GET PROGRAMMING
JAVA

MEAP Edition
Manning Early Access Program

Get Programming with Java
Version 4

Copyright 2019 Manning Publications

For more information on this and other Manning titles go to
manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

http://www.manning.com/
https://forums.manning.com/forums/get-programming-with-java

welcome

First, I want to say thank you for choosing my book, Get Programming with Java!

This version of a Java book is designed to increase your knowledge of programming with
objects. Since Java is considered an object-oriented programming language, it makes sense
that I use that as my tool of choice. It is important to understand that some prior
programming experience is essential to get the most out of this book. It is written with the
premise that you, the reader, have already learned about basic programming constructs, such
as variables, data types, loops and methods. This knowledge can be from programming with
JavaScript, Python, or a similar programming language.

The Java programming language is still considered one of the most popular object-
oriented programming languages available. It was originally developed under Sun
Microsystems, but more recently it was taken over by Oracle.

For this book, you will probably notice right away that I am also a teacher. I approached
this book with the same thought and diligence that I use when preparing to teach Java to
students. Teaching is my lifelong passion, and I think it comes through in this book. I'm
telling you this, so you know this is not strictly a technical book about all things Java, it is a
book that teaches you the important concepts in Java starting with an understanding of object
representation through advance topics such as inheritance, file processing, collections, and a
discussion on design patterns in Java.

After completing this book, you can add Java to the list of tools in your toolbox. In today’s
job landscape, this is a great addition to any resume. Be sure to update your Linkedin profile
with this skill!

I strongly encourage you to post any questions or comments you have about the content
in the book’s forum. This feedback is appreciated so that I can make improvements and
increase your understanding of the material.

Sincerely,
—Peggy Fisher

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java
https://forums.manning.com/forums/get-programming-with-java

brief contents

UNIT 0: GETTING STARTED WITH JAVA
Lesson 1 Get Started

UnNIT 1 CLASSES AND OBJECTS

Lesson 2 Creating classes

Lesson 3 Visibility modifiers

Lesson 4 Adding methods

Lesson 5 Adding loops

Lesson 6 Aprrays and ArrayLists

Lesson 7 Capstone 1 (Payroll)

UNIT 2: APPLICATION PROGRAMMING INTERFACE (API)
Lesson 8 Standard Java API

Lesson 9 String and StringBuilder Classes
Lesson 10 Static methods and variables

Lesson 11 Using interfaces

Lesson 12 Capstone 2

UNIT 3: PROGRAMMING WITH OBJECTS
Lesson 13 Overloading Methods

Lesson 14 Ouverriding Methods

Lesson 15 Polymorphism Explained

Lesson 16 Polymorphism in Action

Lesson 17 Comparing Objects

Lesson 18 Capstone 3

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

UNIT 4:
L esson 19

Lesson 20
Lesson 21
Lesson 22
Lesson 23
Lesson 24
Lesson 25
Lesson 26
UNIT §:

Lesson 27
Lesson 28
Lesson 29
Lesson 30
Lesson 31
Lesson 32
UNIT 6:

Lesson 33
Lesson 34
Lesson 35
Lesson 36
Lesson 37
Lesson 38

MORE PROGRAMMING WITH OBJECTS
Pass by Value vs. Pass by Reference

Garbage Collection

Java Collections: List
Java Collections: Set
Collections: Quenes
Collections: Maps

Using Generic classes
Capstone 4

FILE PROCESSING
Reading from Files
Writing to Files

Using Streams from Java 8
Data parsing

File error handling
Capstone 5

ADVANCED TOPICS
Exception Handling
Lambda Functions
Coupling/ Cobesion

Design Patterns

Singletons

Encapsulation

SPECIAL LESSONS:
How to run Java programs from the terminal
How to use | Shell
Package your app for deployment

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

Unit 0

Getting Started with Java

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

Get Started

After reading lesson 1, you will be able to:

o Install the NetBeans Integrated Development Environment (IDE)
e Configure IDE settings for writing Java programs
e Type in code, compile it, and run it using the IDE

This lesson walks through the process of installing all the parts needed to write code and run
your Java programs using the NetBeans IDE on both macOS and Windows. There has been
much debate over whether the use of an IDE should be used to teach programming skills. The
other option is to use a text editor to type your code, then use a command prompt window to
compile and run the code. Personally, I prefer to start with an IDE for a few reasons:

e An IDE helps find syntax errors prior to code execution (avoids frustration)

e New programmers can build confidence in their ability to write code quickly

e Allows new programmers to concentrate on understanding the logic of coding, not the
details of the language

e Provides tools to help debug when there are logic problems that are not readily seen in
the code

When you first learn to program, using an IDE provides several advantages. For example,
when typing your code using an IDE, there is instant feedback regarding syntax errors and
even some logic errors, such as trying to use undeclared variables. Java is a strictly-typed
programming language; every variable must be defined with a data type and in many cases
initialized prior to use. Another nice feature of most IDEs is some form of code completion.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

11

Consider this

You're comfortable programming in a different language than Java, and ar familiar with basic object-oriented concepts.
Now, you want to start programming in Java, the first thing you need to know is the difference in the syntax for Java
compared to other languages. To begin with, one of the key syntactical differences is the use of semicolons in Java.
Other languages, such as Python, use spacing and indentation to dictate blocks of code and the end of a statement. In
Java, every statement must end with a semicolon. When typing code into an IDE, it provides an instant error and a hint
if you forget to include the semicolon. Do you think using an IDE is an advantage when learning a new language?

What is an Integrated Development Environment

An Integrated Development Environment is designed to provide a one-stop shop. Rather than
using a separate text editor to type your code, then invoke a compiler to create a class file
(which is required for code execution), and finally running the program in a Java runtime
environment, all three components are included in one software environment.

Another benefit of using the combined environment is the graphical user interface (GUI) that
provides menus, toolbars, semantic coloring of the text as you type your code, immediate
identification of syntax errors, code completion, and even some compile time errors can be
identified when using an IDE.

One of my favorite parts of using an IDE is the debugging tool that is included. This tool can
be used to find errors in your code, often referred to as ‘bugs’. It can also be used to walk
through the view your code execution one statement at a time and even view the values of all
variables included in the program.

There are many different IDEs available for Java programming. Here are a few of the more
common ones:

e NetBeans

e Eclipse

e Intelli]

e Bluel

e Drlava

e JDeveloper
e ICreator

Each IDE has its pros and cons, but for this book I have chosen to use NetBeans. NetBeans
has many features to make coding more productive, such as:

e Automatically inserting matching braces, brackets, and quotes
e Code formatting

e Smart code completion

e Managing imports

e Ability to generate code

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

1.2

e Providing code templates for commonly used code snippets
e Helping to create the required code to generate a Javadoc
e Semantic code coloring

Did you know

In NetBeans, the code completion feature is usually turned on by default but it can be deselected by going to
Tools/Options/Editor/Code Completion. If code completion is disabled, you can retrieve a list of code options by typing
CTL-Space (Windows) or CMD-Space (mac).

Quick Check 1-1:
Which of the following is NOT a benefit of using an IDE:

Combined text editor, compiler and runtime environment
Code Completion

Integrated debugging tool

Automatic syntax error correction

2 o o @

Install the Java Development Kit (JDK)

Whether you are using an IDE or a text editor to write your code, first you must download the
Java Development Kit, commonly referred to as the JDK. This is available from the Oracle
website: http://oracle.com. When the JDK is downloaded, it automatically includes the Java
Runtime Environment (JRE) and the Java APIs. The JDK provides the tools needed to write
and compile Java code along with access to the prewritten code in the APIs. The JRE provides
the runtime environment for deploying the programs and running them.

Java Language
Toole & Tool APle
Deployment
Uger Interface Toolkite
JRE | Integration Librariee

JOK —

Bage Librariee
Java Virtual Machine

Figure 1.1 The JDK includes the Java Language, Tools, and the Java Runtime Environment (JRE)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

http://oracle.com/
https://forums.manning.com/forums/get-programming-with-java

1.3

It is important to choose the correct download based on your system; for example, I am using
a Macbook Pro, so I chose the download for macOS. (Make sure to select the radio button to
Accept License Agreement before starting the download.) If you are running windows and you
have a 32-bit operating system, choose the x86 version of the downloads.

Java SE Development Kit 8u151

You must accept the Oracle Binary Code License Agreement for Java SE to download this

software.
Accept License Agreement Decline License Agreement

Product / File Description File Size Download
Linux ARM 32 Hard Float ABI 77.9 MB #jdk-Bu151-linux-arm32-vip-hilt.tar.gz
Linux ARM &4 Hard Float ABI 74.85 MB #jdk-8Bu151-linux-armb4-vip-hilt.tar.gz
Linux x86 168.95 MB #jdk-Bu151-linux-i586.rpm
Linux x86 183.73 MB #jdk-8u151-linux-i586.tar.gz
Linux x&4 166.1 MB #jdk-Bu151-linux-x64.rpm
Linux x64 180.95 MB #jdk-Bu151-linux-x64.tar.gz
macOS 247.06 MB #|dk-Bu151-macosx-x64.dmg
Solaris SPARC 64-bit 140.06 MB #jdk-Bu151-solaris-sparcvd.tar.Z
Solaris SPARC 64-bit 99.32 MB #jdk-8u151-solaris-sparcv.tar.gz
Solaris x64 140.65 MB #jdk-Bu151-solaris-x64.tar.2
Solaris x64 97 MB #|dk-8u151-solaris-x64.tar.gz
Windows x86 198.04 MB #jdk-Bu151-windows-i586.exe
Windows x64 205.95 MB #jdk-8u151-windows-x64.exe

Figure 1.2 Screenshot from Oracle website with information on JDK downloads

Once the download is complete, run through the installation process by double clicking on the
download and following the installation instructions.

Quick Check 1-2:
The JDK includes:

a. Java Language, Tools, and JRE
b. Java Language and a debugger
c. Tools, debugger, and JVM

How to Install NetBeans

There are two options for downloading the NetBeans IDE. The Oracle website can be used to
download the JDK alone or there is an option to download NetBeans with the JDK. This saves
you the extra step of downloading two separate files.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

COverview Downloads Documentation Community Technologies Training

Java SE Downloads

=2 Java 2 NetBeans

Java Flatform (JDK) 8 MetBeans with JDK 8
Figure 1.3 Screenshot of Installation options for standalone JDK or NetBeans with JDK
If you already installed the JDK, then it is not necessary to download it again and you can use

the NetBeans website to download the latest version of NetBeans
(https://netbeans.org/downloads/).

NetBeans IDE 8.2 Download 8.1 8.2 Development | Archive
Email address (optional): | IDE English) Platform: [(Mac 08 X O]
Subscribe to newsletters: # Monthly Weekly !

Note: Greyed out technoiugia= are not supported for this rlztiorm.
¥ NetBeans can contact me at this address oy S o HER: M

NetBeans IDE Download Bundles
Supported technologies * Java SE Java EE HTMLS5/JavaScript PHP CIC++ All
L NetBeans Platform SDK . L]
L Java SE . L]
L Java FX L] L]
L Java EE []
L Java ME
L HTML5/JavaScript L] L] .
i
i

PHP . .
C/C++ .
Groovy
Java Card™ 3 Connected
Bundled servers

L GlassFish Server Open Source Edition
411

. .
4 Apache Tomcat 8.0.27 . .
| Download | Download | | D) | Download || Download || Download)

Free;11G'MB Free, 242 MB Free, 142 MB Free, 142 MB Free, 147 MB Free, 277 MB

Figure 1.4 Screenshot of the NetBeans IDE Download page showing all download options

There are several options to choose from, but to follow along with the examples in this book,
choose Java SE download. Also notice the top of the window and make sure you have chosen

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://netbeans.org/downloads/)
https://forums.manning.com/forums/get-programming-with-java

the correct platform. In Figure 1.4, my platform is Mac OS X. The NetBeans website has a
link to Installation Instructions. It is a good idea to check that link since you might be working
with a newer version of the product.

Once the download is complete, launch NetBeans. In the next section, we will review some of
the environment settings to check before continuing with our activities. Figure 1.4 shows a
screenshot of the installation process on a Mac. As you can see, the installation wizard makes
it easy to install. Start by reading the Introduction, then click the Continue button (see
Figure 1.5). The next screen provides all the license information. You must click the Agree to
button. The Destination Select gives you the option to change the default location, then
click the Continue button again. At the next window, click the Continue button. At the very
end, you will get a summary of the install.

Welcome to the NetBeans 8.2 Installer

] You will be guided through the steps necessary to install
Introduction NetBeans IDE with the Java SE pack.

Continue

Figure 1.5 Screenshot of NetBeans Installation on a macOS

When NetBeans is opened for the first time, you will see the Start Page (see figure 1.6) From
the Start Page, take a look at the links available under the Demos & Tutorials or click the
button ‘Take a Tour’ to learn about NetBeans.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

14

&) JavaRocks java &1 [StartPage ©

%NE‘BBHIISII]E Learn & Discover My NetBeans What's New

Learn & Discover

Take a Tour Demos & Tutorials Featured Demo
Try a Sample Project

Java SE Applications Cannot connect to internet.
What's New Java and JavaFX GUI Applications
Community Corner Java EE & Java Web Applications

C/C++ Applications
PHP and HTMLS Applications
Mobile and Embedded Applications

All Online Documentation >>

ORACLE

Figure 1.6 Screenshot of the Start Page in NetBeans

Did you know

Every time you open NetBeans, the Start Page will automatically show up. On the upper right corner of the Start Page,
you can deselect the ‘Show on Startup’ checkbox. If you accidentally changed the checkbox but you want to see the
Start Page, simply go to the Help option and choose Start Page.

Quick Check 1-3:

True or False: If I accidentally closed the ‘Start Page’, I can’t get back to the page
without restarting NetBeans.

NetBeans Environment Setup

The first setting that you want to check in your NetBeans installation is the Java Platform
version. Go to Tools/Java Platforms, make sure that the Platform name and Platform
Directory are set to your version of the JDK. On a Windows machine, the JDK is usually in this
folder: C:\Program Files\Java\ by default. For a macOS, the JIDK is located here:
/Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home.

Next, depending on what other programming languages and IDEs you might have used, you
might want to personalize the settings such as the background color, the font size, and so on.
The default profile is called NetBeans and it provides a white background. There are several
themes that are included in the download. On a Windows machine, you can go to
Tools/Options/Fonts & Colors. For a mac, go to NetBeans/Preferences/Fonts & Colors. Many

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

programmers prefer a black background, so feel free to change it to your preference. Figure
1.5 show the NetBeans Options window on a Mac.

&8y oo) L — {2 QFilter (32+F) ©
e 'y 3 O - g3
e @ Uah =lava gy Ul S5
General Editor Fonts & Colors Keymap Java Team Appearance Miscellaneous
Profile: NetBeans s Duplicate ... Restore

Highlighting Annotations Diff Versioning

Language: All Languages

<>

Category:

Default Font: Monospaced 18

Character

Comment Foreground: W Black S

Entity Reference

Figure 1.7 Screenshot of the Options menu in NetBeans

Quick Check 1-4:

To change the look and feel of the IDE code window, change the

a. Keymap

b. Profile

c. Category

d. Appearance

1.5 Write a Java Program Using NetBeans

Now that we have installed all of the parts needed to start programming in Java, let’s write
our first program.

In the NetBeans IDE, start by using the File menu, choose New Project. A dialog box appears,
choose Java /Java Application and hit Next.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

10

Steps Choose Project
1. Choose Project
> Q
Categories: Projects:
| ava & Java Application
[JavaFx & Java Class Library
Maven @ Java Project with Existing Sources
7] NetBeans Modules A% Java Free-Form Project
» 7] Samples
Description:

Creates a new Java SE application in a standard IDE project. You can also
generate a main class in the project. Standard projects use an
IDE-generated Ant build script to build, run, and debug your project.

Help < Back Next > Finish Cancel

Figure 1.8 Screenshot of first step to create a new project in NetBeans

Give the application a name; for our example, name the project “JavaRocks”, then click Finish.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

11

Name and Location

. Project Name: JavaRocks

tion
Project Location: /Users/mfisher/NetBeansProjects Browse...
Project Folder: /Users /mfisher/NetBeansProjects/Java

Use Dedicated Folder for Storing Libraries
Libraries Folder: Browse...
Different users and projects can share

the same compilation libraries (see
Help for details).

+ Create Main Class javarocks.JavaRocks

Help < Back Next > Finish Cancel

Figure 1.9 Screenshot of NetBeans, here we give our project a name

The IDE creates a project folder with several subfolders and a file with a .java extension. This
is where we write our Java code. Figure 1.8 shows the program that gets created in
NetBeans.

Ve

ﬁ % @ ..;J <default conf... £ EEQ % |> - ' @v O Se
e R I

L
%d:r:iz::: Packages SRS Hiewry | B-B--RATd @ FE
v [javarocks 1 package javarocks;
[&i% JavaRocks.java 2 public class JavaRocks {

» [g Libraries 3l B public static void main(String[] args) {
4 // TODO code application logic here
5 - ¥
3 }
7

Figure 1.10 A screenshot of our first Java program

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

12

Every Java project must include at least one file that contains a main method. In our first
program, line 3 is the start of this method. The main method extends from line 3 where it
starts with an open curly brace and ends on line 5 with a closing curly brace. In the next few
lessons, we will talk more about exactly what each line of code is doing in this example.

Before we run this new program, let’s add a line of code so we can see it print information to
the console. The console is also part of the IDE. Keeping it simple, replace the comment on
line 4 that currently says // TODO code application logic here with this line of code:

System.out.println(“Jdava Rocks!!”);

Make sure that you type the line of code exactly as it appears above. Java is case-sensitive, so
you must use a capital S for System and lower case for the remaining command. The words
inside the double quotes can be mixed case - they are considered a literal constant. Next, we
want to save the program, make sure that you don’t change the file name. In Java, the file
name must match the class name exactly. Once you are done, click the green arrow to the
right of the hammer and brush. You should see output similar to Figure 1.9.

..g_l <default conf... 2 ? % |> - ' {?ﬁ' O~ Search (5 +1) [%]
& mvarocesa o

Source History | @ [[l- B~ 60 GL &F By Of & 4@ b B o© ogE wE oy
1 package javarocks;

2 public class JavaRocks {

3 public static void main(String[] args) {

4 System.out.println("Java Rocks!!"};

5 ° }

6 }

7

Quipuigiaaiosksiicun) I—
[l>| run:

Java Rocks!!
= BUILD SUCCESSFUL (total time: @ seconds)

28

Figure 1.11 Screenshot of the output from running the program JavaRocks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

1.6

13

Quick Check 1-5:

Every Java project must have at least one

a) comment
b) println statement
c) main method

Summary

In this lesson, we reviewed the installations necessary to write Java code, compile your code,
and run your code. We also reviewed instructions for downloading an Integrated Development
Environment.

In the next lesson, we will work on writing code for a program that acts like a calculator. This
lesson is being used as an introduction to the syntax of Java and Java libraries. Some
programming languages, such as Python, do not require as much explicit notation such as
curly brackets to indicate blocks of code. Instead, Python stresses lines and indentation
instead of explicit curly brackets used in Java.

TRY THIS: 0once you have the Java JDK downloaded and the NetBeans IDE installed, create a new project.
Use the sample code from this lesson and instead of printing "Java Rocks", print your name.

QUICK CHECK 1-1:

Which of the following is NOT a benefit of using an IDE:

a. Combined text editor, compiler and runtime environment
b. Code Completion
c. Integrated debugging tool
d. Automatic syntax error correction
QUICK CHECK 1-2:

The JDK includes:

a. Java Language, Tools, and JRE
b. Java Language and a debugger
c. Tools, debugger, and JVM

QUICK CHECK 1-3:

a. False: If | accidentally closed the ‘Start Page’, | can’t get back to the page without restarting
NetBeans. To find the ‘Start Page’, click ‘Help’ in the menu bar and choose ‘Start Page’.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

14

QUICK CHECK 1-4:

To change the look and feel of the IDE code window, change the

a. Keymap
b. Profile
c. Category
d. Appearance
QUICK CHECK 1-5:
Every Java project must have at least one :

a. comment
b. printin statement
¢. main method

ANSWER TO THE TRY THIS:

ﬁ @ @ <default conf... 2 :E % |> - ' @‘ QO Search (32410 [x]

v & JavaRocks - o
Source Histor [- - g =
¥ [[f Source Packages i & E- & SR

v
e
I

¥ [javarocks 1 package javarocks;
[} JavaRocks.java @ public class JavaRocks {
» [Libraries 3 public static void main(String(] args) {
4 System. out.println("Peggy Fisher"};
5 1 }
6 }
7

Output - JavaRocks (run) £ |

= [[> | run:

JavaRocks - Navigator Q‘ u> Peggy Fisher
BUILD SUCCESSFUL (total time: @ seconds)

=

Members & .. O |

Figure 1.12 Screenshot from NetBeans for the updated code and the output message

Listing 1.1: Java program that prints out your name

package javarocks;
public class JavaRocks {
public static void main(String[] args) {
System.out.println("Peggy Fisher"); //#A

}

OO0 WN =

}

#A In the printin statement, | changed “Java Rocks” to my name, “Peggy Fisher”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

15

Unit 1

Classes and Objects

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

16

Creating Classes

After reading lesson 2, you will be able to:

e Define a new class

e Add fields to represent the class attributes

e Add methods to the class to represent class behaviors
e Create objects based on the class definition

Java is an object-oriented programming language, but in order to create objects we have to
start by creating a class. A class in Java is a blueprint or template for an object. So, what
does that mean? Java programs create objects that model items in the real world. These items
can represent physical items such as a car or more abstract objects such as a bank account.
Before we can create a class, we must identify the attribute(s) and behavior(s) of our objects.
I find it helpful to think of the attributes as the adjectives used to describe the object and the
behaviors are the verbs or actions that we can perform on the object. For example, a car has
the following attributes:

e Make
e Model
e Year
¢ MPG
e Color

And the behaviors include:

e Move forward

e Move backward
e Stop (or brake)
e Turn left/right
e Honk horn

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

2.1

17

Consider This

You have been hired by a local car dealership to provide their IT support. The first project is to create a mailing list for
all their customers. The owner wants to automate the process of sending out reminders for customers that need
maintenance appointments for their vehicles. In order to write a program to automate this process, what class(es) do
you think are needed for this project?

Defining a Class

Remember, a class is like a blueprint (or template) for the objects needed in your program.
The best way to understand how to create a class is to walk through an example. So, I am
going to create a class that represents a car. To understand the type of information we need
about each car, table 2.1 contains sample information about three cars.

Table 2.1: Attributes for three cars

make model year mpg color
Subaru Outback 2017 28 black
Chevrolet Malibu 2015 30 grey
Ford Fusion 2018 32 blue

It is time to create our car class in Java. It is possible to use an IDE to create our class, but
since this is our first program, I am going to just use a text editor. To start, I create a file
named Car.java.

Note about Java naming standards
For this example, the Car class is created in a file named Car.java. The Java programming language requlres the file
name to match the class name exactly including mixed case.

Inside the text file, start by using the keyword class followed by the class name. It is
recommended that all class names start with an upper-case letter. Next, I have added all of
the attributes identified for a car using the appropriate data types and variable names. For the
variables that contain descriptive words, I have identified them as string variables. Since the
year is numeric without any decimal points, I declared it as an integer, which in Java is int.
And finally, the field for MPG or Miles Per Gallon is a double since it is a floating-point number.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

18

. ® Car

class Car { <«———— startofCarclass

2 String make; —
3 String model;

. int year; ——carattributes

double mpg;

String color;

i

ActivadD c Taxt c

Figure 2.1 Code listing for the start of the Car class

Note:
The String data type is actually a class, therefore it must be coded with an upper-case S, as opposed to the lower-case
letters for int and double. The String class is discussed in more detail later in this book.

The data fields for a class are often referred to as instance data. It is called instance data
since the values are specific to an instance of the class and are not shared among all instances
of the same class. Instance variables (fields) are defined directly inside the class.

In table 2.1, the first row represents a single object, which is called an instance of the car
class. This specific object has instance data detailing that this car make is a Subaru, model is
a Outback, year is 2017, mpg is 28 and the color is black. This data is not shared with the
other two rows in our table. Each car has its own information.

Quick Check 2.1, fill in the blank and multiple choice:

1. A class is the for an object.
2. A class contains the and for an object, choose one:

a. attributes, behavior
b. name, data type
c. child, parent

3. The class defines the data for an object.
4, Given the class name: MyFirstClass, what is a valid file name for this class:

a. myfirstclass.java
b. MyFirstClass.java

c. anyname.java

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

19

2.2 Add Class Behaviors using Methods

Now that I have added the Car class and the fields for that class, the next important step is
adding the behaviors to our class. Each behavior is added as a method in Java. A detailed
explanation of methods in Java is in a later lesson, but for this example, I am adding a few
simple methods.

In figure 2.2, I have added methods that represent the behaviors of a car. Each method has
the keyword void before the method name. This keyword indicates that the method does not
return any values.

.
& @ Car

1 class Car {

2 String make;

' String model;
int year;
double mpg;
String color;

vold moveForward() {

) }
10 vold moveBackward() { car behaviors

(methods in Java)

}
\}foid stop() { -«
vold turnLeft() {

void turnRight() {

}
void honk() |{
H

ActivedD o Text

Figure 2.2 Code listing of the Car class with methods added

The methods that are declared inside of a class can be used once we create an instance of the
class. In other words, once we have an object defined. In the next section I will show you
how to use the Car class to create car objects.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

20

Quick Check 2.2:
Which statement is not a behavior for the Car class:

a. moveForward()
b. setColor()
c. honk()

2.3 Create objects based on the class definition

Now that we have created our Car class, the next step is to create objects that hold the
instance data about each car.

In Java, each object is given a variable name and then the keyword ‘new’ is used to create the
object. The process of creating an object from a class is called instantiation. In other words,
we are creating a single instance of an object using the class as the model. For this activity, I
will create a new car object. In Listing 2.2, starting on line 20 I added a main method to the
program.

Listing 2.2: Creating a new car object

Uo class Car {

2. String make;

8o String model;

4, int year;

B double mpg;

6. String color;

7a

8. void moveForward() {

9. }

10. void moveBackward() {

11. }

12. void stop() {

13. }

14. void turnLeft() {

15. }

16. void turnRight() {

17. }

18. void honk() {

19. }

20. public static void main(String[] args) { //#A
21. Car myCar = new Car(); /| #B
22. myCar.make = "Subaru"; / 1#C
23. myCar.model = "Outback"; [/ #C
24. myCar.year = 2017; /1#C
25. myCar.mpg = 28; / /#C

26. myCar.color = "black"; //#C

27. }

28. }

#A Every Java program requires a starting point defined as a main method
#B This statement instantiates a new Car object named myCar

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

21

#C Using dot notation, the instance data for the myCar object is populated with real values

Note:
When executing a Java program, the Java Virtual Machine (JVM) searches the code for the main method: public

static void main (String[] args) . Thisis a requirement in every Java application. This is the starting point
of execution in Java.

Inside the main method, line 21 creates the first car object using the Car class. Figure 2.3
explains the parts of this statement.

class name keyword
Car myCar = new Car();
I_I_l I_I_l
object name class name

Figure 2.3 Diagram of the statement used to create a new car object from the Car class

This statement creates the new object mycar. Once the object is created, the next step is to
populate the data fields. Lines 22-26 assign values to the data fields in myCar.

In each of these assignment statements, I use dot notation to access the fields for the object
myCar. In this example, the dot notation identifies the object followed by a dot and then the
variable name of the instance data. In our example, we have myCar.make = "Subaru";.
This updates the car make for the object called mycCar.

In the next Lesson, I will review some best practices when using object-oriented programming
to create objects and retrieve/modify the instance data using methods.

Quick Check 2.3:
1. What keyword is used when creating an object for the first time:
a. new
b. this
c. that
2. The process of creating an object from a class is called:
a. new

b. instantiation
c. encapsulation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

2.4

22

Summary

In this lesson, you learned:

Creating classes and objects is an essential part of any Java program. Remember: the class is
the blueprint used to create the template or model of our real-world objects. Then, we use the

Define a new class

Add variables to represent the class attributes

Add methods to the class to represent class behaviors
Create objects based on the class definition

class to create one or more objects.

In the next lesson, I will add more methods to the class that can be used to retrieve and

modify instance data for an object.

Try this:

A friend owns a pet grooming business.

represent a pet. Each pet must have a name, pet type, owner, and age.

Then write a main method that creates at least three pet objects and provides values for the

instance data of each object.

Quick Check 2.1 Solution:

1.
2.

A class is the blue print for an object.
A class contains the and for an object, choose one:

a. attributes, behavior
b. name, data type
c. child, parent

The class defines the instance data for an object.
Given the class name: MyFirstClass, what is a valid file name for this class:

a. myfirstclass.java
b. MyFirstClass.java
c. anyname.java

Quick Check 2.2 Solution:

2.

Which statement is not a behavior for the Car class:

a. moveForward()
b. setColor()
c. honk()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

For this activity, we want to create a class in Java to

https://forums.manning.com/forums/get-programming-with-java

23

Quick Check 2.3 Solution:

1. What keyword is used when creating an object for the first time:
a. hew
b. this
c. that
2. The process of creating an object from a class is called:
a. new

b. instantiation
c. encapsulation

Solution to Try This Exercise:

It is important to remember that everyone programs slightly different, so your solution might
not be identical to mine, but that is o.k.

Listing 2.3 This is a sample Pet class used to represent a pet

class Pet { [1#A
String petName; //#B
String petType; //#B
String owner; //#B
int petAge; //#B

public static void main(String[] args) { /[#C
Pet p1 = new Pet(); / /#D
p1.petName = "Harley"; / 1 #E
p1.petType = "dog"; | [#E
p1.owner = "Cy Fisher", | [#E
p1.petAge = 4; | [#E
Pet p2 = new Pet(); /1#D

p2.petName = "Harley";
p2.petType = "dog";
p2.owner = "Cy Fisher",
p2.petAge = 4;

Pet p3 = new Pet(); /1#D
p3.petName = "Harley";

p3.petType = "dog";

p3.owner = "Cy Fisher",

p3.petAge = 4;

I3
}

#A Declare the start of the Pet class

#B Instance data for each pet includes name, type of pet, owner’s name and pet age
#C All Java applications require a main method, used as the starting point for execution
#D Instantiate a new pet object

#E Use dot notation to provide values for the instance data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

3.1

24

Visibility Modifiers

After reading lesson 3, you will be able to:

e Organize your application using packages
e Understand the options for visibility modifiers
e Choose the correct modifier for your code

The visibility modifiers determine the access level of the instance data, method, class, etc. In
this lesson I will explain the concept of packages in Java, which is necessary to understand
how visibility modifiers affect your application and review the various types that can be used.

One reason for using these modifiers is to restrict access. Think about a banking application.
One of the classes would probably be for a bank account. The bank account class might have
a customer’s name, home address, birth date, etc. If access to these fields is marked as
public, then there is no way to validate that changes are made correctly. For example, the
birth year could be set to an invalid year such as 2100.

Consider This

The human resources department for Company A uses a Java application to keep track of all employees. The
application has an Employee class that contains all the demographic and pay information about the employee. Only
employees in HR have access to the sensitive information such as an employee’s full name, social security number,
home address, pay scale, etc. What would happen if all of the instance data for the Employee class was marked as
public? How can we protect this data from getting updated with invalid information?

Packages

In Java, a package is a namespace used to group a set of classes together. So far, our
application consisted of only one file with one class, but most Java applications consist of
many files and many classes. The package allows us to connect these classes together.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

3.2

25

When using a package, the package name appears at the very top of your code inside your
class file. Java naming standards recommend that the package name is written in all lower-
case letters to avoid confusion with any class names. To add a class to a package, use the
keyword package followed by the package name, for example:

package packagename;

As we continue to create more complicated classes, one of the benefits of Java is the vast
amount of code already written and tested that is available for general use. These packages
are included in the Java API (Application Programming Interface). The API is a library of
packages that can be used in our applications. Most of these packages are designed for
handling common programming requirements, such as working with String objects or File
objects. This allows us to concentrate on the programming needed to handle the business
requirements for our program.

To leverage other classes in Java that are not part of your current package, we can use the
import statement. The import statement allows us to ‘import’ other packages that contain
one or more classes. For example, any program that reads information from the console uses
the scanner package and must include this statement: import Java.util.Scanner;

Quick Check 3.1:
Packages are used for:

a. grouping multiple classes together
b. mailing a care package to a loved one
c. adding graphics to our program

Visibility Modifiers Explained

There are four possible values used to control access to your code: public, protected, default
(this is the value when the modifier is omitted), and private. Table 3.1 shows each type of
modifier, as you can see it goes from least restrictive (public) to most restrictive (private).

Table 3.1: Access Modifiers in Java

Modifier Class Package Subclass Everywhere
public Y Y Y Y
protected Y Y Y N
none specified Y Y N N
private Y N N N

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

26

It is important to always choose the modifier that is most restrictive but still allows access
when needed. Let’s take a closer look at each type:

e public - this is the least restrictive and allows access to this code from the current
class, the package, any subclasses, and any other classes.

e protected - this modifier allows the same access as public except that it can only be
accessed by the current class, any classes in the same package, and any subclasses.

e default - when the modifier is omitted, it is considered a default visibility. This
restricts access to only the class and classes in the same package

e private - this is the most restrictive and only allows access within the same class

Lesson 2 introduced the topic of classes and objects which are required for any object-oriented
(O0) programming language. In a later lesson, I will review the concept of Inheritance in
much more detail, but to help understand the concepts of visibility modifiers, I want to explain
the relationship of a class and subclass. In Java, we can create a ‘child’ class using another
class as the ‘parent’. This new class becomes a subclass and the parent is called the
superclass. This is one of the strengths of Java, it is referred to as inheritance. Inheritance
allows us to create a class that inherits all the public and protected information from the
superclass and adds any additional information necessary for the subclass. For example, our
Car class could be a subclass of a Vehicle class.

Let’s look at a diagram that depicts two packages. Both packages have two classes, but
package B has a class that is actually a subclass of the Vehicle class in package A.

The car class in package B
Is a subclass of the vehicle class

in package A
Package A Package B
2\
class Vehicle |« subclass class Car
class House class Garden

Figure 3.1 Diagram of two packages to demonstrate the impact of the visibility modifiers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

27

In this example, Car is a subclass of Vehicle. Package A has two classes: Vehicle and House.
Package B has two classes: Car and Garden. Table 3.2 depicts the impact of using each of the
visibility modifiers with these two packages. The table shows the visibility based on the
modifier in the Vehicle class.

For example, if the Vehicle class has a data field marked protected, then only the classes in
the same package (Vehicle and House) and the subclass (Car) can access that data. Note,
when the data is marked as private in the vehicle class, it is not directly accessible by any of
the other classes.

Table 3.2 Access to the other classes from the Vehicle class

Modifier Vehicle House Car Garden
public Y Y Y Y
protected Y Y Y N
none specified Y Y N N
private Y N N N
Quick Check 3.2:
1. Which of the following is not a visibility modifier in Java:

a. public

b. private

c. package
2. T/F: When the private modifier is used, only a subclass access that data.

Which of the following is true about a subclass:

a. Asubclass is a duplicate of the superclass
b. A subclass can access all public and private information from the superclass
c. Asubclass can access public and protected data from the superclass

3.3 Visibility Modifiers in Action

The next step is to use this information to update our Car class with the appropriate visibility
modifiers. Listing 3.1 shows that the updated Car class, specifically all data is marked as
private and methods are public. The next lesson details the impact of using these modifiers
and how it helps with data integrity.

Listing 3.1: Car class updated with visibility modifiers

1. public class Car { [[#A
2. private String make; / /#B

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

28

3. private String model; //#B
private int year; //#B

4, private double mpg; //#B

e private String color; //#B

6.

7. public void moveForward() { //#C

8. }

9. public void moveBackward() { //#C

10. }

11. public void stop() { //#C

12. }

13. public void turnLeft() { //#C

14. }

15. public void turnRight() { //#C

16. }

17. public void honk() { //#C

18. }

19. public static void main(String[] args) {

20. Car myCar = new Car();

21. myCar.make = "Subaru";

22. myCar.model = "Outback";

23. myCar.year = 2017;

24, myCar.mpg = 28;

25. myCar.color = "black";

26. }

27. }

#A The Car class is now declared as public
#B The instance data is marked as private, only methods in the Car class can directly update this data
#C All methods are public, making them available everywhere

In this example, all the instance data have been updated and marked as private. This is used
to make sure that the data is not updated inadvertently. In OO terms, this allows all the Car
information to be encapsulated in the Car class. Each of the methods in this class have been
updated as public. That way, other programs can use the methods once they create a Car
object, such as myCar.honk () ;

3.4 Summary

In this lesson, you learned:

¢ How to organize your application using packages
e What visibility modifiers are in Java
e Choosing the correct modifier in your code

Remember to choose the most restrictive modifier that still provides the access required. In
Java, there are four types of modifiers: public, protected, default and private.

In the next lesson, I will add more methods to a class and show you how to put the class in a
separate file.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

29

Try this:

A friend owns a pet grooming business. Using the class you created from Lesson 2, add the
visibility methods to the class, instance data and methods.

Quick Check 3.1 Solution:
1. Packages are used for:

a. grouping multiple classes together
b. mailing a care package to a loved one
c. adding graphics to our program

Quick Check 3.2 Solution:

1. Which of the following is not a visibility modifier in Java:

a. public

b. private

c. package
2. T/F: When the private modifier is used, only a subclass access that data. False
3. Which of the following is true about a subclass:

a. Asubclass is a duplicate of the superclass
b. A subclass can access all public and private information from the superclass
c. A subclass can access public and protected data from the superclass

Solution to Try This Exercise:

It is important to remember that everyone programs slightly different, so your solution might
not be identical to mine, but that is o.k.

Listing 3.2 The Pet class updated with visibility modifiers

public class Pet { [1#A
private String petName; /| #B
private String petType; [/#B
private String owner; /| #B
private int petAge; / /#B

public static void main(String[] args) {
Pet p1 = new Pet();

p1.petName = "Harley"; / 1#C
p1.petType = "dog";
pi1.owner = "Cy Fisher",

p1.petAge = 4;

Pet p2 = new Pet();
p2.petName = "Harley";
p2.petType = "dog";
p2.owner = "Cy Fisher",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

30

p2.petAge = 4;

Pet p3 = new Pet();
p3.petName = "Harley";
p3.petType = "dog";
p3.owner = "Cy Fisher",
p3.petAge = 4;

}
i3

#A The Pet class is now declared as public
#B The instance data is marked as private, only methods in the Pet class can directly update this data
#C Since these statements are in the same class, the main method can update the instance data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

31

Adding Methods

After reading lesson 4, you will be able to:

e Understand the components of a method signature
e Add Getter and Setter methods to your class
e Add more methods to your program

All programming languages have a way to create a block of reusable code. In Python and
other programming languages it is called a function, in Java it is called a method. The idea is
that the method performs some action, but the calling program does not need to know exactly
how it works, just that it will return the correct result or perform the correct action.

In Lesson 3, I introduced the topic of encapsulation as a pillar of OO programming. A key
feature of encapsulation is using methods to access the private data of a class. The methods
can contain logic to prevent any erroneous data corruption, such as trying to withdraw an
amount more than the current balance of a checking account.

Consider This

Have you ever made microwave popcorn? Some microwaves have a button with a label that says ‘popcorn’. When you
place the bag of un-popped popcorn in the microwave and push that button, it starts to heat up the bag until the
popcorn kernels get hot enough to pop. After a certain amount of time, it shuts off and you have a bag of popped
popcorn. This is similar to a method in Java. The microwave has a ‘popcorn’ method.

Can you think of other examples related to common household objects that might be considered an object with one or
more methods?

4.1 Method Signatures

In Java, a method signature paints a picture about how to use the method. The only required
elements of a method signature are the method’s return type, the method name, parentheses

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

411

32

for the parameter list (which can be empty), and the method body inside curly braces (which
can also be empty).

In addition to these required elements, methods often include a visibility modifier, and a
parameter list inside the parentheses. The keyword static is included when the method is not
associated with a particular object, like the main method. Static methods are addressed later
in the book. Figure 4.1 describes each part of a method signature, including required and
optional components.

visibility return parameter
modifier type list

L |

public static wvoid methodNameEint X, int ya {
— ' I

optional name

start of method
code

Figure 4.1 Diagram of the components in a method signature

Visibility Modifier

In lesson 3, I reviewed visibility modifiers in detail, now let’s see how to use them in our
methods. Remember, a method can have the following visibility modifiers: public, protected,
default and private. It is also possible to omit the visibility modifier in which case the method

is only visible to other classes that share the same package name. Table 4.1 details the
options for visibility modifiers and their impact on the code.

Table 4.1: Visibility Modifiers in Java

Modifier Class Package Subclass Everywhere
public Y Y Y Y
protected Y Y Y N
default Y Y N N
private Y N N N

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

4.1.2

413

4.1.4

33

The visibility modifier plays a key role in enforcing data integrity, so choose your modifier
carefully. Try to use the strictest modifier that still provides the access you need.

Return Type

The return type identifies what type of information is returned from the method. The return
type can be a number, a String, a character, and so on. But, there are times when a method
does not need to return any values to the calling program. In this case, we use the keyword
void to indicate that the method does not return anything. It might be a method that takes
information and prints it to the console. In this case there is nothing to return.

It is important to point out that a Java method is restricted to returning only one type of data.
For example, a method cannot return both a String and a double value, it has to return either
a String or a number defined as a double. To get around this limitation, it is possible to return
an object and I will address that in a later lesson.

Table 4.2 has several method signatures and example return values:

Table 4.2: Sample method signatures

Method Signature Return type Sample return values
public void popcorn() void Does not return any values
public String getFirstName() String "Peggy"
public double averageQuizScore() double 98.74
public int countEmployees() int 125
public char middleInitial() char '
public Car getCar() car Car object, which contains:
"Chevrolet", "Camaro", 2018, 24.5, "Navy"

Method Naming Conventions

Most programmers use camel case when naming the methods in Java, such as findAverage.
The first letter is in lowercase and the first letter of each subsequent word is capitalized. Try to
use meaningful names that describe the function of the method. For example, a payroll
application might have a method named calculateEarnings.

Parameter List

All methods are required to have a parameter list, even if it is empty. The parentheses in the
method signature identify it as a method. The parameter list provides information to the
method from the calling program. For example, if we need to change the last name of an
employee, the new last name can be included in the parameter list. Then the method is used

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

4.1.5

34

to change the instance data field for the employee last name. Here is the method signature
for this method:

public void setEmployeelLastName(String lastName)

The parameter list in the method signature identifies the type of data and provides variable
names for each item included in the list. In this example, the method code updates the
employee’s last name, but does not return any information to the calling program.

NOTE Java uses the terms parameters and arguments when working with methods. Some developers use
these terms interchangeably. But generally, the term parameter is used to refer to the variable listed in the
method signature and an argument is the value that is passed to the method during program execution.

The parameter list can have zero, one or many parameter values. The values in the list do not
have to be the same data type. The parameter list data type must match the data type of the
values in the call to the method. In my example, I can only include one String value when I
call the method setEmployeelLastName.

NOTE if the method does not require any information from the calling program, an empty parameter list
must be provided.

Method Body

When a method is called, control is passed to the method where it executes each statement in
the method. The method body returns control when one of the following occurs:

e all statements have been executed
e a return statement is encountered
e an error is thrown (which is covered later in the book)

If the method executes successfully, it returns control to the statement immediately following
the call to the method. The body of the method has access to the parameters listed in the
parameter list and includes a block of code to accomplish some task.

If the method signature has a void return type, then the return statement can be omitted in
the body of the method. Otherwise, the method body must contain a return statement and
the value returned must match the return type specified in the method signature.

Quick Check 4-1:

1. T/F: The keyword void is used to indicate the method is not used.
2. T/F: A void method must have a return statement.

3. What return type should you use for returning the price of an item?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

4.2

35

4. In the following code snippet, match the visibility modifier, return type, method name, and parameter
list:

public int countSomething(int x, int y, int z) {

visibility modifier countSomething
return type (int x, inty, int z)
method name public

parameter list int

5. Which of the following are valid method names:

a. calculate Cost
b. moveCharacter
c. 1stPlayer

6. What is missing from this method signature:

public void printName {

Adding Getter and Setter Methods

The terms getter and setter are used to describe methods that get and set instance data in a
Java class. Remember, instance data is usually declared as private, therefore, in order to
access this data from within the same class, it is good programming practice to provide a
getter and setter method for each piece of instance data.

The benefit of using a setter method is that we can add additional code checking to enforce
data integrity. For example, if we have instance data that contains a last name, we might
want to add logic to make sure the calling program is not setting it to an empty String.

Let’s revisit the Car class from Lesson 3 and update it with a getter and setter method for
each piece of instance data. Listing 4.1 shows the code from lesson 3. Remember, each car
object was given values for the following instance data:

e Make, Model, Year, Miles Per Gallon (MPG), and Color

Listing 4.1: Car Class

public class Car {

private String make, model, color; /1 #A
private int year;
private double mpg;

public void moveForward() {

}

public void moveBackward() {

ONOOBAWN =

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

36

©), }

10. public void stop() {

11. }

12. public void turnLeft() {
13. }

14. public void turnRight() {
15. }

16. public void honk() {

17. }

18. public static void main(String[] args) {
19. Car myCar = new Car();

20. myCar.make = "Subaru";
21. myCar.model = "Outback";
22. myCar.year = 2017;

23. myCar.mpg = 28;

24. myCar.color = "black";

25. }

26. }

#A Since the three variables: make, model, and color are all String variables, | put them together separated by a
comma

This code works great and demonstrates how to create an object from the Car class. Then it
assigns values to each piece of instance data. But it would be easy to make a mistake, such
as providing a year < 1900 or an empty String for the car make. Also, since the instance data
is marked as private, only code in this class can access these fields. What happens if we want
to make this Car class available to other classes in our application?

The solution is to add getter and setter methods. Code listing 4.2 shows the new Car class
with a getter and setter method for all the instance data.

Listing 4.2: Car Class with Getter and Setter Methods

1o public class Car {

2. private String make, model, color;

8o private int year;

4, private double mpg;

B

6. public String getMake() { return make; } /1 #A
7. public String getModel() { return model; } //#A
8. public String getColor() { return color; } //#A
9. public int getYear() { return year; } [1#A
10. public double getMPG() {return mpg; } [1#A
11.

12. public void setMake(String make) { //#B
13. this.make = make; }

14. public void setModel(String model) { //#B
15. this.model = model; }

16. public void setColor (String color) { //#B
17. this.color = color; }

18. public void setYear (int year) {

19. if(year >= 1900 && year <=2050)

20. this.year = year;

21. else

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

37

22. System.out.println("Invalid year");
23. }

24. public void setMPG(double mpg) { //#B
25. this.mpg = mpg; } /| /#B

26.

27. public void moveForward() { }

28. public void moveBackward() { }

29. public void stop() { }

30. public void turnLeft() { }

31. public void turnRight() { }

32. public void honk() { }

33. public static void main(String[] args) {
34. Car myCar = new Car();

35. myCar.make = "Subaru";

36. myCar.model = "Outback";

37. myCar.year = 2017;

38. myCar.mpg = 28;

39. myCar.color = "black";

40. }

41. }

#A These are getter methods for each field of instance data
#B The setter methods often include data validation, similar to the check for the car year

Now, the Car class has methods for retrieving the instance data about any car object and
updating the data. By making these methods public, they can be used by this program and
others. Also, notice that each getter method has a return type, so when the calling program
uses these methods, it must expect the value returned to be the same data type.

The setter methods require the calling program to provide the data that will be used to update
the instance data, this is provided in the parameter list.

Note:

In each setter method, | had to use the keyword ‘thls’. When a method uses a parameter that has the same name as
the field for that class, we need to identify which piece of data is part of the object vs. the data included in the
parameter list. So, remember, the keyword ‘this’ refers to the object that is affected by the calling program. Figure 4.1
shows the use of the ‘this’ keyword.

class Car {

private String

private int yeay?;

private double mpg;

public voig setMake(Strin {
this.make = make;

public void setModel (String model) {
this.model = model; }

model, color;

Figure 4.2 Shows how to use the keyword ‘this’ for updating instance data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

38

Note:

The setter method uses the dot notation which | introduced in Lesson 2. In this example, it is used for accessing the
instance data, i.e.: this.make. In the next section | will explore more dot notation when | start calling the methods
created for the car class.

Now that we have getter and setter methods defined, I will add code to the main method to
use these new methods. For this example, I am only going to include the main method in the
code listing. The main method will:

Print all the information about myCar
Update all the information about myCar and print the new information

Attempt to update the year of myCar to 2075

Output from executing code in Listing 4.3

My car:
Subaru
Outback
2017
28.0
black

CAR OBJECT DATA BEFORE

My car:
Ford

Mustang
2018 CAR OBJECT DATAAFTER

55.7
Red
Invalid year

This message is generated when the code
tries to set the year to 2075

Figure 4.3 Output listing after executing the code in Listing 4.3

Listing 4.3 Car class using the new getter and setter methods

public class Car {

private String make, model, color;
private int year;

private double mpg;

[1#A
public static void main(String[] args) {
Car myCar = new Car();
myCar.make = "Subaru";
10. myCar.model = "Outback";
11. myCar.year = 2017;
12. myCar.mpg = 28;

©CoONOOOH»OWN =

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

39

13. myCar.color = "black";

14.

15. System.out.println("My car: ");

16. System.out.println(myCar.getMake()); /| #B
17. System.out.println(myCar.getModel());

18. System.out.println(myCar.getYear());

19. System.out.println(myCar.getMPG());

20. System.out.println(myCar.getColor()); //#B
21.

22. myCar.setMake ("Ford"); //#C
23. myCar.setModel("Mustang");

24, myCar.setYear(2018);

25. myCar.setMPG(55.7);

26. myCar.setColor("Red"); //#C
27.

28. System.out.println("My car: ");

29. System.out.println(myCar.getMake()); / /| #D
30. System.out.println(myCar.getModel());

31. System.out.println(myCar.getYear());

32. System.out.println(myCar.getMPG());

33. System.out.println(myCar.getColor()); //#D
34.

35. myCar.setYear(2075) ; / | #E
36. }

37. }

#A Code is omitted to save room, see code listing 4.2 for missing information

#B Each print line statement uses the getter methods to retrieve the instance data for the myCar object

#C Each of these statements update the instance data using the value in the parameter list and calling the setter
methods

#D Print the new values for the myCar object after using the setter methods

#E Try to set the year to an invalid year (2075)

The next section discusses how we can modify the private instance data for our objects.

Quick Check 4.2:
1. Methods used to retrieve instance data are called:
2. Which statement is correct for getting the model of myCar:

a. myCar.getModel;
b. myCar.getModel () ;
c. myCar.setModel () ;

3. Which statement is correct for getting the mpg for myCar:

a. myCar.getMPG() ;
b. myCar.getmpg/() ;
c. getMPG();

4. Methods used to update instance data are called:
5. Which statement is correct for setting the year of myCar to 1998:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

40

a. myCar.setYear (1998);
b. setYear(1998);
c. myCar.getYear (1998);

6. Which statement is correct for setting the mpg for myCar to 50.5:

a. myCar.setmpg(50.5);
b. myCar.setMPG(50.5);
c. myCar.setMPG("50.5");

4.3 Adding More Methods

In addition to the getter and setter methods, there are other methods that can be added to
our program. For example, it might be helpful to have a method that can determine how
many miles can be driven with the current fuel in the car tank.

Every car object has information about the MPG rating for the vehicle, so all we really need is
to ask the user how much fuel is in the tank. Then we can take the MPG and multiply it times
the amount of fuel to determine the distance the car can travel before refueling. For example,
if we have a car with an MPG rating of 34 and 10 gallons in the tank, this car can drive 340
miles before it needs to be refueled.

This example needs to know how much fuel is in the tank, so that value must be included in
the parameter list for our new method. Since the method is calculating the remaining
distance, it will return a numeric value. The instance data field for MPG is a double, so we
should expect the final distance to be returned as a double. Here is the method signature and
the code needed to calculate the distance:

public double calculateDistance(double fuel) {

double distance = fuel * mpg;
return distance; }

In this code, the method signature has a return type of double, and the parameter list has one
value for the amount of fuel in the tank. Inside the method, a new double variable is created
called distance that is calculated using the fuel times the mpg. Then, the distance variable is
returned. Listing 4.4 shows the new method and new statements in the main method to call
this method and print the distance the car can travel.

Listing 4.4: The calculateDistance method is added to the Car class

import java.util.Scanner; [#A
public class Car {

private String make, model, color;
private int year;
private double mpg;

NO OhA WN =

// getter and setter methods are omitted in this printed version

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

41

8.

9. public void moveForward() { }

10. public void moveBackward() { }

11. public void stop() { }

12. public void turnLeft() { }

13. public void turnRight() { }

14. public void honk() { }

15.

16. public double calculateDistance(double fuel) { | /#B
17. double distance = fuel * mpg; / /#C
18. return distance; //#D
19.

20. public static void main(String[] args) {

21. Scanner in = new Scanner(System.in); / 1 #E
22. Car myCar = new Car();

23. myCar.make = "Subaru";

24, myCar.model = "Outback";

25. myCar.year = 2017;

26. myCar.mpg = 28;

27. myCar.color = "black";

28.

29. System.out.println("Enter fuel remaining in tank: ");
30. double fuelInTank = in.nextDouble(); | | #F
31. double distance = myCar.calculateDistance(fuelInTank); /1 #G
32. System.out.println("The car can travel " + distance + "miles"); //#H
33.

34. }

35. }

#A This import statement provides access to the Scanner class which is used to read and write to the console

#B This method signature indicates that it returns a double and has a double as a parameter

#C Add a new variable to hold the value of mpg * fuel in the tank

#D Return a double value

#E Create a new Scanner object, in, that can be used to read data from the command line

#F Read the value entered by the user at the command line, it is expecting a numeric value that can have a decimal
point

#G Call the calculateDistance method on the object myCar, giving it the value for the fuel in the tank and save the value
returned in the variable distance

#H Print out the new value for the distance remaining with the current fuel

In this last section, I added a method to calculate how far the car can travel with the current
fuel in the tank. This method was added to the Car class, so it is only available to objects
created using the Car class. In the main method, I can call (or invoke) this method using the
car object. In this example, my car object is called myCar, so I use the dot notation to invoke
the method: myCar.calculateDistance (fuelInTank) .

Let’s look carefully at the call to the method. Did you notice that I have the variable fuel as
the argument? The call to the method is not the same as the method signature. The
signature provides the instructions for using the method. The call to the method allows me to
pass values to the method, but I don't include the data type.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/get-programming-with-java

https://forums.manning.com/forums/get-programming-with-java

4.4

42

method signature

public class Car {
//code omitted here

public double calculateDistance (double fuel)l {
double distance = fuel * mpg;
return