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Preface

Revealing the structure of DNA has changed the way life science research is carried
out; it was to become a new era of study and understanding of biological systems.
Since the last century, life science research has adapted to become more and more
interdisciplinary, which encompasses biology, engineering, and data science (Bio-
informatics). Together, this collaborative effort enables us to generate enormous
amounts of knowledge, and in tandem, enormous and complex datasets. Life science
datasets, generated by research groups, bring us several challenges. Genomics data,
as an example, doubles every 8 months, which consequently brings several chal-
lenges for data acquisition, processing, and retrieval.1 The research community
needs to maximize utilization and reuse of published knowledge and datasets to
make discoveries, and advance our understanding of biological systems under health
and disease.

To this end, Practical Guide to Life Science Databases considers two categories
of databases. The first category was the knowledgebase which aims at collection and
integration of the knowledge and findings in life science (e.g., The GENCODE
Portal, RefEX, CHIP Atlas etc.). The second category was the repository of life
science dataset (e.g., The International Human Epigenome Consortium (IHEC)
portal), a repository of datasets. By discussing these types of life science databases
the book aims at providing life science researchers with the necessary knowledge
about the untapped opportunities available in these databases, and how it could be
used to advance basic research and applied research findings; all of this in the aim of
transforming them to the benefit of human life.

The book in its current edition brings together expertise from renowned
researchers in the field of life science databases and brings their experience and
tools to the fingertips of the researcher. The book takes a bottom-up approach to
explain the structure, content, and usability of life science databases. For each of the
databases, the chapter authors provide a detailed explanation of the content,

1Broad Institute.
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structure, query, and data retrieval methods. The composition of the book chapters
was summarized in Fig. 1. As the figure illustrates, the chapters cover Genomics,
Proteomics, and Epigenomics database for both human and mouse data. The current
edition introduces a new single-cell transcriptomic database scIVA (Single Cell
Interactive Visualisation and Analysis Data Mining Platform). In addition, we
dedicate a chapter which provides an up-to-date comprehensive review of single-
cell RNA-seq databases.

This book will provide an indispensable tool for life science researchers. The
collection of chapters will cover the necessary information for a wide audience in
this interdisciplinary field, covering all bases. The reader will be made aware of
available life science databases, their features, and how they could benefit from their
usage in their area of expertise. The book is aimed at providing an understanding of
the practical use of life science databases and enables the reader to use the provided
tools in practice.

The following are some points summarizing the main features of this edition:

• It provides the latest, comprehensive information of a set of life science databases
that are centered in life science research and drive the development of the field.

• It systematically introduces the fundamental principles, rationales, and method-
ologies of creating and updating life science databases.

• It include a user-oriented illustration of how to interact with each database by
giving demonstration examples and use cases.

• It give the reader the necessary knowledge and provides any researcher with a
fundamental grip on the subject to be able to publish and share their data with
collaborators all over the world.

To meet the ever-evolving and rapid development in life science databases, in the
near future, we plan to make the book as Springer Major Reference Works
(or MRWs) by expanding the content to cover more life science databases.

Fig. 1 Current edition of Practical Guide to Life Science Databases covers five types of life
science databases. The shadow box indicates a review chapter rather than a database
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We hope that the reader of the book will benefit greatly from the knowledge and
will utilize it in their research, and for aspiring life science students, we hope this will
provide excellent material in their course work at university.

We would like to thank the contributors to this edition of Practical Guide to Life
Science Databases for their excellent contributions and effort to help us publish
this book.

Yokohama, Kanagawa, Japan Imad Abugessaisa
Takeya Kasukawa
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Chapter 1
GENCODE Annotation for the Human
and Mouse Genome: A User Perspective

Saleh Musleh, Meshari Alazmi, and Tanvir Alam

Abstract The GENCODE project provides comprehensive annotation of the func-
tional elements in human and mouse genomes with high accuracy. The annotations
are released for the benefit of biomedical and genomic research domain. In this
initiative, we have provided a basic user manual or roadmap to facilitate the
exploration of GENCODE annotation. We have provided a brief history of
GENCODE and the general working principles that GENCODE adopts for their
annotation. Then, we have introduced few workflows to guide users in the extraction
and exploration of GENCODE resources for downstream analysis. The structure of
this chapter is as follows. We started by introducing the GENCODE from a historical
perspective, the needs and objectives that led to its creation, and being one of the
most reliable sources for human and mouse genome functional elements. Afterward,
we provided an overview of the GENCODE database. Mainly, different types of
annotated genes, their description, basic statistics, and how they were created with
emphasis on the latest four releases. Following this database overview, we described
different annotation methods adopted by the GENCODE consortium for both human
and mouse genomes along with validation methods. Besides GENCODE annotation
methods, the user can find GENCODE annotation data format fields and definitions
as they appear in the GTF and GFF3 files. Then we described three different ways to
access GENCODE annotations via the GENCODE portal, Ensembl Genome
Browser, and UCSC Genome Browser. We concluded with three use cases show-
casing how to explore the GENCODE annotation for answering research questions.
Source code, interactive user guide, and other files are made available for users at
https://github.com/smusleh/BookChapterGENCODE.

Supplementary Information The online version of this chapter (https://doi.org/10.1007/978-981-
16-5812-9_1) contains supplementary material, which is available to authorized users.

S. Musleh · T. Alam (*)
College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
e-mail: talam@hbku.edu.qa
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College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia
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1.1 Introduction

In 2003, the National Human Genome Research Institute (NHGRI) launched a
project named The ENCyclopedia Of DNA Elements (ENCODE) to discover
structural and functional elements (e.g., genes, transcripts) in the human genome
(ENCODE Project Consortium 2004). It was essential to conduct such an effort as
the protein-coding sequences, the best-defined functional element of the human
genome, was still incomplete mainly due to the gap in the human genome. The
initial pilot study covered nearly 1% of the human genome covering 44 different
regions totaling 30 Mb sequence data (ENCODE Project Consortium 2004). Then,
the GENCODE consortium (https://www.gencodegenes.org/) was built to identify
and map protein-coding genes in the ENCODE regions (Harrow et al. 2006). The
initial release of GENCODE covered 487 loci (420 were coding) having 2087
transcripts (1087 were coding) (Harrow et al. 2006). After completing the pilot
study, the Wellcome Sanger Institute was awarded a research grant to scale up this
project, GENCODE, to cover all types of gene features. In 2013, ENCODE consor-
tium was awarded another grant to extend the GENCODE project to cover the mouse
genome as well (Mudge and Harrow 2015). Currently, GENCODE is one of the
largest and most reliable sources for human and mouse functional elements. There-
fore, it is considered as reference annotation by many consortia like ENCODE, the
1000 Genomes Project (Siva 2008), GTEx (GTEx Consortium 2013), Human Cell
Atlas (Regev et al. 2017), Exome Aggregation Consortium (Lek et al. 2016),
International Human Epigenome Consortium (Stunnenberg and Hirst 2016), etc.

1.2 GENCODE Database Overview

In GENCODE, there are mainly four types of genes that are annotated, they are:
(a) protein-coding genes, (b) pseudogenes, (c) long non-coding RNAs (lncRNAs),
and (d) small non-coding RNAs (sncRNAs) (Frankish et al. 2019). Recently
GENCODE introduced a new type of annotation for immunoglobulin/T-cell receptor
genes as well. According to the GENCODE protocol, a locus is considered as
protein-coding genes where sufficient evidence of coding sequence (CDS) is present.
GENCODE provides three levels of confidence for protein-coding genes as well as
other types of gene annotation. Levels 1, 2, and 3 represent “validate,” “manual
annotation,” and “automated annotation,” respectively, for the gene annotations
(Harrow et al. 2012). GENCODE also annotates pseudogenes which are derived
from protein-coding genes. Still, it contains variations in stop codons, frameshift
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insertion or deletion (INDEL), aberrant insertion, or truncation, which fails to
provide any evidence of proper transcription process. Pseudogenes identification is
important task for GENCODE (Frankish and Harrow 2014). They represent inactive
protein-coding regions due to mutations and they frequently occur in many different
organisms and species (Zheng et al. 2007). Under GENCODE annotations,
pseudogenes are classified into different categories based on the event, mutation,
evidence level, as shown in Table 1.1.

GENCODE does not apply strict length threshold of 200 bp for lncRNA anno-
tation, albeit few annotated lncRNAs fall below this threshold (Frankish et al. 2019;
Derrien et al. 2012). SncRNAs are entirely annotated by automated GENCODE
pipelines that consider the homology to known sncRNAs and their predicted sec-
ondary structure. GENCODE provides the annotation for both human (GRCh37/
GRCh38) and mouse genome (mm9/mm10). From the release of GENCODE
20 (on August 2014), GENCODE annotations have been exclusively created on
the GRCh38 human assembly and those releases have been mapped from GRCh38
to GRCh37 for users (Frankish et al. 2019). Figure 1.1a, b highlights the summary
statistics of the recent four GENCODE releases for human (release 35–38) and
mouse (release 24–27), respectively. It is important to emphasize that the latest
four releases for human annotation were all published in 2020. The total number of
protein-coding genes, pseudogenes, sncRNA genes, and lncRNA genes are almost
same in the latest four releases (Fig. 1.1a). But the number of human transcripts has

Table 1.1 Summary of pseudogenes from GENCODE annotation

Pseudogene
class Event Mutation Evidence level

Processed
pseudogene

Retrotransposition Turn-off mutation after the
event

No transcription

Transcribed
processed
pseudogene

Retrotransposition Turn-off mutation after the
event

Only transcribed

Translated
processed
pseudogene

Retrotransposition Turn-off mutation after the
event

Translated

Unprocessed
pseudogene

Duplication Turn-off mutation after the
event

No transcription

Transcribed
unprocessed
Pseudogene

Duplication Turn-off mutation after the
event

Only transcribed

Translated
unprocessed
pseudogene

Duplication Turn-off mutation after the
event

Translated

Unitary
pseudogene

A fixed disabling
mutation

Unambiguous functional
ortholog

Based on previous
functional protein-
coding genes

Polymorphic
pseudogene

A fixed disabling
mutation

The presence of a validated
dbSNP (Sherry et al. 2001)
entry

Based on the previous
functional protein-
coding gene
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changed significantly in the latest four releases (Fig. 1.1a). Conversely, the latest
four releases for mouse annotation were published in 2019–2020 and the total
number of genes and transcripts have not changed much in the latest four mouse
releases (Fig. 1.1b).

1.3 Annotation Method Adopted in GENCODE

1.3.1 Overall Annotation Methods Adopted by GENCODE

The whole process of compiling the functional elements in GENCODE is a tedious
work that requires the seamless integration of computational analysis, manual
curation, and experimental validation from four founding members: Human and
Vertebrate Analysis and Annotation (HAVANA) group at the Wellcome Trust
Sanger Institute, Yale University, University of California Santa Cruz (UCSC),
and Centre for Genomic Regulation (CRG) (Frankish et al. 2019). Later three
other groups: Ensembl, Massachusetts Institute of Technology (MIT), and Centro
Nacional de Investigaciones Oncológicas (CNIO) joined GENCODE in 2007
(Frankish et al. 2019). HAVANA group having many members and collaborators

Fig. 1.1 Summary statistics of the available annotation at GENCODE. (a) Statistics for the latest
releases for human annotation. (b) Statistics for the latest four releases for mouse annotation

4 S. Musleh et al.



is mainly involved in manual annotation (Bignell et al. 2009). Figure 1.2a highlights
the collaborators of GENCODE and their key roles.

Computational predictions are generated by different groups independent of
manual annotation. The predictions are used as both a guide for novel annotation
and the validation of completed annotation. Experimental validation of novel tran-
scripts is validated by RT-PCR, RACE, and RNA-Seq as well (Bignell et al. 2009).
Figure 1.2b highlights the overall pipeline of GENCODE to generate the final
annotations.

1.3.2 Automated Annotation Approaches

For automatic annotations, Ensembl gene annotation pipeline (Flicek et al. 2012)
was leveraged for protein-coding genes. RefSeq and UniProt (UniProt Consortium
2012) (“protein existence” levels 1 and 2) sequences were considered as input for
this pipeline. For novel protein-coding genes, GENCODE leveraged PhyloCSF (Lin
et al. 2011) to identify potential genes with evolutionary signature. For long
intergenic non-coding RNA (lincRNA) genes cDNA sequences and the regulatory
data from the Ensembl project were used for annotation. If an lncRNA overlaps
protein-coding genes in any exon at the same strand, it is filtered out (Derrien et al.
2012). The overlapped lncRNA genes (“genic”) were further categorized as
“exonic,” “intronic,” or “overlapping.” The lncRNAs not intersecting with any
protein-coding loci were defined as “intergenic” was further categorized as
“sense,” “convergent,” or “divergent.” Although the standard definition of lncRNAs
requires a transcript to have more than 200 bases (Alam et al. 2020), the GENCODE
lncRNA annotation contains a more than hundred spliced transcripts with length less
than 200 bases, and there exists evidence of expression in those positions as well
(Harrow et al. 2012). The Rfam (Rangan et al. 2020) and miRbase (Kozomara and
Griffiths-Jones 2010) were used as input for Ensembl ncRNA prediction pipelines to
annotate short non-coding RNAs (sncRNA). Three different pseudogene annotation
pipelines were used to annotate the pseudogenes in the GENCODE consortium

Fig. 1.2 (a) Participating groups and their main role in GENCODE. Figure adapted from (Bignell
et al. 2009). (b) High-level summary of GENCODE pipeline. Figure adapted from (Harrow et al.
2012)
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(Frankish and Harrow 2014) and they were RetroFinder (Kent et al. 2003),
PseudoPipe (Zhang et al. 2006), and PseudoFinder (Zheng et al. 2007). And
manually annotation follows the computational annotation. It is important to empha-
size that pseudogenes are computationally annotated as like protein-coding genes
and non-coding RNA genes. It is the manual annotation that discriminates
pseudogene loci from the functional genes.

1.3.3 Manual Curation Approaches

For manual annotation, GENCODE aligns the transcript to the genome. Then the
genomic sequence, rather than the cDNA sequence, is considered as a reference
(Harrow et al. 2012). The advantage of considering genomic annotation instead of
cDNA annotation is that the alternative spliced variants can be determined with high
confidence, as partial ESTs and protein evidence can be considered. But cDNA
annotations are constrained to full-length transcripts. Additionally, genomic anno-
tation can support a more robust analysis for pseudogenes. All the manual annotation
for protein-coding genes, pseudogenes, and lncRNA genes were performed follow-
ing the guidelines of the HAVANA (ftp://ftp.sanger.ac.uk/pub/annotation). In brief,
HAVANA considers the transcriptomic (mRNA and EST) and proteomic (from
UniProt and GenBank) data. Then this data is aligned to bacterial artificial chromo-
some (BAC) clone using BLAST. Then gene models were manually determined
from the alignments by HAVANA annotators considering Otterlace (Searle et al.
2004). Dotter (Sonnhammer and Wootton 2001) was used by HAVANA annotators
to resolve any alignment which was unclear or absent from regular Blixem Align-
ment Viewer (Sonnhammer and Wootton 2001). Short alignments (lower than
15 bases) were detected using Zmap (http://www.sanger.ac.uk/resources/software/
zmap/). All canonical splice sites were verified and all non-redundant splicing
transcripts from individual locus were used to construct the final transcript model.
After constructing the transcript structure, the protein-coding potential of a transcript
was determined based on the similarity to known proteins, orthologous and
paralogous proteins, based on the presence of Pfam functional domains (Finn et al.
2014). Details of the manual annotation are highlighted in (Harrow et al. 2012). To
leverage a detailed investigation of putative pseudogene loci that were identified by
three computational tools (RetroFinder, PseudoPipe, and PseudoFinder),
GENCODE pseudogenes are all manually validated. For manual annotation, anno-
tators take the support of multiple tools, like Zmap1 (a genome browser to provide
faster access to voluminous data), Dotter2 (dot-matrix based program to compare
two sequences in more detail), Otter3 (a graphical interactive client for human

1https://www.sanger.ac.uk/tool/zmap/
2https://sonnhammer.sbc.su.se/Dotter.html
3https://www.sanger.ac.uk/tool/otter/
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annotators for comparing multiple sources of evidence; previously known as
Otterlace), Blixem4 (an interactive pairwise sequence alignment browser under
seqtools), etc. GENCODEmanual annotation demonstrated a near perfect specificity
for pseudogenes at the cost of sensitivity (Frankish and Harrow 2014).

1.3.4 Merging the Automated and Manual Curation Results

Merging the results from the automated pipeline and manually curated pipeline is a
complex task carried out by the GENCODE consortium since last decade. In
summary, when transcript models from both the HAVANA and Ensembl agree for
all coding exons and all non-coding exons, then the HAVANA model is used for
GENCODE annotation. When transcript models from both the HAVANA and
Ensembl agree on all exons, but a mismatch in the outer 50-start or 30 -end, only
then the HAVANA model will be considered for the GENCODE annotation. When
transcript models from both the HAVANA and Ensembl agree on all exons, but a
structural difference is observed in non-coding regions, both the HAVANA and
Ensembl models will be considered for the GENCODE annotation. Moreover, when
transcript models from both the HAVANA and Ensembl have unique exon locations
and structure, then both the HAVANA and Ensembl models will be considered for
the GENCODE annotation.

For more rigorous annotation of the genes, other tools are used under the
GENCODE pipeline. For example, APPRIS (Rodriguez et al. 2013) was used to
annotate splice isoforms for protein-coding genes. Among all the alternatively
spliced variants of protein-coding genes, one of them is labeled as “principal”
isoform based on structural, functional, and cross-species conservation of the tran-
script. The details of this APPRIS “tag”5 can be found in the 9th column of General
Transfer Format/General Feature Format (GTF/GFF3)6 file shared in GENCODE
portal. Moreover AnnoTrack software system was developed by GENCODE con-
sortium for tracking and managing information coming from multiple sources,
collaborators and make efficient prioritization and proper resolution of problems
during this complex process of annotation (Kokocinski et al. 2010).

1.3.5 Experimental Validation

Multiple experimental approaches RT-PCR, RACESeq, RNA Capture Long
Sequence (CLS) (Lagarde et al. 2017) have been leveraged by the GENCODE

4https://www.sanger.ac.uk/tool/seqtools/
5https://www.gencodegenes.org/pages/tags.html
6http://asia.ensembl.org/info/website/upload/gff.html
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consortium to annotate as well for the validation of genes. For protein-coding genes
and transcripts, multiple mass spectrometry datasets have been used to remove false
positives (Frankish et al. 2019). The 5’ and 3’ end of GENCODE lncRNA annota-
tions were less supported by CAGE (Kodzius et al. 2006) and PET (Hon et al. 2017).
To improve the lncRNA annotation, the GENCODE consortium developed the CLS
method (Lagarde et al. 2017) which supports to capture long length lncRNA
transcripts often representing full length complete 50-to-30 RNA molecules which
substantially support the manual annotation of the lncRNA transcripts. To validate
the annotations, GENCODE leveraged RT-PCR and multiplexed sequence readout
(Howald et al. 2012) for the novel and putative transcripts. For human GENCODE
version 3 up to 19, eight different human tissues, i.e., liver, lung, brain, kidney,
skeletal muscle, spleen, and testis were heart, experimentally tested by RT-PCR and
confirmed 78% of all splice junctions tested (Frankish et al. 2019). GENCODE also
performed 50 and 30 nested RACE experiments in seven different tissues (i.e., liver,
lung, brain, kidney, skeletal muscle, spleen, and testis) followed by long-read
sequencing revealing 10,380 novel splice junction candidates (Frankish et al. 2019).

1.3.6 Annotation from Mouse Genome

The mouse reference genome annotation was started in 2012 by the GENCODE
consortium. Mostly, it has been annotated using the clone-by-clone approach. The
entire mouse reference genome was annotated manually completely. There were
133 orthologous loci for human protein-coding genes annotated and identified
(Mudge and Harrow 2015). HAVANA group uses bespoke software to align
sequences and other information for a genome (Harrow et al. 2012; Harrow et al.
2014). On the contrary, Ensembl produced gene set for mouse genome from
computational pipelines (Cunningham et al. 2015). Genome annotation is useful
because of the genome scaffolds when aligning of transcriptional evidences. How-
ever, errors could occur and propagated in the models due to lack of transcript
evidences. Frequently HAVANA uses other species annotations to annotate mouse
models (Mudge and Harrow 2015). Usually, the data related to mouse genes are
updated every quarter year (Harrow et al. 2012). These releases are results of the
combination of the manual and combination models. Even though, the manual is
more robust, but the computational model is essential since it fills up the gaps and the
undiscovered and unthought-of data (Guigó et al. 2006). HAVANA group annotated
pseudogenes and lncRNAs in human more than in mouse (Derrien et al. 2012) (Pei
et al. 2012). However, there are more than 2000 protein-coding genes found in
mouse compared to human. Consensus Coding Sequence (CCDS) project is collab-
oration project to annotate protein-coding genes in mouse and the genes that are
agreed on by the HAVANA, Ensembl, RefSeq, and the European Conditional
Knockout Mouse Consortium (EUCOMM).
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1.4 Data Format Available for GENCODE Annotation

Annotations are provided in both GENCODE GTF (General Transfer Formal)
format to ENCODE Data Coordination Center (DCC) to integrate with genome
browser. Moreover, GFF3 (General Feature Format version 3) format is also pro-
vided for all annotation (Harrow et al. 2012). Both GTF and GFF hold nine fields in
tab-delimited format (Fig. 1.3a). The fields are (a) chromosome name, (b) source of
annotation (HAVANA, Ensembl), (c) feature type (exon, CDS, start codon, stop
codon, UTR, selenocysteine, gene, transcript,), (d) start coordinate (1-based index),
(e) end coordinate, (f) score (not used for annotation), (g) strand (+, �), (h) CDS
(0,1,2 indicates the first, second, or third base of this feature represent the first base
on codon, respectively), (i) key-value pairs. Figure 1.3 highlights the overall struc-
ture of the GENCODE GFF3 file format to highlight the details of annotation.

The complete list of key-value pairs for the 9th column of GENCODE GTF files
is described in the GENCODE portal.7 The 9th column (key-value pairs) of the
GENCODE GTF file contains eleven mandatory fields and other optional fields
(Fig. 1.3b). The mandatory key-value pairs are: (a) gene id, (b) transcript id, (c) gene
type, (d) gene status (novel, known, or putative), (e) gene name, (f) transcript type,
(g) transcript status (novel, known, or putative), (h) transcript name, (i) exon number
(j) exon id, (k) level (1: verified loci, 2: manually annotated loci, 3: automatically
annotated loci). The 3rd and the 6th mandatory key-value pairs represent the gene
type and transcript type, respectively, and the possible types (also called biotypes)
are highlighted in the GENCODE portal.8 Using these biotypes, user can easily
identify lncRNA, lincRNA, pseudogene, protein-coding genes, etc. It is important to
emphasize that the gene status and transcript status (the 4th and the 7th mandatory
fields are provided until the release 25 and 11 for human and mouse, respectively).
There is a provision of optional key-value pairs (also called “tag”) in the 9th column
of GENCODE GFF3 file (Fig. 1.3c). The “tags” provides more complete description
of the gene and transcript models from the GENCODE annotation. The details of
these tags are described in the GENCODE portal.9

Ensemble GTF is identical to GFF3. But there is a slight difference between
GENCODE GTF and Ensembl GTF format. Genes that are common to the human
chromosome X and Y pseudo-autosomal region (PAR) regions are mentioned twice
in the GENCODE GTF. In contrast, this type of gene is only mentioned under
chromosome X in the Ensembl GTF. Additionally, the 9th column of the
GENCODE GTF file contains some attributes that are not present in the Ensembl
GTF such as: annotation notes, APPRIS tags, experimental validation by the
GENCODE or pseudogenes predicted by HAVANA, Yale or UCSC group.

7https://www.gencodegenes.org/pages/data_format.html
8https://www.gencodegenes.org/pages/biotypes.html
9https://www.gencodegenes.org/pages/tags.html
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Fig. 1.3 The GENCODE GFF3 file format to represent annotation in detail
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1.5 GENCODE Data Access

The GENCODE consortium team has made huge effort to make the data accessing
user-friendly for bioinformatics subject matter experts as well as non-domain expert
people. Documentations and examples are available on almost every page of the
GENCODE web portal (https://www.gencodegenes.org/). The GENCODE consor-
tium team has catered for many different types of users. They have provided
different tools and many different techniques to access the GENCODE databases.
A simple user with no programming or database knowledge can interact with the
GENCODE main website and accomplish many different tasks like downloading
chromosome annotation files (in GFF3 and GTF format) or FASTA sequence files.
For more sophisticated users, who have programming experience, the consortium
provides tools and packages to help developers programmatically interact with the
consortium databases and accomplish different tasks and pipelines supporting their
research. They have provided R-Packages to facilitate data discovery and data
mining on current and previous datasets within the same species or different ones.
The team has provided programming tools and techniques to automate accessing and
processing databases. This includes web services, File Transfer Protocol (FTP)
services, Application Programming Interface Services (API), and Bioinformatics
tools for (R and Python) packages. Bioinformatics teams and user with programming
capabilities can use the GENCODE Application Interface (API) to programmatically
interact with cloud services and databases to query and download gene data required
for the analysis and the research. Other options allow bioinformatics team to
download the whole genome database on local server and query and interact with
it for the required data. GENCODE dataset can be accessed mainly from three
different platforms: (a) GENCODE portal, (b) Ensembl Genome Browser, and
(c) UCSC Genome Browser. Figure 1.4 shows the three main ways of accessing
the GENCODE dataset and we will briefly describe each of them below. For users’
convenience, an interactive user guide highlighting the data access options is shared
in Supplementary Data 1.1.

1.5.1 Data Access from GENCODE Web Portal

The current release and the previous release of GENCODE annotations are publicly
accessible at www.gencodegenes.org. This included all the annotation files and the
corresponding sequence files for both human and mouse genomes. Users can browse
this site and easily download the required annotation. All the versions of GENCODE
gene set are released every two to four times a year for mouse and human. The
current GENCODE human annotation (Release 38) and the current one for the
mouse (Release 27), both include annotation files (in GTF and GFF3 formats),
FASTA files, and METADATA files associated with the GENCODE annotation
on all genomic regions.
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As shown in Fig. 1.5, the user can download the annotation files for all previous
release of human and mouse as needed. Statistics is always provided for the most
recent release and the update of the annotation files for both and mouse human
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Fig. 1.4 GENCODE Data access platforms

Fig. 1.5 GENCODE Data access from GENCODE web portal and associated ftp site. The figure
was generated using open-source software FreeMind (http://freemind.sourceforge.net/wiki/index.
php/Download)
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(Release date 05.2021 with Freeze data 12.2020). In the Documentation tab, the user
can find Annotation Data Format, Tags, and Biotypes of the gene set. GENCODE
data can be downloaded from the ftp site for human (http://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_human/) and mouse (http://ftp.ebi.ac.uk/pub/data
bases/gencode/Gencode_mouse).

For parsing the GENCODE annotation (in GTF or GFF3 format) some tools, i.e.,
gtfparse,10 gffutils11 are already available in Python. Moreover, users can use
BioJava12 and BioPerl13 for parsing and analyzing GENCODE dataset as these
packages are considered as standard bioinformatics tools for sequence analysis.

1.5.2 Data Access from Ensembl Genome Browser

As GENCODE is the default gene set for Ensembl, different ways are provided to
access the annotation from Ensembl Genome Browser (http://www.ensembl.org/).
Figure 1.6 highlights different ways, depending on the amount and the type of data
the user is interested in, of accessing the GENCODE dataset from Ensembl Genome
Browser.

If a user is interested about the entire database, then it is also available via FTP as
MySQL dumps.14 But for small data quantities like a single gene sequence or single
transcript, the Ensembl Genomic Browser (http://asia.ensembl.org/index.html)
offers an “Export data”15 (mainly on the left-hand menu of Ensemble Genome
Brower pages) to export either FASTA sequence or GTF/GFF features. The user

Fig. 1.6 GENCODE data access from Ensembl Genome Browser. The figure was generated using
open-source software FreeMind

10https://github.com/openvax/gtfparse
11https://github.com/daler/gffutils
12https://biojava.org/
13https://bioperl.org/
14https://asia.ensembl.org/info/docs/webcode/mirror/install/ensembl-data.html
15http://asia.ensembl.org/info/data/export.html
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can click on “Export data” and have it for further downstream processing. The
exports are also available to download from the Ensembl FTP site at: http://ftp.
ensembl.org/pub/. Readers are suggested to check the use case 2 of this article to
know more about this export option.

The Ensembl REST server is a great resource and service for language-agnostic
programmatic access to the GENCODE annotation. The user request data via GET
command and information is returned in JSON or XML format. Many examples16

are provided in Ensembl REST server highlighting the command and the expected
outcome returned using Java, R, Perl, Python, Ruby, Curl, and Wget command. The
Ensembl REST API Endpoints are available for the users at https://rest.ensembl.org.

Ensembl also provides a user-friendly data mining tool called BioMart (http://
asia.ensembl.org/info/data/biomart/index.html), and it can be used for more complex
cross database queries based on GENCODE annotation. The BioMart is considered a
user-friendly web-based tool that allows the extraction of annotation data without
programming language background or understanding of the details of the database
structure. The consortium team provides three ways to interact with BioMart: (a) via
the biomaRt R package,17 (b) via RESTful access18 (using Perl and Wget), and
(c) via Perl API.19

1.5.3 Data Access from UCSC Genome Browser

The UCSC Genome Browser (https://genome.ucsc.edu/) hosts selected releases from
GENCODE. GENCODE annotation data can also be downloaded from the
Table Browser20 option of UCSC Genome Browser. Usually, there is a short time
lag between the latest GENCODE release and corresponding track in the UCSC
browser due to the effort required by the UCSC team to link the latest GENCODE
annotation to massive amount of other relevant tracks available under UCSC
Genome Browser.

1.6 Use Cases to Utilize GENCODE

In this section, we would like to highlight a use case on the usage of GENCODE
reference annotation.

16https://rest.ensembl.org/documentation/info/data
17http://asia.ensembl.org/info/data/biomart/biomart_r_package.html
18http://asia.ensembl.org/info/data/biomart/biomart_restful.html
19http://asia.ensembl.org/info/data/biomart/biomart_perl_api.html
20http://genome.cse.ucsc.edu/cgi-bin/hgTables
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1.6.1 Use Case 1: Extracting Different Types of Genes from
GENCODE for Downstream Analysis

If a user is interested in specific types of genes from the Human GENCODE v38
annotation, we will show how to download, extract the annotation, and convert into
browser extensible data (BED) format for downstream analysis. This use case is
outlined in Fig. 1.7.

The general overall steps need to accomplish tasks in this use case are summa-
rized in the following workflow:

Step 1:. The user can download the GFF3 annotation file from GENCODE (https://
www.gencodegenes.org/human/). The recent release for human annotation
is version 38. The user can use the following command to download the
annotation file:

wget

http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/gencode.
v38.annotation.gff3.gz
Step 2:. The user can decompress the archive using the following command:

gunzip gencode.v38.annotation.gff3.gz

This will generate the uncompressed file gencode.v38.annotation.gff3.

Download Annotation 
File

Uncompress the file

Run comamnd to extract 
the genes into a file

Convert to BED

Further down stream 
operations

Fig. 1.7 Outline to
download, parse, and
convert into BED format
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Step 3:. The user can view the first 10 lines of the uncompressed line using the
following command:

head gencode.v38.annotation.gff3

Step 4:. Now the user can select the desired gene type (e.g., protein-coding,
lncRNA, snRNA, or the pseudogenes).
For protein-coding genes, the user can use the following command:

awk '{if($3=="gene" && $9~"protein_coding" ){print $0}}'
gencode.v38.annotation.gff3 > pc_genes.gff3

For lncRNA genes, the user can use the following command:

awk '{if($3=="gene" && $9~"gene_type=TEC|lncRNA" ){print
$0}}' gencode.v38.annotation.gff3 > lncRNA_genes.gff3

For snRNA genes, the user can use the following command:

awk '{if($3=="gene" && $9 ~ "gene_type=(miRNA|misc_RNA|
Mt_rRNA|Mt_tRNA|ribozyme|rRNA|rRNA_pseudogene|scaRNA|
scRNA|snoRNA|snRNA|sRNA|vault_RNA)" ) {print $0}} ' gencode.
v38.annotation.gff3 > snRNA_genes.gff3

For pseudogenes, the user can use the following command:

awk '{if($3=="gene" && $9~"gene_type=(pseudogene|
processed_pseudogene|transcribed_processed_pseudogene|
translated_processed_pseudogene|
transcribed_unprocessed_pseudogene|
translated_unprocessed_pseudogene|unprocessed_pseudogene|
unitary_pseudogene|transcribed_unitary_pseudogene|
polymorphic_pseudogene|transcribed_unprocessed_pseudogene|
unprocessed_pseudogene|IG_C_pseudogene|IG_J_pseudogene|
IG_V_pseudogene|TR_J_pseudogene|TR_V_pseudogene)" ){print
$0}}' gencode.v38.annotation.gff3 > pseudo_genes.gff3

Step 5:. Now the user can select the desired gene type (e.g., protein-coding,
lncRNA, snRNA, or the pseudogenes) and convert the GFF3 file into
BED file using the following command (Assuming that gff2bed Linux
package21 is installed):

21BEDOPS: the fast, highly scalable and easily-parallelizable genome analysis toolkit— BEDOPS
v2.4.39
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gff2bed --keep-header < pc_genes.gff3 > pc_genes.bed

The default usage of the command gff2bed strips the leading header
(##gff-version 3) but adding the --keep-header option will preserve this as a
BED element that uses _header as a chromosome name. For more details,
please refer to gfft2bed usage manual page.22

The rest of the gene bed files can be produced the same way. Although we have
applied the workflow on the human genome, the same process applies to the mouse
genome. The shell commands for this use case are available as Supplementary
Data 1.2.

1.6.2 Use Case 2: Exploration of the Annotation of lncRNA
MALAT1

In this use case, we will demonstrate how a user can explore GENCODE annotation
of lncRNA gene MALAT1 using Ensembl Genome Browser (Fig. 1.8).

Step 1:. The user can download the comprehensive annotation file and find the
annotation of MATLA1 by using shell command on the input annotation
file gencode.v38.annotation.gff3 in the following way:

grep MALAT1 gencode.v38.annotation.gff3 > MALAT1.gff3

The above-mentioned shell command will return the annotation of
MALAT1 gene, 17 transcripts associated with MALT1 genes and associ-
ated exons (Supplementary Data 1.3).

Step 2:. Now, user can use Ensembl Genome Browser (http://asia.ensembl.org/
index.html) to explore the GENCODE annotation of MALAT1. Ensembl
Genome Browser considers GENCODE annotation as its default annota-
tion. Then the user can select human as the organism (Fig. 1.8a) to load the
annotation of human genes.

Step 3:. Then the user can type “MALAT1” in the search box and it will automat-
ically suggest the name MALAT1 (Fig. 1.8b).

Step 4:. Once the user clicks on “GO” button, this will load the summary of
MALAT1 in Ensembl Genome Browser (Fig. 1.8c). On the left side
panel, there is a panel where users can go into the details of comparative
genomics, genetic variation, markers, etc. The is an “Export data” option
on the left panel and user can download MALAT1 related annotations as
well as the sequence from this “Export data” option.

22https://bedops.readthedocs.io/en/latest/content/reference/file-management/conversion/gff2bed.
html#downloads
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Fig. 1.8 Discovering
MALAT1 and associated
annotation using Ensemble
Genome Browser
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Step 5:. If user scrolls down, then more tails of the MALAT1 can be found where
the user can see the location of all the 17 transcripts, exons under each
transcript and the directionality of MALAT1 transcripts (Fig. 1.8d).

Step 6:. Then the user can click “Region in Detail” (Fig. 1.8d) to find the more tracks
and navigation options of MALAT1 (Fig. 1.8e). Figure 1.8e shows some of
the available tracks (e.g., sequence and assembly, genes and transcripts,
mRNA and protein alignments, variations (SNP, INDEL, structural vari-
ants), regulation, comparative genomics, etc.) that are available in Ensem-
ble Genome Browser.

Step 7:. If a user is interested to explore the genetic variants of MALAT1, he/she can
click the “Genetic Variation” on the left panel (Fig. 1.8c) and it will load the
details of all variants related to MALAT1 (Fig. 1.8f).

1.6.3 Use Case 3: Exploration of SUMO1P3 (Small Ubiquitin
Like Modifier 1 Pseudogene 3)

In this use case, we will demonstrate how a user can explore the GENCODE
annotation of SUMO1P3 pseudogene. SUMO1P3 pseudogenes are upregulated for
patients with gastric cancer and can be used to determine cancer comparing against
the benign gastric disease (Emadi-Baygi et al. 2017). Figure 1.9 demonstrates how a
user can leverage UCSC Genome Browser to explore the loci and related mutations
on SUMO1P3.

Step 1:. The user is advised to go to UCSC Genome Browser via the main webpage
at http://genome-euro.ucsc.edu/ and choose “Genome Browser” tab. From
the drop-down menu, user needs to select “Track Search” tab (Fig. 1.9a).

Step 2:. Then, the user searches for “pseudogenes” and clicks “search” button
(Fig. 1.9b). Then, it will load all the tracks related to pseudogenes. User
needs to uncheck all tracks and select on the latest GENCODE pseudogene
track at the top of this page (Fig. 1.9c). The user needs to click on “View on
Browser” button.

Step 3:. Then, the user will see the default view of UCSC Genome Browser
(Fig. 1.9d). Then the user needs to search for “SUMO1P3” and click go
button. Then, website shows the default information on the figure at the
beginning of the webpage (Fig. 1.9e). The SUMO1P3 pseudogene will be
highlighted as a pink colored bar in the UCSC Genome Browser
(Fig. 1.9e).

Step 4:. Then user can control the information that needed to be displayed by
selecting/unselecting different tracks. For example, by selecting “TCGA
Pan-cancer” (under Phenotype and Literature) and “GTEx gene” (under
Expression) and hiding other options, user can check the mutations and the
expression shown in Fig. 1.9f. To know more details about the gene
expression, user can click on the SUMO1P3 to get more details about the

1 GENCODE Annotation for the Human and Mouse Genome: A User Perspective 19

http://genome-euro.ucsc.edu/


Fig. 1.9 Exploration of the pseudogene SUMO1P3 using UCSC Genome Browser. Figure (a)
shows TCGA Pan-Cancer mutations in SUMO1P3 pseudogene. Figure (b) shows the gene
expression of SUMO1P3 pseudogene compared with the reverse gene (COPA). Figure (c) shows
SUMO1P3 pseudogene expression in different tissues as shown in GTEx portal
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expression of SUMO1P3. User can even view the details of SUMO1P3
from GTEx portal (ht tps: / /www.gtexportal .org/home/gene/
ENSG00000235082 ) as well (Fig. 1.9g).

Fig. 1.9 (continued)
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1.7 Latest Update of the GENCODE Annotation

GENCODE provides the standard and well-accepted annotation for human and
mouse genome functional elements for nearly two decades. Still, they are improving
their pipeline to deliver more robust and accurate annotation. Recently GENCODE
has developed a new pipeline, TAGENE which is capable of supporting long-read
transcripts generated by Pacific Biosciences (PacBio) and Oxford Nanopore Tech-
nologies (ONT) (Frankish et al. 2021). GENCODE has generated more than 36M
ONT reads and 2M PacBio Sequel reads to identify nearly 1600 human and 4500
mouse potential novel loci. The details of TAGENE can be found in (Frankish et al.
2021). GENCODE also initiated The Matched Annotation from NCBI and EMBL-
EBI project (MANE) collaboration project between Ensembl, GENCODE, and
RefSeq to identify a default protein-coding transcript from each human protein-
coding locus that could be considered as a representative considering the underlying
biology, overall expression, and conservation (Frankish et al. 2021). The recent
release of MANE (version 0.91) provides an overall coverage of 84% of all the
protein-coding genes of GENCODE (Frankish et al. 2021). Users can use the
“Ensembl_canonical” tag in GENCODE annotation to find the representative
protein-coding transcript. Under GIFTS (Genome Integration with FuncTion and
Sequence) effort, GENCODE is trying to improve the interoperability between
UniProt and GENCODE annotation (Frankish et al. 2021). Under GIFTS initiative,
GENCODE investigated 1044 unmapped human and mouse proteins from UniProt
and identified specific cases to update respective GENCODE annotation (Frankish
et al. 2021). To tackle the COVID-19 pandemic, GENCODE reviewed and released
the annotation protein-coding genes that are associated with SARS-CoV-2 infection
(Frankish et al. 2021). Considering the human proteins that could be physically
associated with SARS-CoV-2 protein (Gordon et al. 2020) or could be considered
for drug repurposing (Zhou et al. 2020), the GENCODE released “COVID-19 genes
track hub”23 for the exploration associated protein-coding genes. As of now (up to
22 May 2021), GENCODE enlisted 282 COVID-19 associated genes under their
annotation.

GENCODE annotations are current available on the reference assembly of
GRCh38 for human and GRCm38 for the mouse. The resulted mapping on
GRCh37 (for human) was not manually verified by GENCODE and this may contain
some errors in complicated regions (e.g., gapped regions, repeated regions, etc.) of
the human genome. GENCODE, therefore, recommends the GRCh38 annotations
for the users.

23http://ftp.ebi.ac.uk/pub/databases/gencode/covid19_trackhub/data/

22 S. Musleh et al.

http://ftp.ebi.ac.uk/pub/databases/gencode/covid19_trackhub/data/


1.8 Conclusion

The GENCODE project provides comprehensive gene annotation for the human and
mouse genomes, as part of the wider Ensembl project. In this chapter we have
attempt to give the user a roadmap to facilitate genome data access huge amounts of
information. We have introduced workflows to guide the user in producing datasets
for getting genome data and information. The bioinformatics teams can use these
datasets for more downstream analysis should they choose to do so. This chapter
serves not only as a user guide or user roadmap to GENCODE website, but also to
exchange ideas with bioinformatics community on future practical guides to life
science databases.
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Chapter 2
The GeneCards Suite

Marilyn Safran, Naomi Rosen, Michal Twik, Ruth BarShir, Tsippi Iny Stein,
Dvir Dahary, Simon Fishilevich, and Doron Lancet

Abstract The GeneCards® database of human genes was launched in 1997 and has
expanded since then to encompass gene-centric, disease-centric, and pathway-
centric entities and relationships within the GeneCards Suite, effectively navigating
the universe of human biological data—genes, proteins, cells, regulatory elements,
biological pathways, and diseases—and the connections among them. The
knowledgebase amalgamates information from >150 selected sources related to
genes, proteins, ncRNAs, regulatory elements, chemical compounds, drugs, splice
variants, SNPs, signaling molecules, differentiation protocols, biological pathways,
stem cells, genetic tests, clinical trials, diseases, publications, and more and
empowers the suite’s Next Generation Sequencing (NGS), gene set, shared descrip-
tors, and batch query analysis tools.

Keywords GeneCards · Bioinformatics · Biological database · Diseases ·
Gene prioritization · Integrated information retrieval · Next generation

2.1 Introduction

The GeneCards® database of human genes was launched in 1997 (Rebhan et al.
1997) and has expanded since then to encompass gene-centric, disease-centric, and
pathway-centric entities and relationships within the GeneCards Suite, effectively
navigating the universe of human biological data—genes, proteins, cells, regulatory
elements, biological pathways, and diseases—and the connections among them. The
suite’s integrated biomedical knowledgebase includes GeneCards (Stelzer et al.
2016a), the integrated human gene database, MalaCards (Rappaport et al. 2017a),
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the unified human disease database, PathCards (Belinky et al. 2015), the consoli-
dated human pathways database, LifeMap Discovery (Edgar et al. 2013), the
embryonic development and stem cell compendium, GeneLoc (Rosen et al. 2003),
the human genomic neighborhood location-based database, and GeneHancer
(Fishilevich et al. 2017), an innovative and growing regulatory element database
with ~250,000 enhancer and promoter entries. The knowledgebase amalgamates
information from >150 selected sources related to genes, proteins, ncRNAs, regu-
latory elements, chemical compounds, drugs, splice variants, SNPs, signaling mol-
ecules, differentiation protocols, biological pathways, stem cells, genetic tests,
clinical trials, diseases, publications, and more, and empowers Next Generation
Sequencing (NGS) analysis by highlighting associations between genes and pheno-
types, providing supporting evidence for immediate evaluation via the suite’s NGS
analysis tools: VarElect (Stelzer et al. 2016b), the phenotype interpreter, receives a
list of genes and phenotypes as input and computes prioritized direct (keyword-
based) and indirect (inferred from gene-to-gene associations) gene/disease connec-
tions; TGex, the VCF-to-report clinical analyzer, incorporates VarElect’s algorithms
and automatically generates clinical case reports. Rounding out the suite are
GeneAnalytics (Ben-Ari Fuchs et al. 2016), for gene set analysis, GenesLikeMe
(Stelzer et al. 2009) for finding genes with shared descriptors, and GeneALaCart
(Stelzer et al. 2016a) for batch queries.

The suite’s websites, data dumps, APIs, publications, and collaborations are
enjoyed by >3.5 million users, including research and applied scientists, doctors,
geneticists, and lay-people, in>3000 institutions worldwide, encompassing academia,
national patent offices, leading biopharma and diagnostic companies, and hospitals.

2.2 Database Overview

2.2.1 Importance and Current Status

Historically, users have characterized GeneCards as being their user-friendly “first
port of call” to “orient their understanding” when coming across unfamiliar genes.
Its popularity encouraged the expansion of the knowledgebase to provide the same
functionality for diseases and pathways. Together with this growth came the reali-
zation that the depth and breadth of the data itself, while extremely useful in its own
right, could be leveraged to solve problems. Today, there is increasing recognition
by the scientific community that NGS is a pivotal technology for diagnosing the
genetic cause of many human diseases; several large-scale projects implement NGS
as a key instrument for elucidating the genetic components of rare diseases and
cancer (Bamshad et al. 2012). Other clinical studies aimed at deciphering monogenic
and complex diseases have also demonstrated the effectiveness of NGS approaches
including whole genome, whole exome, and gene panel sequencing (van den Veyver
and Eng 2015; Yang et al. 2013; Gilissen et al. 2014; Zheng et al. 2015; Stranneheim
and Wedell 2016). Primary analysis of disease NGS results includes sequence read
mapping and variant calling, with results stored in a Variant Call Format (VCF) file.
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The VCF file typically contains ~20,000–50,000 positions that differ from the
reference genome exome regions (“variant long list”). Subsequently, analysis pipe-
lines sift these SNPs and indels by populating the VCF file with annotation data,
such as segregation in affected families, genetic linkage information (Smith et al.
2011), population frequency (Ramos et al. 2012), and missense protein impact
(Adzhubei et al. 2010; Sim et al. 2012; Hecht et al. 2015), all facilitating variant
filtration (secondary analysis). This helps generate a “variant medium list” of
typically dozens to a few hundred entries, depending on the assumed mode of
inheritance and on the employed filtering cutoffs. In these analyses, variants are
analyzed without regard to the disease phenotype of the sequenced individual. As a
first step in introducing phenotype relationships, many pipelines use variant-disease
relationships (e.g. from ClinVar (Landrum et al. 2014) and/or COSMIC (Forbes
et al. 2015)) for further filtration of the sequence variants. But a typical gene can
have a multitude of variants that have not yet been documented to have a relationship
with a disease or a phenotype. In many cases, none of the annotated variant-disease
relations appears relevant to the sequenced subject. The GeneCards suite’s rich
knowledgebase facilitates gene-based interpretation. The strategy entails finding
disease or phenotype relationships for the gene itself, instead of only for the variant
contained within it. VarElect (ve.genecards.org), the suite’s web-based phenotype-
dependent NGS variant prioritizer, leverages the wealth of information in GeneCards
and its affiliated databases. VarElect’s algorithm computes prioritized direct
(keyword-based) and indirect (inferred from comprehensive gene-to-gene associa-
tions) gene/disease connections. The avalanche of variants residing in genomic
non-coding “dark matter,” available via whole genome sequencing (WGS), contrib-
utes three classes of functional genomic elements to variant analyses: promoters,
enhancers, and ncRNAs, all central to tissue-related gene expression, with many
underlying diseases. Together they amount to >20% of such “novel” DNA terri-
tories, unexplored in exome sequencing. Judiciously incorporated into the
knowledgebase, the suite’s GeneHancer and upgraded ncRNA data is leveraged by
its WGS disease interpretation platform and provides a comprehensive route to
clinical significance of coding and non-coding single nucleotide and structural
genomic variations, often elucidating unsolved clinical cases.

2.2.2 Future Update and Availability of the Database

Major synchronized new versions of the suite sites are currently deployed every four
months. This weighty effort involves regenerating the gene and diseases lists,
updating data from all of the knowledgebase’s sources, annotating each of the
entities, re-computing the relationships, and quality assurance testing to ensure
that all sites are in sync, that data integrity was maintained, and that nothing broke
during the process due to changes in source formats and/or other pipeline technical-
ities. Further, new scientific features are provided by incorporating information from
new and/or existing sources and developing/tweaking heuristics and algorithms
when warranted. Minor revisions, providing incremental updates for a subset of
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the data and suite sites, are deployed as needed (typically within 1–2 months), for
crucial time-dependent annotations like new publications, localized features, and hot
bug fixes. We continue to work on increasing the frequency and content of our
releases and expect significant speedup in 2019.

2.3 Content and Architecture of the Database

2.3.1 Main Database Features and Types of Data Stored

Figure 2.1 and Table 2.1 provide an overview of the major entities and relationships
in GeneCards and MalaCards, in schematic and tabular forms, respectively. Some of
the data include straightforward annotations (e.g. summary information about TP53
from NCBI’s Entrez Gene database (Brown et al. 2015), the GeneCards Inferred
Functionality Score (GIFtS) for APOA1, the KEGG pathway (Kanehisa et al. 2019)
associated with Alzheimer’s Disease, companies that provide antibody products for
EGFR, publications associated with a gene or disease, and so on). Others reflect
sophisticated behind-the-scenes data amalgamation: Compound groups, unified from
12 sources, with drug-specific and drug-gene annotations; GeneHancer (Fishilevich
et al. 2017) regulatory element clusters, integrated from 7 sources based on location,
with scored GeneHancer elements and GeneHancer-gene annotations; SuperPaths
(Belinky et al. 2015), consolidated from 12 sources based on gene content, finding a
balance between reducing pathway redundancies and optimizing pathway-related
informativeness for individual genes; GeneCards genes (Safran et al. 2010), hierar-
chically choosing a symbol from HGNC (Yates et al. 2017), Entrez Gene (Brown
et al. 2015), Ensembl (Zerbino et al. 2018), or GeneLoc (Rosen et al. 2003), and
associating all relevant aliases, descriptions, and external identifiers; MalaCards
diseases, canonicalizing, transforming, lexically manipulating, and unifying names
from 10 primary and 5 secondary ranked sources (Rappaport et al. 2013).

Data collection methods: The GeneCards data collection process is a pipeline
that starts with defining the full set of GeneCards genes, obtained from four primary
sources as follows: First, the complete current snapshot of HGNC-approved symbols
(Yates et al. 2017) is used as the core gene list. Second, human Entrez Gene (Brown
et al. 2015) entries that are different from the HGNC genes are added. Next, human
Ensembl (Zerbino et al. 2018) records are matched against the emerging gene list via
GeneLoc’s exon-based unification algorithm (Rosen et al. 2003); those that are not
found to be equivalent to others in the set are included as novel Ensembl-based
GeneCards gene entries. Finally, our RNA genes identification and unification
facility ( (Belinky et al. 2013) and work in progress) adds new ncRNAs not available
in the other sources. These primary sources provide annotations for aliases, descrip-
tions, previous symbols, gene category, location, summaries, paralogs, and ncRNA
details. Once the gene list is in place with these significant annotations, over 150 data
sources, including those noted above and others (Bateman et al. 2017; Gene Ontol-
ogy Consortium 2015; Smith et al. 2018; Chalifa-Caspi et al. 2004) are mined for
thousands of additional descriptors.
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Table 2.1 GeneCards and MalaCards entity and relationship tables: (a) subset of major entities’
tables and their fields; (b) types and quantities of tables

(a)

Entity Table Fields

Compounds Compound id

sourceId

sourceAccession

Name

CompoundAttribute id

compoundId

type

Value

CompoundGroup id

Name

CompoundGroupMember id

groupId

compoundId

Superpathways SuperPathway id

name

sourceId

sourceAccession

SuperPathwayMember id

score

superPathId

pathwayId

Pathway id

name

sourceAccession

sourceID

Enhancers Enhancer id

clusterId

sourceId

Chromosome

Start

End

Identifier

FriendlyName

HasLink

Version

Classification

Maladies Maladies id

symbol

acronymId

descId

slug

(continued)
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MalaCards builds its comprehensive-integrated list of diseases by hierarchically
mining heterogeneous, partially overlapping naming sources (15 primary and 29 sec-
ondary), unifying disease names and acronyms, initially transforming each name to a
canonical form while simultaneously retaining original strings for the alias list. This
canonical form is constructed by a series of steps (conversion to lowercase; removal of
words like “disease,” “syndrome,” “deficiency,” “failure,” “type,” as well as conjunc-
tions, articles, and prepositions); merging equivalent words (e.g. “juvenile” and
“childhood,” “kidney,” and “renal”); handling of different number formats (Roman
versus Indian/Arabic), and of plurals and possessives; word stemming, using the porter
stemming algorithm (Porter 2006), and others (Rappaport et al. 2013) to enable textual
comparison. Diseases with names that are identical except for type specification
(e.g. “Alzheimer disease type 3”) are grouped into parent/child families. Once the
disease list is in place with these significant annotations, over 70 data sources,
including those noted above, and others including GeneCards, MalaCards, and the
suite’s gene set analysis capabilities (Ben-Ari Fuchs et al. 2016; Stelzer et al. 2009) are
interrogated to yield thousands of additional descriptors and relationships.

2.3.2 Data Collection and Curation Methods

The knowledgebase, for the most part, is automatically generated. Our data sources
range from those that are manually curated, (e.g. UniProt/SwissProtKB (Bateman
et al. 2017)) to those that rely on text mining algorithms (e.g. DISEASES (Pletscher-
Frankild et al. 2015)). Our generation software and portals rank the information in
the various sections accordingly, giving greater weight to curated over inferred
annotations. If the QA process (see below) and/or user feedback uncovers anomalies
which cannot immediately be addressed by the relevant sources, we edit the data or
use a “cheat list” of corrections to compensate.

2.3.3 Dataset Indexing/Accession Number/Identification

Alphabetical human gene and disease database indices appear at the footer of each
respective GeneCards and MalaCards page, providing linked lists of symbols/

Table 2.1 (continued)

(a)

Entity Table Fields

(b)
Category Number of tables
Major entities 57

Relationships 67

Annotation tables 23
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disease names. Clicking on a letter in the index, say D, brings up a page that lists all
genes/diseases that start with “D,” each linked to the relevant GeneCard or
MalaCard.

GeneCards gene symbols, used in accessing the GeneCards pages for particular
genes, are derived from HGNC (Yates et al. 2017), Entrez Gene (Brown et al. 2015),
Ensembl (Zerbino et al. 2018), and GeneCards identifiers (GCIDs) (Rosen et al.
2003). GCIDs are unique, informative, and stable, provided by the GeneLoc Algo-
rithm (see http://www.genecards.org/Images/Guide/GeneLocAlgorithm.jpg) as
follows.

• The id begins with GC, which is followed by the chromosome number (where
“00” indicates unknown chromosome and “MT” indicates the mitochondria), “P”
or “M” for orientation (Plus or Minus strand), and approximate kilobase start
coordinate.

For example: OXA1L, with GC id GC14P022766 is on chromosome 14 on
the plus strand, starting at 22766 kilobases.

• Genes that are currently placed on a specific chromosome, but whose exact
location on the chromosome is not yet known, receive a modified GC id,
consisting of the chromosome and strand information, followed by a number,
which indicates uncertain location, followed by a letter representing the specific
contig containing the gene, and the gene’s kilobase position on that contig.

For example: ENSG00000278198, with GC id GC07P9O0173 is on chromo-
some 7 on the plus strand of contig GL000195.1, starting at 173 kilobases.

• Genes located on the alternative reference sequences (haplotypes—see NCBI
(https://www.ncbi.nlm.nih.gov/mapview/static/humansearch.html#assembly) for
a full explanation) have a special GC id made up of the chromosome and strand
information, followed by a letter, and the gene’s approximate kilobase start
coordinate.

For example: KIR2DS5, with GC idGC19MA00037 is on chromosome 19 on
the minus strand of ALT_REF_LOCI_18, starting at 37 kilobases.

• Genes whose positional information includes only the chromosome need a further
modified GC id, which includes the chromosome number, followed by “U9,”
indicating lack of strand and positional information, followed by five digits,
assigned sequentially.

For example: GUK2, with GC id GC01U990078 is on chromosome 1. Its
strand and position are currently unknown.

If an id needs to change in future versions because the previously reported
position is refined, the superseded id remains associated with the gene, along with
the new one, so it cannot be assigned to any other gene, and so that users can still
find the gene by that id.

MalaCards identifiers, used in its URLs, are its main disease names supplied by
primary sources (Rappaport et al. 2013) (e.g. Pick Disease) converted to lowercase,
with spaces replaced by underscores (pick_disease for this example). To be as
consistent as possible across versions, all such URLs are preserved, even if the
disease name has changed or the disease was merged with another. In situations like
these, old URLs are redirected to new ones. If a disease was removed completely
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from MalaCards, the old link is redirected to the search results page generated by
querying the old disease name. In addition, a unique internal MCID is generated for
each malady, composed of the first letter of its name, followed by the next two
consonants, followed by a sequence number. For example, the MCID for “rett
syndrome” is RTT001.

PathCards SuperPath identifiers, used in its URLs, are the names of the
SuperPaths (e.g. glucose metabolism) converted to lowercase with spaces replaced
by underscores (glucose_metabolism for this example).

2.3.4 Quality Control Methods

Before releasing a version of the knowledgebase, the system undergoes a semi-
automated QA process. An in-house tool verifies the integrity of the GeneCards
database by comparing it with that of the previous version, and it highlights
inconsistencies and extreme results. The anomalies are then manually reviewed.
Web cards and their links for a sample set of genes and diseases are manually
checked by our QA professionals and a medical doctor consultant. As our heuristics
are still evolving, problematic disease names (e.g. “Interferon” or “memory”) are
entered into a “cheat list” and removed from the system. VarElect and GeneHancer
have their own set of automated QA scenarios, wherein deviations from expected
results are reported and followed up by manual scrutiny. Test scenarios, bugs, and
suggestions for improvements are all ticketed in our JIRA tracking system (https://
www.atlassian.com/software/jira) and mapped to target releases.

2.3.5 Database Update and Maintenance Strategy

The knowledgebase is regenerated from scratch for each major version. For incre-
mental updates, source-specific generation modules are rerun using the latest data. In
both situations, the search index is regenerated for the benefit of the database portals
themselves, as well as for usage by VarElect and TGex.

2.4 Database Access and Mining Methods

2.4.1 Tools and Techniques to Access, Discover, and Mine
the Content of the Database

Gene-centric, disease-centric, location-centric, and pathway-centric information are,
respectively, available and searchable from the GeneCards, MalaCards, GeneLoc,
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and PathCards portals, each with their own entity-specific web “card” and powerful
search engine. GeneHancer data is incorporated in the knowledgebase, and in
GeneCards, MalaCards, GeneLoc, VarElect, and TGex. The extensive
knowledgebase (Ben-Ari Fuchs et al. 2016) is exploited to provide NGS interpreta-
tion and gene set analysis solutions as follows:

2.4.1.1 VarElect: The NGS Phenotyper of the GeneCards Suite

A key challenge in the interpretation of NGS in genetic disease studies is to
effectively associate the identified variant-containing genes with a patient’s disease
phenotypes. This is addressed by VarElect (Stelzer et al. 2016b), the GeneCards
Suite powered NGS interpretation tool, leveraging the broad knowledgebase for
gene prioritization. VarElect is a comprehensive search tool that helps to effectively
and rapidly identify and prioritize direct and indirect associations between genes and
user-supplied disease terms, joined with providing extensive evidence for such
associations.

Typical NGS analyses of a patient discover tens of thousands non-reference
coding single nucleotide variants (SNVs), but only one or very few are expected
to be significant for the relevant disease. In a filtering stage, various approaches, such
as family segregation, frequency in the population, predicted protein impact, and
evolutionary conservation are combined to shorten the variant list. A major chal-
lenge is the interpretation of the remaining (typically) few hundred genes, aiming to
further focus on the most viable disease-causing candidate genes.

To cope with genes that have no direct association to the phenotype terms on their
own, VarElect infers indirect (or “guilt by association”) relationships between genes
and phenotype keywords exploiting the GeneCards Suite diverse gene-to-gene
relationships. Gene-to-gene relationships are generated using the GeneCards search
engine, by searching gene symbols in selected GeneCards sections. The integrated
pathway information from PathCards is a major contribution to the gene-to-gene
relationships.

2.4.1.2 TGex: The Knowledge-Driven Clinical Genetics Analysis
Platform of the GeneCards Suite

Clinical genetics analysis of thousands of variants requires a user interface that will
enable browsing, viewing, filtering, and interpretation interactively. To this aim,
TGex, the GeneCards Suite Knowledge-Driven Clinical Genetics Analysis platform,
combines VarElect strength with comprehensive variant annotation and filtering
capabilities in a consolidated view, which enables the genetic analyst to quickly
pinpoint the strongest candidates. The comprehensive reporting system of TGex
leverages the capabilities of VarElect and the vast amount of structured data avail-
able in the GeneCards Suite to automatically generate a full clinical report. TGex
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supports comprehensive data scrutiny, from raw patient genetic data (a VCF file),
through intermediate annotations and interpretations, to detailed final reports.

2.4.1.3 Analysis of Genomic Structural Variants (SVs) Enabled by
GeneHancer

A major source of pathogenic genomic alterations are structural variants (SVs),
comprising both balanced modifications (inversions and translocations) and unbal-
anced variations—copy number variants (CNVs), including deletions, duplications,
and insertions (Hurles et al. 2008; Weischenfeldt et al. 2013). Evaluation of the
impact of SVs with respect to phenotype or disease relies on the genomic functional
units associated with the SVs. Disease-related functional consequences of SVs
involve changes in gene expression, which might occur when the SV encompasses
the gene territory, either completely or partially. In this vein, the GeneCards Suite
tools are useful for SVs interpretation, by helping to identify and prioritize SVs using
the potential disease-causing genes damaged in each SV.

Often SVs do not overlap the coding regions of the disease-associated gene. SVs
might influence genes over large distances by altering non-coding functional com-
ponents such as regulatory elements and non-coding RNA genes. Tackling varia-
tions in non-coding regulatory elements to decipher the genetic underpinnings of
human diseases is a great challenge in the analysis of both SNVs and SVs.
Addressing this challenge necessitates the ability to map variants to regulatory
elements such as promoters and enhancers. The mapping program requires access
to a comprehensive database of regulatory elements. Since the biomedical knowl-
edge directly linking regulatory elements to a disease/phenotype is obscure, the
variant mapping step needs to be complemented by annotative information regarding
a relationship between such an element and its target gene, for which a phenotype
relationship is already known.

These capabilities are the core of GeneHancer, the GeneCards Suite database of
regulatory elements and their gene targets. GeneHancer’s comprehensive-integrated
and scored set of regulatory elements and their gene-associations enables translating
the finding of a WGS variant in a non-coding region into a variant-to-gene annota-
tion, along with a confidence indication. Thus, integrating GeneHancer into the
WGS annotation and filtering functions of VarElect and TGex assists in the mapping
of non-coding variants to regulatory elements and via the gene targets forms a basis
for variant-phenotype interpretation of whole genome sequences in health and
disease.

2.4.1.4 Gene Set Enrichment Analysis

GeneAnalytics (Ben-Ari Fuchs et al. 2016) is an analysis tool for finding common-
alities within gene sets resulting from NGS, RNAseq, and microarray experiments.
Using in-depth evidence-based scoring algorithms and taking advantage of the

38 M. Safran et al.



GeneCards Suite knowledgebase, GeneAnalytics identifies cell types, diseases,
pathways, and functions related to the gene set and provides supporting evidence
links for matched biological terms in the GeneCards Suite.

2.4.2 How to Explore and Browse the Database

We illustrate exploring and browsing of the various suite sites by describing the
MalaCards (Rappaport et al. 2014) compendium of human diseases portal (www.
malacards.org), which features ~22,000 human diseases, with annotations integrated
from 73 sources and shown in 14 sections. The homepage (Fig. 2.2a) is a common
entry point to the Web site, showcasing most of the features and tools including
exploring a particular (sample, random, or specified) malady, jumping to a particular
section within it, quick searches, a disease index, statistics, a menu bar with links to
documentation and disease list/category pages, and links to the other GeneCards

Fig. 2.2 (a) The homepage of MalaCards, the human disease database. (b) The MalaCard for Lung
Cancer includes the Genes section, which provides the list of the affiliated genes and enhancers
found to be associated with the disease. MalaCards “elite” genes (marked with *) are those likely to
be associated with causing the disease, since their gene-disease associations are supported by
manually curated and trustworthy sources. The cancer COSMIC Gene Census list is an ongoing
effort to catalog those genes for which mutations have been causally implicated in cancer. Cancer
census gene list genes are marked with a CC icon
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Suite members. MalaCards can be navigated in a variety of ways. The search box is
typically the initial starting point, where one can submit free text as a query string,
including Boolean expressions. It is centrally located on the homepage, as well as at
the top right corner of every page comprising the Web site.

A MalaCards disease page (Web “card” or simply MalaCard) is where one can
find all available information pertaining to a disease of interest. The information
within a MalaCard is divided into 14 sections: Aliases and Classifications,

Fig. 2.2 (continued)
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Summaries, Related Diseases, Symptoms and Phenotypes, Drugs and Therapeutics,
Genetic Tests, Anatomical Context, Publications, Genes, Variations, Expression,
Pathways, GO Terms, and Sources. Documentation is accessible via hyperlinks,
often context-specific, from within many parts of the MalaCard, to the right of the
section, by clicking on the question mark icon. Each section displays disease-
specific information and contains deep links to supporting sources, often with
superscripts when multiple sources contain details about the datum. Different sec-
tions contain ranking and scoring of the elements, including genes in the Genes
section, diseases in the “Related diseases” section, and pathways in the Pathways
section. Figure 2.2b shows portions of the MalaCard for Lung Cancer, including the
Genes section, which provides the list of the affiliated genes and enhancers found to
be associated with the disease. MalaCards “elite” genes (marked with *) are those
likely to be associated with causing the disease, since their gene-disease associations
are supported by manually curated and trustworthy sources. The cancer Gene Census
list from COSMIC is an ongoing effort to catalogue those genes for which mutations
have been causally implicated in cancer. Genes listed in the cancer census gene list
are marked with a CC icon. When relevant, shown GeneHancers are genomic
regulatory elements-gene-disease associations provided by GeneHancer. Initially,
at least 10 affiliated genes are shown (all of the elite genes are always shown), with
an option to see the complete list.

The ranked genes list is composed by taking into account: (1) genetic testing
resources supplying specific genetic tests for the disease: (2) genetic variations
resources supplying specific causative variations in genes for the disease;
(3) resources that manually curate the association of the disease with genes;
(4) searches within GeneCards, providing inferred associations.

The section’s genes table shows gene symbols, descriptions, category, relevance
scores, the context according to which the gene is related to the disease, and Pubmed
ids. The relevance score is computed by factoring in the importance of the different
resources associating the gene with the disease.

Long lists within the card sections are partially hidden by default (initially
showing only the most relevant information for efficiency), with a “show all” option
to display the complete list. Pressing “Expand all tables” activates “see all” in all of
the sections and enables convenient searches within the card.

2.4.3 How to Query the Database

We illustrate the search capabilities of the various suite sites by describing
GeneCards searches. In the top right corner of the GeneCards banner on each of
its pages, enter your search terms into the search box and click the magnifying glass
icon to submit the query. The query term may be a disease name, gene name, or any
other keyword. Boolean operators (AND/OR) can be used to query GeneCards, as
can wildcards (*) when placed at the end of a word. Note that Boolean operators
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must be capitalized to yield expected results: For example, specifying “water
channel” AND drm* yields 29 results.

Searches result in a list of genes, each with its description, category, GeneCards
Inferred Functionality Score (GIFtS) (Harel et al. 2009), and GeneCards identifier
(Rosen et al. 2003), sorted by Elastic search relevance score (Fig. 2.3a). Clicking the
plus to the left of the symbol opens a “MiniCard,” which shows the hit context of the
search terms (Fig. 2.3b). Clicking on the symbol opens the gene’s card.

GeneCards can also be searched for a specific symbol, using the search dropdown
(choose “Symbols”). When searching for a symbol that might not be the gene’s

Fig. 2.3 MalaCards search results: (a) sorted, scored gene hits. (b) with Minicards including hit
context
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official symbol (from a paper, for example), and when using a gene identifier from
another database, the other dropdown options should be used (“Symbols/Aliases”
and “Symbols/Aliases/Identifiers,” respectively).

To use the GeneCards advanced search, click on the “Advanced” link to the right
of the search box. The advanced search allows complex queries in which each
keyword can be restricted to a specific section of the GeneCard.

MalaCards and PathCards have similar querying facilities.

2.4.4 How to Upload/Download Data

Registered users have a variety of download facilities. GeneALaCart (https://
genealacart.genecards.org/), the GeneCards batch query portal generates a file of
GeneCards annotations associated with input gene lists. For each query, one supplies
the “batch” of gene symbols or identifiers and selects the annotations of interest
(Fig. 2.4a); GeneALaCart then extracts the information from the knowledgebase and
produces a customized results file in Excel [Fig. 2.4b] or JSON format [Fig. 2.4c].

Fig. 2.4 GeneAlaCart input and output: (a) user inputs genes/identifiers of choice, selected
annotations, and output file format; (b) sample Excel sheet output; (c) sample JSON output
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Other download capabilities within the suite sites include exporting GeneCards
search results, details about MalaCards diseases, GeneLikeMe functional partners
with evidence, GeneHancer details, VarElect prioritized results, GeneAnalytics
enriched gene sets, and TGex annotated reports. Facilities for database acquisition
for the purposes of further analyses and integration include a variety of
knowledgebase dumps and APIs. For more details, please contact the authors.

Fig. 2.4 (continued)

44 M. Safran et al.



2.5 Use Cases

As noted above, discovery within the GeneCards Suite is exemplified by how
VarElect and TGex leverage the extensive knowledgebase to provide NGS interpre-
tation. The following use cases illustrate this.

2.5.1 Interpretation of Single Nucleotide Variants (SNVs)

VarElect is useful for variant interpretation in genetic disease studies by helping to
identify and prioritize associations between variant-containing genes and phenotype
keywords. VarElect helped us solve clinical cases in our own laboratory (Alkelai
et al. 2016, 2017; Oz-Levi et al. 2015; Heimer et al. 2016, 2018) and was further
used in numerous studies worldwide (Yang et al. 2017; Einhorn et al. 2017;
Ekhilevitch et al. 2016; Jia et al. 2017; Bafunno et al. 2018; Zhang et al. 2016;
Azim et al. 2019; Carneiro et al. 2018; Feliubadalo et al. 2017; Syama et al. 2018).
VarElect exploits the GeneCards Suite diverse gene-to-gene relationships to pin-
point the relevance of genes that have no direct association to the phenotype
keywords on their own (using the indirect, or “guilt by association” mode). The
indirect approach proved crucial to solving a case of systemic capillary leak syn-
drome (Stelzer et al. 2016b). Figure 2.5a depicts an example of another VarElect
case solved in our group (Rappaport et al. 2017b). In this example, the genome of a
6 year old boy, who suffered from atypical epilepsy combined with retinitis
pigmentosa, was sequenced. Eighty-one rare homozygous variants, which were
heterozygous in both parents, were identified in the patient. The list of 63 variant-
containing genes was submitted to VarElect, along with the phenotype search terms;
“epilepsy OR macular OR retinitis.” VarElect’s top scoring gene was CLN6. The
patient had a homozygous missense variation (V148D) in this gene with zero
population frequency and a high predicted protein damage impact. Following this
discovery, the patient was clinically diagnosed with accuracy, enabling appropriate
genetic counseling and preimplantation diagnosis for the family in the event of
future pregnancies.

VarElect can be used stand-alone as described above, or within TGex, the
GeneCards Suite Knowledge-Driven Clinical Genetics Analysis platform. TGex
requires two inputs: (Rebhan et al. 1997) A VCF file; (Stelzer et al. 2016a) dis-
ease/phenotype/symptom terms for VarElect gene-phenotype interpretation. With
TGex (Fig. 2.5b), thousands of variants within the uploaded patient VCF file are
analyzed in an interactive web-based interface, allowing the user to browse, view,
and filter input variants. Those capacities are combined with VarElect’s gene-
phenotype interpretation strength, allowing one to effectively identify disease-
causing candidates. Top candidate variants, along with disease association evidence,
are automatically pulled into the detailed clinical report.
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2.5.2 Interpretation of Genomic Structural Variants (SVs)

VarElect is useful for structural variants interpretation by the identification and
prioritization of SVs via the potential disease-causing genes damaged by each
SV. In this workflow, the gene list submitted to VarElect includes genes residing
(completely or partially) within the detected SVs. This mode of analysis using
VarElect helped solve a number of cases (Homma et al. 2018; Fidalgo et al.
2016). One study aimed to diagnose recurrent CNVs associated with syndromic
short stature of unknown cause (Homma et al. 2018). Two hundred and twenty-nine
patients were genotyped by chromosomal microarray analysis, leading to identifica-
tion of candidate CNVs. The gene content of those CNVs was submitted to VarElect

Fig. 2.5 The GeneCards Suite NGS analysis tools VarElect and TGex. (a) Example of a VarElect
case solved in our group (Rappaport et al. 2017b); (b) NGS data analysis with TGex. TGex allows
data scrutiny and analysis, starting from raw patient genetic data (a VCF file) to a detailed report.
Variants are annotated using information from the GeneCards knowledgebase, allowing interactive
filtering. These variant annotation and filtering steps are strengthened by gene-phenotype interpre-
tation using VarElect. Hence, TGex allows the examination of variants using both variant-based
annotations and variant-containing-genes-based interpretation, presenting this information for
optimal candidate variant selection for the clinical report
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to find and prioritize phenotype related genes, leading to identification of pathogenic
CNVs. We demonstrate this workflow using the TGex SVs module (Fig. 2.6).

The user inputs to TGex are: (Rebhan et al. 1997) a list of SVs; (Stelzer et al.
2016a) disease/phenotype/symptom terms. The analysis screen allows the user to
browse and interpret the SVs. The list of entered SVs (Fig. 2.6, left pane) is presented
along with annotations, such as the genomic location and length, SV type, number of
genes in the region, and more. Those annotations are amplified with the VarElect
score, which is also used as the default sort column for the SVs list. The value in this
column is the highest VarElect phenotype score of the gene pool in each SV gene
list. In this analysis the highest scoring SV is a 550kb deletion on chromosome X,
overlapping 5 genes and one enhancer element.

The user can click on any of the SVs in the list (left pane) for the detailed view of
each SV. In this view (Fig. 2.6, right pane) functional genomic elements in overlap
with the SV region are shown (including not only protein coding genes, but also
ncRNA genes, enhancers, and promoters), with annotations such as the overlap type
(full/partial), the number of exons in overlap (for genes), and GeneHancer confi-
dence scores for regulatory elements (see below). For the selected SV, the gene
SHOX (Short Stature Homeobox) is the VarElect top scoring gene for the submitted
keyword list (“short stature” OR “growth impairment” OR height OR dwarfism OR
dwarf OR “growth restriction” OR “growth retardation”). Clicking on the VarElect
score opens the “MiniCard,” which shows the hit context of the search terms within
different sections of the SHOX gene in GeneCards, and diseases related to SHOX in
MalaCards (Fig. 2.7).

2.5.3 GeneHancer-Powered Interpretation of SVs

GeneHancer, the GeneCards Suite database of regulatory elements and their gene
targets, has been used by the community as an annotation standard for enhancers and
promoters in the human genome, as well as for the associations of those elements
with their gene targets (Quigley et al. 2018; Zhang et al. 2018; Holzinger et al. 2017;

Fig. 2.6 SV analysis with TGex
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Fig. 2.7 MiniCards—evidence for gene-phenotype associations. This figure shows selected parts
of the MiniCard for the gene SHOX and the phenotypes used in the short stature study. A list of
matched phenotypes is shown in red in the top part. This is followed by several gene-centric
evidence for queried phenotype association, e.g. from the GeneCards Variants, Aliases, Summaries,
and Publication sections. This evidence is combined by MalaCards-based evidence, showing
queried phenotype associations in diseases associated with the gene SHOX, from various
MalaCards sections, e.g. Aliases, Symptoms, and Summaries. For all sections, only partial evidence
list is shown here
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Singh et al. 2018; Huang et al. 2018; Yang et al. 2018; Bermejo et al. 2019;
Erlangsen et al. 2020; Nikulin et al. 2018; Slater et al. 2018). With the growing
understanding of the importance of non-coding variants for NGS interpretation,
GeneHancer-enriched VarElect and TGex offer novel modes of analysis for tackling
this challenge.

First, we augmented VarElect to be able to process GeneHancer element identi-
fiers. For a given element, VarElect performs gene-phenotype prioritization for its
GeneHancer gene targets. The phenotype prioritization in this workflow is
performed by combining the VarElect gene-phenotype score with the GeneHancer
element and gene-association confidence scores. This mode of analysis allows users
to perform phenotype interpretation of mixed lists of genes and regulatory elements
after both SNV and SV primary data analysis steps.

Second, we enhanced TGex to include regulatory elements in SV interpretation.
User-submitted SVs are mapped to both genes and regulatory elements, followed by
VarElect interpretation of the mixed list of genes and enhancers/promoters. This
mode of analysis helped our lab solve a genetic disease study (Fig. 2.8). In this case,
a family with a rare congenital autosomal dominant genetic skin disease was
genotyped, leading to the identification of a CNV shared by all affected individuals.
Phenotype interpretation of this CNV discovered that it overlaps an enhancer, whose
gene target, albeit not residing within the CNV, is extremely relevant for the studied
phenotype.

Fig. 2.8 Solving a genetic disease with GeneCards Suite NGS tools SV analysis capacities.
GeneHancer enriches the GeneCards Suite NGS tools VarElect and TGex, providing the ability
to map SVs to non-coding functional regulatory elements such as enhancers and promoters. This
mapping, combined with GeneHancer’s information on the association of those elements with
target genes, enables pinpointing variant-phenotype relationships that otherwise might be
undiscovered, increasing the potential solve rate of genetic disease studies
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2.5.4 Other VarElect Use Cases

While interpretation of genetic disease NGS analyses was the focus of our described
use cases, VarElect is also a potent tool for supporting the interpretation of other
experimental results. In such scenarios, VarElect is utilized to analyze gene lists
retrieved from various methodologies, helping to focus on more affordable candidate
gene lists based on gene-phenotype information. Scenarios benefitting from the
gene-phenotype prioritization capacities of VarElect include gene expression
(RNAseq/Microarrays), protein expression (mass spectrometry), and other multi-
OMICS downstream analyses (Hulst et al. 2017; Yang et al. 2016; Biro et al. 2017;
Voisey et al. 2017; Amorim et al. 2017; Fonseca et al. 2018); genome-wide
association studies (Luzon-Toro et al. 2015); Quantitative Trait Locus (QTL) gene
targets downstream analysis (Martinez-Montes et al. 2018); and others (Chen et al.
2016; Alvarez-Castelao et al. 2017; Butler et al. 2016; Makler and Narayanan 2017;
Hashemi et al. 2017).

2.6 Summary and Future Development of the Database

The tools and databases in the GeneCards Suite synergistically work in concert to
provide information, elucidate relationships, and facilitate solving clinical cases.
Each suite member provides deep insights about particular facets of biological
research. Specifically, GeneCards is gene-centered, the one-stop-shop for compre-
hensive details related to genes of interest. MalaCards focuses on diseases and
disorders, presenting a detailed view of each malady, with annotations and links
including symptoms, drugs, articles, genes, clinical trials, related diseases/disorders,
and more. LifeMap Discovery concentrates on gene expression, providing data on
the developmental ontology of organ/tissues, anatomical compartments, and cells. It
also presents manually curated gene expression at all developmental stages, as well
as data extracted from high-throughput experiments and large-scale in situ databases.
Users who want to explore human pathways data will find it in PathCards, an
integrated database of human biological pathways and their annotations, wherein
each record presents a SuperPath that represents one or more human pathways, their
gene content, and relationships within member pathways. GeneLoc consolidates
genes from major worldwide sources, merging them by location and assigning each
GeneCards gene a unique GeneCards Identifier. The GeneLoc site provides a tabular
view of a gene’s genomic context, including neighboring genes, EST cluster, and
markers. GeneHancer, an innovative and growing regulatory element database,
focuses on enhancers and promoters, central to tissue-related gene expression,
with many known strong connections to diseases. GenesLikeMe measures how
genes are related to a target gene, based on shared characteristics, including expres-
sion, ontologies, or disorders. Using a gene set from the results of a GeneCards
search, or any set of genes of interest, one can extract GeneCards annotations for all
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genes in the set using GeneALaCart, the suite’s batch query facility. The set can be
further analyzed using GeneAnalytics, which can identify cell types, diseases,
pathways, and functions enriched in the gene set, and provides tools for further
in-depth analysis of all of the genes in the set. VarElect identifies and prioritizes
genes and variants according to their relevance to diseases and phenotypes of interest
and allows one to explore relationships between genes and gene variants and
selected diseases, phenotypes, or any pertinent biological term via relevant path-
ways, interaction networks, and publications. TGex, the suite’s end-to-end NGS
solution, is a VCF-to-report clinical analyzer which incorporates VarElect’s
algorithms.

Future plans include continuing to build on the efforts of the last twenty years,
ensuring that information from current sources is kept up-to-date, relevant, and
provided in a user-friendly manner, in parallel with continuing to innovate in the
“dark matter” arena of regulatory elements and RNA genes. The GeneCards Suite’s
extensive KnowledgeBase and disease interpretation platform fortifies its capacities
to relate diseases to non-coding variants identified by WGS, towards providing a
comprehensive route to clinical significance of coding and non-coding single nucle-
otide and structural genomic variations, in order to elucidate unsolved clinical cases
and enable accurate clinical diagnosis and comprehensive genetic counseling.
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Chapter 3
Atlas of miRNAs and Their Promoters
in Human and Mouse

Michiel Jan Laurens de Hoon

Keywords Gene expression · MicroRNA biogenesis · Regulatory sites · Noncoding
RNAs · Cap Analysis Gene Expression (CAGE) · Transcription start sites ·
Transcription · Functional annotation · Vertebrate

3.1 Preamble

MicroRNAs (miRNAs) are a class of short (typically 21–24 nucleotides) noncoding
RNAs that inhibit the expression of specific genes by binding to complementary
target sequences on RNA transcripts, usually located in the 30 untranslated region
(UTR), and repressing translation or inducing RNA degradation. The miRNA
biogenesis pathway consists of excision by Drosha of the precursor miRNA
(pre-miRNA) from a primary miRNA (pri-miRNA) transcript, followed by
processing of the pre-miRNA by Dicer to release the mature miRNA duplex
consisting of a guide RNA and a passenger strand RNA. Mature miRNAs have a
phosphate group on their 50 end and a hydroxyl group on their 30 end; short RNA
(sRNA) sequencing libraries for miRNA expression profiling by next-generation
sequencing instruments can be produced by ligating adapters to the 50 and the 30 end
of the mature miRNA, followed by reverse transcription, PCR amplification, and gel
purification (Illumina, Inc. 2011).

As pri-miRNAs are long transcripts with a 50 cap, their expression can be profiled
using Cap Analysis Gene Expression (CAGE; Takahashi et al. 2012). In CAGE,
transcripts are reverse-transcribed using random priming to include both
polyadenylated and non-polyadenylated RNAs, followed by cap-trapping to capture
capped transcripts such as mRNAs, long noncoding RNAs, and pri-miRNAs while
avoiding ribosomal RNAs. In addition to measuring expression levels, CAGE
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identifies the exact 50 end of the profiled transcript and therefore its transcription start
site and promoter region.

In the fifth edition (FANTOM5) of the FANTOM (Functional Annotation of the
Mammalian Genome) project (http://fantom.gsc.riken.jp/), RNA samples from
human and mouse, mostly from primary cells, were subjected to CAGE profiling
to create an expression atlas of transcription initiation at single-nucleotide resolution
(Forrest et al. 2014). A subset of 422 human and 78 mouse RNA samples in
FANTOM5 were selected for sRNA library production and sequencing to produce
a complementary atlas of miRNA expression in human and mouse (De Rie et al.
2017). By making use of the CAGE data in FANTOM5, for each miRNA the
associated pri-miRNA and its promoter was identified. Importantly, each short
RNA library in the FANTOM5 collection had a matching CAGE library produced
from the same RNA sample. As the expression levels of mature miRNAs observed
by sRNA sequencing were correlated to the expression levels of the corresponding
pri-miRNAs in the matching CAGE library, pri-miRNA CAGE expression levels
could be used as a proxy for the expression level of mature miRNAs, allowing the
miRNA expression atlas to be extended to the 1829 human and 1029 mouse CAGE
libraries included in FANTOM5 (De Rie et al. 2017).

The FANTOM5 expression atlas of miRNAs and their promoters (http://fantom.
gsc.riken.jp/5/suppl/De_Rie_et_al_2017/) thus created is a comprehensive resource
of miRNAs in human and mouse, their expression levels in primary cells, tissues,
and cell lines, as well as their promoters and associated CAGE expression levels.
Using this atlas, the expression pattern across samples of miRNAs can be evaluated
as an indication of the cell types in which the miRNA is biologically most relevant.
Additionally, sequence analysis of the promoter region around the transcription start
site of the identified pri-miRNA enabled an analysis of how the cell type specific
expression patterns of each miRNA are encoded in the regulatory control region of
the corresponding pri-miRNA (De Rie et al. 2017).

Target users of this atlas are scientists focusing on specific miRNAs or specific
cell types, as well as system biologists interested in a global analysis of the cellular
regulatory network and the role of miRNAs therein.

3.2 Database Content

Table 3.1 shows an overview of the sRNA data in FANTOM5. Most samples are
from human, and most human samples were derived from primary cells. As
described previously (De Rie et al. 2017), all sRNA sequencing data were generated
using the same protocol to prepare barcoded Illumina TruSeq Small RNA libraries
(Illumina, Inc. 2011) and the same sequencing protocol on the Illumina HiSeq2000
sequencer, allowing direct comparison of the expression level of each miRNA
between different samples. Similarly, CAGE sequencing data were generated
using the same library preparation and sequencing protocol (Kanamori-Katayama
et al. 2011) as described in the corresponding publications (Forrest et al. 2014; Arner
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et al. 2015). Detailed information on each sample is provided in the FANTOM5
Semantic catalog of Samples, Transcription initiation And Regulators (SSTAR;
http://fantom.gsc.riken.jp/5/sstar; Abugessaisa et al. 2016).

To generate a miRNA expression table, sequence reads were mapped using bwa
(Li and Durbin 2009) to genome assembly hg19 for human and mm9 for mouse and
assigned to miRNAs previously annotated in miRBase release 21 (Kozomara and
Griffiths-Jones 2014) or to candidate novel miRNAs identified using miRDeep2
(Friedländer et al. 2012) based on genomic overlap. Expression values were
converted to c.p.m. (counts-per-million) by normalizing against the total miRNA
expression in each sample (De Rie et al. 2017). The FANTOM5 CAGE data was
used to identify the pri-miRNA transcript associated with each miRNA by applying
a computational pipeline followed by manual curation (De Rie et al. 2017) and to
create an expression table for all identified pri-miRNAs. Cell ontology enrichment

Table 3.1 Overview of sRNA libraries in FANTOM5

Organism Origin RNA source Size # of samples

Human Primary cells Total RNA Short 286

Primary cells, ES, iPS Nuclear RNA Short 16

Primary cells, ES, iPS Cytoplasmic RNA Short 9

Primary cells, ES, iPS Nuclear RNA Long 9

Primary cells, ES, iPS Cytoplasmic RNA Long 9

Tissue Total RNA Short 6

Time course Total RNA Short 87

Total: 422

Mouse Primary cells Total RNA Short 1

Whole body Total RNA Short 14

Time course Total RNA Short 27

Primary cells, ES, iPS Nuclear RNA Short 9

Primary cells, ES, iPS Cytoplasmic RNA Short 9

Primary cells, ES, iPS Nuclear RNA Long 9

Primary cells, ES, iPS Cytoplasmic RNA Long 9

Total: 78

Rat Primary cells Total RNA Short 3

Whole body Total RNA Short 3

Total: 6

Dog Primary cells Total RNA Short 3

Whole body Total RNA Short 3

Total: 6

Chicken Primary cells Total RNA Short 3

Whole body Total RNA Short 2

Total: 5

RNAs with sizes between 15 and 40 or 50 nucleotides (“short”) or between 80 and 280 bp (“long”)
were selected for sequencing (Fort et al. 2014; De Rie et al. 2017). The sRNA libraries for rat, dog,
and chicken samples are unpublished and have not yet been integrated in the database
ES embryonic stem cells, iPS induced pluripotent stem cells
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analysis of the human sRNA and CAGE data in FANTOM5 was performed by
evaluating the statistical significance of expression enrichment or depletion of each
miRNA or pri-miRNA in cell ontology clusters of primary cell types, retaining the
three most enriched and depleted cell ontology terms as a systematic annotation of
cell type specific expression.

3.3 Database Architecture

CAGE expression data are referred to by the RNA sample ID (a 4- or 5-digit number)
of the RNA sample from which the CAGE library was produced. Each RNA sample
number is associated with a FANTOM5 sample ontology ID (FF ontology ID) for
human and mouse. Short RNA expression data are provided per RNA sample
identified by concatenating the sRNA library ID (of the form SRhinnnnn, where
nnnnn is a 5-digit number), a 6-nucleotide barcode, and the RNA sample number. In
a few cases, RNA samples from the same cellular origin were pooled before sRNA
library construction; in such cases, the RNA sample numbers and FF ontology IDs
are concatenated by a + sign.

Figure 3.1 shows a schematic view of the data stored in the FANTOM5 miRNA
atlas. Each table in this schema corresponds to one flat file available at the
FANTOM5 miRNA atlas website. At the core is the miRNA promoter annotation
table, which associates each pre-miRNA with the corresponding mature miRNA as
well as the promoter of the predicted pri-miRNA. Each pre-miRNA is identified by
its pre-miRNA ID (i.e. the pre-miRNA name in miRBase) and its miRBase acces-
sion number, as well as by its genomic coordinates on genome assembly hg19 (for
human) or mm9 (for mouse). Likewise, the mature miRNA is identified by its
miRBase miRNA ID and miRBase accession number. Candidate novel miRNAs
are indicated by their number in the accompanying publication (De Rie et al. 2017).
The promoter of the predicted pri-miRNA is specified by its CAGE peak ID in
FANTOM5 (Forrest et al. 2014), as well as by the genomic coordinate of the
transcription start site.

The sRNA expression table provides the expression level, normalized to counts-
per-million, of each mature miRNA (identified by the miRNA ID) in the FANTOM5
sRNA samples. A table of sRNA library descriptions shows the RNA sample
(specified by the FANTOM5 sample ontology ID and corresponding sample

Fig. 3.1 Database architecture of the FANTOM5 miRNA atlas

60 M. J. L. de Hoon



description) from which the sRNA library was produced. The sRNA cell ontology
definitions table lists the sRNA libraries associated with each of the cell ontology
terms; the miRNA cell ontology annotation table shows the three most enriched and
depleted cell ontology terms for each miRNA, together with the statistical signifi-
cance found.

The CAGE expression table provides the expression level, normalized to tags-
per-million (t.p.m.), of all CAGE peaks associated with predicted pri-miRNAs for
each CAGE library in FANTOM5, specified by their RNA sample number. The
table of CAGE library descriptions shows the FANTOM5 sample ontology number
and sample name for each CAGE library. The CAGE cell ontology definitions table
shows the CAGE libraries (referenced by their RNA sample number) associated with
each cell ontology term, while the pri-miRNA promoter cell ontology annotations
show the three most enriched and depleted cell ontology terms for each pri-miRNA
(identified by the CAGE peak ID of its associated promoter), together with the
statistical significance found.

Raw sequencing data are available from the DNA Data Bank of Japan (DDBJ;
https://www.ddbj.nig.ac.jp) as shown in Table 3.2. Sequence alignments to the
human and mouse genome are available as part of the FANTOM5 data files
(http://fantom.gsc.riken.jp/5/datafiles/). Expression tables as well as promoter, cell
ontology, and sample annotations can be downloaded directly from the FANTOM5
miRNA atlas website, as described below.

3.4 Using the FANTOM5 miRNA Atlas Interactively

The FANTOM5 miRNA atlas is available at http://fantom.gsc.riken.jp/5/suppl/De_
Rie_et_al_2017/. The landing page (Fig. 3.2) provides links to the miRNA expres-
sion viewer including novel miRNAs (Fig. 3.2Ⓑ) or excluding them (Fig. 3.2Ⓐ) for
faster loading. The landing page also provides a link to an interactive miRNA

Table 3.2 Accession numbers for raw sequencing data at DDBJ

Accession
number Data description

DRA000991 CAGE data, human and mouse (Forrest et al. 2014)

DRA001101 sRNA data, human (Andersson et al. 2014)

DRA002711 CAGE data, mouse (Arner et al. 2015)

DRA002747 CAGE data, human (Arner et al. 2015)

DRA002748 CAGE data, mouse (Arner et al. 2015)

DRA003804 sRNA data, human (De Rie et al. 2017)

DRA003807 sRNA data, mouse (De Rie et al. 2017)

DRA000914 sRNA data, human and mouse; CAGE data, human and mouse (Fort et al.
2014)

3 Atlas of miRNAs and Their Promoters in Human and Mouse 61

https://www.ddbj.nig.ac.jp
http://fantom.gsc.riken.jp/5/datafiles/
http://fantom.gsc.riken.jp/5/suppl/De_Rie_et_al_2017/
http://fantom.gsc.riken.jp/5/suppl/De_Rie_et_al_2017/


expression heatmap (Fig. 3.2Ⓒ), showing the expression profile of mature miRNAs
in the robust set in the human primary cells.

3.4.1 Using the miRNA Expression Viewer

The miRNA expression viewer (Fig. 3.3) visualizes the miRNA expression data and
annotation files shown in Fig. 3.1. At the top of the miRNA expression viewer, the
user can select to access either the human or the mouse data (Fig. 3.3Ⓐ). The three
panels below show, from left to right, the miRNA or sample list (Fig. 3.3Ⓑ), the
expression chart, cell ontology analysis, and annotation data (Fig. 3.3Ⓒ), and the
expression table (Fig. 3.3Ⓓ).

In the left panel, the user can select to list miRNAs, the sRNA samples, or the
CAGE samples (Fig. 3.4Ⓐ). Selecting miRNAs will show a list of all mature
miRNAs (both guide RNA and passenger strand RNA), the pre-miRNA from
which they originate, and the associated pri-miRNA promoter (Fig. 3.4). Paralogous
miRNAs will be listed once for each instance on the genome. The miRNAs can be
sorted alphabetically by mature miRNA name (Fig. 3.4Ⓑ), pre-miRNA name
(Fig. 3.4Ⓒ), or promoter name (Fig. 3.4Ⓓ) by clicking on the corresponding
label. To search for miRNAs, the name of the mature miRNA, of the pre-miRNA,
or of the promoter of the pri-miRNA can be entered in the boxes below the label
(Fig. 3.4Ⓑ–Ⓓ). Selecting a miRNA from the list will highlight all instances of the
mature miRNA (Fig. 3.4Ⓔ), the pre-miRNA associated with the selected miRNA
(Fig. 3.4Ⓕ), and the promoter of the associated pri-miRNA both for the guide RNA

Fig. 3.2 Landing page of the FANTOM5 miRNA atlas at http://fantom.gsc.riken.jp/5/suppl/De_
Rie_et_al_2017/
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(Fig. 3.4Ⓕ) and for the passenger strand RNA (Fig. 3.4Ⓕ). The promoter is also
highlighted for any other miRNAs originating from the same pri-miRNA
(Fig. 3.4Ⓘ). In addition to the columns shown, the pre-miRNA ID (Fig. 3.5Ⓐ)
and the miRNA ID as defined by miRBase (Fig. 3.5Ⓑ) can be included in this table
by clicking on the options button (Fig. 3.4Ⓙ) to open the options menu (Fig. 3.5).

The center panel (Fig. 3.6) shows the expression chart (Fig. 3.6Ⓐ) for the
miRNA selected in the left panel, with the expression in counts-per-million (c.p.
m.) on the vertical axis on a logarithmic scale, and the samples sorted by the
expression of the miRNA on the horizontal axis. The expression chart can be
downloaded as an editable vector image file in the Scalable Vector Graphics
(SVG) format by clicking on “Download SVG” (Fig. 3.3Ⓔ).

For guide strand mature miRNAs, below the expression chart the cell ontology
panel (Fig. 3.6Ⓑ) shows a table with the cell ontology clusters in which expression
of the miRNA is most enriched or depleted, with the statistical significance shown as
the P-value. Selecting a cell ontology term from this table will indicate the expres-
sion rank of the associated samples on the sample rank bar of the expression chart
(Fig. 3.6Ⓒ) as a visual representation of the expression enrichment or depletion of
the miRNA in the selected cell ontology cluster samples. Figures 3.6 and 3.7 show
the examples of hsa-miR-16-5p and hsa-miR-100-5p with enriched and depleted,
respectively, expression in leukocytes. Further below, the annotation panel
(Fig. 3.6Ⓓ) provides links to the mature miRNA and the pre-miRNA in the
miRBase (Kozomara and Griffiths-Jones 2014) database (Fig. 3.6Ⓔ), the genomic
coordinates of the pre-miRNA, the FANTOM5 name of the promoter associated
with the pri-miRNA, the coordinates of the transcription start site (TSS), and links to

Fig. 3.3 FANTOM5 miRNA expression viewer showing human pre-miRNA hsa-mir-133a-1 with
its associated mature miRNA hsa-miR-133a-5p (guide) and pri-miRNA promoter p1@uc002ktr.2,
p1@uc002kts.2
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the pre-miRNA and TSS region in the ZENBU (Severin et al. 2014) genome browser
(Fig. 3.6Ⓕ).

The right panel (Fig. 3.8) shows an expression table with the expression level in
c.p.m. of the selected miRNA in each of the FANTOM5 samples. By default,
samples are sorted by expression level of the miRNA. The samples can be sorted
alphabetically by clicking on the description label (Fig. 3.8Ⓐ) and sorted by
increasing or decreasing expression level by clicking on the value label
(Fig. 3.8Ⓑ). Samples with miRNA expression levels greater than or less than a
user-specified value can be selected by entering the desired maximum and minimum
values in the boxes below the value label (Fig. 3.8Ⓒ). Clicking on the option button

Fig. 3.4 Left panel of the miRNA expression viewer, showing the list of miRNAs
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(Fig. 3.8Ⓓ) to the right of the value label will display open the options menu
displaying a list of columns to be shown in this panel (Fig. 3.9), which allows
including the rank (Fig. 3.9Ⓐ) and name (Fig. 3.9Ⓑ) of each sample as additional
columns in the expression table. Here, the expression ranks are numbered starting
from 0, and the name consists of the sRNA library, barcode, and RNA sample
number concatenated by periods. This panel also allows exporting the expression
table as a downloadable file of comma-separated values (csv) (Fig. 3.9Ⓒ).

Selecting sRNA samples or CAGE samples in the left panel (Fig. 3.4Ⓐ). The
sample ID (Fig. 3.11Ⓐ) and SSTAR ID (Fig. 3.11Ⓑ) can be shown as additional
columns by selecting them in the options menu (Fig. 3.11) accessible by clicking the
options button (Fig. 3.10Ⓐ). Choosing one of the samples will show the expression
levels of miRNAs in the expression chart in the central panel, together with the
sample annotation information (Fig. 3.12); the expression table in the right panel will
show the expression levels numerically for each mature miRNA in
c.p.m. (Fig. 3.13). Clicking the options button (Fig. 3.13Ⓐ) will display the options
menu from which the miRNA expression rank (Fig. 3.14Ⓐ) and miRBase name
(Fig. 3.14Ⓑ) can be shown as additional columns. The options menu also allows
exporting the data visible in the expression table as a downloadable file with comma-
separated values (csv) (Fig. 3.14Ⓒ).

Fig. 3.5 Options menu for the left panel of the miRNA expression viewer, in which the columns to
be shown in the list of miRNAs can be selected
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Fig. 3.6 Central panel of the miRNA expression viewer, showing the expression chart and sample
rank, the cell ontology results, and the annotation data of the miRNA, pre-miRNA, and promoter.
For the selected miRNA, hsa-miR-16-5p, expression is enriched in leukocytes
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3.4.2 Using the Interactive miRNA Expression Heatmap

The interactive miRNA expression heatmap can be accessed by clicking on the link
on the landing page of the FANTOM5 miRNA atlas (Fig. 3.2Ⓒ). The heatmap
(Fig. 3.15) shows the expression level of the 735 annotated mature miRNAs (guide
strand only) in the robust set (De Rie et al. 2017) as rows, in 118 primary cell types in
human, after averaging over donors, as columns. One cell type (“Fibroblast—
Pulmonary Artery”) was dropped from the full set of samples (Table 3.1) as the
corresponding sRNA library had fewer than 100,000 reads. Cell types were grouped

Fig. 3.7 Expression chart, sample rank, and cell ontology results for miRNA hsa-miR-100-5p, for
which expression is depleted in leukocytes

3 Atlas of miRNAs and Their Promoters in Human and Mouse 67



by category (Fig. 3.15Ⓐ) as indicated by the color bar below the cell type name
(Fig. 3.15Ⓑ).

To sort the heatmap, both miRNAs and cell types were clustered using pairwise
centroid-linkage hierarchical clustering with the Pearson correlation as the similarity
measure (De Hoon et al. 2004) after normalizing the expression of each miRNA to

Fig. 3.8 Expression table for miRNA hsa-miR-16-5p, which is highly expressed in CD19+ B cells,
CD14+ monocytes, and other leukocytes
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Z-scores by subtracting the mean and dividing by the standard deviation across
samples. The hierarchical clustering tree itself is not displayed. Each cell in the
heatmap is colored based on the calculated Z-score of the expression of the miRNA
in the cell type (Fig. 3.15Ⓒ). Hovering with the mouse over a cell in the heatmap
will show the mature miRNA name, the cell type, the category to which the cell type
belongs, and the Z-score of the miRNA expression level in the cell type (Fig. 3.16).
Clicking on a cell or on a miRNA name will redirect the browser to the miRNA
expression viewer for the corresponding miRNA. The expression data shown in the
heatmap can be downloaded as a tab-delimited file by clicking on “Download Data”
(Fig. 3.15Ⓓ).

3.5 Database Access and Mining Methods

A flat file for each table shown in Fig. 3.1 can be downloaded from the FANTOM5
miRNA atlas website by clicking on the download button (Fig. 3.3Ⓕ).

The miRNA promoter annotation table is provided as the tab-delimited files
human.promoters.tsv and mouse.promoters.tsv for human and
mouse, respectively. This file contains two lines for each pre-miRNA, corresponding
to the guide strand and the passenger strand of the mature miRNA. Each line shows
the name and miRBase ID of the pre-miRNA, its chromosome, strand, and genomic
coordinates, the name and miRBase ID of the guide RNA or passenger strand RNA
of the associated mature miRNA, the short description of the FANTOM5 CAGE

Fig. 3.9 Options menu for the right panel of the miRNA expression viewer, in which the columns
to be shown in the expression table can be selected, and data can be exported as a downloadable file
in the csv (comma-separated values) format
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peak of the promoter associated with the pri-miRNA, and the transcription start site
of the pri-miRNA.

The sRNA expression tables, human.srna.cpm.txt for human and mouse.
srna.cpm.txt for mouse, are tab-delimited files with the expression of both the
guide and passenger strand of each miRNA, identified by its miRBase ID, in each
sRNA library. Expression values are normalized to counts-per-million (c.p.m.) in

Fig. 3.10 Left panel of the miRNA expression viewer, showing the list of sRNA samples
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Fig. 3.11 Left panel of the miRNA expression viewer, showing the list of CAGE samples, together
with the options menu in which columns to be included can be selected

Fig. 3.12 Expression chart for miRNA expression in “alveolar epithelial cells, donor 2” as
measured by sRNA sequencing, together with the annotation data of this sample
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Fig. 3.13 Right panel of the miRNA expression viewer, showing the expression table for miRNA
expression in sample “alveolar epithelial cells, donor 2” as measured by sRNA sequencing

Fig. 3.14 Options menu for the right panel of the miRNA expression viewer, in which the columns
to be shown in the expression table can be selected, and data can be exported as a downloadable file
in the csv (comma-separated values) format
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each library separately. The sRNA library IDs are associated with an FF ontology ID
and sample description in the files human.srna.samples.tsv and mouse.
srna.samples.tsv.

The CAGE expression tables, human.cage.tpm.txt and mouse.cage.
tpm.txt for human and mouse, respectively, are tab-delimited files with the
CAGE expression level of the FANTOM5 CAGE peaks associated with
pri-miRNAs as shown in the miRNA promoter annotation table. Each column
corresponds to one CAGE library, as identified by its associated RNA sample
number, and is normalized to tags-per-million (t.p.m.). The RNA sample numbers
are associated with an FF ontology ID and sample description in the files human.
cage.samples.tsv and mouse.cage.samples.tsv.

The miRNA cell ontology annotations based on the sRNA expression patterns
across cell types are available in the file human.mirna.cellontology.tsv,
listing for each miRNA (identified by miRBase ID) the three cell ontology clusters in
which the expression of the miRNA is most enriched, and the three cell ontology
clusters in which the expression is most depleted. The sRNA cell ontology defini-
tions are provided in the file human.srna.cellontology.tsv, listing the
sRNA samples associated with each cell ontology cluster. Similarly, the file
human.promoter.cellontology.tsv lists for each FANTOM5 CAGE
peak associated with a pri-miRNA the three cell ontology clusters in which the
CAGE expression levels of the pri-miRNA are most enriched, and the three cell
ontology clusters in which the expression is most depleted. The CAGE cell ontology
definitions are provided in the file human.cage.cellontology.tsv, listing
the RNA sample numbers associated with each cell ontology cluster.

Fig. 3.15 Interactive heatmap showing the expression of mature miRNAs (guide RNA) in the
robust set (De Rie et al. 2017), normalized to Z-scores, in human primary cell types after averaging
over donors
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3.6 Summary and Future Development of the Database

The FANTOM5 expression atlas of miRNAs and their promoters provides a basis
for a detailed analysis of the transcriptional regulation of miRNAs and their role in
defining cell types. The atlas will be extended in the near future sRNA sequencing
data for rat, dog, and chicken (Table 3.1), together with promoter annotations for
miRNAs in these three species, opening the door to cross-species comparisons of
miRNA expression and regulation.
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Chapter 4
IHEC Data Portal

David Bujold, Romain Grégoire, David Brownlee, Ksenia Zaytseva,
and Guillaume Bourque

Abstract The International Human Epigenome Consortium (IHEC) coordinates the
creation of high-resolution reference epigenome maps for healthy and diseased
human tissues. The IHEC Data Portal (http://epigenomesportal.ca/ihec) provides
open access to discover, visualize, compare, and download annotation tracks gen-
erated for these reference epigenomes, along with their associated metadata. More
than 16,000 transcriptome, methylome, and histone tracks, sourced from over
900 tissues and compared against the hg19 and hg38 reference genomes are pro-
vided. The standardized IHEC Data Hub submission protocol ensures that complete
and compatible data is integrated from the consortium members. The data portal
offers a highly visual, interactive, and intuitive data grid interface to facilitate dataset
selection across multiple criteria. All data may be correlated, visualized in popular
genome browsers, exported to a Galaxy instance, downloaded for further analysis, or
saved as a session for future retrieval. Through providing access to IHEC’s database
of reference epigenomic datasets, the IHEC Data Portal reinforces the consortium’s
commitment to Open Science.

Keywords API · IHEC · Accession · Analysis · Archival · Dataset · Epigenomics ·
Metadata · Online resource · Portal · Visualization

4.1 Preamble

4.1.1 Summary

The International Human Epigenome Consortium (Stunnenberg et al. 2016) is
composed of several member groups, with the common goal of producing high
quality reference epigenomes over a variety of assays for healthy and diseased
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tissues. These human reference maps typically include information on the
transcriptome, methylome, and histone modifications over the whole genome. The
IHEC Data Portal (http://epigenomesportal.ca/ihec) contains metadata on the origi-
nal donor, sample and experimental conditions, and processed experimental results
in the form of anonymized annotation tracks. The portal makes these annotations
available for convenient viewing in popular visualization and data analysis software,
such as the UCSC Genome Browser, Ensembl, and the Galaxy web platform.

4.1.2 Purpose

The IHEC Data Portal (Bujold et al. 2016) is an online database that offers tools to
discover, navigate, visualize, and analyze epigenomic datasets produced by IHEC. It
is the official resource to access annotations on reference epigenomes produced
within the consortium. The visual, navigation, and filtering tools enable users to find
datasets of interest based on all the metadata properties provided by data submitters.
Central to the portal is a data grid showing counts of available datasets for given sets
of cell types and assays.

4.1.3 Source and Type of Dataset

IHEC members contributing data to the IHEC Data Portal include ENCODE, NIH
Roadmap, CEEHRC, Blueprint, DEEP, AMED-CREST, and KNIH. The majority of
data is from human sources, compared against the hg19 and hg38 reference
genomes. A small amount of mouse data (compared against the mm10 reference
genome) is also available.

The database stores processed annotation tracks such as bigBed and bigWig files
(Kent et al. 2010), and non-personally identifiable metadata on those datasets.
Personally identifiable data, including the raw sequencing data, is deposited at
controlled access repositories such as EGA (Leinonen et al. 2010) and DDBJ
(Tateno et al. 2002). Pointers to these controlled access repositories are provided,
should a user want to request access to raw data (FASTQ, BAM files) and sensitive
clinical/phenotypic metadata.

4.1.4 Target User Group

The portal targets the broad epigenomic research community seeking reference
epigenomic datasets produced by IHEC member consortia and/or other community
members. A session creation feature generates a URL to share dataset selections
among collaborators.
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4.2 Database Overview

4.2.1 Importance of the Dataset

One of the primary goals of IHEC is to produce reference epigenomic maps on a
wide array of tissues and cell types, both diseased and healthy. This is done by
assessing multiple angles of the epigenomic landscape of a sample, primarily at the
levels of histone modification, DNA methylation, and transcriptome. Other assays
are also implemented, depending on the consortium who produces the data. The
resulting reference maps can be used in multiple ways, such as a point of comparison
for similar datasets produced in the community, as a training dataset for algorithms
or otherwise. The IHEC Data Portal stores the processed data and annotation tracks
produced by the downstream analysis of these reference epigenomes’ raw data.

4.2.2 Current Status of Achievements

In operation since 2014, the IHEC Data Portal provides open access to over 16,000
datasets, sourced from over 900 tissues. It is the official platform to navigate the
reference epigenomic datasets produced by the IHEC consortium. The platform
seamlessly unifies data discovery, visualization, analysis, and sharing.

4.2.3 Main Features of the Database

A dynamic web interface responsive to user actions is central to the design of the
IHEC Data Portal. When first accessing the IHEC Data Portal, a user is presented
with a visual summary showing the volume of data available for a given reference
genome (Fig. 4.1). This overview is depicted on data wheels showing the distribu-
tion of data over three axes: data producing consortium, tissue type, and assay
category. The data wheels are interactive and act as filter shortcuts when selecting
datasets to be used during the user session.

Table 4.1 outlines the principal object types stored in the database. All fields
within these entities are searchable.

4.2.4 Future Updates and Availability

A new data build is released annually, integrating all new data submitted by member
consortia, using IHEC Data Hub documents. Annotations from all versions of
datasets are archived and permanently available for retrieval.
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4.3 Content and Architecture of the Database

4.3.1 Type of Data Stored

The IHEC Data Portal stores annotation tracks and pertinent metadata for all
epigenomic datasets. The annotation tracks are produced by each respective data
provider using their own bioinformatics analysis pipelines and are provided to the
IHEC Data Portal. At the moment, the platform does not provide a uniformly
processed dataset that includes all IHEC members data, although this uniformly
processed dataset is currently being generated through an IHEC reanalysis initiative.

Over 200 data fields are collected within the database, though specific fields per
dataset vary according to the nature of the sample, assay, and analysis. The minimal
required data fields for a dataset description are listed in Table 4.2. A complete data
dictionary explaining the stored data properties is found in the IHEC Ecosystem

Fig. 4.1 Database overview, as presented on the home page
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Metadata Specification: (https://github.com/IHEC/ihec-ecosystems/blob/master/
docs/metadata/1.0/Ihec_metadata_specification.md).

4.3.2 Data Collection Methods

The process of including data and metadata in the portal is done through a standard-
ized exchange format called IHEC Data Hubs. These are structured as JSON
documents, defined by a JSON schema specification. For IHEC member consortia,
a data ingestion mechanism is in place to validate provided metadata, download
annotation tracks, and store them on the portal.

For its annual data release, the portal collects IHEC Data Hub documents created
by IHEC members with new data. These JSON-formatted documents include all
required IHEC metadata properties, alongside URLs of the bigBed and bigWig data
files at their remote storage locations. The portal uses these documents to download a
copy of all tracks to its servers. This provides some level of protection against
datasets that have been modified, moved, or have disappeared from their original
source.

4.3.3 Curation Approaches

The geographically distributed and linguistically diverse nature of the IHEC member
groups raises challenges for data standardization. As a result, publicly available and
established ontologies are relied upon heavily, wherever applicable (Table 4.3).

Table 4.1 Summary of entities stored in the IHEC Data Portal

Entity Description

Assays Characterizing an experiment, allows users to understand the nature of the anno-
tations (e.g. dataset is a transcriptome assessed using an mRNA-Seq experiment)

Dataset A dataset represents one experiment that has been done on one sample (e.g. sample
MS000101 methylome, assessed by a whole-genome bisulfite sequencing experi-
ment, is one dataset)
Each dataset is characterized by a group of annotation tracks, used in the portal to
visualize results

Dataset
Track

One specific annotation track for a dataset. For stranded RNA-Seq experiments,
one track is the whole-genome signal on the forward strand. There is another track
for the reverse strand

Cell type Information on the nature of the dataset source biological material

Donor One donor can give multiple samples that will each be mapped as an epigenome.
For example, donor McGill0002 gives blood samples at 2 different time points,
from which monocytes, T cells, and B cells are characterized, resulting in a total of
6 samples
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Table 4.2 Data types detailed description

Top level entity: Dataset Annotation track properties
Sub-element Description
Browser Type of annotation track

Signal Annotation Tracks The basic experiment signal, providing information on where the
raw readset aligns over the genome. Offered in bigWig file format

ChIP-Seq Peaks The location of the peaks called by a ChIP-Seq experiment is
provided in bigBed file format

Methylation profile The relative ratio of reads at CpG sites that were methylated.
Provided in bigWig file format

big_data_url The URL from which this dataset track can be obtained online

md5sum The checksum for this track

Top level entity:
Experiment

Describes metadata captured on experimental conditions,
providing more information on how the experiment was
conducted

Sub-element Description
experiment_type DNA Methylation, mRNA-Seq, ChIP-Seq Input, etc.

experiment_ontology_uri Link to experiment ontology information

Top level entity: Analysis Information on the bioinformatics analysis pipeline that was
used to generate annotation tracks

Sub-element Description
analysis_group The group that ran the bioinformatics analysis to produce these

dataset tracks

alignment_software The name of the software used for mapping

alignment_software_version The version of the software used for mapping

analysis_software The name of the software used for determining signal (read
density)

analysis_software_version The version of the software used for determining signal (read
density)

Top level entity: Donor Properties captured on the original sample donor
Sub-element Description
donor_age The age of the donor that provided the primary cell

donor_life_stage (Controlled Vocabulary) "fetal," "newborn," "child," "adult,"
"unknown," "embryonic," "postnatal"

donor_health_status The health status of the donor that provided the primary cell

donor_sex (Controlled Vocabulary) "Male," "Female," "Unknown," or
"Mixed" for pooled samples

donor_ethnicity The ethnicity of the donor that provided the primary cell

Top level entity: Sample Depending on the biological material type, different properties
of the reference epigenome sample are captured

Sub-element Description
sample_ontology_uri Link to sample ontology information. The ontology used depends

on the sample biological material type

molecule The type of molecule that was extracted from the biological
material, such as total RNA, polyA RNA, cytoplasmic RNA,
nuclear RNA, genomic DNA, protein, or other

(continued)
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Further, textual data fields are restricted to enumerated controlled vocabulary, when
possible.

Non-anonymized unprocessed raw data files (FASTQ files) require storage at
controlled access repositories and are not stored in the IHEC Data Portal. A separate
database, EpiRR (Epigenome Reference Registry 2019) was created by IHEC as a
means for data producers to specify the location of their raw data that is available
only upon request. When raw data is deposited at such a controlled access repository,
the data provider will create in EpiRR a “reference registry” record that uniquely
identifies this reference epigenome and collects metadata and the location of raw
data, for each experiment that was run. In this case, they are assigned EpiRR IDs.
When importing reference epigenome experiments, the IHEC Data Portal makes the
connection between epigenome metadata, processed data such as annotation tracks,
and the raw data stored elsewhere.

Table 4.2 (continued)

disease_ontology_uri Link to disease ontology information

disease More specific disease information

biomaterial_type (Controlled Vocabulary) “Cell Line,” “Primary Cell,” “Primary
Cell Culture,” “Primary Tissue”

line The name of the cell line

lineage The developmental lineage to which the cell line belongs

differentiation_stage The stage in cell differentiation

medium The medium in which the cell line has been grown

sex “Male,” “Female,” “Unknown,” or “Mixed” for pooled samples

cell_type The type of cell

culture_conditions The conditions under which the primary cell was cultured

tissue_type The type of tissue

tissue_depot Details about the anatomical location from which the primary
tissue was collected

Table 4.3 Ontologies applied for data standardization

Entity Ontology applied

Experiment Experiment type is defined using the Ontology for Biomedical Investigations (The
Ontology for Biomedical Investigations 2016)

Cell type Depending on the type of cell material, different ontologies are used
For a tissue: Uberon (Mungall et al. 2016)
For primary cells: Cell Ontology (Cell Ontology 2019)
For cell lines: Experimental Factor Ontology (Malone et al. 2010)

Sample Sample condition is defined using the NCI Metathesaurus (NCI Metathesaurus
2019)
Type of molecule extracted is defined using Sequence Ontology (Eilbeck et al.
2005)

Donor Donor health condition is defined using the NCI Metathesaurus (NCI
Metathesaurus 2019)
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For track types other than bigWig and bigBed, the IHEC Data Portal should be
seen as a means to browse and identify datasets of interest, rather than as the
definitive tool to download IHEC’s complete data library.

4.3.4 Processing Strategy

Originally, the IHEC Data Portal used UCSC Genome Browser Track Hubs to
import its metadata. A data curator was required to review existing UCSC Track
Hubs and write a data provider-specific integration plugin that would convert
metadata to the expected standards before entering it in the database. This workflow
has changed since the adoption of the IHEC Data Hub JSON specification. Cur-
rently, the list of expected data values is normalized, ontological references are
added, and validation tools are provided to ensure that quality policies are respected.

After successful validation, a local copy of all bigWig and bigBed track files
referenced in the IHEC Data Hubs is downloaded. These local copies are processed
using specialized software to feed the tools and visualization services of the IHEC
Data Portal.

Metadata from the IHEC Data Hub is parsed and stored inside a relational
database enabling rapid retrieval. Pre-processing scripts aggregate data by tissue,
provider, and assay category.

4.3.5 Dataset Indexing/Accession Number/Identification

Users of the IHEC Data Portal can group their selected datasets for recall, reference,
and future refinement with a permanent reference bookmark. After choosing the
appropriate datasets from the data grid, an IHEC Data Portal ID is generated by
clicking on the “Save Session” button at the bottom of the grid. A URL containing a
session identifier is produced that references the specific dataset collection. This
permalink may be retained, shared, or used as a reference in publications.

4.3.6 Quality Control Method

The annotation and processed data provided to the IHEC Data Portal by consortium
members are integrated into its database directly. While some basic validation is run
over tracks submitted to the portal, data providers remain responsible for following
the standards established by the various IHEC working groups. Prior to submission,
the metadata JSON documents can be validated via an online tool (https://
epigenomesportal.ca/metadator/) to ensure proper syntax formatting and that all
required properties are present. Further semantic tests check the internal referential
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integrity of samples and donors. Tracks are restricted to known track types of interest
as agreed upon by the IHECMetadata Standards Workgroup and duplicate tracks are
resolved. If the dataset is also registered in the EpiRR reference registry, metadata
property values are compared to ensure correspondence.

A series of quality control tools are applied to the tracks to identify potential
problems such as incomplete coverage of the whole genome, high background noise,
or poor correlation with other tracks of the same category. This quality control
pipeline (EpiQC) is currently being enhanced to make further sanity checks on
newly submitted data.

4.3.7 Database Update and Maintenance Strategy

Updates to the database are made through IHEC Data Hubs. New data hubs are batch
processed for new IHEC Data Portal content releases. Data hubs provided by
consortium members are parsed and their relevant data is inserted into the database
in a structured manner. No database maintenance is performed outside of these
planned uploads since the database is not mutated on any other occasion.

4.4 Database Access and Mining Methods

4.4.1 Tools and Techniques to Access Database Content

The IHEC Data Portal features multiple means of exploring and accessing its data
and metadata in an intuitive manner.

The Data Grid page is the primary mechanism of selection. This page provides an
interactive interface that can query, filter, and display the quantity of information
contained in the database. It uses Javascript libraries such as D3 to produce visually
interesting graphics, such as correlation charts. It also offers advanced panels to filter
on every kind of available metadata such as the sample source, the cell type, or the
assay type.

To achieve session persistence, users can generate a unique accession ID
(an IHECDP number) associated with their dataset selection and filtering criteria.
Such an accession ID can be shared with collaborators and referenced in publications
to illustrate which datasets from the portal are being used.
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4.4.2 Software and Tools for Discovering and Mining
the Database

The IHEC Data Portal server points to the main instance of the UCSC Genome
Browser. Selected dataset tracks can be instantly inspected since copies of the
associated bigWig and bigBed files are saved on the portal server.

It is possible to assess annotation track similarities over the whole genome by
using the epiGeEC (Laperle et al. 2019) Correlation feature. This displays a
superimposed 2-dimensional grid, showcasing the Pearson correlation score of
each dataset against each other in the grid selection. It enables, for instance, to
identify outliers in a group of datasets. A dendrogram is also presented.

4.4.3 How to Explore and Browse the Database

The data grid is the central tool of the portal, allowing the visualization and selection
of available datasets (Fig. 4.2). It plots tissue versus assay category and indicates
counts of available datasets. Tissue category can be expanded to specific tissue

Fig. 4.2 The IHEC Data Portal Data Grid page, with filtering panel on the right
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types. Data is further filtered through the right-hand panel. Once datasets of interest
are chosen in this grid, users can export their selection to multiple tools for visual-
ization, analysis, or data and metadata download. When accessing the data grid for
the first time, a tour of the grid features will be offered. It is also possible to access
this tour by clicking on the “Click here for instructions” link in the lower right corner
of the screen.

4.4.4 How to Query the Database

Much of the data selection may be performed through clickable elements such as the
data wheels, drop down menus, and filtering panel. The data grid itself is funda-
mentally an interactive graphical query tool.

More granular refinement is accomplished through the Filter text input. This input
text box is searchable by keyword and dynamically offers autocomplete suggestions
such that typing “Brain” would propose results like “cell_type ¼
"Fetal_Brain"” and “cell_type_category ¼ "Brain".” It accepts a
sequential Boolean-like syntax such that typing “donor_sex ¼ "Male" and
assay ¼ "mRNA-Seq" and cell_type¼"liver"” produces datasets
sourced from the livers of male donors that went through mRNA-seq analysis.

4.4.5 How to Upload/Download Data to the Database

It is possible to download bigWig and bigBed annotation tracks directly from the
portal, to be used in local analyses. Users should keep in mind that the IHEC Data
Portal only stores the processed data annotation tracks and not the raw data itself.
The latter is stored at controlled access repositories such as and, EGA, and a data
access request must be filled by groups who would want to request access.

The Data Grid page can also produce IHEC Data Hub documents reflecting user-
selected subsets of the database content. These data hubs contain all the required
information to fetch tracks by providing their metadata and their URL. This is the
intended way for users to download content from the database. A Download page is
provided to download individual tracks, presented in a directory-like structure
directly within the browser.

The portal also offers a mechanism for external groups to add their own datasets
to user sessions, through the concept of Community Hubs. Building a community
hub involves producing an IHEC Data Hub and hosting it on an external server. The
data hub can be included on the Data Grid page for visualization along with the full
IHEC database content, without requiring to upload its referenced data.

As previously described, updates and uploads are accomplished through the
processing and integration of IHEC Data Hubs generated by consortium members.
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4.4.6 Programming and Automated Techniques for Database
Access

4.4.6.1 Web Services

The annotation tracks for the portal datasets can be automatically imported into a
Galaxy session (Giardine et al. 2005). The portal server’s Galaxy instance provides
all regular Galaxy tools for comparisons and analyses.

4.4.6.2 FTP

With the abundance of alternative data download mechanisms enabled, no FTP
access is offered. Lists of dataset URLs can be downloaded using any common
download tool.

4.4.6.3 API

The web API used by the Data Grid page is available for anyone to use. It consists of
a few simple endpoints that send their response in JSON format. It enables users to
retrieve meta-information on datasets of interest as a machine-readable document.
Users can also export parts of the metadata in CSV-formatted documents.

4.4.6.4 Bioinformatics Tools (R/Python) Packages

The API can be used either from another website or by any scripting language such
as R or Python. An implementation of the GA4GH rnaget API, used to obtain only
slices of transcriptomic experiments, is also offered. For more information on the
available rnaget endpoints, please consult (https://github.com/ga4gh-rnaseq/
schema).

4.4.7 Database Integration Strategy

Through Community Hubs, the portal is offering ways for the wider community to
submit their own datasets for everyone to retrieve. By submitting an appropriate
JSON-formatted document, a community data producer is able to upload annotation
tracks and their associated metadata directly into a portal grid session. This functions
in a similar way to the UCSC Genome Browser that can import external annotation
tracks through UCSC Genome Browser track hubs.
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4.5 Use Cases and Demo to Utilize the Database

4.5.1 Use Case 1: Navigating Blueprint hg38 Transcriptomic
Data in the UCSC Genome Browser

As a straightforward first use case, all samples’ transcriptome data produced by the
Blueprint consortium is selected for visualization in the UCSC Genome Browser. To
accomplish this, Blueprint is selected from the By Consortium data wheel on the
home page and the “View selected” button is pushed. The Data Grid page opens and
the “Transcriptome” column header is clicked to select all samples in the two
columns below (Fig. 4.3). Subsequently, the “UCSC Genome Browser” option is
selected from the dropdown in the bottom-left corner and the Send button is clicked.

4.5.2 Use Case 2: Discovering Available IHEC Datasets
Matching Metadata Requirements

An intermediate use case would be to filter the samples based on metadata properties
and to download the resulting filtered data. From the home page, after clicking on the
“View all” button, the Data Grid page opens. Further refinement is accomplished

Fig. 4.3 Selecting all transcriptomic datasets provided by the Blueprint consortium for viewing in
the UCSC Genome Browser
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through the Filter text input. Entering, for example, “cell_type_category ¼
"Brain" and donor_sex ¼ "Male"” refers to datasets of brain cell samples
from male donors. Once the desired search string is composed, pressing the Search
button causes the grid to update with the resulting samples (Fig. 4.4).

To download the data, the “Select All,” then “Download tracks” buttons are
pushed and the Download page opens (Fig. 4.5). The full list of tracks can be viewed
by clicking the “View Full URL List” button. This textual list can be saved,
manually entered in the browser URL bar, copied to the clipboard, passed as input
to wget or otherwise processed.

4.5.3 Use Case 3: Assessing Dataset Comparability
in the Portal

Amore advanced use case would be to integrate data from two consortia for the same
assay/cell type. Their comparability can be assessed using the correlation tool and
the results imported into a Galaxy session.

The right panel is used to filter consortia and when the specific cell type/assay
datasets are selected from the data grid, their background changes to blue (Fig. 4.6).
The correlation matrix is presented (Fig. 4.7) when the Correlate Datasets button is
pushed. Finally, the data is sent to a Galaxy session by selecting this option from the
bottom-left dropdown and clicking Send.

Fig. 4.4 Filtering based on text search
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Fig. 4.5 Download URLs may be clicked directly or transferred to secondary software

Fig. 4.6 Selection of kidney datasets sourced from two different consortia

4 IHEC Data Portal 91



4.6 Summary and Future Development of the Database

The IHEC Data Portal (http://epigenomesportal.ca/ihec/) was initially developed to
make the datasets produced by IHEC members more easily discoverable. The tools it
offers to query, visualize, download, and analyze epigenomic datasets make the
process of identifying and accessing these datasets simpler. With the newly added
community hubs, the portal now aims to become a resource to uncover and dissem-
inate other epigenomic datasets that exist beyond IHEC within the rest of the
epigenomic research community.

One of the caveats of integrating processed datasets originating from multiple
providers is that these providers produce annotation data using different analysis
pipelines, tools, and parameters, all of which introduce their own sets of biases. To
reduce differences induced by such multi-sites analysis, the IHEC consortium has
launched the Epigenome Meta-Analysis Project, an initiative that aims to reprocess
the whole IHEC dataset, deposited under controlled access, using a set of
consortium-wide accepted bioinformatics analysis pipelines. Through this process,
we aim to produce a gold-standard set of quality-controlled, consistently processed,
reference epigenomic maps sourced from the different IHEC members. The resulting
epigenome will be made available in the IHEC Data Portal, as a special release that
will be displayed by default.

Finally, in an effort to increase the shareability of both IHEC and outside research
community epigenomic datasets, the EpiShare project has been initiated. The goal of

Fig. 4.7 Pearson correlation matrix, with dendrogram
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EpiShare is two-fold. As a driver project for the Global Alliance for Genomics and
Health (GA4GH) (Global Alliance for Genomics and Health 2019), the aim is to
contribute to the development of widely accepted APIs, standards, and toolkits for
storing, querying, and distributing epigenomic data, taking into account data security
and ethical considerations. Secondly, the aim is to develop a platform that will
enable federated epigenomic data sharing, using the resources developed within
GA4GH.

In summary, future versions of the IHEC Data Portal aim to be more accessible,
easing the process of storing and distributing epigenomic data sourced from
non-IHEC members. The intention is to develop and apply standards facilitating
wide-scale, multi-project data analysis.
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Chapter 5
ChIP-Atlas

Shinya Oki and Tazro Ohta

Abstract In the past decade, large-scale data has been generated with chromatin
immunoprecipitation with sequencing (ChIP-seq) technology and is available to
every researcher via public domains. Taking full advantage of the large amount of
data is challenging, however, due to the need for specialized bioinformatics skills in
addition to large computational resources. By assembling and analyzing public
ChIP-seq data, ChIP-Atlas (http://chip-atlas.org) was developed as an easy-to-use
web service for researchers to visualize genome-wide binding data of transcription
factors (TFs) and modified histones. Furthermore, ChIP-Atlas is a unique data-
mining suite that provides integrative analysis data for TF–target gene relationships
and TF–TF colocalization. It also allows users to perform TF enrichment analysis for
given genes and genomic loci. Based on fully integrated public ChIP-seq data, ChIP-
Atlas is a useful tool to find novel insights into gene regulatory networks and
epigenomics.

Keywords ChIP‐seq · DNase‐seq · Data mining · Enhancer · Transcription factor

5.1 Preamble

Chromatin immunoprecipitation with sequencing (ChIP-seq) is a powerful method
for investigating the genome-wide distribution of transcription factors (TFs) and
modified histones (Park 2009). In the past decade, a growing number of researchers
have published studies with ChIP-seq technology, which has been established as a
gold-standard method in the fields of epigenomics and gene regulatory networks.
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Prior to submission or publication, most academic journals require authors of studies
using ChIP-seq to deposit their raw sequence data as sequence read archives (SRAs)
in public domains, such as NCBI, DDBJ, and EBI. While these data, in principle, are
freely available, actually exploiting the data requires sophisticated skills with
command-line processing, such as aligning the sequences to a reference genome
and peak-calling in order to define the regions with a statistically significant number
of alignments. Furthermore, extensive computational resources are required for data-
mining across thousands of public ChIP-seq data to extract novel biological relation-
ships. In order to overcome these challenges, the authors launched the ChIP-Atlas
project in 2014 with the following missions:

• To process every ChIP-seq SRA for visualizing alignment and peak-call data.
• To perform integrative analyses across entire ChIP-seq datasets for data mining.
• To provide analyzed data through an easy-to-use web service.
• To continuously update the project with the latest ChIP-seq data.

The ChIP-Atlas web service was publicly released in December 2015, and these
missions remain. This chapter is a practical guide for readers to make full use of
public ChIP-seq data with ChIP-Atlas. Readers interested in the Web tools may
directly begin the step-by-step guide in Sect. 5.4, which takes 1–2 h to complete,
including a few minutes of hands-on time. For those interested in command-line
processing of the data, it is recommended that readers proceed to Sect. 5.5 after
learning the data architecture of ChIP-Atlas in Sect. 5.3.

5.2 Database Overview

ChIP-Atlas (Fig. 5.1) is a web server that collects public ChIP-seq and DNase-seq
data archived in NCBI SRA (>70,000 experiments as of March 2018). Complete
raw sequence data are downloaded from NCBI, aligned to a reference genome, and
peak called, which can then be visualized in Integrative Genomics Viewer (IGV,
Fig. 5.2; Robinson et al. 2011). ChIP-Atlas also is a web-based data-mining suite
powered by integrative analyses of peak-call data. Users are thus able to browse
integrative peak-call data derived from thousands of experiments (Fig. 5.3), to view
TF–gene and TF–TF interactions, and to perform TF enrichment analysis for given
genes and genomic regions. The home page of ChIP-Atlas (Fig. 5.1) is the gateway
for these analyses and highlights its four main features, which are described below
with examples from tutorial Sect. 5.4:

• Peak Browser graphically visualizes protein binding on given genomic loci with
genome browser (Sect. 5.4.2).

– Input: human KRT19 gene locus
– Output: enhancer-associated histone modifications (H3K27ac) are apparent

near the KRT19 gene, where multiple TFs are colocalized (Fig. 5.3).

96 S. Oki and T. Ohta



• Target Genes predicts target genes bound by given TFs (Sect. 5.4.3).

– Input: human GATA2 protein
– Output: potential target genes of GATA2 such as ZNF792,KRT19, andUSP54

are shown in Fig. 5.8.

• Colocalization predicts partner proteins colocalizing with given TFs (Sect.
5.4.4).

– Input: human GATA2 protein
– Output: TFs colocalizing genome-wide with GATA2 such as TAL1, JUNB,

and EP300 are listed in Fig. 5.9.

Fig. 5.1 Home page of ChIP-Atlas. The four data-mining tools and their tutorials (movies) can be
accessed from the home page of ChIP-Atlas (http://chip-atlas.org). Users can also search for specific
data matched with given experimental IDs and keywords

Fig. 5.2 Browsing data from each experiment. Alignment and peak-call data of GATA2 ChIP-seq
data from HUVECs (SRX070876) are shown around the human KRT19 gene locus on IGV
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• Enrichment Analysis predicts proteins with enriched binding to given genomic
loci and genes (Sects. 5.4.5 and 5.4.6).

– Input: hundreds of gene symbols specifically expressed in the liver
– Output: TFs significantly bound around input gene loci, such as HNF4A/G

and FOXA1/2, are shown in Fig. 5.11.

These analyses can be completed without knowledge of command-line
processing or bioinformatics analysis. ChIP-Atlas covers ChIP-seq and DNase-seq

Fig. 5.3 Example view of Peak Browser. Assembled peak-calls (colored bars) for histones (top)
and TFs (bottom) for ChIP-seq data from cardiovascular cells are shown around the human KRT19
gene locus on IGV, with the colors of the bars indicating statistical significance from peak-caller
MACS2
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data of six organisms and has been updated monthly since the public release in
December 2015 (Fig. 5.4a). Therefore, users can make full use of the latest
chromatin-profiling data via an easy-to-use web interface as described in the tutorials
in Sect. 5.4. ChIP-Atlas has been used by researchers worldwide in order to make
predictions or to design strategies either before or after performing biological
experiments (see citation list in http://chip-atlas.org/publications). Furthermore,
data generated by ChIP-Atlas are assigned a unique URL and are publicly available
and thus can be used for bioinformatics analyses and connections with other
biodatabases as shown in Sect. 5.5.
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Fig. 5.4 Data content in ChIP-Atlas. (a) Cumulative number of SRX-based experiments recorded
in ChIP-Atlas are shown, with the light and dark grays indicating the data number before and after
the public release of ChIP-Atlas in December 2015, respectively. (b–d) Numbers of ChIP-seq and
DNase-seq experiments recorded in ChIP-Atlas are shown by organism (b), by antigen class (c),
and by cell type class (d) of human data (green) as of March 2018
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5.3 Content and Architecture of the Database

ChIP-Atlas has been updated monthly via a computational pipeline implemented in
the NIG supercomputer system (https://sc2.ddbj.nig.ac.jp/index.php/en/) concurrent
with the monthly update of NCBI SRA. Sample metadata and biosample data of all
experiments are downloaded from NCBI FTP sites (ftp://ftp.ncbi.nlm.nih.gov/sra/
reports/Metadata and ftp://ftp.ncbi.nlm.nih.gov/biosample) in order to extract the
experimental ID of updated ChIP-seq and DNA-seq data for the six organisms as
shown in Fig. 5.4b. Raw sequence data corresponding to the IDs are automatically
downloaded and aligned to a reference genome with bowtie2 (Langmead and
Salzberg 2012), before generating browsable alignment data in BigWig format and
peak-call data in BED format with the peak-caller MACS2 (Zhang et al. 2008). The
NCBI biosample data also includes sample metadata for each experiment, such as
antigen and cell type names, written by original data submitters. This text, however,
is not standardized; thus, the ChIP-Atlas team manually revises the sample metadata
into a standard language according to defined rules, which are shown in the ChIP-
Atlas documentation page (https://github.com/inutano/chip-atlas/wiki#data_annota
tion_doc). Briefly, the names of TFs are mapped to official gene symbols, and the
names of cell lines are revised according to a publication that proposed a unified
nomenclature (Yu et al. 2015). After completing the curation, the dataset for each
experiment includes unique peak-call data and curated sample metadata, which
proceeds through a computational pipeline to prepare data files for the following
four data-mining tools of ChIP-Atlas.

• Peak Browser: All peak-call data in BED format are concatenated into a single
file and modified with sample metadata and color values for visualization in the
genome browser IGV.

• Target Genes: All peak-call data in BED format is evaluated for overlap around
the transcription start site (TSS) of every RefSeq coding gene.

• Colocalization: Pair-wise comparisons of all peak-call data are performed with
the CoLo algorithm (https://github.com/RyoNakaki/CoLo), and similarity scores
are computed for all combinations.

• Enrichment Analysis: All peak-call data in BED format are concatenated and
converted to library files in a format suitable for quickly assessing the overlaps
with users’ submitted data.

Data collection methods and processing strategies are described on the ChIP-
Atlas documentation page (https://github.com/inutano/chip-atlas/wiki).
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5.4 Use Cases and Demonstration of the Database

ChIP-Atlas was designed to be used on macOS, Windows, and Linux machines with
web browsers such as Safari, Edge, FireFox, and Chrome. The only requisite third-
party tool is the genome browser IGV (Robinson et al. 2011) to see the alignment
and peak-call data recorded in ChIP-Atlas. Instructions on how to install IGV are
described in the download page (https://software.broadinstitute.org/software/igv/
download). ChIP-Atlas can be used in the following two modes:

• Each data mode to thoroughly understand a single or a small number of
experiments (Sect. 5.4.1)

• data-mining mode to access integrative analysis data across thousands of exper-
iments (Sects. 5.4.2–5.4.6).

5.4.1 Each Data Mode

In NCBI SRA, data with ChIP-seq or DNA-seq technology for each experiment is
assigned an ID with a prefix of SRX, DRX, or ERX (hereafter collectively referred to
as SRXs), which are also adopted in ChIP-Atlas for unified management of the
records. This tutorial illustrates how to obtain an SRX ID and how to visualize
alignment and peak-call data.

1. Click on “Find an experiment” on the top right of the ChIP-Atlas home page
(Fig. 5.1).

2. If you know an SRX ID for a ChIP-seq experiment of interest, enter the ID
(e.g. SRX070876). Otherwise, SRX IDs can be found via the accession number
of the project described in papers. For instance, if you are interested in GATA2
ChIP-seq data in human umbilical vein endothelial cells (HUVECs; Linnemann
et al. 2011), find a Gene Expression Omnibus (GEO) accession number
“GSE29531” described in the paper; enter the number on the GEO search page
(https://www.ncbi.nlm.nih.gov/geo/); find and click on “GSM730701” for the
“GATA2_ChIP-seq_A” sample, and then you will find “SRX070876” as the
experimental ID assigned in NCBI SRA (Fig. 5.5a). ChIP-Atlas does allow a
keyword search for specific SRXs under “Find an Experiment” on the ChIP-Atlas
home page: click on “Keyword search” (Fig. 5.1, top right); in the new window,
you can enter arbitrary keywords in the search box such as “GATA2 HUVEC”,
and find and click on “SRX070876” (Fig. 5.5b).

3. In the new window, you can see detailed information for SRX070876 (Fig. 5.6),
including curated antigen and cell type names; descriptions by the original data
submitter; and read processing logs such as read number, mapability, and read
quality. You will find four blue buttons on the top of the page, which allows you
to visualize or download the alignment and peak-call data (“View on IGV” or
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“Download,” respectively), to see the analyzed data (“View Analysis”), and to
open the external pages showing details for the experiment (“Link Out”).

4. After IGV has been launched on your computer and an IGV window has
appeared, click on “BigWig” under the “View on IGV” drop-down menu. The
alignment data of SRX070876 will appear on IGV. Similarly, clicking on “Peak-
call (q < 1E–10)” shows peak-call data on IGV with a MACS2 Q-value less than
1E–10.

5. Enter the gene name of interest in IGV. For example, entering “KRT19” and
zooming-out will result in the view shown in Fig. 5.2.

Tips: The y-axis of the alignment data indicates the unit RPM (reads per million
mapped reads); in other words, the number of mapped reads at a given position was
normalized against the total mapped reads. This is useful to compare multiple
alignment tracks using a common scale. The values below the peak-call bars indicate
statistical significance calculated by the peak-caller MACS2 (–10Log10 [Q-value];
hereafter referred to as MACS2 scores). Thus, clicking on “Peak-call (q < 1E�10)”
on the web page shows peaks with MACS2 scores greater than 100.

5.4.2 Peak Browser

Peak-call data recorded in ChIP-Atlas are fully integrated and can be visualized on
IGV with the Peak Browser function. IGV allows the user to graphically determine
the binding profile of multiple TFs and histone modifications around a gene or locus
of interest. This tutorial illustrates how to visualize protein bindings around the
KRT19 gene in human cardiovascular cells.

1. Click on “Peak Browser” on the ChIP-Atlas home page (Figs. 5.1 and 5.7).
2. Click on the organism tab “H. sapiens” as shown on the top left.
3. Choose “TFs and others” in the “Antigen Class” list.
4. Choose “Cardiovascular” in the “Cell type Class” list.
5. Choose MACS2 score as “100” in the “Threshold for Significance” list.
6. Click on the “View on IGV” button after confirming that IGV has been launched

and an IGV window has appeared on your computer. IGV will load the ChIP-
seq peak-call data for TFs and other transcriptional regulators in cardiovascular
cells with a MACS2 score greater than 100.

7. Go back to the Peak Browser web page and choose “Histone” in the “Antigen
Class” list.

8. Click on the “View on IGV” button. IGV will load the ChIP-seq peak-call data
for histones in cardiovascular cells with a MACS2 score greater than 100.

9. Enter “KRT19” in the textbox on the top of the IGV window. Right-click on the
track names and choose “Expanded” to expand the view.

10. By zooming-out and rearranging the tracks, you will see the view as shown in
Fig. 5.3, where the transcription start site (TSS) of KRT19 is occupied by histone
marks for an active promoter (H3K4me3) in HUVECs and other cardiovascular
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Fig. 5.5 Obtaining SRX ID. A specific SRX ID is available from GEO (a) or the keyword search
page of ChIP-Atlas (b), with the arrowheads indicating key values for searching
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Fig. 5.6 Example of a metadata page from an experiment. A web page for GATA2 ChIP-seq data
from HUVECs (SRX070876) is shown with curated or original sample metadata, processing logs,
and buttons for browsing or downloading the analyzed data
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cells. In addition, both sides of the KRT19 gene body are bound by multiple TFs
such as FOS, GATA2, and JUN, which are flanked by enhancer-associated
histone marks (H3K27ac). This suggests that these two regions have enhancer
activity for KRT19 and/or the neighboring KRT15 gene in HUVECs.

Tips: The names of antigens and cell types used are shown under the bars
representing peak regions, with the color indicating MACS2 scores ranging from
1 (blue), 500 (green), to 1000 (red). These bars shown in IGV are interactive with the
following mouse actions: placing the cursor over each bar opens a yellow window
showing detailed sample information; left-clicking on the bars opens a new web
browser window as shown in Fig. 5.6; and right-clicking on the bars shows a pop-up
menu for copying the sample attributes and sequences of the intervals. A useful
feature of IGV is the “File> Save Session”menu, which can save the current session
as an .xml file. Opening the file via the “File > Open Session” menu will reload the
tracks and settings even if IGV is relaunched on a different day or on another
machine. To learn more about the Peak Browser function, see the tutorial movie
for Peak Browser on the ChIP-Atlas home page (Fig. 5.1).

5.4.3 Target Genes

ChIP-Atlas algorithms examine TF peaks of each SRX for whether they are located
around every TSS of RefSeq coding gene (within TSS � 1, 5, or 10 kb). In the
former Sect. 5.4.2, the KRT19 gene was predicted to be a direct target of GATA2 in
HUVECs. To learn more about the target genes of GATA2 (or other TFs of interest),

Fig. 5.7 Settings for Peak Browser function. A Peak Browser web page is shown with the settings
to load TF peaks in cardiovascular cells in IGV
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this tutorial demonstrates the “Target Genes” function of ChIP-Atlas, which returns
potential target genes of a query TF.

1. Click on “Target Genes” on the ChIP-Atlas home page.
2. Click on the organism tab “H. sapiens” as shown on the top left.
3. Choose “GATA2” as the query TF.
4. Specify the distance from TSS as “�5k.”
5. Clicking on “View Potential Target Genes”will navigate to a result page showing

the genes with the TSS � 5 kb regions bound by GATA2. The potential target
genes were sorted by MACS2 score averaged over all the GATA2 ChIP-seq data
(n ¼ 35). You will find that WDR74, NAA38, and TMEM88 are ranked in the top
three.

6. To sort GATA2 ChIP-seq data in HUVECs, click on the closed triangle under
“SRX070876: HUVEC.” The page will be refreshed as shown in Fig. 5.8, where
ZNF792, KRT19, and USP54 are ranked as the top three target genes of GATA2
in HUVECs. Click on “SRX070876” and try to check GATA2 binding around
the TSS of these three genes in IGV as instructed in the previous Sect. 5.4.1.

Tips: The color of the cells in the matrix indicates the MACS2 score, which
ranges from 1 (blue), 500 (green) to 1000 (red), of the peaks located around the TSS
within the specified width. The raw values are available by downloading a
tab-delimited text file from the “Download: TSV (text)” link on the top of the web
page (not shown in Fig. 5.8). To learn more about the Target Gene function, see the
tutorial movie for Target Genes on the home page of ChIP-Atlas (Fig. 5.1).

5.4.4 Colocalization

In Sect. 5.4.2, we saw that the upstream region of KRT19 binds GATA2 and other
TFs in HUVECs, suggesting that these TFs may form a complex to colocalize in
other loci. Protein–protein interactions (PPI) are often detected by labor-intensive
methods such as co-immunoprecipitation experiments and mass spectrometry; how-
ever, the “colocalization” function of ChIP-Atlas is able to search for colocalizing
proteins with a query TF based on the similarity of genome-wide binding profiles. In
ChIP-Atlas, pair-wise comparisons of all TF ChIP-seq data are performed with the
CoLo algorithm (https://github.com/RyoNakaki/CoLo), and the similarity scores are
pre-computed for all combinations. This tutorial demonstrates how to explore TFs
colocalizing with GATA2 in the cells relevant to the cardiovascular system.

1. Click on “Colocalization” on the ChIP-Atlas home page (Fig. 5.1).
2. Specify the organism as “H. sapiens” shown on the top left.
3. Select the “Antigens ! Cell Type” radio button to choose a query TF before

cell type.
4. Choose “GATA2” from the “Antigen” list.
5. Choose “Cardiovascular” from the “Cell Type Class” list.
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6. Click on “View Colocalization Data” to navigate to a result page (Fig. 5.9), which
shows the ChIP-seq data (rows) with highly similar binding patterns to GATA2 in
HUVECs (columns show experiments with query TF). These data suggest that
GATA2 exhibits significant genome-wide colocalization with TAL1, JUNB,
EP300, RELA, and BRD4 in cardiovascular cell types as well as with JUN and
FOS, the known PPI partner with GATA2 according to a PPI database, STRING
(shown in the right-most column).

Tips: The color of the cell indicates the scores for colocalization, ranging from
low (blue), middle (green), to high (red), calculated using the CoLo algorithm
(https://github.com/RyoNakaki/CoLo). Conversely, the right-most column shows
the PPI score according to the STRING database. The raw values are available by

Fig. 5.8 Example of the Target Genes function. Potential target genes of GATA2 in HUVECs are
shown on the left, with the cell colors indicating the MACS2 scores of the peaks from GATA2
ChIP-seq data (columns) located within TSS � 5 kb of RefSeq coding genes (rows). Arrowhead
indicates a triangle to sort GATA2 ChIP-seq data in HUVECs (SRX070876)
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downloading a tab-delimited text file from the “Download: TSV (text)” link at the
top of the web page (not shown in Fig. 5.9). To learn more about the Colocalization
function, see the tutorial movie for Colocalization on the home page of ChIP-Atlas
(Fig. 5.1).

Fig. 5.9 Example of the Colocalization function. The similarity of GATA2 ChIP-seq data from
HUVECs (three columns on the middle) versus ChIP-seq data such as TAL1, JUNB, and EP300 in
cardiovascular cells (rows) is shown with the cell colors indicating the colocalization scores. Note
that the right-most column shows PPI scores by the STRING database
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5.4.5 Enrichment Analysis Using a Gene Set as a Query

The Enrichment Analysis function of ChIP-Atlas is a unique tool to search for TFs
and histone modifications with enriched binding around a given gene set of interest.
Transcriptome analysis for given cell types often yields hundreds of genes
upregulated in one cell type. To determine whether the TFs collectively regulate
the upregulated genes, motif enrichment analysis is generally performed to search
for TF binding motifs significantly enriched around the loci of the gene set [e.g.
GATHER (http://changlab.uth.tmc.edu/gather/gather.py; Chang and Nevins 2006)
and GSEA (http://www.gsea-msigdb.org; Mootha et al. 2003; Subramanian et al.
2005)]. However, TFs do not necessarily bind to the motif loci, and the binding
pattern is context-dependent, and thus different by cell types and tissues. The
Enrichment Analysis tool of ChIP-Atlas, in contrast, depends on real binding data,
or ChIP-seq data, labeled with cell type and tissue information. Furthermore, one can
analyze the enrichment of histone modifications and DNase hypersensitivity sites in
specific cell types using the Enrichment Analysis tool. This tutorial demonstrates
how to search for TFs enriched around genes specifically expressed in the liver. To
conduct this search using the Enrichment Analysis tool, however, you have to learn
how to obtain the liver-specific gene set from another database (RefEx; see Chap. 5;
Ono et al. 2017) as shown in steps 1–4 below. You may also skip to step 5 and use
the Enrichment Analysis tool with an example gene set.

1. In order to obtain genes specifically expressed in the liver, go to the RefEx home
page (http://refex.dbcls.jp/index.php?lang¼en).

2. Hover over the image of a liver and click on “liver/hepato.”
3. Genes specifically expressed in the liver and hepatocytes are shown. Click on

“Downloads” button on the top right of the page.
4. Open the downloaded tab-delimited text file with Microsoft Excel or another

spreadsheet application. The second column shows RefSeq IDs of the liver-
specific genes, which must be converted to official gene symbols before using
the Enrichment Analysis tool: (1) Copy the RefSeq IDs and navigate to the web
page “Hyperlink Management System: ID Converter System” (http://biodb.jp/
#ids; Imanishi and Nakaoka 2009); (2) paste the RefSeq IDs into the text area;
(3) choose “RefSeq ID” from the “Source ID list” and “HUGO gene symbol”
from the “Convert to” list before clicking on the “Search” button; (4) download
the converted gene symbols by clicking on the “Download” button; (5) open the
downloaded tab-delimited text file with Microsoft Excel or another spreadsheet
application; the second column will include the symbols of the liver-specific
genes, which can be submitted to the Enrichment Analysis tool.

5. Click on “Enrichment Analysis” on the ChIP-Atlas home page (Figs. 5.1
and 5.10a).

6. Choose “TFs and others” for “Antigen Class.”
7. Choose “All cell types” for “Cell type Class.”
8. Choose “100” for “Threshold for Significance.”
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9. Select the “Gene list” radio button on the “Select your data” panel, copy the
symbols of the liver-specific gene symbols prepared in step 4 above, and paste
them into the text area. Alternatively, click on “Try with example,” which will
load potential target genes of POU5F1 in the text area.

10. Select the “Refseq coding genes” radio button on the “Select dataset to be
compared” panel.

11. Specify the “Distance range from TSS” as TSS� “5000” bp, and enter arbitrary
titles for the data and project.

12. Click on the “Submit” button to transport the gene list to the NIG supercomputer
system before performing enrichment analysis. The status of the job will be
shown in the following order: “Requesting” (job being entered to NIG super-
computer); “queued” (job in standby queue); “running” (job being executed);
“finished” (job has been completed).

13. While the results are processing, it is recommended to note the URL for the
result, so that you can revisit the result page again in the future.

14. If the job status is “finished,” click on the result URL to open a table showing
ChIP-seq data with enriched binding around liver-specific genes (Fig. 5.11). The
first row of the table, for instance, indicates that HNF4A ChIP-seq data for liver-
derived Hep G2 cells (SRX100505) has 21,259 peaks, of which 114 peaks
overlapped with the TSS � 5000 bp coordinates of the submitted liver-specific
genes (n ¼ 210) and 3456 peaks overlapped with those of other RefSeq coding
genes (n ¼ 18,335). This enrichment yielded a P value of 1 � 10�29.2 (Fisher’s
exact probability test), Q-value of 1 � 10�25.3 (Benjamini and Hochberg
method), and fold enrichment of 2.88 (¼the ratio of 114/210 to 3456/18335).
The table is sorted according to P value, which shows significant enrichment of
known master regulators of liver development, HNF4A/G and FOXA1/2, that
directly reprogram skin fibroblasts into hepatocyte-like cells (Sekiya and Suzuki
2011). Remarkably, the cell type of the top 24 hits are all Hep G2 cells (“Cell”
column), even though the number of experiments in this class is relatively small
for human data (Fig. 5.4); this suggests that the analysis has high detection
power. This example suggests that the Enrichment Analysis feature of ChIP-
Atlas can identify master regulators that collectively organize a gene set of
interest.

15. Use the search box on the top right to quickly filter with given keywords such as
certain TFs, cell type names, or “TRUE” or “FALSE,” which indicates whether
the fold enrichment (FE) is greater or less than 1, respectively (see right-most
column).

Tips: While RefSeq coding genes, excluding liver-specific genes, were used for
comparison in step 10 of this tutorial, other gene lists are also acceptable as
comparison data by selecting the “Gene list” radio button in “Select dataset to be
compared” (Fig. 5.10a). Thus, if you have a gene list originating from a
transcriptome analysis, you can perform the following tests: upregulated
genes vs. other RefSeq genes and upregulated genes vs. downregulated genes. The
estimated runtime will be shown below the “Submit” button, which is calculated
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with an empirical multivariable function of the amount of submitted data and ChIP-
Atlas data to be analyzed. The runtime will be shorter when the submitted data is
smaller and ChIP-Atlas data is filtered with antigen and cell type classes. Submitted
gene names must be official gene symbols; for example, Oct4 and p53 genes in mice
must be converted to Pou5f1 and Trp53. PANTHER is a useful tool that offers batch
conversion services for gene synonyms (http://www.pantherdb.org/genes/
batchIdSearch.jsp; Mi et al. 2017). Human gene lists can also be submitted under

Fig. 5.10 Settings for Enrichment Analysis function. An Enrichment Analysis web page is shown
with the settings to submit genes specifically expressed in the liver (a) or enhancer loci specifically
activated in the liver (b)
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the mouse and rat organism tabs, because many official gene symbols are shared in
these three organisms except for upper/lower case differences, which are ignored
after submission to Enrichment Analysis. To learn more about the Enrichment
Analysis function, see the tutorial movie for Enrichment Analysis on the home
page of ChIP-Atlas (Fig. 5.1).

5.4.6 Enrichment Analysis Using Genomic Coordinates
as a Query

To analyze enriched binding of TFs and histone modifications, the Enrichment
Analysis feature of ChIP-Atlas can be used with a gene list, as shown above (Sect.
5.4.5), as well as with genomic coordinates of interest. This tutorial demonstrates

Fig. 5.11 Example of an Enrichment Analysis result. The result of the submission from Fig. 5.10a
is shown, which lists ChIP-seq data whose peaks preferentially overlapped within TSS � 5 kb of
liver-specific genes
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how to search for TFs enriched for liver-specific enhancers, which are identified by
the FANTOM5 consortium (Andersson et al. 2014).

1. In order to obtain enhancers specifically activated in the liver, go to the
FANTOM5 Human Enhancer Tracks web page (http://slidebase.binf.ku.dk/
human_enhancers/presets) and download the “liver” data under the section “3.
Enhancers specifically expressed in organs/tissues.”

2. Repeat steps 5–8 in Sect. 5.4.5.
3. Select the “Genomic regions” radio button in the “Select your data” panel

(Fig. 5.10b), and choose the file downloaded in step 1. The “BED-formatted”
coordinates for liver-specific enhancers will be loaded in the text area.

4. Select the “Random permutation of user data” radio button in the “Select dataset
to be compared” panel, and select “x1” for permutation time, which means that
the genomic coordinates of liver enhancers will be randomly permutated once to
generate background genomic regions.

5. Enter arbitrary titles for the data and project before clicking on the “Submit”
button.

6. If the job status is “finished,” click on the result URL (data not shown). Enriched
ChIP-seq data for liver-specific enhancers will be similar to those for liver-
specific genes as shown in Sect. 5.4.5, with HNF4A/G and FOXA1/2 in Hep
G2 cells highly ranked. Altogether, these data indicate that HNF4 and FOXA
proteins are significantly bound not only around the TSS of liver-specific genes
but also to liver-specific distal enhancers, which may facilitate the regulation of
liver/hepatocyte lineage determination.

Tips: Acceptable genomic regions must be in BED format: the first three columns
of the tab-delimited file indicate chromosome (column 1) and the beginning and end
of the coordinates (columns 2 and 3, respectively). If the submitted BED file has
extra columns (fourth and later) as those obtained in step 1 of this tutorial, they are
automatically removed prior to Enrichment Analysis processing. We note that only
BED files in the following genome assemblies are acceptable: hg19 (H. sapiens),
mm9 (M.musculus), rn6 (R. norvegicus), dm3 (D.melanogaster), ce10 (C. elegans),
and sacCer3 (S. cerevisiae). If the BED file was prepared in another genome
assembly, convert it to an acceptable one with the UCSC liftOver tool (https://
genome.ucsc.edu/cgi-bin/hgLiftOver). Random background (step 4) is generated
with random chromosomes and genomic positions with the same length and number
as the submitted BED intervals. Increasing the number of random permutations will
produce more even random background data, although the runtime will be longer. In
addition to the enhancer region search as shown in this tutorial, the Enrichment
Analysis service is used to analyze a wide variety of genomic contexts such as a
user’s own ChIP-seq peaks, SNPs associated with human traits, and evolutionary-
relevant genomic regions to find TF enrichment (Oki et al. 2018; Ferris et al. 2018;
Anan et al. 2018).
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5.5 Database Access and Mining Methods

Data processed and recorded in ChIP-Atlas are all assigned unique URLs and are
publicly available; thus, they can be used for subsequent analysis using command-
line scripting and for connecting with other biodatabases. For example, the
RegulatorTrail web service (https://regulatortrail.bioinf.uni-sb.de; Kehl et al. 2017)
uses ChIP-Atlas Target Genes data to show regulator–target gene interactions, and
the DeepBlue epigenomic data server (http://deepblue.mpi-inf.mpg.de; Albrecht
et al. 2016) has recently imported the entire peak-call data of ChIP-Atlas in order
to prepare an integrative analysis platform by combining with other (epi)genomic
data. This section briefly introduces how to download the ChIP-Atlas data; further
detailed instructions are available in the ChIP-Atlas documentation (https://github.
com/inutano/chip-atlas/wiki#downloads_doc).

NOTE: All URLs in this section begin with “http://dbarchive.biosciencedbc.jp/
kyushu-u,” and variables are shown in bold letters.

5.5.1 Downloading Each SRX Data

• URL for alignment data in BigWig format:
/GENOME/eachData/bw/SRX_ID.bw

– Example (BigWig file for human SRX097088 data):
/hg19/eachData/bw/SRX097088.bw

• URL for Peak-call data in BED format:
/GENOME/eachData/bedTHRESHOLD/SRX_ID.THRESHOLD.bed
(THRESHOLD ¼ 05, 10, or 20)

– Example (BED file for human SRX097088 data with MACS2 Q-value <1E–
05):

/hg19/eachData/bed05/SRX097088.05.bed

5.5.2 Assembled Peak-Call Data Used in “Peak Browser”

• URL for assembled Peak-call data in bed format:
/GENOME/allPeaks_light/allPeaks_light.GENOME.THRESH-
OLD.bed.gz

– Example (assembled mouse peak-call data with MACS2 Q-value <1E–10):
/mm9/allPeaks_light/allPeaks_light.mm9.10.bed.gz

This file is composed of genomic coordinates (columns 1–3), SRX IDs, (column
4), and MACS2 scores (column 5). To restore the antigen and cell type names
corresponding to SRX IDs, a corresponding table is available from following URL:
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/metadata/experimentList.tab

5.5.3 Analyzed Data Used in “Target Genes”
and “Colocalization”

• URL for directory storing “Target Genes” results in HTML and TSV format:
/GENOME /target/

• URL for directory storing “Colocalization” results in HTML and TSV format:
/GENOME /colo/
where GENOME is the genome assembly shown in Fig. 5.4b.
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Chapter 6
RefEX: Reference Expression Dataset

Hiromasa Ono and Hidemasa Bono

Abstract Reference Expression dataset (RefEx) is a web tool which allows users to
search by the gene name, various types of IDs, chromosomal regions in genetic
maps, gene family based on InterPro, gene expression patterns, or biological cate-
gories based on Gene Ontology. RefEx also provides information about genes with
tissue-specific expression, and the relative gene expression values are shown as
choropleth maps on 3D human body images from BodyParts3D. Combined with
FANTOM dataset, RefEx enables users to draw insights regarding the functional
interpretation of unfamiliar genes.

Keywords RNA-SEQ · Probe level · Database · Transcriptome · Update · Atlas ·
Bioinformatics · Profiles · Archive · Biology

6.1 Introduction

Reference Expression dataset (RefEx) (Ono et al. 2017) is a web tool which allows
users to browse gene expression profiles by genes collected from public databases. It
can be searched by various types of IDs including gene names, chromosomal
regions, gene family based on InterPro (Mitchell et al. 2015), gene expression
patterns, or gene annotations based on Gene Ontology (Ashburner et al. 2000).
Information about genes with tissue-specific expression are also provided, and the
relative gene expression values are shown as choropleth maps on 3D human body
images from BodyParts3D (Mitsuhashi et al. 2009). RefEx provides insight regard-
ing the functional interpretation of unfamiliar genes through its web interface.

The purpose of RefEx is to provide a web tool for visualization of reference gene
expression pattern of mammalian tissues and cell lines measured using different

H. Ono · H. Bono (*)
Database Center for Life Science, Joint Support-Center for Data Science Research, Research
Organization of Information and Systems, Mishima, Japan
e-mail: bono@dbcls.rois.ac.jp

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
I. Abugessaisa, T. Kasukawa (eds.), Practical Guide to Life Science Databases,
https://doi.org/10.1007/978-981-16-5812-9_6

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5812-9_6&domain=pdf
mailto:bono@dbcls.rois.ac.jp
https://doi.org/10.1007/978-981-16-5812-9_6#DOI


methods, which can facilitate the reuse of the precious data archived in several public
databases.

RefEx provides suitable datasets as a reference for gene expression data from
40 normal tissues from human, mouse, and rat collected from public gene expression
databases. The collected gene expression data are classified based on four different
measurement strategies (Expressed Sequence Tags (ESTs), GeneChip, Cap Analysis
of Gene Expression (CAGE), and RNA-Seq). These four types of data were linked
based on the NCBI gene IDs in the dataset in RefEx. In addition to these datasets,
RefEx currently includes quantified gene expression data from Functional Annota-
tion of the Mammalian genome 5 (FANTOM5) dataset for human and mouse (The
FANTOM Consortium & the RIKEN PMI and CLST (DGT) 2014).

Target user group of RefEx is biologists who wish to reuse public data, but
accessing the data remains difficult due to its sheer magnitude and complicated
access.

6.2 Database Overview

6.2.1 Importance of Reference Gene Expression Datasets

Gene expression data are exponentially accumulating after the advent of gene
expression measurement methods on a genomic scale. Many datasets are now
archived in the public gene expression databases [NCBI Gene Expression Omnibus
(GEO) (Barrett et al. 2013) and EBI ArrayExpress (Kolesnikov et al. 2015)].
Because the description about datasets is written by different researchers who
produced the gene expression data, they are so different that it is not machine
readable currently.

Nevertheless, there is strong demand for a comprehensive set of reference gene
expression data from huge gene expression data in public. The availability of such
data is of benefit to biologists who wish to reuse it, but accessing the data remains
difficult due to its sheer magnitude and complicated access. Recently, a meta-
analysis of RNA-Seq expression data across various species, tissues, and studies
was reported (Sudmant et al. 2015). However, the interpretation of such data is not
easy. Biologists are often at a loss because of the sheer number of datasets in public
databases provided by numerous researchers. From such situations, reference
expression datasets are needed for the inference of functions of genes, and a proper
web interface for visualizing such data is essential.

In addition, concerted patterns of gene expression profiles for different quantifi-
cation methods can strengthen the evidence of these patterns. Also, tissue-specific
expression can be a key feature to examine the function of genes of interest, and lists
of genes with tissue-specific expression can help biologists to explore unannotated
genes with prominent expression patterns. Thus, the functional annotation of genes
from meta-analysis and the interface to access the data with graphical visualization
are urgently required.
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6.2.2 Current Status of Reference Gene Expression Data

As a reference gene expression data for a genomic scale, expression profiles in
normal mammalian tissues by GeneChip were first maintained by researchers at the
Genomics Institute of the Novartis Research Foundation (GNF). Users can access
the microarray data produced in that project at the GNF Expression Atlas (also
known as GNF SymAtlas), now called BioGPS (Wu et al. 2016). EBI also maintains
the Expression Atlas which provides gene expression patterns under various biolog-
ical conditions based on data archived in ArrayExpress (Petryszak et al. 2016).
Recently, using RNA sequencing and CAGE (Shiraki et al. 2003), the FANTOM
collaboration consortium released terabytes of transcriptome sequencing data from
adult and fetal human and mouse tissue primary cell lines that can be used as the
reference gene expression data (Lizio et al. 2015).

6.2.3 The Main Feature of RefEx

The main feature of RefEx is a simple web interface, which allows users to compare
expression profiles by different methods at a glance (Fig. 6.1). It provides access to
curated data from several other public databases, with expression levels in 40 tissues
measured by four well-established gene expression quantification technologies
(ESTs, Affymetrix GeneChip, CAGE, and RNA-Seq). The web interface allows
users to browse the expression profiles by the gene name, various types of IDs,
chromosomal regions in genetic maps, gene family based on InterPro, gene expres-
sion patterns, or biological categories based on Gene Ontology. The web interface
also includes the way to browse the expression profile for adult and fetal human and
mouse tissues obtained by the FANTOM5 project using CAGE for gene expression
quantification. All the data provided through the RefEx web interface is listed with
corresponding digital object identifiers (DOI) in Table 6.1.

6.2.4 Future Update and Availability of the Database

RefEx is planned to be updated when the useful dataset for gene expression is
publicly available. Data in RefEx is freely available under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Users can download a
concatenated version of all the data at the RefEx download page (https://refex.
dbcls.jp/download.php?lang¼en), including the log-transformed ratios of the gene
expression, the functional annotation of the genes, the list of tissue-specific genes,
and the sample information, in a tab-delimited text format (Table 6.1). Data in RefEx
is also available at figshare (https://doi.org/10.6084/m9.figshare.c.3812815) and the
scripts tomake RefEx data are available at GitHub (https://github.com/dbcls/RefEx/).
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6.3 Content and Architecture of the Database

The type of data stored in RefEx is the processed and quantified gene expression data
for human, mouse, and rat. All data in RefEx is originally from the public database.
Table 6.2 shows original data sources for RefEx dataset.

The data in RefEx were manually collected by RefEx curators from public
databases, including the International Nucleotide Sequence Database (INSD,
consisting of GenBank/DDBJ/ENA) (Cochrane et al. 2016), the NCBI Gene Expres-
sion Omnibus (GEO), and RNA-Seq data in the Sequence Read Archive (SRA)
(Kodama et al. 2012). The raw data from the public databases were re-organized and
compared against each other. Four types of data were linked based on the NCBI gene
IDs, while the EST data were based on the Unigene IDs, and the GeneChip data were
based on the Probe set IDs. Detailed information regarding four data extraction
methods are described below. All scripts used to produce the data and additional
descriptions are available on the GitHub site at https://github.com/dbcls/RefEx.

Fig. 6.1 The top page of RefEx web tool (https://refex.dbcls.jp/)
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Table 6.1 Summary table of the entity stored in the database. Original data is available from RefEx
page for download (https://refex.dbcls.jp/download.php?lang¼en)

1. Gene expression data

Human EST 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028625

EST 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028634

GeneChip 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028643

GeneChip 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028652

CAGE 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028619

CAGE 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028622

CAGE all DOI: https://doi.org/10.6084/m9.figshare.
4028613

RNA-seq 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028661

RNA-seq 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028667

Mouse EST 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028628

EST 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028637

GeneChip 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028646

GeneChip 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028655

CAGE all DOI: https://doi.org/10.6084/m9.figshare.
4028616

RNA-seq 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028664

RNA-seq 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028670

Rat EST 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028631

EST 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028640

GeneChip 10 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028649

GeneChip 40 tissues DOI: https://doi.org/10.6084/m9.figshare.
4028658

2. Tissue specificity [calculated by ROKU (Kadota et al. 2006) method]

Human GeneChip DOI: https://doi.org/10.6084/m9.figshare.
4028700

RNA-seq DOI: https://doi.org/10.6084/m9.figshare.
4028709

(continued)
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6.3.1 EST

The original EST data were retrieved from the EST division of the INSD. The
number of ESTs was counted by source organ based on the BodyMap method
(Okubo et al. 1992) according to the cDNA annotation of each EST entry. The
EST data in RefEx originated from the BodyMap-Xs database, which contains

Table 6.1 (continued)

Mouse GeneChip DOI: https://doi.org/10.6084/m9.figshare.
4028703

Rat GeneChip DOI: https://doi.org/10.6084/m9.figshare.
4028706

3. ID relation table

Human DOI: https://doi.org/10.6084/m9.figshare.4028676

Mouse DOI: https://doi.org/10.6084/m9.figshare.4028679

Rat DOI: https://doi.org/10.6084/m9.figshare.4028682

4. Tissue table

Common 10 tissue names DOI: https://doi.org/10.6084/m9.figshare.
4028712

40 tissue names DOI: https://doi.org/10.6084/m9.figshare.
4028718

Human Sample classifications
(GeneChip)

DOI: https://doi.org/10.6084/m9.figshare.
4028598

Sample classifications
(RNA-seq)

DOI: https://doi.org/10.6084/m9.figshare.
4028607

Mouse Sample classifications
(GeneChip)

DOI: https://doi.org/10.6084/m9.figshare.
4028601

Sample classifications
(RNA-seq)

DOI: https://doi.org/10.6084/m9.figshare.
4028610

Rat Sample classifications
(GeneChip)

DOI: https://doi.org/10.6084/m9.figshare.
4028604

5. Sample annotations

Human Sample annotations (GeneChip) DOI: https://doi.org/10.6084/m9.figshare.
4028691

Sample annotations (CAGE) DOI: https://doi.org/10.6084/m9.figshare.
4028685

Mouse Sample annotations (GeneChip) DOI: https://doi.org/10.6084/m9.figshare.
4028703

Sample annotations (CAGE) DOI: https://doi.org/10.6084/m9.figshare.
4028688

Rat Sample annotations (GeneChip) DOI: https://doi.org/10.6084/m9.figshare.
4028697

6.
RDF

Human RefEx FANTOM5 RDF The NBDC RDF Portal (http://integbio.jp/rdf/)
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previously compiled gene expression data from the INSD EST division for reuse
(Ogasawara et al. 2006). After counting the number of ESTs, gene expression data
were obtained for the 40 normal tissues stored in the BodyMap-Xs database (https://
doi.org/10.6084/m9.figshare.4028721). For visualization purposes, the data were
grouped into ten subsets (i.e., brain, blood, connective, reproductive, muscular,
alimentary, liver, lung, urinary, and endo/exocrine; https://doi.org/10.6084/m9.
figshare.4028715). This categorization of the organs was also applied to the gene
expression data that were obtained by the other methods.

6.3.2 GeneChip

The GeneChip data deposited in the NCBI GEO database were selected for the
reference dataset (tissue-specific patterns of mRNA expression) (Table 6.2). Those
data were analyzed based on a typical microarray data analysis method (Wu et al.
2016). The expression values of the genes were calculated from the original CEL
files after robust multi-array averaging (RMA) normalization (Irizarry et al. 2003) by
the affy package (Gautier et al. 2004) in R (ver.3.0.3)/BioConductor (ver.2.12)
(Gentleman et al. 2004).

6.3.3 CAGE

CAGE is a technique that produces a snapshot of the 50 end of the mRNA population
in a biological sample, and the CAGE data collected in the RIKEN FANTOM5
project were counted by source organ based on the original data, the FANTOM5
CAGE peak expression, and the annotation tables (Lizio et al. 2015). The CAGE tag
counts were mapped onto the reference genome sequences (hg19 for human and
mm9 for mouse) and reflect the intensity of the gene expression of the corresponding
transcripts. The tag counts are normalized by tag per million (TPM). The processed
data in RefEx is converted to log 2 for each TPM value of the original FANTOM
5 CAGE data and then organized for each sample classification and the data to which

Table 6.2 Original data sources for RefEx dataset. EST data is originally from the International
Nucleotide Sequence Database (INSD). Original data of GeneChip data and CAGE & RNA-seq
data is from the NCBI Gene Expression Omnibus (GEO) and the Sequence Read Archive (SRA),
respectively

Human Mouse Rat

EST INSD INSD INSD

GeneChip GSE7307 GSE10246 GSE952

CAGE PRJDB3010 PRJDB1100 Not available

RNA-seq PRJEB2445 PRJNA30467 Not available
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the same GeneID is assigned are added up and averaged. In addition to the 40 normal
tissues, the FANTOM5 project collected hundreds of samples from cell lines,
primary cells, and adult and fetal tissues of human (https://doi.org/10.6084/m9.
figshare.4028685) and mouse (https://doi.org/10.6084/m9.figshare.4028688).

6.3.4 RNA-Seq

For RNA-Seq data, the normal tissue transcriptome sequence data were selected
from the SRA. Utilizing human and mouse reference genome sequences (hg19 for
human and mm9 for mouse), these data were processed using a typical RNA-Seq
data analysis pipeline with TopHat (ver.2.0.7) (Trapnell et al. 2009) and Cufflinks
(ver.2.0.2) (Trapnell et al. 2010), and the transcript abundances were calculated and
normalized to fragments per kilobase of transcript per million reads (FPKM).

Four types of data above were linked based on the NCBI gene IDs in the dataset
in RefEx. The EST data were clustered by sequence similarity, and the NCBI
UniGene IDs were added to those clusters. The GeneChip data were based on
Affymetrix probe IDs, which were originally designed based on the UniGene
database (Wagner and Agarwala 2013). The remaining two methods were based
on direct sequencing and were developed after the completion of the human and
mouse genome sequencing projects; the data obtained by these methods can be
mapped to the reference genomes by the genomic position. Thus, the NCBI Gene
IDs were adopted, which are currently widely used to integrate other gene IDs, as a
standard. Mapping the various gene IDs (UniGene ID, Affymetrix probe ID, and
NCBI Gene ID) onto the various genomes was performed using the Biomart REST
API (http://www.biomart.org/martservice.html).

The quality of expression data above is guaranteed by the biological replicates.
For example, the RNA-Seq data used were generated from multiple reads (single-
read and paired-end read) and those of mouse from triplicate sequence reads were
averaged to represent the gene expression value.

6.4 Database Access and Mining Methods

6.4.1 Gene Expression Visualization Tool in RefEx

The relative gene expression values are shown in RefEx as choropleth maps on 3D
human body images from BodyParts3D (Mitsuhashi et al. 2009). BodyParts3D has
been developed by the Database Center for Life Science (DBCLS) as a dictionary-
type anatomy database in which anatomical concepts are represented by 3D struc-
tural data that specify the corresponding segments on a 3D whole-body model of an
adult human male. Foundational Model of Anatomy (FMA) ontology (https://
bioportal.bioontology.org/ontologies/FMA) was used to map the gene expression
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data onto the corresponding tissues. Because drawing the choropleth maps dynam-
ically on a 3D human body is quite labor-intensive, still images were prepared for
only the GeneChip data for the whole entries. Figure 6.2 clearly illustrates that the
selected transcript is highly expressed in the liver tissue. On the right (Fig. 6.2), the
relative expression levels in 40 types of normal tissues that were more precisely
classified are displayed. The visualization can help users to understand the differ-
ences in the gene expression patterns among tissues more intuitively.

Fig. 6.2 The search results for liver-specific genes. This view can easily be viewed by clicking the
liver icon at the top of the RefEx page (Fig. 6.1)
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6.4.2 How to Query RefEx

Users can easily query RefEx with an effective filter to extract genes with concerted
gene expression profiles. For example, genes with liver-specific gene expression can
be retrieved only a single click. Details are available in a video tutorial (https://doi.
org/10.7875/togotv.2016.068).

After the publication of the FANTOM5 project, pre-calculated gene expression
data from the CAGE data in the FANTOM5 project were incorporated into RefEx.
The most important benefit of the FANTOM5 CAGE data is that the search targets
are much more abundant. The original version of RefEx only had forty tissue search
targets (Fig. 6.3a). However, it is now possible to search more than 500 human
samples, encompassing cell lines, primary cells, and adult and fetal tissues
(Fig. 6.3b). RefEx also enables users to browse high-resolution gene expression
data from approximately 800 samples (human plus mouse).

By clicking the tab on the right-hand side, users can switch to a FANTOM5
CAGE data viewer (Fig. 6.3b). This viewer shows the expression patterns of all
samples in the lower portion of the screen and displays an enlarged view of a specific
area in the upper portion of the screen. Because this is a representation of the
expression profile in humans, 556 samples are shown in a bar chart in the lower
portion of the screen. Therefore, a user can observe an overview of expression
patterns in all the samples. The area displayed in the enlarged box can be moved
freely by dragging. When a user enters a keyword into the search window of the
viewer, the sample name containing that keyword is highlighted. The FANTOM5
CAGE data correspond to the tissue classification in the original RefEx and are
linked to the original FANTOM5 data. The expression values of the samples
obtained in the FANTOM5 project are averaged and listed in RefEx.

6.4.3 How to Download Data from RefEx

While the data shown in RefEx is originally from the public database and the sources
for all data records are summarized in Table 6.2, the data used in RefEx including
processed gene expression data can be downloaded from RefEx download page
(https://refex.dbcls.jp/download.php?lang¼en). These data are deposited in figshare
(Fig. 6.4), which is a repository where users can make all of their research outputs
available in a citable, shareable, and discoverable manner. Forty-one datasets
uploaded to figshare can be accessible from figshare collection at https://doi.org/
10.6084/m9.figshare.c.3812815.
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Fig. 6.3 Detailed expression view by a gene (Troponin T type 2). (a) Forty normal tissues. (b)
FANTOM5 CAGE
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6.4.4 Programmatic Technique to Access RefEx

As a member of the integrated database project in Japan, the Resource Description
Framework (RDF) version of RefEx resides at the National Bioscience Database
Center (NBDC) RDF portal, and the RefEx dataset is ready for use at the NBDC
RDF Portal (https://integbio.jp/rdf/).

6.5 Use-Cases and Demo to Utilize the Database

As a simple use-case of RefEx, gene expression profiles for specific genes of interest
in normal tissues were often used in medical research. The mRNA expression levels
of isocitrate dehydrogenase 3 (NAD(+)) alpha (IDH3α) and vascular endothelial
growth factor A (VEGF-A) were used and visualized as main indicators in ten major
groups of normal tissues (Fig. 6.5) (Zeng et al. 2015) in conjunction with the
calculated prognostic values by the PrognoScan database (Mizuno et al. 2009).

Fig. 6.4 Data in RefEx can be downloaded from figshare. https://doi.org/10.6084/m9.figshare.
4028622.v5
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Another application is used as a reference of tissue-specific information. In a
study of murine colon proteomes, colon-specific genes in the mouse version of
RefEx were compared to a list of genes from murine colon proteomes that was
generated by the researchers’ own results (Magdeldin et al. 2012). A similar example
was a study of liver-specific genes to investigate biomarkers indicating liver injury in
humans. The gene expression profiles of albumin (ALB), apolipoproootein H
(APOH), group-specific component (GC), and α-1 microglobulin/bikunin precursor
(AMBP) were used to confirm the liver-specific expression (Okubo et al. 2016).

The data retrieved from RefEx strengthened the authors’ hypotheses without the
further confirmation in wet-lab. The gene expression profile of noncardiac myosin,
light chain 12A (MRLC) in RefEx was used to confirm the conclusions because

Fig. 6.5 RefEx-based quantification of the mRNA expression levels of VEGF (a, c) gene and
IDH3a (b, d) gene in the indicated ten major groups of normal tissues (Zeng et al. 2015)
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noncardiac MRLC was expressed in the heart at the same level as that in the skeletal
muscle while it was annotated as “noncardiac” (Mizutani et al. 2016). As an another
example, RefEx was used to list the gene expression profiles of all genes previously
reported to cause deafness in a review article (Nishio et al. 2015).

As an intermediate use-case of RefEx using the RefEx web interface, users can
add up to three genes to their list and compare these genes simultaneously. Users can
compare all the detailed information about the genes in that list, including the
expression data. This parallel comparison enables users to easily identify the differ-
ences among the genes. Overlapped terms, such as the Gene Ontology and the
InterPro gene family terms, are arranged in the same row (Fig. 6.6). Therefore,
RefEx is also useful as a tool for investigating the relationships of unknown genes
found in gene expression analyses.

For the advanced use-case, RefEx can be used in comparative transcriptomic
studies as a reliable reference expression dataset of human normal tissues and cell
lines. To compare the characteristics between human small intestine and Bombyx
mori larval midgut, gene expression profiles from a human colon carcinoma cell line
(Caco-2) cells, which is used to estimate human intestinal absorption, human small
intestine, and B. mori larval midgut were compared to identify common drug trans-
porters in the human intestine and B. mori larval midgut (Ichino et al. 2018). While
the B. mori larval midgut RNA-seq data were originally analyzed, the gene expres-
sion data for Caco-2 cells and human small intestine were reused from RefEx
[“Processed expression data of all samples for CAGE human PRJDB3010
(FANTOM5)” downloaded from https://doi.org/10.6084/m9.figshare.
4028613.v4]. As a result, 26 drug transporter homologs were found and those
were common in the B. mori larval midgut and human intestine (Fig. 6.7).

6.6 Summary and Future Development of the Database

RefEx is a tool for an interactive analysis of gene expression patterns on the web via
the latest version of web browsers such as Firefox, Safari, and Chrome. RefEx has
three main applications. First, users can examine the expression profiles of unfamil-
iar genes in normal body tissues, cells, and cell lines based on actual measurement
data rather than only from a description in a journal article. Second, a search for
tissue-specific genes can be performed simply by clicking on the appropriate tissue
icon at the top of the RefEx page. Third, users can compare differences in gene
expression levels related to the use of different experimental methods.

Currently, transcripts, which are based on RefSeq mRNA records, are used to
integrate different types of measurement methods for gene expression. However,
according to a high-throughput sequencing data analysis, over 90% of human genes
undergo alternative splicing (Pan et al. 2008), and many of these are not yet included
in RefSeq. To address this limitation, the definitions of the transcripts need to be
redefined to include noncoding RNA in tight collaboration with the FANTOM
project. In the upcoming version of RefEx, it is planned to use personalized gene
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Fig. 6.6 Intermediate use-case. Comparison view. Up to three genes can be compared simulta-
neously. Users can compare all detailed information in parallel. The expression data and the
overlapped annotated terms from Gene Ontology and the InterPro gene family are arranged in the
same row
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expression data from the Genotype-Tissue Expression database (GTEx) (GTEx
Consortium et al. 2015).

Funding This work was supported by the Integrated Database Project of the Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT) of Japan and the National Bioscience
Database Center (NBDC) of the Japan Science and Technology Agency (JST). Computations
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Chapter 7
The Mouse Gene Expression Database
(GXD)

Martin Ringwald, James A. Kadin, and Joel E. Richardson

Keywords Bioinformatics · Database · Development · Gene expression · Mouse

7.1 Preamble

The Gene Expression Database (GXD) is an extensive, highly curated, and freely
available community resource of mouse gene expression information. Its primary
emphasis is on endogenous gene expression during mouse development. GXD
integrates data from RNA in situ hybridization, immunohistochemistry, knock-in
reporter, RT-PCR, northern blot, and western blot experiments for wild-type and
mutant mice. These data are generated by the research community worldwide and
are systematically collected through curation of the literature, electronic data sub-
missions, and collaborations with projects that produce these types of data at a large
scale. GXD curators annotate all these expression data in standardized ways using
official genetic nomenclature, controlled vocabularies, and an extensive anatomical
ontology. As a major component of the larger Mouse Genome Informatics (MGI)
resource, GXD integrates its expression data closely with genotype, functional,
phenotype, and disease-oriented data, thus enabling users to search for expression
data and images using a large variety of biologically and biomedically relevant
parameters. A critical bridge between genotype and phenotype data, the expression
information provided by GXD fosters insights into the molecular mechanism of
mammalian development, differentiation, and disease. Target user groups include
scientists pursuing basis research and/or clinical/translational research, as well as
computational biologists and bioinformaticians.
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7.2 Database Overview

Recent technological advances have made it possible to rapidly determine the
sequence of individual human genomes and to correlate genetic mutations with
human diseases. This has made it more important than ever to gain insights into
the molecular mechanisms that lead from genomic mutations to diseases. Expression
analysis of all developmental stages in the mouse, and in mouse mutants modeling
human mutations, has been and is being used to address this critical issue. However,
these expression data are voluminous, complex, and heterogeneous. They are gen-
erated by many different laboratories and scattered through tens of thousands of
publications. Without the help of centralized databases, it is impossible to keep
abreast of all this information, much less to access and search these data in an
integrated way. Since its first release in 1998, the Gene Expression Database for
Mouse Development (GXD) has provided this crucial function to the research
community focusing on classical types of expression data. These include: RNA in
situ hybridization, knock-in reporter, and immunohistochemistry data that provide
detailed spatial information about the expression of genes at the RNA and protein
level; RT-PCR experiments that can detect small amounts and small differences in
transcripts; and northern blot and western blot experiments which reveal the number
and length of transcripts and proteins, respectively, made from a given gene in
specific tissues.

Different types of expression assays provide different but complementary insights
into what transcripts and proteins are made from a given gene, and where and when
these gene products are expressed. Therefore, GXD is designed as an open-ended
system that can integrate different types of expression data and dynamically repre-
sent novel insights based on new data (Ringwald et al. 1994). Expression patterns are
described using an extensive, hierarchically structured anatomical ontology
(Hayamizu et al. 2013, 2015). In this way, expression results from assays with
differing spatial resolution are recorded in a standardized and integrated manner
and expression patterns can be queried at different levels of detail. Importantly, the
expression data are fully integrated with the genetic, functional, phenotypic, and
disease-oriented data in MGI (http://www.informatics.jax.org) to place the data in
the larger biological context and to enable the combined analysis of these data
(Drabkin et al. 2015; Smith et al. 2015; Smith et al. 2018a, b).

GXD is freely available at http://www.informatics.jax.org/expression.shtml. New
data are added daily and made available to the public on a weekly basis. There are
several software releases per year featuring new web utilities. Over the years, GXD
has grown tremendously, both in terms of data content and search and display
functions (Ringwald et al. 1999; Smith et al. 2014; Finger et al. 2015, 2017; Smith
et al. 2018b). The following sections describe the current content and search features
of GXD in more detail.
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7.3 Data Structure, Data Curation, and Content
of the Database

GXD records the data at the level of individual expression assays. The expression
experiments captured by GXD can be divided into in situ and blot assays and into
RNA and protein assays (Table 7.1a). For each assay, GXD records the gene studied,
the assay type, the molecular probes and experimental conditions used, the age and
genetic background of specimens, and the expression results obtained for each of
these specimens, such as the time and tissue of expression, and the number and sizes
of bands detected in blot assays (see examples shown in Figs. 7.1 and 7.2). By
storing the expression data at this elemental level, data from different assays can be
combined to provide increasingly complete information about the expression pat-
terns of RNA and protein products made from a given gene.

GXD’s focus is on endogenous gene expression in mouse strains and targeted/
well-defined mutants. Not included are: (1) expression data from mutants generated
through random insertions of transgenes because the genotype of these mutants is
often ill-defined; (2) expression data from transgenes under ectopic promoters
because they do not reflect the endogenous expression; and (3) expression data
from animals that have been treated with drugs or other substances or exposed to
environmental challenges.

Data are acquired from the literature, from electronic data submissions of indi-
vidual laboratories, and by collaborations with projects that generate the data GXD
collects at a large scale.

GXD systematically surveys scientific journals to index all publications that
include data on endogenous gene expression during mouse development. As a first
curation step for each paper, the genes and ages analyzed and the expression assay
types used are recorded. Annotations are based on the entire publication, including
supplemental information, and use official nomenclature for genes and controlled
vocabularies for age and assay types. This index, combined with bibliographic
information from PubMed, is made available for searches via the Gene Expression
Literature Search (see Sect. 7.4). This is a powerful search tool because GXD’s

Table 7.1 GXD assay types
and current data content

(a) Assay types

Gene product In situ assays Blot assays

RNA RNA in situ hybridization
In situ reporter (Knock-in)

Northern blot
RT-PCR

Protein Immunohistochemistry Western blot

(b) Current data content

Amount Data type

341,905 Expression images

1,659,173 Annotated expression results

87,645 Expression assays

14,723 Genes

4085 Mouse mutants with expression data
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Fig. 7.1 Example of a detailed data record. An Assay Details Page for an immunohistochemistry
(in situ type) assay is shown as an example. The Assay section lists the reference from which the
data were derived, the assay type, the gene studied, and the antibody used, with links to more
information about the antibody. The Results section describes the specimens used in the assay.
Specimen information includes the age and, in the case of mutants, mutant allele information using
standard genetic nomenclature. Further specimen details can be viewed by expanding the “more”
toggle (red circle and arrow). Expression results are annotated to each specimen: the developmental
stage (Theiler stage) and anatomical structure that was analyzed, using terms from the anatomical
ontology; the level and patterns of expression, as described by the authors; a reference to the image;
and additional notes when applicable. Images are displayed together with the annotations whenever
possible
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literature index records are comprehensive and up-to-date from 1990 to the present.
GXD has records for more than 26,600 references and nearly 16,000 genes.

The Gene Expression Literature Index described above helps GXD Curators to
prioritize papers for detailed expression annotation. In this second curation step, the
expression data are annotated in detailed, standardized ways, as illustrated in
Figs. 7.1 and 7.2, by employing standard nomenclature for genes, mouse strains,
and alleles; controlled vocabularies; and an extensive hierarchically structured
anatomical ontology to describe the time and space of gene expression. The anno-
tations are complemented with the original image data whenever possible. If GXD
does not have the permission to include an image, a reference to the corresponding
figure in the publication is provided to guide users to the original data. The
annotation of expression patterns relies on the authors’ description within the
paper. Because the authors are in a much better position to interpret their own
data, GXD Curators do not interpret the images presented within the paper.

Data acquired via electronic data submissions and through collaboration with
large-scale projects are annotated using the same standards as employed for literature
curation. These data are usually bulk-loaded into a staging database for

Fig. 7.2 Integration of data. Left side: An Assay Details Page for a western (blot type) experiment
is shown as an example. The Assay section provides the same information as entries for in situ
studies (compare Fig. 7.1). The Results section describes the samples used and shows the annota-
tions for each lane in the blot. The sample information includes the age, the genetic background,
mutant alleles, and sex of the sample if applicable and available. The expression results include the
anatomical structure of the sample and the number and sizes of detected bands and their expression
levels, as described by the authors. Right side: Part of an Immunohistochemistry assay using the
same antibody (red arrow) and analyzing the same developmental stage and anatomical structure
(TS20: metanephros) as lane 1 of the western blot shown on the left side. This demonstrates just
some of the points of data integration in GXD: the gene, the probe (antibody), and the anatomy.
Although the three experiments in Figs. 7.1 and 7.2 are from different publications, they examine
expression of the same gene and use the same antibody. These examples illustrate how GXD can
provide increasingly complete expression information for a given gene by integrating different
types of expression data from many different sources
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computational and manual review. Computational checks are performed, for exam-
ple, to make sure that molecular probes are assigned to the correct genes on the latest
genome assembly. Issues of missing or ambiguous data are resolved in collabora-
tions with these laboratories, and annotations provided by them are mapped to
controlled vocabularies and ontologies. Once the data have been cleaned and
reviewed, they are imported into GXD and made publicly available.

Due to these data acquisition and curation efforts, GXD’s content has increased
tremendously over the years. As of October 2018, the database contains detailed
expression data for over 14,700 genes, covering data from numerous strains of wild-
type mice and from more than 4000 mouse mutants (Table 7.1b). GXD now holds
more than 342,000 images and over 1.66 million expression result annotations
(as defined in Figs. 7.1 and 7.2).

The extensive and standardized data annotation enables close data integration
within GXD and the larger MGI system. Expression Assays, References, Genes,
Probes, Specimens, Mutant Alleles, Anatomical Terms, and Images are all
accessioned objects (with MGI IDs) that serve as data integration points. For
example, the gene object ties the data for an expression assay to all the other data
for that gene in MGI (such as genetic, functional, and phenotypic data); the probe
object connects all the experiments that use the same probe; a given anatomy term
links all expression data annotated to that term; and a mutant allele object ties the
data to all the other data for this specific mutation. These connections within GXD
and MGI result in powerful search capabilities.

7.4 Database Access and Mining Methods

GXD’s data are accessible via web-based search interfaces, web services APIs, and
ftp. As the majority of our users are biomedical researchers who search the database
via the web interface, we will focus on this mode of access first.

The GXD Home Page at http://www.informatics.jax.org/expression.shtml is the
best starting point to explore GXD (Fig. 7.3). Graphical tiles provide a quick
overview of and access to GXD’s search functions. A Highlights section alerts
users of newly added features and data. The “About GXD” button provides access
to general information about the database. “Fast Track Your Data” leads to guide-
lines for electronic data submissions.

A quick and effective way to become familiar with GXD’s utilities is the
following:

Click on the First Time Users tile to see a one-page flow chart that illustrates how the
overall search interface works (http://www.informatics.jax.org/mgihome/GXD/
FirstTimeUsers.shtml).

Then explore the different search functions by clicking on the following tiles:
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Expression Data and Image Search: leads to the Standard Search of the Gene
Expression Data Query Form (http://www.informatics.jax.org/gxd; Fig. 7.6)
which allows you to search for expression data and images using many different
parameters (as discussed in Sect. 7.5.2).

Differential Expression Search (http://www.informatics.jax.org/gxd/differential):
allows you to search for genes expressed in some anatomical structures and/or
developmental stages but not in others; or to search for genes that have been
shown to be expressed in a specific anatomical structure (or its substructures) and
nowhere else.

Search Using Gene List: leads to the Batch Search of the Gene Expression Data
Query Form (http://www.informatics.jax.org/gxd/batchSearch) which lets you
use lists of genes to retrieve expression data.

Developmental Anatomy Browser (http://www.informatics.jax.org/vocab/gxd/anat
omy/; Fig. 7.5): allows you to navigate the anatomical ontology, locate a specific
anatomical structure, and to obtain the expression data and phenotype data
associated with that structure and its substructures (as discussed in Sect. 7.5.1).

Tissue x Stage Matrix (http://www.informatics.jax.org/gxd/tissue_matrix): displays
all of GXD’s expression data in a tissue-by-developmental stage matrix. Starting
with a high-level overview of all of GXD’s data, you can interactively view and
select expression data for specific tissues and/or developmental stages.

All the search and browse functions described above return the search results in a
common format, as a multi-tabbed summary. Each tab displays the results in a
different view: at the level of genes, assays, assay results, and images, and in
interactive tissue-by-stage and tissue-by-gene matrix views (see Figs. 7.7 and
7.8). The summaries can be filtered and sorted to refine the data sets. Links
provided in the summaries lead to detailed expression entries such as the ones
shown in Figs. 7.1 and 7.2.

Fig. 7.3 Navigation tiles on the GXDHome Page. The First Time Users tile gives a quick one-page
overview of GXD’s web interface. Other tiles provide access to GXD’s search functions. The GXD
Home Page is accessible at http://www.informatics.jax.org/expression.shtml or via the Expression
tab at MGI
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The Expression Literature Search (http://www.informatics.jax.org/gxdlit) provides
access to the GXD’s Literature content records. It allows you to quickly find all
publications that contain expression data for specific mouse genes, assays, ages,
and authors. Searches are more complete and more specific than, for example,
PubMed searches because the full text of publications, including supplemental
data, is indexed by GXD using standard gene nomenclature and controlled
vocabularies.

Via the MouseMine API Data Access tile (http://www.mousemine.org/mousemine/
begin.do#Expression) users can get programmatic access to GXD data via
MouseMines’s web services API, as described in Sect. 7.5.3.

FTP Access: Several expression database reports are generated weekly and are
available at http://www.informatics.jax.org/downloads/reports/index.
html#expression.

User Support: Dedicated User Support is provided. User Support can be contacted
via email at mgi-help@jax.org or by clicking the “Contact Us” link in the
navigation bar of all MGI web pages.

7.5 Use Cases and Demo to Use the Database

7.5.1 Simple Use Cases

7.5.1.1 Where and When Is a Given Gene Expressed?

The quickest way to find the expression data for a gene of interest is to review the
Expression Section of its MGI Gene Detail Page (Fig. 7.4). To get to the desired
Gene Detail page, use the quick search box (available on all MGI pages) and follow
the gene link on the summary return. On the Gene Detail page, scroll down to the
expression section. This section provides an overview of the gene’s expression
pattern via a grid of high-level anatomical structures and access to a Tissue x
Stage Matrix to interactively explore the expression pattern of the gene. Links to
all expression images for the gene and to other expression-related summaries are also
available. In addition, there is a link to the Gene Expression + Phenotype Compar-
ison Matrix. This matrix visually juxtaposes tissues where the gene is expressed
against tissues where mutations in the gene cause abnormalities and thus enables the
anatomical comparison of expression and phenotype data for the gene in MGI.
Gene-based links to expression data in external resources are also provided. These
include links to mouse data at the Allen Institute (Sunkin et al. 2013), GENSAT
(Schmidt et al. 2013), GEO (Barrett et al. 2013), and the EBI Expression Atlas
(Papatheodorou et al. 2018). There are also links to expression information for the
orthologous genes in zebrafish at Zfin (Howe et al. 2017), xenopus at Xenbase
(Karimi et al. 2018), and chicken at GEISHA (Antin et al. 2014), other important
vertebrate model organisms used in developmental research.
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7.5.1.2 What Genes Are Expressed in a Given Tissue/Anatomical
Structure?

A good approach for answering this question is to use the Mouse Developmental
Anatomy Browser (Fig. 7.5). By searching or browsing the mouse developmental
anatomy ontology, one can locate the anatomical structure of interest and look up the

Fig. 7.4 The Expression Section of the MGI Gene Detail Page summarizes the available expres-
sion data. The summary for the gene Shh is shown. A grid of high-level anatomical terms gives an
overview of the expression pattern of the gene. Blue cells indicate that expression was detected in
wild-type embryos. Gray triangles indicate either absence of expression in wild-type embryos or
expression data from mutant embryos. Clicking on an individual cell in the grid leads to the Tissue-
by-Stage matrix for the corresponding anatomical structure (such as the one shown in Fig. 7.8).
Clicking on the Tissue-by-Stage Matrix icon leads to an interactive matrix display for all high-level
anatomical structures. Links to all the expression images for the gene, to all assay results, and to
other summaries are also provided. In addition, the expression section features gene-based links to
external resources (right side). The upper part of the entire Gene Detail page is shown in the
background. Gene Detail pages are central data hubs, summarizing and providing access to all the
data for a given gene in MGI, as well as extensive gene-based links to external resources
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expression data (and phenotype data) for this structure and its substructures. The
stages of interest can also be specified. It can be the entire developmental stage
range, during which the selected anatomical structure exists, or a specific develop-
mental stage within that range.

Fig. 7.5 Using the Mouse Developmental Anatomy Browser. A search for the anatomical structure
“cochlea” is illustrated. The Anatomical Tree View displays the search term “cochlea,” highlighted,
in the hierarchical context of the anatomy. Links to associated expression data (blue arrow) lead to
summaries like the ones shown in Figs. 7.7 and 7.8. Links to mouse phenotype data associated with
cochlea (green arrow) are provided as well. Users can explore the anatomy ontology further by
collapsing and expanding branches of the tree view. Clicking on another anatomical term in the tree
view will select and highlight that term and links to associated expression and phenotype data will
be displayed. The initial tree view shows the “abstract” version of the anatomy (Hayamizu et al.
2015) that covers all developmental stages. The Anatomical Term Detail section indicates at which
developmental stages a selected anatomical structure exists. Accordingly, the associated expression
results will include the annotations for all the stages at which the selected structure is present. By
using the drop-down to select a specific developmental stage (in the Anatomical Term Detail
section, red arrow) one can obtain the corresponding stage-specific tree view and associated
stage-specific expression data
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7.5.2 Intermediate Use Cases

7.5.2.1 Combining Search Parameters to Formulate Complex Queries

The Standard Search mode of the Gene Expression Data query form enables
expression searches using one or many parameters. Thus, it can be used for the
basic gene- and anatomy-based searches described above. However, it can also be
used for more complex and more specific searches. An example of a multi-parameter
query is provided in Fig. 7.6, illustrating a search for the expression data of “DNA-
binding transcription factors” “detected” in the “eye” of “Pax6 mutants.”

Search results are represented as six tabbed summaries displaying the data at
different levels of detail: at the gene, assay, assay results, and image level, and as
interactive tissue-by-stage and tissue-by-gene matrix views (Figs. 7.7 and 7.8).
These summaries can be refined by various sorting and filtering options and provide
access to the detailed expression entries, such as those shown in Figs. 7.1 and 7.2.

7.5.2.2 Differential Expression Search and Batch Search

Other intermediate use cases are supported by the Differential Expression Search and
Batch Search modes of the Gene Expression Data Query form. Using the Differential
Expression Search, one can search for genes that are expressed in a specific ana-
tomical structure and nowhere else. This can be very helpful, for example, for
development of tissue-specific recombinase driver lines. The Batch Search is useful
if one has identified a list of interesting genes, for example, through RNA-seq
experiments. In this case, the Batch Search provides effective means to look up
the expression information for all these genes in GXD.

7.5.3 Advanced Use Cases

Web Services Access to GXD Data via MouseMine (http://www.mousemine.org/
mousemine/begin.do#Expression).

MouseMine is a data warehouse established by MGI to support access to mouse
data by computational biologists and bioinformatics programmers (Motenko et al.
2015). Based on the InterMine system (Smith et al. 2012; Lyne et al. 2015),
MouseMine offers a powerful query system with an interactive query builder; the
ability to encapsulate queries as form-based templates; the ability to save results as
lists, to combine lists using set operations, and to “plug” a list into a query; the ability
to download results in various formats; and more.

MouseMine contains most of the data types in MGI, including GXD expression
data, as well as other data not in MGI (e.g. interaction data from BioGrid; https://
thebiogrid.org). MouseMine is updated weekly. As in MGI, the data in MouseMine
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are fully integrated, enabling powerful queries that combine multiple types and
sources of data. The easiest way to see an example is to run one of the predefined
template queries. The most frequently used templates are organized into tabs at the
bottom of the MouseMine home page. Figure 7.9 shows the home page, with the

Fig. 7.6 The Gene Expression Data—Standard Search enables multi-parameter queries. The Genes
section permits users to search by a specific gene or sets of genes based on their function [as defined
by Gene Ontology terms (Drabkin et al. 2015)], their association with mouse phenotypes [as defined
by Mammalian Phenotype Ontology terms (Smith and Eppig 2012)], or their association with
human diseases [as defined by Disease Ontology terms (Schriml and Mitraka 2015)]. The Genome
location section allows users to restrict expression searches to genes located in a specific chromo-
somal region, thus supporting candidate gene searches. Via the Anatomical Structure or stage
section, users can search for expression data in specific anatomical structures and/or developmental
stages and they can specify whether all results should be returned or only those where expression
was detected (present) or not detected (absent). Anatomical searches include substructures, as
defined by the anatomy ontology hierarchies. Using the Mutant/wild-type section, one can search
for expression in wild-type embryos or in specific mutants. The Assay Types section allows for the
selection of specific expression assay types. The illustrated search uses four parameters, asking for
the expression data of genes with “DNA-binding transcription factor activity” that are “detected” in
the “eye” of “Pax6 mutant mice” (red arrows). The search results returned by this query are shown
in Figs. 7.7 and 7.8
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Fig. 7.7 Search Results are returned in a multi-tabbed summary. The Assay Results summary is
shown at the top, the Images summary at the bottom. Summaries can be refined further using
various filtering options (red box: “Filter expression by:”). The filters are applied to the content of
all the tabbed summary views. Both summaries can also be sorted as indicated by red circles.
Further, the Assay Results summary provides options to export the data as text or Excel files. Both
summaries link to detailed expression entries (such as the ones shown in Figs. 7.1 and 7.2); links are
indicated by blue arrows
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Fig. 7.8 Two search result tabs are interactive matrix views. The Tissue-by-Stage matrix is shown
at the top, the Tissue-by-Gene matrix at the bottom. The anatomy axis on the left side of each can be
expanded and collapsed based on the hierarchy of the anatomy ontology. Filtering can be done by
selecting specific rows and columns (as indicated by check marks in top matrix) and applying the
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Expression tab open, and Fig. 7.10 shows one of the templates, “Expression +
Interacting Gene (protein-protein) ! Genes,” which returns genes expressed in a
specified tissue that have protein–protein interactions with a specified gene. As with
all template forms, this one is preloaded to run a sample query, in this case, to return
genes expressed in the hippocampus that interact with POU5F1. Figure 7.11 shows
the result of clicking the “Show Results” button—a paginated table of results
combining expression information from GXD and interaction data from BioGrid.
The genes themselves (columns 1 and 2) can be exported or saved as a list (of distinct
items) to drive further queries. Other options allow the user to change the sort order,
add or remove columns, download in various formats, and more.

While MouseMine offers a full-featured interactive User Interface (UI), the more
significant feature is that all UI functionality is available via (indeed, depends upon)
a comprehensive web services interface. Using MouseMine web services one can
easily write tools and applications that can run any query, access and modify lists,

⁄�

Fig. 7.8 (continued) Filter button (blue arrow), or by using the general filter options (red box:
“Filter expression by:”). As indicated in the bottom matrix, clicking on an individual cell opens a
small summary window of the data represented in that cell with links to the corresponding Assay
Results and Images summaries that in turn link to the detailed expression entries

Fig. 7.9 The MouseMine home page, showing the expression tab. Each tab section shows the most
frequently used templates for that area
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export data in numerous formats, etc. The full set of endpoints is documented and
available for experimentation at http://iodocs.apps.intermine.org/mgi/docs#/. For
this chapter, we will give a small example. For more details on InterMine web
services API, see Kalderimis et al. (2014). For help using MouseMine’s API, contact
mgi-help@jax.org.

Rather than create an application from scratch, one can take advantage of a
particularly developer-friendly feature of the UI: its ability to generate working

Fig. 7.10 Example template form. This template finds genes with products expressed in the
specified location that interact with the specified gene’s product. Every form is prepopulated to
run an example query (in this case with the location “hippocampus” and the gene “Pou5f1”), so one
can simply click “Show Results” to see how it works

Fig. 7.11 The results from running the query are shown in Fig. 7.10. Query results are presented in
tables that offer many options for dynamically adjusting the query, saving lists, downloading, etc
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code. For example, at the bottom of every template form is a series of links.
Figure 7.12a shows one: it provides a URL to run the current template with the
current parameters and return the first 10 results in tab-delimited format. As shown in
Fig. 7.12b, one can simply pass this URL to curl or other similar tools to download
the results on the command line. By adjusting the parameters (highlighted in red),
one can retrieve data for a different gene, return data in a different format (e.g., json),
or adjust the number of results (to return all results, remove the size parameter). With
a tiny bit of work, one can wrap the generated URL in a python script that runs this
template with parameters the user enters on the command line (Fig. 7.12c, d).

Users may access the API directly, by constructing appropriate URLs as in this
example, or via client libraries in one of the several languages. Other links at the
bottom center of the form in Fig. 7.10 generate working applications that use these
libraries. For example, clicking the “Python” link generates the output in Fig. 7.13,
which runs the same query as the URL from Fig. 7.12a, but using the Python client
library.

7.6 Summary and Future Developments of the Database

GXD collects and integrates different types of mouse expression data generated by
the research community worldwide and makes these data freely and widely avail-
able. The expression data can be interrogated from many biological and biomedical
perspectives. Basic and complex query capabilities are provided via web-based
search forms and browsers and through programmatic access. So far, GXD has
focused on classical types of expression data, such as in situ and blot data. GXD will
continue to acquire and curate these important data. In addition, the database will be
expanded to capture array and RNA-seq expression data. By integrating different
types of expression data that provide complementary expression information, GXD
will continue to provide increasingly complete information about what RNA and
protein products are made from a given gene, where and when these products are
expressed, and how their expression changes in different mouse strains and mutants.
GXD will continue to integrate the expression data with genetic, functional, and
phenotypic information to support research into the molecular mechanisms of
mammalian development, differentiation, and disease.

Funding GXD is supported by the Eunice Kennedy Shriver National Institute of Child Health and
Human Development (NICHD) of the National Institutes of Health (NIH); Grant number:
HD062499.
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Fig. 7.12 Simple Web Service example. (a) The MouseMine UI has many features to help the
developer write applications. At the bottom of every form is a link that generates a URL to run the
current template with the current inputs. (b) One can run the query on the command line by simply
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Fig. 7.13 MouseMine client libraries. An alternative to accessing the MouseMine API directly (via
URLs) is to use one of the client libraries available in several languages. UI assists are available to
generate working programs. Clicking the Python link at the bottom of the form in Fig. 7.10
generates the code in this figure (the comments have been removed to save space)

⁄�

Fig. 7.12 (continued) pasting the URL as an argument to curl (or other similar tool). (c) With a little
more effort, the URL can be wrapped in a Python script that plugs in the user’s parameters. (d)
myscript.py is a command-line substitute for the web-based query form. The user can download
results for any tissue and gene combination
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Chapter 8
Protein Structural Changes Based
on Structural Comparison

Ryotaro Koike and Motonori Ota

Abstract Advances in structural biology have provided a wealth of information on
protein structures. In many proteins, multiple structures under distinct functional
states are available. The comparison of such structures reveals structural changes
during the transition between the states, for example, those from ligand-free to
-bound states. These structural changes are important for understanding the molec-
ular mechanism of protein function. Currently, a number of computational methods
have been developed to compare distinct structural states of the same protein and
describe protein structural changes. The resulting structural changes are stored in
databases. After a brief introduction of pre-existing methods and databases, we
introduce Motion Tree, which illustrates various structural changes using a tree
diagram and provides an explanation of how to use Motion Tree. We also introduce
PSCDB, which presents structural changes for 837 proteins including homodimers.
Structural changes are classified into seven categories based on the types of motions
and bound ligands. PSCDB is available via the Internet.

Keywords Molecular visualization · Conformational change · Molecular structure
and function

8.1 Introduction

Proteins are flexible molecules that often change their structure in response to
external stimuli, such as ligand binding and post-translational modification
(Amemiya et al. 2011; Brylinski and Skolnick 2008; Hayward 2004; Xin and
Radivojac 2012). These structural changes are closely linked to their function. For
example, structural changes to the calcium pump are required for ion transport
(Kobayashi et al. 2015; Toyoshima and Nomura 2002), whereas the actin monomer
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changes shape to form a long fiber (Oda et al. 2009). Particular transferases including
kinases undergo large structural changes to shield the ligand from water molecules
(Koike et al. 2008). Systematic examination of available enzymatic structures
reveals a strong correlation between structural changes and their function
(Kanematsu et al. 2013; Koike et al. 2008, 2014). These observations highlight
that structural changes are important in uncovering how proteins function.

Comparison of distinct structures of the same protein in the Protein Data Bank
(PDB) that has been determined under different conditions or functional states
(Smiley et al. 1971) provides a powerful approach to analyze structural changes
(Kinjo et al. 2017). Here, comparison of the structures allows identification of
structural changes. For this purpose, we commonly identify rigid bodies in the
structure and denote motions using rigid bodies. This operation is considered to be
reasonable because all atoms in the structure do not move independently and in
many cases they move collectively. Note that rigid bodies in this sense are not
exactly rigid bodies that are strictly fixed without any internal motion but are rigid
bodies that allow fluctuation of atoms under a given threshold value.

A number of computational methods have been developed to detect rigid bodies
from two structures of a protein. In Table 8.1, we present some of these methods that
are currently available (Abyzov et al. 2010; Hayward and Berendsen 1998; Hayward
et al. 1997; Koike et al. 2014; Ponzoni et al. 2015; Poornam et al. 2009; Sim et al.
2015; Wriggers and Schulten 1997). The most direct and intuitively simplest
approach involves identification of common substructures in two structures. For
example, in the Hingefind method (Wriggers and Schulten 1997), the common
substructures are identified using iterative superposition of protein structures.
Other approaches focus on the deviation of each atom because atoms in the rigid
bodies collectively move together in a concerted manner (Hayward and Berendsen
1998; Hayward et al. 1997; Hinsen et al. 1999). Movements of Cα atoms are
represented as rotation and translation vectors and screw axis, in which the Cα
atoms in one structure are superimposed with the corresponding Cα atoms in the
other structure. According to the similarity of the movements, Cα atoms are grouped
and defined as rigid bodies. Other methods focus on the distance difference matrices
of two structures (Abyzov et al. 2010; Nichols et al. 1995). In a rigid body, distances
between Cα atoms are almost unchanged in the two structures. Consequently, rigid
bodies are defined by the sets of Cα atoms where all the distance difference matrices
are under a given threshold. Motion Tree employs the distance difference matrix and
identifies various types of rigid bodies, i.e., from small loop motions to large domain
motions (Koike et al. 2014). We introduce Motion Tree in the following section.

Structural changes of proteins are stored in databases, and we can access and
browse them via the Internet (see Table 8.2) (Amemiya et al. 2012; Chang et al.
2016, 2012; Gerstein and Krebs 1998; Hrabe et al. 2016; Juritz et al. 2011; Monzon
et al. 2016; Qi et al. 2005). Some databases provide pairs of structures that are
apparently distinct and exhibit drastic structural changes (Gerstein and Krebs 1998;
Lee et al. 2003; Qi et al. 2005). Such large structural changes should be attributed to
a cause, e.g., ligand binding, chemical modification, thermal fluctuation, crystal
packing, but are often not considered in much detail in such databases. Some other
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databases focus on structural changes related to function (Amemiya et al. 2012;
Chang et al. 2012; Qi and Hayward 2009). Only pairs of structures under distinct
functional states, e.g., ligand-free and bound states, are stored. From the latter type of
databases, the Protein Structural Change DataBase (PSCDB) is introduced below.

Table 8.1 Tools to detect rigid-body motions

Name URL Description References

DynDom http://fizz.cmp.uea.
ac.uk/dyndom/

This is the most widely used
software that focuses on domain
motion. DynDom3D, applica-
ble to protein complexes, has
also been developed. The
source code is distributed at the
website. The server is also
available online

Hayward and Berendsen
(1998), Hayward et al.
(1997), Poornam et al.
(2009)

Hingefind http://biomachina.
org/disseminate/
hingefind/
hingefind.html

Rigid bodies are detected by
iterative superposition. This is
available as a plug-in for VMD
and also included in X-PLOR

Wriggers and Schulten
(1997)

RigidFinder http://rigidfinder.
molmovdb.org/

Quasi-dynamic programming is
applied to the distance differ-
ence matrix and rigid bodies
with various sizes are detected.
This program can be
downloaded from the website

Abyzov et al. (2010)

DAGR http://dna.ssu.ac.
kr/index.php?
pid¼program

Clique detection is used to
detect rigid domains. The server
is also available online

Sim et al. (2015)

SPECTRUS http://spectrus.
sissa.it/

Distance fluctuation is used to
detect rigid bodies. The server
accepts a pair or multiple struc-
tures to calculate distance fluc-
tuations. Additionally, a single
structure can be used to conduct
elastic network analysis. Users
can download the source code
from the website. The server is
also available online

Ponzoni et al. (2015)

Motion
Tree

http://idp1.force.
cs.i.nagoya-u.ac.
jp/MotionTree/

Hierarchical clustering using a
distance difference matrix
enables hierarchical description
of various rigid-body motions
with various sizes. The binary
codes can be downloaded from
the website. The server is also
available online

Koike et al. (2014)

8 Protein Structural Changes Based on Structural Comparison 159

http://fizz.cmp.uea.ac.uk/dyndom/
http://fizz.cmp.uea.ac.uk/dyndom/
http://biomachina.org/disseminate/hingefind/hingefind.html
http://biomachina.org/disseminate/hingefind/hingefind.html
http://biomachina.org/disseminate/hingefind/hingefind.html
http://biomachina.org/disseminate/hingefind/hingefind.html
http://rigidfinder.molmovdb.org/
http://rigidfinder.molmovdb.org/
http://dna.ssu.ac.kr/index.php?pid=program
http://dna.ssu.ac.kr/index.php?pid=program
http://dna.ssu.ac.kr/index.php?pid=program
http://dna.ssu.ac.kr/index.php?pid=program
http://spectrus.sissa.it/
http://spectrus.sissa.it/
http://idp1.force.cs.i.nagoya-u.ac.jp/MotionTree/
http://idp1.force.cs.i.nagoya-u.ac.jp/MotionTree/
http://idp1.force.cs.i.nagoya-u.ac.jp/MotionTree/


8.2 Motion Tree

8.2.1 Overview

Motion Tree is a computational method that identifies and describes structural
changes between two distinct structures of an identical protein (Koike et al. 2014).
Significant features of Motion Tree are summarized in the following three points.

Table 8.2 Databases of protein structural changes

Name URL Description References

MolMovDB http://www.
molmovdb.org/

This is the oldest database that presents
protein structural changes. The structural
changes are classified according to the size
of mobile parts. MolMovDB also focuses on
whether the motion is hinge-like or shear-
like

Gerstein
and Krebs
(1998)

NRDPDM http://www.cmp.
uea.ac.uk/dyndom/

This is a non-redundant and comprehensive
database of protein domain motions. A sub-
set is also available as a database of domain
motions in enzymes

Qi et al.
(2005)

CCProf http://zoro.ee.ncku.
edu.tw/ccprof/

Conformational change profiles (CCPs) of
>3000 proteins are presented in the data-
base. The profile represents the deviation of
each residue during a structural change.
(The search engine on the website looks
unavailable as of May, 2018)

Chang et al.
(2016)

CoDNaS http://ufq.unq.edu.
ar/codnas/

Conformational ensembles of proteins are
presented in the database. The ensemble,
called “conformational diversity” in the
database, means multiple structures of the
same protein obtained from the PDB

Monzon
et al. (2016)

PDBFlex http://pdbflex.org/ This database shows structural flexibility of
nearly 30,000 proteins. The structural
ensemble provides an estimate of local and
global structural flexibility

Hrabe et al.
(2016)

PCDB http://www.pcdb.
unq.edu.ar/

Conformational diversities of protein
domains are provided in this database. (The
Internet connection to the website is unsta-
ble as of May, 2018)

Juritz et al.
(2011)

AH-DB http://ahdb.ee.ncku.
edu.tw/

This database provides pairs of structures in
ligand-free and -bound forms. There are
nearly 750,000 pairs for ~3600 proteins.
(The search engine on the website looks
unavailable as of May, 2018)

Chang et al.
(2012)

PSCDB http://idp1.force.cs.
i.nagoya-u.ac.jp/
pscdb/

This database presents ligand-free and
-bound pairs for 839 proteins, including
homodimers. The structural changes are
classified into seven categories by types of
motions and bound ligands

Amemiya
et al. (2012)
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(1) Motion Tree can identify rigid bodies of various sizes from small to large ones. In
a protein structural change, a rigid body can be defined as a small region like a loop
or a secondary structure element, or a large region such as a protein domain. In
contrast, most other methods detect either small or large rigid regions. (2) Motion
Tree can detect motions with different magnitudes and describe them in a hierarchi-
cal manner. The magnitude of motions indicates how large a rigid body moves: some
rigid bodies move slightly, whereas others move drastically. The magnitude is also
an essential factor to describe structural changes. For example, in adenylate kinase
(ADK), sub-domains, ATP and AMP lids, move drastically upon substrate binding,
whereas a helix within the AMP lid moves only slightly (Koike et al. 2014). The
motion of the helix is disregarded when focusing only on large movements. Con-
versely, if we focus on small movements, the motion of the AMP lid is decomposed
into several motions of rigid bodies, one of which might be the helix. (3) Motion
Tree describes structural changes based on the distance difference matrix of two
structures rather than on their superposition. The superposition of two structures is a
standard approach. However, it is not straightforward to decide which optimal parts
should be superposed. In other words, methods relying on structural superposition
provide various results that are dependent on the superimposed regions. In contrast,
Motion Tree is uniquely determined because two structures provide only a unique
distance difference map.

8.2.2 Illustration of Structural Changes with Motion Tree

We explain howMotion Tree illustrates protein structural changes using dUTPase as
an example. The two distinct structures of dUTPase in free and dUDP-bound forms
were compared (Harkiolaki et al. 2004) (Fig. 8.1a). To describe the structural change
upon dUDP binding, a tree diagram, called as Motion Tree, was determined
(Fig. 8.1b). A node in the Motion Tree (black circle) represents a relative motion
between two rigid bodies indicated by two child branches at the node. The height of
the node indicates the magnitude of motion and a node closer to the root indicates a
more drastic motion. In this case, node A shows the (relative) motion of domain B
(and the rest), which is the largest structural change upon ligand binding (Fig. 8.1b).
Node B shows the motion of the binding loop within domain B. The magnitude of
the motion for node B is significantly smaller than that of node A. Each residue of the
dUTPase corresponds to each leaf of the tree. The smaller rigid parts, i.e., domain B
and binding loop, are represented by the leaves indicated by the child branches at the
nodes and highlighted by red bars on the left side of the tree. The remaining parts are
also rigid bodies (e.g., domain A in Fig. 8.1a) and shown by blue bars.

The Motion Tree illustrates both small loop motion and large domain motion
using a tree diagram, in which the heights of the nodes indicate the magnitudes of
motions. This representation also clarifies the “nesting” relationship, i.e., the binding
loop is a part of domain B. This hierarchical diagram enables us to understand easily
the whole structural change between two structures at a glance, in terms of the size of
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the rigid bodies, the magnitude of motions, and the nesting relationships among rigid
bodies.

8.2.3 Availability of Motion Tree

Motion Tree is accessible through the web server (http://idp1.force.cs.i.nagoya-u.ac.
jp/MotionTree/). At the web page, the input boxes at the bottom are used to specify
the two structures to be compared. The structures are described by the combination
of the PDB identifier and chain identifier such as 4akeA. Motion Tree starts upon
clicking the “Execute” button near the input boxes. The window of the web browser
is automatically updated, and the Motion Tree and structures appear after completion
(Fig. 8.2a). The compared structures are superimposed using the Cα atoms of the
largest rigid bodies and displayed in the right panel. The identified rigid bodies are
shown by different colors.

(a) (b)

Free form

dUDP-bound form

domain A
domain B

binding loop

dUDP

0 5 10 15 20
Magnitude

(Å)

rootA

B

AB

S
iz

e

Fig. 8.1 Structures and Motion Tree of dUTPase. (a) Two structures compared with Motion Tree.
The free (PDB ID: 1ogl, upper panel) and ligand-bound structures (PDB ID: 1ogk; D chain, lower)
are represented in cartoon model. The domains A and B and the binding loop are colored in blue,
red, and green, respectively. The bound ligand is shown as yellow spheres. (b) Motion Tree
describing structural changes to dUTPase upon ligand binding. The nodes A and B (black circles)
indicate the motion between domains A and B and the motion of the binding loop in domain B,
respectively. Structural superposition at the bottom illustrates the structural changes detected at
nodes A (right) and B (left). The two structures are superposed using Cα atoms in larger rigid bodies
(blue parts in the free form and cyan in the bound form) and the motion of smaller rigid bodies (red
and orange) is highlighted. The bars on the left indicate the sizes (total residues) of the two rigid
bodies at each node. The blue and red bars correspond to larger and smaller rigid bodies,
respectively
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The colored rigid bodies are determined according to a threshold tree height,
which is represented as a vertical red line (default value is 5 Å) in the tree diagram. In
Fig. 8.2a, the threshold tree height is ~5 Å, and the red line and a tree have four
points of intersection, indicating that the structure was divided into four rigid bodies
(Fig. 8.2a, right panel). The red line can be adjusted using the slide bar under the tree.
The rigid body representation is updated when the threshold height increases so that
the red line and a tree have three points of intersection (Fig. 8.2b).

The Motion Tree program is downloadable from the website (http://idp1.force.cs.
i.nagoya-u.ac.jp/rk1/mtntr/classification/). Two binary codes for Linux and Mac OS
are distributed on the site. The program (mtntr) receives two PDB files (pdbfile1
(chain-id1) and pdbfile2(chain-id2)) and produces a Motion Tree (in postscript), and
a set of PDB files, each of which shows a rigid-body motion at each node (see bottom
panels in Fig. 8.1b). The standard command is:

> ./mtntr pdbfile1 chain-id1 pdbfile2 chain-id2

The script files to highlight the motions in Rasmol are also produced.

Slide the height threshold Update rigid bodies
using a new threshold

(a) (b)

Fig. 8.2 The Motion Tree of ADK on the Motion Tree server (URL: http://idp1.force.cs.i.nagoya-
u.ac.jp/MotionTree/). (a) Motion Tree and structures of ADK. Motion Tree (left panel) describes
the structural change between ligand-free (PDB ID: 4ake; A chain) and -bound (PDB ID: 2eck; A
chain) forms. The red line indicates the height threshold used to define rigid bodies. In the case of
the 5.0 Å threshold, structures are divided into four clusters, corresponding to four rigid bodies with
different colors shown in the right panel. The red line is adjustable using a slide box shown at the
bottom. (b) Three rigid bodies defined by a 10.0 Å threshold
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8.3 PSCDB

8.3.1 Overview

PSCDB is a database of protein structural changes that occur upon ligand binding
(Amemiya et al. 2012). Structural changes are defined by using a pair of structures
from a particular protein under different conditions, i.e., ligand-free (apo) and
-bound (holo) forms. The pairs of apo- and holo-forms are the fundamental resource
of the database. Most data are structural changes for monomeric proteins but those
for homodimeric proteins, the most abundant protein complexes in the PDB (Koike
et al. 2018), are also stored. Currently, PSCDB has collected structural changes for
839 distinct proteins, each of which was selected from a SCOP family. The structural
changes are classified into seven categories (Fig. 8.3): (1) coupled domain motion

1. Coupled Domain Motion (CD) 2. Independent Domain Motion (ID)

3. Coupled Local Motion (CL) 4. Independent Local Motion (IL)

5. Burying Ligand Motion (B) 6. No Significant Motion (N)

7. Other Motion (N)

Fig. 8.3 Schematic diagrams for the seven categories of structural changes. A protein molecule is
illustrated as a string and the mobile portion is highlighted in red. The ligand molecule is shown as a
green sphere
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(CD); (2) independent domain motion (ID); (3) coupled local motion (CL); (4) inde-
pendent local motion (IL); (5) burying ligand motion (B); (6) no significant motion
(N); and (7) other motion (O). On the PSCDB web page, each entry is presented with
its classification, rigid parts, function, and ligands. In addition, PSCDB provides
morphing movies of motions.

8.3.2 Data Construction

PSCDB selects pairs of apo- and holo-forms as follows: First, protein structures are
obtained from the PDB. The structures are paired according to sequence identities. If
the identity is more than 95% with more than 90% coverage of the entire sequence,
the proteins are assumed to be the same. Among them, the pairs of apo- and holo-
structures are selected as potential contents of PSCDB. Next, the pairs satisfying the
following criteria are retained in the PSCDB. The pairs are crystal structures with
resolution better than 3.0 Å. Oligomeric states of a structural pair coincide: both are
monomers or homodimers. The oligomeric states are basically judged by PiQSi
(Levy 2007) but in some cases, PQS (Henrick and Thornton 1998) and the biological
units of the PDB entry are referenced (Amemiya et al. 2011). A SCOP family (for
single domain proteins) (Murzin et al. 1995) or a combination of SCOP families
(multiple domain proteins) can be assigned to proteins based on SCOP entries and
homology (40% sequence identity). A representative pair is selected from a set of
proteins labeled by the same SCOP annotation described above. A structural pair,
which exhibits a large structural change and has a small number of missing residues,
is favorable as the representative. The RMSD of Cα atoms in the superposition is
used as a measure of magnitude (Amemiya et al. 2011). After applying these
selection criteria 839 structural pairs were selected.

Structural changes are classified into the seven categories (CD, ID, CL, IL, B, N,
O) mentioned above. Classification principles are summarized as follows: The
structural changes are basically divided into large and slight. There are two types
of large structural changes. Domain motions (D) are detected by DynDom (Hayward
and Berendsen 1998; Hayward et al. 1997) and local motions (L) are detected by our
original procedure (Amemiya et al. 2011). When the ligand positions are close to the
boundary of the rigid bodies (within 4.0 Å from both rigid bodies), we assume the
motion is coupled with ligand binding (C). Otherwise, the structural change is
independent of ligand binding (I). Combinations of D/L and C/I result in four
categories of motions. When many domain and local motions are detected between
a pair of structures, the structure is decomposed into a pair of a large fixed part and a
small moving part (namely a component), and a category is assigned to each
component. The coexistence of D and L in a protein is treated as D, and the
coexistence of C and I is treated as C. Slight structural changes (Cα RMSD <1 Å)
are further divided according to the accessible surface area (ASA) of ligands: a low
ASA (<10% relative ASA) of the ligand defines burying ligand motion (B). In this
category, as the apo-form is almost identical to the holo-form and the binding site is
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significantly shielded from water molecules, the ligand can never access the binding
site from the outside. This suggests that some structural change, e.g., open and close
motion, is required to enable the ligand to bind. When the ASA of the ligand is high
(>10% relative ASA), the motion is no significant (N). The rest of the pairs are
categorized to “other motion” (O) and are considered outliers. A unique PSCID, the
combination of the category and an identification number in the category is assigned
to each of the 839 proteins (Fig. 8.4).

Note that a number of slight structural changes (B and N) are stored in PSCDB
(Fig. 8.3). This means that drastic structural changes are not always required upon
ligand binding. Our previous studies revealed that the magnitude of the structural
changes correlates with the function of proteins (Koike et al. 2008) and the reaction
mechanism (Kanematsu et al. 2013). Slight structural changes in some specific
proteins have enabled deduction of their molecular functions.

Fig. 8.4 Gallery page showing each protein with the PSCID and an image. This page is linked from
“Gallery” button in the left side of the top page (URL: http://idp1.force.cs.i.nagoya-u.ac.jp/pscdb/).
Each PSCID or image is a link to the summary page of the protein
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8.3.3 Browsing PSCDB

The top web page of PSCDB (http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/) shows
schematic diagrams of the seven categories (Fig. 8.3). Clicking a particular diagram
provides a list of the proteins in the selected category. The list is shown as a table
with PSCID, protein name, PDB codes and chain identifiers of apo- and holo-forms,
ligands, and a string of six digits. Digits one to five represent the numbers of
components for coupled domain, independent domain, coupled local, independent
local, and burying ligand motions in the protein, respectively. The last digit shows
the number of ligand molecules on the protein surface and frequently implies “no
significant motion” for the protein. The search box is available in the upper right
corner of every page. PDB identifiers or protein names can be used as queries. The
gallery page, accessible from the link button on the left side, is also useful. An image
of the change in the protein structure is shown in a panel with the PSCID and protein
name (Fig. 8.4).

From the list or the gallery page, users can access a summary of the structural
changes to a protein. As an example, structural changes to glucokinase (Lunin et al.
2004) are shown in Fig. 8.5. The PSCID is CD.3, and the PDB codes of ligand-free
and bound forms are given in the “PDB” box (upper left). Based on the structures,
two components showing coupled domain motions are detected (the “Segments”
box). The rigid parts of the protein are illustrated as a cartoon model (blue, green,
and red), and ligand molecules are shown as spheres in the upper right panel. The
rigid regions are explicitly shown in the “Segments” box. Users can view domain
motions (i.e., morphing) by clicking the “Animation” button. The predicted domain
motions using linear response theory (Ikeguchi et al. 2005) can also be viewed using
the “PNG image” button. The enzyme commission (EC) number and information
about the active sites are provided in the “Function” box. The bound ligand
molecules are in the “Ligand” box.

8.4 Future Work

We are confident that Motion Tree is an ideal, universal tool to describe protein
structural changes because Motion Tree can detect both small and large rigid bodies
with any magnitude of structural change and illustrates such changes systematically
using a tree diagram. Motion Tree has already been applied to identify structural
changes to monomers (Koike et al. 2014) and homodimers (Koike et al. 2018). We
are planning to extend this analysis to higher-order homo-oligomers and hetero-
oligomers. We anticipate that structural changes to such oligomers are more complex
than those observed for monomers and homodimers, and our analysis will highlight
the relationships between structural changes and functions more clearly. Results
obtained from Motion Tree can be stored in PSCDB, thereby increasing the size of
the database and thus making PSCDB a more comprehensive database. Advances in
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structural biology have generated a large number of structural complexes, which
provide not only a static image but also dynamic information. The described method
and database containing structural changes to proteins are valuable resources for
extracting biological knowledge from protein structures.

Acknowledgements We are grateful to Akinori Kidera and Takayuki Amemiya for their contri-
butions to Motion Tree and PSCDB.
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Chapter 9
Single Cell Databases: An Emerging
and Essential Tool

Scott Walker, Imad Abugessaisa, and Takeya Kasukawa

Abstract As single-cell studies become commonplace, the need for reuse, effective
curation, and downstream analysis of data becomes a necessity. The development of
single-cell protocols has presented a challenge for database design and construction.
Newer droplet-based or gel beads in emulsion (GEM) techniques such as Drop-seq
or 10� Genomics protocols can produce from 100,000 to millions of cells. To then
be able to display vital metadata or secondary analyses in a coherent way will be
essential moving forward. Here the current state of single-cell databases (SCDB) is
explored, focusing on the needs of researchers, types of data stored and fields of
study covered, common elements of SCDBs, secondary analyses, and use-case
examples for some of the DBs mentioned.

Keywords Single cell · Gene expression · Development · Database · Cell type
differential expression

9.1 Introduction

9.1.1 Summary of the Databases/Data Repositories

The rise of single cell transcriptomics, driven by the growing demand and necessity
for studies to have a more focused lens on their subject matter, has subsequently
necessitated the need for dedicated databases (DBs). Consistent improvement in
technologies for cell isolation, capture, and analysis has grown a niche subject area
to a foundational resource for most biological frontiers. These DBs are often backed
by international consortia (Human Cell Atlas Data Portal), government backed/
funded institutions [EMBL-EBI’s Single Cell Expression Atlas (Papatheodorou
et al. 2020)], research institution backed [RIKEN IMS’s SCPortalen (Abugessaisa
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et al. 2019), Karolinska Institutet’s PanglaoDB (Franzén et al. 2019)], university-run
[UCSC Cell Browser, Hong Kong University’s SCDevDB (Wang et al. 2019), etc.].

9.1.2 Purpose of the Databases/Data Repositories

As well as providing structured secure storage of large datasets, including human
data that requires strict protocols to avoid accidental mismanagement of personal
data, these databases provide platforms and a resource for downstream analyses. The
purpose of the databases is twofold, they are data repositories and in some cases they
are analysis tools with attributed datasets. The data is publicly available for viewing
and download to researchers and students, requiring in some cases to sign up by
providing an email address; this is a necessity when handling human data, for
prevention of data mismanagement. More niche databases offer a one-stop-shop
for researchers of that field to access relevant data without trawling larger databases;
e.g. Vascular Single Cell Database, from Tianjin Neurological Institute (China) and
Karolinska Institutet (Sweden) (He et al. 2018) that focuses solely on brain vascular
cell types. These datasets also offer pipelines for quality control (QC) for researchers
own data as well as the data curated within.

9.1.3 The Source and Type of the Dataset Stored

Consortia (like the Human Cell Atlas group) source the datasets for their DB from
consortium members (laboratories in universities or research institutions). Likewise,
university or institution-run databases host data collected “in-house.” Datasets
attributed to studies that are publicly available are often included (with the lead
authors’ permission and proper accreditation) and if they fit the purpose of the
database. The type of data collected includes detailed metadata about the dataset
study, original sample data, and also data of each individual cell; this metadata is
either curated manually or by automated pipelines. In-depth QC information in the
form of standard metrics and cell image data (as in SCPortalen) is accompanied by
cell-specific gene expression levels. The type of datasets stored, sourced, and curated
is dependent upon the method, or protocol, by which they are collected. The protocol
selected is constrained by the budget of the study as well as the biological objective.
Full-length protocols like Smart-seq have a greater sequencing depth; the tradeoff
being a higher cost compared with other methods that sequence from the 30 end
(MARS-seq, CEL-seq or Drop-seq). However, Smart-seq lacks the use of unique
molecular identifiers (UMIs) which is a feature that is now common as standard due
to its perceived effect in reducing PCR bias and improving accuracy (Islam et al.
2014). Cell isolation is achieved by many protocols with flow-activated cell sorting
(FACS). In this method cells are first tagged with a fluorescent monoclonal antibody
to subsequently recognize specific surface markers, thus enabling sorting of cells
into distinct populations; MARS-seq is a protocol that utilizes this method (Jaitin
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et al. 2014). More recently, microfluidic methods [sometimes referred to as droplet
based or (Gel bead in EMulsion (GEM) methods] are ubiquitous due to their
extremely high throughput, scalability, relatively lower cost, and also require only
a small initial sample volume, compared to FACS. An example is the widely used
Drop-seq (Macosko et al. 2015) and the Chromium Chemistry protocol from 10�
Genomics (Hwang et al. 2018; Zheng et al. 2017).

9.1.4 Target Users

Use of these DBs is targeted at researchers or students in all fields of Medical science
like Oncology, Neurology, and Dermatology, etc. As well as, researchers in evolution-
ary developmental (Evo-devo) biology with growing numbers of datasets for classical
model animals like Drosophila melanogaster and Caenorhabditis elegans. Conceiv-
ably, there are endless applications, e.g. oncologists could collaborate together to outline
the cellular idiosyncrasies of rare cancer types in order to establish clearer methods of
how to detect said cancers; a consortium of neurobiologists could utilize data collected
from patients globally to establish more diverse datasets for more nuanced degenerative
brain illnesses; or an entomologist interested in developmental processes surrounding
imaginal disks in a non-model organism could find a community of like-minded
researchers to build a dataset for this purpose. In all relevant fields of biology, the
usage and desire for single cell data will increase in tandem with its necessity.

9.2 Database Overview

9.2.1 The Importance of the Type of the Dataset Stored

Commonality and normalization are important for datasets in single cell databases
(SCDBs), the information stored is intended for use in downstream processes
(as indicated below in the use-case scenarios). To enable comparison between
datasets and samples, the correct format and type of dataset are valued. At the
surface level databases are constructed with a purpose or aim in mind and therefore
usually contain datasets that are comparable. However, not all databases are part of a
consortium group, so database managers must consider the appropriate data, file
type, and format that would be of most use to the intended audience, that is, the wider
scientific community. Common downstream processes include clustering analysis,
e.g. principle component analysis (PCA), t-distributed stochastic neighbor embed-
ding (tSNE) or, the more in-vogue, uniform manifold approximation and projection
(UMAP), whose popularity comes from its maintaining of global and local cluster-
ing. Often then, tools for performing such analyses are provided in embedded panels,
chiefly Plotly interactive plots, and matrices of the analysis are often provided as
standard. Quality control is another vital step in ensuring the dataset’s integrity and is
therefore a key component of SCDBs.
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9.2.2 The Current Status and What Has Been Done

Single cell databases are relatively new, establishing within the last 5 years, and they
are growing rapidly. As the numbers grow, each DB is beginning to find its own
niche. Many DBs focus on human and mouse cells, as there is a relatively larger pool
of datasets to curate. Intuitively, many DBs are oriented towards providing data for
the biomedical field. The Human Cell Atlas (HCA) Data Portal (Regev et al. 2017),
run by the HCA Consortium, was established in order to create an atlas of all human
cell types (as the name suggests); so far they have acquired data on 4.5 million cells
that encompass 33 different organs. For mouse cells, the Tabula muris Consortium
database (Schaum et al. 2018) has compiled 100,000 cells belonging to 20 different
organs and tissues. However, not all DBs are focused on these model organisms, The
Single Cell Expression Atlas (Papatheodorou et al. 2020), that is operated by The
European Molecular Biology Laboratory’s (EMBL) European Bioinformatics Insti-
tute (EBI), includes single cell data of four million cells from 14 different species of
model animals (Homo sapiens, Mus musculus, Danio rerio, Gallus gallus, etc.),
plants (Arabidopsis thaliana) as well as fungi and protists. Other DBs look to create
expression atlases for cells related to specific diseases [e.g. scREAD (Jiang et al.
2020), SC2Diseases (Zhao et al. 2021)], or organs [e.g. HCA’s Bone Marrow Single
Cell Interactive Web Portal (Hay et al. 2018)].

9.2.3 The Main Feature(s) of the Databases/Data
Repositories

As mentioned already, single cell databases can be classified in two ways, either as a
pure repository or as an analysis tool. This is not to say that these features are
mutually exclusive, there are many databases with features of both; these are,
however, the two main functions. To navigate the datasets at the user’s disposal,
many DBs will initially present the user with a quick search feature on the landing
page. Along with navigation features, many DBs have pipelines that allow for
curation of metadata to coincide with metadata obtained by the dataset authors.
This is all deposited alongside the more vital metrics like cell-specific gene regula-
tion and expression, all of which are curated and are publicly accessible. Naturally,
databases will include download (and bulk download) functionality, providing the
user with standard file types for downstream analysis, i.e. zipped folders, BAM files,
or FASTQ files all depending on the target data. These are common features of a
public data repository, many DBs offer extra functionality in the form of analysis
tools. These tools are integrated in the database, for example, clustering analysis and
gene expression search capabilities of The Broad Institutes Single Cell Portal.
Alternatively these tools come as separate entities linked to the data repository, for
example, UCSC’s Xena tool that is linked to the UCSC Cell Browser (Table 9.1 and
Fig. 9.1).
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9.2.4 Future Update and Availability of the Database

Single cell DBs are fluid and constantly changing. Emerging technologies present
new opportunities for researchers coinciding with new challenges for DB managers.
10� genomics’ Chromium protocol has allowed for the capture and sampling of
10,000 or more than one million cells in a single study. This creates a boundary for
manually curated cell-specific metadata and also limits the attainable depth of
sequencing in some cases. As technologies improve and evolve the data collected
will increase steadily. Future database design must then adapt to these larger
datasets. This is to ensure the size of the datasets does not introduce computing
power as a limiting factor and also that the data is comparable with other datasets.

Table 9.1 Summary table of the entities stored in a single cell database

Entity type Description

Single cell
data

Tabulated data related to the cell, in terms of function or gene expression

Metadata Metadata relates to the study or source of the dataset as well as quality control
information about the cell itself

Links Many SCDBs contain links to external DBs that relate to further downstream
analysis or reference data for the cells

Images Some SCDBs include cell image data to enhance cell QC data, visualizations,
e.g. gene body coverage or expression heat maps are also commonplace

Tools Analysis tools are imbedded or are linked to externally for analysis of the user’s
own data in tandem with the database’s or to compare only the data stored in the
DB

Fig. 9.1 Single cell database overview
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9.3 Content and Architecture of the Database

9.3.1 Type of the Data Stored

The data stored in SCDBs can be separated into categories of quality control, dataset
metrics, single cell metrics and related visualizations. As shown in Table 9.2, quality

Table 9.2 Description of single cell database data types

Data category Data type Description Data download format

Quality con-
trol metrics

Cell centric Cell image data—qualitative QC
data as well as quantitative,
e.g. cDNA concentration, % mito-
chondrial genes, no. of uniquely
mapped reads, no. of reads mapped
to too many loci, no. of unmapped
reads, and no. of sequenced tags

Jpeg images BAM files,
fastq files, and tabulated,
csv metadata

Sample
centric

Number of runs, gene body cover-
age, FastQC Reports

Tabulated csv/tsv files,
html FastQC report or in
zipped (.gz) folder

Dataset
metrics

Technical
details

Experiment protocol, cell capture
and sequencing protocols, library
preparation, instrument specifica-
tions, barcode sequence(s)

Tabulated metadata in
csv/tsv format

Source organism and organ(s), dis-
ease state, and developmental stage

Tabulated metadata in
csv/tsv format

General
details

Dataset title, objective, description,
Biomaterial provider, paper citation

Tabulated metadata in
csv/tsv format

Cell count, accession number, and
links to INSD gene databases (see
Sect. 9.3.5)

Tabulated metadata in
csv/tsv format

Single cell
data

Cell metrics Inferred cell type, cell cycle phase,
cell ontology, cell line, sequence
data

Tabulated metadata in
csv/tsv format, fastq,
BAM files

Gene
expression

Differential gene expression of all
genes or a selection of highly
expressed genes or genes of interest,
gene descriptions

BAM files, fastq file
csv/tsv metadata

Normalization measures: Tran-
scripts per million reads (TPM) or
fragments per kilobase of transcripts
per million (FPKM)

Tabulated metadata in
csv/tsv format

Accession number and links to
INSD gene databases

URL links

Visualizations Quality
control

Gene body coverage plot, gene
expression correlation diagram

Image (jpeg/png)

Downstream
analysis

Cell clustering (PCA, tSNE, or
UMAP), differential gene expres-
sion heatmaps

Image (jpeg/png) and
matrices (csv)
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control data are broken down into cell-specific and sample specific metrics. Dataset
details include the technical metadata relating to the datasets creation and also the
general details of the study of origin and the dataset owners. The single cell metrics
are the meat of the data, what is most desirable for users, these are the details of the
cells themselves and their gene expression profiles. There are many visualizations
offered by SCDBs that display quality control features and also downstream
analyses.

9.3.2 Data Collection Methods

The initial forays into single cell transcriptomics (Tang et al. 2009) used existing
next generation sequencing platforms, some with an automated and massively
parallel setup, e.g. MARS-seq (Jaitin et al. 2014). However, the approach is labori-
ous and technically limiting in some cases. Now, there is the advent of droplet-based
approaches as mentioned previously with Drop-seq and 10� Genomics’ platform;
the process is more streamlined and cell capture is increased by orders of magnitude.
This approach involves the disaggregation of tissues and the individual cells are
passed through microfluidic devices whereby single cells are captured in oil droplets
that also contain beads affixed with primers and barcoded oligonucleotides; these
barcoded help to disseminate the cell of origin of each sequence in downstream
bioinformatics pipelines. The result is a library of cDNA formed from captured RNA
of each cell providing a snapshot of expressed genes. The datasets formed from such
an approach are extremely large, often with high percentages of undamaged or
“good” cells; the depth of sequencing is sometimes limited with these data collection
methods however.

9.3.3 Curation Approaches

Databases working exclusively with datasets originating “in-house,” i.e. within their
own institution or consortium, have a limited barrier to the curation of datasets for
their DB. Before the curation process, there can be communication with the lab
producing the dataset so that the formatting and metadata collection is smooth and
without gaps or error. In this case, it is a matter of a simple transfer of data, also
taking into account training and security protocols to ensure the safeguarding of
human data. Databases that rely on datasets from non-affiliated labs may have to
jump through a few more hurdles in order to acquire the datasets of interest from the
owner of the data. The data targeted may already be in the public domain and both
the data and surrounding metadata are readily available. However, to acquire some
detailed metadata, communication between both parties may be required. In many
cases, data curation is manual, whereas there are ways of automating data
processing. There are automated tools that can be utilized for curation of metadata.
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Chiefly, the E-Utilities tool from NIH and its accompanying UNIX/LINUX com-
mand line tool Entrez Direct (EDirect). This tool can query multiple databases such
as Gene Expression Omnibus (GEO), Sequence Read Archive (SRA), and PubMed,
for associated dataset and study metadata or more specific queries for sample or run
metadata.

9.3.4 Processing Strategy

In SCDBs there is distinct primary and secondary analysis. In primary analysis, raw
sequence read .fastq files are accessed from International Nucleotide Sequencing
Database Consortium (INSDC) databases. These reads are then processed for QC
and are also aligned to reference genomes using sequence aligners such as STAR
(Dobin et al. 2013). The resulting BAM files and accompanying mapping log files
are used for secondary analysis. The secondary analyses include gene expression
quantification, i.e. FPKM and TPM as well as gene expression correlation of highly
expressed genes, finally further downstream analysis, e.g. dimensionality reduction
(PCA, tSNE, or UMAP).

9.3.5 Dataset Indexing and Accession Numbers

Datasets are indexed in SCDBs by accession numbers using the INSD accession
numbers (AN) (Table 9.3). As an example, consider a fictitious dataset’s study with
the study AN of DRP123456, the “D” identifies this study as curated by the DDBJ
database. Within this study is the sample of interest for the SCDB, concerning mouse
retinal epithelial cells, with the sample AN of DRS123456. Within this sample the
DB would contain all experiments, identified with DRX followed by six unique
numbers. And finally within this experiment the user would be able to identify all
runs performed with the AN DRX again followed by six unique numbers. In most
cases the run AN would uniquely index the cells. However, where this is not the
case, the DB may assign a unique identifier, e.g. 1502-A07 using the run number and
the well-plate coordinates of the experiment, respectively.

9.3.6 Quality Control Method

Cell and sequence quality control is essential for data integrity. Sequence QC can be
inserted into DB pipelines by collecting metrics from alignment, for instance, the
percentage of reads mapped to multiple loci; percentage of reads mapped to too
many loci; calculation of the percentage possibility of genomic contamination; also
quantifying unmapped reads. There are some tools for high throughput QC of
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sequencing data, for example, FASTQC (Andrews 2010). FASTQC accepts
BAM/SAM or fastq files and outputs quality statistics like per-base sequence
quality; per-base sequence, N and GC content; per sequence quality scores and
per-sequence GC content; sequence length distribution; sequence duplication levels;
overrepresented sequences; and kmer content.

9.3.7 Database Update and Maintenance Strategy

New methods of data collection or processing are constantly being made which
provides new challenges in data storage and secondary analysis. To account for this,
SCDBs are usually created with some wiggle room to account for potential future
upgrades, e.g. by allowing for future storage of large datasets with a million or more
cells. In some cases, however, a new technology, protocol, or processing program
provides new data metrics which were not previously considered by the DB man-
ager. In this case an update of the target data tables is conducted. New data is added
to DBs regularly as new studies are published, then the data is processed through the
DB pipeline and is curated into the DB.

Table 9.3 Description of International Nucleotide Sequence Database Consortium (INSDC)
accession numbers

Accession number
(AN) description

DNA Data
Bank of
Japan
(DDBJ)

European
Nucleotide
Archive
(ENA)

National Center for
Biotechnology Information’s
(NCBI) Sequence Read
Archive (SRA)

Submission AN—details of the
organization that submitted the
data

DRA123456 ERA123456 SRA123456

Project AN—details of the
project, e.g. objective and
scope

PRJD[A-Z]
[0-9]+

PRJE[A-Z]
[0-9]+

PRJN[A-Z][0-9]+

Study AN—details of the
study, e.g. title and abstract

DRP123456 ERP123456 SRP123456

Sample AN—details of the
sample, i.e. organism or
disease

DRS123456 ERS123456 SRS123456

Biosample AN—descriptive
information about the sample,
i.e. cell line or tissue biopsy

SAMD
[A-Z][0-9]+

SAME[A-Z]
[0-9]+

SAMN[A-Z][0-9]+

Analysis Object AN—used for
internal processes

DRZ123456 ERZ123456 SRZ123456

Experiment AN—the specific
experiment details, condition,
and protocol info

DRX123456 ERX123456 SRX123456

Run AN—the run number of
the experiment

DRR123456 ERR1234567 SRR12345678
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9.4 Database Access and Data Tools

9.4.1 Accessing and Browsing the Content of Single Cell
Databases (Fig. 9.2)

With most SCDBs, the user will initially be presented with a “quick search” feature.
This allows for easy navigation to the cell data for the organism, organ, or disease of
interest; accessed through a series of radio buttons, drop-down menus, or simply a
search bar using keywords (Fig. 9.2). Further options will be available for narrowing
searches after an initial quick search in most cases.

9.4.2 How to Query the Database

Data query in SCDB can be performed in order to locate a specific study, to narrow
down a quick search further or also to perform some downstream comparison. The
DB structure permits for querying of metadata information as a way of locating a
study, e.g. to show studies from certain donor groups (Fig. 9.3a). Once a study
(or studies) of interest is located, many DBs provide users with downstream com-
parison tools, for instance, the ability to cluster-specific cell types or compare
expression of specific genes between cell types; the example shown is from scREAD
(Jiang et al. 2020), an Alzheimer’s disease-specific SCDB (Fig. 9.3b).

9.4.3 How to Upload/Download Data to the Database
and Fig. 9.4

Data download from SCDBs is performed on a dataset-by-dataset basis via links on
the dataset summary page. Bulk download capabilities are commonplace, to down-
load all datasets, or datasets related to a certain query/selection criteria. Data

Fig. 9.2 Quick search functionality of: (a) SHOGoiN DB, (b) HCA Data Portal, and (c)
PanglaoDB
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Fig. 9.3 Querying capabilities of (a) HCA Data Portal and (b) downstream querying and compar-
ison in scREAD

Fig. 9.4 (a) Example of dataset download links from scREAD. (b) The dataset upload input for
SCdevDB
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available for download include processed reads (BAM or FASTQ files), clustering
matrices, or metadata tables (Fig. 9.4a). Some DBs also allow for data upload. Here
data can be requested to be curated to the database itself (Fig. 9.4b). Another
capability is that data can be uploaded temporarily in a sandbox in order to use the
DB’s analysis tools. The user can then compare gene expression levels with existing
datasets or cell clustering with other related data.

9.4.4 Programming and Automated Technique to Access
the Database

1. Web Services: These are application-to-application interaction tools performed
over the web. They directly interact with the SQL, Javascript, etc. code within the
database to access the data within. The requirements for this process are: Exten-
sible Markup Language (XML), Simple Object Access Protocol (SOAP), Web
Services Description Language (WSDL), and Universal Description, Discovery,
and Integration (UDDI).

2. File Transfer Protocol (FTP): FTP allows for client to server communication and
file transfer. Authentication can be used with simple text login, i.e. username and
password. If the database is set up as such, authentication is sometimes not necessary.

3. Application Programming Interface (API): APIs are embedded within the data-
base for connecting to other bioinformatics tools. They are also used by SCDBs to
connect to related tools, an example of this is the DAVID API (david.ncifcrf.gov/
content.jsp?file¼DAVID_API.html), used for functional annotation processes.

4. Bioinformatics tools (R/Python) packages: There are also R or Python specific
tools to achieve the same functionality. An example is MySQLdb module, a
Python module that utilizes the Python API to connect to MySQL databases.
There are similar R packages, e.g. the DBI package.

9.4.5 Database Integration Strategy

Another key feature of the SCDB is smooth integration with external DBs, or
connected tools; this is seem most clearly with the INSDC accession number system.
Here, smooth integration is essential for data reliability and universal understanding.
Other integration forms are the use of external tools that connect with and utilize a
SCDB. UCSC’s Cell Browser acts as the data repository that connects seamlessly
with its partner tool called UCSC Xena (www.xena.ucsc.edu); they are not mutually
exclusive and can be used separately. The final integration method involves consor-
tia. A consortium’s data repository can be linked with many databases that serve
differing roles or occupy a specific SCDB niche. The obvious example here is the
HCA Data Portal, which acts as the data repository for other DBs like UCSC cell
browser, Broad Institute’s Single Cell Portal (currently Beta), and also the Single
Cell Expression Atlas; analysis tools like cellxgene (Li et al. 2020) are also
integrated.
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9.5 Use-Cases and Capabilities of Single Cell Database

9.5.1 Simple Use-Case Example

Consider a researcher in neurological development, to illustrate a point in the article
or a presentation they wish to have a figure and data relating to the expression of
genes of interest in the brain during development. The researcher visits SCdevDB
(Wang et al. 2019) and searches for their gene(s) of interest (Fig. 9.5).

In this case, the researcher searches for the expression of CBLN2 (cerebellin
2 precursor) and specifies the frontal lobe. The result is outputted immediately
(Fig. 9.6). The user can now see stage-by-stage expression values for CBLN2 in
an interactive Plotly plot, simply and efficiently.

Fig. 9.5 From SCdevDB showing the search feature, the user can search for a gene symbol or
accession number, then can select the tissue of interest to see gene expression at each developmental
stage

Fig. 9.6 The expression values of CLBN2 in the frontal lobe at different developmental stages,
produced by SCdevDB
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9.5.2 Intermediate Use-Case Example

Consider a researcher in Evo-devo biology, using Drosophila melanogaster as a
model organism to study ocular development; this researcher is interested in gene
expression during development. This researcher knows there have been studies
utilizing scRNA-seq in this area so they access EMBL-EBI’s Single Cell Expression
Atlas and select studies related to D. melanogaster (Fig. 9.7).

As there are only seven D. melanogaster datasets (currently), the researcher can
easily locate the dataset they are interested in from the list (Fig. 9.8).

Accessing the dataset summary, the researcher can view a dimensionality reduc-
tion plot (tSNE) and can then navigate to the “Marker Gene” tab to view the top five
expressed genes for each cell cluster. In no time at all the researcher can view
potential genes of interest for their own study; they have the ability to download the
study metadata, cluster matrix, and marker gene heat map plot (Fig. 9.9).

Fig. 9.7 Landing page of Single Cell Expression Atlas
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9.5.3 Advanced Use-Case and Fig. 9.7 with Panels

Consider another user who is researching stem cells, they want to see expression
patterns of common cell type marker genes in bone marrow samples for a study they
are planning in the future. The user accesses PanglaoDB (Franzén et al. 2019) and
accesses the “Cell Type Marker” feature (Fig. 9.10). The user then filters for the type
of cell they are interested in.

Fig. 9.9 Cluster-specific differential gene expression for Drosophila melanogaster instar eye disks
from EMBL-EBI Single Cell Expression Atlas

Fig. 9.8 Drosophila melanogaster single cell RNA-seq datasets available on EMBL-EBI Single
Cell Expression Atlas
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The user can then browse the list of cell type markers and select the genes of
interest using metrics like mouse or human specificity and sensitivity as well as
ubiquitousness (Fig. 9.11).

Once the genes of interest are noted, the user can then return to the samples
available on the database and can filter for the type of sample they are interested
in. The user wishes to see the available human bone marrow samples all using the
10� Chromium protocol; this is because the user wants to normalize their data with
the same protocol for downstream analysis (Fig. 9.12a). From the filtering parame-
ters the user can easily browse the samples of interest for them (Fig. 9.12b).

After selecting the samples available, the user can see metadata metrics and
dimensionality reduction plots. An interactive UMAP plot is selected (Fig. 9.13a).
The user can now overlay the gene expression of the gene of interest that was noted
earlier (Fig. 9.13b). In this way, the user can see cluster-specific gene expression of
genes of interest; this precision is not possible with bulk RNA sequencing data and
thus demonstrates the power of scRNA-seq.

Fig. 9.10 (a) The landing page of PanglaoDB, the user can select a feature for cell type markers
from the top dropdown menu. (b) From the “cell type markers” page the user can then filter for the
cells of interest
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Fig. 9.12 Sample list of PanglaoDB with filter parameters (a) means the user can easily select the
datasets they are interested in (b)

Fig. 9.11 List of cell type marker genes and relating metrics for Bone Hematopoietic stem cells on
PanglaoDB
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9.6 Summary and Future Development of the Database

As is with any emerging technologies, particularly those that have a large data
production, new systems for data storage, analysis, and sharing are required. Single
cell RNA sequencing is no different. The basis for single cell databases is established
with blend of well-trodden database conventions and emerging technologies and
tools. Common elements of the databases include a normalizing primary analysis
pipeline; customizable, integrated secondary analyses tools with interactive visual-
izations; integration with INSDC databases; integration with downstream functional
analysis or ontology tools; download and bulk download tools for cell metadata and
genomic data. There are exceptional efforts being undertaken to create complete
atlases for human and mouse cells in all tissues and organs. Such efforts are
progressing to other model organisms, e.g. Drosophila melanogaster. In the face
of public health crises, to tackle neglected tropical diseases or to understand the
interplay of dividing cells at the initiation of an organism’s life, single cell studies
will dominate this era of biotechnology.

So, as single cell transcriptomics becomes routine, smaller boutique databases are
being formed to accommodate those more niche fields. Future developments of these
databases must involve analysis and storage capabilities for larger datasets. Cell-
specific layouts will require adjustments to accommodate these mega datasets with
millions of cells. Also, current technologies will continue strives to increase the
depth of sequencing for these larger datasets. The data that is curated and processed
must be kept available to the public scientific body without technological or financial
barriers; pre-processing of computationally exhaustive actions can abate this. Larger
single cell databases will look to become a one-stop-shop for researchers to upload,
download, view, and analyze their own data among a library of compatible datasets.

Fig. 9.13 (a) UMAP projection of a bone marrow dataset on PanglaoDB. (b) Gene expression
overlay for the CTNNAL1 gene
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Database name Institution/consortium (country) URL

SCPortalen RIKEN IMS (Japan) www.single-cell.riken.jp/

Human Cell Atlas Data Portal HCA Consortium www.data.humancellatlas.
org/

Single Cell Expression Atlas EMBL-EBI (Cambridge, UK) www.ebi.ac.uk/gxa/sc/
home

Single Cell Portal (beta) Broad Institute (MIT/Harvard,
USA)

www.singlecell.
broadinstitute.org/single_
cell

UCSC Cell Browser UCSC www.cells.ucsc.edu/

UCSC Xena UCSC www.xena.ucsc.edu/

PanglaoDB Karolinska Institutet (Sweden) www.panglaodb.se/index.
html

SCDevDB University of Hong Kong www.scdevdb.deepomics.
org/

scRNASeqDB University of Texas (USA) www.bioinfo.uth.edu/
scrnaseqdb/

scQuery Carnegie Mellon University
(USA)

www.scquery.cs.cmu.edu/

Vascular Single Cell Database Tianjin Neurological Institute
(China) and karolinska Inst.
(Sweden)

www.betsholtzlab.org/
VascularSingleCells/data
base.html

SHOGoiN CiRA(Kyoto University, Japan) www.stemcellinformatics.
org/

ASAP (Automated Single Cell
Analysis Portal)

Swiss Institute of
Bioinformatics

www.asap.epfl.ch/

Human Cell Atlas Bone Marrow
Single Cell Interactive Web
Portal

HCA Consortium www.altanalyze.org/
ICGS/HCA/splash.php

scREAD Ohio State University (USA) www.bmbls.bmi.osumc.
edu/scread/

SC2Disease Xi’an University (China) www.easybioai.com/
sc2disease/

Tabula Muris Tabula Muris Consortium www.tabula-muris.ds.
czbiohub.org/

No external funding
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Chapter 10
scIVA: Single Cell Database and Tools
for Interactive Visualisation and Analysis

Liam M. Crowhurst, Onkar Mulay, Nathan Palpant, and Quan H. Nguyen

Abstract Single cell RNA sequencing (scRNA-seq) data is advancing the under-
standing of complex biology by enabling the investigation of cell-specific biological
processes. A scRNA-seq gene count matrix is often thousand times larger than that
from a traditional (bulk) RNA sequencing dataset. While the technology to generate
data for hundreds of thousands of cells is now established, the large data poses
challenges for experimental biologists, who are experts in their biological domain,
but are not computationally ready to analyse and understand the data. Here we
present scIVA, an interactive visualisation and analysis pipeline available as a web
application, allowing biologists to easily mine their scRNA-seq data. We show that
scIVA provides a lightweight and highly accessible framework to build interactive
databases for data mining of scRNA-seq data. We present the use of scIVA to build
two sample interactive datasets. These include a single cell dataset for in vitro
pluripotent stem cells (a simple use case) and a cardiomyocyte differentiation time
course dataset (a more complex use case). scIVA is publicly accessible, and we
expect that it can be used as a streamlined, interactive, and intuitive single cell data
mining platform for experimentalists.

Keywords Genomics · DNA variants · Gene expression · Patiotemporal data ·
Multidimensional sequencing · Imaging data · Biological regulatory networks

10.1 Introduction

Summary: single cell RNA sequencing (scRNA-seq) data is advancing the under-
standing of complex biology by enabling the investigation of cell-specific biological
processes. A scRNA-seq gene count matrix is often thousand times larger than a
traditional (bulk) RNA sequencing dataset. While technology to generate data for
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hundreds of thousands of cells is now established, the large data poses challenges for
experimental biologists, who are experts in their biological domain, but are not
computationally ready to analyse and understand the data. Here we present scIVA, an
interactive visualisation and analysis pipeline available as a web application, which
allows biologists to easily mine their scRNA-seq data. We show that scIVA provides
a light-weight and highly accessible framework to build interactive databases for
data mining of scRNA-seq data. We present the use of scIVA to build two sample
interactive datasets. These include a single cell dataset for in vitro pluripotent stem
cells (a simple use case) and a cardiomyocyte differentiation time course dataset
(a more complex use case).

Purpose of the database: scIVA provides a streamlined, interactive, and intuitive
data mining platform for those with little or no coding experience to gain insights
into large scRNA-seq datasets. Users, such as experimental biologists, can use point-
and-click control to upload data, execute exploratory data analysis (EDA), visualise
the analysis results, generate new hypotheses and analysis questions, perform
statistical tests, produce summary tables and high quality plots that can be exported.

Data input for scIVA: scRNA-seq raw count data can be uploaded and analysed by
scIVA workflow. In the case that partial analyses have been done prior to scIVA, users
can also upload cell-type information and gene list of interest for more targeted analysis.

Availability: The scIVA web application is freely available at http://
computationalgenomics.com.au/shiny/scIVA/ and the open-source code is
maintained at https://github.com/BiomedicalMachineLearning/scIVA/. The two
interactive datasets shown as use cases of scIVA are maintained in our Linux server
and are publicly accessible at http://computationalgenomics.com.au/shiny/hipsc/
and http://computationalgenomics.com.au/shiny/hipsc2cm/.

10.2 Database Overview

10.2.1 scRNA-seq Technology and Single Cell Data

Knowledge of how gene expression affects phenotypes has mainly been derived
using data generated from bulk samples consisting of millions of cells; meaning
cellular differences are averaged out. Although the ensemble approaches can suc-
cessfully characterise dominant patterns shared by the majority of cells, important
changes occurring on subsets of cells likely remain hidden. Examples of such subtle
but critical changes include early evolution of tumours from original single cancer-
ous stem cells (Schmidt and Efferth 2016) or cell-type specific responses/resistance
to drugs (Schmidt and Efferth 2016; Miyamoto et al. 2015). Due to genotypic or
phenotypic heterogeneity between cells, the unambiguous inference of the causal
relationship between the differences in genome sequences or gene expression and
changes in phenotypes can be achieved most accurately at single cell level
(Macaulay et al. 2017). Recent technological advances have allowed the measure-
ment of gene expression at single cell resolution, enabling specific, sensitive, and
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novel discovery of biological processes, which were undetectable by standard
whole-tissue sequencing technologies (Regev et al. 2017; Giladi and Amit 2018).

Single cell transcriptome sequencing is an ultra-sensitive technology that can
compartmentalise serial biochemical reactions to index individual RNAmolecules to
the original cell and amplify indexed molecules to create libraries ready for next
generation sequencing (Wang and Navin 2015) (Fig. 10.1a). By using microfluidics
device like the 10� Genomics Chromium platform, each single cell is separated into
one oil droplet. Serial reactions occur in each droplet to add barcodes to sequencing
reads that allow to find which cells the reads belong to, and thus each cell has an

Fig. 10.1 Large-scale single-cell transcriptome sequencing. (a) Thousands of droplets can be
separated by the Chromium platform. Cell lysis and cDNA synthesis reactions occur inside a
droplet (adapted from Zheng et al. 2017). Each cDNA molecule is linked to a cell barcode (10�
Barcode) and a unique identifier (UMI) for the molecule. Barcoded cDNAs were pooled and
sequenced. Output reads can be computationally assigned to the original transcripts and cells
based on the barcodes and identifiers. (b) Exponential growth in scRNA-seq research publications
(Data from PubMed till 2018)
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expression profile measured. scRNA-seq created unprecedented resolution (individ-
ual cells) and sample size (each cell is a sample) to decompose gene expression data
of a mixed population into that of different cell subtypes (Altschuler and Wu 2010).
scRNA-seq technology has rapidly evolved (Fig. 10.1b), creating a valuable oppor-
tunity for devising innovative analysis approaches to exploit the unprecedented
high-resolution and large-scale single cell data. Single cell gene expression data is
commonly represented as a matrix consisting of tens of thousands of genes and
thousands to millions of cells. These data have created a demand among biologists
for quick and interactive visualisation and exploratory analysis.

10.2.2 Landscape of scRNA-seq Data Analysis Tools

Although increasing scRNA-seq data analysis tools have been developed in the past
few years, few interactive tools are available for users with little or no programming
experience (Fig. 10.2). Such ‘user-friendly’ tools are increasingly in demand, as data
is exponentially produced and more experimental groups have access to single cell
sequencing technologies. As of July 2021, the Human Cell Atlas (HCA) data portal
has made available 13.8 M cells from 70 organs of 1.3 thousand donors, with
125 projects by 281 labs (https://data.humancellatlas.org/).

Although data visualisation is the most common analysis task, most tools do not
have interactive visualisation options. Often experimental biologists are able to raise
numerous intuitive biologically relevant questions. Interactive tools are especially
powerful to facilitate the hypothesis forming process by these researchers. Thus,
point-and-click, web-based interfaces that can be applied interactively are useful in
single cell biology research. Interactive tools also enable experimental researchers
and readers of single cell research publications to explore the huge amount of data
that is often not exhaustedly explored by any single investigator. Recently, several
interactive tools have been developed to serve such a demand. One of the first and
most well-established webtools is ASAP (Gardeux et al. 2017), which has now been
expanded to the fifth version. Commercial platform like BioTuring is also available
for users with a sign-up account and a paid option for the full version (Le et al. 2020)
Most notable development would be the genexcell tool developed to facilitate the
common analyses in the HCA consortium (Megill et al. 2021).

10.2.2.1 Overview of scIVA

scIVA is a light-weight, user-friendly web-based tool freely available for experimen-
tal biologists to query, analyse, and visualise their single cell datasets of interest.
scIVA also serves as a framework for building interactive single cell databases. The
scIVA GUI (Graphical User Interface) enables biologists to quickly perform four
main categories of scRNA-seq data analysis tasks and consists of four modules
(Fig. 10.3). These tasks are for exploratory data analysis and for testing gene
expression across cells and different clusters within a mixed, heterogenous dataset.
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Fig. 10.2 Landscape of analysis tools available for scRNA-seq data. (a) A rapid increase in the
number of analysis tools (software). (b) The top ten most common analysis tasks for single cell data.
The updated data was generated by the scRNA-tools website (Zappia et al. 2018)
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Specific analyses include: quality control, normalisation, visualising single gene
expression in different clusters, statistical tests to compare gene expression in single
cell clusters, visualisation of gene expression by clusters, and functional analysis of a
group of genes (which can be selected from gene-centric analysis tools, Fig. 10.3.

Two single cell datasets, namely hipsc (human induced pluripotent stem cell) and
hipsc2cm (hipsc cells differententiated to cardiomyocytes), hereby interchangeably
referred to as databases in the sense that the data was organised to enable the
exploration of thousands of genes and cells across multiple clusters/cell types at
single cell level. The two interactive datasets are presented as examples of applying
scIVA applications for development of single cell resource for data mining
(Fig. 10.3). These interactive, publicly available datasets are: hipsc (a human
induced pluripotent stem cells with 18,787 cells) and hipsc2cm (a differentiation
dataset with 43,168 cells). Each of these datasets has multiple functions in scIVA
that allow users to fully mine the data, exploring expression changes at single cell
level across cell types within one stage of pluripotency (hipsc) or multiple stages
from pluripotent cells to differentiated cell types (hipsc2cm). The generation of hipsc
and hipsc2cm datasets is described in our previous publications (Nguyen et al. 2018;
Friedman et al. 2018). Here we show scIVA as an important development to utilise
single cell data for either reanalysis or evaluating new questions, hypotheses by
experimental biologist without the need for coding.

Fig. 10.3 Overview of the scIVA and two interactive scRNA-seq databases for mining. Four
modules of the scIVA interactive software and their components are shown. An overview of the two
databases (interactive datasets), hipsc and hispsc2cm, with information about sizes, scales, key
interactive functionalities, and visualisation of single cell clustering for each differentiation stages
on tSNE (t-distributed stochastic neighbour embedding) space is shown
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10.3 scIVA Data Input and Preprocessing

10.3.1 Data Collection Methods and Types of the Data Stored

scIVA allows for flexible data input and formatting, compatible to different single
cell sequencing technology platforms. scIVA allows data uploading with multiple
formats accepted, including csv, tsv, and xlsx, with or without quotations (Fig. 10.4).
It also provides options to transpose the data matrices and choose headers from the
uploaded dataset. Following the initial upload, users can subset data by clusters or
upload a gene list to subset by genes or specify a subset of cells to focus the analysis
on. Immediately post uploading, a preview of the uploaded data is automatically
generated, with cell, gene, and cluster counts.

Datasets are stored in our local Linux server and made publicly accessible via the
domain computationalgenomics.com.au, for example, in the cases of hipsc and
hipsc2cm. The scIVA most common usage type is direct uploading and on-the-fly
analysis of an scRNA-seq dataset without storing the data on a server. scIVA
framework is ready and flexible to be developed to host external datasets in any
server. The authors also plan to add new datasets to the local server, including new
types of single cell transcriptomics data, like spatial transcriptomics.

10.3.2 Quality Control Methods and Curation Approaches

scIVA provides a range of quality control measures for cells and genes in a single cell
dataset (Fig. 10.5). First, an interactive beeswarm plot is automatically generated to
provide an overview of the uploaded dataset, with stratification by clusters or
experimental design conditions. The beeswarm plot shows number of genes per

Fig. 10.4 Data input. User can browse and upload a gene expression dataset from their local
computer to scIVA server. The server can be flexible and several options to transpose data (so cells
in columns and genes in rows) recognise different formats. scIVA can also take pre-computed
clustering information and a set of cell IDs to be analysed (with the default to analyse all genes and
all cells)
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cells and total RNA sequencing reads that are mapped to each cell. From this plot,
users can visually assess if cell outliers exist in the data, based on data distribution.

Additional quality control includes assessing ‘dropout’ rate, a pattern of seeing
more cells with zero expression values for genes with lower average gene expres-
sion. A scatter plot is generated, showing mean expression with proportions of cells
expressing the gene. Also included is a ranking system of genes by mean and
variance across the whole dataset and across clusters. This option facilitates gene
selection for downstream analysis based on gene expression pattern. For example,
those genes that are most variable across the dataset are likely genes of interest.
scIVA also allows for data to be filtered, so that gene and cell outliers are removed
from the downstream analysis of the dataset. The resulting data can be downloaded
and re-uploaded for subsequent analysis. For interactive view, user can zoom in and
out as well as export plots and table generated by scIVA.

With respect to data indexing, there are two identification levels, namely at cell
level and dataset level. In a dataset, cell indexes can be uniquely identified based on
the barcode sequences (Fig. 10.4). All of the analysis plots incorporate interactive
mouse-hover functionality to identify each dot (representing each cell, with cell ID,
cell expression level, or cell label). Each dataset has its own storage location in our
local server and has its unique URL for public access.

Fig. 10.5 Quality control and data preprocessing. Quality matrices are generated automatically for
each of the data uploaded. The general quality of the total reads per cells and genes per cells is
shown by beeswarm plot. Numbers of genes with zero expression values are shown relative to the
mean expression. Users can get mean expression values and variance across cells for every gene.
After these visual observations, users can filter our genes and cells by specifying cutoffs
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10.4 Database Access and Mining Methods

scIVA offers a comprehensive analysis toolkit that does not require any coding by the
user and enables fully exploration of the data from quality control to gene-centric
analysis and network analysis at cluster or whole dataset level. Below we describe
key functionalities in scIVA. Applications of scIVA in two interactive datasets are
described in the next section.

10.4.1 Single Gene Visualisation

A common analysis question is to find how gene expression changes between
different clusters. scIVA has comprehensive range of interactive visualisation and
statistical tests for examining changes of any selected gene between clusters
(Figs. 10.6 and 10.7). The key feature of scIVA is to provide the ability to visualise
the data in an intuitive and interactive way. The Sunburst plot generates a layered
graph of the proportion of cells with/without expression of the genes, displaying
counts, and percentage of cells expressing the gene of interest. The beeswarm plot
displays the proportion of expressed cells and cell-specific expression level by
clusters. Multiple density plots are generated to show the distribution of gene
expression between clusters for all and for zero-filtered cells. A summary of expres-
sion table is generated, which displays counts, percentages, and means for each
cluster across all cells and positively expressed cells.

10.4.1.1 Single Gene Analysis

Testing differences in single cell gene expression requires careful consideration of
expression distribution, as the majority of the genes express in a small proportion of
the cells. scIVA provides summary statistics in data browsing table by cells and
clusters. To first identify genes with potential expression changes, a Kruskal–Wallis
test (Hollander and Wolfe 1973) is performed for all clusters, followed by a
Kolmogorov–Smirnov test (Conover 1971) for pair-wise statistical differences in
the distributions of gene expression between clusters. Importantly, a modified form
of likelihood ratio test, taking into account zero-inflated distribution, is provided to
quantitatively perform differential expression analysis at gene level between clusters
and to estimate fold change (McDavid et al. 2013).

10.4.1.2 Gene List Analysis

scIVA provides analysis tools for a user uploaded list of multiple genes. Gene list
analysis features include Reactome pathway analysis, results of which are displayed
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as interactive genetic pathways using networkD3. The user can also choose to cluster
by selected genes, with options to choose the number of clusters, and whether to
scale by row. Results will be displayed as a heatmap with dendrogram to illustrate
the arrangements of clustering (Fig. 10.8).

10.5 Use Cases and Demo to Utilise the scIVA Database
Framework

We expect that scIVA will be especially useful for interactive analysis of most
scRNA-seq research projects, with data from one or more conditions. We present
two examples, one simple dataset and another one with four times larger and more
conditions (Figs. 10.3, 10.9, 10.10).

Fig. 10.6 Interactive visualisation of single cell gene expression across subpopulations (clusters).
(a) Sunburst plot shows proportion of cells expressing a selected gene (FOXA2 in this case). The
proportion expressed for two clusters is shown by red bar (definitive endoderm as yellow bar and
mesendoderm as purple bars). (b) Beeswarm plot displays FOXA2 expression across three clusters.
(c) Violin plot shows distribution of expression values across all single cells with positive detection
of FOXA2, stratified by the three clusters
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Fig. 10.8 Network analysis for a list of multiple genes selected by users. (a) and (b) are two
different representations of networks for the same gene list (a is interactive and b is static). (c)
Classifying genes by similarity in expression level across all single cells

Fig. 10.7 Statistical tests for any individual gene across cells and clusters. A gene of interest is
selected by the user. (a) Non-parametric distribution tests include Kruskal–Wallis (test if the gene
has differential distribution across clusters) and Kolmogorov–Smirnov test (pair-wise tests for
differential distribution between two clusters). P-values and KS test statistics can be displayed.
(b) Likelihood ratio tests for the differential expression of a gene between two cell types (two
clusters). (c) Summary statistics for the selected gene across each cluster. (d) Display of cell
statistics (expression and cluster label)
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Fig. 10.9 hipsc interactive dataset. (a) Expression of NANOG across all four clusters in the whole
dataset. Smaller, purple dots represent cells without NANOG expression. (b) An option to display
gene expression for each cluster is available. NANOG expression for cells in cluster 3 only is shown
as an example. (c) Downloadable descriptive statistics of gene expression at cluster level. (d)
Density plot for NANOG expression across all cells

Fig. 10.10 hipsc2cm interactive dataset. An example is shown for one differentiation stage (day
30) and a gene (TNNI1). This dataset has five stages from day 0 to day 30. (a) Sunburst plot shows
percent of TNNI1 expression for subpopulation 1 (SP1). (b) Gene expression plot across all clusters
(left) or just cluster 1 (right). (c) Density plot shows TNNI1 expression in clusters 1 and 2. (d)
Summary statistics of TNNI1 across the two subpopulations
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For the simple use case, the hipsc has 18,845 cells, all supposed to be at a
pluripotent stage. This interactive dataset is publicly accessible at http://
computationalgenomics.com.au/shiny/hipsc/. Without coding, any user can explore
the expression of each of the over 15,000 genes across every individual cell in an
interactive Uniform Manifold Approximation and Projection (UMAP) plot. With
interactive mouse over control, the expression and ID of the cell will be displayed
live. The seemingly homogenous population consists of four subpopulations. These
subpopulations display heterogenous gene expression. Selecting a pluripotency
marker NANOG as an example, scIVA shows that this gene is present and expressed
at a range of log2expression from 0 to 10 (Fig. 10.9a). Using subpopulation 3 as an
example, most cells had zero expression (small, dark-purple dots), but some cells
expressed a high level of NANOG (large, yellowish dots). For a quantitative
overview, scIVA calculates a summary table, displaying the exact number of cells
in each of the four clusters and the proportions of cells with expression higher than
0 (Fig. 10.9c). The density plots in Fig. 10.9d show similar expression patterns
between clusters 1 and 2, but variable expression level within cluster 3 and no
expression in cluster 4.

scIVA can also be used to build a more complex interactive dataset, for example,
the hipsc2cm, with five times more cells and more subpopulations (15). This
differentiation time course dataset is accessible at http://computationalgenomics.
com.au/shiny/hipsc2cm/. The large dataset is split into each of the five conditions
(Day 0, Day 2, Day 5, Day 15, and Day 30), with a separate analysis present in each
tab of the web interface (Fig. 10.10a). For the same gene selected, users can view the
expression across all cells and clusters by switching between different tabs. This
configuration both simplifies the display of analysis results and connects the analysis
among the timepoints simply by switching tabs. The expression of the proportion of
positive cells for each subpopulation is shown in Fig. 10.10a with sunburst plot,
Fig. 10.10b with UMAP plots, Fig. 10.10c with density plot, and a quantitative
summary table shown in Fig. 10.10d.

10.6 Future Update and Availability of scIVA

The scIVA code is open-source and is maintained at the GitHub site https://github.
com/BiomedicalMachineLearning/scIVA/. The scIVA webtool and the two interac-
tive datasets hipsc and hipsc2cm are publicly available at the domain, http://
computationalgenomics.com.au/. These applications are based on a Shiny server
hosted locally in a Centos 7.7, Red Hat Linux system and we are actively keeping the
software updated and our platform allows for conveniently updating more single cell
datasets. scIVA was built as an R-Shiny (Chang et al. 2021) server, hosted in our
CentOS 7 Linux system and made publicly available via a secure DMZ Network.
scIVA implements a range of interactive Javascript applications in R like d3r
(Bostock et al. 2020a), plotly (Sievert 2020), networkD3 (Allaire et al. 2017),
sunburstR (Bostock et al. 2020b).
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Our database integration strategy is that for each new dataset, we apply scIVA
analysis framework and code to build a separate application in the master server, to
be made available at the domain computationalgnomics.com.au. Each new database
then is allocated with its new, unique URL, similar to hipsc and hipsc2cm. This
approach allows for flexibility in adding new datasets that follow the consistent
framework of scIVA and to be hosted at the same domain.

10.7 Summary and Future Development of the Database

scIVA presents itself as an accessible web interface for those with little or no coding
experience to facilitate the process for visualisation, hypothesis generation, and
testing. Given the increasing use of single cell sequencing techniques, scIVA can
be widely applied to assist researchers in utilising the unprecedented resolution of
the single cell data to reveal important biological processes. Notably, every interac-
tive step is well documented in the open-source code, allowing users to technically
understand what is used to generate the visual and GUI they are using. This feature is
in contrast to many databases and webtools, which do not provide source codes and
thus analyses would at least partially need to go through a computation ‘black box’.

To date, nearly 1000 scRNA-seq analysis tools are available, but most of these
tools still require scriptings (commonly in R and Python) for analyses and thus are
less accessible to experimental biologists.

Consortium-scale webtools like cellxgene (Megill et al. 2021) are robust, but are
of limited use for small scale projects (e.g. those with fewer than 100,000 cells and
10 conditions), especially those with data not hosted by the webserver. We expect
that scIVA provides a light-weight, easy-to-use option for most small scale scRNA-
seq projects, without a requirement for depositing the data to the server.
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Chapter 11
Access and Visualise High Quality Gene
Expression Data with Stemformatics

Jarny Choi and Christine A. Wells

Abstract Stemformatics is an established online gene expression data portal
containing hundreds of carefully curated and annotated datasets. The website has
recently been completely re-designed using the latest full stack technologies. It
contains a suite of visualisation tools which enable easy exploration of the data, as
well as an API server which can be used to access the data directly. One of
Stemformatics’ key features is the integrated data atlas where the user can project
their own data and classify their cell types against a reference. In addition to
providing gene expression plots for each dataset, there are also tools for finding
interesting genes across all datasets. Stemformatics is a fully open-source resource,
available at www.stemformatics.org.

Keywords Gene expression · Stem cells · Data integration · Data visualisation ·
Online data portal · Reference datasets

11.1 Introduction to Stemformatics

Stemformatics is an established gene expression data portal designed for researchers
working in stem cell and related fields. It currently contains over 450 datasets,
mainly from microarray and bulk RNA sequencing technologies performed on
human samples (Choi et al. 2019). These samples span a broad range of cell types,
with a major focus on stem cells and their progeny at multiple stages of differenti-
ation and derivation methods. Examples of commonly found cell types include
induced pluripotent stem cells (iPSC), monocytes and macrophages, and acute
myeloid leukaemia (AML) cells (see Table 11.1). Stemformatics is freely available
at stemformatics.org.
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Like many gene expression data portals, Stemformatics serves multiple purposes
for the research community. Some of these can be highlighted by listing key features
of Stemformatics:

1. The hosted datasets are sourced from public domains and manually selected for
relevance in research context. The sample metadata are then carefully annotated
to emphasise biological properties which are reproducible under many condi-
tions. This process adds tremendous value to the datasets since domain specific
knowledge is applied to them and the relevant cell types are highlighted and
linked together across datasets.

2. It re-processes all data from raw files, rather than just rehosting datasets as they
appear in public repositories such as GEO (Edgar 2002) or ArrayExpress
(Kolesnikov et al. 2015). It uses quality control checkpoints (Fig. 11.8) to reject
any datasets which fail certain criteria such as insufficient primary data available.
This results in about 30% of datasets never making it to the portal, ensuring that
Stemformatics data are of high quality and have been processed in a consistent
manner.

3. It hosts multiple integrated data atlases which combine many datasets into one,
enabling users to explore gene expression across multiple datasets at once and
benchmark their own cell types against a robust reference.

4. It provides easy-to-use and intuitive tools for biologists to visually explore the
data, including interactive gene expression profiles, principal component analysis
plots, and more while also providing an application programming interface (API)
for easy computational access to the data (Fig. 11.1).

11.1.1 The Integrated Data Atlases

Stemformatics provides a way to view biological patterns across many datasets at
once through its novel integrated data atlases. Each atlas is a collection of datasets
which represent particular biology and uses a novel gene filtering strategy based on

Table 11.1 Examples of
common cell types in
Stemformatics

Cell type Number of samples

Monocyte 2144

iPSC 1323

ESC 948

Fibroblast 812

AML 728

PBMC 683

MSC 678

Macrophage 568

Mononuclear cell of bone marrow 343

Haematopoietic multipotent progenitor 321

T cell 315

Dendritic cell 190
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batch variance to remove batch effects which are usually present when many datasets
are integrated (Angel et al. 2020) (Fig. 11.2).

Each integrated atlas provides a unique view of gene expression data for several
reasons: Most online gene expression data portals (including GEO, ArrayExpress,
HCA, Haemosphere, etc.) provide access to each hosted dataset separately, hence
gene expression can be viewed per dataset only, for example. Stemformatics inte-
grated atlases in contrast provide an integrated view of tens of datasets and 900+
samples so that gene expression can be viewed across all these datasets, for example.
Samples are selected for inclusion in an atlas based on their relevance to the biology
being described, as well as meeting the criteria for the computational method used
for data integration. These samples are then carefully annotated to ensure that they
make biological sense—that they work in the context of the biology being described.

11.1.2 The Myeloid Atlas

The Stemformatics myeloid atlas integrates expression data assayed on a range of
human myeloid cells which originate from ex vivo, in vivo, and in vitro sources

Fig. 11.2 A schematic description of the Stemformatics integrated atlas, showing its derivation by
removing batch effects as well as its application in discovering cell identity and key regulators of
differentiation

Fig. 11.1 A simplified schematic of Stemformatics which shows public datasets that act as input
into Steminformatics, and a uniform data processing pipeline is applied before a dataset is hosted in
the system. Various tools provided by the Steminformatics can then be used to answer research
questions
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(Rajab et al. 2021). By integrating data from 44 studies spanning over 900 samples,
it can be used to identify myeloid subpopulations as well as benchmark one’s own
data against this reference. The myeloid atlas is available at stemformatics.org/atlas/
myeloid.

One of the interesting observations coming from this atlas is the separation of
myeloid samples based on their source of derivation (Fig. 11.3): in vitro differenti-
ated myeloid cells do not readily resemble their in vivo counterparts, with ex vivo
samples lying somewhere in between in this transcriptional landscape (Rajab et al.
2021). This may have significant implications for models of myeloid cells as well as
derivation of these cell types through iPSC or similarly in vitro based methods of
differentiation.

Users of the Stemformatics myeloid atlas can project their own data onto the atlas to
view the transcriptional position of their own samples within the atlas or download all
the atlas data to perform their own analysis (see general features Sect. 11.1.3 below).

11.1.3 General Features of the Atlas Page

The Stemformatics atlas page provides a wealth of tools to intuitively access the data
and perform analyses, such as looking up gene expression and projecting other
datasets. Key features currently available on the atlas page include:

• Gene expression lookup: where expression of a gene is visualised as a colour
gradient on the PCA plot. This plot can also be viewed side by side with the plot
coloured by sample group category so that the user can easily see which samples
show higher expression of the gene (Fig. 11.4).

• Download all data and plots: all the data used in constructing the atlas can be
downloaded as text files, including PCA coordinates, expression values, and even
colours used in the plots (Fig. 11.5).

• Project other data: other datasets can be projected onto the atlas (either another
Stemformatics dataset or user’s own dataset), to visualise the transcriptional
distance between the projected samples to those in the atlas (Fig. 11.6).

Fig. 11.3 Monocytes and
dendritic cell (DC) subsets
displayed in the atlas PCA
plot show how they differ
from each other based on
source of derivation
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• Combine sample groups: sample groups such as cell type and activation status
can be combined dynamically to create a new group that will make a finer
distinction between these properties (Fig. 11.7).

Some of these features are illustrated in more detail under the use-cases section
below.

11.2 Data Processing and Sample Annotation

11.2.1 Data Selection

Data selection in Stemformatics is driven primarily by biological questions and
research themes across various projects. One of the current research topics is
elucidating the identity of iPSC derived cells—macrophages and dendritic cells in
particular. How closely do they resemble their in vivo counterparts? What can we
learn about the current methods of reprogramming cells if they do differ and can we
find ways to improve this process? By having a reference atlas, such as the
Stemformatics myeloid atlas, it is possible to ask these questions at the transcrip-
tional level and obtain hypotheses for follow-ups in the lab (Rajab et al. 2021).

For construction of an integrated atlas, the selection of a dataset for inclusion into
the atlas and hence into Stemformatics may also depend on technical issues. Since

Fig. 11.4 Screenshot of gene expression on the myeloid atlas page
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the integration relies on variance filtering (Angel et al. 2020), it is ideal to have
multiple cell types represented across multiple platforms (it is best to have T-cells
from both microarray and RNAseq datasets, for example). Where this is difficult to
achieve and the inclusion of a dataset leads to platform effect overtaking the
biological effect in the atlas, that dataset may not be included in the system.

11.2.2 Data Processing

Once a dataset has been selected for inclusion, the data processing pipeline is applied
(Fig. 11.8). Broadly there are three steps each dataset will go through before being
included in the system:

1. Quality control checkpoint 1: Evaluate experimental design and that platform is
supported by our system. Check that all source data are available. Check sample
metadata values against our data dictionary.

2. Get source files and begin expression data processing. For microarray data, use R
packages corresponding to the platform to create a normalised matrix at the probe
level. For bulk RNAseq data, get fastq files and align against the appropriate
genome version and create a counts matrix summarised at the gene level (usually
performed on a high performance computer). Note that this step is not necessarily
applied for single cell RNAseq datasets due to their complexity, as this is outside

Fig. 11.5 Screenshot of download data/plots dialogue from an atlas page
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the scope of Stemformatics. However, Stemformatics hosts some Fluidigm C1
platform datasets (Durruthy-Durruthy and Ray 2018), which were processed in
this manner. Note also that other projects exist where single cell RNAseq data are
processed from raw files, with a uniform pipeline, such as the Human Cell Atlas
data portal (humancellatlas n.d.).

Fig. 11.6 Screenshot of project other data dialogue from an atlas page
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3. Quality control checkpoint 2: Evaluate technical aspects of the data, such as read
depth and alignment statistics, using the QC metrics produced in step 2. Investi-
gate other possible data issues such as sample swaps. Go back to a previous step if
necessary.

Fig. 11.7 Screenshot of combined sample groups dialogue from the myeloid atlas page

Understand the experiment and 

gather available raw data

All raw data 

available? Free of 

annota on 

problems?

Yes

Process raw data 

to create 

expression 

summarised at 

gene/probe level

No

Sufficient read 

depth and data 

quality? S sfactory 

experimental 

design?

dataset metadata 

sample table 

expression matrices

Dataset flagged  

as failed

No

Yes

Stemforma cs database

Fig. 11.8 Stemformatics data processing workflow shows two quality control checkpoints that a
dataset must pass before being uploaded into the system
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This pipeline means that a dataset may fail to process at either quality control
checkpoints. Over a decade of processing datasets has shown that roughly 30% of all
datasets fail. Common reasons for failure include a lack of primary data, poor
experimental design (where batch and biology are confounded, for example), and
bad data quality (read depth is too low for RNAseq data) (Choi et al. 2019). This
rather high rate of failure suggests that journals should do better in vetting these
datasets at review stages.

11.2.3 Sample Annotation

As the collection of datasets grows, it becomes increasingly challenging to find
effective ways to annotate sample data, so that they retain as much of the original
biological information as possible while working harmoniously with other datasets
to accelerate discovery. This is a common problem faced by many medium to large
data portals such as Stemformatics, as they wrestle with multiple sources of data,
coming from all around the world and having been annotated differently. Let us take
an example of a cell type designation of “macrophage” to a particular sample. This
simple designation alone is not enough to show how it may have been derived
(in vivo or iPSC programmed?) or what kind of stimuli may have been applied, or
what the tissue of origin may be. Should there be fields created in the database to
capture all these properties then? The problem with this approach is that it may be
impossible to fill this information for every dataset, as they may not be present from
primary sources or are not relevant within the dataset. Furthermore, deciding on a
consistent nomenclature is also difficult when there is no standard way to label many
of the entities that appear in sample annotations.

In earlier versions of Stemformatics, a fully flexible and permissive data structure
was used to tackle this problem, by allowing key-value pair based annotation tables.
This approach is suitable for cases where each dataset can capture all the information
about itself in a self-contained way, without the need to correlate with other datasets.
However as Stemformatics became more focused on data integration, it has moved
away from this approach into a more structured one, where each field is pre-defined,
and uniform nomenclature is applied across datasets.

In any system, there is a compromise between these two modalities of data: less
structured but more flexible vs more structured but less flexible. In moving from a
less structured to a more structured system, Stemformatics is applying domain
specific knowledge to the data and highlighting key similarities and differences in
the context of the biological questions being asked, rather than simply applying
database rules. An example of this is how each integrated atlas has been designed to
contain a separate set of sample annotations which complement the core sample
annotations attached to the datasets, thus enabling the system to highlight key
biological features relevant for each atlas.
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11.3 System Architecture

11.3.1 The Challenge of System Design in Research
Environments

Stemformatics as a system consists of code which runs various servers and interfaces
with the underlying data attached to them. Designing such a system sensibly in a
research environment can be challenging (Björn et al. 2019), often due to a lack of
resources, compared to a similar sized project in the industry. Hence when devel-
oping a reasonably complex data driven system within a research environment, it is
important to be aware of certain commonly found constraints:

• The system is built to answer research questions.
• Teams may be very small for both development and maintenance of the system

(sometimes one person team for all tasks). Team members also may turn over
very quickly, as researchers move labs and professional personnel may look for
other opportunities.

• It is not easy to attract funding for database systems from traditional sources,
hence the lifecycle of the system may be short, and there may be limited and
varying amounts of resources available consistently.

These constraints create some pitfalls for system development within the research
environment. A common issue is that the system may be either under- or over-
engineered (or both in different parts of the system). An under-engineered system is
one where there has not been enough thought put into modifications later on, which
perhaps may have to be performed by new personnel. Poor documentation, a lack of
structure or reasoning behind the design, or code bloating from simple copy and
paste are common, as systems may move from prototype stage to implementation
without sufficient thought into the design. This problem is exacerbated by the fact
that researchers without the necessary background and knowledge in system archi-
tecture and design often begin these projects.

An over-engineered system is one where there are too many steps to find the key
functions which perform a task, through excessive wrappers, class definitions, or
data mappings. This can happen when experienced software engineers work in
the project and translate the levels of engineering found in the industry settings to
the research environment. Without specialised teams that can understand the parts of
the system or having personnel with enough technical knowledge, an over-
engineered system is just as difficult to navigate as an under-engineered one.

In both of these cases, it is very difficult for such systems to be maintained
effectively with small teams with high turnover and varying levels of skills. The new
Stemformatics system has been built with these constraints in mind and has
employed several ways to make it easier to update and maintain the system:
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• Document any smallest issues which may take time to resolve, with real examples
of commands which were run. This means less prior knowledge of the next
maintainer is assumed.

• Design a system with lots of transparency: it should be easy to figure out the base
command that performs a function, for example, without having to go through
layers and layers of abstraction. The same principle applies to infrastructure on
which the system is built, including the virtual machine and the
environments used.

• Take a balanced approach between abstraction and direct data access.
• Re-design and refactor parts of the system if necessary as more complexity is

added. A guiding principle may be: “How difficult would it be for another person
to make a change in this code in 6 months’ time?”

11.3.2 Stemformatics System Architecture

Stemformatics uses Australia’s national computing infrastructure, NECTAR (ardc
n.d.), which provides virtual machines and disk spaces, as well as a set of tools to
manage the resources. Centos OS 8 virtual machines are created to host each
instance of Stemformatics, where an instance may work as one of development,
test, production and backup servers.

On each virtual machine, data are stored in different formats: mongdb (mongodb
n.d.) is used for dataset and sample metadata, whereas hdf5 or text files are used for
expression and atlas data. These data are then interfaced with an API server, which is
built on flask (Palletsprojects n.d.). A separate user interface (UI) server, which is
built on nuxtjs (nuxtjs n.d.), communicates with the API server to retrieve data and
render plots and tables.

This separation of API and UI servers is a new design that moves away from the
previous versions where one python pyramid (trypyramid n.d.) server was respon-
sible for both data and web pages (Stephenson et al. 2018). The new design makes it
easier to maintain the system as each server is based on completely different
technologies and also empowers others to build their own applications using the
API, as well as bioinformaticians to access the data directly without using the
website (Fig. 11.9).

Versioning has also been implemented for datasets and atlas data, so that changes
can be tracked and any previous version of the dataset accessed. A dataset may
change version for various reasons, such as an update in sample annotation or its
expression matrices based on new gene annotations or normalisation methods.
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11.4 User Interfaces and Use-Cases

The main means of accessing the Stemformatics data for most users would be
through the website, stemformatics.org. This site has recently been completely
redesigned, to take advantage of modern browser features as such responsive
layouts. Broadly, the site has the following main categories and features (example
use-cases follow):

• Find datasets and view details, including PCA plots, sample table, and gene
expression. Novel visualisation tools such as a sunburst plot are employed to
invite the user to explore the data easily here.

• Explore the integrated data atlases, such as the blood and myeloid atlases, and use
its features such as data projection and dynamic sample group combinations.

• View gene and gene set expression across datasets, to suggest key pathways for
differentiation.

The other user interface available is the API server, which can be accessed to
fetch all the data stored in Stemformatics while bypassing the website altogether.
This is designed for bioinformaticians and computational biologists to incorporate
the data access directly into their code and for systems developers to build custom
user interfaces. All the data available through the website are also available through
the API. See an example use-case below.

Fig. 11.9 A schematic of the Stemformatics infrastructure, which shows the connection amongst
data, the API server and the UI server. Three types of data are stored in the system in different
formats: dataset and sample metadata are stored in mongoDB, expression matrices are in hdf5
format, and atlas data are stored as text files
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11.4.1 Use-Case 1 (Basic Level): Find Datasets of Relevance
and View Details

A typical workflow for many biologists may be to search for datasets based on cell
types and view their details, as well as plot gene expression. By going to
Datasets > View collections from the menu (Fig. 11.10), the user can enter a search
term or choose from a pre-defined collection of datasets. In this example, the Atlas
Datasets are chosen to view all the datasets which have been used in the atlases.
Once on this page, filtering can be performed to further subset the datasets, and
clicking on the name of an individual dataset will go to the page showing the details
of that dataset. In this example the (Silvin et al. 2017) dataset has been selected to
view in detail, and expression of RAB1A gene shows differential expression across
the three dendritic cell subpopulations within the dataset.

11.4.2 Use-Case 2 (Intermediate): Combine Sample Groups
on the Myeloid Atlas

In this example, the user is exploring the myeloid atlas which shows clustering of
samples according to “Sample Source” or “Progenitor Type”, where Sample Source
labels samples according to “in vivo”, “ex vivo”, and “in vitro” labels, while
Progenitor Type labels them according to “Myeloid”, “Pluripotent stem cell”, and
“haematopoietic progenitor cell”. This means that the user can see a separation of
in vivo sample from in vitro, for example.

Now the user is interested in seeing if there is a separation between myeloid and
stem cells within each of the sample sources. To do this, a combined sample group
can be created on the atlas page (Tools > Combine sample groups), which will
dynamically fill in the combinations as the user makes selections on each sample
group (Fig. 11.11).

11.4.3 Use-Case 3 (Intermediate/Advanced): Project One’s
Own Data Onto the Blood Atlas

A more advanced usage example is to project one’s own expression data onto an
atlas. This generally requires some level of pre-processing of the data prior to
projection, to prepare the files in the correct format first. Two files are required for
projection: gene expression matrix in tab separated format, with Ensembl gene ids as
row index, and sample table also in tab separated format where the row indices
should match the columns of the expression matrix. Once the files have been
prepared, performing the projection is straightforward through tools > project
other data on the atlas page (Fig. 11.12).
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Datasets > View collec ons > Atlas Datasets

subset atlas datasets based 
o orm type=RNASeq

subset atlas datasets based 
on the dc_atlas project tag

sort filtered datasets from 
most recent to least

Select this dataset to 
view details

view expression of a 
gene in this dataset

colour the plot by 
any of the annotated 

sample groups

Fig. 11.10 Screenshots showing find dataset and view its details workflow
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11.4.4 Use-Case 4 (Advanced): Use the API to Download All
Sample Metadata for Datasets Containing Blood
Samples

For more computationally savvy users, the API server provides access to all the
functions used by the website to query the data and these are outlined on the website
under Datasets > API access, which also provides example output for each query.
An example workflow may be to search for all RNAseq datasets which contain the
term “blood” (python API example here) and save sample table for each dataset in
a file:

Fig. 11.12 Screenshots showing projection of one’s own data onto the blood atlas workflow
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import requests
# First we find out what values are available for platform_type:
r = requests.get(‘https://api.stemformatics.org/values/datasets/
platform_type”)
print(r.json())
>> [ "Microarray","RNASeq","other","scRNASeq"]
# Now fetch all datasets for the query which is a list of dictionary
containing dataset metadata:
r = requests.get(“https://api.stemformatics.org/search/datasets?
platform_type=RNASeq&query_string=blood”)
datasets = r.json()
print(datasets[0])
>> {"dataset_id": 6601, "platform_type": "RNASeq.", . . .}
# Loop through these datasets and fetch sample table, saving them as files
locally
for dataset in datasets:
r = requests.get(“https://api.stemformatics.org/datasets/%s/

samples?as_file=true” % dataset[“dataset_id”])
with open(“%s_samples.txt” % dataset[“dataset_id”], “w”,

encoding=“utf-8”) as f:
f.write(r.text)

11.5 Summary

Stemformatics provides a valuable resource to the life science research community
through its curated approach to data collection and processing as well as its novel
integrated atlases. It can be used to discover emerging properties in the data,
particularly in the field of transcriptional cell identity, where the user can benchmark
their own differentiation or programming protocols, for example, and generate
hypotheses. This will continue to be a focus for Stemformatics in the future, to
provide high quality datasets with additional annotations, and to provide cutting
edge visualisation tools to access the data easily.

The process of building a research based data portal such as Stemformatics
involves overcoming many key issues commonly found in similar systems: how to
best format, annotate, and store the data, how to design the system to be sustainable
without an army of software engineers, and how to add real research value to the
community. The new Stemformatics system implements many of the ideas learnt
from years of experience and hence provides a valuable resource for other groups
wanting to build such systems in future.

Stemformatics website is available at stemformatics.org. Its API server is avail-
able at api.stemformatics.org and source code is available at github.com/wellslab.
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