
 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

TTThhhiiisss pppaaagggeee iiinnnttteeennntttiiiooonnnaaallllllyyy llleeefffttt bbblllaaannnkkk

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Names: Low, Lloyd, editor. | Tammi, Martti (Martti T.), editor.
Title: Practical bioinformatics for beginners : from raw sequence analysis to machine
 learning applications / edited by Lloyd Low, University of Adelaide, Australia,
 Martti Tammi, Tanalink Sdn Bhd, Malaysia.
Description: First edition. | New Jersey : World Scientific Publishing Co. Pte. Ltd, [2023] |
 Includes bibliographical references and index.
Identifiers: LCCN 2022022559 | ISBN 9789811258985 (hardback) |
 ISBN 9789811258992 (ebook for institutions) | ISBN 9789811259005 (ebook for individuals)
Subjects: LCSH: Bioinformatics.
Classification: LCC QH324.2 .P693 2023 | DDC 570.285--dc23/eng/20220713
LC record available at https://lccn.loc.gov/2022022559

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2023 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/12908#t=suppl

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://lccn.loc.gov/2022022559
https://www.worldscientific.com/worldscibooks/10.1142/12908#t=suppl

v

Foreword from the First Edition
Olivo Miotto

Several years ago, when the first draft of the human genome was being
completed, I decided to focus my efforts on the study of pathogen
genomes. Armed with a background in software engineering, one of the
first things that preoccupied me was a problem that loomed on the hori-
zon and had little to do with the fascinating biology that was emerging
from the study of genomes. It was already clear that, in order to study
genetic variations, their effects on phenotype, and their epidemiological
dynamics, it would be necessary to collect massive amounts of data, far
more than most of us could actually handle. The question was not so
much whether storage or processing capabilities would be sufficient —
Moore’s Law had accustomed us to rapid growth in computing power, and
I was confident these technical challenges could be met. The critical
question was whether the people who would be analysing these data
would have sufficient know-how and resources to handle these large
quantities of data, and extract the knowledge they needed. To be sure,
the same problem was faced by companies that needed to build search
engines, hotel booking systems, web-based ratings software, and all the
services based on what we now call “big data”. But genomics looked like
a problem that could not be tackled by computer scientists alone.
Biologists had to be empowered to handle scary amounts of data.

Those issues were evident even before whole-genome sequencing
was revolutionized by the next-generation sequencing (NGS) technologies
introduced by companies such as Solexa (now Illumina). Today, the
MalariaGEN genomic epidemiology project on which I work (malariagen.
net/projects/p-falciparum-community-project) comprises the genomes of
Plasmodium parasites from almost ten thousand clinical samples, each
backed by several gigabytes of short-read sequencing data — far more

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

vi Practical Bioinformatics for Beginners

data than I would have predicted a few years ago. And yet, the knowledge
gap has not been properly filled: if anything, it has become increasingly
harder for life scientists and clinicians to effectively process such massive
quantities of data, and many projects rely on collaborations with informat-
ics specialists who often have limited expertise of the biological domain.

In the light of these difficulties, I give full credit to Lloyd Low and
Martti Tammi for making a significant contribution towards filling the
gap. What they have produced is a very practical guide, part reference
and part tutorial, that will be appreciated by many life scientists for its
direct and straightforward approach. Crucially, the content of this book is
based on years of teaching experience, and “fine-tuned” by keeping in
mind the difficulties routinely faced by those learning how to deal with
NGS data. It contains a useful toolkit of techniques and practices using
some of the most popular tools in use, such as BWA, samtools and so on.

The material covered in this book will support a broad range of applica-
tions: the final chapter suggests some possibilities, but clearly each reader
will have to tackle challenges unique to their own areas of study, and this
work will serve as a base on which to build further techniques. Commendably,
it promotes the definition of a well-organized analytical workflow, and gives
prominence to the quality aspects of genomics work — hugely important
and frequently under estimated. Conducting a GWAS — or constructing a
phylogeny — without first properly evaluating what data to rely upon and
what to discard will invariably lead to useless or false results. It is therefore
essential to instil high standards of quality into the mind of students and
anyone undertaking genomic analyses.

I wish all readers all the best in their endeavours in this complex field,
which I hope they will find rich in rewards.

Olivo Miotto
Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand

Wellcome Trust Sanger Institute, Hinxton, United Kingdom
Centre for Genomics and Global Health, Oxford University,

United Kingdom

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

vii

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Foreword from the First Edition
Nazar Zaki

The revolution that Next Generation Sequencing (NGS) brought to genet-
ics can be compared to the revolution that the invention of the telescope
brought to astronomy. Genetic phenomena can now be studied at the
molecular level and genetic processes can be studied at genomic, tran-
scriptomic and epigenomic levels using NGS technol ogies. The low cost
of sequencing is allowing human genomes to be sequenced routinely and
longer sequencing lengths allow the easier construction of novel
genomes. Therefore, it is essential for researchers working in biology to
have a good grasp of basic concepts in handling NGS data at different
levels. This book provides a succinct and easy to read introduction to the
processing of NGS data at various levels for a general audience.

For the novice user, the first three chapters provide a brief primer to
the technology behind NGS and how to get past the hurdle of aligning
NGS data to a reference genome. The alignment step is demonstrated
using the popular open source aligner BWA and the commercial
NovoAlign aligner that is known for its high accuracy. This chapter is writ-
ten by an engineer at Novocraft itself and the reader can customize the
workflow to achieve the required degree of precision and speed using
NovoCraft products or open source options.

Once past the hurdle of aligning the reads, this book answers what
naturally comes into mind: “What do I do next”? It introduces IGV so that
the users can visualize the alignments and as the next step introduces the
Galaxy framework to create a research workflow. Even if the user is not
an expert in computer science, Galaxy will empower him to establish
some basic research tasks after some experimenting. Overall, the reader
can start diving deeper into analysing NGS data on his own after reading
the first five chapters of the book.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

viii Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

While most of the NGS analysis currently starts with alignment, there
are other applications that require genome assembly. This is especially
true for smaller genomes and it is becoming popular as NGS technologies
that produce very long read lengths are made available. In future it may
be the case that the borderline between sequence alignment and assem-
bly will not be clear cut. In Chapter 6, Dr. Tammi shares his expertise on
sequence assembly with a gentle introduction to the basics of sequence
assembly. Not only does he show the reader how to assemble a genome,
but he also teaches how to gauge the quality of an assembly.

In the next few chapters, the book concentrates on specific application
of NGS. The book has picked a timely set of applications that are being
widely used and the user is guided step-by-step on how to process data for
each application. Exome sequencing has become an important branch of
NGS due to its cost considerations and the higher depth of coverage. We
also have the ability to take snapshots of cells in action using transcriptome
sequencing. Another different branch that is benefitted by NGS is metagen-
omics, which tries to find answers about the total genomic content of sam-
ples in contrast to the previous applications we discussed. Another
important question is how to extract the relationships between genotypes
and phenotypes. All these applications need different approaches and asks
different types of questions. However, techniques used in these areas can
be carried over to other methods. For example, techniques used for pro-
cessing exome sequencing can be useful in working with other targeted
sequencing methods and techniques used to find variations in WGS can be
used in transcriptomic studies. Therefore, the reader can benefit by under-
standing the concepts used to process these different types of data sets.

Nazar Zaki
Professor

Leader, Bioinformatics Research Team
Coordinator, Intelligent Systems

Coordinator, Software Development
College of Information Technology

United Arab Emirates University
Al Ain 17551, UAE

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

ix

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Preface

The secret of life is encoded in DNA sequences. Since the 1970s, many
inventors and innovators have enhanced DNA sequencing technologies
to enable us to move from the painstaking process of reading a single
base to now being able to easily gather the sequences of billions of DNA
fragments. Today, we live in the era where next generation sequencing
(NGS) technologies are commonly available and third generation sequenc-
ers have also found their niches in the market e.g. long read based
genome assembly. NGS is well positioned to replace array-based SNP
genotyping given advances in low pass whole genome sequencing,
sequence capture technology and imputation techniques. Therefore, the
trend for more NGS based applications continues to grow. New users of
NGS usually have not worked with Sanger sequenced data and their
introduction to this field is a straight jump into a dizzying amount of
sequences. It is an understatement to say that it is difficult to handle the
massive amount of sequenced data and to use them to make biological
discoveries.

The idea for this book was conceived after my colleagues and I had
organized and taught at various workshops on NGS. We thought that it
would be a great idea to provide a comprehensive practical oriented
book on NGS so that more people can learn how to handle bioinformatics
data that are coming from this technology. The book covers general top-
ics on how to handle NGS data from sequence quality inspection, align-
ment of reads to finding single nucleotide polymorphisms (SNPs). Other
advanced topics such as genome assembly, exome sequencing, transcrip-
tomics, metagenomics, genome wide association studies (GWAS) and
machine learning are also covered. The chapter on GWAS is dedicated
show the applications of NGS data to give readers a taste of the power of
this technology in genetic mapping. The chapter on the use of machine

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

x Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

learning methods to predict enhancers is another highlight of this book
as it presents a gentle yet practical introduction to use machine learning
to study important biological features.

There are common difficulties faced by many first time learners who
need to analyze NGS data. This book put together materials and experi-
ences gained from teaching many first time learners and it includes addi-
tional resources aimed at strengthening the readers knowledge in this
field. We anticipate that this book will be of great use to students and
researchers in the life sciences. For readers who are already proficient in
NGS based data analysis, they can still keep the book as a reference
material.

Note to readers: Companion datasets can be downloaded at https://
github.com/PU-SDS/ngs-book-dataset

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

xi

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Contents

Foreword from the First Edition v
Olivo Miotto
Foreword from the First Edition vii
Nazar Zaki
Preface ix
Acknowledgements xiii

Chapter 1 Introduction to Next Generation Sequencing
Technologies 1

 Lloyd Low and Martti T. Tammi

Chapter 2 Primer on Linux 23

 Adeel Malik and Muhammad Farhan Sjaugi

Chapter 3 Inspection of Sequence Quality 49

 Kwong Qi Bin, Ong Ai Ling, Heng Huey Ying
and Martti T. Tammi

Chapter 4 Alignment of Sequenced Reads 67

 Akzam Saidin

Chapter 5 Establish a Research Workflow 79

 Joel Low Zi-Bin and Heng Huey Ying

Chapter 6 De novo Assembly of a Genome 107

 Joel Low Zi-Bin, Martti T. Tammi and Wai Yee Low

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

xii Practical Bioinformatics for Beginners

Chapter 7 Exome Sequencing 127

 Setia Pramana, Kwong Qi Bin, Heng Huey Ying,
Nuha Hassim and Ong Ai Ling

Chapter 8 Transcriptomics 141

 Yan Ren, Akzam Saidin and Wai Yee Low

Chapter 9 Metagenomics 165

 Sim Chun Hock, Kee Shao Yong, Ong Ai Ling,
Heng Huey Ying and Teh Chee Keng

Chapter 10 Applications of NGS Data 187

 Teh Chee Keng, Ong Ai Ling and Kwong Qi Bin

Chapter 11 Predicting Human Enhancers with Machine
Learning 223

 Callum MacPhillamy and Wai Yee Low

Index 251

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

xiii

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Acknowledgements

First and foremost, I must thank Joy Quek of the World Scientific
Publishing for encouraging me to do a major update of my first book on
next generation sequencing (NGS). After discussion with her and Martti,
we thought we should cover machine learning, which has been useful in
my own research on NGS data and seems popular to others. In addition, I
am thankful to Dr. Asif Khan of Bezmialem Vakıf University and Perdana
University for giving me the idea to write a book on NGS and bioinformat-
ics. I also wish to thank Prof Bjorn Andersson of Karolinska institutet for
spending some time to review the book. Last but not least, I wish to thank
authors from the Sime Darby Technology Centre and the University of
Adelaide for contributing book chapters. Without these key people, the
book would not have been possible.

Lloyd Low

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

TTThhhiiisss pppaaagggeee iiinnnttteeennntttiiiooonnnaaallllllyyy llleeefffttt bbblllaaannnkkk

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

1

Chapter 1

Introduction to Next Generation
Sequencing Technologies
Lloyd Lowa and Martti T. Tammib

aPerdana University Centre for Bioinformatics (PU-CBi), Block
B and D1, MAEPS Building, MARDI Complex, Jalan MAEPS
Perdana, 43400 Serdang, Selangor, Malaysia
bBiotechnology & Breeding Department, Sime Darby Plantation
R&D Centre, Selangor, 43400, Malaysia

A Brief History of DNA Sequencing
In 1962, James Watson, Francis Crick, and Maurice Wilkins jointly
received the Nobel Prize in Physiology/Medicine for their discover-
ies of the structure of deoxyribonucleic acid (DNA) and its signifi-
cance for information transfer in living material.1 The secret of DNA
in orchestrating living activities lies in the arrangement of the four
bases (i.e. adenine, thymine, guanine, and cytosine). The linear
sequence of the four bases can be considered as the language of
life with each word specified by a codon that is made up of three
bases. It was an interesting puzzle to figure out how codons specify
amino acids. In 1968, Robert W. Holley, HarGobind Khorana, and
Marshall W. Nirenberg was awarded the Nobel Prize in Physiology/
Medicine for solving the genetic code puzzle. Now it is known that
the collection of codons direct what, where, when, and how much
proteins should be made. Since the discovery of the structure of
DNA and the genetic code, deciphering the meaning of DNA
sequences has been an ongoing quest by many scientists to under-
stand the intricacies of life.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

2 Practical Bioinformatics for Beginners

The ability to read a DNA sequence is a prerequisite to decipher
its meaning. Not surprisingly then, there has been intense compe-
tition to develop better tools to sequence DNA. In the 1970s, the
first revolution in DNA sequencing technology began and there
were two major competitors in this area. One was the commonly
known Sanger sequencing method2,3 and another was the Maxam–
Gilbert sequencing method.4 Over time, the popularity of the
Sanger sequencing method and its modifications grew so much
that it overshadowed other methods until perhaps 2005 when
Next Generation Sequencing (NGS) began to take off.

In 1977, Sanger and colleagues successfully used their sequenc-
ing method to sequence the first DNA-based genome, a <X174
bacteriophage, which is approximately 5375 bp.5 This discovery
heralded the start of the genomics era. Initially, the Sanger
sequencing method in 1975 used a two-phase DNA synthesis reac-
tion.2 In the first phase, a DNA polymerase was used to partially
extend a primer bound onto a single-stranded DNA template to
generate DNA fragments of random lengths. In phase two, the par-
tially extended templates from the earlier reaction were split into
four parallel DNA synthesis reactions where each reaction only had
three of the four deoxyribonucleotide triphosphates (dNTPs; which
are made up of dATP, dCTP, dGTP, dTTP). Due to a missing deoxyri-
bonucleotide triphosphate (e.g. dATP), the DNA synthesis reaction
would stop at its 3′ end position just one position prior to where
the missing base was supposed to be incorporated. All of these
synthesized DNA fragments could then be separated by size using
electrophoresis on an acrylamide gel. The DNA sequence could be
read off a radioautograph since its DNA synthesis happened with
the incorporation of radiolabeled nucleotides (e.g. S-dATP).35

There were many problems with the initial version of the
Sanger sequencing method that required further innovations
before its widespread use and this scenario is akin to what is hap-
pening in the recent NGS technological developments. Some prob-
lems of the early Sanger sequencing method included the
cumbersome two-phase procedures, only short length of a DNA
sequence could be determined, the requirement of a primer meant

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 3

some sequences of the template had to be known, hazardous radio
labeled nucleotides were used and there was also no automated
way to read off a DNA sequence. Sanger and colleagues rapidly
improved on the method described in 1975 by eliminating the two-
phase procedure with the use of dideoxynucleotides as chain ter-
minators.3 Briefly, the improved method started with four reaction
mixtures that already had the single-stranded DNA template
hybridized to a primer. In each reaction, the DNA synthesis pro-
ceeded with four deoxyribonucleotide triphosphates (one with
radiolabeled nucleotide) and one dideoxynucleotide (ddNTP).
Whenever a dideoxyribonucleotide was incorporated, the reaction
terminated and thereby produced a mixture of truncated frag-
ments of varying lengths. These DNA fragments were then sepa-
rated by electrophoresis and then read off from a radioautograph.
By adjusting the concentration of ddNTPs, chain termination can
be manipulated to produce a longer sequence read.

To solve the requirement of knowing some template sequences
for primer design, cloning was introduced. For example, the M13
sequencing vector is commonly used as a holder for DNA insert and
known primers that bind to the vector sequence are available to be
used to sequence the unknown DNA insert. One major innovation
to the Sanger sequencing method is the replacement of radioactive
labels with fluorescent dyes.6 Four different dye color labels are
available for the four dideoxynucleotide chain terminators and
thus, DNA fragments that terminate at all four bases can be gener-
ated in a single reaction and thus analyzed on a single lane of
acrylamide gel. The electrophoresis is coupled to a fluorescent
detector that is also connected to a computer and thus sequence
data can be automatically collected. In 1986, Applied Biosystems
commercialized the first automated DNA sequencer (i.e. Model
370A) that is based on the Sanger sequencing method. For an ani-
mation of the Sanger sequencing method, the reader should refer
to the Welcome Trust Sanger Institute (http://www.wellcome.
ac.uk/Education-resources/Education-and-learning/Resources/
Animation/WTDV026689.htm). Due to limitations of the chain ter-
minator chemistry and resolution of the electrophoresis method,

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.wellcome.ac.uk/Education-resources/Education-and-learning/Resources/Animation/WTDV026689.htm
http://www.wellcome.ac.uk/Education-resources/Education-and-learning/Resources/Animation/WTDV026689.htm
http://www.wellcome.ac.uk/Education-resources/Education-and-learning/Resources/Animation/WTDV026689.htm

� “9x6”b4705  Practical Bioinformatics for Beginners�

4 Practical Bioinformatics for Beginners

the Sanger sequencing method is only capable of sequencing a
read of about 500–800 bases long. Most genes and other interest-
ing DNA sequences are longer than that. Therefore, a method is
required to first break up a longer DNA molecule into fragments,
sequence the individual fragments and then piece them together
to create a contiguous sequence (i.e. contig). In one approach
known as the shotgun sequencing, the long DNA fragment is ran-
domly sheared and then cloned for sequencing.7 A computer pro-
gram is then used to assemble the sequences by finding overlaps.
It is challenging to find sequence overlaps when thousands to mil-
lions of DNA fragments are generated. The problem requires align-
ment algorithms and some notable examples of early work in this
area include the Needleman–Wunsch algorithm8 and Smith–
Waterman algorithm.9 Details on the bioinformatics involved in
NGS alignment tools and sequence assembly are given in Chapters
4 and 6, respectively.

Next Generation Sequencing Technologies
One of the goals of the Human Genome Project (HGP) is to support
advancements in DNA sequencing technology.10 Although the HGP
was completed with the Sanger sequencing method, many groups
of researchers were already tinkering with new ideas to increase
throughput and decrease cost of sequencing prior to the announce-
ment of the first human genome draft in 2001. For example, devel-
opments for nanopore sequencing can be traced back to 1996
when researchers experimented with α-hemolysin.11 After years of
experimentations, the second DNA sequencing technology
revolution finally took off in 2005 and ended Sanger sequencing
dominance in the marketplace. The revolution is still ongoing at the
time of this writing and it can be seen from the rapid decline in the
cost of sequencing since the introduction of NGS technologies
(Figure 1).

The sequencing technologies associated with the second revo-
lution are referred to by various names, including second-genera-
tion sequencing, NGS, and high throughput sequencing. It should

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 5

perhaps be most appropriately termed as high throughput sequenc-
ing but NGS seems to be more commonly used to categorize such
technologies and hence, this term is used for the book. For the
purpose of this book, NGS technology refers to platforms that are
able to sequence massive amount of DNA in parallel with a simul-
taneous sequence detection method and overall achieve a much
cheaper cost per base than Sanger. These platforms include 454,
ABI Supported Oligo Ligation Detection (SOliD), Illumina, and Ion
Torrent. Due to the popularity of the Illumina platform at the time
of this writing, the practical chapters (i.e. Chapters 3–10) of the
book emphasize on the use of Illumina data as sample datasets.

There is a third revolution in sequencing technology underway
with the commercialization of third-generation sequencing tech-
nologies such as those from Pacific Biosciences and Oxford
Nanopore Technologies. Third-generation sequencing is defined as
the sequencing of single DNA molecules without the need to halt

Figure 1.  The cost to sequence one million bases of a specified quality (i.e. a
minimum Phred score of Q20 for Sanger sequencing and an equivalent of Q20 or
higher accuracy for NGS data) according to the National Human Genome
Research Institute (NHGRI).12 The cost of sequencing only made its rapid reduc-
tion in price from 2008 onwards.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

6 Practical Bioinformatics for Beginners

between read steps, whether enzymatic or otherwise.13 There are
three categories of single-molecule sequencing: (i) sequencing by
synthesis method whereby base detection occur real-time (e.g.
PacBio), (ii) nanopore technologies whereby DNA thread through a
nanopore and are detected as they pass through it (e.g. Oxford
Nanopore), and (iii) direct imaging of DNA molecules using
advanced microscopy (e.g. Halcyon Molecular (this company has
shut down)).

DNA sequence data generation process among different
sequencing platforms may share similarities such as the general
“wash and scan” approach but they may differ in terms of cost,
runtime, and detection methods. The sequence data from different
platforms have different characteristics such as error patterns and
different tools being used to process the raw data to FASTQ format.
Much of the internal workings of NGS sequencers are proprietary
matters and users generally rely on providers to come out with their
own tools for base calls as well as error calls. After that, a sequence
is assumed as “correct” and researchers proceed to analyze it. The
subsequent sections aim to introduce the background and some
details of commercially available platforms, which include 454, ABI
SOLiD, Illumina, Ion Torrent, PacBio, and Oxford Nanopore. Besides
these six platforms, there are other companies out there that also
innovate in this space such as SeqLL, GnuBIO, Complete Genomics,
and others, but they will not be covered here. For a list of available
sequencing companies, readers are encouraged to read a news arti-
cle by Michael Eisenstein in 2012 that was published by Nature
Biotechnology, which detailed 14 NGS companies.14

454
A company named 454 Life Sciences Corporation made the first
move in the NGS revolution. The company was initially majority
owned by CuraGen. It was from this company that the name “454”
originated, which was just a code name for a project. 454 was later
acquired by Roche in 2007. It made a public announcement in 2003
that it managed to sequence the entire genome of a virus in a sin-
gle day.15 Then in 2005, scientists using 454 technology published

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 7

an article in Nature on the complete sequencing and de novo
assembly of Mycoplasma genitalium genome with 96% coverage
and 99.96% accuracy in one run of the machine.16 In the same year,
the company made a system named Genome Sequencer 20 (GS20)
commercially available. This breakthrough in sequencing through-
put and speed was an incredible feat when compared to the Sanger
technology and it created a lot of excitement.

The principle behind 454 relies on pyrosequencing, which was
a technology licensed from Pyrosequencing AB. This method
depends on the generation of inorganic pyrophosphate (PPi) dur-
ing PCR when a complementary base is incorporated17 (Figure 2).

Figure 2.  454 pyrosequencing method. (a) In brief, the method starts with a
single-stranded library that has adaptors on both ends. (b) The adaptor sequence
is used to bind to the bead. This is followed by emulsion PCR to generate millions
of copies of single DNA fragment on each bead. (c) After that, beads are placed
into a device known as PicoTiter Plate for sequencing by detection of base incor-
poration during PCR. (d) Whenever a base is incorporated, inorganic pyrophos-
phate (PPi) is generated. PPi is converted to ATP by sulfurylase and luciferase
uses the ATP to convert luciferin to oxyluciferin and light.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

8 Practical Bioinformatics for Beginners

PPi is converted to ATP by sulfurylase and luciferase uses the
ATP to convert luciferin to oxyluciferin and light. The reaction
occurs very fast, in the range of milliseconds, and the light pro-
duced can be detected by a charge-couple-device (CCD) camera.
One of the key innovations of 454 technology is miniaturization of
the pyrosequencing reactions, thereby allowing for parallel
sequencing reactions to occur in a small space using smaller vol-
ume of reagents. Another innovation is simultaneous detection of
the light signals from many individual reactions.

One of the key drawbacks of the 454 pyrosequencing chemistry
is the difficulty in detection of the actual number of bases in
homopolymer tract (e.g. AAAAA). There is no blocking mechanism
included to prevent multiple same bases incorporation during DNA
elongation and thus light signals are stronger in longer homopoly-
mer tracts. The light signal is actually light intensity that is con-
verted to a flow value in the 454 system. It is difficult to distinguish
how many bases there are once the homopolymer is more than 8
bases long.16 The presence of homopolymers is the reason why 454
sequence reads do not have fixed lengths, unlike the Illumina plat-
form that includes a blocking mechanism that allow the reading of
only a single base each time. Another shortcoming of the 454 sys-
tem is artificial amplification of replicates of sequences during the
PCR step. It was estimated in a metagenomics study that this type
of error is between 11% and 35%.18

Although a pioneer in NGS, 454 has officially lost the race of the
sequencing game. As seen in Figure 3, on the comparisons of NGS
platforms, the trend for 454 sequencing in articles tracked by
Google Scholar has reached a plateau. It used to hold a lot of prom-
ises in revolutionizing sequencing and it was even regarded by
some as the technology that had won the sequencing race. Roche
announced the closing down of 454 in 2013.19 Sequencers from
454 started being phased out in the middle of 2016.

ABI SOLiD
The initial success story of 454 sequencers challenged the domi-
nance of Applied Biosystems (AB), which was the main supplier of

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 9

Sanger-based sequencing machines for the HGP. The ABI PRISM
3700 was a very popular system and many researchers who needed
to perform sequencing prior to 2005 were familiar with the system.
In 2006, ABI completed acquisition of Agencourt Personal Genomics,
which allowed it to market a novel NGS technology known as
SOLiD. Currently, Thermo Fisher Scientific owns SOLiD sequencing
technology after it acquired Life Technologies, which is a company
formed from the merging of Invitrogen and AB. From Figure 3, it
seems that SOLiD sequencing is not that popular as a NGS platform
when compared to the others even though it has been available
since 2006. To our knowledge, SOLiD is the only NGS platform that
employs ligation-based chemistry with a unique di-base fluores-
cent probes system.

Understanding the SOLiD sequencing system is akin to solving a
jigsaw puzzle due to the di-base encoding system. The sample prepa-
ration steps prior to probes ligation are very similar in concept to the
454 system. Briefly, a genomic DNA library is sheared into smaller
fragments and both ends of each fragment will be tagged with
different adaptors (e.g. Adaptor P1 — Fragment 1 — Adaptor P2).

Figure 3.  Comparisons of popularity of NGS platforms over the years by using
keywords as search terms in PubMed. The keywords for searches are as follow:
454 — “454 Sequencing”; Illumina — “Illumina”; PacBio — “Pacbio”; SOLiD —
“SOLiD sequencing”; Ion torrent — “Ion torrent”; Oxford nanopore — “Oxford
nanopore”.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

10 Practical Bioinformatics for Beginners

Then emulsion PCR will take place to create beads enriched with
copies of the same DNA fragment on each bead. The beads are then
attached to a glass slide through covalent bonds. From here ligation
and detection of bases will take place (Figure 4(a)). Firstly, a univer-
sal sequence primer (n) is used to bind to the known adaptor
sequence. Then a specific 8-mer probe with sequence-structure as
depicted in Figure 4(b) will out compete other probes for binding
immediately after the primer-binding site. Ligation then occurs and
identity of the bound probe is detected by distinguishing which
fluorescent dye is tagged at the probe’s 5′ end. Then cleavage

Figure 4.  An overview of the SOLiD sequencing process. (a) Each ligation cycle
starts with the 8-mer probe binding to the template and then ligated for its
detection. Then, cleavage occurs to remove three nucleotides and a tagged dye.
(b) The structure of the 8-mer probe. (c) An illustration of the sequence deter-
mination process during each ligation cycle of the primer rounds. Position 0 is a
part of the adaptor sequence and template sequence is only revealed from posi-
tion 1 onwards.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 11

occurs at a position between the fifth and sixth nucleotide of the
probe. After cleavage is complete, subsequent ligation is possible as
a free phosphate group is now available at the fifth base of the
probe. The reason why only one particular 8-mer probe will win the
binding site is due to the specific di-base sequence at the 3′ end
that distinguishes the collection of probes. Only four types of fluo-
rescence dyes are used and each 8-mer probe with specific di-base
sequence is tagged by a dye at the 5′ end. This system is unique in
the sense that a di-base sequence is detected in each ligation cycle.

The ligation and cleavage process can be repeated many times
to achieve the desired sequence length. However, it will only give
sequence information two bases at a time with a gap of 3 bases in
between. Next, the ligate-cleave-detect process is repeated with a
new universal primer (n–1), which is a primer that binds exactly
one base further upstream at the 5′ end of the adaptor sequence.
This ligate-cleave-detect process that cycles a few times with a new
primer is also known as reset. The entire process is repeated
another three more rounds with universal primer (n–2), (n–3),
and (n–4). Altogether, five different universal primers are used.
Figure 4(c) shows an example of sequence determination after five
rounds of reset. Note that each base is called twice in independent
primer round and this increases the accuracy of base call. A check
for concordance of the two calls for the same base represents an
in-built error checking property of this system and allows it to
achieve an overall accuracy greater than 99.94%. Although the
SOLiD system is unique in the sense that it can store sequence of
oligo color calls (i.e. color space) to be used for mutation calls, this
method does introduce challenges to bioinformatics analysis as
most tools are based on DNA calls rather than color space model.

Illumina
In the mid-90s, Shankar Balasubramanian and David Klenerman,
both from the University of Cambridge conceived the idea of mas-
sive parallel sequencing of short reads on solid phase using revers-
ible terminators. They formed Solexa in 1998 after successfully

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

12 Practical Bioinformatics for Beginners

received funding from a venture capital firm. The sequencing
approach by Solexa is also known as sequencing-by-synthesis. The
company launched its first sequencer, Genome Analyzer in 2006
and the machine is capable of producing 1 Gb of data in just a sin-
gle run. Figure 5 shows an overview of the Illumina sequencing-by-
synthesis method.

Illumina acquired Solexa in 2007. Soon after its acquisition,
there were at least three high profile research publications in
Nature 2008 volume 456, which highlighted the capabilities of the
Genome Analyzer in sequencing human genomes (e.g. African

Figure 5.  An overview of the Illumina sequencing process. (a) Genomic DNA is
sheared, size selected, and then attached with adaptors at both ends. (b) The
DNA library is placed on the flow cell to allow for complementary binding at one
end of the adaptor to probes that are coated on the surface. Then bridge ampli-
fication in the solid phase occurs to generate clusters of single DNA fragments.
After that, reverse strands are cleaved and washed away. A cluster of clonal
sequences is required to enable a high signal to noise during base detection. (c)
Sequencing begins with a primer binding to the remaining forward strand and a
DNA polymerase is used to incorporate the right fluorescently labeled nucleo-
tide among the four possible options (i.e. A, C, T, or G). At each cycle, only one
nucleotide is incorporated due to the use of reversible terminator chemistry and
detection occurs at this stage. This is followed by a cleavage step and the next
cycle is ready to go.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 13

genome,20 Chinese genome,21 and cancer patient genome22). In the
subsequent years, the popularity of this system grew so much that
by 2020, the cumulative number of articles that cited Illumina was
over twenty thousand (Figure 3). To quote a marketing brochure by
Illumina in 2015, “More than 90% of the world’s sequencing data is
generated using Illumina sequencing-by-synthesis method.” The
company is also very creative at developing and marketing their
products with sequencing systems (e.g. MiniSeq, MiSeq, MiSeqDx,
NextSeq 500, HiSeq 2500, HiSeq 3000, HiSeq 4000, HiSeq X Ten,
HiSeq X Five) that suit researchers who operate on different budg-
ets and require different level of sequencing throughput. The
Illumina systems can be used for a wide range of applications that
include resequencing, whole-genome sequencing, exome sequenc-
ing, metagenomics, epigenetic studies, and sequencing of a panel
of genes such as targeting genes linked to cancer (e.g. TruSight
Cancer).

One of the key strengths of the Illumina platform is the ability
to produce high throughput of DNA sequence data at a lower cost
despite only producing short sequences (e.g. paired-end of 35 bp
in the African genome sequencing20). Improvement in bioinformat-
ics methods allows researchers to do so much more than what was
thought as possible if only short, accurate reads are available.
Nowadays, the Illumina system can produce paired-end sequences
of 300 bp for each end, which further enhances the power of this
technology. Besides the advantage of high throughput low-cost
sequencing, it also performs better than the 454 system with
respect to homopolymer sequencing error because it uses reversi-
ble terminator sequencing chemistry. Only a single base is incorpo-
rated each time prior to detection in the Illumina system whereas
454 allows for multiple bases incorporation in a homopolymer
tract. However, the Illumina system also comes with drawbacks.
The 3′ end of the sequence tends to be of lower quality than the 5′
end, which means some sequences from the 3′ end should be fil-
tered out if it is below certain set threshold (see Chapter 3). There
can also be tiles associated error when the flow cell is affected by
bubbles in reagents or some other unknown causes.23 In addition,

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

14 Practical Bioinformatics for Beginners

sequence-specific errors have also been found for inverted repeats
and GGC sequences.24 Furthermore, in a study on 16S rRNA ampli-
con sequencing on the MiSeq, library preparation method and
choice of primers significantly influence the error patterns.25

Ion Torrent
Besides SOLiD sequencing, Thermo Fisher Scientific has another
NGS platform on its portfolio known as Ion Torrent, which was
acquired from Life Technologies. Initially, Life Technologies devel-
oped the platform and released the Ion Personal Genome Machine
(PGM) in 2010. The launch of this machine created much excite-
ment among researchers who wanted affordable sequencers for
their laboratories. It was sold at just $49,500 per sequencer and
utilized cheap disposable chip of about $250.26 In addition, it runs
faster when compared with competing machines such as HiSeq
from Illumina. However, in terms of DNA data throughput, it loses
out in comparison to the Illumina HiSeq.

Like the 454 and SOLiD systems, the library preparation and
emulsion PCR steps on beads are present in the Ion Torrent. The
main difference lies in the detection of nucleotide incorporation
that is not based on fluorescence or chemiluminescence, but
instead it measures the H+ ions released during the process. In
other words, detection of nucleotide incorporation is done by min-
iature semiconductor pH sensor. Since each of the four DNA bases
are supplied sequentially for DNA elongation, if the base matches
the template, then a signal is detected. For homopolymer region
in the template, the signal will be amplified but accurate detection
on the actual number of bases is challenging.27 Only natural nucle-
otides are needed and no high-resolution camera and complicated
image processing are required, which when taken together are
some reasons for a faster runtime and lower machine cost. For a
video on the Ion Torrent method, the reader should refer to the
Thermo Fisher Scientific sequencing education webpage (http://
www.thermofisher.com/my/en/home/life-science/sequencing/
sequencing-education.html#).

b4705_Ch-01.indd 14b4705_Ch-01.indd 14 09-Feb-23 11:04:52 AM09-Feb-23 11:04:52 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.thermofisher.com/my/en/home/life-science/sequencing/ sequencing-education.html#
http://www.thermofisher.com/my/en/home/life-science/sequencing/ sequencing-education.html#
http://www.thermofisher.com/my/en/home/life-science/sequencing/ sequencing-education.html#

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 15

Following the release of Ion PGM, the Ion Torrent product line
now includes Ion Proton, Ion Chef, and Ion S5 systems. There is a
diverse range of applications for these systems such as targeted
sequencing, exome sequencing, transcriptome sequencing, bacte-
rial and viral typing. However, genomic studies that involve de novo
assemblies of larger genomes (e.g. >1 Gbp) do not seem to be the
target areas of Ion Torrent. The popularity of Ion Torrent has been
steadily rising but seemed to have reached a plateau (Figure 3).

Pacific Biosciences
The second-generation sequencing technologies are generally
characterized by the “wash and scan” procedure that is much
slower than the natural rate of DNA elongation by DNA polymer-
ase. Furthermore, the length of contiguous DNA that can be
sequenced is rather short (e.g. <1 kb). If one could observe DNA
polymerization in real-time and detect which base was incorpo-
rated each time there was a DNA polymerase activity, faster
sequencing runtime, and longer read length could be achieved.
However, there are many challenges for detection of bases incor-
poration during real-time DNA polymerase activities because they
happen too fast.

Pacific Biosciences, which was founded in 2004, has made two
key innovations that enabled real-time observation of DNA synthe-
sis.28 One of them is the use of phospholinked nucleotides. Each
phospholinked nucleotide has a fluorescent dye attached to the
phosphate chain rather than to the base. During DNA elongation,
the phosphate chain is cleaved and hence the dye label diffuses
away. The DNA template is ready to accept the next nucleotide.
Another key innovation is the use of zero-mode waveguide (ZMW)
as the platform for detection of base incorporation. These ZMWs
are housed inside a SMRT Cell. A ZMW can be thought of as a well
with a very tiny hole at the bottom, which enables visible laser light
to pass through. However, the light intensity decays exponentially
and thus it can only illuminate the bottom of the well. With a DNA
polymerase immobilized at the bottom of the well, its DNA

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

16 Practical Bioinformatics for Beginners

polymerase activity can be monitored as it is illuminated. This is
akin to having a miniature microscope placed at the bottom to
peek at DNA polymerase activity on top of it. Phospholinked nucle-
otides diffuse into the well and when the right one is encountered
by the DNA polymerase, it will be incorporated to the growing
strand. The simple diffusion of phospholinked nucleotides happens
in the microseconds range but when they are incorporated to the
growing DNA strand, they stay longer at the site of incorporation
(i.e. miliseconds range). It is from this longer stay by a particular
phospholinked nucleotide that a signal is detected against a back-
ground of other free moving nucleotides.

Another interesting aspect of the PacBio technology is the
observation of the kinetics of DNA polymerase activity. Kinetics
data can be collected directly from the system and this allows for
an investigation of favorable mutations of DNA polymerase with a
lower sequencing error rate. In addition, environmental parame-
ters such as pH, temperature, and concentration of inhibitor
that affect the kinetics of DNA polymerase can also be optimized.
For researchers interested in epigenetics, the PacBio system is
able to detect epigenetic effects such as base methylation (e.g.
N6-methyladenine (m6A) and N4-methylcytosine (m4C)) because
such modification to the DNA template affects the kinetics of DNA
polymerase.

A detailed report on the PacBio technology was first published
in Science in 2009.28 The company released their commercial plat-
form PacBio RS in 2011 and later the PacBio RS II in 2013. It is
rather impressive that the combination of PacBio RS II with P6-C4
chemistry can achieve an average read length of 10–15 kb. The
combination of an upgrade in the PacBio machine to the higher
throughput Sequel and newer sequencing chemistry v3 have ena-
bled read length to an average of 30 kb polymerase read length.
The library size for SMRT sequencing ranges from 250 bp to 50 kbp.
As the main advantage of the PacBio system is its long read length,
researchers have tried to use its sequenced data alone or in com-
bination with other sequenced data to de novo assemble various
genomes including bacteria (e.g. Escherichia coli), yeast (e.g.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 17

Saccharomyces cerevisiae), plant (e.g. Arabidopsis thaliana) and
animals (D. melanogaster, Homo sapiens).29 It is now known that
PacBio technology is particularly good for closing gaps in de novo
assembled genomes, resolve phases among haplotypes, produce
full-length RNA transcripts isoforms sequences, identify structural
variants and to sequence complex regions with repeats.30 However,
its main disadvantages are its low throughput, high cost per
sequenced base and high error rate (~ 11–15%). The errors are not
biased towards homopolymers but appear as random with indels
errors more common than substitution errors. Owing to the ran-
dom error feature, if there is enough PacBio sequenced data cover-
age on a particular template, the consensus sequence can achieve
a much higher accuracy than a single sequence pass. In late 2015,
PacBio announced the release of the Sequel System that has a
redesigned SMRT Cell, which now contains 1 million ZMWs. It pro-
vides 7× higher sequencing throughput than PacBio RS II and this
development is exciting in terms of highlighting the scalability of
this technology. Since then, PacBio has upgraded the Sequel
machine to handle 8 million ZMWs. Additionally, the read accuracy
of this platform has substantially improved with the introduction of
HiFi reads (https://www.pacb.com/smrt-science/smrt-sequencing/
hifi-reads-for-highly-accurate-long-read-sequencing/). For more
information on the PacBio system, readers should refer to the com-
pany’s website: http://www.pacb.com.

Oxford Nanopore Technologies
Besides PacBio, there is another new entrant to the sequencing
race that also belongs to the third generation sequencing
category — Oxford Nanopore Technologies. The company was a
spin-off from the University of Oxford in 2005 and its goal is to
democratize sequencing by making it affordable and portable
(https://nanoporetech.com). The company’s sequencers made its
debut in 2012 at the Advances in Genome Biology and Technology
meeting.31 The sequencer MinION was introduced during the
meeting but it was only in 2014 that a limited number of

b4705_Ch-01.indd 17b4705_Ch-01.indd 17 09-Feb-23 11:09:34 AM09-Feb-23 11:09:34 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
http://www.pacb.com/

� “9x6”b4705  Practical Bioinformatics for Beginners�

18 Practical Bioinformatics for Beginners

participants who were a part of MinION Access Programme (MAP)
received their first sequencers for performance testing. Then in
2015, the first nanopore sensing conference known as the London
Calling was held and researchers gathered to find out more about
the MinION technology. In that same year, MinION was made com-
mercially available. At the time of this writing, the company also
has two other systems in development, PromethION, and GridION.
Although new, the technology has occupied a rather interesting
niche where portability of DNA sequencers is required, such as in
real-time genomic surveillance of Ebola outbreak32 and DNA
sequencing in space to monitor changes to microbes and humans
in spaceflight, as well as other astrobiological applications.33

The methodology behind the MinION technology was described
in a whole-genome shotgun sequencing of a reference Escherichia
coli strain.34 The DNA library preparation method was elaborated in
the mentioned paper. An ideal DNA fragment for sequencing has a
DNA hairpin loop that is ligated on one end to join the two strands
together. Then, one of the strands will traverse into a protein nano-
pore that is anchored on an electrically resistant polymer mem-
brane. The setup of the nanopore is such that any analyte that
passes through it or approach its opening will create a disruption
in current. Measurements of the characteristics of this disruption
then lead to identification of which nucleotides have passed
through the pore. After the first strand has moved in, the other
strand will follow suit. Similar to the PacBio, it is also possible to
identify epigenetic modifications to the DNA using this method.
The sequencing process is scalable by using more nanopores for
simultaneous detection of DNA fragments that are moving through
them.

The procedures involved sound simple and allow for the
sequencing of a single long DNA molecule without amplification
and usage of fluorescent dyes that require expensive imaging. This
is clearly a case of a disruptive technology in the making but the
technology is still characterized by high sequencing errors. In a
paper that compared sequencing errors, the error rate of Oxford
Nanopore technology is in the range of 20–25%.35 More time is

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 19

needed for the technology to mature and to improve on the error
rate. The Oxford Nanopore sequencing delivers the longest
sequencing read, ~2.3 Mb,36 and it usually takes library size that
ranges from 10 kb to 30 kb.

Informatics Challenges
Advances in sequencing technologies have enabled the scientific
community to decode more than 65,000 organisms’ genomes.37

The trend for more sequenced data is likely to continue unabated.
According to Raymond McCauley of the Singularity University, “It
turns out that one human genome wasn’t worth much, but thou-
sands upon thousands represent an invaluable pool of data to be
sifted for patterns and correlated with diseases, treatments, and
outcomes.”38 To sift through massive amount of sequenced data is
a challenge and to begin to address this problem, we need to
increase the supply of skilled bioinformaticians. This is in fact one
of the main reasons for writing this book. For beginners who need
to use second or third-generation sequencing technologies, they
will likely face informatics challenges in terms of knowing how each
sequencer produces its raw sequence output, conversion of
sequenced data to FASTQ format, quality checking, alignment to a
reference, or de novo assembly, and interpretation of results (e.g.
impact of SNPs, indels, etc.). Therefore, the subsequent chapters
from here will focus on developing skills needed to navigate seas of
NGS data in order to help answer biological questions.

References
 1. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure

for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
 2. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in

DNA by primed synthesis with DNA polymerase. Journal of Molecular
Biology 94, 441–448 (1975).

 3. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminat-
ing inhibitors. Proceedings of the National Academy of Sciences of the U.S.A.
74, 5463–5467 (1977).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

20 Practical Bioinformatics for Beginners

 4. Maxam, A. M. & Gilbert, W. A new method for sequencing DNA. Proceedings
of the National Academy of Sciences of the U.S.A. 74, 560–564 (1977).

 5. Sanger, F. et al. Nucleotide sequence of bacteriophage phi X174 DNA.
Nature 265, 687–695 (1977).

 6. Smith, L. M. et al. Fluorescence detection in automated DNA sequence
analysis. Nature 321, 674–679 (1986).

 7. Anderson, S. Shotgun DNA sequencing using cloned DNase I-generated frag-
ments. Nucleic Acids Research 9, 3015 (1981).

 8. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology 48, 443–453 (1970).

 9. Smith, T. F. & Waterman, M. S. Identification of common molecular subse-
quences. Journal of Molecular Biology 147, 195–197 (1981).

10. Collins, F. S. New goals for the U.S. Human Genome Project: 1998–2003.
Science (80-). 282, 682–689 (1998).

11. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization
of individual polynucleotide molecules using a membrane channel.
Proceedings of the National Academy of Sciences of the U.S.A. 93, 13770–
13773 (1996).

12. Wetterstrand, K. A. DNA sequencing costs: Data. <https://www.genome.
gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data>.

13. Schadt, E. E., Turner, S. & Kasarskis, A. A window into third-generation
sequencing. Human Molecular Genetics 19, R227–240 (2010).

14. Eisenstein, M. The battle for sequencing supremacy. Nature Biotechnology
30, 1023–1026 (2012).

15. Pollack, A. Company says it mapped genes of virus in one day. The New York
Times (2003).

16. Margulies, M. et al. Genome sequencing in microfabricated high-density
picolitre reactors. Nature 437, 376–380 (2005).

17. Royo, J. L. & Galán, J. J. Pyrosequencing for SNP genotyping. Methods in
Molecular Biology 578, 123–133 (2009).

18. Gomez-Alvarez, V., Teal, T. K. & Schmidt, T. M. Systematic artifacts in
metagenomes from complex microbial communities. ISME Journal 3, 1314–
1317 (2009).

19. Roche Shutting Down 454 Sequencing Business. Genomeweb. <https://
www.genomeweb.com/sequencing/roche-shutting-down-454- sequencing-
business> (2013).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction to Next Generation Sequencing Technologies 21

20. Bentley, D. R. et al. Accurate whole human genome sequencing using revers-
ible terminator chemistry. Nature 456, 53–59 (2008).

21. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature
456, 60–65 (2008).

22. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid
leukaemia genome. Nature 456, 66–72 (2008).

23. Dolan, P. C. & Denver, D. R. TileQC: a system for tile-based quality control of
Solexa data. BMC Bioinformatics 9, 250 (2008).

24. Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers.
Nucleic Acids Research 39, e90 (2011).

25. Schirmer, M. et al. Insight into biases and sequencing errors for amplicon
sequencing with the Illumina MiSeq platform. Nucleic Acids Research gku,
1341 (2015) 43(6), 37(2015) . doi:10.1093/nar/gku1341.

26. Katsnelson, A. DNA sequencing for the masses. Nature (2010). doi:10.1038/
news.2010.674.

27. Bragg, L. M., Stone, G., Butler, M. K., Hugenholtz, P. & Tyson, G. W. Shining
a light on dark sequencing: Characterising errors in Ion Torrent PGM data.
PLoS Computational Biology 9, e1003031 (2013).

28. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules.
Science 323, 133–138 (2009).

29. Berlin, K. et al. Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing. Nature Biotechnology 33, 623–630 (2015).

30. Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics.
Proteomics Bioinformatics 13, 278–289 (2015).

31. Check Hayden, E. Nanopore genome sequencer makes its debut. Nature
doi:10.1038/nature.2012.10051 (2012).

32. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveil-
lance. Nature 530, 228–232 (2016).

33. Rainey, K. Sequencing DNA in the palm of your hand. <http://www.nasa.
gov/mission_pages/station/research/news/biomolecule_sequencer>
(2015).

34. Quick, J., Quinlan, A. R. & Loman, N. J. A reference bacterial genome dataset
generated on the MinION(TM) portable single-molecule nanopore
sequencer. Gigascience 3, 22 (2014).

35. Laehnemann, D., Borkhardt, A. & McHardy, A. C. Denoising DNA deep
sequencing data-high-throughput sequencing errors and their correction.
Briefings in Bioinformatics. bbv029-(2015). doi:10.1093/bib/bbv029.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.nasa.gov/mission_pages/station/research/news/biomolecule_sequencer
http://www.nasa.gov/mission_pages/station/research/news/biomolecule_sequencer

� “9x6”b4705  Practical Bioinformatics for Beginners�

22 Practical Bioinformatics for Beginners

36. Payne, A. et al. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5
files. Bioinformatics 35(13), 2193–2198 (2019).

37. Reddy, T. B. K. et al. The Genomes OnLine Database (GOLD) v.5: a metadata
management system based on a four level (meta)genome project classifica-
tion. Nucleic Acids Research 43, D1099–106 (2015).

38. Greenwald, T. DNA Tsunami: Raymond McCauley explains why bioinformat-
ics is good for business — Forbes. <http://www.forbes.com/sites/
tedgreenwald/2011/10/20/dna-tsunami-raymond-mccauley-explains-
why-bioinformatics-is-good-for-business/#555a2c1d2986>.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.forbes.com/sites/tedgreenwald/2011/10/20/dna-tsunami-raymond-mccauley-explains-
why-bioinformatics-is-good-for-business/#555a2c1d2986
http://www.forbes.com/sites/tedgreenwald/2011/10/20/dna-tsunami-raymond-mccauley-explains-
why-bioinformatics-is-good-for-business/#555a2c1d2986
http://www.forbes.com/sites/tedgreenwald/2011/10/20/dna-tsunami-raymond-mccauley-explains-
why-bioinformatics-is-good-for-business/#555a2c1d2986

23

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 2

Primer on Linux
Adeel Malik and Muhammad Farhan Sjaugi

Perdana University Centre for Bioinformatics (PU-CBi), Block
B and D1, MAEPS Building, MARDI Complex, Jalan MAEPS
Perdana, 43400 Serdang, Selangor, Malaysia.

Introduction
Many developers of NGS tools prefer to use Linux as the operating
system for their works. To use these tools (e.g. BWA, Bowtie, and
SAMTOOLS) users need to have a good level of proficiency in Linux.
However, to our knowledge, most biologists who need to work with
NGS are unfamiliar with the operating system and require at least a
gentle introduction on this topic for them to better understand com-
monly used commands in Linux. Otherwise, they need to juggle with
two difficulties while learning NGS tools; (i) the general Linux features
and (ii) the new tools that they need to master. The aim of this chap-
ter is to remove the first difficulty associated with familiarizing oneself
with the Linux system so that users can concentrate on understanding
NGS tools. It is not possible to cover all aspects of Linux but the inten-
tion here is for users to be able to navigate the rest of the chapters
with ease. For users who are already familiar with Linux, they may
skip this chapter and go directly to Chapter 3 on sequence quality.

Listing the Contents of a Directory
‘ls’ may probably be the first command that you use at the command
prompt and the purpose is to list the contents of any directory. For
example, when you log in to a Linux terminal and would like to list
directories and files that are in your home directory (in this case,

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

24 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

ngsguide), you will simply type ‘ls’ and then press the ‘enter’ key.
Note that the term directories and folders are used interchangeably.

$ ls
In this example of ‘ls’ command, nothing is listed after pressing

the ‘enter’ key from the keyboard. It is because in our case the cur-
rent home directory (ngsguide) is empty and does not return any-
thing on the screen. However, this may differ from system to
system where you may have preexisting folders on your machine.

‘ls’ can also be used with a variety of available options. These
additional options can be used individually with ‘ls’ or in combina-
tion as explained below.

The first option that we will use with ‘ls’ is ‘-l’ (Please note: ‘l’ is
L in lower case.)

$ ls‐l

$ ls ‐l
total 0

When the ‘ls -l’ command is used, additional information about
each file and directory such as size, file or folder name, owner of
these files and their permissions, modified date and time, etc. is
displayed. However, ‘0’ is returned in our case. The reason is
because there are no files or directories in the home directory.

‘ls’ in combination with ‘-a’ can be used to list the hidden files
or folders as follows.

$ ls‐a

$ ls‐a
. .. .bash_history .bash_logout .bash_profile
.bashrc .kshrc .mozilla .viminfo

Each hidden file or directory starts with a DOT character.
Therefore, files such as .bash_history, .bashrc, .kshrc are hidden
files, whereas .mozilla is a hidden folder.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 25

Now let us try to combine ‘-l’ and ‘-a’ options with ‘ls’ command.

$ ls‐la

$ ls -la

total 36

drwx------ 3 ngsguide ngsguide 4096 Feb 18 03:11 .

drwxr-xr-x 44 root root 4096 Feb 16 13:29 ..

-rw------- 1 ngsguide ngsguide 198 Feb 17 08:54 .bash_history

-rw-r--r-- 1 ngsguide ngsguide 18 Jul 22 2015 .bash_logout

-rw-r--r-- 1 ngsguide ngsguide 176 Jul 22 2015 .bash_profile

-rw-r--r-- 1 ngsguide ngsguide 124 Jul 22 2015 .bashrc

-rw-r--r-- 1 ngsguide ngsguide 171 Jul 22 2015 .kshrc

drwxr-xr-x 4 ngsguide ngsguide 4096 Apr 21 2014 .mozilla

-rw------- 1 ngsguide ngsguide 603 Feb 18 02:49 .viminfo

You can now see that by using ‘ls -la’ additional details about
these hidden files and folders (or any other files or folders) can be
obtained. Similarly, you can use other options available for ‘ls’ indi-
vidually or in combination. To explain each parameter in detail is
beyond the scope of this chapter. There are plenty of online
resources available describing these commands and parameters in
greater detail (for example: http://www.yourownlinux.com/
2014/01/linux-ls-command-tutorial-with-examples.html; http://
www.computerhope.com/unix/uls.htm).

In case you are not connected to the internet, a very handy
Linux utility/command ‘man’ can be used to get help on any Linux
command. For example, to get help on ‘ls’ command, just type the
following command:

$ man ls

Using ‘man ls’ gives a detailed help on all the options available
for ‘ls’ command. ‘man’ is the Linux system’s guidebook and can be
used to display manual pages for specific Linux commands (http://
www.computerhope.com/unix/uman.htm). In this case, we asked
Linux to display the help on ‘ls’ command as shown in the box
below (sample output).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.yourownlinux.com/ 2014/01/linux-ls-command-tutorial-with-examples.html
http://www.yourownlinux.com/ 2014/01/linux-ls-command-tutorial-with-examples.html

26 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

LS(1) User Commands LS(1)

NAME

 ls - list directory contents

SYNOPSIS

 ls [OPTION]... [FILE]...

DESCRIPTION

 List information about the FILEs (the current directory by default). Sort entries alphabetically
if none of -cftuvSUX nor --sort.

 Mandatory arguments to long options are mandatory for short options too.

 -a, --all

 do not ignore entries starting with .

 -A, --almost-all

 do not list implied . and ..

 --author

 with -l, print the author of each file

 -b, --escape

 print octal escapes for nongraphic characters

 --block-size=SIZE

 use SIZE-byte blocks. See SIZE format below

Create Directory
Now let us create a directory named “Linux_tutorial”. We will use
this directory to complete the rest of the tutorial. The command
that is used to create directory is ‘mkdir’. Therefore, to create the
directory “Linux_tutorial”, we type:

$ mkdir Linux_tutorial

The above command creates a directory named “Linux_tuto-
rial” in the current directory (e.g. our home directory in this case.
Do you remember our home directory?).

Since the directory has been created, we would like to verify
whether it is actually created or not. Any guesses how do we do
that? Just using an ‘ls’ command as follows:

$ ls

$ ls
Linux_tutorial

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 27

Now you can see a folder named “Linux_tutorial” is listed on
the screen. You can also check the contents of this newly created
folder by using the following command:

$ls Linux_tutorial

Remember, Linux is case sensitive. “Linux_terminal” is different
from “linux_terminal”. Since “Linux_tutorial” is empty, nothing will
be displayed. Go ahead and try the command.

Print Working Directory
Before we change our working directory to Linux_tutorial, let’s
check our present working directory first by typing ‘pwd’ command
which stands for ‘print working directory’.

$ pwd

$ pwd
/home/ngsguide

As can be observed from the output, ‘pwd’ prints the complete
path [starting from root (/)] of current working directory or just the
directory where the user is, at present.

From the above output in the box, it can be inferred that the
directory name “/home/ngsguide” means “the directory named
ngsguide is our current directory, which is in the directory named
home, which in turn is in the directory named root (/).” All directo-
ries on a Linux file system are subdirectories of the root directory
(http://www.computerhope.com/unix/ucd.htm).

Change Directory
In order to use the directory we had just created in the steps above,
we need to navigate into that directory to make it our current work-
ing directory where we will complete the remaining steps of this
tutorial. ‘cd’ (change directory) command is used to change your cur-
rent directory. This ‘cd’ command can be used to traverse through

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

28 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

the hierarchy of Linux file system (http://www.computerhope.com/
unix/ucd.htm).

To change into Linux_tutorial directory and make it our working
directory, we would use the command:

$ cd Linux_tutorial

Check which our current working directory is. Use ‘pwd’ com-
mand again and observe the difference between the output before
and after changing the directory:

$ pwd

$ pwd
/home/ngsguide/Linux_tutorial

Download Data
Since our current directory is empty, we need some data files to go
ahead with the rest of the tutorial. The ‘wget’ commandi is used to
download files from your Linux terminal provided you already have
web link of that file. By using ‘wget’ we can also download FASTQ
files from the public databases by providing the exact URL of the
file. For instance, let’s download a FASTQ file such as ERR000001_1.
fastq.gz from EBI (http://www.ebi.ac.uk/) database.

i In general, ‘wget’ application should already exist on your Linux system. In case ‘wget’ is
missing, it can be easily installed by using any of the following commands depending on
your Linux distribution:
$ yum install wget
or
$ apt-get install wget

b4705_Ch-02.indd 28b4705_Ch-02.indd 28 09-Feb-23 11:11:50 AM09-Feb-23 11:11:50 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.computerhope.com/unix/ucd.htm
http://www.computerhope.com/unix/ucd.htm

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 29

$ wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/
ERR000/ERR000001/ERR000001_1.fastq.gz

$ wget “ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR000/ERR000001/ERR000001_1.fastq.gz”

--2016-02-18 08:32:45-- ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR000/ERR000001/ERR000001_1.fastq.gz

 => “ERR000001_1.fastq.gz”

Resolving ftp.sra.ebi.ac.uk... 193.62.192.7

Connecting to ftp.sra.ebi.ac.uk|193.62.192.7|:21... connected.

Logging in as anonymous ... Logged in!

==> SYST ... done. ==> PWD ... done.

==> TYPE I ... done. ==> CWD (1) /vol1/fastq/ERR000/ERR000001 ... done.

==> SIZE ERR000001_1.fastq.gz ... 31131066

==> PASV ... done. ==> RETR ERR000001_1.fastq.gz ... done.

Length: 31131066 (30M) (unauthoritative)

100%[==>]
31,131,066 316K/s in 97s

2016-02-18 08:34:39 (314 KB/s) - “ERR000001_1.fastq.gz” saved [31131066]

Once you enter the above mentioned command, some download
information is displayed on the screen and the FASTQ file is saved as
ERR000001_1.fastq.gz in your current folder (Linux_tutorial). Alternately,
you can also download this FASTQ file directly by pasting this link (ftp://
ftp.sra.ebi.ac.uk/vol1/fastq/ERR000/ERR000001/ERR000001_1.
fastq.gz) into your web browser such as Mozilla or Internet Explorer.
Confirm whether FASTQ file is downloaded or not by using:

$ ls ‐lh

$ ls ‐lh

total 30M

-rw-rw-r-- 1 ngsguide ngsguide 30M Feb 18 08:34 ERR000001_1.fastq.gz

Note:Note: Here we have used an additional option for ‘ls’ which is ‘-h’. To check why we have used
‘-h’ option type -

$ man ls

From the above ‘ls -lh’ command we can see that ERR000001_1.
fastq.gz is successfully downloaded in a compressed format having
.gz as an extension. The size of this compressed file is about 30Mb.
Downloading FASTQ files in a compressed form is a healthy practice

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

30 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

as this compression reduces the size of these files substantially
therefore it will definitely save some download time for you when
the file size is huge.

File Compression
‘gzip’ command is used to compress as well as uncompress/decom-
press all the files with .gz file extension.
To uncompress ERR000001_1.fastq.gz, type:

$ gzip ‐d ERR000001_1.fastq.gz
Here ‘-d’ means uncompress or decompress. Now to check if the
file is uncompressed, type:

$ ls ‐lh
$ ls ‐lh

total 130M

-rw-rw-r-- 1 ngsguide ngsguide 130M Feb 23 02:59 ERR000001_1.fastq

Notice that .gz extension from ERR000001_1.fastq.gz is gone
and the file size is also increased to 130Mb as compared to 30Mb
in the compressed FASTQ file.

Similarly, you can compress the ERR000001_1.fastq file using
the ‘gzip’ command as follows:

$gzip ERR000001_1.fastq
Confirm whether the file is compressed again:

$ ls ‐lh
$ ls ‐lh

total 130M

-rw-rw-r-- 1 ngsguide ngsguide 30M Feb 23 02:59 ERR000001_1.fastq.gz

Observe that the compressed file with.gz file extension is cre-
ated again. To proceed further with the tutorial, decompress this
.gz file again with ‘gzip’ command as explained above.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Primer on Linux 31

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Display the Contents of a File
The ‘cat’ command which stands for concatenate is used to display
the contents of a file. To display the contents of ERR000001_1.fastq
file, type:

$ cat ERR000001_1.fastq

This command will display contents of your FASTQ file on the
terminal. However, in larger files such as FASTQ, most of the output
will scroll up the screen with only the last part that can be accessed
on the terminal. Type the above ‘cat’ command to get the output.

Other handy commands to quickly check the contents of bigger
files are ‘head’ and ‘tail’ commands.

$ head ERR000001_1.fastq

This will display the first 10 (the default number) lines from the file.

$ head ERR000001_1.fastq

@ERR000001.1 IL2_62_3_1_346_881/1

GAACTAAGTGAACTGAAACATCTAAGTAACTTAAGG

+

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.2 IL2_62_3_1_583_614/1

GATCCTACTATTACAATAATGCATTACAATATTACT

+

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.3 IL2_62_3_1_389_877/1

GGGAGACAATGCAGAGGTTGAAAGATGTATCTGAAA

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

32 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

To print the first 15 lines, type:

$ head -15 ERR000001_1.fastq

$ head -15 ERR000001_1.fastq

@ERR000001.1 IL2_62_3_1_346_881/1

GAACTAAGTGAACTGAAACATCTAAGTAACTTAAGG

+

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.2 IL2_62_3_1_583_614/1

GATCCTACTATTACAATAATGCATTACAATATTACT

+

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.3 IL2_62_3_1_389_877/1

GGGAGACAATGCAGAGGTTGAAAGATGTATCTGAAA

+

IIIIIIIIIIIIIIIIIIII>IIICIIIII-IIIII

@ERR000001.4 IL2_62_3_1_284_606/1

TTAACGACCGTACCGAAAGTGGACTTAAGTAGTATG

+

Similarly, to print the last 10 and last 15 lines of a file, use:

$ tail ERR000001_1.fastq
$ tail ‐15 ERR000001_1.fastq

The output of the above examples shows the reads from the
FASTQ file. For more details on FASTQ format, please refer to
Chapter 3 of this book. Briefly, each read in a FASTQ file consists of
4 lines as shown below.

@ERR000001.1 IL2_62_3_1_346_881/1 #a unique sequence identifier

GAACTAAGTGAACTGAAACATCTAAGTAACTTAAGG #the sequence

+ #a ‘+’ that may be followed by the sequence

identifierIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII #the quality values

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Primer on Linux 33

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Count the Number of Lines
The ‘wc’- word count command is used to count the number of
lines in a file. To count the number of lines in a FASTQ file, type:

$ wc ‐l ERR000001_1.fastq

$ wc ‐l ERR000001_1.fastq

4683176 ERR000001_1.fastq

‘-l’ (L in lower case) option is used to print the newline counts.
It can be observed that the FASTQ file ERR000001_1.fastq has
4683176 lines.

Search a Pattern
The ‘grep’ command is used to search patterns in an input file.
When ‘grep’ finds a pattern match in a line, it prints the line to
standard out put. For example, to find a string of nucleotides
“CCCCCTTAAAAA” in FASTQ file, type the following command:

$ grep “CCCCCTTAAAAA” ERR000001_1.fastq

$ grep “CCCCCTTAAAAA” ERR000001_1.fastq

AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT

CCCTTACCGGCCGTCCCCCTTAAAAAGAGGGCCGAC

TCATCAACCCCCTTAAAAAAATACATAGTTCTTAGG

AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT

All lines containing the nucleotide string “CCCCCTTAAAAA”
are printed. However, this does not print the identifier for each
sequence. We shall revisit this pattern searching again in the later
examples.

Combine Multiple Commands Together
The pipes denoted by ‘|’ are used to connect multiple commands
together. By means of pipes, the standard output of one command

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

34 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

is redirected as the standard input for another command. Count
the number of reads from a FASTQ file as follows:

$ grep “@ERR000001” ERR000001_1.fastq | wc -l

$ grep “@ERR000001” ERR000001_1.fastq | wc -l

1170794

In the above example, the output of ‘grep’ command is fed to
‘wc’ command. We know that each read consists of a unique iden-
tifier that starts with a “@” symbol followed by an ID (e.g.
ERR000001). The grep command extracts the lines with the pattern
“@ERR000001” from a FASTQ file and this output is fed to ‘wc’
which counts the number of lines having the pattern “ERR000001”.
This implies that there are 1170794 reads in this FASTQ file. This
can be easily verified by a simple formula:

=
4

No.of reads ina fastq file
No.of reads ina fastq file

where 4 = number of lines per read.

Converting a FASTQ File into a Tabular Format
Although raw data among NGS platforms are different, there are
available tools to convert data to the de facto standard—FASTQ
format. Occasionally it is very helpful to have the data in a tabular
form (http://www.ark-genomics.org/events-online-training-eu-
training-course/linux-and-bioinformatics).We can convert the
FASTQ file into a tabular format by using ‘cat’ command and com-
bining it with ‘paste’ command.

$ cat ERR000001_1.fastq | paste - - - - >
ERR000001_1_tab.txt

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 35

Here, the ‘cat’ command reads the FASTQ file and sends the
output as an input for ‘paste’ command via pipe ‘|’. In the example
above, each ‘-’ reads a line from the standard input. Therefore, ‘- -
- -’ means read 4 lines and paste them next to each other (http://
www.ark-genomics.org/events-online-training-eu-training-course/
linux-and-bioinformatics; http://www.theunixschool.com/2012/
07/10-examples-of-paste-command-usage-in.html). Make sure
that there is a space between each ‘-’. The output of paste com-
mand is redirected to a new file named ERR000001_1_tab.txt.
Verify if ERR000001_1_tab.txt is created:

$ ls

$ ls

ERR000001_1.fastq

ERR000001_1_tab.txt

By using ‘ls’, you can see that there are two files now. Now
check the contents of the newly created file ERR000001_1_tab.txt.
Just display first 10 lines:

$ head ERR000001_1_tab.txt

$ head ERR000001_1_tab.txt

@ERR000001.1 IL2_62_3_1_346_881/1 GAACTAAGTGAACTGAAACATCTAAGTAACTTAAGG + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.2 IL2_62_3_1_583_614/1 GATCCTACTATTACAATAATGCATTACAATATTACT + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.3 IL2_62_3_1_389_877/1 GGGAGACAATGCAGAGGTTGAAAGATGTATCTGAAA + IIIIIIIIIIIIIIIIIIII>IIICIIIII-IIIII

@ERR000001.4 IL2_62_3_1_284_606/1 TAACGACCGTACCGAAAGTGGACTTAAGTAGTATG + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&

@ERR000001.5 IL2_62_3_1_480_810/1 GGTTTGCTTCAAGAATAGCTTTGGTTTGTAAAGGTT + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.6 IL2_62_3_1_576_286/1 GATTTGTCAATCACTCGTGTTCCTTCCTATGTTTGT + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.7 IL2_62_3_1_641_293/1 GGAAATGAAGGAAATGGAATTGCGTATTGTTGAATC + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII2IIII

@ERR000001.8 IL2_62_3_1_801_750/1 GGGATTTTAAAATTATTATTATATTTAAGAATAAGA + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.9 IL2_62_3_1_386_889/1 TTATGTAGTACCTTTGTAATTATAATCATGATGATA + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.10 IL2_62_3_1_866_369/1 GTCTTGAGTGAAGTTAAGGCCGAAGGCTTTGACAAA + IIIIIIIIIIIIIIIIIIIIIII<IIIIIII-IIEI

From the output it can be seen that the FASTQ file has now
been converted into a tabular format. Now each line represents a

b4705_Ch-02.indd 35b4705_Ch-02.indd 35 09-Feb-23 11:13:55 AM09-Feb-23 11:13:55 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.ark-genomics.org/events-online-training-eu-training-course/linux-and-bioinformatics
http://www.ark-genomics.org/events-online-training-eu-training-course/linux-and-bioinformatics
http://www.ark-genomics.org/events-online-training-eu-training-course/linux-and-bioinformatics
http://www.theunixschool.com/2012/
07/10-examples-of-paste-command-usage-in.html
http://www.theunixschool.com/2012/
07/10-examples-of-paste-command-usage-in.html

36 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

single read (identifier, sequence, etc., all in one line) as compared
to the earlier FASTQ format where 4 lines represented a single
read.

Putting up all your data in a tabular format has its own advan-
tages. For instance, look at the previous pattern searching example
again. The command is same except that in the current example we
have used the tabular formatted file.

$ grep “CCCCCTTAAAAA” ERR000001_1_tab.txt

$ grep "CCCCCTTAAAAA" ERR000001_1_tab.txt

@ ERR000001.161625 IL2_62_3_27_924_80/1 AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIAIII

@ERR000001.317933 IL2_62_3_54_744_131/1 CCCTTACCGGCCGTCCCCCTTAAAAAGAGGGCCGAC + IIIIIIIIIIIII:IIII4I%.III63I5->2-**,

@ERR000001.570976 IL2_62_3_101_217_616/1 TCATCAACCCCCTTAAAAAAATACATAGTTCTTAGG + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII3/

@ERR000001.751210 IL2_62_3_133_648_714/1 AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Now it is much easier to identify the reads having a string
“CCCCCTTAAAAA” as well as their identifiers.

Pattern Matching Using Awk
Since we have data in a tabular format, it is more convenient to use
‘awk’ for enhanced data retrieval and text manipulation tasks. An
awk script searches for lines in a file that comprises of given pat-
terns (https://www.chemie.fu-berlin.de/chemnet/use/info/gawk/
gawk_3.html). The syntax of a typical awk command is given below:

awk ‘/pattern to search/ {Actions}’ filename

This means that awk will read each individual line in a file and
if the line matches the pattern that is being searched, the action
will be performed.

b4705_Ch-02.indd 36b4705_Ch-02.indd 36 09-Feb-23 11:14:30 AM09-Feb-23 11:14:30 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.chemie.fu-berlin.de/chemnet/use/info/gawk/gawk_3.html
https://www.chemie.fu-berlin.de/chemnet/use/info/gawk/gawk_3.html

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 37

For example, we can also use awk to search the string “CCCCCT
TAAAAA” as follows:

$ awk ‘/CCCCCTTAAAAA/ {print $0}’ ERR000001_1_tab.txt

$ awk ‘/CCCCCTTAAAAA/ {print $0}’ ERR000001_1_tab.txt

@ERR000001.161625 IL2_62_3_27_924_80/1 AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIAIII

@ERR000001.317933 IL2_62_3_54_744_131/1 CCCTTACCGGCCGTCCCCCTTAAAAAGAGGGCCGAC + IIIIIIIIIIIII:IIII4I%.III63I5->2-**,

@ERR000001.570976 IL2_62_3_101_217_616/1 TCATCAACCCCCTTAAAAAAATACATAGTTCTTAGG + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII3/

@ERR000001.751210 IL2_62_3_133_648_714/1 AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT + IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

In this example, /CCCCCTTAAAAA/ is a pattern (enclosed between
forward slashes ‘/’) whereas ‘print $0’ is the action used to print all the
lines which match a given pattern. awk works by knowing the con-
cepts of “file”, “record” and “field”. In an ‘awk’ data file each line rep-
resents one record, and only one record is operated by ‘awk’ at a time.
Also, each record comprises of fields, that are separated by spaces or
tabs (default separators of awk). As a result, the 1st field or column can
be accessed with $1, 2nd field or column with $2, and so on. $0 means
the full record or the entire file (http://www.arunviswanathan.com/
content/ppts/awk_intro.ppt).Therefore, to only print the identifiers
(1st column) and sequences (3rd column) for a given pattern, type:

$ awk ‘/CCCCCTTAAAAA/ {print $1 “\t” $3}’
ERR000001_1_tab.txt

$ awk ‘/CCCCCTTAAAAA/ {print $1 “\t” $3}’ ERR000001_1_tab.txt

@ERR000001.161625 AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT

@ERR000001.317933 CCCTTACCGGCCGTCCCCCTTAAAAAGAGGGCCGAC

@ERR000001.570976 TCATCAACCCCCTTAAAAAAATACATAGTTCTTAGG

@ERR000001.751210 AGTTTTTCATCAACCCCCTTAAAAAAATACATAGTT

The above awk command reads all lines and prints only the 1st

and 3rd columns from the file that contain “CCCCCTTAAAAA” pattern.
Since the 3rd column consists of actual sequences in the tabular file
(http://www.ark-genomics.org/events-online-training-eu-training-
course/linux-and-bioinformatics), it may be convenient to use condi-
tional pattern matching by using awk. For example, to find out which
sequences have non-standard nucleotide bases such as “N”, type:

b4705_Ch-02.indd 37b4705_Ch-02.indd 37 09-Feb-23 11:14:56 AM09-Feb-23 11:14:56 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.arunviswanathan.com/content/ppts/awk_intro.ppt
http://www.arunviswanathan.com/content/ppts/awk_intro.ppt

38 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

 $ awk ‘{if($3~”N”) print $1 “\t” $3}’
ERR000001_1_tab.txt

$ awk ‘{if($3~”N”) print $1 “\t” $3}’ ERR000001_1_tab.txt

@ERR000001.562 AATGCTGAGGTANNTNANTTNNAGATACAACTAANT

@ERR000001.1144 TGTAACAAGTAANNCNANGTNNGTGCCATCTCTCNC

@ERR000001.1167 TTAAGTTGCTCCNNGNTNTTNNTAATGGCCTTCTNT

@ERR000001.1746 GGTATCACTTATNNCNCNTANNAGCCCAGCGGCGNT

@ERR000001.1754 TGACCCGGAAAANNANANTTNNATATTCTGCTGGNA

@ERR000001.1990 TCGTTAGTAAACNNCGANATNNTACGTGGCTGTTNT

@ERR000001.2014 TACGTGACGAACNNGNCNATNNCGTAGCCGATGANC

@ERR000001.2172 ATAAATTTGATCNNANGNAGNNCGAGGCGTTCCGNT

@ERR000001.2206 TAGAGAATGGTTNNCTGNAGNNCATAAAAGAGAGNT

@ERR000001.2414 TTTATACTTAGANNCATNTANNTTTAATCCCATCNT

In the above command, an “if” condition has been used. Simply,
it means if any line in the 3rd column (sequence) has “N”, then print
its identifier (column 1) and sequence (column 3) only. Here “~”
(tilde) is used for explicit pattern-matching expressions whereas
“\t” means the separator between 1st and 3rd column should be a
tab. (Note: Only few lines are displayed on the terminal.)

Sort and Extract Unique Sequences
We know that there are 1170794 sequences in the ERR000001_1_tab.
txt file. There are chances that there might be duplicate sequences in
the file even though they may have unique identifiers. To extract a set
of unique sequences only, we first need to sort the file as follows:

 $ sort ‐k3,3 ERR000001_1_tab.txt > ERR000001_
1_tab.srt

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Primer on Linux 39

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Now check the contents of ERR000001_1_tab.srt by printing
the first 10 lines of this file:

$ head ERR000001_1_tab.srt

$ sort -k3,3 ERR000001_1_tab.txt > ERR000001_1_tab.srt

$ head ERR000001_1_tab.srt

@ERR000001.1000779 IL2_62_3_174_440_448/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + II4II.
C1-:>75@+95/1;5+692+1+(‘<,$$.,

@ERR000001.1000782 IL2_62_3_174_606_366/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +
I<3I8I3E2I+*<<4)6.-0,<-(-2I,3/+*-3$7

@ERR000001.1000796 IL2_62_3_174_778_763/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +
FII?I;F51=7.>E>)I-1-51,>.-*9+,;’8+,’

@ERR000001.1000820 IL2_62_3_174_690_272/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + :E41626
,A*>2&:5+/0.,+,&,$-/&6’&.$.&%

@ERR000001.1000826 IL2_62_3_174_544_885/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +
0H1@84:5878*()/*0-;*(%@(+’)+’)2)&+#2

@ERR000001.1000827 IL2_62_3_174_202_947/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + 5:/:/?:<
/5)89++)+22(0,&/4.+(1’)%&++&

@ERR000001.1000844 IL2_62_3_174_510_789/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + 0EIIIIII
IIIIIIII?II;I7H0I>,5I,2@’;3(

@ERR000001.1000850 IL2_62_3_174_265_909/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + .IIIIIII
IIIIIIIIIIIIIIIIIIIIIIIIIIII

@ERR000001.1000854 IL2_62_3_174_506_596/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + 6CICIFII
I685IFEHICH:=59146>I*8456273

@ERR000001.1000857 IL2_62_3_174_240_819/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +)
IIIHIIIII7>IAIHEIII4/-5CC5.?0<)400B

From the above output we can see that the 3rd column (i.e. the
sequences) is sorted in the ascending order, showing many dupli-
cate sequences. In the sort command, ‘-k’ is used to specify the
column on the basis of which the sorting will be carried out. The
format of ‘-k’ is: ‘-km,n’ where ‘m’ is the starting column and ‘n’ is
the end column (http://www.theunixschool.com/2012/08/linux-
sort-command-examples.html). Since in our case, the sorting is
based on the 3rd column only, we specify ‘-k3,3’.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

40 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Now to sort and extract only the unique sequences in a single
step, we add one more parameter to the above command:

 $ sort ‐k3,3 ‐u ERR000001_1_tab.txt >
ERR000001_1_tab.srt.unq

Check the number of lines in the newly created file
ERR000001_1_tab.srt.unq:

$ wc ‐l ERR000001_1_tab.srt.unq

You can see that there are 1023945 lines now as compared to
1170794 lines in the original file ERR000001_1_tab.txt.

$ sort ‐k3,3 ‐u ERR000001_1_tab.txt > ERR000001_1_tab.srt.unq

$ wc ‐l ERR000001_1_tab.srt.unq

1023945 ERR000001_1_tab.srt.unq

Note: In the above command, we have used an additional
parameter ‘-u’ which means print only unique lines.

Convert Reads into FASTA Format Sequences
Most of the softwares or tools recognize sequences in FASTA for-
mat. Therefore, it will be very helpful to convert the reads into
FASTA formatted sequences. The steps that will carry out this con-
version are described below:

In the first step, extract the unique identifier (1st column) and
the sequence (3rd column) from the tabular file created in the pre-
vious steps and save the output as a new file.

 $ awk ‘{print $1 “\t” $3}’ ERR000001_1_tab.txt
> ERR000001_1_allseqs.txt

Check if the new file ERR000001_1_allseqs.txt is created by
using ‘ls’ command as described earlier in this chapter. Now verify

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 41

if only two columns (identifier and sequence) are extracted from
the tabular file ERR000001_1_tab.txt.

$ head ERR000001_1_allseqs.txt

$ head ERR000001_1_allseqs.txt

@ERR000001.1 GAACTAAGTGAACTGAAACATCTAAGTAACTTAAGG

@ERR000001.2 GATCCTACTATTACAATAATGCATTACAATATTACT

@ERR000001.3 GGGAGACAATGCAGAGGTTGAAAGATGTATCTGAAA

@ERR000001.4 TTAACGACCGTACCGAAAGTGGACTTAAGTAGTATG

@ERR000001.5 GGTTTGCTTCAAGAATAGCTTTGGTTTGTAAAGGTT

@ERR000001.6 GATTTGTCAATCACTCGTGTTCCTTCCTATGTTTGT

@ERR000001.7 GGAAATGAAGGAAATGGAATTGCGTATTGTTGAATC

@ERR000001.8 GGGATTTTAAAATTATTATTATATTTAAGAATAAGA

@ERR000001.9 TTATGTAGTACCTTTGTAATTATAATCATGATGATA

@ERR000001.10 GTCTTGAGTGAAGTTAAGGCCGAAGGCTTTGACAAA

Now add FASTA file identifier “>” at the beginning of each line
by using ‘sed’ command:

$ sed ‐i ‘s/^/>/’ ERR000001_1_allseqs.txt

‘sed’ is a stream editor that is used to carry out simple text
manipulation tasks on an input file (https://www.gnu.org/soft-
ware/sed/manual/sed.html). In the above example, “s” represents
the substitution action. The forward slashes (“/”) are delimiters.
The “^” matches the null string at start of the pattern space, i.e.
whatever appears next to the “^” must appear at the beginning of
the pattern space (http://www.computerhope.com/unix/used.
htm). “>” is the character that has to be added. Finally, “-i” option
means to reflect the changes in the file ERR000001_1_allseqs.txt.

To summarize, we are invoking a ‘sed’ command which adds
“>” at the beginning of each line (represented by “^”) in a file.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

42 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

To verify that “>” has been added at the beginning of each line,
use the ‘head’ command again:

$ head ERR000001_1_allseqs.txt
$ head ERR000001_1_allseqs.txt

>@ERR000001.1 GAACTAAGTGAACTGAAACATCTAAGTAACTTAAGG

>@ERR000001.2 GATCCTACTATTACAATAATGCATTACAATATTACT

>@ERR000001.3 GGGAGACAATGCAGAGGTTGAAAGATGTATCTGAAA

>@ERR000001.4 TTAACGACCGTACCGAAAGTGGACTTAAGTAGTATG

>@ERR000001.5 GGTTTGCTTCAAGAATAGCTTTGGTTTGTAAAGGTT

>@ERR000001.6 GATTTGTCAATCACTCGTGTTCCTTCCTATGTTTGT

>@ERR000001.7 GGAAATGAAGGAAATGGAATTGCGTATTGTTGAATC

>@ERR000001.8 GGGATTTTAAAATTATTATTATATTTAAGAATAAGA

>@ERR000001.9 TTATGTAGTACCTTTGTAATTATAATCATGATGATA

>@ERR000001.10 GTCTTGAGTGAAGTTAAGGCCGAAGGCTTTGACAAA

You can now clearly see that “>” has been added before each
line. Still this is not a proper FASTA formatted file.

$ awk’{ print $1, “\n” $2}’ ERR000001_1_
allseqs.txt > ERR000001_1_allseqs.fasta
Here we use awk again to convert it into a FASTA file. In this

example, we are simply printing the 1st column (the identifier), fol-
lowed by a newline character (\n) and finally the sequence itself
(2nd column). “\n” will allow the sequence to be printed on a new
line and the output is redirected to a new file (ERR000001_1_
allseqs.fasta). To check whether we have the FASTA file or not, type:

$ head ERR000001_1_allseqs.fasta

$ head ERR000001_1_allseqs.fasta

>@ERR000001.1

GAACTAAGTGAACTGAAACATCTAAGTAACTTAAGG

>@ERR000001.2

GATCCTACTATTACAATAATGCATTACAATATTACT

>@ERR000001.3

GGGAGACAATGCAGAGGTTGAAAGATGTATCTGAAA

>@ERR000001.4

TTAACGACCGTACCGAAAGTGGACTTAAGTAGTATG

>@ERR000001.5

GGTTTGCTTCAAGAATAGCTTTGGTTTGTAAAGGTT

Now, you can see the fasta formatted file is created.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 43

Write a Shell Script to Split Sequences
into Individual Files
Until now all sequence reads are in just one file and sometimes
there might be a requirement to separate these sequences into
individual files. Now we make use of shell scripting to split each
sequence into individual files. In a typical UNIX-like system
(including Linux), Shell has been instrumental in bridging between
the user and the computer. Shell is a command interpreter that
interprets user instructions to Kernel for further execution. There
are many types of Shell in Linux such as: Bourne Shell (SH), C Shell
(CSH), Korn Shell (KSH), TC Shell (TCSH) and Bourne Again Shell
(BASH). The latter one (BASH) is the most popular Shell because
it incorporates useful features from the KSH and CSH. A Shell is
not only an excellent command line interpreter, but also has
scripting features that allows automation of tasks that would oth-
erwise require lot of steps. You can visit http://linuxcommand.
org/lc3_lts0010.php for a more detailed explanation about Shell.
To give instruction to the Shell, we shall use a text input and out-
put environment called Terminal (http://linuxcommand.org/lc3_
lts0010.php).

To start writing a shell script, we need to use a text editor.
There are a few text editors that we can use such as ‘pine’, ‘pico’
and ‘vi’. In this chapter the vi (pronounced as: vee ay) text editor
will be used. It is a screen-oriented text editor originally created
for the Unix operating system. The vi editor is the most common
text editor that Linux users use to edit text files or scripts. To
start using the vi editor, simply type ‘vi’ followed by the text file
name that you want to edit or a new text file that you want to
create. vi editor has two modes, namely the “command mode”
(the default mode when the file is opened or created) and the
insert ‘i’ mode (you need to be in insert mode to write the shell
script).

Now let’s start creating a shell script to separate a multiFASTA
file into individual FASTA files. Type:

$ vi split.sh

b4705_Ch-02.indd 43b4705_Ch-02.indd 43 09-Feb-23 11:15:46 AM09-Feb-23 11:15:46 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://linuxcommand.org/lc3_lts0010.php
http://linuxcommand.org/lc3_lts0010.php
http://linuxcommand.org/lc3_lts0010.php
http://linuxcommand.org/lc3_lts0010.php

44 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

This will create and open a new file named split.sh (assuming
that no file with the same name exists already). However, as men-
tioned previously, this file will be opened in a command mode. To
change it into insert mode, press ‘i’ or ‘a’ key to activate the insert
mode and type the following to create your first shell script:

#!/bin/bash

INPUT_FILE=$1

PREFIX=$2

csplit -z $INPUT_FILE ‘/^>/’ ‘{*}’ --suffix=”%02d.fasta” --prefix=$PREFIX -s

The first line is the statement to tell the Shell to use BASH as
the default shell to run the scripts.

Like the other command line program, BASH allows the user
to pass some values to the script from the command line. This
value is called an argument. The argument is stored in variable with
a number in the order of the argument starting at 1 (e.g. $1, $2 ,
$3, etc.). The second and third lines are the statement to “hold”
the first and second arguments that will be passed by the user in
variables (i.e. INPUT_FILE and PREFIX).

The last statement is where we split the multisequenceFASTA
file into individual FASTA files by using “csplit” program. The csplit
takes seven arguments:

1. -z : remove empty output files
2. $INPUT_FILE : the multisequencesFASTA file
3. ‘/^>/’ : the regular expression statement to find line that starts

with ‘>’ character
4. ‘{*}’ : repeat the previous pattern as many times as possible
5. --suffix :add suffix to each individual file (%20d will be replaced

by a sequence number)
6. --prefix : add prefix to each individual file
7. --s : do not print counts of output file sizes

Once you are done with typing the script in vi, you need to
close and save the file before executing the script. Follow these
two steps to exit from vi and save the file:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 45

1. Press the ‘Escape’ key to quit from the insert mode.
2. Type ‘:wq’ and press ‘Enter’ key to save (w) and quit (q) from vi

text editor.

Refer to http://ryanstutorials.net/linuxtutorial/vi.php to get
acquainted with vi.

Changing File Permissions
Now that the script is ready, we have to change it into an exe-
cutable format by changing its permissions before we can actu-
ally execute it.

Linux has inherited from UNIX the concept of ownerships and
permissions for files. This is basically because it was conceived as a
networked system where different people would be using a variety
of programs, files, etc. Obviously, there’s a need to keep things
organized and secure. We don’t want an ordinary user using a pro-
gram that could potentially trash the whole system. There are
security and privacy issues here as well. Below are some examples
of file permission attributes on Linux:

rwxrwxrwx: Three sets of rwx. The leftmost set pertains to the
owner, the middle set is for the group, and the rightmost set is for
others; rwx stands for read (r), write (w), execute (x); the dash (-)
means no permission.

Other examples are:

rwx------: Only the owner can read, write, and execute.
rw-r--r--: Everyone can read, and the owner can also write.
rw-------: Only the owner can read and write.
r--r--r--: Everyone can read.

Permissions can also be expressed numerically, where read
(r) is equal to 4, write (w) is equal to 2, execute (x) is equal to 1,
and no permission is equal to 0. Therefore, rwxrwxrwx is equal
to 777, rwx------ is equal to 700, rw-r--r-- is equal to 744, rw-----
-- is equal to 600, and r--r--r-- is equal to 444.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

46 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

To change the permission and file/folder ownership, the follow-
ing commands can be used:

· chmod: To change file/folder permission, example: chmod 755
split.sh or chmod +x split.sh

· chown: To change file ownership, example: chown user 2 split.sh
· chgrp: To change folder ownership, example: chgrp group2

split.sh

Run the Bash Script
Before we test the script, it is good to test with a sample from the
multiFASTA file first before you proceed with the actual file. Recall
that your multiFASTA file (ERR000001_1_allseqs.fasta) has 1170794
sequences. Now let’s take some sample sequences from this file to
test the bash script by using the following command:

$ head -n 24 ERR000001_1_allseqs.fasta > sample.fasta

The command above will create a sample multiFASTA file with
12 sequences. Now, run the shell script:

$ chmod +x split.sh

$./split.sh sample.fasta ERR000001_1_

$ ls

ERR000001_1_00.fasta

ERR000001_1_01.fasta

ERR000001_1_02.fasta

ERR000001_1_03.fasta

ERR000001_1_04.fasta

ERR000001_1_05.fasta

ERR000001_1_06.fasta

ERR000001_1_07.fasta

ERR000001_1_08.fasta

ERR000001_1_09.fasta

ERR000001_1_10.fasta

ERR000001_1_11.fasta

The first command is used to give executable permission to the
shell script file (i.e. split.sh), while the second command is used to

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Primer on Linux 47

run the shell script. As a gentle reminder, the shell script requires
two arguments: the multiFASTA file (e.g. sample. fasta file consist-
ing of all the FASTA sequences) and output file prefix (e.g.
ERR000001_1_). After the shell script file is executed, it generates
several FASTA files with one sequence per file.

Summary
This tutorial provides a brief introduction to some of the widely
used Linux commands that will help a potential user to quickly
generate some statistics about their data. There is a lot of help
available online for these and many more Linux commands. A large
number of free tutorials on the usage of these commands are also
easily accessible online. Having such a basic skill in Linux is very
important in order to efficiently organize, manipulate and analyze
any kind of biological data generated by high throughput technolo-
gies. Although it may sound demanding initially, the effort is
rewarding as you may have seen in this chapter. Most of the bioin-
formatics tools are developed to work on the Linux system and
furthermore the majority of High Performance Computing systems
are using Linux as the operating system. Finally, for more advanced
analysis of bioinformatics data, a user may want to consider
learning at least one programming language (e.g. PERL or Python).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

TTThhhiiisss pppaaagggeee iiinnnttteeennntttiiiooonnnaaallllllyyy llleeefffttt bbblllaaannnkkk

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

49

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 3

Inspection of Sequence Quality
Kwong Qi Bin, Ong Ai Ling, Heng Huey Ying and
Martti T. Tammi

Biotechnology & Breeding Department, Sime Darby Plantation
R&D Centre, Selangor, 43400, Malaysia.

Glossary of Terms
FASTQ: Text-based nucleotide sequence with its quality score.
Line 1 is the FASTA identifier, line 2 is the nucleotide sequence,
line 3 starts with a ‘+’ followed by the optional FASTA identifier,
and line 4 represents the quality score.
FASTA: Text-based nucleotide sequence without its quality score,
which is just line 1 and 2 of FASTQ. It has a header that starts
with “>” and the next line is the sequence.
Kmer: Nucleotide sub-sequence that is made up of a fixed
number of K bases.
PCR: Polymerase chain reaction is a molecular biology method
that is used to amplify a DNA fragment to multiple copies.
GC: Guanine-cytosine content within a sequence.

Introduction
The adage ‘garbage in, garbage out’ serves as an important
reminder to users of NGS technologies to be careful about the
quality of sequence data that are used for analyses. Although NGS
is a powerful technology that allows us to acquire important bio-
logical information of a species such as its genome, its accuracy

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

50 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

depends on the raw sequenced data. Similar to any high through-
put system, NGS is bound to have some errors during sequencing.
To assess sequence quality, Phred score was introduced and it is
basically a probability measurement of a wrong base call. It is cal-
culated as below:

Q = –10log10(e), �where e is the estimated wrong base
call probability

Therefore, Q scores of 10, 20 and 30 represent 1 incorrect base
call in 10, 100 and 1000 bases, respectively. This score, however, is
encoded differently in American Standard Code for Information
Interchange (ASCII) code in different Illumina systems. The earlier
Illumina (1.3, 1.5) systems use ASCII of 64–126 to represent the Q
score of 0–62, which is actually the Phred score +64. In the more
recent Illumina (1.8 and 1.9) systems, ASCII of 33–93 (Phred + 33) is
used. Therefore, when working with raw FASTQ reads, one needs to
know the right sequence quality encoding method prior to plotting a
distribution of the quality of sequenced data. Low quality bases and
in some cases, entire reads can then be removed according to crite-
ria set by the researcher. Besides quality of individual bases, it is also
important to remove adaptor sequences and any suspected con-
taminant sequences. The pre-processing of raw sequence reads to
ensure only high quality data are used for subsequent steps such as
alignment or assembly is the focus of the practical in this chapter.

FastQC
FastQC1 is a quality control tool for NGS data. It is useful in summa-
rizing the quality of sequencing and detecting potential problems.
The program can be downloaded at http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/.

Installation Step in Linux Environment

The software has included a wrapper script called ‘fastqc’ which is
the easiest way to start the program. The wrapper is in the top level
of the FastQC installation. In order to make this file executable:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Inspection of Sequence Quality 51

$ wget http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/fastqc_v0.11.9.zip
$ unzip fastqc_v0.11.9.zip
Note that a folder named FastQC is generated.
$ cd FastQC/
It is useful to look inside the file INSTALL.
txt to see some useful instructions on how to
use the software.
$ chmod 755 fastqc

Once you have done that you can run it directly by typing:

$./fastqc

An error might show if you cannot view the graphical interface
of FastQC as shown in Figure 1. To fix this error, the user needs to
ensure they have X11 display.

Figure 1.  Main graphical interface of FastQC.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

52 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

If you are running Putty in Windows, Xming X server is required
to view the output figure files from the server side. This program
can be found at http://sourceforge.net/projects/xming/. After
that, you will need to run the Putty program with the X11 option
enabled, as shown in Figure 2.

In Mac, if you are connecting to a server, the command is
usually

$ ssh –X <user>@<server IP>

In some cases, X11 might need to be downloaded and installed.
For Mac, you can download and install from this link http://apple-
x11.en.softonic.com/mac/download. From our experience, Linux
usually comes with X11 being installed. If there are still problems,
kindly refer to the system administrator of your organization for help.

Figure 2.  Screenshot for Putty’s configuration to enable Xming X for any visuali-
zation purposes.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Inspection of Sequence Quality 53

You may also place a link in /usr/local/bin to be able to run the
program from any location:

$ sudo ln -s /path/to/FastQC/fastqc /usr/
local/bin/fastqc

Download Datasets

The datasets can be downloaded at http://bioinfo.
perdanauniversity.edu.my/infohub/display/NPB/Index

Three sample files have been provided, namely “good_seq.
fastq”, which is a FASTQ file with good quality, “bad_seq.fastq”, a
file with bad quality and “contaminated.fq”, a file with many differ-
ent contaminants.

We will be running this step in the FastQC folder. You can also
try to create a separate folder and run this program in the folder.

$ mkdir test1
$ cd test1

Before running any analysis, let us find out the number of
sequences in the FASTQ file. Taking “good_seq.fastq” as an example:

$ wc -l good_seq.fastq

This command tells us that there are 1 million lines in the files,
and since FASTQ has 4 lines for a single entry, hence there are
250,000 sequences in the FASTQ file.

The command below will show us the first record.

$ head –n4 good_seq.fastq
@HWQB1:1:10:72:192:#0/1
GACCTGTATCGCGTAACTGATCAGACCAAAATTCTTAAGT
+
“.0,,54.*’>@>A@AB>@@B>B;9;5?<=?@??><=<;8

In this case, first line is @HWQB1:1:10:72:192:#0/1 and it rep-
resents the FASTQ identifier, which is unique for each sequence.

b4705_Ch-03.indd 53b4705_Ch-03.indd 53 09-Feb-23 11:18:34 AM09-Feb-23 11:18:34 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://bioinfo.perdanauniversity.edu.my/infohub/display/NPB/Index
http://bioinfo.perdanauniversity.edu.my/infohub/display/NPB/Index

54 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

The second line is the bases, third line is mainly just a separator,
and the fourth line is the quality scores. To run FastQC for all the
example files, use the following command:

$ fastqc good_seq.fastq bad_seq.fastq
contaminated.fq

Three output files will be generated for each of the input files:

good_seq_fastqc.zip, bad_seq_fastqc.zip and
contaminated_fastqc.zip.

If these files are not automatically unzipped, you can manually
unzip them using the following command:

$ unzip ‘*.zip’
contamin ated_fastqc.zip

Let us have a look at the one of the unzipped contents:

$ cd good_seq_fastqc
$ ls –lah

To view the output (Figure 3), we will be using Firefox to view
the report in HTML format. Besides Firefox, Chrome, Safari and
other browsers can also be used. For most operating systems,
installation for Firefox can be found at https://support.mozilla.org/
en-US/products/firefox/download-and-install.

$ firefox fastqc_report.html

Another option is to transfer the output files using WinSCP from
the server to your personal computer (Windows-based) before viewing
it. WinSCP can be downloaded from http://winscp.net/eng/index.php.

Figure 3.  List of output from the program.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://support.mozilla.org/en-US/products/firefox/download-and-install
https://support.mozilla.org/en-US/products/firefox/download-and-install

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Inspection of Sequence Quality 55

In the unzipped folder of the output files, there are also two text
files, which are ‘summary.txt’ and ‘fastqc_data.txt’. These files con-
tain the raw statistics that are used to generate the HTML reports.
Take a look at it if you are interested. For the purpose of this tutorial,
we will only focus on the more user-friendly HTML report.

Overall, it is easy to locate potential problems in the FASTQ files
by looking at the summary column in the HTML file. The summary
has 11 categories that show various aspects relevant for sequence
quality inspection (Table 1).

Table 1.  Various analysis modules incorporated in the FastQC program.

Analysis Modules Definitions

Basic statistics General statistics and some background
information regarding the input file

Per base sequence quality Bases’ quality values across all the reads of the
input FASTQ file

Per tile sequence quality The average quality scores from each tile across
all the bases

Per base sequence content Percentage of A, C, G, T across the FASTQ reads
Per base GC content GC content across the FASTQ reads, for each

base position
Per sequence GC content Average GC distribution over all sequences, and

provided a comparison of it with a normal
distribution

Per base N content Percentage of N base calls at each position
across the FASTQ reads

Sequence length
distribution

Summary on length distribution for the FASTQ
reads, useful after trimming reads

Sequence duplication levels Summary of the counts for every sequence in the
FASTQ file, useful in detecting biased enrichment
problems such as PCR over amplification

Overrepresented
sequences

Frequency summary of sequences, useful in
detecting and classifying contaminants in
sequencing, for example PCR primers

Adapter content Cumulative plot of the fraction of reads where the
sequence library adapter sequence is identified

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

56 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Besides each of the categories, there are symbols that repre-
sent their results:

 Represents problem in this category

 Represents acceptable in this category

 Represents warning in this category

The FastQC program is capable of detecting problems regarding
base and sequence quality, base content, Kmer frequency, GC con-
tent, sequence length and duplication and contaminant/adapter.
Undeniably, all of these problems will affect the quality of assem-
bly of mapping, but from our experience, the two main problems
are the base quality and adapter. It is also worth noting that the
other problems might need to be solved at the library preparation
and sequencing stage, and is out of the scope of this tutorial. This
tutorial will focus primarily on base quality and adapter problem.

From our previous example run, we would have generated an
example result with good sequence quality result in the good_
sequence_short_fastqc folder. This is the most important figure
generated from the program. Figure 4 shows how a good sequence
quality FastQC result should look like.

The y-axis of the figure represents the Q score, and the x-axis is
the position of the base in a raw read. On top of the figure, we
know that the encoding type is Illumina 1.9. Usually, the quality of
the bases deteriorates towards the end of the read, with the for-
ward read showing better quality than the reverse read. Overall,
the quality of this dataset is defined as good, because the box plots
which represent the base quality were all in the green region (score
>28). All the bases, on average, has base quality of >30. A warning
will be issued if the median for any base with score <25, and a fail-
ure if <20. We will look at other figures next.

Figure 5 shows the quality score distribution over all sequences.
The average quality per read is actually very high, at 32. A good
dataset will have a single peak located around score 30. Warning is
given when the mean quality is <27, failure at <20.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Inspection of Sequence Quality 57

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Figure 4.  Example result for good sequence quality scores.

Figure 5.  Example results for average quality score for all sequences.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

58 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Figure 6 represents the sequence content across all bases.
Ideally, there should not be any base preference at any positions. In
reality, however, this is almost never the case. At the beginning of
the reads, there might be some base bias and fluctuations. Warning
will be issued if the difference between any of the bases to be >10%,
failure when this difference reaches 20% at any position. Even for a
dataset with good quality, this test might not necessary pass.

Figure 7 summarizes the number of ambiguous bases, repre-
sented as N across the entire raw reads. If the number of N is >5%,
a warning is issued, at >20%, failure. In this case, no N is found in
the dataset.

Figure 8 represents the distribution of sequence lengths. In this
case, the sequence length is 40 bp.

There are other figures generated by FastQC, but above are the
figures that we find to be of most importance with regards to the
base/sequence quality problem.

Figure 6.  Example result for bases content of all sequences.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Inspection of Sequence Quality 59

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Figure 7.  Example result for N (ambiguous) content across all sequences.

Figure 8.  Example result for distribution of sequence length over all sequences.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

60 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Let us take a look at an example of bad sequence quality. The
files are in the bad_sequence_fastqc folder. The “Per base sequence
quality” figure (Figure 9) best describes the quality problem and
will therefore be selected for more explanation.

The quality of the reads dropped drastically after base number
15. Approximately 20–40% of the bases were in the red zone, and
these bases need to be trimmed. This is not an absolute rule, but
it is fairly common to trim bases below quality of 20 or 25.

Another problem highlighted here is sequence contamination.
These contaminated sequences need to be dealt with properly in
the case of assembling a genome or else a lot of false genes may
be generated. In this practical, the “contaminated.fq” file has
adapter contamination. Take a look at the result under the
“Over represented sequences” category. Most of the time, over-
represented sequences are either primers or adapters. The FastQC
program comes with a folder (/path/to/FastQC/Configuration/
contaminant_list.txt) that lists down most of the primers, adapters

Figure 9.  Example result for bad sequence quality scores.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Inspection of Sequence Quality 61

	 b4705  Practical Bioinformatics for Beginners“9x6”�

or other contaminants. Regardless, it is usually good to contact
your sequencing service provider to find out the primers and
adapters used, in case the list provided by FastQC is not up to date.

The result for contamination problem is in the contaminated_
fastqc folder. For this case, we will be focusing on the “Overre-
presented sequences” table (Figure 10). As you can see from under
the “Possible Source” column, the problem is caused by Paired End
PCR primers and adapters.

FastQC is a comprehensive program that perform quality inspec-
tion of sequencing data. For more information regarding FastQC can
be found at http://www.bioinformatics.babraham.ac.uk

Fastx-toolkit & FASTQ Processing Utilities
Upon quality check of your dataset, the next step would be to get
the data ready for further mapping work. Fastx-toolkit2 is a collec-
tion tools for FASTQ files preprocessing. It can be downloaded from
http://hannonlab.cshl.edu/fastx_toolkit/download.html.

Installation Step in Linux Environment

$ wget http://hannonlab.cshl.edu/fastx_tool -
kit/fastx_toolkit_0.0.13_binaries_Linux_2.6_
amd64.tar.bz2

$ tar –xjf fastx_toolkit_0.0.13_binaries_
Linux_2.6_amd64.tar.bz2

A bin directory will be created and the programs will be stored in
it. It can be copied to /usr/bin/ directory. Alternatively, just list the full
path when running the program. $ sudo cp /path/to/bin/* /usr/bin/

Figure 10.  Example result for contamination problem.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://hannonlab.cshl.edu/fastx_tool­-
kit/fastx_toolkit_0.0.13_binaries_Linux_2.6_amd64.tar.bz2
http://hannonlab.cshl.edu/fastx_tool­-
kit/fastx_toolkit_0.0.13_binaries_Linux_2.6_amd64.tar.bz2
http://hannonlab.cshl.edu/fastx_tool­-
kit/fastx_toolkit_0.0.13_binaries_Linux_2.6_amd64.tar.bz2

62 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

In previous steps, we have highlighted some problems regard-
ing sequencing quality. After detecting these problems, we can
now trim or remove bases or sequences that are of low quality. For
this purpose, we will look at three tools from the Fastx toolkit. The
first tool that we will look at is the FASTQ Quality Filter, which filters
sequences based on their quality. For this purpose, we will be using
the file “bad_seq.fastq”. Please note that if the Illumina encoding is
>= 1.8, one needs to provide a –Q33 option in using this command.
For Illumina encoding of <= 1.5, this option is not required.

$ fastq_quality_filter -i bad_seq.fastq -q 25
-p 80 -o bad_seq.fastq.filtered –Q33

Flag:

-Q33: Illumina 1.9 encoded (i.e. ASCII code = Phred + 33)
-i: Input file name
-q: minimal quality of base to keep
-p: minimal percentage of bases that must have at least q quality
-o: output file name

Next, we will look at FASTQ Quality Trimmer, which shortens
reads in a FASTQ file based on the quality.

$ fastq_quality_trimmer -i bad_seq.fastq.
filtered -t 25 -o bad_seq.fastq.trimmed –Q33

Flag:

-t: Quality threshold - nucleotides with lower than the threshold
quality will be trimmed (from the end of the sequence). Take note
that the –q argument in fastq_quality_filter is different from the –t
argument here. In –q argument, the entire sequence will be
removed for those that do no pass the threshold whereas the –t
argument will only trim bases from the end of the sequence.

After correction, let us run FastQC again.

$ fastqc bad_seq.fastq.trimmed

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Inspection of Sequence Quality 63

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Figure 11.  FastQC result after quality trimming.

As we can see in Figure 11, the quality of the input file has
improved drastically. Although some of the bases still fall into the
yellow zone, most of the low quality ones have been removed.

Another option is to remove the entire low-quality short read
by setting a more stringent cutoff for the quality scores. However,
we strongly do not recommend doing this.

$ fastq_quality_filter -q 20 -p 80 -i bad_seq.
fastq -o bad_sequence.txt.filtered –Q33

This is because some assembly programs are “picky”, they do
not allow for raw reads of different length or different number of
reads in the paired-end FASTQ files. Fastq_quality_filter is
likely to remove some paired end reads, thus turning them into
singletons. For cases like this, the solution is to substitute the low
quality bases with Ns. This can be done using fastq_masker.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

64 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

$ fastq_masker –q 20 -i bad_seq.fastq -o bad_
seqN.fastq –Q33
$ head –n4 bad_seqN.fastq
@HWQB1:1:10:72:192:#0/1
AACTTCTGGGATTGAGTTCNNNNNNNNNNNNNNNNNNNNN
+
A>>A@D>69=7=<9<;<:<”””#””%”””$””””%””%%”

Now, to remove the sequencing adapters’ problem that we have
encountered before, we can make use of the FASTQ Clipper tool.

$ fastx_clipper -a CAAGCAGAAGACGGCATACGAGAT
CGTGATGTGACTGGAG -i contaminated.fq -o
contaminated_adapter_remove.fq –v –Q33

Or
$ fastx_clipper -a CAAGCAGAAGA -i contaminated.
fq -o contaminated_adapter_remove.fq –v –Q33

Flag:

-a: adapter sequence (referred to Figure 10 as example)
-v: for verbose mode

It is rather cumbersome to remove all the adapters this way, as
we need to remove the adapters one by one, therefore we can use
another tool set, known as FASTQ processing utilities3 by Erik
Aronesty. See below for the commands to install and run:

$wget --no-check-certificate https://storage.
googleapis.com/google-code-archive-downloads/
v2/code.google.com/ea-utils/ea-utils.
1.1.2-537.tar.gz
$ tar –xzvf ea-utils.1.1.2-537.tar.gz
$ cd ea-utils.1.1.2-537
$ sudo make install

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://storage.
googleapis.com/google-code-archive-downloads/v2/code.google.com/ea-utils/ea-utils
https://storage.
googleapis.com/google-code-archive-downloads/v2/code.google.com/ea-utils/ea-utils
https://storage.
googleapis.com/google-code-archive-downloads/v2/code.google.com/ea-utils/ea-utils

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Inspection of Sequence Quality 65

The adapter file has been given as “adapters_give.txt”. This file
is in the FASTA format.

$ ea-utils.1.1.2-537/fastq-mcf adapters_give.txt
contam inated.fq -o contaminated_adapter_remove.fq

Run FastQC again,

$ fastqc contaminated_adapter_remove.fq

From the result generated, we observed that most of the
adapters have been removed. Take note on the changes in
‘Sequence Length Distribution’ as well.

In some cases, after correcting the raw reads, one might just
want to convert FASTQ file to a FASTA file. This can be done using
the fastq_to_fasta tool.

$ head -n8 bad_seq.fastq
@HWQB1:1:10:72:192:#0/1
AACTTCTGGGATTGAGTTCTCTGACCAGCCTGGTGCCTCG
+
A>>A@D>69=7=<9<;<:<”””#””%”””$””””%””%%”
@HWQB2:1:10:72:192:#0/1
CGAGGGGGGGTTTCAGGATACAGAGTTACTCAAACATACC
+
>9<A<:?=9C>8B>A<DBB;@””%#””””””$”#”#$#””
$ fastq_to_fasta -i bad_seq.fastq -o bad_seq.fa
-Q33
$ head -n4 bad_seq.fa

>HWQB1:1:10:72:192:#0/1
AACTTCTGGGATTGAGTTCTCTGACCAGCCTGGTGCCTCG

>HWQB2:1:10:72:192:#0/1
CGAGGGGGGGTTTCAGGATACAGAGTTACTCAAACATACC

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

66 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

There are other useful tools in fastx-toolkit as well, which are
listed in Table 2.

Conclusion
It is important to do sequence quality inspection to ensure a good
and clean data for downstream analyses. Options available are to
either omit the entire sequence, low quality bases or to treat low
quality bases as Ns.

References
1. Andrews, S. FastQC: a quality control tool for high throughput sequence data,

<http://www.bioinformatics.babraham.ac.uk/projects/fastqc> (2010).
2. Gordon, A. & Hannon, G. J. Fastx-toolkit. (2010).
3. Aronesty, E. ea-utils: Command-line tools for processing biological sequencing

data, <https://github.com/ExpressionAnalysis/ea-utils> (2011).

Table 2.  Content of fastx-toolkit.

Tools Function

FASTQ-to-FASTA converter Convert FASTQ files to FASTA files
FASTQ/A barcode splitter Split files containing multiple samples
FASTQ collapser Collapse identical sequences
FASTQ renamer Rename the sequence identifiers
FASTQ/A reverse-complement Generate reverse-complement of each sequence
FASTQ information Chart quality statistics and nucleotide

distribution
FASTA formatter Change the width of sequences line in a FASTA file
FASTA nucleotide changer Convert FASTA sequences from/to RNA/DNA

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

67

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 4

Alignment of Sequenced Reads
Akzam Saidin

Novocraft Technologies Sdn Bhd, Selangor, Malaysia.

Introduction
Next(second) generation sequencer platforms by Illumina, SoLiD
and Ion Torrent generate a high throughput volume of short reads
or paired reads. The reads generated from short reads sequencer
platforms are typically >= 300 base pairs with low read error pro-
file. Some of the latest sequencing technologies (third generation
sequencers) based on single molecule system by Pacific Biosciences
and Oxford Nanopore produce longer reads, in the range of 1,000–
40,000 base pairs with a higher read error profile. Both generations
of sequencers have their pros and cons and the choice of platform
depends on the problem.

In a re-sequencing study, reads generated by the sequencing
machine will need to be aligned to a reference sequence. This step
is called reads alignment or mapping. By performing reads align-
ment to a reference sequence, researchers can perform genetic
variants detection in their sequenced samples.

To perform read alignments to a reference sequence, an aligner
software is used. An aligner software will read the sequence reads
(i.e. in FASTQ format) and compare it to the reference sequence by
using a mapping algorithm. The aligner will try to find highly similar

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

68 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

sequence location in the reference. A simplified representation of
read alignments is as shown below.

Reference GGATCCATGCGTCCCAGGTCACGGGATCCATG CGTCCCAGGTCACG

 *

Read A ATGCGTCCCAGGTCACGGGATCCATGCGTCC

Read B ATCCATGCGTCCCAGGTCACGGGGTCCATGC

Read D CGTCCCAGGTCACGGGATCCATGCGTCCCAG

Read F CAGGTCACGGGATCCATGCGTCCCAGGTCAC

The first row represents the reference sequence and below are
the aligned reads. Read A, D and F are a perfect match to the refer-
ence. Read B has single base difference to the reference, it contains
a nucleotide base G instead of nucleotide base A in reference (loca-
tion indicated by * symbol).

The reads alignment information are collected by an aligner and
it is usually reported in an alignment file in Sequence Alignment/
Map (SAM) format or in its binary format, Binary Alignment/
Map (BAM).

There are a multitude of read aligners available, a comprehensive
list can be found at EBI HTS Mapper page (http://www.ebi.ac.uk/~nf/
hts_mappers/). In the following section, we will go through the basic
alignment process for both short and long reads using BWA and
novoAlign.

Practical
Short Reads Alignment

In this section we will perform reads alignment using BWA aligner.

Dataset

Info File(s)

Reference
sequence

Escherichia coli K12 MG1655
(ENSEMBL)

ecoliK12MG1655_
ensembl.fna

b4705_Ch-04.indd 68b4705_Ch-04.indd 68 09-Feb-23 11:19:29 AM09-Feb-23 11:19:29 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.ebi.ac.uk/~nf/hts_mappers/
http://www.ebi.ac.uk/~nf/hts_mappers/

Alignment of Sequenced Reads 69

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Read set Illumina GAII (Run ID: ERR008613)
Paired end reads subsampled to
10X coverage

GA2_R1.fastq,
GA2_R2.fastq

The datasets can be downloaded at
http://bioinfo.perdanauniversity.edu.my/infohub/display/
NPB/Index

Software Requirements

Software Version URL
BWA1 0.7.13-r1126 https://github.com/lh3/bwa/
*Novoalign2 V3.04.04 http://www.novocraft.com/support/

download/
*Novosort3 V1.03.09 http://www.novocraft.com/support/

download/
SAMTOOLS4 1.3 http://www.htslib.org/download/
IGV5 2.3.60 https://www.broadinstitute.org/igv/
* alternative software(s)

Installation instructions for each software can be found on the
download site.

Alignment Process

Optional: index reference sequence

It is preferred to index the reference fasta file, especially when you have
multiple sequences as references. FAI index enables efficient access in
the alignment file to arbitrary regions within those reference sequences.

Create reference sequence index
samtools faidx ecoliK12MG1655_ensembl.fna

this command will produce the following reference index file
ecoliK12MG1655_ensembl.fna.fai

Create BWA reference index
bwa index ecoliK12MG1655_ensembl.fna

this command will produce the following bwa index files

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://bioinfo.perdanauniversity.edu.my/infohub/display/NPB/Index
http://bioinfo.perdanauniversity.edu.my/infohub/display/NPB/Index
http://www.novocraft.com/support/download/
http://www.novocraft.com/support/download/
http://www.novocraft.com/support/download/
http://www.novocraft.com/support/download/

70 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

ecoliK12MG1655_ensembl.fna.amb

ecoliK12MG1655_ensembl.fna.ann

ecoliK12MG1655_ensembl.fna.bwt

ecoliK12MG1655_ensembl.fna.pac

ecoliK12MG1655_ensembl.fna.sa

Align reads to reference

Align reads with BWA
bwa mem ecoliK12MG1655_ensembl.fna GA2_R1.
fastq GA2_R2.fastq > aln-pe.bwa.sam 2> bwa.log

View SAM file
To view the SAM file on terminal

View BWA SAM file

less -S aln-pe.bwa.sam

@SQ SN:GCA_000005845.2:Chromosome:1:
4641652:1 LN:4641652

@PG ID:bwa PN:bwa VN:0.7.13-r1126 CL:bwa mem

ecoliK12MG1655_ensembl.fna GA2_R1.fastq GA2_
R2.fastq

EAS20_8_6_100_1000_1413 83 GCA_000005845.2:
Chromosome:1:4641652:1 3849483 60 100M =
3849364 -219

CGGCAGCGCCAGACAGAATGGCGTAAAGCGCGACAGT
TCGTCCGGCAATCCCAACTGGAGCCAGAGACTGATA
ACAAACAGCAGCAAGTACCAGACCAGA

F@>CCFFE/HFHHHHFFF5F@DFBED@CDBFCEHHDHDHH@
BF?BFHE5HHGHHG; ===6HHHHHHGHHHHEHHHHHHH
GIIHHHHGGHFFFFBFFFFBB NM:i:0 MD:Z:100
AS:i:100 XS:i:0

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Alignment of Sequenced Reads 71

EAS20_8_6_100_1000_1413 163 GCA_000005845.2:Ch
romosome:1:4641652:1 3849364 60 100M =
3849483 219

GAGAGCAATAAATCCACCGGATGATCGCGCCAGGTTTG
ACTGGCGATCAGCGCGATGGCGTTCATCAACGTCG
CAATCAGCGCCCCTTGCCAACCATAGT

AEGE>FHFHCEGG@EFHEHHHFEFCHHGF@HFHIDHGDHHHDH=
F?EEFH@BHHG>>F;F=FDCDFE6BBBFEEC7D6=D6E?:?GFEHBGGC
CGE@AFB NM:i:0 MD:Z:100 AS:i:100 XS:i:0

The header section is indicated by the @ symbol.
Tag Description
HD Header
• VN SAM format version
• SO Sorting order of alignments
SQ Reference sequence dictionary

(information)
• SN Reference sequence name
• LN Reference sequence length
PG Program
• ID Program record identifier
• PN Program name
• VN Program version
• CL Command line

The alignment section consists of multiple TAB-delimited lines with
each line describing an alignment. A better view of the fields is as
shown in the transposed example below:

Field Value
QNAME EAS20_8_6_100_1000_1413
FLAG 83

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

72 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

RNAME GCA_000005845.2:Chromosome:1:4641652:1
POS 3849483
MAPQ 60
CIGAR 100M
MRNM/
RNEXT

=

MPOS/
PNEXT

3849364

ISIZE/TLEN -219
SEQ CGGCAGCGCCAGACAGAATGGCGTAAAGCGCGACAGTTC

GTCC GGCAATCCCAACTGGAGCCAGAGACTGATAAC
AAACAGCAGCAAGTACCAGACCAGA

QUAL F@>CCFFE/HFHHHHFFF5F@DFBED@
CDBFCEHHDHDHH@BF?BFHE5HHGHHG;===6HHHHHHG
HHHHEHHHHHHHGIIHHHHGGHFFFFBFFFFBB

TAG(s) NM:i:0 MD:Z:100 AS:i:100 XS:i:0

A basic explanation on the SAM format fields as seen in above

Field Brief description
QNAME Query template NAME
FLAG bitwise FLAG
RNAME Reference sequence NAME
POS 1-based leftmost mapping POSition
MAPQ Mapping Quality
CIGAR CIGAR string
RNEXT Ref. name of the mate/next read
PNEXT Position of the mate/next read
TLEN Observed Template Length
SEQ Segment SEQuence

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Alignment of Sequenced Reads 73

	 b4705  Practical Bioinformatics for Beginners“9x6”�

QUAL ASCII of Phred-scaled base QUALity+33
TAGs Additional information tagged to

alignment

A more detailed explanation can be found in the SAM Format
specification document (http://samtools.github.io/hts-specs/).

The following fields are usually checked on to assess the reads
alignment:

1. FLAG
This field contains the flag number for types of reads align-
ment. For example, a read pair that is flagged as ‘2’ is paired-
end reads that are mapped properly. The flags can be checked
using the picard explain flags tool at http://broadinstitute.
github.io/picard/explain-flags.html

2. CIGAR
The CIGAR string is a simplified sequence mapping representa-
tion. The string shows alignment from the aligner on the num-
ber of bases that aligns (match/mismatch) with the reference,
deleted from the reference, insertions that are not in the refer-
ence and soft/hard clipping of the sequence reads from being
aligned to the reference. A simple CIGAR table is provided, see
Table 1. A complete CIGAR table can be found in SAM format
documentation at http://samtools.github.io/hts-specs/).

Table 1.  Simple CIGAR table.

Op Description

M alignment match (can be a sequence match or mismatch)
I insertion to the reference
D deletion from the reference
N skipped region from the reference
S soft clipping (clipped sequences present in SEQ)
H hard clipping (clipped sequences NOT present in SEQ)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://broadinstitute.github.io/picard/explain-flags.html
http://broadinstitute.github.io/picard/explain-flags.html

74 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

For example:

Reference
Read B

 1 2 3 4
1234567890123456 789012345678901234567890123456
GGATCCATGCGTCCCA GGTCACGGGATCCATGCGTCCCAGGTCACG

ATCCAT CGTCCCATGGTCACGGGGTCCATGC

Which will report:
POS 3
CIGAR 5M1D7M1I17M

The POS indicates the base position on the reference; in this
example Read B starts at position 3 with 5 matches. At position
9, it has 1 deletion (highlighted yellow; not present in read
sequence). 7 matches from position 10 before an insertion
(highlighted green; not present in reference). Then it is followed
by 17 matches inclusive of the mismatch bases in position 26.

3. QUAL
QUAL is a value for how accurate each base in the query
sequence (SEQ) is.
Quality is calculated based on the probability that a base is
wrong, p, using the Phred Quality score (http://en.wikipedia.
org/wiki/Phred_quality_score) formula:

quality = –10 log10p

In SAM format, the ‘p’ value is added with 33 (this is to enable
the value to be within readable ASCII printing range). The QUAL
field for SAM uses the following formula:

QUAL = (–10 log10p) + 33

4. MAPQ
MAPQ is the quality value for mapping, rounded to the nearest
integer. It uses the following formula:

MAPQ = –10 log10p Pr{mapping position is wrong}

b4705_Ch-04.indd 74b4705_Ch-04.indd 74 09-Feb-23 11:20:03 AM09-Feb-23 11:20:03 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://en.wikipedia.org/wiki/Phred_quality_score
http://en.wikipedia.org/wiki/Phred_quality_score

Alignment of Sequenced Reads 75

	 b4705  Practical Bioinformatics for Beginners“9x6”�

It ranges from value 0 to 255. Do be careful and refer to the
aligner documentation on how MAPQ should be interpreted
because different aligners use different MAPQ values.

SAM to BAM conversion

Convert SAM to BAM
To convert SAM format to BAM format, we use SAMTOOLS.

samtools view -uS -o aln-pe.bwa.bam aln-pe.
bwa.sam

Sort BAM alignments

Sorting BAM file in general is a process to sort aligned reads based
on the aligned position to the reference genome. A sorted BAM is
usually a requirement for some, if not most analysis tools. Sorting
reads to reference position helps in increasing efficiency in reading,
processing and compacting the file size.

Sorting BAM file can be done using SAMTOOLS

1. Sort alignment with reference coordinate order

samtools sort -T aln.tmp.sort -o aln-pe.bwa_
sorted.bam aln-pe.bwa.bam

2. Index alignment

samtools index aln-pe.bwa_sorted.bam
This will produce BAM index file

aln-pe.bwa_sorted.bam.bai

3. Mark/remove duplicates

samtools rmdup aln-pe.bwa_sorted.bam aln-pe.
bwa_rmdup.bam 2> samtools_rmdup.log

Perform indexing again on the output BAM file

samtools index aln-pe.bwa_rmdup.bam

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

76 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Alternative: novoAlign & novoSort

Create novoAlign Index

Create novoAlign reference index

novoindex ecoliK12MG1655_ensembl.idx
ecoliK12MG1655_ensembl.fna

This command will produce the novoindex file.

Align reads with novoAlign

novoalign -d ecoliK12MG1655_ensembl.idx -o
SAM -f GA2_R1.fastq GA2_R2.fastq > aln-pe.
novoalign.sam 2> novoalign.log

Convert SAM to BAM

samtools view -uS -o aln-pe.novoalign.bam aln-
pe.novoalign.sam

Piping tips: align reads and convert SAM to BAM in one
command line

novoalign -d ecoliK12MG1655_ensembl.idx -o SAM
-f GA2_R1.fastq GA2_R2.fastq 2> novoalign.log |
samtools view -uS -o aln-pe.novoalign.bam -

Sort and remove duplicate reads using novoSort

novosort -i --md -o aln-pe.novosort.bam aln-
pe.novoalign.bam 2> novosort.log

Parameter Description
-i create output bam index
--md mark duplicates

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Alignment of Sequenced Reads 77

	 b4705  Practical Bioinformatics for Beginners“9x6”�

View BAM alignment with IGV

Run IGV

./igv.sh
On the top panel, click on

Genomes
 Load genome(s) from file

go to the folder ecoliK12MG1655_ensembl.fna is
located and choose ecoliK12MG1655_ensembl.fna
then click on

File
 Load from file

choose aln-pe.bwa_rmdup.bam and aln-pe.
novosort.bam

this will display the alignments for both bam files. A snapshot of it
is provided in Figure 1. Zoom in to make the reads bases visible.

Figure 1.  A zoomed in view of aligned reads in IGV.

References
1. Li, H. & Durbin, R. Fast and accurate short read alignment with burrows —

Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

78 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

2. Hercus, C. Novoalign <www.novocraft.com/support/download/>Novocraft
Technologies Sdn Bhd.

3. Hercus, C. Novosort <www.novocraft.com/support/download/>Novocraft
Technologies Sdn Bhd.

4. Li, H. et al. The sequence alignment/map format and sAMtools. Bioinfor­
matics 25, 2078–2079 (2009).

5. Robinson, J. T. et al. Integrative genomics viewer. Nature Biotechnology 29,
24–26 (2011).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

79

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 5

Establish a Research Workflow
Joel Low Zi-Bin and Heng Huey Ying

Biotechnology & Breeding Department, Sime Darby Plantation
R & D Centre, Selangor, 43400, Malaysia.

Introduction
Planning is an important part of a project and this includes the
creation of bioinformatics workflows. Before starting, it is impera-
tive to be clear on the objective of the workflow. Planning a
research workflow can be daunting for large experiments unless
we break it down to smaller tasks, each with its own objectives. For
each objective, there will be input and the corresponding output.
When an output of a task is an input for another, one is able to
connect the inputs and outputs of tasks to generate a workflow.

As an example, let us consider a research project that aims to
study the genetic diversity of the bacteria Escherichia coli. To
achieve this objective, a reference of the E.coli genome is required,
which in turn requires the sequencing of E.coli DNA and its assem-
bly. One major task that sits between DNA sequencing and genome
assembly is the filtering of reads. To achieve this task, we will need
a way to detect and remove poor quality reads. The program
Trimmomatic1 can do this. To determine if the removal was effec-
tive, we will want to compare the the quality of reads before and
after quality trimming. We will need to employ a program like
FastQC2 to achieve this task. Therefore, one workflow that can be
created is to combine filtering of reads and evaluate the quality of
output.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

80 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

While it is possible to run each step on the terminal, it would
be far more efficient to automate the process in a workflow. The
workflow can run each step without intervention from the user. A
well written workflow will have the benefits of being reusable,
documented and able to make multiple instance runs (i.e. having
two or more workflows running at the same time). In the following
practical, we will show you two ways to build a program workflow
to filter reads using:

(1) Shell scripts
(2) Galaxy

Shell scripts are discussed in detail in Chapter 2. For the purpose
of this chapter, a shell script is simply a compiled document of com-
mands you would use as if writing directly on the command line.

Galaxy3 is an open source, web-based platform for computational
biomedical research. Galaxy’s graphical user interface makes bioin-
formatics tools easily accessible for users with or without programming
experience. The ability to create and save workflows in Galaxy ena-
bles users to repeat, share and learn complete computational analy-
sis workflows. Users can use Galaxy via the public Galaxy’s web
server (http://usegalaxy.org), or set up their own Galaxy locally by
downloading the Galaxy application (http://getgalaxy.org/).

Materials
· Illumina PE (short):

 Source: https://www.ebi.ac.uk/ena/browser/view/ERX002508?
show=reads

 Info:
 files are gz compressed.
 quality value format: Sanger
 # reads: 28,428,648
 Read length (bp): 2 × 100

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.ebi.ac.uk/ena/browser/view/ERX002508?show=reads
https://www.ebi.ac.uk/ena/browser/view/ERX002508?show=reads

Establish a Research Workflow 81

	 b4705  Practical Bioinformatics for Beginners“9x6”�

 Insert size (bp): 215.4 ± 10.6
 Illumina Genome Analyzer IIx

 Two sample files are available after unzipping the down-
loaded file:
– s_6_1.fastq
– s_6_2.fastq

Alternatively, you may download the files via command:
$ wget http://ftp.sra.ebi.ac.uk/vol1/run/

ERR008/ERR008613/200x100x100-
081224_EAS20_0008_FC30TBBAAXX-6.tar.gz

Unzip the downloaded file:
$ tar-xvf 200x100x100-081224_EAS20_0008_

FC30TBBAAXX-6.tar.gz
·   Software that will go into the workflow:

(a) FastQC — Detailed use and installation is covered in Chapter 3.
(b) Trimmomatic — For installation, download the binary ver-

sion from the website and unzip the file. You will need java
installed to run the trimmomatic-latest version 0.39.jar file.
Detailed use is covered in Chapter 6. In this example, we
used version 0.39.

$ wget http://www.usadellab.org/cms/uploads/
supplemen tary/Trimmomatic/Trimmomatic-0.39.zip
$ unzip Trimmomatic-0.39.zip

·     Illumina adapters -> TruSeq2-PE.fa (provided by Trimmomatic
in the “adapters” directory)

·     For this practical, we will sample a smaller portion of the short
reads for a quicker analysis run:

$ head -8000000 s_6_1.fastq |gzip -f >s_6_1.2M.
fastq.gz
$ head -8000000 s_6_2.fastq |gzip -f >s_6_2.2M.
fastq.gz

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-
081224_EAS20_0008_FC30TBBAAXX-6.tar.gz
http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-
081224_EAS20_0008_FC30TBBAAXX-6.tar.gz
http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-
081224_EAS20_0008_FC30TBBAAXX-6.tar.gz

82 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Shell Scripts
(1)  You will first need to know the commands necessary for each step:

a.   Run FastQC on each fastq file on the command line:

$ fastqc s_6_1.2M.fastq.gz s_6_2.2M.fastq.gz
Note: FastQC can accept gunzip compressed files directly.
b.  Run Trimmomatic for both fastq files:

$ java -jar /path/to/Trimmomatic-.039/
trimmomatic-0.39.jar PE s_6_1.2M.fastq.gz
s_6_2.2M.fastq.gz s_6_1_paired.2M.fastq.gz
s_6_1_unpaired.2M.fastq.gz s_6_2_paired.2M.
fastq.gz s_6_2_unpaired.2M.fastq.gz
ILLUMINACLIP:/path/to/Trimmomatic-.039/
adapters/TruSeq2-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDING WINDOW:4:30 MINLEN:30

c.  Run FastQC on each fastq output:
$ fastqc s_6_1_paired.2M.fastq.gz s_6_1_
unpaired.2M.fastq.gz s_6_2_paired.2M.fastq.
gz s_6_2_unpaired.2M.fastq.gz

Understanding the FastQC output is covered in Chapter 3, with
some visual examples shown later in this chapter.

(2)  Now, create a new file called pipeline1.sh at the command
terminal by opening in vi:

$ vi pipeline1.sh
(3) Type in the shell interpreter location in the first line.

#!/bin/sh

(4)  Write each command code per line into the shell script. The
contents should look like this:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 83

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Notice that lines beginning with “#” are not commands. These
are comment lines, used to document your script to make it easier
to understand should you forget. Comment lines are ignored by the
interpreter.

It is sometimes of interest to time the run of the script. In the
script example above, the “date” function will take a snapshot of
the date and time, which are strategically placed in the begin-
ning and end of the script. Another way to time your script, is
shown in Step 8.

(5) Save the file using the following vi command:

:wq

(6) Make sure the file is executable, by running the following
command:

$ chmod 755 pipeline1.sh

#!/bin/sh

system time and date at start:
date

start from the very beginning with the download of the files:
#wget http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-081224_
EAS20_0008_FC30TBBAAXX-6.tar.gz

#Unzip the downloaded file

#tar -xvf 200x100x100-081224_EAS20_0008_FC30TBBAAXX-6.tar.gz

sub-sampling to save time:
#head -8000000 s_6_1.fastq |gzip -f >s_6_1.2M.fastq.gz
#head -8000000 s_6_2.fastq |gzip -f >s_6_2.2M.fastq.gz

#Run FastQC on each fastq file on the command line:
fastqc s_6_1.2M.fastq.gz s_6_2.2M.fastq.gz

Run Trimmomatic for both fastq files:
java -jar /path/to/Trimmomatic-.039/trimmomatic-0.39.jar PE s_6_1.2M.fastq.gz
s_6_2.2M.fastq.gzs_6_1_paired.2M.fastq.gz s_6_1_unpaired.2M.fastq.gz
s_6_2_paired.2M.fastq.gz s_6_2_unpaired.2M.fastq.gz
ILLUMINACLIP:/path/to/Trimmomatic-0.39/adapters/TruSeq2-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:30 MINLEN:30

Run FastQC on each fastq output:
fastqc s_6_1_paired.2M.fastq.gz s_6_1_unpaired.2M.fastq.gz s_6_2_paired.2M.fastq.gz
s_6_2_unpaired.2M.fastq.gz

system time and date at end:
date

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-081224_EAS20_0008_FC30TBBAAXX-6.tar.gz
http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-081224_EAS20_0008_FC30TBBAAXX-6.tar.gz

84 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

(7) Run the program:

$./pipeline1.sh

(8)  Alternatively, you can time the run of your script by adding the
command “time” at the beginning of the script:

$ time ./pipeline1.sh

(9)  Once the run is completed, the following output would be
generated:

(a) Trimmomatic summary:
Read Pairs: 2000000 Both Surviving: 1498537 (74.93%)
Forward Only Surviving: 218518 (10.93%) Reverse Only
Surviving:
163048 (8.15%) Dropped: 119897 (5.99%).
The following files are generated:

(1) s_6_1_paired.2M.fastq.gz
(2) s_6_1_unpaired.2M.fastq.gz
(3) s_6_2_paired.2M.fastq.gz
(4) s_6_2_unpaired.2M.fastq.gz

(b) FastQC:
The summary results can be found in the summary.txt files,
with details found in fastqc_data.txt. Graphical reports can
be read by loading fastqc_report.html in a web browser.
The following files are generated:

   (1) s_6_1.2M_fastqc/summary.txt
   (2) s_6_2.2M_fastqc/summary.txt
   (3) s_6_1.2M_fastqc/fastqc_report.html
   (4) s_6_2.2M_fastqc/fastqc_report.html
   (5) s_6_1_paired.2M_fastqc/summary.txt
   (6) s_6_1_unpaired.2M_fastqc/summary.txt
   (7) s_6_2_paired.2M_fastqc/summary.txt
   (8) s_6_2_unpaired.2M_fastqc/summary.txt
   (9) s_6_1.2M_fastqc/fastqc_report.html
(10) s_6_2.2M_fastqc/fastqc_report.html

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 85

	 b4705  Practical Bioinformatics for Beginners“9x6”�

(c) Total program workflow runtime: 6 minutes (may vary
depending on the computer)

(10) If you had run the script above, and the following errors occur:
a.  “…Permission denied”—Check if you had set the shell

script to be executable. To fix it, do the following:

$ chmod 755 pipeline1.sh
b.  “Unable to access…” or “…No such file or directory” —

check if any of the files are in the same working directory.
If you’re accessing it from a different directory, do check if
the file paths are correct.

c.  “…command not found”— You may have forgotten to add
“./” before the shell script command.

Note that a program command and its arguments are written
in a single line. You can check this by running “less -N” to indicate
line numbers when viewing the file:

$ less –N pipeline1.sh

You may decide to have the command broken up into different
lines, which you can do by using the backslash, “\”, at the end of
each line. This could make a command with many arguments more
readable. An example:

Run Trimmomatic for both fastq files:

java -jar /path/to/Trimmomatic-.039/trimmomatic-0.39.jar PE \

s_6_1.2M.fastq.gz s_6_2.2M.fastq.gz \

s_6_1_paired.2M.fastq.gz \

s_6_1_unpaired.2M.fastq.gz \

s_6_2_paired.2M.fastq.gz \

s_6_2_unpaired.2M.fastq.gz \

ILLUMINACLIP:/path/to/Trimmomatic-.039/adapters/TruSeq2-PE.fa:2:30:10 \

LEADING:3 \

TRAILING:3

SLIDINGWINDOW:4:30 \

MINLEN:30

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

86 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

However, ensure that there isn’t any whitespace after the back-
slash, otherwise it will not work.

(11)  The need for repeating the workflow may arise, and a few
edits in the shell script is enough to get you going again. For
example, you may want to try another parameter run, and
still keep the previous command you used for documentation
purposes, you can do the following in the script:

Run Trimmomatic for both fastq files:
first run: default
java -jar /path/to/Trimmomatic-.039/trimmomatic-0.39.jar PE s_6_1.2M.fastq.gz
s_6_2.2M.fastq.gz
s_6_1_paired.2M.fastq.gz s_6_1_unpaired.2M.fastq.gz
s_6_2_paired.2M.fastq.gz s_6_2_unpaired.2M.fastq.gz
ILLUMINACLIP:/path/to/Trimmomatic-.039/adapters/TruSeq2-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:30 MINLEN:30

second run: no trim edges, qual >= 20:
java -jar /path/to/Trimmomatic-.039/trimmomatic-0.39.jar PE s_6_1.2M.fastq.gz
s_6_2.2M.fastq.gz
s_6_1_paired.2M.fastq.gz s_6_1_unpaired.2M.fastq.gz
s_6_2_paired.2M.fastq.gz s_6_2_unpaired.2M.fastq.gz
ILLUMINACLIP:/path/to/Trimmomatic-.039/adapters/TruSeq2-PE.fa:2:20:10

(12)  Not all programs would alert users of its completion. For very
long workflows, it is possible to add in simple alerts between
steps to help in identifying steps with errors. This would save
time rerunning steps that do work. One could add the follow-
ing between the FastQC and Trimmomatic steps:

#Run FastQC on each fastq file on the command line:
fastqc s_6_1.2M.fastq.gz s_6_2.2M.fastq.gz

echo “FastQC on subsampled data complete. Running Trimmomatic now...”

Run Trimmomatic for both fastq files:
java -jar /path/to/Trimmomatic-.039/trimmomatic-0.39.jar PE s_6_1.2M.fastq.gz
s_6_2.2M.fastq.gz
s_6_1_paired.2M.fastq.gz s_6_1_unpaired.2M.fastq.gz
s_6_2_paired.2M.fastq.gz s_6_2_unpaired.2M.fastq.gz
ILLUMINACLIP:/path/to/Trimmomatic-.039/adapters/TruSeq2-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:30 MINLEN:30

echo “Trimmomatic run complete. Running FastQC on final results...”

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 87

	 b4705  Practical Bioinformatics for Beginners“9x6”�

(2) Setting up Galaxy account
Go to “Login or Register” page at the top panel to register by enter-
ing your email address, password and public name (Figure 2). If you
already have an account, you can proceed to login. Once you have
registered, you will receive an activation email for verification. Click
on the activation link provided and you are able to start now.

Let us take a look at the Analyze Data page (Figure 3).

The script will run more “verbosely” and allow you to track the
steps easily.

Galaxy
In this practical, we will show you how to build a program workflow
by using the public Galaxy’s web server.

(1) Opening Galaxy
Open your desired web browser and go to the Galaxy URL—http://
usegalaxy.org/ (Figure 1).

Figure 1.  The public Galaxy’s web server home page.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

88 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

    i.  Tool panel — lists of available tools.
  ii.   Parameter settings panel — allows user to set the conditions

to customize the tool. Details of data will also be showing here
iii.   History panel — list of jobs executed. Each box represents a job

and the status is represented by the following colours:

a. Grey — in queue
b. Yellow — currently running

Figure 2.  The registration page.

Figure 3.  The Analyze Data page.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 89

	 b4705  Practical Bioinformatics for Beginners“9x6”�

c. Green — completed successfully
d. Red — failed
e. Light blue — paused

Details of job status can be viewed by expanding the box.

(3) Getting data
The first thing we will do is to get input data. Click “Upload Data”
or “Get Data”-> “Upload File from your computer” from the Tool
panel. You will see the upload window appearing. Click “Choose
local file” and select the 2 input files “s_6_1.2M.fastq” and
“s_6_2.2M.fastq”. There is no need to worry about zipped and
unzipped inputs, as Galaxy can accept both format. Select the data
type of input (“fastqsanger” in this example) under Type and click
“Start”, as it will be uncompressed automatically when loaded into
history. Change both data type to “fastqsanger” and click “Start”.
This upload process may take awhile. Click “Close” after files have
been uploaded (Figure 4).

You will see 2 boxes representing the 2 datasets appearing in
History panel. There are 3 icons at top right of each box in History
panel:

Figure 4.  A successful upload.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

90 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

    i. - view the datasets
  ii. - edit data details
iii. - delete data

The setting and steps are tracked as a History. Let us give our
History a proper name. Click Unnamed history and rename it to
“Sequence Quality Check” (or whatever you want) (Figure 5).

(4) Run FastQC before trimming
Next, we want to know the sequence quality of the input files,
using the FastQC tool. From the Tool panel, click “FastQC Read
Quality reports” under “FASTQ Quality Control”. You should see
the program parameters listed in the Parameter settings panel
(Figure 6). You will also can see an explanation of the program at
the bottom of the panel. Click “Multiple datasets” under Short read
data from your current history, select the 2 input files, then click
“Execute”.

Figure 5.  Renamed History; from “Unnamed history” to “Sequence Quality Check”.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 91

	 b4705  Practical Bioinformatics for Beginners“9x6”�

You will see 4 boxes (representing 4 output files from this tool:
“RawData” and “Webpage” format for each input files) added into
your History panel, changing from grey to yellow, then becoming
green. Click icon of the box “3: FastQC on data 1: Webpage” to
view the result on s_6_1.2M.fastq file (Figure 7).

According to the result, “per base sequence quality” shows that
it is unusual; which means the sequence quality is bad. We can see
the details of this analysis by clicking the link provided (Figure 8).

The analysis result for another input file s_6_2.2M.fastq showed that
the sequence quality begins to fall rapidly after position 60 (Figure 9).

After identifying the quality problems, we now need to trim the
sequences that are of low quality. For this, we will use Trimmomatic.

(5) Run Trimmomatic
Click “Trimmomatic” under “FASTQ Quality Control”. Select “Paired-
end (two separate input files)” for Single-end or paird-end reads?,
then select the files as Input FASTQ file R1 and R2 (Figure 10).

Figure 6.  The FastQC parameters in panel.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

92 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Figure 8.  Sequence quality score of s_6_1.2M.fastq file. The quality of the base
call dropped starting at position 66.

Figure 7.  The result of s_6_1.2M.fastq in webpage format.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 93

	 b4705  Practical Bioinformatics for Beginners“9x6”�

If you encounter a problem stating “No fastqsanger, fastq-
sanger.gz, ... dataset available” although you have uploaded the
input files (Figure 11), this means that the data type of the files
were incorrectly set.

You can check the data type of the input files by expanding the
boxes in the History panel (Figure 12).

Figure 10.  The Trimmomatic input in panel.

Figure 9.  The sequence quality score of s_6_2.2m.fastq file.

Figure 11.  Example of input files with incorrect data type. Galaxy couldn’t
detect the files and disabled the selection.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

94 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Figure 12.  Checking the file format. The format for both datasets is “fastq”
instead of “fastqsanger”.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 95

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Figure 13.  The Parameter settings panel.

Figure 14.  Changing the data type of the file.

To change the data type, click the icon of the box and you will
see the Parameter settings panel (Figure 13).

Click the “Datatypes” header, select “fastqsanger” for New
Type and “Change datatype” (Figures 14 and 15).

Remember to also change the data type for the other dataset.
Once you have changed the data type, you may select the input

files for Trimmomatic.
After selecting the input files, make sure you choose “Yes” to

Perform initial ILLUMINACLIP step?, with the parameters set as
shown in Figure 16.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

96 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Figure 15.  Checking the file format after the change. The format has been
changed from “fastq” to “fastqsanger”.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 97

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Figure 16.  Parameters for performing initial ILLUMINACLIP.

Next, make sure your Trimmomatic Operation parameters look
exactly as shown in Figure 17, with multiple operations added by
clicking “+ Insert Trimmomatic Operation”.

Click “Execute”. You will see 4 new boxes in your history. The
boxes will turn green if the job is completed successfully (Figure 18).

Let us run FastQC again to check if the trimming was effective.

(6) Run FastQC after trimming
Click “FastQC Read Quality reports" under "FASTQ Quality Control”.
Click “Multiple datasets” under Short read data from your current
history and select all the output files from the previous step, then
click “Execute” (Figure 19).

If you look at the results (Figure 20), you will see the quality of
the sequences has improved.

Now, we have completed all steps of our analysis. In Galaxy, we
can convert our history into a workflow so that we will be able to
execute the same analysis in future.

(7) Create workflow from history
Click the button at top of History panel, and select “Extract
workflow” (Figure 21).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

98 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Your Parameter settings panel will now look like Figure 22.
Select all the steps, and name the workflow as “Sequence Quality
Check Workflow” (or whatever you want).

Click “Create Workflow” and you will see the message in
Figure 23 appearing.

Figure 17.  Trimmomatic operations.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 99

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Figure 18.  The result after trimming.

Figure 19. The FastQC parameters in the Parameters settings panel.

You can always access your workflows by accessing “Workflow”
page on the top panel. Let us make some changes to the workflow,
by clicking the workflow name “Sequence Quality Check Workflow”
-> “Edit” (Figure 24).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

100 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

You should see the workflow editor appearing (Figure 25).

   i. Tool panel — list of available tools
  ii. Editor panel — workflow canvas
 iii. Details panel — description of tools, parameter settings
 iv. Editor options

Each box in the editor represents a step in the workflow, and
the lines connecting the boxes represents the data flow. You may
drag and drop the boxes to organize it (Figure 26).

Let us change the name of both input datasets to avoid confu-
sion. Click on the first input dataset “s_6_1.2M.fastq” box and
rename it as “R1” in the Details panel (Figure 27). You may also
write extra notes under Step Annotation. Remember to do the
same step for the second input dataset “s_6_2.2M.fastq” but
rename it as “R2”.

You will notice that there is a checkbox next to every output
of each tool. This is used to mark a dataset as the workflow out-
put. By default, all output in a newly created workflow are visible
and available. Uncheck an output will make it hidden and not

Figure 20.  Sequence quality score for s_6_1.2M.fastq file after trimming.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 101

	 b4705  Practical Bioinformatics for Beginners“9x6”�

available as the workflow outputs. Let us say if we want the raw
data (“RawData (txt)”) from FastQC to be hidden, just uncheck
the checkbox next to the outputs, as shown in Figure 28.

Take note that the workflow that we built here is a general
workflow. From time to time, we are likely to use different param-
eters when re-running this workflow. Take the parameters in the
Trimmomatic software, for example. To enable the parameter
change feature, click the “Trimmomatic” box, then in the Details

Figure 21.  Extracting workflow from history list.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

102 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

panel, click the icon of each parameter to change it so that it is
pointing down (Figure 29).

When you are done, save the workflow by clicking “Save
Workflow” at Editor options.

Figure 22.  Creating the workflow. You are able to choose which steps to
include or exclude from the workflow.

Figure 23.  Message appears when the workflow has been created from
history.

Figure 24.  Accessing the workflow editing page.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 103

	 b4705  Practical Bioinformatics for Beginners“9x6”�

(8) Run the workflow
Now, let us run our newly created workflow with the same input
files again. Click “Run Workflow” icon at the end of “Sequence
Quality Check Workflow” line. You can see that all the steps
involved in the workflow are listed in the Parameter settings panel.

Figure 25.  Workflow editor that allows you to edit the workflow settings.

Figure 26.  The Editor panel after arrangement.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

104 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

Figure 28.  Output settings to determine which file to be hidden or as output
from the workflow.

Figure 27.  Renaming the steps. The input dataset has been renamed as “R1” in
the “Name” attribute under the Details panel, and “fastqsanger format” added
to “Step Annotation” attribute.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Establish a Research Workflow 105

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Figure 29.  The “Trimmomatic” parameters setting in the Detail panel.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

106 Practical Bioinformatics for Beginners

Select “s_6_1.2M.fastq” for Step 1:R1 and “s_6_2.2M.fastq” for
Step 2:R2 as the input for the workflow. Select “Yes” for Send
results to a new history and rename the new history. Next, set all
the parameters to the same as previous (or whatever you want)
for FastQC and Trimmomatic step. Then, click “Run Workflow”. At
last, you will see the page that looks like Figure 30. You may see
the workflow in detail by clicking “Switch to that history now”.

Conclusion
A shell script is a basic means to document and automate a work-
flow. Galaxy provides a web interface layer that allows a more visu-
ally intuitive way to set up workflows compared to shell scripts.
Both methods enable researchers to easily revisit or share work-
flows of their work, as well as retaining the reproducibility of their
experiments.

References
1. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for

Illumina sequence data. Bioinformatics 30, 2114–2120, doi:10.1093/bioin-
formatics/btu170 (2014).

2. Andrews, S. FastQC: a quality control tool for high throughput sequence data,
<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (2010).

3. Afgan, E. et al. The Galaxy platform for accessible, reproducible and collabora-
tive biomedical analyses: 2018 update, Nucleic Acids Research, Volume 46,
Issue W1, 2 July 2018, Pages W537–W544, doi:10.1093/nar/gky379.

Figure 30.  A successful run of the workflow.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

107

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 6

De novo Assembly of a Genome
Joel Low Zi-Bina, Martti T. Tammia and Wai Yee Lowb

aBiotechnology & Breeding Department, Sime Darby Plantation
R&D Centre, Selangor 43400, Malaysia
bThe Davies Research Centre, School of Animal and Veterinary
Sciences, University of Adelaide, Roseworthy, SA 5371, USA

Glossary of Terms
De novo: Latin expression for “starting from scratch”, i.e. without
a reference.

Base pair: A pair of complementary nucleotides in the DNA se-
quence; used as the length unit in genome size measurements.

Read: A string of letters representing DNA sequences generated
from sequencing.

Contig: Abbreviation for contiguous sequence.

Scaffold: A “supercontig”, containing gaps, which is formed by
joining contigs using reads with linkage information between
genomic loci, e.g. mate-pair data.

Sequencing depth: The total length of all reads generated by se-
quencing over the estimated genome’s length. It is also called
the depth of coverage.

N50: A measure of contiguity of a genome assembly, which refers
to the length of the contig/scaffold that is the minimum length
required to cumulatively make up 50% of the genome size. The
measure can be extended to different genome size percentage
cut-offs, such as N75 or N90.

(Continued)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

108 Practical Bioinformatics for Beginners

(Continued)

GC content: Is the percentage of nitrogenous bases in a DNA
molecule that are either guanine or cytosine.

Ortholog: Genes in different species that share an evolutionary
common ancestor.

De Bruijn assembler: An assembler that models the relationship
between exact k-mers from the reads. The nodes in the graph
represent k-mers, and the edges represent the overlap of adja-
cent k-mers by k − 1 letters. Assembly is done by tracing the path
with most consistency through the graph.

Overlap layout consensus (OLC) assembler: An assembler that
identifies all pairs of reads that overlap sufficiently well and then
organizes this information into a graph containing a node for
every read and an edge between any pair of reads that overlap
each other. Contigs are generated as a consensus by inferences
from information of all edges in the possible path.

Introduction
The de novo assembly of a genome is quite an art as it is an attempt
to build a finished product without knowing how it actually looks
like. Many of the current sequencing technologies employ meth-
ods to first size select the DNA fragments prior to sequencing, and
thus, the entire length of an organism’s DNA is not read in a single
run. Even on a PacBio Sequel, which is an established long read
third-generation sequencer, the average read is 10,000-14,000
bp,1,2 while the smallest bacteria genome3 currently known is still
160,000 bp long.

Current sequencing processes require the fragmentation of the
genome for sequencers to read. A collection of fragments is called
a library and it is usually categorized according to its fragment
lengths (e.g. 20 kb, 3 kb, or 100 bp libraries). In addition, libraries
can also be categorized according to the methods used to sequence
the fragments. Taking the Illumina platform as an example, a

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 109

genome is typically fragmented into 300 bp long pieces that get
inserted between adaptors. The sequencing of the insert from the
two ends of the fragments creates a pair of reads. This is known as
a 300 bp paired-end (PE) read library. The sequenced reads are
shorter than the entire fragment (e.g. 75 bp). Singletons, also
known as single-end (SE) or orphaned reads, consist of reads that
are sequenced only from one end of the DNA insert. There is
another pairing technique that is used to create libraries that span
even greater distances between 1 kbp and 150 kbp. These are
called mate-pair libraries4 and are achieved by circularizing the
large inserts with the ends marked and joined together to be
sequenced.

Once the reads are generated from these libraries and trimmed
for the best quality, software called assemblers are used to assemble
them, much like putting together a jigsaw puzzle. The end results are
contigs. A contig is a contiguous length of genomic sequence in
which the order of bases is known to have a high confidence level.
However, it is possible that chimeric contigs are generated in the
assembly process,5 which may be detected using the optical map. A
scaffold is a portion of the genome reconstructed from contigs and
contains gaps (Figure 1). Gaps occur where information between

Figure 1.  An illustration of the assembly of singleton, paired-end, and mate-
pair reads to form a scaffold.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

110 Practical Bioinformatics for Beginners

contigs are unavailable. Possible causes for gaps are sequence
repeats or unsequenced regions of the genome. The unsequenced
parts of the insert for PE and mate-pair reads become gaps in a scaf-
fold when no overlapping sequence can be found for the region.
While mate-pair libraries have been used to scaffold contigs, nowa-
days it is more common to use HiC-seq that is able to link reads up
to 10,000 kb apart in the genome.6

The puzzle is rarely complete. A great deal of experience and
knowledge on both the organism’s genome and the tools used is
needed to get the optimal, rarely perfect, results. The puzzle is
harder to solve if the genome in question is complex. In general,
the complexity of a genome increases as it gets larger, contains
higher GC content, has lots of repeats, and/or contains a higher
number of chromosomes.

One of the biggest challenges in sequencing and the cause of
many gaps in an assembly is the presence of many repeats in the
genome. Repeats usually occur in tandem, not necessarily identi-
cal, and stretch to very long lengths. Assemblers identify repeats
when reads are sectioned into parts of fixed-length strings. An
index of all possible combinations can be made for a particular
string length (k) and searched to see how repeated the pattern is
in the genome. The k-mer refers to this index.7,8

An important determinant of a complete genome is the
amount of its entirety that one is able to sequence. Sufficient
reads are needed to cover all the gaps in an assembly. To do that,
it may be required to sequence deep (i.e. to sequence the genome
many times over to increase the chances of capturing all possible
read overlaps). The sequencing depth, or depth of coverage, is the
number of times a sequence is covered by the total length of all
reads. Sometimes, the term coverage is used interchangeably with
depth9 but genome coverage is only specific in its use to denote
the percentage of the target genome size that was actually cap-
tured by the sequences. For example, a genome with an average
sequencing depth of 30× may only have a genome coverage of
95% (Figure 2).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 111

It is important to understand that different assemblers use dif-
ferent algorithms for specific sequencing libraries. It is best to
understand the strengths and weaknesses of each assembler and
use the optimal ones for your types of libraries or purposes. One
may need to refine assembly parameters and conduct multiple
assemblies to obtain the desired results. Three reviews on genome
sequence assembly were written in 2013,4 2015,10 and 201711 that
would be good for further reading on the theoretical basis of cur-
rent sequencing methods and best practices.

In the following practical, we will assemble a bacteria genome,
Escherichia coli (E. coli), using the latest tools as of this writing. We
will assemble three genome drafts from two types of libraries and
then compare the quality of each assembly.

Overall Steps
(1) Download sequences
(2) Filter out bad reads
(3) Assemble the genome(s)
(4) Check the quality of the genome(s)

Figure 2.  Sequencing depth vs. genome coverage.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

112 Practical Bioinformatics for Beginners

Download Sequences

· Set up a working directory to put all files:
$ mkdir chapter6_runs
$ cd chapter6_runs

· Illumina PE (short):
 Source: https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=

ERR008613.
 Info:
 Files are gz compressed
 Number of reads: 14,214,324 * 2 = 28,428,648
 Read length (bp): 2 × 100 (note that 2× means this is a paired

end read)
 Insert size (bp): 215.4 ± 10.6

 Download the two files:
 http://ftp.sra.ebi .ac.uk/vol1/run/ERR008/ERR008613/

2 0 0 x 1 0 0 x 1 0 0 - 0 8 1 2 2 4 _ EA S 2 0 _ 0 0 0 8 _ FC 3 0 T B BA A X X- 6 .
tar.gz.

· PacBio SE (long):
 Source: https://github.com/PacificBiosciences/DevNet/

wiki/E.-coli-Bacterial-Assembly.
 Note that we used the uncompressed final output (polished_

assembly.fastq.gz) as a genome reference later in Step 4.
 Info:
 Instrument: PacBio RS II
 Chemistry: C4
 Enzyme: P6
 One SMRT Cell
 Size selected 20kb library
 Number of reads: 13,124

 The raw data are downloadable from: https://s3.amazonaws.com/
files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/
p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz.

 The raw data generated by the PacBio sequencer are usually pro-
cessed through the SMRT Analysis suite that comes with the
machine to produce a fastq file that is filtered of the SMRT system

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR008613
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR008613
http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-081224_EAS20_0008_FC30TBBAAXX-6.tar.gz
http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-081224_EAS20_0008_FC30TBBAAXX-6.tar.gz
http://ftp.sra.ebi.ac.uk/vol1/run/ERR008/ERR008613/200x100x100-081224_EAS20_0008_FC30TBBAAXX-6.tar.gz
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz
https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz
https://s3.amazonaws.com/files.pacb.com/datasets/secondary-analysis/e-coli-k12-P6C4/p6c4_ecoli_RSII_DDR2_with_15kb_cut_E01_1.tar.gz

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 113

adapters. This fastq file is what we will use and is available here
(from the CANU tutorial later explained below): http://gembox.
cbcb.umd.edu/mhap/raw/ecoli_p6_25x.filtered.fastq. Rename
this file to pacbio.fastq.

 Oxford Nanopore (long):
 The data were released by Loman in http://lab.loman.

net/2015/09/24/first-sqk-map-006-experiment/
 http://nanopore.s3.climb.ac.uk/MAP006-PCR-1_2D_pass.

fasta.

Filter Out Bad Reads

Use: Trimmomatic12(http://www.usadellab.org/cms/?page=
trimmomatic.)
Key features:

(1) Takes a file of multiple sequences to match against the reads
for removal. Mainly used to remove sequencing adapters but
can be used for contaminant removal as well.

(2) Reads and outputs compressed fastq files for the storage
conscious.

(3) Keeps orphaned pairs to be used as SE reads.

Version used: V0.32
Installation: Download the binary version from the website and
unzip the file. You will need Java installed to run the trimmo-
matic-0.38.jar file.

$ wget http://www.usadellab.org/cms/uploads/
supplementary/Trimmomatic/Trimmomatic-0.38.zip
$ unzip Trimmomatic-0.38.zip

The command to run:

$ java -jar Trimmomatic-0.38/trimmomatic-0.38.
jar PE ../raw_data/EAS20_8/s_6_1.fastq ../raw_data/
EAS20_8/s_6_2.fastq s_6_1_paired.fastq.gz s_6_1_
unpaired.fastq.gz s_6_2_paired.fastq.gz s_6_2_unpaired.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://gembox.cbcb.umd.edu/mhap/raw/ecoli_p6_25x.filtered.fastq
http://gembox.cbcb.umd.edu/mhap/raw/ecoli_p6_25x.filtered.fastq
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
http://nanopore.s3.climb.ac.uk/MAP006-PCR-1_2D_pass.fasta
http://nanopore.s3.climb.ac.uk/MAP006-PCR-1_2D_pass.fasta
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/uploads/
supplementary/Trimmomatic/Trimmomatic-0.38.zip
http://www.usadellab.org/cms/uploads/
supplementary/Trimmomatic/Trimmomatic-0.38.zip

� “9x6”b4705  Practical Bioinformatics for Beginners�

114 Practical Bioinformatics for Beginners

fastq.gz ILLUMINACLIP:/apps/software/Trimmomatic/0.38-
Java-1.8.0_121/adapters/TruSeq2-PE.fa:2:30:10 LEADING:
3 TRAILING:3 SLIDINGWINDOW:4:30 MINLEN:30

Removes Illumina adapters given in TruSeq2-PE.fa (provided by
Trimmomatic in the “adapters” directory)

· Remove leading and trailing edges of reads with low quality or N
bases (below quality 3).

· Scan the read with a 4-base wide sliding window, cutting when the
average quality per base drops below 30 (SLIDINGWINDOW:4:30).

· Removes reads that are shorter than 30 bases.
· Note that the raw Illumina fastq files were downloaded to a folder

named “raw_data”. The “../raw_data” means that this folder is just
one level above in the directory structure from the current directory
where we run the trimmomatic command.

For more information about read quality and trimming, please
refer to Chapter 3.

Important Output file(s):

(1) s_6_1_paired.fastq.gz
(2) s_6_1_unpaired.fastq.gz
(3) s_6_2_paired.fastq.gz
(4) s_6_2_unpaired.fastq.gz

Runtime: The run took 20 min on an Intel(R) Xeon(R) Gold 6248
CPU @ 2.50GHz machine. In this run, 2 CPU cores were given and
in total 0.69 core-hours were used and less than 4 GB RAM was
needed. The following examples are based on the same system.

Summary results:
Input Read Pairs: 14,214,324; Both Surviving: 10,707,272 (75.33%);
Forward Only Surviving: 1,525,592 (10.73%); Reverse Only Surviving:
1,175,972 (8.27%); Dropped: 805,488 (5.67%).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 115

Assemble the Genome(s)

Short paired-end read assembly

Use: SPAdes13 (https://github.com/ablab/spades.)
Key features:

(1) Current best for simple/small/microbe genomes.
(2) De Bruijn assembler optimized for short reads.
(3) Supports many sequencing platforms’ outputs e.g. Illumina,

PacBio.

Version used: 3.12.0
Installation: Download the Linux binaries version from the website
and unpack the files. You will also need Python installed (comes
with any Linux OS).

$ wget http://cab.spbu.ru/files/release3.12.0/SPAdes-
3.12.0-Linux.tar.gz
$ tar –xzf SPAdes-3.12.0-Linux.tar.gz.

The command to run:

$ spades.py --pe1-1 s_6_1_paired.fastq.gz --pe1-
2 s_6_2_paired.fastq.gz --pe1-s s_6_1_unpaired.
fastq.gz --pe1-s s_6_2_unpaired.fastq.gz --care-
ful -t 4 -o ecoli_illupe

· Reads that are still paired after the Trimmomatic run are identified
with the --pe argument. The first number after “pe” refers to the arbi-
trary library number the reads originate from, while the subsequent
number refers to the pairing, i.e. 1 for forward, 2 for reverse.

· Reads that did not survive pairing after the Trimmomatic run are iden-
tified with the same --pe argument with the addition of the –s flag.

· We added the --careful argument to reduce mismatches and short
indels at the expense of a longer run time.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://github.com/ablab/spades

� “9x6”b4705  Practical Bioinformatics for Beginners�

116 Practical Bioinformatics for Beginners

· The -t argument is optional and in this case, we have asked for 4
threads.

· The output is gathered in a directory named in the –o argument.

Important Output file(s):

(1) ecoli_illupe/scaffolds.fasta -> rename to ecoli_illupe.fasta
Runtime: 64 min. Given 4 cores and 16 GB memory.
Summary results: 277 scaffolds.

Hybrid assembly with PacBio reads

Use: SPAdes (https://github.com/ablab/spades.)
Key features and installation: (refer to “Short paired-end read
assembly” above).

Both Illumina and PacBio reads belong to the same E. coli
strain, K-12 MG1655. You should only assemble reads from the
same organism. Otherwise, the results of the assembly may be of
poor quality.

PacBio reads are excellent for gap closure and repeat resolution
because the average read length of this platform is long (e.g. >10
kb). There are different categories of reads from this platform and
for the purpose here, use filtered subreads in FASTQ/FASTA
format.
The command to run:

$ python SPAdes-3.6.1-Linux/bin/spades.py --pe1-1
s_6_1_paired.fastq.gz --pe1-2 s_6_2_paired.fastq.
gz --pe1-s s_6_1_unpaired.fastq.gz --pe1-s s_6_2_
unpaired.fastq.gz --pacbio pacbio.fastq --careful
-o ecoli_illupe-pacbio

· An important parameter to adjust: -k, which determines the k-mer
size to index.

· Spades does not assemble PacBio reads directly. It uses such long
reads as a scaffold to improve the contiguousness of the assembly
when combined with short reads sequences. The argument --pacbio
is used here to refer to the PacBio reads in fastq format.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://github.com/ablab/spades

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 117

Important output file(s):

(1) illupe-pacbio/scaffolds.fasta -> rename to ecoli_illupe-pacbio.
fasta

Runtime: 78 min. Given 4 cores and 16 GB memory.
Summary results: 42 scaffolds.

Long SE read assembly (PacBio)

We will use the Canu14 assembler (https://github.com/marbl/canu/
releases/tag/v2.0), which is based on the Celera Assembler15

(http://wgs-assembler.sourceforge.net/.)
Key features:

(1) Overlap Layout Consensus (OLC) assembler optimized for long
reads.

(2) Supports all long SE read (no shorter than 75 bases) platforms,
i.e. Sanger, 454, Illumina, PacBio, Oxford Nanopore.

(3) Established pipelines.

Long reads use a different algorithm for assembly, which is
called the OLC method. One of the oldest and still widely used pro-
grams that use this algorithm is the Celera Assembler.

Celera Assembler is a part of the SMRT Analysis suite of pro-
grams that is used to clean, process, and assemble PacBio reads.
There is a pipeline called CANU that contains steps to assemble the
E. coli genome: http://canu.readthedocs.org/en/latest/quick-start.
html#quickstart.

Version used: CANU 2.0
Installation: Download the Linux binaries version from the website
and unpack the file.
The command to run:

$ canu -p ecoli -d ecoli-pacbio genomeSize=4.8m
corThreads=2 gridOptions=”-N 1” -pacbio pacbio.
fastq

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://github.com/marbl/canu/releases/tag/v2.0
https://github.com/marbl/canu/releases/tag/v2.0
http://wgs-assembler.sourceforge.net/
http://canu.readthedocs.org/en/latest/quick-start.html#quickstart
http://canu.readthedocs.org/en/latest/quick-start.html#quickstart

� “9x6”b4705  Practical Bioinformatics for Beginners�

118 Practical Bioinformatics for Beginners

· CANU is told where the PacBio fastq file is with the –pacbio
argument.

· The output is gathered in the directory named using –d with files hav-
ing prefixes named using –p.

· The genomeSize parameter can be a rough estimate.
· Note that the gridOptions=”-N 1” argument is probably not necessary

for you but it is required on the server where this was run.

Important Output file(s):

(1) ecoli.contigs.fasta
Rename to ecoli_pacbio.fasta.
Runtime: 1 h 10 min.
Summary results: 2 scaffolds.

Long SE read assembly (Oxford Nanopore)

The command to run:
$ canu -p ecoli -d ecoli-oxford genomeSize=4.8m
corThreads=2 gridOptions=”-N 1” -nanopore oxford.
fasta

· CANU is told where the Oxford Nanopore fasta file is with the –nano-
pore argument.

· Other arguments are similar to that explained in the PacBio section
above.

Important Output file(s):

(2) ecoli.contigs.fasta
Rename to ecoli_oxford.fasta
Runtime: 2 h 24 min (note this run time is longer due to waiting for
resources to be available on the server).
Summary results: 4 scaffolds.

Check the Quality of the Genome

There are essentially two metrices to assess the quality of the
genome:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 119

(1) Statistical
(2) Evolutionary

The four assemblies are assessed as follows:

Statistical

Use: QUAST16 (http://quast.sourceforge.net/quast.html.)
Key features:

(1) Works both with and without a given genome reference.
(2) Able to do multiple genome comparisons.
(3) Generates interactive reports that can be opened in web

browsers.

Version used: 4.5
Installation: Download the source code from the website and
unpack the file. You will also need python installed (comes with any
Linux OS). QUAST installs the necessary software on the fly too dur-
ing its first use (see the README.md).

Since we are doing de novo assembly we assume that a refer-
ence genome is not available. We will proceed to compare the
metrices:

$ quast.py ecoli_illupe.fasta ecoli_illupe-pacbio.
fasta ecoli_pacbio.fasta ecoli_oxford.fasta --
glimmer --scaffolds -o ecoli_quast

Alternatively, if there is a genome reference, we can use additional
options (-R) to give us a better picture of the assembly quality.

$ quast.py ecoli_illupe.fasta ecoli_illupe-pacbio.
fasta ecoli_pacbio.fasta ecoli_oxford.fasta --
glimmer --scaffolds -R polished_assembly.fasta -o
ecoli_quast_withref

· The polished_assembly.fasta is the file downloaded in Step 1.
· The arguments are self-explanatory. Run quast.py without any argu-

ments to see details for all arguments.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://quast.sourceforge.net/quast.html

� “9x6”b4705  Practical Bioinformatics for Beginners�

120 Practical Bioinformatics for Beginners

· Read more on the following parameters because they are likely useful
for your analysis: --gage, --contig-thresholds, --use-all-alignments,
--ambiguity-usage, --strict-NA, --extensive-mis-size

Important Output file(s):

(1) ecoli_quast/report.pdf
(2) ecoli_quast/report.html
(3) ecoli_quast_withref/report.pdf
(4) ecoli_quast_withref/report.html

The html files can be opened in a web browser for interactive
reports.

Runtime: less than 5 min.
Figures 3 and 4 provide examples of results.

Figure 3.  HTML Extended Report from QUAST results without a reference
genome.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 121

The QUAST results show that the Pacbio assembly is the best
because it has only two contigs and scaffold N50 of 4,655,056 bp
that matches the total length of the genome.

Evolutionary

Use: BUSCO17 (http://busco.ezlab.org/.)
Key features:

(1) Uses the biological basis of universal single-copy orthologs to
benchmark the genome quality.

(2) A successor to CEGMA (http://korflab.ucdavis.edu/datasets/
cegma/.)

Version used: v2.0.1
Installation: Download the program and unpack it. There are a
number of dependencies needed to get BUSCO running. Do refer
to the BUSCO_userguide.pdf file for detailed instructions. The fol-
lowing dependencies were used:

Figure 4.  Plot of cumulative lengths in the interactive QUAST reports.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://busco.ezlab.org/
http://korflab.ucdavis.edu/datasets/cegma/
http://korflab.ucdavis.edu/datasets/cegma/

� “9x6”b4705  Practical Bioinformatics for Beginners�

122 Practical Bioinformatics for Beginners

(a) BLAST+ 2.6.0
(b) hmmer-3.1b2
(c) augustus-3.2.3

BUSCO searches for the presence of evolutionary conserved
genes. Single-copy orthologs from a clade or group of species
related to the newly decoded genome are used for comparison.
Download the necessary BUSCO profile for your type of organism.
In our case, we use the bacteria profile which can be
downloaded:

wget http://busco.ezlab.org/v2/datasets/bacteria_
odb9.tar.gz.

The file should be unpacked in a location, such as BUSCO’s
directory (/path/to/BUSCO_v2.0.1/) or the path where you have
the assembly fasta files:

$ tar -zxvf bacteria_odb9.tar.gz

Make the runs for each assembly:

(1) Illumina only assembly:
$ BUSCO.py -i ecoli_illupe.fasta -o ecoli_illupe
-c 4 -l bacteria_odb9/ -m geno

(2) PacBio only assembly:

$ BUSCO.py -i ecoli_pacbio.fasta -o ecoli_pacbio
-c 4 -l bacteria_odb9/ -m geno

(3) Illumina + PacBio assembly:

$ BUSCO.py -i ecoli_illupe-pacbio.fasta -o ecoli_
illupe-pacbio -c 4 -l bacteria_odb9/ -m geno

(4) Oxford Nanopore assembly:

$ BUSCO.py -i ecoli_oxford.fasta -o ecoli_oxford
-c 4 -l bacteria_odb9/ -m geno

Important Output file(s):
/run_ecoli_illupe/short_summary_ecoli_illupe.txt

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://busco.ezlab.org/v2/datasets/bacteria_odb9.tar.gz
http://busco.ezlab.org/v2/datasets/bacteria_odb9.tar.gz

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 123

/run_ecoli_pacbio/short_summary_ecoli_pacbio.txt
/run_ecoli_illupe-pacbio/short_summary_ecoli_illupe-pacbio.txt
/run_ecoli_oxford/short_summary_ecoli_oxford.txt

Runtime: 4 min.
Summary results in Table 1.

The BUSCO results indicate that both Illumina and hybrid
Illumina + PacBio assemblies are the best because they only missed
2 known BUSCO genes in 148 bacterial genes. The Oxford Nanopore
assembly is the worst according to the BUSCO metric as it has the
highest number of fragmented and missing BUSCO genes.
Note:

(1) Ensure the right versions of the dependencies are used (e.g.
version 3.0.3 for augustus).

(2) Ensure the dependencies can be called in the environment by
setting the paths.

Discussion and Conclusion
To ensure that only good quality data are used for assembly, filter-
ing of the raw FASTQ reads after a sequencing run is necessary.
Besides filtering out sequencing adapter sequences, one could look
at implementing sequence filters for contaminant sequences. In
addition, one should be mindful of the effective sequencing depth

Table 1. BUSCO results.

Illumina Illumina+PacBio PacBio Oxford

Complete single-
copy BUSCOs

146 146 116 44

Complete duplicated
BUSCOs

0 0 0 0

Fragmented BUSCOs 0 0 17 55
Missing BUSCOs 2 2 15 49
Total BUSCO groups

searched
148 148 148 148

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

124 Practical Bioinformatics for Beginners

after trimming away unwanted sequences. Generally, a 30×
effective sequencing depth is considered good for Illumina
sequenced data.

There are many assemblers available for use. The use of hybrid
assemblers such as SPAdes gives users more options on the choices
of input sequences and this may improve the chances of getting a
correctly assembled genome when compared to assemblers that
only accept a single type of input. The ability to use multiple inputs
allows users to combine the strength of long reads from platforms
such as the PacBio with the advantages of highly accurate short
reads from the Illumina.

PacBio-based assembly of the E. coli genome is the best accord-
ing to the statistical assessment by QUAST (e.g. higher contig N50
and 1 major contig that contains the equivalent of the expected
genome size). Although the QUAST results of the PacBio-based
assembly appeared superior, it only painted one side of the story.

The use of an evolutionary basis in assessing genome drafts is
crucial as one of the objectives of genome science is to analyse
genes, which requires accurate sequences to aid genome annota-
tion. Programs like BUSCO and CEGMA18 allow users to check if the
draft assembly contains highly conserved genes that tend to occur
as single copy among organisms that belonged to a particular
clade. In our example, both the Illumina and hybrid assemblies
showed the best results in two ways; firstly by having the most
number of intact single-copy ortholog genes for bacteria and sec-
ondly by having no duplicated or fragmented ortholog. However, it
should be noted that the read coverage in PacBio assembly was
only ∼24×, which is less than ideal. If ∼30× PacBio coverage was
used, the BUSCO result may be substantially better. The Oxford
Nanopore read coverage was ∼29× and hence, it is clear that the
early sequencing chemistry based on this platform is more
erroneous.

The assembly process for even a bacterium genome is not
trivial. Our example did not produce the optimal assembly in its
first run. A few iterations are usually needed before a satisfactory
result is obtained. Methods to improve the assembly results

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

De novo Assembly of a Genome 125

include filtering both Illumina and PacBio reads further, tweaking
SPAdes parameters, and adding a subsequent genome polishing
step. It may be viable to assemble a PacBio-only draft first with
more stringent overlap cut-offs, which are later used in SPAdes.
Furthermore, since the E. coli genome is circular, we should further
identify overlapping ends of the final assembled contig and trim it
with programs such as Circlator.19

References
 1. Buermans, H. P. J. & den Dunnen, J. T. Next generation sequencing technol-

ogy: Advances and applications. Biochimica et Biophysica Acta — Molecular
Basis of Disease 1842, 1932–1941 (2014).

 2. Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-
time (SMRT) sequencing comes of age: Applications and utilities for medical
diagnostics. Nucleic Acids Research 46, 2159–2168 (2018).

 3. Nakabachi, A. et al. The 160-kilobase genome of the bacterial endosymbiont
Carsonella. Science 314, 267 (2006).

 4. Nagarajan, N. & Pop, M. Sequence assembly demystified. Nature Reviews
Genetics 14, 157–167 (2013).

 5. Low, W. Y. et al. Haplotype-resolved genomes provide insights into structural
variation and gene content in Angus and Brahman cattle. Nature
Communications 11, 1–14 (2020).

 6. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interac-
tions reveals folding principles of the human genome. Science 326, 289–293
(2009).

 7. Kurtz, S., Narechania, A., Stein, J. C. & Ware, D. A new method to compute
K-mer frequencies and its application to annotate large repetitive plant
genomes. BMC Genomics 9, 517 (2008).

 8. Li, R. et al. De novo assembly of human genomes with massively parallel
short read sequencing. Genome Research 20, 265–272 (2010).

 9. Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. Sequencing depth
and coverage: Key considerations in genomic analyses. Nature Reviews
Genetics 15, 121–132 (2014).

10. Simpson, J. T. & Pop, M. The theory and practice of genome sequence
assembly. Annual Review of Genomics and Human Genetics 16, 153–172
(2015).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

126 Practical Bioinformatics for Beginners

11. Phillippy, A. M. New advances in sequence assembly. Genome Research 27,
xi–xiii (2017).

12. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

13. Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its appli-
cations to single-cell sequencing. Journal of Computational Biology 19,
455–477 (2012).

14. Koren, S. et al. Canu: Scalable and accurate long-read assembly via adaptive
κ-mer weighting and repeat separation. Genome Research 27, 722–736
(2017).

15. Myers, E. W. et al. A whole-genome assembly of Drosophila. Science 287,
2196–2204 (2000).

16. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment
tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

17. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V & Zdobnov,
E. M. BUSCO: assessing genome assembly and annotation completeness
with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

18. Parra, G., Bradnam, K. & Korf, I. CEGMA: A pipeline to accurately annotate
core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

19. Hunt, M. et al. Circlator: Automated circularization of genome assemblies
using long sequencing reads. Genome Biology 16, 294 (2015).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

127

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Introduction
NGS technologies has been in the market since 2004 and they have
outperformed the Sanger-based sequencing method. Some appli-
cations of NGS include whole genome shotgun sequencing (i.e.
WGS) and exome sequencing (i.e. WES), which focus on the entire
genome and just the exome portion, respectively. Both WGS and
WES generate huge amount of raw data and have similar bioinfor-
matics workflows to extract useful information from them, such as

Chapter 7

Exome Sequencing
Setia Pramana,a Kwong Qi Bin,b Heng Huey Ying,b
Nuha Hassimb and Ong Ai Lingb

a Institute of Statistics, Jakarta, Indonesia.
bBiotechnology & Breeding Department, Sime Darby Plantation
R&D Centre, Selangor, 43400, Malaysia.

Glossary of Terms
SNV: Single Nucleotide Variant. Mutation that occurs on
one nucleotide within a genome. The term SNV and SNP are
sometimes used inter changeably with the use of SNV targeted
at single nucleotide mutation that is less characterized and it is
typically rare (e.g. only a single individual is known to have it).

SAM: Sequence Alignment/Map, output format from aligners
after mapping of raw reads to a reference genome.

VCF: Variant Call Format, which is the format of a text file that
stores SNV.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

128 Practical Bioinformatics for Beginners

important genetic changes that are associated with human health
problems. The technology plays a pivotal role in the new field of
personalized medicine, as well as many other important fields of
life sciences where DNA sequencing is needed. The focus of this
chapter will be on the analysis of whole exome datasets only.

Exome is made up of exons and it represents all expressed
genes in a genome. Mutations in exons can lead to changes in the
encoded proteins and this can give rise to diseases.1 In humans, all
exons represent about 1% of the genome, but they contain approx-
imately 85% of known disease related variants.2–4 Given the impor-
tance of exons in diseases and other areas, WES and its associated
workflow are useful to study.

A major requirement before attempting to perform exome
analysis is to have a good quality genome assembled and well
annotated genes. Given a reference genome, exome sequencing
can be done to identify SNV and indel (i.e. insertion and deletion).
In order to distinguish exons from other genomic regions, probes
are required for this targeted sequencing approach. For this pur-
pose, commercial kits have been designed to specifically capture
the exonic sequences.5 Given the high cost required to assemble
a genome of high quality, WES is applied mostly in humans and a
few other key crops.6 In humans, this method has been proven to
be effective in medical genetics.7,8

An alternative to WES is WGS resequencing of the genome in
question. The key advantage of WES over the WGS method is that
it generates lesser amount of data, thus making data analysis
easier. In addition, the method is useful to deep sequence the
target region and it allows for more samples to be sequenced in
the same sequencing run. However, with the cost of per base
sequence data droppping fast, WGS may soon be the preferred
method especially when in the future the cost of acquiring more
data is lesser than the cost of the commercial kit needed to capture
the exome portion for targeted sequencing. Furthermore, with
more data from the WGS method, one is able to capture important
genetic variants that are not of exon origin. Moreover, WES is less
reliable for the detection of copy number variants (CNVs).9

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Exome Sequencing 129

	 b4705  Practical Bioinformatics for Beginners“9x6”�

General Workflow of WES
The general workflow for WES is presented in Figure 1. It starts after
the sequence reads are produced by a sequencer. The output of the
sequencer is usually FASTQ files that contain raw reads of millions
of DNA fragments. Filters are then applied to get rid of adaptor
sequences, unwanted contaminant sequences and low quality
bases. These reads are then aligned to a reference genome, which
is provided in FASTA format, using an aligner (e.g. BWA10, Bowtie211

and Novoalign (https://www.novocraft.com/)). The outcome of the
alignment is a Sequence Alignment/Map (SAM) file and its com-
pressed binary format, a Binary Alignment/Map (BAM) file.

Next, several variant callers such as UnifiedGenotyper or
HaplotypeCaller from the Genome Analysis Tool Kit (GATK)12,
SAMtools (mpileup; which is now moved to BCFtools13), and
Freebayes14 can be used to find SNPs and indels. As several align-
ers and variant callers are available, for variant calling in Illumina
datasets, aligner BWA-MEM and variant callers SAMtools show
best performance.15 In this chapter, we illustrate the exome-
sequencing pipeline using some of the mentioned algorithms.

The mutation obtained are presented in a Variant Call Format
(VCF) or Binary Variant Call Format (BCF) files, which is then used for

Figure 1.  Whole exome sequencing workflow for SNVs detection.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

130 Practical Bioinformatics for Beginners

downstream analysis such as annotation of the effects of variants on
the encoded proteins using ANNOVAR16 or SNVEff.17

Background Information on the Practical
Dr. James Lupski of the Baylor College of Medicine had his genome
sequenced to find out the underlying mutation of Charcot-Marie
Tooth (CMT) disease. In the paper Lupski et al. 2013, you will find
references to all of the raw sequences that were used to analyze
his genome.2 In this practical, we will use Dr. James Lupski’s exome
data to analyze a NGS workflow that can be used to determine
disease-causing mutation. The original raw data has been pro-
cessed in order to speed up the computation time.

Software
The following software are required to run the analysis of WES:

1. BWA version 0.7.17 (http://bio-bwa.sourceforge.net/). This
software maps the raw NGS reads against a large reference
genome (e.g. GRCh37, hg19). BWA could map not only short
reads (up to 100 bp) but also long reads (up to 1 Mbp). It uses
the Burrow-Wheeler Transformation (BWT) algorithm for map-
ping reads. The input of BWA is a FASTQ file and the output is a
BAM file.

2. SAMtools version 1.13 (http://www.htslib.org/). This software
provides useful utilities to work with SAM and BAM files. It
allows users to view, sort and make index of the BAM/SAM
files.

3. BCFtools version 1.13 (http://www.htslib.org/) is 1 of the repos-
itories from SAMtools that is useful for variant calling and
manipulating VCF’s and BCF’s.

4. ANNOVAR (version 2019 Oct24) is a program built for func-
tional annotation of genetic variants acquired from NGS data

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Exome Sequencing 131

and it is written in Perl. To download it, users need to register
at http://www.openbioinformatics.org/annovar/annovar_
download_form.php.

5. IGV version 2.11.118–21 is a visualization tool for SNVs data devel-
oped by the Broad Institute, which can be obtained at https://
software.broadinstitute.org/software/igv/.

Datasets
· The original exome dataset can be viewed at http://www.ncbi.

nlm.nih.gov/sra/?term=SRR866988.
· To speed up this practical, the exome dataset was trimmed

from its original 58.8 million paired end reads to just 3714
reads in FASTQ format. These reads were chosen because they
mapped around the known causative mutations for the
genetic disorder in question here. The processed input data
for the practical is input.fq.

· Reference genome: chr5.disease.fasta. This file was extracted
from human chromosome 5 at position between 148350000 to
148550000 bp of the genome version GRCh37.

Download Datasets

The datasets can be downloaded at http://bioinfo.perdanauniversity.
edu.my/infohub/display/NPB/Index.

Creating a New Folder
$ mkdir exome
#All the input files are placed in this folder
$ cd exome

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.openbioinformatics.org/annovar/annovar_download_form.php
http://www.openbioinformatics.org/annovar/annovar_download_form.php
http://www.ncbi.nlm.nih.gov/sra/?term=SRR866988
http://www.ncbi.nlm.nih.gov/sra/?term=SRR866988
http://bioinfo.perdanauniversity.edu.my/infohub/display/NPB/Index
http://bioinfo.perdanauniversity.edu.my/infohub/display/NPB/Index

� “9x6”b4705  Practical Bioinformatics for Beginners�

132 Practical Bioinformatics for Beginners

Mapping of Raw Data to the Reference Genome
We will be using the BWA program to perform this step.

The first step is to create an index file from the reference
genome in order to speed up the mapping process:

$ bwa index chr5.disease.fasta

This step will produce five files:

chr5.disease.fasta.amb
chr5.disease.fasta.ann
chr5.disease.fasta.bwt
chr5.disease.fasta.pac
chr5.disease.fasta.sa

Next is the mapping of FASTQ to the reference genome
using BWA-MEM (the latest, most recommended for high-quality
queries as it is faster and more accurate).

$ bwa mem chr5.disease.fasta input.fq > mapped.sam

The output would be a mapped.sam file. More information on
SAM file is available here:

https://samtools.github.io/hts-specs/SAMv1.pdf

Next, convert the SAM file to a BAM file, this is an essential
prerequisite for the following step:

$ samtools view -bT chr5.disease.fasta mapped.
sam > mapped.bam

It is then followed by sorting and indexing the BAM file:

$ samtools sort mapped.bam -o mapped.sort

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Exome Sequencing 133

The result is a sorted bam file named mapped.sort
The reference genome needs to be indexed as the beginning
step:

$ samtools faidx chr5.disease.fasta

The result is an index file: chr5.disease.fasta.fai

Variants Calling
BCFtools program will be used for SNVs calling after reference
genome mapping. The ‘mpileup’ command scans and computes all
the possible genotypes supported by aligned reads, then calculates
the probability of genotypes that are truly present. This is then fol-
lowed by using the bcftools ‘call’ command, to identify SNVs and
indels, which the output is in VCF as shown in Figure 2.

$ bcftools mpileup -f chr5.disease.fasta -O u -o
result.bcf mapped.sort
$ bcftools call --multiallelic-caller--
variants-only -O v -o result.vcf result.bcf

Figure 2.  VCF output after SNV calling.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

134 Practical Bioinformatics for Beginners

The descriptions of headers in VCF format are as follows:

i.  CHROM—chromosome number
ii.  POS—position in the genome
iii.  ID—SNV identifier
iv.  REF—reference allele
v.  ALT—alternate allele

vi.  QUAL—Phred-scaled quality score for ALT
vii.  FILTER—filter status. In this case, we did not set any filter

viii.  INFO—additional information

From the result we have detected quite a number of SNVs by
mapping the short reads to the reference genome.

These SNVs can further be filtered based on some criteria and
thresholds by setting filter options of bcftools view command. For
example if we are interested in rare variants, we can select variants
with frequency of minor alleles (MAF) < 1%. However, this step is
not illustrated here as we have only used a very small FASTQ subset
from the original file.

More information about VCF can be found at https://samtools.
github.io/hts-specs/VCFv4.2.pdf.

Since we only took 148350000 to 148550000 bp of chromo-
some 5, for the positions reported from VCF file, we will need to
add (148350000-1) bp to it for the actual position. From this exam-
ple, position 57,709 becomes position 148,407,708 in the original
chromosome 5. The command below can calculate the actual posi-
tion and reformat the VCF file for the next step:

$ sed ‘s/lcl|chr5:148350000-148550000/chr5/’
result.vcf > result.vcf1
$ awk ‘{if ($1 !~ /#/)print ($1 “\t” $2 + 148350000-
1) “\t” substr($0, index($0,$3)); else print $0;}’
result.vcf1 > annovar.input

Now we have acquired the SNVs in the right coordinate. The prob-
lem now is to find out the effects and functions of these SNVs.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://samtools.github.io/hts-specs/VCFv4.2.pdf
https://samtools.github.io/hts-specs/VCFv4.2.pdf

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Exome Sequencing 135

Prediction of SNVs and Indels Effects
For the case of humans, the analysis of SNV effect is simple. The anno-
var folder should be placed in the exome folder that was created in
previous step. To run ANNOVAR, first convert the format from VCF to
the required input format using the following command:

$ annovar/convert2annovar.pl --format vcf4 --
includeinfo annovar.input > result.annovar

Next, to annotate the SNV, use the following Perl Script.
$ annovar/annotate_variation.pl --buildver hg19
result.annovar annovar/humandb -outfile SNVs

More information on ANNOVAR can be found at http://annovar.
openbioinformatics.org/en/latest/user-guide/gene/

Take note that “buildver” is the version of human genome data
in use. If the data is of newer version, download and substitute the
files in humandb with the newer version from http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/database/

The result of the annotation can be found from the output file
“SNVs.variant_function” and “SNVs.exonic_variant_function”. First,
let us take a look at “SNVs.variant_function” file (Figure 3). This file
contains the annotation of all variants.

Figure 3.  ANNOVAR output for exonic variant function.

The important fields of this file are the first four columns:

i. First column – representing exonic or intronic SNV
ii. Second column – annotated gene

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://annovar.openbioinformatics.org/en/latest/user-guide/gene/
http://annovar.openbioinformatics.org/en/latest/user-guide/gene/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/

136 Practical Bioinformatics for Beginners

� “9x6”b4705  Practical Bioinformatics for Beginners�

iii. Third column – chromosome number
iv. Fourth column – base number

As you can see, the SNV list that we have acquired are inclusive of
the exonic SNVs (highlighted in red) as reported by Lupski2, which
represents the gene SH3TC2.

The output file “SNVs.exonic_variant_function” contains the
variants that are annotated within exonic regions only (Figure 4).

Descriptions of important columns are as follow:

i. First column — line number of this SNV in the original input file
(result.annovar).

ii. Second column — the consequence of the variant, possible
values are as follow:

	 · nonsynonymous SNV — nucleotide change that causes an
amino acid change

· synonymous SNV — nucleotide change that does not cause
an amino acid change

· frame shift — nucleotide insertion/deletion/substitution
that causes a frame shift changes in protein coding sequence

iii. Third column — gene symbol: transcript identifier: sequence
change in transcript.

The rest of the fields are rather similar to the VCF format. This
output file can also be viewed as a Tab-delimited text file in
Microsoft Excel.

Visualization
Visualization often provides more information than just text files.
To visualize the resulting SNVs acquired, we will be using IGV.

Figure 4.  ANNOVAR output for variant function.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Exome Sequencing 137

rename the file so that IGV can accept it as
input
$ mv annovar.input result_edited.vcf
$ wget https://data.broadinstitute.org/igv/
projects/downloads/2.11/IGV_Linux_2.11.1_
WithJava.zip
$ unzip IGV_Linux_2.11.1_WithJava.zip
$ sh IGV_Linux_2.11.1/igv.sh

Load in result_edited.vcf, and then select chromosome 5. The BAM
file that corresponds to the VCF file will be loaded in as well. Make
sure that both files are in the same folder.

Key in position chr5:148353463-148542270 in the next tab, as
shown in Figure 5.

With this software, we can visualize the location of the SNVs
and the genes, together with the mapping quality.

In reality, the analysis of a full exome dataset takes much longer
and the main idea of the practical is for users to understand the

Figure 5.  Screenshot of IGV.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

138 Practical Bioinformatics for Beginners

basic steps that are required for mining SNVs and indels from an
individual.

Conclusion
From the practical, the users have learned how to pre-process
exome data starting from FASTQ to getting the VCF file. Prediction
of the effects of SNVs and indels is the downstream part of the
workflow. One possible application of WES analysis is in the area of
personal genomics such as finding the causative mutations in
Charcot-Marie Tooth disease.

References
 1. Zhang, F. et al. Mechanisms for nonrecurrent genomic rearrangements associ-

ated with CMT1A or HNPP: rare CNVs as a cause for missing heritability.
American Journal of Human Genetics 86, 892–903, doi:10.1016/j.ajhg.
2010.05.001 (2010).

 2. Lupski, J. R. et al. Exome sequencing resolves apparent incidental findings
and reveals further complexity of SH3TC2 variant alleles causing Charcot-
Marie-Tooth neuropathy. Genome Medicine 5, 57, doi:10.1186/gm461
(2013).

 3. Zhu, J. F., Liu, H. H., Zhou, T. & Tian, L. Novel mutation in exon 56 of the
dystrophin gene in a child with Duchenne muscular dystrophy. Inter national
Journal of Molecular Medicine 32, 1166–1170, doi:10.3892/ijmm.2013.1498
(2013).

 4. Zubenko, G. S., Farr, J., Stiffler, J. S., Hughes, H. B. & Kaplan, B. B. Clinically-
silent mutation in the putative iron-responsive element in exon 17 of the
beta-amyloid precursor protein gene. Journal of Neuropathology and
Experimental Neurology 51, 459–463 (1992).

 5. Warr, A. et al. Exome sequencing: current and future perspectives. G3
(Bethesda) 5, 1543–1550, doi:10.1534/g3.115.018564 (2015).

 6. Mascher, M. et al. Barley whole exome capture: a tool for genomic research
in the genus Hordeum and beyond. The Plant Journal 76, 494–505,
doi:10.1111/tpj.12294 (2013).

 7. Rabbani, B., Tekin, M. & Mahdieh, N. The promise of whole-exome sequenc-
ing in medical genetics. Journal of Human Genetics 59, 5–15, doi:10.1038/
jhg.2013.114 (2014).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Exome Sequencing 139

 8. Simons, C. et al. Corrigendum: mutations in the voltage-gated potassium
channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy.
Nature Genetics 47, 304, doi:10.1038/ng0315-304b (2015).

 9. Belkadi, A. et al. Whole-genome sequencing is more powerful than whole-
exome sequencing for detecting exome variants. Proceedings of the
National Academy of Sciences of the United States of America 112, 5473–
5478, doi:10.1073/pnas.1418631112 (2015).

10. Li H. and Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler Transform. Bioinformatics 25, 1754–1760, doi:10.1093/
bioinformatics/btp324 (2009).

11. Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature
Methods 9, 357–359 (2012).

12. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome Research 20,
1297–1303, doi:10.1101/gr.107524.110 (2010).

13. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham
A, Keane T, McCarthy SA, Davies RM, Li H, Twelve years of SAMtools and
BCFtools. GigaScience, Volume 10, Issue 2, doi:10.1093/gigascience/giab008
(2021).

14. Garrison, E. & Marth, G. Haplotyp e-based variant detection from short-read
sequencing. Genomics (2012).

15. Hwang, S., Kim, E., Lee, I. & Marcotte, E. M. Systematic comparison of vari-
ant calling pipelines using gold standard personal exome variants. Scientific
Reports 5, 17875, doi:10.1038/srep17875 (2015).

16. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids
Research 38, e164, doi:10.1093/nar/gkq603 (2010).

17. Cingolani, P. et al. A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92, doi:10.4161/fly.19695
(2012).

18. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics
Viewer (IGV): high-performance genomics data visualization and explora-
tion. Briefings in Bioinformatics 14, 178–192, doi:10.1093/bib/bbs017
(2013).

19. Robinson, J. T. et al. Integrative genomics viewer. Nature Biotechnology 29,
24–26, doi:10.1038/nbt.1754 (2011).

20. James T. Robinson, Helga Thorvaldsdóttir, Aaron M. Wenger, Ahmet Zehir,
Jill P. Mesirov. Variant Review with the Integrative Genomics Viewer (IGV).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

140 Practical Bioinformatics for Beginners

Cancer Research 77(21), 31–34, doi:10.1158/0008-5472.CAN-17-0337
(2017).

21. James T. Robinson, Helga Thorvaldsdóttir, Douglass Turner, Jill P. Mesirov.
igv.js: an embeddable JavaScript implementation of the Integrative Genomics
Viewer (IGV). bioRxiv 2020.05.03.075499, doi:10.1101/2020.05.03.075499
(2020).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

141

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 8

Transcriptomics
Yan Ren,a Akzam Saidinb and Wai Yee Lowa

aThe Davies Research Centre, School of Animal and Veterinary
Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
bNovocraft Technologies Sdn Bhd, Selangor, Malaysia

Introduction
RNA sequencing (RNA-Seq) is a method that used high-throughput
sequencing to decode complementary DNA.1 Typically, millions of
short reads will be produced and these are mapped to a known
reference genome for further analysis. The number of reads
mapped within exons and/or genes of interest can be quantified
and compared across samples.2,3

The first step in RNA-Seq analysis is to assess the quality of the
reads and to filter out unwanted sequences such as adaptors,
primers, and sequences that are not from the target of interest.
The raw RNA-Seq data should be inspected with quality control
packages such as FASTQC,3 RSeQC,4,5 and AfterQC.6 For a large
number of samples, MultiQC7 may be preferred to compile multi-
ple QC results. Then low-quality reads and unwanted sequences
can be removed using tools such as Trimmomatic,8 Cutadapt,9

FLEXBAR,10 and fastp.11 Low-quality trimming is the removal of
low-quality score bases, which usually occur towards the ends of
reads. Software such as Trimmomatic comes with commonly used
adapters to be screened out, but users can also provide their own
sequences for filtering. For a larger dataset, users can consider

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

142 Practical Bioinformatics for Beginners

fastp, which can speed up the cleaning process 2–5 times com-
pared to other tools.11

The next step after quality control is either alignment of RNA-
seq reads to a reference genome or de novo assembly of reads to
produce transcripts. RNA-seq alignment will involve mapping the
reads to a known reference using aligner programs such as STAR,12

TopHat2,13 and HISAT214; HISAT2 is faster than the others. Kallisto15

is a fast RNA-seq quantification based on pseudo-alignment and
requires a transcriptome index. De novo assembly of RNA-seq does
not rely on having a reference genome or transcriptome but rather
it is an attempt to reconstruct larger contiguous sequences by over-
lapping and merging similar sequences between the reads. Tools
such as Trinity16 and Oases17 can be used for RNA-seq de novo
assembly and they have reasonable performances. Recently,
SPAdes-rna18 and BinPacker19 were developed, which can perform
much faster.20

RNA-seq is widely used to estimate gene or transcript abun-
dance and to make comparisons across samples obtained under
different biological conditions. There are two main strategies for
quantifying gene or transcript abundance: “count-based” or
“FPKM” (fragments per kilobase of transcript per million mapped
reads; paired-end reads)/“RPKM” (reads per kilobase of tran-
script per million mapped reads; single-end reads). Some
researchers reported the TPM (transcripts per million), which is
the read per kilobase values divided by the “per million” scaling
factor. There is a video from StatQuest that explained this
(https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-
explained/). Transcript assembling tools like StringTie21 and
NOIseq22 report the FPKM/RPKM based abundance value by nor-
malizing the read counts with sequencing depth and gene length.
Count based approach estimates abundance by using raw counts
from the number of reads that were aligned to the most proba-
ble gene (HTSeq23).

Differential expression (DE) is a process to identify genes with
significant changes in mean expression levels between different
conditions such as different tissues, cell types, cells in different

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/
https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 143

environmental conditions or with different genetic backgrounds.
There are different models or different approaches in performing
DE analysis. The negative binomial model has been adopted in
edgeR,24 DESeq2,25 limma+voom,26 and baySeq.27 However, to bet-
ter model the discrete distribution of RNA-seq, tools such as
SAMseq28 and NOIseq29 are using non-parametric models. In terms
of different approaches, software like edgeR,24 DESeq2,25 and
limma+voom26 measure each genes overall expression per sample
but irrespective of the isoforms that may exist.

In the following section, we will go through the basic analysis
process of aligning RNA-seq reads to a known reference, measure
single sample expression, and perform differential gene expression
analysis.

Practical
Datasets & Software

Here, we use Illumina paired-end RNA-Seq data from three differ-
ent replicates each of Angus and Brahman cattle to study differen-
tially expressed genes between these two breeds. If you have
Illumina single-end sequences, please refer to the instructions for
running single-end RNA-Seq reads from the manual of the software
used here.

Dataset

Info
URL/GEO accession

number

Reference sequence &
GTF/GFF3i

Brahman
chromosome 29

http://ensembl.org/

i Genome assembly of Brahman (Bos indicus) and its GTF/GFF3 file were obtained
from ENSEMBL (https://asia.ensembl.org/Bos_indicus_hybrid/Info/Index).

(Continued)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://ensembl.org/

� “9x6”b4705  Practical Bioinformatics for Beginners�

144 Practical Bioinformatics for Beginners

Info
URL/GEO accession

number

Read setii Angus_RNA_
seq_1(liver)
Angus_RNA_
seq_2(liver)
Angus_RNA_
seq_3(liver)
Brahman_RNA_
seq_1(liver)
Brahman_RNA_
seq_2(liver)
Brahman_RNA_
seq_3(liver)

GSM4485877
(Liver-sample-7)
GSM4485870
(Liver-sample-60)
GSM4485868
(Liver-sample-53)
GSM4485867
(Liver-sample-22)
GSM4485881
(Liver-sample-65)
GSM4485872
(Liver-sample-99)

Adaptor sequencesiii Illumina adap-
tor sequences

AGATCGGAAGAGC

Software Required

Software Version URL

Data download
Sratoolkit 2.11.0 https://github.com/ncbi/sra-tools/wiki
QC and Reads
Preprocessing

ii Illumina HiSeq 4000 double-ended RNA-Seq reads for cattle liver tissues were
obtained from NCBI (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE148909).
iii Adaptor sequences were obtained from Illumina support page (https://
support-docs.illumina.com/SHARE/AdapterSeq/Content/SHARE/AdapterSeq/
AdapterSequencesIntro.htm).

(Continued)

b4705_Ch-08.indd 144b4705_Ch-08.indd 144 09-Feb-23 11:21:27 AM09-Feb-23 11:21:27 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://github.com/ncbi/sra-tools/wiki
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148909
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148909

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 145

Software Version URL

FastQC3 0.11.9 http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

multiqc7 1.11 https://multiqc.info
Cutadapt9 3.4 https://cutadapt.readthedocs.io/

en/stable/
Trim Galore
(a wrapper
around Cutadapt)

0.6.5 https://github.com/FelixKrueger/
TrimGalore

Reads Alignment
HISAT214 2.2.1 http://daehwankimlab.github.io/

hisat2/
SAMTOOLS17 1.13 https://github.com/samtools/

samtools
IGV 2.3 https://software.broadinstitute.org/

software/igv/
Expression
Analysis
featureCounts30 1.22.2 https://www.rdocumentation.org/

packages/Rsubread/ver-
sions/1.22.2/topics/featureCounts

HTSeq23 0.13.5 https://pypi.python.org/pypi/HTSeq
pysam31 0.16.0.1 https://github.com/pysam-

developers/pysam
R32 3.2.3 https://www.r-project.org/
edgeR24 3.8.6 https://bioconductor.org/packages/

release/bioc/html/edgeR.html
limma33 3.13 https://bioconductor.org/packages/

release/bioc/html/limma.html
Note: Installation instructions for each software can be found in
the respective download URLs.

(Continued)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
http://daehwankimlab.github.io/hisat2/
http://daehwankimlab.github.io/hisat2/
https://github.com/samtools/samtools
https://github.com/samtools/samtools
https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/
https://www.rdocumentation.org/packages/Rsubread/versions/1.22.2/topics/featureCounts
https://www.rdocumentation.org/packages/Rsubread/versions/1.22.2/topics/featureCounts
https://www.rdocumentation.org/packages/Rsubread/versions/1.22.2/topics/featureCounts
https://pypi.python.org/pypi/HTSeq
https://www.r-project.org/
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html

� “9x6”b4705  Practical Bioinformatics for Beginners�

146 Practical Bioinformatics for Beginners

Reads Pre-processing & Quality Control (QC)
Prepare Files

Sequence Read Archive34 (SRA) is the largest publicly available reposi-
tory of high throughput sequencing data, which is available through
multiple cloud providers and NCBI servers. To download the data
from the SRA, we installed and configured (https://github.com/ncbi/
sra-tools/wiki/03.-Quick-Toolkit-Configuration) the sratoolkit.

current working directory is called MAINDIR and recorded the path.
MAINDIR=${PWD}
can run following code to back to the MAINDIR anytime if needed
cd ${MAINDIR}

We create a folder SRA_data that sets as the “Location of user-
repository” in the configuration.

mkdir SRA_data

In the following commands, we create another directory (liver_
raw_RNA_seq), prefetch the SRA files into the SRA_data/sra, and
then dump the raw FASTQ files into the liver_raw_RNA_seq folder.
For paired-end reads, the “split-files” argument is needed in the
fastq-dump command.

mkdir liver_raw_RNA_seq

mkdir liver_raw_RNA_seq/Angus_RNA_seq_1
for n in {76..80}; do prefetch -v SRR115695${n}; done
for n in {76..80}; do fastq-dump –outdir liver_raw_RNA_seq/Angus_RNA_seq_1 \
--split-files SRA_data/sra/SRR115695${n}.sra; done

mkdir liver_raw_RNA_seq/Angus_RNA_seq_2
for n in {42..46}; do prefetch -v SRR115695${n}; done
for n in {42..46}; do fastq-dump –outdir liver_raw_RNA_seq/Angus_RNA_seq_2 \
--split-files SRA_data/sra/SRR115695${n}.sra; done

mkdir liver_raw_RNA_seq/Angus_RNA_seq_3
for n in {32..36}; do prefetch -v SRR115695${n}; done
for n in {32..36}; do fastq-dump –outdir liver_raw_RNA_seq/Angus_RNA_seq_3 \
--split-files SRA_data/sra/SRR115695${n}.sra; done

mkdir liver_raw_RNA_seq/Brahman_RNA_seq_1
for n in {27..31}; do prefetch -v SRR115695${n}; done
for n in {27..31}; do fastq-dump –outdir liver_raw_RNA_seq/Brahman_RNA_seq_1 \
--split-files SRA_data/sra/SRR115695${n}.sra; done

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://github.com/ncbi/sra-tools/wiki/03.-Quick-Toolkit-Configuration
https://github.com/ncbi/sra-tools/wiki/03.-Quick-Toolkit-Configuration

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 147

mkdir liver_raw_RNA_seq/Brahman_RNA_seq_2
for n in {88..92}; do prefetch -v SRR115695${n}; done
for n in {88..92}; do fastq-dump –outdir liver_raw_RNA_seq/Brahman_RNA_seq_2 \
--split-files SRA_data/sra/SRR115695${n}.sra; done

mkdir liver_raw_RNA_seq/Brahman_RNA_seq_3
for n in {52..56}; do prefetch -v SRR115695${n}; done
for n in {52..56}; do fastq-dump –outdir liver_raw_RNA_seq/Brahman_RNA_seq_3 \
--split-files SRA_data/sra/SRR115695${n}.sra; done

To make the practical easier to follow, we have renamed the
files accordingly:

cd liver_raw_RNA_seq

for f in *; do
 if [-d “$f”]; then
 cat ${f}/*_R1*> ./${f}_R1.fastq
 cat ${f}/*_R2*> ./${f}_R2.fastq
 fi
done

Notice that we have three biological replicates for Angus and
Brahman.

Perform Initial QC

We make a folder and produce all FastQC reports into the folder
using 4 CPU cores.

mkdir raw_FastQC_Report
fastqc -o raw_FastQC_Report -t 4 *.fasta

FastQC will produce a html file for each FASTA file. These files
can be opened using a web browser. Using multiqc, multiple
FastQC reports can be summarised into a single html file.

multiqc ./raw_FastQC_Report

to back to the main directory
cd ${MAINDIR}

Trimming for Bad Quality and Adapters

Based on the initial quality reports, trim_galore can be used to trim
the bases (e.g. those with <Q20 or <Q10; Q is the Phred quality
score). If there are adaptors in your read set, you can trim the
adaptor sequences using read trimming tools like cutadapt,9

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

148 Practical Bioinformatics for Beginners

trimmomatic,8 AdapterRemoval,35 and flexbar.36 The adaptor
sequences for your RNA-seq library can be obtained from your
sequencing provider. In this example, we will use trim_galore (a
wrapper around Cutadapt) to remove low-quality segments of the
reads and adaptor sequence(s) (if any).

mkdir trim_galore_results
for n in {Angus_RNA_seq_1 Angus_RNA_seq_2 Angus_RNA_seq_3 Brahman_RNA_seq_1 Brahman_RNA_seq_2
Brahman_RNA_seq_3}
do

 trim_galore --quality 10 --length 70 -o trim_galore_results --paired raw_FastQC_
Report/${n}_1.fastq raw_FastQC_Report/${n}_2.fastq
done

The trimming report will be generated for each file and it can
be viewed in command line with less. As an example, we view the
trimming report for file Angus_RNA_seq_1_R2.fastq.

cd trim_galore_results
less Angus_RNA_seq_1_R2.fastq_trimming_report.txt

The report is quite informative as shown below.

=== Summary ===

Total reads processed: 49,189,375
Reads with adapters: 24,346,613 (49.5%)
Reads written (passing filters): 49,189,375 (100.0%)

Total basepairs processed: 4,918,937,500 bp
Quality-trimmed: 14,421,592 bp (0.3%)
Total written (filtered): 4,709,092,207 bp (95.7%)

=== Adapter 1 ===

Sequence: AGATCGGAAGAGC; Type: regular 3’; Length: 13; Trimmed: 24346613 times.

No. of allowed errors:
0-9 bp: 0; 10-13 bp: 1

Bases preceding removed adapters:
 A: 23.4%
 C: 32.6%
 G: 30.6%
 T: 13.4%
 none/other: 0.0%

Overview of removed sequences
length count expect max.err error counts
1 9373549 12297343.8 0 9373549
2 3352314 3074335.9 0 3352314
3 1411994 768584.0 0 1411994
…

Total number of sequences analysed for the sequence pair length validation: 49189375

Number of sequence pairs removed because at least one read was shorter than the length cutoff
(70 bp): 1437289 (2.92%)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 149

From the trimming report file, it is reported that 49.5% of the read
pairs contain adapters, and 95.7% of the bases passed the quality
filter. If no adapter sequence is given in the command (use–adapter),
the trim_galore can automatically detect the sequencing provider and
use the default adapters. The adapters used and the overview of
removed sequences are recorded in the report.

Run FastQC on Trimmed Reads

You can skip this step if you run trim_galore with flag –fastqc, as it
will automatically run FastQC once trimming is complete. Another
option is to run the following code for FastQC to check sequence
quality again after trimming.

mkdir trimed_FastQC_Report
fastqc -o trimed_FastQC_Report -t 4 *val_*.fq

multiqc ./trimed_FastQC_Report

to back to the main directory
cd ${MAINDIR}

Compare the FastQC reports before and after trimming of
reads and note the improvement.

HISAT2: Reads Alignment
For this practical, we will use a graph-based data aligner, HISAT2,
for reads alignment.

Prepare Files

Create a directory for your reference files.

mkdir UOA_Brahman_1 _chr29

In order to make the process running faster, we only use the
reference for chromosome 29 in this practice. In a real analysis, all
chromosomes should be used to allow reads to be mapped to
them. Download cattle chromosome 29 reference sequence file
(fasta) and gene feature file (gff/gtf) from the ENSEMBL ftp site.
You will need to generate chromosome 29 gtf file from the main

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

150 Practical Bioinformatics for Beginners

Angus gfff/gtf file. You can extract the features with the following
command:

zgrep -P ‘^29\t’ Bos_indicus_hybrid.UOA_Brahman_1.104.gtf.gz > UOA_Brahman_1 _chr29/Brahman_
chr29.gtf

alternatively, can use following code:
unzip Bos_indicus_hybrid.UOA_Brahman_1.104.gtf.gz
grep -P ‘^29\t’ Bos_indicus_hybrid.UOA_Brahman_1.104.gtf > UOA_Brahman_1 _chr29/Brahman_
chr29.gtf

Generate Genome Index

Before performing RNA reads alignment, the reference sequence
needs to be indexed.

hisat2-build Bos_indicus_hybrid.UOA_Brahman_1.cds.all.fa.gz UOA_Brahman_1 _chr29/ Brahman_
chr29.ref

Reads Alignment

Next, we will perform reads alignment using HISAT2 aligner and
generate the respective alignment file for each biological replicates
of Brahman and Angus cattle.

mkdir HISAT2_alignment_results

for n in { Angus_RNA_seq_1 Angus_RNA_seq_2 Angus_RNA_seq_3 Brahman_RNA_seq_1 Brahman_RNA_
seq_2 Brahman_RNA_seq_3}
do

 hisat2 -q --threads 4 -x UOA_Brahman_1 _chr29/Brahman_chr29 -1 trim_galore_
results/${n}_1_val_1.fq -2 trim_galore_results/${n}_2_val_2.fq -S ${n}.sam
 samtools view -bS ${n}.sam > ${n}.bam
 samtools sort ${n}.sam -o ${n}.sorted.bam
 samtools index ${n}.sorted.bam
 rm ${n}.sam ${n}.bam
done

mv *sorted.bam HISAT2_alignment_results

You can view reads aligned to the expressed gene regions by
loading the BAM files into IGV. Expressed gene regions are shown
on the first line and the reads are in grey and green (Figure 1).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 151

Single Sample Expression
To obtain individual gene expression counts, each of the BAM files
were processed with a gene expression tool. As mentioned before,
there are two approaches in quantifying gene expression, which
are either “raw counts” or FPKM. In this practical, we will go
through the basic for both methods using HTSEQ, featureCounts
and StringTie.

Gene Expression Count Using HTSEQ

Following command can be used to perform “raw counts” based
gene expression analysis using HTSEQ.

pysam need to be installed in the same environment as HTSEQ for reading bam files

mkdir HTSEQ_results

for n in {Angus_RNA_seq_1 Angus_RNA_seq_2 Angus_RNA_seq_3 Brahman_RNA_seq_1 Brahman_RNA_seq_2
Brahman_RNA_seq_3}
do
 htseq-count --format bam --order pos --mode intersection-strict --stranded reverse
--minaqual 1 --type exon --idattr gene_id ${n}.sorted.bam UOA_Brahman_1_chr29/Brahman_chr29.
gtf > HTSEQ_results/{n}.sorted.gene_read_counts_table.tsv
done

In the comment, flag –format is for bam file, --order is to order
the results by positions, --mode intersection-strict is to separate all
the sets when dealing with overlapping features.

Htseq-count generates a 2 columns file, the first column is for
gene id and the second column is for the count of reads mapped to

Figure 1.  Visualization of reads aligned to the expressed region using IGV.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

152 Practical Bioinformatics for Beginners

the gene. You can view the output file with the following
command:

head HTSEQ_results/Angus_RNA_seq_1.sorted.gene_read_counts_table.tsv

This will show you the following tab delimited text result:

ENSBIXG00005000008 1267
ENSBIXG00005000048 26
ENSBIXG00005000119 0
ENSBIXG00005000121 0
ENSBIXG00005000187 30
ENSBIXG00005000194 204
ENSBIXG00005000218 0
ENSBIXG00005000222 5
ENSBIXG00005000245 192
ENSBIXG00005000306 19

The last 5 lines of the tsv file generated by htseq-count are
basic statistics of feature type. We can view them by using the tail
command.

tail HTSEQ_results/Angus_RNA_seq_1.sorted.gene_read_counts_table.tsv

The basic statistics by htseq-count are marked with __ in front
of the feature description.

ENSBIXG00005029125 1
ENSBIXG00005029130 30
ENSBIXG00005029163 629
ENSBIXG00005029237 0
ENSBIXG00005031433 0
__no_feature 50115931
__ambiguous 31050
__too_low_aQual 1073658
__not_aligned 1506744
__alignment_not_unique 4195983

Gene Expression Count Using featureCounts

featureCounts is another software that produces “raw counts”, and
it can be run as either a command in Linux- or R-based environ-
ments. Here is an example to make a list of bam files and run fea-
tureCounts through all the files use 4 cores:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 153

mkdir featureCounts_results
sampleList=`find HISAT2_alignment_results -name “*.sorted.bam” | tr ‘\n’ ‘ ‘`

featureCounts -T 4 -a UOA_Brahman_1_chr29/ Brahman_chr29.gtf -o featureCounts_results/counts.
out ${sampleList}

Rstudio can be used to load the R environment. We can use the
following code to perform featureCounts in R:

library(Rsubread)

sortbam <- dir(pattern=“.sorted.bam”)

countsensembl <- featureCounts(sortbam, annot.ext=“ UOA_Brahman_1_chr29/Brahman_chr29.gtf
“, isGTFAnnotationFile=T, GTF.featureType=“gene”, GTF.attrType=“gene_id”, isPairedEnd=TRUE,
reportReads=NULL)

Within R/Rstudio, we can use the following code to see the
target bam files, gene counts, gene annotation and statistics.

countsensembl$target
countsensembl$counts
countsensembl$annotation
countsensembl$stat

Gene Expression Count StringTie

To perform FPKM-based gene expression, we can run StringTie
with the following command:

make sure the same naming convention between GTF and the genome sequences
sed “s/^29/CM011832.1/g” -i UOA_Brahman_1_chr29/ Brahman_chr29.gtf

mkdir StringTie_results

for n in {Angus_RNA_seq_1 Angus_RNA_seq_2 Angus_RNA_seq_3 Brahman_RNA_seq_1 Brahman_RNA_seq_2
Brahman_RNA_seq_3}

do

 mkdir StringTie_results/${n}
 stringtie ${n}.sorted.bam -e -B -p 4 -G UOA_Brahman_1_chr29/ Brahman_chr29.gtf -o
StringTie_results/${n}/${n}.stdout
done

Individual gene expression counts were calculated by StringTie
and reported in FPKM format. Each of the fields reported are as
explained below in t_data.ctab:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

154 Practical Bioinformatics for Beginners

Column name Description

t_id
chr
strand
start
end
t_name

1 to the number of identical transcripts in the GFF/GTF file
Chromosome of where the reference transcript located
Reading direction of the reference transcript
Start site of the reference transcript
end site of the reference transcript
A unique identifier describing the object (gene, transcript,

CDS, primary transcript)
num_exons
length

Number of exons of the reference transcript
The number of base pairs in the transcript, or ‘-’ if not a

transcript/primary transcript
gene_id The gene_id(s) associated with the object
gene_name The gene_short_name(s) associated with the object
cov Estimate for the absolute depth of read coverage across the

object
FPKM FPKM of the object in sample 0

Differential Expression
For DE analysis, we prefer to start with the “raw counts” method.
limma and edgeR are two powerful packages to perform DEG
analysis on “raw counts”. In most cases, FPKM can be converted
back to “raw counts” using the length of genes, and then one can
perform DEG analysis without voom, edgeR, and DESeq (detailed in
the limma vignette). If FPKM is all you have, you can log2 convert
the values and the perform limma differential analysis using
eBayes() with trend=TRUE. Normally, you may want to add a 0.1
(i.e. log2(FPKM+0.1)) to avoid applying log to zero values. Here we
focus on the DEG analysis for counts data.

edgeR & Limma for Counts Data

Make a counts table

For HTSEQ, we will need to join the tsv files generated by htseq-
count to create a single main table. To merge multiple files, first we

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 155

make a temporary file and write the first file to it. Then, we run a
for loop to merge the other files sequentially.

cat Angus_RNA_seq_1.sorted.gene_read_counts_table.tsv > gene_counts_HTseq.gff

for n in {Angus_RNA_seq_2 Angus_RNA_seq_3 Brahman_RNA_seq_1 Brahman_RNA_seq_2 Brahman_RNA_
seq_3}
do
 join gene_counts_HTseq.gff ${n}.sorted.gene_read_counts_table.tsv > temp.gff
 cat temp.gff > gene_counts_HTseq.gff
done

rm temp.gff

tail gene_counts_HTseq.gff

gene_counts_HTseq.gff has 5 extra lines which are the basic
statistics. These lines must be removed prior to using it as an input
file for edgeR. This can be removed using the following command:

sed ‘/^_/d’ gene_counts_HTseq.gff > gene_counts_HTseq.tab

Similarly, in command line, one can run the following code to
produce a single count table from the featureCounts results.

cut -f1,7- counts.out | sed 1d > genes.out

Now the file is ready to be used by edgeR to make a DGEList
formatted object, and then apply limma linear model for compari-
son between groups.

Perform edgeR and limma and linear model

Select the right code for the software that you used to read the
count table into R environment:

for HTSEQ
gene_counts <- read.table(“gene_counts_HTseq.tab”, row.names=1, quote=“\””, comment.char=””)

for featureCounts (command line)
gene_counts <- read.table(“featureCounts_results/genes.out”,header = T, row.names=1,
quote=“\””, comment.char=””)

for featureCounts (R version)
gene_counts <- countsensembl$counts

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

156 Practical Bioinformatics for Beginners

To set the right column names:

colnames(gene_counts) <- c(“Angus_RNA_seq_1”, “Angus_RNA_seq_2”, “Angus_RNA_seq_3”, “Brahman_
RNA_seq_1”, “Brahman_RNA_seq_2”, “Brahman_RNA_seq_3”)

After having the count table, we need to read the annotation
file.

library(rtracklayer)

Brahman_chr29_anno <- rtracklayer::import(‘Brahman_chr29.gtf’)
Brahman_chr29_anno <- as.data.frame(Brahman_chr29_anno)

Now we are ready to run edgeR and limma linear model. Here
is a simple model to fit a just one explanatory factor variable, i.e.
the cattle subspecies (Angus or Brahman). As a reminder, the
expression data was from liver and female cattle. More complex
model can be set and please refer to the limma manual.

library(edgeR)
library(limma)

make master DGEList

DEG <- list()

set the count
DEG$counts <- apply(gene_counts,MARGIN = 2,FUN = as.numeric) %>%
 set_rownames(rownames(gene_counts))

DEG$anno <- subset(Brahman_chr29_anno, gene_id %in% rownames(DEG$counts))
DEG$anno <- subset(Brahman_chr29_anno, type %in% “gene”)

set expression level cutoff, can change from 0.5 to 1 for RNAseq data.
Sel <- rowSums(cpm(DEG$counts) > 0.5) >= 3
DEG$counts <- DEG$counts[sel,]
DEG$anno <- DEG$anno[sel,]
DEG <- new(“DGEList”, DEG)

We used the trimmed mean of M-values (TMM) method37 in
edgeR as the normalization method.

normalization
DEG <- calcNormFactors(DEG, method=“TMM”)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 157

Set a matrix to specific the Angus and Brahman samples, and
build a design matrix for regression model with the specified for-
mula and data.

set design matrix
phenotype <- as.factor(rep(c(“Angus”, “Brahman”),each= 3))
modelpheno <- model.matrix(~0+phenotype)

#combine the DEGList and the model

despheno <- estimateDisp(DEG,modelpheno)

show the dispersion
sqrt(despheno$common.dispersion)

By using sqrt(), we can see the dispersion is 0.2149514, then
we can plot the biological coefficient variation with the following
code:

plotBCV(despheno)

In a real analysis, all chromosomes should be used instead of
just chromosome 29 (Figure 2) and we show the plot in Figure 3.

Each dot on the plot represents one gene. Theoretically, we
expect to see all the dots located close to the blue line, and the
trend line tail ends up parallel to the red line.

Figure 2.  Biological coefficient of the variations for Brahman chromosome 29.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

158 Practical Bioinformatics for Beginners

#use voom observational-level weights to quantity sample quality

vpheno <- voomWithQualityWeights(despheno,design=modelpheno,normalize.method = “none”,
plot=T, col=as.numeric(phenotype))

#give the colour labels for Angus and Brahman
cols <- rep(“red”, 6)
cols[phenotype==“Angus”] <- “black”

#mds plot
plotMDS(vpheno, label=phenotype, col=cols, dim.plot=c(1,2), main=“RNA-seq MDSplot”)

In the MDS plot, biological replicates from the same breed clus-
tered together but not so well for one sample from each of the
breeds (Figure 4). When all chromosomes were used instead of just
chromosome 29, only one Brahman sample seemed not to cluster
well with the other two Brahman samples in dimension 2 (Figure 5).

colnames(modelpheno)=c(“Angus”, “Brahman”)

make a contrast
contrpheno <- makeContrasts(“Angus-Brahman”=Angus-Brahman, levels=modelpheno)

fit linear model
lmFitpheno <- lmFit(vpheno)

colnames(lmFitpheno$coefficients) <- rownames(contrpheno)

fit a contrast
vfitcpheno <- contrasts.fit(lmFitpheno,contrpheno)

apply the Bayes moderation
vfitcpheno <- eBayes(vfitcpheno)

Figure 3.  Biological coefficient of the variations across all Brahman
chromosomes.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 159

By showing the summary table and the results of differential
analysis, we can see there are two genes significantly down-
regulate on chromosome 29 (p.value=0.05, logFC = 1). In a real case
with all chromosomes, there are more differentially expressed
genes, and the number can be adjusted by setting different cut off
for p.value and lfc.

Figure 4.  MDS plot for Brahman chromosome 29.

Figure 5.  MDS plot for all Brahman chromosomes.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

160 Practical Bioinformatics for Beginners

summary(decideTests(vfitcpheno,p.value=0.05, lfc = 1))

Angus-Brahman
Down 2
NotSig 574
Up 0

The function topTable()shows the information of the two dif-
ferentially expressed genes, and here we use False discovery rate
to adjust the p-values.

topTable(vfitcpheno,n=Inf,coef=1,p.value=0.05,lfc = 1, method=“fdr”)

Plots and tables that were produced in the process can be
viewed using Rstudio viewer/table panels. By running the View()
function, we can see the following table. See Table 1 for an expla-
nation of the column names.

gene_id chr
gene_
name

gene_
biotype logFC AveExpr t P.vaule adj.P.Val B

ENSBIXG00005012881 29 NA snoRNA 6.844771 4.987784 8.497328 1.610486e-05 0.009276397 3.161074

ENSBIXG00005012872 29 NA snoRNA 4.814734 4.366816 7.756628 3.288804e-05 0.009471755 2.635556

The method used t-statistics to decide the p-values and it
adjusted the p-values for multiple testing by setting method=“fdr”
in the topTable()function.

Table 1.  Differentially expressed gene results.

Column Name Description

gene_id
chr
gene_name
gene_biotype logFC
AveExpr

ENSEMBL gene ID from the GFF/GTF file
Chromosome of where the reference transcript located
ENSEMBL gene names from the GFF/GTF file
ENSEMBL gene type from the GFF/GTF file
The values of log2 fold changes.
Average expression values

t

P.value
adj.P.Val
B

Values of t-statistics to decide the significance of DE
P values
Adjusted P values (Q values)
Values of B-statistic to decide whether DE has occurred38

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 161

The smaller the adjusted p-values the more significant the
difference.

References
 1. Kukurba, K. R. & Montgomery, S. B. RNA sequencing and analysis. Cold

Spring Harbor Protocols 11, 951–969 (2015).
 2. Soneson, C. & Delorenzi, M. A comparison of methods for differential

expression analysis of RNA-seq data. BMC Bioinformatics 14, 91 (2013).
 3. Oshlack, A., Robinson, M. D. & Young, M. D. From RNA-seq reads to differ-

ential expression results. Genome Biology 11, 220 (2010).
 4. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments.

Bioinformatics 28, 2184–2185 (2012).
 5. Wang, L. et al. Measure transcript integrity using RNA-seq data. BMC

Bioinformatics 17, 58 (2016).
 6. Chen, S. et al. AfterQC: automatic filtering, trimming, error removing and

quality control for fastq data. BMC Bioinformatics 18, 80 (2017).
 7. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analy-

sis results for multiple tools and samples in a single report. Bioinformatics
32, 3047–3048 (2016).

 8. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

 9. Martin, M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet. journal 17, 10 (2011).

10. Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR-flexible barcode
and adapter processing for next-generation sequencing platforms. Biology
(Basel) 1, 895–905 (2012).

11. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ pre-
processor. Bioinformatics 34, i884–i890 (2018).

12. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15–21 (2013).

13. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence
of insertions, deletions and gene fusions. Genome Biology 14, R36 (2013).

14. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based
genome alignment and genotyping with HISAT2 and HISAT-genotype.
Nature Biotechnology 37, 907–915 (2019).

15. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
RNA-seq quantification. Nature Biotechnology 34, 525–527 (2016).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

162 Practical Bioinformatics for Beginners

16. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq
using the Trinity platform for reference generation and analysis. Nature
Protocols 8, 1494–1512 (2013).

17. Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo
RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics 28, 1086–1092 (2012).

18. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its appli-
cations to single-cell sequencing. Journal of Computational Biology 19,
455–477 (2012).

19. Liu, J. et al. BinPacker: packing-based de novo transcriptome assembly from
RNA-seq data. PLoS Computational Biology 12, e1004772 (2016).

20. Hölzer, M. & Marz, M. De novo transcriptome assembly: A comprehensive
cross-species comparison of short-read RNA-Seq assemblers. Gigascience 8,
(2019).

21. Pertea, M. et al. StringTie enables improved reconstruction of a transcrip-
tome from RNA-seq reads. Nature Biotechnology 33, 290–295 (2015).

22. Tarazona, S., García, F., Ferrer, A., Dopazo, J. & Conesa, A. NOIseq: a RNA-seq
differential expression method robust for sequencing depth biases. EMBnet.
journal 17, 18 (2012).

23. Anders, S., Pyl, P. T. & Huber, W. HTSeq — a Python framework to work with
high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

24. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor pack-
age for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140 (2010).

25. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550 (2014).

26. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Research 43, e47 (2015).

27. Hardcastle, T. J. & Kelly, K. A. baySeq: empirical Bayesian methods for iden-
tifying differential expression in sequence count data. BMC Bioinformatics
11, 422 (2010).

28. Li, J. & Tibshirani, R. Finding consistent patterns: a nonparametric approach
for identifying differential expression in RNA-Seq data. Statistical Methods
in Medical Research 22, 519–536 (2013).

29. Tarazona, S. et al. Data quality aware analysis of differential expression in
RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research 43, e140
(2015).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Transcriptomics 163

30. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics
30, 923–930 (2014).

31. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

32. Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5, 299 (1996).

33. Smyth, G. K. In: R. Gentleman, V. J. Carey, W. Huber, R. A. Irizarry, & S. Dudoit
(eds.), Bioinformatics and Computational Biology Solutions Using R and
Bioconductor, 397–420. Springer (2005). doi:10.1007/0-387-29362-0_23.

34. Leinonen, R., Sugawara, H., Shumway, M. & International Nucleotide
Sequence Database Collaboration. The sequence read archive. Nucleic Acids
Research 39, D19–D21 (2011).

35. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter
trimming, identification, and read merging. BMC Research Notes 9, 88
(2016).

36. Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR — flexible barcode
and adapter processing for next-generation sequencing platforms. Biology
(Basel) 1, 895–905 (2012).

37. Robinson, M. D. & Oshlack, A. A scaling normalization method for differen-
tial expression analysis of RNA-seq data. Genome Biology 11, R25 (2010).

38. Lönnstedt, I. & Speed, T. Replicated microarray data. Statistica sinica 12,
31–46 (2002).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

TTThhhiiisss pppaaagggeee iiinnnttteeennntttiiiooonnnaaallllllyyy llleeefffttt bbblllaaannnkkk

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

165

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 9

Metagenomics
Sim Chun Hock,a Kee Shao Yong,b Ong Ai Ling,b
Heng Huey Yingb and Teh Chee Kengb

aFaculty of Engineering, Computing and Science, Swinburne
University of Technology, Kuching 93350, Sarawak, Malaysia
bBiotechnology & Breeding Department, Sime Darby Plantation
R & D Centre, Selangor, 43400, Malaysia

Glossary of Terms
16s rRNA: This is a component of the 30S small subunit of
prokaryotic (Archaea and bacteria) ribosomes. It is suitable for
genetic diversity studies due to slow rates of evolution in some
parts of the gene.

BIOM: This is a type of file format designed to be a standard
format for representing biological sample by observation contin-
gency tables. For more information, visit www.biom-format.org.

Operating taxonomic unit (OTU): A cluster of closely related
organisms that have similar target gene sequences, normally at
97% identity.

Amplicon sequence variant (ASV): Single DNA sequence, which
has a higher resolution than OTU, carry as least one nucleotide
difference.

Introduction
Metagenomics is defined as sequence analyses of the total
genomic DNA from environmental samples. The complex genomics

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

166 Practical Bioinformatics for Beginners

information is useful to understand what microbial communities
and their roles are present in the open ocean, soils, and even in the
human gut. However, this has posed challenges to bioinformati-
cians to analyze and interpret. There are two general approaches
for metagenomics studies; shotgun and targeted metagenomics.

Shotgun metagenomics is a study of random DNA/genes
sequences which are mainly available in an assayed microbial com-
munity. With this method, studies on functional composition and
biodiversity of known and unknown microbiota are now feasible.
The main purpose is to study the functional composition of known
and unknown organisms in the microbial community. Furthermore,
shotgun metagenomics can also provide biodiversity of microbial
communities. On the other hand, targeted metagenomics is
a faster and cheaper way to obtain a microbial community/
taxonomic profile. Targeted metagenomics can be defined as
sequencing of targeted genes using polymerase chain reaction
(PCR) using gene-specific primers. In metagenomics, most research-
ers focus on bacteria/archaea by targeting at least one or more
highly variable regions of the 16S rRNA gene.1 This gene is part of
bacterial ribosomes, which contains conserved as well as variable
sequences. The highly variable sequence region can be used as a
molecular fingerprint marker to identify which taxa bacteria belong
to. For other groups of organisms, different target genes are used.
For example, internal transcribed spacer (ITS) is used for fungi2 and
18S rRNA gene fragment is used for eukaryotes.3

In this practical, we use the MG-RAST4–6 (https://www.mg-rast.
org/) metagenomic analysis server to analyze shotgun metagen-
omic dataset. The MG-RAST is an open submission data server for
processing, analyzing, sharing, and disseminating metagenomic
datasets. In fact, it is a fully automated open-source server. The
system is hosted in Argonne National Laboratory, Mathematics and
Computer Science Division, Argonne, IL, USA since 2008.4 It uses
the M5 non-redundant protein database (M5NR) for functional
annotation and M5 non-redundant taxonomy database (M5RNA)
for taxonomic analysis. Data sources for M5NR are from European
Bioinformatics Institute (EBI), Gene Ontology (GO), Join Genome

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 167

Institute (JGI), Kyoto Encyclopedia of Genes and Genomes (KEGG),
National Center for Biotechnology Information (NCBI), Phage
Annotation Tools and Methods (Phantome), The SEED Project
(SEED), UniProt Knowledgebase (UniProt), Virginia Bioinformatics
Institute (VBI) and Evolutionary Genealogy of genes: Non-supervised
Orthologous Groups (eggNOG).5 Data source for M5RNA are from
Silva, Greengenes and RDP. Comparisons of metagenomic datasets
with the M5NR or M5RNA database is a computationally intensive
task as it involves phylogenetic comparisons, functional annota-
tions, binning of sequences, phylogenomic profiling, and metabolic
reconstructions.7

We use QIIME 28 to analyze targeted metagenomic dataset. The
QIIME 2 is a rewrite of QIIME 1 to analysis next generation of
microbiome data. With QIIME 2 plugin q2-feature-classifier,9 we
can perform taxonomic classification using any pre-trained classi-
fiers in scikit-learn, such as classifier trained from Silva or
Greengenes databases. The QIIME 2 also comes with a service
called QIIME 2 View (https://view.qiime2.org/), which allows users
to securely share and interact with microbiome results without
installing the software.

Introduction to MG-RAST Server Workflow
Registration to MG-RAST

A registration is needed in order to kickstart analysis at
the MG-RAST server (https://www.mg-rast.org/mgmain.html?
mgpage=register) (Figure 1). Submission of sequence files to the
MG-RAST for analysis is only possible, upon registration confirma-
tion from the MG-RAST server. If you have registered an account,
you may proceed to login.

Submission of Dataset

Firstly, we need to upload a sequence file to the MG-RAST server.
Currently, the MG-RAST server supports shotgun and targeted
(amplicon) metagenomic data from any sequencing platforms (e.g.

b4705_Ch-09.indd 167b4705_Ch-09.indd 167 09-Feb-23 11:23:43 AM09-Feb-23 11:23:43 AM

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

168 Practical Bioinformatics for Beginners

454 pyrosequencing, Illumina sequencing, and SOLiD sequencing)
in FASTQ, FASTA, or SFF format. For pooled sequencing (two or
more DNA samples pooled in a single sequencing run), we need to
provide a barcode file for demultiplexing purpose. The barcode file
should be in a plain text ASCII, containing lines with a barcode
sequence followed by a unique filename separated by a tab. The
MG-RAST demultiplexes by detecting the barcode region of each
read. For example, if you have a sequence file testseq.fasta and
your barcode file has tab-separated lines like:

AAAAAAAA			 fileA
CCCCCCCC			 fileC

The demultiplexing step will split your sequence file into three
files:

fileA.fasta	containing	all	reads	that	begin	with	
AAAAAAAA,	fileC.fasta	containing	all	reads	that	
begin	 with	 CCCCCCCC,	 and	 testseq_no_MID_tag.
fasta	containing	reads	which	do	not	match	either	
of	these	two.

After uploading the sequence file, it is a good practice to supply
metadata for all metagenomics projects. Metadata include

Figure 1.  Registration of MG-RAST new user at https://www.mg-rast.org/
mgmain.html?mgpage=register.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.mg-rast.org/mgmain.html?mgpage=register
https://www.mg-rast.org/mgmain.html?mgpage=register

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 169

information about the project name, a detailed description of the
isolation source, and scope of the project. The MG-RAST uses ques-
tionnaires to capture metadata for each project.

Job Status Monitor

Users may view the progress of their submitted job(s). The job is
displayed in a table with sortable and searchable columns. For each
job, an overview of progress is shown in a table with a series of color
dots (green = completed tasks, blue = tasks being computed on,
orange = next task to be queued, grey = pending for completion of
another task they depend on, and red = an error). Figure 2 shows a
workflow for the MG-RAST server and Figure 3 shows the summary
of MG-RAST analysis pipeline for shotgun metagenomic sequences.

Figure 2.  A workflow of the MG-RAST server.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

170 Practical Bioinformatics for Beginners

Data Analysis and Result Viewing

For data analysis and result viewing, go to “Browse” page from the
MG-RAST home page. This page displays a summary of submitted
data and projects.

Figure 3.  An analysis pipeline for shotgun metagenomic sequences.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 171

Analysis of Shotgun Metagenomic Sequence Datasets
In this practical, we used sequence files generated from Crohn’s
Disease Viral and Microbial Metagenome Project10 (ERP001706).
Six shotgun sequence files, which comprise of three representative
fecal samples of patients with Crohn’s disease and healthy
volunteers (as negative controls), respectively. At the end of data
analysis, we compared samples from Crohn’s patients and healthy
volunteers.

Getting Started

To download the sample data, visit https://www.ebi.ac.uk/ena/
browser/view/PRJEB3206?show=reads. In the browser, tick on
checkbox for required samples to download under column
Generated FASTQ files (ftp). Then, click on “Download selected
files” button. After completion, unzip the downloaded folder that
consists of six selected shotgun sequence files in compressed
FASTQ format (fastq.gz): ERR162917, ERR162919, ERR162921,
ERR162933, ERR162935, and ERR162937 as shown in Table 1.

Table 1.  Summary of sequence files downloaded from Crohn’s Disease Viral
and Microbial Metagenome Project at https://www.ebi.ac.uk/ena/browser/
view/PRJEB3206?show=reads.

Run ID
Sample
Name Status File Name

Size
(MB)

Sequence
Count

Sequence
Type

ERR162917 C8 Crohn’s
disease

ERR162917.fastq.
gz

57.2 62,064 454 WGS

ERR162919 C9 Crohn’s
disease

ERR162919.fastq.
gz

20.7 26,145 454 WGS

ERR162921 C10 Crohn’s
disease

ERR162921.fastq.
gz

22.1 29,035 454 WGS

ERR162933 V5 Healthy
control

ERR162933.fastq.
gz

12.0 18,556 454 WGS

ERR162935 V6 Healthy
control

ERR162935.fastq.
gz

9.8 18,620 454 WGS

ERR162937 V7 Healthy
control

ERR162937.fastq.
gz

8.4 12,707 454 WGS

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.ebi.ac.uk/ena/browser/view/PRJEB3206?show=reads
https://www.ebi.ac.uk/ena/browser/view/PRJEB3206?show=reads
https://www.ebi.ac.uk/ena/browser/view/PRJEB3206?show=reads
https://www.ebi.ac.uk/ena/browser/view/PRJEB3206?show=reads

� “9x6”b4705  Practical Bioinformatics for Beginners�

172 Practical Bioinformatics for Beginners

Uploading and Submission
In the MG-RAST upload page, select and upload all 6 sequence files
(Figure 4). For analysis submissions to the MG-RAST server, key in
the information stated in Table 2 for each subsection. After

Table 2.  MG-RAST submission of 6 compressed fastq files for shotgun metage-
nomic analysis. After keying in the information for every subsection, user must
click “next” and make sure the subsection turns green.

Subsection

MG-RAST Submission

Action Remarks

1. Select metadata
file

Tick “I do not want to supply
metadata”

For real metagenomic
datasets, it is advisable
to provide complete
metadata information

2. Select project Enter “meta_shotgun”

3. Select sequence
files(s)

Select the 6 fastq.gz files

4. Choose pipeline
options

Follow default setting

5. Submit Choose “Data will stay private
(DEFAULT) — Lowest
Priority” and submit job

Only applicable for this
tutorial

Figure 4.  Uploading all input files to the MG-RAST server.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 173

submitting the analysis, a job number will be created automatically
(Figure 5).

Results

To view results, go to “my studies” page from the MG-RAST home
page. Click on the project name, “meta_shotgun”. This leads to a
new tab with project information and a table with all sample
details (Figure 6). Click on the sample name, and a new tab, called

Figure 5.  Submitting project to the MG-RAST server.

Figure 6.  Summary information for metagenomes in project “meta_shotgun.”

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

174 Practical Bioinformatics for Beginners

“Metagenome Overview” appears with all results for respective
sample name (Figure 6). Results for sample C9 (ERR162919) were
presented in Figure 7.

A further comparative analysis between uploaded samples can
be done in the MG-RAST via “Analysis” page. In the “Analysis” page,
choose “RefSeq” and “COG” from the dropdown list under “avail-
able databases”, click on “Add”. Then, select the 6 shotgun

Figure 7.  Outputs from the MG-RAST: (a) sequence breakdown, (b) analysis
statistics, (c) k-mer curve, (d) family breakdown, (e) genus breakdown, (f) func-
tional analysis breakdown in different databases for sample C9 (ERR162919).

(a)
(b)

(e)

(c)

(d)

(f)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 175

sequences for analysis. Click on the green tick to allow analysis
(Figure 8).

After processing is done, we can set parameters as shown in
Figure 9 to filter the result. In this practical, subsequent analyses
are performed at class level. Then, export the result as TSV or
BIOM files. BIOM file can be loaded into MG-RAST or other analysis
tools like QIIME 2 in future. Here, we export as TSV and open in
Excel. Then, plot the relative abundance graph based on relative
percentage against samples (Figure 10) and tabulate the predicted
functions (Figure 11).

Figure 10 was derived from the shotgun metagenomic analysis
and it reflected the dominance of class Gammaproteobacteria in
control samples (V5, V6, and V7), while class Bacilli and Bacteroidia
were observed to be more abundant in Crohn’s disease samples
(C8, C9, and C10).

Analysis of 16S rRNA-targeted Metagenomic Sequence
Datasets
Getting Started

For the purpose of this practical, we use amplicon sequences rep-
resenting the same sequence datasets from the Crohn’s Disease
Viral and Microbial Metagenome Project (ERP001706).10

Figure 8.  Create an analysis on RefSeq and COG databases.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

176 Practical Bioinformatics for Beginners

Figure 9.  Analysis on RefSeq (left) and COG (right).

Visit https://www.ebi.ac.uk/ena/browser/view/PRJEB3206?
show=reads to download the sample data. Then, tick the checkbox
of samples listed in Table 3, under column “Generated FASTQ files
(ftp)”. Click on “Download selected files” button. After completion,
unzip these downloaded files to FASTQ format.

We use the QIIME 2 for taxonomic classification of 16S rRNA-
targeted metagenomic analysis (Figure 12). The QIIME 2 requires
command-line knowledge, unlike the MG-RAST that has a user
interface.

In this practical, we used Miniconda environment and wget
command for QIIME 2 installation. In your terminal:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.ebi.ac.uk/ena/browser/view/PRJEB3206?
show=reads
https://www.ebi.ac.uk/ena/browser/view/PRJEB3206?
show=reads

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 177

Figure 10.  A taxonomic classification and relative abundance chart of microbial
communities present in Crohn’s Disease samples (C8, C9, C10) and in control
samples (V5, V6, V7) generated in Excel. These microbial samples were classified
up to class level from RefSeq database.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

178 Practical Bioinformatics for Beginners

Figure 11.  Functional prediction of microbial communities from COG present
in Crohn’s Disease samples (C8, C9, C10) and in control samples (V5, V6, V7).

Table 3.  Summary of sample datasets of amplicon sequence downloaded from
the Crohn’s Disease Viral and Microbial Metagenome Project for 16S rRNA-
targeted metagenomic analysis.

Run ID
Sample
Name Status File Name

Size
(MB)

Sequence
Count

Sequence
Type

ERR162918 C8 Crohn’s
disease

ERR162918.
fastq.gz

6.4 6,968 454
Amplicon

ERR162920 C9 Crohn’s
disease

ERR162920.
fastq.gz

8.5 10,863 454
Amplicon

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 179

Run ID
Sample
Name Status File Name

Size
(MB)

Sequence
Count

Sequence
Type

ERR162922 C10 Crohn’s
disease

ERR162922.
fastq.gz

7.1 9,278 454
Amplicon

ERR162934 V5 Healthy
control

ERR162934.
fastq.gz

7.6 8,205 454
Amplicon

ERR162936 V6 Healthy
control

ERR162936.
fastq.gz

10.9 12,110 454
Amplicon

ERR162938 V7 Healthy
control

ERR162938.
fastq.gz

8.2 9,031 454
Amplicon

Figure 12.  An analysis pipeline for 16S rRNA-targeted metagenomic sequences
using QIIME 2.

Table 3.  (Continued)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

180 Practical Bioinformatics for Beginners

Make sure running latest version of conda
$	conda	update	conda

Installing wget
$	conda	install	wget

Install based on your OS platform. Here, we are using Linux-based
environment
$	wget	https://data.qiime2.org/distro/core/qiime2-
2021.4-py38-linux-conda.yml
$	conda	env	create	-n	qiime2-2021.4	--file	qiime2
-2021.4-py38-linux-conda.yml

Optional cleanup
$	rm	qiime2-2021.4-py38-linux-conda.yml

Activate the QIIME 2 environment in conda
$	conda	activate	qiime2-2021.4

To test the installation and get more information of QIIME 2
$	qiime	–help

In QIIME 2, all data must be imported and structured as an
Artifact (.qza) format. We first import these raw sequences into a
tab-separated file consisting of sample names and absolute file
path as a manifest file (Figure 13).

Import sequences using manifest
$	qiime	tools	import	--type	‘SampleData[Sequences
WithQuality]’	--input-path	manifest	--output-path	
16s.qza	 --input-format	 SingleEndFastqManifest-
Phred33V2

Figure 13.  Example of the tab-separated file, named as “manifest” for this
practical.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 181

Then, denoise these sequences using DADA2 algorithms.11

Subsequently, create a feature data consisting of counts associated
with each sequence and feature. This step is required to create a
metadata file as shown in Figure 14.
Denoise sequences

$	qiime	dada2	denoise-single	\
		--i-demultiplexed-seqs	./16s.qza	\
		--p-trunc-len	150	\
		--o-table	./dada2_table.qza	\
		--o-representative-sequences	./dada2_rep_set.
qza	\
		--o-denoising-stats	./dada2_stats.qza

Create feature data, using metadata
$	qiime	feature-table	summarize	\
		--i-table	./dada2_table.qza	\
		--m-sample-metadata-file	./metadata.tsv	\
		--o-visualization	./dada2_table.qzv

For this practical, we used the pre-trained naive Bayes machine-
learning classifier, using Silva version 138 with 99% full-length OTU
sequences to predict taxonomic classification of ASVs.12,13 The pre-
trained classifier can be downloaded from https://docs.qiime2.
org/2021.4/data-resources/. To visualize the taxonomic composi-
tion that have been predicted, we need to build an interactive
barplot of taxonomy for each sample.

Taxonomic classification with pre-trained Silva classifier
$	qiime	feature-classifier	classify-sklearn	\
		--i-reads	./dada2_rep_set.qza	\
		--i-classifier	./silva-138-99-nb-classifier.qza	\

Figure 14.  Metadata used in this practical.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://docs.qiime2.org/2021.4/data-resources/
https://docs.qiime2.org/2021.4/data-resources/

� “9x6”b4705  Practical Bioinformatics for Beginners�

182 Practical Bioinformatics for Beginners

		--o-classification	./silva_taxonomy.qza

Build the interactive barplot of the taxonomy
$	qiime	taxa	barplot	\
		--i-table	./dada2_table.qza\
		--i-taxonomy	./silva_taxonomy.qza	\
		--m-metadata-file	./metadata.tsv	\
		--o-visualization	./taxa_barplot.qzv

Visualization

QIIME 2 produces output files in .QZA and/or .QZV format. We
could visualize our output files (silva_taxonomy.qza and taxa_bar-
plot.qzv) using QIIME 2 View (https://view.qiime2.org/) interface
by dragging these files from local machine to a dropbox provided
(Figure 15).

The interactive barplot at class level (users can change taxo-
nomic level) is displayed in Figures 16 and 17. Additionally, users
can download the relative abundance of taxonomy into .CSV for-
mat and open it using Excel.

The taxonomic distribution of in Figure 17 reflects the domi-
nance of Bacteroidia in Crohn’s disease samples which is in

Figure 15.  Interface of QIIME 2 View.

Figure 16.  The barplot can be configured.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 183

agreement with the result of shotgun metagenomic analysis
(Figure 10), while the distribution for control samples was found to
be more diverse. This may suggest the importance in maintaining
microbial diversity in human guts. The taxonomic classification in
Figure 10 includes organisms other than Bacteria such as Eukaryote
and Viruses, which cannot be found in Figure 17.

Conclusion
Each analysis method has its own pros and cons. Targeted metagen-
omic analysis is faster and cheaper, having more established pipe-
lines for data analysis and equipped with more archived data as
reference. However, targeted sequencing on specific genes only
allows taxonomic classification of limited microbial groups,

Figure 17.  A taxonomic classification and relative abundance chart of microbial
communities present in Crohn’s Disease samples (C8, C9, C10) and in control
samples (V5, V6, V7) generated in the QIIME 2, with the x-axis sorted by index.
Microbial samples are classified up to class level (level 3).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

184 Practical Bioinformatics for Beginners

including bacteria and fungi. On the other hand, shotgun metagen-
omic dataset is obtained from sequencing broad regions of the
genome, enabling more resolving power in detecting different
organisms ranging from bacteria, virus, fungi to protozoa with
more accurate taxonomic and functional annotations, but the
method has higher false positive rates due to shorter reads gener-
ated from shotgun metagenomic sequencing.14

References
 1. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR

primers for classical and next-generation sequencing-based diversity stud-
ies. Nucleic Acids Research 41, 1–11 (2013).

 2. Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region
as a universal DNA barcode marker for fungi. Proceedings of the National
Academy of Sciences, U. S. A. 109, 1–6 (2012).

 3. Hadziavdic, K. et al. Characterization of the 18s rRNA gene for designing
universal eukaryote specific primers. PLoS One 9(2): p. e87624 (2014).

 4. Meyer, F., Paarmann, D., D’Souza, M. et al. The metagenomics RAST server — a
public resource for the automatic phylogenetic and functional analysis of
metagenomes. BMC Bioinformatics 9, 386 (2008). doi.org/10.1186/
1471-2105-9-386.

 5. Wilke, A. et al. The MG-RAST metagenomics database and portal in 2015.
Nucleic Acids Research 44, D59–D594 (2015).

 6. Keegan, K. P., Glass, E. M. & Meyer, F. MG-RAST, a metagenomics service for
analysis of microbial community structure and function. In: F. Martin, & S.
Uroz (eds.), Microbial Environmental Genomics (MEG), Methods in Molecular
Biology, 207–233. Springer Science+Business Media, New York, 2016,
Vol. 1399.

 7. Antonopoulos, D. A., Glass, E. M. & Meyer, F. Analyzing metagenomic data:
inferring microbial community function with MG-RAST. In: R. W. Li (ed.),
Metagenomics and its Applications in Agriculture, 47–60. Nova Science
Publishers, 2010.

 8. Bolyen, E., Rideout, J. R., Dillon, M. R. et al. Reproducible, interactive, scal-
able and extensible microbiome data science using QIIME 2. Nature
Biotechnology 37, 852–857 (2019). doi.org/10.1038/s41587-019-0209-9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Metagenomics 185

 9. Bokulich, N. A., Kaehler, B. D., Rideout, J. R. et al. Optimizing taxonomic
classification of marker-gene amplicon sequences with QIIME 2’s
q2-feature-classifier plugin. Microbiome 6, 90 (2018). doi.org/10.1186/
s40168-018-0470-z.

10. Pérez-Brocal, V. et al. Study of the viral and microbial communities associ-
ated with Crohn’s disease: a metagenomic approach. Clinical and
Translational Gastroenterology 4, e36 (2013).

11. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., &
Holmes, S. P. DADA2: High-resolution sample inference from Illumina ampli-
con data. Nature Methods 13(7), 581–583 (2016). doi.org/10.1038/
nmeth.3869.

12. Bokulich, N. A., Robeson, M., & Dillon, M. R. bokulich-lab/RESCRIPt. Zenodo.
doi.org/10.5281/zenodo.3891931.

13. Bokulich, N. A., Kaehler, B. D., Rideout, J. R. et al. Optimizing taxonomic
classification of marker-gene amplicon sequences with QIIME 2’s
q2-feature-classifier plugin. Microbiome 6, 90 (2018). doi.org/10.1186/
s40168-018-0470-z.

14. Ranjan, R., Rani, A., Metwally, A., McGee, H. S., & Perkins, D. L. Analysis of
the microbiome: advantages of whole genome shotgun versus 16S amplicon
sequencing. Biochemical and Biophysical Research Communications 469(4),
967–977 (2016). doi.org/10.1016/j.bbrc.2015.12.083.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

TTThhhiiisss pppaaagggeee iiinnnttteeennntttiiiooonnnaaallllllyyy llleeefffttt bbblllaaannnkkk

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

187

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 10

Applications of NGS Data
Teh Chee Keng, Ong Ai Ling and Kwong Qi Bin

Biotechnology & Breeding Department, Sime Darby Plantation
R&D Centre, Selangor, 43400, Malaysia.

Glossary of Terms
Locus: It is a genetic position in the genome and it can exist in a
number of different allelic forms, which can often be traced as
they are inherited by molecular or phenotypic markers.

Quantitative trait locus/loci (QTL): It is a section of DNA (at the
locus) that correlates with variation for a quantitative trait (e.g.
height and yield) that can vary in degree and be influenced by
many genes and the environment.

Outcross population: This is derived from two genetically
different parents, often producing full-sibs.

F2 population: This is created by self-pollination of the F1 derived
from two different inbred parents or crossing between F1 plants.

Backcross (BC) population: This is created by crossing an F1
individual back to one of its parents.

Recombinant inbred line (RIL): This is created from inbreeding of
individual lines of the F2 generation and it generally requires 8 or more
generations. Single seed descent can be used to speed up this process,
with poor growing conditions leading to early flowering and limited
seed set. A single seed for each line is taken to the next generation.

(Continued)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

188 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

Introduction
Rapid technological development in DNA sequencing has enabled
the scientific community to sequence 418,755 organisms1 (as of
October 2021) since the first genome of Bacteriophage MS2 was
announced in 1976.2 According to the Genome Online Database
(GOLD), the number of genome projects shot up dramatically from
2012 and peaked at about 40,000 genomes per year in 2018 alone
(Figure 1). The next question is how massive sequence data will
benefit us. To address that, this chapter will discuss and illustrate
some applications using NGS data to unveil the underlying biologi-
cal mechanisms for a phenotype of interest, which is crucial in
pharmacogenetics, agriculture and livestock research.

The genetic polymorphism in populations becomes important
when mutated regions of the genome are discovered to influence
phenotypic changes, such as susceptibility to diseases and increased
crop yields which are no doubt exciting. To facilitate such discoveries,
a reference genome sequence that links DNA markers to validated
gene models, transcripts, proteins and other physical genomic fea-
tures is required to better understand mutations behind phenotypic
changes. By using NGS platforms, such as 454, ABI SOliD, Illumina
and Ion Torrent, short sequences of individual genomes can be
mapped to a reference genome to reveal genetic polymorphism
both within and between species. Some of these polymorphisms can

(Continued)

Population structure and cryptic relatedness: Population
structure generally describes remote common ancestry of large
groups of individuals, whereas cryptic relatedness refers to the
recent common ancestry among smaller groups.

LOD: It stands for logarithm (base 10) of odds and it is used to
estimate whether two genes, or two markers, or a marker and a
qualitative phenotype, are likely to be located near each other on a
chromosome and hence parental alleles are likely to be co-inherited.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 189

	 b4705  Practical Bioinformatics for Beginners“9x6”�

be utilized as DNA markers, including random amplified polymorphic
DNA (RAPD), restriction fragment length polymorphism (RFLP),
amplified fragment length polymorphism (AFLP) and simple sequence
repeat (SSR). SSR and single nucleotide polymorphism (SNP) are the
most popular markers because of their high abundance, polymor-
phism, reproducibility and co-dominance.3,4 To be more precise, SSRs
are composed of short tandem arrays of simple nucleotide motifs
and often have many allele forms at the same locus, whereas SNPs
represents a single nucleotide change between individuals and tend
to be bi-allelic (Figure 2). We have noted the preference shift from
SSR towards SNP in recent years. Automation in high throughput
assay formats up to 1,536 wells per plate has further made SNP
marker analysis less laborious and more cost effective, compared to
SSR marker. Also, the biallelic nature of SNP markers confers a much
lower error rate in allele scoring, allowing higher levels of consist-
ency between laboratories.4

With the help of DNA markers, the gene(s) of interest respon-
sible for phenotype change can be identified and mapped onto the

Figure 1.  Complete and permanent draft genome totals in GOLD (by year and
status).1 Complete — complete genomes; Permanent drafts — draft genomes
which are being updated.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

190 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

genome. Two methods of genetic mapping are commonly used to
achieve this purpose. The first one is classical linkage analysis to
determine the arrangement of markers or genes on the chromo-
somes based on meiotic recombination events within a family. The
marker alleles that highly correlate to the phenotypic variation are
expected to be close to genes influencing or controlling the pheno-
type. This correlation is defined as linkage, indicating two alleles of
loci (between markers or between marker and phenotype) are co-
inherited from parents. Nevertheless, the mapping resolution of
the classical linkage method is always constrained by limited popu-
lation size leading to insufficient recombination and sometimes by
the lack of polymorphic markers. In humans, rare Mendelian dis-
eases have been successfully localized through linkage mapping.
However, inconsistent or ambiguous results for common non-
Mendelian diseases (complex or quantitative phenotypes) are
often reported.5,6 In addition, human populations are often com-
posed of small outbred families, rather than larger families possible
with plants. Hence, human research groups began using an alterna-
tive method, which is association analysis. With the current
sequencing and genotyping technologies, development of high
density SNP panels is no longer a technical problem for most spe-
cies. This has redefined the association strategy from an often
candidate gene approach based on biochemical pathways to
genome-wide association study (GWAS).7 More importantly, asso-
ciation studies provide access to the total historical meiotic recom-
bination events in a large heterogeneous population. With these,
mapping resolution has improved close to the gene level. In 2003,
the Human Genome Project (HGP) completed sequencing the

Figure 2.  Single nucleotide polymorphism (SNP) and simple sequence repeat
(SSR; boxed).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Applications of NGS Data 191

3 billion bp of human genome and it has become an important
reference resource for the subsequent discovery of more than
1,800 disease-related genes. The agriculture and livestock research
 communities are following in steps of human studies.

This chapter will start from classical linkage mapping, assembly
improvement based on a linkage map and GWAS. The aim is to
provide some basic understanding of how to convert NGS data to
valuable genetic information as mentioned above.

Classical Linkage Map
Classical linkage mapping was the first effort to determine the posi-
tion of genetic factors affecting traits on chromosomes. The first link-
age map based on morphological traits was constructed for fruit flies
(Drosophila melanogaster) in year 1913,8 which is 40 years earlier
than the discovery of the molecular structure of DNA. The work suc-
cessfully established the concept for genetic mapping. Alleles of loci
(or genes or traits) in parental plants that co-locate on the same chro-
mosome tend to be co-inherited and this is termed linkage. The pair-
wise distance between linked loci can be estimated according to
numbers of meiotic crossovers observed, but this genetic distance
does not reflect the physical distance (in bp). The distance is
expressed in centimorgans (cM) which are calculated by applying a
mapping function to the observed recombination frequency (number
of observed recombinants/total number of observed recombinants;
Rf), producing a linear distance. Pairs of polymorphic markers are
compared in two point analysis to generate a network of Rf values
between pairs of markers. If the Rf >= 0.5, the loci are considered
unlinked. A large family that typically consists of 100 to 300 individu-
als with parental lines providing information on where alleles of each
locus are coming from (also known as mapping population) is
required to construct a good map using DNA markers. Without a ref-
erence genome, researchers rely on these linkage maps to locate
quantitative trait loci (QTL) and gene regions for phenotypes of inter-
est, such as linkage mapping of genes responsive to abiotic stress in
barley9, fatty acid compositions10 and trunk height11 in oil palm. Here,
the R package OneMap is introduced for linkage mapping purposes.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

192 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

OneMap (2.1.3)12

The software provides a platform for linkage map construction in
 various experimental crosses, including recombinant inbred line (RIL),
F2, backcross (BC) and outcrossing populations (Figure 3). Outcross
and F2 populations confer higher mapping resolution, compared to BC
populations. The latter population is less informative for linkage analy-
sis because recombination is only observed among markers from one
set of gametes from the donor parent (either male or female).13 Thus,
researchers are always advised to select the best experimental design
based on available resources. In this section, a tutorial will be carried
out in an outcross population using SNP markers. The SNP discovery
and mining have been discussed in Chapter 7.

Installation

OneMap is an R package deposited at CRAN and can be automati-
cally installed with the following command in R console:

>install.packages(“onemap”)

Figure 3.  Experimental crosses. BC — backcross; RIL — recombinant inbred line.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Applications of NGS Data 193

Alternatively, it can be downloaded using the command below:

$ wget “https://cran.r-project.org/src/contrib/
onemap_2.1.3.tar.gz”

Note: The package excludes other supportive packages that are
required to be installed separately. Please refer to OneMap manual
at CRAN for more information.

Input formatting

The input file is in text format, ...; the first line must indicates
header with “data type xxxxx”, where xxxxx representing the type
of your mapping population, in this case we dealt with “outcross”
population (Table 1). The second line indicates the number of indi-
viduals’, ‘number of markers’, ‘presence of CHROM data’, ‘presence
of POS data’ and ‘number of traits’. These numbers must be sepa-
rated with an empty space, you may also leave ‘0’ for the last three
items if you do not have the relevant information for them. The
third line would be individual’s name for the population separated
by empty space. The genotype information is included separately
for every marker. Each line of marker is started with asterisk “*”.
The software accepts multiallelic (e.g. SSRs), biallelic markers
(SNPs) and also combinations of marker type. Alleles for each
marker are differentiated based on “a”, “b”, “c” and “d”. As men-
tioned earlier, we will work on SNP data, which have two alleles
(“a” and “b”) only. Thus, a reduced notation used to identify
markers, cross types and genotypes in this section is given in
Table 1 (Please refer to OneMap manual for more information).

Table 1.  Reduced notation used to identify markers, cross types and genotypes.

Cross type Parent cross
Genotype segregation in

offspring *Segregation ratio

B3.7 ab × ab aa, ab, bb 1:2:1
D1.10 ab × aa aa, ab 2:1
D2.15 aa × ab ab, aa 1:2

* The genotype segregation is expected to be compliant with Mendelian inheritance.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://cran.r-project.org/src/contrib/onemap_2.1.3.tar.gz
https://cran.r-project.org/src/contrib/onemap_2.1.3.tar.gz

194 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

The informative markers for linkage analysis must be heterozygous
in at least one of the parents (Recommendation: pre-determine
the informative markers by genotyping the parents first).

Missing data are coded as “−”(minus sign) and a comma sepa-
rates the information for each individual. An example input file for
10 individuals and 3 SNPs are given as follows. The input file must
be saved in tab-delimited text format (“.txt”).

data type outcross
10 3 0 0 0
I1 I2 I3 (...total number of individuals)
*SNP1 B3.7 ab,ab,bb,aa,ab,aa,ab,-,bb,bb
*SNP2 D1.10 aa,aa,ab,-,ab,ab,aa,ab,ab,ab
*SNP3 D2.15 ab,ab,ab,aa,aa,aa,ab,-,aa,aa

Linkage mapping analysis

After the installation, the input file can be loaded to OneMap in the
R console by:

Note: OneMap was built under R version 4.0.5 or more updated
one.

>library(onemap)
#importing input data
>example.out<-read_onemap(inputfile=“geno.input_recoded.
raw”)

The first step is to estimate the recombination fraction of all
pairs of markers by using the default function (LOD score 5 and
maximum recombination fraction 0.40) as:

>twopts<-rf_2pts(example.out)
#the LOD threshold and recombination fraction are adjustable.
>twopts<-rf_2pts(example.out,LOD=5,max.rf=0.4)

With the estimated recombination fraction and linkage phase
for all pairs of markers, these markers could be assigned to

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Applications of NGS Data 195

different linkage groups (LG). The definition of LG is a network of
marker pairs of which have shown linkage through two point analy-
sis, therefore are likely to be on the same chromosome. Even
though generating LGs is likely to provide significant information on
the individual chromosomes, they are not necessary equivalent to
LG. This is because many LGs can be found on the same chromo-
some due to low marker density and uneven recombination break-
points. The function make.seq is used to specify which marker set
that you want to analyze:

>mark.all<-make_seq(twopts,”all”)
#to show the marker type
>marker_type(mark.all)
#to group the markers with adjusted LOD threshold and
maximum rf
>LGs<-group(mark.all,LOD=5,max.rf=0.4)
>LGs
#to print the result of grouping

Within each LG, the mapping step can take place now. The
mapping step is to determine marker order on the LG. The user
must fix the mapping function i.e. Kosambi or Haldane as follows:

#to set Haldane’s function
>set_map_fun(“haldane”)

#to set Kosambi’s function (used in this section)
>set_map_fun(“kosambi”)

The user must then define which LG (Figure 4) is to be mapped.
In this case, we only have LG1 and it is defined as:

>LG1<-make_seq(LGs,1)

Four two-point based algorithms, including, Rapid Chain
Delineation, Recombination Counting and Ordering, and
Unidirectional Growth can be used as below to order the markers.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

196 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

>LG1.rcd<-rcd(LG1)
>LG1.rec<-record(LG1)
>LG1.ug<-ug(LG1)

Note: A LG with less than or equal to 10 markers can be ana-
lyzed using a comparison of all functions:

>LG1.comp<-compare(LG1)

In this case, the Unidirectional Growth algorithm is used and
the output is shown in Figure 5.

Eventually, the linkage map can be versualised in R Graphics
(Figure 6), by the command:

>draw_map(LG1.ug,names=TRUE,cex.mrk=0.7)

Alternatively, there is a windows-based software (freely available)
for visualizing maps, MapChart14 at https://www.wur.nl/en/show/
MapChart-2.32.htm.

The current version of MapChart is 2.32, with a simple user
interface allowing the loading of marker ID and position in the
‘Data’ tab from the program (Figure 7a).

Only one LG is constructed using MapChart (2.32) for this prac-
tical illustration (Figure 7b). Nowadays, the development of a large
number of DNA markers means there is no longer a bottleneck to
construct a high-density linkage map at the genome-wide level. As
an example, a genome-wide linkage map of oil palm (Elaeis
guineensis Jacq.) which consists of 16 LGs, was constructed using
1,605 genic SNPs15–16 (Figure 8). Ideally, the number of LGs should

Figure 4.  Screen capture of OneMap from the R console that shows the mark-
ers have been assigned to a single linkage group.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.wur.nl/en/show/MapChart-2.32.htm
https://www.wur.nl/en/show/MapChart-2.32.htm

Applications of NGS Data 197

	 b4705  Practical Bioinformatics for Beginners“9x6”�

be equalvalent to the number of chromosome pairs in a species
(e.g. 23 pairs in human; 16 pairs in oil palm; 4 pairs in fruit fly), but
this is not always true due to uneven distribution of recombination
in the genome. The LG can split into fragments if low recombina-
tion frequencies occur in regions of the chromosome or if a long
stretch of markers show no polymorphism, potentially due to their
being identical by descent. In a study, a complete suppression of
recombination in the centromeric and pericentromeric regions of

Figure 5.  Screen capture of linkage mapping and ordering for LG1. Marker
name; linkage position (in cM) for each marker; Parent 1 and Parent 2 — parental
genotypes.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

198 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

Figure 6.  Illustration of a sample linkage map in R graphics.

Figure 7.  (a) Data input to MapChart (2.32); (b) Linkage map visualization for LG1.

(a) (b)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 199

	 b4705  Practical Bioinformatics for Beginners“9x6”�

papaya genome was identified.15 In the same study, the long chro-
mosome arm also showed a 60% higher recombination rate than
the short arm.17 Thus, if you have identified more LGs than the
number of chromosome pairs of the species, this may be simply a
reflection of recombination patterns or lack of polymorphism.
Many linkage mapping programs, such as OneMap allow the users
to adjust the LOD threshold. By increasing the threshold, the LG
will tend to be split into smaller groups. Thus, the user is advised
to start at a stringent LOD threshold which may lead to more
groups than chromosome pairs, and subsequently try re-grouping
at reduced stringency.18 In other words, the determination of the
number of LGs is not a straightforward task.

Figure 8.  A genic SNP-based high density linkage map of a Deli dura x AVROS
pisifera family. A total of 1,605 SNPs were assigned into 16 LGs with LOD thresh-
old=4.0 and contributed to an average marker-marker interval of 0.8 cM.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

200 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

From Linkage Map to Physical Map
In the NGS era, assembly of a full genome is one of the central
problems in genome informatics. A complete genome should ide-
ally be in the form of chromosomes, as this will provide full infor-
mation on the species of interest. However, most of the genome
assemblies are still in the scaffold stage. This is mostly due to the
complex nature of a genome, particularly in repetitive regions, cen-
tromeres and telomeres. Hence, raw reads which are essentially
the fragments of the genome, often provide insufficient informa-
tion for a full chromosome assembly. Some of the potential solu-
tions include long read sequencing (e.g. PacBio sequencing) and
optical mapping/sequencing. Another option is deploying combi-
natorial method of paired-end sequencing and DNA mapping to
close gaps. Here, we illustrate the application of linkage map to
anchor scaffolds as an effort to assemble the genome to give a
physical map. The same linkage map with 25 SNP markers is used
in this analysis according to a simple script as follows:

$ scaff2chr <LG cM input> <scaffolds> <cM to
kb rate> <output>

<LG cM input>: The LG file, NGS_input_1_format.txt consists of
linkage position (cM unit) of each marker, scafforld ID, physical position
(bp) and scaffold length (bp) according to the format below (Figure 9).

<scaffolds>: A FASTA file, random_seq.fa contains scaffolds
assembled using any type of de novo assembler, such as SOAPdenovo
and Velvet.

<cM to kb rate>: The estimation is based on a simple regression
graph of physical distance between markers within scaffold (bp)
against linkage distance between markers (cM).

<output>: The output file is stored in FASTA format.

The regression graph in Figure 10 only consists of 16 points
(marker pairs for each point). The remaining pairs are omitted from
the analysis because these markers do not reside on the same sca-
forld. The physical distance thus, cannot be measured. In this case,
the recombination rate is ~200 kb/cM. The value will be referred

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 201

	 b4705  Practical Bioinformatics for Beginners“9x6”�

to estimate the gap interval between scaffolds, which is important
in gap closing.

The example command is executed as:

$ scaff2chr NGS_input_1_format random_seq.fa
200000>built.fa

The 25-linked SNP markers which initially located on 10 scaf-
folds, are successfully oriented and anchored as one pseudomole-
cule/chromosome sequence. The process is visualized in Figure 11
for a better understanding.

Figure 9.  Sample input for scaf2chr.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

202 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

Figure 10.  A regression graph of physical distance between markers against
linkage distance between markers.

Figure 11.  Scaffold anchoring based on linkage map (LG1). The ‘Linkage Map’
here is referred to as pseudomolecule/chromosome after the scaffold
rearrangement.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Applications of NGS Data 203

In some cases, the linkage position of the marker is family
specific because of recombination difference across families. To
improve mapping accuracy, a concensus linkage map is usually
generated by merging several maps, as reported in stickleback
(Gasterosteus aculeatus)19 and chicken.20 Scaffold misalignment
(especially the long ones) and recombination hotspots can be
detected by comparing linkage and physical map positions. An
example of such phenomena is given in Figure 12. Two ends of
the chromosome 1 (telomere) have a higher recombination rate
compared to the plateau around the middle (centromere). The
good correlation between the genetic and physical map positions
indicates a good quality of genome assembly, except that scaf-
folds reside within 70–80 Kb due to scaffold misarrangment. The
same method has been used in many species, including human,21

stickleback,19 and cotton22 to improve their reference genome.
Alternatively, genome assembly can be improved further using

ALLMAPS23 by integrating more than one linkage map. Multiple
linkage maps enhance the confidence level of marker ordering
and complement each other to expand the mapping coverage
on a physical genome. The approach has been reported in oil
palm assembly using three linkage maps to successfully assign

Figure 12:  An example plot of genetic vs. physical map position from
 chromosome 1.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

204 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

thousands of previously unplaced scaffolds into the reference
genome24. Similar to Figure 12, high correlations between linkage
and physical positions per chromosome were observed in this
study, clearly distinguishing both telomere regions from centro-
meric region for each chromosome.

Genome-wide Association Studies (GWAS)
So far, we have discussed classical linkage mapping. The integration
of linkage map and physical map can actually further improve the
genome assembly quality. With a good reference map, we can move
on to locate QTLs for phenotypes of interest on the genome through
GWAS, which we believe, is one the most useful applications of a
genome. As mentioned earlier, GWAS confers a much higher map-
ping resolution compared to classical linkage mapping. Here, we
introduce PLINK 1.90 beta for the association analysis.

PLINK 1.90 Beta

PLINK25 is an open-source whole genome association analysis tool-
set, designed for a range of basic, large-scale analyses, in a computa-
tionally efficient approach. Below is a simple tutorial for the
program.

Installation

Download the program using the following command and unzip
the file in a folder of your choice. In our example, we will be run-
ning the analysis in a folder called GWAS. Please take note that the
input files should also be in the same folder.

$ mkdir GWAS; cd GWAS
$ wget https://s3.amazonaws.com/plink1-assets/
plink_linux_x86_64_20210606.zip --no-check-
certificate

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://s3.amazonaws.com/plink1-assets/plink_linux_x86_64_20210606.zip
https://s3.amazonaws.com/plink1-assets/plink_linux_x86_64_20210606.zip

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Applications of NGS Data 205

$ unzip plink_linux_x86_64_20210606.zip
To run the plink program, just type the command ‘./plink’ in
the same directory

Input files and format

The program requires two main input files i.e. PED and MAP. The
PED file format consists of 6 mandatory columns as header while
column 7 denotes the genotypes for each individuals for each
markers:

Family ID
Individual ID
Paternal ID
Maternal ID
Sex (1=male; 2=female; other=unknown)
Phenotype (-9 is missing phenotype or in separate file)

The MAP file describes the information for each assayed
marker and the file consists of 4 columns:

Chromosome
Marker identifier
Genetic distance (morgans)
Base-pair position (bp units)

Next would be the optional phenotype file for either quantita-
tive or binary with the format of first two columns giving the family
ID and individuals ID (just like the first two columns of PED file); the
rest of the column is phenotypic data. The binary phenotype
consists of two distinct traits (affected/unaffected or present/
absence), whereas the quantitative phenotype is a measureable
trait that depends on the accumulation of multiple genes and the
environment.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

206 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

Download datasets

Datasets can be downloaded at
https://github.com/PU-SDS/ngs-book-dataset/tree/master/chapter10

They comprise bi.phe, qt.phe, test_data.map and test_data.ped
files.

Note: Make sure all files are stored at the same directory.

The example data consists of 311 samples with known pedi-
gree and ambigous gender were genotyped using 25,018 SNP
markers. The assayed samples are diploid with 2n = 2x = 5 i.e. five
homologous chromosome pairs in the genome. The same samples
can have more than one phenotype or a combination of binary
and quantitative phenotypes. In such cases, phenotypes need to
be stored separately as binary data (bi.phe) and quantitative data
(qt.phe). Both types of phenotypic data are provided in this sec-
tion. The user is advised to convert the PED (together with MAP)
to a binary file format which is more compact, so that the subse-
quent analysis can be expedited. To make the binary file, use the
 following command:

$./plink –-file test_data –-make-bed –-out test_
data

Note: An output log file with data summary is generated.

This step will produce three files with similar prefixes, including
(i) test_data.bim which consists of marker information, (ii) test_
data.fam which denotes pedigree information for each individual,
and (iii) test_data.bed which is the compressed binary file of
genotypes.

Association analysis

The PLINK program is able to analyze binary and quantitative
phenotypes. The simplest form of association analysis is a single
marker test. To aid understanding of involved tests, we will go
through two examples, one with binary phenotypes and another
with quantitative phenotypes. For binary phenotypes, it is a

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 207

	 b4705  Practical Bioinformatics for Beginners“9x6”�

chi-square test between case (affected) and control (unaffected)
populations. In Figure 13a, a simple chi-square test with 1 degree
of freedom (d.f.) was done to compare Allelic counts of SNP1
between a Diabetes mellitus (DM)-infected population and a
control population. Usually, individuals in the case population
and the control population are coded as ‘1’ and ‘0’, respectively
in bi.phe file (Note: the binary code can also be other numbers,
such as ‘1’ and ‘2’). The result indicates that those individuals
with G allele of SNP1 is significantly associated to DM (p-value =
1.8 × 10–4). As for quantitative phenotypes, we adopt linear
regression analysis (e.g. ANOVA) to measure whether there is
any significant difference among samples. An example is given in
Figure 13b. The SNP2 is significantly associated to height pheno-
type (p-value = 1.0 × 10–17) and those individuals who carry G
allele of SNP2 are averagely taller. The same analysis is eventually
applied on every marker throughout the genome to perform
GWAS.

Figure 13.  (a) A simple chi-square test (1 d.f.) on allele counts of SNP1 in
Diabetes mellitus (DM)-infected population (1) and control population (0)
with p-value = 1.8 × 10–4; (b) Boxplots of height distribution (cm) grouped
according to A allele and G allele of SNP2 with a linear regression, ANOVA
p-value = 1.0 × 10–17.

(a)

(b)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

208 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

Take note that default association analysis is based on allelic
model (i.e. 2 alleles per SNP with d.f. = 1). However, the d.f. can be
more than 1 when genotypic model (co-dominant model with
three genotypes per SNP) or multiallelic model is used. The alter-
native genetic models will be discussed later.

Firstly, a basic association test for the binary phenotype can
be done as:

$./plink --bfile test_data --assoc --out basic_
test --pheno bi.phe --allow-no-sex

Flag:

--bfile: as the input file prefix
--assoc: to perform the association test
--pheno: as the phenotype input file (an example data is provided)
--out: as the output file prefix

Note: ‘--allow-no-sex’ is added to disable the automatic setting of
the phenotype to missing if the individual has an ambiguous sex code.

This will generates an output file, ‘basic_test.assoc’ with the
column headings as shown below:

CHR Chromosome
SNP SNP ID
BP Physical position (base-pair)
A1 Minor allele name (based on whole sample)
F_A Frequency of this allele in cases
F_U Frequency of this allele in controls
A2 Major allele name
CHISQ Basic allelic test chi-square (1df)
P Asymptotic p-value for this test

OR Estimated odds ratio (for A1, i.e. A2 is reference)

For quantitative traits, use the following command:

$./plink --bfile test_data --assoc --out basic_
qt --pheno qt.phe --allow-no-sex

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 209

	 b4705  Practical Bioinformatics for Beginners“9x6”�

This will generate an output file, ‘basic_qt.qassoc’ with column
headings as shown below:

CHR Chromosome number
SNP SNP identifier
BP Physical position (base-pair)
NMISS Number of non-missing genotypes
BETA Regression coefficient
SE Standard error
R2 Regression r-squared
T Wald test (based on t-distribtion)
P Wald test asymptotic p-value

Only the association output for the binary phenotype is further
used for subsequent analyses and interpretations. The GWAS is
known to be susceptible to confounding factors, particularly if
population structure and cryptic relatedness exist in assayed sam-
ples (or discovery population).26 These confounding factors here
produce inflated false positives, which relate to the distribution of
genotypes between sub-structures instead of accounting for the
phenotypic variance. The PLINK program confers various correction
models (with different stringencies) to address the confounding
 factors. To perform these, we can rerun the association analysis,
adding the ‘--adjust’ flag as shown below.

$./plink --bfile test_data --assoc --out basic_
test --pheno bi.phe --adjust --allow-no-sex

Flag:

--adjust: to generate multiple testing corrected p-value

As mentioned, the ‘--adjust’ function includes various correc-
tion models. This will generate an output file, ‘basic_test.assoc.
adjusted’ with column headings as shown in Figure 14.

CHR Chromosome
SNP SNP identifier

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

210 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

UNADJ Unadjusted p-value
GC Genomic control27 adjusted p-value
BONF Bonferroni adjusted p-value
HOLM Holm step-down adjusted significance value
SIDAK_SS Sidak single-step adjusted significance value
SIDAK_SD Sidak step-down adjusted significance value
FDR_BH Benjamini & Hochberg (1995) step-up FDR

control
FDR_BY Benjamini & Yekutieli (2001) step-up FDR control

The genomic inflation factor estimated lambda (as GIF) is defined
as the ratio of the empirically observed median chi-squared distribu-
tion of the test statistic (p-value of SNP markers) to the expected
median, so the extent of the bulk inflation and excess false positive
signals can be quantified. In an output log file (Figure 15), the GIF
without correction is 2.87399, indicating an inflated positive result
due to population structure in the dataset. The optimal GIF should
be close to 1.0 under the null hypothesis. GIF = 1.0 indicates that the
observed p-value distribution equals to the expected distribution.
This, however, explains no significant association signals detected.
Hence, a good GIF should be more than 1.0, but lower than 1.1, if
possible.

Take note that the GIF after GC is not given in the log file,
but we can estimate the GIF based on the p-values using an R com-
mand as below. To run this code, first initiate R by typing “R” in the
command prompt.

Figure 14.  Association analysis with an adjusted p-value using different correc-
tion models.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 211

	 b4705  Practical Bioinformatics for Beginners“9x6”�

calculates lambda by the median method for GC model
>S <- read.table(“basic_test.assoc.adjusted”,header=T)
>data<-S[,”GC”] #p-value column
>data<- qchisq(data, 1, lower.tail = FALSE)
>median(data, na.rm = TRUE)/qchisq(0.5, 1)
1.002335

The same script can be repeated with p-values of each correc-
tion model (BONF, FDR_BH, HOLM etc.) to estimate their GIF
values. In this case, we have selected GC as the correction
method. By using this method, the population stratification is
successfully addressed in the association result when GIF declines
to 1.002335.

All analyses above were done using the basic allelic model,
which compares allelic frequencies between cases and controls.
The program is also able to perform association analyses other
than the basic allelic test. These options can be accessed by using
‘--model’ function, including:

Figure 15.  An output log file of association analysis with correction methods
(‘--adjust’).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

212 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

1. Cochran-Armitage trend test
2. Genotypic test (co-dominant)
3. Dominant gene action test
4. Recessive gene action test

Each of these models makes different assumptions about the
input data. Unlike the basic allelic test, the Cochran-Armitage trend
test does not assume Hardy-Weinberg equilibrium (HWE). The
individual, not the allele, is the unit of analysis. This feature is to
retain those markers with severe deviations from HWE. In many
cases, these deviations reflect population stratification in samples
or bad marker quality. However, this is not always true, because
some of these markers can be genuine due to selection pressure.
Another model uses genotypes instead of alleles. This is particu-
larly useful since association could be due to co-dominant (geno-
typic model) or dominant-recessive effects of the minor allele (the
minor alleles could be found in the output of either the ‘--assoc’ or
the ‘--freq’ functions). Presuming D is the minor allele, while d is
the major one. The allele assignment for the tests are stated as
follows:

Allelic: D versus d
Dominant: (DD, Dd) versus dd
Recessive:  DD versus (Dd, dd)
Genotypic:  DD versus Dd   versus dd

The command for this analysis is:

$./plink --bfile test_data --model --out mod
--allow-no-sex --pheno bi.phe --snp snp88763

Flag:

--snp: SNP selected for association analysis, ignore if the plan is to
run for all markers
An example output with column headings is given in Figure 16.

CHR Chromosome
SNP	 SNP	identifier

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 213

	 b4705  Practical Bioinformatics for Beginners“9x6”�

A1 & A2 Allele 1 & Allele 2
TEST	 	Type	of	test	(using	different	genetic	model)
ALLELIC	 Basic	allelic	test
TREND	 Cochran–Armitage	trend	test
GENO	 Genotypic	test
DOM Dominant model
REC	 Recessive	model
AFF	 	Allelic/Genotypic	frequency	of	affected	(Case)
UNAFF	 	Allelic/Genotypic	frequency	of	unaffected	

(Control)
CHISQ	 Chi-Sq	test	statistic
DF Degrees of freedom
P	 P-value	

In this case, snp88763 marker with p = 0.045 indicates a signifi-
cant result under the genotypic test (at threshold of p>0.05), but
not in other genetic models.

As you can see, the PLINK program provides all GWAS outputs
in text format only. Indeed, we can visualize the output as
Manhattan plots using an R package ‘qqman’,28 which is available
online at http://cran.r-project.org/web/packages/qqman/. Firstly,
initiate R as usual:

>install.packages(“qqman”)
>library(qqman)
#the same uncorrected association output
>results<-read.table(“basic_test.assoc”,header=T)
>results <- results[,c(“SNP”, “CHR”, “BP”, “P”)]

Figure 16.  An example output of an association analysis using different genetic
models.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

214 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

#must define the headers accordingly
> results<-na.omit(results)
>manhattan(results)

The uncorrected GWAS output based on the ‘basic_test.assoc’
generated in the PLINK program is shown as a Manhattan plot
(Figure 17), which is the common way to present output in many
GWAS publications. Genomic positions are indicated on the X-axis,
whereas the negative logarithm of the association p-value (-log10
(p)) for each SNP marker is displayed on the Y-axis. Highly associ-
ated markers have the smallest p-value, but their -log10 (p) will be
the greatest. The uncorrected GWAS output with GIF = 2.87399
showed inflated false positive in samples, which is also reflected in
Figure 17. Too many association signals are detected based on

Figure 17.  A Manhattan plot of uncorrected GWAS. Default suggestive line
(blue) = -log10 (1e-5); default genome-wide line (red) = -log10 (1e-8).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 215

	 b4705  Practical Bioinformatics for Beginners“9x6”�

default thresholds as suggestive line (blue; -log10 (1e-5)) and
genome-wide line (red; -log10 (5e-8)).

Now, we are going to plot another one for the same GWAS
analysis, but corrected using the GC model. In the PLINK program,
the ‘basic_test.assoc’ file will be automatically overwritten as per
Figure 14 once the ‘--adjust’ command takes place. Take note that
the corrected output does not consists of SNP position in 1.90 beta
version. Hence, users need to include another column of SNP posi-
tions manually. We will continue from the previous R step for the
uncorrected GWAS. The R commands are as follows:

>results_GC<-read.table(“basic_test.assoc.adjusted”,
header=T)
>results_GC <-results_GC[match(as.matrix(results[“SNP”]),
as.matrix(results_GC[“SNP”])),]
>results2 <- cbind(results[,c(“SNP”, “CHR”, “BP”)],results_GC
[“GC”])
>colnames(results2)<- c(“SNP”, “CHR”, “BP”, “P”)

#to color the chromosomes and set cutoff values
#to define suggestiveline and genomewideline as GC-adjusted
threshold and Bonferroni-adjusted threshold
>manhattan(results2, suggestiveline = -log10(8.885e-4), genom-
ewideline = -log10(1.99e-06),col = c(“darkgreen”,“brown”))

#to quit R
>q()

After the GC correction, the number of phenotype-associated
SNPs is reduced significantly as shown in a new Manhattan plot
(Figure 18). Proper p-value thresholds should be employed in order
to identify the genuine phenotype-associated SNP markers and
more importantly genomic regions associated with the trait as a
whole: ‘QTLs’. In this case, we identify the major QTL region for our
binary phenotype on chromosome 3 based on a GC-adjusted
threshold (blue line). A more stringent threshold (red line) is based
on Bonferroni adjustment, but no SNP marker reaches significance.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

216 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

Note: The adjusted thresholds are determined in ‘basic_test.
assoc.adjusted’ according to unadjusted p-value (UNADJ) at GC and
Bonferroni (BONF)-adjusted p-value = 0.05, respectively.

The significant SNPs are those with p-value< 8.885e-04 can
then be extracted using basic R sub-setting skills:

>significant.snps.selc <- results2$P < 8.885e-4
>results2.sig.snp <- results2[significant.snps.selc,]
>results2.sig.snp.sorted<-results2.sig.snp[order(result2.sig.
snp$P),]
>results2.sig.snp.sorted

The output is sorted based on p-values as shown in Table 2.

Figure 18.  A colored Manhattan plot of genomic control (GC)-corrected GWAS.
Bonferroni (Bonf)-adjusted threshold at the genome-wide level (red); GC-adjusted
threshold (blue).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Applications of NGS Data 217

Table 2.  Significant phenotype-associated SNPs.

CHR SNP BP P

3 snp44196 9991879 1.74E-05
3 snp79910 16196349 1.43E-04
3 snp51552 13929304 2.49E-04
3 snp79911 16198963 4.65E-04
3 snp61021 36874 4.73E-04
3 snp62103 8320415 5.14E-04
3 snp46393 13966522 5.54E-04
3 snp46394 13967604 5.54E-04
3 snp69961 16411377 7.49E-04
3 snp49079 49234 7.62E-04

CHR – Chromosome; BP – Genomic position (bp);
P – Genomic control-adjusted p-value

By locating transcriptome sequences and GWAS profiles on
the genome, trait-associated genes associated genes can be
identified to understand the possible underlying biological cau-
sality, such as alternative splicing events or synonymous substi-
tutions in the genome. In Figure 19, this is how we identify the
potential genes (Gene A) for our binary trait based on the GWAS
results and transcriptome locations on the genome. The most
significant QTL region (yellow highlighted) is expanded in the
figure and snp44196 (PGC =1.74E-05) is located in the second
exon of Gene A on chromosome 3. The effect of this change on
Gene A, however, will need to be functionally validated. In this
example, we assume that we know the genomic position of
genes, which is usually the case for model species (humans,
mouse, Arabidopsis etc.). For other species, how do we know
whether significant SNPs occur in genic region?

Firstly, we need to have a reliable annotation of gene models
and this can be done by mapping of transcriptome to the genome.
This means users need to obtain transcriptome data of the species
in question. Otherwise, users may try to predict gene models using

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

218 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

a variety of methods such as those based on homology searching.
Gene annotation is a subject of its own and it will not be further
discussed here. For transcriptome mapping, we recommend the
use of BLAT.29 The program is based on a pairwise sequence align-
ment algorithm, much like BLAST and it was written by Jim Kent in
the early 2000s. Unlike BLAST, BLAT requires very little time for
whole genome scan and hence it has become an indispensable
tool for genome analysis/annotation. After construction of gene
models, it is now possible to find out which genes have significant
phenotype-associated SNPs. On top of that, the information on
gene structure potentially allows researchers to further predict
the SNP effect on the function of a gene.

Summary
NGS data is massive and informative for various applications in
genetic studies. By sequencing a group of individuals, researchers
can now easily have access to genomic polymorphisms and then
translate them to powerful DNA markers, such as SNPs and SSRs.
Generating markers representative of whole genome coverage is

Figure 19.  The potential gene (Gene A) identified in GWAS for the binary
trait. The yellow-highlighted SNPs are in the association peak detected in
GWAS. The snp44196 marker (a dark green diamond) is located at the second
exon of Gene A.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

Applications of NGS Data 219

	 b4705  Practical Bioinformatics for Beginners“9x6”�

no longer a bottleneck in linkage mapping. High-density linkage
maps no doubt contribute to better QTL mapping resolution,
although large population size is the most important factor for
localization of QTL effects in a controlled population. More impor-
tantly, the integration of linkage maps also further allow the
improvement of the genome assembly quality to construct physical
reference maps, making GWAS more comprehensive. Researchers
now have an opportunity to zoom in QTLs/associations and identify
potential genes underlying them using transcriptome evidence.
More functional studies are required, however, to confirm their
causality. The pipeline has proven to be extremely useful in
humans, especially in pharmacogenetics. Beneficial outcomes in
animal and plant breeding programs are also foreseeable.

References
 1. Mukherjee, S. et al. Genomes OnLine Database (GOLD) v.8: overview and

updates. Nucleic Acids Research 49, D723–D733 (2020).
 2. Fiers, W. et al. Complete nucleotide sequence of bacteriophage MS2 RNA:

primary and secondary structure of the replicase gene. Nature 260, 500–
507 (1976).

 3. Oliveira, E. J., Pádua, J. G., Zucchi, M. I., Vencovsky, R. & Vieira, M. L. C.
Origin, evolution and genome distribution of microsatellites. Genetics and
Molecular Biology 29, 294–307 (2006).

 4. Rafalski, A. Applications of single nucleotide polymorphism in crop genetics.
Current Opinion in Plant Biology 5, 94–100 (2002).

 5. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease.
Science 322, 881–888 (2008).

 6. Baron, M. The search for complex disease genes: fault by linkage or fault by
association? Molecular Phychiatry 6, 143–149 (2001).

 7. Risch, N. & Merikangas, K. The future of genetic studies of complex human
diseases. Science 273, 1516–1517 (1996).

 8. Sturtevant, A. H. The linear arrangement of six sex-linked factors in
Drosophila, as shown by their mode of association. Journal of Experimental
Zoology 14, 43–59 (1913).

 9. Rostoks, N. et al. Genome-wide SNP discovery and linkage analysis in barley
based on genes responsive to abiotic stress. Molecular Genetics and
Genomics 274, 515–527 (2005).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

220 Bioinformatics: A Practical Handbook

� “9x6”b4705  Practical Bioinformatics for Beginners�

10. Singh, Rajinder, et al. “Mapping quantitative trait loci (QTLs) for fatty acid
composition in an interspecific cross of oil palm.” BMC plant biology 9.1
(2009): 1–19.

11. Teh, C. K., Ong, A. L., Mayes, S., Massawe, F. & Appleton, D. R. Major qtls for
trunk height and correlated agronomic traits provide insights into multiple
trait integration in oil palm breeding. Genes (Basel). (2020) doi:10.3390/
genes11070826.

12. Margarido, G. R. A., Souza, A. P. & Garcia, A. A. F. OneMap: software for
genetic mapping in outcrossing species. Hereditas 144, 78–79 (2007).

13. Lander, E. S. et al. MAPMAKER: an interactive computer package for con-
structing primary genetic linkage maps for experimental and natural popula-
tions. Genomics 1, 174–181 (1987).

14. Voorrips, R. E., MapChart: Software for the graphical presentation of link-
age maps and QTLs. The Journal of Heredity 93(1), 77–78 (2002).

15. Tangaya, P. et al. A genic SNP-based high density genetic map of a Sime
Darby Calix600 oil palm cross. In Plant Genomic Congress Asia, Kuala
Lumpur (2014).

16. Ong, A. L. et al. Linkage-based genome assembly improvement of oil palm
(Elaeis guineensis). Scientific Reports (2019) doi:10.1038/s41598-019-42989-y.

17. Wai, C. M., Moore, P. H., Paull, R. E., Ming, R. & Yu, Q. An integrated cytoge-
netic and physical map reveals unevenly distributed recombination spots along
the papaya sex chromosomes. Chromosome Research 20, 753–767 (2012).

18. Van Ooijen, J. W. JoinMap 4, Software for the calculation of genetic linkage
maps in experimental populations. Kyazma B.V., Wageningen, Netherlands
(2006).

19. Glazer, A. M., Killingbeck, E. E., Mitros, T., Rokhsar, D. S. & Miller, C. T. Genome
assembly improvement and mapping convergently evolved skeletal traits in
sticklebacks with genotyping-by-sequencing. G3: Genes|Genomes|Genetics 5,
1463–1472 (2015).

20. Groenen, M. A. et al. A consensus linkage map of the chicken genome.
Genome Research 10, 137–147 (2000).

21. Matise, T. C. et al. A second-generation combined linkage — physical map of
the human genome. Genome Research 17, 1783–1786 (2007).

22. Wang, S. et al. Sequence-based ultra-dense genetic and physical maps
reveal structural variations of allopolyploid cotton genomes. Genome
Biology 16, 1–18 (2015).

23. Tang, H. et al. ALLMAPS: Robust scaffold ordering based on multiple maps.
Genome Biology (2015) doi:10.1186/s13059-014-0573-1.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://10.1038/s41598-019-42989-y
http://10.1186/s13059-014-0573-1

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Applications of NGS Data 221

24. Ong, A. L. et al. An improved oil palm genome assembly as a valuable
resource for crop improvement and comparative genomics in the Arecoideae
subfamily. Plants (2020) doi:10.3390/plants9111476.

25. Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M. & Lee,
J. J. Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience, 4 (2015).

26. Astle, W. & Balding, D. J. Population structure and cryptic relatedness in
genetic association studies. Statististical Science 24, 451–471 (2009).

27. Devlin, B. & Roeder, K. Genomic Control for Association Studies. Biometrics
55, 997–1004 (1999).

28. Turner, S. D. qqman: An R package for visualizing GWAS results using Q–Q
and manhattan plots. BiorXiv, DOI: 10.1101/005165.

29. Kent, W. J. BLAT — The BLAST-Like Alignment Tool. Genome Research 12,
656–664 (2002).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

http://10.3390/plants9111476

TTThhhiiisss pppaaagggeee iiinnnttteeennntttiiiooonnnaaallllllyyy llleeefffttt bbblllaaannnkkk

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

223

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Chapter 11

Predicting Human Enhancers with
Machine Learning
Callum MacPhillamy and Wai Yee Low

The Davies Research Centre, School of Animal and Veterinary
Sciences, University of Adelaide, Roseworthy, SA 5371, Australia

Introduction
One of the most powerful methods available for bioinformaticians
to use is machine learning (ML), which can be used to predict vari-
ous biological features. While ML is a powerful tool, there is usually
a steep learning curve and in-depth demonstration of realistic bio-
logical applications with this tool is hard to find. The aim of this
chapter is to show how to predict human enhancers using a ML
method and a logistic regression model to give the users a sense of
how to apply them and interpret the results at the end of the prac-
tical. As this is meant for beginners with no experience in ML, the
aim is not to use heavy computational resource and we down-
sampled the number of enhancers used in training models. For
users with adequate computation resource, they can run the code
on the full human genome dataset.

Enhancers are short (~50–1500 bp) non-coding regulatory
sequences that increase the likelihood a gene will be transcribed.1

They have important implications in a number of human diseases like
limb deformities,2 diabetes3 and various cancers4–6 and so being able
to accurately identify them within the genome has important implica-
tions for how we understand the genetic controls for these diseases.

In this tutorial, we will be using a logistic regression and simple
convolutional neural network (CNN) to demonstrate how one can

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

224 Practical Bioinformatics for Beginners

represent DNA sequences for ML and the types of accuracy that
can be achieved with increasingly non-linear models and some of
the trade-offs that can occur when using more flexible models.

This tutorial is broken into three parts: (1) setting up the soft-
ware environment; (2) wrangling and transforming our data; and
(3) training and evaluating our models. Without further ado, let us
get into it.

Setting up the Software Environment

Our first step is to set up our software environment, this ensures
that any software that we already have installed does not get
affected by any new software we install and vice versa. It also
makes it easier to keep track of software versions. Please note, this
code was written and tested using MacOS v12.2.1 and Linux
Ubuntu 20.04.3 LTS and as a result many of the commands will not
work on Windows.

$ cd # This takes us to our home directory
$ mkdir enhancer_prediction # Creates a new directory
$ cd enhancer_prediction # Enters our new directory

We then need to install our required software; for this, we will
be using Anaconda. If you do not already have Anaconda installed,
head over to https://www.anaconda.com/products/individual and
follow the installation instructions.

Once you have installed Anaconda, deactivate the base envi-
ronment if it is currently active. This is so we can create a new
environment that we install our software into rather than into the
base environment.

(base) $ # Appears when the base conda env is active
(base) $ conda deactivate # deactivates the base env

$ conda create -n <your_env_name> python=3.8 bedtools biopython
numpy pandas sklearn tqdm ucsc-fasize jupyter matplotlib # creates
a new env and installs the packages listed after python=3.8

$ conda activate <your_env_name> # activates your new env

$ pip install hilbertcurve # installs a new package from pip into
your env

$ pip install tensorflow==2.6

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.anaconda.com/products/individual

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  225

Note that if you encountered problems with using conda to
install certain packages, you can try to, (i) install them individually
one after another, (ii) use pip to install it, e.g. at the time of this
writing, conda with python 3.8 will not install tensorflow, however,
pip will install tensorflow 2.6 to go with python 3.8, and (iii) post
the installation issues to a search engine such as DuckDuckGo to
check for potential solutions.

With our software environment and directories set up we can
now start downloading our data. We will be doing everything from
within the directory we made at the start of this chapter so to
ensure we are still where we think we are. Let us check our current
directory.

(<your_env_name>) $ pwd
/home/enhancer_prediction

Now we can download the data needed to train and test our
enhancer prediction model. Please note, all of this is performed
with our conda environment active, I have just omitted it from the
code snippets for ease of reading. The enhancers were down-
loaded from https://enhancer.lbl.gov/.

$ wget https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/latest/
hg19.fa.gz

$ wget http://ftp.ensembl.org/pub/grch37/release-105/gtf/homo_sapiens/
Homo_sapiens.GRCh37.87.chr.gtf.gz

$ wget https://www.encodeproject.org/files/ENCFF001TDO/@@download/
ENCFF001TDO.bed.gz

$ gunzip *.gz

$ mv ENCFF001TDO.bed hg19-blacklist.bed

$ wget https://raw.githubusercontent.com/DaviesCentreInformatics/
Book_CHAPTER/main/hg19.VISTA.enhancers.fa?token=GHSAT0AAAAAABQIDFCB3P
WBF4DY7MTD6MAYYPPHHWA

$ mv hg19.VISTA.ehancers.fa?token=GHSAT0AAAAAABQIDFCB3PWBF4DY7MTD6MAYY
PPHHWA hg19.VISTA.enhancers.fa

From here on, a lot of our coding will be done using Python and
Jupyter Notebooks (Figure 1), this code will have while the com-
mand line code will continue to use the style used in this chapter
so far.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://enhancer.lbl.gov/
https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/latest/hg19.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/latest/hg19.fa.gz
http://ftp.ensembl.org/pub/grch37/release-105/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.chr.gtf.gz
http://ftp.ensembl.org/pub/grch37/release-105/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.chr.gtf.gz
https://www.encodeproject.org/files/ENCFF001TDO/@@download/
ENCFF001TDO.bed.gz
https://www.encodeproject.org/files/ENCFF001TDO/@@download/
ENCFF001TDO.bed.gz
https://raw.githubusercontent.com/DaviesCentreInformatics/Book_CHAPTER/main/hg19.VISTA.enhancers.fa?token=GHSAT0AAAAAABQIDFCB3PWBF4DY7MTD6MAYYPPHHWA
https://raw.githubusercontent.com/DaviesCentreInformatics/Book_CHAPTER/main/hg19.VISTA.enhancers.fa?token=GHSAT0AAAAAABQIDFCB3PWBF4DY7MTD6MAYYPPHHWA
https://raw.githubusercontent.com/DaviesCentreInformatics/Book_CHAPTER/main/hg19.VISTA.enhancers.fa?token=GHSAT0AAAAAABQIDFCB3PWBF4DY7MTD6MAYYPPHHWA

� “9x6”b4705  Practical Bioinformatics for Beginners�

226 Practical Bioinformatics for Beginners

$ jupyter notebook # This will open the browser

You should see the contents of the `enhancer_prediction` directory.
Click new and create a new jupyter notebook

Transforming the Data

Inside the Jupyter notebook you created, click in the first cell, and
type the code below. Then press shift+enter or the “Run” button
while that cell is highlighted. This will run the contents of the cell
and import all the necessary libraries. Always ensure you run
every code cell.

Import required libraries
import numpy as np # excellent python package for numerical computations
import pandas as pd # Python package for manipulating dataframes like .csv’s. We can also
use it to handle .bed files
from Bio import SeqIO # Python package for handling biological data.
from Bio.SeqUtils import GC
import re # Python package for regular expressions
from tqdm import tqdm # Package that adds progress bars to iterators
import itertools
from sklearn.utils import shuffle # Allows you to shuffle two arrays in unison
import time
import random
import os
random.seed(12)
np.random.seed(12)

In a new cell below the one we just made, type the following.
Feel free to ignore the comments (lines starting with #) they’re just
there to help explain what each part of code is doing.

The VISTA enhancer set gets downloaded as a fasta file so we will have to do some
manipulating to get the genomic coordinates.

in_fa = ‘hg19.VISTA.enhancers.fa’ # path to the enhancer fasta file

beds = [] # empty list to append the coordinates to

print(‘Extracting bed regions’)

Figure 1.  Screenshot from the browser window of the Jupyter Notebook.
Select the “New” button to create a new Jupyter Notebook (.ipynb) file.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  227

for record in tqdm(SeqIO.parse(in_fa, ‘fasta’)):

 #print(record.name)
 rec = re.split(‘[|:-]’, record.name) # Splits the string where ever
a ‘|’, ‘:’ and/or ‘-’ occur.
 #print(rec)

 beds.append((rec[1:])) # Adds the coordinates to a list.

print(‘Finished extracting bed regions’)

print(beds[0]) # This should print something like

[‘chr16’, ‘86430087’, ‘86430726’]

count = 0

with open(‘hg19.VISTA.enhancers.chr1.bed’, ‘w’) as bed:

 for reg in tqdm(beds):

 # Only take records that belong to chr1.

 if re.match(‘^chr1$’, reg[0]):

 bed.write(f’{reg[0]}\t{reg[1]}\t{reg[2]}\n’)

 count += 1

print(f’Finished writing chr1 enhancers. Number of enhancers written = {count}.’)

You should have the coordinates of the 85 enhancers in BED
format written to the new file. This is because we used regular
expressions to take only records belonging to chromosome 1.

Next, we will look at the nucleotide composition of the enhanc-
ers. To do this we will first generate a fasta file from the bed file we
just created and then we will write a python function to compute
some basic statistics of the sequences in the fasta file. In the com-
mand line, type:

$ bedtools getfasta -fi hg19.fa -bed
hg19.VISTA.enhancers.chr1.bed -fo hg19.VISTA.enhancers.chr1.fa
If you don’t already have an index file, bedtools will create
an index of the fasta file. This only has to happen once.

Once this has finished go back to the Jupyter notebook and in
a new cell type:

def fa_stats(in_fa):
 “””

 Function to compute some basic descriptive stats from a
multifasta file.
 :param in_fa: Path to multifasta file
 :return: A dictionary of stats
 “””

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

228 Practical Bioinformatics for Beginners

This will then print the chr1 enhancer statistics:

 Lengths GC content Percentage of Ns

count 85.000000 85.000000 85.0
mean 2109.164706 45.442165 0.0
std 1281.244669 7.084804 0.0
min 505.000000 31.382780 0.0
25% 1312.000000 39.721254 0.0
50% 1653.000000 44.746163 0.0
75% 2547.000000 51.033592 0.0
max 7787.000000 61.844569 0.0

As you can see the mean length of these 85 enhancer regions
is quite long, with the maximum length being 7,787 bp. As we are
using an input window size of 200 bp for our models, we will end
up with many more than 85 enhancers to train on, as we will see
next.

 # The main dictionary that will hold all the stats.
 stats = {}
 # The other dictionaries that store the specific stats for
length, gc and % Ns.
 lengths = {}
 gc = {}
 perc_Ns = {}
 # Iterates over the multifasta file. i = the current iteration
from the enumerate function.
 # record = the fasta record in the multifasta file.
 for i, record in tqdm(enumerate(SeqIO.parse(in_fa, ‘fasta’))):
 # Get the length of the current enhancer
 lengths[f”enhancer_{i}”] = len(str(record.seq))

 # Get the GC content of the current enhancer
 gc[f”enhancer_{i}”] = GC(record.seq)

 # Get the proportion of N’s in the current enhancer
 perc_Ns[f’enhancer_{i}’] = (str(record.seq).upper().

count(‘N’)
/ len(str(record.seq)) * 100)

 stats[“Lengths”] = lengths
 stats[“GC content”] = gc
 stats[‘Percentage of Ns’] = perc_Ns
 return stats

Compute stats on our enhancer file.
enhancers1 = fa_stats(‘./enhancer_prediction/hg19.VISTA.enhancers.
chr1.fa’)
Turn the dictionary into a dataframe
enh1_df = pd.DataFrame.from_dict(enhancers1)
Print descriptive statistics of the dataframe.
print(enh1_df.describe())
print()
Repeat for the original (complete) enhancer set.
enhancers = fa_stats(‘./enhancer_prediction/hg19.VISTA.enhancers.
fa’)
enh_df = pd.DataFrame.from_dict(enhancers)
print(enh_df.describe())

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  229

This function takes a bed file as input and examines each region
line by line.

· # A — If it finds the region is shorter than the desired window size
(default 1,000 bp), 200 bp in our case, it will find the midpoint of that
region and take 200 bp centred around that midpoint. Recall from
above that none of the chromosome 1 enhancers are shorter than
200 bp so it will go straight to # B.

· # B — if the region is longer than the desired window size (200 bp in
our case) then it will take a sliding window through this region, taking
a 200 bp window then moving 1 bp along and taking another 200 bp
window until the end of the current 200 bp window is equal to the
end of the current region.

We can now use this function to extract 200bp windows from
our 85 chromosome 1 enhancers. The first argument is our input

def bed_extract(in_bed, outfile, window=200, step=1, label=None,
 ignore_sex=False, append_chr=False):
 # Read in the bed file of our enhancers
 f5 = pd.read_csv(in_bed,
 sep=‘\t’,
 header=None,
 index_col=None)

 # Open a file within the `with` context to automatically close
the file once this code block finishes.
 with open(outfile,’w’) as bed:
 # Iterate of the dataframe above.
 for i in tqdm(f5.itertuples()):
 chrom, start, stop = i[1:4]

 # A
 if stop - start < window:
 midpoint = start + ((stop - start) //2)
 if append_chr:
 bed.write(f’chr{chrom}\t{midpoint - (window //
2)}\t{midpoint + (window // 2)}\t{label}\n’)
 else:
 bed.write(f’{chrom}\t{midpoint-(window//2)}\
t{midpoint+(window//2)}\t{label}\n’)

 # B
 elif stop - start >= window:
 for k in range(0, ((stop - start) + 1), step):
 if (start + k + window) <= stop:
 if append_chr:
 bed.write(f’chr{chrom}\t{start +
k}\t{start + k + window}\t{label}\n’)
 else:

 bed.write(f’{chrom}\t{start+k}\
t{start+k+window}\t{label}\n’)
 return f’Finished. Saved to {outfile}’

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

230 Practical Bioinformatics for Beginners

file, the second is our output file, window = 200 means it will
extract 200 bp windows, step=1 means it will take one step along
the region after each 200 bp window is extracted and label =
“enhancer” will put enhancer in the 4th column of the bed file.

 bed_extract(‘hg19.VISTA.enhancers.chr1.bed’,
 ‘hg19.VISTA.enhancers.chr1.200bp.bed’,
 window=200,
 step=1,
 label=‘enhancer’)

Next, we need to create the non-enhancer regions. Some
papers have just randomly generated DNA sequences but have
been critiqued negatively by reviewers as a result. We will use the
strategy that has been implemented in Min et al.7 and Hong et al.,8

which is to subtract all annotated regions from the genome and
use the remaining unannotated regions to generate non-enhancer
examples.

The first step here is to reformat the .gtf file so that it has the
same format as a .bed file. There are tools one can use like BEDOPS9

that will handle this or you can write your own function as we have
done below.

def gtf_annotation_extract(annotation_file, output_file, append_
chr=True, chroms=list()):
 print(f’Reading in annotation file {annotation_file}’)

 # Read in the gtf file.
 anno = pd.read_csv(annotation_file,
 sep=‘\t’,
 comment=‘#’,
 header=None,
 index_col=None)
 print(f’Writing reformatted annotations to {output_file}’)
 # Open the new file to write to.
 with open(output_file, ‘w’) as out:

 # Iterate of the annotation dataframe.
 for i in tqdm(anno.itertuples()):
 #print(i)
 chrom, start, stop, type = i[1], i[4], i[5], i[3]
 assert type != (None or ‘’), ‘Something\’s missing from
the type column’
 #print(chrom, start, stop, type)
 # If the gff file doesn’t have chr appended to the start
of chromosomes, this part will append it; if `append_chr=True`.
 if chrom not in chroms:
 continue
 if append_chr == True:
 out.write(f’chr{chrom}\t{start}\t{stop}\t{type}\n’)
 else:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  231

 out.write(f’{chrom}\t{start}\t{stop}\t{type}\n’)
 return f’Finished. Saved to {output_file}’

gtf_annotation_extract(‘Homo_sapiens.GRCh37.87.chr.gtf’,
‘Homo_sapiens.GRCh37.87.chr1.bed’,
 append_chr=True,
 chroms=[1])

This function takes in a .gtf file and outputs a .bed file. We have
included a parameter that appends “chr” to the start of the chro-
mosome number as UCSC will add “chr” to the chromosome but
Ensembl will not. This is important when it comes to combining the
.bed files and using them with BedTools.10 We’ve also included a
parameter that will only output features that belong to chromo-
somes in the list. When we run the function, it will only write chro-
mosome 1 features to the new file. This just makes the toy example
a bit quicker when it comes to sorting the .bed files.

The new file should look like this:

$ head Homo_sapiens.GRCh37.87.chr1.bed
chr1 11869 14412 gene
chr1 11869 14409 transcript
chr1 11869 12227 exon

Now we have this done, we need to find the inferred promoter
regions for each protein-coding gene. This strategy was imple-
mented by Hong et al.,8 where they define the promoter region as
a 2 kb region centred around the transcription start site (TSS) of
protein-coding genes.

For this next step, we will split it over two parts. First, type:

print(f’Reading in genome annotation file.’)
genes = pd.read_csv(‘Homo_sapiens.GRCh37.87.chr.gtf’,
 header=None,
 index_col=None,
 sep=‘\t’,
 comment=‘#’)

count = 0
protein_coding_idx = []
print(‘Finding protein-coding regions.’)
for i in tqdm(genes.itertuples()):
 if re.match(‘gene’, i[3]):
 #print(i)
 info = re.split(‘;’,i[9])
 if ‘protein_coding’ in info[-2]:
 protein_coding_idx.append(i[0])
 count += 1
 #break
print(f’Number of protein coding genes in the genome: {count}’)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

232 Practical Bioinformatics for Beginners

This is reading in the .gtf file and scanning the third column for
the word “gene”, if it gets a match, it then checks the ninth column,
which has a lot of information about the feature, for the text “pro-
tein_coding”. If it finds a match here it then adds the row number
to a list (protein_coding_idx) and adds one to the value of count.
We then print the number of protein-coding genes found which is
20,327.

Secondly, type:

protein_df = genes.iloc[protein_coding_idx, :]

protein_df.reset_index(drop=True,
 inplace=True)
print(‘Writing promoter regions to bed file.’)
with open(‘Homo_sapiens.GRCh37.87.protein-coding.chr1.promoter_regions.
bed’, ‘w’) as bed:
 for i in protein_df.itertuples():
 # If the chromosome isn’t chromosome 1, ignore it.
 if i[1] != 1:
 continue
 if re.match(‘[+]’, i[7]):
 bed.write(f’chr{i[1]}\t{i[4]-
1000}\t{i[4]+1000}\tpromoter_region\n’)
 elif re.match(‘[-]’, i[7]):
 assert i[7] == ‘-’, ‘Something went wrong’
 bed.write(f’chr{i[1]}\t{i[5]-
1000}\t{i[5]+1000}\tpromoter_region\n’)
print(‘Finished writing promoter regions to file.’)

Here, we create a new dataframe called protein_df which is
made up of all the rows that matched our criteria in the previous
cell, i.e. were protein-coding genes. We then open a new file to
write the promoter regions to. Next, we iterate over the protein_df
dataframe where we ignore features not belonging to chromo-
some 1. When we find a feature belonging to chromosome 1, we
check what strand the gene is on. We do this to infer the direction
of transcription. If the strand is “+” we assume the direction of
transcription is from left to right (→) and therefore the promoter
will be near the “start” coordinate in the bed file. If the strand is
“—” then we assume that the direction of transcription is from
right to left (←) and that the promoter will be near the “stop” coor-
dinate in the bed file. See (https://en.wikipedia.org/wiki/BED_
(file_format)) for more info about .bed file format.

We are getting close to the end of the data preparation steps I
promise. Once the promoter regions are done, we need to get the

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://en.wikipedia.org/wiki/BED_(file_format)
https://en.wikipedia.org/wiki/BED_(file_format)

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  233

blacklisted regions. These are regions that ENCODE has determined
need to be excluded from analysis as they are highly repetitive,
have low mapping rates or any of numerous reasons.11 Ordinarily,
you would use all the blacklisted regions as you would be using all
chromosomes, however as we are only using chromosome 1, we
will filter the .bed file so that we only have chromosome 1 black-
listed regions.

blacklist = pd.read_csv(‘hg19-blacklist.bed’,
 sep=‘\t’,
 header=None,
 index_col=None)
with open(‘hg19-blacklist.chr1.bed’, ‘w’) as bed:
 for blk in blacklist.itertuples():
 # It the region isn’t on chr1, ignore it.
 if blk[1] != ‘chr1’:
 continue
 bed.write(f’{blk[1]}\t{blk[2]}\t{blk[3]}\t{blk[4]}\n’)

Or if you prefer to use bash:

$ grep -w “^chr1” hg19-blacklist.bed | awk ‘{print $1”\t”$2”\
t”$3”\t”$4}’ > hg19-blacklist.chr1.bed

Now, we can merge all these .bed files into a single .bed file of
annotated regions.

Merge and sort all blacklisted regions into one bed file
$ cat hg19-blacklist.chr1.bed Homo_sapiens.GRCh37.87.chr1.bed hg19.
VISTA.enhancers.chr1.200bp.bed Homo_sapiens.GRCh37.87.protein-coding.
chr1.promoter_regions.bed | sort -k1,1 -k2,2n > hg19.annotated.
regions.chr1.bed

Find the complement of the annotated regions. These will be the
unannotated regions.
$ fasize -detailed hg19.fa | sort -k1,1 -k2,2n | bedtools complement
-L -i hg19.annotated.regions.chr1.bed -g - > hg19.unannotated.regions.
chr1.bed

What the second command is doing is first getting the lengths
of each chromosome in hg19.fa. It is then piping this into the sort
function where it will be sorted the same way as the annotated
regions. It is then using bedtools complement to find the comple-
ment to the annotated regions. The addition of the –L argument in
bedtools complement limits the output of bedtools complement to
be only the chromosomes found in the input –i. This way we will

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

234 Practical Bioinformatics for Beginners

only have the unannotated regions of chromosome 1. This helps
keep our files small for this worked example. Finally, we call this
new file hg19.unannotated.regions.chr1.bed.

Now we have a list of regions that are not annotated, we can
generate 200 bp non-enhancer examples for training our models.
We will use a variation of the bed_extract function we wrote ear-
lier. The main variation here is that we will ignore any unannotated
region smaller than our desired input window size (200 bp). This
ensures we have no overlap between hg19.VISTA.enhancers.
chr1.200bp.bed (positive) and hg19.VISTA.non_enhancers.
chr1.200bp.bed (negative) examples as we will demonstrate below.

def neg_bed_extract(in_bed, outfile, window=1000, step=1,
label=None):
 neg = pd.read_csv(in_bed,
 sep=‘\t’,
 header=None,
 index_col=None)
 with open(outfile,’w’) as bed:
 for i in tqdm(neg.itertuples()):
 chrom, start, stop = i[1:4]

 # If the region is shorter than 200bp, skip.
 if stop - start < window:
 continue

 elif stop - start >= window:
 #print(start, stop)
 #print(stop-start)
 for k in range(0, ((stop - start) + 1), step):
 if (start + k + window) <= stop:

bed.write(f’{chrom}\t{start+k}\t{start+k+window}\t{label}\n’)
 return f’Finished. Saved to {outfile}’

neg_bed_extract(‘hg19.unannotated.regions.chr1.bed’,
 ‘hg19.VISTA.non_enhancers.chr1.200bp.bed’,
 window=200,
 label=‘non_enhancer’,
 step=100)

Another difference you may have noticed in how we use this
function is that instead of step = 1, we use step = 100. You are wel-
come to play around with this but as the unannotated regions are
more numerous and longer the resulting .bed file can become
incredibly large. Even using just chromosome 1 with a step of 100
gives us around 1.1 million 200 bp non-enhancers.

Next, we will double check that there is no overlap between
positive and negative regions with:

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  235

$ bedtools intersect -a hg19.VISTA.enhancers.chr1.200bp.bed -b
hg19.VISTA.non_enhancers.chr1.200bp.bed | wc -l

If everything has gone right, this should return 0.
Now with our positive and negative regions sorted, we can split

them into training, validation, and testing sets.

print(f’Reading in 200bp positive regions’)
pos_df = pd.read_csv(f’hg19.VISTA.enhancers.chr1.200bp.bed’,
header=None, index_col=None, sep=‘\t’)

Remove any duplicated regions
print(‘Deduplicating dataframe’)
pos_dedup = pos_df.drop_duplicates()

Create an index of the rows.
print(f’Generating index of {pos_dedup.shape[0]} examples\n’)
pos_df_idx = np.arange(pos_dedup.shape[0])

Shuffle the index
print(f’Shuffling and splitting...’)
shuf_idx = shuffle(pos_df_idx, random_state=12)

Split the index into train (70%), validation (20%) and test (10%)
train_idx = shuf_idx[:int(len(shuf_idx)*0.7)]
val_idx = shuf_idx[int(len(shuf_idx)*0.7):int(len(shuf_idx)*0.9)]
test_idx = shuf_idx[int(len(shuf_idx)*0.9):]

Using the split indices, create train, val and test splits
train_df = pos_dedup.iloc[train_idx, :]
val_df = pos_dedup.iloc[val_idx, :]
test_df = pos_dedup.iloc[test_idx, :]

print(‘Writing to files’)
Open three files to write the train, val and test splits to them
train_bed = open(f’hg19.VISTA.enhancers.chr1.200bp.train.bed’, ‘w’)
val_bed = open(f’hg19.VISTA.enhancers.chr1.200bp.val.bed’, ‘w’)
test_bed = open(f’hg19.VISTA.enhancers.chr1.200bp.test.bed’, ‘w’)

print(f’Writing training, validation and testing sets to files for
positive 200bp to files.’)

for i in tqdm(train_df.itertuples()):
 train_bed.write(f’{i[1]}\t{i[2]}\t{i[3]}\n’)
for i in tqdm(val_df.itertuples()):
 val_bed.write(f’{i[1]}\t{i[2]}\t{i[3]}\n’)
for i in tqdm(test_df.itertuples()):
 test_bed.write(f’{i[1]}\t{i[2]}\t{i[3]}\n’)

Close the files.
train_bed.close()
val_bed.close()
test_bed.close()

See the comments in the code for what each section is doing
but essentially, we are taking all the enhancer regions, shuffling
them, and then splitting them into training, validation, and testing
splits. We then write these splits into 3 new .bed files.

We repeat this step for the negative regions.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

236 Practical Bioinformatics for Beginners

print(f’Reading in negative regions’)
neg_df = pd.read_csv(f’hg19.VISTA.non_enhancers.chr1.200bp.bed’,
header=None, index_col=None, sep=‘\t’)

print(“Deduplicating dataframe”)
neg_dedup = neg_df.drop_duplicates()

print(f’Generating index of {neg_dedup.shape[0]} examples\n’)
neg_df_idx = np.arange(neg_dedup.shape[0])
print(f’Shuffling and splitting...’)

shuf_idx = shuffle(neg_df_idx, random_state=12)

train_idx = shuf_idx[:int(len(shuf_idx)*0.7)]
val_idx = shuf_idx[int(len(shuf_idx)*0.7):int(len(shuf_idx)*0.9)]
test_idx = shuf_idx[int(len(shuf_idx)*0.9):]

train_df = neg_dedup.iloc[train_idx, :]
val_df = neg_dedup.iloc[val_idx, :]
test_df = neg_dedup.iloc[test_idx, :]

print(‘Writing to files’)
train_bed = open(f’hg19.VISTA.non_enhancers.chr1.200bp.train.bed’, ‘w’)
val_bed = open(f’hg19.VISTA.non_enhancers.chr1.200bp.val.bed’, ‘w’)
test_bed = open(f’hg19.VISTA.non_enhancers.chr1.200bp.test.bed’, ‘w’)
for i in train_df.itertuples():
 if re.match(‘chr1’, i[1]):
 train_bed.write(f’{i[1]}\t{i[2]}\t{i[3]}\n’)
for i in val_df.itertuples():
 if re.match(‘chr1’, i[1]):
 val_bed.write(f’{i[1]}\t{i[2]}\t{i[3]}\n’)
for i in test_df.itertuples():
 if re.match(‘chr1’, i[1]):
 test_bed.write(f’{i[1]}\t{i[2]}\t{i[3]}\n’)
train_bed.close()
val_bed.close()
test_bed.close()

Finally, the penultimate step. We extract our new .bed files to
extract the fasta sequences from the genome.

Get positive fasta
$ for i in hg19.VISTA.enhancers.chr1.200bp.*.bed; do bedtools
getfasta -fi hg19.fa -bed ${i} -fo $(basename -s .bed $i).fa; done

Get negative fasta
$ for i in hg19.VISTA.non_enhancers.chr1.200bp.*.bed; do bedtools
getfasta -fi hg19.fa -bed ${i} -fo $(basename -s .bed $i).fa; done

Then we use our fa_stats function to check the GC content of
the splits to ensure they are quite similar.

split = [‘train’, ‘val’, ‘test’]
for s in split:
 fa = fa_stats(f’hg19.VISTA.enhancers.chr1.200bp.{s}.fa’)
 df = pd.DataFrame.from_dict(fa)
 print(df.describe())

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  237

The mean and standard deviation of the GC content for each
split should be around 46.8 and 10.2, respectively. Now we can fil-
ter our negative sets to follow a similar GC distribution as our posi-
tive sets. As the train, validation and test split GC contents were all
reasonably similar to one another, we will just use the training
split’s GC content as the filtering criteria for the negative splits.

mean = 46.862081
std_dev = 10.208668
split = [‘train’, ‘val’, ‘test’]

for s in split:
 print(f’Working on {s} at 200bps.’)
 fa =
open(f’hg19.VISTA.non_enhancers.chr1.GCBalanced.200bp.{s}.bed’, ‘w’)
 for record in
tqdm(SeqIO.parse(f’hg19.VISTA.non_enhancers.chr1.200bp.{s}.fa’,
‘fasta’)):
 if re.match(‘chr[A-Z|a-z]’, record.name):
 continue
 if (mean - std_dev) <= GC(record.seq) <= (mean + std_dev):
 SeqIO.write(record, fa, ‘fasta’)
 fa.close()

In this step, we filter each of the negative training, validation,
and testing splits so that only fasta sequences with a GC content
that has a mean close to 46.9 are written to the new, GCbalanced
files. Then as another sanity check, we can have a look at our GC
balanced fasta files to make sure their GC distribution agree with
the positive sets.

split = [‘train’, ‘val’, ‘test’]
for s in split:
 fa =
fa_stats(f’hg19.VISTA.non_enhancers.chr1.GCBalanced.200bp.{s}.bed’)
 df = pd.DataFrame.from_dict(fa)
 print(df.describe())

The mean GC value of the negative set is about 45.
Now we will use ML methods to train models to predict

enhancers and evaluate their performance.

Training and Evaluating the Models

Kmer counts with Logistic Regression

Now is the fun part, where we get to train and evaluate our mod-
els. The first one we will look at is logistic regression. The input to

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

238 Practical Bioinformatics for Beginners

this model will be the proportion that each kmer contributes to the
sequence. We will count 1mers (A, C, G and T) 2mers (AA, AC, … TT)
and 3mers (AAA, …, TTT). These will be our explanatory variables
and the response variable is a binary category, i.e. enhancer or not
enhancer.

To get started, we first write a function to count kmers in a
sequence, taken from a multi fasta file. It does this by first reading
the records into a dictionary, this prevents any duplicates examples
from making it through as python dictionaries do not allow dupli-
cate keys. It then scans through each record and if it finds no
ambiguous bases, adds that record to a new dictionary called
clean_multi_fa. If random_choice is True it will take a random sam-
ple from the clean records. This allows us to balance our datasets
as we will see shortly. Next it creates a list of all possible 1mer,
2mer and 3mer combinations as well as an empty matrix to store
the values as they are counted. It then reads each fasta record and
counts the kmers. Each row in the matrix, kmer_mat, corresponds
to a fasta record and each column (84 columns in total) corre-
sponds to a kmer, e.g., column 1 is A and column 84 is TTT.

def seq2kmer(in_fa, random_choice=False, rand_n=False):
 “””
 Function to convert DNA sequences to their kmer counts
 :param in_fa:
 :param random_choice:
 :param rand_n:
 :return:
 “””

 print(f’Reading {os.path.basename(in_fa)} into dictionary and removing N\‘s’)
 multi_fa = SeqIO.to_dict(SeqIO.parse(in_fa, ‘fasta’))
 clean_multi_fa = {}
 for k, v in tqdm(multi_fa.items()):
 if ‘N’ not in str(v.seq).upper():
 clean_multi_fa[f’{k}’] = v
 if random_choice is True:
 random.seed(12)
 rand_clean_idx = random.sample(list(clean_multi_fa), k=rand_n)
 clean_fa = {key: clean_multi_fa[key] for key in rand_clean_idx}
 print(f’Number of clean records taken randomly: {rand_n}’)
 else:
 clean_fa = clean_multi_fa
 print(f’Number of records before N removal: {len(multi_fa)}\nNumber of records
after N removal {len(clean_fa)}’)

 # Creates a list of all possible 1-, 2- and 3mers.
 nuc = [‘’.join(n) for n in itertools.product([‘A’, ‘C’, ‘G’, ‘T’], repeat=1)]
 nuc += [‘’.join(n) for n in itertools.product([‘A’, ‘C’, ‘G’, ‘T’],repeat=2)]
 nuc += [‘’.join(n) for n in itertools.product([‘A’, ‘C’, ‘G’, ‘T’],repeat=3)]

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  239

We can now use this function on each of the fasta files we
generated earlier.

Positive sets
pos_train_X = seq2kmer(‘hg19.VISTA.enhancers.chr1.200bp.train.fa’, random_
choice=False, rand_n=False)
pos_val_X = seq2kmer(‘hg19.VISTA.enhancers.chr1.200bp.val.fa’, random_
choice=False, rand_n=False)
pos_test_X = seq2kmer(‘./enhancer_prediction/hg19.VISTA.enhancers.chr1.200bp.
test.fa’, random_choice=False, rand_n=False)

Negative sets
We will use the random choice option in the function we made to take a
random sample from the negative set that is equal to the number of positive
examples we have for each split.
neg_train_X = seq2kmer(‘hg19.VISTA.non_enhancers.chr1.200bp.train.fa’, random_
choice=True, rand_n=pos_train_X.shape[0])
neg_val_X = seq2kmer(‘hg19.VISTA.non_enhancers.chr1.200bp.val.fa’, random_
choice=True, rand_n=pos_val_X.shape[0])
neg_test_X = seq2kmer(‘hg19.VISTA.non_enhancers.chr1.200bp.test.fa’, random_
choice=True, rand_n=pos_test_X.shape[0])

Note how we set random_choice and rand_n as False for the
positive examples. This is because we want to use all positive
examples as we have a more limited number of validated enhanc-
ers. For the negative examples we set random_choice as True and
rand_n as the same number of positive examples for the

 kmer_mat = np.zeros((len(clean_fa), len(nuc)))

 print(f’Counting kmers for each record in {os.path.basename(in_fa)}’)

 for n, record in enumerate(tqdm(clean_fa.items())):

 kmer_count = {f’{nu}’:0. for nu in nuc}

 seq = str(record[1].seq).upper()
 # Counts all occurrences of each kmer in each sequence and gives the
proportion of its occurrences.
 for i in range(len(seq)):
 kmer_count[f’{seq[i]}’] += (1 / len(seq))

 for i in range(len(seq) - 1):
 kmer_count[f’{seq[i:i+2]}’] += (1 / int(len(seq)-1))

 for i in range(len(seq) - 2):
 kmer_count[f’{seq[i:i+3]}’] += (1 / int(len(seq)-2))

 for k, v in kmer_count.items():
 if len(k) == 1:
 v /= len(seq)
 elif len(k) == 2:
 v /= (len(seq) - 1)
 elif len(k) == 3:
 v /= (len(seq) - 2)
 for index, value in enumerate(kmer_count.items()):
 #print(index, value)
 kmer_mat[n][index] = value[1]

 return kmer_mat

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

240 Practical Bioinformatics for Beginners

corresponding split. For example, neg_train_X will be made up of a
random sample of non-enhancers from this fasta file with the num-
ber of random samples taken equal to the number of enhancers in
the training set. We can then merge our training and validation sets
for building a logistic regression model. This model does not have
a validation step the same way our deep learning models do, which
we will see in a bit.

Merge the training and validation sets as logistic regression
doesn’t have a validation step like the deep learning models do.
pos_train_X = np.vstack((pos_train_X, pos_val_X))
neg_train_X = np.vstack((neg_train_X, neg_val_X))

Create labels
pos_train_y = np.ones(pos_train_X.shape[0])
pos_test_y = np.ones(pos_test_X.shape[0])
neg_train_y = np.zeros(neg_train_X.shape[0])
neg_test_y = np.zeros(neg_test_X.shape[0])

Merge the positive and negative sets into single matrices for
training and testing
train_X = np.vstack((pos_train_X, neg_train_X))
train_y = np.hstack((pos_train_y, neg_train_y))
test_X = np.vstack((pos_test_X, neg_test_X))
test_y = np.hstack((pos_test_y, neg_test_y))

We then shuffle the training and testing sets, fit the model and
see how well it predicts enhancers.

shuf_train_X, shuf_train_y = shuffle(train_X, train_y, random_state=12)
shuf_test_X, shuf_test_y = shuffle(test_X, test_y, random_state=12)

from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(random_state=12, max_iter=1000, verbose=0)
log_reg.fit(shuf_train_X, shuf_train_y)
print(f’The the test accuracy of the logistic regression is:\t{log_reg.
score(shuf_test_X, shuf_test_y)}’)

You will most likely get an accuracy around 67%. We can
increase our confidence in this less-than-ideal performance using
Kfold cross-validation.

To confirm the logistic regression isn’t super effective at this
task we perform cross-validation to find the mean score.
from sklearn.model_selection import KFold, cross_val_score

cross_val = KFold(n_splits=10, random_state=12, shuffle=True)
log_reg = LogisticRegression(max_iter=1000)
cv_score = cross_val_score(log_reg, shuf_train_X, shuf_train_y,
scoring=‘accuracy’, cv=cross_val, n_jobs=-1)
print(f’The mean accuracy of the logistic regression after 10-fold
cross validation is: {np.mean(cv_score)} ({np.std(cv_score)})’)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  241

Remove the variables to free up memory for the next model

del train_X, train_y, test_X, test_y, shuf_train_X, shuf_train_y,
shuf_test_X, shuf_test_y, neg_train_y, neg_train_X, neg_test_X, neg_
test_y, neg_val_X, pos_train_X, pos_train_y, pos_val_X, pos_test_X,
pos_test_y

You will most likely get a very similar score as before. This sug-
gests that predicting enhancers from the sequence requires a
deeper model than just a logistic regression. Let’s try again with a
deep learning model.

One-hot encoding with a simple convolutional neural network
(CNN)

Onehot encoding is arguably the simplest way to represent DNA. It
involves representing the DNA sequence as an L × 4 matrix where
L is the length of the DNA sequence and 4 is the number of nucleo-
tides. In Figure 2, we have the 4 nucleotides along the top columns
and the sequence down the rows in the first column. See how at
position one, there is an A and so we place a 1 in the A column and
0’s in the other columns. We then move down a row, place a 1 in
the C column and 0’s in the others, and so on.

For a 200 bp window size, each sequence will be represented
by a matrix with shape 200 × 4, that is, 200 rows and 4 columns.
We will now write a function that converts fasta records to one-hot
matrices.

Convert fasta into ML input data
def seq2onehot(in_fa, random_choice=False, rand_n=None):
 print(f’Reading {os.path.basename(in_fa)} into dictionary and
removing N\‘s’)
 multi_fa = SeqIO.to_dict(SeqIO.parse(in_fa, ‘fasta’))
 clean_multi_fa = {}
 for k, v in tqdm(multi_fa.items()):
 if ‘N’ not in str(v.seq).upper():
 clean_multi_fa[f’{k}’] = v
 if random_choice is True:
 random.seed(12)
 rand_clean_idx = random.sample(list(clean_multi_fa), k=rand_n)
 clean_fa = {key: clean_multi_fa[key] for key in rand_clean_idx}
 print(f’Number of clean records taken randomly: {rand_n}’)
 else:
 clean_fa = clean_multi_fa
 print(f’Number of records before N removal: {len(multi_fa)}\
nNumber of records after N removal {len(clean_fa)}’)
 seq_len = len(v.seq)

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

242 Practical Bioinformatics for Beginners

 start_time = time.time()
 # A
 one_hot_mat = np.zeros((len(clean_fa), seq_len, 4))

 print(f’Beginning one-hot encoding of {os.path.basename(in_fa)}’)
 for k, record in enumerate(tqdm(clean_fa.items())):
 for i in range(len(str(record[1].seq).upper())):
 assert str(record[1].seq).upper()[i] != ‘N’, ‘Something
went wrong prior. You need to make sure there are no Ns in the seq’
 if str(record[1].seq).upper()[i] == ‘A’:
 one_hot_mat[k][i][0] = 1.
 elif str(record[1].seq).upper()[i] == ‘C’:
 one_hot_mat[k][i][1] = 1.
 elif str(record[1].seq).upper()[i] == ‘G’:
 one_hot_mat[k][i][2] = 1.
 elif str(record[1].seq).upper()[i] == ‘T’:
 one_hot_mat[k][i][3] = 1.
 end_time = time.time()
 total_time = end_time - start_time
 print(f’Time taken to create one-hot matrix: {total_time/60} mins’)
 return one_hot_mat

Figure 2.  Graphical representation of a onehot encoded matrix of sequences.
On the left, there is a table with the four nucleotides in the first row, making up
each of the columns. Then in the first column, there is the sequence. As one
moves along the sequence, there is a “1” in the corresponding nucleotides’ col-
umn. For example, the first base is “A” so there is a “1” in the “A” column of the
first row and zeroes in all others. On the right, this is a graphical representation
of how each sequences’ matrices would be stacked together to create a matrix
of matrices or a rank 3 tensor.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  243

This function works much the same way as our Kmer counting
function. It differs at # A where it creates an empty matrix with
shape N, L, 4 where N is the number of samples, L is = 200 bps and
4 is the number of nucleotides. You can think of this as a matrix of
matrices or a rank 3 tensor (see Figure 2).

As the function moves along one sequence, the values in that
sample’s matrix are updated to make a onehot encoded sequence.
As the function moves on to the next sequence, it also moves on to
the next matrix in our rank 3 tensor; it repeats this until all
sequences are converted.

Now that we understand how onehot encoding works, we can
start converting our fasta sequences.

Positive sets

pos_train_X = seq2onehot(‘hg19.VISTA.enhancers.chr1.200bp.train.
fa’, random_choice=False, rand_n=False)
pos_val_X = seq2onehot(‘hg19.VISTA.enhancers.chr1.200bp.val.fa’,
random_choice=False, rand_n=False)
pos_test_X = seq2onehot(‘hg19.VISTA.enhancers.chr1.200bp.test.fa’,
random_choice=False, rand_n=False)

Negative sets

We will use the random choice option in the function we made to
take a random sample from the negative set that is equal to the
number of positive examples we have for each split.
neg_train_X = seq2onehot(‘hg19.VISTA.non_enhancers.chr1.200bp.train.
fa’, random_choice=True, rand_n=pos_train_X.shape[0])
neg_val_X = seq2onehot(‘hg19.VISTA.non_enhancers.chr1.200bp.val.
fa’, random_choice=True, rand_n=pos_val_X.shape[0])
neg_test_X = seq2onehot(‘hg19.VISTA.non_enhancers.chr1.200bp.test.
fa’, random_choice=True, rand_n=pos_test_X.shape[0])

Much the same process as we did with the Kmer counts except
that we do not merge the training and validation sets as Tensorflow
and Keras can utilise a validation step which we will look at in a bit.

Then we need to label and stack our data together.

Create the positive labels
pos_train_y = np.ones(pos_train_X.shape[0])
pos_val_y = np.ones(pos_val_X.shape[0])
pos_test_y = np.ones(pos_test_X.shape[0])

Create the negative labels
neg_train_y = np.zeros(neg_train_X.shape[0])
neg_val_y = np.zeros(neg_val_X.shape[0])
neg_test_y = np.zeros(neg_test_X.shape[0])

Merge the positive and negative sets into single matrices for
training and testing
train_X = np.vstack((pos_train_X, neg_train_X))
train_y = np.hstack((pos_train_y, neg_train_y))

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

244 Practical Bioinformatics for Beginners

val_X = np.vstack((pos_val_X, neg_val_X))
val_y = np.hstack((pos_val_y, neg_val_y))
test_X = np.vstack((pos_test_X, neg_test_X))
test_y = np.hstack((pos_test_y, neg_test_y))

Shuffle the datasets.
shuf_train_X, shuf_train_y = shuffle(train_X, train_y, random_
state=12)
shuf_val_X, shuf_val_y = shuffle(val_X, val_y, random_state=12)
shuf_test_X, shuf_test_y = shuffle(test_X, test_y, random_state=12)

Next, we need to define our model. We will be using Tensorflow
and Keras for this, however there are other deep learning libraries
out there, such as PyTorch. In the code below, we create our first
deep learning model. For more information on the functional API
see (https://keras.io/guides/functional_api/). One of the first steps
when creating a model is to set what the input size will be, deep
learning models cannot take variable length input and expect eve-
rything to have the same shape, so we first set what the input shape
will be which is 200,4,1. You may have noticed this is different from
our previous matrix of matrices where the shape was N, L, 4 or N,
200, 4, recall that L = 200 bp. This is because in order to use a 2D
convolutional layer such as those often employed by image classi-
fication models, our input needs to have 3 dimensions per sample,
i.e. height, width and channel. As we have height = 200 bps and
width = 4 nucleotides, we need to add the channel dimension. This
does not change what is in each samples’ matrix. Next, we define
the conv_bn_pool_drop function. This incredibly snazzy name
describes what the function is doing, it will first perform convolu-
tions over the input data, extracting a feature map as it goes. It
then normalises the output with batch normalisation; this ensures
the output of the batch normalisation layer has a mean of 0 and a
standard deviation of 1. This is important when training very deep
networks as it speeds up training and increases model stability.
These outputs are then fed into an activation layer which uses the
rectified linear unit function. This function propagates positive val-
ues as they are and negative values as 0, i.e. ReLU(x) = max(0,x).
While the convolution layer already has the effect of reducing the
size of its output depending on the size of its stride, the max pooling

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://keras.io/guides/functional_api/

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  245

layer further reduces the output size by only outputting the largest
number within its pooling window, e.g. a 2 × 2 max pooling opera-
tion would look like Figure 3.

This max pooling layer can be loosely thought of as a regularisa-
tion technique in that it works to reduce the number of parameters
in the model and hence the complexity. In contrast, the dropout
layer is specifically employed as a regularisation technique. This
randomly drops out neurons during training to introduce noise and
prevents overfitting during training. Then when testing, the drop-
out layer is “turned off” so that the model has all neurons available
for inference. We propagate our training examples through 4 of
these blocks to extract features before flattening the outputs into
a vector and feeding this into an artificial neural network with the
final prediction being made by a sigmoid function as we just want
to know if it is an enhancer or not an enhancer. We then have to
construct the model where we set what the input layer is and what
the output layer is; we also give it a name. Lastly, we compile the
model where we set the optimizer to Adam, an optimization algo-
rithm popular in deep learning, and the learning rate to 0.0003.
Feel free to play around with these parameters, e.g. you could have

Figure 3.  Graphical representation of what occurs during a max pooling opera-
tion. Here, there is a 4 × 4 matrix that we want to down sample using the max
pooling operation with a window size of 2 × 2 and a stride of two. To do this, we
look at the first 2 × 2 grid and see that the value “4” is the highest, we record
this and move two steps to the right. We see that “9” is the highest so we record
that and then move back to the left and down two. We repeat this for the whole
matrix. You can see that in the resulting matrix, we have the maximum values of
each of the 2 × 2 windows we examined during the max pooling operation.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

246 Practical Bioinformatics for Beginners

a look at the difference in model performance between stochastic
gradient descent and Adam. As we have a binary classification task
where the positive and negative examples are balanced, i.e. they
have the same number of examples per class, we can use the
binary cross entropy loss function. We set the metrics to accuracy
so we can see how well it performs during training and validation.
Here, accuracy is

Number of correct predictions
Total number of predictions .

import tensorflow as tf
from tensorflow.keras import layers

Using the functional API, we define the model
def simpleCNN():
 # Set the input shape
 input_seq = layers.Input(shape=(200, 4, 1))
 x = layers.Reshape((200, 1, 4))(input_seq)

 # Create the feature extraction block
 def conv_bn_pool_drop(input, filters, do_rate):
 # comment in what each layer is doing.
 x = layers.Conv2D(filters=filters,
 kernel_size=(8,1),
 padding=‘same’,
 strides=(1,1),
 use_bias=False)(input)

 x = layers.BatchNormalization()(x)
 x = layers.Activation(‘relu’)(x)
 x = layers.MaxPooling2D(pool_size=(2,1,))(x)
 x = layers.Dropout(do_rate)(x)
 return x
 # The feature extractor
 x = conv_bn_pool_drop(x, 64, 0.1)
 x = conv_bn_pool_drop(x, 32, 0.1)
 x = conv_bn_pool_drop(x, 64, 0.)
 x = conv_bn_pool_drop(x, 64, 0.)
 # The classifier

 x = layers.Flatten()(x)
 x = layers.Dense(256, activation=‘relu’)(x)
 x = layers.Dropout(0.5)(x)
 x = layers.Dense(128, activation=‘relu’)(x)
 pred = layers.Dense(1, activation=‘sigmoid’)(x)
 # Define and compile the model
 model = tf.keras.Model(inputs=input_seq,
 outputs=pred,
 name=‘SimpleCNN’)
 model.compile(optimizer = tf.keras.optimizers.
Adam(learning_rate=3e-4),
 loss = ‘binary_crossentropy’,
 metrics=[‘accuracy’])
 return model

Now we can train the model. We first call the model function,
then store its training cycle in the history variable. We keep batch
size low as we are running this on CPU. When using a GPU, you can
set batch size much larger and you will also notice a significant

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  247

speed increase for training. We set the number of epochs to 10.
This means we will iterate over the whole training set 10 times. We
set the validation data to be our validation set and set shuffle to
True, even though we have already shuffled our data.

Once this finishes training, we then plot the training and valida-
tion learning curves of the model.

model = simpleCNN()

history = model.fit(x = shuf_train_X,
 y = shuf_train_y,
 batch_size = 32,
 epochs = 10,
 validation_data=(shuf_val_X, shuf_val_y),
 shuffle=True)

import matplotlib.pyplot as plt
plt.plot(history.history[‘accuracy’])
plt.plot(history.history[‘val_accuracy’])
plt.title(‘model accuracy’)
plt.ylabel(‘accuracy’)
plt.xlabel(‘epoch’)
plt.legend([‘train’, ‘validation’], loc=‘upper left’)
plt.show()

The main thing to note here is that the validation accuracy and
loss (orange) jumps around a bit (Figure 4(a)). There are several
possible causes for this type of plot however, in our case it is likely
a result of our relatively small dataset. Deep learning models thrive
on large datasets and for this particular problem, it would seem
that generating enhancer examples from only 85 enhancer regions
of chromosome 1 does not expose the model to enough informa-
tion for it to learn features associated with an enhancer. However,
if you have the compute resources, you can try to repeat the work
here with enhancers from all chromosomes for a more accurate
prediction (Figure 4(b)).

Compare this to a model that is trained for more epochs but
also on enhancers from all chromosomes. Note how much more
tightly the training and validation loss follow one another. It is also
worth noting that you will usually always see the training accuracy
higher than the validation accuracy. However, dropout layers can
lead to higher validation accuracies compared to training. As an
experiment, try changing the number of epochs for our model to
25 and see what the accuracy and loss does (Figure 5).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

248 Practical Bioinformatics for Beginners

(a)

(b)

Figure 4.  Comparison of accuracy and loss values when training on chromo-
some 1 vs all chromosomes.

Figure 5.  CNN model trained for 25 epochs on chromosome 1 data. Note the
validation accuracy and loss jumping around the training score suggesting some
issues with the model.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Predicting Human Enhancers with Machine Learning  249

We can then evaluate the model on the previously unseen test
data with

history.model.evaluate(shuf_test_X, shuf_test_y, verbose=1)

The accuracy that is printed here should be around the value of
the validation accuracy for the last epoch the model performed.

Finally, we can determine how robust this performance is with
Kfold cross-validation.

from sklearn.model_selection import KFold
kfold = KFold(n_splits=10, shuffle=True, random_state=12)
cv_scores = []
fold_no = 1
for train, val in kfold.split(shuf_train_X, shuf_train_y):
 print(f’Training on Kfold: {fold_no} of 10.’)
 model = simpleCNN()
 model.fit(shuf_train_X[train], shuf_train_y[train], epochs=5)
 scores = model.evaluate(shuf_train_X[val], shuf_train_y[val])
 cv_scores.append(scores[1])
 fold_no += 1
print(f’Accuracy is: {np.mean(cv_scores)} +/- {np.std(cv_scores)}’)

As you can see from the training and evaluation plots for the
deep learning model trained on all enhancers, there is some real
value to be gained from using more flexible models for enhancer
prediction. A notable example of this is work by Min et al.7 who
trained a CNN to predict enhancers in humans using the VISTA
enhancer set. With this model they were also able to accurately
predict tissue specific enhancers. This highlights the potential ben-
efits of ML in bioinformatics as it means we may now be able to
start identifying more regulatory elements, like enhancers, through-
out the genome without having to perform as many costly wetlab
experiments to identify and then validate those regions. We can
now identify candidate regions in silico, reducing the search space
for possible enhancers.

References
 1. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is

enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

250 Practical Bioinformatics for Beginners

 2. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause
pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025
(2015).

 3. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility
loci and evidence for colocalization of causal variants with lymphoid gene
enhancers. Nature Genetics 47, 381–386 (2015).

 4. Helmsauer, K. et al. Enhancer hijacking determines extrachromosomal circu-
lar MYCN amplicon architecture in neuroblastoma. Nature Communications
11 (2020).

 5. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in
medulloblastoma. Nature 511, 428–434 (2014).

 6. Weischenfeldt, J. et al. Pan-cancer analysis of somatic copy-number altera-
tions implicates IRS4 and IGF2 in enhancer hijacking. Nature Genetics 49,
65–74 (2017).

 7. Min, X. et al. Predicting enhancers with deep convolutional neural networks.
BMC Bioinformatics 18, 478 (2017).

 8. Hong, J., Gao, R. & Yang, Y. CrepHAN: Cross-species prediction of enhancers
by using hierarchical attention networks. Bioinformatics 37, 3436–3443
(2021).

 9. Neph, S. et al. BEDOPS: High-performance genomic feature operations.
Bioinformatics 28, 1919–1920 (2012).

10. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for compar-
ing genomic features. Bioinformatics 26, 841–842 (2010).

11. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist:
Identification of problematic regions of the genome. Scientific Reports 9,
9354 (2019).

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

251

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Index

Adam, 245, 246
adapter, 60, 109
aligner, 67
ANNOVAR, 130
artificial neural network, 245
assemblers, 111
assembly, 108
association analysis, 190, 206

GWAS, 190
automate, 80
awk, 36

batch normalisation, 244
BCFtools, 129, 133
Binary Alignment / Map (BAM), 68,

129
binary Variant Call Format (BCF), 129
Bowtie, 23
BUSCO, 121
BWA, 23, 68, 129, 132
BWA-MEM, 129, 132

cat, 31
cd, 27
centimorgan (cM), 191
chgrp, 46
chmod, 46
chown, 46
commands, 25
compressed, 29
contig, 109

convolutional neural network (CNN),
223, 241, 248, 249

coverage, 110
cross-validation, 240, 249
csplit, 44

decompress, 30
deep learning, 240, 241, 244, 245,

247, 249
differential expression, 142
directory, 26
DNA, 1
dropout, 245, 247

EBI, 28
enhancer, 223
exome, 128
exome sequencing, 127

454, 6
FASTQ, 28, 29, 50, 53, 81, 89, 129
FastQC, 50, 54, 79, 82
fastx-toolkit, 61
filtering, 79
FPKM, 142, 151
Freebayes, 129

Galaxy, 80, 87
Gaps, 109
GATK, 129
GC content, 55

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

� “9x6”b4705  Practical Bioinformatics for Beginners�

252 Practical Bioinformatics for Beginners

Genome-wide Association Studies
(GWAS), 204

genomic inflation factor, GIF, 210
grep, 33
gzip, 30

head, 31
HiC-seq, 110
hidden files, 25
HISAT2, 142, 149
Human Genome Project, 4

IGV, 77
Illumina, 12, 129
illumina adapters, 81
illumina PE, 80
indel, 128
Ion Torrent, 14

Keras, 243, 244
k-mer, 56, 243
kmer counts, 237

kmer, 238

linkage, 190
linkage group, LG, 195, 199
Linux, 23, 50
logistic regression, 223, 237, 240, 241
ls, 23, 24

machine learning (ML), 223, 248, 249
man, 25
Manhattan plot, 213, 214, 216
max pooling, 244, 245
mkdir, 26
mpileup, 129, 133

NGS, 4
novoAlign, 68

onehot encoded, 241, 242, 243
operating system, 23
Overlap Layout Consensus, 117
ownerships, 45
Oxford Nanopore Technologies, 17

Pacific Biosciences, 15
parameters, 25
path, 27
PCR, 61
permissions, 45
physical distance, 191
pipes, 33
PLINK, 204
primer, 60
promoter, 231, 232
Putty, 52
pwd, 27
pyrosequencing, 7

quality of reads, 79
quantitative trait loci (QTL), 191,

204

rectified linear unit, 244
ReLU, 244

reference genome, 188
reference index, 69
RNA-Seq, 141, 143
root, 27
RPKM, 142

SAMtools, 23, 75, 129
Sanger, 2
scaffold, 109
sed, 41
Sequence Alignment / Map (SAM),

68, 73, 129
sequence quality, 50, 90

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	 b4705  Practical Bioinformatics for Beginners“9x6”�

Index 253

sequencing depth, 110
Shell, 43
shell script, 43, 80, 82
shotgun metagenomics, 166

MG-RAST, 166, 167
simple sequence repeat (SSR), 189,

190
single nucleotide polymorphism

(SNP), 189, 190
single nucleotide variant (SNV), 128
Singletons, 109
Solexa, 11
SOLiD, 9
sort, 38
stream editor, 41
subdirectories, 27

tail, 31
targeted metagenomics, 166

16S rRNA-targeted Metagenomic
Sequence, 175

QIIME 2, 167

tensorflow, 225, 243, 244
terminal, 28
TPM, 142
transcriptome, 142
trimming, 62, 79
Trimmomatic, 79, 82

Variant Call Format (VCF), 129
variant calling, 133
vi, 43

wc, 33
WES, 127
wget, 28
workflow, 79, 87, 129

X11, 52
Xming X, 52

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

	Contents
	Foreword from the First Edition
	Foreword from the First Edition
	Preface
	Acknowledgements
	Chapter 1 Introduction to Next Generation Sequencing Technologies
	A Brief History of DNA Sequencing
	Next Generation Sequencing Technologies
	454
	ABI SOLiD
	Illumina
	Ion Torrent
	Pacific Biosciences
	Oxford Nanopore Technologies
	Informatics Challenges
	References

	Chapter 2 Primer on Linux
	Introduction
	Listing the Contents of a Directory
	Create Directory
	Print Working Directory
	Change Directory
	Download Data
	File Compression
	Display the Contents of a File
	Count the Number of Lines
	Search a Pattern
	Combine Multiple Commands Together
	Converting a FASTQ File into a Tabular Format
	Pattern Matching Using Awk
	Sort and Extract Unique Sequences
	Convert Reads into FASTA Format Sequences
	Write a Shell Script to Split Sequences into Individual Files
	Changing File Permissions
	Run the Bash Script
	Summary

	Chapter 3 Inspection of Sequence Quality
	Introduction
	FastQC
	Installation Step in Linux Environment
	Download Datasets

	Fastx-toolkit & FASTQ Processing Utilities
	Installation Step in Linux Environment

	Conclusion
	References

	Chapter 4 Alignment of Sequenced Reads
	Introduction
	Practical
	Short Reads Alignment
	Dataset
	Software Requirements
	Alignment Process
	SAM to BAM conversion
	Sort BAM alignments
	Alternative: novoAlign & novoSort
	View BAM alignment with IGV

	References

	Chapter 5 Establish a Research Workflow
	Introduction
	Materials
	Shell Scripts
	Galaxy
	Conclusion
	References

	Chapter 6 De novo Assembly of a Genome
	Introduction
	Overall Steps
	Download Sequences
	Filter Out Bad Reads
	Assemble the Genome(s)
	Hybrid assembly with PacBio reads
	Long SE read assembly (PacBio)
	Long SE read assembly (Oxford Nanopore)
	Check the Quality of the Genome

	Discussion and Conclusion
	References

	Chapter 7 Exome Sequencing
	Introduction
	General Workflow of WES
	Background Information on the Practical
	Software
	Datasets
	Download Datasets

	Creating a New Folder
	Mapping of Raw Data to the Reference Genome
	Variants Calling
	Prediction of SNVs and Indels Effects
	Visualization
	Conclusion
	References

	Chapter 8 Transcriptomics
	Introduction
	Practical
	Datasets & Software
	Dataset
	Software Required

	Reads Pre-processing & Quality Control (QC)
	Prepare Files
	Perform Initial QC
	Trimming for Bad Quality and Adapters
	Run FastQC on Trimmed Reads

	HISAT2: Reads Alignment
	Prepare Files
	Generate Genome Index
	Reads Alignment

	Single Sample Expression
	Gene Expression Count Using HTSEQ
	Gene Expression Count Using featureCounts
	Gene Expression Count StringTie

	Differential Expression
	edgeR & Limma for Counts Data
	Perform edgeR and limma and linear model

	References

	Chapter 9 Metagenomics
	Introduction
	Introduction to MG-RAST Server Workflow
	Registration to MG-RAST
	Submission of Dataset
	Job Status Monitor
	Data Analysis and Result Viewing

	Analysis of Shotgun Metagenomic Sequence Datasets
	Getting Started

	Uploading and Submission
	Results

	Analysis of 16S rRNA-targeted Metagenomic Sequence Datasets
	Getting Started
	Visualization

	Conclusion
	References

	Chapter 10 Applications of NGS Data
	Introduction
	Classical Linkage Map
	OneMap (2.1.3)
	Installation
	Input formatting
	Linkage mapping analysis

	From Linkage Map to Physical Map
	Genome-wide Association Studies (GWAS)
	PLINK 1.90 Beta
	Installation
	Input files and format
	Download datasets
	Association analysis

	Summary
	References

	Chapter 11 Predicting Human Enhancers with Machine Learning
	Introduction
	Setting up the Software Environment
	Transforming the Data
	One-hot encoding with a simple convolutional neural network (CNN)

	References

	Index

