mode. The 
second half of the test on line 12314 causes in-transfer to return immediately in 
canonical mode if a full line has not yet been received. The transfer is not done 
until a line is complete so the queue contents can be modified if, for instance, an 
ERASE or KILL character is subsequently typed in by the user before the ENTER 
key is pressed. In noncanonical mode an immediate return occurs if the minimum 
number of characters is not yet available. 

A few lines later, tp->tty,inlefr and tp->tty-eotct are used to control the 
main loop of in-transfer. In canonical mode the transfer continues until there is 
no longer a complete line left in the queue. In noncanonical mode tp->tty-eotct 
is a count of pending characters, Tp->try-min controls whether the Imp is 
entered but is not used in determining when to stop. Once the loop is entered, 
either all available characters or the number of characters requested in the original 
call will be transferred, whichever is smaller. 

V: IN-ESC, escaped by LNEXT (CTRL-V) 
D: IN-EOF, end of file (CTRL-D) 
N : IN-EOT, line break (NL and others) 
cccc: count of characters echoed 
7: Bit 7 ,  may be zeroed if ISTRIP is set 
6-01 Bits 0-6, ASCII code 

Figure 3-44. The fields in a character code as it is placed into the input queue. 

Characters are 16-bit quantities in the input queue. The actual character code 
to be transferred to the user process is in the low 8 bits. Fig. 3-44 shows how the 
high bits are used. Three are used to flag whether the character is being escaped 
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(by CTRL-V), whether it signifies end-of-file. or whether it represents one of sev- 
eral codes that signify a line is complete. Four bits are used for a count to show 
how much screen space is used when the character is echoed. The test on line 
12322 checks whether the IN-EOF bit (D in the figure) is set. This is tested at the 
top of the inner Ioop because an end-of-file (CTRL-D) is not itself transferred to a 
reader, nor is i t  counted in the character count. As each character is transferred, a 
mask is applied to zero the upper 8 bits, and only the ASCII value in  the low 8 
bits is transferred into the local buffer (line 12324). 

There is more than one way to signal the end of input, but the device-specific 
input routine is expected to determine whether a character received is a linefeed, 
CTRL-D, or other such character and to mark each such character. In-transfer 
only needs to test for this mark, the IN-EOT bit (N in Fig. 3-44), on line 12340. 
If this is detected, rp->r~_eurcr is decremented, In noncanonical mode every 
character is counted this way as it is put into the input queue, and every character 
is also marked with the IN-EOT bit at that time, so tp->tty-eotct counts charac- 
ters not yet removed from the queue. The only difference in the operation of the 
main loop of in-transfer in the two different modes is found on line 12343. Here 
tp->try-inleft is zeroed in response to finding a character marked as a line break. 
but only if canonical mode is in effect. Thus when control returns to the top of the 
loop. the loop terminates properly after a line break in canonical mode, but in non- 
canonical line breaks are ignored. 

When the loop terminates there is usually a partially full local buffer to be 
transferred (lines 1 2347 to 12353). Then a reply message is sent if tp->tty-irrlefi 
has reached zero. This is always the case in canonical mode, but if noncanonical 
mode is in effect and the number of characters transferred is less than the full re- 
quest, the reply is not sent. This may be puzzling if you have a good enough 
memory for details to remember that where we have seen calls ro in-transfer (in 
do-read and ha~tdle-events),  the code following the call to in-transfer sends a 
reply message if in-tramfer. returns having transferred more than the amount 
specified in t p - > t t > - m i ~ ~ ,  which will certainly be the case here. The reason why a 
reply is not made uncondirionally from in-tramfer will be seen when we discuss 
the next function, which calls in-transfer under a different set of circumstances. 

That next function is in-process (line 12367). It is called from the device- 
specific software to handle the common processing that must be done on  all input. 
Its parameters are a pointer to the rty structure for the source device, a pointer to 
the array of 8-bit characters to be processed, and a count. The count is returned to 
the caller. ht-process is a long function, but its actions are not complicated. It 
adds 16-bit characters to the input queue that is later processed by in,transfev. 

There are several categories of treatment provided by in-transfer. 

1 .  Normal characters are added to the input queue, extended to 16 bits. 

2. Characters which affect later processing modify flags to signal the 
effect but are not placed in the queue. 
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3. Characters which control echoing are acted upon immediately with- 
out being placed in the queue. 

4. Characters with special significance have codes such as the EOT bit 
added to their'high byte as they are placed in the input queue. 

Let us look first at a completely normal situation, an ordinary character, such 
as "x" (ASCII code Qx78), typed in the middle of a short line, with no escape 
sequence in effect, on a terminal that is set up with the standard MINIX default 
properties, As received from the input device this character occupies bits 0 
through 7 in Fig. 3-44. On line 12385 it would have its most significant bit, bit 7, 
reset to zero if the ISTRIP bit were set, but the default in MINIX is not to strip the 
bit, allowing full 8-bit codes to be entered. This would not affect our "x" anyway. 
The MINIX default is to allow extended processing of input, so the test of the IEX- 
TEN bit in tp->try-te:mios.c-!fag '(line 12388) passes, but the succeeding tests 
fail under the conditions we postulate: no character escape is in effect (line 
12391), this input is not itself the character escape character (line 12397), and this 
input is not the REPRINT character (line 12405). 

Tests on the next several lines find that the inputcharacter is not the special 
-POSIX-VDISABLE character, nor is it a CK or an NL. Finally, a positive result: 
canonical mode is in effect, this is the normal default (line 12424). However our 
"x" is not the ERASE character, nor is it any of the KILL, EOF (CTRL-D), NL, or 
EOL characters, so by h e  12457 still nothing will have happened to it. Here it is 
found that the lXON bit is set, by default, allowing use of the STOP (CTRL-S) 
and START (CTRL-Q) characters, but in the ensuing tests for these no match is 
found. On line 12478 it is found that the ISlG bit, enabling the use of the INTR 
and QUITcharacters, is set by default, but again no match is found. 

In fact, the first interesting thing that might happen to an ordinary character 
occurs on line 12491, where a test is made to see if the input queue is already full. 
If this were the case. the character would be discarded at this point, since canoni- 
cal mode IS in effect, and the user would not see it echoed on the screen. (The 
continue statement discards the character, since i t  causes the outer loop to restart). 
However, since we postulate completely normal conditions for this illustration, let 
us assume the buffer is not full yet. The next test, to see if special noncanonical 
mode processing is needed (line 12497), fails, causing a jump forward to line 
12512. Here echo is called to display the character to the user, since the ECHO 
bit in tp->tty-termios.c-Ifrag is set by default. 

Finally, on lines 125 15 to 125 19 the character is disposed of by being put into 
the input queue. At this time tp->try-incourzt is incremented, but since this is an 
ordinary character, not marked by the EOT bit. tp->tty-rotci is not changed. 

The last line in the loop calls in-traasfer if the character just transferred into 
the queue fills it. However, under the ordinary conditions we postulate for this 
example, in-transfer would do nothing, even if called, since (assuming the queue 
has been serviced normally and previous input was accepted when the previous 
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line of input was complete) tp->tty-eotct is zero, tp->try,min is one, and the 
test at the start of ftr-transfer (line 123 14) causes an immediate return. 

Having passed through in -process with an ordinary character under ordinarj 
conditions, let us now go back to the start of irt-process and look at what happens 
in less ordinary circumstances. First, we will took at the character escape, which 
allows a character which ordinarily has a special effect to be passed on to the user 
process. If a character escape is in effect, the tp->try-escaped flag is set, and 
when this is detected (on line 12391) the flag is reset immediately and the 
IN-ESC bit, bit V in Fig. 3-44, is added to the current character. This causes spe- 
cial processing when the character is echoed--escaped control characters are dis- 
played as "^'* plus the character to make them visible. The IN-ESC bit also 
prevents the character from being recognized by tests for special characters. The 
next few lines process the escape character itself, the LNEXT character (CTRL-V 
by default). When the LNEXT code is detected the tp->tty,escaped flag is set, 
and rawecho is called twice to output a "^" followed by a backspace. This re- 
minds the user at the keyboard that an escape is in effect, and when the following 
character is echoed, it overwrites the "*". The WbrEXT character is an example of 
one that affects later characters (in this case, only the very next character). It is 
not placed in the queue, and the loop restarts after the two calls to rawecho. The 
order of these two tests is important, making it possible to enter the LNEXT char- 
acter itself twice in a row, in order to pass the second copy on to a process. 

The next special character processed by in -process is the REPRINT character 
(CTRL-R). When it  is found a call to reprint ensues (line 12406), causing the 
current echoed output to be redisplayed. The REPRINT itself is then discarded 
with nu effect upon the input queue. 

Going into detail on the handling of every special character would be tedious, 
and the source code of in,process is straightforward. We will mention just a few 
more points. One is that the use of special bits in the high byte of the &bit value 
placed in the input queue makes it easy to identify a class of characters that have 
similar effects. Thus, EOT (CTRL-D), LF, and the alternate EOL character 
(undefined by default) are all marked by the EOT bit, bit D in Fig. 3-44 (lines 
I2447 to 12453), making later recognition easy. Finally, we will justify the pecu- 
liar behavior of in-transfer noted earlier. A reply is not generated each time it 
terminates, although in the calls to in-transfer we have seen previously, it seemed 
that a reply would always be generated upon return. Recall that the call to 
in-transfer made by in-process when the input queue is full (line 12522) has no 
effect when canonical mode is in effect. But if noncanonical processing is 
desired, every character is marked with the EOT bit on line 12499, and thus every 
character is counted by tp->try-eotct on line 12519. In turn, this causes entry 
into the main loop of in-transfer when it is called because of a full input queue in 
noncanonical mode. On such occasions no message should be sent at the termina- 
tion of in-transfer, because there are likely to be more characters read after re- 
turning to in-process. Indeed, although in canonical mode input to a single READ 
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is limited by the size of the input queue (255 characters in MINIX),  in noncanoni- 
cal mode a READ call must be able to deliver the POSIX-required 
-POSIX-SSIZE-MAX number of characters. Its value in M I N X  is 32767. 

The next few functions in t t ~ . c  support character input. Echo (line 12531) 
treats a few characters in a special way, but most just get displayed on the output 
side of the same device being used for input. Output from a process may be going 
to a device at the same time input is being echoed, which makes things messy if 
the user at the keyboard tries to backspace. To deal with this, the tp->tty-reprint 
flag is aJways set to TRUE by the device-specific output routines when normal 
output is produced, so the function called to handle a backspace can tell that 
mixed output has been produced. Since echo also uses the device-output routines. 
the current value of tp->tty-reprint is preserved while echoing, using the local 
variable rp (lines 12552 to 12585). However, if a new line of input has just 
begun, rp is set to FALSE instead of taking on the old value, thus assuring that 
p->tty-reprint will be reset when echo terminates. 

You may have noticed that echo returns a value, for instance, in the call on 
line 125 12 in in -process: 

ch = echo(tp, ch) 

The value returned by echo contains the number of spaces used on the screen for 
the echo display, which may be up to eight if the character is a TAB. This count is 
placed in the cccc field in Fig. 3-44. Ordinary characters occupy one space on the 
screen, but if a control character (other than TAB, Nk, or CR or a DEL (Ox7F) is 
echoed, it is displayed as a "^" plus a printable ASCII character and occupies two 
positions on the screen. On the other hand an NL or CR occupies zero spaces. The 
actual echoing must be done by a device-specific routine, of course, and whenever 
a character must be passed to the device, an indirect call is made using 
rp->try-echo, as, for instance, on line 12580, for ordinary characters. 

The next function, rawecho, is used to bypass the special handling done by 
echo. It checks to see if the ECHO flag is set, and if it is, sends the character 
along to the device-specific tp->try-echo routine without any special processing. 
A local variable rp is used here to prevent rawecho's own call to the output rou- 
tine from changing the value of tp->tty,reprint. 

When a backspace is found by in-process, the next function, backover (line 
I2607), is called. It manipulates the input queue to remove the previous head of 
the queue if backing up is possible-if the queue is empty or if the last character 
is a line break, then backing up is not possible. Here the rp->tty-reprint flag 
mentioned in the discussions of echo and rawecho is tested. If it is TRUE, then 
reprinr is called (line 12618) to put a clean copy of the output line on the screen. 
Then the len field of the last character displayed (the cccc field of Fig. 3-44) is 
consulted to find out how many characters have to be deleted on the display, and 
for each character a sequence of backspace-space-backspace characters is sent 
through ra wecho to remove the unwanted character from the screen. 
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Reprint is the next function. In addition to being called by backover, it may be 
invoked by the user pressing the REPRINT key (CTRL-R). The loop on lines 
1265 1 to 12656 searches backward through the input queue for the last line break. 
If it is found in the Iast position filled, there is nothing to do and reprint returns. 
Otherwise, it echos the CTRL-R, which appears on the display as the two charac- 
ter sequence "^R", and then moves to the next Iine and redispIays the queue from 
the last line break to the end. 

Now we have arrived at out-process (line 12677). Like in-process, it is 
called by device-specific output routines, but it is simpler, It is called by the RS- 
232 and pseudo terminal device-specific output routines, but not by the console 
routine. Out-process works upon a circular buffer of bytes but does not remove 
them from the buffer. The only change it makes to the array is to insert a CR char- 
acter ahead of an NL character in the buffer if the OPOST (enable output proc- 
essing) and ONLCR (map NL to CR-NL) bits in rp->rty_termios.oflag are set. 
Both bits are set by default in MINIX. Its job is to keep the tp->try-position vari- 
able in the device's tty structure up to date. Tabs and backspaces complicate life. 

The next routine is dev-ioctl (line 12763). It supports do-ioctl in carrying 
out the tcbruin function and the tcsetattr function when it is called with either the 
TCSADRAlN or TCSA FLUSH options. In these cases, do-ioctl cannot complete 
the action immediately if output is incomplete, so information about the request is 
stored in the parts of the tty structure reserved for delayed IOCTL operations. 
Whenever handle-events runs, it checks the tp- >try-ioreq field after calling the 
device-specific output routine and calls dev-iocrl if an operation is pending. 
Dev-ioctl tests tp->try-outleft to see if output is complete, and if so, carries out 
the same actions that do-ioctl would have canied out immediately if there had 
been no delay. To service tcdrain, the only action is to reset the tp->try-ioreq 
field and send the reply message to the FS, telling it to wake up the process that 
made the original call. The TCSAFLUSH variant of tcsetattr calls tty-icancel to 
cancel input. For both variants of tcsetattr, the termios structure whose address 
was passed in the original call to IOCTL is copied to the device's tp->$ty_termios 
structure. Setattr is then called, followed, as with tcdrain, by sending a reply 
message to wake up the blocked original caller. 

Setattr (line 12789) is the next procedure. As we have seen, it is called by 
d o - i o d  or dev-ioctl to change the attributes of a terminal device, and by 
do-close to reset the attributes back to the default settings. Setattr is always 
called after copying a new termios structure into a device's try structure, because 
merely copying the parameters is not enough. If the device being controlled is 
now in noncanonical mode, the first action is to mark all characters currently in 
the input queue with the IN-EOT bit, as would have been done when these char- 
acters were' originally entered in the queue if noncanonical mode had been in  
effect then. It is easier just to go ahead and do this (lines 12803 to 12809) than to 
test whether the characters already have the bit set. There is no way to know 
which attributes have just been changed and which stiIl retain their old values. 
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The next action is to check the MIN and TIME values. In canonical mode 
tp->try-min is always 1; that is set on line 128 18. In noncanonical mode the 
combination of the two values allows for four different modes of operation, as we 
saw in Fig. 3-35. On lines 12823 to 12825 tp->rty-min is first set up with the 
value passed in tp->try-termiso.cc[VMf~, which is then modified if it is zero 
and tp- >tty-termiso.cc[VTIM is not zero. 

Finally, setattr makes sure output is not stopped if XONIXOFF control is dis- 
abled, sends a SIGHUP signal if the output speed is set to zero, and makes an 
indirect call to the device-specific routine pointed to by tp->tty,ioctl to do what 
can only be done at the device level. 

The next function, tty-reply (line 12845) has been mentioned many times in 
the preceding discussion. Its action is entirely straightforward, constructing a mes- 
sage and sending it. If for some reason the reply fails, a panic ensues. The follow- 
ing functions are equally simple. Sigchar (line 12866) asks MM to send a signal. 
If the NOFLSH flag is not set, queued input is removed-the count of characters 
or lines received is zeroed and the pointers to the tail and head of the queue are 
equated. This is the default action. When a SIGHUP signal is to be caught, 
NOFLSH can be set, to allow input and output to resume after catching the signal. . . 
Try-icancel (line 12891) u-ally discards pending input in the way 
described for sigchar, and in addition calls the device-specific function pointed to 
by tp->tty-icancei, to cancel input that may exist in the device itself or be buff- 
ered in the low-level code. 

Tty-inir (line 12905) is called once for each device when tty-task first starts. 
i t  sets up defaults. Initially a pointer to tty-devnop, a dummy function that does 
nothing, is set into the tp->tty-icancel, tp->tty,ocancel, tp->tty-ioctl, and 
tp->tty-close variables. Tty-init then calls a device-specific initialization func- 
tions for the appropriate category of terminal (console, serial line, or pseudo ter- 
minal). These set up the real pointers to indirectly called device-specific func- 
~ R S .  Recall that if there are no devices at all configured in a particular category, 
a macro that returns immediately is created, so no part of the code for a noncon- 
figured device need be compiled. The call to scr-init initializes the console driver 
and also calls the initialization routine for the keyboard. 

Tty - wakeup (line 12929), although short, is extremely important in the func- 
tioning of the terminal task. Whenever the clock interrupt handler runs, that is to 
say, for every tick of the clock, the global variable tty-timeout (defined in g10.h 
on line 5032), is checked to see if it contains a value less than the present time. If 
so tty-wakeup is called. To-timeout is set to zero by the interrupt service rou- 
tines for terminal drivers, so wakeup is forced to run at the next clock tick after 
any terminal device interrupt. Tty-timeout is also altered by settimer when a ter- 
minal device is servicing a READ call in noncanonical mode and needs to set a 
timeout, as we wiH see shortly. When rty-wakeup runs, it first disables the next 
wakeup by assigning TIME-NEVER, a value very far in the future, to 
tty-rimeout. Then it scans the linked list of timer values, which is sorted with the 
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earliest scheduled wakeups first, until it comes to one that is later than the current 
time. This is the next wakeup, and it is then put into try-timeout. Tty-wakeup 
also sets tp->tty-min for that device to 0, which ensures that the next read will 
succeed even if no bytes have been received, sets the tp->tty-events flag for the 
device to ensure it gets attention when the terminal task runs next, and removes 
the device from the timer Iist. Finally, it calls interrupt to send the wakeup mes- 
sage to the task. As mentioned in the discussion of the clock task, 1~-wakeup is 
logically part of the clock interrupt service code, since it is called only from there. 

The next function, settimer (line 12958), sets timers for determining when to 
return from a READ call in noncanonical mode. It is called with parameters of tp, a 
pointer to a tty structure, and on, an integer which represents TRUE or FALSE. 
First the linked list of tty structures pointed to by timelist is scanned, searching for 
an existing entry that matches the tp parameter. If one is found, it is removed from 
the list (lines 12968 to 12973). If settimer is called to unset a timer, this is all it 
must do. If it  is called to set a timer, the tp-xty-time element in the tty structure 
of the device is set to the current time plus the increment in tenths of a second 
specified in the TIME value in the device's termios structure. Then the entry is put 
into the list, which is maintained in sorted order. Finally, the tirneout just entered 
on the list is compared with the value in the global tty-timeout, and the latter is 
replaced if the new timeout is due sooner. 

Finally, the last definition in tty.c is try-devnop (tine 12992), a "no-opera- 
tion" function to be indirectly addressed where a device does not require a ser- 
vice. We have seen try -devnop used in fty-init as the defauIt value entered into 
various function pointers before calling the initialization routine for a device. 

3.9.5 Implementation of the Keyboard Driver 

Now we turn to the device-dependent code that supports the MINIX console, 
which consists of an IBM PC keyboard and a memory-mapped display. The 
physical devices that support these are entirely separate: on a standard desktop 
system the display uses an adapter card (of which there are at least a half-dozen 
basic types) plugged into the backplane, while the keyboard is supported by circu- 
itry built ,into the parentboard which interfaces with an 8-bit single-chip computer 
inside the keybaard unit. The two subdevices require entirely separate software 
support, which is found in the files keyb0ard.c and cons0Ze.c. 

The operating system sees the keyboard and console as parts of the same de- 
vice, /dev/console. If there is enough memory available on the display adapter, 
virtual console support may be compiled, and in addition to /dev/console there 
may be additional logical devices, /dev/ttycl, /dev/ttyc2, and so on. Output from 
only one goes to the display at any given time, and there is only one keyboard to 
use for input to whichever console is active. Logically the keyboard is subser- 
vient to the console, but this is manifested in only two relatively minor ways. 
First, tty-table contains a tty structure for the console, and where separate fields 
are provided for input and .output, for instance, the tty-devread and tty-devwrire 
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fields, pointers to functions in keyb0ard.c and conso1r.c are filled in at startup 
time. However, there is only one sty-priv fieid, and this points to the console's 
data structures only. Second, before entering its main loop, try -task calls each 
logical device once to initialize it. The routine called for /de~/cansole is in cow 
sole.c, and the initialization code for the keyboard is called from there. The 
implied hierarchy could just as well have been reversed, however. We have 
always looked at input before output in dealing with I/O devices and we will con- 
tinue that pattern, discussing keyb0ard.c in this section and leaving the discussion 
of conso1e.c for the following section. 

Keyb0ard.c begins, like most source files we have seen, with several #include 
statements. One of these is unusual, however. The file keymups/..v-std-src 
(included on line 13014) is not an ordinary header; it is a C source file that results 
in compilation of the default keymap within keyhoard.0 as an initialized array. 
The keymap source file is not included in the listings at the end of the book 
because of its size, but some representative entries are illustrated in Fig. 3-41. 
Following the #includes are macros to define various constants. The first group 
are used in low-level interaction with the keyboard controller. Many of these are 
1/0 port addresses or bit combinations that have meaning in these interactions. 
The next group includes symbolic names for special keys. The macro kb-uddr 
(line 13041) always returns a pointer to the first element of the kb-lirzus array, 
since the IBM hardware supports only one keyboard. On the next line the size of 
the keyboard input buffer is symbolically defined as KB-IN-BYTES, with a value 
of 32. The next 1 I variables are used to hold various states that must be remem- 
bered to properly interpret a key press. They are used in different ways. For 
instance, the value of the capslock flag (line 13046) is toggled between TRUE and 
FALSE each time the Caps Lock key is pressed. The shift flag (line 13054) is sel 
to TRUE when the Shift key is pressed and to FALSE when the Shift key is 
released. The esc variable is set when a scan code escape is received. It is always 
reset upon receipt of the following character. 

The kb-s structure on lines 13060 to 13065 is used to keep track of scan 
codes as they are entered. Within this structure the codes are held in a circular 
buffer, in the may ibuf, of size KB-IN-BYTES. An array kb-lines[NR-CONS] 
of these structures is declared, one per console, but in fact only the first one is 
used, since the kbaddr macro is always used to determine the address of the cur- 
rent kb-s. However, we usually refer to variables within kb-lines[O] using a 
pointer to the structure, for example, kb->ihead, for consistency with the way we 
treat other devices and to make the references in the text consistent with those in 
the source code listing. A small amount of memory is wasted because of the 
unused array elements, of course. However, if someone manufactures a PC with 
hardware support for multiple keyboards, MINlX is ready; only a modification of 
the kbaddr macro is required. 

Map-key0 (line 13084) is defined as a macro. It returns the ASCII code that 
corresponds to a scan code, ignoring modifiers. This is equivalent to the first 
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column (unshifted) in the keymap array. Its big brother is map-key (line 13091), 
which performs the complete mapping of a scan code to an ASCII code, including 
accounting for (multiple) modifier keys that are depressed at the same time as 
ordinary keys. 

The keyboard interrupt service routine is kbd-hw-ins (line 13123), called 
whenever a key is pressed or released. It calls scan-keyboard to get the scan 
code from the keyboard controller chip. The most significant bit of the scan code 
is set when a key release causes the interrupt, and in this case the key is ignored 
unless it is one of the modifier keys. If the intermpt is caused by a press of any 
key, or the release of a modifier key, the raw scan code is placed in the circular 
buffer if there is space, the tp->tty-events flag for the current console is raised 
(line 13 154), and then force -timeout is called to make sure the clock task will 
start the terminal task on the next clock tick. Figure 3-45 shows scan codes in the 
buffer for a short line of input that contains two upper case characters, each pre- 
ceded by the scan code for depression of a shift key and followed by the code for 
the release of the shift key. 

Figure 3-45. Scan codes in the input buffer, with corresponding key presses 
below, for a h e  of text entered at the keyboard. L+, L-, R+, and R- represent, 
respectively, pressing and releasing the left and right Shift keys. The code for a 
key release i s  128 more than the code for a press of the same key. 

When the clock intermpt 'occurs, the terminal task itself runs, and upon find- 
ing the tp->lty-events flag for h e  console device set, i t  calls k b - r e d  (line 
13 l65), the device-specific routine, using the pointer in the tp->try-devread field 
of the console's rty structure. Kb-read takes scan codes from the keyboard's cir- 
cular buffer and places ASCII codes in its local buffer, which is large enough to 
hold the escape sequences that must be generated in response to some scan codes 
from the numeric keypad. Then it calls in -process in the hardware-independent 
code to put the characters into the input queue. On lines 131 8 1 to 13 183 lock and 
urdock are used to protect the decrement of kb->icount from a possible keyboard 
interrupt arriving at the same time. The call to make-break returns the ASCII 
code as an integer. Special keys, such as keypad and function keys, have values 
greater than OxFF at this point. Codes in the range from HOME to INSRT (Ox101 
to Ox 1 OC, defined in include/minidkeymap. h) result from pressing the numeric 
keypad, and are converted into 3-character escape sequences shown in Fig. 3-46 
using the nutpad-mup array. The sequences are then passed to in-process (lines 
13 I96 to 13201 ). Higher codes are not passed on to in-process, but a check is 
made for the codes for ALT-LEFT-ARROW, ALT-RIGHT-ARROW, or ALT-FI 
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through ALT-F12, and if one of these is found, select-console is called to switch 
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Figure 3-46. Escape codes generated by the numeric keypad. When scan codes 
for ordinary keys are translated inlo ASCII codes the special keys are assigned 
"pseudo ASCII" codes with d u e s  greater than OxFF. 
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Muke-break (line 13222) converts scan codes into ASCII and then updates 
the variables that keep track of the state of modifier keys. First, however, it 
checks for the magic CTRL-ALT-DEL combination that PC users all know as the 
way to force a reboot under MS-DOS. An orderly shutdown is desirable, however, 
so rather than try to start the PC 610s routines, a SIGABRT signal is sent to inir, 
the parent process of all other processes. Inir is expected to catch this signal and 
interpret it as a command to begin an orderly process of shutting down. prior to 
L' lusillg a return to the boot monitor, from which a full restart of the system or a 
reboot of MINIX can be commanded. Of course, it is not realistic to expect this to 
work every time. Most users understand the dangers of an abrupt shutdown and do 
not press CTRL-ALT-DEL until something is really going wrong and normal con- 
trol of the system has become impossible, At this point it is likely that the system 
may be so disrupted that an orderly sending of a signal to another procevi may be 
impossible. This is why there is a static variable CAD-courzt in make-break. 
Most system crashes leave the interrupt system still functioning, so keyboard 
input can still be received and the cluck task can keep the terminal task running. 
Here MlNIX takes advantage of the expected behavior of computer users, who are 
likely to bang on the keys repeatedly when homething does not seem to work 
correctly. If the attempt to send the SIGARRT to itlit fails and the user presses 
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CTRL-ALT-DEL twice more, a call to wreboot is made directly, causing a return 
to the monitor without going through the call to init. 

The main part of make-break is not hard to follow. The variable make re- 
cords whether the scan code was generated by a key press or a key release, and 
then the call to map-key returns the ASCII code to ch. Next is a switch on ch 
(lines 13248 to 13294). Let us consider two cases, an ordinary key and a special 
key. For an ordinary key, none of the cases match, and nothing should happen in 
the default case either (line 13292), since ordinary keys codes are supposed to be 
accepted only on the make (press) phase of a key press and release. If somehow 
an ordinary key code is accepted at key release, a value of -1 is substituted here, 
and this is ignored by the caller, kb-read. A special key, for example CTRL, is 
identified at the appropriate place in the switch, in this case on line 13249. The 
corresponding variable, in this case control, records the state of make, and - 1  is 
substituted for the character code to be returned (and ignored). The handling of 
the ALT, CALOCK, NLOCK, and SLOCK keys is more complicated, but for all of 
these special keys the effect is similar: a variable records either the current state 
(for keys that are only effective while pressed) or toggles the previous state (for 
the lock keys). 

There is one more case to consider, that of the EXTKEY code and the esc vari- 
able. This is not to be confused with the ESC key on the keyboard, which returns 
the ASClI code OxlB. There is no way to generate the EXTKEY code alone by 
pressing any key or combination of keys; it is the PC keyboard's extended key 
prefix, the first byte of a 2-byte scan code that signifies that a key that was not 
part of the original PC's complement of keys but that has the same scan code, has 
been pressed. In many cases software treats the two keys identically. For 
instance, this is almost always the case for the normal "/" key and the gray "I" 
key on the numeric keyboard. In other cases, one would like to distinguish be- 
tween such keys. For instance, many keyboard layouts for languages other than 
English treat the left and right ALT keys differently, to support keys that must 
generate three different character codes. Both ALT keys generate the same scan 
code (56) ,  but the EXTKEY code precedes this when the right-hand ALT is 
pressed. When the EXTKEY code is returned, the esc flag is set. ln this case, 
make-break returns from within the switch, thus bypassing the last step before a 
normal return, which sets esc to zero in every other case (line 13295). This has 
the effect of making the esc effective only for the very next code received. If you 
are familiar with the intricacies of the PC keyboard as it is ordinarily used, this 
will be both familiar and yet a tittle strange, because the PC BIOS does not allow 
one to read the scan code for an ALT key and returns a different value for the 
extended code than does MINIX. 

Set-leds (line 13303) turns on and off the lights that indicate whether the 
Nurn Lock, Caps Lock, or Scroll Lock keys on a PC keyboard have been pressed. 
A control byte, LED-CODE, is written to an output port to instruct the keyboard 
that the next byte written to that port is for control of the lights, and the status of 
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the three lights is encoded in 3 bits of that next byte. The next two functions sup- 
port this operation. Kb- wait (line 13327) is called to determine that the keyboard 
is ready to receive a command sequence, and kb-ack (line 13343) is called to ver- 
ify that th; command has been acknowledged. Both of these commands use busy 
waiting, continually reading until a desired code is seen. This is not a recom- 
mended technique for handling most I10 operations, but turning lights on and off 
on the keyboard is not going to be done very often and doing it inefficiently does 
not waste much time. Note also that both kb-wait and kb-ack could fail, and one 
can determine from the return code if this happens. But setting the light on the 
keyboard is not important enough to merit checking the value returned by either 
call, and set Jeds just proceeds blindly. 

Since the keyboard is part of the console, its initialization routine, kb-inir 
(line 13359), is called from scr-init in  console.^, not directly from try-init in 
tty.c. If virtual consoles are enabled, (i.e., NR- CONS in include/minlx/confi,g. h is 
greater than l), kb-init is called once for each logical console. After the first time 
the only part of kb-init that is essential for additional consoles is setting the ad- 
dress of kb-read into tp->rty-devread (line l3367), but no harm is done by 
repeating the rest of the function. The rest of kb-init initializes some variables, 
sets the lights on the keyboard, and scans the keyboard to be sure no leftover 
keystroke is read. When all is ready, it calls put-irq-handler and then 
enable-irq, so kbd-hw-int will be executed whenever a key is pressed or 
released. 

The next three functions are all rather simple. Kbd-loadmap (line 13392) is 
almost trivial. It is called by do-iocrl in t2y.c to do the copying of a keymap corn 
user space to overwrite the default keymap compiled by the inclusion of a keymap 
source file at the start of  keyboard.^. 

Func-key (line 13405) is called from kb-read to see if a special key meant 
for local processing has been pressed. Figure 3-47 summarizes these keys and 
their effects. The code called is found in several files. The FI and F2 codes acti- 
vate code in dmp.c, which we will discuss in the next section. The F3 code acti- 
vates toggle-scroll, which is in  console.^, also to be discussed in the next section. 
The CF7, CF8, and CF9 codes cause calls to sigchar, in tty.c. When networking 
is added to MINIX, an additional case, to detect the F5 code, is added to display 
Ethernet statistics. A large number of other scan codes are available that could be 
used to trigger other debugging messages or special events from the console. 

Scun,keyboard (line 13432) works at the hardware interface level, by reading 
and writing bytes from VO ports. The keyboard controller is informed that a char- 
acter has been read by the sequence on lines 13440 to 13442, which reads a byte, 
writes it again with the most significant bit set to I ,  and then rewrites it with the 
same bit rest to 0. This prevents the same data from being read on a subsequent 
read. There is no status checking in reading the keyboard, but there should be no 
problems in any case, since scan-keyboard is only called in response to an inter- 
rupt, with the exception of the call from kb-init to clear out any garbage. 
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I F1 I Display process table 
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Figure 3-47. The function keys detected by func-key(). 

The last function in keyb0ard.c is wrebmf (line 13450). If invoked as a result 
of a system panic, it provides an opportunity for the user to use the function keys 
to display debugging infomation. The Imp an lines 13478 to 13487 is another 
example of busy waiting. The keyboard is read repeatedly until an ESC is typed. 
Certainly no one can claim that a more efficient technique is needed after a crash, 
while awaiting a command to reboot. Within the loop,func,key is called to pro- 
vide a possibility of obtaining information that might help analyze the cause of a 
crash. We will not discuss further details of the return to the monitor. The details 
are very hardware-specific and do not have a lot to do with the operating system. 

3.9.6 Implementation of the Display Driver 

The IBM PC display may be configured as several virtual terminals, if suffi- 
cient memory is available. We will examine the console's device-dependent code 
in this section. We will also look at the debug dump routines that use low-level 
services of the keyboard and display. These provide support for limited interaction 
with the user at the console, even when other parts of the MINIX system are not 
functioning and can provide useful information even following a near-total system 
crash. 

Hardware-specific support for console output to the PC memory-mapped 
screen is in conso1e.c. The console structure is defined on lines 13677 to 13693. 
In a sense this structure is an extension of the tt), structure defined in f tyc .  At ini- 
tialization the tp->tty-priv field of a console's try structure is assigned a pointer 
to its own console structure. The first item in the console structure is a pointer 
back to the corresponding tty structure. The components of a console structure are 
what one would expect for a video display: variables to record the row and 
column of the cursor location, the memory addresses of the start and Iimit of 
memory used for the display, the memory address pointed to by the controller 
chip's base pointer, and the current address of the cursor. Other variables are used 
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for managing escape sequences. Since characters are initially received as 8-bit 
bytes and must be combined with attribute bytes and transferred as 16-bit words to 
video memory, a block to be transferred is built up in c-ramqueue, an array big 
enough to hold an entire 80-column row of 16-bit character-attribute pairs. Each 
virtual console needs one console structure, and the storage is allocated in the 
array cons-table (line 13696). As we did with the tty and kb-s structures, we 
will usually refer to the elements 6f a console structure using a pointer, for ex- 
ample, cons- >c-tfy. 

The function whose address is stored in each console's tp->ty-devwrite 
entry is cons- write (line 13729). It is called from only one place, handle-events 
in t0.c. Most of the other functions in  console.^ exist to support this function. 
When it is called for the first time after a client process makes a WRITE call, the 
data to be output are in the client's buffer, which can be found using the 
tp->tty-outproc and tp->out-vir fields in the tty structure. The tp->tty-outleft 
field tells how many characters are to be transferred, and the tp->tty-outcum 
field is initially zero, indicating none have yet been transferred. This is the usual 
situation upon entry to cons-write, because normally, once called, it transfers all 
the data requested in the original call. However, if the user wants to slow the 
process in order to review the data on the screen, he may enter a STOP (CTRL-S) 
character at the keyboard, resulting in raising of the tp- >tty-  in hibited flag. 
Cons-write returns immediately when this flag is raised, even though the WRITE 
has not been completed. In such a case handle-events will continue to call 
cons-write, and when tp->tty-inhibited is finally reset, by the user entering a 
START (CTRL-Q) character, cons-write continues with the interrupted transfer. 

Cons-write's sole argument is a pointer to the particular console's tty struc- 
ture, so the first thing that must be done is to initialize cons, the pointer to this 
console's console structure (line 13741). Then, because handle-events calls 
cons-write whenever it runs, the first action is a test to see if there really is work 
to be done. A quick return is made if not (line 13746). Following this the main 
loop on lines 13751 to 13778 is entered. This loop is very similar in structure to 
the main loop of in-transfer in t0.c. A local buffer that can hold 64 characters is 
filled by calling phys-copy to get the data from the client's buffer, the pointer to 
the source and the counts are updated, and then each character in the local buffer 
is transferred to the cons->c-ramqueue array, along with an attribute byte, for 
later transfer to the screen by flush. There is more than one way to do this trans- 
fer, as we saw in Fig. 3-39. Out-char can be called to do this for each character, 
but it is predictable that none of the special services of out-char will be needed if 
the character is a visible character, an escape sequence is not in progress, the 
screen width has not been exceeded, and cons->c-ramqueue is not full. If the 
full service of out-char is not needed, the character is placed directly into 
cons->c-ramqueue, along with the attribute byte (retrieved from cons->c-attr), 
and cons->c- rwords (the index into the queue), cons->c-column (which keeps 
track of the column on the screen), and tbtrf, the pointer into the buffer, are all 
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incrernented. This direct placement of characters into cons->c-ramqueue 
corresponds to the dashed line on the left side of Fig. 3-39. If needed, out-char is 
called (lines 13766 to 13777). It does all of the bookkeeping, and additionally 
calls flush, which does the final transfer to screen memory, when necessary. The 
transfer from the user buffer to the local buffer to the queue is repeated as long as 
tp->try-outleft indicates there are still characters to be transferred and the flag 
tp- >tty-inhibited has not been raised. When the transfer stops, whether because 
the WRITE operation is complete or because tp-xty-inhibited has been raised, 
flush is called again to transfer the last characters in the queue to screen memory. 
If  the operation is complete (tested by seeing if tp->try-outleft is zero), a reply 
message is sent by calling tty-reply (lines 1378.4 and 13785). 

In  addition to calls to cons- write from handle-events, characters to be dis- 
played are also sent to the console by echo and rawecho in the hardware- 
independent part of the terminal task. If the console is the current output device, 
calls via the tp->tty-echo pointer are directed to the next function, cons-echo 
(line 13794). Cons-echo does all of its work by calling out-char and thenflush. 
Input from the keyboard arrives character by character and the person doing the 
typing wants to see the echo with no perceptible delay, so putting characters into 
the output queue would be unsatisfactory. 

Now we arrive at out-char (line 13809). It does a test to see if an escape 
sequence is in progress, calling parse-escape and then returning immediately if 
so (lines 138 14 to 13816). Otherwise, a switch is entered to check for special 
cases: null, backspace, the bell character, and so on. The handling of most of these 
is easy to follow. The linefeed and the tab are the most complicated, since they 
involve complicated changes, to the position of the cursor on the screen and may 
require scrolling as well. The last test is for the ESC code. If it is found, the 
cons->c-ex-state flag is set (line 13871), and future calls to out-char are 
diverted to parse-escape until the sequence is complete. At the end, the default is 
taken for printable characters. If the screen width has been exceeded, the screen 
may need to be scrolled, and flush is called. Before a character is placed in the 
output queue a test is made to see that .he queue is not full, andflush is called if it 
is. Putting a character into the queue requires the same bookkeeping we saw ear- 
lier in cons- write. 

The next function is scroll-screen (line 13896). Scroll-screen handles both 
scrolling up, the normal situation that must be dealt with whenever the bottom line 
on the screen is full, and scrolling down, which occurs when cursor positioning 
commands attempt to move the cursor beyond the top line of the screen. For each 
direction of scroll there are three possible methods. These are required to support 
different kinds of video cards. 

We will look at the scrolling up case. To begin, chars is assigned the size of 
the screen minus one line. Softscrolling is accomplished by a single call to 
bid-vid-copy to move chars characters lower in memory, the size of the move 
being the number of characters in a line. Vid-vid-copy can wrap, that is, if asked 
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to move a block of memory that overflows the upper end of the block assigned to 
the video display, it fetches the ovefflow portion from the low end of the memory 
block and moves it to an address higher than the part that is moved lower, treating 
the entire block as a circular array. The simplicity of the call hides a fairly slow 
operation. Even though vid-vid-copy is an assembly language routine defined in 
klib386.s, this call requires the CPU to move 3840 bytes, which is a large job even 
in assembly language. 

The softscroll method is never the default; the operator is supposed to select it 
only if hardware scrolling does not work or is not desired for some reason. One 
such reason might be a desire to use the screendump command to save the screen 
memory in a file. When hardware scrolling is in effect, screendump is likely to 
give unexpected results, because the start of the screen memory is likely not to 
coincide with the start of the visible display. 

On line 13917 the wrap variable is tested as the first part of a compound test. 
Wrap is true for older displays that can support hardware scrolling, and if the test 
fails, simple hardware scrolling occurs on line 13921, where the origin pointer 
used by the video controller chip, cons->c-org, is updated to point to the first 
character to be displayed at the upper-left corner of the display. If wrap is FALSE, 
the compound test continues with a test of whether the block to be moved up in 
the scroll operati-s the bounds of the memory block designated for this 
console. If this is so, vid-vid-copy is called again to make a wrapped move of the 
block to the start of the console's allocated memory, and the origin pointer is 
updated. If there is no overlap, control passes to the simple hardware scrolling 
method always used by older video controllers. This consists of adjusting 
cons->c-org and then putting the new origin in the correct register of the con- 
troller chip. The call to do this is done later, as is a call to blank the bottom line on 
the screen. 

The code for scrolling down is very similar to that for scrolling up. Finally, 
mem-vid-copy is called to blmk out the line at the bottom (or top) addressed by 
new-line. Then set-6845 is called to write the new origin from cons->c-org 
into the appropriate registers, and flush makes sure all changes become visible on 
the screen. 

We have mentioned ftush (line 1395 1 ) several times. It transfers the charac- 
ters in the queue to the video memory using mew-vid-copy, updates some vari- 
ables, and then makes sure the row and column numbers are reasonable, adjusting 
them if, for instance, an escape sequence has tried to move the cursor to a nega- 
tive column position. Finally a calculation of where the cursor ought to be is made 
and is compared with cons->c-cur. If they do not agree, and if the video rnemo- 
ry that is currently being handled belongs to the current virtual console, a call to 
set-6845 is made to set the correct value in the controller's cursor register. 

Figure 3-48 shows how escape sequence handling can be represented as a fin- 
ite state machine. This is implemented by parse-escape (line 13986) which is 
called at the start of out-char if cons->c-esc-state is nonzero. An ESC itself is 
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Figure 3-48. Finite state machine for processing escape sequences. 

detected by out-char and makes cons->c-esc-state equal to 1. When the next 
character is received, parse-escape prepares for further processing by putting a 
'\O' in cons-x-ex-intro, a pointer to the start of the array of parameters, 
cons->c-esc-parmv[O] into cons->c-esc-parmp, and zeroes into the pararne- 
ter array itself. Then the first character following the ESC is examined-valid 
values are either "[" or "M". In the first case the "[" is copied to 
cons->c,esc-intro and the state is advanced to 2. In the second case, 
do-escape is called to carry out the action, and the escape state is reset to zero. If 
the first character after the ESC is not one of the valid ones, it is ignored and 
succeeding characters are once again displayed normally. 

When an ESC [ sequence has been seen, the next character entered is proc- 
essed by the escape state 2 code. There are three possibilities at this point. If the 
character is a numeric character, its value is extracted and added to 10 times the 
existing value in the position currently pointed to by cons->c-esc-parmp, ini- 
tially cons->c-esc-parmvC0) (which was initialized to zero). The escape state 
does not change. This makes it possible to enter a series of decimal digits and 
accumulate a large numeric parameter, although the maximum value currently 
recognized by MINIX is 80, used by the sequence that moves the cursor to an arbi- 
trary position (lines 14027 to 14029). If the character is a semicolon, the pointer 
to the parameter string is advanced, so succeeding numeric values can be accumu- 
lated in the second parameter (lines 1403 1 to 14033). If MAX-ESC-PARMS 
were to be changed to allocate a larger array for the parameters, this code would 
not have to be altered to accumulate additional numeric values after entry of addi- 
tional parameters. Finally, if the character is neither a numeric digit nor a semi- 
colon, do-escape is called. 

Do-escape (line 14045) is one of the longer functions in the MINIX system 
source code, even though MINIX'S complement of recognized escape sequences is 
relatively modest. For all its length, however, the code should be easy to follow. 
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After an initial call to flush to make sure the video display is fully updated, there 
is a simple if choice, depending upon whether the character immediately following 
the ESC character was a special control sequence introducer or not. If not, there 
is only one valid action, moving the cursor up one line if the sequence was ESC 
M. Note that the test for the "M" is done within a switch with a default action, as 
a validity check and in anticipation of addition of other sequences that do not use 
the ESC [ format. The action is typical of many escape sequences: the 
cons->c-row variable is inspected to determine if scrolling is required. If the 
cursor is already on row 0, a SCROU-DOWN call is made to scroll-screen; oth- 
envise the cursor is moved up one line. The latter is accomplished just by decre- 
rnenting cons->c-row and then calling flush. If a control sequence introducer is 
found, the code fdowing the else on line 14069 is taken. A test is made for "I", 
the only control sequence introducer currently recognized by MINIX. If the 
sequence is valid, the first parameter found in &e escape sequence, or zero if no 
numeric parameter was entered, is assigned to value (line 14072). If the sequence 
is invalid. nothing happens except that the large switch that ensues (lines 14073 to 
14272) is skipped and the escape state is reset to zero before returning from 
do-escape. In the more interesting case that the sequence is valid, the switch is 
entered. We will not discuss all the cases; we will just note several that are 
representative of the types of actions governed by escape sequences, 

The first five sequences are generated, with no numeric arguments, by the 
four "arrow" keys and the Home key on the IBM PC keyboard. The first two, 
ESC [A and ESC [B, are similar to ESC M, except they can accept a numeric pa- 
rameter and move up and down by more than one line, a d  they do not scroll the 
screen if the parameter specifies a move that exceeds the bounds of the screen. In 
such cases, flush catches requests to move out of bounds and limie the move to 
the last row or the,first row, as apprapriate. The next two sequences-, ESC [C and 
ESC [D, which move the cursor right and left, are similarly 1irni);ed by flush. 
When generated by the "arrow" keys there is no numeric argument, and thus the 
default movement of one line or column occurs. 

The next sequence, ESC [H, can take two numeric parameters, for instance, 
ESC [20;60H. The parameters specify an absolute position rather than one relative 
to the current position and are converted from 1-based numbers to 0-based 
numbers for proper interpretation. The Home key generates the default (no pa- 
rameters) sequence which moves the cursor to position (1, l). 

The next two sequences, ESC [sJ and ESC [sK, clear a part of either the entire 
screen or the current line, depending upon the parameter that is entered. In each 
case a count of characters is calculated. For instance, for ESC [ l J ,  count gets the 
number of characters from the start of the screen to the cursor position, and the 
count and a position parameter, dsr, which may be the start of the screen, 
cons->c-org, or the current cursor position, cons->c-cur, are used as parame- 
ters to a call to mem_vid-copy. This procedure is called with a parameter that 
causes it to fill the specified region with the current background color. 
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The next four sequences insert and delete lines and spaces at the cursor posi- 
tion, and their actions do not require detailed explanation. The last case, ESC [nm 
(note the n represents a numeric parameter, but the "m" is a literal character) has 
its effect upon cons->c-attt, the attribute byte that is interleaved between the 
character codes when they are written to video memory. 

The next function, set-6845 (line 14280), is used whenever i t  is necessary to 
update the video controller chip. The 6845 has internal 16-bit registers that are 
programmed 8 bits at a time, and writing a single register requires four I/0 port 
write operations. Lock and unlock calls are used to disable interrupts, which can 
cause problems if allowed to disrupt the sequence. Some of the registers of the 
6845 video co~troller chip are shown in Fig. 3-49 

Figure 3-49. Some of the 6845's registers. 

Registers 

10-11 

12 - 13 
14- 15 

The beep function (line 14300) is called when a CTRL-G character must be 
output. It takes advantage of the built-in support provided by the PC for making 
sounds by sending a square wave to the speaker. The sound is initiated by more of 
the kind of magic manipulation of I/O ports that only assembly language pro- 
grammers can love, again with some concern that a critical part of the process 
should be protected from interrupts. The more interesting part of the code is the 
use of the clock task's capability to set an alarm, which can be used to initiate a 
function. The next routine, stop-beep (line 14329), is the one whose address is 
put into the message to the clock task. It stops the beep after the designated time 
has elapsed and also resets the beeping flag which is used to prevent superfluous 
calls to the beep routine from having any effect. 

Scr-init (line 14343) is called by tty-init NR-CONS times. Each time its 
argument is a pointer to a t ty  structure, one element of the tty-table. On lines 
14354 and 14355 line, to be used as the index into the cons-table array, is calcu- 
lated, tested for validity, and, if valid, used to initialize cons, the pointer to the 
current console table entry. At this point the cons->c-tty field can be initialized 
with the pointer to the main tty structure for the device, and, in turn, tp->tty,priv 
can be pointed to this device's console,t structure. Next, kb-init is called to ini- 
tialize the keyboard, and then the pointers to device specific routines are set up, 
tp- >tty,devwrite pointing to cons-write and tp->tty-echo pointing to 
cons-echo. The V 0  address of the base register of the CRT controller is fetched 
and the address and size of the video memory are determined on lines 14368 to 
14378, and the wrap flag (used to determine how to scroll) is set according to the 

Function ' 

Cursor size 

Start address for drawing screen 

Cursor position 
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class of video cantrolIer in use. On lines 14382 to 14384 the segment descriptor 
for the video memory is initialized in the global descriptor table. 

Next comes the initialization of virtual consoles. Each time scr-init is called, 
the argument is a different value of tp, and thus a different line and cons are used 
on lines 14393 to 14396 to provide each virtual console with its own share of the 
available video memory. Each screen is then blanked, ready to start, and finally 
console 0 is selected to be the first active one. 

The remaining routines in conso1e.c are short and simple and we will review 
them quickly. Putk (line 14408) has been mentioned earlier. It prints a character 
on behalf of any code linked into the kernel image that needs the service, without 
going through the FS, Toggle-scroll (line 14429) does what its name says, it tog- 
gles the flag that determines whether hardware or software scrolling is used. It 
also displays a message at the current cursor position to identify the selected 
mode. Cons-stop (line 14442) reinitializes the console to the state that the boot 
monitor expects, prior to a shutdown or reboot. Cons-orgO (line 14456) is used 
only when a change of scrolling mode is forced by the F3 key, or when preparing 
to shut down. Select-console (line 14482) selects a virtual console. It is called 
with the new index and calls ser-6845 twice to get the video controller to display 
the proper part of the video memory. 

The last two routines are highly hardware-specific. Con_loa#ont (line 
14497) loads a font into a graphics adapter, in  support of the IoCTL TiOCSFON 
operation. It calls ga-program (line 14540) to do a series of magical writes to an 
I/0 port that cause the video adapter's font memory, which is normally not ad- 
dressable by the CPU, to be visible, Then phys-copy is called to copy the font 
data to this area of memory, and another magic sequence is invoked to return the 
graphics adapter to its normal mode of operation. 

Debugging Dumps 

The final group of procedures we will discuss in the terminal task were origi- 
nally intended only for temporary use when debugging MINK. They can be re- 
moved when this assistance is no longer needed, but many users find them useful 
and leave them in piace. They are particularly helpful when modifying MINIX. 

As we have seen, func-key is called at the start of kb-read to detect scan 
codes used for control and debugging. The dump routines called when the F1 and 
F2 keys are detected are in dmp.c. The first, p-dmp (line 14613) displays basic 
process information for all processes, including some information on memory use, 
when the F1 key is pressed. The second, map-dmp (line 14660), provides more 
detailed information on memory use in response to F2. Proc-name (line 14690) 
supports p-dmp by looking up process names. 

Since this code is completely contained within the kernel binary itself and 
does not run as a user process or task, it frequently continues to function correctly, 
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even after a major system crash. Of course, these routines are accessible only 
from the con'sole, The information provided by the dump routines cannot be 
redirected to a file or to any other device, so hardcopy or use over a network con- 
nection are not options. 

We suggest that the first step in trying to add any improvement to MINIX 
might very well be to extend the dumping routines to provide more information on 
the aspect of the system you wish to improve. 

3.10 THE SYSTEM TASK IN MINIX 

One consequence of making the file system and memory manager server 
processes outside the kernel is that occasionally they have some piece of informa- 
tion that the kernel needs. This structure, however, forbids them from just writing 
it into a kernel table. For example, the FORK system call is handled by the memory 
manager. When a new process is created, the kernel must know about it, in order 
to schedule it. How can the memory manager tell the kernel? 

The solution to this problem is to have a kernel task that communicates with 
the file system and memory manager via the standard message mechanism and 
which also has access to all the kernel tables. This task, called the system task, is 
in layer 2 in Fig. 2-26, and functions like the other tasks we have studied in this 
chapter, The only difference is that it does not control any VO device. But, like 
VO tasks, it implements an interface, in this case not to the external world, but to 
the most internal part of the system. It has the same privileges as the VO tasks 
and is compiled with them into the kernel image, and it makes more sense to study 
it here than in any other chapter. 

The system task accepts 19 kinds of messages, shown in Fig. 3-50. The main 
program of the system task, sys-task (line 14837), is structured like other tasks. It 
gets a message, dispatches to the appropriate service procedure, and then sends a 
reply. We will now look at each of these messages and its service procedure. 

The SYS-FORK message is used by the memory manager to tell the kernel 
that a new process has come into existence. The kernel needs to know this in 
order to schedule it. The message contains the slot numbers within the process 
table corresponding to the parent and child. The memory manager and file system 
also have process tables, with entry k referring to the same process in all three. In 
this manner, the memory manager can specify just the parent and child slot num- 
bers, and the kernel will know which processes are meant. 

The procedure do-fork (line 14877) first makes a check (line 14886) to see if 
the memory manager is feeding the kernel garbage. The test uses a macro, isok- 
susem, defined in proc.h, to test that the process table entries of the parent and 
child are valid. Similar tests are made by most of the service procedures in sys- 
tem.c. This is pure paranoia, but a little internal consistency checking does no 



SEC. 3.10 THE SYSTEM TASK IN MINIX 

Meaning 
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SYS-NEWMAP 
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SYS-TIMES 
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SYS-SIGRETURN 
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SYS-ENDSIG 

Install memory map for a new process 

Figure 3-50. The message types accepted by the system task. 
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harm. Then do-fork copies the parent's process table entry to the child's slot. 
Some things need adjustment here. The child is freed from any pending signals for 
the parent, and the child does not inherit the parent's trace status. And, of course, 
all the child's accounting information is set to zero. 

After a FORK, the memory manager allocates memory for the child. The ker- 
nel must know where the child is located in memory so it can set up the segment 
registers properly when running the child. The SYS-NEWMAP message allows 
the memory manager to give the kernel any process' memory map. This message 
can also be used after a BRK system call changes the map. 

The message is handled by do-newmap (Iine 14921)' which must first copy 
the new map from the memory manager's address space. The map is not con- 
tained in the message itself because it is too big. In theory, the memory manager 
could tell the kernel that the map is at address m, where m is an illegal address. 
The memory manager is not supposed to do this, but the kernel checks anyway. 
The map is copied directly into the p-map field of she process table entry for the 
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process getting the new map. The call to doc-segments extracts information 
from the map and loads it into the p-reg fields that hold the segment registers. 
This is not complicated, but the details are processor dependent and are segre- 
gated in a separate function for this reason. 

The SYS-NEWMAP message is much used in the normal operation of a MINIX 
system. A simiIar message, SYS-GETMAP, is used only when the file system ini- 
tially starts up. This message requests a transfer of the process map information in 
the opposite direction, from the kernel to the memory manager. It is carried out by 
do-getmap (line 14957). The code of the two functions is similar, differing 
mainly in the swapping of the source and destination arguments of the call to 
phys-copy used by each function. 

When a process does an EXEC system call, the memory manager sets up a new 
stack for it containing the arguments and environment. It passes the resulting 
stack pointer to the kernel using SYS-EXEC, which is-handled by do-exec (line 
14990). After the usual check for a valid process, there is a test of the PROC2 
field in the message. This field is used here as a flag to indicate whether the proc- 
ess is being traced and has nothing to do with identifying a process. If tracing is in 
force, cause-sig is called to send a SIGTRAP signal to the process. This does not 
have the usual consequences of this signal, which would normally terminate a 
process and cause a core dump. In the memory manager a11 signals to a traced 
process except for SIGKILL are intercepted and cause the signaled process to stop 
so a debugging program can then control its further execution. 

The EXEC call causes a slight anomaly. The process invoking the calI sends a 
message to the memory manager and blocks. With other system calls, the result- 
ing reply unblocks it. With EXEC there is no reply, because the newly loaded core 
image is not expecting a reply. Therefore, do-exec unblocks the process itself on 
line 15009. The next line makes the new image ready to run, using the 
lock-ready function that protects against a possible race condition. Finally, the 
command string is saved so the process can be identified when the user presses 
the Ff function key to display the status of all processes. ' 

Processes can exit in MINIX either by doing an EXIT system call, which sends a 
message to the memory manager, or by being killed by a signal. In both cases, the 
memory manager tells the kernel by the SYS-XIT message. Tke work is done by 
do-nit (line 15027), which is more complicated than you might expect. Taking 
care 'of the accounting information is straightforward. The alarm timer, if any, is 
killed by storing a zero on top of it. It is for this reason that the clock task always 
checks when a timer has run out to see if anybody is still interested. The tricky 
part of do-xit is that the process might have been queued trying to send or receive 
at the time it was killed. The code on lines 15056 to 15076 checks for this possi- 
bility. If the exiting process is found on any other process' message queue, it is 
carefully removed. 

In contrast to the previous message, which is slightly complicated, 
SYS-GETSP is completely trivial. It is used by the memory manager to find out 
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the value of the current stack pointer for some process. This value is needed for 
the BRK and SBRK system cdls to see if the data segment and stack segment have 
collided. The code is in do-getsp (line 15089). 

Now we come to one of the few message types used exclusively by the file 
system, SYS, TIMES. It is needed to implement the TIMES system call, which re- 
turns the accounting times to the caller. All do-times (line 15106\ 'ws  is put the 
requested times into the reply message. Calls to lock and unlock are used to pro- 
tect against a possible race while accessing the time counters. 

It can happen that either the memory manager or the fiIe system discovers an 
error that makes it impossible to continue operation. For example, if upon first 
starting up the file system sees that the super-block on the root device has been 
fatally corrupted, it panics and sends a SYS-ABORT message to the kernel. It is 
also possible for tbe super-user to force a return to the boot monitor and/or a 
reboot, using the reboot command, which in turn calls the REBOOT ,+ern call. In 
any of these cases, the system task executes do-abort (line 15 131), which copies 
instructions to the monitor, if necessary, and then calls wreboot to complete the 
process. 

Most of the work of signal handling is done by the memory manager, which 
checks to see if the process to be signaled is enabled to catch or ignore the signal, 
if the sender of the signal is entitled to do so, and so on. However, the memory 
manager cannot actually cause the signal, which requires plashing some informa- 
tion onto tbe stack of the signaled process. 

Signal handling previous to POSIX was problematic, because catching a signal 
restored the default response to signals. If continued special handling of subse- 
quent signals were required, the programmer could not guarantee reliability. Sig- 
nals are asynchronous, and a second signal could very well arrive before the han- 
ding were reenabled. POSIX-style signal handling solves this problem, but the 
price is a more compIicated mechanism. Old-style signal handling could be imple- 
mented by the operating system pushing some information onto the signaled proc- 
ess' stack, similar to the information pushed by an intempt. The programmer 
would then write a handler that ended with a return instruction, popping the infor- 
mation needed to resume execution.  SIX saves more information when a signal 
is received than can be conveniently handled this way. There is additional work to 
do afterward, before the signaled process can resume what it was doing. The 
memory manager thus has to send two messages to the system task to process a 
signal. The payoff for this effort is more reliable handling of signals. 

When a signal is to be sent to a process, the SYS-SENDSIG message is sent to 
the system task. It is handled by do-sendstg (line 15257). The information 
needed to handle PoSlx-style signals is in a sigcmrext structure, which contains 
the processor register contents, and a sigfrarne structure, which contains informa- 
tion about how signals are to be handled by the process. Both of these structures 
need some initialization, but the basic work of do-sendsig is just to put the re- 
quired information on the signaled process' stack, and adjust the signaled process' 
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program counter and stack pointer so the signal handling code will be executed 
the next time the scheduler allows the process to execute. 

When a POSIX-style signal handler completes its work, it does not pop the ad- 
dress where execution of the intermpted process resumes, as is the case with old- 
style signals. The programmer writing the handler writes a ream instruction (or 
the high-led language equivalent), but the manipulation of the stack by the 
SENDSIG call causes the return to execute a SIGRETURN system call. The memory 
manager then sends the system task a SYS-SIGRETURN message. This is handled 
by do 3greturn ( h e  15221), which copies the sigcontext structure back into the 
kernel's space and then restores the signaled process' registers. The interrupted 
process will resume execution at the point where it was intermpted the next time 
the scheduler allows it to run, retaining any special signal handling that was previ- 
ously set up. 

The SIGRETURN system call, unlike most of the others discussed in this sec- 
tion, is not required by FOSIX. It is a MINIX invention, a convenient way to initiate 
the processing needed when a signal handler is complete. Programmers should 
not use this call; it will not be recognized by other operating systems, and in any 
case there is no need to refer to it explicitly. 

Some signals come from within the kernel image, or are handled by the kernel 
before they go-to the memory manager. These include signals originating from 
tasks, such as alarms from the clock task, or signal-causing key presses detected 
by the terminal task, as well as signals caused by exceptions (such as division by 
zero or illegal instructions) detected by the CPU. Signals originating from the file 
system are also handled first by the kernel. The SYS-KILL message is used by the 
file system to request that such a signal be generated. The name is perhaps a bit 
misleading. This has nothing to do with handling of the KILL system call, used by 
ordinary processes to send signals. This message is handled by do-kill (line 
15276), which makes the usual check for a valid origin of the message, and then 
calls cause-sig to actually pass the signal on to the process. Signals originating in 
the kernel are also passed on by a call to this function, which initiates signals by 
sending a KSIG message to the memory manager. 

Whenever the memory manager has finished with one of these KSIG-type sig- 
nals, it sends a SYS--ENDSIG message back to the system task. This message is 
handled by do-endsig (line 15294), which decrements the count of pending sig- 
nals, and, if it  reaches zero, resets the SlG-PENDING bit for the signaled proc- 
ess. If there are no other flags set indicating reasons the process should not be run- 
nable, lock-ready is then called to allow the process to run again. 

The SYS-COPY message is the most heavily used one. It is needed to allow 
the file system and memory manager to copy information to and from user proc- 
esses. 

When a user does a READ call, the file system checks its cache to see if it has 
the block needed. If not, it sends a message to the appropriate disk task to load it 
into the cache. Then the file system sends a message to the system task telling it 
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to copy the block to the user process. In the worst case, seven messages are 
needed to read a block; in the best case, four messages are needed. Both cases are 
shown in Fig. 3-5 1. These messages are a significant source of overhead in MINIX 
and are the price paid for the highly modular design. 

Interrupt a 
Figure 3-51. (a) Worst case for reading a block requires seven messages. 
(b) Best case for reading a blqck requires four messages. 

As an aside, on the 8088, which had no protection, it wouId have been easy 
enough to cheat and let the file system copy the data to the caller's address space, 
but this would have violated the design principle. Anyone with access to such an 
antique machine who is interested in improving the performance of MINIX should 
look carefully at this mechanism to see how much improper behavior one can 
tolerate for how much gain in performance. Of course, this means of improvement 
is npt available on Pentiurn-class machines with protection mechanisms. 

Handling a SYS-COPY request is straightforward. It is done by do-copy 
(line 15316) and consists of little more than extracting the message parameters 
and calling phys-copy. 

One way to deal with some of the inefficiency of the message passing 
mechanism is to pack multiple requests into a message. The SYS-VCOPY mes- 
sage does this. The content of this message is a pointer to a vector specifying mul- 
tiple blocks to be copied between memory locations. The function do-vcopy (line 

- 15364) executes a loop, extracting source and destination addresses and block 
lengths and calling phys-copy repeatedly until all the copies are complete. This is 
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similar to the capability of disk devices to handle multiple transfers based on a 
single request. 

There are several more message types received by the system task, most of 
which are fairly simple. Two of these 'are normally used only during system 
startup. The file system sends a SYS-GBOOT message to request the boot param- 
eters. This is a structure, bparam-s, declared in include/minix/boot.h, which 
allows various aspects of system configuration to be specified by the boot monitor 
program before M N X  is started. The do-gboot (line 15403) function carries out 
this operation, which is just a copy from one part of memory to another. Also at 
startup time, the memory manager sends the system task a series of SYS-MEM 
messages to request the base and size of the available chunks of memory. 
Do-mem (line 15424) handles this request. 

The SYS, UMAP message is used by a nonkernel process to request calcula- 
tion of the physical memory address for a given virtual address. D o - u ~ p  ( h e  
15445) carries this out by calling umap, which is the function called from within 
the kernel to handle this conversion. 

The last message type we wilt discuss is SYS-TRACE, which supports the 
PTRACE system call, used for debugging. Debugging is not a fundamental operat- 
ing system function, but operating system support can make it easier. With help 
from the operating system, a debugger can examine and modify the memory used 
by a process under test, as well as the contents of the processor registers that are 
stored in the process table whenever the debugged program is not running. 

NormaHy, a process runs until it blocks to wait for l/0 or uses up a time quan- 
tum. Most CPU designs also provide means by which a process can be limited to 
executing just a single instruction, or can be made to execute only until a particu- 
lar instruction is reached, by setting a breakpoint. Taking advantage of such 
facilities makes possible detailed analysis of a program, 

There are eleven operations that can be carried out using PTRACE. A few are 
carried out totally by the memory manager, but for most of them the memory 
manager sends a SYS-TRACE message to the system task, which then calls 
do-trace (line 15467). This function implements a switch on the trace operation 
code. The operations are generally simple. A P-STOP bit in the process table is 
used by MINI? to recognize that debugging is in progress and is set by the com- 
mand to stop the process (case T-STOP) or reset to restart it (case T-RESUME). 
Debugging depends upon hardware support, and on Intel processors is controlled 
by a bit in the CPU's flag register. When the bit is set, the processor executes just 
one instruction, then generates a S~GTRAP exception. As mentioned earlier, the 
memory manager stops a program being traced when a signal is sent to it. This 
TRACEBIT is manipulated by the T-STOP and T-STEP commands. Breakpoints 
can be set in two ways: either by using the F-SETINS command to replace an in- 
struction- with a special code that generates a SIGTRAP, or by using the 
T-SETUSER command to modify special breakpoint registers. On any kind of 
system LO which MINIX may be ported, it will probably be possible to implement a 
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debugger using-similar techniques, but porting these functions will require study 
of the particular hardware. 

Most of the commands carried out by dotrace either return or modify values 
in the traced process' text or data space, or in its process table entry, and the code 
is straightforward. Altering certain registers and certain bits of the CPU flags is 
too dangerous to allow, so there are many checks in the code that handle the 
T-SETUSER command to prevent such operations. 

At the end of system.c are several utility procedures used in various places 
throughout the kernel. When a task needs to cause a signal (e.g., the clock task 
needs to cause a SIGALRM signal, or the terminal task needs to cause a SIGINT 
signal), it calls cause-sig (line 15586). This procedure sets a bit in the p-pending 
field of the. process table entry for the process to be signaled and then checks to 
see if the memory manager is currently waiting for a message from ANY, that is, if 
it is idle and waiting for the next request to process. If it is idle, inform is called 
to tell the memory manager to handle the signal. 

Inform ( b e  15627) is called only after a check that the memory manager is 
not busy, as &scribed above. In addition to the call from cause-sig. it is called 
from mini-rec (in procc), whenever the memory manager blocks and there are 
kernel signals pending. Inform builds a message of type KSIG and sends it to the 
memory manager. The task or process calling cause-sig continues running as 
soon as the message has been copied into the memory manager's receive buffer. It 
does not wait for the memory manager to run, as would be the case if the normal 
send mechanism, which causes the sender to block, were to be used. Before it re- 
turns, however, inform calls luck ,pick -proc, which schedules the memory man- 
ager to run. Since tasks have a higher priority than servers, the memory manager 
will not run until all tasks are satisfied. When the signaling task finishes, the 
scheduler will be entered. If the memory manager is the highest priority runnable 
process, it will mn and process the signal. 

The procedure umup (line 15658) is a generally useful procedure that maps a 
virtual address onto a physical address. As we have noted, it is called by 
d ~ - u m a p ,  which services the SYS-WMAP message. Its parameters are a pointer 
to the process table entry for the process or task whose virtual address space is to 
be mapped, a flag specifying the text, data, or stack segment, the virtual address 
itself, and a byte count. The byte count is useful because umap checks to make 
sure that the entire buffer starting at the virtual address is within the process' 
address space. To do this, it must know the buffer's size. The byte count is not 
used for the mapping itself, just' this check. All the tasks that copy data to or from 
user space compute the physical address of the buffer using u m p .  For device dri- 
vers it is convenient to be able to get the services of urnup starting with the proc- 
ess number instead of a pointer to a process tabIe entry. Numap (line 15697) does 
this. It caHs prm-addr to convert its fist argument and then calls umap. 

The last function defined in system,c is alloc-segments (line 15715). !t is 
called by do-newmap. It is also called by the main routine of the kernel during 
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initialization. This definition is very hardware dependent. It takes the segment 
assignments that are recorded in a process table entry and manipulates the regis- 
ters and descriptors the Pentium processor uses to support protected segments at 
the hardware level. 

SUMMARY 

Input/output is an often neglected, but important, topic. A substantial fraction 
of any operating system is concerned with UO. We started out by looking at I/O 
hardware, and the relation of UO devices to VO controllers, which are what the 
software has to deal with. Then we looked at the four levels of V 0  software: the 
interrupt routines, the device drivers, the device-independent I D  software, and the 
110 libraries and spoolers that run in user space. 

Next we studied the problem of deadlock and how it can be tackled. 
Deadlock occurs when a group of processes each have been granted exclusive ac- 
cess to some resources, and each one wants yet another resource that belongs to 
another process in the group. All of them are blocked and none will ever run 
again. Deadlock can be prevented by structuring the system so it can never occur, 
for example, by allowing a process to hold only one resource at any instant. It can 
also be avoided by examining each resource request to see if it leads to a situation 
in which deadlock is possible (an unsafe state) and denying or delaying those that 
lead to trouble. 

Device drivers in MINIX are implemented as processes embedded in the ker- 
nel. We have looked at the RAM disk driver, hard disk driver, clock driver, and 
terminal driver. The synchronous alarm task and the system task are not device 
drivers but are structurally very similar to one. Each of these tasks has a main 
loop that gets requests and processes them, eventually sending back replies to re- 
port on what happened. All the tasks are located in the same address space. The 
RAM disk, hard disk, and floppy disk driver tasks all use a single copy of the 
same main loop and also share common functions. Nevertheless, each one is an 
independent process. Several different terminals, using the system console, the 
serial lines, and network connections are all supported by a single terminal task. 

Device drivers have varying relationships to the interrupt system. Devices 
which can complete their work rapidly, such as the RAM disk and the memory- 
mapped display, do not use interrupts at all. The hard disk driver task does most of 
its work in the task code itself, and the interrupt handlers just return status infor- 
mation. The clock intempt handler does a number of bookkeeping operations it- 
self and only sends a message to the clock task when there is some work that can- 
not be taken care of by the handler. The keyboard interrupt handler buffers input 
and never sends a message to its task. Instead it changes a variable inspected by 
the clock interrupt handler; the latter sends a message to the terminal task. 
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PROBLEMS 

1. Imagine that advances in chip technology make it possible to put an entire controller, 
including all the bus access logic, on an inexpensive chip. How will that affect the 
model of Fig. 3- 1 ? 

2. If a disk controller writes the bytes it receives from the disk to memory as fast as it 
receives.thern, with no internal buffering, is interleaving conceivably useful? Discuss. 

3. Based on the rotation speed and geometry of the disks, what are the bit rates for rrans- 
fen between the disk itself and the controller's buffer for a floppy disk and a hard 
disk? How does this compare with other forms of VO (serial lines and networks)? 

4. A disk is double interleaved, as in Fig. 3-4(c). It has eight sectors of 512 bytes per 
track, and a roration rate of 300 rpm. How long does it take to read all the sectors of a 
track in order, assuming the arm is already correctly positioned, and 1/2 rotation is 
needed to get sector 0 under the head? What is the data rate? Now repeat the problem 
for a noninterleaved disk with the same characteristics. How much does the data rate 
degrade due to interleaving? 

5. The DM-1 1 terminal multiplexer, which was used on the PDP-I 1 many, many years 
ago, sampled each (half-duplex) terminal line at seven times the baud rate to see if the 
incoming bit was a 0 or a 1. Sampling the line took 5.7 microw. How many 1200- 
baud lines could the DM-I 1 support? 

6. A local area network is used as follaws. The user issues a system call to write data 
packets to the network. The operating system then copies the data to a kernel buffer. 
Then it copies the data to the network controller board. When all the bytes are safely 
inside the controller, they are sent over the network at a rate of 10 megabitsfsec. The 
receiving network controller stores each bit a microsecond after it is sent. When the 
last bit arrives, the destination CPU is interrupted, and the kernel copies the newly 
arrived packet to a kernel buffer to inspect it. Once it has figured out which user the 
packet is for, the kernel copies the data to the user space. If we assume that each in- 
tempt and its associated processing takes 1 msec, that packets are 1024 bytes (ignore 
the headers), and that copying a byte takes I microsec, what is the maximum rate at 
which one process can pump data to another? Assume that the sender is blocked until 
the work is finished at the receiving side and an acknowledgement comes back. For 
simplicity, assume that the time to get the acknowledgement back is so small it can be 
ignored. 

7. What is "device independence?" 

8, In which of the four VO software layers is each of the foHowing done. 

(a) Computing the track, sector, and head for a disk read. 
(b) Maintaining a cache of recently used blocks. 
(c) Writing commands to the device registers. 
(d) Checking to see if the user is permitted to use the device. 
[e) Converting binary integers to ASCII for printing. 

9. Why are output files for the printer normally spooled on disk before being printed? 
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10. Consider Fig. 3-8. Suppose that in step (0) C requested S instead of requesting R. 
Would this lead to deadlock? Suppose that it requested both S and R? 

11. Take a careful look at Fig. 3-1 1 (b). If Suzanne asks for one more unit, does this lead 
to a safe state or an unsafe one? What if the request came from Marvin instead of 
Suzanne? 

12. All the trajectories in Fig. 3-12 are horizontal or vertical. Can you envision any cir- 
cumstances in which diagonal trajectories were also possible'! 

13. Suppose that process A in Fig. 3-1 3 requests the last tape drive. Does this action lead 
to a deadlock? 

14. -4 computer has six tape drives, with n processes competing for them. Each process 
may need two drives. For which values of n is the system deadlock free? 

15. Can a system be in a state that is neither deadlocked nor safe? If so, give an example. 
If not, prove that a11 states are either deadlocked or safe. 

16. A distributed system using mailboxes has two IPC primitives, SEND and RECEIVE. 
The latter primitive specifies a process to receive from, and blocks if no message from 
that process is available, even though messages may be waiting from other processes. 
There are no  shared resources, but processes need to communicate frequently about 
other matters. Is deadlock possible? Discuss. 

17. In an electronic funds transfer system, there are hundreds of identical processes that 
work as follows. Each process reads an input line specifying an amount of money, the 
account to be credited, and the accaunt to be debited. Then it locks both accounts and 
transfers the money, releasing the locks when done. With many processes running in 
parallel, there is a very real danger that having locked account x it will be unable to 
lock y because y has been locked by a process now waiting.for x. Devise a scheme 
that avoids deadlocks. Do not release an account record until you have completed the 
transactions. (In other words, solutions that lock one account and then release it im- 
mediately if the other is locked are not allowed.) 

IS. The banker's algorithm is being run in a system with m resource classes and n proc- 
esses. In the limit of large m and n, the number of operations that must be performed 
to check a state for safety is proportional to man b .  What are the values of a and b? 

19. Cinderella and the Prince are getting divorced. To divide their property, they have 
agreed on the following algorithm. Every morning, each one may send a letter to the 
other's lawyer requesting one item of property. Since it takes a day for letters to be 
delivered, they have agreed that if both discover that they have requested the same 
item on the same day, the next day they will send a letter canceling the request. 
Among their property is their dog, Woofer, Woofer's doghouse, their canary, Tweeter, 
and Tweeter's cage. The animals love their houses, so it has been agreed that any 
division of property separating an animal from its house is invalid, requiring the whole 
division to start over from scratch. Both Cinderella and the Prince desperately want 
Woofer. So they can go on (separate) vacations, each spouse has programmed a per- 
sonal computer to handle the negotiation. When they come back from vacation, the 
computers are still negotiating. Why? Is deadlock possible? Is starvation (waiting for- 
ever) possible? Discuss. 
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2Q. The message format of Fig. 3-15 is used for sending request messages to drivers far 
block devices. Which fields, if any, could be omitted for messages to character de- 
vices? 

21. Disk requests come in to the disk driver for cylinders 10, 22, 20, 2, 40, 6, and 38, in 
that order. A seek takes 6 msec per cylinder moved. How much seek time is needed 
for , 

(a) First-come, first served. 
(b) Closest cylinder next. 
(c) Elevator algorithm (initially moving upward). 

- 
In all cases, the alm is initially at cylinder 20. 

A personal computer salesman visiting a university in South-West Amsterdam 
remarked during his sales pitch that his company had devoted substantial effort to 
making their version of UNiX very fast. As an example, he noted that their disk driver 
used the elevator algorithm and also queued multiple requests within a cylinder in sec- 
tor order. A studcnt, Harry Hacker, was impressed and bought one. He took it home 
and wrote a program to randomly read 10,000 blocks spread a m s s  the disk. To his 
amazement, the performance that he measured was identical to what would be 
expected from firstcome, first-served. Was the salesman lying? 

23. A UNIX process has two parts-the user part and the kernel part. Is the kernel part 
like a subroutine olr a coroutine? 

24. The clock intempt handler on a certain computer requires 2 msec (including p m e s s  
switching overhead) per clock tick. The clock runs at 60 Hz. What fraction of the 
CPU is devoted to the clock? 

25. Two examples of watchdog timers were given in the text: timing the startup of the 
floppy disk motor and allowing for carriage return on hardcopy terminals. Give. a 
third example. 

26. Why are US232 terminals intempt driven, but memory-mapped terminals not inter- 
rupt driven? 

27. Consider how a terminal works. The driver outputs one character and then blocks. 
When the character has been printed, an interrupt occurs and a message is sent to the 
blocked driver, which outputs the next character and then blocks again. If the time to 
pass a message, output a character, and block is 4 rnsec, does this method work well 
on 1 10-baud lines? How about 4800-baud lines? 

28. A bit-map terminal contains 1200 by 800 pixels. To scroll a window, the CPU (or 
controller) must move aft the lines of text upward by copying their bits from one part 
of the video RAM to another. If a particular window is 66 lines high by 80 characters 
wide (5280 characters, total), and a character's box is 8 pixels wide by 12 pixels high, 
how long does it take to scroll the whole window at a copying rate of 500 nsec per 
byte? If all lines are 80 characters Iong. what is the equivalent baud rate of the termi- 
nal? Putting a character on the screen takes SO microsec. Now compute the baud rate 
for the same terminal in color, with 4 bitdpixel. (Putting a character on the screen 
now takes 200 microsec.) 
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29. Why do operating systems provide escape characters, such as CTRL-V in MINIX? 

30. After receiving a DEL (SIGINT) character, the MlNIX driver discards all output cur- 
rently queued for that terminal. Why? 

31. Many RS232 terminals have escape sequences for deleting the current line and mov- 
ing all the lines below it up one line. How do you think this feature is implemented 
inside the terminal? 

32. On the original TBM PC's color display, writing to the video RAM at any time other 
than during the CRT beam's vertical retrace caused ugly spots to appear all over the 
screen. A screen image is 25 by 80 characters, each of which fits in a box 8 pixels by 
8 pixels. Each row of 640 pixels is drawn on a single horizontaI scan of the beam, 
which takes 63.6 microsec, including the horizontal retrace. The screen is redrawn 60 
times a second, each of which requires a vertical retrace period to get the beam back 
to th'e top. What fraction of the time is the video RAM available for writing in? 

33. Write a graphics driver far the IBM color display, or some other suitable bit-map dis- 
play. The driver should accept commands to set and clear individual pixels, move rec- 
tangles around the screen, and any other features you think are interesting. User pro- 
grams interface to the driver by opening /dev/graphics and writing commands to it. 

34, Modify the MINIX floppy disk driver to do track-at-a-time caching. 

35. Implement a floppy disk driver that works as a character, rather than a block device, to 
bypass the file system's block cache. In this way, users can read large chunks of data 
from the disk, which are DMA'ed directly to user space, greatly improving perfor- 
mance. This driver would primarily be of interest to programs that need to read the 
raw bits on the disk, without regard to the file system. File system checkers fall into 
this category. 

36. Implement the UNIX PROFIL system call, which is missing from MINIX. 

37. Modify the terminal driver so that in addition to a having a special key to erase the 
previous character, there is a key to erase the previous word. 

38. A new hard disk device with removable media has been added to a MINIX system. 
This device must spin up to speed every time the media are changed, and the spin up 
time is quite tong. It is anticipated media changes will be made frequently while the 
system is running. Suddenly the waigur routine in at-wini.c is unsatisfactory. ]Design 
a new waitfor routine in which, if the bit pattern being awaited is not found after 1 
second of busy waiting, a phase will be entered in which the disk task will sleep for 1 
second, test the port, and go back to 'sleep for another second until either the sought- 
for pattern is found or the preset TZMEOUT period expires. 



MEMORY MANAGEMENT 

Memory is an important resource that must be carefully managed. While the 
average home computer nowadays has fifty times as much memory as the IBM 
7094, the largest computer in the world in the early 1960s, programs are getting 
bigger just as fast as memories. To paraphrase Parkinson's law, "Programs. ex- 
pand to fill the memory available to hold them." In this chapter we will study how 
operating systems manage their memory. 

Ideally, what every programmer would like is an infinitely large, fast memory 
that is also nonvolatile, that is, does not lose its contents when the electric power 
fails. While we are at it, why not also ask for it to be inexpensive, too. Unfortun- 
atety technology does not provide such memories. Consequently, most computers 
have a memory hierarchy, with a small amount of very fast, expensive, volatile 
cache memory, some number of megabytes of medium-speed, medium-price, vol- 
atile main memory (RAM), and hundreds or thousands of megabytes of slow, 
cheap, nonvolatile disk storage. It is the job of the operating system to co- 
ordinate how these memories are used. 

The part of the operating system that manages the memory hierarchy is called 
the memory manager. Its job is to keep track of which parts of memory are in 
use and which parts are not in use, to allocate memory to processes when they 
need it and deallocate it when they are done, and to manage swapping between 
main memory and disk when main memory is too small to hold all the processes. 

In this chapter we will investigate a number of different memory management 
schemes, ranging from very simple to highly sophisticated. We will start at the 
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beginning and look first at the simplest possible memory management system and 
then gradually progress to more and more elaborate ones. 

4.1 BASIC MEMORY MANAGEMENT 

Memory management systems can be divided into two classes: those that 
move processes back and forth between main memory and disk during execution 
(swapping and paging), and those that do not. The latter are simpler, so we will 
study them first. Later in the chapter we will examine swapping and paging. 
Throughout this chapter the reader should keep in mind that swapping and paging 
are largely artifacts caused by the lack of sufficient main memory to hold all the 
programs at once. As main memory gets cheaper, the arguments in favor of one 
kind of memory management scheme or another may become obsolete-unless 
programs get bigger faster than memory gets cheaper. 

4.1 .I Monoprogramming without Swapping or Paging 

The simplest possible memory management scheme is to run just one program 
at a time, sharing the memory between that program and the operating system. 
Three variations on this theme are shown in Fig. 4-1. The operating system may 
be at the bottom of memory in RAM (Random Access Memory), as shown in 
Fig. 4-l(a), or it may be in ROM (Read-only Memory) at the top of memory, as 
shown in Fig. 4-l(b), or the device drivers may be at the top of memory in a ROM 
and the rest of the system in RAM down below, as shown in Fig. 4-I(c). The lat- 
ter model is used by small MS-DOS systems, for example. On IBM PCs, the por- 
tion of the system in the ROM is called the BIOS (Basic Input Output System). 

User 
program 

Operating 
system in 

RAM 

Operating 
system in 

User 
Program 

Device 
drivers in ROM 

User 
program 

Operating 
system in 

RAM 

Figure 4-1. Three simple ways of organizing memory with an operating system 
and one user process. Other possibilities also exist. 

When the system is organized in this way, only one process at a time can be 
running. As soon as the user types a command, the operating system copies the 

0 
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requested program from disk to memory and executes it. When the process fin- 
ishes, the operating system displays a prompt character and waits for a new corn- 
mand. When it receives the command, it loads a new program into memory, over- 
writing the first one. 

4.1.2 Multiprogramming with Fixed Partitions 

Although monoprogramming is sometimes used on small computers with sim- 
ple operating systems, often it is desirable to allow multiple processes to run at 
once. On timesharing systems, having multiple processes in memory at once 
means that when one process is blocked waiting for I/O to finish, another one can 
use the CPU. Thus multiprogramming increases the CPU utilization. However, 
even on personal computers it is often useful to be able to run two or more pro- 
grams at once. 

The easiest way to achieve multiprogramming is simply to divide memory up 
into n (possibly unequak) partitions. This partitioning can, for example, be done 
manually when the s y s m  is started up. 

When a job arriyes, it can be put into the input queue for the smallest partition 
large enough to hold it. Since the partitions are fixed in this scheme, any space in 
a partition not used by a job is lost. In Fig. 4-2(a) we see how this system of fixed 
partitions and separate input queues looks. 

Figure 4-2. (a) Fixed memory partitions with separate input queues for each 
partition. (b) Fixed memory partitions with a single input queue. 

Multiple 

The disadvantage of sorting the incoming jobs into separate queues becomes 
apparent when the queue for a large partition is empty but the queue for a small 
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partition is full, as is 'the case for partitions 1 and 3 in Fig. 4-2(a). An alternative 
organization is to maintain a single queue as in Fig. 4-2(b). Whenever a partition 
becomes free, the job closest to the front of the queue that fits in it could be 
loaded into the empty partition and run. Since it is undesirable to waste a large 
partition on a small job, a different strategy is to search the whole input queue 
whenever a partition becomes free and. pick the largest job that fits. Note that the 
latter algorithm discriminates against small jobs as being unworthy of having a 
whole partition, whereas usually it is deiirable to give the smallest jobs (assumed 
to be interactive jobs) the best service, not the worst. 

One way out is to have at least one small partition around. Such a partition 
will allow small jobs to run without having to allocate a large partition for them. 

Another approach is to have a rule stating that a job that is eligible to run may 
not be skipped over more than k times. Each time it is skipped over, it gets one 
point. When it has acquired k points, it may not be skipped again. 

This system, with fixed partitions set up by the operator in the morning and 
not changed thereafter, was used by OW360 on large IBM mainframes for many 
years. It was called MFT (Multiprogramming with a Fixed number of Tasks or 
osmm). It is simple to understand and equally simple to implement: incoming 
jabs are queued until a suitable partition is available, at which time the job is 
loaded into that partition and run until it terminates. Nowadays, few, if any, 
operating sys terns, support this model. 

Relocation and Protection 

Multiprogramming introduces two essential problems that must be solved- 
relocation and protection. Look at Fig. 4-2. From the figure it is clear that dif- 
ferent jobs will be run at different addresses. When a program is linked (i.e., &he 
main program, user-written procedures, and library procedures are combined into 
a single address space), the linker must know at what address the program will 
begin in memory. 

For example, suppose that the first instruction is a call to a procedure at abso- 
lute address 100 within the binary file produced by the linker. If this program is 
loaded in partition 1, that instruction will jump to absolute address 100, which is 
inside the operating system. What is needed is a cail to l 0 K  + 100. If the pro- 
gram is loaded into partition 2, it must be carried out as a call to 200K + 100, and 
so on. This problem is known as the relocation problem. 

One possible solution is to actually modify the instructions as the program is 
loa&d into memory. Programs loaded into partition 1 have 1 OOK added to each 
address, programs loaded into partition 2 have 200K added to addresses, and so 
forth. To perform relocation during loading like this, the linker must include in 
the binary program a list or bit map telling which program words are addresses to 
be relocated and which are opcdes, constants, or other items that must not be 
relocated. OSIMF~ worked this way. Some rnicrocomputers also work like this. 
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Relocation during loading does not solve the protection problem. A malicious 
program can always construct a new instruction and jump to it. Because programs 
in this system use absolute memory addresses rather than addresses relative to a 
register, there is no way to stop a program from building an instruction that reads 
or writes any word in memory. In multiuser systems, it is undesirable to let proc- 
esses read and write memory belonging to other users. 

The solution that IBM chose for protecting the 360 was to divide memory into 
blocks of 2K bytes and assign a 4-bit protection code to each block. The PSW 
contained a 4-bit key. The 360 hardware trapped any attempt by a running proc- 
ess to access memory whose protection code differed from the PSW key. Since 
only the operating system could change the protection codes and key, user proc- 
esses were prevented from interfering with one another and with the operating 
system itself. 

An alternative solution to both the relocation and protection problems is to 
equip the machine with two special hardware registers, called the base. and limit 
registers. When a process is scheduled, the base register is loaded with the ad- 
dress of the start of its partition, and the limit register is loaded with the length of 
the parti tion. Every memory address generated automatically has the base register 
contents added to it before being sent to memory. Thus if the base register is 
lWK, a CALL 100 instruction is effectively turned into a CALL lOOK + 100 in- 
struction, without the instruction itself being modified. Addresses are also 
checked against the limit register to make sure that they do not attempt to address 
memory outside the current partition. The hardware protects the base and limit 
registers to prevent user programs from modifying them. 

The CDC 6600--the world' s first supercomputer-used this scheme. The 
Intel 8088 CPU used for the original IBM PC used a weaker version of this 
scheme-base registers, but no limit registers. Starting with the 286, a better 
scheme was adopted. 

4.2 SWAPPING 

With a batch system, organizing memory into fixed partitions is simple and 
effective. Each job is loaded into a partition when it gets to the head of the queue. 
It stays in memory until it has finished. As long as enough jobs can be kept in 
memory to keep the CPU busy all the time, there is no reason to use anything 
more complicated. 

With timesharing systems or graphically oriented personal computers, the 
situation is different. Sometimes there is not enough main memory to hold all the 
currently active processes, so excess processes must be kept on disk and brought 
in to run dynamically. 

Two general approaches to memory management can be used, depending (in 
part) on the available hardware. The simplest strategy, called swapping, consists 
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of bringing in each process in its entirety, running it for a while, then putting it 
back on the disk. The other strategy, called virtual memory, allows programs to 
run even when they are only partially in main memory. Below we will studying 
swapping; in Sec. 4-3 we will examine virtual memory. 

The operation of a swapping system is illustrated in Fig. 4-3. Initially only 
process A is in memory. Then processes B and C are created or swapped in from 
disk. In Fig. 4-3(d) A terminates or is swapped out to disk. Then D comes in and 
B goes out. Finally E comes in. 

Operating H svstem 
Operating H svstem 

1 opmm 1 
svstern 

Operating 
svstem H 

Figure 4-3. Memory allocation changes as processes come into memory and 
leave it. The shaded regions are unused memory. 

The main difference between the fixed partitions of-Fig. 4-2 and the variable 
partitions of Fig. 4-3 is that the number, location, and size of the partitions vary 
dynamically in the latter as processes come and go, whereas they are fixed in the 
former. The flexibility of not k i n g  tied to a fixed number of partitions that may 
be too large or too small improves memory utilization, but it aIso complicates 
allocating and deallocating memory, as well as keeping track of it: 

When swapping creates multiple holes in memory, it is possible to combine 
them all into one Wg one by moving all the processes downward as far as pos- 
sible. This technique is known as memory compaction. It is usually not done 
because it requires a lot of CPU time. For example, on a 32-MB machine that can 
copy 16 bytes per microsecond, it takes 2 sec to compact all of memory. 

A point that is worth making concerns how much memory should be allocated 
for a process when it is cf-eated or swapped in. If processes are created with a 
fixed size that never changes, then the allocation is simple: you allocate exactly 
what is needed, no more and no less. 

If, however, processes' data segments can grow, for example, by dynamically 
allocating memory from a heap, as in many programming languages, a problem 
occurs whenever a process tries to grow. If a hole is adjacent to the process, it 



SEC. 4.2 SWAPPING 

can be allocated and the process allowed to grow into the hole. On the other 
hand, if the process is adjacent to another process, the growing process will either 
have to be moved to a hole in memory large enough for it, or one or more proc- 
esses will have to be swapped o@>to create a large enough hole. If a process can- 
not grow in memory and the swap area on the disk is full, the process will have to 
wait or be killed. 

If it is expected that most processes will grow as they run, it is probably a 
good idea to allocate a little extra memory whenever a process is swapped in or 
moved, to reduce the overhead associated with moving or swapping processes that 
no longer fit in their allocated memory. However, when swapping processes to 
disk, only the memory actually in use should be swapped; it is wasteful to swap 
the extra memory as well. In Fig. 4-4(a) we see a memory configuration in which 
space for growth has been allocated to two processes. 

Room for growth 

Actually in use 

Room for growth 

Actually in use 

8-Stack ~ 4 ----- 1 ~ o o m  for ,ro, 

} Room for growth 

Operating 
system 

Figure 4-4. (a) Allocating space for a growing data segment. (b) Allocating 
space for a growing stack and a growing data segment. 

If processes can have two growing segments, for example, the data segment 
being used as a heap for variables that are dynamically allocated and released and 
a stack segment for the normal local variables and return addresses, an alternative 
arrangement suggests itself, namely that of Fig. 4-4(b). In this figure we see that 
each process illustrated has a stack at the top of its allocated memory that is grow- 
ing downward, and a data segment just beyond the program text that is growing 
upward. The memory between them can be used for either segment. If it runs 
out, either the process will have to be moved to a hole with enough space, 
swapped out of memory until a large enough hole can be created, or killed. 
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4.2.1 Memory Management with Bit Maps 

- When memory is assigned dynamically, the operating system must manage it. 
In general terms, there are two ways to keep track of memory usage: bit maps and 
free lists. In this section and the next one we will look at these two methods in 
turn. 

With a bit map, memory is divided up into allocation units, perhaps as small 
as a few words and perhaps as large as several kilobytes. Corresponding to each 
allocation unit is a bit in the bit map, which is 0 if the unit is free and 1 if it is 
occupied (or vice versa). Figure 4-5 shows part of memory and the corresponding 
bit map. 

l l l l l l l t  

1 1 0 0 1 1 1 1  
4I-l ,18[ 2 ,  ++ l l l f l O O O  

T 7-' Hole Starts Length Process 
a l l8  2 

(b) (4 

Figure 4-5. (a) A part of memory with five processes and three holes. The tick 
marks show the memory allocation units. The shaded regions (0 in the bit map) 
are free. (b) The corresponding bit map. (c) The same information as a list. 

The size of the allocation unit is an important design issue. The smaller the 
allocation unit, the larger the bit map. However, even with an allocation unit as 
small as 4 bytes, 32 bits of memory will require only 1 bit of the map. A memory 
of 32n bits will use n map bits, so the bit map will take up only 1/33 of memory. 
If the allocation unit is chosen large, the bit map will be smaller, but appreciable 
memory may be wasted in the last unit if the process size is not an exact multiple 
of the allocation unit. 

A bit map provides a simple way to keep track of memory words in a fixed 
amount of memory because the size of the bit map depends only on the size of 
memory and the size of the allocation unit. The main problem with it is that when 
it has been decided to bring a k unit process into memory, the memory manager 
must search the bit map to find a run of k consecutive 0 bits in the map. Search- 
ing a bit map for a run of a given length is a slow operation (because the run may 
straddle word boundaries in the map); this is an argument against bit maps. 
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4.2.2 Memory Management with Linked Lists 

Another way of keeping track of memory is to maintain a linked list of allo- 
cated and free memory segments, where a segment is either a process or a hole 
between two processes. The memory of Fig. 4-5(a) is represented in Fig. 4-5(c) 
as a linked list of segments. Each entry in the list specifies a hole (H) or process 
(P), the address at which it starts, the length, and a pointer to the next entry. 

In this example, the segment list is kept sorted by address. Sorting this way 
has the advantage that when a process terminates or is swapped out, updating the 
list is straightforward. A terminating process normally has two neighbors (except 
when it is at the very top or bottom of memory). These may be either processes or 
holes. leading to the four combinations of Fig. 4-6. In Fig. 4-6(a) updating the list 
requires replacing a P by an H. In Fig. 4-6(b) and Fig. 4-6(c), two entries are 
coalesced into one, and the list becomes cne entry shorter. In Fig. 4-6(d), three 
entries are merged and two items are removed from the list. Since the process 
table slot for the terminating process will normally point to the list entry for the 
process itself, it may be more convenient to have the list as a double-linked list, 
rather than the single-linked list of Fig. 4-5(c). This structure makes it easier to 

entry and to see if a merge is possible. find the previous 

Before X terminates After X terminates 

t comes p////A 
X bewmes 

Figure 4-6. Four neighbor combinations for the terminating process, X. 

When the processes and holes are kept on a list sorted by address, several al- 
gorithms can be used to allocate memory for a newly created or swapped in proc- 
ess. We assume that the memory manager knows how much memory to allocate. 
The simplest algorithm is first fit. The memory manager scans along the list of 
segments until it finds a hole that is big enough. The hole is then broken up into 
two pieces, one for the process and one for the unused memory, except in  the 
unlikely case of an exact fit. First fit is a fast algorithm because it searches as lit- 
tle as possible. 

A minor variation of first fit is next fit. It works the same way as first fit, 
except that it keeps track of where it is whenever it finds a suitable hole. The next 
time it is called to find a hole, it starts searching the list from the place where it 
left off last time. instead of always at the beginning, as first fit does. Simulations 
by Bays (1977) show that next fit gives slightly worse performance than first fit. 
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Another weII-known algorithm is best fit. Best f i t  searches the entire list and 
takes the smallest hole that is adequate. Rather than breaking up a big hole that 
might be needed later, best fit tries to find a hole that is close to the actual size 
needed. 

As an example of first fit and best fit, consider Fig. 4-5 again. If a block of 
size 2 is needed, first fit will dlocate the hole at 5, but best fit will allocate the 
hole at 18. 

Best fit is slower than first fit because it must search the entire list every time 
it is called. Somewhat surprisingly, it also results in more wasted memory than 
first fit or next fit because it tends to fill up memory with tiny, useless holes. First 
fit generates larger holes on the average. 

To get around the problem of breaking up nearly exact matches into a process 
and a tiny hole, one could think about worst fiti that is, always take the Largest 
available hole, so that the hole broken off will be big enough to be useful. Sirnu- 
lation has shown that worst fit is not a very good idea either. 

All four algorithms can be speeded up by maintaining separate lists for proc- 
esses and holes. In this way, d l  of them devote their full energy to inspecting 
holes, not processes. The inevitable price that is paid for this speedup on alloca- 
tion is the additional complexity and slowdown when deallocating memory, since 
a freed segment has to be removed from the process list and inserted into the hole 
list. 

If distinct lists are maintained for processes and holes, the hole list may be 
kept sorted on size, to make best fit faster. When best fit searches a list of holes 
from smallest to largest, as soon as it finds a hole that fits, it knows that the hole is 
the smallest one that will do the job, hence the best fit. N o  further searching is 
needed, as it is with the single list scheme. With a hole list sorted by size, first fit 
and best fit are equally fast, and next fit is pointless. 

When the holes are kept on separate lists from the processes, a small optimi- 
zation is possible. Instead of having a separate set of data structures for rnaintain- 
ing the hole list, as is done in Fig. 4-5(c), the holes themselves can be used. The 
first word of each hole could be the hole size, and the second word a pointer to the 
following entry. The nodes of the list of Fig. 4-5(c), which require three words 
and one bit (Phi), are no longer needed. 

Yet another allocation algorithm is quick flt, which maintains separate lists 
for some of the more common sizes requested. For example, it might have a table 
with n entries, in which the first entry is a pointer to the head of a list of 4K holes, 
the second entry is a pointer to a list of 8K holes, the third entry a pointer to 12K 
holes, and so on. Holes of say, 21 K, could either be put on the 20K list or on a 
special list of odd-sized holes. With quick fit, finding a hole of the required size 
is extremely fast, but it has the same disadvantage as all schemes that sort by hole 
size, namely, when a process terminates or is swapped out, finding its neighbors 
to see if a merge is possible is expensive. If merging is not done, memory will 
quickly fragment into a large number of small holes into which no  processes fit. 
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4.3 VIRTUAL MEMORY 

Many years ago people were first confronted with programs that were too big 
to fit in the available memory. The solution usually adopted was to split the p w  
gram into pieces, called overlays. Overlay 0 would start running first. When it 
was done, it would call another overlay. Some overlay systems were highly com- 
plex, allowing multiple overlays in memory at once. The overiays were kept on 
the disk and swapped in and out of mernory by the operating system, dynamically, 
as needed. 

Although the actual work of swapping overlays in and out was done by the 
system, the work of splitting the program into pieces had to be done by the pro- 
grammer. Splitting up large programs into small, modular pieces was time con- 
suming and boring. It did not take long before someone thought of a way to turn 
the whole job over to the computer. 

The method that was devised (Fotheringham, 196 1) has come to be known as 
virtual memory. The basic idea behind virtual memory is that the combined size 
of the program, data, and stack may exceed the amount of physical memory avail- 
able for it. The operating system keeps those parts of the program currently in use 
in main memory, and the rest on the disk. For example, a 16M program can run 
on a 4M machine by carefully choosing which 4M to keep in memory at each 
instant, with pieces of the program being swapped between disk and memory as 
needed. 

Virtual memory can also work in a multiprogramming system, with bits and 
pieces of many programs in memory at once. While a program is waiting for part 
of itself to be brought in, it is waiting for V 0  and cannot run, so the CPU can be 
given to another p k e s s ,  the same way as for any other multiprogramming syr 
tern. 

$ 

4.3.1 Paging 

Most virtual memory systems use a technique called paging, which we will 
now describe. On any computer, there exists a set of memory addresses that pro- 
grams can produce. When a program uses an instruction like 

MOVE REG, 1000 

it is copying the contents of memory address 1000 to REG (or vice versa, depend- 
ing on the computer). Addresses can be generated using indexing, base registers, 
segment registers, and other ways. 

These program-generated addresses are called virtual addresses and form the 
virtual address space. On computers without virtual memory, the virtual address 
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is put directly onto the memory bus and causes the physical memory word with 
the same address to be read or written. When virtual memory is used, the virtual 
addresses do not go directly to the memory bus. Instead, they go to a Memory 
Management Unit (MMU), a chip or collection of chips that maps the virtual ad- 
dresses onto the physical memory addresses as illustrated in Fig. 4-7. 

The CPU sends vrrtual 

CPU addresses to the MMU 
card / 

CPU 
Memory 

management 
unit 

Memory 0 Disk 
controller 

The MMU sends physical 
addresses to the memory 

Figure 4-7. The position and function of the MMU. 

A very simple example of how this mapping works is shown in Fig. 4-8. In 
this example, we have a computer that can generate 16-bit addresses, from 0 up to 
64K. These are, the virtual addresses. This computer, however, has only 32K of 
physical memory, so although 64K programs can be written, they cannot be 
loaded into memory in their entirety and run. A complete copy of a program's 
core image, up to 64K, must be present on the disk, however, so that pieces can be 
brought in as needed. 

The virtual address space is divided up into units called pages. The 
corresponding units in the physical memory are called page frames. The pages 
and page frames are always exactly the same size. In this example they are 4K, 
but page sizes from 512 .bytes to 64K are commonly used in existing systems. 
With 64K of virtual address space and 32K of physical memory, we have 16 vir- 
tual pages and 8 page frames. Transfers between memory and disk are always in 
units of a page. 

When the program tries to access address 0, for example, using the instruction 

MOVE REG,O 

the virtual address 0 is sent to the MMU. The MMU sees that this virtual address 
falls in page 0 (0 to 4095), which according to its mapping is page frame 2 (8192 
to 12287). It thus transforms the address to 8192 and outputs address 8192 onto 
the bus. The memory board knows nothing at all about the MMU and just sees a 
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Figure 4-8. The relation between virtual addresses and physical memory ad- 
dresses is given by the page table. 

request for reading or writing address 8192, which it honors. Thus, the MMU has 
effectively mapped all virtual addresses between 0 and 4095 onto physicak &ires- 
ses 8 192 to 12287. 

Similarly, an instruction 

MOVE REG,8192 

is effectively transformed into 

MOVE REG,24576 

because virtual address 8192 is in virtual page 2 and this page is mapped onto 
physical page frame 6 (physical addresses 24576 to 28671). As a third example, 
virtual address 20500 is 20 bytes from the start of virtual page 5 (virtual addresses 
20480 to 24575) and maps onto physical address 12288 + 20 = 12308. 

By itself, this ability to map the 16 virtual pages onto any of the eight page 
frames by setting the MMU's map appropriately does not solve the problem that 
the virtual address space is larger than the physical memory. Since we have only 
eight physical page frames, only eight of the virtual pages in Fig. 4-8 are mapped 
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onto physical memory. The others, shown as a cross in the figure, are not 
mapped. In the actual hardware, a Presenhbsent bit in each entry keeps track 
of whether the page is mapped or not. 

What happens if the program tries to use an unmapped page, for example, by 
using the instruction 

MOVE REG, 32780 

which is byte 12 within virtual page 8 (starting at 32768)? The MMU notices that 
the page is unmapped (indicated by a cross in the figure), and causes the CPU to 
trap to [he operating system. This trap is called a page fault. The operating sys- 
tem picks a Little-used page frame and writes its contents back to the disk. It then 
fetches the page just referenced into the page frame just freed, changes the map. 
and restarts the trapped instruction. 

For example, if the operating system decided to evict page frame I ,  it would 
load virtual page 8 at physical address 4K and make two changes to the MMU 
map. First, it would mark virtual page 1's entry as unmapped, to trap any future 
accesses to virtual addresses between 4K and 8K. Then it would replace the cross 
in  virtual page 8's entry with a I ,  so that when the trapped instruction is re- 
executed, i t  will map virtual address 32780 onto physical address 4108. 

Now Iet us look inside the MMU to see how it works and why we have 
chosen to use a page size that is a power of 2. In Fig. 4-9 we see an example of a 
virtual address, 8196 (0010000000000100 in binary), being mapped using the 
MMU map of Fig. 4-8. The incoming 16-bit virtuai address is split up into a 4-bit 
page number and a 12-bit offset. With 4 bits for the page number, we can repre- 
sent 16 pages, and with 12 bits for the offset, we can address all 4096 bytes within 
a page. 

The page number is used as an index into the page table, yielding the number 
of the page frame corresponding to that virtual page. If the Presenr;/absent bit is 
0, a trap to the operating system is caused. If the bit is 1. the page frame number 
found in the page table is copied to the high-order 3 bits of the output register. 
along with the 12-bit offset, which is copied unmodified from the incoming virtual 
address. Together they form a 15-bit physical address. The output register is then 
put onto the memory bus as the physical memory address. 

4.3.2 Page Tables 

In theory, the mapping of virtual addresses onto physical addresses is as we 
have just described it. The virtual address is split into a virtual page number 
(high-order bits) and an offset (low-order bits). The virtual page number is used 
as an index into the page table to find the entry for that virtual page. From the 
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%Figure 4-9. The internal operation of the MMU with 16 4K pages. 

page table entry, the page frame number (if any) is found. The page frame num- 
ber is attached to the high-order end of the offset, replacing the v h i a l  page num- 
ber, to form a physical address that can be sent to the memory. 

The purpose of the page table is to map virtual pages onto page frames. 
Mathematically speaking, the page table is a function, with the virtual page num- 
ber as argument and the physical frame number as result. Using the result of this 
function, the virtual page field in a virtual address can be replaced by a page 
frame field, thus forming a physical memory address. 

Despite this simple description, two major issues must ?x faced: 

1 . page table can be extremely large. 

2. The mapping must be fast. 

The first point follows from the fact that modem computers use virtual addresses 
of at least 32 bits. With, say, a 4K page size, a 32-bit address space has 1 million 
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pages, and a @-bit address space has more than you want to contemplate. With 1 
million pages in the virtual address space, the page table must have 1 million en- 
tries. And remember that each process needs its own page table. 

The second point is a consequence of the fact that the virtual-to-physical map- 
ping must be done on every memory reference. A typical instruction has an in- 
struction word, and often a memory operand as well. consequently, it is neces- 
sary to make 1, 2, or sometimes more page tabIe references per instruction. If an 
instruction takes, say, 10 nsec, the page table lookup must be done in a few nano- 
seconds to avoid becoming a major bottleneck. 

The need for large, fast page mapping is a significant constraint on the way 
computers are built. Although the problem is most serious with top-of-the-line 
machines, it is also an issue at the low end as well, where cost and price/perfor- 
rnance are critical. In this section and the following ones, we will look at page 
table design in detail and show a number of hardware solutions that have been 
used in actual computers. 

The simplest design (at least conceptually) is to have a smgle page table con- 
sisting of an m a y  of fast hardware registers, with one entry for each virtual page, 
indexed by virtual page number. When a process is started up, the operating sys- 
tem loads the registers with the process' page table, taken from a copy kept in 
main memory. During process execution, no more memory references are needed 
for the page table. The advantages of this method are that it is straightforward 
and requires no memory references during mapping. A disadvantage is that it is 
potentially expensive (if the page table is large). Having to load the page table at 
every context switch can also hurt performance. 

At the other extreme, the page table can be entirely in main memory. All the 
hardware needs then is a single register that points to the start of the page table. 
This design allows the memory map to be changed at a context switch by reload- 
ing one register. Of course, it has the disadvantage of requiring one or more 
memory references to read page table entries during the execution of each instnrc- 
tion. For this reason, this approach is rarely used in its most pure form, but below 
we will study some variations that have much better performance. 

Multilevel Page Tables 

To get around the problem of having huge page tables in memory at1 the time, 
many computers use a multilevel page table. A simple example is shown in 
Fig. 4-10. In Fig. 4-lO(a) we have a 32-bit virtual address that is partitioned into a 
10-bit PTI field, a 10-bit P72 field, and a 12-bit Offset field- Since offsets are 12 
bits, pages are 4K, and there are a total of 2" of them. 

The secret to the multilevel page table method is to avoid keeping all the page 
tables in memory all the time. In particular, those that are not needed should not 
be kept around. Suppose, for example, that a process needs 12 megabytes, the 
bottom 4 megabytes of memory for program text, the next 4 megabytes for data, 
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Figure 4-10. (a) A 32-bit address with two page table fields. (b) Two-level 
page tables. 

and the top 4 megabytes for the stack. In between the top of the data and the bot- 
tom of the stack is a gigantic hole that is not used. 

In Fig. 4-10(b) we see how the two-level page table works in this example. 
On the left we have the top-level page table, with 1024 entries, corresponding to 
the 10-bit PTI field. When a virtual address is presented to the MMU, it first 
extracts the PTI field and uses this value as an index into the top-level page table. 
Each of these 1024 entries represents 4M because the entire 4-gigabyte (i-e., 32- 
bit) virtual address space has been chopped into chunks of 1024 bytes. 
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The entry located by indexing into the top-level page table yields the address 
or the page frame number of a second-level page table. Entry 0 of the top-level 
page table points to the page table for the program text, entry I points to the page 
table for the data, and entry 1023 points to the page table for the stack. The other 
(shaded) entries are not used. The PT2 field is now used as an index into the 
selected second-level page table to find the page frame number for the page itself. 

As an example, consider the 32-bit virtual address 0x00403004 (4,206,596 
decimal), which is 12,292 bytes into the data. This address corresponds to PTI = 
1, P i 7  = 3, and Ofset = 4. The MMU first uses PTI to index into the top-level 
page table and obtain entry 1, which corresponds to addresses 4M to 8M. It then 
uses P72 to index into the second-level page table just found and extract entry 3, 
which corresponds to addresses 12288 to 16383 within its 4M chunk (i.e., abso- 
lute addresses 4,206,592 to 4,210,687). This entry contains the page frame nurn- 
ber of the page containing virtual address 0x00403004. If that page is not in 
memory, the Present/absent bit in the page table entry will be zero, causing a 
page fault. If the page is in memory, the page frame number taken from the 
second-level page table is combined with the offset (4) to constnrct a physicaI ad- 
dress. This address is put on the bus and sent to memory. 

The interesting thing to note about Fig. 4-10 is that although the address space 
contains over a million pages, only four page tables are actually needed: the top- 
level table, and the second-level tables for 0 to 4M, 4M to 8M, and the top 4M. 
The Presenhbsent bits in 102 1 entries of the top-level page table are set to 0, 
forcing a page fault if they are ever accessed. Should this occur, the operating 
system will notice that the process is trying to reference mernory that it is not sup- 
posed to and will take appropriate action, such as sending it a signal or killing it. 
In this example we have chosen round numbers for the vafious sizes and have 
picked PTI equal to P72 but in actual practice other values are also possible, of 
course. 

The two-level page table system of Fig. 4-10 can be expanded to three, four, 
or more levels, Additional levels give more flexibility, but it is doubtful that the 
additional complexity is worth it beyond three levels. . 

Let us now turn from the structure of the page tables in the large, to the details 
of a single page table entry. The exact layout of an entry is highly machine 
dependent, but the kind of information present is roughly the same from machine 
to machine. In Fig. 4-1 I we give a sample page table entry. The size varies from 
computer to computer, but 32 bits is a common size. The most important field is 
the Page frame number. After all, the goal of the page mapping is to locate this 
value. Next to it we have the PresentAabsent bit. If this bit is I ,  the entry is valid 
and can be used. If it is 0, the virtual page to which the entry belongs is not cur- 
rently in memory. Accessing a page table entry with this bit set to 0 causes a page 
fault. 

The Protection bits tell what kinds of access are permitted. In the simplest 
form, this field contains 1 bit, with 0 for readwrite and 1 for read only. A more 
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Figure 4-1 1. A typical page table entry. 

sophisticated arrangement is having 3 bits, one bit each for enabling reading, writ- 
ing, and executing the page. 

The Moddfied and Referenced bits keep track of page usage. When a page is 
written to, the hardware automatically sets the Modi3ed bit. This bit is of value 
when the operating system decides to reclaim a page frame. If the page in it has 
been modified (i.e., is "dirty"), it must be written back to the disk. If it has not.  
been modified (i.e., is "clean"), it can just be abandoned, since the disk copy is 
still valid. The bit is sometimes called the dirty bit, since it reflects the page's 
state. 

The Referenced bit is set whenever a page is referenced, either for reading or 
writing. Its value is to help the operating system choose a page to evict when a 
page fault occurs. Pages that are not being used are better candidates than pages 
that are, and this bit plays an important role in several of the page replacement al- 
gorithms that we will study later in this chapter. 

Finally, the last bit allows caching to be disabled for the page. This feature is 
irpportant for pages that map onto device registers rather than memory. If the 
operating system is sitting in a tight loop waiting for some VO device to respond 
to a command it was just given, it is essential that the hardware keep fetching the 
word from the device, and not use an old cached copy. With this bit, caching can 
be turned off. Machines that have a separate U 0  space and do not use memory 
mapped I/O do not need this bit. 

Note that the disk address used to hold the page when it is not in memory is 
not part of the page table. The reason is simple. The page table holds only that 
information the hardware needs to translate a virtual address to a physical address. 
information the operating system needs to handle page faults is kept in software 
tables inside the operating system. 

4.3.3 TLB~Translation Lookaside Buffers 

In most paging schemes, the page tables are kept in memory, due to their 
large size. Potentially, this design has an enormous impact on performance. Con- 
sider, for example, an instruction that copies one register to another. In the 
absence of paging, this instruction makes only one memory reference, to fetch the 
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instruction. With paging, additional memory references will be needed to access 
the page table. Since execution speed is generally limited by the rate the CPU can 
get inaructions and data out of the memory, having to make two page table refer- 
ences per memory reference reduces performance by 2/3. Under these conditions, 
no one would use it. 

Computer designers have known about this problem for years and have come 
up with a solution. Their solution is based on the observation that most programs 
tend to make a large number of references to a small number of pages, and not the 
other way around. Thus only a small fraction of the page table entries are heavily 
read: the rest are barely used at all. 

The solution that has been devised is to equip cornputen with a small hard- 
ware device for mapping virtual addresses to physical addresses without going 
through the page table. The device, called a TLB (Translation Lookaside 
Buffer) or sometimes an associative memory, is illustrated in Fig. 4-12. It is 
usually inside the MMU and consists of a small number of entries, eight in this 
example. but rarely more than 64. Each entry contains information about one 
page, in particular, the virtual page number, a bit that is set when the page is mod- 
ified, the protection code (raadlwritrlexecute permissions), and the physical page 
frame in which the page is located. These fields have a one-to-one correspon- 
dence with the fields in the page table. Another bit indicates whether the entry is 
valid (i.e., in use) or not. 

Figure 4-12. A TLB to speed up paging. 
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An example that might generate the TLB of Fig. 4-12 is a process in a loop 
that spans virtual pages 19,20, and 21, so these TLB entries have protection codes 
for reading and executing. The main data currently being used (say, an array 
being processed) are on pages 129 and 130. Page 140 contains the indices used in 
the array calculations. Finally, the stack is on pages 860 and 861. 

Let us now see how the TLB functions. When a virtual address is presented 
to the MMU for translation, the hardware first checks to see if its virtual page 
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number is present in the TLB by comparing it to all the entries simultaneously 
(i.e., in parallel). If a valid match is found and the access does not violate the pro- 
tection bits, the page frame is taken directly from the TLB, without going to the 
page table. If the virtual page number is present in the TLB but the instruction is 
trying to write on a read-only page, a protection fault is generated, the same way 
as it would be from the page table itself. 

The interesting case is what happens when the virtual page number is not in 
the TLB. The MMU detects the miss and does an ordinary page table lookup. It 
then evicts one of the entries from the TLB and replaces it with the page table 
entry just looked up. Thus if that page is used again soon, the second time it will 
result in a hit rather than a miss. When an entry is purged from the TLB, the 
modified bit is copied back into the page table entry in memory. The other values 
are already there. When the TLB is loaded from the page table, all the fields are 
taken from memory. 

Software TLB Management 

Up until now, we have assumed that every machine with paged virtual memo- 
ry has page tables recognized by the hardware, plus a TLB. In this design, TLB 
management and handling TLB faults are done entirely by the MMU hardware. 
Traps to the operating system occur only when a page is not in memory. 

In the past, this assumption was true. However, some modern RISC ma- 
chines, including the MIPS, Alpha, and HP PA, do nearly all of this page manage- 
ment in software. On these machines, the TLB entries are explicitly loaded by the 
operating system. When a TLB miss occurs, instead of the MMU just going to 
the page tables to find and fetch the needed page reference, it just generates a 
TLB fault and tosses the problem into the lap of the operating system. The system 
must find the page, remove an entry from the TLB, enter the new one, and restart 
the instruction that faulted. And, of course, all of this must be done in a handful 
of instructions because TLB misses occur much more frequently than page faults. 

Surprisingly enough, if the TLB is reasonably large (say, 62 entries) to reduce 
the miss rate, software management of the TLB turns out to be quite efficient. 
The main gain here is a much simpler MMU, which frees up a considerable 
amount of area on the CPU chip for caches and other features that can improve 
performance. Software TLB management is discussed at length by Uhlig et al. 
( 1994). 

Various strategies have been developed to improve performance on machines 
that do TLB management in software. One approach attacks both reducing TLB 
misses and reducing the cost of a TLB miss when it does occur (Bala et al., 1994). 
To reduce TLB misses, sometimes the operating system can use its intuition to 
figure out which pages are likely to be used next and to preload entries for them in 
the X B .  For example, when a client process does an RFC to a server process on 
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the same machine, it is very likely that the server will have to run soon. Knowing 
this, while processing the trap to do the RPC, the system can also check to see 
where the server's code, data, and stack pages are, and map them in before they 
can cause TLB faults. 

The normal way to process a TLB miss, whether in hardware or in software, 
is to go to the page table and perform the indexing operations to locate the page 
referenced. The problem with doing this search in software is that the pages hold- 
ing the page table may not be in the TLB, which will cause additional TLB faults 
during the processing. These faults can be reduced by maintaining a large (e-g., 
4K) software cache of TLB entries in a fixed location whose page is always kept 
in the TLB. By first checking the software cache, the operating system can sub- 
stantially reduce TLB misses, 

4.3.4 Inverted Page Tables 

Traditional page tables of the type described so far require one entry per vir- 
iual page, since they are indexed by virtual page number. If the address space 
consists of 232 bytes, with 4096 bytes per page, then over 1 million page table en- 
tries are needed. As a bare minimum, the page table will have to be at least 4 
megabytes. On larger systems, this size is probably doable. 

However, as @-bit computers become more common, the situation changes 
drastically. If the address space is now 2M bytes, with 4K pages, we need over 
10'' bytes for the page table. Tying up I million gigabytes just for the page table 
is not doable, not now and nQt for decades to come, if ever. ConsequentIy, a dif- 
ferent solution is needed for 64-bit paged virtual address spaces. 

One such solution is the inverted page table. In this design, there is one 
entry per page frame in real memory, rather than one entry per page of virtual ad- 
dress space. For example, with 64-bit virtual addresses, a 4 K  page, and 32 MB of 
RAM. an inverted page table only requires 8192 entries. The entry keeps track of 
which (process, virtual page) is located in the page frame. 

Although inverted page tables save vast amounts of space, at least when the 
virtual address space is much larger than the physical memory, they have a seri- 
ous downside: virtual-to-physical translation becomes much harder. When proc- 
ess n references virtual page p, the hardware can no longer find the physical page 
by using p as an index into the page table. Instead, it must search the entire in- 
verted page table for an entry (n, p ) .  Furthermore. this search must be done on 
every memory reference, not just on page faults. Searching an 8 K  table on every 
memory reference is not the way to make your machine biindingly fast. 

The way out of this dilemma is to use the TLB. If the TLB can hold all of the 
heavily used pages, translation can happen just as fast as with regular page tables. 
On a TLB miss, however, the inverted page table has to be searched. Using a 
hash table as an index into the inverted page table, this search can be made rea- 
sonably fast, however. Inverted page tables are currently used on some IBM and 
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Hewlett-Packard workstations arid will become more common as 64-bit machines 
become widespread. 

Other approaches to handling large virtual memories can be found in (Huck 
and Hays, 1993; Tat1u1-i and Hill, 1994; and Talluri et al., 1995). 

PAGE REPLACEMENT ALGORITHMS 

When a page fault occurs. the operating system has to choose a page to re- 
move from memory to make room for the page that has to be brought in. If the 
page to be removed has been modified while in memory, it must be rewritten to 
the disk to bring the disk copy up to date. If, however, the page has not been 
changed (e.g,, a page contains program text), the disk copy is already up to date, 
so no rewrite is needed. The page to be read in just overwrites the page being 
evicted. 

While it would be possible to pick a random page to replace at each page 
fault, system performance is much better if a page that is not heavily used is 
chosen. If a heavily used page is removed, it will probably have to be brought 
back in quickly, resulting in extra overhead. Much work has been done on the 
subject of page replacement algorithms, both theoretical and experimental. Below 
we will describe s o ~ o s t  important algorithms. 

4.4.1 The Optimal Page Replacement Algorithm 

The best possible page replacement algorithm is easy to describe but impos- 
sible to implement. It goes like this. At the moment that a page fault occurs, 
some set of pages is in memory. One of these pages will be referenced on the 
very next instruction (the page containing that instruction). Other pages m a y  not 
be referenced until 10, 100, or perhaps 1000 instructions later. Each page can be 
labeled with the number of instructions that will be executed before that page is 
first referenced. 

The optimal page algorithm simply says that the page with the highest label 
should be removed, if one page will not be used for 8 million instructions and 
another page will not be used for 6 million instructions, removing the former 
pushes the page fault that will fetch it back as far into the futum as possible. 
Computers, like people, try to put off unpieasant events for as long as they can. 

The only problem with this algorithm is that it is unrealizable. At the time of 
the page fault, the operating system has no way of knowing when each of the 
pages wiIl be referenced next. (We saw a similar situation earIier with the shor- 
test job first scheduling algorithm-how can the system tell which job is shor- 
test?-> Still, by running a program on a simulator and keeping track of all page 
references, i t  is possible to implement optimal page replacement on the secortd 
run by using the page reference information collected during the$rst run. 
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In this way it is possible to compare the performance of realizable algorithms 
with the best possible one. If an operating system achieves a performance of, say, 
only I percent worse than the optimal algorithm, effort spent in looking for a 
better algorithm will yield at most a 1 percent improvement. 

To avoid any possible confusion, it should be made clear that this log of page 
references refers onIy to the one program just measured. The page replacement 
algorithm derived from it is rhus specific to that one program. Although this 
method is useful for evaluating page replacement algorithms, it is of no use in 
practical systems. Below we will study algorithms that are useful on real sys- 
tems. 

4.4.2 The Not Recently Used Page Replacement Algorithm 

In order to allow the operating system to collect useful statistics about which 
pages are being used and which ones are not, most computers with virtual memo- 
ry have two status bits associated with each page. R is set whenever the page is 
referenced (read or written). M is set when the page is written to (i.e., modified). 
The Bits are c o ~ i a e a c h  page table entry, as shown in Fig. 4- 1 1. It is impor- 
tant to realize that these bits must be updated on every memory reference, so it is 
essential that they be set by the hardware. Once a bit has k e n  set to I ,  it stays 1 
until the operating system resets it to 0 in software, 

If the hardware does not have these bits, they can be simulated as follows. 
When a process is started up, all of its page table entries are marked as not in 
memory. As soon as any page is referenced, a page fault will occur. The operat- 
ing system then sets the R bit (in its internal tables), changes the page table entry 
to point to the correct page, with mode READ ONLY, and restarts the instruction. 
If the page is subsequently written on, another page fault will occur, allowing the 
operating system to set the M bit and change the page's mode to READWRITE. 

The R and A4 bits can be used to build a simple paging algorithm as follows. 
When a process is started up, both page bits for all its pages are set to 0 by the 
operating system. Periodically (e.g., on each clock interrupt), the R bit is cleared, 
to distinguish pages that have not been referenced recently from those that have 
been. 

When a page fault occurs, the operating system inspects all the pages and 
divides them into four categories based on the current values of their R and M 
bits: 

Class 0: not referenced, not modified. 
Class I : not referenced, modified. 
Class 2: referenced, not modiqed. 
Class 3: referenced, modified. 

Although class 1 pages seem, at first glance, impossible, they,occur when a class 
3 page has its R bit cleared by a clock interrupt. Clock interrupts do not clear the 
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M bit because tbis information is needed to know whether the page has to be 
rewritten to disk or not. 

The NRU (Not Recently Used) algorithm removes a page at random from the 
lowest numbered nonempty class. Implicit in this algorithm is that it is better to 
remove a modified page that has not been referenced in at least one clock tick 
(typically 20 msec) than a clean page that is in heavy use. The main attraction of 
NRU is that it is easy to understand, efficient to implement, and gives a perfor- 
mance that, while certainly not optimal, is often adequate. 

4.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 

Another low-overhead paging algorithm is the FIFO (First-In, First-Out) al- 
gorithm. To illustrate how this works, consider a supermarket that has enough 
shelves to display exactly k different products. One day, some company intro- 
duces a new convenience food-instant, freeze-dried, organic yogurt that can be 
reconstituted in a microwave oven. It is an immediate success, so our finite 
supermarket has to get rid of one old product in order to stock it. 

One possibility is to find the product that the supermarket has been stocking 
the longest (i.e., something it began selling 120 years ago) and get rid of it on the 
grounds that no one is interested any more. In effect, the supermarket maintains a 
linked list of all the products it currently sells in the order they were introduced. 
The new one goes on the back of the list; the one at the front of the list is dropped. 

As a page replacement algorithm, the same idea is applicable. The operating 
system maintains a list of all pages currently in memory, with the page at the head 
of the list the oldest one and the page at the tail the most recent arrival. On a page 
fault, the page at the head is removed and the new page added to the tail of the 
list. When applied to stores, FIFO might remove mustache wax;-but it might also 
remove flour, salt, or butter. When applied to computers the sa& problem arises. 
For this reason, FIFO in its pure form is rarely used. 

4.4.4 The Second Chance Page Replacement Algorithm 

A simple modification to FIFO that avoids the problem of throwing out a 
heavily used page is to inspect the R bit of the oldest page. If it is 0, the page is 
both old and unused, so it is replaced immediately. If the R bit is 1, the bit is 
cleared, the page is put onto the end of the list of pages, and its load time is 
updated as though it had just arrived in memory. Then the search continues. 

The operation of this algorithm, called second chance, is shown in Fig. 4-13. 
In Fig. 4-l3(a) we see pages A through H kept on a linked list and sorted by the 
time they arrived in memory. 

Suppose that a page fault occurs at time 20. The oldest page is A, which 
arrived at time 0, when the process started. If A has the R bit cleared, it is evicted 
from memory, either by being written to the disk (if it is dirty), - or just abandoned 
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Page loaded first 

A is treated like a 
newly loaded page 

Figure 4-13. Operation of second chance. (a) Pages sorted in FIFO order. (b) 
Page list if a page fault occurs at rime 20 and A has its R bit set. 

(if it is clean). On the other hand, if the R bit is set, A is put onto the end of the 
list and its "load time" is reset to the current time (20). The R bit is also cleared. 
The search for a suitable page continues with B. 

What second chance is doing is looking for an old page that has not been 
referenced in--the previous clock interval. If all the pages have been referenced, 
second chance degenerates into pure FIFO. Specifically, imagine that all the 
pages in Fig. 4- 13(a) have their R bits set. One by one, the operating system 
moves the pages to the end of the list, clearing the R bit each time it appends a 
page to the end of the list. Eventually, it comes back to page A, which now has its 
R bit cleared. At this point A is evicted. Thus the algorithm always terminates. 

4.4.5 Tbe Clock Page Replacement Algorithm 

AIthough second chance is a reasonable algorithm, it is unnecessarily ineffi- 
cient because it is constantly moving pages around on its list. A better approach 
is to keep all the pages on a circular list in the form of a clock, as shown in 
Fig. 4- 14. A hand points to the oldest page. 

When a page fault occurs, the page being pointed to by the hand is inspected. 
If its R bit is 0, the page is evicted, the new page is inserted into the clock in its 
place, and the hand is advanced one position. If R is i ,  it is cleared and the hand 
is advanced to the next page. This process is repeated until a page is found with 
R = 0. Not surprisingly, this algorithm is called clock. It differs from second 
chance only in the implementation. 

4.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 

A good approximation to the optimal algorithm is based on the observation 
that pages that have been heavily used in the last few instructions will probably be 
heavily used again in the next few. Conversely, pages that have not been used for 
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/ mm when a page fault occurs, 
the page the hand is 
pointing to is inspected. 
The action taken depends 
an the R bit: 

R = 0: Evict the page 
R = 1: Clear R and advance hand 

Figure 4-14. The clock page replacement algorithm 

ages will probably remain unused for a long time. This idea suggests a realizable 
algorithm: when a page fault occurs, throw out the page that has been unused for 
the longest time. This strategy is called LRU (Least Recently Used) paging. 

Although LRU is theoretically realizable, it is not cheap. To fully implement 
LRU, it is necessary to maintain a linked list of all pages in memory, with the 

' most recently used page at the front and the least recently used page at the rear. 
The difficulty is that the list must be updated on every memory reference. Find- 
ing a page in the list, deleting it, and then moving it to the front is a very time con- 
suming operation, even in hardware (assuming that such hardware could be built). 

However, there are other ways to implement LRU with special hardware. Let 
us consider the simplest way first. This method requires equipping the hardware 
with a 64-bit counter, C, that is automatically incremented after each instruction. 
Furthermore, each page table entry must also have a field large enough to contain 
the counter. After each memory reference, the current value of C is stored in the 
page table entry for the page just referenced. When a page fault occurs, the 
operating system examines all the counters in the page table to find the lowest 
one. That page is the least recently used. 

Now let us look at a second hardware LRU algorithm. For a machine with n 
page frames, the LRU hardware can maintain a matrix of n x n bits, initially all 
zero. Whenever page frame k is referenced, the hardware first sets all the bits of 
row k to 1, then sets all the bits of column k to 0. At any instant, the row whose 
binary value is lowest is the least recently used, the row whose value is next 
lowest is next least recently used, and so forth. The workings of this algorithm 
are given in fig. 4- 15 for four page frames and page references in the order 

After page 0 is referenced we have the situation of Fig. 4- 15(a), and so forth. 
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Page Page RI 

Figure 4-15. LRU using a matrix. 

4.4.7 Simulating LRU in Software 

Although both of the previous LRU algorithms are realizable in principle, 
few, if any, machines have this hardware, so they are of little use to the operating 
system designer who is making a system for a machine that does not have this 
hardware. Instead, a solution that can be implemented in software is needed. One 
possibility is called the Not Frequently Used or NFU algorithm. It requires a 
software counter associated with each page, initially zero. At each clock inter- 
rupt, the operating system scans all the pages in memory. For each page, the R 
bit, which is 0 or I ,  is added to the counter. In effect, the counters are an attempt 
to keep track of how often each page has been referenced. When a page fault 
occurs, the page with the lowest counter is chosen for replacement. 

The main problem with NFU is that it never forgets anything. For example, 
in a multipass compiler, pages that were heavily used during pass 1 may still have 
a high count well into later passes. In fact, if pass 1 happens to have the longest 
execution time of all the passes, the pages containing the code for subsequent 
passes may always have lower counts than the pass 1 pages. Consequently, the 
operating system will remove useful pages instead of pages no longer in use. 

Fortunately, a small modification to NFU makes it able to simulate LRU quite 
well. The modification has two parts. First, the counters are each shifted right 1 
bit before the R bit is added in. Second, the R bit is added to the leftmost, rather 
than the rightmost bit. 

Figure 4-16 illustrates how the modified algorithm, known as aging, works. 
Suppose that after the first clock tick the R bits for pages 0 to 5 have the values 1, 
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0, I ,  0,' 1, and 1 respectively (page 0 is I ,  page 1 is 0, page 2 is 1, etc.). In other 
words, between tick 0 and tick 1, pages 0, 2, 4, and 5 were referenced, setting 
their R bits to 1, while the other ones remain 0. After the six corresponding count- 
ers have been shifted and the R bit inserted at the left, they have the values shown 
in Fig. 4- 16(a). The four remaining columns show the six counters after the next 

- four clock ticks. 

I I I I 

R bits for I R bits for R bits for I R bits tor I R bits for 
pages 0-5, 1 pages 0-5, 1 pages 0-5, 1 pages 0-5, pages 0-5, 

I I I I 
I I I I 
1 I I 1 
I 1 1 f 

Figure 4-16. The aging algorithm simulates LRU in software. Shown are six 
pages for five clock ticks. The five clock ticks are represented by (a) to (e) .  

When a page fault occurs, the page whose counter is the lowest is removed. It 
is clear that a page that has not been referenced for, say, four clock ticks will have 
four leading zeroes in its counter, and thus will have a lower value than a counter 
that has not been referenced for three clock ticks. 

This algorithm differs from LRU in two ways. Consider pages 3 and 5 in 
Fig. 4-16(e). Neither has been referenced for two clock ticks; both were refer- 
enced in the tick prior to that. According to LRU, if a page must be replaced, we 
should choose one of these two. The trouble is, we do not know which of these 
two was referenced last in the interval between tick 1 and tick 2. By recording 
only one bit per time interval, we have.lost the ability to distinguish references 
early in the clock interval from those occurring later. All we can do is remove 
page 3, because page 5 was also referenced two ticks earlier and page 3 was not. 

The second difference between LRU and aging is that in aging the counters 
have a finite number of bits, 8 bits in this example. Suppose that two pages each 
have a counter value of 0. All we can do is pick one of them at random. In 
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reality, it may well be that one of the pages was last referenced 9 ticks ago and the 
other was last referenced 1000 ticks ago, We have no way of seeing that. In 
practice, however, 8 bits is generally enough if a clock tick is around 20 msec, If 
a page has not been referenced in 160 msec, it probably is not that important. 

4.5 DESIGN ISSUES FOR PAGING SYSTEMS 

In the previous sections we have explained how paging works and have given 
a few of the basic page replacement algorithms. But knowing the bare mechanics 
is not enough. T o  design a system, you have to know a lot more to make it work 
wen. It is like the difference between knowing how to move the rook, knight, 
bishop, and other pieces in chess, and being a good player. In the foilowing sec- 
tions, we will look at other issues that operating system designers must consider 
carefully in order to get good performance from a paging system. 

4.5.1 The Working Set Model 

In the purest form of paging, processes are started up with none of their pages 
in memory. As soon as the CPU tries to fetch the first instruction, it gets a page 
fault, causing the operating system to bring in the page containing the first instruc- 
tion. Other page faults for global variables and the stack usually follow quickly. 
After a while, the process has most of the pages it needs and settles down to run 
with relatively few page faults. This strategy is called demand paging because 
pages are loaded only on demand, not in advance. 

Of course, it is easy enough to write a test program that systematically reads 
all the pages in a large address space, causing so many page faults that there is not 
enough memory to hold them all. Fortunately, most processes do not work this 
way. They exhibit a locality of reference, meaning that during any phase of ex- 
ecution, the process references only a relatively small fraction of its pages. Each 
pass of a multipass compiler, for example, references only a fraction of all the 
pages, and a different fraction at that. 

The set of pages that a process is currently using is called its working set 
(Denning, 1968a; Denning, 1980). If the entire working set is in memory, the 
process will run without causing many faults until it moves into another execution 
phase (e.g., the next pass of the compiler). If the available memory is too small to 
hold the entire working set, the process will cause many page faults and run 
slowly since executing an instruction often takes a few nanoseconds and reading 
in a page from the disk typically takes tens of miIliseconds. At a rate of one or 
two instructions per 20 milliseconds, it will take ages to finish. A program caus- 
ing page faults every few instructions is said to be thrashing (Denning, 1968b). 

In a timesharing system, processes are frequently moved to disk (i.e., aII their 
pages are removed from memory) to let other processes have a turn at the CPU. 
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The question arises of what to do when a process is brought back in again. 
Technically, nothing need be done. The process will just cause page faults until 
its working set has been loaded. The problem is that having 20, 50, or even 100 
page faults every time a process is loaded is slow, and it also wastes considerable 
CPU time, since it takes the operating system a few milliseconds of CPU time to 
process a page fault. 

Therefore, many paging systems try to keep track of each process' working 
set and make sure that it is in memory before letting the process run. This 
-approach is called the working set model (Denning, 1970). It is designed to 
greatly reduce the page fault rate. Loading the pages before letting processes run 
is also called prepaging. 

To implement the working set model, it is necessary for the operating system 
to keep track of which pages are in the working set. One way to monitor this in- 
formation is to use the aging algorithm discussed above. Any page containing a 1 
bit among thehigh order n bits of the counter is considered to be a member of the 
working set. If a page has not been referenced in n consecutive clock ticks, it is 
dropped from the working set. The parameter n has to be determined experimen- 
tally for each system, but the system performance is usually not especially sensi- 
tive to the exact value. 

Information about the working set can be used to improve the performance of 
the clock algorithm. Normally, when the hand points to a page whose R bit is 0, 
the page is evicted. The improvement is to check to see if that page is part of the 
working set of the current process. If it is, the page is spared. This algorithm is 
called wscloc k . 

4.5.2 Local versus Global Allocation Policies 

In the preceding sections we have discussed several algorithms for choosing a 
page to replace when a fault occurs. A major issue associated with this choice 
(which we have carefully swept under the rug until now) is how memory should 
be allocated among the competing runnable processes. 

Take a look at Fig. 4-17(a). In this figure, three processes, A, B, and C,  make 
up the set of runnable processes. Suppose A gets a page fault. Should the page 
replacement algorithm try to find the least recently used page considering only the 
six pages currently allocated to A, or should it consider all the pages in memory? 
If it looks only at A's pages, the page with the lowest age value is A5, so we get 
the situation of Fig. 4- 17(b). 

On the other hand, if the page with the lowest age value is removed without 
regard to whose page it is, page 83 will be chosen and we will get the situation of 
Fig. 4-1 7(c). The algorithm of Fig. 4- 17(b) is said to be a local page replacement 
algorithm, whereas Fig. 4-17(c) is said to be a global algorithm. Local algorithms 
effectively correspond to allocating every process a fixed fraction of the memory. 
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Figure 4-17. Local versus global page replacement. (a) Original configuration. 
(b) Local page replacement. (c) Global page replacement. 

Global algorithms dynamically allocate page frames among the runnable proc- 
esses. Thus the number of page frames assigned to each process varies in time. 

In general, global algorithms work better, especially when the working set 
size can vary over the lifetime of a process. If a local algorithm is used and the 
working set grows, thrashing will result, even if there are plenty of free page 
frames. if the working set shrinks, local algorithms waste memory. If a global al- 
gorithm is used, the system must continually decide how many page frames to 
assign to each process. Ope way is to  monitor the working set size as indicated by 
the aging bits, but this approach does not necessarily prevent thrashing. The 
working set may change size in microseconds, whereas the aging bits are a crude 
measure spread over a number of clock ticks. 

Another approach is to have an algorithm for allocating page frames to proc- 
esses. One way is to periodically determine the number of running processes and 
allocate each process an equal share. Thus with 475 available (i.e., non-operating 
system) page frames and 10 processes, each process gets 47 frames. The remain- 
ing 5 go into a pool to be used when page faults occur. 

Although this method seems fair, it makes little sense to give equal shares of 
the memory to a 1OK process and a 300K process. Instead, pages can be allocated 
in proportion to each process' total size, with a 300K process getting 30 times the 
allotment of a 10K process. It is probably wise to give each process some 
minimum number, so it can run, no matter how small it is. On some machines, for 
example, a single instruction may need as many as six pages because the instruc- 
tion itself, the source operand. and the destination operand may all straddle page 
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boundaries. With an allocation of only five pages, programs containing such in- 
structions cannot execute at all. 

Neither the equal allocation nor the proportional allocation method directly 
deals with the thrashing problem. A more direct way to control it is to use the 
Page Fault Frequency or PFF allocation algorithm. For a large class of page 
replacement algorithms, including LRU, it is known that the fault rate decreases 
as more pages are assigned, as we discussed above. This property is illustrated in  
Fig. 4-18. 

Number of page frames assigned 

Figure 4-18. Page fault rate as a function of the number of page frames assigned. 

The dashed line marked A corresponds to a page fault rate that is uoaccept- 
ably high, so the faulting process is given more page frames to reduce the fault 
rate. The dashed line marked B corresponds to a page fault rate so low that it can 
be concluded that the process has too much memory. In this case page frames 
may be taken away from it. Thus, PFF tries to keep the paging rate within accept- 
able bounds. 

If it discovers that there are so many processes in memory that it is not pos- 
sible to keep all of them below A,  then some process is removed from memory, 
and its page frames are divided up among the remaining processes or put into a 
pool of available pages that can be used on subsequent page faults. The decision 
to remove a process from memory is a form of load control. 1t shows that even 
with paging, swapping is still needed, only now swapping is used to reduce poten- 
tial demand for memory, rather than to reclaim blocks of i t  for immediate use. 

4.5.3 Page Size 

The page size is often a parameter that can be chosen by the operating system. 
Even if the hardware has been designed with, for example, 5 12-byte pages, the 
operating system can easily regard pages 0 and I ,  2 and 3, 4 and 5, and so on, as 
I K yages by always allocating two consecutive 5 12-byte page frames for them. 

Determining the optimum page size requires balancing several competing fac- 
tors. To start with, a randomly chosen text, data, or stack segment will not fi l l  an 
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integral number of pages. On the average, half of the final page will be empty. 
The extra space in that page is wasted This wastage is called internal fragrnenta- 
tion. With n segments in memory and a page size of p bytes, n p / 2  bytes will be 
wasted on internal fragmentation. This reasoning argues for a small page size. 

Another argument for a smdl page size becomes apparent if we think about a 
program consisting of eight sequential phases of 4K each. With a 32K page size, 
the program must be allocated 32K all the time. With a 16K page size, it needs 
only 16K. With a page size of 4 K  or smaller, it requires only 4K at any instant. 
In general, a large page size will cause more unused program to be in memory 
than a small page size. 

On the other hand, small pages mean that programs will need many pages, 
hence a large page table. A 32K program needs only four 8K pages, but 64 512- 
byte pages. Transfers to and from the disk are generally a page at a time, with 
most of the time being for the seek and rotational delay, so that transferring a 
small page takes almost as much time as transferring a large page. It might take 
64 x 15 rnsec to load 64 512-byte pages, but only 4 x 25 msec to load four 8K 
pages. 

On some machines, the page table must be loaded into hardware registers 
every time the CPU switches from one process to another. On these machines 
having a small page size means that the time required to load the page registers 
gets longer as the page size gets smaller. Furthermore, the space occupied by the 
page table increases as the page size decreases. 

This last point can k analyzed mathematically. Let the average process size 
be s bytes and the page size be p bytes. Furthermore, assume that each page entry 
requires e bytes. The approximate number of pages needed per process is then 
s / p ,  occupying se /p  bytes of page table space. The wasted memory in the last 
page of the process due to internal fragmentation is p / 2 .  Thus, the total overhead 
due to the page table and the internal fragmentation loss is given by 

overhead = se /p + p /2 

The first term (page table size) is large when the page size is small. The 
second term (internal fragmentation) is large when the page size is large. The 
optimum must lie somewhere in between. By taking the first derivative with 
respect top  and equating it to zero, we get the equation 

From this equation we can derive a formula that gives the optimum page size 
(considering only memory wasted in fragmentation and page table size). The 
result is: 

p = &  
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For s = 128K and e = 8 bytes per page table entry, the optimum page size is 1448 
bytes. I n  practice IK or 2K would be used, depending on the other factors (e.g., 
disk speed). Most commercially available computers use page sizes ranging from 
5 12 bytes to 64K. 

4.5.4 Virtual Memory Interface 

Up until now, our whole discussion has assumed that virtual memory is trans- 
parent to processes and programmers, that is, all they see is a large virtual address 
space on a computer with a small(er) physical memory. With many systems, that 
is true, but in some advanced systems, programmers have some control over the 
memory map and can use it in nontraditional ways. In this section. we will briefly 
look at a few of these. 

One reason for giving programmers control over their memory map is to 
allow two or more processes to share the same memory. If programmers can 
name regions of their memory, it may be possible for one process to give another 
process the name of a memory region so that process can also map it in. With two 
(or more) processes sharing the same pages, high bandwidth sharing becomes pos- 
sible-ne process writes into the shared memory and another one reads from it. 

Sharing of pages can also be used to implement a high-performance mes- 
sage-passing system. Normally, when messages are passed, the data are copied 
from one address space to another, at considerable cost. If processes can control 
their page map, a message can be passed by having the sending process unmap the 
page(s) containing the message, and the receiving process mapping them in. Here 
only the page names have to be copied, instead of all the data. 

Yet another advanced memory management technique is distributed shared 
memory (Feeley et al., 1995; Li and Hudak, 1989; Zekauskas et al., 1994). The 
idea here is to allow multiple processes over a network to share a set of pages, 
possibly, but not necessarily, as a single shared linear address space. When a 
process references a page that is not currently mapped in, it gets a page fault. The 
page fault handler, which may be in the kernel or in user space, then locates the 
machine holding the page and sends it a message asking it to unmap the page and 
send it over the network. When the page arrives, it is mapped in and the faulting 
instruction is restarted. 

4.6 SEGMENTATEON 

The virtual memory discussed so far is one-dimensional because the virtual 
addresses go from 0 to some maximum address, one address after another. For 
many problems, having two or more separate virtual address spaces may be much 
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Pars? tree 

better than having only one. For example. a compiler has many tables that are 
built up as compilation proceeds. possibly incldding 

1 .  The source text being saved for the printed listing (on batch systems). 

2. The symbol table, containing the names and attributes of variables. 

3. The table containing ail the integer and floating-point constants used. 

4. The parse tree. containing the syntactic analysis of the program. 

5. The stack used for procedure calls within the compiler. 

Each of the first four tables grows continuously as compilation proceeds. The last 
one grows and shrinks in unpredictable ways during compilation. In a one- 
dimensional memory, these five tables would have to be allocated contiguous 
chunks of virtual address space, as in Fig. 4-19. 

Virtual address space 

Space currently being 
used by the parse tree 

Symbol table has 
bumped into the 
source text table 

Figure 4-19. In a one-dimensional address space with growing tables, one table 
may bump into another. 

Consider what happens if a program has an exceptionally large number of 
variables. The chunk of address space allocated for the symbol table may fill up, 
but there may be lots of room in the other tables. The compiler could, of course, 
simply issue a. message saying that the compilation cannot continue due to too 
many variables. but doing so does not seem very sporting when unused space is 
left in the other tables. 

Another possibility is to play Robin Hood, taking space from the tables with 
an excess of room and giving it to the tables with little room. This shuffling can 
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be done, but it is analogous to managing one's own overlays-a nuisance at best 
and a great deal of tedious, unrewarding work at worst. 

What is really needed is a way of freeing the programmer from having to 
manage the expanding and contracting tables, in the same way that virtual memo- 
ry eliminates the worry of organizing the program into overlays, 

A straightforward and extremely general solution is to provide the machine 
with many completely independent address spaces, called segments. Each seg- 
ment consists of a linear sequence of addresses, from 0 to some maximum. The 
length of each segment' may be anything from 0 to the maximum allowed. Dif- 
ferent segments may, and usually do, have different lengths. Moreover, segment 
lengths may change during execution. The length of a stack segment may be in- 
creased whenever something is pushed onto the stack and decreased whenever 
something is popped off the stack. 

Because each segment constitutes a separate address. space, different seg- 
ments can grow or shrink independently, without affecting each other. If a stack 
in a certain segment needs more address space to grow, it can have it, because 
there is nothing else in its address space to bump into. Of course, a segment can 
fiIl up but segments are usually very large, so this occurrence is rare. Ta specify 
an address in this segmented or twodimensional memory, the program must sup- 
ply a two-part address, a segment number, and an address within the segment. 
Figure 4-20 illustrates a segmented memory being used for the compiler tables 
discussed earlier. 

Segment 
0 

Source 
text 

Segment 
1 

( Constants I 
Segment 

2 

. Parse 
tree 

Segment 
3 

stack 

Segment 
4 

Figure 4-2U. A segmented memory allaws each table to grow or shrink in- 
dependently of the other tables. 

We emphasize that a segment is a logical entity, which the programmer is 
aware of and uses as a logical entity. A segment might contain a procedure, or an 
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array, or a stack, or a collection of scalar variables, but usually it does not contain 
a mixture of different types. 

A segmented memory has other advantages besides simplifying the handling 
of data structures that are growing or shrinking. If each procedure occupies a sep- 
arate segment, with address 0 as its starting address, the linking up of procedures 
compiled separately is greatly simplified. After all the procedures that constitute 
a program have been compiled and linked up, a procedure call w the procedure in 
segment n will use the two-part address (n, 0) to address word 0 (the entry point). 

If the procedure in segment n is subsequently modified and recompiled, no 
other procedures need be changed (because no starting addresses have been modi- 
fied), even if the new version is larger than the old one. With a one-dimensional 
memory, the procedures are packed tightly next to each other, with no address 
space between them. Consequently, changing one procedure's size can affect the 
starting address of other, unrelated procedures. This, in turn, requires modifying 
all procedures that call any of the moved procedures, in order to incorporate their 
new starting addresses. If a program contains hundreds of procedures, this proc- 
ess can be costly. 

Segmentation also facilitates sharing procedures or data between several proc- 
esses. A common example is the shared library. Modern workstations that run 
advanced window systems often have extremely large graphical libraries com- 
piled into nearly every program. In a segmented system, the graphical library can 
be put in a segment and shared by multiple processes, eliminating the need for 
having it in every process' address space. While it is also possible to have shared 
libraries in pure paging systems, it is much more complidated. In effect, these 
systems do it by simulating segmentation. 

Because each segment forms a logical entity of which the programmer is 
aware, such as a procedure, or an array, or a stack, different segments can have 
different kinds of protection. A procedure segment can be specified as execute 
only, prohibiting attempts to read from it or store into it. A floating-point array 
can be specified as readwrite but not execute, and attempts to jump to it will be 
caught. Such protection is helpful in catching programming errors. 

You should try to understand why protection makes sense in a segmented 
memory but not in a one-dimensional paged memory. In a segmented memory 
the user is aware of what is in each segment. Normally, a segment would not con- 
tain a procedure and a stack, for example, but one or the other. Since each seg- 
ment contains only one type of object, the segment can have the protection 
appropriate for that particular type. Paging and segmentation are compared in 
Fig. 4-2 1. 

The contents of a page are, in a sense, accidental. The programmer is 
unaware of the fact that paging is even occurring. Although putting a few bits in 
each entry of the page table to specify the access allowed would be possible, to 
utilize this feature the programmer would have to keep track of where in his ad- 
dress space the page boundaries were. That is precisely the sort of administration 
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Consideration Paging 

N d  the programmer be aware 
that this technique is being used? 

How many linear address 
spaces are there? 

Can the lotal address space 
exceed the size of physical 
memory? 

Can procedures and data be 
distinguished and separately 
protected? 

Can tables whose size fluctuates 
be accommodated easity? 

Is sharing of procedures 
between users facilitated? 

Why was this technique 
invented? 

Yes 

To get a large 
linear address 
space without 
having to buy 
more physical 
memory 

Segmentation 

Yes 

Many 

Yes 

Yes 

Yes 

Yes 

To allow programs 
and data to be broken 
up into logically 
independent address 
spaces and to aid 
sharing and 
protection 

Figure 4-21. Comparison of paging and segmentation. 

that paging was invented to eliminate. Because the user of a segmented memory 
has the illusion that all segments are in main memory all the time-that is, he can 
address them as though they were-he can protect each segment separately, with- 
out having to be concerned with the administration of overlaying them. 

4.6.1 Implementation of Pure Segmentation 

The implementation of segmentation differs from paging in an essential way: 
pages are fixed size and segments are not. Figure 4-22(a) shows an example of 
physical memory initially containing five segments. Now consider what happens 
if segment 1 is evicted and segment 7, which is smaller, is put in its place. We 
anive at the memory configuration of Fig. 4-22(b). Between segment 7 and seg- 
ment 2 is an unused area-that is, a hole. Then segment 4 is replaced by segment 
5, as in Fig. 4-22(c), and segment 3 is replaced by segment 6, as in Fig. 4-22(d). 
After the system has been running for a while, memory will be divided up into a 
number of chbks,  some containing segments and some containing holes. This 
phenomenon, caIled checkerboarding or external fragmentation, wastes memo- 
ry in the holes. It can be dealt with by compaction, as shown in Fig. 4-22(e). 
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Figure 4-22. (a)-(d) Development of checkerboarding. (s) Removal of the 
checkerboarding by compact ion. 

4-62 Segmentation with E % @ I ~ ~ I U L T I C S  

If the segments are large, it may be inconvenient, or even impossible, to keep 
them in main memory in their entirety. This leads to the idea of paging them, so 
that only those pages that are actually needed have to be around. Several signifi- 
cant systems have supported paged segments. In this section we will describe the 
first one: MULTICS. In the next one we-will discuss a more recent one: the Intel 
Pentium. 

MULTICS ran on the Honeywell 6000 machines and their descendants and pro- 
vided each program with a virtual memory of up to 218 segments (more than 
250,000), each of which could be up to 65,536 (36-bit) words long. To implement 
this, the MULTlCs designers chose to treat each segment as a virtual memory and 
to page it,  cornbihing the advantages of paging (uniform page size and not having 
to keep the whole segment in memory if only part of it is being used) with the 
advantages of segmentation (ease of programming, modularity, protection, and 
sharing). 

Each MULTrCs program has a segment table, with one descriptor per segment. 
Since there are potentially more than a quarter of a million entries in the table, the 
segment table is itself st segment and is paged. A segment descriptor contains an 
indication of whether the segment is in main memory or not. If any part of the 
segment is in memory, the segment is considered to be in memory, and its page 
table will be in memory. If the segment is in memory, its descriptor contains an 
18-bit pointer to its page table [see Fig. 4-23(a)]. Because physical addresses are 
24 bits and pages are aligned on 44-byte boundaries (implying that the low-order 
6 bits of page addresses are 000000), only 18 bits are needed in the descript'or to 
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store a page table address. The descriptor also contains the segment size, the pro- 
tection bits, and a few other items. Figure 4-23(b) illustrates a MULTlCS segment 
descriptor. The address of the segment in secondary memory is not in the seg- 
ment descriptor but in another table used by the segment fault handler. 

- 36 bits - i: 

Segment 6 descriptor 

Prot-ion bits I 

Page 2 entry 

Page 1 entry 

Page 0 entry 

18 9 1 1 1  3 3 

Figure 4-23. The MULTICS virtual memory. (a) The descriptor segment paints 
to the page tables. tb) A segment descriptor. The numbers are the field lengths. 

Main memory address 
of the page table 

Each segment is an ordinary virtual address space and is paged in the same 
way as the nonsegrnented paged memory described earlier in this chapter. The 
normal page size is 1024 words (although a few small segments used by MULTlCS 
itself are not paged or are paged in units of 64 words to save physical memory). 
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An address in MULTICS consists of two parts: the segment and the address 
within the segment. The address within the segment is further divided into a page 
number and a word within the page, as shown in Fig. 4-24. When a memory 
reference occurs, the following algorithm is carried out. 

1. The segment number is used to find the segment descriptor. 

2. A check is made to see if the segment's page table is in memory. If 
the page table is in memory, it is located. If it is not, a segment fault 
occurs. If there is a protection violation, a fault (trap) occurs. 

3. The page table entry for the requested virtual page is examined. If 
the page is not in memory, a page fault occurs. If it is in memory, 
the main memory address of the start of the page is extracted from 
the page table entry. 

4. The offset is added to the page origin to give the main memory ad- 
dress where the word is located. 

5. The read or store finally takes place. 

Address within 
the segment 

Segment number 

Figure 4-24. A 34-bit M u ~ m c s  virtual address. 

paw 
number 

This process is illustrated in Fig. 4-25. For simplicity, the fact that the de- 
scriptor segment is itself paged has been omitted. What really happens is that a 
register (the descriptor base register), is used to locate the descriptor segment's 
page table, which, in turn, points to the pages of the descriptor segment. Once the 
descriptor for the needed segment has been found, the addressing proceeds as 
shown in Fig. 4-25. 

As you have no doubt guessed by now, if the preceding algorithm were actu- 
ally carried out by the operating system on every instruction, programs would not 
run very fast. In reality, the MULTlCs hardware contains a 16-word high-speed 
TLB that can search all its entries in parallel for a given key. It is iIlustrated in 
Fig. 4-26. When an address is presented to the computer, the addressing hardware 
first checks to see if the virtual address is in the TLB. If so, it gets the page frame 
number directly from the TLB and forms the actual address of the referenced 
word without having to look in the descriptor segment or page table. 

The addresses of the 16 most recently referenced pages are kept in the TLB. 
Programs whose working set is smaller than the TLB size will come to equili- 
brium with the addresses of the entire working set in the TLB and therefore will 

Offset within 
the page 



SEC. 4.6 SEGMENTATION 

MULTICS virtual address 

Segment number L 

Segment I 
number 

segment table 
Page 

Figure 4-25. Conversion of a two-part MULT~CS address into a main memory address. 

Comparison Is this 
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used? 
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Figure 4-26. A simplified version of the MULTICS TLB. The existence of two 
page sizes makes the actual TLB more complicated. 

run efficiently. If the page is not in the TLB, the descriptor and page tables are 
actually referenced to find the page frame address, and the TLB is updated to in- 
cludc this page, the least recently used page being thrown out. The age field 
keeps track of which entry is the least recently used. The reason that a TLB is 
used is for comparing the segment and page number of all the entries in parallel. 
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4.6.3 Segmentation with Paging: The Intel Pentium 

In many ways, the virtual memory on the Pentium (and Pentium Pro) resem- 
bles MULTICS, including the presence of both segmentation and paging. Whereas 
MULTICS has 256K independent segments, each up to 64K 36-bit words, the Pen- 
tium has 16K independent segments, each holding up to 1 billion 32-bit words. 
Although there are fewer segments, the larger segment size is far more important, 
as few programs need more than 1000 segments, but many programs need seg- 
ments holding megabytes. 

The heart of the Pentium virtual memory consists of two tables, the LDT 
(Local Descriptor Table) and the GDT (Global Descriptor Table). Each pro- 
gram has its own LDT, but there is a single GDT, shared by all the programs on 
the computer. The LDT describes segments local to each program, including its 
code, data, stack, and so on, whereas the GDT describes system segments, includ- 
ing the operating system itself. 

To access a segment, a Pentium program first loads a selector for that segment 
into one of the machine's six sqynm&xgisters. During execution, the CS register 
holds the selector for the code segment and the DS register holds the selector for 
the data segment. The other segment registers are less important. Each selector is 
a 16-bit number, as shown in Fig. 4-27. 

Biis 13 1 2  

0 = GOT11 = LDT Privilege level (0-3) 

Figure 4-27. A Pentium selector. 

One of the selector bits tells whether the segment is local or global (i.e., 
whether it is in the LDT or GDT). Thirteen other bits specify the LDT or GDT 
entry number, so these tables are each restricted to holding 8K segment descrip- 
tors. The other 2 bits relate to protection, and will be described later. Descriptor 
0 is forbidden. It may be safely loaded into a segment register to indicate that the 
segment register is not currently available. It causes a trap if used. 

At the time a selector is loaded into a segment register, the corresponding de- 
scriptor is fetched from the LDT or GDT and stored in microprogram registers, so 
it can be accessed quickly. A descriptor consists of 8 bytes, including the seg- 
ment's base address, size, a d  other information, as depicted in Fig. 4-28. . 

The format of the selector has been cleverly chosen to make locating the de- 
scriptor easy. First either the LDT or GDT is selected, based on selectar bit 2. 
Then the selector is copied to an internal scratch register, and the 3 low-order bits 
set to 0. Finally, the address of either the LDT or GDT table is added to it, to give 
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0: 16-Bit segment 
1 : 32-8it segment 

0: Segment 1s absent from memory 
1: Segment is present in memory 

1 Privilege level (0-3) 
0: Li is in bytes 
1 : Li is in pages 

Figure 4-28. Pentium code segment descriptor. Data segments differ slightly. 
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a direct pointer to the descriptor. For example, selector 72 refers to entry 9 in the 
GDT, which is located at address GDT + 72. 

Let us trace the steps by which a (selector, offset) pair is converted to a physi- 
cal address. As soon as the microprogram knows which segment register is being 
used, it can find the coinplete descriptor corresponding to that selector in its inter- 
nal registers. If the segment does not exist (selector 0), or is currently paged out, 
a trap occurs. 

It  then checks to see if the offset is beyond the end of the segment, in which 
case a trap also occurs. Logically, there should simply be a 32-bit field in the de- 
scriptor giving the size of the segment, but there are only 20 bits available, so a 
different scheme is used. If the Gbit (Granularity) field is 0, the Limit field is the 
exact segment size, up to 1 MB. If it is 1, the Limit field gives the segment size in 
pages instead of bytes. The Pentium page size is fixed at 4K bytes, so 20 bits are 
enough for segments up to 232 bytes. 

Assuming that the segment is in memory and the offset is in range, the Pen- 
tium then adds the 32-bit Base field in the descriptor to the offset to form what is 
called a linear address, as shown in Fig. 4-29. The Base field is broken up into 
three pieces and spread all over the descriptor for compatibility with the 286, in 
which the Base is only 24 bits. In effect, the Base field allows each segment to 
start at an arbitrary place within the 32-bit linear address space. 

If paging is disabled (by a bit in a global control register), the linear address is 
interpreted as the physical address and sent to the memory for the read or write. 
Thus with paging disabled, we have a pure segmentation scheme, with each seg- 
ment's base address given in its descriptor. Segments are permitted to overlap, 
incidentally, probably because it would be too much trouble and take too much 
time to verify that they were all disjoint. 

On the other hand, if paging is enabled, the linear address is interpreted as a 
virtual address and mapped onto the physical address using page tables, pretty 
much as in our earlier examples. The only real complication is that with a 32-bit 
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Figure 4-29. Conversion of a (selector. offset) pair to a. linear address. 

virtual address and a 4 K  page, a segment rnighr contain I million pages, so  a 
two-level mapping is used to reduce the page table size for small segments. 

Each running program has a page directory consisting of 1024 32-bit entries. 
It is located at an address pointed to by a global register. Each entry in this direc- 
tory points to a page table also containing 1024 32-bit entries. The page table en- 
tries point to page frames. The scheme is shown in Fig. 4-30. 

Page directory Page table Page frame 

i 
Entries t 

entry points 
page table to word 

(b) 

Linear address 
Bits 10 10 12 

Figure 4-30. Mapping of a linear address onto a physical address. 

Dir 

In Fig. 4-30(a) we see a linear address divided into three fields, Dir, Page, 
and Off. The Dir field is used to index into the page directory to locate a pointer 

Page Offset 
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to the proper page table. Then the Page field is used as an index into the page 
table to find the physical address of the page frame. Finally, OfSis added to the 
address of the page frame to get the physical address of the byte or word needed. 

The page table entries are 32 bits each, 20 of which contain a page frame 
number. The remaining bits contain access and dirty bits, set by the hardware for 
the benefit of the operating system, protection bits, and other utility bits. 

Each page table has entries for 1024 4K page frames, so a single page table 
handles 4 megabytes of memory. A segment shorter than 4M will have a page di- 
rectory with a single entry, a pointer to its one and only page table. In this way, 
the overhead for short segments is only two pages, instead of the million pages 
that would be needed in a one-level page table. 

To avoid making repeated references to memory, the Pentium, Iike MULTICS, 
has a small TLB that directly maps the most recently used Dir-Page combina- 
tions onto the physical address of the page frame. Only when the current combi- 
nation is not present in the TLB is the mechanism of Fig. 4-30 actually carried out 
and the TLB updated. 

A little thought will reveal the fact that when paging is used, there is really no 
point in having the Rase field in the descriptor be nonzero. All that Base does is 
cause a small offset to use an entry in the middle of the page directory, instead of 
at the beginning. The real reason for including Base at all is to allow pure (now 
paged) segmentation, and for compatibility with the 286, which always has paging 
disabled (i-e., the 286 has only pure segmentation, but not paging). 

It is also worth noting that if some application does not need segmentation but 
is content with a single, paged, 32-bit address space, that model is possible. All 
the segment registers can be set up with the same selector, whose descriptor has 
Base = 0 and Limit set to the maximum. The instruction offset will then be the 
linear address, with only a single address space used-in effect, normal paging. 

All in ail, one has to give credit to the Pentiurn designers. Given the conflict- 
ing goals of implementing pure paging, pure segmentation, and paged segments, 
while at the same time being compatible with the 286, and doing all of this effi- 
ciently, the resulting design is surprisingly simple and clean. 

Although we have covered the complete architecture of the Pentium virtual 
memory, albeit briefly, it is worth saying a few words about protection, sirice this 
subject is intimately related to the virtual memory. Just as the virtual memory 
scheme is closely modeled on MULTICS, so is the protection system. The Pentium 
supports four protection levels with level 0 being the most privileged and level 3 
the least. These are shown in Fig. 4-3 1. At each instant, a running program is at a 
certain level, indicated by a Zbit field in its PSW. Each segment in the system 
also has a level. 

AS long as a program restricts itself to using segments at its own level, every- 
thing works fine. Attempts to access data at a higher level are permitted. 
Attempts to access data at a lower level are illegat and cause traps. Attempts to 
call procedures at a different level (higher or lower) are allowed, but in a carefully 
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\ Level 

' Figure 4-31. Protection on the Pentiurn. 

controlled way. To make an interlevel call, the CALL instruction must contain a 
selector instead of an address. This selector designates a descriptor called a call 
gate, which gives the address of the procedure to be called. Thus it is not possible 
to jump into the middle of an arbitrary code segment at a different level. Only of- 
ficial entry points may be used. The concepts of protection levels and call gates 
were pioneered in MULTICS, where they were viewed as protection rings. 

A typical use for this mechanism is suggested in Fig. 4-31. At level O, we 
find the kernel of the operating system, which handles UO, memory management, 
and other critical matters. At level I ,  the system call handler is present. User pro- 
grams may call procedures here to have system calls carried out, but only a spe- 
cific, and protecred list of procedures may be called. Level 2 contains library pro- 
cedures, possibly shared among many running programs. User programs may call 
these procedures and read their data, but they may not modify them. Finally, user 
programs run at level 3, which has the least protection. 

Traps and interrupts use a mechanism similar to the call gates. They, too, ref- 
erence descriptors, rather than absolute addresses, and these descriptors point to 
specific procedures to be executed. The Type field in Fig. 4-28 distinguishes be- 
tween code segments, data segments, and the various kinds of gates. 

Memory management in MINfX is simple: neither paging nor swapping is 
used. The meniary manager maintains a list of holes sorted in memory address 
order, When memory is needed, either due to a FORK or an EXEC system call, the 



SEC. 4.7 OVERVIEW OF MEMORY MANAGEMENT IN MlNlX 

hole list is searched using first fit for a hole that is big enough. Once a process 
has been placed in memory, it remains in exactly the same place until it termi- 
nates. it  is never swapped out and also never moved to another place In memory. 
Nor does the allocated area ever grow or shrink. 

This strategy deserves some explatlation. It derives from three factors: ( I )  the 
idea that MINIX is for personal computers, rather than for large timesharing sys- 
tems, (2) the desire to have MINIX work on all IBM PCs, and (3) a desire to make 
the system straightforward to implement on other small computers. 

The first factor means thal, on the average, the number of running processes 
will be small, so that typically enough memory will be available to hold all the 
processes with room left over. Swapping will not be needed then. Since it adds 
complexity to the system, not swapping leads to simpler code. 

The desire to have MINIX run on all IBM PC-compatible computers also had 
substantial impact on the memory management design. The simplest systems in 
this family use the 8088 processor, whose memory management architecture is 
very primitive. It does not support virtual memory in any form and does not even 
detect stack overflow, a defect that has major implications for the way processes 
are laid out in memory. These limitations do not exist in later designs which use 
the 80386, 80486, or Pentium processors. However, taking advantage of these 
features would make MINIX incompatible with many low-end machines that are 
still serviceable and in use. 

The portability issue argues for as simple a memory management scheme as 
possible. If MINIX used paging or segmentation, it would be difficult, if not im- 
possible, to port it to machines not having these features. By making a minimal 
number of assumptions about what the hardware can do, the number of machines 
to which MINIX can be ported is increased. 

Another unusual aspect of MINIX is the way the memory management is 
implemented. 1i is not part of the kernel. Instead, it is handled by the memory 
manager process, which runs in  user space and communicates with the kernel by 
the standard message mechanism. The position of the memory manager in the ser- 
ver level is shown in Fig. 2-26. 

Moving the memory manager out of the kernel is an example of the separation 
of policy and mechanism. The decisions about which process will be placed 
where in memory (policy) are made by the memory manager. The actual setting 
of memory maps for processes (mechanism) is done by the system task within the 
kernel. This split makes it relatively easy to change the memory management 
policy (algorithms, etc.) without having to modify the lowest layers of the operat- 
ing system. 

Most of the memory manager code is devoted to handling the MINIX system 
calls that involve memory management, primarily FORK and EXEC, rather than just 
manipulating lists of processes and holes. In the next section we will look at the 
memory layout, and in subsequent sections we will take a bird's-eye view of how 
the memory management system calls are processed by the memory manager. 
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4.7.1 Memory Layout 

Simple M I N U  processes use combined I and D space, in which all parts of the 
process (text, data, and stack) share a block of memory which is allocated and 
released as one block. Processes can also be compiled to use separate I and D 
space. For clarity, allocation of memory for the simpler model will be discussed 
first. Processes using separate I and D space can use memory more efficiently, 
but taking advantage of this feature complicates things. We will discuss the com- 
plications after the simple case has been outlined. 

Memory is allocated in MINIX on two occasions. First, when a process forks, 
the amount of memory needed by the child is allocated. Second, when a process 
changes its memory image via the EXEC system call, the old image is returned to 
the free list as a hole, and memory is alIocated for the new image. The new image 
may be in a part of memory different from the released memory. Its location will 
depend upon where an adequate hole is found. Memory is also released whenever 
a process terminates, either by exiting or by being killed by a signal. 

Figure 4-32 shows both ways of allocating memory. In Fig. 4-32(a) we see 
two processes, A and B, in memory. If A forks, we get the situation of Fig. 4- 
32(b). The child is an exact copy of A. If the child now executes the file C, the 
memory looks like Fig. 4-32(c). The child's image is replaced by C. 

Upper 
memory 

limit 

Figure 4-32. Memory ahcation. (a) OriginaHy. (b) After a sY FORK. (c) After 
the child does an EXEC . The shaded regions are unused memory. The process is 
a common 1&D one. 

Note that the old memory for the child is released before the new memory for 
C is allocated, so that C can use the child's memory. In this way, a series of FORK 
and EXEC pairs (such as the shell setting up a pipeline) results in all the processes 
being adjacent, with no holes between them, as would have been the case had the 
new memory been allocated before the old memory had been released. 

When memory is allocated, either by the FORK or EXEC system cdls, a certain 
amount of it is taken for the new process. In the former case, the amount taken is 
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identical to what the parent process has. In the latter case, the memory manager 
takes the amount specified in the header of the file executed. Once this allocation 
has been made, under no conditions is the process ever allocated any more total 
memory. 

What has been said so far applies to programs that have been compiled with 
combined I and D space. Programs with separate 1 and D space take advantage of 
an enhanced mode of memory management called shared text. When such a 
process does a FORK, only the amount of memory needed for a copy of the new 
process' data and stack is allocated. Both the parent and the child share the exe- 
cutable code already in use by the parent. When such a process does an EXEC, a 
search is made of the process table to see if another process already is using the 
executable code needed. If one is found, new memory is allocated only for the 
data and stack, and the text already in memory is shared. Shared text complicates 
termination of a process. When a process terminates it always releases the rnerno- 
ry occupied by its data and stack. But it only releases the memory occupied by its 
text segment after a search of the process table reveals that no other current proc- 
ess is sharing that memory. Thus a process may be allocated more memory when 
it starts than it releases when it terminates, if it loaded its own text when it started 
but that text is being shared by one or more other processes when the first process 
terminates. 

-T- I Stack segment grows downward 

Size Data segment grows upward 
(or downward) when BRK 
calls are made. 

(a) (b) 

Figure 4-33. (a) A program as stored in a disk file. (b) Internal memory layout 
for a single process. In both parts of the figure the lowest disk or memory ad- 
dress is at the bottom and the highest address is at the top. 

Figure 4-33 shows how a program is stored as a disk file and how this is trans- 
ferred to the internal memory layout of a MINIX process. The header on the disk 
file contains information about the sizes of the different parts of the image, as 
well as the total size. In the header of a program with common I and D space, a 
field specifies the total size of the text and data parts; these parts are copied 
directly to the memory image. The data part in the image is enlarged by the 
amount specified in the bss field in the header. This area is cleared to contain all 
zeroes and is used for uninitialized static data. The total amount of memory to be 
allocated is specified by the total field in the header. If, for example, a program 
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has 4K of text, 2K of data plus bss, and 1K of stack, and the header says to allo- 
cate 40K total, the gap of unused memory between the data segment and the stack 
segment will be 33K. A program file on the disk may also contain a symbol table. 
This is for use in debugging and is not copied into memory. 

If the programmer knows that the total memory needed for the combined 
growth of the data and stack segments for the file a.out is at most 10K, he can 
give the command 

chmem =I0240 a.out 

which changes the header field so that upon EXEC the memory manager allocates 
a space 10240 bytes more than the sum of the initial text and data segments. For 
the above example, a total of 16K will be allocated on all subsequent EXECS of the 
file. Of this amount, the topmost 1K will be used for the stack, and 9K will be in 
the gap, where it can be used by growth of the stack, the data area, or both. 

For a program using separate I and D space (indicated by a bit in the header 
that is set by the linker), the total field in the header applies to the combined data 
and stack space only. A program with 4K of text, 2K of data, 1 K of stack, and a 
total size of 44K will be allocated 68K (4K instruction space, 64K data space), 
,leaving 61K for the data segment and stack to consume during execution. The 
boundary of the data segment can be moved only by the BRK system call. All BRK 
does is check to see if the new data segment bumps into the current stack pointer, 
and if not, notes the change in some internal tables. This is entirely internal to the 
memory originally allocated to the process; no additional memory is allocated by 
the operating system. If the new data segment bumps into the stack, the call fails. 

This strategy was chosen to make it possible to run MINIX on an TBM PC with 
an 8088 processor, which does not check for stack overflow in hardware. A user 
program can push as many words as it wants onto the stack without the operating 
system being aware of it. On computers with more sophisticated memory man- 
agement hardware, the stack is allocated a certain amount of memory initially. If 
it attempts to grow beyond this amount, a trap to the operating system occurs, and 
the system allocates another piece of memory to the stack, if possible. This trap 
does not exist on the 8088, making it dangerous to have the stack adjacent to any- 
thing except a large chunk of unused memory, since the stack can grow quickly 
and without warning. MINIX has been designed so that when it is implemented on 
a computer with better memory management, it is straightforward to change the 
MINIX memory manager. 

This is a good place to mention a possible semantic difficulty. When we use 
the word "segment," we refer to an area of memory defined by the operating sys- 
tem. The Intel 80x86 processors have a set of internal "segment registers" and 
(in the more advanced processors) "segment descriptor tables" which provide 
hardware support for "segments." The Intel hardware designers' concept of a seg- 
ment is similar to, but not always the same as, the segments used and defined by 
MINIX, All references to segments in this text should be interpreted as references 
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to memory areas delineated by MINIX data structures. We will refer explicitly lo 
segment registers or segment descriptors when talking about the hardware. 

This warning can be generalized. Hardware designers often try to provide 
support for the operating systems that they expect to be used on their machines, 
and the terminology used to describe registers and other aspects of a processor's 
architecture usually reflects an idea of how the features wiIl be used. Such 
features are often useful to the implementor of an operating system, but they may 
not be used in the same way the hardware designer foresaw. This can lead to 
misunderstandings when the same word has different meanings when used to de- 
scribe an aspect of an operating system or of the underlying hardware. 

4.7.2 Message Handling 

Like all the other components of MINIX, the memory manager is message 
driven. After the system has been initialized, the memory manager enters its main 
loop, which consists of waiting for a message, carrying out the request contained 
in the message, and seding a reply. Figure 4-34 gives the list of legal message 
types, their input parameters, and the value sent back in the reply message. 

FORK, EXIT, WAIT, WAITPID, BRK, and EXEC are clearly closely related to 
memory allocation and deallocation. The calls KILL, ALARM, and PAUSE are all 
related to signals, as are SIGACTION, SIGSUSPEND, SIGPENDING, SIGMASK, and 
SIGRETURN. These also can affect what is in memory, because when a signal kills 
a process the process' memory is deallocated.' REBOOT has effects throughout the 
operating system, but its first job is to send signals to terminate all processes in a 
controlled way, so the memory manager is a good place for it. The seven GET/SET 

calls have nothing to do with memory management at all. They also have nothing 
to do with the file system. But they had to go either in the file system or the 
memory manager, since each system call is handled by one or the other. They 
were put here simply because the file system was large enough already. PTRACE, 
which is used in debugging, is here for the same reason. 

The final message, KSIG, is not a system calf. KSIG is the message type used 
by the kernel to inform the memory manager of a signal originating in the kernel, 
such as SIGINT, SIGQUIT, or SIGALRM. 

Although there is a library routine sbrk, there is no system call SBRK. The 
library routine computes the amount of memory needed by adding the increment 
or decrement specified as parameter to the current size and makes a BRK call to 
set the size. Similarly, there are no separate system calls for geteuid and geregid. 
The calls GETU~D and GETGID return both the effective and real identifiers. In like 
manner, GETPlD returns the pid of both the calling process and its parent. 

A key data structure used for message processing is the table call-vec 
declared in tab1e.c (line 165 15). It contains pointers to the procedures that handle 
the various message types. When a message comes in to the memory manager, 
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Messa@!ttype I Input parameters 1 Reply value 

I WAIT I (none) I Status I 

FORK 

EXIT 

(none) 

Exit status 

WAITPID 

BRK 

Child's pid, (to child: 0) 

(No reply if successful) 

EXEC 

KILL 

ALARM 

(none) 

New size 

PAUSE 

SlGACTlON 

SIGSUSPEND 

I SIGRETURN I context status 

Status 

New size 

Pointer to initial stack 

Process identifier and signal 

Number of seconds to wait 

SlGPENDlNG 

SIGMASK 

(NO reply if successful) 

Status 

Residual time 

(none) 

Sig. number, action, old action 

Signal mask 

I GETGlD I (none) 1 Gid, effective gid I 

(No reply if successful) 

Status 

(No reply if successful) 
1 

(none) 

How, set, old set 

GETUlD 

1 GETPID 1 (none) I Pid, parent pid 1 

Status 

Status 

(none) I Uid, effective uid ! 

1 New uid I status I 

GETPGRP 

PTRACE 

REBOOT 

Figure 4-34. The message types, input parameters, and reply values used for 
communicating with the memory manager. 

New gid 

New sid 

New gid 

Request, pid, address, data 

How (halt, reboot, or panic) 

Process slot and signals 

the main loop extracts the message type and puts it in the global variable 
mm,call. This value is then used to index into callvec to find the pointer to the 

Status 

Process group 

Process group 

Status 

(No repty if successful) 

( No refly) 

procedure that handles the newly d v e d  message. That procedure is then called 
to execute the system call. The value that it returns is sent back to the caller in the 
reply message to report on the success or failure of the call. This mechanism is 
similar to that of Fig. 1 - 16, only in user space rather than in the kernel. 
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4.7.3 Memory Manager Data Structures and Algorithms 

The rnemory manager has two key data structures: the process table and the 
hole table. We will now look at each of these in turn. 

In Fig. 2-4 we saw that some process.table fields are needed for process man- 
agement, others for memory management, and yet others for the file system. In 
MINIX, each of these three pieces of the operating system has its own process 
table, containing just those fields that it needs. The entries correspond exactly, to 
keep things simple. Thus, slot k of the memory manager's table refers to the same 
process as slot k of the file system's table. When a process is created or destray- 
ed, all three parts update their tables to reflect the new situation, in order to keep 
them synchronized. 

The rnemory manager's process table is called mproc; its definition is in 
/usr/src/mm/mproc.h. It contains a11 the fields reIated to a process' memory al- 
location, as well as some additional items. The most important field is the array 
mp-seg, which has three entries, for the text, data, and stack segments, respec: 
lively. Each entry is a structure containing the virtual address, physical address, 
and length of the segment, all measured in clicks rather than in bytes. The size of 
a click is implementation dependent; for standard MINIX it is,256 bytes. All seg- 
ments must start on a click boundary and occupy an integral number of clicks. 

The method used for recording memory allocation is shown in Fig. 4-35. In 
this figure we have a process with 3K of text, 4K of data, a gap of lK,  and then a 
2K stack, for a total memory allocation of IOK. In Fig. 4-35(b) we see what the 
virtual, physical, and length fields for each of the three segments are, assuming 
that the process does not have separate I and D space. In this model, the text seg- 
ment is always empty, and the data segment contains both text and data. When a 
process references virtual address 0, either to jump to it or to read it (i.e., as in- 
struction space or as data space), physical address 0x32000 (in decimal, 200K) 
will be used. This address is at click 0x320. 

Note that the virtual address at which the stack begins depends initially on the 
total amount of memory allocated to the process. If the chmem command were 
used to modify the file header to provide a larger dynamic allocation area (bigger 
gap between data and stack segments), the next time the file was executed, the 
stack would start at a higher virtual address. If the stack grows longer by one 
click, the stack entry should change from the triple (Ox20,0~340,0x8) to the triple 
(OxlF, Ox33F, 0x9). 

The 8088 hardware does not have a stack limit trap, and MINIX defines the 
stack in a way that will not trigger the trap on 32-bit processors until the stack has 
already overwritten the data segment. Thus, this change will not be made until 
the next BRK system call, at which point the operating system explicitly reads S P  
and recomputes the segment entries. On a machine with a stack trap, the stack 
segmeni's entry could be updated as soon as the stack outgrew its segment. This 
is not done by MINIX on 32-bit Intel processors, for reasons we will now discuss. 
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Address (hex) Virtual Physical Length 

€---l 
r-4-2 1 OK (0x34800) Data 

Stack 
208K (0x34000) 
2 0 7 K  (Ox33dO) 

Virtual Physical Length 

u Text 

(a) (4 

Figure 4-35 (a) A process in memory. (b) Its memory representation for 
nonseparate I and D space. (c)  Its memory representation for separate I and D 
space. 

We mentioned previously that the efforts of hardware designers may not 
always produce exactly what the software designer needs. Even in protected 
mode on a Pentium, MINIX does not trap when the stack outgrows its segment. 
Although in protected mode the Intel hardware detects attempted access to memo- 
ry outside ; segment (as defined by a segment descriptor such as the one in 
Fig. 4-28), in MINIX the data segment descriptor and the stack segment descriptor 
are always identical. The MINIX-defined data and stack each use part of this , 
space, and thus either or both can expand into the gap between them, However, 
only MINIX can manage this. The CPU has no way to detect errors involving the 
gap, since as far as the hardware is concerned the gap is a valid part of both the 
data area and the stack area, Of course, the hardware can detect a very large 
error, such as an attempt to access memory outside the combined data-gap-stack 
area. This will protect one process from another process' mistakes but is not 
enough to protect a process fiom itself. 

A design decision was made here. We recognize an argument can be made 
for abandoning the shared hardware-defined segment that allows MINIX to dynam- 
ically reallocate the gap area. The alternative, using the hardware to define nono- 
verlapping stack and data segments, would offer somewhat more security from 
certain errors but would make MINIX more memory-hungry. The source code is 
available to anybody who wants to evaluate the other approach. 

Fig. 4-35(c) shows the segment entries for the memory layout of Fig. 4-35(a) 
for separate I and D space. Here both the text and data segments are nonzero in 
length. The mp-seg array shown in Fig. 4-35(b) or (c) is primarily used to map 
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virtual addresses onto physical memory addresses. Given a virtual address and 
the space to which it belongs, it is a simple matter to see whether the virtual ad- 
dress is legal or not (i.e., falls inside a segment), and if legal, what the correspond- 
ing physical address is. The kernel procedure u m p  performs this mapping for the 
VO tasks and for copying to and from user space, for example. 

Stwk 

Data 

Text 

Virtual Physical Length 

Ox34800 
I Stack I 

7 

( P ~ W  1) 
Virtual Physical Length 0x34000 7 '*@4 0133dX) 
Ox1 4 1 0x340 1 0x8 

Process 2 

(c) 

Figure 4-36. (a) The memory map of a separate I and D space process, as in the 
previous figure. (b) The layout in memory after a second process starts. execut- 
ing the same progrgm image with shared text. ( c )  The memory map of the 
second process. 

The contents of the data and stack areas belonging to a process may change as 
the process executes, but the text does not change. It is common for several proc- 
esses to be executing copies of the same program. for instance several users may 
be executing the same shell. Memory efficiency is improved by using shared text. 
When EXEC is about to load a process, it opens the file halding the disk image of 
the program to be loaded and reads the file header. If the process uses separate I 
and D space, a search of the mp-dev, mp-;no, and mp-ctime fields in each slot of 
mproc is made. These hold the device and i-node numbers and changed-status 
times of the images being executed by other processes. If a process already 
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loaded is found to be executing the same program that is about to be loaded, there 
is no need to allocate memory for another copy of the text. Instead the mp-seg[q  
portion of the new process' memory map is initialized to point to the same place 
where the text segment is already loaded, and only the data and stack portions are 
set up in a new memory allocation. This is shown in Fig. 4-36. If the program 
uses combined I and D space or no match is found, memory is allocated as shown 
in Fig. 4-35 and the text and data for the new process are copied in from the disk. 

In addition to the segment information, mproc also holds the process ID (pid) 
of the process itself and of its parent, the uids and gids (both real and effective), 
information about signals, and the exit status, if the process has already ter- 
minated but its parent has not yet done a WAIT for it. 

The other major memory manager table is the hole table, hole, defined in 
al loc .~ ,  which lists every hole in memory in order of increasing memory address. 
The gaps between the data and stack segments are not considered holes; they have 
already been allocated to processes. Consequently, they are not contained in the 
free hole list. Each hole list entry has three fields: the base address of the hole, in 
clicks; the length of the hole, in clicks; and a pointer to the next entry on the list. 
The list is singly linked, so it is easy to find the next hole starting from any given 
hole. but to find the previous hole, you have to search the entire list from the be- 
ginning until you come to the given hole. 

The reason for recording everything about segments and holes in clicks rather 
than bytes is simple: it is much more efficient, In 16-bit mode, 16-bit integers are 
used for recording memory addresses, so with 256-bit clicks, up to 16 MB of 
memory can be supported. In 32-bit mode, address fields can refer to up to 2w 
bytes, which is 1024 gigabytes. 

The principal operations on the hole list are allocating a piece of memory of a 
given size and returning an existing allocation. To allocate memory, the hole list 
is searched, starting at the hole with the lowest address, until a hole that is large 
enough is found (first fit). The segment is then allocated by reducing the hole by 
the amount needed for the segment, or in the rare case of an exact fit, removing 
the hole from the tist. This scheme is fast and simple but suffers from both a 
small amount of internal fragmentation (up to 255 bytes may be wasted in the 
final click, since an integral number of clicks is always taken) and external frag- 
mentation. 

When a process terminates and is cleaned up, its data and stack memory are 
returned to the free list. If it uses common I and D, this releases all its memory, 
since such programs never have a separate allocation of memory for text. If the 
program uses separate I and D and a search of the process table reveals no other 
process is sharing the text, the text allocation will also be returned. Since with 
shared text the text and data regions are not necessarily contiguous, two regions of 
memory may be returned. For each region returned, if either or both of the 
region's neighbors are holes, they are merged, so adjacent holes never occur. In 
this way, the number, location, and sizes of the holes vary continuously during 
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system operation, Whenever all user processes have terminated, all of available 
memory is once again ready for allocation. This isn't necessarily a single hole, 
however, since physical memory may be intempted by regions unusable by the 
operating system, as in IBM compatible systems where read-only memory (ROM) 
and memory reserved for I/0 transfers separate usable memory below address 
640K from memory above 1 M. 

4.7.4 The FORK, EXIT, and WAIT System Calls 

When processes are created or destroyed, memory must be allocated or deal- 
located. Also, the process table must be updated, including the parts held by the 
kernel and FS. The memory manager coordinates all this activity. Process crea- 
tion is done by FORK, and carried out in the series of steps shown in Fig. 4-37. 

1. Check to see if process table b fuH. 

2. Try to allqcate memory for the child's data and stack. 

3. Copy the parent's data and stack to the child's nwmory. - 
4. Find a free process slot and copy parent's slot to it. 

5. Enter child's memory map in process table. 

6. Choose a pid for the child. 

7. Tell kernel and file system about child. 

8. Report child's memory map to kernel. 

9. Send reply messages to parent and child. 

Figure 4-37. The steps required to carry out t h e . m ~ ~  system call 

It is difficult and inconvenient to stop a FORK call part way through, so the 
memory manager maintains a count at all times of the number of processes cur- 
rently in existence in brder to see easily if a process tabk slot is available. If the 
table is not full, an attempt is made to allocate memory for the child. If the pro- 
gram is one with separate I and D space, only enough memory for new data and 
stack allocations is requested. If this step also succeeds, the FORK is guaranteed to 
work. The newly allocated memory is then filled in, a process slot is located and 
filled in, a pid is chosen, and the other parts of the system are informed that a new 
process has been created. 

A process fully terminates when two events have both happened: ( I )  the proc- 
ess itself has exited (or has been killed by a signal), and (2) its parent has exe- 
cuted a WAIT system call to find out what happened. A process that has exited or 
has been killed, but whose parent has not (yet) done a WAIT for it, enters a kind of 
suspended animation, sometimes known as zombie state. It is prevented from 
being scheduled and has its alarm timer turned off (if it was on), but it is not 
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removed from the process table. Its memory is freed. Zombie state is temporary 
and rarely lasts long. When the parent finally does the WAIT, the process table 
slot is freed, and the file system and kernel are informed. 

A problem arises if the parent of an exiting process is itself already dead. If 
no special action were taken, the exiting process would remain a zombie forever. 
Instead, the tables are changed to make it a child of the init process. When the 
system comes up, init reads the /etc/ttytab file to get a list of all terminals, and 
then forks off a login process to handle each one. It then blocks, waiting for proc- 
esses to terminate. In this way, orphan zombies are cleaned up quickly. 

4.7.5 The EXEC System Call 

When a command is typed at the terminal, the shell forks off a new process, 
which then executes the command requested. It would have been possible to have 
a single system call to do both FORK and EXEC at once, but they were provided as 
two distinct calls for a very good reason: to make it easy to implement I/0 re- 
direction, When the shell forks, if standard input is redirected, the child closes 
standard input and then opens .the new standard input before executing the com- 
mand. In this way the newly started process inherits the redirected standard input. 
Standard output is handled the same way. 

EXEC is the most complex system call in MINIX. It must replace the current 
memory image with a new one, including 'setting up a new stack. It carries out its 
job in a series of steps, as shown in Fig. 4-38. 

1. Check permissions-is the file executable? 

2. Read the header to get the segment and total sizes. 

3. Fetch the arguments and environment from the caller. 

1 4. Allocate new memory end release unneeded old memory. ( 
- .- 

5. Copy stack to new memory image. 

6. Copy data (and possibly text) segment to new memory image. 

7. Check for and handle setuid, setgid bits. 

8. Fix up process table entry. 

9. Tell kernel that process is now runnable. 

Figure 4-38. The steps required to carry out the EXEC system call. 

Each step consists, in turn, of yet smaller steps, some of which can fail. For 
example, there might be insufficient memory available. The order in which the 
tests are made has been carefully chosen to make sure the old memory image is 
not released until it is certain that the EXEC will succeed, to avoid the embanass- 
ing situation of not being able to set up a new memory image, but not having the 
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old one to go back to, either. Normally EXEC does not return, but if it fails, the 
calling process must get control again, with an error indication. 

There are a few steps in Fig. 4-38 that deserve some more comment. First is 
the question of whether or not there is enough room or not. After determining 
how much memory is needed, which requires determining if the text memory of 
another process can be shared, the hole list is searched to check whether there is 
sufficient physical memory before freeing the old memory-if the old memory 
were freed first and there were insufficient memory, it would be hard to get the 
old image back again. 

However, this test is overly strict. It sometimes rejects EXEC calls that, in 
fact, could succeed. Suppose, for example, the process doing the EXEC call occu- 
pies 20K and its text is not shared by any other process. Further suppose that 
there is a 30K hole available and that the new image requires 50K. By testing be- 
fore releasing, we wiH discover that only 30K is available and reject the call. If 
we had released first, we might have succeeded, depending on whether or not the 
new 20K hole were adjacent to, and thus now merged with, the 30K hole. A more 
sophisticated implementation could handle this situation a little better. 

Another possible improvement would be to search for two holes, one for the 
text segment and one for the data segment, if the process to be ~xECed uses sepa- 
rate I and D space. There is no need for the segments to be contiguous. 

A more subtle issue is whether the executable file fits in the virtual address 
space. The problem is that memory is allocated not in bytes, but in 256-byte 
clicks. Each click must belong to a single segment, and may not be, for example, 
half data, half stack, becausehe entire memory administration is in clicks. 

To see how this restriction can give trouble, note that the address space on 
16-bit systems (8088 and 80286) is limited to 64K, which can be divided into 256 
clicks. Suppose that a separate I and D space program has 40,000 bytes of text, 
32,770 bytes of data, and 32,760 bytes of stack. The data segment occupies 129 
clicks, of which the last one is only partially used; still, the whole click is part of 
the data segment. The stack segment is 128 clicks. Together they exceed 256 
clicks, and thus cannot co-exist, even though the number of bytes needed fits in 
the virtual address space (barely). In theory this problem exists on all machines 
whose click size is larger than 1 byte, but in practice it rarely occurs on Pentium- 
class processors, since they permit large (4-GB) segments. 

Another important issue is how the initial stack is set up. The library call nor- 
mally used to invoke EXEC with arguments and an environment is 

execve(name, argv, envp); 

where name is a pointer to the name of the file to be executed, argv is a pointer to 
an array of pointers, each one pointing to an argument, and envp is a pointer to an 
array of pointers, each one pointing to an environment string. 

It would be easy enough to implement EXEC by just putting the three pointers 
in the message to the memory manager and letting it fetch the file name and two 
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arrays by itself. Then it would have to fetch each argument and each string one at 
a time. Doing it this way requires at least one message to the system task per 
argument or string and probably more, since the memory manager has no way of 
knowing how big each one is in advance. 

To avoid the overhead of multiple messages to read all these pieces, a com- 
pletely different strategy has been chosen. The execve library procedure builds 
the entire initial stack inside itself and passes its base address and size to the 
memory manager. Building the new stack within the user space is highly effi- 
cient, because references to the arguments and strings are just local memory refer- 
ences, not references to a different address space. 

Environment 
array 

- 
HOME = Iusrlast 

Argument 
array 

Figure 4-39. (a) The arrays passed to exectVe. (b) The stack built by execve. (c) 
. The stack after relocation by the memory manager. (d) The stack as it appears 

to main at the starl of execution. 

To make this mechanism clearer, consider an example. When a user types 

Is - I  f.c g.c 

to the shell, the shell interprets it and then makes the call 

execve("/bin/lst', argv, envp) ; 

to the Iibrary procedure. The contents of the two pointer arrays are shown in 
Fig. 4-39(a). The procedure execve, within the shell's address space, now builds 
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the initial stack, as shown in Fig. 4-39(b). This stack is eventually copied intact to 
the memory manager during the processing of the EXEC call. 

When the stack is finally copied to the user process, it will not be put at vir- 
tual address 0. Instead, it will be put at the end of the memory allocation, as 
determined by the total memory size field in the executable file's header. As an 
example, let us arbitrarily assume that the total size is 8192 bytes, so the last byte 
available to the program is at address 8191. It is up to the memory manager to 
relocate the pointers within the stack so that when deposited into the new address, 
the stack looks like Fig. 4-39(c). 

When the EXEC call completes and the program starts running, the stack will 
indeed look exactly like Fig. 4-39(c), with the stack pointer having the value 
8136, However, another problem is yet to be dealt with. The main program of 
the executed file is probabky declared something like this: 

main(argc, argv, envp); 

As far as the C compiler is concerned, main is just another function. It does not 
know that main is special, so it compiles code to access !he three parameters on 
the assumption that they will be passed according to the standard C calling con- 
vention, last parameter first. With one integer and two pointers, the three parame- 
ters are expected to occupy the three words just before the return address. Of 
course, the stack of Fig. 4-39(c) does not look like that at all. 

The solution is that programs do not begin with main, Instead, a small, as- 
sembly language routine called the C run-time, start-off procedure, crtso, is 
always linked in at text address 0 so it gets control first. Its job is to push three 
more words onto the stack and then to call main using the standard call instruc- 
tion. This results in the stack of Fig. 4-39(d) at the time that main starts execut- 
ing. Thus, main is tricked into thinking it was called in the usual way (actually, it 
is not really a trick; it is called that way). 

If the programmer neglects to call exit at the end of main, control will pass 
back to the C run-time, start-off routine when main is finished. Again, the com- 
piler just sees main as an ordinary procedure and generates the usud code to re- 
turn from it after the last statement. Thus main returns to its caller, the C run- 
time, start-off routine which then calls exit itself. Most of the code of 32-bit crtso 
is shown in Fig. 4-40. The comments should make its operation clear. All that 
has been Left out is the code that loads the registers that are pushed and a few lines 
that set a flag that indicates if a floating point coprocessor is present or not. 

4.7.6 The BRK System Call 

The library procedures brk and sbrk are used to adjust the upper bound of the 
data segment. The former takes an absolute size (in bytes) and calls BRK. The 
latter takes a positive or negative increment to the current size, computes the new 
data segment size, and then calls BRK. There is no actual SBRK system call. 
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push ecx ! push environ 
push edx ! push argv 
push eax ! push argc 
call -main ! main(argc, argv, envp) 
push eax ! push exit status 
call -exit 
hlt ! force a trap if exit fails 

Figure 4-40. The key pan of the C run-time, start-off routine. 

An interesting question is: "How does sbrk keep track of the current size, so i t  
can compute the new size?" The answer is that a variable, brksite, always holds 
the current Size so shrk can find it. This variable is initialized to a compiler gen- 
erated symbol giving the initial size of text plus data (nonseparate 1 and D) or just 
data (separate I and D). The name, and, in fact, very existence of such a symbol 
is compiler dependent, and thus it will not be found defined in any header file in 
the source file directories. It  is defined in the library, in the file brksi2e.s. Exactly 
where it will be found depends on the system, but it will be in the same directory 
as crts0.s. 

Carrying out BRK is easy for the memory manager. All that must be done is to 
check to see that everything still fits in the address space, adjust the tables, and 
tell the kernel. 

4.7.7 Signal Handling 

In Chap. 1 signals were described as a mechanism to convey information to a 
process that is not necessarily waiting for input. There is a defined set of signals, 
and each signal has a default action-ither kill the process to which it is directed, 
or ignore the signal. Signal processing would be easy to understand and to imple- 
ment if these were the only alternatives. However, processes can use system calls 
that alter these responses. A process can request that any signal (except for the 
special SIGKrLL signal) be ignored. Furthermore, a process can prepare to catch a 
signal by requesting that a signal handler procedure internal to the process be 
activated instead of the default action for any signal (except, again, for SICKILL). 
Thus to the programmer it appears that there are two distinct times when the 
operating system deals with signals: a preparation phase when a process may 
modify its response to a future signal, and a response phase when a signal is gen- 
erated and acted upon. The action can be execution of a custom-written signal 
handler. There is actually a third phase. When a user-written handler terminates, 
a special system call cleans up and restores normal operation of the signaled proc- 
ess. The programmer does not need to know about this third phase. He writes a 
signal handler just like any other function. The operating system takes care of the 
details of invoking and terminating the handler and managing the stack. 
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In the preparation phase there are several system calls that a process can exe- 
cute at any time to change its response to a signal. The most general of these is 
SIGACTION, which can specify that the process ignore some signal, catch some 
signal (replacing the default action with execution of user-defined signal-handling 
code within the process), or restore the default response to some signal. Another 
system call, SIGPROCMASK, can block a signal, causing it to be queued and to be 
acted upon only when and if the process unblocks that particular signal at a later 
time. These calls may be made at any time, even from within a signal catching 
function. In MINIX the preparation phase of signal processing is handled entirely 
by the memory manager, since the necessary data structures are all in the memory 
manager's part of the process table. For each process there are several sigset-t 
variables, in which each possible signal is represented by a bit. One such variable 
defines a set of signals to be ignored, another defines a set to be caught, and so on. 
For each process there is also an array of sigaction structures, one for each signal. 
Each element of the sigaction structure contains a variable to hold the address of a 
custom handler for that signal and an additional sigset-t variable to map signals 
to be blocked while that handler is executing. The field used for the address of 
the handler can instead hold special values signifying that the signal is to be 
ignored or is to be handled in the defadt way defined for that signal. 

When a signal is generated, multiple parts of the MINIX system may become 
involved. The response begins in the memory manager, which figures out which 
processes should get the signal using the data structures just mentioned. If the 
signal is to be caught, it must be delivered to the target process. This requires 
saving information about the state of the process, so normal execution can be 
resumed. The information is stored on the signaled process' stack, and a check 
must be made to determine that there is sufficient stack space. The memory man- 
ager does this checking, since this is within its realm, and then calls the system 
task in the kernel to put the information on the stack. The system task also mani- 
pulates the process' program counter, so the process can execute the handler code. 
When the handler terminates, a SIGRETURN system call is made. Through this 
call, both the memory manager and the kernel participate in restoring the process' 
signal context and registers so it can resume normal execution. If the signal is not 
caught, the default action is taken, which may involve calling the file system to 
produce a core dump (writing the process' image to a file that may be examined 
with a debugger), as well as killing the process, which involves all of the memory 
manager, file system, and kernel. Finally, the memory manager may direct one or 
more repetitions of these actions, since a single signal may need to be delivered to 
a group of processes. 

The signals known to MINIX are defined in /usr/include/signal.h, a file re- 
quired by the POSIX standard. They are listed in Fig. 4-41. All of the POSIX-re- 
quired signals are defined in MINIX, but not all of them are currently supported. 
For instance, POSIX requires several signals related to job control, the ability to put 
a running program into the background and bring it back. MINIX does not support 
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job control, but programs that might generate these signals can be ported to MINIX. 
These signals will be ignored if generated. MINIX also defines some non-POSIX 
signals and some synonyms for POSIX names for compatibility with older source 
code. 

I Sbna 1 Description 1 Generated by ) 
I S~GHUP I Hangup I KILL system call I 
1 S~GINT 1 Interrupt I Kernel ! 
I SIGQUIT 1 Quit I Kernel 1 

- - -- 

I StGABRT I Abnormal termination 

SlGlLL ' 

, SIGTRAP 

I Kernel I 
I Kernel (') I SIGFPE I Floating point exception I 

Illegal instruction 

Trace trap 

1 SlGKlLL I Kill (cannot be caught or ignored) I KlLL system call I 

Kernel (') 

Kernel (M) 

/ SlGUSRl 1 User-defined signal # 1 Not supported / 
SIGSEGV I Segmentation violation I Kernel (*) 1 

I SIGUSRP / US& defined signal # 2 I Not supported I 

- - 

I StGCHLD 1 Child process terminated or stopped I Not supported I 

SlGPlPE 

SIGALRM 

SIGTERM 

1 SIGCONT I Continue if stopped I Not supported / 
I SIGSTOP ( stop signal 1 ~ o t  supported I 

Write on a pipe with no one to read it 

Alarm clock, timeout 

Software termination signal from kill 

Kernel 
- 

Kernel 

KlLL system call 

Figure 4-41. Signals defined by mslx and MINIX. Signals indicated by (*) 
depend upon hardware support. Signals marked (M) are not defined by POSIK, 

but are defined by MINIX for compatibility with older programs. Several ob- 
solete names and synonyms are not listed here. 

SIGTSTP 

SlGTTlN 

SlGlTOU 

Signals can be generated in two ways: by the KILL system call, and by the ker- 
nel. The signals generated by the MINIX kernel always include SIGINT, SICQUIT, 
and SIGALRM. Other kernel signals depend upon hardware support. For instance, 
the 8086 and 8088 processors do not support detection of illegal instruction opera- 
tion codes, but this capability is available on the 286 and above, which trap on an 
attempt to execute an illegal opcode. This service is provided by the hardware. 

Interactive stop signal 

Background process wants to read 

Background process wants to write 

Not supported 

Not supported 

Not supported 
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The implementor of the operating system must provide code to  generate a signal 
in response to' the trap. We saw in Chap 2 that kemeUexcepfion.c contains code 
to do just this for a number of different conditions. Thus a SIGILL signal can be 
generated in response to an illegal instruction when MINIX runs on a 286 or higher 
processor, but this signal will never be seen when MINIX runs on an 8088. 

Just because the hardware can trap on a certain condition does not mean the 
capability can be used fully by the operating system implementor. For instance, 
several kinds of violations of memory integrity result in exceptions on all Intel 
processors beginning with the 286. Code in kerneUexception.c translates these 
exceptions into S~GSEGV signals. There are separate exceptions generated for vio- 
lations of the limits of the hardware-defined stack segment and for other seg- 
ments, since these might need to be treated differently. However, because of the 
way MINIX uses memory, the hardware cannot detect all the errors that might 
occur. The hardware defines a base and a limit for each segment. The hardware- 
defined data segment base is the same as the MrNIX data segment'base, but the 
hardware-defined data segment limit is higher than the limit that MINIX enforces 
in  software. In other words, the hardware defines the data segment as the max- 
imum amount of memory that MINIX could possibly use for data, if somehow the 
stack could shrink to nothing. Similarly the hardware defines the stack as the 
maximum amount of memory the MINIX stack could use if the data area could 
shrink to nothing. Although certain violations can be detected by the hardware, 
the hardware cannot detect the most probable stack violation, growth of the stack 
into the data area, since as far as the hardware registers and descriptor tables aie 
concerned the data area and the stack area overlap. 

Conceivably some code could be added to the kernel that would check each 
process' registers after each time the process gets a chance to run and generate a 
SIGSEGV signal upon detection of a violation of the integrity of the MINIX-defined 
data or stack areas. Whether this woutd be worthwhile is unclear; hardware traps 
can catch a violation immediately. A software check might not get a chance to do 
its wo;k untll many thousands of additional instructions had been executed, and at 
that point there might be very little a signal handler could do to try to recover. 

Whatever their origin, the memory manager processes all signals the same 
way. For each process to be signaled, a variety of checks are made to see if the 
signal is feasible. One process can signal another if the signaler is the super-user 
or if the real or effective uid of the signaler is equal to either the real or effective 
uid of the signaled process. But there are several conditions that can prevent a 
signal being sent. Zombies cannot be signaled, for example. A process cannot be 
signaled if it has explicitly called SIGACTloN to ignore the signal or SlGPROCMASK 
to block it. Blocking a signal is distinct from ignoring it; receipt of a blocked sig- 
nal is remembered, and it is delivered when and if the signaled process removes 
the block. FmalIy, if its stack space is not adequate the signaled process is killed. 

If all the conditions are met, the signal can be sent. If the process has not 
arranged for the signal to be caught, no information needs to be passed to the 
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process. In this case the memory manager executes the default action for the sig- 
nal, which is usually to kill the process, possibly also producing a core dump. For 
a few signals the default action is to ignore the signal. The signals marked "Not 
supported" in Fig. 4-41 are required to be defined by POSIX but are ignored by 
MINIX. 

Catching a signaI means executing the process' custom signal-handling code, 
the address of which is stored in a sigaction structure in the process table. In 
Chap. 2 we saw how a process' stackframe within its process table entry receives 
the information needed to restart the process when it is interrupted. By modifying 
the stackframe of a process to be signaled, it can be arranged that when the proc- 
ess next is allowed to execute the signal handler will run. By modifying the proc- 
ess' own stack in user space, i t  can be arranged that when the signal handler ter- 
minates the SiGRETURN system call will be made. This system call is never 
invoked by user-written code. It is executed after the kernel puts its address on 
the stack in such a way that its address becomes the return address popped from 
the stack when a signal handler terminates. SIGRETURN restores the original 
stackframe of the signaled process, so it can resume execution at the point where 
it was intempted by the signal. 

Although the final stage of sending a signal is done by the system task, this is 
a good place to summarize how it is done, since the data used are passed to the 
kernel from the memory manager. Catching a signal requires something much 
like the context switch that occurs when one process is taken out of execution and 
another process is put into execution, since when the handler terminates the proc- 
ess ought to be able to continue as if nothing had happened. However, there is 
only one place in the process table to store the contents of all the CPU registers 
that are needed to restore the process to its original state. The solution to this 
problem is shown in Fig. 4-42. Part (a) of the figure is a simplified view of the 
stack of a process and part of its process tabIe entry just after it has been taken out 
of execution following an interrupt. At the time of suspension the contents of all 
of the CPU registers are copied into the stackframe structure in the process' proc- 
ess table entry in the kernel's part of the process table. This will be the situation 
at the moment a signal is generated, since a signal is generated by a process or 
task different from the intended recipient. 

In preparation for handling the signal, the stackframe from the process table is 
copied onto the process' own stack as a sigcontext structure, thus preserving it. 
Then a sigframe structure: is placed on the stack. This structure contains informa- 
tion to be used by SIGRETURN after the handler finishes. It also contains the ad- 
dress of the library procedure that invokes SIGRETURN itself, ret addrl, and 
another return address, ret addr2, which is the address where execution of the in- 
terrupted program will resume. As will be seen, however, the Iqtter address is not 
used during normal execution. 

Although the handler is written as an ordinary procedure by the programmer, 
it is not called by a call instruction. The instruction pointer (program counter) 
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Local vars 
(process) 

R e t  addr 

Local vars 
(p mess) 

Stackframe 
(CPU regs) 
(original) 

Ret addr 2 
- - - - - - - - - - 

Sigframe 
structure 

Ret addr 1 

Local vars 
(handler) 

Ret addr 

Local vars 

(CPU regs) 
(original) 

Ret  addr 2 
--....------ 
Local vars 

Local vars 
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Stack 

Stackframe 
(CPU regs) 
(original) 

Stackframe 
(CPU regs) 
(modified, 

ip = handler) 

Stackframe 
(CPU regs) 
(modified, 

ip = handler) U Stackframe 
Process 

(original) table 

Before Handler Sigreturn Back to normal 
executing executing 

(a) (b) (c) (dl 

Figure 4-42. A process' stack (above) and its stackframe in the process table 
(below) conesponding to phases in handling a signal. (a) State as process is tak- 
en out of execution. (b) State as handler begins execution. (cl State while 
SIGRETURN is executing. (d) State after SIGRETURN completes execution. 

field in the stackframe in the process table is altered to cause the signal handler to 
begin executing when restart puts the signaled process back into execution. Fig- 
ure 4-42(b) shows the situation after this preparation has been completed and as 
the signal handler executes. Recall that the signal handler is an ordinary proce- 
dure, so when it terminates, ret addrl is popped and SIGRETURN executes. 

Part (c) shows the situation while SIGRETURN is executing. The rest of the 
sigframe structure is now SIGRETURN's local variables. Part of SIGRETURN's 
action is to adjust its own stack pointer so that if it were to terminate like an ordi- 
nary function, it would use ref addr2 as its return address. However, SIGRETURN 
does not actually terminate this way. It terminates like other system calls, allow- 
ing the scheduler in the kernel to decide which process to restart. Eventually, the 
signaled process will be rescheduled and will restart at this address, because the 
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address is also in the process' original stackframe. The reason this address is on 
the stack is that a user might want to trace a program using a debugger. and this 
fools the debugger into a reasonable interpretation of the stack while a signal 
handler is being traced. In  each phase the stack looks like that of an ordinary 
process, with local variables on top of a return address. 

The real work of SIGRETURK is to restore things to the state they were in be- 
fore the signal was received, and to clean up. Most importantly, the stackframe in 
the process table is restored to its original state, using the copy that was saved on 
the signaled process' stack. When SIGRETURN terminates, the situation will be as 
in Fig. 4-42(d), which shows the process waiting to be put back into execution in 
the same state it was in when interrupted. 

For most signals the default action is to kill the signaled process. The memo- 
ry manager takes care of this for any signal that is not ignored by default, and 
which the recipient process has not been enabled to handle, block, or ignore. If 
the parent is waiting for it, the killed process is cleaned up and removed from the 
process table. If the parent is not waiting, it becomes a zombie. For certain signal 
numbers (e.g. ,  SIGQUIT), the memory manager also writes a core dump of the 
process to the current directory. 

It can easily happen that a signal is sent to a process that is currently blocked 
waiting for a READ on a terminal for which no input is available. If the process 
has not specified that the signal is to be caught, it is just killed in the usual way. 
If, however, the signal is caught, the issue arises of what to do after the signal in- 
terrupt has been processed. Should the process go back to waiting, or should it 
continue with the next statement? 

What MINIX does is this: the system call is terminated in such a way as to re- 
turn the error code EINTR, so the process can see that the call was broken off by a 
signal. Determining that a signaled process was blocked on a system call is not 
entirely trivial. The memory manager must ask the file system to check for it. 

This behavior is suggested, but not required, by WStx, which also allows a 
READ to return the number of bytes read so far at the time of receipt of the signal. 
Returning EINTR makes it possible to set an alarm and to catch SIGALRM. This is 
an easy way to implement a timeout, for instance to terminate login and hang up a 
modem line if a user does not respond within a certain period. The synchronous 
clock task can be used to do the same thing with less overhead, but it is a MINIX 
invention and not as portable as using signals. Also, it is available only to server 
processes, and not to ordinary user processes. 

4.7.8 -Other System Calls 

The memory manager handles a few more simple system calls. The library 
functions getuid and geteuid both invoke the GETUID system call, which returns 
both values in its return message. Similarly, the GETGID system call also returns 
real and effective values for use by the getgid and getegid functions. GETPLD 
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works the same way to return both the process ID and the ID of the parent proc- 
ess, and SETUID and SETGID can each set both real and effective values i n  one call. 
There are two additional system calls in this group, GETPGRP and SETSID. The 
former returns the process group ID, and the latter sets it  to the current pid value. 
These seven calls are the simplest MINIX system calls. 

The PTRACE and REBOOT system calls are also handled by the memory man- 
ager. The former supports debugging of programs. The latter affects many 
aspects of the system. It is appropriate to place it in the memory manager because 
its first action is to send signals to kill all processes except init. After that it calls 
upon the file system and the system task to complete its work. 

4.8 IMPLEMENTATION OF MEMORY MANAGEMENT IN MINIX 

Armed with a general overview of how the memory manager works, let us 
now turn to the code itself. The memory manager is written entirely in C, is 
straightforward, and contains a substantial amount of commentary in the code it- 
self, so our treatment of most parts need not be long or involved. We will first 
look briefly at the header files, then the main program, and finally the files for the 
various system call groups discussed previously. 

4.8.1 The Header Files and Data Structures 

Several header files in the memory manager source directory have the same 
names as files in the kernel directory, and these names will be seen again in the 
file system. These files have similar functions in their own contexts. The parallel 
structure is designed to make it easier to understand the organization of the whole 
MINIX system. The memory manager also has a number of headers with unique 
names. As in other parts of the system, storage for global variables *is reserved 
when the memory manager's version of rab2e.c is compiled. In this section we 
will look at a11 of the header files, as well as tab1e.c. 

As with the other major parts of MINIX, the memory manager has a master 
header file, mm.h (line 15800). It is included in every compilation, and it in turn 
includes all the system-wide header files from /usr/include and its subdirectories 
that are needed by every object module. Most of the files that are included in 
kerneMwrne1.h are also included here. The memory manager also needs defini- 
tions in include/fcntl. h and include/unistd. h . The memory manager's own ver- 
sions of const. h, type. h ,  proto. h, and g10.h also are included. 

Const.h (line 15900) defines a some constants used by the memory manager, 
especially when compiled for 16-bit machines. The line 

#define printf printk 

is contained here so that calls to printf will be compiled as calls to the prrntk 
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function. The function is similar to the one we saw in the kernel, and is defined 
for a similar reason, so the memory manager can display error and debugging 
messages without calling on the file system for help. 

Type.h is cunently unused and exists in skeletal form just so the memory 
manager files will have the same organization as the other parts of MINIX. Proio.h 
(line 16100) collects in one place function prototypes needed throughout the 
memory manager. 

The memory manager's global variables are declared in g1o.h (Iine 16200). 
The same trick used in the kernel with EXTERN is used here, namely, EXTERN is 
normally a macro that expands to extern, except in the file  table.^. There i t  
becomes the null string so storage can be reserved for the variables declared as 
EXTERIV. 

The first of these variables, mp, is a pointer to an rnproc structure, the MM 
part of the process table for the process whose system call is being processed. 
The second variable, dont-repl.y, is initialized to FALSE when each new request 
arrives but can be set to TRUE during the call if it is discovered that no reply mes- 
sage should be sent. No replies are sent for a successful EXEC, for example. The 
third variable, procs-in-use, keeps track of how many process slots are currently 
in use, making it easy to see if a FORK call is feasible. 

The message buffers mm-in and hzm-out are for the request and reply mes- 
sages, respectively. Who is the index of the current process; it is related to mp by 

When a message comes in, the system call number is extracted from it and put in 
mm ,call. 

The three variables err-code, result2, and res-ptr are used to hold values re- 
turned to the caller in the reply message. The most important of these variables is 
err-code, which is set to OK if the call is completed without error. The last two 
variables are used when a problem develops. MINIX writes an image of a process 
to a core file when a process terminates abnormally. Core-name defines the 
name this file will have, and core-sset is a bit map which defines which signals 
should produce core dumps. 

The memory manager's part of the process table is in  the next file, mproc.h 
(line 16300). Most of the fields are adequately described by their comments. 
Several fields deal with signal handling. Mp-ignore, mp-catch, mp_sigmask, 
mp,sigmask2, and mp-sigpending are bit maps, in which each bit represents one 
of the signals that can be sent to a process. The type sigset-t is a 32-bit integer, 
so MINIX could easily support up to 32 signals, but currently only 16 signals are 
defined, with signal 1 being the least significant (rightmost) bit. In any case, 
POSIX requires standard functions to add or delete members of the signal sets 
represented by these bit maps, so all necessary manipulations can be done without 
the programmer being aware of these details, The array mp-sigact is important 
for handling signals. There is an element for each signal type, and each element 
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is a sigactiotz siructure (defined in includdsigncrl. h). Each sigactian structure 
consists of three fields: 

1. The su-handler field defines whether the signal is to be handled in  
the default way, ignored, or handled by a special handler. 

2. The su-mask field is a sigset-r that defines which signals are to be 
blocked when the signal is being handled by a custom handler. 

3. The sa-flags field is a set of flags that apply to the signal. 

This array makes possible a great deal of flexibility in handling signals. 
The mp-Jugs field is used to hold a miscellaneous collection of bits, as indi- 

cated at the end of the file. This field is an unsigned integer. 16 bits on low-end 
CPUs or 32 bits on a 386 and up. There is plenty of room for expansion here, 
even on an 8088, as only 9 bits are used. 

The last field in the process table is rnp-procargs. When a new process is 
started, a stack like the one shown in Fig. 4-39 is built, and a pointer to the start of 
the new process* argv array is stored here. This is used by the ps command. For 
instance, for the example of Fig. 4-39, the value 8 164 would be stored here, mak- 
ing it possible for ps to display the command line, 

if executed while the Is command is active. 
The next file is param.h (line 16400), which contains macros for many of the 

system call parameters contained in the request message. It also contains four 
macros for fields in the reply message. When the statement 

k = pid; 

appears in any file in which param.h is included, the preprocessor converts it to 

brfr~re fc ed ing it to the corilpiler proper. 
Before we continue with the executable code, let us look at tab1e.c (tine 

16500). Its compilation reserves storage for the various EXTERN variables and 
structures we have seen in glo. h and mpr0c.h. The statement 

causes EXTERN to become the null string. This is the same mechanism that we 
saw in the kernel code. 

The other major feature of tab1e.o is the array call-vec (line 16515). When a 
request message arrives, tbe system call number is extracted from it and used as 
an index into cull-vec to locate the procedure that carries out that system call. 
System call numbers that are not valid calls all invoke no-sys, which just returns 
an error code. Note that although the -PROTOTYPE macro is used in defining 
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call-vec, this is not a declaration of a prototype; it is definition of an initialized 
array. However, i t  is an array of functions, and use of -PROTOTYPE is the easi- 
est way to do this that is compatible with both classic (Kernighan & Ritchie) C 
and Standard C. 

4.8.2 The Main Program 

The memory manager is compiled and linked independently from the kernel 
and the file system. Consequently, it has its own main program, which is started 
up after the kernel has finished initializing itself. The main program is in main.c, 
at line 16627. After doing its own initialization by calling mm-init, the memory 
manager enters its loop on line 16636. In this loop, ~t calls get-work to wait for 
an mcoming request message. Then it calls one of its do-XXX procedures via the 
call-vec table to carry out the request, and finally sends a reply, if needed. This 
construction should be familiar by now: it is the same one used by the I/O tasks. 

The procedures get-work (line 16663) and reply (line 16676) handle the 
actual receiving and sending, respectively. 

The last procedure in this file is mm-init, which initializes the memory ma4- 
ager. it is not used after the system has started running. The call to sys-getmap 
on line 16730 gets information about the kernel's memory use. The loop on lines 
16734 to 16741 initializes all the process table entries for tasks and servers, and 
the following lines prepare init's process table entry. On line 16749 MM waits 
for FS to send it a message. As mentioned in the discussion of deadlock handling 
in MINIX, this is the only time the file system ever sends a request message to the 
file system. The message tells how much memory is being used for the RAM 
disk. The call to mem-init on line 16755 initializes the hole list by calling the 
system task. After this, normal memory management can begin. This call also 
fills in the total-clicks and free-clicks variables, completing the information 
mm-init needs to print a message showing total memory, kernel memory use, 
RAM disk size, and free memory. After printing the message a reply is sent to FS 
(line 16764), allowing it to continue. Finally, the memory task is given the ad- 
dress of MM's part of the process table, for the benefit of the ps command. 

4.8.3 Implementation of FORK, EXIT, and WAIT 

The FORK, EXIT, and WAIT system calls are implemented by the procedures 
do-fork, do-mm-exit, and do- wait in the file forkexit. c. The procedure do- fork 
(line 16832) follows the steps shown in Fig. 4-37. Notice that the second call to 
prtlcs-in-use (line 16847) reserves the last few process table slots for the super- 
user. In computing how much memory the child needs, the gap between the data 
and stack segments is included, but the text segment is not. Either the parent's 
text is shared, or, if the process has common I and D space, its text segment is of 
zero length. After doing the computation, a call is made to alluc-rnem to get the 
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memory. If this is successful, the base addresses of child and parent are converted 
from clicks into absolute bytes, and sj-s-copy is called to send a message to the 
system task to get the copying done. 

Now a slot is found in the process table. The test involving procs-in-use 
earlier guarantees that one will exist. After the slot has been found, i t  is filled in, 
first by copying the parent's dot there, and then updating the fields mp-paret~r, 
mp-Jags, mp-seg, mp -exirsratus, and mp-sigstarus. Some of these fields need 
special handling. The TRACED bit in the mp,flags field is zeroed, since a child 
does not inherit trace status. The mp-seg field is an array containing elements for 
the text, data, and stack segments, and the text portion is left pointing to the 
parent's text segment if the flags indicate this is a separate I and D program that 
can share text. 

The next step is assigning a pid to the child. The variable next-pid keeps 
track of the next pid to be assigned. However, the following problem could con- 
ceivably occur. After assigning,.say, pid 20 to a very long-lived process, 30,000 
more processes might be created and destroyed, and next-pid might come back to 
20 again. Assigning a pid that was still in use would be a disaster (suppose some- 
one later tiied to signal process 20), so we search the whole process tabIe to make 
sure that the pid to be assigned is not already in use. 

The calls to sjs-fork and tell-fs inform the kernel and file system, respec- 
tively, that a new process has been created, so they can update their process 
tables. (All the procedures beginning with s!..s- are library routines that send a 
message to the system task in the kernel to request one of the services of Fig. 3- 
50.) Process creation and destruction are always initiated by the memory manager 
and then propagated to the kernel and file system when completed. 

The reply message to the child is sent explicitly at the end of do-fi1t-k. The 
reply to the parent, containing the child's pid, is sent by the loop in muin, as the 
normal reply to a request. 

The next system call handled by the memory manager is EXIT. The procedure 
do-mm-exir (line 16912) accepts the call, but most of the work is done by the 
call to mm-a i r .  a few lines further down. The reason for this division of labor is 
that mm-exit is also called to take care of processes terminated by a signal. The 
work is the same, but the parameters are different, so it is convenient to split 
things up this way. 

The first thing mm-exit does is to stop the timer, if the process has one run- 
ning. Next, the kernel and file system are notified that the process is no longer 
runnable (lines 16949 and 16950). The call to the library procedure sjls-xit sends 
a message to the system task telling it to mark the process as no longer runnable, 
so it will not be scheduled any more. Next the memory is released. A call to 
.find-share determines whether the text segment is being shared by another proc- 
ess, and if not the text segment is released by a call to free-mem. This is fol- 
lowed by another call to the same procedure to release the data and stack. It is not 
worth the trouble to decide whether all the memory could be released in one call 
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to free-mem. If the parent is waiting, cleanup is called to release the process 
table slot. If the parent is not waiting, the process becomes a zombie, indicated by 
the HANGING bit in the rnpJ7ag.s word. Whether the process is completely elim- 
inated or made into a zombie, the final action of mm-exit is to loop through the 
process table and look for children of the process it has just terminated (lines 
16975 to 16982). If any are found, they are disinherited and become children of 
init. If init is waiting and a child is hanging, cleanup is then called for that child. 
This deals with situations such as the one shown in Fig. 4-43(a). In this figure we 
see that process 12 is about to exit, and that its parent, 7, is waiting for it. 
Cleanup will be called to get rid of 12, so 52 and 53 are turned into children of 
init, as shown in Fig. 4-43(b). Now we have the situation that 53, which has 
already exited, is the child of a process doing a WAIT. Consequently, it can also 
be cleaned up. 

Waiting 

Waiting 

Exiting 

Zombie 

Fig~re 4-43. (a)  The situation as process 12 i s  about to exit. (b) The situation 
after i t  has exited. 

When the parent process does a WAIT or a WAITPID, control comes to proce- 
dure do-waitpid on line 16992. The parameters supplied by the two calls are dif- 
ferent, and the actions expected are aIso different, but the setup done in lines 
17009 to 170 1 1 prepares internal variables so do- waitpid can perform the actions 
of either call. The loop on lines 17019 to 17041 scans the entire process table to 
see if the process has any children at all, and if so, checks to see if any are zom- 
bies that can now be cleaned up. If a zombie is found (line 17026), it is cleaned 
up and do-waitpid returns. The flag donr-reply is set because the reply to the 
parent is sent from inside cleanup, not from the loop in main.- If a traced child is 
found, a reply is sent indicating the process is stopped, and do-waitpid returns 
Dont-reply is also set true to prevent a second reply being sent by main, 

If the process doing the WAIT has no children, it simply gets an error return 
(line 17053). If it has children, but none are zombies or are being traced, a test is 
made to see if do-waitpid was calIed with a bit set indicating the parent didn't 
want to wait. If not (the usual case), then a bit is set on line 17047 to indicate that 
it is waiting, and the parent is suspended until a child terminates. 

When a process has exited and its parent is waiting for it, in whichever order 
these events occur, the procedure cieanup (line 17061) is called to perform the 
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last rites. There is not much to do by this point. The parent is awakened from its 
WAIT or WAITPID call and is given the pid of the terminated chiid, as well as its 
exit and signal status. The file system has already released the child's memory, 
and the kernel has already suspended scheduling, so all the kernel now has to do is 
free up the child's slot in the process table. 

4.8.4 Implementation of EXEC 

The code for EXEC follows the outline of Fig. 4-38. It is contained in the pro- 
cedure do-exec (line 17140). After making a few simple validity checks, the 
memory manager fetches the name of the file to be executed from user space. On 
line 17172 it sends a special message to the file system, to switch to the user's di- 
rectory, so that the path just fetched will be interpreted relative to the user's, 
rather than to MM's, working directory. 

If the file is present and executable, the memory manager reads the header to 
extract the segment sizes. Then it fetches the stack from user space (lines 17188 
and 17189), checks to see if the new process can share text with a process that is 
already running (line 17 I%), allocates memory for the new image (line 17 199), 
patches up the pointers [see the differences between Fig. 4-39(b) and (c)], and 
reads in the text segment (if needed) and the data segment (lines 1722 1 to 17226). 
Finally, it processes the setuid and setgid bits, updates the process table entry, and 
tells the kernel that it is finished, so that the process can be scheduled again. 

Although the control of all the steps is in do-exec, many of the details are 
carried out by subsidiary procedures within exec.c. Read-header (line 17272), 
for example, not only reads the header and returns the segment sizes, it also veri- 
fies that the file is a valid MINIX executable for the same CPU type as the operat- 
ing system is compiled for. This is done by conditional compilation of the 
appropriate test at the time the memory manager is compiled (lines 17322 to 
17327). Read-header also verifies that all the segments fit in the virtual address 
space. 

Procedure new-mem (line 17366) checks to see if sufficient memory is avail- 
able for the new memory image. It searches for a hole big enough for just the 
data and stack if the text is being shared; ~therwise it searches for a single hole 
big enough for the combined text, data, and stack. A possible improvement here 
would be to search for two separate holes, one for the text and one for the data 
and stack, since there is no need for these areas to be contiguous. In earlier ver- 
sions of MlNlX this was required. If sufficient memory is found, the old memory 
is released and the new memory acquired. If insufficient memory is available, the 
EXEC call fails. After the new memory is allocated, new-mem updates the memo- 
ry map (in mp-seg) and reports it to the kernel by calling the library procedure 
sys-newmap. 

The remainder of new-mem is concerned with zeroing the bss segment, gap, 
and stack segment. (The bss segment is that part of the data segment that contains 
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all the uninitialized global variables.) Many compilers generate explicit code to 
zero the bss segment, but doing it here allows MINIX to work even with compilers 
that do not. The gap between data and stack segments is also zeroed, so that when 
the data segment is extended by BRK, the newly acquired memory will contain 
zeroes. This is not only a convenience for the programmer, who can count on 
new variables having an initial value of zero, it is also a security feature on a mul- 
tiuser operating system, where a process previously using this memory may have 
been using data that should not be seen by other processes. 

The next procedure is putch-ptr (line 17465), which does the job of relocat- 
ing the pointers of Fig. 4-39(b) to the form of Fig.4-39(c). The work is simple: 
examine the stack to find all the pointers and add the base address to each one. 

The procedure load-seg (line 17498) is called once or twice per EXEC, possi- 
bly to load, the text segment and always to load the data segment. Rather than just 
reading the file block by block and then copying the blocks to the user, a trick is 
used to all& the file system to load the entire segment directly to the user space. 
In effect, the call is decoded by the file system in a slightly special way so that it 
appears to be a read of the entire segment by the user process itself. Only a few 
lines at the beginning of the file system's read routine know that some monkey 
business is going on here. Loading is appreciably speeded up by this maneuver. 

The final procedure in exec-c is find-share (line 17535). It searches for a 
process that can share text by comparing the 3-node, device, and modification 
times of the file to be executed with those of existing processes. This is just a 
straightforward search of the appropriate fields in mproc. Of course, it must 
ignore the process on behalf of which the search is beidg made. 

4.8.5 Implementation of BRK 

As we have just seen, the memory model used by MINIX is quite simple: each 
process is given a single contiguous allocation for its data and stack when it is 
created. I t  is never moved around in memory, it is never swapped out of memory, 
i t  never grows, and it never shrinks. All that can happen is that the data segment 
can eat away at the gap from the low end, and the stack can eat away at it from 
the high end, Under these circumstances, the implementation of the BRK call in 
hreak,c is especially easy. It consists of verifying that the new sizes are feasible 
and then updating the tables to reflect them. 

The top-level procedure is do-brk (line 17628), but most of the work is done 
in adjust (line 17661). The latter checks to see if the stack and data segments 
have collided. If they have, the BRK call cannot be carried out, but the process is 
not killed immediately. A safety factor, SAFETY-BYTES, is added to the top of 
the data segment before making the test, so (hopefully) the decision that the stack 
has grown too far can be made while there is still enough room on the stack for 
the process to continue for a short while. It gets control back (with an error mes- 
sage), so it can print appropriate messages and shut down gracefully. 
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Note that SAFETY-BYTES is defined using a #define statement in the middle 
of the procedure (line 17693). This use is rather unusual; normally such defini- 
tions appear at the beginning of files, or in separate header files. The associated 
comment reveals that the programmer found deciding upon the size of the safety 
factor to be difficult. There is no doubt that this definition was done in this way to 
attract attention and, perhaps, to stimulate additional experimentation. 

The base of the data segment is constant, so if adjust has to adjust the data 
segment, all it does is update the length field. The stack grows downward from a 
fixed end point, so if adjust also notices that the stack pointer, which is given to it 
as a parameter, has grown beyond the stack segment (to a lower address), both the 
origin and length are updated. 

The last procedure in this file, size-ok (line 17736) makes a test to see if the 
segment sizes fit within the address space, in clicks as well as in bytes, The con- 
ditional code for 16-bit machines has been retained in the listing in order to show 
why this is written as a separate function. There would be little point in having 
this as a separate function for 32-bit MINIX. It is called in only two places, and 
substituting line 17765 in.place of the calls would result in more compact code, 
since the calls pass several arguments that are not used in the 32-bit implementa- 
tion. 

4.8.6 ~m~lementation of Signal Handling 

There are eight system calls relating to signals. They are summarized in 
Fig. 4-44. These system calls, as well as the signals themselves, are processed in 
the file signa1.c. An additional system call, REBOOT, is also handled by this file, 
since it uses signals to terminate all processes. 

-- 

1 ALARM I Send ALRM signal to self after delay I 

System call 

SIGACTION 

SIGPROCMASK 

'KILL 

I SIGSUSPEND / Change set of blocked signals, then PAUSE I 

Purpose 

Modify response to future signal 

Change set of blocked signals 

Send signal to another process 

SIGPENDING I Examine set 01 pending (blocked) signals / 
-- 

I SIGAETURN I Clean up after signal handler 

Figure 4-44. System calls relating to signals. 

The SIGACTION call supports the sigaction and signal functions, which allow a 
process to alter how it will respond to signals. Sigaction is required by Posrx and 



388 MEMORY MANAGEMENT CHAP. 4 

is the preferred call for most purposes, but the signal library function is required 
by Standard C, and programs that must be portable to non-POSIX systems should 
be written using it. The code for do-sigaction (line 17845) begins with checks , 

for a valid signal number and .verification that the call is not an attempt to change 
the response to a s~GKILL signal (lines 17851 and 17852). (It is not permitted to 
ignore, catch, or block SIGKILL. SIGKlLL is the ultimate means by which a user 
can control his processes and a system manager can control his users.) SlGACrION 
is called with pointers to a sigaction structure, sig-osa, that receives the old sig- 
nal attributes that were in effect before the call, and another such structure 
sig-ma, containing a new set of attributes. 

The first step is to call the system task to copy the current attributes into the 
structure pointed to by sig-osa. SIGACTION can be called with a NULL pointer in 
sig-nsa to examine the old signal attributes without changing them. In this case 
do-sigaction returns immediately (line 17860). If sig-nsu is not NULL, the stmc- 
ture defining the new signal action is copied to the memory manager's space. The 
code in lines 17867 to 17877 modifies the mp-catch, mp-ignore, and 
mp-sigperzding bit maps according to whether the new action is to be to ignore 
the signal, to use the default handler, or to catch the signal. The library functions 
sigaddset and sigdelset are used, although the actions are straightforward bit 
manipulation operations that could have been implemented with simple macros. 
However, these functions are required by the POSIX standard in order to make pro- 
grams that use them easily portable, even to systems in which the number of sig- 
nals exceeds the number of bits available in an integer. Using the library func- 
tions heips to make MINIX itself easily portable to different architectures. 

Finally, the other signal-related fields in the memory manager's part of the 
process table are filled in. For each potential signal there is bit map, the sa-mask, 
which defines which signals are to be blocked while a handler for that signal is 
executing. For each signal there is also a pointer, sa-handler. It can contain a 
pointer to the handler function, or special values to indicate the signal is to be 
ignored or handled in the default way. The address of the library routine that 
invokes SIGRETURN when the handler terminates is stored in mp-sigretum. This 
address is one of the fields in the message received by the memory manager. 

POSIX allows a process to manipulate its own signal handling, even while 
within a signal handler. This can be used to change signal response to subsequent 
signals while a signal is being processed, and then to restore the normal set of 
responses. The next group of system calls support these signal-manipulation 
features. SIGPENDING is handled by do-sigpending (line 17889), which returns 
the mp-sigpending bit map, so a process can determine if it has pending signals. 
SIGPROCMASK, handled by do-sigprocmask, returns the set of signals that are cur- 
rently blocked, and can also be used to change the state of a single signal in the 
set, or to replace the entire set with a new one. The moment that a signal is 
unblocked is an appropriate time to check for pending signals, and this is done by 
calls to check-pending on line 17927 and line 17933. Do_sigsuspend (line 
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17949) carries out the SICSUSPEND system call. This call suspends a process until 
a signal is received. Like the other functions we have discussed here, it manipu- 
lates bit maps. It also sets the SIGSUSPENDED bit in mp-flags, which is all it  takes 
to prevent execution of the process. Again, this is a good time to make a call to 
check-pending. Finally, do-sigreturn handles SIGRETURN, which is used to re- 
turn from a custom handler. It restores the signal context that existed when the 
handler was entered, and it also calls check-pending on line 17980. 

Some signals, such as SIGINT, originate in the kernel itself. Such signals are 
handled in a way that is similar to signals generated by a user process calling 
KILL. The two procedures, do-kill (line 17983) and do-ksig (line 17994), are 
conceptually similar. Both cause the memory manager to send a signal. A single 
call to KILL may require delivery of signals to a group of processes, and do-kill 
just calls check-sig, which checks the entire process- table for eligible recipients. 
Do-ksig is called when a message arrives from the kemel. The message contains 
a bit map, allowing the kernel to generate multiple signals with one message. As 
with KILL, each of these may need to be delivered to a group of processes. The bit 
map is prcxessed one bit at a time by the loop on lines 18026 to 18048. Some ker- 
nel signals need special attention: the process ID is changed in some cases to 
cause the signal to be delivered to a group of processes (lines 18030 to 18033), 
and a SIGALRM is ignored if it hasn't been requested. With that exception, each 
bit set results in a call to check-sig, just as in do-kill. 

The ALARM system call is controlled by do-alarm (line 18056). It calls the 
next function, set-alarm, which sends a message to the clock task telling it to 
start the timer. Set-alarm (line 18067) is a separate function because it is also 
used to turn the timer off when a process exits with the timer still on. When the 
timer runs out, the kernel announces the fact by sending the memory manager a 
message of type KSIG, which causes do-ksig to ma, as discussed above. The de- 
fault action of the SIGALRM signal is to kill the process if it is not caught. If  the 
SIGALRM is to be caught, a handler must be installed by SICACTION. The corn- 
plete sequence of events for a SIGALRM signal with a custom handler is shown in 
Fig. 4-45. There are three sequences of messages here. In messages ( I ) ,  (2), and 
(3) the user does an ALARM call via a'message to the memory manager, the man- 
ager sends a request to the clock, and the clock acknowledges. In messages f4), 
( 5 ) ,  and (6), the clock task sends the alarm to the memory manager, the memory 
manager calls the system task to prepare the user process' stack for execution of 
the signal handler (as in Fig. 4-42(b)), and the system task replies. Message (7) is 
the call to SIGRETURN that occurs when the handler completes execution. In 
response the memory manager sends message (8) to the system task to have it 
complete the cleanup, and the system task replies with message (9). Message (6) 
does not itself cause the handler to execute, but the sequence wdl be maintained, 
because the system task, as a task, will be allowed to complete its work due to the 
priority scheduling algorithm used in MINIX. The handler is part of the user proc- 
ess and will execute only after the system task has completed its work. 
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Layer c-=> for ALRM 

Process management 

Figure 4-45. Messages for an alarm. The most important are: ( 1 )  User does 
ALARM. (4) After the set time has elapsed, the signal arrives. (7) Handler ter- 
minates with call lo SICRETURN. See text for details. 

Do-pause takes care of the PAUSE system call (line 18 1 15). All that is neces- 
sary is to set a bit and refrain from replying, thus keeping the caller blocked. The 
kernel need not even be informed, since it knows that the caller is blocked. 

The final system call handled in sign0l.c is REBOOT (line 18128). This call is 
used only by specialized programs executable by the sups-user, but it serves an 
important function. It ensures that all processes are terminated in an orderly way 
and that the file system is synched before the system task in the kernel is called to 
shut down. The termination of processes is done using check-sig to send a SIC- 
KILL to all processes except init. This is why REBOOT is included in  this file. 

Several support functions in signa1.c have been mentioned in passing. We 
will now look at them in more detail. By far the most important is sig-proc (line 
18 168), which actually sends a signal. First a number of tests are made. Attempts 
to send to dead (lines 1 8 190 to 1 8 192) or hanging (lines 1 8 194 to 1 8 196) proc- 
esses are serious problems that cause a system panic. A process that is currently 
being traced is stopped when signaled (lines 18138 to 18202). If the signal is to 
be ignored, sig-proc's work is complete on line 18204. This is the default action 
for some signals. for instance, those signals that are required by Posrx but are not 
supported by MINIX. If the signal is blocked, the only action that needs to be 
taken is to set a bit in that process' mp-sigpending bit map, The key test (line 
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18213) is to distinguish processes that have been enabled to catch signals from 
those that have not. By this point all other special considerations have been eiim- 
inated, and a process that cannot catch the signal will be terminated. 

Signals that are eligible to be caught are processed on lines 18214 to 18249. 
A message is constructed to be sent to the kernel, some parts of which are copies 
of information in the memory manager's part of the process table. If the process 
to be signaled was previously suspended by SIGSUSPEND, the signal mask that was 
saved at the time of suspension is included in the message; otherwise the current 
signal mask is included (lines 182 13 to 182 17). Other items included in the rnes- 
sage are several addresses in the space of the signaled process space: the signal 
handler, the address of the sigreturn library routine to be called on completion of 
the handler, and the current stack pointer. 

Next, space is allocated on the process' stack. Figure 4-46 shows the struc- 
ture that is put on the stack. The sigcontext portion is put on the stack to preserve 
i t  for later restoration, since the corresponding structure in the process table itself 
is altered in preparation for execution of the signal handler. The sigfrume part 
provides a return address for the signal handler and data needed by SICRETURN to 
complete restoration of the process' state when the handler is done. The return 
address and frame pointer are not actually used by any part of MINIX. They are 
there to fool a debugger if anyone should ever try to trace execution of a signal 
handler. 

The structure to be put on the signaled process' stack is fairly large. The code 
in lines 18225 and 18226 reserves space for it, following which a call to adjust 
tests to see whether there is enough room on the process' stack. If there is not 
enough stack space, the process is killed by jumping to the label &terminate 
using the seldorn-used C goto (lines 18228 and 18229). 

There is a potential problem with the call to adjust. Recall from our discus- 
sion of the implementation of BRK that adjust returns an error if the stack is within 
SAFETY-BYTES of running into the data segment. The extra margin of error is 
provided because the validity of the stack can only be checked occasionally by 
software. This margin of error is probably excessive in the present instance, since 
it is known exactly how much space is needed on the stack for the signal, and ad- 
ditional space is needed only for the signal handler, presumably a relatively sim- 
ple function. It is possible that some processes may be terminated unnecessarily 
because the call to adjust fails. This is certainly better than having programs fail 
mysteriously at other times, but finer tuning of these tests may be possible. 

If there is enough room on the stack, two more flags are checked. The 
SA-NODEFER flag indicates if the signaled process is to block further signals of 
the same type while handling a signal. The SA-RESETHAND flag tells if the sig- 
nal handler is to be reset upon receiving this signal. (This provides faithful ernu- 
lation of the old signal call. Although this "feature" is often considered a fault in 
the old caIl, support of old features requires supporting their faults as well.) The 
kernel is then notified, using the library routine sys-sendsig (line 1 8242). Finally. 
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Figure 4-46. The sigcantext and sigframe structures pushed on the stack to 
prepare for a signal handler. The processor registers are a copy of the stack- 
frame used during a context switch. 

the bit indicating a signal is pending is cleared, and unpalase is called to terminate 
any system call on which the process may be banging. When the signaled process 
next executes, the signal handler will run. 

Now Ict us Imk at the termination code, marked by the label darerminute (line 
18250). The label and a goto are the easiest way to handle the possible failure of 
the call to adjusf. Here signals are prmessed that for one reason or another cannot 
or should not be caught. The action may include a core dump, if that is appropri- 
ate to the signal, and always ends with termination of the process as if it had 
exited, rhrsugh a call to mrn-exk (line 18258). 

Check-sig (line 18265) is where the memory manager checks to see if a sig- 
nal can be sent. The call 

kill(0, sig); 

causes the indicated signal to be sent to all the processes in the caller's group (k., 
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all the processes started from the same terminal). Signals originating in the kernel 
and REBOOT also may affect multiple processes. For this reason, check-sig loops 
on lines 18288 to 183 18 to scan through the process table to find all the processes 
to which a signal should be sent. The loop contains a large number of tests. Only 
if all of them are passed is the signal sent, by calling sig-proc on line 1831 5. 

Check-pending (line 18330) is another function called several times in the 
code we have just reviewed. It loops through ail the bits in the mp-sigpending bit 
map for the prucess referred to by do-sigmask, do-sigrerurn, or do-sigsuspend, 
to see if any blocked signal has become unblocked. It calfs sig-proc to send the 
first unblocked pending signal it finds. Since all signal handlers eventually cause 
execution of do-sigrefurn, this suffices eventually to deliver all pending un- 
masked signals. 

The procedure unpause (line 18359) has to do with signals that are sent to 
processes suspended on PAUSE, WAIT, READ, WRITE, or SIGSUSPEND calls. PAUSE, 
WALT, and SIGSUSPEND can be checked by consulting the memory manager's part 
of the process table, but if none of these are found, the file system must be asked 
to use its own do-unpause function to check for a possible hangup on READ or 
WRITE. In every case the action is the same: an error reply is sent to the waiting 
call and the flag bit that corresponds to the cause of the wait is reset so the process 
may resume execution and process the signal. 

The final procedure in this file is dump-core (line 184021, which writes core 
dumps to the disk. A core dump consists of a header with information about the 
size of the segments occupied by a process, a copy of all the process' state infor- 
mation. obtained by copying the kernel process table information for the process, 
and the memory image of each of the segments. A debugger can interpret this in- 
formation to help the programmer determine what went wrong during execution 
of the process. The code to write the fife is straightforward. The potential prob- 
lem mentioned in the previous section again raises its head, but in a somewhat dif- 
ferent form. To be sure the stack segment to be recorded in the core dump is up to 
date, adjust is called on line 18428. This call may fail because of the safety mar- 
gin built into it. The success of the call is not checked by dump-core, so the core 
dump will be written in any case, but within the file the information about the 
stack may be incorrect. 

4.8.7 Im~lementation of the Other System Calls 

The file 8etset.c contains one procedure, do-getset (line 18515), which car- 
ries out the seven remaining memory manager calls. They are shown in Fig. 4-47. 
They are all so simple that they are not worth an entire procedure each. The 
GETUID and GETGID calk both return the real and effective uid or gid. 

Setting the uid or gid is slightly more complex than just reading it. A check 
has to be made to see if the caller is authorized to set the uid or gid. If the caller 
passes the test, the file system must be informed of the new uid or gid, since tile 
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I System Call I Description I 

1 GETPlD I Return pids of process and its parent I 

GETUID 

GETGID 

I SETUID 1 Set caller's real and effective "id I 

Return real and effective uid 

Return real and effective gid 

I SETGID 1 Set caller's real and effective gid 1 
I SETSID I Create new session, return pid I 

I 

GETPGRP I Return ID of process group 

Figure 4-47. The system calls supported in mm/gersur.c 

protection depends on it. The SETSID call creates a new session, and a process 
which is already a process group leader is not allowed to do this. The test on line 
18561 checks this. The file system completes the job of making a process into a 
session leader with no controlling terminal. 

Minimal debugging support, by means of the PTRACE system call, is in the file 
trace.c. There are eleven commands that can be given as a parameter to the 
PTRACE system call. They are shown in Fig. 4-48. In the memory manager 
&_trace processes four of them: enable, exit, resume, step. Requests to enable or 
exit tracing are completed here. All other commands are passed o n  to the system 
task, which has access to the kernel's part of the process table. This is done by 
the call to the sys-trace library function on  line 18669. Two support functions for 
tracing are provided at the end of truce.c. Stop-proc is used to stop a traced proc- 
ess when it is signaled, andfindproc supports do-trace by searching the process 
table for the process to be traced. 

4.8.8 Memory Manager Utilities 

The remaining files contain utility routines and tables. The file a1iuc.c is 
where the system keeps track of which parts of memory are in use and which are 
free. It has four entry points: 

1 .  ullnc-mem -request a block of memory of a given size. 

2.  free -mem - return memory that is no longer needed. 

3. max-hole -compute the size of the largest available hole. 

4. mem-init - initialize the free list when the memory manager starts running. 

As we have said before, alluc-mem (line 18840) just uses first fit on a list of 
holes sorted by memory address. If it finds a piece that is too big, it takes what it 
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I Command / Description I 
T-STOP 1 Stop the process 

1 

1 T-SETINS 1 Set value in instruction space I 
T-SETDATA I Set value in data space I 

Figure 4-48. Debugging commands supported by mm/rrace.c. 

T-SETUSE R 

T-RESUME 

T-EXIT 

T-STEP 

needs and leaves the rest on the free list, but reduced in size by lhe amount taken. 
If an entire hole is needed, del-slot (line 18926) is called to remove the entry 
from the free list. 

Set value in user process table 

Resume execution 

Exit 

Set trace bit 

Free-rnem's job is to check if a newly released piece of memory can be 
merged with holes on either side. If it can, merge (line 18949) is called to join the 
holes and update the lists. 

Max-hole (line 18985) scans the hole list and returns the largest item it finds. 
Mem-init (line 19005) builds the initial free list, consisting of all available memo- 
'Y - 

The next file is ut i l i t y .~ ,  which holds a few miscellaneous procedures used in 
various places in the memory manager. The procedure allowed (line 19120) 
checks to see if a given access is allowed to a file. For example, do-exec needs 
to know if a file is executable. 

The procedure no-sys (line 191 6 1) should never be called. It is provided just 
in case a user ever calls the memory manager with a system call number that is 
invalid or is not handled by the memory manager. 

Panic (line 19172) is called only when the memory manager has detected an 
error from which it cannot recover. It reports the error to  the system task, which 
then brings MINIX to a screeching halt. It is not called lightly. 

The last function in urility-c is tell-fs, which constructs a message and sends 
it to the file system when the latter needs to be informed of events handled by the 
memory manager. 

The two procedures in the file putk.c are also utilities, although of quite a dif- 
ferent character from the previous ones. From time to time. calls to printf are 
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inserted into the memory manager, mostly for debugging. Also, panic calls prirl tf... 
As mentioned earlier, the name printfis actually a macro defined as prinrk, so that 
calls to printfdo not use the standard I/O library procedure that sends messages to 
the file system. Prinrk calls putk to communicate directly with the terminal task, 
something that is forbidden to ordinary users. We saw a routine of the same namz 
in the kernel code. 

4.9 SUMMARY 

In this chapter we have examined memory management, both in general and 
in MINIX. We saw that the simplest systems do  not swap or page at all. Once a 
program is loaded into memory, it remains there until it finishes. Some operating 
systems allow only one process at a time in memory, while others support 
rnul tiprogramrning. 

The next step up is swapping. When swapping is used, the system can handle 
more processes than it has room for in memory. Processes for which there is no 
room are swapped out to the disk. Free space in memory and on disk can be kept 
track of with a bit map or a hole list. 

More advanced computers often have some form of virtual memory. In the 
simplest form, each process' address space is divided up into uniform sized blocks 
called pages, which can be placed into any available page frame in memory. 
There are many page replacement algorithms, two of the better known ones being 
second chance and aging. To make paging systems work well, choosing an algo- 
rithm is not enough; attention to issues such as determining the working set, mem- 
ory allocation policy, and page size are required. 

Segmentation helps in handling data structures that change size during execu- 
tion and simplifies linking and sharing. It also facilitates providing different pro- 
tection for different segments. Sometimes segmentation and paging are combined 
to provide a two-dimensional virtual memory. The MULTICS system and the 
Intel Pentium support segmentation and paging. 

Memory management in MINIX is simple. Memory is allocated when a proc- 
ess executes a FORK or EXEC system call. The memory so allocated is never 
increased or decreased as long as the process lives. On Intel processors there are 
two memory models used by MINIX. Small programs can have instructions and 
data in the same memory segment. Larger program\ use separate instruction and 
data space (separate 1 and D). Processes with separate I and D space can share 
the text portion of their memory, so only data and stack memory must be allocated 
during a FORK. This may also be true during an EXEC if another process already i s  
using the text needed by the new program. 

Most of the work of the memory manager is concerned not with keeping track 
of free memory, which it does using a hole list and the first fit algorithm, but 
rather with carrying out the system calls relating to memory management. A 
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number of system calls support POSIX-style signals, and since the default action of 
most signals is to terminate the signaled process, it is appropriate to handle them 
in the memory manager, which initiates termination of all processes. Several sys- 
tem calls not directly related to memory are also handled by the memory manager, 
mainly because it is smaller than the fiIe system, and thus it was most convenient 
to put them here. 

PROBLEMS 

1. A computer system has enough room to hold four programs in its main memory. 
These programs are idle waiting for I10 half the time. What fraction of the CPU time 
is wasted? 

2. Consider a swapping system in which memory consists of the following hole sizes in 
memory order: IOK, 4K. 20K, 18K, 7K, 9K, 12K, and 15K. Which hole is taken for 
successive segment requests of 

(a) 12K 
(b)  1OK 
(c) 9K 

for first fit? Now repeat the question for best fit, worst fit. and next fit. 

3. What is the difference between a physical address and a virtual address? 

4. Using the page table of Fig. 4-8, give the physical address corresponding to each of 
the following virtual addresses: 

5. The Intel 8086 processor does not support virtual memory. Nevertheless, some com- 
panies previously sold systems that contained an unmodified 8086 CPU and do pag- 
ing. Make an educated guess as to how they did it. (Hint: think about the logical loca- 
tion of the MMU.) 

6. If an instruction takes 1 microsec and a page fault takes an additional n microsec, give 
a formula for the effective instruction time if page faults occur every k instructions. 

7. A machine has a 32-bit address space and an 8K page. The page table is entirely in 
hardware. with one 32-bit word per entry. When a process starts, the page table is 
copied to the hardware from memory, at one word every 100 nsec. If each process 
runs for 100 msec (including the time to load the page table), what fraction of the CPU 
time is devoted to loading the page tables? 

8. A computer with a 32-bit 'address uses a two-level page table. Virtual addresses are 
spfit into a 9-bit top-level page table field, an I 1-bit second-level page table field, and 
an offset. How large are the pages and how many are there in the address space? 
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9. Below is the listing of a short assembly language program for a computer with 5 12- 
byte pages. The program is located at address 1020, and its stack pointer is at 8192 
(the stack grows toward 0). Give the page reference string generated by this program. 
Each instruction occupies 4 bytes ( l  word), and both instruction and data references 
count in the reference string. 

Load word 6144 into register 0 
Push register 0 onto the stack 
Call a procedure at 5 120, stacking the return address 
Subtract the immediate constant 16 from the stack pointer 
Compare the actual parameter to the immediate constant 3 
Jump if equal to 5 152 

10. Suppose that a 32-bit virtual address is broken up into four fields, a, 6, c ,  and d. The 
first three are used for a three-level page table system. The fourth field, d, is the 
offset. Does the number of pages depend on the sizes of all four fields? If not, which 
ones matter and which ones do not? 

11. A computer whose processes have 1024 pages in their address spaces keeps its page 
tables in memory. The overhead required for reading a word from the page table is 
500 nsec. To reduce this overhead, the computer has a TLB, which holds 32 (virtual 
page, physical page frame) pairs, and can do a look up in 100 nsec. What hit rate is 
needed to reduce the mean overhead to 200 nsec? 

12. The TLB on the VAX does not contain an R bit. Why? 

13. A machine has 48-bit virtual addresses and 32-bit physical addresses. Pages are 8K. 
How many entries are needed for the page table? 

14. A computer has four page frames. The time of loading, time of last access, and the R 
and M bits for each page are as shown below (the times are in clock ticks): 

Page Loaded Last ref. R M 
0 126 279 0 0 
1 230 260 1 0  
2 1 20 272 1 1  
3 160 2 80 1 1  

(a) Which page will NRU replace? 
(b) Which page will FIFO replace? 
(c) Which page will LRU replace? 
(d) Which page will second chance replace? 

15. If FIFO page replacement is used with four page frames and eight pages, how many 
page faults will occur with the reference string 0172327103 if the four frames are ini- 
tially empty? Now repeat this problem for LRU. 

16. A small computer has four page frames. At the first clock tick, the R bits are 01 I I 
(page 0 is 0, the rest are I ) .  At subsequent clock ticks, the values are I01 I ,  1010, 
1101, 0010, 1010, 1100, and 0001. If the aging algorithm is used with an 8-bit count- 
er, give the values of the four counters after the last tick. 
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17. How long does it take to load a 64K program from a disk whose average seek time is 
30 msec, whose rotation time is 20 msec, and whose tracks hold 32K 

(a) for a 2K page size? 
(b) for a 4K page size? 

The pages are spread randomly around the disk. 

18, One of the first timesharing machines, the PDP-I, had a memory of 4K f 8-bit words. 
It held one process at a time in memory. When the scheduler decided to run another 
process, the process in memory was written to a paging drum, with 4K 18-bit words 
around the circumference of the drum. The drum could start writing (or reading) at 
any word, rather than only at word 0. Why do you suppose this drum was chosen? 

19. A computer provides each process with 65,536 bytes of address space divided into 
pages of 4096 bytes. A particular program has a text size of 32,768 bytes. a data size 
of 16,386 bytes, and a stack size of 15,870 bytes. Will this program fit in the address 
space? If the page size were 512 bytes, would it fit? Remember that a page may not 
contain parts of two different segments. 

20. It has been observed that the number of instructions executed between page faults is 
directly proportional to the number of page frames allocated to a program. If the 
availabIe memory is doubled, the mean interval between page faults is also doubled. 
Suppose that a normal instruction takes I microsec, but if a page fault occurs, it takes 
2001 microsec (i.e., 2 msec to handle the fault). If a program takes 60 sec to run, dur- 
ing which time it gets 15,000 page faults, how long would it take to run if twice as 
much memory were available? 

21. A group of operating system designers for the Frugal Computer Company are thinking 
about ways of reducing the amount of backing store needed in their new operating sys- 
tem. The head gum has just suggested not bothering to save the program text in the 
swap area at all, but just page it in directly from the binary file whenever it is needed. 
Are there any problems with this approach? 

22. Explain the difference between internal fragmentation and external fragmentation. 
Which one occurs in paging systems? Which one occurs in systems using pure seg- 
mentation? 

23. When segmentation and paging are both being used, as in MULTICS, first the segment 
descriptor must be looked up, then the page descriptor. Does the TLB also work this 
way, with two levels of lookup? 

24. Why does the MINIX memory management scheme make it necessary to have a pro- 
gram like chrnem? 

W.  Modify MINIX to release a zombie's memory as soon as it enters the zombie state, 
rather than waiting until the parent waits for it. 

26. In the current implementation of MINIX, when an EXEC system call is made, the mem- 
ory manager checks to see if a hole large enough to contain the new memory image is 
currently available. If not, the call is rejected. A better algorithm would be to see if a 
sufficiently large hole would be available after the current memory image were 
released. Implement this algorithm. 
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27. When carrying out an EXEC system call, MINIX uses a trick to have the file system 
read in entire segments at once. Devise and implement a simiiar trick to allow core 
dumps to be written in a similar way. 

28. Modify MINIX to do swapping. 

29. In Sec. 4.7.5, it was pointed out that on an EXEC call, by testing for an adequate hole 
before releasing the current process' memory, a suboptimal implementation is 
achieved. Reprogram this algorithm to do better. 

30. In Sec. 4.8.4, it was pointed out that it would be better to search for holes for the text 
and data segments separately. Implement this improvement. 

31. Redesign adjust to avoid the problem of sign&d processes being killed unnecessarily 
because of a too-strict test for stack space. 



FILE SYSTEMS 

All computer applications need to store and retrieve information. While a 
process is running, it can store a limited amount of information within its own ad- 
dress space. However, the storage capacity is restricted to the size of the virtual 
address space. For some applications this size is adequate, but for others, such as 
airline reservations, banking, or corporate record keeping, it is far too small. 

A second problem with keeping information within a process' address space 
is that when the process.terminates, the information is lost. For many applica- 
tions, (e.g., for data bases), the information must be retained for weeks, months, or 
even forever. Having it vanish when the process using it terminates is unaccept- 
able. Furthermore, it must not go away when a computer crash kills the process. 

A third problem is that it is frequently necessary for multiple processes to ac- 
cess (parts of) the information at the same time. If we have an on-line telephone 
directory stored inside the address space of a single process, only that process can 
access it. The way to solve this problem is to make the information itself 
independent of any one process. 

Thus we have three essential requirements for long-term information storage: 

1. It must be possible to store a very large amount of information. 

2. The information must survive the termination of the process using it. 

3. Multiple processes must be able to access the information concurrently. 

The usual solution to all these problems is to store information on disks and other 
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external media in units called files. Processes can then read them and write new 
ones if need be. Information stored in files must be persistent, that is, not be 
affected by process creation and termination. A file should only disappear when 
its owner explicitly removes it. 

Files are managed by the operating system. How they are structured, named, 
x ~ e s s e d ,  used, protected, and implemented are major topics in operating system 
design. As a whole, that part of the operating system dealing with files is known 
as the file system and is the subject of this chapter. 

From the users' standpoint, the most important aspect of a file system is how 
it  appears to them, that is, what constitutes a file, how files are named and pro- 
tected, what operations are allowed on files, and so on. The details of whether 
linked lists or bit maps are used to keep track of free storage and how many sec- 
tors there are in a logical block are of less interest, although they are of great 
importance to the designers of the file system, For this reason, we have structured 
the chapter as several sections. The first two are concerned with the user interface 
to files and directories, respectively. Then comes a detailed discussion of how the 
file system is implemented. After that we will look at security and protection 
mechanisms in file systems. Finally we will look at the file system. 

5.1 FILES 

In this section we will look at files from the user's point of view, that is, how 
they are used and what properties they have. 

5.1.1 File Naming 

Files are an abstraction mechanism. They provide a way to store information 
on the disk and read it back later. This must be done in such a way as to shield 
the user from the details of how and where the information is stored, and how the 
disks actually work. 

Probably the most important characteristic of any abstraction mechanism is 
the way the objects being managed are named, so we will start our examination of 
file systems with the subject of file naming. When a process creates a,file, it 
gives the file a name. When the process terminates, the file continues to exist and 
can be accessed by other processes using its name. 

The exact rules for file naming vary somewhat from system to system, but all 
operating systems allow strings of one to eight letters as legal file names. Thus 
andrea, bruce, and cathy are possible file names. Frequently digits and special 
characters are also permitted, so names like 2, urgent!, and Fig.2-14 are often 
valid as well. Many file systems support names as long as 255 characters. 

Some file systems distinguish between upper case letters and lower case 
letters, whereas others do not. UNIX falls in the first category; MS-DOS falls in the 
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second. Thus a UNIX system can have all of the following as distinct files: bar- 
bara, Barbara, BARBARA, BARbara, and BarBaRa. In MS-DOS they all designate 
the same file. 

Many operating systems support two-part file names, with the two parts sepa- 
rated by a period, as in prog.c. The part following the period is called the file 
extension and usudly indicates something about the file. In MS-DOS, for example, 
file names are 1 to 8 characters, plus an optional extension of 1 to 3 characters. In 
trrJIx, the size of the extension, if any, is up to the user, and a file may even have 
two or more extensions, as in prog.c.2, where .Z is commonly used to indicate 
that the file @rog.c) has been compressed using the Ziv-Lempel compression al- 
gorithm. Some of the more common file extensions and their meanings are shown 
in Fig. 5- 1. 

1 I 

Exbnsion 

file-bak 

( tilagif I Cornpusewe Graphical Interchange F onnat image I 

Meaning 

Backup file 

fi1e.c 

fib377 

C swrce program 

Fortran 77 program 

fi1e.o I object file (compiler output, not yet linked) 
I 

fikhtml 

file.mpg 

file.tex 1 Input for the TEX formatting program 

World Wide Web HyperText Markup Language document 

Movie encoded with the MPEG standard 

Rgure 5-1. Some typical file extensions. 

In some cases, the file extensions ace just conventions and are not enforced in 
any way. A file named_file.#xt is probably some kind of text file, but that name is 
more to remind the owner than to convey any specific information to the com- 
puter. On the other hand, a C compiler may actually insist that the files it is to 
compile end in .c, and it may refuse to compile them if they do not. 

Conventions like this are: especially useful when the same program can handle 
several different kinds of files. The C compiler, for example, can be given a list 
of several files to compile and link together, some of them C files and some of 
them assembly language files. The extension then becomes essential for the eom- 
piler to telj which are C files, which are assembly files, and which are other files, 
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5.1.2 File Structure 

Files can be structured in any of several ways. Three common possibilities 
are depicted in Fig. 5-2. The file in Fig. 5-2(a) is an unstructured sequence of 
bytes. In effect, the operating system does not know or care what is in the file. 
All it sees are bytes. Any meaning must be imposed by user-level programs. 
Both UNIX and MS-DOS use this approach. As an aside, WINDOWS 95 basically 
uses [he MS-DOS file system, with a little syntactic sugar added (e.g., long file 
names), so nearly everything said in this chapter about MS-DOS also holds far WIN- 
DOWS 95. WlNDOWS NT is completeIy different, however. 

1 Byte Record 

Figure 5-2. Three kinds of files. (a) Byte sequence. (b) Record sequence. (c) 
Tree. 

Having the operating system regard files as nothing more than byte sequences 
provides the maximum flexibility. User programs can put anything they want in 
files and name them any way that is convenient. The operating system does not 
help. but it also does not get in the way. For users who want to do unusual things, 
the latter can be very important. 

The first step up in structure is shown in Fig. 5-2(b). In this model, a file is a 
sequence of fixed-length records, each with some internal structure. Central to 
the idea of a file being a sequence of records is the idea that the read operation re- 
turns one record and the write operations overwrites or appends one record. In 
years gone by. when the 80-column punched card was king, many operating sys- 
tems based their file systems on files consisting of 80-character records, in effect, 
card images. These systems also supported files of 132-character records, which 
were intended for the line printer (which in those days were big chain printers 
having 132 columns). Programs read input in units of 80 characters and wrote it 
in units of 132 characters, although the final 52 could be spaces, of course. 
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An (old) system that viewed files as sequences of fixed-length records was 
CP/M. It used a 128-character record. Nowadays, the idea of a fZe as a sequence 
of fixed length records is pretty much gone, although it was once the norm. 

The third kind of file structure is shown in Fig. 5-2(c). In this organization, a 
file consists of a tree of records, not necessarily all the same length, each contain- 
ing a key field in a fixed position in the record. The tree is sorted on the key field, 
to allow rapid searching for a particular key. 

The basic operation here is not to get the "next" record, although that is also 
possible, but to get the record with a specific key. For the zoo file of Fig. 5-2(c), 
one could ask the system to get the record whose key is pony, for example, with- 
out worrying about its exact position in the file. Furthermore, new records can be 
added to> the file, with the operating system, and not the user, deciding where to 
place them. This type of file is clearly quite different from the unstructured byte 
streams used in UNIX and MS-DOS but is widely used on the large mainframe com- 
puters still used in some commercial data processing. 

5.1.3 File Types 

Many operating systems suppod several types of files. UNlx and MS-DOS, for 
example, have regular files and directories. UNIX also has character and block 
special files. Regular files are the ones that contain user information. All the 
files of Fig. 5-2 are regular files. Directories are system files for maintaining the 
structure of the file system. We will study directories below. Character special 
files are related to inputloutput and used to model serial I/0 devices such as termi- 
nals, printers, and networks. Block special files are used to model disks. In this 
chapter we will be primarily interested in regular files. 

Regular files are generally either ASCII files or binary files. ASCII files con- 
sist of lines of text. In some systems each line is terminated by a cqrriage return 
character. In others, the line feed character is used. Occasionally, both are re- 
quired. Lines need not all be of the same length. 

The great advantage of ASCII files is that they can be displayed and printed 
as is, and they can be edited with an ordinary text editor. Furthermore, if large 
numbers of programs use ASCII files for input and output, it is easy to connect the 
output of one program to the input of another, as in shell pipelines. (The 
interprocess plumbing is not any easier, but interpreting the information certainly 
is if a standard convention, such as ASCII, is used for expressing it.) 

Other files are binary files, which just means that they are not ASCII files. 
Listing them on the printer gives an incomprehensible listing full of what is 
apparently random junk. Usually, they have some internal structure. 

For example, in Fig. 5-3(a) we see a simple executable binary file taken from 
an early version of UMX. Although technically the file is just a sequence of bytes, 
the operating system will only execute a file if it has the proper format. It has five 
sections: header, text, data, relocation bits, and symbol table. The header starts 
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with a so-called magic number, identifying the file as an executable file (to 
prevent the accidental execution of a file not in this format). Then come 16-bit 
integers giving the sizes of the various pieces of the file, the address at which ex- 
ecution starts, and some flag bits. Following the header are the text and data of 
the program itself. These are loaded into memory and relocated using the reloca- 
tion bits. The symbol table is used for debugging. 

+-- 16 Bits - 

BSSsize 
w 
cd 
Q, Svmbol table size 

4 Relocation 1 

Symbol 
table u 

Header 

Object 
module 

-. . 

Header 

w=t 
module 

Header 

Module q T  
\ I Protection 

Object 
module 

Figure 5-3. (a) An executable file. (b) An archive. 

Our second example of a binary file is an archive, also from UNIX. It consists 
of a collection of library procedures (modules) compiled but not linked. Each one 
is prefaced by a header telling its name, creation date, owner, protection code, and 
size. Just as with the executable fde, the module headers are full of binary num- 
bers. Copying them to the printer would produce complete gibberish. 

All operating systems must recognize one file type, their own executable file, 
but some recognize more. The old TOPS-20 system went so far as to examine the 
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creation time of any file to be executed. Then it located the source file and saw if 
the source had been modified since the binary was made. If it had been, it 
automatically recompiled the source. In  NIX terms, the make program had been 
built into the shell. The file extensions were mandatory so the operating system 
could tell which binary program was derived from which source. 

In a similar vein, when a WINDOWS user double clicks on a file name, an 
appropriate program is launched with the file as parameter. The operating system 
determines which program to run based on the file ex tension. 

Having strongly typed files like this causes problems'whenever the user does 
anything that the system designers did not expect. Consider, as an example, a sys- 
tem in which program output files have type dat (data files). If a user writes a 
program formatter that reads a .pas file, transforms it (e.g., by converting it to a 
standard indentation layout), and then writes the transformed file as output, the 
output file will be of type .&t. If the user tries to offer this to the Pascal compiler 
to compile it, the system will refuse because it has the wrong extension. Attempts 
to copy fikdat to file.pas will be rejected by the system as invalid (to protect the 
user against mistakes). 

While this kind of "user friendliness" may help novices, it drives experienced 
users up the wall since they have to devote considerable effort to circumventing 
the operatins system's idea of what is reasonable and what is not. 

5.1.4 File Access 

Early operating systems provided only one kind of file access: sequential at- 
cess. In these systems, a process could read all the bytes or records in a file in 
order, starting at the beginning, but could not skip around and read them out of 
order. Sequential files can be rewound, however, so they can be read as often as 
needed. Sequential files are convenient when the storage medium is magnetic 
tape, rather than disk. 

When disks came into use for storing files, it became possible to read the 
bytes or records of a file out of order, or to access records by key, rather than by 
position. Files whose bytes or records can be read in any order are called random 
access files. 

Random access files are essential for many applications, for example, data 
base systems. If an airline customer calls up and wants to reserve a seat on a par- 
ticular flight, the regvation program must be able to access the record for that 
flight without having to read the records for thousands of other flights first. 

Two methods are used for specifying where to start reading. In the first one, 
every READ operation gives the position in the file to start reading at. In the sec- 
ond one, a special operation, SEEK, is provided to set the current position. After a 
SEEK, the file can be read sequentially from the now-current position. 

In some older mainframe operating systems, files are classified as being either 
sequential or randorb access at the time they are created. This allows the system 
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to use different storage techniques for the two classes. Modern operating systems 
do not make this distinction. All their files are automatically random access. 

5.1.5 File Attributes 

Every file has a name and its data. In addition, all operating systems associate 
other information with each file, for example, the date and time the file was 
created and the file's size. We will call these extra items the file's attributes. 
The list of attributes varies considerably from system to system. The table of 
Fig. 5-4 shows some of the possibilities, but other ones also exist. No existing 
system has all of these, but each one is present in some system. 

Password I Password needed to access the file 

Protection 

Creator I id of the person who created the file 
I 

Who can access the file and in what way 
I 

1 System flag I 0 for normal files; 1 for system file I 

Owner 

Read-only flag 

Hidden flag 

Current owner 

0 for readwrite; 1 for read only 

0 far normal; 1 for do not display in listings 

Archive flag 

ASClVbinary flag 

Random access flag 

Temporary flag 

Lock flags 

Record length 
I 

Key position 

Key length 

Time of last access I Date and time the file was last accessed 

0 for has been backed up; 1 for needs to be backed up 

0 for ASCU file; 1 for binary file 

0 for sequential access only; 1 for random access 

0 for normal; 1 for delete file on process exit 

0 for unlocked; nonzero for locked 

Number of bytes in a record 

Offset of the key within each record 

Number of bytes in the key field 
-- 

Creation time 

Time of last change I Date and time the file has last changed 
I 

Date and time the f ila was created 

Current size I Number of bytes in the file 
I I 

I 

I Maximum size I Number of bytes the file may grow to 

Figure 5-4. Some possibie file attributes. 

The first four attributes relate to the file's protection and tell who may access 
it and who may not. All kinds of schemes are possible, some of which we will 
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study later. In some systems the user must present a password to access a file, in 
which case the password must be one of the attributes. 

The flags are bits or short fields that control or enable some specific property. 
Hidden files, for example, do not appear in listings of all the files. The archive 
flag is a bit that keeps track of whether the file has been backed up. The backup 
program clears it, and the operating system sets it whenever a file is changed. In 
this way, the backup program can tell which files need backing up. The tem- 
porary flag allows a file to be marked for automatic deletion when the process that 
created it terminates. 

The record length, key position, and key length fields are only present in files 
whose records can be looked up using a key. They provide the information re- 
quired to find the keys. 

The various times keep track of when the file was created, most recently ac- 
cessed and most recently modified. These are useful for a variety of purposes. 
For example, a source fde that has been modified after the creation of the 
corresponding object fde needs to be recompiled.. These fields provide the neces- 
sary information. 

The current size tells how big the file is at present. Some mainframe operat- 
ing systems require the maximum size to be specified when the file is created, to 
let the operating system reserve the maximum amount of storage in advance. 
Workstation and personal computer operating systems are clever enough to do 
without this featwe. 

5.1.6 Pile Operatioms 

Files exist to store infomation and allow it to be retrieved later. Different 
systems provide different operations to allow storage and retrieval. Below is a 
discussion of the most common system calls relating to files. 

1. CREATE. The file is created with no data. The purpose of the call is 
to announce that the file is coming and to set some of the attributes. 

2. DELETE. When the file is no longer needed, it has to be deleted to 
free up disk space. There is always a system call for this purpose. 

3. OPEN. Before using a file, a process must open it. The purpose of 
the OPEN call is to allow the system to fetch the attributes and list of 
disk addresses into main memory for rapid access on later calls, 

4. CLOSE. When all the accesses are finished, the attributes and disk 
addresses are no longer needed, so the file should be closed to free 
up internal table space. Many systems encourage this by imposing a 
maximum number of open files on processes. A disk is written in 
blocks, and closing a file forces writing of the file's last bIock, even 
though that block may not be entirely full yet. 



FILE SYSTEMS CHAP. 5 

READ. Data are read from file. Usually, the bytes come from the 
current position. The caller must specify how much data are needed 
and must also provide a buffer to put them in. 

WRITE. Data are written to the file, again, usually at the current 
position. If the current position is the end of the file, the file's size 
increases. If the current position is in the middle of the file, existing 
data are overwritten and lost forever. 

APPEND. This call is a restricted form of WRITE. It can only add 
data to the end of the file. Systems that provide a minimal set of sys- 
tem calls do not generally have APPEND, but many systems provide 
multiple ways of doing the same thing, and these systems sometimes 
have APPEND. 

SEEK. For random access files, a method is needed to specify from 
where to take the data. One common approach is a system call, 
SEEK, that repositions the pointer to the current position to a specific 
place in the file. After this call has completed, data can be read 
from, or written to, that position. 

GET ATTRIBUTES. Processes often need to read file attributes to do 
their work. For example, the UNIX make program is commonly used 
to manage software development projects consisting of many source 
files. When make is called, it examines the modification times of all 
the source and object files and arranges for the minimum number of 
compilations required to bring everything up to date. To do its job, it 
must look at the attributes, namely, the modification times. 

SET ATTRIBUTES. Some of the attributes are user settable and can be 
changed after the file has been created. This system calt makes that 
possible. The protection mode information is an obvious example. 
Most of the flags also fall in this category. 

RENAME. It frequently happens that a user needs to change the name 
of an existing file. This system call makes that possible. It is not 
always strictly necessary, because the file can usually be copied to a 
new file with the new name, and the old file then deleted. 

To keep track of files, file systems normally have directories, which, in many 
systems, are themselves files. In this section we wit1 discuss directories, their 
organization, their properties, and the operations that can be performed on them. 



SEC. 5.2 DIRECTORIES 411 

5.2.1 Hierarchical Directory Systems 

A directory typically contains a number of entries, one per file. One possibil- 
ity is shown in Fig. 5-5(a), in which each entry contains the file name, the file 
attributes, and the disk addresses where the data are stored. Another possibility is 
shown in Fig. 5-5(b). Here a directory entq holds the file name and a pointer to 
another data structure where the attributes and disk addresses are found. Both of 
these. systems are commonly used. 

news I attributes 

I work j attributes I 

Data structure 
containing the 
attributes 

Figure 5-5. (a) Attributes in the directory entry. (b) Attributes elsewhere. 

When a file is opened, the operating system searches its directory until it finds 
the name of the file to be opened. It then extracts the attributes and disk address- 
es, either directly from the directory entry or from the data structure pointed to, 
and puts them in a table in main memory. All subsequent references to the file 
use the information in main memory. 

The number of directories varies from system to system. The simplest design 
is for the system to maintain a single directory containing all the files of all the 
users, as illustrated in Fig. %(a). If there are many users, and they choose the 
same file names (e.g., mail and games), conflicts and confusion will quickly make 
the system unworkable. This system model was used by the first microcomputer 
operating systems but is rarely seen any more. 

An improvement on the idea of having a single directory for all files in the 
entire system is to have one directory per user [see Fig. 5-6(b)]. This design elim- 
inates name conflicts among users but is not satisfactory far users with a large 
number of files. It is quite common for users to want to group their files together 
in logical ways. A professor, for example, might have a collection of files that 
together form a book that he  is writing for one course, a second collection of files 
containing'student programs submitted for another course, a third group of files 
containing the code of an advanced compiler-writing system he is building, a 
fourth group of files containing grant proposals, as well as other files for elec- 
tronic mail, minutes of meetings, papers he is writing, games, and so on. Some 
way is needed to group these files together in flexible ways chosen by the user. 
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Figure 5-6. Three file system designs. (a) Single directory shared by all users. 
(b) One directory per user. (c) Arbitrary tree per user. The letters indicate the di- 
rectory or file's owner. 

What is needed is a general hierarchy (i.e., a tree of directories). With this 
approach, each user can have as many directories as are needed so that files can 
be grouped together in natural ways. This approach is shown in Fig. 5-6(c). 
Here, the directories A, B, and C contained in the root directory each belong to a 
different user, two of whom have created subdirectories for projects they are 
working on. 

5.2.2 Path Names 

When the file system is organized as a directory tree, .some way is needed for 
specifying file names. Two different methods are commonly used. In the first 
method, each file is given an absolute path name consisting of the path from the 
root directory to the file. As an example, the path /usr/ast/mailbox means that the 
root directory contains a subdirectory usr, which in turn contains a subdirectory 
ast, which contains the file mailbox. Absolute path names always start at the root 
directory and are unique. In UNlX the components of the path are separated by /. 
In MS-DOS the separator is \ .  In MULTICS it is >. No matter which character is 
used, if the first character of the path name is the separator, then the path is abso- 
lute. 

The other kind of name is the relative path name. This is used in conjunc- 
tion with the concept of the working directory (also called the current direc- 
tory). A user can designate one directory as the current working directory, in 
which case all path names not beginning at the root directory are taken relative to 
the working directory. For example, if the current working directory is /usr/ast, 
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then the file 'whose absolute path is /usr/ast/mailbux can be referenced simply as 
mailbox. In other words, the UNIX command 

and the command 

cp mailbox mailbox-bak 

do exactly the same thing if the working directory is /usdust. The relative form is 
often more convenient, but it does the same thing as the absolute form. 

Some programs need to access a specific file without regard to what the work- 
ing directory is. In that case, they should always use absolute path names. For 
example, a spelling checker might need to read /usr/lib/dictionury to do its work. 
It should use the full, absolute path name in this case because it does not know 
what the working directory will be when it is called. The absolute path name will 
always work, no matter what the working directory is. 

Of course, if the spelling checker needs a large number of files from /usr/lib, 
an alternative approach is for it to issue a system call to change its working direc- 
tory to /usr/lib, and then use just dictionary as the first parameter to open. By 
explicitly changing the working directory, it knows for sure where it is in the di- 
rectory tree, so it can then use relative paths. 

In most systems, each process has its own working directory, so when a proc- 
ess changes its working directory and later exits, no other processes are affected 
and no traces of the change are left behind in the file system. In this way it is 
always perfectly safe for a process to change its working directory whenever that 
is convenient. On the other hand, if a library procedure changes the working di- 
rectory and does not change back to where it was when it is finished, the rest of 
the program may not work since its assumption about where it is may now ?x 
invalid. For this reason, library procedures rarely change the working directory, 
ahd when they must, they always change it back again before returning. 

Most operating systems that support a hierarchical directory system have two 
special entries in every directory, "." and "..", generally pronounced "dot" and 
"dotdot." Dot refers to the current directory; dotdot refers to its parent. To see 
how ~hese are used, consider the U N ~ X  file tree of Fig. 5-7. A certain process has 
/usr/ast as its working directory. It can use .. to go up the tree. For example, it 
can copy the file /usr/lib/dictionary to its own directory using the shell command 

The first path instructs the system to go upward (to the usr directory), then to go 
down to the directory lib to find the file dictionary. 

The second argument names the current directory. When the cp command 
gets a directory name (including dot) as its last argument, it  copies all the files 
there. Of course, a more normal way to do the copy would be to type 

Here the use of dot saves the user the trouble of typing dicrionary a second time. 
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Figure 5-7. A UNIX directory tree: 

5.23 Directory Operations 

The allowed system calls for managing directories exhibit more variation 
from system to system than system calls for files. To give an impression of what 
they are and how they work, we will give a sample (taken from LNIX). 

1. CREATE. A directory is created. It is empty except for dot and dot- 
dot, which are put there automatically by the system (or in a few 
cases, by the mkdir program). 

2. DELETE. A directory is deleted. Only an empty directory can be 
deteted. A directory containing only dot and dotdot is considered 
empty as these usually cannot be deleted. 

3. OPENDIR. Directories can be read. For example, to list all the files 
in a directory, a listing program opens the directory to read out the 
names of all the files it contains. Before a directory can be read, i t  
must be opened, analogous to opening and reading a file, 
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4. CLOSEDIR. When a directory has been read, i t  should be closed to 
free up internal table space. 

5. READDIR. This call returns the next entry in an open directory. 
Formerly, it was possible to read directories using the usual READ 
system call, but that approach has the disadvantage of forcing the 
programmer to know and deal with the internal structure of direc- 
tories. In contrast, READDIR always returns one entry in a standard 
format, no matter which of the possible directory structures is being 
used. 

6. RENAME. In many respects, directories are just like files and can be 
renamed the same way files can be. 

7. LINK. Linking is a technique that allows a file to appear in more 
than one directory. This system call specifies an existing file and a 
path name, and creates a link from the existing file to the name 
specified by the path. In this way, the same file may appear in multi- 
ple directories. 

8. UNLINK. A directory entry is removed. If the file being unlinked is 
only present in one directory (the normal case), it is removed from 
the file system. If it is present in multiple directories, only the path 
name specified is removed. The others remain. In UNIX, the system 
call for deleting files (discussed earlier) is, in fact, UNLINK. 

The above list gives the most important calls, but there are a few others as well, 
for example, for managing the protection information associated with a directory. 

5.3 FILE SYSTEM IMPLEMENTATION 

Now it  is time to turn from the user's view of the file system to the 
implementor's view. Users are concerned with how files are named, what opera- 
tions are allowed on them, what the directory tree looks like, and similar interface 
issues. Implementors are interested in how files and directories are stored, how 
disk space is managed, and how to make everything work efficiently and reliably. 
In the following sections we will examine a number of these areas to see what the 
issues and trade-offs are. 

5.3.1 Implementing Files 

Probably the most important issue in implementing file storage is keeping 
track of which disk blocks go with which file. Various methods are used in dif- 
ferent operating systems. In this section. we will examine a few of them. 
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Contiguous Allocation 

The simplest aliocation scheme is to store each file as a contiguous block of 
data on the disk. Thus on a disk with 1K blocks, a 50K file would be allocated 50 
consecutive blocks. This scheme has two significant advantages. First, it is sim- 
ple to implement because keeping track of where a file's blocks are is reduced to 
remembering one number, the disk address of the first block. Second, the perfor- 
mance is excellent because the entire file can be read from the disk in a single op- 
eration. 

Unfortunately, contiguous allocation also has two equally significant draw- 
backs. First, it is not feasible unless the maximum file size is known at the time 
the file is created. Without this information, the operating system does not know 
how much disk space to reserve. In systems where files must be written in a sin- 
gle blow, it can be used to great advantage, however. 

The second disadvantage is the fragmentation of the disk that results from this 
allocation policy. Space is wasted that might otherwise have been used. Com- 
paction of the disk is usually prohibitively expensive, although it can conceivably 
be done late at night when the system is otherwise idle. 

Linked List Allocation 

The second method for storing files is to keep each one as a linked list of disk 
blocks, as shown in Fig. 5-8. The first word of each block is used as a pointer to 
the next one. The rest of the block is for data. 

File A 

block block Mock block block 

Physical 4 7 2 10 12 
block 

File B 

block block block block 

Physical 6 3 11 14 
block 

Figure 5-8. Storing a file as a linked list of disk blocks. 

Unlike contiguous allocation, every disk block can be used in this method. 
No space is lost to disk fragmentation (except for internal fragmentation in the last 
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block). Also, it is sufficient. for the directory entry to merely store the disk ad- 
dress of the first block. The rest can be found starting there. 

On the other hand, although reading a file sequentially is straightforward, ran- 
dom access is extremely slow. Also, the amount of data storage in a block is no 
longer a power of two because the pointer takes up a few bytes. While not fatal, 
having a peculiar size is less efficient because many programs read and write in 
blocks whose size is a power of two. 

Linked List AIlocation Using an Index 

Both disadvantages of the linked list allocation can be eliminated by taking 
the pointer word from each disk block and putting it in a table or index in memo- 
ry. Figure 5-9 shows what the table looks like for the example of Fig. 5-8. In 
both figures, we have two files. File A uses disk blocks 4, 7, 2, 10, and 12, in that 
order, and file B uses disk blocks 6,3,  1 I ,  and 14, in that order. Using the table of 
Fig. 5-9, we can start with block 4 and follow the chain d l  the way to the end. 
The same can be done starting with block 6. 

Physical 
block 

7 & File A starts here 

6 File B starts here 

15 1 Unused block 

Figure 5-9. Ltnked list allocation using a table in main memory. 

Using this organization, the entire block is available for data. Furthermore, 
random access is much easier. Although the chain must still be followed to find a 
given offset within the file, the chain is entirely in memory, so it can be followed 
without making any disk references. Like the previous method, it is sufficient for 
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the directory entry to keep a single integer (the starting block number) and still be 
able to locate all the blocks, no matter how large the file is. MS-DOS uses this 
method for disk allocation. 

The primary disadvantage of this method is that the entire table must be in 
memory all the time to make it work. With a large disk, say, 500,000 1K blocks 
(500M), the table will have 500,000 entries, each of which will have to be a 
minimum of 3 bytes. For speed in  lookup, they should be 4 bytes. Thus the table 
will take up 1.5 or 2 megabytes aI1 the time depending on whether the system is 
optimized for space or time. Although MS-DOS uses this mechanism, it avoids 
huge table5 by using large blocks (up to 32K) on large disks. 

Our last method for keeping track of which blocks belong to which file is to 
associate with each file a little table called an i-node (index-node), which lists 
the attributes and disk addresses of the file's blocks, as shown in Fig. 5-10. 

Single 
indirect 

V) 

3 cn Addresses of 
2 
u < 
0 a 
Y 
5 
0 

Figure 5-10. An i-node. 

The first few disk addresses are stored in the i-node itself, so for small files, 
all the necessary information is right in the i-node, which is fetched from disk to 
main memory when the file is opened. For somewhat larger files, one of the ad- 
dresses in the i-node is the address of a disk block called a single indirect block. 
This block contains additimal disk addresses. If this still is not enough, another 
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address in the i-node, called a double indirect block, contains the address of a 
block that contains a list of single indirect blocks. Each of these single indirect 
blocks points to a few hundred data blocks.. If even this is not enough, a triple 
indirect block can also be used.  NIX uses this scheme. 

5.3.2 Implementing Directories 

Before a file can be read, it must be opened. When a file is opened, the 
operating system uses the path name supplied by the user to locate the directory 
entry. The directory entry provides the information needed to find the disk 
blocks. Depending on the system, this information may be the disk address of the 
entire file (contiguous allocation), the number of the first block (both linked list 
schemes), or the number of the i-node. In all cases, the main function of the di- 
rectory system is to map the ASCII name of the file onto the information needed 
to locate the data. 

A closely related issue is where the attributes should be stored. One obvious 
possibility is to store them directly in the directory entry. Many systems do pre- 
cisely that. For systems that use i-nodes, another possibility is to store the attri- 
butes in the i-node, rather than in the directory entry. As we shall see later, this 
method has certain advantages over putting them in the directory entry. 

Directories in CP/M 

Let us start our study of directories with a particularly simple example, that of 
CP/M (Golden and Pechura, 1986), ilhstrated in Fig. 5-1 1. In this system, there is 
only one directory, so all the file system has to do to look up a file name is search 
the one and only directory. When it finds the entry, it also has the disk block 
numbers, since they are stored right in the directory entry, as are all the attributes. 
If the file uses more disk blocks than fit in one entry, the file is allocated addi- 
tional directory entries. 

File name 
L - . A 

T / I T '  *I 

Disk block numbers 
User code File type Extent Block count 

(extension) 

Figure 5-11. A directory entry that contains the disk block numbers for each file. 

The fields in Fig. 5- 1 1 have the following meanings. The User code field 
keeps track of which user owns the file. During a search, only those entries 
belonging to the currently logged-in user are checked. The next two fields give 
the name and extension of the file. The Extent field is needed because a file 
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larger than 16 blocks occupies multiple directory entries. This field is used to tell 
which entry comes first, second, and so.on. The Block count field tells how many 
of the 16 potential disk block entries are in use. The final 16 fields contain the 
disk block numbers themselves. The last block may not be full, so the system has 
no way to determine the exact size of a file down to the last byte (i.e., it keeps 
track of file sizes in blocks, not bytes). 

Directories in MS-DOS 

Now let us consider some examples of syste'ms with hierarchical directory 
trees. Figure 5- 12 shows an MS-DOS directory entry. It is 32 bytes long and con- 
tains the file name, attributes, and the number of the first disk block. The first 
block number is used as an index into a table of the type of Fig. 5-9. By following 
the chain. all the blocks can be found. 

Bvtes 8 3 1 10 2 2 2  4 

Ertenslnn Attributes Reserved Time Date First 
block 

number 

-,--- 

Figure- 5-12. The MS-DOS directory entry. 

File name 

In MS-DOS, directories may contain other directories, leading to a hierarchical 
file system. It is common in MS-DOS that different application programs each start 
out by creating a directory in the root directory and putting all their files there, so 
that different applications do not conflict. 

Directories in UNIX 

L 

\ \ 
, 

The diectory structure traditionally used in UNIX is extremely simple, as 
shown in Fig. 5-13. Each entry contains just a file name and its i-node number. 
All the information about the type, size, times, ownership, and disk blocks is con- 
tained in the i-node. Some UNIX systems have a different layout, but in all cases, 
a directory entry ultimately contains only an ASCII string and an i-node number. 

When a file is opened, the file system must take the file name suppIied and 
locate its disk blocks. Let us consider how the path name /usr/ast/rnbux is looked 
up. We will use UNIX as an example, but the algorithm is basically the same for 
all hierarchical directory systems. First the file system locates the root directory. 
In UNIX its i-node is located at a fixed place on the disk. 

Then it looks up the first component of the path, usr, in the root directory to 
find the i-node number of the file /usr. Locating an i-node from its number is 

Size 
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Bytes 2 

File name 

I-node 
number 

Figure 5-13, A UNIX directory entry. 

straightforward, since each one has a fixed location on the disk. From this i-node, 
the system Locates the directory for /usr and looks up the next component, a t ,  in 
it. When it has found the entry for ast, it has the i-node for the directory /usr/ast. 
From this i-node it can find the directory itself and look up mbox. The i-node for 
this file is then read into memory and kept there until the file is closed. The 
lookup process is illustrated in Fig. 5- 14. 

Root directow 
I-node 6 
is for iusr 

Looking up 
usr yields 
i-nods 6 

times H 
I-node 6 
says that 
/usr is in 
black 132 

Block 132 
is tusr 

directow 

/usr/ast 
is i-node 

26 

I-node 26 
is for 

lusrfast 

size 
times 

I-node 26 
says that 

/usriast is in 
block 406 

Block 406 
is lusrlast 
directory 

64 grants 

81 minix 

/usr/ast/mbox 
is i-node 

60 

Figure 5-14. The steps in looking up /usr/asr/mbox. 

Relative path names are looked up the same way as absolute ones, only start- 
ing from the working dimtory instead of starting from the root directory. Every 
directory has entries for. and .. which are put there when the directory is created. 
The entry . has the i-node number for the current directory, and the entry for .. 
has the i-node number for the parent directory. Thus, a procedure looking up 
../dick/prog.c simply looks up .. in the working directory, finds the i-node number 
for the parent directory, and searches that directory for dick. No special rnechan- 
ism is needed to handle these names. As far as the directory system is concerned, 
they are just ordinary ASCII strings, just the same as any other names. 
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5.3.3 Disk Space Management 

Files are normally stored on disk, so management of disk space is a major 
concern to file system designers. Two general strategies are possible for storing 
an n byte file: n consecutive bytes of disk space are allocated, or the file is split up 
into a number of (not necessarily) contiguous blocks. The same trade-off is 
present in memory management systems between pure segmentation and paging. 

Storing a file as a contiguous sequence of bytes has the obvious problem that 
if a file grows, it will probably have to be moved on the disk. The same problem 
holds for segments in memory, except that moving a segment in memory is a rela- 
tively fast operation compared to moving a file from one disk position to another. 
For this reason, nearly all file systems chop files up into fixed-size blocks that 
need not be adjacent. 

Block Size 

Once it has been decided to store files in fixed-size blocks, the question arises 
of how big the block should be. Given the way disks are organized, the sector, the 
track and the cylinder are obvious candidates for the unit of allocation. In a pag- 
ing system, the page size is also a major contender. 

Having a large allocation unit, such as a cylinder, means that every file, even 
a 1-byte file, ties up an entire cylinder. Studies (Mullender and Tanenbaum, 
1984) have shown that the median file size in UNlX environments is about 1 K, so 
allocating a 32K cylinder for each file would waste 31/32 or 97 percent of the 
total disk space. On the other hand, using a small allocation unit means that each 
file will consist of many blocks. Reading each block normally requires a seek and 
a rotational delay, so reading a file consisting of many small blocks will be slow. 

As an example, consider a disk with 32,768 bytes per track, a rotation time of 
16.67 msec, and an average seek time of 30 msec. The time in milliseconds to 
read a block of k bytes is then the sum of the seek, rotational delay, and transfer 
times: 

The solid curve of Fig. 5- 15 shows the data rate for such a disk as a function of 
block size. If we make the gross assumption that all files are 1K (the measured 
median size), the dashed curve of Fig. 5-15 gives the disk space efficiency. The 
bad news is that good space utilization (block size < 2K) means low data rates and 
vice versa. Time efficiency and space efficiency are inherently in conflict. 

The usual compromise is to choose a block size of 5 12, I K or 2K bytes. If a 
1 K block size is chosen on a disk with a 5 12-byte sector size, then the file system 
will always read or write two consecutive sectors and treat them as a single, indi- 
visible unit. Whatever decision is made, it should probably be re-evaluated pen- 
odically, since, as with all aspects of computer technology, users take advantage 
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B W  size 

Figure 5-15. The solid curve (left-hand scale) gives the data rate of a disk. The 
dashed curve (right-hand scale) gives the disk space efficiency. All files are 1 K. 

of more abundant resources by demanding even more. One system manager 
reports that the average size of files in the university system he manages has 
increased slowly over the years, and that in 1997 the average size of files has 
grown to 12K for students and 15K for faculty, 

Keeping Track of Free Block 

Once a block size has been chosen, the next issue is how to keep track of free 
blocks. Two methods are widely used, as shown in Fig. 5-16. The first one con- 
sists of using a linked list of disk blocks, with each block holding as many free 
disk b~ock numbers as will fit. With a 1K block and a 32-bit disk block number, 
each black on the free list holds the numbers of 255 free blocks. (One s& is 
needed for the painter to the next block). A 200M disk n d s  a free list of max- 
imum Ba4 blocks to hold all 200K disk block numbers. Often free blocks are used 
to hold the free list. 

The other free space management technique is 'the bit map. A disk with n 
blocks requires a bit mag with n bits. Pree blocks are represented by Is in the 
map, allocated Macks by Os (or.vice versa). A 26MM disk requires 200K bjrs for 
the map, which requires only 2.5 blocks. It is not surprising that the bit map re- 
quires less space, since it uses I bit per block, versus 32 bits in the linked list 
model. Only if the disk is nearly fuU will the linked list scheme require fewer 
blocks than ~e bit map. 

Jf  there is enough main memory to hold the bit map, that rnetkod is generally 
preferable, If, however, only 1 block of memory can be spared for keeping track 
of free disk blmh, and the disk is nearly full, then the linked list may be better. 
With only 1 block of the bit map in memory, it may turn out that no free blocks 
can be found on it, causing disk accesses to read the rest of the bit map. When a 
fresh block of the Iinked Ikt is loaded into memory, 255 disk blocks can be dlo- 
cated before having to go to the disk to fetch the next block from the list. 
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Figure 5-16. (a) Storing the free list on a linked list. (b) A bit map. 

5.3.4 Fife System Reliability 

A bit map 

tb) 

Destruction of a file system is often a far greater disaster than destruction of a 
computer. If a computer is destroyed by fire, lightning surges, or a cup of coffee 
poured onto the keyboard, it is annoying and will cost money, but generally a 
replacement can be purchased with a minimum of fuss. Inexpensive personal 
computers can even be replaced within a few hours by just going to the dealer 
(except at universities where issuing a purchase order takes three committees, five 
signatures, and 90' days): 

If a computer's file system is irrevocably lost, whether due to hardware, soft- 
ware, or rats gnawing on the floppy disks, restoring all the information will be dif- 
ficult, time consuming, and in many cases, impossible. For the people whose pro- 
grams, documents, customer files, tax records, data bases, marketing pfans, or 
other data are gone forever, the consequences can be catastrophic. While the file 
system cannot offer any protection against physical destruction of the equipment 
and media, it can help protect the information. In this section we will look at 
some of the issues involved in safeguarding the file system. 

Disks may have bad blocks, as we pointed out in Chap. 3. Floppy disks are 
generally perfect when they leave the factory, but they can develop bad blocks 
during use. Winchester disks frequently have bad blocks right from the start: it is 
just too expensive to manufacture them completely free of all defects. In fact, 
older hard disks used to be supplied with a list of the bad blocks discovered by the 
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manufacturer's tests. On such disks a sector is reserved for a bad block list. 
When the controller is first initialized, it reads the bad block list and picks a spare 
block (or track) to replace the defective ones, recording the mapping in the bad 
block list. Henceforth, all requests for the bad block will use the spare. When 
new errors are discovered this Ijst is updated as part of a low-level format. 

There has been a steady improvement in manufacturing techniques, so bad 
blocks are less common than they once were. However, they still occur. The 
controller on a modern disk drive is very sophisticated, as noted in Chap. 3. On 
these disks, tracks are at least one sector bigger than needed, so that at least one 
bad spot can be skipped by leaving it in a gap between two consecutive sectors. 
There are also a few spare sectors per cylinder so the controller can do automatic 
sector remapping if it notices that a sector needs more than a certain number of 
retries to.be read or written. Thus the user is usually unaware of bad blocks or 
their management. Nevertheless, when a modern IDE or SCSI disk fails, it will 
usually fail hombly, because it has run out of spare sectors. SCSI disks provide a 
"recovered error" when they remap a block. If the driver notes this and prints a 
message on the keyboard the user will know it is time to buy a new disk when 
these messages begin to appear frequently. 

There is a simple software solution to the bad block problem, suitable for use 
on older disks. This approach requires the user or file system to carefully con- 
struct a file containing all the bad blocks. This technique removes them from the 
free list, so they will never occur in data files. As long as the bad block file is 
never read or written, no problems will arise. Care has to be taken during disk 
backups to avoid reading this file. 

Backups 

Even with a clever strategy for dealing with bad blocks, it is important to back 
up the files frequently. After all, automatically switching to a spare track after a 
crucial data black has been ruined is somewhat akin to locking the barn door after 
the prize race horse has escaped. 

File systems on floppy disk can be backed up by just copying the entire floppy 
disk to a blank one. File systems on small winchester disks can be backed up by 
dumping the entire disk to magnetic tape. Current technologies include l5OM car- 
tridge tapes, and 8G Exabyte or DAT tapes. 

For large winchesters (e.g., 10 GB), backing up the entire drive on tape is 
awkward and time consuming. One strategy that is easy to implement but wastes 
half the storage is to provide each computer with two drives instead of one. Both 
drives are divided into two halves: data and backup. Each night the data portion 
of drive 0 is copied to the backup portion of drive 1, and vice versa, as shown in 
Fig. 5-17. In this way, if one drive is completely ruined, no information is lost. 

An alternative to dumping the entire file system every day is to make incre- 
mental dumps. The simplest form of incremental dumping is to m&e a complete 
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Disk 0 Disk 1 

Figure 5-17. Backing up each drive on the other one wastes half the storage. 

dump periodically, say weekly or monthly, and to make a daily dump of only 
those files that have been modified since the last full dump. A better scheme is to 
dump only those files that have changed since they were last dumped. 

To implement this method, a list of the dump times for each file must be kept 
on disk. The dump program then checks each file on the disk. If it has been mod- 
ified since it was last dumped, it is dumped again and its time-of-last-dump is 
changed to the current time. If done on a monthly cycle, this method requires 3 1 
daily dump tapes, one per day, plus enough tapes to hold a full dump, made once a 
month. Other more complex schemes that use fewer tapes are also in use. 

Automatic methods using multiple disks are also used. For example, mirror- 
ing uses two disks. Writes go to both disks, and reads come from one. The write 
to the mirror disk is delayed a bit, so it can be done when the system is idle. Such 
a system can continue to run in "degraded mode" when one disk fails, allowing a 
failed disk to be swapped and data to be recovered with no downtime. 

File System Consistency 

Another area where reliability is an issue is file system consistency. Many 
file systems read blocks, modify them, and write them out later. If the system 
crashes before all the modified blocks have been written out, the file system can 
be left in an inconsistent state. This problem is especially critical if some of the 
blocks that have not been written out are i-node blocks, directory blocks, or 
blocks containing the free list. 

To deal with the problem of inconsistent file systems, most computers have a 
utility program that checks file system consistency. It can be run whenever the 
system is booted, especially after a crash. The description below tells how such a 
utility works in UNIx and MINIX; other systems have something similar. These file 
system checkers verify each file system (disk) independently of the other ones. 

Two kinds of consistency checks can be made: blocks and files. To check for 
block consistency, the program builds two tables, each one containing a counter 
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for each block, initially set to 0. The counters in the first table keep track of how 
many times each block is present in a file; the counters in the second tablCiecord 
how often each block is present in the free list (or the bit map of free blocks). 

The program then reads all the i-nodes. Starting from an i-node, it is possible 
to build a list of all the block numbers used in the corresponding file. As each 
block number is read, its counter in the first table is incremented. The program 
then examines the free list or bit map, to find all the blocks that are not in use. 
Each occurrence of a block in the free list results in its counter in the second table 
being incremented. 

If the file system is consistent, each block will have a 1 either in the first table 
or in the second table, as illustrated in Fig. 5-18(a). However, as a result of a 
crash, the tables might iook like Fig. 5- l$(b), in which block 2 does not occur in 
either table. It will be ;eported as being a missing block. While missing blocks 
do no real ham, they do waste space and thus reduce the capacity of the disk. 
The solution to missing blocks is straightforward: the file system checker just 
adds them to the free list. 

Block number 

0 1 2 3 4 5 6 7 8 9 lOl l l2 l3 l4 l5  

Block number 

Figure 5-18. File system states. (a) Consistent. (b) Missing block. (c) Dupli- 
cate block in free list. (d) Duplicate data block. 

Another situation that might occur is that of Fig. 5-18(c). Here wd-see a 
block, number 4, that occurs twice in the free list. (Duplicates can occur only if 
the free list is really a list; with a bit map it is impossible.) The solution here is 
also simple: rebuild the free list. 

The worst thing that can happen is that the same data block is present in two 
or more files, as shown in Fig. 5-18(d) with block 5. If either of these files is re- 
moved, block 5 will be put on the free list, leading to a situation in which the 
same block is both in use and free at the same time. If both files are removed, the 
block will be put onto the free list twice. 

The appropriate action for the file system checker to take is to allocate a free 
block, copy the contents of block 5 into it, and insert the copy into one of the files. 
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In this way, the information content of the files is unchanged (although almost 
assuredly garbled), but the file system structure is at least made consistent. The 
error should be reported, to allow the user to inspect the damage, 

In addition to checking to see that each block is properly accounted for, the 
file system checker also checks the directory system. It too, uses a table of count- 
ers, but these are per file, rather than per block. It starts at the root directory and 
recursively descends the tree, inspecting each directory in the file system. For 
every file in every directory, it increments the counter for that file's i-node (see 
Fig. 5- 13 for the layout of a diqectory entry). 

When it is all done, it has a list, indexed by i-node number, telling how many 
directories point to that i-node. It then compares these numbers with the link 
counts stored in the i-nodes themselves. In a consistent file system, both counts 
will agree. However, two kinds of errors can occur: the link count in the i-node 
can be too high or it can be too low. 

If the link count is higher than the number of directory entries, then even if all 
the files are removed from the directories, the count will still be nonzero and the 
i-node will not be removed. This error is not serious, but it wastes space on the 
disk with files that are not in any directory. It should be fixed by setting the link 
count in the i-node to the correct value. 

The other error is potentially catastrophic. If two directory entries are linked 
to a file, but the i-node says that there is only one, when either directory entry is 
removed, the i-node count will go to zero. When an i-node count goes to zero, the 
file system marks it as unused and releases all of its blocks. This action will 
result in one of the directories now pointing to an unused i-node, whose blocks 
may soon be assigned to other files, Again, the solution is just to force the link 
count in the i-node to the actual number of directory entries. 

These two operations, checking blocks and checking directories, are often 
integrated for efficiency reasons fi.e., only one pass over the i-nodes is required). 
Other heuristic checks are also possible. For example, directories have a definite 
format, with i-node numbers and ASCII names. If an i-node number is larger than 
the number of i-nodes on'the disk, the directory has been damaged. 

Furthermore, each i-node has a mode, some of which are legal but strange, 
such as 0007, which allows the owner and his group no access at all, but allows 
outsiders to read, write, and execute the file. It  might be useful to at least report 
files that give outsiders more rights than the owner. Directories with more than, 
say, 1000 entries are also suspicious. Files located in user directories, but which 
are owned by the super-user and have the SETUID bit on, are potential security 
problems. With a little effort, one can put together a fairly long list of legal, but 
peculiar, situations that might be worth reporting. 

The previous paragraphs have discussed the problem of protecting the user 
against crashes. Some file systems also worry about protecting the user against 
himself. If the user mtends to type 
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to remove all the files ending with .a (compiler generated object files), but 
accidentally types 

(note the space after the asterisk), rm will remove all the files in the current direc- 
tory and then complain that it cannot find .o. In MS-DOS and some other systems, 
when a file is removed, all that happens is that a bit is set in the directory or i- 
node marking the file as removed, No disk blocks are returned to the free list 
until they are actually needed. Thus, if the user discovers the error immediately, 
it is possible to run a special utility program that "unremoves" (i.e., restores) the 
removed files. In W I N D ~ W S  95, files that are removed are placed in a special recy- 
cled directory, from which they can later be retrieved if need be. Of course, no 
storage is reclaimed until they are actually deleted from this directory. 

5.3.5 File System Performance 

Access to disk is much slower than access to memory. Reading a memory 
word typically takes tens of nanoseconds. Reading a block from a hard disk may 
take fifty microseconds, a factor of four slower per 32-bit word, but to this must 
be added 10 to 20 milliseconds -he track and then wait for the desired 
sector to arrive under the read head. If only a single word is needed, the memory 
access is of the order of 100,000 times as fast as disk access. As a result of this 
difference in access time, many file systems have been designed to reduce the 
number of disk accesses needed. 

The most common technique used to reduce disk accesses is the block cache 
or bufler cache. (Cache is pronounced "cash," and is derived from the French 
cachet-, meaning to hide.) In this context, a cache is a collection of blocks that 
logically belong on the disk but are being kept in memory for performance rea- 
sons. 

Various algorithms can be used to manage the cache, but a common one is to 
check all read requests to see if the needed block is in the cache. if it is, the read 
reqilest can be satisfikd without a disk access. If the block is not in the cache, it is 
first read into the cache, and then copied to wherever it is needed. Subsequent re- 
quests for the same block can be satisfied from the cache. 

When a block has to be loaded into a full cache, some black has to be re- 
moved and rewritten to the disk if it has been modified since being brought in. 
This situation is very much like paging, and all the usual paging algorithms de- 
scribed in Chap* 4, such as FIFO, second chance, and LRU, are applicable. One 
pleasant difference between paging and caching is that cache references are rela- 
tively infrequent, so that it is feasible to keep all the blocks in exact LRU order 
with linked lists. 

Unfortunately, there is a catch. Now that we have a situation in which exact 
LRU is possible, it turns out that LRU is undesirable. The problem has to do with 
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the crashes and file system consistency discussed in the previous section. If a crit- 
ical block, such as an i-node block, is read into the cache and modified, but not 
rewritten to the disk, a crash will leave the file system in an inconsistent state. If 
the i-node block is put at the end  of the LRU chain, it may be quite a while before 
it reaches the front and is rewritten to the disk. 

Furthermore, some blocks, such as double indirect blocks, are rarely refer- 
enced two times within a short interval. These considerations lead to a modified 
LRU scheme, taking two factors into account: 

1 .  Is the block likely to be needed again soon? 

2. Is the block essential to the consistency of the file system? 

For both questions, blocks can be divided into categories such as i-node blocks, 
indirect blocks, directory blocks, full data blocks, and partly full data blocks. 
Blocks that will probably not be needed again soon go on the front, rather than the 
rear of the LRU list, so their buffers will be reused quickly. Blocks that might be 
needed again soon, such as a partly full block that is being written, go on the end 
of the list, so they will stay around for a long time. 

The second question is independent of the first one. If the block is essential to 
the file system consistency (basically, everything except data blocks), and it has 
been modified, it should be written to disk immediately, regardless of which end 
of the LRU list it is put on. By writing critical blocks quickly, we greatly reduce 
the probability that a crash will wreck the file system. 

Even with this measure to keep the file system integrity intact, it is undesir- 
able to keep data bIocks in the cache too long before writing them out. Consider 
the plight of someone who is using a personal computer to write a book. Even if 
our writer periodically tells the editor to write the file being edited to the disk, 
there is a good chance that everything will still be in the cache and nothing on the 
disk, If the system crashes, the file system structure will not be corrupted, but a 
whole day's work will be lost. 

This situation need not happen very often before we have a fairly unhappy 
user. Systems take two approaches to dealing with it. The LJNIX way is to have a 
system call, SYNC, which forces all the modified blocks out onto the disk im- 
mediately. When the system is started up, a program, usually called updare, is 
started up in  the background to sit in an endless loop issuing SYNC calls, sleeping 
for 30 sec between calls. As a result, no more than 30 seconds of work is lost due 
to a crash. 

The MS-DOS way is to write every modified block to disk as soon as it has 
been writlen. Caches in which all modified blocks are written back to the disk 
immediately are called write-through caches. They require much more disk 110 
than nonwrite-through caches, The difference between these two approaches can 
be seen when a program writes a 1 K block full, one character at a time. UNlx will 
collect all the characters in the cache and write the block out once every 30 
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seconds, or whenever the block is removed from the cache. MS-DOS will make a 
disk access for every character written. Of course, most programs do internal 
buffering, so they normally write not a character, but a line or a larger unit on 
each WRITE system call. 

A consequence of this difference in caching strategy is that just removing a 
(floppy) disk from a UNlX system without doing a SYNC will almost always result 
in lost data, and frequently in a corrupted file system as well. With MS-DOS, no 
problem arises. These differing strategies were chosen because UNIX was 
developed in an environment in which a11 disks were hard disks and not remov- 
able, whereas MS-DOS Started out in the floppy disk world As hard disks become 
the norm, even on small microcomputers, the UNIX approach, with its better effi- 
ciency, will definitely be the way to go. 

Caching is not the only way to increase the performance of a file system. 
Another important technique is to reduce the amount of disk arm motion by put- 
ting blocks that are likely to be accessed in sequence close to each other, prefer- 
ably in the same cylinder. When an output file is written, the file system has to 
allocate the blocks one at a time, as they are needed. If the free blocks are 
recorded in a bit map, a d  the whole bit map is in main memory, it is easy enough 
to choose a free block as close as possible to the previous block. With a free list, 
part of which is on disk, it is much harder to allocate blocks close together, 

However, even with a free list, some block clustering can be done. The trick 
is to keep track of disk storage not in blocks, but in groups of consecutive blocks. 
If a track consists of 64 sectors of 512 bytes, the system could use l K  blocks (2 
sectors), but allocate disk storage in units of 2 blocks (4 sectors). This is not the 
same as having a 2K disk block, since the cache would still use 1K blocks and 
disk ttansfers would still be 1K but reading a file sequentially on an otherwise idle 
system would reduce the number of seeks by a factor of two, considerably 
improving performance. 

A variation on the same theme is to take account of rotational positioning. 
When allocating blocks, the system attempts to place consecutive blocks in a file 
in the same cylinder, but interleaved for maximum throughput. Thus, if a disk has 
a rotation time of 16.67 msec and it takes about 4 rnsec for a user process to re- 
quest and get a disk block, each block should be placed at least a quarter of the 
way amudd from its predecessor. 

Another performance bottleneck in systems that use i-nodes or anything 
equivalent to i-nodes is that reading even a short file requires two disk accesses: 
one for the i-node and one for the block. The usual i-node placement is shown in 
Fig. 5-19(a). Here all the i-nodes are near the beginning of the disk, so the aver- 
age distance between an i-node and its blocks will be about half the number of 
cylinders, requiring long seeks. 

One easy performance improvement is to put the i-nodes in the middle of the 
disk, ;ather than at the start, thus reducing the average seek between the i-node 
and the first block by a factor of two. Another idea, shown in Fig. 5-19(b), is to 
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Figure 5-19. ( a )  I-nodes placed at the start of the disk. (b)  Disk divided into 
cylinder groups. each with its own blocks and i-nodes. 

divide the disk into cyIinder groups, each with its own i-nodes. blocks, and free 
list (McKusick et al., 1984). When creating a new file. any i-node can be chosen. 
but an attempt is made to find a block in the same cylinder group as the i-node. If 
none is available. then a block i n  a nearby cylinder group is used. 

5.3.6 Log-Structured File Systems 

Changes in technology are putting pressure on current file systems. In partic- 
ular, CPUs keep getting faster, disks are becoming much bigger and cheaper (but 
not much faster). and memories are growing exponentially in size. The one pa- 
rameter that is not improving by leaps and bounds is disk seek time. The combi- 
nation of these factors means that a performance bottleneck is arising in many file 
systems. Research done at Berkeley attempted to alleviate this problem by 
designing a completely new kind of file system. LFS (the Log-structured File 
System). in this section we will brietly describe how LFS works. For a more 
cpmplete treatment. see ( Rosenblum and Ousterhout, 199 1 ). 

The idea that drove the LFS design is that as CPUs get faster and RAM 
memories get larger. disk caches are increasingly rapidly. As a consequence. it i s  
now possible to satisfy a very substantial fraction of all read requests directly 
from the file system &he. with no disk access needed. It follows from this 
observation, that in the future. most disk accesses will be writes, so the read-ahead 
mechanism used in some file systems to fetch blocks before they are needed no 
longer gains much performance. 

To make matters worse. in most file systems. writes are done in very small 
chunks. Small writes are highly inefficient, since a SO-microsec disk write is typi- 
cally preceded by a 10-msec seek and a 6-msec rotational delay. With these pa- 
rameters. disk efficiency drops to n fraction of I percent. 
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To see where all the small writes come from, consider creating a new file on a 
UNIX system. To write this file, the i-node for the directory, the directory block, 
the i-node for the file, and the file itself must all be written. While these writes 
can be delayed, doing so exposes the file system to serious consistency problems 
if a crash occurs before the writes are done. For this reason, the i-node writes are 
generally done immediately. 

From this reasoning, the LFS designers decided to re-implement the UNIX file 
system in such a way as to achieve the full bandwidth of the disk,,even in the face 
of a workload consisting in large part of small random writes. The basic idea is to 
structure the entire disk as a log. Periodically, and when there is a speciaI need 
for it, all the pending writes being buffered in memory are collected into a single 
segment and written to the disk as a single contiguous segment at the end of the 
log. A singIe segment may thus contain i-nodes, directory blocks, and data 
blocks, all mixed together. At the start of each segment is a segment summary, 
telling what can be found in the segment. If the average segment can be made to 
be about 1 MB, almost the full bandwidth of the disk can be utilized. 

In this design, i-nodes still exist and have the same structure as in UNIX, but 
they are now scattered all over the log, instead of being at a fixed position on the 
disk. Nevertheless, when an i-node is located, locating the blocks is done in the 
usual way. Of course, finding an i-node is now much harder, since its address 
cannot simply be calculated from its i-number, as in mrx. To make it possible tc. 
find i-nodes, an i-node map, indexed by i-number, is maintained. Entry i in this 
map points to i-node i on the disk. The map is kept on disk, but it is also cached, 
so the most heavily used parts will be in memory most of the time. 

To summarize what we have said so far, all writes are initially buffered in 
memory, and periodically all the buffered writes are written to the disk in a single 
segment, at the end of the log. Opening a file now consists of using the map to 
locate the i-node for the file. Once the i-node has been located, the addresses of 
the blocks can be found from it. All of the blocks will themselves be In segments, 
somewhere in the log. 

If disks were infinitely large, the above description would be the entire story. 
However, real disks are finite, so eventually the log will occupy the entire disk, at 
which time no new segments can be written to the log, Fortunately, many existing 
segments may have blocks that are no longer needed, for example, if a file is 
overwritten, its i-node will now point to the new blocks, but the old ones will still 
be occupying space i n  previously written segments. 

To deal with both of these problems, LFS has a cleaner thread that spends its 
time scanning the log circularly to compact it. It starts out by reading the sum- 
mary of the first segment in the log to see which i-nodes and files are there. It 
then checks the current i-node map to see if the i-nodes are still current and file 
bIocks are still in use. If not, that information is discarded. The i-nodes and 
blocks that are still in use go into memory to be written out in the next segment. 
The orginal segment is then marked as free, so the log can use it for new data. In 
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this manner, the cleaner moves along the log, removing old segments from the 
back and putting any live data into memory for rewriting in the next segment. 
Consequently, the disk is a big circular buffer, with the writer thread adding new 
segments to the front and the cleaner thread removing old ones from the back. 

The bookkeeping here is nontrivial, since when a file block is written back to 
a new segment, the i-node of the file (somewhere in the log) must be located, 
updated, and put into memory to be written out in the next segment. The i-node 
map must then be updated to point to the new copy. Nevertheless, it is possible to 
do the administration, and the performance results show that all this complexity is 
worthwhile. Measurements given in the papers cited above show that LFS outper- 
forms UNIX by an order of magnitude on small writes, while having a performance 
that is as good or better than UNIX for reads and large writes. 

5.4 SECURITY 

File systems often contain information that is highly valuable to their users. 
Protecting this information against unauthorized usage is therefore a major con- 
cern of all file systems. In the foliowing sections we will look at a variety of 
issues concerned with security and protection. These issues apply equally well to 
timesharing systems as to networks of personal computers connected to shared 
servers via locaI area networks. 

5.4.1 The Security Environment 

The terms "security" and "protection" are often used interchangeably. 
Nevertheless, it is frequently useful to make a distinction between the general 
problems involved in making sure that fiIcs are not read or modified by unauthor- 
ized persons, which include technical, managerial, legal, and political issues an 
the one hand, and the specific operating system mechanisms used to provide secu- 
rity, on  the other. T o  avoid confusion, we wikl--use the term security to  refer to 
the overall problem, and the term protection .mechanisms to refer to the specific 
operating system mechanisms used to safeguard information in the computer. The 
boundary between them is not well defined, however. First we will look at secu- 
rity; later on in the chapter we will look at protection. 

Security has many facets. Two of the more important ones are data loss and 
intruders. Some of the common causes of data loss are: 

Acts of God: fires, floods, earthquakes, wars, riots, or  rats gnawing 
tapes or floppy disks. 

Hardware or software errors: CPU malfunctions, unreadable disks or  
tapes, telecommunication errors, program bugs. 

Human errors: incorrect data entry, wrong tape or  disk mounted, 
wrong program run, lost disk or tape, or some other mistake. 
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Most of these can be dealt with by maintaining adequate backups, preferably far 
away from the original data. 

A more interesting problem is what to do about intruders. These come in two 
varieties. Passive intruders just want to read files they are not authorized to read. 
Active intruders are more malicious; they want to make unauthorized changes to 
data. When designing a system to be secure against intruders, it is important to 
keep in mind the kind of intruder one is trying to protect against. Some common 
categories are: 

I. Casual prying by nontechnical users. Many people have terminals to 
timesharing sysems or networked personal computers on their desks, 
and human nature being what it is, some of them will read other 
people's electronic mail and other files if no barriers are placed in 
the way. Most UNIX systems, for example, have the default that all 
files are publicly readable. 

2. Snooping by insiders. Students, system programmers, operators, and 
other technical personnel ofien consider it to be a personal challenge 
to break the security of the local computer system. They often are 
highly skilled and are willing to devote a substantial amount of time 
to the effort. 

3. Determined attempt to make money. Some bank programmers have 
attempted to break into a banking system to steal from the bank. 
Schemes have varied from changing the software to truncate rather 
than round interest, keeping the fraction of a cent for themselves, to 
siphoning off accounts not used in yeds, to blackmail ("Pay me or I 
will destroy all the bank's records."). 

4. Commercial or military espionage. Espionage refers to a serious and 
well-funded attempt by a competitor or a foreign country to steal 
programs, trade secrets, patents, technology, circuit designs, market- 
ing plans, and so forth. Often this attempt will involve wiretapping 
or even erecting antennas directed at the computer to pick up its elec- 
tromagnetic radiation. 

It should be clear that trying to keep a hostile foreign government from stealing 
military secrets is quite a different matter from trying to keep students from insert- 
ing a funny message-of-theday into the system. The amount of effort that one 
puts into security and protection clearly depends on who the enemy is thought to 
be. 

Another aspect of the security problem is privacy: protecting individuals from 
misuse of information about them. This quickly gets into many legal and moral 
issues. Should the government compile dossiers on everyone in order to catch X- 
cheaters, where X is "welfare" or "tax," depending on your politics? Should the 
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police be able to look up anything on anyone in order to stop organized crime? 
Do employers and insurance companies have rights? What happens when these 
rights conflict with individual rights? AiI of these issues are extremely important 
but are beyond the scope of this book. 

5.4.2 Famous Security Flaws 

Just as the transportation industry has the Titanic and the Hindenburg, com- 
puter security experts have a few things they would rather forget about. In this 
section we will look at some interesting security problems that have occurred in 
three different operating systems: UNIX, TENEX, and OS/360. 

The UNrx utility Ipr, which prints a file on the line printer, has an option to 
remove the file after it has been printed. In early versions of UNIX it was possible 
for anyone to use Ipr to print, and then have the system remove, the password file. 

Another way to break into uNIX was to link a file called core in the working 
directory to the password file. The intruder then forced a core dump of a SETUID 
program, which the system wrote on the core file, that is, on top of the password 
file. In this way, a user could replace the password file with one containing a few 
strings of his own choosing (e.g., command arguments). 

Yet another subtle flaw in UNIx involved the command 

mkdir foo 

Mkdir, which was a SETUID program owned by the root, first created the i-node 
for the directory foo with the system call MKNOD and then changed the owner of 
foo from its effective uid (i.e., root) to its real uid (the user's uid). When the sys- 
tem was slow, it was sometimes possible for the user to quickly remove the direc- 
tory i-node and make a link to the password file under the name foo after the 
MKNOD but before the CHOWN. When mkdir did the CHOWN it made the user the 
owner of the password file. By putting the necessary commands in a shell script, 
they could be tried over and over until the trick worked. 

The TENEX operating system used to be very popular on the DEC-I0 com- 
puters. It  is no longer used, but it will Live on forever in the annals of computer 
security due to the f~llowing design error. TENEX supported paging. To allow 
users to monitor the behavior of their programs, it was possible to instruct the sys- 
tem to call a user function on each page fault. 

TENEX also used passwords to protect files. To access a file, a program had to 
present the proper password. The operating system checked passwords one char- 
acter at a time, stopping as soon as it saw that the password was wrong. To break 
into TENEX an intruder would carefully position a password as shown in Fig. 5-  
20(a), with the first character at the end of one page, and the rest at the start of the 
next page. 

The next step was to make sure that the second page was not in memory, for 
example, by referencing so many other pages that the second page would surely 
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Figure 5-20. The TENEX password problem. 

be evicted to make room for them. Now the program tried to open the victim's 
file, using the carefully aligned password. If the first character of the real pass- 
word was anything but A, the system would stop checking at the first character 
and report back with ILLEGAL PASSWORD. If, however, the real password did 
begin with A, the system continued reading, and got a page fault, about which the 
intruder was informed. 

If the password did not begin with A ,  the intruder changed the password to 
that of Fig. 5-20(b) and repeated the whole process to see if it began with B. It  
took at most 128 tries to go through the whole ASCII character set and thus deter- 
mine the first character. 

Suppose that the first character was an F. The memory layout of Fig. 5-20(c) 
allowed the intruder to test strings of the form FA, FB, and so on. Using this 
approach it took at most 128n tries to guess an n character ASCII password, in- 
stead of I 28". 

Our last flaw concerns OS/360. The description that follows is slightly simpti- 
fied but preserves the essence of the flaw. In this system it was possible to start 
up a tape read and then continue computing while the tape drive was transferring 
data to the user space. The trick here was to carefully start up a tape read and 
then do a system call that required a user data structure, for example, a file to read 
and its password. 

The operating system first verified that the password was indeed the correct 
one for the given file. Then it went back and read the file name again for the 
actual access (it could have saved the name internally, but it did not). Unfor- 
tunately, just before the system went to fetch the file name the second time, the 
file name was overwritten by the tape drive. The system then read the new file, 
for which no password had been presented. Getting the timing right took some 
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practice, but i t  was not that hard. Besides, if there is one thing that computers are 
good at, it is repeating the same operation over and over ad nauseam . 

In addition to these examples, many other security problems and attacks have 
turned up over the years. One that has appeared in many contexts is the Trojan 
horse, in which a seemingly innocent program that is widely distributed also per- 
forms some unexpected and undesirable function, such as stealing data and email- 
ing it to some distant site where it can be collected later. 

Another security problem in these times of job insecurity is the logic bomb. 
This device is a piece of code written by one of a company's (currently employed) 
programmers and secretly inserted into the production operating system. As long 
as the programmer feeds it its daily password, it does nothing. However, if the 
programmer is suddenly fired and physically removed from the premises without 
warning, the next day the logic bomb does not get its password, so it goes off. 

Going off might involve clearing the disk, erasing files at random, carefully 
making hard-to-detect changes to key programs, or encrypting essential files. In 
the latter case, the company has a tough choice about whether to call the police 
(which may or may not result in a conviction many months later) or to give in to 
this blackmail and to rehire the ex-programmer as a "consultant" for an astro- 
nomical sum to f i x  the problem (and hope that he does not plant new logic bombs 
while doing so). 

Probably the greatest computer security violation of all time began in the 
evening of Nov. 2, 1988 when a Cornell graduate student, Robert Tappan Morris, 
released a worm program into the Internet that ekentually brought down thousands 
of machines all over the world. 

The warm consisted of two programs, the bootstrap and the worm proper. 
The bootstrap was 99 lines of C called i1.c. It was compiled and executed on the 
system under attack. Once running, it connected to the machine from which it 
came, uploaded the main worm, and executed it. After going to some trouble to 
hide its existence, the worm then looked through its new host's routing tables to 
see what machines that host was connected to and attempted to spread the 
bootstrap to those machines. 

Once established on a machine, the worm tried to break user passwords. 
Morris did not have to do much research on how to accomplish this. All he had to 
do was ask his father, a security expert at the National Security Agency, the U.S. 
government's top-secret code breaking agency, for a reprint of a classic paper on 
the subject that Morris Sr. and Ken Thompson had written a decade earlier at Bell 
Labs (Morris and Thompson, 1979). Each broken password allowed the worm to 
log in on any machines the password's owner had accounts on. 

Moms was caught when one of his friends spoke with the New York Times 
computer reporter, John Markoff, and tried to convince Markoff that the incident 
was an accident, the worm was harmless, and the author was sorry. The next day 
the story was the lead on page one, even upstaging the presidential election three 
days later. Morris was tried and convicted in federal court. He was sentenced to 



SEC. 5.4 SECURITY 439 

a 10,000 dollar fine, 3 years probation, and 400 hours of community service. His 
legal costs probably exceeded l50,OOO dollars. 

This sentence generated a great deal of controversy. Many in the computer 
community felt that he was a bright graduate student whose harmless prank had 
gotten out of control. Nothing in the worm suggested that Morris was trying to 
steal or damage anything. Others felt he was a serious criminal and should have 
gone to jail. 

One permanent effeot of this incident was the establishment of CERT (Com- 
puter Emergency Response Team), which provides a central place to report 
break-in attempts, and a group of experts to analyze secuiity problems and design 
fixes. While this action was certainly a step forward, it also has its downside. 
CERT collects information about system flaws that can be attacked and how to f i x  
them. Of necessity, it circulates this information widely to thousands of system 
administrators on the Internet, which means that the bad guys may also be able to 
get it and exploit the loopholes in the hours (or even days) before they are closed. 

5.4.3 Generic Security Attacks 

The flaws described above have been fixed but the average operating system 
still leaks like a sieve. The usual way to test a system's security is to hire a group 
of experts, known as tiger teams or penetration teams, to see if they can break 
in. Hebbard et al. (1980) tried the same thing with graduate students. In the 
course of the years, these penetration teams have discovered a number of areas in 
which systems are likely to be weak Below we have listed some of the more 
common attacks that are often successful. When designing a system, be sure it 
can withstand attacks Iike these. 

Request memory pages, disk space, or tapes and just read @em. 
Many systems do not erase them before allocating them, angthey 
may be full of interesting information written by the previous owner. 

Try illegal system calls, or  legal system d l s  with illegal parameters, 
or even legal system calls with legal but unreasonable parameters. 
Many systems can easily be confused. 

Start logging in and then hit DEL, RUBOUT or BREAK halfway 
through the login sequence. In some systems, the password checking 
program will be killed and the login considered successful. 

Try modifying complex operating system structures kept in user 
space (if any). In some systems (especially on mainframes), to open 
a file, the program builds a large data structure containing the file 
name and many other parameters and passes it to the system. As the 
file is read and written, the system sometimes updates the structure 
itself. Changing these fields can wreak havoc with the security. 
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Spoof the user by writing a program that types "login:" on the 
screen and go away. Many users will walk up to the terminal and 
willingly tell it their login name and password, which the program 
carefully records for its evil master. 

Look for manuals that say "Do not do X." Try as many variations of 
X as possible. 

Convince a system programmer to change the system to skip certain 
vital security checks for any user with your login name. This attack 
is known as a trapdoor. 

All else failing, the penetrator might find the computer center 
director's secretary and offer a large bribe. The secretary probably 
has easy access to all kinds of wonderful information, and is usually 
poorly paid. Do not underestimate problems caused by personnel. 

These and other attacks are discussed by Linde (1975). 

Viruses 

A special category of attack is the computer virus, which has become a major 
problem for many computer users. A virus is a program fragment that is attached 
to a legitimate program with the intention of infecting other programs. It differs 
from a worm only in that a virus piggybacks on an existing program, whereas a 
worm is a complete program in itself. Viruses and worms both attempt to spread 
themselves and both can do severe damage. 

A typical virus works as foIIows. The person writing the virus first produces 
a useful new program, often a game for MS-DOS. This program contains the virus 
code hidden away in it. The game is then uploaded to a public bulletin bard sys- 
tem or offered for free or for a modest piice on floppy disk. The program is then 
advertised, and people begin downloading 9hd using it. Constructing a virus is 
not easy, so the people doing this are invariably-quite bright, and the quality of the 
game or other program is often excellent. 

When the program is started up, it immediately begins examining all the 
binary programs on the hard disk to see if they are already infected. When an 
uninfected program is found, it is infected by attaching the virus code to the end 
of the file, and replacing the first instruction with a jump to the virus. When the 
virus code is finished executing, it executes the instruction that had previously 
been first and then jumps to the second instruction. In this way, every time an 
infected program runs, it tries to infect more programs. 

In addition to just infecting other programs, a virus can do other things, such 
as erasing, modifying, or encrypting files. One virus even displayed an extortion 
note on the screen, telling the user to send 500 dollars in cash to a post office box 
in Panama or face the permanent loss of his data and damage to the hardware. 
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It is also possible for a virus to infect the hard disk's boot sector, making it 
impossible to boot the computer. Such a virus may ask for a password, which the 
virus' writer may offer to supply in exchange for some small unmarked bills. 

Virus problems are easier to prevent than to cure. The safest course is to buy 
only shrink-wrapped software from respectable stores. Uploading free software 
from bulletin boards or getting pirated copies on floppy disk is asking for trouble. 
Commercial antivirus packages exist, but some of these work by just looking for 
specific known viruses. 

A more general approach is to k t  reformat the hard disk completely, includ- 
ing the boot sector. Next, install all the trusted software and compute a checksum 
for each file. The aIgorithm does not matter, as long as it has enough bits fat least 
32). Store the list of (file, checksum) pairs in a safe place, either offline on a 
floppy disk, or online but encrypted. Starting at that point, whenever the system 
is booted, all the checksum should be recomputed and compared to the secure list 
of original checksums. Any file whose current checksum differs from the original 
one is immediately suspect. While this approach does not prevent infection, it at 
least allows early detection. 

Infection can be made more difficult if the directory where binary programs 
reside is made unwritable for ordinary users. This technique makes it difficult for 
the virus to modify other binaries. Although it can be used in UNIx, it is not appli- 
cable to MS-DOS b e w t t e r ' s  directories cannot be made unwritable at all. 

5.4.4 Design Principles for Security 

Viruses mostly occur on desktop systems. On larger systems other problems 
occur and other methods are needed for dealing with them. Saltzer and Schroeder 
(1975) have identified several general principles that can be used as a guide to 
designing secure systems. A brief summary of their ideas (based on experience 
with MULTICS) is given below. 

First, the system design should be public. Assuming that the intruder will not 
know how the system works serves only to delude the designers. 

Secbnd, the default should be no access. Errors in which legitimate access is 
refused will be reported much £aster than errors in which unauthorized access is 
allowed. 

Third, check for current authority. The system should not check for pemis- 
sion, determine that access is permitted, and then squirrel away this information 
for subsequent use. Many systems check for permission when a file is opened, 
and not afterward. This means that a user who opens a file, and keeps it open for 
weeks, will continue to have access, even if the owner has long since changed the 
file protection. 

Fourth, give each process the least privilege possible. If an editor has only the 
authority to access the file to be edited (specified when the editor is invoked), 
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editors with Trojan horses will not be able to do much damage. This principle 
implies a fine-grained ptect ion scheme. We will discuss such schemes later in 
this chapter. 

Fifth, the protection mechanism should be simple, uniform, and built into the 
lowest layers of the system. Trying to retrofit security to an existing insecure sys- 
tem is nearly impossible. Security, like correctness, is not an add-on feature. 

Sixth, the scheme chosen must be psychologically acceptable. If users feel 
that protecting their files is too much work, they just will not do it. Nevertheless, 
they will complain loudly if something goes wrong. Replies of the form "It is 
your own fault" will generally not be well received. 

5.4.5 User Authentication 

Many protection schemes are based on the assumption that the system knows 
the identity of each user. The problem of identifying users when they log in is 
called user authentication. Most authentication methods are based on identify- 
ing something the user knows, something the user has, or something the user is. 

Passwords 

The most widely used form of authentication is to require the user to type a 
password. Password protection is easy to understand and easy to implement. In 
UNIX it works like this. The login program asks the user to type his name and 
password. The password is immediately encrypted. The login program then reads 
the password file, which is a series of ASCII lines, one per user, until it finds the 
line containing the user's login name. If the (encrypted) password contained in 
this line matches the encrypted password just computed, the login is permitted, 
otherwise it is refused. 

Password authentication is easy to defeat. One frequently reads about groups 
of high school, or even junior high school students who, with the aid of their 
tqsty home computers, have just broken into some top secret system owned by a 
giant corporation or government agency. Virtually all the time the break-in con- 
sists of guessing a user name and password combination. 

Although more recent. studies have been made (e-g., Klein, 1990) the classic 
work on password security remains the one done by Morris and Thompson (1979) 
on UNIX systems. They compiled a list of likely passwords: first and last names, 
street names, city names, words from a moderate-sized dictionary (also words 
spelled backward), license plate numbers, and short strings of random characters. 

They then encrypted each of these using the known password encryption algo- 
rithm and checked to see if any of the encrypted passwords matched entries in 
their list. Over 86 percent of all passwords turned up in their list. 

If all passwords consisted of 7 characters chosen at random from the 95 print- 
able ASCII characters, the search space becomes 957, which is about 7 x 10'). 
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At 1 000 encryptions per second, it would take 2000 years to build the list to check 
the password file against. Furthermore, the list would fill 20 million magnetic 
tapes. Even requiring passwords to contain at least one lowercase character, one 
uppercase character, and one special character, and be at least seven or eight char- 
acters long would be a major improvement over unrestricted user-chosen pass- 
words. 

Even if it is considered politically impossible to require users to pick reason- 
able passwords, Morris and Thompson have described a technique that renders 
their own attack (encrypting a large number of passwords in advance) almost use- 
less. Their idea is to associate an n-bit randorn number with each password. The 
random number is changed whenever the password is changed. The random num- 
ber is stored in the password file in unencrypted form, so that everyone can read 
it. Instead of just storing the encrypted password in the password file, the pass- 
word and the random number are first concatenated and then encrypted together. 
This encrypted result is stored in the password file. 

Now consider the implications for an intruder who wants to build up a list of 
likely passwords, encrypt them, and save the results in a sorted file, f, so that any 
encrypted password can be looked up easily. If an intruder suspects that Marilyn 
might be a password, it is no longer sufficient just to encrypt Marilyn and put the 
result in$ He has to encrypt 2" strings, such as Marilyn0000, Marilyn0001, Mari- 
lyn0002, and so forth and enter all of them in f. This technique increases the size 
off by 2". UNIX uses this method with n = 12. It is known as salting the pass- 
word file. Some versions of UNtX make the password file itself unreadable but 
provide a program to look up entries upon request, adding just enough delay to 
greatly slow down any attacker. 

Although this method offers protection against intruders who try to precom- 
pute a large list of encrypted passwords, it does little to protect a user David 
whose password is also David. One way to encourage people to pick better pass- 
words is to have the computer offer advice. Some computers have a program that 
generates random easy-tb-pronounce nonsense words, such as fotally, garbungy, 
or bipitty that can be used as passwords (preferably with some upper case and spe- 
cial characters thrown in). 

Other computers require users to change their passwords regularly, to limit 
the damage done if a password leaks out. The most extreme form of this approach 
is the one-the password. When one-time passwords are used, the user gets a 
book containing a list of passwords. Each login uses the next password in the list. 
If an intruder ever discovers a password, it will not do him any good, since next 
time a different password must be used. Tt is suggested that the user try to avoid 
losing the password book. 

It goes almost without saying that while a password is being typed in, the 
computer should not display the typed characters, to keep them from prying eyes 
near the terminal. What is less obvious is that passwords should never be stored 
in the computer in unencrypted form. Furthermore, not even the computer center 
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management should have unencrypted copies. Keeping unencrypted passwords 
anywhere is looking for trouble. 

A variation on the password idea is to have each new user provide a long list 
of questions and answers that aie then stored in the computer in encrypted form. 
The questions should be chosen so that the user does not need to write them down. 
Typical questions are: 

1. Who is Marjolein's sister? 

2. On what street was your elementary school? 

3. What did Mrs. Woroboff teach? 

At login, the computer asks one of them at random and checks the answer. 
Another variation is challenge-response. When this is used, the user picks an 

algorithm when signing up as a user, for example x2. When the user logs in, the 
computer types an argument, say 7, in which case the user types 49. The algo- 
rithm can be different in the morning and afternoon, on different days of the week, 
from different terminals, and so on. 

Physical Identification 

A completely different approach to authorization is to check to see if the user 
has same item, normally a plastic card with a magnetic stripe on it. The card is 
inserted into the terminal, which then checks to see whose card it is. This method 
can be combined with a password, so a user can only log in if he (1) has the card 
and (2) knows the password. Automated cash-dispensing machines usually work 
this way. 

Yet another approach is to  measure physical characteristics that are hard to 
forge. For example, a fingerprint or a voiceprint reader in the terminal could ver- 
ify the user's identity. (It makes the search go faster if the user tells the computer 
who he is, rather than making the computer compare the given fingerprint to the 
entire data base.) Direct visual recognition is not yet feasible but may be one day. 

Another technique is signature analysis. The user signs his name with a spe- 
cial pen connected to the terminal, and the computer compares it to a known 
specimen stored on line. Even better is not to compare the signature, but compare 
the pen motions made while writing it. A good forger may be able to copy the 
signature, but will not have a clue as to the exact order in which the strokes were 
made. 

Finger length analysis is surprisingly practical. When this is used, each termi- 
nal has a device like the one of Fig. 5-21. The user inserts his hand into it, and the 
Length of all his fingers is measured and checked against the data base. 

We could go on and on with more examples, but two more will help make an 
important point. Cats and other animals mark off their territory by urinating 
around its perimeter. Apparently cats can identify each other this way. Suppose 
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Figure 5-21. A device for measuring finger length. 

that someone comes up with a tiny device capable of doing an instant urinalysis, 
thereby providing a foolproof identification. Each terminal could be equipped 
with one of these devices, along with a discreet sign reading: "For login,: please 
deposit sample here." This might be an absolutely unbreakable system, but it 
would probably have a fairly serious user acceptance problem. 

The same could be said of a system consisting of a thumbtack and a small 
spectrograph. The' user would be requested to press his thumb against the 
thumbtack, thus extracting a drop of blood for spectrographic analysis. The point 
is that any authentication scheme must be psychologically acceptable to the user 
community. Finger-length measurements probably will not cause any problem, 
but even something as aonintrusive as storing fingerprints on line may be unac- 
.:eptable to many people. 

Countermeasures 

Computer installations that are really serious about security, something that 
frequently happens the day after an intruder has broken in and done major dam- 
age, often take steps to make unauthorized entry much harder. For example, each 
user could be allowed to log in only from a specific terminal, and only during cer- 
tain days of the week and hours of the day. 

Dial-up telephone lines could be made to work as follows. Anyone can dial 
up and log in, but after a successful login, the system immediately breaks theam- 
nection and calls the user back at an agreed upon number. This measure means 
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than an intruder cannot just try breaking in from any phone line; only the user's 
(home) phone will do. In any event, with or without call back, the system should 
take at least 10 seconds to check any password typed in on a dial-up line, and 
should increase this time after several consecutive unsuccessful login attempts, in 
order to reduce the rate at which intruders can try. After three failed login 
attempts, the line should be disconnected for 10 minutes and security personnel 
notified. 

All logins should be recorded. When a user logs in, the system should report 
the time and terminal of the previous login, so he can detect possible break ins. 

The next step up is laying baited traps to catch intruders. A simple scheme is 
to have one special login name with an easy password (e.g., login name: guest, 
password: guest). Whenever anyone logs in using this name, the system security 
specialists are immediately notified. Other traps can be easy-to-find bugs in the 
operating system and similar things, designed for the purpose of catching 
intruders in the act. Stoll (1989) has written an entertaining account of the traps 
he set to track down a spy who broke into a university computer .in search of mili- 
tary secrets. 

5.5 PROTECTION MECHANISMS 

In the previous sections we have looked at many potential problems, some of 
them technical and some of them not. In the following sections we will concen- 
trate on some of the detailed technical ways that are used in operating systems to 
protect files and other things. All of these techniques make a clear distinction be- 
tween policy (whose data are to be protected from whom) and mechanism (how 
the system enforces the policy). The separation of policy and mechanism is dis- 
cussed in (Levin et al., 1975). Our emphasis will be on the mechanism, not the 
policy. For more advanced material, see (Sandhu, 1993). 

In some systems, protection is enforced by a program called a reference 
monitor, Every time an access to a potentially protected resource is attempted, 
the system first asks the reference monitor to check its legality. The reference 
monitor then looks at its policy tables and makes a decision. Below we will 
describe the environment in which a reference monitor operates. 

5.5.1 Protection Domains 

A computer system contains many "objects" that need to be protected. These 
objects can be hardware (e-g., CPUs, memory segments, disk drives, or printers), 
or they can be software (e.g., processes, files, data bases, or semaphores). 

Each object has a unique name by which it is referenced, and a finite set of 
operations that processes are allowed to cany out on it. READ and WRITE are op- 
erations appropriate to a file; UP and DOWN make sense on a semaphore. 
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It  is obvious that a way is needed to prohibit processes from accessing objects 
that they are not authorized to access. Furthermore, this mechanism must also 
make it possible to restrict processes to a subset of the legaI operations when that 
is needed. For example, process A may be entitled to read, but not write, file F. 

In order to discuss different protection mechanisms, it is useful to introduce 
the concept of a domain. A domain is a set of (object, rights) pairs. Each pair 
specifies an object and some subset of the operations that can be performed on it. 
A right in this context means permission to perform one of the operations. 

Figure 5-22 shows three domains, showing the objects in each domain and the 
rights [Read, Write, execute] available on each object. Note that Printer1 is in 
two domains at the same time. Although not shown in this example, it is possible 
for the same object to be in multiple domains. with dlflerent rights in each one. 

Domain 1 Domain 2 Domain 3 

Figure 5-22. Three protection domains. 

At every instant of time, each process runs in some protection domain. In 
other words, there is some collection of objects it can access, and for each object 
it has some set of rights. Processes can also switch from domain to domain during 
execution. The rules for domain switching are highly system dependent. 

To make the idea of a protection domain more concrete, let us look at UNIX. 
In UNIX, the domain of a process is defined by its uid and gid. Given any (uid, 
gid) combination, it is possible to make a complete list of dl objects (files, includ- 
ing VO devices represented by special files, .etc.) that can be accessed, and whetb- 
er they can be accessed for reading, writing, or executing. Two processes with 
the same (uid, gid) combination will have access to exactly the same set of 
objects. Processes with different (uid, gid) values will have access to a different 
set of files, although there will be considerable overlap in most cases. 

Furthermore, each process in UNIX has two halves: the user part and the kernel 
part. When the process does a system call, it switches from the user part to the 
kernel part. The kernel part has access to a different set of objects from the user 
part. For example, the kernel can access all the pages in physical memory, the en- 
tire disk, and dl the other protected resources, Thus, a system call causes a 
domain switch. 

When a process does an EXEC on a file with the SETUID or SETGID bit on, it 
acquires a new effective uid or gid. With a different (uid, gid) combination, it has 
a different set of files and operations available. Running a program with SETUID 
or SETGID is also a domain switch, since the rights available are now different. 
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An important question is how the system keeps track of which object belongs 
to which domain. Conceptually, at least, one can envision a large matrix, with the 
rows being the domains and the columns being the objects. Each box lists the 
rights, if any, that the domain contains for the object. The matrix for Fig. 5-22 is 
shown in Fig. 5-23. Given this matrix and the current domain number, the system 
can tell if an access to a given object in a particular way from a specified domain 
is allowed. 

obiect 
File1 File2 file3 File4 File5 File6 Printer1 Plotter2 

Figure 5-23. A protection matrix. 

Read 

Domain switching itself can be easily included in the matrix model by realiz- 
ing that a domain is itself an object, with the operation ENTER, Figure 5-24 shows 
the matrix of Fig. 5-23 again, only now with the three domains as objects thern- 
selves. Processes in domain I can switch to domain 2, but once there, they cannot 
go back. This situation models executing a SETUID pmgram in UNIX. No other 
domain switches are permitted in this example. 

Domain 
1 

2 

3 

Read 
Write 

Object 

File3 File4 File5 File6 Printer1 Plotter2 Domain t Domain2 Domain3 

Read 

Figure 5-24. A protection matrix with domains as objects, 

5.5.2 Access Controt Lists 
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Enter 

In practice, actually storing the matrix of Fig. 5-24 is rarely done because it is 
large and sparse. Most domains have no access at all to most objects, so storing a 
very large, mostly empty, matrix is a waste of disk space. Two methods that are 
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practical, however, are storing the matrix by rows or by columns, and then storing 
only the nonempty elements. The two approaches are surprisingly different. In 
this section we will look at storing it by column; in the next one we will study 
storing it by row. 

The first technique consists of associating with each object an (ordered) Iist 
containing all the domains that may access the object, and how. This list is called 
the Access Control List or ACL. If it were to be implemented in UNIX, the easi- 
est way would be to put the ACL for each file in a separate disk block and include 
the block number in the file's i-node. As only the nonempty entries of the matrix 
are stored, the total storage required for all the ACLs combined is much less than 
what would be needed for the whole matrix. 

As an example of how ACLs work, let us continue to imagine that they were 
used in UNIX, where a domain is specified by a (uid, gid) pair. Actually, ACLs 
were used in uNIX' role model, MULTICS, more or less in the way we will 
describe, so the example is not so hypothetical. 

Let us now assume that we have four users (i.e., uids) Jan, Els, Jelle, and 
Maaike, who belong to groups system, sta8 student, and student, respectively. 
Suppose that some files have the following ACLs: 

FileO: (Jan, *, RWX) 
File 1 : (Jan, system, RWX) 
File2: (Jan, *, RW-), (Els, staff, RW-), (Maaike, *, RW-) 
File3: (*, student, R--) 
File4: (Jelle, *, - --), (*, student, R- -) 

Each ACL entry, in parentheses, specifies a uid, a gid, and the allowed accesses 
(Read, Write, execute). An asterisk means all uids or gids. FileO can be read, 
written, or executed by any process with uid = Jan, and any gid. Fitel can be ac- 
cessed only by processes with uid = Jan and gid = system. A process that has uid 
= Jan and gid = staf can access FileO but not Filel.  File2 can be read or written 
by processes with uid = Jan and any gid, read by processes with uid = c i s  and gid 
= st@, or by processes with uid = Maaike and any gid. File3 can be r h d  by any 
student. File4 is especially interesting. It says that anyone with uid = Jelle, in 
any group, has no access at all, but all other students can read it. By using ACLs 
it is possible to prohibit specific uids or gids from accessing an object, while 
allowing everyone else in the same class. 

So much for what UNIX does not do. Now let us look at what it does do. It 
provides three bits, rwx, per file for the owner, the owner's group, and others. 
This scheme is just the ACL again, but compressed to 9 bits. It is a list associated 
with the object saying who may access it and how. While the 9-bit UNLX scheme 
is clearly less general than a full-blown ACL system, in practice it is adequate, 
and its implementation is much simpler and cheaper, 

The owner of an object can change its ACL at any time, thus making it easy 
to prohibit accesses that were previously allowed. The only problem is that 
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changing the ACL will most probably not affect any users who are currently using 
the object (e.g., currently have the file open). 

5.5.3 Capabilities 

The other way of slicing up the matrix of Fig. 5-24 is by rows. When this 
method is used, associated with each process is a list of objects that may be ac- 
cessed, along with an indication of which operations are permitted on each, in 
other words, its domain. This list is called a capability list, and the individual 
items on it are called capabilities (Dennis and Van Horn, 1966; Fabry, 1974). 

A typical capability list is shown in Fig. 5-25. Each capability has a Type 
field, which tells what kind of an abject it is, a Rights field, which is a bil map 
indicating which of the legal operations on this type of object are permitted, and 
an Ohject field, which is a pointer to the object itself (e.g., its i-node number). 
Capability lists are themselves objects and may be pointed to from other capabil- 
ity lists, thus facilitating sharing of subdomains. Capabilities are often referred to 
by their position in the capability list. A process might say: "Read 1K from the 
file pointed to by capability 2." This form of addressing is similar to using fiIe de- 
scriptors in UNIX. 

Figure 5-25. The capability list for domain 2 in Fig. 5-23. 
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It is fairly obvious that capability lists, or C-lists as they are often called, must 
be protected from user tampering. Three methods have been proposed to protect 
them. The first way requires a tagged architecture, a hardware design in which 
each memory word has an extra (or tag) bit that tells whether the word contains a 
capability or not. The tag bit is not used by arithmetic, comparison, or similar 
ordinary instructions, and it can be modified only by programs running in kernei 
mode (i-e., the operating system). 

The second way is to keep the C-list inside the operating system and just have 
processes refer to capabilities by their slot number, as mentioned above. Hydra 
(Wulf et al., 1974) worked this way. 

The third way is to keep the C-list in user space, but encrypt each capability 
with a secret key unknown to the user. This approach is particularly suited to dis- 
tributed systems, and is used extensively by Amoeba (Tanenbaum et al., 1990). 
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In addition to the specific object-dependent rights, such as read and execute, 
capabilities usually have generic rights which are applicable to all objects. 
Examples of generic rights are 

Copy capability: create a new capability for the same object. 

Copy object: create a duplicate object with a new capability. 

Remove capability: delete an entry from the C-list; object unaffected. 

Destroy object: permanently remove an object and a capability. 

A last remark worth making about capability systems is that revoking access 
to an object is quite difficult. It is hard for the system to find all the outstanding 
capabilities for any object to take them back, since they may be stored in C-lists 
all over the disk. One approach is to have each capability point to an indirect 
object, rather than to the object itself. By having the indirect object point to the 
real object, the system can always break that connection, thus invalidating the 
capabilities. (When a capability to the indirect object is later presented to the sys- 
tem, the user will discover that the indirect object is now pointing to a null 
object .) 

Another way to achieve revocation is the scheme used in Amoeba, Each 
object contains a long radcmuumber, which is also present in the capability. 
When a capability is presented for use, the two are compared. Only if they agree 
is the operation allowed. The owner of an object can request that the random 
number in the object be changed, thus invalidating existing capabilities. Neither 
scheme allows selective revocation, that is, taking back, say, John's permission, 
but nobody else's. 

5-54 Covert Channels 

Even with access control lists and capabilities, security leaks can occur. In 
this section we discuss one class of problem. These ideas are due to Lampson 
(1 973). 

Lampson's model involves three processes and is primarily applicable to large 
timesharing systems. The first process is the client, which wants some work per- 
formed by the second one, the server. The client and the server do not entirely 
trust each other. For example, the server's job is to help clients with filling out 
their tax forms. The clients are worried that the server will secretly record their 
financial data, for example, maintaining a secret list of who earns how much, and 
then selling the list. The server is worried that the clients will try to steal the valu- 
able tax program. 

The third process is the collaborator, which is conspiring with the server to 
indeed steal the client's confidential data. The collaborator and server are typi- 
cally owned by the same person. These three processes are shown in Fig. 5-26. 
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The object of this exercise is to design a system in which it is impossible for the 
server to leak to the collaborator the information that it has legitimately received 
from the client. Lampson called this the confinement problem. 

Client Server Collaborator Enca~sulated server 

Kernel Covert 
f 1 channel 

Figure 5-26. (a) The client, server, and collaborator processes. (b) The encnp- 
sulated server can still leak to the collaborator via covert channels. 

From the system designer's point of view, the goal is to encapsulate or con- 
fine the server in such a way that it cannot pass information to the collaborator. 
Using a protection matrix scheme we can easily guarantee that the server cannot 
communicate with the collaborator by writing a file to which the coHaborator has 
read access. We can probably also ensure that the server cannot communicate 
with the collaborator using the system's interprocess communication mechanism. 

Unfortunately, more subtle communication channels may be available. For 
example. the server can try to communicate a binary bit stream as follows. To 
send a 1 bit, it computes as hard as it can for a fixed interval of time. To send a 0 
bit, it goes to sleep for the same length of time. 

The collaborator can try to detect the bit stream by carefully monitoring its 
response time, In general, it will get better response when the server is sending a 
0 than when the server is sending a I .  This communication channel is known as a 
covert channel, and is illustrated in Fig. 5-26(b). 

Of course, the covert channel is a noisy channel, containing a lot of extrane- 
ous infopnation, but information can be reliably sent over a noisy channel by 
using an error-correcting code (e.g., a Hamming code, or even something more 
sophisticated). The use of an error-correcting code reduces the already low 
bandwidth of the covert channel even more, but it still may be enough to leak sub- 
stantial information. It  is fairly obvious that no protection model based on a 
matrix of objects and domains is going to prevent this kind of leakage. 

Modulating the CPU usage is not the only covert channel. The paging rate 
can also be modulated (many page faults for a 1, no page faults for a 0). In fact, 
almost any way of degrading system performance in a clocked way is a candidate. 
If the system provides a way of locking files, then the server can lock some file to 
indicate a I .  and unlock it to indicate a 0. On some systems, it may be possible 
for a process to detect the status of a lock even on a file that it cannot access. 
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Acquiring and releasing dedicated resources (tape drives, plotters, etc.) can 
also be used for signaling. The server acquires the resource to send a 1 and 
releases it to send a 0. In UNIX, the server could create a file to indicate a 1 and 
remove it to indicate a 0; the collaborator could use the A C W S  system call to see 
if the file exists. This call works even though the collaborator has no permission 
to use the file. Unfortunately, many other covert channels exist. 

Lampson also mentions a way of leaking information to the (human) owner of 
the server process. Presumably the server process will be entitled to tell its owner 
how much work it did on behalf of the client, so the client can be billed. If the 
actual computing bill is, say, 100 dollars and the client's income is 53K dollars, 
the server could report the bill as 100.53 to its owner. 

Just finding all the covert channels, let alone blocking them, is extremely dif- 
ficult. In practice, there is little that can be done. introducing a process that 
causes page faults at random, or otherwise spends its time degrading system per- 
formance in order to reduce the bandwidth of the covert channels is not an attrac- 
tive proposition. 

5.6 OVERVIEW OF THE MINIX FILE SYSTEM 

Like any file system, the MINK file system must deal with all the issues we 
have just studied. It must aIlocate and dediocate space for files, keep track of 
disk blocks and free space, provide some way to protect files against unauthorized 
usage, and so on. In the remainder of this chapter we" will look closely at MINIX to 
see how it accomplishes these goals. 

In the first part of this chapter, we have repeatedly referred to UNIx rather 
than to MINIX for the sake of generality, although the external interface of the two 
is virtually identical. Now we will concentrate on the internal design of MINIX. 
For information about the UNIX internals, see Thompson (19781, Bach (1987), 
Lions (1 W), and Vahalia (1996). 

The MINIX file system is just a big C program that runs in user space (see Fig. 
2-26). To read and write files, user processes send messages to the file system 
telling what they want done. me file system does the work and then sends back a 
reply. The file system is, in fact, a network file server that happens to be running 
on the same machine as the caller. 

This design has some important implications. For one thing, the file system 
can be modified, expedmented with, and tested almost completely independently 
of the rest of MINIX. For another, it is very easy to move the whole file system to 
any compukr that has a C compiler, compile it there, and use it as a free-standing 
UNIX-like remote file server. The only changes that need to be made are in the 
area of how messages are sent and received, which differs from system to system. 

In the following sections, we will present an overview of many of the key 
areas of the file system design. Specifically, we will look at messages, the file 
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system layout, the bit maps, i-nodes, the block cache, directories and paths, file 
descriptors, file locking, and special files (plus pipes). After studying all of these 
topics, we will show a simple example of how the pieces fit together by tracing 
what happens when a user process executes the READ system call. 

5.6.1 Messages 

The file system accepts 39 types of messages requesting work. All but two 
are for MINlX system calls. The two exceptions are messages generated by other 
parts of MINIX. Of the system calls, 3 1 are accepted from user processes. Six sys- 
tem call messages are for system calls which are handled first by the memory 
manager, which then calls the file system to do a part of the work. Two other 
messages are also processed by the file system. The messages are shown in 
Fig. 5-27 

The structure of the file system is basically the same as that of the memory 
manager and all the VO tasks. It has a main loop that waits for a message to 
arrive. When a message arrives, its type is extracted and used as an index into a 
table containing pointers to the procedures within the file system that handle all 
the types. Then the appropriate procedure is called, it does its work and returns a 
status value. The file system then sends a reply back to the caller and goes back 
to the top of the loop to wait for the next message. 

5.6.2 File System Layout 

A MINIX file system is a logical, self-contained entity with i-nodes, direc- 
tories, and data blocks. It can be stored on any block device, such as a floppy disk 
or a (portion of a) hard disk. In all cases, the layout of the file system has the 
same structure. Figure 5-28 shows this layout for a 360K floppy disk with 128 i- 
nodes and a 1K block size. Larger file systems, or those with more or fewer i- 
nodes or a different block size, will have the same six components in the same 
order, but their relative sizes may be different. 

Each file system begins with a boot block. This contains executable code. 
When the computer is turned on, the hardware reads the boot block from the boot 
device into memory, jumps to it, and begins executing its code. The boot block 
code begins the process of loading the operating system itself. Once the system 
has been booted, the boot block is not used any more. Not every disk drive can be 
used as a boot device, but to keep the structure uniform, every bIock device bas a 
block reserved for boot block code. At worst this strategy wastes one block. To 
prevent the hardware from trying to boot an unbootable device a magic number 
is placed at a known location in the boot block when and only when the execut- 
able code is written to the device. When booting from 8 device, the hardware 
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Messages from users 
ACCESS 

1 CHOWN I File name, new owner, group 1 Status 1 

CHOIR 
CHMOD 

lnput parameters 
File name. access mode 

( CREAT I Name of file to be created, mode I File descriptor 1 

Reply value 
Status 

Name of new working directory 
File name, new mode 

CHROOT 
CLOSE 

Status 
Status 

Name of new root directory 

File descri~tor of file to close 

DUf 
FCNTL 
FSTAT 

Status I 
Status 

IOCTL 
LINK 
LSEEK 

File 'descriptor (for dup2, two fds) 
File descriptor, function code, arg 
Name of file. buffer 
File descriptor, function code, arg 
Name of file to link to, name of link 
File descriotor. offset. whence 

MKDl R 
MKNOD 
MOUNT 

New file descriptor 
Depends on function 
Status 

OPEN 
PIPE 
READ 

[ STlME 1 Pointer to current time status 

File name, mode 
Name of dir or special, mode, address 
Special file, where to mount, ro flag 

RENAME 
RMDlR 
STAT - 

Status 
Status 
Status 

Name of file to open, r/w flag 
Pointer to 2 file descriptors (modified) 
File descriptor, buffer, how many bytes 

File descriptor 
Status 
# Bytes read 

File name, tile name 
File name 
File name. status buffer 

SK~C 
TIME 
TIMES 

Status 
Status 
Status 

UMASK 
UMOUNT 
UNLINK 

(None) 
Pointer to place where current time goes 
Pointer to buffer for process and child times 

UTIME 
WRITE 
ksraaes from MM 

Always OK 
Status 
Status 

Complement of mode mask 
Name of special file to unmunt 
Name of file to unlink 

File name, file times 
File descriptor, buffer, how many bytes 
lnwt mramms 

EXEC 
EXIT 

I SETSID I Pid 

Always OK 
Status 
Status ' 

7 

Pid 
Pid 

FORK 
SETGID 

I SETUID I Pid. real and effective uid 

Parent pid, child pid 
Pid, real and effective gid 

Alwavs OK I 

m r -  
REVIVE 
UNPAUSE 

Status 
Status 
Status I 

Input parameters 
Process to revive 
Process to check 

Figure 5-27. File system messages. File name parameters are always pointers 
to the name. The code status as reply value means OK or ERROR. 
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(actually, the BIOS code) will refuse to attempt to load from a device lacking the 
magic number. Doing this prevents inadvertently using garbage as a boot pro- 
gram. 

Boot Super 
block block 

I-nodes One disk block - h 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 l I (  < 

Data 
, I-nodes Zone 

bit map bit map 

Figure 5-28. Disk layout for the simplest disk: a 360K floppy disk, with 128 i- 
nodes and a 1 K block size (i.e., two consecutive 51 2-byte sectors are treated as a 
single block). 

The super-block contains information describing the layout of the file sys- 
tem. It is illustrated in Fig. 5-29. The main function of the super-block is to tell 
the file system how big the various pieces of the file system are. Given the block 
size and the number of i-nodes, it is easy to calculate the size of the i-node bit 
map and the number of blocks of i-nodes. For example, for a IK block, each 
block of the bit map has I K bytes (8K bits), and thus can keep track of the status 
of up to 8192 i-nodes. (Actually the first block can handle only up to 8291 i- 
nodes, since there is no 0th inode, but it is given a bit in the bit map, anyway). 
For 10,000 i-nodes, two bit map blocks are needed. Since i-nodes each occupy 64 
bytes, a l K block holds up to 16 i-nodes. With 128 usable i-nodes, 8 disk blocks 
are needed to contain them all. 

We will explain the difference between zones and blocks in detail later, but 
for the time being it IS sufficient to say that disk storage can be allocated in units 
(zones) of 1,2,4, 8, or in general 2" blocks. The zone bit map keeps track of free 
storage in zones, not blocks, For all standard floppy disks used by MINIX the zone 
and block sizes are the same (lK), so for a first approximation a zone is the same 
as a block on these devices. Until we come to the details of storage allocation 
later in the chapter, it is adequate to think "block" whenever you see "zone." 

Note that the number of blocks per zone is not stored in the super-block, as it  
is never needed. AN that is needed is the base 2 logarithm of the zone to block 
ratio, which is used as the shift count to convert zones to blocks and vice versa. 
For example, with 8 blocks per zone, log28 = 3, so to find the zone containing 
block 128 we shift 128 right 3 bits to get zone 16. 

The zone bit map includes only the data zones (i,e., the blocks used for the bit 
maps and i-nodes are not in the map), with the first data zone designated zone I in 
the bit map. As with the i-node bit map, bit 0 in the map is unused, so the first 
block in the zone bit map can map 8191 zones and subsequent blocks can map 
8192 zones each. If you e~amine the bit maps on a newly formatted disk, you will 
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Present 
on disk 
and in 

memory 

Present 
in memory 

but not 
on disk 

Number of nodes 
Number of zones (V l )  

Number of i-node bit map blocks 
F 

Number of zone bit map blocks 
First data zone 
Logz (blocWzone) 

i 
Maximum file size I 
Magic number 
Padding 

Number of zones (V2) I 
-- 

Pointer to i-node for - 
root of mounted file system 
Pointer to i-node mounted - 
umn 

- - -- 

I-nodeslblock 
Device number 

1 Read-onlv flao I 

I Indirect zoneslindrrect block I 
First free bit in i-node bit map 
First free bit in zone bit map 

Figure 5-29. The MINIX super-block. 

find that both the i-node and zone bit maps have 2 bits set to I .  One is for the 
nonexistent 0th i-node or zone; the other is for the i-node and zone used by the 
root directory on the device, which is placed there when the file system is created. 

The information in the super-block is redundant because sometimes it is 
needed in one form and sometimes in another. With IK devoted to the super- 
block, it makes sense to compute this information in all the forms it is needed, 
rather than having to recompute it frequently during execution. The zone number 
of the first data zone on the disk, for example, can be calculated from the block 
size, zone size, number of i-nodes, and number of zones, but it is faster just to 
keep it in the super-block. The rest of the super-block is wasted anyhow, so using 
up another word of it costs nothing. 

When MINIX is booted, the super-block for the root device is read into a table 
in memory., Similarly, as other file systems are mounted, their super-blocks are 
also brought into memory. The super-block table holds a number of fields not 
present on the disk. These include flags that allow a device to be specified as 
read-only or as following a byte-order convention opposite to the standard, and 
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fields to speed access by indicating points in the bit maps below which all bits are 
marked used. In addition, there is a field describing the device from which the 
super-block came. 

Before a disk can be used as a MINIX file system, it must be given the struc- 
ture of Fig. 5-28. The utility program mk$s has been provided to build file sys- 
tems. This program can be called either by a command like 

mkfs idevffd 1 1 440 

to build an empty 1440 block file system on the floppy disk in drive 1, or it can be 
given a prototype file listing directories and files to include in the new file system. 
This command also puts a magic number in the super-block to identify the file 
system as a valid Minix file system. The Minix file system has evolved, and some 
aspects of the file system (for instance, the size of i-nodes) were different in ear- 
lier versions. The magic number identifies the version of mkfs that created the file 
system, so differences can be accomodated. Attempts to mount a file system not 
in MINIX format, such as an MS-DOS diskette, will be rejected by the MOUNT sys- 
tem call, which checks the super-block for a valid magic number and other things. 

5.6.3 Bit Maps 

MINIX keeps tracks of which i-nodes and zones are free by using two bit maps 
(see Fig. 5-29). When a file is removed, it is then a simple matter to calculate 
which block of the bit map contains the bit for the i-node being freed and to find it 
using the normal cache mechanism. Once the block is found, the bit comespond- 
ing to the freed i-node is set to 0. Zones are released from the zone bit map in the 
same way. 

Logically, when a file is to be created, the file system must search through the 
bit-map blocks one at a time for the first free i-node. This i-node is then allocated 
for the new file. In fact, the in-rnernory copy of the super-block has a field which 
points to the first free i-node, so no search is necessary until after a node is used, 
when the pointer must be updated to point to the new next free i-node, which will 
often turn out to be the next one, or a close one. Similarly, when an i-node is 
freed, a check is made to see if the free i-node comes before the currently- 
pointed-to one, and the pointer is updated if necessary. If every i-node slot on the 
disk is full, the search routine returns a 0, which is why i-node 0 is not used (i.e., 
so it can be used to indicate the search failed). (When mh$s creates a new file sys- 
tem, it zeroes i-node 0 and sets the lowest bit in the bit map to 1, so the file system 
will never attempt to allocate it.) Everything that has been said here about the i- 
node bit maps also applies to the zone bit map; logically it is searched for the first 
free zone when space is needed, but a pointer to the first free zone is maintained 
to eliminate most of the need for sequential searches through the bit map. 
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With this background, we can now explain the difference between zones and 
blocks. The idea behind zones is to help ensure that disk blocks that belong to the 
same file are located on the same cylinder, to improve performance when the file 
is read sequentially. The approach chosen is to make it possible to allocate sever- 
al blocks at a time. If, for example, the block size is 1K and the zone size Is 4K, 
the zone bit map keeps track of zones, not blocks. A 20M disk has 5K zones of 
4K, hence 5K bits in its zone map. 

Most of the file system works with blocks. Disk transfers are always a block 
at a time, and the bufferr cache also works with individual blocks. Only a few 
parts of the system that keep track of physical disk addresses (e.g., the zone bit 
map and the i-nodes) know about zones. 

Some design decisions had to be made in developing the MINIX file system. 

-. In 1985, when MINIX was conceived, disk capacities were small, and it was 
expected that many users would have only floppy disks. A decision was made to 
restrict disk addresses to 16 bits in the V1 file system, primarily to be able to store 
many of them in the indirect blocks. With a 1 6-bit zone number and a 1 K zone, 
only 64K zones can be addressed, limiting disks to 64M. This was an enormous 
amount of storage in those days, and it was thought that as disks got larger, it 
wodd be easy to switch to 2K or 4K zones, without changing the block size. The 
16-bit zone numbers also made it easy to keep the i-node size to 32 bytes. 

As MINIX developed, and larger disks became much more common, it was 
obvious that changes were desirable. Many files are smaller than 1 K, so increas- 
ing the block size would mean wasting disk bandwidth, reading and writing 
mostly empty blocks and wasting precious main memory storing them in the buff- 
er cache. The zone size could have been increased, but a larger zone size means 
more wasted disk space, and it was still desirable to retain efficient aperation on 
small disks. Another reasonable alternative would have been to have differed 
zone sizes on large and small devices. 

In the end it was decided to increase the size of disk pointers to 32 bits. This 
makes it possible for the MINIX V2 file system to deal with device sizes up to 4 
terabytes as 1K blocks and zones. In part this decision was driven by other deci- 
sions about what should be in the i-node, which made increasing the size of the i- 
node to 64 bytes reasonable. 

Zones also introduce an .unexpected probIern, best iliustrated by a simple ex- 
ample, again with 4K zones and 1K blocks. Suppose that a file is of length l K ,  
meaning that ]'.zone has been allocated for it. The blocks between 1K and 4K 
contain garbage (residue from the previous owner), but no harm is done because 
the file size is clearly marked in the i-node as 1 K. In fact, the blocks containing 
garbage will not be read into the block cache, since reads are done by Mocks, not 
by zones. Reads beyond the end of a file always return a count of 0 and no data. 

Now someone seeks to 32768 and writes I byte. The file size is now changed 
to 32769. Subsequent seeks to 1K followed by attempts to read the data will now 
be able to read the previous contents of the block, a major security breach. 
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The solution is to check for this situation when a write is done beyond the end 
of a file, and explicitly zero all the not-yet-allocated blocks in the zone that was 
previously the last one. Although this situation rarely occurs, the code has to deal 
with it, making the system slightly more compIex. 

The layout of the MINIX i-node is given in Fig. 5-30. It is almost the same as a 
standard LJNIX i-node. The disk zone pointers are 32-bit pointers, and there are 
only 9 pointers, 7 direct and 2 indirect. The MINIX i-nodes occupy 64 bytes, the 
same as standard UNLX i-nodes, and there is space available for a 10th (triple 
indirect) pointer, although its use is not supported by the standard version of the 
FS. The MINIX i-node access, modification time and i-node change times are stan- 
dard, as in UNIX. The last of these is updated for almost every file operation 
except a read of the file. 

When a file is opened, its i-node is located and brought into the inode table in 
memory, where it remains until the file is closed. The inode table has a few addi- 
tional fields not present on the disk, such as the i-node's device and number, so 
the file system knows where to rewrite it if it is modified while in memory. It 
also has a counter per i-node. If the same file is opened more than once, only one 
copy of the i-node is kept in memory, but the counter is incrernented each time the 
file is opened and decremented each time the file is closed. Only when the count- 
er finally reaches zero is the i-node removed from the table, If it has been modi- 
fied since being loaded into memory, it is also rewritten to the disk. 

The main function of a file's i-node is to tell where the data blocks are. The 
first seven zone numbers are given right in the i-node itself, For the standard dis- 
tribution, with zones and blocks both l K ,  files up to 7K do not need .indirect 
blocks. Beyond 7K, indirect zones are needed, using the scheme of Ffg. 5- 10, 
except that only the single and double indirect blocks are used. With 1 K blocks 
and zones and 32-bit zone numbers, a single indirect block holds 256 entries, 
representing a quarter megabyte of storage. The double indirect block points to 
256 single indirect blocks, giving access to up to 64 megabytes. The maximum 
size of a MINIX file system is IG, so modification to use the triple indirect block 
or larger zone sizes could both be useful if it were desirable to access very large 
files on a MINIX system. 

The i-node also holds the mode information, which tells what kind of a file it 
is (regular, directory, block special, character special, or pipe), and gives the pro- 
tection and SETUID and SETGID bits. The link field in the i-node records how 
many directory entries point to the i-node, so the file system knows when to 
release the file's storage. This field should not be confused with the counter 
(present only in the inode table in memory, not on the disk) that tells how many 
times the file is currently open, typically by different processes. 
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64 bytes 

OVERVIEW OF THE MINIX FILE SYSTEM 

16 bits 

File type and rwx bits 
Number of links Directory entries for this file 

Identifies user who owns file 
G id Owner's group 

File size \k Number of bytes in the file 

- Zone0 

- Zone 1 

- Zone2 

- Zone 3 

- Zone 4 

1 Zone 6 I 

- Access time 

- Modification time 

- Status change time 

t Indirect zone I 

7 

Times are all in seconds since 
Jan 1, 1970 

Double indirect zone 1 

Zone numbers for 
the first swen data 
zones in the file 

Used for files larger 
than 7 zones 

Unused (Could be us? d for triple indirect zone) 

Figure 5-30. The MlNlX i-node. 

5.6.5 The Block Cache 

MINIX uses a block cache to improve file system performance. The cache is 
implemented as an array of buffers, each consisting of a header containing point- 
ers, counters, and flags, and a body with room for one disk block. All the buffers 
that are not in use are chained together in a double-linked list, from most recently 
used (MRU) to least recently used (LRU) as illustrated in Fig. 5-3 1 .  
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Hash table Front (LRU) ,-- Rear (MRU) 

Figure 5-31. The linked lists used by the block cache. 

In addition, to be able to quickly determine if a given block is in the cache or 
not, a hash table is used. All the buffers containing a block that has hash code k 
are linked together on a single-linked list pointed to by entry k in the hash table. 
The hash function just extracts the low-order n bits from the block number, so 
blocks from different devices appear on the same hash chain. Every buffer is on 
one of these chains. When the file system is initialized after MINIX is booted, all 
buffers are unused, of coux+adal l  are in a single chain pointed to by the 0th 
hash table entry. At that time all the other hash table entries contain a null point- 
er, but once the system starts, buffers will be removed from the 0th chain and 
other chains will be built. 

When the file system needs a block, it calls a procedure, get-block, which 
computes the hash code for that block and searches the appropriate list. 
Get-block is called with a device number as well as a block number, and the 
search compares both numbers with the corresponding fields in the buffer chain. 
If a buffer containing the block is found, a counter in the buffer header is incre- 
mented to show that the block is in use, and a pointer to it is returned. If it block 
is not found on the hash list, the first buffer on the LRU list can be used; it is 
guaranteed not to be still in use, and the block it contains may be evicted to free 
up the buffer. 

Once a block has been chosen for eviction, another flag in its header is 
checked to see if the block has been modified since being read in. If so, it is 
rewritten to the disk. At this point the,block needed is read in by sending a mes- 
sage to the disk task. The file system is suspended until the block arrives, at 
which time it continues and a pointer to the block is returned to the caller. 

When the procedure that requested the block has completed its job, it calls 
another procedure, put-block, to free the block. Normally, a block will be used 
immediately and then released, but since it is possible that additional requests for 
a block will be made before it has been released, put-block decrements the use 
counter and puts the buffer back onto the LRU list only when the use counter has 
gone back to zero. White the counter is nonzero, the block remains in limbo. 
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One of the parameters to put-block tells what class of block (e.g., i-nodes, di- 
rectory, data) is being freed. Depending on the class, two key decisions are made: 

I .  Whether to put the block on the front or rear of the LRU Iist. 

2. Whether to write the block (if modified) to disk immediately or not. 

Blocks that are not likely to be needed again soon, such as super-blocks, go on the 
front of the list so they will be claimed the next time a free buffer is needed, All 
other blocks go on the rear of the list in true LRU fashion. 

A modified block is not rewritten until either one of two events occurs: 

1. It reaches the front of the LRU chain and is evicted. 

2. A SYNC system call is executed. 

SYNC does not traverse the LRU chain but instead indexes through the array of 
buffers in the cache. Even if a buffer has not been released yet, if it has been 
modified, SYNC will find it and ensure that the copy on disk is updated. 

There is an exception, however. A modified super-block is  written to disk im- 
mediately. In an older version of MINIX a super-block was modified when a file 
system was mounted, and the purpose of the immediate write was to reduce the 
chance of corrupting the file system in the event of a crash. Super-blocks are not 
qodified now, so the code to write them immediately is an anachronism. In the 
tandard configuration, no other blocks are written immediately. However, by 

modifying the default definition of ROBUST in the system configuration file, 
include/minix/config.h, the file system can be compiled to mark i-node, directory, 
indirect, and bit-map blocks so they will be written immediately upon release. 
This is intended to make the file system more robust; the price paid is slower 
operation. Whether this will be effective is not clear. A power failure occurring 
when all blocks have not been yet been written is going to cause a headache 
whether it is an i-node or a data block that is lost. 

Note that the header flag indicating that a block has been modified is set by 
the procedure within the file system that requested and used the block. The proce- 
dures get-block and put-block are concerned just with manipulating the linked 
lists. They have no idea which file system procedure wants which block or why. 

5.6.6 Directories and Paths 

Another important subsystem within the file system is the management of di- 
rectories and path names. Many system calls, such as OPEN, have a file name as a 
parameter. What is really needed is the i-node for that file, so it is up to the file 
system to look up the file in the directory tree and locate its i-node. 

A MINIX directory consists of a file containing 16-byte entries. The first 2 
bytes form a 16-bit i-node number, and the reinaining 14 bytes are the file name. 
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This is the same as the traditional UNIX directory entry we saw in Fig. 5-13. To 
look up the path /usr/ast/mbox, the system first looks up usr in the root directory, 
then it looks up ast in h s r ,  and finally it looks up mbox in /usr/ast. The actual 
lookup proceeds one path component at a ,time, as iIlustrated in Fig. 5- 14. 

The only complication is what happens when a mounted file system is 
encountered. The usual configuration for MlNIX and many other UNIX-like sys- 
tems is to have a small root file system containing the files needed to start the sys- 
tem and to do basic system maintenance, and to have the majority of the files, 
including users' directories, on a separate device mounted on Iusr. This is a good 
time to look at how mounting is done. When the user types the command 

mount ldevlhd2c Iusr 

on the terminal, the file system contained on hard disk partition 2 is mounted on 
top of /usr in the root file system. The file systems before and after mounting are 
shown in Fig. 5-32. 

Root file 
system 

1 Asr Aib 

Unmounted 
file system 

I 

After mounting 

hsr nib 

Figure 5-32. (a) Root file system. (b) An unmounted file system. ( c )  The 
result of mounting lhe file system of (b) on h s r .  

The key to the whole mount business is a flag set in the memory copy of the 
i-node of /usr after a successful mount. This flag indicates that the i-node is 
mounted on. The MOUNT call also loads the super-block for the newly mounted 
file system into the super-block table and sets two pointers in it. Furthermore, it 
puts the root i-node of the mounted file system in the inode table. 
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In Fig. 5-29 we see that super-blocks in memory contain two fields related to 
mounted file systems. The first of these, the i-node-of-the-mounted-file-system, is 
set to  point to the root i-node of the newly mounted file system. The second, the 
i-node-mounted-on, is set to point to the i-node mounted on, in this case, the i- 
node for /usr. These two pointers serve to connect the mounted file system to the 
root and represent the "glue" that holds the mounted file system to the root 
[shown as  the dots in Fig. 5-32(c)]. This glue is what makes mounted file systems 
work. 

When a path such as /usr/as@ is being looked up, the file system will see a 
flag in the i-node for /usr and realize that it must continue searching at the root i- 
node of the file system mounted on hsr.  The question is: "How does it find this 
root i-node?" 

The answer is stiaightforward. The system searches all the super-blocks in 
memory until it finds the one whose i-node mounted on field points to hsr.  This 
must be the super-block for the file system mounted on /usr. Once it has the 
super-block, it is easy to follow the other pointer to find the root i-node for the 
mounted file system. Now the file system can continue searching. In this ex- 
ample, it Iooks for ast in the root directory of hard disk partition 2. 

5.6.7 File Descriptors 

Once a file has been opened, a file descriptor is returned to the user process 
for use in subsequent READ and WRITE calls. In this section we will look at how 
file descriptors are managed within the file system. 

Like the kernel and the memory manager, thexfile system maintains part of the 
process table within its address space. Three of its fields are of particular interest. 
The first two are p in t e r s  to the i-nodes for the root directory and the working di- 
rectory. Path searches, such as that of Fig. 5-14, always begin at one or the other, 
depending on whether the path is absolute or relative. These pointers are changed 
by the CHROOT and CHDIR system calls to point to  the new root or new working 
directory, respectively. 

The third interesting field in the process table is an array indexed by file de- 
scriptor number. It is used to locate the proper file when a file descriptor is 
presented. At first glance, it might seem sufficient to have the k-th entry in this 
array just point to the i-node for the file belonging to file descriptor k. After all, 
the i-node is fetched into memory when the file is opened and kept there until it is 
closed, so  it is sure to be available. 

Unfortunately, this simple plan fails because files can be shared in subtle 
ways in MINIX (as well as in UNIX). The trouble arises because associated with 
each file is a 32-bit number that indicates the next byte to be read or written. It is 
this number, called the file position, that is changed by the LSEEK system call. 
The problem can be stated easily: "Where should the file pointer be stored?" 



466 FILE SYSTEMS CHAP. 5 

The first possibility is to put it in the i-node. Unfortunately, if two or more 
processes have the same file open at the same time, they must all have their own 
file pointers, since i t  would hardly do to have an LSEEK by one process affect the 
next read of a different process. Conclusion: the file position cannot go in the i-  
node. 

What about putting i t  in the process table? Why not have a second arriiy, 
paralleling the file descriptor array, giving the current position of each file? This 
idea does not work either. but the reasoning is more subtle. Basically, the trouble 
comes from the semantics of the FORK system call. When a process forks, both 
the parent and the child are required to share a single pointer giving the current 
position of each open file. 

To understand the problem better, consider the case of a shell script whose 
output has been redirected to a file. When the shell forks off the first program, its 
file position for standard output is 0. This position is then inherited by the child, 
which writes. say, 1K of output. When the child terminates, the shared File posi- 
tion must now be I K. 

Now the shell reads some more of the shell script and forks off another child. 
I t  is essential that the second child inherit a file position of 1 K from the shell, so:it 
wiIl begin writing at the place where the first program left off. If the shell did not 
share the file position with its children, the second program would overwrite the 
output from the first one, instead of appending to it. 

As a result, it  is not possible to put the file position i n  the process table. It 
really must be shared. The solution used in MINIX is to introduce a new, shared 
table, filp, which contains all the file positions. Its use is illustrated in Fig. 5-33. 
By having the file position truly shared, the semantics of FORK can be imple- 
mented correctly, and shell scripts work properly. 

Figure 5-33. How file positions are shared berween a parent and a child. 
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Although the only thing that thefilp table really must contain is the shared file 
position, it is convenient to put the i-node pointer there, too. In this way, all that 
the file descriptor array in the process table contains is a pointer to a .filp entry. 
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The filp entry also contains the file mode (permission bits), some flags indicating 
whether the file was opened in a special mode, and a count of the number of 
processes using it, so the file system can tell when the last process using the entry 
has terminated, in order to reclaim the slot. 

5.6.8 File Locking 

There is yet another aspect of file system management that requires a special 
table. This is file locking. MINIX supports the POSIX interprocess communication 
mechanism of advisory file locking. This permits any part, or multiple parts, of a 
file to be marked as locked. The operating system does not enforce locking, but 
processes are expected to be well behaved and to  look for Jocks on a file before 
doing anything that would conflict with another process. 

The reasons for providing a separate table for locks are similar to the justifica- 
tions for the filp table discussed in the previous section. A single process can 
have more than one lock active, and different parts of a file may be locked by 
more than one process (although, of course, the locks cannot overlap), so neither 
the process table nor the filp table is a good place to record locks. Since a file 
may have more than one lock placed upon it, the i-node is not a good place either. 

MINIX uses another table, the file-lock table, to record all locks. Each slot in 
this table has space for a lock type, indicating if the file is locked for reading or 
writing, the process ID holding the lock, a pointer to the i-node of the locked file, 
and the offsets of the first and last bytes of the locked region. 

5.6.9 Pipes and Special Files 

Pipes and special files differ from ordinary files in an important way. When a 
process tries to read or write from a disk file, it is certain that the operation will 
complete within a few hundred milliseconds at most. In  the worst case, two or  
three disk accesses might be needed, not more. When reading from a pipe, the 
situation is different: if the pipe is empty, the reader will have to wait until some 
other process puts data in the pipe, which might take hours. Similarly, when read- 
ing from a terminai, a process will have to wait until somebody types something. 

As a consequence, the file system's normal rule of handling a request until it 
is finished does not work. It is necessary to  suspend these requests and restart 
them later. When a process tries to read or write from a pipe, the file system can 
check the state of the pipe immediately to see if the operation can be completed. 
If it can be, it is, but if it cannot be, the file system records the parameters of the 
syqtem call in the process table, so it can restart the process when the time comes. 

Note that the file system need not take any action to have the caller sus- 
pended. All it has to  do is refrain from sending a reply, leaving the caller blocked 
waiting for the reply. Thus, after suspending a process, the file system goes back 
to its main loop to wait for the next system call. As soon as another process 
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modifies the pipe's state so that the suspended process can complete, the file sys- 
tetn sets a flag so that next time through the main loop it extracts the suspended 
process' parameters from the process table and executes the call. 

The situation with terminals and other character special files is slightly dif- 
ferent. The i-node for each special file contains two numbers, the major device 
and the minor device. The major device number indicates the device class (e.g., 
RAM disk, floppy disk, hard disk, terminal). I t  is used as an index into a file sys- 
tem table that maps it onto the number of the corresponding task (i.e., I/O driver). 
In effect, the major device determines which 110 driver to call. The minor device 
number is passed to the driver as a parameter. It specifies which device is to be 
used, for example, terminal 2 or drive 1. 

In some cases, most notably terminal devices, the minor device number 
encodes some information about a category of devices handled by a task. For 
instance, the primary MlNIX console, /dev/console, is device 4, 0 (major, minor). 
Virtual consoles are handled by the same part of the driver software. These are 
devices /duv/ttycl (4,l), /dev/ttyc2 (4,2), and so on. Serial line terminals need dif- 
ferent low-level software, and these devices, /dev/tryOO, and /drv/qOl are 
assigned device numbers 4, 16 and 4, 17. Similarly, network terminals use 
pseudo-terminal drivers, and these also need different low-level software, In 
MINIX these devices, ttyp0, t t yp l ,  etc., are assigned device numbers such as 4, I28 
and 4, 129. These pseudo devices each have an associated device, ptyp0, ptypl, 
etc. The major, minor device number pairs for these are 4.192,4,193, and so on. 
These numbers are chosen to make i t  easy for the driver task to call rhe low-level 
functions required for each group of devices. There is no expectation that anyone 
is going to equip a MINIX system with 192 or more terminals. 

When a process reads from a special file, the file system extracts the major 
and minor device numbers from the file's i-node, and uses the major device num- 
ber as an index into a file system table to map it onto the corresponding task num- 
ber. Once it has the task number, the file system sends the task a message, includ- 
ing as parameters the minor device, the operation to be performed, the caller's 
process number and buffer address, and the number of bytes to be transferred. 
The format is the same as in Fig. 3-15, except that POSITION is not used. 

If  the driver is able to cany out the work immediately (e.g., a line of input has 
already been typed on the terminal), it copies the data from its own internal buff- 
ers to the user and sends the file system a reply message saying that the work is 
done. The file system then sends a reply message to the user, and the call is fin- 
ished. Note that the driver does not copy the data to the file system. Data from 
block devices go through the block cache, but data from character special files do 
not. 

On the other hand, if the driver is not able to carry out the work, i t  records the 
message parameters in its internal tables, and immediately sends a reply to the file 
system saying that the call could not be completed. At this point, the file system 
is in the same situation as having discovered that someone is trying to read from 
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an empty pipe. It records the fact that the process is suspended and waits for the 
next message. 

When the driver has acquired enough data to complete the call, it  transfers 
them to the buffer of the stiil-blocked user and then sends the file system a rnes- 
sage reporting what it has done. All the file system has to do is send a reply mes- 
sage to the user to unblock it and report the number of bytes transferred. 

5.6-10 An Example: The READ System Call 

As we shall see shortly, most of the code of the file system is devoted to car- 
rying out system calls. Therefore, it is appropriate that we conclude this overview 
with a brief sketch of how the most important call, READ, works. 

When a user program executes the statement 

n = read(fd, buffer, nbytes); 

to read an ordinary file, the library procedure read is called with three parameters. 
It builds a message containing these parameters, along with the code for READ as 
the message type, sends the message to the file system, and blocks waiting for the 
reply. When the message arrives, the file system uses the message type as an 
index into its tables to call the procedure that handles reading. 

This procedure extracts the file descriptor from the message and uses it to 
locate thefilp entry and then the i-node for the file to be read (see Fig. 5-33). The 
request is then broken up into pieces such that each piece fits within a block. For 
example, if the current file position is 600 and 1 K bytes have been requested, the 
request is split into two parts, for 600 to 1023, and for 1024 to 1623 (assuming 1 K 
blocks). 

For each of these pieces in turn, a check is made to see if the relevant block is 
in the cache. If the block is not present, the file system picks the least recently 
used buffer not currently in use and claims it, sending a message to the disk task 
to rewrite it if it is dirty. Then the disk task is asked to fetch the block to be read. 

Once the block is in the cache, the file system sends a message to the system 
task asking it to copy the data to the appropriate place in the user's buffer (i.e., 
bytes 600 to 1023 to the start of the buffer, and bytes 1024 to 1623 to offset 424 
within the buffer). After the copy has been done, the file system sends a reply 
message to the user specifying how many bytes have been copied. 

When the reply comes back to the user, the library function read extracts the 
reply code and returns it as the function value to the caller. 

There is one extra step that is not really part of the READ call itself. After the 
file system completes a read and sends a reply, it then initiates a read of the next 
block, provided that the read is from a block device and certain other conditions 
are met. Since sequential file reads are common, it is reasonable to expect that 
the next block in a file will be requested in the next read request, and this makes i t  
likely that the desired block will already be in the cache when it is needed. 
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5.7 IMPLEMENTATION OF THE MINIX FILE SYSTEM 

The MINIX file system is relatively large (more than 100 pages of C) but quite 
straightforward. Requests to carry out system calls come in, are carried out, and 
repIies are sent. In the fo1Iowing sections we will go through it a file at a time, 
pointing out the highlights. The code itself contains many comments to aid the 
reader, 

In looking at the code for other parts of MINIX we have generally looked at the 
main loop of a process tirst and then looked at the routines that handle the dif- 
ferent message types. We will organize our approach to the file system d ~ f -  
ferently. First we will go through the major subsystems (cache management, i- 
node management, etc.), Then we will look at the main loop and the system calls 
that operate upon files. Next we will look at system call that opcrate upon direc- 
tories. Finally, we will discuss the remaining system calls that fall into neither 
category. 

5.7.1 Header Files and Global Data Structures 

Like the kernel and memory manager, various data structures and tables used 
in the file system are defined in header files. Some of these data structures are 
placed in system-wide header files in include/ and its subdirectories. For instance. 
induddsys/stut.h detines the format by which system calls can provide i-node In- 
formation to other programs and the structure of a directory entry is defined in 
itzclude/s.vs/cii,-.h. Both of these files are required by POSIX. The file system is 
affected by a number of definitions contained in  the global configuration file 
includc./minix/c.r~rlJig.I~, such as the ROBUST macro which defines whether impor- 
tant file system data structures will always be written immediateiy to the disk. and 
NR-BUFS and NR-BUF- HASH, which control the size of the block cache. 

File System Headers 

The file system's own header files are in  the file system source directory 
src/fs/. Many file names will be familiar from studying other parts of the MINIX 
system. The FS master header file, js.h (line 19400), is very similar to 
.srt./kurnel/kumel. h and src/mm/mm.h. It includes other header files needed by all 
the C source files in the file system. As in the other parts of MINIX: the file sys- 
tem master header includes the file system's own const.h, type.h, proto.h, and 
g1o.h. We will look at these next. 

Comt.h (line 19500) defines some constants, such as table sizes and flags, that 
are used throughout the file system. MINIX already has a history. An earlier ver- 
sion had a different file system, and for users who want to access files written by 
the earlier version. support is provided for both the old VI and the current V2 file 
systems. The super-block of a file system contains a magic number so the 
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operating system can identify the type; the constants SUPER-MAGIC and 
SUPER-V2 define these numbers. Support of old versions is not something one 
reads about in theoretical texts, but it is always a concern for the implementor of a 
new version of any software. One must decide how much effort to devote to mak- 
ing life easier for users of the old version. We will see several places in the file 
system where support for the old version is an issue. 

Type.h (line 19600) defines both the old V l  and new V2 i-node structures as 
they are laid out on the disk. The V2 i-node is twice as big as the old one, which 
was designed for compactness on systems with no hard drive and 360-KB 
diskettes. The new version provides space for the three time fields which UNIX 
systems provide. In the V 1 i-node there was only one time field, but a STAT or 
FSTAT would "fake it" and return a stat structure containing all three fields. 
There is a minor difficulty in providing support for the two file system versions. 
This is flagged by the comment on line 19616. Older MINIX software expects the 
gid-t type to be an 8-bit quantity, so d2-gid must be declared as type u16-t. 

Pr0to.h (line 19700) provides function prototypes in forms acceptable to 
either old K&R or newer ANSI Standard C compilers. It is a long file, but not of 
great interest. However, there is one point to note: because there are so many dif- 
ferent system calls handled by the file system, and because of the way the file sys- 
tem is organized, the various do-xxx functions are scattered through a number of 
files. Pr0tu.h is organized by file and is a handy way to find the file to consult 
when you want to see the code that handles a particular system call. 

Finally, g1o.h (line 19900) defines global variables. The message buffers for 
the incoming and reply messages are also here. The now-familiar trick with the 
EXTERN macro is used, so these variables can be accessed by all parts of the file 
system. As in the other parts of MINIX the storage space will be reserved when 
tab1e.c is compiled. 

The file system's part of the process table is contained in fproc-h (line 20000). 
The &roc array is declared with the EXTERN macro. It holds the mode mask, 
pointers to the i-nodes for the current root directory and working directory, the file 
descriptor array, uid, gid, and terminal number for each process. The process id 
and the process group id are also found here. These are duplicated in parts of the 
process table located in the kernel and the memory manager. 

Several fields are used to store the parameters of system calls that may be 
suspended part way through, such as reads from an empty pipe. The fields 
fp-suspended andfp-revived actually require only single bits, but nearly all com- 
pilers generate better code for characters than bit fields. There is also a field for 
the FD-CLOEXEC bits called for by the POSIX standard. These are used to indi- 
cate that a file should be closed when an EXEC call is made. 

Now we come to files that define other tables maintained by the file system. 
The first, buch (line 20100), defines the block cache. The structures here are all 
declared with EXTERN. The array buf holds all the buffers, each of which con- 
tains a data part, b, and a header full of pointers, flags, and counters. The data 
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part is declared as a union of five types (line 201 17) because sometimes it is con- 
venient to refer to the block as a character array, sometimes as a directory, etc. 

The proper way to refer to the data part of buffer 3 as a character array is 
buJ13l.b.b- -data because bufi31.b refers to the union as a whole, from which the 
b- -data field is selected. Although this syntax is correct, it is cumbersome, so 
on line 20142 we define a macro b-data, which allows us to write bufl3l.b-data 
instead. Note that 6- -data (the field of the union) contains two underscores, 
whereas b-data (the macro) contains just one, to distinguish them. Macros for 
other ways of accessing the block are defined on lines 20143 to 20148. 

The buffer hash table, buf-hash, is defined on line 20150. Each entry points 
to a list of buffers. Originally all the lists are empty. The rnacros'at the end of 
bujh (lines 20160 to 20166) define different block types. When a block is re- 
turned to the buffer cache after use, one of these values is supplied to tell the 
cache manager whether to put the block on the front or rear of the LRU list, and 
whether to write it to disk immediately or not. The WRITE-IMMED bit signals 
that a block must be rewritten to the disk immediately if it is changed. The 
super-block is the only structure unconditionally marked with this. What about 
the other structures marked with MAYBE-WRITE-IMMED? This is defined in 
include/minidconJig.h to be equal to WRITE-IMMED if ROBUST is true, or 0 
otherwise. In the standard configuration of MLNIX. ROBUST is defined as 0, and 
these blocks will be written when data blocks are written. 

Finally, in the last line (line 20168) HASH-MASK is defined, based upon the 
value of NR-BUF- HASH configured in include/rnini.dconfig+ h .  HASH-MASK is 
ANDed with a block number to determine which entry in buf-hash to use as the 
stming point in a search for a block buffer. 

The next file, dev.h (line 20200), defines the dmap table. The table itself is 
declared in tab1e.c with initial values, so that version cannot be included in sever- 
al files. This is why dev-h is needed. Dmap is declared here with extern, instead 
of EXTERN. The table provides the mapping between the major device number 
and the corresponding task. 

File, h (line 20300) contains the intermediate table filp (declared as EXTERN), 
used to hold the current file position and i-node pointer (see Fig. 5-33). It also 
tells whether the file was opened for reading, writing, or both, and how many file 
descriptors are currently pointing to the entry. 

The file locking table, file-lock (declared as EXTERN), is in lock. h (line 
20400). The size of the array is determined by NR-LOCKS, which is defined as 8 
in c0nst.h. This number should be increased if it is desired to implement a multi- 
user data base on a MINIX system. 

In in0de.h (line 20500) the i-node table inode is declared (using EXTERN). It 
holds i-nodes that are currently in use. As we said earlier; when a file is opened 
its i-node is read into memory and kept there until the file is closed. The inode 
structure definition provides for information that is kept in memory, but not writ- 
ten to the disk i-node. Notice that there is only one version, and nothing is 
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version-specific here. When the i-node is read in from the disk, differences be- 
tween V 1 and V2 file systems are handled. The rest of the file system does not 
need to know about the file system format on the disk, at least until the time 
comes to write back modified information. 

Most of the fields should be self-explanatory at this point. However, i-seek 
deserves some comment. It was mentioned earlier that, as an optimization, when 
the file system notices that a file is being ,read sequentially, it tries to read blocks 
into the cache even before they are asked for. For randomly accessed files there 
is no read ahead. When an LSEEK call is made, the field i-seek is set to inhibit 
read ahead. 

The file param-h (line 20600) is analogous to the file of the same name in the 
memory manager. It defines names for message fields containing parameters, so 
the code can refer to, for example, bufler, instead of m m l - p l ,  which selects one 
of the fields of the message buffer m. 

In super.h (line 20700), we have the declaration of the super-block table. 
When the system is booted, the super-block for the root device is loaded here. As 
file systems are mounted, their super-blocks go here as well. As with other tables, 
super-block is declared as EXTERN. 

File System Storage Allocation 

The last file we will discuss in this section is not a header. However, as we 
did when discussing the memory manager, it seems appropriate to discuss tab1e.c 
immediately after reviewing the header files, since they are all included when 
2able.c is compiled. Most of the data structures we have mentioned-the block 
cache, thefilp table, and so on-are defined with the EXTERN macro, as are also 
the file system's global variables and the file system's part of the process table. 
In the same way we have seen in other parts of the MINIX system, the storage is 
actually reserved when tab1e.c is compiled. This file also contains two bajor ini- 
tialized arrays. CaN-vector contains the pointer array used in the maihloop for 
determining which procedure handles which system call number. We saw a simi- 
lar table inside the memory manager. 

Something new, however, is the table d m p  on line 209 14. This table has one 
row for each major device, starting at zero. When a device is opened, closed, 
read, or written, it is this table that provides the name of the procedure to call to 
handle the operation. All of these procedures are located in the file system's ad- 
dress space. Many of these procedures do nothing, but some call a task to actually 
request VO. The task number corresponding to each major device is also provided 
by the table. 

Whenever a new major device is added to MINIX, a line must be added to this 
table telling what action, if any, is to be taken when the device is opened, closed, 
read, or written. As a simple example, if a tape drive is added to MINIX, when its 
special file is opened, the procedure in the table could check to see if the tape 



474 FILE SYSTEMS CHAP. 5 

drive is already in use. In order to spare users the effort of modifying this table 
when reconfiguring, a macro, DT, is defined to automate the process (line 20900). 

There is a line in the table for each possible major device. and each line is 
WI-itten with the macro. Required devices have a 1 as the value of the enable 
argument to the macro. Some entries are not used, either because a planned driver 
is not yet ready or because an old driver has been removed. These entries are de- 
fined with a value of 0 for enable. Entries for devices that may be configured in 
include/mini~dcunfig. h use the enabling macro for the device, for instance, 
ENABLE-WIN1 on line 20920. 

5.7.2 Table Management 

Associated with each of the main tables-blocks, i-nodes, super-blocks, and 
so forth-is a file that contains procedures that manage the table. These proce- 
dures are heavily used by the rest of the file system and form the principal inter- 
face between tables and the file system. For this reason, it is appropriate to begin 
our study of the file system code with them. 

Block Management 

The block cache is managed by the procedures in the file  cache.^. This file 
contains the nine procedures listed in Fig. 5-34. The first one, get-block (line 
21027), is the standard way the file system gets data blocks. When a file system 
procedure needs to read a user data block, a directory block, a super-block, or any 
other kind of block, it calls get-block, specifying the device and block number. 

Procedure 1 Function 
I I 

get-block I Fetch a block lor reading or writing 

alloc-zone I Allocate a new zone (to make a Me longer) 
I 

put- block 

free-zone 1 Release a zone (when a file is removed) I 

Return a block previously requested with get-block 
I 

rw -block 

1 rw-scattered I Read or write scattered data from or to a device 1 

Transfer a block between disk and cache 

invalidate 

flushall 

Purge all the cache blocks for some device 

Flush all dirty blocks for one device 

Figure 5-34. Procedures used for block management. 

rm-lru 1 Remove a block from its LRU chain 

When get-block is called, it first examines the block cache to see if the 
requested block is there. If so, it returns a pointer to it. Otherwise, it bas to read 

4 
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the block in. The blocks in the cache are linked together on NR-BUF-HASH 
linked lists. NR-BUF-HASH is a tunable parameter, along with NR-BUFS, the 
size of the block cache. Both of these are set in include/mini=.Jconfig.h. At the 
end of this section we will say a few words about optimizing the size of the block 
cache and the hash table. The HASH-MASK is NR-BUF-HASH - 1. With 256 
hash lists, the mask is 255, so aH the blocks on each list have block numbers that 
end with the same string of 8 bits, that is O&KKlOO0,00000001, .... or 1 1 I I 1 I 1  1 .  

The first step is usually tp search a hash chain for a block, although there is a 
special case, when a hole in a \parse file is being read, where this search is skip 
ped. This its the reason for the test on line 21055. Otherwise, the next two lines 
set bp to point to the start of the list on which the requested block would be, if it 
were in the cache, applying HASH-MASK to the block number. The loop on the 
next line searches this list to see if the block can be found. If it is found and is not 
in use. it is removed from the LRU list. If it is already in use, it is not on the LRU 
list anyway. The pointer to the found block is returned to the caller on line 21063. 

If the block is not on the hash list, it is not in the cache, so the least recently 
used block from the LRU list is taken. The buffer chosen is removed from its 
hash chain, since it is about to acquire a new block number and hence belongs on 
a different hash chain, If it is dirty, it is rewritten to the disk on line 21095. 
Doing this with a call toflushall rewrites any other dirty blocks for the same de- 
vice. Blocks that are currently in use are never chosen for eviction, since they are 
not on the LRU chain. Blocks will hardly ever be found to be in use, however; 
normally a block is released by put-block immediately upon being used. 

As soon as the buffer is available, all of the fields; including b-dev, are 
updated with the new parameters (lines 21099 to 21 104), and the block may be 
read in from the disk. However, there are two occasions when it may not: be 
necessary to read the block from the disk. Get-block is called with a parameter 
only-search. This may indicate that this is a prefetch. During a prefetch an 
available buffer is found, writing the old contents to the disk if necessary, and a 
new block number is assigned to the buffer, but the b-dev field is set to NO-DEV 
to signal there are as yet no valid data in this block. We will see how this is used 
when we discuss the nu-scattered function. Only,search can also be used to sig- 
nal that the file system needs a block just to rewrite all of it. In this case it is 
wasteful to first read the old version in. In either of these cases the parameters are 
updated, but the actual disk read is omitted (lines 21 107 to 21 11 1). When the new 
block has been read in, get-block returns to its caller with a pointer to it. 

Suppose that the file system needs a directory block temporarily, to look up a 
file name. It calls get-block to acquire the directory block. When it has looked 
up its file name, it calls put-block (line 21 119) to return the block to the cache, 
thus making the buffer available in case it is needed later for a different block. 

Put-block takes care of putting the newly returned block on the LRU list, and 
in some cases, rewriting it to the disk. At line 21 144 a decision is made to put it 
on the front or rear of the LRU list, depending on block-type, a flag provided by 
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the caller telling what kind of a block it is. Blocks that may be needed again soon 
go on the rear, so they will stay around for a while. Blocks that are not likely to 
be needed again soon are put on the front, where they will be reused quickly. 
Currently, only super-blocks are treated this way. 

After the block has been repositioned on tlie LRU list, another check is made 
(lines 21 172 and 21 173) to see if the block should be rewritten to disk imrnediate- 
ly. In the standard configuration only super-blocks are marked for immediate 
writing, but the only time a super-block is modified and needs to be written is 
when a RAM disk is resized at system initialization. In that case the write is to 
the RAM disk, and it is unlikely the super-block of a RAM disk will ever need to 
be read again. Thus, this capability is hardly used. However, the ROBUST macro 
in include/rninix/confzg.h can be edited to mark for immediate writing 1-nodes, di- 
rectory blocks, and other blocks that are essential for the correct functioning of 
the file system itself. 

As a file grows, from time to time a new zone must be allocated to hold the 
new data. The procedure aalloc-zone (line 21 180) takes care of allocating new 
zones. It does this by finding a free zone in the zone bit map. There is no need to 
search through the bit map if this is to be the first zone in a file; the s-zsearch 
field in the super-block, which always points to the first available zone on the de- 
vice, is consulted. Otherwise an attempt is made to find a zone close to the last 
existing zone of the current file, in order to keep the zones of a file together. This 
is done by starting the search of the bit map at this last zone ,(line 21203). The 
mapping between the bit number in the bit map and the zone number is handled 
on line 21 2 15, with bit 1 corresponding to the first data zone. 

When a file is removed, its zones must be returned to the bit map. Free-zone 
(line 21222) is responsible for returning these zones. All it does is call free-bit, 
passing the zone map and the bit number as parameters. Free-bit is also used to 
return free i-nodes, but then with the i-node map as the first parameter, of course. 

Managing the cache requires reading and writing blocks. To provide a simple 
disk interface, the procedure nv-block (line 2 1243) has been provided. It reads or 
writes one block. Analogously, rw-inode exists to read and write i-nodes. 

The next procedure in the file is invaEidare (line 2 1280). It is called when a 
disk is unmounted, for example, to remove from the cache all the blocks belong- 
ing to the file system just unmounted. If this were not done, then when the device 
were reused (with a different floppy disk), the file system might find the old 
blocks instead of the new ones. 

Flushall (line 21295) is called by the SYNC system call to flush to disk all 
dirty buffers belonging to a specific device. It is called once for each mounted de- 
vice. It treats the buffer cache as a linear array, so all dirty buffers are found, 
even ones that are currently in use and are not in the LRU list. All buffers in the 
cache are scanned, and those that belong to the device to be flushed and that need 
to be written are added to an array of pointers, dirty. This array is declared as 
static to keep it off the stack. It is then passed to rw-scattered. 
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Rw-scattered ( h e  213 13) receives a device identifier, a pointer to an array 
of pointers to buffers, the size of the array, and a flag indicating whether to read 
or write. The first thing it does is sort the array it receives on the block numbers, 
so the actual read or write operation will be performed in an efficient order. It is 
called with the WRITING flag only from the flushall function described above. In 
this case the origin of these block numbers is easy to understand. They are buffers 
which contain data from blocks previously read but now modified. The only call 
to rw-scattered for a read operation is from rahead in r e d c .  At this point, we 
just need to know that before calling rw-scattered, get-block has been called 
repeatedly in prefetch mode, thus reserving a group of buffers. These buffers con- 
tain block numbers, but no valid device parameter. This is not a problem, since 
nv-scattered is called with a device parameter as one of its arguments. 

There is an important difference in the way a device driver may respond to a 
read (as opposed to a write) request, from nv-scattered. A request to write a 
number of blocks must be honored completely, but a request to read a number of 
blocks may be handled differently by different drivers, depending upon what is 
most efficient for the particular driver. Rahead often calls nu-scattered with a 
request for a list of blocks that may not actually be needed, so the best response is 
to get as many blocks as can be gotten easily, but not to go wildly seeking all over 
a device that may have a substantial seek time. For instance, the floppy driver 
may stop at a track boundary, and many other drivers will read only consecutive 
blocks. When the read is complete, rw-scattered marks the blocks read by filling 
in the device number field in their block buffers. 

The last function in Fig. 5-34 is rm-lru (line 21387). This function is used to 
remove a block From the LRU list. It is used only by get-block in this file, so it is 
declared PRIVATE instead of PUBWC to hide it from procedures outside the file. 

Before we leave the block cache, let us say a few words about fine-tuning it. 
NR-BUF-HASH must be a power of 2. If it is larger than NR-BUFS, the aver- 
age length of a hash chain will be less than one. If there is enough memory for a 
large number of buffers, there is space for a large number of hash chains, so the 
usual choice is to make NR-BUF-HASH the next power of 2 greater than 
A'Q--PUF~,~. The listing in the text shows settings of 512 blocks and 1024 hash 
lists. The optimal size depends upon how the system is used, since that deter- 
mines how'much must be buffered. Empirically it was found that increasing the 
number of buffers beyond 1024 did not improve performance when recompiling 
the MINIX system, so apparently this is large enough to hold the binaries for all 
compiler passes. For some other kind of work a smaller size might be adequate or 
a larger size might improve performance. 

The binary files for the MINIX system on the CD-ROM are compiled with a 
much smaller block cache. This is because the distribution binary is meant to run 
on as many machines as possible. It was desired to produce a distribution version 
of M I N ~  that could be installed in a system with only 2 MB of RAM memory. A 
system compiled with a 1024-block cache requires more than 2 MB of RAM. The 
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distributed binary also includes every possible hard disk driver and other drivers 
that may not be useful in a particular installation. Most users will want to edit 
include/minix/config. h and recompile the system soon after installation, leaving 
out unnecessary drivers and enlarging the block cache as much as possible. 

While on the subject of the block cache, we will point out that the 64 KB limit 
on memory segment size on  16-bit Intel processors makes a large cache impos- 
sible on these machines. it is possible to configure the file system to use the 
RAM disk as a secondary cache, to hold blocks that are pushed out of the primary 
cache. We do not discuss this here because it is not necessary on a 32-bit Intel 
system; when possible, a large primary cache will give the best performance. A 
secondary cache can be helpful, however, on a machine (such as a 286) that does 
not have room for a large primary cache within the file system's virtual address 
space. A secondary cache should perform better than a conventional RAM disk. 
A cache holds only data that is needed at-least once, and if large enough can make 
a big improvement in system performance. "Large enough" cannot be defined in 
advance; it can only be measured by seeing if further increases in size result in 
further increases in performance. The time command, which measures the time 
used in running a program, is a useful tool when trying to optimize a system. 

I-node Management 

The block cache is not the only table that needs support procedures. The i- 
node table does, too. Many of the procedures are similar in function to the block 
management procedures. They are listed in Fig. 5-35. 

I Procedure 1 Function 

I aet-inode I Fetch an i-node into memory 
I 

put-inode I Return an i-node that is no longer needed 
I 

alloc-inode 1 Allocate a new I-node (for a new file) 
.- 

I 

wipe-inode 1 Clear some fields in an i-node 
I 

free-inade I Release an i-node (when a file is removed) 
I 

update-times I Update time fields in an i-node 

I nv-inode I Transfer an i-node between memory and disk 

E r ~ o n v e r t  i-node contents to write to V1 disk i-node 

mew-icopy I Convert data read from V1 file system disk i-node 

I dup-inode I Indicate that someone else is using an i-node 

Figure 5-35. Procedures used for i-node management. 

The procedure gc)r-rr~ode (line 21534) is analogous to get-black. When any 
part of the file system needs an i-node, it calls get-inode to acquire it. Ger-inode 
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first searches the inode table to see if the i-node is already present. If so, it incre- 
ments the usage counter and returns a pointer to it. This search is contamed on 
lines 21546 to 21556. If the i-node is not present in memory, the i-node is loaded 
by calling rw-inode. 

When the procedure that needed the i-node is finished with it, the i-node is re- 
turned by calling the procedure put-inode (line 21578), which decrements the 
usage count i-count. If the count is then zero, the file is no longer in use, and the 
i-node can be removed from the table. If it is dirty, it is rewritten to disk. 

If the i-link field is zero, no directory entry is pointing to the file, so all its 
zones can be freed. Note that the usage count going to zero and the number of 
links going to zero are different events, with different causes and different con- 
sequences. If the i-node is for a pipe, all the zones must be released, even though 
the number of links may not be zero. This happens when a process reading from a 
pipe releases the pipe. There is no sense in having a pipe for one process. 

When a new file is created, an i-node must be allocated by aiioc-inude (line 
21605). MINIX allows mounting of devices in read-only mode, so the super-block 
is checked to make sure the device is writable. Unlike zones, where an attempt is 
made to keep the zones of a file close together, any i-node will do. In order to 
save the time of searching the i-node bit map, advantage is taken of the field in 
the super-block where the first unused i-node is recorded. 

After the i-node has been acquired, get-inode is called to fetch the i-node into 
the, table in memory. Then its fields are initialized, partly in-line (lines 21641 to 
2 1648) and partly using the procedure wipe-inode (line 2 1664). This particular 
division of labor has been chosen because wipe-inode is also needed elsewhere in 
the file system to clear certain i-node fields (but not all of them). 

When a file is removed, its i-node is freed by calling free-inode (line 21684). 
All that happens here is that the corresponding bit in the i-node bit map is set to 0 
and the super-block's record of the first unused i-node is updated. 

The next function. update-times (line 21704), is called to get the time from 
the system clock and change the time fields that require updating. Update-times 
is also called by the STAT and FSTAT system calls, so it is declared PUBLIC. 

The procedure rw-inode (line 2 173 1 ) is anaIagous to rw-block. Its job is to 
fetch an i-node from the disk. It does its work by carrying out the following steps: 

1.  Calculate which block contains the required i-node. 

2. Read in the block by calling get-block. 

3. Extract the i-node and copy it to the inode table. 

4. Return the block by calling put-block. 

Rw-inode is a bit more complex than the basic outline given above, so some 
additional functions are needed. First, because getting the current time is expen- 
sive, any need for a change to the time fields in the i-node is only marked by 
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setting bits in the i-node's i-update field while the i-node is in memory. If this 
field is nonzero when an i-node must be written, update-times is called. 

Second, MINIX' history adds a complication: In the old V l  version of the file 
system the i-nodes on the disk have a different structure from V2. Two functions, 
old-icopy (line 21774) and new-icopy (line 21821) take care of the conversions. 
The first converts between i-node information in memory and the format used by 
the V l  filesystem. The second does the same conversion for V2 filesystem disks. 
Both of these functions are called only from within this file, so they are declared 
PRIVATE. Each function handles conversions in both directions (disk to memory 
or memory to disk). MINIX has been implemented on systems which use a dif- 
ferent byte order from Intel processors. Every implementation uses the native 
byte order on its disk; the sp->native field in the super-block identifies which 
order is used. Both old-icopy and new-icopy call functions conv2'and cow4 to 
swap byte orders, if necessary. 

The procedure dup-inode (line 21865) just increments the usage count of the 
i-node. It is called when an open'file is opened again. On the second open, the i- 
node need not be fetched from disk again. 

Super-block Management 

The file super.c contains procedures that manage the super-block and the bit 
maps. There are five procedures in this file, listed in Fig. 5-36. 

Pmcedure 1 Function 
1 

alloc-bit 1 Allocate a bit from the zone or i-node map 

get-super I Search the super-block table for a device 

free-bit 

mounted I Report whether given i-node is on a mounted 
- - 

I 

Free a bit in the zone or i-node map 

I read-super I Read a super-block I 

I 

Figure 5-36. Procedures used to manage the super-block and bit maps. 

When an i-node or zone is needed, alloc_inode or alloc-zone is called, as we 
have seen above. Both of these call alloc-bit (line 21926) to actually search the 
relevant bit map. The search involves three nested loops, as follows: 

1.  The outer one loops on all the blocks of a bit map. 

2. The middle one loops on all the words of a block. 

3. The inner one loops on all the bits of a word. 

The middle loop works by seeing if the current word is equal to the one's cornple- 
ment of zero, that is, a complete word full of Is. If so, it has no free i-nodes or 
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zones, so the next word is tried. When a word with a different value is found, it 
must have at least one 0 bit in it, so the inner loop is entered to find the free (i.e., 
0) bit. If all the blocks have been tried without success, there are no free i-nodes 
or zones, so the code NO-BIT (0) is returned. Searches like this can consume a 
lot of processor time, but the use of the super-block fields that point to the first 
unused i-node and zone, passed to alloc-bit in origin, helps to keep these 
searches short. 

Freeing a bit is simpler than allocating one, because no search is needed. 
Free-bit (line 22003) calculates which bit map block contains the bit to free and 
sets the proper bit to 0 by calling get-block, zeroing the bit in memory and then 
calling put-block. 

The next procedure, get-super (line 22047), is used to search the super-block 
table for a specific device. For example, when a file system is to be mounted, it is 
necessary to check that it is not already mounted. This check can be performed 
by asking get-super to find the file system's device. If it does not find the device, 
then the file system is not mounted. 

The next function, mounted (line 22067), is called only when a block device is 
closed. Normally, all cached data for a device are discarded when it is last closed. 
But, if the device happens to be mounted, this is not desirable. Mounted is called 
with a pointer to the i-node for a device. It just returns TRUE if the device is the 
root device, or if it is a mounted device. 

Finally, we have read-super (line 22088). This is partially analogous to 
rw-block and nu-inode, but it is called only to read. Writing a super-block is not 
necessary in the normal operation of the system. Read-super checks the version 
of the file system from which it has just read and performs conversions, if neces- 
sary, so the copy of the super-block in memory will have the standard structure 
even when read from a disk with a different super-block structure. 

File Descriptor Management 

MINlX contains special procedures to manage file descriptors and thefilp table 
(see Fig. 5-33). They are contained in the fi1efiledes.c. When a file is created or 
opened, a free file descriptor and a freefilp slot are needed. The procedure get-fd 
(line 22216) is used to find them. They are not marked as in use, however, 
because many checks must first be made before it is known for sure that the 
CREAT or OPEN will succeed. 

Get-filp (line 22263) is used to see if a file descriptor is in range, and if so, 
returns itsfilp pointer. 

The last procedure in this file isfind-filp (line 22277). It is needed to find out 
when a process is writing on a broken pipe (i-e., a pipe not open for reading by 
any other process). It locates potential readers by a brute force search of thefdp 
table. If it cannot find one, the pipe is broken and the write fails. 
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File Locking 

The POSIX record locking functions are shown in  Fig. 5-37. A part of a file 
can be locked for reading and writing, or for writing only, by an FCNTL call speci- 
fying a F-SETLK or F-SETLKW request. Whether a lock exists over a part of a 
file ciin be determined using the F-GETLK request. 

Meaning --.-I 
- - 

7 Lock region for both reading and wntrng 
7 

Lock region for writing 

I F-GETLK I Report if region is locked I 
Figure 5-37. The POSIX advisory record locking operations. These operations 
are requested by using an FCNTL system call. 

There are only two functions in the file 1ock.c. L.ock_op ( h e  22319) is called 
by the FCNTL system call with a code for one of the operations shown in Fig. 5-37. 
It does some error checking to be sure the region specified is valid. When a lock 
is being set, it must not.conflict with an existing lock, and when a lock is being 
cleared, an existing lock must not be split in two. When any lock is cleared. the 
other function in this file, lock-revive (line 224631, is called. It wakes up all the 
processes that are blocked waiting for locks. This strategy is a compromise; i t  
would take extra code to figure out exactly which processes were waiting for a 
particular lock to be released. Those processes that are still waiting for a locked 
file will block again when they start. This strategy is based on an assumption that 
locking will be used infrequently. If a major multiuser data base were to built 
upon a MINIX system, it might be desirable to reimplement this. 

Lock-revive is also called when a locked file is closed, as might happen, for 
instance, if a process is killed before it finishes using a locked file. 

5.7.3 The Main Program 

The main loop of the file system is contained in file  main.^, starting at line 
22537. Structurally, it is very similar to the main loop of the memory manager 
and the I/O tasks. The call to get-work waits for the next request message to 
arrive (unless a process previously suspended on a pipe or terminal can now be 
handled). It also sets a global variable, who, to the caller's process table slot num- 
ber and another global variable, fs-call, to the number of the system call to be 
carried out. 

Once back in the main loop, three flags are set: fp points to the caller's proc- 
ess table slot, super-user tells whether the caller is the super-user or not, and 
dont-reply is initialized to FALSE. Then comes the main attraction-the call to 
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the procedure that carries out the system call. The procedure to call is selected by 
using fs-call as an index into the array of procedure pointers, call-vector. 

When control comes back to the main loop, if dont-reply has been set, the 
reply is inhibited (e.g., a process has blocked trying to read from an empty pipe). 
Otherwise a reply is sent. The final statement i n  the main loop has been designed 
to detect that a file is being read sequentially and to Ioad the next block into the 
cache before it is actually requested, to improve performance. 

The procedure get-work (line 22572) checks to see if any previously blocked 
procedures have now been revived. If so, these have priority over new messages. 
Only if there is no internal work to do does the file system call the kernel to get a 
message, on line 22598. 

After a system call has been completed, successfully or otherwise, a reply is 
sent back to the caller by reply (line 22608). The process may have been killed by 
a signal, so the status code returned by the kernel is ignored. In this case there is 
nothing to be done anyway. 

Initialization Functions 

The rest of main-c consists of functions that are used only at system startup, 
Before the file system enters its main loop, it initializes itself by calling $7-inir 
(line 22625), which in turn calls several other functions to initialize the block 
cache, get the boot parameters, Ioad the RAM disk if necessary, and load the root 
device super-block. The next step is to initialize the file system's part of the proc- 
ess table for all the tasks and servers, up through init (lines 22643 to 22654). 
Finally, tests are done on some important constants, to see if they make sense, and 
a message is sent to the memory task with the address of the file system's part of 
the process table, for use by the ps program. 

The first function called by fs-init is buf-pool (line 22679), which builds the 
linked lists used by the block cache. Figure 5-31 shows the normal state of the 
block cache, in which all blocks are linked on both the LRU chain and a hash 
chain. It may be helpful to see how the situation of Fig. 5-3 1 comes about. 
Immediately after the cache is initialized by buf-pool, all the buffers will be on 
the LRU chain, and all will be linked into the 0th hash chain, as in Fig. 5-38(a). 
When a buffer is requested, and while it is in use, we have the situation of Fig. 5- 
38(b), in which we see that a block has been removed from the LRU chain and is 
now on a different hash chain. Normally, blocks are released and returned to the 
LRU chain immediately. Figure 5-38(c) shows the situation after the block has 
been returned to the LRU chain. Although it is no longer in use, it can be ac- 
cessed again to provide the same data, if need be, and so it is retained on the hash 
chain. After the system has been in operation for awhile, almost all of the blocks 
can be expected to have been used and to be distributed among the different hash 
chains at random. Then the LRU chain will look like Fig. 5-31. 
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Figure 5-38. Block cache initialization. (a) Before any buffers have been used. 
(b) After one block has been requested. (c) After the block has been released. 

The next function is get-boot-parameters (line 22704). It sends a message 
to the system task to ask it for a copy of the boot parameters. They are needed by 
the fallowing function, load-ram (line 22722), which allocates space for a RAM 
disk. If the boot parameters specify 

rootdev = ram 

the root device file system is copied from the device named by ramimagedev to 
the RAM disk block by block, starting with the bootblock, with no interpretation 
of the various file system data structures. If the ramsize boot parameter is smaller 
than the size of the root device file system, the RAM disk is made large enough to 
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hold it. If ramsize specifies a size larger than the boot device file system the 
specified size 1s allocated and the RAM disk file system is adjusted to use the full 
size specified (lines 22819 to 22825). The call to put-block on line 22825 is the 
only time that the file system ever writes a super-block. 

Load-ram allocates space for 'an empty RAM disk if a nonzero ramsize is 
specified. In this case, since no fife system structures are copied, the RAM device 
cannot be used as a file system until it has been initialized by the mws command. 
Alternatively, such a RAM disk can be used for a secondary cache if support for 
this is compiled into the file system. 

The last function in main.c is load-super (line 22832). It initializes the 
super-block table and reads in the super-block of the root device. 

5.7.4 Operations on Individual Files 

In this section we will look at the system calls that operate on individual files 
one at a time (as opposed to, say, operations on directories). We will start with 
how files are created, opened, and closed. After that we will examine in some 
detail the mechanism by which files are'read and written. After that we will look 
at how pipes and how operations on them differ from those on files. 

Creating, Opening, and Closing Files 

The file opeac contains the code for six system calls: CREAT, OPEN, MKNOD, 
MKDIR, CLOSE, and LSEEK. We will examine CREAT and OPEN together, and then 
look at each of the others. 

In older versions of UNIX, the CREAT and OPEN calls had distinct purposes. 
Trying to open a file that did not exist was an error, and a new file had to be 
created with CREAT, which could also be used to truncate an existing file to zero 
length. The need for two distinct calls is no longer present in a P ~ ~ I X  system, 
however. Under Posrx, the OPEN call now allows creating a new file or truncating 
an old file, so the CREAT call now represents a subset of the possible uses of the 
OPEN call and is really only necessary for compatibility with older programs. The 
procedures that handle CREAT and OPEN are do-creat (line 22937) and do-open 
(line 2295 1). (As in the memory manager, the convention is used in the file sys- 
tem that system call xxx is performed by procedure do-xxx). Opening or treat- 
ing a file invoIves three steps: 

I .  Finding the i-node (albcating and initializing if the file is new). 

2. Finding or creating the directory entry. 

3. Setting up and returning a file descriptor for the file. 

Both the CREAT and the OPEN calls do two things: they fetch the name of a file 
and then they call common -open which takes care of tasks common to both calls. 
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Common-open (line 22975) starts by making sure that free file descriptor and 
j7lp table slots are available. If the calling function specified creation of a new 
file (by calling with the 0-CREAT bit set), new-node is called on line 22998. 
New-node returns a pointer to an existing i-node if the directory entry already 
exists; otherwise it will create both a new directory entry and i-node. If the i-node 
cannot be created, new-node sets the global variable err-code. An error code 
does not always mean an error. If new-node finds an existing file, the error code 
returned will indicate that the file exists, but in this case that error is acceptable 
(line 2300 1). If the 0-CREAT bit is not set, a search is made for the i-node using 
an alternative method, the eat-path function in path.c, which we will discuss 
further on. At this point, the important thing to understand is that if an i-node is 
not found or successfully created, common-open will terminate with an error be- 
fore line 23010 is reached. Otherwise, execution continues here with assignment 
of a file descriptor and claiming of a slot in thefilp table, Following this, if a new 
file has just been created, lines 23017 to 23094 are skipped. 

If the file is not new, then the file system must test to see what kind of a file it 
is, what its mode is, and so on, to determine whether it can be opened. The call to 
forbidden on line 2301 8 first makes a general check of the mx bits. If the file is a 
regular file and common-open was called with the 0-TRUNC bit set, it is trun- 
cated to length zero and forbidtkm-kded again (line 23024), this time to be sure 
the file may be written. If the permissions allow, wipe-inode and m-inode are 
called to re-initialize the i-node and write it to the disk. Other file types (direc- 
tories, special files, and named pipes) are subjected to appropriate tests. In the 
case of a device, a call is made on line 23053 (using the dmap structure) to the 
appropriate routine to open the device. In the case of a named pipe, a call is made 
to pipe -open (line 23060), and various tests relevant to pipes are made. 

The code of common-open, as well as many other file system procedures, 
contains a large amount of code that checks for various errors and illegal combi- 
nations. While not glamorous, this code is essential to having an error-free, robust 
ffle system. If something is wrong, the file descriptor andfilp slot previously allo- 
cated are deallocated and the i-node is released (lines 23098 to 23 101). In this 
case the value returned by common-open will be a negative number, indicating an 
error. If there are no problems the file descriptor, a positive value, is returned. 

This is a good place to discuss in more detail the operation of new-node (line 
231 1 I ) ,  which does the allocation of the i-node and the entering of the path name 
into the file system for CUEAT and OPEN calls. It is also used for the MKNOD and 
MKDIR calls, yet to be discussed. The statement on line 23128 parses the path 
name (i.e., looks it up component by component) as far as  the final directory; the 
call to advance three lines later tries to see if the final component can be opened. 

For example, on the call 

last-dir tries to load the i-node for /usr/ast into the tables and return a pointer to 
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it. If the f Ie does not exist, we will need this i-node shortly in order to addfnobar 
to the directory. All the other system calls that add or delete files also use 
last-dir to first open the final directory in the path. 

If new-node discovers that the file does not exist, it calls alloc-inode on line 
23134 to allocate and load a new i-node, returning a pointer to it. If no free i- 
nodes are left, new-node fails and returns ArlL-INODE. 

If an i-node can be allocated, the operation continues at line 23144, filling in 
some of the fields, writing it back to the disk, and entering the file name in the 
final directory (on line 23149). Again we see that the file system must constantly 
check for errors, and upon encountering one, carefully release all the resources, 
such as i-nodes and blocks that it is holding. If we were prepared to just let MINIX 
panic when we ran out of, say, i-nodes, rather than undoing all the effects of the 
current call and returning an error code to the caller, the file system would be 
appreciably simpler. 

As mentioned above, pipes require special treatment. If there is not at least 
one readdwriter pair for a pipe, pipe-open (line 23176) suspends the caller. 
Otherwise, it calls release, which looks through the process table for processes 
that are blocked on the pipe. If it is successful, the processes are revived. 

The MKNOD call is handled by do,mknod (line 23205). This procedure is 
similar to do-crear, except that it just creates the i-node and makes a directory 
entry for it. In  fact, most of the work is done by the call to new-node on line 
23217. If the i-node already exists, an error code will be returned. Thjs is the 
same error code that was an acceptable resulr from new-node when it was called 
by common-open; in this case, however, the error code is passed back to the call- 
er, which presumably will act accordingly. The case-by-case analysis we saw in 
common-open is not needed here. 

The MKDIR call is handled by the functionido-mkdir (line 23226). As with 
the other system calls we have discussed here, new-node plays an important part. 
Directories, unlike files, always have links and are never completely empty be- 
cause every directory must contain two entries from the time of its creation: the 
"." and ",." entries that refer to the directory itself and to its parent directory. 
There is a limit to the number of links a file may have, LINK-MAX (defined in 
include/limits.h as 127 for the standard MINIX system). Since the reference to a 
parent directory in a child is a link to the parent, the first thing do-mkdir does is 
to see if it is possible to make another link in the parent directory (line 23240). 
Once this test has been passed, new-nade is called. If new-node succeeds, then 
the directory entries for ". " and ".. " are made (lines 23261 and 23262). All of 
this is straightforward, but there could be failures (for instance, if the disk is full), 
and to avoid making a mess of things provision is made for undoing the initial 
stages of the process if it  can not be completed. 

Closing a file is easier than opening one. The work is done by do-close (line 
23286). Pipes and special files need some attention, but for regular files, almost 
all that needs to be done is to decrement the filp counter and check to see if it is 
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zero, in which case the i-node is returned with pur-inode. The final step is to 
remove any locks and to revive any process that may have been suspended wait- 
ing for a lock on the file to be released. 

Note that returning an i-node means that its counter in the inode table is dec- 
remented, so it can be removed from the table eventually. This operation has 
nothing to d o  with freeing the i-node (i.e., setting a bit in the bit map saying that it 
is available). The i-node is only freed when the file has been removed from all di- 
rectories. 

The final procedure in 0pen.c is do-lseek (line 23367). When a seek is done, 
this procedure is called to set the file position to a new value. On line 23394 read- 
ing ahead is inhibited; an explicit attempt to seek to  a position in a file is incorn- 
patible with sequential access. 

Reading a File 

Once a file has been opened, it can be read or written. Many functions are 
used during both reading and writing. These are found in the file readx. We will 
discuss these first and then proceed to the following file,  write.^, to look at code 
specifically used for writing. Reading and writing differ in a number of ways, but 
they have enough similarities that all that is required of do-read (line 23434) is to 
call the common procedure read- write with a flag set to READING. We will see 
in the next section that do-write is equally simple. 

Read-write begins on line 23443. There is some speciaI code on lines 23459 
to 23462 that is used by the memory manager to  have the file system load entire 
segments in user space for it. Normal calls are processed starting on line 23464. 

'Some validity checks follow (e.g., reading from a file opened only for writing) 
and some variables are initialized. Reads from character special files do not go 
through the block cache, so they are filtered out on line 23498. 

The tests on lines 23507 to 235 18 apply only to  writes and have to do with 
files that may get bigger.than the device can hold, or writes that will create a hole 
in the file by writing beyond the end-of-file. As we discussed in the MINIX over- 
view, the presence of multiple blocks per zone causes problems that must be dealt 
with explicitly. Pipes are also special and are checked for. 

The heart of the read mechanism, at  least for ordinary files, is the loop starting 
on line 23530. This loop breaks the request up into chunks, each of which fits in a 
single disk block. A chunk begins at the current position and extends until one of 
the following conditions is met: 

1.  All the bytes have been read. 

2. A block boundary is encountered. 

3. The end-of-file is hit. 

These rules mean that a chunk never requires two disk blocks to satisfy it. Figure 
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5-39 shows three examples of how the chunk size is determined, for chunk sizes 
of 6, 2, and 1 bytes, respectively. The actual calculation is done on lines 23632 to 
2364 1. . 

Byte number 

Current position = t 

Current position = 6 7 
1 

I 1 I I I I I Chunk = 2 

Current position = 9 7 

I I I I I I I Chunk = 1 

Figure 5-39. Three e x a e p k w M m w  the first chunk size i s  determined for a 
!@byte file. The blwk size is 8 bytes, and the number of bytes requested is 6. 
The chunk is shown shaded. 

The actual reading of the chunk is done by rw-chunk. When control returns, 
various counters and pointers are incremen ted, and the next iteration begins. 
When the loop terminates, the file position and other variables may be updated 
(e.g., pipe pointers). 

Finally, if read ahead is called for, the i-node to read from and the position to 
read from are stored in global variables, so that after the reply message is sent to 
the user, the file system can start working on getting the next block. In many 
cases the file system wiIl block, waiting for the next disk black, during which time 
the user process will be able to work on the data it just received. This arrange- 
ment overlaps processing and I/O and can improve performance substantially. 

The procedure rw-chunk (line 23613) is concerned with taking an i-node and 
a file position, converting them into a physical disk block number, and requesting 
the transfer of that block (or a portion of it) to the user space. The mapping of the 
relative file position to the physical disk address is done by read-map, which 
understands about i-nodes and indirect blocks. For an ordinary file, the variables 
b and dev on lines 23637 and 23638 contain the physical block number and device 
number, respectively. The call to get-block on line 23660 is where the cache 
handler is asked to find the block, reading it in if need be. 

Once we have a pointer to the block, the call to sys-copy on line 23670 takes 
care of transferring the required portion of it to the user space. The block is then 
released by put-block, so that it can be evicted from the cache later, when the 
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time comes. (After being acquired by get-block, it will not be in the LRU queue 
and it  will not be returned there while the counter in the block's header shows that 
it is in use, so i t  will be exempt from eviction; put-block decrements the counter 
and returns the block to the LRU queue when the counter reaches zero.) The code 
on line 23680 indicates whether a write operation filled the block. However. the 
value passed to put-block in n does not affect how the block is placed on the 
queue; all blocks are now placed on the rear of the LRU chain. 

Read-map (line 23689) converts a Iogical file position to the physical block 
number by inspecting the i-node. For blocks close enough to the beginning of the 
tile that they fall within one of the first seven zones (the ones right in the i-node), 
a simple calculation is sufficient to determine which zone is needed, and then 
which block. For blocks further into the file, one or more indirect blocks may 
have to be read. 

Rd- indir (line 23753) is called to read an indirect block, It is made a separate 
procedt re because there are different formats the data may take on the disk, 
depending upon the version of the file system and the hardware on which the file 
system was written. The messy conversions are done here, if necessary, so the 
rest of the file system sees data in d y  one form. 

Read-ahead (line 23786) conkens the logical position to a physical block 
number, calls get-block to make sure the block is in the cache (or bring it in), and 
then returns the block immediately, it cannot do anything with the block, after all. 
It just wants to improve the chance that the block is around if it should be used 
soon. 

Note that reud-ahead is called only from the main loop in  main. It is not 
called as part of the processing of the READ system call. It is important to realize 
that the call to read-ahead is performed after the reply is sent, so that the user 
wiIl be able to continue running even if the file system has to wait for a disk block 
while reading ahead. 

Read-ahead by itself is de~igned to ask for just one more block. It calls the 
last function in readc, rahead, to actuaIly get the job done. Rahead (line 23805) 
works according to the theory that if a little more is good, a lot more is better. 
Since disks and ~ t h e r  storage devices often take a relatively long time to locate 
the first block requested but then can relatively quickly read in a number of adja- 
cent blocks, it  may be possible to get many more blocks read with little additional 
effort. A prefetch request is made to get-block, which prepares the block cache 
to receive a number of blocks at once. Then rw-scattered is called with a list of' 
blocks. We have previously discussed this; recall that when the device drivers are 
actually called b y  rw-scarrered, each one is free to answer only as much of the 
request as it can efficiently handle. This all sounds fairly complicated, but the 
complications make possible a significant speedup of applications which read 
large amounts of data from the disk. 

Figure 5-40 shows the relations between some of the major procedures 
involved in reading a file, in  particular, who calk whom. 
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Entry points 

Transfer from Return block 
FS to user to cache 

Get indirect 
block address 

sendrec 6 

Search the cache 

Listed in dmap table 

Sends message to the kernel 

Figure 5-40. Some of the procedures involved in reading a file. 

Writing a File 

The code for writing to files is in  write,^. Writing a file is similar to reading 
one, and do- write (line 24025) just calls read- write with the WRITING flag. A 
major difference between reading and writing is that writing requires allocating 
new disk blocks. Write-map (line 24036) is analogous to read-map, only. instead 
of looking up physical block numbers in the i-node and its indirect blocks, it 
enters new ones there (to be precise, it enters zone numbers, not block numbers). 

The code of write-map is long and detailed because it must deal with several 
cases. If the zone to be inserted is close to the beginning of the file, it is just 
inserted into the i-node on (line 24058). 

The worst case is when a file exceeds the size that can be handled by a sin- 
gle-indirect block, so a double-indirect block is now required. Next, a single- 
indirect block must be allocated and its address put into the double-indirect block. 
As with reading, a separate procedure, wr-indir, is called. If the double-indirect 
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block is acquired correctly, but the disk is full so the single-indirect block cannot 
be allocated, then the double one must be returned to avoid corrupting the bit map. 

Again, if we could just toss in the sponge and panic at this point, the code 
would be much simpler. However, from the user's point of view it  is much nicer 
that running out of disk space just returns an error from WRITE, rather than crash- 
ing the computer with a corrupted file system. 

Wr-indir (line 24127) calls one of the conversion routines, conv2 or cnnv4 to 
do any necessary data conversion and puts a new zone number into an indirect 
block. Keep in mind that the name of this function, like the names of many other 
functions that involve reading and writing, is not literally true. The actual writing 
to the disk is handled by the functions that maintain the block cache. 

The next procedure in  write.^ is clear-zone (line 24149), which takes care of 
the problem of erasing blocks that are suddenly in the middle of a file. This hap- 
pens when a seek is done beyond the end of a file, followed by a write of some 
data. Fortunately, this situation does not occur very often. 

New-block (line 24190) is called by nv-chunk whenever a new block is 
needed. Figure 5-41 shows six successive stages of the growth of a sequential 
file. The block size is 1K and the zone size is 2K in this example. 

(4 Freezones: 12 20 31 36.. . 

(d) pq-qqq  
24 125 1 40 141 162 ---- Block number 

Figure 5-41. (a) - (f) The successive allocation of IK blocks with a 2K zone. 

The first time new-block is called, it allocates zone 12 (blocks 24 and 25). 
The next time it uses block 25, which has already been allocated but is not yet in 
use. On the third call, zone 20 (blocks 40 and 41) is allocated, and so on. 
Zero-block (line 24243) clears a block, erasing its previous contents. This 
description is considerably longer than the actual code. 

Pipes 

Pipes are -similar to ordinary files in many respects. In this section we will 
focus on the differences. The code we will discuss is all in pipe-c. 

First of alI, pipes are created differently, by the PIPE call, rather than the 
CREAT call. The PIPE call is handled by do-pipe (line 24332:. All do-pip really 
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does is allocate an i-node for the pipe and return two file descriptors for it. Pipes 
are owned by the system, not by the user, and are located on the designated,pipe 
device (configured in irzclude/mini.dcunfig.h), which could very well be a RAM 
disk, since pipe data do not have to be preserved permanently. 

Reading and writing a pipe is slightly different from reading and writing a 
file, because a pipe has a finite capacity. An attempt to write to a pipe that is 
already full will cause the writer to be suspended. Similarly, reading from an 
empty pipe will suspend the reader, In effect, a pipe has two pointers, the current 
position (used by readers) and the size (used by writers), to determine where data 
come from or go to. 

The various checks to see if an operation on a pipe is possible are carried out 
by pipe-check (line 24385). In addition to the above tests, which may lead to the 
caller being suspended, pipe-check calls release to see if a process previously 
suspend& due to no daia or too much data can now be revived. These revivals 
are done on line 24413 and line 24452, for sleeping writers and readers, respec- 
tively. Writing on a broken pipe (no readers) is also detected here. 

The act of suspending a process is done by suspend (line 24463). All it does 
is save the parameters of the call in the process table' and set the flag don?-reply 
to TRUE, to inhibit the file system's reply message. 

The procedure release (line 24490) is called to check if a process that was 
suspended on a pipe can now be allowed to continue. If it finds one, it calls revive 
to set a flag so that the main loop will notice it later. This function is not a system 
call, but is listed in Fig. 5-27(c) because it uses the message passing mechanism. 
- The last procedure in pipe.c is do-ranpause (line 24560). When the memory 
manager is trying to signal a process, it must find out if that process is hanging on 
a pipe or special file (in which case it must be awakened with an EINTR error). 
Since the memory manager knows nothing about pipes or special files, it sends a 
message to the file system to ask. That message is processed by do-unpause, 
which revives the process, if it is blocked. Like revive, do-unpause has some 
similarity to a system call, although it is not one. 

5.7.5 Directories and Paths 

We have now finished looking at how files are read and written. Our next 
task is to see how path names and directories are handled. 

Converting a Path to an I-node 

Many system calls (e.g., OPEN, UNLINK, and MOUNT) have path names (i.e., 
file names) as a parameter. Most of these calls must fetch the i-node for the 
named file before they can start working on the call itself. How a path name is 
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converted to an i-node is a subject we will now look at in detail. We already saw 
the general outline in Fig. 5- 14. 

The parsing of path names is done in the file path.c. The first procedure, 
eat-path (line 24727), accepts a pointer to a path name, parses it, arranges for its 
i-node to be loaded into memory, and returns a pointer to the i-node. It does its 
work by calling lust-dir to get the i-node to the final directory and then calling 
advance to get the final component of the path. If the search fails, for example, 
because one of the directories along the path does not exist, or exists but is pro- 
tected against being searched, NIL-INODE is returned instead of a pointer to the 
i-node. 

Path names may be absolute or relative and may have arbitrarily many com- 
ponents, separated by slashes. These issues are dealt with by last-dir (line 
24754). It begins (line 2477 1 )  by examining the first character of the path name 
to see if it is an absolute path or a relative one. For absolute paths, rip is set to 
point to the root i-node; for relative ones, it is set to paint to the i-node for the cur- 
rent working directory. 

At this point, lust-dir has the path name and a pointer to the i-node of the di- 
rectory to look up the first component in. It enters a loop on line 24782 now, 
parsing the path name, component by component. When it gets to the end, it re- 
turns a pointer to the final directory. 

Get-name (line 2481 3) is a utility procedure that extracts components from 
strings. More interesting is advance (line 24855), which takes as parameters a di- 
rectory pointer and a string, and looks up the string in the directory. If it finds the 
string, advance returns a pointer to its i-node. The details of transferring across 
mounted file systems are handled here. 

Although advance controls the string lookup, the actual comparison of the 
string against the directory entries is done in search-dir (line 249361, which is the 
only place in the file system where directory files are actually examined. It con- 
tains two nested loops, one to loop over the blocks in a directory, and one to loop 
over the entries in a block. Search-dir is also used to enter and delete names 
from directories. Figure 5-42 shows the relationships between some of the major 
procedures used in looking up path names. 

Mounting File Systems 

Two system calls that affect the file system as a whole are MOUNT and 
UMOUNT. They allow independent file systems on different minor devices to be 
"glued" together to form a single, seamless naming tree. Mounting, as we saw in 
Fig. 5-32, is effectively achieved by reading in the root i-node and super-block of 
the file system to be mounted and setting two pointers in its super-block. One of 
lhem points to the i-node mounted on, and the other points to the root i-node of 
the mounted file system. These pointers hook the file systems together, 
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Look up Find block Return block 
disk address in cache to cache 

Figure 5-42. Some of the procedures used in looking up path names. 

The setting of these pointers is done in the file mount.c by do-mount on lines 
2523 1 and 25232. The IWO pages of code that precede setting the pointers are 
almost entirely concerned with checking for all the errors that can occur while 
mounting a file system, among them: 

1. The special file given is not a block device. 

2. The special file is a block device but is already mounted. 

3. The file system to be mounted bas a rotten magic number. 

4. The file system to be mounted is invalid (e.g., no i-nodes). 

5. The file to be mounted on does not exist or is a special file. 

6. There is no room for the mounted file system's bit maps. 

7. There is no room for the mounted file system's super-block. 

8. There is no room for the mounted file system's root i-node. 

Perhaps it seems inappropriate to keep harping on this point, but the reality of any 
practical operating system is that a substantial fraction of the code is devoted to 
doing minor chores that are not intellectually very exciting but are crucial to mak- 
ing a system usable. If a user attempts to mount the wrong floppy disk by acci- 
dent, say, once a month, and this leads to a crash and a corrupted file system, the 
user will perceive the system as being unreliable and blame the designer, not him- 
self. 

Thomas Edison once made a remark that is relevant here. He said that 
"genius" is 1 percent inspiration and 99 percent perspiration. The difference be- 
tween a good system and a mediocre one is not the brilliance of the former's 
scheduling algorithm, but its attention to getting all the details right. 
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Unmounting a file system is easier than mounting one-there are fewer things 
that can go wrong. Do-umount (line 25241) handles- this. The only real issue is 
making sure that no process has any.open files ar working directories on the file 
system to be removed. This check is straightforward: just scan the whole i-node 
table to see if any i-nodes in memory belong to the file system to be removed 

- , (other than the root i-node). If so, the UMOUNT call fails. 
The last procedure in rn0unt.c is name-to-dev ( h e  25299), which takes a 

. special file pathname, gets its i-node, and extracts its major and minor device 
numbers. These are stored in the i-node itself, in the piace where the first zone 
would normally go. This slot is available because special files do not have zones. 

Linking and Unlinking Files 

The next file to consider is link.c, which deals with linking and unlinking 
files, The procedure do-link (line 25434) is very much like do-mount in that 
nearly all of the code is concerned with error checking. Some of the possible 
errors that can occur in the call 

are listed below: 

1 .  File-name does not exist or cannot be accessed. 

2. File-name already has the maximum number of links. 

3 .  File-name is a directory (only super-user can link to it). 

4. Link-name already exists. - 

5 .  File-name and link-name are on different devices. 

If no errors are present, a new directory entry is made with the string link-name 
and the i-node number of fife-name. In the code, name1 corresponds to 
file-name and name2 corresponds to link-name. The actual entry is made by 
search-dir, called from do-link on line 25485. 

Files and directories are removed by unlinking them. The work of both the 
UNLINK and RMDIR system calls is done by do-unlink ( h e  25504). Again, a 
variety of checks must be made; testing that a file exists and that a directory is not 
a mount point are done by the common code in do-unlink, and then either 
remove-dir or unlink-file is called, depending upon the system call being sup- 
ported. We will discuss these shortly. 

The other system call supported in 1ink.c is RENAME. UNlX users are familiar 
with the m v  shell command which ultimately uses this call; its name reflects 
another aspect of the caI1. Not only can it change the name of a file within a di- 
rectory, it can also effectively move the file from one directory to another, and it 
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can do this atomically, which prevents certain race conditions. The work is done 
by do-rename (line 25563). There are many conditions that must be tested before 
this command can be completed, among which are: 

1. The original file must exist (line 25578). 

2. The old pathname must not be a directory above the new pathname 
in the directory tree (lines 25596 to 25613). 

3-  Neither . nor .. is acceptable as an old or new name (lines 2561 8 
and 2561 9). 

4. Both parent directories must be on the same device (line 25622). 

5. Both parent directories must be writable, searchable, and on a writ- 
able device (lines 25625 and 25626). 

6. Neither the old nor the new name may be a directory with a file sys- 
tem mounted upon it. 

There are some other conditions that must be checked if the new name .already 
exists, most importantly it must be possible to remove the existing file with the 
new name. 

In the code for &-rename there are a few examples of design decisions that 
were taken 4 0  minimizedthe possibility of certain problems. Renaming a file to a 
name that already exists could fail on a full disk, even though in the end no addi- 
tional space is used, if the old file were not removed first, and this is what is done 
at lines 25660 to 25666. The same logic is used at line 25680, removing the old 
file name before creating a new name in the same directory, to avoid the possibil- 
ity that the directory might need to acquire an additional block. However, if the 
.new file and the old file are to be in different directories, that concern is not 
relevant, and at line 25685 a new file name is created (in a different directory) be- 
fore the old one is removed, because from a system integrity standpoint a crash 
that left two filenames pointing to an i-node would be much less serious than a 
crash that left an i-node not pointed to by any directory entry. The probability of 
running out of space during a rename operation is low, and that of a system crash 
even lower, but in these cases it costs nothing more to be prepared for the worst 
case. 

The remaining functions in link.c support the ones that we have already dis- 
cussed. In addition, the first of them, truncate (line 25717), is called from several 
other pIaces in the file system. It steps through an i-node one zone at a time, free- 
ing all the zones it finds, as well as the indirect blocks. Remove -dir (line 2577f) 
carries out a number of additional tests to be sure the directory can be removed, 
and theri it in turn calls unlink-file (line 258 18). If no errors are fou~d ,  the direc- 
tory entry is cleared and the link count in the i-node is reduced by one. 
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5.7.6 Other System Calls 

The last group of system calls is a mixed bag of things involving status, direc- 
tories, protection, time, and other services. 

Changing Directories and File Status 

The file s1adir.c contains the code for four system calls: CHDIR, CHROOT, 
STAT, and FST.4T. In studying last-dir we saw how path searches start out by 
looking at the first character of the path, to see if it is a slash or not. Depending 
on the result, a pointer is then set to the working directory or the root directory. 

Changing from one working directory (or root directory) to another is just a 
matter of changing these two pointers within the caller's table. These 
changes are made by do-chdir (line 25924) and do-chroor (line 25963). Both of 
them do the  necessary checking and then call change (line 25978) to open the new 
directory and replace the old one. 

In do-chdir the code on lines 25935 to 25951 is not executed on CHDIR calls 
made by user processes. It is specifically for calls made by the memory manager, 
to change to a user's directory for the purpose of handling EXEC calls. When a 
user tries to execute a file, say, a.out in his working directory, it is easier for the 
memory manager to change to that directory than to try to figure out where it is. 

The remaining two system calls handled in this file, STAT and FSTAT, are basi- 
cally the same, except for how the file is specified. The former gives a path 
name, whereas the latter provides the file descriptor of an open file. The top-level 
procedures, do-sfat (line 26014) and do-fstat (line 26035)- both call stat-inode 
to do the work. Before calling stat-inode, do-stat opens the file to get its i-node. 
In this way, both do-stat and do-fstat pass an i-node pointer to stat-inode. 

All stat-inode (line 26051) does is to extract information from the i-node and 
copy it into a buffer. The buffer must be explicitly copied to user space by calling 
sys-copy on line 26088 because it is too large to fit in a message. 

Protection 

The MINIX protection mechanism uses the w x  bits. Three sets of bits are 
present for each file: for the owner, for his group, and for others. The bits are set 
by the CHMOD system call, which is carried out by do-chmod, in file pr0tecf.c 
(line 26124). After making a series of validity checks, the mode is changed on 
line 26150. 

The CHOWN system call is similar to CHMOD in that both of them change an 
internal i-node field in some file, The implementation is also similar although 
do-chown (line 261 63) can be used to change the owner only by the super-user. 
Ordinary users can use this call to change the group of their own files. 
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The UMASK system call dlows the user to set a mask (stored in the process 
table), which then masks out bits in subsequent CREAT system calls. The com- 
plete implementation would be only one statement, line 26209, except that the call 
must return the old mask value as its result. This additional burden triples the 
number of lines of code required (lines 26208 to 26210). 

The ACCESS system call makes it possible for a process to find out if it can ac- 
cess a file in a specified way (e.g., for reading). It is implemented by do-access 
(line 26217), which fetches the file's i-node and calls the internal procedure, for- 
bidden (line 262421, to see if the access is forbidden. Forbidden checks the uid . 

and gid, as well as the information in the i-node. Depending on what it finds, it 
selects one of the three TWX groups and checks to see if the access is permitted or 
forbidden. 

Read-only (line 26304) is a little internal procedure that tells whether the file 
system on which its i-node parameter is located is mounted read only or read- 
write. It is needed to prevent writes on file systems mounted read only. 

Time 

MINIX has several system calls that involve time: UTIME, TIME, STIME, and 
TIMES. They are summarized in Fig. 5-43. Although most of them do not have 
anything to do with files, it makes sense to include them in the file system 
because time information is recorded in a file's i-node. 

F i r e  5-43. The four system calls involving time. 

Call 

UTlME 

TIME 

STlME 

TIMES 

Associated with each file are three 32-bit numbers. Two of these record the 
times when the file was last accessed and last modified. The third records when 
the status of the i-node itself was last changed, This time will change for almost 
every access to a file except a READ or EXEC. These times are kept in the i-node. 
With the UTiME system call, the access and modification times can be set by the 
owner of the file or the super-user. The procedure do-utime (line 26422) in file 
time.c performs the system call by fetching the i-node and storing the time in it. 
At line 26450 the flags that indicate a time update is required are reset, so the sys- 
tem will not make an expensive and redundant call to clock-time. 

The real time is not maintained by the file system. It is maintained by the 
clock task within the kernel. Consequently, the only way to get or set the real 

Function 

Set a file's time af last modification 

Set the current real time in seconds 

Set the real time clock 

Get the process accounting times 
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time is to send a message to the clock task. This is, in fact, what do-time and 
do-stime both do. The real time is in seconds, since Jan 1 ,  1970. 

The accounting information is also maintained by the kernel. At each clock 
tick it charges one tick to some process. This information can be retrieved by 
sending a message to the system task, which is what do-tims (line 26492) does. 
The procedure is not named do-times because most C compilers add an under- 
score to the front of all external symbols, and most linkers truncate symbols to 
eight characters, which would make do-time indistinguishable from do-times. 

Leftovers 

The file misc.c contains procedures for a few system calls that do not fil in 
anywhere else. The DUP system call duplicates a file descriptor. In other words, 
it creates a new file descriptor that points to the same file as its argument. The 
call has a variant DUP2. Both versions of the caIl are handled by do-dup (line 
26632). This function is included in MINIX to'support old binary programs. Both 
of these calls are obsolete. The current version of the MINIX C library will invoke 
the FCNTL system call when either of these are encountered in a source file. 

I operation I Meaning 

I F-DUPFD I Duplicate a file descriptor 

I F-GETFD I Get the close-on-exec flag 

F-SETFD I Set the close-on-exec flag 

EKW I Set write lock on a file 

F-GETFL 

' F-SETFL 

F-GETLK 

F-SETLK 

Figure 5-44. The POSIX request parameters for the FCNTZ system call. 

Get file status flags 

Set file status flags 

Get lock status of a file 

- Set readfwrite lock on a file 

FCNTL, handled by do-fcrztl (line 26670) is the preferred way to request oper- 
ations on an open file. Services are requested using POSIX-defined flags 
described in Fig. 5-44. The call is invoked with a file descriptor, a request code, 
and additional arguments as necessary.for the particular request. For instance, the 
equivalent of the old call 

would be 

fcntl(fd, FA DUPFD, fd2); 

Several of these requests set or read a flag; the code consists of just a few lines. 
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For instance, the F-SETFD request sets a bit that forces closing of a-file when its 
owner process does an EXEC. The F-GETFD request is used to determine wheth- 
er a file must be closed when an EXEC call is made. The F-SETFL and 
F-GETFL requests permit setting flags to indicate a particular file is available in 
nonblocking mode or for append operations. 

Do-fcntl handles file larking, also. A call with the F-GETLK, F-SETLK, or 
F-SETLKW command specified is translated into a call to lock-up, discussed in 
an earlier section. 

The next system call ~S .SYNC,  which copies all blocks and i-nodes that have 
been modified since being loaded back to the disk. The call is processed by 
do-sync (line 26730). lt simply searches through all the tables looking for dirty 
entries. Thq i-nodes must be processed first, since rw-inode leaves its results in 
the block cache. After all dirty i-nodes are written to the block cache, then all 
dirty blocks are written to the disk. 

The system calls FORK, EXEC, EXIT, and SET are redly memory manager calls, 
but the results have to be posted here as well. When a process forks, it is essential 
that the kernel, memory manager, and file system all know about it. These "sys- 
tem calls" do not come from user processes, but from the memory manager. 
Do-fork, do-exit, and do-set record the relevant information in the file system's 
part of the process table. Do-exec searches for and closes (using do-ciose) any 
files marked to be closed-on-exec. 

The last function in this file is not really a system call but is handled like one. 
This is do-revive--921). It is called when a task that was previously 
unable to complete work that the file system had requested, such as providing 
input data for a user process, has now completed the work. The file system then 
revives the process and sends it the reply message. 

5.7.7 The V 0  Device Interface 

I/0 in MINIX is done by sending messages to the tasks within the kernel. The 
file system's interface with these tasks is contained in the file devicex. When 
actual device YO is needed, dev-io (line 27033) is called from read-write to 
handle character special files, and from nu_bl&k for block special files. It builds 
a standard message (see Fig. 3-15) and sends it to the specified task. Tasks are 
called by the line 

(line 27056). This calls functions via pointers in the dmap array defined in 
tab1e.c. The functions that take care of this are all here in  device-c. While dev-io 
is waiting for a reply from, the task, the file system waits. It has no internal 
multiprogramming. Usually, these waits are quite short though (e.g., 50 msec). 

Special files may need special processing when they. are opened or closed. 
Exactly what must be done depends upon the type of device. The dmup table is 
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also used to determine which functions are called for opening and closing each 
type of major device. The procedure dsv-opcl (line 27071) is called for disk de- 
vices, whether floppy disks, hard disks, or memory-based devices. The line 

mess-ptr->PROC-NR = fp - fproc; 

(line 27081) calculates the process number of the caller. The actual work is done 
by passing the task number and a pointer to the message to call-task, to be dis- 
cussed below. Dev-opcl is also used to close the same devices. In fact, the only 
difference in the open and close functions at the level of this function is in what 
happens after the return from call-task. 

Other functions called via the dmap struct include tty-open and tty-close, 
which service the serial lines, and ctty-open and ctty-close which service the 
console. The last of these, ctty-close, is almost a dummy routine, as all it does is 
to return status OK unconditionally. 

The SETSID system call requires some work by the file system, and this is per- 
formed by do-setsid ((line 27 164). One system call, IOCTL, is handled primarily 
in devicex. This call has been put here because it is closely tied to the task inter- 
face. When an IOCTL is done, do-ioctl is called to build a message and send it to 
the proper task. 

To control terminal devices one of the functions declared in include/termios.h 
should be used in programs written to be POSIX compliant. The C library will 
translate such functions into [OCTIXZlK For devices other than terminah IWTL 
is used for many operations, many of which were described in Chap. 3. 

The next function is the only PRIVATE function in this file. This is find-dev 
(line 27228), a little helper procedure that extracts the major and minor device 
numbers from a full device number. 

The actual reading and writing of most devices goes through call-task (line 
27245), which directs a message to the appropriate task in the kernel image, by 
calling sendrec. The attempt may fail if the task is trying to revive a process in 
response to an earlier request. It will likely be a different process from the one on 
behalf of which the current request is being made. Cal1,task will display a mes- 
sage on the console if an inappropriate message is received. These messages 
hopefully will not be seen during normal operation of MINIX but could appear dur- 
ing attempts to develop a new device driver. 

The device /bev/rty does not physically exist. It is a fiction to which any user 
on a multiuser system can refer, without a need to determine which of all possible 
real terminals is in  use. When a message that refers to /dev/tiy must be sent, the 
next function, call-crq (line 2731 I ) ,  finds the correct major and minor device and 
substitutes them into the message before passing the message on via call-task. 

Finally, the last function in the file is no-dev (line 27337), which is called 
from slots in the table for which a device does not exist, for example when a net- 
work device is i-efereoced on a machine with no network support. It returns an 
ENODEV status. It prevents crashes when nonexistent devices are accessed. 



SEC. 5.7 IMPLEMENTATION OF THE MINIX FILE SYSTEM 503 

5.7.8 General Utilities 

The file system contains a few general purpose utility procedures that are used 
in various places. They are collected together in the file ut i l i t y .~ .  

The first procedure is clock-time (line 27428). It sends messages to the clock 
task to find out what the current real time is. The next procedure, fetch-name 
(line 27447), is needed because many system calls have a file name as parameter. 
If the file name is short, it is included in the message from the user to the file sys- 
tem. If it is long, a pointer to the name in user space is put in the message. 
Fetch-name checks for both cases, and either way, gets the name. 

Two functions here handle general classes of errors. No-sys is the error 
handler that is called when the file system receives a system call that is not one of 
its calls. Panic prints a message and tells the kernel to throw in the towel when 
soniething catastrophic happens. 

The last two functions, conv2 and conv4, exist to help MINIX deal with the 
problem of'bifferent byte orders on Intel and Motorola processors. These routines 
are called when reading from or writing to a disk data structure, such as an i-node 
or bit map. The byte order in the system that created the disk is recorded in the 
super-block. If it is different from the order used by the local processor the order 
will be swapped. The rest of the file system does not need to know anything 
about the byte order on the disk. 

The last file is putk.c, It contains two procedures, both of which have to do 
with printing messages. The standard library procedures cannot be used, because 
they send messages to the file system. These procedures send messages directly 
to the terminal task. We saw an almost identical pair of functions in the memory 
manager's version of this file. 

5.8 SUMMARY 

When seen from the outside, a file system is a collection of files and direc- 
tories, plus operations on them. Files can be read and written, directories can be 
created and destroyed, and files can be moved from directory to directory. Most 
modern file systems support a hierarchical directory system, in which directories 
may have subdirectories ad infiniturn. 

When seen from the inside, a file system looks quite different. The file sys- 
tem designers have to be concerned with how storage is allocated, and how the 
system keeps track of which block goes with which file. We have also seen how 
different systems have 'different directory structures. File system reliability and 
performance are also important issues. 

Security and protection are of vital concern to both the system users and 
designers, We discussed some security flaws in older systems, and generic prob- 
lems that many systems have. We also looked at authentication, with and without 
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passwords, access control lists, and capabilities. as well as a matrix model for 
thinking about protection. 

Finally, we studied the MINIX file system in detail. It is  large but not very 
complicated. It accepts requests for work from user processes, indexes into a 
table of  procedure pointers, and calls that procedure to cany out the requested 
system call. Due to its modular structure and position outside the kernel, it can be 
removed from MINIX and used as a free-standing network file server with only 
minor modifications. 

Internally, the MINIX buffers data in a block cache and attempts to read ahead 
when making sequential access to file. If the cache is made large enough, most 
program text will be found to  be already in memory during operations that repeat- 
edly a c c q s  a particular set of programs, such a s  a compilation. 

PROBLEMS 

I. Give 5 different path names for the file /etcipasswd. (Hint: think about the directory 
entries "." and "..".) 

2. Systems that support sequential files always have an operation to rewind files. Do 
systems that support random access files need this too? 

3. Some operating systems provide a system call RENAME to give a file a new name. Is 
here any differencx at all between using chis call to rename a file, and just copying the 
file to a new file with the new name, followed by deleting the old one? 

4. Consider the directory tree of Fig. 5-7. If /usr/jim is the working directory, what is the 
absolute path name for the file whose relative path name is ../as&!!? 

5. Contiguous allocation of files leads to disk fragmentation, as mentioned in the text, Is 
this internal fragmentation or external fragmentation? Make an analogy with some- 
thing discussed in the previous chapter. 

6. An operating system only supports a single directory but allows that directory to have 
arbitrarily many files with arbitrarily long file names. Can something approximating a 
hierarchical file system be simulated? How? 

7. Free disk space can be kept track of using a free list or a bit map. Disk addresses 
require D bits. ' F O ~  a disk with B blocks, F of which are free, state the condition under 
which the free list uses less space than the bit map. For D having the value 16 bits, 
express your answer as a percentage of the disk space that must be free. 

8. It has been suggested that the first part of each UNIX file- be kept in the same disk 
block as its i-node, What good would this do? 

9. The performance of a file system depends upon the cache hit rate (fraction of blocks 
found in the cache). If it takes 1 msec to satisfy a request from the cache, but 40 msec 
to satisfy a request if a disk read is needed, give a formula for the mean time required 
to satisfy a request if the hit rate is h. Plot this function for values of h from 0 to 1 .O. 
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10. A floppy disk has 40 cylinders. A seek takes 6 msec per cylinder moved. If no 
attempt is made to put the blocks of a file close to each other, two blocks that are logi- 
cally consecutive (i.e., follow one another in the file) will be about I3 cylinders apart, 
on the average. If, however, the operating system makes an attempt to cluster related 
blocks, the mean interblock distance can be reduced to 2 cylinders (for example). 
How long does it take to read a 100 block file in both cases, if the rotational latency is 
100 rnsec and the transfer time is 25 msec per block? 

11. Would compacting disk storage periodically be of any conceivable value? Explain. 

12. How could TENEX be modified to avoid the password problem described in the text? 

13. After getting your degree, you apply for a job as director of a large university com- 
puter center that has just put its ancient operating system out to pasture and switched 
over to UNIX. You get the job. Fifteen minutes after starting work, your assistant 
bursts into your office screaming: "Some students have discovered the algorithm we 
use for encrypting passwords and posted it on the bulletin board." What should you 
do? 

14. The Morris-Thompson protection scheme with the n-bit random numbers was 
designed to make it difficult for an intruder to discover a large number of passwords 
by encrypting common strings in advance. Does the scheme also offer protection 
against a student user who is trying to guess the super-user password on his machine? 

15. A computer science department has a large collection of UNIX machines on its iocal 
network. Users on any machine can issue a command of the form 

machine4 who 

and have it executed on machine#, without having the user log in on the remote 
machine. This feature is implemented by having the user's kernel send the command 
and his uid to the remote machine. Is this scheme secure if the kernels are all 
trustworthy (e.g,, large timeshared minicomputers with protection hardware)? What if 
some of the machines are students' personal computers, with no protection hardware? 

When a file is removed, its blocks are generally put back on the free list, but they are 
not erased. Do you think it would be a good idea to have the operating system erase 
each block before releasing it? Consider both security and performance factors in 
your answer, and explain the effect of each. 

Three different protection mechanisms that we have discussed are capabilities, access 
control lists, and the UNIX w bits. For each of the following protection problems, 
tell which of  these mechanisms can be used. 

(a) Ken wants his files readable by everyone except his office mate. 
(b) Mitch and Steve want to share some secret files. 
(c) Linda wants some of her files to be public. 

For UNIX, assume that groups are categories such as faculty, students, secretaries, etc. 

Consider the following protection mechanism. Each object and each process is 
assigned a number. A process can only access an object if the object has a higher 
number than the process. Which of the schemes discussed in the text does this resem- 
ble? In what essential way does it differ from the scheme in the text? 
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19. Can the Trojan horse attack work in a system protected by capabilities? 

20. Two computer science students, Carolyn and Elinor, are having a discussion about i- 
nodes. Carolyn maintains that memories have gotten so large and so cheap that when 
a file is opened, it is simpler and faster just to fetch a new copy of the i-node into the 
i-node table, rather than search the entire table to see if it is already there. Elinor 
disagrees. Who is right? 

21. What is the difference between a virus and a worm? How do they each reproduce? 

22. Symbolic links are files that point to other files or directories indirectly. Unlike ordi- 
nary links such as those currently implemented in MINIX, a symbolic link has its own 
i-node, which points to a data block. The data block contains the path to the file being 
linked to, and the i-node makes it possible for the link to have different ownership and 
permissions from the file linked to. A symbolic link and the file or directory to which 
it points can be located on different devices. Symbolic links are not part of the 1990 
POSIX standard, but it is expected they will be added toPos1x in the future. Implement 
symbolic links for MINIX. 

23. You find that the 64 MByte file size limit in M I N X  is not enough for your needs. 
Extend the file system to use the unused space in the i-node for a triple-indirect block. 

24, Show if setting ROBUST makes the file system more or less robust in the face of a 
crash. Whether this is the case in the current version of MINIX has not been 
researched, so it  may be either way. Take a good look at what happens when a modi- 
fied block is evicted from the cache. Take into account that a modified data block 
may be accompanied by a modified i-node and bit map. 

25. The size of thefilp table is currentiy defined as a constant, NR-FILPS, in fs/const.h. 
In order to accomodate, more users on a networked system you want to increase 
NRJROCS in include/minidconfig.h. How should NRYILPS be defined as a func- 
tion of NRPROCS? 

26. Design a mechanism to add support for a "foreign" file system, so that one could, for 
instance, mount an MS-DOS file system on a directory in the MINIX file system. 

27. Suppose that a technological breakthrough occurs, and that nonvolatile RAM, that 
retains its contents reliably following a power failure, becomes available with no price 
or performance disadvantage over conventional RAM. What aspects of file system 
design would be affected by this development? 



READING LIST AND BIBLIOGRAPHY 

In the previous five chapters we have touched upon a variety of topics. This 
chapter is intended as an aid to readers interested in pursuing their study of 
operating systems further. Section 6.1 is a list of suggested readings. Section 6.2 
is an alphabetical bibliography of all books and articles cited in this book. 

In addition to the references given below, the Proceedings of the n-th ACM 
Symposium on Operating Systems Principles (ACM) held every other year and the 
Proceedings of the n-th htemt ional  Conference on Distributed Computing Sys- 
tems (IEEE) held every year are good places to look for recent papers on operat- 
ing systems. So is the USENIX Symposium on Operating Systems Design and Im- 
plementation. Furthermore, ACM Transactions on Computer Systems and Op- 
erating Systems Review are two journals that often have relevant articles. 

. 6.1 SUGGESTIONS FOR FURTHER READING 

6.1 .I Intraduction and General Works 

Brooks, The Mythical Man-Month: Essays on Sofhvare Engineering 
A witty, amusing, and informative book on how not to write an operating sys- 

tem by someone who learned the hard way. Full of good advice. 
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Comer, Oprmtitlg Sysrem Design. The Xirlu Approach 
A book about the Xinu operating system, which runs on the LSI- 11 computer. 

I t  contains a detailed exposition of the source code, including a complete listing in 

Corbat6, "On Building Systems That Will Fail" 
In his Turing Award lecture, the father of timesharing addresses many of the 

same concerns that Brooks does in the Mythical Man-Month. His conclusion is 
that all complex systems will ultimately fail, and that to have any chance for suc- 
cess at all, it is absolutely essential to avoid complexity and strive for simplicity 
and elegance in design. 

Deitel, Operating Systems, 2nd Ed. 
A general textbook on operating systems. In addition to the standard material, 

i t  contains case studies of UNIX, MS-DOS, MVS, VM, OS/2, and the Macintosh 
operating system. 

Finkel, Atz Operuting Svsrems Vade Mecum 
Another general text on operating systems. It is practically oriented and well 

written and covers many of the topics treated in this book, making it a good place 
to look for a different perspective on the same subject. 

IEEE, Informcrtion Technology-Portable Operating System Interjkce (POSIX), 
Part 1: System Application Program Inter$ace (API) [C Language] 

This is the standard. Some parts are actually quite readable, especially Annex 
B, "Rationale and Notes," which often sheds light on why things are done as they 
are. One advantage of referring to the standard document is that, by definition, 
there are no errors. If a typographical error in a macro name makes it through the 
editing process it is no longer an error, it is official. 

Lampson, "Hints for Computer System Design" 
0utler Lampson, one of the world's leading designers of innovative operating 

systems, has collected many hints, suggestions, and guidelines from his years of 
experience and put them together in this entertaining and informative article. 
Like Brooks' book, this i s  required reading for every aspiring operating system . 

designer. 

Le wine, POSiX Progranrrner 's Guide 
This book describes the POSIX standard in a much more readable way than the 

standards document itsill, and includes discussions on how to convert older pro- 
grilms to P O S I X  and how to develop new programs for the Posrx environment. 
There are numerous examples of code, including several complete programs. All 
POSIX-required library functions and header files are described. 
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Silberschatz and Galvin, Operating System Concepts, 4th Ed. 
Another textbook on operating systems. It covers processes, storage manage- 

ment, files, and distributed systems. Two case studies are given: UNIX and Mach. 
The cover is full of dinosaurs. What, if anything, this has to do with operating 
systems in the 1990s is unclear. 

Stallings, Operating Systems, 2nd Ed. 
Still another textbook on operating systems. It covers all the usual topics, and 

also includes a small amount of material on distributed systems, plus an appendix 
on queueing theory. 

Stevens, Advanced Programming in the UNIX Environment 
This book tells how to write C programs that use the UNIX system call inter- 

face and the standard C library. Examples are based on the System V Release 4 
and the 4.4BSD versions of u ~ x .  The relationship of these implementations to 
 SIX is described in detail. 

Sw itzer, Operating Systems, A Practical Approach, 
An approach similar to this text. Theoretical concepts are illustrated with 

pseudocode examples and a 1&ge part of the C source code for TUNIX, a model 
operating system. Unlike MINIX, TUNIX is not meant to run on a real machine, it 
runs on a virtual machine. It is not as realistic as MINIX in its treatment of device 
drivers, but it does go further than MINIX in other directions, such as implementa- 
tion of virtual memory. 

6.1.2 Processes 
. . 

Andrews and Schneider, "Concepts and Notations for Concurrent Programming" 
A tutorial and survey of processes and interprocess communication, including 

busy waiting, semaphores, monitors, message passing, and other techniques. The 
article illso shows how these concepts are embedded in various programming 
languages. 

Ben-Ari, Principles of Concurrent Programming 
This little book is entirely devoted to the problems of interprocess communi- 

cation. There are chapters on mutual exclusion, semaphores, monitors, and the 
dining philosophers problem, among others. 

Dubois et al., "Synchronization, Coherence, and Event Ordering in Multiproces- 
sors" 

A tutorial on synchronization in shared-memory multiprocessor systems. 
However, some of the ideas are equally applicable to single processor and distri- 
buted memo-v systems as well. 
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Silberschatz and Galvin, Operating System Concepts, 4th Ed. 
Chapters 4 through 6 cover processes and interprocess communication, in- 

cluding scheduling, critical sections, semaphores, monitors, and classical interpro- 
, cess communication problems. 

Chen et ai,, "RAID: High Performance Reliable Secondary Storage" 
The use of multiple disk drives in parallel for fast UO is a trend in high end 

systems. The authors discuss this idea and examine different organizations in 
terms of performance, cost, and reliability. 

Coffman et ai., "System Deadlocks" 
A short introduction to deadlocks, what causes them, and how they can be 

prevented or detected. 

Finkel, An Operating Systems Vade Mecum. 2nd Ed. 
Chapter 5 discusses I/0 hardware and device drivers, particularly for termi- 

nals and disks. 

Geist and Daniel, "A Continuum of Disk Scheduling Algorithms" 
A generalized disk arrn scheduling algorithm is presented. Extensive simula- 

tion and experimental results are given. 

HoIt, "Some Deadlock Properties of Computer Systems" 
A discussion of deadlocks. Holt introduces a directed graph model that can 

be used to analyze some deadlock situations. 

IEEE Computer Magazine, March 1994 
This issue of Computer contains eight articles on advanced V0, and covers 

simulation, high performance storage, caching, I/O for parallel computers, and 
multimedia. 

Isloor and Marsland, "The Deadlock Problem: An Overview" 
A tutorial on deadlocks, with special emphasis on data base systems. A 

variety of models and algorithms are covered. 

Stevens, "Heuristics for Disk Drive Positioning in 4.3BSD" 
A detailed study of disk performance in Berkeley UNIX. As is often the case 

with computer systems, reality is more complicated than the theory predicts. 

Wilkes et al., "The HP AutoRAID Hierarchical Storage System" 
An important new development in high-performance disk systems is RAID 
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(Redundant Array of Inexpensive Disks), in which an array of small disks work 
together to produce a high-bandwidth system. In this paper, the authors describe 
in some detail the system they built at HP Labs. 

6.1.4 Memory Management 

Denning, "Virtual Memory" 
A classic paper on many aspects of virtual memory. Denning was one of the 

pioneers in this field, and was the inventor of the working set concept. 

Denning, "Working Sets Past and Present" 
A good overview of numerous memory management and paging algorithms. 

A comprehensive bibliography is included. 

Knuth, The Art of Computer Programming Vol. 1 
First fit, best fit, and other memory management algorithms are discussed and 

compared in this book. 

Silberschatz and Galvin, Operating System Concepts, 4th Ed. 
Chapters 8 and 9 deal with memory management, including swapping, paging, 

and segmentation. A variety of paging algorithms are mentioned. 

6.1.5 File Systems 

Denning, "The United States vs. Craig Neidorf" 
When a young hacker discovered and published information about how the 

telephone system works, he was indicted for computer fraud. This article de- 
scribes the case, which involved many fundamental issues, including freedom of 
speech. The article is followed by some dissenting views and a rebuttal by Den- 
ning. 

Hafner and Markoff, Cyberpunk 
Three compelling tales of young hackers breaking into computers around the 

world are told here by the New York Times computer reporter who broke the 
Iritemet worm stor$ and his journalist wife. 

Harbron, File Systems 
A book on file system design, applications, and performance. Both structure 

and algorithms are covered. 

McKusick et a]., "A Fast File System for UNIX" 
The UNIX file system was completely reimplemented for 4.2 BSD. This paper 

describes the design of the new file system, with emphasis on its performance. 
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Silberschatz and Galvin Operating System Concepts, 4th Ed. 
Chapters 10 and 11 are about file systems. They cover file operations, access 

methods, consistency semantics, directories, and protection, and implementation, 
among other topics. 

Stallings, Operating Systems, 2nd Ed. 
Chapter 14 contains a fair amount of material about the security environment 

especially about hackers, viruses and other threats. 
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THE MlNlX SOURCE CODE 





MINIX SOURCE CODE File: include1ansi.h 

+++++++++++++++++++++++++++++++++++++++++++++++++++*+++++++++++++++++++++++++++++++ 
i ncl  ude/ansi . h 

................................................................................... 

/* The <ansi.h> header attempts t o  decide whether the compiler has enough 
* conformance t o  Standard C f o r  Minix t o  take advantage o f .  I f  so, the 
* symbol ANSI i s  defined (as 31415). Otherwise A N S I  i s not defined 
* here, but i t  may be defined by appl icat ions tha t  want t o  bend the ru les.  

The magic number i n  the d e f i n i t i o n  i s  t o  i n h i b i t  unnecessary bending 
o f  the rules. (For consistency wi th the new 'Yi fdef  ANSI" tes ts  i n  

* the headers, ANSI  should r e a l l y  be defined as nothing, but tha t  would 
* break many l i b r a r y  routines tha t  use " # i f  ANSI".) 

I f  ANSI ends up being defined, a macro 

4 -PROTOTYPECfuncti on, params) 

* i s  defined. This macro expands i n  d i f f e r e n t  ways, generating e i tner  
ANSI Standard C prototypes or  o ld -s ty le  K&R (Kernighan dr Ritchie) 

* prototypes, qs needed. F ina l l y ,  some programs use -CONST, -WIDSTAR etc  
* i n  such a way t h a t  they are portable over both ANSI and KdR compilers. 
* The appropriate macros are defined here. 
*/ 

# i f  ndef JWSI-H 
#define ANSI-H 

# i f  - S T L  5s 1 
#define ANSI 31459 /* compiler claims f u l l  ANSI confomance */ 
Xendi f 

# i  fde f  ,GNUC, 
#define ANSI 31459 /* gcc conforms enough even i n  non-ANSI mode */ 
Wendi f 

# i  fdef  ANSI  

/* Keep everything fo r  ANSI prototypes. */ 
Wdef i ne -PROTOTYPE(function, params) funct ion parans 
#def i ne ARCS (params) params 

Cdef i ne _VOIDSTAR void * 
#def i ne -VOID void 
Wdef i ne -CONST const 
#def i ne -VOLATILE v o l a t i l e  
#def i ne -SIZET s i  ze-t 

/* Throw away the parameters f o r  K&R prototypes. */ 
#define -PROTOTYPE(function , params) func t i on0  
f d e f i  ne ARGS(params) 0 

#def i ne -VOIDSTAR void * 
Cdef i ne -VOID void 
#def i ne -CONST 
#def i ne -VOLATILE 
Xdef i ne S I Z E T  i n t  



File: include/ansi. h MINIX SOURCE CODE 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-++++++++++++++++++++++++++ 
inc lude / l im i  t s .  h 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++++++++++++++ 

!* The i l i m i t s . h >  header def ines some bas ic  s izes,  both o f  the language t y p e s  
* (e.g. , the number o f  b i t s  i n  an in teger ) ,  and o f  the operat ing system (e.g. 
* the number o f  characters i n  a f i l e  name. 
* /  

f i f ndef -LPlITS_H 
#def ine -LIMITS-H 

/* De f i n i t i ons  about chars I 8  b i t s  i n  MINIX, and signed). */ 
Xdef i ne CHARBIT 8 /* # b i t s  i n  a char */ 
#def ine CHACMIN -128 /* minimum value o f  a char * /  
Xdef i ne CHAR-MAX 127 /* maximum value o f  a char */ 
Xdef i ne SCHARMIN -128 /* minimum value o f  a signed char */ 
ddef i ne SCHARBAX 127 /* maximum value o f  a signed char */ 
Pde f i ne UCHAR-MAX 255 / *  maximum value o f  an unsigned char */ 
Kdef i ne MB-L EN-MAX 1 / *  maximum leng th  o f  a mu1 t i b y t e  char */ 

/ *  D e f i n i t i o n s  about shor ts  (16 b i t s  i n  MINIX). */ 
#def ine SHRT-MIN (-32767-1) /* minimum value o f  a shor t  * /  
Adef i ne SHRT-MAX 32767 /* maximum value o f  a shor t  */ 
#def ine USHRT-MAX. DxFFFF /* maximum value o f  unsigoed shor t  "/ 

/ *  -EM-WSIZE i s  a compiler-generated symbol g i v i ng  the word s i ze  i n  bytes. */ 
#if -EM-WSIZE == 2 
#def ine INT-MIN (-32767-1) /* minimum value o f  a 16 -b i t  i n t  * /  
Rdef i  ne INT-MAX 32767 /* maximum value o f  a 16 -b i t  i n t  */ 
#def ine UINT-MAX OxFFFF /* maximum value of an unsigned 16-b 
#'endi f 

# i f  -EKw5IZE == 4 
#def ine INT-MIN (-2147483647-1) /* min~mum value o f  a 32-bi,t i n t  */ 
#def ine INT-MAX 2147483647 . /t maximum value o f  a 32-bi t i n t  * /  
#def ine UINS-MAX OxFFFFFFFF /* maximum value o f  an unsigned 32-b 
Rendi f 

/ *De f in i t i ons  about longs (32 b i t s  i n  MINIX). */ 
#define LONG-MIN (-2147483647L-I)/* minimum value o f  a long * /  
#def ine LONG-MAX 2147483647L / *  maximum value o f  a long * /  
#def ine ULONG-MAX OxFFFFFFFFL /* maximum value o f  an unsigned long 

/* Minimum s i z e s  required by the POSIX P1003.1 standard (Table 2-31. 
# i  f d e f  -POSILSOURCE / *  these are on l y  v i s i b l e  f o r  POSIX */ 
#def ine -POSIX-ARG-MAX 4096 /*  exec() may have 4K worth of args */ 
#def ine -POSIX-CHILD-MAX 6 /*  a process may have 6 ch i l d ren  '/ 
#def i ne -POSIX-LINK-MAX 8 / * a  f i l e m a y  have 8 l i n k s  */ 
#de f i ne  -POSIX-MAKCANON 255 /* s i ze  o f  the  canonical input queue  * /  
#def ine -POSIX-MAXINPUT 2 5 5  /*  you can type 2 5 5  chars ahead "/ 
#def ine -POSXLNAME-MAX 14 /*  a f i l e  name may have 14 chars * /  
#def ine -POSIX_NCROUPS-MAX 0 /' supplementary group IDS are op t iona l  * /  . 
#def ine -POSILOPEN_MAX 16 / *  a process may have 16 f i l e s  open "/ 

t i n t  */ 

t i n t  .'/ 

*/ 

*/ 
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#def ine -POSIK_PAM_MAX 2 5 5  /* a pathname may conta in  255 chars */ 
#def ine -POSI)CPIPE-BUF 512 /* pipes w r i t es  o f  512  bytes must be atomic */ 
#def ine -POSILSTREAM_MAX 8 ,  /+ a t  l e a s t  8 F I L E S  can be open a t  once */  
#def ine -POSILTZNAMEJMX 3 /* t ime zone names can be a t  l eas t  3 chars */ 
#def ine -POSILSSIZE-MAX 32767 /* read() must support 32767 by te  reads * / 

/*  Values ac tua l l y  implemented by M I N I X  (Tables 2-4, 2 -5 ,  2-6, and 2-7).  */ 
/* Some of these o l d  names had b e t t e r  be def ined when not POSIX.  */ 

t d e f  i ne NCROUPS-MAX 0 
# i f  JKWSIZE r 2 
#def ine ARC-MAX 16384 
#e l  se 
#def ine ARC-MAX 4096 
dendif  . 
lde f  i ne CHILD-MAX ,NO-LIMIT 
M e f  i ne O P E N M  20 
#def ine LINICMAX 1 2  7 
#def i ne W C A N O N  255 
#def i ne MAX-INPUT 255 
I d e f  i ne N A M E M  14 
l d e  f i ne PATH-MAX 255 
#define PIPE-BUF 7168 
Wdef i ne STREAMJAX 20 
rdef i ne TZNAMEM 3 
r d e f i  ne SSIZE-MAX 32 767 

rend i f  /* L I M I T S - H  */ 

/* a r b i t r a r y  number; l i m i t  not enforced */  

/ *  supplCmenta1 group IDS not ava i l ab l e  */ 

/ *  # bytes o f  args + env i ron f o r  exec() */ 

/*  args + envi ron on small machines */ 

/* MINIX does no t  l i m i t  c h i l d ren  */ 
,I* # open f i l e s  a process may have */ 
/* # l i n k s  a f i l e  may have */ 
/* s i ze  o f  the canonical i npu t  queue */ 
/* s i ze  af  the type-ahead buffer */ 
/* # chars i n  a f i l e  name */ 
/* # chars i n  a path name */ 
/* # bytes i n  atomic wri te t o  a p ipe  */ 
/ *  must be the same as F O P E N M  i n  s td i0 .h  */ 
/*  maximum bytes i n  a t ime zone tbme i s  3 * /  
/* max defined byte count for read0 */ 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
i n c l  ude/errno. h 

++++++++tt+++++++++++++++t+t++++++++++++++++t+++++t++++++++++++++++++++t++++++++++ 

/* The <errno.h> header def ines the numbers o f  the var ious e r ro rs  t h a t  can 
* occur dur ing prograin execution. T h e y  are v i s i b l e  t o  user programs and 
* should be small p o s i t i v e  in tegers.  However, tt.ey are also used w i t h i n  
* M I N I X ,  h e r e  they must be negat ive. For examp:e, the READ system c a l l  i s  

t* executed i n t e r n a l l y  by c a l l i n g  do-read(). This f unc t i on  re tu rns  e i ther a 
* (nega~ive)  e r r o r  number o r  a (pos i t i ve )  number o i  bytes ac tua l l y  read. 
* 
* T o  solve t h e  problem o f  having t h e  e r r o r  numbers be negat ive i ns i de  t h e  
* the system and pos i t i ve ,ou ts ide ,  the f o l l ow ing  mechanism i s  used. A l l  the 
* definit ions are are the form: 
* 
Q Xdef i ne EPERM (-SIGN 1) 
* 
* I f  t he  macro S Y S T E M  i s  def ined, then _SIGN i s  set t o  "-", otherwise i t  i s  
* set t o  "". Thus when compil ing the operat ing system, the macro S Y S T E M  
* w i l l  be d e f  i f l ed ,  s e t t i n g  EPERM t o  (- I), whereas when when t h i s  
* f i l e  i s  inc luded i n  an ord inary  user program, EPERM has the  value ( 1). 
*/ 

li f ndef -ERRNO-H / *  check i f  i e r r no .  hz i s  already inc luded */ 
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#def  i ne -ERRNO-H /* i t  i s  not  inc luded;  note t h a t  f a c t  */ 

/*  Now de f ine  S I G N  as "" or " - "  depending on S Y S T E M ,  */ 
X i  f def SYSTEM 
# de f ine  -SIGN - 
# def ineOK 0 
#e lse 
# def ine -SIGN 
#endi f 

extern i n t  errno; ' / *  place where t he  e r r o r  numbers go */ 

/ *  Here are the  numerical values of the e r r o r  numbers. * /  

#def i ne EGENERIC 
Xdef i ne EPERM 
#def  i ne ENOENT 
#def i ne ESRCH 
Xdef i ne EINTR 
#def ine EIO 
Ydefi ne ENXIO 
Ydef i ne EZBIG 
Ydef i ne ENOEXEC 
Ydefi ne EBADF ' 

#def ine ECHILD 
t de f i ne  EAGAIN 
t d e f  i ne ENOMEM 
Xdef i ne EACCES 
Xdef i ne EFAULT 
#def ine ENOTBLK 
Xdef i ne EBUSY 
ddef i ne EEXIST 
#de f i  ne EXDEV 
i d e f  i ne ENODEV 
Pdef i ne ENOTDIR 
#def ine EISDIR 
#de f i  ne EINVAL 
t d e f  i ne ENF ILE 
ddef i ne EMFILE 
#def ine ENOTTY 
#def ine ETXTBSY 
Rdef i ne EFBIG 
#def ine E N ~ S P C  
#def ine ESPIPE 
Rdef i ne EROFS 
fde f  i ne EMLINK 
ddef i ne EPIPE 
Udef i  ne EDOH 
l d e f  i ne ERANGE 
#de f i  ne EDEADLK 
#def i ne ENAMETOOLONG 
#def i ne ENOLCK 
#def ine ENOSYS 
#def i ne ENOTEMPTY 

70 

(-SIGN 99) 
(-SIGN 1) 
(-SIGN 2) 
(-SIGN 3) 
(-SIGN 4) 
(-SIGN 5) 
(-SIGN 6) 
(_SIGN 7) 
(-SIGN 8) 
(-SIGN 9) 
(-SIGN 10) 
(. SIC* 31) 
(-SIGN 12)  
(-SIGN 13) 
(-SIGN 14) 
(-SIGN 15) 
(-SIGN 16) 
(SIGN 17) 
(-SIGN 18) 
(-SIGN 19) 
(-SIGN 20) 
(-SIGN 21) 
(-SIGN 223 
(-SXCEI 23) 
(-SIGH 24) 
(-SIGN 25) 
(-SIGN 26) 
(-SIGN 27) 
(-SIGN 28) 
(-SIGN 29) 
(-SIGN 30) 
(-SIGN 31) 
(-SIGN 32) 
(-SIGN 33) 
(-SIGN 34) 
(-SIGN 35)  
(-SIGN 36) 
(-SIGN 37) 
(-SIGN 38) 
( S I G N  39) 

/ *  number o f  e r r o r s  */ 

/* generic e r r o r  */ 
/*  operat ion not permi t ted */  
/ *  no such f i l e  o r  d i r ec to r y  */ 
/ *  no such process */ 
/*  i n t e r r up ted  f unc t i on  c a l l  */ 
/* input/output e r r o r  */ 
/* no such device o r  address *; 
/ *  arg l i s t  too long  */  
/ *  exec format e r r o r  * /  
/* bad f i l e  descr ip to r  */  
/* no c h i l d  process */ 
/* resource temporari 1 y unavai lab le  * /  
/* vt enough space */ 
/* permission denied */ 
/* bad address * /  
/ *  Extension: not a block spec ia l  f i l e  * /  
/* resource busy */  
/* f i l e  e x i s t s  */ 
/* jmproper l i n k  */ 
/*  no such device */ 
/ *  not a d i r ec to r y  * /  
/* i s  a di rec to ry  */ 
/* i n v a l i d  argument * /  
/ *  too many open f i l e s  i n  system * /  
/* too many open f i l e s  * /  
/* inappropr ia te  I/O con t ro l  operat ion */  
/* no longer used */ 
/ *  f i l e  too la rge  */ 
/ *  no space l e f t  on device */  
/* i n v a l i d  seek */  
/*  read-only f i l e  system */ 
/ *  too many l i n k s  */ 
/*- broken p i pe  * /  
/* domain e r r o r  (from ANSI C std) */ 
/* r e s u l t  t oo  la rge  (from ANSI C std) * /  
/* resource deadlock avoided */  
/* f i l e  name too long */ 
/ *  no locks ava i lab le  */ 
/* func t ion  no t  implemented */ 
/* d i r ec to r y  not empty */ 

/" The f o l l ow ing  e r r o r s  r e l a t e  t o  networking. */ 
#def i ne EPACKSIZE LSIGN 50) / *  i n v a l i d  packet s ize f o r  some p ro toco l  */ 
#define EOUTOFBUFS [-SIGN 51) / *  not enough bu f fe rs  l e f t  */ 
#def ine EBADJOCTL (_SIGN 52) / *  i 1 l ega l  i o c t l  f o r  device "/ 
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#define EBADMODE 
#define EWWLDBLOCK 
#define EBADOEST 
#define EDSTNOTRCH 
Wef ine  EISCONN 
#define EADDRINUSE 
rFdef ine ECONNREFUSED 
#def i n s  ECONNRESET 
#define ETIMOOUT 
Xdeffne EURC 
#define ENOURC 
rldef ine ENOTCONN 
l d e f i  ne ESHUmOWN 
Xdef i ne ENOCONN 

C S I G N  531 /* badmode i n  i o c t l  */ 
(-SIGN 541 
(-SIGN 55)  /* no t  a v a l i o  dest inat ion address */ 
(,SIGN 563 /* dest inat ion not  reachable */ 
(-SIGN 57) /* a l l  ready connected */ 
(-SIGN 58) /* address i n  use */ 
(-SIGN 59) /* connection refused */ 
(-SIGN 601 /* connection reset */ 
(-SIGH 61) /* connection timed out */ 
( S I G N  62) /* urgent data present */ 
(,SIGN 63) /* no urgent data present */ 
(-SIGN 64) /* no connection (yet o r  anymore) */ 
(-SIGN 65) /* a wr i te  c a l l  t o  a shutdown connection */ 
(-SIGN 66) /* no such connection */ 

/+ The fo l lowing are not POSIX errors,  but  they can s t i l l  happen. *J  
Xdef i ne ELOCKED [,SIGN 101) /* can' t  send message */ 
#define EBADCALL LSLCN 102) /* er ror  on send/receive */ 

/* The fo l lowing er ror  
+fdef SYSTEM 
#de f i ne E-BAO-DEST 
lrdef i ne LBAD-SRC 
#define E-PRYJIGAIN 
I d e f  i ne LOVERRUN 
@define E-BAD-BUF 
M e f i  ne L T A S K  
I d e f  1 ne LNOJESSAGE 
Mefine E - W E R H  
#de f i ne E,BAD_FCM 
Cde f i ne LBWADOR 
#def i ne €-BAD-?ROC 
#endif  /* -SYSTEM */ 

codes are generated by the kernel i tse l  f . */ 

/* dest inat ion address i l l e g a l  */ 
/* source address i l l e g a l  */ 
/* can't  send-- tables f u l l  */ 
/* i n te r rup t  f o r  task tha t  i s  nor wait ing */ 
/* message buf outside c a l l e r ' s  addr space */ 
/* can't  send t o  task */ 
/* RECEIVE fa i led :  no message present */ 
/* ordinary users can't send t o  tasks */ 
/* only v a l i d  fcns are SEND, RECEIVE, BOTH */ 
/* bad address given t o  u t i l i t y  rout ine */ 
/* bad proc number given t o  u t i l i t y  */  

/* The cun i5 td .h~ header contains a few m-iscellaneous manifest constants. 

X i  fndef -UNISTDJl 
Wef i ne ,UNf STD-H 

/* POSIX requires size-t and ss i  zet i n  xunistd. h> and elsewhere. */ 
# i  fndef S I Z L T  
M e f  i ne - S I Z L T  
typedef unsigned i n t  size-t; 
#endi f 

# i f  ndef S S Z Z L T  
ldef i ne S S I Z L T  
typedef i n t  ss i  ze-t ; 
#endi f 
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/* Values used by access(). POSIX T a b l e  2-8. */ 
#define F-OK 0 /* t e s t  i f  f i l e  e x i s t s  */ 
#def ine LOW. 1 /* t e s t  i f  f i l e  i s  executable */ 
%def ine W-OK 2 / * t e s t  i f  f i t e i s w r i t a b l e e /  
%def ine R O K  4 / * t e s t i f  f i l e i s r e a d a b l e * /  

/* Values used f o r  whence i n  lseekcfd, o f f s e t ,  whence). POSIX Table 2-9. */ 
lde f  i ne SEEILSET 0 /* o f f se t  i s  absolute */  
Irdef i ne SEELCUR 1 /* o f f s e t  i s  r e l a t i v e  t o  cu r ren t  pos i t i on  */ 
Wdefi ne SEELEND 2 / * o f f s e t i s  r e l a t i v e t o e n d o f  f i l e  */ 

/* This  value i s  requi red by POSIX Table 2-10. */ 
#def ine -POSI~YERSIOIY 199009L /* which standard i s  being conformed t o  */ 

/* These three d e f i n i t i o n s  are required by POSIX 5ec. 8.2.1.2. */ 
#define STDIN-FILEAH) O /* f i l e  desc r ip to r  for s t d i n  */ 
wf i ne STWUT-FI LEN0 1 /* f i l e  descr ip to r  f o r  s tdout  */ 
#def ine S f  DERRFf  LEN0 2 /* f i l e  descr ip to r  f o r  s tder r  */ 

# i  f d e f  -M IN IX  
/* How t o  e x i t  the system. */ 
Jdef i ne RBT-HALT 0 
t d e f  i ne RBT-REBOOT 1 
#def i ne RBT-PANIC 2 /* fo r  servers */ 
#def i ne RBfJONf TOll 3 /* let t he  monitor do t h i s  */ 
Xdef i ne RBT-RESET 4 / *  hard reset  the system */ 
tend i  f 

/* NULL must be def ined i n  cunistd.h> according t o  WSIX Sec. 2.7.1. */ 
#def ine NULL ((void *)O) 

/* The f o l l ow ing  r e l a t e  t o  conf igurable system var iab les.  POSIX Table 4-2 .  */ 
#de f i ne - 5 C A R L M . X  1 
#def  i ne - S C - C H I L D M  2 
t d e f  i ne -SC_CLOCKS,PERSEC 3 
Xdef i ne -SCCLLTCK 3 
Xdef i ne -SC-HGROUPS-MAX 4 
Ydef i ne - S L O P E N N  5 
I d e f  i ne -SC_JOB-CONTROL 6 
Xdef i ne -5LSAVED-IDS 7 
Ydef i ne -SC-VERSION 8 
#def i ne -SC_STREAM-MAX 9 
#def ine -SLTZNAHE,MAX 10 

/* The f o l l ow ing  r e l a t e  t o  conf igurable pathname var iab les .  POSfX Table 5 - 2 .  */ 
ndef i ne -P(_LINICMAX 1 /* l i n k  count */ 
ndef i ne -PC,MAX_CANON 2 /* s i z e  o f  the canonical i n p u t  queue */ 
ndef i ne -PC-WX-INPUT 3 /* type-ahead bu f f e r  s i ze  */  
t d e f  i ne _PLNAME-MAX 4 /* f i l e  name s ize  */ 
Irdef i ne -PLPATHJUX 5 /* pathname s ize  */ 
t d e f  i ne -PC_PIPE-BUF 6 /* p i pe  s ize  * /  
t d e f  i ne -PC_NO-TRUNC 7 / *  treatment o f  long name components */  
#def i ne -PC_VDISABLE 8 /* t t y  disable */ 
#def i ne -PC-CHOWM-RESIRI CTED 9 /* chown r e s t r i c t e d  o r  not  */ 

/* POSIX def ines several  opt ions t h a t  may be implemented or not ,  a t  the 
* implementer's whim. This  implementer has made t h e  f o l l ow ing  choices: 
* 
* -POSIK_30%-CONTROL n o t  defined: no job  contro l  
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-?OSfLSAVEO-IDS n o t  def ined : no saved u id /g id  
* -POSILMO-TRUNC def ined as -1: long  pa th  names a re  truncated 
* -POSI]CCHOWN-RESTRICTED def ined: you can ' t  g i ve  away f i Tes  
* -POSI]CVDISABLE d e f  i ned : t t y  funct ions can be d isabled 
*/ 

#def ine ,POSIXNO-TRUNC (-1) 
Xdef i ne  -PDSILCHOWN-RESTRICTED 1 

/* Function Prototypes. */ 
# i  f ndef JNS1-H 
#i nclude cansi . h> 
Xendi f 

-PROTOTYPE( vo id  -ex i t  , (i n t  -status) 
-PROTOTYPE( i n t  access, (conr t  char *_path, i n t  -amode) 
- PROTOTYPE( unsigned i n t  alarm, (unsigned i nt -seconds) 
-PROTOTYPE( i n t  chdir, (const char *_path) 
-PROTOTYPE{ i n t  chown, (const char *-path, Uid-t  ,owner, Gid-t -group) 
- PROTOTYPE( i n t  close, ( i n t  ,fd) 
-PROTOTYPE( char *ctermid, (char *-s) 
-PROTOTYPE( char *caserid,  (char *-s3 
- PROTOlYPEl i n t  dup, ( i n t  -fd) 
- PROTOTYPE( i n t  dup2. ( i n t  - fd,  i n t  -fd2) 
-PROTOTYPE( i n t  execl ,  (const char *-path. const char *,arg, . . .) 
-PROTOfYPE( i n t  execle. (const char *_path, const char *-arg. ...) 
-PROTOTYPE( i n t  execlp, (const char * - f i l e ,  const char *arg, . . .) 
-PROTOTYPE( i n t  execv, (consr char *-path. char 'const ,argv[l) 
-PROTON?€( i n t  execve. (const char *-path, char *const -argvCl, 

char *const -envpCl) 
-PROTOTYPE( i n t  execvp, (const char *,file, char *const -argvt l )  
- PROTOTYPE( p i  d-t fo rk ,  (void) 
- PROTOMPE( long  fpathconf ,  t i n t  - fd,  i n t  -name) 
_PROTOTYPE ( char *getcwd , (char *-buf , s i  z e t  ,size) 
- PROTOTYPE( g id- t  getegid,  (void) 
- PROTOTYPE( u id- t  geteuid,  (void) 
-PROTOTYPE( g i  d-t getgid,  (void) 
-PROTOTYPE( i n t  getgroups, ( i n t  -gidsetsize, g id - t  -groupl is t [ ] )  
-PROTOMPE( char +ge t log in ,  (void) 
-PROTOTYPE ( p i  d-t getpgrp. (void) 
-PROTOTYPE( p id- t  getp id ,  (void) 
- PROTOTYPE( pid-t getppid, (void) 
-PROTOMPE( u i  d_t getuid , (voi d l  
-PROTOTYPE( i n t  i s a t t y ,  ( i n t  -fd) 
- PROTOTYPE( i n t  l i n k ,  (const char *-exist ing, const char *-new) 
-PROTOlYPE( o f f - t  1 seek, ( i n t  -fd, o f f - t  -o f f se t ,  i n t  -whence) 
-PROTOTYPE( lang pathconf,  (const char *-path. i n t  -nane) 
-PROTOTYPE C i nt pause, (void) 
-PROTOTYPE( i n t  pipe, C in t  -fi ldesC21) 
- PROTOTYPE( ssize-t read. ( i n t  -fd, vo id  *-buf, s ize-t  -n) 
,PROTOTYPE( i n t  m d i r ,  (const char *_path) 
- PROTOTYPE( i n t  setgid, (Cid-t -gid) 
-PROTOTYPE( in t  setpgid. (pid-t s i d ,  p i L t  _pgid) 
- PROTOTYPE( p i  d-t sets id ,  (void) 
-PROTOTYPE( i n t  setuid.  Wid- t  A d )  
- PROTOTYPE( unsigned i n t  sleep, (unsigned i n t  ,seconds) 
-PROTOTYPE( 1 ong sy scanf, (i n t  -name) 
-PROTOTYPE( p i  d-t tcgetpgrp, (i n t  -fd) 
-PROTOTYPE( i n t  tcsetpgrp, (i n t  -fd, p id- t  g g r p - i  d l  
-PROTOTYPE( char *ttyname, l i n t  -fd) 
-PROTOTYPE( i n t  un l ink .  (const char *-path) 
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-PROTOTYPE( ss ize- t  w r i t e ,  ( i n t  -fd, const vo i d  *-buf, s ize-t  -n) 1 ; 

X i  f d e f  -MINIX 
-PROTOTYPE( i n t  brk ,  (char *-addr) > ; 
-PROTOTYPE( i n t  chroot ,  (const char *-name) 1; 
-PROTOTYPE( i n t  mknod, (const char *-name, Mode-t -mode, Dev-t -addr) ) ; 
-PROTOTYPE( i n t  mknod4, (const char *-name, Mode-t -mode, Dev-t -addr, 

l ong  -size) > ;  
-PROTOTYPE( char "mktemp, (char *,template) > ;  
-PROTOTYPE( i n t  mount, (char *-spec, char *-name, i n t  - f lag)  1 ;  
-PROTOTYPE( long  ptrace, ( i n t  -req, p id - t  - p i d ,  long -addr, l ong  ,data) ) ; 
_PROTOTYPE( char *sbrk, ( i n t  - incr )  1; 
-PROTOTYPE( i n t  sync, (void) > ; 
-PROTOTYPE( i n t  umount, (const char *-name) > ; 
-PROTOTYPE( i n t  reboot, ( i n t  -how, ... j > ; 
-PROTOTYPE( i n t  gethostname, (char *-hostname, s ize- t  ,len) > ; 
-PROTOTYPE( i n t  getdomai nnane , (char *-domain. size-t -1 en) 1 ; 
-PROTOTYPE( i n t  t t y s l o t ,  (void) 1 ;  
-PROTOTYPE( i n t  f t t y s l o t ,  ( i n t  -fd) > ; 
-PROTOlYPE( char *c ryp t ,  (const char *-key, const char *-salt) > ;  
#endi f 

/* The < s t r i  ng.h> header contains p ro to types  f o r  t he  s t r i n g  handl ing 
* funct ions.  
*/  

#if ndef -STRING-H 
Xdef i ne -STRINGtl 

#def ine NULL ((void *>O) 

# i f  ndef -SIZE-T 
#def ine -SIZE-T 
typedef unsigned i n t  size-t; /* type re turned by s i zeo f  * /  
Pendif /*-SIZE-T */ 

/*  Funct ion Prototypes. */ 
C i  f ndef ANSI -H  
C i  n c l  ude cansi . h> 
dendi f 

-PROTOTYPE( vo i d  *memchr, (const vo i d  *-s, i n t  -c, size-t  -n) 1; 
-PROTOTYPE( i n t  memcmp, Cconst vo id  *-sl, const vo id  *,s2, s ize-t  -n) ) ; 
-PROTOTYPE ( vo i d  'memcpy , (vo id  *-sl ,  const v o i d  * - ~ 2 ,  s i  ze-t -nl 1: 
-PROTOTYPE( v o i d  *memove, ( vo id  * -s l ,  const vo i d  '32, s-i re- t  -n) 1 ; 
-PROTOTYPE( void *meinset, (vo id  " - 5 ,  i n t  -c, s ize-t  -n) > ;  
,PROTOTYPE( char * s t r ca t ,  (char *-sl. const char *-s2) 1 : 
-PROTOTYPE( char *s t rch r ,  (const char *-s, i n t  -c) 1 ; 
-PROTOTYPE( i n t  strncmp. (const char *-51, const char  * 3 2 .  s ize- t  -n) ) ; 
,PROTOTYPE( i n t  strcmp, (const char *-sl, const char *,s2) 1; 
,PROTOTYPE( i n t  s t r c o l l .  (const char *,sl, const  char *32) 1 i 
-PROTOTYPE( char *s t rcpy,  (char * -s l ,  const char "-52) > ;  
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-PROTOTVPE( size-t strcspn, Cconst char *-sl, consr char '32)  3 ;  
-PROTOTYPE( char *s t rewor ,  (i n t  -errnum) 1; 
-PROTOTYPE( s i z c t  s t r len ,  (const char *-s) 3 ;  
-PROTOTYPE( char Cstrncat, (char *-sl, const char *-52, size-t 3) 1 ; 
-PROTOTYPE( char *strncpy, Cchar ' ~ 1 ,  const char 4-52.  size-t -n) ); 
_PROTOWPE( char *strpbrk, (const char *-sl, const char *A) > ; 
-PROTOlYPE( char *s t r rchr ,  (const char *-s, i n t  -c) > ;  
-PROTOTYPE( size-t strspn, (const char *-sl, const char *,s2) 3 ;  
-PROTOTYPE( char * s t r s t r ,  (const char *-sl, const char * 3 2 )  3 ;  
-PROTOTYPE( char *s t r tok ,  (char *-sl, const char *,s2) 1; 
-PROTOTYPE( size-t strxfmm, Cchar *-sl, const char *-s2, site-t -n) ); 

# i fde f  B Y  NIX 
/* For backward colapati b i  I i t y  . */ 
-PROTOTYPE( char *index. (const char *-s , i n t  xharwanted) 1; 
-PROTOTYPE ( char *ri ndex , (const char *-s , i n t  -chamanted) > ; 
_PROTOTYPE( vo id  bcapy, (const void *,src, void *-dst, s i  ze-t -length) ) ; 
-PROTOTYPE( i n t  bcmp, (const void *-sl. const void *-s2, size-t ,length)); 
-PROTOTYPE( void bzero, (void *-dst, s i  ze-t ,length) >;  
,PROTOTYPE( vo id  +nes~cpy. (char *-dst , consl: char *Lsrc, in t  ,ucharstop, 

s i  z c t  -size) 3 ;  
/* BSD functions */ 
-PROTOTYPE( in t  strcasecmp, Cconst char *-sl, const char * s 2 )  3 ;  
ltendi f 

++++++*++++++++++++++++++++++++++++++++*++++++++++*++*++++++++*++++H++++*+*++ 

i nc l  ude/si gnal . h 
*+*+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

/* The <signal. h> header defines a l l  the ANSI and POSIX signals. 
M I N I X  supports a17 the signals required by POSIX. They are defined below, 

* Some addl t ional  signals are also supported. 
*/ 

ti f ndef -SIGNALH 
M e f  i ne ,SIGNALH 

ti f ndef 4 5 1 - H  
#include <ansi . h> 
#endi f 

/* Here are types t h a t  are closely associated w i th  signal handling. */ 
typedef i n t  sig-atomic-t ; 

li f def -POSIXSOURCE 
# i  f ndef -SICSET-T 
Ydef i ne SICSET-T 
typedef unsigned long s i  gsett; 
knd i  f 
h n d i  f 

#define BSXG 16 /*number o f  signals used */ 
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Ydef i ne SICINT 
l d e f i  ne SIGQUIT 
#def ine SICILL 
rdef i ne SICTRAP 
#def ine SICABRT 
l d e f  i ne SIGIOT 
l d e f  i ne SICUNUSED 
Rdef ine  SIGFPE 
#def ine SIGKILL 
#def ine SICUSRl 
Adef i ne SIGSECV 
ide f  i ne 5XCUSR2 
#def i ne SICPIPE 
Xdef i ne SICGLRM 
#clef i ne SIGTERM 

2 /* i n t e r r u p t  (DEC) */ 
3 /* q u i t  (ASCII FS) */ 
4 /* i l l e g a l  i n s t r u c t i o n  */ 
5 /* t race  t r ap  (not reset  when caught) */ 
6 /* IOT instruct ion */ 
6 /* SIGABRT f o r  people who speak PDP-11 */ 
7 /* spare code */ 
8 /* f l o a t i n g  p o i n t  except ion */ 
9 /* k i l l  (cannot be caught o r  ignored) */ 

10 /* user def ined s ignal  # 1 */ 
11 /*  segmentation v i o l a t i o n  */ 
1 2  / *  user def ined s ignal  # 2 */  
13 /* w r i t e  on a p ipe w i t h  no one t o  read i t  * /  
1 4  /* alarm clock */ 
1 5  /* software terminat ion s ignal  from k i l l  * /  

dde f i  ne SIGEMT 7 / *  obsolete */ 
ndef i ne SIGBUS 10 /*  obsolete */ 

/* POSIX requi res 
* no t  supported. 
* / 

tdef i ne SIGCHLD 
#def ine SICCONT 
#def ine SIGSTOP 
Atdefine SICTSTP 
#def i ne SIGTTIN 

! #def ine SIGTTOU 

the  fa7lowing signals to  be defined, even i f  they are 
Here a re  the  d e f i n i t i o n s ,  b u t  they a re  not supported. 

1 7  /* c h i l d  process terminated o r  stopped */ 
1 B  / *  cont inue i f  stopped */ 
19 / *  stop s ignal  */ 
20 /* i n t e r a c t i v e  stop signal */ 
21 /* background process wants t o  read */ 
22 /* background process wants t o  w r i t e  */ 

/*  The sighandler- t  type i s  no t  allowed unless -WSIX3OURCE i s  defined. * /  
# i  f de f  -POSELSOURCE 
Kdef ine -sighandler-t s ighandler- t  
#e l  se 
typedef vo id  (*_sighandler-t) ( i n t )  ; 
Uendi f 

/* Macros used as f unc t i on  pointers. */ 
Udef ine SIC-ERR ( L s i g h a n d l e r - t )  -1) /* e r r o r  r e t u rn  */ 
#def i ne SIC-DFL C L s i  ghandler-t) 0) /* d e f a u l t  s ignal  hand1 i n g  */ 
#def ine SIC-IGN ((-sighandl er-t) 1) /* ignore s ignal  */ 
#def ine SIC-HOLD ((-sighandler-t) 2) /*  block s ignal  +/ 
#def ine SIC-CATCH ((-si ghandl er-t) 3) /* catch s igna l  */ 

#i f de f  -POSIX-SOURCE 
s t r u c t  s igac t ion  I 

-sighandler-t sa-handler; /* SIC-DFL, SIC-ICN, o r  po i n t e r  t o  func t ion  */ 
s i  gset - t  sa-mask ; /* s igna ls  t o  be blocked dur ing handler */ 
i n t  sa-flags; /* special  f l a g s  */ 

1 ;  

/ *  F ie lds  fa r  s h f l a g s .  */ 
#def ine SLONSTACK 0x0001 /* de l i ve r  s ignal  on a l t e rna te  stack */ 
#define SLRESETHAND Dx0002 / *  reset  s ignal  handler when s ignal  caught */ 
#def  i ne SANODEFER 0x0004 /* don' t  b lock s ignal  w h i l e  catch ing it */ 
#def ine SLRESTART 0x0008 /* automatic system c a l l  r e s t a r t  * /  
#def ine StLSfCINFO Ox0010 / *  extended s igna l  handl i ng */ 
#def ine SLNOCLDWAIT 0x0020 /* don' t  c reate zombies */ 
#def ine SLNOCLDSTOP 0x0040 /* don ' t  receive SICCHLD when c h i l d  siaps */ 

/ *  POSIX requires these values f o r  use w i t h  sigprocmask(2). */ 
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Wdef ine SILBLOCK 0 /* f o r  blocking signals */ 
#define SILUNBCOCU 1 /* f o r  unblocking signals * /  
Wdef ine SfLSETMASK 2 /* f o r  se t t i ng  the signal mask */ 
#define SILINQUIRE 4 /* f a r  in te rna l  use only */ 
#endif  /* -POSILSOURCE */ 

/* WSIX and ANSI funct ion prototypes. */ 
,PROTOTYPE( i n t  ra ise,  ( i n t  ,sig) 
,PRmmPEC ,sighandler-t signal, (int -sig. -sighandler-t -fvnc) 

# i  fde f  ,POSILSOURCE 
-PROTOTYPE( i nt k i l l ,  Cpid-t $d, i nt  -sig) 
,PROTOTYPE[ i n t  sigact ion, 

( i n t  ,sig, const s t ruc t  s igact ion *-act, s t ruc t  sigact ion *-oact) 
,PROTOTYPE( i n t  sigaddset, (sigset-t *-set, i n t  -sig) 
,PROTOTYPE( i n t  s igdelset  , ( s i  gset-t #-set, i n t  -s i  g) 
,PROTOTVPE( i n t  sigemptyset, (sigset-t *-set) 
-PROTOTYPE( -int s i g f i  11 set,  (sigset-t *-set) 
,PROTOW?€( i nt s i  g i  $member, ( s i g s e t t  *,set, i nt -si g) 
,PROTOTYPE( i n t  sigpendi ng , ( s i  gset-t *-set) 
,PROTOTYPE( i n t  sigprocmask, 

(i nt ,how. const sigset-t  *-set. s i  gset-t *-oset) 
,PROTOfYPE( i n t  sigsuspend, (const sigset-t *,sigmask) 
ltendi f 

/+ The rf c n t l  . h> header i s  needed by the open() and f c n t 1 0  system cal ls .  
= which have a var ie ty  o f  parameters and f lags .  They are described here. 
* The formats o f  the c a l l s  t o  each o f  these are: 
* 
* open (path, o f  1 ag [ . d e 3 )  open a f i l e  
* fcnt lc fd ,  cnd [,argl) get or  s e t  f i l e  a t t r i bu tes  
* 
*/ 

ri f ndef ,FCNTL-I4 
#clef i ne -FCNTC-H 

/* These values are used f o r  cmd i n  f c n t l 0 .  POSIX Table 6-1. */  
#def i ne F-WPFD 0 /* dupl icate f i l e  descr iptor  */ 
Xdef i ne F-CETFD 1 /* get f i l e  descr iptor  f lags  */ 
#def i ne F-SET FD 2 /* set f i l e  descr iptor  f lags  */ . 

#def i ne F-GETFL 3 / * g e t f i l ~ s t a t u s f l a g s * ; l  
Ydef i ne F-SETFL 4 /* set f i l e  s tatus flags */ . 
#define F-CETLK 5 /* get  record locking informatjon */ 
Xdef i ne F-SETLK 6 /* s e t  record locking information */ 
Xdef i ne F-SETLKW 7 /* se t  record locking i n f o ;  wa i t  i f  blocked */ 

/ *  F i l e  descriptor f lags  used f o r  fcn t l ( ) .  POSIX Table 6 - 2 .  */ 
Xdef i ne FD-CLOEXEC 1 / *  close on exec f l a g  f o r  chi rd arg o f  f c n t l  */ 
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/* L-type values f o r  record l o c k i n g  w i t h  f c n t l ( ) .  POSIX Table 6-3. */ 
#def i ne F-RDLCK 1 /* shared o r  read l o c k  */ 
#def i ne F-WRLCK 2 / *  exc lus ive o r  w r i t e  lock */ 
#def ine F-UNLCK 3 /* unlock */ 

/* Oflag values for  open(). POSIX TabTe 6-4. */ 
#def ine 0-CREAT OOlOO /* c rea t  f i l e  i f  it doesn't e x i s t  */ 
#def i ne 0-EXCL 00200 /+ exclus ive use Flag */ 
#def ine 0-NOCTTY 00400 /+ do not  assign a c o n t r o l l i n g  terminal */ 
wdef i ne 0-TRUNC 01000 /* t runca te  f l a g  */ 

/* F i l e  s ta tus f l a g s  f o r  open() and f c n t l 0 .  POSIX Table 6-5. */ 
M e f  i ne OAPPEND 02000 /* s e t  append mode */ 
M e f  i ne 0-NONBLOCK 04000 /* no delay */ 

/* F i l e  access modes f o r  open() and f c n t l c ) .  POSIX Table 6-6. */ 
M e f  i ne 0-RDONLY 0 /* open(name, OLRWNLY) opens read on1 y / 
#def ine 0-WRONLY 1 /* open(name, 0-WUONLYI opens w r i t e  on ly  */ 
Me f i ne  0-ROWR 2 /* open(name, 0-ROWR) opens read/wri t e  */ 

/* Mask f o r  use w i t h  f i l e  access modes. POSIX Table 6-7. */ 
M e f i n e  OACCMODE 03 /* mask fo r  f i l e  access modes */ 

/+ S t ruc t  used f o r  lock ing .  POSIX Table 6-8. */ 
s t r u c t  f l o c k  { 

shor t  1-type; /* type: F-RDLCK, F-WRLCK. o r  F-UNLCK */ 
shor t  1-whence; /* f l ag  f o r  s t a r t i n g  o f f se t  */ 
o f f - t  1-s tar t ;  /* re l&ve offset i n  bytes */ 
o f f - t  1-]en; /* size; i f  0, then u n t i l  EOF */ 
p id- t  1-pid; /* process i d  o f  the  locks '  owner */ 

1 ;  

/* Funct ion Prototypes. */ 
Y i  fndef ANSI-H 
# inc lude dansi . h> 
Rendi f 

-PROTONPE( i n t  creat ,  (const char *-path. Mode-t n o d e )  
-PROTOTVPE( i n t  f c n t l  , ( i n t  ,fi ledes, i n t  - c d ,  . . .) 
-PROTOTYPE( i n t  open, (const char *-path. i n t  -of lag, . . . I  

01000 /* The <s td l  i b. h> header def ines ce r ra i  n c o m n  macros, types, and funct ions. */ 
01001 
01002 X i  fndef ,STDLI%-H 
01003 #define-STDLIB-H 
01004 
01005 /* The macros are NULL, EXIT-FAILURE, EXIT-SUCCESS. R A N D M ,  and MB_CURW.*/ 
01006 #define NULL ( (void *) 0 )  
01007 
01008 #def ine EXIT-FAILURE 1 /* standard e r r o r  r e t u rn  using e x i t 0  */  
01009 ddef i ne EXIT-SUCCESS 0 /* successful re tu rn  us ing ex i t ( )  */ 
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#define RAND-MAX 32767 /* largest  value generated by rand0  */ 
#def Y ne M B - C U W  1 /* max value o f  mu l t i  byte character i n  M I N I X  */ 

typedef s t ruc t  ( i n t  quot, re.; 1 div-t; 
typedef s t ruc t  { long quot, rem; ) ld iv - t ;  

/* The types are size-t ,  wchar-t, div-t, and Id iv- t .  */ 
#i f ndef ,SIZE-T 
#def i ne -SIZE-T 
typedef unsigned i n t  size-t; /* type returned by sizeof */  
#endi f 

Pifndef JCHART 
# def i  ne -WCHART 
typedef char wchar-t; /* type expanded character se t  */ 
#endi f 

/* Function Prototypes. */ 
# i  fndef ANSI -H  
W i  nc7 ude qansi . h> 
#endi f 

-PROTOTYPE( void abort, (void) 1; 
-PROTOTYPE( i n t  abs, ( i n t  -j) 1; 
-PROTOTYPE( i n t  atexi t . (void 1'-func) (voi 13)) 1; 
-PROTOTYPE( double a to f ,  (const char *-nptr) 1; 
- PROTOTYPE( i n t  a to i  , Ccanst char *-nptr) 1; 
-PROTOTYPE ( long at01 , (const char *,npt r )  1; 
-PROTOTYPE( void *cal ?nr , [s i  t ~ t  - m b ,  s i  ze-t -size) > ;  
-PROTOTYPE( div-t div, ( i n t  ,numer, i n t  -denom) > ; 
-PROTOTYPE( void e x i t ,  ( i n t  -status) 1 ;  
- PROTOTYPE( void free, (void *,ptr) 1; 
-PROTOTYPE( char *getenv, (const char *-name) 1; 
-PROTOTYPE( long labs, (long -j) > ; 
-PROTOTYPE( l d i v - t  I d i v ,  (long -numer, 'long -denom) >; 
-PROTOTYPE( void *ma? l o c  , ( s i  ze-t -size) 3 ; 
- PROTOTYPE( i n t  mblen, (const char *-s. size-t -n) 1; 
-PROTOTYPE( size-t mbstowcs, (wchr-t  *,pwcs, const char *-s, s i z e 2  d); 
-PROTOfYPE( i n t  mbtowc. (wchar-t *,pwc, const char *,s, size-t  -n) > i 
-PROTOlYPE( i n t  rand, (void) 1 ; 
-PROTOTYPE( void *real?oc , (void *-ptr, size-t -si ze) 1; 
-PROTOTYPE( void stand, (unsigned in t  -seed) >;  
,PROTOTYPE( double st r tod,  (const char *-nptr. char **-endptr) 1; 
-PROTOTYPE( long s t r t o l  , (const char *-nptr, char **,endptr, i n t  -base) ) ; 
-PROTOTYPE( i n t  system, (const char *-string) 1 ;  
-PROTOWE( size-t wcstmbs, (char *-s, const wchar-t *-s, size-t -n)); 
-PROTOTYPE( i n t  wctwb, (char *,s, wchar-t -rvchar) 1; 
-PROTOTYPE( void fbsearch, (const void *-key, const void *-base, 

size-t ,nmb,  size-t -size, 
i n t  (*corrpar) (canst void. *, const void *)) 1; 

-PROTOTYPE( void qsort, (void *,base, size-t -nwcnb, size-t -size, 
i n t  (*cornpar) lconst void *. const vo id  *)) 1; 

-PROTOTYPE( unsigned long i n t  s t r tou l ,  
(const char *-nptr, char **,endptr, i n t  -base) 1; 

# i  fde f  _MINIX 
- PROTOTYPE( i n t  putenv, (const char *-name) 1; 
-PAOTOTYPE(i n t  getopt, ( i n t  -argc. char **-argv, char *-opts)) ; 
extern c h a ~  optarg: 
extern i n t  optind. opterr ,  optopt; 
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/ *  The <termios.h> header i s  used f o r  c o n r r o l l i n g  t t y  modes. */ 

typedef unsigned shor t  t c f laq - t ;  
typedef unsigned char cc-t; 
typedef unsigned i n t  speed-t; 

#def ine NCCS 2 0 /*  s i ze  o f  cc-c array, some ex t r a  space 
* f o r  extensions. */ 

/* Primary terminal cont ra? s t ruc tu re .  POSIX Table 7-1. */ 
s t r u c t  termios { 

t c f  1 ag-t c-i f 1 as : /* i n p u t  modes */ 
tc f lag - t  c-oflag; /* output modes */ 
t c f  1 ag-t c-cf 1 ag ; /* con t ro l  modes */ 
t c f l ag - t  c - l f l ag ;  /* local modes */ 
speed-t c-i speed ; /* inpu t  speed */ 
speed-t c-ospeed ; /* output  speed */ 
cc-r c-cc [NCCSI ; /* con t ro l  characters * /  

1 ;  

/* Values for termios c-i f lag b i t  nap. WSIX Tab1 e 7-2. */ 
#def i ne B R U N T  0x0001 /* signal i n t e r r u p t  on break */ 
#def ine ICRNL Ox0002 / *  map CR t o  NL on i n p u t  * J  
#def i ne IGNBRK 0x0004  /* ignore break */  
M e f  in@ IGNCR 0 x 0 0 0 8  /* ignore CR * /  
#def ine IGNPAR OxOOlO /* ignore characters w i t h  p a r i t y  e r r o r s  */ 
#def ine INLCR 0x0020 J* map NL t o  CR on input */ 
#def i ne INPCK 0 x 0 0 4 0  /* enable i npu t  p a r i t y  check */ 
M e f i  ne ISTRIP Ox0080 /* mask o f f  8th b i t  */ 
Xdef  i ne IXOFF 0 x 0 1 0 0  /* enable s ta r t / s top  i npu t  con t ro l  */ 
#def ine IXON 0 x 0 2 0 0  / *  enable s ta r t / s top  output con t ro l  */ 
#def i ne PARMRK 0x0400 /* mark p a r i t y  e r r o r s  i n  t h e  i npu t  queue */ 

/ *  Values f o r  termios c-of iag b i t  map. POSIX Sec. 7 . 1 . 2 . 3 .  */ 
#de f i ne OPOST 0 x 0 0 0 1  /* perform output  processing */ 

/* Values f o r  termios c 
#def ine CLOCAL 
t d e f  i ne CREAD 
Ydef  i ne CSIZE 
Xdef i ne CS 5 
#def ine CS6 
#def i ne CS7 
#define CS 8 
ddef i ne CSTOPB 
Xdef i ne HUPCL 
Bdef i ne PARENB 

~ f l a g  bit map. POSIX Table 7-3. * /  
0 x 0 0 0 1  /* ignore modem status l i n e s  */ 
0x0002 /"enable receiver *J 
OxOOOC / *  number o f  b i t s  per character * /  
0 x 0 0 0 0  / *  i f  CSIZE i s  CSS, characters are 5 b i t s  */ 
0x0004  / *  i f  CSIZE i s  CS6, characters are 6 b i t s  */  
0 x 0 0 0 8  /+ i f  CSIZE i s  CS7, characters are 7 b i t s  */ 
OKOOOC / *  i f  CSIZE i s  CSB, characters are 8 b i t s  */ 
0x0010 /* send 2 stop b i t s  i f  se t ,  e lse 1 */ 
0 x 0 0 2 0  /* hang up on l a s t  c lose */ 
0 x 0 0 4 0  /* enable p a r i t y  on output  */ 
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#define PAROM) 0x0080 /* use odd p a r i t y  i f  se t ,  e l s e  even */ 

/* Values f o r  termios c - l f l a g  b i t  map. POSIX Table 7-4. */ 
#de f i  ne ECHO 0x0001 /* enable echoing o f  i npu t  characters */ 
#define ECHOE 0x0002 /* echo ERASE as backspace */ 
Wef i ne ECHOK 0x0004 /* echo KILL */ 
#def ine ECHONL 0x0008 /* echo NL */ 
#def ine ICANON 0x0010 /* canonical i npu t  (erase and k i  11 enabled) */ 
fdef  i ne IEXTEN 0x0020 /* enable extended funct ions */ 
#def ine ISIC 0x0040 /* enable s igna ls  */ 
Rdef i ne NOFLSH Ox0080 /* d isable f l u s h  a f t e r  i n t e r r u p t  o r  q u i t  */ 
#def i ne TOSTOP 0x0100 /* send SIGTOU ( job  con t ro l ,  not  implemented*/ 

/* Ind ices  i n t o  c-cc ar ray.  De fau l t  values i n  parentheses. POSXX Table 7-5. */ 
Ydef i  ne VEOF 0 /* cc,c[VEOF] - EOF char ("0)  */ 
#def ine VEOL 1 /* cc-c[VEOL] = EOt char (undefl */ 
#def i ne VERASE 2 /* cc,c[VERASE] = ERASE char ('H) */ 
#define VINTR 3 /* ccc[VINTR] 5 INTR char  (DELI */ 
#def ine VKf LL 4 /* CLCIVKILL] = KILL char ('U) */ 
#def ine VMIN 5 /* cc-c[VMIN] a MIN value f o r  t imer  */ 
#def ine VQUIT 6 /* CC-cCVQUIT] = QUIT char (^\I */ 
M e  f i ne VTIME 7 /* cc-c [VTIME] I TIME value f o r  t imer  */ 
#def ine VSUSP 8 /* cccCVSUSP] = SUSP I-Z. ignored) */ 
#def ine VSTART 9 /* cc,c[VSTART3 = START char ( ' 5 )  */ 
Xdef ine  VSTOP 10 /* cc-cCVSTOP1 = STOP char  C-Q) */ 

#def ine -POSILVDISABLE [cc-t)OxFF /* You can ' t  even generate t h i s  
* character  w i t h  'normal' keyboards. 
* But s m e  language s p e c i f i c  keyboards 
* can generate OxFF. It seems t h a t  a l l  
* 2 5 6  are used, so cc-t should be a 
* short.. . 
*/ 

/* Values f o r  the  baud ra te  se t t i ngs .  POSIX Table 7-6. */ 
#def ine 00 0x0000 /* hang up t h e  l i n e  */ 
Xdefine 850 0x1000 /* 50 baud */ 
M e f i n e  B75 0 x 2 0 0 0  /* 75 baud */ 
Xdef i  ne 0110 0x3000  /* 110 baud */ 
#def ine 8134 0x4000 /* 134.5 baud */ 
#define 8150 0x5000 1* 150 baud */ 
#def ine 8200 0x6000 /* 2 0 0  baud */ 
#def ine 0300 0x7000  /* 300 baud */ 
#def ine B600 0 x 8 0 0 0  /* 600 baud */ 
Odeflne BlZW 0x9000 /* 1200 baud +/ 
#def ine 81800 OxAOOO /* 1800 baud */ 
#def ine 02400 0x8000 /* 2400 baud + / 
#def ine 84800 OXCOW /* 4800 baud */ 
#def ine 89600 0xDM)O /* 9600 baud */ 
#def i ne 619200 OxEOOO /* 19200 baud */ 
Xdef i ne 838400 OxFOOO /* 38400 baud */ 

I* Opt ional  act ions f a r  t c se ta t t r ( ) .  POSIX See. 7.2.1.2. */ 
#def ine TCSANOW 1 /* changes take e f f e c t  inmediate ly  */ 
W e f  i ne TCSADRAIN 2 /* changes take e f f e c t  a f t e r  output  i s  done */ 
#def  i ne TCSAF LUSH 3 /* w a i t  f o r  output  t o  f i n i s h  and f l u s h  i npu t  */ 

/* Queue-selector values f o r  tc f lush() .  POSIX Sec. 7 . 2 . 2 . 2 .  */ 
t d e f  i ne TCIFLUSH 1 /* f l u s h  accumulated i npu t  data */ 
Adef i ne TCOFLUSH 2 /* f l u s h  accumulated output  data */ 
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l de f  i ne TCIOf LUSH 3 /* f l u s h  accumulated i npu t  and output  data */  

/* Act ion values f o r  tcf low().  POSIX Sec. 7.2.2.2.  */ 
#def ine TCOOFF 1 /* suspend output  */ 
l d e f i  ne TCOW 2 /* r e s t a r t  suspended output  */ 
#de f i ne TCIOFF 3 /* transmi t a STOP character on the l i n e  */ 
Cdef i ne TCION 4 /* t ransmi t  a START character on the l i n e  */ 

/* Funct ion Prototypes. */ 
W i  f ndef ANSI-H 
#include <ansi . h> 
Rend i f 

-PROTOTYPE( i n t  tcsendbreak, (i n t  ,fi 1 des, i n t  -duration) 1; 
-PROTOWPE( i n t  t c d r a i  n. (i n t  -f i ledes) 1; 
-PROTOTYPE( i n t  t c f lush .  ( i n t  ,filedes, i n t  ,queue-selector) 1; 
-PROTOTYPE( i n t  tcf low, ( i n t  ,filedes, i n t  -action) 1 ;  
-PROTOTYPE( speed-t c f g e t i  speed, (const s t  r uc t  tenni  os *-termi 0s-p) 1 ; 
-PROTOTYPE( speed-t cfgetospeed, (const s t r u c t  tennios *-termios-p) 1; 
-PROTOTYPE( i n t  c f s e t i  speed, ( s t r uc t  termi os *-termios-p. speed-t ,speed) ) ; 
-PROTOTYPE( i n t  cfsetospeed, ( s t r uc t  termi os * - t em i  os-p, speed-t -speed) ) ; 
-PROTOTYPE( i n t  t c g e t a t t r ,  ( i n t  - f i ledes, s t r u c t  termios * - t e m i o s j )  1 ;  

:.,PROTOTYPE( i n t  t c s e t a t t r ,  \ 
( i n t  A l e d e s ,  i n t  -opt,actions, const s t r u c t  t e m i o s  *- termiosg) ); 

#def ine c f g e t i  speed(temios_p) ( ( temiosg)->c- i  speed) 
#def ine cfgetospeed(tennios,p) (C temi  o s j )  ->c-ospeed) 
ldef i n e  c f s e t i  speed( temiosg ,  speed) ((termios-p) ->c-i speed = (speed), 0) 
#def ine c f  setospeed(temios_p, speed) ((termi o s g )  ->c-ospeed = (speed). 0) 

#i f d e f  -M IN IX  
/* Here a re  the local extensions t o  t h e  POSIX standard f o r  Mini  x. Posix 
* conforming programs are not ab7e t o  access these. and therefore they are 

on1 y def ined when a M in i  x program i s  c m p i  led .  
*/ 

/* Extensions t o  the termios c - i f l ag  b i t  map. */ 
#define IXANY 0x0800 /* a l low any key t o  cont inue ouptut */ 

/* Extensions t o  the termios  ofl lag b i t  map, They ace only ac t i ve  i f f  
* OPOST i s  enabled. */ 

#define ONLCR 0x0002 /*  Map NL t o  CR-NL on output  +/ 
#def i ne XTABS 0x0004 /* Expand tabs t o  spaces */ 
Xdef i ne  WEOT 0x0008 /* d iscard  EOT's (^Dl on output)  */ 

/* Extensions t o  the termios c l f l a q  b i t  map. */ 
#define LFLUSHO 0x0200 /* Flush output .  +/ 

/* Extensions t o  the c-cc array. */ 
#def ine VREPRINT 11 / *  cc-c[VREPRINT] ( -R)  */ 
lde f  i ne VLNEXT 1 2  /' cc-c[VLNEKT] ('V) */ 
#def i ne VDISCARD 1 3  /* cc-c[VDISCARD] ('0) */ 

/* Extensions t o  baud ra te  set t ings.  */ 
M e f  i ne 057600 0x0100 /' 57600 baud */ 
Rdef i ne 8115200 0x0200 /* 115200 baud */ 

/* These are t h e  de fau l t  se t t i ngs  used by the kernel and by ' s t t y  sane' */ 
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ltdef i ne f CTRLOEF 
M e f  i ne TINWT-DEF 
#define TOUTWTJEF 
tdef ine TLOCALSEF 
l d e f  i ne TSPEED-DEF 

I d e f  i ne TEOF-DEF 
M e  f i ne PEOLDEF 
Mef i ne TERASLDEF 
Idef i ne TINTLDEF 
#define TKILL-DEF 
tde f  i ne TMILDEF 
Wef ine TQUIT-DEF 
Mef  i ne TSTARTJEF 
t d e f  i ne TSTOPBEF 
Xdef i ne TSUSPSEF 
Xdefi ne 7TIMLDEF 
#def i ne TREPRX NTdE F 
M e f  i ne TLNEXTSEF 
Itdef i ne TDISCARDBEF 

File: includeltermios.h 

(CREAD I CS8 I HUPCL) 
(BRKINT f ICRNL I IXON I IXANY) 
(OPOST I ONLCR) 
(ISXG I IEXrEN I ICANON I ECHO I ECHOE) 
89600 

/* Window size. This information i s  stored i n  the lTY dr iver  but  not  used. 
This can be used f a r  screen based appl icat ions i n  a window environment. 
The i o c t l s  TIOCCWINSZ and TIOCSWINSZ can be used t o  get  and set t h i s  
information. 

*/ 

s t ruc t  wi nsi ze 
I 

unsi gned short  ws-row; /* rows, i n  characters */ 
unsigned short  ws-col ; /* columns, i n  characters */ 
unsigned short ws-xpi xel  ; /* horizantal size, p i xe l s  */ 
unsigned short ws-ypi xel  ; /* ve r t i ca l  size, p ixe ls  */ 

I ;  
t end i f  /* JINIX */ 

/* The ca.out> header f i l e  describes the format o f  executable f i l e s .  */ 

W i  f ndef ANT- t i  
l d e f  i ne AWT-H 

s t ruc t  exec { 
unsigned char a-magicl21 ; 
unsigned char &flags; 
unsigned char hcpu; 
unsigned char ahdr len ;  
unsigned char &unused; 
unsigned short %version; 
1 ong h t e x t  ; 

/* a.out header */ 
/* magic number */ 
/* f lags, see below */ 
/* cpu i d  */ 
/* length o f  header */ 
/* reserved f o r  fu tu re  use */ 
/* version stamp (not used a t  present) */ 
/ *  size o f  t e x t  segement i n  bytes */ 

01413 1 ong %data; /* size o f  data segment i n  bytes */ 
01414 1 ong ~ b s s  ; /* size o f  bss secpent i n  bytes */ 



File: incIude/a.out.h MINIX SOURCE CODE 

1 ong a-ent ry ; /* en t ry  po in t  * /  
1 ong a-total  ; /* t o t a l  memory a l loca ted  * /  
1 ong a-syms; /* s i z e  o f  symbol tab le */  

/*: SHORT FORY ERDS HERE *] 
1 ong a - t rs i  ze; /" t e x t  re loca t ion  s i ze  */  
1 ong a-drsi ze; /* data re loca t ion  s ize * /  
1 ong a-tbase ; /* t e x t  r e l oca t i on  base */  
1 ong a-dbase ; /' data r e l oca t i on  base */ 

1 ;  

#def i ne LMACICO (unsigned char) 0x01 
#def i ne &MAGIC1 (unsigned char) 0x03 
#def i ne BADMAG (X) ( (X)  . hmagic[O] ! = LMACICO I 1 (X) .a-magic[l] ! = LMAGICl) 

j* CPU I d  of TARGET machine (byte order coded i n  low order two b i t s )  */ 
#define A-NONE 0x00 /* unknown */  
#define L I 8 0 8 6  0x04 /* ~ n t e l  i8086/8088 */ 
#def ine kM68K 0x06 /* motorola m68000 */ 
#def ine LNS16K OxOC /* nat ional  semiconductor 16032 */ 
#def ine L B O 3 8 6  0x10 /* ~ n t e l  i 80386 */  
#def ine ASPARC 0x17 /* Sun SPARC * /  

#def ine LBLR(cputype) ((cputypegr0x01) !=0) /* TRUE i f  by tes  l e f t - t o - r i g h t  */ 
#def ine kWLR(cputype) ((cputype&Ox02) !=0) /* TRUE i f  words l e f t - t o - r i g h t  '/ 

/*  Flags. * /  
#def ine L U Z P  ax01 /* unmapped zero page (pages) * /  
#def ine L P A L  0x02 /*  page a l igned executable */ 
#def ine &NSW 0x04 /* new s t y l e  symbol t a b l e  * /  
#def ine &EXEC Ox10 /* executable */ 
#def ine ASEP Ox20 /* separate I / D  * /  
#def ine L P U R E  0x40 /* pure t e x t  * /  /* no t  used */ 
#def ine GTOVLY 0x80 /* t e x t  over lay */ /* no t  used */ 

/* Of fse ts  o f  var ious th ings.  */ 
#def i ne LMINHOR 32 
ddefi ne LTEXTPOSCX) ((long) EX). ~ h d r l  en) 
r d e f  i ne LDATAPOS(X) (LTEXTWS(X) + (X) . h t e x t )  
t de f  i ne LHASRELS(X1 ((X) .a-hdrlen > (unsigned char) A-MINHDR) 
#def i ne LHASEXT (X) ((X) . ~ h d r l e n  r. (unsigned char) (LMINHDR + 8)) 
#def i ne LHASLNS (X) ((X) . ~ h d r l e n  r. (unsigned char) (LMINHOR + 16)) 
#define &HASTOFF(X) ((X) . a h d r l e n  r (unsigned char) (LMINHOR + 24)) 
#define ICTRELPOS(X) (LDATAWS(X) + (X) .&data) 
#def ine GDRELPOS(X) (LTRELPOS(X) + (X) . h t r s i  ze) 
l d e f  i ne &SYMPOS(X) (kTRELWS(X) + (&HASRELS(X) ? \ 

( ( X I  . ~ t r s i z e  + (X) . h d r s i z e )  : 0)) 

s t r u c t  re loc  ( 
long  r-vaddr ; /* v i r t u a l  address o f  reference */ 
unsigned shor t  r-symndx; /* i n t e r n a l  segnurn o r  extern symbol nun */ 
unsigned shor t  r-type; /* r e l oca t i on  type */ 

I ;  

/ *  r-tyep values: */ 
Rdef i ne RABBS 0 
ddef i ne R-RELLBYTE 2 
#def i ne RPCRBYTE 3 
#def ine R-RELWORQ 4 
#def ine R-PCRWORD 5 
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Rdef i ne R-RELLONC 6 
tdef i ne R-PCRLONG 7 
Rdef i ne R-REt3BYTE 8 
ddef i ne R-KBRANCHE 9 

/* r-symndx f o r  i n t e r n a l  segments */  
#def ine S A B S  ((unsi gned short)-1) 
Rdefine S-TEXT ((unsigned short) -2) 
dde f i ne S-DATA ((unsigned short)-3) 
Ydef i ne S-BSS ((unsigned short)-4) 

s t r u c t  n l i s t  { /* symbol t ab l e  en t ry  */ 
char n-name C81; /* symbol name * /  
1 ong n-val ue ; /* value */ 
unsigned char n-sclass; /* storage c lass  */ 
unsigned char n-numaux; /* number o f  a u x i l i a r y  en t r i e s  (not used) */ 
unsigned shor t  n-type; /* language base and der ived type (not used) */ 

1 ;  

/*  LOW b i t s  o f  storage c lass (section). */ 
Kdef i ne N-SECT 07 /* sec t ion  mask */ 
#def ine N-UNDF 00 /* undefined */  
#def ine NABS 01 /* absolute */ 
#def ine N-TEXT 02 /* t e x t  */ 
#def ine N-DATA 03 /* data */ 
#def i ne N-BSS 04 /* bss */ 
#def ine N-CDMM 05 /* (camnon) */ 

/* High b i t s  of  storage c lass.  */ 
Ydefi ne N-CLASS 0370 /* storage c lass  mask */ 
#def i ne CNULL 
#def ine C-EKT 0020 /* externa l  symbol */ 
#def ine LSTAT 0030 / * s t a t i c 4 /  

/ *  Function prototypes. */ 
#i fndef  ANSI-H 
# i  n c l  ude <ansi . h> 
fend i  f 

-PROTOTYPE( i n t  n l i s t ,  (char * - f i l e ,  s t r u c t  n l i s t  *-n'l) 

01600 /* The <sys/types.h> header contains important data type d e f i n i t i o n s .  
01601 * I t  i s  considered good programming p rac t i ce  t o  use these d e f i n i t i o n s ,  
01602 * ins tead  o f  the under ly ing base type. By convention. a l l  type names end 
01603 * w i t h  -t. 
01604 */ 
01605 
01606 A i  fndef -TYPES-H 
01607 #def ine -TYPES-H 
01608 
01609 /* ANS I  i s  somehow used t o  determine whether o r  n o t  the c k p i l e r  i s  a 
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* 16 b i t  c m p i l e r  
" / 

r i f nde f  ANSI 

/* The type s ize - t  holds a l l  r e s u l t s  o f  t he  s i zeo f  operator. A t  f i r s t  glance. 
* i t  seems obvious t ha t  i t  should be an unsigned i n t ,  bu t  t h i s  i s  no t  always 
* the case. For example. MINIX-ST (68000) has 32-b i t  po in te rs  and 1 6 - b i t  
* in tegers.  When one asks f o r  the s i ze  o f  a 70K s t r u c t  o r  array, t h e  r e s u l t  
* requi res 17 b i t s  t o  express, so size-t  must be a long type. The type 
* ssize-t  i s  the signed vers ion o f  s ize-t  . 
* / 

Y i  f ndef -SIZE-T 
Wdef i ne -SIZE-T 
typedef unsigned i n t  size-t ;  
fend i  f 

#i fndef  -SSIZE-T 
#def ine -SSIZE-T 
typedef i n t  ssize-t ;  
#endi f 

ti fndef  -TIME-T 
#def ine -TIME-T 
typedef 1 ong time-t ; 
#endi f 

f i  fndef -CLOCK-T 
#def ine -CLOCK-T 
typedef long c l o c k t  ; 
#endi f 

X i  f ndef SICSET-T 
#def ine -SICSET-T 
typedef unsigned long  s i  gset-t ; 
dendi f 

/* Types used i n  d i s k ,  inode, e tc .  
typedef shor t  dev-t ; 
typedef char g i  d-t ; 
typedef unsigned shor t  ino-t ;  
typedef unsigned shor t  mode-t; 
typedef char n l i n k t ;  
typedef unsigned l ong  o f f - t ;  
typedef i n t  p i  d-t ; 
typedef shor t  u i  d-t ; 
typedef unsigned 1 ong zone-t ; 
typedef unsigned l ong  b l o c k t  ; 
typedef unsigned 1 ong b i  t_t ; 
typedef unsigned shor t  z o n e l t :  
typedef unsigned sho r t  b i  tchunk-t ; 

/* t ime i n  sec since 1 Jan 1970 0000 GMT */ 

/* u n i t  f o r  system accounting */ 

data s t ructures.  */ 
/* holds (major In inor)  device p a i r  */ 
/* group i d  * /  
/* i -node number */ 
/*  f i l e  type and permissions b i t s  */ 
/* number o f  l i n k s  t o  a f i l e  */ 
/* o f f s e t  w i t h i n  a f i l e  */ 
/* process i d  (must be signed) */ 
/* user i d  */ 
/* zone number */ 
/* b lock number */ 
/* b i t  number i n  a b i t  map */ 
/* zone number f o r  V 1  f i l e  systems */  
/* c o l l e c t i o n  o f  b i t s  i n  a bimap */ 

typedef unsigned char u8-t; /* 8 b i t  type */  
typedef unsigned shor t  u16-t ; /* 16 b i t  type */ 
typedef unsigned long  u32-t; /* 32 b i t  type */ 

typedef char i 8-t ; /* 8 b i t  signed type */ 
typedef shor t  i 16-t ; /* 16 b i t  signed type */ 
typedef long i 32-t; /* 32 b i t  signed type */ 
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/* The fo l lowing types are needed because M I N I X  uses K&R s t y l e  funct ion 
* de f i n i t i ons  ( for  maximum p o r t a b i l i t y ) .  When a short, such as dev-t, i s  
* passed t o  a funct ion w i th  a KdrR de f i n i t i on ,  the compiler au tma t i ca l l y  
* promotes it t o  an i n t .  The prototype must contain an i n t  as the parameter, 
* no t  a short, because an i n t  i s  what an old-sty le function d e f i n i t i o n  

expects. Thus using dev-t i n  a prototype would be incorrect .  It would be 
* s u f f i c i e n t  t o  j us t  use i n t  instead o f  dev-t i n  the prototypes, but Dev-t 
* i s  clearer. 
*/ 

typedef i n t  Dev-t ; 
typedef i n t  G i  d-t ; 
typcdef i n t  Nl i n k t ;  
typedef i n t  U i  d-t ; 
typedef i n t  U8-t ; 
typedef unsigned long U32-t; 
typedef i n t  18-t ; 
typedef i n t  116-t ; 
typedef long 132-t; 

/* ANSI C makes wr i t i ng  down the promotion o f  unsigned types very messy. When 
* sizeofCshort) == s ixeof( int ) .  there i s  no promotion, so the type stays 
* unsigned. When the cornpi l e r  i s  not  ANSI, there i s  usual 1 y no lass o f  
* unsignedness. and there are usual ly  no prototypes so the promoted type 
* doesn't matter. The use o f  types l i k e  Ino-t i s  an attempt t o  use i n t s  
* (which are not p r m t e d )  whi le providing information t o  the  reader. 
*/ 

#if ndef M S I J  
#include <ansi.h:, 
#endi f 

# i f  - E K W S f  t E  -- 2 1 1 ! def i  ned(ANS1) 
typedef unsigned i n t  Ino-t ; 
typedef unsigned i nt ZoneLt ; 
typedef unsigned i n t  B i  tchunk-t ; 
typedef unsigned i n t  U16-t; 
typedef unsigned i n t  Mode-t ; 

#else /* -EM_WSItE == 4, o r  -EI.tWSIZE undefined, o r  ANSI defined */ 
typedef i n t  Ino-t ; 
typedef i n t  ZoneLt ; 
typedef i n t  B i  tchunk-t ; 
typedef i n t  U16-t ; 
typedef i n t  Mode-t ; 

#endif /* -EM_WSIEE == 2,  etc  */ 

/* Signal handler type, e -9. 5IGIGN */ 
# i f  def  i n e d ( 4 S I )  
typedef void ( * s i  ghandler-t) (i nt )  ; 
#else 
typedef void (*sighandl e c t )  () ; 
#endi f 
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/* The i o c t l  . h header declares device con t r o l  l i n g  operat ions. */ 

# i f  ndef JOCTL-H 
#def i ne -1OCTL-H 

# i f  -EM-WSIZE >= 4 
/ *  I o c t l s  have the  command encoded i n  the  low-order word, and the s ize 
* o f  the parameter i n  the high-order word. The 3 high b i t s  o f  the  high- 
* order word are used t o  encode t h e  in /ou t /vo id  s ta tus  of the parameter 

Ydefi ne -1OCPARKMASK OxlFFF 
Ydef i ne JOC-VOID 0x20000000 
#def i ne -1OCTYPE-MASK OxFFFF 
Ydef i ne -1OC-IN 0x40000000 
#def ine JOC-OUT Ox 80000000 
#defi ne -1OC-IWUT (-IOCIN I JOC-OUT) 

#define -fO(x,y) ((x << 8) I y I -IK-VOID) 
#define -IOR(x,y,t) ((x << 8 )  I y 1 ((sizeofCt) 

-1KOUTI 
#def ine -IOW(x,y,t) ((x << 8) 1 y I ( (s izeof ( t1  

-1OCIN) 
#define-fORW(x,y,t) ( ( x ~ c 8 )  1 y 1 ( (sizeaf(t)  

-1OLINOUT) 
#else 
/* No fancy encoding on a 16-bi t machine. */ 

/* Terminal i o c t l s .  * /  
Ydefi ne TCGETS 
Wdef i ne TCSEf S 
#def i  ne TCSETSW 
YdeFi ne TCSETSF 
#define TCSBRK 
f de f  i ne TCDRAIN 
Ydef i ne TCFLOW 
Ydefi ne TCFLSH 
#def ine TIOCCWINSZ 
Ydef i ne TIOCSWINSZ 
#deFi ne T I K G K R P  
#def i ne TIOCSPGRP 
#def ine TIOCSFON 

#def i ne TIOCCETP 
#def ine TIOCSETP 
Xdef i ne TIOCGETC 
#def i ne T I M S E T C  

-IORC'T1, 8, s t r u c t  termios) /* 
-IOW('f' , 9, s t r u c t  termios) /* 
-I0W('T1, lo, s t r u c t  termios) /* 
-IOW('T', 11, s t r u c t  termios) /* 
- IW [ 'T ' ,  1 2 ,  i n t )  /* 
-10 ( ' T ' ,  13) / * 
- IOW( 'T1 ,  14 ,  i n t )  / *  
-1CM('T7, 15, i n t )  /* 
-IOR('T' , 16, s t r u c t  w i  nsize) 
-IOW('T' , 1 7 ,  s t r u c t  winsize) 
-IOW('T1, 18, i n t )  
-IOW('T', 19, i n t )  
-IOW('T', 20, US-t C81921) 

- IOR(' t l ,  1, s t r u c t  sg t t yb l  
- I O W ( ' t ' ,  2 ,  s t r u c t  sgttyb) 
-IOR('t l  , 3 ,  s t r u c t  tchars) 
- I O W ( ' t ' ,  4 ,  s t r u c t  tchars) 

t c g e t a t t r  */  
t c s e t a t t r ,  TCSANOW */ 
t c s e t a t t r ,  TCSADRAIN */  
t c s e t a t t r ,  TCSAFLUSH * /  
tcsendbreak */ 
t c d r a i n  */ 
t c f l o w  */ 
t c f l u s h  */ 
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/* Network i o c t l s .  */ 
#defineNWIOSETHOPf -IOW('ni, 16, s t ructnwio-ethopt )  
#def i ne NWIOCETHOPT -IOR('nl , 17, s t r u c t  nwi o-ethopt) 
#def ine NWIOGETHSTAT -IOR('n ' , 18,  s t r u c t  nwio-ethstat) 

#def i ne MJIOSIPCOUF -IOW('ng , 32, s t r u c t  nwio-ipconf) 
#define MJIOCIPCONF -1ORC'n' , 33, s t r u c t  nwio-ipconf) 
I de f  i ne NWIOSIPOPT -IOW('n' , 34, s t r u c t  nwio-ipopt) 
#def ine NWIOCIPOPT 1 0 R ( ' n ' ,  35, r t r u c t  nwio-ipopt) 

#def ine NWIOIPCROLITE -fORW('n', 40. s t r u c t  nwio-route) 
t d e f i  ne NWIOIPSROUTE -1OW ( 'n' , 41, s t r u c t  nwio-route) 
#def i ne NWIOIPOROUTE -1OW (' n ' , 42,  s t r u c t  nwi o-route) 

CdefineNWIOSTCKWF -IOWC1n', 48, s t r u c t  nwio-tcpconf) 
#def ine NWIOCTCPCONF -IOU(' n' , 49, s t r u c t  nwi o-tcpconf) 
Xdef i  ne NWIOTCPCONN -IOW('nl , 50, s t r u c t  nwio-tcpcl) 
#def ine MJIOTCPLISTEN -1OWC On* , 51, s t  r uc t  nwio-tcpcl) 
t d e f i  ne WIOTCPAlTACH -IOW('n ' , 52, s t r u c t  nwio-tcpatt) 
Xdefi ne NWIOTCPSHUTOOWN 1 0  (' n ' , 53) 
Cdef i ne WIOSTCPOPT JOW( ' n ' , 54, s t  r uc t  nwi o-tcpopt) 
#defineNWIOGTCPOPT JOR('n', 55, s t ructnwio- tcpopt)  

#define WIOSUDPOPT 10W('n'  , 64, s t r u c t  nwio-udpopt) 
t d e f i  ne WIOGUDPOPT -IOR('n' , 65, s t r u c t  nwio-udpopt) 

/* Disk i o c t l s .  */ 
#def i ne DIOCEJ ECT -10 ( ' d ' ,  5) 
#def ine DIOCSETP -IOW('d', 6, s t r u c t  p a r t i t i o n )  
#def ine DIOCCETP -IORC1d', 7, s t r u c t  p a r t i t i o n )  

/* Keyboard i o c t l  s. */ 
rdef  i ne K T O C S W  J O W C ' k '  , 3. keymap-t) 

/* Mewry i o c t l s .  */ 
#def i ne MIOCRAMSIZE -IOW('m'. 3, u32-t) /* Size o f  t he  rqmdisk */ 
Xdef i  ne MIOCSPSINFO -IOW('mB , 4, v o i d  *) 
#def i ne MIOCCPSINFO -IOR('m', 5,  s t r u c t  ps in fo)  

/* Magnetic tape i o c t l s .  */ 
#def i ne MTIOCTOP -IOW('H', 1, s t r u c t  mtop) 
Wdef i ne MTIOCCET -IOR('H', 2 ,  s t r u c t  mtget) 

/* SCSI command. */ 
Xdef i ne SCIOCCMD -IOW('S', 1, s t r u c t  scsicmd) 

/* CD-ROM i o c t l s .  */ 
#def ine CDIOPLAYTl 
#def ine CDIOPLAWSS 
#def ine CDIOREADTOCHnt 
#def ine CDIOREAOTOC 
t d e f i  ne CDIOREADSUBCH 
t d e f  i ne CDIOSTOP 
t d e f  i ne CDIOPAUSE 
t d e f  i ne CDIORESUHE 
#def i ne CDIOE JECT 

-IOR('c', 1, s t r u c t  cds lay - t rack )  
-1ORC'c' , 2, s t r u c t  cd-play-mss) 
-1OWC'c'. 3, s t r u c t  c d - t o r e n t r y )  
,IOW('c', 4, s t r u c t  cd - tocen t ry )  
-XOW('cl. 5,  s t r u c t  cd-toc-entry) 
-10 ( ' c ' ,  10) 
-10 ( ' c ' ,  11) 
-10 ( ' c ' ,  12) 
DIOCEJECT 

/* Soundcard DSP i o c t l s .  */  
#def i ne .DSPIOUATE - I O R ( ' s l ,  1, unsigned i n t )  
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Wdefi ne DSPIOSTEREO -IOR('s' , 2. unsigned i nt )  
#def ine DSPIOSIZE -IORCYs'. 3. unsigned i n t )  
#def ine DSPIOBITS -IOR('s'. 4, unsigned i n t )  
Wdef i ne DSPIOSIGN -IOR('s', 5.  unsig#ed i n t )  
#def i ne DSPIOMAX -IOW('s', 6, unsigned i n t )  
#def ine DSPIORESET -10 ( * s l ,  7) 

/ *  Soundcard mixer i o c t l s .  
#def i ne MIXIOCEWOLUME 
#def ine MIXIOCETINPUTLEFT 
#def i ne MIXIOCETINPUTRIGHT 
#de f i ne MIXIOCETOUTPUT 
#def ine MIXIOSETVOLUnE 
#de f i  ne MIXIOSETINPUTL EFT 
#def ine MIXIOSETINPUTRIGHT 
#def i  ne MIXIOSETOUTPUT . 

*/ 
-1ORWC ' s '  , 10, s t r u c t  voltme-level) 
_IORW('s', 11, s t r u c t  i nou t -c t r l )  
-IORW('se , 12,  s t r u c t  i n o u t c t r l )  
-IORW('s', 13, s t r u c t  i nou t -c t r t )  
-IORW('s', 20, s t r u c t  volume-level) 
,IORW('s' , 21, s t r u c t  i n o u t x t r l )  
-IORW('rW, 22, s t r u c t  i nou t -c t r l )  
-1ORWCts', 23. s t r u c t  i nau t -c t r l )  

#i f  ndef ANSI 
Yincjude <ansi.hr 
#endif 

-PROTOTYPE( i n t  i o c t l ,  ( i n t  -fd, i n t  -request, v o i d  *-data) 1; 

# i  f ndef -SICCONTEXT-H 
#def i ne -SICCONTEXT-H 

/*  The sigcontext s t ruc tu re  i s  used by the sigreturn(2) system c a l l .  
* sigreturnc) i s  seldom ca l l ed  by  user programs, bu t  i t  i s  used internal 
* by the s ignal  catch ing mechanism. 
*/ 

# i  fndef  ANSI-H 
# i  ncf ude cansi . h> 
dendi f 

#i fndef -CONFIG-H 
#i nc l  ude mi n i  x/config. h> 
rendi  f 

#i f ! de f  i ned (CHIP) 
# inc lude "e r ro r ,  conf igurat ion i s not known" 
#endi f 

/* The f o l l ow ing  s t r uc tu re  should match the stackfra-s s t ruc tu re  used 
* by t he  kernel 's  context swi tch ing code. F l oa t i ng  po i n t  r eg i s t e r s  should 
* be added i n  a d i f f e r e n t  s t r uc t .  
*/ 

# i f  (CHIP == INTEL) 
s t r u c t  s igregs I 
# i f  ,WORD-SIZE =- 4 

shor t  sr-gs; 
shor t  sr-fs; 

Xendi f /* -WORD-SIZE == 4 */ 
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short sr-es; 
short sr-ds; 
i n t  sr-di ; 
i nt  sr-si ; 
i n t  sr-bp; 
i n t  sr-st; 
i n t  sr-bx; 
i n t  sr-dx; 
i n t  sr-cx; 
i n t  sr-retreg; 
i n t  sr-retadr; 

/* stack top --  used i n  kernel */  

/* return address t o  caller of  save -- used 
* i n  kernel */ 

i n t  s r j c ;  
i n t  sr-cs; 
i nt sr-psw; 
i n t  sr-sp; 
i n t  sr-ss; 

I ;  

s t ruc t  sigframe { /* stack frame created f o r  signal led process */ 
-PROTOTYPE( void (*sf-retadr) , (void) ) ; 
i n t  sf-signo; 
i nt  sf-code; 
s t ruc t  sigcontext *sf-scp; 
i n t  sf-fp; 
,PROTOTYPE( void C*sf,retadr2), (void) ) ; 
s t ruc t  sigcontext *sf-scpcopy; 

1 ;  

#else 
# i f  (CHIP I- M6B000) 
s t ruc t  sigregs { 

long sr-retreg ; 
long sr-dl; 
1 on9 s r A 2  ; 
1 ong sr-d3 ; 
long sr-d4; 
long sr-d5; 
long sr-d6 ; 
long sr-d7; 
long sr-a0; 
long sr-al; 
long sr-a2; 
long sr-a3; 
1 ong st--a4; 
long sr,a5; 
1 on9 sr-a6; 
long sr-sp; /* also know as a7 */ 
long sr-pc; 
short s rssw;  
short sf-dumy ; /* make size mul t ip le o f  4 for  system.^ */ 

3 ;  
#el se 
#include "error, CHIP i s  not supported" 
#endi f 
tendi f /* CHIP - INTEL */ 

s t ruc t  sigcontext I 
i n t  sc-flags; 
long sc~nask; 

/* sigstack state  t o  restore  */ 
/* signal mask to  restore */ 
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s t r u c t  s igregs sc-regs; / *  r e g i s t e r  set  t o  res to re  * /  
1 : 

# i f  ( C H I P  == INTEL) 
# i f  -WORD-SIZE == 4 
#define sc-gs sc-regs . sr-qs 
#def i ne sc-f 5 sc-regs. sr - fs  
#endi f  / *  -WORD-SIZE == 4 */ 
#def i ne sc-es sc-regs . sr-es 
#def i ne sc-ds sc-regs . sr-ds 
Rdef i ne sc-di sc-regs . sr-di  
#def ine sc-si sc-regs . sr-si 
#def i ne sc-fp sc-regs . sr-bp 
t d e f  i ne sc-st sc-regs . sr-st  / *  stack t o p  - -  used i n  kernel * /  
#def ine sc-bx sc-regs.sr-bx 
#def ine sc-dx sc-regs . s r-dx 
#def ine sc-cn sc-regs. sr-cx 
#def ine sc-retreg sc-regs. sr - re t reg 
#def ine sc-retadr sc-regs. sr-retadr / *  r e t u rn  address t o  c a l l e r  o f  

save - -  used i n  kernel */ 
#def ine sc-pc sc-regs . sr-pc 
#def ine sc-cs sc-regs. sr-cs 
Rdefi ne sc-psw sc-regs . sr-psw 
#def i ne sc-sp sc-regs . sr-sp 
Xdef i  ne sc-ss sc-regs . sr-ss 
t e n d i f  /* CHIP == INTEL */ 

# i f  (CHIP == H68000) 
#def ine sc-retreg sc-regs . sr-retreg 
#def ine sc-dl sc-regs , sr-dl. 
#def ine sc-d2 sc-regs . s r-d2 
#def ine s c A 3  sc-regs.5t-d3 
Cdef i ne sc-d4 sc-regs . s r-d4 
#def ine sc-dS sc_regs.sr-d5 
l d e f  i ne s ~ d 6  sc-regs . s r-d6 
#def ine s c A 7  sc-regs.sr-d7 
Rdefine s c a 0  sc-regs . sr-a0 
#def ine sc-a1 sc-regs.sr-a1 
#def ine sc-a2 sc-regs. sr-a2 
#def ine sc-a3 sc-regs.sr-a3 
#def ine s c a 4  sc-regs. sr-a4 
#def ine s ~ a 5  sc-regs . sr-a5 
#def ine sc-f p sc-regs . s r-a6 
#def ine sc-sp sc-regs . sr-sp 
#def i ne sc-pc sc-regs . sr-pc 
#def ine sc-psw sc-regs.sr-psw 
#endif /* C H I P  == M68000 */ 

/* Values f o r  sc-flags. Must agree w i t h  <minix/jrnp-buf .hw.  */ 
#def ine SLSICCONTEXT 2 /* nonzero when s ignal  context i s  included */  
Rdef i ne SC-NOREGLOCALS 4 /* nonzero when reg i s t e r s  are not  t o  be 

saved and restored */ 

,PROTOTYPE( i n t  s ig re tu rn ,  ( s r ruc t  s igcontext  *-scp) >; 
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/* <sys/ptrace . h> 
* d e f i n i t i o n s  for ptrac,e(2) 
*/ 

Xi fndef -PTRACE-H 
Udef i ne -PTRACE-H 

#def ine T-STOP 
#def ine T-OK 
#def ine T-CETINS 
Itdef i ne f-GETDATA 
#def ine T-GETUSER 
t d e f  i ne 1-SETINS 
ddef i ne T-SETDATA 
Adef i ne T-SETUSER 
#def  i ne T-RESUME 
t d e f  i ne 1-EXIT 
l d e f  i ne T-STEP 

/* stop the  process */ 
/* enable t r ac i ng  by parent f o r  t h i s  process */ 
/* r e t u rn  value from i n s t r u c t i o n  space */ 
/* re tu rn  value from data space */ 
/* r e t u rn  value from user process t ab l e  */ 
/* s e t  value from i n s t r u c t i o n  space */ 
/* se t  value from da ta  space */ 
/*  s e t  value i n  user process table */ 
/* resume execution */ 
/* e x i t  */ 
/* se t  t r ace  b i t  */ 

/* Funct ion Prototypes. */ 
#i fndef ANSI-H 
X i  n c l  ude <ansi . h> 
Yendi f 

-PROTOTYPE( 1 ong p t  race, 

Yendif /* -PTRACLH */ 

(i n t  -req, p id- t  -pi d , long ,addr , long  -data) ; 

/* ~ h h  csys/stat.h> header def ines a s t r u c t  that i s  used i n  the  s t a t 0  and 
* f s t a t  funct ions.  The in format ion i n  t h i s  s t r u c t  comes from the i-node o f  
* some f i l e .  These c a l l s  a re  the on ly  approved way t o  inspect i-nodes. 
*/ 

#i f ndef -STAT-H 
t d e  f i ne ,STAT-H 

s t r u c t  s t a t  I 
dev-t st-dev; 
ino-t st- ino; 

-mode-t s t ~ n o d e  ; 
shor t  i n t  s t -n l ink ;  
ui  d-t st-ui  d; 
shor t  i n t  st-gid;  
dev-t st-rdev; 
o f  f-t s t -s i  ze ; 
t ime-t st-atime; 
t ime-t st-mtirne; 
t ime-t st-ctime; 

/* major/minor device number */ 
/* i-node number */ 
/* f i l e  mode. p ro tec t i on  b i t s ,  e tc .  */ 
/* # l i n k s ;  TEMPQRARY HACK: should be n l ink - t * /  
/* u i d  o f  the f i l e ' s  m e r  */ 
/* gid; TEMPORARY HACK: should be gid-t */ 

/* f i l e  s i ze  */ 
/* t ime o f  l a s t  access */ 
/* t ime o f  l a s t  data mod i f i ca t ion  * /  
/* t ime o f  l a s t  f i l e  s ta tus change */ 
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/ *  T rad i t i ona l  mask d e f i n i t i o n s  f o r  stmode. */ 
/* The ug ly  casts  on only some o f  the def in i t ions  are t o  avoid supr i s ing  s ign 
* extensions such a5 5-IFREC != (mode-t) S-IFREG when i n t s  are 3 2  b i t s .  
* / 

#def ine S-IFMT [(mode-t) 0170000) /* type o f  f i l e  */ 
#def ine S-IFREC ((mode-t) 01OQ000) /* regujar  */ 
#define 5-IFELK 0060000 /* block specia l  * /  
I de f  i ne S-I FDIR 0040000 /* d i r ec to r y  */ 
#def ine S-IFCHR 0020000 /*  character special  */ 
#def ine S-IFIFO OOlOOOO /* t h i s  i s  a FIFO */ 
#def i ne S-ISUID 0004000 /* set user i d  on execution */ 
Wdefi ne S-ISCID 0002000 / *  set  group i d  on execution */ 

/*  next i s  reserved f o r  f u t u re  use */ 
Cdef i ne S-ISVTX 01000 /* save swapped t e x t  even a f t e r  use * /  

Udef i ne 5-XRWXO 00007 /* o thers :  ------ rwx */ 
MeP i  ne SJROTH 00004 /* o thers :  ------ r-- */ 
Wdefi ne S-IWOTH 00002 /* others:  ------- w- */ 
#def i ne S-IXOTH 00001 /* others:  -------- x */ 

/ *  The f o l l ow ing  macros t e s t  s t ~ n a d e  (from POSIX Sec. 5.6.1.11. */ 
#def i ne S-ISREG lm) (((m) & S-IFMT) == S-IFREG) /* i s  a reg f i l e  */ 
#def ine S-ISDIR (m) (CCm) & SIFMT)  == S J F D I R )  /* i s  a directory */ 
Rdef i ne S-ISCHR ( m l  (((m) & S-IFMT) =- S-IFCHR) / *  i s  a char spec */ 
#def ine S,f SBLK(m) (((m) & S-IFMT) == S-IFULK) /* i s  a block spec */ 
#dkf i ne S-ISF I F O W  (( (m) & S-IFMT) == S-IFIF01 /* i s  a pipe/FfFO */ 

/"unction Prototypes. */ 
# i f n d e f  ANSI-H 
#i n c l  ude <ansi . h> 
dendi f 

_PROTOTYPE( i n t  chmod, (const char *,path, Mode-t -model 
-PROTOTYPE( i n t  f s t a t ,  ( i n t  - f i l des ,  s t r u c t  s t a t  *-buf) 
,PROTOTYPE( i n t  mkdi r, (const char *,path, Mode-t _node) 
- PROTOTYPE( i n t  mk f i fo ,  (const char *-path, Mode-t m d e )  
-PltOTOMPE( int s t a t ,  (cmst  char *-path, struct s t a t  *-buf) 
-PROTONPE ( mode-t umask, (Mode-t -cmask) 
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.................................................................................... 
i nc l  ude/sys/di r. h 

++++++++t+++++++++++++++t+++++-H+++++++++++++t++++++++++t++++++++++++++++++++++u+++ 

/* The <dir.h> header gives the layout o f  a d i rectory.  */ 

# i  fndef 4IRH 
M e f i n e  JIRH 

Pdefi ne DIRBLKSIZ 512 /* s i z e  o f  d i rec tory  block */ 

P i  fndef DXRSIZ 
#define DIRSIZ 14 
#en& f 

s t ruc t  d i r e c t  I 
ino-t d-i no; 
char d,name[DERSIZ]; 

1; 

l e n d i f  /* S I R H  */ 

++++++++++++++++++++++++t+++++++++++++++*++++#+*#+++++++++++++++++++++++++++++: 

i n c l  ude/sys/wai t. h 
++++++++++++++u++++++++t*+++++++++++++++*++H++++++++fe+-H+.H++++++++++++++++++++++++++ 

/* The .csys/wait.b header contains macros re lated t o  wait(). The value 
returned by w a i t 0  and waitpid() depends on whether the process 

* terminated by an e x i t  () c a l l ,  was k i  7 1 ed by a signal , or was stopped 
due t o  job control.  as fol lows: 

* High byte Low byte 
+ --------------------- + 

e x i t  (status) I status I 0 I 

k i l  l e d  by signal I 0  I signal I 
+ --------------------- + 

t stopped (job control) I signal 1 0177 1 
* 
*/ 

# i  f ndef - W A I T 3  
#def i ne -WAIT-H 

#def i ne -LOW(v) 
#define ,HIGH (v) 

M e f i n e  WNOHANG 
l d e f  i ne WNTCUCED 

#define WIFEXITEDCs) 
#define WEXITSTATUS(s) 
M e f i n e  WEIWSIGEs) 
#define WIFSIGNALED(s) 
#def i ne WIFSTOPPEDCs) 
#define WSTOPSftCs) 

( (v) & 0377) 
( ((v) >> 8) & 0377) 

1 /* do not wai t  f o r  c h i l d  t o  e x i t  */ 
2 /* f o r  job contro l ;  not implemented */ 

C-LOUCs) -- 0) /* normal e x i t  */ 
(-HIGH(s)) /* e x i t  status */ 
(1OW(s) & 01773 /* sig value */ 
(((unsigned int ) (s)-1 6 OxFFFF) c OxFF) /* signaled */ 
(-LOW(s) -- 0177) /* stopped */ 
C,HIGH(s) & 0377) /* stop signal */ 
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/* Function Prototypes. */ 
# i  fndef  ANSI-H 
#include <ansi . h> 
#en& f 

,PROTOTYPE( p id- t  w a i t  , C in t  * - s t ac l oc )  1; 
,PROTOTYPE( p i  d-t wai t p i  d, (pid-t -pi d ,  i n t  *-star-loc, i n t  ,options) 1; 

++++t++++++t+++t++++++++ii++++++++++++i++++++++++*++++++++i++++i+++++i+++++++++++++++ 

i nc l  ude/mi n i  x/conf i g  . h 
+++++++++++++++++++++t++++t++++++++++++++++++++++++++t++++++++++++++++++++++++++++++ 

#i f ndef -CONFILH 
#define -CONFIGH 

/* M in ix  release and vers ion numbers. */ 
#def ine OS-RELEASE "2.0" 
#def i ne 0s-VERSION "0" 

/* This  f i l e  se ts  con f igu ra t ion  parameters f o r  t h e  MINIX kernel ,  FS, and W. 
I t  i s  d i v i ded  up i n t o  two main sect ions. The f i r s t  sect ion conta ins 

+ user-set tab l  e parameters. I n  the second sect ion, var ious i n t e r n a l  system 
parameters a re  se t  based on t he  user -se t tab le  parameters. 

*/ 

#def ine Z R P C  1 / *  any 8088 o r  80x86-based system */ 
#def ine SUN-4 . 40 /* any Sun SPARC-based system */ 
#def i ne SUN-4-60 40 /* Sun-4/60 (aka SparcStation 1 o r  Campus) */ 
Wdef i ne ATARI 60 /* ATARl ST/STe/TT (68000/68030) */ 
Ydefi ne MICA 61  /* Commcrdore Amiga (68000) */ 
Ydef  i ne MACINTOSH 62 /* Apple Macintosh (68000) */ 

/* Word size i n  bytes (a constant equal to sizeof(int)). */ 
# i f  A C K ,  
#def i ne -WORDSIZE -EKWSIZE 
#endi f 

/* I f  ROBUST i s  set  t o  1. wr i t es  o f  i-node, d i r ec to r y ,  and i n d i r e c t  blocks 
* from t h e  cache happen as soon as the blocks are modif ied. Th is  g ives  a more 
* robust, but slower. f i l e  system. I f  i t  i s  s e t  t o  0, these blocks a re  no t  
* given any special  treatment, which may cause problems i f  the system crashes. 
*/ 

#def ine ROBUST 0 /* 0 f o r  speed, 1 f o r  robustness */  

/* Number o f  s l o t s  i n  the process table For user processes. */ 
#def i ne NRPROCS 32 
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/* The buf fe r  cache should be made as large as you can af ford.  +/ 
#if (MACHINE == I B K K  && X J R D ~ I Z E  == 2) 
#def i ne NRBUFS 40 /* # blocks i n  the buf fe r  cache */ 
Ldef i ne NRBUF-HASH 64 /* size o f  buf  hash table; MIST BE WWER OF 2*/ 
#en& f 

# i f  (MACHINE =- I B k K  &&_WORD-SIZE == 43 
#define NRBUF S 512 /* # blocks i n  the buf fe r  cache */ 
#define NRBUF-HASH 1024 /* size of buf  hash table;  HUST BE WWER OF 2*/ 
Pendi f 

# i f  (MACHINE = SUN-4-60) 
Xdefi ne NRBUFS 512 /* # blocks i n  the buf fe r  cache C<-1536) */ 
#defi  ne NRBUF-HASH 512 /* size o f  bu f  hash table; MUST BE POWER OF 2+/ 
#endi f 

#if (MACHINE =- ATARI) 
Mef ine NRBUFS 1536 /* # blocks i n  the buf fe r  cache (q-15363 */ 
#define NRBUF-HASH 2048 /* size o f  buf  hash table; MUST BE POWER OF 2*/  
Cendi f 

/* Defines f o r  kernel configurat ion. */ 
#def i ne AUTO-BIOS 0 /* xLwin i .c  - use Western's autoconfig BIOS */ 
C def i ne LENEWRAP 1 /* conso1e.c - wrap l i n e s  a t  column 80 */ 
#define ALLOW-GAP-MESSAGES 1 /* proc. c - a1 l o w  messages i n  the gap between 

* the end o f  bss and lowest stack address */ 

/* Enable o r  disable the second leve l  f i l e  system cache on the RAM disk. */ 
#define ENABLE-CACHE2 0 

/* Include o r  exclude device drivers. Set t o  1 t o  include, 0 t o  exclude. */ 
#define E N A B C L N E W R K I K  0 /* enable TCP/fP code */ 
Pdef i ne ENABLEAT-WIN1 1 /* enable AT winchester d r iver  */ 
Pdef i ne ENABLE-610s-WIN1 0 /* enable 0105 wi nchester d r i ve r  */ 
Cdef i ne ENABLE-€501-WIN1 0 /* enable E S D I  wi nchester d r i ve r  */ 
#define! ENABLEJXT-WIN1 0 /* enable KT winchester d r i ve r  */ 
#define ENABLEJIDAPTECSCSI 0 /* enable ADAPTEC SCSI dr iver  */ 
Cdef i n e  EMABLUITSUHLCOROM 0 /* enable Mi t s m i  CD-ROM dr iver  
#define ENABLESBAUDIO 0 /* enable Soundblaster audio d r i e r  */ 

/* DMLSECTORS may be increased t o  speed up M4 based dr ivers .  */ 
#def i ne OMkSECTORS 1 /* MA buf fe r  size (must be >I 1) */ 

/* Include or exclude backnards compat ib i l i t y  code. */ 
#define WBLLBINCOMPAT 0 /* fo r  binaries using obsolete calls */ 
#define ENABLE-SRCCOHPAT 0 /* f o r  sources using obsolete c a l l s  */ 

/* wtermine A i c h  device t o  use for pipes. */ 
#define PIPE-DEV RWTDEV /* put pipes on roo t  device */ 

/* NRCONS, NRRS-LINES, and NRPTYS determine the nunber o f  terminals the  
* system can handle. 
*/ 

#define NLCWS 2 /* Y system consoles (1 t o  8) */ 
Edefi ne N R R S  LINES 0 /* # rs232 terminals (0, 1, o r  2 )  */ 
Mefine K P T Y S  0 /* # pseudo terminals (0 to  64) */ 

ti f (MACHINE a- ATARI) 
/* me next def ine says i f  you have an ATARI ST o r  TT */ 
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#define ATARI-TYPE TT 
#define ST 1 /* a l l  ST'S and Mega ST'S */ 
#define STE 2 / *  a l l  5Te and Mega STe's */ 
#define TT 3 

/" i f  SCREEN i s  set t o  1 graphica l  screen operations are poss ib le  */  
bdef i ne SCREEtI 1 

/" T h i s  de f ine  says whether the keyboard generates VTlOO o r  IBM-PC escapes. */ 
#def ine KEYBOARD VTlOO /* e i t h e r  VTlOO o r  IBM-PC */ 
Xdefi ne VTlOO 100 

/ *  The next def ine  determines t he  k i n d  o f  p a r t i r i o n i n g .  */  
#def ine PARTITIONING SUPRA /* one o f  the f o l l ow ing  o r  ATARI */ 
Xdef i ne SUPRA 1 /*ICO, SUPRA and EMS are a l l  the  same */ 
#def ine EMS 1 
#define ICD 1 
Ydefi ne CBHD 2 
#def ine EICKMANN 3 

/ *  Define the number o f  hard d i s k  d r i ves  on your system. * /  
#def ine NRJCSI-DRIVES 3 /* t y p i c a l l y  0  o r  1 */ 
#def i ne NU-SCSI-DRIVES 1 /* t y p i c a l l y  0 <ST, STel o r  1 (TT) */  

/ *  Some systems need t o  have a l i t t l e  delay a f t e r  each winchester 
* comands. These systems need FAST-DISK se t  t o  0. Other d isks do no t  
* need t h i s  delay, and thus can have FAST-DISK set t o  1 t o  avoid t h i s  delay. 
* / 

#def  i ne FAST-DISK 1 /* 0 o r  1 */ 

/* Note: i f  you want t o  make your kernel smal ler,  you can se t  NRFD-DRIVES 
* t o  0. You w i l l  s t i l l  be able t o  boot minix.irng from f loppy. However, you 
* MUST f e t c h  both t h e  root and usr filesystem from a hard d i s k  
* / 

/*  Define t he  number o f  f loppy d isk  d r i ves  on your system. */ 
f de f  i ne NR-FD-DRIVES 1 /* 0, 1, 2 */ 

/* This  con f igu ra t ion  de f ine  con t ro ls  para1 l e l  p r i n t e r  code. */ 
Cdefi ne PARPRINTER 1 /* d isab le  ( 0 )  / enable (1) p a r a l l e l  p r i n t e r  */ 

/* This  con f igu ra t ion  de f ine  con t ro ls  d isk  c o n t r o l l e r  c lock  code. */ 
ddef i ne HD-CLKK 1 /* disable (0) / enable (1) hard disk c lock  *! 

/*=z===x============-----s====rrl======z=========~s======~====z============~===s* 

* There are no user-set tab le  parameters a f t e r  t h i s  l i n e  4 

t .- .- = ---_.__5ltt==E~*=ZE=~=======sr====================s===========*==*======s* -- - - - - / 
/* Set the CHIP type based on t h e  machine selected. The symbol CHIP i s  ac tua l l y  
* i n d i c a t i v e  o f  more than j u s t  the CPU, For example, machines f o r  which 
* CHIP == INTEL are expected t o  have 8259A i n t e r r r u p t  con t r o l l e r s  and the 
* o the r  p roper t ies  o f  IBM PC/XT/AT/386 types machines i n  general .  */ 

#def i ne INTEL 1 / * C H I P t y p e f o r P C , X T , A T ,  3 8 6 a n d c l o n e s 4 /  
Wdefi ne M68000 2 /* C H I P  type f o r  A ta r i ,  Amiga, Macintosh */ 
#def ine SPARC 3 /* CHIP type f o r  SUN-4 Ee.g. SPARCstation) */ 

/* Set the FP-FORMAT type based on t h e  machine selected, e i t h e r  hw o r  sw */ 
#defi ne FP-NONE 0 /* no f l o a t i n g  p o i n t  support * /  
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#define FP-IEEE 1 /* conform IEEE f l o a t i n g  po in t  standard */  

#if (MACHINE == I6M-PC) 
#define CHIP INTEL 
#define SHADOWING 0 
#define ENABLLWINI  (ENABLEATfWINI I l  ENABLLBIM-WIN1 I 1  \ 

ENA3LEJSDI-WIN1 1 1  ENABLLXT-WINI) 
t d e f  ine  ENABLE-SCSI (ENABLEADAPTELSCSI) 
#define ENABLE-CDROM (ENABLEJITSUMI-CDROM) 
#define ENABLEAUDIO (ENABLE-SBAUDIO) 
t end i f  

ti f (MACHINE == ATARI) I J (MACHINE == AMIGA) I (MACHINE == MACINTOSH> 
#define CHIP M68000 
#define SHAWWIWC 1 
#endi f 

# i f  (MACHINE == SUN-4) I I (MACHINE == SUN-4-60) 
#define CHIP SPARC 
W e f  i ne FP-FORMAT FP- IEEE 
#define SHADOWING 0 
#endi f 

# i  f (MACHINE == ATARI) I I (MACHINE == SUN-4) 
#def i ne ASKDEV 1 /* ask f o r  boot device */ 
#def i ne FASTLOAD 1 /* use mu l t i p l e  block t ransfers t o  i n i t  ram */ 
#endi f 

# i f  (ATARI-TYPE == TT) /* and a l l  other 68030's */ 
#define FPP 
Wndef SHADOWING 
Irdefi ne SHADOWIHG 0 
tendi f 

ti f ndef FP-FOWT 
#def i ne FP-FORWIT FP-NONE 
#endi f 

/* The f i l e  buf .h uses M A Y B L W R I T L I W E D .  */ 
# i f  ROBUST 
#define M A Y B E - W R I T E M D  W R I T L I M E D  /* slower but perhaps safer */ 
#else 
#define MAYBE-WRITEJmED 0 /* faster "/ 
tendi f 

# i  fndef  MACHINE 
error " In uuin ix /conf ig .h>  please define MACHINE" 
#endi f 

l r i fndef  CHIP 
e r ror  " In aninix/config.h> please define MACHINE t o  have a legal value" 
#endi f 

# i f  (MACHINE -= 0 )  
er ror  "MACHINE has incorrect  value (0)" 
#endi f 
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++++++++++++++++++++++++++++++++++++++++++++++++++++&+++++++++++++++++++++++++++++++ 
i n c l  ude/mi n i  xfconst .h 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*+++++++++ 

Copyright (C) 1995 by Prent ice-Hal l ,  I n c .  P e n i  ssion i s  hereby granted 
* t o  r e d i s t r i b u t e  t h e  b inary  and source programs o f  t h i s  system f o r  
* educat ional or research purposes. For o ther  use, w r i t t e n  permission from 
* Prent i  ce-Hal l  i s  required. 
* / 

#def ine EXf ERN extern 
#define PRIVATE s t a t i c  
#def i ne PUBLIC 
Udef i  ne FORWAkD s t a t i c  

Wef ine TRUE 1 
rdef i ne FALSE 0 

ddef i  ne HZ 60 
#def ine BLOCLSIZE 1024 
#def i ne SU?ERUSER (u i  d-t) 0 

#def ine MAJOR 8 
#def i  ne MINOR 0 

#define NULL ((void *)0) 
Rdef i ne CPVEC-NR 16 

/* used i n  * . h  f i l e s  */ 
/* PRIVATE x l i m i t s  the  scope of x */ 
/* PUBLIC i s  t h e  oppos? t e  o f  PRIVATE */ 
/* some compilers requ i re  t h i s  t o  be ' s t a t i c ' * /  

/ *  used f o r  t u rn i ng  in tegers  i n t o  BooTeans */ 
/* used f o r  t u rn i ng  in tegers  i n t o  Booleans */ 

/* c lock f r e q  (software se t t ab l e  on IBM-PC) */ 
/* # bytes i n  a d isk  block */ 
/ *  u id- t  o f  superuser */ 

/* major device = (devr>MAJOR) & 0377 */ 
/* minor device = (devrpMINOR) & 0377 */ 

/ *  nu71 po in te r  */ 
/ *  max # o f  en t r i e s  i n  a SYS-VCOPY request */ 

#de f i ne NU-IOREQS MIN(NRBUF5, 64) 
/* maximum number o f  e n t r i e s  i n  an iorequest  */  

#def i ne NR-SEGS 3 / *  # segments per  process */ 
#define T 0 /* p roc [ i ]  .memfiap[T] i s  f o r  t e x t  */ 
#def ine D 1 / *  p roc [ i ]  .meuap[D]  i s  f o r  data */ 
#def ine S 2 /* p roc [ i ]  .memmap[S] i s  f o r  stack */ 

/*  Process numbers o f  some important processes. */ 
#de f i ne WPROCNR 0 /* process number o f  memory manager */ 
Ydefi ne FS-PROC-NR 1 /* process number o f  f i l e  system */ 
#def i ne INET-PROC-NR 2 /* process number o f  the TCP/IP server * /  
#clef-ine INIT-PRKNR (INET-PROLNR + ENABLE-NETWORKING) 

/* i n i t  - -  the process t ha t  goes mul t iuser  */ 
#clef i ne LWUSER (INET-PROCNR + ENABLE-NETWORKING) 

/* f i r s r  user n o t  p a r t  o f  operat ing system */ 

/* Miscellaneous */ 
Wdefi ne BYTE 0377 /* mask f o r  8 b i t s  */  
#def i ne READING 0 /* copy data t o  user */ 
#def ine WRITING 1 /* copy data from user */ 
#def i ne NO-NUM 0x8000 /* used as numerical argument t o  p a n i c 0  */ 
#def ine NIL-PTR (char *) 0 /* genera l l y  usefu l  expression */ 
#def ine HAVE-SCATTERED-I0 1 /* scat tered 1/0 i s  now standard */ 

/* Number o f  tasks. */ 
#def i  ne NRTASKS (9 + ENABLE-WIN1 + ENABLE-SCSI + ENABLE-CDROM \ 

+ ENABLE-NETWORKING + 2 * ENABLEAUDIO) 
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/* Memory i s  al located i n  c l i cks .  */ 
#if (CHIP = INTEL) 
M e f i n e  CLICLSIZE 256 /* u n i t  i n  which memory i s  a l located */ 
t d e f  i ne CLICLSHIFT 8 /* log2 o f  CLICLSIZE */ 
#endi f 

lui f (CHIP I= SPARC) I I (CHIP == M68000) 
#define C L I C L S I Z E  4096 /* unit  inwh ichrnemry  i sa loca ted  */ 
#def ine CLICK-SHIFT 12 /* 2109 o f  CLfCLSIZE */ 
t end i f  

Pdefine clickto,round-k(n) \ 
((unsigned) ((((unsigned long) (n) ct CLICLSHIFT) + 512) / 1024)) 

#if CLICUIZE < 1024 
#define k to-c l i ck (n1 ((n) (1024 / CLICLSIZE)) 
#else 
#define k-to-cl i ck Cn) ((n) / (CLICLSIZE / 1024)) 
t end i f  

#define ABS -999 /* t h i s  process means absolute memory */ 

/* Flag b i t s  f o r  i ~ n o d e  i n  the  inode. */ 
Udef ine  LNPE OItOOOO /* t h i s  f i e l d  gives i na le  type */ 
rdef i ne I-REGULAR JUWOOO /* regular f i l e ,  not  d i  r or special */ . 
#define 1-BLOCICSPECIAL ~360000 /* block speci a1 f i l e  */ 
Idefr'ne I-DIRECTORY 0040000 /* f i ? e  i s  a d i rectory */ 
#define LCHARSPECIAL 0020000 /* character special f i l e  */ 
#define IMED-P IPE 0010000 /* named pipe (FIFO) */ 
#define I-SET-UIO-BIT 00040CKl /* ,set e f f ec t i ve  uid-t  on exec */ 
#define 1-SET-CfD-BIT 0002000 /* s e t  e f f ec t i ve  gid-t  on exec */ 
t d e f  i ne ALL-WDES 0006777 /* a l l  b i t s  for user, group and others */ 
#define Rk7CMOOES 0000777 /* made b i t s  for UWX on1 y */ 
#define RBIT  0000004 /* Rnx protect ion b i t  */ 
l d e f  i ne W-BIT 0000002 /* rWx protect ion b i t  */ 
#define L B I T  -1 /* m X  protect ion b i t  */ 
#define 1-NOTALLM: OOOOOOO /* t h i s  i node i s  free */ 

/* Sacre l i m i t s .  */ 
l d e f  i ne MM-BLOCK-NR ((block-t) 077777777) /* largest  block number */ 
Xdef i ne HIGHESTJONE ((zone-t) 077777777) /* largest  tone number */ 
Xdef ime WINODLNR ((ino-t) 0177777) /* largest  inode numkr */ 
#define WLFILLPOS ((off- t)  037777777777) /* largest  legal  f i l e  o f f se t  */ 

ldef  i ne NO-BLOCK 
t d e f  i ne NO-ENTRY 
Odef i ne W 2 O N E  
Wde f i ne NO-DEV 

CCblock,t) 0) /* absence o f  a block number */ 
(Cine-t) 0) /* absence o f  a d i r  entry & /  

((zone-t) 0) /* absence of a zone number */ 
((dev-tl 0) /* absence o f  a device numb */ 
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R i  f ndef -TYPLH 
#def ine -TYPE-H 
#if ndef -MINIKTYPE-H 
#def ine _MINI)(_TYPE-H 

/* Type d e f i n i t i o n s .  */ 
typedef unsigned i n t  v i  r - c l  icks; /* v i r t u a l  addresses and lengths i n  c l i c k s  */ 
typedef unsigned long phys,bytes;/* phys ica l  addresses and lengths i n  bytes */ 
typedef unsigned in t  phys-clicks;/* physical addresses and lengths i n  c l i c k s  */ 

# i f  (CHIP == INTEL) 
typedef unsigned i n t  v ir-bytes; /* v i r t u a l  addresses and lengths i n  bytes */ 
#endi f 

#if (CHIP == M68OOQ) 
typedef unsigned long v i  r-bytes; /* v i  r t u a l  addresses and lengths i n  bytes */ 
#endi f 

ri f {CHIP += SPARC) 
typedef unsigned long v i r  bvtes;/* v i r t u a l  addresses and lengths i n  bytes */ 
#@ndi f 

/*  Types r e l a t i n g  t o  messages. */ 
#def ine M 1  1 
t d e f i  ne M3 3 
Wdefi ne M4 4 
Wdef i ne M3-STRING 14 

typedef s t r u c t  { i n t  m l i l ,  m l i 2 ,  ml i3;  char *mlpl ,  *mlp2, *mlp3;3 mess.-1; 
typedef s t r u c t  { i n t  a 2 i l .  m2i2, m2i3; long rn211, m212; char *mZpl;) mess-2; 
typedef s t r u c t  ( i n t  m 3 i  1. m3i2; char *m3pl; char m3cal[M3-STRINC] ;} mless-3; 
typedef s t r u c t  { long M11,  m412, m413, rr414, M15;) MSS,~; 

typedef s t r u c t  {char rnscl, mSc2; i n t  m5i1, m5i2; long m511, mS12, m5l J;)mess-5; 
typedef s t r u c t  { i n t  m6i1, m6i2, m6i3; long m611; siqhandler-t m6 f l ;  1 mess-6; 

typedef s t r u c t  C 
i n t  mwurce; /* who sent the message */ 
i n t  m-type; /* what k i n d  o f  message i s  i t / 
union i 

m e s s 1  ~ 1 ;  
mess-2 nu112 ; 
mess-3 ~ 3 ;  
mess-4 nun4; 
mess-5 n u n s ;  
mess-6 m_m6; 

1 L u ;  
1 message; 

/ *  The fo l low ing  def ines provide names f o r  usefu l  members. */ 
#def i ne m l - i  1 KU .ul. m l i  l 
ddef i ne m l - i  2 m u  .mml  . m l i  2 
#def i ne m l - i  3 n t u  .ul. n l i  3 
#def ine ml-pl m-u .nun1 .mlpl 
#def ine m l p 2  m u .  m-1. mlp2 
Wdefi ne mLp3 m-u .m-ml.mlp3 
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#def i ne m2-i 1 ~ u .  mm2. m2i 1 
#define m2,iZ mu.mm2.m2i2 
#def i ne m2-i 3 m u .  nun2 .m2i 3 
#define m2-11 m~u.nun2.rn211 
#define m2-12 m ~ ~ . ~ 2 . m 2 1 2  
l d e f  i ne m2,pl n l u  . m-2 .m2pl 

#define m6-i 1 m u .  uut16. m6i 1 
#define m6-i 2 LU . n 1 ~ 6 .  m6i 2 
#def i ne m6-i 3 k u  . ~ 6 .  m6i 3 
#define m6-11 ~u.nun6.rn611 
#define m6-fl ncu.nun6.rn6fl 

s t ruc t  m e w a p  1 
v i  r-c 1  i cks m e ~ v i  r ; 
phys-clicks menuhys;  
v i  r-cl  i cks  meklen; 

1; 

s t  ruct  i orequest-s I 
long io-position; 
char *io-buf; 
i n t  io-nbytes; 
unsigned short io-request ; 

1;  
#endif /* ,TYPE-H */ 

typedef s t ruc t  I 
vir-bytes i o v ~ d d r ;  
v i  r-bytes i o v s i z e ;  

) iovec-t; 

typedef s t ruc t  I 
v i  t-bytes cpv-stc; 
vir-bytes cpv-dst; 
v i  r-bytes cpv-si ze ; 

) cpvec-t; 

/* v i r t u a l  address */ 
/* physical address */ 
/* leng th  +/ 

/* posi t ion i n  device f i l e  ( rea l l y  off-t) */ 
/* buf fer  i n  user space */ 
/* size o f  request */ 
/* read, w r i t e  (opt ional ly) */ 

/* address o f  an I/O buf fe r  */ 
/* sizeof an I / O  buf fe r  */ 

/* s r c  address of data */  
/* dst address o f  data */ 
/* size o f  data */ 

/* MM passes the address o f  a structure o f  t h i s  type t o  KERNEL when 
* do-sendsigc) i s  invoked as par t  o f  the signal catching mechanism. 
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* The s t r uc tu re  conta in  a l l  t he  in format ion t h a t  KERNEL needs t o  b u i l d  
* t he  s ignal  stack. 
* /  

s t r u c t  sigmsg { 
i n t  sm-signo; /* s igna l  number being caught */ 
unsigned long sm-mask; /* mask t o  restore when handler re turns */ 
v i  r-bytes sm-sighandler ; /* address o f  handler */ 
v i  r-bytes sm-sigreturn; /* address o f  -s igreturn i n  C l i b r a r y  * /  
v i  r-by t es  sm-stkptr ; /* user stack po in te r  */ 

1 ;  

#def ine MESS-SIZE (sizeof(message)) /* might need usizeof from fs here */ 
#def ine NIL-MESS ((message *) 0) 

s t r u c t  ps i n f o  { /* in format ion f o r  the ps ( l )  program */ 
u16-t nr-tasks, nr-procs; /* NR-TASKS and NU-PROCS constants. */ 
v i r -bytes proc,  mproc, fproc; /*  addresses o f  the main process tables .  * /  

I ;  

+++++++++++++++-++++++++++t+++++++++++++++++++++t++++++++++++++++++++t++++-+++++++++ 

i nc l  ude/mi n ix /sys l  i b.  h 
++++++ff++t++++c+++++++++++++fft++*++++++++++++t+++++t+++++++++++++++t++++++++++++++ 

/* Prototypes f o r  system l i b r a r y  funct ions.  */ 

#i fndef SYSLIB-H 
#define 3YSLIB-H 

/ *  Hide names t o  avoid name space p o l l u t i o n .  */ 
#def ine sendrec - sendrec 
#def i ne receive -receive 
#def ine send -send 

/*  Min ix  user+system l i b r a r y .  */ 
- PROTOTYPE( vo i d  p r i n t k .  (char * - f m t ,  . . .) 

/ *  Minix system 
-PROTOTYPE ( i n t  
-PROTOTYPE ( i n t  

sendrec, (i n t  -src-dest, message *-m-ptr) > ; 
- taskca l l ,  ( i n t  -who, i n t  -syscal i n r ,  message *-msgptr) ) ; 

l i b r a r y .  */ 
receive, ( i n t  -src, message *-m_ptr) 
send, (i n t  -dest, message *-m-ptrl 

sys-abart , Cint -how, . . . I  1; 
sys-adjmap, ( i n t  ,proc, s t r u c t  mentmap * -pt r ,  
v i  r-clicks -data-cl i cks, v i  r - c l i c ks  -sp) 1; 

-PROTOTYPE( i n t  sys-copy, ( i n t  -src-proc, i n t  -src-seg, phys-bytes -src-vi r ,  
i n t  -dst-proc, i n t  -dst-seg, phys-bytes -dst,vir, phys-bytes -bytes)); 

-PROTOTYPE( i n t  sys-exec, ( i n t  $roc, char *-ptr ,  i n t  -traced, 
char *-aout, v i  r-bytes -i n i  tpc) > ;  

-PROTOPIPE ( i n t  sys-execmap, (i n t  -proc, s t r u c t  menunap *-ptr) 1;  
-PROTOTYPE( i n t  sys-fork, ( i n t  -parent, i n t  - ch i ld ,  i n t  -pid,  

phys-cl icks ,shadow) 1 ;  
-PROTOTYPE( i n t  sys-f resh , (int -proc, s t r u c t  mem-map *-ptr , 
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phys-clicks -dc, phys-clicks *-basep, phys-clicks *-sizep) 1; 
-PROTOTYPE( i n t  sys-petsp, (i n t  -proc. vi  r-bytes *,newsp) 1; 
_PROTOTYPE( i n t  sys-newmap, (i n t  -proc, s t r u c t  menunap *,ptr) 1; 
- PROTOTYPE( i n t  sys-getmap, (i n t  -proc, s t r u c t  menunap *_ptr) 1; 
- PROTOTYPE( i n t  sys-sendsig , ( in t  S r o c ,  s t r u c t  s i  gmsg *,ptr) ); 
-PROTOlYPE( i n t  sys-oldsig, ( i n t  -proc, i n t  -sig, sighandler-t -sighandler)); 
-PROTOTYPE( i n t  sys-endsig, (i n t  -proc) > ; 
-PROTOTYPE( i n t  sys-sigreturn, (int j r o c ,  v i  r-bytes -scp, i n t  -flags) 1 ; 
-PROTOTYPE( i n t  sys-trace, ( i n t  -req, i n t  S r o c n r ,  long -addr, long *-datkp)) ; 
-PROTOTYPE( i n t  sys-xi t ,  ( i n t  ,parent, i n t  s r o c ,  phys-clicks *,basep, 

phys-cl 1 cks *-si zep)) ; 
-PROTOTYPE( i n t  s ys - k i l l ,  ( i n t  *roc, i n t  -sig) 1: 
-PROTOTYPE( i n t  sys-times, ( i n t  j r o c ,  c l o c k t  j t r t 51 )  > ; 

#def ine EXIT 
#def ine FORK 
#def ine READ 
#def i ne WRITE 
#def ine OPEN 
#def ine CLOSE 
#def ine WAIT 
#def ine CREAT 
#def ine LINK 
#def i ne UNLINK 
#def i ne WAITPID 
#def i ne CHDIR 
#def ine TIME 
#de f i  ne MKNOO 
#define CHlMOD 
#def ine CHOW 
Wdefi ne BRK 
#define STAT 
#de f i  ne LSEEK 
#def i  ne CETPID 
#def i ne MOUNT 
#def ine U W N T  
Ydef i ne SETUID 
#def i ne GETUID 
#def i ne STIHE 
Rde f i ne PTRACE 
t d e f  i ne ALARM 
#def  i ne FSTAT 
#def i ne PAUSE 
#de f i ne UTIME 
Kdef i ne ACCESS 
#def ine SYNC 
#def ine KILL 

77 /* number o f  system c a l l s  allowed */ 
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#def i ne RENAME 
#de f i  ne MKDIR 
#def ine RMDIR 
#def ine DUP 
#def ine PIPE 
Xdef i ne TIMES 
#def i ne SETGID 
#def i ne GETGID 
#def i ne .SIGNAL 
#def i ne IOCTL 
#def i  ne FCNTL 
#def ine EXEC 
#de f i  ne UMASK 
rYdef i ne CHROOT 
#de f i  ne SETSID 
#def ine GETPCRP 

/ *  The f o l l ow ing  are 
#def ine K S I G  
#def i ne UNPAUSE 
#def i ne REVIVE 
#def i ne TASK-REPLY 

not 

/ *  Posi x s ignal  hand1 i ng 
#def i ne SICACTION 
#def i ne SICSUSPEND 
#def i ne SICPENDING 
t d e f  i ne SIGPROCMASK 
#def i ne SICRETURN 

t d e f  i ne REBOOT 

system c a l l s ,  bu t  are processed l i k e  them. */ 
64 /* kernel detected a s ignal  */ 
65 /* t o  MM o r  FS: check f o r  EINTR */ 
67 /* t o  FS: rev ive  a sleeping process */ 
68 / *  t o  F S :  rep ly  code from t t y  task */ 

/ *  System c a l l s .  * /  
#def ine SEND 1 /* f unc t i on  code f o r  sending messages */ 
#def i ne RECEIVE 2 /* f unc t i on  code f o r  rece iv ing messages */ 
#define BOTH 3 /* f unc t i on  code f o r  SEND + RECEIVE * /  
#def i ne ANY (NRPROCS+100) /* receive(ANY, buf) accepts from any source */ 

/* Task numbers, func t ion  codes and rep ly  codes. */ 

/* The values o f  several task numbers depend on whether they o r  o ther  tasks 
* a re  enabled. They are def ined as (PREVTOUS-TASK - ENABLLTASK) i n  general . 
* ENABLE-TASK i s  e i t h e r  0 o r  1, so a task e i t h e r  gets a new number, o r  gets  
* the  same number as the previous task and i s  f u r t h e r  unused. 
* The l l Y  task must always have the most negat ive number so t h a t  i t  i s  
* i n i t i a l i z e d  f i r s t .  Many o f  the TTY f unc t i on  codes are shared w i t h  o ther  
* t a s k s .  
* /  

#def ine l l Y  (DL-ETH - 1) 
/* terminal  1/0 c lass */ 

# def ine CANCEL 0 / *  general r e q  t o  f o r c e  a task t o  cancel */ 
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def i ne HARD-INT 2 
def i n e  DEV-READ 3 
define DEV-WRITE 4 
def ine MV-IDOL 5 
def i n e  DEV-OPEN 6 
define DEV-CLOSE 7 
define SCATJERED-I0 8 
def ine llY-SETPGRP 9 
define TTY-EXIT 10 
define OPTIONAL10 16 
define SUSPEND -998 

fcn  code f o r  a l l  hardware i n t e r r u p t s  * j  
fcn code for reading from t t y  */ 
fcn code for w r i t i n g  to  t t y  */ 
fen  code f o r  ioctl */ 
fcn code f o r  opening t t y  */ 
fcn code f o r  c l o s i n g  t t y  */ 
fcn code f o r  mul t ip le  reads/writes */  
fcn code f o r  setpgroup */ 
a process group leader has exi ted */ 
modif ier t o  DEV-* codes w i th in  vector */ 
used i n  interrupts when tty has no data */ 

#def i n e  D L E T H  (CDROM - ENABLLNETWORKING) 
/* networking task */ 

/* Message type f o r  data l i n k  l a y e r  reqests. */ 
# def i ne DLWRITE 3 
# def ine DLWRITEV 4 
# def i ne DLREAD S 
# def ine D L R W  6 
# define D L X N I T  7 
# define OCSTOP 8 
# define DLGETSTAT 9 

/* Message type for-data l i n k  layer  repl ies. */ 
# def ine DLINIT-REPLY 20 
# de f i  ne DLTlSSlCREPLY 2 1  

I define DLPORT m2-i 1 
# define DLPROC m2-i 2 
# def ine DLCOUNT m2-i 3 
# def ine D 1 E  m2-11 
# def i ne DLCLCK nr2-12 
# def ine DLAOOR m2-pl 
# def i ne DLSTAT m2-11 

/* Bits i n  'DLSTAT' f i e l d  o f  DL rep l ies .  */ 
I def i ne DLPAQCSEND 0x01 
# define DLPACLRECV Ox02 
# def i ne DLRLAD-IP 0x04 

/* B i t s  i n  'DLJOOE' f i e l d  o f  DL requests. */ 
# def ine DLNOMOOE Ox0 
# define DLPROHISUEQ 0x2 
# def i ne DLHULTI-REQ 0x4 
# define DLBROALREQ 0 x 8  

# de t i  ne NW-OPEN DEV-OPEN 
# define FM_CLOSE DEV-CLOSE 
# de f i ne W-READ DEV-READ 
# def ine HJ-WRITE DEV-WRITE 
# define HJ-IOCTL DEV-IOCTL 
# define NW-CANCEL CANCEL 

ldef inc CDRW CAW10 - ENABLLCDROYI) 
/* cd-rom device task */ 

#define AUDIO (MIXER - ENABLLAUDIO) 
Udef i ne MIXER (SCSI - ENABLEAUDIO) 

/* audio & mixer devt ce tasks +/ 



#define SCSI 

#def ine WINCHESTER 

#def i ne SYNJLRM-TASK 

#define IDLE 

#def i  ne PRINTER 

#def i ne FLOPPY 

ddef i ne MEM 

File: include/minix/com.h 

(WINCHESTER - ENABLE-SCSI) 
/*  s cs i  device task */ 

(SYNJLRM-TASK - ENABLE-WINI) 

# de f ine  NULL-MAJOR 1 
# def i ne RAM-DEV 0 
# def ine MEM-DEV 1 
d def ine KMEM-OEV 2 
# de f ine  NULL-DEV 3 

#define CLOCK - 3 
# def  i ne SETALARM 
# def ine GET-TIME 
# de f ine  SET-TIME 
# de f ine  GET-UPTIME 
# de f ine  SET-SYNUL 

d def ine REAL-TIME 
# def ine CLOCK-INT 

#define SYSTASK 
# de f ine  SYS-XIT 
# de f ine  SYS-GETSP 
d de f ine  SYS-OLDSIG 
# de f ine  SY S-FORK 
# define SYSLNEWP 
# def ine SYS-COPY 
# de f ine  SYS-EXEC 
# de f ine  SYSLTIMES 
# de f ine  SYSABDRT 
# def ine SYS-FRESH 
# def ine SYS-KILL 
# def ine SYS-CBDOT 
# def ine SYS-UMAP 
# def ine SYS-MEM 
# def ine SYS-TRACE 
# def ine SYS-VCOPY 

MINIX SOURCE CODE 

/* winchester (hard) d isk  c lass '/ 

/* task  t o  send CLOCK-fNT messages */ 

/ $  task t o  run when t he re ' s  nothing t o  run * /  

/*  p r i n t e r  I / O  c lass */  

/ 4  f l oppy  d isk  class */  

/ *  /dev/ram, /dev/(k)mem and /dev/nu l l  c lass */ 
/ *  major device f o r  /dev/nul l */ 
/* minor device f o r  /dev/ram */ 
/* minor device f o r  /dev/mem */ 
/* minor device f o r  /dev/kmem */ 
/ *  m i  nor device f o r  /dev/nul 1 */ 

/ *  c lock  c lass  */ 
/ *  f c n  code t o  CLOCK, s e t  up alarm */  
/* f c n  code to  CLOCK, get real rime */ 
/* fcn code t o  CLOCK, se t  rea l  t ime */ 
/*  f c n  code t o  CLOCK, get uptime */ 
/ *  f c n  code t o  CLOCK, set up alarm which */ 
/* times out w i t h  a send */ 
/ *  r ep l y  from CLOCK: here i s  r ea l  t ime */ 

HARD-INT 
/ *  t h i s  code wi 11 on1 y be sent by */ 
/ *  SYNALRM-TASK to  a task t h a t  requesred a */ 
/ *  synchronous alarm */ 

2 /* i n t e r n a l  funct ions */ 
1 /* f c n  code f o r  sys_xit(parent, proc) */ 
2 /*  fcn code f o r  sys-sp(proc, &newsp) */ 
3 /* f c n  code f o r  sys-oldsig(proc, s ig) */ 
4 /* f c n  code f o r  sys-fork(parent, ch i l d )  */  
5 /' f cn  rode for sys-nemap(procno, m a p j t r )  */ 
6 / *  f c n  code f o r  sys-copy(ptr) * /  

' 7  / v  f cn  code f o r  sys-exec(procno, new-sp) */ 
8 /T f c n  code f o r  sys-times<procno, bu fp t r )  */ 
9 /*  f c n  code f o r  sys-abort() */ 

10 /* f c n  code f o r  sys-fresh() ( A t a r i  only) * /  
11 / *  f cn  code f o r  sys-k i l l (proc,  s ig) */  
1 2  / *  f c n  code f o r  sys-gboot(procno, bootpt r )  * /  
1 3  /*  fcn code f o r  sys-umap(procno, etc) */ 
14 /* f c n  code fo r  s ys~nem0  */ 
1 5  /* f c n  code f o r  sys-trace(req ,pid,addr ,data) */ 
16 /* fnc  code f o r  s ys~vcopy (s r c~p roc ,  dest-proc, 

vcopy-s . vcopy-pt r) */ 
1 7  /* f cn  code f o r  sys-sendsig(&sigmsg) */ # de f ine  SYS-SENDSIG 

# de f ine  SYS-SIGRETURN 18 /* f c n  code f o r  sys-sigreturn(6rsigmsg). * /  
# de f ine  SYS-ENDSIC 19 /* f c n  code f o r  sys-endsi g(procn01 */  
# de f ine  SYS-GETMAP 20 jf f c n  code f o r  sys-getmap(procno, map-ptr) */ 

#def i ne HARDWARE -1 /* used as source on i n t e r r u p t  generated msgs*/ 
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/* Names of message f i e l d s  fo r  messages t o  CLOCK task. */ 
#def ine DELTA-TICKS m6-11 /* alarm i n t e r v a l  i n  c lock  t i c k s  */ 
#def ine FUNCTO-CALL m6-fl / *  po in te r  t o  funct ion t o  c a l l  */ 
Wdefi ne NEW-TINE m6-11 /* value t o  se t  c lock  t o  (SET-TIME) */ 
#define CLKLPROC-NR m 6 - i l  /* which proc (or task) wants the alarm? */  
#def ine SECONDS-LEFT m6-11 /* how many seconds were remaining * /  

/* Names o f  message f i e l d s  usea f o r  messages t o  block and character tasks.  */ 
#def i ne DEVICE m2,il /* major-minor device */ 
Udef i ne PROC-NR m2-iZ /* which (proc) wants I j O ?  */ 
tdef i ne COUNT m2-i3 / *  how many bytes t o  t rans fe r  */ 
#def ine REQUEST m2-i3 /* i o c t l  request code */ 
I d e f i  ne POSITION m2-11 /* f i l e  o f f s e t  */ 
#def ine ADDRESS m2-pl /* core b u f f e r  address */ 

/* Names o f  message f i e l d s  f o r  messages t o  l T Y  task.  */ 
#def ine TTY-LINE DEVICE /* message parameter: terminal  l i n e  */ 
#def ine TTY-REQUEST COUNT /* message parameter: i o c t l  request code */ 
#def i ne TTY-SPEK POSITION /* message parameter: i o c t l  speed, erasing */ 
#def ine IT-FLAGS m2-12 /* message parameter: i o c t l  t t y  mode */ 
#def ine TW-PCRP m2-i3 /* message parameter: process group */  

/* Names of the  message f i e l d s  fo r  Q IC  02 s ta tus  r ep l y  from tape d r i v e r  */ 
#def ine TAPLSTATO m2-11 
#def ine TAPESTAT1 m2-12 

/* Names o f  messages f i e l d s  used i n  rep1 y messages from tasks. */ 
#define REP-PRKNR m2-i 1 /* # o f  proc on whose behal f  1/0 was done */ 
#def i ne REP-STATUS m2-i2 /* bytes t rans fe r red  o r  e r r o r  number */ 

/* Names o f  f i e l d s  f o r  copy message to  SYSTASK. */ 
#def i ne SRLSPACE m5-cl /* T o r  D space (stack i s  a lso  D) */ 
#def ine SRCPROC-NR m L i 1  /* process t o  copy f rm */ 
Xdef i cre SRC-BUFFER m5-11 /* v i r tua l  address where data come from * /  
I d e f  i ne DST-SPACE m5-c2 /* T o r  D space (stack i s  a lso  0) */ 
#def ine DST-PROCNR m5-i2 /* process t o  copy t o  */ 
Wdef ine  DST-BUFFER m5-12 /* v i r t u a l  address where data go t o  */ 
#def ine COPY-BYTES mS-13 /* number o f  bytes t o  copy */  

/ *  F i e l d  names f o r  accounting. SYSTASK and miscellaneous. */  
#def ine USELTIME 
#def ine SYSTEM-TIME 
#def ine CHILD-UTIME 
#def ine CHI LD-STIME 
#def ine BOOT-TICKS 

#def ine PROCl 
#def ine PROCZ 
#def ine PI0 
#def i ne STACLPTR 
#def ine PR 
#def ine SIGNUM 
#def ine FUNC 
#def i ne MELPTR 
#def i ne NAME-PTR 
#def i ne IF-PTR 
#def ine SIC-PROC 
t d e f  i ne SIC-MAP 
#def  i ne SIC-MSG-PTR 
#def  i ne SIC-CTXT-PTR 

/* user t ime consumed by process */  
/* system t ime consumed by process */ 
/* user t ime consumed by process' ch i l d ren  */ 
/ *  sys t i m e  consumed by process' ch i l d ren  */  
/* number o f  c lack  t i c k s  since boot t ime */ 

/* ind ica tes  a process */ 
/* ind ica tes  a process */ 
/* process i d  passed from Wl t o  kernel  */ 
/* used f o r  stack p t r  i n  sys-exec, sys-getsp */ 
/* process number f o r  sys-sig */ 
/* s ignal  number f o r  sys-sig */ 
/* func t ion  po i n t e r  f o r  sys-sig */ 
/* t e l l s  where memory map i s  f o r  sys-nemap */ 
/* t e l l s  where program name i s  f o r  dmp */ 
/* i n i  ti a1 value fo r  i p  a f t e r  exec */ 
/* process number f o r  in form * /  
/* used by kernel f o r  passing s ignal  b i t  map */  
/* po i n te r  t o  i n f o  t o  b u i l d  s i g  catch stack */ 
/* po i n te r  t o  i n f o  t o  res to re  s ignal  context */ 
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+++++++++++++++++++++++++++++**+++++++++++++++++++++++++++++++++++++++++++++++++++++ 
i nc l  ude/mi n i  x/boot. h 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*++++++*+++++ 

/* boot .  h */ 

/* Redefine roo t  and roo t  image devices as var iab les.  
* This keeps t h e  d i f f s  sm7J but may cause f u t u re  confusion. 
*/ 

Xdef i ne ROOT-DEV (boot-parameters . bp-rootdev) 
Xdef i ne IMAGE-DEV (boot-parameters . bp-ramimagedev) 

/* Device numbers o f  RAM, f loppy and hard d isk  devices. 
* h/com.h def ines RAM-DEV but on ly  as the minor number. 
*/ 

#def i ne DEV-FDO Ox200 
#def i ne DEV-HDO 0x300 
#def ine DEV-RAM 0x100 
#def ine DEV-SCSI 0x700 /* A t a r i  on ly  */ 

/* Structure to  hold boot parameters. */ 
s t r u c t  bparam-s 
I 

dev-t bp-rootdev; 
dev-t bp-rami magedev ; 
unsigned shor t  bp-ramsi ze; 
unsigned shor t  bp-processor; 

I ;  

e r t e rn  s t r u c t  bparam-s boot-parameters; 
Xendi f /*  -BOOT-ti */ 

/* keymap.h - def ines f o r  keymapping 
* / 
#i fndef  3YS-KEYNAP-H 
Rdef i ne SYS-KEYNAP-H 

Author : Marcus Hampel 

#def ine C(c) ((c) & OxlF) /* Hap t o  con t ro l  code */ 
.#define A(c) ((c) I 0x80) /*  Set e i g h t  b i t  (ALT) * / 
#def ine CA(c) A(C(c)) /* Control  -A1 t * / 
#define L(c) ((c) I HASCAPS) /* Add "Caps Lock has e f f e c t "  a t t r i b u t e  */ 

#def ine EXT Ox0100 /*  Normal func t ion  keys * / 
#def ine CTRL 0x0200 /* Control  key * / 
#def  i ne SHIFT 0x0400 /* Shift key */ 
#def ine ALT Ox0800 /*  A l te rna te  key */ 
#def ine EXTKEY 0x1000 /*  extended keycade * / 
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#define HASCAPS 0 x 8 0 0 0  /* Caps Lock  has e f f e c t  

/* Numeric kel  
M e f i  ne m3nE 
t d e f i  ne END 
#def ine UP 
#def ine WWN 
#def ine LEFT 
#de f i  ne RIGKT 
#def ine PGUP 
#def ine PCB4 
#def ine MID 
#def ine NMIN 
Xdef i  ne PLUS 
#def i ne INSRT 

{pad */ 
( 0 x 0 1  + EXT) 
(0x02 + EXT) 
(0x03 + EXT) 
(0x04 + EXT) 
(0x05 + EXT) 
(Ox06 + E n )  
(0x07 + EXT) 
(0x08 + EXT) 
(0x09 + E n )  
(OxOA + EXTI  
(OxOB + EXT) 
(OxOC + EXT) 

/ *  A l t  + Numeric keypad */ 
#def ine AHWE ( 0 x 0 1  + ALf )  
Xdef ine AEND (0x02 + ALT) 
#def ine AUP (0x03 + ALT) 
#def ine ADOWN (0x04  + ALT) 
#define ALEFT (0x05 + ALT) 
#define ARIGHT (0x06 + ALT) 
#define APGUP (0x07 + ALT) 
#define APGDN (0x08  + ALT) 
#define AMID (0x09  + ALT) 
#def ine ANMIN (OxOA + ALT) 
#def ine APLUS (OxOB + ALT) 
#def ine AINSRT (OxOC + ALT) 

/* C t r l  + Numeric keypad * /  
#def ine CHOME ( 0 x 0 1  + CTRL) 
#def ine CEND (Ox02 + CTRL) 
#def ine CUP (0x03 + CTRL) 
#def ine CMkJN (0x04 + CTRL) 
#define CLEFT (0x05 + CTRL) 
#def ine CRIGHT (0x06  + CTRL) 
#def ine CPGUP (0x07 + CTRL) 
#def ine CPGDN (0x08  + CTRL) 
#def ine CMID (0x09 + CTRL) 
#def ine CNMIN (OxOA + CTRL) 
#def ine CPLUS (Ox06 + CTRL) 
#def ine CINSRT (OxOC + CTRL) 

/* Lock keys */  
#def ine CALOCK (OxOD + EXT) /* caps lock +/ 
#def ine NLOCK (OxOE + E n )  /* number lock */ 
Udef i  ne SLOCK (OxOF + EXT) /* s c r o l l  l ock  */ 

/* Function keys */ 
#def ine F 1  Cox10 + EXT) 
#def ine F2 ( 0 x 1 1  + EXT) 
rYdefi ne F3 (0x12 + EXT) 
#def ine f 4  (0x13 + EXT) 
#de f i  ne FS (0x14 + EXT) 
#def ine F6 (0x15  + EXT) 
#def ine F7 (0x16  + EXT) 
#def ine F8 (0x17  + EXT) 
#de f i  ne F9 ( 0 x 1 8  + EXT) 
#def ine F 1 0  ( 0 x 1 9  + EXT) 



j* A1 t+Fn */ 
#def ine AF1 
#def ine AF2 
#define AF3 
Udef i  ne AF4 
#def ine AF5 
#def i ne AF6 
#def ine AF7 
#def i ne AF8 
#define AF9 
Xdefi ne AFlO 
#define AF11 
#def i  ne A F l 2  

/ *  Ct r l+Fn */ 
#def i~ne CF1 
Cdefipe CF2 
#defi,ne CF3 
#define CF4 
#define CFS 
f d e f i  ne CF6 
#def ine CF7 
#def ine CF8 
#def i  ne CF9 
#def ine CFlO 
Wdefine C F l l  
Bdefi ne C F l 2  

/* S h i f t + F n  */ 
#def ine SF1 
#def ine SF2 
#def ine SF3 
Xdefi ne SF4 
#def ine SF5 
#def ine SF6 
#def ine SF7 
Xdef i ne SF8 
#def ine SF9 
Xdefi ne SF10 
dde f i  ne SF11 
#define SF12 

/*  A1 t+Shi f t + F  
#def ine ASF l  
Xdef i ne ASFZ 
#def ine ASF3 
Wdef i ne A S M  
#def i n e  ASF 5 
Xdef i ne ASF6 
#def ine ASF7 
#def ine ASF8 
#define ASF9 
#define ASFl0 
#def i  ne A S F l l  
Rdef i ne ASFlZ 
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(Ox lA  + EXT) 
(OxlB + EXT) 

(0x10 + ALT) 
( 0 x 1 1  + ALT) 
(Ox12 + ALT) 
(0x13 + ALT) 
(0x14 + ALT) 
(0x15 + ALT) 
(0x16 + ALT) 
(0x17 + ALT) 
(Ox18 + ALT) 
(0x19 + ALT) 
(Ox1A + ALT) 
(0x15 t ALT) 

(0x10 + CTRL) 
(0x11 + CTRL) 
(0x12 + CTRL) 
(0x13 + CTRL) 
(Ox14 + CTRL) 
(0x15 + CTRL) 
(0x16 + CTRL) 
(0x17 + CTRL) 
(0x18 + CTRL) 
(0x19 + CTRL) 
(OxlA + CTRL) 
(OxZB + CTRL) 

(0x10 + SHIFT) 
(0x11  + SHIFT) 
(Ox12 + SHIFT) 
(0x13 + SHIFT) 
(Ox14 + SHIFT) 
(0x15 + SHIFT) 
(0x16 4 SHIFT) 
(0x17 + SHIFT) 
(0x18 + SHIFT) 
(Ox19 + SHIFT) 
(OwlA + SHIFT) 
(0~10 + SHIFT) 

:n */ 
( 0 ~ 1 0  + ALT + SHIFT) 
(0x11 + ALT + SHIFT) 
(Or12 + ALT + SHIFT) 
(0x13 + ALT + SHIFT) 
(0x14 + ALT + SHIFT) 
(0x15 + ALT + SHIFT) 
(Ox16 + ALT + SHIFT) 
(0x17 + ALT + SHIFT) 
(0x18 + ALT + SHIFT) 
(0x19 + ALT + SHICFJ 
(OxlA + ALT + SHIFT) 
(0x18 + ALT + SHIFT) 

#def ine MAP-COLS 6 / *  Number of columns i n  keymap */ 
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03935 #def ine NRSCAN-CODES Ox80 /* Number o f  scan codes (rows i n  keymap) */ 
03936 
03937 typedef unsigned shor t  keymap-t [NRSCAN-CODES * MAP-COLS] ; 
03938 
03939 #def ine KEY-MAGIC "KMAZ" /* Magic number o f  keymap f i l e  */ 
03940 
03941 Xendif / *  SYS-KEYMAP-H */ 

i n c l  ude/mi n i  x / pa r t i  ti on. h 

/* min i  * /pa r t i  ti on. h Author: Kees 3 .  Bot 
t 7 Dec 1995 
* Place o f  a p a r t i t i o n  on d i s k  and the d isk  geometry, 
* f o r  use w i t h  the DIOCCETP and DIOCSETP ioctl 's. 
* / 

Y i  f nde f -MINIX_PARTITION-H 
Ydef i ne -MINIX-PARTITION-H 

s t r uc t  p a r t i t i o n  { 
u32-t base; /* byte o f f s e t  t o  the p a r t i t i o n  s t a r t  */ 
u32-t s ize;  /* number of bytes i n  the p a r t i t i o n  */ 
unsigned cy l inders ;  /* d i s k  geometry */ 
unsigned heads; 
unsigned sectors;  

I ;  
dendif  /* -MINfX_PARTITION-H */ 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-++++++++++++++++++++++++++ 
i n c l  ude/i bm/part i t ion.h 

.................................................................................... 

/* Descript ion o f  e n t r y  i n  p a r t i t i o n  tab le .  */ 
#i f nde f -PARTITION-H 
#def i ne -PARTITION-H 

s t r u c t  part-entry { 
unsigned char boot i  nd; 
unsigned char start-head; 
unsigned char start-sec; 
unsigned char s ta r t -cy l  ; 
unsigned char sysind; 
unsigned char last-head; 
unsigned char last-sec: 
unsigned char las t -cy l  ; 
unsigned long lowsec; 
unsigned long  size; 

I ;  

#def ine ACTIVE-FLAG Ox80 
#def ine NU-PARTITIONS 4 
t d e f i  ne PART-TABLE-OFF OxlBE 

boot i ndi cator  O/ACTIVE-FLAG */ 
head value for f i r s t  sector */ 
sector value + c y l  b i t s  f o r  F i r s t  sector  */ 
t rack  value f o r  f i r s t  sector */ 
system i n d i  cator  * / 
head value f o r  l a s t  sector  */ 
sector value + cyl b i t s  fo r  l a s t  sector */ 
t rack  value f o r  l a s t  sector  */ 
l o g i c a l  f i r s t  sector */  
s i ze  o f  p a r t i t i o n  i n  sectors  */  

/* value f o r  a c t i v e  i n  boot ind f i e l d  (hdO) */ 
f* number o f  en t r i e s  i n  p a r t i t i o n  t ab l e  */ 
/* o f f s e t  o f  p a r t i t i o n  t ab l e  i n  boot sector */ 
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04120 
04121 /* P a r t i t i o n  types. */ 
04122 #def ine M I N I L P A R T  0x81 /* Min ix  p a r t i t i o n  type */ 
04123 #def ine NO-PART 0x00 /* unused en t ry  * /  
04124 #def ine OLD-MINILPART OxSO /* created befare 1 .4b ,  obsolete * /  
0412 5 #def ine EXT-PART 0x05 /* extended p a r t i t i o n  * /  
04126 
04127 Wendif /* -PARTITION-H */ 

/* This i s  t he  master header f o r  the  kernel.  It inc ludes some other  f i l e s  
* and def ines the p r i nc i pa l  constants. 
* / 

Xdef i ne POSIX-SOURCE 1 /* t e l l  headers t o  inc lude POSfX s tu f f  */. 
#define -MINIX 1 /* tell headers t o  inc lude  MINIX s t u f f  */ 
#def  i ne SYSTEM 1 /* t e l l  headers t h a t  t h i s  i s  the kernel */ 

/* The f o l l ow ing  a re  so basic,  a l l  the * . c  f i l e s  ge t  them automat ica l ly .  */ 
# i  n c l  ude <mi n i  x/conf i g . h r  / *  MUST be f i r s t  * /  
# inc lude xansi . h r  / *  MUST be second */ 
# inc lude <sys/types . h> 
# inc lude m i n i  x/const .hr 
#inc lude <mini x/rype. h> 
Ri nclude <mini x/sysl  i b. h> 

# inc lude <s t r i ng .  h> 
# inc lude < l im i t s . h>  
# i  n c l  ude <errno. h> 

#inc lude "const. h" 
# inc lude "type. h" 
#include "proto. h" 
#include "glo. h" 

/* General constants used by t he  kernel .  */ 

# i f  (CHIP =s INTEL) 

#def ine K-STACK-BYTES 1024 /* how many bytes f o r  the kernel  stack */ 

M e f  i ne INIT-PSW 0x0200 /*  i n i t i  a1 psw */ 
#def ine INIT-TASK-PSW 0x1200 /*  i n i t i a l  psw f o r  tasks (with IOPL 1) */ 
Xdef i ne  TRACEBLT 0x100 /* OR t h i s  wi th psw i n  procc] f o r  t r a c i n g  */ 
#def ine SETPSWCrp, new) /* permits on1 y c e r t a i n  b i t s  t o  be se t  */ \ 

((rp)-rp-reg.psw = (rp)->p-reg.psw & -0xCD5 1 (new) & OxCDS) 

/* I n i t i a l  sp f o r  m, f s  and i n i t .  
t 2 bytes f o r  shor t  jump 
t 2 bytes unused 
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t 3 words f o r  i n i L o r g [ ]  used by f s  on ly  
t 3 words f o r  rea l  mode debugger t r a p  ( ac tua l l y  needs 1 more) 

3 words f o r  save and r e s t a r t  temporaries 
* 3 words For i n t e r r u p t  

Leave no margin, t o  f l u s h  bugs ea r l y .  
*/ 

#define INIT-SP (2 + 2 + 3 * 2 + 3 * 2 + 3 * 2 + 3 * 2 )  

#def ine HCLICKSHIFT 4 /* log2 o f  HCLICLSIZE */ 
t d e f  i ne HCLICKSI ZE 16 /* hardware segment conversion magic */ 
X i  f CLICLSIZE >I HCLICLSIZE 
#def ine c l  i c k t o - h c l  i ckCn) ((n) e< (CLICKSHIFT - KLICICSHIFT)) 
#e l  se 
#def ine c l i c k t o - h c l  i ck(n) ((n) r ,  (HCLICKSHZFT - CtfCLSHIFT)) 
l e n d i  f 
#def ine h c I i c ~ t o g h y s b ( n )  ((phys-bytes) (n) cr HCLICLSHIFT) 
#def ine physb,to,hclick(n) ((n) >> HCLICLWIFT) 

/* I n t e r r u p t  vectors  defined/reserved by processor. */  
Xdef i ne DIVIOLVECTOR 0 /* d i v i de  e r r o r  */ 
I d e f  i ne DEBUG-VECTOR 1 /* s i ng l e  step (trace) */ 
Xdef i ne MI-VECTOR 2 /*non-rnaskableinterruptf/  
#def ine BREAKPOINT-VECTOR 3 /* software breakpoint */ 
#def ine OVERFLWECTOR 4 /* f rm INTO */ 

/* Fixed system c a l l  vector.  */ 
#def i ne SYS-VECTOR 32 /* system c a l l s  are made w i t h  i n t  SYSVEC */ , 
Xdef i  ne SYS386,MCTOR 33 /* except 386 system c a l l s  use t h i s  */ 
r d e f  i ne LEELO-VECTOR 34 /* for  execut ion o f  a f unc t i on  a t  l e v e l  0 */ 

/* Suitable i r q  bases f o r  hardware i n t e r r up t s .  Reprogram the 8259(s) from 
* the PC 310s de fau l t s  since the B I O S  doesn't respect a l l  the  processor's 
* reserved vectors  (0 t o  31). 
/ 

#def ine UIOS,IRQO_VEC 0x08 /* base o f  IRQO-7 vectors  used by BIOS */ 
#def ine BIOS-IRW-VEC 0x70 /* base o f  IRQ8-15 vectors  used by BIOS */ 
#def ine IRQLVECTOR 0x28 /* more o r  l e s s  a rb i t r a r y ,  b u t  > SYS-VECTOR */ 
W e f i n e  IRQ8-VECFR 0x30 /* together f o r  s i m p l i c i t y  */ 

/* Hardware i n t e r r u p t  numbers. */ 
Xdef i ne NR-IRQMCTORS 16 
I d e f  i ne CLOCLIRQ 0 
Wdef i ne KEYBOARD-IRQ 1 
Wdef i ne CASCADLZRQ 2 /* cascade enable f o r  2nd AT c o n t r o l l e r  */ 
Wdef i ne ETHERIRQ 3 /* de fau l t  e thernet  i n t e r r u p t  vector  */ 
#def i ne SECONDARY-IRQ 3 /* R5232 i n t e r r u p t  vector  for  p o r t  2 */ 
#def ine RS2 32-IRQ 4 /* RS232 i n t e r r u p t  vector  f o r  por t  1 */ 
#def ine Xf-WINX-IRQ 5 /* x t  winchester */ 
W e f  i ne FLOPPY-IRQ 6 /* f loppy d isk  */ 
#def ine PRINTERJRQ 7 
t d e f i  ne AT-WINI-IRQ 14 / *  a t  winchester */ 

/* I n t e r r u p t  number t o  hardware vector.  */ 
Xdef i ne BIOS-VECTOR (i rq) \ 

( ( E i  rq) < 8 ? BIOS-IRQO-VEC : 010s-IRQ8-VEC) + ((i rq) & 0x07)) 
#def ine VECTOR(i rq) \ 

(((i rq) c 8 ? IRQO-VECTOR : XRQB-VECTOR) + ( ( I  rq) & 0x07)) 

/* BIOS hard d i sk  parameter vecrors.  * /  
Xdef i ne WINI-0-PAW-VEC 0x41 
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/ *  8259A i n t e r r up t  c o n t r o l l e r  po r ts .  */  
#def i ne I N L C T L  Ox20 / *  1/0 po r t  f o r  i n t e r r u p t  c o n t r o l l e r  * /  
#def i ne INT-CTLMASK 0 x 2 1  / *  s e t t i n g  b i t s  i n  t h ~ s  p o r t  d isables i n t s  * /  
#def ine INT2-CTL OxAO / *  I/O p o r t  f o r  second i n t e r r u p t  c o n t r o l l e r  */ 
#def ine INT2-CTLMASK OxAl /+  s e t t i n g  b i t s  i n  t h i s  p o r t  d isables i n t s  "/ 

/ *  Magic  numbers f o r  i n t e r r u p t  c o n t r o l l e r .  * /  
#def ine ENABLE Ox20 

/*  S izes  of memory tab les.  * /  
Rdefi ne NR-MEMS 3 

/" Miscellaneous por ts .  */ 
#def ine PCR 0x65 
#def ine PORT-B 0 x 6 1  
Ydefi ne TIMER0 0x40 
Xdef i ne TIMER2 0 x 4 2  
#def ine TIMER-MODE 0x43 

#end i f  /* (CHIP == INTEL) * /  

j* Sizes o f  memory tab les .  */ 
#def ine NR-MEMS 2 

/ *  code used t o  re-enable after an i n t e r r u p t  * /  

/" number of chunks o f  memory */ 

/* Planar Control Register */ 
i* 1/0 p o r t  f o r  8255 po r t  B (kbd, beeper.. .) */ 
j"  1/0 p o r t  f o r  t imer channel 0 */ 
/ *  1/0 p o r t  f o r  t imer  channel 2 */ 
/* 1/0 p o r t  f o r  t.imer mode con t ro l  */ 

/* how many bytes f o r  the kernel stack */ 

/* number o f  chunks of memory */ 

/* p-reg contains: do-d7,  a0-a6, i n  t ha t  order.  */ 
#def ine NR-REGS 1 5  /*  number o f  general regs i n  each proc s l o t  * /  

#def ine TRACEBIT Ox8000 / *  o r  t h i s  w i t h  p s w  i n  proc[ ]  f o r  t r ac i ng  */ 
#def i ne SETPSW(rp, new) / *  permits on ly  ce r t a i n  b i t s  t o  be s e t  */ \ 

((rp)-rp-reg.psw = (rp)->p-reg.psw & -0xFF 1 (new) & OxFF) 

#def ine MEM-BYTES O x f f f f f f f f  j r  memory s i z e  f o r  /dev/mem * /  

#i fdef -ACK- 
#def 1 ne FSTRUCOPY 
#endi f 

#endif  / *  (CHIP == M68000) */ 

/ *  The f o l l ow ing  items pe r t a i n  t o  the  scheduling queues. */ 
#def i ne TASK-Q 0 /* ready tasks are scheduled v i a  queue 0 */ 
#define SERVER-Q 1 /* ready servers are scheduled v i a  queue 1 */ 
#def i ne USER-Q 2 / *  ready users are scheduled v i a  queue 2 */ 

# i f  (MACHINE == hThRZ1 
#def i ne SHADOW-Q 3 /* runnable, but  shadowed processes */  
#def ine NQ 4 /* # o f  schedul ing queues */  
#el  se 
#def ine NQ 3 /* t o f  schedul ing queues * /  
#endi f 

/* Env-parse() re tu rn  values. */ 
#de f i  ne EP-UNSET 0 /*  va r iab le  not set * /  
#def i ne E P-QF F 1 /*  var  = o f f  * /  
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04435 #def ine EPON 2 /* var = on (or  f i e l d  l e f t  blank) */ 
04436 #def ine EP-SET 3 /* var = 1: 2: 3 (nonblank f i e l d )  */ 
04437 
04438 /* To t r ans l a t e  an address i n  kernel  space t o  a phys ica l  address. This i s  
04439 * the same as umap(proc-ptr, 0 ,  v i r ,  s i zeo f ( *v i r ) ) ,  bu t  a l o t  l e ss  c o s t l y .  
04440 */ 
04441 #def ine v i  r2physCvi r) (database + ( v i  r-bytes) (vi  r)) 
04442 
04443 #def ine p r i n t f  p r i n t k  /* the kernel  r e a l l y  uses p r i n t k ,  no t  p r i n t f  */ 

# i  f ndef TYPE-H 
#def ine TYPE-H 

typedef -PROTOTYPE( vo id  t a s k t  , (void) ) ; 
typedef -PROTOTYPE( i n t  (*rdwt-t) , (message *m-pt r) ) ; 
typedef -PROTOTYPE( vo id  (*watchdog-t) , (void) ) ; 

s t r u c t  tasktab { 
task-t * i n i  t i a l -pc ;  
i n t  s tks ize ;  
char nameC83 ; 

1 ;  

s t r u c t  memory { 
phys-clicks base; 
phys-cl i c ks  size; 

3 ;  

/* Admin is t ra t ion f o r  c lock p o l l i n g .  */ 
s t r u c t  m i l l i - s t a t e  { 

unsigned long  accumcount; /* accumulated c lock t i c k s  */ 
unsigned prev-count; /* previous c lock value */ 

I ;  

# i f  (CHIP == INTEL) 
typedef unsigned por t - t ;  
typedef unsigned segmt  ; 
typedef unsigned reg-t; /* machine r e g i s t e r  */ 

/* The stack frame layou t  i s  determined by t h e  software, but f o r  e f f i c i e n c y  
* i t  i s  l a i d  out so the assembly code t o  use i t  i s  as simple as poss ib le .  
* 80286 protected mode and a l l  r ea l  modes use the same frame, b u i l t  w i t h  
* 16 -b i t  reg is te rs .  Real mode lacks an automatic stack switch, so l i t t l e  
* i s  lost by us ing the 286 frame f o r  it. The 386 frame d i f f e r s  on l y  i n  
* having 32-bi t reg i s t e r s  and more segment r eg i s t e r s .  The same names are 
* used f o r  t h e  la rger  r eg i s t e r s  t o  avoid d i f fe rences  i n  the code. 
"/ 

s t r u c t  stackframe-s { /* proc-ptr po i n t s  here */ 
Ui f -WORD-SIZE == 4 

u16-t gs; /* l a s t  i t em pushed by save */ 
u16-t f s ;  /* a */ 

%endi f 
u16-t es; /* I "/ 
u16-t ds; /* I */ 
reg-t d i  ; /* d i  through cx  are not  accessed i n  C */ 
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r e a t  s i  ; 
reg-t fp; 
reg-t s t  ; 
reg-t bx ; 
reg-t dx; 
reg-t cx ; 
reg-t r e t r eg  ; 
reg-t re tadr  ; 
reg-t PC ; 
reg-t cs ;  
reg-t psw; 
reg-t sp; 
reg-t ss; 

1 ;  

s t r u c t  segdesc-s { 
ul6-t 1 i m i  t-1 ow; 
u16-t base-1 ow ; 
u8-t base-mi ddle; 
u8-t access; 

#if  _WORD-SIZE == 4 
u8-t b ranu la r i  t y ;  
u8-t baqe-hi gh ; 

#else 
u16-t reserved; 

#end+ f 
1;  

/* order i s  t o  match pusha/popd */ 
/* bp */ 
/* ho le  f o r  another copy o f  sp */ 
* I */ 
/ *  I */ 
/* I */ 
/* ax and above are a l l  pushed by save */ 
/* r e t u rn  address f o r  assembly code s a v e 0  */ 
/* l a s t  i tem pushed by i n t e r r u p t  */ 
/* I "/ 
/* I */ 
/* I * /  
/* these are  pushed by CPU dur ing i n t e r r u p t  */ 

/* segment descr ip to r  f o r  protected mode */ 

typedef PROTOTYPE( i n t  (*i rq-handler-t) , ( i n t  i rq) ) ; 

#endif  / *  (CHIP == INTEL) * /  

#if (CHIP =I M68000) 
typedef _PROTOTYPE( vo id  (*dmai nt- t )  , (void) 1 ; 

typedef u32-t reg-t ;  / *  machine r eg i s t e r  */ 

/* The name and f i e l d s  o f  t h i s  s t r u c t  were chosen f o r  PC compa t i b i l i t y .  */ 
s t r u c t  stackframe-s { 

reg-t r e t  reg ; / *  dO */ 
reg-t dl; 
reg-t d2; 
reg-t d3; 
reg-t d4; 
reg-t d 5  ; 
reg-t  d6; 
reg-t d7; 
reg-t a0 ; 
reg-t al; 
reg-t a2; 
reg-t a3; 
reg-t a4 ; 
reg-t  as; 
r e c t  f p ; 
reg-t sp; 
reg-t P C ;  

u16-t psw; 
u l6 - t  dummy; 

1; 

/ *  a lso  known as a6 */ 
/* a l so  known as a7 */ 

/* make s i z e  m u l t i p l e  o f  reg-t f o r   system.^ */ 
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s t r u c t  fsave C 
s t r u c t  cpu-state ( 

o l6- t  i -format; 
u32-t i-addr; 
u16-t i-stateC41; 

1 cpu-state; 
s t r u c t  state-fraw C 

u8-t frame-type; 
u8-t f ranre-si ze ; 
u16-t reserved; 
uB-t frame[212] ; 

1 state-f r a w ;  
s truct  f p p d e l  I 

u32-t f p c r ;  
u32-t f p s r ;  
u32-t f p i a r ;  
sttuct fpN I 

u32-t high; 
u32-t low; 
u32-t mid ; 

> f p W 3  ; 
1 fpp-model ; 

1 ;  
Cendif /* (CHIP == M68000) */ 

#endi f  /* TYPE-H */ 

/* Function prototypes. */ 

#i f ndef PROTO-H 
Wdef i ne PROTO-ti 

/* S t r uc t  dec larat ions.  */ 
s t r u c t  proc; 
s t r u c t  t t y ;  

/* at_wini .c,  wini .c  */ 
-PROTOTYPE( void w i  nchester-task , (voi dl  
-PROTOTYPE( vo id  at-wi nchester-task, (void) 

/* c1ock.c */ 
-PROTOTYPE( void c t oclctask , (void) 
-PROTOTYPE( vo i d  c l o c L s t o p ,  (void) 
-PROTOTYPE( c l o c k t  get-uptime , (void) 
-PROTOTYPE( void syn-a1 r m t a s k ,  (void) 

/* dmp.c */ 
-PROTCTYPE( void map-dnrp , (void) 
-PROTOTYPE( voi d p-dmp , (voi d l  
-PROTOTYPE( void reg-dmp, ( s t r u c t  proc * r p j  
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-PROTOTYPE( vo id  dp8390_task, (void) 
-PROTOTYPE C void dp-dump, (vo i  d) 
-PROTOTYPE ( vo i d  dp8390_stop, (vo i  d) 

/ *  f10ppy.c. s t f l0ppy.c  */ 
-PROTOTYPE ( void f loppy-task, (void) 
-PROTOTYPE ( voi  d f 1 oppy-stop , (void) 

/*  main.^, st main.^ */  
-PROTOTYPE ( vo id  mai n , (voi dl 
-PROTOTYPE( vo id  panic,  (const char *s ,  i n t  n) 

/* memory .c  */ 
-PROTOTYPE ( vo id  mem-task , (void) 

/* n isc .c  * /  
-PROTOTYPE( i n t  env-parse, (char *env, char * f m t ,  i n t  f i e l d ,  

long *param, long min, l ong  max) > ; 
/*  p r i n t e r  . c ,  s r p r i n t .  c */ 
-PROTOTYPE( void pri  nter-task , (void) 

/* pr0c.c */ 
-PROTOTYPE( vo id  i n t e r r u p t  , ( i n t  task) 
- PROTOTYPE( i n t  loclynini-send. ( s t r uc t  proc *ca l le r -p t r ,  

i n t  des t ,  message *mstrl 
- PROTOTYPE ( vo i d  1 o c k p i  c k p r o c  , (void) 
-PROTOTYPE( vo id  lock-ready, ( s t r uc t  proc *rp) 
- PROTOTYPE ( vo id  1 ock-sched , (void) 
-PROTOTYPE( vo id  lock-unready. ( s t r uc t  proc *rp) 
-PROTOTYPE( i n t  sys-call , ( i n t  func t ion ,  i n t  src-dest, message 
-PROTOTYPE( vo id  unhold, (voi  d l  

/* rs232.c */ 
-PROTOTYPE( vo id  rs - in i  t, ( s t r u c t  t t y  * tp) 

/* system.c */ 
-PROTOTYPE( vo id cause-sig , Q i n t  proc-nr, i nt si g-nr) 1 ; 
-PROTOTYPE ( voi d i n f  orm , (voi d) 1; 
-PROTOTYPE( phys-bytes numap, ( in t  proc-nr, v i  r-bytes v i  t a d d r ,  

v i  r-bytes bytes) 1; 
- PROTOPIPE( vo id  sys-task, (void) 1 ;  
-PROTOTYPE( phys-bytes umap, ( s t r uc t  proc * rp ,  i n t  seg, v ir-bytes vir-addr, 

v i  r-bytes bytes) 1; 

/* t t y  . C  */ 
-PROTOTYPE( vo id  handle-events, ( s t r uc t  t t y  *tp) 1; 
-PROTOTYPE( vo i d  sigchar,  ( s t r uc t  t t y  * t p ,  i n t  s ig )  > ;  
-PROTOTYPE( vo id  t ty - task,  (void) I; 
- PROTOTYPE( i n t  in-process, (s t ruc t  t t y  * t p ,  char *buf,  i n t  count) 1; 
-PROTOTYPE( void out-process, ( s t r uc t  t t y  * tp,  char *bs ta r t ,  char +bpos, 

char 'bend, int * icount ,  i n t  *ocount) 1 ; 
-PROTOTYPE ( void tty-wakeup, (clock-t now) 1; 
-PROTOTYPE( vo i d  t t y - rep ly  , (i n t  code, i n t  rep1 yee, i n t  proc-nr, 

i n t  status) 3 ; 
-PROTOTYPE( vo id  tty-devnop, ( s t r uc t  tty * tp )  1 ; 

/* l i b r a r y  */ 
-PROTOTYPE( vo i d  *memcpy, (vo id  '-51, const vo i d  * - s Z ,  size-t -n )  1; 
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#if  (CHIP == INTEL) 

/* c1ock.c */ 
-PROTOTYPE( vo id  m i  l l i - s t a r t ,  ( s t r uc t  m i l  l i - s t a t e  *msp) 1 i 
-PROTOTYPE( unsigned m i  l l i -e lapsed,  ( s t r uc t  m i  1 l i - s t a t e  *msp3 1; 
_PROTOTYPE( vo i d  m i l l i -de lay ,  (unsigned m i l l i s e c )  1; 

/* cons01e.c */ 
-PROTOTYPE ( void cons-stop , (void) 
-PROTOTYPE( void putk, ( i n t  c) 
-PROTOTYPE( vo i d  scr-i n i  t, ( s t r uc t  t t y  * tp) 
- PROTOTYPE( vo id  toggle-scro l l  , (void) 
- PROTOTYPE( i n t  con-loadfont, (phys-bytes user-phys) 
-PROTOTY?EC void select-console, ( i n t  cons-l i ne) 

/* c s t a r t . ~  */ 
-PROTOTYPE( vo id  c s t a r t ,  (U16-t cs, U16-t ds, U16-t mcs, U16-t mds, 

U16-t parmoff, U16-t parmsizel >;  
-PROTOTYPE( char *Lgetenv.  (char *name) 3 ; 

/* except ion. c */ 
-PROTOTYPE( vo id  cxcept i  on, (unsigned vec-n r) 

/* i8259.c */ 
-PROTOTYPE( i rqhand le r - t  get - i  rq-hand1 er , ii n t  i rq) 1 ;  
-PROTOTYPE( vo i d  put-i rq-handler, (i n t  i rq, i rchand le r - t  hand1 er)  > ;  
- PROTOTYPE( vo i d  I n t r - i  n i  t , ( i n t  mine) 1; 

/* keyb0ard.c */ 
-PROTOTYPE( vo id  kb - i n i t ,  ( s t r uc t  t t y  *tp) 
-PROTOTYPE ( i n t  kbd-1 oadmap , (phys-bytes user-phys) 
- PROTOlYPE( vo id wreboot, (i n t  how) 

/* k l i b 4 . s  */ 
-PROTOTYPE( vo id  b ios l3 ,  (void) > ; 
-PROTOTYPE( phys-bytes check-mem, (phys-bytes base, phys-bytes s ize)  1' ' 
-PROTOTYPE( vo id  cp-mess, ( i n t  s rc ,  phys-clicks s rc -c l i cks ,v i  r-bytes src-o)l!set. 

phys-clicks dst -c l icks,  vir-bytes dst -o f fset )  >; 
-PROTOTYPE( i n t  i n-byte, (por t - t  por t )  1; 
-PROTOTYPE( i n t  i n-word, (por t - t  por t )  1; 
- PROTOTYPE ( voi d 1 ock, (void) 1; 
-PROTOTYPE( vo id  unlock, (void) > ;  
-PROTOTYPE( vo id  enable-irq, (unsigned i rq) 1; 
-PROTOTYPE( i nt d i  sabl e-irq, (unsi gned i rq) 1; 
-PROTOTYPE( u16-t memrdw, (segmt  segm, vir-bytes offset) 1; 
- PROTOTYPE( vo id  out-byte, (port- t  po r t ,  i n t  value) > ;  
-PROTOTYPE( vo id  out-word, (port- t  po r t .  i n t  value) 1; 
-PROTOTYPE( vo id  phys-copy, (phys-bytes source, phys-bytes dest,  

phys-bytes count) I ;  
-PROTOTYPE( vo id  port-read, (unsigned po r t ,  phys-bytes des t ina t ion ,  

unsigned bytcount) 1 ;  
-PROTOTYPE( vo id  port-read-byte, (unsigned po r t ,  phys-bytes dest inat ion,  

unsigned bytcount) > ;  
-PROTOTYPE( vo id  port-wri  te ,  (unsigned por t .  phys-bytes source, 

unsigned bytcount) 1; 
-PROTOTYPE( vo id  port-write-byte, (unsigned po r t ,  phys-bytes source, 

unsigned bytcount) 1; 
- PROTOTYPE( vo id  reset,  (voi d) 1; 
-PROTOTYPE( vo id  v i  d-vi d-copy. (unsigned src,  unsigned ds t  , unsigned count)) ; 
-PROTOTYPE( vo id  me~v id - copy ,  (ul6-t *src ,  unsigned ds t ,  unsigned count)]; 



_PROTOTYPE ( voi d 
-PROTOTYPE { vo i  d 

/ *  misc.c * /  
-PROTOTYPE ( voi  d 

/* mpx*.s * /  
-PROTOTYPE C vo i  d 
-PROTOTYPE ( voi d 

/* The fo l lowing 

Fi le: src/kernel/prots.h MINIX SOURCE CODE 

idle-task, (void) 
r e s t a r t ,  (void) 

are never c a l l e d  from C (pure asm procs). */ 

/* Exception handlers (real  o r  protected mode), i n  numerical order.  */ 
vo id  -PROTOTYPE( i n t 00 ,  (void) ) , -PROTOTYPE( d iv ide-error ,  (void) ); 
void -PROTOTYPE( i n t 01 ,  (void) 1, -PROTOTYPE( s i  ngle-step-exception, (void) ) ; 
vo id  -PROTOTYPE ( i nt02, (void) 1 , -PROTOTYPE ( nmi , (void) ) ; 
void -PROTOTYPE ( i ntO3, (void) ) , -PROTOlYPE( breakpoi nt-exception, (void) ) ; 
vo i d  -PROTOWE( in t04 ,  (void) ) , -PROTOTYPE( overf low, (void) 1 ;  
vo i  d -PROTOTYPE( i nt05 ,  (void) 1 , -PROTOTYPE ( bounds-check , (void) 3 ; 
vo i d  -PROTOTYPE( i ntO6, (void) 3 ,  _PROTOTYPE( inva'l-opcode, (void) ) ; 
void -PROTOTYPE( i nt07 , (void) ) , -PROTOTYPE( copr-not-avai 1 able, (void) 1 ; 
void -PROTOTYPE ( doubl e-f a u l t  , (void) ) ; 
void -PROTOTYPE( copr-seg-ove r run,  (voi d) ) ; 
vo id  _PROTOTYPE( inva l - t ss ,  (void) 1; 
vo id  -PROTOTYPE ( segmen~not-present , (vo i  d) 1 ; 
void -PROTOTYPE( s t ackexcep t i  on, (voi  d) ) ; 
vo i  d -PROTOTYPE( g e n e r a l ~ r o t e c t i o n  , (void) ) ; 
vo id  -PROTOTYPE( page-f au l  t , (void) ) ; 
vo id  - PROTOTYPE( copr-error . Cvoi d l  ) ; 

/* Hardware i n t e r r u p t  handlers. */ 
-PROTOTYPE ( voi d hwi nt00, (void) ) ; 
-PROTOTYPE I void hwintOl,  (void) ) ; 
-PROTOTYPE( vo i d  hwint02, (void) ) ;  
- PROTOTYPE( voi  d hwi n t03,  (void) ) ; 
_PROTOTYPE( vo id  hwi nt04, (void) 1 ; 
-PROTOTYPE( vo i d  hwi ntO5, (void) ) ; 
-PROTOTYPE ( void hwi ntO6, (void) ) ; 
-PROTOTYPE( vo id  hwint07. (void) 1; 
-PROTOTYPE( vo id  hvri nt08, (void) ) : 
-PROTOTYPE ( void hwi ntO9, (voi d) ) ; 
-PROTOTYPE( vo id  hwi n t l 0 ,  (void) ) ; 
-PROTOTYPE ( voi  d hwi n t  11, (void) ) ; 
-PROTOTYPE( vo id  hwi n t l 2 ,  (voi d) ) ; 
-PROTOTYPE ( void hwi n t l 3 ,  (void) ) ; 
-PROTOTYPE ( voi d hwi n t  14, (void) ) ; 
-PROTOTYPE ( void hwi n t  15 , (voi d) ) ; 

/* Softhare i n t e r r u p t  handlers, i n  numerical order.  */ 
-PROTOTYPE( vo id  t rp ,  (void) 1; 
-PROTOTYPE( vo id  s-caf 1 ,  (void) ) , ,PROTOTYPE( p-s-cal 7 ,  (void) 3 ; 
-PROTOTYPE( vo id  1 eve1 0-cal 1 , (voi  d) ) ; 

/*  printer.^ */  
-PROTOTYPE( vo id  p r - res ta r t ,  (void) 

/* p ro tec t  .c  */ 
- PROTOTYPE( vo id  p ro t - i  n i  t , (void) 1; 
-PROTOTYPE( vo id  init-cadeseg, ( s t r uc t  segdesc-s *segdp, phys-bytes base, 

phys-bytes s ize,  i n t  p r i v i  leg@) 1 : 
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void init-dataseg, (s t ruc t  s e g d e s ~ s  *segdp, phys-bytes base. 
phys-bytes size. i n t  pr iv i lege) 1 i 

phys-bytes seg2phys, (U16-t seg) 1 ;  
void enable-iop, (s t ruct  proc *pp) 1; 

/* PtY.C */ 
-PROTOTYPE( void d o g t y ,  (s t ruc t  t t y  * t p ,  message *ntptr) 1  ; 
-PROTOTYPE( void p ty - in i t ,  (s t ruc t  t t y  *tp) > ;  

/* systern.c */ 
-PROTOTYPE( void a1 loc-segments , ( s t  ruc t  proc +rp) 

t e n d i f  /* (CHIP == INTEL) */ 

/* Global variables used i n  the kernel.  */ 

/* EXTERN i s  defined as extern except i n  tab7e.c. */ 
# i  fdef  - T A B L ~  
#undef €KERN 
t de f  i ne EXTERN 
Atendi f 

/* Kernel memory. */ 
EXTERN phys-bytes code-base; /* base o f  kernel code */ 
EXTERN phys-bytes d a t ~ b a s e ;  /* base o f  kernel data */ 

/* Low level i n te r rup t  conmunications. */ 
EXTERN s t ruc t  proc *held-head; /+ head o f  queue o f  held-up in te r rup ts  */ 
EXTERN s t ruc t  proc 'held-tai 1 ; /* t a i l  o f  queue o f  held-up in te r rup ts  */ 
EXTERN unsigned char k reen te r ;  /* kernel reentry count (entry count less  I)*/ 

/* Process table. Here to stop too  many things having ta  include proc. h. */ 
EXTERN s t ruc t  proc +proc-ptr; /* pointer  t o  cur ren t ly  running process */ 

/* Signals. */ 
EXTERN i n t  s i  ggrocs  ; /+ number o f  procs w i t h  pgending I -  0 */ 

/* Memory sizes. */ 
EXTERN s t ruc t  memory m e r n [ k L M ~ ~ ~ ]  ; /* base and s i r e  of chunks o f  memory */ 
EXTERN phys-cl i cks t o t ~ n e m s i  ze ; /* t o t a l  system memory s i t e  */ 

/* Miscellaneous. */ 
extern u16-t sizes[] ; /* tab le  f i l l e d  i n  by boot noni tor  */ 
extern s t ruc t  tasktab tasktab[] :/* i n i  ti a1 i zed  i n  table. c, so extern here */ 
extern char *t-stack[]; /* i n i t i a l i z e d  i n  tab1e.c. so extern here */ 
EXTERN unsigned l o s t - t i  cks ; /* clock t i c k s  counted outside the  clock task +/ 
EXTERN c l o c k t  tty-timeout ; /* time t o  wake up the TTY task */ 
EXTERN i n t  current; /* cur ren t ly  v i s i b l e  console */ 
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#if (CHIP =a INTEL) 

/ *  Machine type.  "/ 
EXTERN i n t  pc-at; /* PC-AT compatible hardware i n t e r f ace  */ 
EXTERN i n t  ps-mca; /*  P S / 2  w i t h  M i c r o  Channel */ 
EXTERN unsigned i n t  processor; / *  86, 186, 286, 386, ... */  
# i f  -WORD-SIZE == 2 
EXTERN i n t  protected-mode; /* nonzero i f  running i n  I n t e l  protected mode*) 
#el se 
t d e f i  ne protectednode 1 /*  386 mode imp l ies  protected mode */ 
#endi f 

/ *  Video card types. */ 
EXTERN i n t  ega; / *  nonzero i f  console i s  ECA or VGA '/ 
EXTERN i n t  vga; /* nonzero i f  console i s  VCA */ 

/* Memory sizes. * /  
EXTERN unsigned ext-memsize; / *  i n i  t i  a7 i zed by assembler s ta r tup  code '/ 
EXTERN unsigned 1 ow-mems i z e  ; 

/* M i  s c e l l  aneous . */ 
EXTERN irq-handler-t irq-table[NR-IRQ_VECTORS]; 
EXTERN i n t  i rq-use; / *  b i t  map o f  a l l  in-use i r q ' s  * /  
EXTERN reg-t man-ss m-~,,, /* monitor stack */ 
EXTERN i n t  mon-return; /* t r ue  i f  re tu rn  t o  the  monitor poss ib le  * /  
EXTERN phys-bytes reboot-code; /* program f o r  the  boot monitor */  

/* Variables t ha t  are i n i t i a l i z e d  elsewhere are j u s t  extern here. * /  
extern s t r u c t  segdesc-s g d t [ ] ;  /* gToba7 descr ip to r  table for protected moden/ 

EXTERN -PROTOTYPE( vo id  (*levelO-func) , (void) ) ; 
#endif  / *  (CHIP == INTEL) * /  

# i f  (CHIP =I M68000) 
/* Variables t h a t  are i n i t i a l i z e d  elsewhere are j u s t  extern here. * /  
extern i n t  keypad; /* Flag for  keypad mode */ 
extern i n t  app-mode; /* Flag f o r  arrow key app l i ca t i on  mode * /  
extern i n t  STdebKey; / *  nonzero i f  c t l - a l t - F x  detected */ 
extern struct t t y  *cur-cons; /* v i r t u a l  cons cu r ren t l y  d isp layed */ 
ex te rn  unsigned char fon t8 [ ]  ; /* 5 p i x e l  wide f o n t  t ab l e  ( i n i t i a l i z e d )  * /  
extern unsigned char f on t l 2C j  ; /* 1 2  p i xe l  wide f on t  tab le  ( i n i t i a l i z e d )  * /  
extern unsigned char f o n t l 6 [ ]  ; /*  16 p i xe l  wide f on t  tab le  ( i n i t i a l i z e d )  * /  
extern unsigned shor t  reso lu t ion ;  /* screen res; ST-RES,LW..TT-RES-HIGH */ 
#endi f 

# i  fndef PROC-H 
#def ine PROC-H 

/* Here i s  t h e  dec la ra t ion  o f  the process tab le .  I t  contains t he  process' 
* r eg i s t e r s ,  memory map, accounting, and message send/receive in format ion.  
* Many assembly code rout ines reference f i e l d s  i n  i t. The o f f s e t s  t o  these 
* f i e l d s  a re  def ined i n  the  assembler inc lude f i l e  sc0nst.h. When changing 
* 'proc '  , be sure t o  change sconst. h  t o  match. 
* / 
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s t r u c t  proc C 
s t r u c t  stackframe-s p-reg; /* process' r eg i s t e r s  saved i n  stack frame */ 

ti f (CHIP == INTEL) 
r e s t  p-1 dt.-sel; /* se lector  i n  gdt g i v i n g  I d t  base and l i m i  t4/ 
s t r u c t  segdesc-s p_ ld t [2 ]  ; /* l oca l  desc r ip to rs  f o r  code and data */ 

/* 2 i s  LDT-SIZE - avoid inc lude p ro tec t .  h */ 
#endi f  /* (CHIP == INTEL) */ 

reg-t *p-stguard; /* stack guard word */ 

i n t  p-nr; /* number o f  t h i s  process ( f o r  f a s t  access) */ 

i nt p-i nt-bl  ocked ; /* nonzero i f  i n t  msg blocked by busy task  */ 
i n t  p-int-held; /* nonzero i f  i n t  msg he ld  by busy sysca l l  */ 
s t r u c t  proc *p-nextheld ; /*  next i n  chain o f  held-up i n t  processes */ 

i n t  p-f lags; /* P-SLOT-FREE, SENDING, RECEIVING, etc .  */ 
s t r u c t  memmap p-map[NR-SEGS];/* memory map */ 
p id- t  p-pid; /* process i d  passed i n  frmn MM +/ 

clock-t user-time; /* user t ime i n  t i c k s  */ 
clock-t  sys-time; /* sys t ime i n  t i c k s  */ 
c l o c k t  child-utime; /* cumulative user t ime o f  ch i l d ren  */ 
c l o c k t  c h i  ld-stime; /* cumulative sys t i n e  o f  ch i l d ren  */ 
clock-t p-alarm; /* t ime o f  nex t  alarm i n  t i c k s ,  o r  0 */ 

s t r u c t  proc *p-callerq; /* head o f  1 i s t  o f  procs wishing t o  send */ 
s t r u c t  proc *p-sendlink; /* l i n k  t o  nex t  proc wishing t o  send */ 
message *p~nessbu f ;  /* po in te r  t o  message b u f f e r  */ 
i n t  p-getfrom; /* from whom does process want t o  receive? */ 
i n t  p-sendto; 

s t r u c t  proc *p-nextready; /* po in te r  t o  next ready process * /  , 
sigset - t  p-pending; /* b i t  map f o r  pending s igna ls  */ 
unsigned p-pendcount ; / *  count of pending and unf inished s ignals  */ 

char p-name [16] ; 
3 ;  

/* name o f  the  process */ 

/* Guard word f o r  task stacks. */  
#define STACKAUARD ((reg-t) ( s i  zeof (reg-t) == 2 ? OxBEEF : OXDEADBEEF)) 

/* B i t s  for  p-f lags 
#def ine P-SLOT-FREE 
#def ine N O M P  
#def ine SENDING 
#def ine RECEIVING 
#def ine PENDING 
t d e f  i ne SIC-PENDING 
t d e f  i ne P-STOP 

A process i s  runnable i f f  p-flags -= 0. */ 
/* set when s l o t  i s  not i n  use */ 
/* keeps unmapped forked c h i l d  from running */ 
/* set when process blocked t r y i n g  t o  send */ 
/* set when process blocked t r y i n g  t o  recv */ 
/+ set when inform;) o f  s igna l  pending */ 
/* keeps to-be- s i  gnal 1 ed proc from running */ 
/* set when process i s  being t raced */ 

/* Magic process t a b l e  addresses. */ 
#define BEG-PROCADDR (&proc[O]) 
#def ine END-PRO-R (&prac[NRTASKS + NRPROCS] ) 
#def ine END-TASWR (&proc[NLTASKSI) 
t d e f  i ne BEG-SERV_ADOR (&procCNRTASKSl) 
#def ine BEG-USERAM)R (&roc [NR-TASKS + LOW-USER] ) 

Xdef i ne NIL-PROC ( ( s t r uc t  proc *I 0) 
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#def ine i sidlehardware(n) ((173 == IDLE I I (n) == HARDWARE) 
#def i ne i sokprocn(n) ((unsigned) ((n) + NR-TASKS) < NR-PROCS + NRTASKS) 
#def i  ne i soksrc-dest(n) (i sokprocn<n) I I (n) == ANY) 
#def ine i soksusern(n) ((unsigned) (n) < NRPROCS) 
#def ine i sokusern(n) ((unsigned) ((n) - LOW-USER) c NkPROCS - LWUSER) 
ddef i ne i srxhardware(n) ((n) == ANY I 1 (n) == HARDWARE) 
#def ine i ssysentn(n) (Cnl == FS-PRDC-NR I I (n) == W P R O C N R )  
#def ine i staskp(p) ((PI < END-TASKADDR && (p) ! =  proc-addrCIDLE)) 
#def i ne i suse r p  (p) ((p) >= BEG-uSERAM)R) 
#define proc-addr (n) (pproc-addr + NR-TASKS) [(n) 
#def i ne cproc-addr (n) (&(proc + NRTASKSI C (n) 3)  
#de f ine  proc-numbercp) ((p)->p-nr) 
#def ine proc-vi r2phys(p, v i  r3 \ 

(((phys-bytes) (p)->p-map[D] .rnern-phys tc CLICKSHIFT) \ 
+ ( v i  r-bytes) ( v i  r) 1 

EXTERN r t r u c t  proc proc[NLTASKS + NLPROCSI; /* process tab le  */ 
EXTERN s t r u c t  proc *pproc-addr[NR_TASKS + NR-PROCS]; 
/* p t r s  t o  process t ab l e  s l o t s ;  f a s t  because now a process en t ry  can be found 

by indexing the pproc-addr ar ray,  w h i l e  accessing an element i requi res 
a m u l t i p l i c a t i o n  w i t h  s izeof (s t ruct  proc) t o  determine t h e  address */  

EXTERN s t r uc t  proc * b i l l - p t r ;  /* p t r  ro process t o  b i l l .  f o r  c lock t i c k s  * /  
EXTERN s t r uc t  proc *rdy-head[NQ] ; /* po in ters  t o  ready l i s t  headers */  
EXTERN s t r u c t  proc * rdy - ta i  1 [NQ] ; /* pointers  t o  ready l i s t  ta i7 .s  * /  

/* Constants f o r  protected mode. */ 

/* Table s izes.  */  
Rdefi ne GDT-SIZE (FIRST-LDT-INDEX + NRBASKS + NR-PROCS) /*  spec. and LDT's */ 
#def i ne IDT-SIZE (IRQ8-VEffOR + 8) /* only up t o  the highest  vector */  
#def ine CDT-SIZE 2 / *  contains CS and DS on1 y */  

/ *  Fixed g lobal  descr ip tors .  1 t o  7 are prescr ibed by the BIOS. */ 
#def i ne GOT-INDEX 1 /* GDT descr ip to r  */  
#def ine IDT-INDEX 2 /* IDT descr ip to r  * /  
#def ine DS-INDEX 3 /* kernel  DS */ 
#def ine ES-INDEX 4 /* kernel  ES (386: f l a g  4 Gb a t  s tar tup)  * /  
#def i ne SS-INDEX 5 /* kernel SS (386: monitor SS a t  startup) */ 
#def i ne CS-INDEX 6 /* kernel CS */ 
#def ine WON-CS-INDEX 7 /* temp f o r  BIOS (386: monitor CS a t  s tar tup)  */ 
#def i ne T55-INDEX 8 /* k e r n e l  TSS */ 
#def i ne DS-286-INDEX 9 /* scratch 1 6 - b i t  source segment */ 
#def i ne ES-286-INDEX 10 /* scratch 1 6 - b i t  des t i na t i on  segment * /  
IYdefi ne VIDEO-INDEX 11 /* video memory segment */ 
#def i ne DP-ETHO-INDEX 12 /* Western D i g i t a l  Etherplus b u f f e r  +/ 
#def i  ne DP-ETHLINDEX 13 /* Western D i g i t a l  Etherplus b u f f e r  */ 
#define FIRST-LDT-INDEX 14 /* r e s t  o f  desc r ip to rs  are LDT's */ 

#def i ne CDT-SELECTOR 0x08 /*  (GDT-INDEX * D E S C S I Z E )  bad +or as ld  */ 
#def i ne IDT-SELECTOR 0x10 /* (IDT-INDEX * DESC-SIZE) */ 



MINIX SOURCE CODE File: src/kernel/protect .h 
- 
#define 
Xdef i ne 
Xdef i ne 
#define 
M e f  i ne 
#def i ne 
Cdef i ne 
#define 
M e f  i ne 
#define 
#define 
Pdef i ne 

OS-SELECTOR 
ES-SELECTOR 
FLATSS-SELECTOR 
SS-SELECTOR 
CS-SELECTOR 
MONIS-S EL ECTDR 
TSS-SELECTOR 
DS-2863ELECTOR 
ES-286-SELECTOR 
VIDEO-SELECTOR 
UP-EfHO-SELECTOR 
DP-ETHLSELECFOR 

/* F i xed  local  descriptors. */ 
Xdef i ne CS-LDT-INDEX 0 / 
t d e f  i ne DS-LDT-INDEX 1 / 

/ *  Privi leges . */ 
#def i ne INTRPRIV ILECE 0 / 
Xdef i ne TASLPRIVILEGE 1 
Xdef i ne USERPRIVILEGE 3 

/* 286 hardware constants. */ 

/* Exception vector numbers. */ 
Xdef i ne 
#define 
l d e f  i ne 
tdef i ne 
Wef ine  
Xdef i ne 
t d e f i  ne 
#clef i ne 
tdef i ne 

BOUNDS-VECTOR 5 /* 
INVALOP-VECTOR 6 /* 
COPROC_HOTTVECTOR 7 /* 
DWBLLFAULT-VECTOR 8 
COPROCSEGVECTOR 9 /* 
XNVALTSS-VECTOR 10 /* 
SEGNOTTVECTOR 11 /* 
STACICFAULT-VECTOR 1 2  /* 
PROTECTION.,-VECTOR 1 3 

/* Selector b i t s .  */ 
Xdefi ne T I  0x04 /* 
M e f i  ne RPL 0x03 /* 

(DS-INDEX * DESCSIZE) */ 
(ES-INDEX * DESCSIZE)  */ 
less pr iv i leged ES */ 
(SS-INDEX * DESLSIZE)  */ 
(CS-INDEX * DESLSIZE)  */ 
(MON-CS-INDEX * DESLSIZE)  * f  
(TSS-INDEX * DESCSIZE)  */ 
CDS-286-INDEX DESCISIZE + 1) */ 
(ES-286-INDEX DESCSIZE + 1) */ 
(VIDEO-INDEX DESLSfZE + 1) */ 
(DP-ETHO-INDEX * OESCJIZE) */ 
(DP-ETHLINDEX * D E S U I Z  E) * / 

process CS */ 
process DS=ES-FSICS-SS */ 

kernel and in ter rup t  handlers */ 

bounds check f a i l e d  */ 
i n v a l i d  opcode */ 
coprocessor not avai lable */ 

coprocessor segment overrun */ 
i n v a l i d  TSS */ 
segment not  present */ 
stack e ~ c e p t i o n  */ 
general protect ion */ 

table ind ica tor  */ 
requester p r i v i l ege  leve l  * / 

/* Descriptor s t ructure o f fse ts .  */ 
M e f  i ne DESCBASE 2 /* t o  base-low */ 
#def I ne DESCBASUXDDLE 4 /* t o  basemiddle */ 
#define DESCACCESS 5 /* to  access byte */ 
Adef i ne D E S L S I Z  E 8 /* sizeof (s t ruct '  segdesc-s) */ 

/* Segment sizes. */ 
#define MAL286-SEGSIZE OxlOOOOL 

/* Base and l i m i t  sizes and s h i f t s .  */ 
#define BASLMIDDLE-SHIW 16 /* s h i f t  f o r  base --> b a s e ~ i d d l e  */ 

/* Access-byte and type-byte b i t s .  */ 
#def i ne PRESENT Ox80 /* set f o r  descriptor present */ 
#define DPL 0 x 6 0  /* descriptor p r i v i l ege  leve l  mask */ 
#define DPL-SHIFT 5 
t d e f  i ne SEGMENT Ox10 /* set f o r  segment-type descriptors */ 

/* Access-byte b i t s .  */ 
#def i ne EXECUTABLE 0x08 /* set f o r  executable segment */ 
#define CONFORMING 0 x 0 4  /* set f o r  conforming segment i f  executable */ 
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Ydef i ne EXPAND-DOWN 0x04 /* se t  f o r  expand-down segment i f  !executable*/ 
#def ine READABLE 0x02 /* se t  f o r  readable segment i f  executable */  
ddef i ne WRITEABLE 0x02 /* se t  f o r  wr i teab le  segment i f  !executable */ 
Xdef i ne TSS-BUSY Ox02 /* se t  if TSS descr ip to r  i s  busy */ 
#def ine ACCESSED Ox01 /* s e t  i f  segment accessed * /  

/* Special desc r ip to r  types.  */ 
Rdef i ne AVL-286-TSS 1 /* ava i lab le  286 TSS */ 
#def ine LDT 2 /* l o c a l  desc r ip to r  t ab l e  */ 
#def ine BUSY-286-TSS 3 /* s e t  t ransparent ly  t o  t h e  software */ 
#def ine CALL-286-GATE 4 /* n o t  used */ 
t d e f  i ne TASLCATE 5 /* on ly  used by debugger */ 
#def ine INT-286-GATE 6 /* i n t e r r u p t  gate, used f o r  a l l  vectors */ 
#def i ne TRAP-286-GATE 7 /* n o t  used */ 

/* Ext ra  386 harchvare constants. */ 

/* Exception vector numbers. */ 
#define PAGE-FAULT-VECTOR 14 
#define COPRKERRVECTOR 16 /* coprocessor e r r o r  */ 

/* Descr ip tor  s t ruc tu re  o f f s e t s .  */ 
#def ine DESC-GRANULARITY 6 /* t o  g ranu la r i t y  by te  */ 
t d e f i  ne DESC-BASE-HIGH 7 / *  t o  base-high */ 

/ *  Base and l i m i t  s izes and s h i f t s .  */ 
#def ine BASE-HIGH-SHIFT 24 /* s h i f t  f o r  base --> base-high */ 
#def ine BYTE-CRAN_MAX OxFFFFFL /* maximum s ize f o r  by te  granular segment */ 
#def ine GRANULARITY-SHIFT 16 /* s h i f t  f o r  l i m i t  - -> g ranu la r i t y  */ 
#def ine OFFSET-HIGH-SHIFT 16 / *  s h i f t  f o r  (gate) o f f s e t  --r of fset -h igh */  
#def ine PAGE-GRAN-SHIFT 12 /* ex t r a  s h i f t  f o r  page granular  l i m i t s  */ 

/*  Type-byte b i t s .  */ 
#def i ne DESC-386311 0x08 /*  386 types are obtained by ORing w i t h  t h i s  */ 

/* LDT's and TASK-GATE'S don' t  need i t  */  

/ *  Granu la r i t y  byte, */ 
#def ine GRANULAR 0x80 /* se t  f o r  4K g r a n u l a r i l t y  */ 
Xdef i ne DEFAULT 0x40 /* s e t  f o r  32-b i t  de fau l t s  (executable seg) */ 
#def ine B I G  0x40 /* se t  f o r  "BIG" (expand-down segl  */ 
#def i ne AVL 0x10 /* 0 f o r  ava i l ab l e  */ 
#def i ne LIMIT-HIGH OxOF /* mask f o r  h igh b i t s  of l i m i t  */ 

! Miscellaneous constants used i n  assembler code. 
W = -WORD-SIZE ! Machine word s i z e .  

! D f fse ts  i n  s t r u c t  proc. They MUST match pr0c.h. 
eSTACKBASE I 0 
#i f  -WORD-SIZE == 2 
ESREC - - P-STACKBASE 
#e 1 se 
GSREC - - P-STACKBASE 
FSREG - - CSREG + 2 ! 386 in t roduces FS and GS segments 
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ESREG 
Wendif 
DSREG 
DIREG 
SIREG 
BPREC 
STREG 
BXREG 
DXREG 
CXREC 
AXREC 
RETADR 
PCREG 
CSREG 
PSWREC 
SPREG 
SSREC 
P -STACKTOP 
P-LDT-SEL 
P-LDT 

#i f -WORD-SIZE I= 2 
Msi ze = 
#else 
Msi ze = 

bendd f 
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FSREG + 2 

ESREC + 2 
DSREC + 2 
DIREC + W 
SIREG + W 
BPREC + W ! hole f o r  another SP 
STREC + W 
BXREG + W 
DXREC + W 
CXREC + W 
AKREG + W ! re tu rn  address f o r  save0  c a l l  
RETADR + W 
PCREG + W 
CSREC + W 
PSWREC + W 
SPREC + W 
iSREG + W 
P-STACKTOP 
P-LDT-SEL + W 

! size o f  a message i n  16-bi t words 

! size o f  a message i n  32-bi t words 

/* 
assert. h 
* / 
W i  f ndef ASSERT-H 
#define ASSERT-ti 

# i f  DEBUG 

Wdefiqe INITASSERT s t a t i c  char *assert-fi 1 e= - F I L L ;  

void bad-asrertion(char * f i l e ,  i n t  l ine ,  char *what) ; 
vo id  bad-cmpare(char * f i l e ,  i n t  l i ne ,  i n t  l h s ,  char *what, i n t  rhs); 

#def ine assert(x) ( !  (x )  ?'bad-assertion(assert_fi l e ,  - - L I N E ,  Ux) \ 
: (void) 0 )  

#def-ine compareEa, t, b) ( !  ((a) t Cb)) ? bad-compare(assert_fi l e ,  - L I N E ,  \ 
(a>, #a " " #t " " db, (b)) : (void) 0 )  

#else /* !DEBUG */ 

#define I N I T A S S E R T  /* nothing */ 

Wdef ine assert(x) (void) 0 
ddef ine compare (a, t , b) Cvoi d) 0 
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05525 
05526 Xendif /* ASSERT3 * /  

i* The object  f i l e  o f  " tab le .cW contains a l l  the  data. I n  the * .h  f i l e s ,  
* declared var iab les  appear w i t h  EXTERN i n  f r o n t  o f  them, as i n  
Q 

* EXTERN i n t  x; 
* 
* Normally EXTERN i s def ined as extern, so when they are included i n  another 
* f i l e ,  no storage i s  a l loca ted .  I f  the  EXTERN were not present, but j u s t  
* say, 
* 
* i n t  x ;  
* 
* then i nc l ud i ng  t h i s  f i l e  i n  severat source f i l e s  would cause ' x '  t a  be 
* declared several times. While some l i n k e r s  accept t h i s ,  others do not,  
* so they are dec larPnswtPrn when included normal ly.  However, it must 
* be declared f o r  r ea l  somewhere. That i s  done here, by redef in ing 

EXTERN as t h e  n u l l  s t r i ng ,  so the  i n c l us i on  o f  a l l  the *.h  f i l e s  i n  
* tab1e.c ac tua l l y  generates storage f o r  them. A l l  the i n i t i a l i z e d  
* va r iab les  a re  a lso  declared here. s ince 
4 

* extern i n t  x = 4 ;  
* 
* i s  not allowed. I f  such var iab les are shared, they must also be declared 

i n  one of t h e  *.ti f i l e s  without the  i n i t i a l i z a t i o n .  
*/ 

#include "kernel .h" 
#include <termios .h> 
b i n c l  ude <mini x/com. h> 
#include "proc. h" 
Yinclude "tty.hW 

/* The startup r ou t i ne  o f  each task i s g iven below, from -NRTASKS upwards. 
* The order o f  the names here WST agree w i t h  t he  numerical values assigned t o  
* the  tasks i n  aninix /cm.h7.  
*/ 

#def i ne SMALLSTACK (128 * sizeofCchar *)I 

X d e f  i ne TIT-STACK (3 * SMALLSTACK) 
#clef i ne SYNJLRM-STACK SMALL-STACK 

# i f  (CHIP == INTEL) 
#def ine IDLESTACK ((3+3+4) * s i  zeof (char *)) /*  3 i n t r ,  3 temps, 4 db */ 
#else 
#def ine  IDLE-STACK SMALLSTACK 
#endi f 
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#def ine PRINTERSTACK SMALL-STACK 

# i f  (CHIP == INTEL) 
Adef i ne WINCH-STACK ( 2  * SMALL-STACK * ENABLLWINI) 
#e lse 
#def ine WINCH-STACK ( 3  * SMALLSTACK * ENABLLWINI) 
#endi f 

# i f  (MACHINE == ATARI) 
Wdef i ne SCSI-STACK (3 * SMALLSTACK) 
#endi f 

# i f  (MACHINE == IBKPC) 
#def ine SCSI-STACK (2 * SMALL-STACK * ENABLLSCSI) 
l e n d i  f 

#def ine CDRRSTACK (4 * SMALL-STACK * ENABLLCDROM) 
M e f  i ne AUDIO-STACK (4 * SMALLSTACK * ENABLLAUDIO) 
#def ine MIXERSTACK (4 SWLL-STACK * EUABLE_AUDIO) 

t d e f  i ne FLOPSTACK (3 * SMALLSTACK) 
Ydefine MELSTACK SMALLSTACK 
M e f  i ne CLOCLSTACK SMALL-STACK 
l d e f  i n @  SYS-STACK SMALLSTACK 
#def ine HARDWARLSTACK 0 /* dwnny task, uses kernel  stack */ 

Wdef i ne TOT-STACKSPACE (TIT-STACK + DP8390_STACK + SCSLSTACK + \ 
SYNALRLSTACK + IDLLSTACK + HARDYARLSTACK + PRINTERSTACK + \ 
WINCH-STACK + FLOP-STACK + MEKSTACK + CLOCLSTACK + SYS-STACK + \ 
CDROM-STACK + AUDIO-STACK + MIXELSTACK) 

/* SCSI, CDROM and A U l I O  may i n  t h e  f u t u re  have d i f f e r e n t  choices l i k e  
WINCHESTER, but f o r  now the  choice i s  f ixed.  

*/ 
ddef  ine  scsi-task ahascs i - task  
#def ine cdr-task mcd-tas k 
#def ine audio-task dsp-task 

/* 
* Some notes' about t he  f o l l ow ing  tab le :  

1) The t ty - task should always be f i r s t  so t h a t  other tasks  can use p r i n t f  
i f  t h e i  r i n i t i a l  i sation has problems. 

* 2) I f  YOU add a new kernel  task, add i t  before the p r i n t e r  task. 
* 3) The task  name i s  used f o r  t h e  process name (psame). 
*/ 

PUBLIC s t r u c t  tasktab tasktab[ ]  = { 
{ t t y - t a s k ,  TTY-STACK , "TTY" 3 I 

#i f ENABLE-NETWORKING 
{ dp8390_task, DP8390_STACK, "DP8390" !. 

t e n d i f  
ti f ENABLE-CDROM 

{ cdrom-task, CDRCKSTACK. "CDROM" 1 ,  
#endi f  
# i f  F N A B E A U D I D  

{ audio-task, AUDIO-STACK, "AUDIO" 1, 
{ m i  xer-task, MIXELSTACK. "MIXER" 1 , 
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#endi f 
C i f  ENABLE-SCSI 

{ scsi- task,  
#endi  f 
ti f ENABLE-WIN1 

{ winchester- task,  
Xendi f 

C syn-a1 mm-task , 
{ i d le - task ,  
{ p r i n t e r - t a s k ,  
I fl oppy-task, 
{ memtask,  
( c l  ock-task, 
I sys-task, 
I 0, 
I 0, 
I 0, 

R i  f ENABLE-NEWORKING 
I 0, 

#endi  f 
i 0,  

1; 

SCSI-STACK , "SCSI" 

WINCH-STACK, "WINCH" 

SYNALRM-STACK , 
IDLE-STACK, 
PRINTERSTACK, 
FLOP-STACK. 
MEM-STACK, 
CLOCK-STACK, 
SYS-STACK, 
HARDWARE-STACK , 
0 ,  
0. 

" SY N-AL" 
" IDLE"  
"PRINTER" 
"FLOPPY" 
"MEMORY" 
"CLOCK" 
"SYS" 
"HARDWAR" 
"MM " 
"FS" 

0, "INET" 

0, "INXT" 

/ *  Stack space f o r  a l l  t h e  task  s tacks .  (Declared as (char  *) t o  a l i g n  it.) */ 
PUBLIC char  *t_stack[TOT-STACK-SPACE / s izeof (char  * ) I ;  

/" 
* The number o f  k e r n e l  t asks  must be the  same as NR-TASKS. 
* I f  NR-TASKS i s  n o t  c o r r e c t  then you w i l l  g e t  the  compi le e r r o r :  

* "a r ray  s i z e  i s  negat ive"  
* /  

#def ine  NKT ( s i z e o f  t a s k t a b  / s i z e o f  ( s t r u c t  task tab)  - (INIT-PROC-NR t 1) )  

e x t e r n  i n t  dummy-task'tab-check[NRTASKS -== NKT ? 1 : -11 ; 

# 
! Chooses between t h e  8086 and 386 ve rs ions  o f  the M i n i x  s t a r t u p  code. 

# inc lude  <mini x/conf ig.h> 
# i f  -WORD-SIZE == 2 
# i n c l  ude "mpx88. s"  
#e lse  
# inc lude "mp~386. s" 
#endi f 
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# 
! This  f i l e  contains t h e  assembler s t a r t up  code f o r  Min ix  and the 3 2 - b i t  
! i n t e r r u p t  handlers. I t  cooperates w i t h  5 ta r t . c  t o  se t  up a good 
! envi ronment f o r  mai n 0  . 

! This f i l e  i s  p a r t  o f  t he  lowest l a ye r  o f  the  MINIX  kernel.  The other  pa r t  
! i s  "proc.~". The lowest l a y e r  does process switching and message handling. 

! Every t r a n s i t i o n  t o  *he kernel goes through t h i s  f i l e .  T rans i t i ons  a re  
! caused by sending/receiving messages and by m s t  i n t e r r up t s .  (RS232 
! i n t e r r u p t s  may be handled i n  the f i l e  "rs2.sn and then they r a r e l y  enter 
! t h e  kernel.)  

! T rans i t i ons  t o  the  kernel may be nested. The i n i t i a l  en t r y  may be w i t h  a 
! system c a l l ,  exception o r  hardware i n t e r r u p t ;  r een t r i e s  may on ly  be made 
! by hardware i n t e r r up t s .  The count o f  reen t r ies  i s  kept i n  "k-reenter". 
! I t  i s  important fo r  dec id ing whether t o  swi,tch t o  the kernel  stack and 
! f o r  p ro tec t i ng  the  message passing code i n  " p r o c . ~ " .  

! For the  message passing t rap ,  most o f  the machine s t a t e  i s  saved i n  t h e  
! proc tab le .  (Some o f  the r eg i s t e r s  need n o t  be saved.) Then the stack i s  
! switched t o  "k-stack", and i n t e r r u p t s  are reenabled. Final:l:y, t he  system 
! c a l l  handler ( i n  C) i s  ca l led .  When i t  returns, i,nqcFrupts are d jsabled 
! again and the  code fa l l ' s  i n t o  the r e s t a r t  rou t ine ,  t o  f i n i s h  o f f  held-up 
! i n t e r r u p t s  and run the process o r  task whose po in te r  i s  i n  "proc-ptr". 

! Hardware i n t e r r u p t  handlers do the  same, except (1) The e n t i r e  s t a t e  must 
! be saved. (2) There are too  many handlers t o  do t h i s  i n l i n e ,  so the save 
! r ou t i ne  i s  ca l led .  A few cyc les are saved by pushing t h e  address o f  the  
! appropiate r e s t a r t  rou t ine  f o r  a r e t u rn  l a t e r .  (3) A stack switch i s  
! avoided when the stack i s  a1 ready switched. (4) The (aaster) 8259 i n t e r r u p t  
! c o n t r o l l e r  i s  reenabled cent ra l1  y i n  save(). (5) Each i n t e r r u p t  handler 
! masks i t s  i n t e r r u p t  l i n e  us ing  t h e  8259 before enabl ing (other unmasked) 
! i n t e r r up t s .  and unmasks it a f t e r  se rv ic ing  t h e  i n t e r r o p t .  This l i m i t s  the 
! nest l e ve l  t o  t h e  number o f  l i n e s  and p ro tec ts  t h e  handler from i t s e l f .  

! For cbmnunication w i t h  the boot monitor a t  s t a r t up  t ime some constant 
! data a re  compiled i n t o  the beginning o f  the t e x t  segment. Th is  f a c i l i t a t e s  
! reading the data a t  the  s t a r t  o f  the boot process, s ince o n l y  the f i r s t  
! sector  o f  t h e  f i l e  needs t o  be read. 

! Some data storage i,s a lso  a l l o c a t e d  a t  t h e  end o f  t h i s  f i l e .  This data 
! w i l l  be a t  t he  s t a r t  o f  the data segment o f  the kernel  and wi  11 be read 
! and modif ied by t h e  boot monitor before the kernel  s ta r ts .  

! sect ions 

.sect  . t e x t  
begtext: 
.sect .ram 
begrom: 
.sect  .data 
begdata : 
.sect  .bss 
begbss: 
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#include ari n i  x/conf i g . h> 
di nclude <mini x/const . h> 
#i nc l  ude <mi n i  x/com. h> 
#include "const .h" 
#include "protect. h" 
#include "sconst. h" 

/*  Selected 386 t s s  of fsets.  */ 
#define TSS3-S-SPO 4 

! Exported funct ions 
! Note: i n  assembly language the .define statement appl ied to  a funct ion name 
! i s  loosely equivalent t o  a prototype i n  C code - -  i t  makes i t  possible t o  
! 1 ink  t o  an e n t i t y  declared i n  the assembly code but  does not create 
! the e n t i t y .  

.define -idle-task 

.define - restar t  

.define save 

.define -divi  de-error 

.def ine -single,step-exception 

.def ine -mi 

. def  i ne -breakpoi n c e r c e p t i  on 

. def i ne -eve rf 1 ow 

.define -bounds,check 

. def ine ,i nval ,opcode 

.define -capr-natavai 1 ah1 e 

.define -double-fault 

. def  i ne -copr-seg-overrun 

.define -inval-tss 

. def ine -seg*enLnoLpresen t 

.def ine -stackrcxception 

.define -genctalgrotecti on 

. def ine _page-f aul t 

. def  i ne ,copr-error 

. def  i ne -hwi ntOO ! handlers f o r  hardware in te r rup ts  

.define -hwi n t O l  

.define -hi nt02 

.define -hwi nt03 

.define -hwi nt04 

.define -hwi nt05 

.define -hwi nt06 

.define -hwi nt07 

.define -h in t08  

.define -hwi nt09 

.define -hwi n t lO 

.define -hw in t l l  

.define -hwi n t l 2  

.define -hwi n t l 3  

.define -hwi nt14 

.define h w i n t l 5  

! Imported functions. 
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. ex te rn  x s t a r t  

.ex tern ~ a i n  

.extern -exception 

. ex te rn  - i n t e r r up t  

.extern -sys,caI 1 

. extern -tinhold 

! Exported var iab les .  
! Note: when used w i t h  a va r iab le  the .def ine does not  reserve storage, 
! i t  makes the  name ex te rna l l y  v i s i b l e  so i t may be l i n k e d  to.  

.def ine begbss 

.def ine begdata 

.def ine -s i zes  

! Imported var iab les .  

.extern 

. extern 

.extern 

.extern 

. extern 

. ex te rn  

. extern 

. ex te rn  

. ex te rn  

.extern . ex te rn  

. extern 

. ex te rn  

,gdt 
-code-base 
A a t h b a s e  
-he1 d-head 
- k r e e n t e r  
j c _ a  t 
-p roc-pt r 
-psJnca 
- tss  
-1 eve1 0-func 
non-sp 
m n - r e t u r n  
-reboot-code 

.sect  . t e x t  
!*-aa==s~-~=~=~1n~==e=ttr3~=s==rr-==-=1~1=======sr~at=tt~=s===a=~~====~====-=* 

! MINIX * 
! * r r r r r r r r r r ~ r ~ - n n n r r m t ~ r s = * ~ e = = = = = ~ - ~ *  

MINIX: ! t h i s  i s  the en t ry  p o i n t  f o r  the MINIX kernel  
jmp over-fl aqs ! skip over t he  next few bytes 
.data2 CLICLSHIFT ! f o r  the m n i t o r :  memory g r a n u l a r i t y  

f 1 ags : 
.data2 OxOOZD ! boot monitor flags: 

! c a l l  i n  386 mode, make stack, 
! load high. w i l l  r e t u rn  

noP ! e x t r a  by te  t o  sync up disassembler 
over-f 1 ags : 

! Set  up a C stack frame on the m i t a r  stack. (The mnitor sets  c5 and ds 
! r i g h t .  The ss desc r i p t o r  s t i l l  references the mi tor data segment.) 

movzx esp, sp ! monitor stack i s  a 16 b i t  stack 
push ebp 
m v  ebp, esp 
push es i  
push edi 
C ~ P  4Cebp3. 0 ! nonzero i f  r e t u rn  poss ib le  
j noret  
i nc {mn-return) 

noret :  m v  (mn-sp) ,  esp ! save stack po i n t e r  f o r  l a t e r  r e t u rn  

! Copy t h e  monitor g loba l  desc r ip to r  t ab l e  t o  the address space o f  kernel  and 
I swi tch over t o  it. Pro t - in i t ( )  can then update i t w i t h  inmediate e f fec t .  



sgdt 
mov 
mov 
rnov 

copygdt : 
eseg movb 

movb 
i nc 
i nc 
1 oop 
rnov 
and 
add 
mov 
l g d t  

! Locate boot 
mov 
rnov 
rnov 
rnov 
rnov 
mov 
rnov 
rnov 
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Lqdt+GDT-SELECTOR) 
e s i ,  (-gdt+LDT-SELECTOR+2) 
ebx, -gdt 
ecx, 8*8 

a l ,  (esi)  
(ebx), a1 
esi  
ebx 
copygdt 
eax , Cgdt+DS_SELECTOR+Z) 
eax, OxOOFFFFFF 
eax, -gdt 
(-gdt+CDT_SELECTOR+2), eax 
(-gdt+CDT-SELECTOR) 
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! get  the  monitor g d t r  
! absolute address o f  CDT 
! address o f  kernel CDT 
! copying e igh t  descr ip to rs  

! base o f  kernel  data 
! only 24 b i t s  
! eax = v ir2phys(gdt)  
! set base of GDT 
! switch over t o  kernel CDT 

parameters, set up kernel segment reg is te rs  and stack. 
ebx, 8(ebp) ! boot parameters o f f s e t  
edx, l2(ebp) ! boot parameters leng th  
ax, ds ! kernel data 
es, ax 
f s ,  ax 
gs, ax 
S S ,  ax 
esp, k-stktop ! se t  sp t o  p o i n t  t o  the top o f  kernel stack 

! Ca l l  C s t a r t up  code t o  set  up a proper environment t o  run main(). 
push edx 
push ebx 
push SS-SELECTOR 
push MON-CS-SELECTOR 
push DS-SELECTOR 
push CS-SELECTOR 
c a l l  - c s t a r t  ! cs ta r t (cs ,  ds, mcs, mds, pa rmo f f ,  parmlen) 
add esp. 6*4 

! Reload gd t r ,  i d t r  and the segment reg is te rs  t o  global desc r ip to r  t ab l e  se t  
! up by p ro t - in i  to. 

1 gdt (_gdt+GDT-SELECTOR) 
1 i d t  (-gdt+IDT-SELECTOR) 

jmpf 
c s i n i t :  

016 rnov 
rnov 
rnov 
mov 
mov 
mov 

016 mov 
l t r  
push 
popf 

DS-SELECTOR 
ax 
ax 
ax 
ax 
ax 
TSS-SELECTOR ! no other  TSS i s  used 

! set f l ags  t o  known good s t a t e  
! esp, c lea r  nested task and i n t  enable 
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! * dnterrupt handlers 
! * i n te r rup t  handlers f o r  386 32-bit  protected mode 
!*Zn==I-l--3-=-1=- m r t r . . r r ~ r u m n - i ~ ~ t ~ ~ ~ - = = *  

!*aau== - = - = S ~ P t t t m t L M - ~ ~ P - = L - = = C m ~ I P I P = - I ~ - ~ - P ~ 5 = *  

! hwintOO - 07 * 
! * r r + t r t r r r r m r - m ~ ~ 1 1 = ~ ~ 1 = ~ ~ - = ~ - t - ~ 1 ~ = = = ~ 1 1 1 *  

! Note t h i s  i s  a macro. i t  looks l i k e  a subroutine. 
#define hwi n t ~ n a s t e r ( i  rq) \ 

c a l l  save /* save interrupted process state */;\ 
i nb INT-CTLMASK 
orb 
outb 
rnovb 
outb 
s t i  
push 
c a l l  
POP 
cl i 
tes t  
jz 
i nb 
andb 
outb 

0 : re t  

a1 , [ I 4  rq] 
I N T - C T W K  
a l l  ENABLE 
INT-CTL 

i r q  
(-i rq-tab1 e + 
ecx 

eax, eax 
O f  
INT-CTLMASK 
a1 , -[Id r q j  
INT-CTWSK 

/* disable t h e  i r q  

/* reenable master 8259 
/* enable in te r rup ts  
/* i r q  

4* i  rq) /* eax = (*i rq-tableri rq l )  (i rq) 

/* disable in te r rup ts  
/* need t o  reenabl e i rq7 

/* enable the i r q  
/* r e s t a r t  (another) process 

! Each o f  these ent ry  points i s  an expansion o f  the hwin tnas ter  macro 
.a l ign  16 

-hwi ntOO: ! In te r rup t  rout ine for  i r q  0 (the clock). 
hwi nUas te r (0 )  

. a1 i g n  16 
-hwi ntOl: ! In ter rup t  rout ine f o r  i r q  1 (keyboard) 

hwi nt~naster(1)  

.a l ign  16 
-hwi nt02 : ! In ter rup t  rout ine f o r  i rq 2 (cascade!) 

hwi nunaster(2) 

.a l ign  16 
,hwi nt03 : ! In ter rup t  rout ine f o r  i r q  3  (second r e r i a l )  

hwintmaster(3) 

.a l ign  16 
-hwi nt04 : ! I n te r rup t  rout ine f o r  i r q  4 ( f i r s t  ser ia l )  

hwi nunaster(4) 

.a l ign  16 
-hwi nt05 : ! In te r rup t  rout ine f o r  i r q  5 (XT winchester) 

hwinunaster (5) 

.a l ign  16 
,hwi nt06: ! In ter rup t  rout ine f o r  i r q  6 (floppy) 

hwinuaster (6)  

.a l ign  16 
-hw.i nt07 : ! In ter rup t  rout ine f o r  i r q  7 (pr inter)  

hwint-tnaster(7) 
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Rdef i ne hwi nt-slave(i rq) \ 
c a l l  save 
i nb INTZ-CTLMASK 
orb  a1 , [ l c < [ i  rq-811 
outb INTZ-CTLMASK 
movb a1 , ENABLE 
outb INT-CTt 
j mp .+2 
ou t b  INTZ-CTL 
s t i  
push i r q  
c a l l  C i r q - t a b l e  + 4* i rq)  
POP ec x  
c?  i 
t e s t  eax, eax 
j of 
i nb INTZ-CTLMASK 
andb a1 , -[1<<[i rq-813 
outb INTZ-CTLMASK 

0: r e t  

/* save i n t e r r up ted  process s t a t e  */;\ 

/* d isable the  i r q  

/*  reenable master 8259  
/ *  delay 
/*  reenable slave 8259 
/ *  enable i n t e r r u p t s  
/* i r q  
/* eax = C*i rq - tab le [ i  rq])  (i rq]  

/* d i  sable i nter rup ts  
/* need t o  reenable i r q ?  

/* enable the  i r q  
/* r e s t a r t  (another) process 

! Each o f  these en t ry  po in ts  i s  an expansion o f  the hwint-slave macro 
. a l i gn  16 

h w i  nt08 : ! I n t e r r u p t  r ou t i ne  f o r  i r q  8 ( rea l t ime clock) 
hwi n t -s l  ave(8) 

. a l i gn  1 6  
-hwi nt09 : ! I n t e r r u p t  r ou t i ne  f o r  i r q  9 (i r q  2 redirected) 

hwi nt-s l  ave(9) 

. a l i g n  16 
-hwi nt lO: ! I n t e r r u p t  rou t ine  fo r  i rq 10 

hwi n t -s l  ave(l01 

. a l i g n  16 
-hwi n t l l :  ! I n t e r r u p t  r ou t i ne  f o r  i r q  11 

hwi n t -s love( l l3  

. a l i g n  1 6  
-hwi n t l 2 :  ! I n t e r r u p t  r ou t i ne  f o r  i rq 12 

hwi nt-s l  awe (12) 

. a l i g n  16 
-hwi n t l 3  : ! I n t e r r u p t  r ou t i ne  f o r  i r q  1 3  (FPU exception) 

hwi n t s l a v e ( l 3 )  

. a l i gn  16 
-hwi n t l 4  : ! I n t e r r u p t  r ou t i ne  f o r  i r q  14 (AT winchester) 

hwi nt-s lave( l41 

. a l i g n  1 6  
-hwintl5: ! I n t e r r u p t  r ou t i ne  fo r  i r q  1 5  

hwint-slaveC15) 
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I *  v v I I U I - P I I I = - = I U I I  I=-=-* 
! Save f o r  protected mode. 
! This i s  much simpler than f o r  8086 d e ,  because the stack already points 
1 i n t o  the process table, o r  has a1 ready been switched t o  the kernel stack. 

.a l ign 
save : 

c l d  
pushad 

016 push 
016 push 
016 push 
016 push 

m v  
mov 
m v  
lmv 
i ncb 
jnz 
lmv 
push 
xar 
jnrp 

. a1 i gn 
s e t r e s t a r t l :  

push 
jrnp 

ds 
es 
f s 
gs 
dx, ss 
ds, dx 
es, dx 
eax, esp 
Ck reen te r )  
s e t a e s t a r t l  
esp, kstktop 
- restar t  
ebp, ebp 

! set  d i rec t i on  f l a g  t o  a known value 
! save "general" registers 
! save ds 
! save es 
! save f s  
! save gs 
! ss i s  kernel data segment 
! load rest  o f  kernel segments 
! kernel does not use f s ,  gs 
I prepare t o  return 
! f rcm -1 i f  not reentering 
! stack i s  a1 ready kernel stack 

! b u i l d  return address f o r  i n t  handler 
! for stacktrace 

.al ign 
,s,call: 
*-s-call: 

c l  d 
sub 
push 
push 
push 

016 push 
016 push 
016 push 
016 push 

mv 
mv 
m v  
i ncb 
m v  
m v  
XO r 

s t i  

push 
push 
push 
c a l l  

esp, 6*4 
ebp 
esi  
edi  
ds 
es 
f s 
gs 
dx, ss 
ds, dx 
es. dx 
Ck reen te r )  
es i ,  esp 
esp, k s t k t o p  
ebp. ebp 

ebx 
eax 
ecx 
-sys-call 

! se t  d i  r e c t i  on f l a g  to  a known value 
! skip RETADR, eax, ecx, edx, ebx, est  
! stack already points i n t o  proc table 

! assumes P-STACKBASE - 0 

! f o r  stacktrace 
! end o f  i nl ine  save 
! allow SWIfQIER to be in terrupted 
! now set  up parameters f o r  sys-call (1 
! pointer  t o  user message 
t src/dest 
! SEND/RECEM/BOTH 
! sys-call (function, s r t d e s t ,  nlptr) 
! c a l l e r  i s  now e x p l i c i t l y  i n  p r o t p t r  

AXREC(esi), eax ! sys-call MUST PRESERVE s i  
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cl i ! d isab le  i n t e r r u p t s  

! f a l l  i n t o  code to r e s t a r t  p r o d t a s k  running. 

! Flush any held-up i n t e r r up t s .  
! Th is  reenables i n t e r r up t s ,  so the cu r ren t  i n t e r r u p t  handler may reenter .  
! T h i s  does not  matter,  because the cur ren t  handler i s  about t o  e x i t  and no 
! other handlers can reenter  s ince f l u sh i ng  i s  on ly  done when k r e e n t e r  == 0. 

cmp (-held-head), 0 ! do f a s t  t e s t  t o  usua l l y  avoid func t ion  c a l l  
j over-call-unhold 
c a l l  -unhold ! t h i s  i s  rare so overhead acceptable 

over-cal 1 -unhold : 
mov esp. ($roc-ptr) ! wi 11 assume P-STACKBASE == 0 
1 l d t  P-LDT-SEL(esp) ! enable segment descr ip to rs  for task 
1 ea eax + P JfACKTOP(esp) ! arrange f o r  next i n t e r r u p t  
rnov (-tss+TSS3_S_SW), eax ! t o  save s t a t e  i n  process t ab l e  

r e s t a r t l :  
decb (-k-reenter) 

016 pop gs 
016 pop f s  
016 pop es 
016 pop ds 

popad 
add esp, 4 ! s k i p  re tu rn  adr  
i r e t d  ! cont inue process 

-di v i  de-e r r o r  : 
push DIVIDEJECTOR 
j m p  exception 

- s i  nqle-step-exception : 
push DEBUG-VECTOR 
j mp exception 

-nmi : 
push NMI-VECTOR 
j mp exception 

-breakpoi nt-exception: 
push BREAKPOINT-VECTOR 
j mp exception 

-overflow: 
push OVERFCW-VECTOR 
j rnp exception 

-bounds-check: 
push BOUNDS-VECTOR 
J ~ P  exception 
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push INVAL-OP-VECf OR 
jmp except ion 

- cop r -no~ava i  1 able : 
push COPROCNOT-VECTOR 
jmp except ion 

-double-faul t : 
push DOUBLLFAULT-VECTOR 
jmp errexcept i  on 

-COprSeg-overrun: 
push COPROCSEG-VECTOR 
jmp except ion 

-i nval-tss : 
push INVAL-TSS-VECTOR 
j mp errexcept ion 

-se'gnent-not-present: 
push SEG-NOT-VECTOR 
j m~ er rexcept ion 

_s tackexcep t i  on: 
push STACICFAU LT-VECTOR 
j mp errexcept ion 

-general-protection : 
push PROTECTION-VECTOR 
jlno errexcept ion 

-page-f aul t : 
push PACE-FAULT-VECTOR 
j mp errexcept ion 

-copr-error : 
push COPRDCLERRVECTOR 
JW except ion 

.a l ign 16 
except ion: 

sseg m v  (t rap-e r rno) , 0 ! c l e a r  t rap-errno 
sseg POP (ex-nurnbe r) 

jmp except i  on1 

.a l ign  16 
errexcept ion: 

sseg POP Ce~nuinbe r)  
sseg POP it rap-e r rno) 

except ion l :  ! C m o n  f o r  a l l  exceptions. 



push 
mov 

sseg mov 
movzx 

sseg mov 
mov 

sseg mov 
POP 
c a l l  
push 
push 
push 
push 
push 
c a l l  

add 
c l  i 
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eax ! eax i s  scratch reg is te r  
eax. O4Cesp) ! o ld  e i p  
(01 L e i  p) , eax 
eax , 4+4(esp) ! o ld  cs 
(old-cs) . eax 
eax , 8+4 (esp) ! o ld  ef lags 
(wid-eflags) , eax 
eax 
save 
(01 h e f  1 ags) 
(01 d-cs) 
(01 d-ei p) 
(trap-er mo) 
(e~number) 
-exception ! (e~nurnber, trap-errno, old-eip, 

! o l L c s ,  old-eflagsj 
esp, 5*4 

r e t  

! * I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = - ~ ~ P ~ = ~ - = ~ P D P I P I I ~ I - I = ~ I I P ~ I I - I I ~ I ~ *  
! * data * 
! *rs-=-=rrr--rrrrrrr-====-==~----m=l~~~~~=m -* 
! These declarat ions assure tha t  storage w i7 l  be al located a t  the very 
! beginning o f  the  kernel data section, so the boot monitor can be eas i ly  
! t o l d  how t o  patch these locations. Note tha t  the magic number i s  put  
! here by the compiler, but  w i l l  be read by, and then overwrit ten by, 
! the boot monitor. When the kernel s ta r t s  the sizes array w i l l  be 
! found here, as i f  i t  had been i n i t i a l i z e d  by the  compiler. 

.sect .ram 
-sizes: 

.data2 

. space 

.sect . bss 
k s t a c k :  

. space 
k s t k t o p :  

. conm 

. C M m  

. conm . corn 

. ComR 

! Before the s t r ing  table please 
! sizes o f  kernel. mn. f s  filled i n  by boot: 

OxS26F ! t h i s  must be the f i r s t  data entry (magic C) 
16'2'2-2 ! monitor uses previous word and t h i s  space 

! ex t ra  space a1 tows for addi t ional  servers 

LSTACICBYTES ! kernel stack 
! top o f  kernel stack 

elcnumber, 4 
trap-errno, 4 
old-eip, 4 
old-cs, 4 
o l L e f l a g s ,  4 
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/* This f i l e  contains the C startup code f o r  Minix on I n t e l  processors. 
* It cooperates wi th mpx. s t o  set up a good envi ronrnent f o r  main(). 
4 

* This code runs i n  real  mode f o r  a 16 b i t  kernel and may have to  swi tch 
* t o  protected mode f o r  a 286. 
* 
* For a 32 b i t  kernel t h i s  a1 ready runs i n  protected mode, but the selectors 
* are s t i l l  those given by the BLOS wi th  in te r rup ts  disabled, so the 
* descriptors need t o  be reloaded and interrupt descriptors made. 
*/ 

#include "kernel . ht' 
# i  nc l  ude <std l  i b . hr 
#include ani ni  x/boot . h> 
#include "protect.  h" 

PRIVATE char k e n v i  ron[256] ; /* envi ronment s t r ings  passed by loader */ 

FORWARD -PROTOTYPE( i n t  L a t o i  , (char *s) ) ; 

register  char *envp; 
phys-bytes mcode-base. mdatsbase; 
unsifled m o ~ s t a r t ;  

/* Record where the kernel and the monitor .are. */ 
code-base - seg2phys(c$) ; 
dathbase = seg2phys Cds) ; 
mcode-base s seg2phys(nus); 
lndat~base - seg2phys (ds )  ; 

/* I n i t i a l i z e  protected mode descriptors. */  
p r o t i  n i  t() ; 

/* Copy the boot parameters to  kernel memory. */ 
i f  (pamsire > s izeof  k e n v i  ron - 2) parmsize = s izeof  k-environ - 2;  
phys-copy Cmdat~base + pacnoff , v i  rZphysCkenvl ron) , (phys-bytes) parmsi ne) ; 

/* Convert important boot environment variables. */ 
bootparameters.bp-rootdev = katoiCk-gctenv("rmtdev")); 
bootgarameters . bp-raninagedev - k a t o i  (kgetenv(" ramimagedev")) ; 
boot-parameters . bp-rmsi ze - k a t o i  (kgetenv("ramsi ze")) ; 
boot-parameters . bp-processor = k-atoi (k,getenv("processor")) ; 

/* Type of  VW: */ 
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envp = k-getenv("vi deo") ; 
i f  (strcmp(envp, "ega") == 0) ega = TRUE; 
i f  (strcmp[envp, "vga") == 03 vga = ega = TRUE; 

/* Memory sizes: */ 
low~nemsi re = k-atoi (kgetenv("memsi ze")) ; 
ext-emsi ze = k-atoi (k-getenv("emssi ze")) ; 

/*  Processor? */ 
processor = boot-parameters. bp-processor; /* 86, 186, 286, 386, . . . */ 

/* XT, AT o r  MCA bus? */ 
envp = kgetenv("bus") ; 
if (envp -- N I L P T R  I1 strcmpCenvp, "at")  == 0) { 

pc-at = TRUE; 
1 e l se  
if (strcmpCenvp, "mca") -= 0) { 

pc-at = ps-mca = TRUE; 
1 

/ *  Decide i f  mode i s  protected. */ 
# i f  -WORD-SIZE -- 2 

p r o t e c t e d m d e  - processor >= 286; 
#endi f 

/* I s  there a monitor t o  r e t u rn  to? I f  so then keep i t  safe. */  
if (!protected~node)  man-return = 0; 
mon-start = ncode-base / 1024; 
i f  (morueturn &UI low~nemsize > mon-start) lowaemsize = mon-start; 

/* Return t o  assembler code t o  swi tch t o  protected made ( i f  286), re load 
* se lec to rs  and c a l l  ma? n o .  
*/ 

1 

r e t u rn  s t r t o l  (s, (char *') NULL, 10) ; 
1 

* k-ge tenv * 

PUBLIC char *kgetenv(name) 
char *naAle; 

I 
/ *  Get envi rorment value - kernel  version o f  getenv t o  avoid s e t t i n g  up the 
* usual environment array. 
*/ 

r e g i  ster char *namep; 
r eg i s t e r  char *envp; 
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f o r  (envp = k e n v i  ron; *envp != 0 ; )  { 
for (namep = name; *namep != 0 && *namep == 'envp; namep++, envp++) 

I 
return (NIL-PTR) ; 

1 

/* This f i l e  contains the main program o f  MINIX .  The rout ine main0 
* i n i t i a l i z e s  the system and s ta r t s  the ball r o l l i n g  by se t t ing  up the proc 
* table, i n te r rup t  vectors, and scheduling each task t o  run t o  i n i t i a l i z e  
* i t s e l f .  

* The entr ies i n t o  t h i s  f i l e  are: 
* main: MINIX main program 
* panic: abort MINIX  due t o  a f a t a l  e r ror  
*/ 

X i  ncl ude "kernel . h" 
#include <signal . h> 
#include <unistd. h> 
Xi nclude ani n i  x /cal l  nr. h> 
ti ncl ude ai ni x/con. h> 
#include "proc.h" 

/*=mr-rrnrr=urmrr~-~=~--=~--~~gp~-llz~~=-=-r~rn* 

mai n * 
*rrrrrrrrrrPo===rrr---*~-==-=*---tt--t~-=Ipp=i-ur-===r====-*/ 

PUBLIC void main<) 
i 
/* Star t  the b a l l  r o l l i n g .  */ 

register  s t ruc t  proc *rp; 
register i n t  t; 
i n t  s i  zei ndex; 
phys-clicks tex tbase;  
v i  r-cl i cks t e x t c l  icks;  
v i  r-cl icks d a t ~ c l i c k s ;  
phys-bytes phys-b; 
r e k t  ktsb; /* kernel task stack base */ 
s t ruc t  memory *ncmp; 
s t ruc t  tasktab * t t p ;  

/* I n i t i a l i z e  the i n te r rup t  cont ro l le r .  */ 
in t r - in i t (1 ) ;  

/* I n te rp re t  memory sizes. */ 
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/* Clear the process tab le .  
* Set up mappings f o r  proc-addr0 and procnurnber0 macros. 
*/ 

f o r  (rp = BEG-PRCKJDDR, t - -NRTASKS; r p  < END-PR-; ++rp, ++t) { 
rp->p-flags = P-SLOT-FREE; 
rp->p-nr I t; /* proc number f rm p t r  */ 
(pproc-addr + NRTASKS) [t] = rp;  /* proc p t r  frm number */ 

1 

/* Set up proc t a b l e  en t r i e s  f o r  tasks and servers.  The stacks of the  
kernel  tasks are i n i t i a l i z e d  t o  an a r r ay  i n  data space. The stacks 

* o f  t h e  servers have been added t o  the data segment by the moni tor ,  so 
* the stack po i n t e r  i s  se t  t o  the end o f  the data segmnt.  A l l  t he  
* processes a re  i n  low memory on t h e  8086. On tht 386 on ly  t he  kernel  

i s  i n  low memory, the r e s t  i f  loaded i n  extended memory. 
*/ 

/* Task stacks. */  
k t sb  = ( r e s t )  t-stack; 

f o r  (t = -NLTASKS; t c= LWUSER; ++t) { 
r p  = proc-addr(t1 ; /* t ' s  process s l o t  */ 
t t p  = &tasktab[ t  + NRTASKS): /* t ' s  task a t t r i b u t e s  */ 
strcpy(rp->p-name, ttp->name) ; 
i f  (t < 0) { 

i f  ( t t p - ~ s t k s i z e  > 0 )  { 
rp->p-stguard = ( r e g 2  *) ktsb; 
*rp->p-stguard = STACLGUARD; 

1 
k tsb  += t t p - x t k s i z e ;  
rp->p,reg. sp - k tsb ;  
t e x t b a s e  = code-base >> CLICLSHIFT; 

/* tasks are a l l  i n  the kernel  */ 
s i re index = 0; /* and use t h e  f u l l  kernel s i zes  */ 
memp = & e n ~ [ O l ;  /* renove from t h i s  memory chunk */ 

1 e lse  { 
yizeindex = 2 * t + 2; /* MM, FS. IN IT  have t h e i r  own s izes */ 

3 
rp->p-reg. pc = (reg-t) t t p - z i  n i  t i a l j c ;  
rp-zp-reg.psw = is taskp(rp)  ? INIT-TASICPSW : INIT-PSW; 

tex t -c l i cks  = sizes[sizeindex];  
d a t ~ c l i c k s  = sizes[sizeindex + 11 ; 
rp->pnap [ T I  .men~phys = text-base ; 
rp->p*p[Tl .meklen = tex t -c l  i cks ;  
rp->p~nap[D] .mewhys  = text-base + t ex t - c l i  cks ; 
rp -zpmp[D]  .nremlen - d a t ~ c l i c k s ;  
rp->p~lrap[S] .mewhys  = text-base + tex t -c l i cks  + d a t ~ c l i c k s ;  
rp->p~nap[SJ .mem_vir = d a t h c l i c k s ;  /* empty - stack i s  i n  data */ 
text-base += t ex t - c l i  cks + data-cl icks; /* ready fo r  next,  i f  server */ 
memp->si ze -5 (text-base - mmp->base) ; 
memp-rbase = t e x t b a s e ;  /* memory no longer f ree */ 

i f  ( t > = O )  ( 
/* I n i t i a l i z e  t h e  server stack po i n t e r .  Take i t  d m  one word 
* t o  g ive c r t s0 .s  something t o  use as "argc". 
* / 

rp->p-reg. sp = (rp->p~nap[S] . m v i  r + 
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lii f ,YORDJLZE u 4 
/* Sewers are loaded i n  extended memory i f  i n  386 mode. */ 
if (t < 0) I - 6rslrC11: 

t e x t b u e  - OxLOOOOO >> CLICLSHIFT; 
1 

#en& f 
if CfiridlehardwareCt)) lockready(rp); /* IDLE, HARDWARE neveready */ 
rp->p,flags - 0 ;  

p r o c [ N L f A S K k I N f T ~ J  .p_pid - I;/* INIT o f  course has p4d 1 */ 
b f l l g t r  .- proc-8ddr{IIKE); /+ i t  h s  to point somewhere */ 
1 oclrpi  cbrocO ; 

/* Nav go t o  the assembly code t o  start  runnin~ the current process. */ 
res tar t0  ; 

3 

panic 

PUBLIC vol d p a d  c Cs , n) 
,CONST char *s; 
i n t  n; 
1 
/* The system has pun a g d  of  a fa ta l  error. Terninate execution. 

I f  the pan-ic o r f g i n r t d  i n  Wl or FS, the strfng w i l l  be cllpty and the 
+ f i l e  system already syncked. I f  the panic origdnates i n  the kernc7, we are 

kind of stuck. 
*/ 

f f  C*s 1 -0 )  { 
pr int f  ("\nKercl panic: Ks" ,s); 
if (n t -  N031Ull) prqntf(" %d", n); 
pr int f  ('\nW) ; 

1 
wrcboot CRBT-PANIC) ; 

1 



File : src/kernel/proc .c MINIX SOURCE CODE 

/*  This f i l e  contains essen t i a l l y  a l l  o f  the process and message handl ing. 
* I t  has two main en t ry  po in ts  from the outside: 
* 
* sys-call : ca l l ed  when a process o r  task does SEND, RECEIVE o r  SENDREC 
* i n t e r r u p t :  c a l l e d  by i n t e r r u p t  rout ines t o  send a message t o  task  
* 
* I t  a l so  has several minor en t ry  po i n t s :  
* 
* lock-ready: pu t  a process on one o f  the ready queues so i t  can be run 
* lock-unready: remove a process from the  ready queues 
* lock-sched: a process has run t oo  long;  schedule another one 
* lock-mini-send: send a message (used by i n t e r r u p t  s igna ls ,  e t c  .) 
* lock-pick-proc: p i c k  a process t o  run (used by system i n i t i a l i z a t i o n )  
* unhold: repeat a l l  held-up i n t e r r up t s  
* / 

# inc lude "kerne1.h" 
# inc lude m i n i  x/cal l n r .  h> 
#i n c l  ude <mini x/com. h> 
# inc lude "proc. h'' 

PRIVATE unsigned char switching; / *  nonzero t o  i n h i  b i t  i n t e r r up t ( )  * /  

FORWARD -PROTOTYPE( i n t  msend, ( s t r uc t  proc *ca l le r -p t r ,  i n t  dest ,  
message *m-ptr) 1; 

FORWMD -PROTOTYPE( i n t  mini-rec, ( s t r uc t  proc * c a l l  er -p t r ,  i n t  s rc ,  
message *m-ptr) ) ;  

FORWARD -PROTOTYPE( vo id  ready,. ( s t r uc t  proc * rp)  1; 
FORWARD -PROTOTYPE ( voi  d sched . (voi d) ) ; 
FORWARD -PROTOTYPE( vo id  unready, ( s t r uc t  proc *rp) ) ; 
FORWARD -PROTOTYPE ( vo id  p i  ck-proc , (void) ) : 

Udef i ne CopyMess (s, sp, sm, dp, dm) \ 
cp-mess(s, (sp)->p-map[DJ .mem-phys, ( v i  r-bytes)sm, (dp)->p-map[D] .mem-phys, ( v i  r-bytes)dm) 

r eg i s t e r  s t r uc t  proc * r p ;  /* po i n t e r  t o  t ask ' s  proc en t ry  * /  

/* I f  t h i s  c a l l  w o u l d  compete w i t h  other process-switching func t ions ,  pu t  
* i t  on the 'he ld '  queue t o  be f lushed a t  t he  next non-competing r es ta r t ( )  
* The competing condi t ions are: 
* (1) k-reenter == ( typeof  k-reenter) -1: 
4 Ca l l  f r om the  task l e v e l ,  t y p i c a l l y  from an output i n t e r r u p t  
* r ou t i ne .  An i n t e r r u p t  handler might reenter  i n t e r r u p t ( ) .  Rare, 
ir so n o t  worth speci a1 treatment. 

* (2) k-reenter > 0: 



MINIX SOURCE CODE File: src/kernel/proc.c 

* C a l l  f rom a nested i n t e r r u p t  handler. A previous i n t e r r u p t  handler 
* might be i n s i d e  i n t e r r up t ( )  o r  sys-call () . 

(3) switching != 0: 
* Some process-switching f unc t i on  o the r  than i n t e r r u p t 0  i s  being 
* ca l l ed  from the  task  l e v e l ,  t y p i c a l l y  sched0 from CLOCK. An 
t i n t e r r u p t  handler might c a l l  i n t e r r u p t  and pass the  k-reenter t es t .  
" / 
if ( k r e e n t e r  != 0 I I switching) { 

l o c k 0 ;  
i f  (! rp->p-i nt-held) ( 

rp->p-i n t h e l  d = TRUE; 
i f  (held-head !- NILPROC) 

held-tai  1 ->p-nexthel d = rp;  
e lse  

he ldhead  = rp;  
he l d - t a i l  = rp;  
rp->p-nextheld = NILPROC; 

1 
unlock{) ; 
re tu rn  ; 

1 

/ *  I f  task i s  no t  wa i t i ng  f o r  an i n t e r r u p t ,  record t h e  blockage. */ 
if ( (rp-,p,flags & (RECEIVING I SENDING)) ! = RECEIVING l 1 

! i srxhardware(rp->p-getf rm)) C 
rp-rp-i nt-blocked - TRUE; 
r e t u rn ;  

/* Des t ina t ion  i s  wa i t i ng  f o r  an i n t e r r u p t .  
* Send i t  a message w i t h  source HARDWARE and type HARD-INT. 
* No m r e  in format ion can be r e l i a b l y  provided since i n t e r r u p t  messages 
* a re  mt queued. 
* / 

rp-~p~nessbuf->m-source = HARDWARE; 
rp->p~nessbuf->-type I HARD-INT; 
rp->p-f 1 ags 6- 'RECEIVING ; 
rp->p,int-blocked = FALSE; 

/* Make r p  ready and run i t unless a task i s a1 ready running. This i s 
* ready(rp) i n - 1  ine  f o r  speed. 
*/  

i f  (rdy-head[TASLQ] 1 = NIL-PROC) 
rdy - ta i l  [TASLQ] ->&nextready = r p  ; 

e lse 
p r o c s t r  * rdy-head[TASICQ] s r p ;  

rdy-tai  1 [TASLQ] - rp;  
rp->p-nextready 1 NILPROC; 

I 

/*rss==rmrrrrrrrm-====I:-=~=======~====tl:i.c~r~~-i-=====~~a===~==s~~~~=~-* 

* s ys-cal l  * 
* ~ 1 = r = = = = ~ l l t l l l = P P ~ ~ = ~ ~ ~ = 5 = = = = = L = = = = = = = * /  

PUBLIC i n t  sys-call ( funct ion, src-dest, k p t r )  
i n t  funct ion; /* SEND, RECEIVE, o r  BOTH */ 
i n t  src-dest ; /* source t o  rece ive from o r  dest t o  send to  */ 
message * m p t r ;  /* po i n t e r  t o  message */ 
E 
/* The on ly  system calls t h a t  e x i s t  i n  M I N I X  are sending and receiv ing 

messages. These are done by t rapp ing  t o  t he  kernel  w i t h  an INT i ns t r uc t i on .  
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* The t r a p  i s  caught and sys-call() i s  c a l l e d  t o  send o r  rece ive a message 
* (or  both). The cal7er i s  always given by proc-ptr. 
* / 

r e g i s t e r  s t r u c t  proc * rp ;  
i n t  n :  

/* Check f o r  bad system c a l l  parameters. */ 
i f  ( ! i soks r cdes t  (src-dest)) re tu rn  (E-BALSRC) ; 
r p  = proc-ptr; 

if (i suserp(rp) && f unc t i on  != BOTH) return(LN0-PERM); 

/* The parameters a r e  ok. Do t h e  c a l l .  */ 
i f  ( func t ion  & SEND) { 

/* Function = SEND o r  BOTH. */ 
n = mini-send(rp, src-dest, m p t r )  ; 
i f ( func t ion  -= SEND I I n ! = OK) 

return(n) ; /* done, o r  SEND f a i l e d  */ 
1 

/* Funct ion = RECEIVE o r  BOTH. 
We have checked user c a l l s  are 80M, and t r u s t  ' f unc t ion '  otherwise. 

/ 
return(mini-rec(rp, src-dest. m p t r ) )  ; 

1 

/*uurrrr=rrrarr-rr+r-=====t-t=-===Z=====-~~-mm--=~-=m==-=---* 

* m i  n i  -send t 

*rt.rrr.ltrtrrmr=mr-P-==*1l1III=P==m===ML=---~f=~-=t~t--e-===**/ 

PRIVATE i n t  m i  ni-send(ca1 le r -p t r ,  dest , q t r )  
reg i s t e r  s t r u c t  proc *ca l ler -p t r ;  /* who i s t r y i n g  t o  send a message? */ 
i n t  dest ; /* t o  whom i s  message being sent? */ 
message * m p t r ;  /* po in te r  t o  message b u f f e r  */  

/* Send a message from * c a l l e r g t r l  t o  'dest ' .  I f  'dest '  i s  blocked w a i t i n g  
* f o r  t h i s  message, copy t h e  message t o  i t  and unblock 'des t ' .  I f  'dest '  i s  
* n o t  wa i t i ng  a t  a l l ,  a r  i s  wa i t i ng  f o r  another source, queue ' c a l f e r s t r '  . 
* / 

reg i s t e r  s t r u c t  proc *dest,ptr, *nex-tr; 
v i  r-bytes vb; /* message b u f f e r  po i n t e r  as vir-bytes */ 
v i  r - c l i cks  v l o ,  vh i  ; /* v i r t u a l  c l i c k s  conta in ing message t o  send */ 

/* User processes a re  on l y  allowed t o  send t o  FS and Wl. Check f o r  t h i s .  */ 
i f  ( i suserp (ca1 le rg t r )  Mr !i ssysentn(dest)) return(EJAD-DEST) ; 
d e s t j t r  - proc_addr(dest); /* po in te r  t o  des t ina t ion 's  proc en t r y  */ 
i f  (destpt r ->p- f lags & P-SLOT-FREE) return(LBAD-DESV ; /* dead dest */ 

J* This  check a l lows a message t o  be anywhere i n  data o r  stack o r  gap. 
* I t  w i l l  have t o  be made more elaborate l a t e r  f o r  machines which 

don ' t  have the gap mapped. 
/ 

vb - (v i  r-bytes) u t r ;  
v l o  - vb >> CLICLSHIFT; /* v i  r c l i c k  for  bottom o f  message */ 
vh i  = (vb + MESS-SIZE - 1) >> CLICLSHIFT; /* v i  r c l i c k  f o r  top  o f  msg */ 
i f  (v lo  < cal ler-ptr->pmap[D] . m e ~ v i r  1 I vlo > vh i  I I 

vh i  >= ca l  l e r - p t r - r p~nap [S ]  .mem-vi r + ca l  l e r g t r - > p ~ n a p [ S ]  .meklen)  
return(EFAULT) ; 
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/* Check f o r  deadlock by ' ca l l e r - p t r '  and 'dest '  sending t o  each other.  */ 
i f  {des tp t r ->p- f  lags & SENDING) C 

n e x c p t r  = p roc-add r ( d e s c p t  r -> p-sendto) ; 
wh i le  CTRUE) { 

i f  ( n e x w t r  == c a l  ler -p t r )  return(ELOCKE0); 
i f  (next-ptr->p,fl ags 8 SENDINC) 

nex-tr I proc-addrcnext-ptr->p-sendto); 
e l  se 

break; 

/* Check t o  see i f  'dest '  i s  blocked wa i t i ng  f o r  t h i s  message. */ 
i f  ( (descptr->p-f lags & (RECEIVINC I SENDING)) -= RECEIVING && 

(dest-ptr->p,getf rorn == ANY I I 
dest-ptr-rp-getfrom == proc-number(cal1er-ptr))) { 
/* Des t ina t ion  i s  indeed wa i t i ng  f o r  t h i s  message. */ 
CopyMess(proc-number(ca1 le r -p t r )  , c a l  l e r - p t r ,  ~ p t r ,  d e s t p t r ,  

d e s t p t r - > p m s s b u f )  ; 
dest-ptr->p-flags &- 'RECEIVING; /* dtb lock des t i na t i on  */ 
i f  (des-tr->p-flags =- 0 )  ready(dest-ptr) ; 

} e l se  { 
/* Dest inat ion i s  n o t  wai t ing.  Block and queue c a l l e r .  */ 
ca l le r -p t r ->p~nessbu f  = Illptr; 
i f  (ca l ler -p t r ->p- f lags -* 0) unready(cal1 e r - p t r )  ; 
ca l l e rg t r ->p - f l ags  I= SENDING; 
cal ler-ptr-rp-sendto= dest ; 

/* Process i s  now blocked. Put i n  on the des t ina t ion 's  queue. */ 
if ( (next-ptr - deststr->p,cal lerq)  -= NILPROCI  

des tp t r ->p-ca l  l e r q  R ca l le r -p t r ;  
e l se  { 

w h i  1 e (nextgtr->p-sendl i nk != NIL-PRK) 
n e x t p t r  = naxtdtr->p,sendl i nk ; 

nextatr->p,sondl ink - c a ' t l e r j t r ;  
1 
c a l l  e r j t  r->p-send1 i nk = NIL-PROC; 

1 
return(OK1; 

1 

/ * I l ~ f ~ l l ~ ~ ~ l l l l ~ ~ ~ ~ ~ ~ ~ l l l ~ ~ ~ l ~ l ~ ~ ~ ~ ~ ~ l ~ ~ ~ ~ ~ 3 ~ ~ ~ ~ l m ~ ~ i ~ ~ ~ l ~ ~ ~ *  

m i  ni-rec 
**tllllt--t-==l=-~3~-tt-~=~=-=1*1==-=3=-I~===l--=.1====--*/ 

PRIVATE i n t  nini,rec(caller_ptr, s r c ,  kptr) 
r e g i s t e r  s t r u c t  proc *caller,ptr; /* process t r y i n g  t o  get message */ 
i n t  src;  /* which message source i s  wanted (or M Y )  */ 
message *m-ptr; /f po in te r  t o  message b u f f e r  */ 
{ 
/* A process o r  task  wants t o  get  a message. I f  one i s  already queued, 

acquire i t and deblock t h e  sender. I f  no message from t h e  desired source 
* i s  ava i lab le ,  b lock the c a l l e r .  Ho need t o  check parameters f o r  v a l i d i t y .  

Users c a l l s  are always sendreco , and m i  ni,send() has checked a1 ready. 
* Ca l l s  from the tasks, M, and FS are t rusted.  
/ 

reg i s t e r  s t r u c t  proc *sender,ptr ; 
r e g i s t e r  s t r u c t  proc *previous-ptr; 

/ *  Check t o  see i f  a message from des i red source i s  a l ready avai lab le .  */ 
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i f  ( !  (cal  ler-ptr->p-f lags & SENDING)) f 
/* Check c a l l e r  queue. */ 

fo r  (sender-ptr = c a l l e r s t r - > p - c a l l e r q ;  sender-ptr != NIL-PROC; 
p r e v i o u s j t r  = sender-ptr, sender-ptr = sender-ptr->p-send1 i nk) I 

i f  (src == ANY I I s rc  == proc-number(sender-ptr)) { 
/* An acceptable message has been found. */  
CopyMess(proc-number(sender-ptr), sender-ptr, 

sender-ptr->p-nessbuf, cal  l e r - p t r ,  m-ptr) ; 
i f  (sender-ptr == cal ler-ptr->p-cal  l e r q )  

ca l ler -p t r ->p-ca l lerq = sender-ptr->p-sendlink; 
e lse 

previous-ptr->p-sendli nk = sender-pt r->p-sendl i n k ;  
i f  ((sender-pt r->p-f 1 ags &= -SENDING) == 0) 

ready (sender-ptr) ; /* deblock sender '/ 
re tu rn  (OK) ; 

1 
1 

/* Check f o r  blocked i n t e r r u p t .  */ 
i f  (cal lergtr->p-int-blocked && i srxhardware(src)) I 

m-ptr->msource = HARDWARE; 
m p t r - > m t y p e  - HARD-INT; 
ca l  l e r g t  r->p-i n t b l o c k e d  = FALSE; 
return(0K) ; 

1 
1 

/* No su i t ab l e  message i s  ava i lab le .  Block t h e  process t r y i n g  t o  receive. */ 
cal7ergt.r->p-getfrom = s r c ;  
ca l le r -p t r ->p~nessbu f  = m p t r ;  
i f  (cal l 'er-ptr->p-flags == 0) unready(cal1er-ptr) ; 
c a l l  er-pt r->p-f lags I = RECEIVING; 

/* I f  m has j u s t  blocked and there are kernel  s ignals  pending, now i s  t he  
* time t o  t e l l  W about them, since i t  w i l l  be ab le  t o  accept the message. 
*/ 

i f  ( s i g s r o c s  > 0 && proc-number(cal1er-ptr) == MM-PROLNR && src == ANY) 
inform() ; 

return(0K) ; 
1 

/*r?;===~r===r===rrII1II=1III=ffEIIIIIZZe=e=======================~=-111=====* 
t p i  ck-proc e 

*====4Ts==ira==t============================================================= * / 
PRIVATE vo i d  p i  ck-proc0 
I 
/* Decide who t o  run now. A new process i s  selected by s e t t i n g  'proc-ptr '  . 
* When a f resh  user (or id le )  process i s  se lected,  record i t  i n  ' b i l l - p t r ' ,  
* SO the c lock  task can t e l l  who t o  b i l l  f o r  system time. 
* /  

r eg i s t e r  s t r u c t  proc * rp ;  /* process t o  run */ 

if ( ( rp  = rdy-head[TASK_Q]) != MIL-PROC) { 
proc-ptr  = r p ;  
re turn;  

1 
if ( ( rp  = rdy-head[SERVERQ]) != NIL-PROC) 

proc-ptr  = rp ;  
r e t u rn  : 
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1 
-if ( (rp = rdy-head[USERQ]) != NIL-PROC) 

p r o c p t r  = rp; 
b i l l - p t r  = rp; 
re tu rn  ; 

1 
/* Ho one i s  ready. Run t h e  i d l e  task. The i d l e  task might be made an 
* always-ready user task t o  avoid t h i s  spec ia l  case. 
* / 

b i l l - p t r  = p r o c p t r  = proc-addrCIDLE) ; 
1 

/*=====~T~llll-L~~=========~==CIII====~=E===5E=~=~I~IrOO31E==============-==* 
ready t 

*==l~*==~-~*-pl~-*~======~=~ie=====~Uf=~r~===-n======f~~~ii======--=* / 
PRIVATE vo id ready(rp) 
r eg i s t e r  s t r u c t  proc * rp ;  /* t h i s  process i s  now runnable */ 
C 
/* Add ' r p '  t o  t he  end o f  one of t h e  queues o f  runnable processes. Three 

queues are mi n t a i  ned : 
* TASlCQ - (highest p r i o r i t y )  f o r  runnable tasks 
* SERVERQ - (middle p r i o r i t y )  f o r  Wl and FS on l y  
* USER-Q - (lowest p r i o r i t y )  f o r  user processes 
" / 
i f  (istaskpCrp)) E 

i f ( rdyhead  [TASICa ! = NIL-PROC) 
/* Add t o  t a i l  o f  nonempty queue. */ 
rdy-tai  7 [TASLW -rp-nextready = rp ;  

e lse { 
proc-ptr  = /* run f resn  task nex t  */ 
rdy-head[fASLQ = rp; /* add to  empty queue */ 

3 
rdy-tai  1 [TASLQ] = r p  ; 
rp-zp-nextready = NIL-PROC; /* new en t ry  has no successor */ 
re turn;  

1 
i f  (! isuserp(rp)) C /* others  a re  s i m i l a r  */ 

i f (rdy-head[SERVERQ] !- NIL-PROC) 
rdy-tai  1 [SERVELQ] ->p-nextready = rp ;  

e l se  
rdy-head(SERVELQ1 = r p  ; 

rdy - t a i l  [SERVERQI = rp; 
rp->p-nextready = NIL-PROC; 
re turn;  

1 
if (rdy-head [USERQ] == NIL-PROC) 

rdy - ta i l  [USELQ] = r p  ; 
rp->p,nextready = rdy-head[USELQ]; 
rdy-head[USERQl = rp;  

/* 
i f ( rdy,head[USERQ] ! = NIL-PROC) 

rdy - ta i l  [USERJJ] ->p-nextready = rp; 
e l se  

rdy-head [USERA] = rp ; 
rdy-tai  1 CtlSELQ1 - rp;  
rp->p-nextready = NIL-PROC; 

*/ 
1 
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r e g i s t e r  s t r u c t  proc *xp; 
r eg i s t e r  s t r u c t  proc * * q t a i l ;  /* T A S L Q ,  SERVELQ, o r  USEllQ r dy - t a i l  */ 

i f  (istaskpCrp)) i 
/* task stack s t i l l  ok? */ 
i f (* rp-rp-stguard !- STACKGUARD) 

panic("stack overrun by task",  proc_number(rp)) ; 

i f  ( (xp = rdy-head[TASK-Q]) == NIL-PROC) re tu rn ;  
i f  (xp == rp) { 

/* Remove head o f  queue */ 
rdy,head[TASU-Q] = xp->p-nextready ; 
i f ( r p  - p r o c s t r )  pi ck-protO ; 
return;  

1 
q t a i  1 = Lrdy-tai  1 [TASLQ] ; 

1 
e l se  i f  (!isuserpCrp)) C 

i f  ( (xp P rdy-head[SERVERQl) == NIL-PROC) re turn;  
i f  (xp -m rp) I 

rdy,head[SERVELQ] = xp->p-nextready; 
p ickproc0 ; 
return;  

1 
q r a i  1 = Brdy-tai '1 [SERVELQ] ; 

1 else 
I 

i f  ( (xp = rdy-head[tlSERQ]) == NIL-PROC) re turn;  
i f  (np == rp) I 

rdy-head[USER-Q] :. xp->p-nextready; 
pick&rocO ; 
return;  

1 
q t a i  1 Drdy- ta i l  CUSELQI ; 

1 

/* Search body o f  queue. A process can be made unready even i f  i t  i s  
* not running by being sent a signal that  k i l l s  i t. 
*/ 

wh i le  (xp->p-nextready != rp) 
i f  ( (xp = xp-rp-nextready) == NILPROC) re turn;  

x p - r p ~ e x t r e a d y  = xp->p,nextready->p-nextready; 
i f  ( * q t a i l  == rp) *qtail = xp; 

? 
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possibly promoting another user t o  head o f  the queue. 
*/ 

i f  (rdy-head [USELQ] - NIL-PROC) return; 

/* One or m r e  user processes queued. */ 
rdy-tai 1 [USELQJ ->p~lextready = rdyJleadCUSESQ1; 
rdy- t r i  1 [USERQI - rdy,head[USELQ] ; 
rdy_head[USELQl - rdy-head [USERQI ->p-nextready : 
rdy-tai 1 [USERU->p~lextrcIdy = NILPROC; 
p ickproco  ; 

1 
. . 

/*- * L ~  
--PIPI- rar-* 

* l o c b i n i - s e n d  e 

*I -*/ 
PUBLIC i n t  lockri nLsend(cal1 tr-ptr, dest , wtr) 
s t ruc t  proc * c a l l e r g t r ;  /* who i s  trying t o  send a message? +/ 
i n t  &st; /* t o  Irrhon, i s  rssage bcfng sent? */ 
llassage * ~ p t r ;  /* pointer  t o  message buffer */ 
I 
/* Safe gateway t o  mini,scnd() f o r  tasks. */ 

int  resu l t ;  

switching = TRUE; 
resu l t  - nini-send(ca1 l e r g t  r, dest , ntptr) ; 
suritchtng = FAlSE; 
return(resu1 t) ; 

1 

/*- --• * lockpi ckproc * 
*---llril~- */ 
PUBLIC void l oc l cp i  c k g r o c O  
I 
/* Safe gateway t o  p i c l c p r o c 0  f o r  tasks. */ 

switching - TRUE; 
p 1 c ) L P r ~ O  ; 
switching - FALSE; 

3 

/* -- I----------+ * 1 ockready * 
* ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ - ~ L I I I ~ L I I I I I ~ = - L ~ ~ D I S ~ ~ P I I ~ L P I ~ ~ ~ ~ - = ~ I P * /  

WBLIC void 1ockreadyCrp) 
s t ruc t  p r x  *rp: /* t h i s  process i s  nar runnable */ 
{ 
/* Safe gateway t o  ready() f o r  tasks. */ 

switching = TRUE; 
ready < rp) ; 
switching = FALSE; 

3 
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PUBLIC v o i d  lock-unreadycrp) 
srruct proc * rp ;  /* t h i s  process i s  no longer runnable */ 
{ 
/*  Safe  gateway t o  unready(> f o r  tasks. */ 

switching = TRUE; 
unready (rpl  ; 
switching = FALSE; 

1 

switching = TRUE; 
sched0 ; 
switching = FALSE; 

I 

reg is ter  struct  proc *rp;  /* current head o f  held queue */ 

if (switching) return;  
rp = he1 d-head ; 
do 

i f  ( (held-head = rp-rp-nextheld) == NIL-PROC) held-tai l  = NIL-PROC; 
rp->p-i nt-he1 d = FALSE ; 
unlock () ; /* reduce latency; held queue may change! */ 
i nterrupt(proc-number(rp1) ; 
l o c k 0  ; /* protect  the h e l d  queue again */ 

1 
while ( (rp = held-head) != NIL-PROC) ; 

1 
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/ *  Th is  f i l e  contains a simple exception handler.  Exceptions i n  user 
* processes a re  converted to  s ignals .  Exceptions i n  the kernel ,  W4 and 
* FS cause a panic. 
" / 

#include "kernel . h" 
#include <s ignal .  h> 
#include "proc. h" 

s t r u c t  ex-s 
char *msg; 
i n t  signun; 
i n t  m i  nprocessor; 

1 ;  
s t a t i c  s t r u c t  e*_s ex-data[] = { 

"Divide ct r "1 ", SIGFPE, 86. 
"Debug exception", SICTRAP. 86, 
"Nonmaskable i n t e r r up t "  , SIGBUS, 86, 
"Breakpoint", SIGEMT, 86, 
"Overf 1 ow" , SIGFPE , 86, 
"Bounds check", SICFPE, 186, 
"Lnvaf i d  opcode", SICILL, 186, 
"Coprocessor not  ava i lab le" ,  SICFPE, 186, 
"Double f au l t " ,  SICBUS, 286, 
"Copressor segment overrun", SIGSEGV, 286, 
" I n v a l i d  TSS", SIGSECV, 286, 
"Segment n o t  present", SICSECV, 286, 
"Stack exception", SICSEGV, 286, /* STACKJAULT already used */ 
"General p ro tec t ion" ,  SICSEGV, 286, 
"Page f au l t " ,  SICSECV, 386, /* no t  c lose */ 
NIL-PTR, SICILL,  0 ,  /* probably software trap */ 
"Coprocessor e r r o r " ,  SIGFPE, 386. 

\ I ;  
register struct ex-s *ep; 
s t r u c t  proc *saved-proc; 

savedgroc- proc-pt r ;  /* Save p r o c s t r ,  because i t  may be changed by debug 
* statements. 
*/ 

i f  (vec-nr == 2) { /* spurious NMI on some machines */ 
p r i n t f  ("got spurious NMT\nV) ; 
re tu rn  ; 

1 
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if (Lreenter  == 0 && isuserp(saveLproc)) 1 
unlock0 ; /* t h i s  i s  protected l i k e  sys-call() */ 
cause-sig<proc,nunber(saved_proc), ep->signum) ; 
return ; 

1 

/* This i s  not supposed t o  happen. * /  
i f  (ep->msg -= NIL-WR ( I  processor < ep->ainprocessor) 

p r i  n t f  C1'\nIntel -reserved exception %d\n" , vec-nr) ; 
e l  se 

p r i  n t f  ("\n%s\n", ep-msg) ; 
printf("process number %d, pc = Ox96Q4x:Ox%08xjn", 

proc-number (saved-proc) , 
(unsigned) saved-proc->p-reg .cs,  
(unsigned) saved-proc->p-reg. pc) ; 

panic("cxception i n  system code", NO-UUM); 
I 

/* This f i l e  contains rout ines fo r  i n i t i a l i z i n g  the 8259 i n te r rup t  contro l ler :  
* get i rq-handler :  address o f  handler f o r  a given in te r rup t  
* p u L i  rchand ler :  register  an i n te r rup t  handler 
* i nt r - i  n i  t : i n i t i a l i z e  the i n t e r r u p t  contro77eris) 

" / 
#include "kernel .h" 

Cdef i ne ICWtAT 0x11 /* edge tr iggered, cascade, need ICW4 */ 
#define ICWLPC Ox13 /* edge t r iggered ,  no cascade, need ICW4 */ 
Wef i ne I C W L P S  0x19 /* leve l  triggered, cascade, need ICW4 */ 
Xdef i ne ICW4AT 0x01 /* not SF#, not  buffered, nomal €01, 8086 */ 
Xdef i ne ICW4-PC 0x09 /* not SFNM, buffered, normal EOI, 8086 */ 

FORWARD -PROTOTYPE( i nt  spurious-i rq, ( i n t  i rq) ) ; 

Wdef i ne set-vec(nr , addr) CCvoid)O) /* kluge f o r  protected node */ 

/*-s=-==~~=-~l+rttrrt=~~-t~==~=1~~=~~=e~==rr-=-==tt~1t~1-11~1-~-* 

t i n t r - i n i  r t 

* = = 5 ~ E l l f t - ~ ~ ~ ~ = t i ~ ~ L - ~ ~ ~ ~ ~ r e 3 ~ ~ 4 . p ~ ~ = - P P - ~ ~ - ~ ~ ~ ~ - = ~ ~ P u ~ ~ ~ ~ ~ = = = * /  

PUBLIC vo id  i nt r - i  n i  t ( m i  ne) 
i n t  mine; 
i 
/ *  I n i t i a l i z e  the 82595, f i n i sh ing  w i t h  a1 l i n te r rup ts  disabled. This i s  
* only done i n  protected mode. i n  real rnode we don ' t  touch the 8259s. but 
* use the BIOS locat ions instead. The flag "nine" i s  set i f  the  8259s are 
* t o  be programed f o r  Minix, o r  t o  be reset t o  h a t  the BIOS expects.  
* / 

i n t  i; 

l o c k 0  ; 
/* The AT and newer PS/2 have two i n te r rup t  contro l lers,  one master, 
* one slaued at I R Q  2 .  (We don't have to deal w i t h  t he  PC t h a t  
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* has j u s t  one contro l ler .  because i t  must run i n  rea l  node.) 
* / 

outbyte(1NT-CTL, psnca ? ICWLPS : ICWlAT); 
out4yte(INTTCTLMASK, m i  ne 7 IRWECTOR : 81 OS-IRQO-VEC) ; 

/* ICW2 f o r  master */ 
outbyteCINT,CTLMISSK, (1 << CMCADLIRQ)); /* IaJ3 t e l l s  slaves */ 
ouLbyte(INTTCTU4ASK, ICW4JT); 
out_byteCIUT'-CTLMASK, '(1 << .CASCADLIRQ)); /* IftQ 0-7 mask */ 
ou~byte(INT2-CTt, psJnca ? ICWLPS : ICWLATI; 
outbyte(INT2-CTLMASK. mine ? IRQ8-VECTOR : 810s-IRQ8-VEC); 

/* ICU2 for slave */ 
outbyte(INT2-CftMASK. USCADLIRQ); /+ ICW3 i s  slave n r  */ 
outAyteCINT2,CTLHASK. KW4AT) ; 
outbyte(INT2-CTLHASK, '0); /* IRQ 8-15 mask */ 

/* I n i t i a l i z e  the table o f  in ter rupt  handlers. */ 
f o r  (i 0 ;  i < NRIRQVECTORS; i++) i rq-tablet i ]  = spurious-i rq; 

1 

/ * 3 l - = = - l t ~ ~ 1 = ~ 5 t t t i = - = - ~ ~ - ~ = ~ a ~ ~ = = ~ l l l ~ - ~ ~ = ~ * ~ = *  

t $ spurious-i rq  t 

* ~ ~ ~ ~ t m - t ~ ~ ~ l l ~ ~ 3 1 ~ t = = = = = ~ u f 3 ~ m - ~ ~ - ~ l t t - ~ - - t m ~ - = = ~ = = = = ~ * t ~ = = * /  

PRIVAE i n t  spurious-i rq ( i  rq) 
i n t  i r q ;  
C 
/* Default i n te r rup t  handler. It collp'lains a l o r .  */ 

i f  (i rq < 0 I I i r q  >= NLIRLVECTORS) 
panicC"inva1id c a l l  t o  spurious-i rq", i rq); 

printf("spurious i r q  %d\nm, i rq ) ;  

return 1; /* Reenable i n te r rup t  */ 
1 

/*==-==-=-=-=-*-.-===-==---=--==-as=-=-=-==a-*-===* 

t p u L i  rq-hand1 er  
* ~ ~ r r r r = l r r r r r r r n ~ ~ - I p I I ~ = = - = 1 - ~ = I I - ~ ~ = ~ ~ e * t = ~ ~ - * ~ ~ - ~ = ~ ~ * ~  */ 

PUBLIC void put-i rq_handler(i r q  , handl er) 
i n t  i rq ;  
i rq-hand1 er-t handl er; 
I 
/* Register an in ter rupt  handler. */ 

3 f (i rq c 0 I I i rq >= NRZRQVECTORS) 
pani c("i nval i d  c a l l  t o  p u c i  rchand l  er"  , i rq) ; 

i f  (i rq-tablel i  rq]  =- handl e r l  
return ; /* extra i n i t i a l i z a t i o n  */ 

i f  (i rq-tab1 e [i rq] ! = spuri ous-i rq) 
panic("attempt t o  register  setond i r q  handler f o r  i rq" ,  i rq); 

d i  sabl e-i rqCi rq) ; 
i f  (! protectebmde) se~vecCBI0S-VECTORCi rq) , i rq-vec [i rql)  ; 
i r ~ t a b I e [ i  rq]= handler; 
irq-use 1- 1 << i rq; 

I 
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/* This f i l e  contains code f o r  i n i t i a l i z a t i o n  o f  protected made, ro i n i t i a l i z e  
* code and da ta  segment descr ip tors ,  and t o  i n i t i a l i z e  g loba l  desc r ip to rs  
* f o r  l o c a l  descr ip tors  i n  t he  process tab le .  
* /  

# inc lude "kernel .  h" 
#inc lude "proc.hU 
t i n c l  ude "protect .  h" 

s t r u c t  desctableptr-s { 
char l i m i  t [ s i zeo f  Cul6-t)] ; 
char basels i  zeof(u32-t)] ; / *  rea77y u>A t + pad f o r  286 * /  

I ;  

s t r u c t  gatedesc-s I 
u16-t o f f  set-] ow ; 
u16-t se lec to r ;  
u8-t pad; 
u8-t p-dpl-type; 
u16-t offset-high; 

I ;  

s t r u c t  tss-s { 
reg-t back1 i n k  ; 
reg-t spO; 
reg-t ssO; 
reg-? sp l ;  
reg-t s s l ;  
reg-t sp2 ; 
reg-t ss2; 
reg-t cr3 ; 
reg-t i p ; 
reg-t f lags ; 
reg-t ax; 
reg-t cx;  
reg-t dx; 
reg-t bx ;  
reg-t sp; 
reg-t bp ; 
reg-t s i  ; 
reg-t d i  ; 
reg-t es; 
reg-t cs; 
reg-t ss;  
reg-t ds; 
reg-t  f s ;  
reg-t gs ; 
reg-t l d t  ; 
u16-t t r ap ;  
u16-t i obase ; 

1 ; 

/ *  l0001XXXXXJ i g  & t r p g ,  IXXXXXXXXI t ask  g * /  
/' lPlDLlOlTYPEl  * /  

/*  stack po in te r  t o  use during i n t e r r u p t  */ 
/ *  " segment " " * / 
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PUBLIC s t r u c t  segdesc-s gdt[tDT,SIZE]; 
PRIVATE s t r u c t  gatedesc-s idt[IDT-SIZE]; /* z e r o - i n i t  so none present  */ 
PUBLIC s t r u c t  tss-s t s s ;  /* zero  i n i t  */ 

FORWARD -PROTOTYPE ( v o i d  i nt-gate . (unsigned vec-nr , phys-bytes base, 
uns igned dpl-type) ) : 

FORWARD -PROTOTYPE( v o i d  sdesc, ( s t r u c t  segdesc-s *segdp, phys-bytes base, 
p h y s h y t e s  s i ze )  1; 

phys-bytes code-bytes; 
phys-bytes d a t ~ b y t e s ;  
s t r u c t  gate-table-s *gtp;  
s t r u c t  desc tab lept r -s  *dtp; 
unsigned l d t - se lec to r :  
r e g i s t e r  s t r u c t  p roc  *rp;  

s t a t i c  s t ruc t  gate- table-s E 
- PROTOTYPE( void (*gate). (void) 1; 
unsigned char  vec-nr ; 
unsigned char p r i v i l e g e ;  

1 
gate-table[ ]  = { 

d i v i  de-er r o r  , DIVIDE-VECTOR , INTRPRIVILECE , 
single-step-exception, DEBUGVECTOR, INTRPRMLECE, 
nmi , NMI-VECTOR , INTLPRIVILEGE , 
breakpoi  n c e x c e p t i  on, BREAKPOINT-VECTOR , USER-PRIVILEGE, 
o v e r f  1 ow, WERFLW-VECTOR , USERPRIVILEGE, 
bounds-check, BOUNDS-VECTOR, INTRPRIVILEGE, 
i nval,opcode, INVALOP-VECTOR , INTLPRIVILECE , 
c o p r - n o ~ a v a i l a b l e ,  COPROC_NOT,VECTOR, IMlXPRfVILEGE, 
doubl  e - f a u l t  , DOUBLLfAUtT-VECTOR, INTRPRIVILEGE. 
copr-seg-overrun, COPROCSEGVECTUR. INTRPRIMLECE,  
i nva l - t ss ,  IWAL-TSS-VECTOR, INTRJRIVILEGE, 
segment-notpresent , SEG-NOT-VECTOR , I N  KPRIVILEGE , 
stack-exception, STACK-FAULT-VECTOR, INTRPRIVILEGE, 
g e n e r a l - p r a t e c t i  on, PROTECTION_VECTOR, INTRPRIVILEGE, 
page-faul t ,  PACE-FAULT-VECTOR, INTLPRIVILEGE, 
copr-error ,  COPROCERLVE(ITOR, INTLPRIVILECE, 
{ hwintD0, VECTOR( 0)  , INTRPRIVZLEGE ), 
( hwi n tO l ,  VECTOR( 1) , INTRPRIVILECE ) , 
{ hwi ntD2, VECTOR( 2). INTRPRIVILECE 1, 
( h w i  ntO3, VECTOR( 3), INTRPRIVILEGE 1,  
{ h w i  ntO4, VECTOR( 4) , INTRPRIV I  LEG€ 1 ,  
{ hwintD5, VECTOR( 53, INTRPRIVILEGE 1 ,  
{ hwintO6, VECTOR( 6), INTRPRIVILEGE 1, 
( hwint07,  VECTOR( 7). INTRPRIVILECE ), 
{ h w i  nt08,  VECTOR( 8). INTRPRIVILECE ). 
{ h w i  ntO9, VECTOR( 93 , INTRPRIVILECE 1. 
{ hwi n t l 0 ,  VECTOR(10) , I H T L P R I V I  LECE 1, 
{ h w i n t l l ,  VECTOR(ll), INTLPRIVILEGE ), 
{ h w i n t l 2 .  VECTOR(l2). INTRPRIVILECE 1, 
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( hwint l3 ,  VECTOR(13), INTRPRIVILECE 3 ,  
{ hwint l4 ,  VECTOR(14), INTR-PRIVILEGE I ,  
{ hwint l5 ,  VECTOR(15). INTRPRIVILECE I ,  

1 ; 

/* This i s  ca l l ed  ea r l y  and can't use tab les  set up by main(). */ 
data-bytes = (phys-bytes) sizes111 << CLICK-5HIV; 
i f  (sizes[O] == 0) 

code-bytes = d a t ~ b y t e s ;  /* common ILD */ 
else 

code-bytes = (phys-bytes) sizes[O] <c CLICLSHIFT; 

/* Bu i l d  gdt and i d t  po in te rs  i n  COT where the  BIOS expects them. */  
dtp= ( s t r uc t  desctableptr-s *) &gdt[CDT-INDEX]; 
* ( ~ 1 6 - t  *) d t p - > l i m i t  = (s izeof  gdt )  - 1; 
* (u32-t *) dtp->base = vir2physCgdt); 

dtp= ( s t r uc t  desctableptr-s *) &gdt[IDf-INDEX]; 
* ( ~ 1 6 - t  *) d t p - z l i m i t  = (s izeof  i d t )  - 1; 
* ( ~ 3 2 - t  *) dtp->base = v i  r2physCidt); 

/*  Bu i l d  segment descr ip to rs  f o r  tasks and i n t e r r u p t  handlers. */ 
in i t -codeseg(~dt[CSINDEX],  codebase, code-bytes, fNTR-PRIVILEGE); 
i n i  t-dataseg(&gdt [DS-INDEX] , da t i l base ,  d a t ~ b y t e s  , INTRPRIVI LEG&) ; 
i n i  t-dataseg(&gdt [ES-INDEX] , OL , OL, TASK-PRIVILEGE) ; 

/* 8ui l d  scratch descr ip to rs  f o r  func t ions  i n  k l i b88 .  */ 
i n i  t-dataseg(&gdt [DS-286-INDEX] , (phys-bytes) 0 ,  

(phys-bytes) MA)C286_SEC_SIZE, TASK-PRIVILEGE); 
i n i  t-dataseg(&gdt [ES-286-INDEX] , (phys-bytes) 0 ,  

(phys-bytes) NAX_286-SEC,SIZE, TASK-PRIVILEGE); 

/ *  Bu i l d  'local desc r ip to rs  i n  CDT f o r  LDT's i n  process tab le .  
* The LDT's a re  a l loca ted  a t  compile t ime i n  the process tab le ,  and 
* i n i t i a l i z e d  whenever a process' map i s  i n i t i a l i z e d  o r  changed. 
*/  

f o r  (rp = BELPROC-ADDR, ld t -se l  ector = FIRST-LDT-INDEX * MSC-SIZE ; 
r p  < END-PROCADOR; ++rp. l d t -se lec to r  += DESC-SIZE) { 
init-dataseg(&gdt[ldt_selector / DESC_ZIZE], v i  r2physCrp->p-ldt) , 

(phys-bytes) s izeof  rp->p,ldt, fNTR-PRIVILEGE); 
gd t t ld t -se lec to r  / DESCSIZE] .access = PRESENT I LOT; 
rp-rp- ldt-sel  = ld t -se lec to r  ; 

1 

/* Bu i l d  main TSS. 
* This  i s  used only to  record the stack po i n t e r  t o  be used a f t e r  an 
* i n t e r r u p t .  
* The po in te r  i s  s e t  up so t h a t  an i n t e r r u p t  automat ica l ly  saves the  

cur ren t  process's reg is te rs  ip:cs:f :sp:ss i n  the correct slots in the 
* process tab1 e .  
*/ 
tss. ss0 - DLSELECTOR; 
i n i  t-dataseg(&gdt[TSS-INDEX] , v i  rtphys(&tss). (phys-bytes) s i  zeof t s s  , 

INTRPRIVILECE); 
gdt[TSS-INDEX].access = PRESENT J (INTRPRIVILECE << DPL-SHIFT) 1 TSS-PIPE; 
tss.iobase = s i reof  tss; /* empty i / o  permjssions map */ 

/* B u i l d  descr ip to rs  f o r  i n t e r r u p t  gates i n  IDT. */ 
f o r  (gtp = bate-tab>e[O] ; 

gtp < &gate-tablefsi zeof gate-table / s izeo f  gate-table[O]] ; ++gtp) I 
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i nt-gateCgtp->vec_nr, (phys-bytes) ( v i  r b y t e s )  gtp->gate, 
PRESENT ( IKTKTC;4TLTYPE 1 Cgtp-zprivi lege tc D P L S H I F T ) )  ; 

I 
i nt-gate (SYS-VECfOR. Cphys-bytes) (v i  r-bytes) p-s-cal 1 , 

PRESENT 1 (USERPRIVILEGE c< DPLSHIFT) ( IUT-GATLTYPE) ; 
i nt-gate(LEVEL0-VECTOR, (phys-bytes) ( v i  r-bytes) levelO,call, 

PRESENT I (TASLPRIVILEGE << DPLSHIFT) 1 INT-GATETYPE) ; 
int,gate{SYS386,VEUM, (phys-bytes) (vi r-bytes) s-cal 1 , 

PRESENT I (USERPRIVILEGE << DPLSHIFT) I INT-CATLTYPE); 
I 

/ * ~ r r r r r r r r r r = ~ r ~ r m t r - ~ - ~ 1 ~ = 1 ~ ~ l ~ 1 1 = = ~ ~ 1 = ~ 1 ~ m ~ = m 3 ~ ~ *  

i n i  Lcodeseg * 
*=+ra~==r-rtrmrPlr---==-~--=-=~P~mtt~-=-=-~~*/ 

PUBLIC void i n i  tcodeseg(segdp , base, s i  ze , p r i  v i  1 ege) 
reg is te r  s t ruc t  segdescs %egdp; 
p h y s b y t e s  base; 
physbytes size; 
i n t  p r iv i lege;  
I 
/+ Bui ld  descriptor f o r  a code segment. */ 

sdescbgdp,  base, size) ; 
segdp->access - (pr iv i lege << DPLSHIFT) 

I (PRESENT I SECMENT ( EXECUTABLE I READABLE); 
/* CONFORMING = 0 ,  ACCESSED - 0 +/ 

1 

/*==-=-=----=~--==*~==-=-~=--~-=-P---* 
i n i  t-dataseg 

* r n r u n l r r r r t r r r r r - ~ n - ~ ~ - = - m - ~ ~ p P = m r = ~ m ~ ~ ~ ~ p ~ . . ~ p ~ n - - - * /  

PUBLIC vofd i n i  tdataseg(segdp, base, size, p r i v i  1 ege) 
reg i s te r  s t ruc t  segdesrs +segdp: 
phys,bytes base; 
p h y ~ b y t e s  size; 
i n t  p r iv i lege;  
C 
/* Bu i ld  descriptor f o r  a data segment. */ 

sdescCsegdp, base, s i  re )  ; 
segdp->access - (pr iv i lege <c DPL-SHIFT) I (PRESENT I SEGMENT 1 WRITEABLE); 

/* EXECUTABLE - 0 ,  EXPANDJOW - 0, ACCESSED - 0 */ 
1 

I 
/+ F i l l  i n  the size f i e l d s  (base, l i m i t  and granulari ty) of a descriptor. */ 

segdp->base,low = base; 
segdp->base~ni ddl e = base >> BASUIDDLLSHIFI ; 
segdp->baschi gh = base >> B A S U I C K S H I F T ;  
--size; /* convert t o  a l i m i t ,  0 size  mans 4G */ 
i f  (si t e  > B M L G M H )  E 

segdp->'Timi claw = s ize  >> P K ; C G W S H I F T ;  
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segdp->granularity = GRAEIULAR 1 (s ize >r 
(PACE-CRAN-SHIFT + GRANULARITY-SHIFT)) ; 

1 e lse  { 
segdp->limi t-low = s i ze ;  
segdp->granul a r i  t y  = s i ze  >> GRANULARITY-SHIFT; 

1 
segdp->granulari t y  I= DEFAULT; /* means BIG f o r  data seg */ 

1 

i f  ( ! p r o t e c t e d d e )  ( 
base = hcl ick-to-physb(seg) ; 

1 else { 
s e w  = 4 ~ ~ I t C s e g  >> 33; 
base = segdp->base,low 1 ( ( ~32 - t )  segdp->baseniddle << 16); 
base 1 -  ( (~32- t )  regdp->base-high << 24); 

3 
r e t u rn  base ; 

1 

PRIVATE vo id  i nt-gate(vec-nr, base, dpl-type) 
unsigned vec-nr; 
phys-bytes base; 
unsigned dpl-type; 
C 
/* B u i l d  descr ip to r  f o r  an i n t e r r u p t  gate. */ 

r e g i s t e r  s t r u c t  gatedesc-s * idp;  

i dp .: &i d t  [vec-nr] ; 
idp-mff  s e t l o w  = base ; 
idp->selector  = CS-SELECTOR; 
idp->p-dpl-type = dpl-type; 
idp->offset-high = base >> OFFSET-HIGH-SHIFT; 

I 
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# 
! Chooses between the 8086 and 386 versions of the l o w  l eve l  kernel  code. 

# inc lude <mini x/conf i g .  hr 
# i f  -WORD-SIZE == 2 
ti nc l  ude " k l  i b88. s" 
#el se 
#include "kl ib386.s" 
#endi f 

# 
! sect ions 

.sec t  . t e x t ;  .sect . rom; .sect .data; .sect . bss 

# i  nclude m i n i  x/conf ig.  h> 
# i  nc l  ude 4 n i  x/const . h> 
# i  nc l  ude "const. h" 
#i nc J ude "scons t . h " 
X i  nc l  ude "protect .  h" 

! This f i l e  contains a number of assembly code u t i l i t y  rou t ines  needed by the 
! kerne l .  They are: 

.def ine m n i t o r  ! e x i t  Min ix  and re tu rn  t o  the monitor 

. de f  i ne -check-nem ! check a block of memory, r e t u rn  the 

.def ine -cp~ness ! copies messages from source t o  des t i  

.def ine - ex i t  ! dummy f o r  l i b r a r y  rou t ines  

. def ine - e x i t  ! dummy f o r  l i b r a r y  rou t ines  

.def ine e x i  t ! dummy f o r  l i b r a r y  rou t ines  

.de f ine  m a i n  ! dummy f o r  GCC 

.de f ine  -in-byte ! read a by te  from a p o r t  and r e t u rn  i 

.def ine -i n-word ! read a word from a po r t  and r e t u rn  i t  

.define -out-byte ! w r i t e  a by te  t o  a p o r t  

.def ine -out-word ! w r i t e  a word t o  a p o r t  

. d e f i  ne -port-read ! t r ans fe r  data f r a n  (disk con t r o l l e r )  p o r t  t o  memory 

.def ine -port-read-byte ! l i kew i se  byte by by te  

.def ine -port-wri t e  ! t r ans fe r  data frm memory t o  (disk con t r o l l e r )  po r t  

.def ine -port-write-byte ! l i kew i se  byte by byte 

.def ine -lock ! d isable i n t e r r u p t s  

.def ine -unlock ! enable i n t e r r u p t s  

. define -enabl e-i r q  ! enable an i r q  a t  t h e  8259 c o n t r o l l e r  

.def ine -di sabl e-i rq ! d i  sable an i rq 

.def ine -phys-copy ! copy data from anywhere t o  anywhere i n  memory 

.def ine mmrdw ! copy one word frm [segment:offset] 

v a l i d  s ize 
na t ion  

t 
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.define -reset ! reset the system 

.define >em-vid-copy ! copy data t~ video ram 

.define -vi  d-vid-copy ! move data i n  video ram 

.define -1 eve1 0 ! c a l l  a funct ion a t  leve l  0 

! The routines o n l y  guarantee t o  preserve the registers the C compiler 
! expects t o  be preserved (ebx, esi.  edi ,  ebp. esp. segment registers,  and 
! d i rec t i on  b i t  i n  the flags). 

! imported variables 

.sect . bss 

.extern m n - r e t u r n  , m n - s p  

.extern -i rq-use 

.extern ,blankcolor 

.extern -exUnemsi ze 

.extern -qdt 

.extern -1onmrnsi ze 

. extern -si  zes 

. extern -vi  d-seq 

.extern -vid,size 

.extern _ v i d m s k  

. extern -1 evelo-func 

m n i  t o r  : 
m v  
mov 

016 mov 

mov 
mov 
Imv 
POP 
POP 
POP 

016 r e t f  

eax, (-rebootcode) ! address o f  new parameters 
esp, b 0 n - s ~ )  ! restore monitor stack pointer  
dx , SSSELECTOR ! monitor data segment 
ds, dx 
es, dx 
f s ,  dx 
w, dx 
ss, dx 
edi 
esi 
e b  

! return t o  rhe monitor 

* I - = ~ = E = = I ~ P P I U P ~ ~ - ~ ~ ~ ~ - - I = = = ~ ~ P P P I D ~ ~ - L L ~ ~ ~ *  
! * chec- 1 

! * = = = = . r ~ n r p = = s - m ~ = = - = ~ = r m ~ - - - - = - ~ = = ~ = s ~ r r ~ ~ ~ - = ~ - u = = - *  

! PUBLIC phys-bytes checbm(phys-bytes base, phys-bytes size); 
! Check a block o f  memory, return the m u n t  v a l i d .  
! Only every 16th byte i s  checked. 
! An i n i t i a l  s ize o f  0 means everything. 
! This rea l l y  should do s m  a l i a s  checks. 

c y D E N S I l Y  - - 16 
CKLOGDENSITY = 4 
TESTlPAlTERN = Ox5 5 ! memory tes t  pa t te rn  1 
TEST2 PATTERN = OxAA ! memory tes t  pat tern 2 
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CHKMARCS = 4 + 4 + 4  ! 4 + 4  
! ds ebx e i p  base size 

,checbem: 
push 
push 

016 mov 
. AIOV 

IK)v 
mv 
m v  
shr 

c l r l l  oop: 
movb 
xchgb 
xchgb 
cmpb 
jnz 
movb 
xchgb 
xchgb 
add 
cnrpb 
7 oopz 

cncexi t : 
sub 
POP 
POP 
r e t  

ebx 
ds 
ax, FLAT-DS-SELECTOR 
ds. ax 
eax , CHICMhRCSCesp) 
ebx. ea* 
ecx, CHKFtARCS+4(esp) 
ecx , (3CLOCdENSITY 

d l ,  TESTIPATTERN 
d l ,  Ceax) 
d l ,  (eax) 
d l  , f ESTlPAlTERN 
c ~ e x i  t 
d l  , TESTZPATTERN 
d l ,  (eaxl 
d l ,  (eax) 
eax, WENSITY 
d l  + TESTZPATTERN 
cl l l laop 

eax, ebx 
ds 
ebx 

! wr i t e  t e s t  pattern, remember o r i g i n a l  
! restore o r i g l n a l  , read t e s t  pat tern 
! must agree I f  good real  memory 
! i f  d i f fe rent ,  memory i s  unusable 

! * r ~ r r r r . r r r r r r n r n r ~ ~ ~ ~ ~ ~ ~ = r ~ ~ r = ~ ~ ~ . ~ f ~ ~ - r t ~ r r r r r - ~ r ~ r u n r ~ r = r ~ ~ . . t = ~ = ~ *  

! c p ~ e s s  * 
! * I I P I I = I I - I - ~ ~ ~ ~ ~ I ~ ~ ~ I U I P I I = ~ ~ L L ~ ~ - ~ I I U ~ ~ ~ ~ I - - ~ P I I I I I I I I = ~ *  

! PUBLIC void cp~ncss ( i n t  src, phys-clicks src-clicks, v i  r-bytes src-offset. 
I phys-clicks d s t c l i c k s ,  vir-bytes dsca f f se t ) ;  
I This rout ine makes a f a s t  copy o f  a message from anywhere i n  the address 
! space t o  anywhere else. It also copies the source address provided as a 
I parmeter  t o  the c a l l  i n t o  the f i r s t  word o f  the destinat ion message. 
! 
! W t e  tha t  the mestage size, "Msizc" i s  i n  OWORDS (not bytes) and must be set 
! correct ly .  Changing the d e f i n i t i o n  o f  message i n  the type f i l e  and not  
! changing i t  here w i l l  lead t o  t o t a l  d i  sastar. 

CFURGS = 4 + 4 + 4 + 4 + 4  ! 4 + 4 + 4 + 4 + 4  
! es ds edi es i  e ip  proc sc7 sof  dcl dof 

.a l ign 16 
-cpJns s : 

c l d  
push esl  
push edi 
push ds 
push es 

m v  eax , FLATJS-SELECTOR 
m v  ds, ax 
m v  es. aw 

m v  es i  , CFLARGS+4(esp) ! s rc  c l i c k s  



sh l  
add 
mov 
shl 
add 

mov 
stos 
add 
m v  
rep 
movs 

POP 
POP 
POP 
POP 
r e t  
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e s i  , C L I C L S H I F T  
es i  . CURCS+4+4(esp) ! s r c  o f f s e t  
edi , CURCS+4+4+4 (erp) ! d s t  c l i c k s  
edi . CLICLSHIFT 
edi . CURCS+4+4+4+4(esp) ! d s t  o f f s e t  

eax , CCCARCS (esp) ! process number o f  sender 
! copy number o f  sender to dest message 

esi ,  4 ! do n o t  copy f i r s t  word 
ecx, Msize - 1 ! remember, f i r s t  word does not  count 

! copy the message 

! t ha t  i s  all f o l k s !  

-exi t : 
-exit : 
,exit: 

s t i  
jmp -exi t  

..main : 
r e t  

.a l ign 1 6  
-i n-byte: 

mov edx. 4(esp) 
sub eax, eax 
i nb dx 
r e t  

! po r t  

! read 1 byte 
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m v  edx,4(esp) 
sub eax, eax 

016 i n  dx 
r e t  

! por t  

! read 1 word 

.a l ign 16 
,out-byte: 

mov edx, 4Cesp) 
movb a l ,  4+4(esp) 
outb dx 
r e t  

! por t  
! value 
! output 1 ,byte 

.al ign 16 
-out-word: 

mov edx, 4Cespl ! p o r t  
lnov eax, 4+4Cesp) ! value - 

016 out dx ! output 1 word 
r e t  

PRARGS - 4 + 4 + 4  
! es ed i  e ip  

.align 
g o  rt-read : 

cld 
push 
push 
mov 
mov 
mov 
mov 
mov 
shr 
rep 

016 i n s  
POP 
POP 
r e t  

edi 
e s 
ecx , FLAT-DS-SELECTOR 
es, cx 
edx , PRARCS(esp) 
edi , PfURCS+4Cesp) 
ecx . PRARGS+4+4 (esp) 
ecx. 1 

e s 
edi 
< 

! 4 + 4 + 4  
port dst l en  

! p o r t  t a  read from 
! destination addr 
! byte count 
! word count 
! (hardware cannot handle chords) 
! read everything 
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! unsigned 
! Transfer  data from p o r t  t o  memory. 

bytcount) ; 

PRARGS-0 = 4 + 4 + 4  
es edi eip 

! 4 + 4 + 4  
port d s t  Jen 

-port-read-byte : 
c l  d 
push edi 
push es 
mov ecx, FLAT-DS-SELECTOR 
mov es, cx 
m v  edx , PRARCS-B(esp) 
m v  edi . PRARCS-B+4 (esp) 
mov ecx . PRARCS-B+4+4 (esp) 
rep  
insb  
POP es 
pop edi 
r e t  

! + = - = = ~ ~ ~ ~ = P = ~ ~ = ~ ~ L L L = ~ ~ I = X ~ - - = ~ P ~ ~ = L L P ~ ~ ~ ~ = = = = ~ I X ~ ~ L L ~ = ~ = ~ P = - I C = = = = ~ ~ = ~ I = = = +  

! p o r ~ w r i  t e  t 

! + r = ~ t i r n r r r ~ r r r = u r ~ - = ~ = ~ ~ ~ r r - = ~ ~ ~ ~ ~ ~ = = - a ~ ~ = - ~ = = ~ : - = ~ - ~ ~ = = ~ = = = = = = ~ r = = ~ +  

! PUBLIC vo id  p o r t w r i  t e ( p o r t t  po r t ,  phys-bytes source, unsigned bytcount) ; 
! Transfer data from memory t o  (hard d isk  con t r o l l e r )  po r t .  

PWARGS - 4 + 4 + 4  
1 es ed i  e i p  

. a1 ign 
m r L w r i  t e :  

c l d  
push 
push 
M V  

m v  
M V  

m v  
mov 
shr  
rep 

016 outs 
POP 
POP 
r e t  

esi  
ds 
ecx , FLATIIS-SELECTOR 
ds, cx 
edx , PW_ARGS(esp) ! 
es i . PWARC5+4 (esp) I 

ecx . PWARGS+4+4(esp) ! 
ecx.  1 ! 

! 
! 

ds 
es i 

! 4 + 4 + 4  
port s r c  l en  

p o r t  t o  w r i t e  t o  
source addr 
byte count 
word count 
(hardware cannot handle dwords) 
w r i t e  everything 
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WACS-3 - 4 + 4 + 4  
! es edi e i p  

1 4 + 4 + 4  
port src I en  

e r ~ w i - 3  tebyte:  
cld 
push esi  
push ds 
m v  ecx, FUTJKSELECTOR 
m v  ds, cx 
nwn, edx, RCARCS-B(esp) - esi.  F w A R ~ ( e s p )  
nw ecx, RCARGS-B+#(esp) 
rep 
outsb 
POP ds 
POP esi 
re t  

I *  lock + 
! * -1 I=--* 
! PUBLIC void lock(3 ; 
! Disable CW interrupts. 

.align 16 
-1 ock : 

c l  i 
ret 

! disable interrupts 

*u- m-----ollr----* 

! unlock z 
I*  rerrr-nrrrrrr-rrrrar-rrrrrrsarrrrr-a* 

1 PUBLIC void unlock(); 
! Enable CW interrupts. 

sri 
r e t  

- p a - = - *  

enablc i  rq 
*rrrr+rrr ---=-=--=*/ 

PUBLIC void enabl ki rp (unsi gned i rq) 
Enable an interrupt request l ine  by clearing an 8259 b i t .  
Equivalent code for  i rq < 8: 

outbyte(1KT-CTMK, i hbyteCIKT-ClWASK) & '(1 << i rq)) ; 

,enabl ei rq : 
mov ecx, 4(esp) ! irq 
pushf 
cl 
movb ah, '1 
rolb ah, cl ! ah = '(1 cc (irg % 8)) 
cmpb cl. 8 



j ae 
enabl e-0 : 

i nb 
andb 
outb 
popf 
r e t  
. a1 i gn 

enabl e-8 : 
i nb 
andb 
outb 
popf 
r e t  
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enabl e-8 ! enable irq r= 8 a t  the  slave 8259 

INT-CTLMASK 
a l ,  ah 
INT-CTLMASK 

INTZ-CTLMASK 
a l ,  ah 
INTZ-CTLMASK 

! c l ea r  b i t  a t  master 8259 

! c l ea r  b i t  a t  s lave 8259 

. a1 ign 
-di sable-i rq:  

mov 
pushf 
c l  i 
mov b 
r o l  b 
cmpb 
j ae 

d i  sabl e-0 : 
i nb 
t e s t b  
j nz 
orb  
outb 
popf 
mov 
r e t  

d i  sabl e-8 : 
i n b  
t e s t b  
j nz 
o rb  
outb 
w p f  
W V  
r e t  

d i  s-a1 ready: 
w p f  
XO r 
r e t  

16 

ecx, 4(esp) 

ah, 1 
ah, c l  
c l ,  8 
d i  s a b l e 3  

fNT-CTLHASK 
a l .  ah 
di s-a1 ready 
a l ,  ah 
INT-CTLMASK 

eax, 1 

INT2-CTLMASK 
a l ,  ah 
d i  s-a1 ready 
a l ,  ah 
INTZ-CTLMASK 

eax, 1 

eax, ear 

! i r q  

! ah = (1 << ( i r q  % 8)) 

! d isab le  i rq >= 8 a t  t he  slave 8259 

! a lready disabled? 

! set b i t  a t  master 8259 

! disabled by t h i s  funct ion 

! already disabled? 

! set  b i t  a t  s lave 8259 

! d isabled by t h i s  func t ion  

! already d isabled 
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! * r r ~ = = r r = r m r r ~ r n m = i ~ ~ = ~ = = = = = r = = = = = = = = = = = = = = = = = = = = = = = - - -  ---r=r=rs=-==* 

! PUBLIC void phys-copyCphys-bytes source, phys-bytes des t ina t ion ,  
! phys-bytes bytecount); 
! Copy a block o f  physical memory. 

F'CAltGS = 4 + 4 + 4 + 4  ! 4 + 4 + 4  
! es edi e s i  c ip  s r c  dst l e n  

. a1 i g n  16 
-phys-copy: 

c ld  
push es i  
push edi 
push es 

m v  eax, FLAT-DS-SELECTOR 
rmv es, ax 

CWP 
j b  
mv 
ne9 
and 
sub 
rep 

eseg movrb 
m v  
shr 
rep 

eseg movs 
and 

pc-sndl : 
xchg 
rep 

eseg m v s b  

POP 
POP 
POP 
r e t  

es i  , PCARGS (esp) 
edi , URCS+4(esp)  
eax, PCARGS+4+4(esp) 

ear, 10 
pcLulaI l  
ecx, esi 
ec x 
ecx, 3 
eax, ecx 

ecx, eax 
ecx, 2 

eax, 3 

ecx, eas 

! avoid a l i g n  overhead for  small counts 

! a l i gn  source, hope target  i s  too 

! count fo r  alignment 

! count o f  dwords 

! remainder 

e s 
edi 
esi 

!*rr~~rrrrnx=i=rrr~~~~~~-=-=~-=t==t-=s======t=~=~~~~-~~-===~=r-ct-li~=-is==*u* 

1 m e ~ r d w  .r 

!*==-=-=-*--==-==========-====~========~-=====sa~~==~-~===~=s===aa~-~s-==-* 

! PURLIC u16-t menlrdw(Ul6-t  segment, u16-t "offset); 
! Load and re turn  word a t  f a r  pointer  segment:offset. 

.a l ign 16 
~ m r d w :  

~MIV . CX,  ds 
mov ds, 4(esp) ! segment 
mov -. caw. 4+4<esp) ! o f f s e t  
movzx eax, (eax) ! word t o  r e t u r n  
mov ds, cx 
r e t  
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! * ~ r r r r r r = - u - r r r ~ = = ~ ~ ~ = ~ - ~ - = ~ - - ~ - ~ - - ~ ~ ~ = ~ *  
! reset * 
! * ~ + n r r - s r - r r - s x r - a - ~ -  * 
! WBLIC void reset(); 
! Reset the system by loading fDT w i t h  offset 0 and interrupting. 

-reset : 
1 i d t  (i d u e r o )  
i n t  3 ! anything goes. the 386 w i l l  not l i k e  i t 

.sect .data 
i d t z e  ro : .data4 0, 0 
.sect . tex t  

*,,,,,,-,,--,-=- --- -* 
!* m v i  LCOPY 
! * - 3 r n P t l l m P 9 1 1 1 g . I -  I rr-r-=rrrrrr--* 

! PUBLIC void ne~vid-copy(ul6 *src. unsigned dst, unslgned count) ; 
! 
I Copy count characters from kernel meaory t o  video nenory. Src, dst and 
! count are character (word) based video offsets and  counts. I f  src i s  nu1 l 
! then screen nnnwrry i s  blanked by f i l l i n g  i t  w i t h  b lankcolor.  

WCARCS 1 4 + 4 + 4 + 4  
I es edi csi eip 

m v i  d-copy : 
push 
push 
push 
m v  
m v  
mov 
m v  
c l  d 

rrrvc_hOp: 
and 
m v  
m v  
sub 
cw 
jbe 
m v  

0 : sub 
shl 
test  
j x  

w t c o p y  : 
rep 

016 mvs 
jmp 

mvcbl ank : 
m v  
rep 

016 stas 
! jnrp 

mvctest : 
shr 

esi 
edi 
es 
esi , MICJRCS(esp) 
edi , MLrCARGS4 Cesp) 
edx , MVC-ARGk4+4 (esp) 
es , (A d-seg) 

edi , d v i  d ~ s k )  
ecx. edx 
eax, ( A d s i z e )  
eax, edi 
ecx, eax 
O f  
tcx, eax 
edx, ecx 
edi, 2 
esi , esi 
nvrblank 

mvctest 

eax . Lbl anlccolor) 

rrvc-test 

edi,  1 

! 4 + 4 + 4  
src dst s t  

! source 
! destination 
! count 
! destination i s  video segment 
! make sure direction i s  up 

! wrap address 
! one chunk t o  copy 

! ecx = rrincecx, v i b s i z e  - edi) 
! count -- ecx 
! byte address 
! source = 0 means blank the screen 

! copy words to video memory 

! an = blanking character 

1 copy blanks t o  video memory 

! word addresses 
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1 ea 
vvc-down 1 oop : 

and 
and 
mov 
1 ea 
cmp 
jbe 
mov 

0 : 1 ea 
CrnP 
jbe  
mov 

0 : sub 
sh l  
shl 
rep 

eseg 016 m v s  
shr 
shr 
t e s t  
j n z  
c l  d 
! jmp 

vvc-done : 
POP 
POP 
POP 
r e t  

edi , - l (ed i )  (edxf 1) 

esi  , (-vid~nask) ! wrap addresses 
edi , (-vid-mask) 
ecx, edx ! one chunk t o  copy 
eax, 1Cesi) 
ecx, eax 
O f  
CCX, eax ! ecx = min(ecx, esi  + 1) 
eax, 1Cedi) 
ecx, eax 
O f  
CCX. eax 
edx, ecx 
es i ,  1 
edi , 1 

esi, 1 
edi. 1 
edx, edx 
vvc_downl oop 

vvc-done 

es 
edi 
es i  

! ecx = min(ecr, edi + 1) 
! count -= ecx 

! byte addresses 

! copy v ideo words 

! word addresses 

! again? 
! C compi ler expect up 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
src/kernel /m i  sc. c 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

/* This f i l e  contains a c o l l e c t i o n  o f  wiscellaneous procedures: 
m e h i n i t :  i n i  ti a1 i ze memory tab les .  Some memory i s reported 

by the BIOS, some i s  guesstimated and checked l a t e r  
* envsa rse  parse envi  ronment var iab le .  
e bad-assertion fo r  debugging 
c bad-compare f o r  debuggi ng 
*/ 

#include "kernel.  h" 
#include "assert .  h" 
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#inc lude < s t d l i  b.h> 
ti n c l  ude <mini x /cm.  h> 

#def ine €%BASE Ox100000L /* base o f  extended memory on AT's */ 
l d e f i  ne SHAOOWAOOWBASE OxFAOOOOL /* base o f  RACll shadowing RON on some AT's */ 
l d e f  i ne S H A W W M  Ox060000L /* maximum usable shadow memory (16M 1 im i  t) */ 

/ * = = ~ - = ~ l r m r + n r ~ r r I = = = = = ~ I ~ ~ = = I - = = ~ ~ I = = ~ = ~ # ~ I = = = = = ~ ~ = P = = ~ L w ~ = = m m - ~ i ~ *  

m i n i  t t 

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ I ~ ~ = ~ ~ = I ~ U ~ I ~ ~ L ~ L I I ~ ~ ~ ~ ~ ~ = ~ = ~ ~ P = = W L L - P E ~ = = = L I P P U ~ ~ I = = = = * /  

PUBLIC vo i d  n e k i n i  t C) 
I 
/* I n i t i a l i z e  the memory s i ze  tab les.  Th is  i s  complicated by fragmentat ion 

and d i f f e r e n t  access s t ra teg ies  fo r  protected mode. There must be a 
chunk a t  0 b i g  enough t o  ho l d  H i n i x  proper. For 286 and 386 processors, 

* there can be extended memory (memory above 1MB). This  usua l l y  s t a r t s  a t  
* I M B ,  b u t  there may be another chunk j u s t  below 16MB, reserved under DO5 

f o r  shadowing ROM, b u t  ava i lab le  t o  M in ix  i f  the hardware can be re-mapped. 
* I n  protected node, extended memory i s  accessible assuming CLICLSIZE i s  
* l a rge  enough. and i s  t r ea ted  as o rd inary  memory. 
*/ 

u32-t ext -c l icks;  
phys-cl icks m a ~ c l i c k s ;  

/* Get the s i ze  o t  ord inary  mewry from the BIOS. */ 
memCO1 .size = kto,cl ick(low~nemsize); /* base a 0 */ 

i f  (peat ddr protected~node) I 
/* Get the s i ze  o f  extended memory from the 6105. This i s  spec ia l  
* except i n  protected d e ,  but protected node i s  now normal. 
* Note that no more than 16M can be addressed i n  286 mode, so make 
* sure t h a t  the h ighest  mawry address f i t s  i n  a shor t  h e n  counted 
* i n  c l i c k s .  
/ 

ext -c l  i c ks  k to-c l ick( (u32- t )  e x m s i z e )  ; 
max,clicks - USHRTJMX - ( E K B U E  >> CLICLSHIFT); 
mem[lj. s ize T M I N C e ~ t c l i c k s ,  *ax-clicks); 
mem[l] .base - -BASE >> CLICLSHIFT; 

i f  ( e x t ~ e m s i z e  <= (unsigned) ((SHAWW,BASE - EKBASE) / 1024) 

I 
che~k-mem(5HAMsw~BASE, SHADOY-MAX) =- SHADOW-MAX) I 

/* Shadow ROM memory. */ 
nen[2]. s i  ze = S W J W  >> CLICLSHIFT; 
merr[2].base = SHAOOW-WE >> CLICLSHIFT; 

1 
3 

/ *  To ta l  system memory. */ 
tot-si ze - nrmE01 .s ize + memC13 . s i ze  + mem[2]. s ize; 

1 
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long m i n ,  max; /* minimum and maximum values f o r  the parameter */ 
E 
/* Parse an environment var iable se t t ing ,  something 1 ike  "DPETHO=300: 3".  
* Panic i f  the parsing f a i l s .  Return EP-UNSET i f  the environment var iable 
* i s  not  set, EP-OFF if i t  i s  s e t  t o  "off", EP-ON i f  set  t o  "on" o r  a 
* f i e l d  i s  l e f t  blank, o r  EP-SET i f  a f i e l d  i s  given ( return value through 
* *param). Comas and colons may be used i n  the environment and format 

s t r ing ,  f i e l d s  i n  the environment s t r i n g  may be empty, and punctuation 
* may be missing t o  skip f i e l d s .  The format s t r i n g  contains characters 
* 'd ' ,  ' o ' ,  ' x '  and ' c '  t o  ind ica te  tha t  10, 8, 16, a r  0 i s  used as the 
* l a s t  argument t o  s t r t o l .  
* / 

char *vat, *end; 
long newpar; 
i n t  i I 0, radix, r; 

i f  ((val = k-getenv(env3 3 -= NIL-PTR) return (EP-UNSET) ; 
if (strcmp(va1, "off") == 0) return(EP-OFF) ; 
i f  (strcmp(va1, ."onu) == 0) return(EP-ON); 

r = EP-ON; 
fo r  ( ; ; I  { 

while (*val =I * ') val++; 

i f  (*val == 0 )  returnCr); /* the proper e x i t  point  */ 

i f  { * f r n t  == 0) break; /* too many values */ 

i f  P v a l  =- ' , '  I1 *val  =- ': 'I  € 
/* Time t o  go t o  the next f i e l d .  */ 
i f  <*fit I= ' , ' I I * f m t  -= I : ' )  i++; 
if  (*fmt++ == "val) val++; 

} else { 
/* Envi ronment contains a value, get i t. */ 
switch ( * f m t )  ( 
case 'd ' : radix = 10; break; 
case 'o ' : radix = 010: break; 
case 'x ' : radix = 0x10;  break; 
case 'c' : radix = 0; break; 
default :  goto badenv; 
I 
newpar = strtol(va1, &end, radix); 

if (end I- val) break; /* not a number */  
val = end; 

i f  (i = = f i e l d )  { 
/* The f i e l d  requested. */ 
i f  (newpar < min I I newpar > mar) break; 
*param = newpar; 
r = EP-SET; 

1 
1 

1 
badenv: 

p r i n t f  ("Bad environment set t ing:  'Xs = %sl\n*'. env, k-getenvCenv)) ; 
panic("" , NO-MUM) ; 
/*NOTREACHED*/ 

3 
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lrif D E W  
/*= -r-rr--uraa=-~~-~r--==* 

bactasserti on 
*ru --=-a- -----I-*/ 

PUBLIC void bad-assertion ( f i l e ,  l ine,  what) 
chat * f i l e ;  
i n t  l ine;  
char +what; 
{ 

p r i n t f  ("panic a t  X s W )  : assertion \"Xs\" failed\nW, f i l e ,  l ine,  what) ; 
pani c (NULL, NO-WUI) ; 

3 

- - ------ 

PUBLIC m i d  bahcolpare(f i le, l ine,  I h s ,  what, rhs) 
char + f i le :  
i n t  l ine;  
i n t  Ihs; 
char +what; 
i n t  rhs ; 
C 

p r i  n t f  ("panic a t  %s(%d) : compare (%d) Xs (Xd) failed\nW , 
f i l e ,  l ine,  Ihs, what. rhs); 

panicCNULL, NOAUCI); 
1 
#endif /* DEBUG */ 

+ + + + + f + + + + + + + + + + + + + + + + * + + + + + + + + + + + + + + + + + + * + + + e +  

src/kernel /dri  ver . h 
++++u++++++++++C++P+++Ct++H++++M+++++-Hw+++-++-++ 

/* Types and constants shared between the generic and device dependent 
device dr iver code. 

*/ 

#include a in ix / ra l lnr .h> 
# i  nc l  ude ai n i  x / c a  . h* 
#include "proc. h" 
#include 4 n i  x/parti t i on. h, 

/* In fo  about and entry points i n t o  the device dependent code. */ 
struct dr iver  { 

-PROTOME( char *(*dr-name), (void) ); 
-PROMTYPE( i n t  (*dr-open), (struct dr iver  *dp, message *u t r )  1 ; 
-PRQmTYP€( int <*dr,closc). (struct dr iver  *dp. message *rptr) ) ; 
-PRmOTYPE( i n t  (*dr,ioctl), (struct dr iver *dp, message * u t r )  ) ; 
,PROTOTYPE( s t ruct  device C*drgrepare) , ( i n t  device) ) ; 
-PROTOTVPE( i nt  (*dr-schedule), (i nt p rocnr ,  struct iorequests *request) ) ; 
,PROTDTVPE( i nt (*dr-fi nish) , (void) ) ; 
,PROTOTYPE( void Ctdr-cleanup), (void) ) ; 
,PROTOTYPE( vo4d Pdr-gcawtry) , (struct pa r t i  t i on  *entry) ) ; 

1; 

#if (CHIP = INTEL) 

/* Nunbtr o f  bytes you can DMA before h i t t i n g  a 64K boundary: */ 
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#def ine dmkbytes- le f t  (phys) \ 
((unsigned) ( s i r eo f ( i n t )  == 2 ? 0 : 0x10000) - (unsigned) ((phys) & OxFFfF)) 

#endif  /" CHIP == INTEL */ 

/* Base and s i z e  o f  a p a r t i  t i o n  i n  bytes. */ 
s t r u c t  device { 

unsigned long dv-base; 
unsigned long dv-si ze; 

I ;  

t d e f  i ne NILDEV ( ( s t r uc t  device *) 0) 

/* Functions def ined by  driver.^: */  
-PROTOTYPE( v o i d  dr iver- task, ( s t r u c t  d r i v e r  *dr)  ) ; 
- PROTOTYPE( i n t  do-rdwt, ( s t r uc t  d r i v e r  * d r ,  message * i x p t r )  ) ;  
-PROTOTYPE( i n t  do-vrdwt. ( s t ruc t  d r i v e r  *dr, message * m p t r )  ) ;  
-PROTOTYPE( char *no-name, (void) ); 
-PROTOTYPE( i n t  do-nop, ( s t r uc t  d r i v e r  *dp, message *m-ptr) ; 
-PROTOTYPE ( i nt  nop-f i n i  sh , (vo i  d) ) ; 
-PROTOTYPE ( vo i  d nop-cl eanup , (voi d) ) ; 
-PROTOTYPE( vo i d  c lockmess,  ( i n t  t i c k s ,  watchdog-t func) ) ;  
-PROTOTYPE( i n t  do-diocntl , ( s t r uc t  d r i v e r  *dr , message *n-ptr)  1; 

/* Parameters f o r  the d i s k  d r i ve .  */ 
Wdef i ne SECTOR-Sf ZE 512 /* phys ica l  sector  s i ze  i n  bytes */ 
#define SECTOR-SHIFT 9 /* f o r d i v i s i o n  */ 
Xdef i ne SECTORMASK 5 1 1  /* and remainder */ 

/* Size o f  the DHA b u f f e r  b u f f e r  i n  bytes. */ 
#def ine MA-BUF-SIZE (DMLSECTORS * SECTORSIZE) 

# i f  (CHIP == INTEL) 
extern u8,t *tmp,buf; /* the DMA b u f f e r  */ 
#el se 
extern u8-t tmp-buf [J  ; /* the DMA b u f f e r  */ 
Xendi f 
extern phys-bytes t lnpghys; / *  phys address o f  DMA b u f f e r  */  

/* This  f i l e  contains device independent device d r i v e r  in te r face .  
* Author: Kees 1. got. 
* 
* The d r i v e r s  support t h e  f o l l ow ing  operat ions (using message f o m t  m2): 
* 
* m t y p e  DEVICE PRKNR COUNT POSITION ADRRESS 
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* 
* The f i l e  contains one en t r y  po i n t :  
* 
* dr iver - task:  ca l l ed  by the device dependent 
* 
* ' 

* Constructed 92/04/02 by Kees 3 .  Bot from t h e  o l d  AT 
*/ 

task en t ry  

w in i  and f loppy  d r i ve r .  

# inc lude "kernel .h" 
#inc lude <sys/i o c t l  . h> 
Atinclude "d r i ve r .  h" 

Ydefi ne BUF-EXTRA 0 

/* Claim space f o r  var iab les.  */ 
PRIVATE u8-t b u f f e r  [(unsi gned) 2 * DWLBUF-SIZE + BUF-EXTRA] ; 
u8-t *tmp-buf; /* the DMA b u f f e r  eventual1 y */ 
phys-bytes tmp-phys; /* phys address o f  DPIA b u f f e r  */ 

FORWARD -PROTOTYPE( vo id  i n i  t -buf fer  , (void) ) ; 

i n t  r, c a l l e r ,  proc-nr; 
message mess; 

i ni t -buf fer ( )  ; /* Get a DMA bu f f e r .  */ 

* i t  

*/ 

wh i  1 e 

/* Here i s  the main loop  o f  the d i s k  task. It wai ts  f o r  a message. c a r r i e s  
out.  and sends a rep ly .  

(TRUE) I 
/* F i r s t  w a i t  f o r  a request t o  read o r  w r i t e  a d i s k  block. */ 
receive(ANY, bness); 

c a l l e r  = mess.csource; 
proc-nr = mess. P R K N R  ; 

switch ( ca l l e r )  { 
case HARDWARE: 

/* Leftover 
continue; 

case FS-PR-R: 
/* The on ly  
break; 

de fau l t  : 
p r i  n t f  ("%s : 
cont inue ; 

i n t e r r u p t .  */ 

l eg i t ima te  c a l l e r  . */ 

go t  message from %d\nW . ('dp-zdr-name) 0 , c a l l  er) ; 
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/* Norr car ry  ou t  t he  work. */ 
swi tch(mess .mtype) { 

case DEV-OPEN : r = (*dp->dr-open) (dp , dmess) ; break ; 
case DEV-CLOSE: r = (*dp->dr-close) (dp, 6ness) ; break; 
case DEV-IOCTL : r = (*dp->dr-ioctl) (dp, &mess) ; break; 

case DEV-READ: 
case DEV-WRITE: r = do-rdwt (dp, h e s s )  ; break; 

case SCATTERED-10: r = do-vrdwt (dp , &mess) ; break ; 
de fau l t  : r = EIWAL;  break; 

1 

/* Clean up l e f t o v e r  s ta te .  */ 
C*dp->dr-cleanup) () ; 

/* F ina l l y ,  prepare and send the r ep l y  message. */ 
mess . L t y p e  = TASICREPLY; 
mess.REP-PRKNR = proc-nr; 

mess.REPSTATUS = r; /* # o f  bytes t rans fe r red  o r  e r r o r  code */ 
send(cal ler,  &mess); /* send rep ly  t o  c a l l e r  */ 

1 
3 

/'~~~---~~~-=--II--=OI---==-~--LILL~~=C~S====IIIJ=====LI~=II.I* 

* i n i  c b u f  f er 
*rsrrrrr~--~uur~--=-m=r~==~=~-=====~~tut~~t-~~=-~;~~=~-======*/ 

PRIVATE v o i d  i n i  t-buffer()  
C 
/* Select a b u f f e r  t h a t  can sa fe l y  be used f o r  &a t rans fe rs .  I t  may a lso  
* be used t o  read p a r t i t i o n  tab les  and such. I t s  absolute address i s  
' tmpghys ' , t h e  normal address i s  ' tmp-buf ' . 

*/ 
? 

tnp-buf = bu f fe r ;  
tmp-phys = v i  rZphys(buffer); 

i f  ( tnpghys  -- 0 )  panic("no OHA buf fe r " ,  NO-NUM); 

i f  (dmhbytes-1 ef t ( tmpghys)  < OHLBUF,SIZE) I 
/* F i r s t  h a l f  o f  b u f f e r  crosses a 64K boundary, can ' t  DMA i n t o  t h a t  */ 
tmp-buf += DMkBUF5IZE; 
tmpghys += DWLBUF-SIZE; 

1 
1 

/ * m ~ = r a u r - a = - ~ - ~ ~ m = = p ~ = ~ ~ ~ t ~ t - = = ~ - ~ ~ . c t ~ ~ = ~ ~ = = - = ~ ~ ~ ~ m *  

do-rdwt * 
* - r r r r r r r r n r r r r r r r ~ - ~ ~ ~ ~ ~ ~ ~ - ~ r r n ~ = u ~ = = ~ ~ ~ l ~ ~ l ~ = ~ ~ = ~ = = = - ~ ~ ~ ~ a a + /  

PUBLIC i n t  do-rdwt(dp , ~llpt r) 
s t r u c t  d r i v e r  *dp; /* device dependent en t r y  po i n t s  */ 
message * ~ p t r  ; /* po in te r  t o  read or w r i t e  message *I 
C 
/* Carry ou t  a s i ng l e  read o r  w r i t e  request. */ 

s t r u c t  iorequest-s ioreq; 
i n t  r: 
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i f ((*dp->dr-prepare) (mptr->DEVICE) == NIL-DEV) return(ENXI0) ; 

ioreq.io-request = ~ p t r - > - t y p e ;  
i oreq. io-buf = mptr->ADDRESS; 
ioreq- io-posi t ion - m-ptr->POSITION; 
i oreq . i o-nbytes = u t r  ->COUNT; 

/ * P - ~ ~ ~ = = ~ = ~ = P I I ~ ~ = ~ ~ ~ = ~ = I ~ = = ~ ~ ~ ~ ~ = ~ = * = = ~ ~ ~ ~ ~ ~ - ~ ~ - P ~ - - L ~ ~ ~ ~ ~ ~ = - = = = = = *  
* do-v rdwt * 
* n = t t r r r = ~ l c s r t t r m r = = ~ = = = = t ~ ~ ~ = = = ~ = s t t = ~ ~ = = = = = ~ = r = = = = ~ ~ = ~ = = t ~ - m = ~ r n ~ = ~ - = * /  

PUBLIC i nt  da,vrdwt(dp, wtr) 
s t ruc t  d r iver  *dp; /* device dependent entry points */ 
message *rm-ptr; /* pointer  t o  read o r  w r i t e  message */ 
I 
/* Fetch a vector o f  i / o  requests. Handle requests one a t  a tie. Return 
* status jn  the vector. 
*/ 

s t ruc t  i o regues ts  *iop; - 
s t a t i c  s t ruc t  iorequest-s iovecCNR,IOREQSl ; 
phys-bytes iovec-phys; 
unsigned nr-requests ; 
i n t  request ; 
i n t  r; 
phys-bytes user-iovec-phys; 

nr-requests - kptr-wCOUHT; 

i f  (nr-requests > sizeof iovec / sizeof iovec[OI) 
panic("FS passed too b ig  an 1/0 vector'', nr-requests) ; 

iovec-phys - vir2physCiovec); 
user- iowcphys = numap(m-ptr->PROCNR, Cvi r-bytes) m-ptr->ADMESS, 

(vi  r-bytes) (nr-requests s izeof  iovecl01)) ; 

i f  (user-iovecjhys -= 0 )  
panic("FS passed a bad 1/0 vector", ( in t )  mi-ptr->ADDRESS) ; 

phys-copy(user,iovec_phys, iovec-phys, 
(physhytes) nr-requests * s i  zeof i ovec 101) ; 

for (request - 0, iop  = iovec; request c nr-requests; request-, iop++) I 
i f  ((r I (*dp->dr,schedule) <tn-ptr->PROC,NR, i op)  3 != OK) break: 

3 

if (r -- OK) (void) (*dp->dr,fini sh) () ; 

physsopy (iovec-phys , user-iovec-phys , 
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(phys-bytes) nr-requests * sizeof iovecl03);  
return (OK) ; 

1 

* no-n ame * 
*----,---------------------------- +--------------------------------rEIILIIIII====-==ElP====~====E===========*/ 

PUBLIC char *no-name() 
I 
/*  If no spec i f ic  name for  the device. */ 

swi tch  (mptr- type) C 
case DEV-OPEN: returnCEtWEV) ; 
case DEV-CLOSE: return(0K); 
case DEV-IOCTL: return(EN0TTY) ; 
def  aul t : return(EI0) ; 
1 

1 

PUBLIC i n t  nop-f i n i  sh() 
{ 
/* Nothing to f i n i s h ,  a l l  the work has been done by dp->dr-schedule. */ 

return (OK) ; 
1 

watchdog-t func ; /* function to  c a l l  upon time out  */ 
I 
/* Send the clock task a message. */ 

message mess ; 
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mess.CLOCLPRKNR proc-number(proc-ptr); 
mess.DELT&TICK$ = (long) t i cks ;  
mess. FUNLTOCALL = (sighandler-t) func ; 
sendrec(CLOCK, &mess); 

1 

/*l=lllll=~l~~li==-~lnfIItr=f=~~ll=PII=fItl=l=11~=3=ril-*LtI3t=~=PIt====s~* 

rt do-di ocnt l  t 

* = = = r n = r = r = = r n = - = r = = = = ~ = = = = = = = = = = = = = = - = = = = = = =  '/ 
PUBLIC i nt do-diocntl (dp, m p t r )  
s t ruc t  d r iver  *dp; 
message *mp t r ;  /* pointer t o  i o c t l  request */ 
f 
/* Carry out a p a r t i t i o n  set t ing/get t ing request. */ 

s t ruc t  device *dv; 
phys-bytes user-phys, entry-phys; 
s t ruc t  p a r t i t i o n  entry; 

i f  (R_~~~->REQUEST != DIOCSETP && mptr->REQUEST != DIOCCETP) return(ENOTP0; 

/* Decode the message parameters. */ 
if ((dv = (*dp-pdrgrepare) (n~pt r->DEVICE)) == NILDEV) returnCENXI0); 

user-phys I n w p ( w t r - > P R K N R ,  (vir-bytes) lrclptr->ADDRESS, sizeof(entry)); 
i f  (userghys == 0) return(EFAULT1; 

entry-phys * v i  r2phys(kntry) ; 

i f  (m-ptr->REQUEST .p OIOCSETP) I 
/* Copy j us t  t h i s  one p a r t i t i o n  table entry. */ 
phys,copy(user,phys, entry-phys, (phys-bytes) s izeof  (entry)); 
dv-rdv-base = entry.base; 
dv->dv-size = entry.size; 

) else { 
/* Return a p a r t i t i o n  table entry and the geometry o f  the dr ive.  */ 
entry.base = dv->dv-base; 
entry .size = dv->dv,size; 
(*dp->dr--try) (&entry) ; 
phys-copy(entry&ys, use r jhys ,  (phys-bytes) sizeof (entry)) ; 

1 
return(0lo; . 

3 

09400 /* XBM device dr iver  de f i n i t i ons  Author: Kees 3 .  Bot 
09401 il . 7 Dec 1995 
09402 * / 
0940 3 
09404 #include c l m / p a r t i t i o n .  h> 
09405 
09406 -PROTOTYPE( void pa r t i t i on ,  (s t ruc t  d r iver  'dr, i n t  device, i n t  s ty le)  ); 
0940 7 
09408 /* BIOS parameter table layout .  */ 
09409 #define bp-cylindersCt) (* ( ~ 1 6 - t  *I Mt) lo])) 
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#def i ne bp-heads (t) C *  Cu8-t *I (&(t) [21)) 
tdef  i ne bp-reduced-wr (t) C *  Cur62 *) Wt) [33)) 
#def i ne bp-precomp(t) (* ( ~ 1 6 - t  *) (Mt) [ S I ) )  
#define bp-max-ecc(t1 C *  (u8-t '1 16(t)171)) 
#defi ne bp-ctl byte(t)  C* ( ~ 8 - t  *I C&Ct)C81)) 
Cdef i ne bp-1 andi ngzone (t) C* (~16 - t  *I (&(t) l lZI)) 
Atdefine bp-sectors(t) (* (~8 - t  *) C&(t)[14])) 

/* M i  scel 1 aneous . */ 
#define DEV-PERDRIVE (1 + NRPARTITIONS) 
Cdefi ne MINORhdla 128 
wdef i ne MINORfdOa (28c-2) 
Cdef i ne P-FLOPPY 0 
Cdef i ne P-PRIMARY 1 
Pdef i ne P-SUB 2 

MINIX SOURCE CODE 

/* IBM device dr iver  u t i l i t y  functions. Author: Kees 3 .  Bot 
* 7 Dec 1995 

* Entry point :  
* p a r t i t i o n :  p a r t i t i o n  a disk t o  the p a r t i t i o n  table(r) on it. 
*/ 

#include "kernel . h" 
#include "dr iver .  h" 
A i  nclude "drvl i b .  h" 

FORWARD -PROTOTYPE( void ex tpar t i  t ion ,  (s t ruct  d r i ve r  *dp, i n t  extdev, 
unsigned long extbase) I ; 

FORWARD -PROTOTYPE( i n t  getgar t - table,  (s t ruc t  d r i v e r  *dp, i n t  device. 
unsigned long o f fse t .  s t ruc t  p a r t e n t r y  *table) 1; 

FORWARD -PROTOTYPE( void so r t ,  (s t ruc t  p a r t e n t r y  *table) 1; 

/*~~===~=~~*~====~=~3~=313:O==~E===-~~LIIIII~Ii=3P~C~I~I===P:II~~=1I3===1.IZ~~~* 

c p a r t i  ti on * 
*~=~+~~~==~==~~~~~=E=I====I~~-=~I=========E======I*P~=P==I=JPLL=====-===-*/ 

PUBLIC void p a r t i  tion(dp, device, sty1 e) 
s t ruc t  d r i ve r  *dp; /* device dependent entry points */ 
i n t  device; /* device t o  p a r t i t i o n  */ 
i n t  s ty le;  /* pa r t i t i on ing  s ty le :  f loppy, primary, sub. */ 
C 
/* This rout ine i s  cal led on f i r s t  open to  i n i t i a l i z e  the p a r t i t i o n  tables 
* o f  a device. I t  makes sure t h a t  each p a r t i t i o n  f a l l s  safely w i th in  the 
* device's l in i  t s .  Depending on the p a r t i t i o n  s t y l e  we are e i t he r  making 
* f loppy pa r t i t i ons .  primary p a r t i t i o n s  o r  subpartit ions. Only primary 
* pa r t i t i ons  are sorted, because they are shared wi th other operating 
* systems tha t  expect th is .  
*/ 
s t ruc t  part-entry table[NRPARTITIONS], *pe; 
i n t  disk, par; 
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s t ruc t  device *dv; 
unsigned long base, 1 i m i  t , p a r ~ l i m i  t ; 

/* Get the geometry o f  the device t o  p a r t i t i o n  */ 
i f  ((dv - (+dp-*drsrepare) (device)) - NIWEV I t dv-rdv-size - 0 )  return; 
base = dv-rdvbase rr SECTOIUHIFT; 
l i m i t  = base + (dv->dv-size >> SECTORSHIFT) ; 

/* Read the p a r t i t i o n  table f o r  the device. */ 
i f  C!gewart tableCdp, device, OL, table)) return; 

/+ Compute the device nuber o f  the f i r s t  p a r t i  t ion.  */ 
switch (style) (: 
case P-FLOPPY: 

device += MINORfdOa; 
break; 

case P-PRIMARY : 
sor t  (table); /* s o r t  a primary p a r t i t i o n  table */ 
device += 1; 
break ; 

case PJUB: 
disk = device / DEV-PERDRIVE; 
par = device % DN-PERDRIVE - 1; 
device = MINORhdla + (disk NRPARflTfONS + par) * NLPARTITIONS;  

1 

/* Find an array o f  devices. */ 
.if ( (dv - (*dp-~dr j repare)  (d tv i  ce)) - NILMV) return; 

/+ Set the geometry o f  the pa r t i t i ons  from the p a r t i t i o n  table. */ 
for (par = 0 ;  par < NRPARTITIOCJS; par*. dv-1 E 

/* Shrink the p a r t i t i o n  t o  f i t  w i th in  the device. */ 
pe = drtabIeCpar1; - 

p a r p l f m i t  - pe->lowsec + pe->size; 
if (part-limf t < pe->laused p a r ~ l i m i t  = l in i  t; 
if ( p a r t l j n i t  > l i m i t )  p a r ~ l i m i t  = l i m i t ;  
if (pe->lowsec < base) pc->lasec = bssc; 
i f  ( p a r c l i m i t  c pe->lamec) p a r t l i m i t  = pe->lomec; 

i f (sty le u P-PRIMRY) C 
/* Each Minix primary p a r t i t i o n  can be subpartitioned. */ 
i f  (pe-~sysSnd -- MINILPART) 

p a h i  tioncdp, device + par, P-SUB) ; 

/+ An extended p a r t i t i o n  has log ica l  par t i t ions .  */ 
i f  (pe->sysind - Em-PART) 

ex tpar t i  ti on(dp, device + par, pe->lowsec) ; 
1 

1 
1 

/*= - I .P I IPP~ IL .~~* I~ IUUI==~~-P IYL~~~~~~UI *  

extpar t i  tion .k 

*r - - ~ - - - o ~ ~ r l r u r ~ t r r r = - ~ 1 1 - ~ ~ 1 1 o 1 ~ - = ~ - ~ t ~ 1 ~ 1 = ~ ~ ~ ~ 1 = * /  

PRIVATE void extpart i  tion(dp, extdev, extbase) 
s t ruc t  d r i ve r  *dp; /* device dependent entry points */ 
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i n t  extdev; /* extended p a r t i  t i o n  t o  scan */ 
unsigned long  extbase; /* sector o f f s e t  o f  the base extended p a r t i t i o n  */ 
C 
/ *  Extended p a r t i t i o n s  cannot be ignored a las ,  because people l i k e  t o  move 
* f i l e s  t o  and fran WS p a r t i t i o n s .  Avoid reading t h i s  code, i t ' s  no fun. 
*/  

s t  r u c t  pa r t -en t ry  t ab l e  [NRPART fTIONS] , *pe; 
i n t  subc'ev, d i s k ,  par;  
s t r u c t  w i  ce *dv; 
uns i gn r l  long o f f s e t ,  nex to f f se t ;  

d i s k  - extdev / DEV-PERDRIVE; 
par extdev % DEV-PERDRfVE - 1; 
sub& = MINORhdla + (d isk  * NR-PARTITIONS + 

o f f s e t  = 0; 
do 1 

i f  (!get-part-table(dp, extdev, o f f s e t ,  
so r t  (tab1 e )  ; 

/* The t ab l e  should conta in  one l o g i c a l  
* another extended p a r t i t i o n .  { I t ' s  a 
* / 

nex to f f se t  - 0 ;  

par) * NR-PARTITIONS; 

table))  re tu rn ;  

p a r t i t i o n  and o p t i o n a l l y  
l i n k e d  l i s t . )  

f o r  (par = 0; par < NRPARTITIONS; par++) 
pe & tab l eba r ] ;  
i f  (pe->sysind == EKT-PART) { 

nex to f f se t  = pe->lowsec; 
) e lse  
if (pe-rsysind != NO-PART) { 

if ((dv = (*dp->drgrepare) (subdev)) == NILDEV) re tu rn :  

dv->dv-base = (extbase + o f f s e t  
+ pe->lbwsec) << SECTORSHIFT; 

dv->dv-si ze = pe->si ze cc SECTORSHIFT; 

/* Out o f  devices? */ 
i f  (++subdev % NRPARTITIONS tt 0) re tu rn :  

1 
1 

) wh i le  ((offset = hex to f f se t )  != 0); 

C 
/* Read the p a r t i t i o n  tab le  f o r  the  device, r e t u rn  t r ue  i f f  there  were no 
* er rors ;  
* / 
message mess; 

mess. DEVICE = devi  ce; 
mess.POSITION = o f f s e t  << SECTORSHIFT; 
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mess.CWNT = SECTOKSIZE; 
mess.AODRESS = (char *) tmp-buf; 
mess. PRKNR = proc-number (proc-pt,r) ; 
mess.m-type = DEV-READ; 

i f  (do-rdwt(dp, iliness) != SECTORSIZE) { 
p r i  n t f  ( " X s :  c a n ' t  read p a r t i t i o n  tab le \nW , (*dp->dr-name) 0 ) ;  
r e t u rn  0 ;  

1 
if (tmp-buflSlO1 !- 0x55 I I tmp_buf[5111 I =  O M )  { 

/* I n v a l i d  p a r t i t i o n  table. */ 
re tu rn  0 ;  

1 
memcpy ( tab l  e ,  (tmp-buf + PART-TABLLOFF) . NRPARTITIOElS * s i  zeof ( tab le  LO]) ) ; 
re tu rn  I ;  

1 

/*==r=======t:=======r==i==r=======s======~~~==~~c--~~==~=-=t~==t=*  

* s o r t  * 

do E 
f o r  (pe = tab le ;  pe < t ab l e  + NRPARTITIMS-1; pe++) I 

i f  (pe[O].sysind =- NO-PAR1 
I I  (pel01 .lowsec > pe[l] .lowec 

& perl]. sysind ! = NO-PART)) { 
tw = peCO1; pel01 = peEl1; peClI - twi  

1 
) whi le  (--n > 0); 

1 

/* This f i l e  contains the device dependent pa r t  o f  the d r i v e r s  f o r  the 
* f o l l ow ing  special f i l e s :  
Q /dev/nul 1 - n u l l  device (data sink) 
Q /dev/mem - absolute memory 
* /dev/kmem - kernel  v i r t u a l  memory 
* /dev/ram - RAM disk 
4 

* The f i l e  contains one e n t r y  po i n t :  
* 
* nem-task: main en t r y  when system i s  brought up 
* 
* Changes: 
~t 20 Apr 1992 by Kees 3. Bat:  device dependent/independent s p l i t  

* / 
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Xincl ude "kernel . h" 
#include . "dr iver .  h" 
#include <sys/ioctl.h> 

Cdef i ne NRRAMS 4 /* number o f  RAM-type devices * /  

PRIVATE s t ruc t  device m-qeom[NICRAH$]; /* Base and size o f  each RAM d isk */ 
PRIVATE i n t  a d e v i  ce ; /* current device */ 

FORWARD -PROTOTYPE( s t ruc t  device *-repare. (i n t  device) ) ; 
FORWARD -PROTOTYPE[ i n t  m-schedule, (i n t  p r o c n r ,  s t ruc t  iorequescs *i op) ) ; 
FORWARD -PROTD7TPE[ i n t  &do-open , (s t ruc t  d r i ve r  *dp, message *mpt r )  ) ; 
FORWARD ,PROTOTYPE [ voi  d m_i  n i  t , (void) ) ; 
fORWMID -PROtOTYPE( i n t  wioct l ,  (s t ruc t  d r i ve r  *dp, message *wtr) 3 ;  
FORWARD -PROTOTYPE ( void ~geocnet ry  , (s t ruc t  p a r t i  t i o n  *entry) ) ; 

/* Entry points t o  t h i s  dr iver .  */ 
PRIVATE s t ruc t  d r i ve r  ~ d t a b  = { 

no-name . /* current device's name */ 
rcdo-open, /* open or mount */ 
do-nap, /* nothing on a close */ 
ntioctl , /* specify ram disk geometry */ 
murepare, /* prepare for I/O on a given minor device */ 
alschedule, /* do the  I/O */ 
nop-fini sh, /* schedule does t h e  work, no need t o  be smart */ 
nop-cleanup, /* nothing's d i r t y  */ 
mgemet ry ,  /* memory device "geometry" */ 

I ;  

PUBLIC void m e k t a s k  () 
C 

k i n i t ( ) ;  
driver,task(&dtab) ; 

1 

C 
/* Prepare f o r  I/O on a device. */ 

i f  (device < 0 1 1 device >= NRRAHS) return(N1LDN) ; 
c d e v i  ce = device; 
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i n t  proc-nr; /* process doing the request */ 
r t r uc t  iorequests *iop; /* pointer t o  read or w r i t e  request */ 
i. 
/* Read or wr i te  /dev/null, /dev/mem, /dev/knern. or /dev/ram. */ 

i n t  device, count, opcode; 
phys-bytes w h y s ,  u re r jhys ;  
s t  ruct device *dv ; 

/* Type o f  request */ 
opcode = iop->io,request & - O P T I O N A U O ;  

/* Get minor device number and check f o r  /dev/null . */ 
device - -device; 
dv = 6rlgeomCdevJ cel ; 

/* Determine address where data i s  t o  go or to  come from. */ 
userahys = nurapCpro~nr, (vi r-bytes) lop->iobuf,  

(vi r-bytes) i op+i o-nbytes) ; 
if (use rdys  -- 0) returnCiop-wio-nbyter - EIWAL); 

i f  (device I= NULLINV) C 
/* /dev/null: 8lack hole. */ 
i f  Copcode == DEV-WRITE) iop-~ io-nbytes - 0; 
count = 0; 

1 else E 
/* /dev/mem, /dev/kmem, o r  /dev/ram: Check f o r  EOF */ 
i f  ( iop-> i~-pos i t ion >= dv->dv-sizt) returnCOI0; 
count = i op+i odbytes; 
i f  (iop-sio-posi t i on  + count > dv-dv-size) 

count = dv->dv,si ze - i op->i o-si t i on; 
3 

/* Set up 'mcllphys' for  /dev/aem, /dev/kmem, o r  /dev/ram */ 
w h y s  = dv->dv_base + iop->io_pbsition; 

/* Book the n u b c r  o f  bytes to be transferred i n  advance. */ 
i op->j o-nbytes -1 cwnt ;  

i f  (count a- 0)  returnCOK) ; 

/* Copy the data. */ 
i f Copcode -= MV-READ) 

phys-copy hem.phys, user&-, Cphys-bytes) count) ; 
else 

phys-copyCuser~hys, w h y s ,  (phys-bytes) count) ; 

. I  
/* Check device number on open, Give 1/0 privi leges t o  a process opening 

+ /dev/mer or  /dev/knem. 
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if (m-prepare(n~ptr->DEVICE) == NIL-DEV) return(E~XI0) ; 

i f  (m-devi ce =- HEKOEV { I c d e v i  ce =- KMEHJXV) 
enabl e-i op (p ro~addr ( r~p t r -2  P R K N R ) )  ; 

PRIVATE void mi n i t  () 

/* I n i t i a l i z e  this task. */ 
extern i n t  -end; 

n ~ g e o m [ K M E ~ E V l .  dv-base = vi  rZphys(0) ; 
~g@m[KMEICDEVl. dv-si ze = v i  r2phys (Lend) ; 

#if (CHIP =t INTEL) 
i f  C ! p r o t e r t e d d e )  [ 

~georn[MEkDEV] .dv,size = 0x100000; 
1 else C 

#if -WORD-SIZE == 2 
~geom[MEMPEV].dv,size = 0x1000000; 

#else 
n~geon[MEUEV],dv-size = OxFFFFFFFF; 

#endi f 
1 

Xendi f 
1 

/* IM for  8086 systems */ 

/* 16M for  286 systems */ 

/* 4G-1 for 386 systems */ 

unsi gned 1 ong bytesi ze; 
unsigned base, size; 
struct  memory *mew; 
.stat ic  struct  psinfo psinfo = I NLTASKS, NRPROCS, (vir-bytes) proc, 0, 0 1;  

switch Ckptr->REQUEST1 { 
case MIOCRAMSIZE: 

/* FS sets the RWI disk s ize.  */ 
if (mptr->PROC-NR !- FS-PRKNR) return(EPERM) ; 

bytesi ze - wtr->POSITION * BLOUCSIZE; 
size = (bytesize + CLICLSHIFT-I) >> CLICLSHIFT;  

/* Find a memory chunk b ig  enough far the R M  d i s k .  * /  
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mew- l N M M 1 ;  
while (I--mew)->size < s i re )  C 

if h-P - m) panic("RAn disk i s  too big", NO-NUMI; 
3 
base = ncmp->base; 
memp->base += size; 
memp->size -= size; 

n l g e o m [ W E V ]  . dvbase = (unsigned long) base <.c CLIClCSHIFT; 
mgeomCWLOEV_1. dv-si ze = bytesi  ze; 
break ; 

case MXOCSPSINFO: 
/+ m or FS set the address o f  t h e i r  process table. */ 
i f  Cnlptr-zPROCNR - RPROCNR) 1 

psi  nfo.mpmc = Cvi r-bytes) utr-ADDRESS; 
) else 
i f  (mptr->=NU =- FS-PR-R) { 

psi  nfo. fproc = [ v i  r-bytes3 wtr->ADDRESS; 
) e lse  I 

returnCEPERH) ; 
3 
break ; 

case MIOCCPSINFO: 
/* The ps program wants the process tab le  addresses. */ 
p s i  n f o s h y s  = numap(qtr->PROtNR, (v i  r h y t e s )  wtr- ADDRESS, 

s izeof  (psinfo)) ; 
i f  (psinfo-phys -= 0) returnCEFAUIT) ; 
phys-copy(vi r2phys(&psinfo), ps in foshys ,  Cphyshytes) sizeof Cpsinfo)) ; 
break; 

de fau l t  : 
return(d0-di ocnt l  ( k d t a b ,  ncptr)) ; 

1 
return (OK) ; 

3 

/*--==~*-==~~=~=-.=-==~~~=~*~--==~-~=---*=-~---* 
* m u e m t r y  t 

* I I I * ~ I I = L I I ~ L ~ ~ ~ - ~ ~ - * ~ I ~ ~ = P L ~ - = - - = ~ = ~ _ _ I ~ ~ ~ ~ - - ~ - ~ ~ ~ - * /  

PRIVATE vo id  &geometry (entry) 
s t ruc t  p a r t i  ti on *entry; 
C 

/* Memory devices d o n ' t  have a geometry, but  the outside world i n s i s t s .  */ 
entry ->cyl i nders - ( h g t o m l ~ d e v i c e ]  .dv,si ze >> SECTORJMIFT) / (64 * 32) ; 
entry->heads .= 64; 
entry->sectors = 32; 

3 
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/* w in i . c  - choose a winchester d r i v e r .  Author: Kees 3. Bot 
e 28 May 1994 

* Several d i f f e r e n t  winchester d r i ve r s  may be campiled 
i n t o  t h e  kernel.  but  o n l y  one may run. That one i s  chosen here using 

* t h e  boot va r i ab l e  'hd'. 
" / 

#include "kernel.  h" 
X i  n c l  ude "d r i ve r .  h" 

/* Map dr iver  name t o  task f vnc t ion .  */ 
s t r uc r  hdmap {. 

char *name; 
task-t  * task; 

1 hdmapll = C 

# i  f ENABLEAT-WIN1 
{ "at" ,  aLwinchester-task 

f endi f 

#if ENABLE-0105-WIN1 
{ "bios", bios-wi nchester-task 

#endi f 

W i  f ENABLEESD1,WINI 
{ "esdi", esdi-wi nchester-task 

tendi f 

#if ENABLLN-WIN1 
[ " x t " ,  xt-wi nchester-task 

Xendi f 

PUBLIC vo id  w i  nchester-task() 
i 

/* Ca l l  the  de fau l t  o r  se lected winchester task. */ 
char *hd; 
struct hdmap *map; 

for (map = hdmap; map < hdmap + s i  zeof  (hdmap)/si zeof (hdmap[Ol) ; map++ 
i f  (hd - NULL I (  strcmp(hd, map-mame) == 0) I 

/* Run the selected winchester task .  */ 
(*map->task) 0 ; 

1 
1 
panic("n0 hd d r i v e r " ,  NO-NUM); 
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/* This f i l e  contains the device dependent part o f  a driver fo r  the IBn-AT 
w i  nchester control 1 er. 
It was wr i t t en  by Adri Koppes. 

* 
The f i l e  contains one entry point :  

at-wi nchester-task: main entry when system i s  brought up 

Changes: 
1 3  Apr 1992 by Kees 3 .  Bot: device dependent/independent s p l i t .  

*/ 

#include "kerne1.h" 
t i nc luck  "driver. h" 
#include "d rv l i  b. h" 

/* I/O Ports used by winchester d i sk  contro l lers.  */ 

/* Read and wr i t e  registers */ 
f d e f  ine REGBASEO OxlFO /* bare register  o f  con t ro l l e r  0 */ 
#define R E L B A S E l  . 0 x 1 7 0  /* base register  o f  cont ro l le r  1 */ 
#define REWATA 
M e f  ine  R E L P R E C W  
#def i ne REGCWNT 
l d e f  i ne REGSECTOR 
Mef int  R E G C Y L L O  
t d e f  i ne R E G C Y U I  
#def i ne  RELLDH 
#define LXDEFAULT 
#define L R L M  
#def ine 1 dh-i n i  t ( d r i  ve) 

/* Read only registers */ 
#def i ne RELSTATUS 
#define STATUS-BSY 
#define STATUS_RDV 
#define STATUS-WF 
#define STATUS-SC 
W e f  i ne STATUSBRQ 
f d e f  i M STATUSLRD 
l d e f  i ne STATUS J D X  
t d e f  i ne STATUS-ERR 
#def ine REGERROR 
#def ine ERROLBB 
#define ERRORECC 
#define ERRORID 
rlrdef ine ERRORMI 

0 /* data register  (o f fse t  fror the base reg.) +/ 
1 /* start o f  w r i t e  precompensatim +/ 
2 /* sectors t o  t ransfer  */ 
3 /* sector number */ 
4 /* l o w  byte o f  cy l inder number */ 
5 /* high byte o f  cy l inder number */ 
6 /* lba, dr ive and head */ 

OxAO /* ECC enable, 512 bytes per sector */ 
0 x 4 0  /* Use LBA addressing */ 
(LDtLMFAULT I ((drive) << 4)) 

7 /* status */ 
0x80 /* con t ro l l e r  busy */ 
0x40 /* d r i ve  ready */ 
Ox20  /* w r i t e  f a u l t  */ 
O x l O  /* seek c w p l e t e  (obsolete) */ 
Ox08 /* data t rans fer  request */ 
Ox04 /* corrected data t/ 
0 x 0 2  /* index pu1 se */ 
0 x 0 1  /* e r ro r  */ 

1 / * e r r o r c o d e * /  
0x80 /* bad block */ 
0 x 4 0  /* bad ecc bytes *f 
0x10 /* i d  not found */ 
0 x 0 4  /* aborted connand */ 



t d e f  i ne ERRORTK 
#def ine ERROLDM 
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/* Wr i te  on1 y r eg i s t e r s  */ 
I de f  i ne REGCOMMANO 7 
Xdef i ne CMD-IDLE 
Xdef i ne CHD-RECALIBRATE 
tdef i ne C W R E M )  
M e f  i ne Cm,-WRITE 
Xdef i ne CWI-READVERIFY 
tdef i ne CMO-FORMAT 
Cdef i ne CMD-SEEK 
Xdefi  ne UIO_Df& 

#de f i ne CHO-SPECIFY 
#def i ne ATLIDEPCTIFY 
I d e f  i ne REG-0-L 0x206 
Xdef i ne CTLNORETRY 
#def i ne CTL-NOECC 
#def i ne CTL-EICHTHEADS 
t d e f  i ne CTL-RESET 
#def ine CTL-INIDISABLE 

Ox02 /* t r ack  zero e r r o r  */ 
Ox01 /*  r ~ o  data address mark */ 

/* tomand */ 
0x00 /* f o r  w-conmand: d r i ve  i d l e  */ 
0x10 /* r eca l i b ra te  d r i v e  */ 
Ox20 /* read data */ 
0x30  /* w r i t e  data */ 
0x40 /* read v e r i f y  */ 
0 x 5 0  /* format t r ack  */ 
0x70 /* seek cy l inder  */ 
0x90 /* execute device d iagnost ics  '/ 
0x91 / * s p e c i f y  parameters* /  
OxEC /* i d e n t i f y d r i v e * /  
/* con t r o l  r eg i s t e r  */ 
0x80 /* d isable access r e t r y  */ 
0x40 /* d isable ecc r e t r y  */ 
0x08 /* more than e i gh t  heads */ 
0x04 /* rese t  c o n t r o l l e r  */ 
0x02 /* d isable i n t e r r u p t s  */ 

/* I n t e r r u p t  request l i n e s .  */ 
#def ine AT-IRQO 14 /* i n t e r r u p t  number f o r  c o n t r o l l e r  0  */ 
M e f  i ne AT-IRQ1 15 /* i n t e r r u p t  number for  c o n t r o l l e r  1 */ 

/* CorrmOn c m a n d  b lock */ 
s t r u c t  connand { 

US-t precomp; /* RELPRECOMP, etc .  */ 
u8-t count; 
US-t sector ;  
u8-t cy l - lo ;  
u8-t cyl-hi ;  
u8-t Idh ;  
u8-t comand ; 

1; 

/* Error codes */ 
#def ine ERR (-1) /* general e r r o r  */ 
#def ine ERR-BAD-SECTOR (-2) /* b lock marked bad detected */ 

/ *  Some c o n t r o l l e r s  don ' t  i n t e r r up t .  the c lock w i l l  wake us up. */ 
t d e f  i ne WAKEUP 

/* M i  scel 1  aneous . */ 
t d e f  i ne -DRIVES 
# i f  -WORD-SIZE > 2 
Cdefine MA)CSECS 
#else 
#def ine W S E C S  
#endi f 
bdef i ne W E R R O R S  
#def ine NRDEVICES 
#def ine SUB-PERDRIVE 
#def ine NLSUBDEVS 
#def i ne TIMEOUT 
Xdef i ne RECOVERMIME 
Adef i ne I N I T I A L I Z E D  
#def ine DEAF 

(32*HZ) /* d r i v e  may be out  f o r  3 1  seconds max +/ 

4 /* t h i s  d r i v e r  supports 4 d r i ves  (hdO - hd19) */ 

256 /* c o n t r o l l e r  can t r ans fe r  t h i s  many sectors */ 

1 2 7  /* b u t  not t o  a  16 b i t  process */ 

4 /* how o f t en  t o  t r y  rd/wt before q u i t t i n g  */ 
( W D R I V E S  * DEV-PERDRIVE) 
(NRPARTITIONS NRPARTITIONS) 
(MAX-DRIVES * SUB-PELDRIVE) 

32000 /* c o n t r o l l e r  t imeout i n  ms */ 
5 0 0  /* c o n t r o l l e r  recovery t ime i n  ms */ 

0x01 /* d r i v e  is i n i t i a l i z e d  */ 
Ox02 /* c o n t r o l l e r  must be rese t  */ 
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#define SMART 0x04 /* dr ive supports ATA comnands */ 
I 

/* Variables. */ 
PRIVATE s t ruc t  wini { /* main dr ive  s t ruc t ,  one entry per d r ive  */ 

unsigned state; /* dr ive  state: deaf, i n i t i a l i z e d ,  dead */ 
unsigned base ; /* base reg is te r  o f  the reg is te r  f i l e  */ 
unsigned i r q  ; /* in ter rup t  request l i n e  +/ 
unsigned lcyt inders; /* l og i ca l  number o f  cyl inders (510s) */ 
unsigned 1 heads; /* l og i ca l  number o f  heads */ 
unsigned 1 sectors; /* l og i ca l  number o f  sectors per t rack */ 
unsigned pcyl  inders; /* physical number o f  cy l inders (translated) */ 
unsigned pheads; /+ physical number o f  heads */ 
unsigned pscctors ; /* physical number o f  sectors per t rack */ 
unsigned Idhpref; /* top four  bytes o f  the LDH (head) register  */ 
unsigned precmp; /* wr i t e  precompensation cyl inder / 4 */ 
unsigned max-count; /* max request f o r  t h i s  d r ive  */ 
unsigned open-ct; /* in-use count */ 
s t ruc t  device p a r t  [DEV-PERJRIVE ] : /* primary I j a r t i  t ions: hd[O-41 */ 
s t ruc t  device subpart[SUB-PELDRIVE]; /* subpart i t ions: hdl l-41 [a-dl */ 

} wini [ ~ I V E S ] ,  *w-wn; 

PRIVATE s t ruc t  trans [ 
s t ruc t  i o reques ts  *iop; /* belongs t o  t h i s  I /O request */ 
unsigned long block; /* f i r s t  sector to  t ransfer  */ 
unsigned count; /* byte count */ 
phys-bytes phys; /* user physical address */ 

) wt rans [NRIOUEQSI ; 

PRIVATE s t ruc t  trans *w-tp; 
PRIVATE unsigned w-count ; 
PRIVATE unsigned long w-nextblock; 
PRIVATE i n t  w-opcode; 
PRIVATE i n t  w-comaand; 
PRIVATE i n t  w-status; 
PRIVATE i n t  w-dri ve ; 
PRIVATE s t ruc t  device *w-dv ; 

/* t o  add t rans fer  requests */ 
/* number o f  bytes t o  t ransfer  */ 
/* next block on d isk t o  t rans fer  */ 
/* DEV-READ or DEVJRITE */ 
/* current corrnand i n  execution */ 
/* status a f t e r  i n te r rup t  */ 
/* selected dr ive  */ 
/* device 'S  bast and s ize */ 

FORWARD -PROTOTYPE( void i n i  tparams , (void) ) ; 
FORWARD ,PROTOTYPE( ~ i n t  w-do-open, (s t ruct  d r iver  *dp, message *u t r )  ; 
FORWARD -PROTOTYPE( s t ruc t  device *w-prepare, ( i n t  device) 1 ; 
FORWARD -PROTOTYPE( i n t  w-identi fy.  (void) ; 
FORWARD -PROTOTYPE( char *w-name, (void) ); 
FORWARD -PROTOWE ( i n t  w-speci f y , (void) ) ; 
FORWARD -PROTOTYPE( i n t  w-schedule, ( i n t  proc-nr, s t ruc t  iorequest-s *iop) 1 ; 
FORWARD ,PROTOTYPE( i n t  w-f i n i  sh , (void) ) ; 
FORWARD -PROTOTYPE( i n t  c m o u t ,  (s t ruc t  camand *cmd) ); 
FORWARD -PROTOTYPE( void w-need-reset, (void) ); 
FORWARD -PROTOTYPE( i n t  w-do-close, Estruct d r iver  *dp, message * q t r )  ) ; 
FORWARD ,PROTOTYPE( i n t  coksimple. (s t ruc t  connnand *cmd) ); 
FORWARD ,PROTOTYPE( void w-timeout. (void) 1; 
FORWARD ,PROTONPE ( i n t  w-reset , (void) ) ; 
FORWARD -PROTOTYPE( i n t  w-intr-wai t , (void) ) ; 
FORWARD ,PROTOTYPE( i n t  w-waitfor. ( i n t  mask, i n t  value) ); 
FORWARD ,PROTOTYPE( i n t  w-handler, (i n t  i rq) 1 ; 
FORWARD ,PROTOTYPE( void w-geonetry, (s t ruc t  p a r t i  t i o n  *entry) 1 ; 

/* w-waitfor loop  unrol led once for  speed. */ 
tdef i ne w a i  tfortmask, value) \ 

((,in-byte(w-wn->base 4 REGSTATUS) & mask) == value \ 
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I l w-wai tforcwask, value)) 

/* Entry points t o  t h i s  d r iver .  */ 
PRIVATE s t ruc t  d r iver  w-dtab - I 

 name, /* current device's name */ 
w-do-open, /* open or mount request, i n i t i a l i z e  device */ 
w-do-close , /* release device */ 
do-di x n t  1 , /* get o r  set a p a r t i t i o n ' s  geometry */ 
usrepare ,  /* prepare f o r  I / O  on a given minor device +/ 
w-schedule, /* precorngute cy l inder , head, sector, etc. */ 
w-finish, /* do the 1/0 */ 
nop-cl eanup, /* nothing t o  clean up */ 
~ g e a w t r y ,  /* t e l l  the georetry o f  the disk */ 

I ;  

# i f  ENABLLATAPI 
#include "atapi . c" /* ex t ra  code f o r  ATAPI CD-ROM */ 
lend i  f 

1 
/* Set special d isk parameters then c a l l  the generic main loop. */ 

/*-==-=- m==---=--cF -umr_m__m* 

i n i  tgarams 
*n3=rrp~~=-1--nrrm==rarartrr-1-.11tlp--=1~*/ 

PRIVATE void i ni LparamsO 
C 
/&  This rou t i ne ' i s  ca l led  a t  s tar tup t o  i n i t i a l i z e  the d r i v e  parameters. */ 

u16-t parvCZ1; 
unsigned i n t  vector; 
i n t  dr ive,  nr-drives, i; 
st ruc t  wini *wn; 
u8-t params 1161 ; 
physhytes p a r O y s  = vir2phys(parans); 

/* Get the number o f  dr ives from the BIOS data area */ 
phys-copy(Dx47St. paranphys. 11) ; 
if ((nr-drives = paramsC01) > 2 )  nr-drives = 2; 

f o r  (dr ive = O S  un = w in i ;  d r ive  < MAIUIRIVES; drive++. wn++) € 
i f  (drive c nr-drives) ( 

/* Copy the 5105 parameter vector */ 
vector = d r i ve  - 0 ? WNI-0-PARFLVEC : WINI-LPAPLVEC; 
phys-copy (vector * 4 C ,  v i  r2phys (paw), 4L) ; 

/* Calculate t he  address o f  the parameters and copy then */ 
phys-copy(hc1 i ck-toghysb(parv[l]) + parv[O] , p a r v h y s  , 16L) ; 
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/* Copy the parameters t o  the structures o f  the dr ive  */ 
wn-slcyl inders = bp-c'y7i nders(params) ; 
nn->lheads - bp-heads(panrs) ; 
wn->l sectors = bp,sectors(params) ; 

wn-wma~tount = MLUCSECS << SECTOLSHZFF; 
if (drive < 2) { 

/* Control ler 0. */ 
wn->base I. REGBASEO; 
wn->irq = AT-IRQO; 

I else C 
/* Control ler 1. */ 
mr->base - REGSASEl; 
wn->i r q  = AT-IRQ1; 

1 
1 

1 

PRIVATE i n t  w-do-open(dp, u t r )  
s t ruc t  d r iver  *dp; . 
message +wtr; 
C 
/* Device open: I n i t i a l i z e  the con t ro l l e r  and read the p a r t i t i o n  table. */ 

i n t  r; 
s t ruc t  Kini Sm; 
s t ruc t  corrnand cmd; 

i f  (w_prepare(nl&tr->DEVICE) == NILDEV)  return(ENXZ0); 
wn - w-m; 

i f  (wn->state - 01 { 
/* Try t o  i d e n t i f y  the device. */ 
i f  (w-identi f y 0  != OK) I 

p r i n t f  ("%s: probe f a i  led\nW , w-name()) ; 
i f  (wn->state 6 DEAF) w-reset0 ; 
wn->state = 0 ;  
return(ENXI0) ; 

1 
1 
if (m->open-ct++ - 0)  i 

/* P a r t i t i o n  the disk. */ 
p a r t i  tion(&-dtab, w-drive * DEV-PERDRIVE, P - P R I W Y )  ; 

1 
return (OK) ; 

1 

/ * r r r r r m - r u r r r r - - - o = - ~ = - ~ ~ ~ ~ ~ o - ~ t ~ = ~ - ~ - o - . ~ ~ ~ = ~ - = = - *  

wsrepare * 
* ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ - ~ ~ - ~ ~ S = ~ P ~ ~ ~ = = ~ P ~ I L I ~ = I L I = - = - O = P P O - ~ ~ ~ = I = = = = I I I = = * /  

PRIVATE s t  ruct  device *w,prepare(device) 
i n t  device; 
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C 
/* Prepare f o r  1/0 on a device. */ 

/* Nothing t o  t r ans fe r  as yet .  +/ 
w-count = 0: 

i f  (device < NRDEVICES) I /* hdO, h d l ,  . . . * /  
w-dri ve a device / DEV-PELDRIVE; /* save d r i v e  number */ 
w-wn = Min i  [w-drive]; 
w-dv = dm-wn->part [devi ce % DEV-PERDRIVE] ; 

) e lse  
i f  ((unsigned) (device -a HINORhdla) < NRSVBDEVS) /* hdla, hd lb ,  . . . */ 

w-drive = device / SUB-PERDRIVE; 
w-wn - h i n i  [w-dri ve] ; 
w-dv - dm-wn->subpart [device % SUB-PERDRIVE] ; 

1 e l se  { 
return(N1CDEV); 

1 
return(w,dv) ; 

I 

s t r u c t  w in i  *wn - w-wn; 
s t r u c t  command and; 
char id-str ingl401; 
i n t  i, r; 
unsigned long size; 

#def i ne i d,byte(n) (Ltmp-buf C2 * (n)l) 
#def ine i d-word(n) (((~16-t)  id-byteCn) [OI << 0 )  \ 

I ( (~16- t )  id-byteCn) [ll << 83) 
#define i d-lonpword(n) (((~32-t)  i d,byte(n) [O] <c 0 )  \ 

I ( (~32- t )  id-byte<n) [ l I  << 8 )  \ 
l((u32-t) id-byte(n3 121 << 16) \ 
1 ( (~32- t )  id-byteCn) 131 << 24)) 

/* Check i f  t he  one of  t h e  r eg i s t e r s  ex is ts .  */ 
r - in-byteW->base + REGCYL-LO); 
out-byte(wn->base + REG-CYCLO. ' r) ; 
i f  (in-byte(wn->base + REGCYL-LO) -= r) return(ERR) ; 

/* Looks OK; r e g i s t e r  IRQ and t r y  an ATA i d e n t i f y  c m a n d .  */ 
put-i r c h a n d l  er Cwn->i rq , w-handler) ; 
enable-i rq(wn->irq) ; 

cmd.ldh - wn->l dhpref; 
cmd . conmand = ATICIDENT I FY ; 
i f  (cmsimple(&md) == OK) { 

/* This i s  an ATA device. */ 
wn->state I =  SMART; 

/* Device in format ion.  */  
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portread(wn->base + REWATA,  tmpshys. SECTORSIZE); 

/* Why are the s t r ings  byte swapped??? */ 
f o r  (i = 0 ;  i < 40; i+t) id,string[i J = idJyte(27)Li "13; 

/* Preferred CHS t rans la t ion  mode. */ 
wn-~pcyl i nders = id-word(1) ; 
m->pheads = id-uuord(3) ; 
m->psectors = id-word(6) ; 
s ize = (~32- t )  wn->pcylinders * wn-~pheads * wn-rpsectors; 

i f  ((id-byte(49) [l] & 0x02) &S size > SlZL*1024*2) { 
/* Drive i s  LBA capable and Is b i g  enough t o  t r u s t  i t  t o  

not make a mess of i t .  
*/ 

wn->l dhpref I a L M C B A ;  
size = id-longword(60); 

1 

i f  (wn->lcylinders -3 0) { 
/* No BIOS parameters? Then make some up. */ 
wn-zlcylinders = wn-rpcylinders; 
wn->lheads = wn->pheads; 
wn->lsectors = wn-~psectors ; 
while (wn-rlcylinders > 1024) { 

wn-~lheads *I 2; 
wn->lcylinders /= 2; 

1 

) else I 
/* Not an AT& device; no t ranslat ions,  no special features. Don't 

touch i t  unless the BIOS knows about i t .  
*/ 

i f  (wn-rlcylinders == 0) return(ERR1; /* no BIOS parameters */ 
wn->pcyl i nders n wn->Icy1 i nders ; 
wn->pheads Q wn->l heads; 
wn-rpsectors = wn->lsectors; 
size I (u32-t) wn-rpcylinders * wn-~pheads * wn->psectors; 

3 
/ *  The fun ends a t  4 CB. */ 
i f  (size > ((~32-t) -1) / SECTORSIZE) size - ((~32-t) -1) / SECTORSIZE; 

/* Base and size o f  the whole dr ive  */ 
wn->part101 .dv-base = 0; 
wn->part101 .dv-size = s ize << SECTORSHIFT; 

i f  (w-speci fy() ! - OK && w-speci f y  (1 ! = OK) return(ERR3 ; 

printf( '%s: ", w-name()); 
if (wn->state & W T )  i 

p r i n t f  ("%.40s\n", id-str ing) ; 
) else { 

p r i  n t f  ("%ux%ux%u\n" , wn->pcyli nders, wn-zpheads, wn->psectors) ; 
1 
return (OK) ; 

1 
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PRIVATE char *w-name () 
C 
/* Return a name f o r  t h e  cu r ren t  device. */ 

s t a t i c  char name11 = "at-hdl5"; 
unsigned device = w-drive * DEV-PELDRIVE ; 

i f  (device < 10) { 
name151 3 ' 0 '  + device; 
name[67 = 0; 

) e lse  { 
name[5] - ' 0 '  + device / 10; 
name[6] = '0' + device % 10; 

1 
r e t u rn  name; 

1 

s t r u c t  w in i  *wn = w-wn; 
s t r u c t  conrnand cmd; 

i f  (Cmr-rstate & DEAF) ddr w-reset() != OK) return(ERA1; 

/* Specify parameters: precompensation, number of heads and sectors.  */  
cmd.precomp = wn->precmp; 
cmd . count = wn-zpsectors ; 
cmd.ldh = w-wn->ldhpref 1 (wn-wpheads - 1); 
cmd.cmand = CMD-SPECIFY; /* Speci fy  sane pa ramte r s  */ 

if (cmsimple(drund) ! -  OK) return(ERR) ; 

i f  (! (wn->state & SMART)) { 
/* Ca l ib ra te  an o l d  disk. */ 
cmd. sector = 0; 
cmd.cyl-lo = 0; 
cntd.cy1-hi = 0; 
cmd. l dh  = w-wn->ldhpref; 
cmd . cormand = CWlJtECALIBMTE ; 

wn-)state 1- INITIALIZED; 
return(0K) ; 

1 
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C 
/* Gather f/O requests on consecutive blocks so they may be read/written 
* i n  one control ler  comnand. (There i s  enough time t o  compute the next 

consecutive request while an unwanted block passes by.) 
*/ 
struct  wini *MI = w-wn; 
i n t  r, opcode; 
unsigned long pos; 
unsigned nbytes, count; 
unsigned long block; 
physhytes usershys; I 

/* This many bytes t o  read/write */ 
nbytes = iop->io,nbytes; 
i f  ((nbytes & SECTOILMASK) != 0) return(iop->io-nbytes = EINVAL) ; 

/* Frm/to th i s  posit ion on the device */ 
pos = i op->i o s s i  t i  on ; 
if ((pos 6 SECTCHUWK) != 0) retumCiop->iodbytes - EIHYAL) ; 
/* To/fron th is  user address */ 
user-phys I nurapCprotnr, (vi r-bytes) iw->io_buf. nbytes) ; 
i f  (userghys -- 0) returnCiop->io-nbytes - EINVAL); 

/* Read or write? */ 
opcode - iop-?io,request I "OPTIONALIO;  

/* MJhich block on disk and hon close t o  EOF? */ 
i f  (pos *- w-dv->dv,si re) returnCMC) ; /* A t  €OF */ 
i f  (pos t nbytes > w-dv-zdv,size) nbytes I w-dv->dv,size - pos; 
block = (w-dv->dvhse + pod >z SECTOR-SHIFT; 

i f  (w-count > 0 && block != w~ex tb lock )  { 
/* This new request can't be chained t o  the job being b u i l t  */ 
i f  ((r s w-finish()) I- OK) returnlr) ; 

1 

/* The next consecutive block */ 
w-nextblock - block + (nbytes >r SECTORSHIFT); 

/* Vhile there are "unscheduled" bytes i n  the request: */ 
do E 

count - nbytes; 

i f   count - wn--count) I 
/* The dr ive can't do more then l l u ccwn t  a t  once */ 
i f  ((r = w-finish()) 1 1  OK) return(r); 

1 

i f  (%count + count > wn-*la~count) 
count = wn -mr t cwn t  - w-count; 

i f  (w-count == 0 )  { 
/* The f i r s t  request i n  a row, i n i t i a l i z e .  */ 
~ , o p c O d ~  - 0pcOd~; 
rctp = rrtrans; 

3 

/* Store I/O parameters */ 
w-tp->iop = iop; 
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w-tp-rblock = block; 
w-tp->count = count; 
w-tp->phys = u s e r ~ h y s  ; 

/* Update counters */ 
w-tp++ ; 
w-count += count; 
b lock += count >r SECTOR-SHIFT; 
user-phys += count; 
nbytes -= count; 

wh i le  (nbytes > 0); 

PRIVATE i n t  w - f i  ni s h 0  
C 
/* Carry out t he  1/0 requests gathered i n  wtransCl. */ 

s t r u c t  t rans  'tp 5 wtrans; 
s t r u c t  w i n i  *wn = w-wn; 
i n t  r ,  er ro rs ;  
s t r u c t  comnand cmd; 
unsigned cy l inder  , head, sector ,  secspcyl ; 

i f  (w-count == 0 )  return(0K); /* Spurious f i n i s h .  */ 

r = ERR; /* T r igger  the f i r s t  c m o u t  */ 
e r r o r s  = 0; 

do I 
i f  (r != OK) 

/* The c o n t r o l l e r  must be (re)programmed. * /  

/* F i r s t  check t o  see i f  a r e i n i t i a l i z a t i o n  i s  needed. */ 
i f  ( ! (wn->state & IN IT IAL IZED)  && W-speci fy()  ! = OK) 

returnitp->iop->io-nbytes = €10) ; 

/* T e l l  the  c o n t r o l l e r  t o  t r ans fe r  w-count bytes */ 
cmd. precoip = wn->precomp ; 
cmd.count = (w-count >> SECTOR-SHIFT) & BYTE; 
i f  (wn->ldhpref C LDH-LEA) { 

cpd.sector = ( tp->block >> 0) & OxFF; 
cmd,cyl-lo = ( tp->block >> 8) & OxFF; 
cmd.cyl-hi = ( tp->block >> 16) & OxFF; 
cmd.ldh = wn->ldhpref I ((tp->block >> 24) & O x F ) ;  

) e l se  { 
secspcyl = wn->pheads * wn->psectors; 
c y l i nde r  = tp->block /, secspcyl; 
head = (tp->block % secspcyl) / wn->psectors; 
sector = tp->block % wn-rpsectors; 
cmd.sector = sector + 1; 
cmd.cy1-lo = cy l inder  & BYTE; 
cmd.cyl-hi = (cy l inder  r> 8 )  & BYTE; 
cmd.ldh = wn->ldhpref I head; 

3 
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cmd.connrand = u-opcode == DEV-WRITE ? CMD-WRITE : CMD-READ; 

i f  ((r = cmout(&cmd)) J =  OK) I 
i f  (++errors == WERRORS) C 

w-camnand = CMD-IDLE; 
returnctp-wiop->io-nbytes = €10) ; 

1 
continue ; /* Retry */ 

1 
1 

/* For each sector,  wa i t  f o r  an i n t e r r u p t  and f e t ch  t he  data (read), 
* o r  supply da ta  t o  the conrro l3er  and w a i t  f o r  an i n t e r r u p t  (wr i te) .  
* / 

i f  (w-opcode =- DEV-READ) { 
i f  ((r = w-intr-wait()) == OK) i 

/* Copy data from t h e  dev ice 's  b u f f e r  t o  user space. */ 

port-read(wn->base + RELDATA, tp-wphys, SECTORSIZE) ; 

tp-wphys += SECTORSIZE; 
tp-wiop->io,nbytes -3 SECTOR-SIZE; 
w-count -= SECTORSIZE; . .  

i f  ((tp->count -= SECTORSIZE) == 0 )  tp++: 
) e lse  { 

/* Any f a u l t y  data? */ 
i f  (w-status & STATUS-DRQ) I 

por t - readh->base  + REG-MTA, tmp-phys. 
SECTORSIZE) ; 

3 
1 

1 e l s e  { 
/* Wait f o r  data requested. */ 
i f ( !wai tf o r (STATUS-DRQ, STATUSJRQ) ) 

r = ERR; 
) else { 

/* F i l l  t h e  bu f f e r  of the  d r i ve .  */ 

port-write(wn->base + REGDATA, tp-sphys, SECTORSIZE); 
r I w-intr-wait(); 

1 

if (r EO OK) { 
/* Book t h e  bytes successfu l ly  w r i t t e n .  */ 

tp->phys +- SECTORSIZE; 
tp-ziop->io-nbytes -= SECTOR-SIZE; 
w-count -= SECTORSIZE; 
i f  ((tp->count -5 SECTORSIZE) == 0) tp++; 

1 
1 

i f  (r ! = O K )  I 
/* Don't r e t r y  i f  sector  marked bad or too many e r ro r s  */ 
i f  (r == ERRBAD-SECTOR I I ++errors == WERRORS) 1 

w-command = Olt0-IDLE; 
return(tp->iop->i  o-nbytes = EIO) ; 

1 
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/* Reset i f  halfway, but b a i l  out i f  optional I/O. +/ 
i f  (errors -a WLERRORS / 2) i 

w-nteLreset0 ; 
if, (tp->iop-sio-request & OPTIOWAL,IO) { 

w-camand = (M-IDLE; 
return(tp->iop->io-nbytes - EIO) ; 

3 
3 
conti  nue ; /* Retry +/ 

I 
errors = 0; 

) while (w-count , 0 ) ;  

/ * m r - r ~ r c r r r r r r r r o = = p P = r m r ~ ~ ~ ~ ~ - ~ t l l l l l _ _ _ ~ _ _ - ~ = ~ ~ ~ ~ ~ *  

c m o u t  
*r-srur---rur= */ 

PRIVATE i n t  cmout(urd) 
s t  r u c t  command * c d  ; /+ Cornand block */ 
C 
/* O u t p u t  the colrrund block t o  the winchester cont ro l le r  and return status */ 

s t ruc t  wi ni *wn 3 W-M; 

unsigned base - w-wbase; 

i f  (IwaitforGTATUS-BSY, 0 ) )  { 
printf("%s: cont ro l le r  not ready\n", w-name()); 
returnCERR) ; 

1 

/* Select drive. */ 
out-byte(base + REGLDH, crrd->ldh) ; 

i f  (!wai tfor(STATUS,BSY, 0 ) )  { 
p r i  n t f  ("Xs: dr ive  not ready\nW . w-name()) ; 
returnCERR) ; 

1 

/* Schedule a wakeup ca'll , some cont ro l le rs  are f laky .  +/ 
clockmssCWAKEUP. w-tineout) ; 

out&te(base + RELCTL, wn->pheads >= 8 ? CTLEIGHTHEADS : 0); 
out-byte (base + RELPRECOWP, cnd-rprecolrp) ; 
out-bytecbase + REGCWNT, ad->count) ; 
out-byte(base + REGSECTOR, und->sector) ; 
out-byteCbase + REGCYLLO , cd->cyl,lo) ; 
out,byte(base + REGCYLHI , cmd-xyl-hi 1 ; 
lock(); 
out,byte(base + REG,COmANO, cmd-xomand); 
w-camand = cmd->command; 
w-status = STATUS-8% 
un lock0 ; 
return(0K) ; 

I 
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for (wn = wi n i  ; wn c dmini [ W O R I V E S J  ; wn++) { 
wn->state I= DEAF; 
wn->state b -INITIALIZED; 

I 
I 

i f  (wgrepare(~ptr ->DEVICE)  == NIL-DFV) return(ENXI0); 
w-wn->open-ct-- ; 
return(0K) ; 

I 

i f  ((r P c~lltout(cnd)) = OK) r P w- in tmai tC) ;  
w-command = CHD-IDLE; 
return(r)  ; 

I 

switch (w-conmand) f 
case CMD-IDLE: 

break; /* f i n e  */ 
case C R R E A D :  
case 040-WRITE: 

/* Impossible, but not  an PC's: The cont ro l le r  does not respond. */ 

/* Limiting mult isector I /O  seems to  help. */ 
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i f  (wn->max-count > 8 ' SECTOR-SIZE) I 
wn-rmax-count = 8 * SECTOR-SIZE; 

1 else I 
wn->inax-count = SECTOR-SIZE; 

I 
/*FALL THROUGH*/ 

defau l t  : 
/*  Some other  c m a n d .  */  
p r i n t f ( "%s :  t imeout on command %02x\nW, w-name(), w-command); 
w-need-reset0 ; 
w-status = 0; 
i n t e r r u p t  (WINCHESTER); 

*--rr----1======rr===============IL====================7~=============~ + / 
PRIVATE i n t  w-reset () 
C 
/* Issue a reset  t o  the  c o n t r o l l e r .  This i s  done a f t e r  any catastrophe, 
* l i k e  the c o n t r o l l e r  refusing to  respond. 
*! 

s t r u c t  w in i  *wn; 
i n t  e r r ;  

/*  Wait f o r  any i n t e r n a l  d r i ve  recovery. */ 
m i  1 1 i-de 1 ay (RECOVERYTIME] ; 

/* Strobe reset  b i t  */ 
out-by t e  (w-wn->base + RELCTL , CTL-RESET) ; 
mi l l i -de lay(1)  ; 
out-byte(w-wn->base + R E U T L ,  0 ) ;  
mil l i -de lay(1) ;  

/*  Wait f o r  c o n t r o l l e r  ready */ 
i f  (!w-waitfor(STATUS-8SY I STATUS-RDY, STATUS-RDY)) I 

p r i n t f  ("%s: reset  f a i l e d ,  drive busy\nW , w-name()) ; 
return(ERR) ; 

I 

/* The e r r o r  r e g i s t e r  should be checked now, but some d r i ves  mess i t  up. */ 

f o r  (wn = w i  n i  ; wn < &w i  n i  [t44X.-DRIVES] ; wn++) { 
i f  (wn->base == w-wn->base) wn->state &= -DEAF;  

1 
returnCOK) ; 

I 

t w-i n t  r-wai t rt 

*1-------~--------l------------=------======yI~============-========a========* / 
PRIVATE i n t w-i nt r-wai t 0 
C 
/* Wait f o r  a task completion i n t e r r u p t  and r e tu rn  r esu l t s .  */ 

message mess; 



a 
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i n t  r; 

/* Wait f o r  an i n t e r r u p t  t h a t  sets w-status t o  "not busy". */ 
whi 1 e (w-status 8 STATUS-BSY) rece i  ve(HARDWARE, &ness) ; 

/* Check s ta tus.  */ 
lock();  
i f  ((w-status & (STATUS-BSY I STATUS-RDY 1 STATUS-WF I STATUS-ERR)) 

== STATUS-ROY) ( 
r = OK; 
w-status I=  STATUS-BSY; /* assume s t i l l  busy w i t h  1/0 */ 

1 else 
if ((w-status & STATUS-ERR) && (in-byte(w-wn->base + REG-ERROR) & ERRORBB)) I 

r = ERR-BAD-SECFOR; /* sector marked bad, r e t r i e s  won't he lp  */ 
1 else { 

r = ERR; / *  any other  e r r o r  */ 
1 
u n l o c k 0  ; 
return( r ) ;  

1 

s t r u c t  m i l l i - s t a t e  ms; 

m i  11 i-start(&ns) ; 
do I 

i f  ((in-byte(w-wn->base + REG-STATUS) & mask) == value) r e t u rn  1; 
) wh i  1  e ( m i  11 i-el apsed(dnns) < TIMEOUT) ; 

w-need-reset () ; /* Control  1 er  gone deaf. +/ 
return(0) ; 

I 

w-status = i n-byte(w-wn->base + REGSTATUS) ; /* acknowledge i n t e r r u p t  */ 
i n t e r r u p t  (WINCHESTER) ; 
re tu rn  1; 

1 
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PRIVATE vo i d  w-geometry (entry) 
s t r u c t  p a r t i  t i o n  *entry;  
( 

entry->cyl  inders = w-wn-zlcyl inders;  
en t  ry->heads = w-wn->lheads; 
entry->sectors = W-un->l sectors; 

I 
#endi f  /* ENABLEAT-WIN1 */ 

/* This f i l e  contains t h e  code and data f o r  t h e  c lock task.  The c l ock  task 
* accepts s i x  message types: 
9 

* HARD-INT: a c l o c k i n t e r r u p t h a s o c c u r r e d  
* GET-UPTIME: ge t  t h e  t ime since boot i n  t i c k s  
* GET-T IME: a process wants t he  r e a l  t ime i n  seconds 
* SET-TIME: a process wants t o  set the r e a l  t ime i n  seconds 
* SETALARM: a process wants t o  be a l e r t e d  a f t e r  a spec i f i ed  i n t e r v a l  
* SET-SYMJL: set the  sync alarm 
* 
t 

* The inpu t  message i s  format m6. The parameters a re  as fol lows: 
* 
* m-type CLOCLPROC FUNC HEW-TIME 

-----a_-,--*--------------------------------- 

* I HARD-IKT ] 1 I 
* ( - - - - - - - - - - - -+- - - - - - - - - -+- - - - - - - - -++-- - - - - - -  

I 
I 

* I GET-UPTIME 1 I 1 
* I - - - - - - - - - - - -+ - - - - - - - - - -+ - - - - - - - - -+ - - - - - - - - - -  

1 
I 

* I GET-TIM I I 1 1 
* I ------------+----------+---------+---------  I 
* 1 SET-TIME I I I newtime I 
* t-------*----+----------+---------+---------l 
* I SETALARM I proc-nr I f t o  cat 1 l d e l  t a  I 
* I------------+----------+---------+---------l 
* I SET-SYNAL I proc-nr I I d e l t a  I 
* ---,----------------------------------------- 
* NEW-TIME, DELTACLICKS, and SECONDS-L-T a l l  r e f e r  t o  t h e  same f i e l d  i n  
* t he  message. depending upon the message type. 
* 
* Reply messages a re  o f  type OK, except i n  the case of a WID-INT, t o  
* which no rep1 y i s  generated. For the GET-* messages t h e  ti* i s  re turned 
* i n  the NEW-TIME f i e l d .  and f o r  the  SETALARM and SET-SYNJIL the t ime 
* i n  seconds remaining u n t i l  t he  alarm i s  returned i s  returned i n  t he  same 

f i e l d .  
t 

* When an alarm goes o f f ,  i f  t h e  c a l l e r  i s  a user process, a SIGALRM s ignal  
* i s  sent t o  i t .  I f  i t  i s  a task, a f u n c t i ~ n  spec i f i ed  by the c a l l e r  w i l l  
* be invoked. This funct ion may, f o r  example. send a message, bu t  on ly  i f  
* i t  i s  c e r t a i n  t ha t  the task w i  11 be blocked when t he  t imer  goes o f f .  A 
* synchronous alarm sends a message t o  t he  synchronous alarm task, which 
* i n  t u r n  can dispatch a message t o  asother server. This i s  t he  on ly  way 
* to  send an alarm t o  a server,  s ince servers cannot use the  f unc t i on - ca l l  
* mechanism ava i l ab l e  t o  tasks and servers cannot rece ive s ignals .  
* / 
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#include "kerne1.h" 
ti nclude csi gnal . h> 
ti ncl ude ai n i  r / ca l l  nr . hz 
ti ncl ude ai n i  x/com. h> 
#include "proc .h" 

/* Constant definit ions. */ 
#define MILLISEC 100 /* how often to  c a l l  the scheduler (msec) */ 
#define SCHED-RATE (MILLISK*HZ/1000) /* number o f  t icks  per schedule */ 

/* Clock parameters. */ 
#define COUKTERFREQ (2*TIMERFREQ) /* counter frequency using sqare wave+/ 
#define LATCH-COUNT 0x00 /* cc00xxxx, c = channel, x - any */ 
#define SQUARLWAVE 0x36 /* ccaammb, a - access. rn = mode, b = BCD */ 

* 11x11, 11 - LSB then 6 0 .  x l l  - sq wave */ 
#define TIMERCOUNT ((unsigned) (TIMERFREQ/HZ)) /* i n i t i a l  value fo r  counterf / 
#define TIMERFREQ 11931821 /* clock frequency f o r  timer i n  K and AT */ 

#define CLOCKACLBIT 0x80 /* PS/2 clock interrupt acknowledge b i t  */ 

/+ Clock task variables. */ 
PRIVATE c l o c k t  real  time; /* real time clock */ 
PRIVATE time-t boot-time; /* time i n  seconds of  system boot */ 
PRIVATE c l  o c k t  next31 arm; /* probable time o f  next alarm */ 
PRIVATE message mc; /* message buffer for  both input and output */ 
PRIVATE i n t  watchdog-proc; /* contains p r o c n r  a t  c a l l  o f  %atch,dog[l*/ 
PRIVATE watchdokt watch-dog[NRTASKS+NRPROCSl; 

/* Variables used by both clock task and synchronous alarm task */ 
PRIVATE i nt  sykal-al ive= TRUE; /* don't wake syn-a1 m t a s k  before i ni  ted*/ 
PRIVATE i n t  syktable[NRTASKS+NRPROCS]; /* which tasks get CLOCLIHT*/  

/* Variables changed by interrupt handler */ 
PRIVATE c l o c k t  pend imt i cks ;  /* t icks  seen by low level  only */ 
PRIVATE i n t  sched-ticks = WED-RATE; /* counter: when 0 ,  ca l l  scheduler */ 
PRIVATE struct  proc *p revg t r ;  /* l as t  user process run by clock task */ 

FORWARD ,PROTOTYPE ( void comon-setalam, (i n t  p r o ~ n r  . 
long del t h t i c k s ,  watchdog3 fuction) ) ; 

FORWARD -PROTOTYPE ( voi d do-cl ockt i ck. (vai d) ) ; 
FORWARD ,PROTOlYPE ( voi d do-get-ti me, (void) ) ; 
FORWARD ,PROTOTYPE( void do-getupti me, (void) ) ; 
FORWARD -PROTOTYPE( void &!aLtime, (message *autr) 1; 
FORWARD -PROTOTVPE( void do-setal arm, (message 'rrptr) 1 ; 
FORWARD ,PROTOME( void i n i ~ c l o c k ,  (void) ) ; 
FORWARD ,PROTOTYPE( void cwscalarm, (void) ) ; 
FORWARD ,PROTOTYPE( void do-setsyn-a1 rm , (message *utr )  ; 
FORWARD ,PROTOTYPE( i n t  clockhandler, (i n t  i rq) ; 

{ 
/* Main program o f  clock task. It corrects realtime by adding pending 

t icks seen only by the in ter rupt  service, then i t  determines which 
+ of the 6 possible ca l l s  t h i s  i s  by looking at  'mc.m-type'. Then 
+ i t  dispatches. 
*/ 
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i n t  opcode; 

i n i t - c l ock ( ) ;  /%? i n i t i a l i z e  clock task * /  

/* Main loop o f  t he  clock t a s k .  G e t  work, process i t ,  sometimes rep ly .  */  
w h i  1e (TRUE) { 

recei  ve(ANY, &nc) ; /* go get a message */ 
opcode = mc.m_type; /* ex t r ac t  the f unc t i on  code */ 

l o c k 0  ; 
rea l t ime += pending-ticks; / $ *  t r ans fe r  t i c k s  from low l e v e l  handler */ 
pending-ticks = 0; / *  so we don ' t  have t o  worry about them */  
unlock (3 ; 

swi tch (opcode) 1 
case HARD-INT: do-clockt ick()  ; break ; 
case GET-UPTIME: do-getupt ime0; break ; 
case GET-TIME: do-get-time(); break; 
case SET-TIME: do-set-time(&nc); break; 
case SETALARM: do-setal arm (&mc) ; break ; 
case SET-SYNC4L:do-~etsyn_alrm(&nc); break; 
de fau l t :  panic("c1ock task go t  bad message", mc.m_type); 

1 

/* Send rep ly ,  except f o r  c lock t i c k .  */ 
mc.rt type = OK; 
i f (opcode ! = HARD-INT) send(mc.  source , &c) ; 

1 
1 

r eg i s t e r  s t r u c t  proc *rp;  
r eg i s t e r  i n t  proc-nr; 

i f  (next-alarm <= rea l t ime)  { 
/* An alarm may have gone o f f ,  but proc may have ex i ted ,  so check. */ 
next-alarm = L O N O ( ;  / *  s t a r t  computing nex t  alarm */ 
f o r  ( rp  = BEG-PROUDDR; rp  < END-PROCADDR: rp++) { 

i f  (rp->p-alarm != 0) { 
/* See i f  t h i s  alarm t ime has been reached. */ 
i f (rp->p-a1 arm <- rea l  t i me) 1 

/* A t imer has gone o f f .  I f  i t  i s  a user proc. 
* send i t  a s i g n a l .  I f  i t  i s  a task,  c a l l  the 
* f unc t i on  previous1 y spec i f i ed  by t h e  task.  
* / 

proc-nr = proc-number(rp) ; 
i f  (watch~dog~proc~nr+NR~TASKS])  1 

watchdog-proc= proc-rr; 
(*watch_dog[p roc-nr+NR_TASKS]) () ; 

1 
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boot-time = m-ptr->NEKTIME - real t ime/HZ; 
1 

reg is te r  s t ruc t  proc * tp;  
i n t  proc-nr; /* which process wants the alarm */ 
long de7 thti cks; /* i n  how many clock t i c k s  does he want i t ?  */ 
watchdog-t function; /* funct ion to  c a l l  (tasks only) */ 

/* Extract the parameters from the message. */ 
proc-nr = ~pt r ->CLOCLPRKNR;  /* process t o  i n te r rup t  l a t e r  */ 
d e l t h t i c k s  - n~gtr-z0ELT4TICK5; /* how many t i c k s  t o  wai t  */ 
funct ion = (watchd-t) hptr->FUNC_TO-CALL; 

/* funct ion t o  c a l l  (tasks only) */ 
r p  = proc-addr (proc-nr) ; 
mc.SECONDS-LEFT - (rp->p-alam I= 0 ? 0 : (rp->p-alarm - realtime)/HZ 1 ;  
i f  (!istaskpCrp)) function= 0; /* user processes get signaled +/ 
common-setalarm(proc,nr, del t h t f  cks. function) ; 

reg is ter  s t ruc t  proc *rp; 
i n t  proc-nr; /* which process wants the alarm */ 
long del t ~ t i  cks; /* i n  how many clock t i c k s  does he want i t ?  */ 

/* Extract the parameters from the message. */ 
proc-nr = mpt r->CLOCLPRKNR ; /* process t o  i n te r rup t  l a t e r  */ 
d e l t h t i c k s  = nwtr-rDELfkTICKS; /* how many t i c k s  t o  wai t  * /  
r p  = proc-addr(proc-nr); 
mc.SECONDS-LEFT = (rp->p-alarm == 0 ? 0 : (rp->p-alarm - realtime)/HZ ); 
cormon,seta'la~%(proc-rtr, d e l t ~ t i c k s ,  cause-alarm) ; 
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/ * , , , , , = = , , , , , , , , , = , , , , , = , , , , ~ ~ I I I S = = = ~ ~ ~ = = = = = ~ ~ = = = * ~ ~ = ~ *  
* ccmon-setal arm 
*==r~r=-r-~m=sr====m~r==~=~~--==-===~s===-~====rr=~==~=====~~====tt=====~=*/ 

PRIVATE vo id  common-setalarmCproc-nr, del thti cks , funct ion) 
i nt  proc-nr; /* Which process wants the alarm */ 
long del t h t i c k s ;  /* i n  how many clock t i c k s  does he want i t ?  */ 
watchdokt function; /* funct ion to  ca l?  (0 i f  cause-sig i s  

* t o  be ca l led  */ 
f 
/* Fin ish up work o f  do-set-alarm and da-setsyn-alrra. Recard an alarm 
* request and check t o  see i f  i t  i s  the next  alarm needed. 
*/ 

register  s t ruc t  proc *rp; 

rp = proc-addr(proc-nr) ; 
rp->p,alarm = ( d e l t ~ t i c k s  I= 0 ? 0 : realt ime + d e l t h r i c k s )  ; 
watch-dogtproc-nr+NR_fASKS] = function; 

/* Which alarm i s  next? */ 
next-alarm = LONC_MAX; 
for Crp = BELPROLADDR; rp  < END-PROCADOR; rp++) 

if (rp->p-alarm ! = 0 &I rp->p-alarm c next-a1 armlnext-a1 arwrp->p-a1 arm; 

/*.rrr==~r*r=srrtr+s===~=e==r*i-===r=~=====~~==-=======ii=======~s=a==-=~-==-=* 

8 cause-alarm 
f ~ = = = ~ l ~ - = = ~ ~ l P I ~ = ~ l = P ~ P L I L P ~ ~ 1 m s E E I ~ I i i = ~ ~ ~ = f ~ ~ = I ~ ~ ~ f P = ~ ~ ~ ~ ~ ~ = = ~ = ~ ~ ~ = ~ ~ I ~ = * /  

PRIVATE void cause-a1 arm0 
I 
/* Routine ca l led  i f  a timer goes o f f  and the process requested a synchronous 

* alarm. The process number i s  i n  the global va r iab le  watchdog-proc (HACK). 
* / 
message mess; 

syn-table[watchdog_proc + NRTASKSI- TRUE ; 
if (! syn-al-a1 ive) send (SYNAtRM-TASK, &mess) ; 

3 

/*r==rrr~rrrmanri+=t==~m~=====~=ps==~~=-~rt=--it-==~r=t~===-=~=~===~=~==* 

t syn-a1 rmtas k * 
*++rrmrrtrrr¶sra~ltt-~==t~t~-~t111===tm=~=f-~-nrE1s===rrr=nr=r====~~~*/ 

PUBLIC void syn-a7 r k t a s k 0  
I 
/* Main program o f  the synchronous alarm task. 
* This task receives messages only from cause-alarm i n  the clock task. 
* It sends a CLOCKJNT message t o  a process tha t  requested a syn-a1 mr. 
* Synchronous alarms are so cal led because, un l ike  a s ignals or the 
* ac t iva t ion  o f  a watchdog, a synchronous alarm i s  received by a process 
* when i t  i s  i n  a known par t  a f  i t s  code, t h a t  i s ,  when i t  has issued 
* a c a l l  t o  receive a message. 
"/ 

message mess; 
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i n t  work-done; /*  ready t o  sleep 7 */ 
i n t  *a]-ptr ;  / *  po i n t e r  i n  syn-table */ 
i n t  i; 

syn-al-alive= TRUE; 
for ( i =  0, a l -p t r= syn-table; i <NLTASKS+NR-PROCS; i++, al-ptr++) 

*al,ptr= FALSE; 

wh i l e  (TRUE) { 
work-done= TRUE ; 
f o r  ( i =  0, a1-ptr= syn-tab1 e; i <NR-TASKS+NRPROCS; i ++, al-pt  r++) 

i f  {*dl-ptr)  { 
'al-ptr= FALSE ; 
mess.mtype= CLOCLINT; 
send (i - N R T A S K S ,  &mess) ; 
work-done== FALSE; 

I 
i f  (work-done) { 

syn-a'l-alive= FALSE; 
rece ive (CLOCK, &mess); 
syn-a1 -.a1 i ve= TRUE ; 

I 
1 

1 

/ * = r r = = = = = = r = = = = r r r = = = = = = = r r r l = = = = = r = = = = = = = = = = ~ = = = = = = *  

c clock-handler v 

*--------- - - - - - - - - - 1 = = = = = = 3 = = = = = = = = = = = = = t = = =  */ 
PRIVATE i n t  clock-hand1 er C i  rq) 
i n t  i r q ;  

/* r h i s  executes on every c lock t i c k  (i . e . ,  every time the t imer  ch ip  
* generates an i n t e r r up t ) .  It does a l i t t l e  b i t  o f  work so t h e  c lock 
* task does not have t o  be ca l l ed  on every t i c k .  
* 
* Switch context  t o  do-clockt ick i f  an alarm has gone o f f .  
* Also switch there t o  reschedule i f  the reschedule w i l l  do something. 
* Th is  happens when 
* (1) quantum has expi red 
4 (2) cu r ren t  process received f u l l  quantum (as c lock sampled i t  ! )  
4 (3) something e lse i s  ready t o  run. 
* Also c a l l  l T Y  and PRINTER and l e t  them do whatever i s  necessary. 
* 
* Many g lobal  g lobal  and s t a t i c  var iab les a re  accessed here.  The safety 
* o f  t h i s  must be j u s t i f i e d .  Most o f  them are n o t  changed here: 
* k r e e n t e r  : 
* This sa fe l y  t e l l s  i f  t he  c lock  i n t e r r u p t  i s  nested. 
* proc-ptr, b i l l - p t r :  
* .  These are used f o r  accounting. I t  does not matter if pr0c.c 
4 i s  changing them, provided they a re  always v a l i d  po in ters ,  
Q s ince a t  worst t h e  previous process would be b i  1 led .  
* next-alarm, r ea l  t ime, sched-ticks, bi 11-ptr, prev-ptr , 
~r rdy-head EUSERQI : 

These are tested t o  decide whether to  c a l l  i n t e r r up t ( ) .  It 4 

* 
* 
* 
* The var 
* rP 

does n o t  matter i f  t he  
due t o  a race, s ince t h  
processing by one ti ck, 

i ab l es  which are changed requ 
->user-time, rp-zsys-time: 

t e s t  i s  sometimes ( rare ly)  backwards 
i s  wi 11 on1 y delay the h igh- leve l  

o r  c a l l  t h e  h i gh  l e v e l  unnecessari 1 y .  
i r e  more care: 
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t These are protected by e x p l i c i t  l ocks  i n   system.^. They a re  
* no t  p roper l y  protected i n  dmp.c ( the increment here i s  not 
* atomic) but t ha t  hard1 y matters. 
Q pending-ti cks: 
rt This i s  protected by e x p l i c i t  locks i n  c1ock.c. Don't 
* update rea l t ime d i r e c t l y ,  s ince there are too  many 
* references t o  i t t o  guard convenient ly.  
rr l o s t - t i c ks :  
* Clock t i c k s  counted outs ide the c lock task. 
t sched-ticks, prev-ptr :  
.~r Updating these competes w i t h  s i m i l a r  code i n  do-clocktick[). 
a Na l ock  i s  necessary, because i f  bad things happen here 
* (like sched-ticks going negative), the code i n  do-c lock t i ck0  
4 w i l l  res to re  the var iab les t o  reasonable values, and an 
* occasional missed o r  e x t r a  schedi) i s  harmless. 
* 
* Are these comp7ications worth t h e  t roub le?  We1 1, they rnake t he  system 15% 
* faster on a 5Wz 8088, and rnake task debugging much eas ier  s ince there a re  
* no task switches on an i n a c t i v e  system. 
* / 

reg i s t e r  s t r u c t  proc *rp; 
r eg i s t e r  unsigned t i c k s ;  
clock-t now; 

i f  (ps-mca) { 
/* Acknowledge t he  PS/2 c lock  i n t e r r u p t .  */ 
out_byte(PORT-6, inAyte(P0Rf-B) I CLOCKACLBIT)  ; 

1 

/* Update user and system accounting times. 
* F i r s t  charge the current  process for user t ime. 
* I f  the cur ren t  process i s  no t  the b i l l a b l e  process (usual ly because i t  
* i s  a task), charge the b i l l a b l e  process f o r  system t ime as w e l l .  
* Thus t h e  u n b i l l a b l e  tasks '  user t ime i s  the  b i l l a b l e  users'  system time. 
*/ 

i f  (k-reenter != 0) 
r p  = proc-addr (HARDWARE) ; 

e lse  
r p  1 proc-ptr; 

t i c k s  = l os t - t i c ks  + 1; 
los t - t i c ks  = 0; 
rp->user-time += t icks.;  
i f  ( r p  != b i l l - p t r  CM r p  != proc-addr(1DLE)) bi l l -ptr->sys-t ime += t i c k s ;  

pendi ng-t icks += t icks ; 
now = rea l t ime + pend ins t i c ks ;  
i f Ct t y - t  i meou t <= now) tt y-wa keup(now) ; /* poss ib ly  wake up TTY */ 
p r - r e s t a r t 0  ; /* poss ib ly  r e s t a r t  p r i n t e r  */ 

i f  (next-alarm c= now I I 
sched-ticks == 1 && 
b i l l - p t r  == prev-ptr  && 
rdy-head[USERQ] ! = NIL-PROC) { 
i n t e r  rup t  (CLOCK) ; 
re tu rn  1; /* Reenable i n t e r r u p t s  */ 

1 

i f  (--sched-ticks == 0) { 
/* I f  b i l l - p t r  == prev-ptr, no ready users so don ' t  need schedo.  */ 
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sched-ticks = SCHED-RATE; /* reset  quantum */ 
p rev -p t r  = b i l l g t r ;  /* new previous process */ 

I 
return 1; /* Reenable c lock i n t e r r u p t  */ 

1 

* , , ~ l l p * = l l l l l t l t ~ ~ ~ ~ ~ 3 3 ~ ~ ~ ~ ~ ~ ~ f ~ ~ ~ * ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 Y ~ 1 I t t ~ ~ ~ ~ ~ a ~ * /  

PRIVATE vo i d  i n i  t -c l  o c k 0  
C 
/* I n i t i a l i z e  channel 0 o f  the 8253A t imer  t o  e.g. 60 Hz. */ 

out-byte(T1MER-MODE, SQUAREWAVE); /* set t imer  t o  run  cont inuously */ 
out-byte (TIMER0 , TIMELCOUNT) ; /* load t imer  low byte */ 
out-byte(TIMER0, TIMERCOUNT >> 8) ; /* load tier h igh  byte */ 
p u c i  r k h a n d l  er(CL0CK-IRQ, c lockhand le r )  ; /* se t  the i n t e r r u p t  hand1 e r  */ 
enable-i rq(CCOCL1RQ) ; /* ready for clock i n t e r r u p t s  */ 

1 

C 
/ *  Reset the c lock  t o  the BIOS ra te .  (For rebooting) */ 

s t r uc t  m i l l i - s t a t e  ms; 

m i l  l i -start(8ms) ; 
wh i le  ( n i l l i - e l apsed (bs )  < m i l l i s e c )  () 

I 
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WBLIC unsigned m i  1 li,elapsed(msp) 
struct  m i  11 i-state *mrp; 

/* Return the number o f  milliseconds since the ca l l  t o  n i l l i _ s t a r t O .  Must be 
* polled rapidly. 
*/ 
unsi gncd count ; 

/* Read the counter fo r  channel 0 o f  the 8253A timer. The counter 
decrements a t  twice the timer frequency (one f u l l  cycle fo r  each 
ha l f  o f  square wave). The counter normal1 y has a value between 0 
and TIMERCOUNT, but before the clock task has been in i t i a l i zed ,  
i t s  maximm value i s  65535, as set by the 010s. 

/ 
outbyte(TIMERMKE, LATCH-COUNT); /* make chip copy count t o  la tch */ 
cwnt - i n,byte(nHERO) ; /* countdawn continues during 2-step read * /  
count I= in-byte(fIMER0) << 8; 

/* Add difference between previous and new count unless the counter has 
increased (restarted i t s  cycle). We may lose a t i c k  now and then, but 
microsecond precision i s  not needed. 

/ 
nsp->accu~count += count <I msp->prev,count ? Cmsp-rprev-count: - count) : I; 
nsp-sprev-count = count; 

/* t ty .h  - Terminals */ 

Idef inem-fLUYTES 256 / * t t y i n p u t q u e u e s i z e * /  
Ydefi ne TALSIZE 8 /* distance between tab stops */ 
Cdef i ne T A B A S K  7 /* mask to corpute a tab stop posit ion */ 

lrdefi ne ESC '\33' /* escape */ 

Pdef i ne O_NOCTTY 00400 /* from <fcntl.hr, or cc w i l l  choke */ 
#def i ne O_NONBLOCK 04000 

typedef ,PROTOTYPE( vold Pdevfun-t) , (st  ruct  t t y  '. ;p) ) ; 
typedef ,PROTOTYPE( void (*devfunarg_t), (struct t t y  * tp ,  i n t  c) 1 ;  

typedef struct  t t y  I 
i n t  tty-events; /* set when l T Y  should inspect t h i s  l i n e  */ 

/* Input queue. Typed characters are stored here u n t i l  read by a program. */ 
u16-t *tty-inhead; /*  pointer t o  place where next char goes */ 
u16-t * t t y - in ta i l ;  /* pointer t o  next char to  be given t o  prog */ 
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i n t  t t y - i  ncount; / *  # chars i n  the  i npu t  queue */ 
i n t  t t y -eo tc t  ; /* number o f  "1 i n e  breaks" i n  i n p u t  queue */ 
devf  un-t tty-devread ; /* rou t ine  t o  read from l o w  l e ve l  buffers */ 
devf un-t t t y - i  cancel ; /* cancel any device i npu t  */ 
i n t  tty-min; /*  minimum requested #chars i n  inpu t  queue */ 
clock-t t ty - t ime;  /" t ime when the i npu t  i s  ava i l ab l e  */ 
s t r u c t  tty "tty-t imenext; /* f o r  L l i s t  o f  t t y s  w i t h  ac t i ve  t imers * /  

/* Outp. r sec t ion .  */ 
devfun t t ty-devwr i te ;  /* rou t ine  t o  s t a r t  actua l  device output */ 
devfunarg-t tty-echo; /* rou t ine  t o  echo characters i npu t  */ 
devfur - t  tty-ocancel ; / *  cancel any ongoing device output  */ 
devf M-t tty-break; /* l e t  the device send a break */ 

/ *  Terminal parameters and s ta tus .  */ 
i n t  t ty-posi  t i on ;  / *  current  p o s i t i o n  on the screen f a r  echoing */ 
char t t y - r e p r i n t  ; /* 1 when echoed i npu t  messed up, e lse 0 */ 
char tty-escaped ; /* 1 when CNEXT (^U) j u s t  seen, e lse  O */ 
char t t y - i nh i  b i  ted; / *  1 when STOP ( ' 5 )  j u s t  seen (stops output) */ 
char tty-pgrp; / *  s l o t  ncmber o f  c o n t r o l l i n g  process * /  
char tty-openct; /* count o f  number o f  opens o f  t h i s  t t y  */ 

/* In format ion about incomplete I/O requests i s  stored here. */ 
char t t y - i  nrepcode; /* rep1 y code, TASK-REPLY o r  REVIVE */ 
char t t y - i  n c a l l  e r ;  /* process t h a t  made t h e  c a l l  (usual ly  FS) * /  
char t t y - i  nproc ; /* proces5 t ha t  wants t o  read from t t y  */ 
v i  r-bytes t t y - i  n-vi r; /* v i r t u a l  address where data i s  t o  go */ 
i n t  t t y - i n l e f t ;  /* how many chars are s t i  ll needed */ 
i n t  t t y - i  ncun; /* # chars i npu t  so f a r  * I  
char tty-outrepcode : /* rep l y  code, TASK-REPLY o r  REVIVE */ 
char t ty -outca l  ler; /* process t h a t  made the  c a l l  ( t isua l ly  FS) */ 
char t ty-outproc; /* process t h a t  wants t o  w r i t e  t o  t t y  */ 
v i  r-bytes t ty-out-vi  r ; /* v i r t u a l  address where data comes from */ 
i n t  t t y - o u t l e f t ;  /* # chars ye t  t o  be output  */ 
i n t  tty-outcum; /* # chars output so f a r  */ 
char t t y - i o c a l l e r ;  /* process t h a t  made t he  c a l l  (usual ly  FS] */ 
char t ty - ioproc;  /* process t h a t  wants t o  do an i o c t l  */ 
i n t  t ty - ioreq;  /* i o c t l  request code */ 
vir-bytes t t y - i o v i r ;  /* v i r t u a l  address o f  i o c t l  b u f f e r  */ 

/ *  Mi scel 1 aneous. */ d 

devfun-t t t y - i o c t l ;  /* set  l i n e  speed, e tc .  a t  t he  device l eve l  */ 
devfun-t t ty -c lose;  /* t e l l  the device t ha t  the t t y  i s  c losed */ 
vo id  * t t y -p r i v ;  /* po in te r  t o  per device p r i va te  data */ 
s t r u c t  termios t ty - termios;  /* terminal a t t r i b u t e s  * /  
s t r u c t  winsize tty-winsize; /* window s i z e  (#lines and #columns) * /  

u16-t t t y - i  nbuf [TTY-IN-BYTES] ; /* t t y  i nput b u f f e r  * /  
1 t t y - t :  

EXTERN t t y - t  tty-tableCNR-CONStNR-RS-LINES+NR-PTYSI; 

/* Values f o r  the f i e l d s .  */ 
#def ine NOT-ESCAPED 0 / *  previous character i s  not LNEXT ( ^ V )  */ 
#define ESCAPED 1 /* previous character was LNEXT ('V) */ 
#def ine RUNNING 0 /* no STOP (-5) has been typed t o  stop output  */ 
#def i ne STOPPED 1 /* STOP ( ' 5 )  has been typed to stop output * /  

/* F ie lds  and f l a g s  on characters i n  t he  i npu t  queue. * /  
t d e f i  ne IN-CHAR OxOOFF /* low 8 b i t s  are the character i t s e l f  */ 
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Udef ine  IN-LEN OxOFOO / *  leng th  o f  char i f  i t  has been echoed */ 
#def ine IN-LSHIFT 8 /* . length = (c & IN-LEN) >> IN-LSHIFT */ 
#def ine IN-EOT 0x1000 / *  char i s  a l i n e  break ("D, LF) */ 
#def ine IN-EOF Ox2ODO /* char i s  EOF (^D) ,  do not r e t u rn  t o  user */ 
#def ine IN-ESC Ox40DO /* escaped by LNEXT [ ^ i t ) ,  no in terpretat . ion */ 

/* Tilnes and timeouts. * /  
#def ine TIME-NEVER ((clock-t) -1 c 0 ? ( c l o c k t )  LONGAAX : ( c j o c k t )  -1) 
#define force-timeout() ((void) ( t ty- t imeout = 0 ) )  

EXTERN t t y - t  * t t y - t i m e l i s t ;  /* l i s t  o f  t t y s  w i t h  a c t i v e  t imers */ 

/*  Number o f  elements and l i m i t  o f  a bu f f e r .  */ 
Udef i  ne buf len(buf)  (s i  zeof (buf) / s i  zeof ((buf) [a])) 
#def ine bufend (buf) ((buf) t buflen(buf)) 

/* This f i l e  contains t he  terminal  d r i v e r ,  bo th  f o r  the I B M  console and regular  
* ASCII terminals.  It handles on1 y t he  dev ice- indepedent  p a r t  o f  a TTY, the  
* device dependent pa r t s  are i n  conso1e.c. rs232.c, e t c .  Th is  f i l e  conta ins 
* two main en t r y  po in ts ,  t ty- task() and tty-wakeup(], and several  minor en t r y  
* points f o r  use by rhe device-dependent code. 
* 
* The device-independent p a r t  accepts "keyboard" i npu t  from the device- 
* dependent par t ,  performs i npu t  processing (special  key i n t e rp re ta t i on ) ,  
* and sends the i n p u t  t o  a process reading from the TTY. Output t o  a W 
* i s  sent t o  the device-dependent code f o r  output  processing and "screen" 
* display. Inpu t  processing i s  done by the device by c a l l i n g  ' in-process'  
* on t h e  i n p u t  characters, output  processing may be done by the device i t s e l f  
* o r  by c a l l i n g  'out-process'. The l T Y  takes care o f  i n p u t  queuing, t h e  
* device does t h e  output  queuing. If a device receives an externa l  s ignal ,  
* l i k e  an i n t e r r u p t ,  then i t  causes tty-wakeup() t o  be run by the CLOCK task 
* to ,  you guessed i t ,  wake up the TTY t o  check i f  input or output  can 
* continue. 
* 
* The v a l i d  messages and t h e i r  parameters are: 
* 
* HARD-INT: output  has been completed o r  i npu t  has a r r i v e d  
* DEV-READ: a process wants t a  read from a terminal 
* DEV-WRITE: a process yants t o  wr i te  On  a terminal  
* DEV-IOCTL: a process wants t a  change a terminal  ' s  parameters 
* DEV-OPEN: a t t y  l ine  has been opened 
* DEV-CLOSE: a t t y  l i n e  has been closed 
* CANCEL: terminate a previous incomplete system cal l immediate] y 
* 
* m t y p e  TTY-LINE PROCNR COUNT TTY-SPEK TTY-FLAGS ADDRESS 

* j DEV-READ /minor d e v ~  proc n r  I count I O-NONBLOCKI b u f  p t r  I 

* 1 DEV-WRITE lminor devl proc n r  I count I 1 I bu f  p t r  I 
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#include "kernel. h" 
X i  nclude etermi 0s. h r  
Cinclude <sys/ ioct l .  hr 
#include <signal .h> 
#include <minix/caIlnr.h> 
#include <mini x/com. h> 
#include a i n i  x/kepap .h> 
#include " t t y  .h" 
#include "proc. h" 

/* Address o f  a t t y  s t ruc tu re .  */ 
Wdef i ne tty-addr(1 i ne) (&tty,tableIl i nel) 

/* F i r s t  minor numbers f o r  the var ious classes o f  TTY devices. */ 
#def i ne CONSJIINOR Q 
#def ine LOGMINOR 1 5  
#def i ne RS232JINOR 16 
W e f i  ne ITYPUINOR 128 
Rrdef ine P T Y P L M I W  192 

/* Macros f o r  magic t t y  types. */ 
W e f i  ne i sconrole(tp) ((tp) < tty-addr(NLC0NS)) 

/* Macros for magic t t y  s t r uc tu re  pointers. */ 
#def ine FIRST-TTY tt y-addr (0) 
Cdef i ne END-lTY t ty-addr (s izeof  ( t ty - tab le)  / s izeo f  (tty-tableC01)) 

/* A device e x i s t s  if a t  l e a s t  i t s  'devread' funct ion i s  def ined. */ 
#define ety-act ive l tp)  ((tp)->tty,devread != NULL) 

/* RS232 l ines o r  pseudo terminals can be complete1 y configured out. */ 
# i f  NRRS-LINES == 0 
#define rs-i n i  t (tp) ((void) 0) 
Xendi f 
# i f  NRPTYS =E 0 
#define pty-i n i t ( t p )  ((void) 0 )  
#def ine do_pty(tp, rrp) ((void) 0 )  
#endi f 

FORWARD ,PROTOTYPE( v o i d  do-cancel, ( t t y - t  * tp ,  message * ~ p t r )  
FORWARD ,PROTOTYPE( v o i d  do- ioct l  . ( t t y - t  * tp ,  message *ntptr) 
FORWARD ,PROTOTYPE( v o i d  &open, ( t t y - t  * t p  , message *mpt r) 
FOKWARO ,PROTOTYPE( void &-close, ( t ty-t  * t p ,  message * ~ ~ t r l  
FORWARD -PROTOTYPE( v o i d  do-read, ( t t y - t  * tp ,  message *wt r) 
FORWARD ,PROTOTYPE( v o i d  do-wri t e ,  ( t t y - t  * tp ,  message *n~ptrI 
FORWARD ,PROTOTYPE( v o i d  in- t ransfer ,  ( t t y - t  *tp) 
FORWARD ,PROTOPIPE( i n t  echo, ( t t y - t  * tp ,  i n t  ch) 
FORWARD -PROTOM?€( void rawecha, (tty-t * tp ,  int ch) 
FORWARD ,PROTOTYPE( i n t  back-over, ( t t y - t  * tp) 
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FORWARD -PROTOTYPE ( vo id  r e p r i n t  , ( t t y - t  *tp) 
FORWARD ,PROTOTYPE( vo id  dev-ioct l  , ( t t y - t  * tp) 
FORWARD ,PROTOTYPE( vo id  s e t a t t t ,  ( t t y - t  *tp) 
FORWARD ,PROTOTYPE( vo id  t t y - i  cancel, ( t t y - t  * tp)  
FORWARD ,PROTOTYPE( w i d  t t y - i n i t ,  ( t t y - t  +tp) 
FORWARD -PROTOTYPE( vo id  sett imer,  ( t t y - t  *tp, i n t  on) 

/* Defaul t  a t t r i bu tes .  */ 
PRIVATE s t r u c t  t e m i o s  termios-defaults = { 

TINPUTMF, TOUTPUTJEF, TCTRLDEF, TLOCALDEF, TSPEED-DEF, TSPEEDJEF, 
E 

TEOFSEF. TEOLMF, T E R M U E F ,  TIULDEF. TKIL W E F ,  TMIKDEF, 
TWIT-DEF, TTIUEBEF, TSUSPXF, TSTARTBF, TSTOPJIEF, 
TREPRINT-DEF, TLNEKTJEF. TDISCARDJKF, 

I ,  
1 ;  
PRIVATE s t r u c t  w i  n s i  ze w i n r i  ze-def a u l t s  ; /* = a l l  zeroes */ 

message t t y m s s ;  /* b u f f e r  f o r  al l  i n co r i ng  messages */ 
r e g l s t e r  t t y - t  *tp; 
unsigned 1 i ne ; 

/* I n i t i a l i z e  t h e  t e rn i na l  l i n e s .  */ 
f o r  ( t p  = FIRST-m; t p  < END-m; tp++) t t y - i n i t ( t p ) ;  

/* Display the Min ix  s t a r t up  banner. */ 
p r i n t f  ("Mini x Xs .Xs Copyri pht 1997 Pren t i  ce-Hall , I nc .\n\n" , 

0s-RELEASE, 0s-VERSION) ; 
pr in t f ( "Execut ing i n  32-b i t  protected mode\n\nW); 

wh i le  (TRUE) { 
/* Handle any events on any o f  the  t t y s .  */ 
f o r  ( tp  = FIRST-TW; t p  < END-TTY; tp++) { 

i f  (tp-wtty-events) handle-eventsctp) ; 
1 

recei  ve(ANY, L t t y ~ s s )  ; 

/* A hardware i n t e r r u p t  i s  an i n v i t a t i o n  t o  check f o r  events. */ 
i f  ( t t y m s s  .-type =- HAltD-INTI continue; 

/* Check t he  minor device number. */ 
1 i ne  = t t y ~ n e s s  .llY-LINE; 
i f  ((1 i n e  - CONSMNOR) < NRCONS) { 

t p  = t t y d d r c l i n e  - COFISJINOR) ; 
) e l se  
if (1 i n e  -- LOCJINOR) { 

t p  - tty-addr(0); 
) e l se  
i f  ( ( l i ne  - RS232BINOR) < NUS-LINES) 

t p  - tty-addr(1ine - RS232JINOR + NRCONS); 
) e l se  
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i f  ( ( l i ne  - TTYPLMINOR) < NRPTYS) { 
t p  P t t y -addr ( l i  ne - TTYPUINOR + NRCmS + NRRLLINES) ; 

3 e lse 
i f  ( ( l i n e  - PTYPUINOR) < NRPTYS) ( 

t p  = t ty-addr (1 i ne - PlYPXJlINOR + NRCONS + NCRSLPNES) ; 
d o j t y ( t p ,  drttyfless) ; 
con t i  nue ; /*  t h i s  is a p t y ,  n o t  a t t y  */ 

) e lse { 
t p  = NULL; 

3 

/* I f  t h e  device doesn't e x i s t  o r  i s  n o t  conf igured re tu rn  ENXIO. */ 
i f  Ctp == NULL I I !tty,active(tp)) { 

tty-reply(TASICREPtY, tty-mess.msource, 
tty~ness.PROCNR. ENXIO); 

continue; 
3 

/* Execute t h e  requested funct ion. */ 
s w i t c h  ( t ty~ness-- type)  { 

case UEV-READ: do-read(tp, & t t y m s s )  ; break; 
case DEV-WRITE : do-writeCtp, &tty-mess); break ; 
case WU-IOCTL: do-ioctl Ctp, &xty_ness) ; break ; 
case MV-OPEN : do-open(tp, B t t y~ness )  ; break ; 
case DEV-CLOSE: do-close(tp. M t y ~ s s )  ; break ; 
case CANCEL: do-cancel ( tp ,  bttymess) ; break; 
de fau l t  : tty-rep1 yUASICREPLY, t t y ~ n e s s  .ncsource, 

t t y m s s .  PROCNR. EINVAL) ; 

/* Check i f  there  i s  already a process hanging i n  a read, check i f  the  
* parameters are co r rec t ,  do I / O .  
" / 

i f  C tp -> t t y - i n l e f t  > 0 )  { 
r = €10; 

) e l se  
i f  (mptr->COUNT <= 0) { 

r = EINVAL; 
) else 
if (nunap(m_ptr->PROC-NR, (vi  r-bytes) ~ p t  r-ADDRESS, k p t  r->COUNT) == 0) { 

r = EFAULT; 
e l s e  { 

/* Copy in format ion from the message t o  t h e  t t y  s t r uc t .  */ 
tp -> t t y - i  nrepcode = TASKREPLY; 
t p -> t t y - i nca l l e r  = m-pt r -~msource;  
tp->t ty- inproc = cptr->PROC-NR; 
tp->t ty- in-v i  r = ( v i  r-bytes) mptr->ADDRESS; 
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tp->tty,i n l e f t  = m-ptr->COUNT; 

i f  ( ! ( tp->tty-temios.c-lf lag 6 ICANON) 
8& tp->tty,termios. LCC[VTIME] > 0 )  { 

i f  Ctp->tty-termios-c-cc[WIN3 - 0 )  C 
/* MXN I TIME specify a read t i m e r  t h a t  f in ishes  the 
* read i n  TME/10 seconds i f  no bytes are available. 
*/ 

lack(); 
settSmerCtp, TRUE); 
t p - > t t y ~ i n  = 1; 
unlock0 ; 

1 else I 
/* MIN & TIME speci fy  an in te r -by te  t imer tha t  may 
* have t o  be cancelled i f  there are no bytes yet .  
*/ 

i f  I tp->try-eotct == 0)  I 
l o c k 0  ; 
settlmerCtp, FALSE) ; 
un lock0 ; 
t p - r t t y m i n  a tp->tty-termiar . c-ccCVMIN3 ; 

1 
1 

1 

/* Anything wai t ing i n  the input  buffer? Clear i t  out.. . */ 
in-transferCtp) ; 
/* . . .then go back fo r  more */ 
hand1 e-eventsctp) ; 
i f  (tp->tty,inleft -- 0) return; /* already done *,I 

/* There were no bytes i n  the i nput  
* the c a l l e r  o r  break o f f  the read 
*/ 

i f  Cm-ptr-DTIY-FLAGS & OJONBLOCK) 
r = W I N ;  

queue available, so e i t h e r  suspend 
i f  nonblocki ng. 

{ 
/* cancel the read */ 

tp->tty,inleft = tp->tty,incum = 0; 
1 else C 

r = SUSPEND; /* suspend the c a l l e r  */ 
tp->tty-i  nrepcode = REVIVE; 

1 
1 
tty-rep1 yCTASICREPLY. u t r - > n c s o u r c e .  w e r - > P R C N R ,  r ) ;  

1 

/ * r t ~ i i + t ~ r ~ r r r t m ~ r ~ = ~ ~ ~ ~ - t = ~ ~ ~ ~ t ~ t ~ ~ ~ ~ = ~ ~ ~ = ~ = r ~ ~ ~ ~ ~ ~ ~ = r ~ ~ ~ = ~ ~ = = p ~ = - = = = = ~ ~ *  

* do-wri t e  * 
* = ~ E = ~ ~ ~ - = ~ ~ ~ P ~ O - L : - U E = ~ ~ ~ - ~ ~ O ~ ~ ~ ~ ~ O - I ~ ~ ~ - L ~ - ~ E P - ~ = = ~ I = = ~ * /  

PRIVATE w i d  do-wri te(tp, k g t r )  
reg is te r  t t y - t  *tp; 
reg i s te r  message *nwtr; /* pointer  t o  message sent t o  the task */ 
C 
/* A process wants to  wr i t e  on a terminal. */ 

i n t  r; 

/+ Check if there i s  already a process hanging i n  a wr i te ,  check i f  the  
* parameters are correct.  do I/O. 
*/ 

i f  ( tp->t ty-out lef t  > 0) { 
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r = E I O ;  
} e lse  
i f  (mptr->COUNT <= 0) { 

r = E I W A L ;  
) e lse  
i f (nurnap(tn-ptr->PROC_NR, [ v i  r-bytes) m p t  r->ADDRESS ,- m p t r  ->COUNT) == 0) 4 

r = EFAULT; 
) e lse { 

/* Copy message parameters t o  the t t y  s t ruc tu re .  */ 
tp->tty-outrepcode = TASKREPLY; 
tp -> t t y -ou tca l le r  = u t r - > m s o u r c e ;  
tp->tty-outproc = ~L~~~ -YPROC_NR;  
tp->tty-out-vi r = (vi r-bytes) m ~ l t  r->ADDRESS ; 
t p - > t t y s u t l e f t  = rtptr-,COUNT; 

/ *  Try t o  w r i t e .  */ 
handle-events(tp) ; 
i f  ( tp -> t t y -ou t le f t  == 0) re tu rn ;  /* already done */ 

/* None o r  n o t  a l l  the bytes could be w r i t t e n ,  so e i t h e r  suspend the 
* c a l l e r  o r  break o f f  t he  w r i t e  i f  nonblocking. 
*/ 

i f  Cm-ptr-?TP(-FLAGS & 0-NONBLOCKI I /* cancel the w r i t e  */ 
r - tp->try-outcum > o ? tp->tty-outcum : EAGAIN; 
t p -> t t y -ou t l e f t  = tp->tty-outcurn = 0; 

) else { 
r = SUSPEND; /* suspend t he  c a l l e r  */ 
tp-> tt y-out repcode 5 REVIVE ; 

1 
l 
tty-rep1 y (TASLREPLY, ~n-pt r->m-source, m-ptr->PROCNR, r) ; 

1 

int r; 
union ( 

i n t  i; 
/* these non-Posix params are not used noy, b u t  the union i s  re ta ined  
* t o  minimize code d i f fe rences  w i t h  backward compatible vers ion 
* s t r u c t  sg t t yb  5g; 

St ruc t  tchars  t c ;  
*/ 

} param; 
phys-bytes user-phys; 

/* S i z e  o f  the i o c t l  parameter. */ 
swi tch (m-ptr->m-REQUEST) { 

case TCGETS: /* Posix t c g e t a t t r  f unc t i on  */ 
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case TCSETS: /* Posix t cse ta t t r  function, TCYVIOW opt ion */ 
case TCSETSW: /* P O S ~ X  t cse ta t t r  function. TCSADRAIN option */ 
case TCSETSF: /* Posix t cse ta t t r  function, TCSAFLUSH option */ 

size = s i  zeof (s t ruct  termios) ; 
break; 

case TCSBRK: /* Posi x tcsendbreak funct ion / 
case TCFLOW: /* Posix t c f l w  funct ion */ 
case TCFLSH: /* Posix tc f lush  function */ 
case TIOCGPCRP: /* Posix tcgetpgrp function */ 
case TIOCSPGRP: /* Posix tcsetpgrp function */ 

size = sizeof( int3; 
break; 

case TIOCGWINSZ: /* get window s ize (not Posix) */ 
case TIOCSWLNSZ: /* set wSndow size (not Posix) */ 

size sizeof (s t ruct  w i  nsize) ; 
break ; 

case KfOCSMAP: /* load keymap (Minix extension) */ 
size = sizeof(keymap,t); 
break : 

case TIOCSFON: /* load fon t  (Minix extension) */ 
size = sizeof (u8-t [8192]) ; 
break ; 

case TCDRAIN: /* Posix tcdra in  funct ion -- no parameter */ 
def aul t : size 0; 

1 

i f  (size != 0) { 
usershys I. numap(aptr-bPROCNR, (v i  r-bytes) L~~~->ADORESS, size) ; 
i f  (user-phys - 0) { 

tty-rep1 y (TASLREPLY. utr- source, w-ptr->PROCNR, EFAULT) ; 
return; 

1 
1 

r = OK; 
switch (ncptr->llY-REQUEST) C 

case TCGETS: 
/* Get the t e m i o s  a t t r ibu tes .  */ 
phys-copy(vi rlphys(&tp->tty,temios), user-hys, (physhytes) size) ; 
break; 

case TCSETSW: 
case TCSETSF: 
case T W I N :  

i f  ( tp->t ty-out lef t  > 0 )  { 
/* Wait f o r  a l l  ongoing output processing t o  f i n i s h .  */ 
tp->t ty- iocal ler  - wtr- source; 
tp->tty-ioproc = m p t r - > P R U R ;  
tp-rt ty- ioreq E ~lptr-sREQllEST; 
tp->tty- iovi r - (v i  r-bytes) ~ptr-sAOIlffESS; 
r - SUSP€NO; 
break ; 

1 
if (cptr->TTY,REQUEST == TCDRAIN) break; 
i f  ~A~~~->+TY_REQLIEST =- TCSETSF) tty,icancel(tp); 
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/*FALL THROUGHQ/ 
case TCSETS: 

/* Set t h e  termios a t t r i b u t e s .  */ 
phys-copy (user-phys, virZphys(&tp->tty,termios) , (phys-bytes) size) ; 
s e t a t t r  ( tp) ; 
break; 

case TCFLSH: 
phys,copy(user_phys, vir2phys(&param. i), Cphys-bytes) size) ; 
swi tch (param.i j { 

case TCIFLUSH : tty-icancelCtp); break ; 
case TCOFLUSH: (*tp-rtty-ocance?) Ctpl ; break; 
case TCFCIOFLUSH: t ty- icancel Etp); (* tp-r t ty-ocancel)  (tp) ;break; 
default:  r = EINVAL; 

1 
break ; 

case TCFLOW: 
phys_copy(user,phys, v i  r2phys(&param.i), (phys-bytes) size) ; 
switch (param.i) ( 

case TCOOFF: 
case TCOOH: 

t p -> t t y - i nh i b i  ted = (param.i == TCOOFF) ; 
tp->tty-events = 1; 
break; 

case TCIOFF: 
(*tp->tty-echo) (tp, tp-r t ty- terrnios .c-cc[VSTOP]) ; 
break ; 

case TCION: 
(*tp->tty-echo)(tp, tp->tty-termi0s.c-cc[VSTART]); 
break; 

default:  
r s EINVAL; 

1 
break; 

case TCSBRK: 
i f  t tp- r t ty -break != NULL) CPtp->tty-break) Ctp) ; 
break; . 

case TIOCCWINSZ: 
phys-copy(vi rZphys(6tp->tty,wi nsize), user-phys, (physhytes)  s ize) ; 
break : 

case KICKSMAP: 
/* Load a new keymap (only /dev/console). */ 
if C i  sconsole(tp)) r = kbd-loadmap(user_phys) ; 
break; 

case TICKSFON : 
/* Load a f o n t  i n t o  an EGA o r  VLA card (hs(Phck. hr) */ 
i f  (i sconsole(tp)) r = con_loadfont(user-phys) ; 
break ; 

/* These Posix funct ions a re  allowed t o  f a i l  i f  ,POSILJOB-CONTROL i s  
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* not def ined. 
*/ 

case TIOCGPCRP: 
case TXOCSPCRP: 
defaul t  : 

r 3 E N O I T ;  
b 

/* Send the reply. */ 
tty,reply(TASLREPLY, n~p t r - zn~source ,  n~ptr-BPROCNR. r); 

1 

* do-open t 

* ~ = = ~ 1 3 ~ = O Z = = I I = L ~ = D l t U l ~ - ~ ~ P ~ I ~ r P = * I I ~ ~ = ~ ~ ~ = P = ~ * P = t = = t ~ = D t = = 3 1 ~ t ~ r = ' 3 t ~ ~ 3 ~ ~ + /  

PRIVATE voi d do-openCtp , ncpt r) 
register  t t y - t  * t p ;  
message *mp t r ;  /* pointer  t o  message sent t o  task */ 
I 
/* A t t y  l l n e  has been opened. Make i t  the ca l l e rs  con t ro l l i ng  t t y  if 
* 0-NOCTTY i s  *notc set  and i t  i s  no t  the  log device. 1 i s  returned i f  
* the t t y  i s  made the  con t ro l l i ng  t t y ,  otherwise OK or an er ror  code. 
*/ 
i n t  r = OK; 

i f  (n~ptr->TTY,LINE = LMJINOR) C 
/+ The log  device i s  a wPite-only diagnostics device. */ 
i f  [kptr->COUNT 6 R B I T )  r = EACCES; 

) else I 
i f  [! (utr->COUNT & 0-NOCTTY)) E 

tp->tty_pgrp w t r - > P R K N R ;  
r - 1;  

1 
tp- > tty-openct++ ; 

1 
tty-replyCTASLREPLY, kptr-solsource, m-ptr->PROC-NA, r);  

1 

i f  (~ptr ->m,L1NE != LK-MINOR && --tp->tty,openct == 0)  1 
t p - > t t y g g r p  = 0 ;  
tty-icancel ( tp)  ; 
(*tp->tty-ocancel) (tp) ; 
(*tp->tty-close) Ctp) ; 
tp->tty,terni os = termi 0s-def aul t s  ; 
tp->tty,winsize = winsize-defaul ts ; 
s e t a t t r ( t p 1 ;  

1 
tty-rep?y(TASK_REPLY, mptr->msource,  m-ptr->PROC-NR. OK); 

1 
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/*rr-r~rr=rrrrurlpIIp=---=-ILp==--=~~~s-=.~tlpmramr* 

* do-cancel * 
*-=---=---m=-=-==-Rm-=-=-----r----=--"-*-*/ 

PRIVATE void do-cancel ( tp  , w t r )  
reg is te r  t t y - t  *tp; 
message *mp t r ;  /* pointer  t o  message sent t o  task */ 
I 
/+ A signal has been sent t o  a process that i s  hanging t r y i n g  t o  read o r  wr i te.  

The pending read or wr i t e  must be ftni shed o f f  i d 5  a t t l y  . 
+ / 

i n t  p r o ~ n r  ; 
i n t  mode; 

/* Check the  parameters care fu l l y ,  t o  avoid cancel l ing twice. */ 
p r c n r  - wtr->PROC_HR; 
mode - iLpte->COUNT; 
if ((mode & RJIT) t6 tp->tty,inleft I =  0 d& g r a r  -- tp-stty-inproc) { 

/* Process was reading when k i l l e d .  Clean up input. */ 
t ty- icanccl (tp) ; 
tp->trty,inleft = tp->tty,incum - 0 ;  

1 
if ((node 61 W-BIT) dd, tp-,tty-outleft !- 0 &81 proc-nr I- tp->tty-outproc) { 

/* Process was nri ti ng when k i  1 led. Clean up output. */ 
(*tp->tty,ocanceI) (tp) ; 
t p - > t t y - w t l e f t  = tp->tty,outcum 0 ;  

1 
i f  (tp->tty-ioreq I =  0 drdr p r o t n r  - tp->tty-ioproc) ( 

/* Process was wai t ing fo r  output t o  drain. */ 
tp->tty- ioreq = 0 ;  

1 
t p - ~ t t y s v e n t s  = 1; 
tty-rep1 yUASLREPLY. wtr- source, procnr ,  EINTR) ; 

1 

J * , = = - , r - - = - r = r e + r ~ m ~ - ~ - t t r r m  ~rr=ur--rurrurrrr* 

+ hand7 eevents  
*-rc----------.---u PIIIPIPPIIIIIPI-*/ 

WBLIC void handlcevents(tp) 
t ty - t  *tp; /* lTY t o  check f o r  events. */ 

/+ Handle any events pending on a l T Y .  These events are usual1 y device 
in te r rup ts .  

+ 
Two kinds of wwents are prominent: 

- a character has been received f rm the conso'ie o r  an RS232 l i n e .  
+ - an RS232 l i n e  has completed a w r i t e  request (on behalf a f  a user). 
+ The i n te r rup t  handler may delay the i n te r rup t  message a t  i t s  d iscre t ion  
f t o  avoid swamping the lTY task. Messages may be overwrit ten when the 

1 ines are f a s t  o r  when there are races between d i f f e r e n t  l i n e s ,  input  
and output, because MINIX on1 y provides dingle bu f fe r ing  f o r  i n te r rup t  

* messages ( i n  proc. c j  . This i s  handled by e x p l i c i t l y  checking each l i n e  
+ f o r  fresh input  and completed output on each in te r rup t .  
*/ 
char *buf; 
unsigned count; 
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/ *  Read input  and perform input  processing. */ 
(*tp->tty-devread) (tp) ; 

/* Perform output processing and wr i t e  output. */ 
C*tp->tty-devwri te)  (tp) ; 

/* I o c t l  wait ing f o r  some event? */ 
i f  (tp->tty-ioreq !- 0) dev-ioctl (tp) ; 

) while (tp->tty-events) ; 

/* Transfer characters from the input  queue t o  a wai t ing process. */ 
in-transfer(tp1; 

/* Reply if enough bytes are avai lable. */ 
i f  (tp->tty,incum >- t p - r t t y ~ n i n  && tp -> t ty - in le f t  > 0) I: 

tty-replyCtp->tty-inrepcode, tp->t ty- incal ler ,  t p -~ t t y - i np roc ,  
tp->t ty- i  ncun) ; 

tp -z t t y - i n le f t  - tp->tty-incun = 0; 
1 

1 

I 

/*r=P~=====PI=LP=I~L*1L~~*t~tCt=======~==X.T=LLP~==~3~==E==PL=~-*~~tt=r~=~~===-* 

i n-transfer 
*-rrrrrt~rrrlrrrrro~===I=-~~~~r===========~~~=~===~~==~=a.;aar+mm-m==rnr=*/ 

PRIVATE voi d i n-t ransf er (tp) 
register  t ty - t  *te; /* pointer  t o  terlninal t o  read from */ 
{ 
/* Transfer bytes fruu the input  queue t o  a process reading frm a terminal.  */ 

i n t  ch; 
i n t  count; 
phys-bytes buf-phys, userbase: 
char buf[64], *bp; 

/* Anything t o  do? */ 
i f  Ctp->tty,inleft -= 0 [ I  tp->tty-eotct < tp->tty-min) return; 

buf-phys = v i  r2physCbuf) ; 
user-base - proc-vi r2phys(proc-addr(tp-,tty-i nproc) , 0 )  : 
bp = buf; 
whi le, ( tp -> t ty - in le f t  > 0 M, tp->tty-eotct > 0) { 

ch - * tp - r t t y - i n ta i l ;  

i f  (!(ch & IN-EOF)) ( 
/* One character t o  be del ivered to  the user. */ 
*bp - ch 81 IN-CHAR; 
tp-ztty-inleft,--; 
i f  C-bp -- bufendcbuf)) { 

/* Tecnp buf fer  f u l l ,  copy t o  user space. */ 
phys-copy(buf-phys , user-base + tp->tty,i n-vi r , 

(phys-bytes) buflen(buf)) ; 
tp->my-in-vi r += buflen(bu0 ; 
tp->tty-incun +- bu f  len(buf) ; 
bp = buf; 

1 
3 .  
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/* Remove the character from the input  queue. */ 
i f  (++tp->t ty- inta i l  == bufend(tp-rt ty- inbuf)) 

tp->tty-intail = tp-stty- inbuf; 
tp->tty-incount--; 
i f  (ch 8 INJOT) ( 

tp->tty-eotct--;  
/* Don't read past a l i n e  break i n  canonical mode. */ 
i f  (tp->tty-tetmi0s.c-lflag 6 ICANON) tp->tty,inleft - 0; 

1 a 

1 

i f  (bp > buf) { 
/* Leftover characters i n  the buffer. */ 
count = bp - buf ;  
phys,copy(bufjhys, user-base + tp - r t t y - i  n-vi r, (phys-bytes) count); 
tp->t ty- i  n,vi r += count; 
tp->tty-incum +- count; 

1 

/' h u a l l y  reply t o  the reader. possibly even i f  incum == 0 CEOF). */ 
i f  ( tp->t ty- in lef t  =- 0)  

tty-rep1 yCtp-rtty-inrepcode, tp - r t ty - inca l le r ,  tp-rt ty- inproc, 
tp->tty- i  ncum) ; 

tp - r t t y - i n le f t  5; tp->tty-incum = 0; 
1 

1 

int  ch ,  sig, c t ;  
f nit' t h e s e t  = FALSE; 
s t a t i c  unsigned char c s i 2 e m k I J  = { O x l F ,  Ox3F, Or7F. OxFF 1 ;  

for (ct = 0 ;  c t  c count; ct++] 1 
/* Take one character. */ 
ch: - *buf++ & BYTE; 

/* S t r i p  t o  seven him? */ 
i f  (ap->tty,temios.c-iflag & ISTRIP) ch & Ox7F;. 

/* InpuE extensions? */ 
i f  (tp->tty,tennios.c-lflag & IEXTEN) ( 

/* Previous character was a character escape? *I! 
if (tp>tty-escaped) { 

tpi>tty,escaped = NOT-ESCAPED; 
cti i =  IN-ESC; /* protect character */ 

1 
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/* L N E M  C-V) t o  escape the next character? */ 
if (ch -- tp->tty-ternios . r c c  [VLNEXTI) I 

tp->tty,escaped - ESCAPED; 
ramcho(tp, " ') ; 
rawechoCtp, '\b') ; 
continue; /* do not store the escape */ 

1 

/* REPRINT C'R) t o  r ep r i n t  echoed characters? */ 
if Cch -- tp->tty-termios. c_cc[VREPRINTl) I 

rep r i n t  Ctp) ; 
continue ; 

3 
1 

/* JOSILVDISABLE i s  a normal character value, so be t te r  escape i t .  */ 
if (ch I= -POSXMISABLE)  ch I =  I N - E X ;  

/* Map CR t o  LF. ignore CR, o r  m a p  LF t o  CR. */ 
i f  (ch == ' \ r t )  I 

i f  (tp->tty-termi os . c_ i f lag  & IGNCR) continue; 
if Ctp- r t ty - te rmios .c i f lag  & ICRNL) ch = '\n' ; 

) else 
i f  (ch I= ' \ n m 3  { 

if Ctp->tty,temios.c-iflag C ImCR) ch = ' \ r '  ; 
1 

/* Erase processing (rub out o f  l a s t  character). */ 
i f  Cch -- tp-jtty-termios . c,cc[VERATEl) I 

(void) backover Ctp); 
i f  Q ! C w - p t t y - t e m i o s . ~ l f l a g  & ECHOE)) 1 

(void) echo(tp, ch) ; 
1 
cont i  we; 

/* Kill processing Cremove current l ine) .  */ 
i f  (ch - w->tty-temi0s.c-CC~WILC]) I 

whSle CbackoverCtp)) €1 
i f  (! ( tp-r t ty- temfos .c_lflag & ECHOE)) I 

(void) echoCtp, ch) ; 
i f  (itp->tty-termi 0s. ~ l f l  ag 6 ECHOK) 

rawecho(tp, ' \n')  ; 
3 
cont i nue ; 

1 

/* €OF (-12) means end-of-f i le, an invisible " l i ne  break". */ 
i f  (ch == tp-rt ty-tennios .csc[VEOFj) ck ' I =  IN-EOT 1 IN-€OF; 

/* The l ine  may be returned t o  the user a f t e r  an L F .  */ 
i f  Cch =- '\n') ch I= IkEOT; 

/* Same thing wi th  EOL, whatever i t may be. */ 
if (eh -= tp->ttyYtermios.c-ccCVEOL]) ch I= IN-EOT; 
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/* Star t /s top i npu t  con t ro l?  */ 
i f  (tp->tty-termios.c-iflag & IXON) { 

/* Output stops on STOP (-S) . */ 
i f  (ch == tp->tty-termios .LCCCVSTOPI) 1 

tp -> t t y - inh i  b i  t e d  = STOPPED; 
tp->tty-events = 1; 
continue; 

1 

/* Output r e s t a r t s  on START (^Q) or  any character i f  IXANY. */ 
i f  (tp->tty- i  nhi  b i  ted) { 

i f  (ch == tp->tty-termios.c-ccwTART] 
I I (tp-ztty-termi0s.c-iflag & IXANY)) i 

tp->t ty- i  nhi b i  ted  = RUNNING; 
tp->tty-events = 1; 
i f  (ch == tp-st ty-termi 0s. ~ c c  [VSTARTI) 

continue; 
I 

I 
1 

i f  (tp->tty-termios . c - l f l ag  & ISIC) { 
/* Check f o r  INTR CA?) and QUIT ("\) characters. */ 
i f  (ch == tp- r t ty - termios.  c-cc [VINTR] 

t I ch == tp -> t ty~ te rmios .c~cc [VQUIT l )  { 
s i g  = SIGINT; 
i f (ch == tp->tty-termios .c-cc[VQlJIT]) s i  g - SICQUIT; 
s i  gchar(tp, sig) ; 
(void) echo(tp, ch) ; 
continue; 

1 
1 

/* I s  there space i n  the  i npu t  bu f fe r?  */ 
i f  (tp->tty- incount =- buf lenctp-st ty- inbuf))  { 

/* No space ; d i  scard i n  canoni ca? mde , keep i n  raw mode. */ 
i f  (tp->tty-termios . c - l f l ag  & ICANON) continue; 
break; 

1 

i f  ( !  (tp->tty-termios.c_lftag 8 ICANON)) 
/* I n  raw mode a l l  characters are " l i n e  breaks". */ 
ch I= IN-EOT; 

/* S t a r t  an i n t e r - by te  t imer? */ 
i f  ( ! tirneset && tp->tty-termi 0 s .  c-cc[VMIN] r 0 

&& tp->tty-ternios.c,cc[VTPIE] > 0 )  { 
lock() ; 
set t imer( tp ,  TRUE) ; 
unlock() ; 
t imeset  = TRUE; 

3 
1 

/* Perform the i n t r i c a t e  f unc t i on  o f  echoing. */ 
i f  (tp->cty-tennios.c_lflag C (ECHO/ ECHONL)) ch = echoltp,  ch); 

/* Save the  character i n  t he  i npu t  queue. */ 
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*tp->tty,inhead++ = ch; 
i f  (tp->tty- i  nhead - bufend(tp->tty-i nbuf)) 

tp-ztty-inhead = tp->tty-inbuf; 
tp->tty- i  mount++; 
i f  (ch 81 ILEOT) tp->tty,eotct++; 

/* Try t o  f i n i sh  input  i f  the queue threatens 
i f  (tp-ztty-incount == buflenctp->tty-inbuf)) 

3 

t o  overflow. */ 
in,transfer(tp) ; 

return cc; 
} 

echo 
*~I-~~~~-I=-~~Y~~~II-=IP-IIPII~-UP-=I-OI~~~~~~=~-*/ 

PRIVATE i n t  echo(tp. ch) 
reg is te r  t ty - t  * tp;  /* terminal on which t o  echo */ 
reg is te r  i n t  ch; /* pointer t o  character t o  echo */ 
I 
/* Echo the character i f  echoing i s  on. Some control characters are echoed 

w i th  t h e i r  normal e f f ec t ,  other control characters are echoed as " - X " ,  
* normal characters are echoed normally. €OF (^Dl i s  echoed, but inmediately 

backspaced over. Return the character w i th  the echoed length added t o  i t s  
a t t r ibu tes .  

*/ 
i n t  len, rp; 

ch &- ' I L L E N ;  
i f  C! Ctp->tty-temios.c,lf lag B ECHO)) { 

i f  (ch - ('\n'  I ILEOT) MI (tp->tty,tenrios.c-lflag 
& (ICANON I ECHONL)) - (ICANON I ECHONL) ) 

Ptp-~ t ty -echo) ( tp ,  ' \n ' ) ;  
return(ch) ; 

3 

/* "Reprint" t e l l s  if the echo output has been messed up by other output. */ 
rp  - tp->tty-incount -- 0 ? FALSE : tp->tty-reprint;  

i f  (Cch & IKCHAR) c ' ') { 
switch (ch 81 ( I k E S C J  ILEOFI IECEOTI IkCHAR)) { 

case '\t' : 
len = 0;  
do I 

(*tp->tty-echo) (tp, ' '1 ; 
1 en++ ; 

3 bile (len < TAB-SIZE &I& ( t p -p t t ygos i t i on  81 T A B M K )  != 0 ) ;  
break; 

case ' \rl I IN-EOT: 
case '\n' I I L E O T :  

C*tp->ttyscho) ( tp,  ch & ILCHAR) ; 
l e n  = 0 ;  
break; 

defaul t : 
Ptp->tty-echo) (tp, ' "  ') ; 
p t p - z r t y ~ b o )  rtp. '0' + ~ c h  dr ILCHM)); 
l e n  = 2 ;  

1 
1 else 
i f  ((ch & ILCHAR) - '\177') { 
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/ *  A DEL p r i n t s  as "-?".  */ 
(*tp->tty-echo)(tp, ' ̂ ' )  ; 

- (*tp->tty-echo)(tp, '? ' )  ; 
len = 2 ;  

1 else { 
("tp->tty-echo) (tp, ch & IN-CHAR) ; 
l e n  = 1; 

1 
i f  (ch 8 IN-€OF) wh i le  ( len > 0) { (*tp->tty-echo)(tp, ' \b'); l en - - ;  ) 

tp -> t t y - repr in t  = r p ;  
re turn(ch I Clen << IN-LSHIFT)); 

1 

c bac k-ove r 

i f  ( tp- r t ty - incount  == 0) return(0); /*  queue empty */ 
head = tp-ztty-inhead; 
i f (head == tp -> t t y - inbu f )  head = bufendctp->tty-i nbuf) ; 
i f  (*--head & IN-EOT) return(0);  /* can't erase " l i n e  breaks" */ 
i f  ( tp -> t t y - repr in t )  r e p r i n t  ( tp) ; /* r e p r i n t  i f  messed up */ 
tp->tty- inhead = head; 
tp -> t t y - i  ncount-- ; 
i f  ( t p - z t t y - t ew ios  .c- l f lag & ECHOE) ( 

len = (*head 6 IN-LEN) >> IkLSHIFT;  
wh i le  ( len > 0) { 

rawecho(tp, ' \ b e )  ; 
rawecho(tp, ' '1 ; 
rawecho(tp, ' \ b ' ) ;  

/* one character erased */ 
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4 rep r i n t  t 

* E=l----l---rm=r --==--- ------ --------- --- ---C------==---------3=========*====-============* / 
PRIVATE void repr int ( tp1 
regi  s te r  t ty - t  *tp; /* pointer t o  t t y  s t ruc t  */ 
C 
/* Restore what has been echoed t o  screen before i f  the user input  has been 
* messed up by output, o r  i f  REPRINT (-R) i s  typed. 
*/ 
i n t  count; 
u16-t *head ; 

tp->t ty-repr int  = FALSE; 

/* Find the  l a s t  l i n e  break I n  the input .  */ 
head - tp-rtty-inhead; 
count = tp->tty,incount; 
w h i l e  (count > 0)  1 

i f  (head == tp->tty,i nbuf) head = bufend(tp->tty-i nbuf) ; 
i f  (head[-1) & IN-EOT) break; 
head- - ; 
count-- ; 

1 
i f  (count == tp->tty-incount) return; j* no reason t o  rep r i n t  */ 

/* Show REPRINT C - R )  and move t o  a new l i n e .  */ 
(void) echo(tp,  tp->tty-termios.c-cc[VREPRfNT] I IFCESC); 
rawecho(tp, ' \r '); 
rawechoctp , ' i n '  ) ; 

/* Reprint from the l a s t  break onwards. */ 
do I: 

i.f (head a- bufendttp->try-jnbuf)) head = tp -> t ty - i  nbuf ; 
*head = echo(tp, *head); 
head++ ; 
count++; 

) while (count < tp->tty-incount); 
1 

/*r~~===t===r+rr=r=========~========*====-====~========~========-===x=====~* 

ou t-process 
*~~~+~~-=~~~~-~~~=I~IP===~-=I=I==I=~=-~~II===II~I========P=O==P=CE*====*/ 

PUBLIC void out-processCtp, bs tar t ,  bpos, h n d ,  icount. ocount) 
t t y - t  *tp; 
char *bstart,  *bpos, *bend; /* start/pos/end o f  c i r cu la r  bu f fe r  */ 
i n t  +icount; /* I i nput  chars / i n p u t  chars used */ 
i nt +ocount : /* nmx output chars / output chars used */ 
{ 
/* Perform output processing on a c i r cu la r  buf fer .  "icount i s  the numbt~ of 
* bytes t o  process, and the number o f  bytes a c t w l l y  processed on return. 

*ocount i s  the space avai lable on input  and the space used on output. 
* (Natural ly *icount c *ocount.] The colunn p s i t i e n  i s  updated modulo 
* the TAB size, h a u s e  we really only need i t  for tabs. 

i n t  tablen; 
i n t  i c t  = *icount; 
i n t  oc t  = *ocount; 
i n t  pus = tp->tty,position; 
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w h i l e  ( i c t  r 0 )  .E 
swi tch (*bpas) i 
case ' \ 7 '  : 

break ; 
case ' \ b g :  

pos--; 
break; 

case ' \r l  : 
pos = 0; 
break; 

case ' \n ' : 
i f  ((tp->tty-termios-c-oflag & (0POSTtOMLCR)l 

== (OPOST(0NLCR)) { 
/* Map LF t o  CR+LF i f  there i s  space. Note t h a t  t h e  
* next character i n  t he  b u f f e r  i s  overwr i t ten.  so 
+ we stop a t  t h i s  po in t .  
*/ 

i f  (oct >a 2) { 
*bpos I ' \ r t ;  
i f  (++bpos == bend) b p s  = b s t a r t ;  
*bpos = ' \n ' ;  
pos = 0; 
i c t - - ;  
oc t  -= 2; 

3 
goto out-done; /* no space o r  buffer g o t  changed */ 

1 
break ; 

case '\t * : 
/ *  Best guess f o r  t h e  tab  length.  */ 
tab len = TAB-SIZE - (por & TABMSK); 

/* Tabs 
i f  (ocr 

1 

(OPOSTIXTABS)) I 
must be expanded. */ 
DL tablen) C 
pos +- tab1 en; 
i ct - -  ; 
oc t  -= tablen; 
do C 

*bpos = ' ' ; 
if (++bpos -= bend) bpos r b s t a r t ;  

) w h i l e  C--tablen != 0 ) ;  

goto  out-done ; 
3 
/* Tabs a re  output  d i r e c t l y .  */ 
pas += tablen; 
break ; 

d e f  aul t : 
/* Assume any other  character p r i n t s  as one character.  * /  
pos++ ; 

I 
if (++bpos -- bend) bpos = b s t a r t ;  
i c t - - ;  
oc t - - ;  

I 
out-done : 

tp -> t t y -pos i t i on  = pos 6 TABAASK;  
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1 2 7 5 5  * icount -= i c t ;  /* [ i o l c t  are the number o f  chars not used */ 
12756 "ocount -= oct; /*  *[io]count are the number o f  chars tha t  are used */ 
12757 1 

/ * * " r = = r r r r r +  

* dev-ioctl t 

*tPf==1=11=9==1==s~==============*lllfIII=IT======5====zP====-=============* / 
PRIVATE vo id  dev-i oc t l  (tp) 
t t y - t  + tp ;  
C 
/* The i o c t l  's TCSETSW, TCSETSF and TCDRAIN wait  f o r  output t o  f i n i s h  t o  make 
* sure t h a t  an a t t r i b u t e  change doesn't a f f ec t  the processing o f  current 
* w t p u t .  Once output f in ishes the i o c t l  i s  executed as i n  do-ioct l() .  
" / 
phys-bytes user-phys; 

i f  ( tp-zt ty-out lef t  > 0 )  return; /* output not f in ished */ 

i f  (tp->tty-iorec) I= TCDRAIN) 1 
i f  ( tp->tty- ioreq =- TCSETSF) t ty- icancel (tp) ; 
user-phys = proc-vi r2phys (proc-addr(tp->tty-i oproc) , tp-> t ty - i  ov i  r) ; 
phys,copy(user-phys. vir2phys(&tp-ztty-ternios) . 

(phys-bytes) s i  zeof (tp->tty,termios]) ; 
setattrCtp); 

1 
tp->tty- ioreq = 0; 
tty-replyCREVIVE, tp->tty-iocal l e r ,  tp->tty- ioproc, OK) ; 

I 

i f  ( ! (tp->tty-termi 0s. c-1 f 1 ag & ICANON)) { 
/* Raw mode; put a "1 i ne break" on a1 1 characters i n  the input  queue. 
* I t  i s  undefined what happens t o  the input queue rrhtn ICANOlJ i s  
* switched o f f ,  a process should use KSAFCUSH t o  f l ush  the queue. 

Keeping the queue t o  preserve typeahead i s  the Right Thing, however 
+ when a process does use TCSANOW t o  switch t o  raw mode. 
*/ 

cwnt I tp->tty,eotct tp->tty,incount; 
i np = t p - ~ t t y - i  n ta i  1 ; 
while (cwnt > 0 )  { 

* inp 1- I L E O T ;  
i f  (++i np -- bufendctp->tty-i nbuf)) i np - tp->rty,i nbuf ; 
-count; 

1 
1 

/* Inspect MIN and TfHE. */ 
lock() ; 
settimerCtp, FALSE); 
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unlock() ; 
i f  (tp->tty-termios.c-lflag & ICANON) { 

/* No MIN & TIME i n  canonical made. */ 
tp->tty_min = 1; 

] else { 
/* In raw mode MIN i s  the number o f  chars wanted, and TIME how long 
* t o  wai t  f o r  them. With in te res t ing  exceptions i f  e i ther  i s  zero. 
*/ 

tp->tty_nin = tp->tty-termios .c-cc[VMIN] ; 
i f  ( t p - s t t y ~ n i n  t- 0 &S tp->tty-termios.c_cc[VTIME] > 0 )  

t p - > t t y ~ n i n  = 1; 
1 

i f  ( I  Ctp->tty-termios .c-i f l a g  & IXON)) { 
/* No start /stop output contro l ,  so don't leave output inh ib i ted .  */ 
tp->tty- i  nhi b i  ted = RUNNING; 

/* Set t ing the output speed t o  zero hangs up the phone. */ 
if (tp->tty-termios. cospeed == 50) sigcharCtp, SIGHUP) ; 

/* Set new 1 i ne speed, character size, e tc  a t  the device level  . */ 
(*tp->tty- ioct l)( tp);  

1 

PUBLIC void tty-rep1 y (code, rep1 yee , p r o c n r ,  status) 
i n t  code; /* TASKREPLY o r  REVIVE */ 
i n t  replyee; /* dest inat ion address f o r  the reply */ 
i n t  p r o c n r ;  /* t o  whom should the reply go? */ 
i nt status : /* reply code */ 
C 
/* Send a reply t o  a process tha t  wanted t o  read or w r i t e  data. */ 

message t t y ~ l e s s ;  

ttyJness.mtype = code; 
t t y m s s  . REP-PROCNR = proc-nr ; 
t t y a s s  .REP-STATUS = status; 
i f  ((status = send(rep1 yee, M t y p s s ) )  I- OK) 

panic("tty,reply f a i l ed ,  status\nm , status) ; 
1 

/ * t ~ = = ~ - - ~ - - - ~ - u n - ~ - ~ ~ c ~ ~ u - - - = ~ ~ ~ ~ - * I ~ - ~ - F i i ~ = m a ~ *  

t s i  gchar t 

* m m r r r r r r m r = r r r r u p = - l i = ~ l i ~ p ~ L : ~ - ~ ~ ~ ~ ~ ~ ~ p ~ = =  rmnsronrr-r*/ 

PUBLIC void siqcharctp, sig) 
reg is te r  t t y - t  *tp; 
i n t  sig; /* SIGIHT. SIGQUIT, SIGKILL or SICHUP */ 
I 
/* Process a SIGINT. SICQUIT or SICKILL char from the keyboard o r  SIGHUP from 
* a t t y  close, " s t t y  Ow,  o r  a rea l  RS-232 hangup. W w i l l  send the signal t o  
* the process group (INT, QUIT), a l l  processes (KILL), or the session leader 
* (HUP). 
* / 
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if (tp->tty-pgrp != 0) cause-sig(tp->tty-pgrp, sig) ; 

i f  ( 1  ( tp-rt ty-termi 0s. c - l f l ag  & NOFLSH)) E 
tp-rt ty- incount - tp-ztty-eotct = 0 ;  /* k i l l  e a r l i e r  input  */ 
tp->tty- i  n t a i  1 = tp-ztty-inhead; 
(*tp->tty-ocancel) (tp) ; /* k i l l  a71 output */ 
tp->tty- i  nhibi ted - RUNNING; 
tp->tty-events = I; 

1 
t 

/*-~)PUIII~CPIPI -=~--P--I~c* 
t t y - i  n i  t 

* r t r u t r r r r m r r u r r r - t - ~ = = P - = ~ m - = - t ~ - = ~ - ~ ~ p ~ = ~ o = - - * /  

PRIVATE void t t y - i n i t ( t p )  
t t y - t  * tp;  /* Tn l i n e  t o  i n i t i a l i z e .  */ 
{ 
/* I n i t i a l i z e  t t y  s t ructure and c a l l  device i n i t i a l i z a t i o n  routines. */ 

t p -> t t y - i n ta i l  I tp->tty-inhead = tp->tty-inbuf; 
tp->t ty_nin = 1; 
tp->tty,termios - termios-defaul t s ;  
tp->tty-icancel - tp->tty,ocancel = tp -> t ty - ioc t l  = tp->tty,close = 

tty-devnop; 
i f  ( tp  c tty-addr(NLCONS)) i 

scr- ini  t( tp) ; 
I else 
i f  ( tp  < tty-addr(NLCONS+NRRS_LINES)) i 

rs- ini  t ( tp )  ; 
1 else C 

pty-i n i t ( tp1 ;  
1 

1 

/*=rrr==rlro=rrrrru=~==o==~~~~======~-=-=-=~==--==rn~~==---===* 

t tty-wakeup * 
* = I P = S * I - = E = - P ~ = ~ I = . Z ~ ~ ~ = ~ = O ~ ~ ~ ~ I ~ P I ~ - = ~ ~ = I = ~ * ~ ~ ~ I I E ~ ~ C = ~ * ~ = I U P I ~ - ~ = = = ~ * /  

PUBLIC void tty-wakeup(nw) 
c l o c k t  now; /* current time */ 
i 
/* Wake up TTY when something in te res t ing  i s  happening on one o f  the terminal 
* l ines ,  l i k e  a character a r r i v i n g  on an RS232 l i n e ,  a key being typed.. or 
* a t imer on a l i n e  exp i r ing  by TIME. 
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+/ 
t t y - t  "tp; 

/* Scan the t i m e r l i s t  f o r  exp i red t imers and conpute t he  next t imeout time. */ 
tty,timeout - TIMLNEVER ; 
wh i le  ((tp = t t y - t i m e l i s t )  != NULL) ( 

i f  (tp->tty-t ime P now) I 
t t y - t i neou t  = tp->tty-t ime; /* th is  t imer  i s  next * /  
break; 

I 
tp->tty_min = 0; /* fo rce  read t o  succeed */ 
tp -> t t y -wen ts  - 1; 
t t y - t i m e l i s t  = tp- r t ty - t imenext ;  

1 

/* Let lTY know the re  i s  something a foo t .  */ 
i n t e r r up t ( l l Y ) ;  

1 

h set t imer  

PRIVATE v o i d  set t imer  (tp, on) 
t t y - t  * tp ;  /+ l i n e  t o  set o r  unset a t imer  on */ 
i n t  on; /* s e t  t ime r  i f  true, otherwise unset */ 

/* Set o r  unset a TIME i n s p i  red t imer.  Th is  f unc t i on  i s  i n t e r r u p t  sens i t i ve  
due t o  tty-wakeup(), so i t  must be c a l l e d  from w i t h i n  lock()/unlock(). 

*/ 
t t y - t  **ptp; 

/* Take t p  o u t  o f  the t i m e r l i s t  if present.  '/ 
f o r  (ptp = & t t y - t ime l i s t ;  +ptp !- NULL; p t p  = &I*prp)->tty,timenext) f 

i f  ( tp  == *ptp) I 
*ptp = tp->tty-t imenext; /* take t p  out o f  t h e  l i s t  */ 
break: 

1 
I 
i f  (Ion) re tu rn ;  /* unse t t ing  i t  i s  enough */ 

/* Timeout occurs TIME deciseconds from now. */ 
tp->tty-t ime = get,uptime() + tp->tty,termios.c-cc[VTIME] * CHZ/10); 

/* Find a new p lace i n  the  l i s t .  */ 
f o r  (ptp = L t t y - t i m e l i s t ;  *p tp  != NULL; p t p  = &(*ptp)->tty-t imenext) I 

if (tp->tty,time <= (*ptp) -ztty,tirne) break ; 
1 
tp->tty-t imenext = *ptp; 
*p tp  = tP; 
i f  ( t p - ~ t t y - t i m e  tty-timeout) t ty- t imeout - tp->t ty- t ime;  

1 

/*rnrrrrrn=r-rrr=rr~~~-==-.~ic====~f=-=~======~=-=--~~-s=~r=~~---oI===* 

4 tt y-devnop 
* r - u ~ r n t + r r = r r = n r ~ ~ r r - ~ = ~ = ~ i l ~ ~ = ~ ~ ~ - t t ~ t ~ ~ = ~ - = ~ ~ ~ ~ ~ - o - ~ = ~ = ~ . ~ ~ = = ~ r + n r * /  

PUBLIC v o i d  tty,devnop(tp) 
t t y - t  * tp ;  
I 
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12995 /* 5- functfens need tmt be irrp7emmted a t  t h e  device Ieve'l. */ 
129% ) 

/* Keyboard dr lver for K D s  and AT'S. 

Changed by Marcus Hampel (04/02/1994) 
- Loadable keymaps 

*/ 

#include "kernel. h" 
#include dem ios .  h> 
#include <signal. h> 
#i ncl  ude a n i  std. h r  
#include dn ix /ca l ln r .h>  
U i  nc l  ude ani n i  x/com. h> 
#include ami n i  x/keymap. h> 
#include " t ty .  h" 
# i  nclude "keymaps/us-std . src" 

/* Standard and AT keyboard. (PS/2 implies AT throughout.) */ 
#def i ne KEYBO 0 x 6 0  /* 1/0 por t  f o r  keyboard data */ 

/* AT keyboard. */ 
Wefine Kg-COWHANO Ox64 /* 1/0 port  f o r  commands on AT */ 
#define KB-GATWO Ox02 /* b i t  i n  output port  t o  enable A20 l i ne  */ 
#define KB-WLSLUKPUT OxFO /* base f o r  commands to pu7se output port */ 
M e f  i ne KB-RESET 0x01 /* b i t  i n  output port  t o  reset  CW */ 
#def i ne KB-STATUS Ox64 /* 1/0 port for status on AT */ 
M e f i  ne KBKK OxFA /* keyboard ack response +/ 
#defi ne KB-BUSY 0x02 /* status b i t  set when KEYBD port  ready */ 
M e f  i ne LED-CODE OxED /* c a m ~ n d  t o  keyboard t o  set LEDs */ 
We f  i ne MA)LKBJCLREfRIf S 0x1000 /* max #times t o  wait fo r  kb ack */ 
M e f  int MAlrLKB,BUSY,RETRZES 0x1000 /* mar #times t o  loop while kb busy +/ 
Mef ine  KBIT Ox80 /* b i t  used t o  ack characters t o  keyboard */ 

/* Miscellaneous. */ 
r de f i  ne ESCXAN 1 /* Reboot key when panicking*/ 
#def i ne SLASH-SCAN 53 /* t o  recognize numeric slash */ 
#defi n t  HOMSCAN 71 /* f i r s t  key on the numeric keypad */ 
#def im? D E U C A N  83 /* DEL f o r  use i n  CTRL-ALT-DEL reboot */ 
#define CONSOLE 0 /* l i ne number fo r  console */ 
Wefine MEMCHECKJDR 0x472 /* address to stop memory check af ter  reboot */ 
#define MEMCHECICCUC; 0x1234 /* mapic nulnber to stop memory check */ 

#define kb-a#rO (&b-linesCO1) /+ there i s  only one keyboard */ 
#def i ne KB-XLBMES 32 /* sixe of keyboard input buffer */ 

PRIVATE i n t  a l t l ;  /* l e f t  a l t  kcy state .*/ 
P U f W E  i n t  a l t2;  /+ right a l t  key state */ 
PRIVATE i n t  capslock; /+ caps lock key state */ 
PRIVATE i n t  esc; /* escape scan code detected? */ 
PRIVATE i n t con t i01 ; /* control key state */ 
PRIVATE i nt caps-of f ; /+ 1 - normal position, 0 = depressed +/ 
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PRIVATE i n t  numlock; /* number lock  key s t a t e  */ 
PRIVATE i n t  num-off; / *  1 = normal pos i t i on ,  0 = depressed */ 
PRIVATE i n t  s l o c k ;  /* s c r o l l  lock key s ta te  * /  
PRIVATE i n t  slock-of f :  /* 1 = normal pos i t i on ,  0 = depressed */ 
PRIVATE i n t  s h i f t ;  /*  s h i f t  key s t a t e  */ 

/* Keyboard s t r uc tu re ,  1 per console. */ 
s t r uc t  kb-s { 

char *ihead; /* next f r ee  spot i n  i npu t  buffer */ 
char * i t a i l  ; /* scan code to .  re tu rn  t o  l T Y  */ 
i nt i coun t ;  /* X codes i n  bu f f e r  */ 
char i buf  [KB-IN-BYTES] ; /* inpu t  bu f f e r  */ 

1 ;  

PRIVATE s t r u c t  kb-s kb-1 i nes[NR-CONS] ; 

FORWARD -PROTOTYPE( i n t  kb-ack , (vo i  d) ) ; 
FORWARD -PROTOTYPE ( i n t  kb-wai t , (voi  d) ) ; 
FORWARD -PROTOTYPE( i n t  f unc-key , (i n t scode) ) ; 
FORWARD -PROTOTYPE ( i n t  scan-keyboard , (void) ) ; 
FORWARD -PROTOTYPE( unsigned make-break, ( i n t  scode) ); 
FORWARD -PROTOTYPE ( vo id  set-1 eds , (vai d) ) ; 
FORWARD -PROTOTYPE( i n t  kbd-hw-int , ( i n t  i rq) ) ; 
FORWARD -PROTOTYPE( vo id  kb-read, ( s t r u c t  t t y  * t p )  3 ;  
FORWARD -PROTOTYPE( unsigned map-key , ( i  n t  scode) ) ; 

* map-key * 

PRIVATE unsigned map-key(scode) 
I n t  scode; 
I 
/* Map a scan code t o  an ASCII code. */ 

i n t  caps, column; 
u16-t *keyrow; 

i f  (scode == SLASHSCAN && esc) re tu rn  ' / ' ;  /* don' t  map numeric s lash */  

caps = s h i f t ;  
if (numlock && HOME-SCAN <= scode &I& scode c= OELSCAN) caps = !caps; 
if (capslock 68 (keyrowlQ] 6 HASCAPS)) caps = !caps; 

if ( a l t l  I I a l t 2 )  { 
column = 2;  
if (con t ro l  I I a l t 2 )  column = 3;  /* C t r l  + A l t l  == A l t 2  */ 
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i f (caps) column - 4 ; 
3 e lse { 

column = 0; 
i f  (caps) column = I; 
i f (control)  column = 5; 

1 
r e t u rn  keyrwv[column] & "HASCAPS: 

1 

i n t  code; 
unsigned km; 
r e g i s t e r  s t r u c t  kb-s *kb; 

/ *  Fetch the character from the keyboard hardware and acknowledge it. */ 
code = scan,keyboard() ; 

/* The IBM keyboard i n t e r r u p t s  tw ice  per key, once M e n  depressed, once when 
* released. F i l t e r  out the  l a t t e r ,  ignoring a l l  but the sh i f t - t ype  keys. 
* The sh i f t - t ype  keys 29, 42, 54, 56, 58, and 69 must be processed normally. 
*/ 

i f  (code & 0200) { 
/* A key has been released (high b i t  i s  set). */ 
km = map-keyO(code & 0177)  ; 
i f  (km != C l R L  && km != SHIFT && km != A L f  8& km != CALOCK 

&& km != NLUCK & km != SLMK && km != EXTKEY) 
r e t u rn  1; 

3 

/* Store the character i n  memory so the task can get a t  i r  l a t e r .  */ 
kb = kb-addt-0; 
i f  (kb->icount < K8,IkBYTES) ( 

*kb->i head++ = code; 
i f (kb->i head =- kb->ibuf + K6,IN-BYTES) kb-zihead = kb->i buf; 
kb->i count++; 
tty,table[current] .tty-events = 1; 
force-timeout (1 ; 

1 
/* E lse it doesn' t  f i t  - d iscard i t .  */ 
r e t u rn  1; /* Reenable keyboard i n t e r r u p t  */ 

1 
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st ruc t  kb-s *kb; 
char buf[3] ; 
i n t  scode; 
unsigned ch ; 

kb I kb-addr0 ; 
t p  s Btty-table [current] ; /* always use the current console "/ 

w h i l e  (kb->icount > 0) { 
scode = *kb->i t a i  1 t+; /* take one key scan code */ 
i f  (kb->i t a i l  == kb->ibuf + KB-IN-BYES) k b - > i t a i l  = kb- r ibu f ;  
l o c k 0  ; 
kb-picount--; 
unlock() ; 

/* Function keys are being used f o r  debug dumps. */ 
i f  (func-keyCscode)) continue; 

/* Perform makebreak processing. */ 
ch = make-break(scode) ; 

i f  (ch <= OxFF) { 
/* A normal character. */ 
buf [ O ]  = ch; 
(void) in,process(tp, buf ,  1) ; 

1 else 
i f  (HOME c= ch && ch c- INSRT) I 

/* An ASCI I  escape sequence generated by the  numeric pad. */ 
buf [O] = ESC; 
buf 11) = ' ['; 
bufC21 = numpad~aapCch - HOME1 ; 
(void) in,process(tp, buf, 3) ; 

1 else 
i f  (ch A L E W  C 

/* Choose lower numbered console as current console. *! 
sel ect-cons07 e (current - 1) ; 

) else 
i f  (ch == ARIGHT) { 

/* Choose higher numbered console as current console. */ 
select_console(current + 1) ; 

) else 
i f  (AF1 <- ch U& ch c= AF12) { 

/* A 7 t - F 1  i s  console. Alt-F2 i s  t t y c l ,  etc.  */ 
se7 ect-connal etch - AFl)  ; 

1 
I 

1 

/*ur- I I ~ ~ P ~ ~ - ~ - ~ ~ ~ . L I = I - ~ S " I U - ~ ~ ~ ~ ~ U I ~ - ~ *  

makcbreak 
*a=-.- -=--=-----=-==----=-==-=*--=-=----*/ 

PRIVATE unsigned makeJreak(scode) 
i n t  scode ; /* scan code o f  key j us t  struck or released */ 
C - 
/' This routine can handle keyboards that i n t e r r u p t  only on key depression, 

as welt as keyboards t h a t  i n te r rup t  on key depression and key release. 
* For e f f i c iency ,  the i n te r rup t  rout ine f i l t e r s  out most key releases. 
* /  
i n t  ch, make; 
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s t a t i c  i n t  WLcount  = 0; 

/* Check for CTRL-ALT-EL, and i f  found. ha1 t the computer. ,This m J d  
be be t te r  done i n  keyboard0 i n  case TTY i s  hung, except control and 

* a1 t a r e  set  i n  the high l e v e l  code, 
*/ 

i f  (control &dr ( a l t l  I I a l t 2 )  && scode == DELSCAN) 

i f  (++CAD-count = 3) wreboot (RBT-HALT) ; 
cause-si g (INIT-PROCNR, SICABRT) ; 
return -1; 

1 

/* High-order b i t  set  on key release. */ 
make = (scode & 0200 ? 0 : 1); /* 0 = release, 1 = press */ 

ch = map-keyCscode & 0277); /* map to ASCII * /  

switch (ch) { 
case CTRL: 

control  - make; 
ch = -1; 
break; 

case SHIFT: 
sh i f t  = makc; 
ch -1;i 
bnak ; 

case ALT: 
i f  Cmb> C 

If (esc) a1 t 2  = 1; else a l t l  1 ;  
1 rl se f 

a l t l  = a l t 2  = 0; 
1 
ch - -1 ;  
break; 

case CALOCK: 
i f  (make &B caps-off) ( 

capslock = 1 - capslock; 
s e t l e d s 0  ; 

3 
caps-off - I - make; 
ch = -1; 
break ; 

care NLOCK: 
i f (make U n u ~ o f  f) C 

nunlock = 1 - n w l o c k  ; 
set.-1 edsC9 ; 

1 
n m o f f  = 1 - make; 
ch = -1; 
break ; 

case SLOCK: 
i f  (make 6 s l o c ~ o f f )  .C 

slock = 1 - slock; 
5etJedsO ; 

3 
s l o c k o f f  - 1 - make; 
ch = -1; 
break ; 

case EXTKEY: 
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esc = 1; 
return(-1) ; 

default :  
if (!make) ch = -1; 

I 
esc - 0; 
return (ch) ; 

1 

MINIX SOURCE CODE 

/*=LICIII==P======P=~r===Y=-trtr=tt~~ttfrEIIIIIIII==X9*E-~===============* 

* s e t l e d s  * 

i 
/* Set the LEDs on the caps lock and nurn lock  keys */ 

unsigned leds; 

i f  ( ! p t a t )  return; /* PC/KT doesn't have LEOS */ 

/* encode LED b i t s  */ 
leds = (slock << 0) 1 (numlock << 1) I (capslock << 2); 

kb-wai t () ; /* wai t  f o r  bu f fe r  empty */ 
ouLbyte(KEYBD, LED-CODE); /* prepare keyboard to accept LED values */ 
kb-ackO ; /* wai t  f o r  ack response */ 

kb-wai t ( )  ; /* wai t  f o r  bu f fe r  empty */ 
outbyteCKEYBD, leds); /* give keyboard LED values */ 
kb-ack0 ; /* wait f o r  ack response */ 

1 

/*=CII~I===L=~=I-~~=~tt=OM3==1=I13~==*=E===E=-~PP~tt~~IIIII=======* 

kb-wai t 4 

*I===P~I-P-E--~~=~=~OL-~=IUTIL:=-=I=-=~-=IO.IL~=====XXXX~~=========* / 
PRIVATE i n t  kb-wai t () 
C 
/* Wait u n t i l  the cont ro l le r  i s  ready; return zero i f  t h i s  times nut. */ 

i n t  re t r i es ;  

re t r i es  = WKB-BUSY-RETRIES + 1; 
while ( - - re t r ies  != 0 && in-byte(KLSTATUS) I KB-WSY) 

I /* wait u n t i l  not busy */ 
return(retr ies1;  /* nonzero i f  ready */ 

1 
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while ( - - re t r ies  != 0 && in-byteCKEYBD) != KBJCK) 
/*  wait f o r  ack */ 

r e t u r n l r e t r i  es) ; /* nonzero if ack received */ 
I 

/* I n i t i a l i z e  the keyboard dr iver .  */ 

register  s t ruc t  kb-s *kb; 

/* Input funct ion. */ 
tp->tty-devread = kb-read; 

/* Set up input  queue. */ 
kb-zihead = kb -> i t a i l  = kb->ibuf; 

/* Set i n i t i a l  values. */ 
caps-off - 1; 
nu l l o f f  - 1; 
slock-off = 1; 
esc - 0; 

s e t l e d s 0  ; /* tu rn  o f f  nunlock led */ 

scan,keyboard() ; . /* stop lockup f ram , le f tover  keystroke */ 

put_+ r ~ h a n d l  ar.(KEYBOARD-IRQ, kbd-fw-i nt)  ; / f  set t h e  i n te r rup t  hanf&r */ 
enable-i rqCKEYB(MRD-IRQ) ; /*  safe now everything i n i t i a l i s e d !  */ 

1 

/ * = ~ ~ m m - r r ~ r m r x - = ~ ~ = = = ~ ~ 3 : ~ = = = ~ - ~ = ~ ~ = = ~ ~ - = = ~ r ~ = = = - ~ = = r = = ~ *  

* f u n ~ k e y  * 
*,=,,-,====,-======,==P-======E===-===ID-===-=-==P.LI=-=~~--===T-* / 

PUVATL i n t  func_key(scode) 
i n t scode ; /* scan code f o r  a .fun~;Tion,,key */ 
I 
/* This procedure trap5 funct ion keys f o r  debugging and control purposes. */ 
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unsi gned code ; 

code = map-keyO(scode); /* f i r s t  ignore modif iers */ 
if (code i F 1  I I code > F12) return(fALSE); /* not our job */ 

switch (map-key (scode)) { /* include modif iers */ 

case F l :  p-dmp0; break; /* p r i n t  process tab le  */ 
case F2: map-dmpO; break; /* p r i n t  memory map */ 
case F3: toggle-scroll(); break; /+ hardware vs. software sc ro l l i ng  */ 
case CF7: sigchar(&tty,table[CONU)LE). SICQUIT) ; break; 
case CF8: sigchar(&tty-table[CONSOLE] , SIGINT) ; break ; 
case CF9: si~char(&tty-table[CONSOLEI, SICKILL) ; break; 
default : return(FA1SE); 
I 
return(TRUE) ; 

1 

i n t  code; 
i n t  val ; 

code = i fl-byte (KEYBO) ; /* get the scan code f o r  the key struck */ 
val = i n-byte(P0NT-B) ; /* strobe the keyboard t o  ack the char */ 
out-byteCPORT-0, va l  I KBIT); /* strobe the b i t  high */ 
out-byteCPORT-B, va l )  ; /* now strobe i t  lw */ 
return code; 

3 

*r-=rr-=rn==~~nmrrt~~rno~=-xrrrrrrrtI=~=.srrta+=~-~r~==~~==~=======+*/ 

PUBLIC void wreboot(how) 
i n t  how; /* 0 = ha l t ,  1 - reboot, 2 = panic!, ... */ 
C 
/* Wait f o r  keystrokes f o r  p r i n t i n g  debugging i n f o  and reboot. */ 

i n t  quiet.  code; 
s t a t i c  u16-t magic = MEMCHECKJWG; 
s t ruc t  tasktab * t tp ;  

/* Mask a11 interrupts.  */ 
out-byte(INT-CTLMASK, - 0 ) ;  

/* T e l l  several tasks t o  stop. */ 
cons-stop () ; 
f l op~y -s topo  ; 
clock-stop() ; 

i f  (how -= RBT-HALT) { 
printf("5ystcnr Halted\nW) ; 
i f  (fnon-return) how - RBT-PANIC; 
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i f  (how = RBT-PANIC) I 
/* A panic1 */ 
p r i n t fCWHi t  ESC to  reboot, F-keys f o r  debug dumps\nn); 

(void) scan-keyboard(); /* ack any o l d  input  */ 
quiet  = scan-keyboard();/* quiescent value (0 on PC, l a s t  code on AT)*/ 
for ( ; ; I  1 

m i  11 i-delayCl00) ; /* pause f o r  a decisecond */ 
code - scan-keyboard0 ; 
i f  (code !I quiet) { 

/* A key has been pressed. */ 
i f  (code - EK5CM1)  break; /* reboot i f  E X  typed */ 
(void) func,key(code) ; /* process funct ion key */ 
quiet  = scan-keyboard(); 

I 
I 
how RBT-REBOOT; 

1 

i f  (how - RBT-REBOOT) printf("Rebooting\n"); 

i f  (mon-return haw != RBT-RESET) { 
/* R e i n i t i a l i z e  the i n te r rup t  cont ro l le rs  t o  the  BIOS defaults. */ 
i n t r - i n i  t (01 ; 
autbyte(1NT-CTLMK, 0) ; 
autbyte(I)OT2,CTLCUSK, 0 )  ; . 

/+ Return t o  the boot ronStor. */ 
i f  (how -= RBT-HALTI { 

rebootcode - v i  r2phys("") ; 
) else 
i f  (how == RBT-REBOOT) { 

rebootcode = v i  r2physC"delay; boot"); 
I 
levelO(noni tor)  ; 

1 

/* Stop BIOS memory tes t .  */ 
phys-copy(vir2phys(6magic). (~hys_bytes) HEMCHECK4DRp 

(phys-bytes) s i  zeof (magi c) ; 

i f  ( p r o t e c t e d d e )  { 
/* Use the AT keyboard con t ro l l e r  t o  reset the processor. 

The A20 l i n e  i s  kept enabled i n  case t h i s  code i s  ever 
run frun extended memory, and because some  chines 

* appear t o  dr ive  the  fake A20 high Snstead o f  law jus t  
a f t e r  reset, leading t o  an i l l e g a l  opode t rap. This bug 
i s  more o f  a problem i f  the fake A20 i s  i n  use, as It 

+ would be i f  the keyboard reset  were used for  rea l  mde. 
*/ 

kb-wai t(3 ; 
out-byte (KB,C(MUMD, 

K0,WLSLWTPW I [OxOF I - (KB-CATLA20 I KBXSET))) ; 
mil l i -delay(l0) ; 

/* I f  the nice method f a i l s  then do a reset. I n  protected 
mode t h i s  means a processor shutdown. 

*/ 
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13530 pr in t f ( "Hard  reset . . .  \n"); 
13531 in i l l i -delay(250);  
13532 1 
13533 /* I n  r e a l  mode, jumping t o  t he  reset  address i s  good enough. */ 
13534 levelO(reset) ; 
13535 } 

Code and data f o r  the IBM console d r i v e r .  

The 6845 video c o n t r o l l e r  used by the I B M  PC shares i t s  v ideo memory w i t h  
t h e  CPU somewhere i n  t h e  OxBOOOO memory bank. To t he  6845 t h i s  memory 
cons is ts  o f  16 -b i t  words. Each word has a character code i n  the low by te  
and a so-ca l led a t t r i b u t e  byte i n  the  h i gh  by te .  The CPU d i r e c t l y  modi f ies  
video memory t o  d isp lay  characters,  and sets two r e g i s t e r s  on the  6845 tha t  
spec i f y  the video o r i g i n  and the cursor pos i t i on .  The video o r i g i n  i s  t he  
place i n  video memory where the  f i  r s t  character (upper ' le f t  corner) can 
be found. Moving the o r i g i n  i s  a f a s t  way t o  s c r o l l  t he  screen. Some 
video adapters wrap around t h e  top  o f  v ideo memory, so the  o r i g i n  can 
move wi thout bounds. For o ther  adapters screen memory must sometimes be 
moved t o  reset  the o r i g i n .  A l l  computations on v ideo memory use character 
(word) addresses f o r  s i m p l i c i t y  and assume there i s  no wrapping. The 
assembly support func t ions  t r a n s l a t e  t he  word addresses t o  by te  addresses 
and the s c r o l l i n g  f unc t i on  worr ies about wrapping. 

# inc lude "kernel .h" 
Yinclud6 de rm ios .  h> 
#include <min ix /ca l lnr .hr  
#include cminix/com.h> 
#include "protect.h" 
#.include " t t y . hW 
#include "proc. h" 

/* D e f i n i t i o n s  used by the console 
#def ine MONO-BASE 0x800001 /* 
#def ine COLOKBASE OxBBOOOL /* 
#def ine MONC-SUE 0x1000 /* 
t d e f  i ne COLORSIZE 0x4000 /* 
Xdef i ne E L L S I Z E  0x8000 /* 
#def i ne BLANKCOLOR 0x0700 /* 
#def ine SCROLLUP 0 /* 
#def i ne SCR0LLIX)WN 1 /* 
#def ine B L A N U E M  ( (~16- t  *) 0) /* 
#def ine CONS-RlVltWORDS 80 /* 
#def i ne R4X.-ESCPARMS 2 /* 

d r i v e r .  */ 
base o f  mono video memory */ 
base o f  co lo r  v ideo memory */ 
4K mono video memory */ 
16K co lo r  v ideo memory */ 
EGA & VGA have at l e a s t  32K * /  
determines cursor co l o r  on blank screen */ 
s c r o l l  forward */ 
s c r o l l  backward */ 
t e l l s  wmvid-copy() to  blank the screen * /  
video ram b u f f e r  s i ze  */ 
number o f  escape sequence params allowed */ 

/* Constants r e l a t i n g  t o  the  c o n t r o l l e r  chips. */ 
#def ine MA84 5 Ox3B4 /* p o r t  f o r  6845 mono */ 
#def ine C6845 0x304 /* p o r t  f o r  6845 co lo r  * /  
#def ine ECA Or3C4 /* po r t  f o r  ECA o r  VCA card */ 
#def i ne INDEX 0 /* 6845's index r e g i s t e r  * /  
f d e f  i ne DATA 1 /* 6845's data r e g i s t e r  */ 
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Wdef i ne VIO-ORG 12 /* 6845's o r i g i n  reg is te r  */ 
Ydef i ne' CURSOR 14 /* 6845's cursor reg is te r  */ 

/* Beeper. */ 
#define BEEP-FREQ 0x0533 /* value t o  put  i n t o  t imer t o  set beep freq */ 
#def i ne 6-TIME 3 /* length o f  CTRL-C beep i s  t i c k s  */ 

/* de f i n i  tjons used f o r  font management */ 
Udef i ne GA3EQUENCERINDEX Ox3C4 
tde f i ne GA3EQUENCERDATA Ox3C5 
Udef i ne G&GRAPHICS,INDEX Ox3CE 
#define GLGRAPHICS-DATA Ox3CF 
Udef i ne ClCVIDEOJIDDRESS OxAOOOOL 
#def i ne GLFONT-SIZE 8192 

/* Global variables used by the console dr iver .  */ 
PUBLIC unsigned vid-seg; /* video rum selector  (OxB0000 o r  0x88000) */ 
PUBLIC unsigned vid-si ze ; /* 0x2000 f o r  co lo r  or 0x0800 f o r  mono +/ 
WBLIC unsigned vidf lsk; /* OxlFFF f o r  co lo r  o r  Ox07FF f o r  mno */ 
PUBLIC unsigned blank-color = BMLCOLOR; /* d isplay code for blank */ 

/* Private variables used by the console driver. */ 
PRIVATE i n t  vid-rt ;  /* I/O por t  f o r  accessing 6845 */ 
PRIVATE i n t  wrap; /* hardware can wrap? */ 
PRIVATE i n t  so f t sc rc l l ;  /* 1 1 software scro l l ing ,  0 I hardware */ 
PRIVATE unsigned v i  d-base ; /* base o f  video ram (0x8000 o r  0x8800) */ 
PRIVATE i n t  beepi ng ; /* speaker i s  beeping? */ 
#define scr-ui d th  80  /* # characters on a l i n e  */ 
#define scr-1 ines 25 /* # l i n e s  on the screen */ 
#define scr-si ze (80f25) /* # characters on the screen */ 

/+ Per console data. */ 
typedef s t ruc t  console I 

t t y - t  *c-t ty; /* associated TTY s t ruc t  */ 
i n t  c-column; /* current column number (0-origin) */ 
i n t  c-row; /* current row (0 a t  top of  sccem) */ 
i n t  c-mords; /* nunber o f  WORDS (not bytes) i n  outqueue */ 
unsigned c-start ; /* s t a r t  of video memory o f  t h i s  console */ 
unsigned c-1 i m i  t.; /* l i m i t  of t h i s  console's video necnory */ 
unsigned c-org; /* loca t ion  i n  RAM wherc 6845 base points */ 
unsigned c c u r  ; /* current pos i t ion  o f  cursor i n  video RAM */ 
unsigned c -a t t r  ; /* character a t t r i b u t e  */ 
unsigned c-bl ank; /* blank a t t r i bu te  */ 
char c-esc-state; /* O I I K ) ~ ~ ~ ,  1-ESC, 2-ESCC */ 
char c-esc-intfo; /* Dist inguishing character fo l lowing ESC */ 
i n t  *c-esc-pa-; /* pointer  t o  current escape parameter */ 
i n t c-escsarmv [WESLPARMSI ; /* l i s t  o f  escape parameters */ 
u16-t c-ramqueue [CONS-WWDRDSI ; /* bu f fe r  for video RAM */ 

1 console-t; 

PRIVATE i n t  nr-cons= 1; /* actual number o f  consoles */ 
PRIVATE consol e-t cons-table [NRCONS] ; 
PRIVATE console-t *curcons; /* current ly  v i s i b l e  */ 

/* Color i f  using a color  cont ro l le r .  */ 
#define color (wid-port == C6845) 

/+ Map from ANSI colors t o  the  a t t r ibu tes  used by the PC */ 
PRIVATE i n t  anr i~colorsC81 = {O, 4, 2, 6, 1, 5, 3, 7); 
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/* Structure used f o r  f on t  management */ 
s t ruc t  sequence 

unsigned short index; 
unsigned char por t ;  
unsigned char value; 

? ;  

FORWARD -PROTOTYPE( void cons-write, (s t ruct  t t y  *tp) 
FORWARD -PROTOTYPE( void cons-echo, ( t ty - t  * t p ,  i n t  c) 
FORWARD -PROTOTYPE( void out-char, (console-t *cons, i n t  c) 
FORWARD -PROTOfYPE( voi d beep, (voi d) 
FORWARD -PROTOTYPE( void do-escape . (consol e- t  *cons, i n t  c3 
FORWARD -PROTOTYPE( void f lush,  (console_t *cons) 
FORWARD JROTOlYPEC void parse-escape, (console-t *cons, i n t  c) 
FORWARD -PROTOTYPE( void scroll-screen, (console-t *cons, i n t  d i  r) 
FORWARD -PROTOTYPE( void seL6845, ( i n t  reg, unsigned val) 
FORWARD ,PROTOTYPE ( void stopbeep, (voi d) 
FORWARD ,PROTQTYPE( void cons,orgO, (void) 
FORWARD -PROTOTYPE( void gkprogram. (st ruct  sequence *seq) ) ; 

/*==SP=~=~~~~-.~======~~---~D~LWP-~UP:-~-~=LF--~~~L~~===I* 
t cons-wri t e  * 
* = t P I = = = = = S * P I - * ~ - - P P l t b = = * /  

PRIVATE void cons-wri teCtp) 
register  s t ruc t  t t y  *tp; /* tells which termi na? i s  t o  be used */ 
I 
/* Copy as much data as possible t o  the output queue, then s t a r t  E/O. On 

memory-mapped terminals, such as the I B M  console, the I / O  w i  11 a lso be 
f in ished,  and the c w n t s  updated. Keep repeating u n t i l  a l l  1/0 done. 

* / 

i n t  count; 
reg is te r  char *tbuf; 
char buf 1641 ; 
physhytes user&ys ; 
c o n s o l c t  *cons - t p - ~ t t y s r i v ;  

/* Check quick ly  f o r  nothing t o  do. so t h i s  can be ca l led  of ten without 
unodu lar  tests e l s ~ r e .  

*/ 
i f  ((count = tp->tty,outleft) -= 0 I I tp -> t ty_ inh ib i  t t d )  return; 

/* Copy the user bytes t o  buf  E] f o r  decent addressing. Loop over the 
* copies. since the user buf fer  may be much la rger  than buf  [I. 
*/ 

do I 
i f  (count > sireof (buf)) count 9 s i  zeof (buf) ; 
userahys = proc-vi r2phys(proc4addr(tp->tty-outproc), tp->tty,au~vi r) ; 
phys-copy(user_phys, v i  r2phys(buf), (phys-bytes) count) ; 
t buf - buf ; 

/* Update terminal data structure. */ 
t p -> t t y -ou tv i  r +I Count; 
tp-~tty-outcum += count; 
tp-wtty-outleft  -I count; 

/* Output each byte o f  the copy t o  the screen. Avoid c a l l i n g  
out-char0 for the "easy" characters, put them i n t o  the buf fe r  

* d i rec t l y .  
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" / 
do E 

i f  ((unsigned) *tbuf < ' ' I I cons->c-esc~tate > 0 
I I cons->~_column >= scr-wi dth 
I I cons->~mords  >- buflen(cons->tramqueue)) 

C 
out-charccons, *tbuf++); 

) else { 
cons->c-ranqueueIcons->c-rmrrds++] = 

cons->c-attr I (*tbuf++ & BYTE) ; 
cons->c~col urn++ ; 

1 
1 Iwhile (--count I -  0) ; 

) while ((count * tp->tty,outleft) != 0 && Itp->tty-inhibited); 

flush(cons) ; /* transfer anything buffered to  the screen */ 

/+ Reply t o  the wr i ter  i f  a l l  output i s  f in4 shed. */ 
i f  (tp->tty-outleft - 0) { 

tty-rep1 yctp->tty-outrepcode, tp->my-outcaller. tp->tty-outproc , 
tp->tty,outcum) ; 

tp->tty-outcu = 0; 
1 

1 

/*.crmrr-ra-=rurrl~ttll=* r - r rp ru r rn raarnr r l ra r -~=~~= l i~~====*  

cons-echo * 
+ I I = I I W - ~ ~ ~ ~ - I - = W ~ ~ ~ ~ ~ - = = C I - ~  -u r r t= r==r~==r r r * ;  

PRIVATE void cons,echo(tp, c) 
regi ster t ty- t  *tp; /* pointer t o  t t y  struct  */ 
i n t  c; /* character t o  be echoed */ 
{ "' 

/* ~cho '  keyboard input (pr int  4 flush). */ 
console-t *cons = tp->tty_priv; 

/*rr=rrrrr=r=rrrrr~==-=~--~-m==m==~rr+-~~ppt-==-a==~~=====* 

out-char * 
*==I-W=I---=VVDIII=~-LP~~=~R=II=I.II.IR~=PE===~I~~~I-===~=I~=======L*/ 

P R I V A n  void outchar(cons , c )  
register consol e_t *cons ; /* pointer t o  console struct  */ 
i n t  c; /* character t o  be w tpu t  */ 
I 
/* Output a character on the console. Check f o r  escape sequences f i r s t  . */ 

i f  (cons->c-es~state . 0) { 
parse-escape (cons, c) : 
return ; 

1 

swi tchCc) 1 
case 000: /* nu l l  i s typical  1 y used 

return; /+ better not do anything 

case 007: /* r ing the be l l  */ 
flush(cons); /* p r i n t  any chars queued 

f o r  padding */  
*/ 

for  output */  
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beep 0 ; 
return; 

case ' \ b l  : /* backspace */ 
i f  (--cans-x-column < O) I 

i f  I--cons->c-row r= 0) cons-zc-column += scr-width; 
1 
flush(cons) ; 
return; 

case '\n': /* l i n e  feed */ 
i f  ((cons->c_tty->tty-rermios .c-oflag I (OPOSTI ONLCR)) - (OPOSTIONLCR)) { 

cons->c-column = 0; 
1 
/*FALL THROUCli*/ 

case 013: /* CTRL-K * /  
case 014: /* CTRL-L */ 

i f  (cons-,crow a= scr-lines-1) { 
scro l  1-screen(cons , SCROLL-UP) ; 

) else { 
cons->c-row++; 

1 
flush(cons) ; 
return;  

case '\r': 
cons->c-column 
f 1 ush (cons) ; 
return; 

case '\t' : 
cons->c_col umn 

/* carr iage return 
= 0; 

/* tab */ 
= (cons-x-column + 

"/ 

TAB-SIZE) & - T A B B S K ;  
i f  (cons->c_col umn > scr-wi dth3 { 

cons->c-column -= scr-width; 
i f  (cons-><row == scr-lines-1) { 

scrol 1-screen(cons , SCROLL-UP) ; 
1 else ( 

cons->c-row++ ; 
1 

1 
flush(cons) ; 
return ; 

case 033: /* ESC - s t a r t  o f .  an escape sequence */ 
flush(cons); /* p r i n t  any chars queued f o r  output */ 
cons->c_esc-state = 1; /* mark ESC as seen */ 
return; 

defaul t :  /* p r in tab le  chars are stored i n  painqueue */ 
i f  (cons-PC-col umn >== scr-wi dth) { 

i f  ( !LINEWRAP) return; 
i f  (cons->c-row -= scr-l i nes-1) { 

sc roll-screen(cons , SCROLL-UP) ; 
) else I 

cons->c,row++; 
1 
cons->c-column - 0; 
flush(cons) ; 
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if (cons->c-words =- buflen(cons->c-ramqueue)) f lushlcons] ; 
cons->cramqueue[cons->trwords++] = c o n s - > ~ a t t r  I (c C BYTE) ; 
cons->c-cot m++ ; /* next column */ 
return; 

1 
1 

f lush (cons) ; 
chars = scr-size - scr-width; /* one screen m i  nus one l i n e  */ 

/* Scro l l ing  the screen i s  a real nuisance due t o  the various incompatible 
* video cards. This dr iver  supports software sc ro l l i ng  <Hercules?), 
* hardware scro l l ing  (mono and CGA cards) and harckvare scro l l ing  without 
* wrapping CECA and VCA cards). I n  the  l a t t e r  case we l u s t  make sure that  
* L s t a r t  <- c-org && c-org + scr-sire <= c- l im i t  
* holds, because EGA and VGA don't wrap around the end of video memory. 
*/ 

-if ( d i r  == SCROLL-UP) C 
/* Scrol l  one l i n e  up i n  3 ways: so f t ,  avoid wrap, use or ig in.  */ 
i f  (sof tscrol l )  { 

vid-vid-copy(cons->c-start + scr-width. cons-pcstart,  chars); 
1 else 
i f  C !wrap cons->c-or9 + scr-size + scr-width w= cons->c_l i m i t )  f 

v i  cLvi d-copy (cons->c_org + scr-wi d th  , c o n s - z ~ s t a r t  , chars) ; 
cons-x-org = cons->c-start; 

) else ( 
cons->c-org = (cons->corg + scr-width) & v i d ~ a s k ;  

1 
new-line = (cons-aorg + chars) & v i d ~ s k ;  

3 else { 
/* Scrol l  one l i n e  down i n  3 ways: so f t ,  avoid wrap, use or ig in .  */ 
i f  (sof tscrol l )  { 

I viclvid-copyCcons-rc-start, cons->tstart + scr-width, chars); 
) else 
i f  (!wrap & cons->c-org < cons->c-start + scr-width) { 

new-org - cons-rc-limit - scr-size; 
vi&viLcapyCcons->c_org. new-orq + scr-width, chars); 
cons->c-org = newlorg; 

) else { 
cons->c-org = (cons->corg - scr-width) 4 vid-mask; 

1 
new-line - cons ->~org :  

1 
/* Blank the new l i n e  a t  top  or bottom. */ 
bTankco1 o r  I cons-p~b lank;  
mekv i  d-copy (BLANUEM, new-1 i ne , scr-width) ; 

/* Set the new video o r ig in .  */ 
i f  <=ens =- curcons) set-6845(VID_ORt, c~ms->~,orpI ; 
flush(cons1; 
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PRIVATE vo i d  f l  ush(cons) 
reg i  s t e r  consol e-t *cons ; /* po i n t e r  t o  console s t r u c t  */ 
I 
/*  Send characters bu f fe red  i n  'ramqueue' t o  screen memory, check t h e  new 

* cursor pos i t i on ,  compute the new hardware cursor p o s i t i o n  and set i t .  
"/ 
unsigned cur; 
t t y - t  * t p  = cons->c-tty; 

/* Have the characters i n  'ramqueue' t rans fe r red  t o  the screen. * /  
i f  (cons->c-rwords > 0) ( 

mem-vid-copy (cons->c-ramqueue. cons->c-cur, cons-zc-words) ; 
cons->c-rwords = 0; 

/* TTY l i k e s  t o  know t h e  current  c o l  w n  and i f  echoing messed up. * /  
t p - > t t y g o s i t i o n  = cons->c-column; 
t p -> t t y - r ep r i n t  = TRUE; . 

1 

/* Check and update +heeemw p s i  ti on. */ 
i f  (cons->c-col umn < 0) cons->c-column = 0; 
i f  (cons->c-column > scr-width) cons->c-column = scr-width; 
i f  (cons->crow < 0) cons-x-row = 0; 
i f  (cons->c-row >= scr-l ines) cons-rc-row = sc r - l i nes  - 1; 
cu r  cons->corg  + cons->c-row + scr-width + cans->c-column; 
i f  (cur != cons->c-cur) { 

i f  (cons - curcons) set_6845(CURSOR, CUP); 

cons->c,cur = cur;  
1 

I 

/* The f o l l ow ing  ANSI escape sequences are cu r ren t l y  supported. 
* I f  n and/or m are omi t ted,  t hey  de fau l t  t o  1. b i t t e d  s de fau l t s  t o  0 .  
* ESC [nA mves up n 1 i nes 
* ESC [nB moves down n l i n e s  
* ESC [nC moves r i g h t  n spaces 
* ESC [nD moves l e f t  n spaces 
* ESC [m;nH moves cursor t o  (rn,n) 
* ESC [SJ c lears  screen r e l a t i v e  t o  cursor (0  t o  end, 1 from s t a r t ,  2 a l l )  
* ESC [sK c lears  1 ine  r e l a t i v e  t o  cursor (0 t o  end, 1 f rm s t a r t .  2 a1 1) 
* ESC [nL i n s e r t s  n l i n e s  a t  cursor 
* ESC [nM deletes n l i n e s  a t  cursor 
* ESC CnP deletes n chars a t  cursor 
* ESC [no i n s e r t s  n chars a t  cursor 
* ESC [nm enables r end i t i on  n (Ot nonnal , 1-bold, 4=underl i  ne, S=bl i nki  ng, 
+ 7=reverse, 30.. 37 set foreground co l o r ,  40. .47 se t  background co lor )  
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* E S C M  s c r o l l s  the screen backwards i f  the cursor i s  Dn the top l i n e  
*/ 

switch (cons->c-esc-state) I 
case 1: /* ESC seen */ 

c o n s - > t e s c i n t r o  t ' \O1 ;  
cons->resc-pamp = cons->c_esc_pamv; 
cons->c-escparmv[O] I cons->~esc_pamv[ l ]  = 0; 
switch (c) I 

case ' [ ' : /* Control Sequence f n t  roduce r */ 
cons->c-escintro = C; 

cons->c-escstate = 2 ; 
break; 

case 'Ma : /* Reverse Index */ 
do~escape~cons, c l ;  
break; 

de fau l t :  
cons->c-esc-state - 0; 

1 
break; 

case 2: /* ESC [ seen */ 
i f  (c r- ' 0 '  U& c <= ' 9 ' )  { 

i f (cons->c-esc-parmp < buf end (cons-r~esc-pamv))  
*cons->c-esc-parmp = *cons->tesc_pamp 10 + (c-'0'); 

1 else 
i f  (c == ' ; ') { 

i f (++cons->~es~parmp < bu fend (cons->c,escpamv) 
*cons->c_escgarmp - 0; 

) e lse f 
do,escape(cons , c) ; 

1 
break; 

1 
1 

PRIVATE void do-escape(cons, c) 
reg is te r  c o n s o l e t  *cons; /* pointer  t o  console s t ruc t  */ 
char C; /* next character i n  escape sequence */ 
{ 

i n t  value. n; 
unsigned src, d s t ,  caunt; 

/* Some o f  these things hack on screen M, so i t  had bet te r  be up t o  date */ 
f lush  (cons) ; 

i f  (cons->c_esc-intro - '\O1) { 
/* Handle a sequence beginning w i t h  j u s t  ESC */ 
switch (c) C 

case ' M u :  /* Reverse Index */ 
i f  (cons->crow =I 0 )  { 

sc r o l l  -screen (cons. SCROLLWWIJ) ; 
) else { 

cons->crow-- ; 
1 
f 1 ush (cons) ; 
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break: 

defaul t :  break; 
1 

] e l se  
i f  (cons->c-esc-intro == '1') { 

/* Handle a sequence beginning w i t h  ESC and parameters */ 
value = cons->c-esc,pamv[O] ; 
switch (c) { 

case ' A '  : /*  ESC [nA moves up n l i n e s  */ 
n = (va l  w == 0 ? 1 : value) ; 
cons-rc r o w  -= n; 
f l  ush(cons) ; 
break; 

case ' 8 ' :  /* ESC [nB moves dorm n l i n e s  */ 
n = (value == 0 7 1 : value) ; 
cons-x-row += n; 
F3ush(cons) ; 
break ; 

case 'C'; /* ESC [nC moves r i g h t  n spaces */ 
n = (value == 0 ? 1 : value) ; 
cons->c-col umn += n; 
f 1 ush (cons) ; 
break: 

case '0': /* ESC [nD moves l e f t  n spaces * /  
n = (value -= 0 ? 1 : value); 
cons->c-co~~u~n -= 'n; 
f 1 ush (cons) ; 
break; 

case ' H ' :  /* ESC [n;'hH" m e s  cursor t o  (m,n) */ 
cons->c-row = cons->c-esc-parmv[OI - 1; 
cons-zc-col umn = cons->c-esc-parmv jl] - 1; 
flush(cons) ; 
break; 

case '1 ' :  /* ESC [sl c lears  i n  d i sp l ay  */ 
swi tch (value) { 

case 0: /* Clear  from cursor t o  end o f  screen */ 
count = scr-size - (cons-*-cur - cons->c-org) ; 
ds t  = cons-zc-cur; 
break; 

case 1: /* Clear  from s t a r t  o f  screen t o  cursor */ 
count = cons->c-cur - cons->c-org; 
dst  = cons->c-org; 
break; 

case 2: /* Clear  ent, i re screen */ 
count = scr-size; 
dst = cons->c-org; 
break ; 

de fau l t :  /* Do noth ing */ 
count = 0;  
ds't = cons->c-org; 

1 
b l  ank-color = cons-zc-blank; 
memvi d-copy (BLANKJEM , ds t  , count) ; 
break; 
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case 'K ' :  /* ESC [sK c'lears l i n e  from cursor */ 
switch (value) 

case 0: /* Clear from cursor t o  end ~f l i n e  */ 
count = scr-width - cons->c-column; 
dst = cons->c-cur; 
break; 

case 1: /* C7ear from beginning o f  l i n e  t o  cursor */ 
count = cons->c-col m n ;  
dst = cons->c-cur - cons->c_column; 
break; 

case 2: /* near en t i  r e  l i n e  */ 
count = scr-width; 
ds t  = cons->c-cur - cons->c-column; 
break; 

&fault-. / * D o n o t h i n g * /  
count t 0 ;  
dst I cons->c-cur; 

1 
b1 r n k c o l  w w cons->c,bl ank ; 
r n e n ~ v i d - c o p y C B 1 ~ M .  dst,  count); 
break; 

case 'L':  /* ESC [nL i nse r t s  n l i n e *  a t  cursor */ 
n L value; 
i f  [n < 1) n = 1; 
if en r (scr-lines - cons->c-row)) 

n = scr-l if ies - cons-rcr-mv; 

src = cmr->c-org + cons->Cmw * scr-width; 
d5t  = .re u c ~ :  + scr-width; 
counr = ( s c r - ' l l i d ~  cons->c-row - n) * scr-width; 
v i  d-wid-copy Csrc, dW, count) ; 
bimb6dar = cons->c_tll'ank;. 
~~CIIWWLCO~~CMNK_MEM. src . n * scr-width) ; 
break ; 

case 'M' : k*' ESC [nM d e l e k s '  tt l i n e s  at' cursor */ 
n = value; 
l?e 0 t - e  1% n = 1; 
i f  Cn > (scr-lines - cons->craw))! 

n * scr-l ines - con<-$crow; 

dst  I t2onr->C,oYQ~ c corc+>c-row * scr-wi dth; 
src = ds t  + n * scr-width; 
count = (scr-lines - cons->c-row - n) * sCf-width; 
vi &rid-copy (src, At, count 3,; 
bl  a n k c a l  or - ca l~-&- th  ktlk;' 
rne~v id , cq5p ( 'B~~~ ,~EM,  dst + c m t ,  n * scr-width) ; 
break ; 

ca3C ' '@ ':. /* ESC [n6 i nse r t s  n chars a t  cursor */ 
n = value; 
i f  Cn < 1) n -1; 
i f  (n > (scr-width - cons->~colusln)) 

n - =  ser_*Jidth - cons->c_column; 

src = cons->c,cur; 
ds t  - src + n; 
count' - sic'r-wi dth - cbn3'->c-colurnn' - n ; 
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vid-vid-copy(src, ds t ,  count); 
b l  ank-color = cons->c-bl ank ; 
men-vid-copy(BLANKJlEM, s rc ,  n); 
break: 

case ' P ' :  / *  ESC [nP deletes n chars a t  cursor */ 
n = value; 
i f  (n < 1) n = 1; 
i f  (n > (scr-width - cons->c-column)) 

n = scr-width - cons->c-column; 

dst = cons->ccur;  
src = d s t  + n; 
count = scr-width - cons-PC-column - n; 
vid-vid-copy(src, dst ,  count); 
b l  ank-color = cons->c-blank; 
m e ~ v i  d-copy (BLANKJEH, d s t  + count, n) ; 
break ; 

case 'n': /* ESC [nm enables r e n d i t i o n  n */  
swi t c h  (va l  ue) { 

case 1: /* BOLD */ 
i f  (color)  { 

/* Can't do bold,  so use yel low */ 
cons->c-attr = (cons->c-attr & OxfOff) I OxOE00; 

) e lse { 
/* Set i n t e n s i t y  b i t  */ 
cons->c-attr I= 0x0800; 

1 
break; 

case 4: /* UNDERLINE */ 
i f  (color)  ( 

/* Use l i g h t  green */ 
cons->c-attr - (cons->c-attr 6 OxfOff) I OxOAOO; 

) e lse { 
cons->c-attr = (cons->c-attr & 0x8900); 

1 
break: 

case 5: /* BLINKING *! 
i f  (color)  { 

/* Use magenta */  
cons->c,attr = (cons->c-attr L OxfOff) I 0x0500; 

1 e l se  { 
/* Set the b l i n k  b i t  */ 
cons->c-attr I= 0x8000; 

1 
break; 

case 7: /* REVERSE */ 
i f  (color)  { 

/* Swap f g  and bg co lo rs  */ 
cons->c-attr = 

((cons->c-attr & Oxf000) >> 4) 1 
((cons->c-attr 8 OxOfDO) << 4) ; 

) e lse 
i f  ((cons->c-attr & 0x7000) == 0) I 

cons->c-attr = (cons->c-attr & 0x8800) I 0x7000: 
} e lse I 
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J 
break ; 

d e f a u l t :  /* COLOR */ 
if (30 <= value 66 value c= 37) I 

cons->c-attr I 

(cons->c-attr & OxfOff) I 
(ans i~co lo rs [ (va lue  - 30)l << 8); 

cons->c-blank = 
(cons->c-blank & OxfOff) 1 
(ansi-co7ors[(value - 3011 << 8 ) ;  

1 e l se  
i f  (40 <= value && value c- 47) ( 

cons->c-attr = 
( c o n s - > t a t t r  & OxOfff) I 
(ansi-colors [ (va l  ue - 40)l << 12) ; 

cons->c-blank = 
(cons->c-blank & OxOff f )  1 
(ansi-colors [ (va l  ue - 40) 3 << 12) ; 

1 e l se  C 
cons->c-attr = cons->c-blank; 

3 
break; 

1 
break; 

1 
I 
cons->c_esc-state = 0; 

1 

/*====~*====-W*====~*~===~====~~======~============*==================*==*=** 
* set-6845 * 
*-PE==~=EE====LI.E=====~~E=======-===================~=========================* / 

PRIVATE void set_6845(reg, val)  
i n t  reg; /* which r eg i s t e r  p a i r  t o  s e t  */ 
unsi gned va l  ; /* 16-bi t value t o  set i t  t o  */ 
{ 
/* S e t  a r eg i s t e r  pa i r  i n s i de  the 6845. 
* Registers 12-13 t e l l  the 6845 where i n  v ideo ram to  s t a r t  

Registers 14-15 t e l l  the 6845 where t o  p u t  the cursor 
*/ 

lock() ; /* try t o  stop h/w load ing in-between value */ 
out-byte(vid_port + INDEX, reg) ; /* se t  the index r e g i s t e r  */ 
o u t - b y t e ( v i d 3 r t  + DATA, (val>>8) & BYTE); /* output  h i gh  byte */ 
ou tby te ( v i d -po r t  + INDEX, reg + 1); /* again */ 
out_byte(vid_port + DATA. valWYTE) ; /* output  low byte */ 
unl  o c k 0  : 

1 

/ * r ~ r = m ~ = n r ~ i - ~ ~ = = ~ = I i ~ = = = ~ I = = ~ i S * 4 ~ = = ~ = ~ = ~ = - ~ ~ = ~ = ~ * 3 = ~ i ~ * = 3 = = = ~ L r ~ = = 1 * ~ = = *  

* beep * 
*=err-tt=-ra--xm===~=====-=================a=~===a~=====*===========-s=*/ 

PRIVATE vo id  beep0 
i 
/* Maki ng a beeping sound on the speaker (output f o r  CRTL-C) . 
* This rou t ine  works by t u rn i ng  on the b i t s  0 and 1 i n  p o r t  B o f  the 8255 
* chip t ha t  d r i ves  the speaker. 
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message mess ; 

i f  (beeping) r e t u rn  ; 
out-byte(TIMER_MOOE, OxB6); /* se t  up t imer  channel 2 (square wave) */ 
out-byte(TIMER2, BEEP-FREQ & BYTE); /* load low-order b i t s  o f  frequency */ 
out-byte(TIMER2, (BEEP-FREQ >> 8) & BYTE); /* now high-order b i t s  * /  
lock( )  ; /* guard PORT-B from keyboard i n t r  handler * /  
out-byte (PORT-B , i n-byte(P0RT-6) 1 3) ; /* t u r n  on beep b i t s  */ 
unlock() ; 
beeping = TRUE; 

mess.ktype = SETALARM; 
mess. CLOCK-PRKNR - l T Y  ; 
mess. DELTLTICKS = B-TIME ; 
mess.FUNC_TO-CALL = (sighandler-t) stop-beep; 
sendrec (CLOCK, h s s )  ; 

I 

/* Turn o f f  the beeper by t u rn i ng  o f f  b i t s  0 and 1 i n  PORT-B. */ 

lock( ) ;  /* guard PORT-I3 f rom keyboard i n t r  handler */ 
out-byte(P0RT-B, in-byte(P0RT-6) & -31 ; 
beeping = FALSE; 
unlock() ; 

I 

/*=========r====rrrrr==~===========~==111111~==*f==I=====l=r~I111=~3~~======* 

* scr-i n i t  * 
*z=========-=PL61-I====~=*===============~======================~=~a=====* / 

PUBLIC v o i d  scr- in i  t ( t p1  
t t y - t  * tp ;  
{ 
/* I n i t i a l i z e  t h e  screen d r i ve r .  */ 

console-t 'cons ; 
phys-bytes vid-base; 
u16-t bios-crtbase ; 
i n t  l i n e ;  
unsigned page-si ze; 

/* Associate console and TTY. */ 
l i n e  = t p  - t t t y - t a b l e l o ]  ; 
if ( l i n e  >= nr-cons) re turn;  
cons = &cons- tab le l l i  nel  ; 
cons->c-tty = tp ;  
t p - r t t y - p r i v  = cons; 

/* I n i t i a l i z e  the keyboard d r i v e r .  */ 
kb- ini  t ( tp1 ;  

/*  Output funct ions.  */ 
tp->tty-devwri t e  = cons-write; 
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tp->tty-echo = cons-echo; 

/* Get the BIOS parameters tha t  t e l l s  the VDU 1/0 base register .  * /  
phys-copy(Ox463L, vir2physCbbios-crtbase). 2L); 

i f  (color) { 
v i  d-base = COLORBASE ; 
vi  d-si ze = COLORSIZE ; 

) e lse  I 
vid-base = MONO-BASE; 
v i 4 s i z e  = HONOHONOSIZE: 

1 
if (ega) vid-size = EXSIZE;  /* for both EL4 and VCA */ 
wrap = !ega; 

v i h s e g  = protectechode ? VIDEO-SELECTOR : physb-to,hclick(vid,bare); 
i n i  t da taseg  C4d t  [VIDEO-INDEX] , vid-base , (phys-bytes) v i  d-size , 

TASLPRIVILEGE) ; 
vid-size >>= 1; /* word count */ 
v id~nask  = vid-size - 1; 

/* There can be as many consoles as video memory al lows, */ 
nr-cons = v i h s i z e  / scr-size; 
i f  (nr-cons > NRCONS) nr-cons = NLCONS; 
i f  (nr-cons > 1) wrap 0: 
page-size = vid-size / nr-cons; 
cons->c_start = l i n e  * page-size; 
cons->c-1 i m i  t = cans-restart + page-si ze; 
cans-zc-org = cons->c-start; 
cons->c-attr = cons->c-blank = BLANLCOLOR; 

/* Clear the screen. */ 
b l  ank-col o r  = BLANLCOLOR; 
memvid-copy(BLAP(IV3EM, cons->c-start, scr-size); 
sel ect~consoleCO) ; 

3 

/ * m ~ - t n - - o r s = r r ~ r ~ ~ r ~ = ~ = n 1 = ~ 0 1 f t ~ = t ~ a u = t t t 3 ~ 1 - ~ - - 1 1 ~ = = ~ = t ~ = = - = ~ = = *  

* putk * 
*=rr-=~lrt~~--=-~~==--=fllltf~11t~9=~~ff-~-=--f=1-.~===-=====-~*/ 

PUBLIC void putk(c) 
i n t  c ;  /* character t o  p r i n t  */ 
< 
/ *  This procedure i s  used by the version o f  p r i n t f 0  t h a t  i s  l inked w i th  

the kernel i t s e l f .  The one i n  rhe 1 i brary sends a message t o  FS, which i s  
* not what i s  needed f o r  p r i n t i n g  w i th in  the  kernel. This version j u s t  queues 
* the character and s ta r t s  the output. 
* / 

i f  ( c  !=O) I 
i f  (C =- '\n') putk( ' \ r ' ) ;  

- out_char(&ons-tableCO] , (i n t l  c); 
1 e lse  i 

fl ush(&cons-tablelOl) ; 
1 

1 
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cons-orgo() ; 
s o f t s c r o l l  = ! s o f t ~ c r o l l ;  
printfC1%sware s c r o l l i n g  enabled.\nU, s o f t s c r o l l  ? "Soft"  : "Hard"); 

1 

PUBLIC vo id  cons-stop0 
C 
/ *  Prepare f o r  h a l t  o r  reboot. */ 

cons-orgo() ; 
s o f t s c r o l l  = 1; 
sel ect-console(0) ; 
cons-table[O] . c -a t t r  = cons-tableKO] t blank = BLANKLOLOR; 

1 

i n t  cons-1 i n e  ; 
console-t *cons; 
unsigned n; 

for (cons-l ine = 0; cons-l i  ne < nr-cons; icons-l ine++) { 
cons = & ~ ~ n ~ _ t a b l e [ ~ ~ n s ~ l  i ne] ; 
wh i l e  (cons->c-org > cons->c-start) { 

n = v id-s ize - scr-size; /* amount o f  unused memory */ 
i f  (n > cons->c-org - cons-rc-start)  

n = cons->c-org - cons->c-start; 
v i  d-vi d-copy (cons->c-org , cons-rc-org - n , scr-s-i re) ; 
cons->c-org -= n; 

1 
f lush(cons) ; 
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if (cons-1 ine  < 0 l l cons-li ne >= nr-cons) return; 
current = cons-1 i ne; 
curcons = &cons-table[cons-1 i ne] ; 
s e t 6 8 4 5  ( V f L O R C .  curcons->c-org) ; 
set-6845 (CURSOR, curcons->c-cur) ; 

1 

s t a t i c  struct sequence seqlf?]  - { 
{ CASEQUENCERINDEX, 0x00,  0 x 0 1  I .  
E KSEQUEIKERIMDEX, 0x02, 0x04 1 , 
E ~ E W E N C E R I N D E X ,  0x04,  0x07 1 ,  
{ CLSEQUENCERINDEX, 0x00. 0x03 1 ,  
E CICGRAPHICLIPIDEX, 0x04,  Ox02 I ,  
E CICGRAPHICLINDU(, 0x05,  0x00 1 ,  
CA-GRAPHICS-INDEX, 0x06,  0x00 1 ,  

I :  
s t a t i c  struct  sequence seq2[7] = { 

{ WISEQUENCERINDEX, 0x00,  0x01 I ,  
{ ~SEQUENCERINDEX, 0x02,  0x03 3 , 
{ CA.SEQUENCELINDEX, 0x04,  0x03 3 ,  
I USEQUENCERINDEX, 0x00,  0x03 3 ,  
E CAGRAPHICS-IMOEX, 0 x 0 4 ,  0x00 I ,  
c CI~GRAPHICS-INDEX, 0x05, o x l a  I . 
C tACRAPHICS-INDEX, 0 x 0 6 ,  0 3 ,  

1; 

i f ( l ega) return(EN0IW) ; 

ga.PrwrmCseq2) ; /* restore */ 
unlock() ; 
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1 4 5 4 5  i n t  len= 7 ;  
14546 do { 
14 547 out-byte(seq->i ndex, seq->port) ; 
14  548 out-byte(seq->index+l, seq->value) ; 
14549 seq++; 
14550 ) wh i le  ( - - l e n  > 0); 
14551 1 

/ *  Th i s  f i l e  conta ins some dumping t'outines f o r  debugging. */ 

char *vargv; 

FORWARD -PROfOTYPE(char *proc-name. (i n t  proc-nr)) ; 

r e g i s t e r  s t r u c t  proc *rp; 
s t a t i c  s t r u c t  proc *oldrp = BEG-PRKJODR; 
i n t  n = 0 ;  
phys-cl icks t e x t ,  data, size; 
i n t  proc-nr; 

p r in r f ( " \n - -p id  --PC- ---sp- f l a g  -user --sys--  - tex t -  -data- -s ize-  -recv- conmand\n"); 

f o r  ( r p  = o ld rp ;  r p  < END-PROCADDR; rp+t)  { 
proc-nr = proc-number( rp) ; 
if (rp-zp-flags & P-SLOT-FREE) cont inue: 
i f  (++n > 20) break; 
t e x t  = rp-zp-map[T] . mem-phys ; 
data = rp-spmap[D] .mem-phys; 
s i ze  = rp-rp-map[T] .rnem-len 

+ ((rp->p-map[S] .mem-phys + rp->p~napCSl .mem,len) - data) ; 
pr in t f ( "%Sd %Slx X61x % t x  %7U %7U %5uK %5uK %5uK ", 

proc-nr i 0 ? proc-nr : rp->p-pid, 
(unsigned long) rp->p-reg. pc, 
(unsigned long) rp->p-reg.sp, 
r p - r p - f  1 ags. 
rp-ruser-t ime. rp->sys,time, 
cl ick-to-round-k(text), click-to-round-k(data3, 
c l  i ck-to-round-k(si zel)  ; 

i f  (rp-rp-flags & RECEIVING) 
p r i  nt f ("%-7. 7s1', proc-name(rp-bp-getf rom)); 

1 e l se  
if (rp->p-flags & SENDING) { 
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p r i n t f  ( " S : % - 5 .  Ss", proc-name(rp->p-sendto)) ; 
1 else 
i f  (rp->p-flags == 0) 

p r i n t f  (" "1; 
1 
print f("%s\nW, rp->p-name); 

1 
i f  ( rp  == END-PROCADDR) r p  = BEGPROUDDR; e lse pr int fCN--more--\r") ;  
o l d r p  = rp; 

1 

p r i n t f  ("\nPROC NAME- - - - - -  TEXT- - - - - - - - - - DATA - - - -  - ----STACK - - - -  - -SIZE-\nU) ; 
f o r  ( r p  = o ldrp;  rp  c END-PROCADOR; rp++) { 

i f (rp->p-f lags & P-SLOT-FREE) continue; 
i f  (++n > 20) break; 
s i  t e  = rp->p,map [TI  .mem-len 

+ ((rp->p-map [S] .mem_phys + r p - > p m p  [ S ]  .mern_l en) 
- rp->p-map [Dl. mem-phys) ; 

pr in t f ( "%3d %-6.6s %4x %4x %4x %4x W v  %4x %4x %4x %4x %5uK\nM, 
proc-number ( rp) , 
rp->p,name, 
rp->p-maplTl .mem_vi r, rp - rp~ lapCT]  .memphys. rp->p-map [ T I  .mcmlen, 
rp->p,map[D1 .men-vi r. r p ->p~ap [D ]  .memphys, rp->p-map[DI .mem-len. 
rp->p,map[S) .mekv i  r. rp->psap[S] .memphys, rp->p-map[SI .memlen, 
c l  i ck-to-round-k ( s i  ze)) ; 

1 
i f  (rp == END-PROCADDR) r p  ;= cproc-addr (HARDWARE) ; e l  se p r i  n t f  ("--more- -\r"); 
o l d rp  = rp; 

I 
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/ *  This task handles the inter face between f i l e  system and kernel as well as 
* between memory manager and kernel. System services are obtained by sending 
* sys-task0 a message specifying what i s  needed. To make l i f e  easier f o r  
* MM and FS, a l i b r a r y  i s  provided wi th routines whose names are o f  the 
* form sys-xxx. e.g. sys-xit sends the SYSJIT message t o  sys-task. The 
* message types and parameters are: 
4 
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* ---------------------------d------------------ 

* 
* I n  addi t ion t o  the main sys_task() entry point ,  there are 5 other minor 
* entry points: 

cause-sig: take act ion t o  cause a signaj t ooccu r ,  sooner or l a t e r  
* inform: t e l l  W about pending signals 
* nurnap: umap D segment s ta r t i ng  f rom process number instead o f  pointer 
* umap: cmpute the physical address f o r  a given v i r t u a l  address 
* alloc-segments : a1 locate segments f o r  8088 or  higher processor 
*/ 

Yinclude "kernel. h" 
Y i  nc l  ude <signal. h> 
#include <uni std. hr 
# i  nc1 ude <sys/si gcontext . h> 
X i  nc l  ude <sys/pt race. h> 
#include <mini x/boot. h> 
#include <mini x/cal 1 n r . h> 
#include <mini x / c m  . h> 
#include "proc.hW 
X i  nc l  ude "protect. h" 

/* PSW masks. */ 
Xde f i ne I F-MASK OxOOOOO2OO 
#define IOPLMASK 0x003000 

PRIVATE message m; 

FORWARD -PROTOTYPE( I n t  do-abort , (message *m_ptr) ) ; 
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FORWARD -PROTOTYPE( i n t  do-copy , (message *m-pt r) ) ; 
FORWARD -PROTOTYPE( i n t  do-exec, (message *m-pt r) ) ; 
FORWARD -PROTOTYPE( i n t  do-fork, (message *m-pt r) ) ; 
FORWARD -PROTOTYPE ( i n t  do-gboot , (message * m p t  r) ) ; 
FORWARD -PROTOTYPE( i n t  do-getsp, (message *nr_ptr) ) ; 
FORWARD -PROTOTYPE( i n t  do-ki 1 1 ,  (message *m&t r )  ) ; 
FORWARD -PROTOTYPE( i n t  do-mem, (message * m p t r )  ) ;  
FORWARD -PROTOTYPE ( i n t  do-newnap, (message +m-pt r) ) ; 
FORWARD -PROTOTYPE( i n t  do-sendsig , (message *m-pt r) ) ; 
FORWARD -PROTOTYPE( i n t  do-si g re tu rn  , (message * m p t r )  ) ; 
FORWARD -PROTOTYPE ( i n t  do-endsi g , (message *m-ptr) ) ; 
FORWARD -PROTOTYPE( i n t  do-times, (message *ncptr)  ) ; 
FORWARD -PROTOTYPE ( i n t  do-t race, (message *m-ptr) ) ; 
FORWARD -PROTOTYPE ( i n t  do-umap , (message *m-pt r) ) ; 
FORWARD -PROTOTYPE( i n t  do-xi t , (message *m-ptr) ) ; 
FORWARD -PROTOTYPE( i n t  do-vcopy , (message *ncptr)  ) ; 
FORWARD -PROTOTYPE( i n t  do-getmap, (message *m-ptr) ) , 

/*==E=r=rrr=rrrr==========5==ZIrirIII=~=============I.-Iffffffff=============* 
ii sys-task t 

*=zs=============IElr=r=rt=~=zE==============IL===========================* / 
PUBLIC vo i d  sys-task() 
{ 
/ *  Main en t r y  p o i n t  o f  sys-task. Get the message and dispatch on type.  */ 

r e g i s t e r  i n t  r; 

wh i le  (TRUE) { 
receive (ANY, &I) ; 

switch (m.m_type) { /*  which system c a l l  * /  
case SYS-FORK: r = do-fork(&); 
case SYS-NEWAP: 
case SYS-LETMAP: 
case SYS-EXEC: 
case SYS-XIT: 
case SYS-GETSP: 
case SYS-TIMES : 
case SYSJBORT: 
case SYS-SENDSIC: 
case SYS-SIGRETURN: 
case SYS-KILL: 
case SYS-ENDSIG: 
case SYS-COW: 
case SYS-VCOPY: 
case SYS-GBOOT: 
case SYSJEM: 
case SYS-UMAP: 
case SYS-TRACE : 
de fau l t  : 

1 

r = do_nemnap(&m) ; 
r = do-getmap (&m) ; 
r = do-exec (h) ; 
r = d o 2 i  t (dn) ; 
r = do-getspidm) ; 
r = do-tirnesCdnr); 
r = do-abort [dm) ; 
r = do-sendsig(8m); 
r = do-sigreturn(&n) ; 
r = do-ki 11 (&) ; 
r = do-endsig(&n); 
r = do-copy (&I ; 
r = do-vcopy{&n) ; 
r = do-gbootC&m) ; 
r = domern (&I) ; 
r = do-umap(&m) ; 
r = do_trace[&n) ; 
r = E-BAD-FCN; 

break ; 
break; 
break; 
break; 
break; 
break ; 
break ; 
break ; 
break; 
break; 
break; 
break ; 
break; 
break; 
break; 
break; 
break; 
break; 

m-m-type = r ;  /* ' r '  repor ts  s ta tus  o f  c a l l  */ 
send(m.m-source, dm); /* send rep l y  t o  c a l l e r  */ 

1 
1 
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4 do-f o r k * 
*==================~======*~I~IIIIIIIPII~LLLLP~=~=E==~~=~~~~*=~~=I~~IIII====* / 

PRIVATE i n t  do-fork(mpt r) 
reg i s t e r  message * m p t r ;  /* po i n t e r  t o  request message */ 
I 
/* Handle sys - fo rk0 .  kptr->PROC1 has forked. The c h i l d  i s  kptr->PROCZ. */ 

reg-t 01 d-1 dt-sel ; 
r e g i s t e r  s t r u c t  proc *rpc; 
s t r u c t  proc *rw; 

i f  (! i soksusern (~p t r ->PROW I I ! i soksusern(~ptr-zPROC2)) 
return<€-BAD-PROC) ; 

rpp = proc-addr ( ~ p t  r->PROCl) ; 
rpc = proc-addr(-ptr->PROC2) ; 

/* Copy parent 'proc '  s t r u c t  t o  c h i l d .  */ 
o l d - l d t s e l  = rpc->p-ldt-sel; /* stop t h i s  being o b l i t e r a t e d  by copy */ 

/* copy 'proc*  s t r u c t  */ 

I 

/* t h i s  was o b l i t e r a t e d  by copy */ 

/* i n h i b i t  the process from running */ 

/* Only 1 i n  g r w p  should have PENDING, c h i l d  does not  i n h e r i t  t race  s ta tus* /  
s i  gemptyset (Lrpc->p-pendi ng) ; 
rpc-zpgendcount = 0; 
r p c - > p s i  d = ~ p t r - > P I D ;  /* i n s t a l l  c h i l d ' s  p i d  */ 
rpc->p-reg. r e t  reg = 0; /+ c h i l d  sees p i d  = 0 to  know i t  i s  c h i l d  */ 

rpc->user-time - 0; /* s e t  a l l  the accounting tilnes t o  0 */ 
rpc->sys-time = 0; 
rpc->chi ld-utime = 0; 
rpc->chi ld-stime = 0; 

r e t u rn  (OK) ; 
1 

r e g i s t e r  s t r u c t  proc * r p ;  
phys-bytes s r c g h y s ;  
i n t  c a l l e r ;  /+ whose space has t h e  new map (usual ly W) */ 
i n t  k; /* process whose map i s  t o  bt loaded */ 
i n t  old-f lags; /* value o f  f l a g s  before modification */ 
s t r u c t  menmap *map-ptr; /+ v i r t u a l  address o f  map i n s i d e  c a l l e r  (W) */ 

/* Ex t rac t  message parameters and copy new memory map from Wl. */ 
c a l l  e r  - m p t  r->-source; 
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k = m-ptr->PROCl; 
map-pt r = ( s t r u c t  mem-map *) m-pt r->MEM-PTR ; 
if (! isokprocn(k)) return(E-BAD-PROC) ; 
r p  = proc-addr(k); / *  p t r  t o  en t ry  o f  user g e t t i n g  new map */ 

/ *  Copy the map from MM. * /  
s r c p h y s  = umap(proc-addr(ca1 l e r )  , D, (v i  r-bytes) map-ptr, s i zeo f  (rp->p-map)) ; 
i f  (src-phys == 0) panic("bad c a l l  t o  sys-newmap", NO-NUM); 
phys-copy (src-phys, v i  r2phys(rp->p-map), (phys-bytes) s i  zeof (rp->p-nap)) ; 

a1 loc-segments (rp) ; 
01 d-f 7 ags = rp- rp- f l  ags ; /*  save the previous value o f  the f l ags  */ 
rp->p-flags &= -NO-MAP; 
i f  (old-f lags !=  0 && rp->p-flags == 0 )  lock-ready(rp1; 

r eg i s t e r  s t r u c t  proc * r p ;  
phys-bytes ds tphys ;  
i n t  c a l l e r ;  /* where the  map has to be s tored */ 
i n t  k ;  / *  process whose map i s  t o  be loaded */ 
s t  ruc t mecmap *map-pt r ; /* v i r t u a l  address o f  map i n s i d e  c a l l e r  (MM) */ 

/* Ext ract  message parameters and copy new memory map t o  M. */ 
cal ler  = k p t r - > m s o u r c e ;  
k = m-ptr->PROCl; 
map-ptr = ( s t r u c t  memmap *) m-ptr->MEM-PTR; 

i f  ( !  i sokprocnCk)) 
panic("do-getmap go t  bad proc:  ", mpt r ->PROW;  

r p  = proc-addr(k) ; /* p t r  t o  en t ry  o f  the map */ 

/* Copy the map t o  M. */ 
d s t j h y s  = urnap(proc-addr ( c a l l  er) , O ,  (vi r-bytes) map-ptr, s i  zeof (rp->p-map)) ; 
i f  (dst-phys == 0) pani c("bad c a l l  t o  sys-getmap" , NO-NUM) ; 
phys-copy ( v i  r2physCrp->pnap), d s ~ p h y s ,  sizeof(rp->p_map)) ; 
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register  s t ruc t  proc "rp; 
reg-t sp; /* new sp */ 
phys-bytes phys-name; 
char *np; 

Irdefi ne NLEN (s i  zeof Crp-sp-name) -1) 

i f  ( I i soksusernCllpt r->PROCl)) return E-BAD-PROC; 
/* PROCZ f i e l d  i s  used as f l a g  t o  ind ica te  process i s  being traced */ 
if (ntptr->PROCZ) cause-sigkptr->PROCl, SICTRAP) ; 
sp = (reg-t) mptr->STACICPTR; 
rp  = proc-addr(wtr->PROCl) ; 
rp-zp-reg . sp = sp; /* set the stack pointer */ 
rp->p,reg.pc = (reg-t] ntptr->IP-PTR; /* set pc */ 
rp->p-alarm = 0; /* reset alarm t imer */ 
rp-rp-flags & ^RECEIVING; /* W does not rep1 y t o  EXEC c a l l  */ 
if Crp->p-flags == 0) lock-ready(rp) ; 

/* Save comand name f o r  debugging. psC1) output, etc.  */ 
phys-name = nurnap(mptr->nuource, ( v i  r-bytes) mstr->NAME-PTR, 

( v i  r-bytes) NLEN) ; 
i f  (phys-name != 0) { 

phys-copy(phys-name, v i  r2phys(rp->p-name), (phys-bytes) NLEN) ; 
f o r  (np 3 rp->p-name; (*np dr BYIE) >= ' ' ;  np++) 1) 
*np I. 0; 

I 
return(0K) ; 

1 

/ * r = - ~ + - r + = = = r r r r ~ t ~ ~ - ~ = ~ = = = ~ r t t = = ~ t ~ ~ ~ ~ t ~ t ~ = ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ = ~ ~ ~ ~ ~ ~ ~ ~ = = ~ z z z z * = *  

* do-xi t * 
* r r u r ~ r r r u u - r - u ~ ~ ~ - - ~ ~ = ~ ~ ~ = ~ = = _ _ _ _ = - - = _ _ = = = 5 = = = * /  

PRIVATE i n t  do-xi t(rlpt r) 
message * L p t r ;  /* pointer  t o  request message */ 
{ 
/* Handle sys-xi to. A process has exited. */ 

register  s t ruc t  proc *rp, *rc; 
s t ruc t  proc *np, *xp; 
i n t  parent; /* number o f  ex i t i ng  proc's parent *, 
i n t  proc-nr; /* number o f  process dning the e x i t  a 

phys-cl i cks base, s i  ze; 

parent = wt r->PROCl: /* s l o t  number o f  parent process */ 
p r o c n r  - wt r-pPROC2; /* s l o t  number o f  ex i t i ng  process */ 
i f  ( !  isoksusern(parent) I I ! isoksusern(promr3) return(EJA0-PRO0 ; 
rp = proc-addr (parent) ; 
r c  = proc-addr (proc-nr) ; 
l o c k 0 ;  
rp->child-utime += rc->user-time + rc->child-utime; /* accurn c h i l d  times */ 
rp->chi ld-stime += rc-psys-time + rc->chi ld-stime; 
un lock0 ; 
rc->p-alarm = 0; /* t u r n  o f f  alarm t imer */ 
i f  (rc->p-flags == 0) lock-unready(rc) ; 

strcpy(rc->p-name, "<noname>"); /* process no longer has a name */ 

/* I f  the process being terminated happens t o  be queued t r y i n g  t o  send a 
message (i . e. . the process was k i  1 l ed  by a signal , rather than i t  doing an 

* EXIT), then i t  must be removed from the message queues. 



File: src/kernel/sy stem.c MINlX SOURCE CODE 

*/ 
i f  (rc->p-f lags & SENDING) { 

/* Check a l l  proc s l o t s  t o  see i f  t h e  e x i t i n g  process i s  queued. */  
f o r  (rp = BEG-PROCJIDDR; r p  < END-PROCJODR; rp++) { 

i f  (rp->p-cal lerq == NIL-PROC) continue; 
i f  (rp->p-cal lerq == rc )  1 

/* E x i t i n g  process i s  on f r o n t  of  t h i s  queue. */ 
rp->p-call erq = rc->p-send1 i nk ; 
break ; 

) e lse { 
/* See i f  e x i t i n g  process i s  i n  middle o f  queue. */ 
np = rp->p-callerq; 
wh i le  ( ( xp = np->p-sendlink) !=  NIL-PROC) 

i f  (xp == rc)  { 
np->p-sendlink = xp->p-sendlink; 
break: 

} e lse 
np = xp; 

1 
1 

1 
1 

if (rc->p-flags & PENDING) --sig-procs; 
s i  gemptyset (lrc->p-pendi ng) ; 
rc-zp-pendcount = 0 ; 
rc->p-fl ags = P-SLOT-FREE; 
return(0K) ; 

1 

r eg i s t e r  s t r u c t  proc *rp; 

i f ( ! i soksusern(m-pt r->PROCl)) r e t u rn  (E-BAD-PROC) ; 
r p  = proc-addrCm_ptr->PRKl) ; 
m-ptr->STACLPTR = (char *) rp->p-reg.sp; /* r e t u rn  sp here (bad type) */ 
return(0K) ; 

1 

15106 PRIVATE int do-t imesCcptr)  
15107 r eg i s t e r  message * m p t r ;  /* po in te r  t o  request message */ 
15108 { 
15109 / *  Handle sys-times(). Retr ieve the accounting in format ion.  */ 
15110 
15111 r eg i s t e r  s t r u c t  proc *rp; 
15112 
15113 i f ( ! i soksusern(m-ptr->PROCl)) r e t u rn  E-BAD-PROC; 
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/ *  I n s e r t  the t i n e s  needed by the  TIMES system c a l l  i n  t h e  message. */  
l ock ( ) ;  / *  h a l t  the v o l a t i l e  t ime counters i n  r p  */  
m-pt r->USERTIME = rp->user-time ; 
m-ptr->SYSTEM-TIME = rp->sys-time; 
un l ock0  ; 
m-ptr->CHILD-UTIME = rp->child-utime; 
m-ptr->CHILD-STIME = rp->child-stime; 
m-ptr->BOOT-TICKS = get-upt ime0 ; 
return(0K) ; 

1 

i f (m-pt r - >mL i  1 == RBT-MONITOR) 
/ *  The m n i  t o r  i s  t o  run user spec i f i ed  i ns t r uc t i ons .  */ 
s rc-phys = numap(nr_ptr->m-source, (v i  r-bytes) m p t r - > m l p l .  

( v i  r-by tes) s i  zeof (moni tor-code) ) ; 
if (src-hys == 0) panic("bad monitor code from", ~rcptr->%source); 
phys-copy (srr-phys, v i  rZphys(moni tor-code) , 

(phys-bytes) s i  zeof C m m i  tor-code)) ; 
reboot-code = v i  r2phys(mni tor-code) ; 

1 
wreboot(m-ptr-wrnL_i 1) ; 
return(Ot0 ; /* pro-forma ( rea l  1 y EDISASTER) */ 

1 

/*=============F=L==========z==========================z=====================* 
t do-sendsi g * 
*===~==~rr================I22=====~=======z===========~============~======~~*/ 

PRIVATE i n t  do-sendsig(m-ptr) 
messdge *m-ptr; /* po i n t e r  t o  request message */  
C 
/* Handle sys-sendsig. P O S I X - s t y l e  s ignal  * /  . 

s t r u c t  sigmsg smsg; 
r eg i s t e r  s t r u c t  proc * rp ;  
phys-bytes src-phys. dst-phys; 
s t r u c t  s igcontext  sc, *scp; 
s t r u c t  s i g f r m e  fr. * f rp ;  

/ *  Get the sigmsg s t r uc tu re  i n t o  our address space. */ 
src-phys = umap(proc-addr(NPROC_NR) , D, ( v i  r-bytes) m q t  r->SIC-CTXT-PTR, 

( v i  r-bytes) s i  zeof ( s t r u c t  sigmsg)) ; 
i f  (src-phys == 0 )  
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pani c("do-sendsig can ' t s ignal  : bad sigrnsg address from MM" , NO-NUM) ; 
phys-copy (src-phys, v i  r2phys (drsmsg) , (phys-bytes) s i  zeof ( s t r uc t  sigmsg)) ; 

/* Compute the usr stack po i n t e r  value where r i g con tex t  w i l l  be stored. * /  
scp = ( s t r uc t  s igcontext  *) smsg. sm-stkptr - 1;  

/ *  Copy t h e  r eg i s t e r s  t o  t h e  s igcontext  s t r uc tu re .  */ 
memcpy(&sc.sc-regs, &rp->p-reg, s i zeo f  ( s t r uc t  sigregs)); 

/* F i n i sh  the s igcontext  i n i t i  a1 i z a t i on .  */ 
sc.sc-flags = SC-SIGCONTEXT; 

/* Copy t h e  s igcontext  s t r uc tu re  t o  t h e  user ' s  stack. */ 
dst-phys = umap(rp, D, Cvi r-bytes) scp, 

(v i  r-bytes) 5 i  zeof ( s t  r uc t  s i  gcontext)) ; 
i f  (dst-phys == 0) return(EFAULT); 
phys-copy(vi r2phys(&sc), dst-phys, (phys-bytes) s i zeo f  (s t ruc t  s i  gcontext)) ; 

/* I n i t i a l i z e  the  sigframe s t ruc tu re .  */ 
f r p  = ( s t r uc t  s igframe *I scp - 1; 
fr.sf-scpcopy = scp; 
f r. s f_retadr2= (void (*) 0 )  rp->p-reg .PC; 

f r .  s f - fp  = rp-rp-reg.fp; 
rp->p-reg.fp = (reg-t) Lfrp->sf- fp;  
f r .s f -scp = scp: 
f r .sf-code = 0; /* XXX - should be used f o r  type o f  FP except ion */  
f r . s f_s igno  = smsg.srn-sjgno; 
f r - s f - r e t ad r  = (void (*) ()) smsg. sms ig re tu rn ;  

/* Copy the sigfrarrre structure t o  t h e  user ' s  stack. */ 
dst-phys = map(rp, D,  (v i  r -bytes)  f r p ,  ( v i  r-bytes) s i zeo f  ( s t r uc t  s i g f  ramell; 
i f  (dst-phys =- 0 )  returnCEFAUtT); 
phys_copy(virZphys(&f r) + dst-phys, (phys-bytes) s i zeo f  ( s t r u t  s i  gframe)) ; 

/* Reset user r eg i s t e r s  t o  execute t h e  s ignal  handler.  */ 
rp->p-reg. sp = (reg-t) frp; 
rp->p-reg .pc = (reg-t) smsg . s ~ s i g h a n d l e r  ; 

I 
/* POSIX sty7e signals  r e q u i t e  sys-sigreturn t o  p u t  things i n  order before the 
* s i gna l l ed  process can resume execution 
* / 

s t r u c t  s igcontext  sc; 
r eg i s t e r  s t r u c t  proc *rp; 
~hys-bytes src-phys; 
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/ *  Copy i n  the s igcontext  s t ruc tu re .  */  
src-phys = umap(rp, D, (v i  r-bytes) m-ptr->SIC-CTXT-PTR, 

(vir-bytes) s i zeo f  (s t ruc t  s igcontext))  ; 
i f  (src-phys == 0) re tu rn  (EFAULT) ; 
phys-copy(src-phys, v i  r2phys(&sc), (phys-bytes) s izeof (s  t r u c t  s i g  context)) ; 

/*  Make su re  t h a t  t h i s  i s  no t  j u s t  a jmp-buf. */ 
if ((sc. sc-flags & SC-SICCONTEXT) == 0) return(E1NVAL) ; 

/* f i x  up on ly  c e r t a i n  key r eg i s t e r s  i f  the compiler doesn' t  use 
* r e g i s t e r  var iab les w i t h i n  funct ions con ta in ing  setjmp. 
* / 
i f (sc . sc-fl ags & CNORECLOCALS) I 

rp->p-reg.retreg = sc.sc-retreg; 
rp->p-reg.fp = sc.sc-fp; 
rp->p-reg. pc = sc . sc-pc ; 
rp->p-reg. sp - sc. sc-sp; 
re tu rn  (OK); 

1 
sc .sc-psw = rp->p-reg. psw; 

#if (CHIP *= INTEL) 
/ *  Don't panic kernel  i f  user gave bad selectors.  */ 
sc .sc-cs = rp->p-reg . cs ; 
sc . sc-ds = rp->p-reg. ds ; 
sc. sc-es = rp->p-reg. es ; 

# i f  -WORD-SIZE =d 
sc. sc-f s = rp->pareg. f s ; 
sc. st-gs = rp->p-reg. gs ; 

#endi f 
tend i f  

/* Restore the r eg i s t e r s .  */  
memcpy(&rp->p-reg, (char *)&sc. sc-regs + s izeof  ( s t r uc t  s i  gregs)) ; 

/*~~=~=====~=======PP~~======I~~=II=*===~=II=~:=P=I=II=~~-====~===P========~* 
* do - k i l l  4 

* 5 . ~ ~ = l t t t l = 5 = = = t ~ ~ = - 1 3 ~ = t t = ~ ~ ~ = ~ ~ = = t ~ ~ = r = ~ = = = = = = ~ ~ ~ n = ~ = = * ~ = ~ ~ = = = = * = * = = = = = r : *  / 
PRIVATE i n t  do-ki 11 lnlptr) 
reg i s t e r  message *mptr; /* po in te r  t o  request message */ 
l '  
/* Handle sys-k i l l ( ) .  Cause a s ignal  t o  be sent t o  a process v i a  W. 
* Note t h a t  t h i s  has noth ing t o  do w i t h  the k i l l  (2) system c a l l ,  t h i s  
* i s  how the FS (and poss ib ly  o ther  servers) get access t o  cause-sig t o  
* send a KSIC message t o  W 
* / 

if (! i sokusern(ut r ->PR))  returnCL5AD-PROC) ; 
cause-si g(mptr->PR, ~ptr->SIGNUM) ; 
return(OK) ; 

1 
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if (src-phys == 0 I I d s t s h y s  == 0 )  return(EFAULT); 
phys-copy(srcphys, dst-phys, bytes); 
return(OK1; 

1 

i n t  s r c g r o c ,  d s t p r o c .  v e c t s ,  i ; 
v i  r-bytes src-vi r, d s t v i  r, vect-addr ; 
p h y ~ b y t e s  s r q h y s ,  d s t s h y s ,  bytes; 
c p v e c t  cpvec-tab7 e [CWECNR] ; 

/* Dismember the comnand message. */ 
s r c g r o c  = w t r - > m l i l ;  
d s t s r o c  - k p t r - > n L i  2 ; 
v e c t s  = w t r - r m l i 3 ;  
vect-addr 3 (vi  r -by tes )kp t r ->mLp l ;  

if (vect-s  > CWELNR) r e tu rn  E m ;  

srcPhys= numap (n~ptr-wn-source, vec tadd r .  v e c c s  sizeof(cpvec-t)); 
i f  (!src-phys) return EFAULT; 
phys-copy(src_phys, v i  rZphys (cpvec-table), 

(phys-bytes) i v e c t s  * sizeof lcpvec-t))) ; 

f o r  (i = 0 ;  i < vect-S; i++) f 
src-vi r- cpvec_table[i 1. cpv-src; 
dst -v i  r- cpvec tab le  C i  3 .  cpv-dst ; 
bytes- cpvec tab l  e [i 3 . cpv-si ze; 
s r c j h y s  = numap<src_proc, src-vi  r ,  Cvi r-bytes)bytes) ; 
d s t s h y s  = nutnapCdstproc,dst-vi r. (v i  r-bytes)bytes); 
.if (src-phys 5 0 ( I dst-phys - 0) returnCEFAULT); 
phys,copy(src-phys, dst-phys. bytes) ; 

3 
return(0K) ; 

3 

PRlVATE i n t  do-gboot(nlptr1 
message *mPtr; /* po in te r  t o  request message */  
I 
/* Copy the boot parameters. Normally only c a l l e d  dur ing f s  i n i t .  * /  

dstphys  = umap(pror_addr(ncptr->PRDCl), D, ( v i  r-bytes) m s t r - > M E k P f R ,  
( v i  r b y t e s )  s i  zeof (boot-parameters)) ; 

i f (dsr-phys == 0) pani c (" bad c a l l  t o  SYS-GBOOT" , ND-NUM) ; 
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phys-copycvi r2phys(&boot_parameters), dst-phys, 
(phys-bytes) sizeof(boot-parameters)); 

return(0K) ; 
1 

s t r uc r  memory *memp; 

f o r  (memp = mem; memp < &nemCNRMEMSl; ++memp) { 
m-pt r -zmt i  1 = memp->base; 
n ~ p t  r - > m l i  2 = memp-psi ze ; 
m p t r - > m l i  3 = t o t ~ n e m s i  ze ; 
memp->size = 0; 
i f  ( ~ p t r - > r n l _ i 2  != 0) break; 

> 
return(0K) ; 

1 

I* found a chunk */ 

*====I~=======s==~IE=I~ffff=~II-ftt-=II1-~=I_35-~~~-=-==~======*/ 

PRIVATE i n t  do-umap(mgtr) 
reg i  s t e r  message *nc_ptr; /* po i n t e r  to request message */ 
{ 
/* Same as umap0, f o r  non-kernel processes. */ 

mptr->SRCBUFFER = waap(proc-addr((int) qptr->SRLPROC_NR), 
(i nt )  wtr->SRC_SPACE, 
(vir-bytes) K ~ ~ ~ - > S R U U F F E R ,  
Cvi r-bytes) wtr->COPY-BYES) ; 

re tu rn  (OK) ; 
3 

t do-trace n 

PRIVATE i n t  do-trace(mptr)  
r eg i s t e r  message *ntptr; 

/+ Handle the debugging commands supported by t he  p t race  s y s t w  call 
* The commands are: 

T-STOP stop the process 
* T-OK enable t r a c i n g  by parent f o r  t h i s  process 
* T-GETINS re tu rn  va lue from i n s t r u c t i o n  space 



MINIX SOURCE CODE File: srclkernellsystern.~ 

* T-GETDATA re tu rn  value from data space 
* T-GETUSER re tu rn  value from user process table 
* T-SETINS set value from i n s t r u c t i o n  space 
* T-SETDATA set value from data space 
* f-SETUSER set value i n  user process table 
* T-RESUME resume execution 
* T-EXIT exi  t 
* T-STEP set t race  b i  t 
* 
* The T-OK and T-EXIT comnands are handled completely by the  memory manager. 
* a l l  o thers come here. 
* / 

reg is te r  s t r u c t  proc *rp; 
phys-bytes s r c ,  ds t ;  
i n t  i; 

r p  = proc-addslTRPROCNR); 
i f  (rp->p-fl ags 6 P_SLOT_FREE) return(EI0) ; 
sw i t ch  CTRREQUEST) { 
case T-STOP: /* stop process */ 

i f  (rp->p-flags == 0) lock-unready Crp) ; 
rp-rp-f 1 ags I = P-STOP ; 
rp->p-reg.psw &= -TRACEBIT; /* c l ea r  t race  b i t  */ 
return(0K); 

case T-GETINS : /* re tu rn  value f rom i n s t r u c t i o n  space */ 
i f  (rp-sp-map [TI . mem-len ! = 0) { 

i f  ((src = umapcrp, T, TRADOR, TRVLS1ZE)I - 0 )  returnCEI0); 
phys-copy(src, v i  r2phys(&TRJATA), Cphyshytes) sizeof (long)); 
break; 

1 
/* Text space i s  a c t u a l l y  data space - f a l l  through. */ 

case 1-GETDATA: /* r e tu rn  value f r ~ m  data space */ 
if ((src = umap(rp. D, T L W D R ,  T R V C S U E ) )  == 0 )  returnCEI0) ; 
phys-copy(src, v i  rZphys(&TLDATA), (phys-bytes) s i zeo f  (long)) ; 
break; 

case T-GETUSER: /* r e tu rn  value from process t a b l e  */ 
if ((TUDOR & (sizeof(1ong) - 1)) != 0 I I 

TRADDR > s i  zeof ( s t r u c t  p r o d  - s i  zeof (long)) 
return(EI0) ; 

TRDATA = *(long *) ((char *) r p  + ( i n t )  TRJDDR); 
break; 

case T-SETINS: /* s e t  value i n  i n s t r u c t i o n  space */ 
if (rp->p~nap[q  .me-len != 0 )  { 

i f  CCdst = umap(rp, T. TKADCR, TRVLSIZE)) 0)  return(EIO1; 
phys-capy(vi rZphysC&TR-DATA), d s t ,  Cphys-bytes) sizeofClong)); 
TLDATA = 0; 
break ; 

1 
/* Text space i s  a c t u a l l y  data space - f a l l  through. */ 

case T-SETDATA : /* set  value i n  data space */ 
i f  ((dsr = urnap(rp, D, TRADOR, TLVLSIZE])  -a 0 )  return(EI0) ; 
phys-copyCvi rZphysC&TLDATA), dst.  Cphys-bytes) sizeofClong)) ; 
TLDATA = 0; 
break ; 
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case T-SETUSER: /* s e t  value i n  process t a b l e  */  
if ( (TRMDR & (s izeof  [reg-t) - 1)) ! = 0 I I 

TRADDR > s i zeo f (s t ruc t  stackframe-s) - sizeof(reg-t)) 
return(EI0) ; 

i = ( i n t )  TRADDR; 
# i f  (CHIP == INTEL) 

/* A1 t e r i n g  segment reg is te rs  might crash the kernel when i t  
" t r i e s  t o  l oad  them p r i o r  t o  r e s t a r t i n g  a process, so do 
* not a l low it. 
*/ 
if ( i  == ( i n t )  &((s t ruct  proc *) 0)->p-reg.cs I I 

i == ( i n t )  &((s t ruct  proc *) 0)->p-reg.ds I I 
i == ( i n t )  &((struct proc *) 0)->p-reg.es 1 I 

#if -WORD-SIZE == 4 
i == ( i n t )  &C(struct proc *) 0)->p-reg-gs I I 
i == Cint) .&([struct proc *) 0)->p-reg.fs I I 

#endi f 
i == (i nt )  &((s t ruct  proc *) 0)->p-reg. ss) 

r e t u rn  (EIO) ; 
dendi f  

i f  (i == ( i n t )  &((s t ruct  proc *) 0)->p-reg.psw) 
/* only selected b i t s  a re  changeable * /  
SETPSWCrp, TRDATA) ; 

e lse 
*(reg-t *) ((char *) Crp->p-reg + i) = (reg-t) TRDATA;  

TRDATA = 0 ;  
break ; 

case T-RESUME : /* resume execut ion */ 
rp->p-f 1 ags & -P-STOP; 
if (rp->p-flags == 0) lock-ready(rp) ; 
TRDATA - 0; 
break ; 

case T-STEP: /* set t race  b i t  */ 
rp->p-reg. PSW 1 = TRACEBIT; 
rp->p-flags &c -P-STOP; 
i f  (rp-rp-f l  ags == 0) lock-ready (rp) ; 
TRDATA = 0 ;  
break; 

de fau l t  : 
return(EI0) ; 

1 
re tu rn  (OK) ; 

I 

C 
/* A task wants t o  send a s ignal  t o  a process. Examples o f  such tasks are: 
* TTY wanting t o  cause SIGIMT upon g e t t i n g  a DEL 
* CLOCK wanting t o  cause SICALRM when t imer  expires 
* FS a l so  uses t h i s  t o  send a s ignal ,  v i a  t he  SYS-KILL message. 
* Signals a re  handled by sending a message t o  W .  The tasks don ' t  dare do 



MINlX SOURCE CODE File: src/kernel/system.c 

* t ha t  d i r e c t l y ,  for fea r  o f  what would happen i f  MM were  busy. Instead they 
* c a l l  cause-sig, which sets  b i t s  i n  p-pending, and then careful1 y checks t o  
* see i f  MM i s  f ree .  I f  so, a message i s  sent  t o  i t .  I f  not ,  when i t  becomes 
* f r ee ,  a message i s  sent. The process being s ignaled i s  blocked wh i le  W4 
* has not  seen o r  f i n i shed  w i t h  a l l  s ignals  f o r  i t .  These signals are 
* counted i n  p-pendcount, and the  SIC-PENDING f l a g  i s  kept nonzero wh i le  
* there  are some. It i s  no t  s u f f i c i e n t  to  ready the process when MM i s  
* informed, because tM can black wa i t i ng  f o r  FS t o  do a core dump. 
*/  

r eg i s t e r  s t r u c t  proc *rp, *mmp; 

r p  = proc_addr(proc-nr) ; 
i f ( s i  g i  smember (&rp->p-pendi ng, sig-nr)) 

re tu rn ;  /* t h i s  signal already pending */ 
sigaddset(&rp-rp-pendi ng, s i s n r )  ; 
++rp->pdendcount; /* count new s igna l  pending */ 
i f (rp-rp-f  1 ags & PENDING) 

re tu rn  ; /* another s ignal  already pending */ 
i f  ( rp- rp- f  lags == 0) lock-unready(rp) ; 
rp->p-flags I = PENDING ( SIC-PENDING; 
++sig-procs; /* count new process pending */ 

mnp = proc-addr(MM-PROC-NR); 
if C CCnnnp->p-f lags & RECEIVING) == 0) ) I mmp->p-getf ror, != ANY) re tu rn ;  
i nformO ; 

1 

* = = = ~ = = I = = = = = = = = = ~ ~ = = I I E = = ~ E ~ = = = = I ~ ~ = ~ = ~ = = I C = = I ~ L ~ = ~ = * = = ~ = = = = = ~ ~ = ~ ~ ~ ~ = = = = = ~ = -  -* / 
PUBLIC vo id  i n f o r m 0  
I 
/* When a s igna l  i s  detected by the kernel Ce.g., DEL), o r  generated by a task 
* (e .g.  c lock  task f o r  SIGALRM), cause-sig() i s  ca l l ed  t o  se t  a b i t  i n  the 
* p-pending f i e l d  o f  the process t o  s ignal .  Then inform() i s  c a l l e d  t o  see 
* i f  MM i s  i d l e  and can be t o l d  about i t .  Whenever MM blocks, - a  check i s  
* made t o  see i f  'sig-procs' i s  nonzero; i f  so, i n f o r m 0  i s  ca l l ed .  
*/ 

r eg i s t e r  s t r u c t  proc *rp; 

/* MM i s  wa i t i ng  For new inpu t .  Find a process w i t h  pending s ignals .  */ 
f o r  (rp = BEG-SERVADDR; r p  i END-PROCAMR; rp++) 

i f  (rp->p-flags & PENDING) I 
m.mtype = KSIG; 
m.SIGPROC - proc-number(rp1; 
m. S I C M A P  = rp->p-pendi ng; 
sig-procs--; 
i f (1 ock-mi ni-send(proc-add r (HARDWARE) , MM-PRCNR, Qn) ! = OK) 

pani  can't i nform MM", NO-NUM) ; 
sigemptyset(&rp->p_pending) ; /* the  b a l l  i s  now i n  MM's court */ 
rp->p-flags &= -PENDING; /* remains i n h i b i t e d  by SIC-PENDING * /  
1 ock-pi ck-proc0 ; /* avoid delay i n  scheduling MM * /  
r e t u rn  ; 

1 
3 
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v i r - c l i c k s  vc; /*  the  v i r t u a l  address i n  c l i c k s  */ 
phys-bytes pa; /* in termediate var iab les as phys-bytes */ 
physhy tes  seg-base ; 

I f  'seg' i s  D i t  could r e a l l y  be S and v i ce  versa. T r e a l l y  means T. 
If the  v i  r t u a l  address f a l l s  i n  t h e  gap, i t  causes a problem. On the 
8088 i t  i s  probably a lega l  stack reference, s ince "s tack fau l t s "  are 
not detected by the hardware. On 80885, t he  gap i s  c a l l e d  S and 

* accepted. b u t  on other  machines i t  i s  c a l l e d  D and re jec ted .  
The A t a r i  S f  behaves l i k e  t he  8088 i n  t h i s  respect. 

* / 

i f  ( b y t e s  <= 0) re turn6 (phys-bytes) 03;  
vc = ( v i  r-addr + bytes - 1) >> CLICKSHIFT; /* l a s t  c l i c k  o f  data */ 

i f  ,(seg != T) 
seg = (vc x rp->p_nrap[D] .memvi r + rp->p~nap[D] .mem,len ? D : S ) ;  

if ((vi ~-~~~~>FCLJCICSHIFT) >= rp->p,map[seg] .mefivi r+ rp->p_mapIsegl. meml en) 
re tu rn (  (phys-bytes) 0 1; 

seg-base = (phys-bytes) rp->p~napCsegl.memphys; 
seg-base = sesbase  << CLICKSHIFT; /+ segment o r i g i n  i n  bytes */ 
pa = (phys-bytes) v i  r-addr; 
pa -= rp->pmp[seg] .memvi r <c CLICLSHIFT; 
returnlseg-base + pa) ; 

1 

C 
/* Do map() s t a r t i n g  from a process number ins tead  o f  a po in te r .  This 
* func t ion  i s  used by device dr ivers ,  so they need n o t  know about the 
* process table. To save t ime, there i s  no 'seg' parameter. The segment 
* i s  always D. 
* / 
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PUBLIC void alloc-segments(rp) 
reg is te r  s t ruc t  proc *rp;  
1 
/* This i s  ca l led  only by do-newmap, but  i s  broken out as a separate funct ion 
* because so much i s  hardware-dependent. 
* / 

phys-bytes code-bytes; 
phys-bytes d a t d y t e s ;  
i n t  pr iv i lege;  

i f  Cprotectebode) I 
d a t ~ b y t e s  = (phys-bytes) (rp->p_nrap[S] .mekv i r  + r p - > p ~ p [ S l  .menlen) 

<< CLICLSHIFT; 
i f  (rp->p~nap[T] .mem-l en == 0) 

code-bytes = databytes;  / *  common IM), poor protect */ 
else 

codebytes = (phys-bytes) rp->p~rrap[T] . rn-1 en << CLICLSHIFT ; 
p r i v i l ege  = istaskpcrp) ? TASLPRIVILEGE : USERPRIVILEGE; 
i n i  t-codeseq(6t-p-rp-ldtICS-LDl-INDEXl , 

(phys-bytes) rp->p~hap[T] .memphys << C L I C L S H I F T ,  
code-bytes, pr iv i lege) ; 

i n i  t_dataseg(&rp->p-1 d t  [OS-LDLINDEX] , 
(phys-bytes) rp->p~nap[D] .men~phys << CLICK-SHIFT, 
dathbytes,  pr iv i lege) ; 

rp->p-reg-cs = (CS-LOT-INDEX DESCSKZE) ) T I  I p r i v i l ege ;  
#if _WORDSIZE == 4 

rp->p,reg. gs = 
rp->p-reg. f s = 

#endi f 
rp->p-rtg . ss = 
rp->p,reg.es = 
rp->p-reg .ds = (DS-LDT,INDEX*DESCSIZE) I T I  I p r i  v i  lege; 

1 else C 
rp->p,reg. cs - c l  i c k t o h c l  i ck l rp->pmp[T l .  ~ ~ h y s )  ; 
rp->p,reg. ss = 
rp->p-reg. es = 
rp->p-reg . ds = cl ick-to-hclick(rp->p_map[D] .mern-phys) ; 

1 
I 
#endi P /* (CHIP -= INTEL) / 

/* This i s  the master header f o r  m. It inc ludes some other f i l e s  
* and defines the p r i nc ipa l  constants. 
*/ 

M e f  i ne _POSXLS,SOURCE 1 /* t e l l  headers t o  include POSIX stuff */ 
#define JINIK 1 /* t e l l  headers t o  include M I N I X  stuff */ 
I d e f  i ne SYSTEM 1 /* t e l l  headers tha t  t h i s  i s  the kernel */ 

/* The fo l lowing are so basic. a l l  the *.c f i l e s  get them automatical ly.  * /  
#include <mini x/config . h> /* WST be f i r s t  */ 
X i  ncl ude cansi . hr /* MUST be second */ 
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#inc lude <sys/types.h> 
W i  n c l  ude <mini x/const . h> 
#i ncl  ude <mi nix / type . h> 

# inc lude < f c n t l  . h> 
ti nc l  ude cuni  s td  . h> 
#inc lude <minix/sysl ib.h> 

# inc lude "const. h" 
#include "type. h" 
#include "proto. h" 
#include "g1o.h" 

/* Constants used by the  Memory Manager. */ 

#define NOJEM ((phys-clicks) 0 )  /* re turned by allocmern() w i t h  mem i s  up */ 

#if  (CHIP == INTEL && -WORD,SIZE == 2) 
/* These d e f i n i t i o n s  are used i n  size-ok and are not needed fo r  386. 
* The 386 segment g ranu la r i t y  i s  1 f o r  segments smal ler than 1M and 4096 
* above t h a t .  
* / 

#def i ne PACE-SIZE 16 /* how many bytes i n  a page ( 5 .  b.HCLICK_SIZE)*/ 
Rdefi ne WPAGES 4096 /* how many pages i n  the v i  r t u a l  addr space */ 
tendi  f 

Xdef i ne p r i  n t f  p r i n t k  

#def ine INIT-PID 1 /* i n i  t ' s  process i d  number */ 

16000 /*  I f  there were any type d e f i n i t i o n s  l o c a l  t o  t h e  Memory Manager, they would 
16001 * be here. This f i l e  i s  inc luded on ly  f o r  s*mnetry w i t h  t h e  kernel  and F i l e  
16002 * System, which do have some l oca l  type de f i n i t i ons .  
16003 * / 
16004 
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/* Funct ion prototypes. */ 

s t r u c t  mproc; /* need types outs ide o f  parameter l i s t  --kub */ 
s t r u c t  s ta t :  

/* a11oc.c */ 
_PROTOTYPE( phys-clicks a1 loc-inem, (phys-cl i cks c l i c k s )  1 ; 
-PROTOTYPE( vo id  f r e e x n .  (phys-cli cks base, phys-c'l i cks c l  i sks) > ; 
- PROTOTYPE( phys-cli cks n a ~ h o l e ,  (voi d) 1;  
-PROTOTYPE( vo i d  nemi n i  t, (phys-cli cks * t o t a l ,  phys-cl i cks *free) 1;  
-PROTO'IYPE ( phys-cl i cks mem-1 e f  t , (void) 1; 
-PROTOTYPE( i n t  do-brk3, (voi  d) 1 ;  

/* break.c */ 
-PROTOTYPE( i n t  ad jus t ,  ( s t r uc t  mproc *mp, 

v i  r - c l i c ks  d a t h c l i c k s .  v i  r-bytes sp) 1 ;  
- PROTOTYPE( i n t  do-brk, (voi  dl  1;  
-PROTOTYPE( i n t  size-ok, ( int  f i l e - t ype ,  v i r - c l i c k s  tc, v i  r - c l i cks  dc, 

v i  r - c l i c ks  sc. v i  r - c l i cks  dv i  r, v i  r-cl i c k s  s-vi r) ) ; 

/* exec.c */ 
-PROTOTYPE ( i n t do-exec , (void) 1; 
_PROTOTYPE( s t r u c t  mproc *find-share, ( s t r uc t  mproc *mp_ign, Ino-t ing,  

Dev-t dev , time-t c t i  me) I ; ,  

/* f o r kex i  t . c */ 
- PROTOTYPE ( i n t  do-fork , (void) 1; 
,PROTOTYPE( i n t  do4ncex i  t , (void) ) ; 
-PROTOWPE( i n t  do-wai t p i  d , (voi  d) I  ; 
-PROTOTYPE( vo id  -exit,  l s t r u c t  rnproc *rmp, int e x i t s t a t u s )  1; 

/* getset  .c *! 
,PROTOTYPE( i n t  &,getset, (void) 

/* main-c */ 
-PROTOTYPE( vo id  main , (void) 

#if (HACHINE - MACINTOSH) 
-PROTOTYPE( phys-slicks s t a r t - c l i c k .  (void) 
#endi f 

-PROTOTYPE( w i d  rep ly ,  Cint  p r o t n r ,  i n t  r e s u l t ,  i n t  res2, char *respt)) ;  

/* putk.c */ 
- PROTOTYPE( vo id  putk, ( i n t  c) 

/* s ignal  .c  */ 
-PROTOTYPE( i n t  &-alarm, (voi d) 1 i 
-PROTOTYPE( i n t  do-ki 11 , (void) 1; 
-PROTOTYPE ( i n t  do-ksi g , (void) ) ;  
-PROTOTYPE ( i n t  dosause , (void) 1; 
-PROTOTYPE( i n t  set-alarm, ( i n t  proc-nr, i n t  sec) > ; 
-PROTOTYPE( i n t  checks i g ,  (pid-t proc-id, i n t  signo) >;  
-PROTOTYPE( vo id  s i  g g r o c ,  ( s t r uc t  mproc *rmp, i n t  s i  g-nr) ); 
-PROTOTYPE( i n t  do-sigaction , (void) 1; 
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-PROTOTYPE( i n t  do-si gpendi ng,  (void) 
-PROTOTYPE( i n t  d o 3  gprocmask, (void) 
-PROTOTYPE( i n t  do-si g re tu rn  , (void) 
-PROTOTYPE( i n t  do-sigsuspend, (void) 
-PROTOTYPE ( i nt do-reboot , (void) 

/* trace.c */ 
-PROTOTYPE( i n t  do-trace, (void) 1 ; 
-PROTOTYPE( vo id  stop-proc , (s t  r u c t  rnproc *rmp, i n t  s i  g-nr) 1; 

/* u t i 1 i t y . c  */  
-PROTOTYPE( int allowed, (char *name-buf, s t r u c t  s t a t  *s-buf, i n t  mask) 1; 
-PROTOTYPE( i n t  no-sys , (vo i  d) 1 ;  
-PROTOTYPE( vo id  panic,  (char "format, i n t  num) 1; 
-PROTOTYPE( vo id  t e l l - f s ,  ( i n t  what, i n t  p l ,  i n t  p2, i n t  p3) 1; 

/* EXTERN should be ex te tn  except i n  tab1e.c */ 
#i fde f  ,TABLE 
Yundef EXTERN 
#def ine EXTERN 
Xendi f 

/* Global va r iab les .  */ 
EXTERN s t r u c t  mproc *np; /* p t r  t o  'mproc' s l o t  o f  cu r ren t  process */ 
EXTERN i n t  dont-reply ; /* normal ly 0; se t  t o  1 t o  i n h i b i t  rep1 y */  
EXTERN i n t  procs-i n-use ; /* how many processes a re  marked as IN-USE */  

/*  The parameters o f  t he  c a l l  are kept here. */ 
EXTERN message -in; /* the i n c m i  ng message i t s e l  f i s  kept here. */ 
EXTERN message m o u t  ; /* the rep1 y message i s  b u i l t  up here. */ 
EXTERN i n t  who; /* c a l l e r ' s  proc number */ 
EXTERN i nt m c a l l  ; /* system c a l l  number */ 

/* The fo l lowing variables are  used f o r  re tu rn ing  r e s u l t s  t o  the c a l l e r .  * /  
EXTERN i n t  err-code; /* temporary storage f o r  e r r o r  number */ 
EXTERN i n t  r esu l t 2 ;  /* secondary r e s u l t  +/ 
EXTERN char *res-ptr; /* r e s u l t ,  i f  po in te r  */ 

ex te rn  -PROTOTYPE ( i n t  (*call-vet[]), (void) ) ; /* system call handlers * /  
ex te rn  char core-name[] ; /* f i l e  name where core images are produced */ 
EXTERN s igset - t  core-sset; /* which s ignals  cause core images */ 
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/* This table has one s l o t  per process. It contains a11 the memory management ' 
* i n fomat ion  fo r  each process. h n g  other things, i t  defines the tex t ,  data 

and stack segments, u ids and gids, and various f lags.  The kernel and f i l e  
* systems have tables t h a t  are also indexed by process, w i th  the contents 
* o f  corresponding s lo t s  re fer r ing  t o  the  same process i n  a l l  three. 
*/ 

EXTERN s t ruc t  mproc { 
s t ruc t  memJnap mp-seg[NR-SEGS];/* points t o  text ,  data, stack */ 
char mp-exi ts ta tus ;  /* storage for  status when process ex i t s  */ 
char mp-sigstatus; /* storage f o r  signal # f o r  k i l l e d  procs */ 
p i  d-t mp-pi d; /* process i d  */ 
p i  d-t mp-procgrp; /* p i d  o f  process group (used f o r  signals) */ 
p i d t  mp-wpid; /* p i d  t h i s  process i s  wai t ing f o r  */ 
i n t  mp-parent; /* index o f  parent process */ 

/* Real and e f fec t ive  uids and gids.  */ 
u i k t  mp-real uid; /* process' rea l  u i d  */ 
u i  d-t np-eff u i  d ; /* process' e f fec t ive  u i d  */ 
gid-t  mp-realgid; /* process' rea l  g i d  */ 
gid-t  mp-effgid; /* process' e f fec t ive  g id  */ 

/* F i l e  i den t i f i ca t i on  f o r  sharing. */ 
ino-t mp-i no; I* inode n u ~ b e r  o f  f i l e  */ 
dev-t mp-dev; /* device number o f  f i l e  system */ 
time-t mp-ctime; /* inode changed time */ 

/* Signal handling information. */ 
s i  g s e ~ t  mp-i gnore; /* 1 means ignore the signal. 0 means don't  */ 
s i  g s e ~ t  mp-catch ; / *  1 mans catch the signal, 0 means don't */ 
sigset-t  mp-si gmask; /* signals t o  be blocked */ 
sigset-t  np-sigmask2; /* saved copy o f  np-signs* */ 
s i  g s e c t  mp-sigpending ; /* signals being blocked */ 
s t ruc t  sigact ion ~mp-sigactC-NSIG + 11 ; /* as i n  sigactionC2) * j  
v i  r-bytes mp-sigreturn ; /* address of C l i b r a r y  -sZgreturn funct ion */ 

/* Backwards c m p a t i b i l i  t y  f o r  signals. */ 
sighandler-t mp-func; /* a l l  sigs vectored to a s ingle user f c n  */ 

unsigned mp-flags ; /* f l a g  b i ts  */ 
v i  r-bytes mpgrocargs ; /* p t r  t o  proc's i n i t i a l  stack arguments */ 

1 mproc CNRPROCSJ ; 

/* Flag values */ 
#de f i ne IN-USE 
M e f  i ne WAIT1 NG 
#def i ne HANGING 
Xdef i ne PAUSED 
tde f  i ne ALARM-ON 
I d e f  i ne SEPARATE 
r d e f  i ne TRACED 
#def i ne STOPPED 
#def i ne SICSUSPENDED 

/* set when 'mproc' s l o t  i n  use */ 
f* set by WAIT system c a l l  */ 
/* set by EXIT system c a l l  */ 
/* set by PAUSE system c a l f  */ 
/* set when SICALRM t imer started */  
/* set if f i l e  i s  separate 1 61 0 space */ 
/* set i f  process i s  t o  be traced */ 
/* set if process stopped for  t rac ing  */ 
/* set by SIGSUSPEND system c a l l  */ 

#define N I U P R O C  ( (s t ruct  mproc *) 0 )  
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/* The f o l l ow ing  names a re  synonyms f o r  the va r iab les  i n  the i npu t  message. */ 
#def ine addr 
Xdef i ne exec-name 
#def ine exec-1 en 
#def ine func 
#define g rp i d  
Udef i ne name1 en 
#def ine p i d  
#def ine seconds 
#def ine s i g  
Wdef ine  stack-bytes 
#def ine s t a c k p t r  
#def ine s ta tus 
#def ine usr- id 
#def ine request 
Udef i ne taddr 
#def ine data 
dde f i  ne sig-nr 
#def ine sig-nsa 
#def i ne s i  g-osa 
#def ine s i  g-ret 
Xdef i  ne s i  g-set 
Udef i ne s i  g-how 
Xdef i ne s i g-f 1 ags 
Udef i  ne s i g x o n t e x t  
l i f d e f  SICMESSAGE 
#def ine s i g ~ n s g  
Wendi f 
#def ine reboot-f l  ag 
#def ine reboot-code 
#def ine reboot-si ze 

nm-i n . m l p l  
mi n . m l p l  
mi n . m l - i  1 
mi n . m6-f 1 
(gid-t) mi n . m l i  1 
mm-i n . m L i  1 
-in . m l i l  
- in  . m L i  1 
mi n . m6-i 1 
m i n  . m L i  2 
mn-in . m u 2  
mmi n . m l i  1 
(uid-t) mi n. m l - i  1 
w i n  .m2-i2 
mi n . m2-11 
mmin.rn2-12 
m n ~ i n . r n l i 2  
mi n . m l s l  
mi n ;rcrLp2 
nun-< n . mLp3 
mi n . 1112-11 
mi n . m2-i 1 
mi n .m2-i 2 
nwn-i n . m Z $ l  

mi n . m l - i  1 

/* The f o l l ow ing  names a re  synonyms f o r  t h e  va r iab les  i n  the output  message. * /  
Pdef i  ne rep1 y-type mout .m- type  
Ydef i ne rep1 y-i l nun-out. m2-i  1 
#def ine rep1 y-pl mmout . m2-pl 
Kdef i  ne recmask mm-out . m2-11 

/* This f i l e  conta ins the tab le  used t o  map system c a l l  numbers onto the 
* rout ines t h a t  perform them. 
* / 

Wdef i ne -TABLE 

#inc lude "nm.h" 
#inc lude <minix/cal lnr.h> 
#i nclude <signal . h> 
#include "mprac. h" 
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no-s ys , 
do-nmexit , 
do-fork, 
no-sys , 
no-SYS, 
no-SYS, 
no-SYS, 
do-wai tp id,  
no-sys , 
no-sys, 
no-SYS , 
do-wai tp id,  
no-s y s . 
no-s y s , 
no-s y s  . 
n o s y  s . 
no-sys , 
do-brk, 
nosys  , 
no-s y s , 
do-getset, 
n o s y  s  , 
nosys  , 
do-getset, 
do-getset, 
no-s y s , 
do-t race, 
do-alarm, 
no-s y s . 
do-pause , 
no-s Y s , 
n a s y s  , 
no-sys , 
nosys  , 
no-s ys , 
n o s y  s , 
no-s y s , 
do-ki 1 1  , 
no-sys . 
no-s y s , 
n o s y  s , 
no-sys , 
no-s y s  , 
n o s y  s , 
n o s y  s . 
no-s y s , 
do-get set . 
do-getset , 
no-s y s , 
no-s y s , 
nosys  , 
nosys  , 
no-sys, 
no-sys , 

#include "param.hW 

/* Miscellaneous */ 
char core-name[] = "core"; /* f i l e  name where core images are produced */ 

-PROTOTYPE ( i n t  (%a1 1-vec[NCALLS]), (void) ) = { 
/ *  0 = unused */ 
/* 1 = e x i t  */ 
/* 2 = fo rk  * /  
/* 3 = read */ 
/* 4 = wr i t e  */  
/* 5 = open */ 
/* 6 = close */  
/* 7 = wait  * /  
/* 8 = creat */ 
/* 9 = link */ 
/* 10 = unl ink */  
/* 11 = waitpid */  
/ *  12 = chdir  */  
/* 13 = time */ 
/* 14 = mknod */ 
/* 15 = chmod */ 
/* 16 = chown */ 
/ *  17 = break */ 
/ *  18 = s t a t  */ 
/* 19 = Iseek */ 
/* 20 = getpid * /  
/* 2 1  = mount */ 
/* 22 - umount */ 
/* 23 = setuid */ . 
/* 24 = getuid */ 
/ * 2 5 = s t i m e  */ 
/* 26 = ptrace */ 
/* 27 = alarm */ 
/* 28 = f s t a t  */ 
/* 29 = pause */ 
/* 30 = utime */ 
/* 3 1  - ( s t t y )  */ 
/* 32 = W t y )  */ 
/* 33 = access */ 
/ *  34 = (nice) */ 
/* 35 = (f t ime) */ 
/ *  36 = sync */ 
/ *  37 = ki l l  */ 
/ *  38 = rename */ 
/* 39 = mkdi r */ 
/* 40 = rmdir */ 
/* 4 1  = dup */ 
/* 42 = pipe */ 
/* 43 = times */ 
/* 44 = (prof) */ 
/* 45 = unused */ 
/*  46 = setgid */ 
/ *  47 = getgid */ 
/ *  48 = (signal)*/  
/* 49 = unused */ 
/* 50 = unused */  
/ *  51 = (acct) */  
/* 52 = (phys) */  
/* 53 = (lock) */ 
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no-SY s , 
no-SYS, 
no-sys , 
no-sy s , 
n o s y  s , 
do-exec , 
n o s y  s . 
no-sys , 
do-getset, 
do-getset , 

/* 54 = i o c t l  * /  
/* 55  = f c n t l  */ 
/* 56 = Cmpx) */ 
/* 57 = unused */  
/* 58 = unused */ 
/* 59 = execve */ 
/*  60 = umask * I  
/* 61  = chroot */ 
/* 62 = se ts id  */ 
/* 63 = getpgrp */ 

do-ksi g , /* 64 = K S I C :  s ignals or ig ina t ing  i n  the kernel */ 
no-sys , /* 65 = UNPAUSE */ 
nosys  , /* 66 = unused */ 
no-s y s , /* 67 = REVIVE */ 
nO-SYS , /* 68 = TASKREPLY */ 
no-s ys , /* 69 = unused */ 
n o s y  s , /* 70 = unused */ 
do-sigaction, /* 7 1  = sigaction */ 
dosigsuspend, /* 72 = sigsuspend */ 
do-sigpendi ng, /* 73 = sigpending */ 
do-siqprocmask, /* 74 = sigprocmask */ 
do-sigreturn, /* 75  = s igreturn */ 
do-reboot, /* 76 = reboot */ 

/* This f i l e  contains the main program o f  the memory manager and some re lated 
* procedures. When MINIX starts up, the  kernel runs f o r  a l i t t l e  wh i le ,  
* j n i t j a l i t i n g  i t s e l f  and i t s  tasks, and then i t  runs MI and FS. Both MI 
* and FS i n i t i a l i z e  themselves as f a r  as they can. FS then makes a c a l l  t o  
* m, because MM has t o  w a i t  f o r  FS t o  aequi r e  a RAM disk. Wl asks the 
* kernel f o r  a l l  f ree memory and s ta r t s  serving requests. 

* The entry points i n t o  t h i s  f i l e  are: 
* main: s t a r t s  FM running 
* reply: rep1 y t o  a process making an W system c a l l  
"/ 

#include "m. h" 
#include <minix/caltnr.h> 
#include cminix/cam.h> 
#include cs i  gnal . h> 
#i n c l  ude c f  c n t l  . h> 
#include <sys/ ioct l .  h> 
Wincl ude "mproc . h'' 
#include "param.hW 

FORWARD -PROTOTYPE( void get-work , (voi d) 
FORWARD -PROTOTYPE( void m m i  n i  t , ( V O ~  d) 
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i n t  error ;  

m i n i t ( ) ;  /* i n i t i a l i z e  memory manager tables */ 

/* This i s  W's main loop- get work and do it. forever and forever. */ 
while (TRUE) { 

/* Wait f o r  message. +/ 
g e L w r k 0  ; /* wait  f o r  an W system c a l l  */ 
mp = -roc [who] ; 

/* Set some f lags.  */ 
er ror  I OK; 
dont-rep1 y = FALSE; 
err-code = -999; 

/* I f  the c a l l  number i s  val id ,  perform the  c a l l .  */ 
i f  (nmca l l  < 0 l l m c a l l  >= NCALLS) 

er ro r  = EBADCALL; 
else 

e r ro r  = ( * c a l l ~ v e c [ ~ c a 1 1 ) 3  0 ; 

/* Send the resu l ts  back t o  the user t o  ind ica te  completion. */ 
i P ( d o n ~ r t p l y )  continue; /* no reply f o r  EXIT and WAIT */ 
i f  (nmca l l  - EXEC er ro r  == OK) continue; 
repl yCrrho, error, result2, res-ptr) ; 

1 
1 

I 
/* Wait f o r  the next message and ex t rac t  useful infonuation from it. */ 

i f  (receive(ANY, -in) I- OK) panic(%! receive error",  N&NLM); 
who - mi n.  source; /* who sent the  message */ 
-cal l  = -in- type; /* system c a l l  number */ 

1 

WBLIC void repl  y (p rocn r  , r esu l t  , res2, respt) 
int p r o ~ n r ;  /* process t o  reply t o  */ 
i n t  resul t ;  /* resu l t  o f  the c a l l  (usually OK or  e r ror  #I*/ 
i n t  res2; /* secondary resu l t  */ 
char *respt; /* rcsul  t i f  painter  */ 
C 
/* Send a reply t o  a user process. */ 

register  s t ruc t  mproc *proc-ptr; 
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proc-ptr + baproc[proc-nr] ; 
/* 
* TO make Ml robust,  check t o  see i f  des t i na t i on  i s  s t i l l  a l i v e .  This 
* v a l i d y  check must be skipped if the  c a l l e r  i s  a task.  
*/ 

i f  ((who >=0) && ((procjtr->mp-flags&IN-USE) == 0 I I 
(proc-ptr->mp-f 1agsdrHANGING))) re turn;  

rep l  y-type = r e s u l t  ; 
reply- i  1 E resZ; 
r ep l  y-pl resp t ;  
i f  (send(proc-nr, & m ~ o u t )  ! = OK) panic("W can' t rep ly" ,  NO-NUM) ; 

1 

I 
/* I n i t i a l i z e  t h e  memory manager. */ 

s t a t i c  char  core-sigs[]  = { 
SICQUIT, SICILL, SICTRAP, SIGABRT, 
SIGEMT, SIGFPE. SIGUSRl, SIGSEGV, 
SICUSR2, 0 1; 

reg i  s t e r  i n t  p r o c n r  ; 
reg i s t e r  s t r u c t  lrproc *mp; 
reg i s t e r  char * s i g g t r ;  
phys-clicks r a ~ c l i c k s ,  t o t a l - c l i c ks ,  r i n i x - c l i c k s ,  f ree-cl icks, dummy; 
message mess; 
s t r uc t  mernJlrap kernel_map[NLSEGSl; 
i n t  m; 

/* B u i l d  the s e t  of s ignals  which cause core dumps. Do i t  the  Posix 
* way, so no knowledge of b i t  pos i t i ons  i s  needed. 
*/ 

sigemptyset(&core,sset) ; 
For (sig-ptr - core-sigs; *s ig_pt r  != 0; sig-ptr++) 

s i  gaddset(&core-sset , * s i  g-pt  r) ; 

/* Get the memory map o f  the kernel  t o  see how much memory i t  uses. 
i n c l ud i ng  the gap between address 0 and the  s t a r t  o f  the kernel .  

*/ 
sys,getmap(SYSTASK, k e r n e l ~ a p ) ;  
min i  ~ c l  i cks = ke rne l~nap  [S] . m e ~ p h y s  + kernel  ~nap[Sl . m e ~ l e n  ; 

/* I n i t i a l i z e  MM's tab les.  */ 
f o r  (proc-nr - 0; proc-nr c= INIT-PRKNR; proc-nr++) { 

nnp = hproc [p roc -n r l ;  
rw-~p-f 1 ags I = I N-USE ; 
sys-getnapZproc-nr, mp-mp-seg) ; 
i f (np->mp,segIT). mencl en ! = 0) rmp-mp-f l ags t = SEPARATE: 
m in i  h c l  i cks +- (rmp->mp-segCS1 .men~phys + rmp->mp,seg[S] .nenr_len) 

- rmp->mp-segCT1 . m t ~ p h y s  ; 
1 
mproc [INIT-PROC-NR] . m p g i  d = INIT-PID; 
sigemptyset(bnpr0c [INIT-PROC-NR 1. np-i gnore); 
s i  gemptyset(bnpr0c [INIT-PRKNR 1 .mp-catch) ; 
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procs-in-use = LWUSER + 1; 

/* Wait f o r  FS t o  send a message t e l l i n g  the RAM disk s i z e  then go "on-l ine". 
*/ 
if (receiveiFS,PROC#R, &mess) != OK) 

panic("R4 can't  obtain llAn disk s ize  from FS", NO-NUM); 

r a ~ c l i c k s  = mess . n L i l ;  

/* I n i t i a l i z e  tables t o  a l l  physical mem. */ 
m c ~ i n i  t(&total-cl icks, &free-clicks) ; 

/* P r i n t  memory information. */ 
p r i  n t f  ("\nMemory s i  ze =%5dK " , cl i ck-to-round,kCtotal ,cl i cks)) ; 
p r i  n t f  ("MIHIX =%4dK " , c l  i ckto-round-kCmi n i  ~ c l  icks)) ; 
p r i n t f  ("RAM disk -%SdK ". c l i c k ~ t o ~ r o u n d , k ( r ~ c l i c k s ) ) ;  
p r i  n t f  ("Avai lab1 e =%5dK\n\nW, c l  i ckto,round,k(f ree-cl i cks)) ; 

/* T e l l  FS t o  continue. */ 
i f  CsendCFS-PROC-NR, &mess) != OK) 

panic("MM can't sync up w i th  FS" , NO-NUM); 

/* T e l l  the memory task where my process tab le  i,s f o r  the sake of  p s ( l ) .  */ 
if (~~ = openCW/dev/metn" , 0-RWR)) != -1) I 

i o c t l  (m, MEOCSPSINFO, (void *) mproc); 
c 1 ose (mem) ; 

1 
1 

/* t h i s  f i l e  deals wi th creating protesses (v ia  FORK) and delet ing them (v ia 
* EXXT/WAIT). When a process forks, a new s l o t  i n  the 'mproc' tab le  i s  
* allocated f o r  i t ,  and a copy o f  the parent's core image i s  made f o r  the 
* ch i ld .  Then the kernel and f i l e  system are informed, A process i s  removed 
* from the 'mproc' tab le  when two events have occurred: (1) i t  has exited o r  
* been k i l l e d  by a signal, and (2) the parent has dane a WAIT. I f  the process 
* ex i t s  f i r s t ,  i t  continues t o  occupy a s l o t  u n t i l  the parent does a WAIT. 
* 
* The entry points i n t o  t h i s  f i l e  are: 
* do-fork: perform the FORK system ca l l  
* doflrrcexi t: perform the EXIT system c a l l  (by c a l l i n g  m e x i  to) 
* m e x i  t: actual1 y do the e x i t i n g  
* do-wait: perform the WAJTPIO o r  WAIT system c a l l  
*/ 

#include "m.h" 
#include <sys/wai t . h> 
#include <minix/callnr.h> 
# i  ncl udc <signal . h> 
#i nel udo "mproc. h" 
t i n t l u d e  "param.hM 

Rdef i ne LAST-FEW 
--d ". 

2 /* last few s lo t s  reserved f o r  superuser */ 
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PRIVATE p id- t  next-pid = INIT-PI@+l; / *  next p i d  t o  be assigned */ 

FORWARD -PROTOTYPE (vo id  cleanup, [ r eg i s t e r  s t r u c t  mproc *ch i ld)  ) ; 

C 
/* The process po in ted  t o  by 'mp' has forked. Create a c h i l d  process. */ 

r eg i s t e r  s t r u c t  mproc *rmp; /* po i n t e r  t o  parent */ 
r eg i s t e r  s t r u c t  mproc *rmc; /* po i n t e r  t o  c h i l d  */ 
i n t  i, chi ld-nr ,  t; 
phys-clicks prog-c l icks,  child-base = 0; 
phys-bytes prog-bytes, parencabs,  child-abs; /* f n t e l  on ly  */ 

/* I f  tab les  might f i l l  up dur ing FORK, don ' t  even s t a r t  s ince recovery h a l f  
* way through i s  such a nuisance. 
* / 
mlp = mp ; 
i f  (procs-in-use == NRPROCS) r e t u rn  (EACAIN) ; 
i f  (procs-in-use >= NRPROCS-LAST-FEW && rmp->mp-effuid != 0)returnCEAGAIN): 

/* Determine how much memory t o  a l loca te .  Only the data and stack need t o  
* be copied, because t he  t e x t  segment i s  e i t h e r  shared o r  o f  zero length.  
* / 

p r o s c l i  cks = (phys-clicks) rmp-mp-seg[S] .nemlen; 
prog-cl icks += (rmp->mp-seg[S] . m e d  r - rmp-zmp-seg[D] .mem-vi r) ; 
prog-bytes = (phys-bytes) prog-cl icks << CLECICSHIFT; 
i f ( (chi  1 d-base = a1 loc-tnem(progx1 i cks)) == NOJEM) r e tu rn  (EACAIN) ; 

/* Create a copy o f  the parent 's core image f o r  the c h i l d .  */ 
child-abs = (phys-bytes) child-base << CLICLSHIFT; 
parent-abs = (phys-bytes) rmp->mp-seg[D] .memphys << CLICK-SHIFT; 
i = sys-copy(ABS, 0, parent-abs, ABS, 0 .  child-abs, prog-bytes); 
i f  (i < 0) panic("do-fork can' t  copy", i) ; 

/* Find a s l o t  i n  'mproc' f o r  the c h i l d  process. A s l o t  must e x i s t .  */ 
f o r  (mc  = bsnproc [O] ; nnc < dnnproc[NRPROCS] ; rmc++) 

i f  ( (mc->mp-flags & IN-USE) == 0) break; 

/* Set up the c h i l d  and i t s  memory map; copy i t s  'mproc' s l o t  frm parent .  */ 
ch i ld-nr  - (int)Ermc - mproc); /* s l o t  number o f  t he  c h i l d  */ 
procs-i n-use++ ; 
*rmc = *rmp; /* copy parent 's  process s l o t  t o  c h i l d ' s  */ 

rmc->mp-parent = who ; /* record c h i l d ' s  parent */ 
rmc->mp-f 1 ags &= -TRACED; /* c h i l d  does no t  i n h e r i t  t race  s ta tus  */ 
/* A separate I&D c h i l d  keeps the parents t e x t  segment. The data and stack 
* segments must r e f e r  t o  the new copy. 
* / 

i f  (!(rmc->mp-flags & SEPARATE)) rmc->mp-seg[T].melrtphys = child-base; 
rmc->mp-seg[D] . memphys = ch i  1 d-base ; 
rmc-zmp-seg[S] . memphys = rmc->mp-seg[D] . m e ~ p h y s  + 

(rmp->mp-seg[S] .rnem-vi r - rmp->mp-seg[D] .memvi r) ; 
rmc->mp-exitstatus - 0; 
nc->mp-sigstatus = 0; 

/* Find a f r ee  p i d  f o r  the  c h i l d  and put i t  i n  the tab le .  */ 
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do I 
t = 0 ;  /* 't' - 0 means p i d  s t i l l  f ree */ 
n e x t p i d  = (next-pid < 30000 ? n e x t s i d  + 1 : INIT-PID + 1) ; 
f o r  (rmp = bmproc[O] ; rmp < Qmproc[N~PROCSl; nnp++) 

i f  (rap-rmp-pid = next-pid I I rmp->mp-procgrp -= n e x t j i d )  { 
t = 1; 
break ; 

1 
rmc->mp_pid = next-pid; /* assign p i d  t o  c h i l d  */ 

1 wh i l e  (t); 

/* T e l l  kernel and f i l e  system about t he  (now successful)  FORK. */ 
sys-fork(who, c h i l d n r ,  rmc->mpgid, child-base) ; /* c h i  ld-base i s  68K only*/ 
tell-fs(FORK, who, ch i ld -n r ,  r m c - > w i d ) ;  

/* Report c h i l d ' s  m r y  map t o  kernel .  */ 
sys-nemnap(chi1d-nr, rmc->mp-seg); 

/* Reply t o  c h i l d  to wake i t  up. */ 
rep l  y(chi ld-nr, 0, 0 ,  NILPTRI ; 
re tu rnCnex tp i  d l  ; /* c h i l d ' s  p i d  */ 

1 

PUBLIC i n t  d o x e x i t ( )  
{ 
/* Perform t he  ex i t cs ta tus )  system ca l  
* which i s  a l so  c a l l e d  when a process 
*/ 

m e x i  tcmp, status) ; 
dont-reply = TRUE; /* don 
returnCOK) ; /* PrO 

1 

. The rea l  work i s  done by -ex i t ( ) ,  
i s  k i l l e d  by a s i gna l .  

t rep l  y t o  new1 y terminated process */ 
f o r m  re tu rn  code */ 

I 
/* A process i s  done. Release most o f  the process' possessions. I f  i t s  
* parent i s  wai t ing,  re lease the res t ,  e lse hang. 
*/ 

r e g i s t e r  i n t  proc-nr; 
i n t  parent-wai t i n g .  r ight -ch i  ld;  
p i h t  p ida rg  , procgrp; 
phys-clicks base, s ize, s; /* base and s ize  used on 68000 only */ 

proc-nr = ( in t )  (rmp - mproc) ; /* g e t  process s l o t  number */ 

/* Rernernber a session leader 's process group. */ 
procgrp - (rmp->mp_pid == mp->mp-procgrp) ? mp->mp_procgrp : 0; 
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/ *  If the  ex i t ed  process has a t imer  pending, k i l l  i t .  */ 
i f (rmp->mp-f 1 ags & ALARtON) set-a1 armCproc-nr , (unsigned) 0) ; 

/* T e l l  the kernel  and FS t h a t  the process i s  no .longer runnable. */ 
te l l - fs (EXIT,  proc-nr. 0, 0); /* f i l e  system can f r e e  t h e  proc s l o t  */ 
sys-xi t (rmp->mp_parent, proc-nr, &base, &size) ; 

/* Release t he  memory occupied by the c h i l d .  */  
i f (f i nd-share (rmp, rmp->mp-i no, rmp->mp-dev , mp->mp-cti me) =I NULL) { 

/* No other  process shares t h e  t e x t  segment, so f r e e  it. */ 
f ree_mem(rmp->mp-seg(T1 .mem-phys, rmp->mp-seg [TI .mem-1 en) ; 

I 
/* Free the data and stack segments. */ 
f ree-rnem (rmp-zmp-seg [Dl . memjhys . 

rmp-mp-segCSl . mem-vi r + rmp->mp-seg CS] ..nem-len - rmp->mp-seg [ D l  . m e ~ v i  r) ; 

/*  The process s l o t  can on ly  be f reed i f  the parent has done a WAIT. */ 
rmp-mp-exi t s t a t u s  t (char) ex i  t -status; 
p i  darg = mproc [rmp-xup-parent] .mp,wpid; /*  who's being waited f o r?  */ 
parent-wai t i  ng = mproc [rmp-zmp-parent] . mp-f l ags  & WAITING; 
i f (pi darg == - 1 I I p i  darg == r m p - m p j i  d I I -p i  darg == rmp-amp-procgrp) 

r i gh t - ch i l d  = TRUE; /* c h i l d  meets one o f  the  3 t e s t s  * /  
e l se  

r i gh t - ch i l d  = FALSE; /*  c h i l d  f a i l s  a l l  3 t e s t s  */ 
i f  (parent-wai t i n g  && r ight -ch i  ld)  

c l  eanup( rmp) ; /* t e l l  parent and release c h i l d  s l o t  * /  
e l se  

rmp-rrnp-flags I=  HANGING; /*  parent not wai t ing,  suspend c h i l d  */ 

/* I f  t h e  process has ch i l d ren ,  d i s i n h e r i t  them. INIT i s  the new parent. */ 
f o r  (rmp = &nproc[Ol; rmp < &mproc[NR-PROCS] ; mp++) 1 

i f  (rmp->mp-flags & IN-USE &% rmp->mp_parent -= proc-nr) I 
/+ 'rmp* noru po in ts  t o  a c h i l d  t o  be d i s i nhe r i t ed .  */ 
rmp-mpgarent  = INIT-PROC-NR; 
parent-wai t i n g  .: mprocf INIT-PROC-NRI .mp_f 1 ags 81 WAITING; 
i f (parent-ruai t i  ng 66 (rmp->mp-f lags & HANGING)) cleanup(rmp) ; 

1 
1 

/ *  Send a hangup t o  the process' process group i f  i t  was a session leader.  * /  
if (procgrp ! = 0) check-sig<-procgrp, SIGHUP) ; 

1 

Q do-wai t p i d  

PUBLIC i n t  do-wai t p i  d 0  
i 
/* A process wants t o  wa i t  f o r  a c h i l d , t o  terminate. I f  one i s  already wai t ing,  
* go clean i t  up and l e t  t h i s  WAIT c a l l  terminate. Otherwise, rea l  1 y wa i t .  
* Both WAIT and WAITPID are handled by t h i s  code. 
* / 

reg i s t e r  s t r u c t  rnproc * rp ;  
i n t  pidarg, opt ions,  ch i  ldren, res2 ; 

/* A process c a l l i n g  WAIT never ge ts  a r ep l y  i n  t h e  usual way v ia  the 
* r e p l y 0  i n  the main loop (unless W A , W  i s  set o r  no q u a l i f y i n g  c h i l d  
* ex i s t s )  . I f  a c h i l d  has a3ready ex i ted,  t h e  r ou t i ne  cleanup[) sends 
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* the reply t o  awaken the c a l l e r .  
* / 

/* Set in te rna l  variables. depending on whether t h i s  i s  WAIT o r  WAITPID. */ 
p i  darg = (mmxall == WAIT ? -1 : pid) ; /* f i r s t  param of wai tp id */ 
opt ions = (-call == WAIT ? 0 : sig-nr) ; /* t h i  r d  param o f  wai tp id */  
i f  (pidarg == 0) pidarg = -mp-mp-procgrp; /* pidarg < 0 =I> proc grp +/ 

/* IS there a c h i l d  wai t ing t o  be col lected? A t  t h i s  point ,  pidarg != 0: 
* pidarg > 0 means pidarg i s  p i d  of a specific process to  w a i t  for 
* pidarg == -1 means w a i t  for any chi ld  
* pidarg < -1 means wai t  f o r  any c h i l d  whose process group - -pidarg 
*/ 

chi ldren = 0; 
for ( rp = &nproc[O] ; r p  < dmproclN~PROCS1; rp++) { 

i f  ( (rp-mp-f lags 6 I k U S E )  &il rp->mp-parent == who) i 
/* The value o f  pidarg deternines which chi ldren qua l i f y .  * /  
i f  (pidarg > 0 ddr pidarg !- r p - ~ p - p i d )  continue; 
i f  (pidarg < -1 Mt -pidarg !- rp-mp-procgrp) continue; 

children++; /* t h i s  
if (tp->mp,f 1 ags & HAIJCINC) { 

/* This c h i l d  meets t h e  
cleanup(rp) : /* t h i s  
dont-reply = TRUE; 
return(0K) ; 

3 

c h i l d  i s  acceptable */ 

p i d  test and has exited. */ 
c h i l d  has already ex i ted  */ 

i f  ((rp->mp-flags & STOPPED) 6dr rp->mp-sigstatus) C 
/* This c h i l d  meets the  p i d  t es t  and i s  being traced.*/ 
res2 = 0177 1 ( rp -m-s igs ta tus  cc 8); 
rep1 y(who, rp-mp-pid. res2, MIL-PTR) : 
d o n t r e p l  y = TRUE ; 
rp-wmp-sigstatus = 0; 
return(OK) ; 

3 
3 

3 

/* No qua l i fy ing  c h i l d  has exited. Wait f o r  one, unless none ex i s t s *  */ 
i f  (chi ldren > 0) { 

/* At leas t  1 c h i l d  meets t h e  p i d  t es t  ex is ts,  but has not exited. */ 
i f  (options & WNOHANC) return(0); /* parent does not  want t o  wai t  */ 
mp- >mp_f 1 aqs I WAITIMG ; /* parent wants t o  mi t */ 
mp-mp-npi d = (pi  d-t) p i  darg ; /* save p i d  f o r  l a t e r  */ 
h t - r e p 1  y = TRUE; /* do not reply now though */ 
return(0K) ; /* yes - wa i t  f o r  one t o  e x i t  */ 

3 e lse  { 
/* Wo c h i l d  even meets the p i d  t es t .  Return e r r o r  imnediately. */ 
return(EO1ICO) ; /* no - parent has no chi ldren */ 

1 
3 

/ * ~ = = = ~ r r r r ~ r r r r r r - ~ - ~ ~ ~ ~ ~ = ~ ~ = t ~ ~ ~ ~ ~ - m ; ~ ~ - t ~ ~ ~ ~ = ~ ~ ~ = = = ~ ~ a = = ~ ~ = = s ~ = = ~ *  ' 

cleanup a 

* L ~ ~ = = = ~ ~ ~ ~ = = = = ~ ~ O ~ P ~ = ~ L ~ ~ ~ ~ = I ~ ~ ~ = = ~ ~ ~ P ~ C L ~ ~ P = = ~ ~ ~ ~ ~ = I = = ~ = = I P = = ~ ~ ~ = = = . = ~ I ~ C = = ~ * /  

PRIVATE vaid cleanup(chi7d) 
reg is te r  s t ruc t  mpmc *chi ld; /* t e l l s  which process i s  e x i t i n g  */ 
E 
/* Fin ish o f f  t he  e x i t  o f  a process. The process has ex i ted  or been k i l l e d  



File: src/mrn/forkexit.c MINIX SOURCE CODE 

* by a signal.  and i t s  parent i s  waiting. 
'/ 

i n t  exi ts tatus;  

/* Wake up the parent. */ 
exi  ts tatus - (chi Id->mp-exi ts ta tus  <c 8 )  1 (chi Id->mp,sigstatus 6 0377) : 
rep1yCchi ld-mpjarent , child->np_pid, ex i  tstatus, NIL-PTR) ; 
rnproclchi Id->mpgarant ] . mp-f 1 ags b WAITINC; /* parent no 1 onger wa i  t i  ng */ 

/* Release the process table entry. */ 
chi  Id->np-flags = 0; 
procs-i n-use-- ; 

/* This f i l e  handles the EXEC system ca l l .  It perfoms the work as fo l lows:  
* - see i f  the permissions al low the f i l e  t o  be executed 
* - read the header and extract the sizes 
* - fe tch  the i n i t i a l  args and envi romncnt from the user space 
* - a l locate the mewry f o r  the new process 
* - copy the i n i t i a l  stack from MM to the process 
* - read i n  the tex t  and data segments and copy t o  the process 
* - take care o f  setuid and setgid b i t s  
* - f i x u p  'mproc' table 

- t e l l  kernel about EXEC 
* - save o f f se t  t o  i n i t i a l  argc (for ps) 
1 

1 The entry points i n t o  t h i s  f i l e  are: 
* do-exec: perform the EXEC system c a l l  
* find-share: f i n d  a process whose tex t  segment can be shared 
*/ 

Winclude "m. h" 
#include <sys/stat .h> 
Xincl ude 4 ni  x /ca l l  n r  . h> 
#include ca.0ut.b 
#include <signal . h> 
#include c s t r i  ng . hr 
# inc l  ude ''RIPPOC .h" 
#include "param.hU 

FORWARD -PROTO'IYPE( void load-seg, ( i n t  f d  , i n t  seg , v i  r-bytes seg-bytes) ) ; 
FORWARD -PROTOTYPE( i n t  newflem, (st ruct  mproc *sh~np. v i  r-bytes text-bytes , 

v i  r-bytes d a t ~ b y t e s .  v i  r-bytes bssbytes, 
vir-bytes s tkby tes ,  phys-bytes tot-bytes) 1; 

FORWARD -PROTOTYPE( void p a t c h s t r .  (char stack [ARLMAX 1 , v i  r-bytes base) I ;  
FORWARD -PROTOTYPE< i n t  read-header, ( i n t  f d ,  i n t  *ft, v i t b y t e s  *text-bytes, 

vir-bytes * d a t ~ b y t e s ,  vir-bytes *bss-bytes, 
phys-bytes *tot-bytes, long *s-bytes, v i  r-cl i cks  sc, 
v i  r-bytes *PC) 1; 
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PUBLIC i n t  do-exec0 

/* Perform t h e  execve(name, argv, envp) c a l l .  The user l i b r a r y  bu i l d s  a 
* complete stack image, inc lud ing  po in ters ,  args, envi ron, e t c .  The stack 
* i s  copied t o  a b u f f e r  i n s i d e  M, and then t o  t h e  new core image. 
*/  

register  s t r u c t  mproc *rmp; 
s t r u c t  mproc *sh~np ;  
i n t  m ,  *r, f d ,  ft, sn; 
s t a t i c  char m b u f [ A R W ] ;  /* b u f f e r  f o r  stack and zeroes */ 
s t a t i c  char namehuflPAM-MAX]; /* t h e  name o f  t he  f i l e  t o  exec */ 
char *new-sp, 'basename; 
vir-bytes src,  ds t ,  text-bytes, d a t ~ b y t e s .  bss-bytes, s t k b y t e s ,  vsp; 
phys-bytes tot-bytes; /* t o t a l  space for program, i nc l ud i ng  gap */ 
lone syhby tes ;  I 

v i  r -c l  i cks sc; 
s t r u c t  s t a t  s-buf; 
v i r-bytes pc; 

/* Da sane v a l i d i t y  checks. */ 
rrnp = mp; 
s t k b y t e s  = (vir-bytes) s t ackby tes ;  . 
i f (stk-bytes > ARGPbAX) returntENCWM) ; /* stack too b ig  */ 
i f  (exec-len <= 0 1 1 exec-len > PATHJAX) return(E1NVAL); 

/* Get the exec f i f e  name and see i f  t h e  f i l e  4s executable. */ - 
s rc  = (v i  r-bytes) exec-name; 
ds t  = (vir-bytes) name-buf: 
r = sys-copy(who. 0, (phys-bytes) src,  

W - P R K N R ,  D, {phys-bytes) d s t  , (phys-bytes) exec-1 en) ; 
i f  (r != OK) returner); /* f i l e  name not  i n  user data segment */ 
t e l  l,f$(CHDIR, who, FALSE, 0) ; /* swi tch t o  t h e  user 's FS envi ron. */ 
f d  = a1 lowed(name-buf, &s-buf , L B I T )  ; /* i s  f i l e  executable? */ 
i f  (fd < 0) returni fd);  /* f i l e  was not executable */ 

/* Read t h e  f i l e  header and ex t rac t  t h e  segment sizes. */ 
sc = (stk-bytes + C L I C L S I Z E  - 1) >> CLICLSHIFT; 
m = read-header(fd, & f t ,  &text-bytes, bda thby tes ,  ass -by tes ,  

&tot-bytes, bs-bytes, sc, &PC) ; 
i f  (m < 0) { 

close(fd) ; /* something wrong w i t h  header */ 
r e t u rn  (ENOEXEC) ; 

3 

/* Fetch t h e  stack from t h e  user before des t roy ing  t h e  o l d  core image. */ 
src  - (v i  r lby tes) 's tack_ptr ;  
ds t  - Cvi r-bytes) mbuf; 
r P sys-copy(Who, D, (phys-bytes) src ,  

MM_PROCNR, D, (phys-bytes) ds t  , (phys-bytes) stk-bytes) ; 
i f  (r !a OK) { 

close (fd) ; /* can't . fe tch  stack (e.g. bad v i r t u a l  addr) */ 
r e t u rn  (EACCES) ; 

1 

/*rCan the process' text be shared w i t h  t h a t  o f  ene alrealy running? */ 
sh-p - find-ShareCrmp, s-buf .st-jno, s-buf .st-dev, s-buf .st,ctime); 

/* A1 1 ocate new memory and re1 ease old memory. F i x  map and t e l l  kerne l  . */ 
r new-mem(sh_nrp, text-bytes, da thby tes ,  bss-bytes, stk-bytes, tot-bytes); 
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/* insuf f ic ient  

/* Save f i l e  ident i f ica? Ion to  allow i t  t o  be 
mp-~p - ino  = s h f .  s t - i  no: 
rmp-zip-dev = s_buf.st-dev; 
rmp-m-ctime - s b u f .  st-ctime; 

M1NlX SOURCE CODE 

core or program too b i g  */ 

shared. */ 

/* Patch up stack and copy i t  from M4 t o  new core image. */ 
vsp = (vi  r -byt t r )  mp-*stg[S) .*ecrtvi r cc CLICLSHIFT; 
vsp += (v i  r-bytes) rrp->mf~segfS] . m e ~ l e n  cc CLICLSHIFT; 
vsp -= stkbytes;  
patchgtr(rbuf, vrp); 
s rc  I ( v i rby te r )  rbuf; . 
r -. s y s - c o p y C m P R ~ ,  D, (phys-bytes) src. 

dw, D. (phys-bytes) vsp, Cph~s-bytes)stk4ytes) ; 
i f  (r !I OK) panic("do,exec stack copy err" ,  NO3fI.H); 

/* Read $n tex t  a d  data sepents. */ 
i f  ( s h m  !- NULL) { 

lseek(fd, (off-t) t e r t b y t r s .  SEELClMt) ; /* shared: skip t ex t  */ 
) else { 

loahseg(fd, T, text-bytes); 
1 
loadseg(fd, 0.  d a t ~ b y t e s )  ; 

closeCfd) ; /* don't need exec f i l e  MY more */ 

/* Take cart  o f  setuid/sttgid bi ts.  */ 
if ( ( m - , q , f l a g s  I TRACED) I= 0) { /* suppress i f  tracing */ 

if (5-buf. strode & I_SET,UI0,8IT) { 
r rg -w-e f fu id  = ~ b u f  . s t u i d ;  
tell-fs(SETUID,who (i ntlmp->np-realuid, (int) nnp->mp-effuid) ; 

1 
i f (Lbuf.  s-e & IJET-CIO-BIT) { 

r r p - q - e f f g i d  I s-buf. st-gid; 
tell-fs(SETCID,who, Cint)mg->lrp-realgid, ( int) rmp->rp-effgid) ; 

3 
3 

/* Save offset to  i n i t i a l  argc ( for  pr) */ 
np -~q -p roca rgs  = vsp; 

/* Fix 'm~roc* f ie lds,  t e l l  kernel that exec i s  done, reset caught sigs. */ 
for Csn - I; sn <= ,NSIG; sn++) { 

if (sigisncnber(&mp->crp,catch, sn)) { 
sigdelset(&mp-*catch, sn) ; 
rmp->mp,sigact [sn] . s h h a d l e r  = SILDFL: 
sigccptyset(&rrp-~lrp,sigactIsnl .s-sk); 

mp->mp-flags db 'SEPARATE; /* 
mp->.p-flags I- ft: /* 
new-sp = (char *) vsp: 

tell-fs(EXEC, who, 0, 0); . / *  

turn  o f f  SEPARATE b i t  +/ 
turn i t on f o r  separate I & D f i l e s  */ 

a1 low FS to  handle FD-CLOUEC f i l e s  */ 
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/* System w i l l  save camand l i n e  for debugging, psC1) output, etc. */ 
basernarnc - s t  rrchrtnarw-barf. */'I ; 
if (basename =- NULL) bastmawe - n a m a h f ;  e lse  barenante++; 

' 

sys-exec (who, new-sp, mp-zmp-f lags & TRACED, basename, pcl ; 
return(0K); 

3 

/*,,,,,,,,,,,,,,,,,I1I~~~-~~~=P=m===~~=~r=~.:=s~=-~======~~=~~~-~~*===* 

L read-heade r * 
*~t,ll~l--lt~l-ltft~~lt~.1~I~f~t9t~=~~I~~~3=t~93e~ti~-~t==~=5==~---n**/ 

PRWATE i n t  read-header(fd, ft , t e x t b y t e s  , dathby tes  , bss-bytes, 
t o t b y t e s ,  sy lby tes ,  sc, pc) 

i n t  fd; /* f i l e  descr iptor  f o r  reading exec f i  te */ 
in r  *ft; /* place t o  return ft nmber */ 
v i  r-bytes * t e x O y t e s ;  I* place t o  re turn  t e x t  s ize  */ 
vf r-bytes *dat i lbytes;  /* pf ace t o  return i n i  t i a l i r e d  data size */ 
v i  r-bytes *bss,bytes; /* place t o  re turn  bss s i ze  */ 
phys-bytes * t o t b y t e s ;  /* place to return t o t a l  size */ 
long * s m b y t e s  ; /* place t o  return syabol tab le  size */ 
v i  r -c l  i cks sc; /* stack size i n  c l i cks  */ 
v i  r-bytes *pc; /* program entry po in t  ( i n i t i a l  PC3 */ 
I 
/* Read the header and ex t rac t  the tex t ,  data. bss and t o t a l  sizes from i t .  */ 

i n t  m, ct; 
vi~,clicks t c ,  dc, s-vir, d v i r ;  . 
phys-clicks totc; 
s t  ruct exec hdr ; /* a.wt  header i s  read i n  hare */ 

/* Read the header and check the magjc nmber . The standard MINIX header 
* i s  defined i n  ch.out.hz. It consists o f  8 chars followed by 6 longs. 

Then come 4 rore 1-s that are not used here. 
* Byre 0:  magic nunbcr 0x01 
* Byte 1: magic number Ox03 
* Byte 2: normal = 0x10 (not checked. 0 i s  CM) , separate XI0 - Ox20 
* Byte 3: C W  type, Intel 16 b i t  = 0 x 0 4 .  I n t e l  32 b i t  = 0x10, 

Motarola - OttQB, Sun SPARC * Ox17 

* Byte 4: Header length = Ox20 
* Bytes 5-7 are not used. 
* 
* Mow come the 6 longs 
* Bytes 8-11: size o f  t e x t  sepwnts i n  bytes 
* Bytes 12-15: size o f  i n i t i a l i z e d  data segment i n  bytes 
* Bytes 16-19: size of bss i n  bytes 
* Bytes 20-23: program entry po in t  
* Bytes 24-22: total m r y  al located t o  prograa ( text ,  data 4 stack) 
* Bytes 28-31: s ize  o f  symbol tab le  i n  bytes 
* The longs are represented i n  a machine dependent order, 
* l i t t l e - e n d i a n  on the 8088, big-endian on the 68000. 
* The header i s  fallowed d i r e c t l y  by the tex t  and data segments, and the 
* symbol table ( if any). The sizes are given i n  t h e  header. Only the 
* t e x t  and data segments are copied i n t o  memory by exec. The header i s  
* used here only. The symbol tab le  i s  f o r  the benef i t  of  a debugger and 
* i s  ignored here. 
*i 

i f  (readCfd, (char *) &Mr ,  U I N H O R )  !- U I N H D R )  returnCENOEXEC); 
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/* Check magic number, cpu type, and f lags .  */ 
i f (BAOMAG(hdr)) return(EN0EXEC) ; 

#if (CHIP == INTEL && -WORDS1 ZE == 2 )  
i f  ( h d r - ~ c p u  != LIB086) return(ENOEXEC); 

Yendi f 
#if (CHIP =- INTEL 6& ,WORD,SIZE == 4) 
if (hdr. h c p u  !- A-180386) return(ENOEXEC) ; 

#endi f 
if ( ( h d r . ~ f l a g s  & ' (LNSYM I L E X E C  1 L S E P ) )  != 0 )  returnCENOEXEC); 

*ft = ( (hdr .&f lags & 4_4EP) ? SEPARATE : 0) ; /* separate I & D o r  not  */ 

/* Get t e x t  and data sizes. */ 
*text-bytes = (vir-bytes) h d r . ~ t e x t ;  /* t e x t  s i z e  i n  bytes */ 
' da tcby tes  a (wit-bytes) h d r . a d a t a ;  /* data s i ze  i n  bytes */  
*bss,bytes (vf r-bytes) h d r . ~ b s s ;  /* bss s ize i n  bytes */ 
*tot-bytes P hd r . h t o ta1 :  /* t o t a l  bytes t o  ,a l locate for p rog  */ 
* s y ~ b y t e s  = hdr.hsyms; /* symbol t ab l e  s i ze  i n  bytes */ 
i f ( ' tot-bytes == 0 )  returnCENOEXEC) ; 

if ( e f t  != SEPARATE) I 

/* If I & D space i s  no t  separated, i t  i s  a l l  considered data. Text=O*/ 
* da taby tes  += *text-bytes; 
*text-bytes = 0; 

1 
*pc = hd r .  a e n t r y ;  /* i n i t i a l  address t o  s t a r t  execution */ 

/* Check to  see i f  segment s izes are feas ib le .  */ 
t c  - ((unsigned long) *text-bytes + CLICK-SIZE - 1) >> CLICLSHIFT; 
dc - (*ctat&bytes + tbss-bytes + CLICLSIZE - 11 >> CLICK-SHIFT; 
t o t c  t C*tot_bytes + C L I C L S I Z E  - 1) >> CLICICSHIFT; 
i f  (dc >= t o t c )  re tu rn (EWEC) ;  /* stack must be a t  least: 1 c l i c k  * /  
dvi  r E (*ft == SEPARATE ? 0 : tc) ; 
s-vi r = dvi  r + ( t o t c  - sc); 
m E size-ok(*ft, t c ,  dc, SC, d v i r ,  s -v i r ) ;  
c t  = hdr.&hdrlen & BYTE; /* header leng th  */ 
i f  ( c t  > MINHDR)  IseekI fd ,  (off-t) c t ,  SEEKSET) ; /* skip unused hdr */ 
r e t u rn  (m) ; 

1 

PRIVATE i n t  new_mem(sh_nrp, text-bytes , d a t ~ b y t e s  ,bss,bytes , s t k b y t e s ,  tot-bytes) 
s t r u c t  mproc *shnp; /* t e x t  can be shared w i t h  t h i s  process */ 
v i  r-bytes tent-bytes ; /* t e x t  segment s i ze  i n  bytes */ 
v i  r-bytes d a t ~ b y t e s ;  /* s i ze  o f  i n i t i a l i z e d  data i n  bytes */ 
v i  r-bytes bss-bytes; /* s i z e  o f  bss i n  bytes */ 
v i  r-bytes s t k b y t e s ;  /* s i t e  o f  i n i t i a l  stack segment i n  bytes */ 
phys-bytes t o t h y t e s ;  /* t o t a l  memory t o  allocate. i n c l ud i ng  gap * /  
C . .  
/*  A l loca te  new m r y  and release t h e  o l d  memory, Change the map and repor t  

* the  new map t o  the kerne l .  Zero t h e  new core image's bss, gap and stack. 
" / 
r e g i s t e r  s t r u c t  mproc *mp;  
v i r - c l i c k s  t ex t - c l i  cks, d a t ~ c l i c k s ,  gap-clicks, s t a c k c l i c k s ,  t o t - c l i c ks ;  



MlNlX SOURCE CODE File: srdmrdexec.~ 

phys-clicks new-base; 

s t a t i c  char zero[lO243 ; /* used 
phys-bytes bytes, base, count, bss-offset ; 

to zero bss */ 

/* NO need t o  a l loca te  t e x t  if i t  can be shared. */ 
i f  Csh- != NULL) text-bytes = 0; 

/* Acquire the new memory. Each o f  the 4 parts: t ex t ,  (data+bss), gap, 
* and stack occupies an i n teg ra l  number of c l i cks ,  s t a r t i n g  a t  c l i c k  
* boundary. The data and bss par ts  are run together w i t h  no space. 
* / 

text-cl icks = ((unsigned long) text-bytes + CLXCLSIZE - 1) >> CLICICSHIFT; 
d a t h c l i c k s  - Cdatkbytes + bss-bytes + CLICKSIZE - 1) >> CLICLSHIFT;  
stack-clicks = Cstkbytes  + CLICLSIZE - 1) >> CLICLSHIFT; 
to t -c l icks 4 (tot-bytes + C L I C L S I Z E  - 1) >r CLICKSHIFT; 
gap-clicks = to t -c l i cks  - d a t h c l i  cks - s t a c k c l i c k s ;  
if ( ( i n t )  gap-clicks < 0)  return(ENOMEM); 

/* Check t o  see i f  there i s  a hole b i g  enough. I f  so, we can r i s k  f i r s t  
* releasing the o l d  core image before a t  loca t ing  the new one, since we 
* know 3 t w i l l  succeed. I f  there i s  not enough, return fa i l u re .  
"/ 

'l'f ( text-cl icks + to t -c l i cks  > max,hole()) retucn{EAGAIN) ; 

/* There i s  enough memory f o r  the new core image. Release the o l d  one. */ 
mw - mp; 
if C f i  nhshare(rnp, rmp->mp-ino, mrp->mp_dev, rmp-m-ctime) - NULL) { 

/* No other process shares the text segment, so f ree  It. */ 
fr te~cmCnap-q-s@g[Tl.  n e w h y s ,  mp->mp-seg[TJ .-led ; 

1 i 

/* Free the data and stack segments. */ 
fr-Crw-mp-segiQ] .nekphys, 

/* We have nmu passed the point of  no return. The o l d  core image has been 
+ forever lost., The c a l l  must go through now. Set up and report new map. 
/ 

new-base - dl l a~ j~cn( tcx t ,c l  i c  + t o ~ c ' l  i cks) ; /* new core image */ 
i f  (new-base -- NOJEM) panic("W hole l i s t  i s  i nconsistcnt", N O - M I  ; 

i f  ( s h ~ n p  != NULL) { 
/* Share the t e x t  segment. */ 
rmp-~mp,seg[Tl = sh-mp->mp-seg [T I  ; 

E else 
nnp->tap-segCTj . w h y s  = new-base ; 
rmp->mp-segCT1 . m n v i  r = 0; 
rmp->mp-seg[T].men~len s tent-clicks; 

1 
rmp->mp-seg[Dl .memshys a new-base + text-cl icks; 
'mp->mp-seglD] .mmvi  r = 0 ;  
mp->mp-seg[D] .aerblen = data-cl icks;  
m->mp-reg[Sl .memshys = rp->mp-seg[D] .mekphys + d a t h c l i c k s  + gap-clicks; 
np->mp-seglSf .nealvir = rmp->mp,seg[Dl.men~vir + dathclicks + gap-clicks; 
rrrrp-mp-seg[S] . m e ~ l  en = s tac lcc l  i cks ; 

sys-nem*ap(who, ru?p->w-seg); /* report  new map to .  the kernel */ 
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/* Zero the bss,  gap, and stack segment. */ 
bytes = (phys-bytes) ( d a t h c l  i cks  + gap-cl i cks + stack-cl i  cks) <i CLICK-SHIFT; 
base (phys-bytes) nnp->mp-seg[D] .memphys c< CLICK-SHIFT; 
bss-of fset  = ( d a t ~ b y t e s  >> CLICK-SHIFT) << CLICLSHIFT ; 
base += bss-offset; 
bytes -= bss-offset; 

whi le (bytes > 0 )  { 
count = MIN(bytes. (phys-bytes) s i  zeof (zero)) ; 
i f  (sys,copy(mPROC-NR, D. (phys-bytes) zero, 

ABS, 0, base, count) != DK) i 
panic("nen-mem can't zero", NO-NUM); 

1 
base += count; 
bytes -= count; 

1 

4 patch-ptr t 

*-- - - = = ~ = = ~ = = ~ ~ = ~ = s = = = = = = = = = ~ = = = = = = = = = = = = = = ~ = = = = ~ ~ = * - = ~ = ~ - = ~ ~ = = * ~ = ~ = = ~ s = = = = = = * /  

PRIVATE void patchgt r (s tack ,  base) 
char stacklARGMAX1; /* pointer  t o  stack image w i th in  WI */ 
v i  r-bytes base ; /* v i r t u a l  address o f  stack base ins ide user */ 

/* Uhen doing an erec(nam. argv, envp) c a l l ,  the user bu i lds  up a  stack 
* image w i t h  arg and env pointers r e l a t i v e  t o  the s t a r t  of the stack. Horr 
* these p i n t e r s  must be relocated, since the stack i s  not positioned a t  
* address O i n  the user's address space. 
*/ 

char **ag, flag; 
v i  t b y t e s  v; 

f l a g  = 0 ;  /* counts number of  0-pointers seen */ 
ap P (char "*) stack; /* points i n i t i a l l y  t o  'nargs' */ 
ap++ ; /* now points t o  argv[oj */ 
wh i l e  ( f lag < 2) ( 

i f  (ap >= (char **) &stack[ARC_MAX]) return; /* toa  bad */ 
i f  (*ap !- NIL-PTR) { 

v I (vir-bytes) *ap; /* v i s  r e l a t i v e  pointer  */ 
v += base; /* relocate i t  */ 
*ap = (char *I v; /* put i t  back */ 

) e lse  { 
flag++; 

1 
ap++ ; 

1 
I 
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int seg; /* T o r  D */ 
v i  r-bytes scgbytts;  /* how b ig  i s  the segaent */ 
I 
/* Read i n  tex t  or data f ~ l r  the exec f i l e  and copy to  the new core image. 

This procedure i s  a l i t t l e  b i t  t r icky .  The logical  way t o  load a segment 
would be t o  read it block by block and copy each block to  the user space 
one a t  a ti-. This i s  too slaw, so we do s m t h i n g  d i r t y  here, n u c l y  
send the user sflace and v i r tua l  aUdress t o  the f i l e  rystea i n  the upper - 10 b i t s  o f  the f i l e  descriptar, a d  pass i t  thc user v i r tua l  address 
Snstead o f  a U! address. The f i l e  system extracts these parameters when 
gets a read c a l l  from the ncrory manager. which i s  the only process that 
i s  penrftted to use this t r ick .  The f i lh system thcn copies the whole 
scprrcnt d i rec t l y  to  user space, bypassing CU completely. 

*/ 

i n t  ncw-fd, bytes; 
char 'ubufatr; 

new-fd = (urha 8< 8 )  1 (seg cc 6) 1 fd; 
ubu fa t r  = (char *) ((vi r+bytes)rp-m-segCseg3 . n r c l v l  r <c CLECLSHIFT) ; 
while ( s e ~ b y t e r  I =  0) { 

bytes = C IWTW / BLOtlCSIZE) * BLOCICSIZE; 
i f  Cseg-bytes c bytes) 

bytes = C1nt)seg-bytes; 
i f  (read(new,M, ubufgt r .  bytes) !- bytes) 

break ; /* error */ 
u b u f s t r  4- bytes; 
seg-bytes -I bytes; 

3 
1 

/ * ~ . ~ ~ ~ I I I ~ ~ * ~ ~ ~ U ~ ~ I I ~ ~ I ~ ~ ~ L I ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ P ~ I ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ I ; ~ ~ . ~ ~ ~ ~ ~ ~ C I I I I I *  

* f i nd-share 
* r r r ~ = r r r r r r ~ r r r r r r r ~ ~ = i = = = ~ ~ = - ~ ~ ~ = ~ ~ ~ ~ ~ = ~ ~ ~ ~ = ~ ~ = = ~ = - ~ = = - ~ w ~ = = . ~ r - * /  

W B L I C  struct  mproc * f  i nd-share(mp,ign, ino, dev, ctime) 
struct  *roc *np-lgn; /+ process that should not be looked a t  */ 
i no,t i no; /* parameters that uniquely i den t i f y  a f i l e  */ 
dev-t dev; 
rim-5 crime; 
i 
/* Look for a process that i s  the f i l e  cino, dev, c t i w ,  i n  execution. Don't 
* accidentally "find" ~llp-ign, because i t  i s  the process on whose behalf th i s  
* ca l l  i s  made. 
*/ 
struct  nproc *sh-; 

fo r  (sh~np - &nproc[INIT,PRKNR] ; shnp < brrproc[NRPRDCS] ; sh-+*) ( 
i f  ((sh-mp->mp_flags & (IN-USE I WIWG I SEPAIUTE)) 

!I (IN-USE I SEPARATE)) continue; 
i f  (sh- == asp-ign) continue; 
i f  Cshmp->np-ino != ino) continue; 
i f  (shm-mp-dev !I dev) continue; 
i f  (sh~np->mp-ctime I =  ctirnc) continue; 
return s h m ;  

1 
return(NULL) ; 

1 
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The MINIX model of memory a l l o c a t i o n  reserves a f ixed amount o f  memory for 
t h e  combined t e x t ,  data, and stack segments. The amount used fo r  a c h i l d  
process created by FORK i s  the same as t h e  parent  had. I f  t h e  c h i l d  does 
an EXEC l a t e r ,  t h e  new s ize  i s  taken f r o m  the  .header of the f i l e  EXEC'ed. 

The layou t  i n  memory cons is ts  o f  the  t e x t  segment, fo l lowed by t h e  data 
segment, fol lowed by a gap (unused memory), fol lowed by the stack segment. 
The data segment grows upward and the stack grows downward, so each can 
take memory from t h e  gap. If they meet, the process must be k i l l e d .  The 
procedures i n  t h i s  f i l e  deal w i t h  the growth o f  the  data and stack segments. 

The en t r y  po i n t s  i n t o  t h i s  f i l e  are: 
do-brk : BRK/SBRK system c a l l  s t o  grow o r  shr ink the  data segment 
ad just :  see i f  a proposed segment adjustment i s  allowed 
sire-ok: see i f  t h e  segment s izes are f eas i b l e  

Pde f i ne DATLCHANGED 1 /* f l a g  value when data segment s i ze  changed */ 
Xdef i ne STACLCHANGED 2 /* f l ag  value when stack sire changed */ 

r eg i s t e r  s t r t i c t  mproc *rmp; 
i n t  r; 
v i  r-bytes v, new-sp ; 
v i  r - c l i cks  new-clicks; 

nnp = mp; 
v = (v i  r-bytes) addr; 
new-clicks = (v i r - c l i cks )  ( ((long) v + C L I C L S I Z E  - 1) z> CLICICSHIFT); 
i f  (new-cl i cks c rmp->mp-seg[D) .memvi r) { 

res-ptr  = (char *) -I; 
return(ENOMEM) ; 

E 
new-cl i cks -= rmp->mp,seg [Dl . m e ~ v i  r ; 
sys,getspCwho, bnew-sp) ; /* ask kernel f o r  current  sp value */ 
r = adjust(rmp, new-clicks, new-sp); 
res-ptr = (r == OK ? addr : (char *) -1); 
re tu rn l r )  ; /* r e t u rn  new address o r  -1 */ 
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/ * = = = = = , % = = S = ~ ~ I ~ ~ S = I Z = = ~ S = = S I I ~ I ~ S ~ I = ~ I ~ S = ~ J ~ I ~ % - ~ ~ = ~ - ~ ~ ~ ~ ~ = P E I I L I I ~ L = I ~ *  
4 ad just  * 
* = ~ = r r = ~ ~ ~ a r r ~ t n r s n ~ = = = = ~ = = s = = = ~ ~ ~ = = = ~ = = a = = = = = = ~ = = = = ~ = s = = ~ = = = = = = ~ = ~ ~ = = = ~ = = ~ * /  

PUBLIC i n t  adjust(nnp, d a t ~ c l i c k s ,  sp) 
reg is te r  s t ruc t  mpmc *mp; /* Whose memory i s  being adjusted? */ 
v i  r-cl  icks d a t ~ c l i c k s ;  /* how b ig  i s  data segment t o  become? */ 
v i  r-bytes s p ;  /* new value of sp */ 
i 
/* See i f  data and stack segments can coexist,  adjust ing them i f  need be. 
* Memry i s  never a l l o c a ~ e d  or freed. Instead i t  j s  added or  removed from the 
* gap between data segment and stack segment. I f  the gap size becomes 

negative, the adjustment o f  data o r  stack f a i  I s  and E W E M  i s  returned. 
*/  

register  s t ruc t  menunap *mern_sp, *memAp; 
v i r -c l i cks  sp,click, gap-base, lower, old-cl?cks; 
i n t  changed. r ,  ft; 
long base-of-stack, del ta;  /* longs avoid ce r ta in  problems */ 

memdp = brmp->mp,seg [Dl ; /* pointer t o  data segment map */ 
menlsp = Lrmp->mp,seg[S) ; /* pointer t o  stack segment map */ 
changed = 0; /* set when e i t he r  segment changed *( 

i f  (memsp->-ten == O) returnCOK); /* don't bother i n i t  * /  

/* See i f  stack size has gone negative ( i . e . ,  sp too close t o  OxFFFF ... ) */ 
base-of s t a c k  = (long) neacsp-memvi r + (long) me~sp--len; 
sp-click = sp >> CLICLSHITT; /* c l i c k  containing sp */ 
4 f Isp-cl ick z= base-of-stack) return(ENOMEt4); /* sp too high */ 

/* Compute size o f  gap between stack and data segments. */ 
de l ta  = (long) merrlsp->me~vi r - (long) sp-click; 
lower P (delta > 0 ? sp-click : mentsp->mwmvi r) ; 

/* Add a safety margin for future stack growth. I ~ s s i b l e  t o  do r ight .  * /  
#define SAFETY-BYTES (384 sizeof(char *)) 
#define SAFETY-CLICKS ((SAFETY-BYTES + CLICLSIZE - 1) / C L I K S I Z E )  

gap-base - mem-dp->mvi r + d a t ~ c l i c k s  4 SAF€WXLfCKS; 
i f  (lower < gap-base) return(ENOHEM); /* data and stack co l l ided */ 

/* Update data length (but not data orgin) on behalf  o f  brkO system call. */ 
o ld_cl icks - tuemdp-meklen; 
i f  ( d a t a s l i c k s  != m d p - m e m l e n )  I 

me~dp->=len = d a t a x l i  cks; 
changed I= DATACHANGED; 

3 

/* Updare stack length and o r i g i n  due t o  change i n  stack pointer .  */ 
if (delta > 0 )  I 

menup->menlvi r -= delta; 
m e ~ s p - > m p h y s  -1 del ta;  
msksp-menllen +- delta; 
changed 1- STACICCHANGED; 

1 

/* Do the new data and stack segment s i z e s  f i t  i n  the address space? */ 
f t  = (rmp-mp-fl ags & SEPARATE) ; 
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/* ?dm sizes don't fit o r  require too lany page/scgrrent registers. Restore.*/ 
if (chingcd & D A T L W D )  l l ~ l l d p - ~ m c l l l e n  = o lCc l icks;  
i f  (changed & STAClCCHAmED) { 

m s p - > m v i  r +- delta: 
m s p - > r r m p h y s  +- delta; 
w s p - p n c l l l e n  -= delta; 

1 
return(ENOCTtrl) ; 

1 

/ * u r r = ~ = r r = = r r r r r a r m - r ~ t l ~ ~ m l _ ~ u ~ ~ ~ - ~ - ~ = - . ~ ~ ~ ~ r ~ ~ u ~ - ~ = = r ~ *  

s i  z c o k  t 

*nrrr-r- I~I~.R~~~L=~==-~R~~RIP~-II~T-II~III**/ 
W L I C  i n t  s i z c o k ( f i l c t y p e ,  tc ,  dc, sc, dvir ,  s-vir) 
i n t  f i l c t y p e ;  /* SEPARATE or 0 */ 
v i  r-clicks tc; /* tex t  size i n  c l i cks  */. 
v i  r-clicks dc; /* data size i n  c l icks  */ 
v i  r-cl icks sc; /* stack size i n  c l icks  */ 
v i  r-clicks dvir; /* v i r tua l  address f o r  s ta r t  o f  data seg */ 
v i  r -c l i  cks s-vi r; /* v i r tua l  address f o r  s ta r t  o f  stack seg */ 
{ 
/* Check t o  see i f  the sizes are feasible and e m g h  segmentation registers 
* exist .  On a machine with e i g h t  6K pages. tex t ,  data, stack s iz ts  of 
* (32K, 16K,  16K) w i l l  fit, but (33K, 17K, 13K) w i l l  not. even thargh the 
* former i s  bigger (64K) than the l a t t e r  (63K). Even on the  8088 t h i s  tes t  
* i s  needed, since the data a d  stack may not exceed 40% cl icks.  
*/ 

#if (CHIP -= INT€L _M)RD-SIZE == 21 
i n t  p t ,  pd, PS; /* segment sizes i n  pages */ 

i f  (fi le-type == SEPARATE) I: 
i f  Cpt > W P A C E S  I I pd + ps > W P A C E S )  r e t u r n C E W )  ; 

) else { 
i f  (pt + pd + ps > MA)CPffiES) return(EN0MEM); 

> 
#endi f 

i f  (dvi r + dc > s-v 
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+++++++++++++++++++++++++*+++++++++++++++++++++++++++++++++-++++++++++++++++++++++++ 
src /w/s i  gnal . c 

+++++++++++++++++++++++*++++++++++++++++++++++++++++++++++++*++++++++++++++++++*+++~ 

/* This f i l e  handles signals, which are asynchronous events and are generally 
a messy and unpleasant business. Signals can be generated by the KILL 

* systen c a l l ,  o r  from the  keyboard (SIGXCST) o r  from the clock. (SIGALRH). 
I n  a l l  cases control eventually passes t o  check-sig() t o  see which processes 
can be signaled. The actual signal ing i s  done by sig_proc(). 

* 
* The entry points i n t o  t h i s  f i l e  are: 
* do-sigactson: perform the SICACTION system c a l l  
* do-sigpendi ng: perform the SICPEPIDINC system c a l l  

do-sigprocmsk: perform the SIGPR(KMASK system c a l l  
* do-sigreturn: perform the SIGRETURN system c a l l  
* dksigsuspend: perform the SICSUSPEND system c a l l  
* k i l l  : perform the KILL system c a l l  
* do-ksig: accept a signal o r ig ina t ing  i n  the kernel (e.g. , SICIKT) 
* do-alarm: pe r fom the  ALARM system c a l l  by c a l l i n g  set-alarm0 
* s e c a l a m :  t e l l  the clock task t o  s t a r t  o r  stop a timer 

k p a u s e :  pe r fom the PAUSE systen call 
* &-reboot: k i l l  a l l  processes. then reboot systen 
* sig-proc: i n te r rup t  o r  terminate a signaled process 
* check-sig: check which processes t o  signal w i th  sig_proc() 
*/ 

li nclude "nn. h" 
#include <sys/rtat. h> 
#include 4 n i  x/cal l n r  . h r  
li nclude <mi ni x/com. hr 
Iri nclude <signal . h, 

#include <sys/sigcontext . h> 
Xinclvde < s t r i n g . b  
#include "rproc.hn 
#include "param. h" 

Xdef i ne  COREJODE 0777 /* mode t o  use on core image f i l e s  */ 
#clef i ne  MEIPED 0200 /* b i t  set i n  status when core dumped */ 
#&f ine DUMP-SIZE ((INTJAX / BLOCLSIZE) * BLOCICSIZE) 

/* buf fe r  size f o r  core dumps */ 

FORWARD ,PROTOTYE( v ~ i  d checkpendi ng . (voi d l  
FORWARD -PROTOTYPE( void dump-core, (s t ruct  lnproc *rmp) 
FORWARD -PROTOTYPE( vo id  unpause, (i n t  pro) 

i f  (sig-nr == SIGKILL) return(0K) ; 
i f  (sig-nr < 1 I I sig-nr > ,NSIC) return (EINVAL) ; 
svp = bp->mp-sigact Esig-nr] ; 
i f  ( (s t ruc t  sigact ion *) sig_osa ! -  (s t ruc t  sigact ion *) NULL) { 
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r = sys-copy(tM,PROtNR,D, (phys-bytes) svp, 
who, D, (phys4ytes) sig-osa, (phys-bytes) sr'zeofCsvec)); 

i f  (r != OK) re turn(r ) :  
1 

i f  ( (s t ruc t  s igac t ion  *) sig-nsa -= ( s t r uc t  s igac t ion  *) NULL) return(DK) ; 

/* Read i n  t he  s igact ion s t ructure.  */ 
r = sys-copy(wh0, D, (physbytes) sig-nsa, 

WPRKNR, 0. Cphyshytes) &svec, Iphyshytes)  s i  zeof (svec)) ; 
i f  (r ! =  OK) re turn(r1;  

* 

i f  (svec. shhand le r  == SIC-ICN) { 
sigaddset(bAP->~-ign~re. sig-nr) ;  
s i  gdel se t  (hp->mp-si gpendi ng. siq-nr); 
s igdelset(hp->*catch, sig-nr) ; 

} e lse { 
sigdel setCbnp-rmp-ignore, s i s n r ) ;  
i f  (svec . s ~ h a n d l e r  == SfG-DFL) 

s i  gdel set (bp->mp-catch, s i  wr) ; 
e l se  

sigaddset(bmp->mp-tatch, s i g ~ r )  ; 
1 
mp->mp-sigact [s ig-nr l  .shhand?er = svec. saAand7er: 
s i  gdel set  (drsvec . s u a s k  . SICKILL) ; 
nrp->mp-si gact[sig_nrl .  shlnask = svec. shlnask; 
mp->mp-sigact Csig-nrl . s ~ f l a g s  = svec, sa-flags; 
mp->mp-si greturn = (vi r-bytes) s i  g-ret ; 
return(0K) ; 

1 

* do-si gpendi ng c 

* , , , , - = = = = * = , , , , ~ = = I P = = ~ * I I = = = * ~ ~ = = L ~ I ~ ~ = ~ I ~ * ~ I I ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ = = = * /  

PUBLIC i n t  do-si gpendi ng() 
f 

r e t ~ n a s k  - (long) mp-mp-sigpendi ng ; 
re tu rn  OK; 

1 

/ * , , , ~ , , ~ ~ . ~ ~ P ~ ~ ~ ~ ~ ~ ~ ~ I O = ~ L ~ ~ U = ~ ~ ~ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ P P ~ ~ ~ ~ I C ~ ~ P ~ = *  
1 d o 3  gprocmas k 
*,,,l,=,,*tt50~====f~~==t~~=-=-~3~=e*-=-~-~~-~-~~==~~~====*/ 

PUBLIC i n t  do-si gprocmaskC) 

/*  Note t h a t  the l ibrary i n te r face passes the  actual mask i n  sigmask-set. 
* no t  a po in te r  t o  the mask, i n  order t o  save a sys-copy. S im i l a r l y ,  
* the o l d  mask i s  placed i n  t he  re tu rn  message which the l i b r a r y  
* i n t e r f ace  copies ( i f  requested) t o  the user spec i f ied  address. 
* 
* The l i b r a r y  i n t e r f ace  must s e t  $IC_fNQUIRE i f  the ' ac t '  argument 
* i s  NULL. 
*/ 

i n t  i; 

r e t ~ n a s k  = (1 ong) mp-zmp-si mask ; 

s w i  tch ( s i  g-how) { 
case SILBLOCK : 
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s igde l  set((s igset_t *)&si %set, SIGKICL) ; 
f o r  (i = 1; i < -NSIG; i++) { 

i f  (sigismecnbcr((sigset,t *)&siq-set, i l l  
s i  gaddset (4->mp-s i  gmask , i 1 ; 

1 
break ; 

case SJLUNBLOCK: 
f o r  (i = 1; i < -NSIG; i++) I 

if Csigismember((sigset-t *)&sig-set, i)) 
sigdelset(4->mp-sigrnask, i); 

1 
check_pendingO ; 
break ; 

case S~LSETMASK: 
s igde l  set((s igset- t  *)&si%set, SICKILL) ; 
mp->mp-sigmask = (sigset-t)sig-set; 
check_pending() ; 
break; 

case SIG-INQUIRE : 
break ; 

de fau l t :  
return(E1NVAL) ; 
break ; 

1 
re tu rn  OK; 

3 

/*=E.r====3=a===3=*~==l====-=f~l==letllllz=.C==zl1EE=======Z=1====-=922======* 

* do-sigsuspend * 
* * I ~ = = = ~ i C ~ ~ = ~ = = ~ * P ~ f ~ ~ ~ i S ~ * ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ I ~ ~ i ~ 3 3 3 1 ~ ~ ~ ~ ~ ~ ~ ~ P ~ E ~ 5 P P P ~ Z ~ ~ ~ ~ ~ * /  

PUBLIC i n t  do-si gsuspend0 
I 

mp->np_sigmask2 = mp-zmp-sigmask; /* save t he  o l d  mask */ 
np->mp-si gmask E (s i  gset-t) s i  g-set ; 
sigdelset(bp->mp_sigrnask, SICKILL); 
mp->mp-flags I=  SIGSUSPENDED; 
dont-rep1 y = TRUE ; 
checkpend ingo  ; 
re tu rn  OK; 

1 

i n t  r; 

mp-mp-si gmask = (s i  gset-t) sig-set ; 
s i  gdelset  (danp-mmp-si gnrask, SIGKILL) ; 
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r = sys-sigreturn(wh0, (vir-bytes)sig-context. s i k f l a g s ) ;  
chec k-pendi ng() ; 
return(r )  ; 

1 

return check-sig(pid, sig-nr) ; 
1 

/ * , , ~ , = = , = = ~ ~ = 5 3 3 f * * ~ ~ ~ a ~ ~ ~ ~ I ~ ~ ~ 3 1 ~ * ~ ~ P ~ i ~ X J T t t ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 1 3 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ ~ ~ ~ I *  

4 do-ksig t 

*,,,,,,,,,1,,,,,,,,~a=~=~~=~~*~~~=~~~~~~~=~~~~=f~~~~=~~tt1~t3e~~3LLL5~E~~==~*/ 

PUBLIC i n t  do-ksig() 

/* Certain signals, such as segmentation v io la t ions  and E L ,  or ig ina te  i n  the 
* kernel. When the kernel detects such signals, i t  sets b i t s  i n  a b i t  map. 
* As soon as I44 i s  await ing new work, the kernel sends ?44 a message containing 
* the process s l o t  and b i t  map. That message comes here. The F I l e  System 
* a750 uses t h i s  mechanism t o  signal w r i t i n g  on broken pipes (SICPIPE). 
*/ 

register  s t ruc t  mproc *rmp; 
i n t  i, proc-nr; 
pid-t proc-id, i d ;  
sigset-t sig-map; 

/* Only kernel may make t h i s  c a l l .  */ 
i f  (who ! = HAROWARE) return(EPERM1; 
dmt-rep1 y = TRUE; /* don't reply t o  the kernel */ 
p r o c n r  = -in. SIGQROC; 
mp = &~proclproc-nrl ; 
i f  ( (rmp->np-flags & IKUSE)  =I 0 I I (rmp->np-flags 6 HANGING) ) return(0lo ; 
proc-i d = rmp-mpgi  d; 
s i g ~ n a p  = (sigset-t) min.SIGMAP; 
mp = 6llproc[O] ; /* pretend kernel signals are from W */ 
mp->mpgrocgrp = mp-mp-procgrp; /* get process group r i g h t  */ 

/f Check each b i t  i n  tu rn  t o  see i f  a signal i s  t o  be sent. Unl ike 
* k i l l ( ) ,  the kernel may co l l ec t  several unrelated signals f o r  a 
f process and pass them t o  IM i n  one blow. Thus loop on the b i t  
* map. For SIGINT and SICQUIT, use proc-id 0 t o  ind icate a broadcast 
* t o  the rec ip ient 's  process group. For SIGKILL, use proc-id -1 t o  

ind ica te  a systemwide broadcast. 
" / 

f o r  (i = 1; i c=-NSIC; i++) ( 
i f  (!sigismember(&sig,map, i)) continue; 
switch (i) { 

case SICINT: 
case SIGQOIT: 

i d  = 0; break; /* broadcast t o  process group * /  
case SIGKILL : 

i d  = -1; break; /* broadcast t o  a l l  except INIT */ 
case SIGALRM: 
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/* Disregard SIWRM *hen the targct  process has not  
+ requested an alam. This on1 y applies f o r  a KERNEL 

generated signal. 
*/ 
if ((rq---flags & NARfLCM) - 0) continue; 
mp-m,flags b 'ALAWCOH; 
/* f a l l  through */ 

default : 
i d  = proc-id; 
break : 

1 
check-sigtid, 5) ;  
sys-endsiq(proc_nr); /* t e l l  kernel i t ' s  done */ 

1 
return(W) ; 

1 

return(ret_alam(dm, seconds)) ; 
1 

message r s i g ;  
i n t  remaining; 

/* T e l l  the clock task t o  provide a signal message when the t i n e  comes. 
* 
* Large delays cause a l o t  o f  problems. f i r s t ,  the a l a m  system c a l l  
* takes an u n s i p d  seconds count and the l i b r a r y  has cast it t o  an i n t .  
* That probably works, bu t  on return the l i b r a r y  will convert "negative" 
* unsigneds t o  errors. Presurably no one checks f o r  these errors, so 
* force t h i s  c a l l  through. Second, I f  unsigned and long have the same 
* size, converting from seconds to t i c k s  can eas i ly  overflow. F ina l ly ,  
* the  kernel has s imi la r  overflow bugs adding t i cks .  
* 
* Fixing this  requires a lot o f  u g l y  casts to f i t the wrong i n te r face 
* types and t o  avoid overf lon traps. DELTLTICKS has the r i g h t  type 
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* (clock-t) al~hough i t  i s  declared as long. How can variables l i k e  
* t h i s  be declared properly without cmbinator ia l  explosion o f  message 
* types? 
* / 

1~_sig,m_type - SETALARM; 
ncsi g. CLOCK-PROC-NR = proc-nr; 
m_sig.DELTLTICKS = (clock-t) (HZ * (unsigned long) (unsigned) sec); 
if C (unsigned long) msig.DELTLT1CKS / HZ != (unsigned) sec) 

m s i  g. DELTLTICKS = LWm; /* e tern i ty  (real 1 y CtOCLT-MAX) */ 
if (sendrec(CLOCK, h s i g )  ! = OK) pani c("a1arm era ,  W U M )  ; 
remaining = ( i n t )  m-sig .SECONDS-LEFT; 
i f (remaining I = ~ s i q  . SECONDS-LEFT j ( remai n i  ng c 0) 

remaining = 11QT3W.X; /* true value i s  not representable */  
returnCremai n i  ng) ; 

3 

mp->mp-f lags I = PAUSED; 
dont-reply = TRUE; 
return(0lO ; 

I 

if Crmp-~mp-effuid !- SUPELUSER) return €PERM; 

switch (reboot-fl ag) { 
case RBT-HALT: 
case RBT-REWT : 
case RBT-PANIC : 
case RBT-RESET : 

break ; 
case RBT_MONf TOR : 

i f  (reboot-si ze > s i  reof (mni tor-code)) r e t u rn  EIMAL; 
wnset(noni tor-code, 0, s i reo f  (mi tor-code]) ; 
i f  Csys,copy(who. D. (phys-bytes) reboot-code, 

MrtPROCNR,  D , (phys-bytes) moni tor-code , 
(phyrbytes) rebootsize) != OK) return EFAULT; 

i f  (mni tor-code[si z e o f ~ ~ m i t o r - c o d e )  -11 !- 0)  re turn  EZWAL; 
break ; 

def aul t : 
return EINVAL ; 

1 

/* K i l l  a11 processes except i n i  t. */ 
check-sig(-1, SICKILL) ; 
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tell-fs(EXIT, INIT-PROLNR, 0. 0) ; /* cleanup i n i t  */ 

sys-abort(rebwt-flag, m n i  tor-code) ; 
/* NOTREACHED */ 

1 

/ * = a r i r r ~ = = = a n ~ r r r = ~ ~ = = = = ~ ~ t l = - = ~ ~ - t - = = ~ ~ ~ ~ = = ~ * * ~ ~ ~ = = ~ . ~ ~ ~ = ~ = = - t t ~ ~ = = = = = = = = ~ *  

¶I s i  g-proc t 

* n r ~ r r r r t ~ ~ ~ r r r m = n = ~ ~ t ~ = ~ = ~ ~ - = = ~ = . ~ = ~ ~ ~ ~ ~ ~ ~ ~ ~ e v ~ ~ ~ ~ ~ = ~ - = ~ = ~ ~ ~ ~ ~ ~ t = = = ~ s t = ~ = ~ * /  

PUBLIC void s i  g-proc(np,  signo) 
reg i s te r  struct ntproc *rw; /* pointer to  the process t o  be signaled */ 
i n t  signo; /* signal t o  send t o  process (1 t o  -NSIC) */ 
{ 
/* Send a signal t o  a process. Check t o  see i f  the signal i s  t o  be caught, 
* ignored, o r  blocked. I f the signal i s  t o  be caught, coordinate w i t h  
* KERNEL t o  push a r igcontext s t ructure and a sigfrune structure onto 
* the catcher's stack. A1 so, KERNEL wi 11 reset  the program counter and 

' *  stack pointer, so tha t  when the process next runs, i t  w i l l  be executing 
* the signal handler. When the signal handler returns, sigreturn(2) 
* w i l l  be cal led. Yhen KERNEL w i l l  restore the signal context from the 
* sigcontext structure. 
* 
* I f  there i s  i n s u f f i c i e n t  stack space, k i l l  the process. 
* / 

v i  pby tes  new-sp; 
i n t  s lo t ;  
i n t  s igf lags;  
s t ruc t  sigmsg sm; 

s l o t  I ( i n t )  (mp - mproc); 
i f  (!(rnp-zmp-flags 81 I ILUSE))  I 

printf("W: signal %d sent t o  dead process %d\n", signo, s lot ) ;  
pani c("", NOJIUM) ; 

1 
i f  (rmp->mp,flags & HANGING) C 

pr in t f ( "W:  signal %d sent t o  WING process %d\nW, signo, s l o t ) ;  
pani c("" , NO-NUM) ; 

1 
? f imp->mp-flags dr TRACED &I signo ! = SICKILL) I 

/* A traced process has special handling. */ 
unpause(s1ot) ; 
stop-proc(rmp, signo); /* a signal causes i t  t o  stop */ 
return ; 

1 
/* Some signals are ignored* by default. */ 
i f  ( s i  g i  smcmber(&~-mp->mp-i gnore, s i  gno)) return; 

i f  (s ig i  smernber(Qmp->mp,signask, signo)) I 
/* Signal should be blocked. */ 
sigaddset (&mp-wmp-s i gpendi ng , signo) ; 
return; 

1 
s i g f  lags = rmp->mp-sigact [signol . s ~ f  lags; 
i f  ( s i  gi smember(&np->mp,catch, signo)) f 

i f  (rmp-~mp-fl ags & SIGSUSPENDED) 



File: srclmmlsignal .c MINIX SOURCE CODE 

sm. s u a s k  = mp-rmp-sigmask2 ; 
else 

sm.srunask = mp->mp_sigmask; 
sm. sks igno  P signo; 
sm. s ~ s i g h a n d l e r  = ( v i  r-bytes) rmp-xnp-si gact Csignol . shhandler ;  
sm. s ~ s i g r e t u r n  = rmp->mp-sigreturn; 
sys,getsp(slot , &new-sp) ; 
sm.snlstkptr = new,sp; 

/* Make ram f o r  the sigcontext and sigframe s t ruc t .  */ 
new-sp -= s izeof(st ruct  sigcontext) 

+ 3 * sizeafcchar *) + 2 * sizeof( int);  

i f (ad j us t  (nnp , rmp-wmp-seg ED] .mem-len . new-sp) ! = OK) 
goto doteminate; 

mp-rnp-signask I= rap->mp-sigact[signo] .s-ask; 
i f  <si gflags I SU4ODEFER) 

sigdeloet(&rmp->mp-signask, signo]; 
e lse 

sigaddset (&rap->mp-si gmask , s i  gn0) ; 

i f (s igf lags & SICRESETHAND) { 
sigdel set(&mp->mp-catch, signo) ; 
rp-,np,sigact [signo] . sahandler = S I L D F L  ; 

1 

sys-sendsig(slot, Lsm); 
5 i gdel set  (&rmp->mp-si gpendi ng . s i  gnol ; 
/* I f  process i s  hanging on PAUSE, WAIT, SICSUSPENO, t t y ,  p)pe, etc. ,  
* release it. 
"/ 

unpause (s lot )  ; 
return; 

1 
dotermi nate: 

/* Signal should not o r  cannot be caught. Terminate the pmcess. */ 
mp->mp-si gstatus - (char) signo; 
i f  (s ig i  smember(&ore-sset, signo)) { 

/* Switch t o  t h e  user's FS envi ronment and dump core. */ 
tell-fsCCHDIR, s lo t ,  FALSE, 0 ) ;  
dump-core(mp); 

1 
-exir(rmp, 0); /* terminate process */ 

1 

/ * r r = ~ e r = ; E = = ~ r r = r - ~ = = a a = = = = ~ - ~ = = m t P t ~ = s = = = = t - = ~ = r = = = = = ~ - . ~ ~ ~ ~ s * ~ r = - - = ~ ~ = = - - *  

* check-sig * 
* ~ = = = ~ ~ ~ = = ~ = ~ ~ ~ ~ ~ ~ ~ I I ~ L = ~ ~ ~ I I I = = = = I I I I I = I L R I = B ~ ~ ~ I ~ = U I - = ~ I I ~ ~ = = ~ ~ - ~ ~ ~ ~ * /  

PUBLIC i n t  check,sig(proc,id, signo) 
p i  d-t proc-i d; /* pid o f  proc t o  sig. or 0 or -I, or -pgrp *! 
i n t  signo; /* signal t o  send t o  process (0 t o  -NSIG) */ 
C 
/* Check t o  see i f  i t  i s  possible t o  send a signal.  The signal may have t o  be 
* sent t o  a group o f  processes. This rout ine i s  invoked by the KILL system 
* c a l l  , and a1 so when the kernel catches a DEL o r  other signal . 
* / 

register  s t ruc t  mproc *mp; 



MINIX SOURCE CODE File: src/rnm/signal.c 

i n t  count; 
i n t  error-code; 

/* count # o f  signals sent */ 

i f  ( s i  gno < 0 I I signo r 3STC) returnCEINVAL); 

/* Return EINVAL f o r  attempts t o  send SIGKILL t o  IN IT  alone. */ 
i f  (proc-id == INIT-PID &% signo == SIGKILL) return(E1NVAL) ; 

/* Search the proc t ab l e  f o r  processes to s igna l .  (See f 0 r kex i t . c  about 
* p i d  magic.) 
* / 

count = 0; 
error-code = ESRCH; 
f o r  (rrnp = lkrproc[INIT,PRKNRI ; rmp < &nproc[MRPROCS] ; rmp++) { 

i f  ( (nnp-rmp-flags & IN-USE) == 0) cont inue; 
i f  (rmp->mp,flags 6 HANGING ddr signo != 0) continue; 

/*  Check f o r  se lec t ion .  */ 
if (proc-id > 0 && proc- id !=  rmp-hmpj id) continue; 
i f (proc-i d == 0 mp->mp-procgrp ! = rmp-mp-procgrp) continue ; 
i f  (proc-id == -1 && rmp -mpg i  d == INIT-PID) continue; 
i f  (proc-id c -1 && rmp-mp-procgrp != -proc,id) continue; 

/* Check f o r  permission. */  
i f  (mp-rmp-effuid != 5UPERJSER 

&& mp->mp-realuid != rmp-mp-realuid 
&& mp->mp-ef f u i  d ! = rmp-mp-real u i  d 
&% rnp->mp-real u i  d ! = rmp->mp-ef f u i  d 
&& mp->mp-effuid !a rmp-rmp-effuid) I 

error-code = EPERM; 
continue; 

1 

/*  ' s i g g r o c '  w i l l  handle the d i spos i t i on  o f  t h e  signal.  The 
* s igna l  may be caught, blocked, ignored, o r  cause process 
+ terminat ion, poss ib ly  w i t h  core dump. 
* / 

sig-proc(rrnp, signo); 

i f  ( p r o c i d  > 0) break; /* only  one process being s ignaled */ 
1 

/* I f  the calling process has k i l l e d  i tself ,  don't r ep l y .  */ 
i f  ((mp->mp-flags & INJSE) == 0 1 1  (mp->mp-flags 6 HANGING)) 

dont-rep1 y = TRUE; 
return(count > 0 ? OK : error-code); 

1 

PRIVATE vo id  checkpendi ng() 
I 

/* Check t o  see i f  any pending s ignals  have been unblocked. The 
* f i r s t  such signal found i s  de l ivered.  
t 
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* I f  mul t i  p l e  pending unmasked signals are found. they w i l l  be 
* del ivered sequential 1 y. 
4 

* There are several places i n  t h i s  f i l e  where t h e  signal mask i s  
* changed. A t  each such place. check_pending() should be ca l led  t o  
* check f o r  newly unblocked signals. 
* / 

int i; 

for  ( i  = 1; i < ASIC; i++)  { 
if (s ig i  smember(bnp->np-si gpendi ng , i) 6& 

! s i  g i  slnember(dmp->mp-sigrnask , 
s i d e 1  set (&mp->rnp-si gpendi ng , 
siggroc(mp, i) ; 
break; 

1 
3 

1 

C 
/* A signal i s  t o  be sent t o  a process. I f  t h a t  process i s  hanging on a 
* system c a l l ,  the system c a l l  must be terminated w i th  EINTR. Possible 
* cal Is are PAUSE, WAIT,  READ and WRITE, the latter t w o  for  pipes and ttys. 
* F i r s t  check if the process i s  hangSng on an t44 c a l l .  I f  n o t ,  t e l l  FS. 
* SO i t  can check f o r  UEADs and WRfTEs from pipes, t t y s  and the l i k e .  
* I  

regi s ter  s t ruc t  nproc *rmp; 

/* Check to see i f  process i s  hanging on a PAUSE c a l l .  * /  
- i f  ( (rmp->mp-flags & PAUSED) &5 Crmp-mp-flags & HANGING) *= 0 )  E 

rmp->mp-f 1 ags &= -PAUSED; 
rep7 yipro, EINTR, O ,  NIL-PTR) ; 
return; 

I 

/* Check t o  see i f process i s  hanging on a W A I T  c a l l  . */ 
i f  ( (rmp->mp-fl ags & WAITING) && Crmp->mp-flags & HANGING) 

rmp->mp-f 1 aqs &= -WAITT.NC; 
repl y (pro, EINTR , 0, N1 L-PTR) ; 
remrn; 

I 

. / *  Check t o  see i f  process i s  hanging on a SIGSUSPEND c a l l .  
i f  ((rmp->mp-flags & SICSUSPENDED) && (rmp-mp-flags & HANGING) == 0) { 

rmp->mp-flags bc -SICSUSPENDED; 
repl y (pro, EINTR, 0 ,  NIL-?TI) ; 
return; 

1 

/ *  Process i s  not  hanging on an Wl c a l l .  Ask FS t o  take a Took. */ 
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tell-fs(UHPAVSE, pro, 0. 0); 
1 

i n t  f d ,  fake-fd, nr -wr i t ten,  seg, s l o t ;  
char *buf; 
v i  r-bytes current-sp; 
phys-bytes l e f t ;  /* ca re fu l ;  64K might over f low v i  r-bytes */ 
unsigned nr-to-wri t e  ; /* unsigned f o r  arg t o  wr i te( )  but < I N T M  */ 
long trace-data, t race-off ;  

/* Can core f i l e  be w r i t t en?  We are operat ing i n  the user ' s  FS environment, 
* so no spec ia l  permission checks are needed. 
*/ 

i f  (rmp-mp-realuid != rrnp-mp-effui d) re tu rn ;  
i f  ( ( f d  = creat(core-name, COREJODE)) i 0) r e t u rn ;  
rmp-zmp-sigstatus I =  V U W  

/* Make sure the stack segment i s  up t o  date. 
* We don' t  want adjust()  t o  f a i l  unless current-sp i s  preposterous, 
* but  i t  might f a i l  due t o  safety  checking. Also, we don ' t  r e a l l y  want 
* the  adjust()  f o r  sending a s ignal  t o  f a i l  due t o  safety  checking. 
* Maybe make SAFETY-BYTES a parameter. 
* / 

sys-getsp(slot, &current-sp) ; 
ad jus t  (rmp, rmp-mp-seg [D l  .me=len, current-sp) ; 

/* W r i  r e  t he  memory map o f  a l l  segments t o  begin the core f i l e .  */ 
if (wr i  te(fd,  (char *I rmp-mp-seg, (unsigned) s i  zeof rmp-mp-seg) 

!= (unsigned) s i zeo f  rcnp-zmp-seg) { 
close(fd); 
re tu rn ;  

1 

/* Wr i te  ou t  the whole kernel  process t ab l e  en t r y  t o  ge t  t h e  regs. */ 
t race-of f  = 0; 
wh i le  (sys-trace(3, s l o t ,  t race-of f ,  &trace-data) == OK) f 

i f  (wr i  te( fd ,  (char *) &'race-data, (unsigned) s i zeo f  (long)) 
! = (unsigned) s i  zeof (1 ong)) { 

close(fd) ; 
re tu rn  ; 

1 
t race-of f += s i  zeof (1 ong) ; 

1 

/*  LOOP through segments and w r i t e  the segments themselves out .  * /  
for  (seg = 0; seg < NRSEGS; seg++) ( 

but = (char *) ((v i  r-bytes) rmp->np-seg[segJ .mein-vi r << CLICICSHIFT) ; 
1 e f t  5 (phys-bytes) rmp->mp-seg [seg] . mertll en zc C L I C L S H I F t ;  
fake-fd = ( s l o t  -x 8) 1 (seg << 6) 1 f d ;  
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/* Loop through a segment, dumping i t  . */ . 
whi le ( l e f t  I =  0 )  { 

n r - t o ~ l r r i  t e  = (unsigned) MIN(left, OUHP-Sf ZE) ; 
i f  ( (nr-wri t t en  = writecfake-fd, buf. nr-to-wri te)) < 0 )  ( 

closeCfd); 
return; 

buf += nr-written; 
l e f t  -= nr-wri t ten ;  

/* This f i l e  handles the 4 system c a l l s  that  get  and set u ids and gids. 
* It a1 so handles getpidC1, setsid(), and getpgrpc) . The c d e  f o r  each 

one i s  so t i n y  tha t  i t  hard1 y seemed worthwhile t o  make each a separate 
* funct ion. 
*/  

#include "m.hW 
#include m i n i  x/cal 1 nr. h> 
#include r s i  gnal . h> 
#include "mproc . h" 
P i  nc l  ude "param. h" 

/ * = ~ ~ = t * ~ i ~ = t = ~ ~ ~ - = = ~ ~ = = ~ ~ - ~ = - ~ - - ~ ~ - ~ ~ ~ ~ r r ~ ~ ~ - t ~ ~ = ~ f f = *  

do-getset * 
*r+-rr===p.:rr~m=~===r-=-==-~P-=--~~-=-r~sa=--oo=s==-==*/  

PUBLIC i n t  do-getset0 
{ 
/* Handle GETUID, CETCID. CETPID, GETPGRP, SETUID. SETLID, SETSID. The four  

GETS and SETSID re turn  t h e i r  primary resu l ts  i n  ' r ' .  GETUID, CETCID. and 
GETPIO also return secondary resu l ts  Cthe effect ive IOs, or the parent 
process ID) i n  ' resu l t2 ' ,  wh ich  i s  returned t o  the user. 

/ 

reg is te r  stf'uct rnproc *rmp = mp; 
reg is te r  i n t  r; 

swi tch Cmcal 1 ) { 
case CETUID: 

r = rmp-wnp-realui d; 
result2 = rmp->mp-effuid; 
break; 

case GETCID: 
r = rmp->mp-realgid; 
resul t2 = mtp->mp-effgid; 
break ; 

case GETPIO: 
r - nproc [who]. m p j i  d; 
resul t 2  = mproc [mp->mp_pared .mpsid; 
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break: 

case SETUID: 
i f  (rap->mp-real u i  d ! = usr- i  d && rmp->np-ef fuid != SUPERUSER) 

return(EPERM) ; 
rmp->mp-real u i d  = usr- id;  
rmp-mp-effuid = usr- i  d; 
tell-fs(SETUID, who, usr- id,  usr- id);  
r = OK; 
break ; 

case SETCID: 
i f (rmp->mp-realgi d !I g r p i  d rmp->mp-eff u i d  ! = SUPERUSER) 

return(EPERM) ; 
rmp->mp-real g i  d = g r p i  d ; 
rnp->mp-effgid = g rp i d :  
tell-fs(SETCTD, who, g rp id ,  grp id) ;  
r - OK; 
break; 

case SETSID: 
i f  (rmp->mp-procgrp == rmp->mp-pid) return(EPERM); 
rmp-rmp-procgrp = rmp-mp-pi d ; 
.:el 1-f s(SETSI0, who, 0, 0 )  ; 
/*FALL THROUGH*/ 

case GETPGRP: 
r a rmp->mp-procgrp; 
break; 

de fau l t  : 
r = EINVAL; 
break ; 

1 
returnCr3; 

1 

/* This f i l e  handles the memory manager's p a r t  of debugging, using t h e  
* pt race system c a l l .  Most of the comnands are passed on to t h e  system 
* task f o r  completion. 
* 
* The debugging conrnands ava i lab le  are: 
* T-STOP s top  the process 
* T-DK enable t rac ing  by parent f o r  t h i s  process 
" T-CETINS 
* T-GETDATA 
* T-GETUSER 
* T-SETINS 
" T-SETDATA 
* TJETUSER 
* T-RESUME 
* T-EXIT 

r e t u rn  value from i n s t r u c t i o n  space 
re tu rn  value from data space 
r e tu rn  value f ra user process t ab l e  
se t  value i n  i n s t r u c t i o n  space 
s e t  value i n  data space 
se t  value i n  user process t ab l e  
resume execution 
e x i t  
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* T-STEP set trace b i t  
t 

* The T-OK and T-EXIT commands are handled here. and the T-RESUME and 
* T-STEP commands are p a r t i a l 1  y handled here and completed by the system 
* task. The res t  are handled ent i  r e l y  by the system task. 
* / 

#include "m.hW 
#include <sys/ptrace . h r  
#include <signal. h> 
rlri n c l  ude "mproc .hW 
#include "parain. h" 

Cdef i ne NILflPROC ( (s t ruct  mproc *) 0 )  

FORWARD PROTOTYPE C s t ruc t  mproc *f i ndproc , (piclt l p i  d) ) ; 

/*-=-raar~====r-nrr=~--=-~====~-t-f--~~=~~==~===-~s~~~=-=t=~===f=c~~~===~* 

* do-trace t 

*=~~===-=-=-==--=-=====--====.-*======~=====*--*=======-=====---=s=======*/ 

reg is te r  s t ruc t  mproc *chi I d ;  

/* the T-OK c a l l  i s  made by the c h i l d  fo rk  o f  the debugger before i t  execs 
* the process t o  be traced 
*/ 

i f  (request -= T-OK) {/* enable t rac ing  by parent f o r  t h j  s process */ 
mp->lap-f 1 ags I = TRACED; 
rmout.rn2-12 Q 0; 
return(0K) ; 

1 
if ((chi I d  - f indproccpid)) == NLLJPROC 1 1 ! (child->mp,flag~ 81 STOPPED)) { 

return (ESRCH) ; 
3 
/ *  a l l  the other c a l l s  are made by the parent fo rk  o f  the debugger t o  
* control execution o f  the c h i l d  
*/ 

switch (request) { 
case T-EXIT: /* e x i t  * /  

m e x i  tCchiId, ( int)data) ; 
rmout.mt-12 = 0; , 

return(0K) ; 
case T-RESWE: 
case T-STEP: /* resume execution */ 

i f  (data < 0 I I data > JSIG) return(EI0); 
i f  (data > 0 )  { /* issue signal */ 

child->%flags &= *TRACED; /* so signal i s  not  d iver ted */ 
sig_proc(child, ( i n t )  data) ; 
chi 1 d->mp-flags I- TRACED; 

1 
chi 1 d->mp-f 1 ags 6- -STOPPED; 
break ; 

3 
i f  (sys-trace(request, ( in t )  (ch i ld  - mproc), taddr, &data) != OK) 

return(-errno); 
~ o u t . r n 2 - 1 2  = data; 
return(0K) ; 

3 



MINIX SOURCE CODE File: src/mrn/trace.c 783 

/*----.-E------=~~~====~==------=~==~===~===III=====II=LLLfII=I======III2====* 
* f i  ndproc Q 

*---- ------- _____-=_______ -------===--------------== __^I---_--___- -------------==-_------------------ --------------------* / 
PRIVATE s t r u c t  mproc *f i  ndproc(1 p i  d) 
pid- t  I p i d ;  
I 

r eg i s t e r  s t r u c t  nproc *rmp; 

f o r  (rmp = &nproc[INIT-PROCNR + 11; rmp < &nproc[NKPROCS]; rmp++) 
if (rmp->mp-flags & IN-USE &% rmp->mp-pid =- l p i d )  return(rmp) ; 

return(N1LJPROC) ; 
1 

{ 
/*  A t raced process go t  a s igna l  so s top  i t .  */ 

reg i s t e r  s t r u c t  nproc *rpmp = mproc + rmp-zmp-parent ; 

i f  (sys-trace(-1, (int) (rmp - mproc) . OL. ( long *I 0) != OK) re turn;  
rmp->mp-fl ags I = STOPPED; 
i f  (rpmp->mp-flags & WAITING) i 

rpmp-rnp-flags &= -WAITING; /* parent i s  no longer wa i t i ng  */ 
rep ly  (rmp->np-parent, rmp->mp-pid, 0177 1 (signo c< 8), NIL-PTR) ; 

1 e l se  I 
rmp->mp-sigstatus = signo; 

1 
re tu rn ;  

I 

/* This f i l e  i s  concerned w i t h  a l l o c a t i n g  and f ree ing  a rb i t r a r y - s i ze  blocks o f  
* physical  memory on behalf  o f  t he  FORK and EXEC system c a l l s .  The key data 
* s t r uc tu re  used i s  t he  ho l e  tab le ,  which maintains a l i s t  o f  holes i n  memory. 
* It i s  kep t  sorted i n  order o f  increas ing memory address. The addresses 
* i t  contains r e f e r  t o  physical memory, s t a r t i n g  a t  absolute address O 
* (i . e . ,  they a re  not r e l a t i v e  t o  the s t a r t  o f  m). During system 
* i n i t i a l i z a t i o n ,  t h a t  p a r t  o f  memory conta in ing the i n t e r r u p t  vectors ,  
* kernel ,  and FW are "al located" t o  mark them as not ava i lab le  and t o  
* remove them from the  ho le  l i s t .  
* 
* The en t ry  po i n t s  i n t o  t h i s  f i l e  are: 
* alloc_mem: a l l o ca te  a given sized chunk o f  memory 
* free-mem: release a prev ious ly  a l l o ca ted  chunk o f  memory 
* men-ini t :  i n i t i a l i z e  t he  tab les when MM s t a r t  up 
* max-hole: re tu rns  the l a rges t  hole current1 y a v a i l a b l e  
* / 
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Ydef i ne NRHOLES 128 /* max # en t r ies  i n  hole table */ 
#define NIL-HOLE (s t ruc t  hole *) 0 

PRIVATE srruct  hole { 
phys-cl i cks h-base ; /* where does the hole begin? */ 
phys-cl i cks h-1 en'; /* how b i g  i s  the hole? */ 
s t ruc t  hole *h-next; /* pointer  t o  next entry on the l i s t  */ 

3 holeCNRHOLES1; 

PRIVATE s t ruc t  hole *hole-head; /* pointer  t o  f i r s t  hole */ 
PRIVATE s t ruc t  hole *free-slots; /* p t r  t o  l i s t  a f  unused t a b l e  slots */ 

FORWARD -PROTOTYPE( void del -s lot  , (s t ruc t  hole *prev-ptr, s t ruc t  hole *hp) ); 
FORWARD -PROTOlYPE( voi  d merge, (st ruc t  hole *hp) 1; 

/*,ll-~==~==Ps=m-~=~==55====~-=======~=*~~=-~--~-*~*~=========~** 
* a1 1 oc~nem t 

*r~~m=r=t=trl.rrr-=I=ir*r~L=P3I=iII=irii=3~III==3I~*===~=r=-33P===f==*~~==~*/ 

PUBLIC phys-clicks al lou+em(cl icks) 
phys-clicks c l icks;  /* amount o f  memory requested */ 
1 
/* Al locate a block o f  memory from the f ree l i s t  using f i  r s t  f i t .  The block 

consists o f  a sequence o f  contiguous bytes, whose length i n  c l i cks  i s  
* given by ' c l i cks ' .  A painter  t o  the block i s  returned. The block i s  
* always on a c l i c k  boundary. This procedure i s  cal led when memory i s  
* needed f o r  FORK o r  EXEC. 
*/ 

reg is te r  s t ruc t  hole +hp, *prev-ptr; 
phys-cl i cks  old-base; 

hp = hol e-head ; 
while (hp != NIL-HOLE) { 

if (hp->h-len >I c l icks)  
/* We found a hole t h a t  i s  b ig  enough. Use .it. */ 
old-base - hp->h,base; /* remember where i t  star ted */ 
hp-A-base += c l i cks ;  /* b i t e  a piece o f f  */ 
hp-A-len -I cl icks;  /* d i t t o  */ 

/* I f  hole i s  only p a r t l y  used, reduce size and return. */ 
4 f (hp->h-1 en ! = 0) return(o1Lbase) ; 

/* The ent i  r e  hole has been used up. Manipulate f ree 1 i st.  */ 
del-slor(prev_pt r , hp) ; 
returnCol d-base) ; 

1 

prev-ptr = hp; 

/*lr=p~--------===r;======~=~======~====s=======~~~~=============~===========* 
* f ree~nern * 
*=,=,=========,,,,,,,,,,,=Z====~~Z=Z=======~=~~========================S=========== */ 

PUBLIC void free-mem(base, c l  icks) 
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phys-clicks base; /* base address of b lock t o  f r e e  */ 
phys-cl icks c l i c k s ;  /* number o f  c l i c k s  t o  free */ 
F 
/* Return a block o f  f r ee  memory t o  the hole l i s t .  The parameters t e l l  where 
* the block s t a r t s  i n  phys ica l  memory and how b i g  i t  i s .  The block i s  added 
* t o  t he  ho le  l i s t .  If i t  i s  contiguous w i t h  an e x i s t i n g  ho l e  on e i t h e r  end, 
* i t  is merged w i t h  the  ho le  or holes. 
" / 

reg i s t e r  s t r u c t  ho le  *hp, *new-ptr, * p r e v g t r ;  

i f  ( c l i c ks  == 0) re turn;  
i f  ( (newg t r  = free-slots) == NILJOLE) panic("Ho1e t ab l e  f u l l " ,  NO-MUM) ; 
new-pt r -hh-base = base ; 
new-pt r-,h-Ten = c l i c k s  ; 
f ree-s lo ts  = new-ptr-rh-next; 
hp = h o l  e-head ; 

/* I f  t h i s  b lock 's  address i s  numer ica l ly  less  than t he  lowest ho le  c u r r e n t l y  
* ava i lab le ,  or if no holes are cu r ren t l y  ava i lab le ,  put t h i s  ho l e  on the 
* f r o n t  o f  the ho le  l i s t .  
* / 

i f  (hp == NIL-HOLE I I base <= hp->h-base) { 
/*  Block t o  be Freed goes on f r o n t  o f  the hole 1 i s t .  */ 
n e w j t  r->h-next = hp; 
hole-head - new-ptr; 
merge (new-p t r) ; 
return;  

1 

/* Block t o  be returned does not  go on f r o n t  o f  hole l i s t .  */ 
wh i le  (hp != NIL-HOLE dr& base > hp->h-base) { 

prev-ptr = hp; 
hp = hp->h_next; 

1 

/ *  We found where i t  goes. I n s e r t  block a f t e r  'prev-ptr ' .  */ 
new-ptr-,h-next = prev-ptr->h,next; 
prev-ptr->h-next = new-ptr; 
merge (prev-ptr) ; /* sequence i s  'prev-pt r '  , 'new-ptr' , 'hp'  */ 

1 

/*==f---L---=9-------=====l==----*-=~===------==============---------====------ ------- -- ------=* 
* de l -s lo t  * 
*-----_-----~----I=rEEZZ--Z--ZZ-~---------tiiTt--==-----=~II=I5~~11rII~IffII1~* ----------- ---- / 

PRIVATE vo id  del-s lot  (prev-ptr ,  hp) 
r e g i s t e r  s t r uc t  hole *prev-pt r ;  /* pa in te r  t o  ho le  en t r y  j u s t  ahead of 'hp' * /  
r eg i s t e r  struct ho le  *hp; /* po in te r  t o  ho le  en t ry  t o  be removed */ 
i 
/* Remove an entry from t h e  hole l i s t .  Th is  procedure i s  c a l l e d  when a 
* request t o  a l l o ca te  memory removes a hole i n  i t s  e n t i r e t y ,  thus reducing 
* the  numbers o f  holes i n  memory, and requi r i n g  the  e l im ina t i an  o f  one 
* en t ry  i n  the ho l e  l i s t .  
* / 

if (hp == hole-head) 
hole-head = hp->h-next; 

e lse 
prev-ptr->h-next = hp->h-next ; 
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hp->h-next = f ree-slots; 
f ree-s lo ts  = hp; 

1 

/*====pr9111LIlllIllI===~=======P===========- -rrrlrrrrrrrrrr====~PPPPPP* 

* merge * 
*====================================-=======-============================** / 

PRIVATE vo id  merge (hp) 
r eg i s t e r  s t r u c t  ho le  *hp; /*  p t r  t o  ho le  t o  merge w i t h  i t s  successors */ 
I 
/* Check f o r  contiguous holes and merge any found. Contiguous holes can occur 

when a b lock o f  memory i s  freed, and i t  happens t o  abut another ho l e  on 
e i t h e r  o r  40th ends. The po in te r  'hp' po i n t s  to t h e  f i r s t  o f  a ser ies o f  

* three holes t ha t  can p o t e n t i a l l y  a l l  be merged together.  
*/ 

r eg i s t e r  s t r u c t  ho l e  *next-ptr ;  

/* If 'hp' po in ts  t o  the  l a s t  hole, no merging i s  poss ib le .  I f  i t  does not,  
t r y  t o  absorb i t s  successor i n t o  i t  and f r e e  t he  successor's t a b l e  en t ry .  

*/  
i f  ( (next-ptr  = hp->h-next) == NIL-HOLE) return; 
i f  (hp-zh-base + hp->h-1 en =- next-pt r->h-base) { 

hp->h-len += nertcptr->h-len; /* f i r s t  one gets second one's mem */ 
del-sl  o t  (hp, next-pt r) ; 

) e l se  { 
hp = next -p t r ;  

1 

/* If 'hp' now po in ts  t o  the l a s t  hole,  re tu rn ;  othenvi se, t r y  t o  absorb i t s  
* successor i n t o  i t .  
* / 
if ( ( n e x t s t r  = hp->h-next) == NIL-HOLE) re turn;  
if (hp->h-base + hp-zh-1 en == next-ptr-rh-base) { 

hp->h-len += nexf-ptr-rh-len; 
de l -s lo t  (hp, next-ptr) ; 

I 
1 

PUBLIC phys-clicks max-hole0 
{ 
/* Scan the hole l i s t  and re tu rn  the l a rges t  hole.  */ 

r e g i s t e r  s t r u c t  ho le  'hp; 
r e g i s t e r  phys-clicks max; 

hp hole-head; 
max = 0; 
wh i le  (hp != NIL-HOLE) { 

i f  (hp->h,len > max) mar = hp->h-len; 
hp = hp-A-next ;  

I 
return(max1; 

1 .  
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*,=====,,,,,,====tfL======s~=;.====5~=y~====~11======5fll==I==slil=====~====* / 
PUBLIC vo id  memi n i  t ( t o t a1 ,  f ree) 
phys-cl i  cks * t o t a l ,  " f ree;  /* memory s ize sumnaries */ 
C 
/* I n i t i a l i z e  ho le  l i s t s .  There a re  two l i s t s :  'hole-head' po in ts  t o  a l i n k e d  
* l i s t  o f  a l l  t h e  holes (unused memory) i n  the system; ' f ree -s lo ts '  po in ts  t o  
* a l i n ked  l i s t  o f  t ab l e  en t r i e s  t ha t  are n o t  i n  use. I n i t i a l l y ,  the former 
* l i s t  has one ent ry  fo r  each chunk of physical  memory, and the second 
* list l i n k s  together t h e  remaining table slots. As memory becomes more 
* fragmented i n  t h e  course o f  t ime ( i . e . ,  t h e  i n i t i a l  b i g  holes break up i n t o  
* smaller holes), new t ab l e  s l o t s  are needed t o  represent them. These s l o t s  
* are taken from the l i s t  headed by ' f ree-s lo ts ' .  
* /  

r eg i s t e r  s t r u c t  ho le  *hp; 
phys-clicks base; /* base address o f  chunk */ 
phys-cl i cks s ize;  /* s ize  of chunk */ 
message mess; 

/* Put a1 1 holes on t h e  f r e e  T i  s t .  */ 
f o r  (hp = &hole[O] ; hp < &hole[NRJtOLES]; hp++) hp->h-next = hp + 1; 
hole [NR-HOLES-l] . h-next = NIL-HOLE ; 
hole-head I NIL-HOLE; 
f ree-slots = &o le  [O] ; 

/* Ask the kernel  f o r  chunks o f  phys ica l  memory and a l l o c a t e  a ho le  f o r  
* each o f  them. The SYSJEM c a l l  responds w i t h  the base and s i ze  o f  the 
* nex t  chunk and the t o t a l  alnount o f  memory. 
* / 

* f r ee  = 0 ;  
for  ( ; ; I  { 

mess.ktype = SYS-MEM; 
i f  (sendrec(5YSTASK. Ikness) != OK) panic("bad SYSJEM?", NO-NUM); 
base = mess . m l i l ;  
s ize  = mess.ml i2;  
i f  (s ize == 0) break; /* no more? */ 

f reelnemCbase, size) ; 
* t o t a l  = mess.ml i3;  
' f ree += size; 

1 
I 
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/* This f i l e  contains some u t i l i t y  rout ines to r  W. 
* 

The entry points are: 
* ' allowed: see i f  an access i s  permitted 

no-sys: t h i s  r o u t i n e i s c a l l e d f o r i n v a l i d s y s t e m c a l l  numbers 
panic: !M has run aground o f  a f a t a l  e r ro r  and cannot continue 

* t e l l - f s :  in ter face t o  FS 
*/ 

#include 'hm.h" 
#include <sys/stat.h> 
l i n c l  ude m f n i  x/cal 1 nr .  h> 
t i n c l  ude a t i  n i  x/can. h> 
#include c f c n t l  .h> 
# inc l  ude <signal . h> /* needed only because mpr0c.h needs i t  */ 
#include "mproc. h" 

char *name-buf; 
s t ruc t  s t a t  *s-huf; 
i n t  mask; 
I 
/* Check t o  see i f  f i  l e  can 
* i s  prohibited. I f  i t  i s  
*/ 

/* pointer  t o  f i l e  name t o  be EXECed */ 
/* buf fe r  f o r  doing and r e t u n i n g  s t a t  s t ruct* /  
/* RBIT,  kl-BIT, o r  LBIT  */ 

be accessed. Return UCCES o r  ENMNT i f  the access 
legal  open the f i l e  and return a f i l e  descriptor. 

i n t  fd;  
i n t  savcerrno; 

/* Use the f a c t  tha t  mask f o r  access() i s  the same as the  pemissions mask. 
* E.g. ,  L E I T  i n  aninix/const.hr i s  the same as L O K  i n  <unistd.h> and 
* S-IXOTH i n  <sys/stat.h>. tell-fs(D0-CHDIR, ... ) has se t  M ' s  rea l  i d s  
* t o  the user's e f f ec t i ve  ids,  so access() works r i g h t  f o r  setuid programs. 
"/ 
if Caccess(name_buf, mask) < 0) return(-errno) ; 

/* The f i l e  i s  accessible but might not be readable. Make i t  readable. */ 
tell-fs(SETUID, K P R ( X L N R ,  (i nt)  SUPERUSER, ( in t )  SUPERUSER) ; 

/* Open the f i l e  and f s t a t  i t. Restore the i d s  ear ly  t o  handle errors. */ 
fd = open(name-buf, 0-RDONLY) ; 
save-errno - errno; /* open might f a i l ,  e.g. from ENFILE */ 
tell-fs(SETUI0, HFLPROLNR, ( i n t )  mp->mp-effuid, ( i n t )  mp->mp-effuid); 
i f  Cfd < 0) return(-save-errno); 
if CfstatCfd, s-buf) * 0) panic("al1owed: f s t a t  fa i led" ,  NO-NUM) ; 

/* Only regular f i l e s  can be executed. */ 
i f  (mask =- L B I T  && ( s - b u f - r s t d e  & 1-TYPE) != I-REGULAR) { 

closecfd); 
return (EACCESI ; 

1 
return(fd) ; 
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{ 
/ *  Something awful has happened. Panics are caused when an i n t e r n a l  
* inconsistency i s  detected, e - g . ,  a p rograming  e r r o r  o r  i l l e g a l  value o f  a 
* def ined constant. 
* / 

p r i n t f  ("Memory manager panic:  %s ", fo rna t )  ; 
if (nurn !-  NO-MUM) printf("%d",num); 
p r i  n t f  ("\nl') ; 
tell-fs(SYNC, 0 ,  0, 0); /* f l u s h  the cache t o  the  d i s k  */ 
sys-abort (RBT-PANIC) ; 

1 

/*E~r~~~E=~rlnr=~E13~I=il==~~==iT~f*===1aP:P:==Ci===PPt~==1EL=====iF~=III=1====I=* 

u t e l l - f  s * 
* ~ ~ r r r r = P t ~ m = ~ ~ r = ~ ~ ~ = ~ = = e ~ ~ ~ ~ = ~ ~ = ~ = ~ ~ = = = ~ ~ r n ~ ~ ~ ~ = x e = = = = = t ~ ~ = e ~ ~ a s ~ ~ a ~ = = a = ~ ~ ~ t * /  

PUBLIC vo i d  tel l - fs(what,  p l ,  p2,  p3) 
i n t  what. PI, p2.  p3; 
I I 
/* This rou t ine  i s  on ly  used by W to  in fo rm FS o f  c e r t a i n  event*: 

Q tell-fs(CHD1R. s l o t ,  d i  r, 0 )  
* tell-fs(EXEC, proc, 0, 0) 
Q te l l - fs(EXfT, proc. 0, 0) 
Q tell-fs(FORK, parent,  ch i  I d ,  p id )  
i, t e l l - f  s (SETCID, proc, rea l  g id ,  e f f g i  d) 
* t e l  1-f s (SETSID, proc , 0, 0 )  
+, tell-fs(SETUID, proc, rea lu id ,  e f f u i d )  
%, tell-fs(SYNC, 0, 0. 0) 
4 tell-fs(UNPAUSE, proc, s ignr  , 0) 

*/ 

message m; 

m . m l i l  = p l ;  
m . m L i 2  = p2; 
m . m L i 3  = p3; 
- taskcal l  (FS-PROC-NU, what, &n) ; 

1 
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/+ m m s t  occasionally p r i n t  some message. I t  uses the standard l i b ra r y  
* routine p r i n t ko .  (The name "pr in t f "  i s  rea l ly  a macro defined as 
* "printk"). Pr in t ing i s  done by ca l l i ng  the TTY task d i rect ly ,  not going 
+ through FS. 
*/ 

t i n c l  ude "mm. h" 
l inc l  ude uni ni x/com. h> 

Wdef i ne BUFAIZE 100 /* p r i n t  buffer s ize  */ 

PRIVAT~ i n t  buf-cant ; /* I characters i n  the buffer */ 
PRIVATE-char p r i  ncbuf  [BUF,SIZE] ; /* output i s  buffered here */ 
PRIVATE -message p u t c b s g  ; /* used f o r  message t o  TTY task */ 

-PROTOfYPE( FORWARD void flush, (void) ) ; 

/*-=I- n- Il-=-l-~* 
* putk t 

*-malmrrr--PIP~--=41*11------*/ 

wsm void pu tk~c)  
i n t  c; 
C 
/* Accumulate another character. I f  0 W - h f f e r  f u l l ,  p r i n t  it. */ 

i f  (c - 0 I I buf-count -I BUF3IZE) flush() ; 
i f  (C a '\nl) putk('\rl); 
i f  (c !I 0) p r i n t b u f  [buf,count++l = c; 

1 

/ * -uwII I I I I I__~_I I - Ic~~~~~~~~D~~.~ - r r m t a *  
f lush 

*+rrr=-rrm=rrrrr=-.1111IIIPI~~=~UI==-*--RICD~-=-D-*/ 

PRIVATE void f l u s h 0  
I 
/* Flush the p r i n t  buffer. by ca l l ing task. */ 

if (buf-count == 0) return; 
putch~sg.mtype - DEVJRITE; 
putch~lsg.PROC_NR = 0; 
putch>sg.lTY-LINE - 0; 
putchnsg.AOORESS - p r i  n d u f ;  
putch~nsg . COUNT - buf-count ; 
send rec (TTY. &putch~nsg) ; 
bufsoynt - 0; 

1 
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/ *  This i s  the  master header f o r  f s .  I t  includes some other  f i l e s  
* and defines the  p r i nc i pa l  constants. 
*/ 

Pdef i  ne -POSIX_SOURCE 1 /* t e l l  headers t o  inc lude POSIX s tu f f  */ 
#def i ne _MINIX 1 /* t e l l  headers t o  inc lude M I N I X  s t u f f  */ 
#def i ne 5YSTEM 1 /* t e l l  headers t h a t  t h i s  i s  the kernel  */ 

/*  The following are so bas ic ,  a71 t h e  *.c f i l e s  get them automat ical ly .  */ 
# inc lude <mini x/config. hb /* MUST be f i r s t  */ 
#include <ansi.  h> /* MUST be second */ 
# inc lude <sys/types.h> 
f inc lude <mini x/const. h> 
# inc lude <mini x/type. h> 

# inc lude < l i m i t s  . h> 
Winclude <errno. h> 

#inc lude "const. h" 
#inc lude "type ,h" 
Xi nclude "proto-h" 
Xi nclude "glo.  h" 

/* Tables sizes */ 
Wdef i ne VLNRJZONES 7 /* # d i  r ec t  zone numbers i n  a U 1  inode */ 
Ydef i ne Vl-NLTZONES 9 /* t o t a l  # zone numbers i n  a V 1  inode */ 
#def i ne V2-NKDZONES 7 /* # d i  r ec t  zone numbers i n  a V2 i node */ 
#def ine V2-NkTZONES 10 /* t o t a l  # zone numbers i n  a V2 inode */ 

#def ine NRFILPS 128 / * # s l o t s i n f i l p t a b l e * /  
#de f i ne NRINODES 64 /* I s l o t s i n  " i n c o r e "  inode t a b l e t /  
#def i  ne NRSUPERS 8 / * # s l o t s i n  s u p e r b l o c k t a b l e * /  
#def i ne NILLOCKS 8 /* # s l o t s  i n  the f i l e  l o ck i ng  t a b l e  */ 

/* The type o f  s i zeo f  may be (unsigned) long. Use the f o l l ow ing  macro f o r  
* tak ing  t he  s izes o f  small ob jects  so t h a t  there are no surpr ises l i k e  
* (small) long constants being passed t o  rou t ines  expecting an i n t .  
* / 

#def ine us i r eo f  (t) ((unsigned) s i zeo f  (t)) 

/* F i l e  system types. */ 
#def ine SUPELMAGIC Ox137F /* magic number contained i n  super-block */  
#define SUPELREV Ox7F13 /* magic # when 68000 d isk  read on PC or vv */ 
#def i ne SUPELVZ 0x2468 /* magic # f o r  V2 f i l e  systems */ 
#def ine SUPEKVZ-REV 0x6824 /* V2 magic w r i t t e n  on PC, read on 68K or vv */ 

1 /* version number of V 1  f i l e  systems */ 
2 /* version number o f  V2 f i l e  systems */ 
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/* Mi scel 1 aneous constants */ 
#def ine SU-UIO ((uid-t) 0) 
#def ine SYS-UID (Cui d-t) 0) 
r d e f  i ne SYS-CID ((gi  d-t) 0) 
#def ine NORMAL 0 
l d e f  i ne NO-READ 1 
#def i ne PREFETCH 2 

#def i ne XPIPE (-NRTASKS-1) 
Xdef i ne XOPEN (-NLTASKS-2) 
tdef i ne XLOCK C-HRTASKS-3) 
#def ine XPOPEN (-NRTASKS-4) 

#def ine NO-BIT ((bi  t-:) 03 

f de f  i ne WP-MASK 

Pdef i ne LOOLUP 
#def ine ENTER 
#def i ne DELETE 
#def ine IS-EMPTY 

wdef i ne CLEAN 
#def ine DIRTY 
#def i ne ATIME 
#defi ne CTIME 
#def ine MTIME 

#def i ne BYTE-SWAP 
Xdef i ne DONT-SWAP 

#def ine END-OF-FILE 

#def i ne ROOT-INODE 

MINIX SOURCE CODE 

/* super-user's uid-t  */ 
/* u i d - t  f o r  processes t44 and INIT */ 
/* g id - t  f o r  processes k U  and IN IT  */ 
/* forces gecb lock  t o  do d isk  read */ 
/* prevents get-block from doing d isk  read */ 
/* t e l l s  get-block no t  t o  read o r  mark dev */ 

/* used i n  fp-task when susp'd on p i p e  */ 
/* used i n  fp-task when susp'd on open */ 
/* used i n  fp-task when susp'd on l o c k  * /  
/* used i n  fo-task when susp'd on p ipe open */ 

/* r e t u  A by a1 loc-bi t() t o  s igna l  f a i l u r e  */ 

/* mask t o  d i s t i ngu i sh  dup2 from dup */ 

/* t e l l s  search-dir t o  lookup s t r i n g  */ 
/* t e l l s  search-dir t o  nake d i r  en t r y  */ 
/* t e l l s  search-dir t o  de le te  en t r y  */ 
/* tells search-dir t o  r e t .  OK o r  ENOTEMPM */ 

/* d i s k  and memory copies i d e n t i c a l  */ 
p d i s k  and memory copies d i f f e r  */ 
/* se t  i f  a t i n e  f i e l d  needs updating */ 
/* s e t  i f  ct ime f i e l d  needs updating */  
/* se t  i f  mtime f i e l d  needs updating */ 

/* t e l l s  -convZ/conv4 t o  swap bytes */ 
/* t e l l s  convZ/conv4 no t  t o  swap bytes */ 

/* eo f  detected */ 

/* inode number f o r  r o o t  d i r e c t o r y  */ 
Pdef i n e  BOOT-BLOCK ((block-t) 0) /* b lock number o f  boot b lock */ 
t de f  i ne SUPELBLOCK ((block-t) 1) /* block number o f  super b lock */ 

#def ine DffLENTRY-SIZE usizeof ( s t r uc t  d i r ec t )  /* # bytes/d i r  en t ry  */ 
Xdefi ne NRDIRENTRIES (BLOCICSIZE/DIRENTRY-SIZE) /* # d i  r e n t r i  es/bl k */ 
Xdef i ne SUPER-SIZ E us i  zeof ( s t r uc t  super,block) /* super-block s i ze  */ 
t de f  i ne PI+€-SIZE (VLNRDZOtdES*BLVCLSIZE) /* p i p e  s i z e  i n  bytes */ 
#def ine BITMAP-CHUNKS (BLOC~$IZE/usizeof (b i  t chunk t ) ) / *  # map chunkdb l  k */ 

/* Derived s izes per ta in ing  t o  the  V 1  f i l e  system. */ 
#def ine VZ_ZONLNUbLSIZE u'sizeof ( z a n e l t )  /* # bytes i n  V 1  zone */ 
#def i ne VLINODE-SIZE usizeof  ( d l i n o d e )  /* by tes  i n  V l  dsk i n o  */ 
Xdef i ne VLINDIRECTS (BLOCLSIZE/VLZONE-NUKSIZE) /* # zones/i ndi  r b lock */ 
#def ine V1-INODES-PERBLOCK (BLOCK_SIZE/VLINOOE_SIZE)/* # V 1  dsk inodes/bTk */ 

/* Derived s i r e s  per ta in ing  t o  the  Y2 f i l e  system. */ 
Rdef i  ne VI_ZONE_NW-SIZE usizeof  (zone-t) /* # bytes i n  V2 zone */ 
#def i n& V2-INODE-SIZE us izeof  (d2-inode) /* bytes i n  VZ dsk i n o  */ 
#def ine V2-INDIRECTS (BLOCK_SIZE/VZ-ZONE-NUKSIZE) /* # zones/ indir  block */ 
#def ine V2-INODES-PEILBLDCK (BLOC~SIZE/V2-INODE_5IZE)/* # V2 dsk inodes/blk */ 

#def ine p i i n t f  p r i n t k  
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/* Declaration o f  the V l  inode 
typedef s t ruc t  ( 

&e-t dUmde; 
uid-t d L u i d ;  
off-t d L s i z e ;  
time-t d L m t i w ;  
g i L t  d l g i d ;  
n l i n l L t  dLn l i nks ;  
ul6-t d l r o n e  [VLNRTZONESI ; 

1 d l i node ;  

as i t  i s  on the disk (not i n  core). */ 
/* V1.x disk inode */ 
/* f i l e  type, protect ion, etc. */ 
/* user i d  o f  the f i l e ' s  owner */ 
/* current f i l e  s ize  i n  bytes */ 
/* when was f i l e  data l a s t  changed */ 
/* group number */ 
/* har many l i n k s  t o  t h i s  f i l e  */ 
/* block nuns f o r  d i rec t ,  ind, and dbl Snd */ 

/* Declaration o f  the V2 inode as i t  i s  on the disk (not i n  core). */ 
cypedef struct { /* V 2 . x  d i s k  inode */ 

mode-t d tnode ; /* f i l e  type, protect ion, etc. */ 
u16-t dzn l i nks ;  /* how many l i n k s  t o  t h i s  f i l e .  HACK! */ 
u i  d-t d l u i d ;  /* user i d  o f  the f i l e ' s  owner. */ 
u16-t d L g i d ;  /* group number HACK! */ 
off- t  d l s i z e ;  /* current f i l e  s i r e  i n  bytes */ 
t i  me-t d2,atime; /* when was f i l e  data l a s t  accessed */ 
time-t d 2 ~ t i m e ;  /* when rvas f i l e  data last changed */ 
t i s t  d2,ctiare; /* when was i node data l a s t  changed */ 
zone-t d 2 ~ o n e [ V 2 , K f Z O N E S ] ;  /* block mms f o r  d i rect ,  ind, and dbl i n d  */ 

I d2-inode; 

/* Function prototypes. */ 

/* Structs used i n  prototypes must be declared as such f i r s t .  */ 
s t ruc t  buf: 
s t ruc t  f i l p ;  
s t ruc t  inode; 
s t ruc t  super-block ; 

/* cache.c */ 
,PROTOTYPE( r o n c t  alloc-zone, (Dev-t dev, zone-t z) 1; 
-PROTOTYPE( void f lusha17, (Dev-t dev) 1; 
-PROTOTYPE( void f reczone , (Dev-t dev , zone-t numb) 1; 
-PROTOTYPE( s t ruc t  buf *getdblock, (Dev-t dev, block-t block,l'nt only-search)); 
-PROTOTYPE( void i nval i date, IDev-t devi ce) 1; 
-PROTOTYPE( void put-block. (st ruct  buf *bp, i n t  b locktype) I: 
-PROTOTYPE( void rw-block, (st ruct  buf *bp, i n t  m-flag) 1; 
-PROTOTYPE( void rw-scattered, (Dev-t dev, 

s t ruc t  buf **bufq, i n t  bufqsize, i n t  rw-flag) ); 

/* device-c */ 
-PROTOTYPE( void call-task, (i n t  t a s k n r  , message *mess_ptr) 1;  
_PROTOTYPE( void dev-opcl, ( i n t  task-nr, message *mess_ptrl 1; 
-PROTOTYPE( i n t  dev-io, ( i n t  tw-flag, i n t  nonblock, Dev-t dev, 

o f f - t  pas, i n t  bytes, i n t  proc, char *buff) 1; 
-PROTOTYPE( i n t  do-ioctl, (void) 1; 
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-PROTOTYPE( void no-dew, ( i n t  t a s k n r ,  message *mptr) 1 ; 
,PROTOTYPE( vo id  ca l l -c t ty ,  ( i n t  task-nr, message *messgtr) 1; 
-PROTOTYPE( vo id  tty-open, ( i n t  task-nr. message *mess>t r) 1; 
,PROTOTYPE( vo id  ctty-close, ( i n t  t a s k n r .  message *mess_ptr) 1 ;  
-PROTOWPEC vo id  ctty-open , Ci n t  task-nr , message *messgtr) 1; 
-PROTOTYPE ( i n t  do-setsi d , (void) 1; 
IY i  f ENABLLNETWORKING 
-PROTOTYPE( vo id  net-open, ( i n t  t a s k n r ,  message *mess_ptr) 1; 
#else 
#define net-open 0 
#endi f 

/* fi3edes.c */ 
,PROTOTYPE(struct f i l p * f i n d - f i l p ,  (s t ruc t  inode*rip,Mode,t b i t s )  ); 
-PROTOTYPE( i n t  g e c f d ,  ( int  start. Mode-t b i ts ,  i n t  *k, struct  f i l p  **fpt) ); 
-PROTOTYPE( s t ruc t  f i l p  *get,filp, ( i n t  f i l d )  > ; 
/* in0de.c */ 
-PROTOTYPE( s t ruc t  inode * a l l o ~ i n o d e ,  (Dev-t dev, Mode-t b i ts )  
,PROTOTYPE( vai d dup-inode , [struct i node * ip )  
-PROTOTYPE( void free-inode, (Dev-t dev, Ino-t numb) 
,PROTOTYPE ( s t  ruct  i node *get inode,  (Dev-t dev , i n t  nu&) 
-PROTOTYPE( void p u L i  node, {s t  ruct  i node * r ip )  
- PROTOTYPE( void update-times, (s t ruc t  i node * r i p )  
-PROTOTYPE( vo id m-i node, ( s t  r uc t  i node *ri p, i n t  rw-f 1 ag) 
-PROTOTYPE ( void w i  pe-i node, (s t  ruc t  i node * r i  p) 

/* 1ink.c */ 
-PROTOTYPE( i n t  do-link, (void) 
-PROTOlYPE ( i n t  do-unl i nk . (void) 
-PROTOTYPE ( i n t  do-rename, (void) 
,PROTOTYPE( void truncate, (struct.  i node r i p )  

/* lock,c */ 
,PROTOTYPE( i n t  l ocLop ,  (s t ruc t  f i l p  *f, i n t  req) 
- PROTOTYPE( void lock-revive. (void) 

/* main.c */ 
-PROTOTYPE ( void mai n , (voi d) 
,PROTOTYPE( void reply, ( i n t  whom, i n t  resul t )  

/* m1sc.c */ 
-PROTOTYPE( i n t  do-dup, (void) 
-PROTOTYPE( i n t  do-exi t , (void) 
-PROTOTYPE( i nt do-fcntl . Ivoid) 
- PROTOTYPE( i n t  do-fork . (void) 
- PROTOTYPE( i r r t  do-exec, (void) 
,PROTOTYPE( i n t  do-revi w , Cvoi d l  
- PROTOTYPE( i n t  do-set , (void) 
-PROTOTYPE( i n t  do-sync, Cvoid) 

/* mount-c */ 
-PROTOTYPE( i n t  domun t ,  (void) 
_PROTOTYPE( i nt do-mount , (voi d l  

/* 0pen.c */ 
-PROTOTYPE( i n t  do-close, (void) 
-PROTOPIPE( i n t  do-creat, (void) 
- PROTOTYPE ( i n t  do-1 seek, (void) 
-PROTOTYPE( i n t  do-mknod, (void) 
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-PROTOTYPE( i nt  d o ~ k d i  r , (void) 
-PROTOTYPE ( i n t  do-open , (voi d l  

/* path-c */ 
-PROTOTYPE( s t ruc t  inode *advance,(struct inode *dirp. ch 
-PROTOTYPE( i n t  search-di r ,  (s t ruc t  inode * l d i  r g t r ,  

char s t r i n g  [ W E M I ,  ino-t *numb, i n t  f lag) 1; 
-PROTOTYPE( s t ruc t  inode ' e a t j a t h ,  (char *path) > ;  
-PROTOTYPE( s t ruc t  inode * las t -d i r ,  (char *path, char s t r i n g  [NAMEJAX])); 

/* pipe.c */ 
- PROTOTYPE( i n t  do-pipe , (void) 1; 
-PROTOTYPE( i n t  do-unpause , (void) 1 ;  
-PROTOTYPE( i n t  pipe-check, (s t ruc t  inode * r i p ,  i n t  rw-flag, 

i n t  o f lags,  i n t  bytes, o f f - t  posi t ion,  i n t  *canwrite)); 
-PROTOTYPE( void release, (s t ruc t  inode *ip, i n t  cal l -nr ,  i n t  count) ); 
-PROTOTYPE( void revive, ( i  n t  proc-nr, i n t  bytes) 1; 
-PROTOPIPE( void suspend, (i n t  task) 1; 

/* protect .c */ 
-PROTOTYPE( i nt  do-access , (void) 1; 
-PROTOTYPE ( i nt  do-chmod , (void) 1; 
- PROTOlTPE( i nt  do-chow , (voi d) 1 ;  
- PROTOTYPE ( i n t  do-umask, (void) 1 ; 
-PROTOTYPE( i n t  forbidden, (s t ruc t  i node * r i p ,  Mode-t access-desi red) ) ; 
-PROTOTYPE( i n t  read-only, (s t ruc t  inode * i p )  1; 

/* p u t k . ~  */ 
-PROTOTYPE( void putk, ( i n t  c) 

/* read. c */ 
-PROTOTYPE ( i n t  do-read , (voi d) ; 
-PROTOTYPE( s truct  buf *rahead, (s t ruc t  i node * r i p  , block-t baseblock. 

o f f - t  posit ion, unsigned bytes-ahead) > ;  
- PROTOTYPE ( void read-ahead , (voi d) 1; 
-PROTOTYPE( block-t readsap, (s t ruct  i node * r i p .  o f f - t  posi t ion)  >;  
-PROTOTYPE ( i n t  read-wri t e ,  (i n t  rw-flag) 1; 
-PROTOTYPE( z o n e t  r L i n d i  r, (s t ruc t  buf  *bp, i n t  index) 1; 

/* stadi r . c  */ 
-PROTOTYPE ( i n t  do-chdi r , (void) 
-PROTOTYPE ( i n t  do-chroot , (void) 
-PROTOTYPE ( i n t  do-f s ta t ,  (void) 
-PROTOTYPE( i n t  do-stat , (voi d l  

/* super.c */ 
-PROTOTYPE( b i  t t  a1 loc-bit  , (s t ruc t  super-block *sp, i n t  map, b i  t-t or ig in ) )  ; 
-PROTOTYPE( void f ree-bi t , (s t ruc t  super-block *sp, i n t  map. 

b i  t t  b i  creturned) 1; 
-PROTOTYPE C s t ruc t  super-block *get-super , (Dev-t dev) 1; 
,PROTOTYPE( i n t  mounted, (s t ruct  inode * r ip )  1; 
-PROTOTYPE( i n t  read-super, (s t ruc t  super-block "sp) > i 
/* tirne.c */ 
_PROTOTYPE ( i n t  do-sti me, (void) 
_PROTOTYPE( i n t  do-time , (voi d) 
-PROTOTYPE( i n t  do-tims , (voi d) 
-PROTOTYPE ( i n t  do-uti me, (voi d) 
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,PROTOTYPE( t i m c t  c locLt ine,  (void) 
,PROTOTYPE( unsigned conv2, (i n t  norm, i n t  w) 
,PROTOTYPE( l ~ n g  cmv4. ( in t  norm, long x) 
,PROTOTYPE( i n t  fetch-name, (char 'path. i n t  len, i n t  flag) 
- PROTOTYPE( i n t  no-sys. (void) 
,PROTOTYPE( void panic, (char *format, i n t  nur) 

/* wr i te-c  '/ 
-PROTOTYPE(: void c l e a r ~ o n e ,  (struct inode * r ip ,  of f - t  pos, i n t  flag) 1; 
-PROTQTYPEC i nt do-wri t e  , Cuoi d) 1; 
-PROTOfYPE( s t ruct  buf *new,block, (struct inode * r ip ,  o f f - t  position) 3 : 
-PROTOTYPE( void rero,block, (struct buf *bp) 1; 

/* UTTERN should be extern except f o r  the table f i l e  */ 
Uifdef -TABLE 
#undef EXTERM 
#define UCTERN 
#end4 f 

/* F i l e  System global variables */ 
UmRN struct f p r ~  *fp; /* pointer t o  ca l ler 's  fproc struct  */ 
UCTERN i n t  super-user; /* 1 i f  ca l ler  i s  super-user, else 0 */ 
EXTERN i n t  dont rep l  y; /* normal1 y 0; set t o  1 t o  inh i  b i t  rep1 y +/ 
W E R N  i n t  susp-count; /+ number o f  procs suspended on pipe */ 
EXKRN i n t  nr-locks; /f number o f  locks currently i n  place */ 
EXIERN i n t  revivi ng ; /* number o f  pipe processes t o  be revived */ 
EXTERN o f  f-t rdahedpos i /* posi t ion t o  read ahead */ 
EXTERN struct i node *rdahed,inode; /* pointer t o  lnodt t o  read ahead */ 

/* The parameters o f  the c a l l  are kept here. */ 
EXbERN message m; /* the input message i t s e l f  */ 
EXTERN message ml; /* the output nessage used fo r  reply */ 
UCbERN int  who; /* ca l le r ' s  proc n-r */  
EXTERN i n t  fs-cal l ;  /* system ca l l  number */ 
EXTERN char usergath[PAT)LMAX];/* storage far user path name */ 

/* The following variables are used f o r  returning results t o  the cal ler ,  +/ 
EXTERN i n t  err-code; /* temporary storage f o r  error number */ 
EXTERN i n t  r d n t e r r ;  /* status o f  l as t  disk 4/o request +/ 

/* Data which need i n i t i a l i za t i on .  */ 
extern ,PROTOTYPE ( i n t  ( +ca l l ~vec to r [~ ) ,  (void) 1; /* sys c a l l  table */ 
extern i n t  rnaunajar; /* maximum major device (+ 1) */ 
extern char dot1[23; /* dot1 (&dotl[O]) and dot2 (&dot2[0)) have a special */ 
extern char dotZE31; /* meaning t o  search-dir: no access permission check. */ 
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/ *  This  i s  the  per-process in format ion.  A s l o t  i s  reserved f o r  each po ten t i a l  
* process. Thus NRPROCS must be the same as i n  the  kernel .  It  i s  not  poss ib le  
* or even necessary t o  t e l l  when a ' s l o t  i s  f r ee  here. 
*/  

EXTERN s t r u c t  fproc C 
mode-t fp-umask; /* mask se t  by urnask system c a l l  */ 
s t r u c t  inode *fp-workdir; /* po in te r  t o  working d i r ec to r y ' s  inode */ 
s t r u c t  i node *fp-rootdi  r ; /*  po in te r  t o  current  roo t  d i r  (see chroot) */ 
s t r u c t  f i l p  *fp-fi1pCOPEN-MAXI ;/* t he  f i l e  descr ip to r  t ab l e  */ 
u i  d-t fp-real u i  d ; /* r ea l  user i d  */ 
u id- t  fp-effuid;  
g id- t  fp-realgid;  
gid-t  fp-ef fg id ;  
dev-t fp-t ty;  
i n t  fp-fd;  
char * fp-buf fer ;  
i n t  fp-nbytes; 
i n t  fp-cum-io-partial; 
char fp-suspended; 
char fp-revived; 
char fp-task; 
char fp-sesldr; 
p i  d-t fp-pi d; 
1 ong f p-cl oexec ; 

) fproc [NR-PROCS] ; 

/*  F i e l d  values. */ 
#def ine NOT-SUSPENDED 
#def i  ne SUSPENDED 
#def ine NOT-REVIVING 
#def i ne REVIVING 

/* e f f e c t i v e  user i d  * /  
/ *  rea l  group i d  */  
/* e f f e c t i v e  group i d  */  
/* major/minor o f  c o n t r o l l i n g  t t y  */ 
/* place t o  save f d  i f  rd/wr can ' t  f i n i s h  */  
/* p lace t o  save b u f f e r  i f  rd/wr can ' t  f i n i s h * /  
/* place t o  save bytes i f  rd/wr can ' t  f i n i s h  */ 
/* p a r t i a l  byte count i f  rd/wr can ' t  f i n i s h  */ 
/* set t o  i nd i ca te  process hanging */ 
/* set  t o  i nd i ca te  process being revived */ 
/* which task  i s  proc suspended on */ 
/* true i f  proc i s  a session leader */ 
/ *  process i d  */  
/* b i t  map f o r  POSIX Table 6-2 FD-CLOEXEC */ 

0 /* process i s  no t  suspended on p i pe  o r  task */ 
1 / *  process i s  suspended on p ipe o r  task */ 
0 /* process is not  being revived */ 
1 /* process i s  being rev ived from suspension */ 

/* Bu f fe r  (block) cache. To acquire a block, a r ou t i ne  c a l l s  get-block(), 
* t e l l i n g  which block i t  wants. The block i s  then regarded as " i n  use" 
* and has i t s  'b-count' f i e l d  incremented. A l l  t he  blocks rhat are n o t  
* i n  use are chained together i n  an LRU l i s t ,  w i t h  ' f r o n t '  po i n t i ng  
* t o  the l e a s t  recen t l y  used b lock,  and ' r ea r '  t o  the most recen t l y  used 
* b lock.  A reverse chain, using the f i e l d  b-prev i s  a lso maintained. 
* Usage f o r  LRU i s  measured by the  t ime t he  put-block() i s  done. The second 
* parameter t o  put-block() can v i o l a t e  the LRU order and pu t  a b lock on the  
* f r o n t  o f  the l i s t ,  i f  i t  w i l l  probably n o t  be needed soon. I f  a b lock 
* i s  modif ied, the  modify ing rou t ine  must set b -d i r t  t o  DIRTY, so the b lock 
* w i  11 eventual ly  be r ew r i t t en  t o  the  disk. 
*/ 

# inc lude <sys/di r. h> /* need s t r u c t  di r e c t  * /  
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EXTERN s t ruc t  buf  I 
/* Data por t ion o f  the buf fe r .  */ 
union { 

char b-dataCBLOCLS1ZEl: /* ordinary user data */ 
s t ruc t  d i  recr  b-di r[NRDIRENTRIES] ; /* di rectory block */ 
zoneL t  b - v l i  nd CVLXNDIRECTSJ ; /* V1 i n d i r e c t  block */ 
zone-t b,v2,i nd [VZ,IUDIRECTS] ; /* V2 i n d i r e c t  block */ 
dL inode b,vlinoIVLINCOES,PERBLKK); /* V I  inode block */ 
d2-i node b,v2-i no CV2-1 U00ES_PERBLOCK] ; /* V2 i node block */ 
b i  tchunk-t b h i  tmap[BIWP,CCcUNKS'3 ; /* b i t  map block */  

1 b; 

/* Header por t ion of the buffer. */ 
s t ruc t  buf *b-next; /* used t o  l i n k  a1 I f ree bufs i n  a chain */ 
s t ruc t  buf *b-prev; /* used t o  l i n k  a l l  f ree  bufs the other nay */ 
s t ruc t  buf  +b-hash; /* used t o  l i n k  bufs on hash chains */ 
b l o c k t  b-blocknr ; /* block number o f  i t s  (minor) device */ 
dev-t b-dev; /* major I minor device where block resides */ 
char b-dirt ;  /* CLEAN o r  DIRTY */  
char b-count; /* number o f  users o f  t h i s  bu f fe r  */ 

) buf [NRBUFS] ; 

/* A block i s  f r ee  i f  b-dev -= N W E V .  */ 

#define NIL-BUF ( (s t ruct  bu f  +) 0) /* indicates absence o f  a buf fer  */ 

/* These defs make i t  possible t o  use t o  bp->b-data instead of bp->b.b,data */ 
#define b-data b.b,data 
#define b-di r b.b-di r 
#def i ne b - v l i  nd b . b - v l i  nd 
Xdef i ne b,vLi nd b . b,v2-i nd 
Xdef i ne b - v l i  no b . b - v l i  no 
#def i ne b-v2-i no b . b-v2-i no 
l d e f  i ne b-bi trnap b . b-bi t*ap 

EXTERN s t  ruc t  bu f  *buf-hash [NRBUF-HASH] ; /* the bu f fe r  hash tab le  */ 

EXTERN struct buf * f ron t ;  /* points t o  l eas t  recently used f ree  black */ 
EXTERN s t ruc t  bu f  *rear; /* points t o  most recently used f ree  block */ 
EXTERN i n t  buf s-i n-use ; /* # bufs cur ren t ly  i n  use (not on f ree  l i s t ) * /  

/* When a block i s  released, the type o f  usage i s  passed t o  put-block(). */ 
tdefi ne WRITLIFWED OlOD / *  block should be wr i t ten  t o  d isk now */ 
Xdefi ne ONESHOT 0200 /* set if block not  l i k e l y  t o  be needed soon */ 

#define INOOLBLOCK (0  + MAYBLWRITLIMED) /* inode block */ 
#define DIRECTORY-BLOCK (1 + MAYBLWRITLIMED) /* d i rectory block */ 
#define INDIRECT-BLOCK (2 + MAYBLWRITLIWED) /* pointer  block */ 
#define MAP-BLOCK (3 + MAYBLWRITE-IWED) /* b i t  map */ 
Xdef i ne ZUPERBLOCK (4 + WRITLIMMED + ONLSHOT) /* super block */ 
#define FULLDATLBLOCK 5 /* data, f u l l y  used */ 
#define QARTTAIATLBCOCK 6 I* data, p a r t l y  used*/ 

#define HASH-MASK ( N R B U F M S H  - 1) /* mask f o r  hashing block numbers */ 
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/* Device tab le .  This t ab l e  i s  indexed by major device number. It provides 
* the l i n k  between major device numbers and the rout ines t h a t  process them. 
* / 

typedef PROTOTYPE (vo id  (*dmap-t) , (i n t  task, message * m p t  r) 1 ; 

ex te rn  s t r u c t  dmap 1 
dmap-t dmap-open ; 
dmap-t dmap-rw ; 
dnap-t dmap-cl ose ; 
i n t  dmap-task; 
dmapC1: 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
s r c / f s / f i  l e .  h 

/* This i s  t he  f i l p  t ab l e .  I t  i s  an in termediary  between f i l e  descr ip to rs  and 
* inodes. A s l o t  i s  f r ee  i f  f i lp-count  == 0. 
*/ 

EXTERN s t r u c t  f i l p  { 
mode-t f i l p m d e  ; /* RW b i t s ,  t e l l i n g  how f i l e  i s  opened */ 
i n t  f i l p - f l ags ;  /* f l a g s  from open and f c n t ?  */ 
i n t  f i lp -count ;  /* how many f i l e  descr ip to rs  share t h i s  s lo t?* /  
s t r u c t  inode * f i l p - i no ;  /* po i n te r  t o  the inode */ 
o f f - t  f i  lp-pos; /* f i l e  pos i t i on  */ 

) f i  lp[NR_FILPS] ; 

Udefi ne FILP-CLOSED 0 /* f i l pmode :  associated device closed */ 

#def ine NIL-FILP ( s t r uc t  f i l p  *) 0 /* i nd i ca tes  absence o f  a f l l p  s l o t  */ 

+++++++++++++t+++++++++*+++++++++++++t++++++++++++++++++++++++++++++++++++++++++++++++ 

s r c / f s / l  ock . h  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

/* Th is  i s  t h e  f i l e  lock ing  tab le .  L ike the f i l p  tab le ,  i t  po in ts  t o  t h e  
* inode tab le .  however, i n  t h i s  case t o  achieve advisory lock ing.  
*/ 

EXTERN s t r u c t  f i l e - l o ck  i 
shor t  l o c k t y p e ;  /* F-RDLOCK o r  F-WRLOCK; 0 means unused s l o t  */ 
p i d - t  l o c k s i d ;  /* p i d  o f  the process ho ld ing  the lock */ 
s t  ruc t i node *l oc k-i node ; /* po i n te r  t o  the inode locked */ 
o f f - t  l o ck - f i  r s t ;  /* o f f s e t  o f  f i r s t  byte locked */ 
o f f - t  lock- last ;  / *  o f f s e t  o f  l a s t  byte locked */ 

) f i 7 e-1 ock [NU-LOCKS] ; 
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+++++++++++++++++++++++++++++++++++++++++++++++++++++*++++++++++++++++++++++-+++++ 
s r c / f  s / i  node .h 

t+++++++f+++++++++++++++f++t+++++++++++++++++++++++++*+++++++++++++++++++++++++++++ 

/* Inode tab le .  This t ab l e  holds inodes t h a t  are cu r ren t l y  i n  use. I n  some 
* cases they have been opened by an open0  o r  create system ca71, i n  o ther  
* cases t h e  f i l e  system i t s e l f  needs the inode f o r  one reason o r  another, 
* such as t o  search a d i r ec to r y  f o r  a path name. 
* The f i  r s r  p a r t  o f  the s t r u c t  holds f i e l d s  t h a t  are present on the 
* d i s k ;  t he  second p a r t  holds f i e l d s  not present on the d isk .  
* The d isk  inode p a r t  i s  a l so  declared i n  "type.hW as 'dL inode l  f o r  V 1  
* f i l e  systems and 'd2-inode' f o r  V2 f i l e  systems. 
*/ 

EXTERN s t r u c t  inode { 
mode-? i ~ o d e ;  /* f i l e  type. p ro tec t ion ,  e tc .  */ 
n l  i at i-n l  inks; /* how many l i n k s  t o  t h i s  f i l e  */ 
uid-f i -u id ;  /* user i d  o f  t he  f i l e ' s  owner */ 
gid-t  i -gid;  /* group number */ 
o f f - t  i - s i  ze; /* current  f i l e  s i ze  i n  bytes */ 
time-t i-atime; 
time-t i ~ n t i m e ;  

/* t ime o f  l a s t  access (VZ on1 y) */ 
/* when was f i l e  data l a s t  changed */ 

time-t i-ctime; /* when was inode i t s e l f  changed (V2 only)*/  
zone-t i-zoneCV2-NKTZONES]; /* zone numbers f o r  d i  rect .  ind, and db l  i n d  */ 

/* The f o l l ow ing  items are n o t  present on the d isk .  */ 
dev-t i-dew; /* which device i s  t h e  inode on */ 
i no-t i-num; /* inode number on i t s  (minor) device */ 
i n t  i-count; /* # times inode used; 0 means s l o t  i s  f r ee  */ 
i n t  i -ndzones ; /* # d i r e c t  zones (VLNRDZONES) */ 
i n t  i -n ind i rs ;  /* # i n d i r e c t  zones per  i n d i r e c t  b lock */ 
s t r u c t  super-block fi-sp; /* po i n t e r  t o  super b lock fo r  inode's device */ 
char i -d i  rt ; /* CLEAN o r  DIRTY */ 
char i -p i  pe; /* s e t  t o  I-PIPE i f  p ipe */ 
char i-mount; /* t h i s  b i t  i s  s e t  i f  f i l e  mounted on */ 
char i-seek; /* s e t  on LSEEK, c leared on READDRITE */ 
char i-update; /* the  ATIME, CTIME, and MTIME b i t s  a re  here */  

1 i node[NRINOOESl; 

#define NIL-INOOE ( s t r uc t  inode *) 0 /* ind icates absence o f  inode slot */ 

/* F i e l d  values. Note t h a t  CLEAN and DIRTY are def ined i n  "c0nst.h" */ 
#def i ne NO-PIPE 0 /* i -p i  pe i s  NO-PIPE i f  inode i s not a p ipe  */ 
#def ine I-PIPE 1 / * i - p i p e  i s I - P I P E i f  inode i s  a p i p e  */ 
#define NO_MOUNT 0 /* i ~ n o u n t  i s  NO-MWNT i f  f i l e  no t  mounted on*/ 
#def i ne IJIOUNT 1 /* i ~ n o u n t  i s  I-MOUNT i f  f i l e  mounted on */ 
Wdef i ne NO-SEEK 0 /* i-seek = NO-SEEK i f  l a s t  op was n o t  SEEK */ 
Wdef i ne ISEEK 1 /* i-seek = ISEEK i f  l a s t  op was SEEK * /  
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/* The following nancs are synonyms for the variables i n  the input  message. */ 
#define acc-tine m.n2-7 1 
t d e f i  ne addr m .m l i3  
Ydef i ne buf fer  m. rn lp l  
#define c h i l d  m .m l i2  
#define c o m e  m . m L i 1  
#define e f  f-grp-i d m . m l i  3 
#define eff-user-id m . m L i  3 
#define erk i  m.rnLpl 
#define f d  m .nL i1  
#daf i ne fd2 m.m l i2  
tdef i ne i o f  1 ags m . m l i 3  
Xdef i ne group m.ml i3  
rde f i  ne real-grp-id tn . m l i  2 
Ydef i ne I s-f d m. m2-i l 
#define r- m.rnLj2  
#define mode m.rn3-i 2 
#define c-e m . m l i  3 
Xdef i ne c-name m. mLp1 
iCdefi ne name m .m3_pl 
#define name1 m.m-1 
#define name2 m.n lp2  
#define name-length m.mLi1 
Xdef ine n a n e l l  ength m.mLi 1 
Xdef i ne -2-1 ength m . m l i  2 
l d c f i  ne nbytes m.mLi2 
r d e f i  ne o f f  se t  n.m2-11 
#def i ne owner n t . m l i  2 
Xdef i ne parent m . m l i 1  
#def i ne pa thname m.mlca1 
#define p i d  n . m l i 3  
l d e f i  ne pro m.mLi 1 
#define rd-on1 y m .m l i3  
#def i ne real-user-id n. m l i 2  
#def f ne request l a . m l i 2  
#define s ig  n . m l i 2  
Xdefi ne slot1 m . m l i 1  
lrdefi ne t p  m.rn2-11 
l d e f i  ne utime-actime m .m2-11 
#define ut imemdt ime m.ln2-12 
#define u t i m f i  l e  rn.m2_pl 
#def i ne u t  i nae-length m .m2-i 1 
Wdefi ne whence m.rn2-i2 

/* The fo l lowing names are synonyms for the variables i n  the output message. */ 
tde f i  ne repl y-type m l  .mtype 
#define rep1 y-11 m l  . m2-11 
tdef i ne rep1 y-i 1 m l .  m l i  1 
ddef i ne rep1 y-i 2 m l . m l - i  2 
#define rep1 y - t l  m l .  m4-11 
#define rep1 y-t2 ml.m4-12 
#define rep1 y-t3 m l .  m4-13 
tdef i ne rep1 y-t4 m l .  nrQ-14 
Ydef i ne rep1 y-tS ml . m4-15 
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/* Super block table. The root f i l e  system and every mounted f i l e  system 
* has an ent ry  here. The entry ha?& i n foma t ion  about the sizes of the  b i t  
* maps and inodes. The s-ninodes f i e l d  gives the  nmber o f  inodes avai lable 
* fo r  f i les  'and d i rector ies,  Sncluding the root d i rectory.  Inode 0 i s  
* on the disk, but nor used. Thus s-ninodes = 4 mans tha t  5 b i t s  wi 11 be 
* used i n  the b i t  map, b i t  0, which i s  always 1 and not  used, and b i t s  1-4 
* f o r  f i l e s  and di rector ies.  The d i sk  layout i s :  

I tem # blocks 
boot block 1 
super block 1 
i node map s-i map-bl ocks 
zone map s-zmp-blocks 
i nodes (s-ninodes + 'Inodes per block' - l) / ' inodes per block' 
unused whatever i s  needed t o  f i l l  out  the current zone 
data zones (s-zones - s-firstdatazone) << s-log-zone-size 

super-block s l o t  i s  f r ee  i f  s-dev - NOJEV. 

EXERN s t ruc t  super-block 
i no-t s-ni nodes ; 
z o n e l t  s-nzones; 
short s-im-blocks; 
short s-zmap,~blocks; 
z o n e l t  s-f i rstdatazone ; 
short s - log~one-s i  ze; 
o f f - t  s ~ n a ~ s i  ze; 
short  smagi c; 
short  s-pad; 
zone-t s-zones; 

C 
/* # usable inodes on the minor device */ 
/* t o t a l  device size, Sncluding b i t  maps e tc  */ 
/* # o f  blocks used by inode b i t  map */ 
/* # of blocks used by zone b i t  map */ 
/* number o f  f i r s t  data zone +/ 
/* log2 o f  blocks/zone */ 
/* maximum f i l e  size on t h i s  device */ 
/* magic rider t o  recognize super-blocks */ 
/* try t o  avoid conpi ler-dependent padding */ 
/* number o f  zones (replaces s-nrones i n  V2) */ 

/* The fo l lowing items are on1 y used when the super-block i s  i n  memory. */ 
s t ruc t  inode  *s- isup; /* inode for root d i r  o f  mounted f i l e  sys */ 
st ruct  i node *s-i mount ; /* inode mounted on */ 
unsigned s-i nodes-per-block; /* precalculated from magic nmber */ 
dev-t s-dev; /* whose super block i s  t h i s?  */ 
i n t  s-rd-on1 y ; /* se t  t o  1 i f f  f i l e  sys mounted read only */ 
i n t  s-native: /* set  t o  1 i f f  not byte swapped f i l e  system */ 
i n t  s-version; /* f i l e  syster version, zero mans bad ~ g i c  */ 
i n t  s-ndzones ; /* # d i r e c t  zones i n  an inode */ 
i n t  s-ni ndi rs ;  /* r ind i rec t  zones per i n d i r e c t  block */ 
b i  t-t s-i search ; /* inodes below th is  b i t  number are i n  use */ 
b i  t t  s-zsearch; /* a l l  zones below t h i s  b i t  nunrbcr are i n  use*/ 

1 super-bl ock [NILSUPERS1 ; 

#clef i ne NILSUPER (s t ruc t  super-block *) 0 
l d e f i  ne I M P  0 /* operating on the i node b i t  map */ 
#define MAP 1 /* operating on the zone b i t  map */ 
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/* This  f i l e  contains the t ab l e  used t o  map system c a l l  numbers onto the  
* rout ines t h a t  perform them. 
*/ 

ti nc l  ude "f s . h" 
W i  nc l  ude uni n ix /ca l  l n r  . h> 
#inc lude m i n i  x/com. h> 
Xi  nc l  ude "buf .  h" 
X i  nc l  ude "dev . h" 
#include " f i1e.h"  
#include " fproc .h" 
#i nc l  ude "i node. h" 
# inc lude "1ock.h" 
# inc lude "super .h" 

PUBLIC -PROTOTYPE ( i n t  
no-s ys , 
do-exi t , 
&-fork. 
d c r e a d  , 
do-wri te ,  
do-open , 
do-cl ose , 
no-s y s , 
do-creat , 
do-l ink, 
do-unl i nk , 
no-sys , 
do-chdi r . 
do-time, 
do-knod , 
do-c hmod . 
do-chown . 
no-s y s , 
do-stat , 
do-1 seek, 
no-SYS, 
do-mount . 
do-umount , 
do-set , 
n o s y s  , 
do-stine, 
n o s y s  , 
n o s y  s , 
do-f s t a t ,  
n o s  ys , 
do-utime, 
n o s y s ,  
n o s y s ,  
do-access. 
n o s y s  , 
n o s y  s , 
do-sync, 

(*call-vectorlNCALLSJ), (void) ) = i 
/* 0 = unused */ 
/* l = e x i t  */ 
/* 2 = f o r k  */ 
/* 3 = read */ 
/* 4 = w r i t e  */ 
/* 5 = open */ 
* 6 = c lose */ 
/+ 7 - wa i t  . */ 
/* 8 = c rea t  */ 
/+ 9 = l i n k  */ 
/* 10 = un l i n k  */ 
/* 11 = w a i  t p i d  */ 
/* 12 = chd i r  */ 
/ * 1 3 = t i m e  *! 
/* 14 - mknod */ 
/* 15 = &mod */ 
/* 16 = chow */ 
/* 1 7  = break */ 
/* 18 = s t a t  */ 
/* 19 = lseek */ 
/* 20 = ge tp id  */ 
/ *  21 = mount *I 
/*  22 = umount */ 
/* 23 = se tu i d  */ 
/* 24 = ge tu id  */ 
/ *  25 - st ime */ 
/* 26 5 pt race  */ 
/* 27 alarm */ 
/* 28 = f s t a t  */ 
/* 29 = pause */ 
/* 30 = ut ime */ 
/* 3 1  = (s t t y )  */ 
/* 32 = WAY) */ 
/* 33 access */ 
/ *  34 = (nice) */ 
/* 35 = (ftime) */ 
/*  36 = sync */ 



m s y s ,  
&-rename , 
d o ~ k d i  r , 
do-unli nk, 
do-dup , 
&pi PC, 
do-tims , 
no-s y s 
no-s y s , 
do-set , 
no-s ys , 
no-sys, 
no-sys. ' 

n o s y  s . 
noes ys , 
n o s y  s , 
no-s ys , 
do-ioctl , 
do-fcntl , 
no-s y s , 
no-s y s , 
no-sys, 
do-exec . 
dcwoask ,  
do-chroot , 
do-setsid, 
no-SYS , 

no-s ys , 
do-unpause, 
no-sys , 
do-revi ve , 
no-s ys , 
no-s ys , 
no-sys, 
no-s y s . 
no-s y s , 
no-sys, 
n o s y  s 
no-s y s , 
nosy5  , 
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/ * 3 7 = k i l l  +/ 
/* 38 = rename */ 
/* 39 = akd i r  +/ 
/* 40 = rmdZt r +/ 
/* 4 1  = dup +/ 
/* 42 = pipe */ 
/* 43 = times +/ 
/* 44 1 (prof) */ 
/* 45 = unused */ 
/* 46 = setg id */ 
/* 47 = getgid */ 
/* 48 = (signal)*/ 
/* 49 = unused */ 
/* 5 0  = unused */ 
/* 5 1  = (acct) */ 
/* 52 - (phys) */ 
/* 53 = (lock) */ 
/+ 54 = i o c t l  */ 
/* 55 a f c n t l  */ 
/* 56 (npx) */ 
/* 57 = unused */ 
/* 58 = unused */ 
/* 5 9  1 execve */ 
/* 60 = u ~ s k  */ 
/* 6 1  + chroot */ 
/* 62 - sets id */ 
/* 63 1 getpgrp */ 

/* 64 - KSfG: signals o r i g ina t i ng  $n the kerne? */ 
/' 6 5  = UNPAUSE */ 
/* 66 - unused */ 
/* 67 = R E V I M  */ 
/* 68 - TASKREPLY */ 
/* 69 - unused */ 
/* 70 unused */ 
/* 71 = SItACTI(3H */ 
/* 72 = SICSUSPEND */ 
/* 73 = SICPENDING */ 
/* 74 - S1GPROC)rWK */ 
/* 75 - SIGRENRN */ 
/* 76 * REBOM +/ 

/* 5ome devices may o r  MY not be there i n  the next table'. */ 
#define DT(enable, open, rw, close, task) \ 

I (enable ? (open) : no-dev) , (enable ? (nu) : no-dev) , \ 
(enable ? (close) : no-dev) , (enable ? (task) : 0) 1, 

/* The order o f  the ent r ies  here determines the mapping between major device 
* numbers and tasks. The f i r s t  entry (major device 01 i s  not used. The 
* next entry i s  major device 1, etc. Character and block devices can be 
* intermixed a t  random. I f  t h i s  ordering i s  changed, the devices i n  
+ <include/minix/boot. h> must be changed t o  correspond t o  the new values. 
* Note that the major device nurnlbers used i n  /dev are NOT the same as the 
* task numbers used ins ide  the kernel (as defined i n  cinclude/minix/cm.h>). 
* Also note t h a t  i f  /dev/men i s  changed from 1, NULLM30R must be changed 
* i n  c i  nc l  ude/mi n i  x/com. h> . 
*/ 

PUBLIC s t ruc t  h a p  h a p [ ]  = { 
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/ *  7 Open Read/Wri t e  
- ----  - - - - - - - - - - 

DT(1, no-dev, no-dev, 
DT(1, dev-opcl , ca l l - task,  
DT(1, dev-opcl , cal l - task,  
DT(ENABLE-WINI, 

dev-opcl , ca l  1-task , 
DT(1, tty-open, ca l l - task,  
DT(1, ctty-open, ca l l - c t t y ,  
DTI1, dev-opcl , ca l l - task,  

# i f  (MACHINE == IBM-PC) 
DT(ENABLE,NETWORKINC, 

net-open, ca l l - task,  
DT(ENABLE-CDROM, 

dev-opc3 , c a l l  ,task , 
DT(0, 0, 01 
DT(ENABLLSCS1, 

dev-opcl , c a l l  -task , 
DT(0, 0 ,  0, 
DT(0. 0 ,  0. 
DT(ENABLEAUDI0, 

dev-opcl , ca l  1-task, 
DT(ENABLE-AUDIO, 

dev-opcl , ca l  1-task, 
#endi f /* IBM-PC */ 

#i f (MACHINE == ATARI) 
DT(ENABLE-SCSI , 

dev-opcl . cal l - task , 
#endi f 
3 ;  

Close Task # Device F i l e  
----- - - - - - - - ------ ---- */ 
no-dev , 03 / *  0 = no t  used */ 
dev-opcl , MEM) /*  1 = /dev/mem * /  
dev-opcl , FLOPPY) /* 2 = /dev/fdO */ 

dev-opcl , 

dev-opcl ., 

dev-opcl , 
0,  

dev-opcl , 
0, 
0,  

dev-opcl , 

dev-opcl , 

dev-opcl , 

dev-opcl , WINCHESTER) /* 3 = /dev/hdO */ 
dev-opcl , TTY) /* 4 = /dev/ttyOO */ 
c t t y - c l  ose , TTY) /*  5 = /dev / t t y  */ 

PRINTER) /*  6 =  /dev/ lp */ 

INET-PROC-NR)/* 7 = /dev/ ip * /  

CDROM) /*  8 = /dev/cdO */ 
0 / *  9 = n o t  used */ 

SCSI) / * l o  = /dev/sdO */ 
0) /*I1 = no t  used * /  
0) /*I2 = no t  used * /  

AUDIO) / * I 3  = /dev/audio */ 

MIXER) / * I 4  = /dev/mixer */ 

PUBLIC i n t  rnax-major = s i  zeof (dmap)/si zeof ( s t r uc t  dmap) ; 

/* The f i l e  system maintains a bu f f e r  cache t o  reduce the  number o f  d i sk  
* accesses needed. Whenever a read o r  w r i t e  t o  the  d i s k  i s  done, a check i s  
* f i r s t  made t o  see i f  the block i s  i n  the cache. This f i l e  manages t he  
* cache. 
* 
* The en t ry  po i n t s  i n t o  t h i s  f i l e  are: 
* get-block: request t o  f e t ch  a block f o r  reading o r  w r i t i n g  from cache 
* put-block: re tu rn  a block prev ious ly  requested w i t h  get-block 
* alloc-zone: a l loca te  a new zone ( t o  increase the leng th  o f  a f i l e )  
* free-zone: release a zone (when a f i l e  i s  removed) 
* rw-block: read o r  w r i t e  a block from the d isk  i t s e l f  
* i n va l i da te :  remove a l l  the cache blocks on some device 
*/ 

# inc lude <mini x/com. h> 
#inc lude <mi n i  x/boot . h> 
#i nclude "buf. h" 
# inc lude " f i 1e .h "  
# inc lude " fproc.  h" 
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#incl ude "super. h" 

FORWARD -PROTOTYPE( void r k l  ru ,  (s t ruc t  bu f  *bp) ) ; 

/*tltlff===t===========~I=~=~~~~=~=~=~I~===D~PP*r:=II==~II5~=1*~Pr:-====~==* 

4 get-block 
* ~ * = = = = = = = , = = , = = , , , 5 ~ I 5 . c = t t t ~ I I = ~ I - I X ~ = ~ ~ = I L ~ * ~ = = ~ = = = , = = ~ ~ ~ f t = I ~ = ~ I I I L I I I = *  / 

PUBLIC s t  ruct  bu f  *get-blockldev, block, on1 y-search) 
register  dev-t dev; /* on which device i s  the block? */ 
register  b l o c k t  block; /* which block i s  wanted? */ 
i n t  only-search; /* i f  NO-READ, don't read, else act normal */ 
t 
/* Check t o  see i f  the requested block i s  i n  the block cache. I f  so. return 
* a pointer  t o  i t .  I f  not, e v i c t  some other block and fetch i t  (unless 
* 'only-search' i s  1). 411 the blocks i n  the cache tha t  are not  i n  use 
* are l inked together i n  a chain, w i th  ' f r o n t '  point ing t o  the l eas t  recently 
* used block and 'rear '  t o  the most recently used block. I f  'only-search' i s  
* 1, the block being requested w i l l  be overwrit ten i n  i t s  ent i rety,  so i t  i s  
* on ly  necessary t o  see if it i s  i n  the cache; i f  i t  i s  not, any f ree  buf fer  

w i  11 do. I t  i s  not necessary t o  ac tua l ly  read the block i n  from disk. 
* I f  'only-search' i s  PREFETCH, the block need not be read from the disk, 
* and the device i s  not t o  be marked on the block, so ca l le rs  can t e l l  i f  
* the block returned i s  val id .  
* I n  addi t ion t o  the LRU chain, there i s  a1 so a hash chain to  l i n k  together 
* blocks whose block m&w+-ed wi th  the same b i t  s t r ings.  f o r  f as t  lookup. 

i n t  b; 
reg is te r  s t ruc t  bu f  *bp, 

/* Search the hash chain 
* get-block(N0-DEV . . . ) 
* someone wants t o  read 
* i s  skipped 
* / 

i f  (dev != W D E V )  I 

f o r  (dev, block). Do-read() can use 
t o  get  an unnamed block t o  f i  11 wi th zeros when 
from a hole i n  a f i l e ,  i n  which case th is ,  search 

b = ( i n t )  block & H A S W S K ;  
bp = buf-hashlbl ; 
while (bp 1= NILBUFI I 

i f  (bp-zb-blocknr -= block bp->b-dev == dev) { 
/* Block needed has been found. */ 
if (bp->b-count == 0 )  mllruCbp) ; 
bp->b-count++; /* record t h a t  block i s  i n  use */ 
return(bp1; 

) else { 
/* This block i s  not  the one sought. */ 
bp = bp->b-hash; /* move to  next block on hash chain */ 

1 
1 

I 

/* Desired block i s  not on avai lable chain. Take o7dest block ( ' f ron t  ' I .  */ 
i f  ((bp = f ron t )  == NIL-BUF) panic("al1 buf fers i n  use", NRBUFS); 
r c 1  ru(bp) ; 

/* Remove the block tha t  was j u s t  taken from i t s  hash chain. */ 
b = ( in t )  bp->b-blocknr & H A S W S K ;  
p r e v s t r  Q buf-hash [b] ; 
i f  (prev-ptr == bp) I 

buf-hash [b] - bp->b-hash ; 



MINIX SOURCE CODE File: src/fs/cache.c 

1 else I 
/* The block j u s t  taken i s  not on the f ron t  o f  i t s  hash chain. */  
whi le (prev-ptr->b-hash != MIL-BUF) 

i f  (prev-ptr->b-hash == bp) { 
prev-ptr->b-hash = bp->b-hash; /* found i t  */ 
break; 

1 else I 
prev-ptr = prev-ptr->b-hash; /* keep looking */ 

1 

/* I f  the block taken i s  d i r t y ,  make i t  clean by wr i t i ng  i t  t o  the d isk .  
* Avoid hysteresis by f lushing a l l  other d i r t y  blocks f o r  the same device. 
* / 

j f (bp->b,dev != NO-DEV) { 
i f  (bp->b-di r t  == DIRTY) f 1 ushal l  (bp->b-dev) ; 

1 

/* F i  11 i n  block's parameters and add i t  t o  the hash chain where i t  goes. */ 
bp->b-dev = dev; /* fi 11 i n  device number */ 
bp->b-blocknr = block; /* f i l l  i n  block number */ 
bp->b-coun t++; /* record that  block is being used */ 
b = l i n t )  bp-rb-blocknr & HASHMASK; 
bp->b-hash = buf-hashCb1; 
buf-hashCb] = bp; /* add t o  hash l i s t  */  

/* Go get the requested block unless searching o r  prefetching. */  
i f  (dev != NODEV) { 

i f  (only-search == PREFETCH) bp->b-dev = NOSEV; 
else 
i f  (on1 y-search == NORMAL) m-block (bp , READING) ; 

1 
return(bp1; /* return the newly acquired block */ 

1 

* put-block 

PUBLIC void p u t b l  ock(bp, b lock type)  
reg is te r  s t ruc t  buf *bp; /* pointer  t o  the buf fe r  t o  be released */ 
i n t  block-type; /* INODEBLOCK, DIRECTORY-BLOCK, o r  whatever */ 
I 
/* Return a block t o  the 1 i s t  o f  avai lable blocks. Depending on 'block-type' 
* j t  may be put on the front w rear o f  the L R U  chain. Blocks that  are 
* expected t o  be needed again shor t l y  (e.g., p a r t i a l l y  f u l l  data blocks) 
* go on the rear; blocks tha t  are un l ike ly  t o  be needed again short ly  
* (e-g., f u l l  data blocks) go on the f ron t .  Blocks whose loss can hur t  
* the i n t e g r i t y  of the f i l e  system ( e . g . ,  inode blocks] are wri t ten  t o  
* disk i tmediate ly  i f  they are d i  r t y .  
/ 

if (bp == NKLBUF) return; /* i t  i s  easier t o  check here than i n  c a l l e r  */ 

bp->b-count--; /* there i s  one use fewer now */ 
if (bp->b,count I =  0) return; /* block i s  s t i l l  i n  use */ 

bufs-i n-use--; /*- one fewer block buf fers i n  use */  

/* P u t  t h i s  block back on the LRU chain. I f  the ONE-SHOT b i t  i s  s e t  i n  
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* 'b lock type ' ,  the block i s  not l i k e l y  t o  be needed again short1 y, so put 
* it on the front of the  LRU chain where i t  w i l l  be the  f i r s t  one t o  be 
* taken when a f ree  buf fe r  i s  needed 'later. 
*/ 

i f  (b lock type & ONE-SHOT) { 
/* Block probably won't be needed quickly. Put i t  on f ron t  o f  chain. 
* It w i l l  be the next block t o  be evicted from the cache. 
*/ 

bp->b_prev = NILBUF; 
bp->b,next = f ron t ;  
i f  ( f ron t  - NILBUF) 

rear = bp; /* LRU chain was empty */ 
e l  re 

f r o n t - A p r e v  = bp; 
f r on t  - bp; 

3 else C 
/* Block probably w i l l  be needed quick1 y. Put i t  on rear  o f  chain. 

It w i l l  not be evicted from the cache for a long time. 
*/ 

bp->b-prev = rear; 
bp-zb-next - NfLBUF; 
i f  Oear a- NILBUF3 

f r o n t  - bp; 
e lse 

rear->b-next .I bp; 
rear = bp; 

J 

/* Some blocks are so important (e.g., inodes, i nd i rec t  blocks) tha t  they 
should be wr i t t en  t o  the d isk inmediately t o  avoid messing up the f i l e  

* system i n  the event o f  a crash. 
** / 
i f  ((b locktype & W R I T L I W D )  && bp-zb-dirt-DIRTY & bp-zb-dev != NOREV) 

m,b?ock(bp, WRITING) ; 
1 

/ * - ~ . - ~ ~ ~ - ~ * ~ - ~ ~ ~ = * = ~ = ~ ~ ~ ~ - = = ~ u ~ = u ~ s = - = m = ~ = a - ~ = ~ - = u = = = = ~  

C a1 l o t z o n e  
* = o r t r r r - = r r r r r r i t l ~ ~ ~ ~ t ~ ~ ~ = - = = p ~ ~ = - ~ ~ ~ ~ ~ = - ~ = - t ~ t ~ p = ~ ~ ~ = = * /  

W B L I C  zone-t a1 l o c s o n t  (dev , z) 
dev-t dev; /* device where ione wanted */ 
zonr?,t r ; /* t r y  t o  a l loca te  new zone near t h i s  one */ 
I 
/* A71ocate a new zone on the indicated device and return i t s  number. */ 

i n t  major, minor; 
b i t - t  b, b i t ;  
s t ruc t  super-block *sp; 

Note tha t  the rout ine alloc,bit() returns 1 f o r  the lowest possible 
zone, which correapnds to sp->sfirstdatazane . Ta convert a value 
between the b i t  number, 'b' , used by alloc,bit() and the zone number, ' 2 ' .  

stored i n  the inode, use the formula: 
t z = b + sp->s-firstdatazone - 1 
* Alloc-bi t() never returns 0 ,  -since t h i s  i s  used f o r  NO-BIT ( fa i lu re) .  
* / 

sp = get-super (dev) ; /* f i n d  the super-block f o r  t h i s  device */ 

/* I f  z i s  0, sk ip i n i t i a l  pa r t  o f  the map known t o  be f u l l y  i n  use. */ 
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i f  (Z == sp->s-fi rstdatazone) { 
b i t  - sp-rs-zsearch; 

1 e lse  { 
b i t  = (b i t - t )  z - (sp->s-fi rstdatazone - 1); 

1 
b = a1 1 oc-bi t ( sp  , ZMAP, b i t )  ; 
i f  (b == NO,BIT) { 

err-code = ENOSPC; 
major = ( i n t l  (sp->s_dev r >  MA30R) & BYTE; 
minor = ( i n t )  (sp->s-dev >> MINOR) & BYTE; 
p r i  n t f  ("No space on %sdevi ce %d/%d\nU , 

sp-rs-dev == ROOT-DEV ? " roo t  " : "", major, minor) ; 
re tu rn  (NO-ZONE) ; 

1 
if (z == sp->s-firstdatazone) sp->s-zsearch = b; /* f o r  next  t ime */  
returnCsp->s-firstdatarone - 1 + (zone-t) b) ;  

1 

/* Return a zone. */  

r eg i s t e r  s t r u c t  super-block *sp; 
b i t - t  b i t ;  

/* Locate the  appropr ia te  super-block and r e tu rn  b i t .  */ 
sp = get-supe r (dev) ; 
if (numb < sp - rs - f i  rstdatazone I I numb >= sp->s-zones) re tu rn ;  
bit  = (bi t-t) (numb - (sp->s-firstdatazone - 1)); 

,free-bi t(Sp, ZMAP, b i t ) ;  
if ( b i t  < sp->s-zsearch) sp->s-zsearch = b i t ;  

1 

/*=====**=~==~=================z====-======================k================* 

* m-block * 
*-i----C---------=S-----A-----* ---------- ----- ----- / 

PUBLIC vo id  m,block(bp. rw-f 1 ag) 
r e g i s t e r  s t r u c t  bu f  *bp; /* b u f f e r  -poi nter  */ 
i n t  m-f lag ;  /* READING or WRITING */ 
C 
/+ Read o r  w r i t e  a disk block. This i s  t h e  on l y  r ou t i ne  i n  which actua l  d i sk  
* 1/0 i s  invoked, I f  an e r r o r  occurs, a message i s  p r i n t ed  here, b u t  t h e  e r r o r  
* i s  n o t  reported t o  t h e  ca l l e r .  I f  t he  e r r o r  occurred wh i le  purging a b lock 
* from the cache, i t  i s  no t  c lea r  what the c a l l e r  could do about i t  anyway. 
*/ 

i n t  r ,  op; 
o f f - t  pos; 
dev-t dev; 

i f  ( (dev = bp->b-dev) != NO-DEV) { 
pos = (o f f - t )  bp-rb-blocknr * BLOCLSIZE; 
op = (rw-f lag == READING ? DEV-READ : DEV-WRITE) ; 
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r = dev-io(op. FALSE, dev, pos , BLOCLSIZE , FS-PROC-NU , bp->b-data) ; 
if (r  ! = BLOCLSIZE) E 

if (r >= 0) r = END-OF-FILE; 
i f  (r != END-OF-FILE) 

p r i n t f  ("Unrecoverabl e disk e r r o r  on device %dm, block %ld\n", 
(dev>>MAJOR)&BYTE, (dev>>HINOR1&BYTE, bp-sb-blocknr); 

bp->b-dev = NO-DEV; /* i n v a l i d a t e  b lock */ 

/* Report read e r r o r s  to i n t e res ted  pa r t i e s .  */ 
i f  (rw-f lag -= READING) r d w t e r r  = r; 

1 

bp->b-di r t  = CLEAN; 
3 

/* Relnave a l l  the  blocks belonging t o  some device from the cache. */ 

r eg i s t e r  s t r u c t  bu f  'bp; 

f o r  (bp = &buf [O] ; bp c Lbuf [NRBUFS] ; bp++) 
i f  Cbp->b-dev -= device) bp->b-dev = NO-DEV; 

1 

r eg i s t e r  s t r u c t  buf *bp; 
s t a t i c  s t r u c t  buf *dirty[NRBUFS]; /* s t a t i c  so i t  i s n ' t  on stack */ 
i n t  n d i r t y ;  

f o r  (bp = &buf[O], n d i r t y  = 0 ;  bp c &buf[NKBUFS]; bp++) 
if Cbp-pb-di rt == DIRTY && bp->b-dev s= dev) d i  r t y [nd i  r ty++]  - bp; 

rw-scattered(dev. d i  r t y ,  ndi r t y ,  WRITING) ; 
1 

PUBLIC vo i d  rw-scatteredcdev, bufq,  bufqsize, m- f lag)  
dev-t dev ; 
s t r u c t  buf **bufq; 

/* major-minor device nunber */ 
/* po in te r  t o  a r ray  o f  b u f f e r s  */ 

i n t  bufqsize; /* number o f  bu f fe rs  */ 
i n t  rw-flag; /* READING o r  WRITING */ 
C 
/* Read o r  w r i t e  scat tered data from a device. */ 
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r eg i s t e r  s t r u c t  bu f  *bp; 
i n t  gap; 
r e g i s t e r  i n t  i; 
r e g i s t e r  s t r u c t  iorequest-s *iop; 
s t a t i c  s t r u c t  iorequest-s iovec[NRIOREQS] ; /* s t a t i c  so i t  i s n ' t  on stack * /  
i n t  j ;  

/* ( S h e l l )  s o r t  bu f f e r s  on b-blocknr. */ 
gap = 1; 
do 

gap = 3 * gap + 1; 
wh i le  (gap <= bufqsi  ze) ; 
wh i le  (gap ! = 1) { 

gap /= 3; 
f o r  ( j  = gap; j < bufqsize; j++) { 

f o r  (i = j - gap; 
i >= 0 &I% bufq[i]->b-blocknr > bu fq [ i  + gap]->b-blocknr; 
i -= gap) { 

bp = bufqCi1; 
bufq[ i ]  = bu fq [ i  + gap] ; 
bufq[i + gap] = bp; 

I 
1 

1 

/* Set up i / o  vector  and do i / o .  The r e s u l t  o f  dev-io i s  discarded because 
* a l l  r esu l t s  are returned i n  t he  vector .  I f  dev-io f a i l s  completely, the 
* vector  i s  unchanged and a l l  r e s u l t s  are taken as e r r o r s .  
* / 

w h i l e  (bufqsize > 0) { 
f o r  ( j  = 0, i o p  = iovec;  j < N R I O R E Q S  Eldr j < bufqs ize;  j++, iop++) { 

bp = b u f q [ j I ;  
iop-> io-pos i t ion = (of f- t )  bp->b-blocknr * BLOCKSIZE; 
i op->i o-buf = bp->b-data ; 
iop->io-nbytes = BLOCLSIZE;  
iop->io-request = rw-f lag == WRITING ? 

OW-WRITE : DEV-READ 1 OPTIONAL-10; 
1 
(void) dev-i a(SCAlTERED-10, 0, dev, (of  f-t) 0, j , FS-PRKNR , 

(char *) iovec) ; 

/* Harvest the r esu l t s .  Leave read e r r o r s  f o r  rw-block() t o  complain. */ 
f o r  (i = 0, iop  = iovec;  i < j; i++, iop++) { 

bp - bu fqC i j ;  
i f  (rw-f lag == READING) { 

i f  (iop-ria-nbytes == 0) 
bp->b-dev = dev; /* va l i da te  block */ 

put-blockCbp, PARTIAL-DATLBLOCK); 
1 e lse  i 

i f  (iop-rio-nbytes != 0) { 
p r i n t f  ("Unrecoverable w r i t e  e r r o r  on device %d/%d, block %ld\n", 

(dev>AAJOR)&BYTE, (dev>>MINOR)&BME, bp->b-blocknr) ; 
bp->b-dev = NO-DEV; /* i nva l i da te  block */ 

1 
bp->b-dirt = CLEAN; 

1 
3 
buf q += j ; 
bufqsize -= j; 
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s t r u c t  buf *next-ptr, *prev-ptr; 

bufs-in-use++; 
next -p t r  = bp->b-next; /* successor on LRU chain */ 
prev-ptr  = bp->b-prev; /* predecessor on LRU chain */  
if (prev-ptr != NIL-BUF) 

prev-ptr->b,next = next-ptr ;  
e l se  

f r o n t  = next-ptr ;  /* t h i s  block was a t  f r o n t  of chain * /  

i f  (next-ptr  != NIL-BUF) 
nextstr->b,prev = prev-ptr; 

e l se  

- - rear  = prev-ptr; /* t h i s  b lock was a t  rear  o f  chain */ 
1 

++++++++++++++++++++++++++++++++++++t+++++++++++++++++++++++++++++++t++++++++++t++++ 

s r c /  f s / i  node. c 
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

/* This f i l e  manages the inode tab le .  There are procedures t o  a l l o ca te  and 
* deal locate inodes, acquire, erase, and release them, and read and w r i t e  
* them from t h e  d i s k .  
* 
* The en t r y  po i n t s  i n t o  t h i s  f i l e  are 
* get-inode: search inode t ab l e  f o r  a g iven inode; i f  no t  there. read i t  
* put-inode: i nd i ca te  t h a t  an i node i s  no longer needed i n  memory 
* allot-inode: a l l o c a t e  a new, unused inode 
* wipe-inode: erase some f i e l d s  o f  a newly a1 located inode 
* f ree-inode: mark an inode as ava i lab le  f o r  a new f i l e  
* update-times: update atime, ct ime, and mime 
* r w - i  node : read a d isk  block and ex t r ac t  an inode, or corresp. w r i t e  
* old-icopy: copy t o / f r m  in-core inode s t r u c t  and disk inode (V1.x) 
* new-icopy: copy t o / f r m  in-core inode s t r u c t  and d isk  inode ( V 2 . x )  
* dup-inode: i nd i ca te  t h a t  someone e l se  i s  using an inode t ab l e  en t r y  
* / 

#include "fs.hW 
t i  nclude <mini x/boot . h> 
#include "buf.hW 
#include " f i1e.h"  
#include "fproc . h" 
#include "inode.h" 
#include "super. h" 
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FORWARD -PROTOTYPE(, vo id  old- i  copy, ( s t r uc t  i node * r i p ,  d l - i  node * d i  p ,  
i n t  d i r ec t i on .  i n t  norm)); 

FORWARD -PROTOTYPE( vo id  new-i copy, (s t  r u c t  i node *ri p , d2-i node *d i p  , 
i n t  d i r ec t i on ,  i n t  norm)); 

C 
/* Find a s l o t  i n  t h e  inode tab le ,  load t he  spec i f i ed  inode i n t o  i t ,  and 
* r e t u rn  a po i n t e r  t o  the  s l o t .  I f  'dev' I= NO-DEV, j u s t  re tu rn  a f ree  s l o t .  
*/ 

reg i  s t e t  s t r u c t  i node * r ip ,  *xp;  

/* Search t h e  inode t a b l e  both f o r  (dev, numb) and a f r e e  s l o t .  */ 
xp = NIL-INOOE; 
f o r  ( r i p  = &indeEO]; r i p  < &inode[RLXNODES] ; rip++) € 

i f  (r ip->i-count > 0 )  { /* on ly  check used s l o t s  f o r  (dev, numb) */ 
i f  (r ip->i-dev =- dev && rip->i-nurn == numb) { 

/* Th is  i s  the inode t h a t  we are look ing  f o r .  */ 
r i  p->i -count++ ; 
e t u r n C r i p ) ;  /* (dev, numb) found */ 

I 
1 e lse  I 

xp = r i p ;  / *  remember t h i s  f r e e  s l o t  f o r  l a t e r  */ 
1 

3 

/* Inade we want i s  n o t  cu r ren t l y  i n  use. D id  we f i n d  a f r e e  s l o t ?  */ 
i f  (xp -= NIL-INODE) i /*  inode t ab l e  completely f u l l  */ 

err-code = ENFILE; 
return(NIL1NODE) ; 

1 

/* A f ree inode s l o t  has been located. Load the inode in to  i t .  */ 
xp->i-deu = dev; 
xp->i-nun 5 numb; 
xp->i-count = 1; 
i fi [dev != NOJEV) rw-inode(xp, READING) ; /* get inode frm d i sk  */ 
xp-ri-update = 0; /* a l l  t h e  t imes a re  i n i t i a l l y  up-to-date * /  

/*E======t====rm====P===55*I=I~IL~*P=5===II=I====PP~====~111~~====~~=========*=* 
4 put-i node t 

*rrt+=t=r=r~n=r=====t~~=~==rl========.==s~~===~=~~============================= * / 
PUBLIC vo i d  put- i  node(r i  p) 
r e g i s t e r  s t r u c t  inode * r i p ;  /* po i n t e r  t o  inode t o  be released */ 
i 
/* The c a l l e r  i s  no longer us ing  t h i s  inode. I f  no one e lse i s  us ing i t  e i t h e r  
* w r i t e  i t  back t o  the d isk  i m e d i a t e l y .  I f  i t  has no l i n k s ,  t runcate i t  and 
* re tu rn  i t  t o  the  pool of ava i l ab l e  inodes. 
*/ 
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i f  ( r i p  =- NILJNODE) return; /* checking here i s  easier than .in c a l l e r  */ 
i f  (--rip-,i-count -= 0) { /* i-count 0 means no one i s  using i t  now */ 

i f  ((rip->i-nlinks & BYTE) == 0 )  
/* i -n l inks -- 0 means f ree the inode. */ 
truncate(r ip);  /* return a l l  the disk blocks */ 
ri  p - > i m d e  = LNOTACLOC; /* clear I-TYPE f i e l d  */ 
r i p -> i -d i r t  I DIRTY; 
free-inode(rip->i-dev, rip->i-nun) ; 

1 else € 
i f  (ri p - > i g i  pe == 1-PIPE) truncate ( r ip)  ; 

1 
r ip->i_pipe n NO-PIPE; /* should always be cleared */ 
i f  (ri p-r i-di  r t  -- DIRTY) w i n o d e  (ri p, WRITING) ; 

1 
1 

reg is te r  s t ruc t  inode *r ip ;  
reg is te r  s t ruc t  super-block *sp; 
i n t  major, minor, inumb; 
b i t 3  b: 

sp = ge~super(dev) ;  /* get painter  t o  super-block +/ 
i f  (sp->s_rd_tmly) { /* can't allocate an inode on a read only device. * /  

err-code - EROFS; 
re turn(NIL1 NODE) ; 

I 

/* Acqui re an inode from the b i t  map. */ 
b T a1 loc-bi t Csp, IMAP, sp->s,i search) ; 
i f  (b u HOBIT) C 

err-code - ENFILE; 
major = ( in t )  (sp-xi-dev r> MAJOR) & BYTE; 
minor = ( i n t )  (sp->s-dev >> MINOR) & BYTE; 
p r i n t f  ("Out o f  i -nodes on %device %d/lKd\n", 

sp->s,dev - ROOTJEV ? "root " : "" , major, minor) ; 
return(NIL1NODE) ; 

1 
sp->s-i search = b; /* next time s t a r t  here */ 
inuAlb = ( int)  b; /+ be carefu l  not t o  pass unshort as parm */  

/* Try t o  acquire a s l o t  i n  the inode table. */ 
if (( r i p  = get-inode(NOSEV, inumb)) = NIL-INODE) 1 

- /* No inode table s lo t s  available. Free the inode j us t  al located. */ 
free-bitCsp, IMP. b); 

1 else I 
/* An inode s l o t  i s  avai lable. Put the inode j us t  al located i n t o  it. */ 
r i p - z i d e  - b i t s ;  /* set up RVX b i t s  */ 
r ip - r i -n l inks  I ( n l i n k t )  0 ;  /* i n i t i a l  no l i n k s  '/ 
r ip -z i -u id  = fp->fp-effuid; /* f i l e ' s  u i d  i s  owner's */ 
r ip - r i -g id  = fp->fp-effgid; /* d i t t o  group i d  */ 
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r eg i s t e r  s t r u c t  inode * r i p ;  / *  po i n t e r  t o  inode t o  be read/wr i t ten */ 

/: Various system c a l l s  are requi red by t h e  standard t o  update atime, ct ime, 
* o r  mtime. Since updating a time requires sending a message t o  the  c lock 
* task--an expensive business--the times are marked f o r  update by s e t t i n g  
* b i t s  i n  i-update. When a s t a t ,  f s t a t ,  o r  sync i s  done, or an inode i s  
* released, update-tines() may be c a l l e d  t o  a c t u a l l y  f i l l  i n  the  times. 
*/ 

t ime-t  cur-time; 
s t r u c t  super-block *sp; 

sp = r ip -> i -sp ;  /* ge t  po i n t e r  t o  super block. */ 
i f  (sp->s-rd-only) re tu rn ;  /* no updates f o r  read-only f i l e  systems */ 

cur-t ime = clock-time() ; 
i f  (rip->i-update & ATIME) r ip->i-at ime = cur-time; 
i f  (r ip-zi-update & CTIME) r ip-> i -c t ime = cur-time; 
i f  (rip-pi-update & MTIME) rip->i-mtime = cur-time; 
r ip->i-update = 0; /* they are a l l  up-to-date now */ 

4 r w - i  node 4 

*-------==========r=======z====================s=======================* / 
PUBLIC v o i d  m-inode(rip, rw-flag) 
r eg i s t e r  s t r u c t  inode * r i p ;  /* po i n t e r  t o  inode t o  be read/wr i t ten */ 
i n t  rw-f 1 ag; /* READING or WRITING */ 
i 
/* An en t r y  i n  the inode t ab l e  i s  t o  be copied t o  or from the d isk .  */ 

r e g i s t e r  s t r u c t  buf *bp; 
register struct super-bl ock *sp; 
d L i n o d e  *d ip ;  
d2-i node *di  p2 ; 
block-t  b, o f f s e t ;  

/* Get the  b lock where t he  inode resides. */  
sp = get-super(rip-ri-dev); /* ge t  po in te r  t o  super block */ 
rip->i,sp = sp; /* inode must conta in  super block po i n t e r  */ 
o f f s e t  = sp->s-imap-blocks + sp->s-map-blocks + 2; 
b = (block-t) (rip->i-num - l)/sp->s-inodes-perblock + o f f s e t ;  
bp = get-block(rip->i-dev, b, NORMAL) ; 
d i p  = bp->b-vl-ino + (rip->i-num - 1) % VLINODES-PERBLOCK; 
d ip2 = bp->b-v2_ino + (rip->i-nurn - 1) % V2-INODES-PER-BLOCK; 

/ *  Do t h e  read or w r i t e .  */ 
if (rw-flag == WRITING) { 

i f (r i p->i,update) update-times ( r i  p) ; /* t imes need updat ing */ 
i f  (sp->s-rd-on1 y == FALSE) bp->b-di r t  = DIRTY; 

1 

/* Copy the inode from the  d i s k  block t o  the in -co re  t ab l e  o r  v i ce  versa. 
* If  t h e  f ou r t h  parameter below i s  FALSE, t h e  bytes are swapped. 
* / 

i f  (sp->s-versi on == V1)  
old-icopyCrip, dip,  rw-flag. sp->s-nati ve) ; 

e l se  
new-icopy(rip, dip2, rw-flag, sp->s-native) ; 
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put-bl ock (bp, INODE-BLOCK) ; 
r i  p- r i -d i  r t  = CLEAN; 

1 

* 01 d-i copy * 
*==~==T===~I=====EE~~~~===I===~=IIII=II~=~S=III=I=I=~=~=~IIIII=IE~==III~II~~~~~* / 

PRIVATE vo id old-i copy(rip, d i p ,  d i r ec t i on ,  norm) 
r e g i s t e r  s t r u c t  inode * r i p ;  /* po i n t e r  t o  the in -co re  inode s t r u c t  */ 
r e g i  s t e r  d l i  node *d ip  ; /* po in te r  t o  the dl-inode inode s t r u c t  */ 
i n t  d i r ec t i on ;  /* READING (from d isk)  o r  WRITING ( t o  d isk)  */ 
i n t  norm; /* TRUE = do not swap bytes; FALSE = swap */ 

I 
/* The V 1 . r  I B M  d i sk ,  t h e  V 1 . x  68000 d i s k ,  and the V2 d i s k  (same f o r  I B M  and 
* 68000) a l l  have d i f f e ren t  inode layou ts .  When an inode i s  read o r  w r i t t e n  
* t h i s  rou t ine  handles the conversions so t h a t  t he  in format ion i n  the inode 
* t ab l e  i s  independent o f  the  d isk  s t ruc tu re  from which t h e  inade came. 
* The o ld - i  copy r ou t i ne  copies t o  and from V 1  disks.  
*/ 

i n t  i ;  

if (d i  r e c t i o n  == READING) { 
/* Copy V1.x inode t o  the  in -co re  table, swapping bytes i f  need be. */ 
rip->i-mode = conv2(norm, ( i n t )  dip->dtmode) ; 
r i  p - r i -u id  = conv2(norm, Cint) dip->dl_uid ) ; 
r i  p - r i - s i  ze = conv4(norm, d i  p->d t s i  ze) ; 

r ip - r i - c t ime = r i p - > i ~ n t i m e ;  
r i  p->i-nl i nks = (nl ink-t)  d i p - > d l n l  i nks ;  /* 1 char */ 
r i p -> i - g i d  = (gid-t) dip->dl-gid;  /* 1 char */  
r i  p->i-ndzones = VLNRDZONES;  
r ip -> i -n ind i rs  = VLINDIRECTS; 
f o r  (i = 0 ;  i < VLNLTZONES; i++) 

r ip-> i -zone[ i ]  = conv2(norm. ( i n t )  d ip->dLzone[ i  I )  ; 
) e lse { 

/* Copying V1.x inode r o  d i sk  from t h e  in-core tab le .  */ 
d i  p ->d lnode  = conv2 (norm, (i nt )  r i  p->i-mode) ; 
d i p - > d t u i d  = conv2(norm, ( i n t )  r i p -> i - u i d  ) ; 
d i p - > d l s i z e  5 conv4(norm, r i  p->i-s i  ze) ; 
d i  p -pd l~n t ime  = conv4(norm, r i p - ~ i ~ n t i m e )  ; 
dip->dl_nlinks = (n l ink- t )  r i p -> i -n l inks ;  /* 1 char */ 
d i p - > d l g i d  = (gid-t) r i p - r i - g i d ;  /* L char */  
f o r  (i = 0; i < VLNRTZONES; i++) 

dip->dLzone[ i  ] = conv2(norm, (i nt) r ip- r i -zone[ i ] )  ; 
1 

1 

/*===========Zf==llIll=================f1~========================iIII==========* 

4 new-i copy * 
*------------------------------------------------------------------------===* -------------------------------------------------------------- / 

PRIVATE vo i  d  new-i copy(r i  p ,  d i p ,  d i  r e c t i  on, norm) 
reg is te r  s t r u c t  inode * r i p ;  /* po i n t e r  t o  the in -co re  inode s t r u c t  */ 
r eg i s t e r  &-inode *dip;  /* po in te r  t o  the d2-inode s t r u c t  * /  
i n t  d i r ec t i on ;  /* READING (from d isk)  o r  WRITING ( t o  disk) */ 
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i n t  norm; /* TRUE = do not swap b y t e s ;  FALSE = swap */ 

I 
/* Same as old-icopy, but to / f rom V2 d isk  layou t .  */ 

int i ;  

i f  (di r e c t i o n  -= READING) { 
/* Copy V2.x inode t o  t h e  in -co re  tab le ,  swapping bytes i f  need be. */ 
r i  p->i mode conv2(norm, d i  p->d2mde)  ; 
r i  p->i-uid = conv2(norm, d i  p->d2-uid ) ; 
r ip -> i -n l inks  = convZ(norm, ( i n t )  dip-rd2-nl inks) ; 
r i p -> i - g i d  = conv2(norm, ( in t )  dip->d2_gid ) ; 
r i  p-> i_s ize = conv4(norm, d i  p->dZ-si ze) ;  
r i  p->i-atime = conv4(norm, d i  p->d2_atiine) ; 
r i  p->i-ctime = conv4(norm, d i  p->d2_ctime) ; 
r i  p - > i ~ n t i m e  = conv4(norrn, d i  p - > d 2 ~ n t i  me) ; 
ri p - z i  -ndzones = V2-NRDZONES ; 
r i  p->i-nindi  r s  = VLINDIRECTS; 
f o r  (i = 0 ;  i < VZ-NLTZONES; i++) 

r i  p->i_zone [i ] = conv4(norm. (long) d i  p->d2-zonefi 1) ; 
) e lse { 

/* Copying V2.n inode t o  d i s k  from the in-core tab le .  */ 
d i  p->dZ_mode = conv2(norm, r i  p->i_mode) ; 
d i  p->d2_ui d = conv2 (norm. r i  p->i  -ui d ) ; 
d i  p->d2_nl i nks = conv2(norm, r i  p->i-nl i nks) ; 
d i  p->d2_gid = convZ(norm. r i  p->i-gid 3 ; 
dt p->d2-si ze = conv4(norm, r i  p->i,si ze) ; 
dip->d2_atirne - conv4(norm, rip->i,atime); 
d i  p->d2_ctime = conv4(norm, rip->i_ctime); 
d i  p->d2~nt irne 1 conv4(norm, r i  p->i-ntime); 
f o r  (i = 0; i c V2-NRTZONES; i++) 

d i  p->d2_zone [i] = conv4(norn, (long) r i  p->i-rone [i 1) ; 
1 

3 
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/ *  This f i l e  manages the super b lock t a b l e  and the r e l a t ed  da ta  s t ruc tu res ,  
* namely, t he  b i t  maps t ha t  keep t r ack  o f  which zones and which inodes are 
* a1 located and which a re  f r ee .  When a new inode o r  zone i s  needed, t h e  
* appropr ia te  b i t  map i s  searched f o r  a f r ee  ent ry .  
* 
* The en t r y  po i n t s  i n t o  t h i s  f i l e  are 
* a l l oc -b i t :  somebody wants to  a l l o c a t e  a zone or  inode; f i n d  one 
* free-bi t: i nd i ca te  t h a t  a zone o r  inode i s  ava i l ab l e  f o r  a l l o c a t i o n  
* get-super: search the  'superblock' t ab l e  f o r  a &v ice  
* mounted: t e l l s  i f  f i l e  inode i s  on k u n t e d  (or ROOT) f i l e  system 
* read-super : read a superblock 
/ 

Winclvde "fs.hW 
#inc lude <str ing.h> 
Ui nc1 ude <mini x/boot . h r  
# i  nclude "buf. h" 
# inc lude "inode. h" 
# inc lude "super. h" 

Wdef ine  BITCHUNK-BITS (usi zeof (b i  tchunk-t) * CHARBIT)  
#def ine BITS-PERBLOCK (BITMAP-CHUNKS * BITCHUNLBITS) 

b l o c k t  s tar t -b lock;  /* f i r s t  b i t  b lock */ 
b i  t-t map-bi ts ; /* how many b i t s  a re  there i n  the b.fi't map? */  
unsigned b i  t-blocks; /* how many blocks a re  there i n  the  b i t  map? */ 
unsigned block, word. bcount , moun t  ; 
s t r u c t  bu f  *bp; 
b i  t c h u n k t  *wptr, *wl i m ,  k; 
b i t - t  i, b; 

i f  (sp->s-rd-on1 y) 
panic( "canOt a l l o ca te  b i t  on read-on1 y f i l e s y s . " ,  NO-NUM); 

i f  (map -= IMAP) { 
start-block - SUPERBLOCK + 1; 
map-bi t s  - sp->s-ni nodes + 1; 
bi t -b locks = sp->s-irnap-blocks; 

1 else C 
start-block = SUPERBLOCK + 1 + sp->s-imap-blocks; 
map-bi t s  - sp->s-zones - (sp->s-fi rstdatazone - 1) ; 
b i  t-blocks = sp->s-map-blocks; 

1 

/* Figure ou t  where t o  s t a r t  the b i t  search (depends on ' o r i g i n ' ) .  */ 
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i f  (o r i g in  s= map-bits) o r i g i n  = 0; / *  f o r  robustness */ 

/ *  Locate the s tar t ing  place. */  
block * o r i g i n  / BITS-PERBLOCK; 
word = (or ig in  % BITS-PERBLOCK) / BITCHUNLBITS; 

/* I t e r a t e  over a l l  blocks plus one, because we s t a r t  i n  the middle. */ 
bcount = bit-blocks + I; 
do I 

bp = get-block(sp->s-dev, start-block + block, NORMAL); 
w l  i m = Lbp->b-bi tmap [BITMAP-CHUNKS] ; 

/* I t e r a t e  over the words i n  block. +/ 
for (wptr = &bp->b-bi tmaplwrd] ; wptr < w l i m ;  wptr++) { 

/* Does t h i s  word contain a free b i t ?  */ 
i f  (*wptr == (b i tchunkt )  "0) continue; 

/* Find and a1 locate the free b i t .  */ 
k = canv2Csp->s-native, (i nt)  *wptr) ; 
fo r  (i = 0; (k & (1 << i)) != 0 ;  ++i) {) 

/* B i t  number from the s t a r t  o f  the b i t  map. */ 
b = ((bit- t)  block * BITS-PERBLOCK) 

+ (wpt  r - Dbp->b-bi tnap [0 ] ) * BITCHUNLBITS 
+ i; 

/* Don't a l locate b i t s  beyond the end o f  the map. */ 
i f  (b >- nap-bi t s )  break; 

/* Al locate and return b i t  number. */ 
k I =  1 <c i; 
*wptr = convZ(sp->s,native, ( i n t )  k) ; 
bp->b-di rt a DIRTY; 
put_block(bp, MP-BLOCK) ; 
return(b) ; 

1 
put-bl ock(bp, MAP-BLOCK) ; 
i f  (++block >= bit-blocks) block = 0; /* l a s t  block, wrap around */ 
word = 0 ;  

1 while C--bcount > 0 ) ;  
return(N0-BIT); /+ no b i t  could be al located */ 

I 

unsigned block, word. b i t ;  
s t ruc t  buf *bpi 
bitchunk-t k ,  mask; 
block-t start-block; 
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f r e e  b i t  on read-only f i l e sys . " ,  NO-NUM); 

i f  (map == IMAP) { 
s tar t -b lock = SUPERBLOCK + 1; 

} e lse { 
s tar t -b lock = SUPERBLOCK + 1 + sp-rs-imap-blocks; 

1 
block = b i t - re turned / BITS-PERBLOCK; 
word = (bi t - returned X BITS-PER-BLOCK) / BITCHUNLBITS ; 
b i t  = b i  t - returned % BITCHUNK-BITS; 
mask = 1 << b i t ;  

bp - get-block(sp->s-dev, start-block + b lock,  NORMAL); 

k = conv2 (sp->s_nati ve , ( i  n t )  bp->b-bi tmap[word]) ; 
i f  ( ! ( k  & mask)) { 

panic(map == I M P  ? " t r i e d  t o  f ree unused inode" : 
" t r i e d  t o  f r ee  unused b lock" ,  NO-NUM); 

3 

k 8- -mask; 
bp->b-bi tmap [word] = conv2 (sp->s-nati ve , (i n t )  k) ; 
bp->b-di r t  = DIRTY; 

r eg i s t e r  s t r u c t  super-block *sp; 

fo r  (sp = &super-block[O]; sp < &super-block[NRSUPERS]; sp++) 
i f  (sp->s-dev == dev) return(sp); 

/* Search f a i l e d .  Something wrong. */ 
pani cC"canl t f i n d  superblock for device ( i n  decimal)" , ( in t )  dev) ; 

re tu rn  ( N I L S U P E R )  ; /* t o  keep t h e  compiler and l i n t  q u i e t  * /  
1 

r eg i s t e r  s t r u c t  super-block *sp; 
r eg i s t e r  dev-t dev; 
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dev = (dev-t) r i  p -> i lone [O]  ; 
i f  (dev == ROOT-DEV) returnCTRUE); /* inode i s  on r o o t  f i l e  system */ 

f o r  (sp = &super-block (03 ; sp < &super-block [NRSUPERSI ; sp++) 
i f (sp->s-dev == dev) r e t u rn  (TRUE) ; 

r e g i s t e r  s t r u c t  buf *bp; 
dev-t dev; 
i n t  magic; 
i n t  version, nat ive;  

dev = sp->s-dev; /* save device ( w i l l  be ove rw r i t t en  by  copy) */ 
bp = get-bl ock(sp->s-dev, SUPERBLOCK, NORFIAL) ; 
nemcpy( (char *) sp, bp-rb-data, (size-t) SUPERSIZE); 
put-bl ock (bp , ZUPERBLOCIO ; 
sp-rs-dev - NO-DEV; /* restoca l a t e r  */ 
magic = sp->s~nagic ;  /* determines f i l e  system type */ 

/* Get f i l e  system vers ion and type. */ 
i f  (magic == S U P E M I C  I I magic == conv2(8VTLUJAPP SUPER-MAGIC)) I 

vers ion  = V1; 
na t i ve  = (magic -8 SUPERCUIGIC); 

) else i f  (magic == SUPERVZ 1 magic =- conv2 (BYTE-SWAP , SUPERVZ)) { 
ve rs ion  = VZ; 
na t i ve  n (magic == SUPERVZ); 

) e l se  { 
return(E1NVAL); 

1 

/* I f  t he  super b lock  has the wrong by te  order,  swap the f i e l d s ;  t h e  magic 
nunber doesn't need conversion. */ 

sp->s-ni nodes = conv2(native, ( i n t )  sp-ws-ni nodes) ; 
sp->s-nzones = conv2(native, (i n t )  sp->s-nzones) ; 
sp->s-inap_blocks = conv2Cnative. ( i n t )  sp->s-imp-blocks) ; 
sp->s-zmap-blocks = convZCnative, ( i n t )  sp->s-map-blocks); 
sp->s-f i rstdatazone - convZ(native, ( i n t )  sp->s-fi rstdatazone) ; 
sp->s-log-zone-si ze - convZCnative. ( i n t )  sp->s-log-zone-size) ; 
s p - > s ~ n a ~ s i  ze = conv4(native, sp->s_nax_size) ; 
sp->s-zones 3 conv4Cnative, sp->s,zones); 

/* I n  V1, the device s i ze  was kept i n  a shor t ,  s-nzonts. which l i m i t e d  
* devices t o  32K zones. For VZ. i t  was decided t o  keep the s ize  as a 
* long. However, j u s t  changing s-nzones to  a long would not  work, s ince 

then the p o s i t i o n  o f  s ~ a a g i c  i n  the super b lock would not be the same 
* i n  V1 and V2 f i l e  systems, and there  would be no way t o  t e l l  whether 
* a newly mounted f i l e  system was V 1  o r  V2. The so l u t i on  was t o  in t roduce 
* a new var iab le ,  s-zones, and copy the s ize  there. 
* 
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* Calcu la te  some other  numbers t ha t  depend on t h e  vers ion here too, t o  
* h i de  some o f  the d i f ferences.  
*/  

i f  (vers ion == V1) { 
sp->s-zones = sp->s-nzones; /* on1 y V1 needs t h i s  copy */ 
sp-> s-i nodesser-bl  ock = V L I  NODES-PERBLOCK ; 
sp->s-ndzones = VLNRDZONES; 
sp-rs-ni nd i  r s  = VLINDIRECTS; 

) e lse { 
sp->s-inodes-per-block = V2-INODES-PELBLOCK; 
sp->s-ndzones - V2-NRDZONES; 
sp->s-nindi r s  = V2-INDIRECTS; 

1 

sp->s-isearch = 0; /* inode searches i n i t i a l l y  s t a r t  a t  0 */ 
sp->s-zsearch = 0; /* zone searches i n i t i a l l y  s t a r t  a t  0 */  
sp->s-version = version; 
sp->s-native = nat ive;  

/* Make a few bas ic  checks t o  see i f  super block looks reasonable. */ 
i f  (sp->s-imap-blocks < 1 I I sp->s-map-blocks < 1 

[ I sp->s-ninodes < 1 1 1  sp->s-zones < 1 
1 1 (unsigned) sp-zs-log-zone-size > 4) { 

r e t u rn  (EINVAt) ; 
1 
sp->s-dev = dev; /* restore device number */ 
return(0K) ; 

1 

/* Thi s f i l e  contains t h e  procedures t h a t  manipulate f i  le descr ip tors .  
* 
* The en t ry  po in ts  i n t o  t h i s  f i l e  are 

get-fd: l o o k f o r f r e e f i l e d e s c r i p t o r a n d f r e e f i l p s l o t s  
ge t - f i l p :  l ook  up the f i l p  en t r y  f o r  a given f i l e  descr ip to r  
f i n d - f i l p :  f i n d  a f i l p  s l o t  t h a t  po i n t s  t o  a given inode 

*/ 

# inc lude " fs .hm 
#include "f i1e.h" 
Pinclude "fproc.hM 
Xi  nc l  ude "i node. h" 

I 
/* Look f o r  a f r ee  f i l e  descr ip to r  and a f r ee  f i l p  s l o t .  F i l l  i n  the  mode ward 
* i n  t h e  l a t t e r ,  but  don ' t  c la im e i t h e r  one yet,  s ince the open() o r  create 
* may ye t  f a i l .  
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r e g i s t e r  s t r u c t  f i l p  *f; 
r e g i s t e r  i n t  i; 

*k = -1; /* we need a way t o  t e l l  i f  f i l e  desc found */ 

/* Search t h e  fp roc  f p - f i l p  t ab l e  f o r  a f r ee  f i l e  descr ip to r .  */ 
f o r  (i = s t a r t ;  i < OPENMU; i++) { 

i f  ( f p - r f p - f i l p [ i ]  = NIL-FILP) ( 
/* A f i l e  descr ip to r  has been located. */ 
*k = i; 
break; 

1 
1 

/* Check t o  see i f  a f i l e  descr ip to r  has been found. */ 
i f  (*k < 0 )  return(EMF1t-E); /* t h i s  i s  why we i n i t i a l i z e d  k t o  -1 */ 

/* Now t h a t  a f i l e  descr ip to r  has been found, look f o r  a f r ee  f i l p  s l o t .  */ 
f o r  (f = &filpCO]; f < &f i lp[NRFILPSJ; f++l { 

i f  (f ->fi lp-count == 0) { 
f - > f i l p m d e  = b i t s ;  
f - > f i l p_pos  = DL; 
f - > f i l p - f l ags  = 0; 
* f p t  = f; 
return(0K) ; 

I 
1 

/* I f  con t ro l  passes here. t he  f i l p  t ab l e  must be f u l l .  Report t h a t  back. */ 
r e t u rn  (ENFILE) ; 

err-code = EBADF; 
i f  ( f i l d  i 0 1 1  f i l d  r= O P E N M  ) return(N1L-FILP); 
return( fp->fp- f i lpcf i ld] ) ;  / * m a y a l s o b e N I L F I L P * /  

1 

/*------------------------------------------------- ------------------ -------=====----- ------* 
t f i n d - f i  l p  * . - -- -- - -- -- - - - -,= - -=r--------------=======IIi=IIP=3==IIIII=================* - --- - - -- ---- - - / 

PUBLIC s t r u c t  f i l p  * f i nd - f i l p ( r i p ,  b i t s )  
r eg i s t e r  s t r u c t  inode * r i p ;  /* inode re fe r r ed  t o  by the  f i l p  t o  be found */ 
Mode-t b i t s ;  /* mode o f  the f i  l p  t o  be found (RWX b i t s )  */ 
{ 
/* F ind a f i l p  s l o t  tha t  r e f e r s  t o  t h e  inode ' r i p '  i n  a way as described 
* by the mode b i t  ' b i t s '  . Used f o r  determining whether somebody i s  s t i l l  
* in te res ted  i n  e i t h e r  end o f  a  p ipe.  A lso used when opening a FIFO t o  
* f i n d  par tners  t o  share a f i l p  f i e l d  w i t h  ( t o  shared the f i l e '  pos i t i on ) .  
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* Like 'get-fd' i t  performs i t s  job by l inear  search through the f i l p  table .  
*/ 

reg is te r  st ruct  f i l p  *f; 

f o r  (f P &fi lp[O]; f c Milp[NtLFILPS];  fu) { 
i f  I f - r f i lp -count  != 0 f -> f i lp - ino  == r i p  && ( f - > f i I p a d e  6 b i ts ) ) {  

returncf) ; 
1 

I 

/* I f  contro l  passes here, the f i l p  wasn't there. Report t h a t  back. */ 
return(N1L-FILP); 

I 

/* This f i l e  handles advisory f i l e  lock ing as requited by POSIX. 
* 
* The entry points into'  t h i s  f i l e  are 
* lock-op: -king operations fo r  FCNTL system c a l l  
* lock-revive: revive processes when a lock i s  released 
*/ 

#include "fs.hm 
#include cfcntl.h> 
#include a n i s t d . h >  /* cc runs out  o f  memory w i th  uni std.h : -( */ 
#i ncl'ude "f i 1 e . h" 
#include "fproc.h" 
#include "i node. h" 
#include "1ock.h" 
X i  nc l  ude "param. h" 

i n t  r, l type,  i, c o n f l i c t  = 0, unlocking = 0; 
mode-t mo; 
o f f - t  f i r s t ,  l as t ;  
s t ruc t  f l ock  f lock;  
v i  r-bytes user-flock; 
s t ruc t  f i le- lock * f l p ,  * f lpZ,  *empty; 

/* Fetch the f lock  structure from user space. */  
user-f'lock - ( v i  r-bytes) namel ;  
r = sys-copy(whol D, (phys-bytes) user-flock, 

FS-PRKNR,  0 ,  (phys-bytes) &flock. (phys-bytes) sizeof(f1ock)); 
i f  Ir != OK) return(EINVAL1; 

/ *  Make some er ror  checks. */ 
l t ype  = f lock .L type;  
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mo = f->filp_mode; 
i f (1 type ! = F-UNLCK 8d1 1 type != F-RDLCK && 1 type ! = F-WRLCK) return(E1NVAL) ; 
i f  (req == F-GETLK &!I l t ype  == F-UNLCK) returnCEINVAL); 
i f  ( ( f - > f i  1 p - ino-> imde & 1-TYPE) != I-REGULAR) return(E1NVAL) ; 
i f  (req I =  F-CETLK iW l t ype  I- F-RDLCK ddr (mo & LB IT )  == 0 )  returnCEBADF); 
if (req != F-CETLK &RI l t ype  -r F-WRLCK 66 (m & WJXf) == 0) returnCEBADF); 

/* Compute the f i r s t  and l a s t  bytes i n  the lock  region. */ 
swi tch (f 1 ock .I-whence) f 

case SEELSET: f i r s t  - 0; break; 
case SEELCUR: f i r s t  - f - > f i l p g o s ;  break; 
case SEELEND : f i  r s t  - f - > f i  lp- i  no->i-size; break; 
default: return(E1NVAL); 

3 
/* Check for overflow. */ 
i f  C((long)flock.l,start I 0) &I% ( ( f i r s t  + f lock.1-start)  < f i r s t ) )  

rtturnCEINVAL); 
i f  (((long)flock.l,start < 0) &I% ( ( f i r s t  + f lock.1-start)  > f i r s t ) )  

return CEINVAL) : 
f i r s t  = f i r s t  + f lock-1-star t ;  
l a s t  = f i r s t  + flock.l,len - 1; 
i f  (flock.1-len == 0) l a s t  = W F I L L W S ;  
i f  ( l as t  < f i r s t )  returnCEINVAL); 

/* Check i f  t h i s  region con t l i c t s  w i th  any ex i s t i ng  lock. */ 
empty = (st ruct  f i l e - l ock  *) 0 ;  
f o r  ( f l p  = &file-lockCO1; f l p  < & file-lock[NR_LOCKSl ; flp++) I 

i f  ( f lp -> lock type == 0 )  C 
i f  (empty (struct f i le- lock *) 0)  empty = f lp ;  
continue; /* 0 means unused s l o t  */ 

1 
i f  (fl p->lockinode != f+fi lp-ino) continue; /* d i f f e r e n t  f i l e  */ 
i f  [ l a s t  c f l p - > l o c l t f i  r s t )  con t iwe;  /* new one i s  i n  f r o n t  */ 
i f  ( f i r s t  > f l p -> lock las t )  continue; /* new one i s  aftenvards */ 
i f  ( l type -- F-RDLCK 6dr f l p - z lock type  == F-RDLCK) continue; 
i f  ( l type !I F-UNLCK 6dr f l p -w lockp id  1- fp->fp_pidI continue; 

/* There might be a c o n f l i c t .  Process i t .  */ 
c o n f l i c t  - 1; 
i f  (req = F-GETLK) break; 

/* I f  we are t r y i n g  t o  set  a lock, i t j u s t  f a i l ed .  */ 
i f  ( l type a= F-RDLCK I I l t ype  -- F-YRLCK) { 

i f  Creq == F-SETLK3 C 
/* For F-SFTLK, j us t  report back fa i lure.  */ 
return(EACAIN1; 

} e lse { 
/* For F-SETLKW, suspend the process. */ 
suspend(XL0CK) ; 
return (0 )  ; 

/* We are c lear ing a lock and we found something tha t  overlaps. */ 
unlocking - 1; 
i f  ( f i r s t  c- f l p - > l o c k f i r s t  8& l a s t  >- f l p - > l o c k l a s t )  { 

f l  p->locktype = 0; /* mark s l o t  as unused */  
nr-locks-- ; /* number o f  locks i s  now 1 less\*/  
cont i  nue ; 

1 
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/* Part of a locked region has been unlocked. */ 
if ( f i r s t  c= f lp-> lock- f i rs t )  { 

f lp -> lock- f i rs t  = l a s t  + 1; 
continue; 

1 

i f  ( l a s t  >= f l p -> lock las t )  i 
flp->lock,last = f i r s t  - 1; 
continue; 

1 

/* Bad luck. A lock has been s p l i t  i n  two by unlocking the middle. */ 
i f (nr-7ocks == NLLOCKS) return(EN0LCK) ; 
f o r  (i = 0 ;  i < NLLOCKS; i++) 

if (file,lockEil.lock,type == 0) break; 
f l p 2  = & f i  le-lock[i]; 
flp2->lock,type = flp->lock_type; 
flp2->lock-pid = f l p -> locks id ;  
f lp2->locLinode = flp->lock-inode; 
flp2->lock,first = l a s t  + 1: 
f l p 2 - r l o c k l a s t  = f l p - > l o c k l a s t ;  
f lp-> lock_last  = f i r s t  - 1; 
nr-locks++; 

> 
i f  (unlocking) lock-revive0 ; 

if (req == F-CETLK) C 
if (conf l ic t )  I 

/* CETLK and c o n f l i c t .  Report on the conf 
f l ock .  1-type = f lp -> lock type;  
f l ock .  T-whence = SEEKSET; 
f lock.1-star t  = f lp-> lock- f i  r s t ;  
flock.1-1en = f lp->lock_last - flp->lock- 
f lock . l_p id  = flp->Iock_pid; 

l i c t i n g  lock. */ 

f i r s t  + 1; 

I else I 
/* It i s  CETLK and there i s  no c o n f l i c t .  */ 
flock.1-type = F-UNLCK; 

1 

/* Copy the f lock  structure back t o  the ca l le r .  */ 
r = sys-copy(FS-PRKHR, D, (phys-bytes) &flock, 

who, 0, (phys-bytes) user-flock, (phys-bytes) s izeof  (flock)) ; 
return(r1; 

3 

i f  (1 type == F-UNLCK) return(0lO ; /* unlocked a .region w i th  no locks * /  

/* There i s  no c o n f l i c t .  I f  space exists. store new lock i n  the table. */ 
i f  (empty =I (s t ruc t  f i le - lock  *) 0 )  return(EN0LCK); /* tab le  f u l l  */ 
empty->locktype = l type;  
empty->lock-pid = fp -~ fp -p id ;  
empty->l ock-i node = f ->f i 1 p-i no ; 
empty->lock-first = f i r s t ;  
empty->lock-last = l a s t ;  
nr-locks++ ; 
return(0K) ; 

1 
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/*,,,,,,,,,,,,,,,,,,,,,,,~-In-~I11IUI=--=P=I:III*IIIYIP=PI=I~31=~**-* 

l o c k r w i  ve 
* r r i = r = r - ~ r r r n r u r r ~ u ~ ~ = - = - u ~ = ~ ~ u ~ - ~ - ~ u ~ ~ n w w ~ . ~ ~ ~ ~ ~ ~ ~ ~ - = = = * /  

PUBLIC vo id  1 ockrevive() 
4 
/* Go f i n d  a l l  the processes tha t  are wait ing f o r  any kind o f  lock and 

. rev ive them a l l .  The ones tha t  are s t i l l  blodted w i l l  block again when 
they run. The others w i l l  camplete. This strategy i s  a space-time 
t radeof f .  Figuring out  exactly which ones t o  unblock now would take 
extra code, and the only t h ing  i t  would win would be some performance i n  
extremely rare c$rcurastances (namely. tha t  scinebody ac tua l ly  used 

+ locking). 
+/ 

i n t  task; 
s t ruc t  fproc ' fp t r ;  

f o r  ( f p t r  &fproc[INXT,PROtNR + 11 ; f p t r  < &fproc[HRPROCS1; fptr++)i: 
task = -fptr->fp,task; 
i f  (fpt r->fp-suspended I- SUSPENDED 6dr task XLOCK) C 

revive( ( in t )  ( f p t r  - fproc), 0); 
1 

1 
1 

/+ This f i l e  contains the main program o f  the F i l e  System. It consists o f  
* a loop that  gets messages requesting work, car r ies  out the work, and sends 

rep l ies .  

The entry points i n t o  thds f i l e  are 
main: main program o f  the F i l e  System 
reply: send a reply t o  a process a f t e r  the requested work i s  done 

+/ 

s t ruc t  super-block; /* prot0.h needs t o  know t h i s  */ 

#include "fs.hW 
f i nc7 ude <f c n t l  . hr 
#include <st  r i n g  . h> 
#include csys/ ioct l  . h> 
#include <mini x /ca l l  nr .  hw 
ti nc l  ude <mini x/cm. h> 
#i nc l  ude m i n i  x / h t .  h> 
#include "buf-h" 
#include "dev. h" 
#include "fi1e.h" 
t i n c l  ude "fproc. h" 
#include "in0de.h" 
#include "param. h" 
#include "super. h" 

FORWARD -PROTOTYPE ( void buf-pool , (voi  d) 
FORWARD -PROTOTYPE( void f s - i n i  t, (void) 
FORWARD -PROTOTYPE ( void get-boot~arameters, (void) 
FORWARD -PROTOTYPE ( void ge twork ,  (void) 
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FORWARD -PROTOTYPE C vo id  1 oad-ram, Cvoi d )  
FORWARD -PROTOTYPE ( voi d 1 oad-super , [Dev-t super-dev) 

* main 

PUBLIC vo i d  mai n 0  
C 
/* This i s  t he  main program o f  the f i l e  system. The main loop cons is ts  o f  
* three major a c t i v i t i e s :  g e t t i n g  new work, processing the work, and sending 
* the rep ly .  Th is  loop never terminates as long as the f i l e  system runs. 
* /  

i n t  error; 

/ *  This i s  the main loop  t h a t  gets work, processes i t ,  and sends r ep l i e s .  */ 
whi te  (TRUE) { 

get-work0 ; /*  sets who and fs -ca l l  */ 

f p = &f proc [who] ; /*  po i n t e r  t o  proc t ab l e  s t r u c t  * /  
super-user = ( fp->fp-ef fu id  == SU-UID ? rRUE : FALSE); /* su? */ 
dont-reply = FALSE;  / *  i n  o ther  words, do rep1 y i s  de fau l t  */ 

/* Ca l l  t he  i n t e rna l  f unc t i on  t h a t  does t he  work. */ 
i f  ( f s - ca l l  < 0 I )  fs -ca l l  >= NCALCS) 

e r r o r  = EBADCALL; 
e l s e  

e r r o r  = ( * c a l l ~ v e c t o r [ f s ~ c a l 7 ] )  C )  ; 

/* Copy the  r esu l t s  back t o  the user and send rep ly .  */ 
i f  (dont-rep1 y) continue; 
reply(who, er ror ) ;  
i f  (rdahed-i node != NIL-INODE) read-ahead0 ; /* do b lock read ahead */ 

1 
J 

r eg i s t e r  s t r u c t  fproc "rp;  

i f  ( r ev i v i ng  != 0) { 
/ *  Revive a suspended process. */ 
for ( rp  = &fproc[O] ; r p  < &fproc[NR-PROCS] ; rp++) 

i f  (rp-zfp-revived == REVIVING) ( 
who = (i n t )  (rp - fproc);  
f s -ca l l  = rp->fp-fd & BYTE; 
f d  = (rp->fp-fd 1r8) & BYTE; 
bu f f e r  = rp-zfp-buffer;  
nbytes = rp->fp-nbytes; 
rp->fp-suspended = NOT-SUSPENDED; /*no longer hanging*/ 
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rp-zfp-revi ved = NOT-REVIVING; 
reviving-- ; 
return; 

1 
pan.ic("get-work couldn't  revive anyone", NO-NUM) ; 

1 

/* Normal case. No one t o  revive. */ 
i f  (receive(ANY. dnr) ! = OK) panic("fs receive error",  NO-NUM) ; 

who L m.msource; 
fs-cal l  = m.=type; 

3 

WBLK vo id  repl  y(whom, resul t) 
i n t  $&om; /* process t o  reply t o  */ 
i n t  ~ e s u l t ;  /* resu l t  o f  the c a l l  (usual1 y OK o r  e r ror  #) */ 
t 
/* Send a repl y t o  a user process. I t  nay f a i  1 (if the process has j u s t  

bean k i  11 ed by a signal), so don't check the return code. I f  the send 
* f a i l s .  j us t  ignore it. 
* / 

rep l  y-type = resu l t ;  
send(whom, & n l )  ; 

3 

reg is te r  s t ruc t  inode * r i p ;  
i n t  i ;  
message mess; 

/* The fo l lowing i n i t i a l i z a t i o n s  are needed t o  l e t  dev-opcl succeed .*/ 
f p  I (s t ruc t  fproc *).NULL; 
who - FS-PRKNR; 

buf_pool(l ; /* i n i t i a l i z e  bu f fe r  pool */ 
getboot-parametersC) ; /* get the parameters from the menu */ 
1 o a L r w ( 1  ; /* i n i t  RAM disk,  load i f  i t  i s  root */ 
load-superCROOTJEV); /* load super block f o r  root device */ 

/* I n j t i a l i z e  the ' fproc '  f i e l d s  f o r  process 0 .. INIT. */ 
f o r  (i = 0; i ct LOW_USER; i+=  1) { 

i f  { i  - FS-PROC-NR) continue; /* do not  i n i t i a l i z e  FS */ 
f p  = &fproc[ i  1 ; 
r i  p = get-i node(ROOT_DEV, ROOT-INODE) : 
fp -> fp - rw td i  r - r i p ;  
dup-i node( r i  p) ; 
f p->f p-workdi r = r i p ;  
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fp->fp-realui  d = (uid-t) SYS-UID; 
f p - r f p -e f f u i d  = (uid-t) SYS-UID; 
fp->fp- rea lg id  = (gid-t) SYS-CID; 
fp->fp-ef fg id  = (gid-t) SYS-GID; 
fp->fp-umask = "0; 

1 

/* Cer ta in  r e l a t i o n s  must ho ld  f o r  the  f i l e  system t o  work a t  a l l .  */ 
i f  (SUPER-SIZE > BLOCKSIZE) panic("5UPER-SIZE > BLOCK-SIZE", NO-NUM); 
i f  (BLOCICSIZE % V2-INOOE-SIZE ! =  0) /* t h i s  checks V1-INODE-SIZE too */  

pani c("BL0CK-SIZE % VZ-INODLSIZE ! = O w ,  NO-NUM) ; 
i f  (OPENflAX > 127) panic("0PEN-W > 127", NO-NUM) ; 
i f  (NRBUFS < 6) panic("NRBUFS < 6", NO-NUM) ; 
i f  (VLINODE-SIZE !S  32) panic("V1 inode s ize  != 32", NO-NUM) ; 
i f  (V2-INODE-SIZE != 64) panic("V2 inode s i z e  != 64" , NO-NUM); 
i f  (OPEN-MAX > 8 * sizeof(1ong)) panic("Too few b i t s  i n  fp-cloexec", NO-NUMI ; 

/* T e l l  t he  memory task where my process tab le  i s  f o r  the sake of ps(1). */ 
~ess.m-type = OEV-IOCTL; 
mess.PROC_NR = FS-PROC-NR; 
mess.REQUEST = MIOCSPSINFO; 
mess.AM1RESS = (vo id  *) fproc;  
(void) sendrec (MEM. &ness) ; 

I 

r eg i s t e r  s t r u c t  bu f  *bp; 

bufs-in-use = 0; 
f r o n t  = &uf CO1 ; 
rear  = M u f  CNRBUFS - 13 ; 

f o r  (bp = &buf [O] ; bp < drbuf [NRBUFS] ; bp++) { 
bp->bhlocknr  = WBLOCK;  
bp->b-dev = NO_DEV; 
bp->b_next = bp + 1; 
bp->b-prev = bp - 1; 

I 
buf  LO].  b-prev = NIL-BUF; 
buf [NRBUFS - I] . b-next = NIL-BUF; 

f o r  (bp = &buf[O]; bp < &buf[NRBUFS]; bp++) bp->b-hash = bp->b-next; 
buf-hash [O] = f r o n t  ; 

1 

PRIVATE vo id  get-boot-parameters () 
C 
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/* Ask kernel  fo r  boot parameters. */ 

ml.m_type - SYS-GBOOT; 
ml.PROC1 = F L P R K N R ;  
rnl.MEt4PTR - (char *) &bot_parameters; 
(void) sendrec CSYSTASK. h l )  ; 

1 

/*==O~*=~=I.C=~=====~=I=~II~I--=D--==Q~=~.C~~=I~-~~.IO=I~====* 
* 1 oad-ram * 
*==esr====r=~=il==5.-=-==~~=I~1~1--=~=rtl15~t1=1-~==~~=~~tt=~=~== */ 

PRIVATE vo id  load-ram0 
{ 
/* I f  the r o o t  device i s  t h e  RAM disk,  copy the e n r i  r e  roo t  image device 
* block-by-block t o  a RAM d i sk  w i t h  t h e  same s ize  as t h e  image. 
* Otherwise, j u s t  a l l o ca te  a RAM disk w i t h  s i ze  given i n  t he  boot parameters. 
*/ 

r eg i s t e r  s t n r c t  buf  *bp. *bpi; 
1 ong kl oaded , 1 count : 
u32-t rams ize ,  fsmax; 
zone-t zones; 
s t r u c t  super-block *sp, *dsp; 
block-t b ;  
i n t  major. task; 
message t i e v m s s  ; 

/* Open t h e  root device. */ 
major = (ROOffOEV>> MAJOR) & BYTE; I* major device n r  */ 
task = dmap[major].dmap-task; /* device task nr  */ 
devoess .m type  = OEV-OPEN; /* d i s t i ngu i sh  from close */ 
dev-mess.DEVICE = ROOT-DEV; 
dev-mess.COUNT = RBITIWKBIT;  
CfdmapCma jor ]  .hap-open) (task, &lev-mess) ; 
if (dev-mess.REP3TATUS != OK) panic("Cannot open root deviceW,NO-NUM); 

/* I f  the roo t  device i s  t h e  ram disk then fill i t  from t h e  image device. */ 
if (ROOT-DEV == DEV-RAM) C 

major = (IMAGE-DEV .> MAJOR) & BYTE ; /* major devi  ce n r  */ 
task = dmap[major] . dmap-task ; /* device task n r  */ 
dev-mess.mtype = DEV-OPEN; /* d i s t i ngu i sh  from close */ 
dev~ness.DOIICE = IMAGE-DEV; 
dev~ness.COUNT = R B I T ;  
(*dmap[majorl .dmap-open) (task, &devmess) ; 
i f (devmess . REP-STATUS ! = OK) pani  cannot open roo t  device" , NO-NUM) ; 

/* Get s i t e  o f  RAM d isk by reading roo t  f i l e  system's super b lock.  */ 
sp = &super4lock[O] ; 
sp->s,dev = IMAGLDEV; 
i f  (read-super (sp) ! = OK) pani c("Bad roo t  f i  1 e system", NOSJUM) ; 

l coun t  = sp->s-zones << sp->s-log-zone-size; /* # b l k s  on roo t  dev*/ 

/* St re tch the RAM d isk  f i l e  system t o  the  boot  parameters s i z e ,  b u t  
* no f u r t h e r  than the l a s t  zone b i t  map block a l lows.  
*/  
if ( ramsize < Icaunt) ram-size = Icount;  



MINIX SOURCE CODE File: src/fs/rnain.c 

fsmax = (1.132-t) sp->s,zmap-blocks * CHARBIT * BLOCLSIZE; 
f smax = ( f w x  + (sp->s-fi rstdatazone-1)) << sp->s-log-zone-si ze; 
i f  ( r a c s i z e  > fsmax) r an l s i ze  = fsmax; 

1 

/* T e l l  RAM d r i v e r  how b i g  the RAM d i s k  must be. */ 
ml. l h t y p e  = DEV-IOCfL; 
r n l  . P R K H R  - FS-PROCNR ; 
nl.REQUESf = MIOCRIWSITE; 
ml. POSITION = r a m s i  ze ; 
i f  (sendrec(MEt4, kl) != OK I I  ml.REP,STATUS != OK) 

panic("Can't se t  RAM d i sk  size".  NO-NW); 

/* T e l l  MM the RAM d isk  s ize,  and w a i t  f o r  it t o  come "on- l ine".  */ 
ml.ml_il = ((long) r a n u i r e  * BLOCLSIZE) >> CLICCSHIFT; 
i f  (sendrec(RPROLNR, hl) != OK) 

panic("FS can ' t  sync up w i t h  W", NO-W); 

/* I f  the roo t  device i s  n o t  t h e  RAM disk, i t  doesn' t  need loading. */ 
i f  (ROOT-MV != DEV-RAH) re tu rn ;  

/* Copy t h e  blocks one a t  a t ime from the image t o  t he  RAM d i sk .  */ 
printf("loading fW4 disk .\33[23CLoaded: OK ") ; 

inodeC0l , i d e  = 1,BLOCLSPECIAL; /* temp inode f o r  rahead0  */ 
i node [O] . i - s i  ze = LONGMAX; 
i node [O] . i -dev = IMAGE-OEV ; 
i node [ O ]  . i ,zone [O] = f MACE-DEV ; 

f o r  (b = 0 ;  b c (block-t) l coun t ;  b++) { 
bp = rahead(6inodeC01, b, (off-t)BtOCICSIZE * b, BLOCLSIZE); 
b p l  = getblock(ROOT-DEV, b, NO-READ); 
mcpy(bp1->b-data, bp->b-data. (s i  ze-t) BLOCLSIZE) ; 
bpl->b-di r t  DIRTY; 
pur-block (bp , FULL-DATLBLOCK) ; 
put-bl ock (bpl, FULL-DATLBLOCK) ; 
k l o a d e d  ( (long) b * BtOCLSXfE)/1024L; /* K loaded so fa r  */ 
i f  ( k l oaded  % 5 == 0) p r i  n t f  ("\b\b\b\b\b\b\b%SldK " , k-loaded) ; 

3 

p r i n r f  ("\rRAM d isk  loaded.\33[K\n\nW) ; 

/* Close and i n v a l i d a t e  image device. */ 
dev-mess.mtype = DEV-CLOSE; 
dev_~ness.DEVfCE = IMAGE-DEV; 
C+hapfrnajarl .dmap-close)(task, &dev_mss); 
i nval i date (IMAGE-DEV) ; 

/* Resize the RAM d isk  roo t  f i l e  system. */ 
bp - get-bl ock(R0OT-DEV, SUPERBLOCK, NORMAL) ; 
dsp = ( s t r uc t  super-block *) bp->b,data; 
tones = r m s i  ze >, sg->s-log-zone-si ze ;  
dsp->s-nzones = conv2(sp->s-nati ve, (u16-t) zones) ; 
dsp->s-zones = conv4(sp->s-nati ve, zones) ; 
bp->b-dirt = DIRTY; 
put-block(bp, ZUPELBLOCK) ; 

1 
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* load-super * 

PRIVATE vo id  1 oad_super(super-dev) 
dev-t super-dev; /* place t o  get  superblock from */ 
I. 

i n t  bad; 
register  s t ruc t  super-block *sp; 
register  s t ruc t  inode * r i p ;  

/* I n i  ti a l  i ze the superblock tab1 e . */ 
f o r  (sp = &super+block[01; sp < &super-blockCNRSUPERS1 ; spw) 

sp-rs-dev = NO-DEV; 

/* Read i n  super-block f o r  the root f i l e  system. */ 
sp = &super,block~O~ ; 
sp->s-dev = super-dev; 

/* Check super-block f o r  consistency ( i s  i t  the r i g h t  diskette?). */ 
bad - (read-super(sp) != OK); 
i f  (!bad) C 

r i p  getinode(super-dev, ROOTJNOOE) ; /* inode f o r  root  d i  r */ 
i f  ( ( r i p - r i m d e  6 1-TYPE) !- I-DIRECTORY I I r ip->i-nl inks < 3) bad++; 

I 
if (bad)panic("Invalid roo t  f i l e  system. Possibly wrong diskette." .NO-NUM) ; 

sp->s-imount = r i p ;  
dup-i nodeCri p) ; 
sp->s-isup = r i p ;  
sp->s-rd-on1 y = 0; 
return; 

1 

/* This f i l e  contains the procedures f o r  creating, opening, closing, and 
* seeking on f i l e s .  
* 
* The entry points i n t o  t h i s  f i l e  are 
* do-creat: perform the CREAT system c a l l  

do-open: perform the OPEN system c a l l  
* do~llknod: perform the MKNOO system c a l l  
* doakd i  r: perform the MKDIR 'system c a l l  
* do-cf ose: perform the CLOSE system c a l l  
* do-lseek: perform the LSEEK system c a l l  
* / 

#include "fs.hM 
#include csys/stat.h> 
#include q fcn t l  .h> 
#include ai ni  x /ca l ln r  . hr 
X i  ncl  ude ani  n i  x/com. h r  
#i nclvde "buf . h" 
#include "dev,h" 
#include "fi1e.h" 
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#include " fproc.  h" 
ti n c l  ude "i node. h" 
#include "1ock.h" 
#include "param.ha 

PRIVATE message dev-mess; 
PRIVATE char modenap[] = {RBIT ,  W-BIT, RBITIW-BIT, 01; 

FORWARD -PROTOTYPE ( i n t  common-open , (i n t  o f  1 ags , Mode-t omode) 
I < 1; 

FORWARD -PROTOfYPE( i n t  pipe-open, ( s t r uc t  inode *rip,Mode-t hj t s , i n t  &lags)) ; 
FORWARD -PROTOTYPE( s t r u c t  inode *new-node. (char *path, Mode-t b i t s ,  

zone-t z0) 1;  

PUBLIC i n t  do-treat() 

C 
/* Perform the creat(name, mode) system c a l l .  */ 

i n t  r; 

i f  (f etch-name (name, name-1 ength , M3) ! = OK) r e t u rn  (err-code) ; 
r = cormon-open(0-WRONLY I O-CREAT I 0-TRUNC, (mode-t) mode); 
re turn( r )  ; 

1 

/*=rzr=~==============5~~====Ii=iIf=IIII=E======555555555IIILI=IL==========5* 
* do-open * 
*=~=~=-~*r=rrrrrrr~~rm==========m=~~=n=r==parm~r=====O==E~=====r*  / 

PUBLIC i n t  do-open0 
I 
/* Perform the opencname, f l ags , .  . .) system c a l l .  */ 

i n t  c r e a t e m d e  = 0; /* i s  r e a l l y  mode-t b u t  t h i s  gives problems */ 
i n t  r; 

/* I f  0-CREAT i s  set,  open has th ree  parameters, othenvise two. */ 
i f  (mode & 0-CREAT) i: 

c r e a t e m d e  = c-mode; 
r - fetch-name(c-name, namel length.  M I ) ;  

1 e l se  I 
r = fetch-name(name, name-length, M3) ; 

i f  (r != OK) returncerr-code); /* name was bad */ 
r = common-open(mode, c rea temde ) ;  
return(t-1; 

1 

I 
/* Conmon code from do-creat and do-open. * /  
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register  s t ruc t  inode * r i p ;  
i n t  r, b, major, task, e x i s t  - TRUE; 
dev-t dtv ; 
mode-t b i t s ;  
o f f - t  pos; 
s t ruc t  f i l p  *fil-.ptr, f f i l p 2 ;  

/* Remap the  bo t ta r  tw b i t s  o f  oflags. */ 
b i t s  - (modct) mode-map[oflags 6 OACCMDDEI ; 

/* See i f  f i l e  descriptor and f i l p  s l o t s  are avai lable. */ 
if ( (r = get fd(0.  b i t s ,  &fd, b f i l j t r ) )  !- OK) return(r); 

/* I f  UREATE i s  set ,  t r y  t o  make the f i l e .  */ 
i f  (oflags & 0-CREAT) I 

/* Create a new i node by c a l l  i ng n w o d e  (1 . * / 
amode = I-REGULAR I (onode & ALLJVlOES 6 f p+ f  p-mask) ; 
r i p  = nerr-node(usersath, d e ,  WON€) ; 
r = err-code; 
if (r -- OK) ex i s t  - FALSE; /* we j u s t  created the f i l e  */ 
else i f  (r != EEXIST) returner); /* other e r ror  */ 
else, cxi  s t  - ! (of lags 6 0-EX=) ; /* f i l e  ex ists,  if the 0-EXCL 

f l a g  i s  set  t h i s  i s  an er ror  */ 
) e lse  { 

/* Scan path name. */ 
i f  ( (r ip = eat-path(user-path)) I- NIL-INODE) return(err,code) ; 

1 

/* Claim the f i l e  descriptor and f i l p  s l o t  and fill them in. */ 
fp-rfp-filpCfdJ = f i l - p t r ;  
f i l j t r - > f  i lp-count = 1; 
f i l s t r - ~ f i l p - i n o  - r i p ;  
f i l - p t r - > f i l p - f l a g s  - oflags; 

/* Only do the normal open code i f  we d idn ' t  j u s t  create the f i l e .  */ 
i f  (exist) { 

/* Check protections. */ 
i f  ((r = forbiddencrip, b i t s ) )  I= OK) 

/* Opening reg. f i l e s  d i rec tor ies  and special f i l e s  d i f f e r .  */ 
switch ( r i p - > i d e  & 1-TYPE) { 

case 

case 

I ~ E G U L A R  : 
/* Truncate regular f i l e  i f  0-TRUNC. */ 
if (oflags & 0-TRWNQ ( 

i f  ((r - forbidden(rip, W-BIT)) !=OK) break; 
truncateCrip) ; 
wi  pe-inode(ri p); 
/* Send the inode from the inode cache t o  t h e  
* block cache, so i t  gets w r i t t en  on the next 

cache f lush.  
"/ 
mi node [ri p, WRI f ING) ; 

1 
break: 

IDIRECTORY: 
/* D i r e c t o r i e s  may be read but not  wr i t ten .  */ 
r = (b i t s  & W-BIT ? E ISDIR  : OK) ; 
break; 
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case I-CHAR-SPECIAL : 
case I-BLOCK-SPECIAL : 

/* Invoke the d r i v e r  f o r  spec ia l  processing. */ 
devaess .m type  - DEV-OPEN ; 
dev = (dev-t) r i  p->i-zone 10 ] ; 
devaesr.OEVICE = dev; 
d e v ~ e s s  .COUNT = b i  t s I ( o f  1  ags & -04CCMOOE j ; 
major = (dev 2> MAJOR) & BYTE; /* major device n r  */ 
if (major c= 0 I I major >= m a x ~ a j o r )  { 

r = ENODEV; 
break; 

1 
task = dmap[major] .hap- task;  /* device task n r  */ 
( * h a p  [ma j a r ]  . dmap-open) ( task , &dev-mess) ; 
r = dev_mess.REP-STATUS; 
break; 

case I-NAMED-PIPE: 
oflags I = OAPPEND; /* fo rce  append mode */ 
f i l - p t r - > f i l p - f l a g s  = oflags; 
r = pipe-open(rip, b i t s ,  oflags); 
i f  (r == OK) { 

/* See i f  someone else i s  doing a rd ar w t  on 
* the FIFO. If so, use i t s  f i l p  en t r y  so t h e  
* f i l e  pos i t i on  w i  11 be automari c a l l y  shared. 
* / 

b = ( b i t s  & RJIT ? R-BIT : W-BIT); 
f i l g t r -> f i l p ,coun t  = 0; /* don ' t  f i n d  s e l f  */ 
if (( f i l p2  = f ind- f i lpCr ip ,  b)) ! =  NIL-FICP) { 

/* Co-reader o r  w r i t e r  found. Use it.*/ 
fp -> fp - f i l p r fd ]  = f i l p 2 ;  
fi lp2->fi7p_count++; 
f i l p 2 - > f i l p - i n o  = r i p ;  
f i I p 2 - > f i l p - f l a g s  = o f lags ;  

/* i -count was i ncremented incor rec t1  y 
* by eatpath above, not  knowing t h a t  
* we were going t o  use an ex i s t i ng  
* f i l p  ent ry .  C o r r e c t . t h i s  e r r o r .  
"/ 

r ip->i-count-- ;  
) e lse 

/* Nobody e lse  found. Restore f i l p .  */ 
f i l - p t r - r f i l p - c o u n t  = 1; 
i f  (b == R-BIT) 

pos = rip->i_z~ne[V2_NR_DZONES+fl;  
e l  se 

pos = rip->i_zone[V2_NRDZONES+2] : 
f i  1-ptr->fi lp-pos = pos; 

1 
I 
break; 

/ *  If e r r o r ,  release inode. * /  
i f  (I- ! = O K )  C 

fp -> fp - f i  l p [ f d l  = N ILF ILP;  
f i 1-ptr->f i lp-count= 0; 
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/ * ~ l ~ i l l = r ~ 1 ~ * ~ 9 ~ 1 5 ~ ~ L ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ S i ~ s i i 5 ~ ~ ~ ~ ~ ~ ~ I I I ~ ~ C C ~ ~ l ~ I ~ ~ ~ ~ ~ ~ ~ ~ * *  

r) n e ~ n o d e  
* = = r s = = = = ~ = = ~ ~ s r ~ r = ~ = = 1 I s ~ ~ I I s E = ~ ~ ~ = 1 I = = = = s = = = = s = = = = ~ = = = = ~ = = = = = = ~ = ~ = = = = ~ = = m *  / 

PRlVATE s t  ruct  i node *new,node(path , b i t s  , t o )  
char *path ; /* pointer  t a  path name */ 
mode-t b i  t s  ; /* mode o f  the new inode */ 
zone2 20; /* zone number 0 f o r  new inode */ 
C 
/* New-node() i s c a l l  ed by conmon-open(), do~nknod0,  and donkd i  r 0 .  
* I n  a l l  cases i t  al locates a new inode, makes a d i rec tory  entry for i t  on 
* the path 'path', and i n i t i a l i z e s  i t. It returns a pointer  t o  the inode i f  
* i t  c w  do th i s ;  otherwise i t  returns NIL-INOOE. I t  always sets 'err-code* 
* t o  an"appropriate value (OK o r  an e r ro r  code). 
*/ ~. 

register  s t ruc t  inode *rlast,di rgtr. * r i p ;  
register  i n t  r; 
char s t r i ngCNAMW1;  

/* See i f  the path can be opened down t o  the l a s t  d i rec tory .  */ 
i f  ((r last-di rstr - last-dir(path, s t r ing))  =- NIL-INODE) return(NIL1NODE); 

/* The f i n a l  d i rec tory  i s  accessible. Get f i n a l  component o f  the path. */ 
r i p  - advance ( r l asLd i rg t r ,  s t r ing)  ; 
i f  ( r i p  9- NIL-INOOE &% err-code == EWNOENTI { 

/* Last path component does not ex is t .  Make new d i  rectory enrry. */ 
if ( ( r i p  = a1 loc- i  node(r1ast-di r-ptr->i-dev, b i ts) )  == NILINODE) { 

/* Can't creat  new inode: out of  inodes. */  
put-inode,(rlast_di r-ptr) ; 
returnCNIL-INODE): 

/* Force inode t o  the d isk  before making d 
* rhe system more robust i n  the  face o f  a 

no d i rec tory  entry i s  much be t te r  than 
* / 

rip->i-nlinks++; 

i rectory entry t o  make 
crash: an inode w i th  

the opposi te. 

r i  p->i-zone [o] = 20; /* major/minor device numbers */ 
rw-i node l r i p , WRITING) ; /* force ioode t a  disk now */ 

/* New inode acquired. Try t o  make di rectory entry. */ 
i f  ((r = search-di r(r1ast-di rstr,  s t r i ng ,  &rip-ri-nurn, ENTER)) ! = OK) ( 

p u ~ i n o d e ( r 1  ast-di rgtr) ; 
r i  p->i-nlinks--: /* p i t y ,  have t o  f ree  disk inode */ 
r i p -> i -d i r t  = DIRYY; /* d i r t y  inodes are wr i t t en  out  */ 
put-inode(rip); /* t h i s  cal l  frees the i node *1 
err-code 5 r; 
returnCNf LINOOE) ; 

1 

3 e lse  I 
/* Ei ther  l a s t  component ex ists.  or there -is some problem. */ 
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i f  ( r i p  ! = NIL-INOOE) 
r = EEXIST; 

else 
r = err-code; 

1 

/* Return the d i r e c t o r y  inode and e x i t .  */ 
put-i node (rl a s t d i  r-ptr)  ; 
err-code = r; 
re tu rn ( r i  p) ; 

1 

* ~ ~ = = ~ = = ~ = = I L - L - - - - - - - - - - - - - - * - - - - -  ------- r--------------- -------I----I-- */ 
PRIVATE i n t  p i  pe-openCri p, b i t s  , o f  lags) 
r e g i s t e r  s t r u c t  inode * r ip ;  
r e g i s t e r  mode-t b i t s  ; 
r e g i s t e r  i n t  o f lags;  
f 
/* This  funct ion i s  called from cormon-open. It checks 4 f 
* there i s  at l e a s t  one reader /wr i ter  p a i r  f o r  the  pipe, i f  not  
* i t  suspends t he  c a l l e r ,  o themise  i t  rev ives a l l  other  blocked 
* processes hanging on the p ipe.  
*/ 

i f  (f ind,f i lp(rip, b i t s  & W-BIT ? R B I T  : W-BIT) == NIL-FILP) I 
if (oflags 6 0-NONBLOCK) { 

i f  ( b i t s  & W-BIT) return(ENXI0); 
} e l se  

suspend(XP0PEN) ; /* suspend c a l l e r  */ 
} e l se  i f  (susp-count > 0 )  { f *  rev ive  blocked processes */ 

re lease(r i  p , OPEN, susp-count) ; 
releaseCri  p, CREAT, susp-count) ; 

1 
r i p - > i g i  pe = I-PIPE; 

I 
/* Perform t h e  mknod(name, mode, addr) system c a l l .  */ 

r eg i s t e r  mode-t b i t s ,  mode-bi t s  ; 
s t r u c t  inode * ip; 

/* Only the super-user may make nodes other than f i fos.  */ 
mode-bits = (mode-t) m.mLi2; /* mode o f  the  inode */ 
i f  ( l super-user && ((mode-bi t s  & I-TYPE) ! = I-NAMED-PIPE)) r e t u rn  (€PERM) ; 
i f (fetchname(m . m L p l ,  m. m l i  1. M I )  ! = OK) return(err-code) ; 
b i t s  = (mode-bits & I-TYPE) (mode-bits & A L L M D E S  & fp->fp-urnask); 
i p = new-nodecuser-path, b i  t s  , (zone-t) n. m L i  3) ; 
put - i  nodeCi p l  ; 
returncerr-code) ; 
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i n t  rl, r2;  /* status codes */ 
i no-t dot, dotdot; /* inode numbers f a r  . and . . */ 
mode-t b i t s ;  /* mode b i t s  f o r  the new inode */ 
char s t r i  ng[NAMEM] ; /* 1 as t  component o f  the new d i  r ' s path name */ 
register  s t ruc t  inode * r i p ,  * I d i  rp; 

/* Check t o  see i f  i t  i s  possible t o  make another l i n k  i n  the parent d i r .  */ 
i f  (fetch-name(name1, namel-length, M I )  ! - OK) return(err,code) ; 
l d i r p  = last-di;(user-path, s t r ing)  ; /* pointer  t o  new d i  r ' s  parent */ , 

i f  ( l d i  r p  == NIL-INODE) return(err-code) ; 
i f  ( ( l d i  rp->i-nl inks 8 BYTE) >= L I N W )  { 

put-inode(1di rp) ; /* return parent */ 
returnCEMLINK) ; 

1 

/* Next make the inode. I f  tha t  f a i l s ,  return er ror  code. */ 
b i t s  = I-DIRECTORY I (mode & RWXMWES .& fp-sfp-urnask) ; 
r i p  - new,node(user_path, b i t s ,  (zone-t) 0 )  ; 
i f  ( r i p  == NIL-INODE I I err-code == EXIST) { 

put-inode(rip) ; /* can' t  make d i r :  i t already exists */ 
p u ~ i  node (1 d i  rp) ; /* return parent too */ 
return (err-code) ; 

I 

/* Get the inode numbers f o r  . and .. t o  enter i n  the d i rectory.  */ 
dotdot = ldirp->i-nun; /* parent's inode number */ 
dot - rip-zi-nun; /* inode number o f  the new d i  r i t s e l f  */ 

/* Now make d i r  entr ies f o r  . and . . unless the disk i s  completely f u l l .  */ 
/* Use d o t l  and dot2, so the mode o f  the d i  rectory i s n ' t  important. */ 
r i p -> i~node  = b i t s ;  /* se t  mode */ 
r l  = search-dir(rip, dot l ,  &dot. ENTER); /* enter . i n  the new d i r  */  
r2 = search-dircrip, dot2. &dotdot, ENTER); /* enter . . i n  the new d i r  */ 

/t I f  both . and . . were successfully entered, increment the  l i n k  counts. */ 
i f  ( r l  == OK &b r 2  == OK) { 

/* Normal case. I t  was possible t o  enter . and .. i n  the new d i r .  */ 
rip->i-nlinks++; /* t h i s  accounts f o r  . */ 
l d i  rp->i-nl  inks++; /* t h i s  accounts fo r  . . */ 
Jdi rp->i -d i r t  = DIRTY; /* mark parent 's inode as d i r t y  */ 

) else { 
/* I t  was not possible t o  enter . o r  . . probably disk was f u l l .  */ 
(void) search-di r(1di rp, s t r ing ,  (ino-t *) 0. DELETE) ; 
r ip->i -n l  inks-; /* undo the increment done i n  new-node() */ 

1 
rip->i-di rt = DIRlY;  /* e i ther  way, i -n l inks has changed */ 

put-i node (t d i  rp) ; /* return the inode o f  the parent d i r  '/ 
put-i node(ri p) ; ' /* return the inode o f  the newly made d i r  */ 
returncerr-code) ; /* new-node() always sets 'err-code' */ 
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r eg i s t e r  s t r u c t  f i l p  ' r f i l p ;  
r eg i s t e r  s t r u c t  inode * r i p ;  
s t r u c t  f i l e - l o c k  *f lp.; 
i n t  rw, mode-word, major, task, lock-count; 
dev-t dev ; 

r' - 
/*  F i  r s t  l oca te  the inode .that belongs t o  the f i l e  descr ip to r .  */ 
i f  ( ( r f i  l p  = g e t - f i  lp( fd))  == NIL-FILP) returncerr-code) ; 
r i p  = r f i l p - z f i l p - i n o ;  /* ' r i p '  po in ts  t o  the inode */ 

i f  ( r f i l p -> f i l p - coun t  - 1 == 0 && r f i l p -> f i l p_mode  != FILP-CLOSED) { 
/* Check t o  see i f  the  f i l e  i s  spec ia l .  */' 
mode-word = m d e  & I-TYPE; 
i f  (mode-word == I-CHAR-SPECIAL ( (  mode-word == I-BLOCK-SPECIAL) 

dev = (dev-t) r i  p->i-zone[O] ; 
i f  (mode-word == I-BLOCKSPECIAL) { 

/* I nva l i da te  cache en t r i e s  unless spec ia l  i s  mounted 
* o r  ROOT 
* / 

i f  (!munted(rip)) I 
(void) do-sync0 ; /* purge cache */ 
i nval i date(dev1; 

1 
1 
/* Use the drnap-close en t r y  t o  do any spec ia l  processing 
* required. 
* / 

dev-mess .mtype  = DEV-CLOSE; 
dev~ness.DEVICE = dev; 
major = (dev >> MAJOR) & BYTE; /* major device n r  */ 
task  = dmap[major].dnap-task; /* device task  n r  */ 
(*dmap[major] .dmap-close)(task, bdev~ness)  ; 

1 
1 

/* I f  the i node being closed i s  a p ipe ,  release everyone hanging on i t  . */ 
i f  (r ip->i-pipe == 1-PIPE) 

I-W = (rfi l p - > f i  lp-mode 81 A-BIT 7 WRITE : READ); 
re1 ease(r i  p ,  rw,  NRPROCS) ; 

> 
/* I f  a w r i t e  has been done, t h e  inode i s  already marked as DIRTY. */ 
i f  ( - - r f i lp - , f i lp -count  == 0 )  

if (rip->i-pipe == 1-PIPE && r ip-zi-count > 1) ( 
/* Save the f i l e  p o s i t i o n  i n  the i-node i n  case needed l a t e r .  
* The read and w r i t e  pos i t i ons  a re  saved separately.  The 
* l a s t  3 zones i n  the  i -node are not  used f o r  (named) pipes. 
*/ 
i f ( r f i  1 p->f  i 1 pfiode == RBIT)  

r i  p->i-zone [V2_NRDZONES+l] = (zone-t) r f  i 1 p - r f i  1 p-pos ; 
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e lse  
rip-ri-zoneIV2-NR_DZONES+Z] = (zone-t) r f i l p - z f i  1p-pos ; 

put-i node(r i  p) ; 
1 

fp-zfp-cloexec &= -(1L << fd); /* t u rn  o f f  close-on-exec b i t  */ 
fp -> fp - f i  l p [ f d ]  = NIL-FILP; 

/* Check t o  see if the f i l e  i s  locked. I f  so, release a17 locks. */ 
i f  (nr-locks == 0) return@K); 
lock-count = nr-locks; /* save count of locks */ 
f o r  (f1p == &file-lock[O]; f l p  c &fiIe-'lock[NRJOCK51; flp++) 

i f  (f lp->lock-type == 0) continue; /* s l o t  no t  i n  use */ 
if (flp->lock_iriode == r i p  && f lp->lock-pid == fp->fp-pi d )  { 

f l p - > l o c k t y p e  = 0; 
nr-locks--; 

1 
1 
i f  (nr-locks r l o ckcoun t )  lock-revive(); /* l o ck  released */ 
return(0K) ; 

1 

r eg i s t e r  s t r u c t  f i l p  ' r f i l p ;  
r eg i s t e r  off-t pas ; 

/* Check t o  see i f  the f i l e  desc r ip to r  i s  va l id .  */ 
i f  ( ( r f i l p  = get- f i lp(1s-fd))  == NIL-FILP) return(err-code); 

/* No 1 seek on pipes. */  
i f (rf i 1 p - > f i  t p-i no->i,pi pe == I-PIPE) return(ESP1PE) ; 

/*  Thg value  af  'whence' determines the s t a r t  p o s i t i o n  t o  use. */  
switch (whence) { 

case 0; pos s 0 ;  break; 
case 1: pos = r f i l p - > f i  lp-POS; break; 
case 2: pos = r f i lp->f i lp, i  no -z i -s i ze ;  break; 
de fau l t :  return(EINVAL1; 

1 

/* Check f o r  overf low. */ 
if (((1ong)offset r 0 )  ((long)(pos + o f f se t )  < (1onq)pos)) returnCEINVAL); 
i f  (((1ong)offset < 0) W ((long) (pos + offset) > (long)posI) returnCEINVAL) ; 
pqs PDS + o f f se t ;  

i f  (pas != rfilp->filp,pos) 
rf i 1p->filp,ino->i-seek - ISEEK;  /* i n h i b i t  read ahead */ 

rfilp-zfilp-pos t pos; 
rep1 y- l l  = pos; /*. i n s e r t  t h e  long i n t o  the output  message */ 
return(0K) ; 

1 
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/ *  T h i s  f i l e  contains the  hear t  o f  the mechanism used t o  read (and w r i t e )  
* f i l e s .  Read and w r i t e  requests are s p l i t  up i n t o  chunks t h a t  do not cross 
* b lock boundaries. Each chunk i s  then processed i n  t u r n .  Reads on spec ia l  
* f i l e s  are also detected and handled. 
* 
* The entry points into t h i s  f i l e  are 
* do-read: perform the READ system c a l l  by c a l l i n g  read-write 
* read-write: a c t u a l l y  do the work of READ and WRITE 
* read-map: given an inode and f i l e  pos i t i on ,  look up i t s  zone number 
* rd - ind i r :  read an en t r y  i n  an i n d i r e c t  block 
* read-ahead: manage the b lock read ahead business 
* / 

# inc lude "fs.hW 
#inc lude < fcn t l .  h> 
# i  nc l  ude <mini x/com. h> 
# i  nciude ' b u f .  h" 
# inc lude " f i 1e .h "  
# inc lude " fproc.  h" 
#inc lude "i node. h" 
#include "param. h" 
Uinclude "super.hW 

#def ine F D A S K  077 /* max f i l e  descr ip to r  i s  63 */ 

PRIVATE message umess; /* message f o r  asking SYSTASK f o r  user copy */ 

FORWARD -PROTOTYPE ( i n t  rw-chunk , (st r u c t  i nade * r i p  , o f  f-t p o s i t i o n ,  
unsigned o f f ,  i n t  chunk, unsigned l e f t ,  i n t  rw-flag, 
char *buff ,  i n t  seg, i n t  us r )  1; 

register s t r u c t  inode *rip; 
r eg i s t e r  s t r u c t  f i l p  *f; 
o f f - t  bytes- lef t ,  f-size. position; 
unsigned i n t  o f f ,  c u m i o ;  
i n t  op, oflags. r ,  chunk, u s r ,  sag, b lockspec ,  char-spec; 
i n t  regular ,  pa r t ia l -p ipe  = 0, pa r t i a l - cn t  = 0; 
dev-t dev; 
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mode-t mode-word; 
s t r u c t  f i l p  * w f ;  

/* bM loads segments by pu t t i ng  funny th ings i n  upper 10 b i t s  o f  ' f d ' .  */ 
i f  (who == NPROCNR && (fd & (-BYTE)) ) { 

us r  = ( fd  >> 8) & BYTE ; 
seg = ( fd  >> 6 )  L 03; 
fd &= F O M K ;  /* get r i d  o f  user and segment b i t s  */ 

) e lse { 
us r  = who; /* normal case */ 
seg = D; 

1 

/* I f  t he  f i l e  descr ip to r  i s  va l id ,  get  the inode, s ize and mode. */ 
if (nbytes < 0) return(E1NVAL) ; 
if ((f = g e ~ f i l p C f d ) )  == NIL-FILP) returncerr-code) ; 
if (((f->f i l p ~ n o d e )  & (rw-flag == READING ? R B I T  : W-BIT)) == 0) 1 

r e t u rn< f  - z f  i 1 pmode == FILP-CLOSED ? €10 : EBADF) ; 
1 
if (nbytes == 0) return(0);  /* so char special  f i l e s  need n o t  check f o r  0*/ 
p o s i t i o n  = f-zf i lp-pos; 
if (pos i t i on  > MAX_FILE_PDS) returnlEINVAL); 
i f  (pos i t i on  + nbytes < pos i t ion)  return(E1NVAL); /* unsigned overflow */ 
o f l ags  - f -> f i l p - f l ags ;  
r i p  = f -> f i l p - ino ;  
f-size = ri p->i-s ize; 
r = OK; 
i f  ( r ip-> i_p ipe == I-PIPE) { 

/* fp->fp-cum-io-partial i s  on ly  nonzero when doing p a r t i a l  w r i t es  */ 
c m i  o = fp -> fpsumio-par t i  a1 ; 

3 e lse  I 
c u m i o  = 0; 

1 
op = ( r x f l a g  == READING ? DEV-READ : DEV-WRITE) ; 
mode-word = r i  p -> i dode  & 1,TVPE; 
regular  = mode-word == I-REGULAR ( 1  m d e n o r d  == 1-NAMED-PIPE; 

char-spec = (mode-word == 1-CHARSPECIAL ? 1 : 0); 
block-spec = (mode-word =S I-BLOCLSPECIAL ? 1 : 0);  
i f  (block-spec) f -s ize - C O N W ;  
rdwt-er r = OK; /* set t o  E I O  i f  disk error occurs */  

/* Check f o r  character spec ia l  f i l e s .  */ 
i f  (char-spec) I 

dev = (dev-t) r i p - > i l o n e  [O] ; 
r - dev,io[op, oflags & 0-NONBLKK, dev, pos i t i on .  nbytes, w)lo,bufferl; 
i f  (r >= 0) { 

c u m i o  = r; 
pos i t i on  +- r: 
r = OK: 

1 
) e l se  { 

i f  (rw-flag == WRITING && block-spec == 0) { 
/* Check i n  advance t o  see f f f i l e  wi 11 grow too b ig .  */ 
i f  (pos i t i on  > rip->i_sp->sflax-size - nbytes) return(EFB1G) ; 

/* Check f o r  OJPPEND f l ag .  */ 
i f  (oflags & OAPPEND) pos i t i on  = f -s i  ze; 

/* Clear t h e  zone containing present €OF if hale about 
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* t o  be created. This i s  necessary because a l l  unwr i t ten  
* blocks p r i o r  t o  the EOF must read as zeros. 
*/ 

i f  (pos i t i on  z f-size) clear,zone(rip, f -s ize,  0); 
1 

/ *  Pipes a re  a l i t t l e  d i f f e r e n t .  Check. */ 
i f  ( r ip - r i -p ipe  == I-PIPE) ( 

r = pipe-checkCrip, rw-flag,oflags,nbytes,posi t ion,&par t ia l -cnt ) ;  
i f  (r <= 0) re turn( r1 ;  

I 

i f  {par t ia l - cn t  > 0) pa r t ia l -p ipe  = 1; 

/* Spl i t  t h e  t r ans fe r  i n t o  chunks t h a t  don ' t  span two blocks. * /  
while (nbytes != 0) I 

o f f  = (unsigned i n t )  (pos i t i on  % BLOCLSIZE) ;/* o f f s e t  i n  b l  k*/  
i f  (partia.1-pipe) { /* pipes on ly  */ 

chunk = MIN(partia1-cnt, BLOCLSIZE - o f f )  ; 
} e l se  

chunk - MPN(nbytes, BLOCLSIZE  - o f f ) ;  
i f  (chunk c 0) chunk = BLOCLSIZE - o f f ;  

i f  (m- f lag  == READING) { 
by tes - le f t  .: f-s ize - pos i t i on ;  
i f  (posi t i o n  >= f-si re) break; /* we are beyond EOF */ 
i f  (chunk > bytes- lef t)  chunk = ( i n t )  bytes- le f t ;  

I 

/* Read o r  w r i t e  'chunk' bytes. */ 
r - m-chunk(rip, pos i t i on ,  o f f ,  chunk, (unsigned) nbytes, 

rw-fjag. buffer,  seg, usr); 
i f  Cr t =  OK) break; /* EOF reached */ 
i f  (rdwt-err < 0) break; 

/* Update counters and po in te r s .  */ 
bu f f e r  += chunk; /* user buffer address */ 
nbytes -= chunk; /* bytes ye t  t o  be read */ 
cum-io += chunk; /* bytes read so f a r  */ 
p o s i t i o n  += chunk; /* p o s i t i o n  w i t h i n  t h e  f i l e  */ 

. 
i f  (part ia l-pipe) { 

p a r t i  a l-cnt -= chunk; 
i f  (par t ia l -cnt  <= 0) break; 

1 
1 

1 

/ *  On w r i t e ,  update f i l e  s i z e  and access t ime.  */ 
i f  (rw-flag == WRITING) { 

i f  ( regular  I I mode-word == I-DIRECTORY) f 
if (pos i t i on  r f-size) r ip -> i -s i ze  = pos i t i on ;  

1 
1 else { 

if (rip-zi-pi 'pe == 1-PIPE && p o s i t i o n  r= r i  p->i-s i  ze) { 
/*  Reset p ipe  po in ters .  */ 
rip->i,size = 0; /* no data. l e f t  * /  
p o s i t i o n  = 0; /* rese t  readerCs) */  
i f  ( (wf = f i n d - f i l p ( r i p ,  W-BIT)) != NIL-FILP) wf-bfi lp-pos =O; 
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1 
f -z f i  lp-pos = position; 

/* Check t o  see i f  read-ahead i s  ca l led  fo r ,  and i f  so. set i t  up. */ 
i f  (rw-flag -- READING && rip-zi-seek -= NO-SEEK Mc pos i t ion  % BLOCICSIZE- 0 

&I% (regular I I mode-word =- IRIREC70RYI) { 
rdahed-inode = r i p ;  
rdahedpos = p s i  t ion ;  

1 
r i  p->i-seek = NO-SEEK; 

i f  (rdwt-err !I OK) r = rdwt-err; /* check f o r  d isk er ror  */ 
if ( r d w ~ e r r  =I END-OF-FILE) r = OK; 
if (r == OK) { 

i f  (m-f lag == READING) rip->i,update I= ATIME; 
i f  (m-f lag  -- WRITINC) r i  p-pi-update I= CTIME I MTIME; 
r i p ->$ -d i r t  = DIRTY; /* ircode i s  thus now d i r t y  */ 
i f  [ p a r t i a l s i p e )  ( 

p a r t i a l s i p e  1 0; 
/* p a r t i a l  w r i t e  on p ipe wi th */ 
/* O_NONBLOCK, re turn  w j t e  count */ 

if <!(oflags & O_NONBtOao3 C 
f p -> fp -cumio ja r t i a l  = c m i o ;  
suspend(XP1PE) ; /* p a r t i a l  w r i t e  on pipe w i th  */ 
return(0) ; I* nbyte > PIPLSIZE - non-atomic */ 

I 
1 
f p - > f p - c u ~ i o s a r  = 0; 
return ( c u k i  o) ; 

) else { 
returner); 

1 
1 

/*=rmsr===r-r-r~rmm-=~-e-u~=-~e--~~g--=~-~=-~=~==--=~* 

* m-chunk a 

*rr=~rrrlr-__lm__Pft=-=I-I~~IPII:MEI..~Pr-=P==*/ 

PRIVATE i n t  m,chunk(rip, posit ion, o f f ,  chunk, l e f t ,  rw-flag, bu f f ,  seg, usr) 
register  s t ruc t  inode *rip; /* pointer  t o  inode f o r  f i l e  t o  be rd/wr */ 
off-t posit ion; /* pos i t ion  w i th in  f i l e  t o  read or w r i t e  */ 
unsigned o f f ;  /* o f f  w i th in  the  current block */ 
i n t  chunk; /* number o f  bytes t o  read o r  w r i t e  */ 
unsigned l e f t ;  /* max number o f  bytes wanted a f t e r  pos i t ion  */ 
i n t  rw-flag; /* READING or  WRITING */ 
char *buf f ;  /* v i r t u a l  address o f  the user bu f fe r  */ 
i n t  seg; /* T o r  D segment i n  user space */ 
i n t  usr; /* which user process */ 
{ 
/* Read or  w r i t e  (part of)  a block. */ 

reg is te r  s t ruc t  buf *bp; 
reg is te r  i n t  r; 
i n t  n, blockspec; 
b l o c k t  b; 
devLt dev; 

b lockspec = ( r i p - > i M e  & LTYPE) =;. I-BLDCLSPECIAL; 
i f  (blockspec) { 

b = position/FiLQCICSTZE; 
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dev = (dev-t) r i  p->i -zone [O] ; 
) else { 

b = read~napcr i  p, posi t ion) ; 
dev = rip->i,dev; 

1 

i f  (! blockspec && b -= NO-BLOCK) { 
i f  (rw-flag -= READING) { 

/* Reading f ran a nonexistent block. Must read as a l l  zeros. */ 
bp = getblock(N0-DEV, NOJLOCK, NORMAL) ; /* get a bu f fe r  */ 
zero-blockcbp); 

) else { 
/* Wri t ing t o  a noneni stent block. Create and enter i n  i node. */ 
if ((bp- new-block(rip, posit ion)) == NIL-BUF) return(err-c~de) ; 

3 
) else i f  (m- f lag  == REAOINC) C 

/* Read and read ahead i f  convenient. */ 
bp = rahead(rip, b, posi t ion,  l e f t ) ;  

3 else { 
/* Normally an ex is t ing  block t o  be p a r t i a l l y  overwr i t ten i s  f i r s t  read 
* in. tlowever, a f u l l  block need not  be read i n .  I f  i t  i s  already i n  
* the cache, acquire i t ,  otherwise j us t  acquire a f ree  buf fer .  
*/ 

n = (chunk == BLOCLSIZE ? NO-READ : NORMAL); 
i f  (!blockspec && o f f  -- 0 && pos i t ion  1- rip->i-size) n = NO-READ; 
bp = getblock(dev, b,. n) ; 

/* I n  a l l  cases, bp now points t o  a v a l i d  bu f fe r .  */ 
i f  (rw-flag I= WRITING && chunk !- BLOCLSIZE ddr !blockspec ddr 

posi t ion >- r ip->i-size && o f f  == 0) { 
zero-bl ock (bp) ; 

1 
i f  ( r x f l a g  -= READING) [ 

/* Copy a chunk from the block buf fe r  t o  user space. */ 
r = sys-copy (FS-PRKNR , 0 ,  (phys-bytes) (bp-~b-data+off) , 

usr. seg, Cphys-bytes) bu f f ,  
(phys-bytes) chunk) ; 

3 else (: 
/* Copy a chunk from user space t o  the block buf fer .  */ 
r = sys-copy(usr, seg, (physhytes) bu f f ,  

FS-PROLNR, D, (phys-bytes) Cbp->b,data+off), 
(phys-bytes) chunk); 

bp->b-di r t  = DIRTY; 
1 
n = ( o f f  4 chunk =- BLOCK-SIZE ? FULL-DATLBLOCK : PARTIALDATICBLOCK); 
putblock(bp, n) ; 
returnCr) ; 

1 

/*,,,,,,,,,,,,Ir~====35~5PPf========IZ~=I===EC====Pi~==f~t1ii=~-=~======~* 

* readflap 
* r r a s r r t ~ ~ m + = r r = r - r ~ z ~ ~ ~ ~ ~ ~ ~ = = ~ = ~ ~ ~ = ~ t ~ ~ ~ ~ = ~ = = ~ = ~ ~ = = ~ ~ = = = = = = = = = ~ ~ = * /  

PUBLIC b l o c k t  read_map(rip, posit ion) 
reg is te r  s t ruc t  inode * r i p ;  /* p t r  t o  inode t o  map from */ 
o f f - t  posi t ion ;  /* posi t ion i n  f i l e  whose b l k  wanted */ 
I 
/* Given an inode and a pos i t ion  w i th in  the corresponding f i l e ,  locate the 
* block (not zone) number i n  which tha t  pos i t ion  i s  t o  be found and return i t .  
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register struct  buf *bp; 
regtster z o n k t  z; 
i nt rcal  e , boff, dzones , nr-i ndi rects , index , z i  nd , ex ; 
b l o c k t  b; 
1 ong excess, zone, block-pos; 

scale = rip->isp->s-loq_zonesize; /* far  block-zone conversion *i 
b l  ockpos - posi ti on/BLOCICSIZE; /* relat ive blk # i n  f i l e  */ 
zone = blockpos >> scale; /* posit ion's zone */ 
bff - ( int)  (bloclcpos - (zone <c scale) ) ; /* re la t ive blk # wi th in zone */ 
dzones = r ip->idzones; 
nr-indi rects - r i p - > i A n d i  rs; 

/* Is 'position' t o  be found i n  the inode i t s e l f ?  */ 
i f  (zone < dzones) { 

zind = ( int) zone; /* index should be an i n t  */ 
z - rip->i-zone[zi ndl ; 
i f  (z - NOJOHE) return(N0-BLOCK) ; 
b = ((blockt)  z <c scale) + boff; 
return(b1; 

1 

/* I t  i s  not I n  the inode, so i t  w s t  be single or  double indirect .  */ 
excess - zone - dzones; /* f i r s t  VURDZONES don't count */ 

i f  (excess < nr-indi rects) I 
/* 'posit ion' can be located v ia  the  single ind i rect  block. */ 
z R r ip->i~one[dzonesj  ; 

1 else C '  
/* 'position ' can be located v ia  the double ind i rect  block. */ 
i f  ( ( Z  = rip->i~one[dzones+lJ) == NOIONE) return(NO,BLOCK); 
excess -- nr-i ndi rects ; /* s i  ngle ind i  r h s n  ' t count*/ 
b - (b lock t )  z << scale; 
bp = ge,Iock(rip->i,dev, b, NORMAL) ; /f get double ind i rect  block */ 
index = ( i  nt) (excess/nr,i ndi rects) ; 
z = rL i  ndi r (bp, i ndex) ; /* z- zone fo r  single*/ 
putblock(bp, INOIREtT-BLOCK) ; /* release double i nd  block */ 
excess - excess X nr-i ndi rects ; /* i n d e ~  i n t o  single ind b lk  */ 

1 

/+ ' 2 '  i s  zone num far single ind i rect  block; 'excess' i s  index i n t o  it. */ 
i f (I -- W W E )  return(N0-BLOCK) ; 
b - (b lock t )  z << scale; /* b i s  b lk  # f o r  single i nd  */ 
bp - getb lock( r i  p->i,dev, b. NORMAL); /* get single ind i rect  block */ 
ex - ( in t )  excess; /* need an integer */ 
z = rd ind i rcbp,  ex); /* get block pointed t o  +/ 
put-block (bp, INDIRECT-BLOCK) ; /* release s ing le  i n d i r  b l k  */ 
i f  (2 u N O I O N E )  return(N0-BLOCK) ; 
b = (CblocLt) z << scale) + boff; 
returnCb) ; 

1 
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i n t  index; /* index i n t o  *bp */ 
I 
/* Given a pointer  t o  an i n d i r e c t  block, read one entry. The reason f o r  

making a separate rout ine out o f  t h i s  i s  tha t  there are four  cases: 
* V 1  ( IBM and 68000), and V2 (IBM and 68000). 
*/ 

s t ruc t  super-block *sp; 
zone-t zone; /* V2 zones are longs (shorts i n  V1) +/ 

/* read a zone f rarn an i nd i  rec t  block */ 
i f  (sp-rs-version = V1) 

zone = (zonet)  conv2(sp-ws-nati ve , (i nt) bp->b-v l i  nd[ i  ndex]) ; 
else 

zone = (zone-t) conv4Csp-zs-native, (lang) bp->b-v2-indiindex3) ; 

i f  (zone !I N02ONE MI 
(zone < (zone-t) sp->s,firstdatazone I l zone >= sp->s-zones)) ( 

p r i n t f  ( " I l l ega l  zone nunber Xld i n  i n d i r e c t  block, index Xd\n", 
(long) zone, index) ; 

panic("check f i l e  system", NOJUM) ; 
3 

register  s t ruc t  inode * r ip ;  
s t ruc t  buf *bp; 
b l o c k t  b; 

r i p  = rdahed-i node ; /* pointer  t o  inode t o  read ahea,. f ran  */ 
rdahecinode - N I L I N O D E ;  /* turn o f f  read ahead */ 
i f  ( (b = readnap(r ip.  rdahedpos)) = NO-BLOCK) return; /* at  €OF */ 
bp - rahead(ri p, b, rdahedpos , BLOCLSIZE) ; 
p u t b l  ock(bp . PARTIALDATLBLOCK) ; 

1 

/*====-=--II~RIT=PI==~IIII=~I~YIII=--I~==-~~~~-~~~~~-~~=-~I~==~* 
* rahead 
*rrrrnrrrrrrrrrrrrr~rr~=rrrur-rrmn=~=~-=m~==-l~~l-====*/ 

PUBLIC s t ruc t  buf *rahead(rip, baseblock, position. bytes-ahead) 
reg is te r  s t ruc t  inode * r i p ;  /* pointer  t o  inode f o r  f i l e  t o  be read */ 
b l o c k t  baseblock; /* block a t  current  posi t ion */ 
o f f - t  posi t ion;  /* posi t ion w i th in  f i l e  */ 
unsigned bytes-ahead; /* bytes beyond pos i t ion  fo r  irmiediate use */ 
I 
/* Fetch a block from the cache o r  the device. I f  a physical read i s  

required, prefetch as many more blocks as convenient i n t o  t h e  cache. 
This usual ly  covers bytes-ahead and i s  a t  least  BLOCKSJINIW. 

* The device dr iver  may decide i t knws bet te r  and stop reading a t  a 
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i n d l p o s  - (off-t) rip->i-ndzones (BLOCLSIZE << scale); 
i f  (posi t ion c= i n d l p o s  drb r ip-p i -s ize > i n d l p o s )  { 

b l  ocks-ahead++; 
blocks-left++; 

1 
1 

1 

/* No mare than the maximum request. */ 
i f  (blocks-ahead > NRJOREQS) blocks-ahead = NRIOREQS; 

/* Read a t  leas t  the minimum number o f  blocks, but not  a f t e r  a seek. */ 
i f  (blocks-ahead < BLOCKSJINIMUM && ri p->i-seek == NO-SEEK) 

blocks-ahead - BLOCKSJlINIMUM ; 

/* Can't go past end o f  f i l e .  */ 
i f  (blocks-ahead r blocks-left) blocks-ahead - blocks- lef t  ; 

/* Acquire block buffers. */ 
fo r  ( ; ; I  { 

read-q [ read-q_si ze++l = bp ; 

if (--blocks-ahead -= 0) break; 

/* Don't t rash the cache, leave 4 free. */ 
i f  (bufs-in-use >- NRBUFS - 4) break; 

bp = ge~b lock(dev ,  block, PREFETCH) ; 
i f  (bp->b,dev !I NOSEV) { 

/* Oops, block a1 ready i n  the cache, get out. */ 
p u t b l  ockCbp, FULLIIATLBLOCK) ; 
break; 

1 
3 
rw_scattered(dev. read-q, r e a h c s i z e ,  READING) ; 
return(get_block(dev, baseblock, NORMAL)) ; 

1 

+++++++++++++++++++++++++++++++++++++++++*++*+++++++++*+++++*+++++++++++++++++++++ 
s rc/fs/wri  te. c 

++++++++++++++++++++++++++++++++++++++++++++*++u++++e++tH++*+++++++++++++++++ 

/* This f i l e  i s  the counterpart o f  "read.cl'. It contains the code f o r  w r i t i n g  
* insofar  as t h i s  i s  not contained i n  r e a d n r i  t e 0 .  
* 
* The entry points  i n t o  thi s f i l e  are 

d o ~ r i  t e :  c a l l  read-wri t e  t o  perform the WRITE system c a l l  
* clear-zone: e rasea  zone i n t h e  m idd leo f  a f i l e  

new-block: acqui re a new block 
*/ 
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#include cstring.h> 
#include "buf .h" 
#include "fi1e.h" 
It include "fproc. h" 
#include "inode-h" 
#i ncl ude "super. h" 

FORWARD ,PROTOYYPE( i n t  w r i t u a p ,  (s t ruc t  inode + r i p ,  o f f - t  posit ion, 
zone-t new-zone) 1; 

FORWARD -PROTOTYPE( vo jd  wr-indi r ,  (s t ruc t  buf  *bp, i n t  index, zone-t zone) ; 

PRIVATE i n t  w r i  t e a a p ( r i  p, pos i t ion ,  new2one) 
reg is te r  s t ruc t  inode *rip; /* pointer  t o  inode t o  be changed */ 
o f f - t  posit ion; /* f i l e  address t o  be mapped */ 
zone-t new-zone; /* zone t t o  be inser ted */ 
i. 
/* Write P new zone i n t o  an inode. */ 
i n t  scale, ind-ex, new,i nd. new-dbl . zones, nr-indi rects. s i  ngl el xindex, ex; 
zone-t z, rl; 
regi s te r  b l o c k t  b; 
long excess, zone; 
s t ruc t  buf *bp ; 

r ip->i -d i  rt = DIRTY; /* inode w i l l  be changed */ 
bp = NIL-BUF; 
scale I r i  p->i-sp->s-log_zone,si r e ;  /* f o r  zone-block conversion */ 
zone = (posi tion/BLOCICSIZE) r> scale; /* re la t i ve  zone # t o  i n s e r t  */ 
zones = rip->i,ndzones; /* # d i rec t  zones i n  the inode */ 
nr- indirects = rip->i,nindS rs;/* # i n d i r e c t  zones per i nd i rec t  block */ 

/* IS 'posi t ion '  to be found i n  the inode i t s e l f ?  */ 
i f  (zone < zones) { 

zinder = ( i n t )  zone; /* we need an integer here */ 
r i  p->i_zone[zi ndex] = neczone; 
return(OI0 ; 

1 

/* I t  i s  not i n  the inode, so i t  must be s ingle or double ind i rec t .  */ 
excess - zone - zones; /* f i r s t  VLNRDZONES don't count */ 
new-ind - FALSE; 
new-dbl = FALSE; 

i f  (excess .c nr- indi rects) E 
/* 'posit ion' can be located v i a  the s ingle i n d i r e c t  block. */ 
zl = r i  p->i-zone[zones]; /* s ingle i nd i rec t  zone */ 
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single = TRUE; 
} else { 

/* 'posi t ion '  can be located v i a  the double i n d i r e c t  block. */ 
if ( (z = rip->i-zone[zones+ll) -= NO-ZONE) ( 

/* Create the double i n d i r e c t  block. */ 
i f  ( (z = a1 loc-zone(rip->i-dev, r i  p-> i~one[O] ) )  == NO_IONE) 

return(err,code) ; 
rip->i-zone[zones+ll = z; 
new-dbl = TRUE; /* set f l a g  f o r  l a t e r  */ 

1 

/* Ei ther  way, 'z' i s  zone number f o r  double i n d i r e c t  block. */ 
excess -= nr-indirects; /* s ingle i n d i r e c t  doesn't count */ 
ind-ex = ( in t )  (excess / nr-indirects) ; 
excess = excess X nr- indirects; 
i f  (i nrtex >= nr- i  ndi rects) return(EF6IC) ; 
b - ( b l o c k t )  z ct scale: 
bp - getblock(r ip->i-dev, b. (new-dbl ? NLREAD : NORMAL)); 
i f  (new-dbl) z e m b l  ock(bp) ; 
z l  = r L i n d i  r(bp, ind-ex) ; 
s ingle = FALSE; 

1 

/* z l  i s  now s ingle i nd i rec t  zone; 'excess' i s  index. */ 
if Czl = ESOJONE) { 

/+ Create i nd i rec t  block and store zone # i n  inode o r  dbl  i n d i r  blk. +/ 
z l  = alloc_zone(ri p->i-dev, r i  p->i-zone(01) ; 
if (single) 

r i  p->i-zonetzonesl - z l ;  /* update inode */ 
else 

wr-indi r(bp, i nd-ex, z l )  ; /+ update dbl  i n d i r  */ 

n e x i n d  = TRUE; 
if (bp != NIL-BUF) bp->b-dirt = DIRTY; /* i f  double ind, i t  i s  d i r t y * /  
i f  (21 n W2WE) { 

putblock(bp, INDIRECT-BLOCK) ; /* release dbl  i n d i  rec t  b l  k */ 
return (err-code) ; /* couldn't  create s ingle ind */ 

1 
3 
p u t b l o c k  (bp, INDIRECT-BLOCK) ; /* release double i n d i r e c t  b l k  */ 

/* z l  i s  i nd i rec t  block's zone number. */ 
b u (b lock t )  zl << scale; 
bp = get-block(rip->i-dev, b, (new-ind 7 NO-READ ; NORHAL) ); 
if (net-i ndl zero-block(bp) ; 
ex = ( i n t )  excess; /* we need an i n t  here */ 
w r - i  ndi r(bp , ex, newlone) ; 
bp->b,dirt = DIRTY; 
put-bl ock (bp , INDIRECTBLOCK) ; 
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z o n k t  zone ; /* zone to  wr i te */ 
I 
/* Given a pointer to  an ind i rect  block, wr i te  one entry. */ 

struct  super-block *sp; 

sp t getsuper(bp->b-dev); /* need super block t o  f i nd  f i l e  sys type * 

/* wr i te a zone i n t o  an ind i rect  block */ 
i f (sp->s-versi on - V1) 

bp->b,vlind[i ndex] - (zonel t )  conv2Csp->s~lati w , (i nt) zone) ; 
e l  st 

bp->b,v2,i nd [i ndex J - (zone-t) cow4 ( s p - > s ~ a t i  w , Clong) zone) ; 
1 

. . 
PUBLIC void clear_tone(rip, pos, f l ag )  
register s t ruct  inode *r ip;  /* inode t o  clear */ 
o f f - t  pos;  /* points t o  block to  clear */ 
i n t  flag; /+ 0 i f  called by read-wri te, 1 by nm-block */ 
C 
/* Zero a zone, possibly start ing i n  the m.iddle. The parameter 'pos' gives 
* a byte i n  the f i r s t  block t o  be zeroed. Clearzone() i s  cal led from 
* read-wri t e  and neu-blockC). 
*/ 

register struct  buf +bp; 
register b l o c k t  b, blo, bhi; 
register off-t next; 
register i n t  scale; 
register z o n c t  zonesize; 

/* I f  the block s i t e  and zone size are the s a w ,  clear-zoneCl not needed. +/ 
scale - rip-,i,sp->s,log-zontsi ze ; 
i f  (scale - 0) return; 

z o n e A z e  = ( tonc t )  BLDCLSIZE << scale; 
i f  ( f lag -1 1) pos = (pos/zonesize) * zoncsize; 
next pos + BLOCLSIZE - 1; 

/* I f  'pos' f s  i n  the l as t  block of  a zone, do not clear the zone. */ 
i f  (next/zonesize !I pos/zonesi re) return ; 
i f  ( (blo = read~napCrip. next)) -- HO-BLOCK) return; 
bhi - ( ((blo>>scale)+l) << scale) - 1; 

/* Clear a l l  the blocks between *b loB and 'bhi ' . */ 
f o r  (b = blo;  b <= bhi; b+) E 

bp = getblockCrip-ri-dev, b, NO-RUD) ; 
zero-bl ockcbp) ; 
put-block(bp. FULLDATAJLOCK) ; 

1 
3 
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PUBLIC s t r u c t  bu f  *new-bl ock ( r i  p ,  pos i t i on )  
r eg i s t e r  s r r uc t  i node * r i p ;  /*  po i n t e r  t a  inode */  
o f f - t  pos i t i on ;  /* f i l e  po i n t e r  */ 
I 
/* Acquire a new block and r e t u rn  a po i n t e r  t o  i t .  Doing so may requi re  

* a l l o c a t i n g  a complete zone, and then r e tu rn i ng  the  i n i t i a l  b lock.  
* On the other hand, the cu r ren t  zone may s t i l l  have some unused blocks.  
* /  

r e g i s t e r  s t r u c t  bu f  *bp; 
block-t  b, base-block; 
zone-t z;  
zone-t zone-size; 
i n t  scale, r; 
s t r u c t  super-block *sp; 

/ *  I s  anothcr block ava i lab le  i n  t h e  current  zone? */ 
i f  ( (b = read-mapcrip, pos i t i on ) )  == NO-BLOCK) ( 

/* Choose f i r s t  zone if possible.  */ 
/ *  Lose i f  t he  f i l e  i s  nonempty but the f i r s t  zone number i s  NO-ZONE 
* corresponding t o  a zone f u l l  of  zeros. It would be b e t t e r  t o  
* search near the l a s t  rea l  zone. 
*/ 

i f  (r ip->i-zonelo] == NO-ZONE) { 
sp = r ip->i-sp; 
z = sp->s-f i rstdatazone ; 

I else E . . - - 
L - , .  p-+-zone [O] ; /* hunt near f i r s t  zone */ 

1 
i f  ( (Z = al loc-zone(r ip->i-dev, z)) == NO-ZONE) return(N1L-BUF); 
i f  ( (r = write-map(rip, pos i t i on ,  z)) != OK) { 

f ree-zone(rip->i-dev, z); 
err-code = r ; 
return(N1L-BUT) ; 

I 

/*  I f  we are not w r i  tinq a t  €OF, clear the zone, j u s t  to be safe. */ 
i f  ( pos i t i on  != r ip -> i -s i ze )  clear-zone(rip. pos i t i on ,  1) ; 
scale = r i  p->i-sp->s-log-zone-si z e ;  
base-block = (block-t) z << scale; 
zone-size = (zone-t) BLOCK-5IZE << scale; 
b = base-block + (b lock- t ) ( (pos i t ion % zone-size)/BLOCLSIZE); 

1 

memset (bp-rb-data, 0, BLOCK-SIZE) ; 
bp->b-dir t  = DIRTY; 
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/* Make the  inode on t h e  p ipe device. * /  
i f  ( ( r i p  = alloc-inode(P1PE-DEV, 1-REGULAR) ) == NIL-INODE) { 

r f p - > f p - f i l p [ f i  1-des[O]] = NIL-FILP; 
f i  1-ptr0->f i  lp-count = 0; 
r f p -> fp - f i l p l f i  1-des[l]J = NIL-FILP; 
fi 1-ptr l -> f i  lp-count = 0; 
return(err-code) ; 

1 

if (read-onlylr ip) != OK) panic l "p ipe device i s  read only",  NO-NUM); 

r ip -> i -p ipe  = I-PIPE; 
rip->i-mode &= -1-REGULAR; 
r ip-r i_mode I= I-NAMED-PIPE; /* pipes and FIFOs have t h i s  b i t  s e t  */ 
f i l-ptr0->fi lp,ino - r i p ;  
f i l-ptr0->fi lp,f lags = 0-RWNLY; 
dup-i node (ri p) ; /* f o r  double usage */ 
f i l -ptr l ->f i lp, ino = r i p ;  
f i l - p t r l - > f i l p - f l a g s  = 0-WRONLY; 
m-inode(r ip,  WRITING); /* nark inode as a l loca ted  */ 
rep l  y-i 1 = f i  1-des [Ol ; 
rep l  y-i 2 = f i 1-des [ll ; 
rip->i-update = ATXME I CTIME j MTIME; 
r e t u rn  (OK) ; 

1 

/ *=====~~~=====~~=====~I=~~===-~=I~~~-~~L=LLL-==I I I I=~=XXX=I====~~~E=====P===* 
* p i pkcheck  $l 

* r = = r r m r r ~ ~ r ~ s n ~ r ~ c ~ ~ ~ t t = ~ ~ ~ ~ - - ~ ~ - ~ ~ ~ = ~ = = - = = ~ = = = i ~ ~ = . c = ~ ~ ~ t = ~ i ~ - r = ~ = ~ ~ t s ~ * /  

PUBLIC i n t  pipe-check(rip, rw-flag, o f lags ,  bytes, pos i t i on ,  canwr i te l  
r e g i s t e r  s t r u c t  $nude * r ip ;  /* the inode o f  t h e  p i p e  */ 
i n t  -f lag: /* READINC or WRITING */ 
i n t  o f lags ;  /* f l a g s  se t  by open o r  f c n t l  */ 
r e g i s t e r  i n t  bytes; /* bytes t o  be read o r  w r i t t e n  ( a l l  chunks) */ 
r eg i s t e r  o f f - t  pos i t i on ;  /* current  f i l e  p o s i t i o n  */ 
i n t  *canwri t e ;  /* re turn:  number o f  bytes we can w r i t e  */ 

/* Pipes are a l i t t l e  d i f f e r e n t .  I F  a process reads from an empty p ipe  f a r  
* which a w r i t e r  s t i l l  ex is ts ,  suspend the reader. If the p ipe i s  empty 
* and there i s  no w r i t e r ,  r e t u rn  0 bytes. 
* p i pe  and no one i s  reading from i t ,  g ive  
*/ 

I f  a process i s  w r i t i n g  to a 
a broken p ipe  e r r o r .  

int r = 0; 

/* I f  reading, check f o r  empty pipe. */ 
i f  (rw-fl ag - RWINC) ( 

i f  (pos i t i on  >= r ip->i-s ize) { 
/* Process i s  reading from an empty p ipe.  */ 
if ( f i n d - f i l p ( r i p ,  W-BIT) != NILFILP)  { 

/* Wr i t e r  e x i s t s  */ 
i f  (oflags L 0-NONBLOCK) 

r - €AGAIN; 
e l se  
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suspend(XP1PE); /* block reader */ 

/* I f  need be, act iva te  sleeping wr i ters.  */ 
if (susp-count > 0) release(tip. WRITE, susp-count); 

1 
re tu rn l r )  ; 

3 
1 else { 

/* Process i s  w r i t i n g  t o  a pipe. */ 
/* i f  (bytes > PIPLSIZE) returnCEFBIC); */ 

i f  ( f ind- f i lpcr ip,  L 8 I T )  == NILFILP) { 
/* Te l l  kernel t o  generate a SIGPIPE signal.  */ 
sys-k i l l  C ( i  n t )  ( fp  - fproc) , SICPIPE) ; 
return(EP1PE) ; 

1 

i f  (posi t ion + bytes > PIPLSIZE) { 
i f  ((oflags & 0-NOEIBLOCK) &k bytes < P IPUIZE)  

return(EACA1Y) ; 
e lse  i f  ((oflags & 0-NOFIBLOCK) && bytes > PIPLSIZE) { 

i f  ( (*canwri t e  E (PI  P L S f Z E  - posit ion)) > 0) { 
/* Do a p a r t i a l  w r i t e .  Need t o  wakeup reader */ 
release(rip, READ, susp-count) ; 
return(1) ; 

) else I 
return (EACAIN) ; 

1 
1 

i f  (bytes > P IESIZE)  I 
i f  ((*camvri t e  w PIPLSIZE - p s i  t ion) > 0 )  I 

/* Db a p a r t i a l  wr i te .  Need t o  wakeup reader 
* since we' l l  suspend ourse l f  i n  reab_write() 
*/ 

re1 ease(rip, READ, susp-count) ; 
return(1) ; 

1 
1 
suspend(XPIP€); /* stop w r i t e r  -- pipe f u l l  */ 
return(0) ; 

1 

/* Wri t ing t o  an empty pipe. Search f o r  suspended reader. */ 
if (posi t ion -- 0 )  releaseCrip, READ, susp-count); 

1 

WBLIC void suspendctask) 
in t  task: /* who i s  proc wait ing fo r?  (PIPE = pipe) */ 
I 
/* Take measures t o  suspend the processing o f  the present system c a l l .  
* Store the parameters t o  be used upon resuming i n  the process table.  
* (Actually they are not  used h e n  a process i s  wai t ing f o r  an I / O  device, 
* but they are needed f o r  pipes, and i t  i s  not worth making the d i s t i nc t i on  
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i f  (task -= XPIPE I I task XWPEN) SUSP-count++;/* #procs susp'ed on pipee/ 
fp->fp-suspended = SUSPENDED; 
fp->fp-fd = f d  cc 8 1 f s - ca l l ;  
fp->fp-task = -task: 
i f  (task -- XLOCK) 1 

fp->fp-buffer = (char *) namel; /* t h i r d  a rg  t o  f c n t l 0  */ 
fp-sfp-nbytes =request; /* second a rg  t o  f c n t 1 0  */ 

) e lse  { 
fp->fp-buffer = bu f f e r ;  /* f o r  reads and w r i t e s  */ 
fp->fp-nbytes = nbytes; 

3 
dont-rep1 y = TRUE; /* do no t  send c a l l e r  a r ep l y  message now */ 

1 

/*=--=========q=*=========*=========z**==-======-m=====m-================* 

release 
*==nc~rrt+t==rrsr~mrrl==~===~9**9*t~f~==~t~f=======~~f~===~==zZ===f==f~~~======- -*/ 

WBLIC vo i d  release(ip,  ca l l -n r ,  count) 
r e g i s t e r  s t r u c t  inode * i p ;  /* inode o f  p i pe  */ 
i n t  ca l l -nr ;  /* READ, WRITE, OPEN o r  CREAT */ 
i n t  count; /* mar number o f  processes t o  release */ 
C 
/* Check t o  see i f  any process i s  hanging on the p i p e  whose ino& i s  i n  ' i p '  . 
* I f  one i s ,  and i t  was t r y i n g  t o  perform t h e  c a l l  i nd ica ted  by ' ca l l -n r '  , 

re lease i t .  
/ 

r e g i s t e r  s t r u c t  fp roc  *rp; 

/* Search the proc table. */ 
f o r  ( r p  = bfprocCO1; r p  c &fproc[NRPROCSJ ; rp++) { 

i f  (rp->fp-suspended -3 SUSPENDED 
r p - ~ f  p-revi ved -- NOT-REVIVING && 
(rp->fp-fd & BYTE) == ca l l -n r  && 
rp->fp-fi Ip[rp->fp-fd>rB] ->f i lp-ino -- ip; 

rev ive(( in t )  ( r p  - fproc) , 0) ; 
~ u s p ~ c o u n t - - ;  /* keep t r ack  o f  who i s  suspended */ 
i f  (--count -= 0) re tu rn ;  

1 
1 

1 

C 
/* Revive a p rev ious ly  blocked process. When a process hangs on t t y ,  t h i s  
* i s  t he  way i t  i s  eventual ly  released. 
*/ 

reg i  s t e r  s t r u c t  fp roc  * r fp ; 
reg i s t e r  i n t  task;  
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i f  (proc-nr < 0 I I proc-nr >= NRPROCS) panicCUrevive 
r f p  = &fproc[proc-nr] ; 
i f  (rfp-zfp-suspended =- NOT-SUSPEIYDED I I rfp->fp-rev 

MINIX SOURCE CODE 

err" ,  proc-nr); 

j ved == REVIVING) r e t u rn  ; 

/* The ' r ev i v i ng '  f l a g  on ly  appl ies t o  pipes. Processes wa i t ing  f o r  T l Y  get 
* a message r i g h t  away. The rev i va l  process i s  d i f f e r e n t  f o r  7TY and pipes. 
* For TTY r e v i v a l ,  the work i s  already done, f o r  pipes i t  i s  not :  the proc 
* must be res ta r ted  so i t  can t r y  again. 
* /  

task = - r fp-s fp- task;  
if (task -- XPIPE I I task  == XLOCK) { 

/* Revive a process suspended on a p ipe or  lock .  */ 
r fp->fp-revived = R E V I V I  NC; 
rev iv ing++ ; /* process was wa i t ing  on p ipe o r  l o c k  */ 

I else ( 
rfp->fp-suspended = NOT-SUSPENDED; 
i f  (task == XPOPEN) /* process blocked i n  open o r  create */ 

rep1 y(proc-nr. rfp->fp_fd>>8) ; 
e l se  ( 

/* Revive a process suspended on STY o r  o ther  device. */ 
rfp->fp-nbytes = bytes; /*pretend i t  wants on ly  what there i s * /  
reply(proc,nr, bytes); /* unblock t h e  process */ 

1 
1 

I 

~ , , , , , , , , , , , ~ ~ ~ ~ ~ ~ . ~ . I I ~ ~ ~ ~ = = ~ = = ¶ ~ ~ = = ~ = ~ ~ ~ ~ ~ ~ ~ = ~ = ~ ~ = I ~ I ~ I ~ I ~ ~ * I ~ I I I = = I C ~ ~ ~ ~ I ~ * /  

PUBLIC i n t  do-tinpause() 
I 
/* A s igna l  has been sent t o  a user who i s  paused on the f i l e  system. 

Abrt t h e  system c a l l  w i t h  t h e  EINTR e r r o r  message. 

r e g i s t e r  s t r u c t  fp roc  * r f p ;  
i n t  proc-nr, task, f i l d ;  
s t r u c t  f i l p  *f; 
dev-t dev ; 

i f  (who > MM_PRKNR) r e t u rn  (EPERM) ; 
proc-nr I pro; 
i f  (proc-nr .C 0 I I proc-nr >= NRPROCS) panic("unpause e r r  l", proc-nr); 
r f p  = BfprocCproc-nr); 
i f  (rfp->fp-suspended == NOT-SUSPENDED) return(0K) ; 
task  = -rfp->fp-task; 

swi tchctask) C 
case XPIPE: /* process t r y i n g  t o  read or  w r i t e  a p ipe */ 

break; 

case XOPEN: /* process t r y i n g  t o  open a special  f i l e  */ 
panic ("fs/do-unpause c a l l e d  w i t h  XWEN\nm, NO-HUM) ; 

case XLOCK: /* process t r y i n g  t o  set  a lock  w i t h  FCNTL */ 
break ; 

case XPOPEN: /* process t r y i n g  t o  open a f i f0 */ 
break ; 
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defau l t :  /* process t r y i n g  t o  do device I / O  ( e . 9 .  t t y ) * /  
f i l d  = ( r fp -> fp - fd  >> 8) & BYTE;/* e x t r ac t  f i l e  desc r i p t o r  */ 
i f  ( f i l d  < 0 I I f i l d  >= OPENflM)panic("unpause e r r  2 '  ,NO-NUM); 
f = r f p - z f p - f i l p [ f i l d ] ;  
dev = (dev-t) f ->f i 1 p-i no->i-zone [O] ; /* device hung on */ 
mess.lTY-LINE = (dev >> MINOR) & BYTE; 
mess.PROC-NR = proc-nr; 

/* Te31 kernel  R o r  W. Mode i s  from current  c a l l ,  not open. */ 
mess.COUNT = (r fp->fp-fd & BYTE) == READ ? R B I T  : W-BIT; 
mess .m-type = CANCEL; 
f p  = r f p ;  /* hack - c a l l - c t t y  uses fp */ 
(*dmapC Cdev zr MAJOR) & BYTE] . dmap-rw) ( task, &mess) ; 

1 

rfp->fp-suspended = NOT-SUSPENDED; 
rep1 y (proc-n r , EINTR) ; /* s ignal  i n t e r r up ted  c a l l  */ 
return(0K) ; 

I 

/* This f i l e  contains the  procedures t h a t  look  up path names i n  the  d i r ec to r y  
* system and determine the inode number t h a t  goes w i t h  a g iven pa th  name. 
t 

* The en t r y  po i n t s  i n t o  t h i s  f i l e  are 
* eat-path: t he  'main' r ou t i ne  o f  the  path-to- inode conversion mechanism 
* las t -d i  r: f i n d  the  f i n a l  d i r e c t o r y  on a given path 
* advance: parse one component o f  a path name 
* search-di r: search a d i r e c t o r y  f o r  a s t r i n g  and re tu rn  i t s  inode number 
*/ 

# inc lude " f s  .h" 
# inc lude <s t  r i  ng . h> 
f i  nclude <mini x/cal l n r .  hz 
# inc lude "buf.  h" 
#inc lude " f i1e.h"  
# inc lude "fproc. h" 
# inc lude "i node. h" 
# inc lude "super. h" 

PUBLIC char d o t l r 2  ] 
PUBLIC char dot2[3] 

FORWARD -PROTOTYPE( 

I, I, - 
= . .  /* used f o r  search-dir t o  bypass the  access */ 

11 11 . - - .. , / *  permissions f o r  . and .. / 

char *getanme, (char *old-name, char s t r i n g  [ N A M E M I )  ) ; 



File: src/fs/path.c MINIX SOURCE CODE 

/* Parse the path 'path' and put  i t s  inode i n  the inode table. I f  not  possible, 
return NIUNOOE as funct ion value and an er ror  code i n  'err-code' . 

*/ 

reg is te r  s t ruc t  inode * ld ip ,  * r ip ;  
char s t  r i  ng [ M E _ M A X ]  ; /* hold 1 path component name here */ 

/* F i r s t  open the path down t o  the f i n a l  directory. */ 
i f  ( ( l d i p  u l a s c d i  rcpath, str ing)) == NILINODE) 

return(NIL1NOOE) ; /* we couldn't  open f i n a l  d i rectory */ 

/* The path consist ing only o f  "/" i s  a special case, check f o r  it. */ 
if (stri ngEO] =I '10') return(1dip); 

/* Get f i n a l  component o f  the path. */ 
r i p  = advance(ldip, s t r ing] ;  
p u L i  node(1di p) ; 
returnCrip); 

1 

/*--=--==--==-=-====-========================-=-===-==-**==* 

1 ast-di r * 
*-=~~~=~~-~-~~~~IIPIII~~=PIP==-II===PL=I=P~P=E=P-=PPIII=*~I~~~~~*/ 

PUBLIC s t ruc t  inode *last_di r(path, s t r ing)  
char *path; /* the path name t o  be parsed */ 
char s t r i n g  CNAMEJ4UI ; /* the f i n a l  component i s  returned here */ 
C 
/* Given a path, 'path', located i n  the f s  address space, parse it as 
* f a r  as the l a s t  d i rectory,  fe tch  the inode f o r  the l a s t  d i rectory i n t o  
* the  inode table, and return a pointer t o  the inode. I n  
* addit ion, re turn  the  f i n a l  component o f  the path i n  ' s t r ing ' .  
* I f  the l a s t  d i rec tory  can't be opened. re turn  NILINOOE and 

the reason f o r  f a i l u r e  i n  'err-code'. 
*/ 

reg is te r  s t ruc t  inode * r i p ;  
reg is te r  char *new~lame; 
reg is te r  s t ruc t  i node *new-i p; 

/* I s  the  path absolute o r  re la t i ve?  I n i t i a l i z e  ' r i p '  accordingly. */ 
r i p  = (*path == '/ ' ? fp->fp_rootdi r : fp->fp,workdi r); 

/* I f  d i  r has been removed or  path i s  empty, return ENOENT. */ 
i f  (r ip->i -n l inks -= 0 I I  *path == ' \ O Y )  I 

err-code = ENOENT; 
return(N1 L - I W E )  ; 

1 

dup-i node (ri p) ; /* inode w i l l  be returned w i th  put-inode */ 

/* Scan the  path component by component. */ 
whi le (TRUE) { 

/* Extract one component. +/ 
i f  ( (nmname - get_name(path, s t r ing))  = (char*) 0) { 

pucinode(r ip)  ; /* bad path i n  user space */ 
return(N1 LINOOE) ; 

I 
i f  (*new,name - *\O' )  

i f  ( ( r i p - > i d e  & I-TYPE) == 1-DIRECTORY) 
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r e t u rn ( r i p ) ;  /* normal e x i t  */ 
e lse  I 

/* l a s t  f i l e  o f  path p r e f i x  i s  not  a d i r ec to r y  */ 
put-i nodecrip) ; 
err-code = ENOTDIR; 
re tu rn  (NIL-IN#€) ; 

1 

/* There i s  more path. Keep parsing. */ 
new-ip = advancecrip, s t r ing )  ; 
p u ~ i  node ( r ip )  ; /* r i p  e i t h e r  obsolete o r  i r r e l e v a n t  */ 
i f  (new-i p == NIL INODE)  return(N1L-INODE) ; 

/* The c a l l  t o  advance() succeeded. Fetch next component. */ 
path = new-name; 
r i p  = new-ip; 

1 
1 

/*E===~=~IIIZll*t=E=====~====================================================* 
* get-name * 
* i = r = = ~ r r t r r r r r r r n ~ = = ~ ~ ~ = ~ = = e ~ - ~ ~ ~ = = = = ~ = = ~ = = ~ ~ ~ ~ i ~ . = ~ = = ~ = ~ t = ~ = = ~ ~ ~ ~ ~ . = ~ = = *  / 

PRIVATE char *get-name(o1d-name, s t r i ng )  
char * o l  d-name; /* path name t o  parse */ 
char string[NAPIEMAX] ; /* component ext racted from 'old-name' */ 

/* Given a po i n t e r  t o  a path name i n  f s  space, 'old-name', copy t h e  next 
* component t o  ' s t r i n g '  and pad w i t h  zeros. A po i n t e r  t o  t h a t  p a r t  o f  
* the name as y e t  unparsed i s  returned. Roughly speaking, 
* 'get-name' = 'old-name' - ' s t r i ng ' .  
* 
* This rou t ine  fol lows the standard convention t h a t  /usr/ast,  /usr/ /ast,  
* / /usr/ / /ast and /usr/ast/  are a l l  equivalent.  
*/ 

r eg i s t e r  i n t  c; 
r eg i s t e r  char *np, *mp; 

np 5 s t r i ng ;  /* 'np' po i n t s  t o  current  p o s i t i o n  */ 
rnp - old-name; /* ' rnp'  po in ts  t o  unparsed s t r i n g  */ 
wh i le  ( Cc = *mp) == ' / ' I  rnp++; /* skip leading slashes */ 

/* Copy t h e  unparsed path, 'old-name' , t o  the array, ' s t r i n g ' .  */ 
wh i le  (rnp<&lhnameEPATK-MAX] &&I c !=  '/' && c != ' \ 0 ' )  t 

if Cnp < &string[NAME_MAX]) *np++ = c; 
c = *++rnp; /* advance t o  next character * /  

1 

/* TO make /usr/ast/ equivalent t o  /usr /ast ,  s k i p  t r a i l i n g  slashes. */ 
wh i le  (c == ' / '  &I rnp < &ld-name[PATHJAX]) c - *++rnp; 

i f  (np c CstringENAMFLMAXI) *np * ' \ O g ;  /* Terminate s t r i n g  */ 

i f  (rnp >- &old-name[PATH-MAXI) C 
err-code - ENMETOOLONG; 
return((char *) 0)  ; 

1 
return(rnp) ; 

1 
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/*,,,,,,,,*,,,,,,,,,=,============/b,,,,,,,,,,,,,,,,,,=,======,======_____==~==IIIIIIIIIIIIiItIIIIfIIIIfIII=iIiI====* 
* advance 

- --=- ----------- -=-.=11===11111-**=r*================================* / 
PUBLIC s t ruc t  inode *advance(di rp, s t r ing)  
s t ruc t  inode *d i  rp; /* inode f o r  d i rectory t o  be searched */ 
char s t  r i  ng [NAME-MAX] ; /* component name to  look for */ 
C 
/* Given a d i rectory and a component o f  a path, look up the component i n  
* the d i rectory,  f i n d  the inode, open i t, and return a pointer t o  i t s  inode 
* slot. I f  i t  can't be done. return NILINODE. 
* / 

register  s t ruc t  inode * r i p ;  
s t ruc t  inode *r ip2;  
register  s t ruc t  super-block 'sp; 
i n t  r, inumb; 
dev-t mnt-dev; 
i no-t numb ; 

/* I f  ' s t r i ng '  i s  empty, y i e l d  same inode s t ra igh t  away. */ 
i f  ( s t r i  ng [0] =- '\0') return (get-inode(di rp->i-dev, (i nt )  d i  rp->i-num]) ; 

/* Check f o r  NIL-INODE. */ 
i f  (di r p  == NILINOOE) return(N1LINODE) ; 

/* If 's t r i ng '  i s  not present i n  the  d i rectory,  signal e r ror .  */ 
i f  ( (r = search-di r (d i  rp, s t r ing,  &numb, LOO(CUP)) != OK) ( 

err-code = r; 
return (Nf I I N O D E )  ; 

1 

/* Don't go beyond the current root directory, unless the s t r i n g  i s  dot2. */ 
if Cdirp I- fp->fp-rootdi r bbr strcmpCstring, ". . ") == 0 6& s t r i ng  != dot2) 

return(get_i node(di rp->i-dev, (i nt )  d i  rp->i-num)) ; 

/* The component has been found i n  the d i rectory.  Get inode. */ 
i f  ( ( r i p  = getinodeCdi rp->i-dev, (i nt) numb)) == NIL INOOE)  

return (NILINOOE) ; 

i f  (r i  p->i-num == ROOT-INOOE) 
i f (di rp->i-nurn = ROOT-INODE) { 

i f  ( s t r i ng [ l ]  I- '.') I 
f o r  (sp = &super-bl ock [I] ; sp < &super-block[NRSUPERS] ; sp++)C 

i f  (sp->s-dev == r ip-r i-dev) { 
/* Release the roo t  inode. Replace by the 
* i node mounted on. 
* / 

p u t i  node(ri p); 
mncdev = sp->s-imount->i-dev; 
i numb = (i nt)  sp->s-imount->idurn: 
r i  p2 = g e t i  node(mn~dev, i numb) ; 
r i p  = advance(ri p2. str ing) ; 
put-i nodecri p2) ; 
break; 

1 
1 

1 
I 
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i f  ( r i p  == NIL-INODE) return(N1L-INODE) ; 

/* See i f  the inode i s  mounted on. I f  so, switch t o  roo t  d i r ec to r y  o f  the 
* mounted f i l e  system. The super-block prov ides the l i nkage  between the 
* inode mounted on and t h e  roo t  d i r ec to r y  of  t h e  mounted f i l e  system. 
*/ 

while ( r i p  != N I L J N O D E  && rip->i-mount == I-MOUNT) { 
/* The inode i s  indeed mounted on. */ 
f o r  (sp = &supe r-bl ock [O] ; sp < &super-bl ock[NRSUPERS] ; sp++) 1 

i f  (sp->s-imunt == r i p )  { 
/* Release the inode mounted on. Replace by the  

* inode o f  the roo t  inode o f  t he  mounted device.  
* /  

put-i node ( r i  p) ; 
r i p  = get-i node(sp->s-dev, ROOT-I NODE) ; 
break; 

I 
1 

1 
r e t u rn ( r i  p) ; /*  re tu rn  po i n t e r  t o  inode's component */ 

1 

/*,,~=,,,,,=,,,,,,,1r=CI1~~i3IIIIL:~=~-.-.-.===~~~~~~=~~=======~~====5=~====7~~~=* 
t search-di r 4 

*=~~~~EI=I=-PI=~~P.I=O=~==II~P===~=~==*IIS=EP~=II~PP=LI~IZZ=II~=~==~II~~I====* / 
PUBLIC i n t  search_di r ( ld i  r d t r ,  s t r i n g .  numb, flag) 
r eg i s t e r  s t r u c t  inode * l d i  r g t r ;  /* p r r  t o  inode f o r  d i r  t o  search */ 
char s t r ingCNAMEMI ;  /* component t o  search fo r  */ 
ino-t  *numb; /* po in te r  t o  inode number */ 
i n t  f l ag ;  /* L W L U P ,  ENTER, DELETE o r  IS-EMPTY */ 

/* This  func t ion  searches t h e  d i r ec to r y  whose inode i s  po in ted t o  by ' l d i p '  : 
* i f  ( f l a g  =- ENTER) enter  ' s t r i ng '  i n  the d i r ec to r y  w i t h  inode # '*numb' ; 
* i f  ( f l a g  a- DELETE) de le te  ' s t r i  rig' f rm the d i r ec to r y ;  
* i f  ( f l ag  =L L O K U P )  search for ' s t r i n g '  and re tu rn  inode # i n  'numb' ; 
* i f  ( f l ag  == IS-EMPTY) r e t u rn  OK i f  on1 y . and . . i n  d i  r e lse E N ~ ~ E M P T Y ;  
* 
* i f  ' s t r i n g '  i s  d o t l  o r  dot2, no access permissions are checked. 
* / 

reg i s t e r  s t r u c t  d i r e c t  'dp; 
r eg i s t e r  s t r u c t  buf *bp; 
i n t  i, r. e-hit, t, match; 
node-t b i t s ;  
o f f 2  pos ; 
unsigned new-slots, o ld-s lo ts ;  
block-t b; 
s t r u c t  super,block *sp; 
i n t  extended = 0; 

/* If ' l d i  r -p t r '  i s  no t  a po i n t e r  t o  a d i t -  inode, e r r o r .  */ 
i f  ( ( l d i  r-ptr->i_mode 81 I-TYPE) != I-DIRECTORY) return(EN0TDIR) ; 

r = OK; 

if ( f l a g  != IS-EMPTY) { 
b i t s  = ( f l a g  == L O O L U P  ? L B I T  : W-BIT 1 XJIT); 

i f  ( s t r i n g  == d o t l  I I s t r i n g  == dot2) i 
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i f  ( f lag  I =  L001CUP) r I read-only(1di rstr); 
/* on1 y a wr i tab le  device i s  requi red. */ 

3 
e lse r - forbiddenC7di r g t r ,  b i t s )  ; /* check access p e m i  ssions */ 

1 
i f  (r != OK) returner); 

/* Step through the d i rectory one block a t  a r ime.  */ 
old-slots - (unsigned) ( l d i  r ~ t r - r i _ s i t e / D I R E N T R Y 5 I Z E )  ; 
new-slots = 0; 
c h i t  = FALSE; 
match = 0; /* se t  when a s t r i n g  match occurs */ 

for (pos = 0; pos < I d i  r-ptr->i-size; pos += BLOCLSIZE) { 
b = rea&map(ldir>tr, pos); /* get block number */ 

/* Since d i rec tor ies  don't have holes, 'b' cannot be NO-BLOCK. */ 
Lip = getb lock(1di  r j t r - > i - d e v ,  b, NORMAL) ; /* get a d i r  block */ 

/* Search a d i rec tory  block. */ 
f o r  (dp = &bp->b,di r [ O ]  ; dp < &bp->b-di rCNRDIRENTRIE41; dp++) I 

i f  (++new-slots > o'ld-stots) { /+ not found, but rom l e f t  */ 
i f  ( f lag  == ENTER) e-hit = TRUE; 
break; 

3 

/* Match occurs i f  s t r i ng  found. */ 
if ( f lag  != EWER && dp-hin no != 0 )  { 

if (f lag  I- I L E M P T Y )  { 
/* T f  t h i s  t es t  succeeds, d i  r i s  not empty. */ 
if [strcmp(dp->&name, "." ) != 0 && 

strclllg(dp->d,name, ". . ") !- 0 )  match - 1; 
} e lse { 

i f  (strncmpCdp->d-name, s t r ing ,  NAMUWO -- 0 )  
mtch - 1; 

I 
1 

i f  hatch)  i 
/* 1001CUP o r  DELETE found what i t  wanted. */ 
r - OK; 
i f  ( f lag  -= IS-EMPTY) r = EWTEMPN; 
else i f  ( f lag  == DELETE) I 

/* Save c t i n o  f o r  recovery. */ 
t = HAMEJVX - s i  zwf (ino-t) ; 
+ ((ino-t 9 drdp-rd-narre[tl) = dp-wd-ino; 
dp->hino = 0; /* erase entry */ 
bp->b-df rt = DIRTY; 
l d i r s t r -p i -upda te  I =  CTIHE I MTIME; 
I d i  rgtr-?i,di r t  = DIRTY; 

1 else I 
sp- Id i rd t r -> i ,sp ;  / *  ' f lag '  isLOOlCUP*/ 
*numb - conv2 (sp->s-nati ve, (i nt) dp->d,i no) ; 

3 
p u c b l  ockcbp, OIRECTORY-EILOCK) ; 
return(r) ; 

1 

/* Check f o r  free s l o t  for the benef i t  o f  ENTER. */ 
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if ( f lag  == ENTER Mc ,dp->d-i no == 0) { 
c h i t  = TRUE; /* we found a f ree s l o t  */ 
break; 

3 
1 

/* The h o l e  block has been searched o r  ENTER has a free s l o t .  */ 
i f  (e-hit) break; /* e-hit set if ENTER can be performed now */ 
put-block(bp, DIRECTORY-BLOCK); /* otherwise, continue searching d i r  */ 

1 

/* The whole d i rectory has now been searched. */ 
i f  ( f l ag  ! = ENTER) return( f1 ag =- IS-EMPTY ? OK : ENDENT) ; 

/* This c a l l  i s  f o r  ENTER. X f  no f ree s l o t  has been found so fa r .  t r y  t o  
* extend d i  rectory. 
*/ 

i f  (e-hi t == FALSE) { /* di rectory i s  f u l l  and no room l e f t  i n  l a s t  block */ 
new-sl ots++ ; j* increase d i rec tory  s ize  by 1 entry */ 
i f  (new-slots == 0) return(EFB1C) ; /* d i  r s ize l i m i t e d  by s l o t  count */ 
i f  ( Cbp a new-block (1 d i  r_pt r, l d i  r s t r - > i - s i  ze)) -- NIL-BUF) 

returncer r-code) ; 
dp = &bp->b-dir[O] ; 
extended = 1; 

1 

/* 'bp' now points to  a d i rectory block wi th space. 'dp' points t o  s lo t .  */ 
(void) memset(dp->&name, 0 ,  (size-t) W F )  ; /* c lear  entry */ 
f o r  (i = 0; s t r i n g l i ]  && i < MAMLMAX; i++) dp->d~ame[i3 = stringCi1; 
sp I. l d i rs t r - , i -sp ;  
dp->d-i no = conv2 (sp->s-nati ve , (i nt) *numb) ; 
bp-~b-dirt = DIRTY; 
put-bl ock(bp , DIRECTORY-BLOCK) ; 
ld i r -pt r - r i -update I =  CTXME ) HTIME; /* mark mtime f o r  update l a t e r  */  
Id4 r s t r - > i - d i  r t  = DIRTY; 
i f  ( n e ~ s l o t s  > o l h s l o t s )  C 

l d i  r g t r - > i - s i  t e  - (of f-t) new-slots OILENTRY-SIZE ; 
/* Send the change t o  disk if the di rectory i s  extended. */ 
i f  (extended) tw-i node(7di r-ptr, WRITING) ; 

1 
return(0K) ; 

1 

/* This f i l e  performs the MOUNT and UMOI.INT system ca l ls .  
* 

The entry points i n t o  t h i s  f i l e  are 
* domount: per fom the MWNT system c a l l  

do-umount: perform the UHOUMT system c a l l  
*/ 

#include "f 5. h" 
f i n c l  ude < fcn t l  . h> 
t i  nclude ai n i  x/com.  h> 
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#include rsys/s ta t .  h> 
# inc lude "buf. h" 
#include "dev. h" 
#include " f i1e.h"  
#include "fproc.hW 
#inc lude " i node. h" 
t i  ncl ude "param. h" 
#i n c l  ude "super. It" 

PRIVATE message d e v ~ e s s  ; 

FORWARD -PROTOTYPE( dev-t name-to-dev, (char *path) 1; 

/ * ~ = E = = = ~ - ~ ~ ~ ~ ~ + ~ ~ = P = - ~ = = ~ = P I = P I I ~ I I = = = = P = = ~ I ~ ~ = ~ = I I = = = ~ P ~ ~ = * ~ - F I I I I = I I I ~ S *  

t d o m u n t  * 
* ~ ~ + - = r ~ r ~ ~ r r ~ t t r ~ r ~ = ~ = o = = ~ ~ ~ ~ = ~ = ~ = ~ ~ ~ = = = = = = = = = = t t ~ o t t ~ s ~ ~ = - ~ ~ = ~ = = ~ = = = ~ * /  

PUBLIC i n t  d o m u n t ( )  
{ 
/* Perform the ~rmuntCnane, M i l e .  rd-only) system c a l l .  */ 

r e g i s t e r  s t r u c t  inode 'r ip, *root_ip; 
s t r u c t  super-block * x p ,  *sp; 
dev-t dev ; 
mode-t b i t s ;  
i n t  r d i r ,  mdi r ;  /* TRUE i f f  {rootlmount) f i l e  i s  d i  r */ 
i n t  r, found, major, t ask ;  

/* Only the super-user may do MOUNT. */ 
i f  (! super-user) return(EPERM) ; 

/* I f  'name' i s  no t  f o r  a b lock  special f i l e ,  r e t u r n  e r ro r .  */ 
i f  (fetch-name(name1, nameLlength, M l )  != OK) return(err-code); 
i f  ( (dev = narae_to-dev(usergath)) - W X V )  re turncer  r-code) ; 

/* Scan super b lock t ab l e  t o  see i f  dev already mounted & f i n d  a free s lo t . * /  
sp 3 NILSUPER; 
found = FALSE; 
f o r  (xp I &super-black[O] ; xp < &super-block [NILSUPERS] ; xp++) E 

i f  (xp->s,dev n dew) found = TRUE; /* i s  .It mounted already? */ 
i f  (xp->s-dev = NOBEV) sp = xp; /* record f r e e  s l o t  */ 

1 
i f  (found) return(EBU5Y) ; /* a1 ready munted */ 
i f  (sp == NILSUPER) return(ENF1LE); /* no super b lock ava i lab le  */ 

d e v m s s  . a t y p e  = DEV-OPEN; /* d i s t i ngu i sh  from c lose */ 
dev-mess . DEVICE = dev ; /* Touch the device. */ 
if CrLon ly )  devmss.COUHT - L B I T ;  
e l s e  d e v m s s  .COUNT = R B I T I  W-BIT; 

major = (dev >> M430R) & BYTE; 
i f  (major <= 0 1 )  major >- m a x ~ l a j o r )  return(EWEV); 
task = dmapCnajor] .dnap-task; /* device task  n r  */ 
(*dmplmajor] . dmap-open) (task, bdcv~l less) ; 
i f  (dev~ness . REP-STATUS ! = OK) return(E1NVAL) ; 

/* F i l l  i n  t h e  super block. * !  
sp->s-dev = dev; /+ read-super() needs t o  know which dev * /  
r = read-superCsp) ; 

/* Is i t  recognized as a Mini  x f i  lesystem? */ 
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i f  (r != OK) { 
dev~ness .mtype  = DEV-CLOSE; 
dev-mess .DEVICE = dev; 
(*dmaplmajor] .dmap-close) ( task, Mev-mess) ; 
re tu rn ( r )  ; 

1 

/* Now get the  inode o f  t h e  f i l e  t o  be mounted on. */ 
i f  (fetch-name(name2, name2-length, M I )  != OK) { 

sp-rs-dev = NO-OEV; 
dev-mss.mtype - DEV-CLOSE; 
dev-mess.DEVItE = dev;  
(*dmaplmajorJ .dmap-close)(task, &dev~ness); 
return(err-code) ; 

1 
if ( ( r i p  = eat_path(user-path)) == NIL-INOOE) { 

sp->s-dev = NO-DEV; 
dev,mess.~type = DEV-CLDSE; 
dev-mess.DEVICE = dev; 
ICdmap[major1 .dmap,close) ( task,  ELdev~ness) ; 
return(err-code) ; 

/* It may n o t  be busy. */ 
r = OK; 
i f  (r ip-pi-count > 1) r = EBUSY; 

/ *  It  may n o t  be spec ia l .  */ 
b i t s  = r i p - r i m o d e  6 I-TYPE; 
i f (bi t s  == I-BLOCLSPECIAL I I b i t s  == ILCHARSPECIAL) r = EHOTDXR ; 

/+ G e t  the root inode of the  mounted f i l e  system. */ 
root-ip = N1LIhKW)E; /* if 'r '  not  OK, make sure t h i s  i s  def ined */ 
i f  ( r  == OK) { 

i f  ( ( root - ip  = get-inodecdev, ROOT-INODE)) == NIL-INODE) r = err-code; 
1 
i f  (root- ip ! = NIL-INODE &I% root - i  p - > i ~ n o d e  == 0) r = EINVAL; 

/* F i l e  types o f  ' r i p '  and ' rou t - ip '  may not c o n f l i c t .  */ 
i f  (r == OK) { 

mdir = [ ( r i p -> i dode  & I-'TYPE) == I-DIRECTORY); /* TRUE i f f  d i  r */  
r d i  r = ((root- i  p - > i m d e  & 1-MPE) == I-DIRECTORY) ; 
i f  (!mdir 66 r d i r )  r = EISDIR; 

1 

/* If e r r o r ,  r e t u rn  the super block and both inodes; release the maps. */ 
i f  (r != OK) { 

p u t i  node(rip1; 
p u ~ i  node(root-i p) ; 
(vaid) do-sync0 ; 
i nval idate(dev1; 

sp->s,dev = NO-OW; 
dev-mess.~type = DEV-CLOSE; 
dev-mess.DEVICE = dev; 
(*dmap(majorl.dmap-close)(task, &dev~ness); 
re turn( r )  ; 

1 

/* Nothing else can go wrong. Perform the mount. */ 
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r i p - ~ i n o u n t  = I_MDUNT; /* th i s  b i t  says the inode i s  mounted on */ 
sp->s,imount = r ip; 
sp->s-i sup * root-ip; 
sp->s,rd-on1 y = rd-on7 y; 
return (OK) ; 

I 

r e g i s t e r  struct inode rip; 
struct  super-block *sp, +spl; 
dev-t dev; 
i nt count ; 
i n t  major, task; 

/* Only the super-user may do W N T .  */ 
i f  (! super-user) return(EPERM); 

/* If 'name* i s  not for a block special f i l e ,  r e t u r n  e r r o r .  */ 
i f  [fetchname(name, name-1 ength , M3) ! t OK) return(err-code) ; 
i f  ( (dev - name-to,dev(user-path)) - NOSEV) return(err-code) ; 

/* See i f  the mounted device i s  busy. Only 1 inode using i t  should be 
* open -- the root inode -- and t h a t  inode only 1 time. 
*/ 

count P 0; 
for C r i  p - &inode[O] ; r ipc  &inode[NRINODESl; r i p + )  

i f  (rlp->i,count > 0 66 rip->i,dev - dev) count += rip-pi-count; 
if (count > 1) return(E5USY); /* can't umunt a busy f i l e  systm */ 

/* Find the super block. */ 
sp - NIL-SUPER; 
f o r  (spl  = &super_block[O] ; sp l  < &soper,block[NRSUPERSl; spl++) { 

i f  (spl->s,dev -- dev) { 
sp = s p l ;  
break ; 

I 
1 

/* Sync the disk, and invalidate cache. */ 
(void) do-sync() ; /+ force any cached blocks our o f  memory */ 
i nval i date(dev1; /* invalidate cache entries fo r  t h i s  dw */ 
i f  (sp  =- NILSUPER) returnCEZNVAL) ; 

major 5 (dev >> MCI30R) & BYTE; /* major device n r  */ 
task = dmap[major] .dmap,task; /t device task nr */ 
dev~ness .mtype = DEV-CLOSE; /* dist inguish from open */ 
dev~ness .DEVICE - dev; 
(*dmapCmajor] . d~nap,closcl (task , b d e v m s s )  ; 

/* Finish o f f  the unmount. */ 
sp->s-imount->imunt = NOMXNT; /+ inode returns t o  normal */ 
put-i node(5p->s-imunt) ; /* release the inode mounted on * /  
put_inodeC5p->sli sup) ; /* release the root inode o f  the mounted fs  */ 
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4 name-to-dev t 

* = ~ = ~~==~~===~~~=~=E~E=P~=I==IIIPPI~~PP=~P~=PE=======I.~~==F==============* / 
PRIVATE dev-t name-to-devcpath) 
char *path; /* pointer  t o  path name */ 
{ 
/* Convert the block special f i l e  'path' ro a device number. I f  'path' 
* i s  not  a block special f i l e ,  return er ror  code i n  'err-code' . 
*/ 

reg is te r  s t ruc t  inode *r ip;  
reg is te r  dev-t dev; 

/* I f  'path' can't  be opened, give up imed ia te l y .  */ 
if ( ( r i p  = eaLpath(path)) -= NILINODE) return(N0,DEV) ; 

/* I f  'path' i s  not  a block special f i l e ,  return error .  */ 
i f  I (rip->iJnode & LTYPE)  != LBLKICSPECULI I 

err-code - ENOTBLK; 
put-i node(rip1; 
return (NQDEV) ; 

1 

/* Extract the device number. */ 
dev = (dev-t) r i  p->i-toneC01; 
p u L i  nodeCri p); 
return(dev) ; 

1 

++++++++++++++++++4t++4+#4+++6++++++++++++++++++++++4+++++++++++++++f+t++++++++++ 

s rc / f  s / l  i nk. c 
.............................................. 

/* This f i l e  handles the LINK and UNLINK system ca l l s .  It also deals with  
deal loca t ing  the storage used by a f i l e  when the l a s t  UNLINK i s  done t o  a 

* f i l e  and the blocks must be returned t a  the f ree  block pool. 
* 
* The entry points i n t o  t h i s  f i l e  are 
* do-link: perform the LINK system c a l l  
* do-unlink: perform the UNLINK and RMDfR system c a l l s  
* do-rename: perform rhe RENAME system c a l l  
* truncate: release a l l  the blocks associated w i th  an inode 
*/ 

#include "fs.hU 
#include <sys/stat. hz 
X i  nclude c s t r i  ng . h> 
X i  nclude ai n i  x/cal 1 nr . h> 
#include "buf. h" 
#include "fi1e.h" 
#include "fproc. h" 
#include "in0de.h" 
Xi nclude "param. h" 
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Pinclude "super. h" 

FORWARD -PROTOTYPE( i n t  remove-di r , (s t ruc t  i node * r l d i  rp, s t ruc t  inode +r ip ,  
char d i  r-name [ W W ] )  1; 

FORWARD -PROTOMPE< i n t  u n l i n k f i l e ,  Cstruct inode *dirp, struct inode * r i p ,  
char f i i enanc [NMUUX] )  ); 

C 
/* Perform the Iink(nare1, name2) system c a l l .  */ 

reg is te r  s t ruc t  inode * i p ,  *r ip ;  
reg is te r  i n t  r; 
char string[NAnLMAl(l; 
s t ruc t  i& *new_ip; 

/* See if 'nanc' ( f i l e  t o  be l inked) exists. */ 
i f  (fttcLname(nane1, nametlength, MI) I- OK) return(err,code); 
i f  ( ( r i p  I eaWath(user_path)) == MILINOM) rtturnCerr-code) ; 

/* Check t o  set  i f  the f i l e  has maxinun, n-r of l i n k s  already. +/ 
r = OK; 
i f  ( (rip-r3,nlinks & BYTE) >n L I N L M X )  r - EMLINK; 

/* Only super-user may link t o  ct i  rectories. */ 
if (r - OK) 

i f  f (rip->i_Jlode & L t Y P E )  -= I-DIRECTORY && ! super-user) r = EPEWII; 

/* If er ror  with 'name', return the inode. */ 
i f  (r !-OK) { 

p u t i n d c I r i p ) ;  
return(r) ; 

1 

/* Ooes the final directory o f  'nam2' ex is t? */ 
if ( f e t c ) r J l a m e ( ~ 2 ,  nam2,length, Hl) 1- 010 { 

p u ~ i  nodeCri p) ; 
return (err-code) ; 

1 
i f  ( ( i p  - las td i r (user -path ,  str ing)) -= N I U N O D E )  r w err-code; 

/* If 'n-2' ex is ts  i n  f u l l  (even i f  no space) set  ' r '  t c  error .  */ 
i f  (r =- OK) I 

if ( (nercip advance(ip, str ing)) -- NILINODE) I 
r = err-code; 
i f  Cr - €WENT) r = OK; 

) else ( 
p u L i  node ( n w i  p) ; 
r = EEXIST; 

1 
1 

/* Check f o r  l i n k s  across devices. */ 
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i f  (r - OK) 
i f  (rip->i,dev != ip->i,dev) r = EXOEV; 

/* Try t o  l i n k .  */ 
i f  (r == OK) 

r - search-di r(i p,  str ing,  &ri p->i-num, ENTER) ; 

/* I f  success, reg is te r  the l ink ing .  */ 
i f  (r -= OK) ( 

r ip -> i -n l i  nks++; 
r i  p->i-update I- CTICIE ; 
r ip ->+-d i r t  = DIRTY; 

1 

/* Done. Release both inobes. */ 
put-inodecrip) ; 
put-i node(i p) ; 
return(r) ; 

1 

reg is te r  s t ruc t  inode *r ip;  
s t ruc t  inode * r l d i  rp; 
i n t  r; 
char string[NAHLHAXl; 

/* Get the l a s t  d i rec tory  i n  the path. */ 
i f  (fetch-name(name, name-1 ength , M3) ! - OK) return(err,code) ; 
i f  ( ( r l d i  r p  = las t -d i  r(user_path, string)) == NIL-INOOE) 

returncer r-code) ; 

/* The l a s t  d i rectory ex ists.  Does t h e  f i l e  also ex is t?  */ 
r = OK; 
i f  ( ( r i p  = advanee(rldfrp, str ing)) =a N I L I N O O E )  r = err-code; 

/* If error, return inode. */ 
i f  (r != OK) ( 

put-i node(r?di r p )  ; 
return(r) ; 

1 

/* Do not remove a mount point .  */ 
i f  (r i  p->i -nun == ROOT-LNOOE) C 

putinode(r1di rp) ; 
put inode(r ip)  ; 
return(E8USY) ; 

1 

/* Nar test i f  the ca l l  i s  a l lwed ,  separately for  u n l i n k 0  and rmdir0. */ 
i f  I fs-cal l  5 UNLINK) { 
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/ *  Only t h e  su may un l i nk  d i r ec to r i es ,  but the su can un l i n k  any d i r . * /  
i f  ( (r ip->i&e & I-TYPE) - I-DIRECTORY &I& !super-user) r = EPERM; 

/* Don't un l i nk  a F i l e  i f  i t  i s  the roo t  o f  a mounted f i l e  system. */ 
i f  (rip->i-nurn == ROOT-INODE) r = EBUSY; 

/* Ac tua l l y  t r y  t o  un l i n k  t h e  f i l e ;  f a i l s  i f  parent is mode 0 etc .  */ 
if (r == OK) r = un l i nk - f i ?e ( r l d i r p ,  r i p ,  s t r i ng ) ;  

1 else { 
r = remove-dircrldirp, r i p ,  s t r ing ) ;  /* c a l l  i s  RMDIR */ 

1 

/* If un l i nk  was possible,  i t  has been done, otherwise i t  has no t .  */ 
put - i  node (ri p) ; 
p u c i  node(r1di rp) ; 
returnCr) ; 

1 

/*=====,a============;e1======z=====================s=====-==================* 
* do-rename t 

*=rr===s=r+=====trr===t=~==lt t====s=============~===~======~*==s==* / 
PUBLIC i n t  do-rename() 
I 
/* Perform the  renarne(name1, name21 system c a l l .  */ 

s t  r uc t  i node *o l  L d i  rp, *o l  d,i p ; /* p t r s  t o  o l d  d i r ,  f i l e  inodes */ 
s t r u c t  i node *new-di rp, *new,ip; /* p t r s  to new d i r ,  f i l e  inodes */ 
s t r u c t  inode *new-superdirp, *next-new-superdirp; 
i n t  r = OK; /* e r r o r  f lag ;  i n i t i a l l y  no e r r o r  */ 
i n t  o d i r ,  n d i r ;  /* TRUE i f f  {oldlnew) f i l e  i s  d i r  */ 
i n t  same-pdi r ; /* TRUE i f f  parent d i r s  are the same */ 
char old-name [WAbclEJWXI , new-name WME_MAXl; 
ino-t  numb; 
i n t  r l ;  

/* See if 'namel' (ex is t ing  f i l e )  ex is ts .  Get d i r  and f i l e  inodes. */ 
if (fetch-name(name1, n a m e l l  ength , C11) ! = OK) rerurn(err-code) ; 
if ( C o l d d i  r p  = las t -d i  r(user-path , 01 d-name))==NIF-INODE) return(err-code) ; 

i f  ( (o ld- ip  - advancecold-dirp, olclname)) == NILINODE) r = err-code; 

/* See i f  ' n w 2 '  (new name) ex i s t s .  Get d i r  and f i l e  inodes. +/ 
i f  (fetch-name(name2, narne2_length, HI )  !=  OK) r = e r t c o d e ;  
i f  ( (new-di r p  = l a s t d i  rCusersa th ,  new-name)) =- NIL-INOOE) r = err-code; 
new-ip s advance(new-di rp, new~ame) ; /* not  requi red t o  e x i s t  */ 

i f  (old-ip != NILINOOE) 
o d i r  = ((old-ip-si~node 6 I-TYPE) == I-DIRECTORY) ; /* TRUE i f f  d i r  */ 

/* I f  i t  i s  ok, check for  a v a r i e t y  o f  poss ib le  e r ro rs .  */ 
i f  (r == OK) { 

same_pdi r = (old-di rp =-- new-dd rp) ; 

/* The o l d  inode must no t  be a superd i rectory  o f  t h e  new l a s t  d i r .  */ 
i f  (odi r && ! sane-pdi r) { 

dup-i nodecnew-superdi r p  = new-di rp) ; 
w h i l e  (TRUE) { /* may hang i n  a f i l e  system loop */ 

i f  (new-superdirp == old-ip) { 
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r = EINVAL; 
break ; 

1 
nextnew-superdi  r p  = advancehew-superdi rp,  dot21 ; 
put- i  node(new,superdirp) ; 
i f  (next-new-supe r d i r p  =- new-superdi r p )  

break; /* back a t  system root  d i r ec to r y  */ 
new-superdi r p  = nextnew-superdi r p  ; 
i f  (new-superdi r p  == NIL-INODE) I 

/* Miss ing ". ." en t ry .  Assume the  worst.  */ 
r = EINVAL; 
break ; 

I 
3. 
p u L i  nodeCnew-superdi rp) ; 

1 

/* The o l d  o r  new name must not be . o r  . . */ 
i f  (s t rcmp lo lhnme,  ". ")-0 I I strcmp(old,name, " . . ")-0 1 1 

strcmp8lpCnew-name, " . ")==O 1 I strcmp(new,name, " . + ")==O) r = EINVAL; 

/* Both parent d l  rec to r ies  must be on the same device. */ 
i f  (old-di rp->i-dev != new-dirp->i-dev) r = EXDEV; 

P* Parent d i r s  must be writable. searchable and on a w r i t a b l e  device */ 
if Girl = forbiddeniold-dirp,  W-BIT I L B I T ) )  != OK I / 

( r l  = forbiddenhew-di rp ,  W-BIT I KBIT))  != OK) r = r l ;  

/* Some t e s t s  apply on ly  i f  the new path ex i s t s .  */ 
i f  (new-ip == NILIFOODEI I 

/* don't renamea f i l e  w i t h  a f i l e  system mounted on it. */ 
i f  (olhip->i,dev != old-di rp->i-dev) r = U(DEV; 
i f  (adi r && ((new-di rp-> i_n l inks & BmE) >= L I N W  && 

!same,pdi r && r == OK) r = EMLINK; 
) e l se  I 

i f  (old-ip == new-ip) r = S A M E ;  /* old=new */ 

/* has t h e  o l d  f i l e  o r  new f i l e  a f i l e  system mounted on i t ?  */ 
i f  (old-i p->i-dev != new-i p->i-dev) r = EXDEV; 

n d i  r = ((new-i p -> i~node  & I-TYPE) == 1,OIRECTORY) ; /* di  r ? */ 
i f  (od i r  == TRUE && n d i r  ta FALSE) r = ENOTDIR; 
i f  (odi r == FALSE &St nd i  r == TRUE) r = EISDIR;  

1 
1 

/* If a process has another r oo t  d i r ec to r y  than the system root, we might  
* "acc ident ly"  be moving i t ' s  working d i r e c t o r y  t o  a p lace where i t ' s  
* root d i r e c t o r y  i s n ' t  a super d i r ec to r y  o f  i t  anymore. Th is  can make 
* the func t ion  chroot  useless. I f  chroot w i l l  be used o f t e n  we should 
* probably check f o r  i t  here. 
*/ 

/* The rename w i l l  probably work. On1 y twa things can go wrong now: 
* 1. being unable to remove the new f i l e .  (when new f i l e  a1 ready ex is ts)  
* 2. being unable t o  make the new d i r e c t o r y  ent ry .  (new f i l e  doesn't ex is ts )  
t [ d i r ec to r y  has t o  grow by one block and cannot because t h e  d i s k  
* i s completely f u l l  I . 
*/ 

i f  (r == OK) { 
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i f  (new-ip != NIL,INMIEl I 
/* There i s  already an ecitry f o r  'new' . Try to remve it. */ 

if (odi r) 
r = remove-di r (new-di rp , new-i p , newname) ; 

else 
r = unl i n k f  i 1 e(new-di rp, new-ip, necname) ; 

1 
/* i f  r i s  OK, the rename w i l l  succeed, whi le the re  i s now an 

unused entry i n  the new parent d i rectory.  
* /  

1 

i f  (r =-OK) { 
/* I f  the new name w i l l  be i n  the same parent d i rec tory  as the o l d  one, 
* f i r s t  remove the o l d  n m  t o  f ree  an en t ry  f o r  the new name, 
* otherwise f i r s t :  t r y  t o  create the mew name ent ry  t o  make sure 
* the rename w i  11 succeed. 
*/ . 

nunb old-ip-wi-nurn; /* inode number o f  o ld  f i l e  */ 

if (same-pdir) € 
r = search-dir(old,dirp, old-name, Cino-t *I 0 ,  DELETE); 

/* shouldn't go wrong. */ 
i f  (r=&) (void) search-di r(old-di rp ,  new-name, hunb, ENTER) ; 

) else { 
r = search-di r(new-di rp , new-name, &numb, ENTER) ; 
if  (r == OK) 

(void) search-di r(o1d-dirp, old-nane, (ino-t *) 0 ,  DELETE) ; 
1 

1 
/* I f  r i s  OK, t he  ctime and rntime of  old-dirp and new-dirp have been marked 
* for update i n  sea rckd i r .  
/ 

if (r =- OK && od i r  && !same-pdir) ( 
/* Update the . . entry i n  the d i rectory ( s t i l l  points t o  old-dirp). */ 
numb = new-di rp->i,num; 
(void) unl i n k f i  le(o1d-i p, NIL-INODE, dot2) ; 
i f  (search-di r(o1d-ip, dot2, &numb, ENTER) == OK) { 

/* New l i n k  created. */ 
nwr-di rp->i-nl i nks++; 
new-di rp->i-di rt = DIRTY; 

1 
1 

/* Release the inodes. */ 
put,inode(ol d-di rp) ; 
put-inodeCol d-i p) ; 
put-i node(new,di rp) ; 
put-i nodelnew-i p) ; 
return(r == SAME ? OK : r); 

> 
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/* Remove a l l  the zones from t h e  inode ' r i p '  and mark i t  d i  r t y  . */ 

r e g i s t e r  block-t  b; 
zone-t z ,  zone,size, zl; 
o f f - t  pos i t i on ;  
i n t  i , scale, f i  le-type, waspipe, s ing le ,  nr- indi  rects ;  
s t r u c t  buf *bp; 
dev-t dev; 

f i le - type = rip->i_node & I-TYPE; /* check t o  see i f  f i l e  i s  spec ia l  */ 
i f (f i le- type == I-CHARSPECIAL ) ) f i 1 e-type == LBLOCLSPECIAL)  re tu rn ;  
dev = r i  p->i-dev; /+ device on which inode res ides */ 
sca le  = r i  p->i,sp->s-log-zone-size; 
zone-size = ( zone t )  BLOCLSIZE << scale;  
nr- ind i  r ec t s  = rip->i,nindi rs ;  

/* Pipes can shr ink,  so ad jus t  s i ze  t o  make sure a l l  zones are removed. */ 
waspi pe = r ip-> i -p ipe =I I-PIPE; /* TRUE i s  th i s  was a pipe */ 
i f  (waspipe) r i p -> i - s i ze  - PIPLSIZF; 
/* Step through t h e  f i l e  a zone a t  a time, f i n d i n g  and f r ee i ng  the zones. */ 
f o r  ( pos i t i on  - 0; p o s i t i o n  c rip->i,size; p o s i t i o n  += zone-size) C 

i f  ( (b = r c a U a p ( r i p .  pos i t ion))  ! -  NO-BLOCK) I 
z = (zone-t) b >> scale; 
f ree~oneCdev ,  2 )  ; 

1 
1 

/* A l l  the data zones have been freed. How f r ee  the i nd i rec t  zones. */ 
r i p - > i - d i r t  r DIRTY; 
if (warpipe) 

w i  pe-i node ( r i p) ; /* c l ea r  out  inode for p ipes */ 
re turn;  /* i n d i r e c t  s lo t s  con ta in  f i l e  pos i t i ons  */ 

3 
single - rip-r.i-ndzones; 
f ree-zone(dev, r i  p->i,zone[si ngle]) ; /* s i ng l e  i n d i r e c t  zone */ 
i f  ( (z rip->i,zone[sl'ngle+lJl != NO-ZONE) { 

/* Free a1 1 the s ing le  i n d i r e c t  zones po in ted t o  by t h e  double. */ 
b = ( b l o c k t )  z cc scale; 
bp = get,block(dev, b, NORMAL); /* get  double i n d i r e c t  zone */ 
f o r  (i - 0 ;  i < nr- ind i rects ;  i++) { 

zl = rd-indir(bp, i); 
f ree-zone(dev, 21) ; 

1 

/* Now f r e e  the double i n d i r e c t  zone i t s e l f .  */ 
put,block(bp, INDIRECT,BLOCK); 
f ree-zane(dev. z) ; 

3 

/* h a v e  zone numbers for de(1) t o  recover f i l e  a f t e r  an unlinkC2). */ 
1 

/*I==rEIP=r=~rrr*rr~~~==r=t==~I====s==e====~*=~==~=~m=~*==*=======~=-*=======* 

* remove-di r * 
* I I L I I ~ ~ ~ ~ = ~ ~ = ~ ~ = = = = ~ P ~ ~ = - ~ ~ ~ ~ ~ = ~ ~ C = - = ~ = ~ ~ = ~ = = ~ ~ = = ~ = = = ~ ~ ~ ~ = = = = ~ ~ ~ ~ = I I ~ ~ I E = = E ~ L * /  

PRIVATE i n t  remove-di r ( r l d i  rp,  r i p ,  d i  r-nme) 
s t r u c t  inode * r l d i r p ;  j* parent d i r ec to r y  */  
s t r u c t  inode * r i p ;  /+ d i r ec to r y  t o  be removed */ 
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char d i  r,name[NAMLMAX1; /+ name o f  d i rectory t o  be removed */ 
C 

/* A d i rec tory  f i l e  has t o  be removed. Five conditions have t o  met: 
* - The f i l e  must be a di rectory 
* - The directory must be empty (except f o r  . and ..I 
* - The f i na l  coAponent of the path must not be . o r  . . 
* - The di rectory must not  be the root  of a mounted f i l e  system 

- The di rectory must no t  be anybody's root/working d i rec tory  
*/ 

i n t  r; 
reg is te r  s t ruc t  fproc *rfp; 

/* sea rckd i  r checks tha t  r i p  i s  a d i rec tory  too. */ 
i f  ((r = search-dir(rip. "", (ino-t *) 0, IS-EMPTY)) != OK) return r; 

if (strcmp(dir-name, ". ") -= 0 I I strcmpCdi r-name, ". . ") == O)return(EIWAL); 
if (rip-ri-nurn - ROOT-IWE) returnCEBUSY); /* can't remove 'root' */ 

f o r  ( r f p  I &fproc[INIT-PRKNR + 11 ; rfp < &fproc[NRPROCS] ; rfp++) 
i f  I r f p - f i p - w k d i r  - r i p  1 1  rfp->&ro$tdi r Q r ip )  return(E0USY) ; 

/* can't  remove anybody's working d i r  */ 

/* k t u a l l y  t r y  t o  unli'nk the f i l e ;  Fa i ls  i f  parent i s  mode 0 erc. */ 
i f  ((r t r n l i n k f i l e l r l d i r p ,  r i p ,  dir-name)) !- 010 return r; 

/* Unl ink . and . . from the dir. The super user can l i n k  and unl ink any d i r ,  
so don't  make too many assumptions about then. 

*/ 
(void) un l ink- f i  lecrip. NIL-INOOE, dotl); 
(voi d) u n l i n k f i  leCrip, NILINODE, dot2) ; 

/ * l - * P I ~ I L P ~ * t = - I ~ ~ - ~ ~ I = = ~ s - ~ = = ~ m ~ ~ ~ ~ ~ = ~ = - ~ - ~ = = ~ ~ * - = ~ *  

e unl i n k f i  1 e 
* ~ r r n r r r r r t u ~ r u r ~ r ~ ~ - t t e = ~ c - ~ = = ~ u ~ = = = = ~ ~ t ~ ~ - ~ ~ - ~ s ~ u = ~ I D = ~ o ~ ~ - u ~ * /  

PRIVATE i n t  unl i n k f  i 1 eCdi rp ,  r i p ,  f i  lename) 
s t ruc t  i node *d i  rp; /* parent d i rectory o f  f i l e  */ 
struct inode * r ip ;  /* inodc o f  f i l e ,  may be NILINODE too. */ 
char f i 1 e-name [NAMEMIXI ; /* name o f  f i l e  t o  be removed */ 
€ 
/* Unlink 'file-name'; r i p  must be the inode o f  'file-names or HIL,INM)E. */ 

i no-t numb ; 
i n t  r: 

/* inode number */ 

/* I f  r i p  i s  not  NIL-INODE, i t  i s  used t o  get faster  access t o  the inode. */ 
i f  ( r i p  -- NILINODE) I b 

/* Search for  f i l e  i n  d i rec tory  and t r y  t o  get i t s  inode. */ 
err-code = searchd i  r (d i  rp, f i lename,  &numb, LOOK_UP) ; 
i f  (err-code -- OK) r i p  = geLimdeCdi rp-ri-dev. ( i n t )  nucab) ; 
i f  (err-code !- OK 1 l r i p  == NILINODE) returncerr-code) ; 

) else I 
dup-i node(ri p) ; /* i node w i  1 ? be returned wi th p u ~ i  node */ 

I 

r = search,dir(dirp. file-name. (ino-t *) 0 ,  DELETE); 
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i f  (r == OK) 
r i p -> i -n l inks - - ;  / *  en t ry  de le ted from parent 's  d i  r */ 
rip->i-update 1 =  CSIME; 
r ip-> i -d i  r t  = DIRTY;  

1 

put- i  node(ri p) ; 
re tu rnc r )  ; 

1 

/* This f i l e  contains t h e  code f o r  performing four  system c a l l s  r e l a t i n g  t o  
* s ta tus and d i r ec to r i es .  

* The en t r y  po in ts  i n t o  t h i s  f i l e  are 
* do-chdir: perform t h e  CHOIR system c a l l  
* do-chroot: perform t h e  CHROOT system c a l l  
* do-stat: perform t h e  STAT system c a l l  
* do-fstat :  perform t he  FSTAT system c a l l  
* / 

# inc lude " fs .hM 
# inc lude <sys/stat. h> 
# inc lude " f i 7e .h "  
# inc lude "fproc. h" 
# inc lude "inode.hW 
#inc lude "param.hW 

FORWARD ,PROTOTYPE( i n t  change. ( s t r uc t  inode * * i i p ,  char *name_ptr, i n t  len)) ; 
FORWAkD ,PROTOTYPE( i n t  stat-inode, ( s t r uc t  inode * r i p ,  s t r u c t  f i l p  * f i l - p t r ,  

char *user-addr) > ; 

i n t  r ;  
r e g i s t e r  s t r u c t  fprac r f p ;  

i f  (who == MFLPROLNR) I 
r f p  = & fp roc [ s l o t l ]  ; 
put-i node(fp-rfp-rootdi r) ; 
dup-i node(fp->fp-rootdi r = r fp->fp-rootdi  r) ; 
put - i  nodeCfp->fp-workdi r l  ; 
dup-inode(fp-rfp-workdi r - rfp-zfp-workdir) ;  

/* W uses access() t o  check permissions. To make t h i s  work, pretend 
* t h a t  the user 's  real i d s  are t h e  same as the user 's e f f e c t i v e  i d s .  

FS c a l l s  other than access() do not use the  r ea l  i d s ,  so are n o t  
* af fected.  
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/* Perform the chdir(name) system c a l l .  */ 
r = change(&fp->fp-workdi r, name, name-length) ; 
return(r) ; 

1 

reg is te r  i n t  r; 

if ( ! super-user) return(EPERM) ; /* only su may chroot() */ 
r = changeCBfp->fp-rootdi r, name. name-length); 
return(r) ; 

1 

/ * = = = = = = = = = c n = ~ t r ~ ~ = = = = ~ = = ~ ~ ~ t t t t t t t s = = = = ~ = ~ ~ ~ ~ ~ ~ c c c c = ~ ~ = ~ = = ~ ~ ~ - = ~ ~ c c ~ ~ = ~ ~ = *  

* change * 
*~=l=llt==s==i.m3P~~f~=======E==~5L~J=5======~=======LPPPE~~I=-E~====I=*/ 

PRIVATE i n t  changeCi ip .  namestr,  ?en) 
s t ruc t  inode * * i i p ;  /* pointer  t o  t h ~  inode pointer  for the d i r  */ 
char *name-pt r; / *  pointer  t o  the d i rec tory  name t o  change t o  */ 
i n t  len; /* length o f  the d i rec tory  name s t r i ng  */ 
1 
/* Do the actual work for chdir() and chrootO. */ 

s t ruc t  inode * r i p ;  
reg is te r  i n t  r; 

/* Try to  open the. new d i rectory.  */ 
i f  (fetch-namecnamejtr, ?en, M3) ! = OK)  returnCerr-code) ; 
i f  ( ( r i p  = eat-path(u~er3ath)) - NIL INODE)  return(err-code); 

/* It must be a d i rec tory  and also be searchable. *I 
i f  ( ( r ip -> inode & I-TYPE) != I-DIRECTORY) 

r = ENOTDIR ; 
else  

r = forbidden(r ip. L B I T ) ;  /* check if d i r  i s  searchable */ 

/* I f  er ror ,  return inodc. */  
i f  (r != OK) { 

put - i  node(ri p) ; 
returnCr) ; 

I 

/* Everything i s  OK. Make t h e  change. */ 
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put-inode(*i ip ) ;  
* i i p  = r i p ;  
return(0K) ; 

1 

/* release the o l d  d i r ec to r y  */  
/* acqui re  the new one */  

/* Perform the statcname, buf)  system c a l l .  */ 

r e g i s t e r  s t r u c t  inode * r i p ;  
r e g i s t e r  3nt r; 

/*  Both s ta t ( )  and f s t a t ( )  use t h e  same rou t i ne  t o  do the  r ea l  work. That 
* rou t ine  expects an inade, so acquire i t  temporar i ly .  
"/ 

i f  (Fetch-name(narne1, namel-length, M1)  ! =  OK) return(err-code); 
i f  ( ( r i p  = ea tpa th [use rga th ) )  == NILINODE) return(err-code); 
r = s ta t - inode(r ip ,  NIL-FILP, name2); / *  ac tua l l y  do t h e  work.*/ 
put- i  node( r i  p) ; /* release the inode */ 
reeurn(r1; 

1 

r eg i s t e r  s t r u c t  f i l p  * r f i I p ;  

/* I 5  t he  f i l e  descr ip to r  va l i d?  */ 
i f  ( (r f i  l p  = get - f i lp ( fd) )  == NIL-FILP) returncerr-code) ; 

re tu rn (s ta t - i  node(rf i  l p -> f i  lp- ino, r f i  l p ,  bu f fe r ) )  ; 
1 

----- -----------------* -------------a- 

* s ta t - i  node t 

*===========================================================================* / 
PRIVATE i n t  s ta t - inode l r i  p, f i  1-ptr, user-addr) 
reg is te r  s t r u c t  inode * r i p ;  /* po i n t e r  t o  inode t o  s t a t  */ 
s t r u c t  f i l p  * f i l - p t r ;  /* f i l p  po i n t e r ,  suppl ied  by ' f s t a t '  * /  
char *user-addr ; /* user space address where s t a t  bu f  goes * /  
C 
/*  Common code f o r  s t a t  and f s t a t  system c a l l s .  */ 

s t r u c t  s t a t  s ta tbu f ;  
mode-t ma; 
i n t  r, s ;  

/ *  Update the atime, ctime, and mtime f i e l d s  i n  the  inode, i f  need be. */  
i f  (ri p->i-update) update-times(ri p) ; 
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/ *  F i l l  i n  the s ta tbu f  s t r uc t .  */ 
mo = rip->i,mode & I-TYPE; 
s  = (mo == 1-CHARSPECIAL 1 )  mo =- LBLOCK-SPECIAL); /* t r ue  i f f  spec ia l  */ 
s ta tbu f .  st-dev = r i  p->i-dev; 
s t a t bu f  . st - i  no = r i  p->i-num; 
s t a t bu f . s t node  = rip-zi-mode; 
s ta tbu f .s t -n l ink  = r i p -> i - n l i n ks  & BYTE; 
s ta tbu f .  st-uid = r ip-> i -u id ;  
s ta tbu f .  st-gid = r ip -> i -g id  81 BYTE; 
s ta tbu f .  s t r d e v  = (dev-t) (s ? rip->i-zone[O] : NO-DEV) ; 
statbuf  . s t -s ire - r ip-> i -s ize;  

i f  ( r ip-> i_p ipe == I-PIPE) 
s ta tbuf .  s u o d e  &- -1,REGULAR; /* wipe out I-REGULAR b i t  f o r  pipes */ 
i f  (fi 1-ptr != NIL-FILP && f i l - p t r - > f i  lpmode & RBIT)  

s ta tbu f  .st-s ize -= f i l - p t r - > f i l p -pos ;  
1 

s ta tbu f .  st-atime = r i  p->i-atime; 
s t a t bu f  . s t n t i m e  = rip->i-rntirne; 
s ta tbu f .  st-ctime = r i  p->i-ctime; 

/ *  Copy the s t r u c t  to user space. */ 
r = sys-copy (FS-PRKNR, D, (phys-bytes) bstatbuf , 

who, D, (phys-bytes) user-addr, (phys-bytes) s i  zeof Cstatbuf)) ; 
return.(r) ; 

1 

/* T h ~ s  f i l e  deals w i t h  p ro tec t ion  i n  the f i l e  system. I t  contains the code 
* f o r  fou r  system c a l l s  t h a t  r e l a t e  t o  p ro tec t ion .  
* 
* The en t r y  po in ts  i n t o  t h i s  f i l e  are 
* do-chmd: perfonn t h e  CHMOD system c a l l  
* do-chown: perfonn t he  CHOWN system c a l l  

do-umask: perform t he  UMASK system c a l l  
* do-access: perform t he  ACCESS system c a l l  
* forbidden: check t o  see i f  a given access i s  a l lowed on a given inode 
* / 

#include " fs .hM 
# inc lude cuni std. h> 
#inc lude a i n i x / c a l l n r . h >  
# inc lude "buf .h" 
#inc lude "f i1e.h" 
# inc lude "fproc.hW 
ti n c l  ude "inode. h" 
ti n c l  ude "param. h" 
# inc lude "super.hn 
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C 
/* Perform the  chmod(name, mode) system c a l l .  */ 

r eg i s t e r  s t r u c t  inode * r i p ;  
r eg i s t e r  i n t  r ;  

/* Temporari 7y open the f i l e .  */ 
i f  (fetch_name(name, name-length, M3) ! = OK) return(err-code); 
i f  ( ( r i p  = eat-path(user_path)) =s NIL-INODE) return(err-code); 

/* Only t h e  owner or the super-user may change the mode of a f i l e .  
* No one may change the mode o f  a f i l e  on a read-only f i l e  system. 
* ! 

i f  (r i  p->i-uid ! = fp->fp-ef fu id  &EL ! super-user) 
r = EPERM; 

else 
r = read-only(rip); 

/* ~f e r r o r ,  r e t u rn  inode. */ 
.if ( r  != OK) I 

put- i  node( r i  p) ; 
return(r)  ; 

1 

/* Now make the change. Clear se tg i d  b i t  i t f  File is n o t  i n  caller's g rp  */ 
rip->i_Alode - (rip->i_mode & -ALLJKKIES) \ (nrode & ALL-MOOES); 
if (!  super-user && r ip -> i -g id  != fp->fp-effgid)r ip->idode &= -1-SET-CID-BIT; 
r ip->i-update I =  CTXME ; 
r ip-> i -d i  r t  - DIRTY; 

p u L i  node (ri p) ; 
return(0K) ; 

I 

/ * ~ r - = r m ~ = E = = ~ = ~ = = r = = * ~ = = = ~ = f f = = = = = = t = = = r = = = s = ~ ~ ~ = ~ ~ 5 ~ = ~ P P = = ~ = = = = = = = ~ * = ~ = *  
do-c hown * 

*,,=,,=,,,=,,,,,,,,0-~~~*==*==~==**/ 
PUBLIC i n t  do-chow() 
I 
/ *  Perform the chwn(name, owner. group) system c a l l .  */ 

r e g i s t e r  s t r u c t  inode * r i p ;  
r eg i s t e r  i n t  r; 

/* Temporari 1 y open t h e  f i l e .  */ 
i f  (fetch-name(name1, namel leng th ,  M I )  != OK) returncerr-code) ; 
i f C ( r i p  = eat-pathtuse t p a t h ) )  == NIL-INOOE) returnCerr-code) ; 

/* Not permit ted t o  thange t h e  owner of  a f i l e  on a read-only f i l e  sys. */ 
r = read-on1 yCrip); 
i f  (r == OK) { 

/* FS i s  R/W. Whether c a l l  i s  al lowed depends on ownership, e tc .  */ 
i f  (super-user) I 

/* The super user can do anything. */ 
rip->i-uid = owner; /* others la ter  */ 

) else f 
/ *  Regular users can on ly  change groups o f  t h e i r  own f i l e s .  * /  
i f  ( r ip -> i -u id  != fp->fp-ef fu id)  r = EPERM; 
i f  ( r i p - z i - u i d  != owner) r = EPERM; /* no g i v i n g  away */ 
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i f  ( fp - r fp -e f fg id  ! =  group) r = EPERM; 
1 

I 
i f  ( r  == OK) { 

r i p -> i - g i d  = group; 
r i  p->i -mode tk - (I-SET-UID-BIT I  I-SET-GIO-BIT) ; 
r i  p->i-update I=  CTIME; 
r ip -> i -d i  r t  = DIRTY; 

I 

put-i node(r i  p) ; 
re tu rn ( r )  ; 

3 

r = -fp-rfp-umask; /* se t  ' r '  t o  complement o f  o l d  mask * /  
fp->fp-urnask = ' ( c o m d e  & RWLMODESI ; 
returnCr) ; /* r e t u rn  complement o f  o l d  mask */ 

I 

s t r u c t  inode * r i p ;  
register i n t  r; 

/* F i r s t  check t o  see i f  the mode i s  correct .  */ 
i f  ( (mode & - ( L O U  I W-OK I X-OK)) ! =  0 K& mode != F-OK) 

return(E1NVAL); 

/* Temporari ly open the f i l e  whose access i s  t o  be checked. */ 
i f  (fetch-name(name, name-length, M3) != OK) return(err-code) ; 
i f ( ( r i p  = eatpatb(user-path))  == NIL-INODE) return(err-code) ; 

/*  Now check the permissions. */ 
r = forbidden(r ip,  (mode-t) mode); 
put-i node(r i  p) ; 
returner) ; 

1 
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s t ruc t  inode *i p; /*  p t r  t o  inode whose f i l e  sys i s  t o  be cked */ 
C 
/* Check t o  see if the f i l e  system on which the inode ' i p '  resides i s  mounted 

read on1 y. I f  so, re turn  EROFS, else return OK. 
* / 

reg is te r  s t ruc t  super-block *sp; 

/* This f i l e  takes care o f  those system c a l l s  tha t  deal w i t h  time. 

The entry pa 
do-utime: 

* do-time: 
* do-stime: 
* do-tims: 
*/ 

i n t s  i n t o  t h i s  f i l e  are 
perform the UTIME system c a l l  
perform the TIME system c a l l  
perform the STXME system c a l l  
perform the TIMES system c a l l  

Atinclude "fs. h" 
ti nc l  ude -mini x /cal l  nr  .h> 
#include <mini x/tom. h> 
#include "fi1e.h" 
#include "fproc. h" 
#include "i node. h" 
#include "param. h" 

PRIVATE message clock-mess; 

reg is te r  s t ruc t  inode * r i p ;  
reg is te r  i n t  len, r;  

/* A d j u s t  for case of  NULL ' t imep'. */ 
l e n  = utine-length; 
i f (len =P 0) len = m.m2-i2 ; 

/* Temporarily open the f i l e .  */ 
i f  [fetch-nme{utime-file, len,  M I )  != OK) return(err-code) ; 
i f  ( (r i  p = eat+ath[user_path)) == N I L I N O D E )  returnCerr-code); 

/* Only  the owner o f  a f i l e  o r  the super-user can change i t s  time. * /  
r = OK; 
i f  (r ip->i -u id != fp->fp-ef fu id && !super-user) r = EPERM; 
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i f  (ut ine- length == 0 && r != OK) r = forb idden(r ip ,  W-BIT) ; 
i f  (read-onlycrip) != OK) r - EROFS; / *  not even su can touch i f  R/O */ 
i f  (r == OK) { 

i f  (utime-length == 0) { 
r i  p->i-atime = c lock- t ime0 ; 
r i  p -> imt ime = r i p -> i - a t i  me; 

] e l s e  { 
r ip-> i -a t ime = utime-actime; 
r i  p->i-mtime = utirne-modtime; 

1 - r ip-r i -update = CTIME; /* d iscard any s t a l e  ATIME and MTTME f l a g s  */  
r ip-> i -d i  rt = DIRTY; 

1 

put-i node(ri p) ; 
return( r1 ;  

1 

{ 
/ *  Perform the  time(tp) system c a l l .  */ 

rep1 y-1 l - c lock t ime ( )  ; /* re tu rn  t ime i n  seconds */ 
return(OK1; 

1 

r eg i s t e r  i n t  k ;  

i f  ( !  super-user) return(EPERM1; 
c1ocLmess.m-type = SET-TIME; 
clock-mess. NEW-TIME = (long) tp;  
i f  ( (k = sendrec(CLOCK, k l o c k A e s s ) )  != OK) panic("do-stime e r ro r " ,  k); 
return(0K) ; 

1 

/ * = P = I ~ ~ ~ = ~ I P ~ ~ = ~ ~ ~ " I ~ ~ = I = ~ ~ ~ ~ ~ ~ = = ~ X E = ~ = ~ ~ ~ D ~ ~ ~ ~ I ~ E ~ = I ~ = ~ ~ = = P P = I = = = = = = = = = ~ *  
e do-t irns * 
* r ~ r r ~ r = = = ~ l . r r ~ = r f ~ = - ~ = = = 5 P P ~ - ~ ~ ~ - = = ~ i = = . . i i i i * ~ 3 ~ i ~ I ~ ~ ~ = = ~ ~ ~ ~ = ~ = ~ ~ = = = = ~ *  / 

PUBLIC i n t  do-ti ms 0 
I 
/* Perform the  t imes(buffer3 system c a l l .  */  

c lock-t  t [ 5 ]  ; 

sys-times(wh0, t) ; 
rep l  y - t l  = t COI ; 
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/* This  f i l e  contains a c o l l e c t i o n  o f  miscellaneous procedures. Some o f  them 
* pe r fo rm simple system c a l l s .  Sme others do a l i t t l e  part  of  system calls 
* t h a t  a re  most ly performed by the Memory Manager. 
4 

* The en t ry  points i n t o  th is f i l e  are 
* do-dup: perform the DUP system c a l l  
* do-fcnt l  : perform the FCNTL system c a l l  
* &-sync: perform the  SYNC system c a l l  
* do-fork:  ad just  the  tab les a f t e r  t+l has performed a FORK system c a l l  
* do-exec : handle f i l e s  w i t h  FD-CLOEXEC on a f t e r  IW has done an EXEC 
* do-exi t :  a process has ex i ted;  no te  t h a t  i n  the tab les  
* do-set: s e t  u i d  ar .gid f o r  some process 
* do-revive: rev ive  a process t h a t  was wa i t ing  f o r  something (e.g. 7TY) 
*/ 

#include " f s . h "  
#include < f c n t l  .h> 
#include <uni s td .  h> /* cc runs ou't o f  memory w i t h  un is td .h  :-( */ 
#include m i n i  x/cal l n r .  h> 
Cinc l  ude <mini x/cm.  h> 
#include <mini x/boot . h> 
#include "buf.hW 
#include "f i 1e.h" 
#include "fproc .h" 
#include "inode .h" 
#include "dev.hW 
#include "param. h" 

/ * = = = = - = ~ = = = ~ = = = = = ~ = = = l = I l = = t = = = = ~ ~ = = = ~ = ~ ~ ~ = = ~ = ~ ~ f ~ ~ ~ ~ = ~ 1 3 t ~ = ~ ~ = = ~ = ~ ~ ~ = = = ~ ~ = = *  

.9. do-dup * 
* - - - - - = = - - -- - - - - - ---- ---------~===~==~--------===========~==~========~=================*/ -------- 

PUBLIC i n t  do-dup0 
C 
/* Perform the dup(fd) o r  dup2(fd,fd2) system c a l l .  These system c a l l s  are 

* obsolete. I n  f a c t ,  i t  i s  not  even possible t o  invoke them using t h e  
* cu r ren t  l i b r a r y  because the l i b r a r y  rout ines c a l l  f c n t l o .  They are 
* provided t o  permi t  o l d  b inary  programs t o  cont inue t o  run. 
* / 

reg i s t e r  i n t  r f d ;  
r e g i s t e r  s t r u c t  f i l p  *f; 
s t r u c t  f i l p  *dunmy; 
i n t  r ;  
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/ *  Is t he  f i l e  descr ip to r  va l i d?  */  
r f d  = f d  & -DUP-MASK; / *  k i l l  o f f  dup2 b i t ,  i f  on */  
i f  (If = get- f i  l p ( r f d ) )  == NIL-FILP) return(err-code) ; 

/*  O i  s t i ngu i  sh between dup and dup2. */ 
i f  ( f d  == r f d )  { /* b i t  not on */ 

/ *  dupcfd) */ 
i f  ( (r = get-fd(0, 0 ,  & f d 2 ,  &dummy)) ! =  OK) return(r-); 

I else ( 
/ *  dup2(fd, fd2) */  
i f  ( fd2 < 0 I I fd2 >= OPEN-MAX) return(EBADF); 
i f  ( r f d  == fd2) return(fd2) ; /* ignore t h e  c a l l  : dup2(x, x) * /  
f d  = fd2; i* prepare t o  c lose fd2 */ 
(void) do-close() ; / *  cannot f a i l  * /  

3 

/ *  Success. Set up new f i l e  descr ip to rs .  */ 
f ->f i  lp-count++; 
fp -> fp_ f i l p [ fd2 ]  = f ;  
return(fd2) ; 

1 

r e g i s t e r  s t r uc t  f i l p  *f; 
int new-fd, r ,  f l ;  
1 ong c l  oexec-mask; / *  b i t  map f o r  the FD-CLOEXEC f l a g  */ 
long  clo-value; /* FD-CLOEXEC f l a g  i n  proper p o s i t i o n  */  
s t r u c t  f i l p  *dummy; 

/* Is the f i l e  descr ip to r  va l i d?  */  
i f  ((f = get - f i  lp ( fd) )  == NIL-FILP) return(err-code) ; 

switch (request) I 
case F-DUPFD: 

/* This  replaces the old dup0 system c a l l .  */ 
i f  (addr < 0 I I addr >= OPEN-MAX) return(E1NVAL); 
if ( ( r  = get-Fd(addr, 0, &new-fd, &dummy)) !=  OK) r e t u r n l r )  ; 
f ->f i lp-count++; 
fp->fp-f i lp lnew-fd] = f; 
return(new-fd) ; 

case FLETFD: 
/ *  Get close-on-exec f l a g  (FD-CLOEXEC i n  POSIK Table 6-2). */ 
re tu rn (  ((fp->fp-cloexec >> fd) & 01) 7 FD-CLOEXEC : 0); 

case F-SETFD: 
/* Set close-on-exec flag (FD-CLOEXEC i n  POSIX Table 6-2). */ 
cloexec-mask = 1L << f d ;  / *  s ing le ton  se t  pos i t i on  ok */ 
clo-value = (addr & FD-ELOEXEC ? cloexec-mask : 01); 
fp-rfp-cloexec = ( fp->f  p-cloexec & -cloexec-mask) : c lo-val  ue; 
returnCOK) ; 

case F-CETFL : 
/* Cet f i  1 e s ta tus f 1 ags (0-NONBLOCK and 0-APPEND) . * /  
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r e g i s t e r  s t r uc t  fproc *cp; 
i n t  i; 

/ *  Only MM may make t h i s  c a l l  d i r e c t l y .  */ 
i f (who ! a  MM-PROC-NR) return(EGENER1C) ; 

/* Copy the parent 's  fproc s t r u c t  t o  t h e  ch i l d .  * /  
fprocCchi ld]  = fproc lparent ]  ; 

/*  Increase the counters i n  the ' f i l p '  tab le .  * /  
c p  = &fproc[chi7d]; 
f o r  (i = 0;  i OPEk?44X; i++) 

if (cp->fp-f i  l p [ i  3 != NIL-FILP) c p - > f p - f i l p [ i ] - > f i l  p-count++; 

/ *  F i l l  i n  new process i d .  */  
cp->fp-pid - p id ;  

/ *  A c h i l d  i s  not a process leader .  */ 
cp->fp-sesldr = 0 ;  

/ *  Record the  f a c t  t h a t  both roo t  and working d i  r have another user.  *i 
dup-i node(cp->fp-rootdi r) ; 
dup-i node(cp-zfp-workdi r) ; 
return(0K) ; 

1 

I 
!* F i l e s  can be marked w i t h  the  FD-CLOEXEC b i t  ( i n  fp->fp-cloexec). When 
* MM does an EXEC, i t  c a l l s  FS t o  a l l ow FS t o  f i n d  these f i l e s  and close them. 
" / 

r e g i s t e r  i n t  i ; 
long bi map; 

/ *  Only m may make t h i s  c a l l  d i r e c t l y .  */ 
i f  (who != MM-PROCJR) return(ECENER1C) ; 

/* The ar ray o f  FD-CLOEXEC b i t s  i s  i n  t h e  fp-cloexec b i t  map. */  
f p  = & fp roc [ s l o t l ]  ; / *  ge t - f i l p ( )  needs ' f p '  */ 
b i  tmap = fp->fp-cloexec; 
i f  (bitmap == 0) return(0K); /* normal case, no FD-CLOEXECs * /  

/* Check the f i l e  desr ip to rs  one by one f o r  presence o f  FD-CLOEXEC. */  
f o r  (i = 0; i < OPEN-MAX; I + + )  C 

f d  = i; 
i f  ( (b i  m a p  >> i ) & 01) (void) do-close() ; 

I 

re tu rn  (OK) ; 
1 

/*-__----_-_-_------=--------------====---------------===~======~==~=========* ------------- 
* do-exi t * 
*------=--------- -Pa---- -----==== ~==flCI====lPt==============11===--9=======~=========*/ 
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PUBLIC i n t  do-exi t() 
C 
/ *  Perform t he  f i l e  system po r t i on  o f  t h e  ex i t ( s t a t us )  system c a l l .  * /  

reg is te r  i n t  i , ex i tee ,  task;  
r eg i s t e r  s t r u c t  fproc ' r fp ;  
r eg i s t e r  s t r u c t  f i l p  * r f i 7 p ;  
reg is te r  s t r u c t  inode * r i p ;  
i n t  major; 
dev-t dev; 
message dev-mess ; 

/*  Only MM may do the EXIT c a l l  d i r e c t l y .  */ 
i f (who ! = MV-PROC-NR) return(EGENER1C) ; 

/* Nevertheless, pretend t h a t  the  c a l l  came from the user. */ 
f p  = & fp roc [s lo t l ] ;  /* g e t - f i l p 0  needs ' f p '  */ 
exi  tee  = s l o t l ;  

if (f p->f p-suspended == SUSPENDED) { 
task = -fp->fp-task; 
i f  (task == XPIPE I I task == XPOPEN) susp-count--; 
pro = ex i tee ;  
(void) do-unpause(); /* t h i s  always succeeds f o r  MM */ 
fp->fp-suspended = NOT-SUSPENDED; 

1 

/* Loop on f i l e  descr ip tors ,  c los ing  any t h a t  are open. */ 
f o r  (i = 0 ;  i < O P E N M ;  i++) C 

f d  = i; 
(void) do-cl o s e 0  ; 

I 

/* Release roo t  and working d i r ec to r i es .  */ 
put- i  node(fp->fp-roatdi r )  ; 
put- i  nodecfp->fp-warkdi r) ; 
fp->fp-rootdi r = NIL-INODE; 
fp- r fp-workd i r  = NIL-INODE; 

/ *  I f  a session leader e x i t s  then revoke access t o  i t s  c o n t r o l l i n g  t t y  from 
* a1 l other  processes us ing i t . 
*/ 
i f (! fp- r fp-ses ldr )  return(0K) ; /* not a session leader */ 
fp->fp-sesldr = FALSE; 
i f  (fp->fp-t ty == 0) return(0K); /* no c o n t r o l l i n g  t t y  */ 
dev = fp->fp-t ty;  

f o r  ( r f p  = &fproc[LDW-USER] ; r f p  < &fproc[NR-PROCS] ; rfp++) { 
i f  ( r f p - z f p - t t y  == dev) r fp->fp- t ty  = 0; 

f o r  (i = 0; i < OPENJWX; i++) 
i f  ( ( r f i  1p = r fp->fp- f i  l p [ i ] )  == NIL-FfLP) cont inue; 
i f  ( r f i l p -> f i l p -node  == FILP-CLOSED) continue; 
r i p  = rfilp->filp-ino; 
i f  ((r ip->i f lode & I-TYPE) != I-CHAR-SPECIAL) continue; 
i f  ((dev-t) r ip->i_zone[O] ! = dew) continue; 
dev-mess.m-type = DEV-CLOSE; 
dev-mess.DEVICE = dev; 
major = (dev >z MAJOR) & BYTE; /* malor device n r  * /  
task = dmap[major] .dmap-task; / *  deu~ce task  nr */ 
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("dmap[majorl . dmap-close) ( t a s k ,  &dev-mess) ; 
r f i  1 p-r f  i 1 p-mode = FILP-CLOSED; 

r e g i s t e r  s r r uc t  fproc * t fp ;  

/* On1 y MM may make t h i s  c a l l  d i r e c t l y .  */ 
i f  (who ! - MM-PRKNR) return(ECEMER1C) ; 

t f p  = & f p r o c [ s l o t l l ;  
if (fs-ca l l  == SETUID) 

t fp->fp-realuid = (uid-t) real-user- id;  
t f p -> fp -e f f u i d  = (uid-t) ef f-user- id;  

I 
i f  ( fs-ca l l  == SETGID) { 

t f p -> fp -e f f g i d  = (g id- t )  ef f -grp- id;  
t fp->fp- rea lg i  d = (gid-t) real-grp-id; 

1 
return(OK1; 

1 

/*========================================================-===============*-* 
Q do-revi ve t 

*-------------=-t==*===1=-----.&-----~=--~=----d---------- ------------- - -- -- ---------.------tlf==I==========a*/ 

PUBLIC i n t  do-revi v e 0  
I 
/ *  A task, t y p i c a l l y  TlY. has now got ten the characters t h a t  were needed f o r  a 
* previqus read. The process d i d  n o t  get a r ep l y  when i t  made the c a l l .  
+ Ins tead i t  was suspended. Now we can send the r e p l y  t o  wake i t  up. This  
* business has to be done ca re fu l l y ,  s ince  the incoming message i s  f rom 
* a task ( to  which no r ep l y  can be sent), and the rep ly  must go t o  a process 
* t h a t  blocked ea r l i e r .  The rep ly  t o  t h e  c a l l e r  i s  i n h i b i t e d  by s e t t i n g  the 
* 'dont-reply' f l ag ,  and the rep ly  t o  the  blocked process i s  done e x p l i c i t l y  
* i n  r e v i  ye(). 
"/ 

Y i  f ! ALLOW-USER-SEND 
i f  (who >= LOW-USER) return(EPERM) ; 

#endi f 

rev ive (m .REP-PROC-NR , m . REP-STATUS) ; 
dont-rep? y = TRUE ; /* don't r ep l y  t o  the 'TTY t a s k  */ 
return(0K) ; 

1 
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/* When a needed block i s  not i n  the cache, i t  must be fetched from the disk. 
* Special character f i l e s  a lso require I/O. The routines f o r  these are here. 
* 

The entry points i n  t h i s  f i l e  are; 
* dev-io: perform a read or w r i t e  on a block or character device 

dev-opcl : perform generic device-speci f i c processing f o r  open & close 
* tty-open: perform t ty -sped f i c  processing f o r  open 
* ctty-open: pe r fom cont ro l l ing- t ty -spec i f i c  processing f o r  open 
* ctty-close: perform con t ro l l i ng - t t y - spec i f i c  processing f o r  close 
* do-setsid: perform the SETSID system c a l l  (FS side) 
* do-ioctl : perform the IOCTL system c a l l  
* call-task: procedure tha t  ac tua l ly  c a l l s  the kernel tasks 

ca l l - c t t y :  procedure t h a t  ac tua l ly  c a l l s  task fo r  /dev/tty 
*/ 

#include "fs.h" 
#i nclude x f cn t l  .h> 
# inc l  ude <mini x / ca l l  nr .  h> 
w i  nc l  ude <mini x/cm.  h> 
#include "dev. h" 
#include "fi1e.h" 
#include "fpr0c.h" 
#include "inode.hU 
#include "param.hW 

PRIVATE message dev-mess; 
PRIVATE major, minor, task; 

FORWARD -PROTOTYPE( void f ind-dev, (Dev-t dev) 1; 

/ * ~ r r r r r r r r r r r r p r r ~ ~ = = - = = - ~ ~ ~ ~ = = = - = - = = ~ ~ ~ ~ s ~ ~ - ~ s = ~ ~ ~ ~ s ~ ~ s s = = - = = ~ ~ = *  

dev-i o 
****~**==-===-==m~=====-====~=~=~==-~=====~=-=~~==~~-==-======-=~=~*/ 

WBLIC i n t  dev-io(op, nonblock. dev, $05, bytes, proc, buff) 
i n t  op; /* DEV-READ, DEV-WRITE, DEV-IOCTL, etc. */ 
i n t  nonblock; /* TRUE i f  nonblocking op */ 
dev-t dev; /* major-minor device nmber */ 
off- t  pos; /* byte pos i t ion  */ 
i n t  bytes; /* how many bytes t o  t ransfer  */ 
i n t  proc; /* i n  whose address space i s  bu f f?  */ 
char *bu f f ;  /* v i r t u a l  address o f  the buf fe r  */ 
I 
/* Read o r  w r i t e  from a device. The parameter 'dev' t e l l s  which one. */ 

f i nd-dev(dev1; /* load the variables major. m i  nor, and task */ 

/* Set up the message passed t o  task. */ 
dev~ness.nttype mop; 
dev~ness.DEVICE - Cdev >> MINOR) b BYTE; 
~~VJR~SS.PQSXTION - pos; 
devnress.PRKNR = proc; 
dev_mess.AWRESS = buff ;  
dev~ness-COUNT ;. bytes; 
d e v m s s  .lTY-FLAGS = nonbl ock ; /* temporary kludge */ 
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/ *  Call the task. */ 
(*dmapCmajorl .dmap-rw) (task, k l ev~ness )  ; 

/* Task has completed. See if c a l l  completed. */ 
i f  ( d e v ~ e s s .  REP-STATUS == SUSPEND) { 

i f  (op == DEV-OPEN) task = XWPEN; 
suspend(task) ; /* suspend user */ 

I 

i n t  op; 

op = mess-pt r -~mtype;  /* save DEV-OPEN or DEV-CLOSE f o r  l a t e r  */ 
messgtr->DEVICE = (mess-ptr->DEVICE >> MINOR) & BYTE; 
messgtr->PROC-NR = f p  - fproc;  

cal f_task(task-nr,  mess-ptr); 

k /*  Task has completed. See i f  c a l l  completed. */ 
if (mess-ptr->REP-STATUS == SUSPEND) I 

i f  (op == DEV-OPEN) task-nr = XPOPEN; 
suspend(task-nr) ; /* suspend user */ 

1 
1 

i n t  r ;  
dev-t dev; 
i n t  flags, proc; 
r e g i s t e r  st ruct  fproc * r f p ;  

dev P (dev-t) mess-ptr->DEVICE; 
f lags = messstr->COUNT; 
proc = f p  - fproc; 

/* Add O - M T T Y  t o  t h e  f l a g s  i f  t h i s  process i s  not a session leader,  o r  
* i f  i t  already has a con t ro l1  i ng  t t y ,  o r  i f  i t  i s  someone elses 
* c o n t r o l l i n g  t t y .  
* /  
if (!fp->fp-sesldr I I fp - r fp- t ty  !- 01 i 
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f lags I= 0-NOCITY; 
} e lse { 

for ( r f p  = &fproc [LWUSER] ; r f p  < &fproc [NR-PROCS] ; rfp++) ( 
if (r fp -> fp - t t y  == dev) f l ags  I =  0-NOCTTY; 

I 

r = dev-io(DEV-OPEN, mode, dev, (o f f - t )  0, f?ags, proc, NIL-PTR) ; 

i f  (r == 1) { 

fp->fp-tty = dev; 
r = OK; 

1 

*------------------~========~~===~35=~===.---- -------=-------------------------- I-----------------f-------* / 
PUBLIC vo i d  ctty-openctask-nr, mess-ptr) 
i n t  task-nr; 
message *mess-ptr; 

/* Th is  procedure i s  ca l l ed  from t h e  dmap s t r u c t  i n  tab1e.c on opening 
* /dev/t ty,  t h e  magSc device that  t rans la tes  t o  t he  c o n t r o l l i n g  t t y .  
*/ 

mess-ptr->REP-STATUS = fp -> fp - t t y  == 0 ? ENXIO : OK; 
1 

* c t t y - c l  ose * 

PUBLIC vo id  c t t y - c l ose ( t as tn r ,  mess-ptr) 
i n t  task-nr; 
message *mess-ptr ; 
I 
/* C1,ose /dev/ t ty .  */ 

mess-ptr->REP-STATUS = OK; 
1 

/*===r======i=======c==========/*===r======i=======c==========I===c====/*===r======i=======c==========I===c=====================z==========================* 
rt do-setsi d 4 

* - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - Z - - - - -  -----a- +=_-- -I-Z---I--E---- _-_ */ 
PUBLIC i n t  do-setsid() 
I 
/* Perform t h e  FS s ide o f  the SETSID c a l l .  i .e. get r i d  of the c o n t r o l l i n g  
* terminal o f  a process, and make the process a session leader. 
*/ 

r eg i s t e r  s t r u c t  fpmc *rfp; 

/*  On1 y M may do the SETS10 c a l l  d i r e c t l y .  */ 
i f (who ! = MM-PROCJR) r e t u rn  (ENOSYS) ; 

/* Make the process a session leader w i t h  no c o n t r o l l i n g  t t y .  * J  
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27235 i f  (major 2= maxmajor) { 
27236 major = minor = 0; /* wi 11 f a i  1 with ENOOEV */ 
27237 1 
27238 task - dmap[major] .dnap-task; /* which task services t h e  device */ 
27239 } 

i n t  r, proc-nr; 
message local-m; 

proc-n r = mess-pt r->PROC_NR; 

whi le  ((r = sendrec(task-nr. mess-ptr)) == ELOCKED) { 
/* sendrec0 f a i l e d  t o  avoid deadlock. The task 'task-nr' i s  
* t r y i n g  t o  send a REVIVE message f o r  an e a r l i e r  request. 
* Handle i t  and go t r y  again. 
*/ 

i f  ((r = receive(task-nr, &local-m)) != OK). bfeak; 

/* I f  we're t r y i n g  t o  send a cancel message t o  a task which has j u s t  
* sent a completion rep ly ,  ignore t he  rep ly  and abor t  the cancel 
* request. ITi-e c a l l e r  w i l l  do t h e  rev ive f o r  t he  process. 
*/ 
i f (mess-ptr->mtype == CANCEL && 1 ocal-m.REP-PROCNR == proc-nr) 

re turn;  

/* Otherwise i t  should be a REVIVE. */ 
i f  (1oca l~n .m type  != REVIVE) { 

p r i n t f  ( 
"fs: strange device r ep l y  from %I, type = %d, proc = M \ n " ,  

local_m.rruource, 
local-m.  type , 1 ocal -m .REP-PRKNR) ; 

cont inue ; 
1 

rev ive  (1 oca1-m. REP-PROCNR, l o ca l  4. REP-STATUS) ; 
1 

/*  The message received may be a r ep l y  t o  t h i s  ca l l ,  o r  a REVIVE f o r  some 
* o ther  process. 
* /  

for ( ; ; I  { 
i f  (r != OK) panic("cal1-task: can ' t  send/receiveW , NO-NUM) ; 

/* D id  the process we d i d  the sendreco f o r  get a r esu l t ?  */ 
i f  (messgt r ->REP-PRKNR == proc-nr) break ; 

/* Othemi se i t  should be a REVIVE. */ 
i f  (messjtr- type != REVIVE) { 
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p r i n t f  ( 
"fs: strange device rep1 y from %d, type = %d, proc = %d\nW , 

m e s s _ ~ t r - ~ ~ s o u r c e ,  
mess-ptr-,m-type, messdtr->RE?-PROLNR); 

continue; 
I 
revive(mess-ptr->REP-PRKNR, mess-ptr->REP-STATUS) ; 

i n t  major-device; 

i f  (fp->fp-tty == 0) { 
/* NO control l ing t t y  present anymore, re tu rn  an 1/0 e r r o r .  */ 
mess-pt r->REP-STATUS = EIO; 
return;  

1 
major-device = (fp->fp-tty >> MAJOR) & BYTE; 
task-nr = drnap[major-device] .dmap-task: / *  task f o r  control l ing t t y  */  
mess-ptr->DEVICE = (fp->fp-tty r> MINOR) & BYTE; 
call-task(task-nr, mess-ptrl; 

I 

/*===========================================================================* 
* no-dev 4 

*------------------------------------------------------------------------b_______________________________________=* ------------------------------------------------------------------------- / 
PUBLIC voi d no-devltask-nr , m-ptr) 
i n t  task-nr; /* not used - f o r  compat ib i l i ty  wi th  dmap-t */ 
message *m-ptr; / *  message pointer */ 
I 
/* No device there.  */  
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/ *  This  f i l e  contains a few general purpose u t i l i t y  rou t ines .  
* 
* The en t r y  po in ts  i n t o  t h i s  f i l e  are 
* clock-time: ask the c lock task f o r  t h e  rea l  time 
* copy: copy a b lock o f  data 
* fetch-name: go ge t  a path name from user space 
* no-sys: r e j e c t  a system c a l l  t ha t  FS does no t  handle 
* panic:  something awful has occurred; MINIX cannot continue 
* conv2: do byte swapping on a 1 6 - b i t  i n t  
* conv4: do byte swapping on a 32-b i t  l ong  
*/  

# inc lude "fs.hV 
# inc lude <mi nix/corn. h> 
# inc lude <mi nix/boot . h> 
# inc lude <uni s td .  h> 
# inc lude "buf .h" 
#inc lude "f i1e.h" 
# inc lude " fproc.  h" 
t i  nc l  ude "i node. h" 
X i  nc l  ude "param. h" 

PRIVATE i n t  pani c k i  ng ; /* i n h i b i t s  recurs ive panics dur ing sync */ 
PRIVATE message c lockmess;  

C 
/* This rou t ine  re tu rns  the t ime i n  seconds since 1.1.1970. MINIX i s  an 
* as t rophys ica l l y  naive system t h a t  assumes the ear th  ro ta tes  a t  a constant 
* r a t e  and t ha t  such th ings as leap seconds do no t  e x i s t .  
*/ 

r eg i s t e r  i n t  k ;  

clock-mess.n_type = GET-TIME; 
if ( (k = sendrec(CLOCK, &clock-mess)) != OK) pan1 c("c1ock-tine e r r " ,  k) ; 

re tu rn (  (ti me-t) c l ock~ness  .NEW-TIME) ; 
1 

/*=============jil2=========llliPZ=====;=======z=============================* 
4 fetch-name * 
*-----------------------1---------------- ___________________------------------- -------------===------------ - -  ----- / 

PUBLIC i n t  fetch-name(path, l en ,  f lag) 
char *path; /* po in te r  t o  the  path i n  user space */ 
i n t  l en ;  /* path length, i nc lud ing  0 byte */ 
i n t  f l a g ;  / *  M3 means path may be i n  message +/ 

/* Go get path and put i t  i n  'user-path'. 
* I f  ' f l a g '  = M3 and ' l e n '  <= M L S T R I N G ,  t h e  path is present i n  'message'. 
* I f  i t  i s  not,  go copy i t  from user space. 
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r eg i s t e r  char *rpu, *rpm; 
i n t  r ;  

/ *  Check name leng th  for v a l i d i t y .  */ 
i f  ( l en  <= 0) 

err-code = EINVAL; 
r e t u rn  (€GENERIC) ; 

1 

i f  (7en > P A T H M )  { 
err-code = ENAMETOOLONG; 
return(ECENER1C) ; 

1 

i f  ( f l a g  == M3 && t e n  <= M3-STRING) { 
/* Just copy the  path from the message t o  'user-path'. * /  
rpu = &user-path CO] ; 
rpm = pathname; /* contained i n  inpu t  message * /  
do { *rpu++ = *rpm++; } wh i l e  (--?en);  
r = OK; 

1 e l se  ( 
/* S t r i n g  i s  not contained i n  the  message. L e t  i t  from user space. */ 
r = sys-copyCwho, D, (phys-bytes) pa th ,  

F S - P R K N R ,  0, (phys-bytes) user-path, (phys-bytes) 1en) ; 
I 
re tu rn ( r )  ; 

1 

I 
/* Somebody has used an i l l e g a l  system c a l l  number */ 

re tu rn  (EINVAL) ; 
I 

/*--------------------==- ---=--------- ---------==IF-----=-----------------.----- ----- -----------------------====* 
* pani c * 
* --------------------- ---------=----------------------------------====== * --------------- *==--------- / 

PUBLIC vo id  panic (format, num) 
char *format; /* format s t r i n g  */ 
i n t  num; /* number t o  go w i t h  farmat s t r i n g  */ 

/* Something awful has happened. Panics a re  caused when an i n t e r n a l  
* inconsistency i s  detected, e .g.. a pragramming e r r o r  or  i l l e g a l  value a f  a 
* def ined constant.  
* / 

if (panicking) re tu rn ;  /* do not panic dur ing  a sync */ 
panicking = TRUE; /* prevent another panic dur ing t h e  sync */ 
p r i n t f ( " F i 1 e  system panic:  %s ", format) ; 
i f  (num ! - NO-NUM) p r i  n t f  <"%d", num) ; 
p r i  n t f  ("\nN) ; 
(void) do-sync() ; /* f l u s h  everyth ing t o  t h e  d isk  */ 



File: src/fs/utility,c MINIX SOURCE CODE 

i f  (norm) return( (unsigned) w 6 OxFFFF) ; 
return( ((WYTE) << 8) 1 ( Cwz8) b BYTE)); 

1 

f 
/* Possibly swap a 32-bi t long between 8086 and 68000 byte  order. */ 

unsigned lo,  h i ;  
long 1; 

i f  (norm) return(x) ; /* byte order was already ok */ 
l o  = CO~V~CFALSE, ( i n t )  x & OxFFFF); /* low-order hal f ,  byte swapped */ 
h i  = convZ(FAtSE, ( in t )  (x>>162 & OxFFFF) ; /* high-order ha l f ,  swapped */ 
1 P ( (long) l o  ~ 1 6 )  1 h i ;  
retorn(1) ; 

l 

/* FS must occasionally p r i n t  some message. It uses the standard l i b r a r y  
* rout ine prink().  (The name "pr in t f "  i s  r e a l l y  a macro defined as "printk").  
* P r i n t i ng  i s  done by ca l l i ng  the TTY task  d i rec t l y ,  not going through FS. 
*/  

#def i ne BUFSIZE 100 /* p r i n t  buffer s ize  */ 

PRIVATE i n t  buf saunt ; /* # characters i n  the buf fe r  */  
PRIVATE char p r i  nt-buf [BUF-SIZE] ; /* output i s  buffered here +/ 
PRIVATE message putch~nsg; /* used f o r  message t o  'lTY task  */ 

FORWARD -PROTOTYPE ( vo id  f 1 ush , (void) 1; 



MlNIX SOURCE CODE File: src/fs/putk.c 

putk 4 

PUBLIC void putk(c) 
i n t  c ;  
{ 
/* Accumulate another character. I f  0 o r  buffer  f u l l ,  p r i n t  i t .  */ 

i f  (c == 0 1 i buf-count == BUF-SIZE) f lush() ;  
i f  (C == ' \ n ' )  putk( ' \ r ' ) ;  
i f  (c != 0) p r i n t b u f  [buf-count++] = c ;  

I 

/ * ==~=~=~~+========~~~=====~~=== I I I I = I I ~~=P~~~=~=~~= I===P=====~~P~~L=~== I IL= *  
* f 1 ush 4 

*1===1*=ll==l~~r~l1~=~~f~ttlll~==lf=====~=====~=~PIP~==~===~I==~~=~f=====*/ 

PRIVATE void f 1 us h ( 3  

/* Flush the  pr im buffer  by cal f  i ng  l l Y  task. */ 

i f  (buf-count == 0) return; 
putch_msg.~type = DEV-WRITE; 
putch_nrsg.PRKNR 5 1; 
putch_nrsq.77Y,LINE = 0 ;  
putch-~sg  .ADDRESS = p r i  nt-buf ; 
putch_msg.COU~T - buf-count; 
ca l l - taskOlY ,  6rputch~sg); 
buf-count = 0; 

1 
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Include directory 
01400 a.0ut.h 
00000 ansi.h 
00200 em0.h 
00900 fcnt1.h 
04 100 ibdpartiti0n.h 
00106) 1irnits.h 
03700 minixh0t .h 
03400 minixical1nr.h 
03500 minixicorn-h 
02600 minixlconfig-h 
02900 minix/const.h 
03800 minix/keyrnap. h 
04000 minixipartiti0n.h 
03300 minixlsy sf ib.h 
03 100 minix/type.h 
00700 signal .h 
01000 std1ib.h 
00600 s2ring.h 
02400 sy ddir. h 
01800 sys/ioctI.h 
02200 sy dptrace. h 
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Kernel 
05500 assert.h 
1010 at_wini.c 
1 1000 c1ock.c 
13600 conso1e.c 
04380 c0nst.h 
14600 dmp.c 
09 100 driver-c 
09000 driver.h 
09500 drv1ib.c 
09400 drv1ib.h 
07500 exceptioac 
05000 g1o.h 
07600 i8259.c 
04200 kerne1.h 



1 3000 keyboard-c 
08000 k1ib.s 
08 100 klib386.s 
06700 maim 
09700 mem0ry.c 
08800 misc-c 
05800 mpx.s 
05900 mpx386.s 
06900 proc.c 
05 ZOO pr0c.h 
07700 protect .c 
05200 pr0tect.h 
04700 protah 
05400 sc0nst.h 
Q650Q staa.c 
14700 system-c 
05600 tab1e.c 
11700 tty.c 
11600 ttyh 
04500 type.h 
1OOOO wini.c 

Memory Manager 
18800 all0c.c 
17600 breakc 
15900 const-h 
17100 exec.c 
1 6800 forkexit .c 
18500 getset.c 
16200 g1o.h 
16600 main.c 
15800 mm.h 
16300 rnpr0c.h 
16400 pararn.h 
16100 prot0.h 
19300 putk.c 
17800 signa1.c 
16500 tab1e.c 
18600 trace.c 
16000 type.h 
19100 uti1ity.c 

File System 
20100 buf.h 
21800 cache.c 
19500 const. h 
20200 dev.h 
27000  device.^ 
20300 fi1e.h 
22208 fi1edes.c 
20000 fproc-h 
19400 fs.h 
19900 gl0.h 
21500 in0de.c 
20500 inode.h 
25408 1ink.c 
22300 lock.c 
20400 lockh 
2;?500 main.c 
26600 misc.c 
25100 mount-c 
22900 0pen.c 
20600 garam.h 
24700 path.c 
24300 p1pe.c 
26 100 protect-c 
19700 pr01o.h 
27600 putk.c 
23400 read.c 
25900 stadkc 
21900 super.c 
20700 superh 
20800 tab1e.c 
26400 time-c 
19600 type.h 
27400 uti1ity.c 
24000 write.c 
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A 
ABS 
ACCESS 
ACCESSED 
ACTIWLPLAG 
ADDRESS 
AWWN 
A m  
AF1 
A F l  0 
AFl l  
AF12 
AF2 
AF 3 
AF4 
AF 5 
AF6 
AFT 
AP8 
AF9 
AHom 
AINSRT 
ALAm 
ALARELON 
ALEFr 
ALLOW-GAPMS 
ALLBDES 
ALT 
AMX D 
AMIGA 
A m I N  
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3806 #define 
2975 ldef ine 
3432 #do£ ine 
5289 #define 
4117 #define 
3653 #define 
3835 #define 
3833 #define 
3879 #define 
3888 #define 
3899 #define 
3890 #define 
3880 itdef ine 
3881 tdef i n e  
3882 ldefine 
3803 #define 
3884 #define 
3885 ldefine 
3886 Wefine  
3887 #define 
3832 #define 
3843 #define 
3428 #define 

16348 #def ine 
3836 ldef ine 
2665 #define 
2986 ldefine 
3813 #define 
3840 #define 
2622 Mefine 
3841 tdefine 

ANY 
APGDN 
APCUP 
APLUS 
A R G m  
ARG* 
ARIGHT 
ASFl 
ASFLO 
ASFll  
ASF12 
ASF2 
ASF3 
ASFI 
ASFS 
ASFC 
ASP7 
ASP8 
ASF9 
ASKDEW 
ASSERT-H 
ATARI 
ATARI-TY PE 
ATAIDENTIFY 
ATIM 
AT-IRQO 
AT-IRQ1 
AT-WXHI-IRD 
AUDIO 
AUDIO-STACK 
AUP 

3504 #define 
3039 #define 
3 838 #define 
3842 #define 

1 6 2  #define 
164 #define 

3837 #define 
3921 #define 
3930 ddef ine 
3931 #define 
3932 #define 
3922 #define 
3923 tdefine 
3924 #define 
3925 #define 
3926 #define 
3927 #define 
3928 ldef ine 
3929 ldefine 
2784 ldefine 
5504 tdef ine 
2621 #define 
2700 +define 

10164 #define 
19550 #define 
10173 tdef ine 
10174 ldef ine 

4365 Xdefine 
3577 #define 
5667 #define 
3834 tdefine 

AUTOEIOS 
AVL 
A V L 2 8  6-TSS 
ABLR 
ADATAPOS 
LDRELPOS 
&EXEC 
U A S E X T  
AJIASLNS 
A-HASRELS 
AJiASTOFP 
R I S 0 3 a 6  
k I 8 0 8 6  
AM68K 
AMAGICO 
kMAGICl 
U I N H D R  
ANONE 
ANS16K 
ANSYM 
A P A L  

R P U R E  
L S E P  
L S P A R C  
L S Y H P O S  
LTEXTPOS 
LTOVLY 
ATREL W S  
L U Z P  

Awn. 
BO 

2663 #define 
5325 ldefine 
5292 #define 
1438  #define 
1453  edef~ne 
1459 #define 
1 4 4 5  #define 
1455  Cdefine 
1456 #define 
1454  #define 
1457  #define 
1435 *define 
1432 #define 
1433  Id@€ ine 
1 4 2 6  #define 
1427  #define 
1 4 5 1  #define 
1 4 3 1  #define 
1434  #define 
1444 #define 
1443 #define 
1 4 4 7  Cdefine 
1446 tdef ine 
1436 #define 
1460  #define 
1452 #define 
1448  tdef ine 
1458  Bdefine 
1442 Cdef ine 
1439 #define 
1185  Cdefine 
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Bl lO 
8115200 
81200  
813  4 
B150 
E l 8 0 0  
B19200 
3200 
Bid00  
B?OO 
B3840O 
84800 
B5 0 
857600  
8600 
B75 
B9600 
BADMAG 
BASE-HIGLSHI 
BASEMTDDLE-S 
BEEP-FREQ 
BEG-PROCADDR 
BEG-SERVADDR 
B E G - U S E U D D R  
BIG 
BIOS-IRQO-VEC 
BIOS-IKQ8-VEC 
BIOS-VECTOR 
BITCHUNlLBITS 
BITMAP-CHUNKS 
BITS-PeRBLOC 
BLANRCOLOR 
BLANK-HEM 
BLOCKSXINIMU 
BLOCK-SIZE 
EMS 
BOOT-BLOCK 
BDOT-T:CKS 
BOTH 
BOUNDS-VECTOR 
BREAKPOINT-VX 
BRK 
BRKINT 
BUF-EXTRA 
BUF-SIZE 
BUF-SIZE 
BUSY-206-TSS 
BYTE 
B I T E - G R A N J U X  
BYTE-SWAP 
B-TIME 
C 
C A 
CALL-286-GATE 
CALOCK 
CANCEL 
CASCADEIRQ 
CBHD 
CDIOEJECT 
CDIOPAUSE 
CDIOPLA\;MSS 

118B ldefine 
1266  #define 
1194 #define 
1189  ldefine 
1 1 9 0  #define 
1 1 9 5  #define 
1 1 9 9  #define 
11 91 #def ina 
1196 tdef ine 
1192 #define 
f 200 #define 
1197 tdef ine 
1186  #define 
1265  #define 
1 1 9 3  #define 
1187 #define 
1 1 9 8  #define 
1428  #define 
5311  #define 
5274 #define 

13649  #def ins 
5163 #define 
5166 #define 
5167 #dsf ine 
5324 #define 
4349 ldefine 
4350 #define 
4368 #def in@ 

21920 #define 
19567  #define 
21921 #define 
13632 #define 
13635 #define 
23820 #define 

29L5 #define 
2715 #define 

19560  #define 
36B4 #define 
3503 #define 
5250 #define 
4337 #define 
3418  #define 
1124 #define 
9132 #define 

27608 #define 
19309 #define 

5294 #define 
2941 #define 
5312 #define 

19554  tdef ine 
13650 #define 

3805 #define 
3807 #define 
5295 #define 
3860 #define 
3519 #define 
4358 #define 
2713 #define 
1911  #define 
1909 #define 
1904 #define 

CDIOPLAYTI 1903 #define 
CDIOREADSUBCH 1907 #define 
CDIOREADTOC 1906 #define 
CDIOREADTOCH3 19C5 #define 
CDIORESUME 
CDIOSTGP 
CDOWN 
CDRDM 
CDROKSTACK 
CEND 
CF 1 
CFlO 
C P l l  
C'12 
CF2 
CF3 
CF4 
CF5 
CP6 
CF7 
CP8 
CF9 
CHARBIT 
CHALMAX 

CHARMIN 
CHDIR 
CHILD-MAX 
CHILD-STIME 
CHILD-UTIME 
CHIP 
CHIP 
CHIP 
CHMOD 

CHOME 
C H W  
CHROOT 
CINSRT 
CLEAN 
CLEFT 

CLICKSHIFT 
CLICRSHI FT 
CLICKSIZE 
CLICKSIZE 
CLOCAL 
CLOCK 

1910 Xdefine 
1908  #define 
3849 #def ine 
3574 #define 
5666 ldefine 
3847 #define 
3893 #define 
3902 #define 
3903 #define 
3904 #define 
3894 Xdefine 
3895 #def ine 
3896 Wdefine 
3897 #define 
3898 fdef ine 
3899 #define 
3900 #define 
3901 #define 

109  #define 
111 Xdef ine 
110  #define 

3413 #define 
166 #define 

3683 #define 
3682 #define 
2778 #define 
2773 #define 
2763 Xdefine 
3416  #define 
3846 #define 
3417 #define 
3448 #define 
3857 #define 

19548  tdef ine 
3850 #define 
2959 #define 
2964 #define 
2963 #define 
2958 #define 
1140 #define 
3602 #define 

CLOCKnClLBfT 11064 #def ine 
CLOCK- INT 3610 #define 
CLOCKIRQ 4356 #define 
CLOCRPROCXF! 3644 #define 
CLOCK-STACK 5672 Xdef ine 
CLOSE 3407 #define 
CMD-DIAG 10162 tdef ine 
CMD-FORMAT 10160  #define 
CMD-IDLE 10155  #define 
CMD-RBAD 10157 #define 
CMD-READVERIF 10159  #define 
CMD-RECALIBRA 10156 #def ine 
fM3_SEEX 1 0 1 6 1  #define 
CMD_SPECIFY 10163 tdefine 
CPID-WR I TE 10158  #define 
CMID 3554 #define 

CNMIN 
CDLORBASE 
COLORSIZE 
C,3NFORMING 
CONSOLE 
CONSMINOR 
CONS-WWORD 
COPROCERRVE 
COPROCNOT-VE 
COPROC-SEG-VE 
COPYB'iTES 
COREMODE 
COUNT 
COWTERFREQ 
CPGDN 
CPGUP 
CF'LUS 
CPVECJR 
e m  
CReAT 
CRIGHT 
CS5 
CS6 
CS7 
csa 
CSIZE 
CSTOPB 

CS-INDEX 
CSlrDT-INDEX 
CS-SELECTOR 
CTIME 
CTL-EIGHTHEAD 
CTLIIWDISABL 
CTLMECC 
CTL-NCIRETRY 
CTLRESET 
CTRL 
CUP 
CURSOR 
C-6845 
C J X T  
c m u  
C-STAT 
CopyMess 
D 
DATA 
DATLCHANGED 
DEAF 
DEBUG-VECTOR 
DEFAULT 
DELETE 
DELTATICKS 
DELSCAN 
DESC-3 86-BIT 
DESCJCCESS 
DESC-BASE 
DESC+BASE_.HIG 
DESC-BASENID 
DESC-GRANULAR 
DESC-5IZE 
DEVICE 

3855 #define 
13628  #define 
13630 #define 

5284 #define 
13037 #define 
11760 #def ine 
13636  #define 

5304 #define 
5252 #define 
5254 #define 
3677 #define 
17832 Xdef ine 

3650 #define 
11057  #define 

3853 #define 
3852 tdefine 
3856 #define 
2922 #define 
1 1 4 1  #define 
3409 #define 
3851 ldefine 
1143  #define 
1144 #define 
1 1 4 5  #define 
1146 #define 
1 1 4 2  #define 
1147 #define 
5213 #define 
5239 #define 
5229 #def ine 

1 9 5 5 1  #define 
10168 #define 
10370 #define 
10167 tdef ine 
10166 #define 
10169 #define 

3811 #define 
1 8 4 8  #define 

1 5646 tdef ine 
13641 #define 
1506 #define 
1 5 0 5  #define 
1507 #define 
6932 #define 
2928 Wdefine 

13644 #define 
17622 #define 
10209 #def ine 

4335 #define 
5323 #define 

1 9 5 4 5  #def ine 
3641 #define 

1 3 0 3 6  #define 
5318 #define 
5267 #define 
5265 Xdefine 
5308 #define 
5266 Xdef ine 
5307 #define 
5268 #define 
3648 Rdef ine 



INDEX TO SYMBOLS 

DEV-CLOSE 
DEVgDO 
DEVHDO 
DEV-IOCTL 
DEV-OPEN 
D E V - P E L D R I V E  
D E V M  
DEVXEAD 
DEV-SC S I 
DEV-WR ITE 
DIOCEJECT 
DIOCGETP 
DIOCSETP 
DIRBLKSIZ 
Dl RECTORY-BLO 
DIRSIZ 
DIRTY 
DIKENTRY-SIZ 
DIVIDE-VECTOR 
DLADDR 
DL-BROADREQ 
DL-CLCK 
DL-COUNT 
DL-Em 
DL-GETSTAT 
DL-EN1 T 
DL-INIT-REPLY 
DLAODE 
DLrnLTIREQ 
DLAOMODE 
DL-?ACKRECV 
DL-2ACRSEND 
DL-IORT 
DL- PROC 
DL-PROM1 SCBE 
DL-READ 
DL-READV 
DL-READ-IP 
DL-STAT 
DLSTOP 
DLThSK3EPLY 
DLMRITE 
DLWRITEV 
DMA_BUF-SI ZE 
DMLSECTORS 
WNT-SWAP 
WUBLEJAULT- 
DOWN 
DP83 90-STACK 
DPL 
DPLSHIFT 
DP-ETHO-INDEX 
DP-ETHO-SELEC 
DP-ETHLINDEX 
DP-ETH1-SELEC 
DSPIOBITS 
DS PI OMAX 
DS PIORATE 
DSPIORESET 
DSPIOSIGN 
DSPIOSIZE 

3525 $define 
3714 #define 
3715 #define 
3523 $define 
3524 $define 
9419 Udefine 
3716 #define 
3521 $define 
3717 #define 
3522 #define 
1883 #define 
1885 $define 
1884 #define 
2405 Udefine 
20161 #define 
2408 ldefine 
19549 Cdef ine 
19563 #define 
4334 #define 
3553 #define 
3565 #define 
3552 #define 
3550 #define 
3532 #define 
3542 #define 
3540 tdefine 
3545 #def ine 
3551 #define 
3564 #define 
3 562 #define 
3558 #define 
3557 #define 
3548 #define 
3549 #define 
3563 #define 
3538 Cdefine 
3539 Udefine 
3559 #define 
3554 #define 
3541 #define 
3546 tdef ine 
3536 #define 
3537 #def ine 
9055 #define 
2682 #define 
19555 #define 
5253 #define 
3821 ldefine 
5642 #define 
5278 #define 
5279 #define 
5219 #define 
5235 #define 
5220 tdef ine 
5236 #define 
1917 #define 
1919 tdefine 
1914 #define 
1920 #define 
1918 #define 
1916 Cdefine 

D5iIOSTEXEO 1915Ydefine 
DSTEUFFER 3676 #define 
DST-PROCNR 3 675 #def ine 
DST-SPACE 3674 Wdef ine 
DS186-INDEX 5216 #def ine 
D S 2 8 6 3 E L E C T  523 2 ldef ine 
DS-INDEX 
DSLDT-INDEX 
DSSELECTOR 
DT 

DUMPED 
DUMP-SIZE 
DU P 
DUP_MASK 
E2BIG 
EACCES 
EADDRINUSE 
EAGAIN 
EBADCALL 
EBADDEST 
EBADF 
EBADIOCTL 

E BADMOD E 
EBUSY 
ECHILD 
ECHO 
ECHOE 
ECHOK 
ECHONL 
ECGNNREFWED 
ECONNRES ET 
EDEADLK 
EWM 
EDSTNOTRCH 
EEXIST 
EFAULT 
EFBIG 
EG A 

EGAS K ZE 
EGENERIC 
EICKMANN 
EINTR 
EINVJU 
EIO 
EI SCONN 
EISDIR 
ELOCKED 
EMPILE 
EML INK 
EMBASE 
ENABLE 
ENABLEADAPTE 
ENABLEAT-WIN 
ENABLEAUDIO 
ENABLE3 INCOM 
ENABLE-BIOS-W 
ENABLEXACHE2 
ENABLE-CDROM 
ENABLE-ESDI-W 
ENABLE_MITSrn 
ENABLENETWOR 

5210 #dy,ine 
5240 #define 
5225 #define 

20900 #define 
17833 Cdefine 
17834 #define 
3438 #define 
19541 #define 
242 Xdefine 
248 #define 
285 Xdefine 
246 #define 
297 #define 
282 #define 
244 #define 
279 tdef ine 
280 #define 
251 #define 
245 Ydefine 
1153 #define 
1154 #define 
1155 #define 
1156 #define 
286 #define 
287 #define 
270 #define 
268 #define 
283 Wdefine 
252 tdef ine 
249 #define 
262 #define 

13642 #define 
13631 #def ine 
235 #def ine 
2718 #define 
23 9 ldef ine 
257 Cdefine 
240 #define 
284 #define 
256 #define 
296 #define 
259 #define 
266 #define 
8813 #define 
4384 #define 
2677 tdefme 
2673 tdeflne 
2769 #def ine 
2685 tdef h e  
2674 #def lne 
2669 tdef m e  
2760 ldefme 
2675 Xdefine 
2678 #define 
2672 #define 

ENmLE-SBAUD 2 67 9 #de f ine 
ENABLE-SCSI 2767 #clef ine 
ENABLE-SRCCOM 2686 #define 
ENABLE-WIN1 2765tdefine 
ENABLEXT-WIN 2 676 #define 
ENAMETOOLONG 2 7 1 #define 
END 3819 #define 
END-OF-FILE 19557 tdef ine 
ENLLPROCADDR 5 164 #define 
END-TASILADDR 5165 #define 
END-TTY 
ENPI LE 
ENOCONN 
ENODEV 
ENOENT 
ENOEXEC 
ENOLCK 
ENOMEM 

ENOSPC 
ENOSYS 
ENOTBLK 
ENOTCONN 
ENOTD I R 
ENOTEMPTY 
ENOTTY 
ENOUUG 
ENTER 
ENX I 0  
EOUTOFBUFS 
EPACKSIZE 
EPERM 
EPIPE 
EP-OFF 
EP-ON 
EP-SET 
EP-UNSET 
ERANGE 
EUOFS 

ERR 
ERRORAC 
ERRORBB 
ERRORDM 
ERRORECC 
ERRORID 
ERRORTK 

11771 #define 
258 Ydefine 
293 #define 
254 #define 
237 #define 
243 #define 
272 #define 
247 # d e f i n e  
263 #define 
273 Udefine 
250 #define 
291 #define 
255 #define 
274 #define 
260 tdef ine 
290 #define 

19544 tdef ine 
241: tdef ine 
278 #define 
277 #define 
236 #define 
267 #define 
4434 #define 
4435 #define 
4436 #define 
4433 #define 
269 #define 
265 #define 

10189 #define 
10149 #define 
10146 #define 
10151 Xdef ine 
10147 #define 
10148 Cdefine 
10150 #define 

ERRBADSECT0 10 190 #def ine 
ESC 11606 #define 
ESCAPED 11674 #define 
ESC-SCAN 13033 #def ine 
ESHUTWWN 292 #define 
ESPIPE 264 #define 
ESRCH 238 #define 
ES-286-INDEX 5217 #define 
ES-286-SELECT 5233 ldefine 
ES-INDEX 5211 #define 
ES-SELECTOR 5226 #define 
ETHERIRQ 4359 tdefipe 
ETIMEWUT 288 #define 
ETXTBSY 261 #define 
EURG 289 #define 
EWOULDBLOCK 281 #define 



EXDEV 
EXEC 
EXECUTABLE 
E X I T  
EXIT-FAILURE 
EXIT-SUCCESS 
EXPAND-DOWN 
EXT 
EXTKEY 
EXT-PART 
E-BADADDR 
E-BAD-BUF 
ELBAD.-DEST 
E-BAD-FCN 

E-BAD-PROC 
E-BAD-SRC 
ESJO-UESSAGE 
-0-PERM 
E-OVERRUN 
E-TASK 
E T R Y A G A I N  

F1 
Fi 0 
F11 
FL2 
F2 
F3 
F 4 
F 5 
F6 
F 7  

F8 
F9 
FALSE 
FASTLOAD 
FAST-DISK 
FCNTL 
FD-CLOEXEC 
FD-MASK 
FILP-CLOSED 
FIRST-LDT.-IND 
F I R S T - m  
FLAT-DS-SELEC 

FLOPPY 
FLOPPY-IRQ 
FLOP-STACK 

FORK 
FORWARD 
F P P  
F P-FORMAT 
FP-FORMAT 
FP-IEEE 
F P N O N E  
FSTAT 

FSTRUCOPY 

PS-PR0C-m 
FULL-DATABM 
FUNC 
FUNC-TO-CALL 

F l l V P F D  
F-GETFD 

2 5 3  #define 
3446 (define 
5283 #define 
3402 #define 
1008 #define 
1009 tdefine 
5285 Xdefine 
3810 #define 
3814 #define 
4125 #define 
310 #define 
305 #define 
301 #define 
3C9 #define 
311 #define 
302 #define 
307 #define 
308 #define 
304 #define 
306 #define 
303 #define 

3865 #define 
3874 #define 
3875 #define 
3876 #define 
3866 #define 
3867 #define 
3868 #define 
3869 Wdefine 
3870 tdefine 
3871 #define 
3872 #define 
3873 #define 
2912 Cdefine 
2785 #define 
2728 tdefine 
3445 #define 
923 tdef ine 

23423 #define 
20312 #define 
5221 #define 

11770 #define 
5227 Wdefine 
3593 #define 
4363 #define 
5670 #define 
3403 #define 
2909 #define 
2789 #define 
2779 #define 
2795 #define 
2760 #define 
2759 Wdef ine 
3429 #define 
4415 tdef ine 
2933 #define 
20165 tdef ine 
3692 #define 
3642 #define 
913 #define 
914 tdefine 

INDEX TO SYMBOLS 

F-GETFL 
F-GETLK 
F-OK 

F-RDLCK 
F-SETFC 
F S E T F L  
F-SETLK 
F-SETLKW 
F-UNLCX 
F..WRLCK 
GAFONT-Sf  ZE 
GAGRAPHICS-D 
GAGRAPHICS-I  
GASEQUENCER 
G A S E Q U E N C E R  
G R V I D E 0 4 D D R  

GDT-INDEX 
GDT-SELECTOR 
GDT-S I ZE 
GETGID 
GETPGRP 
G E T P I D  
GETWID 
GET-TIME 
GET-UPTIME 
GRANULAR 
GRANULARITY-S 
HANGING 
HARDWARE 
HARDWARE-STAC 
HARD-INT 

IIASCAPS 
HASHMASK 
HAVE-SCATTERE 
HCLICK-SHIFT 
H C L I C R S I Z E  

HD-CLOCK 
HIGHEST-ZONE 

HOME 
HOME-SCAN 
HUPCL 
HZ 
IBKPC 
ICANON 
I C D  
ICRNL 
IcWl_AT 
ICW1-PC 
I c w - P S  
I C W 4 4 T  
ICW4-PC 
IDLE 
f DLE-STACK 

IDLE-STACK 
IDT-INDEX 
IDF..SELECTOR 
IDT-SIZE 
I EXTEN 
I F X A S K  
IGNBRK 
IGNCR 

916 #def ine 
9 18 tdef ine 
417 Cdef ine 
926 #define 
915 #define 
917 tdefine 
919 #define 
920 #define 
928 #define 
927 ldefine 

13658 Wdsfine 
13656 #define 
13655 Wdef ine 
13654 #define 
13653 Xdef ine 
13657 #define 
5208 Wdefine 
5223 #define 
5203 Xdefine 
3442 #define 
3450 #define 
3421 #define 
3425 Udefine 
3604 tdefine 
3606 #define 
5322 #define 
5313 #define 

16346 Xdefine 
3638 #define 
5674 #define 
3520 #define 
3815 #define 

20168 #define 
2946 #define 
4323 #define 
4324 #define 
2742 #define 
2995 #define 
3818 #define 

13035 #define 
1148 #define 
2914 Wdefine 
2618 #define 
1157 #define 
2516 #define 
1125 #define 
7608 #define 
7609 #define 
7610 #define 
7611 #define 
7612 #define 
3589 #define 
5645 #define 
5647 #define 
5209 #define 
5224 #define 
5204 #define 
1158 #define 

14809 tdef ine 
1126 #define 
1127 #Cefine 

IGNPAR 1128 #define 
IMAGE-DEV 3709 #define 
IMAP 20749 #define 
INDEX 13643 tdef ine 
INDIRECTBLOC 2 01 62 Bdef ine 
INET-PROC-NR 2934 Xdef ine 
I N I T I A L I Z E D  10208 #define 
I N I T A S S E R T  5519 #define 
I N I T A S S E R T  5508 tdef ine 
INIT-PXD 15915 #define 
I N I T - P R O C J R  2935 #define 
INIT-PSW 4306 Ydefine 
I N I T - S P  4321 #define 
INIT-.TASK-PSW 4307 #define 
INLCR 1129 #define 
INODE-BLOCK 2 0160 #define 
TNPCK 1130 #define 
INSRT 3829 #define 
INT2-CTL 4380 #define 
INT2-CTLMASK 4381 #def ine 
INTEL 2754 #define 
I N T R P R I V I L E G  5243 #define 
Sm286-GATE 5297 tdef in@ 
INT-CTL 4378 #define 
INT-CTLMASK 4379 tdef ine 
INT-GATE-TYPE 7709 #define 
INT_MAX 125 #define 
INT-MAX 131 #define 
INT-MIN 124 #define 
I N T M I  N 130 #define 
INVAL-OP-VECT 5251 #define 
INVAL-.TSS_VEC 5 2 5 5 Cde f ins 
IN-CHAR 11679 #def ine 
IN-EOP 11683 #define 
I N 3 O T  11682 tdefine 
IN-ESC 11684 #define 
IN-LEN 11680 #define 
IN-LSHIFT 11681 #define 
IN-USE 16344 #define 
IOC'PL 3444 #define 
IOPLdASK 14810 #define 
IP-FTR 3695 #define 
IRQO-VECTOR 4351 #define 
IRQ8-VECTOR 4352 #define 
I S E E K  20544 Cdef ine 
I S I G  1159 #define 
I S T R I P  1131 #define 
I S-EMPTY 19546 #define 
IXANY 1248 #define 
I X O F F  1 1 3 2  #define 
IXON 1133 #define 
L B L O C K _ S P K I  2980 #define 
I _ C H A R S P E C I A  2982 #define 
ILDSRECMRY 2981 #define 
I X O U N T  20542 #define 
INAMED-PIPE  2983 ldefine 
I N O T A L L O C  2991Sdefine 
L P I P E  20540 #def ine 
1 4 E G V t A R  2979 #define 
I _ S E T _ G I D _ B I T  2985 #define 
I -SET-UID-BIT  2984 #define 



INDEX TO SYMBOLS 

I-TYPE 
K E I T  
K B 4 C K  
KB-BUSY 
KB-COMMAND 
KB-GATEA2 0 
KB-IN-BYTES 
KB-PULSEOWP 
K B B S E T  

KB-STATUS 
KEYBD 

KEYBOARD 
KEYBOARI-IRQ 

KEYMAGIC 
KILL 

KfOCSMAP 
KMEt4DEV 
KSIG 
L S T A C U Y T E S  
R S T A C K B Y T E S  
L 
LAST-FEW 
LATCH-COUNT 
LDI-LDEFAULT 
LDHLBA 
Lln' 
L IYLSIZE 
L E R C O D B  
LEFT 
LEVELOdll'EcmR 
LFLUSHO 
LXMITJIGH 
LINEWRAP 
LINK 

LINllMAX 
LOGXINOR 

' LOK:_MAX 
LONGJfIN 
LOORUP 
LON-USER 
LSEEK 
M1 
M3 
M3-STRING 
M4 
M68000 
MACHINE 
MACINTOSH 
MAJOR 
MAPALOCK 
MAP-COLS 
MAX 

MA82 86-SEG-S 
MAx_BLOCKNR 
MAX_CANON 
M A X S R I M S  
M U J R R O R S  
MAX-ESC-PARHS 
M A l L P I L E P O S  
MAX-INODEJR 
MAXINPUT 

2978 #define 
13030 #define 
13025 #define 
13026 #define 
13020 tdef ine 
13021 #define 
13042 #def ine 
13022 #define 
13023 #define 
13024 #define 
13017 #define 
2709 #define 
4357 #define 
3939 #define 
3434 #define 
188s #define 
3599 #define 
3453 #define 
4400 #define 
4304 #define 
3808 #define 

16823 #define 
11058 #define 
10131 #define 
10132 #define 
5293 #define 
5205 #define 

13027 #define 
3822 #define 
4343 #define 
1 2 5 7  #define 
5326 #define 
2664 #define 
3410 tdefine 
168 ldefine 

11761 #define 
137 #define 
13 6 #define 

19543 #define 
2937 #define 
3420 #define 
3123 #define 
3124 #define 
3126 #define 
3125 #define 
2755 #define 
2616 #define 
2622 #define 
2918 #define 

20163 #define 
3934 #define 
2949 #define 
5271 #define 
2994 #define 
169 #define 

10196 #define 
10202 tdef ine 
13637 #def ine 
2997 #def ine 
2996 #define 
170 #define 

MAX-KBACKRE 
W E - B U S Y 2  
MALPAGES 
M h X S E C S  
MAX-SECS 
MAYBE_.WRI TE.. I 
MAYBE-WRITE-I 
MB_CUR_MAx 
ME-LEN- 
MEM 
MEMCHECKADR 
MEMCHECK-MAG 
n Y T E S  
m D E V  

m P T R  
MEKSTACK 
MESS-SIZE 
MID 
MILLISEC 
MIN 
M I N I X P A R T  
MINOR 
MlNORfdOa 
M I N O R h d l a  
MIOCGPSINFO 
MIOCRAMSIZE 
MXOCSPSINFO 
MIXER 
MIXeRSTACK 
MIXIOGETINPUT 
MIXIOGETINPUT 
M I X I O G m U T P U  
MIXIOGETVOLIM 
MIXIOSETINPUT 

MIXIOSETINPUT 
MIXIOSETOUTPU 
MIXYOSETVOLUH 
MKDIR 
MKNOD 
m P R 0 c I J R  
MONO-BASE 
MONO-SIZE 
MON_CS-INDEX 
MON-CS-SELECT 
MOUNT 
MTIME 
MTIOCGET 
MTIOCMP 
tL6845 
NAmJwx 
NAME PTR 
NCALLS 

NCCS 
N E K T I M E  

NGROUPSMAX 
N I  L B U F  
NIL-DEV 
N I L - F I L P  
NIL-HOLE 
NIL- INODE 
N I S J l E S S  

13028 #define 
13029 Wdef ine  
15910 #def ine 
10200 #define 
10198 #define 
2800 #define 
2802 #define 
1011 #define 
115 #define 

3595 #define 
13038 #define 
13039 #define 
4412 #define 
3598 #define 
3693 #define 
5671 #define 
3226 ldefine 
3826 Cdefine 
11053 #define 
2950 #define 
4122 #define 
2919 #define 
9421 #define 
9420 #define 
1893 .#define 
1891 #def ine 
1892 #define 
3578 #define 
5668 #define 
1925 #define 
1924 #define 
1926 #define 
1923 #define 
192B #define 
1929 #define 
1930 #define 
1927 #define 
3436 #define 
3415 #define 
2932 #define 
13627 #define 
13629 #define 
5214 #def ine 
5230 #define 
3422 #define 

NILPlPROC 
NILMPROC 
NIL- PROC 

NIL-PTR 
N I  L-SUPER 
NKT 
NLEN 

NLOCK 

NMIN 
N M X  -VECTOR 
NDFLSH 

NORMAL 
NOT- ESCAPED 
N o T 3 E v I V I N G  

NOT-SUSPENDED 
NO-BIT 
NO-BLOCK 
NO-DEV 
NO-ENTRY 
N O N P  
No- 
NO_MOUNT 
N O r n  
NO-PART 
NO-PIPE 
NOREAD 
NO-SEEK 
NO-ZONE 

NQ 

NQ 
N U C S  I J R I V E  
N R B U F S  
N R B U F S  

-UPS 
NRBUPS 
NRBUP-HASH 
NRBUP_HhSH 
N R B U F r n H  
N R B U F X S H  
NRCONS 
NTLDEVICES 
N R D I R r n R I E  
N R P D S R I V E S  
NR F I L P S  
NP-HOLES 
NRINODES 
N R I O R E Q S  
NRIRQ-VECTOR 
NRLOCKS 
NFd4m'lS 
NRMEMS 
NR-PARTITIONS 

NRPROCS 
N R P T Y S  
NRRAMS 
NRREGS 
NRRS-LINES 
NR SCAN-CODES 
NR SCSI-DRIVE 
NRSEGS 
NRSUBDEVS 

16354 #define 
18628 tdef ine 
5169 #define 
2915 #define 

20747 ldefine 
5742 #define 

14999 #define 
3851 #define 
3827 #define 
4336 #define 
1160 #define 

19530 ldef ine 
11673 tdef ine 
20031 #define 

I 20029 #define 
19539 #define 
2999 #define 
3002 #define 
3000 #define 
5155 tdefine 

15902 #define 
20 541 #define 
2944 Wdefine 
4123 #def ine 

2 0 53 9 #define 
19531 #define 
20543 #define 
30hl #define 
4429 Cdefine 
4427 #define 
2721 Mefine 
2643 #define 
2648 #define 
2653 #define 
2658 #define 
2659 #def ine 
2654 #define 
2649 #define 
2644 #define 
2694 #define 
10203 #define 
19564 #define 
2736 #define 
19506 #define 
18820 #define 
19507 #define 
2923 #define 
4355 #define 

19509 Wdef ine 
4387 #define 
4403 #define 
4118 #define 
2639 #define 
2696 ldefine 
9719 #define 
4406 #define 
2695 #define 
3935 #define 
2722 #define 
2926 #define 

10205 Cdefine 



NRSUPERS 
NRTASKS 
NULL 
NULL 
NULL 
NULL 
N U L L J E V  
NULL_MAJOR 
NWIOGETHOPT 
NWIOGETHSTAT 
NWIOGIPCONF 
NWIOGIPOPT 
NWIOGTCECONF 

NWIOGTCPOPT 
NWIOGUDPOPT 
NWlOIPDROUTE 

NWIOIPGROUTE 
NWIOI PSROUTE 

NWlOSETHOPT 
NWlOS IPCONF 
NWIOS I P O P T  
NWIOSTCPCONF 
NWIOSTCPOPT 
NWIOSUDPOPT 
NWIOTCPATTACH 

NWIOTCPCONN 
NWIOTCPL I STEN 
NWIOTCPSHUTDO 

NW-CANCEL 
NW-CLOSE 
NW-IOCTL 
NW-OPEN 
NW-READ 
NW-WRITE 
N 4 8 S  
N-BSS 
N-CLASS 

N - c o r n  
N-DATA 
N-SECT 
N-TEXT 
N-UNDF 
OFFSET_HIGh-S 

OK 
OZD-MINIKPAR 
ONESHOT 
ONLCR 
ONOEOT 
OPEN 
OPEN_MRX 
OPDST 
OPTIONAL-I0 
OSRELEASE 
0s-VERSION 
OVERFLOW-VECT 
OACCMODE 
0-APPEND 
O-CREAT 
0-EXCL 
O J O C T T Y  
OJOCTTY 

19508 #def ine 
2953 #define 
2921 #define 
1006 #define 
607 #define 
445  #define 
360C #define 
3596 #define 
1858 #define 
1859 #define 
1862 #define 
1864 #def ine 
1871 #define 
1877 #define 
1880 #define 
1868 #define 
1866 #define 
1867 #define 
1857 #define 
1861 #define 
1862 #define 
1870 #define 
1876 #define 
1879 #define 
1874 #define 
1872 #define 
1873 #define 
1875 #define 
3572 #define 
3568 #define 
3571 #define 
3567 #define 
3569 (define 
3570 (define 
1497 #define 
1500 #define 
1504 #define 
1501 #define 
1499 #define 
1495 #define 
1498 #define 
1496 Wdefine 
5314 #define 
225 #define 

4124 # d e f i n e  
20158 #define 
1252 #define 
1254 #define 
3406 tdefine 
167 #define 

1137 #define 
3529 #define 
2604 #define 
2605 #define 
4338 #define 
946 #define 
937 #define 
931 #define 
932 #define 
933 #define 

11608 #define 

INDEX TO SYMBOLS 

ONNBLOCK 11609 Wde f ine 
OJJONBLOCK 938 #define 
O_RDONLY 941 #define 
OADWR 943 #define 
0-TRUNC 934 #define 
0-WRONLY 942 #define 
PAGEFAULT-VE 5 3 0 3 Wde f ine 
PAGE-GRAN-SHI 5 3 15 Y de f ine 
P A G E S I Z E  15909 #define 
PARENB 1149 #define 
PARMRK 1134 #define 
PARODD 1150 #define 
P A R T I A L D A T L  20166 #define 
PARTITIONING 27 1 3  ldef ine 
PART-TABLGOF 4119 #define 
PARPRINTER 27 39 #define 
PATH-MAX 172 #define 
PAUSE 3430 #define 
PAUSED 16347 #define 
PCR 4390 #define 
PENDING 5158 #define 
PGDN 3825 Cdefine 
PGUP 3824 #define 
P I D  3688 #define 
P I P E  3439 #define 
P I P L B U F  173 #define 
PIPEl)EV 2689 Ydefine 
P I P G S I Z E  19566 #define 
PLUS 3828 #define 
PORT-B 4391 #define 
POSITION 3652 #define 
PR 3699 #define 
PREFETCH 19532 #def ine 
PRESENT 5277 #define 
PRINTER 3591 #define 
P R I N T E R I R Q  43 64 #define 
PRINTERSTACK 5650 #define 
PROC 1 3686 #define 
P R K 2  3687 #define 
PROC31 5101  #define 
P R O C 3 R  3649 #define 
PROTECTION-VE 52 58 #define 
PROTOfH 
eTRACE 
PTYPX-MINOR 
PSLOPPY 
PSRIMARY 
P_SLOT-FREE 
P S T O P  
PSCIB 
W E V  
RAND_MAX 
RBT3IALT 
RBTJONLTOR 

RBT-PANLC 
RBTXEBOOT 
R E T X E S E T  
READ 
READABLE 
READING 
REAL_TIHE 

4703 #define 
3427 #define 
11764 #define 
9422 #define 
9423 #define 
5154 #define 
5160 #define 
9424 #define 
3597 #define 
1010 #define 
437 #def ine  
440 #define 
439 #define 
438 Cdefine 
441 #define 

3404 #define 
5286 #def in% 
2942 #define 
3609 Wdefine 

REBOOT 3465 #define 
RECEIVE 3502 #define 
RECEIVING 5157 #define 
RECOVERYTIME 10207 #define 
REG-BASEO 
REGLEtASE1 

REG-COMMAND 
REG-COUNT 
REG-CTL 
REG-CYLX I 
REG-CYLLO 
REGDATA 
REG-ERROR 
R E G L D H  
REG-PRECOMP 
REG-SECTOR 

REGSTATUS 
RENAME 
RBP-PROCJR 
REP-STATUS 

REQUEST 
REVIVE 
REVIVING 
RIGHT 
RMDIR 
ROBUST 
RCtOTJEV 
ROOTANODE 
RPL 
RS232-IRQ 
R S 2 3 2 J i I N O R  
RUNNING 
RWLMODES 
R A B B S  
R B I T  
U B R A N C H E  
R O K  
RPCRBYTE 
RPCRLONG 
RPCRWORD 
-3 BYTE 
FLRELLBYTE 
LRELLONG 
RRELWORQ 
s 
SAFETY-BYTES 

10122 #define 
10123 #define 
10154 #define 
10126 #define 
10165 #define 
10129 #define 
10128 #define 
10124 #define 
10145 tdef ine 
10130 #define 
10125 #define 
10127 #def ine 
10136 #define 
3435 #define 
3667 #define 
3668 #define 
3651 #define 
3455 #define 

20032 #define 
3823 #define 
3437 #define 
2636 #define 
3708 tdeiine 

19559 #define 
5262 #define 
4361 #define 
11762 #define 
11675 #define 
2987 #define 
1470 #define 
2988 #define 
1478 #define 
420 #define 

1472 #define 
1476 #define 
1474 #define 
1477 #define 
1471 #define 
1475 #define 
1473 #define 
2929 #define 
17693 #define 

SAFETY-CLICKS 17694 Ydefine 
SAME 25422 #define 
S U O C L D S T O P  782 #define 
SA-NOCLDWAIT 791 #define 
SlLNODEFER 778 #define 
SAONSTACK 776 #define 
SkRESETHAhD 777 #define 
SLlU3START 779 #define 
S L S I G I N F O  780 Idefine 
SCATTERED-IO 3526 Xde Cine 
SC- 113 #define 
SCHARMIN 112 #define 
SCHED-RATE 110 54 #define 
SCIOCCMD 1900 #define 
SCREEN 2706 #define 



INDEX TO SYMBOLS 

SCROELdOWN 
SCROLL-UP 
S C S I  
SCSI-STACK 

SCSI-STACK 
SCAOREGLOCAL 
SC-SIGCONTEXT 
SECONDARY-IRQ 
SECONDSLEFT 
SECPORMASK 
S E C T O R S H I F T  
S E C T O R S I Z E  
S E E K C U R  
SEELEND 
S E E K S E T  
SBGMENT 
SEGNOT-VECTO 
s m  
SKNDING 
SEPARATE 
SERVEKQ 
SETGID 
SETPSW 
SBTPSW 
S E T S I D  
SETUID 
SETALARM 

SET-SYNC& 
SET-TIME 
SF1 
SF10 
SF11 
S F 1  2 
SF2 
SF3 
S F 4  
SF5 
S F 6  
SF7 
SF8 
SF9 
S W W I N G  
S W W I N G  
SHADOWING 
SHAWWING 
SHADOW-BASE 

s m w m  
SHAWW-Q 
S H I F T  
SWRT_MAX 
S K R T X I N  
S IGABRT 
SIGACTION 
SIGALRM 
SIGBUS 

SIGCHLD 
S I G r n N T  

SIGEMT 
S I G P P E  
SIGHUP 
SIGILL 

13634 Cdefine 
13633 #define 
3581 #define 
5659 #define 
5663 #define 
2140 #define 
2139 tdef ine 
4360 #define 
3645 #define 
9052 Cdefine 
9051 #define 
9050 #define 
424 #define 
425 #define 
423 tdef i n e  
5280 #define 
5256 #define 
3501 #define 
5156 #define 

16349 #define 
4422 #define 
3441 #define 
4309 tdefine 
4409 #define 
3449 #define 
3424 #define 
3603 We£-ine 
3607 #define 
3605 #define 
3907 #define 
3916 #define 
3917 #define 
3918 #define 
3908 #define 
3 9 0 9  #define 
3910 #define 
3911 #define 
3912 #define 
3913 #define 
3914 #def ine 
3915 #define 
2764 #define 
2774 #define 
2780 #define 
2791 #define 
8814 #define 
8815 #define 
4426 Cdefine 
3812 Xdef ine 
119 #define 
118 #define 
729 #define 

3459 #define 
738 #define 
742 #define 
747 #define 
748 #define 
741 #define 
732 #define 
724 #def ine 
727 #define 

SfGINT 
S I G I O T  
S I G K I L L  
SIGNAL 

S IGNlM 
S IGPENDING 
S I G P I P E  
SIGPROCKASR 
SIGQUIT 
SIGRETURN 
SIGSEGV 

S I G S M P  
SKGSUSPEND 
SICSUSPENDED 
SPXW?M 
SIGTRAP 
S I G T S T P  
S I G T T I N  
S I GTTOU 
SIGUNUSED 
S I G U S R l  
SIGUSR2 
S I G X L O C K  
SIG-CATCH 
S IG-CTXT-PTR 
S I G D F L  
S IG-ERR 

S I G H O L D  
S I G I G N  
SIG-INQUIRE 

S I G N A P  
S IGMSG-PTR 
SIG-PENDING 
SIG-PROC 
SIG-SETMASK 
SIG-UNBLOCK 
SLASHSCAN 
SLOCX 
SMALL-STACK 
SMART 
SPARC 
SQUARKWAVE 
SRC-BUFFER 
SRC-PROCJR 
SRC-SPACE 

SSXZE-MAX 
SS-INDEX 
ss-SELECTOR 
S T  

STACKCHANGED 
STACKFAULT-V 
STACKGUARD 
S T A C h F T R  
STAT 
STATUS-BSY 

STATUS-CRD 
STATUSDRQ 
STATU S-ERR 
STATUS-IDX 
STATUS_RDY 
STATUS-SC 

725 #define 
730 #def ine 
733 #def ine 

3443 tdefine 
3691 #define 
3461 #define 
737 #define 
3462 #define 
726 #define 

3 4 6 3 Sdef ine 
7 3 5 tdef ine 
749 #define 

3460 #define 
16352 #def ine 
739 #define 
728 #define 
750 #define 
751 #define 
752 #define 
731 #define 
734 #define 
736 #define 
785 #define 
766 tdefine 

3699 tdef ine 
7 63 #define 
762 #define 
765 #define 
764 #define 
788 #define 
3697 #define 
3698 #define 
5159 #define 
3696 #define 
787 #define 
786 #define 

13034 #define 
3862 #define 
5637 #define 

10210 #define 
2756 #define 

11059 #define 
3673 #define 
3672 #define 
3671 #define 
176 #define 

5212 #define 
5228 #define 
2701 #define 
17623 Pdefine 
5257 #define 
5151 #define 
3689 #define 
3419 #define 

101 37 #def ine 
10142 #define 
10141 #define 
10144 #define 
10143 Wdef ine 
10138 #define 
10140 #define 

STATUS-WF 10139 fdefine 
S T D E R R F I L E N O  433 #def ine 
STDIN-FILENO 531 #define 
STDOUT-FILENO 432 ldef ine 
STE 2702 #define 
STIME 3426 #define 
STOPPED 16351 #define 
STOPPED 11676 #def ine 
STREAM-MAX 174 #define 
SUB-PERDRIVE 10204 #def ine 
SUN-4 2619 #define 
SUN-4-60 2620 #define 
SUPERBLOCK 19561 #define 
SUPEEMAGIC 19518 Wdefine 
SUPELREV 19519 #define 
S U P E R S I Z E  19565 #define 
S U P E R U S E R  2916 #define 
S U P E R V 2  19520 #def ine 
S U P E R V X R E V  19521 tdef ine 
SUPRA 2714 tdef ine 
SUSPEND 3530 #define 
SUSPENDED 20030 #define 
SU-UID 19527 Xdef ine 
SYNC 3433 #define 
S Y N A L m S T A C  5640 #define 
S Y N A L R X T A S K  3587 #define 
SYS3  86-VECTOR 4342 #define 
SYSTASK 3615 #define 
SYSTEM-TIME 3 681 Pdefine 
SYSABORT 3624 #define 
SYS-COPY 3621 #define 
SYS-ENDSIG 3635 #define 
SYS-EXEC 3622 #define 
SYS-FORK 3619 Ydefine 
SYS-FRESH 3625 #define 
SYS-GBOOT 3627 #define 
SYS-GETMAP 3636 #define 
SYS-GETSP 3617 #define 
SYS-GID 19529 #define 
SY S-K I LL 3626 #define 
S Y S M M  3629 #define 
SYS_NEwMAP 3620 #define 
SYS-OLDSIG 3618 #define 
SYS-SENDSIG 3633 #define 
SYS-SIGRETURN 3634 #define 

5673 #define 
3623 #define 
3630 #define 

19528 #define 
3628 #define 
3631 #define 
4341 #define 
3616 #define 
1481 #define 
1484 #define 
1483 Odefine 
2328 #define 
2330 #define 
2329 #define 
2331 #define 
2326 Xdefine 



S-IFREG 
S-IRGRP 
S-IROTH 
S-IRUSR 
S-IRWXG 
$ IRWXO 
S-IRWXU 
S-ISBLK 
S-ISCHR 
s-ISDIR 
s-ISFIFO 
S-ISGID 
S-ISREG 
S-ISUID 
S-JSVTX 
S-IWGRP 
S-IWOTH 
5.-IWUSR 
S-IXGRP 
s-1XDTH 
S-IXUSR 
G-TEXT 
T 
TAB-MASK 
TAB-SIZE 
TAPILSTATO 
TAPESTAT1 
TASKGATE 
TASLPRIVILEG 
TASLQ 
TASXAEPLY 
TCDRAIN 
TCFWW 
TCFLSH 
W G m S  
TCIFLUSH 
TCIOFF 
TCIOFLUSH 
TCION 
TCOFLUSH 
TCOOFF 
TCOON 
TCSABRAIN 
TCSAFLUSH 
TCSANOW 
TCSBRK 
TCSETS 
TCSETSF 
TCSETSW 
TCTRLDEF 
TDZSCARDSEP 
TEOF-DEF 
TEOLDEF 
TBRASE-DEF 
TI 
TIME 
TIMEOUT 
TIMER0 
TIMER2 
TIMERCOUNT 
TIMERFREQ 

2327 Cdefine 
2344 tdef ine 
2349 #define 
2339 #define 
2343 #define 
2348 #def ine 
2338 #defme 
2357 tdef ine 
2356 #define 
2355 #define 
2358 #define 
2333 ldef ine 
2354 #define 
2332 #define 
2335 #define 
2345 #define 
2356 #define 
23411 #define 
2346 Zdef ine 
2353 #define 
2341 #define 
1482 #define 
2927 #define 

11604 #define 
11603 #define 

3663 #define 
3664 #define 
5296 #define 
5244 #define 
4421 #define 
3456 #define 
1841  #define 
1842 #define 
1843 #define 
1836 #define 
1208 #define 
1215 #define 
1210 #define 
1216 #define 
1209 #define 
1213 #define 
1214 #define 
1204 #define 
1205 #define 
1203 #define 
1840 #define 
1837 #define 
1839 #define 
1838 #define 
1270 #define 
1289 #define 
1276 #define 
1277 Xdef ine 
1278 tdefine 
5261 #define 
3414 #define 

10206 #define 
4392 tdef ine 
4393 #define 

11061 #define 
11062 #define 

INDEX TO SYMBOLS 

TIXEKMORE 4394 Mefine 
TImS 3440 ldef ine 
TIMENEVER 11687 #define 
TINPUT-DEF 1271  #define 
TINTRDEF 1279 #define 
TIOCGETC 1852 #define 
TIOCGBTP 1859 #define 
T I  OCGPGRP 1846 #def ine 
TIOCGWINSZ 1844 #define 
TIOCSEW 1853 #define 
TIOCSETP 1851  #define 
TIOCSFON 1848 #define 
TIOCS PGRP 1847 #define 
TIOCSWINSZ 1845 #define 
TKILLLDEF 1280 #define 
TLNEXTSEF 1288 tdef ine 
Tt.dxAL_DEP 1273 #define 
TMIN_DEP 1281  #define 
TOSTOP 1161 #define 
TOT-STACILSPA 5677 #def ine 
MUTPUTSKF 1272 #daf h e  
TQtrITssP 1282 #define 
TRACEBIT 4408 #define 
TRACEBIT 4308 #define 
TRACED 16350 ldef ine 
TRAP-286-GATE 52 98 #dcf ine 
TREPRINTDEP 
TRUE 
T-DR 
TLDATA 
TRPROCNR 
TRREQUEST 
TRVLSIZE 
TSPEED-DEF 
TSS3-S-SPO 
TSSBUSY 
TSS-INDEX 
TSSSELECTOR 
TSS-TYPE 
T S T A R ~ D E F  

TSTOPJEF 
TSUSPDEF 
rn 
TTIMESEF 
Tm 
TmPhMINOR 
T T Y J X I T  
TTY-FLAGS 
Tm-IN-BYTES 
r n 4 T N E  
m - P G R P  
TTY_REWEST 
TTY-SETFGRP 
TTY-S P M  
r n Y S T A C K  
TYP W 
TZNAME_MAX 
T-EXIT 
T-GETDATA 
T-GETINS 
T-GETUSER 

1287 #define 
2911 #define 

15463 #define 
15464 #define 
15461 #define 
15462 #define 
15465  #define 

1274 #define 
5964 #define 
5288 #define 
5215 #define 
5231 #define 
7710 #define 
1283 #define 
1284 #define 
1285 #define 
2703 #define 
1286 #define 
3517 #define 

11763 #define 
3528 #define 
3659 #define 
11602 #define 

3656 #deEine 
3660 #define 
3657 #define 
3527 #define 
3658 #define 
5639 &define 
4501 #define 
175 #define 

2216 #define 
2210 tdefine 
2209 Cdefine 
2211 #define 

T-OX 
TRESUMG 
T-SETDATA 
T-SETINS 
T-SETUSER 
TSTEP 
T-STOP 
u- 
UINTlMAX 
u m m  
mcwGAAx 
UMASK 
UMOUNT 
UNLINK 
UNPAUSE 
UP 
USEILPRIVILEG 
USEFLQ 
USmTIIIE 
USHRT-MAX 
UTmE 
v1 
VLINDIRECTS 
Vl-XNODS-PER 
VLINOPGSIZE 
VIJaLDZONES 
VIINR-TZONES 
V I - Z O ~ S  
v2 
V2-INDIRECTS 
V2-INODES-PER 
V2-INODGSIZE 
v2_IvRDzOraES 
WSJRTZONES 
v2 _zoNE_NUM_s 
VDISCARO 
VECTOR 
VEOP 
VEOL 
VERASE 
VIDEO-INDEX 
VIDEOSELECT0 
VID-ORG 
VINTR 
VKILL 
VLNEXT 
W I N  
VQUI T 
VREPRINT 
VSTART 
VSTOP 
VSUSP 
VTl 00 
VTIME 
WAIT 
WAITING 
WALTPID 
WAKEUP 
WITSTATUS 
WIFWITED 
WIFSIGNALEB 

2208 #define 
2215 tdefine 
2213 #define 
2212 #define 
2214 #define 
2217 #define 
2207 Cdef ine 

114 #define 
1 3 2  l l e f i n e  
126 #define 
138 #define 

3447 #define 
3423 #define 
3411 #define 
3454 #def ine 
3820 #define 
5245 #define 
4423 #define 
3680 #define 

120 #define 
3431 #define 

19523 #define 
19572 #define 
19573  #define 
19571 #define 
19501 #define 
19502 #define 
19570 #define 
19524 #define 
19578 #define 
19579 #define 
19577 #define 
19503 OdeEine 
19544 #define 
19576 #define 

1262 #define 
4370 #define 
1164 #define 
1165 %define 
1166 #define 
5218 tdef ine 
5234 #define 

1 3  645 #define 
1167 #define 
1168 #define 
1261 #define 
1169 #define 
1170 #define 
1260 #define 
1173 ,tdef ine 
1174 Odefine 
1172 #define 
271D #define 
1171 #define 
3408 tdef ine 

16345 #define 
3412 tdefine 

10193 #def ine 
2525 #define 
2524 #define 
2527 #define 



INDEX TO S YMBOLS 

WIFSTOPPED 2528 #define 
WINCHESTER 3584 #define 
WINCXSTACK 5655 #define 
WINCH-STACK 5653 Ydef ine 
WINI-O-PAIU~V 4374 Cdef ine 
WINI-LPAPXV 4375 tdef ine 
NNOHANG 
MRITE 
WRITEABLE 
WRITE-IHMED 
WRITING 
WSrOPSIG 
WTERMSIG 
WVKPRACED 
W S I T  
W-OK 
XLOCK 
XOPEN 
XPIPE 
XPOPEN 
XTABS 
XT-MINI-IRQ 
h B 1  T 
L O K  
ZHAP 
ZUPERBLOCK 
M S  f 
ANSI 
A N S I - H  
A O U T J I  
A R G S  
ARGS 
_BooT_H 

-CLOCKT 
-CONF I G H  
-CONST 
-CONST 
-DIRH 
-ERlwo-H 
_PCNTL-H 
_HIGH 
-10 
-10 
- 1 O C P A ~ S X  
- 1 r n L - H  
-1OCTYPEXASK 
-fW-IN 
-1oc-INOUT 
-1oC-om' 
-1 OC-VOID 
L O R  
-1OR 
-IORW 
-1ORW 
-1OW 
-IOW 
-LIMITS_H 
-LOW 
-HINIX 
_MINIX 

2521 #define 
3405 #define 
5287 #define 

20157 #def ine 
2943 #define 
2529 #define 
2526 #define 
2522 #define 
2989 #define 

419 (define 
19536 Wdefine 
19535 #define 
19534 #def ine 
19537 #define 

1253 #define 
4362 #define 
2990 #define 

418 #define 
20749 #define 
20164 #define 

24 #define 
28 #define 
2 1  #define 

1403 #define 
35  #define 
47 #define 

3703 #define 
1639 #define 
2631 #define 

39 #define 
51 #define 

2403 #define 
220 #clef ine 
910 #define 

2519 tdef ine 
1828 #define 
1818 #define 
l B l l  Mefine 
1803 #define 
1813 #define 
1814 #define 
1816 tdefine 
1815 #define 
1812 #define 
1829 #define 
1819 #define 
1823 #defirie 
1831 Ydefine 
1830 #define 
1821 #define 
106 lideEine 

2518 #define 
4204 #define 

15804 #define 
19404 #define 

3103 #define 
4006 #define 
233 #define 
158 #define 
722 #define 
4102 #define 

469 #define 
461 #define 
462 #define 
463 #define 
464 #define 
467 #define 
465 #define 
466 #define 
168 #define 
142 #define 
143 #define 
481 #define 
144 #define 
145  #define 
146 #define 
147 #define 
148 #define 
480 #define 
149 #define 
150 Ldefine 
151  #define 

19403 #define 
15803 Wdefine 
4203 #define 

154 #define 
152 #define 
153 #define 

1176 tdef ine 
428 #define 
34 Wdefine 
46 #define 

20817 PUBLIC 
2205 #define 

448 #define 
449 #define 
451 #define 
450 #define 
454 #define 
452 #define 
453 Wdefine 
455 #define 
457 #define 
458 Wdefine 
456 #define 

2001 #define 
224 #define 
227 #define 
706 #define 
717 tdef ine 

1644 #define 
41 #define 
53 Odefine 

1624 #define 
1018 #define 

610 #define 

- S I Z l L T  
- S S I Z E T  
S S I Z E T  
- S T A T 3  
- S T D L I B A  
_STRf IKLH 
S Y S b I B A  
-SYSTEM 
-SYSTEM 
-SYSTEM 
-SY S 3 E Y M A P -  
-TABLE 
-TABLE 
-TABLE 
-TERMIOS_H 
-TIMET 
-TYPES_H 
-TYPE-H 
-UNI STDH 
-VOID 
-VOID 
-VOIDSTAR 
-VOI DSTAR 

-VOLATILE 
-VOLATILE 
-WAIT-H 
-WCHART 
-WORD-S I ZE 
-s ighandler- 
acc-time 
addr 
addr 
adjust 
advance 
a l l o c - b i  t 
alloc-inode 
dl l o c s l e m  
a1 loc-segment 
a1 loc-zone 
a1 lowed 
a l t l  
a1 t2 
ansi-colors 
assert  
assert 
at-winches ter 
audio-task 
b 
bhitmug 
b-da t a 
b-dir 
b - v l - i n d  
b-vl-ino 
b-v2-ind 
b-v2- ino  
buckover 
bad-assertion 
bacL.compare 
beep 
beeping 
b i l l - p t r  

407 Cdef ine 
412 #define 

1629 #define 
2306 #define 
1003 #define 
605 Wefine 

3303 Cdefine 
4205 tdef ine 

15805 #define 
19405 #def in@ 

3803 #define 
5625 #define 

16504 #define 
20804 #define 

1103 #define 
1634 tdef ine 
1607 #def ine 
3101 (define 

403 #define 
50 #def ine 
38  #define 
37 #define 
49 #define 
52 #define 
40 #define 

2516 #define 
1023 #define 
2627 #define 

756 #define 
20601 #define 
16401 Odefine 
20602 #define 
17661. PUBLIC 
24855 PUBLIC 
21926 PUBLIC 
21605 PUBLIC 
18840 PUBLIC 
15715 PUBLIC 
21180 W B L I C  
19120 PUBLIC 
13044 PRIVATE 
13045 PRIVATE 
13703 PRIVATE 

5513 ldefine 
5521 Wdefine 

10294 PUBLIC 
5688 #define 

20125 EXTERN 
20148 #define 
20142 tdef ine 
20143 #def ine 
20144 #define 
20146 #define 
20145 #define 
20147 #define 
12607 PRIVATE 

8935 PUBLIC 
8947 PUBLIC 

14300 PRIVATE 
1 3  67 1 PRIVATE 

5191 EXTERN 



INDEX TO SYMBOLS 

blankcolor 
boot-paramete 
boot-paramete 
boot-t ime 
bp-ctlbyte 
b~cylinders 
bp-heads 
bg-landingzon 
bp-ecc 
bp-precomg 
bp-reducecwr 
bg-sec tors 
bu f -count 
bu f roun t 
buf hash 
bu E-pool 
bu f end 
buffer 
buffer 
buflen 
bufs-ihuse 
cmade 
cname 
call-ctty 
call-task 
caps-off 
capslock 
cause~larm 
causcsig 
cdromtask 
cfgetispeed 
c f ge t ospeed 
cfsetispeed 
cfsetosgeed 
change 

13664 pumrc 
15403 PUBLIC 
22706 PUBLIC 
11068 PRIVATE 
9414 #define 
9409 #define 
9410 #define 
9415 #define 
9413 #define 
9412 #define 
9411 #define 
9416 #define 

2 7 6 10 PRIVATE 
19 3 1 1 PRIVATE 
20150 EXTERN 
22679 PRIVATE 
11694 Cdef i n e  
20603 #define 
9135 PRIVATE 
11693 ldef ine 
20154 EXTERN 
20617 Cdef ine 
20618 #define 
27311 PUBLIC 
27245 PUBLIC 
13049 PRIVATE 
13 04 6 PRIVATE 
11318 PRIVATE 
15586 PUBLIC 
5687 #define 
1236 #define 
1237 #define 
1238 #define 
1239 Wdefine 

25978 PRIVATE 
chec)cpending 18330 PRIVATE 
checksig 18265 PUBLIC 
child 20604 Xdef ine 
cleanup 17 061 PRIVATE 
clear-zone 24149 PUBLIC 
clicktohcli 4328 Ode£ ine 
clicktohcli 4326 tdef ine 
clickto-roun 2967 #define 
clockhandler 11374 PRIVATE 
cloclcmess 2742 3 PRIVATE 
clochess 26417 PRIVATE 
C ~ O C ~ ~ S S  9346 PUBLIC 
clockstop 11489 PUBLIC 
clocktask 11098 PUBLIC 
clocktime 27428 PUBLIC 
coaode 20605 #define 
codebase 50 09 EXTERN 
color 13700 #define 
cornout 10771 PRIVATE 
cornsimple 10843 PRIVATE 
comnon-open 22975 PRIVATE 
commohsetala 11291 PRIVATE 
compare 5522 #define 
compare 5515 #define 
cohloadfant  14497 PUBLIC 
cons-echo 13794 PRIVATE 

cons-orgo 
consstop 
cons-table 
cons-wri te 
control 
c o w 2  
conv4 
coresset6 
cproc-addr 
cstart 
ct ty-close 
c t ty-open 
curcons 
current 
data 
dathbase 
delslot 
dev-i o 
dev-ioc tl 
devmess 
devmess 
devmess 
dev-opc 1 
dmabytes-lef 

dmap 
do-abor r 
do-access 
do-alarm 
dohrk 
do-cancel 
do-chdir 
do-c hmod 
do-chown 
do-chroot 
do-clocktick 
do-close 
do-close 
do-copy 
do-creat 
do-diocntl 
do-dup 
do-endsig 
do-escape 
do-exec 
do-exec 
da-exec 
do-exi t 
do-f cnt 1 
do-f ork 
d o 3  ork 
do-fork 
do-fstat 
do-gboo t 
do-get-t lme 
dose tmap 
do-getset 
dose tsp 
do-getupt i m e  
do-ioct 1 
do-ioctl 
do-ki 11 

14456 PRIVATE 
14442 PUBLIC 
13 69 6 PRf VATE 
13729 PRIVATE 
13048 PRIVATE 
27522 PUBLIC 
27536 PUBLIC 
16224 E X T W  
5180 #define 
6524 PUBLIC 
27151 PUBLIC 
27136 PUELIC 
13697 PRIVATE 

5033 BXPERN 
16416 Cdef ine 
5 0 10 EXTERN 
18926 PRIVATE 
27033 PUBLIC 
12763 PRIVATE 
2702 5 PRIVATE 
2 5 1 19 PRIVATE 
22925 PRIVATE 
27071 PUBLIC 
9025 #define 
20914 PUBLIC 
15131 PRIVATE 
26217 PUBLIC 
18056 PUBLIC 
17628 PUBLIC 
12 2 2 0 PRIVATE 
25924 PUBLIC 
26124 PUBLIC 
26163 PUBLIC 
25963 PUBLIC 
11140 PRIVATE 
12 19 8 PRIVATE 
23286 PUBLIC 
15316 PRIVATE 
22937 PUBLIC 
9364 PUBLIC 

26632 PUBLIC 
15294 PRIVATE 
1404 5 PRIVATE 
14990 PRIVATE 
26795 PUBLIC 
17140 PUBLIC 
26825 PUBLIC 
26670 PUBLIC 
14877 PRIVATE 
26757 PUBLIC 
16832 PUBLIC 
26035 PUBLIC 
15405 PRIVATE 
1 12 19 PRIVATE 
14 957 PRIVATE 
18515 PUBLIC 
150 89 PRIVATE 
11 18 9 PRIVATE 
12012 PRIVATE 
27184 PUBLIC 
15276 PRIVATE 

do-ki 11 
do-ksig 
do-1 ink 
do-lseek 
d o s m  
d o d d i r  
do_mknod 
d o m e x i t  
doslount 
dosewmag 
d o ~ o p  
do-open 
do-open 
do-pause 
do-pipe 
do-pty 
do-rdwt 
do-read 
do-read 
do-reboo t 
do-rename 
do-revive 
do-sends ig 
doset 
do-set-t ime 
do-setalarm 
do-setsid 
do-setsyl lalr  
dosigact ion 

17983 PUBLIC 
17994 PUBLIC 
25434 PUBLIC 
2 3 3 6 7  PUBLIC 
15424 PRIVATE 
23226 PUBLIC 
23205 PUBLIC 
16912 PUBLIC 
25126 PUBLIC 
14921 PRIVATE 
9312 PUBLIC 

12171 PRIVATE 
22951 PUBLIC 
18115 PUBLIC 
24332 PUBLIC 
11782 Cdef in@ 
9227 PUBLIC 
11891 PRIVATE 
23434 PUBLIC 
18128 PUBLIC 
25563 PUBLIC 
26921 PUBLIC 
15157 PRIVATE 
26896 PUBLIC 
11230 PRIVATE 
11242 PRIVATE 
27164 PUBLIC 
11269 PRIVATE 
17845 PUBLIC 

dosigpending 17889 PUBLIC 
dosiggrocmas 17 898 PUBLIC 
doaigreturn 15221 PRIVATE 
dosigreturn 17964 PUBLIC 
do-sigsuspend 1794 9 PUBLIC 
dostat 
do-s t ime 
dosync 
do-time 
do-times 
do-t ims 
do-trace 
do-trace 
do-umap 
do-wnask 
do-umoun t 
do-unlink 
doanpaus e 
do-ut ime 
do-vcopy 
do-vrdwt 
do-wai tpid 
do-write 
do-write 
doxi t 
dont-rep1 y 
dont-reply 
dot1 
dot2 
driver-task 
dump-core 
dup-inode 

26014 PUBLIC 
26475 PUBLIC 
26730 PUBLIC 
26462 PUBLIC 
15106 PRIVATE 
26492 PUBLIC 
15467 PRIVATE 
18635 PUBLIC 
15445 PRIVATE 
26203 PUBLIC 
25241 PUBLIC 
25504 PUBLIC 
24560 PUBLIC 
26422 PUBLKC 
15364 PRIVATE 
9255 PUBLIC 

16992 PUBLIC 
11964 PRIVATE 
24025 PUBLIC 
15027 PRIVATE 
16208 EXTERN 
19909 EXTERN 
24719 PUBLIC 
2472 0 PUBLIC 
9144 PUBLIC 
18402 PRIVATE 
21865 PUBLIC 



INDEX TO SYMBOLS 

eat-puth 
echo 
ef E-grp-id 
ef E-user-id 

e w  
enable-iop 
env-parse 
erki 
er r-code 
err-code 
esc 
except ion 
exec-len 
execname 
extmnsize 
extpartition 
fd 
f a  
f etcbame 
f ile-lock 
filp 
f inddev 
f in&filp 
f indshare 
f indproc 
flush 
flush 
flush 
f 1 ushall 
forbidden 

24727 WBLIC 
12531 PRIVATE 
20606 #define 
20607 #define 
5048 EXTERN 
7988 WBLIC 
8865 PUBLIC 

20608 #define 
19924 EXTERN 
16218 EXTERN 
13047 PRIVATE 
7512 PUBLIC 
16403 tdefine 
16402 #def ine 
5052 WTERN 
9593 PRIVATE 

20609 #define 
20610 #define 
27447 PUBLIC 
20409 EXTERIJ 
20310 EXTERN 
27228 PRIVATE 
22277 PUBLIC 
17535 PUBLIC 
18678 PRIVATE 
27633 PRIVATE 
19334 PRIVATE 
13951 PRIVATE 
21295 WBLIC 
26242 WBLIC 

force-timeout 11688 #define 

f P 19907 EXTERN 
f proc 20026 EXTERN 
f reehi t 22003 PUBLIC 
free-inode 21684 PUBLIC 
f reemem 18879 PUBLIC 
free-slots 18831 PRIVATE 
f ree-zone 21222 PUBLIC 
f xon t 20152 EXTERN 
fs-call 19920 EXTERN 
f s-ini t 22625 PRIVATE 
f unc 16404 tdef ine 
f unc-key 13405 PRIVATE 
ga-.program 14 5 4 0 PRIVATE 
gdt 7755 PUBLIC 
getblock 21027 PUBLIC 
getbootpara 22708 PRf VATE 
get-fd 22216 PUBLIC 
get-filp 22263 PUBLIC 
get-inode 21534 PUBLIC 
ge tname 24813 PRIVATE 
get-parttabl 9642 PRIVATE 
get-super 22047 PUBLIC 
get-uptime 11200 PUBLIC 
get-work 2 2 57 2 PRIVATE 
getwork 166 63 PRIVATE 
W O W  20612 #define 
grpid 16405 #define 
handle-events 12256 PUBLIC 
hc1ickto.-phy 4330 1def ine 
neld-head 50 13 EXTERN 

helLtail 
hole 
hole-head . 
hwintmster 
hwint-slave 
idhyte 
icLlongurord 
idcword 
idt 
in-process 
ihtransfer 
inf o m  
initbuf f er 
ini t-clock 
init-codeseg 
init-datsseg 
init-params 
inode 
int-gate 
interrupt 
intr-ini t 
invalidate 
iof lags 
irq-table 
irq-use 
isconsole 
isidlehardwar 
isokprocn 
isoksrc-dest 
isoksusern 
isokusern 
isrxhardware 
issysentn 
istaskp 
isuserp 
katoi 
kenvi ron 
kget env 
kreenter 
kto-click 
kto-cl ick 
kb-ack 
kb-addr 
kb-ini t 
kb-lines 
kb-read 
kb-wai t 
kbd-hw-int 
$&l oadmap 
last-dir 
ldhinit 
loahram 
load-aeg 
1oacLsupex 

5014 EXTERN 
18827 PRIVATE 
18830 PRIVATE 
6143 #define 
6199 #define 
10426 tdef in@ 
10429 tdef ine 
10427 #define 
7756 PRIVATE 
12367 PUBLIC 
12303 PRIVATE 
15627 PUBLIC 
9205 PRIVATE 
11474 PRIVATE 
7889 PUBLIC 
7906 WBLIC 
103 07 PRXVATE 
20533 eXTHW 
7969 PRIVATE 
6938 WBLIC 
7621 PUBLIC 

21280 PUBLIC 
20611 #define 
5056 EXTERN 
5057 EXTERN 
11767 #def ine 
5170 #define 
5171 #define 
5172 Cdefine 
5173 #define 
5174 #define 
5175 Cdefine 
5176 ldefine 
5177 Cdef ine 
5178 #define 
6594 PRIVATE 
6516 PRIVATE 
6606 PUBLIC 
5015 EXTERN 
2970 #define 
2972 #define 
13 343 PRIVATE 
13041 #define 
13359 WBLIC 
13 0 67 PRIVATE 
13165 PRIVATE 
13327 PRIVATE 
13123 PRIVATE 
13392 PUBLIC 
24754 PUBLIC 
10133 #define 
22722 PRIVATE 
17498 PRIVATE 
2 2 8 3 2 PRIVATE 

1oc)cmini-sen 7331 PUBLIC 
lockop 22319 PUBLIC 
lockpickpro 7349 PUBLIC 
lockready 73 61 PUBLIC 
lockrevive 224 63 PUBLIC 
locksched 7388 PUBLIC 
lockunready 7375 PUBLIC 

lost-ticks 
lowmemi xe 
1s-Ed 
m 
m 
ml 
ml-il 
mLi2 
mLi3 
ml-pl 
mLp2 
ml-3 
mLil 
mlA2 
mLi3 
m2-11 
m2-12 
m2-pl 
m3-cal 
m3Al 
m3A2 
m3-pl 
mLll 
m4-12 
m4-13 
m4-14 
m4-15 
m5-cl 
m S ~ 2  
m5,il 
m5-i2 
m5-11 
m5-12 
m5-13 
m6-f 1 
m6-il 
m6-i2 
m6A3 
1116-11 
mdevice 
mdo-open 
mdtab 
mgeom 
mgeome t ry 
minit 
mioctl 
mprepare 
mschedule 
main 
main 
main 
makebreak 

map-- 
map-ke y 
map-key 0 
maxhole 
maxma jor 
mc 
mem 
memini t 
meminit 

5031 EXTERN 
5053 EXTERN 

20614 #define 
19917 EXTERN 
14812 PRIVATE 
19918 EXTEIW 
3149 #define 
3150 #def ine 
3151 #define 
3152 #define 
3153 #define 
3154 ldefine 
3156 #define 
3157 #define 
3158 tdefine 
3159 #define 
3160 #define 
3161 #define 
3166 Wefine 
3163 fdefine 
3164 #define 
3165 #define 
3168 #define 
3169 #define 
3170 #define 
3171 #define 
3172 #define 
3174 #define 
3175 #define 
3176 #define 
3 177. tdefine 
3178 edef ine 
3179 #define 
3180 #define 
3186 #define 
3182 #define 
3183 #define 
3184 #define 
3185 #define 
9722 PRIVATE 
9829 PRIVATE 
9733 PRIVATE 
9721 PRXVATE 
9934 PRIVATE 
9849 PRIVATE 
9874 PRIVATE 
9759 PRIVATE 
9774 PRIVATE 
6721 PUBLIC 

16627 PUBLIC 
22537 PUBLIC 
13222 PRIVATE 
14660 PUBLIC 
13091 PRIVATE 
13084 #define 
18985 PUBLIC 
20948 PUBLIC 
11070 PRIVATE 
5024 EXTERN 
8820 PUBLIC 
19005 PUBLIC 
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nemtask 9749 PUBLIC 
merge 18949 PRIVATE 
mess 24327 PRIVATE 
nilli-delay 11502 PUBLIC 
milli_elapsed 11 529 PUBLIC 
milli-start 
mini-rec 
mini-send 
rnkmode 
-call 
m e x i  t 
m i n  
m i n i t  
m o u  t 
mode 
m o d e m p  
man-return 
mon_sp 
m o m  t ed 

mp 
nproc 
name 
name1 
name 1-length 
name 2 
nme 2-leng th 
name-lengt h 
name-to-dev 
name len 
nbyt es 
ne t-open 
new-block 
new-icopy 
newmem 
newnode 
next-alarm 
next-pid 
no-dev 
n o n m e  
no-sys 
no-sys 
nop-cleanup 
nop-finish 
nr-cons 
nr-locks 
n m o f  f 
n-P 
nmlock 

numpa-p 
of £set 
ol&icopy 
out-char 
out-process 
owner 

P-- 
panic 
panic 
panic- 
panicking 
parent 
parse..escape 

11516 PUBLIC 
7119 PRIVATE 
7045 PRIVATE 

20615 #define 
16215 EXTERN 
16927 PUBLIC 
16212 EXTERN 
16704 PRIVATE 
16213 EXTERN 
20616 #define 
22926 PRIVATE 
5059 EXTERN 
5058 EXTERN 

22067 PUBLIC 
16207 EXTERN 
16361 EXTERN 
20619 #def ine 
20620 Wdef ine 
2 0623 #define 
20621 tdefine 
20624 Odef ine 
20622 ldefine 
2 5299 PRIVATE 
16406 #define 
20625 (define 
19734 #define 
24190 PUBLIC 
21821 PRIVATE 
17366 PRIVATE 
2 3 11 1 PRIVATE 
11069 PRIVATE 
16825 PRIVATE 
27337 PUBLIC 
9362 PUBLIC 

19161 PUBLIC 
27489 PUBLIC 
9338 PUBLIC 
9329 PUBLIC 

13695 PRIVATE 
19911 EXTERN 
13 051 PRIVATE 
15697 PUBLIC 
13050 PRIVATE 
13 056 PRIVATE 
20626 #define 
21774 PRIVATE 
13 8 09 PRIVATE 
12677 PUBLIC 
20627 tdef ine 
14613 PUBLIC 
6829 PUBLIC 

19172 PUBLIC 
27500 PUBLIC 
27422 PRIVATE 
20629 #define 
13986 PRIVATE 

INDEX TO , . SYMBOLS 

partition 9521 PUBLIC 
patckptr 17465 PRIVATE 
pat hname 20629 #define 
pc-at 5038 EX- 
pendi~g-ticks 11079 PRIVATE 
physb-to-hcli 4331 #def ine 
pickgroc 7179 PRIVATE 
pid 20630 #define 
pid 16407 #define 
pipexheck 24385 PUBLIC 
pipe-open 23176 PRIVATE 
pproc-addr 5187 EXTERN 
prevstr 11081 PRIVATE 
printhuf 19312 PRIVATE 
print-f 2761 1 PRIVATE 
printf 4443 #define 
printf 15913 #define 
printf 19581 #define 

Pro 2 063 1 #def ine 
groc 5186 EXTERN 
proc-addr 5179 #define 
procname 14690 PRIVATE 
procnumber 5181 Ydef ine 
proc-ptr 5 01 8 EXTERN 
proc-vir2phys 5102 #define 
processor 5040 EXTERN 
procs-inxse 16209 EXTERN 
grot-ini t 7767 PUBLIC 
grotectedmod 5044 Cdefine 
protecteclmod 5042 EXTERN 
psmca 5039 EXTERN 
gty-hi t 11781 #define 
puthlock 21119 PUBLIC 
put-inode 21578 PUBLIC 
put-irq-handl 7673 PUBLIC 
put chms'g 19313 PRWATE 
put chmsg 27612 PRIVATE 
putk 27619 PUBLIC 
putk 19320 PUBLIC 
putk 14408 PUBLIC 
r ahead 23805 PUBLIC 
rawecho 12593 PRIVATE 
rhindir 23753 PUBLIC 
rhonly 20632 #define 
rdahehinode 19914 EXTERN 
rdahedgos 19913 EXTERN 
rdwt-err 19925 EXTERN 
rdyhead 5192 EXTERN 
rdy-tail 5193 EXTERN 
readahead 23786 PUBLIC 
reqdheuder 17272 PRIVATE 
readsmg 23689 PUBLIC 
reahonl y 26304 PUBLIC 
reaLsuper 22088 PUBLIC 
read-write 23443 PUBLIC 
ready 7210 PRIVATE 
real-grp-id 20613 lidef ine 
real-user-id 20633 #define 
realtime 11067 PRIVATE 
rear 20153 EXTERN 
reboot-code 16429 #define 

reboot-code 
reboot-flag 
reboo t-size 
receive 
release 
remove-di r 

reply 
reply 
reply-il 
reply-il 
rep1 y-i2 
repl y-11 
reply-pl 
reply-tl 
reply-t2 
reply-t3 
reply-t4 
reply-t 5 
reply-type 
repl y- type 
reprint 
request 
request 
res-ptr 
result2 
r e t m s k  
revive 
reviving 
r m l r u  
rs-init 
#_block 
rw-chunk 
rw- inode 
rw-scattered 
sc-a0 
sc-a1 
sc-a2 
sc-a3 
ac-a4 
sc-a5 
schx  
SC-cs 
SC-CX 
sc-dl 
sc-d2 
scd3 
sc-d4 
scd5 
sc-d6 
s ~ d 7  
sc-di 
sc-ds 
sc-dx 
sc-es 
sc-fp 
sc-fp 
sc-f s 
sc-gs 
se-pc 
sc-pc 
sc-psw 

5060 EXTERN 
16428 #def ine 
16430 ndef ine 
3307 Rdefine 

24090 PUBLIC 
25777 PRIVATE 
22608 PUBLIC 
16676 PUBLIC 
16434 #define 
20647 #define 
20648 ddef ine 
20646 #define 
16435 #clef ine 
20649 #def ine 
20650 #define 
20651 #define 
20652 Cdefine 
20653 #define 
16433 Wdef ine 
20645 #define 
12637 PRIVATE 
16414 #def ine 
20634 Xdefine 
16220 EXTERN 
16219 E X T W  
16436 Idef ine 
24519 PUBLIC 
19912 EXTERN 
21307 PRIVATE 
11778 #def ine 
21243 PUBLIC 
23613 PRIVATE 
21731 PWLIC 
21313 PUBLIC 
2126 #define 
2127 #define 
2128 tdefine 
2129 #define 
2130 #define 
2131 #define 
2104 #define 
2111 #define 
2106 #define 
21L9 #define 
2120 #define 
2121 #define 
2122 #define 
2123 #define 
2124 #define 
2125 #define 
2100 ldefine 
2099 #define 
2105 #define 
2098 #define 
2102 #define 
2132 #define 
2096 #define 
2095 tdefine 
2110 #define 
2134 #define 
2122 #define 
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sc ...psw 2135 #define 
sc-retadr 2108 #define 
sc..retreg 2107 #define 
sc-retreg 2118 #define 
sc..si 2101 #define 
sc-sp 2113 #define 
sc-sp 2133 #define 
sc-ss 2114 #define 
sc-st 2103 #define 
scamkeyboard 13432 PRIVATE 
sched 73 11 PRIVATE 
schehticks 11080 PRIVATE 
scr-ini t 14343 PUBLIC 
scr-lines 13673 #define 
scr-si ze 13674 Wdef ine 
scr-width 13672 #define 
scroll-screen 13896 PRIVATE 
scsi-task 5686 #define 
sdesc 7922 PRIVATE 
search-dir 24936 PUBLIC 
seconds 16408 #define 
seg2phys 7947 PUBLIC 
select~consol 14482 PUBLIC 
send 
sendrec 
set-6845 
set-alarm 
set-leds 
se t-vec 
setattr 
settimer 
shift 
s ig 
sig 
sig-context 
sig-f lags 
sighow 
sigmsg 
signr 
signsa 
sig-osa 
sig-proc 
sig-procs 
sig-ret 
sig-set 
sigchar 
size-ok 
slock 
slockofE 
slot1 
sof tscroll 
sort 
spurious-irq 
stackbytes 
stackptr 
stat-inode 
status 

stop beep 
stop-proc 
super..block 
super-user 

3308 #define 
3306 #define 
142 80 PRIVATE 
18067 PUBLIC 
13 3 0 3 PRIVATE 
7616 tdef ine 
12789 PRIVATE 
12958 PRIVATE 
13 0 5 4 PRIVATE 
20635 #define 
16409 #define 
16424 tdef ine 
16423 Idefine 
16422 Cdef ine 
16426 #define 
16417 #def ine 
16418 #def ine 
16419 #define 
18168 PUBLIC 
5021 EXTERN 

1642 0 Wdef ine 
1642 1 #define 
12866 PUBLIC 
17736 PUBLIC 
13 0 5 2 PRIVATE 
13053 PRIVATE 
20636 tdef ine 
13669 PRIVATE 
9676 PRIVATE 
7657 PRIVATE 
16410 #define 
16411 #define 
2 6 0 5 1 PRIVATE 
16412 #def ine 
14329 PRIVATE 
18691 PUBLIC 
20745 EXTERN 
19908 EXTaRN 

sup-count 199 10 EXTERN 
suspend 24463 PUBLIC 
switching 6921 PRIVATE 
syhal-alive 11075 PRIVATE 
syn-alrm task 11333 PUBLIC 
syktable 11076 PRIVATE 
sys..call 7008 PUBLIC 
sys-task 14837 PUBLIC 
t-stack 5734 PUBLIC 
taddr 16415 #def ine 
task 2 7 0 2 6 PRIVATE 
tasktab 5699 PUBLIC 
tell-fs 19192 PUBLIC 
termios-defau 11803 PRIVATE 
toggle-scroll 14429 PUBLIC 
tat-inemsize 5025 EXTEXN 

tP 20637 #define 
truncate 25717 PUBLIC 
tss 7757 PUBLIC 
tty-aetive 11774 tdef ine 
t ty-addr 11757 #define 
tty-devnop 12992 PUBLIC 
tty-icancel 12891 PRIVATE 
tty-init 12 905 PRTVATE 
t ty-open 27095 PUBLIC 
tty-reply 12845 PUBLIC 
tty-table 11670 EXTERN 
tty-task 11817 PUBLIC 
tty-timelist 11690 EXTERN 
tty-timeout 5032 EXTERN 
tty-wakeup 12929 PUBLIC 

W P  15658 PUBLIC 
mess 23425 PRIVATE 
unhold 740C PUBLIC 
unlinkfile 25818 PRIVATE 
unpause 18359 PRIVATE 
unready 7258 PRIVATE 
update-times 21 704 PUBLIC 
user-path 19921 EXTERN 
uslzeof 19515 #def ine 
usr-id 16413 #define 
utime-actime 20638 #?efine 
utime-file 20640 tdefine 
utime-length 20641 #define 
utimemodtime 20639 #define - 
vga 
vidbase 
vihmask 
v i h p o r r  
vi&seg 
viLsi ze 
vir2phys 
w-conmand 
w-count 
w-do-c lose 
w-do-open 
w-drive 
w-dtab 
w-dv 
r f i n i s h  
w- geometry 

5049 EXTERN 
13 670 PRIVATE 
13663 PUBLIC 
13667 PRIVATE 
13661 PUBLIC 
13662 PUBLIC 

4 4 4 1  #define 
1 0 2 4 3 PRIVATE 
10 2 4 0 PRIVATE 
10828 PRIVATE 
103 5 5 PRIVATE 
10245 PRIVATE 
10274 PRIVATE 
10246 PRIVATE 
10649  PRIVATE 
10 9 9 0 PRIVATE 

wAandler 10976 PRIVATE 
w-identify 10415 PRIVATE 
w-rntr-wait 10925 PRIVATE 
w-name 10511 PRIVATE 
wxeebreset 10813 PRIVATE 
w_nextblock 10241 PRIVATE 
U-opcode 10242 PRIVATE 
w-prepare 10388 PRIVATE 
w-reset 10889 PRIVATE 
w-schedule 10567 PRIVATE 
w-.spec i f y 10531 PRIVATE 
w-status 10 2 4 4 PRIVATE 
w- t imeou t 10858 PRIVATE 
w-tp 1023 9 PRIVATE 
W-waitfor 10955 PRIVATE 
wai tfor 10268 #define 
watch-dog 11072 PRIVATE 
watchdog-proc 11071 PRIVATE 
whence 20642 #define 
who 16214 EXTERN 
who 19919 EXTERN 
winchester-ta 10040 PUBLIC 
wini 10 2 3 0 PRIVATE 
winsize-defau 11811 PRIVATE 
wipe-inode 21664 PUBLIC 
wr- indir 24127 PRIVATE 
wrap 13668 PRIVATE 
wreboot 1 3 4 5 0  PUBLIC 
writeaap 24036 PRIVATE 
wtrans 10237 PRIVATE 
zero-block 24243 PUBLIC 
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Absolute path name, 4 1 2 
Access control list, 448-450 
Access matrix, 448 
Acknowledgement, 73 
ACL (see Access Control List) 
Adapter, device, 155 
Address, virtual, 3 1 9 
Address space, 15 
Advisory file locking, MINIX, 467 
Aging, 336-338 
Aiken, Howard, 6 
ANSI Standard C, 103 
ANSI terminal escape sequence, 249 
Aperiodic event, 90 
Architecture, computer, 3 
Assembly language, 8,9, 22,53-54 
Associative memory, 328 
Atomic action, 66 
Attribute, file, 408-409 
Authentication, 7 3 

user, 442-446 
Avoidance of deadlock, 1 75- 1 79 

Babbage, Charles, 5 
Backup, file, 425-426 
Bad block handling, 206-207 
Banker's algorithm, 175- 179 
Base register, 31 3 
Batch system, 7-8 
Best fit algorithm, 3 18 
Bibliography, 

alphabetical, 5 12-5 17 
suggested readings, 507-5 12 

Binary semaphore, 68 
Bit map, 3 1 6,458-460 
BIOS, 209-2 10 
Bit-map terminal, 237 
Block cache, MINIX, 429,46 1463,474-478 
Block device, 154 

MINIX, 187- 195 
Block size, 422-423 
Block special file, 20,405 
Boot block, MINIX, 12 1,454 
Boot monitor, MINIX, 12 1,209 
Booting MINIX, 96, 1 20- 122 



~ o o k t r a ~ ,  96 
Bounded buffer problem, 64 
Breakpoint, 302 
Buffer cache, 429 
Busy waiting, 59-63 

C-threads, 55 
Cache, 430 
Call gate, Pentium, 356 
Canonical mode, 3 1-32,24 1 
Capability, 450-45 1 
Capability list, 450 
Catching signals, MfNIX, 372 
Cats, identification method, 444 
Cbreak mode, 3 1,247 
CDC 6600,313 
Challenge-response authentication, 444 
Channel, covert, 45 1-453 
Character device, 154 
Character special file, 20, 405 

MINIX, 468 
Checkerboarding, 347-348 
Child process, 16 
Circular wait condition, I68 
Classical IPC problem, 75-82 

dining philosophers, 75-77 
readers and writers, 77-80 
sleeping barber, 80-82 

Cleaner thread, 433 
Click, memory, 363 
Client-server operating system, 42-44 
Clock, MINIX, 222-235 
Clock driver, MINIX, 227-235 
Clock hardware. 223-224 
Clock interrupt handler, MINIX, 230 
Clock page replacement algorithm, 334-335 
Clock software, 224-227 
Clock tick, 223 
Code page, 242 
Command interpreter, 16 
Compaction, memory, 3 14 
Computer emergency response team, 439 
Condition variable, 70 
Confinement problem, 452 

Context switch, 84 
Contiguous file.alIocation, 4 15 
Control sequence introducer, 260 
Controller,device, 155 
Cooked mode, 3 1,24 1 
Core dump, MINIX, 373 
Core image, 16 
Covert channel, 45 1-453 
CP/M, 4 t 9-420 
Critical region, 58-59 
Critical section, 58-59 
Crystal oscillator, 223 
CTSS, 86-87 
Current directory, 4 12 

Daemon, 95, 165 
printer, 57 

Data segment, 25-26 
Deadlock, 69, 1 66- 1 79 

avoidance. 175- 179 
banker's algorithm, 175- 179 
conditions, 168 
d e t ~ c o v e r ,  172 
MINIX, 1 86 
modeling, 169- 17 1 
ostrich algorithm, 170, 1 72 
prevention, 173- 1 75 
resource trajectory, 176- 177 
safe state, 175- 176 
state, 175 

Deadly embrace (see deadlock) 
Debugging dumps, MINIX, 295-296 
Dekker's algorithm, 6 1 
Demand paging, 338 
Descriptor tables, Pentium, 1 18, 352 
Device controller, 155 
Device driver, 94, 1 55, 16 1 - 162 

MINIX, I8 1 - 1 85 
Device independence, 159- 1 60 
Device register, 2 
Device-independent I/O software, MINIX, 185 
Dining philosophers, 75-77 
Direct memory access, 157- 159 
Directory operations. 4 14-4 15 
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Directory, 17,405,410415 
CP/M, 4 19-420 
hierarchical, 4 1 1-4 12 
implementation, 419-42 1 
MINIX, 463,465 
MS-DOS, 420 
root, 18 
structure, 41 9-42 t 
UNIX, 420-42 1 
working, I8 

Dirty bit, 327 
Disk, 200-222 
Disk arm scheduling, 203-205 
Disk hardware, 200-202 
Disk partition, % 
Disk software, 202-208 
Disk space management, 422-424 
Diskette (.we floppy disk) 
Diskless workstarion, 1 22 
Dispatching (see scheduling) 
Display driver, MINIX, 288-295 
Distributed operating system, 12 
Distributed shared memory, 343 
DMA (see Direct Memory Access) 
Domain, protection, 447 

Earliest deadline first algorithm, 91 
ECC (see Em-Coljecting Code) 
Echoing, 242-244 

Feature test macro, 1 12 
FIFO (see First-In First-Otvt page replacernen t) 
File, 17-20,402-410 

bJock special, 20,405 
character special, 20,405 
executable, 405-406 
regular. 405 
special, 20,405 

Fik access, 407-408 
File allocation 

contiguous, 4 15 
i-node, 4 1 8-4 19 
indexed, 4 17-4 18 
linked list, 41 6-4 17 

File attribute, 408-409 
File backup, 425-426 
File descriptor, 19,465-467,48 1-482 
File extension, 40.3 
File locking, MINIX, 467,482 
File naming, 402-403 
File operation, 409-4 10 
File position, MINIX, 465 
File structure, 404-405 
File system, 40 1-503 

bit maps, MINIX, 458-460 
consistency, 426-429 
directories, 419-42 1 
disk space management, 422-424 
implementation, 4 15-434 
log-structured, 432-434 
MINIX, 453-503 
performance, 429-432 Ecken, 5. hcsper, 6 

ElDE (see Extended Integrated Drive Electronics) reliability, 424-429 
Elevator algorithm, 204 root, 19,34 
E m ,  I/O,205-207 File type, 405-407 
Error handling, disk, 205-207 Filler character, 244 
Error-Correcting Code, 1 55 Finger-length identification, 444-445 
Escape character, 245 Fingerprint identification, 445 
Escape sequence, 29 1-294 First fit algorithm, 3 17 

MINIX, 249 First-in First-out page replacement, 333 
Exception, Pentium, 136 First generation computer, 6 
Exokernel, 42 Fixed partition, 3 1 1-3 t 2 
Ex tended Integrated Drive Electronics, 2 1 0 Floppy disk driver, MINIX, 220-222 
Extended key prefix, 286 Font, 
Extended machine, 3-4 loadable, 264 

. Extemal fragmentation. 347-348 MINIX, 264 
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FORTRAN, 6-8 
Fragmentation, 

external, 347-348 
internal, 342 

Free blocks, disk, 423424 
Function key, MINIX, 287 

GDT (see Global Descriptor Table) 
GE-645, I I 
Generic right, 45 1 
Global descriptor table, Pentium, 124, 143, 352 
Global page allocation algorithms, 339-34 1 
Guaranteed scheduling, 89 

Handler, interrupt, 128- 137, 161, 180- 18 1 
Header files, MINIX, 107-1 12,379-382 
Header files, POSIX, 102- 106 
Hertz, 83 
Hierarchical directories, 4 1 1-4 1 2 
History of MINIX, 13- 15 
History of operating systems, 5- 15 
Hotd and wait condition, 168 

I 

IBM PC, 14, 107, 122, 126, 1 

Intel 8088, 12-41, 1 15, 126,208, 30 1,  
3 13,357 

110, 153-304 
clock, 222-235 
disk, 200-222 
MINIX, 1 79-304 
RAM disk, 195-200 
terminal, 235-296 

VO adapter, 208 
VO channel, 155 
I./0 device, 154- 155 
VO device contraller, 155- 157 
UO protection level, Pentium, 199 
VO software, 159- 165 

device independent, 162- 164 
goals, 159-161 
user space, 164- 1 66 

IBM 1401,6,8 
IBM 7094,6,8,9 
ISM System/360,8-9 
IDE disk (see Integrated Drive Electronics disk) 
Incremental dump, 425 
Indirect block, 4 18-4 19 

double, 419 
single, 4 18 

Initialization, MINIX file system, 483-485 
lnpu t software, 24 1 -247 
lnput/Output, (see YO) 
Integrated drive electronics disk, 20 1 
intelligent terminal, 239 
Interleaving, 158 
Internal fragmentation, 342 
Interprocess communication, 16,57-75,97 

MINIX, 137- 140 
dining philosophers, 75-77 
message passing, 72-75 
monitors, 68-72 
readers and writers, 77-80 
sleeping barber, 80-82 

Intempt descriptor table, Pentium, 124, 143 
Interrupt handler, 16 1 

MINIX, 128-137, 180- 181 
Interrupt request, 1 56- 157 
Interrupt vector, 52 
Interrupts, disabling, 59-60 
Inverted page table, 33@33 1 
IOCTL operations, MINK, 27 1 
IPC (see Interprocess communication) 
IRQ (see Interrupt ReQuest) 

Job, 6-8 
Job control, 26,272 
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Kernel, 94 
Kernel cal I, 37 
Kernel mode, 2 
Keyboard driver, MINIX, 282-288 
Keymap, 242 

MINIX, 261 -264 

Laxity, 91 
Layered operating system, 39-40 
LBA (see Linear Block Addressing) 
LDT (see Local Descriptor Table) 
Least laxity scheduling, 9 1 
Least recently used algorithm, 334-338,429 
Lightweight process, 54 
Limit register. 3 13 
Linear address, Pentium, 353 
Linear block addressing; 2 13 
Linked list file allocation, 416-41 7 
Link to a file, 33-34,496-497 
Linux, 15 
Loadable keymap, MINIX, 26 1-264 
Local descriptor table, Pentium, 143,352-353 
Local label. assembler, t 33 
Local page allocation algorithms, 339-34 I 
h a 1  versus global page allocatbn, 339-343 
Locality of teferencre, 338 
Lock variable, 60 . 
Log-structured file system, 432-434 
Logic bomb, 438 
Lord Byron, 5 
Lottery scheduling, 89-90 
Lovelace, Ada, 5 
LRU (see Least Recently Used algorithm) 

Machine language, 2 
Magic number. 406 

MINIX, 454 
Mailbox, 74 

Major device number, 163 
Master boot record, 96 
Mauchley, William, 6 
Mechanism versus policy, 44,93,357 
Memory compaction, 3 14 
Memory hierarchy, 309 
Memory management, 300-397 

best f ir  algorithm, 3 18 
bit map, 316 
first fit algorihm, 3 17 
linked list, 3 17-3 18 
MINIX, 354-396 
next fit qlgorithm, 3 1 7 
quick fit  algorithm, 3 18 
worst f i t  algorithm, 3 1 8 
(see also Page replacement algorithm) 

Memory management unit, 320 
Memory manager, 309 
Memory-mapped YO, 156 
Mernory-mapped terminal, 23i-238 
Message handling, MINIX, 36 1 -362 
Message passing, 72-75 
Microprogram, 2 
MINIX, 

block cache, 46 1 -463 
block device, 187- 195 
block device driver, 190- 193 
boot block, 12 1,454 
boot monitor, 12 1, 209 
boot parameters, 209-2 10 
booting, 96 , 
bootstrapping, 1 20- 1 22 
catching signals, 373 
clock interrupt handler, 230, 233-234 
clock services, 230-23 1 
core dump, 373 
data structures, 1 12- 120 
deadlocks, 186 
debugging dumps, 295-296 
device driver, 94, 1 8 1 - 1 85 
device-independent U 0  software, 185 
device-independent terminal driver, 

264-282,267-273 
DEV-OPEN request, 2 10-2 1 1 
DEVAEAD request, 2 1 1 
directories, 463-465 
display driver, 288-295 
driver library, 193- 195 
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MlNlX (continued) 
escape sequence processing, 29 1 -294 
EXTERN definition, 108- 109,265,380,47 1 
file descriptor, 465-467,48 1-482 
file locking, 467,482 
file position, 465 
file system, 95,453-503 
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WAITPID, 24,25, 106,36 1,384,385 
WRITE, 29,34, 165, 183,257,266, 

270, 271,289,290,393,431,446, 
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