
For Timothy

Practical Design of
Digital Circuits
Basic Logic to Microprocessors

Ian Kampel, c.Eng., M.I.E.R.E.

Newnes Technical Books

Newnes Technical Books
is an imprint of the Butterworth Group
which has principal offices in
London, Boston, Durban, Singapore, Sydney, Toronto, Wellington

First published 1983

© I . J . Kampel, 1983

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, including photocopying and recording, without the
written permission of the copyright holder, application for which should be addressed
to the Publishers. Such written permission must also be obtained before any part of
this publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net Books and may not
be re-sold in the UK below the net price given by the Publishers in their current price
list.

British Library Cataloguing in Publication Data

Kampel, Ian
Practical design of digital circuits
1. Digital integrated circuits
I. Title
621.38173 TK7874

ISBN 0-408-01183-1

Typeset by Butterworths Litho Preparation Department
Printed in England by Whitstable Litho Ltd, Whitstable, Kent

Preface

As the title of this book suggests, the aim of this work is to
demonstrate the practical aspects of digital circuit design. For this
reason the amount of pure theory has been kept to an absolute
minimum and the primary objective has been one of showing the
reader the most direct route to 'thinking' about digital design in the
manner of an experienced designer. The intention is to give the
reader sufficient confidence to embark upon his own design projects
utilising digital integrated circuits as soon as possible.

The word practical is emphasised, for there can be quite a gap
between a practical design approach and a purely theoretical one.
Most courses on digital electronics spend quite a considerable time
describing how particular integrated circuits function internally.
There is no need for the designer to know this, for he uses them as
'black boxes'. There is also a tendency to over emphasise techniques
for minimising logic networks in order to achieve the minimum
number of gates. These make good academic exercises and allow the
student to really get to know Boolean algebra and Karnaugh maps,
but they do not reflect the true design environment where low
component count and cost minimisation are the most important
factors. The minimum number of used gates does not automatically
give the minimum number of devices·, and is unlikely to do so where
many different types are demanded. All the former may lead to is an
unreasonable number of under-utilised devices.

Minimising - or simplifying - one logic network to produce
another with less gates also assumes that you are starting with a
wasteful network in the first place. Since good design practice should
not create such a situation, this is rather like concentrating on how
to compensate for shortcomings rather than how to avoid them. The
experienced designer always has certain good design principles in
mind when he sets about designing a digital circuit, and the purpose
of this book is to show what these are.

For those having a reasonable familiarity with linear design but
no knowledge of digital design, I would like to assure them that

v

digital design should present them with few problems once they get
some 'hands-on' experience. For a digital design is far easier to
analyse on paper than a linear design. It is always possible to
overlook an important factor or parameter in a complex linear
design, but with careful thought, it should always be possible to
complete a digital design with a much higher degree of confidence.
It is a reasonable proposition to consider all possible conditions
within a digital circuit, but such may not be the case for a linear
circuit.

There is no doubt about it that digital electronics is here to stay.
With the advent of the microprocessor its future is assured, and
since any microprocessor needs to interface with fairly conventional
digital devices, there will always be a call for digital design
engineers. As the range of components increases year by year, and as
the price of such components continues to stay at reasonable rates -
or even drops - despite ever present inflation, more and more
equipment is likely to go digital. There will always be the need for
linear circuitry where any form of input or output transducer is
concerned, but the system designer is finding it more efficient,
cost-effective, and reliable to convert to or from digital circuitry at
the earliest opportunity. In complex systems his aim will be to
convert from digital circuitry to or from microprocessor software at
the earliest opportunity as well.

This book concentrates on digital design techniques using the
basic building blocks of such circuits. These devices will always be
around simply because they are so basic. Even allowing for the most
sophisticated microprocessors of the future, any particular system
inevitably has its own particular input/output interface problems,
and these devices will always be needed for such purposes. There
fore despite the rapid advancement in microelectronics and in
microprocessor technology, I am confident that the techniques
described in this book will remain relevant for the foreseeable future.

This book is aimed at a fairly broad market: it is intended to aid
the linear design engineer to cross the barrier into digital electronics;
it should provide interesting supporting reading for students study
ing digital electronics from the more academic viewpoint; it should
enable the enthusiast to design much more ambitious and sophisti
cated projects than he could otherwise attempt if restricted to linear
devices. The great advantage that digital circuitry can offer is high
reliability, and this should be the ultimate aim of any electronics
designer.

My own background is in both linear and digital design, and my
current occupation involves me in many large and complex systems
designed by a wide variety of manufacturers. This viewpoint is a

vi

useful one in observing current trends, and one that is reflected in
the pages to follow.

You cannot learn faster about anything than by becoming
personally involved. My recommendation to the aspiring digital
designer is to read through this book in order to get an idea of how to
go about designing digital circuits - be they large or small - and
then to have a go at a simple design straight away. Electronic games
provide an ideal excuse for such an exercise, and digital electronics
can provide reasonable sophistication at moderate cost and with
minimal complexity. Here is an ideal proving ground.

Good luck!
IJ .K.

Vl l

Acknowledgements

The author is indebted to the staff of Texas Instruments and RCA
for their kind permission to reproduce certain illustrations relating
to their products. He would also like to extend his particular thanks
to RCA for validating material relating to the ' C O S M A C micro
processor.

IX

Using this book

This book is intended to be read in the order presented: it then offers
the reader a course in the practical design of digital circuits. Like any
other course, it is necessary to introduce new concepts gradually,
and to start with basics and to gradually advance to more and more
complexity as the student progresses. Thus the book cannot be
effective unless read in this manner; random dipping into later
chapters may do no more than give the impression of greater
difficulty than should otherwise be experienced.

There are many books on digital electronics, but very few on the
techniques of digital design. This is probably because any form of
design is essentially creative, and it is always difficult to teach
creativity. This does not mean that it is impossible. For example, it
is possible to teach someone the basic principles of painting, but
once they have learned these, the field is wide open for them to
express themselves in their own particular and individual way. The
same applies with digital design.

Part 1 of this book teaches the basic principles of practical design,
and introduces the designer to his 'tools' - or rather, the range of
devices he has to call upon. Part 2 shows him how to put these
together into viable designs. The only way to learn how to design is
to study how others approach it, and then to have a go for yourself.
For this reason, Part 2 of the book includes two detailed descriptions
of actual design exercises. The first of these is an exercise in C M O S
design, and is fairly simple. The second is a much more complex
design for an electronic game, using T T L devices. The reader is
urged to keep studying these design examples until he fully under
stands them. Once he reaches this stage, he may progress towards
his own designs with confidence.

A book on digital design would not be complete today without
some coverage of microprocessors. Microprocessors represent a
further stage of advancement in terms of technology, and the
modern tendency is to replace special-to-purpose digital circuitry by
microprocessors wherever possible. Since all microprocessors have
their special features, it is impossible to adequately cover the subject
in one section of this book - or even in one entire book. Each
microprocessor is worthy of one or more books to itself! What this

xvii

book does do, however, is to provide sufficient information about
microprocessors for the reader to appreciate their advantages or
disadvantages, as the case may be. The application and the circumst
ances dictate whether a particular design is best suited to ordinary
logic or to a microprocessor.

The book culminates in a practical illustration of how a particular
design problem changes emphasis when a microprocessor is intro
duced, by reflecting on how the electronic game discussed in Part 2
might have been tackled using a microprocessor.

This book has to cover a vast amount of ground as efficiently as
possible. This has been achieved by careful integration of subject
matter within the text. The main text is supported by various
appendices at the rear of the book, and these provide the aspiring
designer with abridged design data, in order to get him off the
ground without further expense or delay. It is strongly recom
mended, however, that the reader purchase a good data book on
digital devices as soon as possible. Perhaps the best source of T T L
data is: 'The T T L Data Book for Design Engineers', published by
Texas Instruments. Such a wide selection of devices can be rather
confusing - and daunting - therefore the appendices to this book do
reduce the problem to a manageable level during the learning
process.

The abbreviation 'App. C2' - or similar - is to be found
throughout the text. This refers to entries in Appendix A, and guides
the reader to device data. In the example given, 'App. C2' refers to
the 7476 device, reference C2 on page 274. No text references are
made directly to any of the other appendices, unless specified in full.

The logic symbols used throughout this book comply with
MIL-806B standards. This choice has been made because engineers
recognise these symbols worldwide, and these are the symbols most
frequently found in manufacturer's data. Further information on
drawing standards is to be found within Appendix E, together with
an explanation of why the M I L standard has been chosen rather
than a more recent standard. This appendix also contains equi
valent symbols for various gates. It is worthwhile adding that the
M I L standard symbols are also much more popular with engineers
in general, and do have a great advantage over the more recent
rectangular symbols for the purposes of this book: they require far
less explanation and are easier for the novice - and engineer (sic!) -
to understand.

Everyone knows that this is the age of the silicon chip. If you are
interested in electronics, then you will want to come to grips with it
as soon as possible. The aim of this book is to place it within your
practical grasp.

xviii

Part 1 — Basic logic

Give us the tools, and we will
finish the job.

Sir Winston Churchill (1874-1965).

1
The ubiquitous silicon chip

It does not seem long ago that the word 'transistor' was bandied
around by all and sundry as the description for a transistor radio. It
was not generally appreciated then that a 'transistor' was merely
one component within such a device. In a similar manner the media
has now latched onto the phrase 'silicon chip' to describe anything
which is electronic, rather sophisticated, and contains any sort of
semiconducting device. Since this word has only really been discov
ered by the masses since the advent of the microprocessor, the
p h r a s e t ends to be used synonymous ly with the word
'microprocessor'. Once again the wrong image has been created, for
the 'silicon chip' has been around for a great deal longer than the
microprocessor.

The first switching circuits which were the forerunners of modern
digital circuits were formed from discrete components such as
transistors and diodes. These were all very well for simple circuits,
but they very quickly became large and unwieldy as soon as the logic
began to get complicated. This ushered in the integrated circuit which
incorporated several devices onto a single chip. This was the birth of
the silicon chip.

By this time the techniques of fabricating silicon planar devices
were well understood and it was possible to produce large quantities
of reliable silicon transistors. The usual practice was to manufacture
a large number of discrete transistors on a single chip, so it was a
natural development to manufacture simple transistor circuits onto
a single chip instead. Passive components such as resistors or small
value capacitors could equally well be incorporated into the circuits.
Such devices were subsequently referred to as Small Scale Integration
(SSI) devices, and these still form the basis of simple logic gates
today.

As digital circuitry gained ground there came the need for set
circuit configurations to be repeated more and more often. Particul
ar arrangements of gates form the building blocks of digital circuits,
and in order to improve system reliability, minimise the number of

3

interconnections concerned, and to miniaturise the circuitry in
volved, Medium Scale Integration (MSI) devices were born.

The basis of such circuits was a fairly basic switching transistor,
although improvements such as Schottky clamping diodes were
introduced to improve switching speed. The transistor does require
a fairly large area in microelectronic terms, and it was found that the
metal oxide silicon field effect transistor (MOSFET) could be
fabricated in much smaller areas, allowing thousands of transistors
and resistors to be packed into one tiny chip area. Inevitably these
high density circuits came to be known as Large Scale Integration

(L S I >-
The particular requirements of different systems demands differ

ent predominant features such as high speed, low power, or simply a
compromise between the two, for these features do tend to conflict.
The most common devices at present are formed from conventional
transistors and are known as transistor transistor logic (TTL)
because of their form of interconnected transistors. The speed of
these is adequate for most applications but the power consumption
does require mains originated supplies unless the component count
is quite small. Schottky barrier diodes are used in conjunction with
certain families of these T T L circuits to prevent the transistors
saturating, and thereby increases their switching speed, but the
current consumption is still a problem. M O S F E T devices get over
the problem of power consumption, but these have the disadvantage
of being comparatively slow and of also being somewhat prone to
damage due to electrostatic charge if they are mishandled.

More will be said about the various families of devices in a later
chapter, but it will be seen that there are several different families to
choose from according to the designer's needs. For most applications
the designer will choose conventional T T L devices which comprom
ise between speed and cost. It is these devices that we shall chiefly be
concerned with in this part of the book. Apart from current levels
and switching speeds, and also the available power supply range,
there is no functional difference between these various families so far
as their logical significance is concerned. For this reason we shall
concentrate upon logic functions before introducing the confusion of
family variants.

This brief review of the development of the ubiquitous silicon chip
cannot be complete without considering the latest innovation: the
microprocessor. The sophistication of conventional integrated cir
cuits brought about computers of modest proportions compared
with the first valve efforts, and even great improvements over the
early transistor versions, but the microprocessor was the greatest
step forward of all. It came about as a result of the expertise which
4

developed in the production of LSI circuits, and it was inevitable
that the end result would be a computer on a chip: for this is really
what a microprocessor is.

The main differences between a microprocessor and a convention
al computer are speed and computing capability; the computer wins
on both counts. A computer operates with data words comprising a
set number of bits. A bit represents the smallest single piece of digital
data, and it can indicate either one of two logic states. The most
common powerful computers operate with 24-bit words. Micro
processors are most commonly arranged to handle only 8-bit data
words. This fact, combined with lower operating speeds, is the main
reason why computers are not immediately threatened by their
smaller brethren. Computers use faster devices.

We have seen tremendous advances in microelectronics over the
past decade. Already 16-bit microprocessors are a reality, and 24-bit
microprocessors can only be over the horizon. Tha t only then leaves
us with the speed limitation, but modern innovation should find a
way round that. Already it is quite common to use several micro
processors in a single system, and it is not inconceivable that several
microprocessing elements might be interconnected on a single chip
to provide means of carrying out parallel processing in such a
manner that the speed limitations of the material might be compen
sated for. This is only speculation, but it does remind us that we are
by no means at the end of the road just yet. A faster material might
even be discovered!

Ju s t because microprocessors are versatile, this is not sufficient
justification alone for incorporating them into a given system. If the
system would require a tremendous amount of conventional logic
then there is obviously justification for a computer or micro
processor, but for smaller systems and less demanding applications,
a microprocessor might not be the most cost-effective solution. For
every microprocessor requires supporting software, and software
takes time to write and debug. In commercial terms this can prove
to be very costly in a development program, and unless the volume
of subsequent sales can justify it, then conventional logic might be a
better bet.

The size of a system is not the only deciding factor: rather, it is the
cost of software development. Time is of little significance to the
hobbyist, for example. Therefore the microprocessor does offer him
the means of designing some very sophisticated systems which have
relatively low costs in hardware terms. Microprocessors can be
purchased very cheaply now.

It will be seen that the development of modern electronics has led
to three discrete areas of technology: linear electronics, digital

5

electronics, and now software, the latter forming an integral part
with the innovation of the microprocessor.

The innovation of digital electronics led to specialist designers
and placed a technological barrier between two different branches of
hardware design. Computer technology allowed mathematically-
minded programmers to program computers with no real knowledge
of computer hardware, and hardware engineers were able to work
on computer hardware with little real knowledge of software. The
microprocessor brought an end to this cosy situation, for it is
essentially a digital device and needs to be built into a digital circuit.

A microprocessor system raises the question of how much should
be handled by the software and how much by the hardware, and the
solution to this hardware-software trade-off can only adequately be
answered by someone able to understand both. It has led to a new
kind of engineer: a microprocessor engineer.

All this may sound rather formidable, but it need not be so if grass
roots are returned to and the history of the silicon chip is remem
bered. For digital electronics is no more than a restricted branch of
linear electronics. Circuit performance is more predictable because
we are only dealing with circuits which switch between two voltage
levels: high or low. The microprocessor is only a special kind of
digital integrated circuit. True, it does require supporting software,
but even here there are different levels at which it may be
approached. At the lowest level there is machine code, where
specified codes produce particular hardware manipulations, and
this is no more frightening than the function of any other LSI device.
At the next level there are programming languages such as BASIC,
which as the name suggests, is very easy to understand.

It would be a difficult task for a mathematician to get to grips with
digital design unless he had some understanding of electronics, but
it is an easy task for him to understand programming. Anyone
capable of undertaking hardware design can fairly soon pick up
microprocessor programming. Equally, anyone familiar with linear
design can soon pick up the principles of digital design. Clearly they
cannot expect to become instant experts, for any new technology
takes time, but it is hoped that this assurance might spur on any
doubtful linear designers. My belief is that it is an easier path for a
linear design engineer to become an effective microprocessor engineer
than it would be for a programmer with no electronics experience:
for only he can see any electronic short-cuts.

This is the history of the silicon chip. It has had a spectacular past
and has an assured future. Without a doubt it will have drastic
changes on our life-style over the coming years and it is up to us to
see that it is a change for the better. It can be. If we can show just a

6

small proportion of the versatility and innovation that the physicists
who have developed it have shown, the silicon chip can release man
from a great deal of drudgery, and give him the time for more
worthwhile pursuits. After such development, this is surely the only
logical conclusion.

7

2
From linear to digital electronics

Digital electronics tends to sound much more sophisticated than
linear electronics, and the very sound of it is sometimes enough to put
off many otherwise very competent designers. Linear designers will
sometimes produce very elaborate designs to achieve what amounts
to a simple logic function; had they familiarity with digital electro
nics as well, that same requirement might have needed no more than
a small number of digital integrated circuits (ICs). The aim of this
chapter is to show that the barrier between the two technologies is
little more than a 'sound barrier' , and to emphasise that the way to
approach digital design from a background of linear design is to
regard it as a restricted form of linear electronics. It is because of these
restrictions that it has been possible to introduce special symbols to
represent repeatedly used circuit blocks. Once this has been truly
appreciated, the mystique of digital electronics should be removed.

Simple d iode logic

In order to understand the basic principles of logic, there is no better
place to start than with the simplest logic circuits possible. Diodes
give us the essential features of a logic gate, as illustrated in Figure
2.1. This shows three diodes connected to a common pull-up resistor
tied to + 5 V. A, B and C are the circuit inputs, and Q is the output.

■ +5V

AO W-

BO W-

CO h+

8

OQ

Figure 2.1. A simple logic circuit
-ov using diodes

If all the inputs are taken to the supply rail of + 5 V (i.e. high), no
potential difference occurs across any of the diodes, therefore no
current flows through the resistor; as a consequence, the output Q is
also high. If any of the inputs is taken to OV (i.e. low), the diode in
series with this input is forward-biased, and current flows through
the resistor. Assuming a silicon diode with a forward voltage drop of
nominally 0.7 V, this has the effect of pulling the output Q down to
approximately +0 .7V.

It does not matter if more than one input is taken low, for in this
situation the diodes with grounded cathodes simply share the
current which is limited by the resistor. This is a simple logic gate.

Logic circuits (or gates) are so named because they are capable of
representing logic conditions. The above circuit represents the logic
condition described by the following statement: A AND B AND C
true gives Q true. If we separate the input conditions from the
output by the equivalence sign, and replace the 'AND' statements
by the shorthand notation of a dot, the above logical statement can
be rewritten as follows:

A . B . C = Q

Because of the logical significance of this circuit it may be referred
to as an 'AND' gate. In practice, a circuit as simple as this would not
be used, but it does show the basic concept of digital logic, where only
two signal levels are considered: either high or low. Digital circuits do not
employ voltage levels between the conditions described as high or
low, hence my earlier description of digital electronics as a restricted
form of linear electronics.

Logical statements are expressed in the form of terms which may
be either true or false. Given two possible conditions to represent
electronically, we require only two voltage levels, hence the high/low
circuit conditions. This only leaves us with one permutation to
consider: which level represents what? From the logical point of view
the choice is purely arbitrary, and both systems are employed. This
has given rise to two logic conventions: positive logic and negative logic.
The positive logic convention represents the true condition by the
more positive voltage, whereas the negative logic convention repres
ents the true condition by the more negative voltage; this is therefore
easy to remember.

Because logic circuits represent only two different states, all
arithmetic processes are carried out in binary arithmetic, which uses
only the numbers 0 and 1. Logical statements are also described in
terms of 0 for false, and 1 for true. Thus a logic 1 is the more positive
voltage in positive logic, or the more negative voltage in negative
logic.

9

If the concept of positive or negative logic is confusing, not to
worry! Most modern designs employ only positive logic, therefore to
avoid confusion, this book only considers positive logic.

The transistor in logic circuits

Logic requires both true and false conditions to be easily repres
ented. False logic terms are represented by placing a bar over the
term, e.g. Q, pronounced 'bar-queue' . In electronic terms, Q is
simply the inverse of Q; thus if Q is high, Q must be low, and if Q is
low, Q must be high. Obviously an inverter is therefore an essential
requisite of logic circuits, and the reason why transistors play an
important role. Consider now the circuit shown in Figure 2.2: this is
basically the diode logic circuit previously discussed, but followed
by a transistor inverter stage. This is a diode transistor logic (DTL)
gate.

I
A o—H

B o—H

co—14-

^ Ί T J—'

I—I
Figure 2.2. A diode transistor logic (DTL) gate

The introduction of transistors gives us an immense improve
ment, both logically and electrically. Logically, it provides the
means of inverting or complementing a term (e.g. Q is the complement
of Q) ; without this facility, all logic conditions could not be
represented. Electrically, the transistor has two advantages: it
provides a buffer, enabling more inputs to be connected to an output
(known as Tanout'), and by providing all gate outputs with a
transistor stage, it gives a wider voltage swing between logic levels.
Where a silicon diode can only give a low level of +0.7 V, a silicon
transistor in the bottomed condition (i.e. driven hard on by sufficient
base current) can present a low level of around +0.2 V.

The circuit shown in Figure 2.2 is logically the same as that shown
in Figure 2.1, except that the output is inverted by the transistor. If
all the inputs are high, no current flows through any of the input

10

diodes, which allows current to flow through what now becomes the
base resistor, thereby biasing the transistor hard on, and producing
a low at the Q output.* If one or more of the inputs is taken to OV,
current flows through the base resistor and diverts to flow through
the input diode/s. The two diodes in series with the transistor base
ensures that the transistor is cut off with a potential of only +0.7 V
at the input resistor-diode junction, therefore the Q output is high.

The logic condition represented by the gate shown in Figure 2.2
can be expressed as follows:

A . B . C = Q

This is read as: ' N O T (A AND B AND C) gives Q \ To interpret
the expression, ignore the bar initially, and note the AND condition
which applies to A AND B AND C; finally take the bar into account,
which signifies an inverse form. Thus Q is low for the input condition
A . B . C . Because the bar signifies ' N O T ' , this gate might be called a
not-AND; in fact this is abbreviated to 'NAND' .

This form of diode transistor logic was the type of gate used in
early SSI'components. Note that the circle around the transistor has
been omitted in order to distinguish this from a discrete transistor
encapsulation, because the entire circuit is formed on a single
integrated circuit. The next stage in the development of logic circuits
was to introduce a new kind of multi-emitter transistor, thereby
minimising the number of chip interconnections, saving space, and
simplifying the manufacturing requirements. Because the input
diodes were replaced by transistors, these devices became known as
transistor transistor logic, or as we shall refer to them hereafter:
T T L \

The TTL gate

By diffusing a number of separate emitter n-types into the base
p-type of the input transistor shown as TR1 in Figure 2.3, the same
logic inputs can be derived within a single transistor. The diode D l
is a 'distributed' diode, but it is shown as a separate diode in this
circuit in order that the operation may be better understood. This

* In order to ensure that a transistor is bottomed, the base current must be at least as high as the
maximum collector current divided by the d.c. current gain of the transistor in the bottomed state.
Whilst modern silicon transistors can achieve current gains of 100-800 when not saturated, this

figure is dramatically less when the saturated (or bottomed) condition is reached; figures of 10-20
are typical. Thus the maximum base resistance must be the collector resistance multiplied by the
maximum current gain; a factor of XlO is a good rule of thumb.

11

figure shows input C connected to 0 V, and therefore at logic 0, and
the inputs A and B connected to + 5 V, and therefore at logic 1. Only
a negligible leakage current flows into A and B since these are
reverse-biased diodes, but current lb flows out of the emitter
connected to input C. This current is derived from the base current
plus the larger current I a , flowing through Rl and D l . The input
transistor bottoms as a result of this current and the collector of TR1
is at about +0.2 V, i.e. the saturation level for the collector-emitter.

400μΑ max

Figure 2.3. A TTL gate with one input low

Figure 2.4. A TTL gate with all inputs high

This condition cuts off TR2 and allows current Ic to flow through
R2, so biasing T R 3 into conduction, and allowing the larger emitter
current Id to flow through D2 and out at Q. This causes Q to be high,
i.e. at logic 1. The characteristics of the standard 7400 series of T T L
gates specifies that the maximum high level current which can be

12

drawn from the output (I O H) is 400 μΑ. Since the maximum high
level input current (I I H) f ° r any gate connected to an output is
specified at 40μΑ, this allows up to ten input gates to be connected
to an output. The output voltage level in the high state (V 0 H) is
specified as + 2 . 4 V minimum, which means that a logic 1 output
should always be equal to or greater than this voltage.

Figure 2.4 shows the same gate with all the inputs high. Now no
current flows out of the emitters of T R 1 , and the current I a diverts to
form the base current of TR2. Emitter current Ib , comprising both I a

and current drawn through TR2 collector, flows as base current Ic

through TR4. This causes T R 4 to switch hard on, and current Id

flows into the output Q. The transistor bottoms to give an output
voltage equal to VCE(sat) for TR4, thereby producing a logic 0. With
TR2 bottomed in this condition, diode D2 ensures that TR3 is cut
off.

The characteristics of the 7400 series gates in this condition
specify that the maximum low level output current (I O L) is 16mA.
Since the maximum low level input current (I I L) for any gates
connected to an output is 1.6mA, this allows up to ten gates to be
connected to any output. Thus for any logic conditions, this series of
devices allows what is termed asfanout often, i.e. ten inputs may be
connected to any output. The specifications also state that the
maximum low level output voltage (V Q L) shall be 4-0.4V.

One characteristic worth bearing in mind is that whilst multi-
emitter transistors provide a load for each emitter in the high state,
they do not do so in the low state. Thus if several inputs to the same
logic gate are tied together, they only appear as a single low level load
to the driving gate, since the current flowing out of the inputs is
simply shared between the various emitters. In the high state each
separate junction contributes its own leakage current. This is worth
remembering, for unused inputs on gates can often be conveniently
tied to neighbouring inputs. All inputs should be taken either high
or low.

Noise margins

So far the output voltage levels have been discussed, but in order to
provide safety margins within the specifications, the input require
ments are made to overlap the output guaranteed levels to provide a
noise margin of at least 0.4 V. Figure 2.5 depicts the noise margins.

The output high level is guaranteed to be at least +2 .4V, but
input gates accept a logic 1 above + 2 . 0 V to provide a high state
noise margin of 0.4 V. The output low level is guaranteed to be

13

Typical
logic 1 - »—Logic 1 margin

V0H

VI H 2.0V '/////////////////, U igh state noise margin = 0.4V

Typical
logic 0

V | L 0.8V 7

V 0 L 0.4V
0.2V·

0V«

AV minimum voltage difference= 1.2V

sr
Low state noise margin = 0.4V

Logic 0 margin

Figure 2.5. TTL noise margins

H-0.4V or less, but input gates accept a logic 0 below +0.8 V, again
ensuring a low state noise margin of 0.4 V. The minimum voltage
difference between logic states must therefore be at least 1.2 V, and
typical logic 1 and logic 0 levels are +3.3 V and +0.2 V respectively.

14

3
Logic gates

The previous chapter described a typical T T L gate in terms of its
linear components. The gate shown in Figures 2.3 and 2.4 is a
3-input NAND gate. Like other gates in this family the output
consists of a totem-pole arrangement with two output transistors. This
ensures that a low impedance current source can be maintained in
either logic state, and that adequate loading can be achieved with
minimum risk of noise interference.

Having shown the typical internal structure of a basic gate in
order to bridge the gap between linear and digital electronics, we
shall now only consider logic gates as functional blocks. The
background knowledge of how inputs and outputs are implemented
is of value, however, in understanding device characteristics.

Figure 3.1 shows the logic symbol for a 3-input NAND gate,
where A, B and C are the inputs, and Q is the output. An 'AND'
function gives A . B . C , but a 'NAND' function modifies this to
A . B . C .

Truth table

A

0

0

i °
0

1

1

I 1

| 1

B

0

0

1

1

ό
0

1

1

c
0

1

0

1

0

1

0

1

Q I

0]

Figure 3.1. A 3-input NAND gate and truth table

The output from any logic gate is dependent upon the state of all
its inputs. In order to fully specify all possible output states it is
therefore necessary to consider all possible input states. The usual
way to do this is to prepare a truth table for the gate. This is also given
in the figure.

15

The truth table comprises a column for every input and output.
Although it does not matter in what order the various input
permutations are considered, it is a good idea to enter these in the
form of an ascending binary count. The binary system has a base of
2, and comprises only the digits 0 and 1, therefore each line of the
table in question shows the binary equivalent of the decimal
numbers 0 to 7.* In this way it is possible to ensure that no input
combination is either missed out or duplicated. The truth table
shows that the Q output is always at logic 1 unless all of the inputs
are at logic 1; when all the inputs are at logic 1 the output is at
logic 0.

This description of the NAND gate summarises its action more
concisely than the lengthy truth table, and the essence of 'thinking
like a designer' is to simplify gate descriptions in this manner. There
is then less to remember, and you more quickly come to instinctively
know how a particular logic network functions at a glance.

One method of simplifying gate actions is to introduce what is
known as the don't care condition into truth tables. This technique
uses the cross symbol 'X' to indicate 'don't care' conditions: this
implies that the output is unaffected by the logic state of any don't
care terms. Figure 3.2 is an alternative truth table for the 3-input
NAND gate previously considered. It may be seen that the truth
table has now been condensed to four lines from eight lines in the
original. It is not practical to produce a truth table for every possible
input condition for a logic network if there are a great many inputs,
and in such cases the don't care symbol is invaluable as a method of
simplifying the truth table.

A I B | C | Q

1 | 1 | 1 | 0

X X Ö Γ

X | 0 I X | 1

ö I x x ΐ"
Figure 3.2. Truth table for 3-input
NAND gate using 'don't cares'

The idea of utilising an increasing binary count must be discarded
in truth tables utilising don't cares, but a sensible pattern should be
maintained. A good method is to start with the unique condition of the
gate which produces a particular output for only one input condi
tion. In the example given in Figure 3.2 this is the condition where
all true inputs (logic 1) give a false output (logic 0). We know that
any change to any input affects the output, therefore any input at
logic 0 produces a logic 1 at the output. This can be shown in the
truth table by considering each input at logic 0 and entering all the
* Binary arithmetic is considered in more detail in Chapter 8.

16

other inputs as don't cares - they can be at logic 0 or at logic 1
without affecting the output.

Any logic gate can be described fully by two statements which
refer to the two possible output states, and this is what a prospective
designer would do well to remember. It is not possible to remember
full truth tables, and it is impossible to get a true 'feel' for a circuit if
you have to constantly refer to a truth table. In discussing the
various logic gates, this method of remembering a gate's function will
be emphasised as well as describing it in the more traditional
fashion. Figure 3.3 depicts the most common gates. For simplicity, it
is usual to consider only 2-input gates.

■■ΐ> 2 l /PANDgate

A

0

0

1

1

B

0

1

0

1

Q

0

0

0

1

Inputs

1

0

1

X

O/P

1

0

o- 2 - l/PNANDgate

A

0

0

1

1

B

0

1

0

1

Q

1

1

1

0

Inputs

1

0

1

X

0/P

0

1

NAND aates

o Q 2 l /P0Rga te

A

0

0

1

1

B

0

1

0

1

Q

0

1

1

1

Inputs

0

1

0

X

0/P

0

1

o~ 2 l/P NOR gate

A

0

0

1

1

B

0

1

0

1

Q

1

0

0

0

Inputs

0

1

0

X

0/P

1

0

*""""""

- Q 2 l /PX0Rga te

(A.B)+(A.B)=Qor A-rB=Q

A

0

0

1

1

B

0

1

0

1

Q

0

1

1

0

Inputs

Same

1 | 0

0/P

0

1

Ctrl Data 0/P

1

0

Q

Q

Q

Q

4>-°
Buffer
A=Q

Truth table

A Q

0 0 4~t>^Q
Inverter

A | Q

0 1

1 0

Figure 3.3. A selection of logic gates and their truth tables

17

The upper section of the figure shows the logic symbol for a
2-input AND gate. The expression: A.B = Q describes the function
of the gate in algebraic form. This is known as Boolean algebra, and
utilises the following symbols:

. represents AND
+ represents O R
= may be read as 'gives'.

Thus Ά . Β = Q ' may be read as: Ά AND B GIVES Q \
The unique condition for this gate is when both inputs are true,

giving the output true. The larger of the two truth tables given for
the gate is the normal way of representing all logic conditions. This
is all very well for a 2-input gate, but a 4-input gate would require 16
lines to fully represent it in this manner. The smaller of the two truth
tables introduces don' t cares, and this principle is applicable for all
AND gates, no matter how many inputs. The inputs side of this truth
table shows in the first line that the unique condition of all inputs at
logic 1 produces a logic 1 at the output. The second line indicates
that if any input is at logic 0, the output is at logic 0, irrespective of
the state of any other inputs, as indicated by the don't care symbol.

The simple way to remember AND gate action is to think of it as
follows:

Aivn P A T F A L L I N p U T S AT 1 GIVES O U T P U T AT 1
A I M J ^ A A *" ANY I N P U T A T 0 GIVES O U T P U T AT 0.

The N A N D gate is like an AND gate followed by an inversion.
The small circle on the output side of the symbol is the method used
to indicate an inversion. The truth table for the NAND gate is
identical to that for the AND gate except that the output is inverted
(or complemented), as shown in the larger truth table for the gate. The
Boolean expression A.B = Q should be read as: ' N O T (A AND B)
G I V E S Q \ The simplified truth table has the same input condition
for the unique case, but this time the output is at logic 0. This time
any input at logic 0 produces a logic 1 at the output. This gate
should be remembered as follows:

NTANrn P A T F A L L I N p U T S AT 1 GIVES O U T P U T A T 0
iNAiNLi UrAiL·. Α Ν γ Ι Ν ρ υ χ A T 0 G I V E S O U T P U T A T 1.

The O R gate has a different distinctive symbol, and is described
by the Boolean expression: A + B = Q, read as: Ά O R B GIVES

18

Q'. As the larger truth table shows, if any input is at logic 1 then the
output is at logic 1. This gives rise to the unique condition of logic 0
at the output when all inputs are at logic 0. Note the simplified don't
care truth table representation. This gate should be remembered as
follows:

n u P A T F A L L I N p U T S AT 0 GIVES OUTPUT AT 0
U K UAiL·. Α Ν γ I N p u T A T j G I V E S OUTPUT AT 1.

The NOR gate symbol is identical to the OR gate symbol except
for the inverting circle on the output line. Like the NAND gate in
relation to the AND gate, the NOR gate truth table is similar to the
OR gate truth table; the difference is simply that the output is
complemented. The Boolean expression is: A + B = Q, read as:
'NOT (A OR B) GIVES Q'. The unique condition is both inputs at
logic 0 producing an output at logic 1. This gate should be
remembered as follows:

P A T F A L L I N P U T S A T 0 GIVES OUTPUT AT 1 i\UK irAiL·. Α Ν γ I N P U T A T j G I V E S OUTPUT AT 0.

The exclusive-OR gate, abbreviated as 'XOR', is similar to the
OR gate, except that it distinguishes the difference between one
input at logic 1 and more than one input at logic 1. The distinctive
symbol has the double-curved input to signify its 'exclusive' func
tion. Compare the full truth table with that of the OR gate, and it
will be seen that the only difference is in the bottom line. With the
XOR gate, more than one input at logic 1 produces an output at
logic 0. The name can now be appreciated, for the gate detects one
input OR another exclusively, as opposed to simultaneously. The
simplified truth table has been modified in form to more easily
depict this, and relates directly to the easy way of remembering the
function of the gate, given below. The Boolean expression: (A.B) +
(A. B) = Q represents this gate, and may be read as: '(A AND NOT
B) OR (NOT A AND B) GIVES Q \ As with ordinary algebra, it is
possible to transform this expression into another form which is
logically equivalent, but the form given is probably the easiest to
understand at this point. The symbol © can be used to indicate
exclusive-OR directly. This gate can most easily be remembered as
follows:

ALL INPUTS THE SAME GIVES OUTPUT
XOR GATE: AT 0

ONE INPUT AT 1 GIVES OUTPUT AT 1.

19

The X O R gate has a most useful function in logic circuits, in that
it may be used to either invert or not invert a data bit in accordance
with a control input. Consider the A input as a control, and the B
input as a data input, for example. By studying the full truth table, it
may be seen that when A is at logic 0, the Q output is a direct copy
of the B input. Thus a control input at logic 0 produces no inversion.
When A is at logic 1, however, the Q output is the inverted form of
the B input. Thus a control input at logic 1 produces an inversion.
This feature is summarised by the lower right truth table for the
gate, where the output of ' Q ' is obtained from a data input ' Q ' when
not inverted, or ' Q ' when inverted.

The lower portion of the figure shows simple buffer and inverter
gates. No logical change occurs between the input and output of the
buffer gate, hence the Boolean expression A = Q. The gate is useful
where it is required to connect more inputs to a particular output
than are allowed as direct connections. If a particular gate is limited
to a fanout (i.e. loading) of 10 gates, then if a buffer gate forms one of
the loads, 9 inputs can be connected directly to the output in
question, and a further 10 to the buffer gate, without any logical
modification.

The inverter gate has a similar symbol, but with the addition of
the now expected inverting circle on the output. This gate comple
ments the logic state applied to the input, hence the Boolean
expression: A = Q. Thus a logic 0 in produces a logic 1 out, and a
logic 1 in produces a logic 0 out.

A—I >>V 4 1/P AND-OR- INVERTgate
A

1

X

0

0

X

I χ

B

1

X

X

X

0

0

c
X

1

0

X

0

X

D

X

1

X

0

X

0

Q I
0

0

1

1

1

1 (A.B)+(C.D)=Q

Figure 3.4. A 4-input AND-OR-INVERT gate and
truth table

Another logic function which can be quite useful is performed by
what is known as an AND-OR- INVERT gate. This is shown with
its truth table in Figure 3.4. (A.B) + (C D) = Q is the Boolean
expression read as: N O T ((A AND B) O R (C AND D)) GIVES Q.
Because there are four inputs, a full truth table would require 16
lines. For this reason only the simplified truth table is given. This
shows that the unique condition of logic 0 out results from either (or
both) of A AND B O R C AND D being at logic 1. If any input is low

20

in both input pairs then the output is at logic 1. Remember this gate
as follows:

ΛΧΤΤΪ ΓΛΤ> τχτΛ/ιτϋ^ η Λ ™ EITHER INPUT PAIR AT 1 AND-OR-INVERT GATE: Q I V E S ο υ τ ρ υ χ A T Q

ALL INPUT PAIRS WITH A 0
GIVES OUTPUT AT 1.

Appendices at the rear of this book give a selection of the most
useful digital devices in the SN7400 series, where several of the
above gate types can be obtained on a single integrated circuit. The
smallest of these dual-in-line encapsulations has 14 pins, as illus
trated in Figure 3.5. Two of these pins are required for the power

% Figure 3.5. The 14-pin dual-in-line
plastic encapsulation

supplies, leaving 12 functional pins. This conveniently allows for
four identical 2-input logic gates.

Many of the more popular logic gates are also available with
open-collector outputs instead of the push-pull or totem-pole arrange
ment shown in Figure 2.4; with reference to this figure, such devices
do not include R4, TR3 and D2. The logic 0 output condition is
therefore unchanged, but the logic 1 condition simply presents a
high impedance output, and an external connection must employ a
pull-up resistor to +5 V. Such gates can be useful for driving loads,

-3- Figure 3.6. Examples of 3-state gates: (a)
enabled with control high; (b) enabled
with control low

or several such gates can be linked to a common pull-up resistor to
give what is termed a wired-OR connection.

Another form of output available with certain devices is known as
three-state*. As the name suggests, such devices present three
alternative forms of output: logic 1, logic 0, and also a high
impedance state. The high impedance state or the logic states are
output in accordance with a control line C, as shown in Figure 3.6.
The high impedance state allows any number of these gates to be

* The name 'tri-state' is also used, but this is a manufacturer's trade mark.

21

commoned in order to route different data lines to a common
destination or destinations. A number of associated data lines
connected in this manner are known as a data highway) thus data
highways link multiple data sources to one or more destinations.

The examples given in the figure show the two options available;
in Figure 3.6(a) the control input must be high to enable the gate,
and in Figure 3.6(b) the control input must be low to enable the
gate. When the gates are not enabled they present a high impedance
output. The control circuitry must ensure that only one gate is
enabled at once in each group of gates with commoned outputs.

It may therefore be seen that there is a wide variety of devices for
the designer to choose from, and invariably a particular type will
suit his needs.

Different packages are available for different applications, such as
the ceramic encapsulation for military environments. Most
commercial systems employ the cheaper plastic dual-in-line (DIL)
encapsulations, as illustrated. More complex devices utilise similar
packages with more pins. In all cases, however, pinning is always
from pin 1 at the top left-hand side of the device, when viewed from
the top with the identification mark farthest away from you. This is
generally a notch or central mark, as shown, but replaced sometimes
by a dot next to the number 1 pin. The pins are then numbered down
the left-hand side and back up the right-hand side, as shown in
Appendix A.

There is a preferred standard for the power supplies, which places
ground as the bottom left-hand pin, and Vc c as the top right-hand
pin, but there are numerous exceptions to this, and this should never
be taken for granted.

Commercial devices containing logic gates discussed in this
chapter are included in Appendix A as follows.

Gate

2 i/p AND
2 i/p NAND
2 i/p OR
2 i/p NOR
2 i/p XOR
Buffer
Inverter

Number in package

4
4
4
4
4
6 (with open-col)
6

4 i/p AND-OR-INVERT 2
3-state buffers
Schmitt inverter

4
6

Type number

7408
7400
7432
7402
7486
7417
7404
7451
74125/6
7414

Appendix ref.

A7
Al
A8
A6
B5
A2 (note)
A2
B3
B7
A4

22

Schmitt triggers

The previous chapter described the internal structure of a typical
T T L gate, and emphasised that all inputs and outputs switch
between high and low states. Certain gates may contain quite a
number of stages, and if an input is held at some intermediate
voltage level the internal circuit may not switch to one of the two
logic states: this could lead to transient conditions and internal
oscillations. For this reason it is important that switching times are
always very fast. These should typically be of the order of 10 ns
(10-8s).

This may sound an enormous problem to the person more
familiar with linear circuits of a slower variety, but it should be
remembered that logic gates naturally achieve the switching time
requirements, and the only problem comes where it is necessary to
interface a logic circuit with a slower section of discrete circuitry, as
with a transistor input, for example. This is where the Schmitt
trigger comes in. The linear designer will be familiar with discrete
versions of the Schmitt trigger, but in logic terms, it is simply
another gate, as shown from the last entry in the table of gate types
given above.

Slow inputs should not be connected to ordinary logic gate inputs,
except under special conditions, which will be discussed in Part 2.
Slow inputs may be connected to Schmitt triggers, since these
provide fast output switching between logic states once the input has
crossed upper or lower threshold voltages. Figure 3.7 shows the
symbol for a 4-input Schmitt trigger arranged as a NAND gate
(7413 is a dual 4-input version). The waveform diagram shows how
the output changes in relation to an input, assuming that the other
inputs are at logic 1. The typical positive-going threshold voltage
(V T +) is 1.7 V and the negative-going threshold (VT_) is typically
0.9 V. The hysteresis between these two figures prevents oscillation
at an intermediate voltage level.

Typical thresholds

Figure 3.7. A 4-input Schmitt trigger (NAND) gate

Schmitt triggers are available as 4 or 2-input NAND gates, or as
simple inverters (as listed in the preceding table). The hysteresis
symbol within an ordinary gate outline distinguishes it as having
Schmitt inputs. Because these gates will accept slow edges, they can
be used after small CR type delays.

23

Logic networks

Figure 3.8 depicts a very simple logic network: a combination of
logic gates connected together to form a logic circuit. If it is required
to determine the output conditions for all input conditions, then one
method of achieving this is to prepare a truth table. In the figure this
has been done by considering every possible input condition. The l 's
and O's written above the lines indicate the sequence that these
conditions have been considered in. Thus A = 0 and B = 0 is the
first condition considered, which produces logic 0 at the O R gate
output, logic 1 at the NAND gate output, logic 0 at the AND gate
output, and logic 1 at the inverter output. This is a useful circuit to
study since it contains most of the gate types. Satisfy yourself of the
validity of the truth table by considering all the conditions.

Once this has been done, it is interesting to note that the circuit
without the inverter is the equivalent of the exclusive O R gate.
Compare the truth table with that shown in Figure 3.3. Here is a
simple method of obtaining an X O R function without using an
X O R gate.

0111

mo Π '

A
0
1

1 °
[1

B

0

0

1

1

Q
0

1

1

0

Q

1

0
0 |

1 |

Figure 3.8. Considering all possible states for a logic network

So far we have only considered logic gates in terms of meaningless
A, B, C and Q terms. It is perhaps a little more inspiring at this
stage to consider a simple logic circuit which has a practical
application. In this way it may be better appreciated how useful
logic can be. Figure 3.9 shows some indicator logic for a combined
burglar and fire alarm system. It drives an alarm buzzer if a window
is opened, a door is opened, or if smoke is detected. A light emitting
diode (LED) indicates the nature of the alarm, and two outputs are
provided to drive other equipment in order to give alarms to the
police station for an intruder, or the fire station for a fire.

Logic lines are best labelled with a mnemonic which suggests
their function. Thus the inputs are labelled W I N D S H U T to indic
ate that all windows are shut, D O O R S H U T to indicate that all
doors are shut, and N O S M O K E to indicate that a smoke detector
has not detected any smoke. IC3 provides three open-collector
buffer gates (App. A2 note) for driving the LEDs; these are
non-inverting gates. If any of the inputs goes false*, i.e. to logic 0,

* Positive logic is used throughout this book.

24

WINDOWS (LED)

(«^ —-DOORS (LED)

FIRE (LED)

BUZZER DRIVE

fr

OINTRUDER

O F I R E WARN

Figure 3.9. A practical application of logic gates

the output of the appropriate buffer gate also goes low, thereby
drawing current through the LED-resistor combination to indicate
the nature of the alarm.

All inputs at logic 1 provide a logic 0 output at IC2a NAND gate,
which holds off TR1, but if one or more of the inputs goes false, the
output goes high, allowing current to flow through R4 into the base
of TR1, so switching on the alarm buzzer. R4 provides for a higher
base current than the NAND gate could provide in its high state. If
WINDSHUT or DOORSHUT goes false, the output of ICla AND
gate also goes false, making the INTRUDER output go active; the
bar indicates that this output line is active low. If NOSMOKE goes
false then FIREWARN goes active low. IClb is simply used to
provide a buffer between the output line and the NOSMOKE input
line, but it has no logical significance because the gate is non-
inverting. The two inputs of this gate are tied together purely for
convenience: all unused gate inputs should be taken to a logic level,
and an alternative would be to tie one input to logic 1. As explained
in the previous chapter, when inputs to a single gate are tied
together as shown, they only form a single gate load to a low-driving
input.

The integrated circuits used in this circuit are included in
Appendix A as follows:

IC1 - 7408 - quad 2 i/p positive AND gates (App. A7).
IC2 - 7410 - triple 3 i/p positive NAND gate (App. A3).
IC3 - 7417 - hex buffers/drivers with open collector high

voltage outputs (App. A2).

25

4
Optimisation versus minimisation

The previous chapter showed how Boolean algebra lends itself to
expressing logic circuits in mathematical terms. Like ordinary
algebra, by following certain rules it is possible to manipulate the
terms and obtain equivalent but different expressions; it is also
possible to simplify logical expressions. Another method employed
to simplify logical conditions is to draw what are termed Karnaugh
maps) these allow all possible logical permutations to be displayed in
graphical terms.

Both the above methods lead to what I have termed minimisation of
a logical requirement, in that they produce the simplest logical
solution. These techniques are extensively documented in other
literature, and are the subject matter of the more traditional digital
courses, therefore this chapter will only describe them in sufficient
detail to show their usefulness - and limitations. Whilst such
techniques lead to minimisation, this is not the same thing as
optimisation of a logic circuit, in practical terms; this chapter aims to
show the difference.

Boolean algebra

George Boole devised an algebraic method of converting logical
statements into mathematical terms; it was intended as a tool for the
logician. It was Shannon who recognised its use when analysing
circuit conditions as long ago as 1938. He used it to analyse
mechanical switching, but today it is the perfect mathematical
method of expressing logic circuits. We shall now look briefly at the
rules of Boolean algebra, for it will be appreciated that by simplify
ing a Boolean expression we can simplify the associated logic
network.

Below are given the basic laws of Boolean algebra. Many see these
purely in mathematical terms, but the reader is encouraged to
visualise them in terms of their gate equivalents. In this way their
significance - and truth - will be better understood.

26

Laws of Boolean algebra

Gating

Identity

Double negative

Commutative laws

Associative laws

Distributive laws

De Morgan's Theorem:
First Rule:

Second Rule:

AND OR NOT
0.0 = 0 0 + 0 = 0 T = 0
0.1 = 0 0 + 1 = 1 0 = 1
1.1 = 1 1 + 1 = 1 Complements
A.0 = 0 A + 0 = A A.A = 0
A. l = A A + 1 = 1 A + A = 1

A.A = A A + A = A
A(A + B) = A A + A.B = A
A(A + B) = A . B A + X . B = A + B

X = A

A.B = B.A A + B = B + A

A + (B + C) = (A + B) + C
A.(B.C) = (A.B).C

A.(B + C) = (A.B) + (A.C)
A + (B . C) = (A + B).(A + C)

negation of logical sum
A T B = X . B

negation of logical product
X7B = A + B

Taking just a few examples will show how the above rules may be
visualised in terms of their equivalent gates. Once you have learned
how the gates behave (and it is essential that you do), the above
expressions make immediate sense. By relating the expressions to
gate equivalents you obtain a practical grasp instead of learning
arbitrary laws in the more usual parrot-fashion.

Firstly consider an AND gate. By definition, this requires all
inputs to be at logic 1 for a logic 1 at the output, therefore the first
three gating AND terms are seen to be true. If we now consider an
unknown input represented by A, it is equivalent to a don't care
input if the other input is at 0, therefore the output is also 0. If the A
input is combined with a 1 input, however, the output will be the
same as the A input, hence A. l = A. If in doubt, study the truth

27

table given in Figure 3.3. Having satisfied yourself of this much,
carry out a similar exercise with the O R gate terms.

Since there are only two logical states, 0 and 1, then clearly I must
be equivalent to 0, or conversely, 0 equivalent to L_ The com
plementary expressions are also self-evident. If A and A are inputs
to an AND gate, they must always differ, therefore the unique
condition of all l 's producing an output of 1 can never be achieved,
the output always being 0. If A and A are applied to an O R gate, one
of them must always be at 1, therefore the output is always at 1.

The Identity laws are simpler than they look, if you think about
them. For example, if the terms A and A. B are applied to the inputs
of an O R gate, the output will be at 1 any time A is true; since A is
required in both terms, the output is equivalent to A; if A is false, the
output will be at 0. The double negative is obvious, for if something
is N O T (N O T A), it must be A. The Commutative laws show that
there is no significance in order - apples and pears are the same as
pears and apples. The Associative laws remind us of ordinary
algebra, as do the Distributive laws, where we are factorising. Draw
logic circuits to represent any expressions you are in doubt about
and all should become clear (see Figure 3.8 for the technique).

:=0! :=0
A
0
0
1
1

B
0
1
0
1

A+B
0
1
1
1

ÄTB
1
0
0
0

Ä
1
1
0
0

B
1
0
1
0

Ä.B
1
0
0
0

-Equivalent _*
Figure 4.1. Interpreting De Morgan's First Rule
using a NOR gate

De Morgan's Theorem is a little more difficult to follow, but both
rules can be proven by drawing the truth tables for the indicated
gates and then comparing thern^ Figure 4.1 shows this for De
Morgan's First Rule: A 4- B = A. B, using a N O R gate on the left for
the left-hand term, and an AND gate with 'notted' inputs on the
right, for the right-hand terrnj_in the latter case, the inverting circles
on the inputs create A and B from the true A and B inputs. The
N O R gate section of the truth table is identical to that seen before in
Figure 3.3^except that an O R column has been added for clarity);
the A and B columns are the complements of the A and B columns,
and the far right-hand column is an AND of the negated A and B
columns which immediately precede it.

28

By comparing the columns representing the outputs of these two
gates it can be seen that they are identical, thereby proving the rule.
In practical terms it means that a NOR gate can perform an AND
function with negated inputs.

De Morgan's Second Rule is similarly proven in Figure 4.2 using
a NAND gate for the left-hand term (A7B), jind an OR gate with
inverting inputs for the right-hand term (A + B). Once again it may
be seen that the outputs from these two gates are identical. In
practical terms this indicates that a NAND gate can be used to
provide an OR function with inverted inputs.

Truth table

A
0
0
1
1

B
0
1
0
1

A.B
0
0
0
1

O
1
1
1
0

Ä
1
1
0
0

* ■

1
0
1
0

Ä+B
1
1
1
0

■Equivalent

Figure 4.2. Interpreting De Morgan's Second
Rule using a NAND gate

Logic circuits frequently produce inverted signals at a point where
non-inverted signals are reguired_to perform a particular function
directly. For example, if A and B are directly available and the
function A + B is required, the optimum solution is to use a NAND
gate, which produces the required_result^lirectly; the alternative is
to use inverters in series with both A and B, and to follow these with
an OR gate. Because NAND and NOR gates provide an inversion, it
is possible to use combinations of either of these gates to produce
any AND/OR/NAND/NOR function, which can be useful where
spare gates are available; clearly either a NAND or a NOR gate can
be pressed into service as a simple inverter if required.

Karnaugh maps

Consider the following Boolean expression, which represents a logic
circuit requirement:

ABC + ABC + AB + BC = Z
Φ @ ® ®

As with ordinary algebra, the absence of a symbol between letters
implies V (i.e. and AND relationship, in this context). Figure 4.3 is

29

a Karnaugh map for three variables, which in this case are A, B, and
C. The first two columns represent A true, the two central columns
represent B true, and the upper row represents C true. Thus the top
left-hand square represents the logical condition A B C , and the
bottom right represents A B C .

®

0

I® ©I
1

® ®

Figure 4.3. A simple Karnaugh
map for three variables

If 'Γ is now marked in the various squares to plot the logical
expression given above, the entries shown in the figure will be
obtained. The circled numbers beneath the terms in the Boolean
expression match the related squares marked by similar circled
numbers in the Karnaugh map*. It may be seen that the shorter the
term, the more squares it specifies. In this case, the square
representing A B C is covered by the first and the third Boolean
terms.

The Karnaugh map allows us to see a simplified logical express
ion. This is derived by grouping together adjacent squares in the
map, where it may be visualised that left and right-hand sides bend
round and touch, and upper and lower sides do likewise. Thus A
describes the four squares in the left-hand block of the map, leaving
only j}ne required square not covered. A simplified expression is:
A + B C .

A combined example

Let us suppose that a circuit is required to produce an output Z from
the input conditions as described by the following expression:

ABC + ABC + ABC + ABC + ACD = Z
φ © © ® ©

By applying the laws of Boolean algebra, this may be simplified as
follows:

AC(B + B) + BC (X + A) 4- ACD = Z
AC. l +J5C.1 + ACD = Z
ACJ- BC + ACD_= Z
C (A + AD) + BC = Z

* The circled numbers are purely a teaching aid.

30

x:±

C 1

y

@ 1

© 1
1

®7]

lb
1

y

kl
I®

1

I® I
1

3

A |

N II©
1

I®
1

:x D

Figure 4.4. A Karnaugh map for four
variables

Figure 4.4 shows the same expression plotted on a four variable
Karnaugh map in the same manner as before. This then leads to a
simplified expression obtained from the borders marked x, y and z
on the map, corresponding to the penultimate line in the Boolean
simplification (x giving AC; y giving BC; z giving ACD). It can also
be seen that the final Boolean expression above is equally true by
inspection of the Karnaugh map.

One final word about Karnaugh maps. If more than four
variables are involved, an extra dimension is needed to cope, and
arrays are needed! Things really tend to get out of hand at this point
and the designer should be seeking another more practical
approach.

Optimisat ion

Let us now consider whether the techniques of Boolean algebra or
Karnaugh maps are the final solution when it comes to effective
logic design. It will be appreciated that such procedures lead to
minimisation of the logic function, but is this the same thing as
optimisation of components?

The primary objectives of a digital design engineer may be
summarised as follows:

a. Minimum component count.
b . Maximum availability of components.

Low cost components. c.

If minimum component count is achieved, we will have won in
two ways: firstly on cost, since low component count and low cost go

31

hand-in-hand, and secondly in the reduction of device interconnect
ions. Each and every interconnection is a potential source of trouble,
therefore the fewer there are, the more inherently reliable the
equipment will be. Cost is also reflected in device availability, for
maximum availability of component types goes with low cost - the
prices of ICs dramatically illustrate the supply and demand equat
ion, with the most popular types being the cheapest, by far. For this
reason, the designer should work with preferred types in mind.

The techniques of logic minimisation are obviously useful in
reducing a complex logical requirement into its simplest logical form,
but the designer should then take this as the bare bones of his
requirement and optimise his final solution by his manner of
implementation. This is best illustrated with a simple example.

Consider the simple alarm/indicator logic circuit discussed at the
end of the previous chapter (see Figure 3.9). Ignoring the simple
buffer requirements of the LEDs, the logical requirements are as
follows:

W I N D S H U T . D O O R S H U T . N O S M O K E = BUZZER
D R I V E

W I N D S H U T . D O Q R S H U T = I N T R U D E R
N O S M O K E = FIREWARN

The above Boolean expressions describe the circuit requirements,
where 'BUZZER D R I V E ' is taken to be the input to TR1 base.
These three expressions could be used as the basis for three separate
Karnaugh maps, but there is little point in drawing these for such
simple requirements: the circuit shown in Figure 3.9 can be seen to
be the minimum logical solution, for single gates directly implement
the above expressions, where:

B U Z Z E R D R I V E is implemented by IC2a
I N T R U D E R is implemented by I C l a
F IREWARN is implemented by I C l b (providing a required

non-inverting buffer).

The original circuit will work using the components listed in
Chapter 3, but it can be improved by taking into account the
effectiveness with which we are utilising the components. Consider
what is used of the original components:

in IC1 only two out of four AND gates are used;
in IC2 only one out of three NAND gates is used;
in IC3 only three out of six buffer/drivers are used.

32

WINDSHUT-

DOORSHUT-
NOSMOKE-

• —WINDOWS (LED)

£»-> O FIREWARN
BUZZER DRIVE

Figure 4.5. A cost-effective version of the alarm/indicator logic previously
considered in Figure 3.9

It will be seen that this leaves seven unused gates, which is clearly
an ineffective use of components. Consider the alternative solution
given in Figure 4.5.

At first sight the circuit looks needlessly complex, but the
advantages are seen when the component count is considered. In
this alternative circuit only two ICs are needed:

IC1 - 7404 - hex inverter/drivers (App. A2), containing the only
unused gate

IC2 - 7408 - quad 2 i/p AND gates (App. A7).

The first economy is to note that the output required for
INTRUDER is a partial decode of the BUZZER DRIVE require
ment; thus IC2c provides the INTRUDER output directly, but only
needs to be NANDed with NOSMOKE to obtain the BUZZER
DRIVE requirement. Since IC2c gate has made us use a quad AND
gate, IC2d followed by an inverter (AND inverted) is equivalent to
the required NAND function. Inverters are invariably required in
any logic circuit, therefore hex inverter ICs are extremely cost-
effective. In this circuit the inverters are doubled-up in two places to
provide non-inverting buffers (double inversion equates to no
inversion), i.e. ICla/IClb and ICld/lCle. The two AND gates
IC2a and IC2b provide the remaining non-inverting buffers re
quired to drive the LEDs (NB this circuit would require LEDs
having a forward current requirement of less than 16mA).

33

The percentage effect of optimisation techniques such as this grows
smaller as the size of a circuit increases - for the more gates of a
particular type that are called for, the more gates may be used in a
particular device. Part 2 of this book will show how to best approach
efficient design from the point of view of component count, but this
information should be sufficient to demonstrate that there is a clear
distinction between what I have termed minimisation and optimisation.
Optimisation is just as important in a larger circuit, for here the
designer is trying to keep down the component count for even more
pressing reasons - it could make the difference between needing an
extra printed circuit board or perhaps a higher current capability
from the power supply, and in these regions the cost difference can
be quite considerable.

Thus the need is seen for the designer to appreciate not just the
logical significance of his circuits, but the practical aspects as well. It
makes no difference whether the enthusiast's pocket or the
manufacturer's profitability is being considered, the aim is the same:
component optimisation. If you can appreciate the need from the
start, it becomes an inner instinct, and an important aid to practical
design.

An interesting exercise at this point is to attempt to design a
simple circuit optimised for available components. The circuit
required in the combined example given earlier is ideally suited to
this. Allowing for the fact that the circuit output simplifies to
C(A + AD) + BC, and that the circuit inputs are A, B, C and D,
attempt to design a suitable circuit using only 6 NAND gates*.

* The few exercises suggested throughout this book should considerably aid the reader's appreciation
of the points under discussion. For the book to achieve its objective, they should be attempted.

34

5
Timing

The circuits that we have looked at so far have been static in nature,
i.e. we have only considered them with fixed inputs and outputs. In
a practical circuit the sitation is dynamic and the inputs and outputs
change with time. This may not be an important consideration in
simple circuits, but it can become of critical importance in more
complex circuits, as will be seen later.

In order to allow us to better understand how a circuit performs
with time, the most convenient method of displaying the changing
dynamic situation is to draw timing diagrams, sometimes known as
waveform diagrams. This chapter introduces the timing diagram in
order that it may be used in following chapters. It also demonstrates
the importance of timing considerations with reference to hazard
conditions.

General considerations

It will be appreciated by those familiar with linear electronics that
there must be a finite delay due to the switching time of a logic gate.
Chapter 2 showed the internal structure of a typical T T L gate, and
this was seen to comprise several transistors, each of which must
switch from one level to another if a change of state is demanded.
The time taken for the output of a logic gate to change as a result of
an input change is known as the propagation delay, i.e. the time taken
for the changed logic condition to 'propagate ' through the element.
The propagation delay is typically 10 ns for a T T L gate (i.e. 10~8

second), however, this is reduced to around 3ns for Schottky T T L ,
where special diodes prevent internal transistors from saturating.
The figure of 10 ns should generally be borne in mind for design
purposes. If good design practices are followed, the actual propagat
ion of any device should not be significant in any calculations, any
more than the actual current gain of a transistor should be a linear
design; it is the designer's aim to make variable component para
meters irrelevant in the performance of this circuit.

35

Timing diagrams

A simple logic circuit will now be considered in an operational
context with varying input and output conditions, and it will be
shown how these can be illustrated by means of a timing diagram.
Figure 5.1 depicts the circuit, and Figure 5.2 the related timing
diagram for particular input conditions. For clarity in this example,
the input signals are shown above a horizontal chained line, and the
resultant outputs are shown below this line.

Figure 5.1. A circuit producing an output C (A 4- AD) +BC (showing
added signal names beneath the lines)

DETECT

O'RDE

EN

EGCY

OSEL

SEL

OPEN.

EGCYEN

CTIVATE

1 |
1
1
i 1

— i i —
I i

1 Π !
I ' l l
1 1 1 1
I j . 1 1
1 P—j—i
I ' l l
1 ' 1 1

i : ! i

r~ !
1
1
1
1

— I
1

r~

1
r~\

_| .
,r! ■' 1 1
! Li .

. i ! i 1 . i i ■ '

D

1 1
1 1

1 1

1 1
1 1
1 2

; i—i i
1 1 · 1
1 j ! i

! H i
t i l l
3 4 5 6

1
1
1
1
1
1
1

7

u ;
| | | | [

i I i
Π i
1 1 1
8 9 10 t

>s

Figure 5.2. Timing diagram for the circuit giving in Figure 5.1 (inputs shown
above the chain line)

The reader might be interested to note that the Boolean express
ions above the lines in Figure 5.1 related to the exercise suggested at
the end of the previous chapter - this figure represents the solution
to the exercise. To make the circuit more meaningful in an
operational context, signal names have been added to inputs and
outputs, and have also been shown at intermediate points in the
circuit below the lines.*

Thus Figure 4.4 shows the Karnaugh map for this circuit.

36

Let us suppose that an activating mechanism can only be
activated when either:

a. an enabling pulse EN occurs when a D E T E C T line is low, or
when an override signal O ' R D E is present if D E T E C T is high;

b . the enabling pulse EN is not present, but an emergency signal
EGCY is present.

Meaningful signal names have been added on the circuit as
follows:

a. OSEL (override select) goes low for: D E T E C T . O ' R D E ;
b.SEL (select) goes high due to selection by either D E T E C T or

O S E L going low (i.e. there is a NAND gate operating as an
inverted input OR) ;

c. O P E N goes low if both SEL and EN are true;
d. EGCYEN (emergency enable) goes low if EN is low together with

EGCY high;
e. A C T I V A T E goes high if either O P E N or EGCYEN go low

(another inverted input O R gate).

As a special aid for the novice, Figure 5.1 - and the remainder of this book -
use the symbol f within gates which are used to perform other than their normal
function, by virtue of inverted inputs. This is a most useful design aid which the
reader may care to use himself.

The timing diagram in Figure 5.2 shows changes in logic states at
times marked by vertical lines, these being labelled 0 to 10 for
reference purposes; thus to represents the situation at the far left of
the diagram, with no inputs active. The first condition illustrated is
the emergency condition, with EGCY going true at t i , and false
again at t2» The second condition illustrated is the normal operation
where D E T E C T goes active (low) at t3, the enable pulse EN occurs
between t4 and t5, and D E T E C T reverts to an inactive state at t6.
Finally the override condition is illustrated, where O 'RDE goes high
at t7 until t9; the special case of EN being true whilst O ' R D E is true
is shown betwen t8 and t9 to show the effects of this perhaps
unwanted condition. It is in circumstances like this that the timing
diagram can be most useful, for it allows us to analyse circuit effects
under all conditions. Finally EN goes false again at t i 0 .

I t is not possible to draw the waveform for A C T I V A T E directly
because there are too many intermediate stages to take into account.
We must therefore work through the circuit from the inputs. In this
timing diagram, and all that follow, the logic 1 state is shown as the
upper voltage level and the logic 0 state as the lower voltage level;
the diagrams therefore effectively plot voltages against time.

37

Let us consider OSEL first. This is a NAND of D E T E C T and
O 'RDE; since O ' R D E is only high between t7 and t9, and because
D E T E C T is also high between these times, OSEL is only low
between these times; it is drawn high at all other times.

SEL is an inverted input O R of D E T E C T and OSEL; thus we can
only work out this waveform in its entirety after OSEL has been
determined. SEL is high between t3 and t6 due to D E T E C T being
low, and is also high between t7 and t9 due to O 'RDE being high
together with D E T E C T high.

O P E N is dependent upon both the former signals, and is a NAND
of SEL and EN. It is therefore low between t4 and t5 and between t8

and t9. Normally it might be expected that it would be low when EN
is true, but it is cut off at t9 rather than t i 0 due to SEL going low at
t9-

EGCYGEN is a NAND of EGCY and EN (since EN is inverted
by a NAND gate); thus EGC YEN is low when EGCY is high,
providing that EN is low (i.e. between t! and t2). It will be seen that
if EN went high whilst EGCY is high, this would force EGCYEN
high (not shown).

The output A C T I V A T E is the result of the inverted input O R
gate, and is high if either OPEN or EGCYEN are low; thus the two
waveforms above A C T I V A T E on the timing diagram show when
A C T I V A T E is high, i.e. between t! and t2, between t4 and t5, and
between t8 and t9.

Des ign practice

The example previously given illustrates several important design
practices which the reader is encouraged to follow.

1. Signal names are given to significant points within the circuit to:
a. be meaningful, in terms of their mnemonics;
b . allow the circuit points to be identified on a timing diagram.

2. The signal names are always given a name to clearly indicate
their active level. Thus D E T E C T is used in preference to DE
T E C T , since 'detection' is signified by the line going low when
active. Similarly O P E N is better than OPEN, since the line goes
low to Open'. A C T I V A T E is used (as opposed to ACTIVATE)
because this line goes high (i.e. true) to 'activate'.

Much confusion can be caused by not observing the latter rule,
especially on inputs and outputs to printed circuit boards; in this
respect, many engineers fall down. Whilst there may be no confusion

38

in their minds, there may be in the minds of those who have to
interpret their circuits at some later date. Another constant source of
confusion is where a line has opposite significance in its two separate
states; examples are: READ/WRITE; ON/OFF; STOP/GO. This
confusion even exists in manufacturers' data, although there is an
unwritten convention that the first of such terms represents the logic
1 condition. This can never be taken for granted. The author
strongly advocates the use of a bar over the appropriate term in
order that there can be no confusion. The above then become:
READ/WRITE; ON/OFF; STOP/GO.

In addition, the author 's scheme of using the 'dagger' symbol is a
useful one to draw attention to gates not performing their expected
function; this can save a lot of puzzlement for those other than the
designer, and even for the designer after a few weeks! Where such
circuits are liable to be used by others, a ' f footnote should indicate:
gates not used for their primary logic function.

Start as you mean to go on with conventions such as these, and
not only do your designs become clearer to you - they are clearer to
others as well.

Race hazard condit ions

Figures 5.3 and 5.4 show another logic circuit and its associated
timing diagram. These will be used to illustrate what is known as a
'race hazard' .

START * I \ _
10 f » Q1

2 gate delay

FINDEL

Figure 5.3. A latching circuit demonstrating race hazard conditions

The circuit comprises two latches, more of which will be said in the
next chapter. For the purposes of this chapter, all that need be said
is that two NAND gates coupled as shown provide a means of
retaining a particular logic condition between controlling input
pulses. The controlling inputs START and FIN are lines which are
pulsed low (i.e. they are normally high), to change the latch state.

CH>

39

Ί_Γ

_Γ~ν

1 1 .

Race
condition ^ u

Indeterminate
state

«d-»|l·
m

i_
Figure 5.4. Timing diagram showing the results of a race hazard condition in the
circuit given as Figure 5.3

Reference to the timing diagram between t0 and t5 shows how the
latch with outputs Q l and Q l is set and reset. At t0 and until ti F IN is
low; at ti both inputs are inactive. At t2 START pulses low until t3.
Note that outputs Q l and Q l are always complementary provided
that both inputs to the latch are never taken low simultaneously.
Thus START going low forces Q l high; Q l high together with FIN
high forces Q l low. When START reverts to a high condition at t3

the outputs do not change because Q l low keeps Q l high, and Q l
AND FIN high keep Q l low. This condition will remain until t4,
when FIN is pulsed low until t5. This reverses the condition of the
latch, forcing Q l high, which in itself is combined with START high
to force Q l low, and these new conditions are retained after t5, when
the FIN pulses finishes.

Under normal circumstances, the two inputs to a latch such as
this would never be taken low together, but__ty shows a case where
they are; this forces both outputs Q l and Q l high together, such
that they are no longer complementary. All will be well if one input
is removed before the other, but if they are both removed at the same
time, as shown at t8, a race hazard condition arises. The latch must
fall into a stable state with one output high and one output low, but
which will it choose? In fact the result depends upon gate propagat
ion delays, a situation which cannot be tolerated in a design.

Such a condition should never be permitted, but for the sake of
this illustration of hazard conditions, it will be shown how a delay on
one signal can make all the difference. The second latch with
outputs Q2 and Q2 is identical to the first latch. The only circuit
difference is that a 2-gate delay is introduced between the FIN input
and the reset side of the second latch. Thus the waveform shown as

40

FINDEL (i.e. FIND-delayed) is always a small time lagging FIN; it
is delayed time td as a result of two gate propagation delays (i.e. a
nominal 20 ns). Thus the setting (i.e. front) edges of the second latch
are the same as for the first latch, but the resetting edges lag because
of this delay. At t8, when both inputs go high, the first latch might
see either input as last, dependent upon propagation delays, and the
latch outputs reach an indeterminate state (shown dotted on the
timing diagram); no one can predict which state it will go to, except
that the outputs will be complementary. The second latch avoids
this race condition because FINDEL remains low at t8, whilst START
alone goes high; thus Q2 remains high, which with START high
forces Q2 low; Q2 is low when FINDEL finally goes high, thereby
maintaining Q2 high.

Any logic gating which depends upon inputs which nominally
change at the same moment in time gives rise to a race condition and
a logic hazard; such conditions must never be allowed in circuitry,
and indeterminate states cannot be tolerated under normal condit
ions. It should be noted that the indeterminate conditions at the
output of the first latch are removed as soon as normal conditions
are restored by one input being pulsed low again, as at t9.

Timing diagrams are a valuable aid towards checking that a
particular circuit is fault free. For if all normal input conditions are
examined, any possible hazard conditions should be spotted. If they
exist, the design must be modified to avoid the situation. The delay
shown in this example is for illustrative purposes only, and should
not be taken as a method to be employed to counteract all potential
race conditions. It is a technique which can be employed in some
situations, however, although a 3-gate delay is perhaps more
reliable. Later chapters will show alternative methods of introducing
a delay.

The best design aim is to avoid any situation which can give rise
to possible race hazards, rather than to counteract their effects, and
this will be taken further in Part 2.

41

6
Latch, bistable, monostable and
astable circuits

Previous chapters have been primarily concerned with combinational
logic, circuits in which the output is completely determined by the
inputs. The exception so far has been the latch, for this is an element
of sequential logic: the output is dependent upon the sequence of
operation of the inputs. This chapter goes into greater depth on the
latch, and also covers bistable, monostable and astable circuits.

The purpose of sequential logic is to staticise (i.e. store) particular
logic conditions after the affecting inputs have been removed. In this
way the logic condition arising at one moment in time can be made
to affect the logic condition arising at a subsequent moment in time.
A short pulse can be detected and converted into a staticised level,
or may be 'stretched' in time. Bistables and latches generally form
the heart of any control logic, and monstables provide a means of
obtaining single pulses of any desired length. Astable circuits
provide a source of clock pulses.

Latches

We have already met the NAND gate latch (see Figures 5.3 and
5.4). An alternative is the N O R gate latch. Both are shown in Figure
6.1, together with function tables and timing diagrams. Note that a
'function' table is basically the same as a truth table, but whereas a
truth table is restricted to logic states, the function table is more
versatile; the latter generally utilises the unambiguous Ή ' and 'L '
symbols to indicate high and low states respectively (thereby
independent of logic convention), and incorporates other symbols
such as arrows or pulses, where these are convenient in describing
functional operation. Function tables are generally more popular in
manufacturers ' data sheets, and will therefore be used extensively
throughout this book. The reader should therefore become familiar
with interpreting them.

42

S R

t H

H *
H H

L L

Q Q
H L

L H |

Qo δ ο
H* H * |

Function table

1 S R

r L
L 4

1L L 1 H H

Q Q 1

| H L |

1 L H
Qo ö o

1 L* L*

NAND gate latch

„ · _ , _ , NOR gate latch condition normally avoided

Figure 6.1. Latching circuits with function tables and timing diagrams

The convention with latches and bistables is to say they are set
when the Q output is high, or reset* when the Q output is low; the Q
output is normally complementary to the Q output. _

For clarity, the NAND gate latch is shown with inputs of S to set,
and R to reset, i.e. the set/reset inputs must be taken low to function,
as indicated by the downward pointing arrows in the Junction table.
Thus taking S low sets the NAND latch, and taking R low resets it.
The N O R gate latch offers the reverse action: the set input S is taken
high to set the latch, and the reset R input is taken high to reset the
latch. The action of the NAND gate latch was explained in the
previous chapter, therefore only the N O R gate latch will be
explained in detail in this chapter. The reader may care to note that
the NAND latch is the most common.

The inputs to the N O R gate latch should normally be low; in this
condition the outputs staticise the condition previously applied
(represented by Q 0 and Q 0 in the function table). If we suppose that
the latch is initially in the reset condition, Q is therefore low, which
combined with S low in the lower N O R gate produces Q; Q high
maintains Q low via the upper N O R gate. If a set pulse is applied,
momentarily taking S high, this forces Q low, which combined with
R low takes Q_high, thereby setting the latch. When output Q goes
high it forces Q low via the lower gate, thereby maintaining the
stable set condition after the setting pulse has gone. The latch is
reset in similar fashion. A positive-going reset pulse on R forces Q
low, which combined with S low forces Q high, thereby restoring the
other stable state. Except in special circumstances, S and R inputs
should not be taken high simultaneously (see timing diagram).
* or 'cleared' 43

The NAND gate latch calls for negative-going pulses to set and
reset the latch; for this reason the inputs should normally be kept
high except to change the latch state, and normally both inputs
should not be taken low together. Figure 6.1 shows how an
indeterminate result occurs if set/reset inputs are cancelled together.

All the latches shown have used two input gates for simplicity.
Some applications call for alternative set or reset inputs, and in such
cases gates can be used with more than two inputs. NAND gates are
available with a wide variety of inputs, and are generally used for
such purposes. The rule in such a case is that only one input should
be taken low at once (unless the designer knows what he is about!).

D-type bistables

D-type bistables are similar to latches, except that they are clocked.
Figure 6.2 shows such a bistable in (a), complete with optional
preset (PR) and clear (CL) inputs; these control the state of the
bistable in a similar fashion to the set and reset inputs of a latch,
respectively, and such inputs override the clock. A function table is
provided, together with timing diagrams. The timing diagram at (b)

i
D r nQ

>CK

—i_r u
:i_r

1 Inputs

| PR" CT

1L H
H L

L L

H H

H H

H H

CK

X

X

X

♦
♦
L

D

X

X

X

H

L

X

Outputs

Q Q

H L

L H

H* H#

H L

L H

Q0 %\

' invalid condition

J ! Π_Π_Π_Π_

_r

D Q

>CK

Q

™_τυ~υ~ι_π_Γί
D=°J I I I I
°"L_r~l_r~L_

Figure 6.2. D-type bistables, function table and timing diagrams

44

shows the various possibilities with all inputs externally controlled.
The connections to the bistable shown in (c) show how the element
can be toggled, and the related waveform for the toggled condition is
shown at (d). (See App. Cl .)

The type of bistable element we shall now be considering is known
as edge-triggered. This phrase signifies that it is the (leading) edge of
the clock waveform which triggers the device. The state the outputs
resume after such a trigger pulse is dependent upon the D input: the
Q output will take the condition of the D input when the bistable is
triggered, as shown in the left-hand timing diagram.

The timing diagram will now be considered in detail (i.e. Figure
6.2(b)). The preset input PR pulses low at ti and thereby presets the
bistable (Q = 1; Q = 0). The clear input CL pulses low at t2 and
thereby clears the bistable (Q = 0). At t3 the leading-edge of the first
clock pulse triggers the bistable, but Q remains at 0 since the D
input is at 0. At t4 the next clock pulse edge-triggers the bistable to
give Q = 1, since the D input is now also at 1. At t5 the situation is
simply confirmed, since the D input has not changed. At t6 the clock
pulse clocks the bistable to the reset (or cleared) condition because
the D input is now low.

It should be appreciated that the edges of pulses such as the clock
pulse will have very fast rise and fall times - typically well below
10 ns - therefore the condition seen at the beginning of the rising
edge of edge-triggered bistables dictates what state it will take up; so
long as the D input does not change for the typical propagation
delay time, the bistable is not affected if the D input then changes.
T h e propagation delay in bistables themselves is more than adequ
ate when coupled to each other to allow simultaneous clocking
without any_ambiguity of conditions arising. Thus it is possible to
couple the Q output of a D-type bistable back into the D input,
thereby causing the bistable to change state - or toggle -^_at each
clock pulse, as shown in parts (c) and (d) of the figure. The Q output
must be used because it is always opposite to the state that the Q
output takes up; since the Q output takes up the state of the D input,
linking this to the D input would cause the bistable to remain in one
state when clocked: either high or low, depending upon its initial
condition.

Another variety of D-type bistable is the D-type latch, sometimes
known as a transparent latch. This is not usually employed singly, but
in conjunction with similar latches, usually on parallel data lines.
This is shown in Figure 6.3. This is not clocked by the G input, but
allows the output (at Q) to follow the D input whilst it is high; when
G is taken low, it latches the condition then existing at the D input
and retains it until G is again taken high. (See App. C3.)

45

Inputs
D G
L H
H H
X L

Outputs
Q Q
L H
H L
QQ

 Q
O

D Q

G

Ö

π_

Q Ι _ Γ Ί _
Figure 6.3. A bistable D-type latch (transparent latch)

J-K type bistables

The J - K bistable is available as either edge-triggered or master-slave.
It is similar to the D-type bistable, except that there are now two
controlling inputs (i.e. J and K) rather than one (i.e. D). This means
that there are more permutations possible for the output to take with
respect to the inputs; as before, this occurs under the control of a
clock pulse. This section only describes the master-slave variety,
since this is by far the most popular and useful. The edge-triggered
variety is identically controlled with respect to J - K inputs, but
changes state on a defined edge of the clock pulse (either positive or
negative), as opposed to the more complex timing relationship to be
described for the master-slave variety. (See App. C2.)

The alternatives of either edge-triggered D-types or master-slave
J - K bistables should give sufficient scope for just about all design
requirements, and the reader is advised to only use these types,
particularly in early designs. As a matter of normal practice, this is
generally good advice, for these two varieties are most commonly
used by engineers, and circuits are universally easier to follow if
edge-triggered J - K bistables are avoided.

Figure 6.4 shows the master-slave J - K bistable, its function table,
and an example timing diagram. The optional preset (PR) and clear
(CL) inputs override clock inputs as before. The J - K inputs control
the final output state as shown in the table. The timing of the
bistable is referenced to both edges of the clock pulse. The element
comprises two separate bistables in one: a master and a slave.
Information presented at the J - K inputs is clocked into the master
on the rising edge of the clock pulse, and is transferred to the
outputs, via the slave, on the falling edge of the clock pulse. It is
generally understood that the J - K inputs should not vary for the
duration of the clock pulse, for the effects of this vary according to
the type of internal circuitry employed. Some devices have a data
lockout facility which prevents changing inputs having any effect after
the front edge of the clock pulse, but other master-slave devices can
be affected. The best procedure to adopt with any master-slave J - K

46

Inputs
PR
L
H
L
H
H
H
H

CL
H
L
L
H
H
H
H

CK
X
X
X
JT.

n
JT

n

j

X
X
X
L
H
L
H

K
X
X
X
L
L
H
H

Outputs
Q Q"
H L
L H
H* H*

Q0 Qo
H L
L H
Toggle

1_
PR

J Q
>CK

K C L Q

ZT
'invalid condition

I
CK I jL_n_Ji_JL_n_n_ni_n_n_n_ri

Figure 6.4. A master-slave J-K bistable with function table and timing diagram

bistable is to ensure that the J - K inputs are established before the
clock pulse occurs, and are maintained until after the clock pulse
finishes, although they may be safely removed coincident with the
trailing edge of the clock pulse.

The J - K inputs affect the bistable as follows:

a.

c.

if they are complementary, the outputs take the same levels as the
inputs (i.e. Q = J ; Q = K) ;
if both inputs are low no change occurs due to clocking;
if both inputs are high, the bistable is toggled by a clock pulse
(i.e. it changes state). This can be seen from the function table.

The timing diagram is now considered in depth, to fully explain
the bistable's actions with respect to changing J - K inputs.

At ti a negative PR pulse presets the bistable from the leading
edge (Q = 1). At t2 a negative CL pulse clears the bistable from the
leading edge (Q = 0). At t3 the negative edge of the clock pulse C K
sets (the same as 'presets') the bistable as a result of complementary
inputs with J = 1. At t4 and t5 the bistable is toggled, since the J -K

47

inputs are both high. At t6 no change occurs at the outputs since the
J-K inputs are both low. At t7 the clock resets (the same as 'clears')
the bistable as a result of the complementary inputs with J = 0. At t8

and tg no change occurs since J and K are low. At ti0 the preset
input goes active which overrides any clocked effects at tn and ti2.
Since the preset signal is then removed, the clock has its normal
effect at ti3, but no change occurs because both J and K are low. The
J-K inputs at t i4 reassert that the bistable should be set, therefore no
change occurs. At ti5 the clear input goes active to immediately reset
the bistable, and the clock pulse at ti6 is ignored because the clear
pulse is still held. The clear is removed at t\7 and the bistable is then
ready to respond to any further clocking.

Various other single J-K type bistables are available incorporat
ing gating on the J-K inputs. The reader is referred to
manufacturers' data for types such as the following: 7470, 7471,
7472.

Monostables

It is sometimes required to generate a pulse of predetermined
length. This is readily achieved with a monostable, the pulse length
being set by means of an external capacitor. The 74121 is the most
common device for this purpose (App. J1), or the 74122 (App. J2)
when a retriggerable version is required. These elements are most
simply represented as shown in Figure 6.5. An internal CR is
sufficient to provide a nominal 35 ns pulse, but this must be
supplemented by the shown external CR in order to achieve times
greater than this. These devices are suitable up to about 28 s. For
longer times, the 555 timer device is more suited (see p. 50).

Firstly we shall consider the 74121 (non-retriggerable) device.
This has two inverted OR inputs (Al and A2) and one other positive
enable incorporating a Schmitt trigger for pulse-shaping purposes
(B). The monostable is triggered when the appropriate input
conditions are met, as shown in the function table. This may be
summarised as follows. The device is triggered if:

a. one or both of the A inputs are taken low when the B input is high;
b. the B input is taken high when one or both of the A inputs are low.

It is the initial setting of these input conditions which triggers a
single pulse from the monostable. Because it only produces a single
pulse, it is sometimes known as a one-shot. The timing diagram shows

48

iXt I I

.EL
B Q

A2

A1 Q

Inputs

A1 A2 B

L X H
X L H
X X L
H H X
H f H
♦ H H

L X ♦
|x L ♦

Outputs

Q Q

L H
L H
L H
L H

n u
JT. V
n T_r
n τ_Γ
n "i_r

'IT

°_r~i_r

u

i_r

j ~

I I 1 Retriggerable
^ t y p e o n l y

8 9 10 11 12 13
ii ! i I

14 | 16 17 |
15 18

Figure 6.5. A monostable multivibrator (non-retriggerable above the chained
line; retriggerable below the chained line)

how it would respond to varying inputs. Arrows on the edges of the
inputs signify triggering edges. Each time the device is triggered it
produces a pulse of fixed length, i.e. td. Thus the leading edge ofAl
triggers it at t i , and a single pulse occurs at Q (inverted form at Q) .
This pulse is said to time-out at t2. Similarly, the leading edge of A2
triggers the monostable at t3, which times-out at t4. The B input goes
low at t5, which has no effect, but it triggers the monostable at t6

when it goes positive again (note that A2 is still low); this pulse
times-out at t7. Before t8 occurs, a negative pulse is shown on A l ;
this has no effect because A2 is already low. B goes low again at t8

and triggers the monostable when it goes high again at t9, the
monostable timing-out at t i0 . Al and A2 are seen to change over at
t u and t i 2 respectively, with no effects, since one is always low. B
then goes through another cycle between t i 3 and t i 4 to again trigger
the monostable, timing-out at t17. At t i 5 the B input is again taken
low, going high at t i6 , but because this monostable is non-
retriggerable, this triggering edge is ignored because the device is
already triggered; the time-out is the normal time, td.

49

In some instances it is desirable to retrigger the monostable in
such circumstances, and this is where the retriggerable monostable,
the 74122, comes in. This is jjhown as the bottom line of the timing
diagram (only Q is shown; Q is complementary as usual). In this
case, the edge of input B which occurs at t i 6 retriggers the mono-
stable, and it then times-out td from that point. A retriggerable
monostable may be retriggered any number of times during its
time-out period; it does not revert to the reset condition until td after
the ßnal trigger pulse. Thus retriggering can be used as a means of
extending the time-out, or of ensuring that a delay, td, occurs after
the last triggering pulse.

The output pulse width produced by these two monostables is as
follows:

tw(out) = K.Cext.Rx

For the 74121, K = 0.7. For the 74122, K = 0.3 when Ce x t is in
excess of 1000pF, but if the capacitance is less than this value, the
curve given in App. J 2 should be consulted. Curves for both devices
are given in App. J l and J 2 , and the appendix should also be
consulted for details of the limiting values for Ce x t and R-p.

The 555 timer

Strictly speaking, the 555 timer is not a digital device, but because of
its uses in conjunction with digital circuitry as a timing element, not
to mention its availability and low cost, all designers should be
aware of its uses. It is an extremely versatile device with timing
ranges from microseconds to hours. It can be used as a retriggerable

1
>

c - r "

t

Γ
7

» 0

6

Γιϊ 1

•

8
555

D

Q

* T R

art! i

+v

3
1 o/p

eset

———̂—̂

— T —
"D
T
±r R 2 U

C T 5
1

' \

>

*—«

8

• h/e

b
ü R

555

Q

ts
lT

1

1

>——

4

3
o/p

(a) Reset timer (monostable) (b) Repeat cycle timer (astabk)

Figure 6.6. The 555 timer in monostable and astable configurations

50

monostable, or it can be used in an astable mode as a multivibrator
(free-running oscillator). Figure 6.6 shows it connected in these two
modes, with labels D, f S, | T, R and Q appended to various pins.
It should be understood that these labels have been given for ease of
understanding in this book, and are not recognised labels - although
the pins have names (given in brackets below), circuit diagrams
usually do no more than show pin numbers; the suggested labels
help the user to remember their significance. The pins are as follows:

D (Discharge) - shorts external capacitor to OV via internal
transistor;

| S indicating Sample (threshold) - samples rising voltage on
CT;

I T (Trigger) - taken low to trigger the timer;
R (Reset) - taken low to reset the timer;
Q (Output) - goes high after trigger and remains high until

time-out/reset. Pin 8 is connected to + ve and pin 1 to 0 V.
A further pin (pin 5) is known as the control voltage or Fm
input; for usual applications this may be ignored.

The 555 (or its big brother the 556 dual timer) may be operated
over a -f 4.5 V to +16 V supply range; because the time-out period is
set by the voltage developed across C T , and this is related to the
'aiming' potential of the supply rail (through the external resistor/s),
it is relatively independent of the actual value of the supply voltage.
Taking | T low momentarily triggers the device, which releases a
short-circuit held across C T via the D (discharge) pin. C T charges,
but when it reaches 2/3 of the supply, this is sensed by the | S
terminal. The output Q goes high when the device is triggered, and
remains high until the voltage rises to 2/3 of the supply, whereupon
it goes low,_i.e. similar action to a monostable as previously
described. If R is taken low momentarily during the time-out geriod
this resets the timer, i.e. it terminates the time-out at once. If R and
I T are momentarily taken low simultaneously, this retriggers the

device to time-out the full time again (like a retriggerable monost
able); the circuit shown in Figure 6.6(a) shows these modes. App. K
provides further details of the timer.

When connected as an oscillator, the 'mark' and 'space' may be
separately determined by the resistors (Rl 4- R2), and R2 alone,
respectively; this is because timing capacitor C T charges (during
'mark') through Rl miseries with R2, but discharges (during
'space') via R2 and the D terminal.

The time period for the monostable configuration is given by:

T D == 0.7 R1.C T

51

The time periods for the astable configuration are given by:

T m s 0.7 (Rl + R2) C T

T s = 0.7 (R2) C T

These timers are capable of driving 200 mA into a load (when
high or low at the output) . They are therefore very useful as an
output device, and can drive relays directly. If the R terminal is used
as a control in the circuit shown in Figure 6.6(b), the oscillator can
be switched on and off by taking R high and low respectively. This
can be used as an audible output, with a loudspeaker capacitively
coupled to the output (see example in Chapter 18). If used in this
manner, it should be noted that the first time-out cycle is longer than
subsequent cycles because the capacitor has to charge from 0V to
begin with.

Astable circuits

One form of astable circuit using the 555 timer IC has already been
shown in Figure 6.6(b), but a simple circuit suitable for use with
logic circuitry is given in Figure 6.7. Each time the timing capacitor
is discharged a short negative pulse occurs at the timer output. This
is inverted to_produce a positive pulse suitable for clocking digital
circuitry. If R is taken to + 5 V the circuit is free-running, but if
gated, it can stop the clocking source when taken low. This gives a
very elegant and controllable clock source.

R1

C T :

I
•J 7

1 6
i 2c

>—
8

555
Ü

tS Q
I T
TT

4?

1

1

+ve

-fo^o—
τχΡ°^

ov

JUL

Figure 6.7. A clock pulse generator
using the 555 timer

A very similar circuit can be made using an ordinary T T L
Schmitt trigger, as shown in Figure 6.8, although the timing range is
much more limited. This circuit is often adequate, however, and
does give excellent reliability. The maximum resistor value is about

52

1 kQ, due to the need to ensure that the high level input current does
not swamp the capacitor charging current. When the output of the
gate is high, C charges through R until the voltage reaches the
Schmitt's upper threshold, whereupon the output goes low; C then
discharges through R until the voltage reaches the lower Schmitt
threshold, whereupon the output goes high again. As shown, the
'mark' period is slightly shorter than the 'space'.

: Ι*ΪΙ~1Λ1Λ
Figure 6.8. A Schmitt oscillator

?HH

Μι^>ο-ϊ--ϊ^ο1~^

Figure 6.9. A typical TTL
oscillator

^ί^^Η^0^ οΕοί' .10. A typical CMOS

It is possible to cross-couple two ordinary inverting type gates as
an oscillator, as shown in Figure 6.9, although there is still the
limitation on high values of R. This circuit is more suitable for the
CMOS families, as shown in the variation as Figure 6.10. In both
circuits, gate 1 output goes to the opposite state of the output at gate
2, thereby causing capacitor C to discharge/charge to the opposite
polarity; once the threshold level on the input gate (high or low) has
been crossed, the circuit switches, and the situation reverses. Thus
there is a sawtooth waveform at the input to gate 1, but a
square-wave at the output.

Finally, there is a way of producing a very short duration pulse for
clocking purposes using a unijunction transistor. Figure 6.11 shows
how this is achieved. Capacitor Cl charges through Rl until it
reaches the trigger voltage of the device, whereupon it discharges
through the emitter (e) and R3. Because R3 is low in value
compared with Rl , discharge is brief, hence the short pulse.
Unijunction transistors are rather more difficult to use than the
circuits previously discussed, for if component values are not within
fairly critical limits, the circuit will fail to oscillate. The designer
unfamiliar with UJTs is therefore advised to use an alternative

53

Figure 6.11. A
transistor oscillator
values

unijunction
with typical

circuit. This circuit can drive CMOS directly, but a Schmitt buffer
is required to speed up the edges and to ensure correct levels when
used with TTL (NB the output pulse does not go anywhere near the
positive rail).

54

7
Registers

Single bistables and latches are frequently used in logic circuitry,
but there is often the need for quite a number of such logic elements.
Thus while it is possible to construct up to two latches from a single
quad NAND or quad NOR gate (i.e. 7400 or 7402), or to use a single
D or J-K bistable device, it is often more efficient to use multiple
devices. Where a number of bistables (also known as flip-flops) are
used to staticise related data, and can therefore utilise certain
common lines (e.g. clock, preset or clear), they are obtainable as
single devices known as registers. Economy of connections is achieved
because of commoned control lines. Before considering the more
complex devices, first, dual and quad devices - useful for general
purposes rather than as data registers - will be considered.

Quad S-R latches

Quad S-R latch (see App. C4). This is a 16-pin DIL device, and
amounts to four independent NAND gate latches of the type shown
in Figure 6.1; each latch has S and R inputs and the Q output
accessible from the pins. It follows that an inverter must be used on
the output if Q is required.

4-bit bistable latch

The 7475 is a 4-bit bistable (transparent) latch of the type shown
previously in Figure 6.3 (see also App. C3). This is also in a 16-pin
DIL encapsulation, with each of the four latches having individual
D, Q and Q lines brought out; the enables are combined, with two
enables each controlling two latches.

Where several data lines are associated, each individual line is
referred to as one bit; since the 7475 is capable of staticising four
such lines, it is known as a 4-bit latch.

55

Dual bistable latches

The 7474 is a dual D-type bistable latch. Each latch is completely
independent and incorporates all the requirements that a designer
could want. The following lines are brought out for each latch: CK,
D, PR, CL, Q and Q. (See App. Cl .)

The 7476 is a dual J - K bistable latch. Again, each bistable is
independent, with the following lines brought out: CK, J , K, PR,
CL, Q and Q. (See App. C2.)

T h e above devices may be used as 2-bit registers, or could be used
for quite different purposes.

Octal D-type bistable

The 74273 is an octal D-type bistable with common clock and clear
lines, as shown in Figure 7.1. (See also App. Dl .) All eight
'flip-flops' are simultaneously triggered by the positive edge of the
C K clock input; a buffer gate is incorporated to ensure that this
input only represents one gate load to a driving device, as opposed to
eight. The data required to be entered into all eight flip-flops must
be presented at the eight D-type inputs (ID to 8D) prior to applying
the C K pulse; after the rising-edge of CK, the Q outputs then take
on the logic states fed into their respective D inputs. By taking the
common CLEAR line low, all the flip-flops may be simultaneously
cleared (i.e. Q taken low); again a buffer gate is used.

M D Qh HD Ql

,4>JC
CK

HJD Q

CK !

CL I

H D Q h

-CK
CL

Figure 7.1. Octal D-type bistable with common clear (74273 - App. Dl)

It will be shown in Part 3 that 8-bits are used extensively in
microprocessor applications for data lines, or for a portion of an
address. For this reason, 8-bits of associated data are a common
requirement, hence octal bistables. Chapter 10 will show how
multiples of 2 are always significant in digital systems, therefore this
is another reason why 8-bits should be a useful combination,
microprocessors apart.

56

Shift registers

Binary arithmetic frequently operates with 8-bits, and one require
ment often met is the need to shift data bits with respect to their
lines. For example, if line (a) below represents an 8-bit data word,
this becomes as (b) when shifted one place to the left, or as (c) when
shifted three places to the right.

(a) [110 0 0 10 1] (original data word)
(b) <— 1 0 0 0 1 0 1]0 <— (original data word shifted left one

place)
(c) —>00 0[11000—> (original data word shifted right

three places)

It should be noted that as bits are shifted out of the register -
spilling out to the left in (b) or the right in (c) - they are replaced by
0's from the other end of the register, and the significance of the bits
shifted out of the register is lost.

Sometimes the ends of the register are linked together, such that
data shifted out of one end is fed straight back into the other end:
this is known as circulatory shift or logical shift. Repeating the previous
process, and causing the data word given in (a) to undergo
circulatory shift, the following results are obtained:

(a) [110 0 0 10 1] (original data word)
(b) pi 0 0 0 1 0 1] [1—1 (original data word after one stage

* left circulatory shift)
(c) pi 0 1] [1 10 0 O-i (original data word after three stage

' < ' right circulatory shift)

The 74199 (App. D2) is an 8-bit shift register which has the
capability of being parallel loaded or serial loaded, and provides serial or
parallel outputs; it is therefore one of the most versatile of shift
registers, if not one of the cheapest! But what do all these terms
mean?

First of all imagine eight individual flip-flops similar to those
shown in Figure 7.1, with each stage of this 8-bit register holding one
bit of our data word. Parallel loading refers to the ability to load all
8-bits with parallel data, as ID to 8D in the figure. Parallel output
refers to the ability to 'read' all 8-bits of the register simultaneously
(i.e. in parallel), as 1Q to 8Q in the figure. Serial data is data read or
manipulated one bit at a time; thus if a particular data input is
applied to ID in the figure, and then changed for seven subsequent
clock pulses, and if the Q output of each bistable is fed as the D

57

input to the following bistable (e.g. 1Q linked to 2D, etc.), this
amounts to serial loading of a 8-bit register; at each clock pulse the
data is shifted one place - or one stage - to the right. By reversing the
connections (e.g. 8Q to 7D, 7Q to 6D, etc.) the same register gives
us left-shift, and serial data is input at 8D. Data read at the output
end of such a register is termed serial data output since each bit
appears serially (i.e. one bit per clock pulse).

The propagation delay of bistables is more than adequate to
ensure that the output of one may feed the input of the next,
providing synchronous clocking is employed (i.e. all bistables are
clocked at the same time by a common control line). The table
below lists a variety of shift registers to meet different requirements,
and the reader is referred to manufacturers' data. The 74198 and
74199 are covered in the Appendices, however.

Type
74198
74195
74164
74165
74199

Bidirectional
yes
no
no
no
no

Serial in
yes
yes
yes
yes
yes

Serial out
yes
yes
yes
yes
yes

Parallel in
yes
yes
no
yes
yes

Parallel out
yes
yes
yes
no
yes

Bits
8
4
8
8
8

As an example of all relevant features, the 74199 is now consid
ered in depth.

Shift registers may utilise J - K or D-type bistable elements, the
only difference being in the input gating. The 74199, shown in
Figure 7.2^18 of the J - K variety, but note that the K serial input is
actually K. Since the J and K inputs of a bistable must be
complementary to enter a logic 0 or logic 1, it is_more convenient to
provide J - K in such a case; this allows the J - K inputs to be tied
together, thereby entering a 1 when high, or a 0 when low.

Whilst it is possible to wire up shift registers from individual
bistable elements and external gating, this is not a practical
proposition because of the amount of gating required. This is plain
when it is realised that the 74199 is equivalent to 79 individual T T L
gates! The circuit of the complete shift register would be too large to
show fully, therefore Figure 7.2 shows only three elements. The first
element differs slightly from the rest due to the serial input interface,
but the remaining seven stages are identical to those stages shown
which have outputs Q B and Q o

Firstly, for simplicity, the latter stages will be considered. Note
that a common clock line feeds all the edge-triggered J - K bistables*,
and that they are triggered on the positive-edge of the C L O C K input

* These are not master-slave J-K flip-flops.

58

CLOCK

INHIBIT 3> i>

3—[ξ>ΟΤ0θ

miy
J Q

f-o^cK

K C L 5

To other stages

CLOCK CLEAR,, T o n e xt

Figure 7.2. Three stages of an 8-bit parallel load, parallel-out shift register
with serial J-K input (74199 - App. D2)

pulse; gate a inverts this pulse, but the inverting circle on the clock
inputs shows that the bistables respond to a negative-going pulse,
thereby ensuring that they clock on the positive-edge of the input
pulse. The inverter gates marked h correct the phase for the J inputs
after N O R gating on the inputs, hence the K input is fed directly
from these N O R gates. A S H I F T / L O A D ('SHIFT/LOAD' in
manufacturers ' data, but converted to an unambiguous signal
name) input is buffered and inverted by b to produce a LOAD line,
and then further inverted by c to provide a S H I F T line; thus with
S H I F T / L O A D high, S H I F T is true, and with SHIFT/LOAD low,
L O A D is true.

Consider the B input to be high. If LOAD is made true, the AND
gate k has a high output, which produces a low from N O R gate /;
hence h presents a high to the bistable J input. If a clock pulse

59

occurs, a 1 is loaded into the bistable, producing a high at output
QB; this has loaded an input logic 1. If the B input is low, gate k
produces a low output, gate / has a high output, gate h a low output,
and the bistable loads a logic 0. In this manner, all eight stages of
the shift register can be parallel loaded with data applied on lines A
t o H .

If SHIFT is made true, gating is enabled to connect the output of
each stage to the input of the following stage; note that QA is
connected as input to stage B via gatej, and Q B is connected to stage
C via gate m. If a particular output is high, this is ANDed with
SHIFT and then fed to the same NOR gate as before, hence feeding
the following gate input lines. It must be remembered that SHIFT
and LOAD are complementary since they are obtained from the
opposite phases of the SHIFT/LOAD line, therefore it is impossible
for both to be true. Hence the NOR gates g, I andp only receive one
operational input. _

The serial input to the first stage is via the J-K gating, thus Q A
takes on a logic condition according to the state of these inputs when

[INPUTS "

L

H

H

H

H

H

H

H

SHIFT/
LOAD

X

X

L

H

H

H

H

X

* 5

o5
X

L

L

L

L

L

L

H

CLOCK

X

L

t
t
t
t
t
t

Serial
J K

X

X

X

L

L

H

H

X

X

X

X

H

L

H

L

X

Parallel
A H

X

X

a h

X

X

X

X

X

OUTPUTS

QA

X

O-A0

a

QA 0

L

H

ÖAn

QAO

QB

X

O-B0

b

QA 0

QAn

QA n

QAn

QB0

Qc

X

Qco

c

O-Bn

QBn

<W
QBn

QC0

QH

X

QH0

h

QGn

QGn

QGn

QGn

QH0

EFFECTS

Clear

Rest

Load

Inhibit

Reset

Set

Toggle

-Q

<

Inhibited

l·-
I
in

Figure 7.3. Function table for the 74199 8-bit shift register

clocked with SHIFT true. This is shown in the function table for the
device, given as Figure 7.3.

Examination of the table shows the results of clocking with
various input states, or of clearing. The 'rest' state represents the
device between other modes. Taking CLEAR low clears all stages.
With SHIFT/LOAD low, the positive-edge of CLOCK loads the
device (a broadside load), with parallel input data. Clocking with
SHIFT/LOAD high causes shifts as indicated. Note that the
CLOCK is inhibited by taking the CLOCK INHIBIT high; the

60

initial conditions of the outputs are represented as QAo to QHO·
Shifting shifts data in_the direction Q A towards Q H . The Q A stage is
controlled by the J - K conditions; this is easier to understand in
terms of a conventional J - K bistable if you mentally invert the state
applied to K, thereby making it equivalent to K.

A timing diagram for the device is shown in Figure 7.4. This
should be studied carefully.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t
1 I

CLOCK ri jxnj"ajnji jxnj^^
CLOCK INHIBIT"! I U I ·

Figure 7.4. Timing diagram for the 74199 8-bit shift register

The timing diagram depicts the following sequence of events:

(a) The CLEAR input is taken low to clear all eight outputs.
(b) A logic 1 is fed into Stage A at the clock pulse marked ti; eight

subsequent clock pulses clock this logic 1 through each stage of
the register and_out of the end; no further logic l 's are entered
because the J - K input is low after clock pulse ti .

(c) After t9, but before t10, the SHIFT/LOAD line is taken low. The
actual load is synchronous with respect to the C L O C K , and
therefore occurs at t i 0 . Note that the parallel inputs are set up
with data prior to the load command, and remain stable until
after the clock edge. Note also that only those outputs which

61

have inputs at a high level go high after the loading clock pulse
(i.e. A, C, E, G and H) .

(d) The C L O C K I N H I B I T is taken high after t10 until after t i2 ,
thereby inhibiting any shifting for the two following clock pulses
at t n and ti2·

(e) At t i 3 the A stage goes to logic 0 due to the low J - K input, and
the other stages go to the state of the previous stage, i.e. shifting
occurs, as it does on the following clock pulses.

Because the 74199 can be parallel loaded and has a parallel
output, it can also be employed as a octal register. In this case the
S H I F T / L O A D control line may be permanently tied to OV, and
each C L O C K pulse then performs a load. No doubt because of the
popularity of such a versatile device, it is generally more commonly
available than the octal D-type bistable (74273 - App. D l) , and as a
result, is usually quite a lot cheaper.*

This latter point once again reinforces the need for the designer to
take device cost into account; for the most complex device is not
always the most expensive. The Appendix to be found at the rear of
this book incorporates a cost factor to allow the user to take cost into
account. Since costs are always varying, actual costs are not given;
the cost factor shows relative costs, normalised to a value of 1.0 for
the most basic device of them all: the 7400 quad NAND gate.

* Even the more versatile 74198 (bidirectional) is seldom more expensive.

62

8
Number systems and binary
arithmetic

The point has now been reached where an appreciation of the
various number systems employed in digital electronics makes
forthcoming chapters easier to follow. The base or radix of a chosen
number system comes about through some particular convenience.
Doubtless human beings prefer the decimal system - based upon a
radix of 10 - because they began by counting on their fingers.
Indeed, they still do! A radix of 10 gives 10 different states. Since
digital systems are based upon circuitry having only 2 different
states, binary arithmetic is employed because this has a radix of 2.

Large numbers in the binary system become unwieldy in length,
and whilst this presents no problems to the electronics of a system, it
does present problems at the human interface. Because of this there
are various other number systems in use which conveniently inter
face with the binary system. These systems express numbers in a
more convenient and shorter form, e.g. octal, binary coded decimal, and
hexadecimal. These systems are discussed in the present chapter.

The latter part of the chapter outlines binary arithmetic, but only
in sufficient detail for the reader to understand the principles
involved. For practical purposes it is not necessary to design
complicated circuits to perform binary arithmetic. This would
require endless gates and would be quite uneconomical. The
majority of everyday digital applications do not require binary
arithmetic, and those that do can employ arithmetic devices to carry
out all the 'number crunching' requirements. If an application calls
for considerable mathematics, it is probably best suited to a
microprocessor.

Binary system

As earlier chapters have shown, the binary system utilises Ό '
(nought) and ' Γ (one) to represent the two stable states. Binary
counting is therefore as follows:

63

Decimal

0
1
2
3
4
5
6
7
8
9

10

Binary

0
1

10
11

100
101
110
111

1000
1001
1010

No matter what the radix of a number system might be, the
procedure is identical. The count starts at zero, proceeds through
the available digits until all have been used, then introduces a new
digit of higher significance, starting with the lowest significant digit
available, then repeating all available lower digits in the count as
before. Each time they run out, the higher significant digit is
incremented up to the limit, whereupon yet another digit of higher
significance is required. Zeros placed to the left of a number in any
number system are said to be non-significant, since they do not alter
the value of the number. This is why ' Γ is the first significant digit
used where a new digit is required.

The decimal system therefore starts at 0, counts through all
available digits to 9, then introduces a 1 in the next place of
significance, and repeats the count 0 to 9 preceded by the 1. After 19
we have 20, and so the process continues to 99, whereupon we must
introduce a digit of higher significance to give us 100. We have
names for the 'weightings' of digits in their various places of
significance (e.g. tens, hundreds, thousands), but other number
systems need not employ names.

The preceding comparison of decimal and binary counting shows
that the same procedure is employed. The binary system reaches its
limit at a count of 1 and has to introduce a digit of higher
significance for the next count of 10; do not call this ten, for ten is a
number in the decimal system. The number '10' in the binary system
is expressed as 'one-nought' .

Because binary arithmetic is carried out by electronics which calls
for a separate stage to be available for each digit in a number, such
systems must allow for the maximum number of stages required.
These stages are more correctly known as bits. Thus a particular
system might employ 8 bits, giving the maximum binary capability
of 11111111. In such a system it is normal practice to add
non-significant zeros to the front of lower numbers, thus the binary

64

equivalent of the decimal number 2 would be expressed as
00000010.

There are many different methods employed on converting be
tween decimal and alternative number systems, but to avoid
confusion, this chapter employs the same basic procedure. The
procedure chosen is more directly representative of their true form
than other procedures, and is also particularly suitable for calculator
conversions. Since calculators are so widely available today, it is
considered a reasonable assumption that anyone needing to make
many number system conversions will have such a facility available.

Conversions to or from the decimal system are greatly assisted by
ruling columns on a piece of paper, and heading each column with
the decimal weighting of the number system in question. This
weighting is always the radix to the power of increasing numbers in
the decimal system, i.e. 2°, 21, 22, 2 , 24 for the binary system. The
table given below illustrates this point, and shows various binary
numbers with their decimal equivalents.

211

2K
2048

1

2 i o

IK
1024

1
0

2 9

'ΛΚ
512

1
0
0

2 8

'ΛΚ
256

1
1
1
0
0
1

27

128

0
0
1
0
0
0

2 6

64

0
0
1
0
0
0

2 5

32

0
0
1
0
0
0

2 4

16

1
1
1
0
1
1
0
0
0

23

8

0
0
0
0
0
1
0
0
0

22

4

0
0
1
0
0
1
0
0
0

21

2

0
0
0
0
1
1
0
0
0

2°

1

0
1
0
0
0
1
0
1
0

Binary yS

>^T)ecimal

16
17
20

256
274
511
512

1025
2304

Examination of the table shows that conversion from binary to
decimal is simply achieved by adding together the decimal weight
ings of each true (i.e. 'Γ) binary bit. Thus the decimal equivalent of
the second entry in the table is derived by adding together
16 + 1 = 17. Similarly, decimal 274 is achieved by adding
256 4- 16 + 2. Obviously this is a very simple procedure for any
number using a calculator. If one is to hand, try adding all the
necessary bits to give decimal 511.

In order to convert a decimal number into binary, the following
procedure is equally simple with a calculator to hand. Enter the
decimal number (e.g. 274), deduct the highest weighting lower than
this number placing a 1 in the appropriate column, (e.g. place 'Γ in
256 column and deduct 256 giving 18), then repeat until zero is

65

reached (e.g. place ' Γ in the 16 column and deduct 16 giving 2, then
place ' Γ in the 2 column and deduct 2, giving 0).

A shorthand notation is employed for large numbers, where the
value 1024 is known as Ί Κ ' . Thus 2048 is called '2K', etc. Because
all digital devices are based upon the binary system, all tend to have
number associations with the binary relationships illustrated above,
and memory capacity for example, is quoted as having IK bits (i.e.
1024 bits).

Since digital systems operate with a fixed number of available bits
- this bearing a direct relationship to the provision the designer
cares to make - a particular system with eight bits is said to utilise
8-bit words. Perhaps 16 bits might be required for a particular
application, but only 8 bits are catered for in the hardware. In such
a case, the 16-word may be divided into two 8-bit bytes (think of
bites of the cherry!). Most popular microprocessors have the
ability to address 64K words (or bytes) of store, which needs 16
address bits, as will be seen from the following table.

nary weighting
1
2
4
8

16
32
64

128
256
512

IK
2K
4K
8K

16K
32K

Bit number
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Octal system

The octal system has a radix of 8. The octal count is as follows: 0, 1,
2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, etc., employing eight
digits. It now becomes clear that if there is any doubt about which
number system a particular number is based upon, it is necessary to
define the radix. The convention employed is to place the radix as a
subscript after the number. Thus 27510 is a decimal number, but
2758 is an octal number.

A table is constructed opposite for decimal-octal conversions. To
perform these, a memory calculator is ideal. For example, to convert
2758 to its decimal equivalent, proceed as follows: enter

66

2 X 64 = 128, then place this sub-total in memory (press M+);
enter 7 X 8 = 56 and add this to the sub-total (press M+); enter 5
and add this to the sub-total (press M+); the answer 189i0 is then
obtained as the total from memory (press MR).

84

4096

1

83

512

7
0
7

82

64

2

6
0
7

81

8

7
1
1
4
2
7

8°
1

5
0
2
0
0
7

O c t a l ^ / ^

v^Decimal

189
8

10
4000
4112
4095

To convert from octal to decimal, it is necessary to establish how
many times the highest multiple of the next highest weighting goes
into the number in question at each stage. For example, to convert
4000 decimal to octal, the first step is to take the next highest
weighting below 4000, i.e. 512, and establish how many times this
goes into 4000. Using a memory calculator, enter 4000, place this in
memory (by pressing M+) , then divide 4000 by 512, obtaining
7.8125; the decimal portion is irrelevant. Enter 7 in the appropriate
column, then multiply 7 by the weighting figure of 512, obtaining
3584; deduct this from the memory (press M—); recall the memory
total (press MR) to obtain 416, the next number to be converted.
Divide by 64 as the next highest weighting, obtaining 6.5. Place 6 in
the appropriate column, then multiply 6 by 64 to obtain 384. Deduct
this from memory (M—), then examine the new total (MR) of 32.
Divide by the next highest weighting of 8 to obtain 4.0. Since no
decimal portion remains, this finishes the calculation, and 4 is
entered in the appropriate column. This gives the octal conversion of
7640 (noughts are significant at the lower end).

Binary to octal conversion could not be easier. Simply group the
binary word into 3-bit groups from the decimal point* and convert
each group into the corresponding octal digit by inspection, re
membering the weightings are 4, 2, 1. Two examples are given
below.

421 421 421 421 binary weightings

101 111 010 011 in binary represents 5723 octal
001 110 000 in binary represents 160 octal

* The decimal point may be assumed after the least significant digit.

67

Binary coded decimal

Binary coded decimal (BCD) is a notation employed as a means of
easily converting from the decimal system to a number system which
can be simply converted to binary by electronic means; it provides
an appropriate man-machine interface. It uses the principle just
discussed, involving converting digit by digit, but because the
decimal system has ten different states, four binary digits are
required to specify each BCD digit (leaving 6 redundant binary
states). Two 12-bit binary words are shown below with their BCD
equivalents; note the grouping of the binary word into 4-bit bytes.

8421 8421 8421 binary weightings

1000 0010 0000 in BCD represents 820 decimal
1001 0110 0111 in BCD represents 967 decimal

As the name suggests, this form is decimal coded in binary form.
Digital devices are available which accept BCD codes, therefore this
is a very useful way of interfacing decimal to binary forms; it could
not be much simpler!

Hexadec imal system

The hexadecimal system is widely used today because of its conveni
ence when associated with microprocessors, which predominantly
utilise 8-bit words. As previously mentioned, addressing frequently
requires 16 bits, and this can be readily expressed as four hex digits.
Since 16-bit addresses are generally divided into two 8-bit bytes, the
address breaks down into two pairs of hex digits. Operator error
could be high if many 16-bit binary numbers had to be manipulated,
therefore the hex notation is of great assistance in minimising this
problem. The hexadecimal system has a radix of 16.

At first sight this may sound daunting, especially when it is
considered that we are only familiar with ten digits! The hexadecim
al system introduces letters above 9, thus the hex count goes as
follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11 . . . 19, 1A,
IB . . . IF, 20 . . . 9F, A0, Al . . . FF, 100, etc.. The extra digits give
us shorter representations of larger numbers.

It was seen that 4 bits were used in order to convert decimal to
BCD. Since the highest BCD code is 1001 (because 9 is the highest
decimal digit), this wastes possible binary combinations that follow,

68

i.e. 1010, 1011, 1100, 1101, 1110, 1111. These six wasted codes are
fully utilised in the hexadecimal system. The table below gives the
letter conventionally used to represent these additional states.

Decimal
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Hexadecimal
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

If a binary number is written down and then divided by vertical
lines into 4-bit bytes, each byte can be separately converted into the
appropriate hex digit, utilising the table above. Two examples are
given below.

1 1 0 0 1 1 1 0 1 1 0 1 1 1 « - B i n a r y - » 1 1 1 0 1 0 1 0 1 I 1 0 1 0 I 0 0 0 0
C | D | 7 < - H e x - > E | 5 | A | 0

Hexadecimal-decimal conversions can be achieved via binary (i.e.
hex-binary-decimal), or by utilising the methods previously des
cribed. A suitable table is given below. In the conversions, which are
identical in method to those described for octal conversions, the
intermediate decimal numbers in the range 10-15 must be replaced
by their hex letter equivalents.

163

4K
4096

1

162

»ΛΚ
256

0
2
4

161

16

0
1
0

16°

1

2
E
0

Hex / \

./Decimal

4098
542

1024

The following table provides a much easier method of converting
between decimal and hexadecimal (in either direction). The four
main vertical columns indicate decimal weightings for each hex digit
in its appropriate significance. To convert from hex to decimal,

69

simply look up the decimal weighting of each hex digit and add the
totals. This table should provide sufficient for most needs.

T o convert from decimal to hex, find the number equal to or next
lowest to the number in the table and take this as the most
significant hex digit. Deduct this weighting from the number and
then repeat the process for each remaining hex digit. Again the
calculator can be used to good effect. For example, to convert 542
decimal to hex, take 512 from the table, giving 2 as the third
significant digit; 542 - 512 = 30. Locate 16 in the table, giving 1 as
the second significant hex digit; 30 - 1 6 = 1 4 . Locate 14 in the table,
giving E as the first significant digit. Thus 54210 = 21E16. The letter
' X ' is sometimes written before a hex number as an alternative form
of identification. Thus 21E16 could also be written as X21E (or
X '21E) .

Hex digit

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4th

0
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

Decimal weightings

3rd

0
256
512
768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840

2nd

0
16
32
48
64
80
96
112
128
144
160
176
192
208
224

1 240

1st

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

The importance of understanding the hexadecimal notation will
be better appreciated when Part 3 of this book is reached, and
microprocessor systems are discussed. The following table is added
with this in mind, for it shows how the hex system easily relates to
decimal numbers expressed as 'K ' multiples. Note that the two most
significant hex digits express the 'Κ ' value in terms of ViK and 4K
weightings, respectively. Intermediate values are easily obtained; for
example, adding 4i 6 (i.e. X4 or hex 4) to the third hex digit, adds
decimal IK.

70

Decimal
ιΛΚ
VfeK
3ΛΚ

IK
Ρ/2Κ
2Κ
2ιΑΚ

Hex
0 1 00
0 2 00
0 3 00
0 4 00
0 6 0 0
0 8 0 0
0 9 00

Decimal
23Λ
3Κ
3ιΑΚ
3VfeK
33ΛΚ
4Κ
5Κ

Hex
0 Β 0 0
0 C 0 0
0 D 0 0
0 Ε 0 0
0 F 0 0
1 0 00
1 4 00

Decimal
7Κ
8Κ

10K
32Κ
36Κ
40Κ
60Κ

Hex
1 C 0 0
2 0 00
2 8 00
8 0 00
9 0 0 0
Α 0 0 0
F 0 0 0

21/2Κ 0 Α 0 0 6Κ 1 8 0 0 64K-1 F F F F

Sixteen binary bits provide a count of 64K (i.e. 65536). The
highest binary number in this range (1111111111111111) is express
ed as FFFF in hex, and is equivalent to decimal 65535 (i.e. 64K-1, as
shown in the table above; allowing for the extra count of 0000, this
gives a total of 64K numbers).

Alternative methods of conversion

The method of conversion demonstrated in this chapter has been
chosen because it emphasises the principle of weighting factors, and
thereby instills in the newcomer the significance of different bases.
Many other methods are used for converting between different
number systems, and the following two examples of octal-decimal
and decimal-octal conversion show a much more efficient method,
also applicable to other base conversions.

Converting 276 octal Converting 190 decimal
to decimal to octal

21 7 6 octal 8)190 decimal

Π x a I I 8)23 R 6-
16 2R

23 I 2 7 6 octal
X8
184
+6«
190 decimal

These methods utilise the arithmetic significance of the radix in
order to avoid the use of multiples of the radix. In the octal-decimal
conversion, the larger-based decimal number is obtained by starting
at the most significant digit, multiplying it by the octal radix (i.e. X8),
then adding in the next lowest octal digit, before repeating. The
decimal-octal conversion obtains the lower-based octal number by

71

dividing the decimal number by the octal radix as many times as it
will go. The final dividend followed by the remainders from the
previous stages gives the octal number.

Note that a very simple way of converting a large binary number
to a decimal number is to firstly convert it to octal (by the method of
grouping the binary number into 3-bit bytes - page 67), and to then
convert it by the explosion method described above (i.e. repeated stages
of multiplication by 8).

Methods such as these are simple to undertake, but the convers
ion soon becomes a mathematical exercise, and the reason for
performing the various mathematical manipulations is easily lost:
hence the more laborious, but more basic method described pre
viously.

Binary arithmetic

The foregoing part of this chapter has dealt only with whole
numbers, and the majority of design work should only require such
numbers. For the sake of completeness, binary fractions should be
mentioned. Apart from the different radix, binary fractions take
exactly the same form as decimal fractions. For example, the
decimal fraction 0.542 is really a shorthand form for:

(5 X 10-1) + (4 X 10-2) + (2 X 10-3) = ^ + ^ + ^

500 40 2 _ 542
1000 1000 1000 1000

A binary fraction is similarly computed, using powers of two
instead of powers often. For example, the binary fraction 0.1001 is a
shorthand form for:

(1 X 2-1) 4- (0 x 2"2) + (0 x 2"3) + (1 x 2"4)

= -n + T + 7Γ + ττ= ΓΞ (a s the decimal equivalent).

Binary addition is carried out in the same manner as with the
more familiar decimal system, except that a carry results after 1 + 1.
The example given below shows binary addition. To prove that it is
correct, the decimal equivalents are given alongside.

1 1 0 0 l<25io)

+ 0 1 1 1 1 (1510)

1 0 1 0 0 0 (40io)

1 1 1 1 1 <r— carry (shifted to next significance).
72

If two binary digits A and B are to be added, the truth table given
in Figure 8.1 gives the sum and carry requirements. Comparison with
Figure 3.3* shows that the sum is identical to an exclusive-OR
function, and the carry is identical to an AND function. Thus an
XOR gate and an AND gate constitute what is known as a half adder,
when connected as shown in the figure.

A
0
0
1
1

B
0
1
0
1

SUM
0
1
1
0

CARRY
0
0
0
1

EXCLUSIVE AND
OR

A.B+A.B = A B

Figure 8.1. A truth table for binary addition, together with a
half adder circuit

(from previous
significance)

PARTI/

L
DOWN

Half C
adder ς

\ LSUM

C
Half
adder „

-J v
1 ^ C1

J J CARRY UP
« - " ^ (into next significance)

Figure 8.2. A full adder circuit

This circuit is called a half adder, because it only copes with 'half
the problem. A practical adder has to allow for any carry from a
preceding stage, and in order to do this, two half adders are needed.
This gives the full adder shown in Figure 8.2. The CARRY UP to the
next higher significance is a simple OR of the carries from the two
half adders. The PARTIAL SUM from the first half adder is added
to any CARRY DOWN resulting from the next lower significant
stage, and the result is the FINAL SUM.

Binary subtraction is just like decimal subtraction, except for the
radix difference. Our preference for the decimal system does make it
more confusing, but this hardly matters in view of the fact that
digital circuitry generally carries out subtraction by a method
complementation. In order to do this, the maximum range of the
numbers to be handled must be known. To take a decimal example
of complementation, take 1000 as the maximum range, and let us
* See page 17.

73

file:///LSUM

deduct 729 from 894. This sum can be performed by adding what is
termed the ten's complement of 729 to 894, then deducting the
maximum count if the result 'spills over'. The sum thus becomes:

894 - 729 = 894 + (1000 - 729) -
= 894 + 271 - 1000
= 1165- 1000
= 165

1000
OR

894
+271
ΤΪ65

delete spill-over-

This may seem a long way round the problem in view of the fact
that 729 will still have to be deducted from something. In binary
arithmetic, it is a simple matter to obtain the two's complement of a
number, therefore it is a much more practical proposition.

The two's complement of a binary number is obtained by copying
the number from the least significant bit up to and including the first Ί \
thereafter complementing (or reversing) all subsequent more
significant bits. Alternatively, reverse each bit and then add 1.

The 2's complement of 010001 (i.e. 1710) is thus 101111, and the
binary form of the decimal sum 25 — 17 can be worked by comple
mentation as follows:

01 100 1 (2510)
+ 10 1 1 1 1 (2's complement of 1710)

ί 0 0 1000(8 1 0) .

In the above sum, a non-significant zero is added in front of the
upper number to make it the same length as the lower number; the
spill-over 1 is discarded, leaving the total 1000 (equivalent to
decimal 8).

The signs + and — cannot be represented as such in electronic
terms, therefore the most significant bit is used to indicate the sign,
where Ό' represents positive and T represents negative; the upper
bit in such cases is known as the sign bit. In 2's complement, the sign
bit actually has numerical significance. For example, if 8-bit words
are taken, and the above sum is repeated, the following is obtained,
where the most significant bit is the sign bit:

Spill-over
deleted

t
Sign bits -

128 64

0

32

0

16

0

8

1 0
Binary numbers

1 (decimal weighting)

1 (decimal 25)
1 (2's complement of 17)
0 (decimal+8)

74

The numerical significance of the 2's complement number can be
observed above, for the decimal representation is: —128 (sign bit)
+ 111 = —17. Those readers familiar with logarithms will see a
certain familiarity of form.

If a negative sign bit results, the answer needs to be com
plemented to give it in a normal binary form, which should be
preceded by a minus sign. The following simple example uses five
numeric bits plus a sign bit:

Decimal Binary

10 0
- 1 8 1

0 1 0 1 0
0 1 1 1 0 (2's complement of 10010)
110 0 0 (answer)

- 0 1 0 0 0 (2's complement of answer)
- 8 l!

Sign bits ί '
Binary multiplication is simple, as the following example shows.

The multiplicand is written down for each 1 in the multiplier,
placing it in the same significance. This is a simple matter for
arithmetic devices, employing the shift register principle.

multiplicand 10 110 (2210)
multiplier X 1 0 1 (510)
line 1 10 110 (multiplicand - zero shift)
line 2 1 0 1 1 0 <- (multiplicand - shifted 2

places)
answer 1 1 0 1 1 1 0 (11010)

Binary division is equally simple, as the following long division
shows. This example divides the result of the previous example
(decimal equivalent 110) by the previous multiplier (decimal
equivalent 5), to obtain the original multiplicand (decimal equiva
lent 22). As each digit of the dividend is brought down, the quotient
is entered with a 0 if the divisor cannot be subtracted, or with a 1 if it
can be subtracted - far simpler than decimal long division!

0 0 1 0 1 1 0 quotient
divisor 10 1)110 1 1 1 0 dividend

101
1 1 1
101

101
101

00

75

Once again, the calculation makes use of a shift function, this time
with the divisor. Thus all binary arithmetic can be performed by the
processes of adding, shifting and subtracting, and subtracting itself
can be converted to a process of complementing and adding. How
such calculations are achieved is of little more than academic
interest in practice, because all such calculations are performed by
special arithmetic devices, or directly by a microprocessor or
computer.

It is only practical to undertake fairly simple or repetitive
calculations without a microprocessor, bearing in mind modern
prices. Arithmetic devices are available when required, and these
are the subject of the following chapter.

76

9
Arithmetic devices

A range of devices is available for performing binary arithmetic
functions*. Their usefulness and cost-effectiveness is thrown into
some doubt these days due to the low cost and availability of the
microprocessor. They will always have a place where the arithmetic
requirement is very simple or basic, or where a simple arithmetic
procedure is a small part of a much more complex function best
performed by discrete hardware. Complicated arithmetic calls for
complicated circuits, and it is in these circumstances that the
designer should really consider whether a microprocessor might be
the better solution. For these reasons, and because of the fact that
only a really experienced designer should tackle a design using
arithmetic devices, this chapter takes only a brief look at the kind of
devices available for the sake of completeness.

Full adders

The full adder was introduced in the previous chapter, but this
considered only one bit, mentioning that there may be adjoining bits
of lower and higher significance to consider in a practical case. The
7482 device is a 2-bit binary full adder, as shown in Figure 9.1.
Examination of the function table shows how this device performs
binary addition on two bits, where Al and Bl are the least
significant, and A2 and B2 are the most significant. For example, the
second and third lines of the table show that with zeros in the second
bit, a logic 1 (H) at either Al or Bl produces a logic 1 at the sum
output from this stage (Σ1); the fourth line of the table shows that a
logic 1 at both Al and Bl produces a carry, which becomes a logic 1
in the second stage, etc.

One of the problems when dealing with the addition of large
binary numbers is that a carry may have to propagate through a lot

* Or 'number-crunching' in engineers' parlance.

77

Function table

A2 B2 v2 GND C2 NC NC

11 A1 B1 Vcc CO NC NC

Figure 9.1. The 7482 2-bit binary full adder

Inputs

A1

L
H
L
H
L
H
L
H

L
H
L
H
L
H
L
H

B1

L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H

A2

L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H

B2

L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

Outputs

When CO

Σ1
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L

Σ2

L
L
L
H
H
H
H
L
H
H
H
L
L
L
L
H

= 1

C2

L
L
L
L
L
I.
L
H
L
L
L
H
H
H
H

H

When CO

11
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L

H

12

L
H
H
H
H
L
L
L
H
L
L
L
L
H
H
H

= H

C2

L
L
L
L
L
H
H
H
L
H
H
H
H
H
H
H

of bits in the calculation, and this may cause considerable delay. For
example, consider the following addition:

10 1 0 1 0 1 0 1
+ 0 1 0 1 0 1 0 1 1

1 1 1 1 1 1 1 1 1
1

1000000000
immediate sum
carry from immediate sum
final answer after carry propagation.

A method of minimising propagation delay in parallel addition
utilises a technique known as look-ahead tarry. This involves forming
the carry from each bit position independently of the addition
process. A carry-up is generated from each adder stage if one of
three conditions is satisfied:

a. A n . B n - both inputs of stage 'n' are l 's.
b. A n . C o - the A input and the carry-down are l 's.
c. B n . C o - the B input and the carry-down are l 's.

Low speed requirements or low bit-count numbers can often
utilise simple full adder circuits without look-ahead carry, because
propagation does not take long over a short word. Longer words
usually utilise look-ahead carry, and this feature is normally built
into 4-bit or greater capacity adder chips.

The 74283 is a 4-bit binary full adder with full look-ahead carry,
generating the carry term in a mere 10 nanoseconds (10"8s). Similar

78

devices are available for other single function arithmetic require
ments (e.g. the 74285 4-bit X 4-bit multiplier), but where there is
the requirement for more flexibility, the accumulator or arithmetic logic
unit (ALU) is more versatile.

Arithmetic logic units

Figure 9.2 shows the 74S281 parallel binary accumulator. As may be
seen, this incorporates a small ALU and a shift matrix. With the
mode control (M) input low, this device performs one of eight
arithmetic functions, as definea by an ALU function select code
(ASO, AS1, AS2); with the mode control high, the device performs
one from eight logic functions (e.g. AND, OR, XOR type functions).
The shift register can be shifted in either direction and is of great
value in arithmetic or logic operations. The P and G outputs are
used where the look-ahead carry facility is required.

V FUNCTION MODE
DATA IN O R I N / S E L̂C T CONTROL D A TA OUTPUTS

VCC AO o LOUT"ÄSÖ~AS1 AS2 Λ M FQ F1 F2 F3

L^TTfTTFr7F|7TTJJT^^
A1 A2 RSI RSO ^ L IN/ A3 Cn

* ^ /> N* ' Sc R DATA
DATA IN REGISTER I- OUT IN

SELECT

12 Γ

p GND

o z
w o o
ocucc

Figure 9.2. The 74S281 parallel binary accumulator

A more versatile ALU is the 74S181 arithmetic logic unit/function
generator. This device performs 16 binary arithmetic operations on
two 4-bit words as specified by four function select lines. Its many
capabilities include addition, subtraction, decrement, and straight
transfer as arithmetic functions, and AND, NAND, OR, NOR,
XOR, and invert either input as logic functions.

Comparators

Comparators are arithmetic devices which are more generally useful,
and can find useful applications in circuits which are not really

79

concerned with binary arithmetic. Figure 9.3 depicts the 7485 4-bit
magnitude comparator. This device compares two 4-bit words (A
and B), and provides outputs indicating A > B, A < B and A = B
with respect to the comparison of the binary values. Thus if A is

DATA INPUTS

VCC A3 B2 A2 A1

^nRJ^ lRMRRFU

k

I I I I I I
I A3 B2 A2 A1 B1 AO I

-I 83 BO

A < B A = B A > B A > B A = B A<-ß
| IN IN IN OUT OUT OUT |

JüiliilAnirLifüiL 8 I
DATA VA < B A - B A>B A > B A = B A < B ; GND
INPUT ^ ' * ^

CASCADE INPUTS OUTPUTS

Figure 9.3. The 7485 4-bit magnitude
comparator

1010, and B is 1000, the A>B output is high, and the other two
outputs are low, since A (equivalent to decimal 10) is greater than B
(equivalent to decimal 8). (See also App. HI.)

The modern alternative - the microprocessor

The microprocessor offers all these functions, plus the ability to
perform involved calculations in binary arithmetic. The only dis
advantage is that a microprocessor must be accompanied by
memory devices for temporary data storage and program storage,
and the user must devise appropriate software and load the memory
with these instructions. The right choice depends both upon the
application and the designer's familiarity with microprocessors;
obtaining familiarity can be quite time consuming, but once
attained, great versatility is opened up to him. More will be said in
Part 3 of this book.

To conclude, it should be understood that arithmetic circuits are
not the best proving ground for inexperienced designers, hence the
lack of detail in this chapter.

80

10
Counters

Logic elements with two stable states are known as bistables. They
are also often referred to as flip-flops, for one clock pulse causes them
firstly to 'flip' to one state, and a subsequent clock pulse causes them
to 'flop' back again. Chapter 7 discussed how a string of flip-flops
can be connected to form a shift register. This chapter discusses
connecting a string of flip-flops to form a counter or divider.

Asynchronous counters

Any kind of flip-flops can be used to produce counters/dividers, but
D-types are best avoided because they require additional gating in
order to make them toggle in the requisite manner. The J-K flip-flop
is ideal, because it can be made to toggle or not upon receipt of clock
pulses by simply controlling the J-K inputs; with the J-K inputs
high, the flip-flop toggles, but with them low, it remains unchanged.

-u ■

j - i l j-J -r-d J-J
H—1J QJ—J H—Ij Q |—* H—Jj Ql—4 H—Jj Ql-J
H K Q H_JK Q HJ K Q H_ J K Q

ji_njnjnjnjijnjnjnjnjTjn_njnjnji_

(MSB) «
c r
0 J Binary 0
N ̂ Decimal 0

1
1

10
2

11
3

100
4

101
5

110
6

111
7

1000
8

1001
9

1010
10

1011
11

1100
12

1101
13

1110
14

1111
15

0
0

Figure 10.1. An asynchronous up-counter with timing diagram

81

Figure 10.1 shows a four-stage counter circuit employing four J - K
bistables. The outputs along the chain are labelled Q 0 , Qi , Q2 and
Q 3 , and these outputs produce a binary count, where Q 0 is the least
significant bit (LSB), and Q 3 is the most significant bit (MSB).
Master-slave J - K flip-flops may always be assumed throughout this
book*, therefore clocking occurs on the trailing (or negative) edge of
the clock pulse. All the J - K inputs are taken to a logic 1, represented
by Ή ' in the figure, i.e. they are taken high.

For simplicity, assume that all the flip-flops start in their reset
state, i.e. Q = 0· The trailing edge of the first clock pulse clocks F/FO
to a logic 1. The trailing edge of the second clock pulse clocks F/FO
back to logic 0, and the action of Qo going from a high to a low
clocks F/F1 to a logic 1. The trailing edge of the third clock pulse
toggles F/FO back to a 1, and the fourth clock pulse toggles F/FO
back to 0, Qo again toggling F /Fl , this time back to a 0. The timing
diagram depicts this quite clearly. If the waveforms are inspected,
remembering that a low represents logic 0, and a high represents
logic 1, the binary count can be determined as shown.

The more stages added, the greater the capacity of the counter.
Clearly this goes up in multiples of two with respect to the number of
stages. One flip-flop has two stable states, two flip-flops linked as a
counter have four stable permutations, three flip-flops produce eight
permutations, and the figure depicts a four-stage counter, thereby
offering 16 different permutations. The timing diagram shows a
complete cycle; it may be noted that after the count of binary 1111
(decimal 15), the counter reverts to zero. Because this counter
counts up, it is known as an up-counter.

A counter is also a divider. The figure shows that two clock pulses
are required to produce one pulse from the first stage (Qo), four
clock pulses to produce one pulse from the second stage (Qi) , eight
clock pulses to produce one pulse from the third stage (Q3), and 16
clock pulses to produce one pulse from the fourth stage (Q4). Thus a

H —
CLOCK—<3

H —

J Q
>CK

K Q
H

J Q
>CK

K Q

Q1

J-,
J!

H

J Q
>CK

K Q

Q2

J K j n j n j n j n j n J - L T L r L T L

O I Binary 111

Figure 10.2. An asynchronous down-counter with timing diagram

* Unless otherwise stated.

82

chain of flip-flops connected in this manner can be used as a
frequency divider; each stage divides the input clock frequency by
two.

Figure 10.2 shows how a down-counter can be produced by clocking
subsequent stages with the Q output instead of the Q output. In this
case we consider the situation starting at maximum count (111 for a
three-stage counter, or decimal 7). Since the inverted flip-flop
outputs are used to do the clocking, these fall when their associated
true (Q) output rises: hence Qi is seen to toggle in synchronism with
the rising edge of Q 0 , and similarly, Q 2 toggles when Q\ is rising
(remember that the Q and Q outputs of a flip-flop are always
complementary). Once the limit of the counter has been reached -
which is zero on count-down - the count repeats. In the example,
the counter reverts to binary 111.

The maximum count of a binary counter is 2n — 1, where n
represents the number of stages; the number of stable states is 2n,
since this includes the zero condition. A four-stage counter therefore
has a maximum count of 24 — 1, which equals 15. If a counter is
required with a maximum count between the numbers offered by a
binary progression, additional circuitry is required. This can be
used to gate the J - K inputs, or more simply, to reset the counter. An
up-counter needs to be cleared, whilst a down-counter needs to be
preset to start the count.

Figure 10.3 shows how a decade counter can be produced by
simple gating. A decade (or BCD) counter is required to have ten
stable states; it therefore counts from 0000 to 1001 (i.e. 0 to 9 in

Q0 Q1 Q2 Q3

>CK

HH KC L Q

H-Jj Q

—C|>CK

HH KC L Q H1KCLÖ

HJJ Q|—\

—ot>CK
H-|KC LÖ

Ty
Figure 10.3. Resetting a counter at a particular count (e.g. a decade
counter)

decimal equivalents). The NAND gate shown in the figure decodes
the count of 1010 (decimal 10), and the output goes low to clear the
counter back to zero. Such a counter counts up normally to 1001,
momentarily reaches 1010, but immediately resets to 0000.
Remember that the MSB of a counter is at the stage farthest away
from the clock input.

83

The counters/dividers considered so far are said to be asynchronous,
because the binary count does not change in synchronism with the
input clock pulse. This is more easily seen if we expand the timing
diagram for such a counter, as shown in Figure 10.4. This figure also
includes a decoding gate at the count of 2io, in order to show another
phenomenon sometimes known as glitch.

The propagation delay of the 7476 J-K bistable, for example, can
be as great as 40 ns between the trailing edge of the clock pulse and
the change of outputs; this is represented by tp0 for F/FO in Figure
10.4. It may be seen that F/Fl does not see a trailing clocking edge
from Qo until the propagation delay tp0 has expired after the trailing
edge of the input clock. Worse still, the similar propagation delay of
F/Fl, represented by tpi, means that F/Fl does not reach its proper

H —

H —

J Q

> C K

K Q

F/FO

-i

- H -

H ~

J Q

> C K

K Q

F/F1

i

o-
ιρ0-*"1 j «« -

TL

I I
I I

Req'd count

Actual count
o 1
o Ί

I
1 lol

4
I

2

3

I 3 ^ 7 7 I2I0
A

—H r*— First ripple ^ Ι Ι^
" delay ~~Π Γ^~

Second ripple
delay

Figure 10.4. The ripple effect in an asynchronous counter, and decoding
'glitch'

binary value until a further delay has taken place. This is known as
the ripple effect.

An asynchronous binary counter is rather like a stack of falling
dominoes; a given domino cannot fall antil all the preceding
dominoes have fallen. This is so with an asynchronous counter.
Beneath the timing diagram is shown the required (equivalent
decimal) count and the actual count; it can be seen that propagation
delays introduce false counts during the transitional period. The
more stages there are in the counter, the longer this uncertain

84

transitional period becomes. It is for this reason that such counters
are also known as ripple counters.

Whilst only talking about a mere 20 ns delay for each stage, the
effects can be unfortunate if the circuitry depends upon decoding the
binary counter. A D E C O D E 2 output in Figure 10.4 demonstrates
this, for apart from decoding correctly, it sees a false 2 after the
count of 3, during transition. This is sometimes referred to as glitch
or skew. If this output was required to clock another bistable, for
example, it would produce false clocking due to glitch.

One way of getting over the problem is to ensure that any
following logic only takes notice of the ripple counter after it has had
time to settle. The number of stages tells us the maximum settling
time required for a given counter, and subsequent logic must
therefore be strobed by a pulse generated after this settling time has
expired. It is then known that no false count can be seen. The
disadvantages of this are twofold: firstly it introduces what might be
a significant time delay into the proceedings, and secondly, it is
necessary to introduce circuitry to produce the required strobe pulse.
All this can be avoided by the use of synchronous counters.

Asynchronous operation is not likely to concern the designer
where only a frequency divider is required, and some applications
may not be sensitive to decoding glitch. Asynchronous counters are
usually simpler and cheaper than synchronous counters, therefore
they do have their place in cost-effective design.

Synchronous counters

Returning briefly to the domino analogy, if we were able to strike all
the dominoes simultaneously with a sideways blow by a ruler edge,
all would topple in synchronism. The synchronous counter does

ted J Q

>CK

K Q

~2

iL· To any
> following

stages

Figure 10.5. A synchronous counter (no ripple; no glitch)

likewise - by 'hitting' all the bistables simultaneously with the same
clock pulse. Figure 10.5 depicts this, and comparison with Figure 7.2*
shows that this is the same technique as that used with shift

* See page 59.

85

registers. It was explained in Chapter 7 that propagation delays can
be nullified by synchronous clocking, and that a given bistable can
be made to take on a condition set by another bistable also being
synchronously clocked. This is the secret of the synchronous coun
ter.

By connecting the J and K inputs of each bistable to the Q output
of the preceding bistable, they are alternately allowed to toggle or
remain unchanged, in sympathy with the common clock pulse.
There is therefore no ripple effect, and hence no glitch with such a
system. Decoders can be safely connected to the output from such
counters without the fear of spurious decoding spikes.

Binary rate mult ipl ier

The situation can arise where it is necessary to accurately divide a
frequency down by something other than a power of two. It was
shown how a counter can be reset at a given count by a decoder in
Figure 10.3, but a more elegant way of achieving this is with a binary
rate multiplier. Crystals are often used as frequency standards in
digital equipment; by feeding the input of a crystal oscillator into a
binary rate multiplier, it is possible to derive any desired lower
frequency. Figure 10.6 shows a synchronous 6-bit binary rate
multiplier (7497).

OLUl ,_4
Rate
input

UNITY/CASCADE-

-ENABLE
OUTPUT

Figure 10.6. A synchronous 6-bit binary
rate multiplier (7497)

This device is a 6-stage counter with special decoding logic on the
outputs, which is gated with what is termed the binary rate input, or
' M ' input. The input frequency is fed in as the C L O C K , and with
the device enabled (CLEAR, STROBE and ENABLE inputs low),
the output frequency at the Z O U T P U T is as follows:

v _ M . fJn
* o u t ~~ 64

Six stages give the -i-64 factor, and the M input is a binary
number input on lines A to F, where A is the least significant bit.

86

Another way of looking at it, is to say that for every 64 input pulses,
the output produces the number of pulses programmed on the rate
input. For example, if the rate input is binary 000101 (i.e. decimal
5), 64 C L O C K pulses produce 5 output pulses. The Y O U T P U T is
simply a NAND of the Z O U T P U T and the UNITY/CASCADE
input. Stages are cascaded by linking the ENABLE O U T P U T to
the STROBE and ENABLE inputs of the following stage; the
sub-multiple frequency outputs are then taken from the Y O U T
PUTS.

Other counter/dividers

There is a wide range of commercial devices for counting/dividing
applications. Three useful counters are included on pages 276 and
277 of Appendix A.

The 74196 and 74197 are versatile four-stage ripple counters with
three stages internally coupled and a fourth stage independently
accessible; internal gating is included for reduced counts, and these
devices allow for BCD counting or -r- 2 and -r- 5 (74196), and binary
counting or -r- 2 and -r-8 (74197); see also App. E l .

The 74163 is a synchronous 4-bit binary counter. It incorporates
carry look-ahead circuitry enabling cascading, and a ripple carry
output true during the count of 15. It features parallel load facilities
for counting from a given start point, but can only operate as an
up-counter. Preset and clear inputs are also provided, but their
action is synchronous, and does not take place until the clocking
edge; this device is clocked on the rising edge of the clock pulse due to
an inverting buffer on the clock input line. The 74161 is a similar
device, but has asynchronous clear, i.e. it is cleared immediately the
clear input is activated. Partners to the above counters are the 74162
synchronous decade counter with synchronous clear, and the 74160
synchronous decade counter with asynchronous clear. See App. E2
for further details.

More versatile is the 74191 up/down synchronous counter, the
count direction being controlled by a D O W N / U P input. This
counter is fully programmable to any desired count via an
asynchronous L O A D input. Like the previously mentioned coun
ters, inverter buffering on the clock input means that transition
occurs on the rising edge of the clock pulse. The 74190 is a
companion device for decade counting. See App. E3 for further
details.

Counters have many applications, as will be seen in Part 2 of this
book. They are frequently used in conjunction with visual displays,
hence the need for intermediate display drivers. These are dealt with
in the following chapter.

87

11
Displays and display drivers

The majority of logic circuits require some form of visual display in
order to indicate certain conditions. The light emitting diode, or LED,
is probably the most convenient, because of its particular compati
bility with logic devices. LEDs are available in a wide variety of
forms from single lamps to alphanumeric displays. This chapter
discusses how such devices may be interfaced, the types available,
and the alternatives of tungsten bulbs, gas discharge tubes, and
liquid crystal displays (LCD). Finally the technique of multiplexing is
introduced as a method of conserving power, and minimising
circuitry.

Light emitt ing d iodes

Light emitting diodes - normally known simply as 'LEDs ' - are
manufactured from semiconducting material such as gallium phos
phide. They are specially constructed diodes designed to give
efficient recombination of carriers, which gives rise to the emission of
visible light. They are available in red, high efficiency red, green,
and yellow. Red is the easiest to manufacture and the most efficient,
therefore red devices are more common and the least expensive.

Light emitting diodes are operated in their forward biased
condition at currents normally lying in the range 1mA to 40 mA;
most produce a bright light at about 20 mA, with usable light levels
down to the lower end of the range; the specific operational
conditions must be considered, for operation in high ambient light
levels calls for higher operating currents, and hence a greater visible
output.

Figure 11.1 shows an LED in series with a current limiting
resistor RL. This resistor must be chosen to give a suitable diode bias
current when connected to a given supply voltage. The potential
difference across the forward-biased diode is in the range 1.5 V to
2.0 V. Figure 11.2 shows how a T T L gate may be used to drive an
LED directly. An ordinary T T L gate can sink 16 mA, which is

88

^ > ^
Figure 11.1. LED with current
limiting resistor

Figure 11.2. LED driven from a
TTL output at a low level

Figure 11.3. LED driven directly
from a TTL output at high level
(7400 shown - suitability depends
upon type)

adequate for many LEDs, but a device such as the 7407 buffer is
capable of sinking up to 40 mA where higher drives are required. It
is necessary to consider the maximum possible LED current,
obtained with Vp at a minimum, in order to determine whether any
fanout can be achieved from a particular driver; as a general rule of
thumb, unless LEDs are operated at under 10 mA, it is probably
safest to reserve each driver gate for a single LED.

One method used for driving LEDs is illustrated in Figure 11.3.
This makes use of the internal circuitry of a T T L gate such as the
7400, which includes a 130Ω resistor as the collector load for the
upper transistor of the totem-pole output stage*. Taking the max
imum voltage drop across the LED (VF m a x) as 2 V, and allowing for
a further 1V dropped across the T T L series diode (D2) and
bottomed transistor (TR3), this leaves 3 V to be dropped across the
130Ω resistor, thereby defining a current of around 15 mA. Even in
the case where the V F is only 1.5 V, this still only gives a maximum
current of about 19 mA. Thus the LED drive range can be obtained
in this manner without the need for any external components.

Whilst the above method is frequently used, it cannot be recommended
as good design practice, as a simple calculation and reference back to
Chapter 2 will show. A T T L output is designed to have a maximum
high level output current (IQH) of only 400 μΑ, far below the LED
* Compare with Figure 2.3.

89

drive current. At the maximum drive current of 19mA, with 3.5 V
dropped by the series components within the gate, nearly 70 mW are
dissipated within the device, nearly 50 mW of which are dissipated
within the resistor R4. When it is considered that the entire package
does not usually dissipate more than 80 mW under the most adverse
conditions, with this spread across four similar gates, this should be
enough to make the designer cringe: certainly the manufacturer
would! Clearly the limiting resistor is not designed to withstand
continued dissipation of this order. It is therefore advised to
completely avoid this method of driving LEDs, for any design which
causes components to work outside their intended operating range is
simply bad design practice.

One possible circumstance where this method of driving might be
considered reasonably acceptable is where the LED is simply used
as a fault or test indicator. The TTL-LED compatibility makes this
an ideal method of indicating predictable fault conditions, and
provides a service engineer with an easy guide to fault finding. On
the assumption that such conditions do not normally exist, this is
not placing any undue stress upon components, and does save a
resistor.

0.1 0.2 0.4 0.7 1 2 4 7 10 20 40 100

Ip—forward current-mA

Figure 11.4. Relative luminous intensity of
TIL209 LED vs IF (courtesy of Texas
Instruments)

I The graph given in Figure 11.4 shows how luminous intensity
varies with diode forward current, relative to the ideal drive of
20mA. This curve is for the Texas Instruments TIL209 red LED,
but is fairly representative of most similar devices. It may be seen
that luminous intensity drops to lower than l/lO of its value at
20 mA when the bias current is reduced to 2 mA.

90

Driving tungsten lamps

If there is a requirement to drive tungsten lamps, or other high
current devices, it is necessary to buffer the T T L output such that
the output current is within normal ratings.

An NPN transistor provides an ideal way to achieve this buffer
ing. There are two possible methods of driving the base: either from
the gate at a high level output, or via a base resistor. The former
method is limited by the factor previously discussed, i.e. the
preferred limit of 0.4 mA. Since bottomed transistors have relatively
low current gain - say 20 - this only gives a drive capability at the
transistor collector of say 8 mA, unless the gate is overdriven. The
best solution is to bias the transistor base via a resistor, as shown in
Figure 11.5, and to drive the base with an open-collector T T L gate.
With this circuit, the lamp is driven on when the gate output is
'high', i.e. when the gate presents an open-circuit; when the gate
output is low, all the current flowing through bias resistor RB is

vcc

R B m i n - ^ k "

^300Ω

say 330Ω

Figure 11.5. Driving a lamp (or other
load) from TTL with a transistor driver

diverted to the T T L gate, cutting the transistor driver off. Since a
normal gate can sink 16mA, this allows R B to be as low as 330Ω.
Thus RB can drive the transistor base with nearly 16 mA of base
current, and allowing for a bottomed current gain of only 10, this
allows for loads of up to 160 mA. If lower drive currents are
required, the resistor should be increased accordingly, thereby
reducing the drive requirements of the T T L gate. RB should be
chosen as somewhat lower than that needed to ensure adequate base
current for the drive requirement, whilst bearing in mind the lower
limit of 330 Ω.

This circuit assumes a bulb, but the interface is equally suitable
for any other load (e.g. a relay). It should be noted that the voltage
at the T T L open-collector output never goes to a high level in this
circuit: it is at about +0.7 V when the driver is on, or about +0.3 V
when the driver is off. Thus fanout is not possible, as a logic 1

ô
Open-collector
gate

t
Optional
diode
(see text)

91

condition is never achieved. If it is required to ensure that the
transistor is completely cut off when the gate output is low, a diode
may be inserted in series with the transistor base; this ensures that
the low output from the TTL gate is far below the voltage necessary
to turn on the transistor.

Note also that this type of interface is ideal where a change in
supply voltages is required. Whilst the base bias resistor must be
connected to +5V for TTL compatibility, the transistor collector
can be taken via its load to any positive potential within the
transistor's rating.

Seven-segment displays

The seven-segment display is a common sight these days because of
their widespread use in pocket calculators. Figure 11.6 shows such a
display, with optional places for a decimal point. Each of the seven
bar segments is actually a light emitting diode, therefore in order to
display the shape of numerals, it is necessary to convert a BCD input
into the appropriate seven drive lines. Such devices can be
manufactured with common anodes or common cathodes, but they
are generally more convenient to drive if they have common anodes
- this allows low TTL outputs to drive individual segments, via a
load resistor. Figure 11.7 shows a BCD to seven-segment
decoder/driver chip which provides the necessary interface.

'LJ-
.•LJ:
i i Alternative

' positions
for decimal
point

Figure 11.6. A seven-segment dis
play (TIL302 has LH DP; TIL303
has RH DP) (courtesy of Texas
Instruments)

Usual features of BCD to seven-segment decoders are ripple-
blanking and lamp test. Ripple-blanking allows the designer to supp
ress leading zeros in a number, without affecting significant zeros.
Thus a four digit display of the number '0040' can be converted to
' 40' by the use of ripple-blanking. Taking the ripple-blanking

7447A DP-[

Figure 11.7. A BCD to seven-
segment display driver driving a
display

92

input (RBI) low on the 7447A suppresses a zero display; a zero
display at a given digit causes the ripple-blanking output (RBO) to
go low. A multi-digit display simply requires linking of the RBO
output from one digit to the RBI input of the next lower significant
digit in order to suppress non-significant zeros - the RBI input of the
most significant digit is taken to OV to suppress the first digit. If the
RBI inputs are taken to a high level, no suppression occurs.

The lamp test input is taken low on the 7447A to test all the
segments, i.e. all should be illuminated when LT is grounded. It is
important to provide a lamp test feature on measuring equipment
utilising seven-segment displays, for a segment failure could cause
false readings.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 11.8. Possible seven-segment displays using a
display driver (7447A) (0-9 displays obtained from BCD
input to driver; other symbols are optional)

Figure 11.8 shows the various displays available with the circuit
shown in Figure 11.7. A straight BCD input provides appropriate
numerals to be displayed, but the spare codes available can be used
to display other unique symbols, as shown for codes 10-15 in the
figure below. These might be of use for test purposes. Not all
decoders provide these symbols for the spare codes, and variations
occur between different manufacturers.

One of the limitations is that seven-segment displays do not lend
themselves to the display of alphabetic characters, although surpris
ingly, ingenious use of the segments, with individual driving, can
achieve all but eight of the alphabetics, if a mixture of upper and
lower case is accepted, and perfect horizontal alignment is sacri
ficed. The following list illustrates the characters that can be
displayed in this fashion, shown in either upper or lower case as
appropriate; characters shown in upper case and enclosed by
brackets cannot be adequately represented (except by means of a
unique code): A b c d e F (G) h i j (K) L (M) n o P (Q) r S t u (V)
(W) (X) y (Z). This might not be obvious at first, but a couple of
examples might help. Illuminate segments b, g, e, d and c for the
letter 'd'; illuminate segments f, e and g for the letter ' t \ The letter
cy' appears in a raised position by illuminating segments f, g, b and
c. (Refer to Figure 11.6 for segment letter coding.)

Seven-segment displays are not suitable for ordinary use where
alphabetic characters are required, because of the lack of legibility,
and the fact that the full range cannot be displayed. There are

93

applications where the amateur might find them of use, however,
particularly in conjunction with microprocessors, which make it a
relatively easy matter to drive segments individually from software
bits, and provide a very cheap form of readout. With a little
ingenuity, words with G, K, M, Q, V, W, X and Z can be avoided!

Dot-matrix displays

The dot-matrix display comprises a rectangular array of LED
pinheads. By selecting which diodes in this matrix to illuminate, any
desired symbol or alphabetic character can be represented. It is
possible to obtain 4 X 7 displays, but more common - and more
versatile and legible - is the 5 X 7 matrix. Figure 11.9 shows such a
display with the letter 'S ' illuminated. Note that the matrix format
even allows curves to be simulated. (A display is much more legible
than the illustration can represent.)

o · · · o
• o o o ·
• o o o o
o · · · o
o o o o ·
• o o o · Figure 11.9. A 5 x 7 dot-matrix
O · · · O display, displaying the letter 'S'

Because there are 35 individual diodes to drive, decoding becomes
much more complex than with the seven-segment displays. It is
common practice for such devices to include an integral decoder and
driver. The Hewlett Packard 5082-7391 is such a device designed for
displaying hexadecimal characters (i.e. 0 -9 and A - F) from a hex
input.

In order to keep the number of pin connections down to a
respectable level with such devices, alternative forms of input are
used where a full character set is required. The HDSP-2000 device,
for example, is a 4-character device in a D I L encapsulation, yet it
has only 12 pins. This pin economy is achieved by incorporating
integral 7-bit shift registers associated with each character row (7
rows), and common column strobes (5 columns). The individual
shift registers are serially connected to form an effective 28-bit shift
register. Data is clocked in via a serial input, and 28 clock pulses are
required to enter the full data complement specifying the states of all
the diodes in one row, of all the characters. Thus only one row in
each character is actually illuminated at once, but fast switching - or
multiplexing - means that this is not observed by the viewer. This

94

process is repeated for each of the five columns, thus a complete
refresh cycle constitutes 28 X 5 = 140 clock pulses; note that this is
identical to the number of individual light emitting diodes (35 X 4).

Starburst displays

The starburst display is an excellent compromise between the limitat
ions of the seven-segment display and the relative complexity of the
dot-matrix. Figure 11.10 shows this arrangement. These devices add
diagonal bars and a central vertical bar to the seven-segment
arrangement, thereby making possible the construction of alphabet
ic characters including slanting lines; the illustration shows how the
letter ' M ' is displayed. The only limitation with this format is that
certain characters are rather 'over-square'. The advantage is that
decoding is not such a problem.

Figure 11.10. A 'starburst' dis
play, displaying the letter 'M' (e.g.
lA X DL-1416 memory/decoder/
driver/LED or V4 X 3970 LCD
display)

The Litronix DL-1416 4-character display has a 16-segment fount
and accepts a standard 7-bit input code known as ASCII* (Amer
ican Standard Code for Information Interchange). This code is
universally accepted and contains a full alphanumeric character set,
plus symbols. Two address bits are used to select one from four
characters, and a write pulse is then used to staticise the desired
ASCII code for the selected character in an internal register.
Internal decoding and driving then takes care of the rest: the desired
character is displayed at the selected position. Because it is internal
ly staticised, this character remains displayed when other characters
are being written. Because a character remains for as long as
required without refreshing, this is said to be a static display. (The
5 x 7 dot-matrix device described previously is said to be dynamic
because it requires constant refreshing of input data.)

Such devices are not cheap when compared with seven-segment
displays, but they do provide a reasonably cost-effective solution to a
versatile form of readout for use with microprocessors.

* See also Appendix D.

\M

95

Liquid crystal displays
Liquid crystal displays are dynamic devices which consume far less
power than light emitting diode displays. Electrically they appear as
series resistance and capacitance, as shown in the equivalent circuit
of Figure 11.11(a). Because the actual display element is capacitive,
there is no option but to drive these devices dynamically. Part (b) of
the figure shows that each segment comprises a thin film of an
organic liquid contained in a cell made by bonding together a pair of
glass plates. The internal faces of the plates contain a transparent
electrode which is etched to the required segment shape. The series
resistances shown in the equivalent circuit represent lead-in resist
ance, and the parallel resistance and capacitance represents the fluid
leakage resistance and the self-capacitance between opposing elec
trodes.

^.Upper glass plate

, _ !
|() _ 1 0 0 p F

Figure 11.11. An LCD display: (a) equivalent circuit; (b) drive terminals; (c)
segment off conditions; (d) segment on condition

The electrical field set up by an applied potential to the plates
causes a rotation of the plane of polarisation of light passing through
the cell; this is made visible by the use of polarisers, and the relative
orientation of these films gives either a transparent image on an
opaque background, or vice-versa. Constant d.c. applied to a cell
can cause degradation, therefore only a.c. should be applied.
Devices normally employ a common backplate with individual
segment connections. Figure 11.11(c) shows that if identical square-
waves are applied to both plates of a cell, no potential difference is
obtained across it (AV). If the two plates are driven anti-phase,
however, as shown in (d), a potential difference occurs. The segment
is in the off condition with no potential difference, or the on
condition when a potential difference exists. Logic levels are suffic
ient to drive these devices, and drive current is negligible because of
their high impedance.

96

The simplest way of driving an LCD segment is with an exclusive-
O R gate, as shown in Figure 11.12. The DRIVE input is a constant
clocking waveform, and the SELECT input is placed high to switch
the segment on. When SELECT is high, it causes the X O R gate to
act as an inverter to the D R I V E waveform, thereby ensuring that
the plates are always driven in anti-phase. When SELECT is low,
the X O R gate does not invert, thereby ensuring that the same
waveform is applied to both plates. C M O S integrated circuits are
ideal for driving LCD displays.* The 4055A C M O S LCD display
driver provides a seven-segment output suitable for driving an LCD
character, provided an externally generated square-wave is applied
to its DF input.

Figure 11.12. Exclusive-OR method
of driving an LCD segment

LCD displays are available in seven-segment and starburst forms.
This type of device can also be custom-made for the bulk user.

Gas discharge tubes

Low voltage fluorescent tubes are another means of reducing the
current required by displays. Such displays are miniature cathode-
ray indicators, and electrons from the hot filament are accelerated to
impinge on the fluorescent anode, shaped according to the pattern
required (e.g. seven-segments). Such displays require a supply of
around + 1 8 V minimum, and a low voltage heater supply (e.g.
1.6 V) . These devices can be conveniently switched with open-
collector T T L devices, and are available in both common anode and
common cathode varieties. The fluorescent anode usually glows
green in colour when switched on. Open-collector T T L devices are
available with 30 V output transistors, allowing a good brilliance
level to be obtained with a 30 V supply.

Mult ip lex ing

Multiplexing is a technique whereby an apparently static condition is
actually implemented by dynamic means (e.g. the HDSP-2000
dot-matrix display previously described). Multiplexing allows cir
cuitry to time-share certain common lines or components, thereby
greatly reducing component count and cost.

* Application notes are available from most manufacturers of such devices, e.g. Hamlin Electronics
Europe Ltd., Diss, Norfolk IP22 3AY, England.

97

Figure 11.13 shows how multiplexing might be applied to four
7-segment displays. By so doing, a single latch/7-segment
decoder/driver is used instead of one per digit. The CD4511B
accepts a BCD input which is internally latched by means of a latch
enable (LE) input. This is internally decoded to 7-segment form,
and NPN bipolar transistors on the output stage provide high level
emitter-follower drives to the 'on' segments. Limiting resistors are
chosen to define the current /or a single display diode, for multiplexing
means that only one diode will be on at one time.

Current
limiting
resistors

BCD
input

4 4
l·^

D -

Emitter follower
option for current
buffering x7

>-»*"

CD4511B
Latch/7-segment
decoder/driver

8

MULTIPLEXE
DIGITSELECT
LINES ?i J^3"

Common cathode
^ seven-segment

displays

Figure 11.13. Multiplexing a 7-segment display with four digits

A common cathode display is suitable for this application, thereby
allowing common resistance at the anode side; it is then only
necessary to ground each of the M U L T I P L E X E D D I G I T
SELECT LINES in turn, where the digit selected corresponds to the
appropriate code output by the latch/decoder/driver. A suitable
display is the Hewlett Packard HDSP-3533 high efficiency red
display. This device requires an average current of 20 mA per
segment, but if it is to be multiplexed, each segment is only on for a
short interval. With four digits to be multiplexed, any given digit is
only on for one-quarter of the time.

When it comes to any visual displays, a frequency of at least
100 Hz must be used in order to give a flicker-free appearance.
Whilst multiplexing at a sufficiently high frequency can give the
appearance of all four digits being constantly displayed, you cannot
get something for nothing, therefore if you cut down the display time
of each digit by 7 5 % , you also cut down its apparent brilliance. This
must be counteracted by stepping up the peak current per segment
if the same brilliance is to be attained. If it is decided that 20 mA per

98

segment is required for a static (i.e. d.c. driven) display, then 80mA
per segment is required for four multiplexed digits to give the same
brilliance (i.e. 20 mA X 4). This is better appreciated if the supply
requirement is considered, bearing in mind that this must be the
same for a given brilliance, no matter what technique is used. Four
static digits require 20 X 4 = 80 mA for a particular segment in each
digit. The multiplexed system supplies four consecutive pulses,
which equates to a constant current; that constant current must be
80 mA.

A problem immediately faces us with the circuit shown above.
The CD451 IB can only source a maximum of 25 mA, therefore if it is
to be used, there will be only two options: dropping the peak
current, and hence the display brilliance, or providing current
buffers. The CA3083 NPN transistor array chip is useful for such
purposes since this contains five separate transistors each capable of
handling 100 mA peak; transistors in this array could be used as
emitter-followers to the CD4511B outputs, thereby allowing 80 mA
peak drive; alternatively, discrete NPN transistors with suitable
ratings could be used.

Similar transistors are required to sink the common cathodes of
the M U L T I P L E X E D D I G I T S E L E C T LINES, but these must be
capable of sinking a maximum of 80 mA peak X 7, i.e. 560 mA. The
CA3724G is a suitable NPN transistor array for this purpose,
containing four transistors, each with a 1 A rating. The circuit as
shown is only capable of multiplexing the displays with the reduced
brilliance equivalent to a static display with 6 mA per segment, but
bear in mind that if a separate CD451 IB is used for each digit in a
static display, the device is quite capable of sourcing the more
desirable 20 mA per segment. A static display has a peak current of
20 mA X 7, i.e. 140 mA.

This example shows how apparent savings in one direction (e.g. a
common latch/7-segment decoder/driver) can bring about unex
pected complications in another (e.g. driving capability). There is a
lot to be said for the simplicity of static displays.

Finally, a general point about drawing techniques, which is
illustrated in Figure 11.13. The drawing shows how parallel lines
can be combined to save space and improve clarity. The optional
slashed line across the BCD broad arrow input is marked with '4 ' to
signify that this represents four separate lines. Similarly, the single
line drawn from the limiting resistors is slashed with '7 ' to indicate
that this represents seven individual lines. Special care must be
taken in circuit diagrams to ensure that the same order of lines is
maintained at either end, if these branch out to numbered pins.

99

12
Decoders and data selectors

Control circuitry frequently requires that a binary input be con
verted to a single line output, i.e. a separate output line for each
unique binary number. Such a function is performed by a decoder
(known also as a demultiplexer). Data processing sometimes requires
that the reverse operation be performed, i.e. a number of input lines
are routed to a single output line. The latter function is performed
by data selectors (also known as multiplexers). This chapter considers
both kinds of device.

Decoders

We have already seen simple examples of decoding, e.g. the
decoding gate in Figure 10.4*. Figure 12.1 shows the circuitry

U l i

Figure 12.1. A decoder circuit for two-line to
four-line conversion

required to decode two input lines, A and B. Because there are four
permutations of two input lines, a full decoder requires there to be
four outputs: one for each unique binary input. The figure shows
that this is readily performed by NAND gates. Each gate requires
the appropriate selection of true or false inputs from the two input
terms; inverters are used to make the complementary conditions (A
and B) high when true.

* See page 84.

100

A decode of two input lines can readily be performed by a 7400
quad 2 i/p NAND gate, especially if true and complementary inputs
are already available for the inputs, thereby obviating the need for
the inverters. If the output is from bistables, this is often the case.
Decoding more than two input lines would require more than one
IC, and it is then more efficient to use a decoder chip. For more
input lines the same principle applies, but each NAND gate decode
has to select true or false inputs relating to each of the input lines;
thus a decoder with three input lines requires 3 i/p gates, etc.

The following devices are worth noting:

(a) 74155 dual 2-line to 4-line decoder (or 74LS139 - App. Fl).
(b) 74156 dual 2-line to 4-line decoder with open-collector output.
(c) 74LS138 3-line to 8-line decoder (App. Fl) .
(d) 74154 4-line to 16-line decoder (App. F2).
(e) 7445 BCD-decimal decoder/driver with open-collector outputs.

To consider one example, the 74LS138 produces only one output
low at a time, and the number of that output is the decimal
equivalent of the binary input; this may be seen by studying the
function table presented for the device in the appendix (App. Fl) . It
will be seen that in addition to the A, B and C select inputs, three
enable inputs are provided; this facility is often convenient for
combining other gating functions with the decode; if this facility is
not required, it is simply necessary to tie the enables permanently in
their enabled state, i.e. Gl high and G2A and G2B low.

Space considerations can often be of great importance in practical
designs, therefore it might be very advantageous to use a device such
as this even if it is under-utilised; it does not matter if all the outputs
are not required.

Data selectors

Data selectors are rather like electronic switches, as indicated by the
equivalent circuits shown inside the outline of the dual 4-line to
1-line data selector shown in Figure 12.2. If the device is made to
continually scan all the input lines, it performs a multiplexing
function; in this way it can convert parallel data to serial data.

The dual 4-line to 1-line data selector shown (74153) has common
A and B select lines; the inputs are labelled in the format 'dCn',
where *d' is either a 'Γ or '2' to indicate the data selector number,
and 'n' is '0—3', representing the decimal equivalent of the binary
select input. Thus if A = l and B=0, the ICl input is routed to

101

OUTPUT 1Y, and the 2C1 input is routed to OUTPUT 2Y; note
that both are also dependent upon the related strobe input also
being low. ('A' is the LSB; see App. G2 for further details.)

- OUTPUT
2Y

Figure 12.2. A dual four-line to one-
line data selector (74153)

Such devices are particularly useful for sampling, where a number
of different input lines are to be sampled in turn. For example, if it is
required to compare a number of different inputs against a set value,
as an alternative to using separate comparators for each comparis
on, a single comparator could be used, with one input the set value,
and the other input fed from a data selector; each input can then be
compared against the set value in turn, simply by selecting different
binary inputs to the data selector. In practice, it may be necessary to
operate a number of such devices in parallel if it is required to select
data words comprising several bits. The 74153 is a dual 4-line to
1-line data selector, therefore it would require two such devices
operating with common select lines, in order to select one from four
4-bit words.

Other devices worth noting are as follows:

(a) 74157 quad 2-line to 1-line data selector (App. Gl) .
(b) 74251 8-line to 1-line data selector.
(c) 74150 16-line to 1-line data selector (App. G3).

Examples of how both data selectors and decoders may be used in
practice are given in Part 2.

102

13
Data transmission and parity

Parallel data is handled more efficiently and faster than serial data,
therefore there is a general preference for parallel data handling.
The only limitation with parallel data comes when it is required to
route it for an appreciable distance. The physical bulk of a large
number of parallel lines makes serial data transmission more
attractive over longer path lengths. This physical limitation tends to
tie in with the electrical limitation of driving longer lines.

As a general rule, it is possible to transmit digital data for up to
about 30cm without any special considerations.* This allows cir
cuits on different printed circuit boards (PCBs) to be interlinked
without any real problems. Data can even be transmitted over
longer distances than this by the simple expedience of buffering at
regular intervals, such that each section is under 30 cm. For such
distances it is generally worthwhile to retain data in a parallel form.

For distances of up to about 15 metres, it is possible to transmit
digital data at fairly high speeds by using various techniques of line
driving and receiving, but because of the distance and added
complication of line drivers and receivers, it then becomes a more
attractive proposition to convert to serial data. A particular data
transmission link can then be reduced to a single line.

For distances greater than 15 metres, the choices become fewer,
and serial data is unquestionably the only possibility. For small
multiples of 15 metres, line buffering can be considered, in much the
same manner as previously described. For long distances, say from
building to building, or from one part of the country to another,
telephone lines must be used, and this requires the use of special
interfacing circuitry for modulation and demodulation; the digital
signals must be converted to voice grade channels, with a band
width limitation of 300 Hz to 3 kHz in most instances. The fast rise
and fall times of digital signals can no longer be retained, and
telephone line specifications must be considered. The logic 1 and
logic 0 levels must now be converted to two different frequencies,

* This is a recommendation - longer distances are frequently used in practice.

103

known as mark and space respectively. Afoi/ulator/ifcmodulator devices
for this purpose are known by the acronym of modems.

Figure 13.1 is used to illustrate these various forms of data
transmission. Equipment A comprises four main functional areas
labelled Fl to F4, and this equipment has both internal data
highways and external data highways. A simple data highway is
shown between F4 and a serial/parallel (S/P) converter; the latter
may be considered to represent conversion in both directions,
therefore it interfaces between the parallel data highway to F4, and a
serial data highway to a line driver/receiver (Tx/Rx) which com
municates across a short line with Equipment B. A similar
serial/parallel conversion occurs in Equipment B, therefore parallel
data may be relayed between the two equipments in either direction
by means of a serial data link.

4 (̂'/ρ> 4^('/o) < >

Figure 13.1. Types of data transmission (parallel/serial) and the use of modems

Intercommunication between the function Fl to F4 of equipment
A is by means of a common parallel data bus. The broad arrows
signify parallel data, and the use of arrow-heads or broadside
connection illustrates the following:

(a) Fl simply outputs onto the bus (therefore no incoming arrow).
(b) F2 simply receives data from the bus (therefore no arrow

towards the main bus line).
(c) F3 and F4 both receive (input) and transmit (output) data

from/to the bus, therefore arrow-heads are used in both direct-

Some documentation utilises an incoming arrow (as for F2) to
represent both incoming and outgoing data, which can become a

104

misleading standard: there is no way of clearly showing where data
is only incoming. Other documentation goes to the opposite extreme
of even breaking bus lines with mating arrow-heads. Mixed stand
ards deserve care when interpreting such diagrams.

The figure also shows a telephone link with Equipment G. Each
end of this link requires a modem, and since both equipments utilise
parallel data at the earliest opportunity, serial/parallel converters
are employed adjacent to the modem in each case.

The amateur is not likely to be concerned with designs which
require the transmission of data across appreciable distances,
although he should be aware of the limitations and requirements for
this. The novice should not attempt designs which require such
techniques. This information is included in this chapter for the sake
of completeness, and in order to introduce the idea of parallel and
serial highways; the latter is of fundamental importance when
considering microprocessors, as will be shown in Part 3.

Data transmission across short distances

Digital data can generally be transmitted for a few centimetres (e.g.
between nearby PCBs) via single lines, provided high speed operat
ion is not required. It is better still to use twisted pairs or a coaxial
line, as shown in Figure 13.2(a). The transmitting and receiving

—j J& Up—f^CurrentlooIr^ IXST—[J

ST (e)

Figure 13.2. Line driving/receiving: (a) short distances; (b) using driver/receiver
operating on voltage levels; (c) using driver/receiver with current loop

devices should be decoupled across the power supply close to the
device (0.1 μΓ ceramic). Schottky clamped devices (with an 'S' in
the type number, e.g. 74S00) are particularly good at reducing
spikes. Normal precautions against creating earth loops, etc., should
be taken.

105

Figure 13.2(b) shows how data transmission across short dist
ances can be improved by the use of line drivers/receivers. The
simplest of these simply drive a voltage level into the line, and utilise
a line matching resistance (RT) equal to the characteristic imped
ance of the line (Z). Figure 13.2(c) shows a more sophisticated
arrangement utilising what is known as a current loop. Such devices
drive a current in one direction to represent a logic 1, and in the
opposite direction to represent a logic 0. The complementary
currents produce cancelling electromagnetic fields and help minim
ise crosstalk between adjacent lines. Because a high current (usually
20 mA) is used to represent either logic state, this method minimises
the problem of interference picked up from extraneous sources. The
20 mA current loop is a standard method of interfacing equipment,
and many commercial devices are available. As shown in the figure,
many of these incorporate strobe and logic gating into the basic
device. Strobe inputs facilitate the connection of line drivers and
receivers at the same point for bidirectional operation*.

Communications terms

There are different forms of data transmission, as follows:

a. Simplex transmission along a line is in one direction only, and
requires only two wires.

b. Duplex transmission allows data to be transmitted in both
directions simultaneously, and is usually implemented using four
wires.

c. Half-duplex transmission is a two-wire compromise; data can be
transmitted in either direction down the same wires, but only in
one direction at a time.

It will be clear that some form of code must be employed when
transmitting serial data, for the receiver must be able to distinguish
the start and stop of the data words, or characters, as they are termed.
Two methods are employed, as follows:

a. Synchronous data transmission utilises a separate channel on which
a synchronising signal is transmitted. By this means it is possible
to attain high transmission rates, and the start and finish of the
characters is clearly identified. The drawback is the need for an
extra channel or line.

* During different time-slots.

106

b. Asynchronous data transmission uses only one channel, but in
addition to the data bits, employs a start bit and one or more stop
bits. The usual method is to make the stop bit/s longer than a
start or data bit, thereby providing a readily identifiable point
between each character. Usually they are also opposite logic
states.

Data transmission rates are described in terms of bits per second
(bps). Alternatively, the rate may be specified in terms of baud. The
baud rate describes the number of discrete events which occur each
second, thus a Teletype® that transmits 10 characters per second,
and represents a character by 11 bits (a start bit, 8 data bits, and 2
stop bits), has a baud rate of 10 X 11 = 110 baud (or 110bps).
Because three out of every eleven bits are required for synchronisat
ion purposes, the actual data rate is only 8 bits/character X 10
characters/second = 80 bps.

Modems

Modems are used to convert signals from one type of equipment to a
form suitable for use by another type of equipment. In the case of
telephone links, it is necessary to generate mark and space frequencies
suitably located in the audio band. The International Telegraph
and Telephone Consultative Committee (CCITT - letters trans
posed due to translation from the original French) recommendations
are widely used for such purposes; a logic 1 is represented by a mark
frequency, and a logic 0 by a space frequency. The frequencies used
vary. The CCITT recommendations for 50 baud and 200 baud
working define different mark and space frequencies in accordance
with particular channel numbers, as shown by a few examples
below:

Baud rate

50
50

Channel

001
002

Markfreq.

390 Hz
510Hz

Space freq.

450 Hz
570 Hz

50 024 3150 Hz 3210Hz

200 401 480 Hz 720 Hz

200 406 2880 Hz 3120 Hz

107

A microprocessor compatible modem is the Motorola MC6860,
which has the following frequency standards:

Originating modem Answering modem

Markfreq. 1270Hz 2225 Hz
Space freq. 1070 Hz 2025 Hz

This method of tone modulation is known as Frequency Shift Keying
(FSK), or FSK modulation. Telephone links can be implemented
directly, or via an acoustic coupler; the latter is a device into which an
ordinary telephone handset is placed, and the link between the two
equipments is purely acoustic.

Because of the low cost of microprocessors, and the sophistication
possible where a number of microprocessors operate together and
'talk' to each other, the modem is a particularly useful tool in these
applications; it provides an ideal means by which remote micro
processing systems may communicate with each other.

Parity

When data is transmitted between two distant points there is always
the chance that the odd bit will 'drop out', i.e. occasionally a bit will
be misread. In some applications this could be critical. A simple
technique has been devised which allows each character to be
checked; whilst the system is not foolproof, it can be relied upon to
weed out the greater majority of errors. This system employs what is
known as parity.

By adding a parity bit to every data word, it is possible to check
that no single bit has been read incorrectly. This technique may be
applied no matter how many data bits are contained within a word.
The example below uses the more common 8-bit word.

Given a particular combination of logic l's and 0's in a word, the
total number of l's is clearly always either odd or even. A parity bit
is added to make the total block (including the parity bit itself)
either odd or even; it is added to make the word odd for odd parity, or
even for even parity. The example below shows two data words with
both odd and even parity bits added.

Py

Yl 1 0 0 1 0 1 0 data word
0 110 0 10 10 even parity
1 1 1 0 0 10 10 odd parity

Py

TO 11110 10
101111010
001111010

108

The left-hand data word has four 1 's; even parity is maintained by
adding a logic 0 as the parity bit, or odd parity by the addition of a
logic 1. The right-hand example has five l's; even parity is created
by adding a logic 1 as the parity bit, or odd parity is obtained by
adding a logic 0. It can be seen that if a single data bit is incorrectly
complemented, the parity is ruined; a parity checker at the receiver
can detect this and provide a warning of characters in error. The
system is not foolproof, since two (or an even number) of errors in
the data word would go undetected; such a high error rate should be
obvious in any case, and in normal systems, it is a rare occurrence to
drop a single bit.

Figure 13.3 shows the format of a typical 8-bit data word as it is
transmitted serially. It begins with a start bit, is followed by eight

2 3 4 5 6 7 8

Figure 13.3. Format of a character in a serial data
transmission

Data
inputs
Even
Odd
Even
Odd

X

Inputs
Odd Even

L H
L H
H L
H L
L L
H H

Outputs]
Odd Even

L H
H L
H L
L H
H H
L L

Figure 13.4. A parity generator/checker and function table (74180)

109

data bits, a parity bit, and is terminated by two stop bits. Typically
the start bit is a logic 0, the data bits are set according to data
requirements, the parity bit is set according to parity requirements,
and the stop bits are always logic 1.

Devices are available to either check or generate parity. The
equivalent circuit of the 74180 parity generator/checker is shown in
Figure 13.4. This makes use of the fact that an X O R gate will
determine whether a pair of bits is odd or even, and subsequent
checks of pairs provides a final evaluation of the odd/even state of
the data lines. Logic l 's and 0's have been added to show one
particular condition with five logic 1 's in the data, which produces a
logic 0 at the output of the final inverting X O R gate; note that the
first column and final X O R gates have inverting outputs, whereas
the centre column does not.

The O D D / E V E N l/P control lines make it possible to use the
device in several different ways; the examples given in Figure 13.5
represent just one option. Part (a) of the figure shows the device

I E V EN I/P

I I Select odd/even
I f t o check parity
lODDI/P (high if correct)

(b)

Figure 13.5. One method of using the parity generator/checker: (a) as a parity bit
generator; (b) as a parity checker

used for parity bit generation; the eight data bits generate a 1 at the
EVEN O/P if the data bits are odd, or a 1 at the O D D O/P if the
data bits are even, such that the EVEN O/P may be used as the
parity bit for even parity, or the O D D O/P for odd parity. In part
(b) of the figure, it may be seen that if the O D D l/P is used for
receiving the parity bit of a data word with parity, and the EVEN
l/P receives its complement, then the EVEN O/P goes to logic 1 for
even parity, or the O D D O/P to logic 1 for odd parity. This may be
checked by reference to the function table given in Figure 13.4. In
either case the user uses only one of the outputs according to his
odd/even parity requirement.

T h e U A R T

This chapter has shown the importance of being able to easily
convert data between serial and parallel forms. The Universal
Asynchronous Receiver Transmitter - or U A R T - is a device

Data * \
bits i — y

ODD l/P
EVEN l/P

Γ7ΤΠ

EVEN O/P

ODD O/P }
Select odd/even
parity bit
generation

(a)

Data
bits
received

PARITY-
BIT

ODD l/P I

Ths .EVEN I /P|

110

intended for just this purpose. Figure 13.6 shows a block diagram of
a typical device (COM2017). The upper portion represents the
transmitter, the central section a common control area, and the
lower section the receiver. The transmitter takes an 8-bit parallel
data word and allows it to be shifted out as serial data. The receiver
receives serial data in 8-bit data words and converts it to parallel
form.

TX DATA STROBE - TDS

TX CLOCK PULSE

-PARITY ODD/EVEN POE

L
L

L
No parity
Odd parity

r
RX CLOCK PULSE

RX SERIAL INPUT - RS1

RECEIVED DATA ENABLE - RDE

Transmitter data inputs

Q Q Q Q Q i

TX buffer register

TX timing & ©

rr—
33

RX timing & control

IE
RX buffer register

IUUU1
Q Q Q Q Q Q Q

Receiver data outputs

-TSO-TX SERIAL OUPUT

' TEOC TX END OF CHARACTER

-SWE - STATUS WORD ENABLE
- T B M T - T X BUFFER EMPTY
»RPE - RX PARITY ERROR
«RFE - RXFRAME ERROR
-ROR RXOVERRUN
* RDA - RX DATA AVAILABLE

RDÄR - RX AVAILABLE RESET

MR - MASTER RESET

GND -GROUND

Figure 13.6. Block diagram of a universal asychronous receiver trans
mitter (UART)

This particular device is programmable for data word length (by
means of inputs NBD1 and NBD2), the number of stop bits (by
NSB), and the parity requirement (by NPB and POE). This allows
for 5 to 8 data bits, 1 or 2 stop bits, and no parity, or odd/even
parity. Before transfers take place for a given word format, a control
word must be strobed into the control register by the control strobe
(CS). Most applications do not change their format requirement, in
which case the GS input may be hard-wired high.

The transmitter operation is as follows. A parallel data word
present at inputs TD1-TD8 is strobed into the TX buffer register by
a low TX DATA STROBE (TDS) pulse; data should only be loaded
when the TBMT output is high (TX buffer empty). Note that TBMT,

111

and the other status word register bits, are only enabled when the
S T A T U S W O R D ENABLE (SWE) is low. Once the T X buffer is
full, T B M T goes low. The T R A N S M I T T E R C L O C K PULSE
(TCP) is then used to clock out the serial data output T S O (TCP is
X16 the required baud rate). The device automatically transmits a
low start bit prior to the data bits, and inserts parity and then stop
bit/s after the data bits in accordance with the programmed
requirement; the stop bits are high bits. Once all bits have been
transmitted (i.e. after the last stop bit), T B M T goes high again,
signalling that fresh data may be strobed into the T X buffer register.
The output T R A N S M I T T E R END O F C H A R A C T E R (TEOC)
goes high after completion of transmission of a full character, and
stays high until the transmission begins for the subsequent charac
ter.

The receiver operation is as follows. The serial data input (RSI) is
clocked into the R X buffer register by the R E C E I V E R C L O C K
PULSE (RCP); (RCP is X16 the baud rate). The RECEIVER
DATA AVAILABLE (RDA) output goes high midway into the first
stop bit, indicating that the R X buffer register is full. The received
data word is output as an 8-bit parallel word on R D 1 - R D 8 by the
R E C E I V E D DATA ENABLE input (RDE) being taken low.

The status word register contains additional bits to indicate
receiver faults: R E C E I V E R PARITY E R R O R (RPE); RECEIVER
F R A M E E R R O R (RFE) (no valid stop bit); R E C E I V E R O V E R
R U N (ROR) (i.e. previously written character not read). The
R E C E I V E R DATA AVAILABLE output (RDA) is reset by exter
nal circuitry when a data word is read by the R E C E I V E R DATA
ENABLE RESET (RDAR) input.

The U A R T therefore provides an ideal interface between a
parallel data highway and a modem, i.e. the S/P conversion
requirements shown in Figure 13.1*. They are also ideal for use in
conjunction with microprocessors, where communication is required
with remote processors.

ASCII code

Whilst it is possible to design a data link employing any desired
code, it is obviously preferable to use a universally recognised code.
Such a code is the American Standard Code for Information
Interchange: the 'ASCII code'. This code is widely used in digital
and computer engineering. Further details are provided in
Appendix D.

* Appropriate input/output three-state buffering is also needed between the UART line and
commoned lines.

112

14
Logic families

There are quite a number of different logic families in current use, as
this chapter shows, but the amateur - and indeed the average
designer - will only be concerned with two major types: T T L and
C M O S . The amateur, in particular, should only design with devices
which are easily obtainable, therefore it is a wise practice to have a
copy of a recent enthusiasts ' electronics journal to hand, open at a
suitable page listing device types and prices. This book concentrates
on popular device types, for practical reasons.

The main purpose of this chapter is to complete this part of the
book on basic logic by familiarising the reader with the different
logic families available, and to briefly show how the families with
which he will become familiar differ from other kinds available.

Figure 14.1 is a family tree of the most common logic families and
their derivatives, complete with circuit details, showing how they
differ. Bipolar devices are junction devices in which the majority
current flow is across the junctions: as with diodes and transistors.
M O S - metal oxide silicon - devices operate in a different way,
dependent upon the field effect, and the majority current flow stays
within the different semiconductor types, apart from minute leakage
currents. Of the two major logic types, T T L is more widely used
because it is much more tolerant towards the handler; special
precautions must be taken when handling M O S devices to prevent
damaging them by stray electrostatic fields. The particular advan
tage of the latter type is its low power consumption, and wide supply
voltage tolerance.

Each family type and derivative shown on the family tree is now
separately discussed.

DTL - d iode transistor logic

D T L was the first development in custom-made logic devices; for
most purposes it has been superseded by T T L . A NAND gate is
shown. If both A and B inputs are high, current flows through Rl to
switch the transistor on, giving a low output. If one or both of the

113

LOGIC FAMILIES

MOS BIPOLAR

! 10V-

A <Ht
B < H £

T " CLOCK -^| 1ms μ·-

Γ Τ lov
I 1 '—r-—o o/p

JT R2 T R 4_ | _

TR1 " T "
-| 1
T77 nfrl

NAND gate

/7777 I /7/T7]

~S
5

ΠΤΠ

A O

BO

JL „,M
■HL

NAND

II T - O O/P

ΓΓΤΠ

Typical input stage / / / / /

Typical input stage *

Simplified stage

Figure 14.1. Logic family tree and primary circuit differences

inputs is low, this pulls the common anode point down to approx
imately +0.7 V, thereby ensuring that the transistor is cut off, giving
a high output.

DTL is discussed in Chapter 2.

TTL - transistor transistor logic

TTL is probably the most common form of logic in use, and is
certainly the most economic, and the easiest to handle. It is
available in 6 major types, offering different power-speed combinat
ions. These are discussed separately.

114

Standard, L and H types

Standard devices (Texas: no code) have a 4 k Q base resistor at the
input stage, and can operate up to 35 MHz. Lower power versions
(Texas: L) have a 40kQ base resistor, and have either emitter inputs
as shown in the figure, or diode inputs (in a similar manner to that
illustrated for Schottky LS types). The emitter inputs halve the low
level input current from the standard 1.6 mA to 0.8 mA, whereas the
diode inputs (to a transistor base) improve this to 0.18 mA. The
maximum frequency of 'L ' types is 3 MHz. A higher speed/power
compromise is available (Texas: H) utilising a 2.8 kQ base resistor, a
low level input current of 2 mA, and a maximum frequency of
50 MHz .

Clamp diodes are used on the inputs to prevent any input being
taken more than about —0.7 V into reverse bias; in normal operation
these diodes are reverse-biased and have no effect.

S type

Schottky transistors are used in conjunction with Schottky clamping
diodes in a high-speed version of T T L (Texas: S). Switching delays
are cut by a factor of two or three to one, and the forward bias of a
Schottky junction is of the order of 0.3 V, instead of the usual 0.7 V.
The disadvantages of Schottky are higher power requirements, and
the possibility of producing ringing from the faster rise time in the
output transistors; the latter can be particularly troublesome in
printed circuit boards with connections longer than about 13 cm.

The Schottky diode uses a metal* junction with the silicon,
producing a surface barrier which has a rectifying characteristic
similar to a p-n junction. These diodes are principally majority
carrier devices, and these majority carriers easily cross the junction
between the silicon and metal, reducing the storage charge, and
hence the potential difference. The Schottky transistor is really a
conventional transistor with a Schottky diode between base and
collector; the anode is connected to the transistor base, therefore the
cathode clamps the transistor when approaching bottoming, so
preventing its normal saturation, and significantly improving its
switching characteristics. Schottky T T L can attain frequencies of
125 MHz . Schottky diode clamps further restrict negative-going
spikes on gate inputs, limiting excursions to about —0.3 V.

* Usually aluminium.

115

LS type

Schottky transistors and diodes are used in a configuration to give a
compromise between speed and low power in another version of
T T L (Texas: LS). Diode connections to a 20 kQ base resistor give
the desired compromise, and a typical gate dissipation of only 2 m W
(as opposed to the standard 10 mW) , combined with a maximum
frequency of 4 5 M H z (against the standard 35MHz) .

3-state outputs

The 3-state output is a means by which other logic types can be
forced into a high impedance output state; this allows outputs to be
commoned, providing that control circuitry ensures that only one
such gate is enabled at once. A simplified circuit of an inverter is
shown with a control (C) input; the control is taken high to disable
the output. When C is high, the control inverter (shown by an
inverter symbol) output is low. An additional diode D c pulls the
base of T R 3 low, cutting it off; at the same time, one of the input
transistor's emitters (TR1) is pulled low, which cuts off TR2 and
hence TR4. Since both output transistors are cut-off, the output goes
into high impedance. When the control input is low, the gate
operates normally, and the output is either a high level or a low
level, depending upon the input.

ECL — emitter coupled logic

Emitter coupled logic is available where high speed applications are
called for, although voltage levels are very different to D T L and
T T L . Linear designers will recognise the differential amplier which
forms the standard input. An O R - N O R gate is shown; note that a
reference supply of + 4 V is required. The A or B inputs are taken to
about +3 .3 V for a low, and +4 .3 V for a high.

With a low level input on both A and B, TR1 and TR2 are cut-off,
therefore TR3 takes all the current through the 1.3kQ common-
emitter resistor (2.8 mA), dropping about I V across the collector
load of 330Ω; note that the transistor does not bottom. Emitter-
follower TR4 shifts the voltage level of the O R output to around
+ 3.3 V, for a low level output. Since TR1 and TR2 are cut-off, TR5
is switched hard on, and the emitter is at about +4.3 V, for a high
level output.

116

If either inputs A or B are taken high, all the current through the
common emitter resistor is diverted away from TR3 , and the
opposite condition is attained by the gate; this gives a high on the
O R output, and a low on the N O R output.

Transistors are always slow in switching when they are in the
bottomed region, i.e. collector-base forward-biased; this is because it
has to change polarity, and a high current flow must firstly be
stemmed. We have seen that Schottky clamping prevents transistors
from entering this region; ECL logic prevents bottoming by careful
biasing which maintains the transistors in their linear region.

I2L - integrated injection logic

Integrated injection logic is an interesting alternative offering low
power dissipation and small size. This is achieved by avoiding the
need for integrated resistors - which take up considerable space and
waste power - and utilising complementary transistors and an
injected constant-current, shown as I in the figure. A N O R gate is
shown.

With either or both the A and B inputs high (or open-circuit), at
least one (or both) of the NPN transistors is switched hard on by
current I, thereby causing the output to go low. If both inputs are
low, each sinks the appropriate injected current I, thereby diverting
it from the NPN transistor bases; both NPN transistors are cut-off,
giving a high impedance output. Thus a high impedance represents
logic 1, and a low level represents logic 0 (in positive logic).

Considering the outputs as inputs to similar gates, it may be seen
that they are suited to sinking the outflowing injected current from
an input.

CMOS and SOS

Metal oxide semiconductors may be n-channel or p-channel; C M O S
logic employs both in complementary pairs, giving C M O S . The
N O R gate shown in the figure employs P M O S transistors (inward
pointing arrows) and N M O S transistors (outward pointing arrows);
P M O S is switched off by a high level voltage, whereas N M O S is
switched on. These devices may be regarded as solid-state switches
which are either low impedance (on), or high impedance (off).

If either inputs A or B are high (or if both are high), the associated
lower N M O S transistor switches on, taking the output low; both
upper P M O S transistors are off. If both the A and B inputs are low,

117

both P M O S transistors are on, and both N M O S transistors are off.
Since the P M O S transistors are in series, both must be on in order to
take the output high.

SOS - silicon on sapphire - is an alternative method of fabricating
M O S devices using a sapphire substrate. The method of fabrication
allows a higher packing density for a given chip area. These devices
are highly reliable, but more expensive. Electrically they are similar
to C M O S .

PMOS dynamic

A way of further reducing power dissipation in devices is to operate
them in a dynamic mode; all the logic previously discussed is termed
static.

Devices in the dynamic mode require a constant clock pulse. The
illustration shows a single-phase clock, but two-phase clocks are also
used. Note the use of a negative supply rail.

It may be seen that if both inputs A and B are taken negative, the
two P M O S devices connected to the inputs switch on. When the
clock goes negative, this switches on TR3 and TR4; this links the
parasitic capacitance of the device - shown dotted as C - to TR2
output. If A and B are both on, this grounds C; if either TR1 or TR2
is off, the capacitor is charged to —10 V via TR3 . When the clock
pulse returns to 0 V, the self-capacitance C stores the charge until
the next clock pulse occurs. A refresh clock frequency of about 1 kHz
is generally satisfactory, giving a 1 ms clock period.

T h e 54/74 TTL family

The most common T T L family types are the complementary 54 and
74 series. Electrically they are similar, but ceramic (54) and plastic
(74) encapsulations offer two different operating temperature
ranges. The 54 series can operate from —55 to +125°C, and are
therefore suitable for military requirements, or stringent commercial
use. The cheaper 74 series operates from 0 to +70°C, which is
adequate for most purposes, and is the only type the amateur will
usually consider.

A great many manufacturers offer compatible devices in these
families, as shown by Figure 14.2. One of the largest manufacturers
is Texas Instruments, therefore the example type number chosen in
the figure is by Texas. The type number or 'function code' part of
the identity is common to all manufacturers, in that any devices

118

Example: S N

(Texas Instruments)

74

T T
PREFIX FAMILY

LS 241

T
Typical short form

' '74LS24V
(assumes DIL plastic
encapsulation)

FUNCTION
CODE
(2/3 digits)

CIRCUIT
TYPE

•T=flat-pack

W=ceramic flat-pack

|-^J=ceramic DIL

N=plastic DIL

-LS=low power Shottky clamped -

-L=low power

I—S= Shottky clamped
No code=standard

'— H=high speed/power product -
TEMPERATURE
RANGE

Prop.
delay

Max.
freq.

t 54=-55 to + 125°C

74= 0 to + 70°C

RSN radiation hardenedj

|—SN standard }Texas Instruments

Military codes J
OTHER
MANUFACTURERS

|—AM = Advanced Micro Devices

Blank = Fairchild

■H = Harris

•IM = Intersil

P or C = Intel (package type)

|—MM = Monolithic Memories

MC = Motorola

DM = National

'—N = Signetics

Figure 14.2. An example of the 54/74 TTL series numbering

similarly numbered should be compatible. This does not mean that
certain manufacturers might not produce an equivalent with a
totally different number.

The flat-pack and dual in line (DIL) encapsulations are illust
rated in Figure 14.3. Clearly the size of the device varies in
accordance with the number of pins, but the pitch - the distance
between pins/leads - does not. Most users - and all amateurs -
prefer the DIL, with its standard 0.1" pitch. This is complemented

119

by 0.1" pitch Veroboard® and other PCB products for mounting the
devices.

Short-form numbers, as used by most mail-order companies,
utilise only the family, circuit type and function code part of the

14-pin N plastic DIL

1 h
(7.62 ±0.26)
0.250 ±0.010
(6.35 + 0.26)
0.080 (2.03) NOM

JL
T

0.010 (0.25) NOM
0

-Seating plane

0.093(2.36) R NOM.

0.110(2.79) NOM-

I U . 0.011 ±0 .0
* 1 Γ ^ (0.279 + 0.C

0.125(3.17) rr
0.075 +0.020
(1.90±0.51)

♦ (k - 0.018 +0.003
(0.467 ±0.076
14 places

Pin spacing 0 100 (2.54) T.P.

Figure 14.3. 14-pin DIL plastic encapsulation, and a view of a 14-pin flat-pack

device number, e.g. 74LS241, or 74241. This allows them to supply
any manufacturer's version according to stock; such advertisements
assume the reader appreciates that they are DIL plastic encapsula
tions, unless otherwise specified.

4000 series CMOS

The 4000 series C M O S is the most popular complementary M O S
logic family available, and Figure 14.4 provides an example of
typical numbering for these devices; RCA is the manufacturer taken
in this example. Other manufacturers offer compatible devices with
totally different numbers, but sufficient manufacturers do use the
same 4000 numbering scheme for there to be little confusion with
these type numbers. These devices are similar to those shown as
C M O S in Figure 14.1.

Electrical characteristics and pin-outs

Appendices are provided at the rear of this book to get the reader
started right away on T T L designs. Appendix A provides connect
ion diagrams of the most common 74 series devices which have been

120

Example:
(RCA) T

E

T
FUNCTION

RCA=CD—I C 0 DE

Other
manufacturers

General instruments = MEM

Motorola = MC1 — I Standard = A — I

National = MM.

Solitron = CM·

Texas Instruments = TP-

SGS = HBF—|

Signetics = N

Solid State Scientific = SCL'
Stewert Warner = SW — '

High
voltage = B — '

f — D = ceramic DIL

I — F = ceramic frit-seal DIL

— E = plastic DIL

' — K = ceramic flat-pack

Figure 14.4. An example of CMOS series numbering

mentioned so far in the book; Appendix B lists more devices, but
presents pin-out information in a more condensed tabular form.
Appendix C contains basic information on the electrical
characteristics of this family of devices. For more information, and
for serious design, the reader should purchase: 'The TTL Data Book
for Design Engineers', by Texas Instruments, or its equivalent.

Space does not permit similar coverage of the less common 4000
series devices, although Appendix C does contain electrical charact
eristics for the purpose of comparison. For further details, the reader
should obtain a manufacturer's data book, such as: 'RCA Integrated
Circuits', by RCA.

121

Part 2 - design practice

To think is to see.

Honore de Balzac (1799-1850).

Always design a thing by considering it
in its next larger context - a chair

in a room, a room in a house, a house
in an environment, an environment

in a city plan.

Elial Saarinen, 'Time', 2 July 1956.

15
Basic principles

If Part 1 of this book may be considered as the hors d'oeuvres, then this
part may be considered as the main course. Design can only be
taught to a limited degree, after which the aspiring designer must
participate himself. This part of the book firstly discusses basic
principles, and then shows the application of these principles and
the use of digital components by example.

Switch inputs

It is usually necessary to interface a logic circuit with switch inputs,
and this does present a minor problem due to switch bounce. When
a switch is either opened or closed, the switch contacts bounce on
parting and meeting, respectively. This can introduce a series of
pulses into the logic instead of the required single switching edge,
and does not meet with the fast rise and fall times required for digital
circuitry.

OPEN |
Switch
contacts

Figure 15.1. Switch de-bounce circuit using CR delay: (a) circuit; (b)
waveforms

Figure 15.1 shows one method of overcoming switch bounce by
means of a capacitor-resistor (CR) delay. Resistor R x is chosen to be
the maximum value suitable for the logic being used, e.g. 3.9kQ for
standard 74 Series TTL (4kQ is quoted as the maximum pull-up

125

resistance in Appendix C of this book). Bounce can last for anything
up to about 50 or 60 ms, therefore this filter should have a time-
constant at least as long as this. The 0.7CR approximation is
accurate enough for such calculations, thus with a 3.9kQ pull-up
resistor, a capacitance of around 22 μ¥ is required to give a 60 ms
time-constant. Only tantalum capacitors should be used in this
circuit in order to ensure low leakage current.

Operation of the circuit is as follows. Consider the switch initially
closed. The voltage at the input to the Schmitt gate is initially at 0 V.
When the switch is opened, the voltage begins to rise as C x begins to
charge towards + 5 V through R x ; initial switch bounce short-
circuits the capacitor, each time setting it back to 0 V. After the final
bounce, the capacitor charges freely, and once the gate input voltage
exceeds the positive threshold V T +, the gate output goes low.
Because the voltage remained below the upper threshold during the
period of contact bounce, the gate output is not affected. When the
switch is closed again, the capacitor is immediately short-circuited
by the low impedance path presented by the switch, and subsequent
bounce of the contacts, as before, does not allow the voltage to rise to
the positive threshold.

A method of increasing the time-constant even further is to
incorporate a transistor buffer into the circuit: the base resistor is
therefore the timing resistor and may be considerably higher; the
collector resistor is connected to the Schmitt trigger input. The
worst possible bounce can be eliminated in this way.

Another method of removing the effects of contact bounce with
switches is to interface the switch with a latch circuit, as shown in
Figure 15.2; the figure shows two variations, (a) for a switch
employing three contacts, and (b), for a switch employing only two
switch contacts. In the first case, one of the latch inputs is always
held low by the switch when it is in one of the two set positions.
When the switch is operated, both contacts are suddenly open-
circuited*, but this does not affect the latch condition, because it
requires the definite action of being taken to 0 V on the opposite
latch input to cause it to switch. When the switch closes in the
opposite condition, the latch immediately changes state; if the
contacts bounce open, this has no effect, since they will not bounce
right back to the opposite condition. This circuit does not even
require Schmitt trigger gates. The circuit shown in part (b) of the
figure utilises an inverter to provide the opposite condition to one
side of the latch, but apart from this, works in the same way. The
logic states shown are for the circuit with the switch as indicated;

* If rotary switches are used, a 'break-before-make' action is required.

126

ο ΠΤΠ

Figure 15.2. Switch de-bounce using a latch: (a) using three switch
contacts; (b) using only two switch contacts

these conditions reverse when the switch is placed in the opposite
condition.

Delay circuits

I t is sometimes required to create a small time delay in a digital
circuit, and the simple CR delay shown in Figure 15.3 is generally
adequate. The only limitations with this kind of circuit are con
cerned with the maximum resistance value which may be used
without degrading the noise immunity of the following gate too
greatly, and the need to keep capacitor leakage current to a
minimum; the latter is best ensured by only using non-electrolytic
types, or where larger values are needed, by only using tantalum
types.

o CD - ^ I *

Γ7ΤΠ Figure 15.3. A delay circuit

In order to keep the voltage drop across the series resistor to a
minimum, the type of gate must be considered, and the low level
input current (IiL) taken into consideration; this resistor should not
drop more than 100 m V to 200 mV, therefore if I I L is 1.6 mA (as for
most 74 Series devices), this value should be a maximum of about
120Ω. Wherever possible, this value should be lower, such that it
drops less than lOOmV.

The 0.7 CR approximation is good enough to give us an accurate
enough indication of delay, therefore a 120Ω resistor and a 1 μ¥
capacitor would give a delay of about 84 μβ. Tanta lum capacitors of
the order of 68 μΡ to as high as ΙΟΟμΓ are available as small bead

127

types, and are well suited to this application, offering delays of up to
around 10 ms with standard 74 Series devices; lower current gates
allow longer times to be achieved more easily.

Edge-detection

It is often required to develop a complete pulse from a single
changing edge; this is known as edge-detection. The differentiator is an
obvious way of achieving this, as shown in Figure 15.4, but it is not a
way to be recommended. The principle will be shown, but readers
are strongly advised to use alternative solutions, for reasons to be
given shortly.

Figure 15.4. Differentiator circuits
used for edge-detection (not recom
mended): (a) positive-edge; (b)
negative-edge

Part (a) of the figure shows the detection of a positive-going edge,
and part (b) the detection of a negative-going edge. In the case of
part (a), the inverter input is normally held low by the resistor, but a
positive-going edge applied to the capacitor produces a different
iated spike at the gate input, which is translated into a negative-
going pulse at the output; part (b) shows the complete reverse. The
diode is employed in each case to limit the excursion of the
capacitively-coupled input voltage on the opposite swing.

This type of circuit is particularly sensitive to noise, as are any
differentiator circuits, since they readily respond to any spurious
input spike. In a digital circuit they represent an a.c. coupling in
what is otherwise a directly coupled circuit. The low impedance
output of the driving gate is an open invitation for any line spikes to
spuriously register as input pulses.

The delay circuit shown in Figure 15.3, on the other hand, is
thoroughly reliable, since this acts like a filter to any spurious
voltages, and only responds to a pulse longer than the delay of its

128

time-constant. The delay circuit can be used to good effect in pulse
edge-detection, as shown in Figure 15.5 and 15.6, and these are the
types of circuit to be recommended. An inverter is shown in each
case, since the inverse of the input signal is required as well as its
original form, but logic circuits frequently have available true and
complementary forms (e.g. from latches or flip-flops), therefore the
inverter need not always be a special component.

^

x ·~υ
- H

XD

k y -H r
Figure 15.5. Positive-edge detector using a delay circuit

Ί
- H K-'d

"D

-_TL

- H K-«d

L

Figure 15.6. Negative-edge detector using a delay circuit

Any type of two-input gate is suitable for this purpose, although
the most common NAND and N O R gates are shown in the figures;
the gate can be selected with the required output in mind. To best
understand the circuit, note that when the input changes, the
delayed gate input does not change immediately. Thus with X low in
Figure 15.5, the delayed gate input (XD) is initially high; if X is
taken high, both gate inputs are momentarily high, giving a low
output at Y. After the delay time t^ (set by time-constant 0.7
C D R D) J X D goes low, forcing the output high again. The timing
diagram shows that this results in a pulse developed from the
positive edge of the input waveform. Where the NAND gate
produces a negative pulse, as shown, an AND gate would produce a
positive-pulse, but again synchronised to the positive-edge of the
input waveform.

As an instructive exercise, the reader is invited to draw another
option with this type of circuit, this time placing the inverter
between the X input and one of the NAND gate inputs, the other
input being delayed but not inverted (i.e. the inverter produces X

129

rather than the_ delayed X D) . The timing diagram should then be
drawn for X, X, X D and Y.

Figure 15.6 is similar to the previous figure, except that a N O R
gate replaces the NAND gate. As the timing diagram shows, this
gives us a negative-edge detector, which is just what the suggested
exercise above produced; the only difference is that the exercise
produces a negative pulse at the output, whereas the circuit of
Figure 15.6 produces a positive pulse. To extend the same exercise
suggested above, redraw the output Y assuming an AND gate
instead of a NAND gate; it will then be seen that this is equivalent to
the N O R gate circuit of Figure 15.6.

In a similar manner it is possible to use an O R gate, or move the
delay to the opposite input of the circuit shown in Figure 15.6,
producing a negative-edge detector with a negative pulse output, or
a positive-edge detector with a positive pulse output, respectively.
(Try drawing the alternatives!)

Thus a single gate, plus complementary signal inputs and a single
delay, is all that is required to produce any kind of edge-detection
pulse, without the need to resort to a.c. coupling.

Interfacing circuitry

Care should be taken when interfacing logic circuitry to other
circuitry, perhaps with different supply voltages. Figure 15.7 shows
an input interface to T T L from other circuitry, and employs two
normally reverse-biased diodes in order to prevent damage to the
T T L gate caused by positive swing above the + 5 V rail (limited by
D l) , or negative swing below earth (limited by D2); the diodes
clamp the input voltage to within the diode V F (say 0.7 V) . The
series resistor R s is used to limit the current drawn from the driving
source under limiting conditions, but should be chosen with the
usual care, in order to ensure that it only drops around lOOmV for a
logic 0 input.

NON-TTL—J]■

/77T7

Figure 15.7. TTL input protection
circuit

If there is no danger of overswing from the driving source because
of direct coupling to a positive supply, the circuit shown in Figure
15.8 provides a simple method of reducing the input voltage to T T L
compatibility. In this case, R L is chosen to drop the required voltage
for a logic 1 input. With a logic 1 input, transistor TR1 is switched

130

L-a w ■ &) -

Figure 15.8. TTL input interface
circuit utilising a transistor

hard on, producing a low at the T T L gate input; with a logic 0 at the
input, TR1 is biased off, and the 2.7 kQ collector load resistor pulls
the T T L gate input high.

In both the above cases a Schmitt trigger gate is used to ensure
that any slow edges fed into the system are converted to the fast
edges required by normal T T L gates. Note that a circuit using a
bottoming transistor is limited in switching speed and is only useful
for relatively low speed operation (as determined by the individual
transistor used).

Outpu t interfacing has previously been considered in Chapter 11,
but is taken a little farther here. Figure 15.9 shows a direct coupling
to an NPN transistor, but the limitation here is in the fairly low base
drive current which can be achieved. The diode is optional, but is a
wise addition to ensure that the transistor is cut-off for a logic 0
output from the gate. Capacitor C s is an optional small speed-up
capacitor for high speed applications, although the latter is limited
in any case by transistor switching speed. Since the transistor
bottoms in this circuit, high speed is not possible, nor is high gain;
this circuit can only provide a fairly modest current drive.

| / RL D1

T

Open |
collector /7777

Figure 15.9. TTL output circuit
for low current drives

Figure 15.10. TTL output circuit
for medium current drives

The circuit of Figure 15.10 uses an open-collector gate and a
pull-up resistor Rx; again a diode (Dl) is used to ensure that TR1
switches off in the logic 0 condition from the gate. Because an
external resistor biases the transistor, higher base and hence collect
or current is possible.

131

Higher current drive is readily achieved by replacing the single
transistor of Figure 15.10 by a Darlington-pair, as shown in Figure
15.11; this provides large current gain (equal to the product of the
individual transistor gains), and means that the series diode is no
longer required to guarantee an off condition for logic 0 output from
the gate, since the diode VF is replaced by the V B E of TR1.

+5V
+5V

| I RL1

I y VL^TTRI

Figure 15.11. TTL output cir- Figure 15.12. TTL output cir
cuit for higher current drive cuit to a relay (or indicator)
utilising a Darlington-pair utilising an emitter-follower

The emitter-follower is not often seen as a TTL output interface,
but it should not be overlooked in applications where it is not
important to ensure complete cut-off in the logic 1 condition. Figure
15.12 shows this method used to drive a relay coil, and it is also
suitable for driving indicators (e.g. high current LEDs*). A transist
or such as the BCY71 with a maximum collector current of 200 mA
can be driven to its maximum with this circuit. Since the transistor
never bottoms (the base potential is always slightly higher than the
collector potential), it retains its normal gain characteristics. With
hFEmin of 100, this means that the base drive will be a maximum of
2 mA, and a 74 series TTL gate can drive up to 16 mA; the power
dissipation is thus a maximum of approximately 200 mW, bearing in
mind that the collector-emitter voltage is always less than 1 V (the
BCY71 is rated at 350mW).

The emitter-follower also offers one other advantage: speed.
Because it does not enter saturation, switching speed does not suffer.
If the driving gate is an open-collector type, and a base pull-up
resistor is used to ensure cut-off of the transistor in the logic 1
condition, a faster transistor interface can be achieved than with
NPN types in the circuit configurations shown in Figures 15.9 to
15.11.

Power-on reset
An important consideration for the designer to take into account in
any circuit containing latches, flip-flops, counters or registers, is
* Do not overlook the series load resistor.

132

whether they need to be preset or cleared from the 'power-on'
condition. Such devices otherwise settle in a random condition, and
this may place them in an incorrect state for satisfactory operation of
the circuit.

Figure 15.13 shows a simple power-on reset (POR) circuit (some
times also known as an initial reset (IR). Such a circuit may be used
to initialise devices as required. If a design utilises a rapid cyclic
form of control logic that automatically initialises such devices, it
may not be important if they are in invalid states for a short time
after power-on. Clearly it is impossible to generalise, but it can be
said that if a design includes latches, flip-flops, counters or registers,
the designer should always consider whether each and every one
requires a particular P O R condition applying. The figure shows
complementary forms of the signal in its simplest form, but only one
of these may be required in many circuits.

ΓΤΤΠ

Figure 15.13. A power-on reset
circuit

The capacitor and resistor form a time-constant; this should be
made as long as conveniently possible. If 74 series T T L is being
used, 4 k Q is the maximum pull-up resistance, therefore 3.9kQ is
used; ΙΟΟμΡ is the highest tantalum bead capacitor, this type being
chosen to ensure low leakage current. Only use tantalum capacitors
for long time-constants, for other types can have high leakage
currents which prevent correct operation; a high leakage current in
this circuit would prevent the voltage from rising at the input to the
first gate. The circuit shown has a time-constant of approximately
270ms.

After switch-on of the equipment, the power supply gradually
rises up to + 5 V, but the voltage across the capacitor C l rises more
slowly, since it must charge through R l . The capacitor voltage does
not exceed the Schmitt trigger positive threshold until some time
after the logic circuitry is operational, therefore POR is asserted
from soon after power-on until the threshold has been exceeded;
from this point the P O R signal is negated. It can be seen that this
circuit only produces a short initialising pulse on power-on, and
thereafter remains inactive so long as power is maintained. The
P O R signal is suitable for clearing or presetting standard flip-flops

133

and NAND-type latch circuits, or POR may be used for setting or
resetting NOR-type latch circuits.

Power suppl ies

The design of + 5 V power supplies for logic circuitry is greatly
simplified by the availability of single integrated circuits which
provide automatic regulation of + 5 V without the need for external
components; such devices include internal thermal overload protec
tion and internal short-circuit current limiting, making them vir
tually immune to damage by overloading. Figure 15.14 shows the
μΑ7805Ο regulator in a simple circuit capable of providing in excess
of 1A current drive to logic circuitry, when suitably mounted on a
heatsink, or in direct thermal contact with a cabinet case.

<ϋΟ

Figure 15.14. A +5 V power supply using a 5 V regulator integrated circuit

The rectifier bridge is also a single device, since these are usually
cheaper than four individual diodes. A 50 V PIV* is suitable, and the
current rating should bear in mind the requirement; a 1A type may
be sufficient, if the circuit requirement is less than this, otherwise a
1.5 A or 2 A type is required. Such regulators require a minimum of
around 3 V between input (I) and output (O) terminals, therefore
the input voltage must never fall below about + 8 V , and can go as
high as + 2 0 V , although it should be kept as low as possible to
minimise power dissipation.

Resistor R l is shown in this circuit, with an output H; this is to
provide a logic 1 (or high) rail for tying device inputs to a fixed level,
where required. A single 1 kQ resistor may be used to tie up to 25
standard inputs. Note that it is permitted to tie 54LS/74LS series
inputs directly to the + 5 V rail, if desired. All unused device inputs
should be tied to ground or to a high level. The only alternative, as already
discussed, is to tie unused gate inputs in parallel with used inputs on
the same gate.

* PIV = peak inverse voltage.

134

Power supply rails should be arranged to avoid loops, and 0.1 μ¥
ceramic decoupling capacitors should be evenly distributed along
power supply spurs, with at least one to each spur. Individual spurs
feeding back to a larger on-board decoupling capacitor at the point
where the supply enters the board represents a good arrangement, if
ceramic capacitors terminate each spur, and one is placed directly in
parallel with the larger decoupling capacitor at the supply entry
point. The normal practice of avoiding small (and hence resistive)
power supply wires should be observed.

For less demanding applications, where the current requirement
is well under 1 A, it is possible to utilise low current regulator devices
and/or avoid the need for heat-sinking. For large systems requiring a
number of printed circuit boards, each one of which requires a
significant supply current, it can be an economic and practical
solution to provide each board with its own discrete 5 V regulator
fed from an unregulated (but smoothed) supply. This has obvious
advantages in minimising earth loops.

An input fuse should be used to protect the supply (in addition to
a low current fuse in the secondary circuit, if desired). Remember
that the transformer transfers input power from the primary (i.e.
volt-amps) to the secondary, and the volt-amp (VA) product is of
the same order on both sides of the transformer. When calculating
the fuse requirement, the higher input voltage leads to a lower
current input than that drawn on the secondary side. Thus a
transformer operating at 10 VA from a 240 V mains supply may only
deliver an average of around 40 mA at the primary; allowance for
surges must be taken into account on top of this. It is the need for
low input fuses which prompts designers to sometimes incorporate
fuses in the secondary supply, where their rating relates to the actual
current drawn by the circuitry; the primary fuse is then regarded as
fall-back protection, and standard 2 A/3 A values may be used.
Anti-surge fuses are useful in allowing a lower current rating to be
used, without the fuse blowing during switch-on surges.

135

16
Control logic

The previous chapter discussed logic input and output circuits. This
chapter covers that part of the circuit in-between: the control logic
itself. It is a 'hot chestnut ' which is generally avoided.

Figure 16.1 represents a logic circuit in a simplified block diagram
form. The functional gating logic comprises all the special-to-
purpose gating required to logically combine input and output
signal lines. If a logic circuit is so simple that the outputs can always
be represented by the state of the inputs, and are therefore express-
able in the form of a truth table (no matter how complex), then no
control logic is necessary. If the outputs are a function of both the
inputs and of time, then control logic is necessary.

Functional
gating
logic

Figure 16.1. Simplified block dia
gram of a logic circuit

The kind of circuits that we have discussed in detail so far (e.g.
Figures 3.9 and 5.1*) have been simple functional gating circuits,
and no control logic was necessary. As soon as the circuit has to
perform some kind of apparently intelligent operation with respect to
time, we have the need for control logic. Control logic samples input
conditions, and possibly also output conditions, and controls the
outputs in accordance with some form of timing logic.

Control logic is invariably the most complicated area of any logic
circuit, and there is no universally recognised standard approach. In
consequence, every designer 'does his own thing', and just what he is
about is likely to be a puzzle to anyone else who picks up the circuit
and tries to understand it. It is also the most difficult problem to
discuss, simply because control circuitry tends to grow in random

* See pages 25 and 36 respectively.

136

conceptual directions during the various stages of a design. The end
result can be a frightening conglomeration of gating and flip-flops
which even the designer has a job to understand after a lapse of a
week or so! Figure 16.2 is a block diagram of this form of control
logic, which I have termed conditional control logic. This phrase has
been chosen, because it generally results in a number of flip-flops
which represent various modes, i.e. control flip-flops, and input and
output gating logic which controls the condition of these flip-flops,
generally with a lot of interlinking.

►■Outputs

1
j
1 1

!

Functional gating logic

' ' ' ' ' '

Input
gating
logic

1

1

Control logic

Control
flip-flops

A A A

Output
gating
logic

|

Figure 16.2. Conditional control logic - the end result of random development

A complicated design requires extremely complicated control
logic if this approach is taken, and this is the kind of design
approach most likely to lead to 'bugs' which prove difficult to
irradicate. If a given flip-flop has to be set by given input conditions,
this is easy to cope with, but the problems generally arise when the
designer considers how to cancel that particular staticised condition;
convenient signals are often jus t not available, and he has to create
them, or to 'poach' a logically unrelated signal which just happens
to give him the switching edge he needs for a particular timing
requirement. At best, this leads to a lot of apparently meaningless
gating, and at worse, it misleads others into assuming a logical
connection between certain signals, when their relationship is
perhaps purely coincidental. The 'make it up as you go along'
approach to control logic design is not to be recommended!

The right approach

The right approach is to think hard about what you are trying to
achieve right at the start. A very simple circuit perhaps justifies the
conditional control logic approach, but anything at all complex

137

should be based upon a sensible form of timing logic. The designer
then has two options: synchronous or asynchronous operation. If he
chooses synchronous operation, the control logic is rather like a
clock which is constantly providing timing outputs, and these are used
to provide timing strobes within the functional gating logic. For this
to succeed, the input /output relationship with respect to time cannot
always be instantaneous: the timing of outputs in relation to inputs,
in complex relationships, may have to take into account the timing
rate chosen. An asynchronous approach is generally one which uses
a form of timing, but one that is not free-running: rather it is
influenced by input /output conditions.

This should become clearer shortly. What should be appreciated
at this point, however, is that conditional gating can be greatly
simplified if the inputs and outputs of the circuit are related to
discrete time-slots. This is where prior thought comes in. Without
time-slots, a particular output may require countless conditional
inputs related to both circuit inputs and other outputs. With
time-slots, a given output can only occur during a discrete time
interval, and possible complications, introduced by irrelevant
conditions, are removed when areas of logic are simply not enabled
because they are not used during the relevant time-slot.

The microprocessor is an example of synchronous operation, for
cycle timing is based upon a fixed-rate crystal-controlled oscillator,
and inputs and outputs are considered during time-slots dictated by
this oscillator. If the cycle rate is sufficiently fast, there need be no
apparent delay between the sampling of an input and the switching
of an output, at least in human terms!

Given a particular problem, the first step is to see if it can be
translated into a timed sequence of events: rather like a computer
program, which must take everything one step at a time. By using
timing techniques, the most complex tasks may be performed with
relative ease, where conditional control logic would lead to a
nightmare of control logic, and probably many frustrating (and
perhaps costly) hours wasted finding out design errors the hard way.

A simple example might help clarify this. Let us suppose that the
task is to control an electric typewriter by means of an electro
mechanical interface with the keys. Whilst ASCII code may have
different codes for upper-case and lower-case characters, the
machine in question requires that the shift be operated prior to the
alphanumeric code. Let us suppose that this is achieved by two
separately timed commands: change shift, followed by print of the
required character. Timed logic can go through a given sequence of
possible typewriter opeations, and control bits can specify which are
required for a particular operation. In the case mentioned, the cycle

138

would need to consider the shift state before the character to be
printed, which dictates a certain time relationship between shift and
print; they are given different time-slots, where shift always precedes
print. By considering the mechanical requirements of the typewriter,
it is possible to derive an acceptable sequence of events related to
time-slots which enables any desired typewriter action to be initi
ated by selection of particular commands during their related
time-slots. In order to achieve the required time relationship by
means of conditional control logic, not only would complex con
ditional logic be required, but various timing monostables would
probably also be needed.

Now whilst monostables may well be required in a particular
circuit (e.g. to generate a print strobe pulse for the typewriter in the
previous example), a circuit full of them is generally representative
of bad design. Monostables represent 'open-loop5 control, in that
they have indeterminate pulse lengths: they may be determined by a
known CR relationship, but the tolerance of the timing components
introduces an element of uncertainty. Elements of uncertainty are to
be avoided in logic circuits. More than one monostable timing-out
simultaneously can obviously lead to a race condition, and once
again, this is something to be avoided like the plague.

If the application depends upon timing, then the right approach is
invariably to use a single timing source, and to relate everything to
this. If the application depends upon complex control, then the
introduction of timing can simplify the circuit. If the application
requires several similar logic networks, it is possible that one such
network can perform the task by multiplexing it into the various
signal lines under timed control, although this is not the right
approach if the end result is more complicated than the simple
duplication of networks!

There are always many, many ways of designing a logic circuit.
That is why the designer should think hard before he settles for a
given approach. Given one idea, he should first spend a little time
thinking about possible alternatives. There might always be a better
way.

Synchronous control logic

Synchronous control logic is dependent upon control timing logic
which constantly outputs timing signals to the control gating logic.
The control gating logic is responsible for introducing the time
element into the functional gating logic. This is shown in block
diagram form in Figure 16.3.

139

Inputs ►

j

L.

Functional
gating
logic

i '
k A

' 1
Control
gating
logic

i t
Control
timing
logic

Cont rol logic

1 1

1
1 J Figure 16.3. Synchronous con

trol logic

* Unused PR and CL
held high

Control timing
output lines

Figure 16.4. An example of control timing logic for synchronous operation

An example of control timing logic for synchronous operation is
given in Figure 16.4. ICla is a Schmitt trigger gate used in an
oscillator circuit to form a clock generator running at a frequency of
around 700 Hz, the time-constant for a half-period being approx
imately 0.7 X 1 X 10"6 X 1 X 103 = 0.7 ms. The two J-K flip-flops of
IC2 are used as a synchronous 2-bit binary counter, which outputs a
binary count to the A and B inputs of the 2-to-4 line decoder of IC3.

The particular line decoder shown happens to be a dual device
which has two independent sets of outputs, although both are
related to the same A and B binary input for addressing purposes. In
its simplest form, consider pin 1 to be high (the notation 'pin 3-Γ is
commonly used in such circumstances, quoting the IC number
followed by the pin number); only one of the Ά ' output lines is low
at any given binary count, e.g. Al is low for the binary input of Ol
(the A input being the least significant binary digit).

In this example, the MDA/MDB input line is used as a control
input which can change the mode of the timing logic; when it is high

140

(MDA true), the Ά ' output lines are active, and when it is low
(MDB asserted), the 'B' lines are active. This is achieved because
the data inputs of the two separate decoders are complementary.
Note that the G enable inputs related to each decoder are tied
permanently low; they are not required for gating purposes, but they
must be low in order for the decoders to work.* This particular trick
might save gating elsewhere, for it is obtained gratis at IC3. Always
take heed of any unused portions of devices: they could be handy in
surprising ways!

The control timing output lines then form inputs to gates within
the control gating logic (refer back to Figure 16.3). Since only one
timing line can be active at any one time, it is possible to restrict the
areas of active logic, and indirectly disable other areas of logic.

Figure 16.5 provides a simple example of control gating logic; the
Gl , G2, HI , H2, H3 and Kl inputs are from the functional gating
logic, and the Y output is to the functional gating logic. The circuit
shows AO, Al and A2 as control timing lines from the control timing
logic; remember that only one of the latter can be low at once.

Figure 16.5. Control gating logic

When AO is active, NAND gate IC2a is enabled, providing a high
output at Y if G l . G2 is true. When Al is active, NAND gate IC2b is
enabled, this time providing an output at Y if the condition
H1.H2.H3 is met. When A2 is active, an output is obtained at Y
when Kl is active (i.e. low in this case). Thus IC4a is acting as an
inverted-input OR gate, and the f symbol has been used to indicate
that the gate is not being used for the expected NAND function. The
OR gate of IC3a is being used as an inverted-input NAND gate (i.e.
if both inputs are low, the output is low).

Note that whilst one area of the logic is enabled, the other areas
are inhibited. For example, when Al is low to enable gate IC2b, AO
and A2 are high, thereby disabling gates IC2a and IC3a respective
ly; thus whatever the states of Gl and G2, or Kl , only the input lines
HI, H2 and H3 can have any effect on the output at Y.

* It is important to always ensure that all device enables are held in their active state if they are not
required for gating purposes.

ICIa G1-T-H N

141

Asynchronous control logic

Asynchronous control logic responds directly to external inputs, and
thereby avoids any delay which might occur when waiting for
synchronism with control timing logic. For example, computers
generally 'talk' to their peripherals by means of a sequence of
asynchronous exchanges. The computer might tell a peripheral to
'get ready', and the peripheral might respond 'ready'; the computer
might then say 'data present' and the peripheral might reply 'data
received'. Such an exchange is referred to as a handshake-sequence, and
this form of control avoids delays: that is why computers use it, for
they have no time to 'hang around' .

A complex logic circuit can greatly benefit from control timing,
and it would be useful to be able to combine the advantages of a
timed sequence with an asynchronous operation. This adds greater
versatility, for it allows the individual time-slots to be of variable
length. Reference to Figure 16.4 clearly shows that each time-slot in
a synchronous system is of the same length. The way to achieve this
is to employ the same kind of sequential logic, but to replace the
clock input by some form of asynchronous control.

The state encoder

The author developed a state encoder (or sequencer) as a general
means of obtaining asynchronous sequential control logic. Not only
does this simplify control logic, but it does suggest a standard
approach towards control logic, and this was the primary design
aim. Indeed, it is perfectly possible for design groups to standardise
on this approach, and they could then reap the benefits of readily
understandable control circuitry. Going one step further, if state
encoder chips were produced*, it could lead to a much simpler
method of asynchronous control.

The state encoder can be based upon either a binary counter or a
shift register. The counter needs a companion decoder to provide the
state outputs, where the shift register provides these directly, but the
counter/decoder option does have the advantage that it is impossible
for more than one state output to be active at one time. Spurious
switching or a fault could lead to more than one state being active at
once with the shift register, but the latter does provide outputs
directly from one chip. If the reader chooses to design a circuit
employing a state encoder, he is advised to use the counter/decoder
option, for this is also simpler. This book provides examples of both
forms.

* Patent applied for.

142

Figure 16.6 shows a logic circuit employing a state encoder in
block diagram form. The state encoder responds directly to external
inputs and can directly control circuit outputs, hence it minimises
the need for control gating logic. Figure 16.7 depicts a counter/
decoder state encoder capable of providing up to a maximum of
eight different states; obviously it may be simplified for four or less
states by using a 4-bit decoder, and less following gating.

Functional
gating
logic

State
encoder
logic

Figure 16.6. Control logic em
ploying a state encoder for asyn
chronous control

9 I 1
-LA
LD QD

EN(P)

EN(T)

QBl

r— ^p>
f »S7 RN7-W S

9 » S6 F I N 6 T 7 ^ /

IC7a

IC6a IC6b

in/7777

Figure 16.7. A counter-based state encoder with up to eight state outputs

The state encoder effectively replaces the need for various state or
mode flip-flops. At any given instant the counter (IC1) is set to a
unique binary_code, and the decoder (IC2) therefore outputs only
one state line (S0-S7) as active low. For example, if the counter is set
to 101 (equivalent to decimal 5), only the S5 output is asserted (i.e.
low). Given such a condition, the state encoder requires an input
F IN5 to be taken low before that state may be terminated; thus each
state has a unique finish input line to terminate that state.

To continue_ with the example given above, by asserting FIN5
during state S5, the unique strobe output ST5 goes low; apart from

143

being a useful strobe for external use, this strobe is ORed by an
inverted-input OR gate IC5a, producing a common strobe CST.
The output CST is also extremely useful for control purposes, since
it occurs prior to each change of state, but it is used to change the
state encoder itself after a time delay tD, which is set by RD and CD.
The two (Schmitt) inverter gates following provide a delayed
version of CST which is labelled CHGE. The counter (74163) is
clocked by a rising edge on the clock input, therefore the state
encoder changes state as soon jis CHGE goes high. Once it has
changed state - in this case to S6 - the strobe ST5 is terminated,
hence also terminating CST, and after the delay tD, the CHGE line
is returned to its low state. The timing diagram given as Figure 16.8
should help to make this clear.

S1

S5

L

™ 1 ν77/7/7777777777/777/777/7/7/777-/?.
me 1 Γ/777/7/77-/7-/7/7/7/777/7.
me/77/7/77)7/77/7A VZ/7/7/7/7777/77,

u
u

n n is

JT n n
is

i
'//// Don't care conditions

I—*J Time Delay tD

Figure 16.8. Timing diagram of the counter-based state encoder shown
in Figure 16.7

144

Examination of the timing diagram shows that tD sets the length
of both the unique strobe pulses (STQ-ST7) and the common strobe
(CST) and CHGE pulses. Once a FIN input has been used to
terminate a particular state, it need not be removed until just before
the same state is re-entered, which gives such flexibility to the
terminating pulses that control is made much simpler.

The state encoder may be terminated at any count simply by
using the state strobe line to clear the counter. In the example, ST6
is used, thereby preventing the counter from ever entering the S7
state. Because the counter has a synchronous clear input, clearing
does not occur until the CHGE pulse goes high, thereby maintaining
ST6 at the normal length tD- If it is desired to shorten the control
cycle during normal operation, it is only necessary to OR a different
state strobe to the clear line.

Note that the selected state strobe for the clear operation is
effectively ORed with a POR* input, to ensure that the counter
starts at zero on power-on. Failure to do this leads to an indetermin
ate state after power-on, and the entire circuit might then be 'stuck',
with no FIN pulses to get it started. This is actually achieved by
using an AND gate IC7a as an inverted input NOR gate, taking
CLEAR low if either input goes low.

The state encoder therefore steps from one state to the next when
tripped by a state terminating input which is unique for each state.
It provides both unique state strobes and common state strobes for
general timing requirements, and it also incorporates the input
gating logic necessary to control its own operation. As such, it
incorporates virtually all the gating requirements for complete
control of associated functional gating logic.

An example of the shift register form of state encoder is given later
in Chapter 19, which considers its use in a design example. For
either form of state encoder, selection of the delay tu is open to the
designer, and may be set to anything from nanoseconds to mil
liseconds. In certain applications it may be advantageous to AND
the CHGE input to the sequential element with a clocking input;
Figure 19.3 shows an example of this. This technique can be useful
in order to delay the change of state, perhaps thereby prolonging a
particular state output. Alternatively, this technique is a simple
method of generating a complete strobe pulse for the sequential
element (i.e. counter or shift register).

It is hoped that this chapter has shown the many different ways
the designer may go about the task of designing control logic, and
that the reader may now appreciate the importance of giving this

* POR = power-on reset. See page 132.

145

particular aspect of the design his most careful attention before even
starting. The control logic is the heart of a logic circuit, and nothing
will 'tick' unless this is right. Choose the right method, and you will
ensure the most reliable operation. Even more important, you will
then minimise heartache with the prototype!

146

17
Design, construction and testing

Any form of design is a creative pursuit, and whilst it is first
necessary to learn a certain amont of theory, it soon becomes
necessary to get actively involved in the actual process of design.
The foregoing chapters of this book provide the basic knowledge
required by an aspiring digital designer, and the point has now been
reached where this must be applied to actual design practice. The
best way to learn, in such circumstances, is by example, and the
following two chapters comprise a simple and then a more complex
exercise in design.

This chapter provides a lead-in to the process of design, covering
also the equally important stages which must follow: the construct
ion of a prototype and test procedures. A code of practice is
suggested, and this is applied in the two examples to follow.
Hopefully the reader should then be ready to go ahead with his own
simple design, which he is recommended to build: do not attempt
anything using more than about ten integrated circuits until you have gained
some practical experience accompanied by successl

Suggested code of practice

The following code of practice is suggested. If it is followed, it should
ensure that the design and construction of a project follow a sensible
planned route. The code of practice is given in abbreviated form
first, and is useful for subsequent reference; it is discussed later.

1. Define the requirement.
2. Analyse the requirement.
3. Design the man-machine-interface (MMI). (Draw panels, con

trols, inputs and outputs in best ergonomic fashion.)
4. Write a specification for the equipment.
5. Decide on control logic approach and logic type.
6. Design circuit. (Attempt to use all separate gates/functions in

each IC within each functional area, but do not under-utilise
ICs at this stage. Forget pin details. Make full use of sensible
signal names. Check critical timing with timing diagrams.)

147

7. Pin-out. (Use an ' IC Usage' table to optimise usage and
highlight 'spares'.)

8. Calculate power supply current. (Use ' IC Technical Detail '
table.)

9. Design power supply.
10. Build prototype. (Use 'functional build and test' technique

where possible. Label ICs. Mark pin 8. Mark non-standard
power supply connections.)

11. Test. (Modify if necessary.)
12. Ensure that circuit diagram incorporates any modifications, and

add a power supply table.

If a final (or production) model is to follow the prototype,
continue with the following steps.

13. Revise pin-out and device usage for optimum.
14. Design prototype printed circuit board (PCB).
15. Prepare PCB/s.
16. Build.
17. Test. (Modify PCB if necessary due to errors.)
18. Draw final circuit diagram. (Show all 'spares'.)
19. Document design in sufficient detail to explain your approach.

(This might be for others, or for you in times to come. The
reasons for a given approach can soon be forgotten. Include any
important timing diagrams.)

Now to amplify the suggested code of practice. Before attempting
to design anything, it is important to clearly define the requirement
and to analyse how it may be tackled in conceptual terms. Consider
the M M I at this point, for by drawing all controls, input and output
sockets, indicators, etc., you ensure that nothing important is
overlooked. Write a specification for an equipment if it is sufficiently
complicated to warrant this (e.g. interface voltage levels, timing,
etc.). The last task before embarking on the actual design is to
choose the most appropriate logic type and to decide upon the form
of control logic you wish to use. These latter factors should be easier
to resolve if the previous steps have been carried out.

Never rush into a design without this planning, for it may lead to
some unfortunate oversights, and the steps taken to counteract these
may lead to a far from optimum solution.

Design the circuit, bearing in mind the form of control logic to be
used. Break it down into separate functional areas, and so far as
possible, try to use all gates/functions within the ICs used; in so
doing, do not under-utilise gates (e.g. multi-input gates for inverters
- this kind of decision comes later on). When the design is complete,

148

draw timing diagrams on squared paper, thereby making sure that
no timing errors have been made; modify if necessary.

'Pinning-out ' is the process of writing in IC numbers and pin
numbers. The following two chapters provide examples of how this
may be most efficiently undertaken using what I have termed an ' IC
Usage' table. This ensures that all devices are used most efficiently,
and assists in the final exercise in device optimisation; it is at this
stage that inverters may be replaced by spare multi-input inverting
gates. The power supply current is then calculated, using what I
have termed an ' IC Technical Detail ' table; the latter also serves as
an IC components list, power supply table, and cost analysis. After
this, the power supply may be designed.

Careful thought must be given before building the prototype, and
further information regarding this follows later in this chapter.
Where it is possible to divide the circuit into separate functional
areas which may be tested independently, a 'functional build and
test' approach is best: this involves the construction and testing of
functional blocks in stages, rather than building the whole equip
ment and testing it afterwards. It is worth thinking how functional
test and build might be achieved, for it can be the easiest method of
getting a prototype to work: it is less daunting to test a small area of
logic at once, and wiring errors are more, easily spotted. Do not
overlook the necessity to update the circuit diagram to incorporate
any modifications, or great confusion can subsequently ensue!

If a final (or production) model is to be made, the pin-out should
be revised if any modifications have taken place: there may be a
slightly different opt imum solution. When making modifications,
always make use of previously under-utilised gates wherever pos
sible. The last steps are to design the PCB layout, obtain (or make) the
PCB, check out a complete board, correcting any errors, and to
finally make sure that the circuit diagram is up to date. It is wise
procedure to write a few notes on the circuit whilst it is fresh in your
mind, and to include any timing diagrams that you have produced.

Choice of logic type

Chapter 14 covered the different logic families, but for practical
purposes, and most situations, these may be narrowed down to two
types: C M O S and T T L ; this is certainly the case if cost and
availability are taken into account. These two types are readily
available, and devices may be obtained at extremely competitive
prices from the mail order specialists who advertise in the monthly

149

electronics DIY magazines. The 4000 series is the best C M O S
choice, and either the 74 or 74LS series for T T L ; the 74 series is the
cheapest, but the 74LS can be worthwhile if the design is at all
complex, for it significantly reduces the power supply current
requirement. Figure 17.1 is provided as a general guide to the choice
of logic type. To use this figure, look down the central column noting

CMOS I FACTORS TO CONSIDER I T TL

(4000 series) ' I (74, 74LS series

T
EASE OF H A N D L I NG ^ .

*
COMPLEX DESIGN

+

NOVICE DESIGNER

S I G N I F I C A NT B R E A D B O A RD
WORK A N T I C I P A T ED

♦
LOW POWER NEEDED

♦
SIMPLE CIRCUIT

+
B A T T E RY OPERATION

MICROPROCESSOR ̂ LS types or buffered
INTERFACE microprocessor

PROFESSIONAL
REQUIREMENT

Higher voltage types for
industrial noise immuni ty

Depends on
requirement

Microprocessor
approach ?

Figure 17.1. Factors to consider when selecting logic type

the important factors relevant to your requirement; the arrows
indicate which way to turn. The various factors are listed in what
amounts to their approximate order of significance. Clearly you may
have to take into account several of the factors listed, but it should
be possible to decide which way they tend to point; remember that
higher factors on the list are more significant.

150

Construction

Logic circuitry requires complex wiring, therefore it is essential to
build prototypes on some form of circuit board, based upon the 0.1"
hole pitch required by logic ICs. Scan the mail order advertisements
for suitable boards. Vero manufacture a range of suitable boards,
including what is known as D I P board: this comprises rows of pads
for IC pins, plus power supply tracks routed conveniently around
the board. A 156 mm X 114mm D I P board can hold up to 20 14-pin
devices, or 16 16-pin devices.

Standard 0.1" pitch Veroboard® can also be used, although there
is the added trouble of using a spot-face cutter to remove a lot of
copper track; it can be worth the effort if dense packing or economy
are considerations. The 3.75" wide boards contain 36 parallel tracks,
which may be arranged as follows, considering the tracks to be
labelled 1-36: 1-8 = device pins; 9 = 0V; 10 = + 5 V ; 11-18 =
device pins; 19-26 = device pins; 27 = 0V; 28 = + 5 V ; 29-36 =
device pins. This comprises four ICs in depth across the board, any
of which may be 14 or 16 pins. There are two power supply tracks
across the board, which are always adjacent to one edge of every IC.
An IC bridges four holes in width, and two further holes must be
allowed for wire connections on each side (i.e. each IC pin has two
wiring holes next to it); allowing for a further row of holes to be
wasted where the tracks are broken between horizontally adjacent
ICs, each line of four ICs requires 9 holes in breadth. The densest
packing possible is therefore one line of four ICs per inch along the
board.

Whilst it is common practice to draw a paper layout of intended
wiring for linear circuits, digital circuits are too complex for this; the
end result would prove impossible to follow, and it is just not
needed. Providing that the pin-out exercise has been done sensibly
to keep functionally associated ICs in the same region, a reasonable
layout should result if the ICs are placed in numerical sequence. If
the layout is split between several boards, make sure that sensible
breaks are made in order to minimise interconnections between the
boards. If a number of different IC pins are connected together, it is
simply a matter of linking from one pin to the next.

Because of the complexity of the wiring, it is necessary to strictly
follow a wiring plan. Obtain a photocopy of the circuit diagram
before beginning wiring, and have a coloured pencil at the ready. As
each wire is added to the board, the appropriate line should be
coloured over on the circuit diagram. This keeps a constant record of
the wiring that has been done, and ensures that none are forgotten:
this is an essential practice.

151

The usual soldering precautions should be taken: each pin should
be soldered quickly; heat should never be applied for more than a
few seconds to each pin. The best practice is to first connect all the
power supply lines on the board, to ensure that none are forgotten,
and then to begin with the signal lines. It is easy to misjudge the
number of pins on a device if there is a mixture of 14 and 16 pin
devices. A good plan is to mark a dot by pin 8 on each IC, which
clearly distinguishes between the two types. It is also wise to number
each IC. The typist's correction fluid (such as Snopake®) is useful for
marking purposes; use the solution to provide a white background
on which you may write with pencil or ballpoint pen. Ensure the type
number still showsl

Because each IC has so many pins (at least 14, and sometimes
many more), it is a very difficult task to remove an IC once it has
been soldered into a circuit. Should this be necessary, it is impossible
to attempt to remove it by heating up all the pins simultaneously.
There are three options:

a. Cut the leads, discard the IC, and then remove each severed leg
individually.

b. Use a 'desoldering wick'.
c. Use a desoldering tool.

The 'butchering' method is always available as a last resort.
Desoldering wick is useful if you seldom need to undertake any
desoldering, and is a reasonably economic method; a special wick is
held against the solder as it is heated up, and it attracts the solder.
The wick is cut off and discarded as it is used up. The best method is
to use a desoldering tool. It is used against molten solder like the
wick, but it is a mechanical device which sucks the solder into a
container; a mechanical plunger is depressed against a spring, and a
release button initiates the sucking action.

An alternative method of construction to obviate the need for
desoldering is to use IC sockets; low profile types take up no more
room than the IC base itself. The only drawback is cost: they can
cost more than some simple ICs themselves. A sensible compromise
is to use IC sockets for the more expensive ICs. This is a cost-
effective solution, for rather than fit an expensive socket for a cheap
device, it pays to run the risk of throwing a defective cheap device
away.

The only case where it is strongly advised to use IC sockets for all
ICs is when you are dealing with C M O S devices. This is justified in
the section to follow.

152

Handl ing precautions

No special precautions need be taken when handling T T L devices,
except to keep them in their carriers until use, in order to prevent
any pins becoming bent. C M O S require the utmost care when
handling, and the novice is advised to avoid this logic type until he
has gained some experience. The reader is strongly advised to use
IC sockets when using C M O S devices, in order to prevent them
being damaged by static electricity.

The high resistance of the gate terminals means that C M O S
devices are very easily damaged by stray voltages. Electrostatic
voltage on insulators, PCBs, and particularly human hands, can
mean doom for the IC. It is true that such devices contain protective
circuitry, but this does not become effective until the device is
connected into circuit and the circuit properly earthed. The follow
ing procedure is advised:

1. Complete all other wiring first, including IC holders for all ICs.
2. Make sure that the power supply rails are connected to all the

ICs, and earth the OV line.
3. Remove the C M O S devices from their protective shorting hol

der/material without touching the pins.
4. Carefully insert in the IC sockets.

Under no circumstances should a C M O S device be removed from
its protective holder or the common conductive plastic foam until it
is desired to insert it into the circuit.

Extra precautions are necessary if C M O S devices are to be
soldered directly into a board. Although not advised, these are given
for completeness. As before, wire all other components first, then fit
each IC, soldering the power supply leads first (earth followed by
the power connection). Make sure the OV line is earthed during all
handling of the board. Only when all devices have been connected to
earth should the other pins be soldered.

The pins on new ICs tend to be slightly splayed out, and generally
need to be gently bent in before they fit the 0.4" pitch between DIL
rows. This is easily achieved by laying all the pins of one side of the
device onto a flat hard surface and applying slight pressure to all
pins at once; this need only be done to one side.

Test ing and trouble-shooting

When all the wiring has been completed, make a visual check of the
PCB to ensure that:

153

a. All pins are soldered.
b. No solder is shorting between tracks.
c. No dry joints exist.
d. Any necessary breaks in the copper track have been made.

The next step is to test the power supply without the rest of the
circuitry connected. Load the regulator with a resistor in order to
make it drive into a load. Check that the voltage is within prescribed
limits for the logic type.

The next step is to connect the circuitry, and to recheck the power
supply voltage. After this comes the testing proper. It is not
necessary to have any highly sophisticated test apparatus, and little
more than a logic level indicator is necessary, combined with
intelligent use, and a little trickery!

If things in the circuit are happening too fast to see them with
such simple test apparatus , slow the circuit down! This is generally
only a matter of changing a capacitor on a clock generator, or
arranging it to 'one-shot' when a button is pressed.

If the apparatus to be tested incorporates an LED, this may be
used as a level tester simply by connecting it to the output of a spare
gate through a suitable load resistor. The gate input is then
connected to a probe, with a point small enough to ensure that it
cannot inadvertently short-circuit adjacent pins on an IG.

+5V

120Ω

/T\^r 0n = logic °'
Loqic U I I) 0 ff = l o g ic 'V or 0 /C

Figure 17.2. A simple level
indicator

Figure 17.2 depicts a very simple level indicator which uses no
more than the indicator LED and its load resistor, plus a driving
transistor. The probe is connected to the transistor base. When
touched to earth or a logic 0 level, the transistor is biased on, and the
LED is illuminated. When the probe is either open-circuit, or
connected to a logic 1, the voltage level is too high to cause the LED
to be illuminated; V Q H is always greater than +2 .4V, meaning that
the emitter is greater than +3.1 V; the LED drops nearly 2 V,
therefore current flow is minimal, and should not be visible under
nomal conditions; should a particular LED have a low VF , causing
the LED to glow dimly when it should be off, simply insert a forward
biased diode in series with the LED.

154

Figure 17.3 depicts a slightly more sophisticated logic tester, with
the added feature of a pulse detector. A quad 2-input exclusive-OR
gate is used to provide inverters or non-inverters, as required. ICla
is always a non-inverter (i.e. a buffer), and IClb and ICld are
always inverters; IClc is controlled to be non-inverting with the
switch in the position shown, or inverting with the switch in the
opposite condition. The 'LOGIC Γ LED is illuminated when the
probe input is open circuit or at logic 1, or extinguished when at
logic 0.

PULSE
DETECTED

CTRL
l/P
H
H
L
L

Logic
l/P
H
L
H
L

XOR O/P

L
H
H
L

INV

NON-
INV fTrnHo T

Ref
IC1
IC2

Type
7486
7476

+5V
14
5

ov
7
13

TRIGGERING
NEG PULSE

Figure 17.3. A simple logic analyser with level and pulse detection facilitates

The J-K flip-flop is 'RESET' by means of a press-button after
connection of the probe to a circuit point to be monitored; the
'PULSE DETECTED' LED is illuminated if it subsequently detects
a complete pulse (or pulse train).

The switch allows the XOR gate at IClc to be inverting or
non-inverting as desired. Since the J-K flip-flop is clocked on the
falling (or negative) edge of the clock pulse applied to it, this facility
allows the rear edge of either a positive or a negative pulse to trigger
it, as indicated. These two indicators provide a wealth of informat
ion, as the following table shows.

Note that this figure illustrates how a table appended to a circuit
diagram is an efficient way of indicating power supply pins.

Switch
setting

POS/NEG
POS/NEG
POS
POS
NEG
NEG

LOGIC 1

ON
OFF
ON
OFF
ON
OFF

PULSE
DETECTED

OFF
OFF
ON
ON
ON
ON

Meaning

Steady logic 1 level
Steady logic 0 level

_ru
n
u

- I i - l

155

The reader should study Figure 17.3 in detail and should be able
to follow its complete operation without further information. The
only point to particularly note, is that the pulse detector cannot
discriminate one pulse from a pulse train, although if a pulse train is
present, the level indicating LED will probably be dimmer than its
normal level with a steady logic 1 applied at the input. A functional
table for the XOR gate is included in the figure for convenience.

Power for either of the above logic level analysers should be
obtained from the host circuit, via short twisted leads. Note that
ICla in Figure 17.3 provides a standard gate load to the circuit
being monitored.

156

18
A CMOS design example — audible
process timer

This is the first of two design examples. The reader should study
these examples until he is fully familiar with every aspect of them. If
he can reach the point where he understands the need for every
component - for each and every gate - then he is ready to embark
upon his own designs! These two examples follow the suggested code
of practice given in the preceding chapter.

Defining the requirement

An industrial process requires an operator to perform a task for a
minimum of 10 seconds; personal judgement is involved to decide
when the task is completed, and it may take up to 20 seconds, or just
over. It is most important that proper timing is maintained,
therefore operators presently count to themselves - which is greatly
fatiguing. A simple but reliable mains operated equipment is required
which will produce an audible tone after 10 seconds, with repeated
tones at ten second intervals; an intermediate tone of different pitch
is required at the intermediate 5 second intervals, but this should
not sound until after the first ten seconds has expired. The start and
finish of the process may be detected by means of a photocell.

Analysing the requirement

Input: a photocell indicates when the process starts and stops.
Output: audible tones at the following time intervals from START
to STOP:

After 10 seconds
After 15 seconds
After 20 seconds
After 25 seconds
etc. until STOP.

157

TONE 1
TONE 2

TONE 1
TONE 2

One solution would be to use 555 timers, but this would involve
quite a lot of associated logic. Such a scheme would also be at the
mercy of component drift, since the 555 timer is CR based, and
capacitors age; the apparatus must stay accurate. Crystal oscillators
stay accurate, but are of high frequency, and require a lot of dividing
down to reach the time intervals required in this case. Since the
equipment is to be mains operated, what better than to make use of
the mains input frequency?

Although the mains frequency is relatively low - 50 Hz in the
desired area of operation - the apparatus will still require a fair
number of divider stages. It is known that single C M O S devices are
available which provide many dividing stages, therefore C M O S is
an attractive logic type, especially since its wide supply voltage
tolerance (+ 3 V to + 1 2 V o r + 1 8 V - see Appendix C) means that a
smoothed but unregulated power supply should be adequate for a
simple design.

It is now easy to step through stages 3 -5 of the suggested code of
practice, as follows:

3. Design the man-machine-interface. Apart from an O N / O F F switch,
there is nothing to consider except a loudspeaker. Nothing need
be drawn.

4. Write a specification for the equipment. The only relevant figures are
the input timing frequency of 50 Hz, and the output timing of
tones, as defined above.

5. Decide on the control logic approach and logic type. The outputs are
directly related to the timing input (i.e. 50Hz) , therefore no
special approach is needed; because it is anticipated that the
design should be quite simple, involving very few ICs, the
conditional control logic approach is justified. The logic type shall be
C M O S .

Design
Space restrictions within this book make it impossible to include
abridged data of the 4000 series of C M O S ICs other than the
general characteristics given in Appendix C. The reader must look
elsewhere for individual device data. RCA are a large manufacturer
of such devices, and Appendix C provides various addresses relevant
to this company, where readers may write for further information.
Most technical colleges that have courses in electronics contain data
books within their libraries, and this is another possible source of
reference.

Figure 18.2 shows the resulting design, which will be discussed in
detail. The figure appears at the end of this chapter for convenience.

158

Although the power supply is normally the last thing to design, it
is necessary to establish what is needed in general, e.g. voltage
output. In this case the supply current drawn by the logic is bound
to be negligible because C M O S are low current devices; the main
power dissipation will be associated with the audio output stage. A
full-wave rectifier circuit using a centre-tapped 6-0-6 V supply is to
be used, and this type of circuit produces a capacitively smoothed
output voltage of 0.7Va c*, where V a c is the sum of the two phases,
i.e. 12 V in this example; the circuit diagram shows a nominal
voltage of + 9V, but something just less than this can be expected.
C M O S can readily take any variation in supply voltage due to
mains variations. The output from this power supply is taken to be
VDDJ a n d a further H output is taken via a resistor for tying-up
inputs required to be at logic 1. A 555 timer IC is to be used as a
simple means of providing an audio stage, for such a device can
drive a high impedance loudspeaker directly. These devices have a
maximum power dissipation of 600 mW, therefore this power supply
is not likely to supply in excess of this power. Since this calls for
under 1VA from the transformer, the smallest of transformers
should be suitable.

One phase of the mains frequency is taken off from the transform
er via diode D3 to provide the waveform CK. The amplitude of this
signal is 6 V less the diode Vp; this is sufficient amplitude to switch
the C M O S gate. The series resistor R4, and the zener diode D5, are
simply protection components, protecting the following IC in the
event of a surge.

The counter chosen is a 4040 (I C l) . Since this contains pulse-
shaping circuitry on the clock input, no external measures need to be
taken to convert the half-wave rectified waveform to a square-wave.

The 4040 (IC l) is a 12-stage counter divider with an output from
each stage (Q1-Q12) . In this application, with an input frequency
of 50 Hz, the time for a complete period of C K is l /50s, or 20 ms. If
we regard I C l as a counter counting pulses once every 20ms, we
need to calculate how many pulses it needs to count for 5 s and for
10 s, in order to achieve our timing requirement. The table below
shows the binary weighting of each stage of the counter.

a 1
2
3
4
5
6

Weighting
1
2
4
8

16
32

a 7
8
9

10
11
12

Weighting
64

128
256
512

1024
2048

* Unlike full-wave rectification with a bridge rectifier, which is 1.4Vac

159

To discriminate a time interval of 5 s, the number of pulses to be
detected is 5/0.02 = 250. The Q9 output goes high after 256 pulses,
which is only 6 X 20ms longer than the required time, i.e. 0.12 s; it is
decided that this is quite accurate enough for a manual process.
Similarly, to discriminate an interval of 10 s, the number of pulses to
be detected is 10/0.02 = 500. The Q10 output goes high after 512
pulses, which is only 12 X 20 ms longer than the required time, i.e.
0.24s longer, which is again quite accurate enough. Since we are
only concerned with discrete time measurements, no cumulative
error can result, and the error for each measurement is acceptable.
This avoids the need for gating circuitry to detect the precise counts
of 250 and 500. Had we decided to make the timer completely
accurate, the 5 s discriminator would require the following outputs
to be ANDed: Q8, Q7, Q6, Q5, Q4, Q2; the 10s discriminator
would similarly require the following outputs to be ANDed: Q9, Q8,
Q7, Q6> Q55 and Q3. This is a case where practicality and
cost-effectiveness overrule theory.

A general point of interest worth noting is that it is possible to
design-in the error rate in this kind of circuit. By partially decoding
a number of the more significant bits in a required count, the error
can be reduced in relation to the number of bits decoded. For
example, if five bits were decoded in the required 5 s interval for this
timer, these would comprise Q8, Q7, Q6, Q5 and Q4, thereby
discriminating a count of 248, reducing the error to 2 X 20 ms = 40
ms short. Note that by decoding only the top four bits (Q8 down to
Q5), the count determined is only 240, and this produces a larger
error in under-timing, than the chosen solution does with over
timing.

The counter is to be held disabled when it is not required for
timing, and is only to be enabled when the photocell is illuminated.
D4 is the reverse-biased silicon photodiode to be used, and TR1 is a
current amplifier. The photodiode does not conduct when it is dark,
therefore the output from TR1 collector is labelled OFF; a gate
determined to be spare at a later stage of the design is used as an
inverter (IC4d), thus the output at 4-10* is labelled ON, i.e. it is
high when we want the counter to be enabled. The counter has a
reset (R) input at 1-11, therefore the input to this pin must be low to
enable a count, hence the name COUNT. IC3b is a NAND gate
providing the required inversion relative to ON, and also allowing
the RESET input to be gated in: the latter input is used to reset the
counter when it has counted the pulses required for the 10s interval.
If the counter is operating, ON is high, and RESET goes low after a

* IC4-pinlO.

160

10 s period; this causes COUNT to go high, thereby resetting the
counter. IC3c is used to NAND Q10 and Ql together, thereby
providing a RESET pulse one CK period after Q10 goes high; this
ensures a clean output pulse from the Q10 output before the counter
is reset, which naturally takes Q10 low again, along with all the
other Q outputs.

A timing diagram of the circuit is provided as Figure 18.1.
Because this is drawn to show the timing over some 30 s, it is not
possible to show short pulse lengths clearly, except by slight
exaggeration. This diagram shows the short Q10 pulse obtained
before the timer is reset, occurring immediately after the trailing
edge of the Q9 pulses. As soon as COUNT goes high, this resets the
timer, and Q outputs all go low; this removes the RESET pulse, and
timing resumes at once.

I
10
I

20

I
25

I
ON [

0-9 1

Q10 j

1 I
n

J 1
n

1
"Π

1

"~l:

ri
RESET |

1STCY |

5SEN ·

10SEN 1

EN 1

SOUND 1

-HH-160

u
II H
II
II

n

u
i ms |

1

■►1 h*-320

l!l
III

1

u

u
ms

II
II
II

Jl_
Ü

Ü

u
1 1

_TL
u

T
H ' I
l i
I I _ n _
u

u
— i

1

1
1

"~1'
I I

_ l |
1

u
1 iO .

Jl IL
Figure 18.1. Timing diagram for the process timer

Because IC1 is a timer, it may be used for any other timing
requirements of the circuit, such as determination of the length of
the audible tones. In order to use it in this manner, it is necessary to
set a latch or flip-flop at the time a tone is required to start, and to
reset it when the tone is to finish. IC2b is a flip-flop which performs
this function for the 5 s tone. When Q9 goes high it clocks the

161

flip-flop to the set condition, since a logic 1 is input to D (pin 2 -9) .
Thus 5SEN (5 s enable) goes low at this point. Q4 goes high after a
further 8 X 20 ms = 160 ms, and this is used to reset the flip-flop via
pin 2-10. This sets the length of the 5 s tone to 160 ms, i.e. just under
two-tenths of a second.

Our design requirement is that the first 5 s interval shall not sound
a tone, therefore this must be discriminated from subsequent 5 s
intervals. The other flip-flop within IC2 is used to do this. IC2a is
clocked into the set condition by the lagging (rising) edge of the
RESET pulse, taking 1STCY (1st cycle) high after the first 10 s
interval, as shown in the timing diagram; this output is subsequently
gated with an enable waveform EN, thereby ensuring that no tone
can cause S O U N D to go low prior to the 10 s interval.

All that remains is to staticise the 10s interval. This could be done
with another flip-flop, but a more cost-effective solution is to use
available N O R gates, and to use a latch. IC4a and IC4b form the
latch circuit, which is set by taking pin 4-1 high, and reset by taking
pin 4 - 6 high. Since the set input is taken from the Q10 output of the
timer, the latch is set after the nominal 10 s period; it is reset by the
Q5 output, which occurs after a subsequent 16 X 20 ms = 320 ms,
as shown on the timing diagram. Note that both Q4 and Q5 are
going high and low all the time during the time interval, but after
each higher significance bit is first set on the counter, all the lower
significant bits return to zero; these other high states of Q4 and Q5
are not significant so far as the timing flip-flop or latch is concerned,
because they simply reconfirm their reset condition. The latch causes
10SEN (10s enable) to go low after the nominal 10s period, and to
return high after the further 320 ms.

IC3a is used as an inverted input OR-gate, producing EN high
when either 5SEN or 10SEN goes low; once 1STGY is true (as from
the first 10s period, when 10SEN first goes low), these two timing
pulses cause S O U N D to go low. IC4c is an inverted input AND
gate, producing T O N E high if both S O U N D and C O U N T are low.
By gating C O U N T with S O U N D , it is ensured that the audible tone
is cut off immediately the O F F condition is reached, should this
occur mid-tone. More practically, it is a good safety feature,
ensuring that no tone can ever occur in the O F F condition, no
matter what spurious conditions might occur in the rest of the logic.
Such precautions are well worth taking.

The C O U N T control of the audio also has one other effect. When
the controlling input reverts to O F F , the O F F signal resets the
1STCY flip-flop and the counter; what it does not do is to reset the
5SEN flip-flop or the 10SEN latch, for these must be reset by the
timer itself; the timing diagram shows this, where the 10SEN latch is

162

left set because OFF occur mid-tone. Because 1STCY goes false, this
prevents SOUND going low in the OFF condition in any case.
Under circumstances where the OFF condition occurs mid-tone, the
appropriate timing enable stays active until the timer restarts and
the resetting time interval has timed-out. This has no effect on the
audible output due to the fact that 1STCY is false for the first 10s.

Note that there are no spare gates in the circuit. It would have
been preferred practice to buffer all the logic from the analogue
input (TR1) by a single gate (e.g. IC4d), but because of a gate
shortage, it was deemed acceptable to provide the additional load of
IC2a reset input. Had there been a spare gate, normal practice
would have to generate OFF from ON, by means of an inverter. No
de-bounce precautions are necessary, for the light switch has a clean
switching edge, and even if there was a bounce effect, it could do no
more than reset the timer a few times, which would have no effect on
circuit operation.

The audio stage comprises a 555 timer connected as an astable
circuit.* C2 is the timing capacitor, and Rl and R2 provide the
charging path. A different tone is achieved in the two timing
conditions by switching a lower resistance across Rl during the
5SEN tone; this is achieved quite simply by TR2, which is biased on
when 5SEN is active. The base current of TR2 is minimal loading
for IC2b Q output.

For the 10 second tone, Rl , R2 and C2 are the timing compo
nents, giving T m = 0.7 (56 K + 100K) 0.01 μΓ, giving a period of
1.092ms; during discharge, Ts = 0.7 X 100K X 0.01 μΓ, giving
0.7 ms. The total period of a complete cycle is therefore 1.792 ms,
and the frequency is therefore 1/1.792 kHz, i.e. 558 Hz. The 'mark'
time (Tm) for the 5 second tone is reduced, since R6 now appears in
parallel with Rl , reducing the effective resistance to 9.9K, and
hence T m to 0.77ms, and the total period to (0.77 + 0.7) ms, i.e.
1.47 ms, thereby giving a frequency of 680 Hz.

The 555 timer output is driven directly into a 200 Ω potentio
meter, which acts as a volume control. A 33 μ¥ capacitor is used to
couple a 64 Ω loudspeaker to the potentiometer, for this has an
impedance of around 10 Ω at the lower frequency, providing minim
al attenuation of the sound. The maximum power output of a
square-wave, assuming a 1:1 mark-space ratio for simplicity, is half
that which could be dissipated by connecting a 64 Ω load across the
9 V supply, i.e. about 0.6 W. Since this only occurs for a maximum of
320 ms every 10 seconds (or 160 ms every 5 s), this only occurs for
0.32/10 X 100%, i.e. 3.2% of the time, thereby reducing the average

* Refer to Chapter 6 for details of the 555 timer, and also App. Kl.

163

loading of the audio stage to minimal proportions so far as the power
supply is concerned (equivalent to about 20mW).

Because the tones vary in length and pitch, they are readily
distinguished. The end result is as follows:

10 second tone (TONE 1): 558Hz for a duration of 320ms.
5 second tone (TONE 2): 680 Hz for a duration of 160 ms.

This timing produces a low pitch long tone for 10 s intervals, and a
higher pitched shorter tone for intermediate 5 s intervals. This results
in a sound pattern with which the operator readily associates subcon
sciously. This sound pattern relates to a given time, and timing
becomes a mere subconscious act. Now, instead of counting to
themselves all day long, they can actually talk whilst they work.
Productivity and efficiency have improved, not to mention morale!

Notes

It is no accident that there are no spare gates in the foregoing design;
this is the result of careful optimisation. Earlier versions of the
design used another quad NAND gate, and the result was spare
NAND gates and spare NOR gates; careful optimisation, and use of
a direct connection of pin 2-4 to the input, enabled the final solution
to be reached.

The final stage in any design should be an exercise in optimisa
tion. Given spare NAND and spare NOR gates, it is generally
possible to find a solution which releases at least one of these ICs.

One useful tip worth bearing in mind, is that where spare gates
exist in a design, the supply current drawn by such gates can be
minimised by causing the output to be high; thus inverter gates must
have their inputs tied to 0 V to achieve this situation.

One final point. Because of the small number of ICs used in this
simple example, it did not warrant the use of an TC Usage' table or
an TC Technical Detail' table, as mentioned in the suggested code
of practice. Examples of such tables are to be found in the more
complex example given in the following chapter.

The reader should now study this design example in depth. Every
attempt should be made to fully understand the design, and this
involves knowing why every component and gate is required. The
earlier chapters and appendices provide all the cross references
required to achieve this.

The following design example is considerably more complicated
than this example, therefore there is little hope of fully understand
ing it if the present example cannot be fully understood. It is stressed

164

L
F1

I
Vo

lu
m

e
co

nt
ro

l
1

^
/

20
0Ω

3\
Λ/

Ι_
ΙΝ

/n

iV
R

IC

re
f

1 2 3 4 5

Ty
pe

40
40

40

13

40
11

40

01

NE
55

5

Pi
ns

VD

D

16

14

14

14
 8

OV

8 7 7 7 1

Fi
gu

re
 1

8.
2.

 C
irc

ui
t

di
ag

ra
m

 o
f

th
e

au
di

bl
e

pr
oc

es
s

tim
er

that every effort should therefore be made to understand the present
example. If this can be fully understood, the reader is well on the
way to appreciating the requirements of good logic design, and is all
set to tackle the much more difficult TTL example which follows. If
both examples can be fully understood, then the reader really is set
to begin his own designs!

166

19
A TTL design example - an
automated 'ΝΙΜ' machine - the
'AUTONIM'

This is the final complete design example to be presented, and it is
an understatement to say that it is rather more complex than the
preceding example. It is therefore necessary to emphasise yet again
that unless the reader first works at completely understanding the
audible process timer design, he has little hope of understanding the
design which follows.

The good news is that it should be possible for any reader who has
carefully read the preceding chapters to understand this design
example if he is prepared to work at it, using the preceding chapters
and the appendices where he has any doubt. No new knowledge is
called for, and the design if fully explained. This particular example
has been chosen because it uses just about every different type of
TTL device. If the reader can understand this example, then he is
ready to embark upon his own simple digital design projects using
TTL logic.

Now is the time to draw in a deep breath - preferably take a short
holiday beforehand - and then dive straight in at the deep end!

Defining the requirement

The aim is to produce a fully automated machine capable of playing
the game of 'ΝΙΜ'. For those readers not familiar with this game, it
is covered in the following section. The machine should be capable
of playing against a human player, or of allowing two human players
to play each other. The machine should be given a 'personality' to
add interest, and should incorporate several levels of skill when
playing against a human opponent. The machine must make its own
moves, and not call upon its opponent to do any of the work for it.
The machine and the man should take equal turns at starting play,
for fairness.

167

Analys ing the requirement

The game ofNIM

Before analysing the requirement, the game itself must be under
stood. It is usually played by two players with a number of
matchsticks. These are arranged in several lines, as shown in Figure
19.1. The precise arrangement is not important, but the illustrated
layout comprising four lines of 7, 5, 3 and 1 matches is common.

Illllll
urn
in

(Figure 19.1. An arrangement of
matches for NIM

This is the arrangement which will be considered, for it is about the
minimum number of matches which produces an interesting game.
To play the game, each player in turn removes as many matches as he
wishes from one complete line; he can take a whole line out at one go,
or simply one match, just as he pleases, but lines only comprise
horizontal lines, never columns. The winner of the game is the player
who takes the last match. (There is another version of the game
where the winner is the player leaving the last match, but this
introduces an additional complication, and is not therefore consi
dered.)

The theory of NIM

If a machine is to be designed to play a game, first the game itself
must be analysed. Fortunately there is a complete theory for the
game of N I M , and rather appropriately, this involves binary
arithmetic. Every position in the game of N I M may be described as
either safe or unsafe: if a player leaves a safe position, he is bound to
win if he makes no mistakes, for any subsequent move makes the
position unsafe. It is always possible to make a move from an unsafe
position which converts it into a safe position.

The way to determine if a position is safe or unsafe, is to consider
the number of matches in each line as a series of binary numbers.
Thus the starting position may be expressed as follows, where the
lines have been given reference letters:

168

Line Binary weight
4 2 1

D 1 1 1
C 1 0 1
B 1 1
A 1

Even/Odd E E E

Each binary digit is separately added, and a note made of whether
the resulting number is either odd (O) or even (E); if all rows are even,
the position is safe, but if one or more are odd, the position is unsafe.
Thus the starting position above is safe. Let us suppose that the first
player removes 5 matches from line D. This leaves the position as
follows:

Matches
I

I I
I I

1
I
I
I

Line
D
C
B
A

4

1

2
1
0
1

1
0
1
1
1

O E O

This position leaves an odd number of 4's, and an odd number of
l's. The next player must make the position safe, and can do so by
removing 5 matches from line C, hence reaching the following
position:

Matches
I I

I I
I

Line
D
C
B
A

4 2
1

1

1
0
0
1
1

Play the game with matches, and you will see that this system can
never fail. This is the method which the machine must use to analyse
the game position before making its reply against a human oppon
ent!

Designing the man-machine-interface

Any electronic game should have the minimum number of controls.
The panel layout given in Figure 19.2 is a sensible ergonomic layout

169

with the minimum of lettering. The machine was christened
'AUTONIM' because it is an automated NIM game, and also
because of its 'automaton'-like properties!

1 = man
Expert |

Good y < ^ X
Average— i f j J

P o o r ' N ^ ^ /

Child

<*>
ON

o o
1 YOU

o
WIN

©
NEW GAME

ooooooo
O O O O O

O O O
O

AUTONIM

©*4
©*4
o-4
©^4

Skill
selector

v —
Move & wir
indicators

Line indicator LEDs

Line D

LineC

LineB

Line A

switch button

Figure 19.2. A panel layout for the AUTONIM

It may be seen from the figure that matchsticks have been
replaced by indicator LEDs. A button adjacent to each line is
depressed by the player to indicate his line selection. Since no
provision is made for indicating the end of a player's move other
than the release of one of these buttons, the chosen button must be
depressed and held only once for each move. An internal clock must
therefore slowly take off one LED at a time until the player releases
the button. The two PLAY indicator LEDs marked I and YOU
indicate the machine's move or the human player's move respective
ly; the only exception to this is when the left-hand rotary switch is
set to the Ί = man' position, which indicates manual play, with a
second person playing the T role. The remaining settings on the
rotary switch select varying degrees of machine skill from Expert'
down to 'child'. A NEW GAME button is used for calling up a new
game. A toggle switch switches the equipment on by controlling the
mains input. A power-on indicator is superfluous since there is
always at least one of the LEDs on at any time: one of the PLAY
indicators must always be on.

Equipment specification

The following specification indicates how the equipment is required
to operate, and broadly specifies the general requirements.

170

Power input:
Game indicators:

PLAY indicators:

Line selection
push-buttons:

240V a.c. mains (or as appropriate).
Line D, 7 LEDs.
Line C, 5 LEDs.
Line B, 3 LEDs.
Line A, 1 LED.

I for machine's play (or man playing
machine's role).
Y O U for man's play.
W I N LED to flash at slow rate when man/
machine wins, with the appropriate PLAY
LED indicating which player has won.

One for each indicator line. Button is de
pressed to start slow internal clock which
extinguishes LEDs one by one in the selected
row until the button is released. Cheat pro
tection against depression of more than one
button at once. Release of button causes
PLAY indicators to be complemented. If
machine is playing, machine replies when I
LED is illuminated.

Variable time of response required, to simul
ate human opponent; immediate reply to be
prevented. Where several options lie open for
the machine, its choice to be random, pre
venting two identical games being played in
such a situation.

T h e 'expert ' setting specifies that the
machine must play the perfect game. The
other settings call for a reducing level of skill,
achieved by forcing the machine to make
errors at an increasing rate.

A tone to accompany the 'taking' of LEDs by
man/machine; a different tone for man and
machine.
A third form of two-tone effect to signify a
win, which is cut off after a number of times,
to simply leave the W I N indicator flashing.

N E W G A M E button: Depression resets the machine for a new
game by illuminating all the line indicators.
The first player to alternate each game be-
twen I and Y O U .

Machine's play:

Machine skill:

Audible output:

171

Control logic approach and logic type

Clearly the machine is going to be quite complicated, therefore the
control logic is going to be complicated. There are no external
signals to take into account, therefore the best choice is to use a state
encoder. This choice means that operation can be based upon a
planned sequence of events. Because of the complexity of the
anticipated design, and the probable need for a wide variety of
device types, T T L seems the best choice. Allowing for a one-off
build, or taking into account possible debugging, T T L is again the
best choice. In order to keep current levels down, bearing in mind
that the equipment will use many ICs, the 74LS series is the best
choice due to good availability, moderate cost, and lower operating
currents.

Design

For ease of reference, the circuit diagram of the final design is
located at the rear of this chapter as Figures 19.10 to 19.18. The
design has been broken down into functional areas, and each of
these figures has been given an T ' reference number; this allows a
relevant section of the circuit to be called up by the simple means of
a reference such as T 4 \ Earlier figures in the chapter are used to aid
the general explanation. The following text is also broken down into
these functional areas, but clearly a good deal of cross-referencing is
needed.

First thoughts on the method of control

Having decided to use a state encoder for the method of control, it is
a good starting point to decide what states this will require; it may
be found later on in the design that we may wish to add additional
states, but by forming some idea of the requirements at the outset,
we will have provided some foundation upon which to build.

When considering the various states required, it is useful to draw
a 'state diagram' for the equipment. Such a diagram is shown in
Figure 19.3, and the reasoning behind its development for the
A U T O N I M is as follows.

At the start of a new game, the machine firstly enters a state called
BUTSCAN; in this state, the machine scans the line buttons,
looking for one that is depressed. When it locates a depressed

172

NEW
GAME

1 v
(PRESS)

1
T (PRESFIN)

(LINEFOUND)

(SAFE)

l·/ BUTSCAN
Search for man's 1
button 1

i

Line button
pressed

MANDEC 1
Man's line has 1
LEDs removed 1

1

Line button
released

LINESCAN 1
Machine searches 1
for line to reply 1
with 1

'
Reply line
found

MACDEC 1
Machine's line
has LEDs
removed

\ Reply
1 complete

Figure 19.3. Control states for AUTONIM

button, it locks-on to that button, ignoring the other buttons,
thereby providing cheat protection against more than one button
being depressed at one time. The machine therefore leaves BUTS
CAN when a line button is pressed. It is known that 'finish' signals
to the state encoder will be active low, therefore a signal PRESS
shall end the BUTSCAN state.

The machine then enters the MANDEC (manual decrement)
state, during which the selected line counter is decremented, thereby
taking LEDs out at the machine clock rate; this continues until the
pressed button is released, signified by a signal PRESFIN, which
ends the MANDEC state.

The machine then enters the LINESCAN state, during which it
scans the various lines, searching for a suitable line in which to make
a move. When the line is selected, a signal LINEFOUND ends the
LINESCAN state.

173

The machine then enters the MACDEC (machine decrement)
state, during which the selected line counter is decremented until a
safe position is reached, signified by the SAFE signal. If the machine
is required to make a mistake, or no safe position can be reached, the
SAFE signal must be forced in an unsafe condition, in order to
terminate the state. Once the state is terminated, the BUTSCAN
state is re-entered, for it is now the man's turn to play again.

It can be seen from the diagram that if the machine is used in the
manual mode (i.e. man plays man) , this can be achieved by forcing
a return to BUTSCAN from MANDEC, rather than entering
LINESCAN.

Explanation of design description

The following description of the design procedure refers to the
circuit diagrams provided at the end of the chapter by means of the
' F ' reference which appears after the figure title. These diagrams
contain the final IC and pin numbering details, which are useful for
reference purposes in the following description, but it should be
appreciated that the act of numbering the devices comes after the
actual design. Pin-out is discussed in a later section of this chapter.

A UTONIM display logic (Fl) Figure 19.10

The circuit diagram of the display logic is given in diagram F l . This
circuit evolved as follows.

It is required to display four lines of LEDs containing 7 diodes
(line D) , 5 diodes (line C) , 3 diodes (line B) and one diode (line A).
The 7445 (no LS version) BCD-to-decimal decoder/driver is a
suitable device for driving the position display LEDs directly, for it
has an 80 mA sink-current capability, and offers a separate discrete
output for each discrete binary number; the problem is that one
diode is not required to be illuminated for each count, but rather the
number of diodes illuminated should equal the count. Rather than
design separate encoding circuitry, it is easier to use the 'chain'
principle, and connect the diodes for a given line in series; the
appropriate decoder output is then used to sink the appropriate
number of diodes in this chain. Since each diode can drop up to 2 V,
this requires in excess of 14 V for the longest chain of seven diodes
(l ineD) .

Realising this, the designer would then put some thought in on the
power supply (F9); clearly this must now supply not only + 5 V for
the logic, but at least + 15 V for the LED supply.

174

Diagram Fl shows three 7445 devices (ICs 10-12); these are used
for lines B, C and D. Since line A comprises only one LED, this does
not warrant the use of a decoder/driver, and a simple buffer/driver
gate (IC13a) is sufficient; this gate, like the decoder/driver outputs,
is of the open-circuit variety, allowing a load connected to a higher
value rail, since the output transistors have a 30 V breakdown
characteristic.

Clearly each line must have an associated binary counter capable
of counting down from an initial preset count equal to the game start
position; the only exception is for line A, which can be a single
flip-flop. The 74LS191 up/down synchronous counter is suitable for
this purpose, for not only can it count down and be preset with any
desired count, but it has outputs indicating when maximum/
minimum counts are reached; it is necessary to detect when a count
of zero has been reached, for further counting must then be
inhibited. Without such an inhibit during manual operation, the
counter would reset to its highest count and would then count down
again, offering the player the cheat facility of increasing the number of
LEDs left in a line! Thus ICs 4 - 6 are line counters D, C and B
respectively, and the Q outputs directly drive the decoder/drivers
(ICs 10-12); the Q outputs of the counters also provide the machine
with an indication of the current count in each line, with these lines
being labelled 'CTR', followed by the line reference letter, and the
binary weighting of the line. There is no 'CTRB4' line since only two
bits are required in line B to indicate the maximum count of three.

These counters are clocked on the positive-edge of the clock input
CK, therefore a D-type flip-flop provides the same facility for line A
(i.e. IC9a), which only has a single output bit: CTRA1. The
counters are made to count down by holding the input on pin 5 high;
pin 4 is an enable input G, which must be held low to enable the
counters. The A, B, C and D inputs allow the counters to be loaded
with a preset count value when the CK input is taken high during
load) the counters must first be placed in the load mode by taking pin
14 low. The LD inputs to the counters are therefore controlled by a
common input line LOAD; this same line is connected to the preset
input of line A flip-flop, thereby also setting this to a count of one.
Examination of the counter inputs shows that these are wired to
provide the counts of 7, 5 and 3 for ICs 4, 5 and 6 respectively.

When the 74LS191 counters are finally clocked to zero, the
M X / M I N (i.e. max/min) output goes high; this output from pin 12
of each counter is used to set a latch associated with the counter;
when the latch is set, this indicates a zero count in the related line.
The latch outputs are therefore labelled ZEROD (for line D),
through to ZEROB (for line B). The ZEROA signal is taken directly

175

from the Q output of the line A flip-flop. Complementary outputs
are also taken from the latches and the flip-flop (i.e. ZEROD
through to ZERO A).

All that is now required is to provide the logic necessary to control
the clocking of the counters and flip-flop. IC3 provides four AND
gates, which gate a common low frequency clock waveform LFCK
with an enable associated with each line (e.g. ENCKD for enable clock
for line D). The LFCK waveform is to be considered later (F5), but it
is known that it will be sufficiently slow to take off LEDs from the
selected row at a rate allowing the player to stop it at a required
count (e.g. of the order of 1 Hz, or slower).

The enable signals can be derived from one of two sources: line
button selection, or from the machine's control logic during MAC-
DEC. The signals SLD through SLA are the select line signals
activated by the machine during MACDEC; these are the signals
used to make the machine's reply. IC2 is a quad Schmitt trigger
NAND gate used as an inverted-input OR gate; the separate outputs
are the clocking enables, which go true if either input is taken low.
The reason a Schmitt gate is used, is that the button inputs are part
of the button debounce circuitry, formed from identical resistors Rx
and capacitors Cx; the 18kQ pull-up resistor is the maximum
allowed for LS type devices (see Appendix C), and the chosen
tantalum capacitors form a filter with a time-constant of around
60 ms, thereby removing the effects of contact bounce from the line
buttons.

Normally buttons in this arrangement are connected on one side
to 0 V; in this design, they have been connected to the output of OR
gates (ICl). The reason is that this provides an economical way of
scanning the buttons; a button can only be effective if the input
terminal is taken low, since Rx pulls the output terminal high under
all other conditions. The OR gate outputs can only be low if both of
their inputs are also low, i.e. they are used as inverted-input NAND
gates. Of the two inputs to each of these scanning gates, one is the
related true ZEROn output from the zero latch, and the other input
is a scanning selection line SKn from the control logic. Thus to
consider line D as an example, in order to enable the button, SKD
and ZEROD must be low; SKD is taken low regularly during the
BUTSCAN state, but if line D reaches zero, ZEROD goes high and
stays high, thereby inhibiting the selection of that button for the rest
of the game.

It is necessary to determine when any one of the line select
buttons has been depressed, in order to derive the PRESS signal
needed to terminate the BUTSCAN state; the line enable outputs
(ENCKD-ENCKA) are used elsewhere to derive PRESS; the signal

176

PRESSFIN, required to terminate the MANDEC state, is simply
the complement of PRESS (i.e. PRESSFIN = PRESS). (See F4 for
derivation of PRESSFIN and for the effects of PRESSFIN and
PRESS on the state encoder.)

Note. The LFCK signal is a constantly running clock; it is
tempting to think of controlling the binary counters by directly
linking the enable clock input (e.g. ENCKD) to the G enable
input of the related counter (e.g. IC4); this does not work in
practice, for the correct relationship between the clock and the
enable is not achieved, and spurious clocking will result. Hence
the use of IC3 AND gates, to directly control the clocking input
to each counter.

A UTONIM position analyser (F2) Figure 19.11

The earlier section of this chapter entitled 'The theory of NIM'
discussed how position analysis can be achieved. We must now
convert this into electronic form.

It was shown that the binary weightings of the numbers asso
ciated with each line must be checked for even/odd content. The
simplest problem will be considered first: binary weight 4. Binary
weight 4 is simplest because only two lines can contain a 4, i.e. lines
D and C. We shall derive a logical output named 40DD for an odd
count. Figure 19.4 shows a truth table for the requirement, where
the two left-hand columns (CTRD4 and CTRC4) are the most
significant bits from the line D and line C counters, as shown in Fl .
It can immediately be seen that 40DD is a simple exclusive-OR
function.

CTR-
D4

0

0

1
1

C4

0
1

0
1

40DD

0
1

1

0

Figure 19.4. Truth table and circuit for the
40DD output

The situation is a little more complicated for producing a 20DD
output, i.e. an analysis of the binary weighted 2 bits. In this case
there are three bits to consider, relating to lines D, C and B. A
Karnaugh map for this situation is shown in Figure 19.5, and the
Boolean algebra equivalent for the map is derived underneath,

177

© © © Θ
B(CD+CD)+B(CD+CD)

©©__©©
= B(C®D)+B(CeD)
= B®(C®D)

Figure 19.5. Karnaugh map for
2 0 D D (CTRB2, CTRC2,
CTRD2)

where vertical lines on the Karnaugh map are associated with
Boolean terms by the circled numbers, as indicated. The final
simplification of B Θ (C Θ D) is translated into circuit form by two
XOR gates, as shown in Figure 19.6; the truth table given in the
latter figure is drawn up from the circuit as proof of the fact that the
required function is achieved. Note that 20DD is only true when
there are an odd number of l's in the three CTR- columns. Thus a
Karnaugh map solved the problem, and a truth table proved the
solution effective under all input conditions.

CTR-
D2

0

0

0

0

1

1

1
1

C2

0

0

1

1

0

0

1
1

B2

0

1

0

1

0

1

0
1

XDC

0

0

1

1
1

1

0

0

20DD

0

1

1

0

1

0

0

1

CTRD2-
CTRC2
CTRB2

Figure 19.6. Truth table and circuit for the 20DD output

The situation is the most complicated for producing the lODD
output, for now we have four bits to contend with. Figure 19.7 shows
a Karnaugh map for this situation, and it will be seen that the 1 's are
spaced out such that none can be readily grouped together. The
circled numbered arrows indicate an approach which can be taken
to analyse this map, and the Boolean expressions are once again to
be seen to take the XOR form; the terms to the left of the vertical
line are those first derived, and those to the right are derived by
means of the Distributive laws (see Chapter 4); the only difference to
be taken into account is the fact that exclusive-OR and exclusive-
NOR terms are being dealt with. The final simplification utilises
only XOR gates.

178

m

□
&

©

©
m

□
© ©

©

©

♦ ©

- « - © © (CD+CDKAB+ÄB)

D _ ©ΘΘΘ
— [7] (CD+CDXAB+AB)

-*© ©©©©

<*> ie. (C®D)(A®B)+(C©D)(AeB)
= (C<BD)«(AeB)

Figure 19.7. Karnaugh map for lODD (CTRA1, CTRB1,
CTRC1, CTRDl)

It is interesting to note that this particular requirement is very
similar to that of parity checking, previously discussed in Chapter 13
(see Figure 13.4). It is possible to use a parity checker IC to perform
the required function, but this is not a cost-effective solution since
such parity checkers are designed to check 8-bits, and our maximum
requirement is only 4-bits, which does not need more than a single
quad XOR chip in any case.

CTR
Dl
0
0
0
0
0
0
0
0

C1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

A1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

XDC

0
0
0
0

0
0
0
0

XBA

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

10DD

0
1
1
0
1
0
0
1
1
0
o
1
0
1
1
0

Figure 19.8. Truth table and circuit for the lODD output

Figure 19.8 shows the three-gate implementation of the Boolean
expression: (C Θ D) Θ (A ® B). The truth table also included in
the figure provides the comforting proof that the solution is correct
by considering every input condition. Note that XDC = CTRDl Θ

179

CTRC1, and XBA = CTRB1 Θ CTRA1; the final output is
naturally: lODD = XDC Θ XBA.

Having designed a method of obtaining 40DD, 20DD and
lODD, it now only remains necessary to establish which lines
contain odd bits, since these are potential lines to select for the
machine's move. The final circuit shown in F2 achieves this quite
simply by ANDing the appropriate xODD output with each CTR-
index, e.g. 20DD.CTRC2 produces an output C2, which is only
true if there is an odd number of binary weighted 2 bits AND one of
these is in line C. The final circuit is seen to be elegant in its
simplicity, and remarkably is the main requisite of the machine's
'intelligence'.

A UTONIM priority encoder and line multiplexer (F3) Figure 19.12

The position analyser logic (F2) simply indicates which lines are
odd, and which bits in those lines contribute to that odd status. In
order to decide which line to move in, the theory of NIM will be
thought about a little more deeply. A little thought will show that
certain positions can produce the option of several solutions, viz.

Matches Line 4 2 1
I
I

I
I

I
I

I
I

I
I

I

D
c
B
A

1
1

0
0

1
1
0
1

In the above example, lODD would be true since there are an
odd number of l's; 40DD and 20DD would be false, because these
are both even. The following outputs would also be true: Dl, C1 and
Al. Thus taking one match (or LED) from line D, line C or line A is
a satisfactory move, giving us three options. The machine must be
allowed to make a decision where it is presented with options,
otherwise it may have a 'brainstorm'!

Given a little thought, it may be established that it is always a
satisfactory solution to select the line containing the most significant
odd bit under any circumstances) where this still leaves an option, as in
the example given above, the machine should make a random
selection from the available lines. By making the selection random,
it is ensured that the machine will not always play precisely the
same game in a similar situation.

There are now two further requirements to be translated into
electronic terms:

180

a. A priority selection of the line with the most significant odd
bit.

b. A random selection of a line, given available options.

There is still one further complication to take into account: the
spec, requirement for varying levels of machine skill. We have
established how the machine should play as an expert, but it needs to
make mistakes when it is not playing as an expert. Furthermore, we
must decide what the machine is to do when forced to move from a
safe position: it will not 'like' making the position unsafe!

The solution adopted is to create an ability to 'hedge' under such
circumstances. If the machine is forced to make the position unsafe,
its best tactic is to take only one LED, so making the game last out
as long as possible, and thereby maximising the chances of the
human opponent making a mistake and giving the machine an
unsafe position to move from. If the machine is required to make a
mistake due to a lowering of its level of skill, this can be similarly
achieved by forcing it to 'hedge' rather than make the optimum
move. How we get the machine to decide when to make a mistake is
discussed elsewhere (F7).

The circuit given in F3 shows a pnonty encoder in the upper-half of
the figure; this analyses the 40DD, 20DD and lODD inputs to
produce priority selection lines PS4, PS2 and PS1. In addition, it
produces a HEDGE output for a SAFE position OR when a
MISTAKE is required (implemented by means of an inverted-input
OR gate IC21a). Note that the signal SAFE is only active low when
all three inputs are low (i.e. the safe situation). The priority encoder
produces the outputs as follows:

PS4 = HEDGE. 4QDD
PS2 = HEDGE. 40DD.2QDD
PS1 = HEDGE. 4 0 D D . 2 0 D D . 1 ODD

Thus if HEDGE is true, none of the normal priority encoder
outputs may be true, and the machine is required to take one LED
from any available line (i.e. lines still containing at least one LED
illuminated).

The lower part of F3 shows a multiplexer designed to scan the
various odd bit outputs from F2, utilising two 74LS153 4-line to
1-line multiplexers, each of which is a dual device. Thus output
MPLX1 is a multiplexed version of the binary weighted 1 input lines
Dl , Cl , Bl and Al. Similarly, MPLX2 is a multiplexed version of
the binary weighted 2 input lines of D2, C2 and B2; note that the
unused input is taken to OV. MPLX4 is similar for the binary

181

weighted 4 input lines of D4 and C4, with the two unused inputs
again being tied to OV. By applying a moving counter to the A and
B select inputs of both devices, on lines SCA and SCB, the
multiplexer scans each line in turn, where the binary value of the
input lines SCA and SCB establishes which line is sampled. It may
be seen that the following applies:

Input count (equiv. decimal) 0 selects line A.
Input count (equiv. decimal) 1 selects line B.
Input count (equiv. decimal) 2 selects line C.
Input count (equiv. decimal) 3 selects line D.

It can be seen that for a given line selection made by the
multiplexer, the NAND gates of IC20 apply the priority selection
requirement to the selected line. For example, say PS2 is true; when
the multiplexer selects a line which produces MPLX2 true, PMX2
goes low, indicating that a suitable line has been found (i.e. 2 is the
highest odd bit, and the line selected by the multiplexer contains an
odd binary weighted 2-bit). Gate IC22a is used an an inverted input
OR gate, which after inversion by IC23d produces a signal LINE-
FOUND when a suitable line has been found*.

Since the HEDGE condition must overrule any other, this is given
the highest priority. When HEDGE is true, the machine is simply
looking for a line containing at least one illuminated LED, hence the
ZEROx inputs to the multiplexer in order to produce the MPLXZ
output. MPLXZ is combined with HEDGE to produce PMXH low
when a suitable line has been found in the HEDGE condition; as
with the other outputs from IC20, this results in LINEFOUND
going low.

It may be seen that if several line options are available after a
given move, the multiplexing system responds to the first acceptable
line that it scans. In order to introduce the required random element
into this selection, it is simply necessary to start the multiplexer at a
random count. How this is achieved is discussed later (F7).

The multiplexer chips are enabled when LINESCAN goes low,
thereby only allowing this circuitry to function during the LINE-
SCAN state.

A UTONIM state encoder (F4) Figure 19.13
State encoders were discussed in detail in Chapter 16, therefore this
account will assume complete familiarity with the principle in
volved. It was mentioned that two forms of state encoder are
* Refer back to Figure 19.3.

182

possible: those using a counter/decoder, and those using a shift
register. This design will employ a shift register in order to provide
an example of this alternative technique.

The circuit shown in F4 employs a 74LS195 4-bit shift register. In
order to prevent it entering an illegal condition at switch-on, it is
necessary to clear the register on power-on. The start of a new game
is similar to the power-on condition, therefore the circuitry for the
two states is combined. At power-on, capacitor Cj is discharged, and
charges slowly through Rx; the indicated values produce a time-
constant of 380 ms, which is approximately the length of time that
L O A D is asserted at switch-on. The N E W G A M E button is used to
short-circuit the capacitor, and causes LOAD to be asserted for as
long as the button is depressed. The CR combination also acts as
debounce circuitry for the N E W G A M E button. When LOAD is
true, SRLD goes low, to produce the input requirement for a load
operation at the shift register; a subsequent rising edge at the C K
input loads this synchronous shift register. LOAD true causes T R I P to
be true (after a short delay to be explained later); T R I P is ANDed
with a regular free-running clock pulse CK. For the duration of the
L O A D pulse, this repeatedly loads the shift register with the data set
up at the parallel inputs (A, B, C and D).

For simplicity, at this stage assume that the A input is a logic 1,
and that the other inputs are at logic 0. Thus QA goes to logic 1,
resulting in BUTSCAN going low, i.e. the BUTSCAN state is
entered. Inverted input O R gate IC43a is combined with input and
output inverters (to use up spare gates), so forming what amounts to
a four input N O R gate, with pin 4 5 - 4 going low if any button is
pressed, i.e. if any E N C K x input goes high. MACDEC is low during
the BUTSCAN mode, therefore PRESFIN can go high; during
M A C D E C , when an enable also goes high, the input on pin 44 -6
inhibits PRESFIN from going high. (Note that PRESFIN is so
named rather than PRESS, because its action when going low is used
to trip the state encoder at press-finish.)

Thus PRESFIN is high when a line button is pressed, which
causes PRESS to go go low at pin 26-10; as a result, pin 29-11 goes
low, causing C H G S T A T E to go true. T R I P goes true after the delay
set up by the 470 Ω resistor and the 0.22 μ¥ capacitor, giving a
nominal 70 μβ delay. S T A T E C K goes high as soon as C K is high: if
C K is already high when T R I P goes high, S T A T E C K goes high at
once. It is for this reason that the delay exists, for it guarantees a
predetermined delay between a finish line going low (e.g. PRESS),
and a change of state at the state encoder, and thereby prevents
spike outputs from the state strobes (see general discussion of state
encoders in Chapter 16).

183

It will be explained later why TRIP is gated with CK (in the
discussion on F8); similarly, the purpose of gates IC30b and IC26a
will be discussed when appropriate (also during the F8 discussion).
This illusrates an important point. Such subtleties are not obvious at
this stage, but come out as a later requirement. It is not possible to
design all the control circuitry until the major part of the design is
known.

Thus there is a four-stage state encoder, which starts with QA
true, and shifts a logic 1 one bit at a time for each change of state.
This gives the required sequence of states: BUTSGAN, MANDEC,
LINESCAN and MACDEC. When the MACDEC state is termin
ated by CSAFE going low, the state strobe MACFIN goes low; this
is input at pin 30-13, causing SRLD to go low. When STATECK
subsequently occurs, it causes a load, which sets up the initial
condition again, thereby reverting to the BUTSCAN state.

It may be recalled that it is required that the machine can be
played in a manual mode, i.e. man versus man. The selection of this
mode (in F7), causes MAN to be low; this is combined with the state
strobe MANFIN to generate SHORTEN, and also a shift by means
of taking SRLD low. Looking back at Figure 19.3 for a moment, this
has the effect of returning control along the dotted line to BUTS
CAN, i.e. it prevents the states of LINESCAN and MACDEC being
entered, and thereby prevents the machine from making a reply.

The NAND gate IC21c is used to generate a clear pulse to the
shift register on the front edge of LOAD (compare with Figure
15.5*). This is simply a safety-measure which cancels any states
prior to the initial setting-up of the BUTSCAN state; the setting-up
for a new game has to wait for CK going high, and CK is a fairly
slow running clock.

Autonim clock generators (F5) Figure 19.14
The circuit shown in F5 produces two different clocking sources: a
high frequency clock HFCK, and a low frequency clock LFCK.
Both are formed from 555 timers, followed by a wave-shaping
Schmitt trigger gate. The period of the HFCK generator is set by 0.7
X 3ΜΩ X 2.2 nF, i.e. 4.6 ms. The period of the LFCK generator is
set by 0.7 X 300kQ X 5μΓ, i.e. Is.

There is the need to slow the HFCK down to a really slow rate
during the LINESCAN state (discussed under F7), therefore
LINESCAN is fed to a non-inverting open-collector buffer gate
IC13b, to introduce a 2.2 μ¥ capacitor in parallel with the 2.2 nF
capacitor during LINESCAN. This increases the time-constant to
4.6s.
* See page 129.

184

LFCK is used to clock the line counters in Fl , but must only do
this during MANDEC and MAGDEG states; gate IC21b ensures
this, since DEC is only true for one of these conditions, and DEC
must be true to enable LFCK. The CK signal is used for other
purposes and must therefore be separate to LFCK.

AUTONIMfalse-safe hedge logic (F6) Figure 19.15

If F3 is referred back to for a moment, it will be seen that SAFE is
low for a safe condition of the NIM game. The controlled safe output
from F6 CSAFE is the signal which actually terminates the MAC-
DEC state. The logic of F6 is designed to introduce a false-safe
condition for one move when the machine is faced with the 'hedge'
situation. In this condition it does not 'want' to move, since a move
makes the position unsafe. The logic Tools it' into thinking that the
position is safe for one move, thereby causing one LED to be taken.
It depends upon a latch formed by gates IC33a and IC33b.

If HEDGE is true during the LINESCAN state - as detected by
IC21d - this gives warning that a false-safe condition is coming up;
this condition is used to set the NAND-gate latch, causing SETFAL
to go high. During normal play, with SETFAL low, TSAFE
(true-safe) follows the SAFE input, but with SETFAL high, it is
inhibited, forcing TSAFE high. When the MACDEC state is
entered, the next LFCK pulse causes FSAFE (false-safe) to go low,
but since the presence of LFCK high means that a line counter has
been decremented (on the rising-edge of LFCK), it is now possible
to assert CSAFE to end the MACDEC state. So long as the latch is
reset before this condition can occur again, all is well. It is
conveniently reset by the subsequent BUTSCAN signal.

AUTONIM line scanner and machine skill scanner (F7) Figure 19.16

It will be remembered that it is required to introduce a random
element into the line multiplexer (F3). This is achieved by the line
scanner shown as the upper part of F7. The dual 2-to-4 line decoder
(IC36), a 74LS155, is driven from the same binary counter that
drives the line multiplexer, i.e. 4-bit synchronous counter IC35. The
counter is clocked by HFCK at about 217 Hz except during the
MACDEC state. This frequency is halved by the first stage of the
counter, before clocking the two stages which provide the SCA and
SGB outputs. This association with SCA/SCB provides synchron
isation between line multiplexer and scanner.

The upper half of IC36 is used to generate the button enable lines
SKA to SKD, whilst the lower half is used to generate the machine

185

enable lines SLA to SLD. The combination of enable (G) inputs and
data inputs to each decoder, allows it to be controlled directly from
available signals, without additional gating. Control is arranged
such that one line in the functioning half of the dual decoder goes
low for a given binary input at the A and B terminals.

During BUTSCAN, LINESCAN is high and MACDEC is low,
enabling the upper decoder. IC38 is a 4-bit bistable latch of the
variety previously shown in Figure 6.3, i.e. it is transparent when the
enable input is high. Since M A N D E C is high during BUTSCAN,
the latch is transparent, and the outputs follow the inputs; thus the
lines SKA to SKD are enabled in turn according to the binary input
(e.g. binary 2 in causes SKC to be active). When a line button is
pressed the state changes to MANDEC, therefore MANDEC goes
low and staticises the present condition of the quad latch. This locks
the present button enable line to the pressed button, with two
effects: firstly it means that if any other line button is depressed it
will disregard it, and secondly, it allows the line scanner to continue
scanning. The latter action introduces the required random aspect,
for this scanning action continues for as long as a line button is
depressed. Since the scanning frequency is much higher than human
responses with respect to releasing buttons, it is purely random
where the scanner might be when the line button is finally released.

When the LINESCAN state is entered, the upper decoder is
disabled by LINESCAN going low. The machine then searches for a
suitable line, starting its scan with a random line according to the
present state of the scanner. When a suitable line has been found,
the M A C D E C state is entered. In this state, the upper decoder is
disabled by the M A C D E C input going high; at the same time
M A C D E C goes low to enable the lower decoder, and hence the
appropriate machine line selection from SLA to SLD.

It was previously mentioned that the H F C K frequency is drasti-
cally reduced during the LINESCAN state due to the effects of
LINESCAN via IC13b (see F5). This is to simulate a variable
'thinking response' when it is the machine's move; there is nothing
more frustrating than playing against a machine which gives
apparently instant replies to your own well thought out moves. Since
the line scanner starts at a random position during LINESCAN, it
passes through a random number of scans before finding a suitable
line (with a maximum of four). By making this scanning speed slow,
a variable time of response is introduced.

Note that two flip-flops could be used in place of the counter as
IC35, but this would still utilise one IC requiring more interconnect
ions, therefore there is no particular advantage.

The lower half of F7 is the machine skill scanner. This also utilises

186

the random effect created by the line scanner running during
manual depression of a line button, but is provided with its own
discrete binary counter, IC39. This time three bits are required, and
the decade counter provides sufficient output states. This counter is
driven by the high frequency HFGK signal, providing that the
machine is not in the LINESCAN state; this condition is detected by
gate IC34c. Once the machine enters LINESCAN the counter is
frozen. The decoder used this time (IC40) is similar to that used
above (IC36), except that it has open-circuit outputs. This allows
the outputs to be wired together (wire-OR) to a common pull-up
resistor, this multiple output then providing the MISTAKE signal.
Thus if the decoder is stopped with a low output linked to pole A of
the skill select switch, a mistake is called for, otherwise an optimum
move is made by the machine (MISTAKE is an input to the priority
encoder in F3).

The skill switch is wired to provide the following average percentage
errors according to selection:

expert
good
average -
poor
child

- none
- 10%
- 20%
- 30%
- 40%

This is achieved by a rather novel method, using the decade
counter/decoder combination, as the following table shows. Note
that the decoder decodes two particular outputs twice*] thus each
output decoded once provides a 10% error rate (on average), whilst
those decoded twice provide a 20% error rate. It is possible to
conveniently talk directly in terms of percent because a decade counter
is being used. Parallel linking of the required number of outputs
provides the requisite error rate, e.g. 30% is achieved for the poor
selection by linking three 10% error rate outputs together and
taking them to contact 2 of the switch.

Because the manual condition obviates a machine skill setting, it is

Decoder output
2Y0
2Y1
2Y2
2Y3
1Y0
1Y1
1Y2
1Y3

Counts decoded
0 & 8
1 & 9

2
3
4
5
6
7

Error rate
20%
20%
10%
10%
10%
10%
10%
10%

* Because QD on decade counter IC39 is not used.

187

built into the same switch, and another pole provides the MAN
output for this setting.

Remember this as a useful way of introducing a random element
into a circuit, for wherever a manual input is used, if this is
combined with a fast oscillator circuit, it can be used to generate
genuine random selections.

A UTONIM move indicator logic and audio stage (F8) Figure 19.17

The upper half of the circuit shown in F8 provides the front panel
PLAY LED indicator drive for I /YOU, and the WIN indicator
drive. It also remembers which player starts, and controls play such
that the other player starts the following game. This introduces an
element of fairness into a game which can be won on a purely
theoretical basis. Flip-flop IC42b_provides the indication of PLAY,
and its complementary Q and Q outputs drive the I and YOU
LEDs. During normal play, END is high, thus the two XOR gates
IC14d and IC15d are normally inverting. A dual AND-OR-
INVERT gate IG41 controls this flip-flop.

The upper AND-OR-INVERT controls the D input of the PLAY
indicator flip-flop. During normal play - with LOAD high - the
upper AND gate is enabled, thereby allowing the flip-flop Q output
to be fed back to the D input after inversion; this causes the flip-flop
to be complemented at each clock pulse, which occurs during the
manual mode at a pulse MANTOG. As soon as a line button has
been released during the MAN mode, MANDEC goes high, which
via the lower A N D gate, causes MANTOG to go high, thereby
toggling the play flip-flop.

Flip-flop IC42a 'remembers' the last player to start a game, and is
clocked by LOAD, i.e. at the end of a load; this flip-flop is connected
to toggle every time it is clocked. During load, the upper AND gate
is disabled by LOAD going low, and the D input of the play flip-flop
is then set by the Q output of the last starter flip-flop, due to LOAD
going high at pin 41—11. Under these circumstances the play
flip-flop is again clocked by MANTOG, but this time due to
LOAD.STATECK; hence the previously mentioned delay during
load.

When the machine is not operating in the manual mode, there
must be a definite relationship between the PLAY indicator flip-flop
and the state encoder. Further complication at the clocking input
and D input is avoided, and the required synchronisation is
guaranteed by using the preset and clear inputs in this mode. When
the flip-flop is set (i.e. Q = 1), MACGO is high and MANGO is
low, indicating man's go; thus only the YOU LED is illuminated

188

(remember that the XOR gates are acting as inverters). The
flip-flop is set externally via the preset input, pin 42-10, i.e.
STRTMAN goes low. Gate IC28d detects the right condition:
BUTSCAN and MAN must both be low. Conversely, the flip-flop is
cleared down to the MACGO = 0 state by taking STRTMAC low;
this is the case when both LINESCAN and MAN are low.

When the game is over, all the ZERO latches in Fl are set. IC43b
detects this condition and outputs END low; this causes the XOR
gates driving the PLAY LEDs to become non-inverting. After the
final winning move, the PLAY flip-flop is complemented to indicate
the next player: in this case the loser. By reversing the action of the
XOR gates, the indicators now indicate the winner. END is
NANDed with CK by IC33c, and the output is used to drive the
WIN LED via an emitter follower; this LED is conveniently
powered from the +5V rail. This causes the WIN LED to flash on
and off at the low frequency clocking rate until a new game is called
for.

It will be remembered that there is a slight complication to the A
and B parallel inputs of the state encoder (see F4). This is to 'nudge'
the state encoder out of the BUTSCAN condition when it is the
machine's turn to start a game. Thus LOAD. MAN. NMAC is the
condition used to preset the MANDEC state during a load (NMAC
indicates next-machine, and is obtained from IC42a in F8). Since
PRESFIN is low in this condition, the state encoder at once moves
on to the LINESCAN state, and hence the machine is forced to
make the first move. Under all other conditions the parallel inputs to
the state encoder are A = 1 and B = 0, as previously assumed.

The audio portion of F8 is required to provide a tone as each LED
is extinguished, and different tones for each player. It is also
required to provide a distinctive indication when a win occurs, but
this is to be limited in time to prevent it being annoying. These
requirements are met by the lower portion of F8.

A counter, IC46, is held inoperative during normal play by END
being low on the clear input; thus the QD output is low, giving
INSD (inhibit sound) low. If CKSD (clock sound) is also low,
GCKSD (gated clock sound) is high, thereby enabling the 555 timer
IC47, connected as an oscillator. This circuit is similar to the audio
stage described in the previous chapter, and further details of the
principle are to be found there. MACGO is coupled through a
non-inverting open-collector buffer gate IC13f to introduce a 2nF
capacitor in parallel with the normal lOnF capacitor when it is the
machine's go (or the player taking the machine's place during
manual play). This changes the tone of the oscillator during the
machine's go, hence providing two tones.

189

At the end of play, END is gated with the output from a flip-flop
at IC33d; when the flip-flop Q output (pin 9-9) is high, a p-n-p
transistor is driven on via a lOOkQ base resistance, thereby linking a
10kQ resistor in parallel with the normal 47 kQ resistor of the 555
timer circuit; this provides yet another change of tone for the win
condition. The output WINCK from pin 33-8 is at the slow clocking
rate, but only occurs after a win. This is used to toggle a win flip-flop
(IC9b), which alternately switches the transistor on and off, thereby
providing a two-tone effect for a win. Because END goes high, the
counter (IC46) is released to count, and the count takes INSD high,
this inhibits GCKSD, forcing it low, and thereby cutting off the
audio as required after a set number of clock pulses. The QD output
provides the longest win tones, but by taking INSD from an earlier
counter output, the duration of the win tones can be shortened.

One complication is introduced due to the sound requirement: the
synchronisation of the tones with the removal of LEDs during play.
To avoid confusion, the tone should not occur before a particular
LED is extinguished, and since the state encoder changes as soon as
a player's move is completed, this must not cause the immediate
'stunting' of a tone. Figure 19.9 depicts a timing diagram, showing

\
BUTSCAN J

CK Γ 1 1 1 1
PRESS " | |

70 ßs-*4 K - 70 ps - H M—
CHGSTATE f l Π

70 MS ~ H f h * ~ 7° MS ~ * ih *~
STATECK Π Π

MANDEC

LFCK

1
1 I

J

♦
Decrement
counter

CKSD | S o u nd |

sr n B — Pressed Released

/

f

^~\

70 μβ-*»

7 0 MS-

«1
1 1 I

1 1
Π 1
- ^ l·«- 70

Π

ΓΊ
Π

π r
1 1

Decrement
counter

Release

\

| Sound |

Pressed Released

Figure 19.9. Timing diagram showing the relationship between the state encoder
and the audio output when decrementing the line counter

how these requirements are met. It is dependent upon the correct
timing control of the state encoder in relation to the clocking of the
line counters. The left and right-hand portions of the timing
diagram show two different situations which may occur with respect

190

to the timing of button depression and the free-running CK
waveform.

Considering the left-hand side of the timing diagram first, a line
button is pressed when CK is high, thus STATECK occurs 70 μβ
later, due to the delayed TRIP signal (see F4). Note that LFCK is
the inverse of CK when MANDEC is low (see F5). The LED is
extinguished on the leading-edge of LFCK - since this is when the
line counter is decremented - and CKSD goes low whilst LFCK is
high (see gate IC44d in F8). Thus the tone sounds from the LED
going out, for the duration of half a CK period. Only one decrement
is shown, but several could occur.

The right-hand side of the timing diagram shows two different
situations. The line button is depressed when CK is low, therefore
MANDEC does not oqcur until CK goes high (see F4). This timing
diagram also shows the situation where the line button is released
before a half clock period of CK has terminated. Since CK must go
high to clock the next state at the state encoder, the sound is not cut
short, and MANDEC does not terminate until the end of the half
clock period. This illustrates how important timing can be in a logic
circuit, and how difficulties can be overcome by judicious use of
particular edges of waveforms.

A design as complicated as this warrants the drawing of other
timing diagrams, but space does not permit their inclusion here. The
reader may care to tackle this problem for himself if any areas puzzle
him!

Pinning-out

The next stage after completing the logic design to your complete
satisfaction is to pin-out the devices, i.e. to allocate IC numbers. This
leads up to possible modifications for optimisation reasons. The
suggested method is to use what I have termed an 'IC Usage' table.
Since any given device has a maximum of six elements within it (e.g.
hex inverter), a good method is to tabulate each gate/element as it is
assigned. Once this has been completed, spare gates are readily
identified, and optimisation may take place. If the design is divided
into identifiable functional areas as this example has been (i.e.
F1-F8), then rather than simply ticking off used elements, it is
helpful to indicate where they are located by indicating an 'F'
number, as shown in the following table. Go through the various
functional areas in a fixed and sensible sequence, and for each new
gate or element, look to see if an IC already listed has a suitable
spare, and use it if so. In this way the number of devices can be
optimised.

191

IC usage table for the Autonim circuit

ICRef.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

a

2
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
5
5
6
6
7
7
4
7
7
7
8
8
4
8
8
8
8

b

1
1
1

1
1
8

5
2
2
2
2
3
3
3
5
4
3

4
4
6
4
4

6
7

8
8
4
4

c

1
1
1

1
3
-

8
2
2
2
2
4
3
3
4
-
3

4
5
8
4
6

8
7

-
-
8
4

</

1
1
1

1
4
-

8
8
8
2
2
5
-
3
6
-
3

4
5
8
4
-

8
8

-
-
8
4

' /

— r~
-
- -

- -
-
-

8 8
- -
-
-
-
-
-
-
-
-
4 4

4 5
8 8
-
-
-

-
-

-
-
-
4 4

Description

2i/pOR
2 i/p Schmitt
2i/pAND
Up/dn bin ctr
Up/dn bin ctr
Up/dn bin ctr
2 i/p NOR
2 i/p NOR
DualDf/f
4—» 10deco/c
4—» 10deco/c
4—* 10deco/c
6 X buf driver
2i/pXOR
2 i/p XOR
2 i/p AND
2 i/p AND
2 i/p AND
3 i/p NOR
2 i/p NAND
2 i/p NAND
4 i/p NAND
6 X inverter
4-> 1 MPX
4-> 1 MPX
6 X inverter
6 X Schmitt
2 i/p OR
2 i/p OR
3 i/p NAND
555 timer
555 timer
2 i/p NAND
2 i/p NAND
4-bit sync ctr
2 —> 4 decoder
4-bit shift reg
4-bit B/S latch
4-bit sync ctr
2 —> 4 decoder o/c

Used

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

AND-OR-INVERTV
Dual D f/f
4 i/p NAND
2 i/p NOR
6 X inverter
bin ctr
555 timer

V
V
V
V
V
V

Type

74LS32
74LS132
74LS08
74LS191
74LS191
74LS191
74LS02
74LS02
74LS74
7445
7445
7445
7407
74LS86
74LS86
74LS08
74LS08
74LS08
74LS27
74LS00
74LS00
74LS20
74LS04
74LS153
74LS153
74LS04
74LS14
74LS32
74LS32
74LS10
NE555
NE555
74LS00
74LS00
74LS160
74LS155
74LS195
74LS75
74LS160
74LS156
74LS51
74LS74
74LS20
74LS02
74LS04
74LS197
NE555

Taking a single example from the table, it may be seen that IC15
is a quad XOR gate, and that gates IC15a, IC15b and IC15c are to
be found on F2, and gate IC15d on F8; the type number is 74LS86.

The 'Used' column of the table is ticked off during compilation as
soon as all the gates or elements ofthat IC have all been used. This
column then provides a constant check of ICs containing 'spares'.
This particular table corresponds to the circuit as finally drawn up,
and it will be seen that there are no spare gates or elements anywhere. The
first table to be drawn up did contain a few spare gates, highlighted
by the absence of ticks in the 'Used' column. Subsequent small
modifications fully utilised devices with spare gates and freed certain
others, resulting in the satisfactory solution with no spare gates.
Clearly this cannot always be expected. Note that the judicious use
of a transistor driver for the WIN LED obviated the need for a
further 7407 buffer driver, as used to drive the PLAY indicator
LEDs; had this option been taken, there would have been an extra
IC used containing five spare gates.

Calculating power supply current

The power supply cannot be finalised until this stage. Only now can
the required current be calculated. For a design this complicated, it
is recommended that what I have termed an 'IC Technical Detail'
table be used. This not only forms the basis for the power supply
current calculation, but serves as a components list, power supply
pin indicator, and allows the design to be cos ted. These factors are
very conveniently combined, and the table becomes an invaluable
source of reference to go with the design. All ICs of a given type
number are now grouped together. The average and maximum
supply current can be obtained from Appendix B at the rear of this
book. The cost columns have been left blank, since this obviously
depends upon supplier and current circumstances.

It may be seen from the table that the total average current drawn
from the + 5V supply is likely to be 423mA, with a maximum of
751 mA. Since it is virtually impossible for all the ICs to be drawing
maximum current at once, the maximum figure is never likely to be
approached, but it is handy to have the figure in mind when
designing the power supply.

In addition, the lamp supply must not be forgotten. This must
supply three chains of LEDs. If these are driven at a forward current
of say 20 mA for good visibility, this will require 3 X 20 mA =
60mA, due to the series arrangement shown in Fl . The load
resistors for these LEDs must vary according to the number of LEDs

193

IC technical details table for the Autonim circuit

Type No. IC Refs. Power pins Qty. Unit I (mA) Totl(mA) Unit Total
, cost cost

+ 5V OV av max av max (p) (£)

74LS32 1,28,29
74LS132 2
74LS08
74LS191
74LS02
74LS74
7445
7407
74LS86
74LS27
74LS00
74LS20
74LS04

3, 16, 17, 18
4,5,6
7,8,44
9,42
10,11, 12
13
14, 15
19
20,21,33,34
22,43
23, 26, 45

74LS153 24,25
74LS14
74LS10
NE555

27
30
31,32,47

74LS160 35,39
74LS155 36
74LS195 37
74LS75 38
74LS156 40
74LS51 41
74LS197 46

14
14
14
16
14
14
16
14
14
14
14
14
14
16
14
14
8

16
16
16
5

16
14
14

7
7
7
8
7
7
8
7
7
7
7
7
7
8
7
7
1
8
8
8

12
8
7
7

3
1
4
3
3
2
3
1
2
1
4
2
3
2
1
1
3
2
1
1
1
1
1
1

4
7
5

20
2
4

43
20
6
3
2
1
6
6

10
0.5
3

19
6

14
6
6
1

16

10
14
9

35
5.5
8

70
40
10
7
4
2

10
10
21

1
6

32
10
21
12
10
3

27

12
7

20
60
6
8

129
20
12
3
8
2

18
12
10
0.5
9

38
6

14
6
6
1

16

30
14
36

105
16
16

210
40
20
7

16
4

30
20
21

1
18
64
10
21
12
10
3

27

Totals 47 - - 423 751 - £

in the chain, for the resistor acts as ballast, and must drop the
remaining volts. The resistor values will be calculated after the lamp
supply voltage has been established.

Designing the power supply (F9)

Clearly the +5V requirement can be easily met by a 5V regulator
chip such as the μΑ7805Ο, which will supply up to 1 A. The circuit
shown in F9 is the arrangement settled upon. Transformers usually
come with two secondaries the same, and since two separate d.c.
supplies are required, this must be taken into account. A bridge
rectifier circuit produces just less than 1.4 times the a.c. voltage fed
into it. The IC regulator requires at least 3 V dropped between input

194

and output terminals, therefore the voltage fed to the I terminal
must be greater than + 8V. This calls for a 9V secondary winding,
giving a nominal d.c. voltage after smoothing of around + 12V.

The second secondary winding of the transformer is linked in
series with the first, providing an 18 V a.c. signal. It is only possible
to single-wave rectify this supply, for anything else will short-circuit
the lower bridge rectifier. This leads to the rather unusual arrange
ment shown, where the return path for the rectified + 24V supply is
via the lower left-hand diode of the bridge rectifier to the lower 0 V;
this is quite acceptable, since all that this means is an extra 60 mA
through that limb of the bridge, and a slight drop in voltage due to
the extra series diode. Single-wave rectification also provides just
under 1.4 times the a.c. voltage, hence the nominal +24V from the
18 V a.c. input. Single-wave rectification will contain a fair amount
of ripple, but since this supply only drives LEDs, this is of little
consequence.

Smoothing capacitors are chosen as large in capacitance value as
possible, bearing in mind that excessive capacitance means excess
ive size and cost. The 0.1 μΡ ceramic capacitors must be distributed
around the circuit board to decouple the +5 V rail at suitable points.

The transformer Tl must have a VA capability of say 12 V X 0.5
A = 6VA for the 5 V supply. The secondary winding of the
transformer used for the 24 V supply will have a similar rating
automatically, leading to a 12VA transformer; note that the actual
requirement for the lamp supply is a mere 24 V X 0.06 A = 1.44
VA.*

Calculating the LED load resistor values

If the lamp supply is + 24V, we can now calculate the resistors
shown RA to RG in Fl . Allowing for 2 V dropped by each diode, the
following results are obtained, assuming a diode current of 20 mA:

esistor
RA
RB
Re
RD
RE
RF
RG

No. of LEDs
1
2
3
4
5
6
7

Voltage '■ across
2V
4V
6V
8V

10V
12V
14V

LEDs ^res
22 V
20 V
18V
16V
14V
12V
10V

Suitable resistor
l . l k Q
l.OkQ
820 Ω
820 Ω
680 Ω
560 Ω
470 Ω

* The designer capable of designing a more efficient power supply using discrete components can get
away with two 6 V windings, and a lamp supply of around +16V; such a design has a bndge
rectifier voltage of only 7to8V, which is sufficient for a+5 V supply if an IC regulator is not used.
This can result in a 7VA transformer, which is considerably smaller.

195

The resistor values are rounded up or down to the nearest
preferred value. The slight change in current that this causes will
not be noticed in terms of LED illumination.

Bui ld and test

The next stage in a conventional project is to build a prototype and
to test it. The power supply should be tested on its own before
connecting the logic circuitry, suitably loaded with a resistor/s: IGs
are expensive to blow up, and a lot of trouble to remove!

It is worth thinking about 'functional build and test' in a
complicated design, for this method can simplify commissioning. An
example of this might help with the A U T O N I M .

Let us consider the building and testing of the portion of circuitry
shown in F l , i.e. the display portion of the game. For ease of testing,
it is sensible to also build the load logic from F4, and the low
frequency clock portion of F5. It is then necessary to make a few
temporary connections to replace missing signals. Pin 21-4 or pin
21-5 should be tied to OV to force DEC true, thereby enabling the
L F C K waveform (see F5). (In addition, pins 2, 5, 10 and 13 of IC1
should also be tied to 0 V to replace the missing signals S K D - S K A .
In this condition, the N E W G A M E button will initialise the display
circuitry of F l , and all the line selection buttons should operate.
Depression of any line button should cause that line to decrement to
zero, but not beyond. N E W G A M E should cause all the LEDs to be
illuminated again.

Some other more general steps which can be taken to assist
troubleshooting in such a circuit are as follows. The W I N LED can
be used very effectively as a general purpose logic level indicator.
Simply connect the LED to its transistor drive, and then use a probe
connected to the transistor base, instead of linking the base to pin
33 -8 . The LED is then illuminated for a logic 0, or extinguished for
a logic 1 or open-circuit. Investigations around the circuit can be
greatly simplified by reducing the clocking rates. The H F C K can be
very readily reduced to its slow time-constant by simply linking pin
13-3 to 0 V instead of to the LINESCAN input; this permanently
connects in the 2.2 μΓ capacitor. The LFCK should be slow enough
for most purposes, in any case. Connecting pin 30 -3 temporarily to
0 V prevents the state encoder from initially being set for a machine
start of play in a new game.

Many such tricks can be performed to force particular conditions
for test purposes, and these should not be overlooked when faced

196

with a complex circuit containing possible wiring errors. Open-
circuiting inputs causes a temporary high at the given inputs
without the need of tying the input high, but gate inputs should only
be left open-circuit for test purposes.

The final piece of advice, if all else fails to locate the reason for a
particularly strange phenomenon, draw timing diagrams for rele
vant signals. This will generally reveal the reason, and should help
in determining a solution.

Final comment

This design is not easy for the novice to understand, but it does
represent a complete and tested design. As such, it is an ideal
proving ground for the novice. It is expected that the reader will
need to read this chapter perhaps several times before the design is
completely understood, but the explanation, backed by the rest of
the book, is sufficient material for him to come to a full understand
ing, if he is prepared to work at it. Certainly it is impossible to
become a competent designer unless you are prepared to face the
necessary application. The va^rt fight of reaching complete under
standing will teach more than any of the preceding chapters could
on their own.

Fight on until you completely understand this design. This means
an appreciation of why every component is used; of why each and every
signal is required. Perseverance can only be rewarded by success,
and when that success has been achieved, then you may celebrate!
You are then ready to tackle your own small design project. My only
advice is to make it easy on yourself the first time round. Make it the
rule that you will not attempt to use more than ten integrated circuits
in your first design. Draw full timing diagrams, and then build and
test. Where you go from there is up to you!

Exercises

The AUTONIM can be used as the basis of further work. A few
ideas for modifications to the design are listed after the circuit
diagrams (see page 204). Thinking about these can be rewarding,
but it is regretted that readers' solutions cannot be commented
upon.

197

IC Ia 5-

- « π ^ ΐ Λ ^

EROB X~~"^Ν.8 -°-

Figure 19.10. AUTONIM display logic (Fl)

198

CTRD4-

CTRC4"

CTRD2

CTRC2

CTRB2——f.

i IC 14a o

ü

IC16a

2 I)—-* -D4

IC16b O1̂

IC16d o

Figure 19.11. AUTONIM position analyser (F2)

199

ZEROD

ZEROC

ZEROB

ZERO A'

LINESCAN "

Figure 19.12. AUTONIM priority encoder and line multiplexer (F3)

200

LOAD-C
4 7 0 " - ^ - 0 . 0 2 MF

ΠΤΠ
c QC

C37

13j 3 lXj J4\ S jC29b l_Q lcz2b
- M y ° — · — π + Λ 10Ι NCHGSTATE icsd

IC26b UNEFÖU-ND—ILL/6 Γ7Ϊ3 t)0 7^ "^N!?
"fsL" I " " " I Γ^ R r-^MANDEC M3I ^ 8 L0AD_J y^"] pi>is ^ M ^ 1 ^-^

t ^ R 1—*-BUTSCAN

Figure 19.13. AUTONIM state encoder (F4)

LINESCAN-H Ĵ f 2 2 nF I .ÖO
Figure 19.14. AUTONIM clock generators (F5)

201

IC33a SAFE .

Figure 19.15. AUTONIM false-safe hedge logic (F6)

IC34b

—ιΓΛι
CDECyj J

I 1 1 J ck I CK
C|CL
C|LDQB|

QC
EN(PM

|EN(T)

3=
LINESCAN

13 _ 13

1—»-sc
SCA

SCB
IC35

Row
scanner

S1G
D I C _ _

15 |

DD2C2 YJ
S2G I

IC38

7

,11
EN EN

1-2 3-4]
4D 4Q]

3D 3Q

2D 2Q

1D 1Q

»SKD

►"SKC

► SKB

«►SKA

-►SLC

- * - " S L E T

IC34c

HFCK-^j " \ 8

m ΓΛ
LINESCAN I S 2 I

S" CK .
LQAJ
D Q 8

, - N Q C

Binary
weight

Jii L - q

Machine skill
scanner

. 5 Average
1Y2|Q m Q3

ΕΓ
|D1C

D2C2Y2I

2 1 I IU I
|—-C|S1G 2YllO—j

J-012
\/7TT7

on
10<

9 0

8 0

7 0

i-+5V

—►MISTAKE

Player A
select
(machine skill)

Figure 19.16. AUTONIM line scanner and machine skill scanner (F7)

202

Figure 19.17. AUTONIM move indicator logic and audio stage (F8)

ι | l·
-W-

100μΡ(
63V '

50PIV
1A reg.

680 MF
25V

fftn

Figure 19.18. AUTONIM power supply (F9)

22 MF
16V

0.1 μΡ ceram.
(x6)

-L^

1. Find and eliminate a redundant gate in the audio logic.
2. Design an interface to allow an external display and control panel

to be used in place of the normal control panel. This should
duplicate all controls, but should be separately powered. Ensure
that the interface lines represent the minimum number of lines.
The purpose is to provide larger and brighter displays.

3. If a line selection button is very quickly depressed and then
released, the machine takes this to be a move, although there has
been insufficient time for the appropriate line counter to decre
ment. Modify the circuit to prevent this. (Not included in the
original design because it adds to the complexity.)

4. Modify the circuitry to give an apparently instant reset when the
N E W G A M E button is pressed.

5. Modify the design to prevent the possibility of the machine taking
only one LED from a line when there is only one line left in the
game; this can presently occur on low skill settings. This is a
worthwhile improvement as it then more nearly simulates a real
player who should not miss the obvious; it does, of course, add to
the complexity of the circuit.

6. Redesign the control logic to use a counter and decoder in place
of the present shift register.

Alternatively, if all this seems a little too daunting, why not try to
design an electronic die* using only logic ICs and LEDs ?

* N.B. 'Dice' is the plural of 'die'.

204

Part 3 — Microprocessors

A computer provides the most efficient means of
compounding the errors of its programmer.

Author.

20
A 6800 microprocessing system

Once the designer is proficient in the design of ordinary logic - or
what can now be referred to as random logic - he will do well to at
least make himself familiar with the possibilities of microprocessors.
This last part of the book is aimed at doing just that, and of showing
that a microprocessor is no more than an extremely sophisticated
and versatile digital device.

A microprocessor - or M P U - is no more and no less than a
programmable digital device: the way it responds to particular inputs
and affects particular outputs with respect to time is totally prog
rammable by the user. The physical devices employed are termed
the hardware, and the variable program and associated data are
termed the software.

The microprocessor is the greatest advance in modern electronics,
for it puts real computing power into the size of a small chip, and at
a cost which is not a lot more than some complex LSI devices. The
only drawback is a human one: the need to understand it. There are
now countless microprocessors to choose from, ranging from 4-bits
and 8-bits up to 16-bits. Of these, 4-bit devices are used for fairly
simple control functions where cost is a significant factor (e.g.
vending machines). The most common microprocessors are 8-bit
devices, for these offer good computing ability, and are suitable for
most purposes. The 16-bit devices are rather more specialised, and
are more suited to complex arithmetic tasks and certain industrial
applications, or where an interface with a minicomputer is required.
This book therefore concentrates on 8-bit devices.

The most common 8-bit microprocessors are the 6800, 8080, Z80,
S C / M P (8060), and the 6502. These are the devices for which most
ready-made software is available. Of these, the 6800 and 8080 are
the two most commonly used in industry, for there are several
manufacturers offering equivalent devices, and these therefore
assure ' twitchy' manufacturers that there is always a 'second source'
of supply if their favourite chip manufacturer decides to throw in the
towel. Once again, it follows that there is more available software
and expertise with these two devices (and their variants in the 6800
and 8080 series) than there is with any other.

207

The most popular devices for industry need not be the most
popular choice for the amateur, since suitability and cost are then
more important than second sources. For example, the RCA
COSMAC microprocessor has a lot of advantages to offer the
experienced random logic designer, and for this reason, is covered in
more depth in following chapters.

Although there are numerous microprocessors to choose from,
they are all very similar in operation, even though they may differ
somewhat in specific architecture and facilities. Because of its
widespread use, the 6800 MPU will be considered in this chapter,
which discusses typical device architecture and the method of
executing instructions.

Microprocessor architecture
A microprocessor requires supporting devices in order to build up a
microprocessing system. Figure 20.1* shows the typical architecture
of a 6800 based system, although apart from the internal detail of the
MPU and the peripheral interface adaptor (PIA), it could be said to
represent just about any microprocessing system. Such a system
must comprise:

(a) A microprocessor, for computing and control purposes.
(b) Read only memory (ROM) containing the program instructions

(or code), and any permanent data (constants, etc.).
(c) Random access memory (RAM), for the temporary storage of

data.
(d) Input/output interface devices, allowing the microprocessing

system to interface with peripheral devices or random logic. The
PIA is a support chip available in the 6800 family to allow such
interfaces to be programmed as inputs or outputs.

The MPU

A block diagram of the 6800 microprocessor is shown in Figure 20.1.
The device is controlled by the block labelled 'instruction decoder &
system control'. Timing for all operations is provided by means of an
external clock oscillator, which generates the complementary timing
signals qp! and φ2. A control bus links the microprocessor control to
the control logic of the associated support chips.

Transfer of data within the microprocessor is by means of an
internal bus. This bus can output or receive data from the outside
world via the bidirectional data buffer. An address buffer is used to
* See page 212.

208

output a 16-bit address for use by support chips; remember that there
are only 8-bits of data. The remaining registers within the M P U are
as follows.

An instruction register (IR) is used to contain the 8-bit code
which represents the current instruction; this code informs the
control logic what function to perform. A program counter (PC)
holds the address of the next instruction to be executed. This means
that a particular 8-bit byte (or word) from memory (ROM) contains
the next instruction to be loaded into IR. Once an instruction has
been transferred to the IR (via the data bus), the PC is automatic
ally incremented to point to the next instruction (or instruction
byte).

All arithmetic and logic functions are performed by the arithmetic
and logic unit (ALU). Most M P U operations affect the content of
the condition code register (CCR). This comprises 6 bits which
signal - ox flag — certain information about the last operation (e.g.
negative result, overflow, etc.).

All M P U s contain some form of accumulator: the 6800 contains
two, known as ACC A and ACC B. Arithmetic/logic operations are
performed on two operands: one obtained from memory via the data
bus, and the other resident within the accumulator. The result of
such an operation is loaded into the accumulator; obviously this
overwrites the original contents of the accumulator.

Microprocessor programs frequently need to temporarily store
data in what is termed a stack. This stack is made to appear as a
last-in first-out (LIFO) memory. Imagine a stack of papers dropped
one by one into a wire tray. If they are taken out one by one, they
come out in the reverse order, i.e. last-in first-out. This is exactly
what happens in a L I F O stack. A stack pointer (SP) contains the
address which represents the top of this stack. The stack is allocated
a portion of memory (RAM), and the SP moves up and down the
addresses within this area of memory such that it always points to
the current top of the stack. Simple instructions such as PUSH and
P U L L transfer a data word to or from the stack, respectively.

An index register (IX) is used to point to data within the memory,
and like the program counter, may be incremented after the transfer
of data; this enables a string of data words to be transferred with
ease. The index register within the 6800 M P U can be used to
provide an offset address within memory, which is a useful means of
shortening the length of address needed. Microprocessor systems
usually operate with up to 64 K bytes of memory, which requires 16
address bits (see Chapter 8, page 71). Eight address bits allow for up
to 256 addresses, therefore one 8-bit byte added to a 16-bit offset
within the I X can address a block of 256 addresses in one byte.

209

The use of offset addressing can be shown by a simple example.
Consider the following instruction:

ADD A 7, X

This instruction means: 'add into ACC A the contents of memory
location addressed by the index register offset by T.

The address registers previously mentioned (i.e. PC, SP and IX),
are sometimes referred to as memory pointers, because they point to
memory locations.

Memory

A microprocessor requires software if it is to operate. Software is
stored within memory, but the memory chips themselves are naturally
referred to as hardware.

There are various forms of memory, as follows:

ROM - Read-only memory, is factory programmed to contain
a permanent binary pattern at every address. Used
to contain proven MPU programs for medium and
large scale production.

PROM - Programmable read-only memory: is user programmed
ROM. Programming is usually by means of fusible
links, which are 'blown' by passing a high current
programming pulse directed to appropriate bits.
Each address must be programmed in turn, and
the results carefully checked. It is possible to
electrically copy one PROM from another, making
it suitable for small scale production, or amateur
use. Like ROM, once a particular address has
been programmed, it cannot be changed.

EPROM - Erasable programmable read only memory: is user prog
rammed ROM. Once again, a special program
ming procedure is required, but it is possible to
erase the program by exposing the EPROM device
to ultraviolet light for a set time period. EPROM is
now available quite cheaply, and its extra versatil
ity makes it an attractive alternative to convention
al PROM.

210

RAM - Random access memory: is usually volatile memory, as
opposed to the previously listed forms of non-volatile
memory. This means that RAM memory is prog
rammed/loaded electrically, by the microprocessor
itself, but the content of this memory is lost if the
power supply is removed. Such memory is used for
the temporary storage of data during normal prog
ram operation, and is essential for any M P U
system. R A M is also useful for testing small prog
rams.

Various types of R A M are available, the most commonly used
being known as static or dynamic. Static RAM will store data written
into it for as long as the power supply is maintained, without further
attention. Dynamic RAM, on the other hand, is of the type of
construction that requires constant refreshing in order to restore a
fading charge (as described in Chapter 14*). The extra complication
of dynamic RAM, plus the risk of losing data if a fault arises in the
clocking or refresh circuitry, means that many engineers prefer not
to use it; there are no such risks with static RAM. The particular
advantage of dynamic R A M is that it offers far greater storage
capacity for a given chip size, and can cost less in large memory
systems. Only experienced engineers should consider using dynamic
RAM.

Bubble memories offer large memory capacity and non-volatile RAM,
but they are expensive, and represent a new technology which only a
few manufacturers have got to grips with. Many manufacturers
consider it risky to use because of the supply situation, and certainly
costs make it prohibitive as far as the amateur is concerned. This
form of memory is non-volatile because it utilises magnetic 'bubbles'
which are circulated around a series of electrodes of minute dimen
sions. When power is removed, the bubbles simply stay where they
are until they get the order to 'march ' again.

Getting back to R A M in the microprocessing system, it is of no
significance what the actual type is, although it is fairly safe to
assume that static R A M is normally used. Limited facilities mean
that the amateur is generally forced to try out his programs by
manully entering them into RAM, using the M P U system itself. The
program must then be proven before the supply is disconnected, or
the program must be stored on some form of non-volatile media. A
cassette tape recorder provides the answer to this problem, hence

* Dynamic PMOS.

211

MP3
I Instruction

decoder &
system

I control

Address
| -^ output

buffer

]SzhH

Internal
bus

\-\ ACCA~|

|—| ACCB~|

Data
buffer

Address bus

K=M Control
logic

fc=tf Control
logic

ggSSSS* £3

^

Programming
word

Other
PIA's

Control
logic

C D

Control
.lines

fc=H

Data
lines y

Other PIA's

Random logic or
peripheral device

Figure 20.1. Typical architecture of a 6800 microprocessor
system

212

the usual need for a tape interface. Once a program has been
recorded onto tape, it can be reloaded into RAM from the tape
recorder. More ambitious microprocessor systems use floppy disc
storage - a floppy disc looks rather like a flexible record - but floppy
disc drives are rather expensive.

Figure 20.1 shows how memory devices are interconnected with
the microprocessor. The illustration shows ROM, but this general
term can be taken to equally apply to variants such as PROM or
EPROM. 'ROM' signifies memory which is read-only. Because it is
only possible to read ROM, it can only be used to contain program
instructions - or code — and fixed data. The arrows only show
data/code coming out of ROM, for this reason. Since RAM can be
used to store data, double arrows to the data bus show that data
may be written or read by the microprocessor. The MPU controls
all data transfers, and is the only source of addresses output onto the
address bus.

A typical transfer of data from memory involves sending out an
address on the address bus, which is recognised and accepted by
only one memory chip, due to internal address decoding logic. The
address points to only one 8-bit byte within that memory element,
and the contents of this byte are output onto the data bus, under
timing control from the MPU via the control bus. Data is received
by the MPU data buffer, and is loaded into the appropriate register
within the MPU via the internal bus: this is a memory read
operation.

A similar process is involved in writing data to memory, the only
difference being that data is routed out from the appropriate MPU
register via the internal bus, data buffer, and the external data bus.

The execution of an instruction

Figure 20.2 is provided to make this even clearer, for it is important
to understand this basic concept of how a microprocessor works.
Before referring to the figure, however, it must be understood that a
particular instruction may comprise a varying number of (8-bit)
bytes. Certain instructions comprise only one byte, but others are
longer. For example, if a memory address must be specified in
association with an instruction, it requires one additional byte to
specify an address offset relative to IX, or two additional bytes to
specify an absolute address: since 16 bits are required for a full address.
The figure to be discussed shows the case of a 3-byte instruction,
where the three bytes are contained in consecutive address locations

213

in a particular code block within the memory (it is unimportant what
the type of memory is).

Initially the program counter PC is pointing to the beginning of
the instruction; the circled numbers within the illustration indicate
the successive stages required for this instruction. Thus in stage 1,
the contents of PC are routed via the address bus to the memory,
and byte 1 of the instruction is transferred via the data bus to the
instruction decoder and the IR. Inherent in this code is information
telling the instruction decoder that a two-byte address follows.

Figure 20.2. Schematic showing the execution of an instruction and the related bus
transfers

Immediately after the first transfer has been made, the program
counter is incremented (to PC + 1) . Thus in stage 2, the PC points
at byte 2 of the instruction, which in this case happens to be the high
byte of the absolute address which locates required data, i.e. an
operand. Thus stage 2 transfers the most-significant 8-bits of the
data memory address into the high-byte portion of the MPU' s
internal address register, again via the data bus.

Once the high byte has been transferred, PC is again incremented
(to PC 4- 2). The address lines now select the third byte of the
instruction, which contains the low byte of the data memory
address; this is transferred via the data bus into the low byte of the
address register. The requisite 16-bit data address has now been
built up within the M P U .

214

Step 4 is to output this address on the address bus, and to transfer
the selected data word from the memory data block into the ALU,
via the data bus. The M P U then carries out the operation specified
within the IR internally.

External data transfers

An interface must be provided between the M P U system and any
peripheral devices or random logic. The usual approach with the
6800 family is to utilise a peripheral interface adaptor, such as the
6820. This is actually a dual device, but only one portion of it is
shown in Figure 20.1 for simplicity.

Such interfaces between the microprocessor system and the
outside world are termed ports. Engineers talk in terms of input ports
and output ports, where the former is used to input data to the system,
and the latter to output data from the system.

The 6820 PIA is programmable for use as an input port or an
output port. Indeed, it is even more versatile than this: each bit may
be programmed separately as an input or an output. This is
achieved by writing a programming word to the data direction
register (DDR); a logic 1 signifies an output, or a logic 0 an input.
Data is then transferred to/from the appropriate bit/s in the data
register (DR) in accordance with the programmed usage. There are
8 data lines for connection to the outside world (i.e. random logic or
peripheral device). There are also two control lines associated with
the control logic, which allows external logic to synchronise transfers
with the microprocessor signal; an incoming control line may be
used to signal that data has been loaded into the DR, or an outgoing
signal may be used to indicate to the external logic that the M P U
has placed valid data into the DR.

A single 6820 PIA can provide two ports: for simplicity, these will
be regarded here as either input or output ports, implying that all
the bits in the DDR are identical. Each port represents a unique
address within the addressing structure of the microprocessor,
therefore within the limits set by the addressing system (i.e. 64 K) ,
and allowing for moderate memory addresses, there is no practical
limit to the number of ports which may be used.

The actual transfer of data to/from a PIA register is just like
memory transfers: the microprocessor cannot tell the difference, and
regards I / O ports purely as memory locations.

The microprocessor and random logic

The microprocessor needs software in order to operate, but once it is
operating, it can be regarded as a hardware package. When used in

215

conjunction with random logic, a microprocessor system simply
becomes a 'black box' hardware element which interacts sequential
ly with the random logic, according to a fixed pattern.

The particular advantage of the microprocessor is that it can
handle very complex tasks without the need for a lot of special-to-
purpose hardware. Its primary disadvantage over random logic is
one of speed. A microprocessor operates at similar speeds to random
logic elements, but it can only handle one task at once; different
tasks must be performed sequentially.

It is interesting to note that design engineers in industry frequent
ly combat the latter limitation by employing several microprocessors
in parallel.

216

21
External data handling

The previous chapter has shown how external data is transferred in
and out of a microprocessing system by means of ports, but no
mention was made of the precise method of interaction between the
hardware and the software: for interaction there must be. It was
mentioned that the 6800 microprocessor regards I / O ports as pure
memory locations, but this is not always the case if we consider
microprocessors in general, as following chapters will show when the
G O S M A C microprocessor is considered.

We have seen that specific instructions are used to read or write
data, therefore normal memory transfers are the result of software
commands. This immediately suggests one method of handling
external data transfer: direct program control. Obviously this is easy
when data is to be output, for the microprocessor system already has
the data, and simply initiates the transfer when it is ready. It is not
quite so easy when we consider input data, for how is the M P U to
know when such data is available?

A method of inputting data under program control involves polling
input flags. When external logic has placed data in a suitable
register, it sets a flip-flop, referred to as a flag. The program
periodically inspects any such flags, and as soon as it finds a flag that
is set, it enters a software routine to input the appropriate data
word, and to clear the flag (the term reset the flag is generally used in
this context). The external logic knows that it cannot enter another
data word into the register until the flag has been reset, for until this
happens, the data has not been read by the M P U .

Interrupts

The above system is all very well, but it lacks speed. It may be that it
is important for the microprocessor to react quickly to the presence
of input data, or conversely, to the need for external logic to receive
an output word quickly. Such needs are generally catered for by
interrupt lines on the microprocessor in question. External logic may

217

asynchronously assert an interrupt, and the microprocessor then
rapidly responds by jumping to a special software interrupt routine,
which performs the special task related to the interrupt. In order to
do this, the current task must be suspended until the interrupt
service routine has been completed. Before the processor can enter
the interrupt routine, however, it must store its current status and
point in the program, in order that it may resume in the same status
after the interrupt routine. This is one important use for the stack,
for this information is 'pushed' onto the stack before entering the
interrupt routine, and 'popped' off the stack on leaving the interrupt
routine.

It may be that a particular application requires a number of
different I / O ports to be serviced on an interrupt basis, therefore the
designer must devise a means whereby the processor can establish
which particular interrupt service routine is required. The normal
method is to set a flag bit at the time of asserting an interrupt, and
the initial part of the interrupt routine then polls these flags to find
which interrupt service routine to enter.

Direct memory access

The interrupt method enables external logic or a peripheral to
obtain a quick response from the microprocessor, but it does not
overcome the speed limitation imposed by the inherent nature of
program controlled transfers. As we saw in the previous chapter,
this may require several steps to be taken, and this can be too
time-consuming where it is required to transfer a large amount of
data at one time. A peripheral frequently requires the transfer of
large blocks of data to or from a block of memory. Direct memory access
— D M A - is an alternative method offered by most good micro-
procesors as a means of overcoming this problem.

The D M A principle takes advantage of the fact that the transfer of
a block of data is to consecutive memory locations. The processor need
only locate the first memory location, and know the number of
words to be transferred in the block, and it can then enter another
form of transfer, which is not under direct program control: DMA.

There are different methods of accomplishing direct memory
access, and different M P U s employ different techniques, some of
which follow:

(a) The halt method. This method is the simplest but the slowest, for
the microprocessor is forced to halt its current program execut
ion at the first suitable point, to vacate the address and data
highways, and to then undertake the DMA transfers, not
resuming normal program execution until this is completed.

218

(b) The cycle stealing method. This is the most common method, and is
medium speed. This involves interposing a D M A cycle in the
current program instruction cycle. Thus the program keeps
running, but it is effectively slowed down by the DMA stealing
otherwise usable cycles.

(c) The multiplex method. This is the fastest and most demanding
method, for it effectively accomplishes D M A transfers without
slowing down normal program execution. Rather than steal
whole cycles, this method makes use of time slots when the
address/data bus is not in actual use. This method involves
critical timing and complicated associated hardware.

Analogue interfacing

Analogue-to-digital (A/D) or digital-to-analogue (D/A) conversion
can be accomplished by special devices. These devices are then
located in the microprocessor system architecture as input ports (if
A/D) or output ports (if D/A) , and provide the requisite interface
between analogue signal levels and digital data.

Serial interfaces

Some peripheral devices require serial data, as opposed to the
parallel data handled by the microprocessor itself. In such cases, a
serial/parallel (M P U input) or a parallel/serial (MPU output)
converter is required. A suitable device for such purposes is the
U A R T . This device was considered in detail in Chapter 13, and it
may be found upon re-examination of Figure 13.6* that such a
device contains all the necessary functions to act as a serial interface
on either an input or an output port.

* See page 111.

219

22
The 6800 microprocessor

Chapter 20 described a typical microprocessing system with specific
reference to the internal architecture of the 6800 microprocessor.
This chapter completes a general outline of the 6800 microprocessor
by considering its pin-out and hardware facilities.

Like any other microprocessor, entire books are written on the
6800, therefore it must be appreciated that the space available only
permits a brief summary. For further details on any microprocessor
the reader should turn to such publications, which are readily
available from those stockists who specialise in computer and
microcomputer components. Most good newsagents stock a variety
of monthly magazines intended for amateur micro-users, and the
advertisements in these publications often include book lists. If all
else fails, the reader should write directly to the manufacturer in
question (e.g. Motorola for the 6800 microprocessor).

Pin layout

The pin layout for the 6800 microprocessor is shown in Figure 22.1.
The device is T T L compatible, requiring only a single + 5 V supply
(Vcc) · Ground is connected to two separate pins (V s s). Like most
microprocessors offering T T L compatibility, it is only capable of
driving one standard load (sinking up to 1.6 mA), although between
seven and ten devices of the same family may be driven from a single
output.

The data bus comprises eight bidirectional lines (D0-D7) , and
the address bus 16 lines (A0-A15), giving the capability of address
ing up to 64 K bytes of memory.

Various other input and output control lines are provided, and
these are more easily understood with the aid of the diagram
presented in Figure 22.2.

The lines φι and <j>2 are clock waveforms supplied from an
external clock oscillator, as shown in Figure 20.1. These clocking
waveforms define the timing for the entire microprocessor system,
and hence the speed of execution of instructions. It is normal

220

practice to use crystal controlled oscillators for stability, and this
provides the facility of knowing precisely how long given instruct
ions take to execute.

vss cz
H A L T C

0

IRQ

VMA

NMI
BA

VCC
AO
A1

A2

A3

A4

A5
A6

A7

A8
A9
A10
A11

i d

r:
cz
cz
cz
cz

cz
cz
cz

cz
cz
cz
cz
cz
cz
cz

1 4θ |

2
3

4

5

6

7
8
9

10

11

12

13

14

15
16

17

18
19
20

39
38

37
36

35

34

33

32
31

30

29

28

27

26

25

24
23
22
21

RESET
t D TSC

N.C.

Φ2
DBE

N.C.

R/W

DO

D1

D2

D3

D4

D5

D6

D7

A15

EDA14
3A13

3A12

i v s s
Figure 22.1. Pin layout for the
6800 microprocessor

To/from
6800 control (
circuits

BUS AVAILABLE-*
H A L T -

T H R E E - S T A T E -
CONTROL

DATA BUS ENABLE-

NON-MASKABLETNT-
RESET-

V

+5V
I

GND

c

BA

HALT

TSC

DBE

ΝΜΪ

"RESET

*1

*±
IRQ

xx>
VMA

R/W

&

Data
bus

Address
bus

VALID MEM.^
"ADDRESS
■•READ/WRITE

Figure 22.2. Using the 6800 microprocessor

-►RESET J

Control
bus

The control bus provides a mixture of signals for use with memory
and interface devices: φ2 is used as one of these signals for timing
purposes. READ/WRITE (R/W) specifies a data bus read or write
operation, and VALID MEMORY ADDRESS (VMA) confirms
that the address bus lines have stabilised and present valid memory
address data. In a 6800 system, I/O devices (e.g. PIAs) are given
discrete memory addresses and are therefore regarded by the MPU

221

as virtual memory. When V M A is low, this disables all family
devices by means of chip select inputs.

R E S E T is used to reset and start the M P U from a power down
condition; this signal is also routed to the RESET inputs of PI As for
use during power-on initialisation. I N T . R E Q (IRQ) is the inter
rupt request line used by PIAs and I / O devices to signal to the
M P U that they need servicing. Software facilities allow the prog
rammer to mask such interrupt requests during certain routines:
when a software mask is applied, interrupt requests are ignored.

The remaining control signals to/from the 6800 control circuits
are of a supervisory nature, and are used for timing and control of
the M P U itself. The NON-MASKABLE I N T E R R U P T signal
(NMI) cannot be masked by the software, as the name suggests; this
interrupt input will always be serviced by the M P U . The DATA
BUS ENABLE (DBE) signal is a three-state control signal for the
M P U data bus; normally this signal is derived from φ2. The
T H R E E STATE C O N T R O L signal (TSC) affects the address bus
in the same way that DBE affects the data bus. This signal may be
used to accomplish direct memory access by forcing the address bus
and the R /W line into the high impedance state.

The H A L T signal will stop the M P U from processing; when
halted, all three-state outputs go to their high impedance state (i.e.
address bus, data bus and R /W line). When the M P U is halted, the
V M A line is low, and the BUS AVAILABLE line is high. When
BUS AVAILABLE (BA) is high, this indicates that three-state
outputs are in the high impedance state, and that external circuitry
can take command of these lines. BA goes high as a result of the
H A L T input being taken low, or due to a W A I T instruction in the
program; it is useful as an M P U signal for D M A activity. The BA
line remains high until either the H A L T input has resumed a high
state, or if the halt is the result of a H A L T instruction, until an
external interrupt occurs.

For further details of the 6800 microprocessor, the reader must
turn to alternative publications, and be prepared for an in-depth
treatment.

222

23
The COSMAC microprocessor

Many microprocessor users opt for standard arrangements, using
existing hardware configurations, and concentrate upon software
design. Many amateur users take this option, and very successfully
use microprocessor systems with little or no knowledge of the
hardware at all. Since the principal aim of this book is to teach a
practical approach to random logic design, it follows that the
emphasis with microprocessors should be placed on a micro
processor well suited to complement random logic. It is for this
reason that the C O S M A C microprocessor will be considered in
some detail, for it offers a great flexibility when used in conjunction
with random logic.

Before discussing this particular microprocessor, it should be
noted that other microprocessors* may offer more comprehensive
hardware packages when it comes to general purpose micro
processing systems intended for interfacing with tape, floppy disc or
visual display units (i.e. television monitors), but the particular
strength of the C O S M A C lies in its ease of compatability with T T L
or C M O S random logic systems, and also the ease of understanding
by a designer experienced in the latter technology.

The C O S M A C microprocessor is manufactured by RCA, and is
offered in a variety of guises based upon the type number CDP1802.
Like the 6800 microprocessor, it is T T L compatible and operates
from a single + 5 V supply. It is worth noting that this can by no
means be taken for granted with other microprocessors, a number of
which require dual supplies. Whilst more stringent applications
might call for a ceramic or high speed version of this device, most
users should be satisfied with the plastic encapsulated version
branded the CDP1802ACE; this is cheap and versatile, and unlike
some other microprocessors, contains all you need on a single chip,
except memory. It is even generous in this respect, for it does
contain an unusually large number of scratchpad registers, i.e.
registers available for temporary data storage.
* Readers may care to note that a companion book entitled 'Practical Microprocessor Systems' which
concentrates on amateur uses of the INS8060 (SC/MP II) and the 6502 microprocessors, is
available from the same publishers.

223

Supporting documentation

The importance of good supporting documentation with a product
as sophisticated as a microprocessor cannot be stressed too highly.
Unfortunately the supporting documentation provided by some
manufacturers for their products is little better than abysmal. Small
wonder that so many training courses have to be run! If the
supporting documentation is not abysmal, it is often so intimidating
that the prospective user gets 'chip-fright' even before he starts.

Fortunately RCA have done a splendid job with their supporting
documentation, and their publication is thoroughly recommended:
'User Manual for the CDP1802 COSMAC Microprocessor (MPM-
201C)\ Remarkably this is quite a slim volume, yet it explains both
the hardware and the software in terms that any logic designer can
understand. A schematic is used in conjunction with every instruct
ion to ensure that the user fully appreciates its usage*.

The 'User Manual' is supported by a range of other literature and
application notes, of which the following small selection might be of
interest:

ICAN 6970 Understanding and Using the CDP1855 Multi
ply/Divide Unit.

ICAN 7032 CDP 1800-Based Video Terminal using the RCA
Video Interface System, VIS.

ICAN 6991 A Slave CDP 1802 Serial Printer Buffer System.
ICAN 7029 Low Power Techniques for use with CMOS CDP

1800-Based Systems.
ICAN 6934 Cassette Tape I/O for COSMAC Microprocessor

Systems.
ICAN 6842 16-bit Operations in the CDP 1802 Micro

processor.
ICAN 6918 A Methodology for Programming COSMAC 1802

Applications Using Higher-Level Languages.
ICAN 6581 Power-on Reset/Run Circuits for the RCA CDP

1802 COSMAC Microprocessor.
ICAN 6611 Keyboard Scan Routines for use with RCA COS-

MAC Microterminal CDP18S021.
MPM-206A Binary Arithmetic Subroutines for the COSMAC

Microprocessor.
MPM-207 Floating-Point Binary Arithmetic Subroutines.

* For RCA addresses refer to page 288.

224

Main features

For most practical (and amateur) purposes, the CDP1802ACE
should suffice, with a maximum clock input frequency range of DC
to 3 .2MHz, using a single + 5 V supply. Provision is made to split
the power supply in order to obtain higher speed operation: in this
case the interface portion runs off + 5V, and the microprocessing
portion runs off + 10V.

It has previously been mentioned that the C O S M A C is genuinely
self-contained, without the need for supporting devices to furnish it
with scratchpad registers, clock drivers, program counters or other
memory pointers, which remarkably, are not self-contained on some
microprocessor chips. C O S M A C only requires an external crystal
and your microprocessor is in business.

A 16 X 16 bit matrix of scratchpad memory is available for ease of
programming, with the unusual facility of using any of these 16
registers as (16-bit) program counters or memory pointers. The
device has an inbuilt D M A facility, allowing blocks of data to be
transferred on the cycle stealing principle (mentioned in Chapter
21). Thus data may be transferred between memory and a peripher
al, or vice-versa, without the need for direct program control. This is
the way a program is loaded during development: after initialisat
ion, the program instructions are simply loaded into memory
sequentially from address 0000 under automatic D M A control.

A number of different means are available to the user when it
comes to input /output (I /O) control, ranging from virtual memory
control using the address bus, as described in the previous chapter
for the 6800 microprocessing system, to special I / O commands and
associated hardware lines. There are also input flags which may be
directly tested by the software, an output flip-flop which can also be
tested by the software, plus external interrupt and D M A lines. This
is best appreciated by details of the pin-out.

Pin layout and functions

Figure 23.1 shows the pin details of the microprocessor. Like the
6800, it is a 40 pin device. This presented the manufacturers with an
obvious problem, bearing in mind that it must allow for control
lines, 16 address lines, 8 data lines, plus the special input and output
lines mentioned above. Reference to Figure 22.1, showing the 6800
layout, shows that a compromise must be made, but this is about the
only compromise. RCA solved the problem by only using eight
address lines, and by outputt ing the 16-bit addresses in two 8-bit

225

bytes. This means that the required bits output during the first
(high-order) byte must be externally staticised, for subsequent
recombination with the second (low-order) byte.

I C7-
CLOCK Γ Ζ

WAIT

CLEAF
Q
SC1

SCO

MRD
BUS 7

BUS 6

BUS 5

BUS 4

BUS 3
BUS 2

BUS 1
BUSO

VCC
N2

N1
NO

VSS

CZ
cz
cz
cz
cz
c=
cz
cz
cz
cz
c=
cz
cz
cz
CZ
id
cz
cr
c=

1

2
3

4

5
6

7

8

9

10

11
12

13

14

15

16
17

18
19
20

This method of outputting the address utilises the MPU' s two
separate timing pulses TPA and TPB. The high-order address byte
(A.l) appears on the address bus lines (MA0-MA7) first, and TPA
may be used as a strobe to staticise the required number of address bits in
an external register. An octal register may be used to staticise all
eight bits, allowing for addressing a full 64 K bytes of memory, but
smaller systems may be contained in a smaller addressing range,
and small systems may well only require a few of the high-order bits
to be staticised, the rest being redundant. The low-order byte (A.0)
of the address is then output on lines M A 0 - M A 7 , which are
recombined with the high-order byte (effectively lines M A S -
MA 15), to give the full memory address.

The state of the M W R and M R D lines determines whether a data
transfer is to be written to memory, read from memory, or if neither
operation is to be performed. The M W R line goes low for a memory
write, the M R D line goes low for a memory read, or if neither of
these lines goes low, a non-memory operation is performed.

The data bus lines (BUS0-BUS7) are bidirectional, and transfer
data in and out of the microprocessor from/to memory or other
interface devices. The timing pulse TPB is used to strobe data
transfers, and occurs after address and data line settling time, i.e.
skew.

226

40

39
38

37

36
35

34

33

32

31
30
29

28

27

26
25

24

23
22

21

□ VDD
□ XTAL
□ DMA IN

CD DMA OUT

CZ! INTERRUPT
□Iviwri
□ TPA

□ TPB

□ MA7

□ MA6

□ MA5
□ MA4
□ MA3

□ MA2

□ MA1

□ MAO

piFT"
□ TFT
pJiTF3
□ E^FI

Figure 23.1. CDP1802 pin details
(courtesy of RCA)

Four external flag inputs (EF1-EF4) are associated with particul
ar flag-testing instructions, leading to branching within the program
in accordance with flag status (e.g. S H O R T BRANCH IF
EF2 = 1) . These flags are therefore ideal for polling routines, and
for use in conjunction with the I N T E R R U P T line.

The I N T E R R U P T line may be used to make the program j u m p
to an interrupt routine; if the first task in this routine is to poll the
flag inputs, up to four separate alternative paths may be determined
by direct flag control, or if hardware encoding is used on the flag
inputs in order to provide a binary code, after testing all the flags,
the service routine could determine up to 16 different interrupt
conditions.

The Q output is obtained from an internal Q flip-flop. Since this
flip-flop is under software set/reset control, and is also software
tested by certain instructions (e.g. S H O R T BRANCH IF Q = 0), it
is extremely versatile in use. One use is as a means of outputting
serial data under direct bit-by-bit program control: each bit must be
the result of a separate instruction execution. Another novel
application is as a memory bank switch; since the Q output is a
hardware flip-flop, it might be set to switch in a second memory
bank, offering the possibility of easily controlling up to 128 K bytes
of memory!

The three lines NO, N l and N2 are associated with input/output
byte transfers. These allow data to be transferred into or out of
memory at the same time that the output lines generate one of seven
possible binary codes - there are not eight, because the zero
condition is invalid, being the rest condition.

For example, the instruction: O U T P U T (N = 6), causes the
addressed memory byte to be output onto the data bus coincident
with a high on each of the N l and N2 I / O lines. Similarly, the
instruction: I N P U T (N = 4), would cause data applied to the data
bus to be written into the addressed memory byte coincident with
the N2 I / O line being high. The purpose of the I / O lines is to control
external logic associated with data bus interface devices; thus in the
latter example, the N2 line might be used to enable a three-state
register to place data onto the data bus for transfer to memory.

Like the flag inputs, it is possible to use the I / O lines directly —
for up to three I / O ports or to decode a binary output to give up to
seven ports. By combining these with the Q flip-flop and an extra
instruction, this figure can be doubled, providing random logic is
used to decode the required N and Q line combinations. Similarly,
by including the M W R line in external gating, it is possible to utilise
the same I / O code for either an input or an output.

So you begin to appreciate the flexibility of the COSMAC

227

microprocessor, and the reason why this flexibility can only really be
exploited by a designer familiar with random logic - such as yourself.
Just consider the possibilities open with I/O transfers: you can use
address lines for selection, the Q flip-flop, or the three I/O lines.
Thus the device can be best tailored to a particular application, as
Chapter 26 will show.

Two separate direct memory access lines are provided: DMA IN
and DMA OUT; these request direct memory transfer from or to the
data bus respectively.

The remaining lines are concerned with MPU control. The
XTAL and CLOCK inputs are linked by the external crystal and a
resistor in parallel, and both pins are capacitively decoupled to earth
by 20pF. The WAIT and CLEAR inputs are used to control the
mode of operation, where CLEAR alone low causes a general reset,
WAIT alone low causes a pause, both inputs low causes a load, and
both inputs high specifies run. The two remaining lines SCO and SC1
output a binary state code SO to S3, where SCO is the LSB. The
meanings of these codes are as follows:

50 = Fetch.
51 = Execute.
52 = DMA.
53 = Interrupt.

Internal structure

The internal structure of the COSMAC microprocessor is shown in
Figure 23.2. It is interesting to contrast this with the internal
structure of the 6800 microprocessor, shown in Figure 20.1, for
whilst the same basic needs are met, an entirely different approach is
used.

The scratchpad registers comprise 16 16-bit registers, with each
register divided into a low-order byte and a high-order byte, each of
eight bits. These registers are designated R(O) to R(F) using a
hexadecimal notation.* Low- or high-order bits are specified by
adding the suffix .0 or .1, e.g. R(4).0 refers to the low-order byte of
the fourth scratchpad register R(4). These registers may be used as
memory pointers, requiring all 16-bits, or to store quite separate
8-bit words.

Where the content of a register is to be used as a memory pointer,
the 16-bits are first transferred to the 16-bit Address register (A); a
multiplexer (MUX) is then used to output either the low-order or

* Hexadecimal notation is explained in Chapter 8.

228

Arithmetic
jogic

Figure 23.2. Internal structure of the COSMAC microprocessor (courtesy of
RCA)

high-order byte on the address lines (MA0-MA7). Any of the 16
registers can be used as a memory pointer, therefore there is no
special register designated the program counter. This makes the
COSMAC extremely versatile, since the program counter can be
changed at the 'drop of an instruction'. The associated
INCR/DECR function operates in association with certain instruc
tions to allow any scratchpad register to be incremented or de
cremented as part of a memory access instruction.

The 4-bit R SELECT (register select) lines specify a particular
register from the sixteen available, and these lines may be controlled
by any one of the P, X or N registers. The I and N registers form two
4-bit bytes of the INstruction register; the I portion is the high-order
byte, and specifies an instruction type, whilst the N portion is the
low-order byte, and represents either an operational code, or defines
one of the scratchpad registers via the R SELECT lines. For the
special INPUT and OUTPUT instructions, the content of the N
register is output as the code on the lines N0-N2. The P register
specifies which scratchpad register is currently being used as the
Program counter, and the X register specifies a scratchpad register
to be used as a data pointer. It follows that the P, X and N registers
must all comprise four bits.

The Temporary or T register is used to provide temporary storage
of the P and X registers when an interrupt takes place. By so doing,

229

it retains information necessary to allow the MPU to resume
operation after the interrupt where it left the original part of the
program. This register therefore has eight bits.

It may be seen that the 8-bit data bus links all the registers, the
arithmetic logic unit (ALU) and the Data or D register; thus all data
transfers either within the MPU, or outside the MPU, are via the
same data bus. The D register is the equivalent of the usual
accumulator, and is used to store the result of all ALU operations,
prior to possible transfer to any other memory location or a
scratchpad register. The Data Flag DF(1) is a single bit used to
indicate overflow conditions within the D register; this bit may be
tested directly by program instruction.

Timing

At this point it is worthwhile to consider device timing. The precise
timing varies according to the type of instruction, but to illustrate
the point, consider a typical fetch and execute cycle associated with the
'load via N' instruction LDN. This instruction (machine code ON)
loads the content of the memory location pointed to by the
scratchpad register specified by N into the D register. Figure 23.3
depicts the timing for this operation, and Figure 23.4 is a schematic
representation of the entire operation in its two phases: (a) fetch,
and (b) execute.

TPA

TPB

Memory
output

r-r-T
Memory read cycle

•n/M/y/it\//[

ΓΠ-L

-Memory read cycle-

'/λ/Μ/Ι/λ/λ/Λ

Figure 23.3. Fetch-execute cycle timing for a read-read
instruction (courtesy of RCA)

This particular instruction happens to be a read-read instruction,
but it could equally well have been an instruction with only one read
cycle, read-write, or even three read operations. It should be noted
that there must always be an initial read cycle for every instruction,
for this is the cycle which fetches the instruction code from memory.

230

P

Scratch pad

R(P)

Program counter

(a) Fetch

Memory

^ *
M (R (P))

*T '

_L
1

N

E>
Q-

Control
logic

Scratch pad

R(N)

Data pointer

(b) Execute

Figure 23.4. Schematic of the fetch-execute process for the LDN instruct
ion

In the example, the first read operation is a fetch (state code SO);
this has to fetch the next instruction from memory and place it into
the I and N registers. The schematic (Figure 23.4) shows the P
register pointing to the scratchpad register containing the program
counter (represented by the notation R(P)), and the program
counter itself points to the instruction within the memory: M(R(P)).
The instruction is fetched and is loaded into the I and N registers.

The second read operation is an execute (state code SI); this
executes the instruction, which in this case consists of loading the D
register from memory. The I register informs the control logic of this
requirement, whilst the N register locates the scratchpad register
containing the data pointer R(N). The data pointer points to the
required data word in memory, M(R(N)), and the latter is loaded
into the D register.

So far as timing is concerned during these transfers, TPA signifies
that the high-order byte of the address is present on the address bus,
and this must be externally staticised. The pulse TPB signifies that
the low-order byte of the address is being output on address lines
MA0-MA7, and these are combined with the staticised address
lines from the high-order byte, which we might call MA8-MA15.
The memory read (MRD) line goes low well before data is read from

231

the memory, and the pulse TPB is a safe strobe of data from the
memory.

For the purposes of comparison, Figure 23.5 shows the timing
diagram for a read-write type instruction. The initial memory read
cycle is identical to that seen previously, but during the memory

TPA

TPB

Memory Output

CPU output
to memory

- T 1 1 1 Γ
-Memory read cycle -

TF
K^mvttKi

Allowable memory access

JTU-
—i 1 1 1 r-
- Memory write cycle—

I I I
Valid output
_ J 1 L·

I I 1 I I I I I I I
Valid data

T T " Γ Τ
Figure 23.5. Fetch-execute cycle timing for a read-write type
instruction (courtesy of RCA)

write cycle (which transfers data from the MPU to a memory
location), MRD remains high, and the memory write pulse (MWR)
goes low for two clock periods during the time that valid data is
present on the data bus; the latter is used to strobe data into
memory.

Input/output ports

The CDP 1852ACE is the plastic encapsulated I/O port device of the
same family as the CDP1802CE microprocessor; its input lines
provide only a 1 μΑ drain on the microprocessor outputs, which
means there is no practical loading, in view of the MPU's 1.1mA
sink capability. The 74LS series of devices may be coupled to the
MPU outputs, but due to their 0.4 mA loading, only two should be
used. If it is desired to interface with a number of 74LS devices, one
should be used as a buffer, and this then provides the normal fanout
of 20 from its output.

Figure 23.6 shows the timing diagram for both input and output
instruction timing, and Figure 23.7 depicts how the I/O port may be
used in conjunction with the MPU N lines. Note that the polarity of

232

0
CLOCK!

TPA

TPB

Instruction J

MRD

MWR

N0-N2

Data bus ζ

MRD

MWR

N0-N2

Data bus;

Data storage
(MRD. TPB. N),

1 : i c e 7 0

Γ Ί

Cycle n |

I I I I I I I
Fetch (SO) |

I I I I I

I

(HIGH)

mmtmsmzm L ' ' J

I

(HIGH)

| I
♦ΧΜ»:>:*:*!ί*ίΑ*5·

I l I I I
rn r

1 2 3 A 5 6 7 c

Cycle (n+1)

M i l l I I Execute (S1)
I ! 1 1

— Memory write cycl
C *

| l=6; N=9-F
I I 1 1 1 1 1

Valid input data

1

1
i^L. r

| 1=6; N=1-7
1 1 1 1 ! . . _ . ! . _

;♦;♦>>:*<*>>>>>?
Valid data from memory-—

1 l 1 1 1 1
1 — r

~r ̂ι

Toff

> Common timing

Input instruction
timing

Output instruction

'User generated

Figure 23.6. Timing diagram for input and output instructions (courtesy of
RCA)

Data
bus

ATA READY, nfn\
K Memory write

V 7
M R D -

N x -

MODE CK

SR7

csr
CS2

- D A T A STROBE
IN

for
Data
bus

ft
M If

V D D -
TPB -

Memory read

MRD-

Nx-

9
MODESR
CK

CS1*

CS2

DATA
*READY

> Data
out

(a) input port

'Polarity depends on mode

Figure 23.7. Methods of using the CDP1852CE I/O port

(b) output port

the chip select 1 line (CSl/cJsI) and the service request (SR/SR)
line is dependent upon the setting of the MODE input.

An input instruction (e.g. INP2) inputs data from an external
source and loads it into a memory address specified by the MPU;
because read/write terminology refers to memory, this is a memory wnte

233

execution. Because data is to be input into the microprocessing
system, the I /O port must be configured as an input port, which is
achieved by holding the MODE input low. First the input data must
be clocked into the internal port register by means of DATA
STROBE IN (see Figure 23.7). The negative-going edge of the clock
pulse sets SR low and latches the data into the register. The SR line
may be used to signal that data is available by means of the
microprocessor interrupt input, or the flag inputs, as DATA
READY. The microprocessor subsequently responds with the input
instruction, enabling the chip select inputs, and thereby enabling
the I /O port's internal three-state outputs to output data onto the
data bus; the selected (or decoded) N line is shown enabling CS2,
and MRD remains high to enable CS1. Note that MWR should not
be used under these circumstances, for this is the pulse which will
write the data from the port into a memory location, and this data
must have stabilised on the data bus before the write pulse occurs.
After the chip enable condition, the SR input reverts to the high
state, and the port is ready for future transfers.

An output instruction (e.g. OUT2) outputs data from memory to
an external destination from a memory address specified by the
MPU: it is therefore a memory read execution. The unique condition
which must be responsible for staticising this data is:
M R D . T P B . N . This may require an externally generated data
strobe from these conditions, but if the I/O port is used, the
procedure is somewhat simpler, as shown in Figure 23.7. In this
case, TPB may be used to directly clock the data into the device,
which is configured as an output port by taking MODE high; the
device is enabled by M R D . Nx, where Nx represents the selected (or
decoded) N lines and the signal MRD goes low. In this mode, the
I /O port has its three-state outputs continuously enabled. The SR
line goes high at the termination of the chip select, and remains high
until the following rising edge of CK. This line is used as DATA
READY by the external circuitry.

The I /O ports may equally well be used with the chip select
inputs controlled by address line decode circuitry, in which case the
port has a memory address, as with the 6800 microprocessor system
previously described. The situation is now very different, since the
I /O port now behaves just as if it is part of the memory. In order to
avoid confusion, the reader is advised to think of it as simulated
memory. Input/output instructions are now of no use, and the I /O
port is accessed in a normal read/write cycle. When the device is
used as an input port, the chip select inputs must enable the chip
when the appropriate address lines are asserted, and the MRD line
is low. When the device is used as an output port, the chip select

234

lines must again be enabled when the address lines are asserted to
select the port, and the MWR pulse must be used to clock the
device: this entails inverting it to give MWR at the CK input.
Because the I/O port is simulated memory, transfers are with
respect to the microprocessor D register. It is impossible to transfer
data between such an I/O port and memory directly, just as it is
impossible to transfer data between two different memory locations
directly.

Which method to use depends entirely upon the application, and
in general, the best solution is probably the one which minimises the
complexity of the hardware.

235

24
Software

Software is an enormous subject, and this is a small chapter,
therefore it is not intended to achieve more than to describe what
software is, and to introduce some of the relevant terminology.

The structure of software is basically the same whether it is
connected with computers or microprocessors: so is the terminology,
with the possible exception of the term firmware. The latter term
evolved to describe standard software packages obtainable in R O M ;
as such, they are software contained in hardware, hence the term,
mid-way between hard and soft\

Machine code

We have seen that a computer or microprocessor deals purely with
words comprising l 's and O's. Machine code (or machine language) is the
name given to the numeric form of specifying this binary code. It
may be a string of l 's and O's, or it may be octal or hexadecimal
numbers which represent distinct bytes of a given word.

An 8-bit microprocessor deals in 8-bit words. If we are program
ming in machine code, which is the lowest level language possible,
we specify the state of every single bit in each word. This may be
done bit by bit, but it is more common to use two hexadecimal digits
to represent the high-order and low-order 4-bit bytes of this word.
Thus the code 2A represents the binary word 0 0 1 0 / 1 0 1 0 * .
Sixteen-key keyboards are commonly used to manually enter micro
processor programs in hex notation, and clearly there is less room
for error when entering 2A than there is in entering 00101010.

The trouble with machine code is that it is very difficult to work
in. When a programmer is trying to think out a problem, he
certainly does not want the added burden of having to think in terms
of numbers, whether they are binary or hex.

* Hexadecimal notation is explained in Chapter 8.

236

Assembly language

Abbreviated names - mnemonics - are given to every type of
instruction, where the mnemonic is suggestive of the function
performed, and is therefore something that the programmer can
soon familiarise himself with and subsequently write from memory.
Such a language has a direct one-to-one relationship with machine
code, where each mnemonic is directly convertible into machine
code. Thus a programmer may write his program in assembler
language, and the act of converting it into machine code is carried
out as a separate exercise.

The principle advantage of writing in an assembly language is
that it is possible to see what the program does: machine code is
meaningless to look at. For the amateur or the cost conscious, this is
the way that a microprocessor program must be developed: writing
it in assembly language and then manually converting it into
machine code for manual entry into the microprocessor memory.

Industrial users of microprocessors generally use back-up
computers to help them with the development of microprocessor
programs, and in such cases, they write the program in assembly
language, and then use a software assembler program to convert this
into machine code automatically.

High level languages

The problem with low level languages - such as assembly languages
- is that they are designed specifically for the processor in question,
and are all different. You cannot learn 'assembly language' and then
immediately program any microprocessor in assembler language.
The other drawback, in some situations, is that low level languages
can be laborious, for they must specify each little step in any process.

For the above reasons, a number of high level languages have
been developed which overcome these disadvantages. Such lang
uages offer a fair degree of consistency, and can be operated upon
any computers or microprocessors, given the necessary conversion
process between that high level language and the appropriate
machine code language. This conversion is achieved by means of a
special software program known as a compiler: a compiler program
compiles the appropriate sequence of machine code instructions
which equate to each high level language instruction.

There are many high level languages. FORTRAN, PASCAL,
BASIC, and CORAL are just a few. Each language requires a
specific compiler program in order to convert it to a particular

237

machine code. It is therefore implicit that if you wish to write in a
high level language such as BASIC, you need the support of a
compiler. This either means access to a computer, or a micro
processor with suitable firmware, e.g. a BASIC to machine code
compiler in R O M .

The most popular high level language with amateur micro
processor users is BASIC, and BASIC compilers are available with
many microprocessors.

Choosing the right language

This is very much a matter of experience and availability. With
microprocessors, the choice is usually assembly language, BASIC or
PASCAL. Whilst the higher level languages make writing the
program simpler, they are not the most efficient, and many exper
ienced programmers prefer to write in assembly language, simply
because they can do more within a given size of memory.

Why should this be? A particular high level language instruction
might equate to several machine code instructions, and the pro
grammer may not even be aware of precisely how the assembler
converts his high level instruction into machine code. When a
programmer writes in machine code, he knows precisely what the
processor is up to all the time, and he can apply software tricks to
minimise the number of instructions.

The structure of programs

The route through a given program may be totally unpredictable if
it is dependent upon external stimuli. One thing which you can
always be certain of, however, is that the program will always start
off on the same route, and until the first optional branch is reached,
the same route must always be followed from initialisation.

It has been explained that it is necessary to set up certain initial
conditions in hardware circuits (e.g. flip-flop states). So it is with
software, and the first task in any program is to initialise any
variables. The equivalent of flip-flops in software are flags: the name
given to single bits set to either 1 or 0 according to requirements.
Clearly all such flags should be set to known conditions during the
initialisation routine, at the beginning of every program.

The term process is used to describe lengthy pieces of program
which undertake a given task. The term routine is often similarly
used, although this term is sometimes used to imply a block of

238

software that is a sub-program. The term subroutine is reserved for a
routine which is used by any number of calling routines, and after
execution of the subroutine, the processor returns to the next
instruction in the calling routine. Rather than repeating a given
routine many times in different parts of a program, a single
subroutine is written to perform this task, and whenever the task is
required, the main program calls up the subroutine.

Since a subroutine may be entered from many different sources, it
is sometimes necessary to provide data for the subroutine to work
upon. In such cases, the data must be placed in the same portion of
store, in order that the subroutine knows where to find it. If the
subroutine needs to pass new data back to the calling routine, it
places this data in a fixed area of store, and the calling routine
subsequently retrieves the data from this area of store once the
subroutine task has ended.

Branch instructions provide the means of jumping from one part
of a program to another according to variable conditions. Such a
jump is dependent upon the results of a comparison test, usually
with respect to zero (e.g. less than zero, greater than zero, or equal
to zero). Jumps may also be dependent upon the condition of a flag.

The programmer can create as many flags as he wishes. Every
RAM word offers him potential flags, i.e. an 8-bit system offers 8
flags per word. Some assembly languages allow individual bits to be
tested within a given word, which is ideal for flag testing. Others
require the programmer to use a mask and a logic operation. A mask
is the term given to a pre-determined binary pattern such as
00000010.

Some examples of the use of masks will clarify matters. The
following 'flag words' are combined with a mask in various ways
using logic operations.

If it is desired to reset all the flag bits, a mask of all-ones may be
combined with a flag word in a NOR operation, for example:

0 10 10 10 1 Flag word
1 1 1 1 1 1 1 1 Mask for all bits
0 0 0 0 0 0 0 0 Result of NOR

It may be seen that the same word combined with an OR
operation would set all the flags. The above example operates on all
bits simultaneously, but a single bit, or any number of bits may be
operated upon, as desired: it simply depends on adjusting the mask.
For example, the following demonstrates how a single bit may be
set, irrespective of its original condition:

239

0 1 0 1 0 1 0 1 Flag word
0 0 0 0 0 0 1 0 Mask for bit 1

0 1 0 1 0 1 1 1 Result of O R

In the above example, bit 1 is masked, and an O R guarantees to
leave bit 1 set; a N O R similarly guarantees to leave the bit reset.
Note that the other flag bits remain unchanged. Note also that an
exclusive-OR function applied with a similar mask can be used to
complement a bit.

In all the above cases, we have been concerned with modifying an
existing flag word. Since the result of a logic operation is contained
in the accumulator of an M P U , this result must finally be written to
the location used to store the flag word, otherwise it remains in its
previous state.

If it is desired to examine a flag, it may be extracted in unchanged
bit position by applying a mask set to 1 at the required bit, and then
applying a logic AND operation; this leaves the flag word un
changed. If a right logical shift is then applied, where the number of
places equals the bit position, the flag bit is moved to bit 0. A
branching test is then possible, since a numerical value of 1 signifies
the flag set, or zero signifies the flag reset.

This jus t hints at some of the tricks that the programmer can
apply using machine code or assembly language. It may be seen that
the software manipulations are direct equivalents of possible hard
ware operations.

One final word about subroutines. It is possible to call one
subroutine from another, but each time this occurs, data has to be
stored in the microprocessor stack, in order that it may resume
operations after each subroutine exit exactly where it left off. Since
the size of the stack must be fixed for any given system, this defines
the number of times subroutines may be so nested.

COSMAC assembly language

The C O S M A C assembly language comprises some 91 different
instructions. The small selection shown opposite gives some indica
tion of their types. The O p Code' is the hex machine code for the
instruction. The Ope ra t i on ' column gives a description in terms of
the notation previously used.

This short extract serves to show typical assembly language
instructions, and shows how they are directly replaceable by a
machine code. By reference to the figure* of internal structure of
the C O S M A C microprocessor, it should be possible to work out
* Figure 23.2 on page 229.

240

what each instruction does by the operation description. A few
random examples are explained below.

Key
R(W): Register designated by W, where W = N or X or P.
M(R(N))—»D; R(N) +1 means: the memory byte pointed to by R(N) is loaded into D,

and R(N) is incremented by 1.

Instruction
Increment Reg N
Decrement Reg N
Increment Reg X
Get Low Reg N
Put Low Reg N
Get High Reg N
Put High Reg N
Load Via N
Load Advance
Load Via X
Load Immediate
Output 2
Input 5
Store Via N
OR
Short Branch
Short Branch If EF= 1

Mnemonic
INC
DEC
IRX
GLO
PLO
GHI
PHI
LDN
LDA
LDX
LDI
OUT 2
INP5
STR
OR
BR
Bl

Op. code
IN
2N
60
8N
AN
9N
BN
ON
4N
F0
F8
62
6D
5N
Fl
30
34

Operation
R(N) + 1
R(N) - 1
R(X) + 1
R(N) .0->D
D - > R (N) . 0
R(N) .1 -»D
D->R(N) . l
M(R(N)) -> D; FOR N NOT O
M(R(N))->D;R(N) + 1
M(R(X))-»D
M(R(P))-+D;R(P) + 1
M(R(X)) -► BUS; R(X) + 1; N = 2
BUS -» M(R(X)); BUS -► D; N = 5
D-*M(R(N))
M(R(X))ORD->D
M(R(P))->R(P).0
IfEFl = 1,M(R(P))-*R(P).0

ELSE R(P) + 1

G L O places the low-order byte of the scratchpad register selected
by N into the D register, leaving the content of the scratchpad
register unchanged.

P H I writes the content of the D register into the high-order byte of
the scratchpad register selected by N.

LDA reads the memory address specified by the scratchpad
register selected by N, and places it in the D register; the scratchpad
register selected by N is then incremented by 1, to point to the next
memory location.

O U T 2 places the content of the memory location addressed by
the scratchpad register selected by X onto the data bus; the
scratchpad register selected by X is then incremented to point to the
next memory address; whilst the data is output on the bus, the N
lines equal binary 2.

Bl requires that if the external flag 1 input is set, the program
counter low-order byte is changed to the value contained in the
memory address specified by P scratchpad register; if the flag is not
set, the program counter is incremented. In other words, if the flag is
set - making the condition true - then a j u m p occurs; if the flag is not
set — making the condition false — then no j u m p occurs, and the next
instruction in sequence is followed.

241

Flowcharts
Before writing the code representing a program, a programmer is well
advised to first construct a flowchart. This is a pictorial representa
tion of the software task, and allows him to work out the best
methods before getting involved in the detail of program instructions.
Examples are given in Chapter 26.

Software development
For those with access to a computer, microprocessor software may
be developed and tested using special computer programs. For those
less fortunate, it is necessary to manually load the microprocessor
with the program in machine code, prove it, or debug it as
necessary, and to then commit it to some form of ROM. If the
program is of any length, a tape recorder interface is necessary, since
switching off the supply will otherwise lose the entire program. It is
usual to employ a hexadecimal keyboard for the process of entering
the program initially.

The most economic way of placing a program into ROM is to use
PROM and your own programming circuitry. This must address
each memory byte in turn, apply current pulses to the program, and
must subsequently check that each word is correctly programmed
before proceeding to the next. This can be achieved manually, but
long programs are best programmed with some degree of automat
ion. The use of the microprocessor to control a programmer should
not be overlooked. Given a programming specification for a given
PROM, the reader should be able to design a suitable programmer.

It is worth noting that some stockists of PROM devices do offer a
programming service; many also offer a PROM copying service,
which is useful where duplication of programs is required.

If the user is prepared to work at it, a PROM programmer may be
very simple; it is simply necessary to back it up by labour and care, if
automatic versions are out of the question. It is also worth bearing in
mind that programs do not have to be placed into ROM if there is a
tape recorder facility; it is a simple matter to enter a program from
tape.

Naturally a microprocessor needs to know how to read in a tape,
therefore it must be fed with a small program teaching it how to do
this: the equivalent of a computer bootstrap. This program should be
kept as small as possible, since it must be entered manually. Another
option is to put this small bootstrap program into PROM.

Any equipment in which the microprocessor must make itself
invisible (i.e. usable by anyone), must have its program put into
some form of ROM. It then behaves just like any other random logic
circuit.
242

25
Hard or soft?

Hard or soft? Tha t is the question. It is not a matter of which is
'nobler', but rather a matter of which is the most suitable, and this
depends very much upon circumstances. In this chapter the hard
ware and software approaches will be compared and the various
factors involved will be considered.

Of course, the decision is not really between hardware and
software, but rather where the emphasis should lie, i.e. the choice
between logic and a microprocessor. The following table compares
various factors.

Factor
Design
Design emphasis
Flexibility
Package count
Hardware cost
Total development cost

plus production cost
Modifications
Speed

Random logic
Specific
Hardware
Low
High
Depends on

Depends on
Difficult
Fast

quantities

quantities

Microprocessor
As general as possible
Software
High
Low
Depends on quantities

Depends on quantities
Easy
Slower

If the task is relatively simple, and there is no significant
difference between the hardware cost of a random logic version and
a microprocessor version, the random logic option is probably best.
It is only in circumstances where the package count is becoming
high with random logic that the microprocessor option begins to
look more attractive.

There is very little development time with random logic, unless
the design is particularly complex. A microprocessor version, on the
other hand, requires both hardware design (relatively simple), and
software development, and as we have seen, the latter involves
testing, debugging, and subsequent P R O M programming.

There is always the speed consideration to take into account. For
whilst microprocessors operate at similar frequencies to random
logic devices, they must cope with a given task on a sequential basis.

243

Random logic offers faster solutions because events may happen
simultaneously. Very often a hardware/software compromise is
possible in circumstances where speed is an important considerat
ion.

For production quantities of anything over about 15 packages, the
microprocessor solution begins to look more attractive. The hard
ware is simpler and cheaper to produce, and since the software
becomes firmware, the product reduces to a simple hardware
construction exercise.

A random logic design is obviously designed around a specific
requirement, and any subsequent modifications required can lead to
real problems, and possibly a major redesign. This is where a
microprocessor system wins, for such a modification may not even
require any change to the hardware: software modifications are
easily implemented, and many only reflect a change of R O M in the
hardware - but remember that the modified R O M is hardware
compatible. Even if the modification calls for a different hardware
interface, this is not liable to cause any great problems, and the
major changes are still liable to be in the software.

Experience counts

The above arguments are all very well, but they do not take into
account experience. When it comes to microprocessor design,
experience counts. It must be recognised that there is a considerable
learning curve associated with microprocessor design, therefore if an
engineer is not familiar with microprocessors, his first design is
liable to be rather time-consuming. In the short term a complex task
might work out cheaper in random logic, but in the long term, if the
same engineer is to continue designing new products, the time spent
in familiarising himself with microprocessing techniques will pay off.

Once a designer has microprocessing experience, he will approach
each new design with the initial aim of using a microprocessor - by
choice. As he gains more experience, each new design becomes easier,
and the use of microprocessors brings with it inherent reliability.
Complex tasks are readily handled by microprocessors, and possible
modifications to the design are nothing to fear. Once an engineer is
competent in microprocessor design, and is used to using standard
central processing configurations, the development of micro
processor designs can be shorter than random logic designs.

The enthusiast has different factors to consider, since time does
not equate to money. On the other hand, the DIY man is probably

244

only interested in designing one equipment, therefore the inconveni
ences of developing the software may not seem worthwhile. No one
can make the decision for him. All that can be done is to point out
the differences, and hopefully, this book does just that.

Which microprocessor?

Since there is a not insignificant learning curve associated with
familiarising yourself with any microprocessor, it is worth spending
a bit of time researching the differences between them before making
your selection. Your choice must depend upon your requirements
and circumstances. One approach is to buy a standard micro
processor board, complete with MPU and I/O ports, and preferably
a tape interface; this option is likely to be expensive, however, and
specific design can work out much more cheaply.

It is worth bearing in mind that whilst microprocessor chips may
work out cheaply, the necessary memory to go with them can be
very expensive. Always shop around for memory by scanning the
advertisements in DIY magazines; prices for the same device can
vary fourfold! If you buy a complete board, you can be fairly sure
that you are paying for expensive memory.

The reader is particularly recommended to look for the following
types of memory, since they are static, popular, widely available,
and often offered cheaply:

2708 PROM (IK X 8 bits)
2114-L2RAM (IK X 4 bits)

It is common practice to use memory chips with even lower
'bit-widths' than 4, but this leads to higher package counts, and is
therefore more inconvenient. Clearly it is necessary to connect chips
in parallel fashion if the bytes offered are less than 8-bits wide, and
this leads to more complex gating on the address lines. Remember
that RAM is necessary for program development, for the program
code must be entered into temporary store. Once the program has
been proven, it may be committed to PROM. From the above, it can
be seen that each 1 K of final 2708 PROM can be replaced by two
2114-L2 RAM chips during development; there are hardware
differences, of course, but nothing drastic.

Smaller RAM devices are useful for normal temporary storage
requirements of data, and these are available from 16 and 32 bytes
upwards. Since memory is the single most expensive component in
such systems, the designer's aim should always be to keep it to a

245

minimum. Some microprocessor chips actually contain some RAM,
and this is always worth bearing in mind.

College libraries generally contain a fair selection of material on
different microprocessors, and an hour or so browsing may help you
decide which microprocessors to find out more about. My only word
of warning is to make sure that you look into the hardware
implications before becoming too immersed in the software: some
microprocessors are much more convenient to use than others.

246

26
A microprocessor design example
- an'AUTONIM' alternative

It is difficult for anyone without experience in microprocessor design
or familiarisation with the intricacies of software to appreciate just
how different random logic and microprocessor approaches really
are. For this reason, this concluding chapter presents an outline of
what is entailed in a microprocessor design.

Since we have already considered a complex random logic design
in depth - that of the ' A U T O N I M ' * - this is most easily achieved
by now looking at a microprocessor alternative for the same
electronic game. This has the added advantage of assuming fam
iliarisation with the design requirements. This microprocessor
alternative must achieve everything that the random logic version
did, and should demand no more of the human player.

The C O S M A C microprocessor is chosen for this example, be
cause of its particular flexibility with random logic, and because the
reader should by now have a reasonable familiarity with its capabili
ties.

Hardware des ign

Once it has been decided to use a microprocessor, the designer
should aim to keep the hardware to a minimum. This enhances
reliability, reduces development time, minimises the cost, and gives
maximum flexibility should any modifications be required. The
circuit given in Figure 26.1 represents the entire hardware require
ment, neglecting only a simple power supply. Compare this with the
complexity of the random logic design given in Figures 19.10 to
19.17. The random logic design had a package count of 47, whilst
the microprocessor version has a package count of 13, assuming 2 K
of memory. (Skilful programming might require less memory than

* Refer to Chapter 19.

247

IC
1
2
3
4
5
6
7
8
9
10
11
12
13

able
CDP1802ACE
74LS75
2708
2708
74LS08
74LS04
74LS76
CDP1852CE
CDP1852CE
7407
7407
7407
NE555

+5
40/16
5
24
24
14
14
5
24
24
14
14
14
8

OV
20
12
12
12
7
7
13
12
12
7
7
7
1

Figure 26.1. A microprocessor version of the AUTONIM

248

this, but until the software has been worked out, the designer must
allow for an adequate amount of memory.)

The circuit given in Figure 26.1 shows two 1 K PROMs; the final
design might only need one of them, and the system is equally
capable of expanding to use further 1 K blocks of memory.

The line LEDs and the I and Y O U M O V E LEDs are all driven
by buffer gates (non-inverting), and are all powered directly from
the + 5 V rail; the I and Y O U LEDs again share a common ballast
resistor since only one will be illuminated at once.

Three 7407 hex buffer driver devices (ICslO-12) cope with 18
LEDs, which again happens to leave the W I N LED as an odd one
out. Rather than wastefully use a further buffer driver device, an
emitter-follower transistor T R 3 is used.

The line requirements for the game are most economically met
with two 8-bit registers, which we shall refer to as staticisers (or
'stats') in this design, in order to distinguish them from micro
processor registers. I t will be recalled that the four lines of the
A U T O N I M were labelled A - D for convenience, where the number
of LEDs in each line was as follows:

Line D 7 LEDs Now also to be known as Line 4
Line C 5 LEDs Now also to be known as Line 3
Line B 3 LEDs Now also to be known as Line 2
Line A 1 LED Now also to be known as Line 1

These can be combined in the two stats as follows:

S T A T DA (IC8) combines Lines D and A.
S T A T CB (IC9) combines Lines G and B.

These stats are achieved by means of two CDP1852CE I /O ports;
it will be recalled that these devices contain an 8-bit register, and
that the three-state gates are always Open' when configured as
output ports*. If any change in the display requirements occurs, the
appropriate stat must be loaded with fresh data.

The microprocessor must be able to read which mode the game is
working in, i.e. I = man (manual) , or the machine skill level:
expert/good/average/poor/child. This requires an input port or a
simulated memory location. The latter is chosen, where the
appropriate address decode (actually a partial decode), biases TR4
on, causing M O D E to go low at the switch wiper. The selected line
from the six available is therefore taken low during a read cycle, and

* Refer to Chapter 23.

249

this is seen as a low on one of the data bus lines BUSO to BUS5. All
the data bus lines have pull-up resistors, and this provides the load
for TR4 collector.

The C O S M A C microprocessor has a Q flip-flop which is program
controllable. Since the M O V E indicator is the single indicator
which is changed most frequently, this is ideal for signalling I /YOU.
It may be seen that Q true signifies I PLAY, and that Q false
signifies Y O U PLAY; inverter IC6c ensures the complementary
displays.

The only remaining audio/visual outputs are the sound outputs
and the W I N indicator LED. Each of these has two possible states -
on or off- and is therefore readily controlled by means of a flip-flop.
A 74LS76 dual J - K flip-flop provides this requirement (IC7), and
associated gating allows the microprocessor to control the state of
these two flip-flops.

The C O S M A C microprocessor contains 16 scratchpad registers,
and this is more than adequate operating RAM for this application,
hence there is no need to provide additional external RAM (except
for the program code during development). This would seem to rule
out the use of the N lines, since I /O instructions are normally
relative to memory, i.e. normally RAM. In fact this is not the case,
for it is always possible to set up fixed store addresses in P R O M
which will provide the necessary data output on the data bus, but in
this example, even this is not necessary. The three N lines provide
sufficient combinations to control the two flip-flops directly, and the
data bus is not even required. Output instructions are used to
control the flip-flop states, and such instructions must assume an
output on the data bus; since this output is ignored, it really does not
matter what memory address is specified!

The N lines are each given a definite role in this case, as follows:

N2 is designated signal line O P S T (output strobe), and must be
made to go high for every output instruction. N l is designated
the signal line SEL (select), and is used to select either the W I N
flip-flop (IC7a) when true, or the sound flip-flop (IC7b) when
false. N O is designated the SPEC (specify) signal line, and
specifies the required state of the selected flip-flop.

It therefore follows that particular output instructions have
specific hardware functions, as follows:

N2
1
1
1
1

Nl
1
1
0
0

NO
1
0
1
0

Hardware function
Set WIN
Reset WIN
Set ENSD
Reset ENSD

Instruction
OUT 7
OUT 6
OUT 5
OUT 4

250

Note that the K input must always be complementary to the J
input, hence inverter IC6d. The strobe OPST is combined with the
timing pulse TPB to provide an output enable strobe OPEN; the
latter is ANDed with SEL to clock the WIN flip-flop, or with SEL
(from the output of inverter IC6e), to clock the sound flip-flop.

When the WIN flip-flop is set, Q goes low to produce WIN, which
biases TR3 on, and hence illuminates the WIN LED. When the
sound flip-flop is set, the ENSD (enable sound) signal goes true, and
this enables a 555 timer connected as an audio oscillator in a similar
fashion to that used in the random logic version.

The 555 circuitry is the same as in Figure 19.17, although the
control inputs vary. Transistor TR1 is used to provide the alternat
ive tones for the two players, and is therefore driven from the I
PLAY line. Transistor TR2 is used to provide the alternative tone
used during a win sequence, and is therefore driven from the WIN
line.

The inputs from the four line selection buttons (A-D) are
conveniently connected directly to the four flag inputs of the
microprocessor, and must therefore be polled by the program. Since
a different routine will be entered in the event of a win, no confusion
arises if the NEW GAME button also uses one of the same flag
inputs, hence the economic version shown. It is true that the D line
button would double as a NEW GAME selection, but who knows?
and who cares! Never confuse the user with penny-pinching econo
mies.

The next thing to consider is the address map for the system. This is
shown in Figure 26.2. The memory address lines MA0-MA7 from

o

2 K - 1
2K

16K-1

16K

16K+1

16K+2

16K+3
16K+4
16K+5

1

64K-1
64K

Program
area

Not used
(available for
program expansion)

STAT DA 0/P

ST AT CB 0/P

Dummy 0/P slot

Not used
MODE l/P

Not used

Hex address
0000

1
1
1
1
1
1
1

07FF
0800

1
1
1
1
1

3FFF

4000

4001

4002

4003
4004
4005

FFFF
10000

Figure 26.2. Memory map of the
system

251

the microprocessor output the high byte of the 16-bit memory
address when TPA is true, hence latch IC2 latches the four bits
required for this application: MA8, MA9, MA 10 and MA 14. These
output memory address lines are combined with the low-order
address byte on lines M A 0 - M A 7 when TPB goes true. The lines
MAO-MA 10 are sufficient to address up to 2 K of memory. A space
is then allowed in the map for possible memory expansion. If it is
found that more than 2 K of programming space is required, it is
only necessary to staticise M A l l in order to provide a doubling of
available program memory (up to 4K) . Similarly, further memory
up to the 16 K — 1 point can be addressed by also taking into
account lines MA 12 and MAI3. The MA 14 line is used to locate the
two external output ports, designated STAT DA and STAT CB.
Note that a dummy output slot is provided for the O U T instruc
tions; any address would do, but this is tidier, and requires no actual
memory!

The memory address at 16 K + 4 is used as an input port to read
the mode switch setting; 16 K + 4 is chosen because a partial decode
is possible, decoding only two address bits: MA 14 and MA2. This
leaves memory address 16 K 4- 3 unused, plus the addresses from
16 K 4- 5 and above.

Note that it is easy to express memory locations in terms of'K'.
The third table in Chapter 8 shows the binary weighting of the
address line bits, and a further table is provided later in the same
chapter of hexadecimal/binary equivalents. The latter may be used
to derive the hex address, if the full 16-bit binary address is broken
down into four 4-bit bytes, where each byte is represented by a hex
digit. Two examples are given below.

15 14 13 12

0 0 0 0
0

0 0 0 0
0

11 10 9 8

1 0 0 0
8

0 1 1 1
7

7 6 5 4

0 0 0 0
0

1 1 1 1
F

3 2 1 0

0 0 0 0
0

1 1 1 1
F

2K in binary
2Kin hex
2 K — 1 in binan
2 K - 1 in hex

Memory addressing beyond the capacity of the memory address
lines of the chip is simply achieved by decoding the more significant
address lines and using this to enable appropriate chips via the chip
enables. The lower significance address lines must always go to every
memory device.

Because the output ports are given discrete memory locations,
they are treated as memory, and are written to by means of an
MWR pulse.

252

This design assumes prior debugging of the software in RAM, and
shows the final circuit where program is contained in PROM. Since
it is no longer necessary for the user to manipulate the MPU, it is
always required to start in the initialised state at power-on; this is
ensured by applying a CLEAR pulse via pin 3 of the MPU. The
XTAL and CK inputs show the connection of a crystal and
associated components to provide the clocking requirements.

Software design

Firstly, let us consider the assembly language instructions needed
for the I/O requirements.

The instructions OUT 7-OUT 4 cause the N lines to output the
requisite binary code which is combined with TPB to set or reset the
two flip-flops. The memory byte addressed by the scratchpad
register specified by X is output on the bus during this operation,
but this is ignored. For convention, according to the memory map,
the address selected for all these output instructions is X4002.*

The instructions required to load the external stats must be write
instructions, therefore the data to be written must first be loaded
into the D register of the MPU. A STORE VIA N (STR) instruc
tion (see COSMAC assembly language in Chapter 24) can then be
used to load the external stats from the D register, where the N
register points to a scratchpad register which contains the address of
the required stat (i.e. X4000 for STAT DA or X4001 for STAT CB).

The instruction required to read the mode switch must be a read
instruction, such as LDX; this requires that the X specified
scratchpad register contains the address of the MODE I/P port, i.e.
X4004. Such an instruction loads the D register. A further instruc
tion must then transfer this data word from the D register to R(B).l.
This register is shown in the map of scratchpad registers presented
in Figure 26.3.

The MOVE indication is controlled by the two instructions: SEQ
to set Q (for I PLAY), and REQ to reset Q (for YOU PLAY).

The input flags are polled very conveniently by a SHORT
BRANCH instruction such as Bl; this causes a program branch if
the flag EF1 is asserted by pressing line button A, or no branch if the
flag is not asserted. For software purposes, the lines are more
conveniently referred to as lines 1-4, as mentioned earlier.

Thus it is a simple matter to interface software and hardware.
What must next be considered is what software registers or flags are
required to achieve our aim.

* Note that the prefix 'X' denotes a hexadecimal number.

253

Registers and flags

Certain requirements for registers and flags will be known at the
outset; others will become obvious as our involvement in the
flowcharting or programming itself becomes deeper. The scratchpad
register map shown in Figure 26.3 shows some of the requirements
which can be established at an early stage. These are filled up from
the bottom of the available space for convenience; certain of the
upper registers are conventionally used for other purposes (e.g.
program counter, stack pointer, etc.).

15 14 13 12 11 10 9 5 4 3 2 1 0

Main program counter

Interrupt pointer (if required)

K ^ ^ ^
- W W ^

fc-w
F ^ F ^ ^ ^ ^

rCC
L ^ T T O ^ X X X X V ^ :

C^TVVVVVVVVVVX\X\! \XV^^
^ ^ ^ ^ ^ ^ ^

Delay counter

b ^ - fc^^^
MISC. FLAGS i LINE

4 I 3 | 2 | 1
RND 1ST

ST
D4

BIN D (7)

B INB(3)

REGCB

.1

Random
counter |

ODD FLAGS |

D2 D1 C4 C2 C1 B2 B1 A1

BINCI5)

B I N A (I)

REG DA

.()
Figure 26.3. Scratchpad register map

The R(F) register serves to contain the 16-bits required by the
external staticisers, where R(F) . l is REG CB, the data source for
STAT CB, and R(F).0 is REG DA, the data source for STAT DA.
These register bits must be set to a 0 for every LED that is required
to be illuminated, bearing in mind that the buffer drivers are
non-inverting, and must be low to drive the LEDs.

Registers R(D) and R(E) are used to contain the binary values of
the four line counters; the number in brackets indicates the max
imum count in equivalent decimal. Thus each time a line counter is
decremented, the appropriate counter in these two registers is
decremented. A separate REFRESH DISPLAY subroutine must be

254

written to examine the binary registers, to format this into the
revised form for display in R(F) , and subsequently to output the
content of R(F) to the external stats, via the D register. For example,
the instruction G H I gets the high-order byte of the register specified
by N and places it into the D register; thus if N is set equal to F (i.e.
1510), this transfers REG CB to D.

The so-called O D D FLAGS are the software equivalent of odd
binary bits in the various lines, labelled AI , B1, etc., in the random
logic version (see Figure 19.11). The MISC. FLAGS portion of
R(C) . l contains four L I N E FLAGS, the random flag (RND) and
the first start flag (1ST). Their purpose will be outlined in the
following flowchart description.

A R A N D O M C O U N T E R is provided in R(B); this counter is
initialised at 4, and is decremented to 1, thereafter reverting to 4.
This counter replaces the hardware equivalent in Figure 19.16
(IC35), and is used to provide a random starting point for the
program during the LINESCAN routine. A DELAY C O U N T E R is
provided to generate a time delay, and effectively is the software
equivalent of the low frequency clock previously used.

Other flags or registers may be required. If they are, the
C O S M A C still has plenty of empty scratchpad registers to choose
from.

Flowcharting

The next step is to draw a high level flowchart of the program. This is
a simple pictorial representation of the requirements, and is shown
in Figure 26.4. At this stage, the flowchart must be kept as simple as
possible. It may be seen that the basic concept of four main routines
still applies, i.e. BUTSCAN, M A N D E C , LINESCAN and MAC-
DEC. A guided tour through the flowchart follows.

After ENTRY, block 10 indicates that the 1ST START flag is set;
this is the first initialising procedure. Block 20 then shows that other
initialising steps must be taken, i.e. reset all the flags by setting flag
words R(C).0 and R(C) . l to zero. The binary registers must then be
initialised for the start counts, i.e. BIN D = 7 (R(D). l = 07), etc.

Block 30 is then entered, and the 1ST START flag is com
plemented. This part of the program is subsequently passed through
after a N E W G A M E has been called, and the 1ST START flag has
decided which player starts play; this action of complementing it
gives players alternate chances of starting. Block 40 calls up the
R E F R E S H DISPLAY subroutine, which formats R(F) from R(D)
and R(E) , and outputs data to STAT DA and STAT CB, to give the
correct line displays.

255

Set 1ST START
flag

Complement
1ST START flag

REFRESH
DISPLAY

Set MOVE F/F
to 1ST START
flag

NEXT MOVE
routine

(You play)

Man
plays

BUTSCAN
routine

MANDEC
routine

MACDEC
routine

A A

WIN
routine

New game selected

Figure 26.4. High level flowchart of AUTONIM procedure

256

Block 50 reads the mode switch by means of a read instruction,
and stores this in the M O D E scratchpad register byte. Block 60
makes the move flip-flop (i.e. the Q flip-flop) equal to the 1 ST START
flag; this sets up for the correct player at the start of play.

From block 70 onward, we will have entered that portion of the
program which is looped through many times during a single game;
for every new move, the program returns to block 70. The block
itself complements the Q flip-flop, thereby setting up for the 'other'
player's move. Block 80 is a decision, asking if the move flip-flop is
set or not. If the answer is no, this indicates the I PLAY situation, or
if it is yes, this indicates the Y O U PLAY situation.

Block 90 asks if the mode is manual , and if the answer is yes, it
diverts the program to BUTSCAN; if not, it enters the machine's
reply sequences.

Thus block 130 is entered if a manual move is required, and a
routine called BUTSCAN is employed. This is the software equiva
lent of BUTSCAN in the random logic design, and is responsible for
polling the input flags in order to locate a depressed line button.
Once a button is found depressed, the software must lock onto this
button, ignoring any others.

The program then passes into block 140, and the MANDEC
routine, to decrement the appropriate line counter for as long as the
line button is depressed, but stopping at zero. This routine calls
upon a T A K E O N E subroutine to reduce the line counter at a set
rate, and to provide the audible tone that goes with it, and the
REFRESH DISPLAY subroutine* to update the line display via the
stats.

The alternative path for the machine's play is through Block 100,
a M A C H I N E S K I L L routine, which examines the M O D E register,
and establishes whether a hedge move is required or not; this must
make use of the R A N D O M C O U N T E R . Block 110 is then entered
to provide the software equivalent of LINESCAN, finding a suitable
line to take from, and block 120 is the MACDEC routine, to
decrement the chosen line. As before, the T A K E O N E subroutine is
called upon.

After the machine or player's move, block 150 is entered, to check
if all the lines are zero. If they are not, N E X T M O V E takes the
program back to block 70. If all lines are zero, the W I N routine is
entered. This makes use of the DELAY subroutine to provide the
time delay associated with the flashing W I N LED and the win
tones. The program loops within this routine until NEW GAME is
selected, whereupon it returns to block 20.

Unfortunately, space does not permit much more analysis of the
software, but example flowcharts are provided for the BUTSCAN
* Called up by the TAKE ONE subroutine. 257

and M A N D E C routines, plus the T A K E O N E and DELAY
subroutines. These take the flowcharting down a level in detail, but
they still do not represent equivalence with single assembly lan
guage instructions.

If the reader cares to work through these additional flowcharts, he
will begin to understand the techniques necessary. The following
brief notes associated with these flowcharts may help.

B UTS CAN routine (Figure 26.5)

Each input flag is tested in turn in loop fashion until one is found set.
When one is found set, a check is made to see if the relevant line
counter is zero; if it is, this button is ignored, and looping continues,

From NEXT
MOVE routine

Figure 26.5. Flowchart of BUTSCAN routine

but if not, a L INE FLAG is set as a line indicator to other routines,
and the routine is exited from one of four different exits. Different
exits are used since the separation established according to line
selected is of use in the following MANDEC routine.

MANDEC routine (Figure 26.6)

The appropriate line counter is decremented, the T A K E O N E
subroutine is entered to refresh the line display and control the

258

Decrement
LINE CTR1

f Entry 4 J

Decrement
LINE CTR3

Decrement
LINECTR4

T
Reset all
LINE flag

Figure 26.6. Flowchart of MANDEC routine

tones, and then two checks are made. The first checks if the line
counter is now zero, and if so prepares for exit; the second checks if
the input flag is still set, signifying that the button is still depressed,
and if so, the program loops back to take out a further LED. If the
line counter is zero, or if the line button is no longer depressed, all
the line flags are reset, and the routine is exited.

TAKE ONE subroutine (Figure 26.7)

This subroutine calls up two other subroutines, namely REFRESH
DISPLAY and DELAY. The sequence is as follows. REFRESH
DISPLAY is called to reformat the R(F) registers and to refresh the
hardware staticisers. Enable sound sets the sound flip-flop, which
then stays on. The RANDOM FLAG is set, causing the RANDOM
COUNTER to be 'rotated' within the DELAY subroutine. The
DELAY subroutine then ensures that the tone is sounded for a

259

Entry

REFRESH
DISPLAY

Enable

Set RND
flag

DELAY

Disable
sound

~ T ~
DELAY

Figure 26.7. Flow
chart of TAKE ONE
subroutine

reasonable time, before it is disabled. A further delay ensues to
provide a gap between tones, and the subroutine is then exited,
return being made to the next block in the calling routine.

DELAY subroutine (Figure 26.8)

This subroutine provides a time delay by a standard looping
technique. A counter is initially loaded with a value, and the
subroutine then continues to decrement the counter and loop until
the counter reaches zero. The time delay expires when the counter
reaches zero.

This particular delay subroutine also incorporates the random
counter routine, providing that the RND flag is set before entry. If
this flag is set, it is 'rotated' from 4 down to 1, and then back to 4. If
the RND flag is not set, a dummy time load branch causes no action,
but takes the same time to pass through as does the branch rotating
the random counter; this maintains the same time interval through
the routine whether the RND flag is set or not.

After the random counter section of the subroutine, each line flag
is checked; one (and only one) will have been set by the BUTSCAN
routine. When the set line flag is found, the related input flag is

s

260

(Entry J

Load
DELCTR

L . _ -

I/P 2
check |

..L_.._n

Figure 26.8. Flowchart of DELAY subroutine

261

checked, to see if the button is still depressed; this technique means
that other buttons are ignored. If the button is still depressed, no
action occurs, but if it is no longer pressed, the RND flag is reset.
This ensures that the R A N D O M C O U N T E R stops as soon as the
line button is released, and introduces a random element into where
the R A N D O M C O U N T E R stops. The R A N D O M C O U N T E R is
subsequently used by the LINESCAN routine to establish where it
starts its scan for a suitable line, and thereby maintains the random
line selection previously achieved with the random logic.

Since the delay subroutine must loop many times to provide the
required delay, it is most important that if the path through the
routine differs in any way, it must still have the same number (and
type) of instructions, so that it takes the same time to execute. Hence
the dummy time load and no action boxes, which ensure that all
routes through the subroutine are always equal.

Conclusion

Figures 26.5 to 26.8 represent flowcharts at one level lower than the
high level flowchart shown in Figure 26.4; each box on the high level
flowchart can be broken down into similar lower level flowcharts.

It is then possible to break each of these lower level flowcharts
into assembly language level flowcharts, although many programm
ers forego this stage and go straight to writing the code. If you have
any problems, it is always sensible to draw flowcharts representing
every instruction.

Remember that the hardware design assumes that the software
has been proven and committed to PROM. If this is not the case,
you must bear in mind the added complications associated with a
microprocessor design:

(a) You need RAM large enough to take the entire program for
software development. (Later replaced by PROM.)

(b) You need greater control of the MPU for program development.
(c) You need a tape recorder interface for such a long program,

during development.
(d) You need a PROM programmer to commit the proven program

to PROM - or to provide anyone offering a programming
service with an appropriate data input (e.g. punched tape or
marked cards).

262

PostScript

It is hoped that this practical approach to random logic design is
adequate to give the reader sufficient confidence to embark upon his
own design projects. Always remember to plant acorns at first, and
leave the large oaks until you have gained more experience. Design,
like any other creative pursuit, requires considerable practice. You
are sure to learn a lot from your own mistakes.

Too much ambition in the early stages can lead to great dis
appointment. Remember the suggested limit of about ten integrated
circuits until you have had a number of successes. After that, it is
still wise to try to break larger designs down into smaller sized
modules which can be independently tested.

The part of the book given over to microprocessors is only
intended to inform the reader what kind of options they offer him.
Do not at tempt to design the hardware for a microprocessor system
until you have gained considerable experience in conventional
random logic system. If you wish to experiment with micro
processors before then, restrict yourself to the ready-made micro
processor systems.

If you failed to completely understand the design examples
presented in Chapters 18 and 19, it is advisable to reread them until
you do. If this proves a struggle, it will be a worthwhile struggle, for
real learning will be the final reward. Suddenly everything will gel.
Everything you need is within the covers of this book. Once you
understand these designs, your knowledge will be adequate for you
to undertake your own simple design projects with confidence.

The appendices which follow should be of great assistance when
undertaking your own designs, but it is strongly recommended that
you supplement this information by more detailed device data
published by one of the larger manufacturers. It is wise to stick to
T T L logic until you are fairly experienced. Probably the most useful
book to start with is: 'The T T L Data Book for Design Engineers',
published by Texas Instruments.

263

Appendices — brief details

Appendix A - abridged TTL data
Appendix B - selected TTL pinout details and supply currents
Appendix C - electrical charactenstics
Appendix D - ASCII code
Appendix E -a note on drawing standards

The following appendices are provided in order that the prospective
designer may have enough data to enable him to attempt simple
design exercises. It should be noted that whilst all device data
included is as accurate as possible, no responsibility can be taken by
the publishers or author for any errors therein. Whilst different
manufacturers generally attempt to produce directly compatible
devices where these are given the same numerical identification, this
must not be assumed. The data which follows is not related to any
single manufacturer, therefore the user should check manufacturers'
data before using any of the devices included. The purpose of each
appendix is outlined below.

Appendix A - abridged TTL data

This appendix provides pinout details for some of the most common
TTL devices, plus more detailed information on certain devices.

Appendix B - selected TTL pinout details and supply currents

This appendix provides pinout details and information on device
supply currents for most of the TTL devices mentioned in this book.
Space restrictions necessitate that this information is presented in
tabular form.

267

Appendix C- electncal charactenstics

This appendix includes absolute maximum ratings and representat
ive characteristics for 54/74 series TTL devices and 4000 series
COS/MOS devices. Also included is information on the switching
characteristics of TTL flip-flops.

Appendix D - ASCII code

This appendix provides details of the ASCII code.

Appendix E-a note on drawing standards

This appendix provides information on various drawing standards
concerned with logic symbols.

268

Appendix A — abridged TTL data

This appendix contains pinout information on a selection of the
most commonly used 74 series T T L devices. These devices are
allocated reference numbers (e.g. Ά 2 ') for use within this book.
Text references of the form: Ά ρ ρ . A2' refer to the reference numbers
used within this particular appendix. The divisions used are as follows:

A
B
C
D
E
F
G
H

J
K
L

Common gates, page 271
Special gates, page 272
Flip-flops, page 274
Registers, page 275
Counters, page 276
Decoders, page 278
Data selectors, page 279
Comparator, page 280
Monostable multivibrators, page 281
555 type timer, page 282
Memory, page 283

The devices on a particular page are ordered according to usage
rather than in numerical order. The following table lists all the
devices in numerical order, and provides their reference number
within the appendix.

Each device is also listed with a cost factor (C.F.). The designer
should always bear in mind the cost of the devices he is using, in
order that the design may be cost-effective. In order that this
information may be provided in a manner that will be universally
applicable despite different currencies and inflation, the C.F. rating
is a relative indication. The cost factors are based upon the cost of
the most common device of them all - the 7400 quad 2 I /P NAND
gate, which is normalised such that its C.F. is 1.0. All other prices
are relative to this price.

The cost factors were compiled at the time of writing, and should
not differ greatly between different suppliers, or at different times.
This information is only provided as a guide. By checking the

269

current price for a 7400 device, the approximate cost for another
device may be obtained by multiplying this price by the appropriate
C.F. For example, if the price for a 7400 is 10p in the U.K., a 7404
(App. A2) should cost around 13p.

Numerical listing of devices included in this appendix

Type
555
2114L
2708
7400
7402
7403
7404
7405
7408
7410
7414
7416
7417
7420
7430
7432
7451
7474
7475
7476
7485
74121
74122
74125
74LS125
74126
74LS126
74LS138
74LS139
74150
74153
74154
74157
74190
74191
74196
74197
74198
74199
74LS240
74LS241
74273
74279

Appendix ref.
K
L2
LI
Al
A6
B6
A2
A2
A7
A3
A4
B2
A2
A5
Bl
A8
B3
Cl
C3
C2
HI
Jl
J2
B7
B7
B7
B7
Fl
Fl
G3
G2
F2
Gl
E3
E3
El
El
D3
D2
B8
B8
Dl
C4

Description
Timer
1024 X 4 bit static RAM
1024 X 8 bit static EPROM
Quad 2 I/P NAND gate
Quad 2 I/P NOR gate
Quad 2 I/P NAND gate (O/C)
Hex inverter
Hex inverter (O/C)
Quad 2 I/P AND gate
Triple 3 I/P NAND gate
Hex Schmitt inverter
Hex buffer inverter (O/C)
Hex buffer (O/C; non-inverting)
Dual 4 I/P NAND gate
8 I/P NAND gate
Quad 2 I/P OR gate
Dual AND-OR-INVERT gate
Dual D-type flip-flop
4-bit bistable latch
Dual J-K type flip-flop
4-bit magnitude comparator
Monostable multivibrator
Re-triggerable monostable multivibrator
Quad bus buffer (L 3-S)
Quad bus buffer (L 3-S)
Quad bus buffer (H 3-S)
Quad bus buffer (H 3-S)
3-8 decoder
2-4 dual decoder
16-1 line data selector
Dual 4-1 line data selector
4-16 decoder
Quad 2-1 line data selector
Decade counter (sync, up/down)
Binary counter (sync, up/down)
Presettable decade counter
Presettable binary counter
8-bit bidirectional shift register
8-bit single direction shift register
Octal buffer/line driver/receiver (INV L 3-S)
Octal buffer/line driver/receiver (NON-INV H/L 3-S)
Octal D-type flip-flops
Quad S R latch

270

COMMON GATES

A1 C.F. 1.0

V r r 4B 4A 4Y 3B 3A 3Y

Γ Γ Ώ Γ Τ ^
1A ' 1B 1Y 2A 2B 2Y GND

7400 QUAD 2 l/P NAND

A2 C.F. 1.3
1.6
2.7

V c c 6A 6Y 5A 5Y 4A 4Y

y fc>°i &»

1A 1Y 2A 2Y 3Α 3Υ GND

7404 HEX INVERTER
7405 HEX INVERTER (0/C)

For non-inverting buffer
with o/c use 7417

A3 C.F. 1.4

1C 1Y 3C 3B 3A 3Y rasaassai

njJl jJÜJüJljJüJUr
1A 1B 2A 2B 2C 2Y GND

7410 TRIPLE 3 l/P NAND

A4 C.F. 3.7

6A 6Y 5A 5Y 4A 4Y

r f ^ M R R R l ·

L-LMüMüMür
1A 1Y 2A 2Y 3A 3Y GND

7414 HEX SCHMITT INVERTER

A5 C.F. 1.6

2D 2C NC 2B 2A 2Y

r J^ lRMJ^J^^

LJliJIiJlAfljJ^^
1A 1B NC 1C 1D 1Y GND

7420 DUAL 4 l/P NAND

A6 C.F. 1.1

V c c 4Y 4B 4A 3Y 3B 3A

rjESRSSMH-i

ίΗίΚΐΚΐΚλΗΐΚίΚιΤ
1Y 1A 1B 2Y 2A 2B GND

7402 QUAD 2 l/P NOR

271

COMMON GATES (contd)

A7 C.F. 1.6
4B 4A 4Y 3B 3A 3Y

JTOlRRRl·

1A 1B 1Y 2A 2B 2Y GND

7408 QUAD 2 l/PAND

A8 C.F. 2.7

V c c 4B 4A 4Y 3B 3A 3Y

HlHzHiHiHiMüF
1Y 2A 2B 2Y GND

7432 QUAD 2 l/POR

B1 C.F. 1.6
SPECIAL GATES

B2

VCC NC H G NC NC Y

A B C D E F GND

7430 8 l/PNAND

C.F. 2.5

VCC 6A 6Y 5A 5Y 4A 4Y

y w y
ΙΖΗΙ]ΤΖΠΞΠ3Ϊ3ΪΙΓ

1A 1Y 2A 2Y 3A 3Y GND

7416 HEX BUFFER INVERTER
(O/C)

B3 C.F. 1.5 B4 C.F. 3.1
VCC 1C IB 1F IE 1D 1Y CC 1C 1Y 3C 3B 3A 3Y

LlJlLJl2J1jJ1jJi^^
1A 2A 2B 2C 2D 2Y GND

7451 DUALAND-OR-INVERT

n j J I j J I j J I j i ^
1A 1B 2A 2B 2C 2Y GND

7427 TRIPLE 3 l/P NOR

272

SPECIAL GATES (contd)

B5 C.F. 3.1

VCC 4B 4A 4Y 3B 3A 3Y

^jt iJljJljJliJI^^
1A IB 1Y 2A 2B 2Y GND

7486 QUAD 2 l/PXOR

B6 C.F. 1.3

VCC 4B 4A 4Y 3B 3A 3Y

1A 1B 1Y 2A 2B 2Y GND

7403 QUAD 2 l/PNAND(0/C)

B7 C.F. 4.5
VCC 4C 4A 4Y 3C 3A 3Y

,-RraRRranm. FW
„."ft. ["ft

1C 1A 1Y 2C 2A 2Y GND

74125
74LS125
7 4 L | 6 QUAD BUS BUFFER (H 3-S)

QUAD BUS BUFFER (L 3-S)* (type shown)

B8 C.F. 15.0
VCC 2G 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1

Era
1G 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND

74LS240 OCTAL BUFFER/LINE DR/RX
(INVERTED L 3-S)* (type shown)

74LS241 OCTAL BUFFER/LINE DR/RX
(NON-INVERTED 3-S WITH
x 4 = L & x 4 = H CONTROL)

3-S signifies 3-state outputs; HorL indicates
requirement for control output to enable gates.
The 74LS241 has four gates with each form of control.

273

C1 C.F. 2.7

FLIP-FLOPS

C2

VCC 2CL 2D 2CK 2PR 2Q 2Q

ιΖ]^]ΐΤΐ3ΐι]ΤΐΤΤΖι
1CL 1D 1CK 1PR 1Q 10" GND

7474 DUAL D-TYPE FLIP-FLOP
WITH PR & CL*

C.F. 2.9

IK 1Q 1Q GND 2K 2Q 2Q 2J

TZJTDTII^JGTEJLJIZI
1CK 1PR 1CL U V c c 2CK 2PR 2CL

7476 DUAL J-K TYPE FLIP-FLOP
WITH PR & CL*

C3 C.F. 3.5

1Q 2Q 2Q 12 GND 3Q 3Q 4Q

rJ^RFU^RRRFL
ID Qj

G

I
ID QH

1Q 1D 2D EN V c c 3D 4D 4Q~
3-4

7475 4-BIT BISTABLE LATCH

C4 C.F. 10.0

VCC 4S 4R 4Q 3S2 3S1 3R 3Q

1R 1S1 1S2 1Q 2R 2S 2Q GND

74279 QUAD SR LATCH

* Unused PR or CL inputs should be held high

274

REGISTERS

DI C.F. 24.0
VCC 8Q 8D 7D 7Q 6Q 6D 5D 5Q CLOCK

H Q D M HD QH HQ DH H D QH

ί II 13
(~iü_üh πυ η n u n nu u n

CLEAR 1Q 1D 2D 20. 3Q 3D 4D 4Q GND

74273 OCTAL D-TYPE FLIP-FLOPS
WITH CL

D2 C.F. 13.6
SHIFT INPUT INPUT INPUT INPUT

VCC LOAD H QH G QG F QF E QE CLEAR CLOCK

rn I I I A
SHIFT H Qu G Q r F Qp E QpCLEAR
LOAD H ü I

A QA B Qn C Qc

CLOCK
^ INHIBITl

K J INPUT Q. INPUT QR INPUT Q_ INPUT QnCL0CK GND
v ^ ' A A B B C C D U INHIBIT

SERIAL INPUTS

74199 8-BIT SINGLE DIRECTION
SHIFT REGISTER
(PARALLEL IN & OUT)

D3 C.F. 13.6
SHIFT
LEFT
SERIALlNPUT | N R UT , N P UT | N P UT

VCC ST INPUT H QH G QG F QF E QE CLEAR

TZE. I I I I S1 L H Q H G Q G F QF E QE

SO CLEAR

R A Q. B QR C Q r D Q n CK

I . I . I . I . I . I . I . I . I . I
SO SHIFT INPUT Q. INPUT QR INPUT Q r INPUT QD CLOCK GND

R.GHT A A B C D

74198 8-BIT BIDIRECTIONAL
SHIFT REGISTER
(PARALLEL IN & OUT)

275

COUNTERS E

E1
DATA INPUTS C |_ 0 CK

r J ^ R T ^ H M F U
Σ. ICLEARQn D B Qo

COUNT/LOAD

I,,I,,I,,I,,?
njiUJliJUtiitirLir

A . QA CM GND
LUAU ^ *

DATA INPUTS g
υ

PRESETTABLE DECADE OR BINARY
COUNTERS/LATCHES
Performs BCD, Bi-Quinary or
Binary counting

C.F. 9.0
8.0

74196 DIVIDE BY 2 (CLOCK 1 - QA)
&
DIVIDE BY 5 (CLOCK 2-Q D)
(LINKED FOR DIVIDE BY 10)

74197 DIVIDE BY 2 (CLOCK 1 - QA)
&
DIVIDE BY 8 (CLOCK 2-Q D)
(LINKED FOR DIVIDE BY 16)

E2 C.F. 9.0

RIPPLE
CARRY

V cc OUTPUT QA QB Qc QD * T L 0 AI

Ί^Γ
UA UB RIPPLE QÄ QR

CARRY
OUTPUT
CLEAR

CK Λ

f ' ..' ..' . . ι ~τ
ηΕΤΘΐ3Ί3^
CLEAR CLOCK A

74160
74161
74162
74163

COUNTER
TYPE

DECADE
BINARY
DECADE
BINARY

CLEAR
TYPE

ASYNC
ASYNC
SYNC
SYNC

SYNCHRONOUS 4-BIT COUNTERS

276

COUNTERS (contd) E

E3 C.F. 12.0
11.0

INPUTS OUTPUTS

DATA DATA
D

DATA R I P P L E ^
VCC A CLOCKCLOCKsJLOAD C D

\ y \ y
. RIPPLE
' CLOCK Έ

I 9 1 I
n^TlJJljJtiJlLlli^

DATA QR QA EN DOWN/Qc QD GND

INPUT OUTPUTS INPUTS OUTPUTS

SYNCHRONOUS UP/DOWN COUNTERS

74190 DECADE COUNTER
74191 BINARY COUNTER

ASYNCHRONOUS LOAD INPUT
POSITIVE-EDGE TRIGGERED
MAX/MIN FOR OVERFLOW/UNDERFLOW
RIPPLE CLOCK FOR OVERFLOW/UNDERFLOW

SAMPLE WAVEFORMS FOR 74191 BELOW

CLOCK I

MAX/MIN "

RIPPLE CLOCK_,
Count |13

JJJ
LOAD

"7~U"
14 | 15 |

1 |2l I 2 2 | 1 | 0 | 15 | 14 |

- * 4 - * Inhibit - ^ [«*—

(LNId)O
(α Nid) g ι

(9 Nid) 9
(3 Nid) L

;nd;no p9;o9|8S

1 1 Ί Ί
H H H H
H Ί H 1
H i l l
v a o α

saidiAivxa

indinOdONOHD313S
AHVNia 3dV SindNI 0 tf Ό '3 V

Moi S309 ind ino
3NO Λ1ΝΟ 'Q3iaVN3 N3HM

UZ

d3aOD3Q9L^i7 P91PL

r J ^ l F U ^ ^
A A A A A A A A A A

| 0 1 6 8 Ζ 9 9 * ε 2 ΐ

i-du ob-l

| 21 εΐ K 91 ID 2D 0 0 9 V

Y Y Y Y Y Y 1 1 1 1
V „ K ; 3 3 ,

601 dO Ζά

H3QOD3a HDV3

X
X

X

X

 _
i

X

X

X

-I

X

X
X

_
l

X
 X

X
-1

X

X

 X

CA 2A Ι Α 0Λ

s j n d m o

H H

1 H

H ~1

1 1

X X

v a

133|3S

1

1

1

1

H

D
aiqeug

s indu i

y3QOD3Q ινηα P «- z βεisiw.

QND'CAl 2AI ΙΛΙ ΟλΙ 91 VI Dl

A A A A T T
CA 2A LA OA J

i 2A IA OA

9 ? V I

εΑ2 2A2 IA2 0A2 92 V2 D2 3 D .

s ind inov iva 13313s 3 1 9 V N3

82D + V2D = 2D.

Π Η Η Η Η Η Η Η

Η Π Η Η Η Η Η Η

Η Η Ί Η Η Η Η Η

Η Η Η Ί Η Η Η Η

Η Η Η Η Ί Η Η Η

Η Η Η Η Η Ί Η Η

Η Η Η Η Η Η Ί Η

Η Η Η Η Η Η Η Ί

H H H H H H H H

H H H H H H H H

Lk 9A 9A frA ε Α 2A I A OA

s i n d j n o

H H H

1 H H

H 1 H

Ί 1 H

H H 1

1 H 1

H 1 1

Ί "1 Ί

X X X

X X X

v a D

± D 3 T 3 S

1 H

"1 H

1 H

1 H

1 H

1 H

Ί H

1 H

X 1

H X

. 2 D I D

3 H 8 V N 3

s indu|

99
99 dD

y3aoD3Q8^-e se is in
i n d i n o 318VN3 1D313S

QND Lk ID fl2D V2D Q 8 V

ΓΓΓΤ M ID 82D V2D D

9A frA εΑ 2Α lk OA

V V ϊ ϊ ϊ Ϊ
, 9A 9A frA εΑ 2Α IA OA, DO.

s±ndino v iva

Id

d suaaooaa

DATA SELECTORS

G1

G

C.F. 6.4

o INPUTS OUTPUT INPUTS OUTPUT

VCC cö f4 A 4 B ' 4Y f3 A 3 B ' 3Y

A I I I I I
G

S

I 1A

4A

1B

4B

1Y

4Y

2A

3A

2B

3B

3Y

2Y J

I I I I I „ l
πΐΛιΙΙιΓΙιΓΙΪΛίΙΙΐΓΐΛΓ
SELECTvIA I B , ,2A 2B . 2Y GND

INPUTS INPUTS
OUTPUT OUTPUT

INPUTS

STROBE

H
L
L

SELECT

X
H
L

Output Y

L
AS B l/P
AS A l/P

X = Don' t care

74157 QUAD 2 -> 1 LINE DATA SELECTOR

G2

DATA INPUTS
VCC 2G SELECT ^ 2Y

a i " i " i " r
2C3 2C2 2C1 2C0 2Y

H 2 0 R ¥ A "A m 1C3 1C2 1C1 ICQ

uZFüHlnifl^^
STROBE B ./OUTPUT GND

SELECT DATA INPUTS

IF STROBE IS HIGH, OUTPUT Y IS LOW

IF STROBE IS LOW, OUTPUT Y IS AS
DATA INPUT SPECIFIED BY BINARY
SELECT INPUTS (SEE BELOW)

C.F. 6.4

Select inputs

B

L
L
H
H

A

L
H
L
H

Selected data l/P

CO
C1
C2
C3

74153 DUAL 4 ^ 1 LINE DATA SELECTOR

279

DATA SELECTORS (contd) G

G3 C.F. 11.8
DATA INPUTS DATA SELECT

A t u ^ % ^ i r J i U % ^ l fofolfo-,

L±TjTTjptTT7Tf2rnT^̂
DATA INPUTS

_ W D GND
O OUT DATA
H PUT SELECT

IF STROBE IS HIGH, OUTPUT W IS HIGH
IF STROBE IS LOW, OUTPUT W IS AN
INVERSION OF THE DATA INPUT
SPECIFIED BY THE BINARY SELECT
INPUTS.
EXAMPLES

D C B A
L L L H
H L H L

Selected input
KPIN7)
10 (PIN 21)

74150 1 6 ^ 1 LINE DATA SELECTOR

COMPARATOR

H1 C.F. 10.0
DATA INPUTS

V c ĉ A 3 B2 A2 A1 B1 AO Β θ "

HIir^U^lRRRRrTU

-L·
B3

DAT/

I I I I I I
1 A3 B2 A2 A1 B1 AO 1

-1 B3 Bui
A < B A = B A > B A > B A = B , A < B

| IN IN IN O UT OUT OUT |

1 1 1 1 1 1
JbJüJüJlirLirLLn.

A < B A = P A > B A > B A = B A < B G \ % _ >» ^ '
ND

INPUT CASCADE
INPUTS

1 Comparing
inputs

A3, B3

A3 > B3

A3 < B3

A3 = B3
A3 = B3

A3 = B2

A3 = B3

A3 = B3

A 3 = B 3

A3 = B3

A3 = B3

A 3 = B 3

A2, B2

X

X

A 2 > B 2

A 2 < B 2

A 2 = B 2

A 2 = B 2

A 2 = B 2

A 2 = B2

A 2 = B 2

A2 = B2

A2 = B2

A 1, B1

X

X

X
X

A1 > B 1

A1 <B1

A1 = B1

A1 = B1

A1 = B1

A1 = B1

A I = B1

AO, BO

X

X

X

X
X

X

A 0 > B 0

A 0 < B 0

A 0 = BO

Α 0 - Β 0

A 0 = B 0

Cascading
inputs

<\> B

X

X

X

X

X

X

X

X

X
H

L

A < B A

X

X

X
X

X

X

X

X

X

H

L

= B

X

X

X
X

X

X
X

X

H

L

L

Outputs

A > B

H

L

H

L

H

L

H

L

L

L

H

A < B A

L

H

L

H

L

H

L

H

L

L

H

= B

L

L

L

L

L

L

L

L

H

L

L

7485 4-BIT MAGNITUDE COMPARATOR

280

MONOSTABLE MULTIVIBRATORS J

J1 Limits: RTl.4kS2 tu 40kΩ C.F. 3.0

R int = 2k«

VCC MC NC R/c"cextRext NC j

LÜliJlilliiliJlirLj
Q NC A1 A2 B Q GND

Inputs

AI A2 B

L X H
X L H
X X L
H H X
H i H
♦ H H
♦ ♦ H
L X t

| X L ♦

Outputs

Q Q

L H
L H
L H
L H
Π. 1_T
n u
n u
J-L U
J"L T_T 74121 MONOSTABLE MULTIVIBRATOR

J2 x + ! C.F. 4.5

VCC R/C R/C NC Cext

rJ^HRJTORRm

uJI^JliJliJliJliJl^r
A1 A2 B1 B2 CLR Q GND

Clear

L

X

X

X

H

H

H

H

H

H

H

♦
♦

A1

X

H

X

X

L

L

X

X

H

♦
♦
L

X

Inpu

A2

X

H

X

X

X

X

L

L

♦
i
H

X

L

ts

B1

X

X

L

X

t
H

t
H

H

H

H

H

H

B2

X

X

X

L

H

t
H

t
H

H

H

H

H

Outputs

Q

L

L

L

L

J-L

_TL

J~L

J~L

J~L

J"L

J"L

J-L

J "L

Q

H I
H

H

H

"LT

T_T

"LT

"i_r
"LT

T_r
i_r
i_r
i_r

tw(out) = 0.3 Cext RT for Cext > 1000 pF
SEE BELOW IF CEXT «1000 pF
LIMITS:RT5knto50kn,

Cext no restriction

7 000

4 000

2 000

1 000
700

400

200

100
70

20

ivcc =
. t A=25

5V'f i

a n

JHT

τΓΐΓΤ3
H f l ^

δξ

v

/

^

\ /

k ßR
r k R

<R

y
/
/

T =

t

/

5

Ίκί!

jknf f i
T = 30kfiffi

T= 10kn|j[
T =

U
5

u
<Ω ΙΙΓ
I Ulli

74122

20 40 100 200 400 1000
iming capacitance-pF

RE-TRIGGERABLE MONOSTABLE
MULTIVIBRATOR

281

SAMPLE
THRESHOLD"

TRIGGER'

Ji.

i~" | ' S I Output

Π

555 TYPE TIMER

+vcc

DO 4-

K

C.F. 2.0

Symbol used in text
(See page 50)

R Comp A

ΠΤΠ

£>HiJ

(K) Discharge
\ K J transistor

ΠΤΠ

Block diagram of ti

Free running frequency

ASTABLE
MULT IV IBRATOR

See also page 52

282

r,p -TL

I W
O 0 'KKF1

0.001 r z Y i

V\

10 100 1 10 100 1 10
MS ps ms ms ms s s

Time delay

MONOSTABLE
MULTIVIBRATOR

MAXIMUM RATINGS
V C C M A X = 1 8 V

DEVICE DISSIPATION:
UPTOTA M B = 55°C

600 mW
THEREAFTER DERATED
LINEARLY 5 mW/°C
AMBIENT TEMP. RANGE:
0-70°C
(PLASTIC ENCAPS).
MAX O/P CURRENT
200 mA (HIGH OR LOW)
NOTE; Vc c m i n = 4.5V

GNDpT

♦ Έ
Q [T

«Z£

KJ
l]Vcc

3 5
T|ts
T] FM

DEVICE IS
TTL COMPATIBLE

TO-5 STYLE
PACKAGE

MEMORY L
L1

VDD

NOMINAL SUPPLY VOLTAGES

Vcc
VDD
VBB

+ 5V
+ 12V
-5V

PROGRAMMING NOTES
After completion of an erase
operation (by shortwave high-
intensity ultra-violet light),
all bits are set to the 1 state.
Manufacturer's data should be
consulted for programming details.
This requires pin 20 to be raised
to +12V, and programming data to
be applied on the data lines for
each address in turn; a programming
pulse is applied to pin 18. Only
one pulse may be applied at once for
any given address. Programming re
quires several loops to be made

2708 EPROM through all addresses.
1024 bytes of 8-bits
INPUT LOAD CURRENT 10μΑ max.
TTL COMPATIBLE
Automatic programming is required

ERASABLE PROGRAMMABLE READ ONLY MEMORY (STATIC)

L2

vcc

^ |A7

σ> Ι Α 8

<s> | Α 9

S | l / 0 1

I/02

I/03

Ξ Jl/04

IvVE

cs
H

L

L

L

WE

X

L

L

H

I/O

Hi imp
H

L

Dout

Mode

Not selected
WRITE 1
WRITE 0
READ

SINGLE + 5V SUPPLY
TTL COMPATIBLE
SUPPLY CURRENT 70mA max.
INPUT LOAD CURRENT 10μΑ max.

2114L STATIC RAM
1024 bytes of 4-bits

Appendix B — selected TTL pinout
details and supply currents

This appendix contains information on most of the T T L devices
mentioned in this book. This information is tabulated in numerical
order for the type numbers, and is principally intended to provide
the following:

(a) Description of the output type (T-P for totem-pole; O-C for
open-collector; 3-S for three-state).

(b) Supply current (in mA) for standard and LS types.
(c) The number of pins.
(d) Page references to where the device is mentioned in the text.
(e) Pinout details. This is in coded form, and a key is provided at

the bottom of the right-hand page.

If the reader experiences any difficulty in using this table, the
App.A column provides a cross-reference to Appendix A for devices
listed therein. Comparison between these two appendices should
clarify usage of this table.

285

No.
Type Per
74- pack Description

Supply currents (mA)
Type

App. of Standard LS-type No. Page
A 0/P typ* max typ* max pins refs.

4 2 I/P NAND
4 2 I/P NOR
4 2 I/P NAND
6 Inverter
6 Inverter

AI T-P
A6 T-P
B6 O-C
A2 T-P
A2 O-C

14 22,89,100,194
14 22, 194

1.5 4.5 14
14 22,33,53,194

6 BufTer driver
4 2 I/P AND
3 3 I/P AND
2 4 I/P Schmitt
6 Scmitt inverter

O-C 20 40 -
T-P 15 33 5
T-P 6 17 2
T-P 17 32 3.5
T-P 30 60 10

14 194
9 14 22,25,33,194
3 14 25, 194
7 14 23

21 14 22,53,143,194

6 BufTer driver
2 4 I/P NAND
3 3 I/P NOR
1 8 I/P NAND
4 2 I/P OR

O-C 25 41
T-P 4 11
T-P 13 26
T-P 2 6
T-P 30 38

22,25
194

2 I/P NAND buffer
BCD -» dec. decoder 80 mA sink
BCD -> 7-seg dec/dr 47A 40 mA sink

LS47 24 mA sink
2 (AND)-OR-INVERT LS51only

: NCAfor'51

T-P 21
O-C 43
O-C 64

B3 T-P 5.5

13 16 92

D-type F/F T clock Cl T-P 17 30 4 8 14 44,56,194

75
76
85
86
97

121
122
125
132
138

153

154
155
156
157

160
163
164
165
190

191
195
197
279

1
2
1
4
1

1
1
4
4
1

2

1
2
2
2

1
1
1
1
1

1
1
1
4

4 bit bis latch
J-K type F/F
4-bit mag. comp.
2 I/P XOR
6-bit bin rate mplr

Monostable
Retrig. mono
Bus buffer
2 I/P Schmitt
3 - » 8 decoder

4-> 1 MPX

4 - * 16 decoder
2-» 4 decoder
2 -► 4 decoder
2-» 1 MPX

4-bit sync, ctr
4-bit sync, ctr
8-bit par'l o/p s/r
8-bit ser'l o/p s/r
UP/DN decade ctr

UP/DN binary ctr
4-bit S/R
P/S binary ctr
S-R latch

Neg-edge

(L121)

(LI54)

Decade -

clock

async. CL
Binary - sync. CL
Ser'l I/P
Par'l I/P
Sync.

Sync.
Par'l I/P & O/P
Par'l I/P

C3
C2
HI

--
Ti
.12
B7

-Fl

G2

F2

--Gl

---E3

E3

-El
C4

T-P
T-P
T-P
T-P
T-P

T-P
T-P
3-S
T-P
T-P

T-P

T-P
T-P
O-C
T-P

T-P
T-P
T-P
T-P
T-P

T-P
T-P
T-P
T-P

32
20
55
30
70

18
46
32
21

-
36

34
25
25
30

61
61
37
42
65

65
39
48
18

53
40
88
50

120

40
66
54
40

-
60

56
40
40
48

101
101
54
63

105

105
63
59
30

6
4

10.5
6

-
8

12
11
7
7

6

17
6
6
5

19
19
16
21
20

20
14
16
4

12
6

20
10

"
20
20
20
14
11

10

28
10
10
8

32
32
27
36
35

35
21
27

7

16
16
16
14
16

14
14
14
14
16

16

24
16
16
16

16
16
14
16
16

16
16
14
16

44, 56, 194
46,56,84,140,155
80
22, 155, 194
86

48
48
22
194
101, 143

101, 194

101
101, 140, 194
194
102

194
87, 143
58
58
87

87, 194
194
87, 194
55

* Typical supply currents are only approximate, and assume half I/P's high and half low - these figures not given by manufacturer and
have been suitably rounded.

T-P = Totem-pole
3.5 = 3-state
O-C = open circuit
'L' type given if no 'LS' version

286

Type

1A
1Y

1A

"*
*
1A
1A

*
«*
A

0
B

1A(1)

1CL

iQ
1CK
B3

B

Q
A l l
1C

A

1ST
GND =

IB
1A

1Y

IB
IB

B

1
C

2A(1)

ID

ID
1PR

1Y
IB

2A

2A
NC

C

2
LT

2B(1)

1CK

2D
1CL

2A
2Y

2Y

2B
1C

D

3
RBO

2C(2)

1PR

EN 3-4
U

2B
2A

3A

2C
ID

E

4
RBI

2D(2)

iQ

Vcc
vcc

2Y
2B

3Y

2Y
1Y

F ·

5
D

2Y

iQ

3D
2CK

I (A<B) I(A = B) I (A>B) 0 (A > B) 0 (A =

E

NC
A 2 |
1A

B

B
PI2; V c c

F

Al l
BIT
1Y

c

1C3
= P24;G1

O (0 - + 1 0 = P l - l l) ; O (l l - »
ID

SB/Ä

CL

A
SH/LD
DB

CL
CT/LD
1R

1ST

1A

CK

B
CKT
QB

J
ISO)

B

IB

A

QA
E
QA

_ K
c
1S(2)

NC = no connection
LT = lamp test
NCA =
RBO =
RBI = r
I = inpi
O o r Q =

A

A 2 |
B2 i
2C

G2Ä

1C2

z

Bf
CL
2A

G2B

1C1

Y

Q
Q
2Y

Gl

1C0
= P18;G2 = P19;I(A-»D
15 = P13-

1Y3

1Y

B

QB
F
EN

A
A
IQ

no connection allowed
ripple blanking O/P
ipple blanking I/P
it
= output

- 1 5)
1Y2

2A

C

QC
G

1Y1

2B

D

QD
H

DN/UP QC

B

&A

A-H =
Y,Z =
a-f =

C
CK2
2S

= inputs
= output

GND
GND

GND

GND
GND

GND

6
A

GND

GND

4D
2PR

3Y
3A

4Y

AS :
_ AS

3Y
2Y

_ AS '

- AS
- AS

Y
AS

GND
GND

1Y

2Q

2CL
B) 0 (A < B) G N D

EN(0)

GND
GND
GND

Y7

1Y
= P23-21);

1Y0

2Y

EN(P)

GND
QH
QD

D
GND
2Q

7 segments
(Numerals) = gate/functioi
LD =
SH =
DN =
CT =

load
shift

: down
count

GND

NC
Q
3Y

GND

GND

GND

GND

GND

CK
GND
GND

AS

GND
CK1
GND

n identity

3A
3B

4A

04

'00
3A
2A

'13 —
'10 —

NC

00

7
e

1C(2)

2Q

4Q
2J
B0

CK

Rint
Rint
3A

Y6

2Y

2Y0

3Y

LD

CL
QH
D

_

3B
3Y

5Y

3B
2B

NC

8
d

1D(2)

2PR

3Q
2Q*
A0

ST

Ce xt
NC
3C

Y5

2C0

2Y1

3B

EN(T)

QE
SER-I
C

SH/LD CK ί
QB
3Q

B
3R

PR =
CL =

4Y
4A

5A

3C
NC

G

9
c

1E(1)J

2CK

3Q
2Q
Bl

EN(I)

CRcx,
CR^xt
4Y

Y4

2C1

2Y2

3A

l QD

QF
A
LD

_̂ QD
D
3S(1)

preset
clear

G = enable
CK = = clock
S = select
P = pin
MX =
MN = = min

4A
4B

6Y

1Y
2C

H

D
b

: 1F(2)J

2D

GND
2K
Al

4B
4Y

6A

1C
2D

NC

C

a
1B(1)

2CL

E N 1 -
GND
A2

UN/CAS CL

NC
NC
4A

Y3

2C2

2Y3

4Y

QC

QG
B

NC
CRcxt
4C

Y2

2C3

A

4B

QB

QH
c

MX/MN ORC

QD

Ψ
3S(2)

4Q

Vcc
Vcc

Vcc

Vcc
vcc

- ►

vcc

*
B
g

vcc

vcc

2?§
B2

C

Vcc
Vcc
Vcc

Yl

A

2ST

4A

QA

Vcc
D
CK

QB

£c

-
-

_
'

~

A
f

-
-
2Q
iQ
A3

D

_
--
Y0

2ST

2D

ST

-
-

_
:

_
-

Vcc,
Vcc

-
-
iQ
IK
Vcc

Vcc

_
--
vcc

Vcc

vcc

RCOVcc

_ _
CK-IVcc
DA

QA

4-S

Vcc

^ vcc

vcc

{ See notes col.

00
02
03
04
05

08
10
13

17
20
27
30

37
45
47

51

74

75
76
85
86
97

121
123
125
132
138

153

154
155
156
157

160

164
165
190

191
195
197
279

287

Appendix C - electrical
characteristics

This appendix contains representative characteristics for the 54/74
series of TTL devices and the 4000 series of CMOS devices. TTL
data is based upon information from Texas Instruments, and
CMOS data is based upon information from RCA. Although every
care has been taken to ensure that this information is correct, no
responsibility can be taken for any errors which might occur, or for
the results of such errors. This information is supplied for guidance
purposes only, and it is the user's responsibility to check individual
device data sheets. The representative characteristics are provided
to give a general indication of typical parameters, but these charac
teristics do vary from device to device, therefore individual data
sheets should be consulted for positive information on other than the
indicated types.

For further information, the reader should contact appropriate
manufacturers. The following addresses are provided for the
reader's use:

RCA Solid State, Division, Somerville, N.J., 08876, USA.
RCA Limited, Sunbury-on-Thames, Middlesex TW16 7HW,

England.
RCA s.a., 4400 Herstal, Liege, Belgium.
Texas Instruments Ltd., Man ton Lane, Bedford, England.
Texas Instruments Inc., 13500 North Central Expressway,

Dallas, Texas, 75265, USA.

The amateur will find that enthusiast magazines in the electronics
field contain a large number of advertisements for 74 series plastic
DIL devices (standard and LS are the most common, with only a
few L and S types usually listed), and 4000 series CMOS devices.

See Chapter 14 for general information about logic families. Refer
to Appendix A for abridged TTL data, or Appendix B for TTL
pinout details and supply current figures.

288

TTL 54/74 family characteristics

ABSOLUTE MAXIMUM RATINGS

54 54L 54LS 54S
54H 74L 74LS 74S

Characteristic 74 Unit
74H Diode Emitter

inputs inputs

Supply voltage V c c

Input voltage max

Inter-emitter voltage max

Voltage at open-collectors '06, '07
(max) '16,'17,'26

others

Voltage at disabled 3-state O/P (max)

Free air temperature range 54 family
74 family

Storage temperature range

+ 7

+5.5

+5.5

+ 30
+ 15

+5.5

+8

+5.5

+5.5

+8

+ 7

+ 7

+ 7

+5.5

- 5 5 to+125 (All types)
0 to +70 (All types)

- 6 5 to+150 (All types)

+ 7

+5.5

+5.5

+ 7

+5.5

+ 7

+5.5

+5.5

+ 7

+5.5

V

V

V

V

V

°c

°c

STANDARD INPUTS - ONE LOAD (MAXIMUMS)

Characteristic 54 54H 54L/74L 54LS 54S Unit
74 74H 74LS 74S

Diode Emitter
inputs inputs

High level input current

Low level input current

IlH

IlL

40 50

-1 .6 - 2

10

-0.18

20

-0 .8

20 50

-0 .4 - 2

uA

mA

Input pull-up resistor 4 2.8 40 8 18 2.8 kQ

REPRESENTATIVE CHARACTERISTICS ('00 DEVICE)

Characteristic

High level
output current

Low level
output current

High level
input voltage

Low level
input voltage

IOH

IOL

VIH

V,L

54 family
74 family

54 family
74 family

54 family
74 family

max
max

max
max

min

max

54
74

-0 .4
-0 .4

16
16

2

0.8
0.8

54H
74H

-0 .5
-0 .5

20
20

2

0.8
0.8

54L
74L

-0.1
-0.2

2
3.6

2

0.7
0.7

54LS
74LS

-0 .4
-0 .4

4
8

2

0.7
0.8

54S

-1 .0
-1 .0

20
20

2

0.8
0.8

Unit

mA
mA

mA
mA

V

V

High level
output voltage

Low level
output voltage

Propagation delay

test conditions
(load C & R)

VOH

Vor.

tpLH

tpHL

54 family

74 family

54 family

74 family

L - > H level
output
H - > L level
output
cL
RL

min
typ
min
typ

typ
max
typ
max

typ
max
typ
max

2.4
3.4
2.4
3.4

0.2
0.4
0.2
0.4

11
22

7
15
15
400

2.4
3.5
2.4
3.5

0.2
0.4
0.2
0.4

5.9
10
6.2

10
25
280

2.4
3.3
2.4
3.2

0.15
0.3
0.2
0.4

35
60
31
60
50
4000

2.5
3.4
2.7
3.4

0.25
0.4
0.25
0.5

9
15
10
15
15
2000

2.5
3.4
2.7
3.4

0.5

0.5

3
4.5
3
5
15
280

V

V

ns
ns
ns
ns
PF
Ω

TTL BISTABLE SWITCHING CHARACTERISTICS

Parameter From To 7474 dual D-type 7476 dualJ-K type Unit
I/P 0/P

min typ max min typ max

Maximum frequency

Preset to output
delay

Clear to output
delay

Clock to output
delay

f
1max

tpLH
tpHL

tpLH
tpHL

tpLH
tpHL

PS
PS

CL
CL

CK
CK

15

§
s
Q

Q/S
Q/Q

25

14
20

25
40

25
40

25
40

15 20

16
25

25
40

25
40

25
40

MHz

ns
ns

ns
ns

ns
ns

290

CMOS 4000 series CMOS characteristics
ABSOLUTE MAXIMUM RATINGS

Characteristic

Supply voltage range VDD

Input voltage range (all inputs)

Free air temperature range

Storage temperature range

Power dissipation
per package

Power dissipation per output

T A

Istg

PD

A series
B series

ceramic Types
D ,F ,K

plastic Type E

ceramic Types
D ,F ,K

plastic Type E

transistor

Values

-0 .5 to+15
-0 .5 to+20

-0 .5 to (VDD

- 5 5 to+125

- 4 0 to+85

- 6 5 to+150

500

500

100

Unit

V
V

+ 0.5) V

°c

°c

mW

mW

mW

ELECTRICAL CHARACTERISTICS

Characteristic

Supply voltage operating
range

Low level output voltage

High level output voltage

Input leakage current

VDD

VoL

VoH

IIL
I l M

Conditions

vIN vDD

+ 5
+ 10
+ 15

0
0
0

+ 5
+ 10
+ 15

+ 5
+ 10
+ 15

+ 15
+ 20

A series

min typ

3 10

0
0
N/A

4.95
9.95
N/A

±io-

max

12

50
50

"5±

B series

min typ

3

5
10

1

15

0
0
0

Unit

max

18 V

V

0.05

4.95 5 V
9.95 10
14.95 15

±10"
μΑ

- 5 ± i

3-state output leakage I 0 L +20 ±10~4±2 μΑ
ICH

REPRESENTATIVE CHARACTERISTICS (CD4001A) - QUAD 2I/P NOR

Conditions Ceramic Plastic
Characteristic V0 VDD packages packages Unit

(V) (V) typ max typ max

Sink current
(N-channel)

Source current
(P-channel)

Propagation delay
H - > L

Propagation delay
1-»H

ID N min

IDP min

tpHL

tpLH

i +0.4 + 5
+0.5 +10

+ 2.5 + 5
+9.5 +10

+5
+ 10

+ 5
+ 10

1
2.5

- 2
- 1

35
25

35
25

0.4
0.9

-0 .5
-0 .5

50
40

95
45

1
2.5

- 2
- 1

35
25

35
25

0.3 mA
0.6

-0 .3 mA
-0.25

80 ns
55

120 ns
65

vss = ov

292

Appendix D — ASCII code

The American Standard Code for Information Interchange - or the
'ASCII code' - is widely used in digital and computer engineering.
It comprises seven bits, and codes a total of 128 alphanumerics,
punctuation marks, and machine codes.

ASCII is divisible into convenient subsets determined by the
three most significant bits (bits 5 to 7); thus subsets not required in a
particular application may be excluded. The table below is arranged
to clearly show these subsets. There are 64 characters used for
upper-case letters, numerals, common punctuation marks, and
space (SP). A further 32 characters specify lower-case letters, and
less commonly used punctuation marks. The remaining 32 charact
ers specify machine commands such as line-feed (LF), ring bell
(BEL), and an ineffective character (NUL); note that the latter is
chosen for the code 0000000.

Bit numbers
I > 0 0 0 0 1 1 1 1

, ► 0 0 1 1 0 0 1 1
, ► 0 1 0 1 0 1 0 1

7 6 5 4 3 2 1

0 0 0 0
0 0 0 1
0
0

0
0
0
0
1
1
1
1

1
1
1
1

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

NUL
SHO
STX
ETX

EOT
ENQ
ACK
BEL

BS
HT
LF
VT
FF
CR
SO
SI

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

CAN
EM
SUB
ESG
FS
GS
RS
US

SP
I
it

$
%
&
'
(
)
*
+
5

-

/

0
1
2
3
4
5
6
7

8
9

}

<
=
>
?

@
A
B
C
D
E
F
G

H
I
J
K

L
M
N
0

P
Q
R
S
T
u
V
w
X
Y
z
[
\
]
Λ
—

a
b
c

d
e
f
g
h
i
j
k

1
m
n
o

p
q
r
s

t
u
V

w
X

y
z
{
1
}

DEL

293

Note how conveniently the subsets are grouped. For example,
there is only one bit difference between lower-case and upper-case
(i.e. bit 6), and the upper three bits can be hard-wired if only the
numerals are required. If certain upper bits remain unchanged, they
may be ignored, thereby reducing the number of bits. An eighth
parity bit is normally used in a full code.

294

Appendix E — a note on drawing
standards

The logic symbols used throughout this book are drawn in general
compliance with the American MIL-STD-806B. The reason for this
choice is that these symbols are recognised by engineers worldwide,
and need little explanation. The majority of digital devices originate
from American manufacturers, and in consequence, the data sheets
relating to these devices generally comply with this M I L standard.
This standard utilises distinctively shaped curved symbols for logic
gates, and more complex devices are generally represented by
rectangles with appropriate labelling.

The standards relating to logic symbols have been in a state of
flux over the past decade. The International Electrotechnical Com
mission (IEC) has concentrated on producing an internationally
recognised standard for logic symbols, and this has led to the
development of various standards in interested countries of the
world, based upon rectangular symbols. The American version of
these symbols from the American National Standards Institute is
ANSI Y.32.14-1973 (IEEE Std 91-1973), which officially super
seded MIL-STD-806B as an industry standard in 1973, but en
gineers and manufacturers seem to prefer the M I L standard, which
lives on! Thus whilst military documentation in America may follow
the ANSI standard, commercial literature generally still uses the
older and more familiar M I L standard used within this book.

British Standards issued BS 3939: Section 21, on binary logic
elements, which follows the general principles set out in the IEC
standards. At the time of publication of this book, Issue 2 of BS 3939
is in force, being based upon IEC 117, but this is out of date and is
due for revision. This standard is only currently being introduced
into military documentation, and poses certain problems since it is
still incomplete, and is far from being as comprehensive as the ANSI
standard. The present IEC 117 standard is to be replaced by IEC
617, of which Part 12 deals with binary logic elements, and BS 3939
is to be revised in accordance with the revised IEC document, which
will introduce a selection of new symbols.

295

The author is currently involved in documentation for the services
in the U.K. , and is therefore familiar with the latest British
Standard and the problems it imposes by its lack of definition for
many logic devices, ranging from simple functions such as a
three-state gate, to common devices such as multiplexers and
decoders. He is also familiar with the problems that engineers find
with the new symbols, for they do mean a new learning exercise.
Bearing in mind that this book is intended for a worldwide market, it
was not considered appropriate to use the current BS 3939 or an
equivalent standard, since this would have introduced many diffic
ulties:

(a) Most engineers are not familiar with the 'new' logic symbols.
(b) Most engineers dislike the new logic symbols.
(c) Most data books use MIL-STD-806B symbols.
(d) Since many devices have not been allocated symbols, the newer

standards cannot be used exclusively.
(e) The use of the newer style symbols necessitates considerable

explanation, and sufficient space is not available.
(f) It is easier to become familiar with the symbols most commonly

used in manufacturers ' literature, or conversions will be nec
essary.

Having said all this, it is only fair to state that the author
recognises the advantages offered by the new style symbols once
everyone understands them and they are sufficiently comprehensive. It is worth

L C1
C2
C3
R

Figure 1. Bidirectional shift register
(BS3939, Issue 2, Section 21)

noting that these symbols do allow logic diagrams to be significantly
condensed where it is not important to show actual devices; this
allows block diagrams to be replaced by logic diagrams which tell an
au-fait engineer all he needs to know about the logic functions
performed without the need for amplifying text.

Figure 1 is provided as an example of the new style symbols, and
depicts a bidirectional shift register. It may be appreciated that

1D
3D

3D

3D
2D
3D

C1C21

C1C21

C1C2~|

C1C21

296

symbols such as these require considerable familiarity before they
may be used without further explanation, hence the reason for
ayoiding them in this book.

In the example shown, input a provokes a shift action from top to
bottom, input b provokes a shift from bottom to top, and input c
controls the parallel action. Input d is a common reset. The 'D'
indicates D-type flip-flops, and the H ' symbol indicates a postpone
ment of the change of state of the output.

Equivalent logic symbols in different standards
Figure 2 is provided to show the equivalent logic symbols between
standards for simple logic gates.

i > - :£}- -0- - -Q-
XOR Inverter

Figure 2. Equivalent logic symbols: left-hand examples are MIL-
STD-806B; right-hand examples are BS 3939 or ANSI Y.32.14-
1973 or IEC 117.

Special symbology used within this publication

It is explained elsewhere within this book that the logic symbols
used are restricted to the symbols normally used on data sheets for
particular devices. Where the symbol is not truly representative of
the purpose of a gate (although it is logically equivalent), a ' f
symbol is used inside the gate to indicate that it is not performing its
expected function. The symbols shown in Figure 3 with a 'dagger'
symbol are as they might appear in this book; adjacent to these
symbols are the true logical equivalents of the functions they
represent.

Inverted input NOR gate Inverted input N A N D gate

Inverted input OR gate Inverted input A N D gate

Figure 3. Logic symbols used in this book with dagger symbols and
their equivalent logic functions

297

Index

Acoustic coupler, 108
AND gate, 18
Arithmetic devices, 77
Arithmetic logic units, 79
ASCII code, 95, 112,293
Assembly language, 237
Astable circuits, 52
Asynchronous, 83

control logic, 142
data transmission, 107

Audiostages, 163, 188,251

Baud,107
Binary, 63

arithmetic, 72
coded decimal system, 68
fractions, 72
rate multiplier, 86

Bistables,
D-type, 44, 81
J-K type, 46

Bits, 5, 55, 64
Boolean algebra, 26
Bubble memories, 211
Buffer/inverter gates, 20
Bus, 208
Byte, 66

Characters, 106
Clock, 44
CMOS data, 291
CMOS logic, 117, 120
Code of practice, suggested, 147
Combinational logic, 42
Communications terms, 106
Comparators, 79
Complementing, 10
Construction, 151
Control logic, 136

Cost factor, 62, 269
Counters, 81,87

asynchronous, 81
synchronous, 85
up/down, 82, 87

Crosstalk, 106

Data,
bit, 20
highway, 22 (or bus, 104)
parallel/serial, 104
selectors, 101
transmission, 103

Decoders, 100
Delay circuits, 127
De Morgan's theorem, 28
Design examples,

CMOS, 157
microprocessor, 247
TTL, 167

DIL encapsulation, 21
Diode logic, 8
Direct Memory Access (DMA), 218
Dividers, 87
Don't care conditions, 16
Dot matrix displays, 94
Drawing standards, 295
DTL logic, 10, 113
Duplex, 106
Dynamic logic, 118
Dynamic RAM, 211

ECL logic, 116
Edge detection, 128
Edge triggered, 45
EPROM,210
Exclusive-OR gate, 19
Execution of instruction, 213
Exercises on 'AUTONIM', 197

Fanout, 10, 13
Flags, 217, 238
Floppy disc, 213
Flowcharts, 255
Frequency shift keying (FSK), 108
Full adders, 77
Function tables, 42

Gas discharge tubes, 98
Gates, 15
Glitch, 84

Half-duplex, 106
Handling precautions, 153
Hardware, 207
Hexadecimal system, 68

I2L logic, 117
Initial reset, 132
Instruction execution, 213
Interfacing circuitry, 130
Interrupts, 217
Inverters, 20

Karnaugh maps, 29

Lamp driving, 91
Latches, 39, 42, 55, 126

transparent, 46, 55, 186
Light emitting diodes (LEDs), 88
Liquid crystal displays (LCDs), 96
Logic,

families, 113
networks, 24
states and levels, 9
type, choice of, 149
type, positive/negative, 9

LSI, 4

Machine code, 6, 236
Mark/space, 104
Mask, 239
Master/slave, 46
Memory, 210

mapping, 251
pointers, 210
types of, 210

Microprocessors, 207
6800 MPU, 207
6800 system, 207
analogue interfacing, 219
and random logic, 215
COSMAC MPU, 223

assembly language, 237
I/O ports, 232
timing, 230

design example, 247
external data handling, 217
external data transfers, 215
serial interface, 219

Minimisation, 26
Modem, 104, 107
Monostables, 48
MOSFET, 4
Multivibrator, 51
Multiplexing displays, 94, 97
MSI, 4

NAND gate, 15, 18
Noise margins, 13
NOR gate, 19
Number systems, 63

Octal system, 66
One-shot, 48
Optimisation, 26, 31, 164, 191
OR gate, 19

Parity, 108
Pinning-out, 147, 191
PMOS dynamic logic, 118
Port, 215
Power-on reset, 132
Power supplies, 134, 159, 194
Programs, 238
PROM, 210

Race hazard, 39
Radix, 63
RAM, 211
Random logic, 207
Refresh cycle, 95
Registers, 55, 249
Ripple effect, 84
ROM, 210

300

Schmitt trigger, 23
Schottky,

diodes, 4, 115
transistors, 115

Scratchpad registers, 223
Sequential logic, 42
Serial/parallel, 57
Seven-segment displays, 92
Shift registers, 57
Sign bit, 74
Simplex, 106
Software, 207, 236

design, 253
development, 242
languages, 236

SSI, 3
Stack, 209
Starburst displays, 95
Start bit, 107
State encoder, 142, 182
Staticise, 42
Staticisers, 249
Stop bit, 107
Strobe pulse, 85
Subroutine, 239
Synchronous,

clocking, 58
control logic, 139
counters, 85
data transmission, 106
loading, 61

Ten's complement, 74
Testing, 153, 196
Three-state logic, 21
Time-out, 49
Timers, 555-type, 50, 282
Time-sharing, 99
Timing, 36

diagrams, 36
Transistors in logic circuits, 10
Transparent latch, 46
Truth table, 15
TTL,

data, 269, 285, 289
logic, 11,114, 118
gate, 11

Two's complement, 74

UART, 110

Words, 66

XORgate, 19

301

