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Preface 

As the title of this book suggests, the aim of this work is to 
demonstrate the practical aspects of digital circuit design. For this 
reason the amount of pure theory has been kept to an absolute 
minimum and the primary objective has been one of showing the 
reader the most direct route to 'thinking' about digital design in the 
manner of an experienced designer. The intention is to give the 
reader sufficient confidence to embark upon his own design projects 
utilising digital integrated circuits as soon as possible. 

The word practical is emphasised, for there can be quite a gap 
between a practical design approach and a purely theoretical one. 
Most courses on digital electronics spend quite a considerable time 
describing how particular integrated circuits function internally. 
There is no need for the designer to know this, for he uses them as 
'black boxes'. There is also a tendency to over emphasise techniques 
for minimising logic networks in order to achieve the minimum 
number of gates. These make good academic exercises and allow the 
student to really get to know Boolean algebra and Karnaugh maps, 
but they do not reflect the true design environment where low 
component count and cost minimisation are the most important 
factors. The minimum number of used gates does not automatically 
give the minimum number of devices·, and is unlikely to do so where 
many different types are demanded. All the former may lead to is an 
unreasonable number of under-utilised devices. 

Minimising - or simplifying - one logic network to produce 
another with less gates also assumes that you are starting with a 
wasteful network in the first place. Since good design practice should 
not create such a situation, this is rather like concentrating on how 
to compensate for shortcomings rather than how to avoid them. The 
experienced designer always has certain good design principles in 
mind when he sets about designing a digital circuit, and the purpose 
of this book is to show what these are. 

For those having a reasonable familiarity with linear design but 
no knowledge of digital design, I would like to assure them that 
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digital design should present them with few problems once they get 
some 'hands-on' experience. For a digital design is far easier to 
analyse on paper than a linear design. It is always possible to 
overlook an important factor or parameter in a complex linear 
design, but with careful thought, it should always be possible to 
complete a digital design with a much higher degree of confidence. 
It is a reasonable proposition to consider all possible conditions 
within a digital circuit, but such may not be the case for a linear 
circuit. 

There is no doubt about it that digital electronics is here to stay. 
With the advent of the microprocessor its future is assured, and 
since any microprocessor needs to interface with fairly conventional 
digital devices, there will always be a call for digital design 
engineers. As the range of components increases year by year, and as 
the price of such components continues to stay at reasonable rates -
or even drops - despite ever present inflation, more and more 
equipment is likely to go digital. There will always be the need for 
linear circuitry where any form of input or output transducer is 
concerned, but the system designer is finding it more efficient, 
cost-effective, and reliable to convert to or from digital circuitry at 
the earliest opportunity. In complex systems his aim will be to 
convert from digital circuitry to or from microprocessor software at 
the earliest opportunity as well. 

This book concentrates on digital design techniques using the 
basic building blocks of such circuits. These devices will always be 
around simply because they are so basic. Even allowing for the most 
sophisticated microprocessors of the future, any particular system 
inevitably has its own particular input/output interface problems, 
and these devices will always be needed for such purposes. There
fore despite the rapid advancement in microelectronics and in 
microprocessor technology, I am confident that the techniques 
described in this book will remain relevant for the foreseeable future. 

This book is aimed at a fairly broad market: it is intended to aid 
the linear design engineer to cross the barrier into digital electronics; 
it should provide interesting supporting reading for students study
ing digital electronics from the more academic viewpoint; it should 
enable the enthusiast to design much more ambitious and sophisti
cated projects than he could otherwise attempt if restricted to linear 
devices. The great advantage that digital circuitry can offer is high 
reliability, and this should be the ultimate aim of any electronics 
designer. 

My own background is in both linear and digital design, and my 
current occupation involves me in many large and complex systems 
designed by a wide variety of manufacturers. This viewpoint is a 
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useful one in observing current trends, and one that is reflected in 
the pages to follow. 

You cannot learn faster about anything than by becoming 
personally involved. My recommendation to the aspiring digital 
designer is to read through this book in order to get an idea of how to 
go about designing digital circuits - be they large or small - and 
then to have a go at a simple design straight away. Electronic games 
provide an ideal excuse for such an exercise, and digital electronics 
can provide reasonable sophistication at moderate cost and with 
minimal complexity. Here is an ideal proving ground. 

Good luck! 
IJ .K. 
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Using this book 

This book is intended to be read in the order presented: it then offers 
the reader a course in the practical design of digital circuits. Like any 
other course, it is necessary to introduce new concepts gradually, 
and to start with basics and to gradually advance to more and more 
complexity as the student progresses. Thus the book cannot be 
effective unless read in this manner; random dipping into later 
chapters may do no more than give the impression of greater 
difficulty than should otherwise be experienced. 

There are many books on digital electronics, but very few on the 
techniques of digital design. This is probably because any form of 
design is essentially creative, and it is always difficult to teach 
creativity. This does not mean that it is impossible. For example, it 
is possible to teach someone the basic principles of painting, but 
once they have learned these, the field is wide open for them to 
express themselves in their own particular and individual way. The 
same applies with digital design. 

Part 1 of this book teaches the basic principles of practical design, 
and introduces the designer to his 'tools' - or rather, the range of 
devices he has to call upon. Part 2 shows him how to put these 
together into viable designs. The only way to learn how to design is 
to study how others approach it, and then to have a go for yourself. 
For this reason, Part 2 of the book includes two detailed descriptions 
of actual design exercises. The first of these is an exercise in C M O S 
design, and is fairly simple. The second is a much more complex 
design for an electronic game, using T T L devices. The reader is 
urged to keep studying these design examples until he fully under
stands them. Once he reaches this stage, he may progress towards 
his own designs with confidence. 

A book on digital design would not be complete today without 
some coverage of microprocessors. Microprocessors represent a 
further stage of advancement in terms of technology, and the 
modern tendency is to replace special-to-purpose digital circuitry by 
microprocessors wherever possible. Since all microprocessors have 
their special features, it is impossible to adequately cover the subject 
in one section of this book - or even in one entire book. Each 
microprocessor is worthy of one or more books to itself! What this 
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book does do, however, is to provide sufficient information about 
microprocessors for the reader to appreciate their advantages or 
disadvantages, as the case may be. The application and the circumst
ances dictate whether a particular design is best suited to ordinary 
logic or to a microprocessor. 

The book culminates in a practical illustration of how a particular 
design problem changes emphasis when a microprocessor is intro
duced, by reflecting on how the electronic game discussed in Part 2 
might have been tackled using a microprocessor. 

This book has to cover a vast amount of ground as efficiently as 
possible. This has been achieved by careful integration of subject 
matter within the text. The main text is supported by various 
appendices at the rear of the book, and these provide the aspiring 
designer with abridged design data, in order to get him off the 
ground without further expense or delay. It is strongly recom
mended, however, that the reader purchase a good data book on 
digital devices as soon as possible. Perhaps the best source of T T L 
data is: 'The T T L Data Book for Design Engineers', published by 
Texas Instruments. Such a wide selection of devices can be rather 
confusing - and daunting - therefore the appendices to this book do 
reduce the problem to a manageable level during the learning 
process. 

The abbreviation 'App. C2' - or similar - is to be found 
throughout the text. This refers to entries in Appendix A, and guides 
the reader to device data. In the example given, 'App. C2' refers to 
the 7476 device, reference C2 on page 274. No text references are 
made directly to any of the other appendices, unless specified in full. 

The logic symbols used throughout this book comply with 
MIL-806B standards. This choice has been made because engineers 
recognise these symbols worldwide, and these are the symbols most 
frequently found in manufacturer's data. Further information on 
drawing standards is to be found within Appendix E, together with 
an explanation of why the M I L standard has been chosen rather 
than a more recent standard. This appendix also contains equi
valent symbols for various gates. It is worthwhile adding that the 
M I L standard symbols are also much more popular with engineers 
in general, and do have a great advantage over the more recent 
rectangular symbols for the purposes of this book: they require far 
less explanation and are easier for the novice - and engineer (sic!) -
to understand. 

Everyone knows that this is the age of the silicon chip. If you are 
interested in electronics, then you will want to come to grips with it 
as soon as possible. The aim of this book is to place it within your 
practical grasp. 
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Part 1 — Basic logic 

Give us the tools, and we will 
finish the job. 

Sir Winston Churchill (1874-1965). 



1 
The ubiquitous silicon chip 

It does not seem long ago that the word 'transistor' was bandied 
around by all and sundry as the description for a transistor radio. It 
was not generally appreciated then that a 'transistor' was merely 
one component within such a device. In a similar manner the media 
has now latched onto the phrase 'silicon chip' to describe anything 
which is electronic, rather sophisticated, and contains any sort of 
semiconducting device. Since this word has only really been discov
ered by the masses since the advent of the microprocessor, the 
p h r a s e t ends to be used synonymous ly with the word 
'microprocessor'. Once again the wrong image has been created, for 
the 'silicon chip' has been around for a great deal longer than the 
microprocessor. 

The first switching circuits which were the forerunners of modern 
digital circuits were formed from discrete components such as 
transistors and diodes. These were all very well for simple circuits, 
but they very quickly became large and unwieldy as soon as the logic 
began to get complicated. This ushered in the integrated circuit which 
incorporated several devices onto a single chip. This was the birth of 
the silicon chip. 

By this time the techniques of fabricating silicon planar devices 
were well understood and it was possible to produce large quantities 
of reliable silicon transistors. The usual practice was to manufacture 
a large number of discrete transistors on a single chip, so it was a 
natural development to manufacture simple transistor circuits onto 
a single chip instead. Passive components such as resistors or small 
value capacitors could equally well be incorporated into the circuits. 
Such devices were subsequently referred to as Small Scale Integration 
(SSI) devices, and these still form the basis of simple logic gates 
today. 

As digital circuitry gained ground there came the need for set 
circuit configurations to be repeated more and more often. Particul
ar arrangements of gates form the building blocks of digital circuits, 
and in order to improve system reliability, minimise the number of 
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interconnections concerned, and to miniaturise the circuitry in
volved, Medium Scale Integration (MSI) devices were born. 

The basis of such circuits was a fairly basic switching transistor, 
although improvements such as Schottky clamping diodes were 
introduced to improve switching speed. The transistor does require 
a fairly large area in microelectronic terms, and it was found that the 
metal oxide silicon field effect transistor (MOSFET) could be 
fabricated in much smaller areas, allowing thousands of transistors 
and resistors to be packed into one tiny chip area. Inevitably these 
high density circuits came to be known as Large Scale Integration 

( L S I >-
The particular requirements of different systems demands differ

ent predominant features such as high speed, low power, or simply a 
compromise between the two, for these features do tend to conflict. 
The most common devices at present are formed from conventional 
transistors and are known as transistor transistor logic (TTL) 
because of their form of interconnected transistors. The speed of 
these is adequate for most applications but the power consumption 
does require mains originated supplies unless the component count 
is quite small. Schottky barrier diodes are used in conjunction with 
certain families of these T T L circuits to prevent the transistors 
saturating, and thereby increases their switching speed, but the 
current consumption is still a problem. M O S F E T devices get over 
the problem of power consumption, but these have the disadvantage 
of being comparatively slow and of also being somewhat prone to 
damage due to electrostatic charge if they are mishandled. 

More will be said about the various families of devices in a later 
chapter, but it will be seen that there are several different families to 
choose from according to the designer's needs. For most applications 
the designer will choose conventional T T L devices which comprom
ise between speed and cost. It is these devices that we shall chiefly be 
concerned with in this part of the book. Apart from current levels 
and switching speeds, and also the available power supply range, 
there is no functional difference between these various families so far 
as their logical significance is concerned. For this reason we shall 
concentrate upon logic functions before introducing the confusion of 
family variants. 

This brief review of the development of the ubiquitous silicon chip 
cannot be complete without considering the latest innovation: the 
microprocessor. The sophistication of conventional integrated cir
cuits brought about computers of modest proportions compared 
with the first valve efforts, and even great improvements over the 
early transistor versions, but the microprocessor was the greatest 
step forward of all. It came about as a result of the expertise which 
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developed in the production of LSI circuits, and it was inevitable 
that the end result would be a computer on a chip: for this is really 
what a microprocessor is. 

The main differences between a microprocessor and a convention
al computer are speed and computing capability; the computer wins 
on both counts. A computer operates with data words comprising a 
set number of bits. A bit represents the smallest single piece of digital 
data, and it can indicate either one of two logic states. The most 
common powerful computers operate with 24-bit words. Micro
processors are most commonly arranged to handle only 8-bit data 
words. This fact, combined with lower operating speeds, is the main 
reason why computers are not immediately threatened by their 
smaller brethren. Computers use faster devices. 

We have seen tremendous advances in microelectronics over the 
past decade. Already 16-bit microprocessors are a reality, and 24-bit 
microprocessors can only be over the horizon. Tha t only then leaves 
us with the speed limitation, but modern innovation should find a 
way round that. Already it is quite common to use several micro
processors in a single system, and it is not inconceivable that several 
microprocessing elements might be interconnected on a single chip 
to provide means of carrying out parallel processing in such a 
manner that the speed limitations of the material might be compen
sated for. This is only speculation, but it does remind us that we are 
by no means at the end of the road just yet. A faster material might 
even be discovered! 

Ju s t because microprocessors are versatile, this is not sufficient 
justification alone for incorporating them into a given system. If the 
system would require a tremendous amount of conventional logic 
then there is obviously justification for a computer or micro
processor, but for smaller systems and less demanding applications, 
a microprocessor might not be the most cost-effective solution. For 
every microprocessor requires supporting software, and software 
takes time to write and debug. In commercial terms this can prove 
to be very costly in a development program, and unless the volume 
of subsequent sales can justify it, then conventional logic might be a 
better bet. 

The size of a system is not the only deciding factor: rather, it is the 
cost of software development. Time is of little significance to the 
hobbyist, for example. Therefore the microprocessor does offer him 
the means of designing some very sophisticated systems which have 
relatively low costs in hardware terms. Microprocessors can be 
purchased very cheaply now. 

It will be seen that the development of modern electronics has led 
to three discrete areas of technology: linear electronics, digital 
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electronics, and now software, the latter forming an integral part 
with the innovation of the microprocessor. 

The innovation of digital electronics led to specialist designers 
and placed a technological barrier between two different branches of 
hardware design. Computer technology allowed mathematically-
minded programmers to program computers with no real knowledge 
of computer hardware, and hardware engineers were able to work 
on computer hardware with little real knowledge of software. The 
microprocessor brought an end to this cosy situation, for it is 
essentially a digital device and needs to be built into a digital circuit. 

A microprocessor system raises the question of how much should 
be handled by the software and how much by the hardware, and the 
solution to this hardware-software trade-off can only adequately be 
answered by someone able to understand both. It has led to a new 
kind of engineer: a microprocessor engineer. 

All this may sound rather formidable, but it need not be so if grass 
roots are returned to and the history of the silicon chip is remem
bered. For digital electronics is no more than a restricted branch of 
linear electronics. Circuit performance is more predictable because 
we are only dealing with circuits which switch between two voltage 
levels: high or low. The microprocessor is only a special kind of 
digital integrated circuit. True, it does require supporting software, 
but even here there are different levels at which it may be 
approached. At the lowest level there is machine code, where 
specified codes produce particular hardware manipulations, and 
this is no more frightening than the function of any other LSI device. 
At the next level there are programming languages such as BASIC, 
which as the name suggests, is very easy to understand. 

It would be a difficult task for a mathematician to get to grips with 
digital design unless he had some understanding of electronics, but 
it is an easy task for him to understand programming. Anyone 
capable of undertaking hardware design can fairly soon pick up 
microprocessor programming. Equally, anyone familiar with linear 
design can soon pick up the principles of digital design. Clearly they 
cannot expect to become instant experts, for any new technology 
takes time, but it is hoped that this assurance might spur on any 
doubtful linear designers. My belief is that it is an easier path for a 
linear design engineer to become an effective microprocessor engineer 
than it would be for a programmer with no electronics experience: 
for only he can see any electronic short-cuts. 

This is the history of the silicon chip. It has had a spectacular past 
and has an assured future. Without a doubt it will have drastic 
changes on our life-style over the coming years and it is up to us to 
see that it is a change for the better. It can be. If we can show just a 
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small proportion of the versatility and innovation that the physicists 
who have developed it have shown, the silicon chip can release man 
from a great deal of drudgery, and give him the time for more 
worthwhile pursuits. After such development, this is surely the only 
logical conclusion. 
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2 
From linear to digital electronics 

Digital electronics tends to sound much more sophisticated than 
linear electronics, and the very sound of it is sometimes enough to put 
off many otherwise very competent designers. Linear designers will 
sometimes produce very elaborate designs to achieve what amounts 
to a simple logic function; had they familiarity with digital electro
nics as well, that same requirement might have needed no more than 
a small number of digital integrated circuits (ICs). The aim of this 
chapter is to show that the barrier between the two technologies is 
little more than a 'sound barrier' , and to emphasise that the way to 
approach digital design from a background of linear design is to 
regard it as a restricted form of linear electronics. It is because of these 
restrictions that it has been possible to introduce special symbols to 
represent repeatedly used circuit blocks. Once this has been truly 
appreciated, the mystique of digital electronics should be removed. 

Simple d iode logic 

In order to understand the basic principles of logic, there is no better 
place to start than with the simplest logic circuits possible. Diodes 
give us the essential features of a logic gate, as illustrated in Figure 
2.1. This shows three diodes connected to a common pull-up resistor 
tied to + 5 V. A, B and C are the circuit inputs, and Q is the output. 

■ +5V 

AO W-

BO W-

CO h+ 

8 

OQ 

Figure 2.1. A simple logic circuit 
-ov using diodes 



If all the inputs are taken to the supply rail of + 5 V (i.e. high), no 
potential difference occurs across any of the diodes, therefore no 
current flows through the resistor; as a consequence, the output Q is 
also high. If any of the inputs is taken to OV (i.e. low), the diode in 
series with this input is forward-biased, and current flows through 
the resistor. Assuming a silicon diode with a forward voltage drop of 
nominally 0.7 V, this has the effect of pulling the output Q down to 
approximately +0 .7V. 

It does not matter if more than one input is taken low, for in this 
situation the diodes with grounded cathodes simply share the 
current which is limited by the resistor. This is a simple logic gate. 

Logic circuits (or gates) are so named because they are capable of 
representing logic conditions. The above circuit represents the logic 
condition described by the following statement: A AND B AND C 
true gives Q true. If we separate the input conditions from the 
output by the equivalence sign, and replace the 'AND' statements 
by the shorthand notation of a dot, the above logical statement can 
be rewritten as follows: 

A . B . C = Q 

Because of the logical significance of this circuit it may be referred 
to as an 'AND' gate. In practice, a circuit as simple as this would not 
be used, but it does show the basic concept of digital logic, where only 
two signal levels are considered: either high or low. Digital circuits do not 
employ voltage levels between the conditions described as high or 
low, hence my earlier description of digital electronics as a restricted 
form of linear electronics. 

Logical statements are expressed in the form of terms which may 
be either true or false. Given two possible conditions to represent 
electronically, we require only two voltage levels, hence the high/low 
circuit conditions. This only leaves us with one permutation to 
consider: which level represents what? From the logical point of view 
the choice is purely arbitrary, and both systems are employed. This 
has given rise to two logic conventions: positive logic and negative logic. 
The positive logic convention represents the true condition by the 
more positive voltage, whereas the negative logic convention repres
ents the true condition by the more negative voltage; this is therefore 
easy to remember. 

Because logic circuits represent only two different states, all 
arithmetic processes are carried out in binary arithmetic, which uses 
only the numbers 0 and 1. Logical statements are also described in 
terms of 0 for false, and 1 for true. Thus a logic 1 is the more positive 
voltage in positive logic, or the more negative voltage in negative 
logic. 
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If the concept of positive or negative logic is confusing, not to 
worry! Most modern designs employ only positive logic, therefore to 
avoid confusion, this book only considers positive logic. 

The transistor in logic circuits 

Logic requires both true and false conditions to be easily repres
ented. False logic terms are represented by placing a bar over the 
term, e.g. Q, pronounced 'bar-queue' . In electronic terms, Q is 
simply the inverse of Q; thus if Q is high, Q must be low, and if Q is 
low, Q must be high. Obviously an inverter is therefore an essential 
requisite of logic circuits, and the reason why transistors play an 
important role. Consider now the circuit shown in Figure 2.2: this is 
basically the diode logic circuit previously discussed, but followed 
by a transistor inverter stage. This is a diode transistor logic (DTL) 
gate. 

I 
A o—H 

B o—H 

co—14-

^ Ί T J—' 

I—I 
Figure 2.2. A diode transistor logic (DTL) gate 

The introduction of transistors gives us an immense improve
ment, both logically and electrically. Logically, it provides the 
means of inverting or complementing a term (e.g. Q is the complement 
of Q) ; without this facility, all logic conditions could not be 
represented. Electrically, the transistor has two advantages: it 
provides a buffer, enabling more inputs to be connected to an output 
(known as Tanout'), and by providing all gate outputs with a 
transistor stage, it gives a wider voltage swing between logic levels. 
Where a silicon diode can only give a low level of +0.7 V, a silicon 
transistor in the bottomed condition (i.e. driven hard on by sufficient 
base current) can present a low level of around +0.2 V. 

The circuit shown in Figure 2.2 is logically the same as that shown 
in Figure 2.1, except that the output is inverted by the transistor. If 
all the inputs are high, no current flows through any of the input 
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diodes, which allows current to flow through what now becomes the 
base resistor, thereby biasing the transistor hard on, and producing 
a low at the Q output.* If one or more of the inputs is taken to OV, 
current flows through the base resistor and diverts to flow through 
the input diode/s. The two diodes in series with the transistor base 
ensures that the transistor is cut off with a potential of only +0.7 V 
at the input resistor-diode junction, therefore the Q output is high. 

The logic condition represented by the gate shown in Figure 2.2 
can be expressed as follows: 

A . B . C = Q 

This is read as: ' N O T (A AND B AND C) gives Q \ To interpret 
the expression, ignore the bar initially, and note the AND condition 
which applies to A AND B AND C; finally take the bar into account, 
which signifies an inverse form. Thus Q is low for the input condition 
A . B . C . Because the bar signifies ' N O T ' , this gate might be called a 
not-AND; in fact this is abbreviated to 'NAND' . 

This form of diode transistor logic was the type of gate used in 
early SSI'components. Note that the circle around the transistor has 
been omitted in order to distinguish this from a discrete transistor 
encapsulation, because the entire circuit is formed on a single 
integrated circuit. The next stage in the development of logic circuits 
was to introduce a new kind of multi-emitter transistor, thereby 
minimising the number of chip interconnections, saving space, and 
simplifying the manufacturing requirements. Because the input 
diodes were replaced by transistors, these devices became known as 
transistor transistor logic, or as we shall refer to them hereafter: 
T T L \ 

The TTL gate 

By diffusing a number of separate emitter n-types into the base 
p-type of the input transistor shown as TR1 in Figure 2.3, the same 
logic inputs can be derived within a single transistor. The diode D l 
is a 'distributed' diode, but it is shown as a separate diode in this 
circuit in order that the operation may be better understood. This 

* In order to ensure that a transistor is bottomed, the base current must be at least as high as the 
maximum collector current divided by the d.c. current gain of the transistor in the bottomed state. 
Whilst modern silicon transistors can achieve current gains of 100-800 when not saturated, this 

figure is dramatically less when the saturated (or bottomed) condition is reached; figures of 10-20 
are typical. Thus the maximum base resistance must be the collector resistance multiplied by the 
maximum current gain; a factor of XlO is a good rule of thumb. 
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figure shows input C connected to 0 V, and therefore at logic 0, and 
the inputs A and B connected to + 5 V, and therefore at logic 1. Only 
a negligible leakage current flows into A and B since these are 
reverse-biased diodes, but current lb flows out of the emitter 
connected to input C. This current is derived from the base current 
plus the larger current I a , flowing through Rl and D l . The input 
transistor bottoms as a result of this current and the collector of TR1 
is at about +0.2 V, i.e. the saturation level for the collector-emitter. 

400μΑ max 

Figure 2.3. A TTL gate with one input low 

Figure 2.4. A TTL gate with all inputs high 

This condition cuts off TR2 and allows current Ic to flow through 
R2, so biasing T R 3 into conduction, and allowing the larger emitter 
current Id to flow through D2 and out at Q. This causes Q to be high, 
i.e. at logic 1. The characteristics of the standard 7400 series of T T L 
gates specifies that the maximum high level current which can be 
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drawn from the output ( I O H ) is 400 μΑ. Since the maximum high 
level input current ( I I H ) f ° r any gate connected to an output is 
specified at 40μΑ, this allows up to ten input gates to be connected 
to an output. The output voltage level in the high state ( V 0 H ) is 
specified as + 2 . 4 V minimum, which means that a logic 1 output 
should always be equal to or greater than this voltage. 

Figure 2.4 shows the same gate with all the inputs high. Now no 
current flows out of the emitters of T R 1 , and the current I a diverts to 
form the base current of TR2. Emitter current Ib , comprising both I a 

and current drawn through TR2 collector, flows as base current Ic 

through TR4. This causes T R 4 to switch hard on, and current Id 

flows into the output Q. The transistor bottoms to give an output 
voltage equal to VCE(sat) for TR4, thereby producing a logic 0. With 
TR2 bottomed in this condition, diode D2 ensures that TR3 is cut 
off. 

The characteristics of the 7400 series gates in this condition 
specify that the maximum low level output current ( I O L ) is 16mA. 
Since the maximum low level input current ( I I L ) for any gates 
connected to an output is 1.6mA, this allows up to ten gates to be 
connected to any output. Thus for any logic conditions, this series of 
devices allows what is termed asfanout often, i.e. ten inputs may be 
connected to any output. The specifications also state that the 
maximum low level output voltage ( V Q L ) shall be 4-0.4V. 

One characteristic worth bearing in mind is that whilst multi-
emitter transistors provide a load for each emitter in the high state, 
they do not do so in the low state. Thus if several inputs to the same 
logic gate are tied together, they only appear as a single low level load 
to the driving gate, since the current flowing out of the inputs is 
simply shared between the various emitters. In the high state each 
separate junction contributes its own leakage current. This is worth 
remembering, for unused inputs on gates can often be conveniently 
tied to neighbouring inputs. All inputs should be taken either high 
or low. 

Noise margins 

So far the output voltage levels have been discussed, but in order to 
provide safety margins within the specifications, the input require
ments are made to overlap the output guaranteed levels to provide a 
noise margin of at least 0.4 V. Figure 2.5 depicts the noise margins. 

The output high level is guaranteed to be at least +2 .4V, but 
input gates accept a logic 1 above + 2 . 0 V to provide a high state 
noise margin of 0.4 V. The output low level is guaranteed to be 
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Typical 
logic 1 - »—Logic 1 margin 

V0H 

VI H 2.0V '/////////////////, U igh state noise margin = 0.4V 

Typical 
logic 0 

V | L 0.8V 7 

V 0 L 0.4V 
0.2V· 

0V« 

AV minimum voltage difference= 1.2V 

sr 
Low state noise margin = 0.4V 

Logic 0 margin 

Figure 2.5. TTL noise margins 

H-0.4V or less, but input gates accept a logic 0 below +0.8 V, again 
ensuring a low state noise margin of 0.4 V. The minimum voltage 
difference between logic states must therefore be at least 1.2 V, and 
typical logic 1 and logic 0 levels are +3.3 V and +0.2 V respectively. 
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3 
Logic gates 

The previous chapter described a typical T T L gate in terms of its 
linear components. The gate shown in Figures 2.3 and 2.4 is a 
3-input NAND gate. Like other gates in this family the output 
consists of a totem-pole arrangement with two output transistors. This 
ensures that a low impedance current source can be maintained in 
either logic state, and that adequate loading can be achieved with 
minimum risk of noise interference. 

Having shown the typical internal structure of a basic gate in 
order to bridge the gap between linear and digital electronics, we 
shall now only consider logic gates as functional blocks. The 
background knowledge of how inputs and outputs are implemented 
is of value, however, in understanding device characteristics. 

Figure 3.1 shows the logic symbol for a 3-input NAND gate, 
where A, B and C are the inputs, and Q is the output. An 'AND' 
function gives A . B . C , but a 'NAND' function modifies this to 
A . B . C . 

Truth table 

A 

0 

0 

i ° 
0 

1 

1 

I 1 

| 1 

B 

0 

0 

1 

1 

ό 
0 

1 

1 

c 
0 

1 

0 

1 

0 

1 

0 

1 

Q I 

0 ] 

Figure 3.1. A 3-input NAND gate and truth table 

The output from any logic gate is dependent upon the state of all 
its inputs. In order to fully specify all possible output states it is 
therefore necessary to consider all possible input states. The usual 
way to do this is to prepare a truth table for the gate. This is also given 
in the figure. 
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The truth table comprises a column for every input and output. 
Although it does not matter in what order the various input 
permutations are considered, it is a good idea to enter these in the 
form of an ascending binary count. The binary system has a base of 
2, and comprises only the digits 0 and 1, therefore each line of the 
table in question shows the binary equivalent of the decimal 
numbers 0 to 7.* In this way it is possible to ensure that no input 
combination is either missed out or duplicated. The truth table 
shows that the Q output is always at logic 1 unless all of the inputs 
are at logic 1; when all the inputs are at logic 1 the output is at 
logic 0. 

This description of the NAND gate summarises its action more 
concisely than the lengthy truth table, and the essence of 'thinking 
like a designer' is to simplify gate descriptions in this manner. There 
is then less to remember, and you more quickly come to instinctively 
know how a particular logic network functions at a glance. 

One method of simplifying gate actions is to introduce what is 
known as the don't care condition into truth tables. This technique 
uses the cross symbol 'X' to indicate 'don't care' conditions: this 
implies that the output is unaffected by the logic state of any don't 
care terms. Figure 3.2 is an alternative truth table for the 3-input 
NAND gate previously considered. It may be seen that the truth 
table has now been condensed to four lines from eight lines in the 
original. It is not practical to produce a truth table for every possible 
input condition for a logic network if there are a great many inputs, 
and in such cases the don't care symbol is invaluable as a method of 
simplifying the truth table. 

A I B | C | Q 

1 | 1 | 1 | 0 

X X Ö Γ 

X | 0 I X | 1 

ö I x x ΐ" 
Figure 3.2. Truth table for 3-input 
NAND gate using 'don't cares' 

The idea of utilising an increasing binary count must be discarded 
in truth tables utilising don't cares, but a sensible pattern should be 
maintained. A good method is to start with the unique condition of the 
gate which produces a particular output for only one input condi
tion. In the example given in Figure 3.2 this is the condition where 
all true inputs (logic 1) give a false output (logic 0). We know that 
any change to any input affects the output, therefore any input at 
logic 0 produces a logic 1 at the output. This can be shown in the 
truth table by considering each input at logic 0 and entering all the 
* Binary arithmetic is considered in more detail in Chapter 8. 
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other inputs as don't cares - they can be at logic 0 or at logic 1 
without affecting the output. 

Any logic gate can be described fully by two statements which 
refer to the two possible output states, and this is what a prospective 
designer would do well to remember. It is not possible to remember 
full truth tables, and it is impossible to get a true 'feel' for a circuit if 
you have to constantly refer to a truth table. In discussing the 
various logic gates, this method of remembering a gate's function will 
be emphasised as well as describing it in the more traditional 
fashion. Figure 3.3 depicts the most common gates. For simplicity, it 
is usual to consider only 2-input gates. 

■■ΐ> 2 l /PANDgate 
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1 
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0 

0 
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Inputs 
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O/P 

1 

0 

o- 2 - l/PNANDgate 

A 

0 

0 

1 

1 

B 

0 

1 

0 

1 

Q 

1 

1 

1 

0 

Inputs 

1 

0 

1 

X 
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(A.B)+(A.B)=Qor A-rB=Q 
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0 

0 

1 

1 

B 

0 

1 

0 

1 

Q 

0 

1 

1 

0 

Inputs 

Same 

1 | 0 

0/P 

0 

1 

Ctrl Data 0/P 

1 

0 

Q 

Q 

Q 

Q 

4>-° 
Buffer 
A=Q 

Truth table 

A Q 

0 0 4~t>^Q 
Inverter 

A | Q 

0 1 

1 0 

Figure 3.3. A selection of logic gates and their truth tables 
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The upper section of the figure shows the logic symbol for a 
2-input AND gate. The expression: A.B = Q describes the function 
of the gate in algebraic form. This is known as Boolean algebra, and 
utilises the following symbols: 

. represents AND 
+ represents O R 
= may be read as 'gives'. 

Thus Ά . Β = Q ' may be read as: Ά AND B GIVES Q \ 
The unique condition for this gate is when both inputs are true, 

giving the output true. The larger of the two truth tables given for 
the gate is the normal way of representing all logic conditions. This 
is all very well for a 2-input gate, but a 4-input gate would require 16 
lines to fully represent it in this manner. The smaller of the two truth 
tables introduces don' t cares, and this principle is applicable for all 
AND gates, no matter how many inputs. The inputs side of this truth 
table shows in the first line that the unique condition of all inputs at 
logic 1 produces a logic 1 at the output. The second line indicates 
that if any input is at logic 0, the output is at logic 0, irrespective of 
the state of any other inputs, as indicated by the don't care symbol. 

The simple way to remember AND gate action is to think of it as 
follows: 

Aivn P A T F A L L I N p U T S AT 1 GIVES O U T P U T AT 1 
A I M J ^ A A *" ANY I N P U T A T 0 GIVES O U T P U T AT 0. 

The N A N D gate is like an AND gate followed by an inversion. 
The small circle on the output side of the symbol is the method used 
to indicate an inversion. The truth table for the NAND gate is 
identical to that for the AND gate except that the output is inverted 
(or complemented), as shown in the larger truth table for the gate. The 
Boolean expression A.B = Q should be read as: ' N O T (A AND B) 
G I V E S Q \ The simplified truth table has the same input condition 
for the unique case, but this time the output is at logic 0. This time 
any input at logic 0 produces a logic 1 at the output. This gate 
should be remembered as follows: 

NTANrn P A T F A L L I N p U T S AT 1 GIVES O U T P U T A T 0 
iNAiNLi UrAiL·. Α Ν γ Ι Ν ρ υ χ A T 0 G I V E S O U T P U T A T 1. 

The O R gate has a different distinctive symbol, and is described 
by the Boolean expression: A + B = Q, read as: Ά O R B GIVES 
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Q'. As the larger truth table shows, if any input is at logic 1 then the 
output is at logic 1. This gives rise to the unique condition of logic 0 
at the output when all inputs are at logic 0. Note the simplified don't 
care truth table representation. This gate should be remembered as 
follows: 

n u P A T F A L L I N p U T S AT 0 GIVES OUTPUT AT 0 
U K UAiL·. Α Ν γ I N p u T A T j G I V E S OUTPUT AT 1. 

The NOR gate symbol is identical to the OR gate symbol except 
for the inverting circle on the output line. Like the NAND gate in 
relation to the AND gate, the NOR gate truth table is similar to the 
OR gate truth table; the difference is simply that the output is 
complemented. The Boolean expression is: A + B = Q, read as: 
'NOT (A OR B) GIVES Q'. The unique condition is both inputs at 
logic 0 producing an output at logic 1. This gate should be 
remembered as follows: 

P A T F A L L I N P U T S A T 0 GIVES OUTPUT AT 1 i\UK irAiL·. Α Ν γ I N P U T A T j G I V E S OUTPUT AT 0. 

The exclusive-OR gate, abbreviated as 'XOR', is similar to the 
OR gate, except that it distinguishes the difference between one 
input at logic 1 and more than one input at logic 1. The distinctive 
symbol has the double-curved input to signify its 'exclusive' func
tion. Compare the full truth table with that of the OR gate, and it 
will be seen that the only difference is in the bottom line. With the 
XOR gate, more than one input at logic 1 produces an output at 
logic 0. The name can now be appreciated, for the gate detects one 
input OR another exclusively, as opposed to simultaneously. The 
simplified truth table has been modified in form to more easily 
depict this, and relates directly to the easy way of remembering the 
function of the gate, given below. The Boolean expression: (A.B) + 
(A. B) = Q represents this gate, and may be read as: '(A AND NOT 
B) OR (NOT A AND B) GIVES Q \ As with ordinary algebra, it is 
possible to transform this expression into another form which is 
logically equivalent, but the form given is probably the easiest to 
understand at this point. The symbol © can be used to indicate 
exclusive-OR directly. This gate can most easily be remembered as 
follows: 

ALL INPUTS THE SAME GIVES OUTPUT 
XOR GATE: AT 0 

ONE INPUT AT 1 GIVES OUTPUT AT 1. 
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The X O R gate has a most useful function in logic circuits, in that 
it may be used to either invert or not invert a data bit in accordance 
with a control input. Consider the A input as a control, and the B 
input as a data input, for example. By studying the full truth table, it 
may be seen that when A is at logic 0, the Q output is a direct copy 
of the B input. Thus a control input at logic 0 produces no inversion. 
When A is at logic 1, however, the Q output is the inverted form of 
the B input. Thus a control input at logic 1 produces an inversion. 
This feature is summarised by the lower right truth table for the 
gate, where the output of ' Q ' is obtained from a data input ' Q ' when 
not inverted, or ' Q ' when inverted. 

The lower portion of the figure shows simple buffer and inverter 
gates. No logical change occurs between the input and output of the 
buffer gate, hence the Boolean expression A = Q. The gate is useful 
where it is required to connect more inputs to a particular output 
than are allowed as direct connections. If a particular gate is limited 
to a fanout (i.e. loading) of 10 gates, then if a buffer gate forms one of 
the loads, 9 inputs can be connected directly to the output in 
question, and a further 10 to the buffer gate, without any logical 
modification. 

The inverter gate has a similar symbol, but with the addition of 
the now expected inverting circle on the output. This gate comple
ments the logic state applied to the input, hence the Boolean 
expression: A = Q. Thus a logic 0 in produces a logic 1 out, and a 
logic 1 in produces a logic 0 out. 

A—I >>V 4 1/P AND-OR- INVERTgate 
A 

1 

X 

0 

0 

X 

I χ 

B 

1 

X 

X 

X 

0 

0 

c 
X 

1 

0 

X 

0 

X 

D 

X 

1 

X 

0 

X 

0 

Q I 
0 

0 

1 

1 

1 

1 (A.B)+(C.D)=Q 

Figure 3.4. A 4-input AND-OR-INVERT gate and 
truth table 

Another logic function which can be quite useful is performed by 
what is known as an AND-OR- INVERT gate. This is shown with 
its truth table in Figure 3.4. (A.B) + ( C D ) = Q is the Boolean 
expression read as: N O T ((A AND B) O R (C AND D)) GIVES Q. 
Because there are four inputs, a full truth table would require 16 
lines. For this reason only the simplified truth table is given. This 
shows that the unique condition of logic 0 out results from either (or 
both) of A AND B O R C AND D being at logic 1. If any input is low 
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in both input pairs then the output is at logic 1. Remember this gate 
as follows: 

ΛΧΤΤΪ ΓΛΤ> τχτΛ/ιτϋ^ η Λ ™ EITHER INPUT PAIR AT 1 AND-OR-INVERT GATE: Q I V E S ο υ τ ρ υ χ A T Q 

ALL INPUT PAIRS WITH A 0 
GIVES OUTPUT AT 1. 

Appendices at the rear of this book give a selection of the most 
useful digital devices in the SN7400 series, where several of the 
above gate types can be obtained on a single integrated circuit. The 
smallest of these dual-in-line encapsulations has 14 pins, as illus
trated in Figure 3.5. Two of these pins are required for the power 

% Figure 3.5. The 14-pin dual-in-line 
plastic encapsulation 

supplies, leaving 12 functional pins. This conveniently allows for 
four identical 2-input logic gates. 

Many of the more popular logic gates are also available with 
open-collector outputs instead of the push-pull or totem-pole arrange
ment shown in Figure 2.4; with reference to this figure, such devices 
do not include R4, TR3 and D2. The logic 0 output condition is 
therefore unchanged, but the logic 1 condition simply presents a 
high impedance output, and an external connection must employ a 
pull-up resistor to +5 V. Such gates can be useful for driving loads, 

-3- Figure 3.6. Examples of 3-state gates: (a) 
enabled with control high; (b) enabled 
with control low 

or several such gates can be linked to a common pull-up resistor to 
give what is termed a wired-OR connection. 

Another form of output available with certain devices is known as 
three-state*. As the name suggests, such devices present three 
alternative forms of output: logic 1, logic 0, and also a high 
impedance state. The high impedance state or the logic states are 
output in accordance with a control line C, as shown in Figure 3.6. 
The high impedance state allows any number of these gates to be 

* The name 'tri-state' is also used, but this is a manufacturer's trade mark. 
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commoned in order to route different data lines to a common 
destination or destinations. A number of associated data lines 
connected in this manner are known as a data highway) thus data 
highways link multiple data sources to one or more destinations. 

The examples given in the figure show the two options available; 
in Figure 3.6(a) the control input must be high to enable the gate, 
and in Figure 3.6(b) the control input must be low to enable the 
gate. When the gates are not enabled they present a high impedance 
output. The control circuitry must ensure that only one gate is 
enabled at once in each group of gates with commoned outputs. 

It may therefore be seen that there is a wide variety of devices for 
the designer to choose from, and invariably a particular type will 
suit his needs. 

Different packages are available for different applications, such as 
the ceramic encapsulation for military environments. Most 
commercial systems employ the cheaper plastic dual-in-line (DIL) 
encapsulations, as illustrated. More complex devices utilise similar 
packages with more pins. In all cases, however, pinning is always 
from pin 1 at the top left-hand side of the device, when viewed from 
the top with the identification mark farthest away from you. This is 
generally a notch or central mark, as shown, but replaced sometimes 
by a dot next to the number 1 pin. The pins are then numbered down 
the left-hand side and back up the right-hand side, as shown in 
Appendix A. 

There is a preferred standard for the power supplies, which places 
ground as the bottom left-hand pin, and Vc c as the top right-hand 
pin, but there are numerous exceptions to this, and this should never 
be taken for granted. 

Commercial devices containing logic gates discussed in this 
chapter are included in Appendix A as follows. 

Gate 

2 i/p AND 
2 i/p NAND 
2 i/p OR 
2 i/p NOR 
2 i/p XOR 
Buffer 
Inverter 

Number in package 

4 
4 
4 
4 
4 
6 (with open-col) 
6 

4 i/p AND-OR-INVERT 2 
3-state buffers 
Schmitt inverter 

4 
6 

Type number 

7408 
7400 
7432 
7402 
7486 
7417 
7404 
7451 
74125/6 
7414 

Appendix ref. 

A7 
Al 
A8 
A6 
B5 
A2 (note) 
A2 
B3 
B7 
A4 
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Schmitt triggers 

The previous chapter described the internal structure of a typical 
T T L gate, and emphasised that all inputs and outputs switch 
between high and low states. Certain gates may contain quite a 
number of stages, and if an input is held at some intermediate 
voltage level the internal circuit may not switch to one of the two 
logic states: this could lead to transient conditions and internal 
oscillations. For this reason it is important that switching times are 
always very fast. These should typically be of the order of 10 ns 
(10-8s). 

This may sound an enormous problem to the person more 
familiar with linear circuits of a slower variety, but it should be 
remembered that logic gates naturally achieve the switching time 
requirements, and the only problem comes where it is necessary to 
interface a logic circuit with a slower section of discrete circuitry, as 
with a transistor input, for example. This is where the Schmitt 
trigger comes in. The linear designer will be familiar with discrete 
versions of the Schmitt trigger, but in logic terms, it is simply 
another gate, as shown from the last entry in the table of gate types 
given above. 

Slow inputs should not be connected to ordinary logic gate inputs, 
except under special conditions, which will be discussed in Part 2. 
Slow inputs may be connected to Schmitt triggers, since these 
provide fast output switching between logic states once the input has 
crossed upper or lower threshold voltages. Figure 3.7 shows the 
symbol for a 4-input Schmitt trigger arranged as a NAND gate 
(7413 is a dual 4-input version). The waveform diagram shows how 
the output changes in relation to an input, assuming that the other 
inputs are at logic 1. The typical positive-going threshold voltage 
( V T + ) is 1.7 V and the negative-going threshold (VT_) is typically 
0.9 V. The hysteresis between these two figures prevents oscillation 
at an intermediate voltage level. 

Typical thresholds 

Figure 3.7. A 4-input Schmitt trigger (NAND) gate 

Schmitt triggers are available as 4 or 2-input NAND gates, or as 
simple inverters (as listed in the preceding table). The hysteresis 
symbol within an ordinary gate outline distinguishes it as having 
Schmitt inputs. Because these gates will accept slow edges, they can 
be used after small CR type delays. 
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Logic networks 

Figure 3.8 depicts a very simple logic network: a combination of 
logic gates connected together to form a logic circuit. If it is required 
to determine the output conditions for all input conditions, then one 
method of achieving this is to prepare a truth table. In the figure this 
has been done by considering every possible input condition. The l 's 
and O's written above the lines indicate the sequence that these 
conditions have been considered in. Thus A = 0 and B = 0 is the 
first condition considered, which produces logic 0 at the O R gate 
output, logic 1 at the NAND gate output, logic 0 at the AND gate 
output, and logic 1 at the inverter output. This is a useful circuit to 
study since it contains most of the gate types. Satisfy yourself of the 
validity of the truth table by considering all the conditions. 

Once this has been done, it is interesting to note that the circuit 
without the inverter is the equivalent of the exclusive O R gate. 
Compare the truth table with that shown in Figure 3.3. Here is a 
simple method of obtaining an X O R function without using an 
X O R gate. 
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Figure 3.8. Considering all possible states for a logic network 

So far we have only considered logic gates in terms of meaningless 
A, B, C and Q terms. It is perhaps a little more inspiring at this 
stage to consider a simple logic circuit which has a practical 
application. In this way it may be better appreciated how useful 
logic can be. Figure 3.9 shows some indicator logic for a combined 
burglar and fire alarm system. It drives an alarm buzzer if a window 
is opened, a door is opened, or if smoke is detected. A light emitting 
diode (LED) indicates the nature of the alarm, and two outputs are 
provided to drive other equipment in order to give alarms to the 
police station for an intruder, or the fire station for a fire. 

Logic lines are best labelled with a mnemonic which suggests 
their function. Thus the inputs are labelled W I N D S H U T to indic
ate that all windows are shut, D O O R S H U T to indicate that all 
doors are shut, and N O S M O K E to indicate that a smoke detector 
has not detected any smoke. IC3 provides three open-collector 
buffer gates (App. A2 note) for driving the LEDs; these are 
non-inverting gates. If any of the inputs goes false*, i.e. to logic 0, 

* Positive logic is used throughout this book. 
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WINDOWS (LED) 

(«^ —-DOORS (LED) 

FIRE (LED) 

BUZZER DRIVE 

fr 

OINTRUDER 

O F I R E WARN 

Figure 3.9. A practical application of logic gates 

the output of the appropriate buffer gate also goes low, thereby 
drawing current through the LED-resistor combination to indicate 
the nature of the alarm. 

All inputs at logic 1 provide a logic 0 output at IC2a NAND gate, 
which holds off TR1, but if one or more of the inputs goes false, the 
output goes high, allowing current to flow through R4 into the base 
of TR1, so switching on the alarm buzzer. R4 provides for a higher 
base current than the NAND gate could provide in its high state. If 
WINDSHUT or DOORSHUT goes false, the output of ICla AND 
gate also goes false, making the INTRUDER output go active; the 
bar indicates that this output line is active low. If NOSMOKE goes 
false then FIREWARN goes active low. IClb is simply used to 
provide a buffer between the output line and the NOSMOKE input 
line, but it has no logical significance because the gate is non-
inverting. The two inputs of this gate are tied together purely for 
convenience: all unused gate inputs should be taken to a logic level, 
and an alternative would be to tie one input to logic 1. As explained 
in the previous chapter, when inputs to a single gate are tied 
together as shown, they only form a single gate load to a low-driving 
input. 

The integrated circuits used in this circuit are included in 
Appendix A as follows: 

IC1 - 7408 - quad 2 i/p positive AND gates (App. A7). 
IC2 - 7410 - triple 3 i/p positive NAND gate (App. A3). 
IC3 - 7417 - hex buffers/drivers with open collector high 

voltage outputs (App. A2). 
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4 
Optimisation versus minimisation 

The previous chapter showed how Boolean algebra lends itself to 
expressing logic circuits in mathematical terms. Like ordinary 
algebra, by following certain rules it is possible to manipulate the 
terms and obtain equivalent but different expressions; it is also 
possible to simplify logical expressions. Another method employed 
to simplify logical conditions is to draw what are termed Karnaugh 
maps) these allow all possible logical permutations to be displayed in 
graphical terms. 

Both the above methods lead to what I have termed minimisation of 
a logical requirement, in that they produce the simplest logical 
solution. These techniques are extensively documented in other 
literature, and are the subject matter of the more traditional digital 
courses, therefore this chapter will only describe them in sufficient 
detail to show their usefulness - and limitations. Whilst such 
techniques lead to minimisation, this is not the same thing as 
optimisation of a logic circuit, in practical terms; this chapter aims to 
show the difference. 

Boolean algebra 

George Boole devised an algebraic method of converting logical 
statements into mathematical terms; it was intended as a tool for the 
logician. It was Shannon who recognised its use when analysing 
circuit conditions as long ago as 1938. He used it to analyse 
mechanical switching, but today it is the perfect mathematical 
method of expressing logic circuits. We shall now look briefly at the 
rules of Boolean algebra, for it will be appreciated that by simplify
ing a Boolean expression we can simplify the associated logic 
network. 

Below are given the basic laws of Boolean algebra. Many see these 
purely in mathematical terms, but the reader is encouraged to 
visualise them in terms of their gate equivalents. In this way their 
significance - and truth - will be better understood. 
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Laws of Boolean algebra 

Gating 

Identity 

Double negative 

Commutative laws 

Associative laws 

Distributive laws 

De Morgan's Theorem: 
First Rule: 

Second Rule: 

AND OR NOT 
0.0 = 0 0 + 0 = 0 T = 0 
0.1 = 0 0 + 1 = 1 0 = 1 
1.1 = 1 1 + 1 = 1 Complements 
A.0 = 0 A + 0 = A A.A = 0 
A. l = A A + 1 = 1 A + A = 1 

A.A = A A + A = A 
A(A + B) = A A + A.B = A 
A(A + B) = A . B A + X . B = A + B 

X = A 

A.B = B.A A + B = B + A 

A + (B + C) = (A + B) + C 
A.(B.C) = (A.B).C 

A.(B + C) = (A.B) + (A.C) 
A + ( B . C ) = (A + B).(A + C) 

negation of logical sum 
A T B = X . B 

negation of logical product 
X7B = A + B 

Taking just a few examples will show how the above rules may be 
visualised in terms of their equivalent gates. Once you have learned 
how the gates behave (and it is essential that you do), the above 
expressions make immediate sense. By relating the expressions to 
gate equivalents you obtain a practical grasp instead of learning 
arbitrary laws in the more usual parrot-fashion. 

Firstly consider an AND gate. By definition, this requires all 
inputs to be at logic 1 for a logic 1 at the output, therefore the first 
three gating AND terms are seen to be true. If we now consider an 
unknown input represented by A, it is equivalent to a don't care 
input if the other input is at 0, therefore the output is also 0. If the A 
input is combined with a 1 input, however, the output will be the 
same as the A input, hence A. l = A. If in doubt, study the truth 
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table given in Figure 3.3. Having satisfied yourself of this much, 
carry out a similar exercise with the O R gate terms. 

Since there are only two logical states, 0 and 1, then clearly I must 
be equivalent to 0, or conversely, 0 equivalent to L_ The com
plementary expressions are also self-evident. If A and A are inputs 
to an AND gate, they must always differ, therefore the unique 
condition of all l 's producing an output of 1 can never be achieved, 
the output always being 0. If A and A are applied to an O R gate, one 
of them must always be at 1, therefore the output is always at 1. 

The Identity laws are simpler than they look, if you think about 
them. For example, if the terms A and A. B are applied to the inputs 
of an O R gate, the output will be at 1 any time A is true; since A is 
required in both terms, the output is equivalent to A; if A is false, the 
output will be at 0. The double negative is obvious, for if something 
is N O T ( N O T A), it must be A. The Commutative laws show that 
there is no significance in order - apples and pears are the same as 
pears and apples. The Associative laws remind us of ordinary 
algebra, as do the Distributive laws, where we are factorising. Draw 
logic circuits to represent any expressions you are in doubt about 
and all should become clear (see Figure 3.8 for the technique). 

:=0! :=0 
A 
0 
0 
1 
1 

B 
0 
1 
0 
1 

A+B 
0 
1 
1 
1 

ÄTB 
1 
0 
0 
0 

Ä 
1 
1 
0 
0 

B 
1 
0 
1 
0 

Ä.B 
1 
0 
0 
0 

-Equivalent _* 
Figure 4.1. Interpreting De Morgan's First Rule 
using a NOR gate 

De Morgan's Theorem is a little more difficult to follow, but both 
rules can be proven by drawing the truth tables for the indicated 
gates and then comparing thern^ Figure 4.1 shows this for De 
Morgan's First Rule: A 4- B = A. B, using a N O R gate on the left for 
the left-hand term, and an AND gate with 'notted' inputs on the 
right, for the right-hand terrnj_in the latter case, the inverting circles 
on the inputs create A and B from the true A and B inputs. The 
N O R gate section of the truth table is identical to that seen before in 
Figure 3.3^except that an O R column has been added for clarity); 
the A and B columns are the complements of the A and B columns, 
and the far right-hand column is an AND of the negated A and B 
columns which immediately precede it. 
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By comparing the columns representing the outputs of these two 
gates it can be seen that they are identical, thereby proving the rule. 
In practical terms it means that a NOR gate can perform an AND 
function with negated inputs. 

De Morgan's Second Rule is similarly proven in Figure 4.2 using 
a NAND gate for the left-hand term (A7B), jind an OR gate with 
inverting inputs for the right-hand term (A + B). Once again it may 
be seen that the outputs from these two gates are identical. In 
practical terms this indicates that a NAND gate can be used to 
provide an OR function with inverted inputs. 

Truth table 

A 
0 
0 
1 
1 

B 
0 
1 
0 
1 

A.B 
0 
0 
0 
1 

O 
1 
1 
1 
0 

Ä 
1 
1 
0 
0 

* ■ 

1 
0 
1 
0 

Ä+B 
1 
1 
1 
0 

■Equivalent 

Figure 4.2. Interpreting De Morgan's Second 
Rule using a NAND gate 

Logic circuits frequently produce inverted signals at a point where 
non-inverted signals are reguired_to perform a particular function 
directly. For example, if A and B are directly available and the 
function A + B is required, the optimum solution is to use a NAND 
gate, which produces the required_result^lirectly; the alternative is 
to use inverters in series with both A and B, and to follow these with 
an OR gate. Because NAND and NOR gates provide an inversion, it 
is possible to use combinations of either of these gates to produce 
any AND/OR/NAND/NOR function, which can be useful where 
spare gates are available; clearly either a NAND or a NOR gate can 
be pressed into service as a simple inverter if required. 

Karnaugh maps 

Consider the following Boolean expression, which represents a logic 
circuit requirement: 

ABC + ABC + AB + BC = Z 
Φ @ ® ® 

As with ordinary algebra, the absence of a symbol between letters 
implies V (i.e. and AND relationship, in this context). Figure 4.3 is 
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a Karnaugh map for three variables, which in this case are A, B, and 
C. The first two columns represent A true, the two central columns 
represent B true, and the upper row represents C true. Thus the top 
left-hand square represents the logical condition A B C , and the 
bottom right represents A B C . 

® 

0 

I® ©I 
1 

® ® 

Figure 4.3. A simple Karnaugh 
map for three variables 

If 'Γ is now marked in the various squares to plot the logical 
expression given above, the entries shown in the figure will be 
obtained. The circled numbers beneath the terms in the Boolean 
expression match the related squares marked by similar circled 
numbers in the Karnaugh map*. It may be seen that the shorter the 
term, the more squares it specifies. In this case, the square 
representing A B C is covered by the first and the third Boolean 
terms. 

The Karnaugh map allows us to see a simplified logical express
ion. This is derived by grouping together adjacent squares in the 
map, where it may be visualised that left and right-hand sides bend 
round and touch, and upper and lower sides do likewise. Thus A 
describes the four squares in the left-hand block of the map, leaving 
only j}ne required square not covered. A simplified expression is: 
A + B C . 

A combined example 

Let us suppose that a circuit is required to produce an output Z from 
the input conditions as described by the following expression: 

ABC + ABC + ABC + ABC + ACD = Z 
φ © © ® © 

By applying the laws of Boolean algebra, this may be simplified as 
follows: 

AC(B + B) + BC (X + A) 4- ACD = Z 
AC. l +J5C.1 + ACD = Z 
ACJ- BC + ACD_= Z 
C (A + AD) + BC = Z 

* The circled numbers are purely a teaching aid. 
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Figure 4.4. A Karnaugh map for four 
variables 

Figure 4.4 shows the same expression plotted on a four variable 
Karnaugh map in the same manner as before. This then leads to a 
simplified expression obtained from the borders marked x, y and z 
on the map, corresponding to the penultimate line in the Boolean 
simplification (x giving AC; y giving BC; z giving ACD). It can also 
be seen that the final Boolean expression above is equally true by 
inspection of the Karnaugh map. 

One final word about Karnaugh maps. If more than four 
variables are involved, an extra dimension is needed to cope, and 
arrays are needed! Things really tend to get out of hand at this point 
and the designer should be seeking another more practical 
approach. 

Optimisat ion 

Let us now consider whether the techniques of Boolean algebra or 
Karnaugh maps are the final solution when it comes to effective 
logic design. It will be appreciated that such procedures lead to 
minimisation of the logic function, but is this the same thing as 
optimisation of components? 

The primary objectives of a digital design engineer may be 
summarised as follows: 

a. Minimum component count. 
b . Maximum availability of components. 

Low cost components. c. 

If minimum component count is achieved, we will have won in 
two ways: firstly on cost, since low component count and low cost go 
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hand-in-hand, and secondly in the reduction of device interconnect
ions. Each and every interconnection is a potential source of trouble, 
therefore the fewer there are, the more inherently reliable the 
equipment will be. Cost is also reflected in device availability, for 
maximum availability of component types goes with low cost - the 
prices of ICs dramatically illustrate the supply and demand equat
ion, with the most popular types being the cheapest, by far. For this 
reason, the designer should work with preferred types in mind. 

The techniques of logic minimisation are obviously useful in 
reducing a complex logical requirement into its simplest logical form, 
but the designer should then take this as the bare bones of his 
requirement and optimise his final solution by his manner of 
implementation. This is best illustrated with a simple example. 

Consider the simple alarm/indicator logic circuit discussed at the 
end of the previous chapter (see Figure 3.9). Ignoring the simple 
buffer requirements of the LEDs, the logical requirements are as 
follows: 

W I N D S H U T . D O O R S H U T . N O S M O K E = BUZZER 
D R I V E 

W I N D S H U T . D O Q R S H U T = I N T R U D E R 
N O S M O K E = FIREWARN 

The above Boolean expressions describe the circuit requirements, 
where 'BUZZER D R I V E ' is taken to be the input to TR1 base. 
These three expressions could be used as the basis for three separate 
Karnaugh maps, but there is little point in drawing these for such 
simple requirements: the circuit shown in Figure 3.9 can be seen to 
be the minimum logical solution, for single gates directly implement 
the above expressions, where: 

B U Z Z E R D R I V E is implemented by IC2a 
I N T R U D E R is implemented by I C l a 
F IREWARN is implemented by I C l b (providing a required 

non-inverting buffer). 

The original circuit will work using the components listed in 
Chapter 3, but it can be improved by taking into account the 
effectiveness with which we are utilising the components. Consider 
what is used of the original components: 

in IC1 only two out of four AND gates are used; 
in IC2 only one out of three NAND gates is used; 
in IC3 only three out of six buffer/drivers are used. 
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DOORSHUT-
NOSMOKE-
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£»-> O FIREWARN 
BUZZER DRIVE 

Figure 4.5. A cost-effective version of the alarm/indicator logic previously 
considered in Figure 3.9 

It will be seen that this leaves seven unused gates, which is clearly 
an ineffective use of components. Consider the alternative solution 
given in Figure 4.5. 

At first sight the circuit looks needlessly complex, but the 
advantages are seen when the component count is considered. In 
this alternative circuit only two ICs are needed: 

IC1 - 7404 - hex inverter/drivers (App. A2), containing the only 
unused gate 

IC2 - 7408 - quad 2 i/p AND gates (App. A7). 

The first economy is to note that the output required for 
INTRUDER is a partial decode of the BUZZER DRIVE require
ment; thus IC2c provides the INTRUDER output directly, but only 
needs to be NANDed with NOSMOKE to obtain the BUZZER 
DRIVE requirement. Since IC2c gate has made us use a quad AND 
gate, IC2d followed by an inverter (AND inverted) is equivalent to 
the required NAND function. Inverters are invariably required in 
any logic circuit, therefore hex inverter ICs are extremely cost-
effective. In this circuit the inverters are doubled-up in two places to 
provide non-inverting buffers (double inversion equates to no 
inversion), i.e. ICla/IClb and ICld/lCle. The two AND gates 
IC2a and IC2b provide the remaining non-inverting buffers re
quired to drive the LEDs (NB this circuit would require LEDs 
having a forward current requirement of less than 16mA). 
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The percentage effect of optimisation techniques such as this grows 
smaller as the size of a circuit increases - for the more gates of a 
particular type that are called for, the more gates may be used in a 
particular device. Part 2 of this book will show how to best approach 
efficient design from the point of view of component count, but this 
information should be sufficient to demonstrate that there is a clear 
distinction between what I have termed minimisation and optimisation. 
Optimisation is just as important in a larger circuit, for here the 
designer is trying to keep down the component count for even more 
pressing reasons - it could make the difference between needing an 
extra printed circuit board or perhaps a higher current capability 
from the power supply, and in these regions the cost difference can 
be quite considerable. 

Thus the need is seen for the designer to appreciate not just the 
logical significance of his circuits, but the practical aspects as well. It 
makes no difference whether the enthusiast's pocket or the 
manufacturer's profitability is being considered, the aim is the same: 
component optimisation. If you can appreciate the need from the 
start, it becomes an inner instinct, and an important aid to practical 
design. 

An interesting exercise at this point is to attempt to design a 
simple circuit optimised for available components. The circuit 
required in the combined example given earlier is ideally suited to 
this. Allowing for the fact that the circuit output simplifies to 
C(A + AD) + BC, and that the circuit inputs are A, B, C and D, 
attempt to design a suitable circuit using only 6 NAND gates*. 

* The few exercises suggested throughout this book should considerably aid the reader's appreciation 
of the points under discussion. For the book to achieve its objective, they should be attempted. 
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5 
Timing 

The circuits that we have looked at so far have been static in nature, 
i.e. we have only considered them with fixed inputs and outputs. In 
a practical circuit the sitation is dynamic and the inputs and outputs 
change with time. This may not be an important consideration in 
simple circuits, but it can become of critical importance in more 
complex circuits, as will be seen later. 

In order to allow us to better understand how a circuit performs 
with time, the most convenient method of displaying the changing 
dynamic situation is to draw timing diagrams, sometimes known as 
waveform diagrams. This chapter introduces the timing diagram in 
order that it may be used in following chapters. It also demonstrates 
the importance of timing considerations with reference to hazard 
conditions. 

General considerations 

It will be appreciated by those familiar with linear electronics that 
there must be a finite delay due to the switching time of a logic gate. 
Chapter 2 showed the internal structure of a typical T T L gate, and 
this was seen to comprise several transistors, each of which must 
switch from one level to another if a change of state is demanded. 
The time taken for the output of a logic gate to change as a result of 
an input change is known as the propagation delay, i.e. the time taken 
for the changed logic condition to 'propagate ' through the element. 
The propagation delay is typically 10 ns for a T T L gate (i.e. 10~8 

second), however, this is reduced to around 3ns for Schottky T T L , 
where special diodes prevent internal transistors from saturating. 
The figure of 10 ns should generally be borne in mind for design 
purposes. If good design practices are followed, the actual propagat
ion of any device should not be significant in any calculations, any 
more than the actual current gain of a transistor should be a linear 
design; it is the designer's aim to make variable component para
meters irrelevant in the performance of this circuit. 
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Timing diagrams 

A simple logic circuit will now be considered in an operational 
context with varying input and output conditions, and it will be 
shown how these can be illustrated by means of a timing diagram. 
Figure 5.1 depicts the circuit, and Figure 5.2 the related timing 
diagram for particular input conditions. For clarity in this example, 
the input signals are shown above a horizontal chained line, and the 
resultant outputs are shown below this line. 

Figure 5.1. A circuit producing an output C (A 4- AD) +BC (showing 
added signal names beneath the lines) 
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Figure 5.2. Timing diagram for the circuit giving in Figure 5.1 (inputs shown 
above the chain line) 

The reader might be interested to note that the Boolean express
ions above the lines in Figure 5.1 related to the exercise suggested at 
the end of the previous chapter - this figure represents the solution 
to the exercise. To make the circuit more meaningful in an 
operational context, signal names have been added to inputs and 
outputs, and have also been shown at intermediate points in the 
circuit below the lines.* 

Thus Figure 4.4 shows the Karnaugh map for this circuit. 
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Let us suppose that an activating mechanism can only be 
activated when either: 

a. an enabling pulse EN occurs when a D E T E C T line is low, or 
when an override signal O ' R D E is present if D E T E C T is high; 

b . the enabling pulse EN is not present, but an emergency signal 
EGCY is present. 

Meaningful signal names have been added on the circuit as 
follows: 

a. OSEL (override select) goes low for: D E T E C T . O ' R D E ; 
b.SEL (select) goes high due to selection by either D E T E C T or 

O S E L going low (i.e. there is a NAND gate operating as an 
inverted input OR) ; 

c. O P E N goes low if both SEL and EN are true; 
d. EGCYEN (emergency enable) goes low if EN is low together with 

EGCY high; 
e. A C T I V A T E goes high if either O P E N or EGCYEN go low 

(another inverted input O R gate). 

As a special aid for the novice, Figure 5.1 - and the remainder of this book -
use the symbol f within gates which are used to perform other than their normal 
function, by virtue of inverted inputs. This is a most useful design aid which the 
reader may care to use himself. 

The timing diagram in Figure 5.2 shows changes in logic states at 
times marked by vertical lines, these being labelled 0 to 10 for 
reference purposes; thus to represents the situation at the far left of 
the diagram, with no inputs active. The first condition illustrated is 
the emergency condition, with EGCY going true at t i , and false 
again at t2» The second condition illustrated is the normal operation 
where D E T E C T goes active (low) at t3, the enable pulse EN occurs 
between t4 and t5, and D E T E C T reverts to an inactive state at t6. 
Finally the override condition is illustrated, where O 'RDE goes high 
at t7 until t9; the special case of EN being true whilst O ' R D E is true 
is shown betwen t8 and t9 to show the effects of this perhaps 
unwanted condition. It is in circumstances like this that the timing 
diagram can be most useful, for it allows us to analyse circuit effects 
under all conditions. Finally EN goes false again at t i 0 . 

I t is not possible to draw the waveform for A C T I V A T E directly 
because there are too many intermediate stages to take into account. 
We must therefore work through the circuit from the inputs. In this 
timing diagram, and all that follow, the logic 1 state is shown as the 
upper voltage level and the logic 0 state as the lower voltage level; 
the diagrams therefore effectively plot voltages against time. 
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Let us consider OSEL first. This is a NAND of D E T E C T and 
O 'RDE; since O ' R D E is only high between t7 and t9, and because 
D E T E C T is also high between these times, OSEL is only low 
between these times; it is drawn high at all other times. 

SEL is an inverted input O R of D E T E C T and OSEL; thus we can 
only work out this waveform in its entirety after OSEL has been 
determined. SEL is high between t3 and t6 due to D E T E C T being 
low, and is also high between t7 and t9 due to O 'RDE being high 
together with D E T E C T high. 

O P E N is dependent upon both the former signals, and is a NAND 
of SEL and EN. It is therefore low between t4 and t5 and between t8 

and t9. Normally it might be expected that it would be low when EN 
is true, but it is cut off at t9 rather than t i 0 due to SEL going low at 
t9-

EGCYGEN is a NAND of EGCY and EN (since EN is inverted 
by a NAND gate); thus EGC YEN is low when EGCY is high, 
providing that EN is low (i.e. between t! and t2). It will be seen that 
if EN went high whilst EGCY is high, this would force EGCYEN 
high (not shown). 

The output A C T I V A T E is the result of the inverted input O R 
gate, and is high if either OPEN or EGCYEN are low; thus the two 
waveforms above A C T I V A T E on the timing diagram show when 
A C T I V A T E is high, i.e. between t! and t2, between t4 and t5, and 
between t8 and t9. 

Des ign practice 

The example previously given illustrates several important design 
practices which the reader is encouraged to follow. 

1. Signal names are given to significant points within the circuit to: 
a. be meaningful, in terms of their mnemonics; 
b . allow the circuit points to be identified on a timing diagram. 

2. The signal names are always given a name to clearly indicate 
their active level. Thus D E T E C T is used in preference to DE
T E C T , since 'detection' is signified by the line going low when 
active. Similarly O P E N is better than OPEN, since the line goes 
low to Open'. A C T I V A T E is used (as opposed to ACTIVATE) 
because this line goes high (i.e. true) to 'activate'. 

Much confusion can be caused by not observing the latter rule, 
especially on inputs and outputs to printed circuit boards; in this 
respect, many engineers fall down. Whilst there may be no confusion 
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in their minds, there may be in the minds of those who have to 
interpret their circuits at some later date. Another constant source of 
confusion is where a line has opposite significance in its two separate 
states; examples are: READ/WRITE; ON/OFF; STOP/GO. This 
confusion even exists in manufacturers' data, although there is an 
unwritten convention that the first of such terms represents the logic 
1 condition. This can never be taken for granted. The author 
strongly advocates the use of a bar over the appropriate term in 
order that there can be no confusion. The above then become: 
READ/WRITE; ON/OFF; STOP/GO. 

In addition, the author 's scheme of using the 'dagger' symbol is a 
useful one to draw attention to gates not performing their expected 
function; this can save a lot of puzzlement for those other than the 
designer, and even for the designer after a few weeks! Where such 
circuits are liable to be used by others, a ' f footnote should indicate: 
gates not used for their primary logic function. 

Start as you mean to go on with conventions such as these, and 
not only do your designs become clearer to you - they are clearer to 
others as well. 

Race hazard condit ions 

Figures 5.3 and 5.4 show another logic circuit and its associated 
timing diagram. These will be used to illustrate what is known as a 
'race hazard' . 

START * I \ _ 
10 f » Q1 

2 gate delay 

FINDEL 

Figure 5.3. A latching circuit demonstrating race hazard conditions 

The circuit comprises two latches, more of which will be said in the 
next chapter. For the purposes of this chapter, all that need be said 
is that two NAND gates coupled as shown provide a means of 
retaining a particular logic condition between controlling input 
pulses. The controlling inputs START and FIN are lines which are 
pulsed low (i.e. they are normally high), to change the latch state. 

CH> 
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Figure 5.4. Timing diagram showing the results of a race hazard condition in the 
circuit given as Figure 5.3 

Reference to the timing diagram between t0 and t5 shows how the 
latch with outputs Q l and Q l is set and reset. At t0 and until ti F IN is 
low; at ti both inputs are inactive. At t2 START pulses low until t3. 
Note that outputs Q l and Q l are always complementary provided 
that both inputs to the latch are never taken low simultaneously. 
Thus START going low forces Q l high; Q l high together with FIN 
high forces Q l low. When START reverts to a high condition at t3 

the outputs do not change because Q l low keeps Q l high, and Q l 
AND FIN high keep Q l low. This condition will remain until t4, 
when FIN is pulsed low until t5. This reverses the condition of the 
latch, forcing Q l high, which in itself is combined with START high 
to force Q l low, and these new conditions are retained after t5, when 
the FIN pulses finishes. 

Under normal circumstances, the two inputs to a latch such as 
this would never be taken low together, but__ty shows a case where 
they are; this forces both outputs Q l and Q l high together, such 
that they are no longer complementary. All will be well if one input 
is removed before the other, but if they are both removed at the same 
time, as shown at t8, a race hazard condition arises. The latch must 
fall into a stable state with one output high and one output low, but 
which will it choose? In fact the result depends upon gate propagat
ion delays, a situation which cannot be tolerated in a design. 

Such a condition should never be permitted, but for the sake of 
this illustration of hazard conditions, it will be shown how a delay on 
one signal can make all the difference. The second latch with 
outputs Q2 and Q2 is identical to the first latch. The only circuit 
difference is that a 2-gate delay is introduced between the FIN input 
and the reset side of the second latch. Thus the waveform shown as 
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FINDEL (i.e. FIND-delayed) is always a small time lagging FIN; it 
is delayed time td as a result of two gate propagation delays (i.e. a 
nominal 20 ns). Thus the setting (i.e. front) edges of the second latch 
are the same as for the first latch, but the resetting edges lag because 
of this delay. At t8, when both inputs go high, the first latch might 
see either input as last, dependent upon propagation delays, and the 
latch outputs reach an indeterminate state (shown dotted on the 
timing diagram); no one can predict which state it will go to, except 
that the outputs will be complementary. The second latch avoids 
this race condition because FINDEL remains low at t8, whilst START 
alone goes high; thus Q2 remains high, which with START high 
forces Q2 low; Q2 is low when FINDEL finally goes high, thereby 
maintaining Q2 high. 

Any logic gating which depends upon inputs which nominally 
change at the same moment in time gives rise to a race condition and 
a logic hazard; such conditions must never be allowed in circuitry, 
and indeterminate states cannot be tolerated under normal condit
ions. It should be noted that the indeterminate conditions at the 
output of the first latch are removed as soon as normal conditions 
are restored by one input being pulsed low again, as at t9. 

Timing diagrams are a valuable aid towards checking that a 
particular circuit is fault free. For if all normal input conditions are 
examined, any possible hazard conditions should be spotted. If they 
exist, the design must be modified to avoid the situation. The delay 
shown in this example is for illustrative purposes only, and should 
not be taken as a method to be employed to counteract all potential 
race conditions. It is a technique which can be employed in some 
situations, however, although a 3-gate delay is perhaps more 
reliable. Later chapters will show alternative methods of introducing 
a delay. 

The best design aim is to avoid any situation which can give rise 
to possible race hazards, rather than to counteract their effects, and 
this will be taken further in Part 2. 
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6 
Latch, bistable, monostable and 
astable circuits 

Previous chapters have been primarily concerned with combinational 
logic, circuits in which the output is completely determined by the 
inputs. The exception so far has been the latch, for this is an element 
of sequential logic: the output is dependent upon the sequence of 
operation of the inputs. This chapter goes into greater depth on the 
latch, and also covers bistable, monostable and astable circuits. 

The purpose of sequential logic is to staticise (i.e. store) particular 
logic conditions after the affecting inputs have been removed. In this 
way the logic condition arising at one moment in time can be made 
to affect the logic condition arising at a subsequent moment in time. 
A short pulse can be detected and converted into a staticised level, 
or may be 'stretched' in time. Bistables and latches generally form 
the heart of any control logic, and monstables provide a means of 
obtaining single pulses of any desired length. Astable circuits 
provide a source of clock pulses. 

Latches 

We have already met the NAND gate latch (see Figures 5.3 and 
5.4). An alternative is the N O R gate latch. Both are shown in Figure 
6.1, together with function tables and timing diagrams. Note that a 
'function' table is basically the same as a truth table, but whereas a 
truth table is restricted to logic states, the function table is more 
versatile; the latter generally utilises the unambiguous Ή ' and 'L ' 
symbols to indicate high and low states respectively (thereby 
independent of logic convention), and incorporates other symbols 
such as arrows or pulses, where these are convenient in describing 
functional operation. Function tables are generally more popular in 
manufacturers ' data sheets, and will therefore be used extensively 
throughout this book. The reader should therefore become familiar 
with interpreting them. 
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Figure 6.1. Latching circuits with function tables and timing diagrams 

The convention with latches and bistables is to say they are set 
when the Q output is high, or reset* when the Q output is low; the Q 
output is normally complementary to the Q output. _ 

For clarity, the NAND gate latch is shown with inputs of S to set, 
and R to reset, i.e. the set/reset inputs must be taken low to function, 
as indicated by the downward pointing arrows in the Junction table. 
Thus taking S low sets the NAND latch, and taking R low resets it. 
The N O R gate latch offers the reverse action: the set input S is taken 
high to set the latch, and the reset R input is taken high to reset the 
latch. The action of the NAND gate latch was explained in the 
previous chapter, therefore only the N O R gate latch will be 
explained in detail in this chapter. The reader may care to note that 
the NAND latch is the most common. 

The inputs to the N O R gate latch should normally be low; in this 
condition the outputs staticise the condition previously applied 
(represented by Q 0 and Q 0 in the function table). If we suppose that 
the latch is initially in the reset condition, Q is therefore low, which 
combined with S low in the lower N O R gate produces Q; Q high 
maintains Q low via the upper N O R gate. If a set pulse is applied, 
momentarily taking S high, this forces Q low, which combined with 
R low takes Q_high, thereby setting the latch. When output Q goes 
high it forces Q low via the lower gate, thereby maintaining the 
stable set condition after the setting pulse has gone. The latch is 
reset in similar fashion. A positive-going reset pulse on R forces Q 
low, which combined with S low forces Q high, thereby restoring the 
other stable state. Except in special circumstances, S and R inputs 
should not be taken high simultaneously (see timing diagram). 
* or 'cleared' 43 



The NAND gate latch calls for negative-going pulses to set and 
reset the latch; for this reason the inputs should normally be kept 
high except to change the latch state, and normally both inputs 
should not be taken low together. Figure 6.1 shows how an 
indeterminate result occurs if set/reset inputs are cancelled together. 

All the latches shown have used two input gates for simplicity. 
Some applications call for alternative set or reset inputs, and in such 
cases gates can be used with more than two inputs. NAND gates are 
available with a wide variety of inputs, and are generally used for 
such purposes. The rule in such a case is that only one input should 
be taken low at once (unless the designer knows what he is about!). 

D-type bistables 

D-type bistables are similar to latches, except that they are clocked. 
Figure 6.2 shows such a bistable in (a), complete with optional 
preset (PR) and clear (CL) inputs; these control the state of the 
bistable in a similar fashion to the set and reset inputs of a latch, 
respectively, and such inputs override the clock. A function table is 
provided, together with timing diagrams. The timing diagram at (b) 

i 
D r nQ 

>CK 

—i_r u 
:i_r 

1 Inputs 

| PR" CT 

1L H 
H L 

L L 

H H 

H H 

H H 

CK 

X 

X 

X 

♦ 
♦ 
L 

D 

X 

X 

X 

H 

L 

X 

Outputs 

Q Q 

H L 

L H 

H* H# 

H L 

L H 

Q0 %\ 

' invalid condition 

J ! Π_Π_Π_Π_ 

_r 

D Q 

>CK 

Q 

™_τυ~υ~ι_π_Γί 
D=°J I I I I 
°"L_r~l_r~L_ 

Figure 6.2. D-type bistables, function table and timing diagrams 
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shows the various possibilities with all inputs externally controlled. 
The connections to the bistable shown in (c) show how the element 
can be toggled, and the related waveform for the toggled condition is 
shown at (d). (See App. Cl . ) 

The type of bistable element we shall now be considering is known 
as edge-triggered. This phrase signifies that it is the (leading) edge of 
the clock waveform which triggers the device. The state the outputs 
resume after such a trigger pulse is dependent upon the D input: the 
Q output will take the condition of the D input when the bistable is 
triggered, as shown in the left-hand timing diagram. 

The timing diagram will now be considered in detail (i.e. Figure 
6.2(b)). The preset input PR pulses low at ti and thereby presets the 
bistable (Q = 1; Q = 0). The clear input CL pulses low at t2 and 
thereby clears the bistable (Q = 0). At t3 the leading-edge of the first 
clock pulse triggers the bistable, but Q remains at 0 since the D 
input is at 0. At t4 the next clock pulse edge-triggers the bistable to 
give Q = 1, since the D input is now also at 1. At t5 the situation is 
simply confirmed, since the D input has not changed. At t6 the clock 
pulse clocks the bistable to the reset (or cleared) condition because 
the D input is now low. 

It should be appreciated that the edges of pulses such as the clock 
pulse will have very fast rise and fall times - typically well below 
10 ns - therefore the condition seen at the beginning of the rising 
edge of edge-triggered bistables dictates what state it will take up; so 
long as the D input does not change for the typical propagation 
delay time, the bistable is not affected if the D input then changes. 
T h e propagation delay in bistables themselves is more than adequ
ate when coupled to each other to allow simultaneous clocking 
without any_ambiguity of conditions arising. Thus it is possible to 
couple the Q output of a D-type bistable back into the D input, 
thereby causing the bistable to change state - or toggle -^_at each 
clock pulse, as shown in parts (c) and (d) of the figure. The Q output 
must be used because it is always opposite to the state that the Q 
output takes up; since the Q output takes up the state of the D input, 
linking this to the D input would cause the bistable to remain in one 
state when clocked: either high or low, depending upon its initial 
condition. 

Another variety of D-type bistable is the D-type latch, sometimes 
known as a transparent latch. This is not usually employed singly, but 
in conjunction with similar latches, usually on parallel data lines. 
This is shown in Figure 6.3. This is not clocked by the G input, but 
allows the output (at Q) to follow the D input whilst it is high; when 
G is taken low, it latches the condition then existing at the D input 
and retains it until G is again taken high. (See App. C3.) 
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Figure 6.3. A bistable D-type latch (transparent latch) 

J-K type bistables 

The J - K bistable is available as either edge-triggered or master-slave. 
It is similar to the D-type bistable, except that there are now two 
controlling inputs (i.e. J and K) rather than one (i.e. D). This means 
that there are more permutations possible for the output to take with 
respect to the inputs; as before, this occurs under the control of a 
clock pulse. This section only describes the master-slave variety, 
since this is by far the most popular and useful. The edge-triggered 
variety is identically controlled with respect to J - K inputs, but 
changes state on a defined edge of the clock pulse (either positive or 
negative), as opposed to the more complex timing relationship to be 
described for the master-slave variety. (See App. C2.) 

The alternatives of either edge-triggered D-types or master-slave 
J - K bistables should give sufficient scope for just about all design 
requirements, and the reader is advised to only use these types, 
particularly in early designs. As a matter of normal practice, this is 
generally good advice, for these two varieties are most commonly 
used by engineers, and circuits are universally easier to follow if 
edge-triggered J - K bistables are avoided. 

Figure 6.4 shows the master-slave J - K bistable, its function table, 
and an example timing diagram. The optional preset (PR) and clear 
(CL) inputs override clock inputs as before. The J - K inputs control 
the final output state as shown in the table. The timing of the 
bistable is referenced to both edges of the clock pulse. The element 
comprises two separate bistables in one: a master and a slave. 
Information presented at the J - K inputs is clocked into the master 
on the rising edge of the clock pulse, and is transferred to the 
outputs, via the slave, on the falling edge of the clock pulse. It is 
generally understood that the J - K inputs should not vary for the 
duration of the clock pulse, for the effects of this vary according to 
the type of internal circuitry employed. Some devices have a data 
lockout facility which prevents changing inputs having any effect after 
the front edge of the clock pulse, but other master-slave devices can 
be affected. The best procedure to adopt with any master-slave J - K 
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Figure 6.4. A master-slave J-K bistable with function table and timing diagram 

bistable is to ensure that the J - K inputs are established before the 
clock pulse occurs, and are maintained until after the clock pulse 
finishes, although they may be safely removed coincident with the 
trailing edge of the clock pulse. 

The J - K inputs affect the bistable as follows: 

a. 

c. 

if they are complementary, the outputs take the same levels as the 
inputs (i.e. Q = J ; Q = K) ; 
if both inputs are low no change occurs due to clocking; 
if both inputs are high, the bistable is toggled by a clock pulse 
(i.e. it changes state). This can be seen from the function table. 

The timing diagram is now considered in depth, to fully explain 
the bistable's actions with respect to changing J - K inputs. 

At ti a negative PR pulse presets the bistable from the leading 
edge (Q = 1). At t2 a negative CL pulse clears the bistable from the 
leading edge (Q = 0). At t3 the negative edge of the clock pulse C K 
sets (the same as 'presets') the bistable as a result of complementary 
inputs with J = 1. At t4 and t5 the bistable is toggled, since the J -K 
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inputs are both high. At t6 no change occurs at the outputs since the 
J-K inputs are both low. At t7 the clock resets (the same as 'clears') 
the bistable as a result of the complementary inputs with J = 0. At t8 

and tg no change occurs since J and K are low. At ti0 the preset 
input goes active which overrides any clocked effects at tn and ti2. 
Since the preset signal is then removed, the clock has its normal 
effect at ti3, but no change occurs because both J and K are low. The 
J-K inputs at t i4 reassert that the bistable should be set, therefore no 
change occurs. At ti5 the clear input goes active to immediately reset 
the bistable, and the clock pulse at ti6 is ignored because the clear 
pulse is still held. The clear is removed at t\7 and the bistable is then 
ready to respond to any further clocking. 

Various other single J-K type bistables are available incorporat
ing gating on the J-K inputs. The reader is referred to 
manufacturers' data for types such as the following: 7470, 7471, 
7472. 

Monostables 

It is sometimes required to generate a pulse of predetermined 
length. This is readily achieved with a monostable, the pulse length 
being set by means of an external capacitor. The 74121 is the most 
common device for this purpose (App. J1), or the 74122 (App. J2) 
when a retriggerable version is required. These elements are most 
simply represented as shown in Figure 6.5. An internal CR is 
sufficient to provide a nominal 35 ns pulse, but this must be 
supplemented by the shown external CR in order to achieve times 
greater than this. These devices are suitable up to about 28 s. For 
longer times, the 555 timer device is more suited (see p. 50). 

Firstly we shall consider the 74121 (non-retriggerable) device. 
This has two inverted OR inputs (Al and A2) and one other positive 
enable incorporating a Schmitt trigger for pulse-shaping purposes 
(B). The monostable is triggered when the appropriate input 
conditions are met, as shown in the function table. This may be 
summarised as follows. The device is triggered if: 

a. one or both of the A inputs are taken low when the B input is high; 
b. the B input is taken high when one or both of the A inputs are low. 

It is the initial setting of these input conditions which triggers a 
single pulse from the monostable. Because it only produces a single 
pulse, it is sometimes known as a one-shot. The timing diagram shows 
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Figure 6.5. A monostable multivibrator (non-retriggerable above the chained 
line; retriggerable below the chained line) 

how it would respond to varying inputs. Arrows on the edges of the 
inputs signify triggering edges. Each time the device is triggered it 
produces a pulse of fixed length, i.e. td. Thus the leading edge ofAl 
triggers it at t i , and a single pulse occurs at Q (inverted form at Q) . 
This pulse is said to time-out at t2. Similarly, the leading edge of A2 
triggers the monostable at t3, which times-out at t4. The B input goes 
low at t5, which has no effect, but it triggers the monostable at t6 

when it goes positive again (note that A2 is still low); this pulse 
times-out at t7. Before t8 occurs, a negative pulse is shown on A l ; 
this has no effect because A2 is already low. B goes low again at t8 

and triggers the monostable when it goes high again at t9, the 
monostable timing-out at t i0 . Al and A2 are seen to change over at 
t u and t i 2 respectively, with no effects, since one is always low. B 
then goes through another cycle between t i 3 and t i 4 to again trigger 
the monostable, timing-out at t17. At t i 5 the B input is again taken 
low, going high at t i6 , but because this monostable is non-
retriggerable, this triggering edge is ignored because the device is 
already triggered; the time-out is the normal time, td. 
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In some instances it is desirable to retrigger the monostable in 
such circumstances, and this is where the retriggerable monostable, 
the 74122, comes in. This is jjhown as the bottom line of the timing 
diagram (only Q is shown; Q is complementary as usual). In this 
case, the edge of input B which occurs at t i 6 retriggers the mono-
stable, and it then times-out td from that point. A retriggerable 
monostable may be retriggered any number of times during its 
time-out period; it does not revert to the reset condition until td after 
the ßnal trigger pulse. Thus retriggering can be used as a means of 
extending the time-out, or of ensuring that a delay, td, occurs after 
the last triggering pulse. 

The output pulse width produced by these two monostables is as 
follows: 

tw(out) = K.Cext.Rx 

For the 74121, K = 0.7. For the 74122, K = 0.3 when Ce x t is in 
excess of 1000pF, but if the capacitance is less than this value, the 
curve given in App. J 2 should be consulted. Curves for both devices 
are given in App. J l and J 2 , and the appendix should also be 
consulted for details of the limiting values for Ce x t and R-p. 

The 555 timer 

Strictly speaking, the 555 timer is not a digital device, but because of 
its uses in conjunction with digital circuitry as a timing element, not 
to mention its availability and low cost, all designers should be 
aware of its uses. It is an extremely versatile device with timing 
ranges from microseconds to hours. It can be used as a retriggerable 
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monostable, or it can be used in an astable mode as a multivibrator 
(free-running oscillator). Figure 6.6 shows it connected in these two 
modes, with labels D, f S, | T, R and Q appended to various pins. 
It should be understood that these labels have been given for ease of 
understanding in this book, and are not recognised labels - although 
the pins have names (given in brackets below), circuit diagrams 
usually do no more than show pin numbers; the suggested labels 
help the user to remember their significance. The pins are as follows: 

D (Discharge) - shorts external capacitor to OV via internal 
transistor; 

| S indicating Sample (threshold) - samples rising voltage on 
CT; 

I T (Trigger) - taken low to trigger the timer; 
R (Reset) - taken low to reset the timer; 
Q (Output) - goes high after trigger and remains high until 

time-out/reset. Pin 8 is connected to + ve and pin 1 to 0 V. 
A further pin (pin 5) is known as the control voltage or Fm 
input; for usual applications this may be ignored. 

The 555 (or its big brother the 556 dual timer) may be operated 
over a -f 4.5 V to +16 V supply range; because the time-out period is 
set by the voltage developed across C T , and this is related to the 
'aiming' potential of the supply rail (through the external resistor/s), 
it is relatively independent of the actual value of the supply voltage. 
Taking | T low momentarily triggers the device, which releases a 
short-circuit held across C T via the D (discharge) pin. C T charges, 
but when it reaches 2/3 of the supply, this is sensed by the | S 
terminal. The output Q goes high when the device is triggered, and 
remains high until the voltage rises to 2/3 of the supply, whereupon 
it goes low,_i.e. similar action to a monostable as previously 
described. If R is taken low momentarily during the time-out geriod 
this resets the timer, i.e. it terminates the time-out at once. If R and 
I T are momentarily taken low simultaneously, this retriggers the 

device to time-out the full time again (like a retriggerable monost
able); the circuit shown in Figure 6.6(a) shows these modes. App. K 
provides further details of the timer. 

When connected as an oscillator, the 'mark' and 'space' may be 
separately determined by the resistors (Rl 4- R2), and R2 alone, 
respectively; this is because timing capacitor C T charges (during 
'mark') through Rl miseries with R2, but discharges (during 
'space') via R2 and the D terminal. 

The time period for the monostable configuration is given by: 

T D == 0.7 R1.C T 
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The time periods for the astable configuration are given by: 

T m s 0.7 (Rl + R2) C T 

T s = 0.7 (R2) C T 

These timers are capable of driving 200 mA into a load (when 
high or low at the output) . They are therefore very useful as an 
output device, and can drive relays directly. If the R terminal is used 
as a control in the circuit shown in Figure 6.6(b), the oscillator can 
be switched on and off by taking R high and low respectively. This 
can be used as an audible output, with a loudspeaker capacitively 
coupled to the output (see example in Chapter 18). If used in this 
manner, it should be noted that the first time-out cycle is longer than 
subsequent cycles because the capacitor has to charge from 0V to 
begin with. 

Astable circuits 

One form of astable circuit using the 555 timer IC has already been 
shown in Figure 6.6(b), but a simple circuit suitable for use with 
logic circuitry is given in Figure 6.7. Each time the timing capacitor 
is discharged a short negative pulse occurs at the timer output. This 
is inverted to_produce a positive pulse suitable for clocking digital 
circuitry. If R is taken to + 5 V the circuit is free-running, but if 
gated, it can stop the clocking source when taken low. This gives a 
very elegant and controllable clock source. 
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Figure 6.7. A clock pulse generator 
using the 555 timer 

A very similar circuit can be made using an ordinary T T L 
Schmitt trigger, as shown in Figure 6.8, although the timing range is 
much more limited. This circuit is often adequate, however, and 
does give excellent reliability. The maximum resistor value is about 
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1 kQ, due to the need to ensure that the high level input current does 
not swamp the capacitor charging current. When the output of the 
gate is high, C charges through R until the voltage reaches the 
Schmitt's upper threshold, whereupon the output goes low; C then 
discharges through R until the voltage reaches the lower Schmitt 
threshold, whereupon the output goes high again. As shown, the 
'mark' period is slightly shorter than the 'space'. 

: Ι*ΪΙ~1Λ1Λ 
Figure 6.8. A Schmitt oscillator 

?HH 

Μι^>ο-ϊ--ϊ^ο1~^ 

Figure 6.9. A typical TTL 
oscillator 

^ί^^Η^0^ οΕοί' .10. A typical CMOS 

It is possible to cross-couple two ordinary inverting type gates as 
an oscillator, as shown in Figure 6.9, although there is still the 
limitation on high values of R. This circuit is more suitable for the 
CMOS families, as shown in the variation as Figure 6.10. In both 
circuits, gate 1 output goes to the opposite state of the output at gate 
2, thereby causing capacitor C to discharge/charge to the opposite 
polarity; once the threshold level on the input gate (high or low) has 
been crossed, the circuit switches, and the situation reverses. Thus 
there is a sawtooth waveform at the input to gate 1, but a 
square-wave at the output. 

Finally, there is a way of producing a very short duration pulse for 
clocking purposes using a unijunction transistor. Figure 6.11 shows 
how this is achieved. Capacitor Cl charges through Rl until it 
reaches the trigger voltage of the device, whereupon it discharges 
through the emitter (e) and R3. Because R3 is low in value 
compared with Rl , discharge is brief, hence the short pulse. 
Unijunction transistors are rather more difficult to use than the 
circuits previously discussed, for if component values are not within 
fairly critical limits, the circuit will fail to oscillate. The designer 
unfamiliar with UJTs is therefore advised to use an alternative 
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Figure 6.11. A 
transistor oscillator 
values 

unijunction 
with typical 

circuit. This circuit can drive CMOS directly, but a Schmitt buffer 
is required to speed up the edges and to ensure correct levels when 
used with TTL (NB the output pulse does not go anywhere near the 
positive rail). 
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7 
Registers 

Single bistables and latches are frequently used in logic circuitry, 
but there is often the need for quite a number of such logic elements. 
Thus while it is possible to construct up to two latches from a single 
quad NAND or quad NOR gate (i.e. 7400 or 7402), or to use a single 
D or J-K bistable device, it is often more efficient to use multiple 
devices. Where a number of bistables (also known as flip-flops) are 
used to staticise related data, and can therefore utilise certain 
common lines (e.g. clock, preset or clear), they are obtainable as 
single devices known as registers. Economy of connections is achieved 
because of commoned control lines. Before considering the more 
complex devices, first, dual and quad devices - useful for general 
purposes rather than as data registers - will be considered. 

Quad S-R latches 

Quad S-R latch (see App. C4). This is a 16-pin DIL device, and 
amounts to four independent NAND gate latches of the type shown 
in Figure 6.1; each latch has S and R inputs and the Q output 
accessible from the pins. It follows that an inverter must be used on 
the output if Q is required. 

4-bit bistable latch 

The 7475 is a 4-bit bistable (transparent) latch of the type shown 
previously in Figure 6.3 (see also App. C3). This is also in a 16-pin 
DIL encapsulation, with each of the four latches having individual 
D, Q and Q lines brought out; the enables are combined, with two 
enables each controlling two latches. 

Where several data lines are associated, each individual line is 
referred to as one bit; since the 7475 is capable of staticising four 
such lines, it is known as a 4-bit latch. 
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Dual bistable latches 

The 7474 is a dual D-type bistable latch. Each latch is completely 
independent and incorporates all the requirements that a designer 
could want. The following lines are brought out for each latch: CK, 
D, PR, CL, Q and Q. (See App. Cl . ) 

The 7476 is a dual J - K bistable latch. Again, each bistable is 
independent, with the following lines brought out: CK, J , K, PR, 
CL, Q and Q. (See App. C2.) 

T h e above devices may be used as 2-bit registers, or could be used 
for quite different purposes. 

Octal D-type bistable 

The 74273 is an octal D-type bistable with common clock and clear 
lines, as shown in Figure 7.1. (See also App. Dl . ) All eight 
'flip-flops' are simultaneously triggered by the positive edge of the 
C K clock input; a buffer gate is incorporated to ensure that this 
input only represents one gate load to a driving device, as opposed to 
eight. The data required to be entered into all eight flip-flops must 
be presented at the eight D-type inputs ( ID to 8D) prior to applying 
the C K pulse; after the rising-edge of CK, the Q outputs then take 
on the logic states fed into their respective D inputs. By taking the 
common CLEAR line low, all the flip-flops may be simultaneously 
cleared (i.e. Q taken low); again a buffer gate is used. 

M D Qh HD Ql 

,4>JC 
CK 

HJD Q 

CK ! 

CL I 

H D Q h 

-CK 
CL 

Figure 7.1. Octal D-type bistable with common clear (74273 - App. Dl) 

It will be shown in Part 3 that 8-bits are used extensively in 
microprocessor applications for data lines, or for a portion of an 
address. For this reason, 8-bits of associated data are a common 
requirement, hence octal bistables. Chapter 10 will show how 
multiples of 2 are always significant in digital systems, therefore this 
is another reason why 8-bits should be a useful combination, 
microprocessors apart. 
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Shift registers 

Binary arithmetic frequently operates with 8-bits, and one require
ment often met is the need to shift data bits with respect to their 
lines. For example, if line (a) below represents an 8-bit data word, 
this becomes as (b) when shifted one place to the left, or as (c) when 
shifted three places to the right. 

(a) [110 0 0 10 1] (original data word) 
(b) <— 1 0 0 0 1 0 1]0 <— (original data word shifted left one 

place) 
(c) —>00 0[ 11000—> (original data word shifted right 

three places) 

It should be noted that as bits are shifted out of the register -
spilling out to the left in (b) or the right in (c) - they are replaced by 
0's from the other end of the register, and the significance of the bits 
shifted out of the register is lost. 

Sometimes the ends of the register are linked together, such that 
data shifted out of one end is fed straight back into the other end: 
this is known as circulatory shift or logical shift. Repeating the previous 
process, and causing the data word given in (a) to undergo 
circulatory shift, the following results are obtained: 

(a) [110 0 0 10 1] (original data word) 
(b) pi 0 0 0 1 0 1] [1—1 (original data word after one stage 

* left circulatory shift) 
(c) pi 0 1] [1 10 0 O-i (original data word after three stage 

' < ' right circulatory shift) 

The 74199 (App. D2) is an 8-bit shift register which has the 
capability of being parallel loaded or serial loaded, and provides serial or 
parallel outputs; it is therefore one of the most versatile of shift 
registers, if not one of the cheapest! But what do all these terms 
mean? 

First of all imagine eight individual flip-flops similar to those 
shown in Figure 7.1, with each stage of this 8-bit register holding one 
bit of our data word. Parallel loading refers to the ability to load all 
8-bits with parallel data, as ID to 8D in the figure. Parallel output 
refers to the ability to 'read' all 8-bits of the register simultaneously 
(i.e. in parallel), as 1Q to 8Q in the figure. Serial data is data read or 
manipulated one bit at a time; thus if a particular data input is 
applied to ID in the figure, and then changed for seven subsequent 
clock pulses, and if the Q output of each bistable is fed as the D 
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input to the following bistable (e.g. 1Q linked to 2D, etc.), this 
amounts to serial loading of a 8-bit register; at each clock pulse the 
data is shifted one place - or one stage - to the right. By reversing the 
connections (e.g. 8Q to 7D, 7Q to 6D, etc.) the same register gives 
us left-shift, and serial data is input at 8D. Data read at the output 
end of such a register is termed serial data output since each bit 
appears serially (i.e. one bit per clock pulse). 

The propagation delay of bistables is more than adequate to 
ensure that the output of one may feed the input of the next, 
providing synchronous clocking is employed (i.e. all bistables are 
clocked at the same time by a common control line). The table 
below lists a variety of shift registers to meet different requirements, 
and the reader is referred to manufacturers' data. The 74198 and 
74199 are covered in the Appendices, however. 

Type 
74198 
74195 
74164 
74165 
74199 

Bidirectional 
yes 
no 
no 
no 
no 

Serial in 
yes 
yes 
yes 
yes 
yes 

Serial out 
yes 
yes 
yes 
yes 
yes 

Parallel in 
yes 
yes 
no 
yes 
yes 

Parallel out 
yes 
yes 
yes 
no 
yes 

Bits 
8 
4 
8 
8 
8 

As an example of all relevant features, the 74199 is now consid
ered in depth. 

Shift registers may utilise J - K or D-type bistable elements, the 
only difference being in the input gating. The 74199, shown in 
Figure 7.2^18 of the J - K variety, but note that the K serial input is 
actually K. Since the J and K inputs of a bistable must be 
complementary to enter a logic 0 or logic 1, it is_more convenient to 
provide J - K in such a case; this allows the J - K inputs to be tied 
together, thereby entering a 1 when high, or a 0 when low. 

Whilst it is possible to wire up shift registers from individual 
bistable elements and external gating, this is not a practical 
proposition because of the amount of gating required. This is plain 
when it is realised that the 74199 is equivalent to 79 individual T T L 
gates! The circuit of the complete shift register would be too large to 
show fully, therefore Figure 7.2 shows only three elements. The first 
element differs slightly from the rest due to the serial input interface, 
but the remaining seven stages are identical to those stages shown 
which have outputs Q B and Q o 

Firstly, for simplicity, the latter stages will be considered. Note 
that a common clock line feeds all the edge-triggered J - K bistables*, 
and that they are triggered on the positive-edge of the C L O C K input 

* These are not master-slave J-K flip-flops. 
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CLOCK 

INHIBIT 3> i> 

3—[ξ>ΟΤ0θ 

miy 
J Q 

f-o^cK 

K C L 5 

To other stages 

CLOCK CLEAR,, T o n e xt 

Figure 7.2. Three stages of an 8-bit parallel load, parallel-out shift register 
with serial J-K input (74199 - App. D2) 

pulse; gate a inverts this pulse, but the inverting circle on the clock 
inputs shows that the bistables respond to a negative-going pulse, 
thereby ensuring that they clock on the positive-edge of the input 
pulse. The inverter gates marked h correct the phase for the J inputs 
after N O R gating on the inputs, hence the K input is fed directly 
from these N O R gates. A S H I F T / L O A D ( 'SHIFT/LOAD' in 
manufacturers ' data, but converted to an unambiguous signal 
name) input is buffered and inverted by b to produce a LOAD line, 
and then further inverted by c to provide a S H I F T line; thus with 
S H I F T / L O A D high, S H I F T is true, and with SHIFT/LOAD low, 
L O A D is true. 

Consider the B input to be high. If LOAD is made true, the AND 
gate k has a high output, which produces a low from N O R gate /; 
hence h presents a high to the bistable J input. If a clock pulse 
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occurs, a 1 is loaded into the bistable, producing a high at output 
QB; this has loaded an input logic 1. If the B input is low, gate k 
produces a low output, gate / has a high output, gate h a low output, 
and the bistable loads a logic 0. In this manner, all eight stages of 
the shift register can be parallel loaded with data applied on lines A 
t o H . 

If SHIFT is made true, gating is enabled to connect the output of 
each stage to the input of the following stage; note that QA is 
connected as input to stage B via gatej, and Q B is connected to stage 
C via gate m. If a particular output is high, this is ANDed with 
SHIFT and then fed to the same NOR gate as before, hence feeding 
the following gate input lines. It must be remembered that SHIFT 
and LOAD are complementary since they are obtained from the 
opposite phases of the SHIFT/LOAD line, therefore it is impossible 
for both to be true. Hence the NOR gates g, I andp only receive one 
operational input. _ 

The serial input to the first stage is via the J-K gating, thus Q A 
takes on a logic condition according to the state of these inputs when 
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Figure 7.3. Function table for the 74199 8-bit shift register 

clocked with SHIFT true. This is shown in the function table for the 
device, given as Figure 7.3. 

Examination of the table shows the results of clocking with 
various input states, or of clearing. The 'rest' state represents the 
device between other modes. Taking CLEAR low clears all stages. 
With SHIFT/LOAD low, the positive-edge of CLOCK loads the 
device (a broadside load), with parallel input data. Clocking with 
SHIFT/LOAD high causes shifts as indicated. Note that the 
CLOCK is inhibited by taking the CLOCK INHIBIT high; the 
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initial conditions of the outputs are represented as QAo to QHO· 
Shifting shifts data in_the direction Q A towards Q H . The Q A stage is 
controlled by the J - K conditions; this is easier to understand in 
terms of a conventional J - K bistable if you mentally invert the state 
applied to K, thereby making it equivalent to K. 

A timing diagram for the device is shown in Figure 7.4. This 
should be studied carefully. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t 
1 I I I I I I I I I I I I I I I I I I I I 

CLOCK ri jxnj"ajnji jxnj^^ 
CLOCK INHIBIT"! I U I · 

Figure 7.4. Timing diagram for the 74199 8-bit shift register 

The timing diagram depicts the following sequence of events: 

(a) The CLEAR input is taken low to clear all eight outputs. 
(b) A logic 1 is fed into Stage A at the clock pulse marked ti; eight 

subsequent clock pulses clock this logic 1 through each stage of 
the register and_out of the end; no further logic l 's are entered 
because the J - K input is low after clock pulse ti . 

(c) After t9, but before t10, the SHIFT/LOAD line is taken low. The 
actual load is synchronous with respect to the C L O C K , and 
therefore occurs at t i 0 . Note that the parallel inputs are set up 
with data prior to the load command, and remain stable until 
after the clock edge. Note also that only those outputs which 
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have inputs at a high level go high after the loading clock pulse 
(i.e. A, C, E, G and H) . 

(d) The C L O C K I N H I B I T is taken high after t10 until after t i2 , 
thereby inhibiting any shifting for the two following clock pulses 
at t n and ti2· 

(e) At t i 3 the A stage goes to logic 0 due to the low J - K input, and 
the other stages go to the state of the previous stage, i.e. shifting 
occurs, as it does on the following clock pulses. 

Because the 74199 can be parallel loaded and has a parallel 
output, it can also be employed as a octal register. In this case the 
S H I F T / L O A D control line may be permanently tied to OV, and 
each C L O C K pulse then performs a load. No doubt because of the 
popularity of such a versatile device, it is generally more commonly 
available than the octal D-type bistable (74273 - App. D l ) , and as a 
result, is usually quite a lot cheaper.* 

This latter point once again reinforces the need for the designer to 
take device cost into account; for the most complex device is not 
always the most expensive. The Appendix to be found at the rear of 
this book incorporates a cost factor to allow the user to take cost into 
account. Since costs are always varying, actual costs are not given; 
the cost factor shows relative costs, normalised to a value of 1.0 for 
the most basic device of them all: the 7400 quad NAND gate. 

* Even the more versatile 74198 (bidirectional) is seldom more expensive. 
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8 
Number systems and binary 
arithmetic 

The point has now been reached where an appreciation of the 
various number systems employed in digital electronics makes 
forthcoming chapters easier to follow. The base or radix of a chosen 
number system comes about through some particular convenience. 
Doubtless human beings prefer the decimal system - based upon a 
radix of 10 - because they began by counting on their fingers. 
Indeed, they still do! A radix of 10 gives 10 different states. Since 
digital systems are based upon circuitry having only 2 different 
states, binary arithmetic is employed because this has a radix of 2. 

Large numbers in the binary system become unwieldy in length, 
and whilst this presents no problems to the electronics of a system, it 
does present problems at the human interface. Because of this there 
are various other number systems in use which conveniently inter
face with the binary system. These systems express numbers in a 
more convenient and shorter form, e.g. octal, binary coded decimal, and 
hexadecimal. These systems are discussed in the present chapter. 

The latter part of the chapter outlines binary arithmetic, but only 
in sufficient detail for the reader to understand the principles 
involved. For practical purposes it is not necessary to design 
complicated circuits to perform binary arithmetic. This would 
require endless gates and would be quite uneconomical. The 
majority of everyday digital applications do not require binary 
arithmetic, and those that do can employ arithmetic devices to carry 
out all the 'number crunching' requirements. If an application calls 
for considerable mathematics, it is probably best suited to a 
microprocessor. 

Binary system 

As earlier chapters have shown, the binary system utilises Ό ' 
(nought) and ' Γ (one) to represent the two stable states. Binary 
counting is therefore as follows: 
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Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Binary 

0 
1 

10 
11 

100 
101 
110 
111 

1000 
1001 
1010 

No matter what the radix of a number system might be, the 
procedure is identical. The count starts at zero, proceeds through 
the available digits until all have been used, then introduces a new 
digit of higher significance, starting with the lowest significant digit 
available, then repeating all available lower digits in the count as 
before. Each time they run out, the higher significant digit is 
incremented up to the limit, whereupon yet another digit of higher 
significance is required. Zeros placed to the left of a number in any 
number system are said to be non-significant, since they do not alter 
the value of the number. This is why ' Γ is the first significant digit 
used where a new digit is required. 

The decimal system therefore starts at 0, counts through all 
available digits to 9, then introduces a 1 in the next place of 
significance, and repeats the count 0 to 9 preceded by the 1. After 19 
we have 20, and so the process continues to 99, whereupon we must 
introduce a digit of higher significance to give us 100. We have 
names for the 'weightings' of digits in their various places of 
significance (e.g. tens, hundreds, thousands), but other number 
systems need not employ names. 

The preceding comparison of decimal and binary counting shows 
that the same procedure is employed. The binary system reaches its 
limit at a count of 1 and has to introduce a digit of higher 
significance for the next count of 10; do not call this ten, for ten is a 
number in the decimal system. The number '10' in the binary system 
is expressed as 'one-nought' . 

Because binary arithmetic is carried out by electronics which calls 
for a separate stage to be available for each digit in a number, such 
systems must allow for the maximum number of stages required. 
These stages are more correctly known as bits. Thus a particular 
system might employ 8 bits, giving the maximum binary capability 
of 11111111. In such a system it is normal practice to add 
non-significant zeros to the front of lower numbers, thus the binary 
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equivalent of the decimal number 2 would be expressed as 
00000010. 

There are many different methods employed on converting be
tween decimal and alternative number systems, but to avoid 
confusion, this chapter employs the same basic procedure. The 
procedure chosen is more directly representative of their true form 
than other procedures, and is also particularly suitable for calculator 
conversions. Since calculators are so widely available today, it is 
considered a reasonable assumption that anyone needing to make 
many number system conversions will have such a facility available. 

Conversions to or from the decimal system are greatly assisted by 
ruling columns on a piece of paper, and heading each column with 
the decimal weighting of the number system in question. This 
weighting is always the radix to the power of increasing numbers in 
the decimal system, i.e. 2°, 21, 22, 2 , 24 for the binary system. The 
table given below illustrates this point, and shows various binary 
numbers with their decimal equivalents. 

211 

2K 
2048 

1 

2 i o 

IK 
1024 

1 
0 

2 9 

'ΛΚ 
512 

1 
0 
0 

2 8 

'ΛΚ 
256 

1 
1 
1 
0 
0 
1 

27 

128 

0 
0 
1 
0 
0 
0 

2 6 

64 

0 
0 
1 
0 
0 
0 

2 5 

32 

0 
0 
1 
0 
0 
0 

2 4 

16 

1 
1 
1 
0 
1 
1 
0 
0 
0 

23 

8 

0 
0 
0 
0 
0 
1 
0 
0 
0 

22 

4 

0 
0 
1 
0 
0 
1 
0 
0 
0 

21 

2 

0 
0 
0 
0 
1 
1 
0 
0 
0 

2° 

1 

0 
1 
0 
0 
0 
1 
0 
1 
0 

Binary yS 

>^T)ecimal 

16 
17 
20 

256 
274 
511 
512 

1025 
2304 

Examination of the table shows that conversion from binary to 
decimal is simply achieved by adding together the decimal weight
ings of each true (i.e. 'Γ) binary bit. Thus the decimal equivalent of 
the second entry in the table is derived by adding together 
16 + 1 = 17. Similarly, decimal 274 is achieved by adding 
256 4- 16 + 2. Obviously this is a very simple procedure for any 
number using a calculator. If one is to hand, try adding all the 
necessary bits to give decimal 511. 

In order to convert a decimal number into binary, the following 
procedure is equally simple with a calculator to hand. Enter the 
decimal number (e.g. 274), deduct the highest weighting lower than 
this number placing a 1 in the appropriate column, (e.g. place 'Γ in 
256 column and deduct 256 giving 18), then repeat until zero is 
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reached (e.g. place ' Γ in the 16 column and deduct 16 giving 2, then 
place ' Γ in the 2 column and deduct 2, giving 0). 

A shorthand notation is employed for large numbers, where the 
value 1024 is known as Ί Κ ' . Thus 2048 is called '2K', etc. Because 
all digital devices are based upon the binary system, all tend to have 
number associations with the binary relationships illustrated above, 
and memory capacity for example, is quoted as having IK bits (i.e. 
1024 bits). 

Since digital systems operate with a fixed number of available bits 
- this bearing a direct relationship to the provision the designer 
cares to make - a particular system with eight bits is said to utilise 
8-bit words. Perhaps 16 bits might be required for a particular 
application, but only 8 bits are catered for in the hardware. In such 
a case, the 16-word may be divided into two 8-bit bytes (think of 
bites of the cherry!). Most popular microprocessors have the 
ability to address 64K words (or bytes) of store, which needs 16 
address bits, as will be seen from the following table. 

nary weighting 
1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

IK 
2K 
4K 
8K 

16K 
32K 

Bit number 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Octal system 

The octal system has a radix of 8. The octal count is as follows: 0, 1, 
2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, etc., employing eight 
digits. It now becomes clear that if there is any doubt about which 
number system a particular number is based upon, it is necessary to 
define the radix. The convention employed is to place the radix as a 
subscript after the number. Thus 27510 is a decimal number, but 
2758 is an octal number. 

A table is constructed opposite for decimal-octal conversions. To 
perform these, a memory calculator is ideal. For example, to convert 
2758 to its decimal equivalent, proceed as follows: enter 
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2 X 64 = 128, then place this sub-total in memory (press M+); 
enter 7 X 8 = 56 and add this to the sub-total (press M+); enter 5 
and add this to the sub-total (press M+); the answer 189i0 is then 
obtained as the total from memory (press MR). 

84 

4096 

1 

83 

512 

7 
0 
7 

82 

64 

2 

6 
0 
7 

81 

8 

7 
1 
1 
4 
2 
7 

8° 
1 

5 
0 
2 
0 
0 
7 

O c t a l ^ / ^ 

v^Decimal 

189 
8 

10 
4000 
4112 
4095 

To convert from octal to decimal, it is necessary to establish how 
many times the highest multiple of the next highest weighting goes 
into the number in question at each stage. For example, to convert 
4000 decimal to octal, the first step is to take the next highest 
weighting below 4000, i.e. 512, and establish how many times this 
goes into 4000. Using a memory calculator, enter 4000, place this in 
memory (by pressing M+) , then divide 4000 by 512, obtaining 
7.8125; the decimal portion is irrelevant. Enter 7 in the appropriate 
column, then multiply 7 by the weighting figure of 512, obtaining 
3584; deduct this from the memory (press M—); recall the memory 
total (press MR) to obtain 416, the next number to be converted. 
Divide by 64 as the next highest weighting, obtaining 6.5. Place 6 in 
the appropriate column, then multiply 6 by 64 to obtain 384. Deduct 
this from memory (M—), then examine the new total (MR) of 32. 
Divide by the next highest weighting of 8 to obtain 4.0. Since no 
decimal portion remains, this finishes the calculation, and 4 is 
entered in the appropriate column. This gives the octal conversion of 
7640 (noughts are significant at the lower end). 

Binary to octal conversion could not be easier. Simply group the 
binary word into 3-bit groups from the decimal point* and convert 
each group into the corresponding octal digit by inspection, re
membering the weightings are 4, 2, 1. Two examples are given 
below. 

421 421 421 421 binary weightings 

101 111 010 011 in binary represents 5723 octal 
001 110 000 in binary represents 160 octal 

* The decimal point may be assumed after the least significant digit. 
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Binary coded decimal 

Binary coded decimal (BCD) is a notation employed as a means of 
easily converting from the decimal system to a number system which 
can be simply converted to binary by electronic means; it provides 
an appropriate man-machine interface. It uses the principle just 
discussed, involving converting digit by digit, but because the 
decimal system has ten different states, four binary digits are 
required to specify each BCD digit (leaving 6 redundant binary 
states). Two 12-bit binary words are shown below with their BCD 
equivalents; note the grouping of the binary word into 4-bit bytes. 

8421 8421 8421 binary weightings 

1000 0010 0000 in BCD represents 820 decimal 
1001 0110 0111 in BCD represents 967 decimal 

As the name suggests, this form is decimal coded in binary form. 
Digital devices are available which accept BCD codes, therefore this 
is a very useful way of interfacing decimal to binary forms; it could 
not be much simpler! 

Hexadec imal system 

The hexadecimal system is widely used today because of its conveni
ence when associated with microprocessors, which predominantly 
utilise 8-bit words. As previously mentioned, addressing frequently 
requires 16 bits, and this can be readily expressed as four hex digits. 
Since 16-bit addresses are generally divided into two 8-bit bytes, the 
address breaks down into two pairs of hex digits. Operator error 
could be high if many 16-bit binary numbers had to be manipulated, 
therefore the hex notation is of great assistance in minimising this 
problem. The hexadecimal system has a radix of 16. 

At first sight this may sound daunting, especially when it is 
considered that we are only familiar with ten digits! The hexadecim
al system introduces letters above 9, thus the hex count goes as 
follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11 . . . 19, 1A, 
IB . . . IF, 20 . . . 9F, A0, Al . . . FF, 100, etc.. The extra digits give 
us shorter representations of larger numbers. 

It was seen that 4 bits were used in order to convert decimal to 
BCD. Since the highest BCD code is 1001 (because 9 is the highest 
decimal digit), this wastes possible binary combinations that follow, 
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i.e. 1010, 1011, 1100, 1101, 1110, 1111. These six wasted codes are 
fully utilised in the hexadecimal system. The table below gives the 
letter conventionally used to represent these additional states. 

Decimal 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Hexadecimal 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Binary 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

If a binary number is written down and then divided by vertical 
lines into 4-bit bytes, each byte can be separately converted into the 
appropriate hex digit, utilising the table above. Two examples are 
given below. 

1 1 0 0 1 1 1 0 1 1 0 1 1 1 « - B i n a r y - » 1 1 1 0 1 0 1 0 1 I 1 0 1 0 I 0 0 0 0 
C | D | 7 < - H e x - > E | 5 | A | 0 

Hexadecimal-decimal conversions can be achieved via binary (i.e. 
hex-binary-decimal), or by utilising the methods previously des
cribed. A suitable table is given below. In the conversions, which are 
identical in method to those described for octal conversions, the 
intermediate decimal numbers in the range 10-15 must be replaced 
by their hex letter equivalents. 

163 

4K 
4096 

1 

162 

»ΛΚ 
256 

0 
2 
4 

161 

16 

0 
1 
0 

16° 

1 

2 
E 
0 

Hex / \ 

./Decimal 

4098 
542 

1024 

The following table provides a much easier method of converting 
between decimal and hexadecimal (in either direction). The four 
main vertical columns indicate decimal weightings for each hex digit 
in its appropriate significance. To convert from hex to decimal, 
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simply look up the decimal weighting of each hex digit and add the 
totals. This table should provide sufficient for most needs. 

T o convert from decimal to hex, find the number equal to or next 
lowest to the number in the table and take this as the most 
significant hex digit. Deduct this weighting from the number and 
then repeat the process for each remaining hex digit. Again the 
calculator can be used to good effect. For example, to convert 542 
decimal to hex, take 512 from the table, giving 2 as the third 
significant digit; 542 - 512 = 30. Locate 16 in the table, giving 1 as 
the second significant hex digit; 30 - 1 6 = 1 4 . Locate 14 in the table, 
giving E as the first significant digit. Thus 54210 = 21E16. The letter 
' X ' is sometimes written before a hex number as an alternative form 
of identification. Thus 21E16 could also be written as X21E (or 
X '21E) . 

Hex digit 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

4th 

0 
4096 
8192 
12288 
16384 
20480 
24576 
28672 
32768 
36864 
40960 
45056 
49152 
53248 
57344 
61440 

Decimal weightings 

3rd 

0 
256 
512 
768 
1024 
1280 
1536 
1792 
2048 
2304 
2560 
2816 
3072 
3328 
3584 
3840 

2nd 

0 
16 
32 
48 
64 
80 
96 
112 
128 
144 
160 
176 
192 
208 
224 

1 240 

1st 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

The importance of understanding the hexadecimal notation will 
be better appreciated when Part 3 of this book is reached, and 
microprocessor systems are discussed. The following table is added 
with this in mind, for it shows how the hex system easily relates to 
decimal numbers expressed as 'K ' multiples. Note that the two most 
significant hex digits express the 'Κ ' value in terms of ViK and 4K 
weightings, respectively. Intermediate values are easily obtained; for 
example, adding 4i 6 (i.e. X4 or hex 4) to the third hex digit, adds 
decimal IK. 
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Decimal 
ιΛΚ 
VfeK 
3ΛΚ 

IK 
Ρ/2Κ 
2Κ 
2ιΑΚ 

Hex 
0 1 00 
0 2 00 
0 3 00 
0 4 00 
0 6 0 0 
0 8 0 0 
0 9 00 

Decimal 
23Λ 
3Κ 
3ιΑΚ 
3VfeK 
33ΛΚ 
4Κ 
5Κ 

Hex 
0 Β 0 0 
0 C 0 0 
0 D 0 0 
0 Ε 0 0 
0 F 0 0 
1 0 00 
1 4 00 

Decimal 
7Κ 
8Κ 

10K 
32Κ 
36Κ 
40Κ 
60Κ 

Hex 
1 C 0 0 
2 0 00 
2 8 00 
8 0 00 
9 0 0 0 
Α 0 0 0 
F 0 0 0 

21/2Κ 0 Α 0 0 6Κ 1 8 0 0 64K-1 F F F F 

Sixteen binary bits provide a count of 64K (i.e. 65536). The 
highest binary number in this range (1111111111111111) is express
ed as FFFF in hex, and is equivalent to decimal 65535 (i.e. 64K-1, as 
shown in the table above; allowing for the extra count of 0000, this 
gives a total of 64K numbers). 

Alternative methods of conversion 

The method of conversion demonstrated in this chapter has been 
chosen because it emphasises the principle of weighting factors, and 
thereby instills in the newcomer the significance of different bases. 
Many other methods are used for converting between different 
number systems, and the following two examples of octal-decimal 
and decimal-octal conversion show a much more efficient method, 
also applicable to other base conversions. 

Converting 276 octal Converting 190 decimal 
to decimal to octal 

21 7 6 octal 8)190 decimal 

Π x a I I 8)23 R 6-
16 2R 

23 I 2 7 6 octal 
X8 
184 
+6« 
190 decimal 

These methods utilise the arithmetic significance of the radix in 
order to avoid the use of multiples of the radix. In the octal-decimal 
conversion, the larger-based decimal number is obtained by starting 
at the most significant digit, multiplying it by the octal radix (i.e. X8), 
then adding in the next lowest octal digit, before repeating. The 
decimal-octal conversion obtains the lower-based octal number by 
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dividing the decimal number by the octal radix as many times as it 
will go. The final dividend followed by the remainders from the 
previous stages gives the octal number. 

Note that a very simple way of converting a large binary number 
to a decimal number is to firstly convert it to octal (by the method of 
grouping the binary number into 3-bit bytes - page 67), and to then 
convert it by the explosion method described above (i.e. repeated stages 
of multiplication by 8). 

Methods such as these are simple to undertake, but the convers
ion soon becomes a mathematical exercise, and the reason for 
performing the various mathematical manipulations is easily lost: 
hence the more laborious, but more basic method described pre
viously. 

Binary arithmetic 

The foregoing part of this chapter has dealt only with whole 
numbers, and the majority of design work should only require such 
numbers. For the sake of completeness, binary fractions should be 
mentioned. Apart from the different radix, binary fractions take 
exactly the same form as decimal fractions. For example, the 
decimal fraction 0.542 is really a shorthand form for: 

(5 X 10-1) + (4 X 10-2) + (2 X 10-3) = ^ + ^ + ^ 

500 40 2 _ 542 
1000 1000 1000 1000 

A binary fraction is similarly computed, using powers of two 
instead of powers often. For example, the binary fraction 0.1001 is a 
shorthand form for: 

(1 X 2-1) 4- (0 x 2"2) + (0 x 2"3) + (1 x 2"4) 

= -n + T + 7Γ + ττ= ΓΞ ( a s the decimal equivalent). 

Binary addition is carried out in the same manner as with the 
more familiar decimal system, except that a carry results after 1 + 1. 
The example given below shows binary addition. To prove that it is 
correct, the decimal equivalents are given alongside. 

1 1 0 0 l<25io) 

+ 0 1 1 1 1 (1510) 

1 0 1 0 0 0 (40io) 

1 1 1 1 1 <r— carry (shifted to next significance). 
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If two binary digits A and B are to be added, the truth table given 
in Figure 8.1 gives the sum and carry requirements. Comparison with 
Figure 3.3* shows that the sum is identical to an exclusive-OR 
function, and the carry is identical to an AND function. Thus an 
XOR gate and an AND gate constitute what is known as a half adder, 
when connected as shown in the figure. 

A 
0 
0 
1 
1 

B 
0 
1 
0 
1 

SUM 
0 
1 
1 
0 

CARRY 
0 
0 
0 
1 

EXCLUSIVE AND 
OR 

A.B+A.B = A B 

Figure 8.1. A truth table for binary addition, together with a 
half adder circuit 

(from previous 
significance) 

PARTI/ 

L 
DOWN 

Half C 
adder ς 

\ LSUM 

C 
Half 
adder „ 

-J v 
1 ^ C1 

J J CARRY UP 
« - " ^ (into next significance) 

Figure 8.2. A full adder circuit 

This circuit is called a half adder, because it only copes with 'half 
the problem. A practical adder has to allow for any carry from a 
preceding stage, and in order to do this, two half adders are needed. 
This gives the full adder shown in Figure 8.2. The CARRY UP to the 
next higher significance is a simple OR of the carries from the two 
half adders. The PARTIAL SUM from the first half adder is added 
to any CARRY DOWN resulting from the next lower significant 
stage, and the result is the FINAL SUM. 

Binary subtraction is just like decimal subtraction, except for the 
radix difference. Our preference for the decimal system does make it 
more confusing, but this hardly matters in view of the fact that 
digital circuitry generally carries out subtraction by a method 
complementation. In order to do this, the maximum range of the 
numbers to be handled must be known. To take a decimal example 
of complementation, take 1000 as the maximum range, and let us 
* See page 17. 
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deduct 729 from 894. This sum can be performed by adding what is 
termed the ten's complement of 729 to 894, then deducting the 
maximum count if the result 'spills over'. The sum thus becomes: 

894 - 729 = 894 + (1000 - 729) -
= 894 + 271 - 1000 
= 1165- 1000 
= 165 

1000 
OR 

894 
+271 
ΤΪ65 

delete spill-over-

This may seem a long way round the problem in view of the fact 
that 729 will still have to be deducted from something. In binary 
arithmetic, it is a simple matter to obtain the two's complement of a 
number, therefore it is a much more practical proposition. 

The two's complement of a binary number is obtained by copying 
the number from the least significant bit up to and including the first Ί \ 
thereafter complementing (or reversing) all subsequent more 
significant bits. Alternatively, reverse each bit and then add 1. 

The 2's complement of 010001 (i.e. 1710) is thus 101111, and the 
binary form of the decimal sum 25 — 17 can be worked by comple
mentation as follows: 

01 100 1 (2510) 
+ 10 1 1 1 1 (2's complement of 1710) 

ί 0 0 1000(8 1 0 ) . 

In the above sum, a non-significant zero is added in front of the 
upper number to make it the same length as the lower number; the 
spill-over 1 is discarded, leaving the total 1000 (equivalent to 
decimal 8). 

The signs + and — cannot be represented as such in electronic 
terms, therefore the most significant bit is used to indicate the sign, 
where Ό' represents positive and T represents negative; the upper 
bit in such cases is known as the sign bit. In 2's complement, the sign 
bit actually has numerical significance. For example, if 8-bit words 
are taken, and the above sum is repeated, the following is obtained, 
where the most significant bit is the sign bit: 

Spill-over 
deleted 

t 
Sign bits -

128 64 

0 

32 

0 

16 

0 

8 

1 0 
Binary numbers 

1 (decimal weighting) 

1 (decimal 25) 
1 (2's complement of 17) 
0 (decimal+8) 
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The numerical significance of the 2's complement number can be 
observed above, for the decimal representation is: —128 (sign bit) 
+ 111 = —17. Those readers familiar with logarithms will see a 
certain familiarity of form. 

If a negative sign bit results, the answer needs to be com
plemented to give it in a normal binary form, which should be 
preceded by a minus sign. The following simple example uses five 
numeric bits plus a sign bit: 

Decimal Binary 

10 0 
- 1 8 1 

0 1 0 1 0 
0 1 1 1 0 (2's complement of 10010) 
110 0 0 (answer) 

- 0 1 0 0 0 (2's complement of answer) 
- 8 l! 

Sign bits ί ' 
Binary multiplication is simple, as the following example shows. 

The multiplicand is written down for each 1 in the multiplier, 
placing it in the same significance. This is a simple matter for 
arithmetic devices, employing the shift register principle. 

multiplicand 10 110 (2210) 
multiplier X 1 0 1 (510) 
line 1 10 110 (multiplicand - zero shift) 
line 2 1 0 1 1 0 <- (multiplicand - shifted 2 

places) 
answer 1 1 0 1 1 1 0 (11010) 

Binary division is equally simple, as the following long division 
shows. This example divides the result of the previous example 
(decimal equivalent 110) by the previous multiplier (decimal 
equivalent 5), to obtain the original multiplicand (decimal equiva
lent 22). As each digit of the dividend is brought down, the quotient 
is entered with a 0 if the divisor cannot be subtracted, or with a 1 if it 
can be subtracted - far simpler than decimal long division! 

0 0 1 0 1 1 0 quotient 
divisor 10 1 )110 1 1 1 0 dividend 

101 
1 1 1 
101 

101 
101 

00 
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Once again, the calculation makes use of a shift function, this time 
with the divisor. Thus all binary arithmetic can be performed by the 
processes of adding, shifting and subtracting, and subtracting itself 
can be converted to a process of complementing and adding. How 
such calculations are achieved is of little more than academic 
interest in practice, because all such calculations are performed by 
special arithmetic devices, or directly by a microprocessor or 
computer. 

It is only practical to undertake fairly simple or repetitive 
calculations without a microprocessor, bearing in mind modern 
prices. Arithmetic devices are available when required, and these 
are the subject of the following chapter. 
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9 
Arithmetic devices 

A range of devices is available for performing binary arithmetic 
functions*. Their usefulness and cost-effectiveness is thrown into 
some doubt these days due to the low cost and availability of the 
microprocessor. They will always have a place where the arithmetic 
requirement is very simple or basic, or where a simple arithmetic 
procedure is a small part of a much more complex function best 
performed by discrete hardware. Complicated arithmetic calls for 
complicated circuits, and it is in these circumstances that the 
designer should really consider whether a microprocessor might be 
the better solution. For these reasons, and because of the fact that 
only a really experienced designer should tackle a design using 
arithmetic devices, this chapter takes only a brief look at the kind of 
devices available for the sake of completeness. 

Full adders 

The full adder was introduced in the previous chapter, but this 
considered only one bit, mentioning that there may be adjoining bits 
of lower and higher significance to consider in a practical case. The 
7482 device is a 2-bit binary full adder, as shown in Figure 9.1. 
Examination of the function table shows how this device performs 
binary addition on two bits, where Al and Bl are the least 
significant, and A2 and B2 are the most significant. For example, the 
second and third lines of the table show that with zeros in the second 
bit, a logic 1 (H) at either Al or Bl produces a logic 1 at the sum 
output from this stage (Σ1); the fourth line of the table shows that a 
logic 1 at both Al and Bl produces a carry, which becomes a logic 1 
in the second stage, etc. 

One of the problems when dealing with the addition of large 
binary numbers is that a carry may have to propagate through a lot 

* Or 'number-crunching' in engineers' parlance. 
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Function table 

A2 B2 v2 GND C2 NC NC 

11 A1 B1 Vcc CO NC NC 

Figure 9.1. The 7482 2-bit binary full adder 

Inputs 

A1 

L 
H 
L 
H 
L 
H 
L 
H 

L 
H 
L 
H 
L 
H 
L 
H 

B1 

L 
L 
H 
H 
L 
L 
H 
H 
L 
L 
H 
H 
L 
L 
H 
H 

A2 

L 
L 
L 
L 
H 
H 
H 
H 
L 
L 
L 
L 
H 
H 
H 
H 

B2 

L 
L 
L 
L 
L 
L 
L 
L 
H 
H 
H 
H 
H 
H 
H 
H 

Outputs 

When CO 

Σ1 
L 
H 
H 
L 
L 
H 
H 
L 
L 
H 
H 
L 
L 
H 
H 
L 

Σ2 

L 
L 
L 
H 
H 
H 
H 
L 
H 
H 
H 
L 
L 
L 
L 
H 

= 1 

C2 

L 
L 
L 
L 
L 
I. 
L 
H 
L 
L 
L 
H 
H 
H 
H 

H 

When CO 

11 
H 
L 
L 
H 
H 
L 
L 
H 
H 
L 
L 
H 
H 
L 
L 

H 

12 

L 
H 
H 
H 
H 
L 
L 
L 
H 
L 
L 
L 
L 
H 
H 
H 

= H 

C2 

L 
L 
L 
L 
L 
H 
H 
H 
L 
H 
H 
H 
H 
H 
H 
H 

of bits in the calculation, and this may cause considerable delay. For 
example, consider the following addition: 

10 1 0 1 0 1 0 1 
+ 0 1 0 1 0 1 0 1 1 

1 1 1 1 1 1 1 1 1 
1 

1000000000 
immediate sum 
carry from immediate sum 
final answer after carry propagation. 

A method of minimising propagation delay in parallel addition 
utilises a technique known as look-ahead tarry. This involves forming 
the carry from each bit position independently of the addition 
process. A carry-up is generated from each adder stage if one of 
three conditions is satisfied: 

a. A n . B n - both inputs of stage 'n' are l 's. 
b. A n . C o - the A input and the carry-down are l 's. 
c. B n . C o - the B input and the carry-down are l 's. 

Low speed requirements or low bit-count numbers can often 
utilise simple full adder circuits without look-ahead carry, because 
propagation does not take long over a short word. Longer words 
usually utilise look-ahead carry, and this feature is normally built 
into 4-bit or greater capacity adder chips. 

The 74283 is a 4-bit binary full adder with full look-ahead carry, 
generating the carry term in a mere 10 nanoseconds (10"8s). Similar 

78 



devices are available for other single function arithmetic require
ments (e.g. the 74285 4-bit X 4-bit multiplier), but where there is 
the requirement for more flexibility, the accumulator or arithmetic logic 
unit (ALU) is more versatile. 

Arithmetic logic units 

Figure 9.2 shows the 74S281 parallel binary accumulator. As may be 
seen, this incorporates a small ALU and a shift matrix. With the 
mode control (M) input low, this device performs one of eight 
arithmetic functions, as definea by an ALU function select code 
(ASO, AS1, AS2); with the mode control high, the device performs 
one from eight logic functions (e.g. AND, OR, XOR type functions). 
The shift register can be shifted in either direction and is of great 
value in arithmetic or logic operations. The P and G outputs are 
used where the look-ahead carry facility is required. 

V FUNCTION MODE 
DATA IN O R I N / S E L̂C T CONTROL D A TA OUTPUTS 

VCC AO o LOUT"ÄSÖ~AS1 AS2 Λ M FQ F1 F2 F3 

L^TTfTTFr7F|7TTJJT^^ 
A1 A2 RSI RSO ^ L IN/ A3 Cn 

* ^ /> N* ' Sc R DATA 
DATA IN REGISTER I- OUT IN 

SELECT 

12 Γ 

p GND 

o z 
w o o 
ocucc 

Figure 9.2. The 74S281 parallel binary accumulator 

A more versatile ALU is the 74S181 arithmetic logic unit/function 
generator. This device performs 16 binary arithmetic operations on 
two 4-bit words as specified by four function select lines. Its many 
capabilities include addition, subtraction, decrement, and straight 
transfer as arithmetic functions, and AND, NAND, OR, NOR, 
XOR, and invert either input as logic functions. 

Comparators 

Comparators are arithmetic devices which are more generally useful, 
and can find useful applications in circuits which are not really 
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concerned with binary arithmetic. Figure 9.3 depicts the 7485 4-bit 
magnitude comparator. This device compares two 4-bit words (A 
and B), and provides outputs indicating A > B, A < B and A = B 
with respect to the comparison of the binary values. Thus if A is 

DATA INPUTS 

VCC A3 B2 A2 A1 

^nRJ^ lRMRRFU 

k 

I I I I I I 
I A3 B2 A2 A1 B1 AO I 

-I 83 BO 

A < B A = B A > B A > B A = B A<-ß 
| IN IN IN OUT OUT OUT | 

JüiliilAnirLifüiL 8 I 
DATA VA < B A - B A>B A > B A = B A < B ; GND 
INPUT ^ ' * ^ 

CASCADE INPUTS OUTPUTS 

Figure 9.3. The 7485 4-bit magnitude 
comparator 

1010, and B is 1000, the A>B output is high, and the other two 
outputs are low, since A (equivalent to decimal 10) is greater than B 
(equivalent to decimal 8). (See also App. HI.) 

The modern alternative - the microprocessor 

The microprocessor offers all these functions, plus the ability to 
perform involved calculations in binary arithmetic. The only dis
advantage is that a microprocessor must be accompanied by 
memory devices for temporary data storage and program storage, 
and the user must devise appropriate software and load the memory 
with these instructions. The right choice depends both upon the 
application and the designer's familiarity with microprocessors; 
obtaining familiarity can be quite time consuming, but once 
attained, great versatility is opened up to him. More will be said in 
Part 3 of this book. 

To conclude, it should be understood that arithmetic circuits are 
not the best proving ground for inexperienced designers, hence the 
lack of detail in this chapter. 
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10 
Counters 

Logic elements with two stable states are known as bistables. They 
are also often referred to as flip-flops, for one clock pulse causes them 
firstly to 'flip' to one state, and a subsequent clock pulse causes them 
to 'flop' back again. Chapter 7 discussed how a string of flip-flops 
can be connected to form a shift register. This chapter discusses 
connecting a string of flip-flops to form a counter or divider. 

Asynchronous counters 

Any kind of flip-flops can be used to produce counters/dividers, but 
D-types are best avoided because they require additional gating in 
order to make them toggle in the requisite manner. The J-K flip-flop 
is ideal, because it can be made to toggle or not upon receipt of clock 
pulses by simply controlling the J-K inputs; with the J-K inputs 
high, the flip-flop toggles, but with them low, it remains unchanged. 

-u ■ 

j - i l j-J -r-d J-J 
H—1J QJ—J H—Ij Q |—* H—Jj Ql—4 H—Jj Ql-J 
H K Q H_JK Q HJ K Q H_ J K Q 

ji_njnjnjnjijnjnjnjnjTjn_njnjnji_ 

(MSB) « 
c r 
0 J Binary 0 
N ̂ Decimal 0 

1 
1 

10 
2 

11 
3 

100 
4 

101 
5 

110 
6 

111 
7 

1000 
8 

1001 
9 

1010 
10 

1011 
11 

1100 
12 

1101 
13 

1110 
14 

1111 
15 

0 
0 

Figure 10.1. An asynchronous up-counter with timing diagram 
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Figure 10.1 shows a four-stage counter circuit employing four J - K 
bistables. The outputs along the chain are labelled Q 0 , Qi , Q2 and 
Q 3 , and these outputs produce a binary count, where Q 0 is the least 
significant bit (LSB), and Q 3 is the most significant bit (MSB). 
Master-slave J - K flip-flops may always be assumed throughout this 
book*, therefore clocking occurs on the trailing (or negative) edge of 
the clock pulse. All the J - K inputs are taken to a logic 1, represented 
by Ή ' in the figure, i.e. they are taken high. 

For simplicity, assume that all the flip-flops start in their reset 
state, i.e. Q = 0· The trailing edge of the first clock pulse clocks F/FO 
to a logic 1. The trailing edge of the second clock pulse clocks F/FO 
back to logic 0, and the action of Qo going from a high to a low 
clocks F/F1 to a logic 1. The trailing edge of the third clock pulse 
toggles F/FO back to a 1, and the fourth clock pulse toggles F/FO 
back to 0, Qo again toggling F /Fl , this time back to a 0. The timing 
diagram depicts this quite clearly. If the waveforms are inspected, 
remembering that a low represents logic 0, and a high represents 
logic 1, the binary count can be determined as shown. 

The more stages added, the greater the capacity of the counter. 
Clearly this goes up in multiples of two with respect to the number of 
stages. One flip-flop has two stable states, two flip-flops linked as a 
counter have four stable permutations, three flip-flops produce eight 
permutations, and the figure depicts a four-stage counter, thereby 
offering 16 different permutations. The timing diagram shows a 
complete cycle; it may be noted that after the count of binary 1111 
(decimal 15), the counter reverts to zero. Because this counter 
counts up, it is known as an up-counter. 

A counter is also a divider. The figure shows that two clock pulses 
are required to produce one pulse from the first stage (Qo), four 
clock pulses to produce one pulse from the second stage (Qi) , eight 
clock pulses to produce one pulse from the third stage (Q3), and 16 
clock pulses to produce one pulse from the fourth stage (Q4). Thus a 

H — 
CLOCK—<3 

H — 

J Q 
>CK 

K Q 
H 

J Q 
>CK 

K Q 

Q1 

J-, 
J! 

H 

J Q 
>CK 

K Q 

Q2 

J K j n j n j n j n j n J - L T L r L T L 

O I Binary 111 

Figure 10.2. An asynchronous down-counter with timing diagram 

* Unless otherwise stated. 
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chain of flip-flops connected in this manner can be used as a 
frequency divider; each stage divides the input clock frequency by 
two. 

Figure 10.2 shows how a down-counter can be produced by clocking 
subsequent stages with the Q output instead of the Q output. In this 
case we consider the situation starting at maximum count (111 for a 
three-stage counter, or decimal 7). Since the inverted flip-flop 
outputs are used to do the clocking, these fall when their associated 
true (Q) output rises: hence Qi is seen to toggle in synchronism with 
the rising edge of Q 0 , and similarly, Q 2 toggles when Q\ is rising 
(remember that the Q and Q outputs of a flip-flop are always 
complementary). Once the limit of the counter has been reached -
which is zero on count-down - the count repeats. In the example, 
the counter reverts to binary 111. 

The maximum count of a binary counter is 2n — 1, where n 
represents the number of stages; the number of stable states is 2n, 
since this includes the zero condition. A four-stage counter therefore 
has a maximum count of 24 — 1, which equals 15. If a counter is 
required with a maximum count between the numbers offered by a 
binary progression, additional circuitry is required. This can be 
used to gate the J - K inputs, or more simply, to reset the counter. An 
up-counter needs to be cleared, whilst a down-counter needs to be 
preset to start the count. 

Figure 10.3 shows how a decade counter can be produced by 
simple gating. A decade (or BCD) counter is required to have ten 
stable states; it therefore counts from 0000 to 1001 (i.e. 0 to 9 in 

Q0 Q1 Q2 Q3 

>CK 

HH KC L Q 

H-Jj Q 

—C|>CK 

HH KC L Q H1KCLÖ 

HJJ Q|—\ 

—ot>CK 
H-|KC LÖ 

Ty 
Figure 10.3. Resetting a counter at a particular count (e.g. a decade 
counter) 

decimal equivalents). The NAND gate shown in the figure decodes 
the count of 1010 (decimal 10), and the output goes low to clear the 
counter back to zero. Such a counter counts up normally to 1001, 
momentarily reaches 1010, but immediately resets to 0000. 
Remember that the MSB of a counter is at the stage farthest away 
from the clock input. 
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The counters/dividers considered so far are said to be asynchronous, 
because the binary count does not change in synchronism with the 
input clock pulse. This is more easily seen if we expand the timing 
diagram for such a counter, as shown in Figure 10.4. This figure also 
includes a decoding gate at the count of 2io, in order to show another 
phenomenon sometimes known as glitch. 

The propagation delay of the 7476 J-K bistable, for example, can 
be as great as 40 ns between the trailing edge of the clock pulse and 
the change of outputs; this is represented by tp0 for F/FO in Figure 
10.4. It may be seen that F/Fl does not see a trailing clocking edge 
from Qo until the propagation delay tp0 has expired after the trailing 
edge of the input clock. Worse still, the similar propagation delay of 
F/Fl, represented by tpi, means that F/Fl does not reach its proper 

H — 

H — 

J Q 
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Figure 10.4. The ripple effect in an asynchronous counter, and decoding 
'glitch' 

binary value until a further delay has taken place. This is known as 
the ripple effect. 

An asynchronous binary counter is rather like a stack of falling 
dominoes; a given domino cannot fall antil all the preceding 
dominoes have fallen. This is so with an asynchronous counter. 
Beneath the timing diagram is shown the required (equivalent 
decimal) count and the actual count; it can be seen that propagation 
delays introduce false counts during the transitional period. The 
more stages there are in the counter, the longer this uncertain 
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transitional period becomes. It is for this reason that such counters 
are also known as ripple counters. 

Whilst only talking about a mere 20 ns delay for each stage, the 
effects can be unfortunate if the circuitry depends upon decoding the 
binary counter. A D E C O D E 2 output in Figure 10.4 demonstrates 
this, for apart from decoding correctly, it sees a false 2 after the 
count of 3, during transition. This is sometimes referred to as glitch 
or skew. If this output was required to clock another bistable, for 
example, it would produce false clocking due to glitch. 

One way of getting over the problem is to ensure that any 
following logic only takes notice of the ripple counter after it has had 
time to settle. The number of stages tells us the maximum settling 
time required for a given counter, and subsequent logic must 
therefore be strobed by a pulse generated after this settling time has 
expired. It is then known that no false count can be seen. The 
disadvantages of this are twofold: firstly it introduces what might be 
a significant time delay into the proceedings, and secondly, it is 
necessary to introduce circuitry to produce the required strobe pulse. 
All this can be avoided by the use of synchronous counters. 

Asynchronous operation is not likely to concern the designer 
where only a frequency divider is required, and some applications 
may not be sensitive to decoding glitch. Asynchronous counters are 
usually simpler and cheaper than synchronous counters, therefore 
they do have their place in cost-effective design. 

Synchronous counters 

Returning briefly to the domino analogy, if we were able to strike all 
the dominoes simultaneously with a sideways blow by a ruler edge, 
all would topple in synchronism. The synchronous counter does 
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iL· To any 
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stages 

Figure 10.5. A synchronous counter (no ripple; no glitch) 

likewise - by 'hitting' all the bistables simultaneously with the same 
clock pulse. Figure 10.5 depicts this, and comparison with Figure 7.2* 
shows that this is the same technique as that used with shift 

* See page 59. 
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registers. It was explained in Chapter 7 that propagation delays can 
be nullified by synchronous clocking, and that a given bistable can 
be made to take on a condition set by another bistable also being 
synchronously clocked. This is the secret of the synchronous coun
ter. 

By connecting the J and K inputs of each bistable to the Q output 
of the preceding bistable, they are alternately allowed to toggle or 
remain unchanged, in sympathy with the common clock pulse. 
There is therefore no ripple effect, and hence no glitch with such a 
system. Decoders can be safely connected to the output from such 
counters without the fear of spurious decoding spikes. 

Binary rate mult ipl ier 

The situation can arise where it is necessary to accurately divide a 
frequency down by something other than a power of two. It was 
shown how a counter can be reset at a given count by a decoder in 
Figure 10.3, but a more elegant way of achieving this is with a binary 
rate multiplier. Crystals are often used as frequency standards in 
digital equipment; by feeding the input of a crystal oscillator into a 
binary rate multiplier, it is possible to derive any desired lower 
frequency. Figure 10.6 shows a synchronous 6-bit binary rate 
multiplier (7497). 

OLUl ,_4 
Rate 
input 

UNITY/CASCADE-

-ENABLE 
OUTPUT 

Figure 10.6. A synchronous 6-bit binary 
rate multiplier (7497) 

This device is a 6-stage counter with special decoding logic on the 
outputs, which is gated with what is termed the binary rate input, or 
' M ' input. The input frequency is fed in as the C L O C K , and with 
the device enabled (CLEAR, STROBE and ENABLE inputs low), 
the output frequency at the Z O U T P U T is as follows: 

v _ M . fJn 
* o u t ~~ 64 

Six stages give the -i-64 factor, and the M input is a binary 
number input on lines A to F, where A is the least significant bit. 
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Another way of looking at it, is to say that for every 64 input pulses, 
the output produces the number of pulses programmed on the rate 
input. For example, if the rate input is binary 000101 (i.e. decimal 
5), 64 C L O C K pulses produce 5 output pulses. The Y O U T P U T is 
simply a NAND of the Z O U T P U T and the UNITY/CASCADE 
input. Stages are cascaded by linking the ENABLE O U T P U T to 
the STROBE and ENABLE inputs of the following stage; the 
sub-multiple frequency outputs are then taken from the Y O U T 
PUTS. 

Other counter/dividers 

There is a wide range of commercial devices for counting/dividing 
applications. Three useful counters are included on pages 276 and 
277 of Appendix A. 

The 74196 and 74197 are versatile four-stage ripple counters with 
three stages internally coupled and a fourth stage independently 
accessible; internal gating is included for reduced counts, and these 
devices allow for BCD counting or -r- 2 and -r- 5 (74196), and binary 
counting or -r- 2 and -r-8 (74197); see also App. E l . 

The 74163 is a synchronous 4-bit binary counter. It incorporates 
carry look-ahead circuitry enabling cascading, and a ripple carry 
output true during the count of 15. It features parallel load facilities 
for counting from a given start point, but can only operate as an 
up-counter. Preset and clear inputs are also provided, but their 
action is synchronous, and does not take place until the clocking 
edge; this device is clocked on the rising edge of the clock pulse due to 
an inverting buffer on the clock input line. The 74161 is a similar 
device, but has asynchronous clear, i.e. it is cleared immediately the 
clear input is activated. Partners to the above counters are the 74162 
synchronous decade counter with synchronous clear, and the 74160 
synchronous decade counter with asynchronous clear. See App. E2 
for further details. 

More versatile is the 74191 up/down synchronous counter, the 
count direction being controlled by a D O W N / U P input. This 
counter is fully programmable to any desired count via an 
asynchronous L O A D input. Like the previously mentioned coun
ters, inverter buffering on the clock input means that transition 
occurs on the rising edge of the clock pulse. The 74190 is a 
companion device for decade counting. See App. E3 for further 
details. 

Counters have many applications, as will be seen in Part 2 of this 
book. They are frequently used in conjunction with visual displays, 
hence the need for intermediate display drivers. These are dealt with 
in the following chapter. 
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11 
Displays and display drivers 

The majority of logic circuits require some form of visual display in 
order to indicate certain conditions. The light emitting diode, or LED, 
is probably the most convenient, because of its particular compati
bility with logic devices. LEDs are available in a wide variety of 
forms from single lamps to alphanumeric displays. This chapter 
discusses how such devices may be interfaced, the types available, 
and the alternatives of tungsten bulbs, gas discharge tubes, and 
liquid crystal displays (LCD). Finally the technique of multiplexing is 
introduced as a method of conserving power, and minimising 
circuitry. 

Light emitt ing d iodes 

Light emitting diodes - normally known simply as 'LEDs ' - are 
manufactured from semiconducting material such as gallium phos
phide. They are specially constructed diodes designed to give 
efficient recombination of carriers, which gives rise to the emission of 
visible light. They are available in red, high efficiency red, green, 
and yellow. Red is the easiest to manufacture and the most efficient, 
therefore red devices are more common and the least expensive. 

Light emitting diodes are operated in their forward biased 
condition at currents normally lying in the range 1mA to 40 mA; 
most produce a bright light at about 20 mA, with usable light levels 
down to the lower end of the range; the specific operational 
conditions must be considered, for operation in high ambient light 
levels calls for higher operating currents, and hence a greater visible 
output. 

Figure 11.1 shows an LED in series with a current limiting 
resistor RL. This resistor must be chosen to give a suitable diode bias 
current when connected to a given supply voltage. The potential 
difference across the forward-biased diode is in the range 1.5 V to 
2.0 V. Figure 11.2 shows how a T T L gate may be used to drive an 
LED directly. An ordinary T T L gate can sink 16 mA, which is 
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^ > ^ 
Figure 11.1. LED with current 
limiting resistor 

Figure 11.2. LED driven from a 
TTL output at a low level 

Figure 11.3. LED driven directly 
from a TTL output at high level 
(7400 shown - suitability depends 
upon type) 

adequate for many LEDs, but a device such as the 7407 buffer is 
capable of sinking up to 40 mA where higher drives are required. It 
is necessary to consider the maximum possible LED current, 
obtained with Vp at a minimum, in order to determine whether any 
fanout can be achieved from a particular driver; as a general rule of 
thumb, unless LEDs are operated at under 10 mA, it is probably 
safest to reserve each driver gate for a single LED. 

One method used for driving LEDs is illustrated in Figure 11.3. 
This makes use of the internal circuitry of a T T L gate such as the 
7400, which includes a 130Ω resistor as the collector load for the 
upper transistor of the totem-pole output stage*. Taking the max
imum voltage drop across the LED (VF m a x ) as 2 V, and allowing for 
a further 1V dropped across the T T L series diode (D2) and 
bottomed transistor (TR3), this leaves 3 V to be dropped across the 
130Ω resistor, thereby defining a current of around 15 mA. Even in 
the case where the V F is only 1.5 V, this still only gives a maximum 
current of about 19 mA. Thus the LED drive range can be obtained 
in this manner without the need for any external components. 

Whilst the above method is frequently used, it cannot be recommended 
as good design practice, as a simple calculation and reference back to 
Chapter 2 will show. A T T L output is designed to have a maximum 
high level output current (IQH) of only 400 μΑ, far below the LED 
* Compare with Figure 2.3. 
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drive current. At the maximum drive current of 19mA, with 3.5 V 
dropped by the series components within the gate, nearly 70 mW are 
dissipated within the device, nearly 50 mW of which are dissipated 
within the resistor R4. When it is considered that the entire package 
does not usually dissipate more than 80 mW under the most adverse 
conditions, with this spread across four similar gates, this should be 
enough to make the designer cringe: certainly the manufacturer 
would! Clearly the limiting resistor is not designed to withstand 
continued dissipation of this order. It is therefore advised to 
completely avoid this method of driving LEDs, for any design which 
causes components to work outside their intended operating range is 
simply bad design practice. 

One possible circumstance where this method of driving might be 
considered reasonably acceptable is where the LED is simply used 
as a fault or test indicator. The TTL-LED compatibility makes this 
an ideal method of indicating predictable fault conditions, and 
provides a service engineer with an easy guide to fault finding. On 
the assumption that such conditions do not normally exist, this is 
not placing any undue stress upon components, and does save a 
resistor. 

0.1 0.2 0.4 0.7 1 2 4 7 10 20 40 100 

Ip—forward current-mA 

Figure 11.4. Relative luminous intensity of 
TIL209 LED vs IF (courtesy of Texas 
Instruments) 

I The graph given in Figure 11.4 shows how luminous intensity 
varies with diode forward current, relative to the ideal drive of 
20mA. This curve is for the Texas Instruments TIL209 red LED, 
but is fairly representative of most similar devices. It may be seen 
that luminous intensity drops to lower than l/lO of its value at 
20 mA when the bias current is reduced to 2 mA. 
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Driving tungsten lamps 

If there is a requirement to drive tungsten lamps, or other high 
current devices, it is necessary to buffer the T T L output such that 
the output current is within normal ratings. 

An NPN transistor provides an ideal way to achieve this buffer
ing. There are two possible methods of driving the base: either from 
the gate at a high level output, or via a base resistor. The former 
method is limited by the factor previously discussed, i.e. the 
preferred limit of 0.4 mA. Since bottomed transistors have relatively 
low current gain - say 20 - this only gives a drive capability at the 
transistor collector of say 8 mA, unless the gate is overdriven. The 
best solution is to bias the transistor base via a resistor, as shown in 
Figure 11.5, and to drive the base with an open-collector T T L gate. 
With this circuit, the lamp is driven on when the gate output is 
'high', i.e. when the gate presents an open-circuit; when the gate 
output is low, all the current flowing through bias resistor RB is 

vcc 

R B m i n - ^ k " 

^300Ω 

say 330Ω 

Figure 11.5. Driving a lamp (or other 
load) from TTL with a transistor driver 

diverted to the T T L gate, cutting the transistor driver off. Since a 
normal gate can sink 16mA, this allows R B to be as low as 330Ω. 
Thus RB can drive the transistor base with nearly 16 mA of base 
current, and allowing for a bottomed current gain of only 10, this 
allows for loads of up to 160 mA. If lower drive currents are 
required, the resistor should be increased accordingly, thereby 
reducing the drive requirements of the T T L gate. RB should be 
chosen as somewhat lower than that needed to ensure adequate base 
current for the drive requirement, whilst bearing in mind the lower 
limit of 330 Ω. 

This circuit assumes a bulb, but the interface is equally suitable 
for any other load (e.g. a relay). It should be noted that the voltage 
at the T T L open-collector output never goes to a high level in this 
circuit: it is at about +0.7 V when the driver is on, or about +0.3 V 
when the driver is off. Thus fanout is not possible, as a logic 1 

ô  
Open-collector 
gate 

t 
Optional 
diode 
(see text) 
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condition is never achieved. If it is required to ensure that the 
transistor is completely cut off when the gate output is low, a diode 
may be inserted in series with the transistor base; this ensures that 
the low output from the TTL gate is far below the voltage necessary 
to turn on the transistor. 

Note also that this type of interface is ideal where a change in 
supply voltages is required. Whilst the base bias resistor must be 
connected to +5V for TTL compatibility, the transistor collector 
can be taken via its load to any positive potential within the 
transistor's rating. 

Seven-segment displays 

The seven-segment display is a common sight these days because of 
their widespread use in pocket calculators. Figure 11.6 shows such a 
display, with optional places for a decimal point. Each of the seven 
bar segments is actually a light emitting diode, therefore in order to 
display the shape of numerals, it is necessary to convert a BCD input 
into the appropriate seven drive lines. Such devices can be 
manufactured with common anodes or common cathodes, but they 
are generally more convenient to drive if they have common anodes 
- this allows low TTL outputs to drive individual segments, via a 
load resistor. Figure 11.7 shows a BCD to seven-segment 
decoder/driver chip which provides the necessary interface. 

'LJ-
.•LJ: 
i i Alternative 

' positions 
for decimal 
point 

Figure 11.6. A seven-segment dis
play (TIL302 has LH DP; TIL303 
has RH DP) (courtesy of Texas 
Instruments) 

Usual features of BCD to seven-segment decoders are ripple-
blanking and lamp test. Ripple-blanking allows the designer to supp
ress leading zeros in a number, without affecting significant zeros. 
Thus a four digit display of the number '0040' can be converted to 
' 40' by the use of ripple-blanking. Taking the ripple-blanking 

7447A DP-[ 

Figure 11.7. A BCD to seven-
segment display driver driving a 
display 
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input (RBI) low on the 7447A suppresses a zero display; a zero 
display at a given digit causes the ripple-blanking output (RBO) to 
go low. A multi-digit display simply requires linking of the RBO 
output from one digit to the RBI input of the next lower significant 
digit in order to suppress non-significant zeros - the RBI input of the 
most significant digit is taken to OV to suppress the first digit. If the 
RBI inputs are taken to a high level, no suppression occurs. 

The lamp test input is taken low on the 7447A to test all the 
segments, i.e. all should be illuminated when LT is grounded. It is 
important to provide a lamp test feature on measuring equipment 
utilising seven-segment displays, for a segment failure could cause 
false readings. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 11.8. Possible seven-segment displays using a 
display driver (7447A) (0-9 displays obtained from BCD 
input to driver; other symbols are optional) 

Figure 11.8 shows the various displays available with the circuit 
shown in Figure 11.7. A straight BCD input provides appropriate 
numerals to be displayed, but the spare codes available can be used 
to display other unique symbols, as shown for codes 10-15 in the 
figure below. These might be of use for test purposes. Not all 
decoders provide these symbols for the spare codes, and variations 
occur between different manufacturers. 

One of the limitations is that seven-segment displays do not lend 
themselves to the display of alphabetic characters, although surpris
ingly, ingenious use of the segments, with individual driving, can 
achieve all but eight of the alphabetics, if a mixture of upper and 
lower case is accepted, and perfect horizontal alignment is sacri
ficed. The following list illustrates the characters that can be 
displayed in this fashion, shown in either upper or lower case as 
appropriate; characters shown in upper case and enclosed by 
brackets cannot be adequately represented (except by means of a 
unique code): A b c d e F (G) h i j (K) L (M) n o P (Q) r S t u (V) 
(W) (X) y (Z). This might not be obvious at first, but a couple of 
examples might help. Illuminate segments b, g, e, d and c for the 
letter 'd'; illuminate segments f, e and g for the letter ' t \ The letter 
cy' appears in a raised position by illuminating segments f, g, b and 
c. (Refer to Figure 11.6 for segment letter coding.) 

Seven-segment displays are not suitable for ordinary use where 
alphabetic characters are required, because of the lack of legibility, 
and the fact that the full range cannot be displayed. There are 
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applications where the amateur might find them of use, however, 
particularly in conjunction with microprocessors, which make it a 
relatively easy matter to drive segments individually from software 
bits, and provide a very cheap form of readout. With a little 
ingenuity, words with G, K, M, Q, V, W, X and Z can be avoided! 

Dot-matrix displays 

The dot-matrix display comprises a rectangular array of LED 
pinheads. By selecting which diodes in this matrix to illuminate, any 
desired symbol or alphabetic character can be represented. It is 
possible to obtain 4 X 7 displays, but more common - and more 
versatile and legible - is the 5 X 7 matrix. Figure 11.9 shows such a 
display with the letter 'S ' illuminated. Note that the matrix format 
even allows curves to be simulated. (A display is much more legible 
than the illustration can represent.) 

o · · · o 
• o o o · 
• o o o o 
o · · · o 
o o o o · 
• o o o · Figure 11.9. A 5 x 7 dot-matrix 
O · · · O display, displaying the letter 'S' 

Because there are 35 individual diodes to drive, decoding becomes 
much more complex than with the seven-segment displays. It is 
common practice for such devices to include an integral decoder and 
driver. The Hewlett Packard 5082-7391 is such a device designed for 
displaying hexadecimal characters (i.e. 0 -9 and A - F ) from a hex 
input. 

In order to keep the number of pin connections down to a 
respectable level with such devices, alternative forms of input are 
used where a full character set is required. The HDSP-2000 device, 
for example, is a 4-character device in a D I L encapsulation, yet it 
has only 12 pins. This pin economy is achieved by incorporating 
integral 7-bit shift registers associated with each character row (7 
rows), and common column strobes (5 columns). The individual 
shift registers are serially connected to form an effective 28-bit shift 
register. Data is clocked in via a serial input, and 28 clock pulses are 
required to enter the full data complement specifying the states of all 
the diodes in one row, of all the characters. Thus only one row in 
each character is actually illuminated at once, but fast switching - or 
multiplexing - means that this is not observed by the viewer. This 
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process is repeated for each of the five columns, thus a complete 
refresh cycle constitutes 28 X 5 = 140 clock pulses; note that this is 
identical to the number of individual light emitting diodes (35 X 4). 

Starburst displays 

The starburst display is an excellent compromise between the limitat
ions of the seven-segment display and the relative complexity of the 
dot-matrix. Figure 11.10 shows this arrangement. These devices add 
diagonal bars and a central vertical bar to the seven-segment 
arrangement, thereby making possible the construction of alphabet
ic characters including slanting lines; the illustration shows how the 
letter ' M ' is displayed. The only limitation with this format is that 
certain characters are rather 'over-square'. The advantage is that 
decoding is not such a problem. 

Figure 11.10. A 'starburst' dis
play, displaying the letter 'M' (e.g. 
lA X DL-1416 memory/decoder/ 
driver/LED or V4 X 3970 LCD 
display) 

The Litronix DL-1416 4-character display has a 16-segment fount 
and accepts a standard 7-bit input code known as ASCII* (Amer
ican Standard Code for Information Interchange). This code is 
universally accepted and contains a full alphanumeric character set, 
plus symbols. Two address bits are used to select one from four 
characters, and a write pulse is then used to staticise the desired 
ASCII code for the selected character in an internal register. 
Internal decoding and driving then takes care of the rest: the desired 
character is displayed at the selected position. Because it is internal
ly staticised, this character remains displayed when other characters 
are being written. Because a character remains for as long as 
required without refreshing, this is said to be a static display. (The 
5 x 7 dot-matrix device described previously is said to be dynamic 
because it requires constant refreshing of input data.) 

Such devices are not cheap when compared with seven-segment 
displays, but they do provide a reasonably cost-effective solution to a 
versatile form of readout for use with microprocessors. 

* See also Appendix D. 

\M 
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Liquid crystal displays 
Liquid crystal displays are dynamic devices which consume far less 
power than light emitting diode displays. Electrically they appear as 
series resistance and capacitance, as shown in the equivalent circuit 
of Figure 11.11(a). Because the actual display element is capacitive, 
there is no option but to drive these devices dynamically. Part (b) of 
the figure shows that each segment comprises a thin film of an 
organic liquid contained in a cell made by bonding together a pair of 
glass plates. The internal faces of the plates contain a transparent 
electrode which is etched to the required segment shape. The series 
resistances shown in the equivalent circuit represent lead-in resist
ance, and the parallel resistance and capacitance represents the fluid 
leakage resistance and the self-capacitance between opposing elec
trodes. 

^.Upper glass plate 

, _ ! 
|() _ 1 0 0 p F 

Figure 11.11. An LCD display: (a) equivalent circuit; (b) drive terminals; (c) 
segment off conditions; (d) segment on condition 

The electrical field set up by an applied potential to the plates 
causes a rotation of the plane of polarisation of light passing through 
the cell; this is made visible by the use of polarisers, and the relative 
orientation of these films gives either a transparent image on an 
opaque background, or vice-versa. Constant d.c. applied to a cell 
can cause degradation, therefore only a.c. should be applied. 
Devices normally employ a common backplate with individual 
segment connections. Figure 11.11(c) shows that if identical square-
waves are applied to both plates of a cell, no potential difference is 
obtained across it (AV). If the two plates are driven anti-phase, 
however, as shown in (d), a potential difference occurs. The segment 
is in the off condition with no potential difference, or the on 
condition when a potential difference exists. Logic levels are suffic
ient to drive these devices, and drive current is negligible because of 
their high impedance. 
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The simplest way of driving an LCD segment is with an exclusive-
O R gate, as shown in Figure 11.12. The DRIVE input is a constant 
clocking waveform, and the SELECT input is placed high to switch 
the segment on. When SELECT is high, it causes the X O R gate to 
act as an inverter to the D R I V E waveform, thereby ensuring that 
the plates are always driven in anti-phase. When SELECT is low, 
the X O R gate does not invert, thereby ensuring that the same 
waveform is applied to both plates. C M O S integrated circuits are 
ideal for driving LCD displays.* The 4055A C M O S LCD display 
driver provides a seven-segment output suitable for driving an LCD 
character, provided an externally generated square-wave is applied 
to its DF input. 

Figure 11.12. Exclusive-OR method 
of driving an LCD segment 

LCD displays are available in seven-segment and starburst forms. 
This type of device can also be custom-made for the bulk user. 

Gas discharge tubes 

Low voltage fluorescent tubes are another means of reducing the 
current required by displays. Such displays are miniature cathode-
ray indicators, and electrons from the hot filament are accelerated to 
impinge on the fluorescent anode, shaped according to the pattern 
required (e.g. seven-segments). Such displays require a supply of 
around + 1 8 V minimum, and a low voltage heater supply (e.g. 
1.6 V) . These devices can be conveniently switched with open-
collector T T L devices, and are available in both common anode and 
common cathode varieties. The fluorescent anode usually glows 
green in colour when switched on. Open-collector T T L devices are 
available with 30 V output transistors, allowing a good brilliance 
level to be obtained with a 30 V supply. 

Mult ip lex ing 

Multiplexing is a technique whereby an apparently static condition is 
actually implemented by dynamic means (e.g. the HDSP-2000 
dot-matrix display previously described). Multiplexing allows cir
cuitry to time-share certain common lines or components, thereby 
greatly reducing component count and cost. 

* Application notes are available from most manufacturers of such devices, e.g. Hamlin Electronics 
Europe Ltd., Diss, Norfolk IP22 3AY, England. 
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Figure 11.13 shows how multiplexing might be applied to four 
7-segment displays. By so doing, a single latch/7-segment 
decoder/driver is used instead of one per digit. The CD4511B 
accepts a BCD input which is internally latched by means of a latch 
enable (LE) input. This is internally decoded to 7-segment form, 
and NPN bipolar transistors on the output stage provide high level 
emitter-follower drives to the 'on' segments. Limiting resistors are 
chosen to define the current /or a single display diode, for multiplexing 
means that only one diode will be on at one time. 

Current 
limiting 
resistors 

BCD 
input 

4 4 
l·^ 

D -

Emitter follower 
option for current 
buffering x7 

>-»*" 

CD4511B 
Latch/7-segment 
decoder/driver 

8 

MULTIPLEXE 
DIGITSELECT 
LINES ?i J^3" 

Common cathode 
^ seven-segment 

displays 

Figure 11.13. Multiplexing a 7-segment display with four digits 

A common cathode display is suitable for this application, thereby 
allowing common resistance at the anode side; it is then only 
necessary to ground each of the M U L T I P L E X E D D I G I T 
SELECT LINES in turn, where the digit selected corresponds to the 
appropriate code output by the latch/decoder/driver. A suitable 
display is the Hewlett Packard HDSP-3533 high efficiency red 
display. This device requires an average current of 20 mA per 
segment, but if it is to be multiplexed, each segment is only on for a 
short interval. With four digits to be multiplexed, any given digit is 
only on for one-quarter of the time. 

When it comes to any visual displays, a frequency of at least 
100 Hz must be used in order to give a flicker-free appearance. 
Whilst multiplexing at a sufficiently high frequency can give the 
appearance of all four digits being constantly displayed, you cannot 
get something for nothing, therefore if you cut down the display time 
of each digit by 7 5 % , you also cut down its apparent brilliance. This 
must be counteracted by stepping up the peak current per segment 
if the same brilliance is to be attained. If it is decided that 20 mA per 
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segment is required for a static (i.e. d.c. driven) display, then 80mA 
per segment is required for four multiplexed digits to give the same 
brilliance (i.e. 20 mA X 4). This is better appreciated if the supply 
requirement is considered, bearing in mind that this must be the 
same for a given brilliance, no matter what technique is used. Four 
static digits require 20 X 4 = 80 mA for a particular segment in each 
digit. The multiplexed system supplies four consecutive pulses, 
which equates to a constant current; that constant current must be 
80 mA. 

A problem immediately faces us with the circuit shown above. 
The CD451 IB can only source a maximum of 25 mA, therefore if it is 
to be used, there will be only two options: dropping the peak 
current, and hence the display brilliance, or providing current 
buffers. The CA3083 NPN transistor array chip is useful for such 
purposes since this contains five separate transistors each capable of 
handling 100 mA peak; transistors in this array could be used as 
emitter-followers to the CD4511B outputs, thereby allowing 80 mA 
peak drive; alternatively, discrete NPN transistors with suitable 
ratings could be used. 

Similar transistors are required to sink the common cathodes of 
the M U L T I P L E X E D D I G I T S E L E C T LINES, but these must be 
capable of sinking a maximum of 80 mA peak X 7, i.e. 560 mA. The 
CA3724G is a suitable NPN transistor array for this purpose, 
containing four transistors, each with a 1 A rating. The circuit as 
shown is only capable of multiplexing the displays with the reduced 
brilliance equivalent to a static display with 6 mA per segment, but 
bear in mind that if a separate CD451 IB is used for each digit in a 
static display, the device is quite capable of sourcing the more 
desirable 20 mA per segment. A static display has a peak current of 
20 mA X 7, i.e. 140 mA. 

This example shows how apparent savings in one direction (e.g. a 
common latch/7-segment decoder/driver) can bring about unex
pected complications in another (e.g. driving capability). There is a 
lot to be said for the simplicity of static displays. 

Finally, a general point about drawing techniques, which is 
illustrated in Figure 11.13. The drawing shows how parallel lines 
can be combined to save space and improve clarity. The optional 
slashed line across the BCD broad arrow input is marked with '4 ' to 
signify that this represents four separate lines. Similarly, the single 
line drawn from the limiting resistors is slashed with '7 ' to indicate 
that this represents seven individual lines. Special care must be 
taken in circuit diagrams to ensure that the same order of lines is 
maintained at either end, if these branch out to numbered pins. 
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12 
Decoders and data selectors 

Control circuitry frequently requires that a binary input be con
verted to a single line output, i.e. a separate output line for each 
unique binary number. Such a function is performed by a decoder 
(known also as a demultiplexer). Data processing sometimes requires 
that the reverse operation be performed, i.e. a number of input lines 
are routed to a single output line. The latter function is performed 
by data selectors (also known as multiplexers). This chapter considers 
both kinds of device. 

Decoders 

We have already seen simple examples of decoding, e.g. the 
decoding gate in Figure 10.4*. Figure 12.1 shows the circuitry 

U l i 

Figure 12.1. A decoder circuit for two-line to 
four-line conversion 

required to decode two input lines, A and B. Because there are four 
permutations of two input lines, a full decoder requires there to be 
four outputs: one for each unique binary input. The figure shows 
that this is readily performed by NAND gates. Each gate requires 
the appropriate selection of true or false inputs from the two input 
terms; inverters are used to make the complementary conditions (A 
and B) high when true. 

* See page 84. 
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A decode of two input lines can readily be performed by a 7400 
quad 2 i/p NAND gate, especially if true and complementary inputs 
are already available for the inputs, thereby obviating the need for 
the inverters. If the output is from bistables, this is often the case. 
Decoding more than two input lines would require more than one 
IC, and it is then more efficient to use a decoder chip. For more 
input lines the same principle applies, but each NAND gate decode 
has to select true or false inputs relating to each of the input lines; 
thus a decoder with three input lines requires 3 i/p gates, etc. 

The following devices are worth noting: 

(a) 74155 dual 2-line to 4-line decoder (or 74LS139 - App. Fl). 
(b) 74156 dual 2-line to 4-line decoder with open-collector output. 
(c) 74LS138 3-line to 8-line decoder (App. Fl) . 
(d) 74154 4-line to 16-line decoder (App. F2). 
(e) 7445 BCD-decimal decoder/driver with open-collector outputs. 

To consider one example, the 74LS138 produces only one output 
low at a time, and the number of that output is the decimal 
equivalent of the binary input; this may be seen by studying the 
function table presented for the device in the appendix (App. Fl) . It 
will be seen that in addition to the A, B and C select inputs, three 
enable inputs are provided; this facility is often convenient for 
combining other gating functions with the decode; if this facility is 
not required, it is simply necessary to tie the enables permanently in 
their enabled state, i.e. Gl high and G2A and G2B low. 

Space considerations can often be of great importance in practical 
designs, therefore it might be very advantageous to use a device such 
as this even if it is under-utilised; it does not matter if all the outputs 
are not required. 

Data selectors 

Data selectors are rather like electronic switches, as indicated by the 
equivalent circuits shown inside the outline of the dual 4-line to 
1-line data selector shown in Figure 12.2. If the device is made to 
continually scan all the input lines, it performs a multiplexing 
function; in this way it can convert parallel data to serial data. 

The dual 4-line to 1-line data selector shown (74153) has common 
A and B select lines; the inputs are labelled in the format 'dCn', 
where *d' is either a 'Γ or '2' to indicate the data selector number, 
and 'n' is '0—3', representing the decimal equivalent of the binary 
select input. Thus if A = l and B=0, the ICl input is routed to 
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OUTPUT 1Y, and the 2C1 input is routed to OUTPUT 2Y; note 
that both are also dependent upon the related strobe input also 
being low. ('A' is the LSB; see App. G2 for further details.) 

- OUTPUT 
2Y 

Figure 12.2. A dual four-line to one-
line data selector (74153) 

Such devices are particularly useful for sampling, where a number 
of different input lines are to be sampled in turn. For example, if it is 
required to compare a number of different inputs against a set value, 
as an alternative to using separate comparators for each comparis
on, a single comparator could be used, with one input the set value, 
and the other input fed from a data selector; each input can then be 
compared against the set value in turn, simply by selecting different 
binary inputs to the data selector. In practice, it may be necessary to 
operate a number of such devices in parallel if it is required to select 
data words comprising several bits. The 74153 is a dual 4-line to 
1-line data selector, therefore it would require two such devices 
operating with common select lines, in order to select one from four 
4-bit words. 

Other devices worth noting are as follows: 

(a) 74157 quad 2-line to 1-line data selector (App. Gl) . 
(b) 74251 8-line to 1-line data selector. 
(c) 74150 16-line to 1-line data selector (App. G3). 

Examples of how both data selectors and decoders may be used in 
practice are given in Part 2. 

102 



13 
Data transmission and parity 

Parallel data is handled more efficiently and faster than serial data, 
therefore there is a general preference for parallel data handling. 
The only limitation with parallel data comes when it is required to 
route it for an appreciable distance. The physical bulk of a large 
number of parallel lines makes serial data transmission more 
attractive over longer path lengths. This physical limitation tends to 
tie in with the electrical limitation of driving longer lines. 

As a general rule, it is possible to transmit digital data for up to 
about 30cm without any special considerations.* This allows cir
cuits on different printed circuit boards (PCBs) to be interlinked 
without any real problems. Data can even be transmitted over 
longer distances than this by the simple expedience of buffering at 
regular intervals, such that each section is under 30 cm. For such 
distances it is generally worthwhile to retain data in a parallel form. 

For distances of up to about 15 metres, it is possible to transmit 
digital data at fairly high speeds by using various techniques of line 
driving and receiving, but because of the distance and added 
complication of line drivers and receivers, it then becomes a more 
attractive proposition to convert to serial data. A particular data 
transmission link can then be reduced to a single line. 

For distances greater than 15 metres, the choices become fewer, 
and serial data is unquestionably the only possibility. For small 
multiples of 15 metres, line buffering can be considered, in much the 
same manner as previously described. For long distances, say from 
building to building, or from one part of the country to another, 
telephone lines must be used, and this requires the use of special 
interfacing circuitry for modulation and demodulation; the digital 
signals must be converted to voice grade channels, with a band
width limitation of 300 Hz to 3 kHz in most instances. The fast rise 
and fall times of digital signals can no longer be retained, and 
telephone line specifications must be considered. The logic 1 and 
logic 0 levels must now be converted to two different frequencies, 

* This is a recommendation - longer distances are frequently used in practice. 
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known as mark and space respectively. Afoi/ulator/ifcmodulator devices 
for this purpose are known by the acronym of modems. 

Figure 13.1 is used to illustrate these various forms of data 
transmission. Equipment A comprises four main functional areas 
labelled Fl to F4, and this equipment has both internal data 
highways and external data highways. A simple data highway is 
shown between F4 and a serial/parallel (S/P) converter; the latter 
may be considered to represent conversion in both directions, 
therefore it interfaces between the parallel data highway to F4, and a 
serial data highway to a line driver/receiver (Tx/Rx) which com
municates across a short line with Equipment B. A similar 
serial/parallel conversion occurs in Equipment B, therefore parallel 
data may be relayed between the two equipments in either direction 
by means of a serial data link. 

4 (̂'/ρ> 4^('/o) < > 

Figure 13.1. Types of data transmission (parallel/serial) and the use of modems 

Intercommunication between the function Fl to F4 of equipment 
A is by means of a common parallel data bus. The broad arrows 
signify parallel data, and the use of arrow-heads or broadside 
connection illustrates the following: 

(a) Fl simply outputs onto the bus (therefore no incoming arrow). 
(b) F2 simply receives data from the bus (therefore no arrow 

towards the main bus line). 
(c) F3 and F4 both receive (input) and transmit (output) data 

from/to the bus, therefore arrow-heads are used in both direct-

Some documentation utilises an incoming arrow (as for F2) to 
represent both incoming and outgoing data, which can become a 
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misleading standard: there is no way of clearly showing where data 
is only incoming. Other documentation goes to the opposite extreme 
of even breaking bus lines with mating arrow-heads. Mixed stand
ards deserve care when interpreting such diagrams. 

The figure also shows a telephone link with Equipment G. Each 
end of this link requires a modem, and since both equipments utilise 
parallel data at the earliest opportunity, serial/parallel converters 
are employed adjacent to the modem in each case. 

The amateur is not likely to be concerned with designs which 
require the transmission of data across appreciable distances, 
although he should be aware of the limitations and requirements for 
this. The novice should not attempt designs which require such 
techniques. This information is included in this chapter for the sake 
of completeness, and in order to introduce the idea of parallel and 
serial highways; the latter is of fundamental importance when 
considering microprocessors, as will be shown in Part 3. 

Data transmission across short distances 

Digital data can generally be transmitted for a few centimetres (e.g. 
between nearby PCBs) via single lines, provided high speed operat
ion is not required. It is better still to use twisted pairs or a coaxial 
line, as shown in Figure 13.2(a). The transmitting and receiving 

—j J& Up—f^CurrentlooIr^ IXST—[ J 

ST (e) 

Figure 13.2. Line driving/receiving: (a) short distances; (b) using driver/receiver 
operating on voltage levels; (c) using driver/receiver with current loop 

devices should be decoupled across the power supply close to the 
device (0.1 μΓ ceramic). Schottky clamped devices (with an 'S' in 
the type number, e.g. 74S00) are particularly good at reducing 
spikes. Normal precautions against creating earth loops, etc., should 
be taken. 
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Figure 13.2(b) shows how data transmission across short dist
ances can be improved by the use of line drivers/receivers. The 
simplest of these simply drive a voltage level into the line, and utilise 
a line matching resistance (RT) equal to the characteristic imped
ance of the line (Z). Figure 13.2(c) shows a more sophisticated 
arrangement utilising what is known as a current loop. Such devices 
drive a current in one direction to represent a logic 1, and in the 
opposite direction to represent a logic 0. The complementary 
currents produce cancelling electromagnetic fields and help minim
ise crosstalk between adjacent lines. Because a high current (usually 
20 mA) is used to represent either logic state, this method minimises 
the problem of interference picked up from extraneous sources. The 
20 mA current loop is a standard method of interfacing equipment, 
and many commercial devices are available. As shown in the figure, 
many of these incorporate strobe and logic gating into the basic 
device. Strobe inputs facilitate the connection of line drivers and 
receivers at the same point for bidirectional operation*. 

Communications terms 

There are different forms of data transmission, as follows: 

a. Simplex transmission along a line is in one direction only, and 
requires only two wires. 

b. Duplex transmission allows data to be transmitted in both 
directions simultaneously, and is usually implemented using four 
wires. 

c. Half-duplex transmission is a two-wire compromise; data can be 
transmitted in either direction down the same wires, but only in 
one direction at a time. 

It will be clear that some form of code must be employed when 
transmitting serial data, for the receiver must be able to distinguish 
the start and stop of the data words, or characters, as they are termed. 
Two methods are employed, as follows: 

a. Synchronous data transmission utilises a separate channel on which 
a synchronising signal is transmitted. By this means it is possible 
to attain high transmission rates, and the start and finish of the 
characters is clearly identified. The drawback is the need for an 
extra channel or line. 

* During different time-slots. 
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b. Asynchronous data transmission uses only one channel, but in 
addition to the data bits, employs a start bit and one or more stop 
bits. The usual method is to make the stop bit/s longer than a 
start or data bit, thereby providing a readily identifiable point 
between each character. Usually they are also opposite logic 
states. 

Data transmission rates are described in terms of bits per second 
(bps). Alternatively, the rate may be specified in terms of baud. The 
baud rate describes the number of discrete events which occur each 
second, thus a Teletype® that transmits 10 characters per second, 
and represents a character by 11 bits (a start bit, 8 data bits, and 2 
stop bits), has a baud rate of 10 X 11 = 110 baud (or 110bps). 
Because three out of every eleven bits are required for synchronisat
ion purposes, the actual data rate is only 8 bits/character X 10 
characters/second = 80 bps. 

Modems 

Modems are used to convert signals from one type of equipment to a 
form suitable for use by another type of equipment. In the case of 
telephone links, it is necessary to generate mark and space frequencies 
suitably located in the audio band. The International Telegraph 
and Telephone Consultative Committee (CCITT - letters trans
posed due to translation from the original French) recommendations 
are widely used for such purposes; a logic 1 is represented by a mark 
frequency, and a logic 0 by a space frequency. The frequencies used 
vary. The CCITT recommendations for 50 baud and 200 baud 
working define different mark and space frequencies in accordance 
with particular channel numbers, as shown by a few examples 
below: 

Baud rate 

50 
50 

Channel 

001 
002 

Markfreq. 

390 Hz 
510Hz 

Space freq. 

450 Hz 
570 Hz 

50 024 3150 Hz 3210Hz 

200 401 480 Hz 720 Hz 

200 406 2880 Hz 3120 Hz 
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A microprocessor compatible modem is the Motorola MC6860, 
which has the following frequency standards: 

Originating modem Answering modem 

Markfreq. 1270Hz 2225 Hz 
Space freq. 1070 Hz 2025 Hz 

This method of tone modulation is known as Frequency Shift Keying 
(FSK), or FSK modulation. Telephone links can be implemented 
directly, or via an acoustic coupler; the latter is a device into which an 
ordinary telephone handset is placed, and the link between the two 
equipments is purely acoustic. 

Because of the low cost of microprocessors, and the sophistication 
possible where a number of microprocessors operate together and 
'talk' to each other, the modem is a particularly useful tool in these 
applications; it provides an ideal means by which remote micro
processing systems may communicate with each other. 

Parity 

When data is transmitted between two distant points there is always 
the chance that the odd bit will 'drop out', i.e. occasionally a bit will 
be misread. In some applications this could be critical. A simple 
technique has been devised which allows each character to be 
checked; whilst the system is not foolproof, it can be relied upon to 
weed out the greater majority of errors. This system employs what is 
known as parity. 

By adding a parity bit to every data word, it is possible to check 
that no single bit has been read incorrectly. This technique may be 
applied no matter how many data bits are contained within a word. 
The example below uses the more common 8-bit word. 

Given a particular combination of logic l's and 0's in a word, the 
total number of l's is clearly always either odd or even. A parity bit 
is added to make the total block (including the parity bit itself) 
either odd or even; it is added to make the word odd for odd parity, or 
even for even parity. The example below shows two data words with 
both odd and even parity bits added. 

Py 

Yl 1 0 0 1 0 1 0 data word 
0 110 0 10 10 even parity 
1 1 1 0 0 10 10 odd parity 

Py 

TO 11110 10 
101111010 
001111010 

108 



The left-hand data word has four 1 's; even parity is maintained by 
adding a logic 0 as the parity bit, or odd parity by the addition of a 
logic 1. The right-hand example has five l's; even parity is created 
by adding a logic 1 as the parity bit, or odd parity is obtained by 
adding a logic 0. It can be seen that if a single data bit is incorrectly 
complemented, the parity is ruined; a parity checker at the receiver 
can detect this and provide a warning of characters in error. The 
system is not foolproof, since two (or an even number) of errors in 
the data word would go undetected; such a high error rate should be 
obvious in any case, and in normal systems, it is a rare occurrence to 
drop a single bit. 

Figure 13.3 shows the format of a typical 8-bit data word as it is 
transmitted serially. It begins with a start bit, is followed by eight 

2 3 4 5 6 7 8 

Figure 13.3. Format of a character in a serial data 
transmission 

Data 
inputs 
Even 
Odd 
Even 
Odd 

X 

Inputs 
Odd Even 

L H 
L H 
H L 
H L 
L L 
H H 

Outputs ] 
Odd Even 

L H 
H L 
H L 
L H 
H H 
L L 

Figure 13.4. A parity generator/checker and function table (74180) 
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data bits, a parity bit, and is terminated by two stop bits. Typically 
the start bit is a logic 0, the data bits are set according to data 
requirements, the parity bit is set according to parity requirements, 
and the stop bits are always logic 1. 

Devices are available to either check or generate parity. The 
equivalent circuit of the 74180 parity generator/checker is shown in 
Figure 13.4. This makes use of the fact that an X O R gate will 
determine whether a pair of bits is odd or even, and subsequent 
checks of pairs provides a final evaluation of the odd/even state of 
the data lines. Logic l 's and 0's have been added to show one 
particular condition with five logic 1 's in the data, which produces a 
logic 0 at the output of the final inverting X O R gate; note that the 
first column and final X O R gates have inverting outputs, whereas 
the centre column does not. 

The O D D / E V E N l/P control lines make it possible to use the 
device in several different ways; the examples given in Figure 13.5 
represent just one option. Part (a) of the figure shows the device 

I E V EN I/P 

I I Select odd/even 
I f t o check parity 
lODDI/P (high if correct) 

(b) 

Figure 13.5. One method of using the parity generator/checker: (a) as a parity bit 
generator; (b) as a parity checker 

used for parity bit generation; the eight data bits generate a 1 at the 
EVEN O/P if the data bits are odd, or a 1 at the O D D O/P if the 
data bits are even, such that the EVEN O/P may be used as the 
parity bit for even parity, or the O D D O/P for odd parity. In part 
(b) of the figure, it may be seen that if the O D D l/P is used for 
receiving the parity bit of a data word with parity, and the EVEN 
l/P receives its complement, then the EVEN O/P goes to logic 1 for 
even parity, or the O D D O/P to logic 1 for odd parity. This may be 
checked by reference to the function table given in Figure 13.4. In 
either case the user uses only one of the outputs according to his 
odd/even parity requirement. 

T h e U A R T 

This chapter has shown the importance of being able to easily 
convert data between serial and parallel forms. The Universal 
Asynchronous Receiver Transmitter - or U A R T - is a device 

Data * \ 
bits i — y 

ODD l/P 
EVEN l/P 

Γ7ΤΠ 

EVEN O/P 

ODD O/P } 
Select odd/even 
parity bit 
generation 

(a) 

Data 
bits 
received 

PARITY-
BIT 

ODD l/P I 

Ths .EVEN I /P| 
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intended for just this purpose. Figure 13.6 shows a block diagram of 
a typical device (COM2017). The upper portion represents the 
transmitter, the central section a common control area, and the 
lower section the receiver. The transmitter takes an 8-bit parallel 
data word and allows it to be shifted out as serial data. The receiver 
receives serial data in 8-bit data words and converts it to parallel 
form. 

TX DATA STROBE - TDS 

TX CLOCK PULSE 

-PARITY ODD/EVEN POE 

L 
L 

L 
No parity 
Odd parity 

r 
RX CLOCK PULSE 

RX SERIAL INPUT - RS1 

RECEIVED DATA ENABLE - RDE 

Transmitter data inputs 

Q Q Q Q Q i 

TX buffer register 

TX timing & © 

rr— 
33 

RX timing & control 

IE 
RX buffer register 

IUUU1 
Q Q Q Q Q Q Q 

Receiver data outputs 

-TSO-TX SERIAL OUPUT 

' TEOC TX END OF CHARACTER 

-SWE - STATUS WORD ENABLE 
- T B M T - T X BUFFER EMPTY 
»RPE - RX PARITY ERROR 
«RFE - RXFRAME ERROR 
-ROR RXOVERRUN 
* RDA - RX DATA AVAILABLE 

RDÄR - RX AVAILABLE RESET 

MR - MASTER RESET 

GND -GROUND 

Figure 13.6. Block diagram of a universal asychronous receiver trans
mitter (UART) 

This particular device is programmable for data word length (by 
means of inputs NBD1 and NBD2), the number of stop bits (by 
NSB), and the parity requirement (by NPB and POE). This allows 
for 5 to 8 data bits, 1 or 2 stop bits, and no parity, or odd/even 
parity. Before transfers take place for a given word format, a control 
word must be strobed into the control register by the control strobe 
(CS). Most applications do not change their format requirement, in 
which case the GS input may be hard-wired high. 

The transmitter operation is as follows. A parallel data word 
present at inputs TD1-TD8 is strobed into the TX buffer register by 
a low TX DATA STROBE (TDS) pulse; data should only be loaded 
when the TBMT output is high (TX buffer empty). Note that TBMT, 
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and the other status word register bits, are only enabled when the 
S T A T U S W O R D ENABLE (SWE) is low. Once the T X buffer is 
full, T B M T goes low. The T R A N S M I T T E R C L O C K PULSE 
(TCP) is then used to clock out the serial data output T S O (TCP is 
X16 the required baud rate). The device automatically transmits a 
low start bit prior to the data bits, and inserts parity and then stop 
bit/s after the data bits in accordance with the programmed 
requirement; the stop bits are high bits. Once all bits have been 
transmitted (i.e. after the last stop bit), T B M T goes high again, 
signalling that fresh data may be strobed into the T X buffer register. 
The output T R A N S M I T T E R END O F C H A R A C T E R (TEOC) 
goes high after completion of transmission of a full character, and 
stays high until the transmission begins for the subsequent charac
ter. 

The receiver operation is as follows. The serial data input (RSI) is 
clocked into the R X buffer register by the R E C E I V E R C L O C K 
PULSE (RCP); (RCP is X16 the baud rate). The RECEIVER 
DATA AVAILABLE (RDA) output goes high midway into the first 
stop bit, indicating that the R X buffer register is full. The received 
data word is output as an 8-bit parallel word on R D 1 - R D 8 by the 
R E C E I V E D DATA ENABLE input (RDE) being taken low. 

The status word register contains additional bits to indicate 
receiver faults: R E C E I V E R PARITY E R R O R (RPE); RECEIVER 
F R A M E E R R O R (RFE) (no valid stop bit); R E C E I V E R O V E R 
R U N (ROR) (i.e. previously written character not read). The 
R E C E I V E R DATA AVAILABLE output (RDA) is reset by exter
nal circuitry when a data word is read by the R E C E I V E R DATA 
ENABLE RESET (RDAR) input. 

The U A R T therefore provides an ideal interface between a 
parallel data highway and a modem, i.e. the S/P conversion 
requirements shown in Figure 13.1*. They are also ideal for use in 
conjunction with microprocessors, where communication is required 
with remote processors. 

ASCII code 

Whilst it is possible to design a data link employing any desired 
code, it is obviously preferable to use a universally recognised code. 
Such a code is the American Standard Code for Information 
Interchange: the 'ASCII code'. This code is widely used in digital 
and computer engineering. Further details are provided in 
Appendix D. 

* Appropriate input/output three-state buffering is also needed between the UART line and 
commoned lines. 
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14 
Logic families 

There are quite a number of different logic families in current use, as 
this chapter shows, but the amateur - and indeed the average 
designer - will only be concerned with two major types: T T L and 
C M O S . The amateur, in particular, should only design with devices 
which are easily obtainable, therefore it is a wise practice to have a 
copy of a recent enthusiasts ' electronics journal to hand, open at a 
suitable page listing device types and prices. This book concentrates 
on popular device types, for practical reasons. 

The main purpose of this chapter is to complete this part of the 
book on basic logic by familiarising the reader with the different 
logic families available, and to briefly show how the families with 
which he will become familiar differ from other kinds available. 

Figure 14.1 is a family tree of the most common logic families and 
their derivatives, complete with circuit details, showing how they 
differ. Bipolar devices are junction devices in which the majority 
current flow is across the junctions: as with diodes and transistors. 
M O S - metal oxide silicon - devices operate in a different way, 
dependent upon the field effect, and the majority current flow stays 
within the different semiconductor types, apart from minute leakage 
currents. Of the two major logic types, T T L is more widely used 
because it is much more tolerant towards the handler; special 
precautions must be taken when handling M O S devices to prevent 
damaging them by stray electrostatic fields. The particular advan
tage of the latter type is its low power consumption, and wide supply 
voltage tolerance. 

Each family type and derivative shown on the family tree is now 
separately discussed. 

DTL - d iode transistor logic 

D T L was the first development in custom-made logic devices; for 
most purposes it has been superseded by T T L . A NAND gate is 
shown. If both A and B inputs are high, current flows through Rl to 
switch the transistor on, giving a low output. If one or both of the 
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LOGIC FAMILIES 
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Typical input stage * 
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Figure 14.1. Logic family tree and primary circuit differences 

inputs is low, this pulls the common anode point down to approx
imately +0.7 V, thereby ensuring that the transistor is cut off, giving 
a high output. 

DTL is discussed in Chapter 2. 

TTL - transistor transistor logic 

TTL is probably the most common form of logic in use, and is 
certainly the most economic, and the easiest to handle. It is 
available in 6 major types, offering different power-speed combinat
ions. These are discussed separately. 

114 



Standard, L and H types 

Standard devices (Texas: no code) have a 4 k Q base resistor at the 
input stage, and can operate up to 35 MHz. Lower power versions 
(Texas: L) have a 40kQ base resistor, and have either emitter inputs 
as shown in the figure, or diode inputs (in a similar manner to that 
illustrated for Schottky LS types). The emitter inputs halve the low 
level input current from the standard 1.6 mA to 0.8 mA, whereas the 
diode inputs (to a transistor base) improve this to 0.18 mA. The 
maximum frequency of 'L ' types is 3 MHz. A higher speed/power 
compromise is available (Texas: H) utilising a 2.8 kQ base resistor, a 
low level input current of 2 mA, and a maximum frequency of 
50 MHz . 

Clamp diodes are used on the inputs to prevent any input being 
taken more than about —0.7 V into reverse bias; in normal operation 
these diodes are reverse-biased and have no effect. 

S type 

Schottky transistors are used in conjunction with Schottky clamping 
diodes in a high-speed version of T T L (Texas: S). Switching delays 
are cut by a factor of two or three to one, and the forward bias of a 
Schottky junction is of the order of 0.3 V, instead of the usual 0.7 V. 
The disadvantages of Schottky are higher power requirements, and 
the possibility of producing ringing from the faster rise time in the 
output transistors; the latter can be particularly troublesome in 
printed circuit boards with connections longer than about 13 cm. 

The Schottky diode uses a metal* junction with the silicon, 
producing a surface barrier which has a rectifying characteristic 
similar to a p-n junction. These diodes are principally majority 
carrier devices, and these majority carriers easily cross the junction 
between the silicon and metal, reducing the storage charge, and 
hence the potential difference. The Schottky transistor is really a 
conventional transistor with a Schottky diode between base and 
collector; the anode is connected to the transistor base, therefore the 
cathode clamps the transistor when approaching bottoming, so 
preventing its normal saturation, and significantly improving its 
switching characteristics. Schottky T T L can attain frequencies of 
125 MHz . Schottky diode clamps further restrict negative-going 
spikes on gate inputs, limiting excursions to about —0.3 V. 

* Usually aluminium. 
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LS type 

Schottky transistors and diodes are used in a configuration to give a 
compromise between speed and low power in another version of 
T T L (Texas: LS). Diode connections to a 20 kQ base resistor give 
the desired compromise, and a typical gate dissipation of only 2 m W 
(as opposed to the standard 10 mW) , combined with a maximum 
frequency of 4 5 M H z (against the standard 35MHz) . 

3-state outputs 

The 3-state output is a means by which other logic types can be 
forced into a high impedance output state; this allows outputs to be 
commoned, providing that control circuitry ensures that only one 
such gate is enabled at once. A simplified circuit of an inverter is 
shown with a control (C) input; the control is taken high to disable 
the output. When C is high, the control inverter (shown by an 
inverter symbol) output is low. An additional diode D c pulls the 
base of T R 3 low, cutting it off; at the same time, one of the input 
transistor's emitters (TR1) is pulled low, which cuts off TR2 and 
hence TR4. Since both output transistors are cut-off, the output goes 
into high impedance. When the control input is low, the gate 
operates normally, and the output is either a high level or a low 
level, depending upon the input. 

ECL — emitter coupled logic 

Emitter coupled logic is available where high speed applications are 
called for, although voltage levels are very different to D T L and 
T T L . Linear designers will recognise the differential amplier which 
forms the standard input. An O R - N O R gate is shown; note that a 
reference supply of + 4 V is required. The A or B inputs are taken to 
about +3 .3 V for a low, and +4 .3 V for a high. 

With a low level input on both A and B, TR1 and TR2 are cut-off, 
therefore TR3 takes all the current through the 1.3kQ common-
emitter resistor (2.8 mA), dropping about I V across the collector 
load of 330Ω; note that the transistor does not bottom. Emitter-
follower TR4 shifts the voltage level of the O R output to around 
+ 3.3 V, for a low level output. Since TR1 and TR2 are cut-off, TR5 
is switched hard on, and the emitter is at about +4.3 V, for a high 
level output. 
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If either inputs A or B are taken high, all the current through the 
common emitter resistor is diverted away from TR3 , and the 
opposite condition is attained by the gate; this gives a high on the 
O R output, and a low on the N O R output. 

Transistors are always slow in switching when they are in the 
bottomed region, i.e. collector-base forward-biased; this is because it 
has to change polarity, and a high current flow must firstly be 
stemmed. We have seen that Schottky clamping prevents transistors 
from entering this region; ECL logic prevents bottoming by careful 
biasing which maintains the transistors in their linear region. 

I2L - integrated injection logic 

Integrated injection logic is an interesting alternative offering low 
power dissipation and small size. This is achieved by avoiding the 
need for integrated resistors - which take up considerable space and 
waste power - and utilising complementary transistors and an 
injected constant-current, shown as I in the figure. A N O R gate is 
shown. 

With either or both the A and B inputs high (or open-circuit), at 
least one (or both) of the NPN transistors is switched hard on by 
current I, thereby causing the output to go low. If both inputs are 
low, each sinks the appropriate injected current I, thereby diverting 
it from the NPN transistor bases; both NPN transistors are cut-off, 
giving a high impedance output. Thus a high impedance represents 
logic 1, and a low level represents logic 0 (in positive logic). 

Considering the outputs as inputs to similar gates, it may be seen 
that they are suited to sinking the outflowing injected current from 
an input. 

CMOS and SOS 

Metal oxide semiconductors may be n-channel or p-channel; C M O S 
logic employs both in complementary pairs, giving C M O S . The 
N O R gate shown in the figure employs P M O S transistors (inward 
pointing arrows) and N M O S transistors (outward pointing arrows); 
P M O S is switched off by a high level voltage, whereas N M O S is 
switched on. These devices may be regarded as solid-state switches 
which are either low impedance (on), or high impedance (off). 

If either inputs A or B are high (or if both are high), the associated 
lower N M O S transistor switches on, taking the output low; both 
upper P M O S transistors are off. If both the A and B inputs are low, 
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both P M O S transistors are on, and both N M O S transistors are off. 
Since the P M O S transistors are in series, both must be on in order to 
take the output high. 

SOS - silicon on sapphire - is an alternative method of fabricating 
M O S devices using a sapphire substrate. The method of fabrication 
allows a higher packing density for a given chip area. These devices 
are highly reliable, but more expensive. Electrically they are similar 
to C M O S . 

PMOS dynamic 

A way of further reducing power dissipation in devices is to operate 
them in a dynamic mode; all the logic previously discussed is termed 
static. 

Devices in the dynamic mode require a constant clock pulse. The 
illustration shows a single-phase clock, but two-phase clocks are also 
used. Note the use of a negative supply rail. 

It may be seen that if both inputs A and B are taken negative, the 
two P M O S devices connected to the inputs switch on. When the 
clock goes negative, this switches on TR3 and TR4; this links the 
parasitic capacitance of the device - shown dotted as C - to TR2 
output. If A and B are both on, this grounds C; if either TR1 or TR2 
is off, the capacitor is charged to —10 V via TR3 . When the clock 
pulse returns to 0 V, the self-capacitance C stores the charge until 
the next clock pulse occurs. A refresh clock frequency of about 1 kHz 
is generally satisfactory, giving a 1 ms clock period. 

T h e 54/74 TTL family 

The most common T T L family types are the complementary 54 and 
74 series. Electrically they are similar, but ceramic (54) and plastic 
(74) encapsulations offer two different operating temperature 
ranges. The 54 series can operate from —55 to +125°C, and are 
therefore suitable for military requirements, or stringent commercial 
use. The cheaper 74 series operates from 0 to +70°C, which is 
adequate for most purposes, and is the only type the amateur will 
usually consider. 

A great many manufacturers offer compatible devices in these 
families, as shown by Figure 14.2. One of the largest manufacturers 
is Texas Instruments, therefore the example type number chosen in 
the figure is by Texas. The type number or 'function code' part of 
the identity is common to all manufacturers, in that any devices 
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Example: S N 

(Texas Instruments) 

74 

T T 
PREFIX FAMILY 

LS 241 

T 
Typical short form 

' '74LS24V 
(assumes DIL plastic 
encapsulation) 

FUNCTION 
CODE 
(2/3 digits) 

CIRCUIT 
TYPE 

•T=flat-pack 

W=ceramic flat-pack 

|-^J=ceramic DIL 

N=plastic DIL 

-LS=low power Shottky clamped -

-L=low power 

I—S= Shottky clamped 
No code=standard 

'— H=high speed/power product -
TEMPERATURE 
RANGE 

Prop. 
delay 

Max. 
freq. 

t 54=-55 to + 125°C 

74= 0 to + 70°C 

RSN radiation hardenedj 

|—SN standard }Texas Instruments 

Military codes J 
OTHER 
MANUFACTURERS 

|—AM = Advanced Micro Devices 

Blank = Fairchild 

■H = Harris 

•IM = Intersil 

P or C = Intel (package type) 

|—MM = Monolithic Memories 

MC = Motorola 

DM = National 

'—N = Signetics 

Figure 14.2. An example of the 54/74 TTL series numbering 

similarly numbered should be compatible. This does not mean that 
certain manufacturers might not produce an equivalent with a 
totally different number. 

The flat-pack and dual in line (DIL) encapsulations are illust
rated in Figure 14.3. Clearly the size of the device varies in 
accordance with the number of pins, but the pitch - the distance 
between pins/leads - does not. Most users - and all amateurs -
prefer the DIL, with its standard 0.1" pitch. This is complemented 
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by 0.1" pitch Veroboard® and other PCB products for mounting the 
devices. 

Short-form numbers, as used by most mail-order companies, 
utilise only the family, circuit type and function code part of the 

14-pin N plastic DIL 

1 h 
(7.62 ±0.26) 
0.250 ±0.010 
(6.35 + 0.26) 
0.080 (2.03) NOM 

JL 
T 

0.010 (0.25) NOM 
0 

-Seating plane 

0.093(2.36) R NOM. 

0.110(2.79) NOM-

I U . 0.011 ±0 .0 
* 1 Γ ^ (0.279 + 0.C 

0.125(3.17) rr 
0.075 +0.020 
(1.90±0.51) 

♦ ( k - 0.018 +0.003 
(0.467 ±0.076 
14 places 

Pin spacing 0 100 (2.54) T.P. 

Figure 14.3. 14-pin DIL plastic encapsulation, and a view of a 14-pin flat-pack 

device number, e.g. 74LS241, or 74241. This allows them to supply 
any manufacturer's version according to stock; such advertisements 
assume the reader appreciates that they are DIL plastic encapsula
tions, unless otherwise specified. 

4000 series CMOS 

The 4000 series C M O S is the most popular complementary M O S 
logic family available, and Figure 14.4 provides an example of 
typical numbering for these devices; RCA is the manufacturer taken 
in this example. Other manufacturers offer compatible devices with 
totally different numbers, but sufficient manufacturers do use the 
same 4000 numbering scheme for there to be little confusion with 
these type numbers. These devices are similar to those shown as 
C M O S in Figure 14.1. 

Electrical characteristics and pin-outs 

Appendices are provided at the rear of this book to get the reader 
started right away on T T L designs. Appendix A provides connect
ion diagrams of the most common 74 series devices which have been 
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Example: 
(RCA) T 

E 

T 
FUNCTION 

RCA=CD—I C 0 DE 

Other 
manufacturers 

General instruments = MEM 

Motorola = MC1 — I Standard = A — I 

National = MM. 

Solitron = CM· 

Texas Instruments = TP-

SGS = HBF—| 

Signetics = N 

Solid State Scientific = SCL' 
Stewert Warner = SW — ' 

High 
voltage = B — ' 

f — D = ceramic DIL 

I — F = ceramic frit-seal DIL 

— E = plastic DIL 

' — K = ceramic flat-pack 

Figure 14.4. An example of CMOS series numbering 

mentioned so far in the book; Appendix B lists more devices, but 
presents pin-out information in a more condensed tabular form. 
Appendix C contains basic information on the electrical 
characteristics of this family of devices. For more information, and 
for serious design, the reader should purchase: 'The TTL Data Book 
for Design Engineers', by Texas Instruments, or its equivalent. 

Space does not permit similar coverage of the less common 4000 
series devices, although Appendix C does contain electrical charact
eristics for the purpose of comparison. For further details, the reader 
should obtain a manufacturer's data book, such as: 'RCA Integrated 
Circuits', by RCA. 
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Part 2 - design practice 

To think is to see. 

Honore de Balzac (1799-1850). 

Always design a thing by considering it 
in its next larger context - a chair 

in a room, a room in a house, a house 
in an environment, an environment 

in a city plan. 

Elial Saarinen, 'Time', 2 July 1956. 



15 
Basic principles 

If Part 1 of this book may be considered as the hors d'oeuvres, then this 
part may be considered as the main course. Design can only be 
taught to a limited degree, after which the aspiring designer must 
participate himself. This part of the book firstly discusses basic 
principles, and then shows the application of these principles and 
the use of digital components by example. 

Switch inputs 

It is usually necessary to interface a logic circuit with switch inputs, 
and this does present a minor problem due to switch bounce. When 
a switch is either opened or closed, the switch contacts bounce on 
parting and meeting, respectively. This can introduce a series of 
pulses into the logic instead of the required single switching edge, 
and does not meet with the fast rise and fall times required for digital 
circuitry. 

OPEN | 
Switch 
contacts 

Figure 15.1. Switch de-bounce circuit using CR delay: (a) circuit; (b) 
waveforms 

Figure 15.1 shows one method of overcoming switch bounce by 
means of a capacitor-resistor (CR) delay. Resistor R x is chosen to be 
the maximum value suitable for the logic being used, e.g. 3.9kQ for 
standard 74 Series TTL (4kQ is quoted as the maximum pull-up 
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resistance in Appendix C of this book). Bounce can last for anything 
up to about 50 or 60 ms, therefore this filter should have a time-
constant at least as long as this. The 0.7CR approximation is 
accurate enough for such calculations, thus with a 3.9kQ pull-up 
resistor, a capacitance of around 22 μ¥ is required to give a 60 ms 
time-constant. Only tantalum capacitors should be used in this 
circuit in order to ensure low leakage current. 

Operation of the circuit is as follows. Consider the switch initially 
closed. The voltage at the input to the Schmitt gate is initially at 0 V. 
When the switch is opened, the voltage begins to rise as C x begins to 
charge towards + 5 V through R x ; initial switch bounce short-
circuits the capacitor, each time setting it back to 0 V. After the final 
bounce, the capacitor charges freely, and once the gate input voltage 
exceeds the positive threshold V T +, the gate output goes low. 
Because the voltage remained below the upper threshold during the 
period of contact bounce, the gate output is not affected. When the 
switch is closed again, the capacitor is immediately short-circuited 
by the low impedance path presented by the switch, and subsequent 
bounce of the contacts, as before, does not allow the voltage to rise to 
the positive threshold. 

A method of increasing the time-constant even further is to 
incorporate a transistor buffer into the circuit: the base resistor is 
therefore the timing resistor and may be considerably higher; the 
collector resistor is connected to the Schmitt trigger input. The 
worst possible bounce can be eliminated in this way. 

Another method of removing the effects of contact bounce with 
switches is to interface the switch with a latch circuit, as shown in 
Figure 15.2; the figure shows two variations, (a) for a switch 
employing three contacts, and (b), for a switch employing only two 
switch contacts. In the first case, one of the latch inputs is always 
held low by the switch when it is in one of the two set positions. 
When the switch is operated, both contacts are suddenly open-
circuited*, but this does not affect the latch condition, because it 
requires the definite action of being taken to 0 V on the opposite 
latch input to cause it to switch. When the switch closes in the 
opposite condition, the latch immediately changes state; if the 
contacts bounce open, this has no effect, since they will not bounce 
right back to the opposite condition. This circuit does not even 
require Schmitt trigger gates. The circuit shown in part (b) of the 
figure utilises an inverter to provide the opposite condition to one 
side of the latch, but apart from this, works in the same way. The 
logic states shown are for the circuit with the switch as indicated; 

* If rotary switches are used, a 'break-before-make' action is required. 
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ο ΠΤΠ 

Figure 15.2. Switch de-bounce using a latch: (a) using three switch 
contacts; (b) using only two switch contacts 

these conditions reverse when the switch is placed in the opposite 
condition. 

Delay circuits 

I t is sometimes required to create a small time delay in a digital 
circuit, and the simple CR delay shown in Figure 15.3 is generally 
adequate. The only limitations with this kind of circuit are con
cerned with the maximum resistance value which may be used 
without degrading the noise immunity of the following gate too 
greatly, and the need to keep capacitor leakage current to a 
minimum; the latter is best ensured by only using non-electrolytic 
types, or where larger values are needed, by only using tantalum 
types. 

o CD - ^ I * 

Γ7ΤΠ Figure 15.3. A delay circuit 

In order to keep the voltage drop across the series resistor to a 
minimum, the type of gate must be considered, and the low level 
input current (IiL) taken into consideration; this resistor should not 
drop more than 100 m V to 200 mV, therefore if I I L is 1.6 mA (as for 
most 74 Series devices), this value should be a maximum of about 
120Ω. Wherever possible, this value should be lower, such that it 
drops less than lOOmV. 

The 0.7 CR approximation is good enough to give us an accurate 
enough indication of delay, therefore a 120Ω resistor and a 1 μ¥ 
capacitor would give a delay of about 84 μβ. Tanta lum capacitors of 
the order of 68 μΡ to as high as ΙΟΟμΓ are available as small bead 
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types, and are well suited to this application, offering delays of up to 
around 10 ms with standard 74 Series devices; lower current gates 
allow longer times to be achieved more easily. 

Edge-detection 

It is often required to develop a complete pulse from a single 
changing edge; this is known as edge-detection. The differentiator is an 
obvious way of achieving this, as shown in Figure 15.4, but it is not a 
way to be recommended. The principle will be shown, but readers 
are strongly advised to use alternative solutions, for reasons to be 
given shortly. 

Figure 15.4. Differentiator circuits 
used for edge-detection (not recom
mended): (a) positive-edge; (b) 
negative-edge 

Part (a) of the figure shows the detection of a positive-going edge, 
and part (b) the detection of a negative-going edge. In the case of 
part (a), the inverter input is normally held low by the resistor, but a 
positive-going edge applied to the capacitor produces a different
iated spike at the gate input, which is translated into a negative-
going pulse at the output; part (b) shows the complete reverse. The 
diode is employed in each case to limit the excursion of the 
capacitively-coupled input voltage on the opposite swing. 

This type of circuit is particularly sensitive to noise, as are any 
differentiator circuits, since they readily respond to any spurious 
input spike. In a digital circuit they represent an a.c. coupling in 
what is otherwise a directly coupled circuit. The low impedance 
output of the driving gate is an open invitation for any line spikes to 
spuriously register as input pulses. 

The delay circuit shown in Figure 15.3, on the other hand, is 
thoroughly reliable, since this acts like a filter to any spurious 
voltages, and only responds to a pulse longer than the delay of its 
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time-constant. The delay circuit can be used to good effect in pulse 
edge-detection, as shown in Figure 15.5 and 15.6, and these are the 
types of circuit to be recommended. An inverter is shown in each 
case, since the inverse of the input signal is required as well as its 
original form, but logic circuits frequently have available true and 
complementary forms (e.g. from latches or flip-flops), therefore the 
inverter need not always be a special component. 

^ 

x ·~υ 
- H 

XD 

k y -H r 
Figure 15.5. Positive-edge detector using a delay circuit 

Ί 
- H K-'d 

"D 

-_TL 

- H K-«d 

L 

Figure 15.6. Negative-edge detector using a delay circuit 

Any type of two-input gate is suitable for this purpose, although 
the most common NAND and N O R gates are shown in the figures; 
the gate can be selected with the required output in mind. To best 
understand the circuit, note that when the input changes, the 
delayed gate input does not change immediately. Thus with X low in 
Figure 15.5, the delayed gate input (XD) is initially high; if X is 
taken high, both gate inputs are momentarily high, giving a low 
output at Y. After the delay time t^ (set by time-constant 0.7 
C D R D ) J X D goes low, forcing the output high again. The timing 
diagram shows that this results in a pulse developed from the 
positive edge of the input waveform. Where the NAND gate 
produces a negative pulse, as shown, an AND gate would produce a 
positive-pulse, but again synchronised to the positive-edge of the 
input waveform. 

As an instructive exercise, the reader is invited to draw another 
option with this type of circuit, this time placing the inverter 
between the X input and one of the NAND gate inputs, the other 
input being delayed but not inverted (i.e. the inverter produces X 
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rather than the_ delayed X D ) . The timing diagram should then be 
drawn for X, X, X D and Y. 

Figure 15.6 is similar to the previous figure, except that a N O R 
gate replaces the NAND gate. As the timing diagram shows, this 
gives us a negative-edge detector, which is just what the suggested 
exercise above produced; the only difference is that the exercise 
produces a negative pulse at the output, whereas the circuit of 
Figure 15.6 produces a positive pulse. To extend the same exercise 
suggested above, redraw the output Y assuming an AND gate 
instead of a NAND gate; it will then be seen that this is equivalent to 
the N O R gate circuit of Figure 15.6. 

In a similar manner it is possible to use an O R gate, or move the 
delay to the opposite input of the circuit shown in Figure 15.6, 
producing a negative-edge detector with a negative pulse output, or 
a positive-edge detector with a positive pulse output, respectively. 
(Try drawing the alternatives!) 

Thus a single gate, plus complementary signal inputs and a single 
delay, is all that is required to produce any kind of edge-detection 
pulse, without the need to resort to a.c. coupling. 

Interfacing circuitry 

Care should be taken when interfacing logic circuitry to other 
circuitry, perhaps with different supply voltages. Figure 15.7 shows 
an input interface to T T L from other circuitry, and employs two 
normally reverse-biased diodes in order to prevent damage to the 
T T L gate caused by positive swing above the + 5 V rail (limited by 
D l ) , or negative swing below earth (limited by D2); the diodes 
clamp the input voltage to within the diode V F (say 0.7 V) . The 
series resistor R s is used to limit the current drawn from the driving 
source under limiting conditions, but should be chosen with the 
usual care, in order to ensure that it only drops around lOOmV for a 
logic 0 input. 

NON-TTL—J ]■ 

/77T7 

Figure 15.7. TTL input protection 
circuit 

If there is no danger of overswing from the driving source because 
of direct coupling to a positive supply, the circuit shown in Figure 
15.8 provides a simple method of reducing the input voltage to T T L 
compatibility. In this case, R L is chosen to drop the required voltage 
for a logic 1 input. With a logic 1 input, transistor TR1 is switched 
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L-a w ■ & ) -

Figure 15.8. TTL input interface 
circuit utilising a transistor 

hard on, producing a low at the T T L gate input; with a logic 0 at the 
input, TR1 is biased off, and the 2.7 kQ collector load resistor pulls 
the T T L gate input high. 

In both the above cases a Schmitt trigger gate is used to ensure 
that any slow edges fed into the system are converted to the fast 
edges required by normal T T L gates. Note that a circuit using a 
bottoming transistor is limited in switching speed and is only useful 
for relatively low speed operation (as determined by the individual 
transistor used). 

Outpu t interfacing has previously been considered in Chapter 11, 
but is taken a little farther here. Figure 15.9 shows a direct coupling 
to an NPN transistor, but the limitation here is in the fairly low base 
drive current which can be achieved. The diode is optional, but is a 
wise addition to ensure that the transistor is cut-off for a logic 0 
output from the gate. Capacitor C s is an optional small speed-up 
capacitor for high speed applications, although the latter is limited 
in any case by transistor switching speed. Since the transistor 
bottoms in this circuit, high speed is not possible, nor is high gain; 
this circuit can only provide a fairly modest current drive. 

| / RL D1 

T 

Open | 
collector /7777 

Figure 15.9. TTL output circuit 
for low current drives 

Figure 15.10. TTL output circuit 
for medium current drives 

The circuit of Figure 15.10 uses an open-collector gate and a 
pull-up resistor Rx; again a diode (Dl) is used to ensure that TR1 
switches off in the logic 0 condition from the gate. Because an 
external resistor biases the transistor, higher base and hence collect
or current is possible. 
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Higher current drive is readily achieved by replacing the single 
transistor of Figure 15.10 by a Darlington-pair, as shown in Figure 
15.11; this provides large current gain (equal to the product of the 
individual transistor gains), and means that the series diode is no 
longer required to guarantee an off condition for logic 0 output from 
the gate, since the diode VF is replaced by the V B E of TR1. 

+5V 
+5V 

| I RL1 

I y VL^TTRI 

Figure 15.11. TTL output cir- Figure 15.12. TTL output cir
cuit for higher current drive cuit to a relay (or indicator) 
utilising a Darlington-pair utilising an emitter-follower 

The emitter-follower is not often seen as a TTL output interface, 
but it should not be overlooked in applications where it is not 
important to ensure complete cut-off in the logic 1 condition. Figure 
15.12 shows this method used to drive a relay coil, and it is also 
suitable for driving indicators (e.g. high current LEDs*). A transist
or such as the BCY71 with a maximum collector current of 200 mA 
can be driven to its maximum with this circuit. Since the transistor 
never bottoms (the base potential is always slightly higher than the 
collector potential), it retains its normal gain characteristics. With 
hFEmin of 100, this means that the base drive will be a maximum of 
2 mA, and a 74 series TTL gate can drive up to 16 mA; the power 
dissipation is thus a maximum of approximately 200 mW, bearing in 
mind that the collector-emitter voltage is always less than 1 V (the 
BCY71 is rated at 350mW). 

The emitter-follower also offers one other advantage: speed. 
Because it does not enter saturation, switching speed does not suffer. 
If the driving gate is an open-collector type, and a base pull-up 
resistor is used to ensure cut-off of the transistor in the logic 1 
condition, a faster transistor interface can be achieved than with 
NPN types in the circuit configurations shown in Figures 15.9 to 
15.11. 

Power-on reset 
An important consideration for the designer to take into account in 
any circuit containing latches, flip-flops, counters or registers, is 
* Do not overlook the series load resistor. 
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whether they need to be preset or cleared from the 'power-on' 
condition. Such devices otherwise settle in a random condition, and 
this may place them in an incorrect state for satisfactory operation of 
the circuit. 

Figure 15.13 shows a simple power-on reset (POR) circuit (some
times also known as an initial reset ( IR). Such a circuit may be used 
to initialise devices as required. If a design utilises a rapid cyclic 
form of control logic that automatically initialises such devices, it 
may not be important if they are in invalid states for a short time 
after power-on. Clearly it is impossible to generalise, but it can be 
said that if a design includes latches, flip-flops, counters or registers, 
the designer should always consider whether each and every one 
requires a particular P O R condition applying. The figure shows 
complementary forms of the signal in its simplest form, but only one 
of these may be required in many circuits. 

ΓΤΤΠ 

Figure 15.13. A power-on reset 
circuit 

The capacitor and resistor form a time-constant; this should be 
made as long as conveniently possible. If 74 series T T L is being 
used, 4 k Q is the maximum pull-up resistance, therefore 3.9kQ is 
used; ΙΟΟμΡ is the highest tantalum bead capacitor, this type being 
chosen to ensure low leakage current. Only use tantalum capacitors 
for long time-constants, for other types can have high leakage 
currents which prevent correct operation; a high leakage current in 
this circuit would prevent the voltage from rising at the input to the 
first gate. The circuit shown has a time-constant of approximately 
270ms. 

After switch-on of the equipment, the power supply gradually 
rises up to + 5 V, but the voltage across the capacitor C l rises more 
slowly, since it must charge through R l . The capacitor voltage does 
not exceed the Schmitt trigger positive threshold until some time 
after the logic circuitry is operational, therefore POR is asserted 
from soon after power-on until the threshold has been exceeded; 
from this point the P O R signal is negated. It can be seen that this 
circuit only produces a short initialising pulse on power-on, and 
thereafter remains inactive so long as power is maintained. The 
P O R signal is suitable for clearing or presetting standard flip-flops 
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and NAND-type latch circuits, or POR may be used for setting or 
resetting NOR-type latch circuits. 

Power suppl ies 

The design of + 5 V power supplies for logic circuitry is greatly 
simplified by the availability of single integrated circuits which 
provide automatic regulation of + 5 V without the need for external 
components; such devices include internal thermal overload protec
tion and internal short-circuit current limiting, making them vir
tually immune to damage by overloading. Figure 15.14 shows the 
μΑ7805Ο regulator in a simple circuit capable of providing in excess 
of 1A current drive to logic circuitry, when suitably mounted on a 
heatsink, or in direct thermal contact with a cabinet case. 

<ϋΟ 

Figure 15.14. A +5 V power supply using a 5 V regulator integrated circuit 

The rectifier bridge is also a single device, since these are usually 
cheaper than four individual diodes. A 50 V PIV* is suitable, and the 
current rating should bear in mind the requirement; a 1A type may 
be sufficient, if the circuit requirement is less than this, otherwise a 
1.5 A or 2 A type is required. Such regulators require a minimum of 
around 3 V between input (I) and output (O) terminals, therefore 
the input voltage must never fall below about + 8 V , and can go as 
high as + 2 0 V , although it should be kept as low as possible to 
minimise power dissipation. 

Resistor R l is shown in this circuit, with an output H; this is to 
provide a logic 1 (or high) rail for tying device inputs to a fixed level, 
where required. A single 1 kQ resistor may be used to tie up to 25 
standard inputs. Note that it is permitted to tie 54LS/74LS series 
inputs directly to the + 5 V rail, if desired. All unused device inputs 
should be tied to ground or to a high level. The only alternative, as already 
discussed, is to tie unused gate inputs in parallel with used inputs on 
the same gate. 

* PIV = peak inverse voltage. 
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Power supply rails should be arranged to avoid loops, and 0.1 μ¥ 
ceramic decoupling capacitors should be evenly distributed along 
power supply spurs, with at least one to each spur. Individual spurs 
feeding back to a larger on-board decoupling capacitor at the point 
where the supply enters the board represents a good arrangement, if 
ceramic capacitors terminate each spur, and one is placed directly in 
parallel with the larger decoupling capacitor at the supply entry 
point. The normal practice of avoiding small (and hence resistive) 
power supply wires should be observed. 

For less demanding applications, where the current requirement 
is well under 1 A, it is possible to utilise low current regulator devices 
and/or avoid the need for heat-sinking. For large systems requiring a 
number of printed circuit boards, each one of which requires a 
significant supply current, it can be an economic and practical 
solution to provide each board with its own discrete 5 V regulator 
fed from an unregulated (but smoothed) supply. This has obvious 
advantages in minimising earth loops. 

An input fuse should be used to protect the supply (in addition to 
a low current fuse in the secondary circuit, if desired). Remember 
that the transformer transfers input power from the primary (i.e. 
volt-amps) to the secondary, and the volt-amp (VA) product is of 
the same order on both sides of the transformer. When calculating 
the fuse requirement, the higher input voltage leads to a lower 
current input than that drawn on the secondary side. Thus a 
transformer operating at 10 VA from a 240 V mains supply may only 
deliver an average of around 40 mA at the primary; allowance for 
surges must be taken into account on top of this. It is the need for 
low input fuses which prompts designers to sometimes incorporate 
fuses in the secondary supply, where their rating relates to the actual 
current drawn by the circuitry; the primary fuse is then regarded as 
fall-back protection, and standard 2 A/3 A values may be used. 
Anti-surge fuses are useful in allowing a lower current rating to be 
used, without the fuse blowing during switch-on surges. 
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16 
Control logic 

The previous chapter discussed logic input and output circuits. This 
chapter covers that part of the circuit in-between: the control logic 
itself. It is a 'hot chestnut ' which is generally avoided. 

Figure 16.1 represents a logic circuit in a simplified block diagram 
form. The functional gating logic comprises all the special-to-
purpose gating required to logically combine input and output 
signal lines. If a logic circuit is so simple that the outputs can always 
be represented by the state of the inputs, and are therefore express-
able in the form of a truth table (no matter how complex), then no 
control logic is necessary. If the outputs are a function of both the 
inputs and of time, then control logic is necessary. 

Functional 
gating 
logic 

Figure 16.1. Simplified block dia
gram of a logic circuit 

The kind of circuits that we have discussed in detail so far (e.g. 
Figures 3.9 and 5.1*) have been simple functional gating circuits, 
and no control logic was necessary. As soon as the circuit has to 
perform some kind of apparently intelligent operation with respect to 
time, we have the need for control logic. Control logic samples input 
conditions, and possibly also output conditions, and controls the 
outputs in accordance with some form of timing logic. 

Control logic is invariably the most complicated area of any logic 
circuit, and there is no universally recognised standard approach. In 
consequence, every designer 'does his own thing', and just what he is 
about is likely to be a puzzle to anyone else who picks up the circuit 
and tries to understand it. It is also the most difficult problem to 
discuss, simply because control circuitry tends to grow in random 

* See pages 25 and 36 respectively. 
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conceptual directions during the various stages of a design. The end 
result can be a frightening conglomeration of gating and flip-flops 
which even the designer has a job to understand after a lapse of a 
week or so! Figure 16.2 is a block diagram of this form of control 
logic, which I have termed conditional control logic. This phrase has 
been chosen, because it generally results in a number of flip-flops 
which represent various modes, i.e. control flip-flops, and input and 
output gating logic which controls the condition of these flip-flops, 
generally with a lot of interlinking. 

►■Outputs 

1 
j 
1 1 

! 

Functional gating logic 

' ' ' ' ' ' 

Input 
gating 
logic 

1 

1 

Control logic 

Control 
flip-flops 

A A A 

Output 
gating 
logic 

| 

Figure 16.2. Conditional control logic - the end result of random development 

A complicated design requires extremely complicated control 
logic if this approach is taken, and this is the kind of design 
approach most likely to lead to 'bugs' which prove difficult to 
irradicate. If a given flip-flop has to be set by given input conditions, 
this is easy to cope with, but the problems generally arise when the 
designer considers how to cancel that particular staticised condition; 
convenient signals are often jus t not available, and he has to create 
them, or to 'poach' a logically unrelated signal which just happens 
to give him the switching edge he needs for a particular timing 
requirement. At best, this leads to a lot of apparently meaningless 
gating, and at worse, it misleads others into assuming a logical 
connection between certain signals, when their relationship is 
perhaps purely coincidental. The 'make it up as you go along' 
approach to control logic design is not to be recommended! 

The right approach 

The right approach is to think hard about what you are trying to 
achieve right at the start. A very simple circuit perhaps justifies the 
conditional control logic approach, but anything at all complex 
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should be based upon a sensible form of timing logic. The designer 
then has two options: synchronous or asynchronous operation. If he 
chooses synchronous operation, the control logic is rather like a 
clock which is constantly providing timing outputs, and these are used 
to provide timing strobes within the functional gating logic. For this 
to succeed, the input /output relationship with respect to time cannot 
always be instantaneous: the timing of outputs in relation to inputs, 
in complex relationships, may have to take into account the timing 
rate chosen. An asynchronous approach is generally one which uses 
a form of timing, but one that is not free-running: rather it is 
influenced by input /output conditions. 

This should become clearer shortly. What should be appreciated 
at this point, however, is that conditional gating can be greatly 
simplified if the inputs and outputs of the circuit are related to 
discrete time-slots. This is where prior thought comes in. Without 
time-slots, a particular output may require countless conditional 
inputs related to both circuit inputs and other outputs. With 
time-slots, a given output can only occur during a discrete time 
interval, and possible complications, introduced by irrelevant 
conditions, are removed when areas of logic are simply not enabled 
because they are not used during the relevant time-slot. 

The microprocessor is an example of synchronous operation, for 
cycle timing is based upon a fixed-rate crystal-controlled oscillator, 
and inputs and outputs are considered during time-slots dictated by 
this oscillator. If the cycle rate is sufficiently fast, there need be no 
apparent delay between the sampling of an input and the switching 
of an output, at least in human terms! 

Given a particular problem, the first step is to see if it can be 
translated into a timed sequence of events: rather like a computer 
program, which must take everything one step at a time. By using 
timing techniques, the most complex tasks may be performed with 
relative ease, where conditional control logic would lead to a 
nightmare of control logic, and probably many frustrating (and 
perhaps costly) hours wasted finding out design errors the hard way. 

A simple example might help clarify this. Let us suppose that the 
task is to control an electric typewriter by means of an electro
mechanical interface with the keys. Whilst ASCII code may have 
different codes for upper-case and lower-case characters, the 
machine in question requires that the shift be operated prior to the 
alphanumeric code. Let us suppose that this is achieved by two 
separately timed commands: change shift, followed by print of the 
required character. Timed logic can go through a given sequence of 
possible typewriter opeations, and control bits can specify which are 
required for a particular operation. In the case mentioned, the cycle 
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would need to consider the shift state before the character to be 
printed, which dictates a certain time relationship between shift and 
print; they are given different time-slots, where shift always precedes 
print. By considering the mechanical requirements of the typewriter, 
it is possible to derive an acceptable sequence of events related to 
time-slots which enables any desired typewriter action to be initi
ated by selection of particular commands during their related 
time-slots. In order to achieve the required time relationship by 
means of conditional control logic, not only would complex con
ditional logic be required, but various timing monostables would 
probably also be needed. 

Now whilst monostables may well be required in a particular 
circuit (e.g. to generate a print strobe pulse for the typewriter in the 
previous example), a circuit full of them is generally representative 
of bad design. Monostables represent 'open-loop5 control, in that 
they have indeterminate pulse lengths: they may be determined by a 
known CR relationship, but the tolerance of the timing components 
introduces an element of uncertainty. Elements of uncertainty are to 
be avoided in logic circuits. More than one monostable timing-out 
simultaneously can obviously lead to a race condition, and once 
again, this is something to be avoided like the plague. 

If the application depends upon timing, then the right approach is 
invariably to use a single timing source, and to relate everything to 
this. If the application depends upon complex control, then the 
introduction of timing can simplify the circuit. If the application 
requires several similar logic networks, it is possible that one such 
network can perform the task by multiplexing it into the various 
signal lines under timed control, although this is not the right 
approach if the end result is more complicated than the simple 
duplication of networks! 

There are always many, many ways of designing a logic circuit. 
That is why the designer should think hard before he settles for a 
given approach. Given one idea, he should first spend a little time 
thinking about possible alternatives. There might always be a better 
way. 

Synchronous control logic 

Synchronous control logic is dependent upon control timing logic 
which constantly outputs timing signals to the control gating logic. 
The control gating logic is responsible for introducing the time 
element into the functional gating logic. This is shown in block 
diagram form in Figure 16.3. 
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Figure 16.4. An example of control timing logic for synchronous operation 

An example of control timing logic for synchronous operation is 
given in Figure 16.4. ICla is a Schmitt trigger gate used in an 
oscillator circuit to form a clock generator running at a frequency of 
around 700 Hz, the time-constant for a half-period being approx
imately 0.7 X 1 X 10"6 X 1 X 103 = 0.7 ms. The two J-K flip-flops of 
IC2 are used as a synchronous 2-bit binary counter, which outputs a 
binary count to the A and B inputs of the 2-to-4 line decoder of IC3. 

The particular line decoder shown happens to be a dual device 
which has two independent sets of outputs, although both are 
related to the same A and B binary input for addressing purposes. In 
its simplest form, consider pin 1 to be high (the notation 'pin 3-Γ is 
commonly used in such circumstances, quoting the IC number 
followed by the pin number); only one of the Ά ' output lines is low 
at any given binary count, e.g. Al is low for the binary input of Ol 
(the A input being the least significant binary digit). 

In this example, the MDA/MDB input line is used as a control 
input which can change the mode of the timing logic; when it is high 
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(MDA true), the Ά ' output lines are active, and when it is low 
(MDB asserted), the 'B' lines are active. This is achieved because 
the data inputs of the two separate decoders are complementary. 
Note that the G enable inputs related to each decoder are tied 
permanently low; they are not required for gating purposes, but they 
must be low in order for the decoders to work.* This particular trick 
might save gating elsewhere, for it is obtained gratis at IC3. Always 
take heed of any unused portions of devices: they could be handy in 
surprising ways! 

The control timing output lines then form inputs to gates within 
the control gating logic (refer back to Figure 16.3). Since only one 
timing line can be active at any one time, it is possible to restrict the 
areas of active logic, and indirectly disable other areas of logic. 

Figure 16.5 provides a simple example of control gating logic; the 
Gl , G2, HI , H2, H3 and Kl inputs are from the functional gating 
logic, and the Y output is to the functional gating logic. The circuit 
shows AO, Al and A2 as control timing lines from the control timing 
logic; remember that only one of the latter can be low at once. 

Figure 16.5. Control gating logic 

When AO is active, NAND gate IC2a is enabled, providing a high 
output at Y if G l . G2 is true. When Al is active, NAND gate IC2b is 
enabled, this time providing an output at Y if the condition 
H1.H2.H3 is met. When A2 is active, an output is obtained at Y 
when Kl is active (i.e. low in this case). Thus IC4a is acting as an 
inverted-input OR gate, and the f symbol has been used to indicate 
that the gate is not being used for the expected NAND function. The 
OR gate of IC3a is being used as an inverted-input NAND gate (i.e. 
if both inputs are low, the output is low). 

Note that whilst one area of the logic is enabled, the other areas 
are inhibited. For example, when Al is low to enable gate IC2b, AO 
and A2 are high, thereby disabling gates IC2a and IC3a respective
ly; thus whatever the states of Gl and G2, or Kl , only the input lines 
HI, H2 and H3 can have any effect on the output at Y. 

* It is important to always ensure that all device enables are held in their active state if they are not 
required for gating purposes. 

ICIa G1-T-H N 
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Asynchronous control logic 

Asynchronous control logic responds directly to external inputs, and 
thereby avoids any delay which might occur when waiting for 
synchronism with control timing logic. For example, computers 
generally 'talk' to their peripherals by means of a sequence of 
asynchronous exchanges. The computer might tell a peripheral to 
'get ready', and the peripheral might respond 'ready'; the computer 
might then say 'data present' and the peripheral might reply 'data 
received'. Such an exchange is referred to as a handshake-sequence, and 
this form of control avoids delays: that is why computers use it, for 
they have no time to 'hang around' . 

A complex logic circuit can greatly benefit from control timing, 
and it would be useful to be able to combine the advantages of a 
timed sequence with an asynchronous operation. This adds greater 
versatility, for it allows the individual time-slots to be of variable 
length. Reference to Figure 16.4 clearly shows that each time-slot in 
a synchronous system is of the same length. The way to achieve this 
is to employ the same kind of sequential logic, but to replace the 
clock input by some form of asynchronous control. 

The state encoder 

The author developed a state encoder (or sequencer) as a general 
means of obtaining asynchronous sequential control logic. Not only 
does this simplify control logic, but it does suggest a standard 
approach towards control logic, and this was the primary design 
aim. Indeed, it is perfectly possible for design groups to standardise 
on this approach, and they could then reap the benefits of readily 
understandable control circuitry. Going one step further, if state 
encoder chips were produced*, it could lead to a much simpler 
method of asynchronous control. 

The state encoder can be based upon either a binary counter or a 
shift register. The counter needs a companion decoder to provide the 
state outputs, where the shift register provides these directly, but the 
counter/decoder option does have the advantage that it is impossible 
for more than one state output to be active at one time. Spurious 
switching or a fault could lead to more than one state being active at 
once with the shift register, but the latter does provide outputs 
directly from one chip. If the reader chooses to design a circuit 
employing a state encoder, he is advised to use the counter/decoder 
option, for this is also simpler. This book provides examples of both 
forms. 

* Patent applied for. 
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Figure 16.6 shows a logic circuit employing a state encoder in 
block diagram form. The state encoder responds directly to external 
inputs and can directly control circuit outputs, hence it minimises 
the need for control gating logic. Figure 16.7 depicts a counter/ 
decoder state encoder capable of providing up to a maximum of 
eight different states; obviously it may be simplified for four or less 
states by using a 4-bit decoder, and less following gating. 
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gating 
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Figure 16.6. Control logic em
ploying a state encoder for asyn
chronous control 
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Figure 16.7. A counter-based state encoder with up to eight state outputs 

The state encoder effectively replaces the need for various state or 
mode flip-flops. At any given instant the counter (IC1) is set to a 
unique binary_code, and the decoder (IC2) therefore outputs only 
one state line (S0-S7) as active low. For example, if the counter is set 
to 101 (equivalent to decimal 5), only the S5 output is asserted (i.e. 
low). Given such a condition, the state encoder requires an input 
F IN5 to be taken low before that state may be terminated; thus each 
state has a unique finish input line to terminate that state. 

To continue_ with the example given above, by asserting FIN5 
during state S5, the unique strobe output ST5 goes low; apart from 
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being a useful strobe for external use, this strobe is ORed by an 
inverted-input OR gate IC5a, producing a common strobe CST. 
The output CST is also extremely useful for control purposes, since 
it occurs prior to each change of state, but it is used to change the 
state encoder itself after a time delay tD, which is set by RD and CD. 
The two (Schmitt) inverter gates following provide a delayed 
version of CST which is labelled CHGE. The counter (74163) is 
clocked by a rising edge on the clock input, therefore the state 
encoder changes state as soon jis CHGE goes high. Once it has 
changed state - in this case to S6 - the strobe ST5 is terminated, 
hence also terminating CST, and after the delay tD, the CHGE line 
is returned to its low state. The timing diagram given as Figure 16.8 
should help to make this clear. 
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Figure 16.8. Timing diagram of the counter-based state encoder shown 
in Figure 16.7 
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Examination of the timing diagram shows that tD sets the length 
of both the unique strobe pulses (STQ-ST7) and the common strobe 
(CST) and CHGE pulses. Once a FIN input has been used to 
terminate a particular state, it need not be removed until just before 
the same state is re-entered, which gives such flexibility to the 
terminating pulses that control is made much simpler. 

The state encoder may be terminated at any count simply by 
using the state strobe line to clear the counter. In the example, ST6 
is used, thereby preventing the counter from ever entering the S7 
state. Because the counter has a synchronous clear input, clearing 
does not occur until the CHGE pulse goes high, thereby maintaining 
ST6 at the normal length tD- If it is desired to shorten the control 
cycle during normal operation, it is only necessary to OR a different 
state strobe to the clear line. 

Note that the selected state strobe for the clear operation is 
effectively ORed with a POR* input, to ensure that the counter 
starts at zero on power-on. Failure to do this leads to an indetermin
ate state after power-on, and the entire circuit might then be 'stuck', 
with no FIN pulses to get it started. This is actually achieved by 
using an AND gate IC7a as an inverted input NOR gate, taking 
CLEAR low if either input goes low. 

The state encoder therefore steps from one state to the next when 
tripped by a state terminating input which is unique for each state. 
It provides both unique state strobes and common state strobes for 
general timing requirements, and it also incorporates the input 
gating logic necessary to control its own operation. As such, it 
incorporates virtually all the gating requirements for complete 
control of associated functional gating logic. 

An example of the shift register form of state encoder is given later 
in Chapter 19, which considers its use in a design example. For 
either form of state encoder, selection of the delay tu is open to the 
designer, and may be set to anything from nanoseconds to mil
liseconds. In certain applications it may be advantageous to AND 
the CHGE input to the sequential element with a clocking input; 
Figure 19.3 shows an example of this. This technique can be useful 
in order to delay the change of state, perhaps thereby prolonging a 
particular state output. Alternatively, this technique is a simple 
method of generating a complete strobe pulse for the sequential 
element (i.e. counter or shift register). 

It is hoped that this chapter has shown the many different ways 
the designer may go about the task of designing control logic, and 
that the reader may now appreciate the importance of giving this 

* POR = power-on reset. See page 132. 
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particular aspect of the design his most careful attention before even 
starting. The control logic is the heart of a logic circuit, and nothing 
will 'tick' unless this is right. Choose the right method, and you will 
ensure the most reliable operation. Even more important, you will 
then minimise heartache with the prototype! 
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17 
Design, construction and testing 

Any form of design is a creative pursuit, and whilst it is first 
necessary to learn a certain amont of theory, it soon becomes 
necessary to get actively involved in the actual process of design. 
The foregoing chapters of this book provide the basic knowledge 
required by an aspiring digital designer, and the point has now been 
reached where this must be applied to actual design practice. The 
best way to learn, in such circumstances, is by example, and the 
following two chapters comprise a simple and then a more complex 
exercise in design. 

This chapter provides a lead-in to the process of design, covering 
also the equally important stages which must follow: the construct
ion of a prototype and test procedures. A code of practice is 
suggested, and this is applied in the two examples to follow. 
Hopefully the reader should then be ready to go ahead with his own 
simple design, which he is recommended to build: do not attempt 
anything using more than about ten integrated circuits until you have gained 
some practical experience accompanied by successl 

Suggested code of practice 

The following code of practice is suggested. If it is followed, it should 
ensure that the design and construction of a project follow a sensible 
planned route. The code of practice is given in abbreviated form 
first, and is useful for subsequent reference; it is discussed later. 

1. Define the requirement. 
2. Analyse the requirement. 
3. Design the man-machine-interface (MMI). (Draw panels, con

trols, inputs and outputs in best ergonomic fashion.) 
4. Write a specification for the equipment. 
5. Decide on control logic approach and logic type. 
6. Design circuit. (Attempt to use all separate gates/functions in 

each IC within each functional area, but do not under-utilise 
ICs at this stage. Forget pin details. Make full use of sensible 
signal names. Check critical timing with timing diagrams.) 
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7. Pin-out. (Use an ' IC Usage' table to optimise usage and 
highlight 'spares'.) 

8. Calculate power supply current. (Use ' IC Technical Detail ' 
table.) 

9. Design power supply. 
10. Build prototype. (Use 'functional build and test' technique 

where possible. Label ICs. Mark pin 8. Mark non-standard 
power supply connections.) 

11. Test. (Modify if necessary.) 
12. Ensure that circuit diagram incorporates any modifications, and 

add a power supply table. 

If a final (or production) model is to follow the prototype, 
continue with the following steps. 

13. Revise pin-out and device usage for optimum. 
14. Design prototype printed circuit board (PCB). 
15. Prepare PCB/s. 
16. Build. 
17. Test. (Modify PCB if necessary due to errors.) 
18. Draw final circuit diagram. (Show all 'spares'.) 
19. Document design in sufficient detail to explain your approach. 

(This might be for others, or for you in times to come. The 
reasons for a given approach can soon be forgotten. Include any 
important timing diagrams.) 

Now to amplify the suggested code of practice. Before attempting 
to design anything, it is important to clearly define the requirement 
and to analyse how it may be tackled in conceptual terms. Consider 
the M M I at this point, for by drawing all controls, input and output 
sockets, indicators, etc., you ensure that nothing important is 
overlooked. Write a specification for an equipment if it is sufficiently 
complicated to warrant this (e.g. interface voltage levels, timing, 
etc.). The last task before embarking on the actual design is to 
choose the most appropriate logic type and to decide upon the form 
of control logic you wish to use. These latter factors should be easier 
to resolve if the previous steps have been carried out. 

Never rush into a design without this planning, for it may lead to 
some unfortunate oversights, and the steps taken to counteract these 
may lead to a far from optimum solution. 

Design the circuit, bearing in mind the form of control logic to be 
used. Break it down into separate functional areas, and so far as 
possible, try to use all gates/functions within the ICs used; in so 
doing, do not under-utilise gates (e.g. multi-input gates for inverters 
- this kind of decision comes later on). When the design is complete, 
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draw timing diagrams on squared paper, thereby making sure that 
no timing errors have been made; modify if necessary. 

'Pinning-out ' is the process of writing in IC numbers and pin 
numbers. The following two chapters provide examples of how this 
may be most efficiently undertaken using what I have termed an ' IC 
Usage' table. This ensures that all devices are used most efficiently, 
and assists in the final exercise in device optimisation; it is at this 
stage that inverters may be replaced by spare multi-input inverting 
gates. The power supply current is then calculated, using what I 
have termed an ' IC Technical Detail ' table; the latter also serves as 
an IC components list, power supply table, and cost analysis. After 
this, the power supply may be designed. 

Careful thought must be given before building the prototype, and 
further information regarding this follows later in this chapter. 
Where it is possible to divide the circuit into separate functional 
areas which may be tested independently, a 'functional build and 
test' approach is best: this involves the construction and testing of 
functional blocks in stages, rather than building the whole equip
ment and testing it afterwards. It is worth thinking how functional 
test and build might be achieved, for it can be the easiest method of 
getting a prototype to work: it is less daunting to test a small area of 
logic at once, and wiring errors are more, easily spotted. Do not 
overlook the necessity to update the circuit diagram to incorporate 
any modifications, or great confusion can subsequently ensue! 

If a final (or production) model is to be made, the pin-out should 
be revised if any modifications have taken place: there may be a 
slightly different opt imum solution. When making modifications, 
always make use of previously under-utilised gates wherever pos
sible. The last steps are to design the PCB layout, obtain (or make) the 
PCB, check out a complete board, correcting any errors, and to 
finally make sure that the circuit diagram is up to date. It is wise 
procedure to write a few notes on the circuit whilst it is fresh in your 
mind, and to include any timing diagrams that you have produced. 

Choice of logic type 

Chapter 14 covered the different logic families, but for practical 
purposes, and most situations, these may be narrowed down to two 
types: C M O S and T T L ; this is certainly the case if cost and 
availability are taken into account. These two types are readily 
available, and devices may be obtained at extremely competitive 
prices from the mail order specialists who advertise in the monthly 
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electronics DIY magazines. The 4000 series is the best C M O S 
choice, and either the 74 or 74LS series for T T L ; the 74 series is the 
cheapest, but the 74LS can be worthwhile if the design is at all 
complex, for it significantly reduces the power supply current 
requirement. Figure 17.1 is provided as a general guide to the choice 
of logic type. To use this figure, look down the central column noting 

CMOS I FACTORS TO CONSIDER I T TL 

(4000 series) ' I (74, 74LS series 

T 
EASE OF H A N D L I NG ^ . 

* 
COMPLEX DESIGN 

+ 

NOVICE DESIGNER 

S I G N I F I C A NT B R E A D B O A RD 
WORK A N T I C I P A T ED 

♦ 
LOW POWER NEEDED 

♦ 
SIMPLE CIRCUIT 

+ 
B A T T E RY OPERATION 

MICROPROCESSOR  ̂ LS types or buffered 
INTERFACE microprocessor 

PROFESSIONAL 
REQUIREMENT 

Higher voltage types for 
industrial noise immuni ty 

Depends on 
requirement 

Microprocessor 
approach ? 

Figure 17.1. Factors to consider when selecting logic type 

the important factors relevant to your requirement; the arrows 
indicate which way to turn. The various factors are listed in what 
amounts to their approximate order of significance. Clearly you may 
have to take into account several of the factors listed, but it should 
be possible to decide which way they tend to point; remember that 
higher factors on the list are more significant. 
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Construction 

Logic circuitry requires complex wiring, therefore it is essential to 
build prototypes on some form of circuit board, based upon the 0.1" 
hole pitch required by logic ICs. Scan the mail order advertisements 
for suitable boards. Vero manufacture a range of suitable boards, 
including what is known as D I P board: this comprises rows of pads 
for IC pins, plus power supply tracks routed conveniently around 
the board. A 156 mm X 114mm D I P board can hold up to 20 14-pin 
devices, or 16 16-pin devices. 

Standard 0.1" pitch Veroboard® can also be used, although there 
is the added trouble of using a spot-face cutter to remove a lot of 
copper track; it can be worth the effort if dense packing or economy 
are considerations. The 3.75" wide boards contain 36 parallel tracks, 
which may be arranged as follows, considering the tracks to be 
labelled 1-36: 1-8 = device pins; 9 = 0V; 10 = + 5 V ; 11-18 = 
device pins; 19-26 = device pins; 27 = 0V; 28 = + 5 V ; 29-36 = 
device pins. This comprises four ICs in depth across the board, any 
of which may be 14 or 16 pins. There are two power supply tracks 
across the board, which are always adjacent to one edge of every IC. 
An IC bridges four holes in width, and two further holes must be 
allowed for wire connections on each side (i.e. each IC pin has two 
wiring holes next to it); allowing for a further row of holes to be 
wasted where the tracks are broken between horizontally adjacent 
ICs, each line of four ICs requires 9 holes in breadth. The densest 
packing possible is therefore one line of four ICs per inch along the 
board. 

Whilst it is common practice to draw a paper layout of intended 
wiring for linear circuits, digital circuits are too complex for this; the 
end result would prove impossible to follow, and it is just not 
needed. Providing that the pin-out exercise has been done sensibly 
to keep functionally associated ICs in the same region, a reasonable 
layout should result if the ICs are placed in numerical sequence. If 
the layout is split between several boards, make sure that sensible 
breaks are made in order to minimise interconnections between the 
boards. If a number of different IC pins are connected together, it is 
simply a matter of linking from one pin to the next. 

Because of the complexity of the wiring, it is necessary to strictly 
follow a wiring plan. Obtain a photocopy of the circuit diagram 
before beginning wiring, and have a coloured pencil at the ready. As 
each wire is added to the board, the appropriate line should be 
coloured over on the circuit diagram. This keeps a constant record of 
the wiring that has been done, and ensures that none are forgotten: 
this is an essential practice. 
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The usual soldering precautions should be taken: each pin should 
be soldered quickly; heat should never be applied for more than a 
few seconds to each pin. The best practice is to first connect all the 
power supply lines on the board, to ensure that none are forgotten, 
and then to begin with the signal lines. It is easy to misjudge the 
number of pins on a device if there is a mixture of 14 and 16 pin 
devices. A good plan is to mark a dot by pin 8 on each IC, which 
clearly distinguishes between the two types. It is also wise to number 
each IC. The typist's correction fluid (such as Snopake®) is useful for 
marking purposes; use the solution to provide a white background 
on which you may write with pencil or ballpoint pen. Ensure the type 
number still showsl 

Because each IC has so many pins (at least 14, and sometimes 
many more), it is a very difficult task to remove an IC once it has 
been soldered into a circuit. Should this be necessary, it is impossible 
to attempt to remove it by heating up all the pins simultaneously. 
There are three options: 

a. Cut the leads, discard the IC, and then remove each severed leg 
individually. 

b. Use a 'desoldering wick'. 
c. Use a desoldering tool. 

The 'butchering' method is always available as a last resort. 
Desoldering wick is useful if you seldom need to undertake any 
desoldering, and is a reasonably economic method; a special wick is 
held against the solder as it is heated up, and it attracts the solder. 
The wick is cut off and discarded as it is used up. The best method is 
to use a desoldering tool. It is used against molten solder like the 
wick, but it is a mechanical device which sucks the solder into a 
container; a mechanical plunger is depressed against a spring, and a 
release button initiates the sucking action. 

An alternative method of construction to obviate the need for 
desoldering is to use IC sockets; low profile types take up no more 
room than the IC base itself. The only drawback is cost: they can 
cost more than some simple ICs themselves. A sensible compromise 
is to use IC sockets for the more expensive ICs. This is a cost-
effective solution, for rather than fit an expensive socket for a cheap 
device, it pays to run the risk of throwing a defective cheap device 
away. 

The only case where it is strongly advised to use IC sockets for all 
ICs is when you are dealing with C M O S devices. This is justified in 
the section to follow. 
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Handl ing precautions 

No special precautions need be taken when handling T T L devices, 
except to keep them in their carriers until use, in order to prevent 
any pins becoming bent. C M O S require the utmost care when 
handling, and the novice is advised to avoid this logic type until he 
has gained some experience. The reader is strongly advised to use 
IC sockets when using C M O S devices, in order to prevent them 
being damaged by static electricity. 

The high resistance of the gate terminals means that C M O S 
devices are very easily damaged by stray voltages. Electrostatic 
voltage on insulators, PCBs, and particularly human hands, can 
mean doom for the IC. It is true that such devices contain protective 
circuitry, but this does not become effective until the device is 
connected into circuit and the circuit properly earthed. The follow
ing procedure is advised: 

1. Complete all other wiring first, including IC holders for all ICs. 
2. Make sure that the power supply rails are connected to all the 

ICs, and earth the OV line. 
3. Remove the C M O S devices from their protective shorting hol

der/material without touching the pins. 
4. Carefully insert in the IC sockets. 

Under no circumstances should a C M O S device be removed from 
its protective holder or the common conductive plastic foam until it 
is desired to insert it into the circuit. 

Extra precautions are necessary if C M O S devices are to be 
soldered directly into a board. Although not advised, these are given 
for completeness. As before, wire all other components first, then fit 
each IC, soldering the power supply leads first (earth followed by 
the power connection). Make sure the OV line is earthed during all 
handling of the board. Only when all devices have been connected to 
earth should the other pins be soldered. 

The pins on new ICs tend to be slightly splayed out, and generally 
need to be gently bent in before they fit the 0.4" pitch between DIL 
rows. This is easily achieved by laying all the pins of one side of the 
device onto a flat hard surface and applying slight pressure to all 
pins at once; this need only be done to one side. 

Test ing and trouble-shooting 

When all the wiring has been completed, make a visual check of the 
PCB to ensure that: 
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a. All pins are soldered. 
b. No solder is shorting between tracks. 
c. No dry joints exist. 
d. Any necessary breaks in the copper track have been made. 

The next step is to test the power supply without the rest of the 
circuitry connected. Load the regulator with a resistor in order to 
make it drive into a load. Check that the voltage is within prescribed 
limits for the logic type. 

The next step is to connect the circuitry, and to recheck the power 
supply voltage. After this comes the testing proper. It is not 
necessary to have any highly sophisticated test apparatus, and little 
more than a logic level indicator is necessary, combined with 
intelligent use, and a little trickery! 

If things in the circuit are happening too fast to see them with 
such simple test apparatus , slow the circuit down! This is generally 
only a matter of changing a capacitor on a clock generator, or 
arranging it to 'one-shot' when a button is pressed. 

If the apparatus to be tested incorporates an LED, this may be 
used as a level tester simply by connecting it to the output of a spare 
gate through a suitable load resistor. The gate input is then 
connected to a probe, with a point small enough to ensure that it 
cannot inadvertently short-circuit adjacent pins on an IG. 

+5V 

120Ω 

/T\^r 0n = logic °' 
Loqic U I I ) 0 ff = l o g ic 'V or 0 /C 

Figure 17.2. A simple level 
indicator 

Figure 17.2 depicts a very simple level indicator which uses no 
more than the indicator LED and its load resistor, plus a driving 
transistor. The probe is connected to the transistor base. When 
touched to earth or a logic 0 level, the transistor is biased on, and the 
LED is illuminated. When the probe is either open-circuit, or 
connected to a logic 1, the voltage level is too high to cause the LED 
to be illuminated; V Q H is always greater than +2 .4V, meaning that 
the emitter is greater than +3.1 V; the LED drops nearly 2 V, 
therefore current flow is minimal, and should not be visible under 
nomal conditions; should a particular LED have a low VF , causing 
the LED to glow dimly when it should be off, simply insert a forward 
biased diode in series with the LED. 
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Figure 17.3 depicts a slightly more sophisticated logic tester, with 
the added feature of a pulse detector. A quad 2-input exclusive-OR 
gate is used to provide inverters or non-inverters, as required. ICla 
is always a non-inverter (i.e. a buffer), and IClb and ICld are 
always inverters; IClc is controlled to be non-inverting with the 
switch in the position shown, or inverting with the switch in the 
opposite condition. The 'LOGIC Γ LED is illuminated when the 
probe input is open circuit or at logic 1, or extinguished when at 
logic 0. 

PULSE 
DETECTED 

CTRL 
l/P 
H 
H 
L 
L 

Logic 
l/P 
H 
L 
H 
L 

XOR O/P 

L 
H 
H 
L 

INV 

NON-
INV fTrnHo T 

Ref 
IC1 
IC2 

Type 
7486 
7476 

+5V 
14 
5 

ov 
7 
13 

TRIGGERING 
NEG PULSE 

Figure 17.3. A simple logic analyser with level and pulse detection facilitates 

The J-K flip-flop is 'RESET' by means of a press-button after 
connection of the probe to a circuit point to be monitored; the 
'PULSE DETECTED' LED is illuminated if it subsequently detects 
a complete pulse (or pulse train). 

The switch allows the XOR gate at IClc to be inverting or 
non-inverting as desired. Since the J-K flip-flop is clocked on the 
falling (or negative) edge of the clock pulse applied to it, this facility 
allows the rear edge of either a positive or a negative pulse to trigger 
it, as indicated. These two indicators provide a wealth of informat
ion, as the following table shows. 

Note that this figure illustrates how a table appended to a circuit 
diagram is an efficient way of indicating power supply pins. 

Switch 
setting 

POS/NEG 
POS/NEG 
POS 
POS 
NEG 
NEG 

LOGIC 1 

ON 
OFF 
ON 
OFF 
ON 
OFF 

PULSE 
DETECTED 

OFF 
OFF 
ON 
ON 
ON 
ON 

Meaning 

Steady logic 1 level 
Steady logic 0 level 

_ru 
n 
u 

- I i - l 
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The reader should study Figure 17.3 in detail and should be able 
to follow its complete operation without further information. The 
only point to particularly note, is that the pulse detector cannot 
discriminate one pulse from a pulse train, although if a pulse train is 
present, the level indicating LED will probably be dimmer than its 
normal level with a steady logic 1 applied at the input. A functional 
table for the XOR gate is included in the figure for convenience. 

Power for either of the above logic level analysers should be 
obtained from the host circuit, via short twisted leads. Note that 
ICla in Figure 17.3 provides a standard gate load to the circuit 
being monitored. 
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18 
A CMOS design example — audible 
process timer 

This is the first of two design examples. The reader should study 
these examples until he is fully familiar with every aspect of them. If 
he can reach the point where he understands the need for every 
component - for each and every gate - then he is ready to embark 
upon his own designs! These two examples follow the suggested code 
of practice given in the preceding chapter. 

Defining the requirement 

An industrial process requires an operator to perform a task for a 
minimum of 10 seconds; personal judgement is involved to decide 
when the task is completed, and it may take up to 20 seconds, or just 
over. It is most important that proper timing is maintained, 
therefore operators presently count to themselves - which is greatly 
fatiguing. A simple but reliable mains operated equipment is required 
which will produce an audible tone after 10 seconds, with repeated 
tones at ten second intervals; an intermediate tone of different pitch 
is required at the intermediate 5 second intervals, but this should 
not sound until after the first ten seconds has expired. The start and 
finish of the process may be detected by means of a photocell. 

Analysing the requirement 

Input: a photocell indicates when the process starts and stops. 
Output: audible tones at the following time intervals from START 
to STOP: 

After 10 seconds 
After 15 seconds 
After 20 seconds 
After 25 seconds 
etc. until STOP. 
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One solution would be to use 555 timers, but this would involve 
quite a lot of associated logic. Such a scheme would also be at the 
mercy of component drift, since the 555 timer is CR based, and 
capacitors age; the apparatus must stay accurate. Crystal oscillators 
stay accurate, but are of high frequency, and require a lot of dividing 
down to reach the time intervals required in this case. Since the 
equipment is to be mains operated, what better than to make use of 
the mains input frequency? 

Although the mains frequency is relatively low - 50 Hz in the 
desired area of operation - the apparatus will still require a fair 
number of divider stages. It is known that single C M O S devices are 
available which provide many dividing stages, therefore C M O S is 
an attractive logic type, especially since its wide supply voltage 
tolerance ( + 3 V to + 1 2 V o r + 1 8 V - see Appendix C) means that a 
smoothed but unregulated power supply should be adequate for a 
simple design. 

It is now easy to step through stages 3 -5 of the suggested code of 
practice, as follows: 

3. Design the man-machine-interface. Apart from an O N / O F F switch, 
there is nothing to consider except a loudspeaker. Nothing need 
be drawn. 

4. Write a specification for the equipment. The only relevant figures are 
the input timing frequency of 50 Hz, and the output timing of 
tones, as defined above. 

5. Decide on the control logic approach and logic type. The outputs are 
directly related to the timing input (i.e. 50Hz) , therefore no 
special approach is needed; because it is anticipated that the 
design should be quite simple, involving very few ICs, the 
conditional control logic approach is justified. The logic type shall be 
C M O S . 

Design 
Space restrictions within this book make it impossible to include 
abridged data of the 4000 series of C M O S ICs other than the 
general characteristics given in Appendix C. The reader must look 
elsewhere for individual device data. RCA are a large manufacturer 
of such devices, and Appendix C provides various addresses relevant 
to this company, where readers may write for further information. 
Most technical colleges that have courses in electronics contain data 
books within their libraries, and this is another possible source of 
reference. 

Figure 18.2 shows the resulting design, which will be discussed in 
detail. The figure appears at the end of this chapter for convenience. 
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Although the power supply is normally the last thing to design, it 
is necessary to establish what is needed in general, e.g. voltage 
output. In this case the supply current drawn by the logic is bound 
to be negligible because C M O S are low current devices; the main 
power dissipation will be associated with the audio output stage. A 
full-wave rectifier circuit using a centre-tapped 6-0-6 V supply is to 
be used, and this type of circuit produces a capacitively smoothed 
output voltage of 0.7Va c*, where V a c is the sum of the two phases, 
i.e. 12 V in this example; the circuit diagram shows a nominal 
voltage of + 9V, but something just less than this can be expected. 
C M O S can readily take any variation in supply voltage due to 
mains variations. The output from this power supply is taken to be 
VDDJ a n d a further H output is taken via a resistor for tying-up 
inputs required to be at logic 1. A 555 timer IC is to be used as a 
simple means of providing an audio stage, for such a device can 
drive a high impedance loudspeaker directly. These devices have a 
maximum power dissipation of 600 mW, therefore this power supply 
is not likely to supply in excess of this power. Since this calls for 
under 1VA from the transformer, the smallest of transformers 
should be suitable. 

One phase of the mains frequency is taken off from the transform
er via diode D3 to provide the waveform CK. The amplitude of this 
signal is 6 V less the diode Vp; this is sufficient amplitude to switch 
the C M O S gate. The series resistor R4, and the zener diode D5, are 
simply protection components, protecting the following IC in the 
event of a surge. 

The counter chosen is a 4040 ( I C l ) . Since this contains pulse-
shaping circuitry on the clock input, no external measures need to be 
taken to convert the half-wave rectified waveform to a square-wave. 

The 4040 ( IC l ) is a 12-stage counter divider with an output from 
each stage (Q1-Q12) . In this application, with an input frequency 
of 50 Hz, the time for a complete period of C K is l /50s, or 20 ms. If 
we regard I C l as a counter counting pulses once every 20ms, we 
need to calculate how many pulses it needs to count for 5 s and for 
10 s, in order to achieve our timing requirement. The table below 
shows the binary weighting of each stage of the counter. 

a 1 
2 
3 
4 
5 
6 

Weighting 
1 
2 
4 
8 

16 
32 

a 7 
8 
9 

10 
11 
12 

Weighting 
64 

128 
256 
512 

1024 
2048 

* Unlike full-wave rectification with a bridge rectifier, which is 1.4Vac 
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To discriminate a time interval of 5 s, the number of pulses to be 
detected is 5/0.02 = 250. The Q9 output goes high after 256 pulses, 
which is only 6 X 20ms longer than the required time, i.e. 0.12 s; it is 
decided that this is quite accurate enough for a manual process. 
Similarly, to discriminate an interval of 10 s, the number of pulses to 
be detected is 10/0.02 = 500. The Q10 output goes high after 512 
pulses, which is only 12 X 20 ms longer than the required time, i.e. 
0.24s longer, which is again quite accurate enough. Since we are 
only concerned with discrete time measurements, no cumulative 
error can result, and the error for each measurement is acceptable. 
This avoids the need for gating circuitry to detect the precise counts 
of 250 and 500. Had we decided to make the timer completely 
accurate, the 5 s discriminator would require the following outputs 
to be ANDed: Q8, Q7, Q6, Q5, Q4, Q2; the 10s discriminator 
would similarly require the following outputs to be ANDed: Q9, Q8, 
Q7, Q6> Q55 and Q3. This is a case where practicality and 
cost-effectiveness overrule theory. 

A general point of interest worth noting is that it is possible to 
design-in the error rate in this kind of circuit. By partially decoding 
a number of the more significant bits in a required count, the error 
can be reduced in relation to the number of bits decoded. For 
example, if five bits were decoded in the required 5 s interval for this 
timer, these would comprise Q8, Q7, Q6, Q5 and Q4, thereby 
discriminating a count of 248, reducing the error to 2 X 20 ms = 40 
ms short. Note that by decoding only the top four bits (Q8 down to 
Q5), the count determined is only 240, and this produces a larger 
error in under-timing, than the chosen solution does with over
timing. 

The counter is to be held disabled when it is not required for 
timing, and is only to be enabled when the photocell is illuminated. 
D4 is the reverse-biased silicon photodiode to be used, and TR1 is a 
current amplifier. The photodiode does not conduct when it is dark, 
therefore the output from TR1 collector is labelled OFF; a gate 
determined to be spare at a later stage of the design is used as an 
inverter (IC4d), thus the output at 4-10* is labelled ON, i.e. it is 
high when we want the counter to be enabled. The counter has a 
reset (R) input at 1-11, therefore the input to this pin must be low to 
enable a count, hence the name COUNT. IC3b is a NAND gate 
providing the required inversion relative to ON, and also allowing 
the RESET input to be gated in: the latter input is used to reset the 
counter when it has counted the pulses required for the 10s interval. 
If the counter is operating, ON is high, and RESET goes low after a 

* IC4-pinlO. 
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10 s period; this causes COUNT to go high, thereby resetting the 
counter. IC3c is used to NAND Q10 and Ql together, thereby 
providing a RESET pulse one CK period after Q10 goes high; this 
ensures a clean output pulse from the Q10 output before the counter 
is reset, which naturally takes Q10 low again, along with all the 
other Q outputs. 

A timing diagram of the circuit is provided as Figure 18.1. 
Because this is drawn to show the timing over some 30 s, it is not 
possible to show short pulse lengths clearly, except by slight 
exaggeration. This diagram shows the short Q10 pulse obtained 
before the timer is reset, occurring immediately after the trailing 
edge of the Q9 pulses. As soon as COUNT goes high, this resets the 
timer, and Q outputs all go low; this removes the RESET pulse, and 
timing resumes at once. 
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Figure 18.1. Timing diagram for the process timer 

Because IC1 is a timer, it may be used for any other timing 
requirements of the circuit, such as determination of the length of 
the audible tones. In order to use it in this manner, it is necessary to 
set a latch or flip-flop at the time a tone is required to start, and to 
reset it when the tone is to finish. IC2b is a flip-flop which performs 
this function for the 5 s tone. When Q9 goes high it clocks the 
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flip-flop to the set condition, since a logic 1 is input to D (pin 2 -9 ) . 
Thus 5SEN (5 s enable) goes low at this point. Q4 goes high after a 
further 8 X 20 ms = 160 ms, and this is used to reset the flip-flop via 
pin 2-10. This sets the length of the 5 s tone to 160 ms, i.e. just under 
two-tenths of a second. 

Our design requirement is that the first 5 s interval shall not sound 
a tone, therefore this must be discriminated from subsequent 5 s 
intervals. The other flip-flop within IC2 is used to do this. IC2a is 
clocked into the set condition by the lagging (rising) edge of the 
RESET pulse, taking 1STCY (1st cycle) high after the first 10 s 
interval, as shown in the timing diagram; this output is subsequently 
gated with an enable waveform EN, thereby ensuring that no tone 
can cause S O U N D to go low prior to the 10 s interval. 

All that remains is to staticise the 10s interval. This could be done 
with another flip-flop, but a more cost-effective solution is to use 
available N O R gates, and to use a latch. IC4a and IC4b form the 
latch circuit, which is set by taking pin 4-1 high, and reset by taking 
pin 4 - 6 high. Since the set input is taken from the Q10 output of the 
timer, the latch is set after the nominal 10 s period; it is reset by the 
Q5 output, which occurs after a subsequent 16 X 20 ms = 320 ms, 
as shown on the timing diagram. Note that both Q4 and Q5 are 
going high and low all the time during the time interval, but after 
each higher significance bit is first set on the counter, all the lower 
significant bits return to zero; these other high states of Q4 and Q5 
are not significant so far as the timing flip-flop or latch is concerned, 
because they simply reconfirm their reset condition. The latch causes 
10SEN (10s enable) to go low after the nominal 10s period, and to 
return high after the further 320 ms. 

IC3a is used as an inverted input OR-gate, producing EN high 
when either 5SEN or 10SEN goes low; once 1STGY is true (as from 
the first 10s period, when 10SEN first goes low), these two timing 
pulses cause S O U N D to go low. IC4c is an inverted input AND 
gate, producing T O N E high if both S O U N D and C O U N T are low. 
By gating C O U N T with S O U N D , it is ensured that the audible tone 
is cut off immediately the O F F condition is reached, should this 
occur mid-tone. More practically, it is a good safety feature, 
ensuring that no tone can ever occur in the O F F condition, no 
matter what spurious conditions might occur in the rest of the logic. 
Such precautions are well worth taking. 

The C O U N T control of the audio also has one other effect. When 
the controlling input reverts to O F F , the O F F signal resets the 
1STCY flip-flop and the counter; what it does not do is to reset the 
5SEN flip-flop or the 10SEN latch, for these must be reset by the 
timer itself; the timing diagram shows this, where the 10SEN latch is 
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left set because OFF occur mid-tone. Because 1STCY goes false, this 
prevents SOUND going low in the OFF condition in any case. 
Under circumstances where the OFF condition occurs mid-tone, the 
appropriate timing enable stays active until the timer restarts and 
the resetting time interval has timed-out. This has no effect on the 
audible output due to the fact that 1STCY is false for the first 10s. 

Note that there are no spare gates in the circuit. It would have 
been preferred practice to buffer all the logic from the analogue 
input (TR1) by a single gate (e.g. IC4d), but because of a gate 
shortage, it was deemed acceptable to provide the additional load of 
IC2a reset input. Had there been a spare gate, normal practice 
would have to generate OFF from ON, by means of an inverter. No 
de-bounce precautions are necessary, for the light switch has a clean 
switching edge, and even if there was a bounce effect, it could do no 
more than reset the timer a few times, which would have no effect on 
circuit operation. 

The audio stage comprises a 555 timer connected as an astable 
circuit.* C2 is the timing capacitor, and Rl and R2 provide the 
charging path. A different tone is achieved in the two timing 
conditions by switching a lower resistance across Rl during the 
5SEN tone; this is achieved quite simply by TR2, which is biased on 
when 5SEN is active. The base current of TR2 is minimal loading 
for IC2b Q output. 

For the 10 second tone, Rl , R2 and C2 are the timing compo
nents, giving T m = 0.7 (56 K + 100K) 0.01 μΓ, giving a period of 
1.092ms; during discharge, Ts = 0.7 X 100K X 0.01 μΓ, giving 
0.7 ms. The total period of a complete cycle is therefore 1.792 ms, 
and the frequency is therefore 1/1.792 kHz, i.e. 558 Hz. The 'mark' 
time (Tm) for the 5 second tone is reduced, since R6 now appears in 
parallel with Rl , reducing the effective resistance to 9.9K, and 
hence T m to 0.77ms, and the total period to (0.77 + 0.7) ms, i.e. 
1.47 ms, thereby giving a frequency of 680 Hz. 

The 555 timer output is driven directly into a 200 Ω potentio
meter, which acts as a volume control. A 33 μ¥ capacitor is used to 
couple a 64 Ω loudspeaker to the potentiometer, for this has an 
impedance of around 10 Ω at the lower frequency, providing minim
al attenuation of the sound. The maximum power output of a 
square-wave, assuming a 1:1 mark-space ratio for simplicity, is half 
that which could be dissipated by connecting a 64 Ω load across the 
9 V supply, i.e. about 0.6 W. Since this only occurs for a maximum of 
320 ms every 10 seconds (or 160 ms every 5 s), this only occurs for 
0.32/10 X 100%, i.e. 3.2% of the time, thereby reducing the average 

* Refer to Chapter 6 for details of the 555 timer, and also App. Kl. 
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loading of the audio stage to minimal proportions so far as the power 
supply is concerned (equivalent to about 20mW). 

Because the tones vary in length and pitch, they are readily 
distinguished. The end result is as follows: 

10 second tone (TONE 1): 558Hz for a duration of 320ms. 
5 second tone (TONE 2): 680 Hz for a duration of 160 ms. 

This timing produces a low pitch long tone for 10 s intervals, and a 
higher pitched shorter tone for intermediate 5 s intervals. This results 
in a sound pattern with which the operator readily associates subcon
sciously. This sound pattern relates to a given time, and timing 
becomes a mere subconscious act. Now, instead of counting to 
themselves all day long, they can actually talk whilst they work. 
Productivity and efficiency have improved, not to mention morale! 

Notes 

It is no accident that there are no spare gates in the foregoing design; 
this is the result of careful optimisation. Earlier versions of the 
design used another quad NAND gate, and the result was spare 
NAND gates and spare NOR gates; careful optimisation, and use of 
a direct connection of pin 2-4 to the input, enabled the final solution 
to be reached. 

The final stage in any design should be an exercise in optimisa
tion. Given spare NAND and spare NOR gates, it is generally 
possible to find a solution which releases at least one of these ICs. 

One useful tip worth bearing in mind, is that where spare gates 
exist in a design, the supply current drawn by such gates can be 
minimised by causing the output to be high; thus inverter gates must 
have their inputs tied to 0 V to achieve this situation. 

One final point. Because of the small number of ICs used in this 
simple example, it did not warrant the use of an TC Usage' table or 
an TC Technical Detail' table, as mentioned in the suggested code 
of practice. Examples of such tables are to be found in the more 
complex example given in the following chapter. 

The reader should now study this design example in depth. Every 
attempt should be made to fully understand the design, and this 
involves knowing why every component and gate is required. The 
earlier chapters and appendices provide all the cross references 
required to achieve this. 

The following design example is considerably more complicated 
than this example, therefore there is little hope of fully understand
ing it if the present example cannot be fully understood. It is stressed 
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that every effort should therefore be made to understand the present 
example. If this can be fully understood, the reader is well on the 
way to appreciating the requirements of good logic design, and is all 
set to tackle the much more difficult TTL example which follows. If 
both examples can be fully understood, then the reader really is set 
to begin his own designs! 
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19 
A TTL design example - an 
automated 'ΝΙΜ' machine - the 
'AUTONIM' 

This is the final complete design example to be presented, and it is 
an understatement to say that it is rather more complex than the 
preceding example. It is therefore necessary to emphasise yet again 
that unless the reader first works at completely understanding the 
audible process timer design, he has little hope of understanding the 
design which follows. 

The good news is that it should be possible for any reader who has 
carefully read the preceding chapters to understand this design 
example if he is prepared to work at it, using the preceding chapters 
and the appendices where he has any doubt. No new knowledge is 
called for, and the design if fully explained. This particular example 
has been chosen because it uses just about every different type of 
TTL device. If the reader can understand this example, then he is 
ready to embark upon his own simple digital design projects using 
TTL logic. 

Now is the time to draw in a deep breath - preferably take a short 
holiday beforehand - and then dive straight in at the deep end! 

Defining the requirement 

The aim is to produce a fully automated machine capable of playing 
the game of 'ΝΙΜ'. For those readers not familiar with this game, it 
is covered in the following section. The machine should be capable 
of playing against a human player, or of allowing two human players 
to play each other. The machine should be given a 'personality' to 
add interest, and should incorporate several levels of skill when 
playing against a human opponent. The machine must make its own 
moves, and not call upon its opponent to do any of the work for it. 
The machine and the man should take equal turns at starting play, 
for fairness. 
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Analys ing the requirement 

The game ofNIM 

Before analysing the requirement, the game itself must be under
stood. It is usually played by two players with a number of 
matchsticks. These are arranged in several lines, as shown in Figure 
19.1. The precise arrangement is not important, but the illustrated 
layout comprising four lines of 7, 5, 3 and 1 matches is common. 

Illllll 
urn 
in 

( Figure 19.1. An arrangement of 
matches for NIM 

This is the arrangement which will be considered, for it is about the 
minimum number of matches which produces an interesting game. 
To play the game, each player in turn removes as many matches as he 
wishes from one complete line; he can take a whole line out at one go, 
or simply one match, just as he pleases, but lines only comprise 
horizontal lines, never columns. The winner of the game is the player 
who takes the last match. (There is another version of the game 
where the winner is the player leaving the last match, but this 
introduces an additional complication, and is not therefore consi
dered.) 

The theory of NIM 

If a machine is to be designed to play a game, first the game itself 
must be analysed. Fortunately there is a complete theory for the 
game of N I M , and rather appropriately, this involves binary 
arithmetic. Every position in the game of N I M may be described as 
either safe or unsafe: if a player leaves a safe position, he is bound to 
win if he makes no mistakes, for any subsequent move makes the 
position unsafe. It is always possible to make a move from an unsafe 
position which converts it into a safe position. 

The way to determine if a position is safe or unsafe, is to consider 
the number of matches in each line as a series of binary numbers. 
Thus the starting position may be expressed as follows, where the 
lines have been given reference letters: 
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Line Binary weight 
4 2 1 

D 1 1 1 
C 1 0 1 
B 1 1 
A 1 

Even/Odd E E E 

Each binary digit is separately added, and a note made of whether 
the resulting number is either odd (O) or even (E); if all rows are even, 
the position is safe, but if one or more are odd, the position is unsafe. 
Thus the starting position above is safe. Let us suppose that the first 
player removes 5 matches from line D. This leaves the position as 
follows: 

Matches 
I 

I I 
I I 

1 
I 
I 
I 

Line 
D 
C 
B 
A 

4 

1 

2 
1 
0 
1 

1 
0 
1 
1 
1 

O E O 

This position leaves an odd number of 4's, and an odd number of 
l's. The next player must make the position safe, and can do so by 
removing 5 matches from line C, hence reaching the following 
position: 

Matches 
I I 

I I 
I 

Line 
D 
C 
B 
A 

4 2 
1 

1 

1 
0 
0 
1 
1 

Play the game with matches, and you will see that this system can 
never fail. This is the method which the machine must use to analyse 
the game position before making its reply against a human oppon
ent! 

Designing the man-machine-interface 

Any electronic game should have the minimum number of controls. 
The panel layout given in Figure 19.2 is a sensible ergonomic layout 

169 



with the minimum of lettering. The machine was christened 
'AUTONIM' because it is an automated NIM game, and also 
because of its 'automaton'-like properties! 

1 = man 
Expert | 

Good y < ^ X 
Average— i f j J 

P o o r ' N ^ ^ / 

Child 

<*> 
ON 

o o 
1 YOU 

o 
WIN 

© 
NEW GAME 

ooooooo 
O O O O O 

O O O 
O 

AUTONIM 

©*4 
©*4 
o-4 
©^4 

Skill 
selector 

v — 
Move & wir 
indicators 

Line indicator LEDs 

Line D 

LineC 

LineB 

Line A 

switch button 

Figure 19.2. A panel layout for the AUTONIM 

It may be seen from the figure that matchsticks have been 
replaced by indicator LEDs. A button adjacent to each line is 
depressed by the player to indicate his line selection. Since no 
provision is made for indicating the end of a player's move other 
than the release of one of these buttons, the chosen button must be 
depressed and held only once for each move. An internal clock must 
therefore slowly take off one LED at a time until the player releases 
the button. The two PLAY indicator LEDs marked I and YOU 
indicate the machine's move or the human player's move respective
ly; the only exception to this is when the left-hand rotary switch is 
set to the Ί = man' position, which indicates manual play, with a 
second person playing the T role. The remaining settings on the 
rotary switch select varying degrees of machine skill from Expert' 
down to 'child'. A NEW GAME button is used for calling up a new 
game. A toggle switch switches the equipment on by controlling the 
mains input. A power-on indicator is superfluous since there is 
always at least one of the LEDs on at any time: one of the PLAY 
indicators must always be on. 

Equipment specification 

The following specification indicates how the equipment is required 
to operate, and broadly specifies the general requirements. 
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Power input: 
Game indicators: 

PLAY indicators: 

Line selection 
push-buttons: 

240V a.c. mains (or as appropriate). 
Line D, 7 LEDs. 
Line C, 5 LEDs. 
Line B, 3 LEDs. 
Line A, 1 LED. 

I for machine's play (or man playing 
machine's role). 
Y O U for man's play. 
W I N LED to flash at slow rate when man/ 
machine wins, with the appropriate PLAY 
LED indicating which player has won. 

One for each indicator line. Button is de
pressed to start slow internal clock which 
extinguishes LEDs one by one in the selected 
row until the button is released. Cheat pro
tection against depression of more than one 
button at once. Release of button causes 
PLAY indicators to be complemented. If 
machine is playing, machine replies when I 
LED is illuminated. 

Variable time of response required, to simul
ate human opponent; immediate reply to be 
prevented. Where several options lie open for 
the machine, its choice to be random, pre
venting two identical games being played in 
such a situation. 

T h e 'expert ' setting specifies that the 
machine must play the perfect game. The 
other settings call for a reducing level of skill, 
achieved by forcing the machine to make 
errors at an increasing rate. 

A tone to accompany the 'taking' of LEDs by 
man/machine; a different tone for man and 
machine. 
A third form of two-tone effect to signify a 
win, which is cut off after a number of times, 
to simply leave the W I N indicator flashing. 

N E W G A M E button: Depression resets the machine for a new 
game by illuminating all the line indicators. 
The first player to alternate each game be-
twen I and Y O U . 

Machine's play: 

Machine skill: 

Audible output: 
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Control logic approach and logic type 

Clearly the machine is going to be quite complicated, therefore the 
control logic is going to be complicated. There are no external 
signals to take into account, therefore the best choice is to use a state 
encoder. This choice means that operation can be based upon a 
planned sequence of events. Because of the complexity of the 
anticipated design, and the probable need for a wide variety of 
device types, T T L seems the best choice. Allowing for a one-off 
build, or taking into account possible debugging, T T L is again the 
best choice. In order to keep current levels down, bearing in mind 
that the equipment will use many ICs, the 74LS series is the best 
choice due to good availability, moderate cost, and lower operating 
currents. 

Design 

For ease of reference, the circuit diagram of the final design is 
located at the rear of this chapter as Figures 19.10 to 19.18. The 
design has been broken down into functional areas, and each of 
these figures has been given an T ' reference number; this allows a 
relevant section of the circuit to be called up by the simple means of 
a reference such as T 4 \ Earlier figures in the chapter are used to aid 
the general explanation. The following text is also broken down into 
these functional areas, but clearly a good deal of cross-referencing is 
needed. 

First thoughts on the method of control 

Having decided to use a state encoder for the method of control, it is 
a good starting point to decide what states this will require; it may 
be found later on in the design that we may wish to add additional 
states, but by forming some idea of the requirements at the outset, 
we will have provided some foundation upon which to build. 

When considering the various states required, it is useful to draw 
a 'state diagram' for the equipment. Such a diagram is shown in 
Figure 19.3, and the reasoning behind its development for the 
A U T O N I M is as follows. 

At the start of a new game, the machine firstly enters a state called 
BUTSCAN; in this state, the machine scans the line buttons, 
looking for one that is depressed. When it locates a depressed 
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NEW 
GAME 

1 v 
(PRESS) 

1 
T (PRESFIN) 

(LINEFOUND) 

(SAFE) 

l·/ BUTSCAN 
Search for man's 1 
button 1 

i 

Line button 
pressed 

MANDEC 1 
Man's line has 1 
LEDs removed 1 

1 

Line button 
released 

LINESCAN 1 
Machine searches 1 
for line to reply 1 
with 1 

' 
Reply line 
found 

MACDEC 1 
Machine's line 
has LEDs 
removed 

\ Reply 
1 complete 

Figure 19.3. Control states for AUTONIM 

button, it locks-on to that button, ignoring the other buttons, 
thereby providing cheat protection against more than one button 
being depressed at one time. The machine therefore leaves BUTS
CAN when a line button is pressed. It is known that 'finish' signals 
to the state encoder will be active low, therefore a signal PRESS 
shall end the BUTSCAN state. 

The machine then enters the MANDEC (manual decrement) 
state, during which the selected line counter is decremented, thereby 
taking LEDs out at the machine clock rate; this continues until the 
pressed button is released, signified by a signal PRESFIN, which 
ends the MANDEC state. 

The machine then enters the LINESCAN state, during which it 
scans the various lines, searching for a suitable line in which to make 
a move. When the line is selected, a signal LINEFOUND ends the 
LINESCAN state. 
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The machine then enters the MACDEC (machine decrement) 
state, during which the selected line counter is decremented until a 
safe position is reached, signified by the SAFE signal. If the machine 
is required to make a mistake, or no safe position can be reached, the 
SAFE signal must be forced in an unsafe condition, in order to 
terminate the state. Once the state is terminated, the BUTSCAN 
state is re-entered, for it is now the man's turn to play again. 

It can be seen from the diagram that if the machine is used in the 
manual mode (i.e. man plays man) , this can be achieved by forcing 
a return to BUTSCAN from MANDEC, rather than entering 
LINESCAN. 

Explanation of design description 

The following description of the design procedure refers to the 
circuit diagrams provided at the end of the chapter by means of the 
' F ' reference which appears after the figure title. These diagrams 
contain the final IC and pin numbering details, which are useful for 
reference purposes in the following description, but it should be 
appreciated that the act of numbering the devices comes after the 
actual design. Pin-out is discussed in a later section of this chapter. 

A UTONIM display logic (Fl) Figure 19.10 

The circuit diagram of the display logic is given in diagram F l . This 
circuit evolved as follows. 

It is required to display four lines of LEDs containing 7 diodes 
(line D) , 5 diodes (line C) , 3 diodes (line B) and one diode (line A). 
The 7445 (no LS version) BCD-to-decimal decoder/driver is a 
suitable device for driving the position display LEDs directly, for it 
has an 80 mA sink-current capability, and offers a separate discrete 
output for each discrete binary number; the problem is that one 
diode is not required to be illuminated for each count, but rather the 
number of diodes illuminated should equal the count. Rather than 
design separate encoding circuitry, it is easier to use the 'chain' 
principle, and connect the diodes for a given line in series; the 
appropriate decoder output is then used to sink the appropriate 
number of diodes in this chain. Since each diode can drop up to 2 V, 
this requires in excess of 14 V for the longest chain of seven diodes 
( l ineD) . 

Realising this, the designer would then put some thought in on the 
power supply (F9); clearly this must now supply not only + 5 V for 
the logic, but at least + 15 V for the LED supply. 
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Diagram Fl shows three 7445 devices (ICs 10-12); these are used 
for lines B, C and D. Since line A comprises only one LED, this does 
not warrant the use of a decoder/driver, and a simple buffer/driver 
gate (IC13a) is sufficient; this gate, like the decoder/driver outputs, 
is of the open-circuit variety, allowing a load connected to a higher 
value rail, since the output transistors have a 30 V breakdown 
characteristic. 

Clearly each line must have an associated binary counter capable 
of counting down from an initial preset count equal to the game start 
position; the only exception is for line A, which can be a single 
flip-flop. The 74LS191 up/down synchronous counter is suitable for 
this purpose, for not only can it count down and be preset with any 
desired count, but it has outputs indicating when maximum/ 
minimum counts are reached; it is necessary to detect when a count 
of zero has been reached, for further counting must then be 
inhibited. Without such an inhibit during manual operation, the 
counter would reset to its highest count and would then count down 
again, offering the player the cheat facility of increasing the number of 
LEDs left in a line! Thus ICs 4 - 6 are line counters D, C and B 
respectively, and the Q outputs directly drive the decoder/drivers 
(ICs 10-12); the Q outputs of the counters also provide the machine 
with an indication of the current count in each line, with these lines 
being labelled 'CTR', followed by the line reference letter, and the 
binary weighting of the line. There is no 'CTRB4' line since only two 
bits are required in line B to indicate the maximum count of three. 

These counters are clocked on the positive-edge of the clock input 
CK, therefore a D-type flip-flop provides the same facility for line A 
(i.e. IC9a), which only has a single output bit: CTRA1. The 
counters are made to count down by holding the input on pin 5 high; 
pin 4 is an enable input G, which must be held low to enable the 
counters. The A, B, C and D inputs allow the counters to be loaded 
with a preset count value when the CK input is taken high during 
load) the counters must first be placed in the load mode by taking pin 
14 low. The LD inputs to the counters are therefore controlled by a 
common input line LOAD; this same line is connected to the preset 
input of line A flip-flop, thereby also setting this to a count of one. 
Examination of the counter inputs shows that these are wired to 
provide the counts of 7, 5 and 3 for ICs 4, 5 and 6 respectively. 

When the 74LS191 counters are finally clocked to zero, the 
M X / M I N (i.e. max/min) output goes high; this output from pin 12 
of each counter is used to set a latch associated with the counter; 
when the latch is set, this indicates a zero count in the related line. 
The latch outputs are therefore labelled ZEROD (for line D), 
through to ZEROB (for line B). The ZEROA signal is taken directly 
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from the Q output of the line A flip-flop. Complementary outputs 
are also taken from the latches and the flip-flop (i.e. ZEROD 
through to ZERO A). 

All that is now required is to provide the logic necessary to control 
the clocking of the counters and flip-flop. IC3 provides four AND 
gates, which gate a common low frequency clock waveform LFCK 
with an enable associated with each line (e.g. ENCKD for enable clock 
for line D). The LFCK waveform is to be considered later (F5), but it 
is known that it will be sufficiently slow to take off LEDs from the 
selected row at a rate allowing the player to stop it at a required 
count (e.g. of the order of 1 Hz, or slower). 

The enable signals can be derived from one of two sources: line 
button selection, or from the machine's control logic during MAC-
DEC. The signals SLD through SLA are the select line signals 
activated by the machine during MACDEC; these are the signals 
used to make the machine's reply. IC2 is a quad Schmitt trigger 
NAND gate used as an inverted-input OR gate; the separate outputs 
are the clocking enables, which go true if either input is taken low. 
The reason a Schmitt gate is used, is that the button inputs are part 
of the button debounce circuitry, formed from identical resistors Rx 
and capacitors Cx; the 18kQ pull-up resistor is the maximum 
allowed for LS type devices (see Appendix C), and the chosen 
tantalum capacitors form a filter with a time-constant of around 
60 ms, thereby removing the effects of contact bounce from the line 
buttons. 

Normally buttons in this arrangement are connected on one side 
to 0 V; in this design, they have been connected to the output of OR 
gates (ICl). The reason is that this provides an economical way of 
scanning the buttons; a button can only be effective if the input 
terminal is taken low, since Rx pulls the output terminal high under 
all other conditions. The OR gate outputs can only be low if both of 
their inputs are also low, i.e. they are used as inverted-input NAND 
gates. Of the two inputs to each of these scanning gates, one is the 
related true ZEROn output from the zero latch, and the other input 
is a scanning selection line SKn from the control logic. Thus to 
consider line D as an example, in order to enable the button, SKD 
and ZEROD must be low; SKD is taken low regularly during the 
BUTSCAN state, but if line D reaches zero, ZEROD goes high and 
stays high, thereby inhibiting the selection of that button for the rest 
of the game. 

It is necessary to determine when any one of the line select 
buttons has been depressed, in order to derive the PRESS signal 
needed to terminate the BUTSCAN state; the line enable outputs 
(ENCKD-ENCKA) are used elsewhere to derive PRESS; the signal 
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PRESSFIN, required to terminate the MANDEC state, is simply 
the complement of PRESS (i.e. PRESSFIN = PRESS). (See F4 for 
derivation of PRESSFIN and for the effects of PRESSFIN and 
PRESS on the state encoder.) 

Note. The LFCK signal is a constantly running clock; it is 
tempting to think of controlling the binary counters by directly 
linking the enable clock input (e.g. ENCKD) to the G enable 
input of the related counter (e.g. IC4); this does not work in 
practice, for the correct relationship between the clock and the 
enable is not achieved, and spurious clocking will result. Hence 
the use of IC3 AND gates, to directly control the clocking input 
to each counter. 

A UTONIM position analyser (F2) Figure 19.11 

The earlier section of this chapter entitled 'The theory of NIM' 
discussed how position analysis can be achieved. We must now 
convert this into electronic form. 

It was shown that the binary weightings of the numbers asso
ciated with each line must be checked for even/odd content. The 
simplest problem will be considered first: binary weight 4. Binary 
weight 4 is simplest because only two lines can contain a 4, i.e. lines 
D and C. We shall derive a logical output named 40DD for an odd 
count. Figure 19.4 shows a truth table for the requirement, where 
the two left-hand columns (CTRD4 and CTRC4) are the most 
significant bits from the line D and line C counters, as shown in Fl . 
It can immediately be seen that 40DD is a simple exclusive-OR 
function. 

CTR-
D4 

0 

0 

1 
1 

C4 

0 
1 

0 
1 

40DD 

0 
1 

1 

0 

Figure 19.4. Truth table and circuit for the 
40DD output 

The situation is a little more complicated for producing a 20DD 
output, i.e. an analysis of the binary weighted 2 bits. In this case 
there are three bits to consider, relating to lines D, C and B. A 
Karnaugh map for this situation is shown in Figure 19.5, and the 
Boolean algebra equivalent for the map is derived underneath, 
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© © © Θ 
B(CD+CD)+B(CD+CD) 

©©__©© 
= B(C®D)+B(CeD) 
= B®(C®D) 

Figure 19.5. Karnaugh map for 
2 0 D D (CTRB2, CTRC2, 
CTRD2) 

where vertical lines on the Karnaugh map are associated with 
Boolean terms by the circled numbers, as indicated. The final 
simplification of B Θ (C Θ D) is translated into circuit form by two 
XOR gates, as shown in Figure 19.6; the truth table given in the 
latter figure is drawn up from the circuit as proof of the fact that the 
required function is achieved. Note that 20DD is only true when 
there are an odd number of l's in the three CTR- columns. Thus a 
Karnaugh map solved the problem, and a truth table proved the 
solution effective under all input conditions. 
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CTRD2-
CTRC2 
CTRB2 

Figure 19.6. Truth table and circuit for the 20DD output 

The situation is the most complicated for producing the lODD 
output, for now we have four bits to contend with. Figure 19.7 shows 
a Karnaugh map for this situation, and it will be seen that the 1 's are 
spaced out such that none can be readily grouped together. The 
circled numbered arrows indicate an approach which can be taken 
to analyse this map, and the Boolean expressions are once again to 
be seen to take the XOR form; the terms to the left of the vertical 
line are those first derived, and those to the right are derived by 
means of the Distributive laws (see Chapter 4); the only difference to 
be taken into account is the fact that exclusive-OR and exclusive-
NOR terms are being dealt with. The final simplification utilises 
only XOR gates. 
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<*> ie. (C®D)(A®B)+(C©D)(AeB) 
= (C<BD)«(AeB) 

Figure 19.7. Karnaugh map for lODD (CTRA1, CTRB1, 
CTRC1, CTRDl) 

It is interesting to note that this particular requirement is very 
similar to that of parity checking, previously discussed in Chapter 13 
(see Figure 13.4). It is possible to use a parity checker IC to perform 
the required function, but this is not a cost-effective solution since 
such parity checkers are designed to check 8-bits, and our maximum 
requirement is only 4-bits, which does not need more than a single 
quad XOR chip in any case. 
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Figure 19.8. Truth table and circuit for the lODD output 

Figure 19.8 shows the three-gate implementation of the Boolean 
expression: (C Θ D) Θ (A ® B). The truth table also included in 
the figure provides the comforting proof that the solution is correct 
by considering every input condition. Note that XDC = CTRDl Θ 
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CTRC1, and XBA = CTRB1 Θ CTRA1; the final output is 
naturally: lODD = XDC Θ XBA. 

Having designed a method of obtaining 40DD, 20DD and 
lODD, it now only remains necessary to establish which lines 
contain odd bits, since these are potential lines to select for the 
machine's move. The final circuit shown in F2 achieves this quite 
simply by ANDing the appropriate xODD output with each CTR-
index, e.g. 20DD.CTRC2 produces an output C2, which is only 
true if there is an odd number of binary weighted 2 bits AND one of 
these is in line C. The final circuit is seen to be elegant in its 
simplicity, and remarkably is the main requisite of the machine's 
'intelligence'. 

A UTONIM priority encoder and line multiplexer (F3) Figure 19.12 

The position analyser logic (F2) simply indicates which lines are 
odd, and which bits in those lines contribute to that odd status. In 
order to decide which line to move in, the theory of NIM will be 
thought about a little more deeply. A little thought will show that 
certain positions can produce the option of several solutions, viz. 

Matches Line 4 2 1 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

D 
c 
B 
A 

1 
1 

0 
0 

1 
1 
0 
1 

In the above example, lODD would be true since there are an 
odd number of l's; 40DD and 20DD would be false, because these 
are both even. The following outputs would also be true: Dl, C1 and 
Al. Thus taking one match (or LED) from line D, line C or line A is 
a satisfactory move, giving us three options. The machine must be 
allowed to make a decision where it is presented with options, 
otherwise it may have a 'brainstorm'! 

Given a little thought, it may be established that it is always a 
satisfactory solution to select the line containing the most significant 
odd bit under any circumstances) where this still leaves an option, as in 
the example given above, the machine should make a random 
selection from the available lines. By making the selection random, 
it is ensured that the machine will not always play precisely the 
same game in a similar situation. 

There are now two further requirements to be translated into 
electronic terms: 
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a. A priority selection of the line with the most significant odd 
bit. 

b. A random selection of a line, given available options. 

There is still one further complication to take into account: the 
spec, requirement for varying levels of machine skill. We have 
established how the machine should play as an expert, but it needs to 
make mistakes when it is not playing as an expert. Furthermore, we 
must decide what the machine is to do when forced to move from a 
safe position: it will not 'like' making the position unsafe! 

The solution adopted is to create an ability to 'hedge' under such 
circumstances. If the machine is forced to make the position unsafe, 
its best tactic is to take only one LED, so making the game last out 
as long as possible, and thereby maximising the chances of the 
human opponent making a mistake and giving the machine an 
unsafe position to move from. If the machine is required to make a 
mistake due to a lowering of its level of skill, this can be similarly 
achieved by forcing it to 'hedge' rather than make the optimum 
move. How we get the machine to decide when to make a mistake is 
discussed elsewhere (F7). 

The circuit given in F3 shows a pnonty encoder in the upper-half of 
the figure; this analyses the 40DD, 20DD and lODD inputs to 
produce priority selection lines PS4, PS2 and PS1. In addition, it 
produces a HEDGE output for a SAFE position OR when a 
MISTAKE is required (implemented by means of an inverted-input 
OR gate IC21a). Note that the signal SAFE is only active low when 
all three inputs are low (i.e. the safe situation). The priority encoder 
produces the outputs as follows: 

PS4 = HEDGE. 4QDD 
PS2 = HEDGE. 40DD.2QDD 
PS1 = HEDGE. 4 0 D D . 2 0 D D . 1 ODD 

Thus if HEDGE is true, none of the normal priority encoder 
outputs may be true, and the machine is required to take one LED 
from any available line (i.e. lines still containing at least one LED 
illuminated). 

The lower part of F3 shows a multiplexer designed to scan the 
various odd bit outputs from F2, utilising two 74LS153 4-line to 
1-line multiplexers, each of which is a dual device. Thus output 
MPLX1 is a multiplexed version of the binary weighted 1 input lines 
Dl , Cl , Bl and Al. Similarly, MPLX2 is a multiplexed version of 
the binary weighted 2 input lines of D2, C2 and B2; note that the 
unused input is taken to OV. MPLX4 is similar for the binary 
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weighted 4 input lines of D4 and C4, with the two unused inputs 
again being tied to OV. By applying a moving counter to the A and 
B select inputs of both devices, on lines SCA and SCB, the 
multiplexer scans each line in turn, where the binary value of the 
input lines SCA and SCB establishes which line is sampled. It may 
be seen that the following applies: 

Input count (equiv. decimal) 0 selects line A. 
Input count (equiv. decimal) 1 selects line B. 
Input count (equiv. decimal) 2 selects line C. 
Input count (equiv. decimal) 3 selects line D. 

It can be seen that for a given line selection made by the 
multiplexer, the NAND gates of IC20 apply the priority selection 
requirement to the selected line. For example, say PS2 is true; when 
the multiplexer selects a line which produces MPLX2 true, PMX2 
goes low, indicating that a suitable line has been found (i.e. 2 is the 
highest odd bit, and the line selected by the multiplexer contains an 
odd binary weighted 2-bit). Gate IC22a is used an an inverted input 
OR gate, which after inversion by IC23d produces a signal LINE-
FOUND when a suitable line has been found*. 

Since the HEDGE condition must overrule any other, this is given 
the highest priority. When HEDGE is true, the machine is simply 
looking for a line containing at least one illuminated LED, hence the 
ZEROx inputs to the multiplexer in order to produce the MPLXZ 
output. MPLXZ is combined with HEDGE to produce PMXH low 
when a suitable line has been found in the HEDGE condition; as 
with the other outputs from IC20, this results in LINEFOUND 
going low. 

It may be seen that if several line options are available after a 
given move, the multiplexing system responds to the first acceptable 
line that it scans. In order to introduce the required random element 
into this selection, it is simply necessary to start the multiplexer at a 
random count. How this is achieved is discussed later (F7). 

The multiplexer chips are enabled when LINESCAN goes low, 
thereby only allowing this circuitry to function during the LINE-
SCAN state. 

A UTONIM state encoder (F4) Figure 19.13 
State encoders were discussed in detail in Chapter 16, therefore this 
account will assume complete familiarity with the principle in
volved. It was mentioned that two forms of state encoder are 
* Refer back to Figure 19.3. 

182 



possible: those using a counter/decoder, and those using a shift 
register. This design will employ a shift register in order to provide 
an example of this alternative technique. 

The circuit shown in F4 employs a 74LS195 4-bit shift register. In 
order to prevent it entering an illegal condition at switch-on, it is 
necessary to clear the register on power-on. The start of a new game 
is similar to the power-on condition, therefore the circuitry for the 
two states is combined. At power-on, capacitor Cj is discharged, and 
charges slowly through Rx; the indicated values produce a time-
constant of 380 ms, which is approximately the length of time that 
L O A D is asserted at switch-on. The N E W G A M E button is used to 
short-circuit the capacitor, and causes LOAD to be asserted for as 
long as the button is depressed. The CR combination also acts as 
debounce circuitry for the N E W G A M E button. When LOAD is 
true, SRLD goes low, to produce the input requirement for a load 
operation at the shift register; a subsequent rising edge at the C K 
input loads this synchronous shift register. LOAD true causes T R I P to 
be true (after a short delay to be explained later); T R I P is ANDed 
with a regular free-running clock pulse CK. For the duration of the 
L O A D pulse, this repeatedly loads the shift register with the data set 
up at the parallel inputs (A, B, C and D). 

For simplicity, at this stage assume that the A input is a logic 1, 
and that the other inputs are at logic 0. Thus QA goes to logic 1, 
resulting in BUTSCAN going low, i.e. the BUTSCAN state is 
entered. Inverted input O R gate IC43a is combined with input and 
output inverters (to use up spare gates), so forming what amounts to 
a four input N O R gate, with pin 4 5 - 4 going low if any button is 
pressed, i.e. if any E N C K x input goes high. MACDEC is low during 
the BUTSCAN mode, therefore PRESFIN can go high; during 
M A C D E C , when an enable also goes high, the input on pin 44 -6 
inhibits PRESFIN from going high. (Note that PRESFIN is so 
named rather than PRESS, because its action when going low is used 
to trip the state encoder at press-finish.) 

Thus PRESFIN is high when a line button is pressed, which 
causes PRESS to go go low at pin 26-10; as a result, pin 29-11 goes 
low, causing C H G S T A T E to go true. T R I P goes true after the delay 
set up by the 470 Ω resistor and the 0.22 μ¥ capacitor, giving a 
nominal 70 μβ delay. S T A T E C K goes high as soon as C K is high: if 
C K is already high when T R I P goes high, S T A T E C K goes high at 
once. It is for this reason that the delay exists, for it guarantees a 
predetermined delay between a finish line going low (e.g. PRESS), 
and a change of state at the state encoder, and thereby prevents 
spike outputs from the state strobes (see general discussion of state 
encoders in Chapter 16). 
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It will be explained later why TRIP is gated with CK (in the 
discussion on F8); similarly, the purpose of gates IC30b and IC26a 
will be discussed when appropriate (also during the F8 discussion). 
This illusrates an important point. Such subtleties are not obvious at 
this stage, but come out as a later requirement. It is not possible to 
design all the control circuitry until the major part of the design is 
known. 

Thus there is a four-stage state encoder, which starts with QA 
true, and shifts a logic 1 one bit at a time for each change of state. 
This gives the required sequence of states: BUTSGAN, MANDEC, 
LINESCAN and MACDEC. When the MACDEC state is termin
ated by CSAFE going low, the state strobe MACFIN goes low; this 
is input at pin 30-13, causing SRLD to go low. When STATECK 
subsequently occurs, it causes a load, which sets up the initial 
condition again, thereby reverting to the BUTSCAN state. 

It may be recalled that it is required that the machine can be 
played in a manual mode, i.e. man versus man. The selection of this 
mode (in F7), causes MAN to be low; this is combined with the state 
strobe MANFIN to generate SHORTEN, and also a shift by means 
of taking SRLD low. Looking back at Figure 19.3 for a moment, this 
has the effect of returning control along the dotted line to BUTS
CAN, i.e. it prevents the states of LINESCAN and MACDEC being 
entered, and thereby prevents the machine from making a reply. 

The NAND gate IC21c is used to generate a clear pulse to the 
shift register on the front edge of LOAD (compare with Figure 
15.5*). This is simply a safety-measure which cancels any states 
prior to the initial setting-up of the BUTSCAN state; the setting-up 
for a new game has to wait for CK going high, and CK is a fairly 
slow running clock. 

Autonim clock generators (F5) Figure 19.14 
The circuit shown in F5 produces two different clocking sources: a 
high frequency clock HFCK, and a low frequency clock LFCK. 
Both are formed from 555 timers, followed by a wave-shaping 
Schmitt trigger gate. The period of the HFCK generator is set by 0.7 
X 3ΜΩ X 2.2 nF, i.e. 4.6 ms. The period of the LFCK generator is 
set by 0.7 X 300kQ X 5μΓ, i.e. Is. 

There is the need to slow the HFCK down to a really slow rate 
during the LINESCAN state (discussed under F7), therefore 
LINESCAN is fed to a non-inverting open-collector buffer gate 
IC13b, to introduce a 2.2 μ¥ capacitor in parallel with the 2.2 nF 
capacitor during LINESCAN. This increases the time-constant to 
4.6s. 
* See page 129. 
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LFCK is used to clock the line counters in Fl , but must only do 
this during MANDEC and MAGDEG states; gate IC21b ensures 
this, since DEC is only true for one of these conditions, and DEC 
must be true to enable LFCK. The CK signal is used for other 
purposes and must therefore be separate to LFCK. 

AUTONIMfalse-safe hedge logic (F6) Figure 19.15 

If F3 is referred back to for a moment, it will be seen that SAFE is 
low for a safe condition of the NIM game. The controlled safe output 
from F6 CSAFE is the signal which actually terminates the MAC-
DEC state. The logic of F6 is designed to introduce a false-safe 
condition for one move when the machine is faced with the 'hedge' 
situation. In this condition it does not 'want' to move, since a move 
makes the position unsafe. The logic Tools it' into thinking that the 
position is safe for one move, thereby causing one LED to be taken. 
It depends upon a latch formed by gates IC33a and IC33b. 

If HEDGE is true during the LINESCAN state - as detected by 
IC21d - this gives warning that a false-safe condition is coming up; 
this condition is used to set the NAND-gate latch, causing SETFAL 
to go high. During normal play, with SETFAL low, TSAFE 
(true-safe) follows the SAFE input, but with SETFAL high, it is 
inhibited, forcing TSAFE high. When the MACDEC state is 
entered, the next LFCK pulse causes FSAFE (false-safe) to go low, 
but since the presence of LFCK high means that a line counter has 
been decremented (on the rising-edge of LFCK), it is now possible 
to assert CSAFE to end the MACDEC state. So long as the latch is 
reset before this condition can occur again, all is well. It is 
conveniently reset by the subsequent BUTSCAN signal. 

AUTONIM line scanner and machine skill scanner (F7) Figure 19.16 

It will be remembered that it is required to introduce a random 
element into the line multiplexer (F3). This is achieved by the line 
scanner shown as the upper part of F7. The dual 2-to-4 line decoder 
(IC36), a 74LS155, is driven from the same binary counter that 
drives the line multiplexer, i.e. 4-bit synchronous counter IC35. The 
counter is clocked by HFCK at about 217 Hz except during the 
MACDEC state. This frequency is halved by the first stage of the 
counter, before clocking the two stages which provide the SCA and 
SGB outputs. This association with SCA/SCB provides synchron
isation between line multiplexer and scanner. 

The upper half of IC36 is used to generate the button enable lines 
SKA to SKD, whilst the lower half is used to generate the machine 

185 



enable lines SLA to SLD. The combination of enable (G) inputs and 
data inputs to each decoder, allows it to be controlled directly from 
available signals, without additional gating. Control is arranged 
such that one line in the functioning half of the dual decoder goes 
low for a given binary input at the A and B terminals. 

During BUTSCAN, LINESCAN is high and MACDEC is low, 
enabling the upper decoder. IC38 is a 4-bit bistable latch of the 
variety previously shown in Figure 6.3, i.e. it is transparent when the 
enable input is high. Since M A N D E C is high during BUTSCAN, 
the latch is transparent, and the outputs follow the inputs; thus the 
lines SKA to SKD are enabled in turn according to the binary input 
(e.g. binary 2 in causes SKC to be active). When a line button is 
pressed the state changes to MANDEC, therefore MANDEC goes 
low and staticises the present condition of the quad latch. This locks 
the present button enable line to the pressed button, with two 
effects: firstly it means that if any other line button is depressed it 
will disregard it, and secondly, it allows the line scanner to continue 
scanning. The latter action introduces the required random aspect, 
for this scanning action continues for as long as a line button is 
depressed. Since the scanning frequency is much higher than human 
responses with respect to releasing buttons, it is purely random 
where the scanner might be when the line button is finally released. 

When the LINESCAN state is entered, the upper decoder is 
disabled by LINESCAN going low. The machine then searches for a 
suitable line, starting its scan with a random line according to the 
present state of the scanner. When a suitable line has been found, 
the M A C D E C state is entered. In this state, the upper decoder is 
disabled by the M A C D E C input going high; at the same time 
M A C D E C goes low to enable the lower decoder, and hence the 
appropriate machine line selection from SLA to SLD. 

It was previously mentioned that the H F C K frequency is drasti-
cally reduced during the LINESCAN state due to the effects of 
LINESCAN via IC13b (see F5). This is to simulate a variable 
'thinking response' when it is the machine's move; there is nothing 
more frustrating than playing against a machine which gives 
apparently instant replies to your own well thought out moves. Since 
the line scanner starts at a random position during LINESCAN, it 
passes through a random number of scans before finding a suitable 
line (with a maximum of four). By making this scanning speed slow, 
a variable time of response is introduced. 

Note that two flip-flops could be used in place of the counter as 
IC35, but this would still utilise one IC requiring more interconnect
ions, therefore there is no particular advantage. 

The lower half of F7 is the machine skill scanner. This also utilises 
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the random effect created by the line scanner running during 
manual depression of a line button, but is provided with its own 
discrete binary counter, IC39. This time three bits are required, and 
the decade counter provides sufficient output states. This counter is 
driven by the high frequency HFGK signal, providing that the 
machine is not in the LINESCAN state; this condition is detected by 
gate IC34c. Once the machine enters LINESCAN the counter is 
frozen. The decoder used this time (IC40) is similar to that used 
above (IC36), except that it has open-circuit outputs. This allows 
the outputs to be wired together (wire-OR) to a common pull-up 
resistor, this multiple output then providing the MISTAKE signal. 
Thus if the decoder is stopped with a low output linked to pole A of 
the skill select switch, a mistake is called for, otherwise an optimum 
move is made by the machine (MISTAKE is an input to the priority 
encoder in F3). 

The skill switch is wired to provide the following average percentage 
errors according to selection: 

expert 
good 
average -
poor 
child 

- none 
- 10% 
- 20% 
- 30% 
- 40% 

This is achieved by a rather novel method, using the decade 
counter/decoder combination, as the following table shows. Note 
that the decoder decodes two particular outputs twice*] thus each 
output decoded once provides a 10% error rate (on average), whilst 
those decoded twice provide a 20% error rate. It is possible to 
conveniently talk directly in terms of percent because a decade counter 
is being used. Parallel linking of the required number of outputs 
provides the requisite error rate, e.g. 30% is achieved for the poor 
selection by linking three 10% error rate outputs together and 
taking them to contact 2 of the switch. 

Because the manual condition obviates a machine skill setting, it is 

Decoder output 
2Y0 
2Y1 
2Y2 
2Y3 
1Y0 
1Y1 
1Y2 
1Y3 

Counts decoded 
0 & 8 
1 & 9 

2 
3 
4 
5 
6 
7 

Error rate 
20% 
20% 
10% 
10% 
10% 
10% 
10% 
10% 

* Because QD on decade counter IC39 is not used. 
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built into the same switch, and another pole provides the MAN 
output for this setting. 

Remember this as a useful way of introducing a random element 
into a circuit, for wherever a manual input is used, if this is 
combined with a fast oscillator circuit, it can be used to generate 
genuine random selections. 

A UTONIM move indicator logic and audio stage (F8) Figure 19.17 

The upper half of the circuit shown in F8 provides the front panel 
PLAY LED indicator drive for I /YOU, and the WIN indicator 
drive. It also remembers which player starts, and controls play such 
that the other player starts the following game. This introduces an 
element of fairness into a game which can be won on a purely 
theoretical basis. Flip-flop IC42b_provides the indication of PLAY, 
and its complementary Q and Q outputs drive the I and YOU 
LEDs. During normal play, END is high, thus the two XOR gates 
IC14d and IC15d are normally inverting. A dual AND-OR-
INVERT gate IG41 controls this flip-flop. 

The upper AND-OR-INVERT controls the D input of the PLAY 
indicator flip-flop. During normal play - with LOAD high - the 
upper AND gate is enabled, thereby allowing the flip-flop Q output 
to be fed back to the D input after inversion; this causes the flip-flop 
to be complemented at each clock pulse, which occurs during the 
manual mode at a pulse MANTOG. As soon as a line button has 
been released during the MAN mode, MANDEC goes high, which 
via the lower A N D gate, causes MANTOG to go high, thereby 
toggling the play flip-flop. 

Flip-flop IC42a 'remembers' the last player to start a game, and is 
clocked by LOAD, i.e. at the end of a load; this flip-flop is connected 
to toggle every time it is clocked. During load, the upper AND gate 
is disabled by LOAD going low, and the D input of the play flip-flop 
is then set by the Q output of the last starter flip-flop, due to LOAD 
going high at pin 41—11. Under these circumstances the play 
flip-flop is again clocked by MANTOG, but this time due to 
LOAD.STATECK; hence the previously mentioned delay during 
load. 

When the machine is not operating in the manual mode, there 
must be a definite relationship between the PLAY indicator flip-flop 
and the state encoder. Further complication at the clocking input 
and D input is avoided, and the required synchronisation is 
guaranteed by using the preset and clear inputs in this mode. When 
the flip-flop is set (i.e. Q = 1), MACGO is high and MANGO is 
low, indicating man's go; thus only the YOU LED is illuminated 
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(remember that the XOR gates are acting as inverters). The 
flip-flop is set externally via the preset input, pin 42-10, i.e. 
STRTMAN goes low. Gate IC28d detects the right condition: 
BUTSCAN and MAN must both be low. Conversely, the flip-flop is 
cleared down to the MACGO = 0 state by taking STRTMAC low; 
this is the case when both LINESCAN and MAN are low. 

When the game is over, all the ZERO latches in Fl are set. IC43b 
detects this condition and outputs END low; this causes the XOR 
gates driving the PLAY LEDs to become non-inverting. After the 
final winning move, the PLAY flip-flop is complemented to indicate 
the next player: in this case the loser. By reversing the action of the 
XOR gates, the indicators now indicate the winner. END is 
NANDed with CK by IC33c, and the output is used to drive the 
WIN LED via an emitter follower; this LED is conveniently 
powered from the +5V rail. This causes the WIN LED to flash on 
and off at the low frequency clocking rate until a new game is called 
for. 

It will be remembered that there is a slight complication to the A 
and B parallel inputs of the state encoder (see F4). This is to 'nudge' 
the state encoder out of the BUTSCAN condition when it is the 
machine's turn to start a game. Thus LOAD. MAN. NMAC is the 
condition used to preset the MANDEC state during a load (NMAC 
indicates next-machine, and is obtained from IC42a in F8). Since 
PRESFIN is low in this condition, the state encoder at once moves 
on to the LINESCAN state, and hence the machine is forced to 
make the first move. Under all other conditions the parallel inputs to 
the state encoder are A = 1 and B = 0, as previously assumed. 

The audio portion of F8 is required to provide a tone as each LED 
is extinguished, and different tones for each player. It is also 
required to provide a distinctive indication when a win occurs, but 
this is to be limited in time to prevent it being annoying. These 
requirements are met by the lower portion of F8. 

A counter, IC46, is held inoperative during normal play by END 
being low on the clear input; thus the QD output is low, giving 
INSD (inhibit sound) low. If CKSD (clock sound) is also low, 
GCKSD (gated clock sound) is high, thereby enabling the 555 timer 
IC47, connected as an oscillator. This circuit is similar to the audio 
stage described in the previous chapter, and further details of the 
principle are to be found there. MACGO is coupled through a 
non-inverting open-collector buffer gate IC13f to introduce a 2nF 
capacitor in parallel with the normal lOnF capacitor when it is the 
machine's go (or the player taking the machine's place during 
manual play). This changes the tone of the oscillator during the 
machine's go, hence providing two tones. 
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At the end of play, END is gated with the output from a flip-flop 
at IC33d; when the flip-flop Q output (pin 9-9) is high, a p-n-p 
transistor is driven on via a lOOkQ base resistance, thereby linking a 
10kQ resistor in parallel with the normal 47 kQ resistor of the 555 
timer circuit; this provides yet another change of tone for the win 
condition. The output WINCK from pin 33-8 is at the slow clocking 
rate, but only occurs after a win. This is used to toggle a win flip-flop 
(IC9b), which alternately switches the transistor on and off, thereby 
providing a two-tone effect for a win. Because END goes high, the 
counter (IC46) is released to count, and the count takes INSD high, 
this inhibits GCKSD, forcing it low, and thereby cutting off the 
audio as required after a set number of clock pulses. The QD output 
provides the longest win tones, but by taking INSD from an earlier 
counter output, the duration of the win tones can be shortened. 

One complication is introduced due to the sound requirement: the 
synchronisation of the tones with the removal of LEDs during play. 
To avoid confusion, the tone should not occur before a particular 
LED is extinguished, and since the state encoder changes as soon as 
a player's move is completed, this must not cause the immediate 
'stunting' of a tone. Figure 19.9 depicts a timing diagram, showing 
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Figure 19.9. Timing diagram showing the relationship between the state encoder 
and the audio output when decrementing the line counter 

how these requirements are met. It is dependent upon the correct 
timing control of the state encoder in relation to the clocking of the 
line counters. The left and right-hand portions of the timing 
diagram show two different situations which may occur with respect 
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to the timing of button depression and the free-running CK 
waveform. 

Considering the left-hand side of the timing diagram first, a line 
button is pressed when CK is high, thus STATECK occurs 70 μβ 
later, due to the delayed TRIP signal (see F4). Note that LFCK is 
the inverse of CK when MANDEC is low (see F5). The LED is 
extinguished on the leading-edge of LFCK - since this is when the 
line counter is decremented - and CKSD goes low whilst LFCK is 
high (see gate IC44d in F8). Thus the tone sounds from the LED 
going out, for the duration of half a CK period. Only one decrement 
is shown, but several could occur. 

The right-hand side of the timing diagram shows two different 
situations. The line button is depressed when CK is low, therefore 
MANDEC does not oqcur until CK goes high (see F4). This timing 
diagram also shows the situation where the line button is released 
before a half clock period of CK has terminated. Since CK must go 
high to clock the next state at the state encoder, the sound is not cut 
short, and MANDEC does not terminate until the end of the half 
clock period. This illustrates how important timing can be in a logic 
circuit, and how difficulties can be overcome by judicious use of 
particular edges of waveforms. 

A design as complicated as this warrants the drawing of other 
timing diagrams, but space does not permit their inclusion here. The 
reader may care to tackle this problem for himself if any areas puzzle 
him! 

Pinning-out 

The next stage after completing the logic design to your complete 
satisfaction is to pin-out the devices, i.e. to allocate IC numbers. This 
leads up to possible modifications for optimisation reasons. The 
suggested method is to use what I have termed an 'IC Usage' table. 
Since any given device has a maximum of six elements within it (e.g. 
hex inverter), a good method is to tabulate each gate/element as it is 
assigned. Once this has been completed, spare gates are readily 
identified, and optimisation may take place. If the design is divided 
into identifiable functional areas as this example has been (i.e. 
F1-F8), then rather than simply ticking off used elements, it is 
helpful to indicate where they are located by indicating an 'F' 
number, as shown in the following table. Go through the various 
functional areas in a fixed and sensible sequence, and for each new 
gate or element, look to see if an IC already listed has a suitable 
spare, and use it if so. In this way the number of devices can be 
optimised. 
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IC usage table for the Autonim circuit 

ICRef. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

a 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
6 
6 
7 
7 
4 
7 
7 
7 
8 
8 
4 
8 
8 
8 
8 

b 

1 
1 
1 

1 
1 
8 

5 
2 
2 
2 
2 
3 
3 
3 
5 
4 
3 

4 
4 
6 
4 
4 

6 
7 

8 
8 
4 
4 

c 

1 
1 
1 

1 
3 
-

8 
2 
2 
2 
2 
4 
3 
3 
4 
-
3 

4 
5 
8 
4 
6 

8 
7 

-
-
8 
4 

</ 

1 
1 
1 

1 
4 
-

8 
8 
8 
2 
2 
5 
-
3 
6 
-
3 

4 
5 
8 
4 
-

8 
8 

-
-
8 
4 

' / 

— r~ 
-
- -

- -
-
-

8 8 
- -
-
-
-
-
-
-
-
-
4 4 

4 5 
8 8 
-
-
-

-
-

-
-
-
4 4 

Description 

2i/pOR 
2 i/p Schmitt 
2i/pAND 
Up/dn bin ctr 
Up/dn bin ctr 
Up/dn bin ctr 
2 i/p NOR 
2 i/p NOR 
DualDf/f 
4—» 10deco/c 
4—» 10deco/c 
4—* 10deco/c 
6 X buf driver 
2i/pXOR 
2 i/p XOR 
2 i/p AND 
2 i/p AND 
2 i/p AND 
3 i/p NOR 
2 i/p NAND 
2 i/p NAND 
4 i/p NAND 
6 X inverter 
4-> 1 MPX 
4-> 1 MPX 
6 X inverter 
6 X Schmitt 
2 i/p OR 
2 i/p OR 
3 i/p NAND 
555 timer 
555 timer 
2 i/p NAND 
2 i/p NAND 
4-bit sync ctr 
2 —> 4 decoder 
4-bit shift reg 
4-bit B/S latch 
4-bit sync ctr 
2 —> 4 decoder o/c 

Used 

V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 
V 

AND-OR-INVERTV 
Dual D f/f 
4 i/p NAND 
2 i/p NOR 
6 X inverter 
bin ctr 
555 timer 

V 
V 
V 
V 
V 
V 

Type 

74LS32 
74LS132 
74LS08 
74LS191 
74LS191 
74LS191 
74LS02 
74LS02 
74LS74 
7445 
7445 
7445 
7407 
74LS86 
74LS86 
74LS08 
74LS08 
74LS08 
74LS27 
74LS00 
74LS00 
74LS20 
74LS04 
74LS153 
74LS153 
74LS04 
74LS14 
74LS32 
74LS32 
74LS10 
NE555 
NE555 
74LS00 
74LS00 
74LS160 
74LS155 
74LS195 
74LS75 
74LS160 
74LS156 
74LS51 
74LS74 
74LS20 
74LS02 
74LS04 
74LS197 
NE555 



Taking a single example from the table, it may be seen that IC15 
is a quad XOR gate, and that gates IC15a, IC15b and IC15c are to 
be found on F2, and gate IC15d on F8; the type number is 74LS86. 

The 'Used' column of the table is ticked off during compilation as 
soon as all the gates or elements ofthat IC have all been used. This 
column then provides a constant check of ICs containing 'spares'. 
This particular table corresponds to the circuit as finally drawn up, 
and it will be seen that there are no spare gates or elements anywhere. The 
first table to be drawn up did contain a few spare gates, highlighted 
by the absence of ticks in the 'Used' column. Subsequent small 
modifications fully utilised devices with spare gates and freed certain 
others, resulting in the satisfactory solution with no spare gates. 
Clearly this cannot always be expected. Note that the judicious use 
of a transistor driver for the WIN LED obviated the need for a 
further 7407 buffer driver, as used to drive the PLAY indicator 
LEDs; had this option been taken, there would have been an extra 
IC used containing five spare gates. 

Calculating power supply current 

The power supply cannot be finalised until this stage. Only now can 
the required current be calculated. For a design this complicated, it 
is recommended that what I have termed an 'IC Technical Detail' 
table be used. This not only forms the basis for the power supply 
current calculation, but serves as a components list, power supply 
pin indicator, and allows the design to be cos ted. These factors are 
very conveniently combined, and the table becomes an invaluable 
source of reference to go with the design. All ICs of a given type 
number are now grouped together. The average and maximum 
supply current can be obtained from Appendix B at the rear of this 
book. The cost columns have been left blank, since this obviously 
depends upon supplier and current circumstances. 

It may be seen from the table that the total average current drawn 
from the + 5V supply is likely to be 423mA, with a maximum of 
751 mA. Since it is virtually impossible for all the ICs to be drawing 
maximum current at once, the maximum figure is never likely to be 
approached, but it is handy to have the figure in mind when 
designing the power supply. 

In addition, the lamp supply must not be forgotten. This must 
supply three chains of LEDs. If these are driven at a forward current 
of say 20 mA for good visibility, this will require 3 X 20 mA = 
60mA, due to the series arrangement shown in Fl . The load 
resistors for these LEDs must vary according to the number of LEDs 
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IC technical details table for the Autonim circuit 

Type No. IC Refs. Power pins Qty. Unit I (mA) Totl(mA) Unit Total 
, cost cost 

+ 5V OV av max av max (p) (£) 

74LS32 1,28,29 
74LS132 2 
74LS08 
74LS191 
74LS02 
74LS74 
7445 
7407 
74LS86 
74LS27 
74LS00 
74LS20 
74LS04 

3, 16, 17, 18 
4,5,6 
7,8,44 
9,42 
10,11, 12 
13 
14, 15 
19 
20,21,33,34 
22,43 
23, 26, 45 

74LS153 24,25 
74LS14 
74LS10 
NE555 

27 
30 
31,32,47 

74LS160 35,39 
74LS155 36 
74LS195 37 
74LS75 38 
74LS156 40 
74LS51 41 
74LS197 46 

14 
14 
14 
16 
14 
14 
16 
14 
14 
14 
14 
14 
14 
16 
14 
14 
8 

16 
16 
16 
5 

16 
14 
14 

7 
7 
7 
8 
7 
7 
8 
7 
7 
7 
7 
7 
7 
8 
7 
7 
1 
8 
8 
8 

12 
8 
7 
7 

3 
1 
4 
3 
3 
2 
3 
1 
2 
1 
4 
2 
3 
2 
1 
1 
3 
2 
1 
1 
1 
1 
1 
1 

4 
7 
5 

20 
2 
4 

43 
20 
6 
3 
2 
1 
6 
6 

10 
0.5 
3 

19 
6 

14 
6 
6 
1 

16 

10 
14 
9 

35 
5.5 
8 

70 
40 
10 
7 
4 
2 

10 
10 
21 

1 
6 

32 
10 
21 
12 
10 
3 

27 

12 
7 

20 
60 
6 
8 

129 
20 
12 
3 
8 
2 

18 
12 
10 
0.5 
9 

38 
6 

14 
6 
6 
1 

16 

30 
14 
36 

105 
16 
16 

210 
40 
20 
7 

16 
4 

30 
20 
21 

1 
18 
64 
10 
21 
12 
10 
3 

27 

Totals 47 - - 423 751 - £ 

in the chain, for the resistor acts as ballast, and must drop the 
remaining volts. The resistor values will be calculated after the lamp 
supply voltage has been established. 

Designing the power supply (F9) 

Clearly the +5V requirement can be easily met by a 5V regulator 
chip such as the μΑ7805Ο, which will supply up to 1 A. The circuit 
shown in F9 is the arrangement settled upon. Transformers usually 
come with two secondaries the same, and since two separate d.c. 
supplies are required, this must be taken into account. A bridge 
rectifier circuit produces just less than 1.4 times the a.c. voltage fed 
into it. The IC regulator requires at least 3 V dropped between input 
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and output terminals, therefore the voltage fed to the I terminal 
must be greater than + 8V. This calls for a 9V secondary winding, 
giving a nominal d.c. voltage after smoothing of around + 12V. 

The second secondary winding of the transformer is linked in 
series with the first, providing an 18 V a.c. signal. It is only possible 
to single-wave rectify this supply, for anything else will short-circuit 
the lower bridge rectifier. This leads to the rather unusual arrange
ment shown, where the return path for the rectified + 24V supply is 
via the lower left-hand diode of the bridge rectifier to the lower 0 V; 
this is quite acceptable, since all that this means is an extra 60 mA 
through that limb of the bridge, and a slight drop in voltage due to 
the extra series diode. Single-wave rectification also provides just 
under 1.4 times the a.c. voltage, hence the nominal +24V from the 
18 V a.c. input. Single-wave rectification will contain a fair amount 
of ripple, but since this supply only drives LEDs, this is of little 
consequence. 

Smoothing capacitors are chosen as large in capacitance value as 
possible, bearing in mind that excessive capacitance means excess
ive size and cost. The 0.1 μΡ ceramic capacitors must be distributed 
around the circuit board to decouple the +5 V rail at suitable points. 

The transformer Tl must have a VA capability of say 12 V X 0.5 
A = 6VA for the 5 V supply. The secondary winding of the 
transformer used for the 24 V supply will have a similar rating 
automatically, leading to a 12VA transformer; note that the actual 
requirement for the lamp supply is a mere 24 V X 0.06 A = 1.44 
VA.* 

Calculating the LED load resistor values 

If the lamp supply is + 24V, we can now calculate the resistors 
shown RA to RG in Fl . Allowing for 2 V dropped by each diode, the 
following results are obtained, assuming a diode current of 20 mA: 

esistor 
RA 
RB 
Re 
RD 
RE 
RF 
RG 

No. of LEDs 
1 
2 
3 
4 
5 
6 
7 

Voltage '■ across 
2V 
4V 
6V 
8V 

10V 
12V 
14V 

LEDs ^res 
22 V 
20 V 
18V 
16V 
14V 
12V 
10V 

Suitable resistor 
l . l k Q 
l.OkQ 
820 Ω 
820 Ω 
680 Ω 
560 Ω 
470 Ω 

* The designer capable of designing a more efficient power supply using discrete components can get 
away with two 6 V windings, and a lamp supply of around +16V; such a design has a bndge 
rectifier voltage of only 7to8V, which is sufficient for a+5 V supply if an IC regulator is not used. 
This can result in a 7VA transformer, which is considerably smaller. 
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The resistor values are rounded up or down to the nearest 
preferred value. The slight change in current that this causes will 
not be noticed in terms of LED illumination. 

Bui ld and test 

The next stage in a conventional project is to build a prototype and 
to test it. The power supply should be tested on its own before 
connecting the logic circuitry, suitably loaded with a resistor/s: IGs 
are expensive to blow up, and a lot of trouble to remove! 

It is worth thinking about 'functional build and test' in a 
complicated design, for this method can simplify commissioning. An 
example of this might help with the A U T O N I M . 

Let us consider the building and testing of the portion of circuitry 
shown in F l , i.e. the display portion of the game. For ease of testing, 
it is sensible to also build the load logic from F4, and the low 
frequency clock portion of F5. It is then necessary to make a few 
temporary connections to replace missing signals. Pin 21-4 or pin 
21-5 should be tied to OV to force DEC true, thereby enabling the 
L F C K waveform (see F5). (In addition, pins 2, 5, 10 and 13 of IC1 
should also be tied to 0 V to replace the missing signals S K D - S K A . 
In this condition, the N E W G A M E button will initialise the display 
circuitry of F l , and all the line selection buttons should operate. 
Depression of any line button should cause that line to decrement to 
zero, but not beyond. N E W G A M E should cause all the LEDs to be 
illuminated again. 

Some other more general steps which can be taken to assist 
troubleshooting in such a circuit are as follows. The W I N LED can 
be used very effectively as a general purpose logic level indicator. 
Simply connect the LED to its transistor drive, and then use a probe 
connected to the transistor base, instead of linking the base to pin 
33 -8 . The LED is then illuminated for a logic 0, or extinguished for 
a logic 1 or open-circuit. Investigations around the circuit can be 
greatly simplified by reducing the clocking rates. The H F C K can be 
very readily reduced to its slow time-constant by simply linking pin 
13-3 to 0 V instead of to the LINESCAN input; this permanently 
connects in the 2.2 μΓ capacitor. The LFCK should be slow enough 
for most purposes, in any case. Connecting pin 30 -3 temporarily to 
0 V prevents the state encoder from initially being set for a machine 
start of play in a new game. 

Many such tricks can be performed to force particular conditions 
for test purposes, and these should not be overlooked when faced 
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with a complex circuit containing possible wiring errors. Open-
circuiting inputs causes a temporary high at the given inputs 
without the need of tying the input high, but gate inputs should only 
be left open-circuit for test purposes. 

The final piece of advice, if all else fails to locate the reason for a 
particularly strange phenomenon, draw timing diagrams for rele
vant signals. This will generally reveal the reason, and should help 
in determining a solution. 

Final comment 

This design is not easy for the novice to understand, but it does 
represent a complete and tested design. As such, it is an ideal 
proving ground for the novice. It is expected that the reader will 
need to read this chapter perhaps several times before the design is 
completely understood, but the explanation, backed by the rest of 
the book, is sufficient material for him to come to a full understand
ing, if he is prepared to work at it. Certainly it is impossible to 
become a competent designer unless you are prepared to face the 
necessary application. The va^rt fight of reaching complete under
standing will teach more than any of the preceding chapters could 
on their own. 

Fight on until you completely understand this design. This means 
an appreciation of why every component is used; of why each and every 
signal is required. Perseverance can only be rewarded by success, 
and when that success has been achieved, then you may celebrate! 
You are then ready to tackle your own small design project. My only 
advice is to make it easy on yourself the first time round. Make it the 
rule that you will not attempt to use more than ten integrated circuits 
in your first design. Draw full timing diagrams, and then build and 
test. Where you go from there is up to you! 

Exercises 

The AUTONIM can be used as the basis of further work. A few 
ideas for modifications to the design are listed after the circuit 
diagrams (see page 204). Thinking about these can be rewarding, 
but it is regretted that readers' solutions cannot be commented 
upon. 
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Figure 19.10. AUTONIM display logic (Fl) 
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Figure 19.11. AUTONIM position analyser (F2) 
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Figure 19.12. AUTONIM priority encoder and line multiplexer (F3) 
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Figure 19.15. AUTONIM false-safe hedge logic (F6) 
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Figure 19.17. AUTONIM move indicator logic and audio stage (F8) 
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Figure 19.18. AUTONIM power supply (F9) 
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1. Find and eliminate a redundant gate in the audio logic. 
2. Design an interface to allow an external display and control panel 

to be used in place of the normal control panel. This should 
duplicate all controls, but should be separately powered. Ensure 
that the interface lines represent the minimum number of lines. 
The purpose is to provide larger and brighter displays. 

3. If a line selection button is very quickly depressed and then 
released, the machine takes this to be a move, although there has 
been insufficient time for the appropriate line counter to decre
ment. Modify the circuit to prevent this. (Not included in the 
original design because it adds to the complexity.) 

4. Modify the circuitry to give an apparently instant reset when the 
N E W G A M E button is pressed. 

5. Modify the design to prevent the possibility of the machine taking 
only one LED from a line when there is only one line left in the 
game; this can presently occur on low skill settings. This is a 
worthwhile improvement as it then more nearly simulates a real 
player who should not miss the obvious; it does, of course, add to 
the complexity of the circuit. 

6. Redesign the control logic to use a counter and decoder in place 
of the present shift register. 

Alternatively, if all this seems a little too daunting, why not try to 
design an electronic die* using only logic ICs and LEDs ? 

* N.B. 'Dice' is the plural of 'die'. 
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Part 3 — Microprocessors 

A computer provides the most efficient means of 
compounding the errors of its programmer. 

Author. 



20 
A 6800 microprocessing system 

Once the designer is proficient in the design of ordinary logic - or 
what can now be referred to as random logic - he will do well to at 
least make himself familiar with the possibilities of microprocessors. 
This last part of the book is aimed at doing just that, and of showing 
that a microprocessor is no more than an extremely sophisticated 
and versatile digital device. 

A microprocessor - or M P U - is no more and no less than a 
programmable digital device: the way it responds to particular inputs 
and affects particular outputs with respect to time is totally prog
rammable by the user. The physical devices employed are termed 
the hardware, and the variable program and associated data are 
termed the software. 

The microprocessor is the greatest advance in modern electronics, 
for it puts real computing power into the size of a small chip, and at 
a cost which is not a lot more than some complex LSI devices. The 
only drawback is a human one: the need to understand it. There are 
now countless microprocessors to choose from, ranging from 4-bits 
and 8-bits up to 16-bits. Of these, 4-bit devices are used for fairly 
simple control functions where cost is a significant factor (e.g. 
vending machines). The most common microprocessors are 8-bit 
devices, for these offer good computing ability, and are suitable for 
most purposes. The 16-bit devices are rather more specialised, and 
are more suited to complex arithmetic tasks and certain industrial 
applications, or where an interface with a minicomputer is required. 
This book therefore concentrates on 8-bit devices. 

The most common 8-bit microprocessors are the 6800, 8080, Z80, 
S C / M P (8060), and the 6502. These are the devices for which most 
ready-made software is available. Of these, the 6800 and 8080 are 
the two most commonly used in industry, for there are several 
manufacturers offering equivalent devices, and these therefore 
assure ' twitchy' manufacturers that there is always a 'second source' 
of supply if their favourite chip manufacturer decides to throw in the 
towel. Once again, it follows that there is more available software 
and expertise with these two devices (and their variants in the 6800 
and 8080 series) than there is with any other. 

207 



The most popular devices for industry need not be the most 
popular choice for the amateur, since suitability and cost are then 
more important than second sources. For example, the RCA 
COSMAC microprocessor has a lot of advantages to offer the 
experienced random logic designer, and for this reason, is covered in 
more depth in following chapters. 

Although there are numerous microprocessors to choose from, 
they are all very similar in operation, even though they may differ 
somewhat in specific architecture and facilities. Because of its 
widespread use, the 6800 MPU will be considered in this chapter, 
which discusses typical device architecture and the method of 
executing instructions. 

Microprocessor architecture 
A microprocessor requires supporting devices in order to build up a 
microprocessing system. Figure 20.1* shows the typical architecture 
of a 6800 based system, although apart from the internal detail of the 
MPU and the peripheral interface adaptor (PIA), it could be said to 
represent just about any microprocessing system. Such a system 
must comprise: 

(a) A microprocessor, for computing and control purposes. 
(b) Read only memory (ROM) containing the program instructions 

(or code), and any permanent data (constants, etc.). 
(c) Random access memory (RAM), for the temporary storage of 

data. 
(d) Input/output interface devices, allowing the microprocessing 

system to interface with peripheral devices or random logic. The 
PIA is a support chip available in the 6800 family to allow such 
interfaces to be programmed as inputs or outputs. 

The MPU 

A block diagram of the 6800 microprocessor is shown in Figure 20.1. 
The device is controlled by the block labelled 'instruction decoder & 
system control'. Timing for all operations is provided by means of an 
external clock oscillator, which generates the complementary timing 
signals qp! and φ2. A control bus links the microprocessor control to 
the control logic of the associated support chips. 

Transfer of data within the microprocessor is by means of an 
internal bus. This bus can output or receive data from the outside 
world via the bidirectional data buffer. An address buffer is used to 
* See page 212. 
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output a 16-bit address for use by support chips; remember that there 
are only 8-bits of data. The remaining registers within the M P U are 
as follows. 

An instruction register (IR) is used to contain the 8-bit code 
which represents the current instruction; this code informs the 
control logic what function to perform. A program counter (PC) 
holds the address of the next instruction to be executed. This means 
that a particular 8-bit byte (or word) from memory (ROM) contains 
the next instruction to be loaded into IR. Once an instruction has 
been transferred to the IR (via the data bus), the PC is automatic
ally incremented to point to the next instruction (or instruction 
byte). 

All arithmetic and logic functions are performed by the arithmetic 
and logic unit (ALU). Most M P U operations affect the content of 
the condition code register (CCR). This comprises 6 bits which 
signal - ox flag — certain information about the last operation (e.g. 
negative result, overflow, etc.). 

All M P U s contain some form of accumulator: the 6800 contains 
two, known as ACC A and ACC B. Arithmetic/logic operations are 
performed on two operands: one obtained from memory via the data 
bus, and the other resident within the accumulator. The result of 
such an operation is loaded into the accumulator; obviously this 
overwrites the original contents of the accumulator. 

Microprocessor programs frequently need to temporarily store 
data in what is termed a stack. This stack is made to appear as a 
last-in first-out (LIFO) memory. Imagine a stack of papers dropped 
one by one into a wire tray. If they are taken out one by one, they 
come out in the reverse order, i.e. last-in first-out. This is exactly 
what happens in a L I F O stack. A stack pointer (SP) contains the 
address which represents the top of this stack. The stack is allocated 
a portion of memory (RAM), and the SP moves up and down the 
addresses within this area of memory such that it always points to 
the current top of the stack. Simple instructions such as PUSH and 
P U L L transfer a data word to or from the stack, respectively. 

An index register ( IX) is used to point to data within the memory, 
and like the program counter, may be incremented after the transfer 
of data; this enables a string of data words to be transferred with 
ease. The index register within the 6800 M P U can be used to 
provide an offset address within memory, which is a useful means of 
shortening the length of address needed. Microprocessor systems 
usually operate with up to 64 K bytes of memory, which requires 16 
address bits (see Chapter 8, page 71). Eight address bits allow for up 
to 256 addresses, therefore one 8-bit byte added to a 16-bit offset 
within the I X can address a block of 256 addresses in one byte. 
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The use of offset addressing can be shown by a simple example. 
Consider the following instruction: 

ADD A 7, X 

This instruction means: 'add into ACC A the contents of memory 
location addressed by the index register offset by T. 

The address registers previously mentioned (i.e. PC, SP and IX), 
are sometimes referred to as memory pointers, because they point to 
memory locations. 

Memory 

A microprocessor requires software if it is to operate. Software is 
stored within memory, but the memory chips themselves are naturally 
referred to as hardware. 

There are various forms of memory, as follows: 

ROM - Read-only memory, is factory programmed to contain 
a permanent binary pattern at every address. Used 
to contain proven MPU programs for medium and 
large scale production. 

PROM - Programmable read-only memory: is user programmed 
ROM. Programming is usually by means of fusible 
links, which are 'blown' by passing a high current 
programming pulse directed to appropriate bits. 
Each address must be programmed in turn, and 
the results carefully checked. It is possible to 
electrically copy one PROM from another, making 
it suitable for small scale production, or amateur 
use. Like ROM, once a particular address has 
been programmed, it cannot be changed. 

EPROM - Erasable programmable read only memory: is user prog
rammed ROM. Once again, a special program
ming procedure is required, but it is possible to 
erase the program by exposing the EPROM device 
to ultraviolet light for a set time period. EPROM is 
now available quite cheaply, and its extra versatil
ity makes it an attractive alternative to convention
al PROM. 
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RAM - Random access memory: is usually volatile memory, as 
opposed to the previously listed forms of non-volatile 
memory. This means that RAM memory is prog
rammed/loaded electrically, by the microprocessor 
itself, but the content of this memory is lost if the 
power supply is removed. Such memory is used for 
the temporary storage of data during normal prog
ram operation, and is essential for any M P U 
system. R A M is also useful for testing small prog
rams. 

Various types of R A M are available, the most commonly used 
being known as static or dynamic. Static RAM will store data written 
into it for as long as the power supply is maintained, without further 
attention. Dynamic RAM, on the other hand, is of the type of 
construction that requires constant refreshing in order to restore a 
fading charge (as described in Chapter 14*). The extra complication 
of dynamic RAM, plus the risk of losing data if a fault arises in the 
clocking or refresh circuitry, means that many engineers prefer not 
to use it; there are no such risks with static RAM. The particular 
advantage of dynamic R A M is that it offers far greater storage 
capacity for a given chip size, and can cost less in large memory 
systems. Only experienced engineers should consider using dynamic 
RAM. 

Bubble memories offer large memory capacity and non-volatile RAM, 
but they are expensive, and represent a new technology which only a 
few manufacturers have got to grips with. Many manufacturers 
consider it risky to use because of the supply situation, and certainly 
costs make it prohibitive as far as the amateur is concerned. This 
form of memory is non-volatile because it utilises magnetic 'bubbles' 
which are circulated around a series of electrodes of minute dimen
sions. When power is removed, the bubbles simply stay where they 
are until they get the order to 'march ' again. 

Getting back to R A M in the microprocessing system, it is of no 
significance what the actual type is, although it is fairly safe to 
assume that static R A M is normally used. Limited facilities mean 
that the amateur is generally forced to try out his programs by 
manully entering them into RAM, using the M P U system itself. The 
program must then be proven before the supply is disconnected, or 
the program must be stored on some form of non-volatile media. A 
cassette tape recorder provides the answer to this problem, hence 

* Dynamic PMOS. 
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the usual need for a tape interface. Once a program has been 
recorded onto tape, it can be reloaded into RAM from the tape 
recorder. More ambitious microprocessor systems use floppy disc 
storage - a floppy disc looks rather like a flexible record - but floppy 
disc drives are rather expensive. 

Figure 20.1 shows how memory devices are interconnected with 
the microprocessor. The illustration shows ROM, but this general 
term can be taken to equally apply to variants such as PROM or 
EPROM. 'ROM' signifies memory which is read-only. Because it is 
only possible to read ROM, it can only be used to contain program 
instructions - or code — and fixed data. The arrows only show 
data/code coming out of ROM, for this reason. Since RAM can be 
used to store data, double arrows to the data bus show that data 
may be written or read by the microprocessor. The MPU controls 
all data transfers, and is the only source of addresses output onto the 
address bus. 

A typical transfer of data from memory involves sending out an 
address on the address bus, which is recognised and accepted by 
only one memory chip, due to internal address decoding logic. The 
address points to only one 8-bit byte within that memory element, 
and the contents of this byte are output onto the data bus, under 
timing control from the MPU via the control bus. Data is received 
by the MPU data buffer, and is loaded into the appropriate register 
within the MPU via the internal bus: this is a memory read 
operation. 

A similar process is involved in writing data to memory, the only 
difference being that data is routed out from the appropriate MPU 
register via the internal bus, data buffer, and the external data bus. 

The execution of an instruction 

Figure 20.2 is provided to make this even clearer, for it is important 
to understand this basic concept of how a microprocessor works. 
Before referring to the figure, however, it must be understood that a 
particular instruction may comprise a varying number of (8-bit) 
bytes. Certain instructions comprise only one byte, but others are 
longer. For example, if a memory address must be specified in 
association with an instruction, it requires one additional byte to 
specify an address offset relative to IX, or two additional bytes to 
specify an absolute address: since 16 bits are required for a full address. 
The figure to be discussed shows the case of a 3-byte instruction, 
where the three bytes are contained in consecutive address locations 
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in a particular code block within the memory (it is unimportant what 
the type of memory is). 

Initially the program counter PC is pointing to the beginning of 
the instruction; the circled numbers within the illustration indicate 
the successive stages required for this instruction. Thus in stage 1, 
the contents of PC are routed via the address bus to the memory, 
and byte 1 of the instruction is transferred via the data bus to the 
instruction decoder and the IR. Inherent in this code is information 
telling the instruction decoder that a two-byte address follows. 

Figure 20.2. Schematic showing the execution of an instruction and the related bus 
transfers 

Immediately after the first transfer has been made, the program 
counter is incremented (to PC + 1 ) . Thus in stage 2, the PC points 
at byte 2 of the instruction, which in this case happens to be the high 
byte of the absolute address which locates required data, i.e. an 
operand. Thus stage 2 transfers the most-significant 8-bits of the 
data memory address into the high-byte portion of the MPU' s 
internal address register, again via the data bus. 

Once the high byte has been transferred, PC is again incremented 
(to PC 4- 2). The address lines now select the third byte of the 
instruction, which contains the low byte of the data memory 
address; this is transferred via the data bus into the low byte of the 
address register. The requisite 16-bit data address has now been 
built up within the M P U . 
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Step 4 is to output this address on the address bus, and to transfer 
the selected data word from the memory data block into the ALU, 
via the data bus. The M P U then carries out the operation specified 
within the IR internally. 

External data transfers 

An interface must be provided between the M P U system and any 
peripheral devices or random logic. The usual approach with the 
6800 family is to utilise a peripheral interface adaptor, such as the 
6820. This is actually a dual device, but only one portion of it is 
shown in Figure 20.1 for simplicity. 

Such interfaces between the microprocessor system and the 
outside world are termed ports. Engineers talk in terms of input ports 
and output ports, where the former is used to input data to the system, 
and the latter to output data from the system. 

The 6820 PIA is programmable for use as an input port or an 
output port. Indeed, it is even more versatile than this: each bit may 
be programmed separately as an input or an output. This is 
achieved by writing a programming word to the data direction 
register (DDR); a logic 1 signifies an output, or a logic 0 an input. 
Data is then transferred to/from the appropriate bit/s in the data 
register (DR) in accordance with the programmed usage. There are 
8 data lines for connection to the outside world (i.e. random logic or 
peripheral device). There are also two control lines associated with 
the control logic, which allows external logic to synchronise transfers 
with the microprocessor signal; an incoming control line may be 
used to signal that data has been loaded into the DR, or an outgoing 
signal may be used to indicate to the external logic that the M P U 
has placed valid data into the DR. 

A single 6820 PIA can provide two ports: for simplicity, these will 
be regarded here as either input or output ports, implying that all 
the bits in the DDR are identical. Each port represents a unique 
address within the addressing structure of the microprocessor, 
therefore within the limits set by the addressing system (i.e. 64 K) , 
and allowing for moderate memory addresses, there is no practical 
limit to the number of ports which may be used. 

The actual transfer of data to/from a PIA register is just like 
memory transfers: the microprocessor cannot tell the difference, and 
regards I / O ports purely as memory locations. 

The microprocessor and random logic 

The microprocessor needs software in order to operate, but once it is 
operating, it can be regarded as a hardware package. When used in 
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conjunction with random logic, a microprocessor system simply 
becomes a 'black box' hardware element which interacts sequential
ly with the random logic, according to a fixed pattern. 

The particular advantage of the microprocessor is that it can 
handle very complex tasks without the need for a lot of special-to-
purpose hardware. Its primary disadvantage over random logic is 
one of speed. A microprocessor operates at similar speeds to random 
logic elements, but it can only handle one task at once; different 
tasks must be performed sequentially. 

It is interesting to note that design engineers in industry frequent
ly combat the latter limitation by employing several microprocessors 
in parallel. 
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21 
External data handling 

The previous chapter has shown how external data is transferred in 
and out of a microprocessing system by means of ports, but no 
mention was made of the precise method of interaction between the 
hardware and the software: for interaction there must be. It was 
mentioned that the 6800 microprocessor regards I / O ports as pure 
memory locations, but this is not always the case if we consider 
microprocessors in general, as following chapters will show when the 
G O S M A C microprocessor is considered. 

We have seen that specific instructions are used to read or write 
data, therefore normal memory transfers are the result of software 
commands. This immediately suggests one method of handling 
external data transfer: direct program control. Obviously this is easy 
when data is to be output, for the microprocessor system already has 
the data, and simply initiates the transfer when it is ready. It is not 
quite so easy when we consider input data, for how is the M P U to 
know when such data is available? 

A method of inputting data under program control involves polling 
input flags. When external logic has placed data in a suitable 
register, it sets a flip-flop, referred to as a flag. The program 
periodically inspects any such flags, and as soon as it finds a flag that 
is set, it enters a software routine to input the appropriate data 
word, and to clear the flag (the term reset the flag is generally used in 
this context). The external logic knows that it cannot enter another 
data word into the register until the flag has been reset, for until this 
happens, the data has not been read by the M P U . 

Interrupts 

The above system is all very well, but it lacks speed. It may be that it 
is important for the microprocessor to react quickly to the presence 
of input data, or conversely, to the need for external logic to receive 
an output word quickly. Such needs are generally catered for by 
interrupt lines on the microprocessor in question. External logic may 

217 



asynchronously assert an interrupt, and the microprocessor then 
rapidly responds by jumping to a special software interrupt routine, 
which performs the special task related to the interrupt. In order to 
do this, the current task must be suspended until the interrupt 
service routine has been completed. Before the processor can enter 
the interrupt routine, however, it must store its current status and 
point in the program, in order that it may resume in the same status 
after the interrupt routine. This is one important use for the stack, 
for this information is 'pushed' onto the stack before entering the 
interrupt routine, and 'popped' off the stack on leaving the interrupt 
routine. 

It may be that a particular application requires a number of 
different I / O ports to be serviced on an interrupt basis, therefore the 
designer must devise a means whereby the processor can establish 
which particular interrupt service routine is required. The normal 
method is to set a flag bit at the time of asserting an interrupt, and 
the initial part of the interrupt routine then polls these flags to find 
which interrupt service routine to enter. 

Direct memory access 

The interrupt method enables external logic or a peripheral to 
obtain a quick response from the microprocessor, but it does not 
overcome the speed limitation imposed by the inherent nature of 
program controlled transfers. As we saw in the previous chapter, 
this may require several steps to be taken, and this can be too 
time-consuming where it is required to transfer a large amount of 
data at one time. A peripheral frequently requires the transfer of 
large blocks of data to or from a block of memory. Direct memory access 
— D M A - is an alternative method offered by most good micro-
procesors as a means of overcoming this problem. 

The D M A principle takes advantage of the fact that the transfer of 
a block of data is to consecutive memory locations. The processor need 
only locate the first memory location, and know the number of 
words to be transferred in the block, and it can then enter another 
form of transfer, which is not under direct program control: DMA. 

There are different methods of accomplishing direct memory 
access, and different M P U s employ different techniques, some of 
which follow: 

(a) The halt method. This method is the simplest but the slowest, for 
the microprocessor is forced to halt its current program execut
ion at the first suitable point, to vacate the address and data 
highways, and to then undertake the DMA transfers, not 
resuming normal program execution until this is completed. 
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(b) The cycle stealing method. This is the most common method, and is 
medium speed. This involves interposing a D M A cycle in the 
current program instruction cycle. Thus the program keeps 
running, but it is effectively slowed down by the DMA stealing 
otherwise usable cycles. 

(c) The multiplex method. This is the fastest and most demanding 
method, for it effectively accomplishes D M A transfers without 
slowing down normal program execution. Rather than steal 
whole cycles, this method makes use of time slots when the 
address/data bus is not in actual use. This method involves 
critical timing and complicated associated hardware. 

Analogue interfacing 

Analogue-to-digital (A/D) or digital-to-analogue (D/A) conversion 
can be accomplished by special devices. These devices are then 
located in the microprocessor system architecture as input ports (if 
A/D) or output ports (if D/A) , and provide the requisite interface 
between analogue signal levels and digital data. 

Serial interfaces 

Some peripheral devices require serial data, as opposed to the 
parallel data handled by the microprocessor itself. In such cases, a 
serial/parallel ( M P U input) or a parallel/serial (MPU output) 
converter is required. A suitable device for such purposes is the 
U A R T . This device was considered in detail in Chapter 13, and it 
may be found upon re-examination of Figure 13.6* that such a 
device contains all the necessary functions to act as a serial interface 
on either an input or an output port. 

* See page 111. 
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22 
The 6800 microprocessor 

Chapter 20 described a typical microprocessing system with specific 
reference to the internal architecture of the 6800 microprocessor. 
This chapter completes a general outline of the 6800 microprocessor 
by considering its pin-out and hardware facilities. 

Like any other microprocessor, entire books are written on the 
6800, therefore it must be appreciated that the space available only 
permits a brief summary. For further details on any microprocessor 
the reader should turn to such publications, which are readily 
available from those stockists who specialise in computer and 
microcomputer components. Most good newsagents stock a variety 
of monthly magazines intended for amateur micro-users, and the 
advertisements in these publications often include book lists. If all 
else fails, the reader should write directly to the manufacturer in 
question (e.g. Motorola for the 6800 microprocessor). 

Pin layout 

The pin layout for the 6800 microprocessor is shown in Figure 22.1. 
The device is T T L compatible, requiring only a single + 5 V supply 
(Vcc) · Ground is connected to two separate pins (V s s). Like most 
microprocessors offering T T L compatibility, it is only capable of 
driving one standard load (sinking up to 1.6 mA), although between 
seven and ten devices of the same family may be driven from a single 
output. 

The data bus comprises eight bidirectional lines (D0-D7) , and 
the address bus 16 lines (A0-A15), giving the capability of address
ing up to 64 K bytes of memory. 

Various other input and output control lines are provided, and 
these are more easily understood with the aid of the diagram 
presented in Figure 22.2. 

The lines φι and <j>2 are clock waveforms supplied from an 
external clock oscillator, as shown in Figure 20.1. These clocking 
waveforms define the timing for the entire microprocessor system, 
and hence the speed of execution of instructions. It is normal 
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practice to use crystal controlled oscillators for stability, and this 
provides the facility of knowing precisely how long given instruct
ions take to execute. 
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The control bus provides a mixture of signals for use with memory 
and interface devices: φ2 is used as one of these signals for timing 
purposes. READ/WRITE (R/W) specifies a data bus read or write 
operation, and VALID MEMORY ADDRESS (VMA) confirms 
that the address bus lines have stabilised and present valid memory 
address data. In a 6800 system, I/O devices (e.g. PIAs) are given 
discrete memory addresses and are therefore regarded by the MPU 
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as virtual memory. When V M A is low, this disables all family 
devices by means of chip select inputs. 

R E S E T is used to reset and start the M P U from a power down 
condition; this signal is also routed to the RESET inputs of PI As for 
use during power-on initialisation. I N T . R E Q (IRQ) is the inter
rupt request line used by PIAs and I / O devices to signal to the 
M P U that they need servicing. Software facilities allow the prog
rammer to mask such interrupt requests during certain routines: 
when a software mask is applied, interrupt requests are ignored. 

The remaining control signals to/from the 6800 control circuits 
are of a supervisory nature, and are used for timing and control of 
the M P U itself. The NON-MASKABLE I N T E R R U P T signal 
(NMI) cannot be masked by the software, as the name suggests; this 
interrupt input will always be serviced by the M P U . The DATA 
BUS ENABLE (DBE) signal is a three-state control signal for the 
M P U data bus; normally this signal is derived from φ2. The 
T H R E E STATE C O N T R O L signal (TSC) affects the address bus 
in the same way that DBE affects the data bus. This signal may be 
used to accomplish direct memory access by forcing the address bus 
and the R /W line into the high impedance state. 

The H A L T signal will stop the M P U from processing; when 
halted, all three-state outputs go to their high impedance state (i.e. 
address bus, data bus and R /W line). When the M P U is halted, the 
V M A line is low, and the BUS AVAILABLE line is high. When 
BUS AVAILABLE (BA) is high, this indicates that three-state 
outputs are in the high impedance state, and that external circuitry 
can take command of these lines. BA goes high as a result of the 
H A L T input being taken low, or due to a W A I T instruction in the 
program; it is useful as an M P U signal for D M A activity. The BA 
line remains high until either the H A L T input has resumed a high 
state, or if the halt is the result of a H A L T instruction, until an 
external interrupt occurs. 

For further details of the 6800 microprocessor, the reader must 
turn to alternative publications, and be prepared for an in-depth 
treatment. 
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23 
The COSMAC microprocessor 

Many microprocessor users opt for standard arrangements, using 
existing hardware configurations, and concentrate upon software 
design. Many amateur users take this option, and very successfully 
use microprocessor systems with little or no knowledge of the 
hardware at all. Since the principal aim of this book is to teach a 
practical approach to random logic design, it follows that the 
emphasis with microprocessors should be placed on a micro
processor well suited to complement random logic. It is for this 
reason that the C O S M A C microprocessor will be considered in 
some detail, for it offers a great flexibility when used in conjunction 
with random logic. 

Before discussing this particular microprocessor, it should be 
noted that other microprocessors* may offer more comprehensive 
hardware packages when it comes to general purpose micro
processing systems intended for interfacing with tape, floppy disc or 
visual display units (i.e. television monitors), but the particular 
strength of the C O S M A C lies in its ease of compatability with T T L 
or C M O S random logic systems, and also the ease of understanding 
by a designer experienced in the latter technology. 

The C O S M A C microprocessor is manufactured by RCA, and is 
offered in a variety of guises based upon the type number CDP1802. 
Like the 6800 microprocessor, it is T T L compatible and operates 
from a single + 5 V supply. It is worth noting that this can by no 
means be taken for granted with other microprocessors, a number of 
which require dual supplies. Whilst more stringent applications 
might call for a ceramic or high speed version of this device, most 
users should be satisfied with the plastic encapsulated version 
branded the CDP1802ACE; this is cheap and versatile, and unlike 
some other microprocessors, contains all you need on a single chip, 
except memory. It is even generous in this respect, for it does 
contain an unusually large number of scratchpad registers, i.e. 
registers available for temporary data storage. 
* Readers may care to note that a companion book entitled 'Practical Microprocessor Systems' which 
concentrates on amateur uses of the INS8060 (SC/MP II) and the 6502 microprocessors, is 
available from the same publishers. 
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Supporting documentation 

The importance of good supporting documentation with a product 
as sophisticated as a microprocessor cannot be stressed too highly. 
Unfortunately the supporting documentation provided by some 
manufacturers for their products is little better than abysmal. Small 
wonder that so many training courses have to be run! If the 
supporting documentation is not abysmal, it is often so intimidating 
that the prospective user gets 'chip-fright' even before he starts. 

Fortunately RCA have done a splendid job with their supporting 
documentation, and their publication is thoroughly recommended: 
'User Manual for the CDP1802 COSMAC Microprocessor (MPM-
201C)\ Remarkably this is quite a slim volume, yet it explains both 
the hardware and the software in terms that any logic designer can 
understand. A schematic is used in conjunction with every instruct
ion to ensure that the user fully appreciates its usage*. 

The 'User Manual' is supported by a range of other literature and 
application notes, of which the following small selection might be of 
interest: 

ICAN 6970 Understanding and Using the CDP1855 Multi
ply/Divide Unit. 

ICAN 7032 CDP 1800-Based Video Terminal using the RCA 
Video Interface System, VIS. 

ICAN 6991 A Slave CDP 1802 Serial Printer Buffer System. 
ICAN 7029 Low Power Techniques for use with CMOS CDP 

1800-Based Systems. 
ICAN 6934 Cassette Tape I/O for COSMAC Microprocessor 

Systems. 
ICAN 6842 16-bit Operations in the CDP 1802 Micro

processor. 
ICAN 6918 A Methodology for Programming COSMAC 1802 

Applications Using Higher-Level Languages. 
ICAN 6581 Power-on Reset/Run Circuits for the RCA CDP 

1802 COSMAC Microprocessor. 
ICAN 6611 Keyboard Scan Routines for use with RCA COS-

MAC Microterminal CDP18S021. 
MPM-206A Binary Arithmetic Subroutines for the COSMAC 

Microprocessor. 
MPM-207 Floating-Point Binary Arithmetic Subroutines. 

* For RCA addresses refer to page 288. 
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Main features 

For most practical (and amateur) purposes, the CDP1802ACE 
should suffice, with a maximum clock input frequency range of DC 
to 3 .2MHz, using a single + 5 V supply. Provision is made to split 
the power supply in order to obtain higher speed operation: in this 
case the interface portion runs off + 5V, and the microprocessing 
portion runs off + 10V. 

It has previously been mentioned that the C O S M A C is genuinely 
self-contained, without the need for supporting devices to furnish it 
with scratchpad registers, clock drivers, program counters or other 
memory pointers, which remarkably, are not self-contained on some 
microprocessor chips. C O S M A C only requires an external crystal 
and your microprocessor is in business. 

A 16 X 16 bit matrix of scratchpad memory is available for ease of 
programming, with the unusual facility of using any of these 16 
registers as (16-bit) program counters or memory pointers. The 
device has an inbuilt D M A facility, allowing blocks of data to be 
transferred on the cycle stealing principle (mentioned in Chapter 
21). Thus data may be transferred between memory and a peripher
al, or vice-versa, without the need for direct program control. This is 
the way a program is loaded during development: after initialisat
ion, the program instructions are simply loaded into memory 
sequentially from address 0000 under automatic D M A control. 

A number of different means are available to the user when it 
comes to input /output ( I /O) control, ranging from virtual memory 
control using the address bus, as described in the previous chapter 
for the 6800 microprocessing system, to special I / O commands and 
associated hardware lines. There are also input flags which may be 
directly tested by the software, an output flip-flop which can also be 
tested by the software, plus external interrupt and D M A lines. This 
is best appreciated by details of the pin-out. 

Pin layout and functions 

Figure 23.1 shows the pin details of the microprocessor. Like the 
6800, it is a 40 pin device. This presented the manufacturers with an 
obvious problem, bearing in mind that it must allow for control 
lines, 16 address lines, 8 data lines, plus the special input and output 
lines mentioned above. Reference to Figure 22.1, showing the 6800 
layout, shows that a compromise must be made, but this is about the 
only compromise. RCA solved the problem by only using eight 
address lines, and by outputt ing the 16-bit addresses in two 8-bit 

225 



bytes. This means that the required bits output during the first 
(high-order) byte must be externally staticised, for subsequent 
recombination with the second (low-order) byte. 
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This method of outputting the address utilises the MPU' s two 
separate timing pulses TPA and TPB. The high-order address byte 
(A.l) appears on the address bus lines (MA0-MA7) first, and TPA 
may be used as a strobe to staticise the required number of address bits in 
an external register. An octal register may be used to staticise all 
eight bits, allowing for addressing a full 64 K bytes of memory, but 
smaller systems may be contained in a smaller addressing range, 
and small systems may well only require a few of the high-order bits 
to be staticised, the rest being redundant. The low-order byte (A.0) 
of the address is then output on lines M A 0 - M A 7 , which are 
recombined with the high-order byte (effectively lines M A S -
MA 15), to give the full memory address. 

The state of the M W R and M R D lines determines whether a data 
transfer is to be written to memory, read from memory, or if neither 
operation is to be performed. The M W R line goes low for a memory 
write, the M R D line goes low for a memory read, or if neither of 
these lines goes low, a non-memory operation is performed. 

The data bus lines (BUS0-BUS7) are bidirectional, and transfer 
data in and out of the microprocessor from/to memory or other 
interface devices. The timing pulse TPB is used to strobe data 
transfers, and occurs after address and data line settling time, i.e. 
skew. 
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Four external flag inputs (EF1-EF4) are associated with particul
ar flag-testing instructions, leading to branching within the program 
in accordance with flag status (e.g. S H O R T BRANCH IF 
EF2 = 1 ) . These flags are therefore ideal for polling routines, and 
for use in conjunction with the I N T E R R U P T line. 

The I N T E R R U P T line may be used to make the program j u m p 
to an interrupt routine; if the first task in this routine is to poll the 
flag inputs, up to four separate alternative paths may be determined 
by direct flag control, or if hardware encoding is used on the flag 
inputs in order to provide a binary code, after testing all the flags, 
the service routine could determine up to 16 different interrupt 
conditions. 

The Q output is obtained from an internal Q flip-flop. Since this 
flip-flop is under software set/reset control, and is also software 
tested by certain instructions (e.g. S H O R T BRANCH IF Q = 0), it 
is extremely versatile in use. One use is as a means of outputting 
serial data under direct bit-by-bit program control: each bit must be 
the result of a separate instruction execution. Another novel 
application is as a memory bank switch; since the Q output is a 
hardware flip-flop, it might be set to switch in a second memory 
bank, offering the possibility of easily controlling up to 128 K bytes 
of memory! 

The three lines NO, N l and N2 are associated with input/output 
byte transfers. These allow data to be transferred into or out of 
memory at the same time that the output lines generate one of seven 
possible binary codes - there are not eight, because the zero 
condition is invalid, being the rest condition. 

For example, the instruction: O U T P U T (N = 6), causes the 
addressed memory byte to be output onto the data bus coincident 
with a high on each of the N l and N2 I / O lines. Similarly, the 
instruction: I N P U T (N = 4), would cause data applied to the data 
bus to be written into the addressed memory byte coincident with 
the N2 I / O line being high. The purpose of the I / O lines is to control 
external logic associated with data bus interface devices; thus in the 
latter example, the N2 line might be used to enable a three-state 
register to place data onto the data bus for transfer to memory. 

Like the flag inputs, it is possible to use the I / O lines directly — 
for up to three I / O ports or to decode a binary output to give up to 
seven ports. By combining these with the Q flip-flop and an extra 
instruction, this figure can be doubled, providing random logic is 
used to decode the required N and Q line combinations. Similarly, 
by including the M W R line in external gating, it is possible to utilise 
the same I / O code for either an input or an output. 

So you begin to appreciate the flexibility of the COSMAC 
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microprocessor, and the reason why this flexibility can only really be 
exploited by a designer familiar with random logic - such as yourself. 
Just consider the possibilities open with I/O transfers: you can use 
address lines for selection, the Q flip-flop, or the three I/O lines. 
Thus the device can be best tailored to a particular application, as 
Chapter 26 will show. 

Two separate direct memory access lines are provided: DMA IN 
and DMA OUT; these request direct memory transfer from or to the 
data bus respectively. 

The remaining lines are concerned with MPU control. The 
XTAL and CLOCK inputs are linked by the external crystal and a 
resistor in parallel, and both pins are capacitively decoupled to earth 
by 20pF. The WAIT and CLEAR inputs are used to control the 
mode of operation, where CLEAR alone low causes a general reset, 
WAIT alone low causes a pause, both inputs low causes a load, and 
both inputs high specifies run. The two remaining lines SCO and SC1 
output a binary state code SO to S3, where SCO is the LSB. The 
meanings of these codes are as follows: 

50 = Fetch. 
51 = Execute. 
52 = DMA. 
53 = Interrupt. 

Internal structure 

The internal structure of the COSMAC microprocessor is shown in 
Figure 23.2. It is interesting to contrast this with the internal 
structure of the 6800 microprocessor, shown in Figure 20.1, for 
whilst the same basic needs are met, an entirely different approach is 
used. 

The scratchpad registers comprise 16 16-bit registers, with each 
register divided into a low-order byte and a high-order byte, each of 
eight bits. These registers are designated R(O) to R(F) using a 
hexadecimal notation.* Low- or high-order bits are specified by 
adding the suffix .0 or .1, e.g. R(4).0 refers to the low-order byte of 
the fourth scratchpad register R(4). These registers may be used as 
memory pointers, requiring all 16-bits, or to store quite separate 
8-bit words. 

Where the content of a register is to be used as a memory pointer, 
the 16-bits are first transferred to the 16-bit Address register (A); a 
multiplexer (MUX) is then used to output either the low-order or 

* Hexadecimal notation is explained in Chapter 8. 
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Figure 23.2. Internal structure of the COSMAC microprocessor (courtesy of 
RCA) 

high-order byte on the address lines (MA0-MA7). Any of the 16 
registers can be used as a memory pointer, therefore there is no 
special register designated the program counter. This makes the 
COSMAC extremely versatile, since the program counter can be 
changed at the 'drop of an instruction'. The associated 
INCR/DECR function operates in association with certain instruc
tions to allow any scratchpad register to be incremented or de
cremented as part of a memory access instruction. 

The 4-bit R SELECT (register select) lines specify a particular 
register from the sixteen available, and these lines may be controlled 
by any one of the P, X or N registers. The I and N registers form two 
4-bit bytes of the INstruction register; the I portion is the high-order 
byte, and specifies an instruction type, whilst the N portion is the 
low-order byte, and represents either an operational code, or defines 
one of the scratchpad registers via the R SELECT lines. For the 
special INPUT and OUTPUT instructions, the content of the N 
register is output as the code on the lines N0-N2. The P register 
specifies which scratchpad register is currently being used as the 
Program counter, and the X register specifies a scratchpad register 
to be used as a data pointer. It follows that the P, X and N registers 
must all comprise four bits. 

The Temporary or T register is used to provide temporary storage 
of the P and X registers when an interrupt takes place. By so doing, 
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it retains information necessary to allow the MPU to resume 
operation after the interrupt where it left the original part of the 
program. This register therefore has eight bits. 

It may be seen that the 8-bit data bus links all the registers, the 
arithmetic logic unit (ALU) and the Data or D register; thus all data 
transfers either within the MPU, or outside the MPU, are via the 
same data bus. The D register is the equivalent of the usual 
accumulator, and is used to store the result of all ALU operations, 
prior to possible transfer to any other memory location or a 
scratchpad register. The Data Flag DF(1) is a single bit used to 
indicate overflow conditions within the D register; this bit may be 
tested directly by program instruction. 

Timing 

At this point it is worthwhile to consider device timing. The precise 
timing varies according to the type of instruction, but to illustrate 
the point, consider a typical fetch and execute cycle associated with the 
'load via N' instruction LDN. This instruction (machine code ON) 
loads the content of the memory location pointed to by the 
scratchpad register specified by N into the D register. Figure 23.3 
depicts the timing for this operation, and Figure 23.4 is a schematic 
representation of the entire operation in its two phases: (a) fetch, 
and (b) execute. 

TPA 

TPB 

Memory 
output 

r-r-T 
Memory read cycle 

•n/M/y/it\//[ 

ΓΠ-L 

-Memory read cycle-

'/λ/Μ/Ι/λ/λ/Λ 

Figure 23.3. Fetch-execute cycle timing for a read-read 
instruction (courtesy of RCA) 

This particular instruction happens to be a read-read instruction, 
but it could equally well have been an instruction with only one read 
cycle, read-write, or even three read operations. It should be noted 
that there must always be an initial read cycle for every instruction, 
for this is the cycle which fetches the instruction code from memory. 
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Figure 23.4. Schematic of the fetch-execute process for the LDN instruct
ion 

In the example, the first read operation is a fetch (state code SO); 
this has to fetch the next instruction from memory and place it into 
the I and N registers. The schematic (Figure 23.4) shows the P 
register pointing to the scratchpad register containing the program 
counter (represented by the notation R(P)), and the program 
counter itself points to the instruction within the memory: M(R(P)). 
The instruction is fetched and is loaded into the I and N registers. 

The second read operation is an execute (state code SI); this 
executes the instruction, which in this case consists of loading the D 
register from memory. The I register informs the control logic of this 
requirement, whilst the N register locates the scratchpad register 
containing the data pointer R(N). The data pointer points to the 
required data word in memory, M(R(N)), and the latter is loaded 
into the D register. 

So far as timing is concerned during these transfers, TPA signifies 
that the high-order byte of the address is present on the address bus, 
and this must be externally staticised. The pulse TPB signifies that 
the low-order byte of the address is being output on address lines 
MA0-MA7, and these are combined with the staticised address 
lines from the high-order byte, which we might call MA8-MA15. 
The memory read (MRD) line goes low well before data is read from 
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the memory, and the pulse TPB is a safe strobe of data from the 
memory. 

For the purposes of comparison, Figure 23.5 shows the timing 
diagram for a read-write type instruction. The initial memory read 
cycle is identical to that seen previously, but during the memory 
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Memory Output 

CPU output 
to memory 

- T 1 1 1 Γ 
-Memory read cycle -

TF 
K^mvttKi 

Allowable memory access 

JTU-
—i 1 1 1 r-
- Memory write cycle— 

I I I 
Valid output 
_ J 1 L· 

I I 1 I I I I I I I 
Valid data 

T T " Γ Τ 
Figure 23.5. Fetch-execute cycle timing for a read-write type 
instruction (courtesy of RCA) 

write cycle (which transfers data from the MPU to a memory 
location), MRD remains high, and the memory write pulse (MWR) 
goes low for two clock periods during the time that valid data is 
present on the data bus; the latter is used to strobe data into 
memory. 

Input/output ports 

The CDP 1852ACE is the plastic encapsulated I/O port device of the 
same family as the CDP1802CE microprocessor; its input lines 
provide only a 1 μΑ drain on the microprocessor outputs, which 
means there is no practical loading, in view of the MPU's 1.1mA 
sink capability. The 74LS series of devices may be coupled to the 
MPU outputs, but due to their 0.4 mA loading, only two should be 
used. If it is desired to interface with a number of 74LS devices, one 
should be used as a buffer, and this then provides the normal fanout 
of 20 from its output. 

Figure 23.6 shows the timing diagram for both input and output 
instruction timing, and Figure 23.7 depicts how the I/O port may be 
used in conjunction with the MPU N lines. Note that the polarity of 
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(b) output port 

the chip select 1 line (CSl/cJsI) and the service request (SR/SR) 
line is dependent upon the setting of the MODE input. 

An input instruction (e.g. INP2) inputs data from an external 
source and loads it into a memory address specified by the MPU; 
because read/write terminology refers to memory, this is a memory wnte 
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execution. Because data is to be input into the microprocessing 
system, the I /O port must be configured as an input port, which is 
achieved by holding the MODE input low. First the input data must 
be clocked into the internal port register by means of DATA 
STROBE IN (see Figure 23.7). The negative-going edge of the clock 
pulse sets SR low and latches the data into the register. The SR line 
may be used to signal that data is available by means of the 
microprocessor interrupt input, or the flag inputs, as DATA 
READY. The microprocessor subsequently responds with the input 
instruction, enabling the chip select inputs, and thereby enabling 
the I /O port's internal three-state outputs to output data onto the 
data bus; the selected (or decoded) N line is shown enabling CS2, 
and MRD remains high to enable CS1. Note that MWR should not 
be used under these circumstances, for this is the pulse which will 
write the data from the port into a memory location, and this data 
must have stabilised on the data bus before the write pulse occurs. 
After the chip enable condition, the SR input reverts to the high 
state, and the port is ready for future transfers. 

An output instruction (e.g. OUT2) outputs data from memory to 
an external destination from a memory address specified by the 
MPU: it is therefore a memory read execution. The unique condition 
which must be responsible for staticising this data is: 
M R D . T P B . N . This may require an externally generated data 
strobe from these conditions, but if the I/O port is used, the 
procedure is somewhat simpler, as shown in Figure 23.7. In this 
case, TPB may be used to directly clock the data into the device, 
which is configured as an output port by taking MODE high; the 
device is enabled by M R D . Nx, where Nx represents the selected (or 
decoded) N lines and the signal MRD goes low. In this mode, the 
I /O port has its three-state outputs continuously enabled. The SR 
line goes high at the termination of the chip select, and remains high 
until the following rising edge of CK. This line is used as DATA 
READY by the external circuitry. 

The I /O ports may equally well be used with the chip select 
inputs controlled by address line decode circuitry, in which case the 
port has a memory address, as with the 6800 microprocessor system 
previously described. The situation is now very different, since the 
I /O port now behaves just as if it is part of the memory. In order to 
avoid confusion, the reader is advised to think of it as simulated 
memory. Input/output instructions are now of no use, and the I /O 
port is accessed in a normal read/write cycle. When the device is 
used as an input port, the chip select inputs must enable the chip 
when the appropriate address lines are asserted, and the MRD line 
is low. When the device is used as an output port, the chip select 
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lines must again be enabled when the address lines are asserted to 
select the port, and the MWR pulse must be used to clock the 
device: this entails inverting it to give MWR at the CK input. 
Because the I/O port is simulated memory, transfers are with 
respect to the microprocessor D register. It is impossible to transfer 
data between such an I/O port and memory directly, just as it is 
impossible to transfer data between two different memory locations 
directly. 

Which method to use depends entirely upon the application, and 
in general, the best solution is probably the one which minimises the 
complexity of the hardware. 
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24 
Software 

Software is an enormous subject, and this is a small chapter, 
therefore it is not intended to achieve more than to describe what 
software is, and to introduce some of the relevant terminology. 

The structure of software is basically the same whether it is 
connected with computers or microprocessors: so is the terminology, 
with the possible exception of the term firmware. The latter term 
evolved to describe standard software packages obtainable in R O M ; 
as such, they are software contained in hardware, hence the term, 
mid-way between hard and soft\ 

Machine code 

We have seen that a computer or microprocessor deals purely with 
words comprising l 's and O's. Machine code (or machine language) is the 
name given to the numeric form of specifying this binary code. It 
may be a string of l 's and O's, or it may be octal or hexadecimal 
numbers which represent distinct bytes of a given word. 

An 8-bit microprocessor deals in 8-bit words. If we are program
ming in machine code, which is the lowest level language possible, 
we specify the state of every single bit in each word. This may be 
done bit by bit, but it is more common to use two hexadecimal digits 
to represent the high-order and low-order 4-bit bytes of this word. 
Thus the code 2A represents the binary word 0 0 1 0 / 1 0 1 0 * . 
Sixteen-key keyboards are commonly used to manually enter micro
processor programs in hex notation, and clearly there is less room 
for error when entering 2A than there is in entering 00101010. 

The trouble with machine code is that it is very difficult to work 
in. When a programmer is trying to think out a problem, he 
certainly does not want the added burden of having to think in terms 
of numbers, whether they are binary or hex. 

* Hexadecimal notation is explained in Chapter 8. 
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Assembly language 

Abbreviated names - mnemonics - are given to every type of 
instruction, where the mnemonic is suggestive of the function 
performed, and is therefore something that the programmer can 
soon familiarise himself with and subsequently write from memory. 
Such a language has a direct one-to-one relationship with machine 
code, where each mnemonic is directly convertible into machine 
code. Thus a programmer may write his program in assembler 
language, and the act of converting it into machine code is carried 
out as a separate exercise. 

The principle advantage of writing in an assembly language is 
that it is possible to see what the program does: machine code is 
meaningless to look at. For the amateur or the cost conscious, this is 
the way that a microprocessor program must be developed: writing 
it in assembly language and then manually converting it into 
machine code for manual entry into the microprocessor memory. 

Industrial users of microprocessors generally use back-up 
computers to help them with the development of microprocessor 
programs, and in such cases, they write the program in assembly 
language, and then use a software assembler program to convert this 
into machine code automatically. 

High level languages 

The problem with low level languages - such as assembly languages 
- is that they are designed specifically for the processor in question, 
and are all different. You cannot learn 'assembly language' and then 
immediately program any microprocessor in assembler language. 
The other drawback, in some situations, is that low level languages 
can be laborious, for they must specify each little step in any process. 

For the above reasons, a number of high level languages have 
been developed which overcome these disadvantages. Such lang
uages offer a fair degree of consistency, and can be operated upon 
any computers or microprocessors, given the necessary conversion 
process between that high level language and the appropriate 
machine code language. This conversion is achieved by means of a 
special software program known as a compiler: a compiler program 
compiles the appropriate sequence of machine code instructions 
which equate to each high level language instruction. 

There are many high level languages. FORTRAN, PASCAL, 
BASIC, and CORAL are just a few. Each language requires a 
specific compiler program in order to convert it to a particular 
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machine code. It is therefore implicit that if you wish to write in a 
high level language such as BASIC, you need the support of a 
compiler. This either means access to a computer, or a micro
processor with suitable firmware, e.g. a BASIC to machine code 
compiler in R O M . 

The most popular high level language with amateur micro
processor users is BASIC, and BASIC compilers are available with 
many microprocessors. 

Choosing the right language 

This is very much a matter of experience and availability. With 
microprocessors, the choice is usually assembly language, BASIC or 
PASCAL. Whilst the higher level languages make writing the 
program simpler, they are not the most efficient, and many exper
ienced programmers prefer to write in assembly language, simply 
because they can do more within a given size of memory. 

Why should this be? A particular high level language instruction 
might equate to several machine code instructions, and the pro
grammer may not even be aware of precisely how the assembler 
converts his high level instruction into machine code. When a 
programmer writes in machine code, he knows precisely what the 
processor is up to all the time, and he can apply software tricks to 
minimise the number of instructions. 

The structure of programs 

The route through a given program may be totally unpredictable if 
it is dependent upon external stimuli. One thing which you can 
always be certain of, however, is that the program will always start 
off on the same route, and until the first optional branch is reached, 
the same route must always be followed from initialisation. 

It has been explained that it is necessary to set up certain initial 
conditions in hardware circuits (e.g. flip-flop states). So it is with 
software, and the first task in any program is to initialise any 
variables. The equivalent of flip-flops in software are flags: the name 
given to single bits set to either 1 or 0 according to requirements. 
Clearly all such flags should be set to known conditions during the 
initialisation routine, at the beginning of every program. 

The term process is used to describe lengthy pieces of program 
which undertake a given task. The term routine is often similarly 
used, although this term is sometimes used to imply a block of 
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software that is a sub-program. The term subroutine is reserved for a 
routine which is used by any number of calling routines, and after 
execution of the subroutine, the processor returns to the next 
instruction in the calling routine. Rather than repeating a given 
routine many times in different parts of a program, a single 
subroutine is written to perform this task, and whenever the task is 
required, the main program calls up the subroutine. 

Since a subroutine may be entered from many different sources, it 
is sometimes necessary to provide data for the subroutine to work 
upon. In such cases, the data must be placed in the same portion of 
store, in order that the subroutine knows where to find it. If the 
subroutine needs to pass new data back to the calling routine, it 
places this data in a fixed area of store, and the calling routine 
subsequently retrieves the data from this area of store once the 
subroutine task has ended. 

Branch instructions provide the means of jumping from one part 
of a program to another according to variable conditions. Such a 
jump is dependent upon the results of a comparison test, usually 
with respect to zero (e.g. less than zero, greater than zero, or equal 
to zero). Jumps may also be dependent upon the condition of a flag. 

The programmer can create as many flags as he wishes. Every 
RAM word offers him potential flags, i.e. an 8-bit system offers 8 
flags per word. Some assembly languages allow individual bits to be 
tested within a given word, which is ideal for flag testing. Others 
require the programmer to use a mask and a logic operation. A mask 
is the term given to a pre-determined binary pattern such as 
00000010. 

Some examples of the use of masks will clarify matters. The 
following 'flag words' are combined with a mask in various ways 
using logic operations. 

If it is desired to reset all the flag bits, a mask of all-ones may be 
combined with a flag word in a NOR operation, for example: 

0 10 10 10 1 Flag word 
1 1 1 1 1 1 1 1 Mask for all bits 
0 0 0 0 0 0 0 0 Result of NOR 

It may be seen that the same word combined with an OR 
operation would set all the flags. The above example operates on all 
bits simultaneously, but a single bit, or any number of bits may be 
operated upon, as desired: it simply depends on adjusting the mask. 
For example, the following demonstrates how a single bit may be 
set, irrespective of its original condition: 
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0 1 0 1 0 1 0 1 Flag word 
0 0 0 0 0 0 1 0 Mask for bit 1 

0 1 0 1 0 1 1 1 Result of O R 

In the above example, bit 1 is masked, and an O R guarantees to 
leave bit 1 set; a N O R similarly guarantees to leave the bit reset. 
Note that the other flag bits remain unchanged. Note also that an 
exclusive-OR function applied with a similar mask can be used to 
complement a bit. 

In all the above cases, we have been concerned with modifying an 
existing flag word. Since the result of a logic operation is contained 
in the accumulator of an M P U , this result must finally be written to 
the location used to store the flag word, otherwise it remains in its 
previous state. 

If it is desired to examine a flag, it may be extracted in unchanged 
bit position by applying a mask set to 1 at the required bit, and then 
applying a logic AND operation; this leaves the flag word un
changed. If a right logical shift is then applied, where the number of 
places equals the bit position, the flag bit is moved to bit 0. A 
branching test is then possible, since a numerical value of 1 signifies 
the flag set, or zero signifies the flag reset. 

This jus t hints at some of the tricks that the programmer can 
apply using machine code or assembly language. It may be seen that 
the software manipulations are direct equivalents of possible hard
ware operations. 

One final word about subroutines. It is possible to call one 
subroutine from another, but each time this occurs, data has to be 
stored in the microprocessor stack, in order that it may resume 
operations after each subroutine exit exactly where it left off. Since 
the size of the stack must be fixed for any given system, this defines 
the number of times subroutines may be so nested. 

COSMAC assembly language 

The C O S M A C assembly language comprises some 91 different 
instructions. The small selection shown opposite gives some indica
tion of their types. The O p Code' is the hex machine code for the 
instruction. The Ope ra t i on ' column gives a description in terms of 
the notation previously used. 

This short extract serves to show typical assembly language 
instructions, and shows how they are directly replaceable by a 
machine code. By reference to the figure* of internal structure of 
the C O S M A C microprocessor, it should be possible to work out 
* Figure 23.2 on page 229. 
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what each instruction does by the operation description. A few 
random examples are explained below. 

Key 
R(W): Register designated by W, where W = N or X or P. 
M(R(N))—»D; R(N) +1 means: the memory byte pointed to by R(N) is loaded into D, 

and R(N) is incremented by 1. 

Instruction 
Increment Reg N 
Decrement Reg N 
Increment Reg X 
Get Low Reg N 
Put Low Reg N 
Get High Reg N 
Put High Reg N 
Load Via N 
Load Advance 
Load Via X 
Load Immediate 
Output 2 
Input 5 
Store Via N 
OR 
Short Branch 
Short Branch If EF= 1 

Mnemonic 
INC 
DEC 
IRX 
GLO 
PLO 
GHI 
PHI 
LDN 
LDA 
LDX 
LDI 
OUT 2 
INP5 
STR 
OR 
BR 
Bl 

Op. code 
IN 
2N 
60 
8N 
AN 
9N 
BN 
ON 
4N 
F0 
F8 
62 
6D 
5N 
Fl 
30 
34 

Operation 
R(N) + 1 
R(N) - 1 
R(X) + 1 
R(N) .0->D 
D - > R ( N ) . 0 
R(N) .1 -»D 
D->R(N) . l 
M(R(N)) -> D; FOR N NOT O 
M(R(N))->D;R(N) + 1 
M(R(X))-»D 
M(R(P))-+D;R(P) + 1 
M(R(X)) -► BUS; R(X) + 1; N = 2 
BUS -» M(R(X)); BUS -► D; N = 5 
D-*M(R(N)) 
M(R(X))ORD->D 
M(R(P))->R(P).0 
IfEFl = 1,M(R(P))-*R(P).0 

ELSE R(P) + 1 

G L O places the low-order byte of the scratchpad register selected 
by N into the D register, leaving the content of the scratchpad 
register unchanged. 

P H I writes the content of the D register into the high-order byte of 
the scratchpad register selected by N. 

LDA reads the memory address specified by the scratchpad 
register selected by N, and places it in the D register; the scratchpad 
register selected by N is then incremented by 1, to point to the next 
memory location. 

O U T 2 places the content of the memory location addressed by 
the scratchpad register selected by X onto the data bus; the 
scratchpad register selected by X is then incremented to point to the 
next memory address; whilst the data is output on the bus, the N 
lines equal binary 2. 

Bl requires that if the external flag 1 input is set, the program 
counter low-order byte is changed to the value contained in the 
memory address specified by P scratchpad register; if the flag is not 
set, the program counter is incremented. In other words, if the flag is 
set - making the condition true - then a j u m p occurs; if the flag is not 
set — making the condition false — then no j u m p occurs, and the next 
instruction in sequence is followed. 
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Flowcharts 
Before writing the code representing a program, a programmer is well 
advised to first construct a flowchart. This is a pictorial representa
tion of the software task, and allows him to work out the best 
methods before getting involved in the detail of program instructions. 
Examples are given in Chapter 26. 

Software development 
For those with access to a computer, microprocessor software may 
be developed and tested using special computer programs. For those 
less fortunate, it is necessary to manually load the microprocessor 
with the program in machine code, prove it, or debug it as 
necessary, and to then commit it to some form of ROM. If the 
program is of any length, a tape recorder interface is necessary, since 
switching off the supply will otherwise lose the entire program. It is 
usual to employ a hexadecimal keyboard for the process of entering 
the program initially. 

The most economic way of placing a program into ROM is to use 
PROM and your own programming circuitry. This must address 
each memory byte in turn, apply current pulses to the program, and 
must subsequently check that each word is correctly programmed 
before proceeding to the next. This can be achieved manually, but 
long programs are best programmed with some degree of automat
ion. The use of the microprocessor to control a programmer should 
not be overlooked. Given a programming specification for a given 
PROM, the reader should be able to design a suitable programmer. 

It is worth noting that some stockists of PROM devices do offer a 
programming service; many also offer a PROM copying service, 
which is useful where duplication of programs is required. 

If the user is prepared to work at it, a PROM programmer may be 
very simple; it is simply necessary to back it up by labour and care, if 
automatic versions are out of the question. It is also worth bearing in 
mind that programs do not have to be placed into ROM if there is a 
tape recorder facility; it is a simple matter to enter a program from 
tape. 

Naturally a microprocessor needs to know how to read in a tape, 
therefore it must be fed with a small program teaching it how to do 
this: the equivalent of a computer bootstrap. This program should be 
kept as small as possible, since it must be entered manually. Another 
option is to put this small bootstrap program into PROM. 

Any equipment in which the microprocessor must make itself 
invisible (i.e. usable by anyone), must have its program put into 
some form of ROM. It then behaves just like any other random logic 
circuit. 
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25 
Hard or soft? 

Hard or soft? Tha t is the question. It is not a matter of which is 
'nobler', but rather a matter of which is the most suitable, and this 
depends very much upon circumstances. In this chapter the hard
ware and software approaches will be compared and the various 
factors involved will be considered. 

Of course, the decision is not really between hardware and 
software, but rather where the emphasis should lie, i.e. the choice 
between logic and a microprocessor. The following table compares 
various factors. 

Factor 
Design 
Design emphasis 
Flexibility 
Package count 
Hardware cost 
Total development cost 

plus production cost 
Modifications 
Speed 

Random logic 
Specific 
Hardware 
Low 
High 
Depends on 

Depends on 
Difficult 
Fast 

quantities 

quantities 

Microprocessor 
As general as possible 
Software 
High 
Low 
Depends on quantities 

Depends on quantities 
Easy 
Slower 

If the task is relatively simple, and there is no significant 
difference between the hardware cost of a random logic version and 
a microprocessor version, the random logic option is probably best. 
It is only in circumstances where the package count is becoming 
high with random logic that the microprocessor option begins to 
look more attractive. 

There is very little development time with random logic, unless 
the design is particularly complex. A microprocessor version, on the 
other hand, requires both hardware design (relatively simple), and 
software development, and as we have seen, the latter involves 
testing, debugging, and subsequent P R O M programming. 

There is always the speed consideration to take into account. For 
whilst microprocessors operate at similar frequencies to random 
logic devices, they must cope with a given task on a sequential basis. 
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Random logic offers faster solutions because events may happen 
simultaneously. Very often a hardware/software compromise is 
possible in circumstances where speed is an important considerat
ion. 

For production quantities of anything over about 15 packages, the 
microprocessor solution begins to look more attractive. The hard
ware is simpler and cheaper to produce, and since the software 
becomes firmware, the product reduces to a simple hardware 
construction exercise. 

A random logic design is obviously designed around a specific 
requirement, and any subsequent modifications required can lead to 
real problems, and possibly a major redesign. This is where a 
microprocessor system wins, for such a modification may not even 
require any change to the hardware: software modifications are 
easily implemented, and many only reflect a change of R O M in the 
hardware - but remember that the modified R O M is hardware 
compatible. Even if the modification calls for a different hardware 
interface, this is not liable to cause any great problems, and the 
major changes are still liable to be in the software. 

Experience counts 

The above arguments are all very well, but they do not take into 
account experience. When it comes to microprocessor design, 
experience counts. It must be recognised that there is a considerable 
learning curve associated with microprocessor design, therefore if an 
engineer is not familiar with microprocessors, his first design is 
liable to be rather time-consuming. In the short term a complex task 
might work out cheaper in random logic, but in the long term, if the 
same engineer is to continue designing new products, the time spent 
in familiarising himself with microprocessing techniques will pay off. 

Once a designer has microprocessing experience, he will approach 
each new design with the initial aim of using a microprocessor - by 
choice. As he gains more experience, each new design becomes easier, 
and the use of microprocessors brings with it inherent reliability. 
Complex tasks are readily handled by microprocessors, and possible 
modifications to the design are nothing to fear. Once an engineer is 
competent in microprocessor design, and is used to using standard 
central processing configurations, the development of micro
processor designs can be shorter than random logic designs. 

The enthusiast has different factors to consider, since time does 
not equate to money. On the other hand, the DIY man is probably 
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only interested in designing one equipment, therefore the inconveni
ences of developing the software may not seem worthwhile. No one 
can make the decision for him. All that can be done is to point out 
the differences, and hopefully, this book does just that. 

Which microprocessor? 

Since there is a not insignificant learning curve associated with 
familiarising yourself with any microprocessor, it is worth spending 
a bit of time researching the differences between them before making 
your selection. Your choice must depend upon your requirements 
and circumstances. One approach is to buy a standard micro
processor board, complete with MPU and I/O ports, and preferably 
a tape interface; this option is likely to be expensive, however, and 
specific design can work out much more cheaply. 

It is worth bearing in mind that whilst microprocessor chips may 
work out cheaply, the necessary memory to go with them can be 
very expensive. Always shop around for memory by scanning the 
advertisements in DIY magazines; prices for the same device can 
vary fourfold! If you buy a complete board, you can be fairly sure 
that you are paying for expensive memory. 

The reader is particularly recommended to look for the following 
types of memory, since they are static, popular, widely available, 
and often offered cheaply: 

2708 PROM (IK X 8 bits) 
2114-L2RAM (IK X 4 bits) 

It is common practice to use memory chips with even lower 
'bit-widths' than 4, but this leads to higher package counts, and is 
therefore more inconvenient. Clearly it is necessary to connect chips 
in parallel fashion if the bytes offered are less than 8-bits wide, and 
this leads to more complex gating on the address lines. Remember 
that RAM is necessary for program development, for the program 
code must be entered into temporary store. Once the program has 
been proven, it may be committed to PROM. From the above, it can 
be seen that each 1 K of final 2708 PROM can be replaced by two 
2114-L2 RAM chips during development; there are hardware 
differences, of course, but nothing drastic. 

Smaller RAM devices are useful for normal temporary storage 
requirements of data, and these are available from 16 and 32 bytes 
upwards. Since memory is the single most expensive component in 
such systems, the designer's aim should always be to keep it to a 

245 



minimum. Some microprocessor chips actually contain some RAM, 
and this is always worth bearing in mind. 

College libraries generally contain a fair selection of material on 
different microprocessors, and an hour or so browsing may help you 
decide which microprocessors to find out more about. My only word 
of warning is to make sure that you look into the hardware 
implications before becoming too immersed in the software: some 
microprocessors are much more convenient to use than others. 
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26 
A microprocessor design example 
- an'AUTONIM' alternative 

It is difficult for anyone without experience in microprocessor design 
or familiarisation with the intricacies of software to appreciate just 
how different random logic and microprocessor approaches really 
are. For this reason, this concluding chapter presents an outline of 
what is entailed in a microprocessor design. 

Since we have already considered a complex random logic design 
in depth - that of the ' A U T O N I M ' * - this is most easily achieved 
by now looking at a microprocessor alternative for the same 
electronic game. This has the added advantage of assuming fam
iliarisation with the design requirements. This microprocessor 
alternative must achieve everything that the random logic version 
did, and should demand no more of the human player. 

The C O S M A C microprocessor is chosen for this example, be
cause of its particular flexibility with random logic, and because the 
reader should by now have a reasonable familiarity with its capabili
ties. 

Hardware des ign 

Once it has been decided to use a microprocessor, the designer 
should aim to keep the hardware to a minimum. This enhances 
reliability, reduces development time, minimises the cost, and gives 
maximum flexibility should any modifications be required. The 
circuit given in Figure 26.1 represents the entire hardware require
ment, neglecting only a simple power supply. Compare this with the 
complexity of the random logic design given in Figures 19.10 to 
19.17. The random logic design had a package count of 47, whilst 
the microprocessor version has a package count of 13, assuming 2 K 
of memory. (Skilful programming might require less memory than 

* Refer to Chapter 19. 
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IC 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

able 
CDP1802ACE 
74LS75 
2708 
2708 
74LS08 
74LS04 
74LS76 
CDP1852CE 
CDP1852CE 
7407 
7407 
7407 
NE555 

+5 
40/16 
5 
24 
24 
14 
14 
5 
24 
24 
14 
14 
14 
8 

OV 
20 
12 
12 
12 
7 
7 
13 
12 
12 
7 
7 
7 
1 

Figure 26.1. A microprocessor version of the AUTONIM 
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this, but until the software has been worked out, the designer must 
allow for an adequate amount of memory.) 

The circuit given in Figure 26.1 shows two 1 K PROMs; the final 
design might only need one of them, and the system is equally 
capable of expanding to use further 1 K blocks of memory. 

The line LEDs and the I and Y O U M O V E LEDs are all driven 
by buffer gates (non-inverting), and are all powered directly from 
the + 5 V rail; the I and Y O U LEDs again share a common ballast 
resistor since only one will be illuminated at once. 

Three 7407 hex buffer driver devices (ICslO-12) cope with 18 
LEDs, which again happens to leave the W I N LED as an odd one 
out. Rather than wastefully use a further buffer driver device, an 
emitter-follower transistor T R 3 is used. 

The line requirements for the game are most economically met 
with two 8-bit registers, which we shall refer to as staticisers (or 
'stats') in this design, in order to distinguish them from micro
processor registers. I t will be recalled that the four lines of the 
A U T O N I M were labelled A - D for convenience, where the number 
of LEDs in each line was as follows: 

Line D 7 LEDs Now also to be known as Line 4 
Line C 5 LEDs Now also to be known as Line 3 
Line B 3 LEDs Now also to be known as Line 2 
Line A 1 LED Now also to be known as Line 1 

These can be combined in the two stats as follows: 

S T A T DA (IC8) combines Lines D and A. 
S T A T CB (IC9) combines Lines G and B. 

These stats are achieved by means of two CDP1852CE I /O ports; 
it will be recalled that these devices contain an 8-bit register, and 
that the three-state gates are always Open' when configured as 
output ports*. If any change in the display requirements occurs, the 
appropriate stat must be loaded with fresh data. 

The microprocessor must be able to read which mode the game is 
working in, i.e. I = man (manual) , or the machine skill level: 
expert/good/average/poor/child. This requires an input port or a 
simulated memory location. The latter is chosen, where the 
appropriate address decode (actually a partial decode), biases TR4 
on, causing M O D E to go low at the switch wiper. The selected line 
from the six available is therefore taken low during a read cycle, and 

* Refer to Chapter 23. 
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this is seen as a low on one of the data bus lines BUSO to BUS5. All 
the data bus lines have pull-up resistors, and this provides the load 
for TR4 collector. 

The C O S M A C microprocessor has a Q flip-flop which is program 
controllable. Since the M O V E indicator is the single indicator 
which is changed most frequently, this is ideal for signalling I /YOU. 
It may be seen that Q true signifies I PLAY, and that Q false 
signifies Y O U PLAY; inverter IC6c ensures the complementary 
displays. 

The only remaining audio/visual outputs are the sound outputs 
and the W I N indicator LED. Each of these has two possible states -
on or off- and is therefore readily controlled by means of a flip-flop. 
A 74LS76 dual J - K flip-flop provides this requirement (IC7), and 
associated gating allows the microprocessor to control the state of 
these two flip-flops. 

The C O S M A C microprocessor contains 16 scratchpad registers, 
and this is more than adequate operating RAM for this application, 
hence there is no need to provide additional external RAM (except 
for the program code during development). This would seem to rule 
out the use of the N lines, since I /O instructions are normally 
relative to memory, i.e. normally RAM. In fact this is not the case, 
for it is always possible to set up fixed store addresses in P R O M 
which will provide the necessary data output on the data bus, but in 
this example, even this is not necessary. The three N lines provide 
sufficient combinations to control the two flip-flops directly, and the 
data bus is not even required. Output instructions are used to 
control the flip-flop states, and such instructions must assume an 
output on the data bus; since this output is ignored, it really does not 
matter what memory address is specified! 

The N lines are each given a definite role in this case, as follows: 

N2 is designated signal line O P S T (output strobe), and must be 
made to go high for every output instruction. N l is designated 
the signal line SEL (select), and is used to select either the W I N 
flip-flop (IC7a) when true, or the sound flip-flop (IC7b) when 
false. N O is designated the SPEC (specify) signal line, and 
specifies the required state of the selected flip-flop. 

It therefore follows that particular output instructions have 
specific hardware functions, as follows: 

N2 
1 
1 
1 
1 

Nl 
1 
1 
0 
0 

NO 
1 
0 
1 
0 

Hardware function 
Set WIN 
Reset WIN 
Set ENSD 
Reset ENSD 

Instruction 
OUT 7 
OUT 6 
OUT 5 
OUT 4 
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Note that the K input must always be complementary to the J 
input, hence inverter IC6d. The strobe OPST is combined with the 
timing pulse TPB to provide an output enable strobe OPEN; the 
latter is ANDed with SEL to clock the WIN flip-flop, or with SEL 
(from the output of inverter IC6e), to clock the sound flip-flop. 

When the WIN flip-flop is set, Q goes low to produce WIN, which 
biases TR3 on, and hence illuminates the WIN LED. When the 
sound flip-flop is set, the ENSD (enable sound) signal goes true, and 
this enables a 555 timer connected as an audio oscillator in a similar 
fashion to that used in the random logic version. 

The 555 circuitry is the same as in Figure 19.17, although the 
control inputs vary. Transistor TR1 is used to provide the alternat
ive tones for the two players, and is therefore driven from the I 
PLAY line. Transistor TR2 is used to provide the alternative tone 
used during a win sequence, and is therefore driven from the WIN 
line. 

The inputs from the four line selection buttons (A-D) are 
conveniently connected directly to the four flag inputs of the 
microprocessor, and must therefore be polled by the program. Since 
a different routine will be entered in the event of a win, no confusion 
arises if the NEW GAME button also uses one of the same flag 
inputs, hence the economic version shown. It is true that the D line 
button would double as a NEW GAME selection, but who knows? 
and who cares! Never confuse the user with penny-pinching econo
mies. 

The next thing to consider is the address map for the system. This is 
shown in Figure 26.2. The memory address lines MA0-MA7 from 

o 

2 K - 1 
2K 

16K-1 

16K 

16K+1 

16K+2 

16K+3 
16K+4 
16K+5 

1 

64K-1 
64K 

Program 
area 

Not used 
(available for 
program expansion) 

STAT DA 0/P 

ST AT CB 0/P 

Dummy 0/P slot 

Not used 
MODE l/P 

Not used 

Hex address 
0000 

1 
1 
1 
1 
1 
1 
1 

07FF 
0800 

1 
1 
1 
1 
1 

3FFF 

4000 

4001 

4002 

4003 
4004 
4005 

FFFF 
10000 

Figure 26.2. Memory map of the 
system 
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the microprocessor output the high byte of the 16-bit memory 
address when TPA is true, hence latch IC2 latches the four bits 
required for this application: MA8, MA9, MA 10 and MA 14. These 
output memory address lines are combined with the low-order 
address byte on lines M A 0 - M A 7 when TPB goes true. The lines 
MAO-MA 10 are sufficient to address up to 2 K of memory. A space 
is then allowed in the map for possible memory expansion. If it is 
found that more than 2 K of programming space is required, it is 
only necessary to staticise M A l l in order to provide a doubling of 
available program memory (up to 4K) . Similarly, further memory 
up to the 16 K — 1 point can be addressed by also taking into 
account lines MA 12 and MAI3. The MA 14 line is used to locate the 
two external output ports, designated STAT DA and STAT CB. 
Note that a dummy output slot is provided for the O U T instruc
tions; any address would do, but this is tidier, and requires no actual 
memory! 

The memory address at 16 K + 4 is used as an input port to read 
the mode switch setting; 16 K + 4 is chosen because a partial decode 
is possible, decoding only two address bits: MA 14 and MA2. This 
leaves memory address 16 K 4- 3 unused, plus the addresses from 
16 K 4- 5 and above. 

Note that it is easy to express memory locations in terms of'K'. 
The third table in Chapter 8 shows the binary weighting of the 
address line bits, and a further table is provided later in the same 
chapter of hexadecimal/binary equivalents. The latter may be used 
to derive the hex address, if the full 16-bit binary address is broken 
down into four 4-bit bytes, where each byte is represented by a hex 
digit. Two examples are given below. 

15 14 13 12 

0 0 0 0 
0 

0 0 0 0 
0 

11 10 9 8 

1 0 0 0 
8 

0 1 1 1 
7 

7 6 5 4 

0 0 0 0 
0 

1 1 1 1 
F 

3 2 1 0 

0 0 0 0 
0 

1 1 1 1 
F 

2K in binary 
2Kin hex 
2 K — 1 in binan 
2 K - 1 in hex 

Memory addressing beyond the capacity of the memory address 
lines of the chip is simply achieved by decoding the more significant 
address lines and using this to enable appropriate chips via the chip 
enables. The lower significance address lines must always go to every 
memory device. 

Because the output ports are given discrete memory locations, 
they are treated as memory, and are written to by means of an 
MWR pulse. 
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This design assumes prior debugging of the software in RAM, and 
shows the final circuit where program is contained in PROM. Since 
it is no longer necessary for the user to manipulate the MPU, it is 
always required to start in the initialised state at power-on; this is 
ensured by applying a CLEAR pulse via pin 3 of the MPU. The 
XTAL and CK inputs show the connection of a crystal and 
associated components to provide the clocking requirements. 

Software design 

Firstly, let us consider the assembly language instructions needed 
for the I/O requirements. 

The instructions OUT 7-OUT 4 cause the N lines to output the 
requisite binary code which is combined with TPB to set or reset the 
two flip-flops. The memory byte addressed by the scratchpad 
register specified by X is output on the bus during this operation, 
but this is ignored. For convention, according to the memory map, 
the address selected for all these output instructions is X4002.* 

The instructions required to load the external stats must be write 
instructions, therefore the data to be written must first be loaded 
into the D register of the MPU. A STORE VIA N (STR) instruc
tion (see COSMAC assembly language in Chapter 24) can then be 
used to load the external stats from the D register, where the N 
register points to a scratchpad register which contains the address of 
the required stat (i.e. X4000 for STAT DA or X4001 for STAT CB). 

The instruction required to read the mode switch must be a read 
instruction, such as LDX; this requires that the X specified 
scratchpad register contains the address of the MODE I/P port, i.e. 
X4004. Such an instruction loads the D register. A further instruc
tion must then transfer this data word from the D register to R(B).l. 
This register is shown in the map of scratchpad registers presented 
in Figure 26.3. 

The MOVE indication is controlled by the two instructions: SEQ 
to set Q (for I PLAY), and REQ to reset Q (for YOU PLAY). 

The input flags are polled very conveniently by a SHORT 
BRANCH instruction such as Bl; this causes a program branch if 
the flag EF1 is asserted by pressing line button A, or no branch if the 
flag is not asserted. For software purposes, the lines are more 
conveniently referred to as lines 1-4, as mentioned earlier. 

Thus it is a simple matter to interface software and hardware. 
What must next be considered is what software registers or flags are 
required to achieve our aim. 

* Note that the prefix 'X' denotes a hexadecimal number. 
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Registers and flags 

Certain requirements for registers and flags will be known at the 
outset; others will become obvious as our involvement in the 
flowcharting or programming itself becomes deeper. The scratchpad 
register map shown in Figure 26.3 shows some of the requirements 
which can be established at an early stage. These are filled up from 
the bottom of the available space for convenience; certain of the 
upper registers are conventionally used for other purposes (e.g. 
program counter, stack pointer, etc.). 

15 14 13 12 11 10 9 5 4 3 2 1 0 

Main program counter 

Interrupt pointer (if required) 

K ^ ^ ^ 
- W W ^ 

fc-w 
F ^ F ^ ^ ^ ^ 

rCC 
L ^ T T O ^ X X X X V ^ : 

C^TVVVVVVVVVVX\X\! \XV^^ 
^ ^ ^ ^ ^ ^ ^ 

Delay counter 

b ^ - fc^^^ 
MISC. FLAGS i LINE 

4 I 3 | 2 | 1 
RND 1ST 

ST 
D4 

BIN D (7) 

B INB(3) 

REGCB 

.1 

Random 
counter | 

ODD FLAGS | 

D2 D1 C4 C2 C1 B2 B1 A1 

BINCI5) 

B I N A ( I ) 

REG DA 

.( ) 
Figure 26.3. Scratchpad register map 

The R(F) register serves to contain the 16-bits required by the 
external staticisers, where R(F) . l is REG CB, the data source for 
STAT CB, and R(F).0 is REG DA, the data source for STAT DA. 
These register bits must be set to a 0 for every LED that is required 
to be illuminated, bearing in mind that the buffer drivers are 
non-inverting, and must be low to drive the LEDs. 

Registers R(D) and R(E) are used to contain the binary values of 
the four line counters; the number in brackets indicates the max
imum count in equivalent decimal. Thus each time a line counter is 
decremented, the appropriate counter in these two registers is 
decremented. A separate REFRESH DISPLAY subroutine must be 
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written to examine the binary registers, to format this into the 
revised form for display in R(F) , and subsequently to output the 
content of R(F) to the external stats, via the D register. For example, 
the instruction G H I gets the high-order byte of the register specified 
by N and places it into the D register; thus if N is set equal to F (i.e. 
1510), this transfers REG CB to D. 

The so-called O D D FLAGS are the software equivalent of odd 
binary bits in the various lines, labelled AI , B1, etc., in the random 
logic version (see Figure 19.11). The MISC. FLAGS portion of 
R(C) . l contains four L I N E FLAGS, the random flag (RND) and 
the first start flag (1ST). Their purpose will be outlined in the 
following flowchart description. 

A R A N D O M C O U N T E R is provided in R(B); this counter is 
initialised at 4, and is decremented to 1, thereafter reverting to 4. 
This counter replaces the hardware equivalent in Figure 19.16 
(IC35), and is used to provide a random starting point for the 
program during the LINESCAN routine. A DELAY C O U N T E R is 
provided to generate a time delay, and effectively is the software 
equivalent of the low frequency clock previously used. 

Other flags or registers may be required. If they are, the 
C O S M A C still has plenty of empty scratchpad registers to choose 
from. 

Flowcharting 

The next step is to draw a high level flowchart of the program. This is 
a simple pictorial representation of the requirements, and is shown 
in Figure 26.4. At this stage, the flowchart must be kept as simple as 
possible. It may be seen that the basic concept of four main routines 
still applies, i.e. BUTSCAN, M A N D E C , LINESCAN and MAC-
DEC. A guided tour through the flowchart follows. 

After ENTRY, block 10 indicates that the 1ST START flag is set; 
this is the first initialising procedure. Block 20 then shows that other 
initialising steps must be taken, i.e. reset all the flags by setting flag 
words R(C).0 and R(C) . l to zero. The binary registers must then be 
initialised for the start counts, i.e. BIN D = 7 (R(D). l = 07), etc. 

Block 30 is then entered, and the 1ST START flag is com
plemented. This part of the program is subsequently passed through 
after a N E W G A M E has been called, and the 1ST START flag has 
decided which player starts play; this action of complementing it 
gives players alternate chances of starting. Block 40 calls up the 
R E F R E S H DISPLAY subroutine, which formats R(F) from R(D) 
and R(E) , and outputs data to STAT DA and STAT CB, to give the 
correct line displays. 
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Set 1ST START 
flag 

Complement 
1ST START flag 

REFRESH 
DISPLAY 

Set MOVE F/F 
to 1ST START 
flag 

NEXT MOVE 
routine 

(You play) 

Man 
plays 

BUTSCAN 
routine 

MANDEC 
routine 

MACDEC 
routine 

A A 

WIN 
routine 

New game selected 

Figure 26.4. High level flowchart of AUTONIM procedure 

256 



Block 50 reads the mode switch by means of a read instruction, 
and stores this in the M O D E scratchpad register byte. Block 60 
makes the move flip-flop (i.e. the Q flip-flop) equal to the 1 ST START 
flag; this sets up for the correct player at the start of play. 

From block 70 onward, we will have entered that portion of the 
program which is looped through many times during a single game; 
for every new move, the program returns to block 70. The block 
itself complements the Q flip-flop, thereby setting up for the 'other' 
player's move. Block 80 is a decision, asking if the move flip-flop is 
set or not. If the answer is no, this indicates the I PLAY situation, or 
if it is yes, this indicates the Y O U PLAY situation. 

Block 90 asks if the mode is manual , and if the answer is yes, it 
diverts the program to BUTSCAN; if not, it enters the machine's 
reply sequences. 

Thus block 130 is entered if a manual move is required, and a 
routine called BUTSCAN is employed. This is the software equiva
lent of BUTSCAN in the random logic design, and is responsible for 
polling the input flags in order to locate a depressed line button. 
Once a button is found depressed, the software must lock onto this 
button, ignoring any others. 

The program then passes into block 140, and the MANDEC 
routine, to decrement the appropriate line counter for as long as the 
line button is depressed, but stopping at zero. This routine calls 
upon a T A K E O N E subroutine to reduce the line counter at a set 
rate, and to provide the audible tone that goes with it, and the 
REFRESH DISPLAY subroutine* to update the line display via the 
stats. 

The alternative path for the machine's play is through Block 100, 
a M A C H I N E S K I L L routine, which examines the M O D E register, 
and establishes whether a hedge move is required or not; this must 
make use of the R A N D O M C O U N T E R . Block 110 is then entered 
to provide the software equivalent of LINESCAN, finding a suitable 
line to take from, and block 120 is the MACDEC routine, to 
decrement the chosen line. As before, the T A K E O N E subroutine is 
called upon. 

After the machine or player's move, block 150 is entered, to check 
if all the lines are zero. If they are not, N E X T M O V E takes the 
program back to block 70. If all lines are zero, the W I N routine is 
entered. This makes use of the DELAY subroutine to provide the 
time delay associated with the flashing W I N LED and the win 
tones. The program loops within this routine until NEW GAME is 
selected, whereupon it returns to block 20. 

Unfortunately, space does not permit much more analysis of the 
software, but example flowcharts are provided for the BUTSCAN 
* Called up by the TAKE ONE subroutine. 257 



and M A N D E C routines, plus the T A K E O N E and DELAY 
subroutines. These take the flowcharting down a level in detail, but 
they still do not represent equivalence with single assembly lan
guage instructions. 

If the reader cares to work through these additional flowcharts, he 
will begin to understand the techniques necessary. The following 
brief notes associated with these flowcharts may help. 

B UTS CAN routine (Figure 26.5) 

Each input flag is tested in turn in loop fashion until one is found set. 
When one is found set, a check is made to see if the relevant line 
counter is zero; if it is, this button is ignored, and looping continues, 

From NEXT 
MOVE routine 

Figure 26.5. Flowchart of BUTSCAN routine 

but if not, a L INE FLAG is set as a line indicator to other routines, 
and the routine is exited from one of four different exits. Different 
exits are used since the separation established according to line 
selected is of use in the following MANDEC routine. 

MANDEC routine (Figure 26.6) 

The appropriate line counter is decremented, the T A K E O N E 
subroutine is entered to refresh the line display and control the 
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Decrement 
LINE CTR1 

f Entry 4 J 

Decrement 
LINE CTR3 

Decrement 
LINECTR4 

T 
Reset all 
LINE flag 

Figure 26.6. Flowchart of MANDEC routine 

tones, and then two checks are made. The first checks if the line 
counter is now zero, and if so prepares for exit; the second checks if 
the input flag is still set, signifying that the button is still depressed, 
and if so, the program loops back to take out a further LED. If the 
line counter is zero, or if the line button is no longer depressed, all 
the line flags are reset, and the routine is exited. 

TAKE ONE subroutine (Figure 26.7) 

This subroutine calls up two other subroutines, namely REFRESH 
DISPLAY and DELAY. The sequence is as follows. REFRESH 
DISPLAY is called to reformat the R(F) registers and to refresh the 
hardware staticisers. Enable sound sets the sound flip-flop, which 
then stays on. The RANDOM FLAG is set, causing the RANDOM 
COUNTER to be 'rotated' within the DELAY subroutine. The 
DELAY subroutine then ensures that the tone is sounded for a 
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Entry 

REFRESH 
DISPLAY 

Enable 

Set RND 
flag 

DELAY 

Disable 
sound 

~ T ~ 
DELAY 

Figure 26.7. Flow
chart of TAKE ONE 
subroutine 

reasonable time, before it is disabled. A further delay ensues to 
provide a gap between tones, and the subroutine is then exited, 
return being made to the next block in the calling routine. 

DELAY subroutine (Figure 26.8) 

This subroutine provides a time delay by a standard looping 
technique. A counter is initially loaded with a value, and the 
subroutine then continues to decrement the counter and loop until 
the counter reaches zero. The time delay expires when the counter 
reaches zero. 

This particular delay subroutine also incorporates the random 
counter routine, providing that the RND flag is set before entry. If 
this flag is set, it is 'rotated' from 4 down to 1, and then back to 4. If 
the RND flag is not set, a dummy time load branch causes no action, 
but takes the same time to pass through as does the branch rotating 
the random counter; this maintains the same time interval through 
the routine whether the RND flag is set or not. 

After the random counter section of the subroutine, each line flag 
is checked; one (and only one) will have been set by the BUTSCAN 
routine. When the set line flag is found, the related input flag is 

s 
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( Entry J 

Load 
DELCTR 

L . _ -

I/P 2 
check | 

..L_.._n 

Figure 26.8. Flowchart of DELAY subroutine 
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checked, to see if the button is still depressed; this technique means 
that other buttons are ignored. If the button is still depressed, no 
action occurs, but if it is no longer pressed, the RND flag is reset. 
This ensures that the R A N D O M C O U N T E R stops as soon as the 
line button is released, and introduces a random element into where 
the R A N D O M C O U N T E R stops. The R A N D O M C O U N T E R is 
subsequently used by the LINESCAN routine to establish where it 
starts its scan for a suitable line, and thereby maintains the random 
line selection previously achieved with the random logic. 

Since the delay subroutine must loop many times to provide the 
required delay, it is most important that if the path through the 
routine differs in any way, it must still have the same number (and 
type) of instructions, so that it takes the same time to execute. Hence 
the dummy time load and no action boxes, which ensure that all 
routes through the subroutine are always equal. 

Conclusion 

Figures 26.5 to 26.8 represent flowcharts at one level lower than the 
high level flowchart shown in Figure 26.4; each box on the high level 
flowchart can be broken down into similar lower level flowcharts. 

It is then possible to break each of these lower level flowcharts 
into assembly language level flowcharts, although many programm
ers forego this stage and go straight to writing the code. If you have 
any problems, it is always sensible to draw flowcharts representing 
every instruction. 

Remember that the hardware design assumes that the software 
has been proven and committed to PROM. If this is not the case, 
you must bear in mind the added complications associated with a 
microprocessor design: 

(a) You need RAM large enough to take the entire program for 
software development. (Later replaced by PROM.) 

(b) You need greater control of the MPU for program development. 
(c) You need a tape recorder interface for such a long program, 

during development. 
(d) You need a PROM programmer to commit the proven program 

to PROM - or to provide anyone offering a programming 
service with an appropriate data input (e.g. punched tape or 
marked cards). 
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PostScript 

It is hoped that this practical approach to random logic design is 
adequate to give the reader sufficient confidence to embark upon his 
own design projects. Always remember to plant acorns at first, and 
leave the large oaks until you have gained more experience. Design, 
like any other creative pursuit, requires considerable practice. You 
are sure to learn a lot from your own mistakes. 

Too much ambition in the early stages can lead to great dis
appointment. Remember the suggested limit of about ten integrated 
circuits until you have had a number of successes. After that, it is 
still wise to try to break larger designs down into smaller sized 
modules which can be independently tested. 

The part of the book given over to microprocessors is only 
intended to inform the reader what kind of options they offer him. 
Do not at tempt to design the hardware for a microprocessor system 
until you have gained considerable experience in conventional 
random logic system. If you wish to experiment with micro
processors before then, restrict yourself to the ready-made micro
processor systems. 

If you failed to completely understand the design examples 
presented in Chapters 18 and 19, it is advisable to reread them until 
you do. If this proves a struggle, it will be a worthwhile struggle, for 
real learning will be the final reward. Suddenly everything will gel. 
Everything you need is within the covers of this book. Once you 
understand these designs, your knowledge will be adequate for you 
to undertake your own simple design projects with confidence. 

The appendices which follow should be of great assistance when 
undertaking your own designs, but it is strongly recommended that 
you supplement this information by more detailed device data 
published by one of the larger manufacturers. It is wise to stick to 
T T L logic until you are fairly experienced. Probably the most useful 
book to start with is: 'The T T L Data Book for Design Engineers', 
published by Texas Instruments. 
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Appendices — brief details 

Appendix A - abridged TTL data 
Appendix B - selected TTL pinout details and supply currents 
Appendix C - electrical charactenstics 
Appendix D - ASCII code 
Appendix E -a note on drawing standards 

The following appendices are provided in order that the prospective 
designer may have enough data to enable him to attempt simple 
design exercises. It should be noted that whilst all device data 
included is as accurate as possible, no responsibility can be taken by 
the publishers or author for any errors therein. Whilst different 
manufacturers generally attempt to produce directly compatible 
devices where these are given the same numerical identification, this 
must not be assumed. The data which follows is not related to any 
single manufacturer, therefore the user should check manufacturers' 
data before using any of the devices included. The purpose of each 
appendix is outlined below. 

Appendix A - abridged TTL data 

This appendix provides pinout details for some of the most common 
TTL devices, plus more detailed information on certain devices. 

Appendix B - selected TTL pinout details and supply currents 

This appendix provides pinout details and information on device 
supply currents for most of the TTL devices mentioned in this book. 
Space restrictions necessitate that this information is presented in 
tabular form. 

267 



Appendix C- electncal charactenstics 

This appendix includes absolute maximum ratings and representat
ive characteristics for 54/74 series TTL devices and 4000 series 
COS/MOS devices. Also included is information on the switching 
characteristics of TTL flip-flops. 

Appendix D - ASCII code 

This appendix provides details of the ASCII code. 

Appendix E-a note on drawing standards 

This appendix provides information on various drawing standards 
concerned with logic symbols. 
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Appendix A — abridged TTL data 

This appendix contains pinout information on a selection of the 
most commonly used 74 series T T L devices. These devices are 
allocated reference numbers (e.g. Ά 2 ' ) for use within this book. 
Text references of the form: Ά ρ ρ . A2' refer to the reference numbers 
used within this particular appendix. The divisions used are as follows: 

A 
B 
C 
D 
E 
F 
G 
H 

J 
K 
L 

Common gates, page 271 
Special gates, page 272 
Flip-flops, page 274 
Registers, page 275 
Counters, page 276 
Decoders, page 278 
Data selectors, page 279 
Comparator, page 280 
Monostable multivibrators, page 281 
555 type timer, page 282 
Memory, page 283 

The devices on a particular page are ordered according to usage 
rather than in numerical order. The following table lists all the 
devices in numerical order, and provides their reference number 
within the appendix. 

Each device is also listed with a cost factor (C.F.). The designer 
should always bear in mind the cost of the devices he is using, in 
order that the design may be cost-effective. In order that this 
information may be provided in a manner that will be universally 
applicable despite different currencies and inflation, the C.F. rating 
is a relative indication. The cost factors are based upon the cost of 
the most common device of them all - the 7400 quad 2 I /P NAND 
gate, which is normalised such that its C.F. is 1.0. All other prices 
are relative to this price. 

The cost factors were compiled at the time of writing, and should 
not differ greatly between different suppliers, or at different times. 
This information is only provided as a guide. By checking the 
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current price for a 7400 device, the approximate cost for another 
device may be obtained by multiplying this price by the appropriate 
C.F. For example, if the price for a 7400 is 10p in the U.K., a 7404 
(App. A2) should cost around 13p. 

Numerical listing of devices included in this appendix 

Type 
555 
2114L 
2708 
7400 
7402 
7403 
7404 
7405 
7408 
7410 
7414 
7416 
7417 
7420 
7430 
7432 
7451 
7474 
7475 
7476 
7485 
74121 
74122 
74125 
74LS125 
74126 
74LS126 
74LS138 
74LS139 
74150 
74153 
74154 
74157 
74190 
74191 
74196 
74197 
74198 
74199 
74LS240 
74LS241 
74273 
74279 

Appendix ref. 
K 
L2 
LI 
Al 
A6 
B6 
A2 
A2 
A7 
A3 
A4 
B2 
A2 
A5 
Bl 
A8 
B3 
Cl 
C3 
C2 
HI 
Jl 
J2 
B7 
B7 
B7 
B7 
Fl 
Fl 
G3 
G2 
F2 
Gl 
E3 
E3 
El 
El 
D3 
D2 
B8 
B8 
Dl 
C4 

Description 
Timer 
1024 X 4 bit static RAM 
1024 X 8 bit static EPROM 
Quad 2 I/P NAND gate 
Quad 2 I/P NOR gate 
Quad 2 I/P NAND gate (O/C) 
Hex inverter 
Hex inverter (O/C) 
Quad 2 I/P AND gate 
Triple 3 I/P NAND gate 
Hex Schmitt inverter 
Hex buffer inverter (O/C) 
Hex buffer (O/C; non-inverting) 
Dual 4 I/P NAND gate 
8 I/P NAND gate 
Quad 2 I/P OR gate 
Dual AND-OR-INVERT gate 
Dual D-type flip-flop 
4-bit bistable latch 
Dual J-K type flip-flop 
4-bit magnitude comparator 
Monostable multivibrator 
Re-triggerable monostable multivibrator 
Quad bus buffer (L 3-S) 
Quad bus buffer (L 3-S) 
Quad bus buffer (H 3-S) 
Quad bus buffer (H 3-S) 
3-8 decoder 
2-4 dual decoder 
16-1 line data selector 
Dual 4-1 line data selector 
4-16 decoder 
Quad 2-1 line data selector 
Decade counter (sync, up/down) 
Binary counter (sync, up/down) 
Presettable decade counter 
Presettable binary counter 
8-bit bidirectional shift register 
8-bit single direction shift register 
Octal buffer/line driver/receiver (INV L 3-S) 
Octal buffer/line driver/receiver (NON-INV H/L 3-S) 
Octal D-type flip-flops 
Quad S R latch 
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COMMON GATES 

A1 C.F. 1.0 

V r r 4B 4A 4Y 3B 3A 3Y 

Γ Γ Ώ Γ Τ ^ 
1A ' 1B 1Y 2A 2B 2Y GND 

7400 QUAD 2 l/P NAND 

A2 C.F. 1.3 
1.6 
2.7 

V c c 6A 6Y 5A 5Y 4A 4Y 

y fc>°i &» 

1A 1Y 2A 2Y 3Α 3Υ GND 

7404 HEX INVERTER 
7405 HEX INVERTER (0/C) 

For non-inverting buffer 
with o/c use 7417 

A3 C.F. 1.4 

1C 1Y 3C 3B 3A 3Y rasaassai 

njJl jJÜJüJljJüJUr 
1A 1B 2A 2B 2C 2Y GND 

7410 TRIPLE 3 l/P NAND 

A4 C.F. 3.7 

6A 6Y 5A 5Y 4A 4Y 

r f ^ M R R R l · 

L-LMüMüMür 
1A 1Y 2A 2Y 3A 3Y GND 

7414 HEX SCHMITT INVERTER 

A5 C.F. 1.6 

2D 2C NC 2B 2A 2Y 

r J^ lRMJ^J^^ 

LJliJIiJlAfljJ^^ 
1A 1B NC 1C 1D 1Y GND 

7420 DUAL 4 l/P NAND 

A6 C.F. 1.1 

V c c 4Y 4B 4A 3Y 3B 3A 

rjESRSSMH-i 

ίΗίΚΐΚΐΚλΗΐΚίΚιΤ 
1Y 1A 1B 2Y 2A 2B GND 

7402 QUAD 2 l/P NOR 
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COMMON GATES (contd) 

A7 C.F. 1.6 
4B 4A 4Y 3B 3A 3Y 

JTOlRRRl· 

1A 1B 1Y 2A 2B 2Y GND 

7408 QUAD 2 l/PAND 

A8 C.F. 2.7 

V c c 4B 4A 4Y 3B 3A 3Y 

HlHzHiHiHiMüF 
1Y 2A 2B 2Y GND 

7432 QUAD 2 l/POR 

B1 C.F. 1.6 
SPECIAL GATES 

B2 

VCC NC H G NC NC Y 

A B C D E F GND 

7430 8 l/PNAND 

C.F. 2.5 

VCC 6A 6Y 5A 5Y 4A 4Y 

y w y 
ΙΖΗΙ]ΤΖΠΞΠ3Ϊ3ΪΙΓ 

1A 1Y 2A 2Y 3A 3Y GND 

7416 HEX BUFFER INVERTER 
(O/C) 

B3 C.F. 1.5 B4 C.F. 3.1 
VCC 1C IB 1F IE 1D 1Y CC 1C 1Y 3C 3B 3A 3Y 

LlJlLJl2J1jJ1jJi^^ 
1A 2A 2B 2C 2D 2Y GND 

7451 DUALAND-OR-INVERT 

n j J I j J I j J I j i ^ 
1A 1B 2A 2B 2C 2Y GND 

7427 TRIPLE 3 l/P NOR 
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SPECIAL GATES (contd) 

B5 C.F. 3.1 

VCC 4B 4A 4Y 3B 3A 3Y 

^jt iJljJljJliJI^^ 
1A IB 1Y 2A 2B 2Y GND 

7486 QUAD 2 l/PXOR 

B6 C.F. 1.3 

VCC 4B 4A 4Y 3B 3A 3Y 

1A 1B 1Y 2A 2B 2Y GND 

7403 QUAD 2 l/PNAND(0/C) 

B7 C.F. 4.5 
VCC 4C 4A 4Y 3C 3A 3Y 

,-RraRRranm. FW 
„."ft. ["ft 

1C 1A 1Y 2C 2A 2Y GND 

74125 
74LS125 
7 4 L | 6 QUAD BUS BUFFER (H 3-S) 

QUAD BUS BUFFER (L 3-S)* (type shown) 

B8 C.F. 15.0 
VCC 2G 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 

Era 
1G 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND 

74LS240 OCTAL BUFFER/LINE DR/RX 
(INVERTED L 3-S)* (type shown) 

74LS241 OCTAL BUFFER/LINE DR/RX 
(NON-INVERTED 3-S WITH 
x 4 = L & x 4 = H CONTROL) 

3-S signifies 3-state outputs; HorL indicates 
requirement for control output to enable gates. 
The 74LS241 has four gates with each form of control. 
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C1 C.F. 2.7 

FLIP-FLOPS 

C2 

VCC 2CL 2D 2CK 2PR 2Q 2Q 

ιΖ]^]ΐΤΐ3ΐι]ΤΐΤΤΖι 
1CL 1D 1CK 1PR 1Q 10" GND 

7474 DUAL D-TYPE FLIP-FLOP 
WITH PR & CL* 

C.F. 2.9 

IK 1Q 1Q GND 2K 2Q 2Q 2J 

TZJTDTII^JGTEJLJIZI 
1CK 1PR 1CL U V c c 2CK 2PR 2CL 

7476 DUAL J-K TYPE FLIP-FLOP 
WITH PR & CL* 

C3 C.F. 3.5 

1Q 2Q 2Q 12 GND 3Q 3Q 4Q 

rJ^RFU^RRRFL 
ID Qj 

G 

I 
ID QH 

1Q 1D 2D EN V c c 3D 4D 4Q~ 
3-4 

7475 4-BIT BISTABLE LATCH 

C4 C.F. 10.0 

VCC 4S 4R 4Q 3S2 3S1 3R 3Q 

1R 1S1 1S2 1Q 2R 2S 2Q GND 

74279 QUAD SR LATCH 

* Unused PR or CL inputs should be held high 
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REGISTERS 

DI C.F. 24.0 
VCC 8Q 8D 7D 7Q 6Q 6D 5D 5Q CLOCK 

H Q D M HD QH HQ DH H D QH 

ί II 13 
(~iü_üh πυ η n u n nu u n 

CLEAR 1Q 1D 2D 20. 3Q 3D 4D 4Q GND 

74273 OCTAL D-TYPE FLIP-FLOPS 
WITH CL 

D2 C.F. 13.6 
SHIFT INPUT INPUT INPUT INPUT 

VCC LOAD H QH G QG F QF E QE CLEAR CLOCK 

rn I I I A 
SHIFT H Qu G Q r F Qp E QpCLEAR 
LOAD H ü I 

A QA B Qn C Qc 

CLOCK 
^ INHIBITl 

K J INPUT Q. INPUT QR INPUT Q_ INPUT QnCL0CK GND 
v ^ ' A A B B C C D U INHIBIT 

SERIAL INPUTS 

74199 8-BIT SINGLE DIRECTION 
SHIFT REGISTER 
(PARALLEL IN & OUT) 

D3 C.F. 13.6 
SHIFT 
LEFT 
SERIALlNPUT | N R UT , N P UT | N P UT 

VCC ST INPUT H QH G QG F QF E QE CLEAR 

TZE. I I I I S1 L H Q H G Q G F QF E QE 

SO CLEAR 

R A Q. B QR C Q r D Q n CK 

I . I . I . I . I . I . I . I . I . I 
SO SHIFT INPUT Q. INPUT QR INPUT Q r INPUT QD CLOCK GND 

R.GHT A A B C D 

74198 8-BIT BIDIRECTIONAL 
SHIFT REGISTER 
(PARALLEL IN & OUT) 
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COUNTERS E 

E1 
DATA INPUTS C |_ 0 CK 

r J ^ R T ^ H M F U 
Σ. ICLEARQn D B Qo 

COUNT/LOAD 

I,,I,,I,,I,,? 
njiUJliJUtiitirLir 

A . QA CM GND 
LUAU ^ * 

DATA INPUTS g 
υ 

PRESETTABLE DECADE OR BINARY 
COUNTERS/LATCHES 
Performs BCD, Bi-Quinary or 
Binary counting 

C.F. 9.0 
8.0 

74196 DIVIDE BY 2 (CLOCK 1 - QA) 
& 
DIVIDE BY 5 (CLOCK 2-Q D ) 
(LINKED FOR DIVIDE BY 10) 

74197 DIVIDE BY 2 (CLOCK 1 - QA) 
& 
DIVIDE BY 8 (CLOCK 2-Q D ) 
(LINKED FOR DIVIDE BY 16) 

E2 C.F. 9.0 

RIPPLE 
CARRY 

V cc OUTPUT QA QB Qc QD * T L 0 AI 

Ί^Γ 
UA UB RIPPLE QÄ QR 

CARRY 
OUTPUT 
CLEAR 

CK Λ 

f ' ..' ..' . . ι ~τ 
ηΕΤΘΐ3Ί3^ 
CLEAR CLOCK A 

74160 
74161 
74162 
74163 

COUNTER 
TYPE 

DECADE 
BINARY 
DECADE 
BINARY 

CLEAR 
TYPE 

ASYNC 
ASYNC 
SYNC 
SYNC 

SYNCHRONOUS 4-BIT COUNTERS 
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COUNTERS (contd) E 

E3 C.F. 12.0 
11.0 

INPUTS OUTPUTS 

DATA DATA 
D 

DATA R I P P L E ^ 
VCC A CLOCKCLOCKsJLOAD C D 

\ y \ y 
. RIPPLE 
' CLOCK Έ 

I 9 1 I 
n^TlJJljJtiJlLlli^ 

DATA QR QA EN DOWN/Qc QD GND 

INPUT OUTPUTS INPUTS OUTPUTS 

SYNCHRONOUS UP/DOWN COUNTERS 

74190 DECADE COUNTER 
74191 BINARY COUNTER 

ASYNCHRONOUS LOAD INPUT 
POSITIVE-EDGE TRIGGERED 
MAX/MIN FOR OVERFLOW/UNDERFLOW 
RIPPLE CLOCK FOR OVERFLOW/UNDERFLOW 

SAMPLE WAVEFORMS FOR 74191 BELOW 

CLOCK I 

MAX/MIN " 

RIPPLE CLOCK_, 
Count |13 

JJJ 
LOAD 

"7~U" 
14 | 15 | 

1 |2l I 2 2 | 1 | 0 | 15 | 14 | 

- * 4 - * Inhibit - ^ [«*— 



(LNId)O 
( α Nid) g ι 

(9 Nid) 9 
(3 Nid) L 

;nd;no p9;o9|8S 

1 1 Ί Ί 
H H H H 
H Ί H 1 
H i l l 
v a o α 

saidiAivxa 

indinOdONOHD313S 
AHVNia 3dV SindNI 0 tf Ό '3 V 

Moi S309 ind ino 
3NO Λ1ΝΟ 'Q3iaVN3 N3HM 

UZ 

d3aOD3Q9L^i7 P91PL 

r J ^ l F U ^ ^ 
A A A A A A A A A A 

| 0 1 6 8 Ζ 9 9 * ε 2 ΐ 

i-du ob-l 

| 21 εΐ K 91 ID 2D 0 0 9 V 

Y Y Y Y Y Y 1 1 1 1 
V „ K ; 3 3 , 

601 dO Ζά 

H3QOD3a HDV3 

X 
X

 
X

 
X

 _
i 

X
 

X
 

X
 

-I
 

X
 

X 
X

 
_
l 

X
 X

 

X 
-1

 
X

 
X

 X
 

CA 2A Ι Α 0Λ 

s j n d m o 

H H 

1 H 

H ~1 

1 1 

X X 

v a 

133|3S 

1 

1 

1 

1 

H 

D 
aiqeug 

s indu i 

y3QOD3Q ινηα P «- z βεisiw. 

QND'CAl 2AI ΙΛΙ ΟλΙ 91 VI Dl 

A A A A T T 
CA 2A LA OA J 

i 2A IA OA 

9 ? V I 

εΑ2 2A2 IA2 0A2 92 V2 D2 3 D . 

s ind inov iva 13313s 3 1 9 V N3 

82D + V2D = 2D. 

Π Η Η Η Η Η Η Η 

Η Π Η Η Η Η Η Η 

Η Η Ί Η Η Η Η Η 

Η Η Η Ί Η Η Η Η 

Η Η Η Η Ί Η Η Η 

Η Η Η Η Η Ί Η Η 

Η Η Η Η Η Η Ί Η 

Η Η Η Η Η Η Η Ί 

H H H H H H H H 

H H H H H H H H 

Lk 9A 9A frA ε Α 2A I A OA 

s i n d j n o 

H H H 

1 H H 

H 1 H 

Ί 1 H 

H H 1 

1 H 1 

H 1 1 

Ί "1 Ί 

X X X 

X X X 

v a D 

± D 3 T 3 S 

1 H 

"1 H 

1 H 

1 H 

1 H 

1 H 

Ί H 

1 H 

X 1 

H X 

. 2 D I D 

3 H 8 V N 3 

s indu| 

99 
99 dD 

y3aoD3Q8^-e se is in 
i n d i n o 318VN3 1D313S 

QND Lk ID fl2D V2D Q 8 V 

ΓΓΓΤ M ID 82D V2D D 

9A frA εΑ 2Α lk OA 

V V ϊ ϊ ϊ Ϊ 
, 9A 9A frA εΑ 2Α IA OA, DO. 

s±ndino v iva 

Id 

d suaaooaa 



DATA SELECTORS 

G1 

G 

C.F. 6.4 

o INPUTS OUTPUT INPUTS OUTPUT 

VCC cö f4 A 4 B ' 4Y f3 A 3 B ' 3Y 

A I I I I I 
G 

S 

I 1A 

4A 

1B 

4B 

1Y 

4Y 

2A 

3A 

2B 

3B 

3Y 

2Y J 

I I I I I „ l 
πΐΛιΙΙιΓΙιΓΙΪΛίΙΙΐΓΐΛΓ 
SELECTvIA I B , ,2A 2B . 2Y GND 

INPUTS INPUTS 
OUTPUT OUTPUT 

INPUTS 

STROBE 

H 
L 
L 

SELECT 

X 
H 
L 

Output Y 

L 
AS B l/P 
AS A l/P 

X = Don' t care 

74157 QUAD 2 -> 1 LINE DATA SELECTOR 

G2 

DATA INPUTS 
VCC 2G SELECT ^ 2Y 

a i " i " i " r 
2C3 2C2 2C1 2C0 2Y 

H 2 0 R ¥ A "A m 1C3 1C2 1C1 ICQ 

uZFüHlnifl^^ 
STROBE B ./OUTPUT GND 

SELECT DATA INPUTS 

IF STROBE IS HIGH, OUTPUT Y IS LOW 

IF STROBE IS LOW, OUTPUT Y IS AS 
DATA INPUT SPECIFIED BY BINARY 
SELECT INPUTS (SEE BELOW) 

C.F. 6.4 

Select inputs 

B 

L 
L 
H 
H 

A 

L 
H 
L 
H 

Selected data l/P 

CO 
C1 
C2 
C3 

74153 DUAL 4 ^ 1 LINE DATA SELECTOR 
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DATA SELECTORS (contd) G 

G3 C.F. 11.8 
DATA INPUTS DATA SELECT 

A t u ^ % ^ i r J i U % ^ l fofolfo-, 

L±TjTTjptTT7Tf2rnT^̂  
DATA INPUTS 

_ W D GND 
O OUT DATA 
H PUT SELECT 

IF STROBE IS HIGH, OUTPUT W IS HIGH 
IF STROBE IS LOW, OUTPUT W IS AN 
INVERSION OF THE DATA INPUT 
SPECIFIED BY THE BINARY SELECT 
INPUTS. 
EXAMPLES 

D C B A 
L L L H 
H L H L 

Selected input 
KPIN7) 
10 (PIN 21) 

74150 1 6 ^ 1 LINE DATA SELECTOR 

COMPARATOR 

H1 C.F. 10.0 
DATA INPUTS 

V c ĉ A 3 B2 A2 A1 B1 AO Β θ " 

HIir^U^lRRRRrTU 

-L· 
B3 

DAT/ 

I I I I I I 
1 A3 B2 A2 A1 B1 AO 1 

-1 B3 Bui 
A < B A = B A > B A > B A = B , A < B 

| IN IN IN O UT OUT OUT | 

1 1 1 1 1 1 
JbJüJüJlirLirLLn. 

A < B A = P A > B A > B A = B A < B G \ % _ >» ^ ' 
ND 

INPUT CASCADE 
INPUTS 

1 Comparing 
inputs 

A3, B3 

A3 > B3 

A3 < B3 

A3 = B3 
A3 = B3 

A3 = B2 

A3 = B3 

A3 = B3 

A 3 = B 3 

A3 = B3 

A3 = B3 

A 3 = B 3 

A2, B2 

X 

X 

A 2 > B 2 

A 2 < B 2 

A 2 = B 2 

A 2 = B 2 

A 2 = B 2 

A 2 = B2 

A 2 = B 2 

A2 = B2 

A2 = B2 

A 1, B1 

X 

X 

X 
X 

A1 > B 1 

A1 <B1 

A1 = B1 

A1 = B1 

A1 = B1 

A1 = B1 

A I = B1 

AO, BO 

X 

X 

X 

X 
X 

X 

A 0 > B 0 

A 0 < B 0 

A 0 = BO 

Α 0 - Β 0 

A 0 = B 0 

Cascading 
inputs 

<\> B 

X 

X 

X 

X 

X 

X 

X 

X 

X 
H 

L 

A < B A 

X 

X 

X 
X 

X 

X 

X 

X 

X 

H 

L 

= B 

X 

X 

X 
X 

X 

X 
X 

X 

H 

L 

L 

Outputs 

A > B 

H 

L 

H 

L 

H 

L 

H 

L 

L 

L 

H 

A < B A 

L 

H 

L 

H 

L 

H 

L 

H 

L 

L 

H 

= B 

L 

L 

L 

L 

L 

L 

L 

L 

H 

L 

L 

7485 4-BIT MAGNITUDE COMPARATOR 
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MONOSTABLE MULTIVIBRATORS J 

J1 Limits: RTl.4kS2 tu 40kΩ C.F. 3.0 

R int = 2k« 

VCC MC NC R/c"cextRext NC j 

LÜliJlilliiliJlirLj 
Q NC A1 A2 B Q GND 

Inputs 

AI A2 B 

L X H 
X L H 
X X L 
H H X 
H i H 
♦ H H 
♦ ♦ H 
L X t 

| X L ♦ 

Outputs 

Q Q 

L H 
L H 
L H 
L H 
Π. 1_T 
n u 
n u 
J-L U 
J"L T_T 74121 MONOSTABLE MULTIVIBRATOR 

J2 x + ! C.F. 4.5 

VCC R/C R/C NC Cext 

rJ^HRJTORRm 

uJI^JliJliJliJliJl^r 
A1 A2 B1 B2 CLR Q GND 

Clear 

L 

X 

X 

X 

H 

H 

H 

H 

H 

H 

H 

♦ 
♦ 

A1 

X 

H 

X 

X 

L 

L 

X 

X 

H 

♦ 
♦ 
L 

X 

Inpu 

A2 

X 

H 

X 

X 

X 

X 

L 

L 

♦ 
i 
H 

X 

L 

ts 

B1 

X 

X 

L 

X 

t 
H 

t 
H 

H 

H 

H 

H 

H 

B2 

X 

X 

X 

L 

H 

t 
H 

t 
H 

H 

H 

H 

H 

Outputs 

Q 

L 

L 

L 

L 

J-L 

_TL 

J~L 

J~L 

J~L 

J"L 

J"L 

J-L 

J "L 

Q 

H I 
H 

H 

H 

"LT 

T_T 

"LT 

"i_r 
"LT 

T_r 
i_r 
i_r 
i_r 

tw(out) = 0.3 Cext RT for Cext > 1000 pF 
SEE BELOW IF CEXT «1000 pF 
LIMITS:RT5knto50kn, 

Cext no restriction 

7 000 

4 000 

2 000 

1 000 
700 

400 

200 

100 
70 

20 

ivcc = 
. t A=25 

5V'f i 

a n 

JHT 

τΓΐΓΤ3 
H f l ^ 

δξ 

v 

/ 

^ 

\ / 

k ßR 
r k R 

<R 

y 
/ 
/ 

T = 

t 

/ 

5 

Ίκί! 

jknf f i 
T = 30kfiffi 

T= 10kn|j[ 
T = 

U 
5 

u 
<Ω ΙΙΓ 
I Ulli 

74122 

20 40 100 200 400 1000 
iming capacitance-pF 

RE-TRIGGERABLE MONOSTABLE 
MULTIVIBRATOR 
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SAMPLE 
THRESHOLD" 

TRIGGER' 

Ji. 

i~" | ' S I Output 

Π 

555 TYPE TIMER 

+vcc 

DO 4-

K 

C.F. 2.0 

Symbol used in text 
(See page 50) 

R Comp A 

ΠΤΠ 

£>HiJ 

( K ) Discharge 
\ K J transistor 

ΠΤΠ 

Block diagram of ti 

Free running frequency 

ASTABLE 
MULT IV IBRATOR 

See also page 52 
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r,p -TL 

I W 
O 0 'KKF1 

0.001 r z Y i 

V\ 

10 100 1 10 100 1 10 
MS ps ms ms ms s s 

Time delay 

MONOSTABLE 
MULTIVIBRATOR 

MAXIMUM RATINGS 
V C C M A X = 1 8 V 

DEVICE DISSIPATION: 
UPTOTA M B = 55°C 

600 mW 
THEREAFTER DERATED 
LINEARLY 5 mW/°C 
AMBIENT TEMP. RANGE: 
0-70°C 
(PLASTIC ENCAPS). 
MAX O/P CURRENT 
200 mA (HIGH OR LOW) 
NOTE; Vc c m i n = 4.5V 

GNDpT 

♦ Έ 
Q [ T 

«Z£ 

KJ 
l ]Vcc 

3 5 
T|ts 
T ] FM 

DEVICE IS 
TTL COMPATIBLE 

TO-5 STYLE 
PACKAGE 



MEMORY L 
L1 

VDD 

NOMINAL SUPPLY VOLTAGES 

Vcc 
VDD 
VBB 

+ 5V 
+ 12V 
-5V 

PROGRAMMING NOTES 
After completion of an erase 
operation (by shortwave high-
intensity ultra-violet light), 
all bits are set to the 1 state. 
Manufacturer's data should be 
consulted for programming details. 
This requires pin 20 to be raised 
to +12V, and programming data to 
be applied on the data lines for 
each address in turn; a programming 
pulse is applied to pin 18. Only 
one pulse may be applied at once for 
any given address. Programming re
quires several loops to be made 

2708 EPROM through all addresses. 
1024 bytes of 8-bits 
INPUT LOAD CURRENT 10μΑ max. 
TTL COMPATIBLE 
Automatic programming is required 

ERASABLE PROGRAMMABLE READ ONLY MEMORY (STATIC) 

L2 

vcc 

^ |A7 

σ> Ι Α 8 

<s> | Α 9 

S | l / 0 1 

I/02 

I/03 

Ξ Jl/04 

IvVE 

cs 
H 

L 

L 

L 

WE 

X 

L 

L 

H 

I/O 

Hi imp 
H 

L 

Dout 

Mode 

Not selected 
WRITE 1 
WRITE 0 
READ 

SINGLE + 5V SUPPLY 
TTL COMPATIBLE 
SUPPLY CURRENT 70mA max. 
INPUT LOAD CURRENT 10μΑ max. 

2114L STATIC RAM 
1024 bytes of 4-bits 



Appendix B — selected TTL pinout 
details and supply currents 

This appendix contains information on most of the T T L devices 
mentioned in this book. This information is tabulated in numerical 
order for the type numbers, and is principally intended to provide 
the following: 

(a) Description of the output type (T-P for totem-pole; O-C for 
open-collector; 3-S for three-state). 

(b) Supply current (in mA) for standard and LS types. 
(c) The number of pins. 
(d) Page references to where the device is mentioned in the text. 
(e) Pinout details. This is in coded form, and a key is provided at 

the bottom of the right-hand page. 

If the reader experiences any difficulty in using this table, the 
App.A column provides a cross-reference to Appendix A for devices 
listed therein. Comparison between these two appendices should 
clarify usage of this table. 
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No. 
Type Per 
74- pack Description 

Supply currents (mA) 
Type 

App. of Standard LS-type No. Page 
A 0/P typ* max typ* max pins refs. 

4 2 I/P NAND 
4 2 I/P NOR 
4 2 I/P NAND 
6 Inverter 
6 Inverter 

AI T-P 
A6 T-P 
B6 O-C 
A2 T-P 
A2 O-C 

14 22,89,100,194 
14 22, 194 

1.5 4.5 14 
14 22,33,53,194 

6 BufTer driver 
4 2 I/P AND 
3 3 I/P AND 
2 4 I/P Schmitt 
6 Scmitt inverter 

O-C 20 40 -
T-P 15 33 5 
T-P 6 17 2 
T-P 17 32 3.5 
T-P 30 60 10 

14 194 
9 14 22,25,33,194 
3 14 25, 194 
7 14 23 

21 14 22,53,143,194 

6 BufTer driver 
2 4 I/P NAND 
3 3 I/P NOR 
1 8 I/P NAND 
4 2 I/P OR 

O-C 25 41 
T-P 4 11 
T-P 13 26 
T-P 2 6 
T-P 30 38 

22,25 
194 

2 I/P NAND buffer 
BCD -» dec. decoder 80 mA sink 
BCD -> 7-seg dec/dr 47A 40 mA sink 

LS47 24 mA sink 
2 (AND)-OR-INVERT LS51only 

: NCAfor'51 

T-P 21 
O-C 43 
O-C 64 

B3 T-P 5.5 

13 16 92 

D-type F/F T clock Cl T-P 17 30 4 8 14 44,56,194 

75 
76 
85 
86 
97 

121 
122 
125 
132 
138 

153 

154 
155 
156 
157 

160 
163 
164 
165 
190 

191 
195 
197 
279 

1 
2 
1 
4 
1 

1 
1 
4 
4 
1 

2 

1 
2 
2 
2 

1 
1 
1 
1 
1 

1 
1 
1 
4 

4 bit bis latch 
J-K type F/F 
4-bit mag. comp. 
2 I/P XOR 
6-bit bin rate mplr 

Monostable 
Retrig. mono 
Bus buffer 
2 I/P Schmitt 
3 - » 8 decoder 

4-> 1 MPX 

4 - * 16 decoder 
2-» 4 decoder 
2 -► 4 decoder 
2-» 1 MPX 

4-bit sync, ctr 
4-bit sync, ctr 
8-bit par'l o/p s/r 
8-bit ser'l o/p s/r 
UP/DN decade ctr 

UP/DN binary ctr 
4-bit S/R 
P/S binary ctr 
S-R latch 

Neg-edge 

(L121) 

(LI54) 

Decade -

clock 

async. CL 
Binary - sync. CL 
Ser'l I/P 
Par'l I/P 
Sync. 

Sync. 
Par'l I/P & O/P 
Par'l I/P 

C3 
C2 
HI 

--
Ti 
.12 
B7 

-Fl 

G2 

F2 

--Gl 

---E3 

E3 

-El 
C4 

T-P 
T-P 
T-P 
T-P 
T-P 

T-P 
T-P 
3-S 
T-P 
T-P 

T-P 

T-P 
T-P 
O-C 
T-P 

T-P 
T-P 
T-P 
T-P 
T-P 

T-P 
T-P 
T-P 
T-P 

32 
20 
55 
30 
70 

18 
46 
32 
21 

-
36 

34 
25 
25 
30 

61 
61 
37 
42 
65 

65 
39 
48 
18 

53 
40 
88 
50 

120 

40 
66 
54 
40 

-
60 

56 
40 
40 
48 

101 
101 
54 
63 

105 

105 
63 
59 
30 

6 
4 

10.5 
6 

-
8 

12 
11 
7 
7 

6 

17 
6 
6 
5 

19 
19 
16 
21 
20 

20 
14 
16 
4 

12 
6 

20 
10 

" 
20 
20 
20 
14 
11 

10 

28 
10 
10 
8 

32 
32 
27 
36 
35 

35 
21 
27 

7 

16 
16 
16 
14 
16 

14 
14 
14 
14 
16 

16 

24 
16 
16 
16 

16 
16 
14 
16 
16 

16 
16 
14 
16 

44, 56, 194 
46,56,84,140,155 
80 
22, 155, 194 
86 

48 
48 
22 
194 
101, 143 

101, 194 

101 
101, 140, 194 
194 
102 

194 
87, 143 
58 
58 
87 

87, 194 
194 
87, 194 
55 

* Typical supply currents are only approximate, and assume half I/P's high and half low - these figures not given by manufacturer and 
have been suitably rounded. 

T-P = Totem-pole 
3.5 = 3-state 
O-C = open circuit 
'L' type given if no 'LS' version 
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Type 

1A 
1Y 

1A 

"* 
* 
1A 
1A 

* 
«* 
A 

0 
B 

1A(1) 

1CL 

iQ 
1CK 
B3 

B 

Q 
A l l 
1C 

A 

1ST 
GND = 

IB 
1A 

1Y 

IB 
IB 

B 

1 
C 

2A(1) 

ID 

ID 
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121 
123 
125 
132 
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Appendix C - electrical 
characteristics 

This appendix contains representative characteristics for the 54/74 
series of TTL devices and the 4000 series of CMOS devices. TTL 
data is based upon information from Texas Instruments, and 
CMOS data is based upon information from RCA. Although every 
care has been taken to ensure that this information is correct, no 
responsibility can be taken for any errors which might occur, or for 
the results of such errors. This information is supplied for guidance 
purposes only, and it is the user's responsibility to check individual 
device data sheets. The representative characteristics are provided 
to give a general indication of typical parameters, but these charac
teristics do vary from device to device, therefore individual data 
sheets should be consulted for positive information on other than the 
indicated types. 

For further information, the reader should contact appropriate 
manufacturers. The following addresses are provided for the 
reader's use: 

RCA Solid State, Division, Somerville, N.J., 08876, USA. 
RCA Limited, Sunbury-on-Thames, Middlesex TW16 7HW, 

England. 
RCA s.a., 4400 Herstal, Liege, Belgium. 
Texas Instruments Ltd., Man ton Lane, Bedford, England. 
Texas Instruments Inc., 13500 North Central Expressway, 

Dallas, Texas, 75265, USA. 

The amateur will find that enthusiast magazines in the electronics 
field contain a large number of advertisements for 74 series plastic 
DIL devices (standard and LS are the most common, with only a 
few L and S types usually listed), and 4000 series CMOS devices. 

See Chapter 14 for general information about logic families. Refer 
to Appendix A for abridged TTL data, or Appendix B for TTL 
pinout details and supply current figures. 
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TTL 54/74 family characteristics 

ABSOLUTE MAXIMUM RATINGS 

54 54L 54LS 54S 
54H 74L 74LS 74S 

Characteristic 74 Unit 
74H Diode Emitter 

inputs inputs 

Supply voltage V c c 

Input voltage max 

Inter-emitter voltage max 

Voltage at open-collectors '06, '07 
(max) '16,'17,'26 

others 

Voltage at disabled 3-state O/P (max) 

Free air temperature range 54 family 
74 family 

Storage temperature range 

+ 7 

+5.5 

+5.5 

+ 30 
+ 15 

+5.5 

+8 

+5.5 

+5.5 

+8 

+ 7 

+ 7 

+ 7 

+5.5 

- 5 5 to+125 (All types) 
0 to +70 (All types) 

- 6 5 to+150 (All types) 

+ 7 

+5.5 

+5.5 

+ 7 

+5.5 

+ 7 

+5.5 

+5.5 

+ 7 

+5.5 

V 

V 

V 

V 

V 

°c 

°c 

STANDARD INPUTS - ONE LOAD (MAXIMUMS) 

Characteristic 54 54H 54L/74L 54LS 54S Unit 
74 74H 74LS 74S 

Diode Emitter 
inputs inputs 

High level input current 

Low level input current 

IlH 

IlL 

40 50 

-1 .6 - 2 

10 

-0.18 

20 

-0 .8 

20 50 

-0 .4 - 2 

uA 

mA 

Input pull-up resistor 4 2.8 40 8 18 2.8 kQ 



REPRESENTATIVE CHARACTERISTICS ('00 DEVICE) 

Characteristic 

High level 
output current 

Low level 
output current 

High level 
input voltage 

Low level 
input voltage 

IOH 

IOL 

VIH 

V,L 

54 family 
74 family 

54 family 
74 family 

54 family 
74 family 

max 
max 

max 
max 

min 

max 

54 
74 

-0 .4 
-0 .4 

16 
16 

2 

0.8 
0.8 

54H 
74H 

-0 .5 
-0 .5 

20 
20 

2 

0.8 
0.8 

54L 
74L 

-0.1 
-0.2 

2 
3.6 

2 

0.7 
0.7 

54LS 
74LS 

-0 .4 
-0 .4 

4 
8 

2 

0.7 
0.8 

54S 

-1 .0 
-1 .0 

20 
20 

2 

0.8 
0.8 

Unit 

mA 
mA 

mA 
mA 

V 

V 

High level 
output voltage 

Low level 
output voltage 

Propagation delay 

test conditions 
(load C & R) 

VOH 

Vor. 

tpLH 

tpHL 

54 family 

74 family 

54 family 

74 family 

L - > H level 
output 
H - > L level 
output 
cL 
RL 

min 
typ 
min 
typ 

typ 
max 
typ 
max 

typ 
max 
typ 
max 

2.4 
3.4 
2.4 
3.4 

0.2 
0.4 
0.2 
0.4 

11 
22 

7 
15 
15 
400 

2.4 
3.5 
2.4 
3.5 

0.2 
0.4 
0.2 
0.4 

5.9 
10 
6.2 

10 
25 
280 

2.4 
3.3 
2.4 
3.2 

0.15 
0.3 
0.2 
0.4 

35 
60 
31 
60 
50 
4000 

2.5 
3.4 
2.7 
3.4 

0.25 
0.4 
0.25 
0.5 

9 
15 
10 
15 
15 
2000 

2.5 
3.4 
2.7 
3.4 

0.5 

0.5 

3 
4.5 
3 
5 
15 
280 

V 

V 

ns 
ns 
ns 
ns 
PF 
Ω 

TTL BISTABLE SWITCHING CHARACTERISTICS 

Parameter From To 7474 dual D-type 7476 dualJ-K type Unit 
I/P 0/P 

min typ max min typ max 

Maximum frequency 

Preset to output 
delay 

Clear to output 
delay 

Clock to output 
delay 

f 
1max 

tpLH 
tpHL 

tpLH 
tpHL 

tpLH 
tpHL 

PS 
PS 

CL 
CL 

CK 
CK 

15 

§ 
s 
Q 

Q/S 
Q/Q 

25 

14 
20 

25 
40 

25 
40 

25 
40 

15 20 

16 
25 

25 
40 

25 
40 

25 
40 

MHz 

ns 
ns 

ns 
ns 

ns 
ns 
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CMOS 4000 series CMOS characteristics 
ABSOLUTE MAXIMUM RATINGS 

Characteristic 

Supply voltage range VDD 

Input voltage range (all inputs) 

Free air temperature range 

Storage temperature range 

Power dissipation 
per package 

Power dissipation per output 

T A 

Istg 

PD 

A series 
B series 

ceramic Types 
D ,F ,K 

plastic Type E 

ceramic Types 
D ,F ,K 

plastic Type E 

transistor 

Values 

-0 .5 to+15 
-0 .5 to+20 

-0 .5 to (VDD 

- 5 5 to+125 

- 4 0 to+85 

- 6 5 to+150 

500 

500 

100 

Unit 

V 
V 

+ 0.5) V 

°c 

°c 

mW 

mW 

mW 

ELECTRICAL CHARACTERISTICS 

Characteristic 

Supply voltage operating 
range 

Low level output voltage 

High level output voltage 

Input leakage current 

VDD 

VoL 

VoH 

IIL 
I l M 

Conditions 

vIN vDD 

+ 5 
+ 10 
+ 15 

0 
0 
0 

+ 5 
+ 10 
+ 15 

+ 5 
+ 10 
+ 15 

+ 15 
+ 20 

A series 

min typ 

3 10 

0 
0 
N/A 

4.95 
9.95 
N/A 

±io-

max 

12 

50 
50 

"5± 

B series 

min typ 

3 

5 
10 

1 

15 

0 
0 
0 

Unit 

max 

18 V 

V 

0.05 

4.95 5 V 
9.95 10 
14.95 15 

±10" 
μΑ 

- 5 ± i 

3-state output leakage I 0 L +20 ±10~4±2 μΑ 
ICH 



REPRESENTATIVE CHARACTERISTICS (CD4001A) - QUAD 2I/P NOR 

Conditions Ceramic Plastic 
Characteristic V0 VDD packages packages Unit 

(V) (V) typ max typ max 

Sink current 
(N-channel) 

Source current 
(P-channel) 

Propagation delay 
H - > L 

Propagation delay 
1-»H 

ID N min 

IDP min 

tpHL 

tpLH 

i +0.4 + 5 
+0.5 +10 

+ 2.5 + 5 
+9.5 +10 

+5 
+ 10 

+ 5 
+ 10 

1 
2.5 

- 2 
- 1 

35 
25 

35 
25 

0.4 
0.9 

-0 .5 
-0 .5 

50 
40 

95 
45 

1 
2.5 

- 2 
- 1 

35 
25 

35 
25 

0.3 mA 
0.6 

-0 .3 mA 
-0.25 

80 ns 
55 

120 ns 
65 

vss = ov 
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Appendix D — ASCII code 

The American Standard Code for Information Interchange - or the 
'ASCII code' - is widely used in digital and computer engineering. 
It comprises seven bits, and codes a total of 128 alphanumerics, 
punctuation marks, and machine codes. 

ASCII is divisible into convenient subsets determined by the 
three most significant bits (bits 5 to 7); thus subsets not required in a 
particular application may be excluded. The table below is arranged 
to clearly show these subsets. There are 64 characters used for 
upper-case letters, numerals, common punctuation marks, and 
space (SP). A further 32 characters specify lower-case letters, and 
less commonly used punctuation marks. The remaining 32 charact
ers specify machine commands such as line-feed (LF), ring bell 
(BEL), and an ineffective character (NUL); note that the latter is 
chosen for the code 0000000. 

Bit numbers 
I > 0 0 0 0 1 1 1 1 

, ► 0 0 1 1 0 0 1 1 
, ► 0 1 0 1 0 1 0 1 

7 6 5 4 3 2 1 

0 0 0 0 
0 0 0 1 
0 
0 

0 
0 
0 
0 
1 
1 
1 
1 

1 
1 
1 
1 

0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

NUL 
SHO 
STX 
ETX 

EOT 
ENQ 
ACK 
BEL 

BS 
HT 
LF 
VT 
FF 
CR 
SO 
SI 

DLE 
DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 

CAN 
EM 
SUB 
ESG 
FS 
GS 
RS 
US 

SP 
I 
it 

# 
$ 
% 
& 
' 
( 
) 
* 
+ 
5 

-

/ 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 

} 

< 
= 
> 
? 

@ 
A 
B 
C 
D 
E 
F 
G 

H 
I 
J 
K 

L 
M 
N 
0 

P 
Q 
R 
S 
T 
u 
V 
w 
X 
Y 
z 
[ 
\ 
] 
Λ 
— 

a 
b 
c 

d 
e 
f 
g 
h 
i 
j 
k 

1 
m 
n 
o 

p 
q 
r 
s 

t 
u 
V 

w 
X 

y 
z 
{ 
1 
} 

DEL 
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Note how conveniently the subsets are grouped. For example, 
there is only one bit difference between lower-case and upper-case 
(i.e. bit 6), and the upper three bits can be hard-wired if only the 
numerals are required. If certain upper bits remain unchanged, they 
may be ignored, thereby reducing the number of bits. An eighth 
parity bit is normally used in a full code. 
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Appendix E — a note on drawing 
standards 

The logic symbols used throughout this book are drawn in general 
compliance with the American MIL-STD-806B. The reason for this 
choice is that these symbols are recognised by engineers worldwide, 
and need little explanation. The majority of digital devices originate 
from American manufacturers, and in consequence, the data sheets 
relating to these devices generally comply with this M I L standard. 
This standard utilises distinctively shaped curved symbols for logic 
gates, and more complex devices are generally represented by 
rectangles with appropriate labelling. 

The standards relating to logic symbols have been in a state of 
flux over the past decade. The International Electrotechnical Com
mission (IEC) has concentrated on producing an internationally 
recognised standard for logic symbols, and this has led to the 
development of various standards in interested countries of the 
world, based upon rectangular symbols. The American version of 
these symbols from the American National Standards Institute is 
ANSI Y.32.14-1973 ( IEEE Std 91-1973), which officially super
seded MIL-STD-806B as an industry standard in 1973, but en
gineers and manufacturers seem to prefer the M I L standard, which 
lives on! Thus whilst military documentation in America may follow 
the ANSI standard, commercial literature generally still uses the 
older and more familiar M I L standard used within this book. 

British Standards issued BS 3939: Section 21, on binary logic 
elements, which follows the general principles set out in the IEC 
standards. At the time of publication of this book, Issue 2 of BS 3939 
is in force, being based upon IEC 117, but this is out of date and is 
due for revision. This standard is only currently being introduced 
into military documentation, and poses certain problems since it is 
still incomplete, and is far from being as comprehensive as the ANSI 
standard. The present IEC 117 standard is to be replaced by IEC 
617, of which Part 12 deals with binary logic elements, and BS 3939 
is to be revised in accordance with the revised IEC document, which 
will introduce a selection of new symbols. 
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The author is currently involved in documentation for the services 
in the U.K. , and is therefore familiar with the latest British 
Standard and the problems it imposes by its lack of definition for 
many logic devices, ranging from simple functions such as a 
three-state gate, to common devices such as multiplexers and 
decoders. He is also familiar with the problems that engineers find 
with the new symbols, for they do mean a new learning exercise. 
Bearing in mind that this book is intended for a worldwide market, it 
was not considered appropriate to use the current BS 3939 or an 
equivalent standard, since this would have introduced many diffic
ulties: 

(a) Most engineers are not familiar with the 'new' logic symbols. 
(b) Most engineers dislike the new logic symbols. 
(c) Most data books use MIL-STD-806B symbols. 
(d) Since many devices have not been allocated symbols, the newer 

standards cannot be used exclusively. 
(e) The use of the newer style symbols necessitates considerable 

explanation, and sufficient space is not available. 
(f) It is easier to become familiar with the symbols most commonly 

used in manufacturers ' literature, or conversions will be nec
essary. 

Having said all this, it is only fair to state that the author 
recognises the advantages offered by the new style symbols once 
everyone understands them and they are sufficiently comprehensive. It is worth 

L C1 
C2 
C3 
R 

Figure 1. Bidirectional shift register 
(BS3939, Issue 2, Section 21) 

noting that these symbols do allow logic diagrams to be significantly 
condensed where it is not important to show actual devices; this 
allows block diagrams to be replaced by logic diagrams which tell an 
au-fait engineer all he needs to know about the logic functions 
performed without the need for amplifying text. 

Figure 1 is provided as an example of the new style symbols, and 
depicts a bidirectional shift register. It may be appreciated that 

1D 
3D 

3D 

3D 
2D 
3D 

C1C21 

C1C21 

C1C2~| 

C1C21 
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symbols such as these require considerable familiarity before they 
may be used without further explanation, hence the reason for 
ayoiding them in this book. 

In the example shown, input a provokes a shift action from top to 
bottom, input b provokes a shift from bottom to top, and input c 
controls the parallel action. Input d is a common reset. The 'D' 
indicates D-type flip-flops, and the H ' symbol indicates a postpone
ment of the change of state of the output. 

Equivalent logic symbols in different standards 
Figure 2 is provided to show the equivalent logic symbols between 
standards for simple logic gates. 

i > - :£}- -0- - -Q-
XOR Inverter 

Figure 2. Equivalent logic symbols: left-hand examples are MIL-
STD-806B; right-hand examples are BS 3939 or ANSI Y.32.14-
1973 or IEC 117. 

Special symbology used within this publication 

It is explained elsewhere within this book that the logic symbols 
used are restricted to the symbols normally used on data sheets for 
particular devices. Where the symbol is not truly representative of 
the purpose of a gate (although it is logically equivalent), a ' f 
symbol is used inside the gate to indicate that it is not performing its 
expected function. The symbols shown in Figure 3 with a 'dagger' 
symbol are as they might appear in this book; adjacent to these 
symbols are the true logical equivalents of the functions they 
represent. 

Inverted input NOR gate Inverted input N A N D gate 

Inverted input OR gate Inverted input A N D gate 

Figure 3. Logic symbols used in this book with dagger symbols and 
their equivalent logic functions 
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Index 

Acoustic coupler, 108 
AND gate, 18 
Arithmetic devices, 77 
Arithmetic logic units, 79 
ASCII code, 95, 112,293 
Assembly language, 237 
Astable circuits, 52 
Asynchronous, 83 

control logic, 142 
data transmission, 107 

Audiostages, 163, 188,251 

Baud,107 
Binary, 63 

arithmetic, 72 
coded decimal system, 68 
fractions, 72 
rate multiplier, 86 

Bistables, 
D-type, 44, 81 
J-K type, 46 

Bits, 5, 55, 64 
Boolean algebra, 26 
Bubble memories, 211 
Buffer/inverter gates, 20 
Bus, 208 
Byte, 66 

Characters, 106 
Clock, 44 
CMOS data, 291 
CMOS logic, 117, 120 
Code of practice, suggested, 147 
Combinational logic, 42 
Communications terms, 106 
Comparators, 79 
Complementing, 10 
Construction, 151 
Control logic, 136 

Cost factor, 62, 269 
Counters, 81,87 

asynchronous, 81 
synchronous, 85 
up/down, 82, 87 

Crosstalk, 106 

Data, 
bit, 20 
highway, 22 (or bus, 104) 
parallel/serial, 104 
selectors, 101 
transmission, 103 

Decoders, 100 
Delay circuits, 127 
De Morgan's theorem, 28 
Design examples, 

CMOS, 157 
microprocessor, 247 
TTL, 167 

DIL encapsulation, 21 
Diode logic, 8 
Direct Memory Access (DMA), 218 
Dividers, 87 
Don't care conditions, 16 
Dot matrix displays, 94 
Drawing standards, 295 
DTL logic, 10, 113 
Duplex, 106 
Dynamic logic, 118 
Dynamic RAM, 211 

ECL logic, 116 
Edge detection, 128 
Edge triggered, 45 
EPROM,210 
Exclusive-OR gate, 19 
Execution of instruction, 213 
Exercises on 'AUTONIM', 197 



Fanout, 10, 13 
Flags, 217, 238 
Floppy disc, 213 
Flowcharts, 255 
Frequency shift keying (FSK), 108 
Full adders, 77 
Function tables, 42 

Gas discharge tubes, 98 
Gates, 15 
Glitch, 84 

Half-duplex, 106 
Handling precautions, 153 
Hardware, 207 
Hexadecimal system, 68 

I2L logic, 117 
Initial reset, 132 
Instruction execution, 213 
Interfacing circuitry, 130 
Interrupts, 217 
Inverters, 20 

Karnaugh maps, 29 

Lamp driving, 91 
Latches, 39, 42, 55, 126 

transparent, 46, 55, 186 
Light emitting diodes (LEDs), 88 
Liquid crystal displays (LCDs), 96 
Logic, 

families, 113 
networks, 24 
states and levels, 9 
type, choice of, 149 
type, positive/negative, 9 

LSI, 4 

Machine code, 6, 236 
Mark/space, 104 
Mask, 239 
Master/slave, 46 
Memory, 210 

mapping, 251 
pointers, 210 
types of, 210 

Microprocessors, 207 
6800 MPU, 207 
6800 system, 207 
analogue interfacing, 219 
and random logic, 215 
COSMAC MPU, 223 

assembly language, 237 
I/O ports, 232 
timing, 230 

design example, 247 
external data handling, 217 
external data transfers, 215 
serial interface, 219 

Minimisation, 26 
Modem, 104, 107 
Monostables, 48 
MOSFET, 4 
Multivibrator, 51 
Multiplexing displays, 94, 97 
MSI, 4 

NAND gate, 15, 18 
Noise margins, 13 
NOR gate, 19 
Number systems, 63 

Octal system, 66 
One-shot, 48 
Optimisation, 26, 31, 164, 191 
OR gate, 19 

Parity, 108 
Pinning-out, 147, 191 
PMOS dynamic logic, 118 
Port, 215 
Power-on reset, 132 
Power supplies, 134, 159, 194 
Programs, 238 
PROM, 210 

Race hazard, 39 
Radix, 63 
RAM, 211 
Random logic, 207 
Refresh cycle, 95 
Registers, 55, 249 
Ripple effect, 84 
ROM, 210 
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Schmitt trigger, 23 
Schottky, 

diodes, 4, 115 
transistors, 115 

Scratchpad registers, 223 
Sequential logic, 42 
Serial/parallel, 57 
Seven-segment displays, 92 
Shift registers, 57 
Sign bit, 74 
Simplex, 106 
Software, 207, 236 

design, 253 
development, 242 
languages, 236 

SSI, 3 
Stack, 209 
Starburst displays, 95 
Start bit, 107 
State encoder, 142, 182 
Staticise, 42 
Staticisers, 249 
Stop bit, 107 
Strobe pulse, 85 
Subroutine, 239 
Synchronous, 

clocking, 58 
control logic, 139 
counters, 85 
data transmission, 106 
loading, 61 

Ten's complement, 74 
Testing, 153, 196 
Three-state logic, 21 
Time-out, 49 
Timers, 555-type, 50, 282 
Time-sharing, 99 
Timing, 36 

diagrams, 36 
Transistors in logic circuits, 10 
Transparent latch, 46 
Truth table, 15 
TTL, 

data, 269, 285, 289 
logic, 11,114, 118 
gate, 11 

Two's complement, 74 

UART, 110 

Words, 66 

XORgate, 19 
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