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We are proud of the fact that earlier editions of Precalculus: Graphical, Numerical, 
Algebraic were among the first to recognize the potential of hand-held graphers for 
helping students understand function behavior. The power of visualization eventually 
transformed the teaching and learning of calculus at the college level and in the AP® 
program, then led to reforms in the high school curriculum articulated in the NCTM 
Principles and Standards for School Mathematics and more recently in the Common 
Core State Standards. All along the way, this text has kept current with the best prac-
tices while continuing to pioneer new ideas in exploration and pedagogy that enhance 
student learning (for example, the study of function behavior based on the Twelve 
Basic Functions, an idea that has gained widespread acceptance in the text world).

For those students continuing to a calculus course, this precalculus text concludes with 
a chapter that prepares students for the two central themes of calculus: instantaneous 
rate of change and continuous accumulation. This intuitively appealing preview of cal-
culus is both more useful and more reasonable than the traditional, unmotivated foray 
into the computation of limits, and it is more in keeping with the stated goals and objec-
tives of the AP courses and their emphasis on depth of knowledge.

Recognizing that precalculus is a capstone course for many students, we include quan-
titative literacy topics such as probability, statistics, and the mathematics of finance and 
integrate the use of data and modeling throughout the text. Our goal is to provide stu-
dents with the critical-thinking skills and mathematical know-how needed to succeed in 
college, career, or any endeavor.

Continuing in the spirit of the nine earlier editions, we have integrated graphing tech-
nology throughout the course, not as an additional topic but as an essential tool for both 
mathematical discovery and effective problem solving. Graphing technology enables 
students to study a full catalog of basic functions at the beginning of the course, thereby 
giving them insights into function properties that are not seen in many texts until later 
chapters. By connecting the algebra of functions to the visualization of their graphs, we 
are even able to introduce students to parametric equations, piecewise-defined func-
tions, limit notation, and an intuitive understanding of continuity as early as Chapter 1. 
However, the advances in technology and increased familiarity with calculators have 
blurred some of the distinctions between solving problems and supporting solutions 
that we had once assumed to be apparent. Therefore, we ask that some exercises be 
solved without calculators. (See the Technology and Exercises section of the Preface.)

Once students are comfortable with the language of functions, the text guides them 
through a more traditional exploration of twelve basic functions and their algebraic 
properties, always reinforcing the connections among their algebraic, graphical, and 
numerical representations. This text uses a consistent approach to modeling, emphasiz-
ing the use of particular types of functions to model behavior in the real world. 
Modeling is a fundamental aspect of our problem-solving process that is introduced in 
Section 1.1 and used throughout the text. The text has a wealth of data and range of 
applications to illustrate how mathematics and statistics connect to every facet of mod-
ern life. Each chapter, 1–11, concludes with a modeling project to reinforce and extend 
students’ ability to solve modeling problems.

This text has faithfully incorporated not only the teaching strategies that have made 
Calculus: Graphical, Numerical, Algebraic so popular, but also some of the strategies 
from the popular Pearson high school algebra series, and thus has produced a seamless 
pedagogical transition from prealgebra through calculus for students. Although this 
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book can certainly be appreciated on its own merits, teachers who seek coherence and 
vertical alignment in their mathematics sequence might consider this pedagogical 
approach to be an additional asset of Precalculus: Graphical, Numerical, Algebraic.

This text is written to address current and emerging state curriculum standards. In par-
ticular, we embrace NCTM’s Focus in High School Mathematics: Reasoning and Sense 
Making and its emphasis on the importance of helping students to make sense of math-
ematics and to reason using mathematics. The NCTM’s Principles and Standards for 
School Mathematics identified five “Process Standards” that should be fundamental in 
mathematics education. The first of these standards was Problem Solving. Since then, 
the emphasis on problem solving has continued to grow, to the point that it is now inte-
gral to the instructional process in many mathematics classrooms. When the Common 
Core State Standards for Mathematics detailed eight “Standards for Mathematical 
Practice” that should be fundamental in mathematics education, again the first of these 
addressed problem solving. Individual states have also released their own standards 
over the years, and problem solving is invariably front and center as a fundamental 
objective. Problem solving, reasoning, sense making, and the related processes and 
practices of mathematics are central to the approach we use in Precalculus: Graphical, 
Numerical, Algebraic.

We embrace the growing importance and wide applicability of Statistics. Because 
Statistics is increasingly used in college coursework, the workplace, and everyday life, we 
include a full chapter on Statistics to help students see that statistical analysis is an inves-
tigative process that turns loosely formed ideas into scientific studies. Our five sections on 
data analysis, probability, and statistical literacy are aligned with the GAISE Report pub-
lished by the American Statistical Association, the College Board’s AP® Statistics curric-
ulum, and the Common Core State Standards. Chapter 10 is not intended as a course in 
statistics but rather as an introduction to set the stage for possible further study.

4 FOREWORD

Dedication
We dedicate this text to the memory of  

our eminent colleague, dear friend, and inspirational coauthor  

Bert K. Waits (1940–2014).  

With his passing, the mathematics community lost a uniquely talented leader.  

May he rest in peace, and may the power of visualization,  

which he passionately promoted, live on!
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Our Approach
The Rule of Four—A Balanced Approach

A principal feature of this text is the balance among the algebraic, numerical, graphical, 
and verbal methods of representing problems: the rule of four. For instance, we obtain 
solutions algebraically when that is the most appropriate technique to use, and we 
obtain solutions graphically or numerically when algebra is difficult to use. We urge 
students to solve problems by one method and then to support or confirm their solu-
tions by using another method. We believe that students must learn the value of each of 
these methods or representations and must learn to choose the one most appropriate for 
solving the particular problem under consideration. This approach reinforces the idea 
that to understand a problem fully, students need to understand it algebraically as well 
as graphically and numerically.

Problem-Solving Approach

Systematic problem solving is emphasized in the examples throughout the text, using 
the following variation of Polya’s problem-solving process that emphasizes modeling 
with mathematics:

• understand the problem,

• develop a mathematical model for the problem,

• solve the mathematical model and support or confirm the solution, and

• interpret the solution within the problem setting.

Students are encouraged to use this process throughout the text.

Twelve Basic Functions

Twelve basic functions are emphasized throughout the text as a major theme and focus. 
These functions are

• The Identity Function • The Natural Logarithm Function

• The Squaring Function • The Sine Function

• The Cubing Function • The Cosine Function

• The Reciprocal Function • The Absolute Value Function

• The Square Root Function • The Greatest Integer Function

• The Exponential Function • The Logistic Function

One of the most distinctive features of this text is that it introduces students to the full 
vocabulary of functions early in the course. Students meet the twelve basic functions 
graphically in Chapter 1 and are able to compare and contrast them as they learn about 
concepts like domain, range, symmetry, continuity, end behavior, asymptotes, extrema, 
and even periodicity—concepts that are difficult to appreciate when the only examples 
a teacher can refer to are polynomials. With this text, students are able to characterize 
functions by their behavior within the first month of classes. Once students have a com-
fortable understanding of functions in general, the rest of the course consists of study-
ing the various types of functions in greater depth, particularly with respect to their 
algebraic properties and modeling applications.

16
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These functions are used to develop the fundamental analytic skills that are needed in 
calculus and advanced mathematics courses. A complete gallery of basic functions is 
included in Appendix C.

Applications, Data, and Modeling

The majority of the applications in the text are based on real data from cited sources, 
and their presentations are self-contained. As they work through the applications, stu-
dents are exposed to functions as mechanisms for modeling real-life problems. They 
learn to analyze and model data, represent data graphically, interpret graphs, and fit 
curves. Additionally, the tabular representation of data presented in this text highlights 
the concept that a function is a correspondence between numerical variables. This helps 
students build the connection between numerical quantities and graphs and recognize 
the importance of a full graphical, numerical, and algebraic understanding of a problem. 
For a complete listing of applications, please see the Applications Index on page 947.

Technology and Exercises

The authors of this text have encouraged the use of technology in mathematics educa-
tion for more than three decades. Our approach to problem solving (pages 92–93) dis-
tinguishes between solving the problem and supporting or confirming the solution, 
and emphasizes how technology figures in each of these processes.

We have come to realize, however, that advances in technology and increased familiar-
ity with calculators have gradually blurred some of the distinctions between solving 
and supporting that we had once assumed to be apparent. We do not want to retreat in 
any way from our support of modern technology, but we now provide specific guid-
ance about the intent of the various exercises in our text.

Therefore, as a service to teachers and students alike, exercises in this text that should be 
solved without calculators are identified with gray ovals around the exercise numbers. 
These usually are exercises that demonstrate how various functions behave algebraically 
or how algebraic representations reflect graphical behavior and vice versa. Application 
problems usually have no restrictions, in keeping with our emphasis on modeling and on 
bringing all representations to bear when confronting real-world problems.

Incidentally, we continue to encourage the use of calculators to support answers 
graphically or numerically after the problems have been solved with pencil and paper. 
Any time students can make connections among the graphical, analytical, and numeri-
cal representations, they are doing good mathematics.

As a final note, we will freely admit that different teachers use our text in different 
ways, and some will probably override our no-calculator recommendations to fit with 
their pedagogical strategies. In the end, the teachers know what is best for their stu-
dents, and we are just here to help.

Content Changes to This Edition
Although the table of contents is essentially the same, this edition includes numerous 
substantial changes. About 5% of the examples have been replaced; another 5% have 
new data or new contexts. Additionally, 15–20% of the examples have been enhanced 
or clarified in some way. As for the exercises, again, about 10% have been replaced and 
another 5% have new data or new contexts. Plus, 5–10% of the exercises have been 
enhanced or clarified in some way. In particular, to keep the applications of mathemat-
ics relevant to our students, we have included the most current data available to us at 
the time of publication. As an example, look at the Chapter Opener problem on page 
166. Not only does this include current data but also an entirely new twist: piecewise 
modeling.
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Several other changes have been made as well. We have updated many of the student and 
teacher notes. We have updated calculator screenshots to conform to the enhanced capa-
bilities of modern graphing calculators. We have updated and renamed the capstone 
projects for Chapters 1–11 as Modeling Projects to reflect that they can be used as a 
bridge to the open-ended modeling recommended in the GAIMME report, published in 
2016 by the Consortium for Mathematics and Its Applications (COMAP) and the Society 
for Industrial and Applied Mathematics (SIAM).

Features
Chapter Openers include a general description of an application that can be solved 
with the concepts learned in the chapter. The application is revisited later in the chapter 
via a specific problem that is solved.

A Chapter Overview begins each chapter to give students a sense of what they are 
going to learn. This overview provides a roadmap of the chapter and also indicates how 
the topics in the chapter are connected under one big idea. It is always helpful to remem-
ber that mathematics isn’t modular, but interconnected, and that the skills and concepts 
learned throughout the course build on one another to help students understand more 
complicated processes and relationships. Similarly, the What you’ll learn about . . . 
and why feature presents the big ideas in each section and explains their purpose.

Throughout the text, Vocabulary is highlighted in yellow for easy reference. 
Additionally, Properties, Definitions, and Theorems are boxed in purple, and 
Procedures in green, so that they can be easily found. The Web/Real Data  icon 
marks the examples and exercises that use data cited from authentic sources.

Each example ends with a suggestion to Now try a related exercise. Working the sug-
gested exercise is an easy way for students to check their comprehension of the mate-
rial while reading each section. Alternatives are provided for these examples in the 
PowerPoint Slides.

Explorations appear throughout the text and provide students with the perfect opportu-
nity to become active learners and to discover mathematics on their own. This will help 
hone critical-thinking and problem-solving skills. Some are technology-based; others 
involve exploring mathematical ideas and connections.

Margin Notes on various topics appear throughout the text. Some of these offer practi-
cal advice on using a grapher to obtain the best, most accurate results. Other notes 
include historical information, give hints about examples, or provide insight to help 
students avoid common pitfalls and errors.

The Looking Ahead to Calculus  icon is found throughout the text next to many 
examples and topics to point out concepts that students will encounter again in calcu-
lus. Ideas that foreshadow calculus, such as limits, maximum and minimum, asymp-
totes, and continuity, are highlighted. Some calculus notation and language are 
introduced in the early chapters and used throughout the text to establish familiarity.

The review material at the end of each chapter consists of sections dedicated to helping 
students review the chapter concepts. Key Ideas are broken into parts: Properties, 
Theorems, and Formulas; Procedures; and Gallery of Functions. The Review Exercises 
represent the full range of exercises covered in the chapter and give additional practice 
with the ideas developed in the chapter. The exercises with red numbers indicate prob-
lems that would make up a good chapter test. A Modeling Project concludes each 
chapter and requires students to analyze data. It can be assigned as either individual or 
group work. Each project expands upon concepts and ideas taught in the chapter and 
engages students in modeling with mathematics.
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Exercise Sets
Each exercise set begins with a Quick Review to help students review skills needed in 
the exercise set and refers them to other sections they can go to for help. Some exercises 
are designed to be solved without a calculator; the numbers of these exercises are printed 
within a gray oval. Students are urged to support the answers to these (and all) exercises 
graphically or numerically, but only after they have solved them with pencil and paper.

There are over 6000 exercises, including 720 Quick Review Exercises. The section 
exercises have been carefully graded from routine to challenging. The following types 
of skills are tested in each exercise set:

• Algebraic understanding and procedures

• Applications of mathematics

• Connecting algebra to geometry

• Interpretation of graphs

• Graphical and numerical representations of functions

• Data analysis

The exercise sets include distinctive kinds of thought-provoking exercises:

• Standardized Test Questions include two true-false problems with justifications 
and four multiple-choice questions.

• Explorations are opportunities for students to discover mathematics on their 
own or in groups. These exercises often require the use of critical thinking to  
explore the ideas involved.

• Writing to Learn exercises give students practice at communicating about math-
ematics and opportunities to demonstrate their understanding of important ideas.

• Group Activity exercises ask students to work collaboratively to solve problems 
while interacting with a few of their classmates.

• Extending the Ideas exercises go beyond what is presented in the text. These 
exercises are challenging extensions of the material in the text.

This variety of exercises provides sufficient flexibility to emphasize the skills and con-
cepts most needed for each student or class.

Technology Resources
The following supplements are available for purchase:

MyLab Math Online Course (optional, for purchase only)—access code 
required 

MyLab Math delivers proven results in helping individual students succeed. It  provides 
engaging experiences that personalize, stimulate, and measure learning for each 
 student. And it comes from a trusted partner with educational expertise and an eye on 
the future. To learn more about how MyLab Math combines proven learning applica-
tions with powerful assessment, visit https://mlm.pearson.com/global/ or contact your 
Pearson Sales Representative. In this MyLab Math course, you have access to the most 
cutting-edge, innovative study solutions proven to increase students’ success.

Additional Teacher Resources
Most of the teacher supplements and resources available for this text are available elec-
tronically for download at the Instructor Resource Center (IRC). Please go to  
the Pearson Global Editions site, https://media.pearsoncmg.com/intl/ge/abp/resources/
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index.html, and select Instructor Resources. Once you register on the resources site, 
you will be able to access downloadable resources for your textbook.

The following supplements are available to registered adopters:

Online Solutions Manual (Download Only)

Provides complete solutions to all exercises, including Explorations, Quick Reviews, 
Exercises, Review Exercises, and Modeling Projects.

Online Resource Manual (Download Only)

Provides Major Concepts Review, Group Activity Worksheets, Sample Chapter Tests, 
Standardized Test Preparation Questions, and Contest Problems.

Online Tests and Quizzes (Download Only)

Provides two parallel tests per chapter, two quizzes for every three to four sections, two 
parallel midterm tests covering Chapters P–5, and two parallel end-of-year tests cover-
ing Chapters 6–11.

TestGen® (Download Only)

TestGen enables teachers to build, edit, print, and administer tests using a computerized 
bank of questions developed to cover all the objectives of the text. TestGen is algorith-
mically based, allowing teachers to create multiple but equivalent versions of the same 
question or test with the click of a button. Teachers can also modify test bank questions 
or add new questions. Tests can be printed or administered online.

PowerPoint Slides (Download Only)

Features presentations written and designed specifically for this text, including figures, 
alternative examples, definitions, and key concepts.

A01_DEMA8962_10_GE_FM.indd   20 01/07/22   8:08 AM

https://media.pearsoncmg.com/intl/ge/abp/resources/index.html


ACKNOWLEDGMENTS

We wish to express our gratitude to the reviewers of this and previous editions who 
provided numerous valuable insights and recommendations:

Judy Ackerman
Montgomery College

Ignacio Alarcon
Santa Barbara City College

Ray Barton
Olympus High School

Nicholas G. Belloit
Florida Community College at Jacksonville

Margaret A. Blumberg
University of Southwestern Louisiana

Ray Cannon
Baylor University

Marilyn P. Carlson
Arizona State University

Edward Champy
Northern Essex Community College

Janis M. Cimperman
Saint Cloud State University

Wil Clarke
La Sierra University

Marilyn Cobb
Lake Travis High School

Donna Costello
Plano Senior High School

Gerry Cox
Lake Michigan College

Deborah A. Crocker
Appalachian State University

Marian J. Ellison
University of Wisconsin—Stout

Donna H. Foss
University of Central Arkansas

Betty Givan
Eastern Kentucky University

Brian Gray
Howard Community College

Daniel Harned
Michigan State University

Vahack Haroutunian
Fresno City College

Celeste Hernandez
Richland College

Rich Hoelter
Raritan Valley Community College

Dwight H. Horan
Wentworth Institute of Technology

Margaret Hovde
Grossmont College

Miles Hubbard
Saint Cloud State University

Sally Jackman
Richland College

T. J. Johnson
Hendrickson High School

Stephen C. King
University of South Carolina—Aiken

Jeanne Kirk
William Howard Taft High School

Georgianna Klein
Grand Valley State University

Fred Koenig
Walnut Ridge High School

Deborah L. Kruschwitz-List
University of Wisconsin—Stout

Carlton A. Lane
Hillsborough Community College

James Larson
Lake Michigan University

Edward D. Laughbaum
Columbus State Community College

Ron Marshall
Western Carolina University

21

A01_DEMA8962_10_GE_FM.indd   21 01/07/22   8:08 AM



22 ACKNOWLEDGMENTS

Janet Martin
Lubbock High School

Beverly K. Michael
University of Pittsburgh

Paul Mlakar
St. Mark’s School of Texas

John W. Petro
Western Michigan University

Cynthia M. Piez
University of Idaho

Debra Poese
Montgomery College

Jack Porter
University of Kansas

Antonio R. Quesada
The University of Akron

Hilary Risser
Plano West Senior High

Thomas H. Rousseau
Siena College

David K. Ruch
Sam Houston State University

Sid Saks
Cuyahoga Community College

Mary Margaret Shoaf-Grubbs
College of New Rochelle

Malcolm Soule
California State University, Northridge

Sandy Spears
Jefferson Community College

Shirley R. Stavros
Saint Cloud State University

Stuart Thomas
University of Oregon

Janina Udrys
Schoolcraft College

Mary Voxman
University of Idaho

Eddie Warren
University of Texas at Arlington

Steven J. Wilson
Johnson County Community College

Gordon Woodward
University of Nebraska

Cathleen Zucco-Teveloff
Trinity College

Consultants

We would like to extend a special thank you to the following consultants for their guid-
ance and invaluable insight in the development of recent editions.

Jane Nordquist
Ida S. Baker High School, Florida

Sudeepa Pathak
Williamston High School, North Carolina

Laura Reddington
Forest Hill High School, Florida

James Timmons
Heide Trask High School, North Carolina

Jill Weitz
The G-Star School of the Arts, Florida

A01_DEMA8962_10_GE_FM.indd   22 01/07/22   8:08 AM



 ACKNOWLEDGMENTS 23

Pearson would like to thank the following for contributing to and reviewing the Global 
Edition:

Contributor

Natanael Karjanto
Sungkyunkwan University

Reviewers

Sibel Doğru Akgöl
Atilim University

Alp Bassa
Boğaziçi University

Ayhan Günaydin
Boğaziçi University

Femin Yalçın Küçükbayrak
İzmir Kâtip Çelebi Üniversitesi

ACKNOWLEDGMENTS FOR 
THE GLOBAL EDITION

We express our gratitude to Chris Brueningsen, Linda Antinone, and Bill Bower for their 
work on the Modeling Projects. We greatly appreciate Jennifer Blue and John Samons for 
their meticulous accuracy checking of the text. We are grateful to Cenveo, who pulled off 
an amazing job on composition, and we wish to offer special thanks to project manager 
Mary Sanger, who kept us on track throughout the revision process. We also extend our 
thanks to the professional and remarkable staff at Pearson. We wish to thank our families 
for their support, patience, and understanding during this revision. We mourn the passing 
of our dear friend and coauthor Bert Waits and dedicate this edition to his memory! His 
steadfast faith in the power of visualization has been, and continues to be, a driving force 
that makes this precalculus text stand out from the rest.

—F. D. D.
—G. D. F. 

—D. K. 
—D. E. B.

A01_DEMA8962_10_GE_FM.indd   23 01/07/22   8:08 AM



A01_DEMA8962_10_GE_FM.indd   24 01/07/22   8:08 AM

This page intentionally left blank



25

Large distances are measured in light years, the distance that light travels in 

one year. Scientists use the speed of light, which is roughly 299,800 km>sec, 

to approximate distances within the solar system. For examples, see page 59. 

P.1 Real Numbers

P.2 Cartesian Coordinate 
System

P.3 Linear Equations and 
Inequalities

P.4  Lines in the Plane

P.5 Solving Equations 
Graphically, Numerically, 
and Algebraically

P.6  Complex Numbers

P.7 Solving Inequalities 
Algebraically and 
Graphically

Prerequisites

CHAPTER P
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Chapter P Overview
Historically, algebra was used to represent problems with symbols (algebraic models) 
and solve them by reducing the solution to algebraic manipulation of symbols. This 
technique is still important today. In addition, graphing calculators are now used to 
represent problems with graphs (graphical models) and solve them with the numerical 
and graphical techniques of technology.

We begin with basic properties of real numbers and introduce absolute value, distance 
formulas, midpoint formulas, and equations of circles. We use the slope of a line to 
write equations for the line, and we use these equations to solve practical problems. We 
then explore the basic ideas of complex numbers. We close the chapter by solving 
equations and inequalities using both algebraic and graphical techniques.

What you’ll learn about
• Representing Real Numbers

• Order and Interval Notation

• Basic Properties of Algebra

• Integer Exponents

• Scientific Notation

... and why
These topics are fundamental in the 
study of mathematics and science.

Representing Real Numbers
A real number is any number that can be written as a decimal. Real numbers are 
 represented by symbols such as -8, 0, 1.75, 2.333..., 0.36, 8>5, 23, 23 16, e,  
and p.

The set of real numbers contains several important subsets:

The natural (or counting) numbers: 51, 2, 3, c6
The whole numbers: 50, 1, 2, 3, c6
The integers: 5c , -3, -2, -1, 0, 1, 2, 3, c6
We use braces 5 6  to enclose the elements, or objects, of a set. The rational numbers 
are another important subset of the real numbers. A rational number is any number 
that can be written as a quotient a>b of two integers, where b ≠ 0. We can use 
 set-builder notation to define the rational numbers:

e a
b
` a, b are integers, and b ≠ 0 f

These symbols are read as “the set of all a over b such that a and b are integers, and b is 
not equal to zero.”

The decimal form of a rational number either terminates like 7>4 = 1.75, or is 
 infinitely repeating like 4>11 = 0.363636... =  0.36. The bar over the 36 indicates the 
block of digits that repeats. A real number is irrational if it is not rational. The decimal 
form of an irrational number is infinitely nonrepeating. For example, 23 = 1.7320508... and p = 3.14159265....

A real number can be approximated by giving a few of its digits. Sometimes we can 
find the decimal form of rational numbers with calculators, but not very often.

P.1 Real Numbers
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Every real number corresponds to one and only one point on the real number line, and 
every point on the real number line corresponds to one and only one real number. 
Between every pair of real numbers on the number line there are infinitely many more 
real numbers.

The number associated with a point is the coordinate of the point. As long as the con
text is clear, we will follow the standard convention of using the real number for both 
the name of the point and its coordinate.

Order and Interval Notation
The set of real numbers is ordered. This means that we can use inequalities to compare 
any two real numbers that are not equal and say that one is “less than” or “greater than” 
the other.

Examining Decimal Forms of Rational Numbers
Determine the decimal form of 1>16, 55>27, and 1>17.

SOLUTION Figure P.1 suggests that the decimal form of 1>16 terminates and that of 
55>27 repeats in blocks of 037.

1
16

= 0.0625  and  
55
27

= 2.037

We cannot predict the exact decimal form of 1>17 from Figure P.1; however, we can 
say that 1>17 ≈ 0.0588235294. The symbol ≈ is read “is approximately equal to.” 
We can use long division (see Exercise 66) to prove that

 
1
17

= 0.0588235294117647. Now try Exercise 3.

EXAMPLE 11/16

55/27

1/17

N

.0625

2.037037037

.0588235294

Figure P.1 Calculator decimal repre
sentations of 1>16, 55>27, and 1>17 with the 
calculator set in Floating decimal mode. 
(Example 1)

The real numbers and the points of a line can be matched onetoone to form a  
real number line. We start with a horizontal line and match the real number zero with 
a point O, the origin. Positive numbers are assigned to the right of the origin, and 
negative numbers to the left, as shown in Figure P.2.

–5 –4 –3 –2 –1 0
Negative

real numbers
Positive

real numbers

1 2 3 4 5

O3– p

Figure P.2 The real number line.

Order of Real Numbers

Let a and b be any real numbers.

Symbol Definition Read

a 7 b a - b is positive a is greater than b

a 6 b a - b is negative a is less than b

a Ú b a - b is positive or zero a is greater than or equal to b

a … b a - b is negative or zero a is less than or equal to b

The symbols 7 , 6 , Ú , and …  are inequality symbols.

Unordered Systems
Not all number systems are ordered. For 
 example, the complex number system, intro
duced in Section P.6, has no natural ordering.
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Geometrically, a 7 b means that a is to the right of b (equivalently, b is to the left of a) 
on the real number line. For example, 6 7 3 implies that 6 is to the right of 3 on the 
real number line. Note also that a 7 0 means that a - 0, or simply a, is positive, and 
a 6 0 means that a is negative.

We are able to compare any two real numbers because of the following important prop
erty of the real numbers.

Opposites and Number Line
a 6 0 3 -a 7 0

If a 6 0, then a is to the left of 0 on the real 
number line, and its opposite, -a, is to the right 
of 0. Thus, -a 7 0. This logic can be reversed: 
If -a 7 0, then a 6 0.

Trichotomy Property

Let a and b be any real numbers. Exactly one of the following is true:

a 6 b, a = b, or a 7 b

Inequalities can be used to specify intervals of real numbers, as illustrated in  
Example 2.

Interpreting Inequalities
Interpret the meaning of, and graph, the interval of real numbers for the inequality.

(a) x 6 3 (b) -1 6 x … 4

SOLUTION 

(a) The inequality x 6 3 describes all real numbers less than 3 (Figure P.3a).

(b) The double inequality -1 6 x … 4 represents all real numbers between -1 and 
4, excluding -1 and including 4 (Figure P.3b). Now try Exercise 5.

EXAMPLE 2 

(a)

–3 –2 –1 0 1 2 3 4 5
x

–2–3 –1 0 1 2 3 4 5
x

(b)

–5 –4 –3 –2 –1 0 1 2 3
x

–0.5

(c)

–3 –2 –1 0 1 2 3 4 5
x

(d)

Figure P.3 In graphs of inequalities, 
parentheses correspond to 6  and 7 ,  
and brackets correspond to …  and Ú . 
(Examples 2 and 3)

Writing Inequalities
Write an inequality based on the description, and draw its graph.

(a) The real numbers between -4 and -0.5

(b) The real numbers greater than or equal to zero

SOLUTION 

(a) -4 6 x 6 -0.5 (Figure P.3c)

(b) x Ú 0 (Figure P.3d) Now try Exercise 15.

EXAMPLE 3 

As shown in Example 2, inequalities define intervals on the real number line. We often use 
32, 54  to describe the bounded interval determined by 2 … x … 5. This interval is closed 
because it contains its endpoints 2 and 5. There are four types of bounded intervals.

Bounded Intervals of Real Numbers

Let a and b be real numbers with a 6 b.

Interval  
Notation

Interval  
Type

Inequality 
Notation

 
Graph

3a, b4 Closed a … x … b

1a, b2 Open a 6 x 6 b

3a, b2 Halfopen a … x 6 b

1a, b4 Halfopen a 6 x … b

The numbers a and b are the endpoints of each interval.

a b

a b

a b

a b
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We use the interval notation 1-∞, ∞2 to represent the entire set of real numbers. The 
symbols -∞ (negative infinity) and ∞ (positive infinity) allow us to use interval nota
tion for unbounded intervals and are not real numbers.

The interval of real numbers determined by the inequality x 6 2 can be described by 
the unbounded interval 1-∞, 22. This interval is open because it does not contain its 
endpoint 2. In addition to 1-∞, ∞2, there are four types of unbounded intervals.

Interval Notation Using tH
Because -∞ is not a real number, we use 
1-∞, 22 instead of 3-∞, 22 to describe x 6 2. 
Similarly, we use 3-1, ∞2 instead of 3-1, ∞4  
to describe x Ú -1.

Unbounded Intervals of Real Numbers

Let a and b be real numbers.

Interval  
Notation

Interval  
Type

Inequality  
Notation

 
Graph

3a, ∞2 Closed x Ú a

1a, ∞2 Open x 7 a

1-∞, b4 Closed x … b

1-∞, b2 Open x 6 b

Each of these intervals has exactly one endpoint, namely a or b.

a

a

b

b

–6 –5 –4 –3 –2 –1 0 1 2 3 4
x(a)

–5 –4 –3 –2 –1 0 1 2 3 4 5
x(b)

–5 –4 –3 –2 –1 0 1 2 3 4 5
x(c)

Figure P.4 Graphs of the intervals of real numbers in Example 4.

Converting Between Intervals and Inequalities
Convert interval notation to inequality notation, or vice versa. State whether the inter
val is bounded or unbounded, and open or closed. Graph the interval and identify its 
endpoints.

(a) 3-6, 32   (b) 1-∞, -12   (c) -2 … x … 3

SOLUTION 

(a) The interval 3-6, 32 corresponds to -6 … x 6 3 and is bounded and halfopen 
(Figure P.4a). The endpoints are -6 and 3.

(b) The interval 1-∞, -12 corresponds to x 6 -1 and is unbounded and open 
 (Figure P.4b). The only endpoint is -1.

(c) The inequality -2 … x … 3 corresponds to the closed, bounded interval 
3-2, 34  (Figure P.4c). The endpoints are -2 and 3. Now try Exercise 29.

EXAMPLE 4 

Basic Properties of Algebra
Algebra involves the use of letters and other symbols to represent real numbers. A 
variable is a letter or symbol (for example, x, y, t, u) that represents an unspecified real 
number. A constant is a letter or symbol (for example, -2, 0, 23, p) that represents a 
specific real number. An algebraic expression is a combination of variables and con
stants involving addition, subtraction, multiplication, division, powers, and roots.
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We state some of the properties of the arithmetic operations of addition, subtraction, 
multiplication, and division, represented by the symbols + , - , *  (or # ) and , (or > ), 
respectively. Addition and multiplication are the primary operations. Subtraction and 
division are defined in terms of addition and multiplication.

Subtraction: a - b = a + 1-b2

Division: 
a
b

= aa1
b
b , b ≠ 0

In the above definitions, -b is the additive inverse or opposite of b, and 1>b is the 
multiplicative inverse or reciprocal of b. Perhaps surprisingly, additive inverses are 
not always negative numbers. The additive inverse of 5 is the negative number -5. 
However, the additive inverse of -3 is the positive number 3.

The following properties hold for real numbers, variables, and algebraic expressions.

Subtraction vs. Negative Numbers
On many calculators, there are two “-” keys, 
one for subtraction and one for negative numbers 
or opposites. Be sure you know how to use both 
keys correctly. Misuse can lead to incorrect 
results.

Properties of Algebra

Let u, v, and w be real numbers, variables, or algebraic expressions.

1. Commutative properties 
 Addition: u + v = v + u
 Multiplication: uv = vu

2. Associative properties 
 Addition:
 1u + v2 + w = u + 1v + w2
 Multiplication: 1uv2w = u1vw2
3. Identity properties 
 Addition: u + 0 = u
 Multiplication: u # 1 = u

4. Inverse properties 
 Addition: u + 1-u2 = 0

 Multiplication: u #  
1
u

= 1, u ≠ 0

5. Distributive properties 
 Multiplication over addition:
 u1v + w2 = uv + uw
 1u + v2w = uw + vw

 Multiplication over subtraction:
 u1v - w2 = uv - uw
 1u - v2w = uw - vw

For each distributive property, the lefthand side of the equation shows the factored 
form of the algebraic expression, and the righthand side shows the expanded form.

Using the Distributive Property
(a) Write the expanded form of 1a + 22x.

(b) Write the factored form of 3y - by.

SOLUTION 

(a) 1a + 22x = ax + 2x

(b) 3y - by = 13 - b2y Now try Exercise 37.

EXAMPLE 5 

Here are some properties of the additive inverse, together with examples that help illus
trate their meanings.

Properties of the Additive Inverse

Let u and v be real numbers, variables, or algebraic expressions.

Property Example

1. -1-u2 = u

2. 1-u2v = u1-v2 = -1uv2
3. 1-u21-v2 = uv

4. 1-12u = -u

5. -1u + v2 = 1-u2 + 1-v2

-1-32 = 3

1-423 = 41-32 = -14 # 32 = -12

1-621-72 = 6 # 7 = 42

1-125 = -5

-17 + 92 = 1-72 + 1-92 = -16
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Understanding Notation

1-322 = 9

-32 = -9
Be careful!

Integer Exponents
Exponential notation is used to shorten products of factors that repeat. For example,

1-321-321-321-3) = 1-324 and 12x + 1212x + 12 = 12x + 122.

Exponential Notation

Let a be a real number, variable, or algebraic expression and n be a positive 
integer. Then

an = a # a #  g # a,

n factors

where n is the exponent, a is the base, and an is the nth power of a, read as “a 
to the nth power.”

µ

The two exponential expressions in Example 6 have the same value but have different 
bases. Be sure you understand the distinction.

Identifying the Base
(a) In 1-325, the base is -3.

(b) In -35, the base is 3. Now try Exercise 43.

EXAMPLE 6 

Here are the basic properties of exponents, together with examples to illustrate their 
meanings.

Properties of Exponents

Let u and v be real numbers, variables, or algebraic expressions and m and n be 
integers. All bases are assumed to be nonzero.

Property Example

1. umun = um+n

2. 
um

un = um-n

3. u0 = 1

4. u-n =
1
un

5. 1uv2m = umvm

6. 1um2n = umn

7. au
v
b

m

=
um

vm

53 # 54 = 53+4 = 57

x9

x4 = x9-4 = x5

80 = 1

y-3 =
1

y3

12z25 = 25z5 = 32z5

1x223 = x2 #3 = x6

aa
b
b

7

=
a7

b7

To simplify an expression involving powers means to rewrite it so that each factor 
appears only once, all exponents are positive, and exponents and constants are com
bined as much as possible.
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Scientific Notation
Any positive number can be written in scientific notation,

c * 10m, where 1 … c 6 10 and m is an integer.

This notation provides a way to work with very large and very small numbers. For 
example, the distance between Earth and the Sun is about 93,000,000 miles. In scien
tific notation,

93,000,000 mi = 9.3 * 107 mi.

The positive exponent 7 indicates that moving the decimal point in 9.3 to the right  
7 places produces the decimal form of the number.

The mass of an oxygen molecule is about

0.000 000 000 000 000 000 000 054 g.

In scientific notation,

0.000 000 000 000 000 000 000 054 g = 5.4 * 10-23 g.

The negative exponent -23 indicates that moving the decimal point in 5.4 to the left  
23 places produces the decimal form of the number.

Simplifying Expressions Involving Powers
(a) 12ab3215a2b52 = 101aa221b3b52 = 10a3b8

(b) 
u2v-2

u-1v3 =
u2u1

v2v3 =
u3

v5

(c) ax
2

2
b

-3

= a 2

x2b
3

=
23

1x223 =
8

x6 Now try Exercise 47.

EXAMPLE 7 Moving Factors
Be sure you understand how exponent property 4 
permits us to move factors from the numerator to 
the denominator, and vice versa:

v-m

u-n =
un

vm

Converting to and from Scientific Notation
(a) 2.375 * 108 = 237,500,000

(b) 0.000000349 = 3.49 * 10-7 Now try Exercises 57 and 59.

EXAMPLE 8 

Using Scientific Notation

Simplify 
1360,000214,500,000,0002

18,000
.

SOLUTION 

 
1360,000214,500,000,0002

18,000
=
13.6 * 105214.5 * 1092

1.8 * 104

 =
13.6214.52

1.8
* 105+9-4

 = 9 * 1010

 = 90,000,000,000

 Now try Exercise 63.

Using a Calculator Figure P.5 shows two ways to perform the computation. In the 
first, the numbers are entered in decimal form. In the second, the numbers are entered 
in scientific notation. The calculator uses “9E10” to stand for 9 * 1010.

EXAMPLE 9 
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(360000)(4500000
000)/(18000)

N

(3.6E5)(4.5E9)/(
1.8E4)

9E10

9E10

Figure P.5 Be sure you understand how your calculator displays scientific notation.  
(Example 9)

 1.  List the positive integers between -3 and 7.

 2.  List the integers between -3 and 7.

 3.  List all negative integers greater than -4. 

 4.  List all positive integers less than 5. 

In Exercises 5 and 6, use a calculator to evaluate the expression. Round 
the value to two decimal places.

 5. (a) 41-3.123 - 1-4.225  (b) 
21-5.52 - 6

7.4 - 3.8

 6. (a) 5331-1.122 - 41-0.5234   (b) 5-2 + 2-4

In Exercises 7 and 8, evaluate the algebraic expression for the given 
values of the variables.

 7. x3 - 2x + 1, x = -2, 1.5 

 8. a2 + ab + b2, a = -3, b = 2 

In Exercises 9 and 10, list the possible remainders.

 9. When the positive integer n is divided by 7 

 10.  When the positive integer n is divided by 13 

QUICK REVIEW P.1

In Exercises 17–22, use interval notation to describe the interval of real 
numbers.

 17.  x 7 -3 

 18.  -7 6 x 6 -2 

 19. 
–5 –4 –3 –2 –1 0 1 2 3 4 5

x 

 20. 
–5 –4 –3 –2 –1 0 1 2 3 4 5

x 

 21.  x is greater than -3 and less than or equal to 4. 

 22.  x is positive. 

In Exercises 23–28, use words to describe the interval of real numbers.

 23.  4 6 x … 9 24. x Ú -1

 25.  3-3, ∞2 26. 1-5, 72
 27. 

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

 28. 
–5 –4 –3 –2 –1 0 1 2 3 4 5

x

SECTION P.1  Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, find the decimal form for the rational number. State 
whether it repeats or terminates.

 1. -37>8 2. 15>99 

 3. -13>6  4. 5>37 

In Exercises 5–10, interpret the meaning of, and graph, the interval of 
real numbers.

 5. x … 2 6. -2 … x 6 5

 7. 1-∞, 72 8. 3-3, 34
 9.  x is negative.

 10.  x is greater than or equal to 2 and less than or equal to 6.

In Exercises 11–16, write an inequality for the interval of real numbers.

 11. 3-1, 12  12. 1-∞, 44  
 13. 

–5 –4 –3 –2 –1 0 1 2 3 4 5
x 

 14. 
–5 –4 –3 –2 –1 0 1 2 3 4 5

x 

 15.  x is between -1 and 2. 

 16.  x is greater than or equal to 5. 
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In Exercises 53–56, write the amount of expenditures in dollars 
obtained from the category in scientific notation.

 53.  Current expenditures 

 54.  Capital outlay 

 55.  Interest on school debt 

 56. Total 

In Exercises 57 and 58, write the number in scientific notation.

 57.  The mean distance from Jupiter to the Sun is about 
483,900,000 miles. 

 58.  The electric charge, in coulombs, of an electron is about 
-0.000 000 000 000 000 000 16. 

In Exercises 59–62, write the number in decimal form.

 59.  3.33 * 10-8 

 60.  6.73 * 1011 

 61.  The distance that light travels in 1 year (one light year) is about 
5.87 * 1012 mi. 

 62.  The mass of a neutron is about 1.6747 * 10-24 g.

In Exercises 63 and 64, use scientific notation to simplify.

 63.  
11.3 * 10-7212.4 * 1082

1.3 * 109  without using a calculator 

 64. 
13.7 * 10-7214.3 * 1062

2.5 * 107  

Explorations
 65.  Investigating Exponents For positive integers m and n, 

we can use the definition to show that aman = am+n.

(a) Examine the equation aman = am+n for n = 0 and explain 
why it is reasonable to define a0 = 1 for a ≠ 0.

(b) Examine the equation aman = am+n for n = -m and 
explain why it is reasonable to define a-m = 1>am for 
a ≠ 0.

In Exercises 29–32, convert to inequality notation. State whether the 
interval is bounded or unbounded and whether it is open or closed. 
Identify the endpoints.

 29.  1-3, 44  30.  1-3, -12
 31.  1-∞, 52 32.  3-6, ∞2
In Exercises 33–36, use both inequality and interval notation to 
describe the set of numbers. State the meaning of any variables you use.

 33.  Writing to Learn Bill is at least 29 years old.

 34.  Writing to Learn No item at Sarah’s Variety Store costs 
more than $2.00.

 35.  Writing to Learn The price of a gallon of gasoline varies 
from $3.099 to $4.399.

 36.  Writing to Learn Salary raises at California State Univer
sity at Chico will be between 2% and 6.5% this year.

In Exercises 37–40, use the distributive property to write the factored 
form or the expanded form of the given expression.

 37.  a1x2 + b2 38. 1y - z32c 

 39.  ax2 + dx2  40.  a3z + a3w 

In Exercises 41 and 42, find the additive inverse of the number.

 41.  6 - p  42.  -7 

In Exercises 43 and 44, identify the base of the exponential expression.

 43.  -52  44. 1-227 

 45.  Group Activity Discuss which algebraic property or prop
erties are illustrated by the equation. Try to reach a consensus.

(a) 13x2y = 31xy2 (b) a2b = ba2

(c) a2b + 1-a2b2 = 0 (d) 1x + 322 + 0 = 1x + 322
(e) a1x + y2 = ax + ay

 46.  Group Activity Discuss which algebraic property or prop
erties are illustrated by the equation. Try to reach a consensus.

(a) 1x + 22 1
x + 2

= 1 (b) 1 # 1x + y2 = x + y

(c) 21x - y2 = 2x - 2y

(d) 2x + 1y - z2 = 2x + 1y + 1-z22
 =  12x + y2 + 1-z2 =
 12x + y2 - z

(e) 
1
a

 1ab2 = a1
a

  abb = 1 # b = b

In Exercises 47–52, simplify the expression. Assume that the variables 
in the denominators are nonzero.

 47. 
x4y3

x2y5
  48.  

13x222y4

3y2  

 49.  a 4

x2b
2

  50.  a 2
xy
b

-3

 

 51.  
1x-3y22-4

1y6x-42-2  52.  a4a3b

a2b3b a
3b2

2a2b4b  

The data in Table P.1 give the expenditures in millions of dollars for 
U.S. public schools for the 2013–2014 school year.

Table P.1 U.S. Public School Expenditures
Category Amount (millions of $)

Current expenditures 535,665
Capital outlay 45,474
Interest on school debt 17,247
Total 606,490

Source: National Center for Education Statistics, U.S. Department of 
Education, as reported in The World Almanac and Book of Facts 2017.
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 66.  Decimal Forms of Rational Numbers Here is the third 
step when we divide 1 by 17. (The first two steps are not shown 
because the quotient is 0 in each case.)

0.05
17)1.00

85
15

  By convention we say that 1 is the first remainder in the long 
division process, 10 is the second, and 15 is the third remainder.

(a) Continue this long division process until a remainder is 
repeated, and complete the following table:

 70. Multiple Choice What is the value of 1-224? 

(A) 16 (B) 8

(C) 6 (D) -8

(E) -16

 71.  Multiple Choice What is the base of the exponential 
expression -72? 

(A) -7 (B) 7

(C) -2 (D) 2

(E) 1

 72.  Multiple Choice Which of the following is the simplified 

form of 
x6

x2, x ≠ 0? 

(A) x-4 (B) x2

(C) x3 (D) x4

(E) x8

Extending the Ideas
The magnitude of a real number is its distance from the origin.

 73.  List the whole numbers whose magnitudes are less than 7.

 74.  List the natural numbers whose magnitudes are less than 7.

 75.  List the integers whose magnitudes are less than 7.

 76.  Writing to Learn Combining Rational and 
 Irrational Numbers In each case, write an explanation 
to justify your answer.

(a) When two rational numbers are added, is the sum a ratio
nal number?

(b) When two rational numbers are multiplied, is the product 
a rational number?

(c) When a rational number and an irrational number are 
added, is the sum a rational number?

(d) When a nonzero rational number and an irrational num
ber are multiplied, is the product a rational number?

Step Quotient Remainder
1 0 1
2 0 10
3 5 15
f f f

(b) Explain why the digits that occur in the quotient between 
the pair of repeating remainders determine the infinitely 
repeating portion of the decimal representation. In this case

1
17

= 0.0588235294117647.

(c) Explain why this procedure will always determine the infi
nitely repeating portion of a rational number whose deci
mal representation does not terminate.

Standardized Test Questions
 67. True or False The additive inverse of a real number must 

be negative. Justify your answer.

 68. True or False The reciprocal of a positive real number 
must be less than 1. Justify your answer.

In Exercises 69–72, solve these problems without using a calculator.

 69. Multiple Choice Which of the following inequalities corre
sponds to the interval 3-2, 12? 

(A) x … -2 (B) -2 … x … 1

(C) -2 6 x 6 1 (D) -2 6 x … 1

(E) -2 … x 6 1
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What you’ll learn about
• Cartesian Plane

• Absolute Value of a Real Number

• Distance Formulas

• Midpoint Formulas

• Equations of Circles

• Applications

... and why
These topics provide the foundation 
for the material that will be 
addressed in this text.

Cartesian Plane
The points in a plane correspond to ordered pairs of real numbers, just as the points on 
a line are associated with individual real numbers. This correspondence creates the 
Cartesian plane, or the rectangular coordinate system in the plane.

To construct a rectangular coordinate system (Cartesian plane), draw a pair of perpen
dicular real number lines, one horizontal and the other vertical, with the lines intersect
ing at their respective origins (Figure P.6). Their point of intersection, O, is the origin 
of the Cartesian plane. The horizontal line is usually the x-axis, and the vertical line is 
usually the y-axis. The positive direction on the xaxis is to the right, and the positive 
direction on the yaxis is up. The two axes divide the Cartesian plane into four quadrants, 
as shown in  Figure P.7.

Each point P of the plane is associated with an ordered pair 1x, y2 of real numbers, the 
(Cartesian) coordinates of the point. The x-coordinate is the coordinate of the point 
on the xaxis that intersects with the vertical line from P. The y-coordinate is the coor
dinate of the point on the yaxis that intersects with the horizontal line from P (Figure P.7). 
Figure P.6 shows the points P and Q with coordinates 14, 22 and 1-6, -42, respec
tively. As long as the context is clear, we use ordered pairs of real numbers to name 
points, not just their coordinates. For example, we can use 1-6, -42 to name point Q.

P.2 Cartesian Coordinate System

Not always x and y
In applications, the horizontal axis often repre
sents time, typically denoted by the variable t. 
The vertical axis can represent any attribute of 
interest. For example, if the vertical axis repre
sents force, we may use F as the variable.

6

4

2

–2

–6

y

–4–8 –2 O 2 4 6

P(4, 2)

Q(–6, –4)

x

Figure P.6 The Cartesian coordinate 
plane.

y

3
2
1

–2
–3

y

x
–3 –1O 1 3 x

P(x, y)

First quadrant

Fourth quadrantThird quadrant

Second quadrant

Figure P.7 The four quadrants. Points 
on the x or yaxis are not in any quadrant.

Table P.2 U.S. Exports to 
Mexico

Time 
(years)

U.S. Exports  
(billions of $)

2005 120.2
2010 163.7
2012 215.9
2013 226.0
2014 240.3
2015 235.7

Source: U.S. Census Bureau, The World 
Almanac and Book of Facts 2017.

Plotting Data on U.S. Exports to Mexico
The values in billions of dollars of U.S. exports to Mexico for selected years from 
2005 through 2015 are given in Table P.2. Plot the (time, export value) ordered pairs 
on a rectangular coordinate system.

SOLUTION The points are plotted in Figure P.8 on page 37. Now try Exercise 31.

EXAMPLE 1 

A scatter plot is a graph of 1x, y2 data pairs on a Cartesian plane. Figure P.8 is a scatter 
plot of the data from Table P.2.

Absolute Value of a Real Number
The absolute value of a real number is its magnitude (size). For example, the absolute 
value of 3 is 3, and the absolute value of -5 is 5.
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Distance Formulas
The distance between -1 and 4 on the number line is 5 (Figure P.9). This distance may 
be found by subtracting the smaller number from the larger: 4 - 1-12 = 5.
If we use absolute value, the order of subtraction does not matter:

0 4 - 1-12 0 = 0-1 - 4 0 = 5

Time (years)

E
xp

or
ts

 (
bi

lli
on

s 
of

 $
)

U.S. Exports to Mexicoy

x
2005 2010 2015

50

100

150

200

250

Figure P.8 The graph for Example 1.

DEFINITION Absolute Value of a Real Number

The absolute value of a real number a is

0 a 0 = c a, if a 7 0
0, if a = 0

-a, if a 6 0.

Using the Definition of Absolute Value
Evaluate:

(a) 0-4 0
(b) 0p - 6 0
SOLUTION 

(a) Because -4 6 0, 0-4 0 = -1-42 = 4.

(b) Because p ≈ 3.142, p - 6 is negative, so p - 6 6 0. Thus, 
0p - 6 0 = -1p - 62 = 6 - p ≈ 2.858. Now try Exercise 9.

EXAMPLE 2 

Here is a summary of some important properties of absolute value.

Properties of Absolute Value

Let a and b be real numbers.

1. 0 a 0 Ú 0 2. 0-a 0 = 0 a 0

3. 0 ab 0 = 0 a 0 0 b 0  4. ` a
b
` =
0 a 0
0 b 0 , b ≠ 0

–3 –2 –1 0 1 2 3 4 5

|4 – (–1)| = |–1 – 4| = 5

x

Figure P.9 Finding the distance between 
-1 and 4.

Absolute Value and Distance
If we let b = 0 in the distance formula, we see 
that the distance between a and 0 is 0 a 0 . Thus, 
the absolute value of a number is its distance 
from zero.

Distance Formula (Number Line)

Let a and b be real numbers. The distance between a and b is

0 a - b 0 .
Note that 0 a - b 0 = 0 b - a 0 .

To find the distance between two points that lie on the same horizontal or vertical line 
in the Cartesian plane, we use the distance formula for points on a number line. For 
example, the distance between points x1 and x2 on the xaxis is 0 x1 - x2 0 = 0 x2 - x1 0  
and the distance between points y1 and y2 on the yaxis is 0 y1 - y2 0 = 0 y2 - y1 0 .
To find the distance between two points P1x1, y12 and Q1x2, y22 that do not lie on the 
same horizontal or vertical line, we form the right triangle determined by P, Q, and 
R1x2, y12 (Figure P.10).
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The distance from P to R is 0 x1 - x2 0 , and the distance from R to Q is 0 y1 - y2 0 . By the 
Pythagorean Theorem (Figure P.11), the distance d between P and Q is

d = 2 0 x1 - x2 0 2 + 0 y1 - y2 0 2.

Because 0 x1 - x2 0 2 = 1x1 - x222 and 0 y1 - y2 0 2 = 1y1 - y222, we obtain the follow
ing formula.

O
x

y

y1

y2

x1 x2

d

Q(x2, y2)

R(x2, y1)
P(x1, y1)

) y1 – y2 )

) x1 – x2)

Figure P.10 Forming a right triangle with hypotenuse PQ.

c
a

b

Figure P.11 The Pythagorean Theorem: 
In a right triangle, c2 = a2 + b2.

Distance Formula (Cartesian Plane)

The distance d between points P1x1, y12 and Q1x2, y22 in a Cartesian plane is

d = 21x1 - x222 + 1y1 - y222.

Finding the Distance Between Two Points
Find the distance d between the points 11, 52 and 16, 22.
SOLUTION 

 d = 211 - 622 + 15 - 222 The distance formula

 = 21-522 + 32

 = 225 + 9

 = 234 ≈ 5.831  Using a calculator

Now try Exercise 13.

EXAMPLE 3 

Midpoint Formulas
When the endpoints of a segment on a number line are known, we take the average of 
their coordinates to find the midpoint of the segment.

Midpoint Formula (Number Line)

The midpoint of the line segment with endpoints a and b is

a + b
2

 .
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Equations of Circles
A circle is the set of points in a plane at a fixed distance (radius) from a fixed point 
(center) in the plane. Figure P.14 shows the circle with center 1h, k2 and radius r. If 
1x, y2 is any point on the circle, the distance formula gives21x - h22 + 1y - k22 = r.

Squaring both sides, we obtain the following equation for a circle.

Midpoint

6 6

–9 –3 0 3
x

Figure P.12 Notice that the distance from the midpoint, -3, to 3 or to -9 is 6. 
(Example 4)

Finding the Midpoint of a Line Segment
The midpoint of the line segment with endpoints -9 and 3 on a number line is

1-92 + 3

2
=

-6
2

= -3.

See Figure P.12. Now try Exercise 23.

EXAMPLE 4 

y

x
1

1

(–5, 2)

(–1, 4.5)

(3, 7)Midpoint

Figure P.13 Midpoint of a line segment.  
(Example 5)

y

x

(x, y)

(h, k)

r

Figure P.14 The circle with center  
1h, k2 and radius r.

Just as with number lines, the midpoint of a line segment in the Cartesian plane 
involves averaging. Each coordinate of the midpoint is the average of the correspond
ing coordinates of its endpoints.

Midpoint Formula (Cartesian Plane)

The midpoint of the line segment with endpoints 1a, b2 and 1c, d 2 is

aa + c
2

, 
b + d

2
b .

Finding the Midpoint of a Line Segment
The midpoint of the line segment with endpoints 1-5, 22 and 13, 72 is

1x, y2 = a-5 + 3
2

, 
2 + 7

2
b = 1-1, 4.52.

See Figure P.13. Now try Exercise 25.

EXAMPLE 5 

DEFINITION Standard Form Equation of a Circle

The standard form equation of a circle with center 1h, k2 and radius r is

1x - h22 + 1y - k22 = r2.
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Properties of geometric figures can sometimes be confirmed using analytic methods 
such as the midpoint formulas.

Finding Standard Form Equations of Circles
Find the standard form equation of the circle.

(a) Center 1-4, 12, radius 8 (b) Center 10, 02, radius 5

SOLUTION 

(a) 1x - h22 + 1y - k22 = r2  Standard form equation

 1x - 1-4222 + 1y - 122 = 82 Substitute h = -4, k = 1, r = 8.

 1x + 422 + 1y - 122 = 64

(b) 1x - h22 + 1y - k22 = r2  Standard form equation

 1x - 022 + 1y - 022 = 52  Substitute h = 0, k = 0, r = 5.

 x2 + y2 = 25  Now try Exercise 41.

EXAMPLE 6 

Applications

Using an Inequality to Express Distance
We can state that “the distance between x and -3 is less than 9” using the inequality

0 x - 1-32 0 6 9 or 0 x + 3 0 6 9.

Now try Exercise 51.

EXAMPLE 7 

The converse of the Pythagorean Theorem is true. That is, if the sum of squares of the 
lengths of the two sides of a triangle equals the square of the length of the third side, 
then the triangle is a right triangle.

Verifying Right Triangles
Use the converse of the Pythagorean Theorem and the distance formula to prove that 
the points 1-3, 42, 11, 02, and 15, 42 determine a right triangle.

SOLUTION The three points are plotted in Figure P.15. We need to show that the 
lengths of the sides of the triangle satisfy the Pythagorean relationship a2 + b2 = c2. 
Applying the distance formula, we find that

a = 21-3 - 122 + 14 - 022 = 232

b = 211 - 522 + 10 - 422 = 232

c = 21-3 - 522 + 14 - 422 = 264

The triangle is a right triangle because

a2 + b2 = 123222 + 123222 = 32 + 32 = 64 = c2.

Now try Exercise 39.

EXAMPLE 8 

Using the Midpoint Formula
It is a fact from geometry that the diagonals of a parallelogram bisect each other. 
Prove this with a midpoint formula.

EXAMPLE 9 

Figure P.15 The triangle in Example 8.

y

x
(1, 0)

(5, 4)(–3, 4)

a b

c
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SOLUTION We can position a parallelogram in the rectangular coordinate plane as 
shown in Figure P.16. Applying the midpoint formula for the Cartesian plane to seg
ments OB and AC, we find that

midpoint of segment OB = a0 + a + c
2

, 
0 + b

2
b = aa + c

2
, 

b
2
b

midpoint of segment AC = aa + c
2

, 
b + 0

2
b = aa + c

2
, 

b
2
b

The midpoints of segments OA and AC are the same, so the diagonals of the parallel
ogram OABC meet at their midpoints and thus bisect each other.

Now try Exercise 37.
Figure P.16 The coordinates of B must be 
1a + c, b2 in order for CB to be parallel to 
OA. (Example 9)

O
x

y

A(a, b) B(a + c, b)

C(c, 0)O(0, 0)

D

In Exercises 1 and 2, plot the two numbers on a number line. Then find 
the distance between them.

 1. 27, 22 2. -  
5
3

, -  
9
5

In Exercises 3 and 4, plot the real numbers on a number line.

 3.  -3, 4, 2.5, 0, -1.5 4. -  
5
2

, -  
1
2

, 
2
3

, 0, -1

In Exercises 5 and 6, plot the points.

 5.  A13, 52, B1-2, 42, C13, 02, D10, -32
 6.  A1-3, -52, B12, -42, C10, 52, D1-4, 02
In Exercises 7–10, use a calculator to evaluate the expression. Round 
your answer to two decimal places.

 7.  
-17 + 28

2
  8.  2132 + 172 

 9.  262 + 82  10.  2117 - 322 + 1-4 - 822 

QUICK REVIEW P.2

In Exercises 11–18, find the distance between the points.

 11. -9.3, 10.6  12. -5, -17 

 13. 1-4, -32, 11, 12  14. 1-3, -12, 15, -12 
 15. 10, 02, 13, 42  16. 1-1, 22, 12, -32 
 17. 1-2, 02, 15, 02  18. 10, -82, 10, -12 
In Exercises 19–22, find the perimeter and area of the figure deter
mined by the points.

 19. 1-5, 32, 10, -12, 14, 42 
 20. 1-2, -22, 1-2, 22, 12, 22, 12, -22 
 21. 1-3, -12, 1-1, 32, 17, 32, 15, -12 
 22. 1-2, 12, 1-2, 62, 14, 62, 14, 12 
In Exercises 23–28, find the midpoint of the line segment with the 
given endpoints.

 23.  -9.3, 10.6 

 24.  -5, -17 

 25.  1-1, 32, 15, 92 
 26.  13, 222, 16, 22
 27.  1-7>3, 3>42, 15>3, -9>42 
 28.  15, -22, 1-1, -42 

SECTION P.2  Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, estimate the coordinates of the points.

 1. 

2

y

x
2

A

B

C D

 2. 

C 1

y

x
1

A

B

D

In Exercises 3 and 4, name the quadrants containing the points.

 3. (a) 12, 42 (b) 10, 32 (c) 1-2, 32 (d) 1-1, -42

 4. (a) a1
2

, 
3
2
b  (b) 1-2, 02 (c) 1-1, -22 (d) a-  

3
2

, -  
7
3
b

In Exercises 5–8, evaluate the expression.

 5.  3 + 0-3 0   6.  2 - 0-2 0  
 7.  0 1-223 0   8.  

-2

0-2 0  
In Exercises 9 and 10, rewrite the expression without using absolute 
value symbols.

 9.  0p - 4 0   10. 025 - 5>2 0  
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In Exercises 29–34, draw a scatter plot of the data given in the table.

 29. U.S. Motor Vehicle Production The total number of 
motor vehicles in millions 1y2 produced by the United States 
each year from 2009 through 2015 is given in the table. 
(Source: Automotive News Data Center and R. L. Polk Market-
ing  Systems as reported in The World Almanac and Book of  
Facts 2017.)

Table P.3 U.S. Imports from Mexico

Time 
(years)

U.S. Imports  
(billions of $)

2005 170.1
2010 230.0
2012 277.6
2013 280.6
2014 295.7
2015 296.4

Source: U.S. Census Bureau, The World Almanac  
and Book of Facts 2017.

x 2009 2010 2011 2012 2013 2014 2015

y 59.1 73.3 76.0 81.1 87.5 89.8 90.8

Table P.4 U.S. Agricultural Exports

Time 
(years)

U.S. Exports  
(billions of $)

2005  62.5
2010 108.5
2012 135.9
2013 141.1
2014 152.3
2015 139.7

Source: U.S. Department of Agriculture, The World 
Almanac and Book of Facts 2017.

 33. U.S. Exports to China The total in billions of dollars of 
U.S. exports to China for selected years is given in Table P.5.

Table P.5 U.S. Exports to China

Time 
(years)

U.S. Exports  
(billions of $)

2005  41.2
2010  91.9
2012 110.5
2013 121.7
2014 123.6
2015 116.1

Source: U.S. Department of Agriculture, The 
World Almanac and Book of Facts 2017.

x 2009 2010 2011 2012 2013 2014 2015

y 5.59 7.63 8.46 10.14 11.07 11.66 12.10

 30. World Motor Vehicle Production The total number  
of motor vehicles in millions 1y2 produced in the world each 
year from 2009 through 2015 is given in the table. (Source: 
Automotive News Data Center and R. L. Polk Marketing  
Systems as reported in The World Almanac and Book of  
Facts 2017.)

 31. U.S. Imports from Mexico The total in billions of dollars 
of U.S. imports from Mexico for selected years is given in 
Table P.3.

 32. U.S. Agricultural Exports The total in billions of dollars  
of U.S. agricultural exports for selected years is given in  
Table P.4.

 34. U.S. Exports to Canada The total in billions of dollars of 
U.S. exports to Canada for selected years is given in Table P.6.

Table P.6 U.S. Exports to Canada

Time 
(years)

U.S. Exports  
(billions of $)

2005 211.9
2010 249.3
2012 292.7
2013 300.8
2014 312.8
2015 280.6

Source: U.S. Census Bureau, The World Almanac 
and Book of Facts 2017.

 35. Reading from Graphs Using the graph below, estimate 
the price of gasoline (in dollars) for

(a) 2006 (b) 2010 (c) 2014

 36. Percent Increase Using the graph below, estimate the 
percent increase (or decrease) in the price of gasoline from

(a) 2005 to 2010 (b) 2010 to 2015

Time (years)

Pr
ic

e 
($

)

Price of Regular Unleadedy

x
2004 2006 2008 2010 2012 2014 2016

1

0

2

3

4

Source: U.S. Census Bureau, The World Almanac  
and Book of Facts 2017.
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 37. Prove that the figure determined by the points is an isosceles 
triangle: 11, 32, 14, 72, 18, 42

 38. Group Activity Prove that the diagonals of the figure deter
mined by the points bisect each other.

(a) Square 1-7, -12, 1-2, 42, 13, -12, 1-2, -62
(b) Parallelogram 1-2, -32, 10, 12, 16, 72, 14, 32

 39. (a) Find the lengths of the sides of the triangle in the figure.

y

x

(3, 6)

(3, –2)(–2, –2)

(b) Writing to Learn Prove that the triangle is a right tri
angle. 

 40. (a) Find the lengths of the sides of the triangle in the figure.

(3, 3)

(0, 0)

(–4, 4)

y

x

(b) Writing to Learn Prove that the triangle is a right 
 triangle. 

In Exercises 41–44, find the standard form equation for the circle.

 41.  Center 11, 22, radius 5 

 42.  Center 1-3, 22, radius 1 

 43.  Center 1-1, -42, radius 3 

 44.  Center 10, 02, radius 23 

In Exercises 45–48, find the center and radius of the circle.

 45.  1x - 322 + 1y - 122 = 36 

 46.  1x + 422 + 1y - 222 = 121 

 47.  x2 + y2 = 5 

 48.  1x - 222 + 1y + 622 = 25 

In Exercises 49–52, write the statement using absolute value  
notation.

 49.  The distance between x and 4 is 3. 

 50.  The distance between y and -2 is greater than or equal to 4.

 51.  The distance between x and c is less than d units. 

 52.  y is more than d units from c. 

 53.  Let 14, 42 be the midpoint of the line segment determined 
by the points 11, 22 and 1a, b2. Determine a and b. 

 54.  Writing to Learn Isosceles but Not Equilateral  
Prove that the triangle determined by the points 13, 02, 
1-1, 22, and 15, 42 is isosceles but not equilateral.

 55.  Writing to Learn Equidistant Point Prove that the 
midpoint of the hypotenuse of the right triangle with verti
ces 10, 02, 15, 02, and 10, 72 is equidistant from the three 
vertices.

 56.  Writing to Learn Describe the set of real numbers that 
satisfy 0 x - 2 0 6 3. 

 57.  Writing to Learn Describe the set of real numbers that 
satisfy 0 x + 3 0 Ú 5. 

Standardized Test Questions
 58.  True or False If a is a real number, 

then 0 a 0 Ú 0. Justify your answer.

 59.  True or False Let ∆ABC and 
∆AMM′ be right triangles as shown in 
the figure. If M is the midpoint of seg
ment AB, then M′ is the midpoint of 
segment AC. Justify your answer.

In Exercises 60–63, solve these problems 
 without using a calculator.

 60.  Multiple Choice Which of the 
 following is equal to 0 1 - 23 0 ? 

(A) 1 - 23 (B) 23 - 1

(C) 11 - 2322 (D) 22

(E) 21>3
 61.  Multiple Choice Which of the following is the 

 midpoint of the line segment with endpoints -3 and 2? 

(A) 5>2 (B) 1

(C) -1>2 (D) -1

(E) -5>2
 62.  Multiple Choice Which of the following is the center of 

the circle 1x - 322 + 1y + 422 = 2? 

(A) 13, -42 (B) 1-3, 42
(C) 14, -32 (D) 1-4, 32
(E) 13>2, -22

 63.  Multiple Choice Which of the following points is in the 
third quadrant? 

(A) 10, -32 (B) 1-1, 02
(C) 12, -12 (D) 1-1, 22
(E) 1-2, -32

M

B

A M' C
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Explorations
 64. Dividing a Line Segment into Thirds

(a) Find the coordinates of the points onethird and twothirds 
of the way from a = 2 to b = 8 on a number line. 

(b) Repeat 1a2 for a = -3 and b = 7. 

(c) Find the coordinates of the points onethird and twothirds 
of the way from a to b on a number line. 

(d) Find the coordinates of the points onethird and twothirds 
of the way from the point 11, 22 to the point 17, 112 in the 
Cartesian plane. 

(e) Find the coordinates of the points onethird and twothirds 
of the way from the point 1a, b2 to the point 1c, d2 in the 
Cartesian plane. 

Extending the Ideas
 65.  Writing to Learn Equidistant Point from Vertices of 

a Right Triangle Prove that the midpoint of the hypote
nuse of any right triangle is equidistant from the three vertices.

 66.  Comparing Areas Consider the four points A10, 02, 
B10, a2, C1a, a2, and D1a, 02. Let P be the midpoint of the line 
segment CD and Q the point onefourth of the way from A to D 
on segment AD.

(a) Find the area of triangle BPQ. 

(b) Compare the area of triangle BPQ with the area of square 
ABCD.   

In Exercises 67–69, let P1a, b2 be a point in the first quadrant.

 67.  Find the coordinates of the point Q in the fourth quadrant so 
that the xaxis is the perpendicular bisector of PQ. 

 68.  Find the coordinates of the point Q in the second quadrant so 
that the yaxis is the perpendicular bisector of PQ. 

 69.  Find the coordinates of the point Q in the third quadrant so that 
the origin is the midpoint of the segment PQ. 

 70.  Writing to Learn Prove that the distance formula for the 
number line is a special case of the distance formula for the 
Cartesian plane. 
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Linear Equations in One Variable
The most basic equation in algebra is a linear equation.

What you’ll learn about
• Equations

• Solving Equations

• Linear Equations in One Variable

• Linear Inequalities in One Variable

... and why
These topics provide the foundation 
for algebraic techniques needed 
throughout this text.

Equations
An equation is a statement of equality between two expressions. Here are some 
 properties of equality that we use to solve equations algebraically.

P.3 Linear Equations and Inequalities

Properties of Equality

Let u, v, w, and z be real numbers, variables, or algebraic expressions.

1. Reflexive u = u

2. Symmetric If u = v, then v = u.

3. Transitive If u = v and v = w, then u = w.

4. Additive If u = v and w = z, then u + w = v + z.

5. Multiplicative If u = v and w = z, then uw = vz.

Solving Equations
A solution of an equation in x is a value of x for which the equation is true. To solve 
an equation in x means to find all values of x for which the equation is true, that is, to 
find all solutions of the equation.

Confirming a Solution
Prove that x = -2 is a solution of the equation x3 - x + 6 = 0.

SOLUTION Let x = -2. Then

 x3 - x + 6 = 1-223 - 1-22 + 6

 = -8 + 2 + 6

 = 0.

Thus, by the transitive property of equality, -2 is a value of x for which the equation 
x3 - x + 6 = 0 is true. Hence, x = -2 is a solution of the equation 
x3 - x + 6 = 0. Now try Exercise 1.

EXAMPLE 1 

DEFINITION Linear Equation in x

A linear equation in x is one that can be written in the form

ax + b = 0,

where a and b are real numbers and a ≠ 0.

The equation 2z - 4 = 0 is linear in the variable z. Because of the exponent 2,  
the equation 3u2 - 12 = 0 is not linear in the variable u. A linear equation in one vari
able has exactly one solution. We solve such an equation by transforming it into an 
equivalent equation whose solution is obvious. Two or more equations are equivalent 
if they have the same solutions. For example, the equations 2z - 4 = 0, 2z = 4, and 
z = 2 are all equivalent equations.
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The next two examples illustrate how to use equivalent equations to solve linear 
equations.

Operations for Equivalent Equations

An equivalent equation is obtained if one or more of the following operations 
are performed.

 
Operation

Given  
Equation

Equivalent  
Equation

1.  Combine like terms, reduce  
fractions, and remove grouping 
symbols.

2x + x =
3
9

3x =
1
3

2.  Perform the same operation on  
both sides.

   

(a) Add 1-32. x + 3 = 7 x = 4

(b) Subtract 12x2. 5x = 2x + 4 3x = 4

(c)  Multiply by a nonzero  
constant 11>32. 3x = 12 x = 4

(d)  Divide by a nonzero constant (3). 3x = 12 x = 4

If an equation involves fractions, find the least common denominator (LCD) of the 
fractions and multiply both sides by the LCD. This is sometimes referred to as clearing 
the equation of fractions. Example 3 illustrates this method.

Solving a Linear Equation
Solve 212x - 32 + 31x + 12 = 5x + 2. Support the result with a calculator.

SOLUTION

 212x - 32 + 31x + 12 = 5x + 2

 4x - 6 + 3x +  3 = 5x + 2 Distributive properties

 7x - 3 = 5x + 2 Combine like terms.

 2x = 5  Add 3, and subtract 5x.

 x = 2.5  Divide by 2.

To support our algebraic work we can evaluate the expressions in the original equa
tion for x = 2.5. Figure P.17 shows that each side of the original equation is equal to 
14.5 if x = 2.5. Now try Exercise 23.

EXAMPLE 2 

Figure P.17 The top line stores the number 2.5 into the variable x. (Example 2)

2.5 X

2(2X–3)+3(X+1)

5X+2

2.5

14.5

14.5
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Integers and Fractions

Notice in Example 3 that 2 =
2
1

.

Solving a Linear Equation Involving Fractions
Solve

5y - 2

8
= 2 +

y

4
.

SOLUTION The denominators are 8, 1, and 4. The LCD of the fractions is 8. (See 
Appendix A.3 if necessary.)

 
5y - 2

8
= 2 +

y

4

 8a5y - 2

8
b = 8a2 +

y

4
b  Multiply by the LCD 8.

 8 #  
5y - 2

8
= 8 # 2 + 8 #  

y

4
 Distributive property

 5y - 2 = 16 + 2y  Simplify.

 5y = 18 + 2y  Add 2.

 3y = 18  Subtract 2y.

 y = 6  Divide by 3.

We leave it to you to check the solution using either paper and pencil or a calculator.
Now try Exercise 25.

EXAMPLE 3 

Linear Inequalities in One Variable
We used inequalities to describe order on the number line in Section P.1. For example, 
if x is to the left of 2 on the number line, or if x is any real number less than 2, we write 
x 6 2. The most basic inequality in algebra is a linear inequality.

Direction of an Inequality
Multiplying (or dividing) an inequality by  
a  positive number preserves the direction of  
the inequality. Multiplying (or dividing) an 
 inequality by a negative number reverses the 
direction.

Properties of Inequalities

Let u, v, w, and z be real numbers, variables, or algebraic expressions, and c a 
real number.

1. Transitive If u 6 v and v 6 w, then u 6 w.

2. Additive If u 6 v, then u + w 6 v + w.
 If u 6 v and w 6 z, then u + w 6 v + z.

3. Multiplicative If u 6 v and c 7 0, then uc 6 vc.
 If u 6 v and c 6 0, then uc 7 vc.

There are similar properties for … , 7 , and Ú .

To solve an inequality in x means to find all values of x for which the inequality is 
true. A solution of an inequality in x is a value of x for which the inequality is true. 
The set of all solutions of an inequality is the solution set of the inequality. We solve 
an inequality by finding its solution set. Here is a list of properties we use to solve 
inequalities.

DEFINITION Linear Inequality in x

A linear inequality in x is one that can be written in the form

ax + b 6 0, ax + b … 0, ax + b 7 0, or ax + b Ú 0,

where a and b are real numbers and a ≠ 0.
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The set of solutions of a linear inequality in one variable is an interval of real numbers. 
Just as with linear equations, we solve a linear inequality by transforming it into an 
equivalent inequality whose solutions are obvious. Two or more inequalities are 
 equivalent if they have the same solution set. The properties of inequalities listed on the 
previous page describe operations that transform an inequality into an equivalent one.

Solving a Linear Inequality
Solve 31x - 12 + 2 … 5x + 6.

SOLUTION 

 31x - 12 + 2 … 5x + 6

 3x - 3 + 2 … 5x + 6  Distributive property

 3x - 1 … 5x + 6  Combine like terms.

 3x … 5x + 7  Add 1.

 -2x … 7  Subtract 5x.

 a-  
1
2
b #  -2x Ú a-  

1
2
b # 7 Multiply by -1>2. (The inequality reverses.)

 x Ú -3.5

The solution set of the inequality is the set of all real numbers greater than or equal 
to -3.5. In interval notation, the solution set is 3-3.5, ∞2.

Now try Exercise 41.

EXAMPLE 4 

Because the solution set of a linear inequality is an interval of real numbers, we can 
display the solution set with a number line graph as illustrated in Example 5.

Solving a Linear Inequality Involving Fractions
Solve the inequality, and graph its solution set.

x
3

+
1
2

7
x
4

+
1
3

SOLUTION The LCD of the fractions is 12.

 
x
3

+
1
2

7
x
4

+
1
3

 12 # ax
3

+
1
2
b 7 12 # ax

4
+

1
3
b  Multiply by the LCD 12.

 4x + 6 7 3x + 4  Simplify.

 x + 6 7 4  Subtract 3x.

 x 7 -2  Subtract 6.

The solution set is the interval 1-2, ∞2. Its graph is shown in Figure P.18.

Now try Exercise 37.

EXAMPLE 5 

Figure P.18 The graph of the solution set of the inequality in Example 5.

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

M01_DEMA8962_10_GE_C0P.indd   48 30/05/22   20:41



 SECTION P.3 Linear Equations and Inequalities 49

Sometimes two inequalities are combined in a double inequality, which is solved by 
isolating x as the middle expression. Example 6 illustrates this.

Solving a Double Inequality
Solve the inequality, and graph its solution set.

-3 6
2x + 5

3
… 5

SOLUTION 

 -3 6
2x + 5

3
… 5

 -9 6 2x + 5 … 15 Multiply by 3.

 -14 6 2x … 10  Subtract 5.

 -7 6 x … 5  Divide by 2.

The solution set is the set of all real numbers greater than -7 and less than or equal to 5.  
In interval notation, the solution set is 1-7, 54 . Its graph is shown in Figure P.19.

Now try Exercise 47.

EXAMPLE 6 

Figure P.19 The graph of the solution  
set of the double inequality in Example 6.

–10 –8 –6 –4 –2 0 2 4 6 8
x

In Exercises 1 and 2, simplify the expression by combining like terms.

 1.  2x + 5x + 7 + y - 3x + 4y + 2 

 2.  4 + 2x - 3z + 5y - x + 2y - z - 2 

In Exercises 3 and 4, use the distributive property to expand the 
 products. Simplify the resulting expression by combining like terms.

 3.  312x - y2 + 41y - x2 + x + y 

 4.  512x + y - 12 + 41y - 3x + 22 + 1 

In Exercises 5–10, use the LCD to combine the fractions. Simplify the 
resulting fraction.

 5.  
2
y

+
3
y
  6.  

1
y - 1

+
3

y - 2
 

 7.  2 +
1
x
  8.  

1
x

+
1
y

- x 

 9.  
x + 4

2
+

3x - 1
5

  10.  
x
3

+
x
4

 

QUICK REVIEW P.3

In Exercises 5–10, determine whether the equation is linear in x.

 5.  5 - 3x = 0  6.  5 = 10>2 

 7.  x + 3 = x - 5  8.  x - 3 = x2 

 9.  22x + 5 = 10  10.  x +
1
x

= 1 

In Exercises 11–24, solve the equation without using a calculator.

 11.  3x = 24  12.  4x = -16 

 13.  3t - 4 = 8  14.  2t - 9 = 3 

 15.  2x - 3 = 4x - 5  16.  4 - 2x = 3x - 6 

 17.  4 - 3y = 21y + 42  18.  41y - 22 = 5y 

 19.  
1
2

 x =
7
8

  20.  
2
3

 x =
4
5

 

SECTION P.3  Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, which values of x are solutions of the equation?

 1.  2x2 + 5x = 3 

(a) x = -3 (b) x = -  
1
2

 (c) x =
1
2

 2.  
x
2

+
1
6

=
x
3

 

(a) x = -1 (b) x = 0 (c) x = 1

 3.  21 - x2 + 2 = 3 

(a) x = -2 (b) x = 0 (c) x = 2

 4.  1x - 221>3 = 2 

(a) x = -6 (b) x = 8 (c) x = 10
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 21.  
1
2

 x +
1
3

= 1  22.  
1
3

 x +
1
4

= 1 

 23.  213 - 4z2 - 512z + 32 = z - 17 

 24.  315z - 32 - 412z + 12 = 5z - 2 

In Exercises 25–28, solve the equation. Support your answer with a 
 calculator.

 25.  
2x - 3

4
+ 5 = 3x 26.  2x - 4 =

4x - 5
3

 27.  
t + 5

8
-

t - 2
2

=
1
3

 28.  
t - 1

3
+

t + 5
4

=
1
2

 29.  Writing to Learn Write a statement about a solution of an 
equation suggested by the computations in the figure.

(a) –2 X

2X2+X–6
–2

0

(a)

  (b) 3/2 X

2X2+X–6
1.5

0

(b) 30.  Writing to Learn Write a statement about a solution of an 
equation suggested by the computations in the figure.

(a) 2 X

7X+5
2

19
4X–7

1

(a)

  (b) –4 X

7X+5
–4

–23
4X–7

–23

(b)
In Exercises 31–34, which values of x are solutions of the inequality?

 31.  2x - 3 6 7 

(a) x = 0 (b) x = 5 (c) x = 6

 32.  3x - 4 Ú 5 

(a) x = 0 (b) x = 3 (c) x = 4

 33.  -1 6 4x - 1 … 11 

(a) x = 0 (b) x = 2 (c) x = 3

 34.  -3 … 1 - 2x … 3 

(a) x = -1 (b) x = 0 (c) x = 2

In Exercises 35–42, solve the inequality, and draw a number line graph 
of the solution set.

 35.  x - 4 6 2 36.  x + 3 7 5

 37.  2x - 1 … 4x + 3 38.  3x - 1 Ú 6x + 8

 39.  2 … x + 6 6 9 40.  -1 … 3x - 2 6 7

 41.  215 - 3x2 + 312x - 12 … 2x + 1

 42.  411 - x2 + 511 + x2 7 3x - 1

In Exercises 43–54, solve the inequality.

 43.  
5x + 7

4
… -3  44.  

3x - 2
5

7 -1 

 45.  4 Ú
2y - 5

3
Ú -2 46.  1 7

3y - 1

4
7 -1

 47.  0 … 2z + 5 6 8 48.  -6 6 5t - 1 6 0

 49.  
x - 5

4
+

3 - 2x
3

6 -2 50.  
3 - x

2
+

5x - 2
3

6 -1

 51.  
2y - 3

2
+

3y - 1

5
6 y - 1 

 52.  
3 - 4y

6
-

2y - 3

8
Ú 2 - y

 53.  
1
2

 1x - 42 - 2x … 513 - x2 

 54.  
1
2

 1x + 32 + 21x - 42 6
1
3

 1x - 32 

In Exercises 55–58, find the solutions of the equation or inequality that 
are displayed in Figure P.20.

 55.  x2 - 2x 6 0  56.  x2 - 2x = 0 

 57.  x2 - 2x 7 0  58.  x2 - 2x … 0 

X

Y1 = X2–2X

0
1
2
3
4
5
6

0
–1
0
3
8
15
24

Y1

Figure P.20 The second column gives values  
of y1 = x2 - 2x for x = 0, 1, 2, 3, 4, 5, and 6.

 59.  Writing to Learn Explain how the second equation was 
obtained from the first.

x - 3 = 2x + 3, 2x - 6 = 4x + 6

 60.  Writing to Learn Explain how the second equation was 
obtained from the first.

2x - 1 = 2x - 4, x -
1
2

= x - 2

 61.  Group Activity Determine whether the two equations are 
equivalent.

(a) 3x = 6x + 9, x = 2x + 9 

(b) 6x + 2 = 4x + 10, 3x + 1 = 2x + 5 

 62.  Group Activity Determine whether the two equations are 
equivalent.

(a) 3x + 2 = 5x - 7, -2x + 2 = -7 

(b) 2x + 5 = x - 7, 2x = x - 7 
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Standardized Test Questions
 63.  True or False -6 7 -2. Justify your answer.

 64.  True or False 2 …
6
3

. Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve these 
problems.

 65.  Multiple Choice Which of the following equations is 
equivalent to the equation 3x + 5 = 2x + 1? 

(A) 3x = 2x (B) 3x = 2x + 4

(C) 
3
2

 x +
5
2

= x + 1 (D) 3x + 6 = 2x

(E) 3x = 2x - 4

 66.  Multiple Choice Which of the following inequalities is 
equivalent to the inequality -3x 6 6? 

(A) 3x 6 -6 (B) x 6 10

(C) x 7 -2 (D) x 7 2

(E) x 7 3

 67.  Multiple Choice Which of the following is the solution to 
the equation x1x + 12 = 0? 

(A) x = 0 or x = -1 (B) x = 0 or x = 1

(C) Only x = -1 (D) Only x = 0

(E) Only x = 1

 68.  Multiple Choice Which of the following represents an 
equation equivalent to the equation

2x
3

+
1
2

=
x
4

-
1
3

  that is cleared of fractions? 

(A) 2x + 1 = x - 1 (B) 8x + 6 = 3x - 4

(C) 4x + 3 =
3
2

 x - 2 (D) 4x + 3 = 3x - 4

(E) 4x + 6 = 3x - 4

Explorations
 69.  Testing Inequalities on a Calculator

(a) The calculator we use indicates that the statement 2 6 3 is 
true by returning the value 1 (for true) when 2 6 3 is 
entered. Try it with your calculator.

(b) The calculator we use indicates that the statement 2 6 1 is 
false by returning the value 0 (for false) when 2 6 1 is 
entered. Try it with your calculator.

(c) Use your calculator to test which of these two numbers is 
larger: 799>800, 800>801. 

(d) Use your calculator to test which of these two numbers is 
larger: -102>101, -103>102. 

(e) If your calculator returns 0 when you enter 2x + 1 6 4, 
what can you conclude about the value stored in x?

Extending the Ideas
 70.  Perimeter of a Rectangle The formula for the perimeter 

P of a rectangle is

P = 21L + W2.
  Solve this equation for W. 

 71.  Area of a Trapezoid The formula for the area A of a trap
ezoid is

A =
1
2

 h1b1 + b22.

  Solve this equation for b1. 

 72.  Volume of a Sphere

  The formula for the volume V  
of a sphere is

V =
4
3

 pr3. 

  Solve this equation for r.

 73.  Celsius and Fahrenheit The formula for Celsius temper
ature in terms of Fahrenheit temperature is

C =
5
9

 1F - 322.

  Solve the equation for F. 

M01_DEMA8962_10_GE_C0P.indd   51 30/05/22   20:41



52 CHAPTER P Prerequisites

What you’ll learn about
• Slope of a Line

• Point-Slope Form Equation of a Line

• Slope-Intercept Form Equation of a 
Line

• Graphing Linear Equations in Two 
Variables

• Parallel and Perpendicular Lines

• Applying Linear Equations in Two 
Variables

... and why
Linear equations are used exten-
sively in applications involving busi-
ness and behavioral science.

Slope of a Line
The slope of a nonvertical line is the vertical change divided by the horizontal change 
between any two points on the line. For the points 1x1, y12 and 1x2, y22, the vertical 
change is ∆y = y2 - y1, and the horizontal change is ∆x = x2 - x1. (∆y is read 
“delta” y.) See Figure P.21.

P.4 Lines in the Plane

0
x

y

y1

y2

x1 x2

(x2, y2)

(x1, y1)

Dy = y2 – y1

Dx = x2 – x1

Figure P.21 The slope of a nonvertical line can be found from the coordinates of any two  
points on the line.

DEFINITION Slope of a Line

The slope of a nonvertical line through the points 1x1, y12 and 1x2, y22 is

m =
∆y

∆x
=

y2 - y1

x2 - x1
.

If the line is vertical, then x1 = x2 and the slope is undefined.

Slope Formula
The slope does not depend on the order of the 
points. We could use 1x1, y12 = 14, -22 and 
1x2, y22 = 1-1, 22 in Example 1a. Check it out.

Finding the Slope of a Line
Find the slope of the line through the two points. Sketch a graph of the line.

(a) 1-1, 22 and 14, -22
(b) 11, 12 and 13, 42
SOLUTION 

(a) The two points are 1x1, y12 = 1-1, 22 and 1x2, y22 = 14, -22. Thus,

m =
y2 - y1

x2 - x1
=
1-22 - 2

4 - 1-12 = -  
4
5

= -0.8.

(b) The two points are 1x1, y12 = 11, 12 and 1x2, y22 = 13, 42. Thus,

m =
y2 - y1

x2 - x1
=

4 - 1
3 - 1

=
3
2

= 1.5.

The graphs of these two lines are shown in Figure P.22.
Now try Exercise 3.

EXAMPLE 1 
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Figure P.23 shows a vertical line through the points 13, 22 and 13, 72. If we try to cal
culate its slope using the slope formula 1y2 - y12>1x2 - x12, we get zero in the 
denominator. So, it makes sense to say that a vertical line does not have a slope, or that 
its slope is undefined.

Point-Slope Form Equation of a Line
If we know the coordinates of one point on a line and the slope of the line, then we can 
find an equation for that line. For example, the line in Figure P.24 passes through the 
point 1x1, y12 and has slope m. If 1x, y2 is any other point on this line, the definition of 
the slope yields the equation

m =
y - y1

x - x1
 or y - y1 = m1x - x12.

An equation written this way is in the pointslope form.

y

x

(4, –2)

(–1, 2)

    

y

x

(3, 4)

(1, 1)

Figure P.22 The graphs of the two lines in Example 1.

x

y

(3, 7)

(3, 2)

Figure P.23 Applying the slope formula  
to this vertical line gives m = 5>0, which is 
not defined. Thus, the slope of a vertical line 
is undefined.

y

x

(x, y)

(x1, y1)

Slope = m

Figure P.24 The line through 1x1, y12  
with slope m.

DEFINITION Point-Slope Form of an Equation of a Line

The point-slope form of an equation of a line that passes through the point 
1x1, y12 and has slope m is

y - y1 = m1x - x12.

Slope-Intercept Form Equation of a Line
The y-intercept of a nonvertical line is the point where the line intersects the yaxis. If 
we know the yintercept and the slope of the line, we can apply the pointslope form to 
find an equation of the line.

y-Intercept
The b in y = mx + b is often referred to as “the 
yintercept” instead of “the ycoordinate of the 
yintercept.”

Using the Point-Slope Form
Use the pointslope form to find an equation of the line that passes through the point 
1-3, -42 and has slope 2.

SOLUTION We substitute x1 = -3, y1 = -4, and m = 2 into the pointslope form, 
and simplify the resulting equation.

 y - y1 = m1x - x12  Point-slope form

 y - 1-42 = 21x - 1-322 x1 = -3, y1 = -4, m = 2

 y + 4 = 21x + 32  Simplify.

For graphing purposes, this equation can be written as y = 21x + 32 - 4 or as 
y = 2x + 2. Now try Exercise 11.

EXAMPLE 2 
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We should not use the phrase “the equation of a line” because each line has many equa
tions. Every line has an equation that can be written in the form Ax + By +  C = 0 
where A and B are not both zero. This form is the general form for an equation of a 
line.

If B ≠ 0, the general form can be changed to the slopeintercept form as follows:

 Ax + By + C = 0

 By = -Ax - C

 y = -  
A
B

 x + a-  
C
B
b

 slope y-intercept

e e

y

x

(x, y)

(0, b)

Slope = m

Figure P.25 The line with slope m and  
yintercept b.

Figure P.25 shows a line with slope m and yintercept 10, b2, or b for short. A point
slope form equation for this line is y - b = m1x - 02. By rewriting this equation, we 
obtain the form known as the slopeintercept form.

DEFINITION Slope-Intercept Form of an Equation of a Line

The slope-intercept form of an equation of a line with slope m and yintercept 
10, b2 is

y = mx + b.

Alternative Solution
You could solve Example 3 using the pointslope 
form:

 y - 6 = 31x - 1-122
 y = 31x + 12 + 6

 y = 3x + 3 + 6

 y = 3x + 9

Using the Slope-Intercept Form
Using the slopeintercept form, write an equation of the line with slope 3 that passes 
through the point 1-1, 62.
SOLUTION 

 y = mx + b  Slope-intercept form

 y = 3x + b  m = 3

 6 = 31-12 + b y = 6 when x = -1

 b = 9

The slopeintercept form of the equation is y = 3x + 9. Now try Exercise 21.

EXAMPLE 3 

Forms of Equations of Lines

General form:  Ax + By + C = 0, A and B not both zero
Slope-intercept form:  y = mx + b
Point-slope form:  y - y1 = m1x - x12
Vertical line:  x = a
Horizontal line:  y = b

Graphing Linear Equations in Two Variables
A linear equation in x and y is one that can be written in the form

Ax + By = C,

where A and B are not both zero. Rewriting the equation as Ax + By - C = 0, we see 
that it is closely related to the general form. If B = 0, the line is vertical, and if A = 0, 
the line is horizontal.
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The graph of an equation in x and y consists of all pairs 1x, y2 that are solutions of the 
equation. For example, 11, 22 is a solution of the equation 2x + 3y = 8 because sub
stituting x = 1 and y = 2 into the equation leads to the true statement 8 = 8. The pairs 
1-2, 42 and 12, 4>32 are also solutions.

Because the graph of a linear equation in x and y is a straight line, to draw the graph we 
can find two solutions and then connect them with a straight line. If a line is neither 
horizontal nor vertical, then two easy points to find are its xintercept and yintercept. 
The x-intercept is the point 1a, 02 where the graph intersects the xaxis. Set y = 0 and 
solve for x to find the xintercept. To find the yintercept, set x = 0 and solve for y.

WINDOW

Xmax=10

Ymin=–10

Yscl=1
Xres=1

Xmin=–10

Xscl=1

Ymax=10

Figure P.26 The window dimensions  
for the standard window. The notation 
“3-10, 104  by 3-10, 104” is used to 
represent window dimensions like these.

Graphing with a Graphing Utility

To draw a graph of an equation using a grapher:

1. Rewrite the equation in the form y = (an expression in x).

2. Enter the expression into the grapher.

3.  Select an appropriate viewing window. (See Figures P.26 and P.27,  
Example 4, and the margin note.)

4. Press the “graph” key.

A graphing utility, or grapher, computes yvalues for a select set of xvalues between 
Xmin and Xmax and plots the corresponding 1x, y2 points.

[24, 6] by [23, 5]

Figure P.27 The graph of 2x + 3y = 6. 
Notice that the points 10, 22 (yintercept) and 
13, 02 (xintercept) lie on the graph and are 
solutions of the equation. (Example 4)

Using a Graphing Utility
Draw the graph of 2x + 3y = 6.

SOLUTION First we solve for y.

 2x + 3y = 6

 3y = -2x + 6  Solve for y.

 y = -  
2
3

 x + 2 Divide by 3.

Figure P.27 shows the graph of y = -12>32x + 2, or equivalently, the graph of the 
linear equation 2x + 3y = 6 in the 3-4, 64  by 3-3, 54  viewing window.

Now try Exercise 27.

EXAMPLE 4 

Parallel and Perpendicular Lines

Investigating Graphs of Linear Equations

 1. What do the graphs of y = mx + b and y = mx + c, b ≠ c, have in com
mon? How are they different?

 2. Graph y = 2x and y = -11>22x in a square viewing window. (See margin 
note.) On the grapher we use, the “decimal window” is square. Estimate the 
angle between the two lines.

 3. Repeat part 2 for y = mx and y = -11>m2x with m = 1, 3, 4, and 5.

EXPLORATION 1

Parallel lines and perpendicular lines were involved in Exploration 1. Using a grapher 
to decide whether lines are parallel or perpendicular is risky. Here is an algebraic test to 
determine whether two lines are parallel or perpendicular.

Viewing Window
The viewing window 3-4, 64  by 3-3, 54  in 
Example 4 and Figure P.27 means -4 … x … 6 
and -3 … y … 5.

Square Viewing Window
A square viewing window on a grapher is one 
in which angles appear to be true. For example, 
the line y = x will appear to make a 45° angle 
with the positive xaxis. Furthermore, a distance 
of 1 on the x and yaxes will appear to be the 
same.
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Parallel and Perpendicular Lines

1.  Two nonvertical lines are parallel if and only if their slopes are equal. Any 
two distinct vertical lines are parallel.

2.  Two nonvertical lines are perpendicular if and only if their slopes m1 and m2 
are opposite reciprocals, that is, if and only if

m1 = -  
1

m2
.

A vertical line is perpendicular to a horizontal line, and vice versa.

Finding an Equation of a Parallel Line
Find an equation of the line through P11, -22 that is parallel to the line l with equa
tion 3x - 2y = 1.

SOLUTION We find the slope of l by writing its equation in slopeintercept form.

 3x - 2y = 1  Equation for l

 -2y = -3x + 1 Subtract 3x.

 y =
3
2

 x -
1
2

 Divide by -2.

The slope of l is 3>2.

The line whose equation we seek has slope 3>2 and contains the point 
1x1, y12 = 11, -22. Thus, the pointslope form equation for the line we seek is

y + 2 =
3
2

 1x - 12,

which also can be written as

y =
3
2

 x -
7
2

 or 3x - 2y = 7.
Now try Exercise 41(a).

EXAMPLE 5 

[24.7, 4.7] by [25.1, 1.1]

Figure P.28 The graphs of y = -4x + 3 
and y = 11>42x - 7>2 in this square viewing 
window appear to intersect at a right angle. 
(Example 6)

Finding an Equation of a Perpendicular Line
Find an equation of the line through P12, -32 that is perpendicular to the line l with 
equation 4x + y = 3. Support the result with a grapher.

SOLUTION We find the slope of l by writing its equation in slopeintercept form.

 4x + y = 3  Equation for l

 y = -4x + 3 Subtract 4x.

The slope of l is -4.

The line whose equation we seek has slope -1>1-42 = 1>4 and passes through the 
point 1x1, y12 = 12, -32. We use the pointslope form, then simplify the equation:

 y - 1-32 =
1
4

 1x - 22

 y + 3 =
1
4

 x -
1
2

 Distributive property

 y =
1
4

 x -
7
2

Figure P.28 shows the graphs of the two equations in a square viewing window and 
suggests that the graphs are indeed perpendicular. Now try Exercise 43(b).

EXAMPLE 6 
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Applying Linear Equations in Two Variables
Linear equations and their graphs occur frequently in applications. Algebraic solu
tions to these application problems often require finding an equation of a line and 
solving a linear equation in one variable. Grapher techniques complement alge
braic ones.

X=12.75 Y=24500

1

[0, 23.5] by [0, 60000]

(a)

X

Y1 = –2000X+50000

12
12.25
12.5
12.75
13
13.25
13.5

26000
25500
25000
24500
24000
23500
23000

Y1

(b)

Figure P.29 A (a) graph and (b) table  
of values for y = -2000x + 50,000. 
(Example 7)

Finding the Depreciation of Real Estate
Camelot Apartments purchased a $50,000 building. For tax purposes, its value depre
ciates $2000 per year over a 25year period.

(a) Write a linear equation giving the value y of the building in terms of the years x 
after the purchase.

(b) In how many years will the value of the building be $24,500?

SOLUTION 

(a) We need to determine the value of m and b so that y = mx + b, where 
0 … x … 25. We know that y = 50,000 when x = 0, so the line has yintercept 
10, 50,0002 and b = 50,000. One year after purchase 1x = 12, the value of  
the building is 50,000 - 2000 = 48,000. So when x = 1, y = 48,000.  
Therefore,

 y = mx + b

 48,000 = m # 1 + 50,000 y = 48,000 when x = 1.

 -2000 = m  Subtract 50,000.

 The value y of the building x years after its purchase is

y = -2000x + 50,000.

(b) We need to find the value of x when y = 24,500. So, we substitute 24,500 for  
y in the equation y = -2000x + 50,000.

 24,500 = -2000x + 50,000 Set y = 24,500.

 -25,500 = -2000x  Subtract 50,000.

 12.75 = x  Divide by -2000.

The value of the building will be $24,500 precisely 12.75 years, or 12 years 
9 months, after the building was purchased by Camelot Apartments.

We can support our algebraic work both graphically and numerically. The trace 
coordinates in Figure P.29a show graphically that 112.75, 24,5002 is a solu
tion of y = -2000x + 50,000. This means that y = 24,500 when x = 12.75.  
Figure P.29b is a table of values for y = -2000x + 50,000 for a few values of x. 
The fourth line of the table shows numerically that y = 24,500 when x = 12.75.

Now try Exercise 45.

EXAMPLE 7 

Figure P.30 on page 58 shows Americans’ income from 2010 through 2015 in trillions 
of dollars and a corresponding scatter plot of these data. In Example 8, we model the 
data in Figure P.30 with a linear equation.
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Figure P.30 Americans’ personal income. (Example 8)
Source: U.S. Census Bureau, The World Almanac and Book of Facts 2017.

Time 
(Years)

Income  
(trillions of $)

2010 12.5
2011 13.3
2012 13.9
2013 14.1
2014 14.7
2015 15.4 [2009, 2016] by [11, 17]

[2002, 2015] by [8, 16]

Figure P.31 Linear model for Americans’ 
personal income. (Example 8)

Finding a Linear Model for Americans’ 
Personal Income over Time

Americans’ total personal income in trillions of dollars is given in Figure P.30.

(a) Write a linear equation for Americans’ income y in terms of the year x using the 
points 12010, 12.52 and 12015, 15.42.

(b) Use the equation in (a) to estimate Americans’ income in 2012.

(c) Use the equation in (a) to predict Americans’ income in 2020.

(d) Superimpose a graph of the linear equation in (a) on a scatter plot of the data like 
the one shown in Figure P.30.

SOLUTION 

(a) Let y = mx + b. The slope of the line through 12010, 12.52 and 12015, 15.42 is
m =

15.4 - 12.5
2010 - 2005

=
2.9
5

= 0.58.

Using this slope and the point (2010, 12.5) yields

y = 0.581x - 20102 + 12.5.

(b) To estimate Americans’ total personal income for the year 2012, we let 
x = 2012 in the equation found in part (a):

 y = 0.5812012 - 20102 + 12.5

 = 0.58 # 2 + 12.5

 = 1.16 + 12.5

 = 13.66

This value of roughly $13.7 trillion underestimates the actual total income of 
$13.9 trillion.

(c) To predict Americans’ total personal income for 2020, we let x = 2020:

 y = 0.5812020 - 20102 + 12.5

 = 0.58 # 10 + 12.5

 = 5.8 + 12.5

 = 18.3

Our linear model projects that the total personal income of all Americans in 
2020 should be about $18.3 trillion.

(d) Figure P.31 shows the scatter plot as well as the graph of the line we used to 
make our estimates and predictions. Now try Exercise 51.

EXAMPLE 8 
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The Speed of Light
Whether light traveled instantaneously or actu
ally took some time was an open question for 
thousands of years. Galileo Galilei (1564–1642) 
was one of the first to approximate the speed of 
light. Jean Bernard Léon Foucault (1819–1868) 
established a modern estimate for light’s speed. 
The speed of light played an important role in 
Einstein’s development of special relativity and 
continues to be important in physics and astron
omy. In 2013, whether the speed of light in a 
vacuum is truly a universal constant was called 
into question.

CHAPTER OPENER Problem (from page 25)

Problem: Assume that the speed of light is about 299,800 km>sec  
1186,300 mi>sec2.
(a)  If light travels from the Sun to Earth in 8.32 min, approximate the distance 

between Earth and the Sun.

(b)  If the distance from the Moon to Earth is roughly 384,400 km, approximate 
the time required for light to travel from the Moon to Earth.

(c)  If light travels on average from the Sun to Pluto in about 5 hr 28 min, approxi
mate the average distance between the Sun and Pluto.

Solution: We use the linear equation d = r # t (distance = rate * time) and the 
given rate r = 299,800 km>sec.

(a) Because t = 8.32 min = 499.2 sec,

d = r # t = 299,800 km>sec * 499.2 sec ≈ 150,000,000 km.

The distance from the Sun to Earth is about 150 million kilometers  
(93 million miles).

(b) Because d = 384,400 km,

t =
d
r

=
384,400 km

299,800 km>sec
≈ 1.282 sec.

The time it takes light to travel from the Moon to Earth is about 1.282 sec.

(c) Because t = 5 hr 28 min = 328 min = 19,680 sec,

d = r # t = 299,800 km>sec * 19,680 sec = 5,900,064,000 km.

The average distance from the Sun to Pluto is about 5.9 * 109 km.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, solve for x.

 1.  -75x + 25 = 200 

 2.  400 - 50x = 150 

 3.  311 - 2x2 + 412x - 52 = 7 

 4.  217x + 12 = 511 - 3x2 

QUICK REVIEW P.4

In Exercises 5–8, solve for y.

 5.  2x - 5y = 21  6.  
1
3

 x +
1
4

  y = 2 

 7.  2x + y = 17 + 21x - 2y2 8.  x2 + y = 3x - 2y

In Exercises 9 and 10, simplify the fraction.

 9.  
9 - 5

-2 - 1-82  10.  
-4 - 6

-14 - 1-22 
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 25.  The line 2x + 5y = 12 

 26.  The line 7x - 12y = 96 

In Exercises 27–30, graph the linear equation on a grapher. Choose a 
viewing window that shows the line intersecting both the x and yaxes.

 27.  8x + y = 49 28.  2x + y = 35

 29.  123x + 7y = 429 30.  2100x + 12y = 3540

In Exercises 31 and 32, the line contains the origin and the point in the 
upper right corner of the grapher screen.

 31.  Writing to Learn Which line shown here has the greater 
slope? Explain. 

(a)

[210, 10] by [215, 15]

  (b)

[210, 10] by [210, 10]

 32.  Writing to Learn Which line shown here has the greater 
slope? Explain. 

(a)

[220, 20] by [235, 35]

  (b)

[25, 5] by [220, 20]

In Exercises 33–36, find the value of x and the value of y for which 
1x, 142 and 118, y2 are points on the graph.

 33.  y = 0.5x + 12 34.  y = -2x + 18

 35.  3x + 4y = 26 36.  3x - 2y = 14

In Exercises 37–40, find the values for Ymin, Ymax, and Yscl that  
will make the graph of the line appear in the viewing window as  
shown here.

WINDOW

Xmax=10

Ymin=

Yscl=
Xres=1

Xmin=–10

Xscl=1

Ymax=

(a)   (b)

 37.  y = 3x 38.  y = 5x

 39.  y =
2
3

 x 40.  y =
5
4

 x

SECTION P.4 Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, estimate the slope of the line.

 1.   2.  

0 1

1

2

3

4

5

6

7

8

9

2 3 4 5 6
x

y

0 1

1

2

3

4

5

6

7

8

9

2 3 4 5 6
x

y

In Exercises 3–6, find the slope of the line through the pair of points.

 3.  1-3, 52 and 14, 92 4.  1-2, 12 and 15, -32 
 5.  1-2, -52 and 1-1, 32  6.  15, -32 and 1-4, 122 
In Exercises 7–10, find the value of x or y so that the line through the 
pair of points has the given slope.

  Points Slope

 7.  1x, 32 and 15, 92 m = 2 

 8.  1-2, 32 and 14, y2 m = -3 

 9.  1-3, -52 and 14, y2 m = 3 

 10.  1-8, -22 and 1x, 22 m = 1>2 

In Exercises 11–14, find a pointslope form equation for the line 
through the point with given slope.

 Point Slope Point Slope

 11.  11, 42 m = 2 12.  1-4, 32 m = -2>3
 13.  15, -42 m = -2 14.  1-3, 42 m = 3

In Exercises 15–20, find a general form equation for the line through 
the pair of points.

 15.  1-7, -22 and 11, 62 16.  1-3, -82 and 14, -12
 17.  11, -32 and 15, -32 18.  1-1, -52 and 1-4, -22
 19.  1-1, 22 and 12, 52 20.  14, -12 and 14, 52
In Exercises 21–26, find a slopeintercept form equation for the line.

 21.  The line through 10, 52 with slope m = -3 

 22.  The line through 11, 22 with slope m = 1>2 

 23.  The line through the points 1-4, 52 and 14, 32
 24.  The line through the points 14, 22 and 1-3, 12
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In Exercises 41–44, (a) find an equation for the line passing through the 
point and parallel to the given line, and (b) find an equation for the line 
passing through the point and perpendicular to the given line. Support 
your work graphically.

 Point Line

 41.  11, 22  y = 3x - 2

 42.  1-2, 32 y = -2x + 4

 43.  13, 12 2x + 3y = 12

 44.  16, 12 3x - 5y = 15

 45.  Real Estate Appreciation Bob Michaels purchased a 
house 8 years ago for $42,000. This year it was appraised at 
$67,500.

(a) A linear equation V = mt + b, 0 … t … 15, represents the 
value V of the house for 15 years after it was purchased. 
Determine m and b. 

(b) Graph the equation and trace to estimate in how many years 
after purchase this house will be worth $72,500. 

(c) Write and solve an equation algebraically to determine 
how many years after purchase this house will be worth 
$74,000. 

(d) Determine how many years after purchase this house will 
be worth $80,250. 

 46.  Investment Planning Mary Ellen plans to invest $18,000, 
putting part of the money x into a savings account that pays 5% 
annually and the rest into an account that pays 8% annually.

(a) What are the possible values of x in this situation?

(b) If Mary Ellen invests x dollars at 5%, write an equation that 
describes the total interest I received from both accounts at 
the end of one year. 

(c) Graph and trace to estimate how much Mary Ellen invested 
at 5% if she earned $1020 in total interest at the end of the 
first year. 

(d) Use your grapher to generate a table of values for I to find 
out how much Mary Ellen should invest at 5% to earn 
$1185 in total interest in one year. 

 47.  Navigation A commercial jet airplane climbs at takeoff 
with slope m = 3>8. How far in the horizontal direction will 
the airplane fly to reach an altitude of 12,000 ft above the 
 takeoff point? 

 48.  Grade of a Highway Interstate 70 west of Denver, 
 Colorado, has a section posted as a 6% grade. This means that 
for a horizontal change of 100 ft there is a 6ft vertical change.

6% grade

(a) Find the slope of this section of the highway. 

(b) On a highway with a 6% grade what is the horizontal 
distance required to climb 250 ft? 

(c) A sign along the highway says 6% grade for the next 7 mi. 
Estimate how many feet of vertical change there are along 
those next 7 mi. (There are 5280 ft in 1 mile.) 

 49.  Writing to Learn Building Specifications Asphalt 
shingles do not meet code specifications on a roof that has 
less than a 412 pitch. A 412 pitch means there are 4 ft of 
vertical change in 12 ft of horizontal change. A certain roof 
has slope m = 3>8. Could asphalt shingles be used on that 
roof? Explain.

 50.  Revisiting Example 8 Use the linear equation found in 
Example 8 to estimate Americans’ income in 2010, 2013, 
2015 displayed in Figure P.30.

 51.  Americans’ Spending The 1x, y2 table shows total 
personal consumption expenditures 1y2 in the United States 
in trillions of dollars for selected years 1x2. (Source: U.S. 
Bureau of Economic Analysis, The World Almanac and 
Book of Facts 2017.)

x 1990 1995 2000 2005 2010 2015

y 3.8 5.0 6.8 8.8 10.2 12.3

(a) Write a linear equation for Americans’ spending 1y2 in 
terms of the year 1x2, using the points (1990, 3.8) and 
(2010, 10.2). 

(b) Use the equation in (a) to estimate Americans’ expendi
tures in 2005. 

(c) Use the equation in (a) to predict Americans’ expendi
tures in 2020. 

(d) Superimpose a graph of the linear equation in (a) on a 
scatter plot of the data.

 52.  U.S. Imports from Mexico The 1x, y2 table shows 
total U.S. imports from Mexico 1y2 in billions of dollars for 
selected years 1x2. (Source: U.S. Census Bureau, The World 
Almanac and Book of Facts 2017.)

x 2005 2010 2012 2013 2014 2015

y 170.1 230.0 277.6 280.6 295.7 296.4

(a) Use the pairs (2005, 170.1) and (2015, 296.4) to write a 
linear equation for x and y. 

(b) Superimpose the graph of the linear equation in (a) on a 
scatter plot of the data.

(c) Use the equation in (a) to predict the total U.S. imports 
from Mexico in 2020. 
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 53.  World Population Table P.7 shows the midyear worldwide 
human population for selected years.

Table P.7 World Population

Year Population (millions)

1980 4453
1990 5282
2000 6085
2010 6972
2013 7130

Source: U.S. Census Bureau.

Table P.8 U.S. Exports to Canada

Time 
(years)

U.S. Exports  
(billions of $)

2005 211.9
2010 249.3
2012 292.7
2013 300.8
2014 312.8
2015 280.6

Source: U.S. Census Bureau, The World Almanac and 
Book of Facts 2017.

(a) Let x = 0 represent 1980, x = 1 represent 1981, and so 
forth. Draw a scatter plot of the data.

(b) Use the 1980 and 2010 data to write a linear equation for 
the population y (in millions) in terms of the year x. Super
impose the graph of the linear equation on the scatter plot 
of the data. 

(c) Use the graph in (b) to predict the midyear world popula
tion in 2020. 

 54.  U.S. Exports to Canada Table P.8 shows the total 
exports from the United States to Canada in billions of dollars 
for selected years.

(a) Draw a scatter plot of the data.

(b) Use the 2005 and 2015 data to write a linear equation for 
the U.S. exports y in terms of the year x. Superimpose the 
graph of the equation on the scatter plot. 

(c) Use the equation in (b) to predict the U.S. exports to 
 Canada for 2020. 

y

x

D(a, 8)

C(3, 0)

B(3, 4)

A(0, 0)

y

x

D(5, a)

C(3, 0)

B(1, 2)

A(0, 0)

In Exercises 55 and 56, determine a so that the line segments AB and 
CD are parallel.

 55.  56. 

 59.  Writing to Learn Perpendicular Lines

(a) Is it possible for two lines with positive slopes to be 
 perpendicular? Explain.

(b) Is it possible for two lines with negative slopes to be 
 perpendicular? Explain.

 60.  Group Activity Parallel and Perpendicular Lines

(a) Assume that c ≠ d and a and b are not both zero. Show 
that ax + by = c and ax + by = d are parallel lines. 
Explain why the restrictions on a, b, c, and d are  
necessary.

(b) Assume that a and b are not both zero. Show that 
ax + by = c and bx - ay = d are perpendicular lines. 
Explain why the restrictions on a and b are necessary.

Standardized Test Questions
 61.  True or False The slope of a vertical line is zero. Justify 

your answer.

 62.  True or False The graph of any equation of the form 
ax + by = c, where a and b are not both zero, is always a line. 
Justify your answer.

In Exercises 63–66, you may use a graphing calculator to solve these 
problems.

 63.  Multiple Choice Which of the following is an equation of 
the line through the point 1-2, 32 with slope 4? 

(A) y - 3 = 41x + 22 (B) y + 3 = 41x - 22
(C) x - 3 = 41y + 22 (D) x + 3 = 41y - 22
(E) y + 2 = 41x - 32

 64.  Multiple Choice Which of the following is an equation of 
the line with slope 3 and yintercept -2? 

(A) y = 3x + 2 (B) y = 3x - 2

(C) y = -2x + 3 (D) x = 3y - 2

(E) x = 3y + 2

 65.  Multiple Choice Which of the following lines is  
perpendicular to the line y = -2x + 5? 

(A) y = 2x + 1 (B) y = -2x -
1
5

(C) y = -  
1
2

 x +
1
3

 (D) y = -  
1
2

 x + 3

(E) y =
1
2

 x - 3

y

x
D(4, 0)

C(a, b)B(2, 5)

A(0, 0)

y

x
D(5, 0)

B(a, b) C(8, 4)

A(0, 0)

In Exercises 57 and 58, determine a and b so that figure ABCD is a 
parallelogram.

 57.  58. 
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 66.  Multiple Choice Which of the following is the slope of the 
line through the two points 1-2, 12 and 11, -42? 

(A) -  
3
5

 (B) 
3
5

(C) -  
5
3

 (D) 
5
3

(E) -3

Explorations

 67.  Exploring the Graph of 
x
a

+
y

b
= c, a 3 0, b 3 0 

Let c = 1.

(a) Draw the graph for a = 3, b = -2.

(b) Draw the graph for a = -2, b = -3.

(c) Draw the graph for a = 5, b = 3.

(d) Use your graphs in (a), (b), (c) to conjecture what a and b 
represent when c = 1. Prove your conjecture.

(e) Repeat (a)–(d) for c = 2. What do a and b represent when 
c = 2?

(f) If c = -1, what do a and b represent?

 68.  Investigating Graphs of Linear Equations

(a) Graph y = mx for m = -3, -2, -1, 1, 2, 3 in the window 
3-8, 84  by 3-5, 54 . What do these graphs have in com
mon? How are they different?

(b) If m 7 0, what do the graphs of y = mx and y = -mx 
have in common? How are they different?

(c) Graph y = 0.3x + b for b = -3, -2, -1, 0, 1, 2, 3 in 
3-8, 84  by 3-5, 54 . What do these graphs have in com
mon? How are they different?

y

x

(3, 4)

Figure for Exercise 70

y

x
(a, 0)

(b, c)

(d, e)

Figure for Exercise 69

Extending the Ideas
 69.  Connecting Algebra and Geometry Show that if the 

midpoints of consecutive sides of any quadrilateral (see figure) 
are connected, the result is a parallelogram.

 70.  Connecting Algebra and Geometry Consider the 
semicircle of radius 5 centered at 10, 02 as shown in the figure. 
Find an equation of the line tangent to the semicircle at the 
point 13, 42. (Hint: A line tangent to a circle is perpendicular to 
the radius at the point of tangency.)

 71.  Connecting Algebra and Geometry Show that in any 
 triangle (see figure), the line segment joining the midpoints of 
two sides is parallel to the third side and is half as long.

  O
x

y

(0, 0) (a, 0)

(b, c)

A B
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What you’ll learn about
• Solving Equations Graphically

• Solving Quadratic Equations

• Approximating Solutions of 
 Equations Graphically

• Approximating Solutions of 
 Equations Numerically Using Tables

• Solving Equations by Finding 
 Intersections

... and why
These are the basic techniques 
used to solve equations in this text.

Solving Equations Graphically
The graph of the equation y = 2x - 5 1in x and y2 can be used to solve the equation 
2x - 5 = 0 1in x2. Using the techniques of Section P.3, we can show algebraically 
that x = 5>2 is the solution of 2x - 5 = 0. Therefore, the ordered pair 15>2, 02 is a 
solution of y = 2x - 5. Figure P.32 supports this reasoning graphically. It shows that 
the xintercept of the graph of the line y = 2x - 5 is the point 15>2, 02.

P.5  Solving Equations Graphically, Numerically,  
and Algebraically

X=2.5 Y=0

1

[24.7, 4.7] by [210, 5]

Figure P.32 Using the TRACE feature of a grapher, we see that 12.5, 02 
is an xintercept of the graph of y = 2x - 5 and, therefore, x = 2.5 is a 
solution of the equation 2x - 5 = 0.

X=–.5 Y=0

1

[24.7, 4.7] by [25, 5]

Figure P.33 It appears that 1-0.5, 02  
and 12, 02 are xintercepts of the graph of  
y = 2x2 - 3x - 2. (Example 1)

The graphical method for solving an equation in x by using the graph of the associated 
equation in x and y is surprisely general.

Solving by Finding x-Intercepts
Solve the equation 2x2 - 3x - 2 = 0 graphically. Confirm algebraically.

SOLUTION

Solve Graphically Find the xintercepts of the graph of y = 2x2 - 3x - 2 (Figure 
P.33). We use TRACE to see that 1-0.5, 02 and 12, 02 are xintercepts of this graph. 
Thus, the solutions of this equation are x = -0.5 and x = 2. Answers obtained 
graphically are really approximations, although in general they are very good 
approximations.

Confirm Algebraically In this case, we can use factoring to find exact values.

2x2 - 3x - 2 = 0

12x + 121x - 22 = 0 Factor.

Therefore,

 2x + 1 = 0 or x - 2 = 0

 x = -1>2 or x = 2

So, x = -1>2 and x = 2 are the exact solutions of the original equation.
Now try Exercise 1.

EXAMPLE 1 

The “therefore” step of the algebraic confirmation in Example 1 used the following 
important property.
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Zero Factor Property

Let a and b be real numbers.

If ab = 0, then a = 0 or b = 0.

Solving Quadratic Equations
Linear equations 1ax + b = 02 and quadratic equations are two members of the fam
ily of polynomial equations, which will be studied in detail in Chapter 2.

DEFINITION Quadratic Equation in x

A quadratic equation in x is one that can be written in the form

ax2 + bx + c = 0,

where a, b, and c are real numbers and a ≠ 0.

We review some of the basic algebraic techniques for solving quadratic equations. One 
algebraic technique that we have already used in Example 1 is factoring.

Quadratic equations of the form 1ax + h22 = k are fairly easy to solve as illustrated in 
Example 2.

Finding Square Roots

If t2 = k 7 0, then t = 2k or t = -2k.
Solving by Extracting Square Roots

Solve 12x - 122 = 9 algebraically.

SOLUTION 

12x - 122 = 9

2x - 1 = ± 3 Extract square roots.

2x = 4 or 2x = -2 Add 1.

x = 2 or  x = -1 Divide by 2. Now try Exercise 9.

EXAMPLE 2 

The technique of Example 2 is more general than you might think because every qua
dratic equation can be written in the form 1x + h22 = k. The procedure we need to 
accomplish this is completing the square.

Completing the Square

To solve x2 + bx = c by completing the square, add 1b>222 to both sides of 
the equation and factor the left side of the new equation.

x2 + bx + ab
2
b

2

= c + ab
2
b

2

 ax +
b
2
b

2

= c +
b2

4

In general, to solve a quadratic equation by completing the square, first we divide both 
sides of the equation by the coefficient of x2, and then we complete the square as illus
trated in Example 3.
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The procedure of Example 3 can be used to solve the general quadratic equation 
ax2 + bx + c = 0, producing the following formula. (See Exercise 68.)

Quadratic Formula

The solutions of the quadratic equation ax2 + bx + c = 0, where a ≠ 0, are 
given by the quadratic formula

x =
-b ± 2b2 - 4ac

2a
.

Solving by Completing the Square
Solve 4x2 - 20x + 17 = 0 by completing the square.

SOLUTION 

4x2 - 20x + 17 = 0

 x2 - 5x +
17
4

= 0  Divide by 4.

 x2 - 5x = -  
17
4

 Subtract 
17
4

.

We now complete the square of the left side by adding 1b>222 to both sides.

 x2 - 5x + a-  
5
2
b

2

= -  
17
4

+ a-  
5
2
b

2

 Add a-  
5
2
b

2
.

 ax -
5
2
b

2

= 2  Factor and simplify.

 x -
5
2

= ±22  Extract square roots.

 x =
5
2

± 22

 x =
5
2

+ 22 ≈ 3.91 or x =
5
2

- 22 ≈ 1.09 Now try Exercise 13.

EXAMPLE 3 

[25, 5] by [210, 10]

Figure P.34 The graph of  
y = 3x2 - 6x - 5. (Example 4)

Using the Quadratic Formula
Solve the equation 3x2 - 6x = 5.

SOLUTION First we subtract 5 from both sides of the equation to put it in the form 
ax2 + bx + c = 0: 3x2 - 6x - 5 = 0. Notice that a = 3, b = -6, and c = -5.

 x =
-b ± 2b2 - 4ac

2a
 Quadratic formula

 x =
-1-62 ± 21-622 - 41321-52

2132  a = 3, b = -6, c = -5

 x =
6 ± 296

6
 Simplify.

x =
6 + 296

6
≈ 2.63 or x =

6 - 296
6

≈ -0.63

The graph of y = 3x2 - 6x - 5 in Figure P.34 supports our conclusion that the 
xintercepts are approximately -0.63 and 2.63. Now try Exercise 19.

EXAMPLE 4 
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Approximating Solutions of Equations  
Numerically Using Tables
The table feature on graphing calculators provides a numerical zoomin procedure that 
we can use to find accurate solutions of equations. We illustrate this procedure in 
Example 6 with the same equation used in Example 5.

Solving Quadratic Equations Algebraically

There are four basic ways to solve quadratic equations algebraically.

1. Factoring (see Example 1)

2. Extracting Square Roots (see Example 2)

3. Completing the Square (see Example 3)

4. Using the Quadratic Formula (see Example 4)

Approximating Solutions of Equations Graphically
A solution of the equation x3 - x - 1 = 0 is a value of x that makes the value of 
y = x3 - x - 1 equal to zero. Example 5 illustrates a builtin procedure on graphing 
calculators to find such values of x.

X=1.324718   Y=0
Zero

[24.7, 4.7] by [23.1, 3.1]

(a)

1.324718 X

X3–X–1
1.324718

1.823355E–7

(b)

Figure P.35 The graph of y = x3 -  
x - 1. (a) shows that 11.324718, 02 is an  
approximation to the xintercept of the graph.  
(b) supports this conclusion. (Example 5)

Agreement About Approximate Solutions

For applications, round to a value that is reasonable for the context of the prob
lem. For all other problems, round to two decimal places unless directed 
otherwise.

Solving Graphically
Solve the equation x3 - x - 1 = 0 graphically.

SOLUTION Figure P.35a suggests that x ≈ 1.324718 is the solution we seek.
Figure P.35b provides numerical support that x = 1.324718 is a close approximation 
to the solution because, when x = 1.324718, x3 - x - 1 ≈ 1.82 * 10-7, which is 
nearly zero. Now try Exercise 31.

EXAMPLE 5 

When solving equations graphically, we usually get approximate solutions and not 
exact solutions. We will use the following agreement about accuracy in this textbook.

With this accuracy agreement, we would report the approximate solution found in 
Example 5 as 1.32.

Solving Using Tables
Solve the equation x3 - x - 1 = 0 using grapher tables.

SOLUTION From Figure P.35a, we know that the solution we seek is between x = 1 
and x = 2. Figure P.36a sets the starting point of the table 1TblStart = 12 at x = 1 
and the input increments in the table 1∆Tbl = 0.12 at 0.1. Figure P.36b shows that 
the zero of x3 - x - 1 lies between x = 1.3 and x = 1.4.

EXAMPLE 6 

(continued )
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X

Y1 = X3–X–1

1.3
1.31
1.32
1.33
1.34
1.35
1.36

–.103
–.0619
–.02
.02264
.0661
.11038
.15546

Y1

(a)        

X

Y1 = X3–X–1

1.32
1.321
1.322
1.323
1.324
1.325
1.326

–.02
–.0158
–.0116
–.0073
–.0031
.0012
.00547

Y1

(b)

Figure P.37 In (a) TblStart = 1.3 and ∆Tbl = 0.01, and in (b) TblStart = 1.32 and  
∆Tbl = 0.001. (Example 6)

TABLE SETUP

DTbl=.1

Depend:  Auto  Ask

TblStart=1

Indpnt:    Auto  Ask

(a)        

X

Y1 = X3–X–1

1
1.1
1.2
1.3
1.4
1.5
1.6

–1
–.769
–.472
–.103
.344
.875
1.496

Y1

(b)

Figure P.36 (a) gives the setup that produces the table in (b). (Example 6)

The next two steps in this process are shown in Figure P.37.

From Figure P.37a, we can read that the zero is between x = 1.32 and x = 1.33; 
from Figure P.37b, we can read that the zero is between x = 1.324 and x = 1.325. 
Thus, we conclude that the zero is approximately 1.32, according to our accuracy 
agreement. Now try Exercise 37.

Finding Real Zeros of Equations

Consider the equation 4x2 - 12x + 7 = 0.

 1. Use a graph to show that this equation has two real solutions, one between 0 
and 1 and the other between 2 and 3.

 2. Use the numerical zoomin procedure illustrated in Example 6 to find each 
zero accurate to two decimal places. 

 3. Use the builtin zero finder (see Example 5) to find the two solutions. Then 
round them to two decimal places.

 4. If you are familiar with the graphical zoomin process, use it to find each solu
tion accurate to two decimal places.

 5. Compare the numbers obtained in parts 2, 3, and 4.

 6. Support the results obtained in parts 2, 3, and 4 numerically.

 7. Use the numerical zoomin procedure illustrated in Example 6 to find each 
zero accurate to six decimal places. Compare with the answer found in part 3 
with the zero finder. 

EXPLORATION 1 
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Solving Equations by Finding Intersections
Sometimes we can solve an equation graphically by finding the points of intersection 
of two graphs. A point 1a, b2 is a point of intersection of two graphs if it lies on both 
graphs.

We illustrate this procedure with the absolute value equation in Example 7.

X=–2.5 Y=6
Intersection

[24.7, 4.7] by [25, 10]

Figure P.38 The graphs of y = 0 2x - 1 0   
and y = 6 intersect at 1-2.5, 62 and 13.5, 62.  
(Example 7)

Tech Tip
In Example 7, graph using y1 = 0 2x - 1 0  and 
y2 = 6. Figure P.38 indicates that both y1 and y2 
equal 6 when x = -2.5. So, 0 2x - 1 0 = 6 when 
x = -2.5. This is only one of the two solutions. 
The other can be found similarly.

Solving by Finding Intersections
Solve the equation 0 2x - 1 0 = 6.

SOLUTION Figure P.38 suggests that the Vshaped graph of y = 0 2x - 1 0  inter
sects the graph of the horizontal line y = 6 twice. We can use TRACE or the inter
section feature of our grapher to see that the two points of intersection have 
coordinates 1-2.5, 62 and 13.5, 62. This means that the original equation has two 
solutions: -2.5 and 3.5.

We can use algebra to find the exact solutions. The only two real numbers with abso
lute value 6 are 6 itself and -6. So, if 0 2x - 1 0 = 6, then

2x - 1 = 6 or 2x - 1 = -6

x =
7
2

= 3.5 or x = -  
5
2

= -2.5

Now try Exercise 39.

EXAMPLE 7 

In Exercises 9 and 10, combine the fractions and reduce the resulting 
fraction to lowest terms.

 9.  
x

2x + 1
-

2
x + 3

 

 10.  
x + 1

x2 - 5x + 6
-

3x + 11

x2 - x - 6
 

QUICK REVIEW P.5

In Exercises 1–4, expand the product.

 1.  13x - 422 2.  12x + 322 

 3.  12x + 1213x - 52 4.  13y - 1215y + 42 
In Exercises 5–8, factor the expression.

 5.  25x2 - 20x + 4  6.  15x3 - 22x2 + 8x

 7.  3x3 + x2 - 15x - 5 8.   y4 - 13y2 + 36

SECTION P.5  Exercises

In Exercises 1–6, solve the equation graphically by finding  
xintercepts. Confirm by using factoring to solve the equation.

 1. x2 - x - 20 = 0 2. 2x2 + 5x - 3 = 0 

 3. 4x2 - 8x + 3 = 0 4. x2 - 8x = -15

 5.  x13x - 72 = 6 6. x13x + 112 = 20

In Exercises 7–12, solve the equation by extracting square roots.

 7.  4x2 = 25  8.  21x - 522 = 17 

 9.  31x + 422 = 8 10.  41u + 122 = 18 

 11.  2y2 - 8 = 6 - 2y2 12.  12x + 322 = 169 

M01_DEMA8962_10_GE_C0P.indd   69 30/05/22   20:41



70 CHAPTER P Prerequisites

 45.  Interpreting Graphs The two figures below can be used 
to solve the equation 32x + 4 = x2 - 1 graphically.

  (a)

[25, 5] by [210, 10]

   (b)

[25, 5] by [210, 10]

(a) Figure (a) illustrates the intersection method for solving 
the given equation. Identify the two equations that are 
graphed.

(b) Figure (b) illustrates the xintercept method for solving the 
given equation. Identify the equation that is graphed.

(c) Writing to Learn How are the intersection points in 
Figure (a) related to the xintercepts in Figure (b)?

 46.  Writing to Learn Revisiting Example 6 Explain  
why all real numbers x that satisfy 1.324 6 x 6  1.325 round  
to 1.32.

In Exercises 47–56, use a method of your choice to solve the equation.

 47.  x2 + x - 2 = 0 48.  x2 - 3x = 12 - 31x - 22
 49.  0 2x - 1 0 = 5 50.  x + 2 - 22x + 3 = 0

 51.  x3 + 4x2 - 3x - 2 = 0 52.  x3 - 4x + 2 = 0

 53.  0 x2 + 4x - 1 0 = 7 54.  0 x + 5 0 = 0 x - 3 0  
 55.  0 0.5x + 3 0 = x2 - 4 56.  2x + 7 = -x2 + 5

 57.  Group Activity Discriminant of a Quadratic  
The radicand b2 - 4ac in the quadratic formula is called the 
discriminant of the quadratic polynomial ax2 + bx + c 
because its value distinguishes the nature of the zeros of the 
polynomial.

(a) Writing to Learn If b2 - 4ac 7 0, what can you say 
about the zeros of the quadratic polynomial ax2 + bx + c? 
Explain your answer.

(b) Writing to Learn If b2 - 4ac = 0, what can you say 
about the zeros of the quadratic polynomial ax2 + bx + c? 
Explain your answer.

(c) Writing to Learn If b2 - 4ac 6 0, what can you say 
about the zeros of the quadratic polynomial ax2 + bx + c? 
Explain your answer.

 58.  Group Activity Discriminant of a Quadratic  
Use the information learned in Exercise 57 to create a qua
dratic polynomial with the following numbers of real zeros. 
Support your answers graphically.

(a) Two real zeros  

(b) Exactly one real zero 

(c) No real zeros 

 59.  Size of a Soccer Field Several of the World Cup ‘94 soc
cer matches were played in Stanford University’s stadium in 
Menlo Park, California. The field is 30 yd longer than it is 
wide, and the area of the field is 8800 yd2. What are the dimen
sions of this soccer field? 

In Exercises 13–18, solve the equation by completing the square.

 13.  x2 + 6x = 7 14.  x2 + 5x - 9 = 0

 15.  x2 - 7x +
5
4

= 0 16.  4 - 6x = x2

 17.  2x2 - 7x + 9 = 1x - 321x + 12 + 3x 

 18.  3x2 - 6x - 7 = x2 + 3x - x1x + 12 + 3

In Exercises 19–24, solve the equation using the quadratic formula.

 19.  x2 + 8x - 2 = 0 20.  2x2 - 3x + 1 = 0

 21.  3x + 4 = x2 22.  x2 - 5 = 23x

 23.  x1x + 52 = 12

 24.  x2 - 2x + 6 = 2x2 - 6x - 26 

In Exercises 25–28, estimate any x and yintercepts that are shown in 
the graph.

 25. 

[25, 5] by [25, 5]

 26. 

[23, 6] by [23, 8]

 27. 

[25, 5] by [25, 5]

 28. 

[23, 3] by [23, 3]

In Exercises 29–34, solve the equation graphically by finding  
xintercepts.

 29.  x2 + x - 1 = 0 30.  4x2 + 20x + 23 = 0

 31.  x3 + x2 + 2x - 3 = 0 32.  x3 - 4x + 2 = 0

 33.  x2 + 4 = 4x 34.  x2 + 2x = -2

In Exercises 35 and 36, the table permits you to estimate a zero of an 
expression. State the expression and give the zero as accurately as can 
be read from the table.

 35. X

Y1 = X2+2X–1

.4

.41

.42

.43

.44

.45

.46

–.04
–.0119
.0164
.0449
.0736
.1025
.1316

Y1  36. X

Y1 = X3–3X

–1.735
–1.734
–1.733
–1.732
–1.731
–1.73
–1.729

–.0177
–.0117
–.0057
3E–4
.0063
.01228
.01826

Y1

In Exercises 37 and 38, use tables to find the indicated number of solu
tions of the equation accurate to two decimal places.

 37.  Two solutions of x2 - x - 1 = 0 

 38.  One solution of -x3 + x + 1 = 0 

In Exercises 39–44, solve the equation graphically by finding 
 intersections. Confirm your answer algebraically.

 39.  0 t - 8 0 = 2 40.  0 x + 1 0 = 4 

 41.  0 2x + 5 0 = 7 42.  0 3 - 5x 0 = 4

 43.  0 2x - 3 0 = x2 44.  0 x + 1 0 = 2x - 3 
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 60.  Height of a Ladder John’s paint crew knows from 
 experience that its 18ft ladder is particularly stable when the 
distance from the ground to the top of the ladder is 5 ft more 
than the distance from the building to the base of the ladder as 
shown in the figure. In this position, how far up the building 
does the ladder reach? 

18 ft

x

x 1 5

 61.  Finding the Dimensions of a Norman Window A 
Norman window has the shape of a square with a semicircle 
mounted on it. Find the width of the window if the total area of 
the square and the semicircle is to be 200 ft2. 

x

x

Standardized Test Questions
 62.  True or False If 2 is an xintercept of the graph of 

y = ax2 + bx + c, then 2 is a solution of the equation 
ax2 + bx + c = 0. Justify your answer.

 63.  True or False If 2x2 = 18, then x must be equal to 3. 
 Justify your answer.

In Exercises 64–67, you may use a graphing calculator to solve these 
problems.

 64.  Multiple Choice Which of the following are the solutions 
of the equation x1x - 32 = 0? 

(A) Only x = 3 (B) Only x = -3

(C) x = 0 and x = -3 (D) x = 0 and x = 3

(E) There are no solutions.

 65.  Multiple Choice Which value of k makes x2 - 5x + k  
a perfect square? 

(A) -  
5
2

 (B) a-  
5
2
b

2

 (C) 1-522 

(D) a-  
2
5
b

2

 (E) -6

 66.  Multiple Choice Which of the following are the solutions 
of the equation 2x2 - 3x - 1 = 0? 

(A) 
3
4

± 217 (B) 
3 ± 217

4
 (C) 

3 ± 217
2

(D) 
-3 ± 217

4
 (E) 

3 ± 1
4

 67.  Multiple Choice Which of the following are the solutions 
of the equation 0 x - 1 0 = -3? 

(A) Only x = 4 (B) Only x = -2

(C) Only x = 2 (D) x = 4 and x = -2

(E) There are no solutions.

Explorations
 68.  Deriving the Quadratic Formula Follow these steps to 

use completing the square to solve ax2 + bx + c = 0, a ≠ 0.

(a) Subtract c from both sides of the original equation and 
divide both sides of the resulting equation by a to obtain

x2 +
b
a

 x = -  
c
a

.

(b) Add the square of onehalf of the coefficient of x in (a) to 
both sides and simplify to obtain

ax +
b
2a
b

2

=
b2 - 4ac

4a2 .

(c) Extract square roots in (b) and solve for x to obtain the 
quadratic formula

x =
-b ± 2b2 - 4ac

2a
.

Extending the Ideas
 69.  Finding Number of Solutions Consider the equation 

0 x2 - 4 0 = c.

(a) Find a value of c for which this equation has four solu
tions. (There are many such values.) 

(b) Find a value of c for which this equation has three solu
tions. (There is only one such value.) 

(c) Find a value of c for which this equation has two solutions. 
(There are many such values.) 

(d) Find a value of c for which this equation has no solutions. 
(There are many such values.) 

(e) Writing to Learn Are there any other possible num
bers of solutions of this equation? Explain.

 70.  Sums and Products of Solutions of 
ax2 + bx + c = 0, a 3 0 Suppose that b2 - 4ac 7 0.

(a) Show that the sum of the two solutions of this equation is 
-b>a.

(b) Show that the product of the two solutions of this equation 
is c>a.

 71.  Exercise 70 Continued The equation 2x2 + bx + c = 0 
has two solutions x1 and x2. If x1 + x2 = 5 and x1

# x2 = 3, 
find the two solutions.
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What you’ll learn about
• Complex Numbers

• Operations with Complex Numbers

• Complex Conjugates and Division

• Complex Solutions of Quadratic 
Equations

... and why
The zeros of polynomials are 
 complex numbers.

Complex Numbers
Figure P.39 shows that the function ƒ1x2 = x2 + 1 has no real zeros, so x2 + 1 = 0 
has no realnumber solutions. To remedy this situation, mathematicians in the 17th 
century extended the definition of 2a to include negative real numbers a. First the 
number i = 2-1 is defined as a solution of the equation i2 + 1 = 0 and is the  
imaginary unit. Then for any negative real number a, we define 2a = 2 0 a 0 # i.

The extended system of numbers, called the complex numbers, consists of all real num
bers and sums of real numbers and real number multiples of i. The following are all 
examples of complex numbers:

-6, 5i, 25, -7i, 
5
2

 i +
2
3

, -2 + 3i, 5 - 3i, 1 + 23i

P.6 Complex Numbers

[25, 5] by [23, 10]

Figure P.39 The graph of ƒ1x2 = x2 + 1  
has no xintercepts.

Historical Note
René Descartes (1596–1650) coined the term 
imaginary in a time when negative solutions to 
equations were considered false. Carl Friedrich 
Gauss (1777–1855) gave us the term complex 
number and the symbol i for 2-1. Today practi
cal applications of complex numbers abound.

DEFINITION Complex Number

A complex number is any number that can be written in the form

a + bi,

where a and b are real numbers. The real number a is the real part, the real 
number b is the imaginary part, and a + bi is the standard form.

A real number a is the complex number a + 0i, so all real numbers are also complex 
numbers. If a = 0 and b ≠ 0, then a + bi becomes bi, and is an imaginary number. 
For instance, 5i and -7i are imaginary numbers.

Two complex numbers are equal if and only if their real and imaginary parts are equal. 
For example,

x + yi = 2 + 5i if and only if x = 2 and y = 5.

Operations with Complex Numbers
Adding complex numbers is done by adding their real and imaginary parts separately. 
Subtracting complex numbers is also done using the same parts.

DEFINITION Addition and Subtraction of Complex Numbers

If a + bi and c + di are two complex numbers, then

Sum: 1a + bi2 + 1c + di2 = 1a + c2 + 1b + d 2i,
Difference: 1a + bi2 - 1c + di2 = 1a - c2 + 1b - d 2i.

Adding and Subtracting Complex Numbers
(a) 17 - 3i2 + 14 + 5i2 = 17 + 42 + 1-3 + 52i = 11 + 2i

(b) 12 - i2 - 18 + 3i2 = 12 - 82 + 1-1 - 32i = -6 - 4i
Now try Exercise 3.

EXAMPLE 1 
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We can generalize Example 2 as follows:

1a + bi21c + di2 = ac + adi + bci + bdi2

 = 1ac - bd2 + 1ad + bc2i

Many graphers can perform basic calculations on complex numbers. Figure P.40 shows 
how the operations of Examples 1 and 2 look on some graphers.

We compute positive integer powers of complex numbers using the commutative, asso
ciative, and distributive properties of complex numbers and the key fact that i2 = -1.

The additive identity for the complex numbers is 0 = 0 + 0i. The additive inverse 
of a + bi is -1a + bi2 = -a - bi because

1a + bi2 + 1-a - bi2 = 0 + 0i = 0.

Many of the properties of real numbers also hold for complex numbers. These include

• Commutative properties of addition and multiplication,

• Associative properties of addition and multiplication, and

• Distributive properties of multiplication over addition and subtraction.

Using these properties and the fact that i2 = -1, complex numbers can be multiplied 
by treating them as algebraic expressions.

Multiplying Complex Numbers
12 + 3i2 # 15 - i2 = 215 - i2 + 3i15 - i2 Distributive property

 = 10 - 2i + 15i - 3i2  Distributive property

 = 10 + 13i - 31-12  i2 = -1

 = 13 + 13i  Now try Exercise 9.

EXAMPLE 2 

(7–3i)+(4+5i)

(2–i)–(8+3i)

(2+3i)*(5–i)

N

11+2i

–6–4i

13+13i

Figure P.40 Complex number operations  
on a grapher. (Examples 1 and 2)

(1/2+i 3/2)2

(1/2+i
–.5+.8660254038i

–1
3/2)3

Figure P.41 The square and cube of a 
complex number. (Example 3)

Raising a Complex Number to a Power

If z =
1
2

+
23
2

 i, find z2 and z3.

SOLUTION 

z2 = a1
2

+
23
2

 ib a1
2

+
23
2

 ib

 =
1
4

+
23
4

 i +
23
4

 i +
3
4

 i2

 =
1
4

+
223

4
 i +

3
4

 1-12

 = -  
1
2

+
23
2

 i

 z3 = z2 # z = a-  
1
2

+
23
2

 ib a1
2

+
23
2

 ib

 = -  
1
4

-
23
4

 i +
23
4

 i +
3
4

 i2

 = -  
1
4

+ 0i +
3
4

 1-12
 = -1

Figure P.41 supports these results numerically. Now try Exercise 27.

EXAMPLE 3 
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Example 3 demonstrates that 1>2 + 123>22i is a cube root of -1 and a solution of 
x3 + 1 = 0. In Section 2.5, we will explore complex zeros of polynomial functions in 
depth. Section 6.6 delves into the geometry of complex numbers.

Complex Conjugates and Division
The product of the complex numbers a + bi and a - bi is a positive real number:

1a + bi2 # 1a - bi2 = a2 - 1bi22 = a2 + b2

We introduce the following definition, which arises from this special relationship.

DEFINITION Complex Conjugate

The complex conjugate of the complex number z = a + bi is

z = a + bi = a - bi.

The multiplicative identity for the complex numbers is 1 = 1 + 0i. The multiplicative 
inverse, or reciprocal, of z = a + bi is

z-1 =
1
z

=
1

a + bi
=

1
a + bi

# a - bi
a - bi

=
a

a2 + b2 -
b

a2 + b2 i.

In general, a quotient of two complex numbers, written in fraction form, can be simpli
fied as we just simplified 1>z—by multiplying the numerator and denominator of the 
fraction by the complex conjugate of the denominator.

(a) 
2

3 - i
=

2
3 - i

# 3 + i
3 + i

  =
6 + 2i

32 + 12

  =
6
10

+
2
10

 i

  =
3
5

+
1
5

 i

(b) 
5 + i
2 - 3i

=
5 + i
2 - 3i

# 2 + 3i
2 + 3i

  =
10 + 15i + 2i + 3i2

22 + 32

  =
7 + 17i

13

  =
7
13

+
17
13

 i

Now try Exercise 33.

Dividing Complex Numbers
Write the complex number in standard form.

(a) 
2

3 - i
 (b) 

5 + i
2 - 3i

SOLUTION Multiply the numerator and denominator by the complex conjugate of 
the denominator.

EXAMPLE 4 

Complex Solutions of Quadratic Equations
Recall that the solutions of the quadratic equation ax2 + bx + c = 0, where a, b, and c 
are real numbers and a ≠ 0, are given by the quadratic formula

x =
-b ± 2b2 - 4ac

2a
.

The radicand b2 - 4ac is the discriminant and tells us whether the solutions are real 
numbers. In particular, if b2 - 4ac 6 0, the solutions involve the square root of a 
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negative number and thus lead to complexnumber solutions. In all, there are three 
cases, which we now summarize:

Discriminant of a Quadratic Equation

For a quadratic equation ax2 + bx + c = 0, where a, b, and c are real num
bers and a ≠ 0,

• If b2 - 4ac 7 0, there are two distinct real solutions.

• If b2 - 4ac = 0, there is one (repeated) real solution.

• If b2 - 4ac 6 0, there is a complex conjugate pair of solutions.

Solving a Quadratic Equation
Solve x2 + x + 1 = 0.

SOLUTION

Solve Algebraically Using the quadratic formula with a = b = c = 1, we obtain

x =
-112 ± 21122 - 4112112

2112  
=

-112 ± 2-3

2  
= -  

1
2

±
23
2

 i.

So the solutions are -1>2 + 123>22i and -1>2 - 123>22i, a complex 
 conjugate pair.

Confirm Numerically Substituting -1>2 + 123>22i into the original equation,  
we obtain

 a-  
1
2

+
23
2

 ib
2

+ a-  
1
2

+
23
2

 ib + 1

 = a-  
1
2

-
23
2

 ib + a-  
1
2

+
23
2

 ib + 1 = 0.

By a similar computation we can confirm the second solution.
Now try Exercise 41.

EXAMPLE 5 

In Exercises 1–4, add or subtract, and simplify.

 1.  12x + 32 + 1-x + 62  2.  13y - x2 + 12x - y2 
 3.  12a + 4d2 - 1a + 2d2  4.  16z - 12 - 1z + 32 
In Exercises 5–10, multiply and simplify.

 5.  1x - 321x + 22 

 6.  12x - 121x + 32 
 7.  1x - 2221x + 222 
 8.  1x + 22321x - 2232 
 9.  3x - 11 + 2224 3x - 11 - 2224  
 10.  3x - 12 + 2324 3x - 12 - 2324  

QUICK REVIEW P.6

 3.  17 - 3i2 + 16 - i2  4.  12 + i2 - 19i - 32 
 5.  12 - i2 + 13 - 2-32 
 6.  125 - 3i2 + 1-2 + 2-92 
 7.  1i2 + 32 - 17 + i32 
 8.  127 + i22 - 16 - 2-812 

SECTION P.6  Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–8, write the sum or difference in the standard form 
a + bi without using a calculator.

 1.  12 - 3i2 + 16 + 5i2 
 2.  12 - 3i2 + 13 - 4i2 
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In Exercises 17–20, write the expression in the form bi, where b is a 
real number.

 17.  2-16  18.  2-25 

 19.  2-3  20.  2-5 

In Exercises 21–24, find the real numbers x and y that make the equa
tion true.

 21.  2 + 3i = x + yi 

 22.  3 + yi = x - 7i 

 23.  15 - 2i2 - 7 = x - 13 + yi2 
 24.  1x + 6i2 = 13 - i2 + 14 - 2yi2 
In Exercises 25–28, write the complex number in standard form.

 25.  13 + 2i22  26.  11 - i23 

 27.  a22
2

+
22
2

 ib
4

  28.  a23
2

+
1
2

 ib
3

 

In Exercises 29–32, find the product of the complex number and its 
conjugate.

 29.  2 - 3i  30.  5 - 6i 

 31.  -3 + 4i  32.  -1 - 22i 

In Exercises 33–40, write the expression in standard form without using 
a calculator.

 33.  
1

2 + i
  34.  

i
2 - i

 

 35.  
2 + i
2 - i

  36.  
2 + i

3i
 

 37.  
12 + i221- i2

1 + i
  38.  

12 - i211 + 2i2
5 + 2i

 

 39.  
11 - i212 - i2

1 - 2i
  40.  

11 - 22i211 + i2
11 + 22i2  

In Exercises 41–44, solve the equation.

 41.  x2 + 2x + 5 = 0 42.  3x2 + x + 2 = 0

 43.  4x2 - 6x + 5 = x + 1 44.  x2 + x + 11 = 5x - 8

Standardized Test Questions
 45.  True or False There are no complex numbers z satisfying 

z = -z. Justify your answer.

 46.  True or False For the complex number 
i, i + i2 + i3 + i4 = 0. Justify your answer.

In Exercises 47–50, solve the problem without using a calculator.

 47.  Multiple Choice Which of the following is the standard 
form for the product 12 + 3i212 - 3i2? 

(A) -5 + 12i (B) 4 - 9i (C) 13 - 3i

(D) -5 (E) 13 + 0i

 48.  Multiple Choice Which of the following is the standard 

form for the quotient 
1
i
 ? 

(A) 1  (B) -1  (C) i  (D) -1>i  (E) 0 - i

 49.  Multiple Choice Assume that 2 - 3i is a solution of 
ax2 + bx + c = 0, where a, b, and c are real numbers. Which 
of the following is also a solution of the equation? 

(A) 2 + 3i (B) -2 - 3i (C) -2 + 3i

(D) 3 + 2i (E) 
1

2 - 3i

 50.  Multiple Choice Which of the following is the standard 
form for the power 11 - i23? 

(A) -4i (B) -2 + 2i (C) -2 - 2i

(D) 2 + 2i (E) 2 - 2i

Explorations
 51.  Group Activity The Powers of i

(a) Simplify the complex numbers i, i2, c, i8 by evaluating 
each one.  

(b) Simplify the complex numbers i-1, i-2, c, i-8 by evaluat
ing each one. 

(c) Evaluate i0. 

(d) Writing to Learn Discuss your results from (a)–(c) 
with the members of your group, and write a summary 
statement about the integer powers of i.

 52.  Writing to Learn Describe the nature of the graph of 
ƒ1x2 = ax2 + bx + c when a, b, and c are real numbers and 
the equation ax2 + bx + c = 0 has nonreal complex solutions.

Extending the Ideas
 53.  Prove that the difference between a complex number and its 

conjugate is a complex number whose real part is 0.

 54.  Prove that the product of a complex number and its complex 
conjugate is a complex number whose imaginary part is zero.

 55.  Prove that the complex conjugate of a product of two complex 
numbers is the product of their complex conjugates.

 56.  Prove that the complex conjugate of a sum of two complex 
numbers is the sum of their complex conjugates.

 57.  Writing to Learn Explain why - i is a solution of 
x2 - ix + 2 = 0 but i is not. 

In Exercises 9–16, write the product in standard form without using a 
 calculator.

 9. 12 + 3i212 - i2  10. 12 - i211 + 3i2 
 11. 11 - 4i213 - 2i2  12.  15i - 3212i + 12 
 13.  17i - 3212 + 6i2  14.  12-4 + i216 - 5i2 
 15.  (-3 - 4i2(1 + 2i2  16.  12-2 + 2i216 + 5i2
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What you’ll learn about
• Solving Absolute Value Inequalities

• Solving Quadratic Inequalities

• Approximating Solutions to 
 Inequalities

• Projectile Motion

... and why
These techniques are involved in 
using a graphing utility to solve 
inequalities in this text.

Solving Absolute Value Inequalities
We now extend the methods for solving inequalities introduced in Section P.3. We start 
with two algebraic relationships used to solve absolute value inequalities.

P.7 Solving Inequalities Algebraically and Graphically

(–a, a)

) u ) > a ) u ) > a

y = ) u )

y = a

) u ) < a

a

–a a

(a, a)

Figure P.42 The solution of 0 u 0 6  a is represented by the portion of the number line for 
which the graph of y = 0 u 0  is below the graph of y = a. The solution of 0 u 0 7  a is represented 
by the portion of the number line where the graph of y = 0 u 0  is above the graph of y = a.

Solving Absolute Value Inequalities

Let u be an algebraic expression in x, and let a be a positive real number.

1. If 0 u 0 6 a, then u is in the interval 1-a, a2. That is,

0 u 0 6 a if and only if -a 6 u 6 a.

2. If 0 u 0 7 a, then u is in the interval 1-∞, -a2 or 1a, ∞2. That is,

0 u 0 7 a if and only if u 6 -a or u 7 a.

The inequalities 6  and 7  can be replaced with …  and Ú , respectively. See 
 Figure P.42.

–4 12

[27, 15] by [25, 10]

Figure P.43 The graphs of y = 0 x - 4 0  
and y = 8. (Example 1)

Solving an Absolute Value Inequality
Solve 0 x - 4 0 6 8.

SOLUTION 

 0 x - 4 0 6 8  Original inequality

-8 6 x - 4 6 8  Equivalent double inequality

 -4 6 x 6 12 Add 4.

As an interval the solution is 1-4, 122.
Figure P.43 shows that points on the graph of y = 0 x - 4 0  are below the points  
on the graph of y = 8 for values of x between -4 and 12. So, 0 x - 4 0  is less than  
8 when  -4 6 x 6 12. Now try Exercise 3.

EXAMPLE 1 

Solving Another Absolute Value Inequality
Solve �3x - 2 � Ú 5.

SOLUTION The solution of this one absolute value inequality consists of the com
bined solutions of the following two inequalities:

3x - 2 … -5 or 3x - 2 Ú 5

 3x … -3 or  3x Ú 7 Add 2.

 x … -1 or  x Ú
7
3

 Divide by 3.

EXAMPLE 2 

(continued )
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–1 7
3

[24, 4] by [24, 10]

Figure P.44 The graphs of y = 0 3x - 2 0  
and y = 5. (Example 2)

Union of Two Sets
The union of two sets A and B, denoted by 
A ∪ B, is the set of all objects that belong to A or 
B or both.

[210, 10] by [215, 15]

Figure P.45 The graph of y = x2 - x - 12  
appears to cross the xaxis at x = -3 and 
x = 4. (Example 3)

The solution consists of all numbers that are in either one of the two intervals 
1-∞, -14  or 37>3, ∞2, which may be written as 1-∞, -14 ∪ 37>3, ∞2. The nota
tion “∪” is read as “union.” (See the margin note.)

Figure P.44 shows that points on the graph of y = �3x - 2 �  are above or on the points 
on the graph of y = 5 for values of x to the left of and including -1 and to the right of 
and including 7>3, supporting the algebraic solution. Now try Exercise 7.

Solving Quadratic Inequalities
To solve a quadratic inequality such as x2 - x - 12 7 0, we begin by solving the 
corresponding quadratic equation x2 - x - 12 = 0. Then we determine the values of 
x for which the graph of y = x2 - x - 12 lies above the xaxis.

[210, 10] by [225, 25]

Figure P.46 The graph of 
y = 2x2 + 3x - 20 appears to be below the 
xaxis for -4 6 x 6 2.5. (Example 4)

Solving a Quadratic Inequality
Solve x2 - x - 12 7 0.

SOLUTION First we solve the corresponding equation x2 - x - 12 = 0.

x2 - x - 12 = 0

 1x - 421x + 32 = 0 Factor.

x - 4 = 0 or x + 3 = 0 ab = 0 1 a = 0 or b = 0

x = 4 or  x = -3 Solve for x.

The solutions of the corresponding quadratic equation are -3 and 4, and they are not 
solutions of the original inequality because 0 7 0 is false. Figure P.45 shows that the 
points on the graph of y = x2 - x - 12 are above the xaxis for values of x to the 
left of -3 and to the right of 4.

The solution of the original inequality is 1-∞, -32∪ 14, ∞2.
Now try Exercise 11.

EXAMPLE 3 

Solving Another Quadratic Inequality
Solve 2x2 + 3x … 20.

SOLUTION First we subtract 20 from both sides of the inequality to obtain 
2x2 + 3x - 20 … 0. Next, we solve the corresponding quadratic equation 
2x2 + 3x - 20 = 0.

2x2 + 3x - 20 = 0

1x + 4212x - 52 = 0 Factor.

x + 4 = 0  or 2x - 5 = 0 ab = 0 1 a = 0 or b = 0

 x = -4  or  x =
5
2

 Solve for x.

The solutions of the corresponding quadratic equation are -4 and 5>2 = 2.5. You 
can check that they are also solutions of the inequality.

Figure P.46 shows that the points on the graph of y = 2x2 + 3x - 20 are below the 
xaxis for values of x between -4 and 2.5. The solution of the original inequality is 
3-4, 2.54 . We use square brackets because the endpoints -4 and 2.5 are solutions of 
the inequality. Now try Exercise 9.

EXAMPLE 4

In Example 4, the quadratic inequality involves the symbol … . In this case, the solu
tions of the corresponding quadratic equation are also solutions of the inequality.

In Examples 3 and 4 the corresponding quadratic equations could be factored. When 
they cannot be factored, we approximate the real zeros of the quadratic equation if it 
has any. Then we use our accuracy agreement from Section P.5 to write the endpoints 
of any intervals accurate to two decimal places, as illustrated in Example 5.
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Figure P.48 also shows that the solution of the inequality x2 + 2x + 2 7 0 is the set 
of all real numbers or, in interval notation, 1-∞, ∞2. A quadratic inequality can also 
have exactly one solution (see Exercise 31).

Approximating Solutions to Inequalities
To solve the inequality in Example 7, we approximate the zeros of the corresponding 
graph. Then we determine the values of x for which the corresponding graph is above 
or on the xaxis.

X=.26794919   Y=0
Zero

[23, 7] by [24, 6]

(a)   

X=3.7320508   Y=1E–12
Zero

[23, 7] by [24, 6]

(b)

Figure P.47 This figure suggests that y = x2 - 4x + 1 is approximately zero for x ≈ 0.27 
and x ≈ 3.73. (Example 5)

[25, 5] by [22, 5]

Figure P.48 The values of y = x2 +
2x + 2 are never negative. (Example 6)

Solving a Quadratic Inequality Graphically
Solve x2 - 4x + 1 Ú 0 graphically.

SOLUTION We can use the graph of y = x2 - 4x + 1 in Figure P.47 to determine 
that the solutions of the equation x2 - 4x + 1 = 0 are about 0.27 and 3.73. Thus, 
the solution of the original inequality is roughly 1-∞, 0.274 ∪ 33.73, ∞2. We use 
square brackets because the zeros of the quadratic equation are solutions of the 
inequality even though we only have approximations to their values.

Now try Exercise 21.

EXAMPLE 5 

Showing That a Quadratic Inequality  
Has No Solution

Solve x2 + 2x + 2 6 0.

SOLUTION Figure P.48 shows that the graph of y = x2 + 2x + 2 lies above the 
xaxis for all values for x. Thus, the inequality x2 + 2x + 2 6 0 has no solution.

Now try Exercise 25.

EXAMPLE 6 

Solving a Cubic Inequality
Solve x3 + 2x2 - 1 Ú 0 graphically.

SOLUTION We can use the graph of y = x3 + 2x2 - 1 in Figure P.49 to show that 
the solutions of the corresponding equation x3 + 2x2 - 1 = 0 are approximately 
-1.62, -1, and 0.62. The points on the graph of y = x3 + 2x2 - 1 are above the 
xaxis for values of x between -1.62 and -1, and for values of x to the right of 0.62.

The solution of the inequality is 3-1.62, -14 ∪ 30.62, ∞2. We use square brackets 
because the zeros of y = x3 + 2x2 - 1 are solutions of the inequality.

Now try Exercise 27.

EXAMPLE 7 
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X=–1.618034 Y=0
Zero

[23, 3] by [22, 2]

Figure P.49 The graph of y = x3 + 2x2 - 1 appears to be above the xaxis between the  
two negative xintercepts and to the right of the positive xintercept. (Example 7)

Projectile Motion
The movement of an object that is propelled vertically, and then subject only to the 
force of gravity, is an example of projectile motion.

Projectile Motion

Suppose an object is launched vertically from a point s0 feet above the ground 
with an initial velocity of v0 feet per second. The vertical position s (in feet) of 
the object t seconds after it is launched is

s = -16t2 + v0 t + s0.

[0, 20] by [0, 1500]

Figure P.50 The graphs of 
s = -16t2 + 288t and s = 1152. We know 
from Example 8a that the two graphs intersect 
at 16, 11522 and 112, 11522.

Finding the Height of a Projectile
A projectile is launched straight up from ground level with an initial velocity of  
288 ft>sec.

(a) When will the projectile’s height above ground be 1152 ft?

(b) When will the projectile’s height above ground be at least 1152 ft?

SOLUTION Here s0 = 0 and v0 = 288. So, the projectile’s height is 
s = -16t2 + 288t.

(a) We need to determine when s = 1152.

 s = -16t2 + 288t

 1152 = -16t2 + 288t Substitute s = 1152.

 16t2 - 288t + 1152 = 0  Add 16t 2 - 288t.

 t2 - 18t + 72 = 0  Divide by 16.

 1t - 621t - 122 = 0  Factor.

t = 6 or t = 12 Solve for t.

The projectile is 1152 ft above ground twice; the first time at t = 6 sec on the 
way up, and the second time at t = 12 sec on the way down (Figure P.50).

(b) The projectile will be at least 1152 ft above ground when s Ú 1152. We can see 
from Figure P.50 together with the algebraic work in (a) that the solution is 
36, 124 . This means that the projectile is at least 1152 ft above ground for times 
between t = 6 sec and t = 12 sec, including 6 and 12 sec.

 In Exercise 32 we ask you to use algebra to solve the inequality s = -16t2 +  
288t Ú 1152. Now try Exercise 33.

EXAMPLE 8 
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 33.  Projectile Motion A projectile is launched straight up 
from ground level with an initial velocity of 256 ft>sec.

(a) When will the projectile’s height above ground be 768 ft?

(b) When will the projectile’s height above ground be at least 
768 ft? 

(c) When will the projectile’s height above ground be less than 
or equal to 768 ft? 

 34.  Projectile Motion A projectile is launched straight up 
from ground level with an initial velocity of 272 ft>sec.

(a) When will the projectile’s height above ground be 960 ft?

(b) When will the projectile’s height above ground be more 
than 960 ft? 

(c) When will the projectile’s height above ground be less than 
or equal to 960 ft? 

 35.  Writing to Learn Explain the role of equation solving in 
the process of solving an inequality. Give an example.

 36.  Travel Planning Barb wants to drive to a city 105 mi from 
her home in no more than 2 h. What is the lowest average 
speed she must maintain on the drive? 

 37.  Connecting Algebra and Geometry Consider the col
lection of all rectangles that have length 2 in. less than twice 
their width.

(a) Find the possible widths (in inches) of these rectangles if 
their perimeters are less than 200 in. 

(b) Find the possible widths (in inches) of these rectangles if 
their areas are less than or equal to 1200 in.2

 38.  Boyle’s Law For a certain gas, P = 400>V , where P is 
pressure and V is volume. If 20 … V … 40, what is the corre
sponding range for P? 

 39.  Cash-Flow Planning A company has current assets (cash, 
property, inventory, and accounts receivable) of $200,000 and 
current liabilities (taxes, loans, and accounts payable) of 
$50,000. How much can it borrow if it wants its ratio of assets 
to liabilities to be no less than 2? Assume the amount borrowed 
is added to both current assets and current liabilities. 

SECTION P.7  Exercises

In Exercises 1–8, solve the inequality algebraically. Write the solution 
in interval notation and draw its number line graph.

 1. 0 x + 4 0 Ú 5  2. 0 2x - 1 0 7 3.6 

 3. 0 x - 3 0 6 2  4. 0 x + 3 0 … 5 

 5. 0 4 - 3x 0 - 2 6 4 6. 0 3 - 2x 0 + 2 7 5 

 7.  2 x + 2
3

2 Ú 3  8.  2 x - 5
4

2 … 6 

In Exercises 9–16, solve the inequality. Use algebra to solve the corre
sponding equation.

 9.  2x2 + 17x + 21 … 0 10.  6x2 - 13x + 6 Ú 0

 11.  2x2 + 7x 7 15 12.  4x2 + 2 6 9x 

 13.  2 - 5x - 3x2 6 0 14.  21 + 4x - x2 7 0 

 15.  x3 - x Ú 0 16.  x3 - x2 - 30x … 0

In Exercises 17–26, solve the inequality graphically.

 17.  x2 - 4x 6 1   18.  12x2 - 25x + 12 Ú 0

 19.  6x2 - 5x - 4 7 0 20.  4x2 - 1 … 0

 21.  9x2 + 12x - 1 Ú 0 22.  4x2 - 12x + 7 6 0 

 23.  4x2 + 1 7 4x 24.  x2 + 9 … 6x 

 25.  x2 - 8x + 16 6 0 26.  9x2 + 12x + 4 Ú 0 

In Exercises 27–30, solve the cubic inequality graphically.

 27.  3x3 - 12x + 2 Ú 0 28.  8x - 2x3 - 1 6 0

 29.  2x3 + 2x 7 5  30.  4 … 2x3 + 8x 

 31.  Group Activity Give an example of a quadratic inequality 
with the indicated solution. 

(a) All real numbers (b) No solution 

(c) Exactly one solution  (d) 3-2, 54  
(e) 1-∞, -12∪ 14, ∞2 (f) 1-∞, 04 ∪ 34, ∞2 

 32.  Revisiting Example 8 Solve -16t2 +  288t Ú 1152 
 algebraically. Compare your answer with the result obtained in 
part (b) of Example 8. 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–3, solve for x.

 1.  -7 6 2x - 3 6 7 2.  5x - 2 Ú 7x + 4 

 3.  �x + 2 � = 3 

In Exercises 4–6, factor the expression completely.

 4.  4x2 - 9 5.  x3 - 4x

 6.  9x2 - 16y2

In Exercises 7 and 8, reduce the fraction to lowest terms.

 7.  
z2 - 25

z2 - 5z
  8.  

x2 + 2x - 35

x2 - 10x + 25
 

In Exercises 9 and 10, add the fractions and simplify.

 9.  
x

x - 1
+

x + 1
3x - 4

 10.  
2x - 1

x2 - x - 2
+

x - 3

x2 - 3x + 2

QUICK REVIEW P.7
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Standardized Test Questions
 40.  True or False The absolute value inequality 0 x - a 0 6 b, 

where a and b are real numbers, always has at least one solution. 
Justify your answer. 

 41.  True or False Every real number is a solution of the abso
lute value inequality 0 x - a 0 Ú 0, where a is a real number. 
Justify your answer. 

In Exercises 42–45, solve these problems without using a calculator.

 42.  Multiple Choice Which of the following is the solution to 
0 x - 2 0 6 3? 

(A) x = -1 or x = 5 (B) 3-1, 52
(C) 3-1, 54  (D) 1-∞, -12∪ 15, ∞2
(E) 1-1, 52

 43.  Multiple Choice Which of the following is the solution to 
x2 - 2x + 2 Ú 0? 

(A) 30, 24  (B) 1-∞, 02∪ 12, ∞2
(C) 1-∞, 04 ∪ 32, ∞2 (D) All real numbers

(E) There is no solution.

 44.  Multiple Choice Which of the following is the solution to 
x2 7 x? 

(A) 1-∞, 02∪ 11, ∞2 (B) 1-∞, 04 ∪ 31, ∞2
(C) 11, ∞2 (D) 10, ∞2
(E) There is no solution.

 45.  Multiple Choice Which of the following is the solution to 
x2 … 1? 

(A) 1-∞, 14  (B) 1-1, 12
(C) 31, ∞2 (D) 3-1, 14
(E) There is no solution.

Explorations
 46.  Constructing a Box with No Top An open box is 

formed by cutting squares from the corners of a regular piece 
of cardboard (see figure) and folding up the flaps.

(a) What size corner squares should be cut to yield a box with 
a volume of 125 in.3? 

(b) What size corner squares should be 
cut to yield a box with a volume 
more than 125 in.3? 

(c) What size corner squares should be 
cut to yield a box with a volume of 
at most 125 in.3? 

Extending the Ideas
In Exercises 47 and 48, use a combination of algebraic and graphical 
techniques to solve the inequalities.

 47. 0 2x2 + 7x - 15 0 6 10 48. 0 2x2 + 3x - 20 0 Ú 10 

12 in.

15 in.

x
x

Forms of Equations of Lines 54
Parallel and Perpendicular Lines 56
Zero Factor Property 65
Quadratic Formula 66
Discriminant of a Quadratic Equation 75
Projectile Motion 80

Procedures

Graphing with a Graphing Utility 55
Completing the Square 65
Solving Quadratic Equations Algebraically 67
Agreement About Approximate Solutions 67
Solving Absolute Value Inequalities 77

CHAPTER P Key Ideas

Properties, Theorems, and Formulas

Order of Real Numbers 27
Trichotomy Property 28
Bounded Intervals of Real Numbers 28
Unbounded Intervals of Real Numbers 29
Properties of Algebra 30
Exponential Notation  31
Properties of Exponents 31
Properties of Absolute Value 37
Distance Formulas 37, 38
Midpoint Formulas 38, 39
Properties of Equality 45
Operations for Equivalent Equations 46
Properties of Inequalities 47

 3.  Distributive Property Use the distributive property to 
write the expanded form of 21x2 - x2. 

 4.  Distributive Property Use the distributive property to 
write the factored form of 2x3 + 4x2. 

CHAPTER P Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1 and 2, find the endpoints and state whether the interval is 
bounded or unbounded.

 1. 30, 54  2. 12, ∞2 
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 21. (a)  Find the lengths of the sides of 
the triangle in the figure.

(b) Writing to Learn Prove that 
the triangle is a right triangle.

 22.  Distance and Absolute Value Use absolute value nota
tion to write the statement that the distance between z and -3 
is less than or equal to 1. 

 23.  Finding a Line Segment with Given Midpoint Let  
13, 52 be the midpoint of the line segment with endpoints 
1-1, 12 and 1a, b2. Determine a and b. 

 24.  Finding Slope Find the slope of the line through the points 
1-1, -22 and 14, -52. 

 25.  Point-Slope Form Find an equation in pointslope form 
for the line through the point 12, -12 with slope m = -2>3. 

 26.  Find an equation of the line through the points 1-5, 42 and 
12, -52 in the general form Ax + By + C = 0.

In Exercises 27–32, find an equation in slopeintercept form for  
the line.

 27.  The line through 13, -22 with slope m = 4>5 

 28.  The line through the points 1-1, -42 and 13, 22
 29.  The line through 1-2, 42 with slope m = 0 

 30.  The line 3x - 4y = 7 

 31.  The line through 12, -32 and parallel to the line 2x + 5y = 3  

 32.  The line through 12, -32 and perpendicular to the line 
2x + 5y = 3 

 33.  SAT Math Scores Table P.10 shows the average SAT 
math scores in the United States for selected years.

In Exercises 5 and 6, simplify the expression. Assume that denomina
tors are not zero.

 5.  
1uv223
v2u3   6. 13x2y32-2 

In Exercises 7 and 8, write the number in scientific notation.

 7.  The mean distance from Pluto to the Sun is about 
3,680,000,000 mi (miles). 

 8.  The diameter of a red blood corpuscle is about  
0.000007 m (meters). 

In Exercises 9 and 10, write the number in decimal form.

 9.  Our solar system is about 5 * 109 years old. 

 10.  The mass of an electron is about 9.1094 * 10-28 g (grams).

 11.  Student Loan Debt Table P.9 shows the growing student 
loan debt in the United States over the period 2010–2014. 
Without using a calculator, write the debt for each year in sci
entific notation.

Table P.9 U.S. Student Loan Debt

Time  
(years)

Student Loan Debt  
(billions of $)

2010  803.5
2011  866.3
2012  959.9
2013 1071.0
2014 1155.5

Source: The World Almanac and Book of Facts 2017.

(a) Student loan debt in 2010 

(b) Student loan debt in 2011 

(c) Student loan debt in 2012 

(d) Student loan debt in 2013 

(e) Student loan debt in 2014 

 12.  Decimal Form Find the decimal form for -5>11. State 
whether it repeats or terminates. 

In Exercises 13 and 14, find (a) the distance between the points and  
(b) the midpoint of the line segment determined by the points.

 13. -5 and 14  14. 1-4, 32 and 15, -12
In Exercises 15 and 16, show that the figure determined by the points is 
the indicated type.

 15.  Right triangle: 1-2, 12, 13, 112, 17, 92 
 16.  Equilateral triangle: 10, 12, 14, 12, 12, 1 - 2232 
In Exercises 17 and 18, find the standard form equation for the circle.

 17.  Center 10, 02, radius 2

 18.  Center 15, -32, radius 4

In Exercises 19 and 20, find the center and radius of the circle.

 19.  1x + 522 + 1 y + 422 = 9

 20.  x2 + y2 = 1 

y

x

(5, 6)

(–3, 2)

(–1, –2)

Table P.10 Average SAT Math Scores

Year Annual Average Score

2008 514
2009 514
2010 515
2011 514
2012 514
2013 514
2014 513
2015 511
2016 508

Source: The College Board, The World Almanac and 
Book of Facts 2017.

(a) Draw a scatter plot of the data.

(b) Use the 2008 and 2016 data to write a linear equation for 
the average SAT math score y in terms of the year x. Super
impose the graph of the equation on the scatter plot.

(c) Use the equation in part (b) to predict the average  
SAT math score for 2020.

(d) Writing to Learn Do you think the prediction in  
part (c) is valid? Explain. (Check it if possible.)

 CHAPTER P Review Exercises 83
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84 CHAPTER P Prerequisites

 34.  Consider the point 1-6, 32 and Line L: 4x - 3y = 5. Write an 
equation (a) for the line passing through this point and parallel 
to L, and (b) for the line passing through this point and perpen
dicular to L. Support your work graphically.

In Exercises 35 and 36, assume that each graph contains the origin and 
the point in the upper righthand corner of the viewing window.

 35.  Find the slope of the line in the figure. 

[210, 10] by [225, 25]

(a)

[26, 6] by [24, 4]

  (b)

[215, 15] by [212, 12]

In Exercises 55–58, solve the equation graphically.

 55.  3x3 - 19x2 - 14x = 0 56.  x3 + 2x2 - 4x - 8 = 0

 57.  x3 - 2x2 - 2 = 0 58.  0 2x - 1 0 = 4 - x2

In Exercises 59 and 60, solve the inequality and draw a number line 
graph of the solution.

 59.  -2 6 x + 4 … 7 60.  5x + 1 Ú 2x - 4

In Exercises 61–72, solve the inequality.

 61.  
3x - 5

4
… -1  62.  0 2x - 5 0 6 7 

 63.  0 3x + 4 0 Ú 2 64.  4x2 + 3x 7 10

 65.  2x2 - 2x - 1 7 0 66.  9x2 - 12x - 1 … 0

 67.  x3 - 9x … 3 68.  4x3 - 9x + 2 7 0

 69.  2 x + 7
5

2 7 2 70.  2x2 + 3x - 35 6 0

 71.  4x2 + 12x + 9 Ú 0 72.  x2 - 6x + 9 6 0

In Exercises 73–80, perform the indicated operation, and write the 
result in the standard form a + bi without using a calculator.

 73.  13 - 2i2 + 1-2 + 5i2 74.  15 - 7i2 - 13 - 2i2
 75.  11 + 2i213 - 2i2  76.  11 + i23 

 77.  11 + 2i2211 - 2i22 78.  i29 

 79. 2-16  80. 
2 + 3i
1 - 5i

 

 81.  Projectile Motion A projectile is launched straight up 
from ground level with an initial velocity of 320 ft>sec.

(a) When will the projectile’s height above ground be 1538 ft?

(b) When will the projectile’s height above ground be at most 
1538 ft?

(c) When will the projectile’s height above ground be greater 
than or equal to 1538 ft?

 82.  Navigation A commercial jet airplane climbs at takeoff 
with slope m = 4>9. How far in the horizontal direction will 
the airplane fly to reach an altitude of 20,000 ft above the take
off point? 

 83.  Connecting Algebra and Geometry Consider the 
 collection of all rectangles that have length 1 cm more than 
three times their width w.

(a) Find the possible widths (in cm) of these rectangles if their 
perimeters are less than or equal to 150 cm.

(b) Find the possible widths (in cm) of these rectangles if their 
areas are greater than 1500 cm2.

 36.  Writing to Learn Which line has the greater slope? Explain.

In Exercises 37–52, solve the equation algebraically without using a 
calculator.

 37.  3x - 4 = 6x + 5  38.  
x - 2

3
+

x + 5
2

=
1
3

 39.  215 - 2y2 - 311 - y2 = y + 1 

 40.  313x - 122 = 21 41.  x2 - 4x - 3 = 0

 42.  16x2 - 24x + 7 = 0 43.  6x2 + 7x = 3

 44.  2x2 + 8x = 0 45.  x12x + 52 = 41x + 72
 46.  0 4x + 1 0 = 3 47.  4x2 - 20x + 25 = 0 

 48.  -9x2 + 12x - 4 = 0 49.  x2 = 3x 

 50.  4x2 - 4x + 2 = 0 51.  x2 - 6x + 13 = 0 

 52.  x2 - 2x + 4 = 0 

 53.  Completing the Square Use completing the square to 
solve the equation 2x2 - 3x - 1 = 0.

 54.  Quadratic Formula Use the quadratic formula to solve 
the equation 3x2 + 4x - 1 = 0.
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One of the central principles of economics is that the value of money is not 

constant; it is a function of time. Since fortunes are made and lost by people 

attempting to predict the future value of money, much attention is paid to 

quantitative measures like the Consumer Price Index, a basic measure of 

inflation in various sectors of the economy. For a look at how the Consumer 

Price Index for housing has behaved over time, see page 166.

 1.1 Modeling and Equation 
Solving

 1.2 Functions and Their 
Properties

 1.3 Twelve Basic Functions

 1.4 Building Functions from 
Functions

 1.5 Parametric Relations and 
Inverses

 1.6 Graphical 
Transformations

 1.7 Modeling with Functions

Functions and Graphs

CHAPTER 1
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Chapter 1 Overview
In this chapter we begin the study of functions that will continue throughout the text. 
Your previous courses have introduced you to some basic functions. These functions 
can be visualized using a graphing calculator, and their properties can be described 
using the notation and terminology that will be introduced in this chapter. A familiarity 
with this terminology will serve you well in later chapters when we explore properties 
of functions in greater depth.

What you’ll learn about
• Numerical Models

• Algebraic Models

• Graphical Models

• The Zero Factor Property

• Problem Solving

• Grapher Failure and Hidden 
 Behavior

• A Word About Proof

... and why
Numerical, algebraic, and graphical 
models provide different methods to 
visualize, analyze, and understand 
data.

Numerical Models
Scientists and engineers have always used mathematics to model the real world and 
thereby to unravel its mysteries. A mathematical model is a mathematical structure 
that approximates phenomena for the purpose of studying or predicting their behavior. 
Thanks to advances in computer technology, the process of devising mathematical 
models is now a rich field of study itself, mathematical modeling.

In this text we will be concerned primarily with three types of mathematical models: 
numerical models, algebraic models, and graphical models. Each type of model gives 
insight into real-world problems, but the best insights are often gained by switching from 
one kind of model to another. Developing the ability to do that will be one of the goals of 
this course.

Perhaps the most basic kind of mathematical model is the numerical model, in which 
numbers (or data) are analyzed to gain insights into phenomena. A numerical model 
can be as simple as the major league baseball standings or as complicated as the net-
work of interrelated numbers that measure the global economy.

1.1 Modeling and Equation Solving

Table 1.1 Minimum Hourly 
Wage in France

 
 

Year

Minimum 
Hourly Wage 

(MHW)

Purchasing 
Power in 

2020 Dollars

1960 2.9 3.0
1965 3.0 3.2
1970 4.3 4.5
1975 6.0 6.3
1980 6.9 7.2
1985 8.0 8.4
1990 8.3 8.7
1995 8.8 9.2
2000 9.4 9.9
2005 10.6 11.2
2010 11.2 11.7
2015 11.5 12.0
2020 11.6 12.1

Source: https://stats.oecd.org.

Tracking the Minimum Wage
Table 1.1 shows the growth of the minimum hourly wage (MHW) in France from 
1960 through 2020 (at the 2020 exchange rate). The table also shows the MHW 
adjusted to the purchasing power of 2020 dollars.

(a) In what five-year period did the actual MHW increase the most?

(b) In what year did a worker earning the MHW seem to enjoy the greatest purchas-
ing power?

(c) A worker on minimum wage in 1975 was earning twice as much as a worker on 
minimum wage in 1965, and yet there was great pressure to raise the minimum 
wage again. Why?

SOLUTION 

(a) In the period 1970 to 1975 it increased by $1.70. Notice that the minimum wage 
never goes down, so we can tell that there were no other increases of this magni-
tude even though the table does not give data from every year.

(b) In 2020.

(c) Although the MHW increased from $3.00 to $6.00 in that period, the ratio of 
purchasing power with the actual MHW dropped from 1.07 to 1.05. This is one 
way inflation can affect the economy. Now try Exercise 11.

EXAMPLE 1 
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Algebraic Models
An algebraic model uses formulas to relate variable quantities associated with the phe-
nomena being studied. The added power of an algebraic model over a numerical model 
is that it can be used to generate numerical values of unknown quantities by relating 
them to known quantities.

Working with large numerical models is standard operating procedure in business and 
industry, where computers are relied upon to provide fast and accurate data processing.

Table 1.2 Strength of U.K. 
Regular Armed Forces 
(thousands)
Year Total Male Female

2012 175.94 158.88 17.06
2013 166.46 150.16 16.31
2014 156.63 140.89 15.74
2015 152.15 136.75 15.40
2016 150.25 134.97 15.28
2017 147.52 132.30 15.23
2018 144.90 129.64 15.26
2019 144.65 129.00 15.65
2020 146.33 130.22 16.11
2021 149.54 132.84 16.71

Source: U.K. Government Services and 
 Information, U.K. armed forces biannual 
diversity statistics: 1 October 2021.

Table 1.3 Percentage of Personnel
in the U.K. Regular Armed Forces
Who Are Female

Year Percentage

2012 9.7
2013 9.8
2014 10.0
2015 10.1
2016 10.2
2017 10.3
2018 10.5
2019 10.8
2020 11.0
2021 11.2

Source: U.K. Government Services and Information, 
U.K. armed forces biannual diversity statistics: 1 
October 2021.

Gender of Personnel Serving in the U.K. 
Regular Armed Forces

Table 1.2 shows the fluctuation in the number of the U.K. regular armed forces from 
2012 to 2021. Is the proportion of female personnel increasing over time?

SOLUTION The numbers in each column go up and down depending on the needs 
of the military at the time. It does look like the number of female personnel has been 
decreasing, but it is difficult to discern from Table 1.2 whether the proportion of 
female personnel is decreasing. What we need is another column of numbers 
 showing the ratio of female personnel to the total number of personnel each year.

We could compute all the ratios separately, but it is easier to do this kind of repeti-
tive calculation with a single command on a computer spreadsheet. You can also do 
this on a graphing calculator by manipulating lists (see Exercise 19). Table 1.3 shows 
what percentage of the total number of personnel each year are females. With these 
data to extend our numerical model, it is clear that the proportion of female person-
nel increased steadily between 2012 and 2021.

EXAMPLE 2 

 Now try Exercise 19.
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88 CHAPTER 1 Functions and Graphs

The algebraic models in Example 3 come from geometry, but you have probably encoun-
tered algebraic models from many other sources in your algebra and science courses.

Designing an Algebraic Model

A department store is having a sale in which everything is discounted 30% off 
the marked price. The discount is taken at the sales counter, and then a national 
sales tax of 5% and a local sales tax of 0.8% are added on.

 1. The discount price d is related to the marked price m by the formula d = km, 
where k is a certain constant. What is k? 

 2. The actual sale price s is related to the discount price d by the formula s = d + td, 
where t is a constant related to the combined total sales tax. What is t? 

 3. Using the answers from steps 1 and 2 you can find a constant p that relates s 
directly to m by the formula s = pm. What is p? 

 4. If you have only €50, can you afford to buy a pair of trousers marked €69.99? 

 5. If you have a debit card but are determined to spend no more than €100, what 
is the maximum total value of your marked purchases before you present them 
at the sales counter? 

EXPLORATION 1 

The ability to generate numbers from formulas makes an algebraic model far more use-
ful as a predictor of behavior than a numerical model. Indeed, one optimistic goal of 
scientists and mathematicians when modeling phenomena is to fit an algebraic model 
to numerical data and then (even more optimistically) to analyze why it works. Not all 
models can be used to make accurate predictions. For example, nobody has ever 
devised a successful formula for predicting the ups and downs of the stock market as a 
function of time, although that does not stop investors from trying.

If numerical data do behave reasonably enough to suggest that an algebraic model might 
be found, it is often helpful to look at a picture first. That brings us to graphical models.

Graphical Models
A graphical model is a visible representation of a numerical model or an algebraic 
model that gives insight into the relationships between variable quantities. Learning to 
interpret and use graphs is a major goal of this text.

Comparing Pizzas
A pizzeria sells a rectangular 18 in. by 24 in. pizza for the same price as its large 
round pizza (24-in. diameter). If both pizzas are of the same thickness, which option 
gives the most pizza for the money?

SOLUTION We need to compare the areas of the pizzas. Fortunately, geometry  
has provided algebraic models that allow us to compute the areas from the given 
information.

For the rectangular pizza:

Area = l * w = 18 * 24 = 432 in.2

For the circular pizza:

Area = pr2 = pa24
2
b

2

= 144p ≈ 452.4 in.2

The round pizza is larger and therefore gives more for the money.
Now try Exercise 21.

EXAMPLE 3 
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[21, 18] by [28, 56]

Figure 1.1 A scatter plot of the data from  
a Galileo gravity experiment. (Example 4)

Visualizing Galileo’s Gravity Experiments
Galileo Galilei (1564–1642) spent a good deal of time rolling balls down inclined 
planes, carefully recording the distance they traveled as a function of elapsed time. 
His experiments are commonly repeated in physics classes today, so it is easy to 
reproduce a typical table of Galilean data.

Elapsed time (sec) 0 1 2 3 4 5 6 7 8

Distance traveled (in.) 0 0.75 3 6.75 12 18.75 27 36.75 48

What graphical model fits the data? Can you find an algebraic model that fits?

SOLUTION A scatter plot of the data is shown in Figure 1.1.

Galileo’s experience with quadratic functions suggested to him that this figure was a 
parabola with its vertex at the origin; he therefore modeled the effect of gravity as a 
quadratic function:

d = kt2.

Because the ordered pair 11, 0.752 must satisfy the equation, it follows that 
k = 0.75, yielding the equation

d = 0.75t2.

You can verify numerically that this algebraic model correctly predicts the rest of the 
data points. We will have much more to say about parabolas in Chapter 2.

Now try Exercise 23.

EXAMPLE 4 

This insight led Galileo to discover several basic laws of motion that would eventually 
be named after Isaac Newton. Although Galileo had found the algebraic model to 
describe the path of the ball, it would take Newton’s calculus to explain why that model 
worked.

[25, 65] by [60, 90]

Figure 1.2 The line with equation 
y = 0.35x + 62.9 is a good model for  
the life expectancy data in Table 1.4. 
(Example 5).

Fitting a Curve to Data
Table 1.4 shows the average life expectancy for persons born in Singapore in each 
given year. The data are drawn from census years between 1960 and 2020.

EXAMPLE 5 

Model the trend graphically and use the graphical model to suggest an algebraic model.

SOLUTION A scatter plot of the data is shown in Figure 1.2. Since the points show a 
linear pattern, a linear equation is an appropriate algebraic model. We will describe in 
Chapter 2 how a statistician would find the best line to fit the data, but we can get a 
pretty good fit for now by putting the line through 10, 62.92 and 160, 83.92.
The slope is 183.9 - 62.92>160 - 02 = 0.35 and the y-intercept is 62.9.

You can observe that the line y = 0.35x + 62.9 does a very nice job of modeling the 
data. Now try Exercises 13 and 15.

Table 1.4 Years of Life Expected at Birth in Singapore, 1960−2020
Years After 1960 0 10 20 30 40 50 60

Life Expectancy 62.9 65.8 72.1 75.3 78.0 81.7 83.9

Source: https://singstat.gov.sg.
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[25, 65] by [60, 90]

Figure 1.3 A scatter plot showing the life 
expectancy of Singaporean residents 
(the circles represent the females, while the 
crosses represent the males) for the same 
years as shown in Figure 1.2. The high point 
in 1980 is even more apparent.

Interpreting the Model

The parabola in Example 4 arose from a law of physics that governs falling objects, 
which should inspire more confidence than the linear model in Example 5. We can 
repeat Galileo’s experiment many times with differently sloped ramps, with 
 different units of measurement, and even on different planets, and a quadratic model 
will fit it every time. The purpose of this Exploration is to think more deeply about 
the linear model for the life expectancy data.

 1. The linear model we found will not continue to predict life expectancy indefi-
nitely. Why must it eventually fail? 

 2. Do you think that our linear model should give an accurate estimate for the 
life expectancy of a person born in Singapore in 2030? Why or why not?

 3. The linear model is such a good fit that it actually calls our attention to the 
unusually high point for females in 1980. Statisticians might look for a 
 reason for why the gap in life expectancy between females and males 
increased or decreased in later years for both genders. Can you think of 
one? As a hint, consider the scatter plot in Figure 1.3, which shows the life 
expectancy for females and males in Singapore for the same period.

EXPLORATION 2 

There are other ways of graphing numerical data that are particularly useful for statisti-
cal studies. We will treat some of them in Chapter 10. The scatter plot will be our 
choice of data graph for the time being, because it provides the closest connection to 
graphs of functions in the Cartesian plane.

The Zero Factor Property
The main reason for studying algebra through the ages has been to solve equations. 
We develop algebraic models for phenomena so that we can solve problems, and the 
solutions to the problems usually come down to finding solutions of algebraic 
equations.

If we are fortunate enough to be solving an equation in a single variable, we might pro-
ceed as in the following example.

Solving an Equation Algebraically
Find all real numbers x for which 6x3 = 11x2 + 10x.

SOLUTION We begin by changing the form of the equation to 
6x3 - 11x2 - 10x = 0.

We can then solve this equation algebraically by factoring:

 6x3 - 11x2 - 10x = 0

 x16x2 - 11x - 102 = 0

 x12x - 5213x + 22 = 0

x = 0 or 2x - 5 = 0 or 3x + 2 = 0

x = 0 or x =
5

2
 or x = -  

2

3
Now try Exercise 31.

EXAMPLE 6 
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In Example 6, we used the important Zero Factor Property of real numbers.

Zero Factor Property

A product of real numbers is zero if and only if at least one of the factors in the 
product is zero.

It is this property that algebra students use to solve equations in which an expression is 
set equal to zero. Modern problem solvers are fortunate to have an alternative way to 
find such solutions.

If we graph the expression, then the x-intercepts of the graph of the expression will be 
the values for which the expression equals 0.

X=–5.741657 Y=0
Zero

[28, 6] by [220, 20]

Figure 1.4 The graph of y = x2 + 4x - 10. 
(Example 7)

Solving Equations  
with Technology
Example 7 shows one method of solving an 
equation with technology. Some graphers could 
also solve the equation in Example 7 by finding 
the intersection of the graphs of y = x2 and 
y = 10 - 4x. Some graphers have built-in equa-
tion solvers. Each method has its advantages and 
disadvantages, but we recommend the “finding 
the x-intercepts” technique for now, because it 
most closely parallels the classical algebraic 
techniques for finding roots of equations and 
makes the connection between the algebraic and 
graphical models easier to follow and appreciate.

Solving an Equation: Comparing Methods
Solve the equation x2 = 10 - 4x.

SOLUTION 

Solve Algebraically The given equation is equivalent to x2 + 4x - 10 = 0.

This quadratic equation has irrational solutions that can be found by the quadratic 
formula.

x =
-4 + 216 + 40

2
≈ 1.7416574

and

x =
-4 - 216 + 40

2
≈ -5.7416574

Although the decimal answers are certainly accurate enough for all practical pur-
poses, it is important to note that only the expressions found by the quadratic formula 
give the exact real number answers. The tidiness of exact answers is a worthy mathe-
matical goal. Realistically, however, exact answers are often impossible to obtain, 
even with the most sophisticated mathematical tools.

Solve Graphically We first find an equivalent equation with 0 on the right-hand 
side: x2 + 4x - 10 = 0. We next graph the equation y = x2 + 4x - 10, as shown 
in Figure 1.4.

We then use the grapher to locate the x-intercepts of the graph:

x ≈ 1.7416574 and x ≈ -5.7416574

Now try Exercise 35.

EXAMPLE 7 

We used the graphing utility of the calculator to solve graphically in Example 7. Most 
calculators also have solvers that would enable us to solve numerically for the same 
decimal approximations without considering the graph. Some calculators have com-
puter algebra systems that will solve numerically to produce exact answers in certain 
cases. In this text we will distinguish between these two technological methods and the 
traditional pencil-and-paper methods used to solve algebraically.
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Every method of solving an equation usually comes down to finding where an expres-
sion equals zero. If we use ƒ1x2 to denote an algebraic expression in the variable x, the 
connections are as follows:

Fundamental Connection

If a is a real number that solves the equation ƒ1x2 = 0, then these three state-
ments are equivalent:

1. The number a is a root (or solution) of the equation ƒ1x2 = 0.

2. The number a is a zero of y = ƒ1x2.
3. The number a is an x-intercept of the graph of y = ƒ1x2. (Sometimes the 

point 1a, 02 is referred to as an x-intercept.)

Problem Solving
George Pólya (1887–1985) is called the father of modern problem solving, not only 
because he was good at it (as he certainly was) but also because he published the most 
famous analysis of the problem-solving process: How to Solve It: A New Aspect of 
Mathematical Method. His “four steps” are well known to most mathematicians:

The increased emphasis on problem solving in recent years has been accompanied by a 
more prescriptive approach to modeling. The Guidelines for Assessment and Instruction 
in Mathematical Modeling Education (GAIMME) report recommends the following 
approach, echoing Pólya’s four steps:

Mathematical Modeling (GAIMME)

1. Identify the problem.

2. Make assumptions and identify variables.

3. Carry out the mathematics.

4. Analyze and assess the solution.

5. Iterate. (In actual practice, the final step would be to implement the model.)

The American Statistical Association’s Guidelines for Assessment and Instruction in 
Statistics Education (GAISE) Report recommends the following approach for model-
ing that is based on data analysis and statistical inference:

Statistical Problem Solving (GAISE)

1. Formulate questions.

2. Collect data.

3. Analyze the data.

4. Interpret the results.

Pólya’s Four Problem-Solving Steps

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan.

4. Look back.
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The problem-solving process that we recommend you use throughout this course will 
be the following version of Pólya’s four steps.

Problem-Solving Process

Step 1—Understand the problem.

• Read the problem as stated, several times if necessary.

• Be sure you understand the meaning of each term used.

• Restate the problem in your own words. Discuss the problem with others 
if you can.

• Identify clearly the information that you need to solve the problem.

• Find the information you need from the given data.

Step 2—Develop a mathematical model of the problem.

• Draw a picture to visualize the problem situation. It usually helps.

• Introduce a variable to represent the quantity you seek. (In some cases 
there may be more than one.)

• Use the statement of the problem to find an equation or inequality that 
relates the variables you seek to quantities that you know.

Step 3—Solve the mathematical model and support or confirm the 
solution.

• Solve algebraically using traditional algebraic methods, and support 
graphically or support numerically using a graphing utility.

• Solve graphically or numerically using a graphing utility and confirm 
algebraically using traditional algebraic methods.

• Solve graphically or numerically because there is no other way possible.

Step 4—Interpret the solution in the problem setting.

• Translate your mathematical result into the problem setting and decide 
whether the result makes sense.

Applying the Problem-Solving Process
The engineers at an auto manufacturer pay students $0.08 per mile plus $25 per day 
to road test their new vehicles.

(a) How much did the auto manufacturer pay Sally to drive 440 mi in one day?

(b) John earned $93 test-driving a new car in one day. How far did he drive?

SOLUTION 

Model A picture of a car or of Sally or John would not be helpful, so we go directly 
to designing the model. Both John and Sally earned $25 for one day, plus $0.08 per 
mile. Multiply dollars>mile by miles to get dollars.

So if p represents the pay for driving x miles in one day, our algebraic model is

p = 25 + 0.08x.

EXAMPLE 8 

(continued)
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Grapher Failure and Hidden Behavior
Although the graphs produced by computers and graphing calculators are wonderful 
tools for understanding algebraic models and their behavior, it is important to keep in 
mind that machines have limitations. Occasionally they can produce graphical models 
that misrepresent the phenomena we wish to study, a problem we call grapher failure. 
Sometimes the viewing window will be too large, obscuring details of the graph, which 
we call hidden behavior. We will give an example of each just to illustrate what can 
happen, but rest assured that these difficulties rarely occur with graphical models that 
arise from real-world problems.

X=440          Y=60.2
[0, 940] by [0, 150]

(a)

X=850          Y=93
[0, 940] by [0, 150]

(b)

Figure 1.5 Graphical support for  
the algebraic solutions in Example 8.

Solve Algebraically
(a) To get Sally’s pay we let x = 440 and solve for p:

 p = 25 + 0.0814402
 = 60.20

(b) To get John’s mileage we let p = 93 and solve for x:

 93 = 25 + 0.08x

 68 = 0.08x

 x =
68

0.08
 x = 850

Support Graphically Figure 1.5a shows that the point 1440, 60.202 is on the graph 
of y = 25 + 0.08x, supporting our answer to (a). Figure 1.5b shows that the point 
1850, 932 is on the graph of y = 25 + 0.08x, supporting our answer to (b). (We 
could also have supported our answer numerically by simply substituting in for 
each x and confirming the value of p.)

Interpret Sally earned $60.20 for driving 440 mi in one day. John drove 850 mi in 
one day to earn $93.00. Now try Exercise 47.

It is not really necessary to show written support as part of an algebraic solution, but it 
is good practice to support answers wherever possible, simply to reduce the chance for 
error. We will often show written support of our solutions in this book in order to high-
light the connections among the algebraic, graphical, and numerical models.

Technology Note
One way to get the table in Figure 1.6b is to use 
the “Ask” feature of your graphing calculator and 
enter each x-value separately.

[24.7, 4.7] by [23.1, 3.1]

(a)    

X

Y1 = 3–1/   (X2–1)

.8

.9
1
1.1
1.2
1.3
1.4

ERROR
ERROR
ERROR
.81782
1.4924
1.7961
1.9794

Y1

(b)

Figure 1.6 (a) A graph with no apparent intercepts. (b) The function  

y = 3 - 1>2x2 - 1 is undefined when 0 x 0 … 1.

Seeing Grapher Failure

Look at the graph of y = 3 -
12x2 - 1

 in the ZDecimal window on a graphing 

 calculator. Are there any x-intercepts?

SOLUTION The graph is shown in Figure 1.6a.

EXAMPLE 9 
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The graph seems to have no x-intercepts, yet we can find some by solving the equa-
tion 0 = 3 - 1>2x2 - 1 algebraically:

 0 = 3 - 1>2x2 - 1

 1>2x2 - 1 = 3

 2x2 - 1 = 1>3
 x2 - 1 = 1>9

 x2 = 10>9
 x = ±210>9 ≈ ±1.054

There should be x-intercepts at about ±1.054. What went wrong?

The answer is a simple form of grapher failure. As the table shows, the function is 
undefined for the sampled x-values until x = 1.1, at which point the graph “turns 
on,” beginning with the pixel at 11.1, 0.817822 and continuing from there to the 
right. Similarly, the graph coming from the left “turns off “ at x = -1, before it 
gets to the x-axis. The x-intercepts might well appear in other windows, but for this 
particular function in this particular window, the behavior we expect to see is not 
there. Now try Exercise 49.

[4.95, 5.15] by [20.1, 0.1]

Figure 1.8 A closer look at the graph  
of y = x3 - 1.1x2 - 65.4x + 229.5. 
(Example 10)

Not Seeing Hidden Behavior
Solve graphically: x3 - 1.1x2 - 65.4x + 229.5 = 0.

SOLUTION Figure 1.7a shows the graph in the standard 3-10, 104  by 3-10, 104  
window, an inadequate choice because too much of the graph is off the screen. Our 
horizontal dimensions look fine, so we adjust our vertical dimensions to 
3-500, 5004 , which yields the graph in Figure 1.7b.

EXAMPLE 10 

(a)

[210, 10] by [210, 10]

   (b)

[210, 10] by [2500, 500]

Figure 1.7 The graph of y = x3 - 1.1x2 - 65.4x + 229.5 in two viewing  
windows. (Example 10)

We use the grapher to locate an x-intercept near -9 (which we find to be -9) and 
then an x-intercept near 5 (which we find to be 5). The graph leads us to believe that 
we have finished. However, if we zoom in closer to observe the behavior near x = 5, 
the graph tells a new story (Figure 1.8).

In this graph we see that there are actually two x-intercepts near 5 (which we find to 
be 5 and 5.1). There are therefore three roots (or zeros) of the equation x3 - 1.1x2 -
65.4x + 229.5 = 0: x = -9, x = 5, and x = 5.1. Now try Exercise 51.
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96 CHAPTER 1 Functions and Graphs

You might wonder if there could be still more hidden x-intercepts in Example 10! We 
will learn in Chapter 2 how the Fundamental Theorem of Algebra guarantees that there 
are not.

A Word About Proof
While Example 10 is still fresh in our minds, let us point out a subtle, but very impor-
tant, consideration about our solution.

We solved graphically to find two solutions, then eventually three solutions, to the 
given equation. Although we did not show the steps, it is easy to confirm numerically 
that the three numbers found are actually solutions by substituting them into the equa-
tion. But the problem asked us to find all solutions. Although we could explore that 
equation graphically in a hundred more viewing windows and never find another solu-
tion, our failure to find them would not prove that they are not out there somewhere. 
That is why the Fundamental Theorem of Algebra is so important. It tells us that there 
can be at most three real solutions to any cubic equation, so we know for a fact that 
there are no more.

Exploration is encouraged throughout this text because it is how mathematical 
progress is made. Mathematicians are never satisfied, however, until they have 
proved their results. We will show you proofs in later chapters, and we will ask you 
to produce proofs occasionally in the exercises. That will be a time for you to set 
the technology aside, get out a pencil, and show in a logical sequence of algebraic 
steps that something is undeniably and universally true. This process is called 
deductive reasoning.

All of these numbers are divisible by 6, but that does not prove that they will con-
tinue to be divisible by 6 for all values of n. In fact, a table with a billion values, all 
divisible by 6, would not constitute a proof. Here is a proof:

Let n be any positive integer.

• We can factor n3 - n as the product of three numbers: 1n - 121n21n + 12.
• The factorization shows that n3 - n is always the product of three consecutive 

integers.

• Every set of three consecutive integers must contain a multiple of 3.

• Since 3 divides a factor of n3 - n, it follows that 3 is a factor of n3 - n itself.

• Every set of three consecutive integers must contain a multiple of 2.

• Since 2 divides a factor of n3 - n, it follows that 2 is a factor of n3 - n itself.

• Since both 2 and 3 are factors of n3 - n, we know that 6 is a factor of n3 - n.

End of proof! Now try Exercise 53.

Table 1.5 The First 12 Values of n3 - n

n 1 2 3 4 5 6 7 8 9 10 11 12

n3 − n 0 6 24 60 120 210 336 504 720 990 1320 1716

Proving a Peculiar Number Fact
Prove that 6 is a factor of n3 - n for every positive integer n.

SOLUTION You can explore this expression for various values of n on your 
 calculator. Table 1.5 shows it for the first 12 values of n.

EXAMPLE 11 
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

Factor the following expressions completely over the real numbers.

 1. x2 - 16

 2. x2 + 10x + 25

 3. 81y2 - 4

 4. 3x3 - 15x2 + 18x

 5. 16h4 - 81

 6. x2 + 2xh + h2

 7. x2 + 3x - 4

 8. x2 - 3x + 4

 9. 2x2 - 11x + 5

 10. x4 + x2 - 20

QUICK REVIEW 1.1 (For help, go to Section A.2.) 

SECTION 1.1 Exercises

In Exercises 1–10, match the numerical model to the corresponding 
graphical model (a–j) and algebraic model (k–t).

 1. x 3 5 7 9 12 15

y 6 10 14 18 24 30

x 0 1 2 3 4 5

y 2 3 6 11 18 27

 2.  

x 2 4 6 8 10 12

y 4 10 16 22 28 34

 3.  

x 4 8 12 14 18 24

y 20 72 156 210 342 600

 8. 

x 3 4 5 6 7 8

y 8 15 24 35 48 63

 9. 

x 4 7 12 19 28 39

y 1 2 3 4 5 6

 10. 

x 1 2 3 4 5 6

y 5 7 9 11 13 15

 6. 

x 5 7 9 11 13 15

y 1 2 3 4 5 6

 7. 

x 1 2 3 4 5 6

y 39 36 31 24 15 4

 5. 

x 5 10 15 20 25 30

y 90 80 70 60 50 40

 4. 

(a)

[22, 14] by [24, 36]

(b)

[21, 6] by [22, 20]

(c)

[24, 40] by [21, 7]

(d)

[23, 18] by [22, 32]

(e)

[21, 7] by [24, 40]

(f)

[21, 7] by [24, 40]

(g)

[21, 16] by [21, 9]

(h)

[25, 30] by [25, 100]

(i)

[23, 9] by [22, 60]

( j)

[25, 40] by [210, 650]

(k) y = x2 + x (l) y = 40 - x2

(m) y = 1x + 121x - 12 (n) y = 2x - 3

(o) y = 100 - 2x (p) y = 3x - 2

(q) y = 2x (r) y = x2 + 2

(s) y = 2x + 3 (t) y =
x - 3

2
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98 CHAPTER 1 Functions and Graphs

 11. (a)  According to the numerical model, what has been the trend 
in the percentage of females participating in the civilian 
work force since 1960?

(b) In what 5-year interval did the percentage of female partic-
ipation change the most?

 12. (a)  According to the numerical model, what has been the trend 
in the percentage of males participating in the civilian work 
force since 1960?

(b) In what 5-year interval did the percentage of male partici-
pation change the most?

 13. Model the data graphically with two scatter plots on the same 
graph, one showing the percentage of females employed as a 
function of time and the other showing the same for males. 
Measure time in years since 1960.

 14. Over the 50-year period, have the male percentages been  falling 
faster than the female percentages are rising, or vice versa?

  
 15. Model the male and female data algebraically with separate lin-

ear equations of the form y = mx + b. [Use the 1960 and 2010 
ordered pairs (with x-coordinates 0 and 50) to compute the 
slopes.]

 16. If the percentages follow the linear models found in Exercise 15, 
at what point will the lines intersect? What is the significance of 
the intersection point in terms of employment participation?

 17. Which data in Table 1.6 (male or female) appear to be less 
likely to follow a linear model? On the basis of social and his-
torical circumstances, can you explain the nonlinear behavior 
in that model?

 18. Writing to Learn Explain why the percentages cannot con-
tinue indefinitely to follow the linear models that you wrote in 
Exercise 15.

 19. Doing Arithmetic with Lists Enter the data from the 
“Total” column of Table 1.2 of Example 2 into list L1 in your 
 calculator. Enter the data from the “Female” column into list L2. 
Check a few computations to see that either one of the  procedures 
in (a) and (b) causes the calculator to divide each element of L2 

Table 1.6 Labor Force Participation Rate, 
Age 16 and Over

Year Female Male

1960 37.7 83.4
1965 39.3 80.5
1970 43.3 79.6
1975 46.3 77.2
1980 51.5 77.0
1985 54.5 76.1
1990 57.5 76.3
1995 58.9 74.6
2000 59.9 74.7
2005 59.3 73.2
2010 58.6 70.7

Source: U.S. Bureau of Labor Statistics (www.bls.gov).

Exercises 11–18 refer to the data in Table 1.6, showing the participation 
rate of the male and female population in the United States civilian work 
force in selected years from 1960 through 2010 (seasonally adjusted):

by the corresponding entry in L1, multiply it by 100, and 
store the resulting list of percentages in L3.

(a) On the home screen, enter the command: 
100 * L2>L1 S L3. 

(b) Go to the top of list L3 and enter L3 = 1001L2>L12.
 20. Comparing Cakes A bakery sells a 9″ by 13″ cake for 

the same price as an 8″ diameter round cake. If the round 
cake is twice the height of the rectangular cake, which 
option gives the most cake for the money?

 21. Stepping Stones A garden shop sells 12″ by 12″ square 
stepping stones for the same price as 13″ round stones. If all 
of the stepping stones are the same thickness, which option 
gives the most rock for the money?

 22. Free Fall of a Smoke Bomb At the Oshkosh, 
 Wisconsin, air show, Jake Trouper drops a smoke bomb to 
signal the official beginning of the show. Ignoring air resis-
tance, an object in free fall will fall d feet in t seconds, 
where d and t are related by the algebraic model d = 16t2.

(a) How long will it take the bomb to fall 180 ft?

(b) If the smoke bomb is in free fall for 12.5 sec after it is 
dropped, how high was the airplane when the smoke 
bomb was dropped?

 23. Physics Equipment A physics student obtains the fol-
lowing data involving a ball rolling down an inclined plane, 
where t is the elapsed time in seconds and y is the distance 
traveled in inches.

t 0 1 2 3 4 5

y 0 1.2 4.8 10.8 19.2 30

  Find an algebraic model that fits the data.

 24. Global Air Travel The number of revenue air 
 passengers enplaned globally per year from 1996 to 2020 
are shown in Table 1.7.

Table 1.7 World Air Travel, 1996–2020

Year
Passengers  
(billions) Year

Passengers  
(billions) Year

Passengers  
(billions)

1996 1.391 2005 1.970 2014 3.227
1997 1.455 2006 2.072 2015 3.446
1998 1.467 2007 2.209 2016 3.705
1999 1.562 2008 2.208 2017 3.974
2000 1.674 2009 2.250 2018 4.242
2001 1.655 2010 2.628 2019 4.558
2002 1.627 2011 2.787 2020 1.809
2003 1.665 2012 2.894
2004 1.889 2013 3.048

Source: World Bank Data.

(a) Graph a scatter plot of the data. Let x be the number of 
years since 1990. 

(b) Write the equation for the line with slope 0.066 passing 
through the point 16, 1.3912 and superimpose it on the 
 scatter plot. What happened in 2002 and 2003 to disrupt 
the model of linear growth?

(c) Write the equation of the line with slope 0.23 passing 
through the point 119, 2.2502. What story do these two 
lines seem to tell?
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 SECTION 1.1 Modeling and Equation Solving 99

 25. Which line is which, and how do you know?

 26. After Peter Ueberroth’s resignation as baseball commissioner in 
1988 and his successor’s untimely death in 1989, the team own-
ers broke free of previous restrictions and began an era of com-
petitive spending on player salaries. Identify where the 1990 
salaries appear in the graph and explain how you can spot them.

 27. The owners attempted to halt the uncontrolled spending by pro-
posing a salary cap, which prompted a players’ strike in 1994. 
The strike caused the 1995 season to be shortened and left 
many fans angry. Identify where the 1995 salaries appear  
in the graph and explain how you can spot them.

 28. Writing to Learn Analyze the general patterns in the 
graphical model and give your thoughts about what the long-
term implications might be for

(a) the players;

(b) the team owners;

(c) the baseball fans.

In Exercises 29–38, solve the equation algebraically and confirm 
 graphically.

 29. v2 - 5 = 8 - 2v2

 30. 1x + 1122 = 121

 31. 2x2 - 5x + 2 = 1x - 321x - 22 + 3x

 32. x2 - 7x -
3
4

= 0

 33. x12x - 52 = 12

 34. x12x - 12 = 10

 35. x1x + 72 = 14

 36. x2 - 3x + 4 = 2x2 - 7x - 8

 37. x + 1 - 22x + 4 = 0

 38. 2x + x = 1

Exercises 25–28 refer to the graph below, which shows the minimum 
salaries in major league baseball over a recent 18-year period and the 
average salaries in major league baseball over the same period. Salaries 
are measured in dollars and time is measured after the starting year 
(year 0).

–1

140,000

280,000

420,000

560,000

700,000

840,000

980,000

1,120,000

1,260,000

1,400,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
x

y

Source: Major League Baseball Players Association.

In Exercises 39–46, solve the equation graphically by converting it to 
an equivalent equation with 0 on the right-hand side and then finding 
the x-intercepts.

 39. 2x - 5 = 2x + 4 40. 0 3x - 2 0 = 22x + 8

 41. 0 2x - 5 0 = 4 - 0 x - 3 0  42. 2x + 6 = 6 - 225 - x

 43. 2x - 3 = x3 - 5 44. x + 1 = x3 - 2x - 5

 45. 1x + 12-1 = x-1 + x 46. x2 = 0 x 0
 47. Swan Auto Rental charges $32 per day plus $0.18 per mile for 

an automobile rental.

(a) Elaine rented a car for one day and she drove 83 mi. How 
much did she pay?

(b) Ramon paid $69.80 to rent a car for one day. How far did 
he drive?

 48. Connecting Graphs and Equations The curves on the 
graph below are the graphs of the three curves given by

y1 = 4x + 5

y2 = x3 + 2x2 - x + 3

y3 = -x3 - 2x2 + 5x + 2.

15

10

5

–10

y

–5

x
–5 –4 –2 –1 31 4 5

(a) Write an equation that can be solved to find the points of 
intersection of the graphs of y1 and y2.

(b) Write an equation that can be solved to find the x-intercepts  
of the graph of y3.

(c) Writing to Learn How does the graphical model 
reflect the fact that the answers to (a) and (b) are equiva-
lent algebraically?

(d) Confirm numerically that the x-intercepts of y3 give the 
same values when substituted into the expressions for y1 
and y2.

 49. Exploring Grapher Failure Let y = 1x20021>200.

(a) Explain algebraically why y = x for all x Ú 0.

(b) Graph the equation y = 1x20021>200 in the window 30, 14  
by 30, 14 .

(c) Is the graph different from the graph of y = x?

(d) Can you explain why the grapher failed?
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 51. Exploring Hidden Behavior Solving graphically, find all 
real solutions to the following equations. Watch out for hidden 
behavior.

(a) 10x3 + 7.5x2 - 54.85x + 37.95 = 0

(b) x3 + x2 - 4.99x + 3.03 = 0

 52. Connecting Algebra and Geometry The geometric fig-
ure shown on the right above is a large square with a small 
square missing.

(a) Find the area of the figure.

(b) What area must be added to complete the large square?

(c) Explain how the algebraic formula for completing the 
square models the completing of the square in (b).

 53. Proving a Theorem Prove that if n is a positive integer, 
then n2 + 2n is either odd or a multiple of 4. Compare your 
proof with those of your classmates.

 54. Writing to Learn The graph below shows the distance 
from home against time for a jogger. Using information from 
the graph, write a paragraph describing the jogger’s workout.

 57. Multiple Choice 

[0, 6] by [29, 15]

 58. Multiple Choice 

[0, 9] by [0, 6]

 50. Writing to Learn Connecting Algebra and Geometry  
Explain how the algebraic equation 1x + b22 = x2 + 2bx + b2 
models the areas of the regions in the geometric figure shown 
below on the left:

(Ex. 50)

x

x

b

b

(Ex. 52)

x

x

b
2

b
2

y

x

Time

D
is

ta
nc

e

Standardized Test Questions
 55. True or False A product of real numbers is zero if and only 

if every factor in the product is zero. Justify your answer.

 56. True or False An algebraic model can always be used to 
make accurate predictions.

In Exercises 57–60, you may use a graphing calculator to decide which 
algebraic model corresponds to the given graphical or numerical model.

(A)  y = 2x + 3 (B)  y = x2 + 5

(C)  y = 12 - 3x (D)  y = 4x + 3

(E)  y = 28 - x

 59. Multiple Choice 

x 1 2 3 4 5 6

y 6 9 14 21 30 41

 60. Multiple Choice 

x 0 2 4 6 8 10

y 3 7 11 15 19 23

Explorations
 61. Analyzing the Market Both Ahmad and LaToya watch 

the stock market throughout the year for stocks that make sig-
nificant jumps from one month to another. When they spot one, 
each buys 100 shares. Ahmad’s rule is to sell the stock if it fails 
to perform well for three months in a row. LaToya’s rule is to 
sell in December if the stock has failed to perform well since 
its purchase.

  The graph below shows the monthly performance in dollars 
(Jan.–Dec.) of a stock that both Ahmad and LaToya have been 
watching.

Stock Index
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Ju
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.
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t.
Oct. Nov

.
Dec

.

(a) Both Ahmad and LaToya bought the stock early in the 
year. In which month?

(b) At approximately what price did they buy the stock?

(c) When did Ahmad sell the stock?

(d) How much did Ahmad lose on the stock?
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(e) Writing to Learn Explain why LaToya’s strategy  
was better than Ahmad’s for this particular stock in this 
particular year.

(f) Sketch a 12-month graph of a stock’s performance that 
would favor Ahmad’s strategy over LaToya’s.

 62. Group Activity Creating Hidden Behavior You can 
create your own graphs with hidden behavior. Working in 
groups of two or three, try this exploration.

(a) Graph the equation y = 1x + 221x2 - 4x + 42 in the 
window 3-4, 44  by 3-10, 104 .

(b) Confirm algebraically that this function has zeros only at 
x = -2 and x = 2.

(c) Graph the Equation y = 1x + 221x2 - 4x + 4.012 in the 
window 3-4, 44  by 3-10, 104

(d) Confirm algebraically that this function has only one zero, 
at x = -2. (Use the discriminant.)

(e) Graph the Equation 1x + 221x2 - 4x + 3.992 in 
the window 3-4, 44  by 3-10, 104 .

(f) Confirm algebraically that this function has three zeros. 
(Use the discriminant.)

Extending the Ideas
 63. The Proliferation of Cell Phones Table 1.8 shows the 

number of wireless service subscribers in the United States and 
their average monthly bill in the years from 2000 through 2015.

Table 1.8 Wireless Service Subscribers

 
 

Year

 
Subscribers 
(millions)

Average Monthly 
Revenue per 

Subscriber Unit ($)

2000 109.5 48.55
2001 128.4 49.79
2002 140.8 51.00
2003 158.7 51.55
2004 182.1 52.54
2005 207.9 50.65
2006 233.0 49.07
2007 255.4 49.26
2008 270.3 48.87
2009 285.6 47.97
2010 296.3 47.53
2011 316.0 46.11
2012 326.5 48.99
2013 335.7 48.79
2014 355.4 46.64
2015 377.9 44.65

Source: Cellular Communications and Internet Association.

(a) Graph the scatter plots of the number of subscribers and 
the average monthly bill as functions of time, letting  
t = the number of years after 2000.

(b) One of the scatter plots suggests a linear model. Use the 
points at t = 0 and t = 15 to find a model in the form 
y = mx + b. 

(c) Superimpose the graph of the linear model onto the scatter 
plot. Does the fit appear to be good?

(d) Statisticians would look at the graph in (c) and point out 
there is a pattern in the scatter plot that the line fails to 
predict. Can you see it?

(e) The plot of the average bills over time seems to suggest a 
disruption in the trend in 2005 that continued to about 
2011, followed by another shift in 2011. Can you spot 
something similar in the graph in (c)?

 64. Group Activity (Continuation of Exercise 63) Look into 
the history of wireless telecommunication and see if you can 
suggest possible explanations for the fluctuations that show up 
in the scatter plots.
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There are many ways to look at functions. One of the most intuitively helpful is the 
“machine” concept (Figure 1.9), in which values of the domain 1x2 are fed into the 
machine (the function ƒ) to produce range values 1y2. To indicate that y comes from  
the function acting on x, we use Euler’s elegant function notation y = ƒ1x2 (which we 
read as “y equals ƒ of x” or “the value of ƒ at x”). Here x is the independent variable 
and y is the dependent variable.

A function can also be viewed as a mapping of the elements of the domain onto the 
elements of the range. Figure 1.10a shows a function that maps elements from the 
domain X onto elements of the range Y. Figure 1.10b shows another such mapping, but 
this one is not a function, since the rule does not assign the element x1 to a unique 
 element of Y.

What you’ll learn about
• Function Definition and Notation

• Domain and Range

• Continuity

• Increasing and Decreasing 
 Functions

• Boundedness

• Local and Absolute Extrema

• Symmetry

• Asymptotes

• End Behavior

... and why
Functions and graphs form the basis 
for understanding the mathematics 
and applications you will see both in 
your workplace and in coursework 
in college.

In this section we will introduce the terminology that is used to describe functions 
throughout this text. Feel free to skim over parts with which you are already familiar, 
but take the time to become comfortable with concepts that might be new to you (like 
continuity and symmetry). Even if it takes several days to cover this section, it will be 
precalculus time well spent.

1.2 Functions and Their Properties

Function Definition and Notation
Mathematics and its applications abound with examples of formulas by which quantita-
tive variables are related to each other. The language and notation of functions is ideal 
for that purpose. A function is actually a simple concept; if it were not, history would 
have replaced it with a simpler one by now. Here is the definition.

x

f
f (x)

Figure 1.9 A “machine” diagram for a 
function.

DEFINITION Function, Domain, and Range

A function from a set D to a set R is a rule that assigns to each element in D a 
unique element in R. The set D of all input values is the domain of the function, 
and the set R of all output values is the range of the function.

(a) (b)

A function

Domain

X XY Y

Range

Not a function

y2 y2

y4
y1 y1

y3 y3

x2 x2

x1 x1

x3 x3
x4

x4

Figure 1.10 The diagram in (a) depicts a mapping from X to Y that is a function. The  
diagram in (b) depicts a mapping from X to Y that is not a function.

This uniqueness of the range value is very important to us as we study function behav-
ior. Knowing that ƒ122 = 8 tells us something about ƒ, and that understanding would 

A Bit of History
The word function in its mathematical sense is 
generally attributed to Gottfried Leibniz 
 (1646–1716), one of the pioneers in the methods 
of calculus. His attention to clarity of notation is 
one of his greatest contributions to scientific 
progress, which is why we still use his notation 
in calculus courses today. Ironically, it was not 
Leibniz but Leonhard Euler (1707–1783) who 
introduced the familiar notation ƒ1x2.
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Domain and Range
We will usually define functions algebraically, giving the rule explicitly in terms of the 
domain variable. The rule, however, does not tell the complete story without some con-
sideration of what the domain actually is.

be contradicted if we were to discover later that ƒ122 = 4. That is why you will never 
see a function defined by an ambiguous formula like ƒ1x2 = 3x ± 2.

Defining a Function
Does the formula y = x2 define y as a function of x?

SOLUTION Yes, y is a function of x. In fact, we can write the formula in function 
notation: ƒ1x2 = x2. When a number x is substituted into the function, the square of 
x will be the output, and there is no ambiguity about what the square of x is.

Now try Exercise 3.

EXAMPLE 1 

Another useful way to look at functions is graphically. The graph of the function 
y = ƒ 1x2 is the set of all points 1x, ƒ1x22, x in the domain of ƒ. We match domain val-
ues along the x-axis with their range values along the y-axis to get the ordered pairs that 
yield the graph of y = ƒ1x2.

Figure 1.11 One of these is not the graph of y as a function of x. (Example 2)

(a)

[24.7, 4.7] by [23.3, 3.3]
(b)

[24.7, 4.7] by [23.3, 3.3]

(c)

[24.7, 4.7] by [23.3, 3.3]

Seeing a Function Graphically
Of the three graphs shown in Figure 1.11, which is not the graph of y as a function  
of x? How can you tell?

SOLUTION The graph in (c) is not the graph of y as a function of x. There are three 
points on the graph with x-coordinate 0, so the graph does not assign a unique value 
to 0. (Indeed, we can see that there are plenty of numbers between -2 and 2 to which 
the graph assigns multiple values.) The other two graphs do not have a comparable 
problem because no vertical line intersects either of the other graphs in more than 
one point. Graphs that pass this vertical line test are the graphs of functions.

Now try Exercise 5.

EXAMPLE 2 

Vertical Line Test

A graph 1set of points 1x, y22 in the xy-plane defines y as a function of x if 
and only if no vertical line intersects the graph in more than one point. (When 
analyzing graphs, we check whether y is a function of x, not whether x is a 
function of y.)
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104 CHAPTER 1 Functions and Graphs

What About Data?
When moving from a numerical model to an 
algebraic model we will often use a function to 
approximate data pairs that by themselves violate 
our definition. In Figure 1.12 we can see that 
several pairs of data points fail the vertical line 
test, and yet the linear function approximates the 
data quite well.

[21, 10] by [21, 11]

Figure 1.12 The data points fail the vertical 
line test but are nicely approximated by a 
linear function.

For example, we can define the volume of a sphere as a function of its radius by the 
formula

V1r2 =
4
3

 pr3 1Note that this is “V of r”—not “V # r”2.

This formula is defined for all real numbers, but the volume function is not defined for 
negative r-values. So, if our intention were to study the volume function, we would 
restrict the domain to be all r Ú 0.

Note
The symbol “∪” is read “union.” It means that 
the elements of the two sets are combined to 
form one set.

Finding the Domain of a Function
Find the domain of each of these functions:

(a) ƒ1x2 = 2x + 3

(b) g1x2 =
2x

x - 5

(c) A1s2 = 123>42s2, where A1s2 is the area of an equilateral triangle with sides 
of length s.

SOLUTION 

Solve Algebraically
(a) The expression under a radical may not be negative. We set x + 3 Ú 0 and 

solve to find x Ú -3. The domain of ƒ is the interval 3-3, ∞2.
(b) The expression under a radical may not be negative; therefore x Ú 0. Also, the 

denominator of a fraction may not be zero; therefore, x ≠ 5. The domain of g is 
the interval 30, ∞2 with the number 5 removed, which we can write as the union 
of two intervals: 30, 52 ∪ 15, ∞2.

(c) The algebraic expression has domain 1-∞, ∞2, but the behavior being modeled 
restricts s from being negative. The domain of A is the interval 30, ∞2.

Support Graphically We can support our answers in (a) and (b) graphically, as the 
calculator should not plot points where the function is undefined.

(a) Notice that the graph of y = 2x + 3 (Figure 1.13a) shows points only for 
x Ú -3, as expected.

(b) The graph of y = 2x>1x - 52 (Figure 1.13b) shows points only for x Ú 0, as 
expected. Some calculators might show an unexpected line through the x-axis at 
x = 5. This line, another form of grapher failure, should not be there. Ignoring 
it, we see that 5, as expected, is not in the domain.

(c) The graph of y = 123>42s2 (Figure 1.13c) shows the unrestricted domain of 
the algebraic expression: all real numbers. The calculator has no way of knowing 
that s is the length of a side of a triangle. Now try Exercise 11.

EXAMPLE 3 

Agreement About Domain

Unless we are dealing with a model (like volume) that necessitates a restricted 
domain, we will assume that the domain of a function defined by an algebraic 
expression is the same as the domain of the algebraic expression, the implied 
domain. For models, we will use a domain that fits the situation, the relevant 
domain.
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Figure 1.13 Graphical support of the algebraic solutions in Example 3. The points in (c) with 
negative x-coordinates should be ignored because the calculator does not know that x is a length 
(but we do).

(a)

[210, 10] by [24, 4] [210, 10] by [24, 4]

(b) (c)

[210, 10] by [24, 4]

Finding the range of a function algebraically is often much harder than finding the 
domain, although graphically the things we look for are similar: To find the domain 
we look for all x-coordinates that correspond to points on the graph, and to find the 
range we look for all y-coordinates that correspond to points on the graph. A good 
approach is to use graphical and algebraic approaches simultaneously, as we show in 
Example 4.

Function Notation
A grapher typically does not use function nota-
tion. So the function ƒ1x2 = x2 + 1 is entered  
as y1 = x2 + 1. On some graphers you can eval-
uate ƒ at x = 3 by entering y1132 on the home 
screen. On the other hand, on other graphers, 
y1132 means y1 * 3.

[25, 5] by [23, 3]

Figure 1.14 The graph of y = 2>x. Is y = 0 in the range?

Finding the Range of a Function

Find the range of the function ƒ1x2 =
2
x

 .

SOLUTION 

Solve Graphically The graph of y =
2
x
 is shown in Figure 1.14.

EXAMPLE 4 

It appears that x = 0 is not in the domain (as expected, because a denominator 
 cannot be zero). It also appears that the range consists of all real numbers except 0.

Confirm Algebraically We confirm that 0 is not in the range by trying to solve 
2>x = 0:

 
2
x

= 0

 2 = 0 # x

 2 = 0

(continued)
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106 CHAPTER 1 Functions and Graphs

You can see that this is considerably more involved than finding a domain, but we are 
hampered at this point by not having many tools with which to analyze function behav-
ior. We will revisit the problem of finding ranges in Exercise 86, after having devel-
oped the tools that will simplify the analysis.

Continuity
One of the most important properties of the majority of functions that model real-world 
behavior is that they are continuous. Graphically speaking, a function is continuous at a 
point if the graph does not come apart at that point. We can illustrate the concept with a 
few graphs (Figure 1.15):

Since the equation 2 = 0 is never true, 2>x = 0 has no solutions, and so y = 0 is 
not in the range. But how do we know that all other real numbers are in the range? 
We let k be any other real number and try to solve 2>x = k:

 
2
x

= k

 2 = k # x

 x =
2
k

As you can see, there was no problem finding an x this time, so 0 is the only number 
not in the range of ƒ. We write the range 1-∞, 02 ∪ 10, ∞2.

Now try Exercise 17.

y

x

Continuous at all x

y

x

Removable discontinuity

f (a)

a

Figure 1.15 The graph of a continuous function and graphs of four other functions illustrating various types of discontinuities at x = a.

y

x

Continuous at all x

y

x

Removable discontinuity

f (a)

a

y

x

Removable discontinuity

a

y

x

Jump discontinuity

a

y

x

Infinite discontinuity

a

Let’s look at these cases individually.

This graph is continuous everywhere. Notice that the graph 
has no breaks. This means that if we are studying the behav-
ior of the function ƒ for x values close to any particular real 
number a, we can be assured that the ƒ1x2 values will be 
close to ƒ1a2.

This graph is continuous everywhere except for the “hole” 
at x = a. If we are studying the behavior of this function ƒ 
for x values close to a, we cannot be assured that the ƒ1x2 
values will be close to ƒ1a2. In this case, ƒ1x2 is smaller 
than ƒ1a2 for x near a. This is called a removable disconti-
nuity because it can be patched by redefining ƒ1a2 so as to 
plug the hole.
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This graph also has a removable discontinuity at x = a. If 
we are studying the behavior of this function ƒ for x values 
close to a, we are still not assured that the ƒ1x2 values will 
be close to ƒ1a2, because in this case ƒ1a2 doesn’t even 
exist. It is removable because we could define ƒ1a2 in such 
a way as to plug the hole and make ƒ continuous at a.

Here is a discontinuity that is not removable. It is a jump 
discontinuity because there is more than just a hole at 
x = a; there is a jump in function values that makes the gap 
impossible to plug with a single point 1a, ƒ1a22, no matter 
how we try to redefine ƒ1a2.

This is a function with an infinite discontinuity at x = a. It 
is definitely not removable.

The simple geometric concept of an unbroken graph at a point is a visual notion that is 
extremely difficult to communicate accurately in the language of algebra. The key con-
cept from the pictures seems to be that we want the point 1x, ƒ1x22 to slide smoothly 
onto the point 1a, ƒ1a22 without missing it from either direction. We say that ƒ1x2 
approaches ƒ1a2 as a limit as x approaches a, and we write lim

xSa
ƒ1x2 = ƒ1a2. This 

“limit notation” reflects graphical behavior so naturally that we will use it throughout 
this book as an efficient way to describe function behavior, beginning with this defini-
tion of continuity. A function ƒ is continuous at x = a if  lim

xSa
ƒ1x2 = ƒ1a2. A func-

tion is discontinuous at x = a if it is not continuous at x = a.

y

x

Removable discontinuity

a

y

x

Jump discontinuity

a

y

x

Infinite discontinuity

a

A Limited Use of Limits
Although the notation of limits is easy to under-
stand, the algebraic definition of a limit can be a 
little intimidating and is best left to future 
courses. We will have more to say about limits in 
Chapter 11. For now, if you understand the state-
ment lim

xS5
1x2 - 12 = 24, you are where you 

need to be.

Identifying Points of Discontinuity
Which of the graphs in Figures 1.16, 1.17, and 1.18 show functions that are discon-
tinuous at x = 2? Are any of the discontinuities removable?

SOLUTION Figure 1.16 shows a function that is undefined at x = 2 and hence not 
continuous there. The discontinuity at x = 2 is not removable.

The function graphed in Figure 1.17 is a quadratic polynomial whose graph is a 
parabola, a graph that has no breaks on its domain of all real numbers. It is 
 continuous for all x.

The function graphed in Figure 1.18 is not defined at x = 2 and so cannot be contin-
uous there. The graph looks like the graph of the line y = x + 2, except that there is 
a hole where the point 12, 42 should be. This is a removable discontinuity.

Now try Exercise 21.

EXAMPLE 5 
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108 CHAPTER 1 Functions and Graphs

Increasing and Decreasing Functions
Another function concept that is easy to understand graphically is the property of being 
increasing, decreasing, or constant on an interval. We illustrate the concept with a few 
graphs (Figure 1.19):

Figure 1.16 ƒ1x2 =
x + 3
x - 2

[29.4, 9.4] by [26, 6]

Figure 1.17 g1x2 = 1x + 321x - 22

[25, 5] by [210, 10]

Figure 1.18 h1x2 =
x2 - 4
x - 2

[29.4, 9.4] by [26.2, 6.2]

Figure 1.19 Examples of increasing, decreasing, or constant on an interval.

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –1 321 4 5

Increasing

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Decreasing

3

1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Constant

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Decreasing on (–`, –2]
Constant on [–2, 2]
Increasing on [2, `)

Increasing, Decreasing, and Constant Data

 1. Of the three tables of numerical data below, which would be modeled by a 
function that is (a) increasing, (b) decreasing, (c) constant?

X Y1 X Y2 X Y3

-2 12 -2 3 -2 -5

-1 12 -1 1 -1 -3

0 12 0 0 0 -1

1 12 1 -2 1 1

3 12 3 -6 3 4

7 12 7 -12 7 10

EXPLORATION 1 

Once again the idea is easy to communicate graphically, but how can we identify these 
properties of functions algebraically? Exploration 1 will help to set the stage for the 
algebraic definition.
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 2. Make a list of ∆Y1, the change in Y1 values as you move down the list. As you 
move from Y1 = a to Y1 = b, the change is ∆Y1 = b - a. Do the same for 
the values of Y2 and Y3.

X moves 
from

∆X  ∆Y1 X moves 
from

∆X  ∆Y2 X moves 
from

∆X  ∆Y3

-2 to -1 1 -2 to -1 1 -2 to -1 1

-1 to 0 1 -1 to 0 1 -1 to 0 1

0 to 1 1 0 to 1 1 0 to 1 1

1 to 3 2 1 to 3 2 1 to 3 2

3 to 7 4 3 to 7 4 3 to 7 4

 3. What is true about the quotients ∆Y>∆X for an increasing function? For  
a decreasing function? For a constant function?

 4. Where else have you seen the quotient ∆Y>∆X? Does this reinforce your 
answers in part 3?

�List on a Calculator
Your calculator might be able to help you with 
the numbers in Exploration 1. Some calculators 
have a “∆List” operation that will calculate the 
changes as you move down a list. For example, 
the command “∆List 1L12S L3” will store the 
differences from L1 into L3. Note that ∆List 
1L12 is always one entry shorter than L1 itself.

Your analysis of the quotients ∆Y>∆X in the exploration should help you to under-
stand the following definition.

DEFINITION Increasing, Decreasing, and Constant Function  
on an Interval

A function ƒ is increasing on an interval if, for any two points in the interval,  
a positive change in x results in a positive change in ƒ1x2.
A function ƒ is decreasing on an interval if, for any two points in the interval,  
a positive change in x results in a negative change in ƒ1x2.
A function ƒ is constant on an interval if, for any two points in the interval, a 
positive change in x results in a zero change in ƒ1x2.

Analyzing a Function for Increasing-
Decreasing Behavior

For each function, tell the intervals on which it is increasing and the intervals on 
which it is decreasing.

(a) ƒ1x2 = 1x + 222   (b)  g1x2 =
x2

x2 - 1

SOLUTION 

Solve Graphically
(a) We see from the graph in Figure 1.20 that ƒ is decreasing on 1-∞, -24  and 

increasing on 3-2, ∞2. (Notice that we include -2 in both intervals. Don’t 
worry that this sets up some contradiction about what happens at -2, because 
we only talk about functions increasing or decreasing on intervals, and -2 is not 
an interval.)

(continued)

EXAMPLE 6 
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110 CHAPTER 1 Functions and Graphs

You may have noticed that we are making some assumptions about the graphs. How do 
we know that they don’t turn around somewhere off the screen? We will develop some 
ways to answer that question later in the text, but the most powerful methods will await 
you when you study calculus.

Boundedness
The concept of boundedness is fairly simple to understand both graphically and alge-
braically. We will move directly to the algebraic definition after motivating the concept 
with some typical graphs (Figure 1.22).

[25, 5] by [23, 5]

Figure 1.20 The function ƒ1x2 = 1x + 222 decreases on 1-∞, -24  and increases on 
3-2, ∞2. (Example 6)

[24.7, 4.7] by [23.1, 3.1]

Figure 1.21 The function g1x2 = x2>1x2 - 12 increases on 1-∞, -12 and 1-1, 04 ; the 
function decreases on 30, 12 and 11, ∞2. (Example 6)

Now try Exercise 33.

(b) We see from the graph in Figure 1.21 that g is increasing on 1-∞, -12, increas-
ing again on 1-1, 04 , decreasing on 30, 12, and decreasing again on 11, ∞2.

Figure 1.22 Some examples of graphs bounded and not bounded above and below.

y

x

Not bounded above
Not bounded below

y

x

Not bounded above
Bounded below

y

x

Bounded above
Not bounded below

y

x

Bounded
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Local and Absolute Extrema
Many graphs are characterized by peaks and valleys where they change from increas-
ing to decreasing and vice versa. The extreme values of the function (or local extrema) 
can be characterized as either local maxima or local minima. The distinction can be 
easily seen graphically. Figure 1.24 shows a graph with three local extrema: local 
maxima at points P and R and a local minimum at Q.

This is another function concept that is easier to see graphically than to describe alge-
braically. Notice that a local maximum does not have to be the maximum value of a 
function; it only needs to be the maximum value of the function on some tiny interval.

We have already mentioned that the best method for analyzing increasing and decreas-
ing behavior involves calculus. Not surprisingly, the same is true for local extrema. We 
will generally be satisfied in this course with approximating local extrema using a 
graphing calculator, although sometimes an algebraic confirmation will be possible 
when we learn more about specific functions.

DEFINITION Lower Bound, Upper Bound, and Bounded

A function ƒ is bounded below if there is some number b that is less than or 
equal to every number in the range of ƒ. Any such number b is called a lower 
bound of ƒ.

A function ƒ is bounded above if there is some number B that is greater than or 
equal to every number in the range of ƒ. Any such number B is called an upper 
bound of ƒ.

A function ƒ is bounded if it is bounded both above and below.

We can extend the above definition to the idea of bounded on an interval by restrict-
ing the domain of consideration in each part of the definition to the interval we wish to 
consider. For example, the function ƒ1x2 = 1>x is bounded above on the interval 
1-∞, 02 and bounded below on the interval 10, ∞2.

Checking Boundedness
Identify each of these functions as bounded below, bounded above, or bounded.

(a) w1x2 = 3x2 - 4   (b)  p1x2 =
x

1 + x2

SOLUTION 

Solve Graphically The two graphs are shown in Figure 1.23. It appears that w is 
bounded below, and p is bounded.

Confirm Algebraically We can confirm that w is bounded below by finding a 
lower bound, as follows:

 x2 Ú 0  x2 is nonnegative.

 3x2 Ú 0  Multiply by 3.

 3x2 - 4 Ú 0 - 4 Subtract 4.

 3x2 - 4 Ú -4

Thus, -4 is a lower bound for w1x2 = 3x2 - 4.

We leave the verification that p is bounded as an exercise (Exercise 77).
Now try Exercise 37.

EXAMPLE 7 

Figure 1.23 The graphs for Example 7. 
Which are bounded where?

(a)

[24, 4] by [25, 5]

(b)

[28, 8] by [21, 1]

Figure 1.24 The graph suggests that ƒ  
has a local maximum at P, a local minimum  
at Q, and a local maximum at R.

y

x

P

Q

R
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Symmetry
In the graphical sense, the word symmetry in mathematics carries essentially the same 
meaning as it does in art: The picture (in this case, the graph) “looks the same” when 
viewed in more than one way. The interesting thing about mathematical symmetry is 
that it can be characterized numerically and algebraically as well. We will be looking at 
three particular types of symmetry, each of which can be spotted easily from a graph, a 
table of values, or an algebraic formula, once you know what to look for. Since it is the 
connections among the three models (graphical, numerical, and algebraic) that we need 
to emphasize in this section, we will illustrate the various symmetries in all three ways, 
side-by-side.   

X=–2.056546    Y=–24.05728
Minimum

[25, 5] by [235, 15]

Figure 1.25 A graph of  
y = x4 - 7x2 + 6x. (Example 8)

Using a Grapher to Find Local 
Extrema
Most modern graphers have built-in “maximum” 
and “minimum” finders that identify local 
extrema by looking for sign changes in ∆y. It is 
not easy to find local extrema by zooming in on 
them, as the graphs tend to flatten out and hide 
the very behavior you are looking for. If you use 
this method, keep narrowing the vertical window 
to maintain some curve in the graph.

DEFINITION Local and Absolute Extrema

A local maximum of a function ƒ is a value ƒ1c2 that is greater than or equal to 
all range values of ƒ on some open interval containing c. If ƒ1c2 is greater than 
or equal to all range values of ƒ, then ƒ1c2 is the maximum (or absolute maxi-
mum) value of ƒ.

A local minimum of a function ƒ is a value ƒ1c2 that is less than or equal to all 
range values of ƒ on some open interval containing c. If ƒ1c2 is less than or equal 
to all range values of ƒ, then ƒ1c2 is the minimum (or absolute minimum) 
value of ƒ.

Local extrema are also called relative extrema. Absolute extrema are also 
called global extrema.

Identifying Local Extrema
Decide whether ƒ1x2 = x4 - 7x2 + 6x has any local maxima or local minima. If so, 
find each local maximum value or minimum value and the value of x at which each 
occurs.

SOLUTION The graph of y = x4 - 7x2 + 6x (Figure 1.25) suggests that there are 
two local minimum values and one local maximum value. We use the graphing cal-
culator to approximate local minima as -24.06 (which occurs at x ≈ -2.06) and 
-1.77 (which occurs at x ≈ 1.60). Similarly, we identify the (approximate) local 
maximum as 1.32 (which occurs at x ≈ 0.46). Now try Exercise 41.

EXAMPLE 8 

Figure 1.26 The graph looks the same to the 
left of the y-axis as it does to the right of it.

y

y

x
–x x

(x, y)(–x, y)

Symmetry with respect to the y-axis

Example: f 1x2 = x2

 Graphically Algebraically 

For all x in the domain of ƒ,

ƒ1-x2 = ƒ1x2.
Functions with this property (for example,  
xn, n even) are even functions.

Numerically

x ƒ1x2
-3 9
-2 4
-1 1

1 1
2 4
3 9
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Figure 1.27 The graph looks the same 
above the x-axis as it does below it.

y

–y

y

xx

(x, y)

(x, –y)

Symmetry with respect to the x-axis

Example: x = y2

 Graphically Algebraically 

Graphs with this kind of symmetry are not 
functions (except the zero function), but we 
can say that 1x, -y2 is on the graph whenever 
1x, y2 is on the graph.

Numerically

x y

9 -3
4 -2
1 -1
1 1
4 2
9 3

Figure 1.28 The graph looks the same 
upside-down as it does rightside-up.

y

–y

y

x
–x x

(x, y)

(–x, –y)

Symmetry with respect to the origin
Example: f 1x2 = x3

 Graphically Algebraically

For all x in the domain of ƒ,

ƒ1-x2 = -ƒ1x2.
Functions with this property (for example, xn,  
n odd) are odd functions.

Numerically

x y

-3 -27
-2 -8
-1 -1

1 1
2 8
3 27

[25, 5] by [24, 4]

Figure 1.29 This graph appears to be symmetric with respect to the y-axis, so we conjecture 
that ƒ is an even function.

Checking Functions for Symmetry
Tell whether each of the following functions is odd, even, or neither.

(a) ƒ1x2 = x2 - 3    (b)  g1x2 = x2 - 2x - 2   (c)  h1x2 =
x3

4 - x2

SOLUTION 

(a) Solve Graphically The graphical solution is shown in Figure 1.29.

EXAMPLE 9 

(continued)
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Confirm Algebraically We need to verify that

ƒ1-x2 = ƒ1x2
for all x in the domain of ƒ.

 ƒ1-x2 = 1-x22 - 3 = x2 - 3

 = ƒ1x2
Since this identity is true for all x, the function ƒ is indeed even.

(b) Solve Graphically The graphical solution is shown in Figure 1.30.

 Confirm Algebraically We need to verify that

g1-x2 ≠ g1x2 and g1-x2 ≠ -g1x2.
 g1-x2 = 1-x22 - 21-x2 - 2

 = x2 + 2x - 2

 g1x2 = x2 - 2x - 2

 -g1x2 = -x2 + 2x + 2

 So g1-x2 ≠ g1x2 and g1-x2 ≠ -g1x2.
 We conclude that g is neither odd nor even.

(c) Solve Graphically The graphical solution is shown in Figure 1.31.

 Confirm Algebraically We need to verify that

h1-x2 = -h1x2
 for all x in the domain of h.

 h1-x2 =
1-x23

4 - 1-x22 =
-x3

4 - x2

 = -h1x2
 Since this identity is true for all x except ±2 (which are not in the domain of h), 

the function h is odd. Now try Exercise 49.

Asymptotes

Consider the graph of the function ƒ1x2 =
2x2

4 - x2 in Figure 1.32.

The graph appears to flatten out to the right and to the left, getting closer and closer to 
the horizontal line y = -2. We call this line a horizontal asymptote. Similarly, the 
graph appears to flatten out as it goes off the top and bottom of the screen, getting 
closer and closer to the vertical lines x = -2 and x = 2. We call these lines vertical 
asymptotes. If we superimpose the asymptotes onto Figure 1.32 as dashed lines, you 
can see that they form a kind of template that describes the limiting behavior of the 
graph (Figure 1.33 on the next page).

Since asymptotes describe the behavior of the graph at its horizontal or vertical extrem-
ities, the definition of an asymptote can best be stated with limit notation. In this defini-
tion, note that x S a- means “x approaches a from the left,” and x S a+ means “x 
approaches a from the right.”

Figure 1.30 This graph does not appear to 
be symmetric with respect to either the y-axis 
or the origin, so we conjecture that g is neither 
even nor odd.

[25, 5] by [24, 4]

Figure 1.31 This graph appears to be 
symmetric with respect to the origin, so we 
conjecture that h is an odd function.

[24.7, 4.7] by [210, 10]

Figure 1.32 The graph of 
ƒ1x2 = 2x2>14 - x22 has two vertical 
asymptotes and one horizontal asymptote.
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End Behavior
A horizontal asymptote gives one kind of end behavior for a function because it shows 
how the function behaves as it goes off toward either “end” of the x-axis. Not all graphs 
approach lines, but it is helpful to consider what does happen “out there.” We illustrate 
with a few examples.

DEFINITION Horizontal and Vertical Asymptotes

The line y = b is a horizontal asymptote of the graph of a function y = ƒ1x2 
if ƒ1x2 approaches a limit of b as x approaches +∞ or -∞.

In limit notation:

lim
xS-∞

 ƒ1x2 = b or lim
xS+∞

 ƒ1x2 = b

The line x = a is a vertical asymptote of the graph of a function y = ƒ1x2 if 
ƒ1x2 approaches a limit of +∞ or -∞ as x approaches a from either direction.

In limit notation:

lim
xSa- ƒ1x2 = ±∞ or lim

xSa+ ƒ1x2 = ±∞

Identifying the Asymptotes of a Graph
Identify any horizontal or vertical asymptotes of the graph of

y =
x

x2 - x - 2
.

SOLUTION The quotient x>1x2 - x - 22 = x>11x + 121x - 222 is undefined at 
x = -1 and x = 2, which makes them likely sites for vertical asymptotes. The graph 
(Figure 1.34) provides support, showing vertical asymptotes of x = -1 and x = 2.

For large values of x, the numerator (a large number) is dwarfed by the denominator 
(a product of two large numbers), suggesting that lim

xS∞
 x>11x + 121x - 222 = 0. 

This would indicate a horizontal asymptote of y = 0. The graph (Figure 1.34) pro-
vides support, showing a horizontal asymptote of y = 0 as x S ∞. Similar logic 
 suggests that lim

xS-∞
 x>11x + 121x - 222 = 0, indicating the same horizontal 

asymptote as x S -∞. Again, the graph provides support for this.
Now try Exercise 57.

EXAMPLE 10 

Matching Functions Using End Behavior
Match the functions with the graphs in Figure 1.35 on the next page by considering 
end behavior. All graphs are shown in the same viewing window.

(a) y =
3x

x2 + 1
   (b)  y =

3x2

x2 + 1

(c) y =
3x3

x2 + 1
   (d)  y =

3x4

x2 + 1

SOLUTION When x is very large, the denominator x2 + 1 in each of these functions 
is almost the same number as x2. If we replace x2 + 1 in each denominator by x2 and 
then reduce the fractions, we get the simpler functions

(a) y =
3
x
 1close to y = 0 for large x2  (b)  y = 3

(c) y = 3x  (d)  y = 3x2.

EXAMPLE 11 

(continued)

Figure 1.33 The graph of 
ƒ1x2 = 2x2>14 - x22 with the asymptotes 
shown as dashed lines.
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x
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[24.7, 4.7] by [23, 3]

Figure 1.34 The graph of 
y = x>1x2 - x - 22 has vertical asymptotes 
of x = -1 and x = 2 and a horizontal 
asymptote of y = 0. (Example 10)
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Figure 1.35 Match the graphs with the functions in Example 11.

(i)

[24.7, 4.7] by [23.5, 3.5]

(ii)

[24.7, 4.7] by [23.5, 3.5]

(iii)

[24.7, 4.7] by [23.5, 3.5]

(iv)

[24.7, 4.7] by [23.5, 3.5]

Tips on Zooming
Zooming out is often a good way to investigate 
end behavior with a graphing calculator. Here are 
some useful zooming tips:

• Start with a “square” window.
• Set Xscl and Yscl to zero to avoid fuzzy axes.
• Be sure the zoom factors are both the same. 

(They will be unless you change them.)

So, we look for functions that have end behavior resembling, respectively, the 
functions

(a) y = 0  (b)  y = 3  (c)  y = 3x  (d)  y = 3x2.

Graph (iv) approaches the line y = 0. Graph (iii) approaches the line y = 3. Graph 
(ii) approaches the line y = 3x. Graph (i) approaches the parabola y = 3x2. So, (a) 
matches (iv), (b) matches (iii), (c) matches (ii), and (d) matches (i).

Now try Exercise 65.

For more complicated functions, we are often content with knowing whether the end 
behavior is bounded or unbounded in either direction.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, solve the equation or inequality.

 1. x2 - 16 = 0 2. 9 - x2 = 0

 3. x - 10 6 0  4. 5 - x … 0

In Exercises 5–10, find all values of x algebraically for which the 
 algebraic expression is not defined. Support your answer graphically.

 5. 
x

x - 16
 6. 

x

x2 - 16

 7. 2x - 16

 8. 
2x2 + 1

x2 - 1

 9. 
2x + 223 - x

 10. 
x2 - 2x

x2 - 4

QUICK REVIEW 1.2 (For help, go to Sections A.3, P.3, and P.5.)

 7. y

x

 8. y

x

In Exercises 9–16, find the domain of the function algebraically.

 9. ƒ1x2 = x2 + 4  10. h1x2 =
5

x - 3

 11. ƒ1x2 =
3x - 1

1x + 321x - 12 12. ƒ1x2 =
1
x

+
5

x - 3

SECTION 1.2 Exercises

In Exercises 1–4, determine whether the formula determines y as a 
function of x. If not, explain why not.

 1. y = 2x - 4  2. y = x2 ± 3

 3. x = 2y2 4. x = 12 - y

In Exercises 5–8, use the vertical line test to determine whether the 
curve is the graph of y as a function of x.

 5. y

x

 6. y

x
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 13. g1x2 =
x

x2 - 5x
 14. h1x2 =

24 - x2

x - 3

 15. h1x2 =
24 - x

1x + 121x2 + 12 16. ƒ1x2 = 2x4 - 16x2

In Exercises 17–20, find the range of the function.

 17. ƒ1x2 = 10 - x2

 18. g1x2 = 5 + 24 - x

 19. ƒ1x2 =
x2

1 - x2 20. g1x2 =
3 + x2

4 - x2

In Exercises 21–24, graph the function and tell whether or not it has a 
point of discontinuity at x = 0. If there is a discontinuity, tell whether it 
is removable or nonremovable.

 21. g1x2 =
3
x
 22. h1x2 =

x3 + x
x

 23. ƒ1x2 =
0 x 0
x

 24. g1x2 =
x

x - 2

In Exercises 25–28, state whether each labeled point identifies a local 
minimum, a local maximum, or neither. Identify intervals on which the 
function is decreasing and intervals on which it is increasing.

 25. y

x

(21, 4)

(2, 2)

(5, 5)

 26. y

x

(1, 2)

(3, 3)

(5, 7)

 27. y

x

(21, 3)

(1, 5)

(3, 3)

(5, 1)

 28. y

x(21, 1)

(1, 6)

(3, 1)

(5, 4)

In Exercises 29–34, graph the function and identify intervals on which 
the function is increasing, decreasing, or constant.

 29. ƒ1x2 = 0 x + 2 0 - 1

 30. ƒ1x2 = 0 x + 1 0 + 0 x - 1 0 - 3

 31. g1x2 = 0 x + 2 0 + 0 x - 1 0 - 2

 32. h1x2 = 0.51x + 222 - 1

 33. g1x2 = 3 - 1x - 122
 34. ƒ1x2 = x3 - x2 - 2x

In Exercises 35–40, determine whether the function is bounded above, 
bounded below, or bounded on its domain.

 35. y = 32  36. y = 2 - x2

 37. y = 2x  38. y = 2-x

 39. y = 21 - x2  40. y = x - x3

In Exercises 41– 46, use a grapher to find all local maxima and minima 
and the values of x where they occur. Give values rounded to two deci-
mal places.

 41. ƒ1x2 = 4 - x + x2 42. g1x2 = x3 - 4x + 1

 43. h1x2 = -x3 + 2x - 3 44. ƒ1x2 = 1x + 321x - 122
 45. h1x2 = x22x + 4 46. g1x2 = x 0 2x + 5 0
In Exercises 47–54, state whether the function is odd, even, or neither.

 47. ƒ1x2 = 2x4  48. g1x2 = x3

 49. ƒ1x2 = 2x2 + 2  50. g1x2 =
3

1 + x2

 51. ƒ1x2 = -x2 + 0.03x + 5 52. ƒ1x2 = x3 + 0.04x2 + 3

 53. g1x2 = 2x3 - 3x  54. h1x2 =
1
x

In Exercises 55–62, use a method of your choice to find all horizontal 
and vertical asymptotes of the function.

 55. ƒ1x2 =
x

x - 1
 56. q1x2 =

x - 1
x

 57. g1x2 =
x + 2
3 - x

 58. q1x2 = 1.5x

 59. ƒ1x2 =
x2 + 2

x2 - 1
 60. p1x2 =

4

x2 + 1

 61. g1x2 =
4x - 4

x3 - 8
 62. h1x2 =

2x - 4

x2 - 4

In Exercises 63–66, match the function with the corresponding graph 
by considering end behavior and asymptotes. All graphs are shown in 
the same viewing window.

 63. y =
x + 2
2x + 1

 64. y =
x2 + 2
2x + 1

 65. y =
x + 2

2x2 + 1
 66. y =

x3 + 2

2x2 + 1

(a)

[24.7, 4.7] by [23.1, 3.1]

 (b)

[24.7, 4.7] by [23.1, 3.1]

(c)

[24.7, 4.7] by [23.1, 3.1]

 (d)

[24.7, 4.7] by [23.1, 3.1]
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118 CHAPTER 1 Functions and Graphs

 67. Can a Graph Cross Its Own Asymptote? The Greek 
roots of the word asymptote mean “not meeting,” since graphs 
tend to approach, but not meet, their asymptotes. Which of the 
following functions have graphs that do intersect their horizon-
tal asymptotes?

(a) ƒ1x2 =
x

x2 - 1

(b) g1x2 =
x

x2 + 1

(c) h1x2 =
x2

x3 + 1

 68. Can a Graph Have Two Horizontal Asymptotes?  
Although most graphs have at most one horizontal asymptote, it is 
possible for a graph to have more than one. Which of the following 
functions have graphs with more than one horizontal asymptote?

(a) ƒ1x2 =
0 x3 + 1 0
8 - x3

(b) g1x2 =
0 x - 1 0
x2 - 4

(c) h1x2 =
x2x2 - 4

 69. Can a Graph Intersect Its Own Vertical 

 Asymptote? Graph the function ƒ1x2 =
x - 0 x 0

x2 + 1.

(a) The graph of this function does not intersect its vertical 
asymptote. Explain why it does not.

(b) Show how you can add a single point to the graph of ƒ and 
get a graph that does intersect its vertical asymptote.

(c) Is the graph in (b) the graph of a function?

 70. Writing to Learn Explain why a graph cannot have more 
than two horizontal asymptotes.

Standardized Test Questions
 71. True or False The graph of function ƒ is defined as the set 

of all points 1x, ƒ1x22, where x is in the domain of ƒ. Justify 
your answer.

 72. True or False A relation that is symmetric with respect to 
the x-axis cannot be a function. Justify your answer.

In Exercises 73–76, answer the question without using a calculator.

 73. Multiple Choice Which function is continuous?

(A) Number of children enrolled in a particular school as a 
function of time

(B) Outdoor temperature as a function of time

(C) Cost of U.S. postage as a function of the weight of the letter

(D) Price of a stock as a function of time

(E) Number of soft drinks sold at a ballpark as a function of 
outdoor temperature

 74. Multiple Choice Which function is not continuous?

(A) Your altitude as a function of time while flying from Reno 
to Dallas

(B) Time of travel from Miami to Pensacola as a function of 
driving speed

(C) Number of balls that can fit completely inside a 
 particular box as a function of the radius of the balls

(D) Area of a circle as a function of radius

(E) Weight of a particular baby as a function of time after 
birth

 75. Multiple Choice Which function is decreasing?

(A) Outdoor temperature as a function of time

(B) The Dow Jones Industrial Average as a function of time

(C) Air pressure in Earth’s atmosphere as a function of 
altitude

(D) World population since 1900 as a function of time

(E) Water pressure in the ocean as a function of depth

 76. Multiple Choice Which function cannot be classified 
as either increasing or decreasing?

(A) Weight of a lead brick as a function of volume

(B) Strength of a radio signal as a function of distance 
from the transmitter

(C) Time of travel from Buffalo to Syracuse as a function 
of driving speed

(D) Area of a square as a function of side length

(E) Height of a swinging pendulum as a function of time

Explorations
 77. Bounded Functions As promised in Example 7 of 

this section, we will give you a chance to prove algebra-
ically that p1x2 = x>11 + x22 is bounded.

(a) Graph the function and find the smallest integer k that 
appears to be an upper bound. 

(b) Verify that x>11 + x22 6 k by proving the equivalent 
inequality kx2 - x + k 7 0. (Use the quadratic formula 
to show that the quadratic has no real zeros.)

(c) From the graph, find the greatest integer k that appears 
to be a lower bound. 

(d) Verify that x>11 + x22 7 k by proving the equivalent 
inequality kx2 - x + k 6 0.

 78. Baylor School Grade Point Averages Baylor 
School uses a sliding scale to convert the percentage grades 
on its transcripts to grade point averages (GPAs). Table 1.9 
shows the GPA equivalents for selected grades.

Table 1.9 Converting Grades

Grade 1x2 GPA 1y2
 60 0.00
 65 1.00
 70 2.05
 75 2.57
 80 3.00
 85 3.36
 90 3.69
 95 4.00
100 4.28

Source: Baylor School College Counselor.
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(a) Considering GPA 1y2 as a function of percentage grade 
(x), is it increasing, decreasing, constant, or none of these?

(b) Make a table showing the change 1∆y2 in GPA as you 
move down the list. (See Exploration 1.)

(c) Make a table showing the change in ∆y as you move down 
the list. (This is ∆∆y.) Considering the change 1∆y2 in 
GPA as a function of percentage grade 1x2, is it increasing, 
decreasing, constant, or none of these?

(d) In general, what can you say about the shape of the graph 
if y is an increasing function of x and ∆y is a decreasing 
function of x?

(e) Sketch the graph of a function y of x such that y is a decreas-
ing function of x and ∆y is an increasing function of x.

 79. Group Activity Sketch (freehand) a graph of a function ƒ 
with domain all real numbers that satisfies all of the following 
conditions:

(a) ƒ is continuous for all x;

(b) ƒ is increasing on 1-∞, 04  and on 33, 54 ;
(c) ƒ is decreasing on 30, 34  and on 35, ∞2;
(d) ƒ102 = ƒ152 = 2;

(e) ƒ132 = 0.

 80. Group Activity Sketch (freehand) a graph of a function ƒ 
with domain all real numbers that satisfies all of the following 
conditions:

(a) ƒ is decreasing on 1-∞, 02 and decreasing on 10, ∞2;
(b) ƒ has a nonremovable point of discontinuity at x = 0;

(c) ƒ has a horizontal asymptote at y = 1;

(d) ƒ102 = 0;

(e) ƒ has a vertical asymptote at x = 0.

 81. Group Activity Sketch (freehand) a graph of a function ƒ 
with domain all real numbers that satisfies all of the following 
conditions:

(a) ƒ is continuous for all x;

(b) ƒ is an even function;

(c) ƒ is increasing on 30, 24  and decreasing on 32, ∞2;
(d) ƒ122 = 3.

 82. Group Activity Get together with your classmates in groups 
of two or three. Sketch a graph of a function, but do not show it to 
the other members of your group. Using the language of functions 
(as in Exercises 79–81), describe your function as completely as 
you can. Exchange descriptions with the others in your group and 
see if you can reproduce each other’s graphs.

Extending the Ideas
 83. A function that is bounded above has an infinite number of 

upper bounds, but there is always a least upper bound, i.e., an 
upper bound that is less than all the others. This least upper 
bound may or may not be in the range of ƒ. For each of the 
 following functions, find the least upper bound and tell whether 
or not it is in the range of the function.

(a) ƒ1x2 = 2 - 0.8x2

(b) g1x2 =
3x2

3 + x2

(c) h1x2 =
1 - x

x2  

(d) p1x2 = 2 sin 1x2

(e) q1x2 =
4x

x2 + 2x + 1

 84. Writing to Learn A continuous function ƒ has domain all 
real numbers. If ƒ1-12 = 5 and ƒ112 = -5, explain why ƒ 
must have at least one zero in the interval 3-1, 14 . (This 
 generalizes to a property of continuous functions known as  
the Intermediate Value Theorem.)

 85. Proving a Theorem Prove that the graph of every odd 
function with domain all real numbers must pass through the 
origin.

 86. Finding the Range Graph the function ƒ 1x2 =
3x2 - 1

2x2 + 1
 

in the window 3-6, 64  by 3-2, 24 .
(a) What is the apparent horizontal asymptote of the graph?

(b) Based on your graph, determine the apparent range of ƒ.

(c) Show algebraically that -1 …
3x2 - 1

2x2 + 1
6 1.5 for all x, 

thus confirming your conjecture in part (b).

 87. Looking Ahead to Calculus A key theorem in calculus, 
the Extreme Value Theorem, states: If a function ƒ is continu-
ous on a closed interval 3a, b4  then ƒ has both a maximum 
value and a minimum value on the interval. For each of the 
 following functions, verify that the function is continuous on 
the given interval, and find the maximum and minimum values 
of the function and the x values at which these extrema occur.

(a) ƒ1x2 = x2 - 3, 3-2, 44

(b) ƒ1x2 =
1
x

, 31, 54

(c) ƒ1x2 = 0 x + 1 0 + 2, 3-4, 14
(d) ƒ1x2 = 2x2 + 9, 3-4, 44
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What you’ll learn about
• What Graphs Can Tell Us

• Twelve Basic Functions

• Analyzing Functions Graphically

... and why
As you continue to study mathemat-
ics, you will find that the twelve 
basic functions presented here 
come up again and again. Knowing 
their basic properties, you will rec-
ognize them when you see them.

What Graphs Can Tell Us
The preceding section has given us a vocabulary for talking about functions and their 
properties. We have an entire text ahead of us to study these functions in depth, but in 
this section we want to set the scene by just looking at the graphs of twelve “basic” 
functions that are available on your graphing calculator.

You will find that function attributes such as domain, range, continuity, asymptotes, 
extrema, increasingness, decreasingness, and end behavior are every bit as graphical as 
they are algebraic. Moreover, the visual cues are often much easier to spot than the 
algebraic ones.

In future chapters you will learn more about the algebraic properties that make these 
functions behave as they do. Only then will you able to prove what is visually apparent 
in these graphs.   

Twelve Basic Functions

1.3 Twelve Basic Functions

Figure 1.36 

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

The Identity Function

 ƒ1x2 = x

Interesting fact: This is the only function that acts on every real 
number by leaving it alone.

Figure 1.37 
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x
–5 –4 –3 –2 –1 321 4 5

The Squaring Function 

ƒ1x2 = x2

Interesting fact: The graph of this function, called a parabola, has 
a reflection property that is useful in making flashlights and 
satellite dishes.
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Figure 1.42 

The Natural Logarithm Function 

ƒ1x2 = ln x

Interesting fact: This function increases very slowly. If the x-axis 
and y-axis were both scaled with unit lengths of 1 in., you would 
have to travel more than 2.5 mi along the curve just to get 1 ft 
above the x-axis.
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y

3

–3

x
–4–5–6 –3 –1 321 5 6 7

Figure 1.43 

The Sine Function 

ƒ1x2 = sin x

Interesting fact: This function and the sinus cavities in your head 
derive their names from a common root: the Latin word for “bay.” 
This is due to a 12th-century mistake made by Robert of Chester, 
who translated a word incorrectly from an Arabic manuscript.

The Cubing Function 

ƒ1x2 = x3

Interesting fact: The origin is called a “point of inflection” for this 
curve because the graph changes curvature at that point.
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x
–5 –4 –3 –2 –1 321 4 5

Figure 1.38 

The Reciprocal Function 

ƒ1x2 =
1
x

Interesting fact: This curve, called a hyperbola, also has a 
reflection property that is useful in satellite dishes.
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Figure 1.39 
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Figure 1.41 

The Exponential Function 

ƒ1x2 = ex

Interesting fact: The number e is an irrational number (like p) that 
shows up in a variety of applications. The symbols e and p were 
both brought into popular use by the great Swiss mathematician 
Leonhard Euler (1707–1783).

The Square Root Function 

ƒ1x2 = 2x

Interesting fact: Put any positive number into your calculator. Take 
the square root. Then take the square root again. Then take the 
square root again, and so on. Eventually you will always get 1.
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y

x
–1 321 4 5 6 7 8

Figure 1.40 
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4
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Figure 1.46 

The Greatest Integer Function 

ƒ1x2 = int 1x2
Interesting fact: This function has a jump discontinuity at every 
integer value of x. Similar-looking functions are called step 
functions.

1

–

y

x
–5 –4 –3 –2 –1 321 4 5

1
2

Figure 1.47 

The Logistic Function

ƒ1x2 =
1

1 + e-x

Interesting fact: There are two horizontal asymptotes, the x-axis 
and the line y = 1. This function provides a model for many 
applications in biology and business.
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Figure 1.45 

The Absolute Value Function 

ƒ1x2 = 0 x 0 = abs 1x2
Interesting fact: This function has an abrupt change of direction  
(a “corner”) at the origin, while the other continuous Basic 
Functions are all “smooth” on their domains.
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The Cosine Function 

ƒ1x2 = cos x

Interesting fact: The local extrema of the cosine function occur 
exactly at the zeros of the sine function, and vice versa.

Figure 1.44 

Looking for Domains
(a) Nine of the functions have domain the set of all real numbers. Which three  

do not?

(b) One of the functions has domain the set of all real numbers except 0. Which 
function is it, and why isn’t zero in its domain?

(c) Which two functions have no negative numbers in their domains? Of these two, 
which one is defined at zero?

SOLUTION 

(a) Imagine dragging a vertical line along the x-axis. If the function has domain the 
set of all real numbers, then the line will always intersect the graph. The inter-
section might occur off screen, but the TRACE function on the calculator will 
show the y-coordinate if there is one. Looking at the graphs in Figures 1.39, 
1.40, and 1.42, we conjecture that there are vertical lines that do not intersect 

EXAMPLE 1 
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(a)

[23.7, 5.7] by [23.1, 3.1]

(b)

X=–2 Y=

1

[23.7, 5.7] by [23.1, 3.1]

(c)

X=0 Y=

1

[24.7, 4.7] by [23.1, 3.1]

Figure 1.48 (a) A vertical line through  
-2 on the x-axis appears to miss the graph of 
y = ln x. (b) A TRACE confirms that -2 is 
not in the domain. (c) A TRACE at x = 0 
confirms that 0 is not in the domain of 
y = 1>x. (Example 1)

(a)

[22p, 2p] by [24, 4]

  (b)

[22p, 2p] by [24, 4]

  (c)

[24.7, 4.7] by [20.5, 1.5]

Figure 1.49 The graphs of y = sin x, y = cos x, and y = 1>11 + e-x2 lie entirely between two horizontal lines and are  
therefore graphs of bounded functions. (Example 3)

the curve. A TRACE at the suspected x-coordinates confirms our conjecture 
(Figure 1.48). The functions are y = 1>x, y = 2x, and y = ln x.    

(b) The function y = 1>x, with a vertical asymptote at x = 0, is defined for all real 
numbers except 0. This is explained algebraically by the fact that division by 
zero is undefined.

(c) The functions y = 2x and y = ln x have no negative numbers in their 
domains. (We already knew that about the square root function.) Although 0 
is in the domain of y = 2x, we can see by tracing that it is not in the domain 
of y = ln x. We will see the algebraic reason for this in Chapter 3. 

Now try Exercise 13.

Looking for Continuity
Only two of twelve functions have points of discontinuity. Are these points in the 
domain of the function?

SOLUTION All of the functions have continuous, unbroken graphs except for 
y = 1>x, and y = int 1x2.
The graph of y = 1>x clearly has an infinite discontinuity at x = 0 (Figure 1.39). 
We saw in Example 1 that 0 is not in the domain of the function. Since y = 1>x is 
continuous for every point in its domain, it is called a continuous function.

The graph of y = int 1x2 has a discontinuity at every integer value of x (Figure 1.46). 
Since this function has discontinuities at points in its domain, it is not a continuous 
function.  Now try Exercise 15.

EXAMPLE 2 

Looking for Boundedness
Only three of the twelve basic functions are bounded (above and below). Which 
three?

SOLUTION A function that is bounded must have a graph that lies entirely 
between two horizontal lines. The sine, cosine, and logistic functions have this 
property (Figure 1.49). It looks like the graph of y = 2x might also have this 
property, but we know that the end behavior of the square root function is 
unbounded: lim

xS∞
2x = ∞, so it is really only bounded below. You will learn in 

Chapter 4 why the sine and cosine functions are bounded.
 Now try Exercise 17.

EXAMPLE 3 
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124 CHAPTER 1 Functions and Graphs

(a)

[24.7, 4.7] by [21.1, 5.1]

   (b)

[22p, 2p] by [24, 4]

   (c)

[24.7, 4.7] by [21.1, 5.1]

Figure 1.50 The graphs of y = x2, y = cos x, and y = 0 x 0  are symmetric with respect to the y-axis, indicating that the functions 
are even. (Example 4)

Looking for Symmetry
Three of the twelve basic functions are even. Which are they?

SOLUTION Recall that the graph of an even function is symmetric with respect to 
the y-axis. Three of the functions exhibit the required symmetry: y = x2, y = cos x, 
and y = 0 x 0  (Figure 1.50). Now try Exercise 19.

EXAMPLE 4 

Analyzing Functions Graphically
We could continue to explore the twelve basic functions as in the first four examples, 
but we also want to make the point that there is no need to restrict ourselves to the basic 
twelve. We can alter the basic functions slightly and see what happens to their graphs, 
thereby gaining further visual insight into how functions behave.

[24.7, 4.7] by [21.1, 5.1]

Figure 1.51 The graph of y = 1x - 222. (Example 5)

Analyzing a Function Graphically
Graph the function y = 1x - 222. Then answer the following questions:

(a) On what interval is the function increasing? On what interval is it decreasing?

(b) Is the function odd, even, or neither?

(c) Does the function have any extrema?

(d) How does the graph relate to the graph of the basic function y = x2?

SOLUTION The graph is shown in Figure 1.51.

EXAMPLE 5 
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(a) The function is increasing if its graph is headed upward as it moves from left to 
right. We see that it is increasing on the interval 32, ∞2. The function is decreas-
ing if its graph is headed downward as it moves from left to right. We see that it 
is decreasing on the interval 1-∞, 24 .

(b) The graph is not symmetric with respect to the y-axis, nor is it symmetric with 
respect to the origin. The function is neither odd nor even.

(c) Yes, we see that the function has a minimum value of 0 at x = 2. (This is easily 
confirmed by the algebraic fact that 1x - 222 Ú 0 for all x.)

(d) We see that the graph of y = 1x - 222 is just the graph of y = x2 moved two 
units to the right. Now try Exercise 35.

Looking for Asymptotes

 1. Two of the basic functions have vertical asymptotes at x = 0. Which two?

 2. Form a new function by adding these functions together. Does the new func-
tion have a vertical asymptote at x = 0? 

 3. Three of the basic functions have horizontal asymptotes at y = 0. Which 
three? 

 4. Form a new function by adding these functions together. Does the new func-
tion have a horizontal asymptote at y = 0? 

 5. Graph ƒ1x2 = 1>x, g1x2 = 1>12x2 - x2, and h1x2 = ƒ1x2 + g1x2. Does h1x2 
have a vertical asymptote at x = 0? 

EXPLORATION 1 

Identifying a Piecewise-Defined Function
Which of the twelve basic functions has the following piecewise definition over sep-
arate intervals of its domain?

ƒ1x2 = e x if x Ú 0
-x if x 6 0

SOLUTION You may recognize this as the definition of the absolute value 
 function (Chapter P). Or, you can reason that the graph of this function must look 
just like the line y = x to the right of the y-axis, but just like the graph of the line 
y = -x to the left of the y-axis. That is a perfect description of the absolute value 
graph in Figure 1.45. Either way, we recognize this as a piecewise definition of 
ƒ1x2 = 0 x 0 . Now try Exercise 45.

EXAMPLE 6 

Defining a Function Piecewise
Using basic functions from this section, construct a piecewise definition for the func-
tion whose graph is shown in Figure 1.52. Is your function continuous?

SOLUTION This appears to be the graph of y = x2 to the left of x = 0 and the 
graph of y = 2x to the right of x = 0. We can therefore define it piecewise as

ƒ1x2 = e x2 if x … 02x if x 7 0.

The function is continuous. Now try Exercise 47.

EXAMPLE 7 
4
3
2
1

–1
–2

y

x
–5 –4 –3 –2 –1 321 4 5

Figure 1.52 A piecewise-defined 
function. (Example 7)
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126 CHAPTER 1 Functions and Graphs

You can go a long way toward understanding a function’s behavior by looking at its 
graph. We will continue that theme in the exercises and then revisit it throughout the 
text. However, you can’t go all the way toward understanding a function by looking at 
its graph, as Example 8 shows.

[2600, 5000] by [25, 12]

Figure 1.53 The graph of y = ln x still 
appears to have a horizontal asymptote, 
despite the much larger window than in 
Figure 1.42. (Example 8)

Looking for a Horizontal Asymptote
Does the graph of y = ln x (see Figure 1.42) have a horizontal asymptote?

SOLUTION In Figure 1.42 it certainly looks like there is a horizontal asymptote 
that the graph is approaching from below. If we choose a much larger window 
(Figure 1.53), it still looks that way. In fact, we could zoom out on this function all 
day long and it would always look like it is approaching some horizontal asymp-
tote—but it is not. We will show algebraically in Chapter 3 that the end behavior of 
this function is lim

xS∞
 ln x = ∞, so its graph must eventually rise above the level of 

any horizontal line. That rules out any horizontal asymptote, even though there is 
no visual evidence of that fact that we can see by looking at its graph.

Now try Exercise 55.

EXAMPLE 8 

Now try Exercise 57.

Analyzing a Function
Give a complete analysis of the basic function ƒ1x2 = 0 x 0 .
SOLUTION 

EXAMPLE 9 

BASIC FUNCTION 

ƒ1x2 = 0 x 0
Domain: 1-∞, ∞2
Range: 30, ∞2
Continuous
Decreasing on 1-∞, 04 ; increasing on 30, ∞2
Symmetric with respect to the y-axis (an even function)
Bounded below
Absolute minimum at 10, 02
No horizontal asymptotes
No vertical asymptotes
End behavior: lim

xS-∞
0 x 0 = ∞ and lim

xS∞
0 x 0 = ∞

The Absolute Value Function

[26, 6] by [21, 7]

Figure 1.54 The graph of ƒ1x2 = 0 x 0 .

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–10, evaluate the expression without using a calculator.

 1. 0-59.34 0  2. 0 5 - p 0

 3. 0p - 7 0  4. 21-322
 5. ln 112  6. e0

 7. 123 323  8. 23 1-1523
 9. 23 -82  10. 0 1 - p 0 - p

QUICK REVIEW 1.3 (For help, go to Sections P.1, P.2, 3.1, and 3.3.)
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 17. The six functions that are bounded below

 18. The four functions that are bounded above

In Exercises 19–28, identify which of the twelve basic functions fit the 
description given.

 19. The four functions that are odd

 20. The six functions that are increasing on their entire domains

 21. The three functions that are decreasing on the interval 1-∞, 02
 22. The three functions with infinitely many local extrema

 23. The three functions with no zeros

 24. The three functions with range 5all real numbers6
 25. The four functions that do not have end behavior 

lim
xS+∞

ƒ1x2 = +∞
 26. The three functions with end behavior lim

xS-∞
 ƒ1x2 = -∞

 27. The four functions whose graphs look the same when turned 
upside-down and flipped about the y-axis

 28. The two functions whose graphs are identical except for a hori-
zontal shift

In Exercises 29–34, use your graphing calculator to produce a graph of 
the function. Then determine the domain and range of the function by 
looking at its graph.

 29. ƒ1x2 = x2 - 5 30. g1x2 = 0 x - 4 0
 31. h1x2 = ln 1x + 62 32. k1x2 = 1>x + 3

 33. s1x2 = int 1x>22 34. p1x2 = 1x + 322
In Exercises 35–42, graph the function. Then answer the following 
questions:

 (a) On what interval, if any, is the function increasing? 
Decreasing?

 (b) Is the function odd, even, or neither?

 (c) Give the function’s extrema, if any.

 (d) How is the graph related to a graph of one of the twelve basic 
functions?

 35. r1x2 = 2x - 10 36. ƒ1x2 = sin 1x2 + 5

 37. ƒ1x2 = 3>11 + e-x2 38. q1x2 = ex + 2

 39. h1x2 = 0 x 0 - 10 40. g1x2 = 4 cos 1x2
 41. s1x2 = 0 x - 2 0  42. ƒ1x2 = 5 - abs 1x2
 43. Find the horizontal asymptotes for the graph shown in  

Exercise 11.

 44. Find the horizontal asymptotes for the graph of ƒ1x2 in  
Exercise 37.

In Exercises 45–52, sketch the graph of the piecewise-defined function. 
(Try doing it without a calculator.) In each case, give any points of 
 discontinuity.

 45. ƒ1x2 = e x if x … 0
x2 if x 7 0

 46. g1x2 = e x3 if x … 0
ex if x 7 0

 47. h1x2 = e 0 x 0 if x 6 0
sin x if x Ú 0

 48. w1x2 = e1>x if x 6 02x if x Ú 0

SECTION 1.3 Exercises

In Exercises 1–12, each graph is a slight variation on the graph of one 
of the twelve basic functions described in this section. Match the graph 
to one of the twelve functions (a)–(l) and then support your answer by 
checking the graph on your calculator. (All graphs are shown in the 
window 3-4.7, 4.74  by 3-3.1, 3.14 .)

(a) y = -sin x (b) y = cos x + 1 (c) y = ex -  2

(d) y = 1x + 223 (e) y = x3 + 1 (f) y = 1x -  122
(g) y = 0 x 0  -  2 (h) y = -1>x (i) y = -x

(j) y = -2x (k) y = int 1x + 12
(l) y = 2 -  4>11 + e-x2

 1.  2. 

 3. 4. 

 5. 6. 

 7. 8. 

 9. 10. 

 11. 12. 

In Exercises 13–18, identify which of Exercises 1–12 display functions 
that fit the description given.

 13. The function whose domain excludes zero

 14. The function whose domain consists of all nonnegative real 
numbers

 15. The two functions that have at least one point of discontinuity

 16. The function that is not a continuous function
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128 CHAPTER 1 Functions and Graphs

 49. ƒ1x2 = e cos x if x … 0
ex if x 7 0

 50. g1x2 = e 0 x 0 if x 6 0
x2 if x Ú 0

 51. ƒ1x2 = c -3 - x if x … 0
1 if 0 6 x 6 1
x2 if x Ú 1

 52. ƒ1x2 = c x2 if x 6 -1
0 x 0 if -1 … x 6 1
int 1x2 if x Ú 1

 53. Writing to Learn The function ƒ1x2 = 2x2 is one of our 
twelve basic functions written in another form.

(a) Graph the function and identify which basic function it is.

(b) Explain algebraically why the two functions are equal.

 54. Uncovering Hidden Behavior The function 

g1x2 = 2x2 + 0.0001 - 0.01 is not one of our twelve basic 
functions written in another form.

(a) Graph the function and identify which basic function it 
appears to be.

(b) Verify numerically that it is not the basic function that it 
appears to be.

 55. Writing to Learn The function ƒ1x2 = ln 1ex2 is one of 
our twelve basic functions written in another form.

(a) Graph the function and identify which basic function it is.

(b) Explain how the equivalence of the two functions in (a) 
shows that the natural logarithm function is not bounded 
above (even though it appears to be bounded above in  
Figure 1.42).

 56. Writing to Learn Let ƒ1x2 be the function that gives the 
cost, in cents, to mail a first-class package that weighs x 
ounces. In 2013, the cost was $2.07 for a package that weighed 
up to 3 ounces, plus 17 cents for each additional ounce or 
 portion thereof (up to 13 ounces). (Source: United States Postal 
Service.)

(a) Sketch a graph of ƒ1x2.
(b) How is this function similar to the greatest integer func-

tion? How is it different?

Packages

Weight Not Over Price

3 ounces $2.07
4 ounces $2.24
5 ounces $2.41
6 ounces $2.58
7 ounces $2.75
8 ounces $2.92
9 ounces $3.09
10 ounces $3.26
11 ounces $3.43
12 ounces $3.60
13 ounces $3.77

 57. Analyzing a Function Set your calculator to Dot mode 
and graph the greatest integer function, y = int 1x2, in the win-
dow 3-4.7, 4.74  by 3-3.1, 3.14 . Then complete the following 
analysis.

BASIC FUNCTION

The Greatest Integer Function
ƒ1x2 = int x
Domain:
Range:
Continuity:
Increasing>decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:

Standardized Test Questions
 58. True or False The greatest integer function has an inverse 

function. Justify your answer.

 59. True or False The logistic function has two horizontal 
asymptotes. Justify your answer.

In Exercises 60–63, you may use a graphing calculator to answer the question.

 60. Multiple Choice Which function has range {all real 
 numbers}?

(A) ƒ1x2 = 4 + ln x (B) ƒ1x2 = 3 - 1>x
(C) ƒ1x2 = 5>11 + e-x2 (D) ƒ1x2 = int 1x - 22
(E) ƒ1x2 = 4 cos x

 61. Multiple Choice Which function is bounded both above and 
below?

(A) ƒ1x2 = x2 - 4 (B) ƒ1x2 = 1x - 323
(C) ƒ1x2 = 3ex (D) ƒ1x2 = 3 + 1>11 + e-x2
(E) ƒ1x2 = 4 - 0 x 0

 62. Multiple Choice Which of the following is the same as the 
restricted-domain function ƒ1x2 = int 1x2, 0 … x 6 2?

(A) ƒ1x2 = c 0 if 0 … x 6 1
1 if x = 1
2 if 1 6 x 6 2

(B) ƒ1x2 = c 0 if x = 0
1 if 0 6 x … 1
2 if 1 6 x 6 2

(C) ƒ1x2 = e0 if 0 … x 6 1
1 if 1 … x 6 2

(D) ƒ1x2 = e1 if 0 … x 6 1
2 if 1 … x 6 2

(E) ƒ1x2 = e x if 0 … x 6 1
1 + x if 1 … x 6 2
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 63. Multiple Choice Which function is increasing on the inter-
val 1-∞, ∞2?
(A) ƒ1x2 = 23 + x

(B) ƒ1x2 = int 1x2
(C) ƒ1x2 = 2x2

(D) ƒ1x2 = sin x

(E) ƒ1x2 = 3>11 + e-x2

Explorations
 64. Which Is Bigger? For positive values of x, we wish to 

compare the values of the basic functions x2, x, and 2x.

(a) How would you order them from least to greatest?

(b) Graph the three functions in the viewing window 30, 304  
by 30, 204 . Does the graph confirm your response in (a)?

(c) Now graph the three functions in the viewing window 
30, 24  by 30, 1.54 .

(d) Write a careful response to the question in (a) that accounts 
for all positive values of x.

 65. Odds and Evens There are four odd functions and three 
even functions in the gallery of twelve basic functions. After 
multiplying these functions together pairwise in different com-
binations and exploring the graphs of the products, make a con-
jecture about the symmetry of:

(a) a product of two odd functions;

(b) a product of two even functions;

(c) a product of an odd function and an even function.

 66. Group Activity Assign to each student in the class the name 
of one of the twelve basic functions, but secretly so that no stu-
dent knows the “name” of another. (The same function name 
could be given to several students, but all the functions should 
be used at least once.) Let each student make a one-sentence 
self-introduction to the class that reveals something personal 
“about who I am that really identifies me.” The rest of the stu-
dents then write down their guess as to the function’s identity. 
Hints should be subtle and cleverly anthropomorphic. (For 
example, the absolute value function saying “I have a very 
sharp smile” is subtle and clever, while “I am absolutely valu-
able” is not very subtle at all.)

 67. Pepperoni Pizzas For a sta-
tistics project, a student counted 
the number of pepperoni slices 
on pizzas of various sizes at a 
local pizzeria, compiling the data 
shown in Table 1.10.

Table 1.10 Local Pizza Data

Type of Pizza Radius Pepperoni Count

Personal 4″ 12
Medium 6″ 27
Large 7″ 37
Extra large 8″ 48

(a)

[24.7, 4.7] by [23.1, 3.1]

  (b)

[24.7, 4.7] by [23.1, 3.1]

(a) Explain why the pepperoni count 1P2 ought to be propor-
tional to the square of the radius 1r2.

(b) Assuming that P = k # r2, use the data pair 14, 122 to find 
the value of k.

(c) Does the algebraic model fit the rest of the data well?

(d) Some pizza places have charts showing their kitchen staff 
how much of each topping should be put on each size of 
pizza. Do you think this pizzeria uses such a chart? Explain.

Extending the Ideas
 68. Inverse Functions Two functions are said to be inverses 

of each other if the graph of one can be obtained from the 
graph of the other by reflecting it across the line y = x. For 
example, the functions with the graphs shown below are 
inverses of each other:

(a) Two of the twelve basic functions in this section are 
inverses of each other. Which are they?

(b) Two of the twelve basic functions in this section are their 
own inverses. Which are they?

(c) If you restrict the domain of one of the twelve basic func-
tions to 30, ∞2, it becomes the inverse of another one. 
Which are they?

 69. Identifying a Function by Its Properties 

(a) Seven of the twelve basic functions have the property that 
ƒ102 = 0. Which five do not?

(b) Only one of the twelve basic functions has the property 
that ƒ1x + y2 = ƒ1x2 + ƒ1y2 for all x and y in its domain. 
Which one is it?

(c) One of the twelve basic functions has the property that 
ƒ1x + y2 = ƒ1x2ƒ1y2 for all x and y in its domain. Which 
one is it?

(d) One of the twelve basic functions has the property that 
ƒ1xy2 = ƒ1x2 + ƒ1y2 for all x and y in its domain. Which 
one is it?

(e) Four of the twelve basic functions have the property that 
ƒ1x2 + ƒ1-x2 = 0 for all x in their domains. Which four 
are they?
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What you’ll learn about
• Combining Functions Algebraically

• Composition of Functions

• Relations and Implicitly Defined 
Functions

... and why
Most of the functions that you will 
encounter in calculus and in real life 
can be created by combining or 
modifying other functions.

Combining Functions Algebraically
Knowing how a function is “put together” is an important first step when applying 
the tools of calculus. Functions have their own algebra based on the same operations 
we apply to real numbers (addition, subtraction, multiplication, and division). One 
way to build new functions is to apply these operations, using the following 
definitions.

1.4 Building Functions from Functions

Euler’s function notation works so well in the above definitions that it almost obscures 
what is really going on. The “+” in the expression “1ƒ + g21x2” stands for a brand 
new operation called function addition. It builds a new function, ƒ + g, from the given 
functions ƒ and g. Like any function, ƒ + g is defined by what it does: It takes a 
domain value x and returns a range value ƒ1x2 + g1x2. Note that the “+” sign in 
“ƒ1x2 + g1x2” does stand for the familiar operation of real-number addition. So, with 
the same symbol taking on different roles on either side of the equal sign, there is more 
to the above definitions than first meets the eye.

Fortunately, the definitions are easy to apply.

Defining New Functions Algebraically

Let ƒ1x2 = x2 and g1x2 = 2x + 1.

Find formulas for the functions ƒ + g, ƒ - g, ƒg, ƒ>g, and gg. Give the domain of 
each.

EXAMPLE 1 

DEFINITION Sum, Difference, Product, and Quotient  
of Functions

Let ƒ and g be two functions with intersecting domains. Then for all values of  
x in the intersection, the algebraic combinations of ƒ and g are defined by the 
 following rules:

Sum:  1ƒ + g21x2 = ƒ1x2 + g1x2
Difference:  1ƒ - g21x2 = ƒ1x2 - g1x2
Product:  1ƒg21x2 = ƒ1x2g1x2
Quotient:  aƒ

g
b1x2 =

ƒ1x2
g1x2, provided g1x2 ≠ 0

In each case, the domain of the new function consists of all numbers that 
belong to both the domain of ƒ and the domain of g, except that the zeros of the 
denominator are excluded from the domain of the quotient.
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The composition g of ƒ, denoted g ∘ ƒ, is defined similarly. In most cases g ∘ ƒ and ƒ ∘ g 
are different functions. (In the language of algebra, “function composition is not 
commutative.”)

SOLUTION We first determine that ƒ has domain all real numbers and that g has 
domain 3-1, ∞2. These domains overlap, the intersection being the interval  
3-1, ∞2. So:

 1ƒ + g21x2 = ƒ1x2 + g1x2 = x2 + 2x + 1 with domain
 3-1, ∞2.
 1ƒ - g21x2 = ƒ1x2 -  g1x2 = x2 - 2x + 1  with domain
 3-1, ∞2.

 1ƒg21x2 = ƒ1x2g1x2 = x22x + 1  with domain
 3-1, ∞2.

 aƒ
g
b1x2 =

ƒ1x2
g1x2 =

x22x + 1
 with domain

 1-1, ∞2.
 1gg21x2 = g1x2g1x2 = 12x + 122  with domain

 3-1, ∞2.
Note that we could express 1gg21x2 more simply as x + 1. That would be fine, but 
the simplification would not change the fact that the domain of gg is (by definition) 
the interval 3-1, ∞2. Under other circumstances the function h1x2 = x + 1 would 
have domain all real numbers, but under these circumstances it cannot; it is a product 
of two functions with restricted domains. Now try Exercise 3.

Composition of Functions
It is not hard to see that the function sin 1x22 is built from the basic functions sin x and x2, 
but the functions are not put together by addition, subtraction, multiplication, or divi-
sion. Instead, the two functions are combined by simply applying them in order—first 
the squaring function, then the sine function. This operation for combining functions, 
which has no counterpart in the algebra of real numbers, is called function composition.

and
x must be in the

domain of g
g(x) must be in the

domain of f

f 8 g

g(x)

f(g(x))

x
g

f

Figure 1.55 In the composition ƒ ∘ g, the function g is applied first and then ƒ. This is the 
reverse of the order in which we read the symbols.

DEFINITION Composition of Functions

Let ƒ and g be two functions such that the domain of ƒ intersects the range of g. 
The composition ƒ of g, denoted ƒ ∘ g, is defined by the rule

1ƒ ∘ g21x2 = ƒ1g1x22.
The domain of ƒ ∘ g consists of all x-values in the domain of g that map to g1x2 
values in the domain of ƒ. (See Figure 1.55.)
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[22, 6] by [21, 15]

Figure 1.56 The graphs of y = e2x and y = 2ex are not the same. (Example 2)

Composing Functions
Let ƒ1x2 = ex and g1x2 = 2x. Find 1ƒ ∘ g21x2 and 1g ∘ ƒ21x2 and verify numeri-
cally that the functions ƒ ∘ g and g ∘ ƒ are not the same.

SOLUTION 

1ƒ ∘ g21x2 = ƒ1g1x22 = ƒ11x2 = e1x

1g ∘ ƒ21x2 = g1ƒ1x22 = g1ex2 = 2ex

One verification that these functions are not the same is that they have different 
domains: ƒ ∘ g is defined only for x Ú 0, but g ∘ ƒ is defined for all real numbers.  
We could also consider their graphs (Figure 1.56), which agree only at x = 0 and 
x = 4.

EXAMPLE 2 

Finally, the graphs suggest a numerical verification: Find a single value of x for 
which ƒ1g1x22 and g1ƒ1x22 give different values. For example, ƒ1g1122 = e and 

g1ƒ1122 = 2e. The graph helps us to make a judicious choice of x. You do not 
want to check the functions at x = 0 and x = 4 and conclude that they are the same!

Now try Exercise 15.

Composition Calisthenics

One of the ƒ functions in column B can be composed with one of the g functions 
in column C to yield each of the basic ƒ ∘ g functions in column A. Can you 
match the columns successfully without a graphing calculator? If you are having 
trouble, try it with a graphing calculator.

A B C

ƒ ∘ g ƒ g

x x - 3 x0.6

x2 2x - 3 x2

0 x 0 2x 1x - 221x + 22
2

x3 x5 ln 1e3 x2
ln x 0 2x + 4 0 x

2

sin x 1 - 2x2 x + 3
2

cos x 2 sin x cos x sin ax
2
b

EXPLORATION 1 
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 SECTION 1.4 Building Functions from Functions 133

In Examples 2 and 3, two functions were composed to form new functions. There are 
times in calculus when we need to reverse the process. That is, we may begin with a 
function h and decompose it by finding functions whose composition is h.

\Y1=
\Y2=X2–1

\Y4=
\Y5=
\Y6=
\Y7=

(X)
Plot1 Plot2 Plot3

\Y3=Y1(Y2(X))

(a)  (b)

[24.7, 4.7] by [23.1, 3.1]

 

\Y1=
\Y2=X2–1

\Y4=
\Y5=
\Y6=
\Y7=

(X)
Plot1 Plot2 Plot3

\Y3=Y2(Y1(X))

(c)  (d)

[24.7, 4.7] by [23.1, 3.1]

Figure 1.57 The functions Y1 and Y2 are composed to get the graphs of y = 1g ∘ ƒ)1x2 and y = 1ƒ ∘ g21x2, respectively. The graphs  
support our conclusions about the domains of the two composite functions. (Example 3)

Caution
We might choose to express 1ƒ ∘ g2 more simply 
as x - 1. However, you must remember that the 
composition is restricted to the domain of 
g1x2 = 2x, or 30, ∞4 . The domain of x - 1 is 
all real numbers. It is a good idea to work out  
the domain of a composition before you simplify 
the expression for ƒ1g1x22. One way to simplify 
and maintain the restriction on the domain in 
Example 3 is to write 1ƒ ∘ g21x2 = x - 1, 
x Ú 0.

Finding the Domain of a Composition
Let ƒ1x2 = x2 - 1 and let g1x2 = 2x. Find the domains of the composite functions

(a) g ∘ ƒ (b) ƒ ∘ g.

SOLUTION 

(a) We compose the functions in the order specified:

 1 g ∘ ƒ21x2 = g1ƒ1x22
 = 2x2 - 1

For x to be in the domain of g ∘ ƒ, we must first find ƒ1x2 = x2 - 1, which we 
can do for all real x. Then we must take the square root of the result, which we 
can do only for nonnegative values of x2 - 1.

Therefore, the domain of g ∘ ƒ consists of all real numbers for which 
x2 - 1 Ú 0, namely the union 1-∞, -14 ∪ 31, ∞2.

(b) Again, we compose the functions in the order specified:

 1 ƒ ∘ g21x2 = ƒ1g1x22
 = 12x22 - 1

For x to be in the domain of ƒ ∘ g, we must first be able to find g1x2 = 2x, 
which we can do only for nonnegative values of x. Then we must be able to 
square the result and subtract 1, which we can do for all real numbers.
Therefore, the domain of ƒ ∘ g consists of the interval 30, ∞2.

Support Graphically We can graph the composition functions to see if the grapher 
respects the domain restrictions. The screen to the left of each graph shows the setup in 
the “Y =” editor. Figure 1.57b shows the graph of y = 1g ∘ ƒ21x2, and Figure 1.57d 
shows the graph of y = 1ƒ ∘ g21x2. The graphs support our algebraic work quite 
nicely.

Now try Exercise 17.

EXAMPLE 3 

Decomposing Functions
For each function h, find functions ƒ and g such that h1x2 = ƒ1g1x22.
(a) h1x2 = 1x + 122 - 31x + 12 + 4

(b) h1x2 = 2x3 + 1
(continued)

EXAMPLE 4 
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3

1

–1

–3

y

x
–5 –4 –3 –1 31 4 5

Figure 1.59 A circle of radius 2 centered at 
the origin. This set of ordered pairs 1x, y2 
defines a relation that is not a function, 
because the graph fails the vertical line test.

SOLUTION 

(a) We can see that h is quadratic in x + 1. Let ƒ1x2 = x2 - 3x + 4 and let 
g1x2 = x + 1. Then

h1x2 = ƒ1g1x22 = ƒ1x + 12 = 1x + 122 - 31x + 12 + 4

(b) We can see that h is the square root of the function x3 + 1. Let ƒ1x2 = 2x and 
let g1x2 = x3 + 1. Then

h1x2 = ƒ1g1x22 = ƒ1x3 + 12 = 2x3 + 1.

Now try Exercise 25.

There is often more than one way to decompose a function. For example, an alternative 

way to decompose h1x2 = 2x3 + 1 in Example 4b is to let ƒ1x2 = 2x + 1 and let 

g1x2 = x3. Then h1x2 = ƒ1g1x22 = ƒ1x32 = 2x3 + 1.

Modeling with Function Composition
In the medical procedure known as angioplasty, doctors insert a catheter into a heart 
vein (through a large peripheral vein) and inflate a small, spherical balloon on the  
tip of the catheter. Suppose the balloon is inflated at a constant rate of 44 cubic 
 millimeters per second (Figure 1.58).

(a) Find the volume after t seconds.

(b) When the volume is V, what is the radius r?

(c) Write an equation that gives the radius r as a function of the time. What is the 
radius after 5 sec?

SOLUTION 

(a) After t seconds, the volume will be 44t.

(b) Solve Algebraically

 
4
3

 pr3 = V

 r3 =
3V
4p

 r = A3 3V
4p

(c) Substituting 44t for V gives r = B3 3 # 44t
4p

 or r = B3 33t
p

. After 5 sec, the radius 

will be r = B3 33 # 5
p

≈ 3.74 mm. Now try Exercise 31.

EXAMPLE 5 

Relations and Implicitly Defined Functions
There are many useful curves in mathematics that fail the vertical line test and therefore 
are not graphs of functions. One such curve is the circle in Figure 1.59. Even though y is 
not related to x as a function in this instance, there is certainly some sort of relationship 
going on. In fact, not only does the shape of the graph show a significant geometric rela-
tionship among the points, but the ordered pairs 1x, y2 exhibit a significant algebraic 
relationship as well: They consist exactly of the solutions to the equation x2 + y2 = 4.

Figure 1.58 (Example 5)
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The general term for a set of ordered pairs 1x, y2 is relation. If the relation happens to 
relate a single value of y to each value of x, then the relation is also a function and its 
graph will pass the vertical line test. In the case of the circle with equation x2 + y2 = 4, 
both 10, 22 and 10, -22 are in the relation, so y is not a function of x.

Graphing Relations
Relations that are not functions are often not 
easy to graph. We will study some special cases 
later in the course (circles, ellipses, etc.), but 
some simple-looking relations like the one in 
Example 6 can be difficult. If you are curious to 
see what this one looks like, see Exercise 55.

3

1

–1
–2
–3

y

x
–5 –4 –3 –1–2 31 2 4 5

(a)      

3

1

–1

2

–3

y

x
–5 –4 –3 –1 31 4 5

(b)

Figure 1.60 The graphs of (a) y = +24 - x2 and (b) y = -24 - x2. In each case, y is 
defined as a function of x. These two functions are defined implicitly by the relation 
x2 + y2 = 4.

Verifying Pairs in a Relation
Determine which of the ordered pairs 12, -52, 11, 32, and 12, 12 are in the relation 
defined by x2y + y2 = 5. Is the relation a function?

SOLUTION We simply substitute the x- and y-coordinates of the ordered pairs into 
x2y + y2 and see if we get 5.

12, -52: 12221-52 + 1-522 = 5 Substitute x = 2, y = -5.

11, 32: 1122132 + 1322 = 12 ≠ 5 Substitute x = 1, y = 3.

12, 12: 1222112 + 1122 = 5 Substitute x = 2, y = 1.

So, 12, -52 and 12, 12 are in the relation, but 11, 32 is not.

Since the equation relates two different y values 1-5 and 12 to the same x value 122, 
the relation cannot be a function. Now try Exercise 35.

EXAMPLE 6 

Let us revisit the circle x2 + y2 = 4. While it is not a function itself, we can split it 
into two equations that do define functions, as follows:

 x2 + y2 = 4

 y2 = 4 - x2

 y = +24 - x2 or y = -24 - x2

The graphs of these two functions are, respectively, the upper and lower semicircles of 
the circle in Figure 1.59. They are shown in Figure 1.60. Since all the ordered pairs in 
either of these functions satisfy the equation x2 + y2 = 4, we say that the relation 
given by the equation defines the two functions implicitly.
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4

2
1

–1
–2

–4

y

3

–3

x
–5 –4 –3 –2 –1 321 4 5

Figure 1.61 The graph of the relation x2 + 2xy + y2 = 1. (Example 7)

Using Implicitly Defined Functions
Describe the graph of the relation x2 + 2xy + y2 = 1.

SOLUTION This looks like a difficult task at first, but notice that the expression on 
the left of the equal sign is a factorable trinomial. This enables us to split the relation 
into two implicitly defined functions as follows:

 x2 + 2xy + y2 = 1

 1x + y22 = 1  Factor.

 x + y = ±1  Extract square roots.

 x + y = 1 or x + y = -1

 y = -x + 1 or y = -x - 1 Solve for y.

The graph consists of two parallel lines (Figure 1.61), each the graph of one of the 
implicitly defined functions. Now try Exercise 37.

EXAMPLE 7 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–10, find the domain of the function and express it in in-
terval notation.

 1. ƒ1x2 =
x - 2
x + 3

 2. g1x2 = ln 1x - 12
 3. ƒ1t2 = 25 - t

 4. g1x2 =
322x - 1

 5. ƒ1x2 = 2ln 1x2
 6. h1x2 = 21 - x2

 7. ƒ1t2 =
t + 5

t2 + 1

 8. g1t2 = ln 1 0 t 0 2
 9. ƒ1x2 =

121 - x2

 10. g1x2 = 2

QUICK REVIEW 1.4 (For help, go to Sections P.1, 1.2, and 1.3.)

In Exercises 5–8, find formulas for ƒ>g and g>ƒ. Give the domain of 
each.

 5. ƒ1x2 = 2x + 3; g1x2 = x2

 6. ƒ1x2 = 2x - 2; g1x2 = 2x + 4

 7. ƒ1x2 = x2; g1x2 = 21 - x2

 8. ƒ1x2 = x3; g1x2 = 23 1 - x3

SECTION 1.4 Exercises

In Exercises 1–4, find formulas for the functions ƒ + g, ƒ - g, and ƒg. 
Give the domain of each.

 1. ƒ1x2 = 2x - 1; g1x2 = x2

 2. ƒ1x2 = 1x - 122; g1x2 = 3 - x

 3. ƒ1x2 = 2x; g1x2 = sin x

 4. ƒ1x2 = 2x + 5; g1x2 = 0 x + 3 0
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In Exercises 11–14, find 1ƒ ∘ g2132 and 1g ∘ ƒ21-22.
 11. ƒ1x2 = 2x -  3; g1x2 = x + 1

 12. ƒ1x2 = x2 - 1; g1x2 = 2x - 3

 13. ƒ1x2 = x2 + 4; g1x2 = 2x + 1

 14. ƒ1x2 =
x

x + 1
 ; g1x2 = 9 - x2

In Exercises 15–22, find ƒ1g1x22 and g1ƒ1x22. State the domain of each.

 15. ƒ1x2 = 3x + 2; g1x2 = x - 1

 16. ƒ1x2 = x2 - 1; g1x2 =
1

x - 1

 17. ƒ1x2 = x2 - 2; g1x2 = 2x + 1

 18. ƒ1x2 =
1

x - 1
 ; g1x2 = 2x

 19. ƒ1x2 = x2; g1x2 = 21 - x2

 20. ƒ1x2 = x3; g1x2 = 23 1 - x3

 21. ƒ1x2 =
1
2x

 ; g1x2 =
1
3x

 22. ƒ1x2 =
1

x + 1
 ; g1x2 =

1
x - 1

 9. ƒ1x2 = x2 and g1x2 = 1>x are shown below in the viewing 
window 30, 54  by 30, 54 . Sketch the graph of the sum 
1ƒ + g21x2 by adding the y-coordinates directly from the 
graphs. Then graph the sum on your calculator and see how 
close you came.

[0, 5] by [0, 5]

 10. The graphs of ƒ1x2 = x2 and g1x2 = 4 - 3x are shown in the 
viewing window 3-5, 54  by 3-10, 254 . Sketch the graph of 
the difference 1ƒ - g21x2 by subtracting the y-coordinates 
directly from the graphs. Then graph the difference on your 
calculator and see how close you came.

[25, 5] by [210, 25]

In Exercises 23–30, find ƒ1x2 and g1x2 so that the function can be 
described as y = ƒ1g1x22. (There may be more than one possible 
decomposition.)

 23. y = 2x2 - 5x 24. y = 1x3 + 122

 25. y = 0 3x - 2 0  26. y =
1

x3 - 5x + 3

 27. y = 1x - 325 + 2 28. y = esin x

 29. y = cos12x2 30. y = 1tan x22 + 1

 31. Weather Balloons A high-altitude 
spherical weather balloon expands as it 
rises due to the drop in atmospheric 
pressure. Suppose that the radius r 
increases at the rate of 0.03 in.>sec  
and that r = 48 in. at time t = 0. 
Determine an equation that models the 
volume V of the balloon at time t and 
find the volume when t = 300 sec.

 32. A Snowball’s Chance Jake stores a small cache of 
4-inch-diameter snowballs in the basement freezer, unaware 
that the freezer’s self-defrosting feature will cause each snow-
ball to lose about 1 cubic inch of volume every 40 days. He 
remembers them a year later (call it 360 days) and goes to 
retrieve them. What is their diameter then?

 33. Satellite Photography A satellite camera takes a 
 rectangle-shaped picture. The smallest region that can be pho-
tographed is a 5-km by 7-km rectangle. As the camera zooms 
out, the length l and width w of the rectangle increase at a rate 
of 2 km>sec. How long does it take for the area A to be at least 
5 times its original size?

 34. Computer Imaging New Age Special Effects, Inc., pre-
pares computer software based on specifications prepared by 
film directors. To simulate an approaching vehicle, they begin 
with a computer image of a 5-cm by 7-cm by 3-cm box. The 
program increases each dimension at a rate of 2 cm>sec. How 
long does it take for the volume V of the box to be at least 5 
times its initial size?

 35. Which of the ordered pairs 11, 12, 14, -22, and 13, -12 is or 
are in the relation given by 3x + 4y = 5?

 36. Which of the ordered pairs 15, 12, 13, 42, and 10, -52 is or are 
in the relation given by x2 + y2 = 25?

In Exercises 37–44, find two functions defined implicitly by the given 
relation.

 37. x2 + y2 = 25 38. x + y2 = 25

 39. x2 - y2 = 25 40. 3x2 - y2 = 25

 41. x + 0 y 0 = 1 42. x - 0 y 0 = 1

 43. y2 = x2 44. y2 = x

Standardized Test Questions
 45. True or False The domain of the quotient function 

1ƒ>g21x2 consists of all numbers that belong to both the 
domain of ƒ and the domain of g. Justify your answer.

 46. True or False The domain of the product function 1ƒg21x2 
consists of all numbers that belong to either the domain of ƒ or 
the domain of g. Justify your answer.
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You may use a graphing calculator when solving Exercises 47–50.

 47. Multiple Choice Suppose ƒ and g are functions with 
domain all real numbers. Which of the following statements is 
not necessarily true?

(A) 1ƒ + g21x2 = 1g + ƒ2(x2 (B)  1ƒg21x2 = 1gƒ21x2
(C) ƒ1g(x22 = g1ƒ1x22  (D)  1ƒ - g21x2 = -1g - ƒ21x2
(E) 1ƒ ∘ g21x2 = ƒ1g1x22

 48. Multiple Choice If ƒ1x2 = x - 7 and g1x2 = 24 - x, 
what is the domain of the function ƒ>g?

(A) 1-∞, 42 (B)  1-∞, 44  (C)  14, ∞2
(D) 34, ∞2 (E)  14, 72∪ 17, ∞2

 49. Multiple Choice If ƒ1x2 = x2 + 1, then 1ƒ ∘ ƒ21x2 =
(A) 2x2 + 2 (B)  2x2 + 1 (C)  x4 + 1

(D) x4 + 2x2 + 1 (E)  x4 + 2x2 + 2

 50. Multiple Choice Which of the following relations defines 
the function y = 0 x 0  implicitly?

(A) y = x (B)  y2 = x2 (C)  y3 = x3

(D) x2 + y2 = 1 (E)  x = 0 y 0

Explorations
 51. Three on a Match Match each function ƒ with a function 

g and a domain D so that 1ƒ ∘ g21x2 = x2 with domain D.

ƒ g D

ex 22 - x x ≠ 0

1x2 + 222 x + 1 x ≠ 1

1x2 - 222 2 ln x 10, ∞2
1

1x - 122
1

x - 1
32, ∞2

x2 - 2x + 1 2x - 2 1-∞, 24

ax + 1
x
b

2 x + 1
x

1-∞, ∞2

 52. Be a g Whiz Let ƒ1x2 = x2 + 1. Find a function g so 
that

(a) 1ƒg21x2 = x4 - 1

(b) 1ƒ + g21x2 = 3x2

(c) 1ƒ>g21x2 = 1

(d) ƒ1g1x22 = 9x4 + 1

(e) g1ƒ1x22 = 9x4 + 1

Extending the Ideas
 53. Identifying Identities An identity for a function opera-

tion is a function that combines with a given function ƒ to 
return the same function ƒ. Find the identity functions for 
the following operations:

(a) Function addition. That is, find a function g such that 
1ƒ + g21x2 = 1g + ƒ21x2 = ƒ1x2.

(b) Function multiplication. That is, find a function g such 
that 1ƒg21x2 = 1gƒ21x2 = ƒ1x2.

(c) Function composition. That is, find a function g such 
that 1ƒ ∘ g21x2 = 1g ∘ ƒ21x2 = ƒ1x2.

 54. Is Function Composition Associative? You already 
know that function composition is not commutative; that is, 
1ƒ ∘ g21x2 ≠ 1g ∘ ƒ21x2. But is function composition asso-
ciative? That is, does 1ƒ ∘ 1g ∘ h221x2 = 11ƒ ∘ g2 ∘ h221x2? 
Explain your answer.

 55. Revisiting Example 6 Solve x2y + y2 = 5 for y using 
the quadratic formula and graph the pair of implicit functions.
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What you’ll learn about
• Relations Defined Parametrically

• Inverse Relations and Inverse 
 Functions

... and why
Some functions and graphs can 
best be defined parametrically, 
whereas some others can best be 
understood as inverses of functions 
we already know.

Relations Defined Parametrically
Another natural way to define functions, or, more generally, relations, is to define both 
elements of the ordered pair 1x, y2 in terms of another variable t, called a parameter. 
We illustrate with an example.

1.5 Parametric Relations and Inverses

y

5

–5

x
5

t = –3 t = 1

t = –2 t = 0
t = –1

Figure 1.62 (Example 1)

Defining a Function Parametrically
Consider the set of all ordered pairs 1x, y2 defined by the equations

 x = t + 1

 y = t2 + 2t

where t is any real number.

(a) Find the points determined by t = -3, -2, -1, 0, 1, 2, and 3.

(b) Find an algebraic relationship between x and y. (This is often called “eliminating 
the parameter.”) Is y a function of x?

(c) Graph the relation in the 1x, y2 plane.

SOLUTION 

(a) Substitute each value of t into the formulas for x and y to find the point that it 
determines parametrically:

t x = t + 1 y = t2 + 2t 1x, y2
-3 -2 3 1-2, 32
-2 -1 0 1-1, 02
-1 0 -1 10, -12

0 1 0 11, 02
1 2 3 12, 32
2 3 8 13, 82
3 4 15 14, 152

(b) We can find the relationship between x and y algebraically by the method of sub-
stitution. First solve for t in terms of x to obtain t = x - 1.

 y = t2 + 2t  Given

 y = 1x - 122 + 21x - 12  t = x - 1

 = x2 - 2x + 1 + 2x - 2 Expand.

 = x2 - 1  Simplify.

 This is consistent with the ordered pairs we had found in the table. As t varies 
over all real numbers, we will get all the ordered pairs in the relation y = x2 - 1, 
which does indeed define y as a function of x.

(c) Since the parametrically defined relation consists of all ordered pairs in the rela-
tion y = x2 - 1, we can get the graph by simply graphing the parabola 
y = x2 - 1. See Figure 1.62. Now try Exercise 5.

EXAMPLE 1 
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\X1T=T2+2T
 Y1T=T+1

 Y2T=
\X3T=
 Y3T=
\X4T=

Plot1 Plot2 Plot3

\X2T=

(a)   

TABLE SETUP

Tbl=1

Depend:  Auto  Ask

TblStart=–3

Indpnt:    Auto  Ask

(b)   

T

Y1T = T+1

–3
–2
–1
0
1
2
3

3
0
–1
0
3
8
15

–2
–1
0
1
2
3
4

X1T Y1T

(c)

Figure 1.63 Using the table feature of a grapher set in Parametric mode. (Example 2)

Using a Graphing Calculator  
in Parametric Mode

Consider the set of all ordered pairs 1x, y2 defined by the equations

 x = t2 + 2t

 y = t + 1

where t is any real number.

(a) Use a graphing calculator to find the points determined 
by t = -3, 2, -1, 0, 1, 2, and 3.

(b) Use a graphing calculator to graph the relation in the 
1x, y2 plane.

(c) Is y a function of x?

(d) Find an algebraic relationship between x and y.

SOLUTION 

(a) When the calculator is in Parametric mode, the “Y =” screen provides a space 
to enter both X and Y as functions of the parameter T (Figure 1.63a). After enter-
ing the functions, use the table setup in Figure 1.63b to obtain the table shown in 
Figure 1.63c. The table shows, for example, that when T = -3 we have 
X1T = 3 and Y1T = -2, so the ordered pair corresponding to t = -3 is 
13, -22.

(b) In Parametric mode, the “WINDOW” screen contains the usual x-axis informa-
tion, as well as “Tmin,” “Tmax,” and “Tstep” (Figure 1.64a). To include most of 
the points listed in part (a), we set Xmin = -5, Xmax = 5, Ymin = -3, and 
Ymax = 3. Since t = y - 1, we set Tmin and Tmax to values one less than 
those for Ymin and Ymax.

The value of Tstep determines how far the grapher will go from one value of t  
to the next as it computes the ordered pairs. With Tmax - Tmin = 6 and 
Tstep = 0.1, the grapher will compute 60 points, which is sufficient. (The more 
points, the smoother the graph. See Exploration 1.) The graph is shown in  
Figure 1.64b. Use TRACE to find some of the points found in (a).

(c) No, y is not a function of x. We can see this from part (a) because 10, -12 and 
10, 12 have the same x-value but different y-values. Alternatively, notice that the 
graph in (b) fails the vertical line test.

(d) We can use the same algebraic steps as in Example 1 to get the relation in terms 
of x and y: x = y2 - 1. Now try Exercise 7.

EXAMPLE 2 

t 1x, y2
-3 13, -22
-2 10, -12
-1 1-1, 02

0 10, 12
1 13, 22
2 18, 32
3 115, 42
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Inverse Relations and Inverse Functions
What happens when we reverse the coordinates of all the ordered pairs in a relation? 
We obviously get another relation, because it is another set of ordered pairs, but does it 
bear any resemblance to the original relation? If the original relation happens to be a 
function, will the new relation also be a function?

We can get some idea of what happens by examining Examples 1 and 2. The ordered 
pairs in Example 2 can be obtained by simply reversing the coordinates of the ordered 
pairs in Example 1. This is because we set up Example 2 by switching the parametric 
equations for x and y that we used in Example 1. We say that the relation in Example 2 
is the inverse relation of the relation in Example 1.

WINDOW

Tmax=2

Xmin=–5

Xscl=1
Ymin=–3

Tmin=–4

Tstep=.1

Xmax=5

(a)

[25, 5] by [23, 3]

(b)

Figure 1.64 The graph of a parabola in 
Parametric mode on a graphing calculator. 
(Example 2)

Watching Your Tstep

 1. Graph the parabola in Example 2 in Parametric mode as described in the 
solution. Press TRACE and observe the values of T, X, and Y. At what value 
of T does the calculator begin tracing? What point on the parabola results? 
(It’s off the screen.) At what value of T does it stop tracing? What point on 
the parabola results? How many points are computed as you TRACE from 
start to finish?

 2. Leave everything else the same and change the Tstep to 0.01. Do you get a 
smoother graph? Why or why not?

 3. Leave everything else the same and change the Tstep to 1. Do you get a 
smoother graph? Why or why not?

 4. What effect does the Tstep have on the speed of the grapher? Is this easily 
explained?

 5. Now change the Tstep to 2. Why does the left portion of the parabola disap-
pear? (It may help to TRACE along the curve.)

 6. Change the Tstep back to 0.1 and change the Tmin to -1. Why does the bot-
tom side of the parabola disappear? (Again, it may help to TRACE.)

 7. Make a change to the window that will cause the grapher to show the bottom 
side of the parabola but not the top.

EXPLORATION 1 

DEFINITION Inverse Relation

The ordered pair 1a, b2 is in a relation if and only if the ordered pair 1b, a2 is in 
the inverse relation.

We will study the connection between a relation and its inverse. We will be most inter-
ested in inverse relations that happen to be functions. Notice that the graph of the inverse 
relation in Example 2 (Figure 1.64) fails the vertical line test and is therefore not the 
graph of a function. Can we predict this failure by considering the graph of the original 
relation in Example 1? Figure 1.65 suggests that we can.

The inverse graph in Figure 1.65b fails the vertical line test because two different y 
values have been paired with the same x value. This is a direct consequence of the fact 
that the original relation in Figure 1.65a paired two different x values with the same y 
value. The inverse graph fails the vertical line test precisely because the original graph 
fails the horizontal line test. This gives us a test for relations whose inverses are 
functions.
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142 CHAPTER 1 Functions and Graphs

A function whose inverse is a function has a graph that passes both the horizontal and 
vertical line tests (such as graph (1) in Example 3). Such a function is one-to-one, since 
every x is paired with a unique y and every y is paired with a unique x.

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(–1, 1) (1, 1)

(a)    

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 32 4 5

(–1, 1)

(1, 1)

(b)

Figure 1.65 The inverse relation in (b) fails the vertical line test because the original  
relation in (a) fails the horizontal line test.

Horizontal Line Test

The inverse of a relation is a function if and only if each horizontal line inter-
sects the graph of the original relation in at most one point.

3
2
1

–1–5 –4–3 321 4 5

(1)

y

x

  

3
2
1

–1

y

x
–5–4–3–2–1 321 4 5

(2)   

3

1

–1

–3

y

x
–5 –3–2–1 321 5

(3)   

3
2
1

–1
–2
–3

y

(4)

x
–5–4–3–2 32 4 5

Figure 1.66 (Example 3)

Caution About Function Notation
The symbol ƒ -1 is read “ƒ inverse” and should 
never be confused with the reciprocal of ƒ. If ƒ is 
a function, then the symbol ƒ -1 can only mean ƒ 
inverse. The reciprocal of ƒ must be written as 
1>ƒ.

Applying the Horizontal Line Test
Which of the graphs (1)–(4) in Figure 1.66 are graphs of

(a) relations that are functions?

(b) relations that have inverses that are functions?

SOLUTION 

(a) Graphs (1) and (4) are graphs of functions because these graphs pass the vertical 
line test. Graphs (2) and (3) are not graphs of functions because these graphs fail 
the vertical line test.

(b) Graphs (1) and (2) are graphs of relations whose inverses are functions because 
these graphs pass the horizontal line test. Graphs (3) and (4) fail the horizontal 
line test, so their inverse relations are not functions. Now try Exercise 9.

EXAMPLE 3 

DEFINITION Inverse Function

If ƒ is a one-to-one function with domain D and range R, then the inverse func-
tion of ƒ, denoted ƒ -1, is the function with domain R and range D defined by

ƒ -11b2 = a if and only if ƒ1a2 = b.
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[24.7, 4.7] by [25, 5]

Figure 1.67 The graph of 
ƒ1x2 = x>1x + 12. (Example 4)

4

2

–1
–2

–4

y

3

–3

x
–5 –4 –3 –2 321 4 5

Figure 1.68 The graph of a one-to-one 
function. (Example 5)

Inverse Reflection Principle

The points 1a, b2 and 1b, a2 in the coordinate plane are symmetric with respect 
to the line y = x. The points 1a, b2 and 1b, a2 are reflections of each other 
across the line y = x.

Finding an Inverse Function Algebraically
Find an equation for ƒ -11x2 if ƒ1x2 = x>1x + 12.
SOLUTION The graph of ƒ in Figure 1.67 suggests that ƒ is one-to-one. The original 
function satisfies the equation y = x>1x + 12. If ƒ truly is one-to-one, the inverse 
function ƒ -1 will satisfy the equation x = y>1y + 12. (Note that we just switch the x 
and the y.)

If we solve this new equation for y we will have a formula for ƒ -11x2:

 x =
y

y + 1

 x1y + 12 = y  Multiply by y + 1.

 xy + x = y  Distributive property

 xy - y = -x  Isolate the y terms.

 y1x - 12 = -x  Factor out y.

 y =
-x

x - 1
 Divide by x - 1.

 y =
x

1 - x
 Multiply numerator and denominator by -1.

Therefore, ƒ -11x2 = x>11 - x2. Now try Exercise 15.

EXAMPLE 4 

Let us candidly admit two things regarding Example 4 before moving on to a graphical 
model for finding inverses. First, many functions are not one-to-one and so do not have 
inverse functions. Second, the algebra involved in finding an inverse function in the 
manner of Example 4 can be extremely difficult. We will actually find very few 
inverses this way. As you will learn in future chapters, we will usually rely on our 
understanding of how ƒ maps x to y to understand how ƒ -1 maps y to x.

It is possible to use the graph of ƒ to produce a graph of ƒ -1 without doing any algebra 
at all, thanks to the following geometric reflection property:

Finding an Inverse Function Graphically
The graph of a function y = ƒ1x2 is shown in Figure 1.68. Sketch a graph of the 
function y = ƒ -11x2. Is ƒ a one-to-one function?

SOLUTION We need not find a formula for ƒ -11x2. All we need to do is to find the 
reflection of the given graph across the line y = x. This can be done geometrically.

Imagine a mirror along the line y = x and draw the reflection of the given graph in 
the mirror (Figure 1.69).

Another way to visualize this process is to imagine the graph to be drawn on a large 
pane of glass. Imagine the glass rotating around the line y = x so that the positive 
x-axis switches places with the positive y-axis. (The back of the glass must be rotated 
to the front for this to occur.) The graph of ƒ will then become the graph of ƒ -1.

Since the inverse of ƒ has a graph that passes the horizontal and vertical line test, ƒ is 
a one-to-one function. Now try Exercise 23.

EXAMPLE 5 
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144 CHAPTER 1 Functions and Graphs

Some functions are so important that we need to study their inverses even though they 
are not one-to-one. A good example is the square root function, which is the “inverse” 
of the squaring function. It is not the inverse of the entire squaring function, because the 
full parabola fails the horizontal line test. Figure 1.70 shows that the function y = 2x 
is really the inverse of a “restricted-domain” version of y = x2 defined only for 
x Ú 0.

3
2

–1
–2
–3

y

x
–5–4–3–2 321 4 5

The graph of f   

3
2

–1
–2
–3

y

x
–5–4–3–2 321 4 5

The mirror y = x   

3
2

–2
–3

y

x
–5–4–3–2 32 4 5

The reflection   

3
2
1

–2
–3

y

x
–5–4–3–2–1 32 4 5

The graph of f –1

Figure 1.69 The mirror method. The graph of ƒ is reflected in an imaginary mirror along the line y = x to produce the graph of ƒ -1.  
(Example 5)

There is a natural connection between inverses and function composition that gives 
further insight into what an inverse actually does: It “undoes” the action of the original 
function. This leads to the following rule:

Inverse Composition Rule

A function ƒ is one-to-one with inverse function g if and only if

 ƒ1g1x22 = x for every x in the domain of g, and

 g1ƒ1x22 = x for every x in the domain of ƒ.

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The graph of y 5 x2 (not one-to-one)
   

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The inverse relation of 
y 5 x2 (not a function)    

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The graph of y 5 xw (a function)
   

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The graph of the function 
whose inverse is y 5 xw

Figure 1.70 The function y = x2 has no inverse function, but y = 2x is the inverse function of y = x2 on the restricted domain 30, ∞2.

Verifying that Functions Are Inverses

Show algebraically that ƒ1x2 = x3 + 1 and g1x2 = 23 x - 1 are inverse functions.

SOLUTION We use the Inverse Composition Rule.

 ƒ1g1x22 = ƒ123 x - 12 = 123 x - 123 + 1 = x - 1 + 1 = x

 g1ƒ1x22 = g1x3 + 12 = 23 1x3 + 12 - 1 = 23 x3 = x

Since these equations are true for all x, the Inverse Composition Rule guarantees that 
ƒ and g are inverses.

You do not have far to go to find graphical support of this algebraic verification, 
since these are the functions whose graphs are shown in Example 5!

Now try Exercise 27.

EXAMPLE 6 
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The consideration of domains adds a refinement to the algebraic inverse-finding 
method of Example 4, which we now summarize:

[24.7, 4.7] by [23.1, 3.1]

Figure 1.71 The graph of ƒ1x2 = 2x + 3 
and its inverse, a restricted version of 
y = x2 - 3. (Example 7)

How to Find an Inverse Function Algebraically

Given a formula for a function ƒ, proceed as follows to find a formula for ƒ -1.

1. Determine that there is a function ƒ -1 by checking that ƒ is one-to-one. 
State any restrictions on the domain of ƒ. (Note that it might be necessary 
to impose some to get a one-to-one version of ƒ.)

2. Switch x and y in the formula y = ƒ1x2.
3. Solve for y to get the formula y = ƒ -11x2. State any restrictions on the 

domain of ƒ -1.

Finding an Inverse Function
Show that ƒ1x2 = 2x + 3 has an inverse function and find a rule for ƒ -11x2. State 
any restrictions on the domains of ƒ and ƒ -1.

SOLUTION 

Solve Algebraically The graph of ƒ passes the horizontal line test, so ƒ has an 
inverse function (Figure 1.71). Note that ƒ has domain 3-3, ∞2 and range 30, ∞2.

To find ƒ -1 we write

 y = 2x + 3 where x Ú -3, y Ú 0

 x = 2y + 3 where y Ú -3, x Ú 0 Interchange x and y.

 x2 = y + 3  where y Ú -3, x Ú 0 Square.

 y = x2 - 3  where y Ú -3, x Ú 0 Solve for y.

Thus ƒ -11x2 = x2 - 3, with an “inherited” domain restriction of x Ú 0. Figure 1.71 
shows the two functions. Note the domain restriction of x Ú 0 imposed on the parab-
ola y = x2 - 3.

Support Graphically Use a grapher in Parametric mode and compare the graphs of 
the two sets of parametric equations with Figure 1.71:

x = t and x = 2t + 3

y = 2t + 3 y = t
Now try Exercise 17.

EXAMPLE 7 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–10, solve the equation for y.

 1. x = 3y - 6 2. x = 0.5y + 1

 3. x = y2 + 4 4. x = y2 - 6

 5. x =
y - 2

y + 3
 6. x =

3y - 1

y + 2

 7. x =
2y + 1

y - 4
 8. x =

4y + 3

3y - 1

 9. x = 2y + 3, y Ú -3

 10. x = 2y - 2, y Ú 2

QUICK REVIEW 1.5 (For help, go to Sections P.3 and P.4.)
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 25. 
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 26. 

4
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–2

–4

y

3

–3

x
–5 –4 –3 –1 321 4 5

In Exercises 27–32, confirm that ƒ and g are inverses by showing that 
ƒ1g1x22 = x and g1ƒ1x22 = x.

 27. ƒ1x2 = 3x - 2 and g1x2 =
x + 2

3

 28. ƒ1x2 =
x + 3

4
 and g1x2 = 4x - 3

 29. ƒ1x2 = x3 + 1 and g1x2 = 23 x - 1

 30. ƒ1x2 =
7
x
 and g1x2 =

7
x

 31. ƒ1x2 =
x + 1

x
 and g1x2 =

1
x - 1

 32. ƒ1x2 =
x + 3
x - 2

 and g1x2 =
2x + 3
x - 1

 33. Currency Conversion In March of 2022 the exchange rate 
for converting U.S. dollars 1x2 to euros 1y2 was y = 0.9x.

(a) How many euros could you get for $250 U.S.?

(b) What is the inverse function, and what conversion does it 
represent?

(c) In the spring of 2022, a tourist from Seattle had an elegant 
lunch in Udine, Italy, ordering from a “fixed price” €36 
menu. How much was that in U.S. dollars?

 34. Temperature Conversion The formula for converting 
Celsius temperature 1x2 to Kelvin temperature is 
k1x2 = x + 273.16. The formula for converting Fahrenheit 
temperature 1x2 to Celsius temperature is 
c1x2 = 15>921x - 322.
(a) Find a formula for c -11x2. What is this formula used for?

(b) Find 1k ∘ c21x2. What is this formula used for?

 35. Which pairs of basic functions (Section 1.3) are inverses of 
each other?

 36. Which basic functions (Section 1.3) are their own inverses?

 37. Which basic function can be defined parametrically as follows?

x = t3 and y = 2t6 for -∞ 6 t 6 ∞ 

 38. Which basic function can be defined parametrically as follows?

x = 8t3 and y = 12t23 for -∞ 6 t 6 ∞ 

Standardized Test Questions
 39. True or False If ƒ is a one-to-one function with domain D 

and range R, then ƒ -1 is a one-to-one function with domain R 
and range D. Justify your answer.

SECTION 1.5 Exercises

In Exercises 1–4, find the 1x, y2 pair for the value of the parameter.

 1. x = 3t and y = t2 + 5 for t = 2

 2. x = 5t - 7 and y = 17 - 3t for t = -2

 3. x = t3 - 4t and y = 2t + 1 for t = 3

 4. x = 0 t + 3 0  and y = 1>t for t = -8

In Exercises 5–8, complete the following. (a) Find the points deter-
mined by t = -3, -2, -1, 0, 1, 2, and 3. (b) Find a direct algebraic 
relationship between x and y and determine whether the parametric 
equations determine y as a function of x. (c) Graph the relationship in 
the xy-plane.

 5. x = 2t and y = 3t - 1 6. x = t + 1 and y = t2 - 2t

 7. x = t2 and y = t - 2 8. x = 2t and y = 2t - 5

In Exercises 9–12, the graph of a relation is shown. (a) Is the relation a 
function? (b) Does the relation have an inverse that is a function?

 9. y

x

 10. y

x

 11. y

x

 12. y

x

In Exercises 13–22, find a formula for ƒ -11x2. Give the domain of ƒ -1, 
including any restrictions “inherited” from ƒ.

 13. ƒ1x2 = 3x - 6 14. ƒ1x2 = 2x + 5

 15. ƒ1x2 =
2x - 3
x + 1

 16. ƒ1x2 =
x + 3
x - 2

 17. ƒ1x2 = 2x - 3 18. ƒ1x2 = 2x + 2

 19. ƒ1x2 = x3 20. ƒ1x2 = 2x3 + 5

 21. ƒ1x2 = 23 x + 5 22. ƒ1x2 = 23 x - 2

In Exercises 23–26, determine whether the function is one-to-one. If it 
is one-to-one, sketch the graph of the inverse.
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 40. True or False The set of points 1t + 1, 2t + 32 for all real 
numbers t form a line with slope 2. Justify your answer.

In Exercises 41– 44, answer the questions without using a calculator.

 41. Multiple Choice Which ordered pair is in the inverse of the 
relation given by x2y + 5y = 9?

(A) 12, 12 (B)  1-2, 12 (C)  1-1, 22 (D)  12, -12
(E) 11, -22

 42. Multiple Choice Which ordered pair is not in the inverse 
of the relation given by xy2 - 3x = 12?

(A) 10, -42 (B)  14, 12 (C)  13, 22 (D)  12, 122
(E) 11, -62

 43. Multiple Choice Which function is the inverse of the func-
tion ƒ1x2 = 3x - 2?

(A) g1x2 =
x
3

+ 2 (B)  g1x2 = 2 - 3x

(C) g1x2 =
x + 2

3
 (D)  g1x2 =

x - 3
2

(E) g1x2 =
x - 2

3

 44. Multiple Choice Which function is the inverse of the 
 function ƒ1x2 = x3 + 1?

(A) g1x2 = 23 x - 1 (B)  g1x2 = 23 x - 1

(C) g1x2 = x3 - 1 (D)  g1x2 = 23 x + 1

(E) g1x2 = 1 - x3

Explorations
 45. Function Properties Inherited by Inverses There are 

some properties of functions that are automatically shared by 
inverse functions (when they exist) and some that are not. 
 Suppose that ƒ has an inverse function ƒ -1. Give an algebraic 
or graphical argument (not a rigorous formal proof) to show 
that each of these properties of ƒ must necessarily be shared by 
ƒ -1.

(a) ƒ is continuous.

(b) ƒ is one-to-one.

(c) ƒ is odd (graphically, symmetric with respect to the  origin).

(d) ƒ is increasing.

 46. Function Properties Not Inherited by Inverses  
There are some properties of functions that are not necessarily 
shared by inverse functions, even if the inverses exist. Suppose 
that ƒ has an inverse function ƒ -1. For each of the following 
properties, give an example to show that ƒ can have the prop-
erty while ƒ -1 does not.

(a) ƒ has a graph with a horizontal asymptote.

(b) ƒ has domain all real numbers.

(c) ƒ has a graph that is bounded above.

(d) ƒ has a removable discontinuity at x = 5.

 47. Scaling Algebra Grades A teacher gives a challenging 
algebra test to her class. The lowest score is 52, which she 
decides to scale to 70. The highest score is 88, which she 
decides to scale to 97.

(a) Using the points (52, 70) and (88, 97), find a linear equa-
tion that can be used to convert raw scores to scaled grades.

(b) Find the inverse of the function defined by this linear 
equation. What does the inverse function do?

 48. Writing to Learn (Continuation of Exercise 47) Explain 
why it is important for fairness that the scaling function used 
by the teacher be an increasing function. (Caution: It is not 
because “everyone’s grade must go up.” What would the scal-
ing function in Exercise 47 do for a student who does enough 
“extra credit” problems to get a raw score of 136?)

Extending the Ideas
 49. Modeling a Fly Ball Parametrically A baseball that 

leaves the bat at an angle of 60° from horizontal traveling 
110 ft>sec follows a path that can be modeled by the following 
pair of parametric equations. (You might enjoy verifying this 
if you have studied motion in physics.)

x = 1101t2cos160°2
y = 1101t2sin160°2 - 16t2

  You can simulate the flight of the ball on a grapher. Set your 
grapher to Parametric mode and put the functions above in for 
X2T and Y2T. Set X1T = 325 and Y1T = 5T to draw a 30-ft 
fence 325 ft from home plate. Set Tmin = 0, Tmax = 6, 
Tstep = 0.1, Xmin = 0, Xmax = 350, Xscl = 0, Ymin = 0, 
Ymax = 300, and Yscl = 0.

(a) Now graph the function. Does the fly ball clear the fence?

(b) Change the angle to 30° and run the simulation again. 
Does the ball clear the fence?

(c) What angle is optimal for hitting the ball? Does it clear 
the fence when hit at that angle?

 50. The Baylor GPA Scale Revisited (See Problem 78 in 
Section 1.2.) The function used to convert Baylor School per-
centage grades to GPAs on a 4-point scale is

y = a3
1.7

30
 1x - 652b

1
1.7

+ 1.

  The function has domain 365, 1004 . Anything below 65 is a 
failure and automatically converts to a GPA of 0.

(a) Find the inverse function algebraically. What can the 
inverse function be used for?

(b) Does the inverse function have any domain restrictions?

(c) Verify with a graphing calculator that the function found 
in (a) and the given function are really inverses.

 51. Group Activity (Continuation of Exercise 50) The num-
ber 1.7 that appears in two places in the GPA scaling formula 
is called the scaling factor 1k2. The value of k can be changed 
to alter the curvature of the graph while keeping the points 
165, 12 and 195, 42 fixed. It was felt that the lowest D 1652 
needed to be scaled to 1.0, while the middle A 1952 needed to 
be scaled to 4.0. The faculty’s Academic Council considered 
several values of k before settling on 1.7 as the number that 
gives the “fairest” GPAs for the other percentage grades.

  Try changing k to other values between 1 and 2. What kind of 
scaling curve do you get when k = 1? Do you agree with the 
Baylor decision that k = 1.7 gives the fairest GPAs?
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What you’ll learn about
• Transformations

• Vertical and Horizontal Translations

• Reflections Across Axes

• Vertical and Horizontal Stretches 
and Shrinks

• Combining Transformations

... and why
Studying transformations will help 
you to understand the relationships 
between graphs that have similari-
ties but are not the same.

Transformations
The following functions are all different:

y = x2

y = 1x - 322
y = 1 - x2

y = x2 - 4x + 5

However, a look at their graphs shows that, while no two are exactly the same, all four 
have the same identical shape and size. Understanding how algebraic alterations change 
the shapes, sizes, positions, and orientations of graphs is helpful for understanding the 
connection between algebraic and graphical models of functions.

In this section we relate graphs using (geometric) transformations, which are func-
tions that map points to points. By acting on the x-coordinates and y-coordinates of 
points, transformations change graphs in predictable ways. Rigid transformations, 
which leave the size and shape of a graph unchanged, include horizontal translations, 
vertical translations, reflections, and any combination of these. Nonrigid transforma-
tions, which generally distort the shape of a graph, include horizontal and vertical 
stretches and shrinks.

1.6 Graphical Transformations

Technology Alert
In Exploration 1, the notation y11x + 32 means 
the function y1, evaluated at x + 3. It does not 
mean multiplication.

Introducing Translations

Set your viewing window to 3-5, 54  by 3-5, 154  and your graphing mode to 
Sequential as opposed to Simultaneous.

 1. Graph the functions

 y1 = x2   y4 = y11x2 - 2 = x2 - 2

 y2 = y11x2 + 3 = x2 + 3  y5 = y11x2 - 4 = x2 - 4

 y3 = y11x2 + 1 = x2 + 1

on the same screen. What effect do the +3, +1, -2, and -4 seem to have?

 2. Graph the functions

 y1 = x2   y4 = y11x - 22 = 1x - 222
 y2 = y11x + 32 = 1x + 322  y5 = y11x - 42 = 1x - 422
 y3 = y11x + 12 = 1x + 122

on the same screen. What effect do the +3, +1, -2, and -4 seem to have?

 3. Repeat steps 1 and 2 for the functions y1 = x3, y1 = 0 x 0 , and y1 = 2x. Do 
your observations agree with those you made after steps 1 and 2?

EXPLORATION 1 

Vertical and Horizontal Translations
A vertical translation of the graph of y = ƒ1x2 is a shift of the graph up or down in 
the coordinate plane. A horizontal translation is a shift of the graph to the left or the 
right. The following exploration will give you a good feel for what translations are and 
how they occur.
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In general, replacing x by x - c shifts the graph horizontally c units. Similarly, replac-
ing y by y - c shifts the graph vertically c units. If c is positive the shift is to the right 
or up; if c is negative the shift is to the left or down.

This is a nice, consistent rule that unfortunately gets complicated by the fact that 
the c for a vertical shift rarely shows up being subtracted from y. Instead, it usually 
shows up on the other side of the equal sign being added to ƒ1x2. That leads us to 
the following rule, which only appears to be different for horizontal and vertical 
shifts:

y

5

–5

x
5

Figure 1.72 y = 0 x 0 - 4.  
(Example 1)

y

5

–5

x
5

Figure 1.73 y = 0 x + 2 0 .  
(Example 1)

Translations of Graphs

Let c be a positive real number. Then the following transformations result in 
translations of the graph of y = ƒ1x2:
Horizontal Translations

 y = ƒ1x - c2  a translation to the right by c units

 y = ƒ1x + c2  a translation to the left by c units

Vertical Translations

 y = ƒ1x2 + c  a translation up by c units

 y = ƒ1x2 - c  a translation down by c units

Vertical and Horizontal Translations
Describe how the graph of y = 0 x 0  can be transformed to the graph of the given 
equation.

(a) y = 0 x 0 - 4

(b) y = 0 x + 2 0
SOLUTION 

(a) The equation is in the form y = ƒ1x2 - 4, a translation down by 4 units. See 
Figure 1.72.

(b) The equation is in the form y = ƒ1x + 22, a translation left by 2 units. See 
 Figure 1.73. Now try Exercise 3.

EXAMPLE 1 

M02_DEMA8962_10_GE_C01.indd   149 22/06/22   09:17



150 CHAPTER 1 Functions and Graphs

Reflections Across Axes
Points 1x, y2 and 1x, -y2 are reflections of each other across the x-axis. Points 1x, y2 
and 1-x, y2 are reflections of each other across the y-axis. (See Figure 1.75.) Two 
points (or graphs) that are symmetric with respect to a line are reflections of each 
other across that line.

Figure 1.75 suggests that a reflection across the x-axis results when y is replaced by -y,  
and a reflection across the y-axis results when x is replaced by -x.

6

2
1

–1
–2

–6

y

3
4
5

–4
–5

x
–5 –4 –3 –2 –1 321 4 5

(a)   

6

2
1

–1
–2

–6

y

–3
–4
–5

x
–5 –4 –2 321 4 5

(b)   

6

2
1

–1
–2

–6

y

3
4
5

–3
–4
–5

x
–5 –4 –3 –2 31 4 5

(c)

Figure 1.74 Translations of y1 = x3. (Example 2)

Finding Equations for Translations
Each view in Figure 1.74 shows the graph of y1 = x3 and a vertical or horizontal 
translation y2. Write an equation for y2 as shown in each graph.

SOLUTION 

(a) y2 = x3 - 3 = y11x2 - 3 (a vertical translation down by 3 units)

(b) y2 = 1x + 223 = y11x + 22 (a horizontal translation left by 2 units)

(c) y2 = 1x - 323 = y11x - 32 (a horizontal translation right by 3 units)
Now try Exercise 25.

EXAMPLE 2 

y

x

(x, y)(–x, y)

(x, –y)

Figure 1.75 The point 1x, y2 and its 
reflections across the x- and y-axes.

Double Reflection
Note that a reflection through the origin is the 
result of reflections in both axes, performed in 
either order.

Reflections of Graphs

The following transformations result in reflections of the graph of y = ƒ1x2:
Across the x-axis

y = -ƒ1x2
Across the y-axis

y = ƒ1-x2
Through the origin

y = -ƒ1-x2

Finding Equations for Reflections

Find an equation for the reflection of ƒ1x2 =
5x - 9

x2 + 3
 across each axis.

EXAMPLE 3 
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(a)

[25, 5] by [24, 4]

  (b)

[25, 5] by [24, 4]

Figure 1.76 Reflections of ƒ1x2 = 15x - 92>1x2 + 32 across (a) the x-axis and (b) the 
y-axis. (Example 3)

SOLUTION 

Solve Algebraically 

Across the x-axis: y = -ƒ1x2 = -  
5x - 9

x2 + 3
=

9 - 5x

x2 + 3

Across the y-axis: y = ƒ1-x2 =
51-x2 - 9

1-x22 + 3
=

-5x - 9

x2 + 3

Support Graphically The graphs in Figure 1.76 support our algebraic work.

Now try Exercise 29.

You might expect that odd and even functions, whose graphs already possess special 
symmetries, would exhibit special behavior when reflected across the axes. They do, as 
shown by Example 4 and Exercises 33 and 34.

Reflecting Even Functions
Prove that the graph of an even function remains unchanged when it is reflected 
across the y-axis.

SOLUTION Note that we can get plenty of graphical support for these statements by 
reflecting the graphs of various even functions, but what is called for here is proof, 
which will require algebra.

Let ƒ be an even function; that is, ƒ1-x2 = ƒ1x2 for all x in the domain of ƒ. To reflect 
the graph of y = ƒ1x2 across the y-axis, we make the transformation y = ƒ1-x2. But 
ƒ1-x2 = ƒ1x2 for all x in the domain of ƒ, so this transformation results in y = ƒ1x2. 
The graph of ƒ therefore remains unchanged. Now try Exercise 33.

EXAMPLE 4 

Function compositions with absolute value can be realized graphically by reflecting 
portions of graphs, as you will see in the following Exploration.

Graphing Absolute Value Compositions

Given the graph of y = ƒ1x2,
• the graph of y = 0 ƒ1x2 0  can be obtained by reflecting only the portion of 

the graph below the x-axis across the x-axis, leaving the portion above the 
x-axis unchanged;

• the graph of y = ƒ1 0 x 0 2 can be obtained by replacing the portion of the 
graph to the left of the y-axis by a reflection of the portion to the right of 
the y-axis across the y-axis, leaving the portion to the right of the y-axis 
unchanged. (The result will show even symmetry.)
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Compositions with Absolute Value

The graph of y = ƒ1x2 is shown at the right. 
Match each of the following four equations 
with one of the graphs A through F, and use  
the language of function reflection to defend 
your match. Note that two of the graphs will 
not be used.

 1. y = 0 ƒ1x2 0
 2. y = ƒ1 0 x 0 2
 3. y = - 0 ƒ1x2 0
 4. y = 0 ƒ1 0 x 0 2 0

(A)  (B)

(C) (D)

(E) (F)

EXPLORATION 2 

x

y

x

y

x

y

x

y

x

y

x

y

x

y

Vertical and Horizontal Stretches and Shrinks
We now investigate what happens when we multiply all the y-coordinates (or all the 
x-coordinates) of a graph by a fixed real number.
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Exploration 3 suggests that multiplication of x or y by a constant c results in a horizon-
tal or vertical stretching or shrinking of the graph.

In general, replacing x by x>c distorts the graph horizontally by a factor of c. Similarly, 
replacing y by y>c distorts the graph vertically by a factor of c. If c is greater than 1 the 
distortion is a stretch; if c is less than 1 the distortion is a shrink.

As with translations, this is a nice, consistent rule that unfortunately gets complicated 
by the fact that the c for a vertical stretch or shrink rarely shows up as a divisor of y. 
Instead, it usually shows up on the other side of the equal sign as a factor multiplied by 
ƒ1x2. That leads us to the following rule:

Introducing Stretches and Shrinks

Set your viewing window to 3-4.7, 4.74  by 3-1.1, 5.14  and your graphing 
mode to Sequential as opposed to Simultaneous.

 1. Graph the functions

y1 = 24 - x2

 y2 = 1.5y11x2 = 1.524 - x2

 y3 = 2y11x2 = 224 - x2

 y4 = 0.5y11x2 = 0.524 - x2

 y5 = 0.25y11x2 = 0.2524 - x2

on the same screen. What effect do the 1.5, 2, 0.5, and 0.25 seem to have?

 2. Graph the functions

y1 = 24 - x2

 y2 = y111.5x2 = 24 - 11.5x22
 y3 = y112x2 = 24 - 12x22
 y4 = y110.5x2 = 24 - 10.5x22
 y5 = y110.25x2 = 24 - 10.25x22

on the same screen. What effect do the 1.5, 2, 0.5, and 0.25 seem to have?

EXPLORATION 3 

Stretches and Shrinks of Graphs

Let c be a positive real number. Then the following transformations result in 
stretches or shrinks of the graph of y = ƒ1x2:
Horizontal Stretches or Shrinks

y = ƒax
c
b   e a stretch by a factor of c if c 7 1

a shrink by a factor of c if c 6 1

Vertical Stretches or Shrinks

 y = c # ƒ1x2  e a stretch by a factor of c if c 7 1
a shrink by a factor of c if c 6 1

Finding Equations for Stretches and Shrinks
Let C1 be the curve defined by y1 = ƒ1x2 = x3 - 16x. Find equations for the fol-
lowing nonrigid transformations of C1:

(a) C2 is a vertical stretch of C1 by a factor of 3.

(b) C3 is a horizontal shrink of C1 by a factor of 1>2.

EXAMPLE 5 

(continued)

(a)

[27, 7] by [280, 80]

(b)

[27, 7] by [280, 80]

Figure 1.77 The graph of y1 = ƒ1x2 =
x3 - 16x, shown with (a) a vertical stretch 
and (b) a horizontal shrink. (Example 5)
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SOLUTION 

Solve Algebraically
(a) Denote the equation for C2 by y2. Then

 y2 = 3 # ƒ1x2
 = 31x3 - 16x2
 = 3x3 - 48x

(b) Denote the equation for C3 by y3. Then

y3 = ƒa x
1>2b

 = ƒ12x2
 = 12x23 - 1612x2
 = 8x3 - 32x

Support Graphically The graphs in Figure 1.77 support our algebraic work.

Now try Exercise 39.

Combining Transformations
Transformations may be performed in succession—one after another. If the transfor-
mations include stretches, shrinks, or reflections, the order in which the transforma-
tions are performed may make a difference. In those cases, be sure to pay particular 
attention to order.

Combining Transformations in Order

(a) The graph of y = x2 undergoes the following transformations, in order. Find the 
equation of the graph that results.

 • a horizontal shift 2 units to the right
 • a vertical stretch by a factor of 3
 • a vertical translation 5 units up

(b) Apply the transformations in (a) in the opposite order and find the equation of 
the graph that results.

SOLUTION 

(a) Applying the transformations in order, we have

x2 1 1x - 222 1 31x - 222 1 31x - 222 + 5.

Expanding the final expression, we get the function y = 3x2 - 12x + 17.

(b) Applying the transformations in the opposite order, we have

x2 1 x2 + 5 1 31x2 + 521 311x - 222 + 52.
Expanding the final expression, we get the function y = 3x2 - 12x + 27.

The second graph is ten units higher than the first graph because the vertical stretch 
lengthens the vertical translation when the translation occurs first. Order often mat-
ters when stretches, shrinks, or reflections are involved.

Now try Exercise 47.

EXAMPLE 6 
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3

1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

y = f(x)

Figure 1.78 The graph of the function 
y = ƒ1x2 in Example 7.

Transforming a Graph Geometrically
The graph of y = ƒ1x2 is shown in Figure 1.78. Determine the graph of the compos-
ite function y = 2ƒ1x + 12 - 3 by showing the effect of a sequence of transforma-
tions on the graph of y = ƒ1x2.
SOLUTION 

The graph of y = 2ƒ1x + 12 - 3 can be obtained from the graph of y = ƒ1x2 by 
the following sequence of transformations:

(a) a vertical stretch by a factor of 2 to get y = 2ƒ1x2 (Figure 1.79a)

(b) a horizontal translation 1 unit to the left to get y = 2ƒ1x + 12 (Figure 1.79b)

(c) a vertical translation 3 units down to get y = 2ƒ1x + 12 - 3 (Figure 1.79c)

(The order of the first two transformations can be reversed without changing the final 
graph.) Now try Exercise 51.

EXAMPLE 7 

3
2
1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

Vertical stretch
of factor 2

(a)

y = 2f(x)

    

4
3
2
1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

Horizontal translation
left 1 unit

(b)

y = 2f(x + 1)

    

4
3
2
1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

Vertical translation
down 3 units

(c)

y = 2f(x + 1) – 3

Figure 1.79 Transforming the graph of y = ƒ1x2 in Figure 1.78 to get the graph of y = 2ƒ1x + 12 - 3. (Example 7)

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, write the expression as a binomial squared.

 1. x2 + 2x + 1  2. x2 - 6x + 9

 3. x2 + 12x + 36  4. 4x2 + 4x + 1

 5. x2 - 5x +
25
4

 6. 4x2 - 20x + 25

In Exercises 7–10, perform the indicated operations and simplify.

 7. 1x - 222 + 31x - 22 + 4

 8. 21x + 322 - 51x + 32 - 2

 9. 1x - 123 + 31x - 122 - 31x - 12
 10. 21x + 123 - 61x + 122 + 61x + 12 - 2

QUICK REVIEW 1.6 (For help, go to Section A.2.)

In Exercises 9–12, describe how the graph of y = 2x can be trans-
formed to the graph of the given equation.

 9. y = -2x 10. y = 2x - 5

 11. y = 2-x 12. y = 23 - x

In Exercises 13–16, describe how the graph of y = x3 can be trans-
formed to the graph of the given equation.

 13. y = 2x3 14. y = 12x23
 15. y = 10.2x23 16. y = 0.3x3

SECTION 1.6 Exercises

In Exercises 1–8, describe how the graph of y = x2 can be transformed 
to the graph of the given equation.

 1. y = x2 - 3 2. y = x2 + 5.2

 3. y = 1x + 422 4. y = 1x - 322
 5. y = 1100 - x22 6. y = x2 - 100

 7. y = 1x - 122 + 3 8. y = 1x + 5022 - 279
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In Exercises 25–28, the graph is that of a function y = ƒ1x2 that can be 
obtained by transforming the graph of y = 2x. Write a formula for the 
function ƒ.

 25. 

[210, 10] by [25, 5]

 26. 

[210, 10] by [25, 5]

 27. 

[210, 10] by [25, 5]

 28. 

[210, 10] by [25, 5]
Vertical stretch = 2

In Exercises 29–32, find the equation of the reflection of ƒ across (a) 
the x-axis and (b) the y-axis.

 29. ƒ1x2 = x3 - 5x2 - 3x + 2

 30. ƒ1x2 = 22x + 3 - 4

 31. ƒ1x2 = 23 8x

 32. ƒ1x2 = 3 0 x + 5 0
 33. Reflecting Odd Functions Prove that the graph of an 

odd function is the same when reflected across the x-axis as it 
is when reflected across the y-axis.

 34. Reflecting Odd Functions Prove that if an odd function 
is reflected about the y-axis and then reflected again about the 
x-axis, the result is the original function.

Exercises 35–38 refer to the graph of y = ƒ1x2 shown at the top of the 
next column. In each case, sketch a graph of the new function.

 35. y = 0 ƒ1x2 0
 36. y = ƒ1 0 x 0 2
 37. y = -ƒ1 0 x 0 2
 38. y = 0  ƒ1 0 x 0 2 0

In Exercises 17–20, describe how to transform the graph of ƒ into the 
graph of g.

 17. ƒ1x2 = 2x + 2 and g1x2 = 2x - 4

 18. ƒ1x2 = 1x - 122 and g1x2 = -1x + 322
 19. ƒ1x2 = 1x - 223 and g1x2 = -1x + 223
 20. ƒ1x2 = 0 2x 0  and g1x2 = 4 0 x 0
In Exercises 21–24, sketch the graphs of ƒ, g, and h by hand. Support 
your answers with a grapher.

 21.  ƒ1x2 = 1x + 222
   g1x2 = 3x2 - 2

   h1x2 = -21x - 322

 22. ƒ1x2 = x3 - 2

   g1x2 = 1x + 423 - 1

   h1x2 = 21x - 123
 23. ƒ1x2 = 23 x + 1

  g1x2 = 223 x - 2

  h1x2 = -23 x - 3

 24.  ƒ1x2 = -2 0 x 0 - 3

   g1x2 = 3 0 x + 5 0 + 4

   h1x2 = 0 3x 0

In Exercises 39– 42, transform the given function by (a) a vertical 
stretch by a factor of 2, and (b) a horizontal shrink by a factor of 1>3.

 39. ƒ1x2 = x3 - 4x 40. ƒ1x2 = 0 x + 2 0
 41. ƒ1x2 = x2 + x - 2 42. ƒ1x2 =

1
x + 2

In Exercises 43–46, describe a basic graph and a sequence of transfor-
mations that can be used to produce a graph of the given function.

 43. y = 21x - 322 - 4 44. y = -32x + 1

 45. y = 13x22 - 4 46. y = -2 0 x + 4 0 + 1

In Exercises 47–50, a graph G is obtained from a graph of y by the 
sequence of transformations indicated. Write an equation whose graph 
is G.

 47. y = x2: a vertical stretch by a factor of 3, then a shift right  
4 units.

 48. y = x2: a shift right 4 units, then a vertical stretch by a factor 
of 3.

 49. y = 0 x 0 : a shift left 2 units, then a vertical stretch by a factor of 
2, and finally a shift down 4 units.

 50. y = 0 x 0 : a shift left 2 units, then a horizontal shrink by a factor 
of 1>2, and finally a shift down 4 units.

Exercises 51–54 refer to the function ƒ whose graph is shown below.

3
2
1

–2
–3
–4

y

x
–2–3 –1 2 431

 51. Sketch the graph of y = 2 + 3ƒ1x + 12.
 52. Sketch the graph of y = -ƒ1x + 12 + 1.

 53. Sketch the graph of y = ƒ12x2.
 54. Sketch the graph of y = 2ƒ1x - 12 + 2.

 55. Writing to Learn Graph some examples to convince 
 yourself that a reflection and a translation can have a different 
effect when combined in one order than when combined in the 
opposite order. Then explain in your own words why this can 
happen.

x

y
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Standardized Test Questions
 59. True or False The function y = ƒ1x + 32 represents a 

translation to the right by 3 units of the graph of y = ƒ1x2. 
 Justify your answer.

 60. True or False The function y = ƒ1x2 - 4 represents a 
translation down 4 units of the graph of y = ƒ1x2. Justify your 
answer.

In Exercises 61–64, you may use a graphing calculator to answer the 
question.

 61. Multiple Choice Given a function ƒ, which of the follow-
ing represents a vertical stretch by a factor of 3?

(A) y = ƒ13x2 (B) y = ƒ1x>32
(C) y = 3ƒ1x2 (D) y = ƒ1x2>3
(E) y = ƒ1x2 + 3

 62. Multiple Choice Given a function ƒ, which of the follow-
ing represents a horizontal translation of 4 units to the right?

(A)  y = ƒ1x2 + 4 (B) y = ƒ1x2 - 4

(C) y = ƒ1x + 42 (D) y = ƒ1x - 42
(E) y = 4ƒ1x2

 56. Writing to Learn Graph some examples to convince your-
self that vertical stretches and shrinks do not affect a graph’s 
x-intercepts. Then explain in your own words why this is so.

 57. Celsius vs. Fahrenheit The graph shows the temperature 
in degrees Celsius in Dili, Timor-Leste, for one 24-hr period. 
Describe the transformations that convert this graph to one 
showing degrees Fahrenheit. [Hint: F1t2 = 19>52C1t2 + 32.]

24
t

y

C(t)

 58. Fahrenheit vs. Celsius The graph shows the temperature 
in degrees Fahrenheit in Mt. Kinabalu, Borneo, East Malaysia, 
for one 24-hr period. Describe the transformations that convert 
this graph to one showing degrees Celsius.  
[Hint: F1t2 = 19>52C1t2 + 32.]

24
t

y

F(t)

 63. Multiple Choice Given a function ƒ, which of the follow-
ing represents a vertical translation of 2 units upward, followed 
by a reflection across the y-axis?

(A) y = ƒ1-x2 + 2 (B) y = 2 - ƒ1x2
(C) y = ƒ12 - x2 (D) y = -ƒ1x - 22
(E) y = ƒ1x2 - 2

 64. Multiple Choice Given a function ƒ, which of the follow-
ing represents reflection across the x-axis, followed by a hori-
zontal shrink by a factor of 1>2?

(A)  y = -2ƒ1x2 (B) y = -ƒ1x2>2
(C) y = ƒ1-2x2 (D) y = -ƒ1x>22
(E) y = -ƒ12x2

Explorations
 65. International Finance Table 1.11 shows the (adjusted 

closing) price of a share of stock in Singapore Airlines for the 
last trading day of each month in 2021.

Table 1.11 Singapore Airlines Stock

Month
Singapore Airlines Stock 

Price (in SGD)

 1 4.11
 2 4.98
 3 5.55
 4 5.06
 5 4.98
 6 4.85
 7 5.10
 8 5.06
 9 5.03
10 5.20
11 4.87
12 4.99

Source: Yahoo! Finance.

(a) Graph price 1y2 as a 
function of month 1x2 as 
a line graph, connecting 
the points to make a con-
tinuous graph.

(b) Explain what transforma-
tion you would apply to 
this graph to produce a 
graph showing the price 
of the stock in Chinese renminbi.

 66. Group Activity Get with a friend and graph the function 
y = x2 on both your graphers. Apply a horizontal or vertical 
stretch or shrink to the function on one of the graphers. Then 
change the window of that grapher to make the two graphs look 
the same. Can you formulate a general rule for how to find the 
window?

M02_DEMA8962_10_GE_C01.indd   157 22/06/22   09:17



158 CHAPTER 1 Functions and Graphs

Extending the Ideas
 67. The Absolute Value Transformation Graph the 

 function ƒ1x2 = x4 - 5x3 + 4x2 + 3x + 2 in the viewing 
window 3-5, 54  by 3-10, 104 . (Put the equation in Y1.)

(a) Study the graph and try to predict what the graph of 
y = 0  ƒ1x2 0  will look like. Then turn Y1 off and graph 
Y2 = abs 1Y12. Did you predict correctly?

(b) Study the original graph again and try to predict what the 
graph of y = ƒ1 0 x 0 2 will look like. Then turn Y1 off and 
graph Y2 = Y11abs 1X22. Did you predict correctly?

(c) Given the graph of y = g1x2 shown below, sketch a graph 
of y = 0 g1x2 0 .

(d) Given the graph of y = g1x2 shown below, sketch a graph 
of y = g1 0 x 0 2.

6

2
1

–1

–6

y

3
4
5

–3
–4
–5

x
–4 –3 –2 –1 321 4 5

 68. Parametric Circles and Ellipses Set your grapher to 
Parametric and Radian modes and your window as follows:

Tmin = 0, Tmax = 7, Tstep = 0.1

Xmin = -4.7, Xmax = 4.7, Xscl = 1

Ymin = -3.1, Ymax = 3.1, Yscl = 1

(a) Graph the parametric equations x = cos t and y = sin t. 
You should get a circle of radius 1.

(b) Use a transformation of the parametric function of x to 
 produce the graph of an ellipse that is 4 units wide and  
2 units tall.

(c) Use a transformation of both parametric functions to 
 produce a circle of radius 3.

(d) Use a transformation of both functions to produce an 
ellipse that is 8 units wide and 4 units tall.

(You will learn more about ellipses in Chapter 8.)

M02_DEMA8962_10_GE_C01.indd   158 22/06/22   09:17



 SECTION 1.7 Modeling with Functions 159

What you’ll learn about
• Functions from Formulas

• Functions from Graphs

• Functions from Verbal Descriptions

• Functions from Data

... and why
Using a function to model a variable 
under observation in terms of 
another variable often allows one to 
make predictions in practical situa-
tions, such as predicting the future 
growth of a business based on 
known data.

Functions from Formulas
Now that you have learned more about what functions are and how they behave, we 
want to return to the modeling theme of Section 1.1. In that section we stressed that one 
of the goals of this course was for students to become adept at using numerical, alge-
braic, and graphical models of the real world in order to solve problems. We now want 
to focus more precisely on modeling with functions.

You have already seen quite a few formulas in the course of your education. Formulas 
involving two variable quantities always relate those variables implicitly, and quite 
often the formulas can be solved to give one variable explicitly as a function of the 
other. In this text we will use a variety of formulas to pose and solve problems algebra-
ically, although we will not assume prior familiarity with those formulas that we bor-
row from other subject areas (like physics or economics). We will assume familiarity 
with certain key formulas from mathematics.

1.7 Modeling with Functions

Forming Functions from Formulas
Write the area A of a circle as a function of its

(a) radius r.

(b) diameter d.

(c) circumference C.

SOLUTION 

(a) The familiar area formula from geometry gives A as a function of r:

A = pr2.

(b) This formula is not so familiar. However, we know that r = d>2, so we can sub-
stitute that expression for r in the area formula:

A = pr2 = p1d>222 = 1p>42d2.

(c) Since C = 2pr, we solve for r to get r = C>12p2. Then we substitute to get A: 
A = pr2 = p1C>12p222 = pC2>14p22 = C2>14p2. Now try Exercise 19.

EXAMPLE 1 

Figure 1.80 An open-topped box made by cutting the corners from a piece of cardboard and 
folding up the sides. (Example 2)

A Maximum Value Problem
A square of side x inches is cut out of each corner of an 8 in. by 15 in. piece of card-
board, and the sides are folded up to form an open-topped box (Figure 1.80).

EXAMPLE 2 

(continued)
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160 CHAPTER 1 Functions and Graphs

(a)

[0, 4] by [0, 100]

(b)

X=1.666666   Y=90.740741
Maximum

[0, 4] by [0, 100]

Figure 1.81 The graph of the volume of 
the box in Example 2.

(a) Write the volume V of the box as a function of x.

(b) Find the domain of V as a function of x. (Note that the model imposes restric-
tions on x.)

(c) Graph V as a function of x over the domain found in part (b), and use the maxi-
mum finder on your grapher to determine the maximum volume such a box can 
hold.

(d) How big should the cut-out squares be in order to produce the box of maximum 
volume?

SOLUTION 

(a) The box will have a base with sides of width 8 - 2x and length 15 - 2x.  
The depth of the box will be x when the sides are folded up. Therefore,  
V = x18 - 2x2115 - 2x2.

(b) The formula for V is a polynomial with domain 1-∞, ∞2. However, the depth x 
must be nonnegative, as must the width of the base, 8 - 2x. Together, these two 
restrictions yield a domain of [0, 4]. (The endpoints give a box with no volume, 
which is as mathematically feasible as other zero concepts.)

(c) The graph is shown in Figure 1.81. The maximum finder shows that the maxi-
mum occurs at the point 15>3, 90.742. The maximum volume is about 90.74 in.3.

(d) Each square should have sides of 5>3 in.
Now try Exercise 33.

Functions from Graphs
When “thinking graphically” becomes a genuine part of your problem-solving strat-
egy, it is sometimes actually easier to start with the graphical model than it is to go 
straight to the algebraic formula. The graph provides valuable information about the 
function.

Protecting an Antenna
A small satellite dish is packaged with a cardboard cylinder for protection. The para-
bolic dish is 24 in. in diameter and 6 in. deep, and the diameter of the cardboard cyl-
inder is 12 in. How tall must the cylinder be to fit in the middle of the dish and be 
flush with the top of the dish? (See Figure 1.82.)

SOLUTION 

Solve Algebraically The diagram in Figure 1.82a showing the cross section of this 
3-dimensional problem is also a 2-dimensional graph of a quadratic function. We can 
transform our basic function y = x2 with a vertical shrink so that it goes through the 
points 112, 62 and 1-12, 62, thereby producing a graph of the parabola in the coordi-
nate plane (Figure 1.82b).

 y = kx2  Vertical shrink

 6 = k1±1222  Substitute x = ±12, y = 6.

 k =
6

144
=

1
24

 Solve for k.

Thus, y =
1
24

 x2.

EXAMPLE 3 
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Although Example 3 serves nicely as a “functions from graphs” example, it is also an 
example of a function that must be constructed by gathering relevant information from 
a verbal description and putting it together in the right way. People who do mathemat-
ics for a living are accustomed to confronting that challenge regularly as a necessary 
first step in modeling the real world. In honor of its importance, we have saved it until 
last to close out this chapter in style.

Functions from Verbal Descriptions
There is no fail-safe way to form a function from a verbal description. It can be hard 
work, frequently a good deal harder than the mathematics required to solve the problem 
once the function has been found. The four-step problem-solving process in Section 1.1 
gives you several valuable tips, perhaps the most important of which is to read the 
problem carefully. Understanding what the words say is critical if you hope to model 
the situation they describe.

24

(a)

6

6

2

10

14

y

x
–14 –10 –6 –2 62 10 14

(b)

(12, 6)(–12, 6)

Figure 1.82 (a) A parabolic satellite dish with a protective cardboard cylinder in the middle 
for packaging. (b) The parabola in the coordinate plane. (Example 3)

To find the height of the cardboard cylinder, we first find the y-coordinate of the 
parabola 6 in. from the center, that is, when x = 6:

 y =
1
24

 1622 = 1.5.

From that point to the top of the dish is 6 - 1.5 = 4.5 in. Now try Exercise 35.

Finding the Model and Solving
Grain is leaking through a hole in a storage bin at a constant rate of 8 cubic inches 
per minute. The grain forms a cone-shaped pile on the ground below. As it grows, the 
height of the cone always remains equal to its radius. If the cone is 1 ft tall now, how 
tall will it be in 1 hr?

SOLUTION

Reading the problem carefully, we realize that the formula for the volume of the cone 
is needed (Figure 1.83). From memory or by looking it up, we get the formula 
V = 11>32pr2h. A careful reading also reveals that the height and the radius are 
always equal, so we can get volume directly as a function of height: V = 11>32ph3.

When h = 12 in., the volume is V = 1p>3211223 = 576p in.3.

EXAMPLE 4 

(continued)
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162 CHAPTER 1 Functions and Graphs

Step 3 might seem like a lot of work, and for earlier generations it certainly was; it 
required all of the tricks of Section 1.6 and then some. We, however, will gratefully use 
technology to do this “curve-fitting” step for us, as shown in Example 6.

Figure 1.83 A cone with equal height 
and radius. (Example 4)

One hour later, the volume will have grown by 160 min218 in.3>min2 = 480 in.3. 
The total volume of the pile at that point will be 1576p + 4802 in.3. Finally, we use 
the volume formula once again to solve for h:

1
3

 ph3 = 576p + 480

 h3 =
31576p + 4802

p

 h = B3  
31576p + 4802

p

 h ≈ 12.98 in.  Now try Exercise 37.

Letting Units Work for You
How many rotations does a 15-in. (radius) tire make per second on a sport utility 
vehicle traveling 70 mph?

SOLUTION It is the perimeter of the tire that comes in contact with the road, so we 
first find the circumference of the tire:

C = 2pr = 2p1152 = 30p in.

This means that 1 rotation = 30p in. From this point we proceed by converting 
“miles per hour” to “rotations per second” by a series of conversion factors that are 
really factors of 1:

70 mi
1 hr

*
1 hr

60 min
*

1 min
60 sec

*
5280 ft

1 mi
*

12 in.
1 ft

*
1 rotation
30p in.

 =
70 * 5280 * 12 rotations

60 * 60 * 30p sec
≈ 13.07 rotations per second

Now try Exercise 39.

EXAMPLE 5 

Functions from Data
In this course we will use the following three-step strategy to construct functions from 
data.

Constructing a Function from Data

Given a set of data points of the form 1x, y2, to construct a formula that approx-
imates y as a function of x:

1. Make a scatter plot of the data points. The points do not need to pass the 
vertical line test.

2. Determine from the shape of the plot whether the points seem to follow the 
graph of a familiar type of function (line, parabola, cubic, sine curve, etc.).

3. Transform a basic function of that type to fit the points as closely as  possible.
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[–15, 30] by [–15, 40]

Figure 1.84 The scatter plot of the 
temperature data in Example 6.

[–15, 30] by [–15, 40]

Figure 1.85 The temperature scatter plot 
with the regression line shown. (Example 6)

Notice that the points do not fall neatly along a well-known curve, but they do seem to 
fall near an upwardly sloping line. We therefore choose to model the data with a func-
tion whose graph is a line. We could fit the line by sight (as we did in  Example 5 in 
Section 1.1), but this time we will use the calculator to find the line of “best fit,” called 
the regression line. (See your grapher’s owner’s manual for how to do this.) This 
regression line is found to be approximately y = 0.9103x + 8.4005. As  Figure 1.85 
shows, the line fits the data as well as can be expected.

If we use this function to predict the high temperature for the day in Bandung, 
 Indonesia, we get y = 0.91031242 + 8.4005 = 30.2477. (For the record, the high 
that day was 33.)

Now try Exercise 50, parts (a) and (b).

Table 1.12 Temperature on 2>22>22

City Low High City Low High

Accra, Ghana 26 34 Lima, Peru 21 28
Alexandria, Egypt 9 23 Luanda, Angola 26 31
Ankara, Turkey 2 12 Manila, the Philippines 25 28
Antananarivo, 
Madagascar 18 22 Mbabane, Eswatini 17 24
Bangkok, Thailand 22 30 Montevideo, Uruguay 20 25
Barcelona, Spain 8 18 Moscow, Russia 1 5
Berlin, Germany 3 7 Nagoya-shi, Japan 0 7
Brest, France 4 14 Nur-Sultan, Kazakhstan −10 0
Dublin, Ireland 6 11 Paramaribo, Suriname 24 28
Enschede, the 
Netherlands 1 8

Port of Spain, Trinidad 
and Tobago 23 30

Hanoi, Vietnam 7 13 Rome, Italy 5 16
Hong Kong 9 12 Santiago, Chile 11 27
Hualien City, Taiwan 14 17 Suva, Fiji 23 32

Kandy, Sri Lanka 24 31
Wellington, New 
Zealand 17 22

Lae, Papua New 
Guinea 24 32 Xi’an, China −1 10

Source: AccuWeather, Inc.

Curve Fitting with Technology
Table 1.12 records the low and high daily temperatures (in degrees Celsius) observed 
on 02/22/2022 in 30 major world cities. Find a function that approximates the high 
temperature 1y2 as a function of the low temperature 1x2. Use this function to predict 
the high temperature that day for Bandung, Indonesia, given that the low was 24.

SOLUTION The scatter plot is shown in Figure 1.84.

EXAMPLE 6 

Professional statisticians would be quick to point out that this function should not be 
trusted as a model for all cities, despite the fairly successful prediction for Bandung. 
The effectiveness of a data-based model is highly dependent on the number of data 
points and on the way they were selected. The functions we construct from data in 
this text should be analyzed for how well they model the data, not for how well they 
model the larger population from which the data came.

In addition to lines, we can model scatter plots with several other curves by choosing 
the appropriate regression option on a calculator or computer. The options to which we 
will refer in this text (and the chapters in which we will study them) are shown in the 
following table:
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164 CHAPTER 1 Functions and Graphs

Regression Type Equation Graph Applications

Linear  
(Chapter 2)

y = ax + b Fixed cost plus variable  
cost, linear growth, free-fall 

velocity, simple interest,  
linear depreciation, many 

others

Quadratic  
(Chapter 2)

y = ax2 + bx + c  
(requires at least 3 points)

Position during free fall,  
projectile motion, parabolic 
reflectors, area as a function 

of linear dimension, quadratic 
growth, etc.

Cubic  
(Chapter 2)

y = ax3 + bx2 + cx + d  
(requires at least 4 points)

Volume as a function of linear 
dimension, cubic growth,  

miscellaneous applications 
where quadratic regression 

does not give a good fit

Quartic  
(Chapter 2)

y = ax4 + bx3 + cx2 + dx + e 
(requires at least 5 points)

Quartic growth, miscellaneous 
applications where quadratic 
and cubic regression do not 

give a good fit

Natural  
logarithmic (ln)  

(Chapter 3)

y = a + b ln x  
(requires x 7 0)

Logarithmic growth, decibels 
(sound), Richter scale  

(earthquakes), inverse expo-
nential models

Exponential  
 1b 7 12  

(Chapter 3)

y = a # bx Exponential growth,  
compound interest,  
population models

Exponential 
10 6 b 6 12  
(Chapter 3)

y = a # bx Exponential decay,  
depreciation, temperature  
loss of a cooling body, etc.

Power 
1requires x, y 7 02 

(Chapter 2)

y = a # xb Inverse-square laws,  
Kepler’s Third Law

Logistic  
(Chapter 3)

y =
c

1 + a # e -bx
Logistic growth: spread  
of a rumor, population  

models

Sinusoidal  
(Chapter 4)

y = a sin 1bx + c2 + d Periodic behavior:  
harmonic motion, waves,  

circular motion, etc.
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We will have more to say about curve fitting as we study the various function types in 
later chapters. 

Displaying Diagnostics
If your grapher is giving regression formulas 
without displaying the values of r or r2 or R2, 
you may be able to fix that. If your MODE dis-
play has a second page, choose “ON” for  
“STATDIAGNOSTICS.” Otherwise, choose 
“DiagnosticOn” from the CATALOG menu. 
ENTER the command on the home screen and 
see the reply “Done.” Your next regression 
should display the diagnostic values.

These graphs are only examples, as they can vary in shape and orientation. (For exam-
ple, any of the curves could appear upside-down.) The grapher uses various strategies 
to fit these curves to the data, most of them based on combining function composition 
with linear regression. Depending on the regression type, the grapher may display a 
number r called the correlation coefficient or a number r2 or R2 called the coefficient 
of determination. In either case, a useful “rule of thumb” is that the closer the absolute 
value of this number is to 1, the better the curve fits the data.

It is unrealistic to expect a regression curve to fit data from the real world perfectly, so 
statisticians do not expect to see r2 or R2 equal to 1. However, if the ordered pairs are 
actually derived from a function defined by one of the regression types, the calculator 
will confirm that. As an example, you will use a calculator to find a geometric formula 
in Exploration 1.

n = 3; d = 0 n = 4; d = h

n = 5; d = h n = 6; d = h

n = 7; d = h n = 8; d = h

n = 9; d = h n = 10; d = 35

Figure 1.86 Some polygons.  
(Exploration 1)

Diagonals of a Regular Polygon

How many diagonals does a regular polygon have? Can the number be expressed 
as a function of the number of sides? Try this Exploration.

 1. Draw in all the diagonals (i.e., segments connecting nonadjacent points) in 
each of the regular polygons shown in Figure 1.86 and fill in the number 1d2 of 
diagonals in the space below the figure. The values of d for the triangle 
1n = 32 and the decagon 1n = 102 are filled in for you. 

 2. Put the values of n in list L1, beginning with n = 4. (We want to avoid that 
y = 0 value for some of our regressions later.) Put the corresponding values of 
d in list L2. Display a scatter plot of the ordered pairs.

 3. The graph shows an increasing function with some curvature, but it is not clear 
what kind of function it is. Try these regressions in order and record which ones 
result in a value of r2 or R2 equal to 1: power, quadratic, cubic, quartic. (Note 
that it is not worth trying linear, logarithmic, logistic, or sinusoidal regression, 
as the curvature is not right for those functions.) 

 4. Which regressions result in a perfect fit? What kind of function matches the 
data? (It might appear at first that there are multiple kinds, but look more closely 
at the functions you get.) 

 5. Looking back, could you have predicted the results of the cubic and quartic 
regressions after seeing the result of the quadratic regression?

 6. Your calculator has found the formula for d as a function of n. (In Chapter 9 
you will learn how to derive this formula for yourself.) Use the formula to find 
the number of diagonals in a 128-gon. 

EXPLORATION 1 
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166 CHAPTER 1 Functions and Graphs

Table 1.13 Consumer Price Index
for Housing

Year Housing CPI

1990 128.5
1995 148.5
2000 169.6
2005 195.7
2006 203.2
2007 209.6
2008 216.2
2009 217.1
2010 216.3
2011 219.1
2012 222.7
2013 227.4
2014 233.2
2015 238.1

Source: Bureau of Labor Statistics, U.S. Dept.  
of Labor.

CHAPTER OPENER Problem (from page 85)

Problem: Table 1.13 shows the growth in the Consumer Price Index (CPI) for 
housing for selected years from 1990 through 2015 (based on 1983 dollars). Is 
there a curve that can model the growth of this economic indicator?

Solution: The data actually tell an interesting story. Figure 1.87 shows a scatter 
plot of the data for the years 1990 to 2008 (where x is the number of years after 
1990). The curve of the points suggests a quadratic model. Using a calculator to 
compute the quadratic regression curve, we find its equation to be

y = 0.09x2 + 3.19x + 129.

As you can see, the parabola fits the data impressively well.

[23, 28] by [110, 257]

Figure 1.87 Scatter plot of the data for housing CPI from 1990 through 2008  
together with the associated quadratic regression model.

However, when we add the data from 2009 through 2015 (Figure 1.88), we find 
that the parabola is no longer a good predictor of the actual housing CPI.

Obviously, something happened to disrupt the model in 2008. Economists at the 
time described it as the bursting of a “housing bubble” that led to a significant reces-
sion with international repercussions. Interestingly, the CPI eventually  recovered 
and began another period of growth that looks to be quadratic. Indeed, Figure 1.89 
shows a second quadratic regression curve based on the data from 2009 to 2015:

y = 0.544x2 - 20.2x + 403

This second model also fits the data impressively well! It looks like this model 
might be a good predictor for the years 2016–2020, assuming that the events of 
2008 are not repeated.

[23, 28] by [110, 257]

Figure 1.88 Scatter plot of the data 
for housing CPI from 1990 through 
2015 together with a quadratic 
regression model from the data from 
1990 through 2008.

[23, 28] by [110, 257]

Figure 1.89 Scatter plot of the data 
for housing CPI from 1990 through 
2015 with two quadratic regression 
models for two time intervals.
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In Exercises 1–10, solve the given formula for the given variable.

 1. Area of a Triangle Solve for h: A =
1
2

 bh

 2. Area of a Trapezoid Solve for h: A =
1
2

 1b1 + b22h

 3. Volume of a Right Circular Cylinder Solve for h: 
V = pr2h

 4. Volume of a Right Circular Cone Solve for h: 

V =
1
3

 pr2h

 5. Volume of a Sphere Solve for r: V =
4
3

 pr3

 6. Surface Area of a Sphere Solve for r: A = 4pr2

 7. Surface Area of a Right Circular Cylinder Solve  
for h: A = 2prh + 2pr2

 8. Simple Interest Solve for t: I = Prt

 9. Compound Interest Solve for P: A = Pa1 +
r
n
b

nt

 10. Free Fall from Height H Solve for t:  

 s = H -
1
2

 gt2

QUICK REVIEW 1.7 (For help, go to Sections P.3 and P.4.)

 13. Revenue The revenue when each item sells for $3.75

 14. Profit The profit consists of a franchise fee of $200,000 plus 
12% of all sales.

In Exercises 15–20, write the specified quantity as a function of the 
specified variable. It will help in each case to draw a picture.

 15. The height of a right circular cylinder equals its diameter. Write 
the volume of the cylinder as a function of its radius. 

 16. One leg of a right triangle is twice as long as the other. Write 
the length of the hypotenuse as a function of the length of the 
shorter leg.

 17. The base of an isosceles triangle is half as long as the two 
equal sides. Write the area of the triangle as a function of the 
length of the base.

 18. A square is inscribed in a circle. Write the area of the square as 
a function of the radius of the circle. 

 19. A sphere is contained in a cube, tangent to all six faces. Find 
the surface area of the cube as a function of the radius of the 
sphere. 

 20. An isosceles triangle has its base along the x-axis with one base 
vertex at the origin and its vertex in the first quadrant on the 
graph of y = 6 - x2. Write the area of the triangle as a func-
tion of the length of the base. 

In Exercises 21–36, write an equation for the problem and solve the 
problem.

 21. One positive number is 4 times another positive number. The 
sum of the two numbers is 620. Find the two numbers.

SECTION 1.7 Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–10, write a mathematical expression for the quantity 
described verbally.

 1. Five more than three times a number x

 2. A number x increased by 5 and then tripled

 3. Seventeen percent of a number x

 4. Four more than 5% of a number x

 5. Area of a Rectangle The area of a rectangle whose 
length is 12 more than its width x 

 6. Area of a Triangle The area of a triangle whose altitude is 
2 more than its base length x 

 7. Salary Increase A salary after a 4.5% increase, if the orig-
inal salary is x dollars

 8. Income Loss Income after a 3% drop in the current income 
of x dollars

 9. Sale Price Sale price of an item marked x dollars, if 40% is 
discounted from the marked price

 10. Including Tax Actual cost of an item selling for x dollars if 
the sales tax rate is 8.75%

In Exercises 11–14, choose a variable and write a mathematical expres-
sion for the quantity described verbally.

 11. Total Cost The total cost is $34,500 plus $5.75 for each 
item produced.

 12. Total Cost The total cost is $28,000 increased by 9% plus 
$19.85 for each item produced.
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 22. When a number is added to its double and its triple, the sum is 
714. Find the three numbers.

 23. Salary Increase Mark received a 3.5% salary increase. 
His salary after the raise was $36,432. What was his salary 
before the raise?

 24. Consumer Price Index The Consumer Price Index for food 
and beverages in 2007 was 203.3 after a hefty 3.9% increase from 
the previous year. What was the Consumer Price Index for food 
and beverages in 2006? (Source: U.S. Bureau of Labor Statistics)

 25. Travel Time A traveler averaged 88 km per hour on a  
352-km trip. How many hours were spent on the trip?

 26. Travel Time On their 1055-km trip, the football club 
B ayern München spent three more hours on the autobahn (the 
German federal motorway) than they did on the Bundesstraße 
(federal highways). They averaged 80 km per hour on the 
Bundesstraße and 105 km per hour on the autobahn. How 
many hours did they spend driving on the federal highways?

 27. Sale Prices At a shirt sale, Jackson sees two shirts that he 
likes equally well. Which is the better bargain, and why?

$33 

$27  

40% o�

25% o�

 28. Job Offers Ruth is weighing two job offers from the sales 
departments of two competing companies. One offers a base 
salary of $25,000 plus 5% of gross sales; the other offers a base 
salary of $20,000 plus 7% of gross sales. What would Ruth’s 
gross sales total need to be to make the second job offer more 
attractive than the first?

 29. 5G Base Stations From April 2019 to April 2020, the 
number of 5G base stations in South Korea grew from 35,000 to 
115,000. What was the percentage increase in South Korean 5G 
base stations in that one-year period? (Source: Ian Fogg “Under-
standing where and when users can experience 5G in South 
Korea,” February 25, 2021, https://www.opensignal.com/.)

 30. Cell Phone Antennas From December 1996 to  
December 1997, the number of cell phone antennas in the 
United States grew from 30,045 to 51,600. What was the 
percentage increase in U.S. cell phone antennas in that  
one-year period? (Source: CTIA, quoted in The World 
 Almanac and Book of Facts 2009)

 31. Mixing Solutions How much 10% solution and how much 
45% solution should be mixed together to make 100 gal of 
25% solution?

(a) Write an equation that models this problem.

(b) Solve the equation graphically.

 32. Mixing Solutions The chemistry lab at the University of 
Hardwoods keeps two acid solutions on hand. One is 20% acid 
and the other is 35% acid. How much 20% acid solution and 
how much 35% acid solution should be used to prepare 25 L of 
a 26% acid solution?

 33. Maximum Value Problem A square of side x inches is 
cut out of each corner of a 10-in. by 18-in. piece of cardboard 
and the sides are folded up to form an open-topped box.

(a) Write the volume V of the box as a function of x. 
 
(b) Find the domain of your function, taking into account the 

restrictions that the model imposes in x. 

(c) Use your graphing calculator to determine the dimensions 
of the cut-out squares that will produce the box of maxi-
mum volume.

 34. Residential Construction DDL Construction is building 
a rectangular house that is 16 ft longer than it is wide. A rain 
gutter is to be installed in four sections around the 136-ft 
perimeter of the house. What lengths should be cut for the four 
sections?

 35. Protecting an Antenna In Example 3, suppose the para-
bolic dish has a 32-in. diameter and is 8 in. deep, and the radius 
of the cardboard cylinder is 8 in. Now how tall must the cylin-
der be to fit in the middle of the dish and be flush with the top 
of the dish?

 36. Interior Design Renée’s Decorating Service recom-
mends putting a border around the top of the four walls in  
a dining room that is 3 ft longer than it is wide. Find the 
dimensions of the room if the total length of the border is  
54 ft.

 37. Finding the Model and Solving Water is stored in a 
conical tank with a faucet at the bottom. The tank has depth 
24 in. and radius 9 in., and it is filled to the brim. If the fau-
cet is opened to allow the water to flow at a rate of 5 cubic 
inches per second, what will the depth of the water be after 
2 min?

 38. Investment Returns Reggie invests $12,000, part at  
7% annual interest and part at 8.5% annual interest. How 
much is invested at each rate if Reggie’s total annual  
interest is $900?

 39. Unit Conversion A tire of a moving bicycle has radius  
16 in. If the tire is making 2 rotations per second, find the 
 bicycle’s speed in miles per hour.

Solution 1 Solution 2 Combined
solution

x gallons
10%

(100 2 x)
gallons

45%

100 gallons
25%

1                       5
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 40. Investment Returns Jackie invests $25,000, part at 5.5% 
annual interest and the balance at 8.3% annual interest. How 
much is invested at each rate if Jackie receives a 1-year interest 
payment of $1571?

Standardized Test Questions
 41. True or False A correlation coefficient gives an indication 

of how closely a regression line or curve fits a set of data. Jus-
tify your answer.

 42. True or False Linear regression is useful for modeling the 
position of an object in free fall. Justify your answer.

In Exercises 43–46, without using a calculator, tell which type of regres-
sion is likely to give the most accurate model for the scatter plot shown.

(A) Linear regression

(B) Quadratic regression

(C) Cubic regression

(D) Exponential regression

(E) Sinusoidal regression

 43. Multiple Choice 

[0, 12] by [0, 8]

 44. Multiple Choice 

[0, 12] by [0, 8]

 45. Multiple Choice 

[0, 12] by [0, 8]

 46. Multiple Choice 

[0, 12] by [0, 8]

Exploration
 47. Manufacturing The Buster Green Shoe Company deter-

mines that the annual cost C of making x pairs of one type of 
shoe is $30 per pair plus $100,000 in fixed overhead costs. 
Each pair of shoes that is manufactured is sold wholesale  
for $50.

(a) Find an equation that models the cost of producing x pairs 
of shoes. 

(b) Find an equation that models the revenue produced from 
selling x pairs of shoes. 

(c) Find how many pairs of shoes the company must make and 
sell wholesale in order to break even.

(d) Graph the equations in (a) and (b). What is the graphical 
interpretation of the answer in (c)?

 48. Employee Benefits John’s company issues employees a 
contract that identifies salary and the company’s contributions 
to pension, health insurance premiums, and disability insur-
ance. The company uses the following formulas to calculate 
these values.

Salary x (dollars)

Pension 12% of salary
Health insurance 3% of salary

Disability insurance 0.4% of salary

  If John’s total contract with benefits is worth $48,814.20, what 
is his salary? 

 49. Manufacturing Queen, Inc., a tennis racket manufacturer, 
determines that the annual cost C of making x rackets is $23 
per racket plus $125,000 in fixed overhead costs. It costs the 
company $8 to string a racket.

(a) Find a function y1 = u1x2 that models the cost of produc-
ing x unstrung rackets. 

(b) Find a function y2 = s1x2 that models the cost of produc-
ing x strung rackets. 

$56 

$79 

(c) Find a function y3 = Ru1x2 that models the revenue gener-
ated by selling x unstrung rackets. 

(d) Find a function y4 = Rs1x2 that models the revenue gener-
ated by selling x rackets. 

(e) Graph y1, y2, y3, and y4 simultaneously in the window 
30, 10,0004  by 30, 500,0004 .

(f) Writing to Learn Write a report to the company rec-
ommending how it should manufacture its rackets, strung 
or unstrung. Assume that you can include the viewing win-
dow in (e) as a graph in the report, and use it to support 
your recommendation.
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 50. Carbon Dioxide Levels Table 1.14 shows the atmo-
spheric concentration of carbon dioxide (in parts per million) 
recorded by the Mauna Loa Observatory in Hawaii for selected 
years between 1960 and 2015.

Table 1.14 Atmospheric CO2

Year CO2 (ppm)

1960 317
1970 326
1980 339
1990 354
2000 369
2005 380
2010 390
2015 401

Source: U.S. Dept. of Energy, as reported in The 
World Almanac and Book of Facts 2017.

Table 1.15 Cooling a Cup of Coffee

Time (min) Temp (°F) Time (min) Temp (°F)

1 184.3 11 140.0
2 178.5 12 136.1
3 173.5 13 133.5
4 168.6 14 130.5
5 164.0 15 127.9
6 159.2 16 125.0
7 155.1 17 122.8
8 151.8 18 119.9
9 147.0 19 117.2
10 143.7 20 115.2

(a) Produce a scatter plot of CO2 concentration (y) as a func-
tion of years since 1950 (x).

(b) Judging from the scatter plot, does a linear or a quadratic 
model seem to more appropriate? 

(c) Find the regression equation for the appropriate model and 
superimpose the graph of the regression equation on the 
scatter plot. Dose the model appear to work well?

(d) Based on the model, what will the approximate CO2 (ppm) 
level be in the year 2025? 

(e) Writing to Learn What circumstances might cause the 
prediction in (d) to be off the mark? Do you think the true 
value will be higher or lower than the predicted value? 
Explain.

Extending the Ideas
 51. Newton’s Law of Cooling A 190°F cup of coffee is 

placed on a desk in a 72°F room. According to Newton’s Law 
of Cooling, the temperature T of the coffee after t minutes will 
be T = 1190 - 722bt + 72, where b is a constant that 
depends on how easily the cooling substance loses heat. The 
data in Table 1.15 are from a simulated experiment of gathering 
temperature readings from a cup of coffee in such a 72°F room 
at 20 one-minute intervals:

(a) Make a scatter plot of the data, with the times in list L1 
and the temperatures in list L2.

(b) Store L2 - 72 in list L3. The values in L3 should now be 
an exponential function 1y = a * bx2 of the values in L1.

(c) Find the exponential regression equation for L3 as a func-
tion of L1. How well does it fit the data?

 52. Group Activity Newton’s Law of Cooling If you have 
access to laboratory equipment (such as a CBL or CBR unit for 
your grapher), gather experimental data such as in Exercise 51 
from a cooling cup of coffee. Proceed as follows:

(a) First, use the temperature probe to record the temperature 
(in °F) of the room. It is a good idea to turn off fans and air 
conditioners that might affect the temperature of the room 
during the experiment. It should be a constant.

(b) Heat the coffee. It need not be boiling, but it should be at 
least 160°F. (It also need not be coffee.)

(c) Make a new list consisting of the temperature values minus 
the room temperature. Make a scatter plot of this list 1y2 
against the time values 1x2. It should appear to approach 
the x-axis as an asymptote.

(d) Find the equation of the exponential regression curve. How 
well does it fit the data?

(e) What is the equation predicted by Newton’s Law of Cool-
ing? (Substitute your initial coffee temperature and the 
temperature of your room for the 190 and 72 in the equa-
tion from Exercise 51.)

(f) Discussion What sort of factors would affect the value 
of b in Newton’s Law of Cooling? Discuss your ideas with 
the group.
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CHAPTER 1 Review Exercises

The collection of exercises marked in red could be used as a chapter 
test.

In Exercises 1–10, match the graph with the corresponding function 
(a)–(j) from the list below. Use your knowledge of function behavior, 
not your grapher.

 (a) ƒ1x2 = x2 - 1 (b) ƒ1x2 = x2 + 1

 (c) ƒ1x2 = 1x - 222 (d) ƒ1x2 = 1x + 222

 (e) ƒ1x2 =
x - 1

2
 (f) ƒ1x2 = 0 x - 2 0

 (g) ƒ1x2 = 0 x + 2 0  (h) ƒ1x2 = -sin x

 (i) ƒ1x2 = ex - 1 (j) ƒ1x2 = 1 + cos x

 1. y

x

 2. 

  

y

x
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 6. 

  

y

x

 7. 
  

y

x

 8. 
  

y

x

 9. 
  

y

x

 10. 
  

y

x

In Exercises 11–18, find (a) the domain and (b) the range of the 
 function.

 11. g1x2 = 2x - 1 + 24 - x 

 12. ƒ1x2 = 35x - 602 13. g1x2 = A x
1 - x

 14. h1x2 = 1x - 222 + 5 15. g1x2 = 3 0 x 0 + 8

 16. k1x2 = -24 - x2 17. ƒ1x2 =
x

x2 - 2x

 18. k1x2 =
129 - x2

In Exercises 19 and 20, graph the function, and state whether the func-
tion is continuous at x = 0. If it is discontinuous, state whether the dis-
continuity is removable or nonremovable.

 19. f1x2 = e x + 1   x … 0
1 - x   x 7 0

 20. k1x2 = e2x + 3 if x 7 0
3 - x2 if x … 0

In Exercises 21–24, find all (a) vertical asymptotes and (b) horizontal 
asymptotes of the graph of the function. Be sure to state your answers 
as equations of lines.

 21. y =
5

x2 - 5x
 22. y =

x + 3
x + 2

 

 23. y =
7x2x2 + 10

 24. y =
0 x 0

x + 1

In Exercises 25–28, graph the function and state the intervals on which 
the function is increasing.

 25. y =
x3

6
  26. y = 2 + 0 x - 1 0  

 27. y =
x

1 - x2 28. y =
x2 - 1

x2 - 4
 

In Exercises 29–32, graph the function and tell whether the function is 
bounded above, bounded below, bounded, or not bounded.

 29. ƒ1x2 = x +  sin x  30. g1x2 =
6x

x2 + 1
 

 31. h1x2 = 5 - ex   32. f1x2 = 4x3 -  2x2  

In Exercises 33–36, use a grapher to find all (a) relative maximum 
 values and (b) relative minimum values of the function. Also state the 
value of x at which each relative extremum occurs.

 33. y = 1x + 122 - 7 34. y = x3 - 3x2 + 5

 35. y =
x2 + 4

x2 - 4
 36. y =

4x

x2 + 4

In Exercises 37–40, graph the function and state whether the function is 
odd, even, or neither.

 37. y = 3x2 - 4 0 x 0   38. y = sin x - x3 

 39. y =
x
ex  40. y =

x

x2 + 4
 

In Exercises 41–44, find a formula for ƒ-11x2.
 41. ƒ1x2 = 2x + 3  42. ƒ1x2 = 23 x - 8 

 43. ƒ1x2 =
2
x
  44. ƒ1x2 =

6
x + 4
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Exercises 45–52 refer to the function y = ƒ1x2 whose graph is given 
below.

4

2

–1
–2

–4

y

3

–3

x
–5 –4 –2 –1 321 4 5

 45. Sketch the graph of y = ƒ1x2 - 1.

 46. Sketch the graph of y = ƒ1x - 12.
 47. Sketch the graph of y = ƒ1-x2.
 48. Sketch the graph of y = -ƒ1x2.
 49. Sketch a graph of the inverse relation.

 50. Does the inverse relation define y as a function of x? 

 51. Sketch a graph of y = 0 ƒ1x2 0 .
 52. Define ƒ algebraically as a piecewise function. (Hint: The 

pieces are translations of two of our “basic” functions.)

In Exercises 53–58, let ƒ1x2 = 2x and let g1x2 = x2 - 4.

 53. Find an expression for 1ƒ ∘ g21x2 and give its domain.

 54. Find an expression for 1g ∘ ƒ21x2 and give its domain.

 55. Find an expression for 1ƒg21x2 and give its domain.

 56. Find an expression for aƒ
g
b1x2 and give its domain.

 57. Describe the end behavior of the graph of y = ƒ1x2.
 58. Describe the end behavior of the graph of y = ƒ1g1x22.
In Exercises 59–64, write the specified quantity as a function of the 
specified variable. Remember that drawing a picture will help.

 59. Square Inscribed in a Circle A square of side s is 
inscribed in a circle. Write the area of the circle as a function 
of s. 

 60. Circle Inscribed in a Square A circle is inscribed in  
a square of side s. Write the area of the circle as a function  
of s. 

 61. Volume of a Cylindrical Tank A cylindrical tank  
with diameter 20 ft is partially filled with oil to a depth of  
h feet. Write the volume of oil in the tank as a function  
of h. 

 62. Draining a Cylindrical Tank A cylindrical tank with 
diameter 20 ft is filled with oil to a depth of 40 ft. The oil 
begins draining at a constant rate of 2 cubic feet per second. 
Write the volume of the oil remaining in the tank t seconds 
later as a function of t. 

 63. Draining a Cylindrical Tank A cylindrical tank with 
diameter 20 ft is filled with oil to a depth of 40 ft. The oil 
begins draining at a constant rate of 2 cubic feet per second. 
Write the depth of the oil remaining in the tank t seconds later 
as a function of t. 

 64. Draining a Cylindrical Tank A cylindrical tank with 
diameter 20 ft is filled with oil to a depth of 40 ft. The oil 
begins draining so that the depth of oil in the tank decreases at 
a constant rate of 2 ft>hr. Write the volume of oil remaining in 
the tank t hours later as a function of t. 

 65. U.S. Petroleum Exports The average U.S. exports of 
petroleum for the years 2001–2011, in thousands of barrels per 
day, are shown in Table 1.16.

Table 1.16 Daily U.S. Oil Exports

Year Exports (1000 bls.>day)

2001  971
2002  984
2003 1027
2004 1048
2005 1165
2006 1317
2007 1433
2008 1802
2009 2024
2010 2353
2011 2924

Source: Monthly Energy Review, Aug. 2012, as reported in The 
World Almanac and Book of Facts 2013.

(a) Sketch a scatter plot of export numbers 1y2 as a function of 
years since 2000 1x2.

(b) Use quadratic regression to model the data with a quadratic 
function and superimpose the parabolic curve on the scatter 
plot. Is it a good fit?

(c) Based on the quadratic model, approximately how many 
thousands of barrels of oil would the United States export 
per day in 2016? 

 66. The winning times (in seconds) in the women’s 100-meter 
 freestyle event at the Summer Olympic Games since 1960 
are shown in Table 1.17.

Table 1.17 Women’s 100-Meter Freestyle

Year Time Year Time

1960 61.2 1992 54.64
1964 59.5 1996 54.50
1968 60.0 2000 53.83
1972 58.59 2004 53.84
1976 55.65 2008 53.12
1980 54.79 2012 53.00
1984 55.92 2016 52.70
1988 54.93

Source: The World Almanac and Book of Facts 2017.

(a) Sketch a scatter plot of the times 1y2 as a function of the 
years 1x2 beyond 1900. (The values of x will run from 60 
to 116.)

(b) There are two points that do not seem to fit the trend. Can 
you explain the anomaly?
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174 CHAPTER 1 Functions and Graphs

(c) The points appear to be approaching a horizontal asymp-
tote of y = 52. What would this mean about the times in 
this Olympic event?

(d) Subtract 52 from all the times so that they will approach an 
asymptote of y = 0. Redo the scatter plot with the new 
y-values. Now find the exponential regression curve and 
superimpose its graph on the vertically shifted scatter plot.

(e) According to the regression curve, what will be the win-
ning time in the women’s 100-meter freestyle event at the 
2020 Olympics? (Don’t forget to compensate for the 
52-sec data shift in (d).)

 67. Inscribing a Cylinder Inside a Sphere A right circular 
cylinder of radius r and height h is inscribed inside a sphere of 
radius 23 in.

(a) Use the Pythagorean Theorem to write h as a function  
of r. 

(d) Graph V1r2 over the domain 30, 234 .
(e) Use your grapher to find the maximum volume that such a 

cylinder can have.

 68. Inscribing a Rectangle Under a Parabola  
A rectangle is inscribed between the x-axis and the parabola 
y = 36 - x2 with one side along the x-axis, as shown in the 
figure below.

3h

r

(b) Write the volume V of the cylinder as a function of r.

(c) What values of r are in the domain of V?

y

x
x

(a) Let x denote the x-coordinate of the point denoted in  
the figure. Write the area A of the rectangle as a function  
of x. 

(b) What values of x are in the domain of A? 

(c) Sketch a graph of A1x2 over the domain.

(d) Use your grapher to find the maximum area that such a 
rectangle can have. 

CHAPTER 1 Modeling Project

Modeling the Growth of a Business

Understand the problem. In 1971, Starbucks Coffee opened its 
first location in Pike Place Market—Seattle’s legendary open-air 
farmer’s market. By 1987 the number of Starbucks stores had 
grown to 17, and by 2005 there were 10,241 locations. The data 
in the table below (obtained from Starbucks Coffee’s Web site, 
www.starbucks.com) summarize the growth of this company 
from 1987 through 2008.

 2. Carry out the mathematics. Refer to page 164 in this chapter. 
Notice that the exponential model with b 7 1 looks like it 
could be a good fit. Use your grapher to find an exponential 
regression model to model this data set. 

 3. What does the exponential model in (b) predict for the num-
ber of Starbuck stores in 2008? 

 4. Analyze and assess the solution. One reason why the expo-
nential model overpredicts the 2008 number is that expo-
nential growth is not sustainable over time. Why not?

 5. Suppose we want to model the data set with an equation that 
takes into account the fact that the growth of a franchise 
eventually levels out as the market becomes saturated. 
Notice that the logistic regression model starts out looking 
exponential but levels out over time. Use your grapher to 
compute the logistic regression model for the Starbucks data 
and superimpose the graph on the scatter plot. Does the fit 
appear to be a good one?

 6. In 2011 there were 17,003 stores, and in 2014 there were 
21,366 stores. Add the corresponding points to your scatter 
plot, keeping the same regression curve. What do you 
notice? Can you explain what you see? (Hint: Look back at 
the Chapter Opener problem at the end of Section 1.7.)

Year Number of Locations

1987 17
1990 84
1993 272
1996 1015
1999 2498
2002 5886
2005 10241
2008 16680

Explorations

 1. Identify variables. Enter the data from the table into your 
grapher to show the number of locations 1y2 as a function of 
time 1x2. (Let x represent the number of years after 1980.) 
Draw a scatter plot for the data.
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Humidity and relative humidity are measures used by weather forecasters. 

Humidity affects our comfort and our health. If humidity is too low, our skin 

can become dry and cracked, and viruses can live longer. If humidity is too 

high, it can make warm temperatures feel even warmer, and mold, fungi, and 

dust mites can live longer. See page 243 to learn how relative humidity is 

modeled as a rational function.

Polynomial, Power, and 
Rational Functions

CHAPTER 2 

175

 2.1 Linear and Quadratic 
Functions and Modeling

 2.2 Modeling with Power 
Functions

 2.3 Polynomial Functions  
of Higher Degree with 
Modeling

 2.4 Real Zeros of Polynomial 
Functions

 2.5 Complex Zeros and the 
Fundamental Theorem  
of Algebra

 2.6 Graphs of Rational 
Functions

 2.7 Solving Equations in  
One Variable

 2.8 Solving Inequalities  
in One Variable
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Chapter 2 Overview
Chapter 1 laid a foundation of the general characteristics of functions, equations, and 
graphs. In this chapter and the next two, we will explore the theory and applications of 
specific families of functions. We begin this exploration by studying three interrelated 
families of functions: polynomial, power, and rational functions. Models using these 
three families of functions are found in the social, behavioral, and natural sciences.

This chapter includes a thorough study of the theory of polynomial equations. We 
investigate algebraic methods for finding both real- and complex-number solutions of 
such equations and relate these methods to the graphical behavior of polynomial and 
rational functions. The chapter closes by extending these methods to inequalities in one 
variable.

DEFINITION Polynomial Function

Let n be a nonnegative integer and let a0, a1, a2, c , an-1, an be real numbers 
with an ≠ 0. The function given by

ƒ1x2 = an x
n + an-1xn-1 + g + a2x2 + a1x + a0

is a polynomial function of degree n. The leading coefficient is an.

The zero function ƒ1x2 = 0 is a polynomial function. It has no degree and no 
leading coefficient.

What you’ll learn about
• Polynomial Functions

• Linear Functions and Their Graphs

• Average Rate of Change

• Association, Correlation, and Linear 
Modeling

• Quadratic Functions and Their 
Graphs

• Applications of Quadratic Functions

... and why
Many business and economic 
 problems are modeled by linear 
functions. Models based on 
 quadratic and higher-degree poly-
nomial functions are used in science 
and manufacturing applications.

Polynomial Functions
Polynomial functions are among the most familiar of all functions.

2.1 Linear and Quadratic Functions and Modeling

Polynomial functions are defined and continuous on all real numbers. It is important to 
recognize whether a function is a polynomial function.

Identifying Polynomial Functions
Which of the following are polynomial functions? For those that are polynomial 
functions, state the degree and leading coefficient. For those that are not, explain  
why not.

(a) ƒ1x2 = 4x3 - 5x -
1
2

 (b) g1x2 = 6x -4 + 7

(c) h1x2 = 29x4 + 16x2 (d) k1x2 = 15x - 2x4

SOLUTION 

(a) ƒ is a polynomial function of degree 3 with leading coefficient 4.

(b) g is not a polynomial function because of the exponent -4.

(c) h is not a polynomial function because it cannot be simplified into polynomial 
form. Notice that 29x4 + 16x2 ≠ 3x2 + 4x.

(d) k is a polynomial function of degree 4 with leading coefficient -2.
Now try Exercise 1.

EXAMPLE 1 
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Polynomial Functions of No and Low Degree

Name Form Degree

Zero function ƒ1x2 = 0 Undefined

Constant function ƒ1x2 = a 1a ≠ 02 0

Linear function ƒ1x2 = ax + b 1a ≠ 02 1

Quadratic function ƒ1x2 = ax2 + bx + c 1a ≠ 02 2

Surprising Fact
Not all lines in the Cartesian plane are graphs of 
linear functions.

The zero function and all constant functions are polynomial functions. Some other 
familiar functions are also polynomial functions, as shown below.

We study polynomial functions of degree 3 and higher in Section 2.3. For the remain-
der of this section, we turn our attention to the nature and uses of linear and quadratic 
polynomial functions.

Linear Functions and Their Graphs
Linear equations and graphs of lines were reviewed in Sections P.3 and P.4, and some 
of the examples in Chapter 1 involved linear functions. We now take a closer look at 
the properties of linear functions.

A linear function is a polynomial function of degree 1 and so has the form

ƒ1x2 = ax + b, where a and b are constants and a ≠ 0.

If we use m for the leading coefficient instead of a and let y = ƒ1x2, then this equation 
becomes the familiar slope-intercept form of a line:

y = mx + b.

Vertical lines are not graphs of functions because they fail the vertical line test, and 
horizontal lines are graphs of constant functions. A line in the Cartesian plane is the 
graph of a linear function if and only if it is an oblique line, that is, neither horizontal 
nor vertical. An oblique line is also known as a slant line. We can apply the formulas 
and methods of Section P.4 to problems involving linear functions.

Finding an Equation of a Linear Function
Write an equation for the linear function ƒ such that ƒ1-12 = 2 and ƒ132 = -2.

SOLUTION 

Solve Algebraically We seek a line through the points 1-1, 22 and 13, -22. The 
slope is

m =
y2 - y1

x2 - x1
=
1-22 - 2

3 - 1-12 =
-4
4

= -1.

Using this slope and the coordinates of 1-1, 22 with the point-slope formula, we have

y - y1 = m1x - x12
 y - 2 = -11x - 1-122
 y - 2 = -x - 1

 y = -x + 1

Converting to function notation gives us the desired form:

ƒ1x2 = -x + 1

EXAMPLE 2 

(continued)
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The rate of change of a linear function is the signed ratio of the corresponding line’s 
rise over run. That is, for a linear function ƒ1x2 = mx + b,

rate of change = slope = m =
rise
run

=
change in y

change in x
=

∆y

∆x
.

This formula allows us to interpret the slope, or rate of change, of a linear function 
numerically. For instance, in Exploration 1 the value of the apartment building fell 
from $50,000 to $0 over a 25-yr period. In Table 2.1 we compute ∆y>∆x for the apart-
ment building’s value (in dollars) as a function of time (in years). Because the average 
rate of change ∆y>∆x is the nonzero constant -2000, the building’s value is a linear 
function of time decreasing at a rate of $2000>yr.

THEOREM Constant Rate of Change

A function defined on all real numbers is a linear function if and only if it has a 
constant nonzero average rate of change between any two points on its graph.

Modeling Depreciation with a Linear Function

Camelot Apartments bought a $50,000 building and for tax purposes are depreci-
ating it $2000 per year over a 25-yr period using straight-line depreciation.

 1. What is the rate of change of the value of the building?

 2. Write an equation that models the value v1t2 of the building as a linear function 
of the time t since the building was placed in service.

 3. Evaluate v102 and v1162. 
 4. Solve v1t2 = 39,000. 

EXPLORATION 1 

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(–1, 2)

(3, –2)

Figure 2.1 The graph of y = -x + 1  
passes through 1-1, 22 and 13, -22.  
(Example 2)

Support Graphically We can graph y = -x + 1 and see that it includes the points 
1-1, 22 and 13, -22 (Figure 2.1).

Confirm Numerically Using ƒ1x2 = -x + 1 we prove that ƒ1-12 = 2 and 
ƒ132 = -2:

ƒ1-12 = -1-12 + 1 = 1 + 1 = 2, and ƒ132 = -132 + 1 = -3 + 1 = -2

Now try Exercise 7.

Average Rate of Change
Another property that characterizes a linear function is its rate of change. The average 
rate of change of a function y = ƒ1x2 between x = a and x = b, a ≠ b, is

ƒ1b2 - ƒ1a2
b - a

.

You are asked to prove the following theorem in Exercise 89.

Rate and Ratio
All rates are ratios, whether expressed as miles 
per hour, dollars per year, or even rise over run.

Constant Functions
The rate of change for any constant function is 0.

Because the average rate of change of a linear function is constant, it is simply the  
rate of change of the linear function. The slope m in the formula ƒ1x2 = mx + b is 
the rate of change of the linear function. In Exploration 1, we revisit Example 7 of 
 Section P.4 in light of the rate of change concept.
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Association, Correlation, and Linear Modeling
In Section 1.7 we approached modeling from several points of view. Along the way you 
learned how to use a grapher to create a scatter plot, compute a regression line for a data 
set, and overlay a regression line on a scatter plot. We touched on the notion of correla-
tion coefficient. We now go deeper into these modeling and regression concepts.

Figure 2.2 on page 180 shows five types of scatter plots. When the points of a scatter 
plot are clustered along a line, we say there is a linear association between the vari-
ables represented by the data. When an oval is drawn around the points in the scatter 
plot, generally speaking, the narrower the oval, the stronger the linear association.

When the oval tilts like a line with positive slope (as in Figure 2.2a and b), the data 
have a positive linear association. On the other hand, when it tilts like a line with 
negative slope (as in Figure 2.2d and e), the data have a negative linear association. 
Some scatter plots exhibit little or no linear association (as in Figure 2.2c), or have non-
linear patterns.

Table 2.1 Rate of Change of the Value of the Apartment 
Building in Exploration 1: y = -2000x + 50,000

x (time) y (value) ∆x ∆y ∆y>∆x

0 50,000      
    1 -2000 -2000
1 48,000      
    1 -2000 -2000
2 46,000      
    1 -2000 -2000
3 44,000      
    1 -2000 -2000
4 42,000      

In Exploration 1, as in other applications of linear functions, the constant term repre-
sents the value of the function for an input of 0. In general, for any function f, ƒ102 is 
the initial value of ƒ. So for a linear function ƒ1x2 = mx + b, the constant term b is the 
initial value of the function. For any polynomial function ƒ1x2 = anxn + g + a1x + a0,  
the constant term ƒ102 = a0 is the function’s initial value. Finally, the initial value of 
any function—polynomial or otherwise—is the y-intercept of its graph.

We now summarize what we have learned about linear functions.

Characterizing the Nature of a Linear Function

Point of View Characterization

Verbal polynomial of degree 1

Algebraic ƒ1x2 = mx + b 1m ≠ 02
Graphical slant line with slope m and y-intercept b

Analytical  function with constant nonzero rate of change m: ƒ is 
increasing if m 7 0, decreasing if m 6 0; initial value 
of the function = ƒ102 = b
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Correlation informs the linear modeling process by giving us a measure of goodness of 
fit. Good modeling practice, however, demands that we have a theoretical reason for 
selecting a model. In business, for example, fixed cost is modeled by a constant func-
tion. (Otherwise, the cost would not be fixed.)

In economics, a linear model is often used for the demand for a product as a function of 
its price. For instance, suppose Twin Pixie, a large supermarket chain, conducts a mar-
ket analysis on its store brand of doughnut-shaped oat breakfast cereal. The chain sets 
various prices for its 15-oz box at its different stores over a period of time. Then, using 
these data, the Twin Pixie researchers predict the weekly sales at the entire chain of 
stores for each price to obtain the data shown in Table 2.2.

Correlation vs. Causation
Correlation does not imply causation. Two 
 variables can be strongly correlated, but that  
does not necessarily mean that one causes the 
other.

For example, the strong correlation between shoe 
size and reading comprehension among elemen-
tary school children does not imply that reading 
ability resides in one’s feet. As kids get taller, 
their feet grow and they become better readers.

y

x
10 20 30 40 50

50

40

30

20

10

Strong positive linear
association

(a)

y

x
10 20 30 40 50

50

40

30

20

10

y

x
10 20 30 40 50

50

40

30

20

10

Weak positive linear
association

Little or no linear
association

(b) (c)

y

x
10 20 30 40 50

50

40

30

20

10

Strong negative linear
association

(d)

y

x
10 20 30 40 50

50

40

30

20

10

Weak negative linear
association

(e)

Figure 2.2 Five scatter plots and the types of linear association they suggest.

When a scatter plot shows evidence of a linear association in the data set, we measure 
the strength and direction of the association with the correlation coefficient, r.

Note that correlation describes linear associations only. This is why the critical first 
step in any analysis is to make a scatter plot of the data to check for the presence of a 
linear relationship. If the scatter plot shows a curved relationship, do not calculate r.

Properties of the Correlation Coefficient, r

1. -1 … r … 1.

2. When there is a positive linear association, r 7 0.

3. When there is a negative linear association, r 6 0.

4. When there is a strong linear association, 0 r 0 ≈ 1.

5. When r ≈ 0 there is weak or no linear association.
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(a)

[2, 4] by [10000, 40000]

(b)

[2, 4] by [10000, 40000]

(c)

X=2 Y=42904.643
[0, 5] by [210000, 80000]

Figure 2.3 Scatter plot and regression line 
graphs for Example 3.

Table 2.2 Weekly Sales Data Based 
on Marketing Research

Price per Box Boxes Sold

$2.40 38,320
$2.60 33,710
$2.80 28,280
$3.00 26,550
$3.20 25,530
$3.40 22,170
$3.60 18,260

Modeling and Predicting Demand
Use the data in Table 2.2 to write a linear model for demand (in boxes sold per week) 
as a function of the price per box (in dollars). Describe the strength and direction of 
the linear association. Then use the model to predict weekly cereal sales if the price 
is dropped to $2.00 or raised to $4.00 per box.

SOLUTION 

Model We enter the data and obtain the scatter plot shown in Figure 2.3a. It appears 
that the data have a strong negative linear association, so we may proceed.

We then find the linear regression model to be approximately

y = 73,622.50 - 15,358.93x,

where x is the price per box of cereal and y is the number of boxes sold.

Figure 2.3b shows the scatter plot for Table 2.2 together with a graph of the regres-
sion line. You can see that the line fits the data fairly well. The correlation coeffi-
cient of r ≈ -0.98 supports this visual evidence.

Solve Graphically Our goal is to predict the weekly sales for prices of $2.00 and 
$4.00 per box. Using the value feature of the grapher, as shown in Figure 2.3c, we 
see that y is about 42,900 when x is 2. In a similar manner we could find that 
y ≈ 12,190 when x is 4.

Interpret If Twin Pixie drops the price for its store brand of doughnut-shaped oat 
breakfast cereal to $2.00 per box, the linear model predicts demand will rise to about 
42,900 boxes per week. On the other hand, if it raises the price to $4.00 per box, the 
model predicts demand will drop to around 12,190 boxes per week.

Now try Exercise 53.

EXAMPLE 3 

We summarize for future reference the analysis used in Example 3.

Regression Analysis

1. Enter and plot the data (scatter plot).

2. Check for evidence of linearity.

3. Find the regression model that fits the problem situation. (Note: Linear 
regression models can be written as either y = a + bx or y = ax + b.)

4. Superimpose the graph of the regression model on the scatter plot, and 
observe the fit.

5. Use the regression model to make the predictions called for in the problem.
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Quadratic Functions and Their Graphs
A quadratic function is a polynomial function of degree 2. Recall from Section 1.3 
that the graph of the squaring function ƒ1x2 = x2 is a parabola. We will see that the 
graph of every quadratic function is an upward- or downward-opening parabola. 
This is because the graph of any quadratic function can be obtained from the graph 
of the squaring function ƒ1x2 = x2 by a sequence of translations, reflections, 
stretches, and shrinks.

y

(a)

5

–5

–5
x

5

y

(b)

5

–5

–5
x

5

Figure 2.4 The graph of ƒ1x2 = x2 (blue) 
shown with

(a) g1x2 = -11>22x2 + 3 and

(b) h1x2 = 31x + 222 - 1. (Example 4)

vertex

axis

(a)

f(x) = ax2, a > 0

vertex

axis

(b)

f(x) = ax2, a < 0

Figure 2.5 The graph ƒ1x2 = ax2 for  
(a) a 7 0 and (b) a 6 0.

Transforming the Squaring Function
Describe how to transform the graph of ƒ1x2 = x2 into the graph of the given func-
tion. Sketch its graph by hand.

(a) g1x2 = -11>22x2 + 3 (b) h1x2 = 31x + 222 - 1

SOLUTION 

(a) The graph of g1x2 = -11>22x2 + 3 is obtained by vertically shrinking the 
graph of ƒ1x2 = x2 by a factor of 1>2, reflecting the resulting graph across the 
x-axis, and translating the reflected graph up 3 units (Figure 2.4a).

(b) The graph of h1x2 = 31x + 222 - 1 is obtained by vertically stretching the 
graph of ƒ1x2 = x2 by a factor of 3 and translating the resulting graph left  
2 units and down 1 unit (Figure 2.4b).

Now try Exercise 19.

EXAMPLE 4 

The graph of ƒ1x2 = ax2, a 7 0, is an upward-opening parabola. When a 6 0, its 
graph is a downward-opening parabola. Regardless of the sign of a, the y-axis is the 
line of symmetry for the graph of ƒ1x2 = ax2. The line of symmetry for a parabola is 
its axis of symmetry, or axis for short. The point on the parabola that intersects its axis 
is the vertex of the parabola. Because the graph of a quadratic function is always an 
upward- or downward-opening parabola, its vertex is always the lowest or highest point 
of the parabola. The vertex of ƒ1x2 = ax2 is always the origin, as seen in Figure 2.5.

In general, the graph of ƒ1x2 = a1x - h22 + k is obtained by translating the graph of 
ƒ1x2 = ax2 horizontally and vertically so that the vertex of the parabola is at the point 
1h, k2. This vertex form for a quadratic function makes it easy to identify the parabola’s 
vertex and axis and to sketch the graph of the function.

Any function written in standard quadratic form y = ax2 + bx + c can be rewritten 
in vertex form by completing the square.

Using Algebra to Describe the Graph  
of a Quadratic Function

Use completing the square to describe the graph of ƒ1x2 = 3x2 + 12x + 11. 
 Support your answer graphically.

SOLUTION 

Solve Algebraically 

 ƒ1x2 = 3x2 + 12x + 11

 = 31x2 + 4x2 + 11  Factor 3 from the x-terms.

 = 31x2 + 4x + 1 2 - 1 22 + 11  Prepare to complete the square.

 = 31x2 + 4x + 1222 - 12222 + 11 Complete the square.

 = 31x2 + 4x + 42 - 3142 + 11  Distribute the 3.

 = 31x + 222 - 1

EXAMPLE 5 
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The formula h = -b>12a2 is useful for locating the vertex and axis of the parabola 
associated with a quadratic function. To help you remember it, notice that -b>12a2 is 
part of the quadratic formula

x =
-b ± 2b2 - 4ac

2a
.

(Cover the radical term.) You need not remember k = c - ah2 because you can use 
k = ƒ1h2 instead, as illustrated in Example 6.

X=–2 Y=–1
[24.7, 4.7] by [23.1, 3.1]

Figure 2.6 The graphs of ƒ1x2 =  
3x2 + 12x + 11 and y = 31x + 222 - 1  
appear to be identical. The vertex 1-2, -12 is  
highlighted. (Example 5)

y

x

y = ax2 + bx + c

, a > 0x = – b
2a

(a)

y

x

y = ax2 + bx + c

, a < 0x = – b
2a

(b)

Figure 2.7 The vertex is at x = -b>12a2, 
which therefore also describes the axis of 
symmetry. (a) When a 7 0, the parabola 
opens upward. (b) When a 6 0, the parabola 
opens downward.

The graph of ƒ is an upward-opening parabola with vertex 1-2, -12, axis of symme-
try x = -2. (The x-intercepts are x = -2 ± 23>3, or about -2.577 and -1.423.)

Support Graphically The graph in Figure 2.6 supports these results.
Now try Exercise 33.

Expanding ƒ1x2 = a1x - h22 + k and comparing the resulting coefficients with the 
standard quadratic form ax2 + bx + c, where the powers of x are arranged in descend-
ing order, we can obtain formulas for h and k.

 ƒ1x2 = a1x - h22 + k

 = a1x2 - 2hx + h22 + k  Expand 1x - h22.

 = ax2 + 1-2ah2x + 1ah2 + k2 Distributive property

 = ax2 + bx + c  Let b = -2ah and c = ah2 + k.

Because b = -2ah and c = ah2 + k in the last line above, h = -b>12a2 and 
k = c - ah2.

Vertex Form of a Quadratic Function

Any quadratic function ƒ1x2 = ax2 + bx + c, a ≠ 0, can be written in the 
vertex form

ƒ1x2 = a1x - h22 + k.

The graph of ƒ is a parabola with vertex 1h, k2 and axis x = h, where 
h = -b>12a2. If a 7 0, the parabola opens upward, and if a 6 0, it opens 
downward (Figure 2.7).

Finding the Vertex and Axis of a  
Quadratic Function

Use the vertex form of a quadratic function to find the vertex and axis of the graph of 
ƒ1x2 = 6x - 3x2 - 5. Rewrite the equation in vertex form.

SOLUTION 

Solve Algebraically The standard polynomial form of ƒ is

ƒ1x2 = -3x2 + 6x - 5.

EXAMPLE 6 

(continued)
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Applications of Quadratic Functions
In economics, when demand is linear, revenue is quadratic. Example 7 illustrates this 
by extending the Twin Pixie model of Example 3.

Characterizing the Nature of a Quadratic Function

Point of View Characterization

Verbal polynomial of degree 2

Algebraic ƒ1x2 = ax2 + bx + c or

 ƒ1x2 = a1x - h22 + k 1a ≠ 02
Graphical  parabola with vertex 1h, k2 and axis x = h;  

opens upward if a 7 0, opens downward if a 6 0;  
initial value = y@intercept = ƒ102 = c;

 x@intercepts =
-b ± 2b2 - 4ac

2a

X=2.3967298 Y=88226.727
Maximum

[0, 5] by [210000, 100000]

Figure 2.8 The revenue model for  
Example 7.

So a = -3, b = 6, and c = -5, and the coordinates of the vertex are

 h = -  
b
2a

= -  
6

21-32 = 1  and

 k = ƒ1h2 = ƒ112 = -31122 + 6112 - 5 = -2.

The equation of the axis is x = 1, the vertex is 11, -22, and the vertex form of ƒ is

ƒ1x2 = -31x - 122 + 1-22.
Now try Exercise 27.

We now summarize what we know about quadratic functions.

Predicting Maximum Revenue
Use the model y = -15,358.93x + 73,622.50 from Example 3 to develop a model 
for the weekly revenue generated by doughnut-shaped oat breakfast cereal sales. 
Determine the maximum revenue and how to achieve it.

SOLUTION 

Model Revenue can be found by multiplying the price per box, x, by the number of 
boxes sold, y. So the revenue is given by

R1x2 = x # y = -15,358.93x2 + 73,622.50x,

a quadratic model.

Solve Graphically In Figure 2.8, we find a maximum of about 88,227 occurs when 
x is about 2.40.

Interpret To maximize revenue, the model suggests Twin Pixie should set the price 
for its store brand of doughnut-shaped oat breakfast cereal at $2.40 per box. Based 
on the model, this could yield a weekly revenue of about $88,227.

Now try Exercise 55.

EXAMPLE 7 
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Recall that the average rate of change of a linear function is constant. In Exercise 82 
you will see that the average rate of change of a quadratic function is not constant.

In calculus you will study not only average rate of change but also instantaneous rate 
of change. Such instantaneous rates include velocity and acceleration, which we now 
begin to investigate.

Since the time of Galileo Galilei (1564–1642) and Isaac Newton (1642–1727), the ver-
tical motion of a body in free fall has been well understood. Finding the vertical veloc-
ity and vertical position (height) of a free-falling body (as functions of time) are 
classical applications of linear and quadratic functions.

Table 2.3 Rubber Ball 
Data from CBR™

Time (sec) Height (m)

0.0000 1.03754
0.1080 1.40205
0.2150 1.63806
0.3225 1.77412
0.4300 1.80392
0.5375 1.71522
0.6450 1.50942
0.7525 1.21410
0.8600 0.83173

This model disregards air resistance, and the two values given for g are valid at sea 
level. We apply these formulas in Example 8, and we will use them from time to time 
throughout the rest of the text.

The data in Table 2.3 were collected in Boone, North Carolina (about 1 km above sea 
level), using a Calculator-Based Ranger™ (CBR™) and a 15-cm rubber air-filled ball. 
The CBR™ was placed on the floor face up. The ball was thrown upward above the 
CBR™, and it landed directly on the face of the device.

Vertical Free-Fall Motion

The height s and vertical velocity v of an object in free fall are modeled by

s1t2 = -  
1
2

 gt2 + v0t + s0 and v1t2 = -gt + v0,

where t is time (in seconds), g ≈ 32 ft>sec2 ≈ 9.8 m>sec2 is the acceleration 
due to gravity, v0 is the initial vertical velocity of the object, and s0 is its 
initial height.

Modeling Vertical Free-Fall Motion
Use the data in Table 2.3 to write models for the height and vertical velocity of the 
rubber ball. Then use these models to predict the maximum height of the ball and its 
vertical velocity when it hits the face of the CBR™.

SOLUTION 

Model First we make a scatter plot of the data, as shown in Figure 2.9a. We see an 
association that is curved and strong. Using quadratic regression, we find the model 
for the height of the ball to be about

s1t2 = -4.676t2 + 3.758t + 1.045,

with R2 ≈ 0.999, indicating an excellent fit.

Our free-fall theory says the leading coefficient of -4.676 is -g>2, giving us a value 
for g ≈ 9.352 m>sec2, which is a bit less than the theoretical value of 9.8 m>sec2. 
We also obtain v0 ≈ 3.758 m>sec. So the model for vertical velocity becomes

v1t2 = -gt + v0 ≈ -9.352t + 3.758.

EXAMPLE 8 

(continued)
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Graphical Transformations
The free-fall motion formula s1t2 = -0.5gt2 + v0t + s0 is a translation of h1t2 = -0.5gt2, 
which in turn is a reflection and vertical stretch of the basic quadratic function ƒ1t2 = t2.

(a)

[0, 1.2] by [20.5, 2.0]

      (b)

X=.40183958 Y=1.8000558
Maximum

[0, 1.2] by [20.5, 2.0]

      (c)

X=1.0222877   Y=0
Zero

[0, 1.2] by [20.5, 2.0]

Figure 2.9 Scatter plot and graph of height versus time for Example 8.

X=.40183958 Y=1.8000558
Maximum

[0, 1.2] by [20.5, 2.0]

Figure 2.10 The maximum height occurred 
roughly 0.402 sec after the ball was tossed 
into the air.

Reminder
Recall from Section 1.7 that R2 is the coefficient 
of determination, which measures goodness of fit.

Solve Graphically and Numerically The maximum height is the maximum value 
of s1t2, which occurs at the vertex of its graph. We can see from Figure 2.9b that the 
vertex has coordinates of about 10.402, 1.8002.
In Figure 2.9c, to determine when the ball hits the face of the CBR™, we calculate 
the positive-valued zero of the height function, which is t ≈ 1.022. We turn to our 
linear model to compute the vertical velocity at impact:

v11.0222 = -9.35211.0222 + 3.758 ≈ -5.80 m>sec

Interpret The maximum height the ball achieved was about 1.80 m above the face 
of the CBR™. The ball’s downward rate is about 5.80 m>sec when it hits the 
CBR™.

The curve in Figure 2.9b appears to fit the data extremely well, and R2 ≈ 0.999. 
You may have noticed, however, that Table 2.3 contains the ordered pair 10.4300, 
1.803922 and that 1.80392 7 1.800, which is the maximum shown in Figure 2.9b. 
So, even though our model is theoretically based and an excellent fit to the data, like 
all models, it is not perfect. Despite its imperfections, the model provides accurate 
and reliable predictions about the CBR™ experiment. Now try Exercise 63.

Revisiting Vertical Free-Fall Motion
In Example 8, we modeled the height s (in meters) of a rubber ball using the equation

s1t2 = -4.676t2 + 3.758t + 1.045,

where t is time (in seconds). As shown in Figure 2.10 the associated graph of height 
versus time is a parabola with a vertex of roughly (0.402 sec, 1.800 m). Therefore, 
we can rewrite the equation in vertex form as

s1t2 = -4.6761t - 0.40222 + 1.800.

Thus, if ƒ1t2 = t2, then s1t2 = -4.676 ƒ1t - 0.4022 + 1.800. This implies that the 
graph of y = s1t2 can be obtained from the graph of y = ƒ1t2 by the following 
sequence of transformations:

(a) a reflection in the x-axis to get y = -ƒ1t2 = - t2

(b) a vertical stretch by a factor of 4.676 to get y = -4.676 ƒ1t2 = -4.676t2

(c) a translation of 0.402 sec to the right to get y = -4.676 ƒ1t - 0.4022 =
-4.6761t - 0.40222

(d) a translation of 1.800 m upward to get y = -4.676 ƒ1t - 0.4022 + 1.800 =
-4.6761t - 0.40222 + 1.800 Now try Exercise 71.

EXAMPLE 9 
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–2, write an equation in slope-intercept form for a line 
with the given slope m and y-intercept b.

 1. m = 8, b = 3.6 2. m = -1.8, b = -2

In Exercises 3–4, write an equation for the line containing the given 
points. Graph the line and points.

 3. 1-2, 42 and 13, 12 4. 11, 52 and 1-2, -32

In Exercises 5–8, expand the expression.

 5. 1x + 322  6. 1x - 422
 7. 31x - 622  8. -31x + 722
In Exercises 9–10, factor the trinomial.

 9. 2x2 - 4x + 2  10. 3x2 + 12x + 12

QUICK REVIEW 2.1 (For help, go to Sections A.2. and P.4)

 13. ƒ1x2 = 21x + 122 - 3  14. ƒ1x2 = 31x + 222 - 7

 15. ƒ1x2 = 4 - 31x - 122  16. ƒ1x2 = 12 - 21x - 122
 17. ƒ1x2 = 21x - 122 - 3  18. ƒ1x2 = 12 - 21x + 122
In Exercises 19–22, describe how to transform the graph of ƒ1x2 = x2 
into the graph of the given function. Sketch each graph by hand.

 19. g1x2 = 1x - 322 - 2 20. h1x2 =
1
4

 x2 - 1

 21. g1x2 =
1
2

 1x + 222 - 3 22. h1x2 = -3x2 + 2

In Exercises 23–26, find the vertex and axis of the graph of the function.

 23. ƒ1x2 = 21x - 122 + 3 24. g1x2 = -31x + 222 - 1

 25. ƒ1x2 = 51x - 822 - 7 26. g1x2 = 21x - 2322 + 4

In Exercises 27–32, find the vertex and axis of the graph of the func-
tion. Rewrite the equation for the function in vertex form.

 27. ƒ1x2 = 5x2 + 7x - 6 28. ƒ1x2 = -2x2 + 7x - 3

 29. ƒ1x2 = 8x - x2 + 3 30. ƒ1x2 = 6 - 2x + 4x2

 31. g1x2 = 5x2 + 4 - 6x 32. h1x2 = -2x2 - 7x - 4

In Exercises 33–38, use completing the square to describe the graph of 
each function. Support your answers graphically.

 33. ƒ1x2 = x2 - 4x + 6 34. g1x2 = x2 - 6x + 12

 35. ƒ1x2 = 10 - 16x - x2 36. h1x2 = 8 + 2x - x2

 37. ƒ1x2 = 2x2 + 6x + 7 38. g1x2 = 5x2 - 25x + 12

In Exercises 39–42, write an equation for the parabola shown, using the 
fact that one of the given points is the vertex.

SECTION 2.1 Exercises

In Exercises 1–6, determine which are polynomial functions. For those 
that are, state the degree and leading coefficient. For those that are not, 
explain why not.

 1. ƒ1x2 = 3x -5 + 17 2. ƒ1x2 = -7 + 3x

 3. ƒ1x2 = 2x5 -
1
2

 x + 9 4. ƒ1x2 = 19

 5. h1x2 = 23 64x3 + 27x6 6. k1x2 = 8x - 4x2

In Exercises 7–12, write an equation for the linear function ƒ satisfying 
the given conditions. Graph y = ƒ1x2.
 7. ƒ1-52 = -1 and ƒ122 = 4

 8. ƒ1-52 = 4 and ƒ182 = -7

 9. ƒ1-42 = 6 and ƒ1-12 = 2

 10. ƒ132 = 6 and ƒ172 = 13

 11. ƒ102 = 3 and ƒ132 = 0

 12. ƒ1-62 = 0 and ƒ102 = 4

In Exercises 13–18, match a graph to the function. Explain your choice.

(e) (f)

(a) (b)

(c) (d)

 39. 

(21, 23)

(1, 5)

[25, 5] by [215, 15]

 40. 

(2, 27)

(0, 5)

[25, 5] by [215, 15]
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In Exercises 45–48, describe the strength and direction of the linear 
correlation.

 41. 

(4, 27)

(1, 11)

[25, 5] by [215, 15]

 42. 

(2, 213)

(21, 5)

[25, 5] by [215, 15]

 45. 

  

y

x
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 46. 
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 47. 

  

y

x
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 48. 

  

y

x

50

40

30

20

10

10 20 30 40 50

 49. Comparing Age and Weight A group of male children 
were weighed. Their ages and weights are recorded in Table 2.4.

Table 2.4 Children’s Age and Weight

Age (months) Weight (pounds)

18 23
20 25
24 24
26 32
27 33
29 29
34 35
39 39
42 44

Table 2.5 U.S. Life Expectancy

Age (years)
Remaining Life 

Expectancy (years)

10 66.9
20 57.4
30 47.8
40 38.5
50 29.6
60 21.5
70 14.2

Source: Social Security Administration,  
Trustees’ Report, 2013.

(a) Draw a scatter plot of these data.

(b) Writing to Learn Describe the strength and direction 
of the association between age and weight.

 50. Life Expectancy Table 2.5 shows the average number  
of additional years a U.S. citizen is expected to live for various 
ages.

(a) Draw a scatter plot of these data.

(b) Writing to Learn Describe the strength and direction 
of the association between age and life expectancy.

 51. Straight-Line Depreciation Mai Lee bought a computer 
for her home office and depreciated it over 5 years using the 
straight-line method. If its initial value was $2350, what is its 
value 3 years later?

 52. Costly Doll Making Patrick’s doll-making business has 
weekly fixed costs of $350. If the cost for materials is $4.70 
per doll and his total weekly costs average $500, about how 
many dolls does Patrick make each week?

 53. Fuel Economy Table 2.6 shows the average U.S. fuel econ-
omy for “light duty” vehicles (passenger cars and small trucks) 
for several years. Let x be the number of years since 1990, so 
that x = 5 stands for 1995 and so forth.

Table 2.6 Light Duty Vehicles

Year Fuel Economy (mpg)

1995 21.1
2000 21.9
2005 22.1
2010 23.3
2014 23.2

Source: National Transportation Statistics 
2015, U.S. Department of Transportation.

(a) Justify the use of a linear regression model.

(b) Writing to Learn Find the linear regression model for 
these data. What does the slope in the regression model 
represent?

(c) Use the linear regression model to predict the average  
U.S. fuel economy for light duty vehicles in the year 2020.

 54. Finding Maximum Area Among all the rectangles whose 
perimeters are 100 ft, find the dimensions of the one with max-
imum area.

 55. Determining Revenue The per unit price p (in dollars) of 
a popular toy when x units (in thousands) are produced is mod-
eled by the function

price = p = 12 - 0.025x.

  The revenue (in thousands of dollars) is the product of the price 
per unit and the number of units (in thousands) produced. That is,

revenue = xp = x112 - 0.025x2.

In Exercises 43 and 44, write an equation for the quadratic function 
whose graph contains the given vertex and point.

 43. Vertex 11, 32, point 10, 52
 44. Vertex 1-2, -52, point 1-4, -272
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(a) State the dimensions of a viewing window that shows a 
graph of the revenue model for producing 0 to 100,000 
units.

(b) How many units should be produced if the total revenue is 
to be $1,000,000?

 56. Finding the Dimensions of a Painting A large paint-
ing in the style of Rubens is 3 ft longer than it is wide. If the 
wooden frame is 12 in. wide, and the area of the picture and 
frame is 208 ft2, find the dimensions of the painting.

 57. Using Algebra in Landscape Design Julie Stone 
designed a rectangular patio that is 25 ft by 40 ft. This patio is 
surrounded by a terraced strip of uniform width planted with 
small trees and shrubs. If the area A of this terraced strip is 
504 ft2, find the width x of the strip.

 58. Management Planning The Welcome Home apartment 
rental company has 320 units available, but only 80 are currently 
rented at $2000 per month. A market survey indicates that each 
$100 decrease in monthly rent will result in 20 new leases.

(a) Determine a function R1x2 that models the total rental income 
realized by Welcome Home, where x is the number of $100 
decreases in monthly rent.

(b) Find a graph of R1x2 for rent levels between $800 and 
$2000 1that is, 0 … x … 122 that shows a maximum 
for R1x2.

(c) What rent will yield Welcome Home the maximum 
monthly income?

 59. Group Activity Beverage Business The Sweet Drip 
Beverage Co. sells cans of soda pop in machines. It finds that 
sales average 26,000 cans per month when the cans sell for 50¢ 
each. For each nickel increase in the price, the sales per month 
drop by 1000 cans.

(a) Determine a function R1x2 that models the total revenue real-
ized by Sweet Drip, where x is the number of $0.05 increases 
in the price of a can.

(b) Find a graph of R1x2 that shows a maximum for R1x2.
(c) How much should Sweet Drip charge per can to realize the 

maximum revenue? What is the maximum revenue?

 60. Group Activity Sales Manager Planning Jack was 
named District Manager of the Month at the Athens Wire Co. 
due to his hiring study. It shows that each of the 30 salesper-
sons he supervises average $50,000 in sales each month, and 
that for each additional salesperson he would hire, the average 
sales would decrease $1000 per month. Jack concluded his 
study by suggesting a number of salespersons that he should 
hire to maximize sales. What was that number?

 61. Free-Fall Motion As a promotion for the Houston Astros 
downtown ballpark, a competition is held to see who can throw 
a baseball the highest from the front row of the upper deck of 
seats, 83 ft above field level. The winner throws the ball with 
an initial vertical velocity of 92 ft>sec and it lands on the 
infield grass.

(a) Find the maximum height of the baseball.

(b) How much time is the ball in the air?

(c) Determine its vertical velocity when it hits the ground.

 62. Baseball Throwing Machine The Sandusky Little 
League uses a baseball throwing machine to help train  
10-year-old players to catch high pop-ups. It throws the 
 baseball straight up with an initial velocity of 48 ft>sec from  
a height of 3.5 ft.

(a) Find an equation that models the height of the ball  
t seconds after it is thrown.

(b) What is the maximum height the baseball will reach? How 
many seconds will it take to reach that height?

 63. Fireworks Planning At the Bakersville Fourth of July cel-
ebration, fireworks are shot by remote control into the air from 
a pit that is 10 ft below Earth’s surface.

(a) Find an equation that models the height of a Roman candle  
t seconds after it is shot upward with an initial velocity of 
80 ft>sec. Graph the equation.

(b) What is the maximum height above ground level that the 
aerial bomb will reach? How many seconds will it take to 
reach that height?

 64. Landscape Engineering In her 
first project after being employed by 
Land Scapes International, Becky 
designs a decorative water fountain that 
will shoot water to a maximum height 
of 48 ft. What should be the initial 
velocity of each drop of water to 
achieve this maximum height? (Hint: 
Use a grapher and a guess-and-check 
strategy.)

 65. Patent Applications Create a quadratic regression model 
using the data in Table 2.7, letting x = 0 stand for 1980, 
x = 10 for 1990, and so on. In what year does this model 
 predict the number of patent applications to have first  
exceeded 500,000?

Table 2.7 U.S. Patent Applications

Year Applications (thousands)

1980 112.4
1990 176.3
1995 228.2
2000 315.0
2005 417.5
2010 520.3
2015 629.6

Source: U.S. Patent Statistics Table, U.S. Patent and 
Trademark Office, 2016.
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 66. Highway Engineering Interstate 70 west of Denver, 
 Colorado, has a section posted as a 6% grade. This means that 
for a horizontal change of 100 ft there is a 6-ft vertical change.

Table 2.8 Children’s Ages and Weights

Age (months) Weight (pounds)

19 22
21 23
24 25
27 28
29 31
31 28
34 32
38 34
43 39

Table 2.9 Median Income of Women in
the United States (in 2015 dollars)

1960  9,684
1970 12,190
1980 13,479
1990 17,718
2000 22,129
2010 22,585
2015 23,769

Source: Historical Income Tables, U.S. Census Bureau, 2016.

(a) Confirm that a linear model is appropriate.

(b) Find the linear regression model.

(c) Interpret the slope of the linear regression equation.

(d) Superimpose the regression line on the scatter plot.

(e) Use the regression model to predict the weight of a 
30-month-old girl.

 68. Table 2.9 shows the median U.S. income of women (in 2015 
dollars) for selected years. Let x be the number of years  
since 1950.

6% grade

(a) Find the slope of this section of the highway.

(b) On a highway with a 6% grade, what is the horizontal 
 distance required to climb 250 ft?

(c) A sign along the highway says 6% grade for the next 7 mi. 
Estimate how many feet of vertical change there are along 
those 7 mi. (There are 5280 ft in 1 mi.)

 67. A group of female children were weighed. Their ages and 
weights are recorded in Table 2.8.

(a) Confirm that a linear model is appropriate for these data.

(b) Find the linear regression model for the data.

(c) Use it to predict the median U.S. female income  
in 2020.

Exercises 69–70 involve Hooke’s law, which states that the distance x 
that a spring stretches (or compresses) is proportional to the force F 
pulling (or pushing) on the spring: F = kx, where k is the spring con-
stant. (a) Graph F = kx; (b) write the vertical (or horizontal) stretch or 
shrink that can be used to transform the graph of y = x into the graph 
of F = kx.

 69. k = 385.2 lb>ft
 70. k = 4327 N>m
Exercises 71–72 involve free-fall motion. (a) Graph the height y = s1t2,  
where t is time in seconds; (b) write a sequence of transformations that 
can be used to change the graph of y = t2 into the graph of y = s1t2.
 71. The height (in ft) is s1t2 = -16t2 + 100.

 72. The height (in m) is s1t2 = -4.91t - 2.3)2 + 37.8.

In Exercises 73–74, complete the analysis for the given Basic Function.

 73. Analyzing a Function 

BASIC FUNCTION 

The Identity Function
ƒ1x2 = x
Domain:
Range:
Continuity:
Increasing-decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:
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Standardized Test Questions
 75. True or False The initial value of ƒ1x2 = 3x2 + 2x - 3 is 

0. Justify your answer.

 76. True or False The graph of the function ƒ1x2 =  
x2 - x + 1 has no x-intercepts. Justify your answer.

In Exercises 77–80, you may use a graphing calculator to solve the 
problem.

In Exercises 77 and 78, ƒ1x2 = mx + b, ƒ1-22 = 3, and ƒ142 = 1.

 77. Multiple Choice What is the value of m?

(A) 3 (B)  -3 (C)  -1 (D)  1>3 (E) -1>3
 78. Multiple Choice What is the value of b? 

(A) 4 (B)  11>3 (C)  7>3 (D)  1 (E)  -1>3
In Exercises 79 and 80, let ƒ1x2 = 21x + 322 - 5.

 79. Multiple Choice What is the axis of symmetry of the graph 
of ƒ?

(A) x = 3 (B)  x = -3 (C)  y = 5

(D)  y = -5 (E)  y = 0

 80. Multiple Choice What is the vertex of ƒ?

(A) 10, 02 (B)  13, 52 (C)  13, -52
(D)  1-3, 52 (E)  1-3, -52

Explorations
 81. Writing to Learn Identifying Graphs of Linear 

 Functions 

(a) Which of the lines graphed on the top of next column are 
graphs of linear functions? Explain.

(b) Which of the lines graphed on the top of next column are 
graphs of functions? Explain.

(c) Which of the lines graphed on the top of next column are not 
graphs of functions? Explain.

BASIC FUNCTION 

The Squaring Function

ƒ1x2 = x2

Domain:
Range:
Continuity:
Increasing-decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:

 74. Analyzing a Function 

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 21 4 5

(i)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –1 321 4 5

(ii)

3
2
1

–3

y

x
–5 –4 –3 –2 –1 321 4 5

(iii)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(iv)

3
2
1

–1

–3

y

x
–5 –4 –3 –2 –1 321 5

(v)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(vi)

 82. Average Rate of Change Let ƒ1x2 = x2, g1x2 =
3x + 2, h1x2 = 7x - 3, k1x2 = mx + b, and l1x2 = x3.

(a) Compute the average rate of change of ƒ from x = 1 to 
x = 3.

(b) Compute the average rate of change of ƒ from x = 2 to 
x = 5.

(c) Compute the average rate of change of ƒ from x = a to 
x = c.

(d) Compute the average rate of change of g from x = 1 to 
x = 3.

(e) Compute the average rate of change of g from x = 1 to 
x = 4.

(f) Compute the average rate of change of g from x = a to 
x = c.

(g) Compute the average rate of change of h from x = a to 
x = c.

(h) Compute the average rate of change of k from x = a to 
x = c.

(i) Compute the average rate of change of l from x = a to 
x = c.

Extending the Ideas
 83. Minimizing Sums of Squares The linear regression 

line is often called the least-squares line because it minimizes 
the sum of the squares of the residuals, the differences 
between actual y values and predicted y values:

residual = yi - 1axi + b2,
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where 1xi, yi2 are the given data 
pairs and y = ax + b is the 
regression equation, as shown in 
the figure.

  Use these definitions to explain 
why the regression line obtained 
from reversing the ordered pairs in 
Table 2.2 is not the inverse of the 
function obtained in Example 3.

 84. Median-Median Line Read about the median-median  
line by going to the Internet, your grapher owner’s manual,  
or a library. Then use the following data set to complete this 
 problem.

512, 82, 13, 62, 15, 92, 16, 82, 18, 112, 110, 132, 112, 142, 115, 426
(a) Draw a scatter plot of the data.

(b) Find the linear regression equation and graph it.

(c) Find the median-median line equation and graph it.

(d) Writing to Learn For these data, which of the two 
lines appears to be the line of better fit? Why?

 85. Suppose b2 - 4ac 7 0 for the equation ax2 + bx + c = 0.

(a) Prove that the sum of the two solutions of this equation is 
-b>a.

(b) Prove that the product of the two solutions of this equation 
is c>a.

 86. Connecting Algebra and Geometry Prove that the axis 
of the graph of ƒ1x2 = 1x - a21x - b2 is x = 1a + b2>2, 
where a and b are real numbers.

 87. Connecting Algebra and Geometry Identify the vertex 
of the graph of ƒ1x2 = 1x - a21x - b2, where a and b are 
any real numbers.

 88. Connecting Algebra and Geometry Prove that if x1 
and x2 are real numbers and are zeros of the quadratic function 
ƒ1x2 = ax2 + bx + c, then the axis of the graph of ƒ is
x = 1x1 + x22>2.

 89. Prove the Constant Rate of Change Theorem (page 178) .

y

x
10 20 30 40 50

50

40

30

20

10

(xi, yi)

yi 2 (axi 1 b)

y 5 ax 1 b
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These four power functions involve relationships that can be expressed in the language 
of variation and proportion:

• The circumference of a circle varies directly as its radius.

• The area enclosed by a circle is directly proportional to the square of its radius.

• The force of gravity acting on an object is inversely proportional to the square of the 
distance from the object to the center of the Earth.

• Boyle’s Law states that the volume of an enclosed gas (at a constant temperature) 
varies inversely as the applied pressure.

The power function formulas with positive powers are statements of direct variation, 
and power function formulas with negative powers are statements of inverse  variation. 
Unless the word inversely is included in a variation statement, the variation is assumed 
to be direct, as in Example 1.

What you’ll learn about
• Power Functions and Variation

• Monomial Functions and Their 
Graphs

• Graphs of Power Functions

• Modeling with Power Functions

... and why
Power functions specify the propor-
tional relationships of geometry, 
chemistry, and physics.

Power Functions and Variation
Five of the basic functions introduced in Section 1.3 are power functions. Power 
 functions are an important family of functions in their own right and are important 
building blocks for other functions.

2.2 Modeling with Power Functions

DEFINITION Power Function

Any function that can be written in the form

ƒ1x2 = k # xa, where k and a are nonzero constants,

is a power function. The constant a is the power, and k is the constant of 
variation, or constant of proportion. We say ƒ1x2 varies as the ath power of 
x, or ƒ1x2 is proportional to the ath power of x.

In general, if y = ƒ1x2 varies as a constant power of x, then y is a power function of x. 
Many of the most common formulas from geometry and science are power functions.

Name Formula Power Constant of Variation

Circumference C = 2pr 1 2p

Area of a circle A = pr2 2 p

Force of gravity F = k >d2 -2 k

Boyle’s Law V = k >P -1 k

Writing a Power Function Formula
From empirical evidence and the laws of physics it has been found that the period of 
time T for the full swing of a pendulum varies as the square root of the pendulum’s 
length l, provided that the swing is small relative to the length of the pendulum. 
Model this relationship as a power function.

SOLUTION Because it does not state otherwise, the variation is direct. So the power 
is positive. The wording tells us that T is a function of l. Using k as the constant of 
variation gives us

T1l2 = k2l = k # l1>2.
Now try Exercise 17.

EXAMPLE 1 
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Section 1.3 introduced five basic power functions:

x, x2, x3, x-1 =
1
x

, and x1>2 = 2x

Example 2 describes two other power functions: the cube root function and the inverse-
square function.

Analyzing Power Functions
State the power and constant of variation for the function, graph it, and analyze it.

(a) ƒ1x2 = 23 x (b) g1x2 =
1

x2

SOLUTION 

(a) Because ƒ1x2 = 23 x = x1>3 = 1 # x1>3, its power is 1>3, and its constant of 
variation is 1. The graph of ƒ is shown in Figure 2.11a.

Domain: 1-∞, ∞2
Range: 1-∞, ∞2
Continuous
Increasing for all x
Symmetric with respect to the origin (an odd function)
Not bounded above or below
No local extrema
No asymptotes

End behavior: lim
xS-∞

 23 x = -∞ and  lim
xS∞

 23 x = ∞
Interesting fact: The cube root function ƒ1x2 = 23 x is the inverse of the cubing 
function.

(b) Because g1x2 = 1>x2 = x -2 = 1 # x -2, its power is -2, and its constant of vari-
ation is 1. The graph of g is shown in Figure 2.11b.

Domain: 1-∞, 02 ∪ 10, ∞2
Range: 10, ∞2
Continuous on its domain; discontinuous at x = 0
Increasing on 1-∞, 02; decreasing on 10, ∞2
Symmetric with respect to the y-axis (an even function)
Bounded below, but not above
No local extrema
Horizontal asymptote: y = 0; vertical asymptote: x = 0

End behavior: lim
xS-∞

11>x22 = 0 and  lim
xS∞
11>x22 = 0

Interesting fact: g1x2 = 1>x2 is the basis of scientific inverse-square laws, for 
example, the inverse-square gravitational principle F = k>d2 mentioned above.
So g1x2 = 1>x2 is sometimes called the inverse-square function. However, it is 
not the inverse of the squaring function but rather its multiplicative inverse.

Now try Exercise 27.

EXAMPLE 2 

Monomial Functions and Their Graphs
A single-term polynomial function is a monomial function.

DEFINITION Monomial Function

Any function that can be written as

ƒ1x2 = k or ƒ1x2 = k # xn,

where k is a constant and n is a positive integer, is a monomial function.

(a)

[24.7, 4.7] by [23.1, 3.1]

(b)

[24.7, 4.7] by [23.1, 3.1]

Figure 2.11 The graphs of 

(a) ƒ1x2 = 23 x = x1>3 and

(b) g1x2 = 1>x2 = x-2. (Example 2)
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From Exploration 1 we see that

ƒ1x2 = xn is an even function if n is even and an odd function if n is odd.

Because of this symmetry, it is enough to know the first quadrant behavior of 
ƒ1x2 = xn. Figure 2.12 shows the graphs of ƒ1x2 = xn for n =  1, 2, c , 6 in the first 
quadrant near the origin.

The following conclusions about the basic function ƒ1x2 = x3 (see Figure 2.13) can be 
drawn from your investigations in Exploration 1.

So the zero function and constant functions are monomial functions, but the more typi-
cal monomial function is a power function with a positive integer power, which is the 
degree of the monomial. For example, the basic functions x, x2, and x3 are typical 
monomial functions. It is important to understand the graphs of monomial functions 
because every polynomial function is either a monomial function or a sum of mono-
mial functions.

In Exploration 1, we take a close look at six basic monomial functions. They have the 
form xn for n = 1, 2, c , 6. We group them by even and odd powers.

Comparing Graphs of Monomial Functions

Graph the triplets of functions in the stated windows and explain how the graphs 
are alike and how they are different. Consider the relevant aspects of analysis 
from Example 2. Which ordered pairs do all three graphs have in common?

 1. ƒ1x2 = x, g1x2 = x3, and h1x2 = x5 in the window 3-2.35, 2.354   
by 3-1.5, 1.54 , then 3-5, 54  by 3-15, 154 , and finally 3-20, 204  by 
3-200, 2004 .

 2. ƒ1x2 = x2, g1x2 = x4, and h1x2 = x6 in the window 3-1.5, 1.54   
by 3-0.5, 1.54 , then 3-5, 54  by 3-5, 254 , and finally 3-15, 154  by 
3-50, 4004 .

EXPLORATION 1 

BASIC FUNCTION 

ƒ1x2 = x3

Domain: 1-∞, ∞2
Range: 1-∞, ∞2
Continuous
Increasing for all x
Symmetric with respect to the origin (an odd function)
Not bounded above or below
No local extrema
No horizontal asymptotes
No vertical asymptotes
End behavior: lim

xS-∞
x3 = -∞ and lim

xS∞ x
3 = ∞

The Cubing Function

[24.7, 4.7] by [23.1, 3.1]

Figure 2.13 The graph of ƒ1x2 = x3.

(1, 1)

(0, 0)

x

x2

x3

x4

x5

x6

[0, 1] by [0, 1]

Figure 2.12 The graphs of ƒ1x2 = xn,
0 … x … 1, for n = 1, 2, c , 6.
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196 CHAPTER 2  Polynomial, Power, and Rational Functions

Graphs of Power Functions
The graphs in Figure 2.15 represent the four shapes that are possible for general power 
functions of the form ƒ1x2 = kxa for x Ú 0. In every case, the graph of ƒ contains 
11, k2. Those with positive powers also pass through 10, 02. Those with negative expo-
nents are asymptotic to both axes.

When k 7 0, the graph lies in Quadrant I, but when k 6 0, the graph is in Quadrant IV.

In general, for any power function ƒ1x2 = k # xa, one of the following three things hap-
pens when x 6 0.

• ƒ is undefined for x 6 0, as is the case for ƒ1x2 = x1>2 and ƒ1x2 = xp.

• ƒ is an even function, so ƒ is symmetric about the y-axis, as is the case for 
ƒ1x2 = x -2 and ƒ1x2 = x2>3.

• ƒ is an odd function, so ƒ is symmetric about the origin, as is the case for 
ƒ1x2 = x -1 and ƒ1x2 = x7>3.

Predicting the general shape of the graph of a power function is a two-step process, as 
illustrated in Example 4.

(a)

[22, 2] by [216, 16]

 (b)

[22, 2] by [216, 16]

Figure 2.14 The graphs of (a) ƒ1x2 = 2x3 with basic monomial g1x2 = x3, and  
(b) ƒ1x2 = -12>32x4 with basic monomial g1x2 = x4. (Example 3)

0 1 32

(a)

x

y

(1, k)

a < 0 a > 1 a = 1

0 < a < 1

0

1 32

(b)

x

y

(1, k)

a < 0 a > 1 a = 1

0 < a < 1

Figure 2.15 The graphs of ƒ1x2 = k # xa  
for x Ú 0. (a) k 7 0, (b) k 6 0.

Graphing Monomial Functions
Describe how to obtain the graph of the given function from the graph of g1x2 = xn 
with the same power n. Sketch the graph by hand and support your answer with a 
grapher.

(a) ƒ1x2 = 2x3 (b) ƒ1x2 = -  
2
3

 x4

SOLUTION 

(a) We obtain the graph of ƒ1x2 = 2x3 by vertically stretching the graph of 
g1x2 = x3 by a factor of 2. Both are odd functions (Figure 2.14a).

(b) We obtain the graph of ƒ1x2 = -12>32x4 by vertically shrinking the graph of 
g1x2 = x4 by a factor of 2>3 and then reflecting it across the x-axis. Both are 
even functions (Figure 2.14b).

Now try Exercise 31.

EXAMPLE 3 

We ask you to explore the graphical behavior of power functions of the form x -n and 
x1>n, where n is a positive integer, in Exercise 65.

M03_DEMA8962_10_GE_C02.indd   196 22/06/22   11:43
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The following information about the basic function ƒ1x2 = 2x (see Figure 2.17) 
 follows from the investigation in Exercise 65.

Graphing Power Functions f 1x 2 = k ~ xa

State the values of the constants k and a. Describe the portion of the curve that lies  
in Quadrant I or IV. Determine whether ƒ is even, odd, or undefined for x 6 0. 
Describe the rest of the curve if any. Graph the function to see whether it matches  
the description.

(a) ƒ1x2 = 2x-3 (b) ƒ1x2 = -0.4x1.5 (c) ƒ1x2 = -x0.4

SOLUTION 

(a) Because k = 2 is positive and the power a = -3 is negative, the graph passes 
through 11, 22 and is asymptotic to both axes. The graph is decreasing in the first 
quadrant. The function ƒ is odd because

ƒ1-x2 = 21-x2-3 =
2

1-x23 = -  
2

x3 = -2x -3 = -ƒ1x2.

So its graph is symmetric about the origin. The graph in Figure 2.16a supports 
all aspects of the description.

(b) Because k = -0.4 is negative and the power a = 1.5 7 1, the graph contains 
10, 02 and passes through 11, -0.42. In the fourth quadrant, it is decreasing. The 
function ƒ is undefined for x 6 0 because

ƒ1x2 = -0.4x1.5 = -  
2
5

 x3>2 = -  
2
5

 12x23,

and the square root function is undefined for x 6 0. So the graph of ƒ has no 
points in Quadrant II or III. The graph in Figure 2.16b matches the description.

(c) Because k = -1 is negative and 0 6 a 6 1, the graph contains (0, 0) and 
passes through 11, -12. In the fourth quadrant, it is decreasing. The function ƒ is 
even because

 ƒ1-x2 = -1-x20.4 = -1-x22>5 = -125 -x22 = -1-25 x22
 = -125 x22 = -x0.4 = ƒ1x2.

So the graph of ƒ is symmetric about the y-axis. The graph in Figure 2.16c fits 
the description.

Now try Exercise 43.

EXAMPLE 4

(a)

[24.7, 4.7] by [23.1, 3.1]

 (b)

[24.7, 4.7] by [23.1, 3.1]

 (c)

[24.7, 4.7] by [23.1, 3.1]

Figure 2.16 The graphs of (a) ƒ1x2 = 2x -3, (b) ƒ1x2 = -0.4x1.5, and (c) ƒ1x2 = -x0.4. (Example 4)
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198 CHAPTER 2  Polynomial, Power, and Rational Functions

Modeling with Power Functions
Noted astronomer Johannes Kepler (1571–1630) developed three laws of planetary 
motion that are used to this day. Kepler’s Third Law states that the square of the period 
of orbit T (the time required for one full revolution around the Sun) for each planet is 
proportional to the cube of its average distance a from the Sun. Table 2.10 gives the 
relevant data for the six planets that were known in Kepler’s time. The distances are 
given in millions of kilometers, or gigameters (Gm).

BASIC FUNCTION 

ƒ1x2 = 2x
Domain: 30, ∞2
Range: 30, ∞2
Continuous on 30, ∞2
Increasing on 30, ∞2
No symmetry
Bounded below but not above
Local minimum at x = 0
No horizontal asymptotes
No vertical asymptotes

End behavior: lim
xS∞

 2x = ∞

The Square Root Function

[24.7, 4.7] by [23.1, 3.1]

Figure 2.17 The graph of  
ƒ1x2 = 2x.

Table 2.10 Average Distances and Orbital Periods 
for the Six Innermost Planets

Planet
Average Distance  
from Sun (Gm)

Period of  
Orbit (days)

Mercury 57.9 88
Venus 108.2 225
Earth 149.6 365.2
Mars 227.9 687
Jupiter 778.3 4332
Saturn 1427 10,760

Source: Shupe, Dorr, Payne, Hunsiker, et al., National Geographic Atlas of 
the World (rev. 6th ed.). Washington, DC: National Geographic Society, 
1992, plate 116.

A Bit of History
Example 5 shows the predictive power of a well-
founded model. Exercise 67 asks you to find 
Kepler’s elegant form of the equation, T2 = a3, 
which he reported in The Harmony of the World 
in 1619.

Modeling Planetary Data with a Power Function
Use the data in Table 2.10 to obtain a power function model for orbital period as a 
function of average distance from the Sun. Then use the model to predict the orbital 
period for Neptune, which is 4497 Gm from the Sun on average.

SOLUTION 

Model First we make a scatter plot of the data, as shown in Figure 2.18a on the next 
page. The association appears strong and curved. Using power regression, we find 
the model for the orbital period to be about

T1a2 ≈ 0.20a1.5 = 0.20a3>2 = 0.202a3.

Figure 2.18b shows the scatter plot for Table 2.10 together with a graph of the power 
regression model just found. You can see that the curve fits the data quite well. The 
coefficient of determination is r2 ≈ 0.999999912, indicating an amazingly close fit 
and supporting the visual evidence.

EXAMPLE 5 
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(a)

[2100, 1500] by [21000, 12000]

  (b)

[2100, 1500] by [21000, 12000]

  

Y1=0.2X^1.5

X=4497 Y=60313.472

(c)

[0, 5000] by [210000, 65000]

Figure 2.18 Scatter plot and graphs for Example 5.

Solve Numerically To predict the orbit period for Neptune we substitute its aver-
age distance from the Sun in the power regression model:

T144972 ≈ 0.21449721.5 ≈ 60,313

Interpret It takes Neptune about 60,313 days to orbit the Sun, or about 165 years, 
which is the value given in the National Geographic Atlas of the World.

Figure 2.18c reports this result and gives some indication of the relative distances 
involved. Neptune is much farther from the Sun than the six innermost planets and 
especially the four closest to the Sun—Mercury, Venus, Earth, and Mars.

Now try Exercise 55.

In Example 6, we return to free-fall motion, with a new twist. The data in the table 
come from the same CBR™ experiment that yielded the data used in Example 8 of 
Section 2.1. This time we are looking at the downward distance (in meters) the ball has 
traveled since reaching its peak height and at its downward speed (in meters per sec-
ond). It can be shown (see Exercise 68) that free-fall speed is proportional to a power of 
the distance traveled.

Table 2.11 Rubber Ball Data 
from CBR™ Experiment

Distance (m) Speed (m > s)

0.00000 0.00000
0.04298 0.82372
0.16119 1.71163
0.35148 2.45860
0.59394 3.05209
0.89187 3.74200
1.25557 4.49558

Modeling Free-Fall Speed Versus Distance
Use the data in Table 2.11 to obtain a power function model for speed p versus dis-
tance traveled d. Then use the model to predict the speed of the ball at impact, given 
that impact occurs when d ≈ 1.80 m.

EXAMPLE 6 

(continued)
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200 CHAPTER 2  Polynomial, Power, and Rational Functions

(a)

[20.2, 2] by [21, 6]

  (b)

[20.2, 2] by [21, 6]

  

Y1=4.03X^(1/2)

X=1.8 Y=5.4068124

(c)

[20.2, 2] by [21, 6]

Figure 2.19 Scatter plot and graphs for Example 6.

A Word of Warning
The regression routine traditionally used to com-
pute power function models involves taking loga-
rithms of the data, and therefore, all of the data 
must be strictly positive numbers. So we must 
leave out 10, 02 to compute the power regression 
equation.

Why p?
We use p for speed to distinguish it from velocity 
v. Recall that speed is the absolute value of 
velocity.

SOLUTION 

Model Figure 2.19a is a scatter plot of the data. Using power regression, we find the 
model for speed p versus distance d to be about

p1d2 ≈ 4.03d0.5 = 4.03d1>2 = 4.032d.

(See margin notes.) Figure 2.19b shows the scatter plot for Table 2.11 together with 
a graph of the power regression equation just found. You can see that the curve fits 
the data nicely. The coefficient of determination is r2 ≈ 0.99770, indicating a close 
fit and supporting the visual evidence.

Solve Numerically To predict the speed at impact, we substitute d ≈ 1.80 into the 
obtained power regression model:

p11.802 ≈ 5.4

See Figure 2.19c.

Interpret The speed at impact is about 5.4 m>sec. This is slightly less than the 
value obtained in Example 8 of Section 2.1, using a different modeling process for 
the same experiment.

Now try Exercise 57.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, write the following expressions using only positive 
integer powers.

 1. x2>3  2. p5>2

 3. d -2  4. x -7

 5. q-4>5  6. m-1.5

In Exercises 7–10, write the following expressions in the form k # xa 
 using a single rational number for the power a.

 7. 29x3  8. 23 8x5

 9. A3 5

x4  10. 
4x232x3

QUICK REVIEW 2.2 (For help, go to Section A.1.) 
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In Exercises 27–30, state the power and constant of variation for the 
function, graph it, and analyze it in the manner of Example 2 of this 
section.

 27. ƒ1x2 = 2x4 28. ƒ1x2 = -3x3

 29. ƒ1x2 =
1
2
24 x 30. ƒ1x2 = -2x -3

In Exercises 31–36, describe how to obtain the graph of the given 
monomial function from the graph of g1x2 = xn with the same power 
n. State whether ƒ is even or odd. Sketch the graph by hand and support 
your answer with a grapher.

 31. ƒ1x2 =
2
3

 x4 32. ƒ1x2 = 5x3

 33. ƒ1x2 = -1.5x5 34. ƒ1x2 = -2x6

 35. ƒ1x2 =
1
4

 x8 36. ƒ1x2 =
1
8

 x7

In Exercises 37–42, match the equation to one of the curves labeled in 
the figure.

y

x

a

h

b

g

c

d

f

e

 37. ƒ1x2 = -  
2
3

 x4  38. ƒ1x2 =
1
2

 x -5

 39. ƒ1x2 = 2x1>4  40. ƒ1x2 = -x5>3

 41. ƒ1x2 = -2x -2  42. ƒ1x2 = 1.7x2>3

In Exercises 43–48, state the values of the constants k and a for the 
function ƒ1x2 = k # xa. Before using a grapher, describe the portion of 
the curve that lies in Quadrant I or IV. Determine whether ƒ is even, 
odd, or undefined for x 6 0. Describe the rest of the curve if any. 
Graph the function to see whether it matches the description.

 43. ƒ1x2 = 3x1>4 44. ƒ1x2 = -4x2>3

 45. ƒ1x2 = -2x4>3 46. ƒ1x2 =
2
5

 x5>2

 47. ƒ1x2 =
1
2

 x -3 48. ƒ1x2 = -x-4

SECTION 2.2 Exercises

In Exercises 1–10, determine whether the function is a power function, 
given that c, g, k, and p represent constants. For those that are power 
functions, state the power and constant of variation.

 1. ƒ1x2 = -  
1
2

 x5 2. ƒ1x2 = 9x5>3

 3. ƒ1x2 = 3 # 2x 4. ƒ1x2 = 13

 5. E1m2 = mc2 6. KE1v2 =
1
2

 kv5

 7. d =
1
2

 gt2 8. V =
4
3

 pr3

 9. I =
k

d2 10. ƒ1a2 = ma

In Exercises 11–16, determine whether the function is a monomial 
function, given that l and p represent constants. For those that are 
monomial functions, state the degree and leading coefficient. For those 
that are not, explain why not.

 11. ƒ1x2 = -4 12. ƒ1x2 = 3x -5

 13. y = 7w7 14. y = -2 # 5x

 15. S = 9pr3 16. A = lw

In Exercises 17–22, write the statement as a power function equation. 
Use k for the constant of variation if one is not given.

 17. The area A of a circle varies directly as the square of the radius r.

 18. The volume V of a circular cylinder with fixed height is propor-
tional to the square of its radius r.

 19. The current I in an electrical circuit is inversely proportional to 
the resistance R, with constant of variation V.

 20. Charles’s Law states that the volume V of an enclosed ideal gas 
at a constant pressure varies directly as the absolute tempera-
ture T.

 21. The energy E produced in a nuclear reaction is proportional to 
the mass m, with the constant of variation being c2, the square 
of the speed of light.

 22. The speed p of a free-falling object that has been dropped from 
rest varies as the square root of the distance traveled d, with a 
constant of variation k = 22g.

In Exercises 23–26, write a sentence that expresses the relationship in 
the formula, using the language of variation or proportion.

 23. w = mg, where w and m are the weight and mass of an object 
and g is the constant acceleration due to gravity.

 24. C = pD, where C and D are the circumference and diameter 
of a circle and p is the usual mathematical constant.

 25. n = c>v, where n is the refractive index of a medium, v is the 
velocity of light in the medium, and c is the constant velocity 
of light in free space.

 26. d = p2>12g2, where d is the distance traveled by a free-falling 
object dropped from rest, p is the speed of the object, and g is 
the constant acceleration due to gravity.
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 51. Boyle’s Law The volume of an enclosed gas (at a constant 
temperature) varies inversely as the pressure. If the pressure  
of a 3.46-L sample of neon gas at a temperature of 302 K is 
0.926 atm, what would the volume be at a pressure of 1.452 atm 
if the temperature did not change?

 52. Charles’s Law The volume of an enclosed gas (at a con-
stant pressure) varies directly as the absolute temperature. If 
the pressure of a 3.46-L sample of neon gas at a temperature of 
302 K is 0.926 atm, what would the volume be at a temperature 
of 338 K if the pressure did not change?

 53. Diamond Refraction Diamonds have the extremely high 
refraction index of n = 2.42 on average over the range of visi-
ble light. Use the formula from Exercise 25 and the fact that 
c ≈ 3.00 * 108 m>sec to determine the speed of light 
through a diamond.

 54. Windmill Power The power P (in watts) produced by a 
windmill is proportional to the cube of the wind speed v (in 
mph). If a wind of 10 mph generates 15 watts of power, how 
much power is generated by winds of 20, 40, and 80 mph? 
Make a table, and explain the pattern in the data.

 55. Keeping Warm For mammals and other warm-blooded 
animals to stay warm requires quite a bit of energy. Tempera-
ture loss is related to surface area, which is related to body 
weight, and temperature gain is related to circulation, which is 
related to pulse rate. In the final analysis, scientists have con-
cluded that the pulse rate r of mammals is a power function of 
their body weight w.

(a) Draw a scatter plot of the data in Table 2.12.

(b) Find the power regression model.

(c) Superimpose the regression curve on the scatter plot.

In Exercises 49 and 50, data are given for y as a power function of x. 
Write an equation for the power function, and state its power and con-
stant of variation.

 49. x 2 4 6 8 10
y 2 0.5 0.222... 0.125 0.08

 50. x 1 4 9 16 25
y -2 -4 -6 -8 -10

Table 2.12 Weight and Pulse Rate 
of Selected Mammals

Mammal
Body Weight  

(kg)
Pulse Rate  
(beats>min)

Rat 0.2 420
Guinea pig 0.3 300
Rabbit 2 205
Small dog 5 120
Large dog 30  85
Sheep 50  70
Human 70  72

Source: A. J. Clark, Comparative Physiology of the Heart. 
New York: Macmillan, 1927.

(d) Use the regression model to predict the pulse rate for a 
450-kg horse. Is the result close to the 38 beats>min 
reported by A. J. Clark in 1927?

 56. Even and Odd Functions If n is an integer, n Ú 1, prove 
that ƒ1x2 = xn is an odd function if n is odd and is an even 
function if n is even.

 57. Light Intensity Velma and Reggie gathered the data in 
Table 2.13 using a 100-watt light bulb and a Calculator-Based 
Laboratory™ (CBL™) with a light-intensity probe.

(a) Draw a scatter plot of the data in Table 2.13

(b) Find the power regression model. Is the power close to the 
theoretical value of a = -2?

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression model to predict the light intensity at 
distances of 1.7 m and 3.4 m.

Table 2.13 Light-Intensity Data 
for a 100-W Light Bulb

Distance  
(m)

Intensity  
1W>m22

1.0 7.95
1.5 3.53
2.0 2.01
2.5 1.27
3.0 0.90

Standardized Test Questions
 58. True or False The function ƒ1x2 = x -2>3 is even. Justify 

your answer.

 59. True or False The graph ƒ1x2 = x1>3 is symmetric about 
the y-axis. Justify your answer.

In Exercises 60–63, solve the problem without using a calculator.

 60. Multiple Choice Let ƒ1x2 = 2x -1>2. What is the value of 
ƒ142?

(A) 1  (B)  -1  (C) 222  (D)  
1

222
  (E)  4

 61. Multiple Choice Let ƒ1x2 = -3x -1>3. Which of the fol-
lowing statements is true?

(A) ƒ102 = 0 (B)  ƒ1-12 = -3  (C)  ƒ112 = 1

(D)  ƒ132 = 3 (E)  ƒ102 is undefined.

 62. Multiple Choice Let ƒ1x2 = x2>3. Which of the following 
statements is true?

(A) ƒ is an odd function.

(B) ƒ is an even function.

(C) ƒ is neither an even nor an odd function.

(D) The graph ƒ is symmetric with respect to the x-axis.

(E) The graph ƒ is symmetric with respect to the origin.
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 63. Multiple Choice Which of the following is the domain of 
the function ƒ1x2 = x3>2?

(A) 1-∞, ∞2 (B)  30, ∞2 (C)  10, ∞2
(D)  1-∞, 02 (E)  1-∞, 02∪ 10, ∞2

Explorations
 64. Group Activity Rational Powers Working in a group of 

three students, investigate the behavior of power functions of 
the form ƒ1x2 = k # xm>n, where m and n are positive with no 
factors in common. Have one group member investigate each 
of the following cases:

• n is even

• n is odd and m is even

• n is odd and m is odd

For each case, decide whether ƒ is even, ƒ is odd, or ƒ is unde-
fined for x 6 0. Solve graphically and confirm algebraically in 
a way to convince the rest of your group and your entire class.

 65. Comparing the Graphs of Power Functions Graph 
the functions in the stated windows and explain how the graphs 
are alike and how they are different. Consider the relevant 
aspects of analysis from Example 2. Which ordered pairs do all 
four graphs have in common?

(a) ƒ1x2 = x -1, g1x2 = x -2, h1x2 = x -3, and k1x2 = x -4 in 
the windows 30, 14  by 30, 54 , 30, 34  by 30, 34 , and 
3-2, 24  by 3-2, 24 .

(b) ƒ1x2 = x1>2, g1x2 = x1>3, h1x2 = x1>4, and k1x2 = x1>5 in 
the windows 30, 14  by 30, 14 , 30, 34  by 30, 24 , and 
3-3, 34  by 3-2, 24 .

Extending the Ideas
 66. Writing to Learn Irrational Powers A negative number 

to an irrational power is undefined. Analyze the graphs of 
ƒ1x2 = xp, x1>p, x -p, -xp, -x1>p, and -x -p. Prepare a sketch 
of all six graphs on one set of axes, labeling each of the curves. 
Write an explanation for why each graph is positioned and 
shaped as it is.

 67. Planetary Motion Revisited Convert the time and distance 
units in Table 2.10 to the Earth-based units of years and astro-
nomical units using

1 yr = 365.2 days and 1 AU = 149.6 Gm.

Use these “re-expressed” data to obtain a power function model. 
Show algebraically that this model closely approximates Kepler’s 
equation T2 = a3.

 68. Free Fall Revisited The speed p of an object is the abso-
lute value of its velocity v. The distance traveled d by an object 
dropped from an initial height s0 with a current height s is 
given by

d = s0 - s

until it hits the ground. Use this information and the free-fall 
motion formulas from Section 2.1 to prove that

d =
1
2

 gt2, p = gt, and therefore p = 22gd.

Do the results of Example 6 approximate this last formula?

 69. Prove that g1x2 = 1>ƒ1x2 is even if and only if ƒ1x2 is even and 
that g1x2 = 1>ƒ1x2 is odd if and only if ƒ1x2 is odd.

 70. Use the results in Exercise 69 to prove that g1x2 = x -a is even if 
and only if ƒ1x2 = xa is even and that g1x2 = x -a is odd if and 
only if ƒ1x2 = xa is odd.

 71. Joint Variation If a variable z varies as the product of the 
variables x and y, we say z varies jointly as x and y, and we write 
z = k # x # y, where k is the constant of variation. Write a sentence 
that expresses the relationship in each of the following formulas, 
using the language of joint variation.

(a) F = m # a, where F and a are the force and acceleration act-
ing on an object of mass m.

(b) KE = 11>22m # v2, where KE and v are the kinetic energy 
and velocity of an object of mass m.

(c) F = G # m1
# m2>r2, where F is the force of gravity acting on 

objects of masses m1 and m2 with a distance r between their 
centers, and G is the universal gravitational constant.
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In Example 1 we use the fact from Section 2.1 that the constant term a0 of a polynomial 
function p is both the initial value of the function p102 and the y-intercept of the graph 
to provide a quick and easy check of the transformed graphs.

What you’ll learn about
• Graphs of Polynomial Functions

• End Behavior of Polynomial 
 Functions

• Zeros of Polynomial Functions

• Intermediate Value Theorem

• Modeling

... and why
These topics are important in mod-
eling and can be used to provide 
approximations to more compli-
cated functions, as you will see if 
you study calculus.

Graphs of Polynomial Functions
As we saw in Section 2.1, a polynomial function of degree 0 is a constant function and 
graphs as a horizontal line. A polynomial function of degree 1 is a linear function; its 
graph is a slant line. A polynomial function of degree 2 is a quadratic function; its 
graph is a parabola.

We now consider polynomial functions of higher degree. These include cubic func-
tions (polynomials of degree 3) and quartic functions (polynomials of degree 4). 
Recall that a polynomial function of degree n can be written in the form

p1x2 = anxn + an-1xn-1 + g + a2x2 + a1x + a0, an ≠ 0.

Here are some important definitions associated with polynomial functions and this 
equation.

2.3 Polynomial Functions of Higher Degree with Modeling

Graphing Transformations of Monomial 
Functions

Describe how to transform the graph of an appropriate monomial function 
ƒ1x2 = anxn into the graph of the given function. Sketch the transformed graph by 
hand and support your answer with a grapher. Compute the location of the y-intercept 
as a check on the transformed graph.

(a) g1x2 = 41x + 123 (b) h1x2 = -1x - 224 + 5

SOLUTION 

(a) You can obtain the graph of g1x2 = 41x + 123 by shifting the graph of 
ƒ1x2 = 4x3 one unit to the left, as shown in Figure 2.20a. The y-intercept of the 
graph of g is g102 = 410 + 123 = 4, which appears to agree with the trans-
formed graph.

(b) You can obtain the graph of h1x2 = -1x - 224 + 5 by shifting the graph of 
ƒ1x2 = -x4 two units to the right and five units up, as shown in Figure 2.20b. 
The y-intercept of the graph of h is h102 = -10 - 224 + 5 = -16 + 5 = -11,  
which appears to agree with the transformed graph.

Now try Exercise 1.

EXAMPLE 1 

DEFINITION The Vocabulary of Polynomials

•  Each monomial in this sum—anxn, an-1xn-1, … , a0—is a term of the 
polynomial.

•  A polynomial function written in this way, with terms in descending degree, 
is written in standard form.

• The constants an, an-1,…, a0 are the coefficients of the polynomial.

• The term anxn is the leading term, and a0 is the constant term.
y

(a)

10
8
6
4

–4
–6
–8

–10

–5 –4 –3 –2
x

54321

y

(b)

10
8
6
4
2

–4
–2

–6
–8

–10

–5 –4 –3 –2

–12
–14

x
5432

Figure 2.20 (a) The graphs of  
ƒ1x2 = 4x3 and g1x2 = 41x + 1)3.  
(b) The graphs of ƒ1x2 = -x4  
and h1x2 = -1x - 224 + 5. (Example 1)
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 SECTION 2.3 Polynomial Functions of Higher Degree with Modeling 205

We have now seen a few examples of graphs of polynomial functions, but are these 
typical? What do graphs of polynomials look like in general?

To begin our answer, let’s first recall that every polynomial function is defined and con-
tinuous for all real numbers. Not only are graphs of polynomials unbroken without 
jumps or holes, but they are smooth, unbroken lines or curves, with no sharp corners or 
cusps. Typical graphs of cubic and quartic functions are shown in Figures 2.23 and 2.24.

Imagine horizontal lines passing through the graphs in Figures 2.23 and 2.24, acting as 
x-axes. Each intersection would be an x-intercept that would correspond to a zero of the 
function. From this mental experiment, we see that cubic functions have at most three 
zeros and quartic functions have at most four zeros. Focusing on the high and low 
points in Figures 2.23 and 2.24, we see that cubic functions have at most two local 
extrema, and quartic functions have at most three local extrema. These observations 
generalize in the following way:

Example 2 shows what can happen when simple monomial functions are combined to 
obtain polynomial functions. The resulting polynomials are not mere translations of 
monomials.

(a)

[24.7, 4.7] by [23.1, 3.1]

(b)

[24.7, 4.7] by [23.1, 3.1]

Figure 2.21 The graph of 
ƒ1x2 = x3 + x (a) by itself  
and (b) with y = x, shown as a  
dashed line. (Example 2a)

(a)

[24.7, 4.7] by [23.1, 3.1]

  (b)

[24.7, 4.7] by [23.1, 3.1]

Figure 2.22 The graph of g1x2 = x3 - x (a) by itself and (b) with y = -x, shown as a 
dashed line. (Example 2b)

Graphing Combinations of Monomial 
Functions

Graph the polynomial function, locate its extrema and zeros, and explain how it is 
related to the monomials from which it is built.

(a) ƒ1x2 = x3 + x (b) g1x2 = x3 - x

SOLUTION 

(a) The graph of ƒ1x2 = x3 + x is shown in Figure 2.21a. The function ƒ is increas-
ing on 1-∞, ∞2, with no extrema. The function factors as ƒ1x2 = x1x2 + 12 
and has one zero at x = 0.

The general shape of the graph is much like the graph of its leading term x3, but 
near the origin ƒ behaves much like its other term x, as shown in Figure 2.21b. 
The function ƒ is odd, just like its two building block monomials.

(b) The graph of g1x2 = x3 - x is shown in Figure 2.22a. The function g has a 
local maximum of about 0.38 at x ≈ -0.58 and a local minimum of about 
-0.38 at x ≈ 0.58. The function factors as g1x2 = x1x + 121x - 12 and has 
zeros located at x = -1, x = 0, and x = 1.

The general shape of the graph is much like the graph of its leading term x3, but 
near the origin g behaves much like its other term -x, as shown in Figure 2.22b. 
The function g is odd, just like its two building block monomials.

Now try Exercise 7.

EXAMPLE 2 
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206 CHAPTER 2  Polynomial, Power, and Rational Functions

End Behavior of Polynomial Functions
An important characteristic of polynomial functions is their end behavior. As we shall 
see, the end behavior of a polynomial is closely related to the end behavior of its lead-
ing term. Exploration 1 examines the end behavior of monomial functions, which are 
potential leading terms for polynomial functions.

Technology Note
For a cubic, when you change the horizontal 
window by a factor of k, it usually is a good idea 
to change the vertical window by a factor of k3. 
Similar statements can be made about polynomi-
als of other degrees.

(a)

a3 > 0

  (b)

a3 < 0

Figure 2.23 Graphs of four typical cubic functions: (a) two with positive and (b) two with  
negative leading coefficients.

(a)

a4 > 0

  (b)

a4 < 0

Figure 2.24 Graphs of four typical quartic functions: (a) two with positive and (b) two with  
negative leading coefficients.

THEOREM Local Extrema and Zeros of Polynomial Functions

A polynomial function of degree n has at most n - 1 local extrema and at most 
n zeros.

Investigating the End Behavior of f 1x2 = an x n

Graph each function in the window 3-5, 54  by 3-15, 154 . Describe the end 
behavior using lim

xS∞
 ƒ1x2 and lim

xS-∞
 ƒ1x2.

 1. (a) ƒ1x2 = 2x3 (b) ƒ1x2 = -x3

  (c) ƒ1x2 = x5 (d) ƒ1x2 = -0.5x7

 2. (a) ƒ1x2 = -3x4 (b) ƒ1x2 = 0.6x4

  (c) ƒ1x2 = 2x6 (d) ƒ1x2 = -0.5x2

 3. (a) ƒ1x2 = -0.3x5 (b) ƒ1x2 = -2x2

  (c) ƒ1x2 = 3x4 (d) ƒ1x2 = 2.5x3

Describe the patterns you observe. In particular, how do the values of the 
 coefficient an and the degree n affect the end behavior of ƒ1x2 = an x

n?

EXPLORATION 1 
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 SECTION 2.3 Polynomial Functions of Higher Degree with Modeling 207

Example 3 illustrates the link between the end behavior of a polynomial ƒ1x2 = anxn +
g + a1x + a0 and its leading term anxn.

(a)

[27, 7] by [225, 25]

(b)

[214, 14] by [2200, 200]

(c)

[256, 56] by [212800, 12800]

Figure 2.25 As the viewing window gets 
larger, the graphs of ƒ1x2 =  
x3 - 4x2 - 5x - 3 and g1x2 = x3 look  
more and more alike. (Example 3)

Comparing the Graphs of a Polynomial  
and Its Leading Term

Superimpose the graphs of ƒ1x2 = x3 - 4x2 - 5x - 3 and g1x2 = x3 in succes-
sively larger viewing windows, a process called zoom out. Continue zooming out 
until the graphs look nearly identical.

SOLUTION 

Figure 2.25 shows three views of the graphs of ƒ1x2 = x3 - 4x2 - 5x - 3 and 
g1x2 = x3 in progressively larger viewing windows. As the dimensions of the win-
dow increase, it gets harder to tell them apart. Moreover,

lim
xS∞

 ƒ1x2 = lim
xS∞

 g1x2 = ∞ and lim
xS-∞

 ƒ1x2 = lim
xS-∞ g1x2 = -∞.

Now try Exercise 13.

EXAMPLE 3 

Leading Term Test for Polynomial End Behavior

For any polynomial function ƒ1x2 = an x
n + g + a1x + a0, the limits 

lim
xS∞

 ƒ1x2 and lim
xS-∞

 ƒ1x2 are determined by the degree n of the polynomial and 

its leading coefficient an:

y

x
an > 0
n odd

an < 0
n odd

an > 0
n even

an < 0
n even

lim f(x) = `
xS`

lim f(x) = –`
xS–`

y

x

lim f(x) = –`
xS`

lim f(x) = `
xS–`

y

x

lim f(x) = `
xS`

lim f(x) = `
xS–`

y

x

lim f(x) = –`
xS–`

lim f(x) = –`
xS`

Example 3 illustrates something that is true for all polynomials: In sufficiently large 
viewing windows, the graph of a polynomial and the graph of its leading term appear 
to be identical. Said another way, the leading term dominates the behavior of the poly-
nomial as 0 x 0 S ∞. Based on this fact and what we have seen in Exploration 1, there 
are four possible end behavior patterns for a polynomial function. The power and coef-
ficient of the leading term tell us which one of the four patterns occurs.
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208 CHAPTER 2  Polynomial, Power, and Rational Functions

From Example 5, we see that if a polynomial function ƒ is presented in factored form, 
each factor 1x - k2 corresponds to a zero x = k, and if k is a real number, 1k, 02 is an 
x-intercept of the graph of y = ƒ1x2.
When a factor is repeated, as in ƒ1x2 = 1x - 2231x + 122, we say the polynomial 
function has a repeated zero. The function ƒ has two repeated zeros. Because the factor 
x - 2 occurs three times, 2 is a zero of multiplicity 3. Similarly, -1 is a zero of multi-
plicity 2. The following definition generalizes this concept.

(a)

[25, 5] by [225, 25]

(b)

[25, 5] by [250, 50]

Figure 2.26 Example 4

(a) ƒ1x2 = x3 + 2x2 - 11x - 12,

(b) g1x2 = 2x4 + 2x3 - 22x2 - 18x + 35.

(22, 0) (0, 0) (3, 0)

[25, 5] by [215,15]

Figure 2.27 The graph of 
y = x3 - x2 - 6x, showing the three 
x-intercepts. (Example 5)

Applying Polynomial Theory
Graph the polynomial in a window showing its extrema and zeros and its end behav-
ior. Describe the end behavior using limits.

(a) ƒ1x2 = x3 + 2x2 - 11x - 12

(b) g1x2 = 2x4 + 2x3 - 22x2 - 18x + 35

SOLUTION 

(a) The graph of ƒ1x2 = x3 + 2x2 - 11x - 12 is shown in Figure 2.26a. The 
 function ƒ has 2 extrema and 3 zeros, the maximum number possible for a  
cubic. lim

xS∞
 ƒ1x2 = ∞ and lim

xS-∞
 ƒ1x2 = -∞.

(b) The graph of g1x2 = 2x4 + 2x3 - 22x2 - 18x + 35 is shown in Figure 2.26b. 
The function g has 3 extrema and 4 zeros, the maximum number possible for a 
quartic. lim

xS∞
 g1x2 = ∞ and lim

xS-∞
 g1x2 = ∞.

Now try Exercise 19.

EXAMPLE 4 

Zeros of Polynomial Functions
Recall that finding the real number zeros of a function ƒ is equivalent to finding the 
x-intercepts of the graph of y = ƒ1x2 or the solutions to the equation ƒ1x2 = 0. 
 Example 5 illustrates that factoring a polynomial function makes solving these three 
related problems an easy matter.

Finding the Zeros of a Polynomial Function
Find the zeros of ƒ1x2 = x3 - x2 - 6x.

SOLUTION 

Solve Algebraically We solve the related equation ƒ1x2 = 0 by factoring:

x3 - x2 - 6x = 0

 x1x2 - x - 62 = 0 Remove common factor x.

 x1x - 321x + 22 = 0 Factor quadratic.

 x = 0, x - 3 = 0, or x + 2 = 0 Zero factor property

x = 0,    x = 3, or   x = -2 

So the zeros of ƒ are 0, 3, and -2.

Support Graphically Use the features of your calculator to approximate the zeros 
of ƒ. Figure 2.27 shows that there are three values. Based on our algebraic solution 
we can be sure that these values are exact. Now try Exercise 33.

EXAMPLE 5 

DEFINITION Multiplicity of a Zero of a Polynomial Function

If ƒ is a polynomial function and 1x - c2m is a factor of ƒ but 1x - c2m+1 is 
not, then c is a zero of multiplicity m of ƒ.
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 SECTION 2.3 Polynomial Functions of Higher Degree with Modeling 209

A zero of multiplicity m Ú 2 is a repeated zero. Notice in Figure 2.28 that the graph 
of ƒ just kisses the x-axis without crossing it at 1-1, 02, but that the graph of ƒ crosses 
the x-axis at 12, 02. This too can be generalized.

[24, 4] by [210, 10]

Figure 2.28 The graph of 
ƒ1x2 = 1x - 2231x + 122, showing the 
x-intercepts.

y

10

6
4
2

–4
–2

–6
–8

–10

–5 –4 –3 –2 –1
x

54321

Figure 2.29 A sketch of the graph of 
ƒ1x2 = 1x + 2231x - 122, showing the 
x-intercepts.

y

f (a)

f (b)

y0 5 0

c

a

b
x

Figure 2.30 If ƒ1a2 6 0 6 ƒ1b2 and ƒ is 
continuous on 3a, b4 , then there is a zero 
x = c between a and b.

Zeros of Odd and Even Multiplicity

If a polynomial function ƒ has a real zero c of odd multiplicity, then the graph 
of ƒ crosses the x-axis at 1c, 02 and the value of ƒ changes sign at x = c.
If a polynomial function ƒ has a real zero c of even multiplicity, then the graph 
of ƒ does not cross the x-axis at 1c, 02 and the value of ƒ does not change sign 
at x = c.

In Example 5 none of the zeros were repeated. Because a nonrepeated zero has multi-
plicity 1, and 1 is odd, the graph of a polynomial function crosses the x-axis and has a 
sign change at every nonrepeated zero (Figure 2.27). Knowing where a graph crosses 
the x-axis and where it doesn’t is important in curve sketching and in solving 
inequalities.

Sketching the Graph of a Factored Polynomial
State the degree, and list the zeros, of the function ƒ1x2 = 1x + 2231x - 122. State 
the multiplicity of each zero and whether the graph crosses the x-axis at the corre-
sponding x-intercept. Then sketch the graph of ƒ by hand.

SOLUTION The degree of ƒ is 5 and the zeros are x = -2 and x = 1. The graph 
crosses the x-axis at x = -2 because the multiplicity 3 is odd. The graph does  
not cross the x@axis at x = 1 because the multiplicity 2 is even. Notice that values  
of ƒ are positive for x 7 1, positive for -2 6 x 6 1, and negative for x 6 -2. 
 Figure 2.29 shows a sketch of the graph of ƒ.

Now try Exercise 39.

EXAMPLE 6 

Intermediate Value Theorem
The Intermediate Value Theorem tells us that a sign change implies a real zero.

THEOREM Intermediate Value Theorem

If a and b are real numbers with a 6 b and if ƒ is continuous on the interval 
3a, b4 , then ƒ takes on every value between ƒ1a2 and ƒ1b2. In other words, if 
y0 is between ƒ1a2 and ƒ1b2, then y0 = ƒ1c2 for some number c in 3a, b4 .
In particular, if ƒ1a2 and ƒ1b2 have opposite signs (i.e., one is negative and the 
other is positive), then ƒ1c2 = 0 for some number c in 3a, b4  (Figure 2.30).

Using the Intermediate Value Theorem
Explain why a polynomial function of odd degree has at least one real zero.

SOLUTION Let ƒ be a polynomial function of odd degree. Because ƒ is odd, the 
leading term test tells us that lim

xS∞
ƒ1x2 = - lim

xS-∞
ƒ1x2. So there exist real numbers a 

and b with a 6 b and such that ƒ1a2 and ƒ1b2 have opposite signs. Because every 
polynomial function is defined and continuous for all real numbers, ƒ is continuous 
on the interval 3a, b4 . Therefore, by the Intermediate Value Theorem, ƒ1c2 = 0 for 
some number c in 3a, b4 , and thus c is a real zero of ƒ. Now try Exercise 61.

EXAMPLE 7 

In practice, the Intermediate Value Theorem is used in combination with our other 
mathematical knowledge and technological know-how.
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210 CHAPTER 2  Polynomial, Power, and Rational Functions

Modeling
In the problem-solving process presented in Section 1.1, step 2 is to develop a mathe-
matical model of the problem. When the model being developed is a polynomial func-
tion of higher degree, the algebraic and geometric thinking required can be rather 
involved. In solving Example 9 you may find it helpful to make a physical model out of 
paper or cardboard.

(a)

[25, 5] by [250, 50]

  (b)

[0, 2] by [20.5, 0.5]

Figure 2.31 Two views of ƒ1x2 = x4 + 0.1x3 - 6.5x2 + 7.9x - 2.4. (Example 8)

X

Y1 = X(20–2X)(25–...

1
2
3
4
5
6
7

414
672
798
816
750
624
462

Y1

Figure 2.33 A table to get a feel for the 
volume values in Example 9.

[0, 10] by [0, 1000]

Figure 2.34 y1 = x125 - 2x2120 - 2x2 
and y2 = 484. (Example 9)

Exact vs. Approximate
In Example 8, note that x = 0.50 is an exact 
answer; the others are approximate. Use by-hand 
substitution to confirm that x = 1>2 is an exact 
real zero.

Zooming to Uncover Hidden Behavior
Find all of the real zeros of ƒ1x2 = x4 + 0.1x3 - 6.5x2 + 7.9x - 2.4.

SOLUTION 

Solve Graphically Because ƒ is of degree 4, there are at most four zeros. The 
graph in Figure 2.31a suggests a single zero (multiplicity 1) around x = -3 and a 
 triple zero (multiplicity 3) around x = 1. Closer inspection around x = 1 in  
Figure 2.31b reveals three separate zeros. Using the grapher, we find the four zeros 
to be x ≈ 1.37, x ≈ 1.13, x = 0.50, and x ≈ -3.10. (See the margin note.)

Now try Exercise 75.

EXAMPLE 8 

Designing a Box
Dixie Packaging Company has contracted to make boxes with a volume of approxi-
mately 484 in.3. Squares are to be cut from the corners of a 20-in. by 25-in. piece of 
cardboard, and the flaps folded up to make an open box. (See Figure 2.32.) What size 
squares should be cut from the cardboard?

SOLUTION 

Model We know that the volume V = height *  
length * width. So let

x = edge of cut@out square 1height of box2
 25 - 2x = length of the box

 20 - 2x = width of the box

 V = x125 - 2x2120 - 2x2
Solve Numerically and Graphically For a volume of 484, we solve the equation 
x125 - 2x2120 - 2x2 = 484. Because the width of the cardboard is 20 in., 
0 … x … 10. We use the table in Figure 2.33 to get a sense of the volume values to 
set the window for the graph in Figure 2.34. The cubic volume function intersects the 
constant volume of 484 at x ≈ 1.22 and x ≈ 6.87.

EXAMPLE 9 

x

x

25

20

Figure 2.32
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Generally we want a reason beyond “it fits well” to choose a model for genuine data. 
However, when no theoretical basis exists for picking a model, a balance between 
goodness of fit and simplicity of model is sought. For polynomials, we try to pick a 
model with the lowest possible degree that has a reasonably good fit. Collected data 
usually exhibit small-scale variability that is essentially meaningless, so we should not 
try to create a complicated curve that meanders through every data point. Our objective 
is to find a simple curve that describes the underlying relationship between the 
variables.

Interpret Squares with lengths of approximately 1.22 in. or 6.87 in. should be cut 
from the cardboard to produce a box with a volume of 484 in.3.

Now try Exercise 67.

Just as any two points in the Cartesian plane with different x values and different y val-
ues determine a unique slant line and its related linear function, any three noncollinear 
points with different x values determine a quadratic function. In general, 1n + 12 
points positioned with sufficient generality determine a polynomial function of degree 
n. The process of fitting a polynomial of degree n to 1n + 12 points is polynomial 
interpolation. Exploration 2 involves two polynomial interpolation problems.

Interpolating Points with a Polynomial

 1. Use cubic regression to fit a curve through the four points given in the 
table. 

x -2 1 3 8
y 2 0.5 -0.2 1.25

 2. Use quartic regression to fit a curve through the five points given in the 
table. 

x 3 4 5 6 8
y -2 -4 -1 8 3

  How good is the fit in each case? Why?

EXPLORATION 2 

Exercise numbers with a gray background indicate problems that  
the authors have designed to be solved without a calculator.

In Exercises 1–6, factor the polynomial into linear factors.

 1. x2 - x - 12 2. x2 - 11x + 28

 3. 3x2 - 11x + 6 4. 6x2 - 5x + 1

 5. 3x3 - 5x2 + 2x 6. 6x3 - 22x2 + 12x
    

In Exercises 7–10, solve the equation mentally.

 7. x1x - 12 = 0

 8. x1x + 221x - 52 = 0

 9. 1x + 6231x + 321x - 1.52 = 0

 10. 1x + 6)21x + 4)41x - 5)3 = 0

QUICK REVIEW 2.3 (For help, go to Sections A.2. and P.5.)
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212 CHAPTER 2  Polynomial, Power, and Rational Functions

 20. ƒ1x2 = x3 - 2x2 - 41x + 42

 21. ƒ1x2 = 1x - 2221x + 121x - 32
 22. ƒ1x2 = 12x + 121x - 423
 23. ƒ1x2 = 2x4 - 5x3 - 17x2 + 14x + 41

 24. ƒ1x2 = -3x4 - 5x3 + 15x2 - 5x + 19

In Exercises 25–28, describe the end behavior of the polynomial 
 function using lim

xS∞
 ƒ1x2 and lim

xS-∞
 ƒ1x2.

 25. ƒ1x2 = 3x4 - 5x2 + 3

 26. ƒ1x2 = -x3 + 7x2 - 4x + 3

 27. ƒ1x2 = 7x2 - x3 + 3x - 4

 28. ƒ1x2 = x3 - x4 + 3x2 - 2x + 7

In Exercises 29–32, match the polynomial function with its graph. 
Approximate all of the real zeros of the function.

SECTION 2.3 Exercises

In Exercises 1–6, describe how to transform the graph of an appropriate 
monomial function ƒ1x2 = xn into the graph of the given polynomial 
function. Sketch the transformed graph by hand and support your 
answer with a grapher. Compute the location of the y-intercept as a 
check on the transformed graph.

 1. g1x2 = 21x - 323 2. g1x2 = -1x + 523

 3. g1x2 = -  
1
2

 1x + 123 + 2 4. g1x2 =
2
3

 1x - 323 + 1

 5. g1x2 = -21x + 224 - 3 6. g1x2 = 31x - 124 - 2

In Exercises 7 and 8, graph the polynomial function, locate its extrema 
and zeros, and explain how it is related to the monomials from which it 
is built.

 7. ƒ1x2 = -x4 + 2x 8. g1x2 = 2x4 - 5x2

In Exercises 9–12, match the polynomial function with its graph. 
Explain your choice. Do not use a graphing calculator.

(a)

[25, 6] by [2200, 400]

  (b)

[25, 6] by [2200, 400]

(c)

[25, 6] by [2200, 400]

  (d)

[25, 6] by [2200, 400]

 9. ƒ1x2 = 7x3 - 21x2 - 91x + 104

 10. ƒ1x2 = -9x3 + 27x2 + 54x - 73

 11. ƒ1x2 = x5 - 8x4 + 9x3 + 58x2 - 164x + 69

 12. ƒ1x2 = -x5 + 3x4 + 16x3 - 2x2 - 95x - 44

In Exercises 13–16, graph the function pairs in the same series of view-
ing windows. Zoom out until the two graphs look nearly identical and 
state your final viewing window.

 13. ƒ1x2 = x3 - 2x2 - 3x - 1 and g1x2 = x3

 14. ƒ1x2 = x3 + 5x2 - 2x + 7 and g1x2 = x3

 15. ƒ1x2 = 2x3 + 4x2 - 9x - 13 and g1x2 = 2x3

 16. ƒ1x2 = 3x3 - 19x - 16 and g1x2 = 3x3

In Exercises 17–24, graph the function in a viewing window that shows 
all of its extrema and x-intercepts. Describe the end behavior using  limits.

 17. ƒ1x2 = 1x - 121x + 221x + 32
 18. ƒ1x2 = 12x - 3214 - x21x + 12
 19. ƒ1x2 = -x3 + 4x2 + 31x - 70

(a)

[24, 4] by [2200, 200]

  (b)

[24, 4] by [2200, 200]

(c)

[22, 2] by [210, 50]

  (d)

[24, 4] by [250, 50]

 29. ƒ1x2 = 20x3 + 8x2 - 83x + 55

 30. ƒ1x2 = 35x3 - 134x2 + 93x - 18

 31. ƒ1x2 = 44x4 - 65x3 + x2 + 17x + 3

 32. ƒ1x2 = 4x4 - 8x3 - 19x2 + 23x - 6

In Exercises 33–38, find the zeros of the function algebraically.

 33. ƒ1x2 = x2 + 2x - 8 34. ƒ1x2 = 3x2 + 4x - 4

 35. ƒ1x2 = 8x2 - 26x - 7 36. ƒ1x2 = x3 - 25x

 37. ƒ1x2 = 7x3 - 24x2 - 16x 38. ƒ1x2 = 5x3 - 5x2 - 10x
    
In Exercises 39–42, state the degree and list the zeros of the polynomial  
function. State the multiplicity of each zero and whether the graph  
crosses the x-axis at the corresponding x-intercept. Then sketch the  
graph of the polynomial function by hand.

 39. ƒ1x2 = x1x - 322
 40. ƒ1x2 = -x31x - 22
 41. ƒ1x2 = 1x - 1231x + 222
 42. ƒ1x2 = 71x - 3221x + 524
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In Exercises 43–48, graph the function in a viewing window that shows 
all of its x-intercepts, and approximate all of its zeros.

 43. ƒ1x2 = 2x3 + 3x2 - 7x - 6

 44. ƒ1x2 = -x3 + 3x2 + 7x - 2

 45. ƒ1x2 = x3 + 2x2 - 4x - 7

 46. ƒ1x2 = -x4 - 3x3 + 7x2 + 2x + 8

 47. ƒ1x2 = x4 + 3x3 - 9x2 + 2x + 3

 48. ƒ1x2 = 2x5 - 11x4 + 4x3 + 47x2 - 42x - 8

In Exercises 49–52, find the zeros of the function algebraically or 
graphically.

 49. ƒ1x2 = x3 - 36x

 50. ƒ1x2 = x3 + 2x2 - 109x - 110

 51. ƒ1x2 = x3 - 7x2 - 49x + 55

 52. ƒ1x2 = x3 - 4x2 - 44x + 96

In Exercises 53–56, using only algebra, find a cubic function with the 
given zeros. Support by graphing your answer.

 53. 3, -4, 6

 54. -2, 3, -5

 55. 23, -23, 4 56. 1, 1 + 22, 1 - 22

 57. Use cubic regression to fit a curve through the four points 
given in the table.

x -3 -1 1 3
y 22 25 12 -5

 58. Use cubic regression to fit a curve through the four points 
given in the table.

x -2 1 4 7
y 2 5 9 26

 59. Use quartic regression to fit a curve through the five points 
given in the table.

x 3 4 5 6 8
y -7 -4 -11 8 3

 60. Use quartic regression to fit a curve through the five points given 
in the table.

x 0 4 5 7 13
y -21 -19 -12 8 3

In Exercises 61–62, explain why the function has at least one real zero.

 61. Writing to Learn ƒ1x2 = x7 + x + 100

 62. Writing to Learn ƒ1x2 = x9 - x + 50

 63. Stopping Distance A state highway patrol safety division 
collected the data on stopping distances in Table 2.14 in the 
next column.

(a) Draw a scatter plot of the data.

(b) Find the quadratic regression model.

(c) Superimpose the regression curve on the scatter plot.

Table 2.14 Highway Safety Division

Speed (mph) Stopping Distance (ft)

10 15.1
20 39.9
30 75.2
40 120.5
50 175.9

(d) Use the regression model to predict the stopping distance 
for a vehicle traveling at 25 mph.

(e) For what speed would this regression model predict the 
stopping distance to be 300 ft?

 64. Analyzing Profit Economists for Smith Brothers, Inc., find 
the company profit P by using the formula P = R - C, where 
R is the total revenue generated by the business and C is the 
total cost of operating the business.

(a) Using data from past years, the economists determined  
that R1x2 = 0.0125x2 + 412x models total revenue, and 
C1x2 = 12,225 + 0.00135x3 models the total cost of 
doing business, where x is the number of customers 
 patronizing the business. For how many customers  
do these models predict that Smith Bros. would be 
 profitable?

(b) For how many customers do these models predict  
that Smith Bros. would realize an annual profit of 
$60,000?

 65. Circulation of Blood  
Research conducted at a 
national health research project 
shows that the speed at which 
a blood cell travels in an artery 
depends on its distance from 
the center of the artery. The 
function v = 1.19 - 1.87r2 
models the velocity (in centi-
meters per second) of a cell 
that is r centimeters from the 
center of an artery.

r

(a) Find a graph of v that reflects values of v appropriate for this 
problem. Record the viewing-window dimensions.

(b) At what distance from the center of the artery  
does this model predict that a blood cell travels at 
0.975 cm>sec?
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 67. Volume of a Box Squares of width x are removed from a 
10-cm by 25-cm piece of cardboard, and the resulting edges 
are folded up to form a box with no top. Determine all values 
of x so that the volume of the resulting box is at most 175 cm3.

 68. Volume of a Box The function V = 2666x - 210x2 +
4x3 represents the volume of a box that has been made by 
removing squares of width x from each corner of a rectangular 
sheet of material and then folding up the sides. What values are 
possible for x?

Standardized Test Questions
 69. True or False The graph of ƒ1x2 = x3 - x2 - 2 crosses 

the x-axis between x = 1 and x = 2. Justify your answer.

 70. True or False If the graph of g1x2 = 1x + a22 is obtained 
by translating the graph of ƒ1x2 = x2 to the right, then a must 
be positive. Justify your answer.

In Exercises 71–74, solve the problem without using a calculator.

 71. Multiple Choice What is the y-intercept of the graph of 
ƒ1x2 = 21x - 123 + 5?

(A) 7 (B)  5 (C)  3 (D)  2 (E)  1

 72. Multiple Choice What is the multiplicity of the zero x = 2 
in ƒ1x2 = 1x - 2221x + 2231x +  327?

(A) 1 (B)  2 (C)  3 (D)  5 (E)  7

In Exercises 73 and 74, which of the specified functions might have the 
given graph?

 73. Multiple Choice

 66. Volume of a Box Dixie Packaging Co. has contracted to 
manufacture a box with no top that is to be made by removing 
squares of width x from the corners of a 15-in. by 60-in. piece 
of cardboard.

(a) Show that the volume of the box is modeled by V1x2 =
x160 - 2x2115 - 2x2.

(b) Determine x so that the volume of the box is at least 
450 in.3.

60 in.

15 in.

x
x

y

–2
x

2

(A) ƒ1x2 = -x1x + 2212 - x2
(B) ƒ1x2 = -x1x + 221x - 22
(C) ƒ1x2 = -x21x + 221x - 22
(D) ƒ1x2 = -x1x + 2221x - 22
(E) ƒ1x2 = -x1x + 221x - 222

 74. Multiple Choice

y

–2
x

2

(A) ƒ1x2 = x1x + 2221x - 22
(B) ƒ1x2 = x1x + 22212 - x2
(C) ƒ1x2 = x21x + 221x - 22
(D) ƒ1x2 =  x1x + 221x - 222
(E) ƒ1x2 = x21x + 221x - 222

Explorations
In Exercises 75 and 76, two views of the function are given.

 75. Writing to Learn Explain why each view of the function

ƒ1x2 = x5 - 10x4 + 2x3 + 64x2 - 3x - 55,

by itself, may be considered inadequate.

(a)

[25, 10] by [27500, 7500]

  (b)

[23, 4] by [2250, 100]

 76. Writing to Learn Explain why each view of the function

ƒ1x2 = 10x4 + 19x3 - 121x2 + 143x - 51,

by itself, may be considered inadequate.

(a)

[26, 4] by [22000, 2000]

  (b)

[0.5, 1.5] by [21, 1]
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(b) Let x0 = a1>1n-12. Find an equation of the line through the 
point 1x0, ƒ1x022 with the slope an-1.

(c) Consider the special case n = 3 and a = 3. Show both the 
graph of ƒ and the line from part (b) in the window 
3-5, 54  by 3-30, 304 .

 85. Derive an Algebraic Model of a Problem Show that 
the distance x in the figure is a solution of the equation 
x4 - 16x3 + 500x2 - 8000x + 32,000 = 0 and find the 
value of D by following these steps.

In Exercises 77–80, the function has hidden behavior when viewed in 
the window 3-10, 104  by 3-10, 104 . Describe what behavior is hid-
den, and state the dimensions of a viewing window that reveals the hid-
den behavior.

 77. ƒ1x2 = 10x3 - 40x2 + 50x - 20

 78. ƒ1x2 = 0.51x3 - 8x2 + 12.99x - 5.942
 79. ƒ1x2 = 11x3 - 10x2 + 3x + 5

 80. ƒ1x2 = 33x3 - 100x2 + 101x - 40

Extending the Ideas
 81. Graph the left side of the equation

31x3 - x2 = a1x - b23 + c.

Then explain why there are no real numbers a, b, and c that 
make the equation true. (Hint: Use your knowledge of y = x3 
and transformations.)

 82. Graph the left side of the equation

x4 + 3x3 - 2x - 3 = a1x - b24 + c.

  Then explain why there are no real numbers a, b, and c that 
make the equation true.

 83. Looking Ahead to Calculus The figure shows a graph of 
both ƒ1x2 = -x3 + 2x2 + 9x - 11 and the line L defined by 
y = 51x - 22 + 7.

(2, 7)

[0, 5] by [210, 15]

(a) Confirm that the point Q12, 72 is a point of intersection of 
the two graphs.

(b) Zoom in at point Q to develop a visual understanding that 
y = 51x - 22 + 7 is a linear approximation for y = ƒ1x2 
near x = 2.

(c) Recall that a line is tangent to a circle at a point P if it 
intersects the circle only at point P. View the two graphs in 
the window 3-5, 54  by 3-25, 254 , and explain why that 
definition of tangent line is not valid for the graph of ƒ.

 84. Looking Ahead to Calculus Consider the function 
ƒ1x2 = xn where n is an odd integer.

(a) Suppose that a is a positive number. Show that the slope of 
the line through the points P1a, ƒ1a22 and Q1-a, ƒ1-a22 
is an-1.

30

8
20

D
D – u u

x

y

(a) Use the similar triangles in the diagram and the properties 
of proportions learned in geometry to show that

8
x

=
y - 8

y
.

(b) Show that y =
8x

x - 8
.

(c) Show that y2 - x2 = 500. Then substitute for y, and sim-
plify to obtain the desired equation of degree 4 in x.

(d) Find the distance D.

 86. Group Activity Consider functions of the form 
ƒ1x2 = x3 + bx2 + x + 1 where b is a nonzero real number.

(a) Discuss as a group how the value of b affects the graph of 
the function.

(b) After completing (a), have each member of the group 
(individually) predict what the graphs of ƒ1x2 = x3 +  
15x2 + x + 1 and g1x2 = x3 - 15x2 + x + 1 will look 
like.

(c) Compare your predictions with each other. Confirm 
whether they are correct.
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Long Division and the Division Algorithm
We have seen that factoring a polynomial reveals its zeros and much about its graph. 
Polynomial division gives us new and better ways to factor polynomials. First we 
observe that the division of polynomials closely resembles the division of integers:

 112 1x2 + 1x + 2 d  Quotient

 32 )3587 3x + 2 )3x3 + 5x2 + 8x + 7 d  Dividend

 32  3x3 + 2x2  d  Multiply: 1x2 # 13x + 22
 387 3x2 + 8x + 7 d  Subtract

 32  3x2 + 2x  d  Multiply: 1x # 13x + 22
 67 6x + 7 d  Subtract

 64 6x + 4 d  Multiply: 2 # 13x + 22
 3 3 d  Remainder

Division, whether integer or polynomial, involves a dividend divided by a divisor to 
obtain a quotient and a remainder. We can check and summarize our result with an 
equation of the form

1Divisor21Quotient2 + Remainder = Dividend.

For instance, to check or summarize the long divisions shown above, we could write

32 * 112 + 3 = 3587  13x + 221x2 + x + 22 + 3 = 3x3 + 5x2 + 8x + 7.

The division algorithm contains such a summary polynomial equation, but with the 
dividend written on the left side of the equation.

What you’ll learn about
• Long Division and the Division 

 Algorithm

• Remainder and Factor Theorems

• Synthetic Division

• Rational Zeros Theorem

• Upper and Lower Bounds

... and why
These topics help identify and  
locate the real zeros of polynomial 
functions.

2.4 Real Zeros of Polynomial Functions

Division Algorithm for Polynomials

Let ƒ1x2 and d1x2 be polynomials with the degree of ƒ greater than or equal to 
the degree of d, and d1x2 ≠ 0. Then there are unique polynomials q1x2 and 
r1x2, called the quotient and remainder, such that

 ƒ1x2 = d1x2 # q1x2 + r1x2, (1)

where either r1x2 = 0 or the degree of r is less than the degree of d.

The function ƒ1x2 in the division algorithm is the dividend, and d1x2 is the divisor. If 
r1x2 = 0, we say d1x2 divides evenly into ƒ1x2.
The summary statement (1) is sometimes written in fraction form as follows:

 
ƒ1x2
d1x2 = q1x2 +

r1x2
d1x2 (2)

For instance, to summarize the polynomial division example above, we could write

3x3 + 5x2 + 8x + 7
3x + 2

= x2 + x + 2 +
3

3x + 2
.

Using Polynomial Long Division
Use long division to find the quotient and remainder when 2x4 - x3 - 2 is divided 
by 2x2 + x + 1. Write a summary statement in both polynomial and fraction form.

EXAMPLE 1 
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Example 2 shows a clever use of the Remainder Theorem that gives information about 
the factors, zeros, and x-intercepts.

[22, 2] by [25, 15]

Figure 2.35 The graphs of 
y1 = 2x4 - x3 - 2 and 
y2 = 12x2 + x + 121x2 - x2 + 1x - 22  
are a perfect match. (Example 1)

SOLUTION 

Solve Algebraically

 x2 - x d Quotient

 2x2 + x + 1 )2x4 - x3 + 0x2 + 0x - 2
 2x4 + x3 + x2

 -2x3 - x2 + 0x - 2
 -2x3 - x2 - x
 x - 2 d Remainder

The division algorithm yields the polynomial form

2x4 - x3 - 2 = 12x2 + x + 121x2 - x2 + 1x - 22.
Using equation (2), we obtain the fraction form

2x4 - x3 - 2

2x2 + x + 1
= x2 - x +

x - 2

2x2 + x + 1
.

Support Graphically Figure 2.35 supports the polynomial form of the summary 
statement.

Now try Exercise 1.

Remainder and Factor Theorems
An important special case of the division algorithm occurs when the divisor is of the 
form d1x2 = x - k, where k is a real number. Because the degree of d1x2 = x - k is 
1, the remainder is a real number. We obtain the following simplified summary state-
ment for the division algorithm:

 ƒ1x2 = 1x - k2q1x2 + r (3)

We use this special case of the division algorithm throughout the rest of the section.

Using equation (3), we evaluate the polynomial ƒ1x2 at x = k:

ƒ1k2 = 1k - k2q1k2 + r = 0 # q1k2 + r = 0 + r = r

So ƒ1k2 = r, which is the remainder. This reasoning yields the following theorem.

Using the Remainder Theorem
Find the remainder when ƒ1x2 = 3x2 + 7x - 20 is divided by

(a) x - 2 (b) x + 1 (c) x + 4.

SOLUTION 

Solve Numerically (by hand)
(a) We can find the remainder without doing long division! Using the Remainder 

Theorem with k = 2 we find that

r = ƒ122 = 31222 + 7122 - 20 = 12 + 14 - 20 = 6.

EXAMPLE 2 

(continued)

THEOREM Remainder Theorem

If a polynomial ƒ1x2 is divided by x - k, then the remainder is r = ƒ1k2.
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Synthetic Division
We continue with the important special case of polynomial division with the divisor 
x - k. The Remainder Theorem gave us a way to find remainders in this case without 
long division. We now learn a method for finding both quotients and remainders for 
division by x - k without long division. This shortcut method for the division of a 
polynomial by a linear divisor x - k is synthetic division.

We illustrate the evolution of this method on the next page, progressing from polynomial 
long division through two intermediate stages to synthetic division.

X

Y1 = 3X^2+7X–20

–4
–3
–2
–1
0
1
2

0
–14
–22
–24
–20
–10
6

Y1

Figure 2.36 Table for 
ƒ1x2 = 3x2 + 7x - 20 showing the 
remainders obtained when ƒ1x2 is divided  
by x - k, for k = -4, -3, c , 1, 2.

Proof of the Factor Theorem
If ƒ1x2 has a factor x - k, there is a polynomial 
g1x2 such that

ƒ1x2 = 1x - k2g1x2 = 1x - k2g1x2 + 0.

By the uniqueness condition of the division algo-
rithm, g1x2 is the quotient and 0 is the remainder, 
and by the Remainder Theorem, ƒ1k2 = 0.

Conversely, if ƒ1k2 = 0, then the remainder 
r = 0, x - k divides evenly into ƒ1x2, and x - k 
is a factor of ƒ1x2.

THEOREM Factor Theorem

A polynomial function ƒ1x2 has a factor x - k if and only if ƒ1k2 = 0.

Fundamental Connections for Polynomial Functions

For a polynomial function ƒ and a real number k, the following statements are 
equivalent:

1. x = k is a solution (or root) of the equation ƒ1x2 = 0.

2. k is a zero of the function ƒ.

3. k is an x-intercept of the graph of y = ƒ1x2.
4. x - k is a factor of ƒ1x2.

(b) r = ƒ1-12 = 31-122 + 71-12 - 20 = 3 - 7 - 20 = -24

(c) r = ƒ1-42 = 31-422 + 71-42 - 20 = 48 - 28 - 20 = 0

Interpret Because the remainder in part (c) is 0, x + 4 divides evenly into 
ƒ1x2 = 3x2 + 7x -  20. So x + 4 is a factor of ƒ1x2 = 3x2 + 7x - 20,  
-4 is a solution of 3x2 + 7x -20 = 0, and -4 is an x-intercept of the graph of 
y = 3x2 + 7x - 20. We know all of this without ever dividing, factoring, or 
 graphing!

Support Numerically (using a grapher) We can find the remainders of several 
division problems at once using the table feature of a grapher (Figure 2.36).

Now try Exercise 13.

Our interpretation of Example 2c leads us to the following theorem.

Applying the ideas of the Factor Theorem to part (c) of Example 2, we can factor 
ƒ1x2 = 3x2 +  7x - 20 by dividing it by the known factor x + 4.

 3x - 5
 x + 4 )3x2 + 7x - 20
 3x2 + 12x
 -5x - 20
 -5x - 20
 0

Thus ƒ1x2 = 3x2 + 7x - 20 = 1x + 4213x - 52. In this case, there really is no need 
to use long division or fancy theorems; traditional factoring methods can do the job. 
However, for polynomials of degree 3 and higher, these sophisticated methods can be 
quite helpful in solving equations and finding factors, zeros, and x-intercepts. Indeed, 
the Factor Theorem ties in nicely with earlier connections we have made in the follow-
ing way.
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At stage 1, we shift the quotient to the left so that its leading coefficient aligns with that 
of the dividend. Moving from stage to stage, focus on the coefficients and their relative 
positions.  Moving from stage 1 to stage 2, we suppress the variable x and the powers of x, 
and then from stage 2 to stage 3, we eliminate unneeded duplications and collapse 
vertically.

Stage 1
Long Division

 2x2 + 3x + 4
 x - 3 )2x3 - 3x2 - 5x - 12
 2x3 - 6x2

 3x2 - 5x - 12
 3x2 - 9x
 4x - 12
 4x - 12
 0

Stage 2
Variables Suppressed

 2 3 4
 -3)2 -3 -5 -12
 2 -6
 3 -5 -12
 3 -9
 4 -12
 4 -12
 0

Stage 3
Collapsed Vertically

-3 2 -3 -5 -12 Dividend

-6 -9 -12
2 3 4 0 Quotient, remainder

Finally, from stage 3 to stage 4, we change the sign of the number representing the 
divisor and the signs of the numbers on the second line of our division scheme. These 
sign changes yield two advantages:

• The number standing for the divisor x - k is now k, its zero.

• Changing the signs in the second line allows us to add rather than subtract.

Stage 4
Synthetic Division

 Zero of divisor S   3  2 -3 -5 -12 Dividend

  6 9 12
  2 3 4 0  Quotient, remainder

With stage 4 we have achieved our goal of synthetic division, a highly streamlined ver-
sion of dividing a polynomial by x - k. How does this “bare bones” division work? 
Example 3 explains the steps.

Using Synthetic Division

Divide 2x3 - 3x2 - 5x - 12 by x - 3 using synthetic division and write a sum-
mary statement in fraction form.

SOLUTION 

Set Up The zero of the divisor x - 3 is 3, which we put in the divisor position. 
Because the dividend is in standard form, we write its coefficients in order in the 
 dividend position, making sure to use a zero as a placeholder for any missing term. 
We leave space for the line for products and draw a horizontal line below the space. 
(See below.)

Calculate 
• Because the leading coefficient of the dividend must be the leading coefficient of 

the quotient, copy the 2 into the first quotient position.

 Zero of Divisor  3  2 -3 -5 -12 Dividend 
 Line for products 
  2

• Multiply the zero of the divisor (3) by the most recently determined coefficient of 
the quotient (2). Write the product above the line and one column to the right.

EXAMPLE 3 

(continued)
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[24.7, 4.7] by [23.1, 3.1]

Figure 2.37 The function 
ƒ1x2 = x3 - 3x2 + 1 has three real  
zeros. (Example 4)

• Add the next coefficient of the dividend to the product just found, and record the 
sum below the line in the same column.

• Repeat the “multiply” and “add” steps until the last row is completed.

 Zero of Divisor  3  2 -3 -5 -12 Dividend

 Line for products 6 9 12
 Line for sums 2 3 4 0 Remainder µ

 Quotient

Interpret The numbers in the last line are the coefficients of the quotient polyno-
mial and the remainder. The quotient must be a quadratic function. (Why?) So the 
quotient is 2x2 + 3x + 4 and the remainder is 0. We conclude that

2x3 - 3x2 - 5x - 12
x - 3

= 2x2 + 3x + 4, x ≠ 3.

Now try Exercise 7.

Rational Zeros Theorem
Real zeros of polynomial functions are either rational zeros—zeros that are rational 
numbers—or irrational zeros—zeros that are irrational numbers. For example,

ƒ1x2 = 4x2 - 9 = 12x + 3212x - 32
has the rational zeros -3>2 and 3>2, and

ƒ1x2 = x2 - 2 = 1x + 2221x - 222
has the irrational zeros -22 and 22.

The Rational Zeros Theorem tells us how to make a list of all potential rational zeros 
for a polynomial function with integer coefficients.

Finding the Rational Zeros
Find the rational zeros of ƒ1x2 = x3 - 3x2 + 1.

SOLUTION Because the leading and constant coefficients are both 1, according to 
the Rational Zeros Theorem, the only potential rational zeros of ƒ are 1 and -1. We 
check to see whether they are in fact zeros of ƒ:

ƒ112 = 1123 - 31122 + 1 = -1 ≠ 0

ƒ1-12 = 1-123 - 31-122 + 1 = -3 ≠ 0

So ƒ has no rational zeros. Figure 2.37 shows that the graph of ƒ has three x-intercepts.  
Therefore, ƒ has three real zeros. All three must be irrational numbers.

Now try Exercise 33.

EXAMPLE 4 

THEOREM Rational Zeros Theorem

Suppose ƒ is a polynomial function of degree n Ú 1 of the form

ƒ1x2 = anxn + an-1xn-1 + g + a0,

with every coefficient an integer and a0 ≠ 0. If x = p>q is a rational zero of ƒ, 
where p and q have no common integer factors other than ±1, then

• p is an integer factor of the constant coefficient a0, and

• q is an integer factor of the leading coefficient an.
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Upper and Lower Bounds
We narrow our search for real zeros by using a test that identifies upper and lower 
bounds for real zeros. A number k is an upper bound for the real zeros of ƒ if ƒ1x2 is 
never zero when x is greater than k. On the other hand, a number k is a lower bound 
for the real zeros of ƒ if ƒ1x2 is never zero when x is less than k. So if c is a lower 
bound and d is an upper bound for the real zeros of a function ƒ, all of the real zeros of 
ƒ must lie in the interval 3c, d4 . Figure 2.39 illustrates this situation.

In Example 4 the Rational Zeros Theorem gave us only two candidates for rational 
zeros, neither of which “checked out.” Often this theorem suggests many candidates, as 
we see in Example 5. In such a case, we use technology and a variety of algebraic 
methods to locate the rational zeros.

Upper and Lower Bound Tests for Real Zeros

Let ƒ be a polynomial function of degree n Ú 1 with a positive leading coeffi-
cient. Suppose ƒ1x2 is divided by x - k using synthetic division.

•  If k Ú 0 and every number in the last line is nonnegative (positive or zero), 
then k is an upper bound for the real zeros of ƒ.

•  If k … 0 and the numbers in the last line are alternately nonnegative and non-
positive, then k is a lower bound for the real zeros of ƒ.

Finding the Rational Zeros
Find the rational zeros of ƒ1x2 = 3x3 + 4x2 - 5x - 2.

SOLUTION Because the leading coefficient is 3 and the constant coefficient is -2, 
the Rational Zeros Theorem yields several potential rational zeros of ƒ. We take an 
organized approach to our solution.

Potential Rational Zeros:

Factors of -2
Factors of 3

 : 
±1, ±2
±1, ±3

 : ±1, ±2, ±
1
3

, ±
2
3

Figure 2.38 suggests that, among our candidates, 1, -2, and possibly -1>3 or -2>3 
are the most likely to be rational zeros. We use synthetic division because it tells us 
whether a number is a zero and, if so, how to factor the polynomial. To see whether 
1 is a zero of ƒ, we synthetically divide ƒ1x2 by x - 1:

 Zero of Divisor  1  3 4 -5 -2 Dividend

  3 7 2
  3 7 2 0 Remainder (+1)1+*
 Quotient

Because the remainder is 0, x - 1 is a factor of ƒ1x2 and 1 is a zero of ƒ. By the 
division algorithm and factoring, we conclude that

ƒ1x2 = 3x3 + 4x2 - 5x - 2

 = 1x - 1213x2 + 7x + 22
 = 1x - 1213x + 121x + 22

Therefore, the rational zeros of ƒ are 1, -1>3, and -2. Now try Exercise 35.

EXAMPLE 5 

[24.7, 4.7] by [210, 10]

Figure 2.38 The function 
ƒ1x2 = 3x3 + 4x2 - 5x - 2 has three real 
zeros. (Example 5)

y

x
c

y 5 f (x)

d

Figure 2.39 c is a lower bound and d is 
an upper bound for the real zeros of ƒ.
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Establishing Bounds for Real Zeros
Prove that all of the real zeros of ƒ1x2 = 2x4 - 7x3 - 8x2 + 14x + 8 must lie in 
the interval 3-2, 54 .
SOLUTION We must prove that 5 is an upper bound and -2 is a lower bound on the 
real zeros of ƒ. The function ƒ has a positive leading coefficient, so we employ the 
upper and lower bound tests and use synthetic division:

  5  2 -7 -8  14   8

       10    15    35  245

    2   3   7    49  253 Last line

 -2 2 -7 -8 14 8

   -4 22 -28 28

  2 -11 14 -14 36 Last line

Because the last line in the first division scheme consists of all positive numbers, 5 is 
an upper bound. Because the last line in the second division consists of numbers of 
alternating signs, -2 is a lower bound. All of the real zeros of ƒ must therefore lie in 
the closed interval 3-2, 54 . Now try Exercise 37.

EXAMPLE 6 

Finding the Real Zeros of a Polynomial Function
Find all of the real zeros of ƒ1x2 = 2x4 - 7x3 - 8x2 + 14x + 8.

SOLUTION From Example 6 we know that all of the real zeros of ƒ must lie in the 
closed interval 3-2, 54 . So in Figure 2.40 we set our Xmin and Xmax accordingly.

Next we use the Rational Zeros Theorem.

Potential Rational Zeros:

Factors of 8
Factors of 2

 : 
±1, ±2, ±4, ±8

±1, ±2
 : ±1, ±2, ±4, ±8, ±

1
2

We compare the x-intercepts of the graph in Figure 2.40 with our list of candidates 
and decide 4 and -1>2 are the only potential rational zeros worth pursuing.

 4  2 -7 -8 14 8

8 4 -16 -8

 2 1 -4 -2 0

From this first synthetic division we conclude

ƒ1x2 = 2x4 - 7x3 - 8x2 + 14x + 8

 = 1x - 4212x3 + x2 - 4x - 22,
and we now divide the cubic factor 2x3 + x2 - 4x - 2 by x + 1>2:

 -1>2  2 1 -4 -2

      -1 0 2

 2 0 -4 0

EXAMPLE 7 

[22, 5] by [250, 50]

Figure 2.40 (Example 7) 
ƒ1x2 = 2x4 - 7x3 - 8x2 + 14x + 8 has all  
of its real zeros in 3-2, 54 .
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This second synthetic division allows us to complete the factoring of ƒ1x2.
ƒ1x2 = 1x - 4212x3 + x2 - 4x - 22

 = 1x - 42ax +
1
2
b12x2 - 42

 = 21x - 42ax +
1
2
b1x2 - 22

 = 1x - 4212x + 121x + 2221x - 222
The zeros of ƒ are the rational numbers 4 and -1>2 and the irrational numbers -22 
and 22. Now try Exercise 49.

A polynomial function cannot have more real zeros than its degree, but it can have 
fewer. When a polynomial has fewer real zeros than its degree, the upper and lower 
bound tests help us know that we have found them all, as illustrated by Example 8.

Finding the Real Zeros of a Polynomial 
Function

Prove that all of the real zeros of ƒ1x2 = 10x5 - 3x2 + x - 6 lie in the interval 
30, 14 , and find them.

SOLUTION We first prove that 1 is an upper bound and 0 is a lower bound for the 
real zeros of ƒ. The function ƒ has a positive leading coefficient, so we use synthetic 
division and the upper and lower bound tests:

  1  10  0 0 -3 1 -6

  10 10  10 7 8

 10 10 10 7 8 2 Last line

  0  10 0 0 -3 1 -6

   0 0 0 0 0

 10 0 0 -3 1 -6 Last line

Because the last line in the first division scheme consists of all nonnegative numbers, 
1 is an upper bound. Because the last line in the second division consists of numbers 
that are alternately nonnegative and nonpositive, 0 is a lower bound. All of the real 
zeros of ƒ must therefore lie in the closed interval 30, 14 . So in Figure 2.41 we set 
our Xmin and Xmax accordingly.

Next we use the Rational Zeros Theorem.

Potential Rational Zeros:

Factors of -6
Factors of 10

 : 
±1, ±2, ±3, ±6
±1, ±2, ±5, ±10

 :

±1, ±2, ±3, ±6, ±
1
2

, ±
3
2

, ±
1
5

, ±
2
5

, ±
3
5

, ±
6
5

, ±
1
10

, ±
3
10

We compare the x-intercepts of the graph in Figure 2.41 with our list of candidates 
and decide ƒ has no rational zeros. From Figure 2.41 we see that ƒ changes sign on 
the interval 30.8, 14 . Thus, by the Intermediate Value Theorem, ƒ must have a real 
zero on this interval. Because it is not rational, we conclude that it is irrational. 
 Figure 2.42 shows that this lone real zero of ƒ is approximately 0.95.

Now try Exercise 55.

EXAMPLE 8 

[0, 1] by [28, 4]

Figure 2.41 y = 10x5 - 3x2 + x - 6. 
(Example 8)

X=.95054589   Y=0
Zero

[0, 1] by [28, 4]

Figure 2.42 An approximation for the 
irrational zero of ƒ1x2 = 10x5 - 3x2 + x - 6. 
(Example 8)
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Exercise numbers with a gray background indicate problems that  
the authors have designed to be solved without a calculator.

In Exercises 1–4, rewrite the expression as a polynomial in standard  
form.

 1. 
x3 - 4x2 + 7x

x
 2. 

2x3 - 5x2 - 6x
2x

 3. 
x4 - 3x2 + 7x5

x2  4. 
6x4 - 2x3 + 7x2

3x2

In Exercises 5–10, factor the polynomial into linear factors.

 5. x3 - 4x  6. 6x2 - 54

 7. 4x2 + 8x - 60 8. 15x3 - 22x2 + 8x

 9. x3 + 2x2 - x - 2 10. x4 + x3 - 9x2 - 9x
  

QUICK REVIEW 2.4 (For help, go to Sections A.2. and A.3.) 

 21. x - 2; x3 + 3x - 4

 22. x - 2; x3 - 3x - 2

 23. x + 2; 4x3 + 9x2 - 3x - 10

 24. x + 1; 2x10 - x9 + x8 + x7 + 2x6 - 3

In Exercises 25 and 26, use the graph to guess possible linear factors of 
ƒ1x2. Then completely factor ƒ1x2 with the aid of synthetic division.

 25. ƒ1x2 = 5x3 - 7x2 - 49x + 51

SECTION 2.4 Exercises

In Exercises 1–6, divide ƒ1x2 by d1x2, and write a summary statement  
in polynomial form and fraction form.

 1. ƒ1x2 = x2 - 2x + 3; d1x2 = x - 1

 2. ƒ1x2 = x3 - 1; d1x2 = x + 1

 3. ƒ1x2 = x3 + 4x2 + 7x - 9; d1x2 = x + 3

 4. ƒ1x2 = 4x3 - 8x2 + 2x - 1; d1x2 = 2x + 1

 5. ƒ1x2 = x4 - 2x3 + 3x2 - 4x + 6; d1x2 = x2 + 2x - 1

 6. ƒ1x2 = x4 - 3x3 + 6x2 - 3x + 5; d1x2 = x2 + 1

In Exercises 7–12, divide using synthetic division, and write a summary  
statement in fraction form.

 7. 
x3 - 5x2 + 3x - 2

x + 1

 8. 
2x4 - 5x3 + 7x2 - 3x + 1

x - 3

 9. 
2x3 - 53x - 19

x + 5
 

 10. 
3x4 + x3 - 4x2 + 9x - 3

x + 5

 11. 
5x4 - 4x + 1

4 - x

 12. 
x8 - 1
x + 2

In Exercises 13–18, use the Remainder Theorem to find the remainder  
when ƒ1x2 is divided by x - k.

 13. ƒ1x2 = 2x2 - 3x + 1; k = 2

 14. ƒ1x2 = x4 - 5; k = 1

 15. ƒ1x2 = x3 - x2 + 2x - 1; k = -3

 16. ƒ1x2 = x3 - 3x + 4; k = -2

 17. ƒ1x2 = 2x3 - 3x2 + 4x - 7; k = 2

 18. ƒ1x2 = x5 - 2x4 + 3x2 - 20x + 3; k = -1

In Exercises 19–24, use the Factor Theorem to determine whether the  
first polynomial is a factor of the second polynomial.

 19. x - 1; x3 - x2 + x - 1

 20. x - 3; x3 - x2 - x - 15

[25, 5] by [275, 100]

 26. ƒ1x2 = 5x3 - 12x2 - 23x + 42

[25, 5] by [275, 75]

In Exercises 27–30, find the polynomial function with leading coeffi-
cient 2 that has the given degree and zeros.

 27. Degree 3, with -2, 1, and 4 as zeros

 28. Degree 3, with -1, 3, and -5 as zeros

 29. Degree 3, with 2, 12 , and 32 as zeros

 30. Degree 4, with -3, -1, 0, and 52 as zeros
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In Exercises 31 and 32, using only algebraic methods, find the cubic 
function with the given table of values. Check with a grapher.

 31. x -4 0 3 5

ƒ1x2 0 180 0 0
  

 32. x -2 -1 1 5

ƒ1x2 0 24 0 0
  
In Exercises 33–36, use the Rational Zeros Theorem to write a list of all 
potential rational zeros. Then determine which ones, if any, are zeros.

 33. ƒ1x2 = 6x3 - 5x - 1

 34. ƒ1x2 = 3x3 - 7x2 + 6x - 14

 35. ƒ1x2 = 2x3 - x2 - 9x + 9

 36. ƒ1x2 = 6x4 - x3 - 6x2 - x - 12

 47. ƒ1x2 = x5 - 4x4 - 129x3 + 396x2 - 8x + 3

[25, 5] by [21000, 1000]

 48. ƒ1x2 = 2x5 - 5x4 - 141x3 + 216x2 - 91x + 25

[25, 5] by [21000, 1000]

In Exercises 49–56, find all of the real zeros of the function, finding 
exact values whenever possible. Identify each zero as rational or 
 irrational.

 49. ƒ1x2 = 2x3 - 3x2 - 4x + 6

 50. ƒ1x2 = x3 + 3x2 - 3x - 9

 51. ƒ1x2 = x3 + x2 - 8x - 6

 52. ƒ1x2 = x3 - 6x2 + 7x + 4

 53. ƒ1x2 = x4 - 3x3 - 6x2 + 6x + 8

 54. ƒ1x2 = x4 - x3 - 7x2 + 5x + 10

 55. ƒ1x2 = 2x4 - 7x3 - 2x2 - 7x - 4

 56. ƒ1x2 = 3x4 - 2x3 + 3x2 + x - 2

 57. Setting Production Schedules The Sunspot Small 
Appliance Co. determines that the supply function for their 
EverCurl hair dryer is S1p2 = 6 + 0.001p3 and that its  
demand function is D1p2 = 80 - 0.02p2, where p is the price. 
Determine the price for which these models predict that supply 
equals demand, and the number of hair dryers corresponding to 
this equilibrium price.

 58. Setting Production Schedules The Pentkon Camera 
Co. determines that the supply and demand functions for their 
35 mm–70 mm zoom lens are S1p2 = 200 - p + 0.000007p4 
and D1p2 = 1500 - 0.0004p3, where p is the price. Determine 
the price for which these models predict that supply equals 
demand, and the number of zoom lenses corresponding to this 
equilibrium price.

 59. Find the remainder when x40 - 3 is divided by x + 1.

 60. Find the remainder when x63 -  17 is divided by x - 1.

In Exercises 37–40, use synthetic division to prove that the number k is 
an upper bound for the real zeros of the function ƒ.

 37. k = 3; ƒ1x2 = 2x3 - 4x2 + x - 2

 38. k = 5; ƒ1x2 = 2x3 - 5x2 - 5x - 1

 39. k = 2; ƒ1x2 = x4 - x3 + x2 + x - 12

 40. k = 3; ƒ1x2 = 4x4 - 6x3 - 7x2 + 9x + 2

In Exercises 41–44, use synthetic division to prove that the number k is 
a lower bound for the real zeros of the function ƒ.

 41. k = -1; ƒ1x2 = 3x3 - 4x2 + x + 3

 42. k = -3; ƒ1x2 = x3 + 2x2 + 2x + 5

 43. k = 0; ƒ1x2 = x3 - 4x2 + 7x - 2

 44. k = -4; ƒ1x2 = 3x3 - x2 - 5x - 3

In Exercises 45–48, use the upper and lower bound tests to decide 
whether there could be real zeros for the function outside the window 
shown. If so, check for additional zeros.

 45. ƒ1x2 = 6x4 - 11x3 - 7x2 + 8x - 34

[25, 5] by [2200, 1000]

 46. ƒ1x2 = x5 - x4 + 21x2 + 19x - 3

[25, 5] by [21000, 1000]
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 61. Let ƒ1x2 = x4 + 2x3 - 11x2 - 13x + 38.

(a) Use the upper and lower bound tests to prove that all of the 
real zeros of ƒ lie in the interval 3-5, 44 .

(b) Find all of the rational zeros of ƒ.

(c) Factor ƒ1x2 using the rational zero(s) found in (b).

(d) Approximate all of the irrational zeros of ƒ.

(e) Use synthetic division and the irrational zero(s) found in 
(d) to continue the factorization of ƒ1x2 begun in (c).

 62. Lewis’s distance D from a motion detector is given by the data 
in Table 2.15.

Table 2.15 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 1.00 4.5 0.99
0.5 1.46 5.0 0.84
1.0 1.99 5.5 1.28
1.5 2.57 6.0 1.87
2.0 3.02 6.5 2.58
2.5 3.34 7.0 3.23
3.0 2.91 7.5 3.78
3.5 2.31 8.0 4.40
4.0 1.57    

(a) Find a cubic regression model, and graph it together with a 
scatter plot of the data.

(b) Use the cubic regression model to estimate how far Lewis 
is from the motion detector initially.

(c) Use the cubic regression model to estimate when Lewis 
changes direction. How far from the motion detector is he 
when he changes direction?

Standardized Test Questions
 63. True or False The polynomial function ƒ1x2 has a factor 

x + 2 if and only if ƒ122 = 0. Justify your answer.

 64. True or False If ƒ1x2 = 1x - 1212x2 - x + 12 + 3, then 
the remainder when ƒ1x2 is divided by x - 1 is 3. Justify your 
answer.

In Exercises 65–68, you may use a graphing calculator to solve the 
problem.

 65. Multiple Choice Let ƒ be a polynomial function with 
ƒ132 = 0. Which of the following statements is not true?

(A) x + 3 is a factor of ƒ1x2. (B)  x - 3 is a factor of ƒ1x2.
(C) x = 3 is a zero of ƒ1x2. (D)  3 is an x-intercept of ƒ1x2.
(E) The remainder when ƒ1x2 is divided by x - 3 is zero.

 66. Multiple Choice Let ƒ1x2 = 2x3 + 7x2 + 2x - 3. Which 
of the following is not a possible rational root of ƒ?

(A) -3  (B)  -1  (C)  1  (D)  1>2  (E)  2>3

 67. Multiple Choice Let ƒ1x2 = 1x + 221x2 + x - 12 - 3. 
Which of the following statements is not true?

(A) The remainder when ƒ1x2 is divided by x + 2 is -3.

(B) The remainder when ƒ1x2 is divided by x - 2 is -3.

(C) The remainder when ƒ1x2 is divided by x2 + x - 1 is -3.

(D) x + 2 is not a factor of ƒ1x2.
(E) ƒ1x2 is not evenly divisible by x + 2.

 68. Multiple Choice Let ƒ1x2 = 1x2 + 121x - 22 + 7. 
Which of the following statements is not true?

(A) The remainder when ƒ1x2 is divided by x2 + 1 is 7.

(B) The remainder when ƒ1x2 is divided by x - 2 is 7.

(C) ƒ122 = 7   (D)  ƒ102 = 5

(E) ƒ does not have a real root.

Explorations
 69. Archimedes’ Principle A spherical buoy has a radius of  

1 m and a density one-fourth that of seawater. By Archimedes’ 
Principle, the weight of the displaced water will equal the 
weight of the buoy.

• Let x = the depth to which the buoy sinks.

• Let d = the density of seawater.

• Let r = the radius of the circle formed where buoy, air, and 
water meet. See the figure below.

1
1 2 x

x

r

Notice in the figure that r2 = 1 - 11 - x22 = 2x - x2, and 
recall from geometry that the volume of the submerged spheri-

cal cap is V =
px
6

# 13r2 + x22.

(a) Verify that the volume of the buoy is 4p>3.

(b) Use your result from (a) to establish the weight of the buoy 
as pd>3.

(c) Prove the weight of the displaced water is 
pd # x13r2 + x22>6.

(d) Approximate the depth to which the buoy will sink.
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 70. Archimedes’ Principle Using the scenario of Exercise 69, 
find the depth to which the buoy will sink if its density is one-
fifth that of seawater.

 71. Biological Research Stephanie, a biologist who does 
research for the poultry industry, models the population P of 
wild turkeys, t days after being left to reproduce, with the 
 function

P1t2 = -0.00001t3 + 0.002t2 + 1.5t + 100.

(a) Graph the function y = P1t2 for appropriate values of t.

(b) Find what the maximum turkey population is and when it 
occurs.

(c) Assuming that this model continues to be accurate, when 
will this turkey population become extinct?

(d) Writing to Learn Create a scenario that could explain 
the growth exhibited by this turkey population.

 72. Architectural Engineering Dave, an engineer at the 
Trumbauer Group, Inc., an architectural firm, completes struc-
tural specifications for a 172-ft-long steel beam, anchored at 
one end to a piling 20 ft above the ground. He knows that when 
a 200-lb object is placed d feet from the anchored end, the 
beam bends s feet where,

s = 13 * 10-72d21550 - d2.
(a) What is the independent variable in this polynomial 

 function?

(b) What are the dimensions of a viewing window that shows 
a graph for the values that make sense in this problem 
 situation?

(c) How far is the 200-lb object from the anchored end if the 
vertical deflection is 1.25 ft?

20 ft

172 ft

d

s

 73. A classic theorem, Descartes’ Rule of Signs, tells us about the 
number of positive and negative real zeros of a polynomial 
function by looking at the polynomial’s variations in sign.

A variation in sign occurs when consecutive coefficients (in 
standard form) have opposite signs.

If ƒ1x2 = anxn + g + a0 is a polynomial of degree n, then

• The number of positive real zeros of ƒ is equal to the num-
ber of variations in sign of ƒ1x2, or that number less some 
even number.

• The number of negative real zeros of ƒ is equal to the num-
ber of variations in sign of ƒ1-x2, or that number less some 
even number.

Extending the Ideas
 74. Writing to Learn Graph each side of the Example 3 

 summary equation:

 ƒ1x2 =
2x3 - 3x2 - 5x - 12

x - 3
 and

 g1x2 = 2x2 + 3x + 4,  x ≠ 3

How are these functions related? Include a discussion of the 
domain and continuity of each function.

 75. Writing to Learn Explain how to carry out the following 
division using synthetic division. Work through the steps with 
complete explanations. Interpret and check your result.

4x3 - 5x2 + 3x + 1
2x - 1

 76. Writing to Learn The figure shows a graph of 
ƒ1x2 = x4 + 0.1x3 - 6.5x2 + 7.9x - 2.4. Explain how to 
use a grapher to justify the statement.

 ƒ1x2 = x4 + 0.1x3 - 6.5x2 + 7.9x - 2.4

 ≈ 1x + 3.1021x - 0.521x - 1.1321x - 1.372

[25, 5] by [230, 30]

 77. (a)  Writing to Learn Write a paragraph that describes 
how the zeros of ƒ1x2 = 11>32x3 + x2 + 2x - 3 are 
related to the zeros of g1x2 = x3 + 3x2 + 6x - 9. In 
what ways does this example illustrate how the Rational 
Zeros Theorem can be applied to find the zeros of a  
polynomial with rational number coefficients?

(b) Find the rational zeros of ƒ1x2 = x3 -
7
6

 x2 -
20
3

 x +
7
2

.

(c) Find the rational zeros of ƒ1x2 = x3 -
5
2

 x2 -
37
12

 x +
5
2

.

 78. Use the Rational Zeros Theorem to prove 22 is irrational.

 79. Group Activity Work in groups of three. Graph 
ƒ1x2 = x4 + x3 - 8x2 - 2x + 7.

(a) Use grapher methods to find approximate real number 
zeros.

(b) Identify a list of four linear factors whose product could 
be called an approximate factorization of ƒ1x2.

(c) Discuss what graphical and numerical methods you  
could use to show that the factorization from part (b) is 
reasonable.

Use Descartes’ Rule of Signs to determine the possible numbers  
of positive and negative real zeros of the function.

(a) ƒ1x2 = x3 + x2 - x + 1

(b) ƒ1x2 = x3 + x2 + x + 1

(c) ƒ1x2 = 2x3 + x - 3

(d) g1x2 = 5x4 + x2 - 3x - 2
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The Fundamental Theorem of Algebra and the Linear Factorization Theorem are 
 existence theorems. They tell us of the existence of zeros and linear factors, but not 
how to find them.

One connection is lost going from real zeros to complex zeros. If k is a nonreal com-
plex zero of a polynomial function ƒ1x2, then k is not an x-intercept of the graph of ƒ. 
The other connections hold whether k is real or nonreal:

What you’ll learn about
• Two Major Theorems

• Complex Conjugate Zeros

• Factoring with Real Number 
 Coefficients

... and why
These topics provide the complete 
story about the zeros and factors  
of polynomials with real number 
coefficients.

Two Major Theorems
In Section 2.3 we learned that a polynomial function of degree n has at most n real 
zeros. Figure 2.43 shows that the polynomial function ƒ1x2 = x2 + 2x + 5 of degree 
2 has no real zeros. (Why?) A little arithmetic, however, shows that the complex num-
ber -1 + 2i is a zero of ƒ:

 ƒ1-1 + 2i2 = 1-1 + 2i22 + 21-1 + 2i2 + 5

 = 1-3 -  4i2 + 1-2 + 4i2 + 5

 = 0 + 0i

 = 0

The quadratic formula shows that -1 ± 2i are the two zeros of ƒ and can be used to 
find the complex zeros for any polynomial function of degree 2. In this section we will 
learn about complex zeros of polynomial functions of higher degree and how to use 
these zeros to factor polynomial expressions.

2.5 Complex Zeros and the Fundamental Theorem of Algebra

THEOREM Fundamental Theorem of Algebra

A polynomial function of degree n has n complex zeros (real and nonreal). 
Some of these zeros may be repeated.

THEOREM Linear Factorization Theorem

If ƒ1x2 is a polynomial function of degree n 7 0, then ƒ1x2 has precisely n 
 linear factors and

ƒ1x2 = a1x - z121x - z22g1x - zn2,
where a is the leading coefficient of ƒ1x2 and z1, z2, c, zn are the complex 
zeros of ƒ1x2. The zi are not necessarily distinct numbers; some may be 
repeated.

The Factor Theorem extends to the complex zeros of a polynomial function. Thus, k is 
a complex zero of a polynomial if and only if x - k is a factor of the polynomial, even 
if k is not a real number. We combine this fact with the Fundamental Theorem of Alge-
bra to obtain the following theorem.

[29.4, 9.4] by [22, 10]

Figure 2.43 The graph of ƒ1x2 =  
x2 + 2x + 5 has no x-intercepts, so ƒ has no  
real zeros.
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Fundamental Polynomial Connections in the Complex Case

The following statements about a polynomial function ƒ are equivalent if k is a 
complex number:

1. x = k is a solution (or root) of the equation ƒ1x2 = 0.

2. k is a zero of the function ƒ.

3. x - k is a factor of ƒ1x2.

Exploring Fundamental Polynomial 
Connections

Write the polynomial function in standard form, and identify the zeros of the func-
tion and the x-intercepts of its graph.

(a) ƒ1x2 = 1x - 2i21x + 2i2
(b) ƒ1x2 = 1x - 521x - 22i21x + 22i2
(c) ƒ1x2 = 1x - 321x - 321x - i21x + i2
SOLUTION 

(a) The quadratic function ƒ1x2 = 1x - 2i21x + 2i2 = x2 + 4 has two zeros: 
x = 2i and x = -2i. Because the zeros are not real, the graph of ƒ has no 
x-intercepts.

(b) The cubic function

 ƒ1x2 = 1x - 521x - 22i21x + 22i2
 = 1x - 521x2 + 22
 = x3 - 5x2 + 2x - 10

has three zeros: x = 5, x = 22i, and x = -22i. Of the three, only x = 5 is an 
x-intercept.

(c) The quartic function

  ƒ1x2 = 1x - 321x - 321x - i21x + i2
 = 1x2 - 6x + 921x2 + 12
 = x4 - 6x3 + 10x2 - 6x + 9

has four zeros: x = 3, x = 3, x = i, and x = - i. There are only three distinct 
zeros. The real zero x = 3 is a repeated zero of multiplicity two. Due to this 
even multiplicity, the graph of ƒ touches but does not cross the x-axis at x = 3, 
the only x-intercept.

Figure 2.44 supports our conclusions regarding x-intercepts. Now try Exercise 1.

EXAMPLE 1 

Complex Conjugate Zeros
In Section P.6 we saw that, for quadratic equations ax2 + bx + c = 0 with real coef-
ficients, if the discriminant b2 - 4ac is negative, the solutions are a conjugate pair of 
complex numbers. This relationship generalizes to polynomial functions of higher 
degree in the following way:

THEOREM Complex Conjugate Zeros

Suppose that ƒ1x2 is a polynomial function with real coefficients. If a and b are 
real numbers with b ≠ 0 and a + bi is a zero of ƒ1x2, then its complex conju-
gate a - bi is also a zero of ƒ1x2.

(a)

[25, 5] by [215, 15]

(b)

[24, 6] by [225, 25]

(c)

[24, 6] by [210, 30]

Figure 2.44 The graphs of (a)  
y = x2 + 4, (b) y = x3 - 5x2 + 2x - 10,  
and (c) y = x4 - 6x3 + 10x2 - 6x + 9.  
(Example 1)
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230 CHAPTER 2  Polynomial, Power, and Rational Functions

What Can Happen When the Coefficients  
Are Not Real?

 1. Use substitution to verify that x = 2i and x = - i are zeros of ƒ1x2 = x2 -
ix + 2. Are the conjugates of 2i and - i also zeros of ƒ1x2?

 2. Use substitution to verify that x = i and x = 1 - i are zeros of g1x2 = x2 -
x + 11 + i2. Are the conjugates of i and 1 - i also zeros of g1x2?

 3. What conclusions can you draw from parts 1 and 2? Do your results contradict 
the theorem about complex conjugate zeros?

EXPLORATION 1 

Finding a Polynomial from Given Zeros
Write a polynomial function of minimum degree in standard form with real coeffi-
cients whose zeros include -3, 4, and 2 - i.

SOLUTION Because -3 and 4 are real zeros, x + 3 and x - 4 must be factors. 
Because the coefficients are real and 2 - i is a zero, 2 + i must also be a zero. 
Therefore, x - 12 - i2 and x - 12 + i2 must both be factors of ƒ1x2. Thus,

 ƒ1x2 = 1x + 321x - 423x - 12 - i24 3x - 12 + i24
 = 1x2 - x - 1221x2 - 4x + 52
 = x4 - 5x3 - 3x2 + 43x - 60

is a polynomial of the type we seek. Any nonzero real number multiple of ƒ1x2 will 
also be such a polynomial. Now try Exercise 7.

EXAMPLE 2 

Finding a Polynomial from Given Zeros
Write a polynomial function of minimum degree in standard form with real coeffi-
cients whose zeros include x = 1, x = 1 + 2i, x = 1 - i.

SOLUTION Because the coefficients are real and 1 + 2i is a zero, 1 - 2i must also 
be a zero. Therefore, x - 11 + 2i2 and x - 11 - 2i2 are both factors of ƒ1x2. Like-
wise, because 1 - i is a zero, 1 + i must be a zero. It follows that x - 11 - i2 and 
x - 11 + i2 are both factors of ƒ1x2. Therefore,

 ƒ1x2 = 1x - 123x - 11 + 2i24 3x - 11 - 2i24 3x - 11 + i24 3x - 11 - i24
 = 1x - 121x2 - 2x + 521x2 - 2x + 22
 = 1x3 - 3x2 + 7x - 521x2 - 2x + 22
 = x5 - 5x4 + 15x3 - 25x2 + 24x - 10

is a polynomial of the type we seek. Any nonzero real number multiple of ƒ1x2 will 
also be such a polynomial. Now try Exercise 15.

EXAMPLE 3 

Factoring a Polynomial with Complex Zeros
Find all zeros of ƒ1x2 = x5 - 3x4 - 5x3 + 5x2 - 6x + 8, and write ƒ1x2 in its 
 linear factorization.

SOLUTION Figure 2.45 suggests that the real zeros of ƒ are x = -2, x = 1, and 
x = 4.

EXAMPLE 4 

[24.7, 4.7] by [2125, 125]

Figure 2.45 ƒ1x2 = x5 - 3x4 - 5x3 +  
5x2 - 6x + 8 has three real zeros.  
(Example 4)
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Factoring with Real Number Coefficients
Let ƒ1x2 be a polynomial function with real coefficients. The Linear Factorization 
Theorem tells us that ƒ1x2 can be factored into the form

ƒ1x2 = a1x - z121x - z22g1x - zn2,

Using synthetic division we can verify these zeros and show that x2 + 1 is a factor 
of ƒ. So x = i and x = - i are also zeros. Therefore,

 ƒ1x2 = x5 - 3x4 - 5x3 + 5x2 - 6x + 8

 = 1x + 221x - 121x - 421x2 + 12
 = 1x + 221x - 121x - 421x - i21x + i2

Now try Exercise 29.

Synthetic division can be used with complex number divisors in the same way it is used 
with real number divisors.

Finding Complex Zeros
The complex number z = 1 - 2i is a zero of ƒ1x2 = 4x4 + 17x2 + 14x + 65. Find 
the remaining zeros of ƒ1x2, and write it in its linear factorization.

SOLUTION We use synthetic division to show that ƒ11 - 2i2 = 0:

 1 - 2i 4 0 17 14 65

 4 - 8i   -12 - 16i   -27 - 26i   -65

 4  4 - 8i   5 - 16i   -13 - 26i   0

Thus 1 - 2i is a zero of ƒ1x2. The conjugate 1 + 2i must also be a zero. We use 
synthetic division on the quotient found above to find the remaining quadratic factor:

 1 + 2i  4   4 - 8i   5 - 16i   -13 - 26i

 4 + 8i   8 + 16i   13 + 26i

 4 8 13 0

Finally, we use the quadratic formula to find the two zeros of 4x2 + 8x + 13:

 x =
-8 ± 264 - 208

8

 =
-8 ± 2-144

8

 =
-8 ± 12i

8

 = -1 ±
3
2

 i

Thus the four zeros of ƒ1x2 are 1 - 2i, 1 + 2i, -1 + 13>22i, and -1 - 13>22i. 
Because the leading coefficient of ƒ1x2 is 4, we obtain

ƒ1x2 = 43x - 11 - 2i24 3x - 11 + 2i24 3x - 1-1 + 3
2 i24 3x - 1-1 - 3

2 i24 .
If we wish to remove fractions in the factors, we can distribute the 4 to get

ƒ1x2 = 3x - 11 - 2i24 3x - 11 + 2i24 32x - 1-2 + 3i24 32x - 1-2 - 3i24 .
Now try Exercise 33.

EXAMPLE 5 

M03_DEMA8962_10_GE_C02.indd   231 22/06/22   11:45



232 CHAPTER 2  Polynomial, Power, and Rational Functions

where zi are complex numbers. Recall, however, that nonreal complex zeros occur in 
conjugate pairs. The product of x - 1a + bi2 and x - 1a - bi2 is
 3x - 1a + bi24 3x - 1a - bi24 = x2 - 1a - bi2x - 1a + bi2x + 1a + bi21a - bi2

 = x2 - 2ax + 1a2 + b22
So the quadratic expression x2 - 2ax + 1a2 + b22, whose coefficients are real num-
bers, is a factor of ƒ1x2. Such a quadratic expression with real coefficients but no real 
zeros is irreducible over the reals. In other words, if we require that the factors of a 
polynomial have real coefficients, the factorization can be accomplished with linear 
factors and irreducible quadratic factors.

Factors of a Polynomial with Real Coefficients

Every polynomial function with real coefficients can be written as a product of 
linear factors and irreducible quadratic factors, each with real coefficients.

Polynomial Function of Odd Degree

Every polynomial function of odd degree with real coefficients has at least one 
real zero.

Factoring a Polynomial
Write ƒ1x2 = 3x5 - 2x4 + 6x3 - 4x2 - 24x + 16 as a product of linear and 
 irreducible quadratic factors, each with real coefficients.

SOLUTION The Rational Zeros Theorem provides the candidates for the rational 
zeros of ƒ. The graph of ƒ in Figure 2.46 suggests which candidates to try first. Using 
synthetic division, we find that x = 2>3 is a zero. Thus,

 ƒ1x2 = ax -
2
3
b13x4 + 6x2 - 242

 = ax -
2
3
b1321x4 + 2x2 - 82

 = 13x - 221x2 - 221x2 + 42
 = 13x - 221x - 2221x + 2221x2 + 42

Because the zeros of x2 + 4 are complex, any further factorization would introduce 
nonreal complex coefficients. We have taken the factorization of ƒ as far as possible, 
subject to the condition that each factor has real coefficients.

Now try Exercise 37.

EXAMPLE 6 

We have seen that if a polynomial function has real coefficients, then its nonreal com-
plex zeros occur in conjugate pairs. Because a polynomial of odd degree has an odd 
number of zeros, it must have at least one zero that is real. This confirms Example 7 of 
Section 2.3 in light of complex numbers.

The function ƒ1x2 = 3x5 - 2x4 + 6x3 - 4x2 - 24x + 16 in Example 6 fits the con-
ditions of this theorem, so we know immediately that we are on the right track in 
searching for at least one real zero.

[23, 3] by [220, 50]

Figure 2.46 (Example 6)  
ƒ1x2 = 3x5 - 2x4 + 6x3 - 4x2 - 24x + 16  
has three real zeros.
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 17. -3 (multiplicity 2), 2 (multiplicity 3)

 18. -3 (multiplicity 3), 2 (multiplicity 2)

 19. -1 (multiplicity 4), 3 (multiplicity 3)

 20. -1 (multiplicity 3), 3 (multiplicity 4)

In Exercises 21–26, state how many complex and how many real zeros 
the function has.

 21. ƒ1x2 = x2 - 2x + 7

 22. ƒ1x2 = x3 - 3x2 + x + 1

 23. ƒ1x2 = x3 - x + 3

 24. ƒ1x2 = x4 - 2x2 + 3x - 4

 25. ƒ1x2 = x4 - 5x3 + x2 - 3x + 6

 26. ƒ1x2 = x5 - 2x2 - 3x + 6

In Exercises 27–32, find all of the zeros and write a linear factorization 
of the function.

 27. ƒ1x2 = x3 + 4x - 5

 28. ƒ1x2 = x3 - 10x2 + 44x - 69

 29. ƒ1x2 = x4 + x3 + 5x2 - x - 6

 30. ƒ1x2 = 3x4 + 8x3 + 6x2 + 3x - 2

 31. ƒ1x2 = 6x4 - 7x3 - x2 + 67x - 105

 32. ƒ1x2 = 20x4 - 148x3 + 269x2 - 106x - 195

In Exercises 33–36, using the given zero, find all of the zeros and write 
a linear factorization of ƒ1x2.
 33. 1 + i is a zero of ƒ1x2 = x4 - 2x3 - x2 + 6x - 6.

 34. 4i is a zero of ƒ1x2 = x4 + 13x2 - 48.

 35. 3 - 2i is a zero of ƒ1x2 = x4 - 6x3 + 11x2 + 12x - 26.

 36. 1 + 3i is a zero of ƒ1x2 = x4 - 2x3 + 5x2 + 10x - 50.

In Exercises 37–42, write the function as a product of linear and 
 irreducible quadratic factors, all with real coefficients.

 37. ƒ1x2 = x3 - x2 - x - 2

 38. ƒ1x2 = x3 - x2 + x - 6

 39. ƒ1x2 = 2x3 - x2 + 2x - 3

 40. ƒ1x2 = 3x3 - 2x2 + x - 2

SECTION 2.5 Exercises

In Exercises 1–4, write the polynomial in standard form, and identify 
the zeros of the function and the x-intercepts of its graph.

 1. ƒ1x2 = 1x - 3i21x + 3i2
 2. ƒ1x2 = 1x + 221x - 23i21x + 23i2
 3. ƒ1x2 = 1x - 121x - 121x + 2i21x - 2i2
 4. ƒ1x2 = x(x - 121x - 1 - i21x - 1 + i2
In Exercises 5–12, write a polynomial function of minimum degree in 
standard form with real coefficients whose zeros include those listed.

 5. i and - i  6. 1 - 2i and 1 + 2i

 7. 1, 3i, and -3i 8. -4, 1 - i, and 1 + i

 9. 2, 3, and i 10. -1, 2, and 1 - i

 11. 5 and 3 + 2i 12. -2 and 1 + 2i

In Exercises 13–16, write a polynomial function of minimum degree in 
standard form with real coefficients whose zeros and their multiplicities 
include those listed.

 13. 1 (multiplicity 2), -2 (multiplicity 3)

 14. -1 (multiplicity 3), 3 (multiplicity 1)

 15. 2 (multiplicity 2), 3 + i (multiplicity 1)

 16. -1 (multiplicity 2), -2 - i (multiplicity 1)

In Exercises 17–20, match the polynomial function graph to the given 
zeros and multiplicities.

(a)

[25, 5] by [2150, 150]

  (b)

[25, 5] by [2150, 150]

(c)

[25, 5] by [2150, 150]

  (d)

[25, 5] by [2150, 150]

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, perform the indicated operation, and write the result 
in the form a + bi.

 1. 13 - 2i2 + 1-2 + 5i2
 2. 15 - 7i2 - 13 - 2i2

 3. 11 + 2i213 - 2i2  4. 
2 + 3i
1 - 5i

In Exercises 5 and 6, factor the quadratic expression.

 5. 2x2 - x - 3 6. 6x2 - 13x - 5     
In Exercises 7 and 8, solve the quadratic equation.

 7. x2 - 5x + 11 = 0 8. 2x2 + 3x + 7 = 0

In Exercises 9 and 10, list all potential rational zeros.

 9. 3x4 - 5x3 + 3x2 - 7x + 2

 10. 4x5 - 7x2 + x3 + 13x - 3

QUICK REVIEW 2.5 (For help, go to Sections P.5, P.6, and 2.4.)
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234 CHAPTER 2  Polynomial, Power, and Rational Functions

 41. ƒ1x2 = x4 + 3x3 - 3x2 + 3x - 4

 42. ƒ1x2 = x4 - 2x3 + x2 - 8x - 12

In Exercises 43 and 44, use Archimedes’ Principle, which states that 
when a sphere of radius r with density dS is placed in a liquid of density 
dL = 62.5 lb>ft3, it will sink to a depth h where

p

3
 13rh2 - h32dL =

4
3

 pr3dS.

Find an approximate value for h if:

 43. r = 5 ft and dS = 20 lb>ft3.

 44. r = 5 ft and dS = 45 lb>ft3.

In Exercises 45–48, answer yes or no. If yes, include an example. If no, 
give a reason.

 45. Writing to Learn Is it possible to find a polynomial of 
degree 3 with real number coefficients that has -2 as its only 
real zero?

 46. Writing to Learn Is it possible to find a polynomial of 
degree 3 with real coefficients that has 2i as its only nonreal 
zero?

 47. Writing to Learn Is it possible to find a polynomial ƒ1x2 
of degree 4 with real coefficients that has zeros -3, 1 + 2i, 
and 1 - i?

 48. Writing to Learn Is it possible to find a polynomial ƒ1x2 
of degree 4 with real coefficients that has zeros 1 + 3i and 
1 - i?

In Exercises 49 and 50, find the unique polynomial with real coefficients 
that meets these conditions.

 49. Degree 4; zeros at x = 3, x = -1, and x = 2 - i; ƒ102 = 30

 50. Degree 4; zeros at x = 1 - 2i and x = 1 + i; ƒ102 = 20

 51. Sally’s distance D from a motion detector is given by the data 
in Table 2.16.

(a) Find a cubic regression model, and graph it together with a 
scatter plot of the data.

(b) Describe Sally’s motion.

(c) Use the cubic regression model to estimate when Sally 
changes direction. How far is she from the motion detector 
when she changes direction?

Table 2.16 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 3.36 4.5 3.59
0.5 2.61 5.0 4.15
1.0 1.86 5.5 3.99
1.5 1.27 6.0 3.37
2.0 0.91 6.5 2.58
2.5 1.14 7.0 1.93
3.0 1.69 7.5 1.25
3.5 2.37 8.0 0.67
4.0 3.01    

Standardized Test Questions
 53. True or False There is at least one polynomial with real 

coefficients with 1 - 2i as its only nonreal zero. Justify 
your answer.

 54. True or False A polynomial of degree 3 with real coef-
ficients must have two nonreal zeros. Justify your answer.

In Exercises 55–58, you may use a graphing calculator to solve the 
problem.

 55. Multiple Choice Let z = a + bi, where a ≠ 0 and 
b ≠ 0, and let z be the complex conjugate of z. Which of 
the following is not a real number?

(A)  z + z (B)  z z (C)  1z + z 22 (D)  1z z 22 (E)  z2

 56. Multiple Choice Which of the following cannot be the 
number of real zeros of a polynomial of degree 5 with real 
coefficients?

(A)  0  (B)  1  (C)  2  (D)  3  (E)  4

 57. Multiple Choice Which of the following cannot be the 
number of nonreal zeros of a polynomial of degree 5 with 
real coefficients?

(A)  0  (B)  2  (C)  3  (D)  4

(E)  None of the above

 58. Multiple Choice Assume that 1 + 2i is a zero of the 
polynomial ƒ with real coefficients. Which of the following 
statements is not true?

(A) x - 11 + 2i2 is a factor of ƒ1x2.
(B) x2 - 2x + 5 is a factor of ƒ1x2.
(C) x - 11 - 2i2 is a factor of ƒ1x2.
(D) 1 - 2i is a zero of ƒ.

(E) The number of nonreal complex zeros of ƒ could be 1.

Table 2.17 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 4.59 4.5 1.70
0.5 3.92 5.0 2.25
1.0 3.14 5.5 2.84
1.5 2.41 6.0 3.39
2.0 1.73 6.5 4.02
2.5 1.21 7.0 4.54
3.0 0.90 7.5 5.04
3.5 0.99 8.0 5.59
4.0 1.31    

 52. Jacob’s distance D from a motion detector is given by the 
data in Table 2.17.

(a) Find a quadratic regression model, and graph it together 
with a scatter plot of the data.

(b) Describe Jacob’s motion.

(c) Use the quadratic regression model to estimate when 
Jacob changes direction. How far is he from the motion 
detector when he changes direction?
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Explorations
 59. Group Activity The Powers of 1 + i  

(a) Selected powers of 1 + i are displayed in Table 2.18.  
Find a pattern in the data, and use it to extend the table to 
powers 7, 8, 9, and 10.

(b) Compute 11 + i27, 11 + i28, 11 + i29, and 11 + i210 
using the fact that 11 + i26 = -8i.

(c) Compare your results from parts (a) and (b) and reconcile, 
if needed.

Table 2.18 Powers of 1 + i

Power Real Part Imaginary Part

0 1 0
1 1 1
2 0 2
3 -2 2
4 -4 0
5 -4 -4
6 0 -8

(c) Solve for a and b.

(d) Check your answers by substituting them in the original 
equation.

(e) What are the two square roots of i?

 61. Verify that the complex number i is a zero of the polynomial 
ƒ1x2 = x3 - ix2 + 2ix + 2.

 62. Verify that the complex number -2i is a zero of the polynomial 
ƒ1x2 = x3 - 12 - i2x2 + 12 - 2i2x - 4.

Extending the Ideas
In Exercises 63 and 64, verify that g1x2 is a factor of ƒ1x2. Then find 
h1x2 so that f = g # h.

 63. g1x2 = x - i; ƒ1x2 = x3 + 13 - i2x2 - 4ix - 1

 64. g1x2 = x - 1 - i; ƒ1x2 = x3 - 11 + i2x2 + x - 1 - i

 65. Find the three cube roots of 8 by solving x3 = 8.

 66. Find the three cube roots of -64 by solving x3 = -64.

 60. Group Activity The Square Roots of i 

  Let a and b be real numbers such that 1a + bi22 = i.

(a) Expand the left-hand side of the given equation.

(b) Think of the right-hand side of the equation as 0 + 1i, and 
separate the real and imaginary parts of the equation to 
obtain two equations. 
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In Chapter 1 we defined horizontal and vertical asymptotes of the graph of a function 
y = ƒ1x2. The line y = b is a horizontal asymptote of the graph of ƒ if

lim
xS-∞ 

ƒ1x2 = b  or  lim
xS∞

ƒ1x2 = b.

What you’ll learn about
• Rational Functions

• Transformations of the Reciprocal 
Function

• Limits and Asymptotes

• Analyzing Graphs of Rational 
 Functions

• Transformations of Rational 
 Functions

• Exploring Relative Humidity

... and why
Rational functions are used in calcu-
lus and in scientific applications 
such as inverse proportions.

Rational Functions
Rational functions are ratios (or quotients) of polynomial functions.

2.6 Graphs of Rational Functions

DEFINITION Rational Functions

Let ƒ and g be polynomial functions with g1x2 ≠ 0. Then the function given 
by

r1x2 =
ƒ1x2
g1x2

is a rational function.

The domain of a rational function is the set of all real numbers except the zeros of its 
denominator. Every rational function is continuous on its domain.

Finding the Domain of a Rational Function
Find the domain of ƒ and use limits to describe its behavior at value(s) of x not in its 
domain.

ƒ1x2 =
1

x - 2

SOLUTION The domain of ƒ is all real numbers x ≠ 2. The graph in Figure 2.47 
strongly suggests that ƒ has a vertical asymptote at x = 2. As x approaches 2 from 
the left, the values of ƒ decrease without bound. As x approaches 2 from the right, the 
values of ƒ increase without bound. Using the one-sided limit notation introduced for 
asymptotes in Section 1.2, we write

lim
 xS2- 

ƒ1x2 = -∞  and   lim
 xS2 +ƒ1x2 = ∞.

The tables in Figure 2.48 support this visual evidence numerically.
Now try Exercise 1.

EXAMPLE 1 

[24.7, 4.7] by [25, 5]

Figure 2.47 The graph of 
ƒ1x2 = 1>1x - 22. (Example 1)

X

Y1 = 1/(X–2)

2
2.01
2.02
2.03
2.04
2.05
2.06

ERROR
100
50
33.333
25
20
16.667

Y1

(a)   

X

Y1 = 1/(X–2)

2
1.99
1.98
1.97
1.96
1.95
1.94

ERROR
–100
–50
–33.33
–25
–20
–16.67

Y1

(b)

Figure 2.48 Table of values for ƒ1x2 = 1>1x - 22 for values of x (a) to the right of 2, and 
(b) to the left of 2. (Example 1)
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The line x = a is a vertical asymptote of the graph of ƒ if

lim
xSa- ƒ1x2 = ±∞  or  lim

 xSa+ ƒ1x2 = ±∞.

We can see from Figure 2.47 that lim 1
xS-∞

>1x - 22 =  lim
xS∞

1>1x - 22 = 0, so the line 

y = 0 is a horizontal asymptote of the graph of ƒ1x2 = 1>1x - 22. Because 
lim

xS2- ƒ1x2 = -∞ and lim
xS2+ ƒ1x2 = ∞, the line x = 2 is a vertical asymptote of 

ƒ1x2 = 1>1x - 22.

Comparing Graphs of Rational Functions

 1. Sketch the graph and find an equation for the function g whose graph is 
obtained from the reciprocal function ƒ1x2 = 1>x by a translation of 2 units to 
the right.

 2. Sketch the graph and find an equation for the function h whose graph is 
obtained from the reciprocal function ƒ1x2 = 1>x by a translation of 5 units to 
the right, followed by a reflection across the x-axis.

 3. Sketch the graph and find an equation for the function k whose graph is 
obtained from the reciprocal function ƒ1x2 = 1>x by a translation of 4 units to 
the left, followed by a vertical stretch by a factor of 3, and finally a translation 
2 units down.

EXPLORATION 1 

BASIC FUNCTION 

ƒ1x2 =
1
x

Domain: 1-∞, 02∪ 10, ∞2
Range: 1-∞, 02∪ 10, ∞2
Continuity: All x ≠ 0
Decreasing on 1-∞, 02 and 10, ∞2
Symmetric with respect to origin (an odd function)
Unbounded
No local extrema
Horizontal asymptote: y = 0
Vertical asymptote: x = 0
End behavior: lim

xS-∞
ƒ1x2 =  lim

xS∞
ƒ1x2 = 0

The Reciprocal Function

[24.7, 4.7] by [23.1, 3.1]

Figure 2.49 The graph of ƒ1x2 = 1>x.

Transformations of the Reciprocal Function
One of the simplest rational functions is the reciprocal function

ƒ1x2 =
1
x

,

which is one of the basic functions introduced in Chapter 1. It can be used to generate 
many other rational functions.

Here is what we know about the reciprocal function.
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238 CHAPTER 2  Polynomial, Power, and Rational Functions

The graph of any nonzero rational function of the form

g1x2 =
ax + b
cx + d

, c ≠ 0

can be obtained through transformations of the graph of the reciprocal function. If the 
degree of the numerator is greater than or equal to the degree of the denominator, we 
can use polynomial division to rewrite the rational function.

y

(a)

10
8
6
4
2

–4
–2

–6
–8

–10

–10–8 –2
x

42–6 –4

y

(b)

10
8
6
4
2

–4
–2

–6
–8

–10

–4 –2
x

4 6 8 10

Figure 2.50 The graphs of  
(a) g1x2 = 2>1x + 32 and  
(b) h1x2 = 13x - 72>1x - 22, 
with asymptotes shown in red.

Transforming the Reciprocal Function
Describe how the graph of the given function can be obtained by transforming the 
graph of the reciprocal function ƒ1x2 = 1>x. Identify the horizontal and vertical 
asymptotes, and use limits to describe the corresponding behavior. Sketch the graph 
of the function.

(a) g1x2 =
2

x + 3
 (b) h1x2 =

3x - 7
x - 2

SOLUTION 

(a) g1x2 =
2

x + 3
= 2a 1

x + 3
b = 2ƒ1x + 32

The graph of g is the graph of the reciprocal function shifted left 3 units and then 
stretched vertically by a factor of 2. So the lines x = -3 and y = 0 are vertical and 
 hor izontal asymptotes, respectively. Using limits we have lim

xS∞
g1x2 = lim

xS-∞
g1x2 = 0, 

lim
xS-3+ g1x2 = ∞, and lim

xS-3- g1x2 = -∞. The graph is shown in Figure 2.50a.

(b) We begin with polynomial division:

 3
 x - 2 )3x - 7 
  3x - 6 
 -1

So h1x2 =
3x - 7
x - 2

= 3 -
1

x - 2
= -ƒ1x - 22 + 3.

Thus the graph of h is the graph of the reciprocal function translated 2 units to the 
right, followed by a reflection across the x-axis, and then translated 3 units up. (Note 
that the reflection must be executed before the vertical translation.) So the lines 
x = 2 and y = 3 are vertical and horizontal asymptotes, respectively. Using limits 
we have lim

xS∞
h1x2 = lim

xS-∞
h1x2 = 3, lim

xS2+

 
g1x2 = -∞, and lim

xS2- g1x2 = ∞. The 

graph is shown in Figure 2.50b. Now try Exercise 5.

EXAMPLE 2 

Limits and Asymptotes
In Example 2 we found asymptotes by translating the known asymptotes of the recipro-
cal function. In Example 3, we use graphing and algebra to find an asymptote.

Finding Asymptotes
Find the horizontal and vertical asymptotes of ƒ1x2 = 1x2 + 22>1x2 + 12. Use lim-
its to describe the corresponding behavior of ƒ.

SOLUTION 

Solve Graphically The graph of ƒ in Figure 2.51 suggests that

lim
xS∞

ƒ1x2 = lim
xS-∞

ƒ1x2 = 1

and that there are no vertical asymptotes. The horizontal asymptote is y = 1.

EXAMPLE 3 
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 SECTION 2.6 Graphs of Rational Functions 239

It is a good idea to find all of the asymptotes and intercepts when graphing a rational 
function. If the end behavior asymptote of a rational function is an oblique line (or slant 
line), we call it an oblique asymptote, as illustrated in Example 4. An oblique asymp-
tote is also called a slant asymptote.

Solve Algebraically Because the denominator x2 + 1 7 0, the domain of ƒ is all 
real numbers. So there are no vertical asymptotes. Using polynomial long division, 
we find that

ƒ1x2 =
x2 + 2

x2 + 1
= 1 +

1

x2 + 1
.

When the value of 0 x 0  is large, the denominator x2 + 1 is a large positive number, 
and 1>1x2 + 12 is a small positive number, getting closer to zero as 0 x 0  increases. 
Therefore,

lim
xS∞

ƒ1x2 =  lim
xS-∞

ƒ1x2 = 1,

so y = 1 is indeed a horizontal asymptote. Now try Exercise 19.

Example 3 shows the connection between the end behavior of a rational function and 
its horizontal asymptote. We now generalize this relationship and summarize other fea-
tures of the graph of a rational function:

Graphing a Rational Function
Find the asymptotes and intercepts of the function ƒ1x2 = x3>1x2 - 92 and graph 
the function.

SOLUTION The degree of the numerator is greater than the degree of the denomina-
tor, so the end behavior asymptote is the quotient polynomial. Using polynomial long 
division, we obtain

ƒ1x2 =
x3

x2 - 9
= x +

9x

x2 - 9
.

So the quotient polynomial is q1x2 = x, a slant asymptote. Factoring the 
denominator,

x2 - 9 = 1x - 321x + 32,

EXAMPLE 4 

(continued)

Graph of a Rational Function

The graph of y = ƒ1x2>g1x2 = 1anxn
 + g2>1bmxm

 + g2 has the following 
characteristics.

1. End behavior asymptote: 
If n 6 m, the end behavior asymptote is the horizontal asymptote y = 0.
If n = m, the end behavior asymptote is the horizontal asymptote y = an>bm.
If n 7 m, the end behavior asymptote is the quotient polynomial function 
y = q1x2, where ƒ1x2 = g1x2q1x2 + r1x2. There is no horizontal asymptote.

2. Vertical asymptotes: These occur at the real zeros of the denominator, 
provided that the zeros are not also zeros of the numerator of equal or 
greater multiplicity.

3. x-intercepts: These occur at the real zeros of the numerator that are not 
also zeros of the denominator.

4. y-intercept: This is the value of ƒ102, if defined.

[25, 5] by [21, 3]

Figure 2.51 The graph of  
ƒ1x2 = 1x2 + 22>1x2 + 12 with its horizontal 
asymptote y = 1.
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240 CHAPTER 2  Polynomial, Power, and Rational Functions

The degrees of the numerator and denominator of the rational function in Example 6 
are equal. Thus, we know that the graph of the function has y = 2, the quotient of the 
leading coefficients, as its end behavior asymptote.

shows that the zeros of the denominator are x = 3 and x = -3. Consequently, x = 3 
and x = -3 are the vertical asymptotes of ƒ. The only zero of the numerator is 0, so 
ƒ102 = 0, and thus we see that the point (0, 0) is the only x-intercept and is the 
y-intercept of the graph of ƒ.

The graph of ƒ in Figure 2.52a passes through (0, 0) and suggests the vertical asymp-
totes x = 3 and x = -3 and the slant asymptote y = q1x2 = x. Figure 2.52b shows 
the graph of ƒ with its asymptotes overlaid. Now try Exercise 29.

Analyzing Graphs of Rational Functions
Because the degree of the numerator of the rational function in Example 5 is less than 
the degree of the denominator, we know that the graph of the function has y = 0 as a 
horizontal asymptote.

Analyzing the Graph of a Rational Function
Find the intercepts and asymptotes, use limits to describe the behavior at the vertical 
asymptotes, and analyze and draw the graph of the rational function

ƒ1x2 =
x - 1

x2 - x - 6
.

SOLUTION The numerator is zero when x = 1, so the x-intercept is 1. Because 
ƒ102 = 1>6, the y-intercept is 1>6. The denominator factors as

x2 - x - 6 = 1x - 321x + 22,
so there are vertical asymptotes at x = -2 and x = 3. From the comment preceding 
this example we know that the horizontal asymptote is y = 0. Figure 2.53 supports 
this information and allows us to conclude that

lim
 xS-2- 

ƒ1x2 = -∞, lim
 xS-2 +ƒ1x2 = ∞, lim

xS3- 
ƒ1x2 = -∞, lim

xS3 +ƒ1x2 = ∞.

Domain: 1-∞, -22 ∪ 1-2, 32 ∪ 13, ∞2
Range: 1-∞, ∞2
Continuity: All x ≠ -2, 3
Decreasing on 1-∞, -22, 1-2, 32, and 13, ∞2
Not symmetric
Unbounded
No local extrema
Horizontal asymptotes: y = 0
Vertical asymptotes: x = -2, x = 3
End behavior: lim

xS-∞
ƒ1x2 = lim

xS∞
ƒ1x2 = 0 Now try Exercise 39.

EXAMPLE 5 

Analyzing the Graph of a Rational Function
Find the intercepts, analyze, and draw the graph of the rational function

ƒ1x2 =
2x2 - 2

x2 - 4
.

SOLUTION The numerator factors as

2x2 - 2 = 21x2 - 12 = 21x + 121x - 12,

EXAMPLE 6 

(a)

[29.4, 9.4] by [215, 15]

(b)

[29.4, 9.4] by [215, 15]

Figure 2.52 The graph of 
ƒ1x2 = x3>1x2 - 92 (a) by itself and  
(b) with its asymptotes. (Example 4)

[24.7, 4.7] by [24, 4]

Figure 2.53 The graph of 
ƒ1x2 = 1x - 12>1x2 - x - 62. (Example 5)
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so the x-intercepts are -1 and 1. The y-intercept is ƒ102 = 1>2. The denominator 
factors as

x2 - 4 = 1x + 221x - 22,
so the vertical asymptotes are x = -2 and x = 2. From the comment preceding this 
example we know that y = 2 is the horizontal asymptote. Figure 2.54 supports this 
information and allows us to conclude that

lim
xS-2- ƒ1x2 = ∞, lim

xS-2 +ƒ1x2 = -∞, lim
xS2- ƒ1x2 = -∞, lim

xS2 +ƒ1x2 = ∞.

Domain: 1-∞, -22 ∪ 1-2, 22 ∪ 12, ∞2
Range: 1-∞, 1>24 ∪ 12, ∞2
Continuity: All x ≠ -2, 2
Increasing on 1-∞, -22 and 1-2, 04 ; decreasing on 30, 22 and 12, ∞2
Symmetric with respect to the y-axis (an even function)
Unbounded
Local maximum of 1>2 at x = 0
Horizontal asymptotes: y = 2
Vertical asymptotes: x = -2, x = 2
End behavior: lim

xS-∞
ƒ1x2 = lim

xS∞
 ƒ1x2 = 2 Now try Exercise 41.

In Examples 7 and 8 we will investigate the rational function

ƒ1x2 =
x3 - 3x2 + 3x + 1

x - 1
.

The degree of the numerator of ƒ exceeds the degree of the denominator by 2. Thus, 
there is no horizontal asymptote. We will see that the end behavior asymptote is a poly-
nomial of degree 2.

Finding an End Behavior Asymptote
Find the end behavior asymptote of

ƒ1x2 =
x3 - 3x2 + 3x + 1

x - 1
,

and graph it together with ƒ in two windows:

(a) one showing the details around the vertical asymptote of ƒ,

(b) one showing a graph of ƒ that resembles its end behavior asymptote.

SOLUTION The graph of ƒ has a vertical asymptote at x = 1. Divide x3 - 3x2 +  
3x + 1 by x - 1 to show that

ƒ1x2 =
x3 - 3x2 + 3x + 1

x - 1
= x2 - 2x + 1 +

2
x - 1

.

The end behavior asymptote of ƒ is y = x2 - 2x + 1.

(a) The graph of ƒ in Figure 2.55 shows the details around the vertical asymptote. 
We have also overlaid the graph of its end behavior asymptote as a dashed line.

(b) If we draw the graph of ƒ1x2 = 1x3 - 3x2 + 3x + 12>1x - 12 and its end 
behavior asymptote y = x2 - 2x + 1 in a large enough viewing window, the 
two graphs will appear to be identical (Figure 2.56). Now try Exercise 47.

EXAMPLE 7 

[24.7, 4.7] by [28, 8]

Figure 2.54 The graph of  
ƒ1x2 = 12x2 - 22>1x2 - 42. It can be shown  
that ƒ takes on no value between 1>2, the  
y-intercept, and 2, the horizontal asymptote.  
(Example 6)

[24.7, 4.7] by [28, 8]

Figure 2.55 The graph of 
ƒ1x2 = 1x3 - 3x2 + 3x + 12>1x - 12 as a  
solid black line and its end behavior asymp-
tote y = x2 - 2x + 1 as a dashed blue line.  
(Examples 7 and 8)

[240, 40] by [2500, 500]

Figure 2.56 The graphs of 
ƒ1x2 = 1x3 - 3x2 + 3x + 12>1x - 12 and 
its end behavior asymptote y = x2 - 2x + 1 
appear to be identical. (Example 7)
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Transformations of Rational Functions
The acceleration due to gravity, g, is an essential ingredient of free-fall motion. It has a 
value of approximately 9.80 m>sec2 at most locations on Earth, but g decreases as the 
distance from the center of Earth increases. For example, in Quito, Ecuador, which both 
lies on Earth’s equatorial bulge and is nearly 2 mi above sea level, the value of g is only 
9.77 m>sec2. The g value 500 km above Earth’s surface would be only 8.43 m>sec2.

Table 2.19 shows the values for g at the surface of the four planets closest to the Sun. 
The table also provides values for the other variables that determine the value of g:

g =
G # M

d2 ,

where G ≈ 6.674 * 10-11 N # m2>kg2 is the gravitational constant, M is the mass of 
the planet, and d is the distance from the center of the planet. On the surface of a planet, 
d = R, the radius of the planet. For each planet, M is a constant, and the acceleration 
due to gravity g is a function of the distance d from the center of the planet, as shown in 
Example 9.

Table 2.19 Masses and Average Radii of the Terrestrial Planets 
and the Accelerations Due to Gravity at Their Surfaces

Planet Mass (kg) Radius (m) gsurface(m>sec2)

Mercury 3.20 * 1023 2.43 * 106 3.61

Venus 4.88 * 1024 6.07 * 106 8.83

Earth 5.98 * 1024 6.38 * 106  9.80

Mars 6.42 * 1023 3.38 * 106  3.75

Newton
As you may know from your science classes,  
a newton (N) is a measure of force such that 
N = (kg # m)>sec2. It is named for Isaac Newton 
(1643–1727) who developed many of the funda-
mental ideas and relationships of motion and 
gravity.

Analyzing the Graph of a Rational Function
Find the intercepts, analyze, and draw the graph of the rational function

ƒ1x2 =
x3 - 3x2 + 3x + 1

x - 1
.

SOLUTION ƒ has only one x-intercept and we can use the graph of ƒ in Figure 2.55 
to show that it is about -0.26. The y-intercept is ƒ102 = -1. The vertical asymptote 
is x = 1, as we have seen. We know that the graph of ƒ does not have a horizontal 
asymptote, and from Example 7 we know that the end behavior asymptote is 
y = x2 - 2x + 1. We can also use Figure 2.55 to show that ƒ has a local minimum 
of 3 at x = 2. Figure 2.55 supports this information and allows us to conclude that

lim
xS1- 

ƒ1x2 = -∞ and lim
xS1+ ƒ1x2 = ∞.

Domain: 1-∞, 12 ∪ 11, ∞2
Range: 1-∞, ∞2
Continuity: All x ≠ 1
Decreasing on 1-∞, 12 and 11, 24 ; increasing on 32, ∞2
Not symmetric
Unbounded
Local minimum of 3 at x = 2
No horizontal asymptotes; end behavior asymptote: y = x2 - 2x + 1
Vertical asymptote: x = 1
End behavior: lim

xS-∞
ƒ1x2 = lim

xS∞
ƒ1x2 = ∞ Now try Exercise 55.

EXAMPLE 8 
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Gravitational Pull as a Function of Distance
Figure 2.57 shows graphically the relationship of g as a function of d for Earth and 
Mars. Notice that

g1d2 =
G # M

d2 = GM # d -2

is both a rational function and a power function. So the ideas introduced in  
Sections 2.2 and 2.6 apply here. In fact, the graphs shown in Figure 2.57 can be 
obtained by transforming the first quadrant portion of the graph shown in Figure 2.11b 
on page 194: The graph of y = g1d2 = GM>d2 = GM # d -2 can be obtained from the 
graph of y = ƒ1d2 = 1>d2 = d -2 by the following two transformations:

• a horizontal stretch by the radius R of the planet to get y = 1>1d>R22 = 1d>R2-2 =  
R2>d2

• a vertical stretch by a factor of gsurface =
G # M

R2  to get y =
G # M

R2
# R2

d2 =  

G # M

d2 = GM # d-2

Hence, both graphs in Figure 2.57 pass through the point 1R, gsurface2 for the respec-
tive planets. Now try Exercise 63.

EXAMPLE 9 

Exploring Relative Humidity
The phrase relative humidity is familiar from everyday weather reports. Relative 
humidity is the ratio of constant vapor pressure to saturated vapor pressure. Thus, 
 relative humidity is inversely proportional to saturated vapor pressure.

CHAPTER OPENER  Problem (from page 175)

Problem: Determine the relative humidity values that correspond to the satu-
rated vapor pressures of 12, 24, 36, 48, and 60 millibars, at a constant vapor pres-
sure of 12 millibars. (In practice, saturated vapor pressure increases as the 
temperature increases.)

Solution: Relative humidity (RH) is found by dividing constant vapor pressure 
(CVP) by saturated vapor pressure (SVP). So, for example, for SVP = 24 millibars 
and CVP = 12 millibars , RH = 12>24 = 1>2 = 0.5 = 50%. See the table 
below, which is based on CVP =  12 millibars with increasing temperature.

SVP (millibars) RH (%)

12 100
24 50

36 33.3
48 25
60 20

[0, 3 3 107] by [0, 12]

Figure 2.57 The acceleration due to gravity 
g (in m>sec2) versus the distance d (in m) 
from the center of the planet, for Earth and 
Mars. The points on each graph correspond to 
the values at the surface of the planet.
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Exercise numbers with a gray background indicate problems that  
the authors have designed to be solved without a calculator.

In Exercises 1–6, use factoring to find the real zeros of the function.

 1. ƒ1x2 = 2x2 + 5x - 3 2. ƒ1x2 = 3x2 - 2x - 8

 3. g1x2 = x2 - 4  4. g1x2 = x2 - 1

 5. h1x2 = x3 - 1  6. h1x2 = x2 + 1

In Exercises 7–10, find the quotient and remainder when ƒ1x2 is 
 divided by d1x2.
 7. ƒ1x2 = 2x + 1, d1x2 = x - 3

 8. ƒ1x2 = 4x + 3, d1x2 = 2x - 1

 9. ƒ1x2 = 3x - 5, d1x2 = x

 10. ƒ1x2 = 5x - 1, d1x2 = 2x

QUICK REVIEW 2.6 (For help, go to Section 2.4.) 

In Exercises 15–18, evaluate the limit based on the graph of ƒ shown.

[29.8, 9] by [25, 15]

 15. lim
xS -3+ ƒ1x2  16. lim

xS -3- ƒ1x2
 17. lim

xS-∞
 ƒ1x2  18. lim

xS∞
 ƒ1x2

In Exercises 19–22, find the horizontal and vertical asymptotes of ƒ1x2. 
Use limits to describe the corresponding behavior.

 19. ƒ1x2 =
2x2 - 1

x2 + 3
 20. ƒ1x2 =

3x2

x2 + 1

 21. ƒ1x2 =
2x + 1

x2 - x
 22. ƒ1x2 =

x - 3

x2 + 3x

In Exercises 23–30, find the asymptotes and intercepts of the function, 
and graph the function.

 23. g1x2 =
x - 2

x2 - 2x - 3
 24. g1x2 =

x + 2

x2 + 2x - 3

 25. h1x2 =
2

x3 - x
 26. h1x2 =

3

x3 - 4x

 27. ƒ1x2 =
2x2 + x - 2

x2 - 1
 28. g1x2 =

-3x2 + x + 12

x2 - 4

 29. ƒ1x2 =
x2 - 2x + 3

x + 2
 30. g1x2 =

x2 - 3x - 7
x + 3

SECTION 2.6 Exercises

In Exercises 1–4, find the domain of the function ƒ. Use limits to 
describe the behavior of ƒ at value(s) of x not in its domain.

 1. ƒ1x2 =
1

x + 3
 2. ƒ1x2 =

-3
x - 1

 3. ƒ1x2 =
-1

x2 - 4
 4. ƒ1x2 =

2

x2 - 1

In Exercises 5–10, describe how the graph of the given function can  
be obtained by transforming the graph of the reciprocal function 
g1x2 = 1>x. Identify the horizontal and vertical asymptotes and use 
limits to describe the corresponding behavior. Sketch the graph of the 
function.

 5. ƒ1x2 =
1

x - 3
 6. ƒ1x2 = -  

2
x + 5

 7. ƒ1x2 =
2x - 1
x + 3

 8. ƒ1x2 =
3x - 2
x - 1

 9. ƒ1x2 =
5 - 2x
x + 4

 10. ƒ1x2 =
4 - 3x
x - 5

In Exercises 11–14, evaluate the limit based on the graph of ƒ shown.

[25.8, 13] by [23, 3]

 11. lim
xS3- ƒ1x2  12. lim

xS3+ ƒ1x2
 13. lim

xS∞
ƒ1x2  14. lim

xS-∞
 ƒ1x2
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In Exercises 31–36, match the rational function with its graph. Identify 
the viewing window and the scale used on each axis.

 31. ƒ1x2 =
1

x - 4
 32. ƒ1x2 = -  

1
x + 3

 33. ƒ1x2 = 2 +
3

x - 1
 34. ƒ1x2 = 1 +

1
x + 3

 35. ƒ1x2 = -1 +
1

4 - x
 36. ƒ1x2 = 3 -

2
x - 1

  (a)   (b)

  (c)   (d)

  (e)   (f)

In Exercises 37–44, find the intercepts and asymptotes, use limits to 
describe the behavior at the vertical asymptotes, and analyze and draw 
the graph of the given rational function.

 37. ƒ1x2 =
2

2x2 - x - 3
 38. g1x2 =

2

x2 + 4x + 3

 39. h1x2 =
x - 1

x2 - x - 12
 40. k1x2 =

x + 1

x2 - 3x - 10

 41. ƒ1x2 =
x2 + x - 2

x2 - 9
 42. g1x2 =

x2 - x - 2

x2 - 2x - 8

 43. h1x2 =
x2 + 2x - 3

x + 2
 44. k1x2 =

x2 - x - 2
x - 3

In Exercises 45–50, find the end behavior asymptote of the given ratio-
nal function ƒ and graph it together with ƒ in two windows:

(a) One showing the details around the vertical asymptote(s) of ƒ.

(b)  One showing a graph of ƒ that resembles its end behavior 
 asymptote.

 45. ƒ1x2 =
x2 - 2x + 3

x - 5
 46. ƒ1x2 =

2x2 + 2x - 3
x + 3

 47. ƒ1x2 =
x3 - x2 + 1

x + 2
 48. ƒ1x2 =

x3 + 1
x - 1

 49. ƒ1x2 =
x4 - 2x + 1

x - 2
 50. ƒ1x2 =

x5 + 1

x2 + 1

In Exercises 51–56, find the intercepts, analyze, and graph the given 
rational function.

 51. ƒ1x2 =
3x2 - 2x + 4

x2 - 4x + 5
 52. g1x2 =

4x2 + 2x

x2 - 4x + 8

 53. h1x2 =
x3 - 1
x - 2

 54. k1x2 =
x3 - 2
x + 2

 55. ƒ1x2 =
x3 - 2x2 + x - 1

2x - 1
 56. g1x2 =

2x3 - 2x2 - x + 5
x - 2

In Exercises 57–62, find the intercepts, vertical asymptotes, and end 
behavior asymptote, and graph the function together with its end 
 behavior asymptote.

 57. h1x2 =
x4 + 1
x + 1

 58. k1x2 =
2x5 + x2 - x + 1

x2 - 1

 59. ƒ1x2 =
x5 - 1
x + 2

 60. g1x2 =
x5 + 1
x - 1

 61. h1x2 =
2x3 - 3x + 2

x3 - 1
 62. k1x2 =

3x3 + x - 4

x3 + 1

Exercises 63–64 involve gravitational pull and data from Table 2.19.  
(a) Graph y = g1d2 for the planet. (b) Confirm that the graph passes 
through (R, gsurface). (c) Write the transformations that can be used to 
transform the graph of y = 1>d2 into the graph of y = g1d2.
 63. Mercury 64. Venus

Writing to Learn In Exercises 65–66, consider the given real world 
model. (a) Write a limit statement for the end behavior of the model as 
the independent variable approaches infinity, and (b) interpret the 
meaning of this statement.

 65. Acceleration Due to Gravity The acceleration for Earth 
1in m>sec22 is g1d2 = 3.99 * 1014>d2.

 66. Acceleration Due to Gravity The acceleration for Mars 
1in m>sec22 is g1d2 = 4.28 * 1013>d2.

Standardized Test Questions
 67. True or False A rational function must have a vertical 

asymptote. Justify your answer.

 68. True or False ƒ1x2 =
x2 - x2x2 + 4

 is a rational function. 
 Justify your answer.

In Exercises 69–72, you may use a graphing calculator to solve the 
problem.

 69. Multiple Choice Let ƒ1x2 =
-2

x2 + 3x
. What values of x 

have to be excluded from the domain of ƒ?

(A)  Only 0 (B)  Only 3 (C)  Only -3

(D)  Only 0, 3 (E)  Only 0, -3

 70. Multiple Choice Let g1x2 =
2

x + 3
. Which of the trans-

formations of ƒ1x2 =
2
x
 produce(s) the graph of g?

(A) Translate the graph of ƒ left 3 units.

(B) Translate the graph of ƒ right 3 units.

(C) Translate the graph of ƒ down 3 units.

(D) Translate the graph of ƒ up 3 units.

(E) Vertically stretch the graph of ƒ by a factor of 2.
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 71. Multiple Choice Let ƒ1x2 =
x2

x + 5
. Which of the follow-

ing statements is true about the graph of ƒ?

(A) There is no vertical asymptote.

(B) There is a horizontal asymptote but no vertical asymptote.

(C) There is a slant asymptote but no vertical asymptote.

(D) There is a vertical asymptote and a slant asymptote.

(E) There is a vertical and horizontal asymptote.

 72. Multiple Choice What is the degree of the end behavior 

asymptote of ƒ1x2 =
x8 + 1

x4 + 1
?

(A)  0  (B)  1  (C)  2  (D)  3  (E)  4

Explorations
 73. Group Activity Work in groups of two. Compare the func-

tions ƒ1x2 =
x2 - 9
x - 3

 and g1x2 = x + 3.

(a) Are the domains equal?

(b) Does ƒ have a vertical asymptote? Explain.

(c) Explain why the graphs appear to be identical.

(d) Are the functions identical?

 74. Group Activity Explain why the functions are identical or 
are not identical. Include the graphs and a comparison of the 
functions’ asymptotes, intercepts, and domain.

(a) ƒ1x2 =
x2 + x - 2

x - 1
 and g1x2 = x + 2

(b) ƒ1x2 =
x2 - 1
x + 1

 and g1x2 = x - 1

(c) ƒ1x2 =
x2 - 1

x3 - x2 - x + 1
 and g1x2 =

1
x - 1

(d) ƒ1x2 =
x - 1

x2 + x - 2
 and g1x2 =

1
x + 2

 75. Boyle’s Law This ideal gas law states that the volume of  
an enclosed gas at a fixed temperature varies inversely as the 
pressure.

(a) Writing to Learn Explain why Boyle’s Law yields 
both a rational function model and a power function 
model.

(b) Which power functions are also rational functions?

(c) If the pressure of a 2.59-L sample of nitrogen gas at a tem-
perature of 291 K is 0.866 atm, what will the volume be at 
a pressure of 0.532 atm if the temperature does not 
change?

 76. Light Intensity Aileen and Malachy gathered the data in 
Table 2.20 using a 75-watt lightbulb and a Calculator-Based 
Laboratory™ (CBL™) with a light-intensity probe.

(a) Draw a scatter plot of the data in Table 2.20.

(b) Find an equation for the data, assuming it has the form 
ƒ1x2 = k>x2 for some constant k. Explain your method for 
choosing k.

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression model to predict the light intensity at 
distances of 2.2 m and 4.4 m.

Table 2.20 Light-Intensity 
Data for a 75-W Lightbulb

Distance  
(m)

Intensity 
1W>m22

1.0 6.09
1.5 2.51
2.0 1.56
2.5 1.08
3.0 0.74

Extending the Ideas
In Exercises 77–80, graph the function. Express the function as a 
 piecewise-defined function without absolute value, and use the result  
to confirm the graph’s asymptotes and intercepts algebraically.

 77. h1x2 =
2x - 3

0 x 0 + 2
 78. h1x2 =

3x + 5

0 x 0 + 3

 79. ƒ1x2 =
5 - 3x

0 x 0 + 4
 80. ƒ1x2 =

2 - 2x

0 x 0 + 1

 81. Describe how the graph of a nonzero rational function

ƒ1x2 =
ax + b
cx + d

, c ≠ 0

can be obtained from the graph of y = 1>x. (Hint: Use long 
division.)

 82. Writing to Learn Let ƒ1x2 = 1 + 1>1x - 1>x2 and 
g1x2 = 1x3 + x2 - x2>1x3 - x2. Does f = g? Support your 
answer by making a comparative analysis of all of the features 
of ƒ and g, including asymptotes, intercepts, and domain.

M03_DEMA8962_10_GE_C02.indd   246 22/06/22   11:45



 SECTION 2.7 Solving Equations in One Variable 247

What you’ll learn about
• Solving Rational Equations

• Extraneous Solutions

• Applications

... and why
Applications involving rational func-
tions as models often require that an 
equation involving the model be 
solved.

Solving Rational Equations
Equations involving rational expressions or fractions (see Appendix A.3) are rational 
equations. Every rational equation can be written in the form

ƒ1x2
g1x2 = 0.

If ƒ1x2 and g1x2 are polynomial functions with no common factors, then the zeros of 
ƒ1x2 are the solutions of the equation.

Usually it is not necessary to put a rational equation in the form of ƒ1x2>g1x2. To solve 
an equation involving fractional expressions, we begin by finding the LCD (least com-
mon denominator) of all the terms of the equation. Then we clear the equation of frac-
tions by multiplying each side of the equation by the LCD. Sometimes the LCD 
contains variables.

When we multiply or divide an equation by an expression containing variables, the 
resulting equation may have solutions that are not solutions of the original equation. 
These are extraneous solutions. For this reason we must check each solution of the 
resulting equation in the original equation.

2.7 Solving Equations in One Variable

Solving by Clearing Fractions

Solve x +
3
x

= 4.

SOLUTION 

Solve Algebraically The LCD is x.

 x +
3
x

= 4

 x2 + 3 = 4x Multiply by x.

 x2 - 4x + 3 = 0  Subtract 4x.

 1x - 121x - 32 = 0  Factor.

x - 1 = 0 or x - 3 = 0 Zero factor property

x = 1 or x = 3

Confirm Numerically 

For x = 1, x +
3
x

= 1 +
3
1

= 4, and for x = 3, x +
3
x

= 3 +
3
3

= 4.

Each value is a solution of the original equation. Now try Exercise 1.

EXAMPLE 1 

When the fractions in Example 2 are cleared, we obtain a quadratic equation.
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Solving a Rational Equation

Solve x +
1

x - 4
= 0.

SOLUTION 

Solve Algebraically The LCD is x - 4.

 x +
1

x - 4
= 0

 x1x - 42 +
x - 4
x - 4

= 0  Multiply by x - 4.

 x2 - 4x + 1 = 0  Distributive property

 x =
4 ± 21-422 - 4112112

2112  Quadratic formula

 x =
4 ± 223

2
 Simplify.

 x = 2 ± 23  Simplify.

 x ≈ 0.268, 3.732

Support Graphically The graph in Figure 2.58 suggests that the function 
y = x + 1>1x - 42 has two zeros. We can use the graph to find that the zeros are 
about 0.268 and 3.732, agreeing with the values found algebraically.

Now try Exercise 7.

EXAMPLE 2 

Extraneous Solutions
We will find extraneous solutions in Examples 3 and 4.

Eliminating Extraneous Solutions
Solve the equation

2x
x - 1

+
1

x - 3
=

2

x2 - 4x + 3
.

SOLUTION 

Solve Algebraically The denominator of the right-hand side, x2 - 4x + 3, factors 
into 1x - 121x - 32. So the least common denominator (LCD) of the equation is 
1x - 121x - 32, and we multiply both sides of the equation by this LCD:

1x - 121x - 32a 2x
x - 1

+
1

x - 3
b = 1x - 121x - 32a 2

x2 - 4x + 3
b

 2x1x - 32 + 1x - 12 = 2 Distributive property

 2x2 - 5x - 3 = 0 Distributive property

 12x + 121x - 32 = 0 Factor.

x = -  
1
2

 or x = 3

Confirm Numerically We replace x by -1>2 in the original equation:

 
21-1>22
1-1>22 - 1

+
1

1-1>22 - 3
≟ 2

1-1>222 - 41-1>22 + 3

 
2
3

-
2
7

≟ 8
21

EXAMPLE 3 

[25, 8] by [25, 10]

Figure 2.58 The graph of  
y = x + 1>1x - 42. (Example 2)
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The equation is true, so x = -1>2 is a valid solution. The original equation is not 
defined for x = 3, so x = 3 is an extraneous solution.

Support Graphically The graph of

ƒ1x2 =
2x

x - 1
+

1
x - 3

-
2

x2 - 4x + 3

in Figure 2.59 suggests that x = -1>2 is an x-intercept and x = 3 is not.

Interpret Only x = -1>2 is a solution. Now try Exercise 13.

We will see that Example 4 has no solutions.

Eliminating Extraneous Solutions
Solve

x - 3
x

+
3

x + 2
+

6

x2 + 2x
= 0.

SOLUTION The LCD is x1x + 22. 

 
x - 3

x
+

3
x + 2

+
6

x2 + 2x
= 0

 1x - 321x + 22 + 3x + 6 = 0  Multiply by x1x + 22.
 x2 - x - 6 + 3x + 6 = 0  Expand.

 x2 + 2x = 0  Simplify.

 x1x + 22 = 0  Factor.

 x = 0 or x = -2

Substituting x = 0 or x = -2 into the original equation results in division by zero. 
So both of these numbers are extraneous solutions and the original equation has  
no solution. Now try Exercise 17.

EXAMPLE 4 

Applications

Calculating Acid Mixtures
How much pure acid must be added to 50 mL of a 35% acid solution to produce a 
mixture that is 75% acid? (See Figure 2.60.)

SOLUTION 

Model

Word statement: 
mL of pure acid

mL of mixture
= concentration of acid

 0.35 * 50 or 17.5 = mL of pure acid in 35% solution

 x = mL of acid added

 x + 17.5 = mL of pure acid in resulting mixture

 x + 50 = mL of the resulting mixture

 
x + 17.5
x + 50

= concentration of acid

Solve Graphically

x + 17.5
x + 50

= 0.75 Equation to be solved

EXAMPLE 5 

(continued)

[24.7, 4.7] by [210, 10]

Figure 2.59 The graph of ƒ1x2 =  
2x>1x - 12 + 1>1x - 32 - 2>1x2 - 4x + 32,  
with the missing point at 13, 3.52 emphasized.  
Note that some graphers may not display such 
points. (Example 3)

Pure acid

50 mL of a 35%
acid solution

Figure 2.60 Mixing solutions.  
(Example 5)
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X=14.142136 Y=56.568542
Minimum

[0, 50] by [0, 150]

Figure 2.63 A graph of 
P1x2 = 2x + 400>x. (Example 6)

2r

h

Figure 2.64 A tomato juice can.  
(Example 7)

0

0.2

0.4

0.6

0.8

1.0

40 80
mL of acid

Intersection:  x = 80; y = .75

Acid Mixture

C
on

ce
nt

ra
tio

n

120 160
x

y

Figure 2.61 The graphs of 
ƒ1x2 = 1x + 17.52>1x + 502 and 
g1x2 = 0.75. (Example 5)

Figure 2.61 shows graphs of ƒ1x2 = 1x + 17.52>1x + 502 and g1x2 = 0.75. The 
point of intersection is (80, 0.75).

Interpret We need to add 80 mL of pure acid to the 35% acid solution to make a 
solution that is 75% acid. Now try Exercise 31.

Finding a Minimum Perimeter
Find the dimensions of the rectangle with minimum perimeter if its area is  
200 square meters. Find this least perimeter.

SOLUTION

Model Draw the diagram in Figure 2.62.

EXAMPLE 6 

x

200
x

200
x

A = 200 = x ba

Figure 2.62 A rectangle with area 200 m2. (Example 6)

Word statement: Perimeter = 2 * length + 2 * width

x = width in meters

200
x

=
area

width
= length in meters

Function to be minimized: P1x2 = 2x + 2a200
x
b = 2x +

400
x

Solve Graphically The graph of P in Figure 2.63 shows a minimum of approxi-
mately 56.57, occurring when x ≈ 14.14.

Interpret A width of about 14.14 m produces the minimum perimeter of about 
56.57 m. Because 200>14.14 ≈ 14.14, the dimensions of the rectangle with 
 minimum perimeter are 14.14 m by 14.14 m, a square. Now try Exercise 35.

Designing a Juice Can
Stewart Cannery packages tomato juice in 2-L cylindrical cans. Find the radius and 
height of the cans if the cans have a surface area of 1000 cm2. (See Figure 2.64.)

SOLUTION 

Model

 S = surface area of can in cm2

 r = radius of can in centimeters

 h = height of can in centimeters

Using volume 1V2 and surface area 1S2 formulas and the fact that 1 L = 1000 cm3, 
we conclude that

V = pr2h = 2000  and S = 2pr2 + 2prh = 1000.

EXAMPLE 7 

X=9.6549296  Y=1000
Intersection

[0, 20] by [0, 4000]

Figure 2.65 Two points of intersection  
(Example 7)
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So

 2pr2 + 2prh = 1000

 2pr2 + 2pra2000

pr2 b = 1000 Substitute h = 2000>1pr 22.

 2pr2 +
4000

r
= 1000 Equation to be solved

Solve Graphically Figure 2.65 shows the graphs of ƒ1x2 = 2pr2 + 4000>r and 
g1x2 = 1000. One point of intersection occurs when r is approximately 9.65. A 
 second point of intersection occurs when r is approximately 4.62.

Because h = 2000>1pr22, the corresponding values for h are

h =
2000

p14.619 c 22 ≈ 29.83 and h =
2000

p19.654 c 22 ≈ 6.83.

Interpret With a surface area of 1000 cm2, the cans either have a radius of 4.62 cm 
and a height of 29.83 cm or have a radius of 9.65 cm and a height of 6.83 cm.

Now try Exercise 37.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the missing numerator or denominator.

 1. 
2x

x - 3
=

?

x2 + x - 12
 2. 

x - 1
x + 1

=
x2 - 1

?

In Exercises 3–6, find the LCD and rewrite the expression as a single 
fraction reduced to lowest terms.

 3. 
5
12

+
7
18

-
5
6

 4. 
3

x - 1
-

1
x

 5. 
x

2x + 1
-

2
x - 3

 6. 
x + 1

x2 - 5x + 6
-

3x + 11

x2 - x - 6

In Exercises 7–10, use the quadratic formula to find the zeros of the 
quadratic polynomials.

 7. 2x2 - 3x - 1 8. 2x2 - 5x - 1

 9. 3x2 + 2x - 2 10. x2 - 3x - 9

QUICK REVIEW 2.7 (For help, go to Sections A.3. and P.5.) 

In Exercises 13–18, solve the equation algebraically. Check for extrane-
ous solutions. Support your answer graphically.

 13. 
3x

x + 5
+

1
x - 2

=
7

x2 + 3x - 10

 14. 
4x

x + 4
+

3
x - 1

=
15

x2 + 3x - 4

 15. 
x - 3

x
-

3
x + 1

+
3

x2 + x
= 0

 16. 
x + 2

x
-

4
x - 1

+
2

x2 - x
= 0

 17. 
3

x + 2
+

6

x2 + 2x
=

3 - x
x

 18. 
x + 3

x
-

2
x + 3

=
6

x2 + 3x

SECTION 2.7 Exercises

In Exercises 1–6, solve the equation algebraically. Support your answer 
numerically and identify any extraneous solutions.

 1. 
x - 2

3
+

x + 5
3

=
1
3

 2. x - 2 =
15
x

 3. x + 5 =
14
x

 4. 
1
x

-
2

x - 3
= 4 

 5. x +
4x

x - 3
=

12
x - 3

 6. 
3

x - 1
+

2
x

= 8

In Exercises 7–12, solve the equation algebraically and graphically. 
Check for extraneous solutions.

 7. x +
10
x

= 7  8. x + 2 =
15
x

 9. x +
12
x

= 7  10. x +
6
x

= -7

 11. 2 -
1

x + 1
=

1

x2 + x
 12. 2 -

3
x + 4

=
12

x2 + 4x
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In Exercises 19–22, two possible solutions to the equation ƒ1x2 = 0  
are listed. Use the given graph of y = ƒ1x2 to decide which, if any, are 
extraneous.

 19. x = -5 or x = -2

[210, 8.8] by [25, 5]

 20. x = -2 or x = 3

[24.7, 4.7] by [25, 5]

 21. x = -2 or x = 2

[24.7, 4.7] by [210, 10]

 22. x = 0 or x = 3

[24.7, 4.7] by [25, 5]

In Exercises 23–30, solve the equation.

 23. 
2

x - 1
+ x = 5

 24. 
x2 - 6x + 5

x2 - 2
= 3

 25. 
x2 - 2x + 1

x + 5
= 0

 26. 
3x

x + 2
+

2
x - 1

=
5

x2 + x - 2

 27. 
4x

x + 4
+

5
x - 1

=
15

x2 + 3x - 4

 28. 
3x

x + 1
+

5
x - 2

=
15

x2 - x - 2

 29. x2 +
5
x

= 8

 30. x2 -
3
x

= 7

 31. Acid Mixture Suppose that x mL of pure acid is added to 
125 mL of a 60% acid solution. How many milliliters of pure 
acid must be added to obtain a solution of 83% acid?

(a) Explain why the concentration C1x2 of the new mixture is

C1x2 =
x + 0.611252

x + 125
.

(b) Suppose the viewing window in the figure below is used to 
find a solution to the problem. What is the equation of the 
horizontal line?

(c) Writing to Learn Write and solve an equation that 
answers the question of this problem. Explain your  
answer.

 

0

0.2

0.4

0.6

0.8

1.0

50 100
mL of acid

Acid Mixture

C
on

ce
nt

ra
tio

n

200150 250
x

y

 32. Acid Mixture Suppose that x mL of pure acid is added to 
100 mL of a 35% acid solution.

(a) Model the concentration C1x2 of the new mixture with a 
function of x.

(b) Use a graph to determine how much pure acid should be 
added to the 35% solution to produce a new solution that is 
75% acid.

(c) Solve (b) algebraically.

 33. Breaking Even Mid Town Sports Apparel, Inc., has found 
that it needs to sell golf hats for $2.75 each in order to be com-
petitive. It costs $2.12 to produce each hat, and the business 
has weekly overhead costs of $3000.

(a) Let x be the number of hats produced each week. Model 
the average cost (including overhead costs) of producing 
one hat with a function of x.

(b) Solve algebraically to find the number of golf hats that 
must be sold each week to make a profit. Support your 
answer graphically.

(c) Writing to Learn How many golf hats must be sold 
to make a profit of $1000 in 1 week? Explain your 
answer.
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 34. Bear Population The number of bears at any time t (in 
years) in a federal game reserve is modeled by

P1t2 =
500 + 250t
10 + 0.5t

.

(a) Find the population of bears when the value of t is 10, 40, 
and 100.

(b) Does the graph of the bear population have a horizontal 
asymptote? If so, what is it? If not, why not?

0 200

100

200

300

400

500

50 100 150 250
Time (years)

Wildlife Population

N
um

be
r 

of
 b

ea
rs

x

y

(c) Writing to Learn According to this model, what is the 
largest the bear population can become? Explain your 
answer.

 35. Minimizing Perimeter Consider all rectangles with an area 
of 182 ft2. Let x be the length of one side of such a rectangle.

(a) Express the perimeter P as a function of x.

(b) Find the dimensions of the rectangle that has the least 
perimeter. What is the least perimeter?

 36. Group Activity Page Design Hendrix Publishing Co. 
wants to design a page that has a 0.75-in. left border, a 1.5-in. 
top border, and borders on the right and bottom of 1 in. They 
are to surround 40 in.2 of print material. Let x be the width of 
the print material.

(a) Express the area of the page as a function of x.

(b) Find the dimensions of the page that has the least area. 
What is the least area?

 37. Industrial Design Drake Cannery will pack peaches in 
0.5-L cylindrical cans. Let x be the radius of the can in cm.

(a) Express the surface area S of the can as a function of x.

(b) Find the radius and height of the can if the surface area is 
900 cm2.

 38. Group Activity Designing a Swimming Pool  
Thompson Recreation, Inc., wants to build a rectangular swim-
ming pool with the top of the pool having surface area 1000 ft2. 
The pool is required to have a walk of uniform width 2 ft sur-
rounding it. Let x be the length of one side of the pool.

(a) Express the area of the plot of land needed for the pool and 
surrounding sidewalk as a function of x.

(b) Find the dimensions of the plot of land that has the least 
area. What is the least area?

Table 2.21 Expectation for Remaining Life

Age (years) Remaining Years

 70 15.1
 80  9.1
 90  5.0
100  2.6

Source: National Vital Statistics Reports, Vol. 56, No. 9, 
December 2007.

(a) Draw a scatter plot of these data together with the model

E1a2 =
170

a - 58
,

 where a is a person’s age and E is the expected years 
remaining in the person’s life.

(b) Use the model to predict how much longer the average 
U.S. 74-year-old will live.

 39. Resistors The total electrical resistance R of two resistors 
connected in parallel with resistances R1 and R2 is given by

1
R

=
1
R1

+
1
R2

.

  One resistor has a resistance of 2.3 ohms. Let x be the resis-
tance of the second resistor.

(a) Express the total resistance R as a function of x.

(b) Find the resistance of the second resistor if the total resis-
tance of the pair is 1.7 ohms.

 40. Designing Rectangles Consider all rectangles with  
an area of 200 m2. Let x be the length of one side of such a 
rectangle.

(a) Express the perimeter P as a function of x.

(b) Find the dimensions of a rectangle whose perimeter is 70 m.

 41. Swimming Pool Drainage Drains A and B are used to 
empty a swimming pool. Drain A alone can empty the pool in 
4.75 hr. Let t be the time it takes for drain B alone to empty the 
pool.

(a) Express as a function of t the part D of the drainage that 
can be done in 1 hr with both drains open at the same time.

(b) Find graphically the time it takes for drain B alone to empty 
the pool if both drains, when open at the same time, can 
empty the pool in 2.6 hr. Confirm algebraically.

 42. Time-Rate Problem Josh rode his bike 17 mi from his 
home to Columbus, and then traveled 53 mi by car from 
Columbus to Dayton. Assume that the average rate of the car 
was 43 mph faster than the average rate of the bike.

(a) Express the total time required to complete the 70-mi trip 
(bike and car) as a function of the rate x of the bike.

(b) Find graphically the rate of the bike if the total time of the 
trip was 1 h 40 min. Confirm algebraically.

 43. Late Expectations Table 2.21 shows the average number 
of years remaining to be lived by U.S. residents surviving to 
particular ages.
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254 CHAPTER 2  Polynomial, Power, and Rational Functions

  A model for these data is given by y =
238,300

2x + 1
.

(a) Graph the model together with a scatter plot of the data.

(b) Use the model to estimate the improvement in fuel econ-
omy a manufacturer could achieve by finding a way to 
reduce the weight of a current 3200-lb car by 100 lb.

Standardized Test Questions
 45. True or False An extraneous solution of a rational equation 

is also a solution of the equation. Justify your answer.

 46. True or False The equation 1>1x2 - 42 = 0 has no solu-
tion. Justify your answer.

In Exercises 47–50, solve the problem without using a calculator.

 47. Multiple Choice Which of the following are the solutions 

of the equation x -
3x

x + 2
=

6
x + 2

 ?

(A) x = -2 or x = 3

(B) x = -1 or x = 3

(C) Only x = -2

(D) Only x = 3

(E) There are no solutions.

 48. Multiple Choice Which of the following are the solutions 

of the equation 1 -
3
x

=
6

x2 + 2x
?

(A) x = -2 or x = 4

(B) x = -3 or x = 0

(C) x = -3 or x = 4

(D) Only x = -3

(E) There are no solutions.

Table 2.22 2016 Ford Cars

Model Weight (lb)
Fuel Economy 

(mpg)

Focus 2952 40.45
Fusion 3472 33.21
Mustang 3531 33.07
Edge 3912 31.40
Escape 4439 26.18

Sources: Ford Motor Company and U.S. Department  
of Energy.

 44. Fuel Economy The weight of a vehicle is a major factor  
in its fuel consumption. Table 2.22 lists the weights and gas 
mileage performances for five 2016 Ford models.

 49. Multiple Choice Which of the following are the solu-

tions of the equation 
x

x + 2
+

2
x - 5

=
14

x2 - 3x - 10
 ?

(A) x = -5 or x = 3

(B) x = -2 or x = 5

(C) Only x = 3

(D) Only x = -5

(E) There are no solutions.

 50. Multiple Choice Ten liters of a 20% acid solution are 
mixed with 30 L of a 30% acid solution. Which of the fol-
lowing is the percent of acid in the final mixture?

(A) 21% (B)  22.5% (C)  25% 

(D) 27.5% (E)  28%

Explorations
 51. Revisiting Example 4 Consider the following equa-

tion, which we solved in Example 4.

x - 3
x

+
3

x + 2
+

6

x2 + 2x
= 0

  Let ƒ1x2 =
x - 3

x
+

3
x + 2

+
6

x2 + 2x
.

(a) Combine the fractions in ƒ1x2 but do not reduce to 
lowest terms.

(b) What is the domain of ƒ?

(c) Write ƒ as a piecewise-defined function.

(d) Writing to Learn Graph ƒ and explain how the 
graph supports your answers in (b) and (c).

Extending the Ideas
In Exercises 52–55, solve for x.

 52. y = 1 +
1

1 + x
 53. y = 1 -

1
1 - x

 54. y = 1 +
1

1 +
1
x

 55. y = 1 +
1

1 +
1

1 - x
    

M03_DEMA8962_10_GE_C02.indd   254 22/06/22   11:46



 SECTION 2.8 Solving Inequalities in One Variable 255

What you’ll learn about
• Polynomial Inequalities

• Rational Inequalities

• Other Inequalities

• Applications

... and why
Designing containers, as well as 
other types of applications, often 
requires solving an inequality.

Polynomial Inequalities
A polynomial inequality takes the form ƒ1x2 7 0, ƒ1x2 Ú 0, ƒ1x2 6 0, ƒ1x2 … 0, or 
ƒ1x2 ≠ 0, where ƒ1x2 is a polynomial. There is a fundamental connection between 
inequalities and the positive or negative sign of the corresponding expression ƒ1x2:
• To solve ƒ1x2 7 0 is to find the values of x that make ƒ1x2 positive.

• To solve ƒ1x2 6 0 is to find the values of x that make ƒ1x2 negative.

If the expression ƒ1x2 is a product, we can determine its sign by determining the sign of 
each of its factors. Example 1 illustrates that a polynomial function changes sign only 
at its real zeros of odd multiplicity.

2.8 Solving Inequalities in One Variable

[24, 6] by [2100, 200]

Figure 2.66 The graph of 
ƒ1x2 = 1x + 321x2 + 121x - 422.  
(Example 1)

Finding Where a Polynomial Is Zero,  
Positive, or Negative

Let ƒ1x2 = 1x + 321x2 + 121x - 422. Determine the real number values of x that 
cause ƒ1x2 to be (a) zero, (b) positive, (c) negative.

SOLUTION We begin by verbalizing our analysis of the problem:

(a) The real zeros of ƒ1x2 are -3 (with multiplicity 1) and 4 (with multiplicity 2). So 
ƒ1x2 is zero if x = -3 or x = 4.

(b) The factor x2 + 1 is positive for all real numbers x. The factor 1x - 422 is posi-
tive for all real numbers x except x = 4, which makes 1x - 422 = 0. The factor 
x + 3 is positive if and only if x 7 -3. So ƒ1x2 is positive if x 7 -3 and 
x ≠ 4.

(c) By the process of elimination, ƒ1x2 is negative if x 6 -3.

This verbal reasoning process is aided by the following sign chart, which shows the 
x-axis as a number line with the real zeros displayed as the locations of potential sign 
change and the factors displayed with their sign value in the corresponding interval:

 1-2 1+2 1-22 1+2 1+2 1-22 1+2 1+2 1+22

 Negative Positive Positive 
x

 -3 4
Figure 2.66 supports our findings because the graph of ƒ is above the x-axis for x in 
1-3, 42 or 14, ∞2, is on the x-axis for x = -3 or x = 4, and is below the x-axis for x 
in 1-∞, -32. Now try Exercise 1.

EXAMPLE 1 

Based on Example 1 we can report the solutions of four polynomial inequalities:

• The solution of 1x + 321x2 + 121x - 422 7 0 is 1-3, 42 ∪ 14, ∞2.
• The solution of 1x + 321x2 + 121x - 422 Ú 0 is 3-3, ∞2.
• The solution of 1x + 321x2 + 121x - 422 6 0 is 1-∞, -32.
• The solution of 1x + 321x2 + 121x - 422 … 0 is 1-∞, -34 ∪ 546 .

Example 1 illustrates some important general characteristics of polynomial functions 
and polynomial inequalities. The polynomial function ƒ1x2 = 1x + 321x2 + 121x - 422 
in Example 1 and Figure 2.66:
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256 CHAPTER 2  Polynomial, Power, and Rational Functions

• changes sign at its real zero of odd multiplicity 1x = -32;
• touches the x-axis but does not change sign at its real zero of even multiplicity 
1x = 42;

• has no x-intercepts or sign changes at its nonreal complex zeros associated with the 
irreducible quadratic factor 1x2 + 12.

This is consistent with what we learned about the relationships between zeros and 
graphs of polynomial functions in Sections 2.3–2.5. The real zeros and their multiplic-
ity, together with the end behavior of a polynomial function, give us sufficient informa-
tion about the polynomial to sketch its graph well enough to obtain a correct sign chart, 
as shown in Figure 2.67.

Worth Trying
You may wish to make a table or graph for the 
function ƒ in Example 2 to support the analytical 
approach used.

x
–3 4Negative due to

end behavior
Positive due to
multiplicity of

zeros

Positive due to
end behavior

Odd multiplicity:
Sign change

Even multiplicity:
No sign change

Figure 2.67 The sign chart and graph of ƒ1x2 = 1x + 321x2 + 121x - 422 overlaid.

Sketching a Graph of a Polynomial  
from Its Sign Chart

Use your knowledge of end behavior and multiplicity of real zeros to create a 
sign chart and sketch the graph of the function. Check your sign chart using the 
factor method of Example 1. Then check your sketch using a grapher.

 1. ƒ1x2 = 21x - 2231x + 322
 2. ƒ1x2 = -1x + 2241x + 1212x2 + x + 12
 3. ƒ1x2 = 31x - 2221x + 4231-x2 - 22

EXPLORATION 1 

So far in this section all of the polynomials have been presented in factored form, and 
all of the inequalities have had zero on one of the sides. Examples 2 and 3 show us how 
to solve polynomial inequalities when they are not given in such a convenient form.

Solving a Polynomial Inequality Analytically
Solve 2x3 - 7x2 - 10x + 24 7 0 analytically.

SOLUTION Let ƒ1x2 = 2x3 - 7x2 - 10x + 24. The Rational Zeros Theorem 
yields several possible rational zeros of ƒ for factoring purposes:

±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24, ±
1
2

, ±
3
2

A table or graph of ƒ can suggest which of these candidates to try. In this case, x = 4 
is a rational zero of ƒ, as the following synthetic division shows:

 4 2 -7 -10 24

   8 4 -24

  2 1 -6 0

EXAMPLE 2 
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 SECTION 2.8 Solving Inequalities in One Variable 257

When a polynomial function has no sign changes, the solutions of the associated 
inequalities can look a bit unusual, as illustrated in Example 4.

The synthetic division lets us start the factoring process, which can then be 
 completed using basic factoring methods:

 ƒ1x2 = 2x3 - 7x2 - 10x + 24

 = 1x - 4212x2 + x - 62
 = (x - 4212x - 321x + 22

So the zeros of ƒ are 4, 3>2, and -2. They are all real and all of multiplicity 1, so 
each will yield a sign change in ƒ1x2. Because the degree of ƒ is odd and its leading 
coefficient is positive, the end behavior of ƒ is given by

lim
xS∞

 ƒ1x2 = ∞ and lim
xS-∞

 ƒ1x2 = -∞.

Our analysis yields the following sign chart:

 Sign Sign Sign
 change change change

 Negative due to  Positive  Negative  Positive due to 
x

 end behavior -2  3>2  4 end behavior

The solution of 2x3 - 7x2 - 10x + 24 7 0 is 1-2, 3>22 ∪ 14, ∞2.
Now try Exercise 11.

Solving a Polynomial Inequality Graphically
Solve x3 - 6x2 … 2 - 8x graphically.

SOLUTION First we rewrite the inequality as x3 - 6x2 + 8x - 2 … 0. Then we  
let ƒ1x2 = x3 - 6x2 + 8x - 2 and find the real zeros of ƒ graphically as shown in 
 Figure 2.68. The three real zeros are approximately 0.32, 1.46, and 4.21. The solution 
consists of the x-values for which the graph is on or below the x-axis. So the solution 
of x3 - 6x2 … 2 - 8x is approximately 1-∞, 0.324 ∪ 31.46, 4.214 .
The end points of these intervals are accurate to two decimal places. We use square 
brackets because the zeros of the polynomial are solutions of the inequality even 
though we have only approximations of their values. Now try Exercise 13.

EXAMPLE 3 

Zero
X=.32486913 Y=0

[22, 5] by [28, 8]

Figure 2.68 The graph of 
ƒ1x2 = x3 - 6x2 + 8x - 2, with one of 
three real zeros highlighted. (Example 3)

Solving a Polynomial Inequality  
with Unusual Answers

(a) The inequalities associated with the strictly positive polynomial function 
ƒ1x2 = (x2 + 7212x2 + 12 have unusual solution sets. We use Figure 2.69a as a 
guide to solving the inequalities:

• The solution of 1x2 + 7212x2 + 12 7 0 is 1-∞, ∞2, all real numbers.

• The solution of 1x2 + 7212x2 + 12 Ú 0 is also 1-∞, ∞2.
• The solution set of 1x2 + 7212x2 + 12 6 0 is empty. We say an inequality of 

this sort has no solution.

• The solution set of 1x2 + 7212x2 + 12 … 0 is also empty, so the inequality 
has no solution.

EXAMPLE 4 

(continued)
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258 CHAPTER 2  Polynomial, Power, and Rational Functions

(a)

[24.7, 4.7] by [220, 100]

(b)

[24.7, 4.7] by [220, 100]

Figure 2.69 The graphs of

(a) ƒ1x2 = 1x2 + 7212x2 + 12 and

(b) g1x2 = 1x2 - 3x + 3212x + 522. 
(Example 4)

(b) The inequalities associated with the nonnegative polynomial function g1x2 =  
1x2 - 3x + 3212x + 522 also have unusual solution sets. We use Figure 2.69b 
as a guide to solving the inequalities:

• The solution of 1x2 - 3x + 32 12x + 522 7 0 is 1-∞, -5>22 ∪ 1-5>2, ∞2, 
all real numbers except x = -5>2, the lone real zero of g.

• The solution of 1x2 - 3x + 3212x + 522 Ú 0 is 1-∞, ∞2, all real numbers.

• The inequality 1x2 - 3x + 3212x + 522 6 0 has no solution.

• The solution of 1x2 - 3x + 3212x + 522 … 0 is the single number 
x = -5>2. Now try Exercise 21.

Rational Inequalities
A polynomial function p1x2 is positive, negative, or zero for all real numbers x, but a 
rational function r1x2 can be positive, negative, zero, or undefined. In particular, a 
rational function is undefined at the zeros of its denominator. Thus, when solving ratio-
nal inequalities, we modify the kind of sign chart used in Example 1 to include the real 
zeros of both the numerator and the denominator as locations of potential sign change.

Creating a Sign Chart for a Rational Function
Let r1x2 = 12x + 12>11x + 321x - 122. Determine the real number values of x that 
cause r1x2 to be (a) zero, (b) undefined. Then make a sign chart to determine the real 
number values of x that cause r1x2 to be (c) positive, (d) negative.

SOLUTION 

(a) The real zeros of r1x2 are the real zeros of the numerator 2x + 1. So r1x2 is zero 
if x = -1>2.

(b) r1x2 is undefined when the denominator 1x + 321x - 12 = 0. So r1x2 is unde-
fined if x = -3 or x = 1.

These findings lead to the following sign chart, with three points of potential sign 
change:

 Potential Potential Potential 
 sign change sign change sign change

 -3 -1>2 1 

x

Analyzing the factors of the numerator and denominator yields:

 
1-2
1-21-2 und. 

1-2
1+21-2 0 

1+2
1+21-2 und. 

1+2
1+21+2

 Negative -3 Positive -1>2 Negative 1 Positive 
x

(c) So r1x2 is positive if -3 6 x 6 -1>2 or x 7 1, and the solution of 
12x + 12>11x + 321x - 122 7 0 is 1-3, -1>22 ∪ 11, ∞2.

(d) Similarly, r1x2 is negative if x 6 -3 or -1>2 6 x 6 1, and the solution of 
12x + 12>11x + 321x - 122 6 0 is 1-∞, -32 ∪ 1-1>2, 12.

Figure 2.70 supports our findings because the graph of r is above the x-axis for x in 
1-3, -1>22 ∪ 11, ∞2 and is below the x-axis for x in 1-∞, -32 ∪ 1-1>2, 12.

Now try Exercise 25.

EXAMPLE 5 

[24.7, 4.7] by [23.1, 3.1]

Figure 2.70 The graph of 
r1x2 = 12x + 12>11x + 321x - 122. 
(Example 5)
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Solving a Rational Inequality  
by Combining Fractions

Solve 
5

x + 3
+

3
x - 1

6 0.

SOLUTION We combine the two fractions on the left-hand side of the inequality 
using the least common denominator, 1x + 321x - 12:

 
5

x + 3
+

3
x - 1

6 0 Original inequality

 
51x - 12

1x + 321x - 12 +
31x + 32

1x + 321x - 12 6 0 Use LCD to rewrite fractions.

 
51x - 12 + 31x + 32
1x + 321x - 12 6 0 Add fractions.

 
5x - 5 + 3x + 9
1x + 321x - 12 6 0 Distributive property

 
8x + 4

1x + 321x - 12 6 0 Simplify.

 
2x + 1

1x + 321x - 12 6 0 Divide both sides by 4.

This inequality matches Example 5d. The solution is 1-∞, -32 ∪ 1-1>2, 12.
Now try Exercise 49.

EXAMPLE 6 

Other Inequalities
The sign chart method can be adapted to solve other types of inequalities, and we can 
support our solutions graphically as needed or desired.

Solving an Inequality Involving a Radical
Solve 1x - 322x + 1 Ú 0.

SOLUTION Let ƒ1x2 = 1x - 322x + 1. Because of the factor 2x + 1, ƒ1x2 is 
undefined if x 6 -1. The zeros of ƒ are 3 and -1. These findings, along with a sign 
analysis of the two factors, lead to the following sign chart:

  0 1-21+2 0 1+21+2

 Undefined -1 Negative 3 Positive 

x

The solution of 1x - 322x + 1 Ú 0 is 5-16 ∪ 33, ∞2. The graph of ƒ in  
Figure 2.71 supports this solution. Now try Exercise 43.

EXAMPLE 7 

Solving an Inequality Involving Absolute Value

Solve 
x - 2

0 x + 3 0 … 0.

SOLUTION Let ƒ1x2 = 1x - 22> 0 x + 3 0 . Because 0 x + 3 0  is in the denominator, 
ƒ1x2 is undefined if x = -3. The only zero of ƒ is 2. These findings, along with a 
sign analysis of the two factors, lead to the following sign chart:

 
1-2
0- 0  und.  

1-2
0 + 0  0 

1+2
0 + 0

 Negative -3 Negative 2 Positive 
x

The solution of 1x - 22> 0 x + 3 0 … 0 is 1-∞, -32 ∪ 1-3, 24 . The graph of ƒ in 
Figure 2.72 supports this solution. Now try Exercise 53.

EXAMPLE 8 

[24.7, 4.7] by [23.1, 3.1]

Figure 2.71 The graph of 

ƒ1x2 = 1x - 322x + 1. (Example 7)

[27, 7] by [28, 2]

Figure 2.72 The graph of 
ƒ1x2 = 1x - 22> 0 x + 3 0 . (Example 8)
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Designing a Box—Revisited
Dixie Packaging Company has contracted with another firm to design boxes with a vol-
ume of at least 600 in.3. Squares are still to be cut from the corners of a 20-in. by 25-in. 
piece of cardboard, with the flaps folded up to make an open box. What size squares 
should be cut from the cardboard? (See Example 9 of Section 2.3 and Figure 2.32.)

SOLUTION 

Model Recall that the volume V of the box is given by

V1x2 = x125 - 2x2120 - 2x2,
where x represents both the side length of the removed squares and the height of the 
box. To obtain a volume of at least 600 in.3, we solve the inequality

x125 - 2x2120 - 2x2 Ú 600.

Solve Graphically Because the width of the cardboard is 20 in., 0 … x … 10, and 
we set our window accordingly. In Figure 2.73, we find the values of x for which the 
cubic function is on or above the horizontal line. The solution is the interval 
31.66, 6.164 .
Interpret Squares with side lengths between 1.66 in. and 6.16 in., inclusive, should 
be cut from the cardboard to produce a box with a volume of at least 600 in.3.

Now try Exercise 59.

EXAMPLE 9 

Applications

Designing a Juice Can—Revisited
Stewart Cannery will package tomato juice in 2-L 12000@cm32 cylindrical cans.
Find the radius and height of the cans if the cans have a surface area that is less than 
1000 cm2. (See Example 7 of Section 2.7 and Figure 2.65.)

SOLUTION 

Model Recall that the surface area S is given by

S1r2 = 2pr2 +
4000

r
.

The inequality to be solved is

2pr2 +
4000

r
6 1000.

Solve Graphically Figure 2.74 shows the graphs of y1 = S1r2 = 2pr2 + 4000>r 
and y2 = 1000. Using grapher methods, we find that the two curves intersect at 
approximately r ≈ 4.619c and r ≈ 9.654. c (We carry all the extra decimal 
places for greater accuracy in a computation below.) So the surface area is less than 
1000 cm3 if

4.62 6 r 6 9.65.

The volume of a cylindrical can is V = pr2h and V = 2000. Using substitution we 
see that h = 2000>1pr22. To find the values for h we build a double inequality for 
2000>1pr22.

EXAMPLE 10 

Intersection
X=1.658749 Y=600

[0, 10] by [0, 1000]

Figure 2.73 The graphs of 
y1 = x125 - 2x2120 - 2x2 and y2 = 600. 
(Example 9)

[0, 20] by [0, 3000]

Figure 2.74 The graphs of 
y1 = 2px2 + 4000>x and y2 = 1000. 
(Example 10)
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 4.62 6  r  6 9.65  Original inequality

 4.622 6  r2  6 9.652  0 6 a 6 b 1 a2 6 b2.

 p # 4.622 6  pr2  6 p # 9.652  Multiply by p.

 
1

p # 4.622 7  
1

pr2  7
1

p # 9.652  0 6 a 6 b 1
1
a

7
1
b

.

 
2000

p # 4.622 7
2000

pr2  7
2000

p # 9.652  Multiply by 2000.

 
2000

p14.619 c 22 7  h   7
2000

p19.654 c 22 Use the extra decimal places now.

 29.83 7  h  7 6.83  Compute.

 h H 16.83, 29.832 Interval notation

Interpret The surface area of the can will be less than 1000 cm3 if its radius is 
between 4.62 cm and 9.65 cm and its height is between 6.83 cm and 29.83 cm. For 
any particular can, h must equal 2000>1pr22. Now try Exercise 61.

Exercise numbers with a gray background indicate problems that  
the authors have designed to be solved without a calculator.

In Exercises 1–4, use limits to state the end behavior of the function.

 1. ƒ1x2 = 2x3 + 3x2 - 2x + 1

 2. ƒ1x2 = -3x4 - 3x3 + x2 - 1

 3. g1x2 =
x3 - 2x2 + 1

x - 2

 4. g1x2 =
2x2 - 3x + 1

x + 1

In Exercises 5–8, combine the fractions and reduce your answer to  
lowest terms.

 5. x2 +
5
x

 6. x2 -
3
x

 7. 
x

2x + 1
-

2
x - 3

 8. 
x

x - 1
+

x + 1
3x - 4 

In Exercises 9 and 10, (a) list all the possible rational zeros of the 
 polynomial and (b) factor the polynomial completely.

 9. 2x3 + x2 - 4x - 3 10. 3x3 - x2 - 10x + 8

QUICK REVIEW 2.8 (For help, go to Sections A.2, A.3, and 2.3.)

 10. 12x - 721x2 - 4x + 42 7 0

 11. 2x3 - 3x2 - 11x + 6 Ú 0

 12. x3 - 4x2 + x + 6 … 0

In Exercises 13–20, solve the polynomial inequality graphically.

 13. x3 - x2 - 2x Ú 0

 14. 2x3 - 5x2 + 3x 6 0

 15. 2x3 - 5x2 - x + 6 7 0

 16. x3 - 4x2 - x + 4 … 0

 17. 3x3 - 2x2 - x + 6 Ú 0

 18. -x3 - 3x2 - 9x + 4 6 0

 19. 2x4 - 3x3 - 6x2 + 5x + 6 6 0

 20. 3x4 - 5x3 - 12x2 + 12x + 16 Ú 0

SECTION 2.8 Exercises

In Exercises 1–6, determine the x values that cause the polynomial 
function to be (a) zero, (b) positive, and (c) negative.

 1. ƒ1x2 = 1x + 221x + 121x - 52
 2. ƒ1x2 = 1x - 7213x + 121x + 42
 3. ƒ1x2 = 1x + 721x + 421x - 622
 4. ƒ1x2 = 15x + 321x2 + 621x - 12
 5. ƒ1x2 = 12x2 + 521x - 8221x + 123
 6. ƒ1x2 = 1x + 22314x2 + 121x - 924
In Exercises 7–12, complete the factoring if needed, and solve the 
 polynomial inequality using a sign chart. Support graphically.

 7. 1x + 121x - 322 7 0

 8. 12x + 121x - 2213x - 42 … 0

 9. 1x + 121x2 - 3x + 22 6 0
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In Exercises 21–24, solve the following inequalities for the given 
 function ƒ1x2.

(a) ƒ1x2 7 0 (b) ƒ1x2 Ú 0 (c) ƒ1x2 6 0 (d) ƒ1x2 … 0

 21. ƒ1x2 = 1x2 + 4212x2 + 32
 22. ƒ1x2 = 1x2 + 121-2 - 3x22
 23. ƒ1x2 = 12x2 - 2x + 5213x - 422
 24. ƒ1x2 = 1x2 + 4213 - 2x22
In Exercises 25–32, determine the real values of x that cause the func-
tion to be (a) zero, (b) undefined, (c) positive, and (d) negative.

 25. ƒ1x2 =
x - 1

12x + 321x - 42

 26. ƒ1x2 =
12x - 721x + 12

x + 5

 27. ƒ1x2 = x2x + 3 28. ƒ1x2 = x2 0 2x + 9 0
 29. ƒ1x2 =

2x + 5
12x + 121x - 12

 30. ƒ1x2 =
x - 1

1x - 422x + 2

 31. ƒ1x2 =
12x + 522x - 3

1x - 422

 32. ƒ1x2 =
3x - 1

1x + 322x - 5

In Exercises 33–44, solve the inequality using a sign chart. Support  
graphically.

 33. 
x - 1

x2 - 4
6 0 34. 

x + 2

x2 - 9
6 0

 35. 
x2 - 1

x2 + 1
… 0  36. 

x2 - 4

x2 + 4
7 0

 37. 
x2 + x - 12

x2 - 4x + 4
7 0 38. 

x2 + 3x - 10

x2 - 6x + 9
6 0

 39. 
x3 - x

x2 + 1
Ú 0 40. 

x3 - 4x

x2 + 2
… 0

 41. x 0 x - 2 0 7 0 42. 
x - 3

0 x + 2 0 6 0

 43. 12x - 122x + 4 6 0 44. 13x - 4222x + 1 Ú 0

In Exercises 45–54, solve the inequality.

 45. 
x31x - 22
1x + 322 6 0  46. 

1x - 524
x1x + 32 Ú 0

 47. x2 -
2
x

7 0 48. x2 +
4
x

Ú 0

 49. 
1

x + 1
+

1
x - 3

… 0 50. 
1

x + 2
-

2
x - 1

7 0

 51. 1x + 32 0 x - 1 0 Ú 0 52. 13x + 522 0 x - 2 0 6 0

 53. 
1x - 52 0 x - 2 022x - 3

Ú 0  54. 
x21x - 4232x + 1

6 0

 55. Writing to Learn Write a paragraph that explains two  
ways to solve the inequality 31x - 12 + 2 … 5x + 6.

 56. Company Wages Pederson Electric charges $50 per 
 service call plus $36>hr for repair work. How long did an 
 electrician work if the charge was less than $200? Assume the 
electrician rounds the time to the nearest quarter hour.

 57. Connecting Algebra and Geometry Consider the 
 collection of all rectangles that have lengths 2 in. less than twice 
their widths. Find the possible widths (in inches) of these rect-
angles if their perimeters are less than 200 in. 

 58. Planning for Profit The Grovenor Candy Co. finds that 
the cost of making a certain candy bar is $0.13 per bar. Fixed 
costs amount to $2000 per week. If each bar sells for $0.35, 
find the minimum number of candy bars that will earn the 
 company a profit.

 59. Designing a Cardboard Box  
Picaro’s Packaging Plant wishes to design 
boxes with a volume of not more than  
100 in.3. Squares are to be cut from the 
corners of a 12-in. by 15-in. piece of 
 cardboard (see figure), with the flaps 
folded up to make an open box. What size 
squares should be cut from the cardboard?

 60. Cone Problem Beginning with a circular piece of paper 
with a 4-in. radius, as shown in (a), cut out a sector with an arc 
of length x. Join the two radial edges of the remaining portion 
of the paper to form a cone with radius r and height h, as 
shown in (b). What length of arc will produce a cone with a 
volume greater than 21 in.3?

12 in.

15 in.

x
x

(a)

4 in.
4 in.

sector

x

h

r

(b)

 61. Design a Juice Can Flannery Cannery packs peaches in 
0.5-L cylindrical cans.

(a) Express the surface area S of the can as a function of the 
radius x (in cm).

(b) Find the dimensions of the can if the surface is less than 
900 cm2.

(c) Find the least possible surface area of the can.
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 SECTION 2.8 Solving Inequalities in One Variable 263

 62. Resistors The total electrical resistance R of two resistors 
connected in parallel with resistances R1 and R2 is given by

1
R

=
1
R1

+
1
R2

.

  One resistor has a resistance of 2.3 ohms. Let x be the resis-
tance of the second resistor.

(a) Express the total resistance R as a function of x.

(b) Find the resistance in the second resistor if the total resis-
tance of the pair is at least 1.7 ohms.

 63. The Growing of America Table 2.23 shows the midyear 
(July 1) U.S. population estimates in millions of persons for the 
years 2008 through 2015. Let x be the number of years since 
July 1, 2000.

Table 2.23 U.S. Population

Year Population (in millions)

2008 304.1
2009 306.8
2010 309.3
2011 311.6
2012 314.1
2013 316.5
2014 319.1
2015 321.6

Source: U.S. Census Bureau, 2016.

Table 2.24 Midyear New 
Home Sales Price

Year
Median Price  

(in thousands of dollars)

2007 247.9
2008 232.1
2009 216.7
2010 221.8
2011 227.2
2012 239.8

Source: U.S. Census Bureau, 2013.

(a) Verify that a linear model is appropriate.

(b) Find the linear regression model for the U.S. population in 
millions since the middle of 2000.

(c) When does this model predict that the U.S. population will 
reach 330 million?

 64. Single-Family House Cost  
The midyear median sales prices of 
new, privately owned one-family 
houses sold in the United States during 
the housing crash of the last decade 
are given in Table 2.24. Let x be the 
number of years since July 1, 2000.

(a) Find the quadratic regression model for the data.

(b) When does this model predict that the median price for a new 
home returned to its July 1, 2007, level?

Standardized Test Questions
 65. True or False The graph of ƒ1x2 = x41x + 3221x - 123 

changes sign at x = 0. Justify your answer.

 66. True or False The graph r1x2 =
2x - 1

1x + 221x - 12 changes 

sign at x = -2. Justify your answer.

In Exercises 67–70, solve the problem without using a calculator.

 67. Multiple Choice Which of the following is the solution to 
x2 6 x?

(A)  10, ∞2 (B)  11, ∞2  (C)  10, 12
(D)  1-∞, 12 (E)  1-∞, 02∪ 11, ∞2

 68. Multiple Choice Which of the following is the solution to 
1

1x + 222 Ú 0?

(A)  1-2, ∞2 (B)  All x ≠ -2 (C)  All x ≠ 2

(D)  All real numbers (E)  There are no solutions.

 69. Multiple Choice Which of the following is the solution to 
x2

x - 3
6 0?

(A)  1-∞, 32  (B)  1-∞, 34   (C)  1-∞, 04 ∪ 10, 32
(D)  1-∞, 02∪ 10, 32 (E)  There are no solutions.

 70. Multiple Choice Which of the following is the solution to 
1x2 - 122 … 0?

(A)  5-1, 16  (B)  516  (C)  3-1, 14
(D)  30, 14  (D)  There are no solutions.

Explorations
In Exercises 71 and 72, find the vertical asymptotes and intercepts of 
the rational function. Then use a sign chart and a table of values to 
sketch the function by hand. Support your result using a grapher.  
(Hint: You may need to graph the function in more than one window  
to see different parts of the overall graph.)

 71. ƒ1x2 =
1x - 121x + 222
1x - 321x + 12  72. g1x2 =

1x - 324
x2 + 4x

Extending the Ideas
 73. Group Activity Looking Ahead to Calculus Let 

ƒ1x2 = 3x - 5.

(a) Assume x is in the interval defined by 0 x - 3 0 6 1>3. 
Give a convincing argument that 0 ƒ1x2 - 4 0 6 1.

(b) Writing to Learn  
Explain how (a) is 
modeled by the  figure.

(c) Show how the algebra 
used in (a) can be mod-
ified to show that if 
0 x - 3 0 6 0.01, then 
0 ƒ1x2 - 4 0 6 0.03. 
How would the  
figure at right change 
to reflect these 
inequalities?

7

3
2
1

–1
–2

y

4
5
6

x
–2–3 –1 2 5431

f(x) = 3x – 5
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264 CHAPTER 2  Polynomial, Power, and Rational Functions

 74. Writing to Learn Boolean Operators The Test menu 
of many graphers contains inequality symbols that can be used 
to construct inequality statements, as shown in (a). An answer 
of 1 indicates the statement is true, and 0 indicates the state-
ment is false. In (b), the graph of Y1 = 1x2 - 4 Ú 02 is shown 
using Dot mode and the window 3-4.7, 4.74  by 3-3.1, 3.14 . 
Experiment with the Test menu, and then write a paragraph 
explaining how to interpret the graph in (b).

3≥2

7≥7

4≥9

N

1

1

0

(a) (b)

[24.7, 4.7] by [23.1, 3.1]

In Exercises 75 and 76, use the properties of inequalities from Section P.3 
to prove the statement.

 75. If 0 6 a 6 b, then a2 6 b2.

 76. If 0 6 a 6 b, then 
1
a

7
1
b

.

Rational Zeros Theorem 220
Upper and Lower Bound Test for Real Zeros 221
Fundamental Theorem of Algebra 228
Linear Factorization Theorem 228
Fundamental Polynomial Connections in the Complex 

Case 229
Complex Conjugate Zeros Theorem 232
Factors of a Polynomial with Real Coefficients 229
Polynomial Function of Odd Degree 232
Graph of a Rational Function 239

Procedures

Regression Analysis 181
Synthetic Division 218–219
Solving Inequalities Using Sign Charts 255–259

CHAPTER 2 Key Ideas

Properties, Theorems, and Formulas

Constant Rate of Change Theorem 178
Properties of the Correlation Coefficient, r 180
Vertex Form of a Quadratic Function 183
Vertical Free-Fall Motion 185
Local Extrema and Zeros of Polynomial Functions 206
Leading Term Test for Polynomial End Behavior 207
Zeros of Odd and Even Multiplicity 209
Intermediate Value Theorem 209
Division Algorithm for Polynomials 216
Remainder Theorem 217
Factor Theorem 218
Fundamental Connections for Polynomial  

Functions 218

Gallery of Functions

 

Identity

[24.7, 4.7] by [23.1, 3.1]  

Squaring

[24.7, 4.7] by [21, 5]  

Cubing

[24.7, 4.7] by [23.1, 3.1]  

Reciprocal

[24.7, 4.7] by [23.1, 3.1]

 ƒ1x2 = x ƒ1x2 = x2 ƒ1x2 = x3 ƒ1x2 = 1>x = x-1

 

Square Root 

[24.7, 4.7] by [23.1, 3.1]  

Cube Root

[24.7, 4.7] by [23.1, 3.1]  

Inverse-Square

[24.7, 4.7] by [23.1, 3.1]

 ƒ1x2 = 2x = x1>2 ƒ1x2 = 23 x = x1>3 ƒ1x2 = 1>x2 = x-2
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 22. The force of gravity F acting on an object is inversely propor-
tional to the square of the distance d from the object to the 
 center of Earth. 

In Exercises 23 and 24, write a sentence that expresses the relationship 
in the formula, using the language of variation or proportion.

 23. F = kx, where F is the force it takes to stretch a spring x units 
from its unstressed length and k is the spring’s force constant.

 24. A = p # r2, where A and r are the area and radius of a circle 
and p is the usual mathematical constant.

In Exercises 25–28, state the values of the constants k and a for the 
function ƒ1x2 = k # xa. Describe the portion of the curve that lies in 
Quadrant I or IV. Determine whether ƒ is even, odd, or undefined for 
x 6 0. Describe the rest of the curve if any. Graph the function to see 
whether it matches the description.

 25. ƒ1x2 = 4x1>3 26. ƒ1x2 = -2x3>4

 27. ƒ1x2 = -2x-3 28. ƒ1x2 = 12>32x-4

In Exercises 29–32, divide ƒ1x2 by d1x2, and write a summary state-
ment in polynomial form.

 29. ƒ1x2 = 2x3 - 7x2 + 4x - 5; d1x2 = x - 3

 30. ƒ1x2 = 4x3 + 6x2 + 2; d1x2 = x - 2

 31. ƒ1x2 = 2x4 - 3x3 + 9x2 - 14x + 7; d1x2 = x2 + 4

 32. ƒ1x2 = 3x4 - 5x3 - 2x2 + 3x - 6; d1x2 = 3x + 1

In Exercises 33 and 34, use the Remainder Theorem to find the remain-
der when ƒ1x2 is divided by x - k. Check by using synthetic division.

 33. ƒ1x2 = 3x3 - 2x2 + x - 5; k = -2 

 34. ƒ1x2 = -x2 + 4x - 5; k = 3 

In Exercises 35 and 36, use the Factor Theorem to determine whether 
the first polynomial is a factor of the second polynomial.

 35. x - 2; x3 - 4x2 + 8x - 8 

 36. x + 3; x3 + 2x2 - 4x - 2 

In Exercises 37 and 38, use synthetic division to prove that the number 
k is an upper bound for the real zeros of the function ƒ.

 37. k = 5; ƒ1x2 = x3 - 5x2 + 3x + 4

 38. k = 4; ƒ1x2 = 4x4 - 16x3 + 8x2 + 16x - 12

In Exercises 39 and 40, use synthetic division to prove that the number 
k is a lower bound for the real zeros of the function ƒ.

 39. k = -3; ƒ1x2 = 3x4 + 5x3 - 10x2 - 19x - 6

 40. k = -1; ƒ1x2 = 4x4 + 8x2 + 7x - 2

In Exercises 41 and 42, use the Rational Zeros Theorem to write a list of 
all potential rational zeros. Then determine which ones, if any, are zeros.

 41. ƒ1x2 = 2x4 - x3 - 4x2 - x - 6

 42. ƒ1x2 = x4 + 5x3 + 7x2 + 2

In Exercises 43–46, perform the indicated operation, and write the 
result in the form a + bi.

 43. 11 + i23  44. i29 

 45. 11 + 2i2211 - 2i22  46. 2-16 

CHAPTER 2 Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter 
test.

In Exercises 1 and 2, write an equation for the linear function ƒ 
 satisfying the given conditions. Graph y = ƒ1x2.
 1. ƒ1-32 = -2 and ƒ142 = -9

 2. ƒ1-32 = 6 and ƒ112 = -2

In Exercises 3 and 4, describe how to transform the graph of ƒ1x2 = x2 
into the graph of the given function. Sketch the graph by hand and 
 support your answer with a grapher.

 3. h1x2 = 31x - 222 + 4 4. g1x2 = -1x + 322 + 1

In Exercises 5–8, find the vertex and axis of the graph of the function. 
Support your answer graphically.

 5. ƒ1x2 = -21x + 322 + 5 6. g1x2 = 41x - 522 - 7

 7. ƒ1x2 = -2x2 - 16x - 31 8. g1x2 = 3x2 - 6x + 2

In Exercises 9–12, describe how the graph of function g can be 
obtained by transforming the graph of the basic function ƒ.

 9. ƒ1x2 = x2; g1x2 = -31x + 122 + 5

 10. ƒ1x2 = x2; g1x2 = 2x2 - 12x + 1

 11. ƒ1x2 =
1
x

 ; g1x2 =
4

x - 6

 12. ƒ1x2 =
1

x2 ; g1x2 =
1

21x + 522 + 3

In Exercises 13 and 14, write an equation for the quadratic function 
whose graph contains the given vertex and point.

 13. Vertex 1-2, -32, point 11, 22 
 14. Vertex 1-1, 12, point 13, -22 
In Exercises 15 and 16, write an equation for the quadratic function 
with graph shown, given that one of the labeled points is the vertex of 
the parabola.

 15. 

(3, 22)

(5, 0)

[24, 8] by [24, 10]

 16. (24, 5)

(0, 23)

[210, 5] by [28, 8]

In Exercises 17–20, graph the function in a viewing window that shows 
all of its extrema and x-intercepts.

 17. ƒ1x2 = x2 + 3x - 40 18. ƒ1x2 = -8x2 + 16x - 19

 19. ƒ1x2 = x3 + x2 + x + 5 20. ƒ1x2 = x3 - x2 - 20x - 2

In Exercises 21 and 22, write the statement as a power function equa-
tion. Let k be the constant of variation.

 21. The surface area S of a sphere varies directly as the square of 
the radius r. 

 CHAPTER 2 Review Exercises 265
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266 CHAPTER 2  Polynomial, Power, and Rational Functions

In Exercises 47 and 48, solve the equation.

 47. x2 - 6x + 13 = 0  48. x2 - 2x + 4 = 0 
  
In Exercises 49–52, match the polynomial function with its graph. 
Explain your choice.

 49. ƒ1x2 = 1x - 222  50. ƒ1x2 = 1x - 223 

 51. ƒ1x2 = 1x - 224  52. ƒ1x2 = 1x - 225 

(a) (b)

(c) (d)

In Exercises 53–56, find all of the real zeros of the function, finding 
exact values whenever possible. Identify each zero as rational or irratio-
nal. State the number of nonreal complex zeros.

 53. P1x2 = 5x3 - 45x - 36 + x4 - 5x

 54. k(t2 = t4 - 7t2 + 12

 55. f1x2 = 5x3 - 4x2 - 5x - 39

 56. k(x2 = x4 - x3 - 14x2 + 24x + 5

In Exercises 57–60, find all of the zeros and write a linear factorization 
of the function.

 57. ƒ1x2 = 2x3 + x2 - 25x + 12

 58. ƒ1x2 = 6x3 + 13x2 + 9x + 2

 59. ƒ1x2 = 6x4 + 11x3 - 16x2 - 11x + 10

 60. ƒ1x2 = x4 - 8x3 + 27x2 - 50x + 50, given that 1 + 2i  
is a zero.

In Exercises 61–64, write the function as a product of linear and irre-
ducible quadratic factors all with real coefficients.

 61. ƒ1x2 = x3 - x2 - x - 2 

 62. ƒ1x2 = x4 - 5x2 + 4 

 63. ƒ1x2 = 2x4 - 9x3 + 23x2 - 31x + 15

 64. ƒ1x2 = 3x4 - 7x3 - 3x2 + 17x + 10

In Exercises 65–70, write a polynomial function with real coefficients 
whose zeros and their multiplicities include those listed.

 65. Degree 3; zeros: 25, -25, 3 

 66. Degree 2; -3 only real zero 

 67. Degree 4; zeros: 3, -2, 1>3, -1>2 

 68. Degree 3; zeros: 1 + i, 2 

 69. Degree 4; zeros: -2(multiplicity 2), 4(multiplicity 2)

 70. Degree 3; zeros: 2 - i, -1, and ƒ122 = 6 

In Exercises 71 and 72, describe how the graph of the given function 
can be obtained by transforming the graph of the reciprocal function 
ƒ1x2 = 1>x. Identify the horizontal and vertical asymptotes.

 71. ƒ1x2 =
-x + 7
x - 5

 72. ƒ1x2 =
3x + 5
x + 2

In Exercises 73–76, find the asymptotes and intercepts of the function, 
and graph it.

 73. ƒ1x2 =
x2 + x + 1

x2 - 1
 74. ƒ1x2 =

2x2 + 7

x2 + x - 6

 75. ƒ1x2 =
x2 - 4x + 5

x + 3
 76. g1x2 =

x2 - 3x - 7
x + 3

In Exercises 77 and 78, find the intercepts, analyze, and graph the given 
rational function.

 77. ƒ1x2 =
x3 + x2 - 2x + 5

x + 2
 78. ƒ1x2 =

-x4 + x2 + 1
x - 1

In Exercises 79–86, solve the equation or inequality algebraically, and 
support graphically.

 79. 2x +
12
x

= 11 

 80. 
x

x + 2
+

5
x - 3

=
25

x2 - x - 6
 

 81. 2x3 + 3x2 - 17x - 30 6 0 

 82. 3x4 + x3 - 36x2 + 36x + 16 Ú 0 

 83. 
x + 3

x2 - 4
Ú 0 84. 

x2 - 7

x2 - x - 6
6 1

 85. 12x - 122 0 x + 3 0 … 0 86. 
1x - 12 0 x - 4 02x + 3

7 0

 87. Writing to Learn Determine whether

ƒ1x2 = x5 - 10x4 - 3x3 + 28x2 + 20x - 2

  has a zero outside the viewing window. Explain. (See graph.)

[25, 5] by [250, 50]

 88. Launching a Rock Larry uses a slingshot to launch a rock 
straight up from a point 6 ft above level ground with an initial 
velocity of 170 ft>sec.

(a) Find an equation that models the height of the rock  
t seconds after it is launched and graph the equation. (See 
Example 8 in Section 2.1.)

(b) What is the maximum height of the rock? When will it 
reach that height?

(c) When will the rock hit the ground? 
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 89. Volume of a Box Villareal Paper Co. has contracted to 
manufacture a box with no top that is to be made by removing 
squares of width x from the corners of a 30-in. by 70-in. piece 
of cardboard.

(a) Find an equation that models the volume of the box.

(b) Determine x so that the box has a volume of 5800 in.3.

 90. Architectural Engineering DeShanna, an engineer at  
J. P. Cook, Inc., completes structural specifications for a 
 255-ft-long steel beam anchored between two pilings 50 ft 
above ground, as shown in the figure. She knows that when a 
250-lb object is placed d feet, from the west piling, the beam 
bends s feet, where

s = 18.5 * 10-72d21255 - d2.
(a) Graph the function s.

(b) What are the dimensions of a viewing window that shows a 
graph for the values that make sense in this problem situation?

(c) What is the greatest amount of vertical deflection s, and 
where does it occur? 

(d) Writing to Learn Give a possible scenario explain-
ing why the solution to part (c) does not occur at the 
 halfway point.

d
s

West East

 91. Storage Container A liquid storage container on a truck 
is in the shape of a cylinder with hemispheres on each end as 
shown in the figure. The cylinder and hemispheres have the 
same radius. The total length of the container is 140 ft.

(a) Determine the volume V of the container as a function of 
the radius x. 

(b) Graph the function y = V1x2.
(c) What is the radius of the container with the largest possible 

volume? What is the volume?

140

x

x

x

 92. College Costs Table 2.25 displays the average cost of 
tuition and fees (in 2016 dollars) for public 4-year colleges  
in the United States for selected years since 1975. Let x = 0 
represent 1975, x = 1 represent 1976, and so forth.

(a) Find a quadratic regression model for the expenses, and 
graph it together with a scatterplot of the data.

(b) Find a cubic regression model for the expenses, and graph 
it together with a scatterplot of the data.

(c) Use each model to predict the cost of tuition and fees in 2021.

Table 2.25 Tuition and Fees for Public 
4-Year Colleges (2016 dollars)

1976 2,600
1981 2,390
1986 3,110
1991 3,720
1996 4,560
2001 5,110
2006 6,860
2011 8,820
2016 9,650

Source: The College Board, 2016.

Table 2.26 Average Global Temperature 
for 5-Year Periods

Period Temperature (°F)

1952 57.15
1957 57.16
1962 57.18
1967 57.16
1972 57.20
1977 57.26
1982 57.44
1987 57.47
1992 57.53
1997 57.67
2002 57.75
2007 57.83
2012 57.87

Source: Global Climate Change, NASA, 2016.

(d) Writing to Learn Determine the end behavior of the 
two regression models. What does the end behavior say 
about future public college expenses?

 93. Climate Table 2.26 displays the 5-year average global tem-
peratures since 1950. For example, the entry for 1952 indicates 
that the average global temperature from 1950 through 1954 
was 57.15°F. Let x represent the number of years since 1950; 
so for 1952, use x = 2.

(a) Find a linear regression model for the average tempera-
tures, and graph it together with a scatterplot of the data.

(b) Find a quadratic regression model for the average tempera-
tures, and graph it together with a scatterplot of the data.

(c) Writing to Learn Which model is a better fit? Why? What 
does that model suggest about future global temperatures?

 94. Breaking Even Midtown Sporting Goods has determined 
that it needs to sell its soccer shin guards for $5.25 a pair in 
order to be competitive. It costs $4.32 to produce each pair of 
shinguards, and the weekly overhead cost is $4000.

(a) Express the average cost that includes the overhead of 
 producing one shinguard as a function of the number x of 
shinguards produced each week.

(b) Solve algebraically to find the number of shinguards that 
must be sold each week to make $8000 in profit. Support 
your work graphically.

 CHAPTER 2 Review Exercises 267
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268 CHAPTER 2  Polynomial, Power, and Rational Functions

 95. Deer Population The number of deer P at any time t (in 
years) in a federal game reserve is given by

P1t2 =
800 + 640t
20 + 0.8t

.

(a) Find the number of deer when t is 15, 70, and 100.

(b) Find the horizontal asymptote of the graph of y = P1t2.
(c) According to the model, what is the largest possible deer 

population?

 96. Resistors The total electrical resistance R of two  
resistors connected in parallel with resistances R1 and R2  
is given by

1
R

=
1
R1

+
1
R2

.

  The total resistance is 1.2 ohms. Let x = R1.

(a) Express the second resistance R2 as a function of x.

(b) Find R2 if x is 3 ohms.

 97. Acid Mixture Suppose that x ounces of distilled water are 
added to 50 oz. of pure acid.

(a) Express the concentration C1x2 of the new mixture as a 
function of x.

(b) Use a graph to determine how much distilled water should 
be added to the pure acid to produce a new solution that is 
less than 60% acid.

(c) Solve (b) algebraically.

 98. Industrial Design Johnson Cannery will pack peaches in 
1-L cylindrical cans. Let x be the radius of the base of the can 
in centimeters.

(a) Express the surface area S of the can as a function of x.

(b) Find the radius and height of the can if the surface area is 
900 cm2.

(c) What dimensions are possible for the can if the surface 
area is to be less than 900 cm2?

 99. Industrial Design Gilman Construction is hired to build a 
rectangular tank with a square base and no top. The tank is to 
hold 1000 ft3 of water. Let x be a length of the base.

(a) Express the outside surface area S of the tank as a function 
of x.

(b) Find the length, width, and height of the tank if the outside 
surface area is 600 ft2.

(c) What dimensions are possible for the tank if the outside 
surface area is to be less than 600 ft2?

CHAPTER 2 Modeling Project

Modeling the Height of a Bouncing Ball

Think about a ball bouncing up and down. Assuming it bounces 
on a flat surface, its height with respect to time can be modeled 
using a quadratic function. One form of a quadratic function is 
the vertex form:

y = a1x - h22 + k

Identifying the variables, y represents the height of the ball and x 
represents the elapsed time. For this project, you will use a 
motion detection device to collect distance and time data for a 
bouncing ball, then find a mathematical model that describes the 
position of the ball with respect to time.

The table shows sample data collected using a Calculator-Based 
Ranger (CBR™).

Total  
Elapsed  

Time (sec)

Height  
of the  

Ball (m)

Total  
Elapsed  

Time (sec)

Height  
of the  

Ball (m)

0.688 0 1.118 0.828
0.731 0.155 1.161 0.811
0.774 0.309 1.204 0.776
0.817 0.441 1.247 0.721
0.860 0.553 1.290 0.650
0.903 0.643 1.333 0.563
0.946 0.716 1.376 0.452
0.989 0.773 1.419 0.322
1.032 0.809 1.462 0.169
1.075 0.828    

Explorations

 1. If you collected motion data using a CBL™ or CBR™, a 
plot of height versus time or distance versus time should be 
shown on your grapher or computer screen. Either plot will 
work for this project. If you do not have access to a CBL or 
CBR, enter the data from the table provided into your 
grapher or computer. Create a scatter plot for the data.

 2. Carry out the mathematics. Find values for a, h, and k so 
that the equation y = a1x - h22 + k fits one of the bounces 
contained in the data plot. Approximate the vertex 1h, k2 
from your data plot and solve for the value of a algebraically.

 3. Analyze the solution. Change the values of a, h, and k in 
the model found above, and observe how the graph of the 
function is affected on your grapher or computer. Generalize 
how each of these changes affects the graph.

 4. Expand the equation you found in task 2 above so that it is 
in the standard quadratic form: y = ax2 + bx + c.

 5. Use your grapher or computer to select the data from  
the bounce you modeled above, and then use quadratic 
regression into find a model for this data set. (See your 
grapher’s guidebook for instructions on how to do this.)

  Assess this solution. How does this model compare with 
the standard quadratic form found in part 4?

 6. Assess again. Complete the square to transform the regres-
sion model into the vertex form of a quadratic, and compare 
it to the original vertex model found in part 2. (Round the 
values of a, b, and c to the nearest 0.001 before completing 
the square if desired.)
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The loudness of a sound we hear is based on the intensity of the associated 

sound wave. This sound intensity is the energy per unit time of the wave over  

a given area, measured in watts per square meter 1W>m22. The intensity is 

greatest near the source and decreases as you move away, whether the  

sound is leaves rustling or a jet taking off. Because of the wide range of  audible 

sound intensities, they are generally converted into decibels, which are based 

on logarithms. See page 298.

 3.1 Exponential and Logistic 
Functions

 3.2 Exponential and Logistic 
Modeling

 3.3 Logarithmic Functions 
and Their Graphs

 3.4 Properties of Logarithmic 
Functions

 3.5 Equation Solving and 
Modeling

 3.6 Mathematics of Finance

Exponential, Logistic, and 
Logarithmic Functions

CHAPTER 3
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270 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Chapter 3 Overview
In this chapter, we study three interrelated families of functions: exponential, logistic, 
and logarithmic functions. Polynomial functions, rational functions, and power func-
tions with rational exponents are algebraic functions—functions obtained by adding, 
subtracting, multiplying, and dividing constants and an independent variable, and rais-
ing expressions to integer powers and extracting roots. In this chapter, we begin to 
explore transcendental functions, which go beyond, or transcend, these algebraic 
operations.

Just like their algebraic cousins, exponential, logistic, and logarithmic functions have 
wide application. Exponential functions model growth and decay over time, such as 
unrestricted population growth and the decay of radioactive substances. Logistic func-
tions model restricted population growth, certain chemical reactions, and the spread of 
rumors and diseases. Logarithmic functions are the basis of the Richter scale of earth-
quake intensity, the pH acidity scale, and the decibel measurement of sound.

The chapter closes with a study of the mathematics of finance, an application of expo-
nential and logarithmic functions useful when making investments.

DEFINITION Exponential Functions

Let a and b be real number constants. An exponential function in x is a func-
tion that can be written in the form

ƒ1x2 = a # bx,

where a is nonzero, b is positive, and b ≠ 1. The constant a is the initial value 
of ƒ (the value at x = 0), and b is the base.

x
1–1–2–3–4 2 3 4

y

5
10
15
20

Figure 3.1 Sketch of g1x2 = 2x.

What you’ll learn about
• Exponential Functions and Their 

Graphs

• The Natural Base e

• Logistic Functions and Their Graphs

• Population Models

... and why
Exponential and logistic functions 
model many growth patterns, 
including the growth of human and 
animal populations.

Exponential Functions and Their Graphs
The functions ƒ1x2 = x2 and g1x2 = 2x each involve a base raised to a power, but the 
roles are reversed:

• For ƒ1x2 = x2, the base is the variable x, and the exponent is the constant 2; ƒ is a 
familiar monomial and power function.

• For g1x2 = 2x, the base is the constant 2, and the exponent is the variable x; g is an 
exponential function. See Figure 3.1.

3.1 Exponential and Logistic Functions

Exponential functions are defined and continuous for all real numbers. It is important 
to recognize whether a function is an exponential function.

Identifying Exponential Functions
(a) ƒ1x2 = 3x is an exponential function, with an initial value of 1 and base of 3.

(b) g1x2 = 6x-4 is not an exponential function because the base x is a variable and 
the exponent is a constant; g is a power function.

(c) h1x2 = -2 # 1.5x is an exponential function, with an initial value of -2 and base 
of 1.5.

EXAMPLE 1 
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One way to evaluate an exponential function, when the inputs are rational numbers, is 
to use the properties of exponents.

Table 3.1 Values of f1x2 = 2x for Rational Numbers x 
Approaching p = 3.14159265 . . .

x 3 3.1 3.14 3.141 3.1415 3.14159
2x 8 8.5 . . . 8.81 . . . 8.821 . . . 8.8244 . . . 8.82496 . . .

We can conclude that ƒ1p2 = 2p ≈ 8.82, which could be found directly using a 
grapher. The methods of calculus permit a more rigorous definition of exponential 
functions than we give here, a definition that allows for both rational and irrational 
inputs.

The way exponential functions change makes them useful in applications. This pattern 
of change can best be observed in tabular form.

Computing Exponential Function Values  
for Rational Number Inputs

For ƒ1x2 = 2x,

(a) ƒ142 = 24 = 2 # 2 # 2 # 2 = 16

(b) ƒ102 = 20 = 1

(c) ƒ1-32 = 2-3 =
1

23 =
1
8

= 0.125

(d) ƒa1
2
b = 21>2 = 22 = 1.4142c

(e) ƒa-  
3
2
b = 2-3>2 =

1

23>2 =
1223

=
128

= 0.35355c

Now try Exercise 7.

EXAMPLE 2 

There is no way to use properties of exponents to express an exponential function’s 
value for irrational inputs. For example, if ƒ1x2 = 2x, ƒ1p2 = 2p, but what does 2p 

mean? Using properties of exponents, 23 = 2 # 2 # 2, 23.1 = 231>10 = 210 231. So we 
can find meaning for 2p by using successively closer rational approximations to p as 
shown in Table 3.1.

(d) k1x2 = 7 # 2-x is an exponential function, with an initial value of 7 and base of 
1>2 because 2-x = 12-12x = 11>22x.

(e) q1x2 = 5 # 6p is not an exponential function because the exponent p is a con-
stant; q is a constant function. Now try Exercise 1.
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272 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Observe the patterns in the g1x2 and h1x2 columns of Table 3.2. The g1x2 values 
increase by a factor of 3 and the h1x2 values decrease by a factor of 1>4, as we add 1 to 
x moving from one row of the table to the next. In each case, the change factor is the 
base of the exponential function. This pattern generalizes to all exponential functions 
as illustrated in Table 3.3.

In Table 3.3, as x increases by 1, the function value is multiplied by the base b. This 
relationship leads to the following recursive formula.

Exponential Growth and Decay

For any exponential function ƒ1x2 = a # b x and any real number x,

ƒ1x + 12 = b # ƒ1x2.
If a 7 0 and b 7 1, the function ƒ is increasing and is an exponential growth 
function. The base b is its growth factor.

If a 7 0 and 0 6 b 6 1, ƒ is decreasing and is an exponential decay function. 
The base b is its decay factor.

(a)

(22, 4/9) (21, 4/3)
(0, 4)

(1, 12)

(2, 36)

[22.5, 2.5] by [210, 50]

(b)

(22, 128)

(21, 32)

(0, 8)

(1, 2) (2, 1/2)

[22.5, 2.5] by [225, 150]

Figure 3.2 Graphs of (a) g1x2 = 4 # 3x  
and (b) h1x2 = 8 # 11>42x. (Example 3)

Table 3.3 Values for a General 
Exponential Function f1x2 = a # bx

x a # bx  

-2 ab-2

* b
-1 ab-1

* b
0 a

* b
1 ab  

2 ab2 * b

Table 3.2 Values for Two Exponential Functions

 x g1x2 h1x2
 -2 4>9 128
   * 3 *

1
4

 -1 4>3 32
   * 3 *

1
4

 0 4 8
   * 3 *

1
4

 1 12 2

   * 3 *
1
4

 2 36 1>2

Finding an Exponential Function from Its Table 
of Values

Determine formulas for the exponential functions g and h whose values are given in 
Table 3.2.

EXAMPLE 3 

SOLUTION Because g is exponential, g1x2 = a # bx. Because g102 = 4, the initial 
value a is 4. Because g112 = 4 # b1 = 12, the base b is 3. So,

g1x2 = 4 # 3x.

Because h is exponential, h1x2 = a # bx. Because h102 = 8, the initial value a is 8. 
Because h112 = 8 # b1 = 2, the base b is 1>4. So,

h1x2 = 8 # a1
4
b

x

.

Figure 3.2 shows the graphs of these functions pass through the points whose coordi-
nates are given in Table 3.2. Now try Exercise 11.
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In Example 3 on page 272, g is an exponential growth function, and h is an exponential 
decay function. Notice, as x increases by 1, g1x2 = 4 # 3x grows by a factor of 3, and 
h1x2 = 8 # 11>42x decays by a factor of 1>4. Whenever the initial value is positive, the 
base of an exponential function, like the slope of a linear function, tells us whether the 
function is increasing or decreasing and by how much.

So far, we have focused most of our attention on the algebraic and numerical aspects of 
exponential functions. We now turn our attention to the graphs of these functions.

We summarize what we have learned about exponential functions with an initial value 
of 1.

Graphs of Exponential Functions

 1. Graph each function in the viewing window 3-2, 24  by 3-1, 64 .
(a) y1 = 2x  (b) y2 = 3x  (c) y3 = 4x  (d) y4 = 5x

• Which point is common to all four graphs?

• Analyze the functions for domain, range, continuity, increasing or decreasing 
behavior, symmetry, boundedness, extrema, asymptotes, and end behavior.

 2. Graph each function in the viewing window 3-2, 24  by 3-1, 64 .

(a) y1 = a1
2
b

x

 (b) y2 = a1
3
b

x

(c) y3 = a1
4
b

x

 (d) y4 = a1
5
b

x

• Which point is common to all four graphs?

• Analyze the functions for domain, range, continuity, increasing or decreasing 
behavior, symmetry, boundedness, extrema, asymptotes, and end behavior.

EXPLORATION 1 

Domain: 1-∞, ∞2
Range: 10, ∞2
Continuous
No symmetry: neither even nor odd
Bounded below, but not above
No local extrema
Horizontal asymptote: y = 0
No vertical asymptotes
If b 7 1 (Figure 3.3a), then

• ƒ is an increasing function,
•  lim

xS-∞
 ƒ1x2 = 0 and  lim

xS∞
 ƒ1x2 = ∞.

If 0 6 b 6 1 (Figure 3.3b), then
• ƒ is a decreasing function,

• lim
xS-∞

 ƒ1x2 = ∞ and lim
xS∞

 ƒ1x2 = 0.

Exponential Functions f 1x 2 = bx

y

x

f (x) = bx

b > 1

(0, 1)

(a)

(1, b)

 

y

x

(0, 1)

(b)

f(x) = bx

0 < b < 1

(1, b)

Figure 3.3 Graphs of ƒ1x2 = bx for (a) b 7 1 and (b) 0 6 b 6 1.

0
0 5 10 20 25

Prey-Predator Cycles

3015 35 40

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5
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274 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

The Natural Base e
The function ƒ1x2 = ex is one of the basic functions introduced in Section 1.3, and is 
an exponential growth function.

The translations, reflections, stretches, and shrinks studied in Section 1.6, together with 
our knowledge of the graphs of basic exponential functions, allow us to predict the 
graphs of the functions in Example 4.

Transforming Exponential Functions
Describe how to transform the graph of ƒ1x2 = 2x into the graph of the given func-
tion. Sketch the graphs by hand and support your answer with a grapher.

(a) g1x2 = 2x-1  (b) h1x2 = 2-x  (c) k1x2 = 3 # 2x

SOLUTION 

(a) The graph of g1x2 = 2x-1 is obtained by translating the graph of ƒ1x2 = 2x by  
1 unit to the right (Figure 3.4a).

(b) We can obtain the graph of h1x2 = 2-x by reflecting the graph of ƒ1x2 = 2x 
across the y-axis (Figure 3.4b). Because 2-x = 12-12x = 11>22x, we can also 
think of h as an exponential function with an initial value of 1 and a base of 1>2.

(c) We can obtain the graph of k1x2 = 3 # 2x by vertically stretching the graph of 
ƒ1x2 = 2x by a factor of 3 (Figure 3.4c). Now try Exercise 15.

EXAMPLE 4 

BASIC FUNCTION 

ƒ1x2 = ex

Domain: 1-∞, ∞2
Range: 10, ∞2
Continuous
Increasing for all x
No symmetry
Bounded below, but not above
No local extrema
Horizontal asymptote: y = 0
No vertical asymptotes
End behavior: lim

xS-∞
 ex = 0 and lim

xS∞
 ex = ∞

The Exponential Function

[24, 4] by [21, 5]

Figure 3.5 The graph of ƒ1x2 = ex.

(a)

[24, 4] by [22, 8]

  (b)

[24, 4] by [22, 8]

  (c)

[24, 4] by [22, 8]

Figure 3.4 The graph of ƒ1x2 = 2x shown with (a) g1x2 = 2x-1, (b) h1x2 = 2-x, and (c) k1x2 = 3 # 2x. (Example 4)

Because ƒ1x2 = ex is increasing, it is an exponential growth function, so e 7 1. But 
what is e, and what makes this exponential function the exponential function?
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In Section 3.3 we will develop some mathematics so that, for any positive number 
b ≠ 1, we can easily find the value of k such that ekx = bx. In the meantime, we can 
use graphical and numerical methods to approximate k, as you will discover in 
 Exploration 2.

DEFINITION The Natural Base e

e = lim
xS∞
a1 +

1
x
b

x

THEOREM Exponential Functions and the Base e

Any exponential function ƒ1x2 = a # bx can be rewritten as

ƒ1x2 = a # ekx,

for an appropriately chosen real number constant k.

If a 7 0 and k 7 0, ƒ1x2 = a # ekx is an exponential growth function. (See 
 Figure 3.7a.)

If a 7 0 and k 6 0, ƒ1x2 = a # ekx is an exponential decay function. (See 
 Figure 3.7b.)

Choosing k so that ekx = 2x

 1. Graph ƒ1x2 = 2x in the viewing window 3-4, 44  by 3-2, 84 .
 2. One at a time, overlay the graphs of g1x2 = ekx for k = 0.4, 0.5, 0.6, 0.7, and 

0.8. For which of these values of k does the graph of g most closely match the 
graph of ƒ? 

 3. Using tables, find the 3-decimal-place value of k for which the values of g most 
closely approximate the values of ƒ. 

EXPLORATION 2 

Y1=(1+1/X)^(X)

Y = 2.7086368X = 140

[0, 150] by [0, 3]

Figure 3.6 Graphs of y1 = a1 +
1
x
b

x

  

and y2 = e. Notice y1 S y2 as x S ∞.  

That is, a1 +
1
x
b

x
S e as x S ∞.

y

x

f (x) = ekx

k > 0

(0, 1)

(a)

(1, ek)

y

x

(0, 1)

(b)

(1, ek)

f (x) = ekx

k < 0

Figure 3.7 Graphs of ƒ1x2 = ekx for  
(a) k 7 0 and (b) k 6 0.

The letter e is the initial of the last name of Leonhard Euler (1707–1783), who intro-
duced the notation. Because ƒ1x2 = ex has special calculus properties that simplify 
many calculations, e is the natural base of exponential functions for calculus purposes, 
and ƒ1x2 = ex is considered the natural exponential function.

We cannot compute the irrational number e directly, but using this definition we can 
obtain successively closer approximations to e, as shown in Table 3.4. Continuing the 
process in Table 3.4 with a sufficiently accurate computer can show that

e ≈ 2.718281828459.

Figure 3.6 illustrates the definition of e graphically.

Table 3.4 Approximations Approaching the Natural Base e
x 1 10 100 1000 10,000 100,000

11 + 1>x2x 2 2.5 . . . 2.70 . . . 2.716 . . . 2.7181 . . . 2.71826 . . .

We are usually more interested in the exponential function ƒ1x2 = ex and variations of 
this function than in the irrational number e. In fact, any exponential function can be 
expressed in terms of the natural base e.
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Logistic Functions and Their Graphs
Exponential growth is unrestricted. An exponential growth function increases at an 
ever-increasing rate and is not bounded above. In many growth situations, however, 
there is a limit to the possible growth. A plant can only grow so tall. The number of 
goldfish in an aquarium is limited by the size of the aquarium. In such situations the 
growth often begins in an exponential manner, but the growth eventually slows and the 
graph levels out. The associated growth function is bounded both below and above by 
horizontal asymptotes.

DEFINITION Logistic Growth Functions

Let a, b, c, and k be positive constants, with b 6 1. A logistic growth function 
in x is a function that can be written in the form

ƒ1x2 =
c

1 + a # bx or ƒ1x2 =
c

1 + a # e-kx

where the constant c is the limit to growth.

(a)

[24, 4] by [22, 8]

(b)

[24, 4] by [22, 8]

(c)

[24, 4] by [22, 8]

Figure 3.8 The graph of ƒ1x2 = ex  
shown with (a) g1x2 = e2x, (b) h1x2 = e-x, 
and (c) k1x2 = 3ex. (Example 5)

Aliases for Logistic Growth
Logistic growth is also known as restricted, 
inhibited, or constrained exponential growth.

If b 7 1 or k 6 0, these formulas yield logistic decay functions. Unless otherwise 
stated, all logistic functions in this text will be logistic growth functions.

By setting a = c = k = 1, we obtain the basic logistic function

ƒ1x2 =
1

1 + e-x .

This function, though related to the exponential function ex, cannot be obtained from ex 
by translations, reflections, and horizontal and vertical stretches and shrinks. So we 
give the logistic function a formal introduction:

Transforming Exponential Functions
Describe how to transform the graph of ƒ1x2 = ex into the graph of the given func-
tion. Sketch the graphs by hand and support your answer with a grapher.

(a) g1x2 = e2x  (b) h1x2 = e-x  (c) k1x2 = 3ex

SOLUTION 

(a) The graph of g1x2 = e2x is obtained by horizontally shrinking the graph of 
ƒ1x2 = ex by a factor of 2 (Figure 3.8a).

(b) We can obtain the graph of h1x2 = e-x by reflecting the graph of ƒ1x2 = ex 
across the y-axis (Figure 3.8b).

(c) We can obtain the graph of k1x2 = 3ex by vertically stretching the graph of 
ƒ1x2 = ex by a factor of 3 (Figure 3.8c). Now try Exercise 21.

EXAMPLE 5 
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All logistic growth functions have graphs much like the basic logistic function. Their 
end behavior is always described by the equations

lim
xS-∞

 ƒ1x2 = 0 and lim
xS∞

 ƒ1x2 = c,

where c is the limit to growth. (See Exercise 74.) All logistic functions are bounded 
by their horizontal asymptotes, y = 0 and y = c, and have a range of 10, c2. 
Although every logistic function is symmetric about the point of its graph with 
y-coordinate c>2, this point of symmetry is usually not the y-intercept, as we can see 
in Example 6.

BASIC FUNCTION 

ƒ1x2 =
1

1 + e-x

Domain: 1-∞, ∞2
Range: 10, 12
Continuous
Increasing for all x
Symmetric about 10, 1>22, but neither even nor odd
Bounded below and above
No local extrema
Horizontal asymptotes: y = 0 and y = 1
No vertical asymptotes
End behavior: lim

xS-∞
 ƒ1x2 = 0 and lim

xS∞
 ƒ1x2 = 1

The Logistic Function

[24.7, 4.7] by [20.5, 1.5]

Figure 3.9 The graph of 
ƒ1x2 = 1>11 + e-x2.

Graphing Logistic Growth Functions
Graph the function. Find the y-intercept and the horizontal asymptotes.

(a) ƒ1x2 =
8

1 + 3 # 0.7x   (b) g1x2 =
20

1 + 2e-3x

SOLUTION 

(a) The graph of ƒ1x2 = 8>11 + 3 # 0.7x2 is shown in Figure 3.10a on the next 
page. The y-intercept is

ƒ102 =
8

1 + 3 # 0.70 =
8

1 + 3
= 2.

Because the limit to growth is 8, the horizontal asymptotes are y = 0 and y = 8.

(b) The graph of g1x2 = 20>11 + 2e-3x2 is shown in Figure 3.10b. The y-intercept is

g102 =
20

1 + 2e-3 #0 =
20

1 + 2
= 20>3 ≈ 6.67.

Because the limit to growth is 20, the horizontal asymptotes are y = 0 and y = 20.
Now try Exercise 41.

EXAMPLE 6 
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(a)

2

[210, 20] by [22, 10]

  (b)

5

[22, 4] by [25, 25]

Figure 3.10 The graphs of (a) ƒ1x2 = 8>11 + 3 # 0.7x2 and (b) g1x2 = 20>11 + 2e-3x2.  
(Example 6)

Population Models
Exponential and logistic functions have many applications. One use for both types of 
functions is modeling population.

In 2014, the United States reached a population milestone: Its 10th largest city—San Jose, 
California—passed the 1 million mark. In Example 7 we ask, when will the 11th larg-
est city—Austin, Texas—pass the 1 million milestone?

Intersection
X=7.6615632  Y=1000000

[22, 10] by [700,000, 1,100,000]

Figure 3.11 A population model  
for Austin, Texas. (Example 7)

Table 3.5 Population of 
Austin, Texas

Time 
(years)

Population  
(midyear estimates)

2010 815,974
2015 931,830

Source: U.S. Census Bureau.

Modeling Austin’s Population
Using the data in Table 3.5 and assuming the growth is exponential, when will the 
population of Austin, Texas, surpass 1 million persons?

SOLUTION 

Model Let P1t2 be the population of Austin t years after July 1, 2010. (See the mar-
gin note on population data.) Because P is exponential, P1t2 = P0

# b t, where P0 is the 
initial (2010) population of 815,974. From Table 3.5 we see that P152 = 815,974b5 =
931,830. Thus

b = A5 931,830
815,974

≈ 1.0269

and P1t2 = 815,974 # 1.0269t.

Solve Graphically Figure 3.11 shows that this population model intersects 
y = 1,000,000 when the independent variable, time, is about 7.66.

Interpret Because 7.66 years after mid-2010 is in the first half of 2018, according to 
this model, the population of Austin will surpass the 1 million mark in 2018.

Now try Exercise 51.

EXAMPLE 7 

A Note on Population Data
When the U.S. Census Bureau reports a popula-
tion estimate for a given year, it generally repre-
sents the population at the middle of the year, or 
July 1. We will assume this to be the case when 
interpreting our answers to population problems 
unless otherwise noted.
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[0, 140] by [2500,000, 1,500,000]

Intersection
X=85.272778 Y=1000000

Figure 3.12 A population model for  
San Diego, California. (Example 8)

Although population over relatively short periods of time often can be modeled accu-
rately using an exponential function, for longer periods a logistic model may be more 
appropriate. In Example 8, the model is based on U.S. Census data spanning the period 
1900–2015.

Modeling San Diego’s Population
Based on longitudinal census data, a logistic model for the population of San Diego, 
California, t years after 1900, is as follows:

P1t2 =
1,542,444

1 + 54.082 # e-0.05397t

According to this model, when did San Diego achieve the 1 million mark in 
population?

SOLUTION Figure 3.12 shows that this population model intersects y = 1,000,000 
when the independent variable, time, is about 85.27. Because 85.27 years after 
 mid-1900 is in the second half of 1985, by this model the population of San Diego 
reached 1 million in 1985. Notice that Figure 3.12 shows the scatter plot of the data 
used to create the logistic model and that our result is consistent with the scatter plot.

Now try Exercise 55.

EXAMPLE 8 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression.

 1. 23 -216  2. A3  
125
8

 3. 272>3  4. 45>2

In Exercises 5–8, rewrite the expression using a single positive 
 exponent.

 5. 12-324
 6. 1342-2

 7. 1a-223  8. 1b-32-5

In Exercises 9–10, use a calculator to evaluate the expression.

 9. 25 -5.37824  10. 24 92.3521

QUICK REVIEW 3.1 (For help, go to Sections A.1 and P.1.)

In Exercises 11 and 12, determine a formula for the exponential func-
tion whose values are given in Table 3.6.

 11. ƒ1x2
 12. g1x2

SECTION 3.1 Exercises

In Exercises 1–6, which of the following are exponential functions? For 
those that are exponential functions, state the initial value and the base. 
For those that are not, explain why not.

 1. y = z7

 2. y = 3x

 3. y = 6w

 4. y = 42

 5. y = m2m

 6. y = x1.3

In Exercises 7–10, compute the exact value of the function for the given 
value of x without using a calculator.

 7. ƒ1x2 = 7 # 3x for x = 0

 8. ƒ1x2 = 6 # 3x for x = -2

 9. ƒ1x2 = -11 # 7x for x = 1>5
 10. ƒ1x2 = 8 # 4x for x = -3>2

Table 3.6 Values for Two 
Exponential Functions

x ƒ1x2 g1x2
-2 6 108
-1 3 36

0 3>2 12

1 3>4 4

2 3>8 4>3
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280 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

In Exercises 15–24, describe how to transform the graph of ƒ into the graph 
of g. Sketch the graphs by hand and support your answer with a grapher.

 15. ƒ1x2 = 2x, g1x2 = 2x-3

 16. ƒ1x2 = 3x, g1x2 = 3x+4

 17. ƒ1x2 = 4x, g1x2 = 4-x

 18. ƒ1x2 = 2x, g1x2 = 25-x

 19. ƒ1x2 = 0.5x, g1x2 = 3 # 0.5x + 4

 20. ƒ1x2 = 0.6x, g1x2 = 2 # 0.63x

 21. ƒ1x2 = ex, g1x2 = e-2x

 22. ƒ1x2 = ex, g1x2 = -e-3x

 23. ƒ1x2 = ex, g1x2 = 2e3-3x

 24. ƒ1x2 = ex, g1x2 = 3e2x - 1

Writing to Learn In Exercises 25–30, (a) match the given  
function with its graph. (b) Explain how to make the choice without 
using a grapher.

 25. y = 3x

 26. y = 2-x

 27. y = -2x

 28. y = -0.5x

 29. y = 3-x - 2

 30. y = 1.5x - 2

(a)   (b)

(c)   (d)

(e)   (f)

In Exercises 31–34, state whether the function is an exponential growth 
function or exponential decay function, and describe its end behavior 
using limits.

 31. ƒ1x2 = 3-2x

 32. ƒ1x2 = a1
e
b

x

 

 33. ƒ1x2 = 0.5x 

 34. ƒ1x2 = 0.75-x 

In Exercises 35–38, solve the inequality graphically.

 35. 9x 6 4x

 36. 6-x 7 8-x

 37. a1
4
b

x

7 a1
3
b

x

 38. a1
3
b

x

6 a1
2
b

x

Group Activity In Exercises 39 and 40, use the properties of expo-
nents to prove that two of the given three exponential functions are 
identical. Support graphically.

 39. y1 = 32x+4

y2 = 32x + 4
y3 = 9x+2

 40. y1 = 43x-2

y2 = 2123x-22
y3 = 23x-1

In Exercises 41–44, use a grapher to graph the function. Find the 
y-intercept and the horizontal asymptotes.

 41. ƒ1x2 =
12

1 + 2 # 0.8x 42. ƒ1x2 =
18

1 + 5 # 0.2x

 43. ƒ1x2 =
16

1 + 3e-2x 44. g1x2 =
9

1 + 2e-x

In Exercises 45–50, graph the function and analyze it for domain, 
range, continuity, increasing or decreasing behavior, symmetry, 
 boundedness, extrema, asymptotes, and end behavior.

 45. ƒ1x2 = 3 # 2x 46. ƒ1x2 = 4 # 0.5x

 47. ƒ1x2 = 4 # e3x 48. ƒ1x2 = 5 # e-x

 49. ƒ1x2 =
5

1 + 4 # e-2x 50. ƒ1x2 =
6

1 + 2 # e-x

 51. Population Growth Using the midyear data in Table 3.7 
and assuming the growth is exponential, when did the popula-
tion of Austin surpass 800,000 persons?

y

x
(0, 3)

(2, 6)y = f(x)

y

x

y = g(x)

b1, 2ea
(0, 2)

In Exercises 13 and 14, determine a formula for the exponential func-
tion whose graph is shown in the figure.

 13. ƒ1x2  14. g1x2

Table 3.7 Populations of Two Major 
U.S. Cities

City 1990 Population 2015 Population

Austin, Texas 465,648 931,830
Columbus, Ohio 632,945 850,106

Source: World Almanac and Book of Facts 2017.
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 52. Population Growth Using the data in Table 3.7 and 
assuming the growth is exponential, when did the population of 
Columbus surpass 800,000 persons?

 53. Population Growth Using the data in Table 3.7 and 
assuming the growth is exponential, when were the populations 
of Austin and Columbus equal?

 54. Population Growth Using the data in Table 3.7 and 
assuming the growth is exponential, when will the population 
of Columbus reach the 1 million milestone?

 55. Population Growth Using 20th-century world population 
data, the population of China can be modeled by

P1t2 =
2513.45

1 + 5.283635e-0.0152466t

where P is the population in millions and t is the number of 
years since January 1, 1900. Based on this model, when was 
the population of China 1 billion?

 56. Population Growth Using 20th-century world population 
data, the population of Japan can be modeled by

P1t2 =
147.144

1 + 2.72467e-0.0271184t

where P is the population in millions and t is the number of years 
since 1900, when Japan was in the Meiji era. Based on this model,

(a) What was the population of Japan in 1945, at the end of 
the Second World War?

(b) What will Japan’s population be in 2045, a century after the 
end of the Second World War?

(c) What is Japan’s maximum sustainable population (limit to 
growth)?

 57. Bacterial Growth The number B of bacteria in a petri dish 
culture after t hours is given by

B = 100e0.693t.

(a) What was the initial number of bacteria present?

(b) How many bacteria are present after 6 hr?

 58. Carbon Dating The amount C in grams of carbon-14 present 
in a certain substance after t years is given by

C = 20e-0.0001216t.

(a) What was the initial amount of carbon-14 present?

(b) How much is left after 10,400 years? When will the 
amount left be 10 g?

Standardized Test Questions
 59. True or False Every exponential function is strictly 

increasing. Justify your answer.

 60. True or False Every logistic growth function has two 
 horizontal asymptotes. Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

 61. Multiple Choice Which of the following functions is 
 exponential?

(A) ƒ1x2 = a2  (B)  ƒ1x2 = x3

(C) ƒ1x2 = x2>3  (D)  ƒ1x2 = 23 x

(E) ƒ1x2 = 8x

 62. Multiple Choice What point do all functions of the form 
ƒ1x2 = bx1b 7 02 have in common?

(A) 11, 12 (B) 11, 02
(C) 10, 12 (D) 10, 02
(E) 1-1, -12

 63. Multiple Choice The growth factor for ƒ1x2 = 4 # 3x is

(A) 3. (B) 4.

(C) 12. (D) 64.

(E) 81.

 64. Multiple Choice For x 7 0, which of the following is 
true?

(A) 3x 7 4x (B) 7x 7 5x

(C) 11>62x 7 (1>22x (D) 9-x 7 8-x

(E) 0.17x 7 0.32x

Explorations
 65. Graph each function and analyze it for domain, range, increas-

ing or decreasing behavior, boundedness, extrema, asymptotes, 
and end behavior.

(a) ƒ1x2 = x # ex (b) g1x2 =
e-x

x

 66. Use the properties of exponents to solve each equation.  
Support graphically.

(a) 2x = 42 (b) 3x = 27

(c) 8x>2 = 4x+1 (d) 9x = 3x+1

Extending the Ideas
 67. Exponential Growth in Genealogy In genealogy you 

are considered generation 0. Your two parents are generation 1. 
Your four grandparents are generation 2. Your great grandpar-
ents are generation 3 and your 2nd great grandparents are gen-
eration 4.

(a) How many 4th great grandparents do you have? What gen-
eration are they?

(b) Use an exponential function to model the number of nth 
great grandparents you have.

(c) Use the model you found in (b) and find the number of 6th 
great grandparents you have.

(d) How many 25th great grandparents do you have?

(e) Discuss how many years it takes to span 25 generations at 
an average of 30 years between generations. The world’s 
population in 1250 is thought to have been about 400 million. 
To how much of the world’s population in 1250 might 
you be related?
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(a) Which curve of those shown in the graph most closely 
resembles the graph of y = ƒ1x2? Explain your choice.

(b) Which curve most closely resembles the graph of 
y = g1x2? Explain your choice.

 69. Writing to Learn Let ƒ1x2 = 2x. Explain why the graph 
of ƒ1ax + b2 can be obtained by applying one transforma-
tion to the graph of y = c x for an appropriate value of c. 
What is c?

Exercises 70–73 refer to the expression ƒ1a, b, c2 = a # bc. For exam-
ple, if a = 2, b = 3, and c = x, the expression is ƒ12, 3, x2 = 2 # 3x, an 
exponential function.

 70. If b = x, state conditions on a and c under which the expres-
sion ƒ1a, b, c2 is a quadratic power function.

 71. If b = x, state conditions on a and c under which the expres-
sion ƒ1a, b, c2 is a decreasing linear function.

 72. If c = x, state conditions on a and b under which the expres-
sion ƒ1a, b, c2 is an increasing exponential function.

 73. If c = x, state conditions on a and b under which the expres-
sion ƒ1a, b, c2 is a decreasing exponential function.

 74. Prove that lim
xS-∞

 
c

1 + a # bx = 0 and lim
xS∞

 
c

1 + a # bx = c,  

for constants a, b, and c, with a 7 0, 0 6 b 6 1, and c 7 0.

Table 3.8 Data for Two Functions

x ƒ1x2 g1x2
1.0 5.50 7.40
1.5 5.35 6.97
2.0 5.25 6.44
2.5 5.17 5.76
3.0 5.13 4.90
3.5 5.09 3.82
4.0 5.06 2.44
4.5 5.05 0.71

 68. Writing to Learn Table 3.8 gives function values for 
y = ƒ1x2 and y = g1x2. Below the table, three graphs are 
shown.

y

y1

y2

y3
x
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So, in this case, the population is an exponential function of time.

Exponential Population Model

If a population P is changing at a constant percentage rate r each year, then

P1t2 = P011 + r2t,
where P0 is the initial population, r is expressed as a decimal, and t is time in 
years.

What you’ll learn about
• Constant Percentage Rate and 

Exponential Functions

• Exponential Growth and Decay 
Models

• Using Regression to Model 
 Population

• Other Logistic Models

... and why
Exponential functions model many 
types of unrestricted growth; logistic 
functions model restricted growth, 
including the spread of disease and 
the spread of rumors.

Constant Percentage Rate and Exponential 
Functions
Suppose that a population is changing at a constant percentage rate r, where r is  
the percent rate of change expressed in decimal form. Then the population follows the 
pattern shown.

3.2 Exponential and Logistic Modeling

Time in Years Population

0 P102 = P0 = initial population
1 P112 = P0 + P0r = P011 + r2
2 P122 = P112 # 11 + r2 = P011 + r22
3 P132 = P122 # 11 + r2 = P011 + r23
f f
t P1t2 = P011 + r2t

If r 7 0, then P1t2 is an exponential growth function, and its growth factor is the base 
of the exponential function, 1 + r.

On the other hand, if r 6 0, the base 1 + r 6 1, P1t2 is an exponential decay func-
tion, and 1 + r is the decay factor for the population.

Finding Growth and Decay Rates
Tell whether the population model is an exponential growth function or exponential 
decay function, and find the constant percentage rate of growth or decay.

(a) San Jose: P1t2 = 898,759 # 1.0064t

(b) Detroit: P1t2 = 1,203,368 # 0.9858t

SOLUTION 

(a) Because 1 + r = 1.0064, r = 0.0064 7 0. So, P is an exponential growth 
function with a growth rate of 0.64%.

(b) Because 1 + r = 0.9858, r = -0.0142 6 0. So, P is an exponential decay 
function with a decay rate of 1.42%. Now try Exercise 1.

EXAMPLE 1 
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284 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Exponential decay functions model the amount of a radioactive substance present in a 
sample. The number of atoms of a specific element that change from a radioactive state 
to a nonradioactive state is a fixed fraction per unit time. The process is called 
 radioactive decay, and the time it takes for half of a sample to change its state is the 
half-life of the radioactive substance.

450,000

300,000

150,000

P(t)

t
–5 151050

Time

Bacteriology Research

Intersection:
t = 11.773139; P = 350,000

Po
pu

la
tio

n

Figure 3.13 Rapid growth of a bacterial 
population. (Example 3)

Finding an Exponential Function
Determine the exponential function with initial value = 12, increasing at a rate of 
8% per year.

SOLUTION Because P0 = 12 and r = 8% = 0.08, the function is P1t2 =   
1211 + 0.082t or P1t2 = 12 # 1.08t. We could write this as ƒ1x2 = 12 # 1.08x, where 
x represents time. Now try Exercise 7.

EXAMPLE 2 

Exponential Growth and Decay Models
Exponential growth and decay models are used for populations of animals, bacteria, 
and even radioactive atoms. Exponential growth and decay apply to any situation 
where the growth is proportional to the current size of the quantity of interest. Such 
situations are frequently encountered in biology, chemistry, business, and the social 
sciences.

Exponential growth models can be developed in terms of the time it takes a quantity to 
double. On the flip side, exponential decay models can be developed in terms of the 
time it takes for a quantity to be halved. Examples 3 through 5 use these strategies.

Modeling Bacterial Growth
Suppose a culture of 100 bacteria is put into a petri dish and the culture doubles 
every hour. Predict when the number of bacteria will be 350,000.

SOLUTION 

Model 

 200 = 100 # 2  Total bacteria after 1 hr

 400 = 100 # 22 Total bacteria after 2 hr

 800 = 100 # 23 Total bacteria after 3 hr

 f
 P1t2 = 100 # 2t  Total bacteria after t hr

So the function P1t2 = 100 # 2t represents the bacterial population t hours after it is 
placed in the petri dish.

Solve Graphically Figure 3.13 shows that the population function intersects 
y = 350,000 when t ≈ 11.77.

Interpret The population of the bacteria in the petri dish will be 350,000 in about  
11 hr 46 min. Now try Exercise 15.

EXAMPLE 3 

Modeling Radioactive Decay
Suppose the half-life of a certain radioactive substance is 20 days and its mass 
was 5 g (grams) initially. Find the time when there will be 1 g of the substance 
remaining.

EXAMPLE 4 
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Scientists have established that atmospheric pressure at sea level is 14.7 lb>in.2, and the 
pressure is reduced by half for each 3.6 mi above sea level. For example, the pressure 3.6 mi  
above sea level is 11>22114.72 = 7.35 lb>in.2. This rule for atmospheric pressure holds 
for altitudes up to 50 mi above sea level. Though the context is different, the mathematics 
of atmospheric pressure closely resembles the mathematics of radioactive decay.

SOLUTION 

Model If t is the time in days, the number of half-lives will be t>20.

 
5
2

= 5a1
2
b

20>20

 Grams after 20 days

 
5
4

= 5a1
2
b

40>20

 Grams after 21202 = 40 days

 f

 ƒ1t2 = 5a1
2
b

t>20

 Grams after t days

Thus the function ƒ1t2 = 5 # 0.5t>20 models the mass in grams of the radioactive 
 substance at time t.

Solve Graphically Figure 3.14 shows that the graph of ƒ1t2 = 5 # 0.5t>20 intersects 
y = 1 when t ≈ 46.44.

Interpret There will be 1 g of the radioactive substance left after approximately 
46.44 days, or about 46 days 11 hr. Now try Exercise 33.

Determining Altitude from Atmospheric 
Pressure

Find the altitude above sea level at which the atmospheric pressure is 4 lb>in.2.

SOLUTION 

Model 

 7.35 = 14.7 # 0.53.6>3.6 Pressure at 3.6 mi

 3.675 = 14.7 # 0.57.2>3.6 Pressure at 213.62 = 7.2 mi

 f

 P1h2 = 14.7 # 0.5h>3.6  Pressure at h mi

So P1h2 = 14.7 # 0.5h>3.6 models the atmospheric pressure P (in pounds per square 
inch) as a function of the height h (in miles above sea level). We must find the value 
of h that satisfies the equation

14.7 # 0.5h>3.6 = 4.

Solve Graphically Figure 3.15 shows that the graph of P1h2 = 14.7 # 0.5h>3.6 inter-
sects y = 4 when h ≈ 6.76.

Interpret The atmospheric pressure is 4 lb>in.2 at an altitude of approximately  
6.76 mi above sea level. Now try Exercise 41.

EXAMPLE 5 

Using Regression to Model Population
So far, our models have been given to us or developed algebraically. We now use expo-
nential and logistic regression to build models from population data.

Due to the post–World War II baby boom and other factors, exponential growth is not a 
perfect model for the U.S. population. It does, however, provide a means to make 
approximate predictions, as illustrated in Example 6.

t
–20 604020 80

Time

Radioactive Decay

Intersection:
t = 46.438562, y = 1

M
as

s

12

y

Figure 3.14 Radioactive decay. 
(Example 4)

Intersection
X=6.7598793 Y=4

[0, 20] by [24, 15]

Figure 3.15 A model for atmospheric 
pressure. (Example 5)
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Exponential growth is unrestricted, but population growth often is not. For many popu-
lations, the growth begins exponentially, but eventually slows and approaches a limit to 
growth called the maximum sustainable population.

In Section 3.1 we modeled San Diego’s population with a logistic function. We now 
use logistic regression to do the same for the populations of Florida and Pennsylvania. 
As the data in Table 3.10 suggest, Florida had rapid growth in the second half of the 
20th century, whereas Pennsylvania appears to be approaching its maximum sustain-
able population.

Table 3.9 U.S. Population 
(in millions)

Year Population

1900  76.2
1910  92.2
1920 106.0
1930 123.2
1940 132.2
1950 151.3
1960 179.3
1970 203.3
1980 226.5
1990 248.7
2000 281.4
2010 308.7
2016 323.1

Source: U.S. Census Bureau.

Modeling U.S. Population Using  
Exponential Regression

Use the 1900–2010 data in Table 3.9 and exponential regression to predict the U.S. 
population for the year 2016. Compare the result with the actual 2016 population 
shown in the table.

SOLUTION 

Model Let P1t2 be the population in millions of the United States t years after 1900. 
Using exponential regression, we find a population model using the 1900–2010 data, 
excluding the information for 2016:

P1t2 = 81.2263 # 1.01263t

Figure 3.16a shows a scatter plot of the data from 1900 through 2010 together with a 
graph of the regression model. You can see that model fits the data well. The coeffi-
cient of determination is r2 ≈ 0.995, which indicates a close fit and supports the 
visual evidence.

Figure 3.16b shows a scatter plot of the data that includes the year 2016 and a graph 
of the regression model based on the 1900–2010 data. The red “+” shows the loca-
tion of the data pair (116, 323.1) for the year 2016.

Solve Numerically and Support Graphically To predict the 2016 U.S. popula-
tion, we compute P11162 = 81.2263 # 1.01263116 ≈ 348.3. In Figure 3.16c, the 
black “:” shows the location of this predicted population of 348.3 million persons for 
2106. Notice that this differs from the actual population of 323.1 million (indicated 
by red “+”). Our model overestimates the population by 25.2 million.

Now try Exercise 43.

EXAMPLE 6 

(a)

[210, 130] by [0, 400]

    (b)

[210, 130] by [0, 400]

    (c)

[210, 130] by [0, 400]

Figure 3.16 Graphs of the regression model in Example 6, with (a) a scatter plot that excludes the 2016 data point, (b) a scatter plot that 
includes the 2016 data point 1116, 323.12 as a red cross 1+2, and (c) a scatter plot that includes the 2016 data point 1116, 323.12 as a red 
cross 1+2 and the associated point 1116, 348.32 predicted by the model, shown as a black “: .”
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Table 3.10 Populations of 
Two U.S. States (in millions)

Year Florida Pennsylvania

1900  0.5  6.3
1910  0.8  7.7
1920  1.0  8.7
1930  1.5  9.6
1940  1.9  9.9
1950  2.8 10.5
1960  5.0 11.3
1970  6.8 11.8
1980  9.7 11.9
1990 12.9 11.9
2000 16.0 12.3
2010 18.8 12.7

Source: U.S. Census Bureau.

Modeling Two States’ Populations Using 
Logistic Regression

Use the data in Table 3.10 and logistic regression to predict the maximum sustainable 
populations for Florida and Pennsylvania. Graph the logistic models and interpret 
their significance.

SOLUTION Let F1t2 and P1t2 be the populations (in millions) of Florida and 
Pennsylvania, respectively, t years after 1900. Using logistic regression, we obtain 
the models for the two states:

F1t2 =
26.697023

1 + 81.903863e-0.048030t and P1t2 =
12.802428

1 + 0.957912e-0.032184t

Figure 3.17a shows the scatter plots of the data together with graphs of the two logis-
tic regression population models. The graph for Florida’s population is shown in blue, 
and for Pennsylvania’s in red. You can see that the curves fit the data fairly well. 
From the numerators of the models we see that

lim
tS∞

 F1t2 ≈ 26.697 and lim
tS∞

 P1t2 ≈ 12.802.

So the maximum sustainable population for Florida is about 26.7 million, and for 
Pennsylvania is about 12.8 million.

Figure 3.17b shows a two-century span for the two states. Pennsylvania had rapid 
growth in the first half of the 20th century and is now approaching its limit to 
growth. Florida, on the other hand, is currently experiencing extremely rapid growth 
but should be approaching its maximum sustainable population by the end of the  
21st century. Now try Exercise 50.

EXAMPLE 7 

[0, 120] by [0, 30]

(a)    

[0, 200] by [0, 30]

(b)

Figure 3.17 Scatter plots and graphs for Example 7.
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Other Logistic Models
In Example 3, the bacteria cannot continue to grow exponentially forever because they 
cannot grow beyond the confines of the petri dish. In Example 7, though Florida’s popu-
lation is booming now, it will eventually level off, just as Pennsylvania’s has done. Sun-
flowers and many other plants grow to a natural height following a logistic pattern. 
Chemical acid-base titration curves are logistic. Yeast cultures grow logistically. Conta-
gious diseases and even rumors spread according to logistic models.

Intersection
X=5.8588884   Y=1000

[0, 10] by [2400, 1400]

Figure 3.18 The spread of a rumor. 
(Example 8)

Modeling a Rumor
Watauga High School has 1200 students. Bob, Carol, Ted, and Alice start a rumor, 
which spreads logistically so that S1t2 = 1200>11 + 39e-0.9t2 models the number 
of students who have heard the rumor by the end of Day t.

(a) How many students have heard the rumor by the end of Day 0?

(b) How long does it take for 1000 students to hear the rumor?

SOLUTION 

(a) S102 =
1200

1 + 39e-0.9 #0 =
1200

1 + 39
= 30. So, 30 students have heard the rumor  

by the end of Day 0.

(b) We need to solve 
1200

1 + 39e-0.9t = 1000.

Figure 3.18 shows that the graph of S1t2 = 1200>11 + 39e-0.9t2 intersects 
y = 1000 when t ≈ 5.86. So toward the end of Day 6 the rumor has reached the 
ears of 1000 students. Now try Exercise 45.

EXAMPLE 8 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, convert the percent to decimal form or the deci-
mal into a percent.

 1. 15%  2. 0.04

 3. Show how to increase 23 by 7% using a single 
 multiplication.

 4. Show how to decrease 52 by 4% using a single 
 multiplication.

In Exercises 5 and 6, solve the equation algebraically.

 5. 40 # b2 = 160

 6. 243 # b3 = 9

In Exercises 7–10, solve the equation numerically.

 7. 782b6 = 838

 8. 93b5 = 521

 9. 672b4 = 91

 10. 127b7 = 56

QUICK REVIEW 3.2 (For help, go to Section P.5.)

 3. ƒ1x2 = 78,963 # 0.968x 4. ƒ1x2 = 5607 # 0.9968x

 5. g1t2 = 247 # 2t 6. g1t2 = 43 # 0.05t

SECTION 3.2 Exercises

In Exercises 1–6, tell whether the function is an exponential growth 
function or exponential decay function, and find the constant percent-
age rate of growth or decay.

 1. P1t2 = 3.5 # 1.09t 2. P1t2 = 4.3 # 1.018t
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In Exercises 7–18, determine the exponential function that satisfies the 
given conditions.

 7. Initial value = 7, increasing at a rate of 19% per year

 8. Initial value = 52, increasing at a rate of 2.3% per day

 9.  Initial value = 11, decreasing at a rate of 60% per month

 10. Initial value = 5, decreasing at a rate of 0.59% per week

 11. Initial population = 42,600, increasing at a rate of 1.5% 
per year

 12. Initial population = 502,000, increasing at a rate of 1.7%  
per year

 13. Initial height = 18 cm, growing at a rate of 5.2% per week

 14. Initial mass = 15 g, decreasing at a rate of 4.6% per day

 15. Initial mass = 0.6 g, doubling every 3 days

 16. Initial population = 250, doubling every 7.5 hr

 17. Initial mass = 592 g, halving once every 6 years

 18. Initial mass = 17 g, halving once every 32 hr

Table 3.11 Values for Two Exponential Functions

x ƒ1x2 g1x2
-2 1.472 -9.0625
-1 1.84 -7.25

0 2.3 -5.8
1 2.875 -4.64
2 3.59375 -3.7123

In Exercises 21 and 22, determine a formula for the exponential 
 function whose graph is shown in the figure.

 21.   22. y

x

(0, 4) (5, 8.05)
(0, 3)

y

x

(4, 1.49)

In Exercises 23–26, find the logistic function that satisfies the given 
conditions.

 23. Initial value = 10, limit to growth = 40, passing through 
11, 202.

 24. Initial value = 12, limit to growth = 60, passing through 
11, 242.

 25. Initial population = 16, maximum sustainable population 
=  128, passing through 15, 322.

 26. Initial height = 5, limit to growth = 30, passing through 
13, 152.

In Exercises 19 and 20, determine a formula for the exponential func-
tion whose values are given in Table 3.11.

 19. ƒ1x2  20. g1x2

 29. Exponential Growth In 2000 the population of Cairo, Egypt, 
was 13,626,000 and was increasing at the rate of 2.18% each year. 
At that rate, when will the population be 20 million?

 30. Exponential Growth In 2000 the population of Delhi, 
India, was 15,692,000 and was increasing at the rate of 5.27% 
each year. At that rate, when should the population have 
reached 30 million?

 31. Exponential Growth The population of Smallville in the 
year 1890 was 6250. Assume the population increased at a rate 
of 2.75% per year.

(a) Estimate the population in 1915 and 1940.

(b) Predict when the population reached 50,000.

 32. Exponential Growth The population of River City in the 
year 1910 was 4200. Assume the population increased at a rate 
of 2.25% per year.

(a) Estimate the population in 1930 and 1945.

(b) Predict when the population reached 20,000.

 33. Radioactive Decay The half-life of a certain radioactive 
substance is 14 days. There are 6.6 g present initially.

(a) Express the amount of substance remaining as a function 
of time t.

(b) When will there be less than 1 g remaining?

 34. Radioactive Decay The half-life of a certain radioactive 
substance is 65 days. There are 3.5 g present initially.

(a) Express the amount of substance remaining as a function 
of time t.

(b) When will there be less than 1 g remaining?

 35. Writing to Learn Without using formulas or graphs, com-
pare and contrast exponential functions and linear functions.

 36. Writing to Learn Without using formulas or graphs, com-
pare and contrast exponential functions and logistic functions.

 37. Writing to Learn Using the population model that is 
graphed in the figure, explain why the time it takes the population 
to double (doubling time) is independent of the population size.

y

x
1 2

300,000
250,000
200,000
150,000
100,000
50,000

3 4 5 6 7 8 9 10

Po
pu

la
tio

n

Time

y

x

y = 20

(0, 5)
(2, 10)

y

x

y = 60

(0, 15) (8, 30)

In Exercises 27 and 28, determine a formula for the logistic function 
whose graph is shown in the figure.

 27.   28.  
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 38. Writing to Learn Explain why the half-life of a radioactive 
substance is independent of the initial amount of the substance 
that is present.

 39. Bacterial Growth The number B of bacteria in a petri dish 
culture after t hours is given by

B = 100e0.693t.

When will the number of bacteria be 200? Estimate the dou-
bling time of the bacteria. 

 40. Radiocarbon Dating The amount C in grams of carbon-14 
present in a certain substance after t years is given by

C = 20e-0.0001216t.
Estimate the half-life of carbon-14.

 41. Atmospheric Pressure Determine the atmospheric 
 pressure outside an aircraft flying at 52,800 ft (10 mi above  
sea level).

 42. Atmospheric Pressure Find the altitude above sea level 
at which the atmospheric pressure is 2.5 lb>in.2.

 43. Population Modeling Use the 1950–2020 data in 
Table 3.12 and exponential regression to predict Santiago’s 
population for 2030. Would logistic regression be a more 
appropriate model? Explain. (Hint: Let 1900 be t = 0.)

 44. Population Modeling Use the 1950–2020 data in Table 
3.12 and exponential regression to predict Kuala Lumpur’s 
population for 2030. Would logistic regression be a more 
appropriate model? Explain. (Hint: Let 1900 be t = 0.)

Table 3.12 Populations of Two 
World Cities (in thousands)

Year
Kuala Lumpur 

(Malaysia)
Santiago 
(Chile)

1950 262 1322
1960 344 1980
1970 451 2647
1980 971 3721
1990 2098 4616
2000 4176 5658
2010 5810 6269
2020 7997 6767

Source: https://www.macrotrends.net.

 45. Spread of Flu The number of students infected with flu at 
Springfield High School after t days is modeled by the function

P1t2 =
800

1 + 49e-0.2t .

(a) What was the initial number of infected students?

(b) When will the number of infected students be 200?

(c) The school will close when 300 of the 800-student body 
are infected. When will the school close?

 46. Population of Deer The population of deer after t years in 
Cedar State Park is modeled by the function

P1t2 =
1001

1 + 90e-0.2t .

(a) What was the initial population of deer?

(b) When will the number of deer be 600?

(c) What is the maximum number of deer possible in the park?

 49. Population Growth Using the data in Table 3.14, confirm the 
model used in Exercise 56 of Section 3.1.

 47. Population Growth Using all of the data in Table 3.9, 
compute a logistic regression model, and use it to predict the 
U.S. population in 2020.

 48. Population Growth Using the data in Table 3.13, confirm 
the following model: 

P1t2 =
18871.4

1 + 13.3404e-0.033289t

Table 3.13 Population of Buenos 
Aires, Argentina (in thousands)

Year Population

1904 951
1950 5166
1960 6762
1970 8416
1980 9920
1990 11,148
2000 12,504
2010 14,246
2020 15,154

Source: https://www.macrotrends.net.

Table 3.14 Populations of Two 
Countries (in millions)

Year South Korea Japan

1900 9.93 44.30
1910 10.20 49.60
1920 11.80 56.00
1930 13.90 64.30
1940 15.70 73.20
1950 19.21 82.80
1960 25.33 93.67
1970 32.20 104.93
1980 38.05 117.82
1990 42.92 124.51
2000 47.38 127.52
2010 49.55 128.54
2020 51.27 126.48

Source: https://www.statista.com.

 50. Population Growth Using the data in Table 3.14, compute 
a logistic regression model for South Korea’s population for t 
years since 1900. Based on your model and Japan’s population 
model from Exercise 56 of Section 3.1, will the population of 
South Korea ever surpass that of Japan? If so, when?

Standardized Test Questions
 51. True or False Exponential population growth is con-

strained with a maximum sustainable population. Justify your 
answer.

 52. True or False If the constant percentage rate of an expo-
nential function is negative, then the base of the function is 
negative. Justify your answer.
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In Exercises 53–56, you may use a graphing calculator to solve the 
problem.

 53. Multiple Choice What is the constant percentage growth 
rate of P1t2 = 1.23 # 1.049t?

(A) 49% (B)  23% (C)  4.9%

(D) 2.3% (E)  1.23%

 54. Multiple Choice What is the constant percentage decay 
rate of P1t2 = 22.7 # 0.834t?

(A) 22.7% (B)  16.6% (C)  8.34%

(D) 2.27% (E)  0.834%

 55. Multiple Choice A single-cell amoeba divides into two 
every 4 days. About how long will it take one amoeba to 
 produce a population of 1000?

(A) 10 days (B)  20 days (C)  30 days

(D) 40 days (E)  50 days

 56. Multiple Choice A rumor spreads logistically so that 
S1t2 = 789>11 + 16 # e-0.8t2 models the number of persons 
who have heard the rumor by the end of t days. Based on this 
model, which of the following is true?

(A) After 0 days, 16 persons have heard the rumor.

(B) After 2 days, 439 persons have heard the rumor.

(C) After 4 days, 590 persons have heard the rumor.

(D) After 6 days, 612 persons have heard the rumor.

(E) After 8 days, 769 persons have heard the rumor.

Explorations
 57. Population Growth (a) Use the 1900–2010 data in  

Table 3.9 and logistic regression to predict the U.S. population 
for 2016.

(b) Writing to Learn Compare the prediction with the 
value listed in the table for 2016.

(c) Noting the results of Example 6, which model— 
exponential or logistic—makes the better prediction in  
this case?

 58. Population Growth Use all of the data in Tables 3.9  
and 3.15.

(a) Based on exponential growth models, will Mexico’s popu-
lation surpass that of the United States, and if so, when?

 
(b) Based on logistic growth models, will Mexico’s population 

surpass that of the United States, and if so, when?

(c) What are the maximum sustainable populations for the two 
countries?

(d) Writing to Learn Which model—exponential or 
 logistic—is more valid in this case? Justify your choice.

Table 3.15 Population of Mexico 
(in millions)

Year Population

1900  13.6
1950  25.8
1960  34.9
1970  48.2
1980  66.8
1990  88.1
2001 101.9
2011 115.0
2016 123.2

Sources: Statesman’s Yearbook, and World 
 Almanac and Book of Facts.

Extending the Ideas
 59. The hyperbolic sine function is defined by 

sinh1x2 = 1ex - e-x2>2. Prove that sinh is an odd function.

 60. The hyperbolic cosine function is defined by cosh1x2 =
1ex + e-x2>2. Prove that cosh is an even function.

 61. The hyperbolic tangent function is defined by tanh1x2 =
1ex - e-x2>1ex + e-x2.
(a) Prove that tanh1x2 = sinh1x2>cosh1x2.
(b) Prove that tanh is an odd function.

(c) Prove that ƒ1x2 = 1 + tanh1x2 is a logistic function.
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This linking statement says that a logarithm is an exponent. Because logarithms are 
exponents, we can evaluate simple logarithmic expressions using our understanding of 
exponents.

A Bit of History
Logarithmic functions were developed around 
1614 as computational tools by Scottish mathe-
matician John Napier (1550–1617). He originally 
called them “artificial numbers,” but changed the 
name to logarithms, which means “reckoning 
numbers.”

Generally b + 1
In practice, logarithmic bases are almost always 
greater than 1.

What you’ll learn about
• Inverses of Exponential Functions

• Common Logarithms—Base 10

• Natural Logarithms—Base e

• Graphs of Logarithmic Functions

• Measuring Sound Using Decibels

... and why
Logarithmic functions are used in 
many applications, including the 
measurement of the relative intensity 
of sounds.

Inverses of Exponential Functions
If a function passes the horizontal line test, then the inverse of the function is also a 
function. Figure 3.19 shows that an exponential function ƒ1x2 = bx would pass the 
horizontal line test. So it has an inverse that is a function. This inverse is the logarithmic 
function with base b, denoted logb1x2, or more simply as logb x. That is, if ƒ1x2 = bx 
with b 7 0 and b ≠ 1, then ƒ -11x2 = logb x. See Figure 3.20.

3.3 Logarithmic Functions and Their Graphs

y

x

y = bx

b > 1

(a)
     

y

x

y = bx

0 < b < 1

(b)

Figure 3.19 Exponential functions are either (a) increasing or (b) decreasing.

An immediate and useful consequence of this definition is the link between an expo-
nential equation and its logarithmic counterpart.

Changing Between Logarithmic and Exponential Form

If x 7 0 and 0 6 b ≠ 1, then

y = logb1x2 if and only if by = x.

Basic Properties of Logarithms

For 0 6 b ≠ 1, x 7 0, and any real number y,

• logb 1 = 0 because b0 = 1.

• logb b = 1 because b1 = b.

• logb by = y because by = by.

• blogb x = x because logb x = logb x.

Evaluating Logarithms
(a) log2 8 = 3 because 23 = 8.

(b) log3 23 = 1>2 because 31>2 = 23.

(c) log5 
1
25

= -2 because 5-2 =
1

52 =
1
25

.

(d) log4 1 = 0 because 40 = 1.

(e) log7 7 = 1 because 71 = 7. Now try Exercise 1.

EXAMPLE 1 

We can generalize the relationships observed in Example 1.

y

x

y = bx

y = logb x

y = x

Figure 3.20 Because logarithmic functions 
are inverses of exponential functions, we can 
obtain the graph of a logarithmic function by 
the mirror or rotational methods discussed in 
Section 1.5.
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Logarithmic functions are inverses of exponential functions. So the inputs and outputs 
are switched. Table 3.16 illustrates this relationship for ƒ1x2 = 2x and ƒ -11x2 = log2 x.

These properties give us efficient ways to evaluate simple logarithms and some expo-
nential expressions. The first two parts of Example 2 are the same as the first two parts 
of Example 1.

Table 3.16 An Exponential Function and Its Inverse

x ƒ1x2 = 2x x ƒ -11x2 = log2 x

-3 1>8 1>8 -3

-2 1>4 1>4 -2

-1 1>2 1>2 -1
0 1 1 0
1 2 2 1
2 4 4 2
3 8 8 3

Comparing Exponential and Logarithmic 
Functions

 1. Set your grapher to Parametric mode and Simultaneous graphing mode.

Set X1t = T and Y1t = 2^T.

Set X2t = 2^T and Y2t = T.

Creating Tables. Set TblStart = -3 and ∆Tbl = 1. Use the Table feature of 
your grapher to obtain the decimal form of both parts of Table 3.16. Be sure 
to scroll to the right to see X2t and Y2t.

Drawing Graphs. Set Tmin = -6, Tmax = 6, and Tstep = 0.5. Set the 
1x, y2 window to 3-6, 64  by 3-4, 44 . Use the Graph feature to obtain the 
simultaneous graphs of ƒ1x2 = 2x and ƒ -11x2 = log2 x. Use the Trace fea-
ture to explore the numerical relationships within the graphs.

 2. Graphing in Function mode. Graph y = 2x in the same window. Then use the 
“draw inverse” command to draw the graph of y = log2 x.

EXPLORATION 1 

Evaluating Logarithmic and Exponential 
Expressions

(a) log2 8 = log2 23 = 3.

(b) log3 23 = log3 31>2 = 1>2.

(c) 6log611 = 11. Now try Exercise 5.

EXAMPLE 2 

This relationship can be used to produce both tables and graphs for logarithmic func-
tions, as you will discover in Exploration 1.

Common Logarithms—Base 10
Because of their connection to our base-ten number system, the metric system, and sci-
entific notation, logarithms with base 10 are especially useful; such logarithms are  
common logarithms. We often drop the subscript of 10 for the base when using com-
mon logarithms. The common logarithmic function log10 x = log x is the inverse of the 
exponential function ƒ1x2 = 10x. Therefore,

y = log x if and only if 10y = x.

Applying this relationship, we can obtain other relationships for logarithms with base 10.
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Changing from logarithmic form to exponential form sometimes is enough to solve an 
equation involving logarithmic functions.

log(34.5)

10^Ans

log(0.43)

10^Ans
.43

1.537819095

34.5

–.3665315444

Figure 3.21 Doing and checking common 
logarithmic computations. (Example 4)

Basic Properties of Common Logarithms

Let x and y be real numbers with x 7 0.

• log 1 = 0 because 100 = 1.

• log 10 = 1 because 101 = 10.

• log 10y = y because 10y = 10y.

• 10log x = x because log x = log x.

Some Words of Warning
In Figure 3.21, notice we use “10^Ans” instead 
of “10^1.537819095” to check log 134.52. This 
is because graphers generally store more digits 
than they display and so we can obtain a more 
accurate check. Even so, because log 134.52 is  
an irrational number, a grapher cannot produce 
its exact value. Thus checks like those shown  
in Figure 3.21 may not always work out so 
 perfectly.

Using the definition of common logarithm or these basic properties, we can evaluate 
expressions involving a base of 10.

Evaluating Logarithmic and Exponential 
Expressions—Base 10

(a) log 100 = log10 100 = 2 because 102 = 100.

(b) log 25 10 = log 101>5 =
1
5

.

(c) log 
1

1000
= log 

1

103 = log 10-3 = -3.

(d) 10log 6 = 6. Now try Exercise 7.

EXAMPLE 3 

Common logarithms can be evaluated by using the  LOG  key on a calculator, as illus-
trated in Example 4.

Evaluating Common Logarithms with  
a Calculator

Use a calculator to evaluate the logarithmic expression if it is defined, and check 
your result by evaluating the corresponding exponential expression.

(a) log 34.5 = 1.537c  because 101.537c = 34.5.

(b) log 0.43 = -0.366c  because 10-0.366 c = 0.43.

See Figure 3.21.

(c) log 1-32 is undefined because there is no real number y such that 10y = -3.
A grapher will yield either an error message or a complex-number answer for 
entries such as log 1-32. We shall restrict the domain of logarithmic functions to 
the set of positive real numbers and ignore such complex-number answers.

Now try Exercise 25.

EXAMPLE 4 

Solving Simple Logarithmic Equations
Solve each equation by changing it to exponential form.

(a) log x = 3    (b) log2 x = 5

SOLUTION 

(a) Changing to exponential form, x = 103 = 1000.

(b) Changing to exponential form, x = 25 = 32. Now try Exercise 33.

EXAMPLE 5 
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Using the definition of natural logarithm or these basic properties, we can evaluate 
expressions involving the natural base e.

ln(23.5)

e^Ans

ln(0.48)

e^Ans
.48

3.157000421

23.5

–.7339691751

Figure 3.22 Doing and checking natural 
logarithmic computations. (Example 7)

Reading a Natural Log
The expression ln x is pronounced “el en of ex.” 
The “l” stands for logarithm, and the “n” stands 
for natural.

Natural Logarithms—Base e
Because of their special calculus properties, logarithms with the natural base e are used 
in many situations. Logarithms with base e are natural logarithms. We often use the 
special abbreviation “ln” (without a subscript) to denote a natural logarithm. Thus, the 
natural logarithmic function loge x = ln x. It is the inverse of the exponential function 
ƒ1x2 = ex. So

y = ln x if and only if ey = x.

Applying this relationship, we can obtain other fundamental relationships for loga-
rithms with the natural base e.

Basic Properties of Natural Logarithms

Let x and y be real numbers with x 7 0.

• ln 1 = 0 because e0 = 1.

• ln e = 1 because e1 = e.

• ln ey = y because ey = ey.

• eln x = x because ln x = ln x.

Evaluating Logarithmic and Exponential 
Expressions—Base e

(a) ln 2e = loge 2e = 1>2 because e1>2 = 2e.

(b) ln e5 = loge e
5 = 5.

(c) eln 4 = 4. Now try Exercise 13.

EXAMPLE 6 

Natural logarithms can be evaluated by using the  LN  key on a calculator, as illus-
trated in Example 7.

Evaluating Natural Logarithms  
with a Calculator

Use a calculator to evaluate the logarithmic expression, if it is defined, and check 
your result by evaluating the corresponding exponential expression.

(a) ln 23.5 = 3.157c  because e3.157c = 23.5.

(b) ln 0.48 = -0.733c  because e-0.733c = 0.48.

See Figure 3.22.

(c) ln 1-52 is undefined because there is no real number y such that ey = -5. A 
grapher will yield either an error message or a complex-number answer for 
entries such as ln 1-52. We will continue to restrict the domain of logarithmic 
functions to the set of positive real numbers and ignore such complex-number 
answers. Now try Exercise 29.

EXAMPLE 7 

Graphs of Logarithmic Functions
The natural logarithmic function ƒ1x2 = ln x is one of the basic functions introduced in 
Section 1.3. We now list its properties.

M04_DEMA8962_10_GE_C03.indd   295 22/06/22   12:03



296 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Any logarithmic function g1x2 = logb x with b 7 1 has the same domain, range, con-
tinuity, increasing behavior, lack of symmetry, and other general behavior as 
ƒ1x2 = ln x. It is rare that we are interested in logarithmic functions g1x2 = logb x 
with 0 6 b 6 1. So, the graph and behavior of ƒ1x2 = ln x are typical of logarithmic 
functions.

We now consider the graphs of the common and natural logarithmic functions and their 
geometric transformations. To understand the graphs of y = log x and y = ln x, we can 
compare each to the graph of its inverse, y = 10x and y = ex, respectively. Figure 3.24a 
shows that the graphs of y = ln x and y = ex are reflections of each other across the 
line y = x. Similarly, Figure 3.24b shows that the graphs of y = log x and y = 10x are 
reflections of each other across this same line.

y

x

(a)

y = ex

y = x

y = ln x
1 4

1

4

   

y

x

(b)

y = x

y = log x
1 4

1

4

y = 10x

Figure 3.24 Two pairs of inverse functions.y = log x

y = ln x

[21, 5] by [22, 2]

Figure 3.25 The graphs of the common 
and natural logarithmic functions.

BASIC FUNCTION 

ƒ1x2 = ln x
Domain: 10, ∞2
Range: 1-∞, ∞2
Continuous on 10, ∞2
Increasing on 10, ∞2
No symmetry
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: x = 0
End behavior: lim

xS∞
 ln x = ∞

The Natural Logarithmic Function

[22, 6] by [23, 3]

Figure 3.23

From Figure 3.25 we can see that the graphs of y = log x and y = ln x have much in 
common. Figure 3.25 also shows how they differ.

The geometric transformations studied in Section 1.6, together with our knowledge of 
the graphs of y = ln x and y = log x, allow us to predict the graphs of the functions in 
Example 8.
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(a)

[23, 6] by [23, 3]

  (b)

[23, 6] by [23, 3]

(c)

[23, 6] by [23, 3]

  (d)

[23, 6] by [23, 3]

Figure 3.26 Transforming y = ln x to obtain (a) g1x2 = ln 1x + 22 and  
(b) h1x2 = ln 13 - x2; and y = log x to obtain (c) g1x2 = 3 log x and  
(d) h1x2 = 1 + log x. (Example 8)

Transforming Logarithmic Graphs
Describe how to transform the graph of y = ln x or y = log x into the graph of the 
given function.

(a) g1x2 = ln 1x + 22 (b) h1x2 = ln 13 - x2
(c) g1x2 = 3 log x (d) h1x2 = 1 + log x

SOLUTION 

(a) The graph of g1x2 = ln 1x + 22 is obtained from the graph of y = ln 1x2  
by translating it 2 units to the left. See Figure 3.26a.

(b) h1x2 = ln 13 - x2 = ln 3-1x - 324 . So we obtain the graph of h1x2 =
ln 13 - x2 from the graph of y = ln x by applying, in order, a reflection across 
the y-axis followed by a translation 3 units to the right. See Figure 3.26b.

(c) The graph of g1x2 = 3 log x is obtained by vertically stretching the graph of 
ƒ1x2 = log x by a factor of 3. See Figure 3.26c.

(d) We can obtain the graph of h1x2 = 1 + log x from the graph of ƒ1x2 = log x by 
a translation 1 unit up. See Figure 3.26d. Now try Exercise 41.

EXAMPLE 8 
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298 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Bel Is for Bell
The original unit for sound intensity level was 
the bel (B), which proved to be inconveniently 
large. So the decibel, one-tenth of a bel, has 
replaced it. The bel was named in honor of 
 Scottish-born American Alexander Graham Bell 
(1847–1922), inventor of the telephone.

[21?10212, 3?10212] by [25, 5]

Figure 3.27 Graph of y1 = log1x>10-122 
(bels) and y2 = 10 log1x>10-122 (decibels).

Table 3.17 Approximate Intensities 
of Selected Sounds

Sound Intensity 1W>m22
Hearing threshold 10-12

Soft whisper at 5 m 10-11

City traffic 10-5

Subway train 10-2

Pain threshold 100

Jet at takeoff 103

Source: Adapted from R. W. Reading, Exploring Physics: 
 Concepts and Applications. Belmont, CA: Wadsworth, 1984.

Sound Intensity
Sound intensity is the energy per unit time of a 
sound wave over a given area. Sound intensity is 
measured in watts per square meter.

Measuring Sound Using Decibels
Table 3.17 lists assorted sounds. Notice that a jet at takeoff is 100 trillion times as loud 
as a soft whisper. Because the range of audible sound intensities is so great, common 
logarithms (powers of 10) are used to compare how loud sounds are.

CHAPTER OPENER Problem (from page 269)

Problem: How loud is a jet at takeoff?

Solution: Based on the data in Table 3.17,

 b = 10 log1I>I02
 = 10 log1103>10-122
 = 10 log110152
 = 10 # 15 = 150

So the sound intensity level of a jet at takeoff is 150 dB.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, evaluate the expression.

 1. 5-2  2. 10-3

 3. 
40

5
 4. 

10

2

 5. 
811

228  6. 
913

278

In Exercises 7–10, rewrite as a base raised to a rational number 
 exponent.

 7. 25  8. 23 10

 9. 
12e

 10. 
123 e2

QUICK REVIEW 3.3 (For help, go to Sections P.1 and A.1.) 

DEFINITION Decibels

The level of sound intensity in decibels (dB) is

b = 10 log1I>I02,
where b (beta) is the number of decibels, I is the sound intensity in W>m2, and 
I0 = 10-12 W>m2 is the threshold of human hearing (the quietest audible sound 
intensity). Figure 3.27 shows the relationship between bels and decibels.
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In Exercises 41–46, describe how to transform the graph of y = ln x 
into the graph of the given function. Sketch the graph by hand and sup-
port your sketch with a grapher.

 41. ƒ1x2 = ln 1x + 32 42. ƒ1x2 = ln 1x2 + 2

 43. ƒ1x2 = ln 1-x2 + 3 44. ƒ1x2 = ln 1-x2 - 2

 45. ƒ1x2 = ln 12 - x2 46. ƒ1x2 = ln 15 - x2
In Exercises 47–52, describe how to transform the graph of y = log x 
into the graph of the given function. Sketch the graph by hand and sup-
port with a grapher.

 47. ƒ1x2 = -1 + log 1x2 48. ƒ1x2 = log 1x - 32
 49. ƒ1x2 = -2 log 1-x2 50. ƒ1x2 = -3 log 1-x2
 51. ƒ1x2 = 2 log 13 - x2 - 1

 52. ƒ1x2 = -3 log 11 - x2 + 1

In Exercises 53–58, graph the function, and analyze it for domain, 
range, continuity, increasing or decreasing behavior, boundedness, 
extrema, symmetry, asymptotes, and end behavior.

 53. ƒ1x2 = log 1x - 22 54. ƒ1x2 = ln 1x + 12
 55. ƒ1x2 = - ln 1x - 12 56. ƒ1x2 = - log 1x + 22
 57. ƒ1x2 = 3 log 1x2 - 1 58. ƒ1x2 = 5 ln 12 - x2 - 3

 59. Sound Intensity Use the data in Table 3.17 to compute the 
sound intensity in decibels for (a) a soft whisper, (b) city traf-
fic, and (c) a subway train.

 60. Light Absorption The Beer- 
Lambert Law of Absorption 
applied to Lake Tanganyika in 
Africa states that the light inten-
sity I (in lumens), at a depth of 
x meters, satisfies the equation

log 
I
8

= -0.00749x.

Find the intensity of the light at 
a depth of 20 m.

 61. Earthquake Intensity The Richter magnitude scale was 
developed in 1935 by Charles F. Richter of the California Insti-
tute of Technology as a mathematical device to compare the 
intensity of earthquakes. Table 3.18 shows the relationship 
between earthquake magnitude and intensity of an earthquake 
as measured by ground motion.

SECTION 3.3 Exercises

In Exercises 1–18, evaluate the logarithmic expression without using a 
calculator.

 1. log4 4  2. log6 1

 3. log2 32  4. log3 81

 5. log5 23 25  6. log6 
125 36

 7. log 1018  8. log 10,000

 9. log 
1

10,000
 10. log 10-4

 11. log 25 10  12. log 
121000

 13. ln e3  14. ln e-4

 15. ln 
1
e

 16. ln 1

 17. ln 24 e  18. ln 
12e7

In Exercises 19–24, evaluate the expression without using a calculator.

 19. 7log7 3  20. 5log5 8

 21. 10log 10.52  22. 10log14

 23. eln 6  24. eln11>52

In Exercises 25–32, use a calculator to evaluate the logarithmic expres-
sion if it is defined, and check your result by evaluating the correspond-
ing exponential expression.

 25. log 9.43  26. log 0.908

 27. log 1-142  28. log 1-5.142
 29. ln 4.05  30. ln 0.733

 31. ln 1-0.492  32. ln 1-3.32
In Exercises 33–36, solve the equation by changing it to exponential 
form.

 33. log x = 2  34. log x = 4

 35. log x = -1  36. log x = -3

In Exercises 37–40, match the function with its graph.

 37. ƒ1x2 = log 11 - x2  38. ƒ1x2 = log 1x + 12
 39. ƒ1x2 = - ln 1x - 32  40. ƒ1x2 = - ln 14 - x2

(a) (b)

(c) (d)

Table 3.18 Richter Scale

Magnitude 1x2 Ground Motion 1y2
1 10
2 100
3 1000
4 10,000
5 100,000
6 1,000,000

(a) What is the difference between earthquakes of magnitudes 
2 and 3? And of magnitudes 2 and 5?

(b) Draw a scatter plot of the data in Table 3.18.
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300 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

(c) Model the data with an exponential function.

(d) Model the data with a logarithmic function

(e) Discuss the advantages of using a logarithmic scale like 
the Richter Scale.

(f) Are the functions in (c) and (d) inverse functions?

 62. Population Decay Using the data in Table 3.19 and 
assuming exponential decay,

(a) Compute a regression model for Budapest’s population for 
t years since 1970.

(b) Graph a scatter plot of the data in Table 3.19 together with 
the exponential model found in part (a).

(c) Use the exponential decay model to predict when 
 Budapest’s population will drop to 1.5 million.

(d) Is the computed model realistic? Explain why or why not.

Table 3.19 Population of Budapest,
Hungary (in thousands)

Year Population

1980 2057
1990 2005
2000 1787
2010 1734
2020 1768

Source: https://www.macrotrends.net.

 67. Multiple Choice Which statement is false about 
ƒ1x2 = ln x?

(A) It is increasing on its domain.

(B) It is symmetric about the origin.

(C) It is continuous on its domain.

(D) It is unbounded.

(E) It has a vertical asymptote.

 68. Multiple Choice Which of the following is the inverse of 
ƒ1x2 = 2 # 3x?

(A) ƒ -11x2 = log3 1x>22 (B) ƒ -11x2 = log2 1x>32
(C) ƒ -11x2 = 2 log3 1x2 (D) ƒ -11x2 = 3 log2 1x2
(E) ƒ -11x2 = 0.5 log3 1x2

Explorations
 69. Writing to Learn Parametric Graphing In the manner 

of Exploration 1, make tables and graphs for ƒ1x2 = 3x and  
its inverse ƒ -11x2 = log3 x. Write a comparative analysis of 
the two functions regarding domain, range, intercepts, and 
asymptotes.

 70. Writing to Learn Parametric Graphing In the manner 
of Exploration 1, make tables and graphs for ƒ1x2 = 5x and  
its inverse ƒ -11x2 = log5 x. Write a comparative analysis of 
the two functions regarding domain, range, intercepts, and 
asymptotes.

 71. Group Activity Parametric Graphing In the manner of 
Exploration 1, find the number b 7 1 such that the graphs of 
ƒ1x2 = bx and its inverse ƒ -11x2 = logb x have exactly one 
point of intersection. What is the one point that is common to 
the two graphs? 

 72. Writing to Learn Explain why zero is not in the domain of 
the logarithmic functions ƒ1x2 = log3 x and g1x2 = log5 x.

Extending the Ideas
 73. Describe how to transform the graph of ƒ1x2 = ln x into the 

graph of g1x2 = log1>e x.

 74. Describe how to transform the graph of ƒ1x2 = log x into the 
graph of g1x2 = log0.1 x.

 75. Extend the graph (enlarge the window) in Figure 3.27 (page 298) 
in order to show the location of the point corresponding to a 
soft whisper at 5 m (Table 3.17) for both bels and decibels. 
State the coordinates of this point on both graphs.

Standardized Test Questions
 63. True or False A logarithmic function is the inverse of an 

exponential function. Justify your answer.

 64. True or False Common logarithms are logarithms with 
base 10. Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve the 
problem.

 65. Multiple Choice What is the approximate value of the 
common log of 2?

(A) 0.10523 (B) 0.20000

(C) 0.30103 (D) 0.69315

(E) 3.32193

 66. Multiple Choice Which statement is false?

(A) log 5 = 2.5 log 2 (B) log 5 = 1 - log 2

(C) log 5 7 log 2 (D) log 5 6 log 10

(E) log 5 = log 10 - log 2
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Properties of Exponents
Let b, x, and y be real numbers with b 7 0.

1. bx # by = bx+y

2. 
bx

by = bx-y

3. 1bx2y = bxy

What you’ll learn about
• Properties of Logarithms

• Change of Base

• Graphs of Logarithmic Functions 
with Base b

• Re-expressing Data

... and why
The applications of logarithms are 
based on their many special 
 properties, so learn them well.

Properties of Logarithms
Logarithms have special algebraic traits that historically made them indispensable 
for calculations and that still make them valuable in many areas of application and 
modeling. In Section 3.3 we learned about the inverse relationship between expo-
nents and logarithms and how to apply some basic properties of logarithms. We now 
delve deeper into the nature of logarithms to prepare for equation solving and 
modeling.

3.4 Properties of Logarithmic Functions

Proving the Product Rule for Logarithms
Prove logb 1RS2 = logb R + logb S.

SOLUTION Let x = logb R and y = logb S. The corresponding exponential state-
ments are bx = R and by = S. Therefore,

 RS = bx # by

 = bx+y  First property of exponents

 logb 1RS2 = x + y  Change to logarithmic form.

 = logb R + logb S Use the definitions of x and y.

Now try Exercise 37.

EXAMPLE 1 

Properties of Logarithms

Let b, R, and S be positive real numbers with b ≠ 1, and c any real number.

• Product rule: logb 1RS2 = logb R + logb S

• Quotient rule: logb 
R
S

= logb R - logb S

• Power rule: logb Rc = c logb R

Exploring the Arithmetic of Logarithms

Use the 5-decimal-place approximations shown in Figure 3.28 to support the 
properties of logarithms numerically.

 1. Product log 12 # 42 = log 2 + log 4 

 2. Quotient log a8
2
b = log 8 - log 2 

 3. Power log 23 = 3 log 2 

EXPLORATION 1 

(continued)

The three properties of exponents in the left margin are the basis for the three proper-
ties of logarithms in the box above. For instance, the first property of exponents listed 
in the margin is used in Example 1 to verify the product rule for logarithms.

log(2)

log(4)

log(8)

.30103

.60206

.90309

Figure 3.28 An arithmetic progression of 
logarithms. (Exploration 1)
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When we solve equations algebraically that involve logarithms, we often have to 
rewrite expressions using properties of logarithms. Sometimes we need to expand as 
far as possible, and other times we condense as much as possible. The next three exam-
ples illustrate how properties of logarithms can be used to change the form of expres-
sions involving logarithms.

A Bit of History: Logarithms and 
Computation
Logarithms were introduced by John Napier in 
the early 1600s as a means to simplify tedious 
calculations. Before logarithms, multidigit multi-
plication steps were very time consuming. A 
table of values of logarithms was first created  
by John Briggs in 1624. Using log tables trans-
formed tedious multiplication problems into sim-
ple, quick addition problems. The key to using 
logs for multiplication is to understand that the 
log of a product is the sum of the logs of the 
 factors. That is,

logb1xy2 = logb1x2 + logb1y2.
Most precalculus textbooks published before 
1980 contained many pages devoted to log 
tables. With the invention of the electronic 
 calculator, log tables became obsolete.

Now evaluate the common logs of other positive integers using the information 
given in Figure 3.28 and without using your calculator.

 4. Use the fact that 5 = 10>2 to evaluate log 5. 

 5. Use the fact that 16, 32, and 64 are powers of 2 to evaluate log 16, log 32, and 
log 64. 

 6. Evaluate log 25, log 40, and log 50. 

List all of the positive integers less than 100 whose common logs can be evalu-
ated knowing only log 2 and the properties of logarithms and without using a 
calculator. 

Expanding the Logarithm of a Product
Assuming x and y are positive, use properties of logarithms to write log 18xy42 as a 
sum of logarithms or multiples of logarithms.

SOLUTION  log 18xy42 = log 8 +  log x + log y4  Product rule

  =  log 23 + log x + log y4  8 = 23

  =  3 log 2 + log x + 4 log y Power rule

Now try Exercise 1.

EXAMPLE 2 

Expanding the Logarithm of a Quotient
Assuming x is positive, use properties of logarithms to write ln 12x2 + 5>x2 as a 
sum or difference of logarithms or multiples of logarithms.

SOLUTION  ln 
2x2 + 5

x
= ln 

1x2 + 521>2
x

 

  = ln 1x2 + 521>2 - ln x Quotient rule

  =
1
2

 ln 1x2 + 52 - ln x  Power rule

Now try Exercise 9.

EXAMPLE 3 

Condensing a Logarithmic Expression
Assuming x and y are positive, write ln x5 - 2 ln 1xy2 as a single logarithm.

SOLUTION  ln x5 - 2 ln 1xy2 = ln x5 - ln 1xy22  Power rule

  = ln x5 - ln 1x2y22

  = ln 
x5

x2 y2  Quotient rule

  = ln 
x3

y2

Now try Exercise 13.

EXAMPLE 4 
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As we have seen, logarithms have some surprising properties. It is easy to overgeneral-
ize and fall into misconceptions about logarithms. Exploration 2 should help you 
 discern what is true and what is false about logarithmic relationships.

Student Investigation
Search the Internet for the term slide rule.

• What were slide rules?
• When were they invented?
• What were they used for?
• Are they obsolete today?
• Explain why or why not.

Discovering Relationships and 
Nonrelationships

Of the eight relationships suggested here, four are true and four are false (using 
values of x within the domains of both sides of the equations). Thinking about 
the properties of logarithms, make a prediction about the truth of each statement. 
Then test each with some specific numerical values for x. Finally, compare the 
graphs of the two sides of the equation.

 1. ln 1x + 22 = ln x + ln 2  2. log3 17x2 = 7 log3 x 

 3. log2 15x2 = log2 5 + log2 x  4. ln 
x
5

= ln x - ln 5 

 5. log 
x
4

=
log x

log 4
  6. log4 x3 = 3 log4 x 

 7. log5 x2 = 1log5 x21log5 x2  8. log 0 4x 0 = log 4 + log 0 x 0  
Which four are true, and which four are false?

EXPLORATION 2 

Change-of-Base Formula for Logarithms

For positive real numbers a, b, and x with a ≠ 1 and b ≠ 1,

logb x =
loga x

loga b
.

Change of Base
Evaluating log3 9 is easy because 9 is a simple power of the base 3. That is, we know 
that log3 9 = 2 because 32 = 9. Evaluating log4 7 is not so obvious. What power of 4 
would give a result of 7?

Although some calculators and most graphers now can compute expressions such as 
log4 7 directly, we can also evaluate log4 7 by changing its base. This requires some 
algebraic trickery. First let y = log4 7. Then

 4y = 7  Switch to exponential form.

 ln 4y = ln 7 Apply ln to both sides.

 y ln 4 = ln 7 Power rule

 y =
ln 7
ln 4

 Divide by ln 4.

Using a grapher (Figure 3.29), we see that

log4 7 =
ln 7
ln 4

= 1.4036c

We generalize this useful trickery as the change-of-base formula:

ln(7)/ln(4)

log4(7)

4Ans

1.403677461

1.403677461

7

Figure 3.29 Evaluating log4 7 in two ways 
and checking the result.
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We can generalize Example 6b in the following way: If b 7 1, then 0 6 1>b 6 1 and

log1>b x = - logb x.

So when given a function like h1x2 = log1>4 x, with a base between 0 and 1, we can 
immediately rewrite it as h1x2 = - log4 x. Because we can so readily change the base 
of logarithms with bases between 0 and 1, such logarithms are rarely encountered or 
used. Instead, we work with logarithms that have bases b 7 1, which behave much like 
natural and common logarithms, as we now summarize.

Calculators and graphers generally have two logarithm keys— LOG  and LN —which 
correspond to the bases 10 and e, respectively. So we often use the change-of-base formula 
in one of the following two forms:

logb x =
log x

log b
 or logb x =

ln x
ln b

These two forms are useful in evaluating logarithms and graphing logarithmic 
functions.

Evaluating Logarithms by Changing the Base

(a) log3 16 =
ln 16
ln 3

= 2.523 c ≈2.52

(b) log6 10 =
log 10

log 6
=

1
log 6

= 1.285 c ≈1.29

(c) log1>2 2 =
ln 2

ln 11>22 =
ln 2

ln 1 - ln 2
=

ln 2
- ln 2

= -1 Now try Exercise 23.

EXAMPLE 5 

Graphs of Logarithmic Functions with Base b
By using the change-of-base formula, we can rewrite any logarithmic function 
g1x2 = logb x as

g1x2 =
ln x
ln b

=
1

ln b
 ln x.

Therefore, every logarithmic function is a constant multiple of the natural logarithmic 
function ƒ1x2 = ln x. If the base is b 7 1, the graph of g1x2 = logb x is a vertical 
stretch or shrink of the graph of ƒ1x2 = ln x by the factor 1>ln b. If 0 6 b 6 1, a 
reflection across the x-axis is required as well.

Graphing Logarithmic Functions
Describe how to transform the graph of ƒ1x2 = ln x into the graph of the given func-
tion. Sketch the graph by hand and support your answer with a grapher.

(a) g1x2 = log5 x (b) h1x2 = log1>4 x

SOLUTION 

(a) Because g1x2 = log5 x = ln x>ln 5, its graph is obtained by vertically shrinking 
the graph of ƒ1x2 = ln x by a factor of 1>ln 5 ≈ 0.62. See Figure 3.30a.

(b) h1x2 = log1>4 x =
ln x

ln 1>4 =
ln x

ln 1 - ln 4
=

ln x
- ln 4

= -  
1

ln 4
 ln x. We can obtain 

the graph of h from the graph of ƒ1x2 = ln x by applying, in either order, a 
reflection across the x-axis and a vertical shrink by a factor of 1>ln 4 ≈ 0.72. 
See Figure 3.30b. Now try Exercise 39.

EXAMPLE 6 

(a)

[23, 6] by [23, 3]

(b)

[23, 6] by [23, 3]

Figure 3.30 Transforming ƒ1x2 = ln x  
to obtain (a) g1x2 = log5 x and  
(b) h1x2 = log1>4 x. (Example 6)
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Re-expressing Data
When seeking a model for a set of data, it is often helpful to transform the data by 
applying a function to one or both of the variables in the data set. We did this before, 
when we treated the years 1900–2010 as 0–110. Such a transformation of a data set is a 
re-expression of the data.

Recall from Section 2.2 that Kepler’s Third Law states that the square of the orbit period 
T for each planet is proportional to the cube of its average distance a from the Sun. If we 
re-express the Kepler planetary data in part A of Table 3.20 (from Table 2.10) using 
 Earth-based units, the constant of proportion becomes 1 and the “is proportional to” in 
Kepler’s Third Law becomes “equals.” We can do this by dividing the “average 
 distance” column by 149.6 Gm>AU and the “period of orbit” column by 365.2 days>year. 
The re-expressed data are shown in part B of Table 3.20.

Domain: 10, ∞2
Range: 1-∞, ∞2
Continuous
Increasing on its domain
No symmetry: neither even nor odd
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: x = 0
End behavior: lim

xS∞
 logb x = ∞

Logarithmic Functions f 1x 2 = logb x , with b + 1

y

x

(b, 1)

(1, 0)

Figure 3.31 ƒ1x2 = logb x, b 7 1.

Astronomically Speaking
An astronomical unit (AU) is the average dis-
tance between Earth and the Sun, about 149.6 
million kilometers (149.6 Gm).

Notice that the pattern in the scatter plot of these re-expressed data, shown in Figure 3.32a, 
is essentially the same as the pattern in the plot of the original data, shown in  
Figure 3.32b. What we have done is to make the numerical values of the data more 
convenient and to guarantee that our plot contains the ordered pair (1, 1) for Earth, 
which could potentially simplify our model. What we have not done and still wish to do 
is to clarify the relationship between the variables a (distance from the Sun) and T 
(orbit period).

(a)

[21, 10] by [25, 30]

(b)

[2100, 1500] by [21000, 12 000]

Figure 3.32 Scatter plots of the planetary 
data from (a) Table 3.20, part B, and  
(b) Table 3.20, part A.

Table 3.20 Average Distances and Orbit Periods for the Six
Innermost Planets

Part A Part B

 
Planet

Average Distance  
from Sun (Gm)

Period of 
Orbit (days)

Average Distance  
from Sun (AU)

Period of 
Orbit (years)

Mercury  57.9 88 0.3870 0.2410
Venus 108.2 225 0.7233 0.6161
Earth 149.6 365.2 1.000 1.000
Mars 227.9  687 1.523 1.881
Jupiter 778.3 4332 5.203 11.86
Saturn 1427 10,760 9.539 29.46

Source: Data from: Shupe, et al., National Geographic Atlas of the World  
(rev. 6th ed.). Washington, DC: National Geographic Society, 1992, plate 116.
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Logarithms can be used to re-express data and help us clarify relationships and 
uncover hidden patterns. For the planetary data, if we plot 1ln a, ln T2 pairs instead 
of 1a, T2 pairs, the pattern is much clearer. In Example 7, we carry out this re-
expression of the data and then use an algebraic tour de force to obtain Kepler’s 
Third Law.

Establishing Kepler’s Third Law Using 
Logarithmic Re-expression

Re-express the 1a, T2 data pairs in part B of Table 3.20 as 1ln a, ln T2 pairs. Find a 
 linear regression model for the 1ln a, ln T2 pairs. Rewrite the linear regression in terms 
of a and T, and rewrite the equation in a form with no logs or fractional exponents.

SOLUTION 

Model We use grapher list operations to obtain the 1ln a, ln T2 pairs (Figure 3.33a). 
We make a scatter plot of the re-expressed data in Figure 3.33b. The 1ln a, ln T2 
pairs appear to lie along a straight line.

We let y = ln T  and x = ln a. Then, using linear regression, we obtain the following 
model:

y = 1.49950x + 0.00070 ≈ 1.5x

Figure 3.33c shows the scatter plot for the 1x, y2 = 1ln a, ln T2 pairs together  
with a graph of y = 1.5x. You can see that the line fits the re-expressed data 
 remarkably well.

Remodel Returning to the original variables a and T, we obtain

 ln T = 1.5 # ln a y = 1.5x

 
ln T
ln a

= 1.5  Divide by ln a.

 loga T =
3
2

 Change of base

 T = a3>2  Switch to exponential form.

 T2 = a3  Square both sides.

Interpret This is Kepler’s Third Law! Now try Exercise 65.

EXAMPLE 7 

L2 L3

L4 = ln (L2)

.241

.6161
1
1.881
11.86
29.46
– – – – – –

–.9493
–.3239
0
.42068
1.6492
2.2554
– – – – – –

–1.423
–.4843
0
.6318
2.4732
3.383
– – – – – –

L4

(a)        (b)

[22, 3] by [23, 5]

       (c)

[22, 3] by [23, 5]

Figure 3.33 Images for Example 7: (a) re-expressed data, (b) scatter plot of the re-expressed data, and (c) graph of the regression model 
superimposed on the scatter plot.
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression.

 1. log 102

 2. ln e3

 3. ln e-2

 4. log 10-3

In Exercises 5–10, simplify the expression.

 5. 
x5 y-2

x2 y-4  6. 
u-3v7

u-2v2

 7. 1x6y-221>2  8. 1x-8y1223>4

 9. 
1u2v-421>2
127u6v-621>3  10. 

1x-2y32-2

1x3y-22-3

QUICK REVIEW 3.4 (For help, go to Sections A.1 and 3.3.)

In Exercises 29–32, write the expression using only natural logarithms.

 29. log3 x  30. log7 x

 31. log2 1a + b2
 32. log5 1c - d2
In 33–36, write the expression using only common logarithms.

 33. log2 x  34. log4 x

 35. log1>2 1x + y2
 36. log1>3 1x - y2
 37. Prove the quotient rule of logarithms.

 38. Prove the power rule of logarithms.

In Exercises 39–42, describe how to transform the graph of 
g1x2 =  ln x into the graph of the given function. Sketch the graph by 
hand and support with a grapher.

 39. ƒ1x2 = log4 x 40. ƒ1x2 = log7 x

 41. ƒ1x2 = log1>3 x 42. ƒ1x2 = log1>5 x

In Exercises 43–46, match the function with its graph. Identify the win-
dow dimensions, Xscl and Yscl, of the graph.

 43. ƒ1x2 = log4 12 - x2 44. ƒ1x2 = log6 1x - 32
 45. ƒ1x2 = log0.5 1x - 22 46. ƒ1x2 = log0.7 13 - x2

(a)   (b)

(c)   (d)

SECTION 3.4 Exercises

In Exercises 1–12, assuming x and y are positive, use properties of log-
arithms to write the expression as a sum or difference of logarithms or 
multiples of logarithms.

 1. ln 8x  2. ln 9y

 3. log 
3
x

 4. log 
2
y

 5. log2 y5  6. log2 x-2

 7. log x3y2  8. log xy3

 9. ln 
x2

y3  10. log 1000x4 

 11. log B4    
x
y

 12. ln 
23 x23 y

In Exercises 13–22, assuming x, y, and z are positive, use properties of 
logarithms to write the expression as a single logarithm.

 13. log x + log y

 14. log x + log 5

 15. ln y - ln 3

 16. ln x - ln y

 17. 
1
3

 log x

 18. 
1
5

 log z

 19. 2 ln x + 3 ln y

 20. 4 log y - log z

 21. 4 log 1xy2 - 3 log 1yz2
 22. 3 ln 1x3y2 + 2 ln 1yz22
In Exercises 23–28, use the change-of-base formula and your calculator 
to evaluate the logarithm.

 23. log2 7  24. log5 19

 25. log8 175  26. log12 259

 27. log0.5 12  28. log0.2 29
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308 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

 52. Earthquake Intensity The Richter scale magnitude R of 
an earthquake is based on the features of the associated seismic 
wave and is measured by

R = log 1a>T2 + B,

where a is the amplitude in mm (micrometers), T is the period 
in seconds, and B accounts for the weakening of the seismic 
wave due to the distance from the epicenter. Compute the 
earthquake magnitude R for each set of values.

(a) a = 250, T = 2, and B = 4.25

(b) a = 300, T = 4, and B = 3.5

 53. Light Intensity in Lake Erie The relationship between 
intensity I of light (in lumens) at a depth of x feet in Lake Erie 
is given by

log 
I

12
= -0.00235x.

What is the intensity at a depth of 40 ft?

 54. Light Intensity in Lake IJsselmeer The relationship 
between intensity of light I (in lumens) at a depth of x meters in 
Lake IJssel (IJsselmeer) in the Netherlands is given by

log 
I

17
= -0.0061x.

What is the intensity at a depth of 18 m?

 55. Writing to Learn Use the change-of-base formula to 
explain how we know that the graph of ƒ1x2 = log3 x can be 
obtained by applying a transformation to the graph of 
g1x2 = ln x.

 56. Writing to Learn Use the change-of-base formula to 
explain how the graph of ƒ1x2 = log0.8 x can be obtained by 
applying transformations to the graph of g1x2 = log x.

Table 3.21 Approximate Intensities 
for Selected Sounds

Sound Intensity 1W>m22
(a) Hearing threshold 10-12 

(b) Rustling leaves 10-11 

(c) Conversation 10-6 

(d) School cafeteria 10-4 

(e) Jack hammer 10-2 
(f) Pain threshold  1 

Sources: J. J. Dwyer, College Physics. Belmont, CA:  
Wadsworth, 1984; and E. Connally et al., Functions  
Modeling Change. New York: Wiley, 2000.

In Exercises 47–50, graph the function, and analyze it for domain, 
range, continuity, increasing or decreasing behavior, asymptotes, and 
end behavior.

 47. ƒ1x2 = log2 18x2 48. ƒ1x2 = log1>3 19x2
 49. ƒ1x2 = log 1x22 50. ƒ1x2 = ln 1x32
 51. Sound Intensity Compute the sound intensity level in 

decibels for each sound listed in Table 3.21.

Standardized Test Questions
 57. True or False The logarithm of the product of two positive 

numbers is the sum of the logarithms of the numbers. Justify 
your answer. 

 58. True or False The logarithm of a positive number is posi-
tive. Justify your answer.

In Exercises 59–62, solve the problem without using a calculator.

 59. Multiple Choice log 12 =
(A) 3 log 4 (B) log 3 + log 4

(C) 4 log 3 (D) log 3 #  log 4

(E) 2 log 6

 60. Multiple Choice log9 64 =
(A) 5 log3 2 (B) 1log3 822
(C) 1ln 642>1ln 92 (D) 2 log9 32

(E) 1log 642>9
 61. Multiple Choice ln x5 =

(A) 5 ln x (B) 2 ln x3

(C) x ln 5 (D) 3 ln x2

(E) ln x2 # ln x3

 62. Multiple Choice log1>2 x2 =
(A) -2 log2 x (B) 2 log2 x

(C) -0.5 log2 x (D) 0.5 log2 x

(E) -2 log2 0 x 0

Explorations
 63. (a)  Compute the power regression model for the following data.
   

x 4 6.5 8.5 10
y 2816 31,908 122,019 275,000

(b) Predict the y value associated with x = 7.1 using the 
power regression model.

(c) Re-express the data in terms of their natural logarithms and 
make a scatter plot of 1ln x, ln y2.

(d) Compute the linear regression model 1ln y2 = a1ln x2 + b 
for 1ln x, ln y2.

(e) Confirm that y = eb # xa is the power regression model 
found in (a).

 64. (a)  Compute the power regression model for the following 
data.

x 2 3 4.8 7.7
y 7.48 7.14 6.81 6.41

(b) Predict the y value associated with x = 9.2 using the 
power regression model.

(c) Re-express the data in terms of their natural logarithms and 
make a scatter plot of 1ln x, ln y2.

(d) Compute the linear regression model 1ln y2 = a1ln x2 + b 
for 1ln x, ln y2.

(e) Confirm that y = eb # xa is the power regression model 
found in (a).
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 65. Keeping Warm—Revisited  
Recall from Exercise 55 of Section 2.2 
that scientists have found the pulse rate 
r of mammals to be a power function of 
their body weight w.

(a) Re-express the data in Table 3.22 in terms of their common 
logarithms and make a scatter plot of 1log w, log r2.

(b) Compute the linear regression model 
1log r2 = a1log w2 + b for 1log w, log r2.

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression equation to predict the pulse rate for a 
450-kg horse. Is the result close to the 38 beats>min 
reported by A. J. Clark in 1927?

(e) Writing to Learn Why can we use either common or 
natural logarithms to re-express data that fit a power 
regression model?

Table 3.22 Weight and Pulse Rate of 
Selected Mammals

Mammal Body Weight (kg)
Pulse Rate 

(beats>min)

Rat 0.2 420
Guinea pig 0.3 300
Rabbit 2 205
Small dog 5 120
Large dog 30  85
Sheep 50  70
Human 70  72

Source: A. J. Clark, Comparative Physiology of the Heart.  
New York: Macmillan, 1927.

 66. Let a = log 2 and b = log 3. Then, for example, log 6 = a + b 
and log 15 = 1 - a + b. List all of the positive integers less 
than 100 whose common logs can be written as expressions 
involving a or b or both. (Hint: See Exploration 1 on page 301.)

 67. A Bit of History Explain how, in the time before electronic 
calculators and computers, logarithms turned complicated 
 computations into easy arithmetic problems. Use the 

 example 25 4581.

Extending the Ideas
 68. Solve ln x 7 23 x.

 69. Solve 1.2x … log1.2 x.

 70. Group Activity Work in groups of three. Have each  
group member graph and compare the domains for one pair of 
functions.

(a) ƒ1x2 = 2 ln x + ln 1x - 32 and g1x2 = ln x21x - 32

(b) ƒ1x2 = ln 1x + 52 - ln 1x - 52 and g1x2 = ln 
x + 5
x - 5

(c) ƒ1x2 = log 1x + 322 and g1x2 = 2 log 1x + 32
Writing to Learn After discussing your findings, write a 
brief group report that includes your overall conclusions and 
insights.

 71. Prove the change-of-base formula for logarithms.

 72. Prove that ƒ1x2 = log x>ln x is a constant function with 
restricted domain by finding the exact value of the constant 
log x>ln x expressed as a common logarithm.

 73. Graph ƒ1x2 = ln 1ln 1x22, and analyze it for domain, range, 
continuity, increasing or decreasing behavior, symmetry, 
asymptotes, end behavior, and invertibility.
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310 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

The equation in Example 2 involves a difference of two exponential functions, which 
makes it difficult to solve algebraically. So we start with a graphical approach.

What you’ll learn about
• Solving Exponential Equations

• Solving Logarithmic Equations

• Orders of Magnitude and 
 Logarithmic Models

• Newton’s Law of Cooling

• Logarithmic Re-expression

... and why
The Richter scale, pH, and Newton’s 
Law of Cooling are among the most 
important uses of logarithmic and 
exponential functions.

Solving Exponential Equations
Some logarithmic equations can be solved by changing to exponential form, as we saw 
in Example 5 of Section 3.3. For other equations, the properties of exponents or the 
properties of logarithms are used. A property of both exponential and logarithmic func-
tions that is often helpful for solving equations is that they are one-to-one functions.

3.5 Equation Solving and Modeling

One-to-One Properties

For any exponential function ƒ1x2 = bx,

• If bu = bv, then u = v.

For any logarithmic function ƒ1x2 = logb x,

• If logb u = logb v, then u = v.

Example 1 uses the one-to-oneness of exponential functions to solve an exponential 
equation. Example 3 uses the one-to-one property of logarithms.

Solving an Exponential Equation Algebraically
Solve 2011>22x>3 = 5.

SOLUTION 

 20a1
2
b

x>3
= 5  

 a1
2
b

x>3
=

1
4

 Divide by 20.

 a1
2
b

x>3
= a1

2
b

2

 1
4

= a1
2
b

2

 
x
3

= 2  One-to-one property

 x = 6  Multiply by 3. Now try Exercise 1.

EXAMPLE 1 

Solving an Exponential Equation
Solve 1ex - e-x2>2 = 5.

SOLUTION 

Solve Graphically Figure 3.34 shows that the graphs of y = 1ex - e-x2>2 and 
y = 5 intersect when x ≈ 2.31.

Confirm Algebraically The algebraic approach involves some ingenuity. If we 
multiply each side of the original equation by 2ex and rearrange the terms, we can 
obtain a quadratic equation in ex:

 
ex - e -x

2
= 5  

 e2x - e0 = 10ex Multiply by 2ex.

 1ex22 - 101ex2 - 1 = 0  Subtract 10ex.

EXAMPLE 2 

Intersection
X=2.3124383  Y=5

[24, 4] by [210, 10]

Figure 3.34 y = 1ex - e-x2>2 and  
y = 5. (Example 2)
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Solving Logarithmic Equations
When logarithmic equations are solved algebraically, it is important to keep track of 
the domain of each expression in the equation as it is being solved. A particular alge-
braic method may introduce extraneous solutions or, worse yet, lose some valid solu-
tions, as illustrated in Example 3.

A Cinch?
You may recognize the left-hand side of the 
equation in Example 2 as the hyperbolic sine 
function that was introduced in Exercise 59 of 
Section 3.2. This function is often used in calcu-
lus. We write sinh1x2 = 1ex - e-x2>2. “Sinh” is 
pronounced as if spelled “cinch.”

If we let w = ex, this equation becomes w2 - 10w - 1 = 0, and the quadratic for-
mula gives

w = ex =
10 ± 2104

2
= 5 ± 226.

Because ex is always positive, we reject the possibility that ex has the negative value 
5 - 226. Therefore,

 ex = 5 + 226

 x = ln 15 + 2262  Convert to logarithmic form.

 x = 2.312c ≈ 2.31 Approximate with a grapher.

Now try Exercise 31.

Solving a Logarithmic Equation
Solve log x2 = 2.

SOLUTION 

Method 1 Use the one-to-one property of logarithms.

 log x2 = 2

 log x2 = log 102 y = log 10y

 x2 = 102  One-to-one property

 x2 = 100  102 = 100

 x = 10 or x = -10

Method 2 Change the equation from logarithmic to exponential form.

 log x2 = 2

 x2 = 102  Change to exponential form.

 x2 = 100 102 = 100

 x = 10 or x = -10

Method 3 (Incorrect) Use the power rule of logarithms.

 log x2 = 2

 2 log x = 2  Power rule, incorrectly applied

 log x = 1  Divide by 2.

 x = 10 Change to exponential form.

Support Graphically Figure 3.35 shows that the graphs of ƒ1x2 = log x2 and 
y = 2 intersect when x = -10. From the symmetry of the graphs due to ƒ being an 
even function, we can see that x = 10 is also a solution.

Interpret Methods 1 and 2 are correct. Method 3 fails because the domain of log x2 
is all nonzero real numbers, but the domain of log x is only the positive real numbers. 
The correct solution includes both 10 and -10 because both of these  x values make 
the original equation true. Now try Exercise 25.

EXAMPLE 3 

Intersection
X=–10    Y=2

[215, 15] by [23, 3]

Figure 3.35 Graphs of ƒ1x2 = log x2 and 
y = 2. (Example 3)
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Orders of Magnitude and Logarithmic Models
Sometimes when we compare quantities, their sizes span a wide range. This is why 
scientific notation was developed.

For instance, the planet Mercury is 57.9 billion meters from the Sun, whereas Pluto is 
5900 billion meters from the Sun, roughly 100 times farther! In scientific notation, 
Mercury is 5.79 * 1010 m from the Sun, and Pluto is 5.9 * 1012 m from the Sun. Plu-
to’s distance is 2 powers of ten greater than Mercury’s distance. From Figure 3.37, we 
see that the difference in the common logs of these two distances is about 2. The com-
mon logarithm of a positive quantity is its order of magnitude. So we say that Pluto’s 
distance from the Sun is 2 orders of magnitude greater than Mercury’s.

Orders of magnitude can be used to compare any like quantities:

• A kilometer is 3 orders of magnitude longer than a meter.

• A dollar is 2 orders of magnitude greater than a penny.

• A horse weighing 400 kg is 4 orders of magnitude heavier than a mouse weighing 
40 g.

• New York City with 8 million persons is 6 orders of magnitude bigger than Earmuff 
Junction with a population of 8.

Method 3 violates an easily overlooked condition of the power rule logb Rc = c loga R, 
namely, that the rule holds if R is positive. In the expression log x2, x plays the role of 
R, and x can be -10, which is not positive. Because algebraic manipulation of a loga-
rithmic equation can produce expressions with different domains, a graphical solution 
often is less prone to error.

Solving a Logarithmic Equation
Solve ln 13x - 22 + ln 1x - 12 = 2 ln x.

SOLUTION To use the x-intercept method, we rewrite the equation as

ln 13x - 22 + ln 1x - 12 - 2 ln x = 0

and graph

ƒ1x2 = ln 13x - 22 + ln 1x - 12 - 2 ln x,

as shown in Figure 3.36. The x-intercept is x = 2, which is the solution to the 
 equation. Now try Exercise 35.

EXAMPLE 4 

Comparing Scientific Notation and  
Common Logarithms

 1. Using a calculator compute log 14 # 102, log 14 # 1022, log 14 # 1032, c , 
log 14 # 10102.

 2. What is the pattern in the integer parts of these numbers?

 3. What is the pattern of their decimal parts?

 4. How many orders of magnitude greater is 4 # 1010 than 4 # 10? 

EXPLORATION 1 

Orders of magnitude have many applications. For a sound or noise, the bel, mentioned 
in Section 3.3, measures the order of magnitude of its intensity compared to the thresh-
old of hearing. For instance, a sound of 3 bels or 30 dB (decibels) has a sound intensity 
3 orders of magnitude above the threshold of hearing.

log(5.79*10^10)

log(5.9*10^12)
10.76267856

12.77085201

Figure 3.37 Pluto is two orders of 
magnitude farther from the Sun than Mercury.

Zero
X=2    Y=0

[22, 5] by [23, 3]

Figure 3.36 The zero of 
ƒ1x2 = ln 13x - 22 + ln 1x - 12 - 2 ln x 
is x = 2. (Example 4)
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Orders of magnitude are also used to compare the severity of earthquakes and the acid-
ity of chemical solutions. We now turn our attention to these two applications.

As mentioned in Exercise 52 of Section 3.4, the Richter scale magnitude R of an earth-
quake is

R = log 
a
T

+ B,

where a is the amplitude in micrometers 1mm2 of the vertical ground motion at the 
receiving station, T is the period of the associated seismic wave in seconds, and B 
accounts for the weakening of the seismic wave with increasing distance from the 
 epicenter of the earthquake.

In chemistry, the acidity of a water-based solution is measured by the concentration of 
hydrogen ions in the solution (in moles per liter). The hydrogen-ion concentration is 
written 3H+4 . Because such concentrations usually involve negative powers of ten, 
negative orders of magnitude are used to compare acidity levels. The measure of acid-
ity used is pH, the opposite of the common log of the hydrogen-ion concentration:

pH = - log 3H+4
More acidic solutions have higher hydrogen-ion concentrations and lower pH values.

Comparing Earthquake Intensities
How many times more severe was the 2001 earthquake in Gujarat, India 1R1 = 7.92, 
than the 1999 earthquake in Athens, Greece 1R2 = 5.92?
SOLUTION 

Model The severity of an earthquake is measured by the associated amplitude. Let 
a1 be the amplitude for the Gujarat earthquake and a2 be the amplitude for the Athens 
earthquake. Then

 R1 = log 
a1

T
+ B = 7.9

 R2 = log 
a2

T
+ B = 5.9

Solve Algebraically We seek the ratio of severities a1>a2:

 alog 
a1

T
+ Bb - alog 

a2

T
+ Bb = R1 - R2

 log 
a1

T
- log 

a2

T
= 7.9 - 5.9  B - B = 0

 log 
a1

a2
= 2  Quotient rule

 
a1

a2
= 102 = 100

Interpret A Richter scale difference of 2 corresponds to an amplitude ratio of 2 
powers of ten, or 102 = 100. So the Gujarat quake was 100 times as severe as the 
Athens quake. Now try Exercise 45.

EXAMPLE 5 
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Comparing Chemical Acidity
Some especially sour vinegar has a pH of 2.4, and a box of Leg and Sickle baking 
soda has a pH of 8.4.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration of the vinegar than 
that of the baking soda?

(c) By how many orders of magnitude do the concentrations differ?

SOLUTION 

(a) Vinegar:   - log 3H+4 = 2.4

  log 3H+4 = -2.4

  3H+4 = 10-2.4 ≈ 3.98 * 10-3 moles per liter

Baking soda: - log 3H+4 = 8.4

 log 3H+4 = -8.4

 3H+4 = 10-8.4 ≈ 3.98 * 10-9 moles per liter

(b)   
3H+4  of vinegar

3H+4  of baking soda
=

10-2.4

10-8.4 = 101-2.42-1-8.42 = 106

(c) The hydrogen-ion concentration of the vinegar is 6 orders of magnitude greater 
than that of the Leg and Sickle baking soda, exactly the difference in their pH 
values. Now try Exercise 47.

EXAMPLE 6 

Newton’s Law of Cooling
An object that has been heated will cool to the temperature of the medium in which it is 
placed, such as the surrounding air or water. The temperature T of the object at time t 
can be modeled by

T1t2 = Tm + 1T0 - Tm2e-kt

for an appropriate value of k, where Tm is the temperature of the surrounding medium 
and T0 is the initial temperature of the object. Notice that

lim
tS∞

 T1t2 = Tm.

This model assumes that the surrounding medium, although taking heat from the 
object, essentially maintains a constant temperature. In honor of English mathemati-
cian and physicist Isaac Newton (1643–1727), this model is called Newton’s Law  
of Cooling.

Applying Newton’s Law of Cooling
A hard-boiled egg at temperature 96°C is placed in 16°C water to cool. Four minutes 
later the temperature of the egg is 45°C. Use Newton’s Law of Cooling to determine 
when the temperature of the egg will be 20°C.

SOLUTION 

Model Because T0 = 96 and Tm = 16, T0 - Tm = 80 and

T1t2 = Tm + 1T0 - Tm2e-kt = 16 + 80e-kt.

EXAMPLE 7 
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Table 3.23 Temperature Data 
from a CBL™ Experiment

Time t Temp T T -  Tm

 2 64.8 60.3
 5 49.0 44.5
10 31.4 26.9
15 22.0 17.5
20 16.5 12.0
25 14.2  9.7
30 12.0  7.5

To find the value of k, we use the fact that T = 45 when t = 4.

 45 = 16 + 80e-4k

 
29
80

= e-4k  Subtract 16, then divide by 80.

 ln 
29
80

= -4k  Change to logarithmic form.

 k = -  
ln129>802

4
 Divide by -4.

 k = 0.253c

We save this k value because it is part of our model. (See Figure 3.38.)

Solve Algebraically To find t when T = 20°C, we solve the equation:

 20 = 16 + 80e-kt

 
4
80

= e-kt  Subtract 16, then divide by 80.

 ln 
4
80

= -kt  Change to logarithmic form.

 t = -  
ln14>802

k
≈ 11.81 See Figure 3.38.

Interpret The temperature of the egg will be 20°C after about 11.81 min  
(11 min 49 sec). Now try Exercise 49.

We can rewrite Newton’s Law of Cooling in the following form:

T1t2 - Tm = 1T0 - Tm2e-kt

We use this form of Newton’s Law of Cooling when modeling temperature using data 
gathered from an actual experiment. Because the difference T - Tm is an exponential 
function of time t, we can use exponential regression on T - Tm versus t to obtain a 
model, as illustrated in Example 8.

Modeling with Newton’s Law of Cooling
In an experiment, a temperature probe connected to a Calculator-Based LaboratoryTM 
(CBLTM) device was removed from a cup of hot coffee and placed in a glass of cold 
water. The first two columns of Table 3.23 show the resulting data for time t (in sec-
onds since the probe was placed in the water) and temperature T (in °C). In the third 
column, the temperature data have been re-expressed by subtracting the temperature 
of the water, which was 4.5°C.

(a) Estimate the temperature of the coffee.

(b) Estimate the time when the temperature probe reading was 40°C.

SOLUTION 

Model Figure 3.39a shows a scatter plot of the re-expressed temperature data. Using 
exponential regression, we obtain the following model:

T1t2 - 4.5 = 61.656 * 0.92770t

Figure 3.39b shows the graph of this model with the scatter plot of the data. You can 
see that the curve fits the data fairly well.

EXAMPLE 8 

(continued)

–ln(29/80)/4      K
.2536827012

–ln(1/20)/K
11.80897341

Figure 3.38 Storing and using the 
constant k.
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When we examine a scatter plot of data pairs 1x, y2, we can ask whether one of these four 
regression models could be the best choice. If the data plot appears to be linear, a linear 
regression may be the best choice. But when it is visually evident that the data plot is not 
linear, the best choice may be a natural logarithmic, exponential, or power regression.

Knowing the shapes of logarithmic, exponential, and power function graphs helps us 
choose an appropriate model. In addition, it is often helpful to re-express the 1x, y2 data 
pairs as 1ln x, y2, 1x, ln y2, or 1ln x, ln y2 and create scatter plots of the re-expressed data. 
If any of the scatter plots appears to be linear, then we have a likely choice for an appro-
priate model. See the Three Types of Logarithmic Re-expression box.

The three regression models can be justified algebraically. We give the justification for 
exponential regression, and leave the other two justifications as exercises.

 v = ax + b

 ln y = ax + b  v = ln y

 y = eax+b  Change to exponential form.

 y = eax # eb  Use the laws of exponents.

 y = eb # 1ea2x
 y = c # dx  Let c = eb and d = ea.

(a)

[0, 35] by [0, 70]

   (b)

[0, 35] by [0, 70]

   (c)

Intersection
X=7.3559073  Y=35.5

[0, 35] by [0, 70]

Figure 3.39 Scatter plot and graphs for Example 8.

(a) Solve Algebraically From the model we see that T0 - Tm ≈ 61.656, so

T0 ≈ 61.656 + Tm = 61.656 + 4.5 ≈ 66.16.

(b) Solve Graphically Figure 3.39c shows that the graph of T1t2 - 4.5 =  
61.656 * 0.92770t intersects y = 40 - 4.5 = 35.5 when t ≈ 7.36.

Interpret The temperature of the coffee was roughly 66.2°C, and the probe reading 
was 40°C about 7.4 sec after it was placed in the water. Now try Exercise 51.

Logarithmic Re-expression
In Example 7 of Section 3.4 we learned that data pairs 1x, y2 that fit a power model 
have a linear relationship when re-expressed as 1ln x, ln y2 pairs. We now illustrate that 
data pairs 1x, y2 that fit a logarithmic or exponential regression model can also be 
 linearized through logarithmic re-expression.

Regression Models Related by Logarithmic Re-expression

• Linear regression: y = ax + b

• Natural logarithmic regression: y = a + b ln x

• Exponential Regression: y = a # bx

• Power regression: y = a # xb
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Example 9 illustrates how knowledge about the shapes of logarithmic, exponential, and 
power function graphs is used in combination with logarithmic re-expression to choose 
a curve of best fit.

2. Exponential Regression Re-expressed: 1x, y2S 1x, ln y2

(a)

[0, 7] by [0, 75]
(x, y) data

(b)

(x, ln y) = (x, v) data with
linear regression model

v = ax + b

Conclusion:

y = c(d x), where c = eb

and d = ea, is the exponential
regression model for the
(x, y) data.

[0, 7] by [0, 5]

Three Types of Logarithmic Re-expression

1. Natural Logarithmic Regression Re-expressed: 1x, y2S 1ln x, y2

Conclusion:

y = a ln x + b is the logarithmic
regression model for the
(x, y) data.

(b)

(ln x, y) = (u, y) data with
linear regression model

y = au + b

[0, 2] by [0, 30]

(a)

[0, 7] by [0, 30]
(x, y) data

3. Power Regression Re-expressed: 1x, y2S 1ln x, ln y2

(a)

[0, 7] by [0, 50]
(x, y) data

(b)

(ln x, ln y) = (u, v) data with
linear regression model

v = au + b

Conclusion:

y = c(xa), where c = eb,
is the power regression
model for the (x, y) data.

[0, 2] by [25, 5]
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318 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

[0, 7] by [0, 40]

Figure 3.40 A scatter plot of the original 
data of Example 9.

[0, 7] by [0, 40]

Figure 3.42 A power regression model 
fits the data of Example 9.

Selecting a Regression Model
Decide whether these data can best be modeled by logarithmic, exponential, or power 
regression. Find the appropriate regression model.

x 1 2 3 4 5 6
y 2 5 10 17 26 38

SOLUTION The shape of the data plot in Figure 3.40 suggests that the data could be 
modeled by an exponential or power function, but not by a logarithmic function.

Figure 3.41a shows the 1x, ln y2 plot, and Figure 3.41b shows the 1ln x, ln y2 plot. Of 
these two plots, the 1ln x, ln y2 plot appears to be more linear, so we find the power 
regression model for the original data.

EXAMPLE 9 

(a)

[0, 7] by [0, 4]
(x, ln y)

  (b)

[0, 2] by [0, 4]
(ln x, ln y)

Figure 3.41 Two logarithmic re-expressions of the data of Example 9.

Figure 3.42 shows the scatter plot of the original 1x, y2 data with the graph of the 
power regression model y = 1.7910x1.6472 superimposed. Now try Exercise 55.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, prove that each function in the given pair is the in-
verse of the other.

 1. ƒ1x2 = e2x and g1x2 = ln 1x1>22
 2. ƒ1x2 = 10x>2 and g1x2 = log x2, x 7 0 

 3. ƒ1x2 = 11>32 ln x and g1x2 = e3x

 4. ƒ1x2 = 3 log x2, x 7 0 and g1x2 = 10x>6

In Exercises 5 and 6, write the number in scientific notation.

 5. The mean distance from Jupiter to the Sun is about 
778,300,000 km.

 6. An atomic nucleus has a diameter of about 
0.000000000000001 m.

In Exercises 7 and 8, write the number in decimal form.

 7. Avogadro’s number is about 6.02 * 1023.

 8. The atomic mass unit is about 1.66 * 10-27 kg.

In Exercises 9 and 10, use scientific notation to simplify the expression; 
leave your answer in scientific notation.

 9. 1186,0002131,000,0002

 10. 
0.0000008
0.000005

QUICK REVIEW 3.5 (For help, go to Sections P.1 and 1.4.)
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 29. 
2x - 2-x

3
= 4 30. 

2x + 2-x

2
= 3

 31. 
ex + e-x

2
= 4 32. 2e2x + 5ex - 3 = 0

 33. 
500

1 + 25e0.3x = 200 34. 
400

1 + 95e-0.6x = 150

 35. 
1
2

 ln 1x + 32 - ln x = 0 36. log x -
1
2

 log 1x + 42 = 1

 37. ln 1x - 32 + ln 1x + 42 = 3 ln 2

 38. log 1x - 22 + log 1x + 52 = 2 log 3

In Exercises 39–44, determine by how many orders of magnitude the 
quantities differ.

 39. A $100 bill and a dime

 40. A canary weighing 20 g and a hen weighing 2 kg

 41. An earthquake rated 7 on the Richter scale and one  
rated 5.5

 42. Lemon juice with pH = 2.3 and beer with pH = 4.1

 43. The sound intensities of a riveter at 95 dB and ordinary 
 conversation at 65 dB

 44. The sound intensities of city traffic at 70 dB and rustling leaves 
at 10 dB

 45. Comparing Earthquakes How many times more severe 
was the 1978 Mexico City earthquake 1R = 7.92 than the 1994 
Los Angeles earthquake 1R = 6.62?

 46. Comparing Earthquakes How many times more severe 
was the 1995 Kobe, Japan, earthquake 1R = 7.22 than the 
1994 Los Angeles earthquake 1R = 6.62?

 47. Chemical Acidity The pH of carbonated water is 3.9, and 
the pH of household ammonia is 11.9.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration 
of carbonated water than that of ammonia?

(c) By how many orders of magnitude do the concentrations 
differ?

 48. Chemical Acidity Stomach acid has a pH of about 2.0, and 
blood has a pH of 7.4.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration 
of stomach acid than that of blood?

(c) By how many orders of magnitude do the concentrations 
differ?

 49. Newton’s Law of Cooling A cup of coffee has cooled 
from 92°C to 50°C after 12 min in a room at 22°C. How long 
will the cup take to cool to 30°C?

 50. Newton’s Law of Cooling A cake is removed from an 
oven at 350°F and cools to 120°F after 20 min in a room at 
65°F. How long will the cake take to cool to 90°F?

SECTION 3.5 Exercises

In Exercises 1–10, find the exact solution algebraically, and check it by 
substituting into the original equation.

 1. 36a1
3
b

x>5
= 4  2. 32a1

4
b

x>3
= 2

 3. 2 # 5x>4 = 250  4. 3 # 4x>2 = 96

 5. 2110-x>32 = 20  6. 315-x>42 = 15

 7. log x = 4  8. log2 x = 5

 9. log4 1x - 52 = -1  10. log4 11 - x2 = 1

In Exercises 11–18, solve each equation algebraically. Obtain a numeri-
cal approximation for your solution and check it by substituting into the 
original equation.

 11. 1.06x = 4.1  12. 0.98x = 1.6

 13. 50e0.035x = 200  14. 80e0.045x = 240

 15. 3 + 2e-x = 6  16. 7 - 3e-x = 2

 17. 3 ln 1x - 32 + 4 = 5 18. 3 - log 1x + 22 = 5

In Exercises 19–24, state the domain of each function. Then match the 
function with its graph. (Each graph shown has a window of 
3-4.7, 4.74  by 3-3.1, 3.14).
 19. ƒ1x2 = log 3x1x + 124  20. g1x2 = log x + log 1x + 12

 21. ƒ1x2 = ln 
x

x + 1
 22. g1x2 = ln x - ln 1x + 12

 23. ƒ1x2 = 2 ln x 24. g1x2 = ln x2

(a)   (b)

(c)   (d)

(e)   (f)

In Exercises 25–38, solve each equation by the method of your choice. 
Support your solution by a second method.

 25. log x2 = 6

 26. ln x2 = 4

 27. log x4 = 2  28. ln x6 = 12
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 51. Newton’s Law of Cooling Experiment A thermometer 
is removed from a cup of coffee and placed in water with  
a temperature 1Tm2 of 10°C. The data in Table 3.24 were 
 collected over the next 30 sec.

Table 3.24 Experimental Data

Time t Temp T T - Tm

 2 80.47 70.47
 5 69.39 59.39
10 49.66 39.66
15 35.26 25.26
20 28.15 18.15
25 23.56 13.56
30 20.62 10.62

Table 3.25 Experimental Data

Time t Temp T T - Tm

 2 74.68 74.68
 5 61.99 61.99
10 34.89 34.89
15 21.95 21.95
20 15.36 15.36
25 11.89 11.89
30 10.02 10.02

(a) Draw a scatter plot of the data T - Tm.

(b) Find an exponential regression equation for the T - Tm 
data. Superimpose its graph on the scatter plot.

(c) Write a limit statement for the temperature T1t2, as the 
time t approaches infinity.

 52. Newton’s Law of Cooling Experiment A thermometer 
was removed from a cup of hot chocolate and placed in a saline 
solution with temperature Tm = 0°C. The data in Table 3.25 
were collected over the next 30 sec.

(a) Draw a scatter plot of the data T - Tm.

(b) Find an exponential regression equation for the T - Tm 
data. Superimpose its graph on the scatter plot.

(c) Write a limit statement for the temperature T1t2, as the 
time t approaches infinity.

 53. Penicillin Use The use of penicillin became so widespread 
in the 1980s in Hungary that it became practically useless 
against common sinus and ear infections. Now the use of more 
effective antibiotics has caused a decline in penicillin resis-
tance. The bar graph shows the use of penicillin in Hungary for 
selected years.

(a) From the bar graph we read the data pairs to be approxi-
mately 11, 112, 18, 62, 115, 4.82, 116, 42, and 117, 2.52, 
using t = 1 for 1976, t = 8 for 1983, and so on. Complete 
a scatter plot for these data.

(b) Writing to Learn Discuss whether the bar graph that 
follows or the scatter plot that you completed represents 
the data better, and why.

10
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6

4

2

0D
D

D
*/

10
00
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ul
at
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n/

da
y

Year

Nationwide Consumption of Penicillin

1976 1983 1990 1991 1992

*Defined Daily Dose
Source: Science, vol. 264, April 15, 1994, American
Association for the Advancement of Science.

Standardized Test Questions
 59. True or False The order of magnitude of a positive number 

is its natural logarithm. Justify your answer.

 60. True or False According to Newton’s Law of Cooling,  
an object will approach the temperature of the medium that 
surrounds it. Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

 61. Multiple Choice Solve 23x-1 = 32.

(A) x = 1 (B)  x = 2 (C)  x = 4

(D) x = 11 (E)  x = 13

 62. Multiple Choice Solve ln x = -1.

(A) x = -1 (B) x = 1>e (C) x = 1

(D) x = e (E) No solution is possible.

x 1 2 3 4
y 3 4.4 5.2 5.8

 55. 

 56. x 1 2 3 4
y 6 18 54 162

 57. x 1 2 3 4
y 3 6 12 24

 58. x 1 2 3 4
y 5 7 9 11

 54. Writing to Learn Which regression model would you use 
for the data in Exercise 53? Discuss various options, and 
explain why you chose the model you did. Support your writ-
ing with tables and graphs as needed.

Writing to Learn In Exercises 55–58, tables of 1x, y2 data pairs are 
given. Determine whether a linear, logarithmic, exponential, or power 
regression equation is the best model for the data. Explain your choice. 
Support your writing with tables and graphs as needed.
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 63. Multiple Choice How many times more severe was the 
2001 earthquake in Arequipa, Peru 1R1 = 8.12, than the 1998 
double earthquake in Takhar province, Afghanistan 
1R2 = 6.12?
(A) 2 (B) 6.1 (C)  8.1

(D) 14.2 (E) 100

 64. Multiple Choice Newton’s Law of Cooling is

(A) an exponential model. (B) a linear model.

(C) a logistic model. (D) a power model.

Explorations
In Exercises 65 and 66, use the data in Table 3.26. Determine whether a 
linear, exponential, power, or logistic regression equation is the best 
model for the data. Explain your choice. Support your writing with 
tables and graphs as needed.

Table 3.26 Populations of Two 
Countries (in millions)

Year Nepal Sri Lanka

1950 8.48 7.97
1960 10.11 9.87
1970 12.07 12.49
1980 15.02 15.04
1990 18.91 17.33
2000 23.94 18.78
2010 27.01 20.26
2020 29.14 21.41

Source: https://www.macrotrends.net.

 65. Writing to Learn Modeling Population Which regres-
sion equation is the best model for Nepal’s population?

 66. Writing to Learn Modeling Population Which regres-
sion equation is the best model for Sri Lanka’s population?

 67. Group Activity Normal Distribution The function

ƒ1x2 = k # e-cx2
,

where c and k are positive constants, is a bell-shaped curve that 
is useful in probability and statistics.

(a) Graph ƒ for c = 1 and k = 0.1, 0.5, 1, 2, 10. Explain the 
effect of changing k.

(b) Graph ƒ for k = 1 and c = 0.1, 0.5, 1, 2, 10. Explain the 
effect of changing c.

 68. Group Activity Use the U.S. population data in Table 3.9 in 
Section 3.2.

(a) Let P be the U.S. population (in millions), and let t be the 
number of years after 1900. Create a scatter plot of the 
1t, P2 pairs.

(b) Add a plot of the 1P, t2 pairs to the scatter plot created in 
part (a).

(c) Be sure to adjust the window to see all the data in both 
plots and graph in a square window. Add the line y = x. 
Use TRACE to show that the two plots are reflections of 
each other about the line y = x.

(d) Use your grapher to find an exponential model 1y12 for the 
1t, P2 pairs and a logarithmic model 1y22 for the 1P, t2 
pairs.

(e) Graph the exponential regression model as y1 = ƒ1x2 and 
the logarithmic regression model as y2 = g1x2.

(f) Analytically show how to compute the logarithmic regres-
sion value g13002 using only the exponential regression 
equation. Interpret your result.

Extending the Ideas
 69. Writing to Learn Prove that, if u>v = 10n for u 7 0 and 

v 7 0, then log u - log v = n. Explain how this result relates 
to powers of ten and orders of magnitude.

 70. Potential Energy The potential energy E (the energy 
stored for use at a later time) between two ions in a certain 
molecular structure is modeled by the function

E = -  
5.6
r

+ 10e-r>3,

where r is the distance separating the nuclei.

(a) Writing to Learn Graph this function in the window 
3-10, 104  by 3-10, 304 , and explain which portion of the 
graph does not represent this potential energy situation.

(b) Identify a viewing window that shows that portion of the 
graph (with r … 10) which represents this situation, and 
find the maximum value for E.

 71. In Example 8, the Newton’s Law of Cooling model was

T1t2 - Tm = 1T0 - Tm2e-kt = 61.656 * 0.92770t.

Determine the value of k.

 72. Justify the conclusion made about natural logarithmic 
 regression in the Three Types of Logarithmic Re-expression 
box on page 317.

 73. Justify the conclusion made about power regression in the 
Three Types of Logarithmic Re-expression box on page 317.

In Exercises 74–79, solve the equation or inequality.

 74. ex + x = 5

 75. e2x - 8x + 1 = 0

 76. ex 6 5 + ln x 

 77. ln 0 x 0 - e2x Ú 3

 78. 2 log x - 4 log 3 7 0

 79. 2 log 1x + 12 - 2 log 6 6 0
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What you’ll learn about
• Simple and Compound Interest

• Interest Compounded k Times per 
Year

• Interest Compounded Continuously

• Annual Percentage Yield

• Annuities—Future Value

• Loans and Mortgages—Present 
Value

... and why
The mathematics of finance is the 
science of letting your money work 
for you—valuable information 
indeed!

Simple and Compound Interest
In business, as the saying goes, “time is money.” We must pay interest for the use of 
property or money over time. When we borrow money, we pay interest, and when we 
lend money, we receive interest. When we invest in a savings account, we are actually 
lending money to the bank.

Simple interest is called “simple” because it ignores the effects of compounding. The 
interest charge is based solely on the original principal, so interest on interest paid is 
not included. In contrast, for compound interest the interest charge is based on the 
original principal plus interest on accrued interest. Compound interest includes interest 
earned on the interest itself. Suppose a principal of P dollars is invested in an account 
bearing interest rate r, expressed in decimals, for n years. The value over time of the 
investment for simple interest and for interest compounded annually follows the growth 
patterns in Table 3.27. The nth row of the table gives a formula for simple annual inter-
est and interest compounded annually.

3.6 Mathematics of Finance

Table 3.27 Interest Computed Using Simple Interest and Compound Interest

  Amount in the Account

Time (years) Simple Interest Compound Interest

0 A0 = P = principal A0 = P = principal
1 A1 = P + rP = P11 + r2 A1 = P + rP = P11 + r2
2 A2 = P + 2rP = P11 + 2r2 A2 = A111 + r2 = P11 + r22
3 A3 = P + 3rP = P11 + 3r2 A3 = A211 + r2 = P11 + r23
f   f   f
n A = An = P11 + nr2 A = An = P11 + r2n

Note that in the case of simple interest, the growth model is a linear function of time, 
and in the case of compound interest, the growth model is an exponential function of 
time. Also note that for the first period, simple interest and compound interest are the 
same. In the exercises, you will prove that the graph of the simple interest function is a 
line and the graph of a compound interest function is an exponential curve.

Interest Compounded Annually

If a principal P is invested at a fixed annual interest rate r, calculated at the end 
of each year, then the value of the investment after n years is

A = P11 + r2n,

where r is expressed as a decimal.

Interest Compounded Annually Versus  
Simple Annual Interest

Suppose George Milligan invests $5000 at 5% annual simple interest and Quan Li 
invests $5000 at 5% annual compound interest. Compare the values of both invest-
ments after 10 years.

SOLUTION Let P = 5000, r = 0.05, and n = 10. Then, using simple interest, A =  
500011 + 10 # 0.052 = $7500. Using compound interest, A = 500011 + 0.05210 =  
$8144.47. Quan Li earns $644.47 more using compound interest.
 Now try Exercise 1.

EXAMPLE 1 
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Interest Compounded k Times per Year
Suppose a principal P is invested at an annual interest rate r compounded k times a year 

for t years. Then 
r
k
 is the interest rate per compounding period, and kt is the number of 

compounding periods. The amount A in the account after t years is

A = Pa1 +
r
k
b

kt

.

Compounding Monthly
Suppose Roberto invests $500 at 9% annual interest compounded monthly, that is, 
compounded 12 times a year. Find the value of his investment 5 years later.

SOLUTION Letting P = 500, r = 0.09, k = 12, and t = 5,

A = 500a1 +
0.09
12
b

12152
= 782.840c

So the value of Roberto’s investment after 5 years is $782.84. Now try Exercise 5.

EXAMPLE 2 

Finding the Time Period of an Investment
Judy has $500 to invest at 9% annual interest compounded monthly. How long will it 
take for her investment to grow to $3000?

SOLUTION 

Model Let P = 500, r = 0.09, k = 12, and A = 3000 in the equation

A = Pa1 +
r
k
b

kt

,

and solve for t.

Solve Graphically For

3000 = 500a1 +
0.09
12
b

12t

,

we let

ƒ1t2 = 500a1 +
0.09
12
b

12t

  and  y = 3000,

and then find the point of intersection of the graphs. Figure 3.43 shows that this 
occurs at t ≈ 19.98.

Confirm Algebraically 

 3000 = 50011 + 0.09>12212t

 6 = 1.007512t  Divide by 500.

 ln 6 = ln 11.007512t2  Apply ln to each side.

 ln 6 = 12t ln 11.00752  Power rule

 t =
ln 6

12 ln 1.0075
 Divide by 12 ln 1.0075.

 = 19.983c  Calculate.

Interpret It will take 20 years for the value of Judy’s investment to reach (and 
slightly exceed) $3000. Now try Exercise 21.

EXAMPLE 3 

The problems in Examples 1 and 2 required that we calculate A. Examples 3 and 4 
illustrate situations that require us to determine the values of other variables in the 
compound interest formula.

Intersection
X=19.983002  Y=3000

[0, 25] by [21000, 4000]

Figure 3.43 Graph for Example 3.
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Recall from Section 3.1 that e = lim
xS∞

 11 + 1>x2x. Therefore, for a fixed interest rate r, 
if we let x = k>r, then

lim
kS∞

 a1 +
r
k
b

k>r
= e.

We do not know enough about limits yet, but with some calculus, it can be proved 
that  lim

kS∞
 P11 + r>k2kt = Pert. So A = Pert is the formula used when interest is 

compounded continuously. In nearly any situation, one of the following two formulas 
can be used to compute compound interest:

Intersection
X=.06991877  Y=1000

[0, 0.15] by [2500, 1500]

Figure 3.44 Graph for Example 4.

Finding an Interest Rate
Stephen has $500 to invest. What annual interest rate compounded quarterly (four 
times per year) is required for Stephen to double his money in 10 years?

SOLUTION 

Model Letting P = 500, k = 4, t = 10, and A = 1000 yields the equation

1000 = 500a1 +
r
4
b

41102

that we solve for r.

Solve Graphically Figure 3.44 shows that ƒ1r2 = 50011 + r>4240 and y = 1000 
intersect at r ≈ 0.0699, or r = 6.99,.

Interpret Stephen’s investment of $500 will double in 10 years at an annual interest 
rate of 6.99% compounded quarterly. Now try Exercise 25.

EXAMPLE 4 

Interest Compounded Continuously
In Exploration 1, $1000 is invested for 1 year at a 10% interest rate. We investigate the 
value of the investment at the end of 1 year as the number of compounding periods k 
increases. In other words, we determine the “limiting” value of the expression 
100011 + 0.1>k2k as k assumes larger and larger integer values.

[0, 50] by [1100, 1107]

Figure 3.45 Graph for Exploration 1.

Increasing the Number of Compounding 
Periods Boundlessly

Let A = 1000a1 +
0.1
k
b

k

.

 1. Complete a table of values of A for k = 10, 20, c, 100. What pattern do you 
observe?

 2. Figure 3.45 shows the graphs of the function A1k2 = 100011 + 0.1>k2k and 
the horizontal line y = 1000e0.1. Interpret the meanings of these graphs.

EXPLORATION 1 

Compound Interest—Value of an Investment

Suppose a principal P is invested at a fixed annual interest rate r. The value of 
the investment after t years is

• A = Pa1 +
r
k
b

kt

 when interest compounds k times per year,

• A = Pert when interest compounds continuously.
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Example 6 shows that the APY does not depend on the principal P because both sides 
of the equation were divided by P = 2000. So we can assume that P = 1 when com-
paring investments, as illustrated in Example 7.

Compounding Continuously
Suppose LaTasha invests $100 at 8% annual interest compounded continuously. Find 
the value of her investment at the end of each of the years 1, 2, c, 7.

SOLUTION Substituting into the formula for continuous compounding, we obtain 
A1t2 = 100e0.08t. Figure 3.46 shows the values of y1 = A1x2 = 100e0.08x for 
x = 1, 2, c, 7. For example, the value of her investment is $149.18 at the end of 
5 years and $175.07 at the end of 7 years. Now try Exercise 9.

EXAMPLE 5 

Annual Percentage Yield
With so many different interest rates and methods of compounding, it is sometimes dif-
ficult for a consumer to compare options. For example, would you prefer an investment 
earning 8.75% annual interest compounded quarterly or one earning 8.7% compounded 
monthly?

A common basis for comparing investments is the annual percentage yield (APY)—
the percentage rate that, compounded annually, would yield the same return as the 
given interest rate with the given compounding period.

Computing Annual Percentage Yield (APY)
Ursula invests $2000 with Crab Key Credit Union at 5.15% annual interest com-
pounded quarterly. What is the equivalent APY?

SOLUTION Let x = the equivalent APY. The value of the investment at the end of  
1 year using this rate is A = 200011 + x2. Thus, we have

 200011 + x2 = 2000a1 +
0.0515

4
b

4

 11 + x2 = a1 +
0.0515

4
b

4

 Divide by 2000.

 x = a1 +
0.0515

4
b

4

- 1 Subtract 1.

 ≈ 0.0525  Calculate.

The annual percentage yield is 5.25%. In other words, Ursula’s $2000 invested at 
5.15% compounded quarterly for 1 year earns the same interest and yields the same 
value as $2000 invested elsewhere paying 5.25% interest once at the end of the year.
 Now try Exercise 42.

EXAMPLE 6 

X

Y1 = 100e^(0.08X)

1
2
3
4
5
6
7

108.33
117.35
127.12
137.71
149.18
161.61
175.07

Y1

Figure 3.46 Table of values for 
Example 5.
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326 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Annuities—Future Value
So far, in all of the investment situations we have considered, the investor has made a 
single lump-sum deposit. But suppose an investor makes regular deposits monthly, 
quarterly, or yearly—the same amount each time. This is an annuity situation.

An annuity is a sequence of equal periodic payments. The annuity is ordinary if 
deposits are made at the end of each period, at the same time the interest is posted in the 
account. Figure 3.47 represents this situation graphically. We will consider only ordi-
nary annuities in this text.

Let’s consider an example. Suppose Sarah makes $500 payments at the end of each 
quarter into a retirement account that pays 8% interest compounded quarterly. How 
much will be in Sarah’s account at the end of the first year? Notice the pattern.

End of Quarter 1:

  $500 = $500

End of Quarter 2:

  $500 + $50011.022 = $1010

End of Quarter 3:

  $500 + $50011.022 + $50011.0222 = $1530.20

End of the year:

  $500 + $50011.022 + $50011.0222 + $50011.0223 ≈ $2060.80

Thus the total value of the investment returned from an annuity consists of all the peri-
odic payments together with all the interest. This value is called the future value of the 
annuity because it is typically calculated when projecting into the future.

0Time

Payment

1 2 3 ... n

RRRR

Figure 3.47 Payments into an ordinary 
annuity.

Future Value of an Annuity

The future value FV of an annuity consisting of n equal periodic payments of  
R dollars at an interest rate i per compounding period (payment interval) is

FV = R 
11 + i2n - 1

i
.

Comparing Annual Percentage Yields (APYs)
To compare 8.75% annual interest compounded quarterly to 8.7% annual interest 
compounded monthly, let r1 = the APY for the 8.75% rate and r2 = the APY for  
the 8.7% rate. Then,

 1 + r1 = a1 +
0.0875

4
b

4

   1 + r2 = a1 +
0.087

12
b

12

 r1 = a1 +
0.0875

4
b

4

- 1   r2 = a1 +
0.087

12
b

12

- 1

 ≈ 0.09041    ≈ 0.09055

The 8.7% rate compounded monthly is more attractive because its APY is 9.055%, 
compared with 9.041% for the 8.75% rate compounded quarterly.
 Now try Exercise 46.

EXAMPLE 7 
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Loans and Mortgages—Present Value
An annuity is a sequence of equal period payments. The net amount of money put into an 
annuity is its present value. The net amount returned from the annuity is its future value. 
The periodic and equal payments on a loan or mortgage actually constitute an annuity.

How does the bank determine what the periodic payments should be? It considers what 
would happen to the present value of an investment with interest compounding over the 
term of the loan and compares the result to the future value of the loan repayment annuity.

We illustrate this reasoning by assuming that a bank lends you a present value 
PV = $50,000 at 6% to purchase a house with the expectation that you will make a 
mortgage payment each month (at the monthly interest rate of 0.06>12 = 0.005).

• The future value of an investment at 6% compounded monthly for n months is

PV11 + i2n = 50,00011 + 0.0052n.

• The future value of an annuity of R dollars (the loan payments) is

R 
11 + i2n - 1

i
= R 
11 + 0.0052n - 1

0.005
.

To find R, we would solve the equation

50,00011 + 0.0052n = R 
11 + 0.0052n - 1

0.005
.

In general, the monthly payments of R dollars for a loan of PV dollars must satisfy the 
equation

PV11 + i2n = R 
11 + i2n - 1

i
.

Dividing both sides by 11 + i2n leads to the following formula for the present value of 
an annuity.

Understanding Present Value
The concept of present value is important in 
many ways. In many life situations you can have 
the choice of a lump-sum payment “today” or 
lesser payments over time. Thus it is important to 
be able to determine the value of future expected 
payments. The PV formula will tell you the value 
“today” of a series of equal future payments. 
However, in choosing an alternative (lump sum 
or a series of payments over time), other factors 
may need to be considered, such as risk (How do 
you know the entity paying you will be solvent 
in 5 years?) or the need for a large sum of money 
“today.”

Calculating the Value of an Annuity
At the end of each quarter year, Emily makes a $500 payment into the Lanaghan 
Mutual Fund. If her investments earn 7.88% annual interest compounded quarterly, 
what will be the value of Emily’s annuity in 20 years?

SOLUTION Let R = 500, i = 0.0788>4, n = 20142 = 80. Then

 FV = R 
11 + i2n - 1

i

 FV = 500 # 11 + 0.0788>4280 - 1

0.0788>4
 FV = 95,483.389c

So the value of Emily’s annuity in 20 years will be $95,483.39.
 Now try Exercise 13.

EXAMPLE 8 

Present Value of an Annuity

The present value PV of an annuity consisting of n equal payments of R dollars 
earning an interest rate i per period (payment interval) is

PV = R 
1 - 11 + i2-n

i
.
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328 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

The annual interest rate charged on consumer loans is the annual percentage rate 
(APR). The APY for the lender is higher than the APR. See Exercise 59.

Calculating Loan Payments
Carlos purchases a pickup truck for $18,500. What are the monthly payments for a 
4-year loan with a $2000 down payment if the annual interest rate (APR) is 2.9%?

SOLUTION 

Model The down payment is $2000, so the amount borrowed is $16,500. Because 
APR = 2.9,, i = 0.029>12 and the monthly payment is the solution to

16,500 = R 
1 - 11 + 0.029>122-41122

0.029>12
 .

Solve Algebraically 

 R c 1 - a1 +
0.029

12
b

-41122
d = 16,500a0.029

12
b

 R =
16,50010.029>122

1 - 11 + 0.029>122-48

 = 364.487c

Interpret Carlos will have to pay $364.49 per month for 47 months, and slightly 
less the last month. Now try Exercise 19.

EXAMPLE 9 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

 1. Find 3.5% of 200.

 2. Find 2.5% of 150.

 3. What is one-fourth of 7.25%?

 4. What is one-twelfth of 6.5%?

 5. 78 is what percent of 120?

 6. 28 is what percent of 80?

 7. 48 is 32% of what number?

 8. 176.4 is 84% of what number?

 9. How much does Jane have at the end of 1 year if she invests 
$300 at 5% simple interest?

 10. How much does Reggie have at the end of 1 year if he invests 
$500 at 4.5% simple interest?

QUICK REVIEW 3.6

In Exercises 9–12, find the amount A accumulated after investing a 
principal P for t years at interest rate r compounded continuously.

 9. P = $1250, r = 5.4,, t = 6

 10. P = $3350, r = 6.2,, t = 8

 11. P = $21,000, r = 3.7,, t = 10

 12. P = $8,875, r = 4.4,, t = 25

In Exercises 13–16, find the future value FV accumulated in an annuity 
after investing periodic payments R for t years at an annual interest rate 
r, with payments made and interest credited k times per year.

 13. R = $500, r = 7,, t = 6, k = 4

 14. R = $300, r = 6,, t = 12, k = 4

 15. R = $450, r = 5.25,, t = 10, k = 12

 16. R = $610, r = 6.5,, t = 25, k = 12

SECTION 3.6 Exercises

In Exercises 1–4, find the amount A accumulated after investing a prin-
cipal P for t years at an interest rate r compounded annually, and for 
simple interest at the same rate r.

 1. P = $1500, r = 7,, t = 6

 2. P = $3200, r = 8,, t = 4

 3. P = $12,000, r = 7.5,, t = 7

 4. P = $15,500, r = 9.5,, t = 12

In Exercises 5–8, find the amount A accumulated after investing a prin-
cipal P for t years at an interest rate r compounded k times per year.

 5. P = $1500, r = 7,, t = 5, k = 4

 6. P = $3500, r = 5,, t = 10, k = 4

 7. P = $40,500, r = 3.8,, t = 20, k = 12

 8. P = $25,300, r = 4.5,, t = 25, k = 12
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In Exercises 35–41, complete the table about doubling time of an 
investment.

  APR Compounding Periods Time to Double

35. 4% Quarterly ?
36. 8% Quarterly ?
37. 7% Simple annual interest ?
38. 7% Annually ?
39. 7% Quarterly ?
40. 7% Monthly ?
41. 7% Continuously ?

In Exercises 42–45, find the annual percentage yield (APY) for the 
investment.

 42. $3000 at 6% compounded quarterly

 43. $8000 at 5.75% compounded daily

 44. P dollars at 6.3% compounded continuously

 45. P dollars at 4.7% compounded monthly

 46. Comparing Investments Which investment is more 
attractive, 5% compounded monthly or 5.1% compounded 
quarterly?

 47. Comparing Investments Which investment is more 
attractive, 5 18 % compounded annually or 5% compounded 
 continuously?

In Exercises 48–51, payments are made and interest is credited at the 
end of each month.

 48. An IRA Account Amy contributes $50 per month into the 
Lincoln National Bond Fund that earns 7.26% annual interest. 
What is the value of Amy’s investment after 25 years?

 49. An IRA Account Andrew contributes $50 per month into 
the Hoffbrau Fund that earns 15.5% annual interest. What is 
the value of his investment after 20 years?

 50. Investment Planning Jolinda contributes to the Celebrity 
Retirement Fund that earns 12.4% annual interest. What should 
her monthly payment be if she wants to accumulate $250,000 
in 20 years?

 51. Investment Planning Diego contributes to a Commercial 
National money market account that earns 4.5% annual inter-
est. What should his monthly payment be if he wants to accu-
mulate $120,000 in 30 years?

 52. Car Loan Payment What is Kim’s monthly payment for  
a 4-year $9000 car loan with an APR of 7.95% from Century 
Bank?

 53. Car Loan Payment What is Ericka’s monthly payment for 
a 3-year $4500 car loan with an APR of 10.25% from County 
Savings Bank?

 54. House Mortgage Payment Gendo obtains a 30-year 
$86,000 house loan with an APR of 8.75% from National City 
Bank. What is her monthly payment?

 55. House Mortgage Payment Roberta obtains a 25-year 
$100,000 house loan with an APR of 9.25% from NBD Bank. 
What is her monthly payment?

In Exercises 17 and 18, find the present value PV of a loan with an 
annual interest rate r and periodic payments R for a term of t years, 
with payments made and interest charged 12 times per year.

 17. r = 4.7,, R = $815.37, t = 5

 18. r = 6.5,, R = $1856.82, t = 30

In Exercises 19 and 20, find the periodic payment R of a loan with 
present value PV and an annual interest rate r for a term of t years, with 
payments made and interest charged 12 times per year.

 19. PV = $18,000, r = 5.4,, t = 6

 20. PV = $154,000, r = 7.2,, t = 15

 21. Finding Time If John invests $2300 in a savings account 
with a 9% interest rate compounded quarterly, how long will it 
take until John’s account has a balance of $4150?

 22. Finding Time If Joelle invests $8000 into a retirement 
account with a 9% interest rate compounded monthly, how 
long will it take until this single payment has grown in her 
account to $16,000?

 23. Trust Officer Megan is the trust officer for an estate. If she 
invests $15,000 into an account that carries an interest rate of 
8% compounded monthly, how long will it be until the account 
has a value of $45,000 for Megan’s client?

 24. Chief Financial Officer Willis is the financial officer of a 
private university with the responsibility for managing an 
endowment. If he invests $1.5 million at an interest rate of 8% 
compounded quarterly, how long will it be until the account 
exceeds $3.75 million?

 25. Finding the Interest Rate What interest rate com-
pounded daily (365 days>year) is required for a $22,000 
investment to grow to $36,500 in 5 years?

 26. Finding the Interest Rate What interest rate com-
pounded monthly is required for an $8500 investment to triple 
in 5 years?

 27. Pension Officer Jack is an actuary working for a corpo-
rate pension fund. He needs to have $14.6 million grow to  
$22 million in 6 years. What interest rate compounded annu-
ally does he need for this investment?

 28. Bank President The president of a bank has $18 million  
in his bank’s investment portfolio that he wants to grow to  
$25 million in 8 years. What interest rate compounded annually 
does he need for this investment?

 29. Doubling Your Money Determine how much time is 
required for an investment to double in value if interest is 
earned at the rate of 5.75% compounded quarterly.

 30. Tripling Your Money Determine how much time is 
required for an investment to triple in value if interest is earned 
at the rate of 6.25% compounded monthly.

In Exercises 31–34, complete the table about continuous compounding.

  Initial 
Investment

 
APR

Time to 
Double

Amount in 
15 Years

31. $12,500 9% ? ?
32. $32,500 8% ? ?
33. $  9,500 ? 4 years ?
34. $16,800 ? 6 years ?
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 56. Mortgage Payment Planning An $86,000 mortgage for 
30 years at 12% APR requires monthly payments of $884.61. 
Suppose you decided to make monthly payments of $1050.00.

(a) When would the mort-
gage be completely paid?

(b) How much do you save 
with the greater payments 
compared with the origi-
nal plan?

 57. Mortgage Payment 
Planning Suppose you 
make payments of $884.61 
for the $86,000 mortgage in Exercise 56 for 10 years and then 
make payments of $1050 until the loan is paid.

(a) When will the mortgage be completely paid under these 
circumstances?

(b) How much do you save with the greater payments com-
pared with the original plan?

 58. Writing to Learn Explain why computing the APY for an 
investment does not depend on the actual amount being 
invested. Give a formula for the APY on a $1 investment at 
annual rate r compounded k times a year. How do you extend 
the result to a $1000 investment?

 59. Writing to Learn Give reasons why banks might not 
announce their APY on a loan they would make to you at a 
given APR. What is a bank’s APY on a loan that it makes at 
4.5% APR?

 60. Group Activity Work in groups of three or four. Consider 
population growth of humans or other animals, bacterial 
growth, radioactive decay, and compounded interest. Explain 
how these problem situations are similar and how they are dif-
ferent. Give examples to support your point of view.

 61. Simple Interest Versus Compounding Annually  
Steve purchases a $1000 certificate of deposit and will earn 6% 
each year. The interest will be mailed to him, so he will not 
earn interest on his interest.

(a) Writing to Learn Explain why after t years, the total 
amount of interest he receives from his investment plus the 
original $1000 is given by

ƒ1t2 = 100011 + 0.06t2.
(b) Steve invests another $1000 at 6% compounded annually. 

Make a table that compares the values of the two invest-
ments for t = 1, 2, c , 10 years.

 62. Simple Interest Function Let P1t2 = P + P # r # t =
P11 + rt2, where P is the original amount invested, r is the 
simple annual interest rate, and t is time in years.

(a) Graph y = P1t2 for P = $300 and r = 3% simple annual 
interest. What type of function is graphed?

(b) What is the slope of the line graphed?

(c) Describe the effect on the graph of (a) by increasing or decreas-
ing the interest rates.

(d) Evaluate P10.52 for simple interest and compound interest. 
Here t = 0.5 means half of a year. Use the data in (a) and 
compare PCompound10.52 and PSimple10.52. Which one is 
greater? Explain why and discuss.

Standardized Test Questions
 63. True or False If $100 is invested at 5% annual interest for 

1 year, there is no limit to the final value of the investment if it 
is compounded sufficiently often. Justify your answer.

 64. True or False The total interest paid on a 15-year mortgage 
is less than half of the total interest paid on a 30-year mortgage 
with the same loan amount and APR. Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve the 
problem.

 65. Multiple Choice What is the total value after 6 years of an 
initial investment of $2250 that earns 7% interest compounded 
quarterly?

(A) $3376.64 (B) $3412.00 (C) $3424.41

(D) $3472.16 (E) $3472.27

 66. Multiple Choice The annual percentage yield of an 
account paying 6% compounded monthly is

(A) 6.03%. (B) 6.12%. (C) 6.17%.

(D) 6.20%. (E) 6.24%.

 67. Multiple Choice Mary Jo deposits $300 each month into 
her retirement account that pays 4.5% APR (0.375% per 
month). Use the formula FV = R111 + i2n - 12>i to find the 
value of her annuity after 20 years.

(A) $71,625.00 (B) $72,000.00 (C) $72,375.20

(D) $73,453.62 (E) $116,437.31

 68. Multiple Choice To finance their home, Mr. and Mrs. Dass 
have agreed to a $120,000 mortgage loan at 7.25% APR. Use 
the formula PV = R11 - 11 + i2-n2>i to determine their 
monthly payments if the loan has a term of 15 years.

(A) $1095.44 (B) $1145.44 (C) $1195.44

(D) $1245.44 (E) $1295.44

Explorations
 69. Loan Payoff Use the information about Carlos’s truck loan 

in Example 9 to make a spreadsheet of the payment schedule. 
The first few lines of the spreadsheet should look like the fol-
lowing table:

Month No. Payment Interest Principal Balance

0       $16,500.00
1 $364.49 $39.88 $324.61 $16,175.39
2 $364.49 $39.09 $325.40 $15,849.99

  To create the spreadsheet successfully, however, you need to 
use formulas for many of the cells, as shown in boldface type 
in the following sample:

Month  
No.

 
Payment

 
Interest

 
Principal

 
Balance

0 $16,500.00

=  A2 + 1 $364.49 =  round1E2*2.9%>12,22 =  B3 − C3 =  E2 − D3

=  A3 + 1 $364.49 =  round1E3*2.9%>12,22 =  B4 − C4 =  E3 − D4

  Continue the spreadsheet using copy-and-paste techniques, and 
determine the amount of the 48th and final payment so that the 
final balance is $0.00.
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 70. Writing to Learn Loan Payoff Which of the following 
graphs is an accurate graph of the loan balance as a function of 
time, based on Carlos’s truck loan in Example 9 and Exercise 69? 
Explain your choice based on increasing or decreasing behav-
ior and other analytical characteristics. Would you expect the 
graph of loan balance versus time for a 30-year mortgage loan 
at twice the interest rate to have the same shape as the one for 
the truck loan or a different shape? Explain.

Extending the Ideas
 72. The function

F1x2 = 100 
11 + 0.08

12 2x - 1
0.08
12

, where x is time in months,

describes the future value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?

(d) Compute the future value of the annuity paying $100 
monthly for 20 years.

(e) Graph the future value function for x in the interval 0 to 
20 years.

 73. The function

P1x2 = 200 
1 - 11 + 0.08

12 2-x

0.08
12

, where x is time in months,

describes the present value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?

(d) Compute the present value of the annuity paying $200 
monthly after 20 years.

(e) Graph the present value function for x in the interval 0 to 
20 years.

(f) Explain why the answer to (d) is much less than the total of 
all the 240 monthly payments of $200 each, which is 
$48,000. Which would you rather have: $48,000 by receiv-
ing 200 payments each month or $23,910.86 now? Why?

(a)

[0, 48] by [0, 20 000]

 (b)

[0, 48] by [0, 20 000]

(c)

[0, 48] by [0, 20 000]

 71. Graph present value PV as a function of time (in years) for 
annual periodic payments of $10,000 and 4% annual interest  
on the interval 30, 5004 . Compute PV at 10 years, 50 years,  
100 years, 150 years, 200 years, and 300 years by using the 
TRACE feature on a grapher. Discuss why the function has a hori-
zontal asymptote and a limit of $250,000.00 to the nearest penny.

Procedures

Re-expression of Data 305–306
Logarithmic Re-expression of Data 316–317

Gallery of Functions

CHAPTER 3 Key Ideas

Properties, Theorems, and Formulas

Exponential Growth and Decay 272
Exponential Functions ƒ1x2 = bx 273
Exponential Functions and the Base e 275
Exponential Population Model 283
Changing Between Logarithmic and  

Exponential Form 292
Basic Properties of Logarithms 292
Basic Properties of Common Logarithms 294
Basic Properties of Natural Logarithms 295
Properties of Logarithms 301
Change-of-Base Formula for Logarithms 303
Logarithmic Functions f 1x2 = logb x, with b 7 1 305
One-to-One Properties 310
Newton’s Law of Cooling 314
Interest Compounded Annually 322
Interest Compounded k Times per Year 323–324
Interest Compounded Continuously 324
Future Value of an Annuity 326
Present Value of an Annuity 327

Exponential

[24, 4] by [21, 5]

f(x) = ex

Basic Logistic

[24.7, 4.7] by [20.5, 1.5]

1
1 + e–x

f(x) =

Natural Logarithmic

[22, 6] by [23, 3]

f(x) = ln x.

 CHAPTER 3 Key Ideas 331
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In Exercises 23 and 24, find the logistic function that satisfies the given 
conditions.

 23. Initial value = 12, limit to growth = 30, passing through 
12, 202.

 24. Initial height = 6, limit to growth = 20, passing through 
13, 152.

In Exercises 25 and 26, determine a formula for the logistic function 
whose graph is shown in the figure.

 25.  26. 

CHAPTER 3 Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1 and 2, compute the exact value of the function for the 
given value of x without using a calculator.

 1. ƒ1x2 = -3 # 4x for x =
1
3

 2. ƒ1x2 = 6 # 3x for x = -  
3
2

 

In Exercises 3 and 4, determine a formula for the exponential function 
whose graph is shown in the figure.

 3.   4. y

x
(0, 3)

(2, 6)

y

x

(3, 1)
(0, 2)

In Exercises 5–10, describe how to transform the graph of ƒ into the 
graph of g1x2 = 2x or h1x2 = ex. Sketch the graph by hand and sup-
port your answer with a grapher.

 5. ƒ1x2 = 4-x + 3 6. ƒ1x2 = -4-x

 7. ƒ1x2 = -8-x - 3 8. ƒ1x2 = 8-x + 3

 9. ƒ1x2 = e2x-3  10. ƒ1x2 = e -3x + 5

In Exercises 11 and 12, find the y-intercept and the horizontal  
asymptotes.

 11. ƒ1x2 =
100

5 + 3e-0.05x
 12. ƒ1x2 =

50

5 + 2e-0.04x

In Exercises 13 and 14, state whether the function is an exponential 
growth function or an exponential decay function, and describe its end 
behavior using limits.

 13. ƒ1x2 = e4-x + 2 14. ƒ1x2 = 215x-32 + 1

In Exercises 15–18, graph the function, and analyze it for domain, 
range, continuity, increasing or decreasing behavior, symmetry, bound-
edness, extrema, asymptotes, and end behavior.

 15. ƒ1x2 = e3-x + 1 16. g1x2 = 314x+12 - 2

 17. ƒ1x2 =
6

1 + 3 # 0.4x 18. g1x2 =
100

4 + 2e-0.01x

In Exercises 19–22, find the exponential function that satisfies the given 
conditions.

 19. Initial value = 24, increasing at a rate of 5.3% per day

 20. Initial population = 67,000, increasing at a rate of  
1.67% per year

 21. Initial value = €30,000, doubling every 7.5 years

 22. Initial mass = 117 g, halving once every 262 hr

y

x

(3, 10)
(0, 5)

y = 20

y

x

(5, 22)
(0, 11)

y = 44

In Exercises 27–30, evaluate the logarithmic expression.

 27. log2 32  28. log10 0.001

 29. log 23 10  30. ln 
12e7

In Exercises 31–34, rewrite the equation in exponential form.

 31. ln 
2
3

= x  32. log2 x = y

 33. ln x - 2 ln y = -3  34. log 
a
b

= -3

In Exercises 35–38, describe how to transform the graph of y = log2 x 
into the graph of the given function. Sketch the graph by hand and sup-
port with a grapher.

 35. ƒ1x2 = log2 1x + 42 36. g1x2 = log2 14 - x2
 37. h1x2 = - log2 1x - 12 + 2

 38. h1x2 = - log2 1x + 12 + 4

In Exercises 39–42, graph the function, and analyze it for domain, 
range, continuity, increasing or decreasing behavior, symmetry, bound-
edness, extrema, asymptotes, and end behavior.

 39. ƒ1x2 = x ln x 40. ƒ1x2 = x2 ln x

 41. ƒ1x2 = x2 ln 0 x 0  42. ƒ1x2 =
ln x

x

In Exercises 43–54, solve the equation.

 43. 10x = 4  44. ex = 0.25

 45. 1.05x = 3  46. ln x = 5.4 

 47. ln1y2 - 42 - ln1y + 22 = 13 ln 22 log81x2 - ln1x2
 48. 3x-3 = 5  49. 3 log2 x + 1 = 7

 50. log2 17log7 5x eln 5 5log5 x2 = 6

 51. 
3x - 3-x

2
= 5  52. 

50

4 + e2x = 11

 53. log 1x + 22 + log 1x - 12 = 4

 54. ln 13x + 42 - ln 12x + 12 = 5

M04_DEMA8962_10_GE_C03.indd   332 22/06/22   12:04



In Exercises 55 and 56, write the expression using only natural logarithms.

 55. log2 x  56. log1>6 16x22
In Exercises 57 and 58, write the expression using only common logarithms.

 57. log5 x  58. log1>2 14x32
In Exercises 59–62, match the function with its graph. All graphs are 
drawn in the window 3-4.7, 4.74  by 3-3.1, 3.14 .

(a)

[24.7, 4.7] by [23.1, 3.1]

(b)

[24.7, 4.7] by [23.1, 3.1]

(c)

[24.7, 4.7] by [23.1, 3.1]

(d)

[24.7, 4.7] by [23.1, 3.1]

 59. ƒ1x2 = log5 x  60. ƒ1x2 = log0.5 x

 61. ƒ1x2 = log5 1-x2  62. ƒ1x2 = 5-x

 63. Compound Interest Find the amount A accumulated after 
investing a principal P = $450 for 3 years at an interest rate of 
4.6% compounded annually.

 64. Compound Interest Find the amount A accumulated after 
investing a principal P = $4800 for 17 years at an interest rate 
of 6.2% compounded quarterly.

 65. Compound Interest Find the amount A accumulated after 
investing a principal P for t years at an annual interest rate r 
compounded continuously.

 66. Future Value Find the future value FV accumulated in an 
annuity after investing periodic payments R for t years at an 
annual interest rate r, with payments made and interest credited 
k times per year.

 67. Present Value Find the present value PV of loans taken by 
Ayesha, with an annual interest rate r = 6%, and periodic 
 payments R = €10,000 for a term of t = 2 years, with 
 payments made and interest charged annually.

 68. Present Value Find the present value PV of a loan with an 
annual interest rate r = 7.25, and periodic payments 
R = $953 for a term of t = 15 years, with payments made and 
interest charged 26 times per year.

In Exercises 69 and 70, determine the value of k so that the graph of ƒ 
passes through the given point.

 69. ƒ1x2 = 20e-kx, 13, 502 70. ƒ1x2 = 20e-kx, 11, 302

Table 3.28 Populations of Two
Countries (in millions)

Year Indonesia The Philippines

1900 38.20 6.48
1910 42.80 7.77
1920 47.30 9.41
1930 53.40 11.60
1940 61.80 14.60
1950 69.54 18.58
1960 87.75 26.27
1970 114.79 35.80
1980 147.45 47.36
1990 181.41 61.90
2000 211.51 77.99
2010 241.83 93.97
2020 273.52 109.58

Source: https://www.statista.com.

 72. Modeling Population Using the data in Table 3.28 find a 
logistic regression model for the Philippines’ population, and 
use it to predict the population in 2030.

 73. Drug Absorption A drug is administered intravenously  
for pain. The function ƒ1t2 = 90 - 52 ln 11 + t2, where 
0 … t … 4 gives the amount of the drug in the body after  
t hours.

(a) What was the initial 1t = 02 number of units of drug 
 administered?

(b) How much is present after 2 hr?

(c) Draw the graph of ƒ.

 74. Population Decrease The population of Metroville is 
123,000 and is decreasing by 2.4% each year.

(a) Write a function that models the population as a function 
of time t.

(b) Predict when the population will be 90,000.

 75. Population Decrease The population of Preston is 
89,000 and is decreasing by 1.8% each year.

(a) Write a function that models the population as a function 
of time t.

(b) Predict when the population will be 50,000. 

 76. Spread of Flu The number P of students infected with  
f lu at Northridge High School t days after exposure is 
 modeled by

P1t2 =
300

1 + e4- t .

(a) What was the initial 1t = 02 number of students infected 
with the flu?

(b) How many students were infected after 3 days?

(c) When will 100 students be infected?  

(d) What would be the maximum number of students infected? 
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 71. Modeling Population Using the data in Table 3.28 find 
an exponential regression model for Indonesia’s population, 
and use it to predict the population in 2030.
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334 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

 77. Rabbit Population The number of rabbits in Elkgrove 
doubles every month. There are 20 rabbits present initially.

(a) Express the number of rabbits as a function of the time t.

(b) How many rabbits are present after 1 year? after 5 years?

(c) When will there be 10,000 rabbits? 

 78. Guppy Population The number of guppies in Susan’s 
aquarium doubles every day. There are four guppies initially.

(a) Express the number of guppies as a function of time t.

(b) How many guppies are present after 4 days? after  
1 week?

(c) When will there be 2000 guppies?

 79. Radioactive Decay The half-life of a certain radio-active 
substance is 1.5 sec. The initial amount of substance is S0 grams.

(a) Express the amount of substance S remaining as a function 
of time t.

(b) How much of the substance is left after 1.5 sec? after  
3 sec?

(c) Determine S0 if there was 1 g left after 1 min.

 80. Radioactive Decay The half-life of a certain radio-active 
substance is 2.5 sec. The initial amount of substance is S0 grams.

(a) Express the amount of substance S remaining as a function 
of time t.

(b) How much of the substance is left after 2.5 sec? after  
7.5 sec?

(c) Determine S0 if there was 1 g left after 1 min. 

 81. Richter Scale Afghanistan suffered two major earthquakes 
in 1998. The one on February 4 had a Richter magnitude of 
6.1, causing about 2300 deaths, and the one on May 30 
 measured 6.9 on the Richter scale, killing about 4700 persons. 
How many times more powerful was the deadlier quake?

 82. Chemical Acidity The pH of seawater is 7.6, and the pH of 
milk of magnesia is 10.5.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration 
of the seawater than that of milk of magnesia?

(c) By how many orders of magnitude do the concentrations 
differ? 

 83. Investment Planning If Sandra deposits €A into a retirement 
account with a 10% interest rate compounded annually, how long 
will it take this single payment of €A to double?

 84. Investment Planning If Juan invests $12,500 into a 
retirement account with a 9% interest rate compounded contin-
uously, how long will it take this single payment to triple in 
value? 

 85. Monthly Payments The time t in months that it takes to 
pay off a $60,000 loan at 9% annual interest with monthly pay-
ments of x dollars is given by

t ≈ 133.83 ln a x
x - 450

b .

  Estimate the length (term) of the $60,000 loan if the monthly 
payments are $700.

 86. Monthly Payments Using the equation in Exercise 85, 
estimate the length (term) of the $60,000 loan if the monthly 
payments are $500.

 87. Finding APY Find the annual percentage yield for an 
investment with an interest rate of 8.25% compounded 
monthly.

 88. Finding APY Find the annual percentage yield that can be 
used to advertise an account that pays interest at 7.20% com-
pounded continuously.

 89. Light Absorption The Beer-Lambert Law of Absorption 
applied to Lake Superior states that the light intensity I (in 
lumens) at a depth of x feet satisfies the equation

log 
I

12
= -0.0125x.

  Find the light intensity at a depth of 25 ft.

 90. For what values of b is logb x a vertical stretch of y = ln x? A 
vertical shrink of y = ln x?

 91. For what values of b is logb x a vertical stretch of y = log x? A 
vertical shrink of y = log x?

 92. If ƒ1x2 = abx, a 7 0, b 7 0, prove that g1x2 = ln ƒ1x2 is a 
linear function. Find its slope and y-intercept.

 93. Spread of Flu The number of students infected with flu after 
t days at Springfield High School is modeled by the function

P1t2 =
1600

1 + 99e-0.4t .

(a) What was the initial number of infected students?

(b) When will 800 students be infected?

(c) The school will close when 400 of the 1600 student body 
are infected. When will the school close?

 94. Population of Deer The population P of deer after t years 
in Briggs State Park is modeled by the function

P1t2 =
1200

1 + 99e-0.4t .

(a) What was the initial population of deer? 

(b) When will there be 1000 deer? 

(c) What is the maximum number of deer planned for the 
park? 

 95. Newton’s Law of Cooling A cup of coffee cooled from 
96°C to 65°C after 8 min in a room at 20°C. After how many 
minutes will it have cooled to 25°C?

 96. Newton’s Law of Cooling A cake is removed from an 
oven at 220°F and cools to 150°F after 35 min in a room at 
75°F. When will it have cooled to 95°F?

 97. The function

ƒ1x2 = 100 
11 + 0.09>42x - 1

0.09>4
  describes the future value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?
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 98. The function

g1x2 = 200 
1 - 11 + 0.11>42-x

0.11>4
  describes the present value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?

 99. Simple Interest Versus Compounding  
Continuously Grace purchases a $1000 certificate of 
deposit that will earn 5% each year. The interest will be mailed 
to her, so she will not earn interest on her interest.

(a) Prove that after t years, the total amount of interest she 
receives from her investment plus the original $1000 is 
given by

ƒ1t2 = 100011 + 0.05t2.
(b) Grace invests another $1000 at 5% compounded continu-

ously. Make a table that compares the values of the two 
investments for t = 1, 2, c, 10 years.

CHAPTER 3 Modeling Project

Modeling the Motion of a Bouncing Ball

When a ball bounces up and down on a flat surface, the maxi-
mum height of the ball decreases with each bounce. Each 
rebound is a percentage of the previous height. For most balls, 
the percentage is a constant. In this project, you will use a motion 
detection device to collect height data for a ball bouncing under-
neath the detector, then find a mathematical model that describes 
the maximum bounce height as a function of bounce number.

Collecting the Data

Set up the Calculator-Based Laboratory (CBL™) system with a 
motion detector or a Calculator-Based Ranger (CBR™) system 
to collect ball bounce data using a ball bounce program for the 
CBL or the Ball Bounce Application for the CBR. See the CBL 
or CBR guidebook for specific setup instruction.

Hold the ball at least 2 ft below the detector and release it so that 
it bounces straight up and down beneath the detector. These pro-
grams convert distance versus time data to height from the 
ground versus time. The graph shows a plot of sample data col-
lected with a racquetball and CBR. The data table below shows 
each maximum height collected.

Explorations

 1. If you collected motion data using a CBL or CBR, a plot of 
height versus time should be shown on your grapher or 
computer screen. Trace to the maximum height for each 
bounce, and record your data in a table. Then use other lists 
in your grapher to enter these data. If you do not have access 
to a CBL or CBR, enter the data given in the table into 
your grapher.

 2. Carry out the mathematics. Bounce height 1 is what per-
centage of bounce height 0? Calculate the percentage return 
for each bounce. The  numbers should be fairly constant.

 3. Create a scatter plot for maximum height versus bounce 
number.

 4. Analyze and assess the solution. For bounce 1, the height 
is predicted by multiplying bounce height 0, or H, by the 
percentage P. The second height is predicted by multiplying 
this height HP by P, which gives HP2. Explain why y = HPx 
is the appropriate model for these data, where x is the 
bounce number.

 5. Enter this equation into your grapher, using your values for 
H and P. How does the model fit your data?

 6. Use the statistical features of the grapher to find the expo-
nential regression for these data. Compare it to the equation 
that you used as a model.

 7. How would your data and equation change if you used a dif-
ferent type of ball?

 8. What factors would change the value of H, and what factors 
affect the value of P?

 9. Rewrite your equation using base e instead of using P as the 
base for the exponential equation.

 10. What do you expect the graph of ln (bounce height) versus 
bounce number to look like? 

 11. Plot ln (bounce height) versus bounce number. Calculate  
the linear regression, and use the concept of logarithmic 
 re-expression to explain how the slope and y-intercept are 
related to P and H.

H
ei

gh
t (

ft
)

Time (sec)
[0, 4.25] by [0, 3]

Bounce Number Maximum Height (ft)

0 2.7188
1 2.1426
2 1.6565
3 1.2640
4 0.98309
5 0.77783
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When the motion of an object causes air molecules to vibrate, we hear a 

sound. We measure sound according to its pitch and loudness, which are 

attributes associated with the frequency and amplitude of sound waves. As 

we shall see, it is the branch of mathematics called trigonometry that enables 

us to model waves of all kinds; indeed, that is only one application of this 

powerful analytical tool. See page 410 for an application of trigonometry to 

sound waves.

Trigonometric Functions

CHAPTER 4

 4.1 Angles and Their 
Measures

 4.2 Trigonometric Functions 
of Acute Angles

 4.3 Trigonometry Extended: 
The Circular Functions

 4.4 Graphs of Sine and 
Cosine: Sinusoids

 4.5 Graphs of Tangent, 
Cotangent, Secant,  
and Cosecant

 4.6 Graphs of Composite 
Trigonometric Functions

 4.7 Inverse Trigonometric 
Functions

 4.8 Solving Problems with 
Trigonometry
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Hipparchus of Nicaea  
(190–120 bce)
Hipparchus of Nicaea, the “father of trigonome-
try,” compiled the first trigonometric tables to 
simplify the study of astronomy more than 2000 
years ago. Today, that same mathematics enables 
us to store sound waves digitally on a compact 
disc. Hipparchus wrote during the second cen-
tury bce, but he was not the first mathematician 
to “do” trigonometry. Greek mathematicians like 
Hippocrates of Chois (470–410 bce) and Eratos-
thenes of Cyrene (276–194 bce) had paved the 
way for using triangle ratios in astronomy, and 
those same triangle ratios had been used by 
Egyptian and Babylonian engineers at least  
4000 years earlier. The term “trigonometry” 
itself emerged in the 16th century, although it 
derives from ancient Greek roots: “tri” (three), 
“gonos” (side), and “metros” (measure).

Why 360°?
The idea of dividing a circle into 360 equal 
pieces dates back to the sexagesimal (60-based) 
counting system of the ancient Sumerians. The 
appeal of 60 was that it was evenly divisible by 
so many numbers (2, 3, 4, 5, 6, 10, 12, 15, 20, 
and 30). Early astronomical calculations wedded 
the sexagesimal system to circles, and the rest is 
history.

What you’ll learn about
• The Problem of Angular Measure

• Degrees and Radians

• Circular Arc Length

• Angular and Linear Motion

... and why
Angles are the domain elements  
of the trigonometric functions.

The Problem of Angular Measure
The input variable in a trigonometric function is an angle measure; the output is a real 
number. Believe it or not, this poses an immediate problem for us if we choose to mea-
sure our angles in degrees (as most of us did in our geometry courses).

The problem is that degree units have no mathematical relationship whatsoever to lin-
ear units. There are 360 degrees in a circle of radius 1. What relationship does the 360 
have to the 1? In what sense is it 360 times as big? Answering these questions isn’t pos-
sible, because a “degree” is another unit altogether.

Consider the diagrams in Figure 4.1. The ratio of s to h in the right triangle in Figure 4.1a 
is independent of the size of the triangle. (You may recall this fact about similar tri-
angles from geometry.) This valuable insight enabled early engineers to compute 
triangle ratios on a small scale before applying them to much larger projects. That 
was (and still is) trigonometry in its most basic form. For astronomers tracking 
celestial motion, however, the extended diagram in Figure 4.1b was more interest-
ing. In this picture, s is half a chord in a circle of radius h, and u is a central angle of 
the circle intercepting a circular arc of length a. If u were 40°, we might call a a 
“40-degree arc” because of its direct association with the central angle u, but notice 
that a also has a length that can be measured in the same units as the other lengths in 
the picture. Over time it became natural to think of the angle being determined by 
the arc rather than the arc being determined by the angle, and that led to radian 
measure.

Degrees and Radians
A degree, represented by the symbol °, is a unit of angular measure equal to 1>180th 
of a straight angle. In the DMS (degree-minute-second) system of angular measure, 
each degree is subdivided into 60 minutes (denoted by ′) and each minute is subdi-
vided into 60 seconds (denoted by ″). (Notice that Sumerian influence again.)

Example 1 illustrates how to convert from degrees in decimal form to DMS, and vice 
versa.

4.1 Angles and Their Measures

s
h

(a)

u

  

s
h a

(b)

u

Figure 4.1 The pictures that motivated 
trigonometry.

Chapter 4 Overview
The trigonometric functions arose from the consideration of ratios within right trian-
gles, the ultimate computational tool for engineers in the ancient world. As the great 
mysteries of civilization progressed from a flat Earth to a world of circles and spheres, 
trigonometry was soon seen to be the secret to understanding circular phenomena as 
well. Then circular motion led to harmonic motion and waves, and suddenly trigonom-
etry was the indispensable tool for understanding everything from electrical current to 
modern telecommunications.

The advent of calculus made the trigonometric functions more important than ever. It 
turns out that every kind of periodic (recurring) behavior can be modeled to any degree 
of accuracy by simply combining sine functions. The modeling aspect of trigonometric 
functions is another focus of our study.
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338 CHAPTER 4 Trigonometric Functions

In navigation, the course or bearing of an object is sometimes given as the angle of the 
line of travel measured clockwise from due north. For example, the line of travel in 
Figure 4.2 has a bearing of 155°.

In this text we use degrees to measure angles in their familiar geometric contexts, espe-
cially when applying trigonometry to real-world problems in surveying, construction, 
and navigation, where degrees are still the accepted units of measure. When we shift 
our attention to the trigonometric functions, however, we will measure angles in radi-
ans so that domain and range values can be measured on comparable scales.

Gloucester

North

Path
of boat

155°

Figure 4.2 The course of a fishing boat 
bearing 155° out of Gloucester.

Constructing a 1-Radian Angle

Carefully draw a large circle on a piece of paper, either by tracing around a cir-
cular object or by using a compass. Identify the center of the circle (O) and draw 
a radius horizontally from O toward the right, intersecting the circle at point A. 
Then cut a piece of thread or string the same length as the radius. Place one end 
of the string at A and bend it around the circle counterclockwise, marking the 
point B on the circle where the other end of the string ends up. Draw the radius 
from O to B.

The measure of angle AOB is 1 rad.

 1. What is the circumference of the circle, in terms of its radius r 

 2. How many radians must there be in a complete circle?

 3. If we cut a piece of thread 3 times as long as the radius, would it extend 
 halfway around the circle? Why or why not?

 4. How many radians are in a straight angle? 

EXPLORATION 1 

Calculator Conversions
Your calculator probably has built-in functional-
ity to convert degrees to DMS. Consult your 
owner’s manual. Meanwhile, you should try 
some conversions the “long way” to get a better 
feel for how DMS works.

Working with DMS Measure
(a) Convert 37.425° to DMS.

(b) Convert 42°24′36″ to degrees.

SOLUTION 

(a) We need to convert the fractional part to minutes and seconds. First we convert 
0.425° to minutes:

0.425°a60′
1°
b = 25.5′

Then we convert 0.5 minute to seconds:

0.5′a60″
1′
b = 30″

Putting it all together, we find that 37.425° = 37°25′30″.
(b) Each minute is 1>60th of a degree, and each second is 1>3600th of a degree. 

Therefore,

42°24′36″ = 42° + a24
60
b °

+ a 36
3600

b °
= 42.41°.

Now try Exercises 3 and 5.

EXAMPLE 1 

DEFINITION Radian

A central angle of a circle has measure 1 radian (“rad” for short) if the angle 
intercepts an arc with the same length as the radius of the circle. (See Figure 4.3.)

a
a

1 radian

Figure 4.3 In a circle, a central angle of  
1 rad intercepts an arc of length one radius.
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With practice, you can perform these conversions in your head. The key is to think of a 
straight angle equaling p rad as readily as you think of it equaling 180°.

Circular Arc Length
Because a central angle of 1 radian always intercepts an arc 1 radius in length, it follows 
that a central angle of u radians in a circle of radius r intercepts an arc of length ur. This 
gives us a convenient formula for measuring arc length.

Working with Radian Measure
(a) How many radians are in 90°?
(b) How many degrees are in p>3 rad?

(c) Find the length of an arc intercepted by a central angle of 1>2 rad in a circle of 
radius 5 in.

(d) Find the radian measure of a central angle that intercepts an arc of length s in a 
circle of radius r.

SOLUTION 

(a) Because p radians and 180° both measure a straight angle, we can use the con-
version factor 1p rad2>1180°2 = 1 to convert degrees to radians:

90°ap rad
180°

b =
90p
180

 rad =
p

2
 rad

(b) In this case, we use the conversion factor 1180°2>1p rad2 = 1 to convert radi-
ans to degrees:

ap
3

 radb a 180°
p rad

b =
180°

3
= 60°

(c) A central angle of 1 rad intercepts an arc of length 1 radius, which is 5 in. 
Therefore, a central angle of 1>2 rad intercepts an arc of length 1>2 radius, 
which is 2.5 in.

(d) We can solve this problem with ratios:

 
x radians
s units

=
1 radian
r units

 xr = s

 x =
s
r

Now try Exercises 11 and 19.

EXAMPLE 2 

Arc Length Formula (Radian Measure)

If u is a central angle in a circle of radius r, and if u is measured in radians, then 
the length s of the intercepted arc is given by

s = ru.

Degree-Radian Conversion

To convert radians to degrees, multiply by 
180°
p rad

.

To convert degrees to radians, multiply by 
p rad
180°

.
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340 CHAPTER 4 Trigonometric Functions

Angular and Linear Motion
In applications it is sometimes necessary to connect angular speed (measured in units 
like revolutions per minute) to linear speed (measured in units like miles per hour). The 
connection is usually provided by one of the arc length formulas or by a conversion 
factor that equates “1 radian” of angular measure to “1 radius” of arc length.

s in.7 in.

7 in.

Figure 4.4 A 60° slice of a large pizza. 
(Example 3)

     
      Lane 2 

     
      Lane 1 

33 m

34 m

Figure 4.5 Two lanes of the track described 
in Example 4.

Does a Radian Have Units?
The formula s = ru implies an interesting fact 
about radians: As long as s and r are measured in 
the same units, the radian is unit-neutral. For 
example, if r = 5 in. and u = 2 rad, then  
s = 10 in. (not 10 “in.-rad”). This unusual 
 situation arises from the fact that the definition 
of the radian is tied to the length of the radius, 
units and all.

A somewhat less simple formula (which incorporates the degree-radian conversion 
formula) applies when u is measured in degrees.

Arc Length Formula (Degree Measure)

If u is a central angle in a circle of radius r, and if u is measured in degrees, 
then the length s of the intercepted arc is given by

s =
pru
180

.

Perimeter of a Pizza Slice
Find the perimeter of a 60° slice of a large (7-in. radius) pizza.

SOLUTION The perimeter (Figure 4.4) is 7 in. + 7 in. + s in., where s is the arc 
length of the pizza’s curved edge. By the arc length formula,

s =
p1721602

180
=

7p
3

≈ 7.3.

The perimeter is approximately 21.3 in. Now try Exercise 35.

EXAMPLE 3 

Designing a Running Track
The running lanes at the Emery Sears track at Bluffton College are 1 m wide. The 
inside radius of lane 1 is 33 m, and the inside radius of lane 2 is 34 m. How much 
longer is lane 2 than lane 1 around one turn? (See Figure 4.5.)

SOLUTION We think this solution through in radians. Each lane is a semicircle with 
central angle u = p and length s = r u = rp. The difference in their lengths, there-
fore, is 34p - 33p = p. Lane 2 is about 3.14 m longer than lane 1.

Now try Exercise 37.

EXAMPLE 4 

Using Angular Speed
Albert Juarez’s truck has wheels 36 in. in diameter. If the wheels are rotating at  
630 rpm (revolutions per minute), find the truck’s speed in miles per hour.

SOLUTION We convert revolutions per minute to miles per hour by a series of unit 

conversion factors. Note that the conversion factor 
18 in.
1 rad

 works for this example 
because the radius is 18 in.

630 rev
1 min

*
60 min

1 hr
*

2p rad
1 rev

*
18 in.
1 rad

*
1 ft

12 in.
*

1 mi
5280 ft

≈  67.47 
mi
hr

Now try Exercise 45.

EXAMPLE 5 
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Nautical
mile

B
A

O

Figure 4.6 Although Earth is not a perfect sphere, its diameter is, on average,  
7912.18 stat mi. A nautical mile is 1′ of Earth’s circumference at the equator.

A nautical mile (naut mi) is the length of 1 minute of arc along Earth’s equator. Figure 4.6 
shows, though not to scale, a central angle AOB of Earth that measures 1>60 of a 
degree. It intercepts an arc 1 naut mi long.

The arc length formula allows us to convert between nautical miles and statute miles 
(stat mi), the familiar “land mile” of 5280 ft.

Distance Conversions

 1 stat mi ≈ 0.87 naut mi

 1 naut mi ≈ 1.15 stat mi

Converting from Statute to Nautical Miles
Megan McCarty, a pilot for Western Airlines, frequently pilots flights from Boston to 
San Francisco, a distance of 2698 stat mi. Captain McCarty’s calculations of flight 
time are based on nautical miles. How many nautical miles is it from Boston to  
San Francisco?

SOLUTION Earth’s radius at the equator is approximately 3956 stat mi. Convert  
1 minute of arc to radians:

1′ = a 1
60
b °

*
p rad
180°

=
p

10,800
 rad.

Now we can apply the formula s = ru:

 1 naut mi ≈ 139562a p

10,800
b  stat mi

 ≈ 1.15 stat mi

 1 stat mi ≈ a10,800
3956p

b  naut mi

 ≈ 0.87 naut mi

The distance from Boston to San Francisco is

2698 stat mi ≈
2698 # 10,800

3956p
 naut mi ≈ 2345 naut mi.

Now try Exercise 51.

EXAMPLE 6 
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342 CHAPTER 4 Trigonometric Functions

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the circumference of the circle with the given 
radius r. State the correct unit.

 1. r = 2.5 in.  2. r = 4.6 m

In Exercises 3 and 4, find the radius of the circle with the given 
 circumference C.

 3. C = 12 m  4. C = 8 ft

In Exercises 5 and 6, evaluate the expression for the given values of the 
variables. State the correct unit.

 5. s = r u

(a) r = 9.9 ft u = 4.8 rad

(b) r = 4.1 km u = 9.7 rad

 6. v = rv

(a) r = 8.7 m v = 3.0 rad>sec

(b) r = 6.2 ft v = 1.3 rad>sec

In Exercises 7–10, convert from miles per hour to feet per second or 
from feet per second to miles per hour.

 7. 60 mph  8. 45 mph

 9. 8.8 ft>sec  10. 132 ft>sec

QUICK REVIEW 4.1 (For help, go to Section 1.7.)

In Exercises 33 and 34, a central angle u intercepts arcs s1 and s2 on two 
concentric circles with radii r1 and r2, respectively. Find the missing 
information.

  u r1 s1 r2 s2

 33. ? 11 cm 9 cm 44 cm ?

 34. ? 8 km 36 km ? 72 km

 35. To the nearest inch, find the perimeter of a 10° sector cut from 
a circular disc of radius 11 in.

 36. A 100° arc of a circle has a length of 7 cm. To the nearest 
 centimeter, what is the radius of the circle?

 37. It takes ten identical pieces to form a circular track for a pair of 
toy racing cars. If the inside arc of each piece is 3.4 in. shorter 
than the outside arc, what is the width of the track?

 38. The concentric circles on an archery target are 6 in. apart. The 
inner circle (red) has a perimeter of 37.7 in. What is the perim-
eter of the next-largest (yellow) circle?

Exercises 39–42 refer to the 16 compass bearings shown. North corre-
sponds to an angle of 0°, and other angles are measured clockwise  
from north.

N

S

W

NW NE

SW

WSW

WNW ENE

NNW NNE

SSW SSE

ESE

SE

E

SECTION 4.1 Exercises

In Exercises 1–4, convert from DMS to decimal form.

 1. 23°12′  2. 35°24′

 3. 118°44′15″  4. 48°30′36″

In Exercises 5–8, convert from decimal form to degrees, minutes, 
 seconds (DMS).

 5. 21.2°  6. 49.7°

 7. 118.32°  8. 99.37°

In Exercises 9–16, convert from DMS to radians.

 9. 45°  10. 90°

 11. 120°  12. 150°

 13. 71.72°  14. 11.83°

 15. 61°24′  16. 75°30′

In Exercises 17–24, convert from radians to degrees.

 17. p>6  18. p>4
 19. p>10  20. 3p>5
 21. 7p>9  22. 13p>20

 23. 2  24. 1.3

In Exercises 25–32, use the appropriate arc length formula to find the 
missing information.

  s r u

 25. ? 3 m 30 rad

 26. ? 1 cm 70 rad

 27. 1.5 ft ? p>4 rad

 28. 2.5 cm ? p>3 rad

 29. 3 m 1 m ?

 30. 4 in. 7 in. ?

 31. 40 cm ? 20°

 32. ? 5 ft 18°
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 39. Compass Reading Find the angle in degrees that 
describes the compass bearing.

(a) NE (northeast)

(b) NNE (north-northeast)

(c) WSW (west-southwest)

 40. Compass Reading Find the angle in degrees that 
describes the compass bearing.

(a) SSW (south-southwest)

(b) WNW (west-northwest)

(c) NNW (north-northwest)

 41. Compass Reading Which compass direction is closest to 
a bearing of 121°?

 42. Compass Reading Which compass direction is closest to 
a bearing of 219°?

 43. Navigation Two Coast Guard patrol boats leave Cape May 
at the same time. One travels with a bearing of 42°30′ and the 
other with a bearing of 52°12′. If they travel at the same speed, 
approximately how far apart will they be when they are 25 stat mi 
from Cape May?

Table 4.1 Tire Sizes for Electric Vehicles

Vehicle Tire Type Tire Diameter (in.)

Chevy Spark EV 185>55–15 23.0

Nissan Leaf SL 215>50–17 25.5

Tesla S 245>45–19 27.7

Source: Tirerack.com

Cape May

52°12´

42°30´

 44. Automobile Design Table 4.1 shows the size specifica-
tions for the tires that come as standard equipment on three 
2017 all-electric vehicles.

(a) Find the speed of each vehicle in mph when the wheels are 
turning at 800 rpm.

(b) Compared to the Tesla, how many more revolutions must 
the tire of the Leaf make in order to travel a mile?

(c) Writing to Learn It is unwise (and in some cases illegal) 
to equip a vehicle with wheels of a larger diameter than 
those for which it was designed. If a 2017 Nissan Leaf 
were equipped with the Tesla’s 27.7-in. tires, how would it 
affect the odometer (which measures mileage) and speedo-
meter readings?

 45. Bicycle Racing 2016 Olympics gold medalist Mariana 
Pajón races on a BMX bike with 10-in.-radius wheels. When 
she is traveling at a speed of 24 ft>sec, how many revolutions 
per minute are her wheels making?

 46. Tire Sizing The numbers in the “tire type” column in Exer-
cise 44 give the size of the tire in the P-metric system. Each 
number is of the form W>R-D, where W is the width of the tire 
in millimeters, R>100 is the ratio of the sidewall (S) of the tire 
to its width W, and D is the diameter (in inches) of the wheel 
without the tire.

    Tire diameter

D

S

W

(a) Show that S = WR>100 millimeters = WR>2540 inches.

(b) The tire diameter is D + 2S. Derive a formula for the tire 
diameter that involves only the variables D, W, and R.

(c) Use the formula in part (b) to verify the tire diameters in 
Exercise 44. Then find the tire diameter for the 2013 Cadil-
lac Escalade, which comes with 265>65–18 tires.

 47. Tool Design A radial arm saw has a circular cutting blade 
with a diameter of 10 in. It spins at 2000 rpm. If there are  
12 cutting teeth per inch on the cutting blade, how many teeth 
cross the cutting surface each second?

 48. Navigation Sketch a diagram of a ship on the given course.

(a) 35°   (b) 128°   (c) 310°

 49. Navigation The captain of the tourist boat Julia out of Oak 
Harbor follows a 38° course for 2 mi and then changes to a  
47° course for the next 4 mi. Draw a sketch of this trip.

 50. Navigation Points A and B are 257 naut mi apart. How far 
apart are A and B in statute miles?

 51. Navigation Points C and D are 895 stat mi apart. How  
far apart are C and D in nautical miles?
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344 CHAPTER 4 Trigonometric Functions

 52. Designing a Sports Complex Example 4 describes how 
lanes 1 and 2 compare in length around one turn of a track. 
Find the differences in the lengths of these lanes around one 
turn of the same track.

(a) Lanes 5 and 6 (b) Lanes 1 and 6

 53. Mechanical Engineering A simple pulley with the given 
radius r used to lift heavy objects is positioned 10 ft above 
ground level. Given that the pulley rotates u°, determine the 
height to which the object is lifted.

(a) r = 4 in., u = 720° (b) r = 2 ft, u = 180°

10 ft

d

r

 54. Foucault Pendulum In 1851 the French physicist Jean 
Foucault used a pendulum to demonstrate Earth’s rotation. 
There are now over 30 Foucault pendulum displays in the 
United States. The Foucault pendulum at the Smithsonian 
 Institution in Washington, DC, consists of a large brass ball 
suspended by a thin 52-ft cable. If the ball swings through an 
angle of 1°, how far does it travel?

 55. Group Activity Air Conditioning Belt The belt on an 
automobile air conditioner connects metal wheels with radii 
r = 4 cm and R = 7 cm. The angular speed of the larger wheel 
is 120 rpm.

(a) What is the angular speed of the larger wheel in radians 
per second?

(b) What is the linear speed of the belt in centimeters per 
 second?

(c) What is the angular speed of the smaller wheel in radians 
per second?

 56. Group Activity Ship’s Propeller The propellers of the 
Amazon Paradise have a radius of 1.2 m. At full throttle the 
propellers turn at 135 rpm.

(a) What is the angular speed of a propeller blade in radians 
per second?

(b) What is the linear speed of the tip of the propeller blade in 
meters per second?

(c) What is the linear speed (in meters per second) of a point 
on a blade halfway between the center of the propeller and 
the tip of the blade?

Standardized Test Questions
 57. True or False If horse A is twice as far as horse B from the 

center of a merry-go-round, then horse A travels twice as fast 
as horse B. Justify your answer.

 58. True or False The radian measures of all three angles in a 
triangle can be integers. Justify your answer.

You may use a graphing calculator when answering these questions.

 59. Multiple Choice What is the radian measure of an angle of 
x degrees?

(A) px (B) x>180

(C) px>180 (D) 180x>p
(E) 180>xp

 60. Multiple Choice If the perimeter of a sector is 4 times its 
radius, then the radian measure of the central angle of the sec-
tor is 

(A) 2. (B) 4.

(C) 2>p. (D) 4>p.

(E) impossible to determine without knowing the radius.

 61. Multiple Choice A bicycle with 26-in.-diameter wheels is 
traveling at 10 mph. To the nearest whole number, how many 
revolutions does each wheel make per minute?

(A) 54 (B) 129

(C) 259 (D) 406

(E) 646

 62. Multiple Choice A central angle in a circle of radius r has 
a measure of u radians. If the same central angle were drawn in 
a circle of radius 2r, its radian measure would be

(A) 
u

2
. (B) 

u

2r
.

(C) u. (D) 2u.

(E) 2ru.

Explorations
Table 4.2 shows the latitude-longitude locations of several cities across 
the world. Latitude is measured from the equator. Longitude is measured 
from the Greenwich meridian that passes north-south through London.

Table 4.2 Latitude and Longitude Locations 
of World Cities

City and Country Latitude Longitude

Auckland, New Zealand 36°51′ S 174°45′ E
Bandung, Indonesia 6°56′ S 107°36′ E
Copenhagen, Denmark 55°41′ N 12°34′ E
Delhi, India 28°39′ N 77°13′ E
Honolulu, United States 21°18′ N 157°51′ W
Istanbul, Turkey 41°0′ N 28°57′ E
Johannesburg, South Africa 26°12′ S 28°2′ E
Lima, Peru 12°3′ S 77°2′ W
Mexico City, Mexico 19°25′ N 99°7′ W
Rio de Janeiro, Brazil 22°54′ S 43°12′ W
Toronto, Canada 43°39′ N 79°23′ W

Source: https://www.gps-coordinates.net.
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 71. Group Activity Area of a Sector A 
sector of a circle (shaded in the figure) is a 
region bounded by a central angle of a circle 
and its intercepted arc. Use the fact that the 
areas of sectors are proportional to their cen-
tral angles to prove that

A =
1
2

 r2u,

where r is the radius and u is in radians.

Extending the Ideas
 72. Area of a Sector Use the formula A = 11>22r2u to 

 determine the area of the sector with given radius r and central 
angle u.

(a) r = 5.9 ft, u = p>5
(b) r = 1.6 km, u = 3.7

 73. Navigation Control tower A is 60 mi east of control tower 
B. At a certain time an airplane is on bearings of 340° from 
tower A and 37° from tower B. Use a drawing to model the 
exact location of the airplane.

 74. Bicycle Racing Ben Shultz’s bike wheels are 28 in. in 
diameter, and for high gear the pedal sprocket is 9 in. in 
 diameter and the wheel sprocket is 3 in. in diameter. Find  
the angular speed, in radians per second, of the wheel and  
of both sprockets when Ben reaches his peak racing speed of  
66 ft>sec in high gear.

In Exercises 63–66, find the difference in longitude between the given 
cities.

 63. Auckland and Johannesburg

 64. Honolulu and Rio de Janeiro

 65. Bandung and Istanbul

 66. Delhi and Toronto

Table 4.3 shows the latitude-longitude locations of several U.S. cities. 
Latitude is measured from the equator. Longitude is measured from the 
Greenwich meridian that passes north-south through London. In Exer-
cises 67–70, assume that the two cities have the same longitude (that is, 
assume that one is directly north of the other), and find the distance 
between them in nautical miles.

 67. San Diego and Los Angeles

 68. Seattle and San Francisco

 69. New Orleans and Minneapolis

 70. Detroit and Atlanta

r

r
u

28 in.

Table 4.3 Latitude and Longitude Locations 
of U.S. Cities

City Latitude Longitude

Atlanta 33°45′ 84°23′
Chicago 41°51′ 87°39′
Detroit 42°20′ 83°03′
Los Angeles 34°03′ 118°15′
Miami 25°46′ 80°12′
Minneapolis 44°59′ 93°16′
New Orleans 29°57′ 90°05′
New York 40°43′ 74°0′
San Diego 32°43′ 117°09′
San Francisco 37°47′ 122°25′
Seattle 47°36′ 122°20′

Source: U.S. Department of the Interior, as reported in The World 
 Almanac and Book of Facts 2009.
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The six ratios of side lengths in a right triangle are the six trigonometric functions 
(often abbreviated as trig functions) of the acute angle u. We will define them here with 
reference to the right △ABC as labeled in Figure 4.8. The abbreviations opp, adj, and 
hyp refer to the lengths of the side opposite u, the side adjacent to u, and the hypote-
nuse, respectively.

What you’ll learn about
• Right Triangle Trigonometry

• Two Famous Triangles

• Evaluating Trigonometric Functions 
with a Calculator

• Common Calculator Errors When 
Evaluating Trig Functions

• Applications of Right Triangle 
 Trigonometry

... and why
The many applications of right 
 triangle trigonometry gave the 
 subject its name.

Right Triangle Trigonometry
Recall that geometric figures are similar if they have the same shape even though they 
may have different sizes. Having the same shape means that the angles of one are con-
gruent to the angles of the other and their corresponding sides are proportional. Simi-
larity is the basis for many applications, including scale drawings, maps, and right 
triangle trigonometry, which is the topic of this section.

Two triangles are similar if the angles of one are congruent to the angles of the other. 
For two right triangles we need only know that an acute angle of one is equal to an 
acute angle of the other for the triangles to be similar. Thus a single acute angle u of a 
right triangle determines six distinct ratios of side lengths. Each ratio can be considered 
a function of u as u takes on values from 0° to 90°, or from 0 rad to p>2 rad. We wish 
to study these functions of acute angles more closely.

To bring the power of coordinate geometry into the picture, we will often put our 
acute angles in standard position in the xy-plane, with the vertex at the origin, one 
ray along the positive x-axis, and the other ray extending into the first quadrant. 
(See Figure 4.7.)

4.2 Trigonometric Functions of Acute Angles

DEFINITION Trigonometric Functions

Let u be an acute angle in the right △ABC (Figure 4.8). Then,

 sine1u2 = sin u =
opp

hyp
   cosecant1u2 = csc u =

hyp
opp

 cosine1u2 = cos u =
adj

hyp
   secant1u2 = sec u =

hyp

adj

 tangent1u2 = tan u =
opp

adj
   cotangent1u2 = cot u =

adj
opp

4

2
1

5

3

–1

y

x
–2 –1 21 43 5 6

u

Figure 4.7 An acute angle u in standard position, with one ray along the positive x-axis  
and the other extending into the first quadrant.

A

B

C

Hypotenuse

Adjacent

O
pp

os
ite

u

Figure 4.8 The triangle cited in our 
definition of the trigonometric functions.
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Whenever two sides of a right triangle are known, the third side can be found using the 
Pythagorean Theorem. All six trigonometric functions of either acute angle can then be 
found. We illustrate this in Example 2 with another well-known triangle.

Function Reminder
Both sin u and sin1u2 represent a function of the 
variable u. Neither notation implies multiplica-
tion by u. The notation sin1u2 is just like the 
notation ƒ1x2, and the notation sin u is a widely 
accepted shorthand. The same note applies to all 
six trigonometric functions.

Exploring Trigonometric Functions

There are twice as many trigonometric functions as there are triangle sides that 
define them, so we can already explore some ways in which the trigonometric 
functions relate to each other. Doing this Exploration will help you learn which 
ratios are which.

 1. Each of the six trig functions can be paired with another that is its reciprocal. 
Find the three pairs of reciprocals. 

 2. Which trig function can be written as the quotient sin u>cos u? 

 3. Which trig function can be written as the quotient csc u>cot u? 

 4. What is the (simplified) product of all six trig functions multiplied together? 

 5. Which two trig functions must be less than 1 for any acute angle u? 
[Hint: What is always the longest side of a right triangle?] 

EXPLORATION 1 

Two Famous Triangles
Evaluating trigonometric functions of particular angles used to require trig tables or 
slide rules; now it requires only a calculator. However, the side ratios for some angles 
that appear in right triangles can be found geometrically. Every student of trigonometry 
should be able to find these special ratios without a calculator.

Evaluating Trigonometric Functions of 45°
Find the values of all six trigonometric functions for an angle of 45°.

SOLUTION A 45° angle occurs in an isosceles right triangle, with angles  
45°-45°-90° (see Figure 4.9).

Because the size of the triangle does not matter, we set the length of the two equal 
legs to 1. The hypotenuse, by the Pythagorean Theorem, is 21 + 1 = 22. Apply-
ing the definitions, we have

 sin 45° =
opp

hyp
=

122
=
22
2

  csc 45° =
hyp
opp

=
22
1

 cos 45° =
adj

hyp
=

122
=
22
2

  sec 45° =
hyp

adj
=
22
1

 tan 45° =
opp

adj
=

1
1

= 1   cot 45° =
adj
opp

=
1
1

= 1

Now try Exercise 1.

EXAMPLE 1 

Evaluating Trigonometric Functions of 30°
Find the values of all six trigonometric functions for an angle of 30°.

SOLUTION A 30° angle occurs in a 30°-60°-90° triangle, which can be constructed 
from an equilateral 160°-60°-60°2 triangle by constructing an altitude to any side. 
Because size does not matter, start with an equilateral triangle with sides 2 units long. 
The altitude splits it into two congruent 30°-60°-90° triangles, each with hypote-
nuse 2 and smaller leg 1. By the Pythagorean Theorem, the longer leg has length 222 - 12 = 23. (See Figure 4.10.)

EXAMPLE 2 

(continued)

1

1

45°

2

Figure 4.9 An isosceles right triangle. 
(Example 1)
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348 CHAPTER 4 Trigonometric Functions

Example 3 illustrates that knowing one trigonometric ratio in a right triangle is suffi-
cient for finding all the others.

2

1

1

30° 60°

3

Figure 4.10 An altitude to any side of an 
equilateral triangle creates two congruent 
30°–60°–90° triangles. If each side of the 
equilateral triangle has length 2, then the two 
30°–60°–90° triangles have sides of length 2, 
1, and 23. (Example 2)

A Word About Radical Fractions

There was a time when 
5211

11
 was considered 

“simpler” than 
5211

 because it was easier to 

approximate, but today they are just equivalent 
expressions for the same irrational number. With 
technology, either form leads easily to an 
approximation of 1.508. We leave the answers in 
exact form here because we want you to practice 
problems of this type without a calculator.

Evaluating Trigonometric Functions of 60°

 1. Find the values of all six trigonometric functions for an angle of 60°. Note that 
most of the preliminary work has been done in Example 2.

 2. Compare the six function values for 60° with the six function values for 30°. 
What do you notice?

 3. We will eventually learn a rule that relates trigonometric functions of any angle 
with trigonometric functions of the complementary angle. (Recall from geome-
try that 30° and 60° are complementary because they add up to 90°.) Based on 
this exploration, can you predict what that rule will be? [Hint: The “co” in 
cosine, cotangent, and cosecant actually comes from “complement.”]

EXPLORATION 2 

We apply the definitions of the trigonometric functions to get:

 sin 30° =
opp

hyp
=

1
2

  csc 30° =
hyp
opp

=
2
1

= 2

 cos 30° =
adj

hyp
=
23
2

  sec 30° =
hyp

adj
=

223
=

223
3

 tan 30° =
opp

adj
=

123
=
23
3

  cot 30° =
adj
opp

=
23
1
Now try Exercise 3.

Using One Trigonometric Ratio to Find Them All
Let u be an acute angle such that sin u = 5>6. Evaluate the other five trigonometric 
functions of u.

SOLUTION Sketch a triangle showing an acute angle u. Label the opposite side 5 
and the hypotenuse 6. (See Figure 4.11.) Because sin u = 5>6, this must be our 
angle! Now we need the other side of the triangle (labeled x in the figure).

From the Pythagorean Theorem it follows that x2 + 52 = 62, so x = 236 - 25 =211. Applying the definitions,

 sin u =
opp

hyp
=

5
6

   csc u =
hyp
opp

=
6
5

= 1.2

 cos u =
adj

hyp
=
211

6
   sec u =

hyp

adj
=

6211
=

6211
11

 tan u =
opp

adj
=

5211
=

5211
11

   cot u =
adj
opp

=
211

5
Now try Exercise 9.

EXAMPLE 3 

Evaluating Trigonometric Functions with a Calculator
Using a calculator for the evaluation step enables you to concentrate all your problem-
solving skills on the modeling step, which is where the real trigonometry occurs. The 
danger is that your calculator will try to evaluate what you ask it to evaluate, even if 

6
5

x
u

Figure 4.11 How to create an acute angle u 
such that sin u = 5>6. (Example 3)

M05_DEMA8962_10_GE_C04.indd   348 22/06/22   13:39



 SECTION 4.2 Trigonometric Functions of Acute Angles  349

you ask it to evaluate the wrong thing. If you make a mistake, you might be lucky and 
see an error message. In most cases you will unfortunately see an answer that you will 
assume is correct but is actually wrong. We list the most common calculator errors 
associated with evaluating trigonometric functions.

Common Calculator Errors When Evaluating  
Trig Functions
 1. Using the Calculator in the Wrong Angle Mode (Degrees vs. Radians)  

This error is so common that everyone encounters it once in a while. You just hope 
to recognize it when it occurs. For example, suppose we are doing a problem in 
which we need to evaluate the sine of 10°. Our calculator shows us the screen in 
Figure 4.12.

Why is the answer negative? Our first instinct should be to check the mode.  
Sure enough, it is in Radian mode. Changing to Degree mode, we get sin1102 ≈  
0.1736481777, which is a reasonable answer. (That still leaves open the question of 
why the sine of 10 rad is negative, but that is a topic for the next section.) We will 
revisit the mode problem later when we look at trigonometric graphs.

 2. Using the Inverse Trig Keys to Evaluate cot, sec, and csc There are no but-
tons on most calculators for cotangent, secant, and cosecant. The reason is that 
they can be easily evaluated by finding reciprocals of tangent, cosine, and sine, 
respectively. For example, Figure 4.13 shows the correct way to evaluate the 
cotangent of 30°.

There is also a key on the calculator for “TAN -1”—but this is not the cotangent 
function! Remember that an exponent of  -1 on a function is never used to denote  
a reciprocal; it is always used to denote the inverse function. We will study the 
inverse trigonometric functions in a later section, but meanwhile you can see that  
it is a bad way to evaluate cot130°2 (Figure 4.14).

 3. Using Function Shorthand That the Calculator Does Not Recognize  
This error is less dangerous because it usually results in an error message.
We will often abbreviate powers of trig functions, writing (for example) 
“sin3 u - cos3 u” instead of the more cumbersome “1sin1u223 - 1cos1u223.”  
The calculator does not recognize the shorthand notation and interprets it as a 
 syntax error.

 4. Not Closing Parentheses This general algebraic error is easy to make on 
 calculators that automatically open a parenthesis pair whenever you type a func-
tion key. Check your calculator by pressing the SIN key. If the screen displays 
“sin(“ instead of just “sin” then you have such a calculator. The danger arises 
because the calculator will automatically close the parenthesis pair at the end  
of a command if you have forgotten to do so. That is fine if you want the paren-
thesis at the end of the command, but it is bad if you want it somewhere else.  
For example, in Degree mode, if you want to evaluate sin 30° and you type  
“sin130”, on some calculators you will get away with it. But if you want to 
evaluate sin 30° + 2 and you type “sin130 + 2”, you will not (Figure 4.15).

It is usually impossible to find an “exact” answer on a calculator, especially when 
evaluating trigonometric functions. The actual values are usually irrational numbers 
with nonterminating, nonrepeating decimal expansions. However, you can find some 
exact answers if you know what you are looking for, as in Example 4.

sin(10)
–.5440211109

Figure 4.12 Wrong mode for calculating  
sin110°2.

(tan(30))–1

1.732050808

Figure 4.13 Calculating cot130°2 correctly.

tan–1(30)
88.09084757

Figure 4.14 This is not cot130°2.

sin(30)

sin(30+2

sin(30)+2

.5

.5299192642

2.5

Figure 4.15 In Degree mode, first, 
calculating sin130°2, then an incorrect way 
and a correct way to calculate sin130°2 + 2.
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350 CHAPTER 4 Trigonometric Functions

Applications of Right Triangle Trigonometry
A triangle has six “parts,” three angles and three sides, but you do not need to know all 
six parts to determine a triangle up to congruence. In fact, three parts are usually suffi-
cient. The trigonometric functions take this observation a step further by giving us the 
means for actually finding the rest of the parts once we have enough parts to establish 
congruence. Using some of the parts of a triangle to solve for all the others is solving a 
triangle.

We will learn about solving general triangles in Sections 5.5 and 5.6, but we can 
already do some right triangle solving just by using the trigonometric ratios.

cos(30)

Ans2
.8660254038

.75

Figure 4.16 Calculations for Example 4.

b

a

37°

8

Figure 4.17 Diagram for Example 5.

Getting an “Exact Answer” on a Calculator
Find the exact value of cos 30° on a calculator.

SOLUTION As you see in Figure 4.16, the calculator gives the answer 
0.8660254038. However, if we recognize 30° as one of our special angles (see 
 Example 2 in this section), we might recall that the exact answer can be written in 
terms of a square root. We square our answer and get 0.75, which suggests that the 

exact value of cos 30° is 23>4 = 23>2.
Now try Exercise 25.

EXAMPLE 4 

Solving a Right Triangle
A right triangle with a hypotenuse of 8 includes a 37° angle (Figure 4.17). Find the 
measures of the other two angles and the lengths of the other two sides.

SOLUTION Because it is a right triangle, one of the other angles is 90°. That leaves 
180° - 90° - 37° = 53° for the third angle.

Referring to the labels in Figure 4.17, we have

 sin 37° =
a
8

    cos 37° =
b
8

 a = 8 sin 37°     b = 8 cos 37°
 a ≈ 4.81     b ≈ 6.39

Now try Exercise 55.

EXAMPLE 5 

The real-world applications of triangle solving are many, reflecting the frequency with 
which one encounters triangular shapes in everyday life.

M05_DEMA8962_10_GE_C04.indd   350 22/06/22   13:39



 SECTION 4.2 Trigonometric Functions of Acute Angles  351

A Word About Rounding  
Answers
Notice in Example 6 that we rounded the answer 
to the nearest integer. In applied problems it is 
illogical to give answers with more decimal 
places of accuracy than can be guaranteed for the 
input values. (An answer of 502.2947 m implies 
razor-sharp accuracy, whereas the reported dis-
tance from the building (290 m) implies a much 
less precise measurement. (So does the angle of 
60°.) Indeed, an engineer following specific 
rounding criteria based on “significant digits” 
would probably report the answer to Example 6 
as 502 m.) We will not get too picky about 
rounding, but we will try to be sensible.

Finding the Height of a Building
From a point 290 m away from the base of Taipei 101, a skyscraper in Taipei,  
Taiwan, the angle of elevation to the top of the building is 60°. (See Figure 4.18.) 
Find the height  h  of the building. 

SOLUTION We need a ratio that will relate an angle to its opposite and adjacent 
sides. The tangent function is the appropriate choice.

 tan 60° =
h

290
 h = 290 tan 60°
 h ≈ 502 m Now try Exercise 61.

EXAMPLE 6 

h

290 m

60°

Figure 4.18 Labeled diagram for Example 6.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, use the Pythagorean Theorem to solve for x.

 1. 

x

5

5

 2. 
x

12

8

 3. 

x

10
8

 4. 

x4

2

In Exercises 5 and 6, convert units.

 5. 8.4 ft to inches

 6. 940 ft to miles

In Exercises 7–10, solve the equation. State the correct unit.

 7. 0.388 =
a

20.4 km

 8. 1.72 =
23.9 ft

b

 9. 
2.4 in.
31.6 in.

=
a

13.3

 10. 
5.9
b

=
8.66 cm
6.15 cm

QUICK REVIEW 4.2 (For help, go to Sections P.2 and 1.7.)
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352 CHAPTER 4 Trigonometric Functions

 27. cscap
3
b

 28. tanap
3
b

In Exercises 29–40, evaluate using a calculator. Be sure the calculator is 
in the correct mode. Give answers correct to three decimal places.

 29. sin 50°  30. tan 8°

 31. cos 19°23′  32. tan 23°42′

 33. tanap
12
b  34. sinap

15
b

 35. sec 32°  36. csc 19°

 37. cot 0.89  38. sec 1.24

 39. cotap
8
b  40. cscap

10
b

In Exercises 41–48, find the acute angle u that satisfies the given equa-
tion. Give u in both degrees and radians. You should do these problems 
without a calculator.

 41. sin u =
1
2

 42. sin u =
23
2

 43. cot u =
123

 44. cos u =
22
2

 45. sec u = 2  46. cot u = 1

 47. tan u =
23
3

 48. cos u =
23
2

In Exercises 49–54, solve for the variable shown.

 49. 

15

34°

x
 50. 

23
39°

z

 51. 

32

57°
y

 52. 

14

43°

x

 53. 

6

35°

y

 54. 

50 66°
x

In Exercises 55–58, solve the right △ABC for all of its unknown parts.

a

b

c

C

B

A

a

b

 55. a = 20°; a = 12.3 56. a = 41°; c = 10

 57. b = 55°; a = 15.58 58. a = 5; b = 59°

SECTION 4.2 Exercises

In Exercises 1–8, find the values of all six trigonometric functions of 
the angle u.

 1. 

5 4

3
u

 2. 

8

7

113

u

 3. 

5

12

13u
 4. 

8

15

17

u

 5. 

7

11
u

 6. 

6
8

u

 7. 

8

11

u

 8. 

9

13
u

In Exercises 9–18, assume that u is an acute angle in a right triangle 
satisfying the given conditions. Evaluate the remaining trigonometric 
functions.

 9. sin u =
3
7

 10. sin u =
2
3

 11. cos u =
5
11

 12. cos u =
5
8

 13. tan u =
5
9

 14. tan u =
12
13

 15. cot u =
11
3

 16. csc u =
12
5

 17. csc u =
23
9

 18. sec u =
17
5

In Exercises 19–24, evaluate without using a calculator.

 19. sinap
6
b  20. tanap

4
b

 21. cotap
6
b  22. secap

3
b

 23. cosap
4
b  24. cscap

3
b

In Exercises 25–28, evaluate using a calculator. Give an exact value, not 
an approximate answer. (See Example 4.)

 25. sec 45°  26. sin 60°
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 59. Writing to Learn What is lim
uS0

 sin u? Explain your answer 

in terms of right triangles in which u gets smaller and smaller.

 60. Writing to Learn What is lim
uS0

 cos u? Explain your answer 

in terms of right triangles in which u gets smaller and smaller.

 61. Height A guy wire from the top of the transmission tower at 
WJBC forms a 75° angle with the ground at a 55-ft distance 
from the base of the tower. How tall is the tower?

55 ft

75°

 62. Height Kirsten places her surveyor’s telescope on the top of 
a tripod 5 ft above the ground. She measures an 8° elevation 
above the horizontal to the top of a tree that is 120 ft away. 
How tall is the tree?

5 ft120 ft
8°

 63. Group Activity Area For locations between 20° and 60° 
north latitude, a solar collector panel should be mounted so that 
its angle with the horizontal is 20° greater than the local latitude. 
Consequently, the solar panel mounted on the roof of Solar 
Energy, Inc., in Atlanta (latitude 34°) forms a 54° angle with the 
horizontal. The bottom edge of the 12-ft-long panel is resting on 
the roof, and the high edge is 5 ft above the roof. What is the total 
area of this rectangular collector panel?

5 ft

12 ft54°

 64. Height The Petronas Twin Towers in Kuala Lumpur, 
Malaysia, were the tallest buildings in the world from 1998 to 
2004, before Taipei 101 in Taipei, Taiwan, surpassed them and 
gained that title. They cast shadows approximately 96 m long 
on the street when the Sun’s rays form a 78° angle with Earth. 
How tall are the buildings?

 65. Distance DaShanda’s team of surveyors had to find the dis-
tance AC across the lake at Montgomery County Park. Field 
assistants positioned themselves at points A and C while 
DaShanda set up an angle-measuring instrument at point B, 
100 ft from C in a perpendicular direction. DaShanda measured 
∠ABC as 75°13′. What is the distance AC?

A

C 100 ft B

 66. Group Activity Garden Design Allen’s garden is in the 
shape of a quarter-circle with radius 10.0 ft. He wishes to plant 
his garden in four parallel strips, as shown in the diagram on 
the left below, so that the four arcs along the circular edge of 
the garden are all of equal length. After measuring four equal 
arcs, he carefully measures the widths of the four strips and 
records his data in the table shown at the right below.

A B C D

Strip Width

A 3.83 ft
B 3.34 ft
C 2.07 ft
D 0.76 ft

Alicia sees Allen’s data and realizes that he could have saved 
himself some work by figuring out the strip widths via trigo-
nometry. By checking his data with a calculator she is able to 
correct two measurement errors he has made. Find Allen’s two 
errors and correct them.

Standardized Test Questions
 67. True or False If u is an angle in any triangle, then tan u is 

the length of the side opposite u divided by the length of the 
side adjacent to u. Justify your answer.

 68. True or False If A and B are angles of a triangle such that 
A 7 B, then cos A 7 cos B. Justify your answer.

You should answer these questions without using a calculator.

 69. Multiple Choice Which of the following expressions does 
not represent a real number?

(A) sin 30° (B) tan 45° (C) cos 90°

(D) csc 90° (E) sec 90°
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354 CHAPTER 4 Trigonometric Functions

 70. Multiple Choice If u is the smallest angle in a 3–4–5 right 
triangle, then sin u =

(A) 
3
5

. (B) 
3
4

. (C) 
4
5

.

(D) 
5
4

. (E) 
5
3

.

 71. Multiple Choice If a nonhorizontal line has slope sin u, it 
will be perpendicular to a line with slope

(A) cos u. (B) -cos u. (C) csc u.

(D) -csc u. (E) -sin u.

 72. Multiple Choice Which of the following trigonometric 
ratios could not be p?

(A) tan u (B) cos u (C) cot u

(D) sec u (E) csc u

 73. Trig Tables Before calculators became common classroom 
tools, students used trig tables to find trigonometric ratios. 
Below is a simplified trig table for angles between 40° and 50°. 
Without using a calculator, can you determine which column 
gives sine values, which gives cosine values, and which gives 
tangent values?

Explorations
 75. Mirrors In the figure, a light ray shining from point A to 

point P on the mirror will bounce to point B in such a way that 
the angle of incidence a will equal the angle of reflection b. 
This is the law of reflection derived from physical experiments. 
Both angles are measured from the normal line, which is per-
pendicular to the mirror at the point of reflection P. If A is 2 m 
farther from the mirror than is B, and if a = 30° and 
AP = 5 m, what is the length PB?

Trig Tables for Sine, Cosine, and Tangent

Angle ? ? ?

40° 0.8391 0.6428 0.7660
42° 0.9004 0.6691 0.7431
44° 0.9657 0.6947 0.7193
46° 1.0355 0.7193 0.6947
48° 1.1106 0.7431 0.6691
50° 1.1918 0.7660 0.6428

 74. Trig Tables Below is a simplified trig table for angles 
between 30° and 40°. Without using a calculator, can you 
determine which column gives cotangent values, which gives 
secant values, and which gives cosecant values?

Trig Tables for Cotangent, Secant, and Cosecant

Angle ? ? ?

30° 1.1547 1.7321 2.0000
32° 1.1792 1.6003 1.8871
34° 1.2062 1.4826 1.7883
36° 1.2361 1.3764 1.7013
38° 1.2690 1.2799 1.6243
40° 1.3054 1.1918 1.5557

P

B

A

Normal

M
ir

ro
r

a

b

 76. Pool On the pool table shown in the figure, where along the 
portion CD of the railing should you direct ball A so that it will 
bounce off CD and strike ball B? Assume that A obeys the law 
of reflection relative to rail CD.

30 in.

15 in.
10 in.

B

A

C D

Extending the Ideas
 77. Using the labeling of the triangle below, prove that if u is an 

acute angle in any right triangle, 1sin u22 + 1cos u22 = 1.

a

b

c

u

 78. Using the labeling of the triangle below, prove that the area of 
the triangle is equal to 11>22 ab sin u. [Hint: Start by drawing 
the altitude to side b and finding its length.]

a

b

c

u
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To bring the power of coordinate geometry into the picture (literally), we usually 
place an angle in standard position in the Cartesian plane, with the vertex of the 
angle at the origin and its initial side lying along the positive x-axis. Figure 4.20 
shows two angles in standard position, one with positive measure a and the other with 
negative measure b.

What you’ll learn about
• Trigonometric Functions of Any 

Angle

• Trigonometric Functions of Real 
Numbers

• Periodic Functions

• The 16-Point Unit Circle

... and why
Extending trigonometric functions 
beyond triangle ratios opens up a 
new world of applications.

Trigonometric Functions of Any Angle
We now extend the definitions of the six basic trigonometric functions beyond trian-
gles so that we do not have to restrict our attention to acute angles, or even to positive 
angles.

In geometry we think of an angle as a union of two rays with a common vertex. Trigo-
nometry takes a more dynamic view by thinking of an angle in terms of a rotating ray. 
The beginning position of the ray, the initial side, is rotated about its endpoint, called 
the vertex. The final position is called the terminal side. The measure of an angle is a 
number that describes the amount of rotation from the initial side to the terminal side of 
the angle. Positive angles are generated by counterclockwise rotations, and negative 
angles are generated by clockwise rotations. Figure 4.19 shows an angle of measure a, 
where a is a positive number.

4.3 Trigonometry Extended: The Circular Functions

Two angles in this expanded angle-measurement system can have the same initial side 
and the same terminal side, yet have different measures. We call such angles  coterminal 
angles. (See Figure 4.21.) For example, angles of 90°, 450°, and -270° are all cotermi-
nal, as are angles of p, 3p, and -99p radians. In fact, angles are coterminal whenever 
they differ by an integer multiple of 360° or by an integer  multiple of 2p rad.

Initial side

Terminal side

a

Figure 4.19 An angle with positive measure a.

y

x

A positive angle with measure a
(counterclockwise)

(a)

a

  

y

x

A negative angle with measure b
(clockwise)

(b)

b

Figure 4.20 Two angles in standard position. In (a) the counterclockwise rotation generates 
an angle with positive measure a. In (b) the clockwise rotation generates an angle with negative 
measure b.

y

x

(a)

a

b

y

x

(b)

a

b

Figure 4.21 Coterminal angles. In (a), 
positive angle a and negative angle b are 
coterminal, and in (b), both coterminal angles, 
a and b, are positive.
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356 CHAPTER 4 Trigonometric Functions

y

x

Quadrant IQuadrant II

Quadrant IVQuadrant III

Figure 4.23 The four quadrants of the 
Cartesian plane. Both x and y are positive in 
Quadrant I. Quadrants, like Super Bowls, are 
designated by Roman numerals.

y

x

r

y

x

P(x, y)

u

Figure 4.24 A point P1x, y2 in Quadrant I 
determines an acute angle u. The number r 
denotes the distance from P to the origin. 
(Exploration 1)

Investigating First Quadrant Trigonometry

Let P1x, y2 be any point in the first quadrant, as shown in Figure 4.24, and let r 
be the distance from P to the origin.

 1. Use the acute angle definition of the sine function (Section 4.2) to prove that 
sin u = y>r.

 2. Express cos u in terms of x and r. 

 3. Express tan u in terms of x and y. 

 4. Express the remaining three basic trigonometric functions in terms of x, y, and r.

EXPLORATION 1 

(b) Add 360°:  -150° + 360° = 210°
Subtract 21360°2:  -150° - 720° = -870°
We leave it to you to draw the coterminal angles.

(c) Add 2p:  
2p
3

+ 2p =
2p
3

 +
6p
3

=
8p
3

Subtract 2p:  
2p
3

- 2p =
2p
3

-
6p
3

= -  
4p
3

Again, we leave it to you to draw the coterminal angles.
Now try Exercise 1.

y

x

(a)

30°

390°

  

y

x

(b)

30°

–330°

Figure 4.22 Two angles coterminal with 30°. (Example 1a)

Finding Coterminal Angles
Find and draw a positive angle and a negative angle that are coterminal with the 
given angle.

(a) 30° (b) -150° (c) 
2p
3

 radians

SOLUTION There are infinitely many possible solutions; we will show two for each 
angle.

(a) Add 360°:  30° + 360° = 390°
Subtract 360°:  30° - 360° = -330°
Figure 4.22 shows these two angles, which are coterminal with the 30° angle.

EXAMPLE 1 

Extending the definitions of the six basic trigonometric functions so that they can 
apply to any angle is surprisingly easy, but first you need to see how our current defi-
nitions relate to the 1x, y2 coordinates in the Cartesian plane. We start in the first 
quadrant (Figure 4.23), where acute angles lie, as shown in Figure 4.24. Work through 
Exploration 1 before moving on.

If you have successfully completed Exploration 1, you should have no trouble verify-
ing the solution to Example 2, which we show without the details.
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Notice in Example 3 that u is any angle in standard position whose terminal side con-
tains the point 1-5, 32. There are infinitely many coterminal angles that could play the 
role of u, some of them positive and some of them negative. The values of the six trigo-
nometric functions would be the same for all of them.

We are now ready to state the formal definition.

Evaluating Trig Functions Determined  
by a Point in Quadrant I

Let u be the acute angle in standard position whose terminal side contains the point 
15, 32. Find the six trigonometric functions of u.

SOLUTION The distance from 15, 32 to the origin is 234.

So   sin u =
3234

=
3234

34
  csc u =

234
3

 cos u =
5234

=
5234

34
  sec u =

234
5

 tan u =
3
5

  cot u =
5
3

Now try Exercise 5.

EXAMPLE 2 

Now we have an easy way to extend the trigonometric functions to any angle: Use the 
same definitions in terms of x, y, and r—regardless of whether x and y are positive. 
Compare Example 3 to Example 2.

DEFINITION Trigonometric Functions of Any Angle

Let u be any angle in standard position and let P1x, y2 be any point on the 
 terminal side of the angle (except the origin). Let r denote the distance from 

P1x, y2 to the origin; that is, let r = 2x2 + y2. (See Figure 4.25.) Then

 sin u =
y
r

   csc u =
r
y
 1y ≠ 02

 cos u =
x
r

   sec u =
r
x
 1x ≠ 02

 tan u =
y
x
 1x ≠ 02   cot u =

x
y
 1y ≠ 02

y

x

P(x, y)

r

x

y

u

Figure 4.25 Defining the six trig functions 
of u.

Evaluating Trig Functions Determined by a 
Point Not in Quadrant I

Let u be any angle in standard position whose terminal side contains the point 
1-5, 32. Find the six trigonometric functions of u.

SOLUTION The distance from 1-5, 32 to the origin is 234.

So   sin u =
3234

=
3234

34
  csc u =

234
3

  cos u =
-5234

=
-5234

34
  sec u =

234
-5

  tan u =
3

-5
  cot u =

-5
3

Now try Exercise 11.

EXAMPLE 3 
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358 CHAPTER 4 Trigonometric Functions

Examples 2 and 3 both began with a point P1x, y2 rather than an angle u. Indeed, the 
point gave us so much information about the trigonometric ratios that we were able to 
compute them all without ever finding u. So what do we do if we start with an angle u 
in standard position and we want to evaluate the trigonometric functions? We try to 
find a point 1x, y2 on its terminal side. We illustrate this process with Example 4.

y

x

45°

315°

P(1, –1)2

Figure 4.26 An angle of 315° in standard 
position determines a 45°–45°–90° reference 
triangle. (Example 4)

Evaluating the Trig Functions of 315°
Find the six trigonometric functions of 315°.

SOLUTION First we draw an angle of 315° in standard position. Without declaring a 
scale, pick a point P on the terminal side and connect it to the x-axis with a perpendic-
ular segment. Notice that the triangle formed (called a reference triangle) is a 
45°-45°-90° triangle. If we arbitrarily choose the horizontal and vertical sides of the 
reference triangle to be of length 1, then P has coordinates 11, -12. (See Figure 4.26.)

We can now use the definitions with x = 1, y = -1, and r = 22.

 sin 315° =
-122

= -  
22
2

    csc 315° =
22
-1

= -22

 cos 315° =
122

=
22
2

    sec 315° =
22
1

= 22

 tan 315° =
-1
1

 = -1     cot 315° =
1

-1
= -1

Now try Exercise 25.

EXAMPLE 4 

The angle at the origin in a reference triangle is the reference angle. The happy fact 
that the reference angle in Example 4 was 45° enabled us to label a point P on the ter-
minal side of the 315° angle and then to find the trigonometric function values. Refer-
ence angles of 30° and 60° also allow us to locate a point P.

Evaluating More Trig Functions
Find the following without a calculator:

(a) sin1-210°2
(b) tan15p>32
(c) sec1-3p>42

EXAMPLE 5 

Evaluating Trig Functions of a Nonquadrantal Angle U

1. Draw the angle u in standard position, being careful to place the terminal 
side in the correct quadrant.

2. Without declaring a scale on either axis, label a point P (other than the 
 origin) on the terminal side of u.

3. Draw a perpendicular segment from P to the x-axis, determining the  reference 
triangle. If this triangle is one of the triangles whose ratios you know, label 
the sides accordingly. If it is not, then you will need to use your calculator.

4. Use the sides of the triangle to determine the coordinates of point P, making 
them positive or negative according to the signs of x and y in that particular 
quadrant.

5. Use the coordinates of point P and the definitions to determine the six trig 
functions.
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y

x

(a)

–210°

(b)

60°
30°

1
2

P – , 13

3

y

x

Figure 4.27 (Example 5a)

4
3p–

y

x

(a)

y

x

(b)

2

1

1

P(–1, –1)

Figure 4.29 (Example 5c)

y

x

–270°

P(0, 1)

Figure 4.30 (Example 6a)

y

x

(a)

3
5p

   (b)

3

P 1, – 3

1

2

y

x

Figure 4.28 (Example 5b)

SOLUTION 

(a) An angle of -210° in standard position determines a 30°-60°-90° reference 
 triangle in the second quadrant (Figure 4.27). We label the sides accordingly, 
then use the lengths of the sides to determine the point P1-23, 12. (Note that 
the x-coordinate is negative in the second quadrant.) The hypotenuse is r = 2. 
Therefore, sin 1-210°2 = y>r = 1>2.

(b) An angle of 5p>3 rad in standard position determines a 30°-60°-90° reference 
triangle in the fourth quadrant (Figure 4.28). We label the sides accordingly, then 
use the lengths of the sides to determine the point P11, -232. (Note that the 
y-coordinate is negative in the fourth quadrant.) The hypotenuse is r = 2. 
 Therefore, tan 15p>32 = y>x = -23>1 = -23.

(c) An angle of -3p>4 rad in standard position determines a 45°-45°-90° ref-
erence triangle in the third quadrant. (See Figure 4.29.) We label the sides 
accordingly, then use the lengths of the sides to determine the point P1-1, -12. 
(Note that both coordinates are negative in the third quadrant.) The hypotenuse 
is r = 22. Therefore, sec 1-3p>42 = r>x = 22>1-12 = -22.

Now try Exercise 29.

Angles whose terminal sides lie along one of the coordinate axes are called quadrantal 
angles, and although they do not produce reference triangles at all, it is easy to pick a 
point P along one of the axes.

Evaluating Trig Functions of Quadrantal 
Angles

Find each of the following, if it exists. If the value is undefined, write “undefined.”

(a) sin1-270°2
(b) tan 3p

(c) sec 
11p

2
SOLUTION 

(a) In standard position, the terminal side of an angle of -270° lies along the posi-
tive y-axis (Figure 4.30). A convenient point P along the positive y-axis is the 
point for which r = 1, namely 10, 12. Therefore,

sin1-270°2 =
y
r

=
1
1

= 1.

EXAMPLE 6 

(continued)

M05_DEMA8962_10_GE_C04.indd   359 22/06/22   13:47



360 CHAPTER 4 Trigonometric Functions

Another good exercise is to use information from one trigonometric ratio to produce 
the other five. We do not need to know the angle u, although we do need a hint as to the 
location of its terminal side so that we can sketch a reference triangle in the correct 
quadrant (or place a quadrantal angle on the correct side of the origin). Example 7 illus-
trates how this is done.

y

x

3p

P(–1, 0)

Figure 4.31 (Example 6b)

y

x

P(0, –1)

2
11p

Figure 4.32 (Example 6c)

7
3

y

x

(a)

y

x

(b)

7
3

P – , 3ba 40

40

Figure 4.33 (Example 7a)

Why Not Use a Calculator?
You might wonder why we would go through this 
procedure to produce values that could be found 
so easily with a calculator. The answer is to under-
stand how trigonometry works in the coordinate 
plane. Ironically, technology has made these com-
putational exercises more important than ever, 
because calculators have eliminated the need for 
the repetitive evaluations that once gave students 
their initial insights into the basic trig functions.

(b) In standard position, the terminal side of an angle of 3p lies along the negative 
x-axis. (See Figure 4.31.) A convenient point P along the negative x-axis is the 
point for which r = 1, namely 1-1, 02. Therefore,

tan 3p =
y
x

=
0

-1
= 0.

(c) In standard position, the terminal side of an angle of 11p>2 lies along the nega-
tive y-axis. (See Figure 4.32.) A convenient point P along the negative y-axis is 
the point for which r = 1, namely 10, -12. Therefore,

sec 
11p

2
=

r
x

=
1
0

. Undefined

Now try Exercise 41.

Using One Trig Ratio to Find the Others
Find cos u and tan u by using the given information to construct a reference triangle.

(a) sin u =
3
7

 and tan u 6 0

(b) sec u = 3 and sin u 7 0

(c) cot u is undefined and sec u is negative

SOLUTION 

(a) Because sin u is positive, the terminal side is in either Quadrant I (QI) or  Quadrant II 
(QII). The added fact that tan u is negative means that the terminal side is in QII. We 
draw a reference triangle in QII with r = 7 and y = 3  (Figure 4.33); then we use the 

Pythagorean Theorem to find that x = -1272 - 32 = -240. (Note that x is 
negative in QII.)

We then use the definitions to get

cos u =
-240

7
 and tan u =

3

-240
=

-3210
20

.

(b) Because sec u is positive, the terminal side is either in QI or in QIV. The added 
fact that sin u is positive means that the terminal side is in QI. We draw a refer-
ence triangle in QI with r = 3 and x = 1 (Figure 4.34 on the next page); then 

we use the Pythagorean Theorem to find that y = 232 - 12 = 28. (Note that 
y is positive in QI.)

We then use the definitions to get

cos u =
1
3
 and tan u =

28
1

= 28.

(We could also have found cos u directly as the reciprocal of sec u.)

(c) Because cot u is undefined, we conclude that y = 0 and that u is a quadrantal 
angle on the x-axis. The added fact that sec u is negative means that the terminal 
side is along the negative x-axis. We choose the point 1-1, 02 on the terminal 
side and use the definitions to get

cos u = -1 and tan u =
0

-1
= 0.

Now try Exercise 43.

EXAMPLE 7 
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3

1

y

x

(a)

y

x

(b)

3

1

P 1, ba 8

8

Figure 4.34 (Example 7b)

y

x

1

Figure 4.35 The unit circle x2 + y2 = 1.

y

x

(a)

t

t

t > 0P(x, y)

(1, 0)

1

  

y

x

(b)

t

t

t < 0

1

P(x, y)

(1, 0)

Figure 4.36 How the number line is wrapped onto the unit circle. Note that each  
number t (positive or negative) is “wrapped” to a point P that lies on the terminal side  
of an angle of t radians in standard position.

Trigonometric Functions of Real Numbers
Now that we have extended the six basic trigonometric functions to apply to any angle, 
we are ready to appreciate them as functions of real numbers and to study their behav-
ior. First, for reasons discussed in the first section of this chapter, we must agree to 
measure u in Radian mode so that the real number units of the input will match the real 
number units of the output.

When the trigonometric functions are considered as functions of real numbers, the 
angles are measured in radians.

Why Not Degrees?
One could actually develop a consistent theory of 
trigonometric functions based on a rescaled 
x-axis with “degrees.” For example, your graph-
ing calculator will probably produce reasonable-
looking graphs in Degree mode. Calculus, 
however, uses rules that depend on radian mea-
sure for all trigonometric functions, so it is pru-
dent for precalculus students to become 
accustomed to that now.

DEFINITION Unit Circle

The unit circle is a circle of radius 1 centered at the origin (Figure 4.35).

DEFINITION Trigonometric Functions of Real Numbers

Let t be any real number, and let P1x, y2 be the point corresponding to t when 
the number line is wrapped onto the unit circle as described above. Then,

 sin t = y   csc t =
1
y
 1y ≠ 02

 cos t = x   sec t =
1
x
 1x ≠ 02

 tan t =
y
x
 1x ≠ 02  cot t =

x
y
 1y ≠ 02

Therefore, the number t on the number line always wraps onto the point  
1cos t, sin t2 on the unit circle (Figure 4.37).

The unit circle provides an ideal connection between triangle trigonometry and the 
trigonometric functions. Because arc length along the unit circle corresponds exactly to 
radian measure, we can use the circle itself as a sort of “number line” for the input val-
ues of our functions. This involves the wrapping function, which associates points on 
the number line with points on the circle.

Figure 4.36 shows how the wrapping function works. The real line is placed tangent to 
the unit circle at the point 11, 02, the point from which we measure angles in standard 
position. When the line is wrapped around the unit circle in both the positive (counter-
clockwise) and negative (clockwise) directions, each point t on the real line will fall on a 
point of the circle that lies on the terminal side of an angle of t radians in standard posi-
tion. Using the coordinates 1x, y2 of this point, we can find the six trigonometric ratios 
for the angle t just as we did in Example 7—except even more easily because r = 1.
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362 CHAPTER 4 Trigonometric Functions

Periodic Functions
Statements 5 and 7 in Exploration 2 reveal an important property of the circular func-
tions that we need to define for future reference.

Exploring the Unit Circle

This works well as a group exploration. Get together in groups of two or three 
and explain to each other why these statements are true. Base your explanations 
on the unit circle (Figure 4.37). Remember that - t wraps the same distance as t, 
but in the opposite direction.

 1. For any t, the value of cos t lies between -1 and 1 inclusive.

 2. For any t, the value of sin t lies between -1 and 1 inclusive.

 3. The values of cos t and cos1- t2 are always equal to each other. (Recall that this 
is the check for an even function.)

 4. The values of sin t and sin1- t2 are always opposites of each other. (Recall that 
this is the check for an odd function.)

 5. The values of sin t and sin1t + 2p2 are always equal to each other. In fact, that 
is true of all six trig functions on their domains, and for the same reason.

 6. The values of sin t and sin1t + p2 are always opposites of each other. The 
same is true of cos t and cos1t + p2.

 7. The values of tan t and tan1t + p2 are always equal to each other (unless they 
are both undefined).

 8. The sum1cos t22 + 1sin t22 always equals 1.

 9. (Challenge) Can you discover a similar relationship that is not mentioned in 
our list of eight? There are some to be found.

EXPLORATION 2

DEFINITION Periodic Function

A function y = ƒ1t2 is periodic if there is a positive number c such that 
ƒ1t + c2 = ƒ1t2 for all values of t in the domain of f. The smallest such num-
ber c is called the period of the function.

y

x

t

tP(cos t, sin t)

Figure 4.37 The real number t always 
wraps onto the point 1cos t, sin t2 on the unit 
circle.

Although it is still helpful to draw reference triangles inside the unit circle to see  
the ratios geometrically, this latest round of definitions does not invoke triangles at all. 
The real number t determines a point on the unit circle, and the 1x, y2 coordinates of the 
point determine the six trigonometric ratios. For this reason, the trigonometric func-
tions when applied to real numbers are usually called the circular functions.

Exploration 2 suggests that the sine and cosine functions have period 2p and that the tan-
gent function has period p. We use this periodicity later to model predictably repetitive 
behavior in the real world, but meanwhile we can also use it to solve little noncalculator 
training problems such as those found in some of the previous examples in this section.

Using Periodicity
Find each of the following numbers without a calculator.

(a) sina57,801p
2

b
(b) cos1288.45p2 - cos1280.45p2
(c) tanap

4
- 99,999pb

EXAMPLE 8 
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The 16-Point Unit Circle
At this point you should be able to use reference triangles and quadrantal angles to 
evaluate trigonometric functions for all integer multiples of 30° or 45° (equivalently, 
p>6 rad or p>4 rad). All of these special values wrap to the 16 special points shown on 
the unit circle below. Study this diagram until you are confident that you can find the 
coordinates of these points easily, but avoid using it as a reference when doing 
problems.

y

x

p
2

p
3

p
4

p
6

6
11

3
2p

4
3p

6
5p

6
7p

4
5p

3
4p

2
3p 3

5p 4
7p

p

p 2p

30°

45°
60°

90°

120°
135°

150°

180°

210°

225°

240°

270°

300°

315°

330°

360°

00°

(0, 1)

(0, –1)

(1, 0)(–1, 0)

2
, 3 b1

2
a–

2
, – 3 b1

2
a–

2
, – 3 b1

2
a

2
, 3 b1

2
a

2
,3 b1

2
a

2
,3 b1

2
a–

2
, –3 b1

2
a–

2
, –3 b1

2
a

2
,2

2
2 ba

2
,2

2
2 ba–

2
, –2

2
2 ba–

2
, –2

2
2 ba

SOLUTION 

(a)  sina57,801p
2

b = sinap
2

+
57,800p

2
b = sinap

2
+ 28,900pb

 = sinap
2
b = 1

 Notice that 28,900p is just a large multiple of 2p, so p>2 and 
11p>22 + 28,900p2 wrap to the same point on the unit circle, namely 10, 12.

(b) cos1288.45p2 - cos1280.45p2 =
cos1280.45p + 8p2 - cos1280.45p2 = 0

Notice that 280.45p and 1280.45p + 8p2 wrap to the same point on the unit 
circle, so the cosine of one is the same as the cosine of the other.

(c) Because the period of the tangent function is p rather than 2p, 99,999p is a 
large multiple of the period of the tangent function. Therefore,

tanap
4

- 99,999pb = tanap
4
b = 1.

Now try Exercise 49.

We take a closer look at the properties of the six circular functions in the next two 
sections.
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364 CHAPTER 4 Trigonometric Functions

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, give the value of the angle u in degrees.

 1. u = -  
p

6
 2. u = -  

5p
6

 3. u =
25p

4
 4. u =

16p
3

In Exercises 5–8, use special triangles to evaluate:

 5. tan 
p

6
 6. cot 

p

4

 7. csc 
p

4
 8. sec 

p

3

In Exercises 9 and 10, use a right triangle to find the other five trigono-
metric functions of the acute angle u.

 9. sin u =
5
13

 10. cos u =
15
17

QUICK REVIEW 4.3 (For help, go to Section 4.1.)

In Exercises 17–20, determine the sign 1+  or -2 of the given value 
without using a calculator.

 17. cos 143°  18. tan 192°

 19. cos 
7p
8

 20. tan 
4p
5

In Exercises 21–24, choose the point on the terminal side of u.

 21. u = 45°

(a) 12, 22 (b) 11, 232 (c) 123, 12
 22. u =

2p
3

(a) 1-1, 12 (b) 1-1, 232 (c) 1-23, 12
 23. u =

7p
6

(a) 1-23, -12 (b) 1-1, 232 (c) 1-23, 12
 24. u = -60°

(a) 1-1, -12 (b) 11, -232 (c) 1-23, 12
In Exercises 25–36, evaluate without using a calculator by using ratios 
in a reference triangle.

 25. cos 120°  26. tan 300°

 27. sec 
5p
6

 28. csc 
3p
4

 29. sin 
13p

6
 30. cos 

7p
3

 31. tan -  
10p

3
 32. cot 

13p
4

 33. cos 
23p

6
 34. cos 

17p
4

 35. sin 
11p

3
 36. cot 

19p
6

In Exercises 37–42, find (a) sin u, (b) cos u, and (c) tan u for the given 
quadrantal angle. If the value is undefined, write “undefined.”

 37. -450° 38. -270° 39. 7p

 40. 
11p

2
 41. -  

7p
2

 42. -4p

SECTION 4.3 Exercises

In Exercises 1 and 2, identify the one angle that is not coterminal with 
all the others.

 1. 150°, 510°, -210°, 450°, 870°

 2. 
5p
3

, -  
5p
3

, 
11p

3
, -  

7p
3

, 
365p

3

In Exercises 3–6, evaluate the six trigonometric functions of the angle u.

 3. y

x
P(–1, 2) u

 4. y

x

P(4, –3)

u

 5. y

x

P(–1, –1)

u

 6. y

x

P(3, –5)

u

In Exercises 7–12, point P is on the terminal side of angle u. Evaluate 
the six trigonometric functions for u. If the function is undefined, write 
“undefined.”

 7. P13, 42 8. P1-4, -62
 9. P10, 52 10. P1-3, 02
 11. P15, -22 12. P122, -222
In Exercises 13–16, state the sign 1+  or -2 of (a) sin t, (b) cos t, and 
(c) tan t for values of t in the interval given.

 13. a0, 
p

2
b  14. ap

2
, pb

 15. ap, 
3p
2
b  16. a3p

2
, 2pb
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In Exercises 43–48, evaluate without using a calculator.

 43. Find sin u and tan u if cos u =
2
3

 and cot u 7 0.

 44. Find cos u and cot u if sin u =
1
4

 and tan u 6 0.

 45. Find tan u and sec u if sin u = -  
2
5

 and cos u 7 0.

 46. Find sin u and cos u if cot u =
3
7

 and sec u 6 0.

 47. Find sec u and csc u if cot u = -  
4
3

 and cos u 6 0.

 48. Find csc u and cot u if tan u = -  
4
3

 and sin u 7 0.

In Exercises 49–52, evaluate by using the period of the function.

 49. sinap
6

+ 49,000pb

 50. tan11,234,567p2 - tan17,654,321p2

 51. cosa5,555,555p

2
b

 52. tana3p - 70,000p

2
b

 53. Group Activity Use a calculator to evaluate the expressions 
in Exercises 49–52. Does your calculator give the correct 
answers? Many calculators miss all four. Give a brief explana-
tion of what probably goes wrong.

 54. Writing to Learn Give a convincing argument that the period 
of sin t is 2p. That is, show that there is no smaller positive real 
number p such that sin 1t + p2 = sin t for all real numbers t.

 55. Refracted Light Light is 
refracted (bent) as it passes 
through glass. In the figure, u1 is 
the angle of incidence and u2 is the 
angle of refraction. The index of 
refraction is a constant m that sat-
isfies the equation

sin u1 = m sin u2.

If u1 = 83° and u2 = 36° for a cer-
tain piece of flint glass, find the 
index of refraction.

 56. Refracted Light A certain piece of crown glass has an 
index of refraction of 1.52. If a light ray enters the glass at an 
angle u1 = 42°, what is sin u2?

 57. Damped Harmonic Motion A weight 
suspended from a spring is set into motion. Its 
displacement d from equilibrium is modeled 
by the equation

d = 0.4e-0.2t cos 4t,

where d is the displacement in inches and t is 
the time in seconds. Find the displacement at 
the given time. Use Radian mode.

(a) t = 0

(b) t = 3

Glass

u1

u2

d

 58. Swinging Pendulum The Columbus Museum of 
Science and Industry exhibits a Foucault pendulum 
32 ft long that swings back and forth on a cable once 
in approximately 6 sec. The angle u (in radians) 
between the cable and an imaginary vertical line is 
modeled by the equation

u = 0.25 cos t.

Find the measure of angle u when t = 0 and t = 2.5.

 59. Too Close for Comfort An F-15 aircraft flying at an alti-
tude of 8000 ft passes directly over a group of vacationers hik-
ing at 7400 ft. If u is the angle of elevation from the hikers to 
the F-15, find the distance d from the group to the jet for the 
given angle.

(a) u = 45°   (b) u = 90°   (c) u = 140°

 60. Manufacturing Swimwear Get Wet, Inc., manufactures 
swimwear, a seasonal product. The monthly sales x (in thou-
sands) for Get Wet swimsuits are modeled by the equation

x = 72.4 + 61.7 sin 
pt
6

,

where t = 1 represents January, t = 2 February, and so on. 
Estimate the number of Get Wet swimsuits sold in January, April, 
June, October, and December. For which two of these months are 
projected sales the same? Explain why this might be so.

Standardized Test Questions
 61. True or False If u is an angle of a triangle such that  

cos u 6 0, then u is obtuse. Justify your answer.

 62. True or False If u is an angle in standard position deter-
mined by the point 18, -62, then sin u = -0.6. Justify your 
answer.

You should answer these questions without using a calculator.

 63. Multiple Choice If sin u = 0.4, then sin1-u2 + csc u =

(A) -0.15.  (B) 0.  (C) 0.15.  (D) 0.65.  (E) 2.1.

 64. Multiple Choice If cos u = 0.4, then cos 1u + p2 =
(A) -0.6.  (B) -0.4.  (C) 0.4.  (D) 0.6.  (E) 3.54.

 65. Multiple Choice The range of the function 
ƒ1t2 = 1sin t22 + 1cos t22 is

(A) 516 . (B) 3-1, 14 .  (C) 30, 14 .
(D) 30, 24 . (E) 30, ∞2.

 66. Multiple Choice If cos u = -  
5
13

 and tan u 7 0, then  
sin u =

(A) -  
12
13

.   (B) -  
5
12

.   (C) 
5
13

.   (D) 
5
12

.   (E) 
12
13

.

Explorations
In Exercises 67–70, find the value of the unique real number u between 
0 and 2p that satisfies the two given conditions.

 67. sin u =
1
2

 and tan u 6 0.

 68. cos u =
23
2

 and sin u 6 0.

u
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366 CHAPTER 4 Trigonometric Functions

 69. tan u = -1 and sin u 6 0.

 70. sin u = -  
22
2

 and tan u 7 0.

Exercises 71–74 refer to the unit circle in this figure. Point P is on the 
terminal side of an angle t, and point Q is on the terminal side of an 
angle t + p>2.

y

x
(1, 0)

t
t

t + p
2

P(a, b)

Q(–b, a)

 71. Using Geometry in Trigonometry Drop perpendiculars 
from points P and Q to the x-axis to form two right triangles. 
Explain how the right triangles are related.

 72. Using Geometry in Trigonometry If the coordinates of 
point P are 1a, b2, explain why the coordinates of point Q are 
1-b, a2.

 73. Explain why sinat +
p

2
b = cos t.

 74. Explain why cosat +
p

2
b = -sin t.

 75. Writing to Learn In the figure for Exercises 71–74, t is an 
angle with radian measure 0 6 t 6 p>2. Draw a similar figure 
for an angle with radian measure p>2 6 t 6 p and use it to 
explain why sin1t + p>22 = cos t.

 76. Writing to Learn Use the accompanying figure to explain 
each of the following.

y

x
(1, 0)

t
t

P(a, b)Q(–a, b)
p – t

(a) sin1p - t2 = sin t  (b) cos1p - t2 = -cos t

Extending the Ideas
 77. Approximation and Error Analysis Use your grapher to 

complete the table to show that sin u ≈ u (in radians) when 
0 u 0  is small. Physicists often use the approximation sin u ≈ u 
for small values of u. For what values of u is the magnitude of 
the error in approximating sin u by u less than 1% of sin u? 
That is, solve the relation

0 sin u - u 0 6 0.01 0 sin u 0 .
[Hint: Extend the table to include a column for values of

0 sin u - u 0
0 sin u 0 .4

u sin u sin u - u
-0.03    
-0.02    
-0.01    

0    
0.01    
0.02    
0.03    

 78. Proving a Theorem If t is any real number, prove that 
1 + 1tan t22 = 1sec t22.

Taylor Polynomials Radian measure allows the trigonometric 
functions to be approximated by simple polynomial functions. For 
example, in Exercises 79 and 80, sine and cosine are approximated  
by Taylor polynomials, named after the English mathematician Brook 
Taylor (1685–1731). Complete each table showing a Taylor polynomial 
in the third column. Describe the patterns in the table.

 79. 
u sin u u -

u3

6
sin u - au -

u3

6
b

-0.3 -0.295...    
-0.2 -0.198...    
-0.1 -0.099...    

0 0    
0.1 0.099...    
0.2 0.198...    
0.3 0.295...    

 80. 
u cos u 1 -

u2

2
+
u4

24
cos u - a1 -

u2

2
+
u4

24
b

-0.3 0.955...    
-0.2 0.980...    
-0.1 0.995...    

0 1    
0.1 0.995...    
0.2 0.980...    
0.3 0.955...    
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We can add to this list that the sine function is periodic, with period 2p. We also can 
add understanding of where the sine function comes from: By definition, sin t is the 
 y-coordinate of the point P on the unit circle to which the real number t gets wrapped 
(or, equivalently, the point P on the unit circle determined by an angle of t radians in 
standard position). In fact, now we can see where the wavy graph comes from. Try 
Exploration 1.

What you’ll learn about
• The Basic Waves Revisited

• Sinusoids and Transformations

• Modeling Periodic Behavior  
with Sinusoids

... and why
Sine and cosine gain added signifi-
cance when used to model waves 
and periodic behavior.

The Basic Waves Revisited
In the first three sections of this chapter you saw how the trigonometric functions are 
rooted in the geometry of triangles and circles. It is these connections with geometry 
that give trigonometric functions their power to create the mathematical models that 
make them widely applicable in many fields.

The unit circle in Section 4.3 was the key to defining the trigonometric functions as 
functions of real numbers. This makes them available for the same kind of analysis as 
the other functions introduced in Chapter 1. (Indeed, two of our “Twelve Basic Func-
tions” are trigonometric.) We now take a closer look at the algebraic, graphical, and 
numerical properties of the trigonometric functions, beginning with sine and cosine.

Recall that we can learn quite a bit about the sine function by looking at its graph. Here 
is a summary of sine facts:

4.4 Graphs of Sine and Cosine: Sinusoids

Graphing sin t as a Function of t

Set your grapher to Radian mode, Parametric, and “Simultaneous” graphing 
modes.

Set Tmin = 0, Tmax = 6.3, Tstep = p>24.

Set the 1x, y2 window to 3-1.2, 6.34  by 3-2.5, 2.54 .
Set X1T = cos1T2 and Y1T = sin1T2. This will graph the unit circle. Set 
X2T = T and Y2T = sin1T2. This will graph sin1T2 as a function of T.

EXPLORATION 1 

(continued)

BASIC FUNCTION 

ƒ1x2 = sin x
Domain: 1-∞, ∞2
Range: 3-1, 14
Continuous
Alternately increasing and decreasing in periodic waves
Symmetric with respect to the origin (odd)
Bounded
Absolute maximum of 1
Absolute minimum of -1
No horizontal asymptotes
No vertical asymptotes
End behavior: lim

xS-∞
 sin x and lim

xS∞
 sin x do not exist. (The function values continually 

 oscillate between -1 and 1 and approach no limit.)

The Sine Function

[22p, 2p] by [24, 4]

Figure 4.38
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368 CHAPTER 4 Trigonometric Functions

Although a static picture does not do the dynamic simulation justice, Figure 4.39 shows 
the final screens for the two graphs in Exploration 1.

(a)

[21.2, 6.3] by [22.5, 2.5]

  (b)

[22.4, 12.6] by [25, 5]

Figure 4.39 The graph of y = sin t tracks the y-coordinate of the point determined by t as  
it moves around the unit circle.

Now start the graph and watch the point go counterclockwise around the unit 
circle as t goes from 0 to 2p in the positive direction. You will simultaneously 
see the y-coordinate of the point being graphed as a function of t along the hori-
zontal t-axis. You can clear the drawing and watch the graph as many times as 
you need to in order to answer the following questions.

 1. Where is the point on the unit circle when the wave is at its highest?

 2. Where is the point on the unit circle when the wave is at its lowest?

 3. Why do both graphs cross the x-axis at the same time?

 4. Double the value of Tmax and change the window to 3-2.4, 12.64  by  
3-5, 54 . If your grapher can change “style” to show a moving point, choose 
that style for the unit circle graph. Run the graph and watch how the sine curve 
tracks the y-coordinate of the point as it moves around the unit circle.

 5. Explain from what you have seen why the period of the sine function is 2p.

 6. Challenge: Can you modify the grapher settings to show dynamically how the 
cosine function tracks the x-coordinate as the point moves around the unit circle?

As with the sine function, we can add the observation that it is periodic, with period 2p.

BASIC FUNCTION 

ƒ1x2 = cos x
Domain: 1-∞, ∞2
Range: 3-1, 14
Continuous
Alternately increasing and decreasing in periodic waves
Symmetric with respect to the y-axis (even)
Bounded
Absolute maximum of 1
Absolute minimum of -1
No horizontal asymptotes
No vertical asymptotes
End behavior: lim

xS-∞
 cos x and lim

xS∞
 cos x do not exist. (The function values continually 

oscillate between -1 and 1 and approach no limit.)

The Cosine Function

[22p, 2p] by [24, 4]

Figure 4.40
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You learned in Section 1.6 that the graph of y = ƒ1bx2 when 0 b 0 7 1 is a horizontal 
shrink of the graph of y = ƒ1x2 by a factor of 1> 0 b 0 . That is exactly what happens with 
sinusoids, but we can add the observation that the period shrinks by the same factor. 
When 0 b 0 6 1, the effect on both the graph and the period is a horizontal stretch by a 
factor of 1> 0 b 0 , plus a reflection across the y-axis if b 6 0.

DEFINITION Sinusoid

A function is a sinusoid if it can be written in the form

ƒ1x2 = a sin1bx + c2 + d,

where a, b, c, and d are constants and neither a nor b is 0.

DEFINITION Amplitude of a Sinusoid

The amplitude of the sinusoid ƒ1x2 = a sin1bx + c2 + d is 0 a 0 . Similarly, the 
amplitude of ƒ1x2 = a cos1bx + c2 + d  is 0 a 0 .
Graphically, the amplitude is half the height of the wave.

[22p, 2p] by [24, 4]

Figure 4.41 Sinusoids (in this case, cosine 
curves) of different amplitudes. (Example 1)

Sinusoids and Transformations
A comparison of the graphs of y = sin x and y = cos x suggests that either one can be 
obtained from the other by a horizontal translation (Section 1.6). In fact, we will prove 
later in this section that cos x = sin1x + p>22. Each graph is an example of a sinu-
soid. In general, any transformation of a sine function (or the graph of such a function) 
is a sinusoid.

Because cosine functions are themselves translations of sine functions, any transforma-
tion of a cosine function is also a sinusoid by the above definition.

There is a special vocabulary used to describe some of our usual graphical transforma-
tions when we apply them to sinusoids. Horizontal stretches and shrinks affect the 
period and the frequency, vertical stretches and shrinks affect the amplitude, and hori-
zontal translations bring about phase shifts. All of these terms are associated with 
waves, and waves are quite naturally associated with sinusoids.

Vertical Stretch or Shrink and Amplitude
Find the amplitude of each function and use the language of transformations to 
describe how the graphs are related.

(a) y1 = cos x    (b) y2 =
1
2

 cos x    (c) y3 = -3 cos x

SOLUTION 

Solve Algebraically The amplitudes are (a) 1, (b) 1>2, and (c) 0-3 0 = 3.

The graph of y2 is a vertical shrink of the graph of y1 by a factor of 1>2.

The graph of y3 is a vertical stretch of the graph of y1 by a factor of 3, and a reflec-
tion across the x-axis, performed in either order. (We do not call this a vertical 
stretch by a factor of -3, nor do we say that the amplitude is -3.)

Support Graphically The graphs of the three functions are shown in Figure 4.41. 
You should be able to tell which is which quite easily by checking the amplitudes.

Now try Exercise 1.

EXAMPLE 1 
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In some applications, the frequency of a sinusoid is an important consideration. The 
frequency is simply the reciprocal of the period.

Period of a Sinusoid

The period of the sinusoid ƒ1x2 = a sin1bx + c2 + d is 2p> 0 b 0 . Similarly, the 
period of ƒ1x2 = a cos1bx + c2 + d is 2p> 0 b 0 .
Graphically, the period is the length of one full cycle of the wave.

[23p, 3p] by [24, 4]

Figure 4.42 Sinusoids (in this case, sine 
curves) of different amplitudes and periods. 
(Example 2)

[23p, 3p] by [24, 4]

Figure 4.43 The graph of the function 
ƒ1x2 = 4 sin12x>32. It has frequency 1>13p2, 
so it completes 1 full cycle per interval of 
length 3p. (Example 3)

Frequency of a Sinusoid

The frequency of the sinusoid ƒ1x2 = a sin1bx + c2 + d is 0 b 0 >2p. Similarly, 
the frequency of ƒ1x2 = a cos1bx + c2 + d  is 0 b 0 >2p.

Graphically, the frequency is the number of complete cycles the wave com-
pletes in a unit interval.

Horizontal Stretch or Shrink and Period
Find the period of each function and use the language of transformations to describe 
how the graphs are related.

(a) y1 = sin x   (b) y2 = -2 sinax
3
b   (c) y3 = 3 sin1-2x2

SOLUTION 

Solve Algebraically The periods are (a) 2p, (b) 2p>11>32 = 6p, and (c) 
2p> 0-2 0 = p.

The graph of y2 is a horizontal stretch of the graph of y1 by a factor of 3, a vertical 
stretch by a factor of 2, and a reflection across the x-axis, performed in any order.

The graph of y3 is a horizontal shrink of the graph of y1 by a factor of 1>2, a vertical 
stretch by a factor of 3, and a reflection across the y-axis, performed in any order. 
(Note that we do not call this a horizontal shrink by a factor of -1>2, nor do we say 
that the period is -p.)

Support Graphically The graphs of the three functions are shown in Figure 4.42. 
You should be able to tell which is which quite easily by checking the periods or the 
amplitudes. Now try Exercise 9.

EXAMPLE 2 

Finding the Frequency of a Sinusoid
Find the frequency of the function ƒ1x2 = 4 sin12x>32 and interpret its meaning 
graphically.

Sketch the graph in the window 3-3p, 3p4  by 3-4, 44 .
SOLUTION The frequency is 12>32 , 2p = 1>13p2. This is the reciprocal of the 
period, which is 3p. The graphical interpretation is that the graph completes 1 full 
cycle per interval of length 3p. (That, of course, is what having a period of 3p is all 
about.) The graph is shown in Figure 4.43. Now try Exercise 13.

EXAMPLE 3 

Recall from Section 1.6 that the graph of y = ƒ1x + c2 is a translation of the graph of 
y = ƒ1x2 by c units to the left when c 7 0. That is exactly what happens with sinu-
soids, but using terminology with its roots in electrical engineering, we say that the 
wave undergoes a phase shift of -c.
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One note of caution applies when combining these transformations. A horizontal 
stretch or shrink affects the variable along the horizontal axis, so it also affects the 
phase shift. Consider the transformation in Example 5.

Graphs of Sinusoids

The graphs of y = a sin1b1x - h22 + k and y = a cos1b1x - h22 + k 
(where a ≠ 0 and b ≠ 0) have the following characteristics:

 amplitude = 0 a 0
 period =

2p

0 b 0

 frequency =
0 b 0
2p

When compared to the graphs of y = a sin bx and y = a cos bx, respectively, 
they also have the following characteristics:

a phase shift of h;  a vertical translation of k.

Getting One Sinusoid from Another  
by a Phase Shift

(a) Write the cosine function as a phase shift of the sine function.

(b) Write the sine function as a phase shift of the cosine function.

SOLUTION 

(a) The function y = sin x has a maximum at x = p>2, and the function y = cos x 
has a maximum at x = 0. Therefore, we need to shift the sine curve p>2 units to 
the left to get the cosine curve:

cos x = sin1x + p>22
(b) It follows from the work in (a) that we need to shift the cosine curve p>2 units 

to the right to get the sine curve:

sin x = cos1x - p>22
You can support with your grapher that these statements are true. Incidentally, 
there are many other translations that would have worked just as well. Adding 
any integral multiple of 2p to the phase shift would result in the same graph.

Now try Exercise 41.

EXAMPLE 4 

Combining a Phase Shift with a Period Change
Construct a sinusoid with period p>5 and amplitude 6 that goes through 12, 02.
SOLUTION To find the coefficient of x, we set 2p> 0 b 0 = p>5 and solve to find that 
b = ±10. We arbitrarily choose b = 10. (Either will satisfy the specified conditions.)

For amplitude 6, we have 0 a 0 = 6. Again, we arbitrarily choose the positive value. 
The graph of y = 6 sin110x2 has the required amplitude and period, but it does not 
go through the point 12, 02. It does, however, go through the point 10, 02, so all that 
is needed is a phase shift of +2 to finish our function. Replacing x by x - 2, we get

y = 6 sin1101x - 222 = 6 sin110x - 202.
Notice that we did not get the function y = 6 sin110x - 22. That function would 
represent a phase shift of y = sin110x2, but only by 2>10, not 2. Parentheses are 
important when combining phase shifts with horizontal stretches and shrinks.

Now try Exercise 59.

EXAMPLE 5 
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[25, 65] by [25, 30]

Figure 4.45 The graph of the function 
y = -10 cos11p>322x2 + 15. (Example 6)

30
25
20
15
10

y

–5
x

32

Figure 4.44 A sinusoid with specifications. 
(Example 6)

Constructing a Sinusoid by Transformations
Construct a sinusoid y = ƒ1x2 that rises from a minimum value of y = 5 at x = 0 to 
a maximum value of y = 25 at x = 32. (See Figure 4.44.)

SOLUTION 

Solve Algebraically The amplitude of this sinusoid is half the height of the graph: 
125 - 52>2 = 10. So 0 a 0 = 10. The period is 64 (because a full period goes from 
minimum to maximum and back down to the minimum). So set 2p> 0 b 0 = 64.  
Solving, we get 0 b 0 = p>32.

We need a sinusoid that takes on its minimum value at x = 0. We could shift the 
graph of sine or cosine horizontally, but it is easier to take the cosine curve (which 
assumes its maximum value at x = 0) and turn it upside down. This reflection can be 
obtained by letting a = -10 rather than 10.

So far we have

 y = -10 cosa±
p

32
 xb

 = -10 cosap
32

 xb  Cosine is an even function.

Finally, we note that this function ranges from a minimum of -10 to a maximum of 10. 
We shift the graph vertically by 15 to obtain a function that ranges from a minimum 
of 5 to a maximum of 25, as required. Thus

y = -10 cosap
32

 xb + 15.

Support Graphically We support our answer graphically by graphing the function 
(Figure 4.45). Now try Exercise 69.

EXAMPLE 6 

Modeling Periodic Behavior with Sinusoids
Example 6 was intended as more than just a review of the graphical transformations. 
Constructing a sinusoid with specific properties is often the key step in modeling 
physical situations that exhibit periodic behavior over time. The procedure we followed 
in Example 6 can be summarized as follows:

Constructing a Sinusoidal Model Using Time

1. Determine the maximum value M and minimum value m. The amplitude A of 

the sinusoid will be A =
M - m

2
, and the vertical shift will be C =

M + m
2

.

2. Determine the period p, the time interval of a single cycle of the periodic 

function. The horizontal shrink (or stretch) will be B =
2p
p

.

3. Choose an appropriate sinusoid based on behavior at some given time T. 
For example, at time T:

ƒ1t2 = A cos1B1t - T22 + C attains a maximum value;

ƒ1t2 = -A cos1B1t - T22 + C attains a minimum value;

ƒ1t2 = A sin1B1t - T22 + C is halfway between a minimum and a maxi-
mum value;

 ƒ1t2 = -A sin1B1t - T22 + C is halfway between a maximum and a 
minimum value.
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[0, 24] by [2, 2.8]

Figure 4.46 The Galveston tide graph. 
(Example 7)

We apply the procedure in Example 7 to model the ebb and flow of a tide.

Calculating the Ebb and Flow of Tides
On a certain July 4th in Galveston, Texas, high tide occurred at 9:36 a.m. At that  
time the water at the end of the 61st Street Pier was 2.7 m deep. Low tide occurred  
at 3:48 p.m., at which time the water was only 2.1 m deep. Assume that the depth  
of the water is a sinusoidal function of time with a period of half a lunar day (about 
12 hr 24 min).

(a) At what time on the 4th of July did the first low tide occur?

(b) What was the approximate depth of the water at 6:00 a.m. and at 3:00 p.m. that day?

(c) What was the first time on July 4th when the water was 2.4 m deep?

SOLUTION 

Model We want to model the depth D as a sinusoidal function of time t. The depth 
varies from a maximum of 2.7 m to a minimum of 2.1 m, so the amplitude 

A =
2.7 - 2.1

2
= 0.3, and the vertical shift will be C =

2.7 + 2.1
2

= 2.4. The 

period is 12 hr 24 min, which converts to 12.4 hr, so B =
2p

12.4
=
p

6.2
.

We need a sinusoid that assumes its maximum value at 9:36 a.m. (which converts to 
9.6 hr after midnight, a convenient time 0). We choose the cosine model. Thus,

D1t2 = 0.3 cosa p
6.2

 1t - 9.62b + 2.4.

Solve Graphically The graph over the 24-hr period of July 4th is shown in  
Figure 4.46.

We now use the graph to answer the questions posed.

(a) The first low tide corresponds to the first local minimum on the graph. We find graph-
ically that this occurs at t = 3.4. This translates to 3 + 10.421602 = 3:24 a.m.

(b) The depth at 6:00 a.m. is D162 ≈ 2.32 m. The depth at 3:00 p.m. is 
D112 + 32 = D1152 ≈ 2.12 m.

(c) The first time the water is 2.4 m deep corresponds to the leftmost intersec-
tion of the sinusoid with the line y = 2.4. We use the grapher to find that 
t = 0.3. This translates to 0 + 10.321602 = 00:18 a.m., which we write as 
12:18 a.m. Now try Exercise 75.

EXAMPLE 7 

We will see more applications of this kind when we look at simple harmonic motion in 
Section 4.8.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–3, state the sign (positive or negative) of the function in 
each quadrant.

 1. sin x

 2. cos x  

 3. tan x

In Exercises 4–6, give the radian measure of the angle.

 4. 135°  5. -150°  6. 450°

In Exercises 7–10, find a transformation that will transform the graph 
of y1 to the graph of y2.

 7. y1 = 2x and y2 = 32x

 8. y1 = ex and y2 = e-x

 9. y1 = ln x and y2 = 0.5 ln x 

 10. y1 = x3 and y2 = x3 - 2

QUICK REVIEW 4.4 (For help, go to Sections 1.6, 4.1, and 4.2.)

M05_DEMA8962_10_GE_C04.indd   373 22/06/22   13:47



374 CHAPTER 4 Trigonometric Functions

 31. y = -3 cos 2x 32. y = 5 sin 
x
2

SECTION 4.4 Exercises

In Exercises 1–6, find the amplitude of the function and use the lan-
guage of transformations to describe how the graph of the function is 
related to the graph of y = sin x.

 1. y = 2 sin x 2. y =
2
3

 sin x

 3. y = -4 sin x 4. y = -  
7
4

 sin x

 5. y = 0.76 sin x 6. y = -2.34 sin x

In Exercises 7–12, find the period of the function and use the language 
of transformations to describe how the graph of the function is related 
to the graph of y = cos x.

 7. y = cos 3x 8. y = cos x>5
 9. y = cos1-7x2 10. y = cos1-0.4x2

 11. y = 6 cos 2x 12. y =
1
4

 cos 
2x
3

In Exercises 13–16, find the amplitude, period, and frequency of the 
function and use this information (not your calculator) to sketch a graph 
of the function in the window 3-3p, 3p4  by 3-4, 44 .

 13. y = 3 sin 
x
2

 14. y = 2 cos 
x
3

 15. y = -  
3
2

 sin 2x 16. y = -4 sin 
2x
3

In Exercises 17–22, graph one period of the function. Use your under-
standing of transformations, not your grapher. Be sure to show the scale 
on both axes.

 17. y = 2 sin x 18. y = 2.5 sin x

 19. y = 3 cos x 20. y = -2 cos x

 21. y = -0.5 sin x 22. y = 4 cos x

In Exercises 23–28, graph three periods of the function. Use your 
understanding of transformations, not your grapher. Be sure to show  
the scale on both axes.

 23. y = 5 sin 2x 24. y = 3 cos 
x
2

 25. y = 0.5 cos 3x 26. y = 20 sin 4x

 27. y = 4 sin 
x
4

 28. y = 8 cos 5x

In Exercises 29–34, specify the period and amplitude of each function. 
Then give the viewing window in which the graph is shown. Use your 
understanding of transformations, not your graphing calculator.

 29. y = 1.5 sin 2x 30. y = 2 cos 3x

 33. y = -4 sin 
p

3
 x 34. y = 3 cos px

In Exercises 35–40, identify the maximum and minimum values and 
the zeros of the function in the interval 3-2p, 2p4 . Use your under-
standing of transformations, not your graphing calculator.

 35. y = 2 sin x 36. y = 3 cos 
x
2

 37. y = cos 2x 38. y =
1
2

 sin x

 39. y = -cos 2x 40. y = -2 sin x

 41. Write the function y = -sin x as a phase shift of y = sin x.

 42. Write the function y = -cos x as a phase shift of y = sin x.

In Exercises 43–48, describe the transformations required to obtain the 
graph of the given function from a basic trigonometric graph.

 43. y = 0.5 sin 3x 44. y = 1.5 cos 4x

 45. y = -  
2
3

 cos 
x
3

 46. y =
3
4

 sin 
x
5

 47. y = 3 cos 
2px

3
 48. y = -2 sin 

px
4

In Exercises 49–52, describe the transformations required to obtain the 
graph of y2 from the graph of y1.

 49. y1 = cos 2x and y2 =
5
3

 cos 2x

 50. y1 = 2 cosax +
p

3
b  and y2 = cosax +

p

4
b

 51. y1 = 2 cos px and y2 = 2 cos 2px

 52. y1 = 3 sin 
2px

3
 and y2 = 2 sin 

px
3

In Exercises 53–56, select the pair of functions that have identical graphs.

 53. (a) y = cos x   (b) y = sinax +
p

2
b

(c) y = cosax +
p

2
b
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 54. (a) y = sin x (b) y = cosax -
p

2
b

(c) y = cos x

 55. (a) y = sinax +
p

2
b  (b) y = -cos1x - p2

(c) y = cosax -
p

2
b

 56. (a) y = sina2x +
p

4
b  (b) y = cosa2x -

p

2
b

(c) y = cosa2x -
p

4
b

In Exercises 57–60, construct a sinusoid with the given amplitude and 
period that goes through the given point.

 57. Amplitude 3, period p, point 10, 02
 58. Amplitude 2, period 3p, point 10, 02
 59. Amplitude 1.5, period p>6, point 11, 02
 60. Amplitude 3.2, period p>7, point 15, 02
In Exercises 61–68, state the amplitude and period of the sinusoid, and 
(relative to the basic function) the phase shift and vertical translation.

 61. y = -2 sinax -
p

4
b + 1

 62. y = -3.5 sina2x -
p

2
b - 1

 63. y = 5 cosa3x -
p

6
b + 0.5

 64. y = 3 cos1x + 32 - 2

 65. y = 2 cos 2px + 1

 66. y = 4 cos 3px - 2

 67. y =
7
3

 sinax +
5
2
b - 1

 68. y =
2
3

 cosax - 3
4
b + 1

In Exercises 69 and 70, find values a, b, h, and k so that the graph of 
the function y = a sin1b1x + h22 + k is the curve shown.

 69. 

[0, 6.28] by [24, 4]

 70. 

[20.5, 5.78] by [24, 4]

 71. Points of Intersection Graph the functions y = 1.3-x and 
y = 1.3-x cos x for x in the interval 3-1, 84 .
(a) How many points of intersection do there appear to be?

(b) Find the coordinates of each point of intersection.

 72. Motion of a Buoy A signal 
buoy in the Chesapeake Bay bobs 
up and down with the height h of its 
transmitter (in feet) above sea level 
modeled by h = a sin bt + 5. Dur-
ing a small squall its height varies 
from 1 ft to 9 ft and there are  
3.5 sec from one 9-ft height to the 
next. What are the values of the 
constants a and b?

 73. Ferris Wheel A Ferris wheel 50 ft in diameter makes one 
revolution every 40 sec. If the center of the wheel is 30 ft above 
the ground, how long after reaching the low point is a rider  
50 ft above the ground?

 74. Tsunami Wave An earthquake occurred at 9:40 a.m. on 
Nov. 1, 1755, at Lisbon, Portugal, and started a tsunami (often 
called a tidal wave) in the ocean. It produced waves that traveled 
more than 540 ft>sec (370 mph) and reached a height of 60 ft.

  If the period of the waves was 30 min, or 1800 sec, estimate 
the length L between the crests.

h

L

Sea level

Building
on shore

 75. Ebb and Flow On a particular Labor Day, the high tide in 
Southern California occurs at 7:12 a.m. At that time you mea-
sure the water at the end of the Santa Monica Pier to be 11 ft 
deep. At 1:24 p.m. it is low tide, and you measure the water to 
be only 7 ft deep. Assume the depth of the water is a sinusoidal 
function of time with a period of 1>2 a lunar day, which is 
about 12 hr 24 min.

(a) At what time on that Labor Day does the first low tide 
occur?

(b) What was the approximate depth of the water at 4:00 a.m. 
and at 9:00 p.m.?

(c) What is the first time on that Labor Day that the water is  
9 ft deep?

 76. Blood Pressure The function

P = 120 + 30 sin 2pt

models the blood pressure (in millimeters of mercury) for a 
person who has a (high) blood pressure of 150>90; t represents 
time in seconds.

(a) What is the period of this function?

(b) How many heartbeats are there each minute?

(c) Graph this function to model a 10-sec time interval.
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Model the temperature T as a sinusoidal function of time, using 
20 as the minimum value and 69 as the maximum value. Sup-
port your answer graphically by graphing your function with a 
scatter plot.

Standardized Test Questions
 81. True or False The graph of y = sin 2x has half the period 

of the graph of y = sin 4x. Justify your answer.

 82. True or False Every sinusoid can be written as 
y = A cos1Bx + C2 for some real numbers A, B, and C. 
 Justify your answer.

You may use a graphing calculator when answering these questions.

 83. Multiple Choice A sinusoid with amplitude 4 has a mini-
mum value of 5. Its maximum value is

(A) 7. (B) 9. (C) 11.

(D) 13.  (E) 15.

 84. Multiple Choice The graph of y = ƒ1x2 is a sinusoid  
with period 45 passing through the point (6, 0). Which of the 
following can be determined from the given information?

  I. ƒ102   II. ƒ162   III. ƒ1962
(A) I only (B) II only

(C) I and III only (D) II and III only

(E) I, II, and III only

 85. Multiple Choice The period of the function 
ƒ1x2 = 210 sin1420x + 8402 is
(A) p>840. (B) p>420. (C) p>210.

(D) 210>p. (E) 420>p.

 86. Multiple Choice The number of solutions to the equation 
sin12000x2 = 3>7 in the interval 30, 2p4  is
(A) 1000. (B) 2000. (C) 4000.

(D) 6000. (E) 8000.

Explorations
 87. Approximating Cosine 

(a) Draw a scatter plot 1x, cos x2 for the 17 special angles x, 
where -p … x … p.

(b) Find a quartic regression for the data.

(c) Compare the approximation to the cosine function given 
by the quartic regression with the Taylor polynomial 
approximations given in Exercise 80 of Section 4.3.

 88. Approximating Sine 

(a) Draw a scatter plot 1x, sin x2 for the 17 special angles x, 
where -p … x … p.

(b) Find a cubic regression for the data.

(c) Compare the approximation to the sine function given by 
the cubic regression with the Taylor polynomial approxi-
mations given in Exercise 79 of Section 4.3.

 77. Bouncing Block A block mounted on a spring is set into 
motion directly above a motion detector, which registers the 
distance to the block at intervals of 0.1 sec. When the block is 
released, it is 7.2 cm above the motion detector. The table 
below shows the data collected by the motion detector during 
the first 2 sec, with distance d measured in centimeters:

(a) Make a scatter plot of d as a function of t and estimate the 
maximum d visually. Use this number and the given mini-
mum (7.2) to compute the amplitude of the block’s motion.

(b) Estimate the period of the block’s motion visually from the 
scatter plot.

(c) Model the motion of the block as a sinusoidal function d1t2.
(d) Graph your function with the scatter plot to support your 

model graphically.

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
d 9.2 13.9 18.8 21.4 20.0 15.6 10.5 7.4 8.1 12.1

t 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
d 17.3 20.8 20.8 17.2 12.0 8.1 7.5 10.5 15.6 19.9

 78. LP Turntable A suction-cup–tipped arrow is secured verti-
cally to the outer edge of a turntable designed for playing LP 
phonograph records (ask your parents). A motion detector is 
situated 60 cm away. The turntable is switched on and the 
motion detector measures the distance to the arrow as it 
revolves around the turntable. The table below shows the dis-
tance d as a function of time during the first 4 sec.

t 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
d 63.5 71.6 79.8 84.7 84.7 79.8 71.6 63.5 60.0 63.5

t 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
d 71.6 79.8 84.7 84.7 79.8 71.6 63.5 60.0 63.5 71.6

(a) If the turntable is 25.4 cm in diameter, find the amplitude 
of the arrow’s motion.

(b) Find the period of the arrow’s motion by analyzing the data.

(c) Model the motion of the arrow as a sinusoidal function d1t2.
(d) Graph your function with a scatter plot to support your 

model graphically.

 79. Temperature Data The average monthly Fahrenheit tem-
peratures in Albuquerque, New Mexico, for 2012 are shown in 
the table (month 1 = Jan, month 2 = Feb, etc.):

Month 1 2 3 4 5 6 7 8 9 10 11 12
Temp 34 40 47 55 64 74 79 76 69 57 44 35

Source: Climate-zone.com, 2013.

Model the temperature T as a sinusoidal function of time, using 
34 as the minimum value and 79 as the maximum value. Sup-
port your answer graphically by graphing your function with a 
scatter plot.

 80. Temperature Data The average monthly Fahrenheit tem-
peratures in Helena, MT, for 2012 are shown in the table below 
(month 1 = Jan, month 2 = Feb, etc.):

Month 1 2 3 4 5 6 7 8 9 10 11 12
Temp 20 26 34 43 53 62 69 67 55 45 32 21

Source: Climate-zone.com, 2013.
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 89. Visualizing a Musical Note A piano tuner strikes a tun-
ing fork for the note middle C and creates a sound wave that 
can be modeled by

y = 1.5 sin 524pt,

where t is the time in seconds.

(a) What is the period p of this function?

(b) What is the frequency ƒ = 1>p of this note?

(c) Graph the function.

 90. Writing to Learn In a certain video game a cursor bounces 
back and forth horizontally across the screen at a constant rate. 
Its distance d from the center of the screen varies with time t 
and hence can be described as a function of t. Explain why this 
horizontal distance d from the center of the screen does not 
vary according to an equation d = a sin bt, where t represents 
time in seconds. You may find it helpful to include a graph in 
your explanation.

 91. Group Activity Using only integer values of a and b between 
1 and 9 inclusive, look at graphs of functions of the form

y = sin1ax2 cos1bx2 - cos1ax2 sin1bx2
for various values of a and b. (A group can look at more graphs 
at a time than one person can.)

(a) Some values of a and b result in the graph of y = sin x. 
Find a general rule for such values of a and b.

(b) Some values of a and b result in the graph of y = sin 2x. 
Find a general rule for such values of a and b.

(c) Can you guess which values of a and b will result in the 
graph of y = sin kx for an arbitrary integer k?

 92. Group Activity Using only integer values of a and b 
between 1 and 9 inclusive, look at graphs of functions of the 
form

y = cos1ax2 cos1bx2 + sin1ax2 sin1bx2
for various values of a and b. (A group can look at more graphs 
at a time than one person can.)

(a) Some values of a and b result in the graph of y = cos x. 
Find a general rule for such values of a and b.

(b) Some values of a and b result in the graph of y = cos 2x. 
Find a general rule for such values of a and b.

(c) Can you guess which values of a and b will result in the 
graph of y = cos kx for an arbitrary integer k?

Extending the Ideas
In Exercises 93–96, the graphs of the sine and cosine functions are 
waveforms like the figure below. By correctly labeling the coordinates 
of points A, B, and C, you will get the graph of the function given.

x
A C

B

 93. y = 3 cos 2x and A = a-  
p

4
, 0b . Find B and C.

 94. y = 4.5 sinax -
p

4
b  and A = ap

4
, 0b . Find B and C.

 95. y = 2 sina3x -
p

4
b  and A = ap

12
, 0b . Find B and C.

 96. y = 3 sin12x - p2, and A is the first x-intercept on the right 
of the y-axis. Find A, B, and C.

 97. The Ultimate Sinusoidal Equation It is an interesting 
fact that any sinusoid can be written in the form

y = a sin3b1x - H24 + k,

where both a and b are positive numbers.

(a) Explain why you can assume b is positive. [Hint: Replace 
b by -B and simplify.]

(b) Use one of the horizontal translation identities to prove 
that the equation

y = a cos3b1x - h24 + k

has the same graph as

y = a sin3b1x - H24 + k

for a correctly chosen value of H. Explain how to choose H.

(c) Give a unit circle argument for the identity sin1u + p2 =  
-sin u. Support your unit circle argument graphically.

(d) Use the identity from (c) to prove that

y = -a sin3b1x - h24 + k, a 7 0

has the same graph as

y = a sin3b1x - H24 + k, a 7 0

for a correctly chosen value of H. Explain how to choose H.

(e) Combine your results from (a)–(d) to prove that any sinu-
soid can be represented by the equation

y = a sin3b1x - H24 + k,

where a and b are both positive.
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3
2

–3

y

x
–2p p

Figure 4.48 The tangent function has 
asymptotes at the zeros of cosine.

3
2
1

–3

y

x
–2p p

Figure 4.49 The tangent function has 
zeros at the zeros of sine.

What you’ll learn about
• The Tangent Function

• The Cotangent Function

• The Secant Function

• The Cosecant Function

... and why
This will give us functions for the 
remaining trigonometric ratios.

The Tangent Function
The graph of the tangent function is shown in Figure 4.47. As with the sine and cosine 
graphs, this graph tells us quite a bit about the function’s properties. Here is a summary 
of facts about the tangent function:

4.5 Graphs of Tangent, Cotangent, Secant, and Cosecant

ƒ1x2 = tan x
Domain: All real numbers except odd multiples of p>2
Range: 1-∞, ∞2
Continuous (i.e., continuous on its domain)
Increasing on each interval in its domain
Symmetric with respect to the origin (odd)
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptotes: x = k # 1p>22 for all odd integers k
End behavior: lim

xS-∞
tan x and lim

xS∞
 tan x do not exist. (The function values  

continually oscillate between -∞ and ∞ and approach no limit.)

The Tangent Function

[23p/2, 3p/2] by [24, 4]

Figure 4.47

We now analyze why the graph of ƒ1x2 = tan x behaves the way it does. It follows 
from the definitions of the trigonometric functions (Section 4.2) that

tan x =
sin x
cos x

.

Unlike the sinusoids, the tangent function has a denominator that might be zero for 
some values of x, which makes the function undefined at those values. Not only does 
this actually happen, but it happens an infinite number of times: at all the values of x for 
which cos x = 0. That is why the tangent function has vertical asymptotes at those val-
ues (Figure 4.48). The zeros of the tangent function are the same as the zeros of the sine 
function: all the integer multiples of p (Figure 4.49).

Because sin x and cos x are both periodic with period 2p, you might expect the period 
of the tangent function to be 2p also. The graph shows, however, that it is p.

The constants a, b, h, and k influence the behavior of y = a tan1b1x - h22 + k in 
much the same way that they do for the graph of y = a sin1b1x - h22 + k. The con-
stant a yields a vertical stretch or shrink, b affects the period, h causes a horizontal 
translation, and k causes a vertical translation. The terms amplitude and phase shift, 
however, are not used, because they apply only to sinusoids.
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(a)

[2p, p] by [24, 4]

(b)

[2p, p] by [24, 4]

Figure 4.50 The graph of (a) y = tan 2x is 
reflected across the x-axis to produce the 
graph of (b) y = - tan 2x. (Example 1)

3
2
1

–3

y

x
–2p

Figure 4.51 The cotangent has  
asymptotes at the zeros of the sine function.

3
2

–3

y

x
2p–2p

Figure 4.52 The cotangent has zeros at  
the zeros of the cosine function.

The other three trigonometric functions (cotangent, secant, and cosecant) are recipro-
cals of tangent, cosine, and sine, respectively. (This is why you probably do not have 
buttons for them on your calculators.) As functions they are certainly interesting, but as 
basic functions they are unnecessary—we can do our trigonometric modeling and 
equation solving with the other three. Nonetheless, we give each of them a brief section 
of its own in this text.

The Cotangent Function
The cotangent function is the reciprocal of the tangent function. Thus,

cot x =
cos x
sin x

.

The graph of y = cot x will have asymptotes at the zeros of the sine function (Figure 4.51) 
and zeros at the zeros of the cosine function (Figure 4.52).

Cotangent on the Calculator
If your calculator does not have a “cotan” button, 
you can use the fact that cotangent and tangent 
are reciprocals. For example, the function in 
Example 2 can be entered in a calculator as y =
3>tan1x>22 + 1 or as y = 31tan1x>222-1 + 1. 
Remember that it cannot be entered as y =
3 tan-11x>22 + 1. (The -1 exponent in that 
position represents a function inverse, not a 
reciprocal.)

Graphing a Tangent Function
Describe the graph of the function y = - tan 2x in terms of a basic trigonometric 
function. Locate the vertical asymptotes and graph four periods of the function.

SOLUTION The effect of the 2 is a horizontal shrink of the graph of y = tan x by 
a factor of 1>2, and the effect of the -1 is a reflection across the x-axis. Because 
the vertical asymptotes of y = tan x are all odd multiples of p>2, the shrink fac-
tor causes the vertical asymptotes of y = tan 2x to be all odd multiples of p>4 
(Figure 4.50a). The reflection across the x-axis (Figure 4.50b) does not change 
the asymptotes.

Because the period of the function y = tan x is p, the period of the function 
y = -  tan 2x is (thanks again to the shrink factor) p>2. Thus, any window of hori-
zontal length 2p will show four periods of the graph. Figure 4.50b uses the window 
3-p, p4  by 3-4, 44 . Now try Exercise 5.

EXAMPLE 1 

Graphing a Cotangent Function
Describe the graph of ƒ1x2 = 3 cot1x>22 + 1 in terms of a basic trigonometric 
function. Locate the vertical asymptotes and graph two periods.

SOLUTION The graph is obtained from the graph of y = cot x by effecting a hori-
zontal stretch by a factor of 2, a vertical stretch by a factor of 3, and a vertical trans-
lation up 1 unit. The horizontal stretch makes the period of the function 2p (twice the 
period of y = cot x), and the asymptotes are at the even multiples of p. Figure 4.53 
shows two periods of the graph of ƒ. Now try Exercise 9.

EXAMPLE 2 

[22p, 2p] by [210, 10]

Figure 4.53 Two periods of 
ƒ1x2 = 3 cot1x>22 + 1. (Example 2)
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The Secant Function
Important characteristics of the secant function can be inferred from the fact that it is 
the reciprocal of the cosine function.

Whenever cos x = 1, its reciprocal sec x is also 1. The graph of the secant function has 
asymptotes at the zeros of the cosine function. The period of the secant function is 2p, 
the same as its reciprocal, the cosine function.

The graph of y = sec x is shown with the graph of y = cos x in Figure 4.54. A local 
maximum of y = cos x corresponds to a local minimum of y = sec x, and a local 
 minimum of y = cos x corresponds to a local maximum of y = sec x.

3
2

–1
–2
–3

y

x
2p–2p p

Figure 4.54 Characteristics of the secant 
function are inferred from the fact that it is the 
reciprocal of the cosine function.

Proving a Graphical Hunch

Figure 4.55 shows that the graphs of y = sec x and y = -2 cos x never seem to 
intersect.

If we stretch the reflected cosine graph vertically by a large enough number, will 
it continue to miss the secant graph? Or is there a large enough (positive) value 
of k so that the graph of y = sec x does intersect the graph of y = -k cos x?

 1. Try a few other values of k in your calculator. Do the graphs intersect?

 2. Your exploration should lead you to conjecture that the graphs of y = sec x 
and y = -k cos x will never intersect for any positive value of k. Verify this 
conjecture by proving algebraically that the equation

-k cos x = sec x

has no real solutions when k is a positive number.

EXPLORATION 1 

Solving a Trigonometric Equation Algebraically
Find the value of x between p and 3p>2 that solves sec x = -2.

SOLUTION We construct a reference triangle in the third quadrant that has the 
appropriate ratio, hyp>adj, equal to -2. This is most easily accomplished by choos-
ing an x-coordinate of -1 and a hypotenuse of 2 (Figure 4.56a). We recognize this as 
a 30°–60°–90° triangle that determines an angle of 240°, which converts to 4p>3 rad 
(Figure 4.56b).

Therefore, the answer is 4p>3.

EXAMPLE 3 

(a)

–1

2

y

x

    

240°

(b)

y

x

Figure 4.56 A reference triangle in the third quadrant (a) with hyp>adj = -2 determines 
an angle (b) of 240°, which converts to 4p>3 rad. (Example 3)

Now try Exercise 29.

[26.5, 6.5] by [23, 3]

Figure 4.55 The graphs of y = sec x and 
y = -2 cos x. (Exploration 1)
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3
2
1

–3

y

x
–2p

Figure 4.57 Characteristics of the cosecant function are inferred from the fact that it is the 
reciprocal of the sine function.

The Cosecant Function
Important characteristics of the cosecant function can be inferred from the fact that it is 
the reciprocal of the sine function.

Whenever sin x = 1, its reciprocal csc x is also 1. The graph of the cosecant function 
has asymptotes at the zeros of the sine function. The period of the cosecant function is 
2p, the same as its reciprocal, the sine function.

The graph of y = csc x is shown with the graph of y = sin x in Figure 4.57. A local 
maximum of y = sin x corresponds to a local minimum of y = csc x, and a local mini-
mum of y = sin x corresponds to a local maximum of y = csc x.

Are Cosecant Curves Parabolas?
Figure 4.58 shows a parabola intersecting one of 
the infinite number of U-shaped curves that 
make up the graph of the cosecant function. In 
fact, the parabola intersects all of those curves 
that lie above the x-axis, because the parabola 
must spread out to cover the entire domain of 
y = x2, which is all real numbers! The cosecant 
curves do not keep spreading out, because they 
are hemmed in by asymptotes. That means that 
the U-shaped curves in the cosecant function are 
not parabolas.

[26.5, 6.5] by [23, 3]

Figure 4.58 A graphical solution of a trigonometric equation. (Example 4)

Solving a Trigonometric Equation Graphically
Find the smallest positive number x such that x2 = csc x.

SOLUTION There is no algebraic attack that looks hopeful, so we solve this equa-
tion graphically. The intersection point of the graphs of y = x2 and y = csc x that 
has the smallest positive x-coordinate is shown in Figure 4.58. We use the grapher to 
determine that x ≈ 1.068.

EXAMPLE 4 

 Now try Exercise 39.

To close this section, we summarize the properties of the six basic trigonometric func-
tions in tabular form. The “n” that appears in several places should be understood as 
taking on all possible integer values: 0, ±1, ±2, ±3, c .

Summary: Basic Trigonometric Functions

Function Period Domain Range Asymptotes Zeros Even >Odd

sin x 2p 1-∞, ∞2 3-1, 14 None np Odd

cos x 2p 1-∞, ∞2 3-1, 14 None p>2 + np Even

tan x p x ≠ p>2 + np 1-∞, ∞2 x = p>2 + np np Odd

cot x p x ≠ np 1-∞, ∞2 x = np p>2 + np Odd

sec x 2p x ≠ p>2 + np 1-∞, -1] ∪ 31, ∞2 x = p>2 + np None Even

csc x 2p x ≠ np 1-∞, -1] ∪ 31, ∞2 x = np None Odd
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, state the period of the function.

 1. y = cos 2x  2. y = sin 3x

 3. y = sin 
1
3

 x  4. y = cos 
1
2

 x

In Exercises 5–8, find the zeros and vertical asymptotes of the function.

 5. y =
x - 3
x + 4

 6. y =
x + 5
x - 1

 7. y =
x + 1

1x - 221x + 22 8. y =
x + 2

x1x - 32
In Exercises 9 and 10, tell whether the function is odd, even, or neither.

 9. y = x2 + 4  10. y =
1
x

QUICK REVIEW 4.5 (For help, go to Sections 1.2, 2.6, and 4.3.)

 3. Graphs of csc x and 3 csc 2x are shown.

  

10

4
2

–10

y

6
8

x
–p p

y1

y2

 4. Graphs of cot x and cot 1x - 0.52 + 3 are shown.

  

10

4

–10

y

6
8

–8

x
–p

y1

y2

p

In Exercises 5–12, describe the graph of the function in terms of a basic 
trigonometric function. Locate the vertical asymptotes and graph two 
periods of the function.

 5. y = tan 2x 6. y = -cot 3x

 7. y = sec 3x 8. y = csc 2x

 9. y = 2 cot 2x 10. y = 3 tan1x>22
 11. y = csc1x>22 12. y = 3 sec 4x

SECTION 4.5 Exercises

In Exercises 1–4, identify the graph of each function. Use your under-
standing of transformations, not your graphing calculator.

 1. Graphs of one period of csc x and 2 csc x are shown.

  

10

4
2

y

6
8

x
–p p

y1
y2

 2. Graphs of two periods of 0.5 tan x and 5 tan x are shown.

  

10

4
2

–4

–10

y

6
8

–6
–8

x
–p p

y1

y2
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In Exercises 13–16, match the trigonometric function with its graph. 
Then give the Xmin and Xmax values for the viewing window in which 
the graph is shown. Use your understanding of transformations, not 
your graphing calculator.

(a)

[?, ?] by [210, 10]

   (b)

[?, ?] by [210, 10]

(c)

[?, ?] by [210, 10]

   (d)

[?, ?] by [210, 10]

 13. y = -2 tan x 14. y = cot x

 15. y = sec 2x 16. y = -csc x

In Exercises 17–20, analyze each function for domain, range, continu-
ity, increasing or decreasing behavior, symmetry, boundedness, 
extrema, asymptotes, and end behavior.

 17. ƒ1x2 = cot x 18. ƒ1x2 = sec x

 19. ƒ1x2 = csc x 20. ƒ1x2 = tan1x>22
In Exercises 21–28, describe the transformations required to obtain the 
graph of the given function from a basic trigonometric graph.

 21. y = 3 tan x 22. y = - tan x

 23. y = 8 sec x 24. y = 2 tan x

 25. y = -3 cot 
1
2

 x 26. y = -2 sec 
1
2

 x

 27. y = - tan 
p

2
 x + 2 28. y = 2 tan px - 2

In Exercises 29–34, solve for x in the given interval. You should be able 
to find these numbers without a calculator, using reference triangles in 
the proper quadrants.

 29. sec x = 2,  0 … x … p>2
 30. csc x = 2,  p>2 … x … p
 31. cot x = -23,  p>2 … x … p
 32. sec x = -22,  p … x … 3p>2
 33. csc x = 1,  2p … x … 5p>2
 34. cot x = 1,  -p … x … -p>2
In Exercises 35–40, use a calculator to solve for x in the given interval.

 35. tan x = 1.3,  0 … x …
p

2

 36. sec x = 2.4,  0 … x …
p

2

 37. cot x = -0.6,  
3p
2

… x … 2p

 38. csc x = -1.5,  p … x …
3p
2

 39. csc x = 2,  0 … x … 2p

 40. tan x = 0.3,  0 … x … 2p

 41. Writing to Learn The figure shows a unit circle and an 
angle t whose terminal side is in Quadrant III.

y

x
t – p

t

x2 + y2 = 1
P1(–a, –b)

P2(a, b)

(a) If the coordinates of point P2 are 1a, b2, explain why the 
coordinates of point P1 on the circle and the terminal side 
of angle t - p are 1-a, -b2.

(b) Explain why tan t =
b
a

.

(c) Find tan1t - p2, and show that tan t = tan1t - p2.
(d) Explain why the period of the tangent function is p.

(e) Explain why the period of the cotangent function is p.

 42. Writing to Learn Explain why it is correct to say y = tan x 
is the slope of the terminal side of angle x in standard position. 
P is on the unit circle.

y

xx

x
P(cos x, sin x)

 43. Periodic Functions Let ƒ be a periodic function with 
period p. That is, p is the smallest positive number such that

ƒ1x + p2 = ƒ1x2
for any value of x in the domain of ƒ. Show that the reciprocal 
1>ƒ is periodic with period p.

 44. Identities Use the unit circle to give a convincing argument 
for the identity.

(a) sin1t + p2 = -sin t

(b) cos1t + p2 = -cos t

(c) Use (a) and (b) to show that tan1t + p2 = tan t. Explain 
why this is not enough to conclude that the period of tan-
gent is p.
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 45. Lighthouse Coverage The Bolivar Lighthouse is located 
on a small island 350 ft from the shore of the mainland as 
shown in the figure.

(a) Model the distance d as a function of the angle x.

(b) If x is 1.55 rad, what is d?

d
x

350 ft

 46. Hot-Air Balloon A hot-air balloon over Ulaanbaatar,  
Mongolia, is being blown due east from point  P  and traveling 
at a constant height of 300 m. The angle y is formed by the 
ground and the line of vision from  P  to the balloon. This 
angle changes as the balloon travels.

(a) Model the horizontal distance x as a function of the  
angle y.

(b) When the angle is p>15 rad, what is its horizontal distance 
from P?

(c) An angle of  p>15 rad is equivalent to how many degrees?

P

300 m

Wind
blowing
due east

y

x

In Exercises 47–50, find approximate solutions for the equation in the 
interval -p 6 x 6 p.

 47. tan x = csc x  48. sec x = cot x 

 49. sec x = 5 cos x  50. 4 cos x = tan x

Standardized Test Questions
 51. True or False The function ƒ1x2 = tan x is increasing on 

the interval 1-∞, ∞2. Justify your answer.

 52. True or False If x = a is an asymptote of the secant func-
tion, then cot a = 0. Justify your answer.

You should answer these questions without using a calculator.

 53. Multiple Choice The graph of y = cot x can be obtained 
by a horizontal shift of the graph of y =
(A) - tan x. (B) -cot x. (C) sec x.

(D) tan x. (E) csc x.

 54. Multiple Choice The graph of y = sec x never intersects 
the graph of y =

(A) x. (B) x2. (C) csc x.

(D) cos x. (E) sin x.

 55. Multiple Choice If k 7 0, what is the range of the 
 function y = k csc x?

(A) 3-k, k4  (B) 1-k, k2
(C) 1-∞, -k2∪ 1k, ∞2 (D) 1-∞, -k4 ∪ 3k, ∞2
(E) 1-∞, -1>k4 ∪ 31>k, ∞2

 56. Multiple Choice The graph of y = csc x has the same set 
of asymptotes as the graph of y =

(A) sin x. (B) tan x. (C) cot x.

(D) sec x. (E) csc 2x.

Explorations
In Exercises 57 and 58, graph both ƒ and g in the 3-p, p4  by 
3-10, 104  viewing window. Estimate values in the interval 3-p, p4  
for which ƒ 7 g.

 57. ƒ1x2 = 5 sin x and g1x2 = cot x

 58. ƒ1x2 = - tan x and g1x2 = csc x

 59. Writing to Learn Graph the function ƒ1x2 = -cot x on the 
interval 1-p, p2. Explain why it is correct to say that ƒ is 
increasing on the interval 10, p2, but it is not correct to say that 
ƒ is increasing on the interval 1-p, p2.

 60. Writing to Learn Graph functions ƒ1x2 = -sec x and

g1x2 =
1

x - 1p>22
simultaneously in the viewing window 30, p4  by 3-10, 104 . 
Discuss whether you think functions ƒ and g are equivalent.

 61. Write csc x as a horizontal translation of sec x.

 62. Write cot x as the reflection about the x-axis of a horizontal 
translation of tan x.

Extending the Ideas
 63. Group Activity Television Coverage A television camera is 

on a platform 45 m from the point on Gwanghwamun Plaza in 
Seoul, where the Yeon Deung Hoe (the annual Korean Lotus  
Lantern Festival) parade will pass. Model the distance d from the 
camera to a particular parade float as a function of the angle x, 
and graph the function over the interval -p>2 6 x 6 p>2.

G
w

an
gh

w
am

un
 P

la
za

 

Float

Camera

45 m

d

x
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 64. What’s in a Name? The word sine comes from the Latin 
word sinus, which means “bay” or “cove.” It entered the lan-
guage through a mistake (variously attributed to Gerardo of 
Cremona or Robert of Chester) in translating the Arabic word 
“jiba” (chord) as if it were “jaib” (bay). This was due to the 
fact that the Arabs abbreviated their technical terms, much as 
we do today. Imagine someone unfamiliar with the technical 
term “cosecant” trying to reconstruct the English word that is 
abbreviated by “csc.” It might well enter their language as their 
word for “cascade.”

The names for the other trigonometric functions can all be 
explained.

(a) Cosine means “sine of the complement.” Explain why this 
is a logical name for cosine.

(b) In the figure below, BC is perpendicular to OC, which is a 
radius of the unit circle. By a familiar geometry theorem, 
BC is tangent to the circle. OB is part of a secant that inter-
sects the unit circle at A. It lies along the terminal side of 
an angle of t radians in standard position. Write the coordi-
nates of A as functions of t.

(c) Use similar triangles to find length BC as a trig function  
of t.

(d) Use similar triangles to find length OB as a trig function  
of t.

(e) Use the results from parts (a), (c), and (d) to explain where 
the names tangent, cotangent, secant, and cosecant came 
from.

y

x

1

t

A

B

CO D

 65. Capillary Action A film of liquid in  
a thin (capillary) tube has surface tension  
g (gamma) modeled by

g =
1
2

 hrgr sec f,

where h is the height of the liquid in the tube, r (rho) is the 
 density of the liquid, g = 9.8 m>sec2 is the acceleration due to 
gravity, r is the radius of the tube, and f (phi) is the angle of 
contact between the tube and the liquid’s surface. Whole blood 
has a surface tension of 0.058 N>m (newton per meter) and a 
density of 1050 kg>m3. Suppose that blood rises to a height of 
1.5 m in a capillary blood vessel of radius 4.7 * 10-6 m. What 
is the contact angle between the capillary vessel and the blood 
surface? 31 N = 11kg # m2>sec24

 66. Advanced Curve Fitting A researcher has reason to 
believe that the data in the table below can best be described  
by an algebraic model involving the secant function:

y = a sec1bx2
Unfortunately, her calculator will do only sine regression. She 
realizes that the following two facts will help her:

1
y

=
1

a sec1bx2 =
1
a

 cos1bx2
and

cos 1bx2 = sinabx +
p

2
b .

(a) Use these two facts to show that

1
y

=
1
a

 sinabx +
p

2
b .

(b) Store the x-values in the table in L1 in your calculator and 
the y-values in L2. Store the reciprocals of the y-values in 
L3. Then do a sine regression for L3 11>y2 as a function of 
L1 1x2. Write the regression equation.

(c) Use the regression equation in (b) to determine the values 
of a and b.

(d) Write the secant model: y = a sec1bx2 Does the curve fit 
the 1L1, L22 scatter plot?

x 1 2 3 4
y 5.0703 5.2912 5.6975 6.3622

x 5 6 7 8
y 7.4359 9.2541 12.716 21.255
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386 CHAPTER 4 Trigonometric Functions

What you’ll learn about
• Combining Trigonometric and  

Algebraic Functions

• Sums and Differences of Sinusoids

• Damped Oscillation

... and why
Function composition extends 
our ability to model periodic  
phenomena like heartbeats 
and sound waves.

Combining Trigonometric and Algebraic Functions
A theme of this text has been “families of functions.” We have studied polynomial 
functions, exponential functions, logarithmic functions, and rational functions (to name 
a few), and in this chapter we have studied trigonometric functions. Now we consider 
adding, multiplying, or composing trigonometric functions with functions from these 
other families.

The notable property that distinguishes the trigonometric function from others we have 
studied is periodicity. Example 1 shows that when a trigonometric function is com-
bined with a polynomial, the resulting function may or may not be periodic.

4.6 Graphs of Composite Trigonometric Functions

Combining the Sine Function with x 2

Graph each of the following functions for -2p … x … 2p, adjusting the vertical 
window as needed. Which of the functions appear to be periodic?

(a) y = sin x + x2

(b) y = x2 sin x

(c) y = 1sin x22
(d) y = sin1x22
SOLUTION We show the graphs and their windows in Figure 4.59 on the next page. Only 
the graph of y = 1sin x22 exhibits periodic behavior in the interval -2p … x … 2p. 
(You can widen the window to see further graphical evidence that this is indeed the only 
periodic function among the four.) Now try Exercise 5.

EXAMPLE 1 

Verifying Periodicity Algebraically
Verify algebraically that ƒ1x2 = 1sin x22 is periodic, and determine its period 
graphically.

SOLUTION We use the fact that the period of the basic sine function is 2p; that is, 
sin1x + 2p2 = sin1x2 for all x. It follows that

 ƒ1x + 2p) = 1sin1x + 2p222
 = 1sin1x222  By periodicity of sine

 = ƒ1x2
So ƒ1x2 is also periodic, with some period that divides 2p. The graph in Figure 4.59c 
on the next page shows that the period is actually p. Now try Exercise 9.

EXAMPLE 2 

Exponent Notation
Example 3 introduces a shorthand notation for 
powers of trigonometric functions: 1sin u2n can 
be written as sinn u. (Caution: This shorthand 
notation will probably not be recognized by your 
calculator.)
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Composing y = sin x  and y = x3

Prove algebraically that ƒ1x2 = sin3 x is periodic and find the period graphically. 
State the domain and range, and sketch a graph showing two periods.

SOLUTION To prove that ƒ1x2 = sin3 x is periodic, we show that ƒ1x + 2p) =  
ƒ1x2 for all x.

 ƒ1x + 2p2 = sin31x + 2p2
 = 1sin1x + 2p223 Changing notation

 = 1sin1x223  By periodicity of sine

 = sin31x2  Changing notation

 = ƒ1x2
Thus ƒ1x2 is periodic with a period that divides 2p. Graphing the function over the 
interval -2p … x … 2p (Figure 4.60), we see that the period must be 2p.

Because both functions being composed have domain 1-∞, ∞2, the domain of ƒ is 
also 1-∞, ∞2. Because cubing all numbers in the interval 3-1, 14  gives all numbers 
in the interval 3-1, 14 , the range is 3-1, 14 , as supported by Figure 4.60.
 Now try Exercise 13.

EXAMPLE 3 

Comparing the graphs of y = sin3 x and y = sin x over a single period (Figure 4.61), 
we see that the two functions have the same zeros and extreme points, but otherwise the 
graph of y = sin3 x is closer to the x-axis than the graph of y = sin x. This is because 
0 y3 0 6 0 y 0  whenever y is between -1 and 1. In fact, higher odd powers of sin x yield 
graphs that are “sucked in” more and more, but always with the same zeros and 
extreme points.

The absolute value of a periodic function is also a periodic function. We consider two 
such functions in Example 4.

Analyzing Nonnegative Periodic Functions
Find the domain, range, and period of each of the following functions. Sketch a 
graph showing four periods.

(a) ƒ1x2 = 0 tan x 0
(b) g1x2 = 0 sin x 0
SOLUTION 

(a) Whenever tan x is defined, so is 0 tan x 0 . Therefore, the domain of ƒ is the same  
as the domain of the tangent function, that is, all real numbers except p>2 + np, 
n = 0, ±1, c . Because ƒ1x2 = 0 tan x 0 Ú 0 and the range of tan x is 
1-∞, ∞2, the range of ƒ is 30, ∞2. The period of ƒ, like that of y = tan x, is p. 
The graph of y = ƒ1x2 is shown in Figure 4.62.

(b) Whenever sin x is defined, so is 0 sin x 0 . Therefore, the domain of g is the same 
as the domain of the sine function, that is, all real numbers. Because 
g1x2 = 0 sin x 0 Ú 0 and the range of sin x is 3-1, 14 , the range of g is 30, 14 .
The period of g is only half the period of y = sin x, for reasons that are apparent 
from viewing the graph. The negative sections of the sine curve below the x-axis are 
reflected above the x-axis, where they become repetitions of the positive sections. 
The graph of y = g1x2 is shown in Figure 4.63.

 Now try Exercise 15.

EXAMPLE 4 

[22p, 2p] by [210, 20]

(a) y 5 sin x 1 x2

[22p, 2p] by [225, 25]

(b) y 5 x2 sin x

[22p, 2p] by [21.5,1.5]

(c) y 5 (sin x)2

[22p, 2p] by [21.5, 1.5]

(d) y 5 sin(x2)

Figure 4.59 The graphs of the four 
functions in Example 1. Only graph (c) 
exhibits periodic behavior over the interval 
-2p … x … 2p.
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388 CHAPTER 4 Trigonometric Functions

[22p, 2p] by [21.5, 1.5]

Figure 4.60 The graph of 
ƒ1x2 = sin3 x. (Example 3)

[0, 2p] by [21.5, 1.5]

Figure 4.61 The graph suggests 
that  0 sin3 x 0 … 0 sin x 0 .

[22p, 2p] by [21.5, 5]

Figure 4.62 ƒ1x2 = 0 tan x 0  has the 
same period as y = tan x. (Example 4a)

[22p, 2p] by [21, 3]

Figure 4.63 g1x2 = 0 sin x 0  has half 
the period of y = sin x. (Example 4b)

[22p, 2p] by [24, 4]

Figure 4.64 The graph of 
ƒ1x2 = 0.5x + sin x oscillates between the  
lines y = 0.5x + 1 and y = 0.5x - 1. 
Although the wave repeats its shape, it is 
not periodic. (Example 5)

When a sinusoid is added to a (nonconstant) linear function, the result is not periodic. 
The graph repeats its shape at regular intervals, but the function takes on different val-
ues over those intervals. The graph will show a curve oscillating between two parallel 
lines, as in Example 5.

Adding a Sinusoid to a Linear Function
The graph of ƒ1x2 = 0.5x + sin x oscillates between two parallel lines (Figure 4.64). 
What are the equations of the two lines?

SOLUTION As sin x oscillates between -1 and 1, ƒ1x2 oscillates between 0.5x - 1 
and 0.5x + 1. Therefore, the two lines are y = 0.5x - 1 and y = 0.5x + 1. Graph-
ing the two lines and ƒ1x2 in the same window provides graphical support. Of course, 
the graph should resemble Figure 4.64 if your lines are correct.

 Now try Exercise 19.

EXAMPLE 5 

Sums and Differences of Sinusoids
Section 4.4 introduced sinusoids, functions that can be written in the form

y = a sin1b1x - h22 + k

and therefore have the shape of a sine curve.

Sinusoids model a variety of physical and social phenomena—such as sound waves, 
voltage in alternating electrical current, the velocity of air flow during the human respi-
ratory cycle, and many others. Sometimes these phenomena interact in an additive 
fashion. For example, if y1 models the sound of one tuning fork and y2 models the 
sound of a second tuning fork, then y1 + y2 models the sound when they are both 
struck simultaneously. So we are interested in whether the sums and differences of 
sinusoids are again sinusoids.

Investigating Sinusoids

Graph these functions, one at a time, in the viewing window 3-2p, 2p4  by 
3-6, 64 . Which ones appear to be sinusoids?

 1.  y = 3 sin x + 2 cos x 2. y = 2 sin x - 3 cos x
 3.  y = 2 sin 3x - 4 cos 2x 4. y = 2 sin15x + 12 - 5 cos 5x

 5.  y = cosa7x - 2
5
b + sina7x

5
b  6. y = 3 cos 2x + 2 sin 7x

What relationship between the sine and cosine functions ensures that their sum 
or difference will again be a sinusoid? Check your guess on a graphing calcula-
tor by constructing your own examples.

EXPLORATION 1 
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The rule turns out to be fairly simple: Sums and differences of sinusoids with the same 
period are again sinusoids. We state this rule more explicitly as follows.

Sums That Are Sinusoidal Functions

If y1 = a1 sin1b1x - h122 and y2 = a2 cos1b1x - h222, then

y1 + y2 = a1 sin1b1x - h122 + a2 cos1b1x - h222
is a sinusoid with period 2p> 0 b 0 .

For the sum to be a sinusoid, the two sinusoids being added together must have the 
same period, and the sum has the same period as both of them. Also, although the rule 
is stated in terms of a sine function being added to a cosine function, the fact that every 
cosine function is a translation of a sine function (and vice versa) makes the rule 
equally applicable to the sum of two sine functions and to the sum of two cosine func-
tions. If they have the same period, their sum is a sinusoid.

Identifying a Sinusoid
Determine whether each of the following functions is a sinusoid.

(a) ƒ1x2 = 5 cos x + 3 sin x

(b) ƒ1x2 = cos 5x + sin 3x

(c) ƒ1x2 = 2 cos 3x - 3 cos 2x

(d) ƒ1x2 = a cosa3x
7
b - b cosa3x

7
b + c sina3x

7
b

SOLUTION 

(a) Yes, because both functions in the sum have period 2p.

(b) No, because cos 5x has period 2p>5 and sin 3x has period 2p>3.

(c) No, because 2 cos 3x has period 2p>3 and 3 cos 2x has period p.

(d) Yes, because all three functions in the sum have period 14p>3. (The first two 
sum to a sinusoid with the same period as the third, so adding the third function 
still yields a sinusoid.) Now try Exercise 25.

EXAMPLE 6 

–1.19

5.39

[22p, 2p] by [210, 10]

Figure 4.65 The sum of two sinusoids: 
ƒ1x2 = 2 sin x + 5 cos x. (Example 7)

Expressing the Sum of Sinusoids as a Sinusoid
Let ƒ1x2 = 2 sin x + 5 cos x. From the discussion above, you should conclude that 
ƒ1x2 is a sinusoid.

(a) Find the period of ƒ.

(b) Estimate the amplitude and phase shift graphically (to the nearest hundredth).

(c) Give a sinusoid a sin1b1x - h22 that approximates ƒ1x2.
SOLUTION 

(a) The period of ƒ is the same as the period of sin x and cos x, namely 2p.

Solve Graphically
(b) We will learn an algebraic way to find the amplitude and phase shift in the next 

chapter, but for now we will find this information graphically. Figure 4.65 
 suggests that ƒ is indeed a sinusoid. That is, for some a and b,

2 sin x + 5 cos x = a sin1x - h2.

EXAMPLE 7 

(continued)
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Damped Oscillation
Because the values of sin bt and cos bt oscillate between -1 and 1, something interest-
ing happens when either of these functions is multiplied by another function. For 
example, consider the function y = 1x2 + 52 cos 6x, graphed in Figure 4.68. The 
(blue) graph of the function oscillates between the (red) graphs of y = x2 + 5 and 
y = -1x2 + 52. The “squeezing” effect that can be seen near the origin is called 
damping.

The maximum value, rounded to the nearest hundredth, is 5.39, so the amplitude of ƒ 
is about 5.39. The x-intercept closest to x = 0, rounded to the nearest hundredth, is 
-1.19, so the phase shift of the sine function is about -1.19. We conclude that

ƒ1x2 = a sin1x + h2 ≈ 5.39 sin1x + 1.192.
(c) We support our answer graphically by showing that the graphs of

y = 2 sin x + 5 cos x and y = 5.39 sin1x + 1.192
are virtually identical (Figure 4.66). Now try Exercise 29.

The sum of two sinusoids with different periods, although not a sinusoid, will often be a 
periodic function. Finding the period of a sum of periodic functions can be tricky. Here 
is a useful fact to keep in mind: If ƒ is periodic, and if ƒ1x + s2 = ƒ1x2 for all x in the 
domain of ƒ, then the period of ƒ divides s exactly. In other words, s is either the period 
or a multiple of the period.

Showing a Function Is Periodic but Not a Sinusoid
Show that ƒ1x2 = sin 2x + cos 3x is periodic but not a sinusoid. Graph one period.

SOLUTION Because sin 2x and cos 3x have different periods, the sum is not a sinu-
soid. Next we show that 2p is a candidate for the period of ƒ, that is, 
ƒ1x + 2p2 = ƒ1x2 for all x.

 ƒ1x + 2p2 = sin121x + 2p22 + cos131x + 2p22
 = sin12x + 4p2 + cos13x + 6p2
 = sin 2x + cos 3x

 = ƒ1x2
This means either that 2p is the period of ƒ or that the period is an exact divisor of 
2p. Figure 4.67 suggests that the period is not smaller than 2p, so it must be 2p.
The graph shows that indeed ƒ is not a sinusoid. Now try Exercise 35.

EXAMPLE 8 

DEFINITION Damped Oscillation

The graph of y = ƒ1x2 cos bx (or y = ƒ1x2 sin bx2 oscillates between the 
graphs of y = ƒ1x2 and y = -ƒ1x2. When this reduces the amplitude of the 
wave, it is called damped oscillation. The factor ƒ1x2 is called the damping 
factor.

[22p, 2p] by [26, 6]

Figure 4.66 The graphs of 
y = 2 sin x + 5 cos x and 
y = 5.39 sin1x + 1.192 appear to be 
identical. (Example 7)

[0, 2p] by [22, 2]

Figure 4.67 One period of 
ƒ1x2 = sin 2x + cos 3x. (Example 8)

[22p, 2p] by [240, 40]

Figure 4.68 The graph of 
y = 1x2 + 52 cos 6x shows damped 
oscillation.
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[2p, p] by [25, 5]

(a)

[2p, p] by [25, 5]

(b)

[22p, 2p] by [212, 12]

(c)

Figure 4.69 The graphs of functions 
(a), (b), and (c) in Example 9. The wave in 
graph (b) does not exhibit damped oscillation.

Identifying Damped Oscillation
For each of the following functions, determine if the graph shows damped oscilla-
tion. If it does, identify the damping factor and tell where the damping occurs.

(a) ƒ1x2 = 2-x sin 4x

(b) ƒ1x2 = 3 cos 2x

(c) ƒ1x2 = -2x cos 2x

SOLUTION The graphs are shown in Figure 4.69.

(a) This is damped oscillation. The damping factor is 2-x and the damping occurs 
as x S ∞.

(b) This wave has a constant amplitude of 3. No damping occurs.

(c) This is damped oscillation. The damping factor is -2x. The damping occurs as 
x S 0. Now try Exercise 43.

EXAMPLE 9 

A Damped Oscillating Spring
Dr. Sanchez’s physics class collected data for an air table glider that oscillates 
between two springs. The class determined from the data that the equation

y = 0.22e-0.065t cos 2.4t

modeled the displacement y of the spring from its original position as a function of 
time t.

(a) Identify the damping factor and tell where the damping occurs.

(b) Approximately how long does it take for the spring to be damped so that 
-0.1 … y … 0.1?

SOLUTION The graph is shown in Figure 4.70.

EXAMPLE 10 

0.25

–0.25

y

t

Time

D
is

pl
ac

em
en

t

25

Dr. Sanchez’s Lab

Figure 4.70 Damped oscillation in the physics lab. (Example 10)

(a) The damping factor is 0.22e-0.065t. The damping occurs as t S ∞.

(b) We want to find how soon the curve y = 0.22e-0.065t cos 2.4t falls entirely 
between the lines y = -0.1 and y = 0.1. By zooming in on the region indicated 
in Figure 4.71a and using grapher methods, we find that it takes approximately 
11.86 sec until the graph of y = 0.22e-0.065t cos 2.4t lies entirely between 
y = -0.1 and y = 0.1 (Figure 4.71b). Now try Exercise 71.

M05_DEMA8962_10_GE_C04.indd   391 22/06/22   13:48



392 CHAPTER 4 Trigonometric Functions

Y=–0.1

Y=0.1

Zoom in here
[8, 25] by [20.15, 0.15]

(a)  

X=11.85897   Y=–.1
Intersection

[11, 12.4] by [20.11, 20.09]

(b)

Figure 4.71 The damped oscillation in Example 10 eventually gets to be less than 0.1 
in either direction.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, state the domain and range of the function.

 1. ƒ1x2 = 3 sin 2x 2. ƒ1x2 = -2 cos 3x

 3. ƒ1x2 = 2x - 1 4. ƒ1x2 = 2x

 5. ƒ1x2 = 0 x 0 - 2 6. ƒ1x2 = 0 x + 2 0 + 1

In Exercises 7 and 8, describe the end behavior of the function, that is, 
the behavior as 0 x 0 S ∞.

 7. ƒ1x2 = 5e -2x 8. ƒ1x2 = -0.215-0.1x2
In Exercises 9 and 10, form the compositions ƒ ∘ g and g ∘ f . State the 
domain of each function.

 9. ƒ1x2 = x2 - 4 and g1x2 = 2x

 10. ƒ1x2 = x2 and g1x2 = cos x

QUICK REVIEW 4.6 (For help, go to Sections 1.2 and 1.4.)

In Exercises 23–28, determine whether ƒ1x2 is a sinusoid.

 23. ƒ1x2 = sin x - 3 cos x

 24. ƒ1x2 = 4 cos x + 2 sin x

 25. ƒ1x2 = 2 cos px + sin px

 26. ƒ1x2 = 2 sin x - tan x

 27. ƒ1x2 = 2 cos x + sin 7x

 28. ƒ1x2 = p sin 3x - 4p sin 2x

In Exercises 29–34, find a, b, and h so that ƒ1x2 ≈ a sin1b1x - h22.
 29. ƒ1x2 = 2 sin 2x - 3 cos 2x

 30. ƒ1x2 = cos 3x + 2 sin 3x

 31. ƒ1x2 = sin px - 2 cos px

 32. ƒ1x2 = cos 2px + 3 sin 2px

 33. ƒ1x2 = 2 cos x + sin x

 34. ƒ1x2 = 3 sin 2x - cos 2x

In Exercises 35–38, the function is periodic but not a sinusoid. Find the 
period graphically and sketch a graph showing one period.

 35. y = 2 cos x + cos 3x

 36. y = 2 sin 2x + cos 3x

 37. y = cos 3x - 4 sin 2x

 38. y = sin 2x + sin 5x

SECTION 4.6 Exercises

In Exercises 1–8, graph the function on the interval 3-2p, 2p4 , 
adjusting the vertical window as needed. State whether the function 
appears to be periodic.

 1. ƒ1x2 = 1sin x22 2. ƒ1x2 = 11.5 cos x22
 3. ƒ1x2 = x2 + 2 sin x 4. ƒ1x2 = x2 - 2 cos x

 5. ƒ1x2 = x cos x 6. ƒ1x2 = x2 cos x

 7. ƒ1x2 = 1sin x + 123 8. ƒ1x2 = 12 cos x - 422
In Exercises 9–12, verify algebraically that the function is periodic and 
determine its period graphically. Sketch a graph showing two periods.

 9. ƒ1x2 = cos2 x 10. ƒ1x2 = cos3 x

 11. ƒ1x2 = 2cos2 x 12. ƒ1x2 = 0 cos3 x 0
In Exercises 13–18, state the domain and range of the function and 
sketch a graph showing four periods.

 13. y = cos2 x 14. y = 0 cos x 0
 15. y = 0 cot x 0  16. y = cos 0 x 0
 17. y = - tan2 x 18. y = -sin2 x

The graph of each function in Exercises 19–22 oscillates between two 
parallel lines, as in Example 5. Find the equations of the two lines and 
graph the lines and the function in the same viewing window.

 19. y = 2x + cos x 20. y = 1 - 0.5x + cos 2x

 21. y = 2 - 0.3x + cos x 22. y = 1 + x + cos 3x
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In Exercises 39–42, match the function with its graph.  67. ƒ1x2 = 2sin x 68. ƒ1x2 = sin 0 x 0
 69. ƒ1x2 = 2 0 sin x 0  70. ƒ1x2 = 2cos x

 71. Oscillating Spring The oscillations of a spring subject to 
friction are modeled by the equation y = 0.43e -0.55t cos 1.8t.

(a) Graph y and its two damping curves in the same viewing 
window for 0 … t … 12.

(b) Approximately how long does it take for the spring to be 
damped so that -0.2 … y … 0.2?

 72. Predicting Economic Growth The business manager 
of a small manufacturing company finds that she can model 
the company’s annual growth as roughly exponential,  
but with cyclical fluctuations. She uses the function 
S1t2 = 10511.042t + 4 sin1pt>32 to estimate sales (in  
millions of dollars), t years after 2012.

(a) What are the company’s sales in 2012?

(b) What is the approximate annual growth rate?

(c) What does the model predict for sales in 2020?

(d) How many years are in each economic cycle for this  
company?

 73. Writing to Learn Example 3 shows that the function 
y = sin3 x is periodic. Explain whether you think that 
y = sin x3 is periodic and why.

 74. Writing to Learn Example 4 shows that y = 0 tan x 0  is 
periodic. Write a convincing argument that y = tan 0 x 0  is not a 
periodic function.

In Exercises 75 and 76, select the one correct inequality, (a) or (b). 
Give a convincing argument.

 75. (a) x - 1 … x + sin x … x + 1 for all x.

(b) x - sin x … x + sin x for all x.

 76. (a) -x … x sin x … x for all x.

(b) - 0 x 0 … x sin x … 0 x 0  for all x.

In Exercises 77–80, match the function with its graph. In each case 
state the viewing window.

[22p, 2p] by [26, 6]

(a)

[22p, 2p] by [26, 6]

(b)

[22p, 2p] by [26, 6]

(c)

[22p, 2p] by [26, 6]

(d)

 39. y = 2 cos x - 3 sin 2x

 40. y = 2 sin 5x - 3 cos 2x

 41. y = 3 cos 2x + cos 3x

 42. y = sin x - 4 sin 2x

In Exercises 43–48, tell whether the function exhibits damped oscilla-
tion. If so, identify the damping factor and tell whether the damping 
occurs as x S 0 or as x S ∞.

 43. ƒ1x2 = e -x sin 3x 44. ƒ1x2 = x sin 4x

 45. ƒ1x2 = 27 sin 1.6x 46. ƒ1x2 = p2 cos px

 47. ƒ1x2 = x3 sin 5x 48. ƒ1x2 = a2
3
b

x

 sin a2x
3
b

In Exercises 49–52, graph both ƒ and plus or minus its damping factor 
in the same viewing window. Describe the behavior of the function ƒ 
for x 7 0. What is the end behavior of ƒ?

 49. ƒ1x2 = 1.2-x cos 2x 50. ƒ1x2 = 2-x sin 4x

 51. ƒ1x2 = x -1 sin 3x 52. ƒ1x2 = e -x cos 3x

In Exercises 53–56, find the period and graph the function over two 
periods.

 53. y = sin 3x + 2 cos 2x

 54. y = 4 cos 2x - 2 cos 13x - 12
 55. y = 2 sin13x + 12 - cos15x - 12
 56. y = 3 cos12x - 12 - 4 sin13x - 22
In Exercises 57–62, graph ƒ over the interval 3-4p, 4p4 . Determine 
whether the function is periodic, and if it is, state the period.

 57. ƒ1x2 = ` sin 
1
2

 x ` + 2 58. ƒ1x2 = 3x + 4 sin 2x

 59. ƒ1x2 = x - cos x 60. ƒ1x2 = x + sin 2x

 61. ƒ1x2 =
1
2

 x + cos 2x 62. ƒ1x2 = 3 - x + sin 3x

In Exercises 63–70, find the domain and range of the function.

 63. ƒ1x2 = 2x + cos x 64. ƒ1x2 = 2 - x + sin x

 65. ƒ1x2 = 0 x 0 + cos x 66. ƒ1x2 = -2x + 0 3 sin x 0

(a) (b)

(c) (d)

 77. y = cos x - sin 2x - cos 3x + sin 4x

 78. y = cos x - sin 2x - cos 3x + sin 4x - cos 5x

 79. y = sin x + cos x - cos 2x - sin 3x

 80. y = sin x - cos x - cos 2x - cos 3x
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Standardized Test Questions
 81. True or False The function ƒ1x2 = sin 0 x 0  is periodic. 

 Justify your answer.

 82. True or False The sum of two sinusoids is a sinusoid. 
 Justify your answer.

You may use a graphing calculator when answering these questions.

 83. Multiple Choice What is the period of the function 
ƒ1x2 = 0 sin x 0 ?
(A) p>2 (B) p

(C) 2p (D) 3p

(E) None; the function is not periodic.

 84. Multiple Choice The function ƒ1x2 = x sin x is

(A) discontinuous. (B) bounded. (C) even.

(D) one-to-one. (E) periodic.

 85. Multiple Choice The function ƒ1x2 = x + sin x is

(A) discontinuous. (B) bounded. (C) even.

(D) odd. (E) periodic.

 86. Multiple Choice Which of the following functions is not a 
sinusoid?

(A) 2 cos12x2 (B) 3 sin12x2
(C) 3 sin12x2 + 2 cos12x2 (D) 3 sin13x2 + 2 cos12x2
(E) sin13x + 32 + cos13x + 22

Explorations
 87. Group Activity Inaccurate or Misleading Graphs 

(a) Set Xmin = 0 and Xmax = 2p. Move the cursor along 
the x-axis. What is the distance between one pixel and the 
next (to the nearest hundredth)?

(b) What is the period of ƒ1x2 = sin 250x? Consider that the 
period is the length of one full cycle of the graph. Approxi-
mately how many cycles should there be between two 
adjacent pixels? Can your grapher produce an accurate 
graph of this function between 0 and 2p?

 88. Group Activity Length of Days The graph shows the 
number of hours of daylight in Boston as a function of the day 
of the year, from September 22, 2013, to December 15, 2014. 
Key points are labeled and other critical information is pro-
vided. Use a sinusoidal function to model the day lengths and 
check it by graphing.

0
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14

16

100 200
Day of the year

Mean day
length

12 hr 9 min

Summer solstice
maximum of 15 hr 17 min

June 21, 2014

Autumnal equinoxVernal
equinox

March 20
(day 79)

Winter solstice
minimum of 9 hr 5 min

December 21, 2013

H
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da

yl
ig

ht

300
x

y

Extending the Ideas
In Exercises 89–96, first try to predict what the graph will look like 
(without too much effort, that is, just for fun). Then graph the function 
in one or more viewing windows to determine the main features of the 
graph, and draw a summary sketch. Where applicable, name the period, 
amplitude, domain, range, asymptotes, and zeros.

 89. ƒ1x2 = cos ex 90. g1x2 = etan x

 91. ƒ1x2 = 2x sin x 92. g1x2 = sin px + 24 - x2

 93. ƒ1x2 =
sin x

x
 94. g1x2 =

sin x

x2

 95. ƒ1x2 = x sin 
1
x
 96. g1x2 = x2 sin 

1
x
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 SECTION 4.7 Inverse Trigonometric Functions  395

By the usual inverse relationship, the statements

y = sin-1 x and x = sin y

are equivalent for y-values in the restricted domain 3-p>2, p>24  and x-values in 
3-1, 14 . This means that sin-1 x can be thought of as the angle between -p>2 and 
p>2 whose sine is x. Because angles and directed arcs on the unit circle have the same 
measure, the angle sin-1 x is also called the arcsine of x.

What you’ll learn about
• Inverse Sine Function

• Inverse Cosine and Tangent  
Functions

• Composing Trigonometric and 
Inverse Trigonometric Functions

• Applications of Inverse  
Trigonometric Functions

... and why
Inverse trig functions can be used to 
solve trigonometric equations.

Inverse Sine Function
You learned in Section 1.4 that each function has an inverse relation, and that this 
inverse relation is a function only if the original function is one-to-one. The six basic 
trigonometric functions, being periodic, fail the horizontal line test for one-to-oneness 
rather spectacularly. However, you also learned in Section 1.4 that some functions are 
important enough that we want to study their inverse behavior despite the fact that they 
are not one-to-one. We do this by restricting the domain of the original function to an 
interval on which it is one-to-one, then finding the inverse of the restricted function. 
(We did this when defining the square root function, which is the inverse of the func-
tion y = x2 restricted to a nonnegative domain.)

If you restrict the domain of y = sin x to the interval 3-p>2, p>24 , as shown in 
 Figure 4.72a, the restricted function is one-to-one. The inverse sine function 
y = sin-1 x is the inverse of this restricted portion of the sine function (Figure 4.72b).

4.7 Inverse Trigonometric Functions

p
2– p

2

1

–1
[22, 2] by [21.2, 1.2]

(a)  

p
2–

p
2

1–1

[21.5, 1.5] by [21.7, 1.7]

(b)

Figure 4.72 The (a) restriction of y = sin x is one-to-one and (b) has an inverse, 
y = sin-1 x.

y

x

–
2

2
p

p

Figure 4.73 The values of y = sin-1 x will 
always be found on the right-hand side of the 
unit circle, between -p>2 and p>2.

DEFINITION Inverse Sine Function (Arcsine Function)

The unique angle y in the interval 3-p>2, p>24  such that sin y = x is the 
inverse sine (or arcsine) of x, denoted sin−1 x or arcsin x.

The domain of y = sin-1 x is 3-1, 14  and the range is 3-p>2, p>24 .

It helps to think of the range of y = sin-1 x as being along the right-hand side of the 
unit circle, which is traced out as angles range from -p>2 to p>2 (Figure 4.73).
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396 CHAPTER 4 Trigonometric Functions

Evaluating sin−1x without a Calculator
Find the exact value of each expression without a calculator.

(a) sin-1a1
2
b  (b) sin-1a-  

23
2
b  (c) sin-1ap

2
b

(d) sin-1asinap
9
b b  (e) sin-1asina5p

6
b b

SOLUTION 

(a) Find the point on the right half of the unit circle whose y-coordinate is 1>2 and 
draw a reference triangle (Figure 4.74). We recognize this as one of our special 
ratios, and the angle in the interval 3-p>2, p>24  whose sine is 1>2 is p>6.
Therefore,

sin-1a1
2
b =

p

6
.

(b) Find the point on the right half of the unit circle whose y-coordinate is -23>2 
and draw a reference triangle (Figure 4.75). We recognize this as one of our spe-
cial ratios, and the angle in the interval 3-p>2, p>2] whose sine is -23>2 is 
-p>3. Therefore,

sin-1a-  
23
2
b = -  

p

3
.

(c) sin-11p>22 does not exist, because the domain of sin-1 is 3-1, 14  and 
p>2 7 1.

(d) Draw an angle of p>9 in standard position and mark its y-coordinate on the 
y-axis (Figure 4.76). The angle in the interval 3-p>2, p>24  whose sine is this 
number is p>9. Therefore,

sin-1asinap
9
b b =

p

9
.

(e) Draw an angle of 5p>6 in standard position (notice that this angle is not in the 
interval 3-p>2, p>24 ) and mark its y-coordinate on the y-axis. (See Figure 4.77 
on the next page.) The angle in the interval 3-p>2, p>24  whose sine is this 
number is p - 5p>6 = p>6. Therefore,

 sin-1asina5p
6
b b =

p

6
. Now try Exercise 1.

EXAMPLE 1 

Evaluating sin−1x with a Calculator
Use a calculator in Radian mode to evaluate these inverse sine values.

(a) sin-11-0.812 (b) sin-11sin 13.49p22
SOLUTION 

(a) sin-11-0.812 = -0.9441521 c ≈ -0.944

(b) sin-11sin 13.49p22 = -1.5393804 c ≈ -1.539

Although this is a calculator answer, we can use it to get an exact answer if we are 
alert enough to expect a multiple of p. Divide the answer by p:

Ans>p = -0.49

Therefore, we conclude that sin-11sin 13.49p22 = -0.49p.

You should also try to work Example 2b without a calculator. It is possible!
 Now try Exercise 19.

EXAMPLE 2 

y

x

1
2

Figure 4.74 sin-111>22 = p>6. 
(Example 1a)

y

x

2
– 3

Figure 4.75 sin-11-23>22 = -p>3. 
(Example 1b)

y

x
sin 9

p

Figure 4.76 sin-11sin 1p>922 = p>9. 
(Example 1d)
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It helps to think of the range of y = cos-1 x as being along the top half of the unit cir-
cle, which is traced out as angles range from 0 to p (Figure 4.79).

If you restrict the domain of y = tan x to the interval 1-p>2, p>22, as shown in 
 Figure 4.80a, the restricted function is one-to-one. The inverse tangent function 
y = tan-1 x is the inverse of this restricted portion of the tangent function (Figure 4.80b).

y

x

sin
6

5p

Figure 4.77 sin-11sin15p>622 = p>6. 
(Example 1e)

Inverse Cosine and Tangent Functions
If you restrict the domain of y = cos x to the interval 30, p4 , as shown in Figure 4.78a, 
the restricted function is one-to-one. The inverse cosine function y = cos-1 x is the 
inverse of this restricted portion of the cosine function (Figure 4.78b).

p

–1

1

[21, 4] by [21.4, 1.4]

(a)  

p

–1 1

[22, 2] by [21, 3.5]

(b)

Figure 4.78 The restriction of y = cos x (a) is one-to-one and (b) has an inverse, 
y = cos-1 x.

y

x
0p

Figure 4.79 The values of y = cos-1 x will 
always be found on the top half of the unit 
circle, between 0 and p.

p
2– p

2

[23, 3] by [22, 2]

(a)  

p
2–

p
2

[24, 4] by [22.8, 2.8]

(b)

Figure 4.80 The restriction of y = tan x (a) is one-to-one and (b) has an inverse, 
y = tan-1 x.

By the usual inverse relationship, the statements

y = cos-1 x and x = cos y

are equivalent for y-values in the restricted domain 30, p4  and x-values in 3-1, 14 . 
This means that cos-1 x can be thought of as the angle between 0 and p whose cosine 
is x. The angle cos-1 x is also the arccosine of x.

What About the Inverse 
Composition Rule?
Does Example 1e violate the Inverse  
Composition Rule of Section 1.4? That rule 
guarantees that ƒ -11ƒ1x22 = x for every x in the 
domain of ƒ. Keep in mind, however, that the 
domain of ƒ might need to be restricted in order 
for ƒ -1 to exist. That is certainly the case with 
the sine function. So Example 1e does not vio-
late the Inverse Composition Rule because that 
rule does not apply at x = 5p>6, which lies out-
side the (restricted) domain of sine.

DEFINITION Inverse Cosine Function (Arccosine Function)

The unique angle y in the interval 30, p4  such that cos y = x is the inverse 
cosine (or arccosine) of x, denoted cos−1 x or arccos x.

The domain of y = cos-1 x is 3-1, 14  and the range is 30, p4 .
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y

x

–p
2

p
2

Figure 4.81 The values of y = tan-1 x will 
always be found on the right-hand side of the 
unit circle, between (but not including) -p>2 
and p>2.

By the usual inverse relationship, the statements

y = tan-1 x and x = tan y

are equivalent for y-values in the restricted domain 1-p>2, p>22 and x-values in 
1-∞, ∞2. This means that tan-1 x can be thought of as the angle between -p>2 and 
p>2 whose tangent is x. The angle tan-1 x is also the arctangent of x.

DEFINITION Inverse Tangent Function (Arctangent Function)

The unique angle y in the interval 1-p>2, p>22 such that tan y = x is the 
inverse tangent (or arctangent) of x, denoted tan−1 x or arctan x.
The domain of y = tan-1 x is 1-∞, ∞2 and the range is 1-p>2, p>22.

It helps to think of the range of y = tan-1 x as being along the right-hand side of the 
unit circle (minus the top and bottom points), which is traced out as angles range from 
-p>2 to p>2 (noninclusive) (Figure 4.81).

Evaluating Inverse Trig Functions  
without a Calculator

Find the exact value of the expression without a calculator.

(a) cos-1a-  
22
2

 b

(b) tan-1 23

(c) cos-11cos 1-1.122
SOLUTION 

(a) Find the point on the top half of the unit circle whose x-coordinate is -22>2 and 
draw a reference triangle (Figure 4.82). We recognize this as one of our special 
ratios, and the angle in the interval 30, p4  whose cosine is -22>2 is 3p>4.  
Therefore

cos-1a-  
22
2

 b =
3p
4

.

(b) Find the point on the right side of the unit circle whose y-coordinate is 23 
times its x-coordinate and draw a reference triangle (Figure 4.83). We recognize 
this as one of our special ratios, and the angle in the interval 1-p>2, p>22 
whose tangent is 23 is p>3. Therefore

tan-1 23 =
p

3
.

(c) Draw an angle of -1.1 in standard position 1notice that this angle is not in the 
interval 30, p42 and mark its x-coordinate on the x-axis (Figure 4.84). The angle 
in the interval 30, p4  whose cosine is this number is 1.1. Therefore

cos-11cos1-1.122 = 1.1.

 Now try Exercises 5 and 7.

EXAMPLE 3 

y

x

2
– 2

Figure 4.82 cos-11-22>22 = 3p>4. 
(Example 3a)
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Composing Trigonometric and Inverse 
Trigonometric Functions
We have already seen the need for caution when applying the Inverse Composition 
Rule to the trigonometric functions and their inverses (Examples 1e and 3c). The fol-
lowing equations are always true whenever they are defined:

sin1sin-11x22 = x  cos1cos-11x22 = x  tan1tan-11x22 = x

y

x
2
3

1
2

Figure 4.83 tan-1 23 = p>3. 
(Example 3b)

y

x
cos(–1.1)

Figure 4.84 cos-11cos 1-1.122 = 1.1. 
(Example 3c)

What About Arccot, Arcsec, 
and Arccsc?
Because we already have inverse functions for 
their reciprocals, we do not really need inverse 
functions for cot, sec, and csc for computational 
purposes. Moreover, the decision of how to 
choose the range of arcsec and arccsc is not as 
straightforward as with the other functions. See 
Exercises 63, 71, and 72.

p
2– p

2

[23, 3] by [22, 2]

(a)  

p
2–

p
2

[24, 4] by [22.8, 2.8]

(b)

Figure 4.85 The graphs of (a) y = tan x (restricted) and (b) y = tan-1 x. The vertical 
asymptotes of y = tan x are reflected to become the horizontal asymptotes of y = tan-1 x. 
(Example 4)

Describing End Behavior
Describe the end behavior of the function y = tan-1 x.

SOLUTION We can get this information most easily by considering the graph of 
y = tan-1 x, remembering how it relates to the restricted graph of y = tan x.
(See Figure 4.85.)

EXAMPLE 4 

When we reflect the graph of y = tan x about the line y = x to get the graph of 
y = tan-1 x, the vertical asymptotes x = ±p>2 become horizontal asymptotes 
y = ±p>2. We can state the end behavior accordingly:

lim
xS-∞

 tan-1 x = -  
p

2
 and lim

xS+∞
 tan-1 x =

p

2
 Now try Exercise 21.
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400 CHAPTER 4 Trigonometric Functions

On the other hand, the following equations are true only for x-values in the “restricted” 
domains of sin, cos, and tan:

sin-11sin1x22 = x cos-11cos1x22 = x tan-11tan1x22 = x

An even more interesting phenomenon occurs when we compose inverse trigonometric 
functions of one kind with trigonometric functions of another kind, as in sin1tan-1x2. 
Surprisingly, these trigonometric compositions reduce to algebraic functions that 
involve no trigonometry at all! This curious situation has profound implications in cal-
culus, where it is sometimes useful to decompose nontrigonometric functions into trig-
onometric components that seem to come out of nowhere. Try Exploration 1.

y

x

(1, x)

u

Figure 4.86 If x 6 0, then u = tan-1 x 
is an angle in the fourth quadrant. 
(Exploration 1)

Finding Inverse Trig Functions of Trig Functions

In the right triangle here, the angle u is measured  
in radians.

 1. Find tan u.

 2. Find tan-1 x.

 3. Find the hypotenuse of the triangle as a function of x.

 4. Find sin1tan-11x22 as a ratio involving no trig functions.

 5. Find sec1tan-11x22 as a ratio involving no trig functions.

 6. If x 6 0, then tan-1 x is a negative angle in the fourth quadrant (Figure 4.86). 
Verify that your answers to parts 4 and 5 are still valid in this case.

EXPLORATION 1 

1
x

u

Figure 4.87 A triangle in which 
u = sin-1 x. (Example 5)

Composing Trig Functions with Arcsine
Compose each of the six basic trig functions with sin-1 x and reduce the composite 
function to an algebraic expression involving no trig functions.

SOLUTION This time we begin with the triangle shown in Figure 4.87, in which 
u = sin-1 x. (This triangle could appear in the fourth quadrant if x were negative, but 
the trig ratios would be the same.)

The remaining side of the triangle (which is cos u) can be found by the Pythagorean 
Theorem. If we denote the unknown side by s, we have

 s2 + x2 = 1

 s2 = 1 - x2

 s = ±21 - x2

Note the ambiguous sign, which requires a further look. Because sin-1 x is always in 
Quadrant I or IV, the horizontal side of the triangle can only be positive.

Therefore, we can actually write s unambiguously as 21 - x2, giving us the triangle 
in Figure 4.88.

EXAMPLE 5 

1
x

1 – x2

u

Figure 4.88 If u = sin-1 x, then cos u = 21 - x2. Note that cos u will be positive 
because sin-1 x can only be in Quadrant I or IV. (Example 5)

1

x

u
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We can now read all the required ratios straight from the triangle:

 sin1sin-11x22 = x   csc1sin-11x22 =
1
x

 cos1sin-11x22 = 21 - x2  sec1sin-11x22 =
121 - x2

 tan1sin-11x22 =
x21 - x2

  cot1sin-11x22 =
21 - x2

x

 Now try Exercise 47.

Applications of Inverse Trigonometric  
Functions
When an application involves an angle as a dependent variable, as in u = ƒ1x2, then 
to solve for x, it is natural to use an inverse trigonometric function and find 
x = ƒ -11u2.

x

20

45

u

u1 u2

Figure 4.89 The diagram for the stadium 
screen. (Example 6)
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A
ng

le
 (

de
gr

ee
s)

Figure 4.90 Viewing angle u as a function 
of distance x from the wall. (Example 6)

Calculating a Viewing Angle
The bottom of a 20-ft replay screen at Dodger Stadium is 45 ft above the playing 
field. As you move away from the wall, the angle formed by the screen at your eye 
changes. There is a distance from the wall at which the angle is the greatest. What is 
that distance?

SOLUTION 

Model The angle subtended by the screen is represented in Figure 4.89 by u, and 
u = u1 - u2. Because tan u1 = 65>x, it follows that u1 = tan-1165>x2. Similarly, 
u2 = tan-1145>x2. Thus,

u = tan-1 
65
x

- tan-1 
45
x

.

Solve Graphically Figure 4.90 shows a graph of u that reflects Degree mode. The 
question about distance for maximum viewing angle can be answered by finding the 
x-coordinate of the maximum point of this graph. Using grapher methods we see that 
this maximum occurs when x ≈ 54 ft.

Therefore, the maximum angle subtended by the replay screen occurs about 54 ft 
from the wall. Now try Exercise 55.

EXAMPLE 6 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, state the sign (positive or negative) of the sine, cosine, 
and tangent in the quadrant.

 1. Quadrant I 2. Quadrant II

 3. Quadrant III 4. Quadrant IV

In Exercises 5–10, find the exact value.

 5. sin1p>62  6. tan1p>42
 7. cos12p>32  8. sin12p>32
 9. sin1-p>62  10. cos1-p>32

QUICK REVIEW 4.7 (For help, go to Section 4.3.) 
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402 CHAPTER 4 Trigonometric Functions

In Exercises 47–52, find an algebraic expression equivalent to the given 
expression. [Hint: Form a right triangle as done in Example 5.]

 47. sin1tan-1 x2  48. cos1tan-1 x2
 49. tan1arcsin x2  50. cot1arccos x2
 51. cos1arctan 2x2 52. sin1arccos 3x2
 53. Group Activity Viewing Angle You are standing in an art 

museum viewing a picture. The bottom of the picture is 2 ft above 
your eye level, and the picture is 12 ft tall. Angle u is formed by 
the lines of vision to the bottom and to the top of the picture.

SECTION 4.7 Exercises

In Exercises 1–12, find the exact value.

 1. sin-1a23
2
b  2. sin-1a-  

1
2
b

 3. tan-1 0  4. cos-1 1

 5. cos-1a1
2
b  6. tan-1 1

 7. tan-11-12  8. cos-1a-  
23
2
b

 9. sin-1a-  
122
b  10. tan-11-232

 11. cos-1 0  12. sin-1 1

In Exercises 13–16, use a calculator to find the approximate value. 
Express your answer in degrees.

 13. sin-110.3622  14. arcsin 0.67

 15. tan-11-12.52  16. cos-11-0.232
In Exercises 17–20, use a calculator to find the approximate value. 
Express your result in radians.

 17. tan-112.372  18. tan-1122.82
 19. sin-11-0.462  20. cos-11-0.8532
In Exercises 21 and 22, describe the end behavior of the function.

 21. y = tan-1 1x22 22. y = 1tan-1 x22
In Exercises 23–32, find the exact value without a calculator.

 23. cos1sin-111>222  24. sin1tan-1 12
 25. sin-11cos1p>422  26. cos-11cos17p>422
 27. cos12 sin-111>222  28. sin1tan-11-122
 29. arcsin1cos1p>322  30. arccos1tan1p>422
 31. cos1tan-1 232  32. tan-11cos p2
In Exercises 33–36, analyze each function for domain, range, continu-
ity, increasing or decreasing behavior, symmetry, boundedness, 
extrema, asymptotes, and end behavior.

 33. ƒ1x2 = sin-1 x

 34. ƒ1x2 = cos-1 x

 35. ƒ1x2 = tan-1 x

 36. ƒ1x2 = cot-1 x (See graph in Exercise 67.)

In Exercises 37–40, use transformations to describe how the graph of 
the function is related to a basic inverse trigonometric graph. State the 
domain and range.

 37. ƒ1x2 = sin-112x2 38. g1x2 = 3 cos-112x2
 39. h1x2 = 5 tan-11x>22 40. g1x2 = 3 arccos1x>22
In Exercises 41–46, find the solution to the equation without a  
calculator.
 41. sin1sin-1 x2 = 1 42. cos-11cos x2 = 1

 43. 2 sin x = 1 44. tan x = -1

 45. cos 1cos-1 x2 = 1>6 46. sin-11sin x2 = p>10

Picture

x

12

2u

(a) Show that u = tan-1a14
x
b - tan-1a2

x
b .

(b) Graph u in the 30, 254  by 30, 554  viewing window using 
Degree mode. Use your grapher to show that the maximum 
value of u occurs approximately 5.3 ft from the picture.

(c) How far (to the nearest foot) are you standing from the 
wall if u = 35°?

 54. Group Activity Analysis of a Lighthouse A rotating 
beacon L stands 3 m across the harbor from the nearest point P 
along a straight shoreline. As the light rotates, it forms an angle 
u, as shown in the figure, and illuminates a point Q on the same 
shoreline as P.

P

Q

L

3

x

u

(a) Show that u = tan-1ax
3
b .

(b) Graph u in the viewing window 3-20, 204  by 3-90, 904  
using Degree mode. What do negative values of x repre-
sent in the problem? What does a positive angle represent? 
a negative angle?

(c) Find u when x = 15.
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 55. Rising Hot-Air Balloon The Penang Hot Air Balloon Fiesta, 
an annual hot-air balloon festival held in Penang, Malaysia, is a 
popular event for photographers. Ian Teh, a talented Malaysian 
photographer at the event, watches a balloon rising from ground 
level from a point 200 m away on level ground. 

 61. Multiple Choice sec1tan-1 x2 =
(A) x (B) csc x (C) 21 + x2

(D) 21 - x2 (E) 
sin x

1cos x22
 62. Multiple Choice The range of the function 

ƒ1x2 = arcsin x is

(A) 1-∞, ∞2. (B) 1-1, 12. (C) 3-1, 14 .
(D) 30, p4 . (E) 3-p>2, p>24 .

Explorations
 63. Writing to Learn Using the format demonstrated in this 

section for the inverse sine, cosine, and tangent functions, give 
a careful definition of the inverse cotangent function. 3Hint: 
The range of y = cot-1 x is 10, p2.4

 64. Writing to Learn Use an appropriately labeled triangle to 
explain why sin-1 x + cos-1 x = p>2. For what values of x is 
the left-hand side of this equation defined?

 65. Graph each of the following functions and interpret the graph 
to find the domain, range, and period of each function. Which 
of the three functions has points of discontinuity? Are the dis-
continuities removable or nonremovable?

(a) y = sin-11sin x2
(b) y = cos-11cos x2
(c) y = tan-11tan x2

Extending the Ideas
 66. Practicing for Calculus Express each of the following 

functions as an algebraic expression involving no trig  
functions.

(a) cos1sin-1 2x2 (b) sec21tan-1 x2
(c) sin1cos-1 2x2 (d) -csc21cot-1 x2
(e) tan1sec-1 x22

 67. Arccotangent on the Calculator Most graphing calcu-
lators do not have a button for the inverse cotangent. The graph 
is shown below. Find an expression that you can put into your 
calculator to produce a graph of y = cot-1 x.

200 m

s

u

(a) Write u a function of the height s of the balloon.

(b) Is the change in u greater as s changes from 15 m to 30 m, 
or as s changes from 100 m to 115 m? Explain.

(c) Writing to Learn In the 
graph of this relationship shown 
here, do you think that the x-axis 
represents the height s and the 
y-axis angle u, or does the x-axis 
represent angle u and the y-axis 
height s? Explain.

 56. Find the domain and range of each of the following  
functions.

(a) ƒ1x2 = sin1sin-1 x2
(b) g1x2 = sin-11x2 + cos-11x2
(c) h1x2 = sin-11sin x2
(d) k1x2 = sin1cos-1 x2
(e) q1x2 = cos-11sin x2

Standardized Test Questions
 57. True or False sin1sin-1 x2 = x for all real numbers x.  

Justify your answer.

 58. True or False The graph of y = arctan x has two horizon-
tal asymptotes. Justify your answer.

You should answer these questions without using a calculator.

 59. Multiple Choice cos-1a-  
23
2
b  =

(A) -  
7p
6

 (B) -  
p

3
 (C) -  

p

6

(D) 
2p
3

 (E) 
5p
6

 60. Multiple Choice sin-11sin p2 =
(A) -2p (B) -p (C) 0

(D) p (E) 2p

[–0.2, 1000] by [–0.2, 1.6]

p

[23, 3] by [21, 4]
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404 CHAPTER 4 Trigonometric Functions

 68. Advanced Decomposition Decompose each of the fol-
lowing algebraic functions by writing it as a trig function of an 
arctrig function.

(a) 21 - x2 (b) 
x21 + x2

 (c) 
x21 - x2

 69. Use elementary transformations and the arctangent function to 
construct a function with domain all real numbers that has hori-
zontal asymptotes at y = 24 and y = 42.

 70. Avoiding Ambiguities When choosing the right triangle in 
Example 5, we used a hypotenuse of 1. It is sometimes neces-
sary to use a variable quantity for the hypotenuse, in which 
case it is a good idea to use x2 rather than x, just in case x is 
negative. (All of our definitions of the trig functions have 
involved triangles in which the hypotenuse is assumed to be 
positive.)

(a) If we use the triangle below to represent u = sin-111>x2, 
explain why side s must be positive regardless of the sign 
of x.

(b) Use the triangle in part (a) to find tan1sin-1 11>x22.
(c) Using an appropriate triangle, find sin1cos-1 11>x22.

(a) The graph on the left has one horizontal asymptote. What 
is it?

(b) The graph on the right has two horizontal asymptotes. 
What are they?

(c) Which of these graphs is also the graph of y = cos-111>x2?
(d) Which of these graphs is increasing on both connected 

intervals?

 72. Defining Arccosecant The range of the cosecant function 
is 1-∞, -14 ∪ 31, ∞2, which must become the domain of the 
arccosecant function. The graph of y = arccsc x must therefore 
be the union of two unbroken curves. Two possible graphs with 
the correct domain are shown below.

x
x2

s
u

 71. Defining Arcsecant The range of the secant function is 
1-∞, -14 ∪ 31, ∞2, which must become the domain of the 
arcsecant function. The graph of y = arcsec x must therefore 
be the union of two unbroken curves. Two possible graphs with 
the correct domain are shown below.

3

1

–2

y

x
–1

x

3

1

–2

y

–1(1, 0) (1, 0)

(–1, p)

(–1, p)

4

1

–2

y

x
–1 1

4

1

–2

y

x
–1 1

(1, p/2)(1, p/2)

(–1, –p/2)

(–1, 3p/2)

(a) The graph on the left has one horizontal asymptote. What 
is it?

(b) The graph on the right has two horizontal asymptotes. 
What are they?

(c) Which of these graphs is also the graph of y = sin-111>x2?
(d) Which of these graphs is decreasing on both connected 

intervals?
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What you’ll learn about
• More Right Triangle Problems

• Simple Harmonic Motion

... and why
These problems illustrate some 
of the better-known applications 
of trigonometry.

More Right Triangle Problems
We close this first of two trigonometry chapters by revisiting some of the applications 
of Section 4.2 (right triangle trigonometry) and Section 4.4 (sinusoids).

An angle of elevation is the angle through which the eye moves up from horizontal to 
look at something above, and an angle of depression is the angle through which the 
eye moves down from horizontal to look at something below. For two observers at dif-
ferent elevations looking at each other, the angle of elevation for one equals the angle 
of depression for the other. The concepts are illustrated in Figure 4.91 as they might 
apply to observers at Mount Rushmore or the Grand Canyon.

4.8 Solving Problems with Trigonometry

Li
ne

 o
f s

ig
ht

 

Angle of
elevation

Li
ne

 o
f s

ig
ht

 

B

A
Angle of
depression

(a) (b)

Figure 4.91 (a) Angle of elevation at Mount Rushmore. (b) Angle of depression at the 
Grand Canyon.

6°

130

ux

Figure 4.92 A big lighthouse and a 
little buoy. (Example 1)

Using Angle of Depression
The angle of depression of a buoy from the top of the Barnegat Bay lighthouse  
130 ft above the surface of the water is 6°. Find the distance x from the base of the 
lighthouse to the buoy.

SOLUTION Figure 4.92 models the situation.

In the diagram, u = 6° because the angle of elevation from the buoy equals the 
angle of depression from the lighthouse. We solve algebraically using the tangent 
function:

 tan u = tan 6° =
130

x

 x =
130

tan 6°
≈ 1236.9

Interpreting We find that the buoy is about 1237 ft from the base of the lighthouse.
 Now try Exercise 3.

EXAMPLE 1 
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406 CHAPTER 4 Trigonometric Functions

Making Indirect Measurements
From the top of the 100-ft-tall Altgelt Hall a man observes a car moving toward the 
building. If the angle of depression of the car changes from 22° to 46° during the 
period of observation, how far does the car travel?

SOLUTION 

Solve Algebraically Figure 4.93 models the situation. Notice that we have labeled 
the acute angles at the car’s two positions as 22° and 46° (because the angle of eleva-
tion from the car equals the angle of depression from the building). Denote the dis-
tance the car moves as x. Denote its distance from the building at the second 
observation as d.

From the smaller right triangle we conclude:

 tan 46° =
100
d

 d =
100

tan 46°
From the larger right triangle we conclude:

 tan 22° =
100

x + d

 x + d =
100

tan 22°

 x =
100

tan 22°
- d

 x =
100

tan 22°
-

100
tan 46°

 x ≈ 150.9

Interpreting We find that the car travels about 151 ft.
 Now try Exercise 7.

EXAMPLE 2 

Finding Height Above Ground
A large, helium-filled penguin is moored at the beginning of a parade route awaiting 
the start of the parade. Two cables attached to the underside of the penguin make 
angles of 48° and 40° with the ground and are in the same plane as a perpendicular 
line from the penguin to the ground. (See Figure 4.94.) If the cables are attached to 
the ground 10 ft from each other, how high above the ground is the penguin?

SOLUTION We can simplify the drawing to the two right triangles in Figure 4.95 
that share the common side h.

Model By the definition of the tangent function,

h
x

= tan 48° and 
h

x + 10
= tan 40°.

Solve Algebraically Solving for h,

h = x tan 48° and h = 1x + 102 tan 40°.

EXAMPLE 3 

22° 46°

x d

100 ft

22°

46°

Figure 4.93 A car approaches Altgelt 
Hall. (Example 2)

10 ft

Figure 4.94 A large, helium-filled 
penguin. (Example 3)

x

h

40° 48°
10

Figure 4.95 (Example 3)
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Simple Harmonic Motion
Because of their periodic nature, the sine and cosine functions are helpful in describing 
the motion of objects that oscillate, vibrate, or rotate. For example, the linkage in 
 Figure 4.97 converts the rotary motion of a motor to the back-and-forth motion needed 
for some machines. When the wheel rotates, the piston moves back and forth.

If the wheel rotates at a constant rate v radians per second, the back-and-forth motion 
of the piston is an example of simple harmonic motion and can be modeled by an equa-
tion of the form

d = a cos vt, v 7 0,

where a is the radius of the wheel and d is the directed distance of the piston from its 
center of oscillation.

North53°
143°

A

B

C

ab

u

Figure 4.96 Path of travel for a Coast 
Guard boat that corners well at 35 knots. 
(Example 4)

Set these two expressions for h equal to each other and solve the equation for x:

 x tan 48° = 1x + 102 tan 40°  Both equal h.

 x tan 48° = x tan 40° + 10 tan 40°
 x tan 48° - x tan 40° = 10 tan 40°  Isolate x terms.

 x1tan 48° - tan 40°2 = 10 tan 40°  Factor out x.

 x =
10 tan 40°

tan 48° - tan 40°
≈ 30.90459723

We retain the full display for x because we are not finished yet; we need to solve for h:

h = x tan 48° = 130.904597232 tan 48° ≈ 34.32

The penguin is approximately 34 ft above ground level.
 Now try Exercise 15.

Using Trigonometry in Navigation
A U.S. Coast Guard patrol boat leaves Port Cleveland and averages 35 knots (naut 
mi per hr) traveling for 2 hr on a course of 53° and then 3 hr on a course of 143°. 
What are the boat’s bearing and distance from Port Cleveland?

SOLUTION Figure 4.96 models the situation.

Solve Algebraically In the diagram, line AB is a transversal that cuts a pair of par-
allel lines. Thus, b = 53° because they are alternate interior angles. Angle a, as the 
supplement of a 143° angle, is 37°. Consequently, ∠ABC = 90° and AC is the  
hypotenuse of right △ABC.

Use distance = rate * time to determine distances AB and BC.

 AB = 135 knots212 hr2 = 70 naut mi

 BC = 135 knots213 hr2 = 105 naut mi

Solve the right triangle for AC and u.

 AC = 2702 + 1052 Pythagorean Theorem

 AC ≈ 126.2

 u = tan-1a105
70
b

 u ≈ 56.3°

Interpreting We find that the boat’s bearing from Port Cleveland is 53° + u, or 
approximately 109.3°. They are about 126 naut mi out.
 Now try Exercise 17.

EXAMPLE 4 

Initial (t 5 0)
position

2a a 1d
d

0

Piston

a
vt

Figure 4.97 A piston operated by a wheel 
rotating at a constant rate demonstrates simple 
harmonic motion.
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y

x

8

P

8 cos 8pt

8pt

Figure 4.98 Modeling the path of a 
piston by a sinusoid. (Example 5)

For the sake of simplicity, we will define simple harmonic motion in terms of a point 
moving along a number line.

DEFINITION Simple Harmonic Motion

A point moving on a number line is in simple harmonic motion if its directed 
distance d from the origin is given by either

d = a sin vt or d = a cos vt,

where a and v are real numbers and v 7 0. The motion has frequency v>2p, 
which is the number of oscillations per unit of time.

Watching Harmonic Motion

You can watch harmonic motion on your graphing calculator. Set your grapher to 
Parametric mode and set X1T = cos1T2 and Y1T = sin1T2. Set Tmin = 0, 
Tmax = 25, Tstep = 0.2, Xmin = -1.5, Xmax = 1.5, Xscl = 1, 
Ymin = -100, Ymax = 100, Yscl = 0.

If your calculator allows you to change style to graph a moving ball, choose that 
style. When you graph the function, you will see the ball moving along the 
x-axis between -1 and 1 in simple harmonic motion. If your grapher does not 
have the moving ball option, wait for the grapher to finish graphing, then press 
TRACE and keep your finger pressed on the right arrow key to see the tracer 
move in simple harmonic motion.

 1. For each value of T, the parametrization gives the point 1cos1T2, sin1T22. 
What well-known curve should this parametrization produce?

 2. Why does the point seem to go back and forth on the x-axis when it should be 
following the curve identified in part 1? [Hint: Check that viewing window 
again!]

 3. Why does the point slow down at the extremes and speed up in the middle? 
[Hint: Remember that the grapher is really following the curve identified in 
part 1.]

 4. How can you tell that this point moves in simple harmonic motion?

EXPLORATION 1 

Calculating Harmonic Motion
In a mechanical linkage like the one shown in Figure 4.97, a wheel with an 8-cm 
radius turns with an angular velocity of 8p rad>sec.

(a) What is the frequency of the piston in cycles per second?

(b) What is the distance from the starting position 1t = 02 exactly 3.45 sec after 
starting?

SOLUTION Imagine the wheel to be centered at the origin and let P1x, y2 be a point 
on its perimeter (Figure 4.98). As the wheel rotates and P goes around, the motion of 
the piston follows the path of the x-coordinate of P along the x-axis. The angle  
determined by P at any time t is 8pt, so its x-coordinate is 8 cos 8pt. Therefore, the 
sinusoid d = 8 cos 8pt models the motion of the piston.

EXAMPLE 5 

Frequency and Period
Notice that harmonic motion is sinusoidal, with 
amplitude 0 a 0  and period 2p>v. The frequency 
is the reciprocal of the period.
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(a) The frequency of d = 8 cos 8pt is 8p>2p, or 4 cycles>sec. The piston makes 
four complete back-and-forth strokes per second. The graph of d as a function of 
t is shown in Figure 4.99. The four cycles of the sinusoidal graph in the interval 
30, 14  model the four cycles of the motor or the four strokes of the piston. Note 
that the sinusoid has a period of 1>4, the reciprocal of the frequency.

(b) We must find the distance between the positions at t = 0 and t = 3.45.

The initial position at t = 0 is

d102 = 8.

The position at t = 3.45 is

d13.452 = 8 cos 18p # 3.452 ≈ 2.47.

The distance between the two positions is approximately 8 - 2.47 = 5.53.

Interpreting We conclude that the piston is approximately 5.53 cm from its starting 
position after 3.45 sec. Now try Exercise 27.

[0, 1] by [210, 10]

Figure 4.99 A sinusoid with frequency 
4 models the motion of the piston in 
Example 5.

Calculating Harmonic Motion
A mass oscillating up and down on the bottom of a spring (assuming perfect elastic-
ity and no friction or air resistance) can be modeled as harmonic motion. If the 
weight is displaced a maximum of 5 cm, find the modeling equation if it takes  
2 sec to complete one cycle. (See Figure 4.100.)

EXAMPLE 6 

5 cm

0 cm

25 cm

5 cm

0 cm

25 cm

Figure 4.100 The mass and spring in Example 6.

SOLUTION We have our choice between the two equations d = a sin vt and 
d = a cos vt. Assuming that the spring is at the origin of the coordinate system when 
t = 0, we choose the equation d = a sin vt.

Because the maximum displacement is 5 cm, we conclude that the amplitude a = 5.

Because it takes 2 sec to complete one cycle, we conclude that the period is 2 and the 
frequency is 1>2. Therefore,

 
v

2p
=

1
2

 

 v = p

Putting it all together, our modeling equation is d = 5 sin pt.
 Now try Exercise 29.
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410 CHAPTER 4 Trigonometric Functions

CHAPTER OPENER Problem (from page 336)

Problem: If we know that the musical note A above middle C has a pitch of  
440 Hz, how can we model the sound produced by it at 80 dB?

Solution: Sound is modeled by simple harmonic motion, with frequency per-
ceived as pitch and measured in hertz (Hz), and amplitude perceived as loudness 
and measured in decibels (dB). So for the musical note A with a pitch of 440 Hz, 
we have frequency = v>2p = 440, and therefore v = 2p # 440 = 880p.

If this note is played at a loudness of 80 dB, we have 0 a 0 = 80. Using the simple 
harmonic motion model d = a sin vt, we have

d = 80 sin 880pt.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, find the lengths a, b, and c.

 1.  2. 

 3.  4. 

In Exercises 5 and 6, find the complement and supplement of the angle.

 5. 32° 6. 73°

In Exercises 7 and 8, state the bearing that describes the direction.

 7. NE (northeast)

 8. SSW (south-southwest)

In Exercises 9 and 10, state the amplitude and period of the sinusoid.

 9. -3 sin 21x - 12
 10. 4 cos 41x + 22

QUICK REVIEW 4.8 (For help, go to Sections 4.1, 4.2, and 4.3.)

15

31°

c

b

2568°a

b

28

44° 28°

a
c

b

21

48° 31°

a
c

b

 2. Finding a Monument Height From a point 100 ft 
from its base, the angle of elevation of the top of the Arch of 
Septimus Severus, in Rome, Italy, is 34°13′12″. How tall is 
this monument?

 3. Finding a Distance The angle of depression from the 
top of the Smoketown Lighthouse 120 ft above the surface of 
the water to a buoy is 10°. How far is the buoy from the  
lighthouse?

SECTION 4.8 Exercises

In Exercises 1–36, solve the problem using your knowledge of geome-
try and the techniques of this section. Sketch a figure if one is not  
provided.

 1. Finding a Cathedral 
Height The angle of eleva-
tion of the top of the Ulm 
Cathedral from a point 300 ft 
away from the base of its 
steeple on level ground is 60°. 
Find the height of the cathe-
dral.

300 ft

60°

h
10°

120 ft
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 4. Finding a Baseball Stadium Dimension The top row 
of seats behind home plate at Cincinnati’s Great American Ball 
Park is 90 ft above the level of the playing field. The angle of 
depression to the base of the left field wall is 14°. How far is 
the base of the left field wall from a point on level ground 
directly below the top row?

 5. Finding a Guy-Wire Length A guy wire connects the top 
of an antenna to a point on level ground 50 ft from the base of 
the antenna. The angle of elevation formed by the wire is 80°. 
What are the length of the wire and the height of the antenna?

 11. Antenna Height A guy wire attached to the top of the 
KSAM radio antenna is anchored at a point on the ground  
10 m from the antenna’s base. If the wire makes an angle of 
55° with level ground, how high is the KSAM antenna?

 12. Building Height To determine the height of the Louisiana-
Pacific (LP) Tower, the tallest building in Conroe, Texas, a sur-
veyor stands at a point on the ground, level with the base of the LP 
building. He measures the point to be 125 ft from the building’s 
base and the angle of elevation to the top of the building to be 
29°48′. Find the height of the building.

 13. Navigation The Paz Verde, a whalewatch boat, is located at 
point P, and L is the nearest point on the Baja California shore. 
Point Q is located 4.25 mi down the shoreline from L and 
PL # LQ. Determine the distance that the Paz Verde is from 
the shore if ∠PQL = 35°.

 6. Finding a Length A wire stretches from the top of a verti-
cal pole to a point on level ground 16 ft from the base of the 
pole. If the wire makes an angle of 62° with the ground, find 
the height of the pole and the length of the wire.

 7. Height of Eiffel Tower The angle of elevation of the top 
of the TV antenna mounted on top of the Eiffel Tower in Paris 
is measured to be 80°1′12″ at a point 185 ft from the base of 
the tower. How tall is the tower plus TV antenna?

 8. Height of Tallest Chimney The world’s tallest chimney, at 
Ekibastuz, Kazakhstan, casts a shadow that is approximately  
500 m long when the Sun’s angle of elevation (measured from the 
horizon) is 40°. How tall is the chimney?

50 ft

80°

Sun

Chimney

Shadow 5 500 m

40°

40°

 9. Cloud Height To measure the height of a cloud, you place 
a bright searchlight directly below the cloud and shine the 
beam straight up. From a point 100 ft away from the search-
light, you measure the angle of elevation of the cloud to be 
83°12′. How high is the cloud?

 10. Ramping Up A ramp leading to a freeway overpass is  
470 ft long and rises 32 ft. What is the average angle of inclina-
tion of the ramp to the nearest tenth of a degree?

L

P

35°

4.25 mi

Q

 14. Recreational Hiking While hiking on a level path toward 
Colorado’s front range, Otis Evans determines that the angle of 
elevation to the top of Long’s Peak is 30°. Moving 1000 ft 
closer to the mountain, Otis determines the angle of elevation 
to be 35°. How much higher is the top of Long’s Peak than 
Otis’s elevation?

 15. Civil Engineering The angle of elevation from an observer 
to the bottom edge of the Delaware River drawbridge observa-
tion deck located 200 ft from the observer is 30°. The angle of 
elevation from the observer to the top of the observation deck 
is 40°. What is the height of the observation deck?

200 ft

40°
30°

 16. Traveling Car From the top of a 100-ft building a man 
observes a car moving toward him. If the angle of depression 
of the car changes from 15° to 33° during the period of obser-
vation, how far does the car travel?

33°

100 ft

15°
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412 CHAPTER 4 Trigonometric Functions

 24. Recreational Flying A hot-air balloon over Park City, 
Utah, is 760 ft above the ground. The angle of depression from 
the balloon to an observer is 5.25°. Assuming the ground is rel-
atively flat, how far is the observer from a point on the ground 
directly under the balloon?

 25. Navigation A shoreline runs north-south, and a boat is due 
east of the shoreline. The bearings of the boat from two points 
on the shore are 110° and 100°. Assume the two points are  
550 ft apart. How far is the boat from the shore?

 17. Navigation The Coast Guard 
cutter Angelica travels at 30 knots 
from its home port of Corpus 
Christi on a course of 95° for 2 hr 
and then changes to a course of 
185° for 2 hr. Find the distance and 
the bearing from the Corpus Christi 
port to the boat.

 18. Navigation The Cerrito Lindo travels at a speed of 40 knots 
from Fort Lauderdale on a course of 65° for 2 hr and then 
changes to a course of 155° for 4 hr. Determine the distance 
and the bearing from Fort Lauderdale to the boat.

 19. Land Measure The angle of depression is 19° from a point 
7256 ft above sea level on the north rim of the Grand Canyon 
to a point 6159 ft above sea level on the south rim. How wide 
is the canyon at that point?

 20. Ranger Fire Watch A ranger spots a fire from a  
73-ft tower in Yellowstone National Park. She measures the 
angle of depression to be 1°20′. How far is the fire from  
the tower? 

 21. Civil Engineering The bearing of the line of sight to the 
east end of the Royal Gorge footbridge from a point 375 ft due 
north of the west end of the footbridge across the Royal Gorge 
is 113°. What is the length l of the bridge?

Corpus
Christi

95°

185°

375 ft

l
113°

 22. Space Flight The angle of elevation of a space shuttle from 
Cape Canaveral is 17° when the shuttle is directly over a ship 
12 mi downrange. What is the altitude of the shuttle when it is 
directly over the ship?

12

h

17°

 23. Architectural Design A barn roof is constructed as shown 
in the figure at the top of the next column. What is the height 
of the vertical center span?

73 ft
15°15°

550 ft

110°

100°

 26. Navigation Milwaukee, Wisconsin, is directly west of 
Grand Haven, Michigan, on opposite sides of Lake Michigan. 
On a foggy night, a law enforcement boat leaves from Milwau-
kee on a course of 105° at the same time that a small smuggling 
craft steers a course of 195° from Grand Haven. The law 
enforcement boat averages 23 knots and collides with the 
smuggling craft. What was the smuggling boat’s average 
speed?

 27. Mechanical Design Refer to Figure 4.97. The wheel in a 
piston linkage like the one shown in the figure has a radius of  
6 in. It turns with an angular velocity of 16p rad>sec. The 
 initial position is the same as that shown in Figure 4.97.

(a) What is the frequency of the piston?

(b) What equation models the motion of the piston?

(c) What is the distance from the initial position 2.85 sec after 
starting?

 28. Mechanical Design Suppose the wheel in a piston linkage 
like the one shown in Figure 4.97 has a radius of 18 cm and 
turns with an angular velocity of p rad>sec.

(a) What is the frequency of the piston?

(b) What equation models the motion of the piston?

(c) How many cycles does the piston make in 1 min?
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(e) Use your sinusoidal model to predict dates in the year 
when the mean temperature in Charleston will be 70°. 
(Assume that t = 0 represents January 1.)

 29. Vibrating Spring A mass on a spring 
oscillates back and forth and completes one 
cycle in 0.5 sec. Its maximum displacement 
is 3 cm. Write an equation that models this 
motion.

 30. Tuning Fork A point on the tip of a tun-
ing fork vibrates in harmonic motion 
described by the equation d = 14 sin vt. 
Find v for a tuning fork that has a frequency 
of 528 vibrations per second.

 31. Ferris Wheel Motion The Ferris wheel shown in this  
figure makes one complete turn every 20 sec. A rider’s height, 
h, above the ground can be modeled by the equation 
h = a sin vt + k, where h and k are given in feet and t is 
given in seconds.

0 cm

d cm

8 ft

25 ft

(a) What is the value of a?

(b) What is the value of k?

(c) What is the value of v?

 32. Ferris Wheel Motion Jacob and Emily ride a Ferris 
wheel at a carnival in Billings, Montana. The wheel has a 16-m 
diameter and turns at 3 rpm with its lowest point 1 m above the 
ground. Assume that Jacob and Emily’s height h above the 
ground is a sinusoidal function of time t (in seconds), where 
t = 0 represents the lowest point of the wheel.

(a) Create a model for h.

(b) Draw a graph of h for 0 … t … 30.

(c) Use h to estimate Jacob and Emily’s height above the 
ground at t = 4 and t = 10.

 33. Monthly Temperatures in Charleston The monthly 
normal mean temperatures in Charleston, SC, are shown in 
Table 4.4. A scatter plot suggests that the mean monthly temper-
atures can be modeled by a sinusoidal curve over time. Assume 
that the sinusoid has equation y = a sin1b 1t - h22 + k.

(a) Given that the period is 12 months, find b.

(b) Assuming that the high and low temperatures in the table 
determine the range of the sinusoid, find a and k.

(c) Find a value of h that will put the minimum at t = 1 and 
the maximum at t = 7.

(d) Superimpose a graph of your sinusoid on a scatter plot of 
the data. How good is the fit?

Table 4.4 Average Daily Temperature
for Charleston, SC

Month Temperature (°F)

 1 49.2
 2 51.3
 3 57.7
 4 64.9
 5 72.7
 6 78.8
 7 81.5
 8 80.7
 9 76.3
10 66.8
11 57.9
12 50.9

Source: Southeast Regional Climate Center, 2013.
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 34. Writing to Learn For the Ferris wheel in Exercise 31, 
which equation correctly models the height of a rider who 
begins the ride at the bottom of the wheel when t = 0?

(a) h = 25 sin 
pt
10

(b) h = 25 sin 
pt
10

+ 8

(c) h = 25 sin 
pt
10

+ 33

(d) h = 25 sinapt
10

+
3p
2
b + 33

Explain your thought process, and use of a grapher in choosing 
the correct modeling equation.
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414 CHAPTER 4 Trigonometric Functions

 35. Monthly Sales Owing to startup costs and seasonal varia-
tions, Gina found that the monthly profit in her bagel shop dur-
ing the first year followed an up-and-down pattern that could 
be modeled by P = 2t - 7 sin1pt>32, where P was measured 
in hundreds of dollars and t was measured in months after  
January 1.

(a) In what month did the shop first begin to make money?

(b) In what month did the shop enjoy its greatest profit in that 
first year?

 36. Weight Loss Courtney tried several different diets over a 
two-year period in an attempt to lose weight. She found that 
her weight W followed a fluctuating curve that could be mod-
eled by the function W = 220 - 1.5t + 9.81 sin1pt>42, 
where t was measured in months after January 1 of the first 
year and W was measured in pounds.

(a) What was Courtney’s weight at the start and at the end of 
two years?

(b) What was her maximum weight during the two-year 
period?

(c) What was her minimum weight during the two-year 
period?

Standardized Test Questions
 37. True or False Higher frequency sound waves have shorter 

periods. Justify your answer.

 38. True or False A car traveling at 30 mph is moving  
faster than a ship traveling at 30 knots. Justify your  
answer.

You may use a graphing calculator when answering these questions.

 39. Multiple Choice To get a rough idea of the height of a 
building, John paces off 50 ft from the base of the building. 
From that point, he measures the angle of elevation from the 
ground to the top of the building to be 58°. About how tall is 
the building?

(A) 31 ft (B) 42 ft (C) 59 ft

(D) 80 ft (E) 417 ft

 40. Multiple Choice A boat leaves harbor and travels at 
20 knots on a bearing of 90°. After 2 hr, it changes course  
to a bearing of 150° and continues at the same speed for 
another hour.

After the entire 3-hr trip, how far is it from the harbor?

(A) 50 naut mi (B) 53 naut mi

(C) 57 naut mi (D) 60 naut mi

(E) 67 naut mi

 41. Multiple Choice At high tide at 8:15 p.m., the water level 
on the side of a pier is 9 ft from the top. At low tide 6 hr 12 min 
later, the water level is 13 ft from the top. At which of the 
 following times in that interval is the water level 10 ft from 
the top of the pier?

(A) 9:15 p.m. (B) 9:48 p.m. (C) 9:52 p.m.

(D) 10:19 p.m. (E) 11:21 p.m.

 42. Multiple Choice The loudness of a musical tone is deter-
mined by which characteristic of its sound wave?

(A) Amplitude (B) Frequency (C) Period

(D) Phase shift (E) Pitch

Explorations
 43. Group Activity The data for displacement (in millimeters) 

versus time (in seconds) on a tuning fork, shown in Table 4.5, 
were collected using a CBL and a microphone.

Table 4.5 Tuning Fork Data

Time  
(sec)

Displacement 
(mm)

Time  
(sec)

Displacement 
(mm)

0.00091 -0.080 0.00362 0.217
0.00108 0.200 0.00379 0.480
0.00125 0.480 0.00398 0.681
0.00144 0.693 0.00416 0.810
0.00162 0.816 0.00435 0.827
0.00180 0.844 0.00453 0.749
0.00198 0.771 0.00471 0.581
0.00216 0.603 0.00489 0.346
0.00234 0.368 0.00507 0.077
0.00253 0.099 0.00525 -0.164
0.00271 -0.141 0.00543 -0.320
0.00289 -0.309 0.00562 -0.354
0.00307 -0.348 0.00579 -0.248
0.00325 -0.248 0.00598 -0.035
 0.00344 -0.041  

(a) Graph a scatter plot of the data in the 30, 0.00624  by 
3-0.5, 14  viewing window.

(b) Select the equation that appears to be the best model for 
these data.

 i. y = 0.6 sin12464x - 2.842 + 0.25

 ii. y = 0.6 sin11210x - 22 + 0.25

 iii. y = 0.6 sin12440x - 2.12 + 0.15

(c) What is the approximate frequency of the tuning fork?

 44. Writing to Learn Human sleep-awake cycles at three dif-
ferent ages are described by the accompanying graphs. The 
portions of the graphs above the horizontal lines represent 
times awake, and the portions below represent times asleep.

6 P.M. 12 6 A.M.

Newborn

12 6 P.M.

6 P.M. 12 6 A.M.

Four years

12 6 P.M.

6 P.M. 12 6 A.M.

Adult

12 6 P.M.
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(a) What is the period of the sleep-awake cycle of a newborn? 
of a four-year-old? of an adult?

(b) Which of these three sleep-awake cycles is the closest to 
being modeled by a function y = a sin bx?

Using Trigonometry in Geometry In a  
regular polygon all sides have equal length and all 
angles have equal measure. In Exercises 45 and 46, 
consider the regular seven-sided polygon whose sides 
are 5 cm.

 45. Find the length of the apothem, the segment from the center of 
the seven-sided polygon to the midpoint of a side.

 46. Find the radius of the circumscribed circle of the regular seven-
sided polygon.

 47. A rhombus is a quadrilateral with all 
sides equal in length. Recall that a 
rhombus is also a parallelogram. 
Find length AC and length BD in the 
rhombus shown here.

Extending the Ideas
 48. A roof has two sections, one with a 50° elevation and the other 

with a 20° elevation, as shown in the figure.

(a) Find the height BE.

(b) Find the height CD.

(c) Find the length AE + ED, and double it to find the length 
of the roofline.

5 cm

a

r

18 in.
C

A

D

B

42°

CA

D

E

B
20 ft 45 ft

50° 50°

20° 20°

 49. Steep Trucking The percentage grade of a road is its slope 
expressed as a percentage. A tractor-trailer rig passes a sign 
that reads, “6% grade next 7 miles.” What is the average angle 
of inclination of the road?

 50. Television Coverage Many satellites travel in geosyn-
chronous orbits, which means that the satellite stays over the 
same point on our planet. A satellite that broadcasts cable tele-
vision is in geosynchronous orbit 100 mi above Earth. Assume 
that Earth is a sphere with radius 4000 mi, and find the arc 
length of coverage area for the cable television satellite on 
Earth’s surface.

 51. Group Activity A musical note, like that produced by a tun-
ing fork, is a pressure wave. Typically, its frequency is mea-
sured in hertz (cycles per second), and its sound pressure in 
pascals. Table 4.6 gives frequency (in Hz) of several musical 
notes. The sound-pressure data (in Pa) in Table 4.7 show local 
deviations in atmospheric pressure, measured using a CBL and 
a microphone for a specific turning fork.

Table 4.6 Frequency of Musical Notes

Note Frequency (Hz)

C 262

C  or D  277
D 294

D  or E  311
E 330
F 349

F  or G  370
G 392

G  or A  415
A 440

A  or B  466
B 494
C (next octave) 524

Table 4.7 Pressure Deviation Versus Time

Time (sec) Pressure (Pa) Time (sec) Pressure (Pa)

0.0002368 1.29021 0.0049024 -1.06632
0.0005664 1.50851 0.0051520 0.09235
0.0008256 1.51971 0.0054112 1.44694
0.0010752 1.51411 0.0056608 1.51411
0.0013344 1.47493 0.0059200 1.51971
0.0015840 0.45619 0.0061696 1.51411
0.0018432 -0.89280 0.0064288 1.43015
0.0020928 -1.51412 0.0066784 0.19871
0.0023520 -1.15588 0.0069408 -1.06072
0.0026016 -0.04758 0.0071904 -1.51412
0.0028640 1.36858 0.0074496 -0.97116
0.0031136 1.50851 0.0076992 0.23229
0.0033728 1.51971 0.0079584 1.46933
0.0036224 1.51411 0.0082080 1.51411
0.0038816 1.45813 0.0084672 1.51971
0.0041312 0.32185 0.0087168 1.50851
0.0043904 -0.97676 0.0089792 1.36298
 0.0046400 -1.51971  

(a) Graph a scatter plot of the sound-pressure data  
in Table 4.7.

(b) Determine a, b, and h so that the sinusoidal model 
y = a sin1b1t - h22 fits the data plotted in part (a).

(c) Determine the frequency of the sinusoidal model in part (b).

(d) Use your result from part (c) and Table 4.6 to identify the 
musical note produced by the tuning fork used to create 
Table 4.7.
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Procedures

Degree-Radian Conversion 347
Evaluating Trig Functions of a Nonquadrantal Angle 366
Constructing a Sinusoidal Model Using Time 380

CHAPTER 4 Key Ideas

Properties, Theorems, and Formulas

Arc Length Formulas 347, 348
Distance Conversions 349
Special Angles 355, 356, 371
Period of a Sinusoid 378
Frequency of a Sinusoid 378
Graphs of Sinusoids 379
Sums That Are Sinusoidal Functions 397

Gallery of Functions

[22p, 2p] by [24, 4]

f(x) = sin x

[22p, 2p] by [24, 4]

f(x) = cos x

[23p/2, 3p/2] by [24, 4]

f(x) = tan x

[22p, 2p] by [24, 4]

f(x) = cot x

[22p, 2p] by [24, 4]

f(x) = sec x

[22p, 2p] by [24, 4]

f(x) = csc x

p
2–

p
2

1–1

[21.5, 1.5] by [21.7, 1.7]

f(x) = sin–1 x

p

–1 1

[22, 2] by [21, 3.5]

f(x) = cos–1 x

p
2–

p
2

[24, 4] by [22.8, 2.8]

f(x) = tan–1 x

 5. 420°  6. 112°

 7. 
p

12
 8. 

7p
10

In Exercises 9 and 10, determine the angle measure in both degrees and 
radians. Draw the angle in standard position if its terminal side is 
obtained as described.

 9. A three-quarters counterclockwise rotation

 10. Two and one-half counterclockwise rotations

CHAPTER 4 Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–8, determine the quadrant of the terminal side of the 
angle in standard position. Convert degree measures to radians and 
radian measures to degrees.

 1. 
5p
2

 2. 
-7p
12

 3. -135°  4. -45°
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In Exercises 11–16, the point is on the terminal side of an angle in  
standard position. Give the smallest positive angle measure in both 
degrees and radians.

 11. 123, 12  12. 1-1, 12
 13. 1-1, 232  14. 1-3, -32
 15. 16, -122 16. 12, 42
In Exercises 17–28, evaluate the expression exactly without a calculator.

 17. sin 30°  18. cot 750°

 19. tan1-135°2  20. sec1-135°2

 21. sin 
11p

3
 22. csc 

2p
3

 23. seca-  
p

3
b  24. tan 

15p
4

 25. csc 270°  26. sec 180°

 27. cot 1-90°2  28. tan 360°

In Exercises 29–32, evaluate exactly all six trigonometric functions of 
the angle. Use reference triangles, not your calculator.

 29. 
-p
2

 30. 
19p

4

 31. -135° 32. 420°

 33. Find all six trigonometric functions of a in △ ABC.

 47. tan x 6 0 and  sin x 7 0

 48.  tan x 7 0 and cos x 7 0

In Exercises 49–52, point P is on the terminal side of angle u.  
Evaluate the six trigonometric functions for u.

 49. 1-3, 62 50. 112, 72
 51. 1-5, -32 52. 14, 92
In Exercises 53–60, use transformations to describe how the graph 
of the function is related to a basic trigonometric graph. Graph two 
periods.

 53. y = sin1x + p2 54. y = 3 + 2 cos x

 55. y = -cos1x + p>2) + 4

 56. y = -2 - 3 sin1x - p2
 57. y = tan 2x 58. y = -2 cot 3x

 59. y = -2 sec 
x

2
 60. y = csc px

In Exercises 61–66, state the amplitude, period, phase shift, domain, 
and range for the sinusoid.

 61. ƒ1x2 = 2 sin 3x 62. g1x2 = 3 cos 4x

 63. ƒ1x2 = 2 cos1-x - p2
 64. g1x2 = -2 sin13x - p>32
 65. y = 4 cos12x - 12 66. g1x2 = -2 cos13x + 12
In Exercises 67 and 68, graph the function. Then estimate the values of 
a, b, and h so that ƒ1x2 ≈ a sin1b1x - h22.
 67. ƒ1x2 = 2 sin x - 4 cos x

 68. ƒ1x2 = 3 cos 2x - 2 sin 2x

In Exercises 69–72, use a calculator to evaluate the expression. Express 
your answer in both degrees and radians.

 69. sin-1 10.7662 70. cos-1 10.4792

 71. tan-1 1  72. sin-1a23
2

 b
In Exercises 73–76, use transformations to describe how the graph of 
the function is related to a basic inverse trigonometric graph. State the 
domain and range.

 73. y = sin-1 3x 74. y = tan-1 2x

 75. y = sin-113x - 12 + 2 76. y = cos-112x + 12 - 3

In Exercises 77–82, find the exact value of x without using a calculator.

 77. sinax -  
p

4
b = 1,   

p

2
… x … p

 78. cosa2x +
p

6
b =

1
2

,   
3p
2

… x … 2p

 79. tan x = -1,  0 … x … p
 80. sec x = 2, p … x … 2p

 81. csc x = -1, 0 … x … 2p

 82. cot x = -23, 0 … x … p

In Exercises 83 and 84, describe the end behavior of the function.

 83. 
sin x

x2  84. 
3
5

 e-x>12 sin12x - 32

CA

B

5 cm

12 cm
a

b

 34. Use a right triangle to determine the values all trigonometric 
functions of u, where sin u = 3>5.

 35. Use a right triangle to determine the values of all trigonometric 
functions of u, where tan u = 15>8.

 36. Use a calculator in Degree mode to solve cos u = 3>7 if 
0° … u … 90°.

 37. Use a calculator in Radian mode to solve tan x = 1.35 if 
p … x … 3p>2.

 38. Use a calculator in Radian mode to solve sin x = 0.218 if 
0 … x … 2p.

In Exercises 39–44, solve the right △ ABC.

CA

B

a

b

c

a

b

 39. b =
p

4
, a = 2 40. b = 8, c = 10

 41. b = 48°, a = 7 42. a = 28°, c = 8

 43. b =
p

6
, b = 4 44. a = 2.5, b = 7.3

In Exercises 45–48, x is an angle in standard position with  
0 … x … 2p. Determine the quadrant of x.

 45. sin x 6 0 and  tan x 7 0

 46. cot x 6 0 and  cos x 7 0

 CHAPTER 4 Review Exercises 417
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418 CHAPTER 4 Trigonometric Functions

In Exercises 85–88, evaluate the expression without a calculator.

 85. tan1tan-1 12  86. cos-11cos p>32
 87. tan1sin-1 3>52  88. cos-11cos1-p>722
In Exercises 89–92, determine whether the function is periodic. State 
the period (if applicable), the domain, and the range.

 89. ƒ1x2 = �sec x�  90. g1x2 = sin �x�

 91. ƒ1x2 = 2x + tan x 92. g1x2 = 2 cos 2x + 3 sin 5x

 93. Arc Length Find the length of the arc intercepted by a cen-
tral angle of 2p>3 rad in a circle with radius 2.

 94. Algebraic Expression Find an algebraic expression 
equivalent to csc(tan-1 x>2).

 95. Height of Building The angle of elevation of the top  
of a building from a point 100 m away from the building on 
level ground is 78°. Find the height of the building.

 96. Height of Tree A tree casts a shadow 51 ft long when the 
angle of elevation of the Sun (measured with the horizon) is 
25°. How tall is the tree?

 97. Traveling Car From the top of a 150-ft building Flora 
observes a car moving toward her. If the angle of depression 
of the car changes from 18° to 42° during the observation, 
how far does the car travel?

 98. Finding Distance A lighthouse L stands 7 km from the 
closest point P along a straight shore (see figure). Find the dis-
tance from P to a point Q along the shore if ∠PLQ = 28°. 

 102. Storing Hay A 75-ft-long conveyor is used at the Lovelady 
Farm to put hay bales up for winter storage. The conveyor is 
tilted to an angle of elevation of 22°.

(a) To what height can the hay be moved?

(b) If the conveyor is repositioned to an angle of 27°, to what 
height can the hay be moved?

 103. Swinging Pendulum In the Hardy Boys Adventure 
While the Clock Ticked, the pendulum of the grandfather 
clock at the Purdy place is 44 in. long and swings through  
an arc of 6°. Find the length of the arc that the pendulum  
traces. 

 104. Finding Area A windshield wiper arm on a vintage 1994 
Plymouth Acclaim is 20 in. long and has a blade 16 in. long. 
If the wiper sweeps through an angle of 110°, how large  
an area does the wiper blade clean? (See Exercise 71 in  
Section 4.1.)

 105. Modeling Low Temperatures The average daily low  
temperature (°F) in Fairbanks, Alaska, can be modeled by the 
equation

T1x2 = 31.2 sin c 2p
365

 1x - 1062 d + 20.4,

  where x is time in days, with x = 1 representing January 1. 
How many days a year would you expect the low temperature 
to be above freezing (32°F)?

  Source: Weather.com, 2012.

 106. Taming The Beast The Beast is a featured roller coaster 
at the King Island’s amusement park just north of Cincinnati. 
On its first and biggest hill, The Beast drops from a height of 
52 ft above the ground along a sinusoidal path to a depth 18 ft 
underground as it enters a frightening tunnel. The mathematical 
model for this part of the track is

h1x2 = 35 cosa x
35
b + 17, 0 … x … 110,

  where x is the horizontal distance from the top of the hill and 
h1x2 is the vertical position relative to ground level (both in 
feet). What is the horizontal distance from the top of the hill  
to the point where the track reaches ground level?

P Q

28°
7 km

L

 99. Navigation An airplane is flying due east between two  
signal towers. One tower is due north of the other. The bear-
ing from the plane to the north tower is 23°, and to the south 
tower is 128°. Use a drawing to show the exact location of 
the plane.

 100. Finding Distance The bearings of two points on the shore 
from a boat are 115° and 123°. Assume the two points are  
855 ft apart. How far is the boat from the nearest point on shore 
if the shore is straight and runs north-south?

 101. Height of Tree Dr. Thom Lawson, standing on flat 
ground 62 ft from the base of a Douglas fir, measures the  
angle of elevation to the top of the tree as 72°24′. What is  
the height of the tree?

52ft

18ftGround level

Tunnel

First hill of
The Beast
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CHAPTER 4 Modeling Project

Modeling the Motion of a Pendulum

Understand the problem and identify variables. Consider a 
simple pendulum swinging freely back and forth. We want to 
model the motion using a sinusoidal equation of the form

y = a cos1b1x - h22 + k,

where the variable y represents the pendulum’s distance from a 
fixed point and x represents total elapsed time. In this project, 
you will use a motion detection device to collect distance and 
time data for a swinging pendulum, then find a mathematical 
model that describes the pendulum’s motion.

Collecting the Data

To start, construct a simple pendulum by fastening about 1 m of 
string to the end of a ball. Set up the Calculator-Based Labora-
tory (CBL) system with a motion detector or a Calculator-Based 
Ranger (CBR) system to collect time and distance readings for 
between 2 sec and 4 sec (enough time to capture at least one 
complete swing of the pendulum). See the CBL or CBR guide-
book for specific setup instructions. Start the pendulum swing-
ing in front of the detector, then activate the system. The data 
table below shows a sample set of data collected as a pendulum 
swung back and forth in front of a CBR.

Total Elapsed Time 
(sec)

Distance from the CBR 
(m)

0 0.665
0.1 0.756
0.2 0.855
0.3 0.903
0.4 0.927
0.5 0.931
0.6 0.897
0.7 0.837
0.8 0.753
0.9 0.663
1.0 0.582
1.1 0.525
1.2 0.509
1.3 0.495
1.4 0.521
1.5 0.575
1.6 0.653
1.7 0.741
1.8 0.825
1.9 0.888
2.0 0.921

Explorations

 1. If you collected motion data using a CBL or CBR, a plot of 
distance versus time should be shown on your graphing cal-
culator or computer screen. If you don’t have access to a 
CBL or CBR, enter the data in the sample table into your 
grapher. Create a scatter plot for the data.

 2. Carry out the mathematics. Find values for a, b, h, and k 
so that the equation

y = a cos1b1x - h22 + k

  fits the  distance-versus-time data plot. Refer to the  
information box on page 372 to review sinusoidal graph 
characteristics.

 3. Analyze the solution. What are the physical meanings of 
the constants a and k in the modeling equation 

y = a cos1b1x - h22 + k? 

  [Hint: What distances do a and k measure?]
 4. Assess the solution. Which, if any, of the values of a, b, h, 

or k would change if you used the equation 

y = a sin1b1x - h22 + k 

  to model the data set?
 5. Use your grapher to find a sinusoidal regression equation to 

model this data set. (If needed, see your grapher’s guide-
book for instructions on how to do this.) If your grapher 
uses a different sinusoidal form,  compare it to the modeling 
equation you found earlier:

y = a cos1b1x - h22 + k

 CHAPTER 4 Modeling Project 419
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It is no surprise that naturalists seeking to estimate wildlife populations must 

have an understanding of geometry (a word that literally means “Earth 

 measurement”). You will learn in this chapter that trigonometry, with its many 

 connections to triangles and circles, enables us to extend the problem-solving 

tools of geometry significantly. On page 464 we will apply a result called Heron’s 

Formula (which we prove trigonometrically) to estimate the local density of a 

deer population.

 5.1 Fundamental Identities

 5.2 Proving Trigonometric 
Identities

 5.3 Sum and Difference 
Identities

 5.4 Multiple-Angle Identities

 5.5 The Law of Sines

 5.6 The Law of Cosines

Analytic Trigonometry

CHAPTER 5

420
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Chapter 5 Overview
Although the title of this chapter suggests that we are now moving into the analytic 
phase of our study of trigonometric functions, the truth is that we have been in that 
phase for several sections already. Once the transition is made from triangle ratios to 
functions and their graphs, one is on analytic soil. But our primary applications of trig-
onometry so far have been computational; we have not made full use of the properties 
of the functions to study the connections among the trigonometric functions them-
selves. In this chapter we will shift our emphasis more toward theory and proof, explor-
ing where the properties of these special functions lead us, often with no immediate 
concern for real-world relevance at all. We hope in the process to give you an apprecia-
tion for the rich and intricate tapestry of interlocking patterns that can be woven from 
the six basic trigonometric functions—patterns that will take on even greater beauty 
later, when you can view them through the lens of calculus.

What you’ll learn about
• Identities

• Basic Trigonometric Identities

• Pythagorean Identities

• Cofunction Identities

• Odd-Even Identities

• Simplifying Trigonometric 
 Expressions

• Solving Trigonometric Equations

... and why
Identities are important when work-
ing with trigonometric functions in 
calculus.

Identities
As you probably realize by now, the symbol “= ” means several different things in 
mathematics.

 1. 1 + 1 = 2 means equality of real numbers. It is a true sentence.

 2. 21x - 32 = 2x - 6 signifies equivalent expressions. It is a true sentence.

 3. x2 + 3 = 7 is an open sentence, because it can be true or false, depending on 
whether x is a solution to the equation.

 4. 1x2 - 12>1x + 12 = x - 1 is an identity. It is a true sentence (very much like (2) 
above), but with the important qualification that x must be in the domain of both 
expressions. If either side of the equality is undefined, the sentence is meaningless. 
Substituting -1 into both sides of the equation in (3) gives a sentence that is math-
ematically false 1i.e., 4 = 72, whereas substituting -1 into both sides of the iden-
tity in (4) gives a sentence that is meaningless.

Statements like “tan u = sin u>cos u” and “csc u = 1>sin u” are trigonometric identities 
because they are true for all values of the variable for which both sides of the equation 
are defined. The set of all such values is the domain of validity of the identity. We will 
spend much of this chapter exploring trigonometric identities, their proofs, their impli-
cations, and their applications.

Basic Trigonometric Identities
Some trigonometric identities follow directly from the definitions of the six basic trigo-
nometric functions. These basic identities consist of the reciprocal identities and the 
quotient identities.

5.1 Fundamental Identities

Basic Trigonometric Identities

Reciprocal Identities

csc u =
1

sin u
  sec u =

1
cos u

  cot u =
1

tan u

sin u =
1

csc u
  cos u =

1
sec u

  tan u =
1

cot u
Quotient Identities

tan u =
sin u
cos u

  cot u =
cos u
sin u
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422 CHAPTER 5 Analytic Trigonometry

Pythagorean Identities
Exploration 2 in Section 4.3 introduced you to the fact that, for any real number t, the 
numbers 1cos t22 and 1sin t22 always sum to 1. This is clearly true for the quadrantal 
angles that wrap to the points 1±1, 02 and 10, ±12, and it is true for any other  
t because cos t and sin t are the (signed) lengths of legs of a reference triangle with 
hypotenuse 1 (Figure 5.1). No matter what quadrant the triangle lies in, the Pythagorean 
Theorem guarantees the identity 1cos t22 + 1sin t22 = 1.

If we divide each term of this identity by 1cos t22, we get an identity that involves tan-
gent and secant:

 
1cos t22
1cos t22 +

1sin t22
1cos t22 =

1

1cos t22
 1 + 1tan t22 = 1sec t22

If instead we divide each term of the identity by 1sin t22, we get an identity that 
involves cotangent and cosecant:

 
1cos t22
1sin t22 +

1sin t22
1sin t22 =

1

1sin t22
 1cot t22 + 1 = 1csc t22

These three identities are called the Pythagorean identities, which we restate using the 
shorthand notation for powers of trigonometric functions.

Making a Point About Domain of Validity

 1. u = 0 is in the domain of validity of exactly three of the basic identities. 
Which three?

 2. For exactly two of the basic identities, one side of the equation is defined at 
u = 0 and the other side is not. Which two?

 3. For exactly three of the basic identities, both sides of the equation are unde-
fined at u = 0. Which three?

EXPLORATION 1 

y

x
cos t

sin t

(cos t, sin t)

(1, 0)

Figure 5.1 By the Pythagorean Theorem, 
1cos t22 + 1sin t22 = 1.

Pythagorean Identities

 cos2 u + sin2 u = 1

 1 + tan2 u = sec2 u

 cot2 u + 1 = csc2 u

Using Identities
Find sin u and cos u if tan u = 5 and cos u 7 0.

SOLUTION We could solve this problem by the reference triangle techniques of 
Section 4.3, but we give an alternative solution here using only identities.

First, we note that sec2 u = 1 + tan2 u = 1 + 52 = 26, so sec u = ±226.

Because sec u = ±226, we have cos u = 1>sec u = 1>±226.

But cos u 7 0, so cos u = 1>226.

EXAMPLE 1 

Why Not Approximate?
A calculator could be used to approximate the 
answers in Example 1, but the goal here is to use 
identities to find the exact answers.
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 SECTION 5.1 Fundamental Identities 423

If you find yourself preferring the reference triangle method, that’s fine. Remember 
that combining the power of geometry and algebra to solve problems is one of the 
themes of this text, and the instinct to do so will serve you well in calculus.

Cofunction Identities
If C is the right angle in right △ABC, then angles A and B are complements. Notice 
what happens if we use the usual triangle ratios to define the six trigonometric func-
tions of angles A and B (Figure 5.2).

 Angle A: sin A =
y
r
 tan A =

y
x
 sec A =

r
x

  cos A =
x
r
 cot A =

x
y
 csc A =

r
y

 Angle B: sin B =
x
r
 tan B =

x
y
 sec B =

r
y

  cos B =
y
r
 cot B =

y
x
 csc B =

r
x

Do you see what happens? In every case, the value of a function at A is the same as the 
value of its cofunction at B. This always happens with complementary angles; in fact, it 
is this phenomenon that gives a “co” function its name. The “co” stands for 
“complement.”

Finally,

 tan u = 5

 
sin u
cos u

= 5

 sin u = 5 cos u = 5a 1226
b =

5226

Therefore, sin u =
5226

 and cos u =
1226

. Now try Exercise 1.

Cofunction Identities

sinap
2

- ub = cos u  cosap
2

- ub = sin u

tanap
2

- ub = cot u  cotap
2

- ub = tan u

secap
2

- ub = csc u  cscap
2

- ub = sec u

Although our argument on behalf of these equations was based on acute angles in a tri-
angle, these equations are genuine identities, valid for all real numbers for which both 
sides of the equation are defined. We could extend our acute-angle argument to pro-
duce a general proof, but it will be easier to wait and use the identities of Section 5.3. 
See Example 2 and Exercises 38–41 of that section.

Odd-Even Identities
We have seen that every basic trigonometric function is either odd or even. Either way, 
the usual function relationship leads to another fundamental identity.

B

y
r

CA x

Figure 5.2 Angles A and B are complements 
in right △ABC.
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424 CHAPTER 5 Analytic Trigonometry

Simplifying Trigonometric Expressions
In calculus it is often necessary to deal with expressions that involve trigonometric 
functions. Some of those expressions start out looking fairly complicated, but it is often 
possible to use identities along with algebraic techniques (e.g., factoring or combining 
fractions over a common denominator) to simplify the expressions before dealing with 
them. In some cases the simplifications can be dramatic.

Odd-Even Identities

sin1-x2 = -sin x    cos1-x2 = cos x    tan1-x2 = - tan x

csc1-x2 = -csc x    sec1-x2 = sec x    cot1-x2 = -cot x

Simplifying by Factoring and Using Identities
Simplify the expression sin3 x + sin x cos2 x.

SOLUTION 

Solve Algebraically 

 sin3 x + sin x cos2 x = sin x 1sin2 x + cos2 x2
 = sin x 112  Pythagorean identity

 = sin x

Support Graphically We recognize the graph of y = sin3 x + sin x cos2 x   
(Figure 5.3a) as the same as the graph of y = sin x (Figure 5.3b). Now try Exercise 13.

EXAMPLE 3 

Simplifying by Expanding and Using Identities
Simplify the expression 31sec x + 121sec x - 124 >sin2 x.

SOLUTION 

Solve Algebraically 

 
1sec x + 121sec x - 12

sin2 x
=

sec2 x - 1

sin2 x
 1a + b21a - b2 = a2 - b2

 =
tan2 x

sin2 x
 Pythagorean identity

 =
sin2 x

cos2 x
# 1

sin2 x
 tan x =

sin x
cos x

 =
1

cos2 x
 = sec2 x

EXAMPLE 4 

Using More Identities
If cos u = 0.34, find sin1u - p>22.
SOLUTION This problem can best be solved using identities.

 sinau -
p

2
b = -sinap

2
- ub  Sine is odd.

 = -cos u  Cofunction identity

 = -0.34  Now try Exercise 7.

EXAMPLE 2 

Student Note
Remember that graphs cannot be used to prove 
identities. However, they can provide support of 
the identity.

[22p, 2p] by [24, 4]

(a)

[22p, 2p] by [24, 4]

(b)

Figure 5.3 Graphical support of the identity 
sin3 x + sin x cos2 x = sin x. (Example 3)
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 SECTION 5.1 Fundamental Identities 425

Support Graphically The graphs of y =
1sec x + 121sec x - 12

sin2 x
 and y = sec2 x 

appear to be identical, as expected (Figure 5.4). Now try Exercise 25.

Simplifying by Combining Fractions  
and Using Identities

Simplify the expression 
cos x

1 - sin x
-

sin x
cos x

.

SOLUTION 

cos x
1 - sin x

-
sin x
cos x

=
cos x

1 - sin x
# cos x
cos x

-
sin x
cos x

# 1 - sin x
1 - sin x

 Rewrite using common denominator.

=
1cos x21cos x2 - 1sin x211 - sin x2

11 - sin x21cos x2

=
cos2 x - sin x + sin2 x
11 - sin x21cos x2

=
1 - sin x

11 - sin x21cos x2  Pythagorean identity

=
1

cos x
= sec x

(We leave it to you to provide the graphical support.) Now try Exercise 37.

EXAMPLE 5 

We will use these same simplifying techniques to prove trigonometric identities in 
Section 5.2.

Solving Trigonometric Equations
The equation-solving capabilities of calculators have made it possible to solve trigono-
metric equations without understanding much trigonometry. This is fine, to the extent that 
solving equations is our goal. However, because understanding trigonometry is also a 
goal, we will occasionally pause in our development of identities to solve some trigono-
metric equations with paper and pencil, just to get some practice in using the identities.

Solving a Trigonometric Equation
Find all values of x in the interval 30, 2p2 that solve cos3 x>sin x = cot x.

SOLUTION 

 
cos3 x
sin x

= cot x

 
cos3 x
sin x

=
cos x
sin x

 cos3 x = cos x  Multiply both sides by sin x.

 cos3 x - cos x = 0

 1cos x21cos2 x - 12 = 0

 1cos x21-sin2 x2 = 0  Pythagorean identity

 cos x = 0  or  sin x = 0

EXAMPLE 6 

(continued)

[22p, 2p] by [22, 4]

(a)

[22p, 2p] by [22, 4]

(b)

Figure 5.4 Graphical support of the identity 
1sec x + 121sec x - 12>sin2 x = sec2 x. 
(Example 4)
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426 CHAPTER 5 Analytic Trigonometry

You might try solving the equation in Example 7 on your grapher for the sake of com-
parison. Finding all real solutions still requires an understanding of periodicity, and 
finding exact solutions requires the savvy to divide your calculator answers by p. It is 
likely that anyone who knows that much trigonometry will actually find the algebraic 
solution easier!

We reject the possibility that sin x = 0 because it would make both sides of the origi-
nal equation undefined.

The values in the interval 30, 2p2 that solve cos x = 0 1and therefore cos3 x>sin x =
cot x2 are p>2 and 3p>2. Now try Exercise 51.

y

x
0.7

Figure 5.6 There are two points on the  
unit circle with x-coordinate 0.7. (Example 8 
on the next page)

Solving a Trigonometric Equation by Factoring
Find all solutions to the trigonometric equation 2 sin2 x + sin x = 1.

SOLUTION Let y = sin x. The equation 2y2 + y = 1 can be solved by factoring:

 2y2 + y = 1

 2y2 + y - 1 = 0

 12y - 121y + 12 = 0

 2y - 1 = 0  or  y + 1 = 0

 y =
1
2
  or  y = -1

So, in the original equation, sin x = 1>2 or sin x = -1. Figure 5.5 shows that the 
solutions in the interval 30, 2p2 are p>6, 5p>6, and 3p>2.

EXAMPLE 7 

y

x

(a)

1
2

  

y

x

(b)

–1

Figure 5.5 (a) sin x = 1>2 has two solutions in 30, 2p2: p>6 and 5p>6.  
(b) sin x = -1 has one solution in 30, 2p2: 3p>2. (Example 7)

To get all real solutions, we simply add integer multiples of the period, 2p, of the 
periodic function sin x:

x =
p

6
+ 2np or x =

5p
6

+ 2np or x =
3p
2

+ 2np

1n = 0, ±1, ±2, c2
Now try Exercise 57.
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 SECTION 5.1 Fundamental Identities 427

Solving a Trig Equation with a Grapher
Find all solutions to the equation cos t = 0.7, using a grapher where needed.

SOLUTION Figure 5.6 on the previous page shows that there are two points on the 
unit circle with an x-coordinate of 0.7. We do not recognize this value as one of our 
special triangle ratios, but we can use a grapher to find the smallest positive and  
negative values for which cos x = 0.7 by intersecting the graphs of y = cos x and 
y = 0.7 (Figure 5.7).

The two values are predictably opposites of each other: t ≈ ±0.80. Using the period 
of cosine (which is 2p), we get the complete solution set: 5±0.80 + 2np �n = 0, 
±1, ±2, ±3, c6 . Now try Exercise 63.

EXAMPLE 8 

Y = .7
Intersection
X = .795399

[2p, p] by [22, 2]

Figure 5.7 The two intersections of the 
graphs of y = cos x (blue) and y = 0.7 (red) 
give two solutions to the equation cos t = 0.7 
in the interval 3-p, p4 , supporting Example 8.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression.

 1. sin-1a12

13
b

 2. cos-1a3
5
b

 3. cos-1a-  
4

5
b

 4. sin-1a-  
5

13
b

In Exercises 5–8, factor the expression into a product of linear factors.

 5. a2 - 2ab + b2  6. 4u2 + 4u + 1

 7. 2x2 - 3xy - 2y2 8. 2v2 - 5v - 3

In Exercises 9–12, simplify the expression.

 9. 
1
x

-
2
y

 10. 
a
x

+
b
y

 11. 
x + y

11>x2 + 11>y2  12. 
x

x - y
-

y

x + y

QUICK REVIEW 5.1 (For help, go to Sections A.2, A.3, and 4.7.) 

In Exercises 17–22, simplify the expression to either 1 or -1.

 17. sin x csc1-x2
 18. sec1-x2 cos1-x2
 19. cot1-x2 cot1p>2 - x2
 20. cot1-x2 tan1-x2
 21. sin21-x2 + cos21-x2
 22. sec21-x2 - tan2 x

In Exercises 23–26, simplify the expression to either a constant or a 
basic trigonometric function. Support your result graphically.

 23. 
tan1p>2 - x2 csc x

csc2 x

 24. 
1 + tan x
1 + cot x

 25. 1sec2 x + csc2 x2 - 1tan2 x + cot2 x2

 26. 
sec2 u - tan2 u

cos2 v + sin2 v

SECTION 5.1 Exercises

In Exercises 1–4, evaluate without using a calculator. Use the 
 Pythagorean identities rather than reference triangles. (See Example 1.)

 1. Find sin u and cos u if tan u = 3>4 and sin u 7 0.

 2. Find sec u and csc u if tan u = 3 and cos u 7 0.

 3. Find tan u and cot u if sec u = 4 and sin u 6 0.

 4. Find sin u and tan u if cos u = 0.8 and tan u 6 0.

In Exercises 5–8, use identities to find the value of the expression.

 5. If sin u = 0.23, find cos 1p>2 - u2.
 6. If tan1p>2 - u2 = 7.24, find cot u.

 7. If sin1u - p>22 = 0.58, find cos 1-u2.
 8. If cot1-u2 = -3.65, find tan1u - p>22.
In Exercises 9–16, use basic identities to simplify the expression.

 9. tan x cos x  10.  tan1p>2 - x2 cot1x - p>22
 11. sec y sin1p>2 - y2  12. tan u cos u

 13. 
1 + tan2 x

csc2 x
 14. 

1 - sin2 u

cos u

 15. sin3 x - sin5 x  16. 
cos2 u + cot2 u + sin2 u

csc u
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428 CHAPTER 5 Analytic Trigonometry

In Exercises 27–32, use the basic identities to change the expression  
to one involving only sines and cosines. Then simplify to a basic 
 trigonometric function.

 27. 1sin x21tan x + cot x2
 28. sin u - tan u cos u + cos 1p>2 - u2
 29. sin x cos x tan x sec x csc x

 30. 
1sec y - tan y21sec y + tan y2

sec y

 31. 
tan x

csc2 x
+

tan x

sec2 x

 32. 
sec2 x csc x

sec2 x + csc2 x

In Exercises 33–38, combine the fractions and simplify to a multiple of 
a power of a basic trigonometric function 1e.g., 3 tan2 x2.

 33. 
1

sin2 x
+

sec2 x

tan2 x
 34. 

1
1 - sin x

+
1

1 + sin x

 35. 
sin x

cot2 x
-

sin x

cos2 x
 36. 

1
sec x - 1

-
1

sec x + 1

 37. 
sec x
sin x

-
sin x
cos x

 38. 
sin x

1 - cos x
+

1 - cos x
sin x

In Exercises 39–46, write each expression in factored form as  
an algebraic expression of a single trigonometric function  
1e.g., 12 sin x + 321sin x - 122.
 39. cos2 x + 2 cos x + 1

 40. 1 - 2 sin x + sin2 x

 41. 1 - 2 sin x + 11 - cos2 x2
 42. sin x - cos2 x - 1

 43. cos x - 2 sin2 x + 1

 44. sin2 x +
2

csc x
+ 1

 45. 4 tan2 x -
4

cot x
+ sin x csc x

 46. sec2 x - sec x + tan2 x

In Exercises 47–50, write each expression as an algebraic expression of 
a single trigonometric function 1e.g., 2 sin x + 32.

 47. 
1 - sin2 x
1 + sin x

 48. 
tan2 a - 1
1 + tan a

 49. 
sin2 x

1 + cos x
 50. 

tan2 x
sec x + 1

In Exercises 51–56, find all solutions to the equation in the interval 
30, 2p2. You do not need a calculator.

 51. 2 cos x sin x - cos x = 0

 52. 2 cot x sin x - 23 cot x = 0

 53. tan x sin2 x = tan x

 54. sin x tan2 x = sin x

 55. tan2 x = 3

 56. 2 cos2 x = 1

In Exercises 57–62, find all solutions to the equation. You do not need a 
calculator.

 57. 4 cos2 x - 4 cos x + 1 = 0

 58. 2 sin2 x + 3 sin x + 1 = 0

 59. sin2 u - 2 sin u = 0 60. 3 sin t = 2 cos2 t

 61. cos1sin x2 = 1 62. 2 sin2 x + 3 sin x = 2

In Exercises 63–68, find all solutions to the trigonometric equation, 
using a grapher where needed.

 63. cos x = 0.37 64. cos x = 0.75

 65. sin x = 0.30 66. tan x = 5

 67. cos2 x = 0.4 68. sin2 x = 0.4

In Exercises 69–74, make the suggested trigonometric substitution, and 
then use Pythagorean identities to write the resulting function as a mul-
tiple of a basic trigonometric function.

 69. 21 - x2, x = cos u

 70. 24 + x2, x = 2 tan u

 71. 2x2 - 9, x = 3 sec u

 72. 225 - x2, x = 5 sin u

 73. 2x2 + 81, x = 9 tan u

 74. 2x2 - 225, x = 15 sec u

Standardized Test Questions
 75. True or False If sec 1x - p>22 = 34, then csc x = 34. 

Justify your answer.

 76. True or False The domain of validity for the identity 
sin u = tan u cos u is the set of all real numbers. Justify your 
answer.

You should answer these questions without using a calculator.

 77. Multiple Choice Which of the following could not be set 
equal to sin x as an identity?

(A) cosap
2

- xb  (B) cosax -
p

2
b

(C) 1>csc x (D) tan x sec x

(E) -sin 1-x2
 78. Multiple Choice Exactly four of the six basic trigonometric 

functions are

(A) odd. (B) even.

(C) periodic. (D) continuous.

(E) bounded.

 79. Multiple Choice A simpler expression for 
1sec u + 121sec u - 12 is
(A) sin2 u. (B) cos2 u.

(C) tan2 u. (D) cot2 u.

(E) sec2 u.

 80. Multiple Choice How many numbers between 0 and 2p 
solve the equation 3 cos2 x + cos x = 2?

(A) None (B) One

(C) Two (D) Three

(E) Four
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Table 5.1 Distance from Earth to Moon

Date Day Distance (Mm)

Mar 19  0 403.9
Mar 25  6 383.0
Mar 31 12 363.5
Apr 6 18 381.5
Apr 12 24 400.9
Apr 18 30 402.4
Apr 24 36 371.0
Apr 30 42 363.5
May 6 48 391.9
May 12 54 405.4

Source: www.theskylive.com/moon-info

Explorations
 81. Write all six basic trigonometric functions entirely in terms of 

sin x.

 82. Write all six basic trigonometric functions entirely in terms of 
cos x.

 83. Writing to Learn Graph the functions y = sin2 x and 
y = -cos2 x in the standard trigonometric viewing window. 
Describe the apparent relationship between these two graphs 
and verify it with a trigonometric identity.

 84. Writing to Learn Graph the functions y = sec2 x and 
y = tan2 x in the standard trigonometric viewing window. 
Describe the apparent relationship between these two graphs 
and verify it with a trigonometric identity.

 85. Orbit of the Moon Because 
its orbit is elliptical, the distance 
from the Moon to Earth (measured 
from the center of the Moon to the 
center of Earth) varies between 
apogee (farthest point) and perigee 
(closest point) in an almost peri-
odic way. (In fact, the apogees and 
perigees vary periodically them-
selves, allowing for such phenom-
ena as “supermoons.”) On March 19, 2017, the Moon was at 
an apogee of 403.9 Mm (megameters). Table 5.1 shows the  
distance between Earth and the Moon for that day and nine 
other days in 2017.

(a) Draw a scatter plot of the data, using “day” as x and 
 “distance” as y.

(b) Use a grapher to do a sine regression of y on x. Find the 
equation of the best-fit sine curve and superimpose its 
graph on the scatter plot.

(c) What is the approximate number of days from apogee to 
apogee? Interpret this number in terms of the orbit of the 
Moon.

(d) According to the regression curve, what was the approxi-
mate distance at perigee?

(e) Writing to Learn There actually was a day between 
March 19 and May 12, 2017, when the Moon was  
359,000 km from Earth. By looking carefully at your 
graph from part (b), estimate the date on which this 
occurred and explain why you came to that conclusion.

 86. Group Activity Divide your class into six groups, each 
assigned to one of the basic trigonometric functions. With your 
group, construct a list of five different expressions that can be 
simplified to your assigned function. When you have finished, 
exchange lists with your “cofunction” group to check one 
another for accuracy.

Extending the Ideas
 87. Prove that sin4 u - cos4 u = sin2 u - cos2 u.

 88. Find all values of k that result in sin2 x + 1 = k sin x having 
an infinite solution set.

 89. Use the cofunction identities and odd-even identities to prove 
that sin1p - x2 = sin x.
3Hint: sin1p - x2 = sin1p>2 - 1x - p>222.4

 90. Use the cofunction identities and odd-even identities to prove 
that cos1p - x2 = -cos x.
3Hint: cos1p - x2 = cos1p>2 - 1x - p>222.4

 91. Use the identity in Exercise 89 to prove that in any △ ABC, 
sin1A + B2 = sin C.

 92. Use the identities In Exercises 89 and 90 to find an identity for 
simplifying tan1p - x2.
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What you’ll learn about
• A Proof Strategy

• Proving Identities

• Disproving Non-Identities

• Identities in Calculus

... and why
Proving identities gives you excellent 
insights into the way mathematical 
proofs are constructed.

A Proof Strategy
We now arrive at the best opportunity in the precalculus curriculum for you to try your 
hand at constructing analytic proofs: trigonometric identities. Some are easy and some 
can be quite challenging, but in every case the identity itself frames your work with a 
beginning and an ending. The proof consists of filling in what lies between.

The procedure for proving an identity is different from the procedure for solving an 
equation, most notably in the very first step. Usually the first step in solving an equa-
tion is to write down the equation. If you do this with an identity, however, you will 
have a beginning and an ending—with no proof in between! With an identity, you 
begin by writing down one side of the identity and end by writing down the other side. 
Example 1 will illustrate what we mean.

5.2 Proving Trigonometric Identities

These, then, are our first general strategies for proving an identity:

Proving Identities
Trigonometric identity proofs follow General Strategies I. We are told that two expres-
sions are equal, and the object is to prove that they are equal. We do this by changing 

Proving an Algebraic Identity

Prove the algebraic identity 
x2 - 1
x - 1

-
x2 - 1
x + 1

= 2.

SOLUTION We prove this identity by showing a sequence of expressions, each one 
easily seen to be equivalent to its preceding expression:

 
x2 - 1
x - 1

-
x2 - 1
x + 1

=
1x + 121x - 12

x - 1
-
1x + 121x - 12

x + 1
  

Factoring difference  
of squares

 = 1x + 12ax - 1
x - 1

b - 1x - 12ax + 1
x + 1

b  Algebraic manipulation

 = 1x + 12112 - 1x - 12112  Reducing fractions

 = x + 1 - x + 1  Algebraic manipulation

 = 2

Notice that the first thing we wrote down was the expression on the left-hand side (LHS) 
and the last thing we wrote down was the expression on the right-hand side (RHS). 
The proof would have been just as legitimate going from RHS to LHS, but it is more 
natural to move from the more complicated side to the less complicated side. Inci-
dentally, the notes in blue on the right, called “floaters,” are included here for 
instructional purposes and are not really part of the proof. A good proof should con-
sist of steps for which a knowledgeable reader could readily supply the floaters.
 Now try Exercise 1.

EXAMPLE 1 

General Strategies I

1. The proof begins with the expression on one side of the identity.

2. The proof ends with the expression on the other side.

3. The proof in between consists of showing a sequence of expressions, each 
one easily seen to be equivalent to its preceding expression.

M06_DEMA8962_10_GE_C05.indd   430 22/06/22   19:07



 SECTION 5.2 Proving Trigonometric Identities 431

one expression into the other by a series of intermediate steps that follow the important 
rule that every intermediate step yields an expression that is equivalent to the first.

The changes at every step are accomplished by algebraic manipulations or identities, 
but the manipulations or identities should be sufficiently obvious as to require no addi-
tional justification. Because “obvious” is often in the eye of the beholder, it is usually 
safer to err on the side of including too many steps (rather than too few).

By working through several examples, we try to give you a sense for what is appropri-
ate as we illustrate some of the algebraic tools that you have at your disposal.

Proving an Identity
Prove the identity tan x + cot x = sec x csc x.

SOLUTION We begin by deciding whether to start with the expression on the right or 
the left. It is usually best to start with the more complicated expression, as it is easier 
to proceed from the complex toward the simple than to go in the other direction. The 
expression on the left is slightly more complicated because it involves two terms.

 tan x + cot x =
sin x
cos x

+
cos x
sin x

 Basic identities

 =
sin x
cos x

# sin x
sin x

+
cos x
sin x

# cos x
cos x

 Setting up common denominator

 =
sin2 x + cos2 x

cos x # sin x

 =
1

cos x # sin x
 Pythagorean identity

 =
1

cos x
# 1
sin x

 (A step you could choose to omit)

 = sec x csc x  Basic identities

(Remember that the “floaters” are not really part of the proof.)
 Now try Exercise 13.

EXAMPLE 2 

The preceding example illustrates three general strategies that are often useful in prov-
ing trigonometric identities.

Identifying and Proving an Identity
Match the function

ƒ1x2 =
1

sec x - 1
+

1
sec x + 1

with one of the following. Then confirm the match with a proof.

(i) 2 cot x csc x   (ii) 
1

sec x

EXAMPLE 3 

(continued)

General Strategies II

1. When picking the side to start with, begin with the more complicated 
expression and work toward the less complicated expression.

2. If no other move suggests itself, convert the entire expression to one 
involving sines and cosines.

3. Combine fractions by combining them over a common denominator.
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Notice that we kept 1cos t211 + sin t2 in factored form in the hope that we could even-
tually eliminate the factor cos t and be left with the numerator we need. It is always a 
good idea to keep an eye on the “target” expression toward which your proof is aimed.

(a)

f (x) 5 1
1 

sec x 2 1

[22p, 2p] by [24, 4]

1 
sec x 1 1

(b)

y 5 2 cot x csc x

[22p, 2p] by [24, 4]

(c)

y 5 1 
sec x 

[22p, 2p] by [24, 4]

Figure 5.8 A grapher can be useful for 
identifying possible identities. (Example 3)

SOLUTION Figures 5.8a, b, and c show the graphs of the functions y =  ƒ1x2,
y = 2 cot x csc x, and y = 1>sec x, respectively. The graphs in (a) and (c) show that 
ƒ1x2 is not equal to the expression in (ii). From the graphs in (a) and (b), it appears 
that ƒ1x2 is equal to the expression in (i). To confirm algebraically, we begin with the 
expression for ƒ1x2.

1
sec x - 1

+
1

sec x + 1

=
sec x + 1

1sec x - 121sec x + 12 +
sec x - 1

1sec x - 121sec x + 12 Common denominator

=
sec x + 1 + sec x - 1

sec2 x - 1

=
2 sec x

tan2 x
 Pythagorean identity

=
2

cos x
# cos2 x

sin2 x
 Basic identities

=
2 cos x
sin x

# 1
sin x

= 2 cot x csc x
Now try Exercise 55.

The next example illustrates how the algebraic identity 1a + b21a - b2 = a2 - b2 
can be used to set up a Pythagorean substitution.

Setting Up a Difference of Squares

Prove the identity 
cos t

1 - sin t
=

1 + sin t
cos t

.

SOLUTION The left-hand expression is slightly more complicated, as we can handle 
extra terms in a numerator more easily than in a denominator. So we begin with the left.

 
cos t

1 - sin t
=

cos t
1 - sin t

# 1 + sin t
1 + sin t

 Setting up a difference of squares

 =
1cos t211 + sin t2

1 - sin2 t

 =
1cos t211 + sin t2

cos2 t
 Pythagorean identity

 =
1 + sin t

cos t
 Now try Exercise 39.

EXAMPLE 4 

General Strategies III

1. Use the algebraic identity 1a + b21a - b2 = a2 - b2 to set up applica-
tions of the Pythagorean identities.

2. Always be mindful of the “target” expression, and favor manipulations that 
bring you closer to this target.
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Disproving Non-Identities
Obviously, not every equation involving trigonometric expressions is an identity. How 
can we spot a non-identity before embarking on a futile attempt at a proof? Try the fol-
lowing exploration.

In more complicated identities it is sometimes helpful to see if both sides can be manip-
ulated toward a common intermediate expression. The proof can then be reconstructed 
in a single path.

Working from Both Sides

Prove the identity 
cot2 u

1 + csc u
= 1cot u21sec u - tan u2.

SOLUTION Both sides are fairly complicated, but the left-hand side looks as though 
it needs more work. We start on the left.

 
cot2 u

1 + csc u
=

csc2 u - 1
1 + csc u

 Pythagorean identity

 =
1csc u + 121csc u - 12

csc u + 1
 Factor.

 = csc u - 1

At this point it is not clear how we can get from this expression to the one on the 
right-hand side of our identity. However, we now have reason to believe that the 
right-hand side must simplify to csc u - 1, so we try simplifying the right-hand side.

 1cot u21sec u - tan u2 = acos u
sin u

b a 1
cos u

-
sin u
cos u

b  Basic identities

 =
1

sin u
- 1  Distribute the product.

 = csc u - 1

Now we can reconstruct the proof by going through csc u - 1 as an intermediate step.

 
cot2 u

1 + csc u
=

csc2 u - 1
1 + csc u

 =
1csc u + 121csc u - 12

csc u + 1
 

 = csc u - 1  Intermediate step

 =
1

sin u
- 1

 = acos u
sin u

b a 1
cos u

-
sin u
cos u

b
 = 1cot u21sec u - tan u2

 Now try Exercise 41.

EXAMPLE 5 

Confirming a Non-Identity

Prove or disprove that this is an identity cos 2x =  2 cos x.

 1. Graph y = cos 2x and y = 2 cos x in the same window. Interpret the graphs to 
make a conclusion about whether the equation is an identity.

 2. With the help of the graph, find a value of x for which cos 2x ≠ 2 cos x.

 3. Does the existence of the x value in part 2 prove that the equation is not an 
identity? 

EXPLORATION 1

(continued)
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Exploration 1 suggests that we can use graphers to help confirm a non-identity, 
because we only have to produce a single value of x for which the two compared 
expressions are defined but unequal. On the other hand, we cannot use graphers to 
prove that an equation is an identity because, for example, the graphers can never 
prove that two irrational numbers are equal. Also, graphers cannot show behavior 
over infinite domains.

 4. Graph y = cos 2x and y = cos2 x - sin2 x in the same window. Interpret the 
graphs to make a conclusion about whether cos 2x = cos2 x - sin2 x is an 
identity.

 5. Do the graphs in part 4 prove that cos 2x = cos2 x - sin2 x is an identity? 
Explain your answer.

Proving an Identity Useful in Calculus
Prove the following identity:

sin2 x cos5 x = 1sin2 x - 2 sin4 x + sin6 x21cos x2
SOLUTION We begin with the expression on the left.

 sin2 x cos5 x = sin2 x cos4 x cos x

 = 1sin2 x21cos2 x22 1cos x2
 = 1sin2 x211 - sin2 x22 1cos x2
 = 1sin2 x211 - 2 sin2 x + sin4 x21cos x2
 = 1sin2 x - 2 sin4 x + sin6 x21cos x2

Now try Exercise 51.

EXAMPLE 6 

Identities in Calculus
In most calculus problems where identities play a role, the object is to make a compli-
cated expression simpler for the sake of computational ease. Occasionally it is actually 
necessary to make a simple expression more complicated for the sake of computational 
ease. Each of the following identities (just a sampling of many) represents a useful sub-
stitution in calculus wherein the expression on the right is simpler to deal with (even 
though it does not look that way). We prove one of these identities in Example 6 and 
leave the rest for the exercises or for future sections.

 1. cos3 x = (1 - sin2 x21cos x2
 2. sec4 x = (1 + tan2 x21sec2 x2
 3. sin2 x =

1
2

-
1
2

 cos 2x

 4. cos2 x =
1
2

+
1
2

 cos 2x

 5. sin5 x = 11 - 2 cos2 x + cos4 x21sin x2
 6. sin2 x cos5 x = 1sin2 x - 2 sin4 x + sin6 x21cos x2
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, write the expression in terms of sines and cosines 
only. Express your answer as a single fraction.

 1. csc x + sec x  2. tan x + cot x

 3. cos x csc x + sin x sec x 4. sin u cot u - cos u tan u

 5. 
sin x
csc x

+
cos x
sec x

 6. 
sec a
cos a

-
sin a

csc a cos2 a

In Exercises 7–12, determine whether the equation is an identity. If not, 
find a single value of x for which the two expressions are not equal.

 7. 2x2 = x 8. 23 x3 = x

 9. 21 - cos2 x = sin x 10. 2sec2 x - 1 = tan x

 11. ln 
1
x

= - ln x  12. ln x2 = 2 ln x

QUICK REVIEW 5.2 (For help, go to Section 5.1.)

 20. 
1

1 - cos x
+

1
1 + cos x

= 2 csc2 x

 21. 1cos t - sin t22 + 1cos t + sin t22 = 2

 22. tan2 x + sec2 x = 1 + 2 tan2 x

 23. 
1 + tan2 x

sin2 x + cos2 x
= sec2 x

 24. 
1

tan b
+ tan b = sec b csc b

 25. 
cos b

1 + sin b
=

1 - sin b

cos b

 26. 
sec x + 1

tan x
=

sin x
1 - cos x

 27. 
sec u

1 - sin u
=

1 + sin u

cos3 u

 28. 
cot v - 1
cot v + 1

=
1 - tan v
1 + tan v

 29. cot2 x - cos2 x = cos2 x cot2 x

 30. tan2 u - sin2 u = tan2 u sin2 u

 31. cos4 x - sin4 x = cos2 x - sin2 x

 32. tan4 t + tan2 t = sec4 t - sec2 t

 33. 1x sin a + y cos a22 + (x cos a - y sin a22 = x2 + y2

 34. 
1 - cos u

sin u
=

sin u
1 + cos u

 35. 
tan x

sec x - 1
=

sec x + 1
tan x

 36. 
sin t

1 + cos t
+

1 + cos t
sin t

= 2 csc t

 37. 
sin x - cos x
sin x + cos x

=
2 sin2 x - 1

1 + 2 sin x cos x

 38. 
1 + cos x
1 - cos x

=
sec x + 1
sec x - 1

 39. 
sin t

1 - cos t
+

1 + cos t
sin t

=
211 + cos t2

sin t

 40. 
sin A cos B + cos A sin B
cos A cos B - sin A sin B

=
tan A + tan B

1 - tan A tan B

SECTION 5.2 Exercises

In Exercises 1–4, prove the algebraic identity, starting with the left-hand 
side and supplying a sequence of equivalent expressions that ends with 
the right-hand side. (See Example 1.)

 1. 
x3 - x2

x
- 1x - 121x + 12 = 1 - x

 2. 
1
x

-
1
2

=
2 - x

2x

 3. 
x2 - 4
x - 2

-
x2 - 9
x + 3

= 5

 4. 1x - 121x + 22 - 1x + 121x - 22 = 2x

In Exercises 5–10, state whether the equation is an identity.

 5. sin x =
sin2 x + cos2 x

csc x

 6. sin x =
tan x
sec x

 7. sin x = cos x # cot x

 8. sin x = cos1x - p>22
 9. sin x = 1sin3 x211 + cot2 x2

 10. sin x =
sin 2x

2

In Exercises 11–51, prove the identity.

 11. 1cos x21tan x + sin x cot x2 = sin x + cos2 x

 12. 1sin x21cot x + cos x tan x2 = cos x + sin2 x

 13. 11 - tan x22 = sec2 x - 2 tan x

 14. 1cos x - sin x22 = 1 - 2 sin x cos x

 15. 
11 - cos u211 + cos u2

cos2 u
= tan2 u

 16. tan x + sec x =
cos x

1 - sin x

 17. 
cos2 x - 1

cos x
= - tan x sin x

 18. 
sec2 u - 1

sin u
=

sin u

1 - sin2 u

 19. 11 - sin b211 + csc b2 = csc b - sin b
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 41. sin2 x cos3 x = 1sin2 x - sin4 x21cos x2
 42. sin2 x cos5 x = 1sin6 x - 2 sin4 x + sin2 x2 cos x

 43. cos5 x = 11 - 2 sin2 x + sin4 x21cos x2
 44. sin5 x cos3 x = 1sin5 x - sin7 x2 cos x

 45. 
tan x

1 - cot x
+

cot x
1 - tan x

= 1 + sec x csc x

 46. 
sin x

1 + cos x
+

sin x
1 - cos x

= 2 csc x

 47. 
2 cot x

1 - cot2 x
+

1

1 - 2 cos2 x
=

sin x + cos x
sin x - cos x

 48. 
1 - 6 sin x - 7 sin2 x

cos2 x
=

1 - 7 sin x
1 - sin x

 49. cos3 x = 11 - sin2 x21cos x2
 50. csc4 x = 1cot2 x + 12 csc2 x

 51. sin5 x = 11 - 2 cos2 x + cos4 x21sin x2
In Exercises 52–57, match the function with an equivalent expression 
from the following list. Then confirm the match with a proof. (The 
matching is not one-to-one.)

(a) sec2 x csc2 x (b) sec x + tan x (c) 2 sec2 x

(d) tan x sin x (e) sin x cos x

 52. 
1 + sin x

cos x

 53. 11 + sec x211 - cos x2
 54. sec2 x + csc2 x

 55. 
1

1 + sin x
+

1
1 - sin x

 56. 
1

tan x + cot x

 57. 
1

sec x - tan x

Standardized Test Questions
 58.  True or False The equation 2x2 = x is an identity. Justify 

your answer.

 59. True or False The equation 12x22 = x is an identity. 
 Justify your answer.

You should answer these questions without using a calculator.

 60. Multiple Choice If ƒ1x2 = g1x2 is an identity with domain 
of validity D, which of the following must be true?

 i. For any x in D, ƒ1x2 is defined.

 ii. For any x in D, g1x2 is defined.

 iii. For any x in D, ƒ1x2 = g1x2.
(A) None

(B) I and II only

(C) I and III only

(D) III only

(E) I, II, and III

 61. Multiple Choice Which of these is an efficient first step in 

proving the identity 
sin x

1 - cos x
=

1 + cos x
sin x

 ?

(A) 
sin x

1 - cos x
=

cosap
2

- xb
1 - cos x

(B) 
sin x

1 - cos x
=

sin x

sin2 x + cos2 x - cos x

(C) 
sin x

1 - cos x
=

sin x
1 - cos x

# csc x
csc x

(D) 
sin x

1 - cos x
=

sin x
1 - cos x

# 1 - cos x
1 - cos x

(E) 
sin x

1 - cos x
=

sin x
1 - cos x

# 1 + cos x
1 + cos x

 62. Multiple Choice Which of the following could be an 
 intermediate expression in a proof of the identity 

tan u + sec u =
cos u

1 - sin u
?

(A) sin u + cos u

(B) tan u + csc u

(C) 
sin u + 1

cos u

(D) 
cos u

1 + sin u

(E) cos u - cot u

 63. Multiple Choice If ƒ1x2 = g1x2 is an identity and 
ƒ1x2
g1x2 = k, which of the following must be false?

(A) g1x2 ≠ 0

(B) ƒ1x2 = 0

(C) k = 1

(D) ƒ1x2 - g1x2 = 0

(E) ƒ1x2g1x2 7 0

Explorations
In Exercises 64–69, identify a simple function that has the same graph. 
Then confirm your choice with a proof.

 64. sin x cot x

 65. cos x tan x

 66. 
sin x
csc x

+
cos x
sec x

 67. 
csc x
sin x

-
cot x csc x

sec x

 68. 
sin x
tan x

 69. 1sec2 x211 - sin2 x2
 70. Writing to Learn Let u be any number that is in the 

domain of all six trig functions. Explain why the natural 
 logarithms of all six basic trig functions of u sum to 0.
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 71. If A and B are complementary angles, prove that 
sin2A + sin2 B = 1.

 72. Group Activity If your class contains 2n students, write the 
two expressions from n different identities on separate pieces 
of paper. (If your class contains an odd number of students, 
invite your teacher to join you for this activity.) You can use the 
identities from Exercises 11–51 in this section or from other 
texts, but be sure to write them all in the variable x. Mix up the 
slips of paper and give one to each student in your class. Then 
see how long it takes you as a class, without looking at the text, 
to pair yourselves off as identities. (This activity takes on an 
added degree of difficulty if you try it without calculators.)

Extending the Ideas
In Exercises 73–78, prove the identity.

 73. A1 - sin t
1 + sin t

=
1 - sin t

0 cos t 0
 74. A1 + cos t

1 - cos t
=

1 + cos t

0 sin t 0
 75. sin6 x + cos6 x = 1 - 3 sin2 x cos2 x

 76. cos6 x - sin6 x = 1cos2 x - sin2 x211 - cos2 x sin2 x2
 77. ln 0 tan x 0 = ln 0 sin x 0 - ln 0 cos x 0
 78. ln 0 sec u + tan u 0 + ln 0 sec u - tan u 0 = 0

 79. Writing to Learn Let y1 = 3sin1x + 0.0012 -  
sin x4 >0.001 and y2 = cos x.

(a) Use graphs and tables to decide whether y1 = y2.

(b) Find a value for h so that the graph of y3 = y1 - y2 in 
3-2p, 2p4  by 3-h, h4  appears to be a sinusoid. Give a 
convincing argument that y3 is a sinusoid.

 80. Hyperbolic Functions The hyperbolic trigonometric 
 functions are defined as follows:

 sinh x =
ex - e-x

2
   cosh x =

ex + e-x

2
   tanh x =

sinh x
cosh x

 csch x =
1

sinh x
  sech x =

1
cosh x

  coth x =
1

tanh x

  Prove the identity.

(a) cosh2 x - sinh2 x = 1

(b) 1 - tanh2 x = sech2 x

(c) coth2 x - 1 = csch2 x

 81. Writing to Learn Write a paragraph to explain why

cos x = cos x + sin110px2
appears to be an identity when the two sides are graphed in a 
decimal window. Give a convincing argument that it is not an 
identity.
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We also will prove that

cos1u - v) ≠ cos1u2 - cos1v2 and sin1u - v2 ≠ sin1u2 - sin1v2.
As you might expect, there are formulas for sin1u ±  v2, cos1u ±  v2, and tan1u ±  v2, 
but Exploration 1 shows that they are not the ones our instincts would suggest. In a 
sense, that makes them all the more interesting. We will derive them all, beginning 
with the formula for cos1u - v2.
Figure 5.9a on the next page shows angles u and v in standard position on the unit cir-
cle, determining points A and B with coordinates 1cos u, sin u2 and 1cos v, sin v2, 
respectively. Figure 5.9b shows the triangle ABO rotated so that the angle u = u - v is 
in standard position. The angle u determines point C with coordinates 1cos u, sin u2.
The chord opposite angle u has the same length in both circles, even though the coordi-
natization of the endpoints is different. We use the distance formula to find the length 
in each case, and set the formulas equal to each other:

 AB = CD

 21cos v - cos u22 + 1sin v - sin u22 = 21cos u - 122 + 1sin u - 022
Then we square both sides and expand the squared binomials:

cos2 u - 2 cos u cos v + cos2 v + sin2 u - 2 sin u sin v + sin2 v

 = cos2 u - 2 cos u + 1 + sin2 u

1cos2 u + sin2 u2 + 1cos2 v + sin2 v2 - 2 cos u cos v - 2 sin u sin v

 = 1cos2 u + sin2 u2 + 1 - 2 cos u

 2 - 2 cos u cos v - 2 sin u sin v = 2 - 2 cos u

 cos u cos v + sin u sin v = cos u

What you’ll learn about
• Cosine of a Difference

• Cosine of a Sum

• Sine of a Sum or Difference

• Tangent of a Sum or Difference

• Verifying a Sinusoid Algebraically

... and why
These identities provide clear 
 examples of how different the 
 algebra of functions can be from  
the algebra of real numbers.

Cosine of a Difference
There is a powerful instinct in all of us to believe that all functions obey the following 
law of additivity:

ƒ1u + v2 = ƒ1u) + ƒ1v2
In fact, very few do. If there were a hall of fame for algebraic blunders, the following 
would probably be the first two inductees:

1u + v22 = u2 + v22u + v = 2u + 2v

So, before we derive the true sum formulas for sine and cosine, let us clear the air with 
the following exploration.

5.3 Sum and Difference Identities

Getting Past the Obvious but Incorrect 
Formulas

 1. Let u = p and v = p>2.
Find sin1u + v2. Find sin1u2 + sin1v2.
Does sin1u + v2 = sin1u2 + sin1v2? 

 2. Let u = 0 and v = 2p.
Find cos1u + v2. Find cos1u2 + cos1v2.
Does cos1u + v2 = cos1u2 + cos1v2? 

 3. Find your own values of u and v that will prove that 
tan1u + v2 ≠ tan1u2 + tan1v2.

EXPLORATION 1 
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Cosine of a Sum
Now that we have the formula for the cosine of a difference, we can get the formula for 
the cosine of a sum almost for free by using the odd-even identities.

 cos1u + v2 = cos1u - 1-v22
 = cos u cos1-v2 + sin u sin1-v2 Cosine difference identity

 = cos u cos v + sin u 1-sin v2  Odd-even identities

 = cos u cos v - sin u sin v

We can combine the sum and difference formulas for cosine as follows:

Finally, because u = u - v, we can write

 cos1u - v2 = cos u cos v + sin u sin v.

Using the Cosine-of-a-Difference Identity
Find the exact value of cos 15° without using a calculator.

SOLUTION The trick is to write cos 15° as cos145° - 30°2; then we can use our 
knowledge of the special angles.

 cos 15° = cos145° - 30°2
 = cos 45° cos 30° + sin 45° sin 30° Cosine difference identity

 = a22
2
b a23

2
b + a22

2
b a1

2
b

 =
26 + 22

4
 Now try Exercise 5.

EXAMPLE 1 

Cosine of a Sum or Difference

cos 1u ±  v2 = cos u cos v ∓ sin u sin v

(Note the sign switch in either case.)

We pointed out in Section 5.1 that the cofunction identities would be easier to prove 
with the results of Section 5.3. Here is what we mean.

Proving Cofunction Identities
Prove the identities (a) cos1p>2 - x2 = sin x and

(b) sin1p>2 - x2 = cos x.

SOLUTION 

(a)  cosap
2

- xb = cosap
2
b  cos x + sinap

2
b  sin x Cosine sum identity

 = 0 # cos x + 1 # sin x

 = sin x

(b)  sinap
2

- xb = cosap
2

- ap
2

- xb b       
 sin u = cos11p>22 - u2 
by previous proof

 = cos10 + x2
 = cos x  Now try Exercise 41.

EXAMPLE 2 

y

x

(a)

A(cos u, sin u)

B(cos v, sin v) v

u

O
u

y

x

(b)

D(1, 0)O

C(cosu, sinu)

u

Figure 5.9 Angles u and v are in standard 
position in (a), and angle u = u - v is in 
standard position in (b). The chords shown in 
the two circles are equal in length.
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Sine of a Sum or Difference
We can use the cofunction identities in Example 2 to get the formula for the sine of a 
sum from the formula for the cosine of a difference.

 sin1u + v2 = cosap
2

- 1u + v2b  Cofunction identity

 = cosa ap
2

- ub - vb  A little algebra

 = cosap
2

- ub  cos v + sinap
2

- ub  sin v Cosine difference identity

 = sin u cos v + cos u sin v  Cofunction identities

Then we can use the odd-even identities to get the formula for the sine of a difference 
from the formula for the sine of a sum.

 sin1u - v2 = sin1u + 1-v22  A little algebra

 = sin u cos1-v2 + cos u sin1-v2 Sine sum identity

 = sin u cos v + cos u 1-sin v2  Odd-even identities

 = sin u cos v - cos u sin v

We can combine the sum and difference formulas for sine as follows:

Sine of a Sum or Difference

sin1u ±  v2 = sin u cos v ±  cos u sin v

(Note that the sign does not switch in either case.)

Using the Sum and Difference Formulas
Write each of the following expressions as the sine or cosine of an angle.

(a) sin 22° cos 13° + cos 22° sin 13°

(b) cos 
p

3
 cos 
p

4
+ sin 

p

3
 sin 
p

4
(c) sin x sin 2x - cos x cos 2x

SOLUTION The key in each case is recognizing which formula applies. (Indeed, the 
real purpose of such exercises is to help you remember the formulas.)

(a) sin 22° cos 13° + cos 22° sin 13° Recognizing sine of sum formula

 = sin122° + 13°2
 = sin 35°

(b) cos 
p

3
 cos 
p

4
+ sin 

p

3
 sin 
p

4
 Recognizing cosine of difference formula

 = cosap
3

-
p

4
b

 = cos 
p

12
(c) sin x sin 2x - cos x cos 2x Recognizing opposite of cos sum formula

= -1cos x cos 2x - sin x sin 2x2
= -cos1x + 2x2  Applying formula

= -cos 3x  Now try Exercise 19.

EXAMPLE 3 
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Tangent of a Sum or Difference
We can derive a formula for tan1u ±  v2 directly from the corresponding formulas for 
sine and cosine, as follows:

tan1u ± v2 =
sin1u ± v2
cos1u ± v2 =

sin u cos v ± cos u sin v
cos u cos v ∓ sin u sin v

This identity can be rewritten entirely in terms of tangent functions:

If one of the angles in a sum or difference is a quadrantal angle (that is, a multiple of 90° or 
of p>2 rad), then the sum-difference identities yield single-termed expressions. Because 
the effect is to reduce the complexity, the resulting identity is a reduction formula.

Proving Reduction Formulas
Prove the reduction formulas:

(a) sin1x + p2 = -sin x

(b) cosax +
3p
2
b = sin x

SOLUTION 

(a)  sin1x + p2 = sin x cos p + cos x sin p

 = sin x #  1-12 + cos x #  0

 = -sin x

(b)  cosax +
3p
2
b = cos x cos 

3p
2

- sin x sin 
3p
2

 = cos x #  0 - sin x #  1-12
 = sin x  Now try Exercise 23.

EXAMPLE 4 

Proving a Tangent Reduction Formula
Prove the reduction formula tan1u - 13p>222 = -cot u.

SOLUTION We can’t use the all-tangent formula (Do you see why?), so we convert 
to sines and cosines.

 tanau -
3p
2
b =

sin1u - 13p>222
cos1u - 13p>222

 =
sin u cos13p>22 - cos u sin13p>22
cos u cos13p>22 + sin u sin13p>22

 =
sin u # 0 - cos u # 1-12
cos u # 0 + sin u # 1-12

 = -cot u Now try Exercise 39.

EXAMPLE 5 

Verifying a Sinusoid Algebraically
In Example 7 of Section 4.6 we saw graphically ƒ1x2 = 2 sin x + 5 cos x is a sinusoid, 
concluding that ƒ1x2 ≈ 5.39 sin1x + 1.192. But we now have a way of proving this 

Tangent of a Sum or Difference

tan1u ± v2 =
tan u ± tan v

1 ∓ tan u tan v

We will leave the proof of this formula to the exercises.
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algebraically and finding exact values for the amplitude and phase shift. Example 6 
illustrates the technique.

Expressing a Sum of Sinusoids as a Sinusoid
Express ƒ1x2 = 2 sin x + 5 cos x as a sinusoid in the form ƒ1x2 = a sin1bx + c2.
SOLUTION Since a sin1bx + c2 = a 1sin bx cos c + cos bx sin c2, we have

 2 sin x + 5 cos x = a 1sin bx cos c + cos bx sin c2
 = 1a cos c2 sin bx + 1a sin c2 cos bx.

Comparing coefficients, we see that b = 1 and that a cos c = 2 and a sin c = 5.

We can solve for a as follows:

 1a cos c22 + 1a sin c22 = 22 + 52

 a2 cos2 c + a2 sin2 c = 29

 a21cos2 c + sin2 c2 = 29

 a2 = 29  Pythagorean identity

 a = ±229

If we choose a to be positive, then cos c = 2>229 and sin c = 5>229. We can 

identify an acute angle c with those specifications as either cos-112>2292 or  

sin-115>2292, which are equal. So, an exact sinusoid for ƒ is

 ƒ1x2 = 2 sin x + 5 cos x

 = a sin1bx + c2
 = 229 sin1x + cos-112>22922 or 229 sin1x + sin-115>22922

Now try Exercise 43.

EXAMPLE 6 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, express the angle as a sum or difference of special 
 angles (multiples of 30°, 45°, p>6, or p>4). Answers are not unique.

 1. 15°  2. 75°

 3. 165°  4. p>12

 5. 5p>12  6. 7p>12

In Exercises 7–10, tell whether ƒ1x + y2 = ƒ1x2 + ƒ1y2 is an identity 
for the function ƒ.

 7. ƒ1x2 = ln x  8. ƒ1x2 = ex

 9. ƒ1x2 = 32x  10. ƒ1x2 = x + 10

QUICK REVIEW 5.3 (For help, go to Sections 4.2 and 5.1.)

In Exercises 11–22, write the expression as the sine, cosine, or tangent 
of an angle.

 11. sin 9° cos 10° - cos 9° sin 10°

 12. cos 94° cos 18° + sin 94° sin 18°

 13. sin 
5p
12

 cos 
p

3
+ cos 

5p
12

 sin 
p

3

 14. sin 
p

3
 cos 
p

7
- sin 

p

7
 cos 
p

3

 15. 
tan 27° + tan 31°

1 - tan 27° tan 31°

SECTION 5.3 Exercises

In Exercises 1–10, use a sum or difference identity to find an exact 
value.

 1. sin 15°  2. tan 15°

 3. sin 75°  4. cos 75°

 5. cos 
p

12
 6. sin 

7p
12

 7. tan 
5p
12

 8. tan 
11p
12

 9. cos 
7p
12

 10. sin 
-p
12

M06_DEMA8962_10_GE_C05.indd   442 22/06/22   19:08



 SECTION 5.3 Sum and Difference Identities 443

 16. 
tan1p>22 - tan1p>112

1 + tan1p>22 tan1p>112
 17. cos 

p

7
 cos x + sin 

p

7
 sin x

 18. cos x cos 
p

7
 - sin x sin 

p

7

 19. sin 11x cos x - cos 11x sin x

 20. cos 7y cos 3y - sin 7y sin 3y

 21. 
tan 2y + tan 3x

1 - tan 2y tan 3x
 22. 

tan 3a - tan 2b

1 + tan 3a tan 2b

In Exercises 23–30, prove the identity.

 23. sinax -
p

2
b = -cos x 24. tanax -

p

2
b = -cot x

 25. cosax -
p

2
b = sin x

 26. cosa ap
2

- xb - yb = sin1x + y2

 27. sinax +
p

6
b =

23
2

 sin x +
1
2

 cos x

 28. cosax -
p

4
b =

22
2

 1cos x + sin x2

 29. tanau +
p

4
b =

1 + tan u
1 - tan u

 30. cosau +
p

2
b = -sin u

In Exercises 31–34, match each graph with a pair of the following 
equations. Use your knowledge of identities and transformations, not 
your grapher.

(a) y = cos13 - 2x2
(b) y = sin x cos 1 + cos x sin 1

(c) y = cos1x - 32
(d) y = sin12x - 52
(e) y = cos x cos 3 + sin x sin 3

(f) y = sin1x + 12
(g) y = cos 3 cos 2x + sin 3 sin 2x

(h) y = sin 2x cos 5 - cos 2x sin 5

 31. 

[22p, 2p] by [21, 1]

 32. 

[22p, 2p] by [21, 1]

 33. 

[22p, 2p] by [21, 1]

 34. 

[22p, 2p] by [21, 1]

In Exercises 35 and 36, use sum or difference identities (and not your 
grapher) to solve the equation exactly.

 35. sin 2x cos x = cos 2x sin x

 36. cos 3x cos x = sin 3x sin x

In Exercises 37–42, prove the reduction formula.

 37. sinap
2

- ub = cos u 38. tanap
2

- ub = cot u

 39. cotap
2

- ub = tan u 40. secap
2

- ub = csc u

 41. cscap
2

- ub = sec u 42. cosax +
p

2
b = -sin x

In Exercises 43–46, express the function as a sinusoid in the form 
y = a sin 1bx + c2.
 43. y = 3 sin x + 4 cos x

 44. y = 5 sin x - 12 cos x

 45. y = cos 3x + 2 sin 3x

 46. y = 3 cos 2x - 2 sin 2x

In Exercises 47–55, prove the identity.

 47. sin1x - y2 + sin1x + y2 = 2 sin x cos y

 48. cos12x + 3y2 + cos12x - 3y2 = 2 cos (2x) cos (3y)

 49. sin 3x = 3 sin x - 4 sin3 x

 50. cos 4x = cos4 x - 6 sin2 x cos2 x + sin4 x

 51. sin x + sin 3x = 2 sin 2x cos x

 52. cos 4x + cos 6x = 2 cos 5x cos x

 53. cot1x + y2 cot1x - y2 =
cot2 x cot2 y - 1

cot2 y - cot2  x

 54. cot 5u cot 7u =
1 - cot2 6u cot2 u

cot2 6u - cot2 u

 55. 
sin1x + y2
sin1x - y2 =

tan x + tan y

tan x - tan y

Standardized Test Questions
 56. True or False If A and B are supplementary angles, then 

cos A + cos B = 0. Justify your answer.

 57. True or False If cos A + cos B = 0, then A and B are sup-
plementary angles. Justify your answer.

You should answer these questions without using a calculator.

 58. Multiple Choice If cos A cos B = sin A sin B, then 
cos 1A + B2 =
(A) 0. (B) 1.

(C) cos A + cos B. (D) cos B + cos A.

(E) cos A cos B + sin A sin B.

 59. Multiple Choice The function y = sin x cos 2x +
cos x sin 2x has amplitude

(A) 1. (B) 1.5.

(C) 2. (D) 3.

(E) 6.
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 60. Multiple Choice sin 15° =

(A) 
1
4

. (B) 
23
4

.

(C) 
23 + 22

4
. (D) 

26 - 22
4

.

(E) 
26 + 22

4
.

 61. Multiple Choice A function with the property 

ƒ11 + 22 =
ƒ112 + ƒ122
1 - ƒ112ƒ122 is

(A) ƒ1x2 = sin x. (B) ƒ1x2 = tan x.

(C) ƒ1x2 = sec x. (D) ƒ1x2 = ex.

(E) ƒ1x2 = -1.

Explorations

 62. Prove the identity tan1u + v2 =
tan u + tan v

1 - tan u tan v
.

 63. Prove the identity tan1u - v2 =
tan u - tan v

1 + tan u tan v
.

 64. Writing to Learn Explain why the identity in Exercise 62 
cannot be used to prove the reduction formula 
tan 1x + p>22 = -cot x. Then prove the reduction formula.

 65. Writing to Learn Explain why the identity in Exercise 62 
cannot be used to prove the reduction formula 
tan 1x + 3p>22 =  -cot x. Then prove the reduction formula.

 66. An Identity for Calculus Prove the following identity, 
which is used in calculus to prove an important differentiation 
formula.

sin1x + h2 - sin x

h
= sin x acos h - 1

h
b + cos x 

sin h
h

 67. An Identity for Calculus Prove the following identity, 
which is used in calculus to prove another important differenti-
ation formula.

cos1x + h2 - cos x

h
= cos x acos h - 1

h
b - sin x 

sin h
h

 68. Group Activity Place 24 points evenly spaced around the 
unit circle, starting with the point 11, 02. Using only your 
knowledge of the special angles and the sum and difference 
identities, work with your group to find the exact coordinates 
of all 24 points.

Extending the Ideas
In Exercises 69–72, assume that A, B, and C are the three angles of 
some △ABC. 1Note, then, that A + B + C = p.2 Prove the following 
identities.

 69. sin1A + B2 = sin C

 70. cos C = sin A sin B - cos A cos B

 71. tan A + tan B + tan C = tan A tan B tan C

 72. cos A cos B cos C - sin A sin B cos C - sin A cos B sin C -  
cos A sin B sin C = -1

 73. Writing to Learn The figure shows graphs of 
y1 = cos 5x cos 4x and y2 = -sin 5x sin 4x in one viewing 
window. Discuss the question, “How many solutions are there 
to the equation cos 5x cos 4x = -sin 5x sin 4x in the interval 
3-2p, 2p4?” Give an algebraic argument that answers the 
question more convincingly than the graph does. Then support 
your argument with an appropriate graph.

[22p, 2p] by [21, 1]

 74. Harmonic Motion Alternating electric current, an oscillat-
ing spring, or any other harmonic oscillator can be modeled by 
the equation

x = a cosa2p
T

 t + db ,

where T is the time for one period and d is the phase constant. 
Show that this motion can also be modeled by the following 
sum of cosine and sine, each with zero phase constant:

a1 cosa2p
T
b t + a2 sina2p

T
b  t,

where a1 = a cos d and a2 = -a sin d.

 75. Magnetic Fields A magnetic  
field B can sometimes be modeled as 
the sum of an incident and a reflective 
field as

B = Bin + Bref,

where Bin =
E0

c
 cosavt -

vx
c
b , and

Bref =
E0

c
 cosavt +

vx
c
b .

Show that B = 2 
E0

c
 cos vt cos 

vx
c

.
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We will also leave the proofs of these identities as exercises. (See Exercises 37 and 38.)

What you’ll learn about
• Double-Angle Identities

• Power-Reducing Identities

• Half-Angle Identities

• Solving Trigonometric Equations

... and why
These identities are useful in  
calculus courses.

Double-Angle Identities
The formulas that result from letting u = v in the angle sum identities are called the 
double-angle identities. We will state them all and prove one, leaving the rest of the 
proofs as exercises. (See Exercises 1–4.)

5.4 Multiple-Angle Identities

Double-Angle Identities

 sin 2u = 2 sin u cos u

 cos 2u = c cos2 u - sin2 u
2 cos2 u - 1
1 - 2 sin2 u

 tan 2u =
2 tan u

1 - tan2 u

There are three identities for cos 2u. This is not unusual; indeed, there are plenty of 
other identities one could supply for sin 2u as well, such as 2 sin u sin 1p>2 - u2. We 
list the three identities for cos 2u because they are all useful in various contexts and 
therefore worth memorizing.

Proving a Double-Angle Identity
Prove the identity sin 2u = 2 sin u cos u.

SOLUTION

 sin 2u = sin1u + u2
 = sin u cos u + cos u sin u Sine of a sum 1v = u2
 = 2 sin u cos u  Now try Exercise 1.

EXAMPLE 1 

Power-Reducing Identities
One immediate use for two of the three formulas for cos 2u is to derive the power-
reducing identities. Some simple-looking functions like y = sin2 u would be quite dif-
ficult to handle in certain calculus contexts were it not for the existence of these 
identities.

Power-Reducing Identities

 sin2 u =
1 - cos 2u

2

 cos2 u =
1 + cos 2u

2

 tan2 u =
1 - cos 2u
1 + cos 2u
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A little alteration of the power-reducing identities results in the half-angle identities, 
which can be used directly to find trigonometric functions of u>2 in terms of trigono-
metric functions of u. As Exploration 1 suggests, there is an unavoidable ambiguity of 
sign involved with the square root that must be resolved in particular cases by checking 
the quadrant in which u>2 lies.

Proving an Identity
Prove the identity cos4 u - sin4 u = cos 2u.

SOLUTION 

 cos4 u - sin4 u = 1cos2 u + sin2 u21cos2 u - sin2 u2
 = 1 # 1cos2 u - sin2 u2  Pythagorean identity

 = cos 2u  Double-angle identity

 Now try Exercise 15.

EXAMPLE 2 

Reducing a Power of 4
Rewrite cos4 x in terms of trigonometric functions with no power greater than 1.

SOLUTION

 cos4 x = 1cos2 x22

 = a1 + cos 2x
2

b
2

 Power-reducing identity

 = a1 + 2 cos 2x + cos2 2x
4

b

 =
1
4

+
1
2

 cos 2x +
1
4

 a1 + cos 4x
2

b  Power-reducing identity

 =
1
4

+
1
2

 cos 2x +
1
8

+
1
8

 cos 4x

 =
1
8

 13 + 4 cos 2x + cos 4x2  Now try Exercise 39.

EXAMPLE 3 

Half-Angle Identities
The power-reducing identities can be used to extend our stock of “special” angles 
whose trigonometric ratios can be found without a calculator. As usual, we are not sug-
gesting that this algebraic procedure is any more practical than using a calculator, but 
we are suggesting that this sort of exercise helps you to understand how the functions 
behave. In Exploration 1, for example, we use a power-reducing formula to find the 
exact values of sin1p>82 and sin19p>82 without a calculator.

Finding the Sine of Half an Angle

Recall the power-reducing formula sin2 u = 11 - cos 2u2>2.

 1. Use the power-reducing formula to show that sin21p>82 = 12 - 222>4.

 2. Solve for sin1p>82. Do you take the positive or negative square root? Why?

 3. Use the power-reducing formula to show that sin219p>82 = 12 - 222>4.

 4. Solve for sin19p>82. Do you take the positive or negative square root? Why?

EXPLORATION 1 
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Did We Miss Two ± Signs?
You might have noticed that all of the half-angle 
identities have unresolved ±  signs except for the 
last two. The fact that we can omit them on the 
last two identities for tan u>2 is a fortunate con-
sequence of two facts: (1) sin u and tan1u>22 
always have the same sign (easily observed from 
the graphs of the two functions in Figure 5.10), 
and (2) 1 ± cos u is never negative.

Half-Angle Identities

sin 
u
2

= ±B1 - cos u
2

cos 
u
2

= ±B1 + cos u
2

tan 
u
2

= f ±B1 - cos u
1 + cos u

1 - cos u
sin u
sin u

1 + cos u

4

2

–2

–4

y

x
–p 2p

Figure 5.10 The functions sin u and tan1u>22 always have the same sign.

Y = 0X = 4.712389

[0, 2p] by [22, 2]

Figure 5.11 The function  
y = sin 2x - cos x for 0 … x … 2p. The 
scale on the x-axis shows intervals of length 
p>6. This graph supports the solution found 
algebraically in Example 4. For example, 
using TRACE on a grapher with x = 3p>2 
supports the fourth solution, 3p>2.

Solving Trigonometric Equations
New identities always provide new tools for solving trigonometric equations algebra-
ically. Under the right conditions, they even lead to exact solutions. We assert again 
that we are not presenting these algebraic solutions for their practical value (the calcu-
lator solutions are certainly sufficient for most applications and unquestionably much 
quicker to obtain), but rather as ways to observe the behavior of the trigonometric func-
tions and their interwoven tapestry of identities.

Using a Double-Angle Identity
Solve algebraically in the interval 30, 2p2: sin 2x = cos x.

SOLUTION 

 sin 2x = cos x

 2 sin x cos x = cos x

 2 sin x cos x - cos x = 0

 cos x 12 sin x - 12 = 0

 cos x = 0 or 2 sin x - 1 = 0

 cos x = 0 or sin x =
1
2

The two solutions of cos x = 0 are x = p>2 and x = 3p>2. The two solutions of 
sin x = 1>2 are x = p>6 and x = 5p>6. Therefore, the solutions of sin 2x = cos x are

p

6
,  
p

2
,  

5p
6

,  
3p
2

.

We can support this result graphically by verifying the four x-intercepts of the 
function y = sin 2x - cos x in the interval 30, 2p2 (Figure 5.11).
 Now try Exercise 23.

EXAMPLE 4 
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Using Half-Angle Identities
Solve sin2 x = 2 sin21x>22.
SOLUTION The graph of y = sin2 x - 2 sin21x>22 in Figure 5.12 suggests that this 
function is periodic with period 2p and that the equation sin2 x = 2 sin21x>22 has 
three solutions in 30, 2p2.

EXAMPLE 5 

Solve Algebraically 

 sin2 x = 2 sin2 
x
2

 sin2 x = 2 a1 - cos x
2

b  Half-angle identity

 1 - cos2 x = 1 - cos x  Convert to all cosines.

 cos x - cos2 x = 0

 cos x 11 - cos x2 = 0

 cos x = 0 or cos x = 1

 x =
p

2
 or 

3p
2

 or 0

The rest of the solutions are obtained by periodicity:

x = 2np,  x =
p

2
+ 2np,  x =

3p
2

+ 2np,  n = 0, ±1, ±2,c
 Now try Exercise 43.

[22p, 2p] by [22, 1]

Figure 5.12 The graph of y = sin2 x - 2 sin21x>22 suggests that sin2 x = 2 sin21x>22 
has three solutions in 30, 2p2. (Example 5)

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–8, find the general solution of the equation.

 1. tan x - 1 = 0 2. tan x + 1 = 0

 3. 1cos x211 - sin x2 = 0 4. 1sin x211 + cos x2 = 0

 5. sin x + cos x = 0 6. sin x -  cos x = 0

 7. 12 sin x - 1212 cos x + 12 = 0

 8. 1sin x + 1212 cos x - 222 = 0

 9. Find the area of the  
trapezoid.

QUICK REVIEW 5.4 (For help, go to Section 5.1.)

 10. Find the height of the  
isosceles triangle.

33

21 2

3

2
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 41. sin3 2x = a1
2

 sin 2xb11 - cos 4x2

 42. sin5 x = a1
8

 sin xb13 - 4 cos 2x + cos 4x2
In Exercises 43–46, use the half-angle identities to find all solutions in 
the interval 30, 2p2. Then find the general solution.

 43. cos2 x = sin2ax
2
b  44. sin2 x = cos2ax

2
b

 45. tanax
2
b =

1 - cos x
1 + cos x

 46. sin2ax
2
b = cos x - 1

Standardized Test Questions
 47. True or False The product of two functions with period 2p 

has period 2p. Justify your answer.

 48. True or False The function ƒ1x2 = cos2 x is a sinusoid. 
Justify your answer.

You should answer these questions without using a calculator.

 49. Multiple Choice If ƒ1x2 = sin x and g1x2 = cos x, then 
ƒ12x2 =
(A) 2 ƒ1x2. (B) ƒ12) ƒ1x2. (C) ƒ1x) g1x2.
(D) 2 ƒ1x2 g1x2. (E) ƒ122 g1x2 + g122 ƒ1x2.

 50. Multiple Choice sin 22.5° =

(A) 
22
4

 (B) 
23
4

 (C) 
26 - 22

4

(D) B2 - 22
2

 (E) 
32 - 22

2

 51. Multiple Choice How many numbers between 0 and 2p 
satisfy the equation sin 2x = cos x?

(A) None (B) One (C) Two (D) Three (E) Four

 52. Multiple Choice The period of the function  
sin2 x - cos2 x is

(A) 
p

4
. (B) 

p

2
. (C) p. (D) 2p. (E) 4p.

Explorations
 53. Connecting Trigonometry and Geometry In a regular 

polygon all sides are the same length and all angles are equal in 
measure.

(a) If the perpendicular distance 
from the center of the polygon 
with n sides to the midpoint of 
a side is R, and if the length of 
the side of the polygon is x, 
show that

x = 2R tan 
u

2
,

where u = 2p>n is the central angle subtended by one side.

(b) If the length of one side of a regular 11-sided polygon is 
approximately 5.87 and R is a whole number, what is the 
value of R?

SECTION 5.4 Exercises

In Exercises 1–4, use the appropriate sum or difference identity to 
prove the double-angle identity.

 1. cos 2u = cos2 u - sin2 u 2. cos 2u = 2 cos2 u - 1

 3. cos 2u = 1 - 2 sin2 u 4. tan 2u =
2 tan u

1 - tan2 u
In Exercises 5–10, find all solutions to the equation in the interval 30, 2p2.
 5. sin 2x = 2 sin x  6. sin 2x = sin x

 7. cos 2x = sin x 8. cos 2x = cos x

 9. sin 2x - tan x = 0 10. 2 cos2 x + cos x = cos 2x

In Exercises 11–14, write the expression as one involving only sin u 
and cos u.

 11. sin 2u + cos u 12. sin 2u + cos 2u

 13. sin 2u + cos 3u 14. sin 3u + cos 2u

In Exercises 15–22, prove the identity.

 15. sin 34a = 2 sin 17a cos 17a 16. cos 6x = 2 cos2 3x - 1

 17. 
1

2 csc 2x
 = cos2 x tan x  18. 2 cot 2x = cot x - tan x

 19. cos 3x = 4 cos3 x - 3 cos x

 20. sin 3x = 1sin x213 - 4 sin2 x2
 21. cos 4x = 1 - 8 sin2 x cos2 x

 22. sin 4x = 14 sin x cos x212 cos2 x - 12
In Exercises 23–28, solve algebraically for exact solutions in the inter-
val 30, 2p2. Use your grapher only to support your algebraic work.

 23. cos 2x + cos x = 0 24. cos 2x + sin x = 0

 25. cos x + cos 3x = 0 26. sin x + sin 3x = 0

 27. sin 2x + sin 4x = 0 28. cos 2x + cos 4x = 0

In Exercises 29 and 30, use a grapher to find all of the exact solutions in 
the interval 30, 2p2. [Hint: All solutions are rational multiples of p.]

 29. sin 2x - cos 3x = 0 30. sin 3x + cos 2x = 0

In Exercises 31–36, use half-angle identities to find an exact value 
without a calculator.

 31. sin 15°  32. tan 195°

 33. cos 75°  34. sin15p>122
 35. tan17p>122  36. cos1p>82
 37. Prove the power-reducing identities:

(a) sin2 u =
1 - cos 2u

2
 (b) cos2 u =

1 + cos 2u
2

 38. (a)  Use the identities in Exercise 37 to prove the power reduc-

ing identity tan2 u =
1 - cos 2u
1 + cos 2u

.

(b) Writing to Learn Explain why the identity in part (a) 

does not imply that tan u = B1 - cos 2u
1 + cos 2u

.

In Exercises 39–42, use the power-reducing identities to prove the identity.

 39. sin4 x =
1
8

 13 - 4 cos 2x + cos 4x2

 40. cos3 x = a1
2

 cos xb11 + cos 2x2

x

Regular polygon
with n sides

R

x
2

2
uu
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 54. Connecting Trigonometry and Geometry  
A rhombus is a quadrilateral with equal 
sides. The diagonals of a rhombus bisect 
the angles of the rhombus and are perpen-
dicular bisectors of each other. Let 
∠ABC = u, d1 = length of AC, and 
d2 = length of BD.

(a) Show that cos 
u

2
=

d2

2x
 and sin 

u

2
=

d1

2x
.

(b) Show that sin u =
d1d2

2x2 .

 55. Group Activity Maximizing Volume The ends of a 
10-ft-long water trough are isosceles 
trapezoids as shown in the figure. 
Find the value of u that maximizes 
the volume of the trough and the 
maximum volume.

 56. Group Activity Tunnel Problem A rectangular tunnel is 
cut through a mountain to make a road. The upper vertices of 
the rectangle are on the circle x2 + y2 = 400, as illustrated in 
the figure.

  

x 2 1 y 2 5 400

(x, y)

u

(a) Show that the cross-sectional area of the end of the tunnel 
is 400 sin 2u.

(b) Find the dimensions of the rectangular end of the tunnel 
that maximizes its cross-sectional area.

Extending the Ideas
In Exercises 57–61, prove the double-angle formulas.

 57. csc 2u =
1
2

 csc u sec u 58. cot 2u =
cot2 u - 1

2 cot u

 59. sec 2u =
csc2 u

csc2 u - 2
 60. sec 2u =

sec2 u

2 - sec2 u

 61. sec 2u =
sec2 u csc2 u

csc2 u - sec2 u

 62. Writing to Learn Explain whyA1 - cos 2x
2

= 0 sin x 0
is an identity butA1 - cos 2x

2
= sin x

is not an identity.

 63. Tasmanian Sunrise Table 5.2 gives the time of day for 
sunrise in Hobart, Tasmania, Australia, on the first day of 
each month of 2022. (The effect of Daylight Savings Time 
has been ignored for the sake of simplicity.)

A x D

xx

B x C

1 ft 1 ft

1 ft

uu

Table 5.2 Sunrise in Hobart, Australia,  
2022 (without Daylight Savings Time)

Date Day Time 06:00 +
Jan 1 1 04:35 -85
Feb 1 32 05:12 -48
Mar 1 60 05:49 -11
Apr 1 91 06:26 26
May 1 121 07:00 60
Jun 1 152 07:31 91
Jul 1 182 07:42 102
Aug 1 213 07:22 82
Sep 1 244 06:37 37
Oct 1 274 05:44 -16
Nov 1 305 04:54 -66
Dec 1 335 04:27 -93

Source: www.timeanddate.com.

  The second column gives the date as the day of the year, and the 
fourth column gives the time as the number of minutes past 06:00. 

(a) Enter the number in column 2 (Day) into list L1 and the 
numbers in column 4 106:00 +2 into list L2. Make a scatter 
plot with x-coordinates from L1 and y-coordinates from L2.

(b) Using sine regression, find the regression curve through the 
points and store its equation in Y1. Superimpose the graph 
of the curve on the scatter plot. Is it a good fit?

(c) Make a new column showing the residuals (the difference 
between the actual y value at each point and the y value 
predicted by the regression curve) and store them in list 
L3. Your grapher might have a list called RESID among 
the NAMES in the LIST menu, in which case the com-
mand RESID S L3 will perform this operation. You could 
also enter L2 - Y1(L1) S L3.

(d) Make a scatter plot with x-coordinates from L1 and y- 
coordinates from L3. Find the sine regression curve 
through these points and superimpose it on the scatter plot.

(e) Writing to Learn Interpret what the two regressions 
seem to indicate about the periodic behavior of sunrise as a 
function of time. This is not an unusual phenomenon in 
astronomical data, and it kept astronomers baffled for 
centuries.
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The derivation of the Law of Sines refers to the two triangles in Figure 5.13, in each of 
which we have drawn an altitude to side c. Right triangle trigonometry applied to either 
of the triangles in Figure 5.13 tells us that

sin A =
h
b

.

In the acute triangle on the top,

sin B =
h
a

,

and in the obtuse triangle on the bottom,

sin1p - B2 =
h
a

.

But sin1p - B2 = sin B, so in either case

sin B =
h
a

.

Solving for h in both equations yields h = b sin A = a sin B. The equation 
b sin A = a sin B is equivalent to

sin A
a

=
sin B

b
.

If we were to draw an altitude to side a and repeat the same steps as above, we would 
reach the conclusion that

sin B
b

=
sin C

c
.

Putting the results together,

sin A
a

=
sin B

b
=

sin C
c

.

What you’ll learn about
• Deriving the Law of Sines

• Solving Triangles (AAS, ASA)

• The Ambiguous Case (SSA)

• Applications

... and why
The Law of Sines is a powerful 
extension of the triangle congruence 
theorems of Euclidean geometry.

Deriving the Law of Sines
Recall from geometry that a triangle has six parts (three sides (S), three angles (A)), but 
that its size and shape can be completely determined by fixing only three of those parts, 
provided they are the right three. These threesomes that determine triangle congruence 
are known by their acronyms: AAS, ASA, SAS, and SSS. The other two acronyms rep-
resent matchups that don’t quite work: AAA determines similarity only, but SSA does 
not even determine similarity.

With trigonometry we can find the other parts of the triangle once congruence is estab-
lished. The tools we need are the Law of Sines and the Law of Cosines, the subjects of 
our last two trigonometric sections.

The Law of Sines states that the ratio of the sine of an angle to the length of its oppo-
site side is the same for all three angles of any triangle.

5.5 The Law of Sines

A Bc

b a
h

C

A Bc

b
a h

C

Figure 5.13 The Law of Sines.

Law of Sines

In any △ABC with angles A, B, and C opposite sides a, b, and c, respectively, 
the following equation is true:

sin A
a

=
sin B

b
=

sin C
c

.
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Solving Triangles (AAS, ASA)
Two angles and a side of a triangle, in any order, determine the size and shape of a tri-
angle completely. Of course, two angles of a triangle determine the third, so we really 
get one of the missing three parts for free. We solve for the remaining two parts (the 
unknown sides) with the Law of Sines.

Solving a Triangle Given Two Angles and a Side
Solve △ABC given that ∠A = 36°, ∠B = 48°, and a = 8. (See Figure 5.14.)

SOLUTION First, we note that ∠C = 180° - 36° - 48° = 96°.
We then apply the Law of Sines:

 
sin A

a
=

sin B
b

 and 
sin A

a
=

sin C
c

 
sin 36°

8
=

sin 48°
b

 
sin 36°

8
=

sin 96°
c

 b =
8 sin 48°
sin 36°

 c =
8 sin 96°
sin 36°

 b ≈ 10.11 c ≈ 13.54

The six parts of the triangle are

 ∠A = 36°  a = 8
 ∠B = 48° b ≈ 10.11
 ∠C = 96° c ≈ 13.54

 Now try Exercise 1.

EXAMPLE 1 

The Ambiguous Case (SSA)
Although two angles and a side of a triangle are always sufficient to determine its size and 
shape, the same cannot be said for two sides and an angle. Perhaps unexpectedly, it 
depends on where that angle is. If the angle is included between the two sides (the SAS 
case), then the triangle is uniquely determined up to congruence. If the angle is opposite 
one of the sides (the SSA case), then there might be one, two, or zero triangles determined.

Solving a triangle in the SAS case involves the Law of Cosines and will be handled in 
the next section. Solving a triangle in the SSA case is done with the Law of Sines, but 
with an eye toward the possibilities, as seen in the following Exploration.

Determining the Number of Triangles

We wish to construct △ABC given angle A, side AB, and side BC.

 1. Suppose ∠A is obtuse and that side AB is as shown in Figure 5.15. To complete 
the triangle, side BC must determine a point on the dotted horizontal line (which 
extends infinitely to the left). Explain from the picture why a unique triangle 
△ABC is determined if BC 7 AB, but no triangle is determined if BC … AB.

 2. Suppose ∠A is acute and that side AB is as shown in Figure 5.16. To complete 
the triangle, side BC must determine a point on the dotted horizontal line (which 
extends infinitely to the right). Explain from the picture why a unique triangle 
△ABC is determined if BC = h, but no triangle is determined if BC 6 h.

 3. Suppose ∠A is acute and that side AB is as shown in Figure 5.17. If 
AB 7 BC 7 h, then we can form a triangle as shown. Find a second point C 
on the dotted horizontal line that gives a side BC of the same length, but deter-
mines a different triangle. (This is the “ambiguous case.”)

 4. Explain why sin C is the same in both triangles in the ambiguous case. (This is 
why the Law of Sines is also ambiguous in this case.)

 5. Explain from Figure 5.17 why a unique triangle is determined if BC Ú AB.

EXPLORATION 1 

A Bc

b

C

48°

8

36°

Figure 5.14 A triangle determined by 
AAS. (Example 1)

A

B

Figure 5.15 The diagram for part 1. 
(Exploration 1)

A
h

B

Figure 5.16 The diagram for part 2. 
(Exploration 1)

A

C

h

B

Figure 5.17 The diagram for parts 3–5. 
(Exploration 1)
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Now that we know what can happen, let us try the algebra.

A

C

c B
26.3°

6 7

Figure 5.18 A triangle determined by 
SSA. (Example 2)

Solving a Triangle Given Two Sides and an Angle
Solve △ABC given that a = 7, b = 6, and ∠A = 26.3°. (See Figure 5.18.)

SOLUTION By drawing a reasonable sketch (Figure 5.18), we can assure ourselves 
that this is not the ambiguous case. (In fact, this is the case described in step 5 of 
Exploration 1.)

Begin by solving for the acute angle B, using the Law of Sines:

 
sin A

a
=

sin B
b

.  Law of Sines

 
sin 26.3°

7
=

sin B
6

 sin B =
6 sin 26.3°

7

 B = sin-1 a6 sin 26.3°
7

b
 B ≈ 22.3°  Round to match accuracy of given angle.

Then find the obtuse angle C by subtraction:

 C ≈ 180° - 26.3° - 22.3°
 ≈ 131.4°

Finally, find side c:

 
sin A

a
=

sin C
c

 
sin 26.3°

7
≈

sin 131.4°
c

 c ≈
7 sin 131.4°

sin 26.3°
 c ≈ 11.85

The six parts of the triangle are

 ∠A = 26.3° a = 7

 ∠B ≈ 22.3° b = 6

 ∠C ≈ 131.4° c ≈ 11.85 Now try Exercise 9.

EXAMPLE 2 

Handling the Ambiguous Case
Solve △ABC given that a = 6, b = 7, and ∠A = 30.0°.

SOLUTION By drawing a reasonable sketch (Figure 5.19), we see that two triangles 
are possible with the given information. We keep this in mind as we proceed.

We begin by using the Law of Sines to find angle B.

 
sin A

a
=

sin B
b

 Law of Sines

 
sin 30°

6
=

sin B
7

 sin B =
7 sin 30.0°

6

 B = sin-1a7 sin 30.0°
6

b

 B ≈ 35.7°  Round to match accuracy of given angle.

EXAMPLE 3 

(continued)

A

C

c B

30°

(a)

67

A

C

c B

30°

(b)

6

7

Figure 5.19 Two triangles determined by 
the same SSA values. (Example 3)
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Notice that the calculator gave us one value for B, not two. That is because we used 
the function sin-1, which cannot give two output values for the same input value. 
Indeed, the function sin-1 will never give an obtuse angle, which is why we chose 
to start with the acute angle in Example 2. In this case, the calculator has found the 
angle B shown in Figure 5.19a.

Find the obtuse angle C by subtraction:

C ≈ 180° - 30.0° - 35.7° ≈ 114.3°
Finally, find side c:

 
sin A

a
=

sin C
c

 
sin 30.0°

6
≈

sin 114.3°
c

 c ≈
6 sin 114.3°

sin 30°
 c ≈ 10.94

So, under the assumption that angle B is acute (see Figure 5.19a), the six parts of the 
triangle are

 ∠A = 30.0°  a = 6

 ∠B ≈ 35.7°  b = 7

 ∠C ≈ 114.3° c ≈ 10.94

If angle B is obtuse, then we can see from Figure 5.19b that it has measure 
180° - 35.7° ≈ 144.3°.
By subtraction, the acute angle C ≈ 180° - 30.0° - 144.3° ≈ 5.7°. We then 
recompute c:

c ≈
6 sin 5.7°
sin 30°

≈ 1.19 Substitute 5.7° for 114.3° in earlier computation.

So, under the assumption that angle B is obtuse (see Figure 5.19b), the six parts of 
the triangle are

∠A = 30.0° a = 6

∠B ≈ 144.3° b = 7

∠C ≈ 5.7° c ≈ 1.19
 Now try Exercise 19.

Applications
Many problems involving angles and distances can be solved by superimposing a  
triangle onto the situation and solving the triangle.

Locating a Fire
Forest Ranger Chris Johnson at ranger station A sights a fire in the direction 32° east 
of north. Ranger Rick Thorpe at ranger station B, 10 mi due east of A, sights the 
same fire on a line 48° west of north. Find the distance from each ranger station to 
the fire.

SOLUTION Let C represent the location of the fire. A sketch (Figure 5.20) shows 
the superimposed triangle, △ABC, in which angles A and B and their included side 
(AB) are known. This is a setup for the Law of Sines.

EXAMPLE 4 

A B

C

b
h

a

N

10 mi

N

48°
32°

Figure 5.20 Determining the 
location of a fire. (Example 4)
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Note that ∠A = 90° - 32° = 58° and ∠B = 90° - 48° = 42°. By subtraction, we 
find that ∠C = 180° - 58° - 42° = 80°.

 
sin A

a
=

sin C
c

 and  
sin B

b
=

sin C
c

 Law of Sines

 
sin 58°

a
=

sin 80°
10

  
sin 42°

b
=

sin 80°
10

 a =
10 sin 58°

sin 80°
  b =

10 sin 42°
sin 80°

 a ≈ 8.6   b ≈ 6.8  Round to match accuracy of input.

The fire is about 6.8 mi from ranger station A and about 8.6 mi from ranger station B.
 Now try Exercise 45.

Finding the Height of a Pole
A road slopes 10° above the horizontal, and a vertical telephone pole stands beside 
the road. The angle of elevation of the Sun is 62°, and the pole casts a 14.5-ft shadow 
downhill along the road. Find the height of the telephone pole.

SOLUTION This is an interesting variation on a typical application of right triangle 
trigonometry. The slope of the road eliminates the convenient right angle, but we can 
still solve the problem by solving a triangle.

Figure 5.21 shows the superimposed triangle, △ABC. Some preliminary geometry is 
required to find the measure of the angles needed to apply the Law of Sines. Due to 
the slope of the road, angle A is 10° less than the angle of elevation of the Sun, and 
angle B is 10° more than a right angle. That is,

 ∠A = 62° - 10° = 52°
 ∠B = 90° + 10° = 100°
 ∠C = 180° - 52° - 100° = 28°

Therefore,

 
sin A

a
=

sin C
c

 Law of Sines

 
sin 52°

a
=

sin 28°
14.5

 a =
14.5 sin 52°

sin 28°
 a ≈ 24.3  Round to match accuracy of input.

The pole is approximately 24.3 ft high.
 Now try Exercise 39.

EXAMPLE 5 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, solve the equation a>b = c>d for the given variable.

 1. a  2. b  3. c  4. d

In Exercises 5 and 6, evaluate the expression.

 5. 
7 sin 48°
sin 23°

 6. 
9 sin 121°

sin 14°

In Exercises 7–10, solve for the angle x.

 7. sin x = 0.3, 0° 6 x 6 90°

 8. sin x = 0.3, 90° 6 x 6 180°

 9. sin x = -0.7, 180° 6 x 6 270°

 10. sin x = -0.7,  270° 6 x 6 360°

QUICK REVIEW 5.5 (For help, go to Sections 4.2 and 4.7.)

A
B

c

ab

C 62°

10°

Figure 5.21 A telephone pole on a 
slope. (Example 5)
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456 CHAPTER 5 Analytic Trigonometry

 25. 

A C

a

B

56°
23

(a)

19

A b C

a

B

56°

(b)

19

 26. 

AC b

c

B

119° 29°

(a)

81

AC 89

c

B

119°

(b)

81

In Exercises 27–36, respond in one of the following ways:

(a) State, “Cannot be solved with the Law of Sines.”

(b) State, “No triangle is formed.”

(c) Solve the triangle.

 27. A = 61°,  a = 8,  b = 21

 28. B = 47°,  a = 8,  b = 21

 29. A = 136°,  a = 15,  b = 28

 30. C = 115°,  b = 12,  c = 7

 31. B = 42°,  c = 18,  C = 39°

 32. A = 19°,  b = 22,  B = 47°

 33. C = 75°,  b = 49,  c = 48

 34. A = 54°,  a = 13,  b = 15

 35. B = 31°,  a = 8,  c = 11

 36. C = 65°,  a = 19,  b = 22

 37. Surveying a Canyon Two markers A and B on the same 
side of a canyon rim are 56 ft apart. A third marker C, located 
across the rim, is positioned so that ∠BAC = 72° and 
∠ABC = 53°.

  

A

B
C

56 ft

(a) Find the distance between C and A.

(b) Find the distance between the two canyon rims. (Assume 
they are parallel.)

 38. Weather Forecasting  
Two meteorologists are 25 mi apart 
located on an east-west road. The 
meteorologist at point A sights a 
tornado 38° east of north. The 
meteorologist at point B sights the 
same tornado 53° west of north. 
Find the distance from each meteo-
rologist to the tornado. Also find 
the distance between the tornado and the road.

SECTION 5.5 Exercises

In Exercises 1–4, solve the triangle.

 1. 

A

C

c

a

B
60° 45°

3.7

 2. A

C

b

aB
15° 120°

17

 3. 

AC b

c

B

35° 100°

22

 4. 

A

C

a

cB
40° 81°

92

In Exercises 5–8, solve the triangle.

 5. A = 33°,  B = 40°,  c = 19

 6. A = 50°,  B = 62°,  a = 4

 7. A = 27°,  C = 117°,  c = 44

 8. B = 16°,  C = 103°,  c = 12

In Exercises 9–12, solve the triangle.

 9. A = 32°,  a = 17,  b = 11

 10. A = 49°,  a = 32,  b = 28

 11. B = 70°,  b = 14,  c = 9

 12. C = 103°,  b = 46,  c = 61

In Exercises 13–18, state whether the given measurements determine 
zero, one, or two triangles.

 13. A = 38°,  a = 3,  c = 9

 14. B = 82°,  b = 17,  c = 15

 15. C = 36°,  a = 17,  c = 16

 16. A = 73°,  a = 24,  b = 28

 17. C = 30°,  a = 18,  c = 9

 18. B = 88°,  b = 14,  c = 62

In Exercises 19–22, two triangles can be formed using the given mea-
surements. Solve both triangles.

 19. A = 64°,  a = 16,  b = 17

 20. B = 38°,  b = 21,  c = 25

 21. C = 68°,  a = 19,  c = 18

 22. B = 57°,  a = 11,  b = 10

 23. Determine the values of b that will produce the given number 
of triangles if a = 10 and B = 42°.

(a) Two triangles (b) One triangle (c) Zero triangles

 24. Determine the values of c that will produce the given number 
of triangles if b = 12 and C = 53°.

(a) Two triangles (b) One triangle (c) Zero triangles

In Exercises 25 and 26, decide whether the triangle can be solved using 
the Law of Sines. If so, solve it. If not, explain why not.

A B

C

b

h

a
53°38°

N N

25 mi
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 SECTION 5.5 The Law of Sines 457

 39. Engineering Design  
A vertical flagpole stands 
beside a road that slopes at 
an angle of 15° with the hori-
zontal. When the angle of 
elevation of the Sun is 62°, 
the flagpole casts a 16-ft 
shadow downhill along the 
road. Find the height of the 
flagpole.

 40. Altitude Observers 2.32 mi 
apart see a hot-air balloon 
directly between them but at 
the angles of elevation shown 
in the figure. Find the altitude 
of the balloon.

 41. Reducing Air Resistance A 4-ft airfoil attached to the 
cab of a truck reduces wind resistance. If the angle between the 
airfoil and the cab top is 18° and angle B is 10°, find the length 
of a vertical brace positioned as shown in the figure.

4 ft
18°

B

 42. Group Activity Ferris Wheel Design A Ferris wheel 
has 16 evenly spaced cars. The distance between adjacent 
chairs is 15.5 ft. Find the radius of the wheel (to the nearest 
0.1 ft).

 43. Finding Height Two observers are 600 ft apart on opposite 
sides of a flagpole. The angles of elevation from the observers 
to the top of the pole are 19° and 21°. Find the height of the 
flagpole.

 44. Finding Height Two observers are 400 ft apart on opposite 
sides of a tree. The angles of elevation from the observers to 
the top of the tree are 15° and 20°. Find the height of the 
tree.

 45. Finding Distance Two lighthouses A and B are known to 
be exactly 20 mi apart on a north-south line. A ship’s captain at 
S measures ∠ASB to be 33°. A radio operator at B measures 
∠ABS to be 52°. Find the distance from the ship to each light-
house.

A

B

S (ship)
33°

52°

20 mi

 46. Using Measurement Data A geometry class is divided 
into ten teams, each of which is given a yardstick and a pro-
tractor to find the distance from a point A on the edge of a 
small puddle to a tree at a point C on the opposite side. After 
marking points A and B with stakes, each team uses a protrac-
tor to measure angles A and B and a yardstick to measure dis-
tance AB. Their measurements are given in the table.

A B AB

75° 83° 67 cm

71° 85° 61 cm

72° 89° 63 cm

74° 88° 66 cm

76° 89° 67 cm

73° 87° 60 cm

76° 84° 62 cm

71° 85° 65 cm

76° 88° 60 cm

73° 87° 62 cm

  Use the data to find the class’s best estimate for the distance 
AC. 

C

A B

Standardized Test Questions
 47. True or False The ratio of the sines of any two angles in a 

triangle equals the ratio of the lengths of their opposite sides. 
Justify your answer.

 48. True or False The perimeter of a triangle with two 10-in. 
sides and two 40° angles is greater than 36 in. Justify your 
answer.

You may use a grapher when answering these questions.

 49. Multiple Choice The  
length x in the triangle shown  
at the right is

(A) 8.6. (B) 15.0. (C) 18.1.

(D) 19.2. (E) 22.6.

C

15°

62°

62°

28°b a

A

75°

HorizontalB
16 ft

105°

2.32 mi

28° 37°

A B

x 12.0
95°

53°
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458 CHAPTER 5 Analytic Trigonometry

 50. Multiple Choice Which of the following combinations of 
three triangle parts does not necessarily determine the other 
three parts?

(A) AAS (B) ASA (C) SAS

(D) SSA (E) SSS

 51. Multiple Choice The shortest side of a triangle with angles 
50°, 60°, and 70° has length 9.0. What is the length of the lon-
gest side?

(A) 11.0 (B) 11.5 (C) 12.0

(D) 12.5 (E) 13.0

 52. Multiple Choice How many noncongruent triangles ABC 
can be formed if AB = 5, A = 60°, and BC = 8?

(A) None (B) One (C) Two

(D) Three (E) Infinitely many

Explorations
 53. Writing to Learn 

(a) Show that there are infinitely many triangles with AAA 
given if the sum of the three positive angles is 180°.

(b) Give three examples of triangles where A = 30°, B = 60°, 
and C = 90°.

(c) Give three examples of triangles where A = B = C = 60°.

 54. Use the Law of Sines and the cofunction identities to derive the 
following formulas from right triangle trigonometry:

(a) sin A =
opp

hyp
 (b) cos A =

adj

hyp
 (c) tan A =

opp

adj

 55. Wrapping up Exploration 1 Refer to Figures 5.16 and 
5.17 in Exploration 1 of this section.

(a) Express h in terms of angle A and length AB.

(b) In terms of the given angle A and the given length AB, 
state the conditions on length BC that will result in no tri-
angle being formed.

(c) In terms of the given angle A and the given length AB, 
state the conditions on length BC that will result in a 
unique triangle being formed.

(d) In terms of the given angle A and the given length AB, 
state the conditions on length BC that will result in two 
possible triangles being formed.

Extending the Ideas
 56. Solve this triangle assuming that ∠B is obtuse.  

[Hint: Draw a perpendicular from A to the line  
through B and C.]              

A

B

C

22°
8

5

 57. Pilot Calculations Towers A and B are known to be  
4.1 mi apart on level ground. A pilot measures the angles of 
depression to the towers to be 36.5° and 25°, respectively, as 
shown in the figure. Find distances AC and BC and the height 
of the airplane.

  A B

C
25°

36.5°

4.1 mi
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 SECTION 5.6 The Law of Cosines 459

In each of these three cases, C is a point on the terminal side of angle A in standard 
position, at distance b from the origin. Denote the coordinates of C by (x, y). By our 
definitions for trigonometric functions of any angle (Section 4.3), we can conclude that

x
b

= cos A  and  
y

b
= sin A,

and therefore

x = b cos A  and  y = b sin A.

What you’ll learn about
• Deriving the Law of Cosines

• Solving Triangles (SAS, SSS)

• Triangle Area and Heron’s Formula

• Applications

... and why
The Law of Cosines is an important 
extension of the Pythagorean  
Theorem, with many applications.

Deriving the Law of Cosines
Having seen the Law of Sines, you will probably not be surprised to learn that there is a 
Law of Cosines. There are many such parallels in mathematics. What you might find 
surprising is that the Law of Cosines has absolutely no resemblance to the Law of 
Sines. Instead, it resembles the Pythagorean Theorem. In fact, the Law of Cosines is 
often called the “generalized Pythagorean Theorem” because it contains that classic 
theorem as a special case.

5.6 The Law of Cosines

A
B

C

a

c

b

Figure 5.22 A triangle with the 
usual labeling (angles A, B, C; opposite 
sides a, b, c).

y

x

(a)

B(c, 0)

C(x, y)

A c

a
b

y

x

(b)

B(c, 0)

C(x, y)

A c

ab

y

x

(c)

B(c, 0)

C(x, y)

A c

a
b

Figure 5.23 Three cases for proving the Law of Cosines.

Law of Cosines

Let △ABC be any triangle with sides and angles labeled in the usual way  
(Figure 5.22).

Then

 a2 = b2 + c2 - 2bc cos A

 b2 = a2 + c2 - 2ac cos B

 c2 = a2 + b2 - 2ab cos C

We derive only the first of the three equations, since the other two are derived in exactly 
the same way. Set the triangle in a coordinate plane so that the angle that appears in the 
formula (in this case, A) is at the origin in standard position, with side c along the posi-
tive x-axis. Depending on whether angle A is right (Figure 5.23a), acute (Figure 5.23b), 
or obtuse (Figure 5.23c), the point C will be on the y-axis, in QI, or in QII.
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460 CHAPTER 5 Analytic Trigonometry

A

B

c

C

11

5
20°

Figure 5.24 A triangle with two sides 
and an included angle known. (Example 1)

Now set a equal to the distance from C to B using the distance formula:

 a = 21x - c22 + 1y - 022  Distance formula

 a2 = 1x - c22 + y2  Square both sides.

 = 1b cos A - c22 + 1b sin A22  Substitution

 = b2 cos2 A - 2bc cos A + c2 + b2 sin2 A 

 = b21cos2 A + sin2 A2 + c2 - 2bc cos A

 = b2 + c2 - 2bc cos A  Pythagorean identity

Solving a Triangle (SAS)
Solve △ABC given that a = 11, b = 5, and C = 20°. (See Figure 5.24.)

SOLUTION 

 c2 = a2 + b2 - 2ab cos C

 = 112 + 52 - 21112152 cos 20°
 ≈ 42.63

 c = 242.63 ≈ 6.53

We could now use either the Law of Cosines or the Law of Sines to find one of the 
two unknown angles. As a general rule, it is better to use the Law of Cosines to find 
angles, since the arccosine function will distinguish obtuse angles from acute angles.

 a2 = b2 + c2 - 2bc cos A

 112 ≈ 52 + 16.5322 - 215216.532cos A

 cos A ≈
52 + 16.5322 - 112

215216.532

 A ≈ cos-1a5
2 + 16.5322 - 112

215216.532 b

 ≈ 144.80°
 B ≈ 180° - 144.80° - 20°

 ≈ 15.20°
So the six parts of the triangle are

 A ≈ 144.80°   a = 11

 B ≈ 15.20°    b = 5

 C = 20°    c ≈ 6.53  Now try Exercise 1.

EXAMPLE 1 

Solving a Triangle (SSS)
Solve △ABC if a = 9, b = 7, and c = 5. (See Figure 5.25.)

EXAMPLE 2 

Solving Triangles (SAS, SSS)
Although the Law of Sines is the tool we use to solve triangles in the AAS and ASA 
cases, the Law of Cosines is the required tool for SAS and SSS. (Both methods can be 
used in the SSA case, but remember that there might be 0, 1, or 2 triangles.)

A

BC

5

9

7

Figure 5.25 A triangle with three sides 
known. (Example 2)
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 SECTION 5.6 The Law of Cosines 461

There is also an area formula that can be used when the three sides of the triangle are 
known.

Although Heron proved this theorem using only classical geometric methods, we prove 
it, as most people do today, by using the tools of trigonometry.

9

9
u

Figure 5.26 A regular octagon inscribed 
inside a circle of radius 9 in. (Example 3)

SOLUTION We use the Law of Cosines to find two of the angles. The third angle 
can be found by subtraction from 180°.

 a2 = b2 + c2 - 2bc cos A  b2 = a2 + c2 - 2ac cos B

 92 = 72 + 52 - 2172152cos A  72 = 92 + 52 - 2192152cos B

 70 cos a = -7  90 cos b = 57

 A = cos-11-0.12  B = cos-1157>902
 ≈ 95.74°  ≈ 50.70°

Then C ≈ 180° - 95.74° - 50.70° ≈ 33.56°. Now try Exercise 3.

Triangle Area and Heron’s Formula
The same parts that determine a triangle also determine its area. If the parts happen to 
be two sides and an included angle (SAS), we get a simple area formula in terms of 
those three parts that does not require finding an altitude.

Observe in Figure 5.23 (used in explaining the Law of Cosines) that each triangle has 
base c and altitude y = b sin A. Applying the standard area formula, we have

Area =
1
2

 1base21height2 =
1
2

 1c21b sin A2 =
1
2

 bc sin A.

This is actually three formulas in one, because it does not matter which side we use as 
the base.

Area of a Triangle

Area =
1
2

 bc sin A =
1
2

 ac sin B =
1
2

 ab sin C

Finding the Area of a Regular Polygon
Find the area of a regular octagon (8 equal sides, 8 equal angles) inscribed inside a 
circle of radius 9 in.

SOLUTION Figure 5.26 shows that we can split the octagon into 8 congruent trian-
gles. Each triangle has two 9-in. sides with an included angle of u = 360°>8 = 45°. 
The area of each triangle is

Area△ = 11>22192192 sin 45° = 181>22 sin 45° =
8122

4
.

Therefore, the area of the octagon is

8 # Area△ = 16222 ≈ 229.10 in.2.
 Now try Exercise 31.

EXAMPLE 3 
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462 CHAPTER 5 Analytic Trigonometry

The following proof of Heron’s Formula uses both algebra and trigonometry.

 Area =
1
2

 ab sin C

 41Area2 = 2ab sin C

 161Area)2 = 4a2b2 sin2 C

 = 4a2b211 - cos2 C2 Pythagorean identity

 = 4a2b2 - 4a2b2 cos2 C

 = 4a2b2 - 12ab cos C22
 = 4a2b2 - 1a2 + b2 - c222 Law of Cosines

 = 12ab - 1a2 + b2 - c22212ab + 1a2 + b2 - c222 
Difference of squares

 = 1c2 - 1a2 - 2ab + b22211a2 + 2ab + b22 - c22
 = 1c2 - (a - b22211a + b22 - c22

 = 1c - 1a - b221c + (a - b2211a + b2 - c211a + b2 + c2
 Difference of squares

 = 1c - a + b21c + a - b21a + b - c21a + b + c2
 = 12s - 2a212s - 2b212s - 2c212s2 2s = a + b + c

 161Area22 = 16s1s - a21s - b21s - c2
 1Area22 = s1s - a21s - b21s - c2

 Area = 2s1s - a21s - b21s - c2

THEOREM Heron’s Formula

Let a, b, and c be the sides of △ABC, and let s denote the semiperimeter

1a + b + c)>2.

Then the area of △ABC is given by Area = 2s1s - a21s - b21s - c2 .

Using Heron’s Formula
Find the area of a triangle with sides 13, 15, 18.

SOLUTION First we compute the semiperimeter: s = 113 + 15 + 182>2 = 23.

Then we use Heron’s Formula:

 Area = 223123 - 132123 - 152123 - 182
 = 223 # 10 # 8 # 5 = 29200 = 20223.

The approximate area is 95.92 square units. Now try Exercise 21.

EXAMPLE 4 

Applications
We end this section with a few applications.

Measuring a Baseball Diamond
As shown in Figure 5.27, a baseball “diamond” is a square with sides of 90 ft. The 
front edge of the pitching rubber (at point B) is 60.5 ft from the back corner of home 
plate. Find the distance from the center of the front edge of the pitching rubber to  
the far corner of first base.

EXAMPLE 5 

Second base

A (First base)

C

c

60.5 ft

45°

Third
base

(Home plate)

90 ft

B

Figure 5.27 A baseball diamond is 
square in shape; the four corners are the 
three bases and home plate. The pitching 
rubber, shown at point B, is located on the 
segment between second base and home 
plate. (Example 5)
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2

2
2

1 1

C

B E
D

A

3

3

Figure 5.28 The measure of ∠ABC is 
the same as the measure of any dihedral angle 
formed by two of the tetrahedron’s faces. 
(Example 6)

Platonic Solids
The regular tetrahedron in Example 6 is one of 
only 5 regular solids (solids with faces that are 
congruent regular polygons and that have equal 
dihedral angles). The others are the cube (6 square 
faces), the octahedron (8 triangular faces), the 
dodecahedron (12 pentagonal faces), and the ico-
sahedron (20 triangular faces). These are referred 
to as the Platonic solids. Plato did not discover 
them, but they are featured in his cosmology as 
being the stuff of which everything in the universe 
is made. The Platonic universe itself is a dodeca-
hedron, a favorite symbol of the Pythagoreans.

SOLUTION Figure 5.27 shows first base as A, the pitching rubber as B, and home 
plate as C. The distance we seek is side c in △ABC.

By the Law of Cosines,

 c2 = 60.52 + 902 - 2160.521902 cos 45°
 c = 260.52 + 902 - 2160.521902 cos 45°
 ≈ 63.72

The distance from first base to the pitching rubber is about 63.72 ft.
 Now try Exercise 37.

Measuring a Dihedral Angle (Solid Geometry)
A regular tetrahedron is a solid with four faces, each of which is an equilateral trian-
gle. Find the measure of the dihedral angle formed along the common edge of two 
intersecting faces of a regular tetrahedron with edges of length 2.

SOLUTION Figure 5.28 shows the tetrahedron. Point B is the midpoint of edge DE, 
and A and C are the endpoints of the opposite edge. The measure of ∠ABC is the 
same as the measure of the dihedral angle formed along edge DE, so we will find the 
measure of ∠ABC.

Because both △ADB and △CDB are 30°-60°-90° triangles, AB and BC both have 
length 23. If we apply the Law of Cosines to △ABC, we obtain

 22 = 12322 + 12322 - 223 23 cos 1∠ABC2

 cos1∠ABC2 =
1
3

 ∠ABC = cos-1a1
3
b ≈ 70.53°

The dihedral angle has the same measure as ∠ABC, approximately 70.53°. (We 
chose sides of length 2 for computational convenience, but in fact this is the measure 
of a dihedral angle in a regular tetrahedron of any size.)
 Now try Exercise 43.

EXAMPLE 6 

Estimating Acreage of a Plot of Land

Jim and Barbara are house hunting and need to estimate the size of an irregular, 
four-sided back yard that is described by the owner as “a little more than an 
acre.” With Barbara stationed at a corner of the lot, Jim starts at another corner 
and walks a straight line toward her, counting his paces. They then shift corners 
and Jim paces again, until they have recorded the dimensions of the lot (in paces) 
as in Figure 5.29. They later measure Jim’s pace as 2.2 ft. What is the approxi-
mate acreage of the lot?

 1. Use Heron’s Formula to find the area in square paces.

 2. Convert the area to square ft, using the measure of Jim’s pace.

 3. There are 5280 ft in a mile. Convert the area to square miles.

 4. There are 640 acres in a square mile. Convert the area to acres.

 5. Is there good reason to doubt the owner’s estimate of the acreage of the lot?

 6. Would Jim and Barbara be able to modify their system to estimate the area of 
an irregular lot with five straight sides?

EXPLORATION 1 

102

81

115

86112

Figure 5.29 Dimensions (in paces) of an 
irregular plot of land. (Exploration 1)
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CHAPTER OPENER Problem (from page 420)

Problem: Because deer require food, water, cover for protection from weather 
and predators, and living space for healthy survival, there are natural limits to the 
number of deer that a given plot of land can support. Deer populations in national 
parks average 14 animals per square kilometer. If a triangular region with sides of 
3 km, 4 km, and 6 km has a population of 50 deer, how close is the population on 
this land to the average national park population?

Solution: We can find the area of the land region

4 km3 km

6 km

by using Heron’s Formula with

 s = 13 + 4 + 62>2 = 13>2
and

 Area = 2s1s - a21s - b21s - c2

 = B13
2

 a13
2

- 3b a13
2

- 4b a13
2

- 6b

 = B13
2

 a7
2
b a5

2
b a1

2
b ≈ 5.33,

so the area of the land region is about 5.33 km2.

If this land were to support 14 deer>km2, it would have 
15.33 km22114 deer>km22 = 74.62 or about 75 deer. Thus, the land supports 
about 25 deer less than the national park average.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, find an angle between 0° and 180° that is a solution to 
the equation.

 1. cos A = 3>5 2. cos C = -0.23

 3. cos A = -0.68 4. 3 cos C = 1.92

In Exercises 5 and 6, solve the equation (in terms of x and y) for  
(a) cos A and (b) A, 0 … A … 180°.

 5. 92 = x2 + y2 - 2xy cos A 6. y2 = x2 + 25 - 10 cos A

In Exercises 7–10, find a quadratic polynomial with real coefficients 
that satisfies the given condition.

 7. Has two positive zeros

 8. Has one positive and one negative zero

 9. Has no real zeros

 10. Has exactly one positive zero

QUICK REVIEW 5.6 (For help, go to Sections 2.4 and 4.7.)

 3. A

C
B

24
19

27

 4. A
C

B

35

17
28

SECTION 5.6 Exercises

In Exercises 1–4, solve the triangle.

 1. 

A
C

B
8

13131°

 2. A

C
B

12

14

42°
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 SECTION 5.6 The Law of Cosines 465

from B, as illustrated in the figure. If the angle at C is 54°, find 
distance AB.

110 ft 160 ft

54°

A B

C

 36. Designing a Baseball Field  

(a) Find the distance from the center of the front edge of the 
pitching rubber (at point B) to the far corner of second 
base. How does this distance compare with the distance 
from the pitching rubber to first base?

(b) Find ∠B in △ABC.

Second base

A (First base)

C

B
c

20 m

45°

Third
base

(Home plate)

30 m

 37. Designing a Softball Field In softball, adjacent bases 
are 60 ft apart. The distance from the center of the front edge 
of the pitching rubber (at point B) to the far corner of home 
plate is 40 ft.

(a) Find the distance from point B of the pitching rubber to the 
far corner of first base.

(b) Find the distance from point B of the pitching rubber to the 
far corner of second base.

(c) Find ∠B in △ABC.

Second base

A (First base)

C

c

40 ft

45°

Third
base

(Home plate)

60 ft

B

In Exercises 5–16, solve the triangle.

 5. A = 55°, b = 12, c = 7

 6. B = 35°, a = 43, c = 19

 7. a = 12, b = 21, C = 95°

 8. b = 22, c = 31, A = 82°

 9. a = 1, b = 5, c = 4

 10. a = 1, b = 5, c = 8

 11. a = 3.2, b = 7.6, c = 6.4

 12. a = 9.8, b = 12, c = 23

 13. A = 42°, a = 7, b = 10

 14. A = 57°, a = 11, b = 10

 15. A = 63°, a = 8.6, b = 11.1

 16. A = 71°, a = 9.3, b = 8.5

In Exercises 17–20, find the area of the triangle.

 17. A = 47°, b = 32 ft, c = 19 ft

 18. A = 52°, b = 14 m, c = 21 m

 19. B = 101°, a = 10 cm, c = 22 cm

 20. C = 112°, a = 1.8 in., b = 5.1 in.

In Exercises 21–28, decide whether a triangle can be formed with the 
given side lengths. If so, use Heron’s Formula to find the area of the  
triangle.

 21. a = 4, b = 5, c = 8

 22. a = 5, b = 9, c = 7

 23. a = 3, b = 5, c = 8

 24. a = 23, b = 19, c = 12

 25. a = 19.3, b = 22.5, c = 31

 26. a = 8.2, b = 12.5, c = 28

 27. a = 33.4, b = 28.5, c = 22.3

 28. a = 18.2, b = 17.1, c = 12.3

 29. Find the radian measure of the largest angle in the triangle with 
sides of 4, 5, and 6.

 30. A parallelogram has sides of 18 and 26 ft, and an angle of 39°. 
Find the shorter diagonal.

 31. Find the area of a regular hexagon inscribed in a circle of 
radius 12 in.

 32. Find the area of a regular nonagon (9 sides) inscribed in a  
circle of radius 10 in.

 33. Find the area of a regular hexagon circumscribed about a circle 
of radius 12 in. [Hint: Start by finding the distance from a ver-
tex of the hexagon to the center of the circle.]

 34. Find the area of a regular nonagon (9 sides) circumscribed 
about a circle of radius 10 in.

 35. Measuring Distance Indirectly Juan wants to find the 
distance between two points A and B on opposite sides of a 
building. He locates a point C that is 110 ft from A and 160 ft 
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 38. Surveyor’s Calculations Tony must find the distance 
from A to B on opposite sides of a lake. He locates a point C 
that is 860 ft from A and 175 ft from B. He measures the angle 
at C to be 78°. Find distance AB.

A

B

C860 ft

175 ft

78°

 39. Construction Engineering A manufacturer is designing 
the roof truss that is modeled in the figure shown.

(a) Find the measure of ∠CAE.

(b) If AF = 12 ft, find the length DF.

(c) Find the length EF.

C
F

A D E
36 ft

9 ft

6 ft

 40. Navigation Two airplanes flying together in formation take 
off in different directions. One flies due east at 350 mph, and 
the other flies east-northeast at 380 mph. How far apart are the 
two airplanes 2 hr after they separate, assuming that they fly at 
the same altitude?

 41. Football Kick The player waiting to receive a kickoff 
stands at the 5-yd line (point A) as the ball is being kicked  
65 yd up the field from the opponent’s 30-yd line. The kicked 
ball travels 73 yd at an angle of 8° to the right of the receiver, 
as shown in the figure (point B). Find the distance the receiver 
runs to catch the ball.

0 10 20 30 40 50 40 30 20 10 0

160
ft

Goal line

65 yd

8°

73 yd

Goal line

K
A

B

 42. Group Activity Architectural 
Design Building Inspector Julie 
Wang checks a building in the shape 
of a regular octagon, each side 20 ft 
long. She checks that the contractor 
has located the corners of the founda-
tion correctly by measuring several of 
the diagonals. Calculate what the 
lengths of diagonals HB, HC, and HD 
should be.

 43. Connecting Trigonometry 
and Geometry ∠CAB is 
inscribed in a rectangular box 
whose sides are 1, 2, and 3 ft 
long as shown. Find the mea-
sure of ∠CAB. 

 44. Group Activity Connecting 
Trigonometry and Geometry  
A cube has edges of length 2 ft. 
Point A is the midpoint of an edge. 
Find the measure of ∠ABC. 

Standardized Test Questions
 45. True or False If △ABC is any triangle with sides and 

angles labeled in the usual way, then b2 + c2 7 2bc cos A. 
Justify your answer.

 46. True or False If a, b, and u are two sides and an included 
angle of a parallelogram, the area of the parallelogram is 
ab sin u. Justify your answer.

You may use a grapher for these questions.

 47. Multiple Choice What is the area of a regular dodecagon 
(12-sided figure) inscribed in a circle of radius 12?

(A) 427 (B) 432 (C) 437

(D) 442 (E) 447

 48. Multiple Choice The area of a triangle with sides 7, 8, 
and 9 is

(A) 6215. (B) 1225. (C) 1623.

(D) 1723. (E) 1823.

 49. Multiple Choice Two boats start at the same point and 
speed away along courses that form a 110° angle. If one boat 
travels at 24 mph and the other boat travels at 32 mph, how far 
apart are the boats after 30 min?

(A) 21 mi (B) 22 mi (C) 23 mi

(D) 24 mi (E) 25 mi

 50. Multiple Choice What is the measure of the smallest angle 
in a triangle with sides 12, 17, and 25?

(A) 21° (B) 22° (C) 23°

(D) 24° (E) 25°

Explorations
 51. Find the area of a regular polygon with n sides inscribed inside 

a circle of radius r. (Express your answer in terms of n and r.) 

E D

H A

B

C

G

F

20 ft

20 ft

20 ft
20 ft

3 ft

1 ft

2 ft

C

A

B

2 ft

C

AB
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 52. (a) Prove the identity 
cos A

a
=

b2 + c2 - a2

2abc
.

(b) Prove the (tougher) identity

 
cos A

a
+

cos B
b

+
cos C

c
=

a2 + b2 + c2

2abc
.

[Hint: Use the identity in part (a), along with its other  
variations.]

 53. Navigation Two ships leave a 
common port at 8:00 a.m. and travel 
at a constant rate of speed. Each ship 
keeps a log showing its distance 
from port and its distance from the 
other ship. Portions of the logs from 
later that morning for both ships are 
shown in the following table.

 
 

Time

Naut mi 
from  
Port

Naut mi 
from 

Ship B

 
 

Time

Naut mi 
from  
Port

Naut mi 
from 

Ship A

9:00 15.1 8.7 9:00 12.4 8.7
10:00 30.2 17.3 11:00 37.2 26.0

(a) How fast is each ship traveling? (Express your answer in 
knots, which are nautical miles per hour.)

(b) What is the angle of intersection of the courses of the two 
ships?

(c) How far apart are the ships at 12:00 noon if they maintain 
the same courses and speeds?

Extending the Ideas
 54. Prove that the area of a triangle can be found with the formula

Area =
a2 sin B sin C

2 sin A
.

 55. A segment of a circle is the region 
enclosed between a chord of a circle 
and the arc intercepted by the chord. 
Find the area of a segment intercepted 
by a 7-in. chord in a circle of radius  
5 in.

5

5

7

Half-Angle Identities 447
Law of Sines 451
Law of Cosines 459
Area of a Triangle 461
Heron’s Formula 462

Procedures

Strategies for Proving an Identity 430–432

CHAPTER 5 Key Ideas

Properties, Theorems, and Formulas

Reciprocal Identities 421
Quotient Identities 421
Pythagorean Identities 422
Cofunction Identities 423
Odd-Even Identities 424
Sum and Difference Identities 439–441
Double-Angle Identities 445
Power-Reducing Identities 445

In Exercises 3 and 4, simplify the expression to a single term.

 3. sin (55° + f) - cos(35° - f) 

 4. sec 50° sin 40° +  cos 40° csc 50° 

In Exercises 5–22, prove the identity.

 5. cos 3x = 4 cos3 x - 3 cos x

 6. cos2 2x - cos2 x = sin2 x - sin2 2x

 7. tan2 x - sin2 x = sin2 x tan2 x

CHAPTER 5 Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter 
test.

In Exercises 1 and 2, write the expression as the sine, cosine, or tangent 
of an angle.

 1. 2 sin 100° cos 100° 

 2. 
2 tan 40°

1 - tan2 40°
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 8. 2 sin u cos3 u + 2 sin3 u cos u = sin 2u

 9. csc x - cos x cot x = sin x

 10. 
tan u + sin u

2 tan u
= cos2au

2
b

 11. 
1 + tan u
1 - tan u

+
1 + cot u
1 - cot u

= 0

 12. sin 3u = 3 cos2 u sin u - sin3 u

 13. cos2a t
2
b =

1 + sec t
2 sec t

 14. 
tan3 g - cot3 g

tan2 g + csc2 g
= tan g - cot g

 15. 
cos f

1 - tan f
+

sin f

1 - cot f
= cos f + sin f

 16. (1 + tan2 a)(1 - sin a)(1 +  sin a) = 1 

 17. A1 - cos y

1 + cos y
=

1 - cos y

0 sin y 0
 18. A1 - sin g

1 + sin g
=
0 cos g 0

1 + sin g

 19. tanau +
3p
4
b =

tan u - 1
1 + tan u

 20. 
sin3 f + cos3 f

sin f + cos f
= 1 - sin f cos f

 21. (1 + cot g - csc g) (1 + tan g + sec g) = 2

 22. arctan t =
1
2

 arctan 
2t

1 - t2, -1 6 t 6 1 

In Exercises 23 and 24, use a grapher to conjecture whether the equa-
tion is likely to be an identity. Confirm your conjecture.

 23. sec x - sin x tan x = cos x

 24. 1sin2 a - cos2 a21tan2 a + 12 = tan2 a - 1

In Exercises 25–28, write the expression in terms of sin x and cos x 
only.

 25. sin 3x + cos 3x 26. 
(1 - tan2 2x)

(1 + tan2 2x)

 27. cos2 2x - sin 2x 28. sin 3x - 3 sin 2x

In Exercises 29–34, find the general solution without using a calculator. 
Give exact answers.

 29. cos 3x = 0.5 30. sin x = -
23
2

 

 31. cot x = -1  32. 2 cos-1 x = 23 

 33. tan-1 x = 23  34. 2 cos 4x = 1

In Exercises 35–38, solve the equation graphically. Find all solutions in 
the interval 30, 2p2.
 35. sin2 x - 3 cos x = -0.5  

 36. cos3 x - 2 sin x - 0.7 = 0 

 37. sin4 x + x2 = 2 

 38. sin 2x = x3 - 5x2 + 5x + 1 

In Exercises 39–44, find all solutions in the interval 30, 2p2 without 
using a calculator. Give exact answers.

 39. 2 cos x = 1  40. sin 3x = sin x

 41. sin2 x - 2 sin x - 3 = 0 42. sin2 2x = 2 cos2 x

 43. sin 1cos x2 = 1 44. cos 2x + 5 cos x = 2

In Exercises 45–48, solve the inequality. Use any method, but give 
exact answers.

 45. 2 cos 2x 7 1 for 0 … x 6 2p

 46. sin 2x 7 2 cos x for 0 6 x … 2p 

 47. 2 cos x 6 1 for 0 … x 6 2p 

 48. tan x 6 sin x for -  
p

2
6 x 6

p

2
 

In Exercises 49 and 50, find an equivalent equation of the form  
y = a sin 1bx + c2. Support your work graphically.

 49. y = 3 sin 3x + 4 cos 3x 50. y = 5 sin 2x - 12 cos 2x

In Exercises 51–58, solve △ABC.

C a B

A

cb

 51. A = 79°, B = 33°, a = 7 

 52. a = 5, b = 8, B = 110° 

 53. a = 8, b = 3, B = 30° 

 54. a = 14.7, A = 29.3°, C = 33°

 55. A = 34°, B = 74°, c = 5 

 56. c = 41, A = 22.9°, C = 55.1°

 57. a = 5, b = 7, c = 6 

 58. A = 85°, a = 6, b = 4 

In Exercises 59 and 60, find the area of △ABC.

 59. a = 3, b = 5, c = 6

 60. a = 10, b = 6, C = 50°

 61. If a = 12 and B = 28°, determine the values of b that will pro-
duce the indicated number of triangles:

(a) Two  (b) One  (c) Zero

 62. Surveying a Canyon Two markers A and B on the same 
side of a canyon rim are 80 ft apart, as shown in the figure. A 
hiker is located across the rim at point C. A surveyor deter-
mines that ∠BAC = 70° and ∠ABC = 65°.

(a) What is the distance between the hiker and point A? 

(b) What is the distance between the two canyon rims? 
(Assume they are parallel.) 

A

B
C

80 ft

70°

65°
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 63. Altitude A hot-air  
balloon is seen over the 
Clark Freeport and Special 
Economic Zone, Central 
Luzon, the Philippines, at 
the Philippine International 
Hot Air Balloon Fiesta, 
simultaneously by two 
observers at points A and B 
that are 3 km apart on level 
ground  and in line with the 
balloon. The angles of ele-
vation are as shown here (∠A = 45°, ∠B = 35°). How high 
above ground is the balloon? 

 64. Finding Distance In order to determine the distance 
between two points A and B on opposite sides of a lake, a sur-
veyor chooses a point C that is 900 ft from A and 225 ft from 
B, as shown in the figure. If the measure of the angle at C is 
70°, find the distance between A and B. 

A

B

C900 ft

225 ft

70°

 65. Finding Radian Measure Find the radian measure of  
the largest angle of the triangle whose sides have lengths  
8, 9, and 10. 

 66. Finding a Parallelogram A parallelogram has sides of  
15 and 24 ft, and an angle of 40°. Find the diagonals.

 67. Maximizing Area A 
trapezoid is inscribed in the 
upper half of a unit circle, as 
shown in the figure.

(a) Write the area of the 
trapezoid as a function 
of u.

(b) Find the value of u that 
maximizes the area of the trape-
zoid. What is the maximum 
area?

 68. Beehive Cells A single cell in a 
beehive is a regular hexagonal prism 
open at the front with a trihedral cut 
at the back. Trihedral refers to a ver-
tex formed by three faces of a poly-
hedron. It can be proved that the 
surface area of a cell is given by

S1u2 = 6ab +
3
2

 b2 a-cot u +
23
sin u
b ,

where u is the angle between the axis of the prism and one of 
the back faces, a is the depth of the prism, and b is the length 
of the hexagonal front. Assume a = 1.75 in. and b = 0.65 in.

(a) Graph the function y = S1u2.
(b) What value of u gives the minimum surface area? (Note: 

This answer is quite close to the observed angle in nature.)

(c) What is the minimum surface area? 

3 km

45° 35°

A B

y

x
(1, 0)(–1, 0)

x2 + y2 = 1
(x, y)

u

Rear
of cell

Front
of cell

Trihedral
angle u

b

a

b

 69. Cable Television Coverage A cable broadcast satellite 
S orbits Earth at a height h (in miles) above the planet’s 
 surface, as shown in the figure. 
The two lines from S are tan-
gent to Earth’s surface. The 
part of Earth’s surface that is in 
the broadcast area of the satel-
lite is determined by the central 
angle u indicated in the figure.

(a) Assuming that Earth is spherical with a radius of 4000 mi, 
write h as a function of u.

(b) Approximate u for a satellite 200 mi above the surface of 
Earth. 

 70. Finding Extremum Values The graph of

y = cos x -
1
2

 cos 2x +
1
3

 cos 3x

is shown in the figure.  
The x-values that correspond 
to local maximum and 
 minimum points are 
 solutions of the equation 
sin x - sin 2x + sin 3x = 0. 
Solve this equation algebra-
ically, and support your solu-
tion using the graph of y.

 71. Using Trigonometry in Geometry A regular hexagon 
whose sides are 18 cm is inscribed in a circle. Find the area 
inside the circle and outside the hexagon.

 72. Using Trigonometry in Geometry A circle is inscribed 
in a regular pentagon whose sides are 15 cm. Find the area 
inside the pentagon and outside the circle.

 73. Using Trigonometry in Geometry A wheel of cheese 
in the shape of a right circular cylinder is 18 cm in diameter 
and 5 cm thick. If a wedge of cheese with a central angle of 
15° is cut from the wheel, find the volume of the cheese wedge.

 74. Product-to-Sum Formulas Prove the following identi-
ties, which are called the product-to-sum formulas.

(a) sin u sin v =
1
2

 1cos1u - v2 - cos1u + v22

(b) cos u cos v =
1
2

 1cos1u - v2 + cos1u + v22

(c) sin u cos v =
1
2

 1sin1u + v2 + sin1u - v22
 75. Sum-to-Product Formulas Use the product-to-sum 

 formulas in Exercise 74 to prove the following identities, 
which are called the sum-to-product formulas.

(a) sin u + sin v = 2 sin 
u + v

2
  cos 

u - v
2

(b) sin u - sin v = 2 sin 
u - v

2
  cos 

u + v
2

(c) cos u + cos v = 2 cos 
u + v

2
  cos 

u - v
2

(d) cos u - cos v = -2 sin 
u + v

2
  sin 

u - v
2

Earth

h
S

r

u

[22p, 2p] by [22, 2]
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 76. Catching Students Faking Data  
Carmen and Pat both need to  
make up a missed physics lab.  
They are to measure the total  
distance 12x2 traveled by a  
beam of light from point A  
to point B and record it  
in 20° increments of u as  
they adjust the mirror 1C2 upward vertically. They report the 
following measurements. However, only one of the students 
actually did the lab; the other skipped it and faked the data. 
Who faked the data, and how can you tell?

CARMEN PAT
u 2x u 2x

160°  24.4″ 160°  24.5″
140°  25.6″ 140°  25.2″
120°  28.0″ 120°  26.4″
100°  31.2″ 100°  30.4″
 80°  37.6″  80°  35.2″
 60°  48.0″  60°  48.0″
 40°  70.4″  40°  84.0″
 20° 138.4″  20° 138.4″

Mirror
u

x x

B

C

A 240

 77. An Interesting Fact About 1sin A2 ,a  The ratio 
1sin A2>a that shows up in the Law of Sines shows up another 
way in the geometry of △ABC : It is  
the reciprocal of the diameter of the 
 circumscribed circle.

(a) Let △ABC be circumscribed as 
shown in the diagram, and construct 
diameter CA′. Explain why ∠A′BC 
is a right angle.

(b) Explain why ∠A′ and ∠A are congruent.

(c) If a, b, and c are the sides opposite angles A, B, and C in 
△ABC, explain why sin A′ = a>d, where d is the diameter 
of the circle.

(d) Explain why 1sin A2>a =  1>d.

(e) Do 1sin B2>b and 1sin C2>c also equal 1>d? Why?

CHAPTER 5 Modeling Project

Modeling the Illumination of the Moon

Understand the problem. From Earth, the Moon appears to be 
a circular disk in the sky that is illuminated by varying amounts 
of direct sunlight. During each lunar orbit the Moon varies from 
being a new Moon with no visible illumination to being a full 
Moon, which is fully illuminated by direct sunlight. The U.S. 

Naval Observatory has developed a mathematical model to find 
the fraction of the Moon’s visible disk that is illuminated by the 
Sun. The data in the table below (from the U.S. Naval Observatory 
Website, http://aa.usno.navy.mil/, Astronomical Applications 
Department) represent the fraction of the Moon illuminated at 
midnight for each day in May 2018.

Fraction of the Moon Illuminated, May 2018

Day
Fraction 

Illuminated Day
Fraction 

Illuminated Day
Fraction 

Illuminated Day
Fraction 

Illuminated
1 0.98  9 0.39 17 0.04 25 0.81
2 0.95 10 0.30 18 0.10 26 0.88
3 0.90 11 0.21 19 0.19 27 0.94
4 0.84 12 0.13 20 0.28 28 0.98
5 0.76 13 0.07 21 0.39 29 1.00
6 0.68 14 0.02 22 0.51 30 1.00
7 0.58 15 0.00 23 0.62 31 0.97
8 0.49 16 0.01 24 0.72

Explorations

 1. Enter the data in the table above into your grapher or 
 computer. Create a scatter plot of the data.

 2. Carry out the mathematics. Find values for a, b, h, and k 
so the equation y = a cos1b1x - h22 + k models the data 
in the data plot.

 3. Analyze and assess the solution. Verify graphically the 
cofunction identity sin1p>2 - u2 = cos u by substituting 
1p>2 - u2 for u in the model above and using sine instead 
of cosine. 1Note u = b1x - h2.2 Observe how well this 
new model fits the data.

 4. Verify graphically the odd-even identity cos1u2 = cos1-u2 
for the model in part 2 by substituting -u for u and observing 
how well the graph fits the data.

 5. Iterate. Find values for a, b, h, and k so the equation 
y = a sin1b1x - h22 + k fits the data in the table.

 6. Verify graphically the cofunction identity cos1p>2 - u2 =  
sin u by substituting 1p>2 - u2 for u in the model above 
and using cosine rather than sine. 1Note u = b1x - h2.2 
Observe the fit of this model to the data.

 7. Verify graphically the odd-even identity sin1-u2 =  -sin1u2 
for the model in part 5 by substituting -u for u and graphing 
-a sin1-u2 + k. How does this model compare to the orig-
inal one?

A'

A

C

B
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Young salmon migrate from the fresh water in which they are born to salt water 

and live in the ocean for several years. When it’s time to spawn, the salmon 

return from the ocean to the river’s mouth, where they follow the organic odors 

of their homestream to guide them upstream. Researchers believe the fish use 

currents, salinity, temperature, and the magnetic field of the Earth to guide 

them. Some fish swim as far as 3500 mi upstream for spawning. See a related 

problem on page 479.

 6.1 Vectors in the Plane

 6.2 Dot Product of Vectors

 6.3 Parametric Equations 
and Motion

 6.4 Polar Coordinates

 6.5 Graphs of Polar 
Equations

 6.6 De Moivre’s Theorem 
and nth Roots

Applications of 
Trigonometry

CHAPTER 6
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Chapter 6 Overview
We have used coordinate geometry extensively in previous chapters as a tool for under-
standing functions (the primary focus of this text), but we have barely begun to make 
use of the simple fact that we can coordinatize every point on a line with one number, 
every point in a plane with two numbers, and every point in space with three numbers. 
We know how to use numerical coordinates to identify position, but with a slight 
change in interpretation we can also use them to identify change in position (i.e., veloc-
ity), and thus model problems of motion. This new interpretation involves vectors, the 
subject of most of this chapter.

Modeling coordinates as functions of time leads us in a natural way to revisit parametric 
equations, which we do in Section 6.3. The last three sections of the chapter introduce 
polar coordinates, with which we can coordinatize the xy-plane in a different way. Not 
only will this lead to some new and interesting graphs, but it will also give us further 
insight into some graphs we have already studied. The final section uses polar coordi-
nates in the context of complex numbers to explore a theorem about nth powers  
(De Moivre’s Theorem) that is truly remarkable—both algebraically and geometrically!

DEFINITION Two-Dimensional Vector

A two-dimensional vector v is an ordered pair of real numbers, denoted in 
component form as 8a, b9. The numbers a and b are the components of the 
vector v. The standard representation of the vector 8a, b9 is the arrow from 
the origin to the point 1a, b2. The magnitude of v is the length of the arrow, 
and the direction of v is the direction in which the arrow is pointing. The 
 vector 0 = 80, 09, called the zero vector, has zero length and no direction.

(a, b)

a, b

y

x

y

x

(a, b)

OO
(a) (b)

Figure 6.1 The point represents the ordered pair 1a, b2. The arrow (directed line segment) 
represents the vector 8a, b9.

Jakob Bernoulli (1654–1705)
The first member of the Bernoulli family (driven 
out of Holland by the Spanish persecutions and 
settled in Switzerland) to achieve mathematical 
fame, Jakob defined the numbers now known as 
Bernoulli numbers. He determined the form (the 
elastica) taken by an elastic rod acted on at one 
end by a given force and fixed at the other end.

What you’ll learn about
• Two-Dimensional Vectors

• Vector Operations

• Unit Vectors

• Direction Angles

• Applications of Vectors

... and why
These topics are important in many 
real-world applications, such as cal-
culating the effect of the wind on an 
airplane’s path.

Two-Dimensional Vectors
Some quantities, like temperature, distance, height, area, and volume, can be repre-
sented by a real number that indicates magnitude or size. Other quantities, such as 
force, velocity, and acceleration, have magnitude and direction. Because the number of 
possible directions for an object moving in a plane is infinite, you might be surprised to 
learn that two numbers are all that we need to represent both the magnitude of an 
object’s velocity and its direction of motion. We simply look at ordered pairs of real 
numbers in a new way. The pair 1a, b2 not only determines a point in the plane, it also 
determines a directed line segment (or arrow) with its tail at the origin and its head at 
1a, b2 (Figure 6.1). The length of this arrow represents magnitude, and the direction in 
which it points represents direction. Because in this context the ordered pair 1a, b2 rep-
resents a mathematical object with both magnitude and direction, we call it the position 
vector of 1a, b2 and denote it as 8a, b9  to distinguish it from the point 1a, b2.

6.1 Vectors in the Plane
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 SECTION 6.1 Vectors in the Plane 473

It is often convenient in applications to represent vectors with arrows that begin at 
points other than the origin. The important thing to remember is that any two arrows 
with the same length and pointing in the same direction represent the same vector. For 
example, Figure 6.2 shows the vector 83, 49, represented by RS  

>
, an arrow with initial 

point R and terminal point S, as well as by its standard representation OP 
>
. Two 

arrows that represent the same vector are equivalent arrows.

The quick way to associate arrows with the vectors they represent is to use the follow-
ing rule.

y

x

P(3, 4)

O(0, 0)

R(–4, 2)

S(–1, 6)

Figure 6.2 The arrows RS  

>
 and OP 

>
 both 

represent the vector 83, 49, as would any 
arrow with the same length pointing in the 
same direction. Such arrows are called 
equivalent.

Is an Arrow a Vector?
Although an arrow represents a vector, it is not a 
vector itself because each vector can be represented 
by an infinite number of equivalent arrows. Still, 
it is hard to avoid referring to “the vector PQ 

>
” in 

practice, and we will often do that ourselves. 
When we say “the vector u = PQ 

>
,” we really 

mean “the vector u represented by PQ 
>
.”

Head Minus Tail (HMT) Rule for Vectors

If an arrow has initial point 1x1, y12 and terminal point 1x2, y22, it represents the 
vector 8x2 - x1, y2 - y19.

Vector Archery

See how well you can direct arrows in the plane using vector information and the 
HMT Rule.

 1. An arrow has initial point 12, 32 and terminal point 17, 52. What vector does it 
represent? 

 2. An arrow has initial point 13, 52 and represents the vector 8-3, 69. What is the 
terminal point? 

 3. If P is the point 14, -32 and PQ 
>
 represents 82, -49, find Q. 

 4. If Q is the point 14, -32 and PQ 
>
 represents 82, -49, find P. 

EXPLORATION 1 

Proving Arrows Are Equivalent
Prove that the arrow from R = 1-4, 22 to S = 1-1, 62 is equivalent to the arrow 
from P = 12, -12 to Q = 15, 32 (Figure 6.3).

EXAMPLE 1 

x

y

Q(5, 3)

O

S(–1, 6)

R(–4, 2)

P(2, –1)

Figure 6.3 The arrows RS  

>
 and PQ 

>
 appear to have the same magnitude and direction. The 

Head Minus Tail Rule proves that they represent the same vector. (Example 1)

SOLUTION 

Applying the HMT Rule, we see that RS 
>
 represents the vector 8-1 - 1-42, 6 - 29 =

83, 49, and PQ 
>
 represents the vector 85 - 2, 3 - 1-129 = 83, 49. Although they 

have different positions in the plane, these arrows represent the same vector and are 
therefore equivalent. Now try Exercises 1.
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474 CHAPTER 6 Applications of Trigonometry

The sum of the vectors u and v can be represented geometrically by arrows in two 
ways.

In the tail-to-head representation, the standard representation of u points from the ori-
gin to 1u1, u22. The arrow from 1u1, u22 to 1u1 + v1, u2 + v22 represents v (as you can 
verify by the HMT Rule). The arrow from the origin to 1u1 + v1, u2 + v22 then repre-
sents u + v (Figure 6.6a).

In the parallelogram representation, the standard representations of u and v determine 
a parallelogram, the diagonal of which is the standard representation of u + v  
(Figure 6.6b).

DEFINITION Magnitude (or Length) of a Vector

If v is represented by the arrow from 1x1, y12 to 1x2, y22, then its magnitude is
0 v 0 = 21x2 - x122 + 1y2 - y122.

If v = 8a, b9, then 0 v 0 = 2a2 + b2.

DEFINITION Vector Addition and Scalar Multiplication

Let u = 8u1, u29 and v = 8v1, v29 be vectors and let k be a real number  
(scalar). The sum (or resultant) of the vectors u and v is the vector

u + v = 8u1 + v1, u2 + v29.
The product of the scalar k and the vector u is

k u = k8u1, u29 = 8ku1, ku29.

y

x
v O(0, 0)

(–2, –2)

Q(–5, 2)

P(–3, 4)

Figure 6.5 The vector v of Example 2.

y

x

P(x1, y1)

Q(x2, y2)

Figure 6.4 The magnitude of v is the length 
of the arrow PQ 

>
, which is found using the 

distance formula:

0 v 0 = 21x2 - x122 + 1y2 - y122.

If you handled Exploration 1 with relative ease, you have a good understanding of how 
vectors are represented geometrically by arrows. This will help you understand the 
algebra of vectors, beginning with the concept of magnitude.

The magnitude of a vector v is also called the absolute value of v, so it is usually 
denoted by 0 v 0 . (You might see 7v 7  in some texts.) Note that it is a nonnegative real 
number, not a vector. The following computational rule follows directly from the dis-
tance formula in the plane (Figure 6.4).

What About Direction?
You might expect a quick computational rule for 
direction to accompany the rule for magnitude, 
but direction is less easily quantified. We will 
deal with vector direction later in this section.

What About Vector Multiplication?
There is a useful way to define the multiplication 
of two vectors—in fact, there are two useful 
ways, but neither of them is as predictable as 
vector addition. (You may recall that matrix mul-
tiplication was not as predictable as matrix addi-
tion either, and for similar reasons.) We will look 
at the dot product in Section 6.2. The cross prod-
uct requires a third dimension, so we will not 
deal with it in this course.

Vector Operations
The algebra of vectors sometimes involves working with vectors and numbers at the 
same time. In this context we refer to the numbers as scalars. The two most basic alge-
braic operations involving vectors are vector addition (adding a vector to a vector) and 
scalar multiplication (multiplying a vector by a number). Both operations are easily 
represented geometrically, and both have immediate applications to many real-world 
problems.

Finding Magnitude of a Vector
Find the magnitude of the vector v represented by PQ 

>
, where P = 1-3, 42 and 

Q = 1-5, 22.
SOLUTION

Working directly with the arrow, 0 v 0 = 21-5 - 1-3222 + 12 - 422 = 222. Or, 

the HMT Rule proves that v = 8-2, -29, so 0 v 0 = 21-222 + 1-222 = 222. 
(See Figure 6.5.) Now try Exercise 5.

EXAMPLE 2 
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x

y

v

u

x

y

u + v

v

u

(a) (b)

u + v

Figure 6.6 Two ways to represent vector addition geometrically: (a) tail-to-head, and  
(b) parallelogram.

–2u

(1/2)uu

2u

Figure 6.7 Representations of u and several 
scalar multiples of u.

The product ku of the scalar k and the vector u can be represented by a stretch (or 
shrink) of u by a factor of k. If k 7 0, then ku points in the same direction as u; if 
k 6 0, then ku points in the opposite direction (Figure 6.7).

 Now try Exercise 13.

y

x

v

u

u + v

(–1, 3)

(3, 10)

(a)    

y

x

u =  –1, 3 

3u =  –3, 9 

(b)

Figure 6.8 Given that u = 8-1, 39 and v = 84, 79, we can (a) represent u + v by the  
tail-to-head method, and (b) represent 3u as a stretch of u by a factor of 3.

Performing Vector Operations
Let u = 8-1, 39 and v = 84, 79. Then,

(a) u + v = 8-1, 39 + 84, 79 = 8-1 + 4, 3 + 79 = 83, 109
(b) 3u = 38-1, 39 = 8-3, 99
(c) 2u + 1-12v = 28-1, 39 + 1-1284, 79 = 8-2, 69 + 8-4, -79 = 8-6, -19
Geometric representations of u + v and 3u are shown in Figure 6.8.

EXAMPLE 3 

Unit Vectors
A vector u with length 0 u 0 = 1 is a unit vector. If v is not the zero vector 80, 09, then 
the vector

u =
v
0 v 0 =

1

0 v 0  v
is a unit vector in the direction of v, often called a direction vector. Unit vectors pro-
vide a way to represent the direction of any nonzero vector. Any vector in the direction 
of v, or the opposite direction, is a scalar multiple of this unit vector u.
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476 CHAPTER 6 Applications of Trigonometry

y

x

v|v| sin u

|v| cos u

u

Figure 6.10 The horizontal and vertical 
components of v.

y

x

v = ka, bl

bj

ai

Figure 6.9 The vector v is equal  
to a i + bj.

A Word About Vector Notation
Both notations, 8a, b9 and ai + bj, are designed 
to convey the idea that a single vector v has two 
separate components. This is what makes a two-
dimensional vector two-dimensional. You will 
see both 8a, b, c9 and ai + bj + ck used for 
three-dimensional vectors, but scientists stick to 
the 8 9 notation for dimensions higher than three.

Finding a Unit Vector
Find a unit vector in the direction of v = 8-3, 29, and verify that it has length 1.

SOLUTION 

 0 v 0 = 0 8-3, 29 0 = 21-322 + 1222 = 213, so

 
v
0 v 0 =

1213
 8-3, 29

 = h -3213
 , 

2213
i

The magnitude of this vector is

 ̀ h -3213
 , 

2213
i ` = B a -3213

b
2

+ a 2213
b

2

 = B 9
13

+
4
13

= B13
13

= 1

Thus, the magnitude of v> 0 v 0  is 1. Its direction is the same as v because it is a posi-
tive scalar multiple of v. Now try Exercise 21.

EXAMPLE 4 

The two unit vectors i = 81, 09 and j = 80, 19 are the standard unit vectors. Any 
vector v can be written as an expression in terms of the standard unit vectors:

 v = 8a, b9
 = 8a, 09 + 80, b9
 = a81, 09 + b80, 19
 = ai + bj

Here the vector v = 8a, b9 is expressed as the linear combination ai + bj of the vec-
tors i and j. The scalars a and b are the horizontal and vertical components, respec-
tively, of the vector v. (See Figure 6.9.)

Direction Angles
You may recall from our applications in Section 4.8 that direction is measured in dif-
ferent ways in different contexts, especially in navigation. A simple but precise way to 
specify the direction of a vector v is to state its direction angle, the angle u that v 
makes with the positive x-axis, just as we did in Section 4.3. Using trigonometry  
(Figure 6.10), we see that the horizontal component of v is 0 v 0  cos u and the vertical 
component is 0 v 0  sin u. Solving for these components is called resolving the vector.

Resolving the Vector into Its Components

If v has direction angle u, the components of v can be computed using the 
formula

v = 8 0 v 0  cos u, 0 v 0  sin u9.

From the formula above, it follows that the unit vector in the direction of v is

u =
v
0 v 0 = 8cos u, sin u9.
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Applications of Vectors
The velocity of a moving object is a vector because velocity has both magnitude and 
direction. The magnitude of velocity is speed.

y

x

v = ka, bl

6 115°

O

Figure 6.11 The direction angle of v  
is 115°. (Example 5)

y

x

u = k3, 2l

v = k–2, –5l

v

u
b

a

Figure 6.12 The two vectors of Example 6.

x

y

v

500 mph

25°

65°

Figure 6.13 The airplane’s path (bearing) in 
Example 7.

Finding the Components of a Vector
Find the components of the vector v with direction angle 115° and magnitude 6  
(Figure 6.11) using no technology except to approximate the exact trigonometric 
solution.

SOLUTION If a and b are the horizontal and vertical components, respectively, of  
v, then

v = 8a, b9 = 86 cos 115°, 6 sin 115°9.
Thus a = 6 cos 115° ≈ -2.54 and b = 6 sin 115° ≈ 5.44.
 Now try Exercise 29.

EXAMPLE 5 

Finding the Direction Angle of a Vector
Find the magnitude and direction angle of each vector:

(a) u = 83, 29 (b) v = 8-2, -59
SOLUTION See Figure 6.12.

(a) 0 u 0 = 232 + 22 = 213 is the magnitude. If a is the direction angle of u, then 
u = 83, 29 = 8 0 u 0  cos a, 0 u 0  sin a9.

 3 = 0 u 0  cos a  Horizontal component of u

 3 = 213 cos a

 a = cos-1a 3213
b ≈ 33.69° a is acute.

So the direction angle is about 33.69°.

(b) 0 v 0 = 21-222 + 1-522 = 229 is the magnitude. If b is the direction angle 

of v, then v = 8-2, -59 = 8 0 v 0  cos b, 0 v 0  sin b9.
 -2 = 0 v 0  cos b  Horizontal component of v

 -2 = 229 cos b

 b = 360° - cos-1a -2229
b ≈ 248.2° 180° 6 b 6 270°

So the direction angle is about 248.2°. Now try Exercise 33.

EXAMPLE 6 

Writing Velocity as a Vector
A DC-10 jet aircraft is flying on a bearing of  65° at 500 mph. Find the component 
form of the velocity of the airplane. Recall that the bearing is the angle that the line 
of travel makes with due north, measured clockwise (see Section 4.1, Figure 4.2)

SOLUTION Let v be the velocity of the airplane. A bearing of  65° is equivalent to a 
direction angle of  25°. The plane’s speed, 500 mph, is the magnitude of vector v; 
that is, 0 v 0 = 500. (See Figure 6.13.)

EXAMPLE 7 

(continued)
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y

xA

C

B

D

60°
65 mph

450 mph

v
u

Figure 6.14 The x-axis represents the  
flight path of the plane in Example 8.

The horizontal component of v is 500 cos 25° and the vertical component is  
500 sin 25°, so

 v = 1500 cos 25°2i + 1500 sin 25°2j
 = 8500 cos 25°, 500 sin 25°9 ≈ 8453.15, 211.319

The components of the velocity give the eastward and northward speeds. That is, the 
airplane travels about 453.15 mph eastward and about 211.31 mph northward as it 
travels at 500 mph on a bearing of 65°. Now try Exercise 41.

A typical problem for a navigator involves calculating the effect of wind on the direc-
tion and speed of the airplane, as illustrated in Example 8.

Calculating the Effect of Wind Velocity
Pilot Aiesha Saunders’s flight plan has her leaving San Francisco International Air-
port and flying a Boeing 727 due east. There is a 65-mph wind with the bearing 60°. 
Find the compass heading Saunders should follow, and determine what the airplane’s 
ground speed will be (assuming that its speed with no wind is 450 mph).

SOLUTION See Figure 6.14. Vector AB 
>
 represents the velocity produced by the air-

plane alone, AC  

>
 represents the velocity of the wind, and u is the angle DAB. Vector 

v = AD 
>
 represents the resulting velocity, so

v = AD 
>

= AC  

>
+ AB 

>
.

We must find the bearing of AB 
>
 and 0 v 0 .

Resolving the vectors, we obtain

 AC  

>
= 865 cos 30°, 65 sin 30°9

 AB 
>

= 8450 cos u, 450 sin u9
 AD 
>

= AC  

>
+ AB 

>

 = 865 cos 30° + 450 cos u, 65 sin 30° + 450 sin u9 
Because the plane is traveling due east, the second component of AD 

>
 must be zero.

 65 sin 30° + 450 sin u = 0

 u = sin-1a-65 sin 30°
450

b
 ≈ -4.14°  u 6 0

Thus, the compass heading Saunders should follow is

90° + 0 u 0 ≈ 94.14°. Bearing 7 90°

The ground speed of the airplane is

 0 v 0 = 0  AD 
>
 0 = 2165 cos 30° + 450 cos u22 + 02

 = 0 65 cos 30° + 450 cos u 0
 ≈ 505.12   Using the unrounded  

value of u

Saunders should use a bearing of approximately 94.14°. The airplane will travel due 
east at approximately 505.12 mph. Now try Exercise 43.

EXAMPLE 8 
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w

A

B
C

D

20° 20°

Figure 6.15 The force of gravity AB 
>
 has a 

component AC  

>
 that holds the box against the 

surface of the ramp, and a component 
AD 
>

= CB 
>
 that tends to push the box down 

the ramp. (Example 9)

A Reminder About Special Angles
As a reminder, we hope that when confronted 
with sin 60° you will use your mental skills to 

write the answer of 
23
2

 without the aid of a cal-

culator—similarly for all the special angles. 
However, when a value like sin 20° is needed 
you will need your calculator to approximate the 
answer to the agreed-upon accuracy.

Finding the Effect of Gravity
A force of 30 lb just keeps the box in Figure 6.15 from sliding down the ramp 
inclined at 20°. Find the weight of the box.

SOLUTION We are given that 0  AD 
>
 0 = 30. Let 0  AB 

>
 0 = w; then

sin 20° =
0  CB 

>
 0

w
=

30
w

.

Thus,

w =
30

sin 20°
≈ 87.71.

The weight of the box is about 87.71 lb. Now try Exercise 47.

EXAMPLE 9 

CHAPTER OPENER Problem (from page 471)

Problem: During one part of its migration, a salmon is swimming at 6 mph, and 
the current is flowing downstream at 3 mph at an angle of 7°. How fast is the 
salmon moving upstream?

Solution: Assume the salmon is swimming in a plane parallel to the surface of 
the water.

A

C

B
salmon

swimming
in still water

current

u

salmon net
velocity

In the figure, vector AB 
>
 represents the current of 3 mph, u is the angle CAB, 

which is 7°, the vector CA
>
 represents the velocity of the salmon of 6 mph, and the 

vector CB 
>
 is the net velocity at which the fish is moving upstream.

So we have

AB 
>

= 83 cos1-83°2, 3 sin1-83°29 ≈ 80.37, -2.989
CA 
>

= 80, 69
Thus  CB 

>
= CA 

>
+ AB 

>
= 83 cos1-83°2, 6 + 3 sin1-83°29

 ≈ 80.37, 3.029.
The speed of the salmon is then 0  CB 

>
 0 ≈ 20.372 + 3.022 ≈ 3.04 mph upstream.
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, find the values of x and y.

 1.   2.  

 3.  4. 

In Exercises 5 and 6, solve for u in degrees.

 5. u = sin-1a 3229
b

 6. u = cos-1a -1215
b

In Exercises 7–9, the point P is on the terminal side of the angle u. Find 
the measure of u if 0° 6 u 6 360°.

 7. P15, 92
 8. P15, -72
 9. P1-2, -52  

 10. A naval ship leaves Port Norfolk and averages 42 knots (naut 
mi per hr) traveling for 3 hr on a bearing of 40° and then 5 hr 
on a course of 125°. What are the boat’s bearing and distance 
from Port Norfolk after 8 hr?

QUICK REVIEW 6.1 (For help, go to Sections 4.3 and 4.7.)

y

x25°

18 v

y

x
55°

14
v

In Exercises 21–24, find a unit vector in the direction of the given vector.

 21. v = 88, 49  22. v = 81, -19
 23. w = - i - 2j

 24. w = 5i + 5j

In Exercises 25–28, find the unit vector in the direction of the given 
vector. Write your answer (a) in component form and (b) as a linear 
combination of the standard unit vectors i and j.

 25. u = 82, 19 26. u = 8-3, 29
 27. u = 8-4, -59 28. u = 83, -49
In Exercises 29–32, find the component form of the vector v. Solve 
algebraically, and approximate exact answers with a calculator. Support 
your solution by estimating the lengths of the components of the vector 
in each figure and comparing with your answer.

 29.  30. 

SECTION 6.1 Exercises

In Exercises 1–4, prove that RS  

>
 and PQ 

>
 are equivalent by proving that 

they represent the same vector.

 1. R = 1-4, 72, S = 1-1, 52, P = 10, 02, and Q = 13, -22
 2. R = 17, -32, S = 14, -52, P = 10, 02, and Q = 1-3, -22
 3. R = 12, 12, S = 10, -12, P = 11, 42, and Q = 1-1, 22
 4. R = 1-2, -12, S = 12, 42, P = 1-3, -12, and Q = 11, 42
In Exercises 5–12, let P = 1-2, 22, Q = 13, 42, R = 1-2, 52, and 
S = 12, -82. Find the component form and magnitude of the vector.

 5. PQ 
>

 6. RS  

>

 7. QR 
>

 8. PS  

>

 9. 2QS  

>

 10. 1222 PR 
>

 11. 3QR 
>

+ PS  

>

 12. PS  

>
- 3PQ 

>

In Exercises 13–20, let u = 8-1, 39, v = 82, 49, and w = 82, -59. 
Find the component form of the vector. Sketch a graph.

 13. u + v  14. u + 1-12v
 15. u - w  16. 3v

 17. 2u + 3w  18. 2u - 4v

 19. -2u - 3v  20. -u - v

y

x

(x, y)

y
7

220°

x

y

x

6

–50°

x

(x, y)

y

y

x

9

30°

(x, y)

x

y 15

y

x

(x, y)

120°

x

y
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y

x

108°
47

v

y

x

136°33

v

 31.  32. 

In Exercises 33–38, find the magnitude and direction angle of the 
 vector. Use an algebraic method, and approximate exact answers with  
a calculator when appropriate.

 33. 8-24, 79  34. 8-1, 29
 35. 3i - 4j   36. -3i - 5j  

 37. 71cos 135° i + sin 135° j2
 38. 21cos 60° i + sin 60° j2
In Exercises 39 and 40, find the vector v with the given magnitude and 
the same direction as u.

 39. 0 v 0 = 2, u = 83, -39 40. 0 v 0 = 5, u = 8-5, 79
 41. Navigation An airplane is flying on a bearing of 335°  

at 530 mph. Find the component form of the velocity of the 
 airplane.

 42. Navigation An airplane is flying on a bearing of 170°  
at 460 mph. Find the component form of the velocity of the 
 airplane.

 43. Flight Engineering An airplane is flying on a compass 
heading (bearing) of 340° at 325 mph. A wind is blowing with 
the bearing 320° at 40 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual ground speed and direction of the plane.

 44. Flight Engineering An airplane is flying on a compass 
heading (bearing) of 170° at 460 mph. A wind is blowing with 
the bearing 200° at 80 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual ground speed and direction of the airplane.

 45. Shooting a Basketball A basketball is shot at a  
70° angle with the horizontal direction with an initial speed  
of 10 m>sec.

(a) Find the component form of the initial velocity.

(b) Writing to Learn Give an interpretation of the 
 horizontal and vertical components of the velocity.

 46. Moving a Heavy Object In a warehouse a box is being 
pushed up a 15° inclined plane with a force of 2.5 lb, as shown 
in the figure.

15°

2.5 lb

v

(a) Find the component form of the force.

(b) Writing to Learn Give an interpretation of the 
 horizontal and vertical components of the force.

 47. Moving a Heavy Object Suppose the box described in 
Exercise 46 is being towed up the inclined plane, as shown in 
the figure below. Find the force w needed in order for the com-
ponent of the force parallel to the inclined plane to be 2.5 lb. 
Give the answer in component form.

15°

33°

w

 48. Combining Forces Juana and Diego Gonzales, ages six 
and four respectively, own a strong and stubborn puppy named 
Corporal. It is so hard to take Corporal for a walk that they 
devise a scheme to use two leashes. If Juana and Diego pull 
with forces of 23 lb and 27 lb at the angles shown in the figure, 
how hard is Corporal pulling if the puppy holds the children at 
a standstill?

23 lb

27 lb

18°
15°

In Exercises 49 and 50, find the direction and magnitude of the resul-
tant force.

 49. Combining Forces A force of 50 lb acts on an object at an 
angle of 45°. A second force of 75 lb acts on the object at an 
angle of -30°.

 50. Combining Forces Three forces with magnitudes 100, 50, 
and 80 lb act on an object at angles of 50°, 160°, and -20°, 
respectively.

 51. Navigation A ship is heading due north at 12 mph. The cur-
rent is flowing southwest at 4 mph. Find the actual bearing and 
speed of the ship.

 52. Navigation A motor boat capable of 20 mph keeps the bow 
of the boat pointed straight across a mile-wide river. The cur-
rent is flowing left to right at 8 mph. Find where the boat meets 
the opposite shore.

 53. Group Activity A ship heads due south with the current 
flowing northwest. Two hours later the ship is 20 mi in the 
direction 30° west of south from the original starting point. 
Find the speed with no current of the ship and the rate of the 
current.

 54. Group Activity Express each vector in component form to 
prove the following properties of vectors.

(a) u + v = v + u

(b) 1u + v2 + w = u + 1v + w2
(c) u + 0 = u, where 0 = 80, 09
(d) u + 1-u2 = 0, where - 8a, b9 = 8-a, -b9
(e) a1u + v2 = au + av

(f) 1a + b2u = au + bu
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482 CHAPTER 6 Applications of Trigonometry

(g) 1ab2u = a1bu2
(h) a 0 = 0, 0 u = 0

(i) 112u = u, 1-12u = -u

(j) 0 au 0 = 0 a 0  0 u 0

Standardized Test Questions
 55. True or False If u is a unit vector, then -u is also a unit 

vector. Justify your answer.

 56. True or False If u is a unit vector, then 1>u is also a unit 
vector. Justify your answer.

In Exercises 57–60, you may use a calculator to solve the problem.

 57. Multiple Choice Which of the following is the magnitude 
of the vector 82, -19?

(A) 1 (B) 23 (C) 
25
5

(D) 25 (E) 5

 58. Multiple Choice Let u = 8-2, 39 and v = 84, -19. 
Which of the following is equal to u - v?

(A) 86, -49 (B) 82, 29 (C) 8-2, 29
(D) 8-6, 29 (E) 8-6, 49

 59. Multiple Choice Which of the following represents the 
vector v shown in the figure below?

y

x

v

30°

3

O

(A) 83 cos 30°, 3 sin 30°9 (B) 83 sin 30°, 3 cos 30°9
(C) 83 cos 60°, 3 sin 60°9 (D) 823 cos 30°, 23 sin 30°9
(E) 823 cos 30°, 23 sin 30°9

 60. Multiple Choice Which of the following is a unit vector in 
the direction of v = - i + 3j?

(A) -  
1
10

  i +
3
10

  j (B) 
1
10

  i -
3
10

  j (C) -  
1210

  i +
3210

  j

(D) 
1210

  i -
3210

  j  (E) -  
128

  i +
328

  j

Explorations
 61. Dividing a Line Segment in a Given Ratio Let A and 

B be two points in the plane, as shown in the figure.

(a) Prove that BA 
>

= OA 
>

- OB 
>
, 

where O is the origin.

(b) Let C be a point on the line seg-
ment BA which divides the seg-
ment in the ratio x : y, where 
x + y = 1. That is,

0  BC  

>
 0

0  CA 
>
 0 =

x
y

 .

 Prove that OC 
>

= xOA 
>

+ yOB 
>
.

 62. Medians of a Triangle Perform the following steps to use 
vectors to prove that the medians of a triangle meet at a point O 
which divides each median in the ratio 1 : 2. M1, M2, and M3 
are midpoints of the sides of the triangle shown in the figure.

A B

C

O
M3 M2

M1

(a) Use Exercise 61 to prove that

 OM1 
>

=
1
2

 OA 
>

+
1
2

 OB 
>

 OM2 
>

=
1
2

 OC 
>

+
1
2

 OB 
>

 OM3 
>

=
1
2

 OA 
>

+
1
2

 OC  

>

(b) Prove that each of 2 OM1 
>

+ OC  

>
, 2 OM2 

>
+ OA 

>
, 

2 OM3 
>

+ OB 
>
 is equal to OA 

>
+ OB 

>
+ OC  

>
.

(c) Writing to Learn Explain why part (b) establishes the 
desired result.

Extending the Ideas
 63. Vector Equation of a Line Let L be the line through the 

two points A and B. Prove that C = 1x, y2 is on the line L if 
and only if OC 

>
= t OA 

>
+ 11 - t2OB 

>
, where t is a real num-

ber and O is the origin.

 64. Connecting Vectors and Geometry Prove that the 
lines that join one vertex of a parallelogram to the midpoints of 
the opposite sides trisect the diagonal.

A
C

B

O
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 SECTION 6.2 Dot Product of Vectors 483

Dot products have many important properties that we make use of in this section. We 
prove the first two and leave the rest for the exercises.

What you’ll learn about
• The Dot Product

• Angle Between Vectors

• Projecting One Vector onto Another

• Work

... and why
Vectors are used extensively in 
mathematics and science appli-
cations such as determining the net 
effect of several forces acting on an 
object and computing the work 
done by a force acting on an object.

The Dot Product
Vectors can be multiplied in two different ways, both of which are derived from their 
usefulness for solving problems in vector applications. The cross product (or vector 
product or outer product) results in a vector perpendicular to the plane of the two vec-
tors being multiplied, which takes us into a third dimension and outside the scope of 
this chapter. The dot product (or scalar product or inner product) results in a scalar. In 
other words, the dot product of two vectors is not a vector but a real number! It is the 
important information conveyed by that number that makes the dot product so worth-
while, as you will see.

Now that you have some experience with vectors and arrows, we hope we won’t con-
fuse you if we occasionally resort to the common convention of using arrows to name 
the vectors they represent. For example, we might write “u = PQ 

>
” as a shorthand for 

“u is the vector represented by PQ 
>
.” This greatly simplifies the discussion of concepts 

like vector projection. Also, we will continue to use both vector notations, 8a, b9 and 
ai + bj, so you will get some practice with each.

6.2 Dot Product of Vectors

Dot Product and Standard Unit 
Vectors
1u1i + u2 j2 # 1v1i + v2 j2 = u1v1 + u2v2

DEFINITION Dot Product

The dot product or inner product of u = 8u1, u29 and v = 8v1, v29 is 

u # v = u1v1 + u2v2.

Properties of the Dot Product

Let u, v, and w be vectors and let c be a scalar.

1. u # v = v # u

2. u # u = 0 u 0 2
3. 0 # u = 0

4. u # 1v + w2 = u # v + u # w

1u + v2 # w = u # w + v # w

5. 1cu2 # v = u # 1cv2 = c1u # v2

Proof

Let u = 8u1, u29 and v = 8v1, v29.
Property 1

 u # v = u1v1 + u2v2 Definition of u ~ v

 = v1u1 + v2u2 Commutative property of real numbers

 = v # u  Definition of u ~ v

Property 2

 u # u = u1 

2 + u2 

2  Definition of u ~ v

 = 12u1 

2 + u2 

222
 = 0 u 0 2  Definition of 0u 0

M07_DEMA8962_10_GE_C06.indd   483 22/06/22   17:23



484 CHAPTER 6 Applications of Trigonometry

Proof

We apply the Law of Cosines to the triangle determined by u, v, and v - u in Figure 6.16 
and use the properties of the dot product.

 0 v - u 0 2 = 0 u 0 2 + 0 v 0 2 - 2 0 u 0  0 v 0  cos u

 1v - u2 # 1v - u2 = 0 u 0 2 + 0 v 0 2 - 2 0 u 0  0 v 0  cos u

 v # v - v # u - u # v + u # u = 0 u 0 2 + 0 v 0 2 - 2 0 u 0  0 v 0  cos u

 0 v 0 2 - 2u # v + 0 u 0 2 = 0 u 0 2 + 0 v 0 2 - 2 0 u 0  0 v 0  cos u

 -2u # v = -2 0 u 0  0 v 0  cos u

 cos u =
u # v
0 u 0  0 v 0

 u = cos-1a u # v
0 u 0  0 v 0 b

v

u u

v – u

Figure 6.16 The angle u between  
nonzero vectors u and v.

Dot Products on Calculators
It is really a waste of time to compute a  
simple dot product of two-dimensional  
vectors using a calculator, but it can be done. 
Some calculators do vector operations outright, 
and others can do vector operations via matrices. 
If you have learned about matrix multiplication 
already, you will know why the matrix  

product 3u1, u24 c
v1

v2
d  yields the dot product 

8u1, u29 # 8v1, v29 as a 1-by-1 matrix. (The same 
trick works with vectors of higher dimensions.) 
This text will address matrix multiplication in 
Chapter 7.

Finding Dot Products
Find each dot product.

(a) 83, 49 # 85, 29 (b) 81, -29 # 8-4, 39  (c) 12i - j2 # 13i - 5j2
SOLUTION 

(a) 83, 49 # 85, 29 = 132152 + 142122 = 23

(b) 81, -29 # 8-4, 39 = 1121-42 + 1-22132 = -10

(c) 12i - j2 # 13i - 5j2 = 122132 + 1-121-52 = 11
 Now try Exercise 3.

EXAMPLE 1 

Property 2 of the dot product gives us another way to find the length of a vector, as 
illustrated in Example 2.

Using Dot Product to Find Length
Use the dot product to find the length of the vector u = 84, -39.
SOLUTION It follows from property 2 that 0 u 0 = 2u # u. Thus,

0 84, -39 0 = 284, -39 # 84, -39 = 2142142 + 1-321-32 = 225 = 5.

 Now try Exercise 9.

EXAMPLE 2 

Angle Between Vectors
Let u and v be two nonzero vectors in standard position as shown in Figure 6.16. The 
angle between u and v is the angle u, 0 … u … p or 0° … u … 180°. The angle 
between any two nonzero vectors is the corresponding angle between their respective 
standard position representatives.

We can use the dot product to find the angle between nonzero vectors, as we prove in 
the next theorem.

THEOREM Angle Between Two Vectors

If u is the angle between the nonzero vectors u and v, then

 cos u =
u # v
0 u 0  0 v 0

 and u = cos-1a u # v
0 u 0  0 v 0 b
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 SECTION 6.2 Dot Product of Vectors 485

If vectors u and v are perpendicular, that is, if the angle between them is 90°, then

u # v = 0 u 0  0 v 0  cos 90° = 0

because cos 90° = 0.

y

x

(a)

v = 7–2, 58

u = 72, 38
u

y

x

(b)

v = 7–1, –38

u = 72, 18

u

Figure 6.17 The vectors in (a) Example 3a 
and (b) Example 3b.

Finding the Angle Between Vectors
Use an algebraic method to find the angle between the vectors u and v. Use a calcu-
lator to approximate the exact answer when appropriate.

(a) u = 82, 39, v = 8-2, 59 (b) u = 82, 19, v = 8-1, -39
SOLUTION 

(a) See Figure 6.17a. Using the Angle Between Two Vectors Theorem, we have

cos u =
u # v
0 u 0  0 v 0 =

82, 39 # 8-2, 59
0 82, 39 0  0 8-2, 59 0 =

11213 229
 .

So,

u = cos-1a 11213 229
b ≈ 55.5°.

(b) See Figure 6.17b. Again using the Angle Between Two Vectors Theorem, we 
have

cos u =
u # v
0 u 0  0 v 0 =

82, 19 # 8-1, -39
0 82, 19 0  0 8-1, -39 0 =

-525 210
=

-122
 .

 So,

u = cos-1a -122
b = 135°.

 Now try Exercise 13.

EXAMPLE 3 

DEFINITION Orthogonal Vectors

The vectors u and v are orthogonal if and only if u # v = 0.

The terms perpendicular and orthogonal mean almost the same thing. The zero vector 
has no direction angle, so technically speaking, the zero vector is not perpendicular  
to any vector. However, the zero vector is orthogonal to every vector. Except for this 
special case, orthogonal and perpendicular vectors are the same.

Proving Vectors Are Orthogonal
Prove that the vectors u = 82, 39 and v = 8-6, 49 are orthogonal.

SOLUTION We must prove that their dot product is zero.

u # v = 82, 39 # 8-6, 49 = -12 + 12 = 0

The two vectors are orthogonal.
 Now try Exercise 23.

EXAMPLE 4 
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486 CHAPTER 6 Applications of Trigonometry

If u is a force, then projvu represents the effective force in the direction of v  
(Figure 6.21).

We can use vector projections to determine the amount of force required in problem 
situations like Example 6.

y

x
C(a, 0)A(–a, 0)

B(x, y)

u

Figure 6.18 The angle ∠ ABC  
inscribed in the upper half of the circle 
x2 + y2 = a2. (Exploration 1)

S
R

Q

P

v

u

Figure 6.19 The vectors u = PQ 
>
,  

v = PS  

>
, and the vector projection of u onto v, 

PR 
>

= projvu.

3
2
1

–6

y

–5
–4
–3
–2
–1

x
–1 321 4 5 6 7

v = 75, –58

u = 76, 28

u2

u1

Figure 6.20 The vectors u = 86, 29, 
v = 85, -59, u1 = projvu, and u2 = u - u1. 
(Example 5)

Angles Inscribed in Semicircles

Figure 6.18 shows ∠ ABC inscribed in the upper half of the circle x2 + y2 = a2.

 1. For a = 2, find the component form of the vectors u = BA 
>
 and  

v = BC  

>
. 

 2. Find u # v. What can you conclude about the angle u between these two 
 vectors? 

 3. Repeat parts 1 and 2 for arbitrary a. 

EXPLORATION 1 

Projecting One Vector onto Another
The vector projection of u = PQ 

>
 onto a nonzero vector v = PS  

>
 is the vector PR 

>
 

determined by dropping a perpendicular from Q to the line PS (Figure 6.19). We have 
resolved u into components PR 

>
 and RQ 

>

u = PR 
>

+ RQ 
>

with PR 
>
 and RQ 

>
 perpendicular.

The standard notation for PR 
>
, the vector projection of u onto v, is PR 

>
= projvu. With 

this notation, RQ 
>

= u - projvu. We ask you to establish the following formula in the 
exercises (see Exercise 58).

Projection of the Vector u onto the Vector v

If u and v are nonzero vectors, the projection of u onto v is

projvu = au
# v

0 v 0 2bv.

Decomposing a Vector into Perpendicular 
Components

Find the vector projection of u = 86, 29 onto v = 85, -59. Then write u as the sum 
of two orthogonal vectors, one of which is projvu.

SOLUTION We write u = u1 + u2 where u1 = projvu and u2 = u - u1  
(Figure 6.20).

 u1 = projvu = au
# v

0 v 0 2bv =
20
50

 85, -59 = 82, -29

 u2 = u - u1 = 86, 29 - 82, -29 = 84, 49
Thus, u1 + u2 = 82, -29 + 84, 49 = 86, 29 = u.
 Now try Exercise 25.

EXAMPLE 5 
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v

u

projv u

Figure 6.21 If we pull on a box with force 
u, the effective force in the direction of v is 
projvu, the vector projection of u onto v.

F1

F

45°

Figure 6.22 The sled in Example 6.

Units for Work
Work is usually measured in foot-pounds or 
 newton-meters. One newton-meter is commonly 
referred to as one joule (1 J).

Finding a Force
Juan is sitting on a sled on the side of a hill inclined at 45°. The combined weight of 
Juan and the sled is 140 lb. What force is required for Rafaela to keep the sled from 
sliding down the hill? (See Figure 6.22.)

SOLUTION We can represent the force due to gravity as F = -140j because gravity 
acts vertically downward. We can represent the side of the hill with the vector

v = 1cos 45°2i + 1sin 45°2j =
22
2

  i +
22
2

  j.

The force required to keep the sled from sliding down the hill is

F1 = projvF = aF
# v

0 v 0 2bv = 1F # v2v

because 0 v 0 = 1. So,

F1 = 1F # v2v = 1-1402a22
2
bv = -7022 a22

2
 i +

22
2

 jb = -70i - 70j.

The magnitude of the force that Rafaela must exert to keep the sled from sliding 
down the hill is 7022 ≈ 99 lb.
 Now try Exercise 45.

EXAMPLE 6 

Work
If F is a constant force whose direction is the same as the direction of AB 

>
, then the 

work W done by F in moving an object from A to B is

W = 0F 0  0  AB 
>
 0 .

If F is a constant force in any direction, then the work W done by F in moving an 
object from A to B is

 W = F # AB 
>

 = 0F 0  0  AB 
>
 0  cos u

where u is the angle between F and AB 
>
. Except for the sign, the work is the magnitude 

of the effective force in the direction of AB 
>
 times AB 

>
.

Finding Work
Find the work done by a 10-lb force acting in the direction 81, 29 in moving an 
object 3 ft from 10, 02 to 13, 02.
SOLUTION The force F has magnitude 10 lb and acts in the direction 81, 29, so

F = 10 
81, 29
0 81, 29 0 =

1025
 81, 29.

The direction of motion is from A = 10, 02 to B = 13, 02, so AB 
>

= 83, 09. Thus, 
the work done by the force is

F # AB 
>

=
10

 25
 81, 29 # 83, 09 =

3025
≈ 13.42 ft@lb.

 Now try Exercise 53.

EXAMPLE 7 
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488 CHAPTER 6 Applications of Trigonometry

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, find 0 u 0 .
 1. u = 82, -39  2. u = -3i - 4j

 3. u = cos 35° i + sin 35° j

 4. u = 21cos 75° i + sin 75° j2
In Exercises 5–8, the points A and B lie on the circle x2 + y2 = 4. Find 
the component form of the vector AB 

>
.

 5. A = 1-2, 02, B = 11, 232
 6. A = 12, 02, B = 11, 232

 7. A = 12, 02, B = 11, -232
 8. A = 1-2, 02, B = 11, -232
In Exercises 9 and 10, find a vector u with the given magnitude in the 
direction of v.

 9. 0 u 0 = 2, v = 82, 39
 10. 0 u 0 = 3, v = -4i + 3j

QUICK REVIEW 6.2 (For help, go to Section 6.1.)

 21. 

3
2
1

–1

y

4
5
6

x
–4 –3 –2 –1 3 4 5 6 7 821 9

v u

(–3, 4)
(8, 5)

 22. 

9

3
2

–1
–2

–10

y

4
5
6
7
8

–9

x
–4 –3 –2 –1 1

(–3, 8)

(–1, –9)

v

u

In Exercises 23 and 24, prove that the vectors u and v are orthogonal.

 23. u = 82, 39, v = 83>2, -19
 24. u = 8-4, -19, v = 81, -49

SECTION 6.2 Exercises

In Exercises 1–8, find the dot product of u and v.

 1. u = 85, -19, v = 8-2, 59
 2. u = 8-5, 29, v = 88, 139
 3. u = 84, -19, v = 8-1, 39
 4. u = 8-2, 79, v = 8-5, -89
 5. u = 3i - 4j, v = -5i + 2j

 6. u = 2i - 4j, v = -8i + 7j

 7. u = 4i, v = - i + 3j

 8. u = 4i - 11j, v = -3j

In Exercises 9–12, use the dot product to find 0 u 0 .
 9. u = 85, -129  10. u = 8-8, 159
 11. u = -4i  12. u = 3j

In Exercises 13–22 use an algebraic method to find the angle between 
the vectors. Use a calculator to approximate exact answers when 
 appropriate.

 13. u = 8-4, -39, v = 8-1, 59
 14. u = 82, -29, v = 8-3, -39
 15. u = 82, 39, v = 8-3, 59
 16. u = 85, 29, v = 8-6, -19
 17. u = 3i - 3j, v = -2i + 223j

 18. u = -2i, v = 5j

 19. u = a2 cos 
p

4
b i + a2 sin 

p

4
bj, v = acos 

3p
2
b i + asin 

3p
2
bj

 20. u = acos 
p

3
b i + asin 

p

3
bj, v = a3 cos 

5p
6
b i + a3 sin 

5p
6
bj
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In Exercises 25–28, find the vector projection of u onto v. Then write u 
as a sum of two orthogonal vectors, one of which is projvu.

 25. u = 82, 39, v = 8-7, -89
 26. u = 83, -79, v = 8-2, -69
 27. u = 88, 59, v = 8-9, -29
 28. u = 8-2, 89, v = 89, -39
In Exercises 29 and 30, find the interior angles of the triangle with 
given vertices.

 29. 1-4, 52, 11, 102, 13, 12 30. 1-4, 12, 11, -62, 15, -12
In Exercises 31 and 32, find u # v satisfying the given conditions,  
where u is the angle between u and v.

 31. u = 150°, 0 u 0 = 3, 0 v 0 = 8

 32. u =
p

3
, 0 u 0 = 12, 0 v 0 = 40

In Exercises 33–38, determine whether the vectors u and v are parallel, 
orthogonal, or neither.

 33. u = 85, 39, v = h-  
10
4

 , -  
3
2
i

 34. u = 82, 59, v = h 10
3

 , 
4
3
i

 35. u = 815, -129, v = 8-4, 59
 36. u = 85, -69, v = 8-12, -109
 37. u = 8-3, 49, v = 820, 159
 38. u = 82, -79, v = 8-4, 149
In Exercises 39–42, find

(a) the x-intercept A and y-intercept B of the line.

(b)  the coordinates of the point P so that AP 
>
  is perpendicular to the 

line and 0  AP 
>
 0 = 1. (There are two answers.)

 39. 3x - 4y = 12 40. -2x + 5y = 10

 41. 3x - 7y = 21 42. x + 2y = 6

In Exercises 43 and 44, find the vector(s) v satisfying the given 
 conditions.

 43. u = 82, 39, u # v = 10, 0 v 0 2 = 17

 44. u = 8-2, 59, u # v = -11, 0 v 0 2 = 10

 45. Sliding down a Hill Ojemba is sitting on a sled on the side 
of a hill inclined at 60°. The combined weight of Ojemba and the 
sled is 160 lb. What is the magnitude of the force required for 
Mandisa to keep the sled from sliding down the hill?

 46. Revisiting Example 6 Suppose Juan and Rafaela switch 
positions. The combined weight of Rafaela and the sled is  
125 lb. What is the magnitude of the force required for Juan  
to keep the sled from sliding down the hill?

 47. Braking Force A 2000-lb car is parked on a street that 
makes an angle of 12° with the horizontal (see figure).

12°

(a) Find the magnitude of the force required to keep the car 
from rolling down the hill.

(b) Find the force perpendicular to the street.

 48. Effective Force A 60-lb force 
F that makes an angle of 25° with 
an inclined plane is pulling a box 
up the plane. The inclined plane 
makes an 18° angle with the 
 horizontal (see figure). What is 
the magnitude of the effective 
force pulling the box up the 
plane?

 49. Work Find the work done lifting a 2600-lb car  
5.5 ft.

 50. Work Find the work done lifting a 100-lb bag of  
potatoes 3 ft.

 51. Work Find the work done by a force F of 12 N acting in  
the direction 81, 29 in moving an object 4 m from 10, 02 to 
14, 02.

 52. Work Find the work done by a force F of 24 N acting in  
the direction 84, 59 in moving an object 5 m from 10, 02 to 
15, 02.

 53. Work Find the work done by a force F of 30 N acting in the 
direction 82, 29 in moving an object 3 m from 10, 02 to a point 
in the first quadrant along the line y = 11>22x.

 54. Work Find the work done by a force F of 50 N acting in the 
direction 82, 39 in moving an object 5 m from 10, 02 to a point 
in the first quadrant along the line y = x. 

 55. Work The angle between a 200-lb force F and AB 
>

= 2i + 3j 
is 30°. Find the work done by F in moving an object from A  
to B.

 56. Work The angle between a 75-lb force F and AB 
>
 is 60°, 

where A = 1-1, 12 and B = 14, 32. Find the work done by F 
in moving an object from A to B.

 57. Properties of the Dot Product Let u, v, and w be vec-
tors and let c be a scalar. Use the component form of vectors to 
prove the following properties.

(a) 0 # u = 0

(b) u # 1v + w2 = u # v + u # w

(c) 1u + v2 # w = u # w + v # w

(d) 1cu2 #  v = u # 1cv2 = c1u # v2
 58. Group Activity Projection of a Vector Let u and v be 

nonzero vectors. Prove that

(a) projvu = au
# v

0 v 0 2bv (b) 1u - projvu2 # 1projvu2 = 0

 59. Group Activity Connecting Geometry and 
 Vectors Prove that the sum of the squares of the diagonals of 
a parallelogram is equal to the sum of the squares of its sides.

 60. If u is any vector, prove that we can write u as

u = 1u # i2i + 1u # j)j.

Standardized Test Questions
 61. True or False If u # v = 0, then u and v are perpendicular. 

Justify your answer.

 62. True or False If u is a unit vector, then u # u = 1. Justify 
your answer.

18°

25°
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490 CHAPTER 6 Applications of Trigonometry

In Exercises 63–66, solve the problem without using a calculator.

 63. Multiple Choice Let u = 81, 19 and v = 8-1, 19. Which 
of the following is the angle between u and v?

(A) 0° (B) 45° (C) 60°

(D) 90° (E) 135°

 64. Multiple Choice Let u = 84, -59 and v = 8-2, -39. 
Which of the following is equal to u # v?

(A) -23 (B) -7 (C) 7

(D) 23 (E) 27

 65. Multiple Choice Let u = 83>2, -3>29 and v = 82, 09. 
Which of the following is equal to projvu?

(A) 83>2, 09 (B) 83, 09 (C) 8-3>2, 09
(D) 83>2, 3>29 (E) 8-3>2, -3>29

 66. Multiple Choice Which of the following vectors describes 
a 5-lb force acting in the direction of u = 8-1, 19?

(A) 58-1, 19 (B) 
522

 8-1, 19 (C) 581, -19

(D) 
522

 81, -19 (E) 
5
2

 8-1, 19

Explorations
 67. Distance from a Point to a Line Consider the line L 

with equation 2x + 5y = 10 and the point P = 13, 72.
(a) Prove that A = 10, 22 and B = 15, 02 are the y- and 

x-intercepts of L.

(b) Find w1 = projAB 
> AP 

>
 and w2 = AP 

>
- projAB 

>AP 
>
.

(c) Writing to Learn Explain why 0w2 0  is the distance 
from P to L. What is this distance?

(d) Find a formula for the distance of any point P = 1x0, y02  
to L.

(e) Find a formula for the distance of any point P = 1x0, y02  
to the line ax + by = c.

Extending the Ideas
 68. Writing to Learn Let w = 1cos t) u + 1sin t2 v, where u 

and v are not parallel.

(a) Can the vector w be parallel to the vector u? Explain.

(b) Can the vector w be parallel to the vector v? Explain.

(c) Can the vector w be parallel to the vector u + v? Explain.

 69. If the vectors u and v are not parallel, prove that

au + bv = cu + dv 1 a = c, b = d.
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 SECTION 6.3 Parametric Equations and Motion 491

When we give parametric equations and a parameter interval for a curve, we have 
parametrized the curve. A parametrization of a curve consists of the parametric 
equations and the interval of t values. Sometimes parametric equations are used by 
companies in their design plans. It is then easier for the company to make larger and 
smaller objects efficiently by just changing the parameter t.

Graphs of parametric equations can be obtained using Parametric mode on a grapher.

What you’ll learn about
• Parametric Equations

• Parametric Curves

• Eliminating the Parameter

• Lines and Line Segments

• Simulating Motion with a Grapher

... and why
These topics can be used to model 
the path of an object such as a 
baseball or a golf ball.

Parametric Equations
When vectors are used to solve problems of motion, the components of the vector vary 
as functions of time. For example, in the two-dimensional vector 8x,  y9 we might have 
x = ƒ1t2 and y = g1t2. This is equivalent to using parametric equations to write x and 
y in terms of the parameter t, something we have done twice before in this text using 
those very terms (Sections 1.5 and 2.1). You might also recall using the parametric 
equations x = cos1t2 and y = sin1t2 to define the unit circle in Section 4.3. (See Fig-
ure 6.23.) Although the study of vector-valued functions is beyond the scope of this 
course, we can get many of the same insights, and solve many of the same problems, by 
simply taking a closer look at parametric equations and parametrically defined curves. 
This section is devoted to taking that closer look.

Parametric Curves
In this section we study the graphs of parametric equations and investigate motion of 
objects that can be modeled with parametric equations.

6.3 Parametric Equations and Motion

Graphing Parametric Equations
For the given parameter interval, graph the parametric equations

x = t2 - 2, y = 3t.

(a) -3 … t … 1

(b) -2 … t … 3

(c) -3 … t … 3

SOLUTION In each case, set Tmin equal to the left endpoint of the interval and 
Tmax equal to the right endpoint of the interval. Figure 6.24 shows a graph of the 
parametric equations for each parameter interval. The corresponding relations are 
 different because the parameter intervals are different. Now try Exercise 7.

EXAMPLE 1 

DEFINITION Parametric Curve, Parametric Equations

The graph of the ordered pairs 1x, y2, where

x = ƒ1t2, y = g1t2
are functions defined on an interval I of t values, is a parametric curve. The 
equations are parametric equations for the curve, the variable t is a parameter, 
and I is the parameter interval.

x = cos(t)
y = sin(t) (x, y)1

1

[23, 3] by [22, 2]

Figure 6.23 In Section 4.3 we defined the 
unit circle parametrically by expressing x and  
y as trigonometric functions of the parameter t.
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492 CHAPTER 6 Applications of Trigonometry

Eliminating the Parameter
When a curve is defined parametrically it is sometimes possible to eliminate the param-
eter and obtain a rectangular equation in x and y that represents the curve. This often 
helps us identify the graph of the parametric equations, as illustrated in Example 2.

[210, 5] by [25, 5]

Figure 6.25 The graph of y = 0.5x + 1.5. 
(Example 2)

[210, 10] by [210, 10]

(a)     

[210, 10] by [210, 10]

(b)     

[210, 10] by [210, 10]

(c)

Figure 6.24 Three different relations defined parametrically. (Example 1)

Eliminating the Parameter
Eliminate the parameter and identify the graph of the parametric equations

x = 1 - 2t, y = 2 - t, -∞ 6 t 6 ∞.

SOLUTION We solve the first equation for t:

 x = 1 - 2t

 2t = 1 - x

 t =
1
2

 11 - x2

Then we substitute this expression for t into the second equation:

 y = 2 - t

 y = 2 -
1
2

 11 - x2
 y = 0.5x + 1.5

The graph of the equation y = 0.5x + 1.5 is a line with slope 0.5 and y-intercept 1.5 
(Figure 6.25). Now try Exercise 11.

EXAMPLE 2 

Graphing the Curve of Example 2 
Parametrically

 1. Use the Parametric mode of your grapher to reproduce the graph in Figure 6.25. 
Use -2 for Tmin and 5.5 for Tmax.

 2. Prove that the point 117, 102 is on the graph of y = 0.5x + 1.5. Find the cor-
responding value of t that produces this point. 

 3. Repeat part 2 for the point 1-23, -102. 
 4. Assume that 1a, b2 is on the graph of y = 0.5x + 1.5. Find the corresponding 

value of t that produces this point. 

 5. How do you have to choose Tmin and Tmax so that the graph in Figure 6.25 
fills the window? 

EXPLORATION 1 
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 SECTION 6.3 Parametric Equations and Motion 493

In Exercise 65, you will find parametric equations for any circle in the plane.

Lines and Line Segments
We can use vectors to help us find parametric equations for a line, as illustrated in 
Example 5.

Parabolas
The inverse of a parabola that opens up or down 
is a parabola that opens left or right. We will 
investigate these curves in more detail in  
Chapter 8.

If we do not specify a parameter interval for the parametric equations x = ƒ1t2, 
y = g1t2, it is understood that the parameter t can take on all values that produce real 
numbers for x and y. We use this agreement in Example 3.

Eliminating the Parameter
Eliminate the parameter and identify the graph of the parametric equations

x = t2 - 2, y = 3t.

SOLUTION Here t can be any real number. We solve the second equation for t, 
obtaining t = y>3, and substitute this value for y into the first equation.

 x = t2 - 2

 x = ay

3
b

2

- 2

 x =
y2

9
- 2

 y2 = 91x + 22
Figure 6.24c shows what the graph of these parametric equations looks like. In 
 Chapter 8 we will call this a parabola that opens to the right. Interchanging x and y, 
we can identify this graph as the inverse of the graph of the parabola x2 = 91y + 22.
 Now try Exercise 15.

EXAMPLE 3 

Eliminating the Parameter
Eliminate the parameter and identify the graph of the parametric equations

x = 2 cos t, y = 2 sin t, 0 … t … 2p.

SOLUTION The graph of the parametric equations in the square viewing window of 
Figure 6.26 suggests that the graph is a circle of radius 2 centered at the origin. We 
confirm this result algebraically.

 x2 + y2 = 4 cos2 t + 4 sin2 t

 = 41cos2 t + sin2 t2
 = 4112  cos2 t + sin2 t = 1

 = 4

The graph of x2 + y2 = 4 is a circle of radius 2 centered at the origin. Increasing the 
length of the interval 0 … t … 2p will cause the grapher to trace all or part of the 
circle more than once. Decreasing the length of the interval will cause the grapher to 
only draw a portion of the complete circle. Try it! Now try Exercise 23.

EXAMPLE 4 

[24.7, 4.7] by [23.1, 3.1]

Figure 6.26 The graph of the circle of 
Example 4.
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494 CHAPTER 6 Applications of Trigonometry

Simulating Motion with a Grapher
Example 7 illustrates several ways to simulate motion along a horizontal line using 
parametric equations. We use the variable t for the parameter to represent time.

Lines in 3-Space
You might wonder why anybody would bother to 
find parametric equations for a line because a lin-
ear equation of the form ax + by + c = 0 does 
the job nicely and is not that hard to find. One  
reason is that the familiar point-slope method 
does not work in three-dimensional space,  
where the graph of the linear equation 
ax + by + cz + d = 0 is a plane, not a line. 
Happily, the approach of Example 5 that uses 
vectors and the scalar parameter t works just 
as well in 3-space as it does in the plane.  
See Section 8.6 for details.

y

A(–2, 3)

B(3, 6) P(x, y)

x
O 1

Figure 6.27 Example 5 uses vectors to 
construct a parametrization of the line through 
A and B.

Finding Parametric Equations for a Line
Find a parametrization of the line through the points A = 1-2, 32 and B = 13, 62.
SOLUTION Let P1x, y2 be an arbitrary point on the line through A and B. As you 
can see from Figure 6.27, the vector OP 

>
 is the tail-to-head vector sum of OA 

>
 and 

AP 
>
. You can also see that AP 

>
 is a scalar multiple of AB 

>
.

If we let the scalar be t, we have

 OP 
>

= OA 
>

+ AP 
>

 OP  

>
= OA 

>
+ t # AB  

>

 8x, y9 = 8-2, 39 + t83 - 1-22, 6 - 39
 8x, y9 = 8-2, 39 + t85, 39
 8x, y9 = 8-2 + 5t, 3 + 3t9

This vector equation is equivalent to the parametric equations x = -2 + 5t and 
y = 3 + 3t. Together with the parameter interval 1-∞, ∞2, these equations define 
the line.

We can confirm our work numerically as follows: If t = 0, then x = -2 and y = 3, 
which gives the point A. Similarly, if t = 1, then x = 3 and y = 6, which gives the 
point B. Now try Exercise 27.

EXAMPLE 5 

The fact that t = 0 yields point A and t = 1 yields point B in Example 5 is no accident, 
as a little reflection on Figure 6.27 and the vector equation OP 

>
= OA 

>
+ t # AB 

>
 should 

suggest. We use this fact in Example 6.

Finding Parametric Equations for  
a Line Segment

Find a parametrization of the line segment with endpoints A = 1-2, 32 and 
B = 13, 62.
SOLUTION In Example 5 we found parametric equations for the line through A  
and B:

x = -2 + 5t, y = 3 + 3t

We also saw in Example 5 that t = 0 produces the point A and t = 1 produces the 
point B. A parametrization of the line segment is given by

x = -2 + 5t, y = 3 + 3t, 0 … t … 1.

As t varies between 0 and 1, we pick up every point on the line segment between A 
and B. Now try Exercise 29.

EXAMPLE 6 

Simulating Horizontal Motion
Gary walks along a horizontal line (think of it as a number line) with the coordinate 
of his position (in meters) given by

s = -0.11t3 - 20t2 + 110t -  852
where 0 … t … 12. Use parametric equations and a grapher to simulate his motion. 
Estimate the times when Gary changes direction.

EXAMPLE 7 
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 SECTION 6.3 Parametric Equations and Motion 495

Example 8 solves a projectile-motion problem. Parametric equations are used in two 
ways: to find a graph of the modeling equation and to simulate the motion of the 
projectile.

Grapher Note
The equation y2 = t is typically used in the para-
metric equations for the graph C2 in Figure 6.29. 
We have chosen y2 = - t to get two curves in 
Figure 6.29 that do not overlap. Also notice that 
the y-coordinates of C1 are constant 1y1 = 52, 
and that the y-coordinates of C2 vary with time 
t 1y2 = - t2.

T=0
X=8.5 Y=5

Start, t 5 0

(a)

T=5
X=–9 Y=5

5 sec later, t 5 5

(b)

T=8
X=–2.7 Y=5

3 sec after that, t 5 8

(c)

Figure 6.28 Three views of the graph 
C1: x1 = -0.11t3 - 20t2 + 110t - 852, 
y1 = 5, 0 … t … 12 in the 3-12, 124  by 
3-10, 104  viewing window. (Example 7)

C2

C1

T=3.9
X=–9.9119 Y=–3.9

[212, 12] by [215, 15]

(a)    

C2

C1

T=9.5
X=–1.2375 Y=–9.5

[212, 12] by [215, 15]

(b)

Figure 6.29 Two views of the graph C1 : x1 = -0.11t3 - 20t2 + 110t - 852, 
y1 = 5, 0 … t … 12 and the graph C2: x2 = -0.11t3 - 20t2 + 110t - 852, y2 = - t, 
0 … t … 12 in the 3-12, 124  by 3-15, 154  viewing window. (Example 7)

SOLUTION We arbitrarily choose the horizontal line y = 5 to display this motion. 
The graph C1 of the parametric equations,

C1: x1 = -0.11t3 - 20t2 + 110t - 852, y1 = 5, 0 … t … 12,

simulates the motion. His position at any time t is given by the point 1x11t2, 52.
Using TRACE in Figure 6.28 we see that when t = 0, Gary is 8.5 m to the right of 
the y-axis at the point (8.5, 5), and that he initially moves left. Five seconds later he 
is 9 m to the left of the y-axis at the point 1-9, 52. And after 8 sec he is only 2.7 m to 
the left of the y-axis. Gary must have changed direction during the walk. The motion 
of the trace cursor simulates Gary’s motion.

A variation in y1t2,
C2 : x2 = -0.11t3 - 20t2 + 110t - 852, y2 = - t, 0 … t … 12,

can be used to help visualize where Gary changes direction. The graph C2 shown  
in Figure 6.29 suggests that Gary reverses his direction at 3.9 sec and again at  
9.5 sec after beginning his walk. Now try Exercise 37.

Simulating Projectile Motion
A distress flare is launched from a ship’s deck 75 ft above the water with an initial 
vertical velocity of 76 ft>sec. Graph the flare’s height against time, give the height  
of the flare above water at each time, and simulate the flare’s motion for each length 
of time.

(a) 1 sec   (b) 2 sec   (c) 4 sec   (d) 5 sec

SOLUTION An equation that models the flare’s height above the water t seconds 
after launch is

y = -16t2 + 76t + 75.

A graph of the flare’s height against time can be found using the parametric 
equations

x1 = t, y1 = -16t2 + 76t + 75.

EXAMPLE 8 

(continued)
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496 CHAPTER 6 Applications of Trigonometry

In Example 8 we modeled the motion of a projectile that was launched straight up. 
Now we investigate the motion of objects, ignoring air friction, that are launched at 
angles other than 90° with the horizontal.

Suppose that a baseball is thrown from a point y0 feet above ground level with an initial 
speed of v0 ft>sec at an angle u with the horizontal (Figure 6.31). The initial velocity 
can be represented by the vector

v = 8v0 cos u, v0 sin u9.
The path of the object is modeled by the parametric equations

x = 1v0 cos u2t, y = -16t2 + 1v0 sin u2t + y0.

The x-component is simply

distance = 1x@component of initial velocity2 * time.

The y-component is the familiar vertical projectile-motion equation using the y-component 
of initial velocity.

To simulate the flare’s flight straight up and its fall to the water, use the parametric 
equations

x2 = 5.5, y2 = -16t2 + 76t + 75.

(We chose x2 = 5.5 so that the two graphs would not intersect.)

Figure 6.30 shows the two graphs in Simultaneous graphing mode for (a) 0 … t … 1, 
(b) 0 … t … 2, (c) 0 … t … 4, and (d) 0 … t … 5. We can read that the height of the 
flare above the water after 1 sec is 135 ft, after 2 sec is 163 ft, after 4 sec is 123 ft, 
and after 5 sec is 55 ft. Now try Exercise 39.

x

y

y0 u

v0 cos u

v0 sin u
v0

Figure 6.31 Throwing a baseball.

[0, 450] by [0, 80]

Figure 6.32 The fence and path of the 
baseball in Example 9. See Exploration 2 for 
ways to draw the wall.

T=1
X=5.5           Y=135

[0, 6] by [0, 200]

(a)    

T=2
X=5.5    Y=163

[0, 6] by [0, 200]

(b)    

T=4
X=5.5    Y=123

[0, 6] by [0, 200]

(c)    

T=5
X=5.5    Y=55

[0, 6] by [0, 200]

(d)

Figure 6.30 Simultaneous graphing of x1 = t, y1 = -16t2 + 76t + 75 (height against time) and x2 = 5.5, y2 = -16t2 + 76t + 75 (the actual 
path of the flare). (Example 8)

Hitting a Baseball
Kevin hits a baseball at 3 ft above the ground with an initial speed of 150 ft>sec at an 
angle of 18° with the horizontal. Will the ball clear a 20-ft wall that is 400 ft away?

SOLUTION The path of the ball is modeled by the parametric equations

x = 1150 cos 18°2t, y = -16t2 + 1150 sin 18°2t + 3.

A little experimentation will reveal that the ball will reach the fence in less than 
3 sec. Figure 6.32 shows a graph of the path of the ball using the parameter interval 
0 … t … 3 and the 20-ft wall. The ball will not clear the wall.
 Now try Exercise 43.

EXAMPLE 9 
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 SECTION 6.3 Parametric Equations and Motion 497

In Example 10 we see how to write parametric equations for position on a moving 
 Ferris wheel, using time t as the parameter.

Extending Example 9

 1. If your grapher has a line segment feature, draw the fence in Example 9.

 2. Describe the graph of the parametric equations

x = 400, y = 201t>32, 0 … t … 3.

 3. Repeat Example 9 for the angles 19°, 20°, 21°, and 22°.

EXPLORATION 2

10 ft

30 ft

A

Figure 6.33 The Ferris wheel of  
Example 10.

Riding on a Ferris Wheel
Jane is riding on a Ferris wheel with a radius of 30 ft. As we view it in Figure 6.33, 
the wheel is turning counterclockwise at the rate of one revolution every 30 sec. 
Assume that the lowest point of the Ferris wheel (6 o’clock) is 10 ft above the  
ground and that Jane is at the point marked A (3 o’clock) at time t = 0. Find 
 parametric equations to model Jane’s path and use them to find Jane’s position  
22 sec into the ride.

EXAMPLE 10 

y

x

A

P

40

30
u

Figure 6.34 A model for the Ferris wheel of Example 10.

SOLUTION Figure 6.34 shows a circle with center 10, 402 and radius 30 that models 
the Ferris wheel. The parametric equations for this circle in terms of the parameter u, 
the central angle of the circle determined by the arc AP, are

x = 30 cos u, y = 40 + 30 sin u, 0 … u … 2p.

To take into account the rate at which the wheel is turning, we must describe u as a 
function of time t in seconds. The wheel is turning at the rate of 2p rad every 30 sec, 
or 2p>30 = p>15 rad>sec, so u = 1p>152t. Thus, parametric equations that model 
Jane’s path are given by

x = 30 cosap
15

 tb , y = 40 + 30 sinap
15

 tb , t Ú 0.

We substitute t = 22 into the parametric equations to find Jane’s position at that 
time:

 x = 30 cosap
15

# 22b    y = 40 + 30 sinap
15

# 22b
 x ≈ -3.14       y ≈ 10.16

After riding for 22 sec, Jane is approximately 10.16 ft above the ground and approxi-
mately 3.14 ft to the left of the y-axis, using the coordinate system of Figure 6.34.
 Now try Exercise 51.
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498 CHAPTER 6 Applications of Trigonometry

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the component form of the vectors  
(a) OA 

>
, (b) OB 

>
, and (c) AB 

>
, where O is the origin.

 1. A = 1-3, -22, B = 14, 62
 2. A = 1-1, 32, B = 14, -32
In Exercises 3 and 4, write an equation in point-slope form for the line 
through the two points.

 3. 1-3, -22, 14, 62 4. 1-1, 32, 14, -32

In Exercises 5 and 6, find and graph the two functions defined 
 implicitly by each given relation.

 5. y2 = 8x 6. y2 = -5x

In Exercises 7 and 8, write an equation for the circle with given center 
and radius.

 7. 10, 02, 2  8. 1-2, 52, 3
In Exercises 9 and 10, a wheel with radius r spins at the given rate. 
Find the angular velocity in radians per second.

 9. r = 13 in., 600 rpm 10. r = 12 in., 700 rpm

QUICK REVIEW 6.3 (For help, go to Sections P.2, P.4, 1.3, 4.1, and 6.1.)

In Exercises 7–10, graph the parametric equations x = 3 - t2, y = 2t, 
in the specified parameter interval. Use the standard viewing window.

 7. 0 … t … 10 8. -10 … t … 0

 9. -3 … t … 3 10. -2 … t … 4

In Exercises 11–26, use an algebraic method to eliminate the parameter 
and identify the graph. Use a grapher to support your answer.

 11. x = 7 + t, y = t 12. x = 2 - 3t, y = 5 + t

 13. x = 2t - 3, y = 9 - 4t, 3 … t … 5

 14. x = 5 - 3t, y = 2 + t, -1 … t … 3

 15. x = t2, y = t + 1 [Hint: Solve for x in terms of y.]

 16. x = t, y = t2 - 3

 17. x = t, y = t3 - 2t + 3

 18. x = 2t2 - 1, y = t [Hint: Solve for x in terms of y.]

 19. x = 4 - t2, y = t [Hint: Solve for x in terms of y.]

 20. x = 0.5t, y = 2t3 - 3, -2 … t … 2

 21. x = t - 3, y = 2>t, -5 … t … 5

 22. x = t + 2, y = 4>t, t Ú 2

 23. x = 5 cos t, y = 5 sin t

 24. x = 4 cos t, y = 4 sin t

 25. x = 2 sin t, y = 2 cos t, 0 … t … 3p>2
 26. x = 3 cos t, y = 3 sin t, 0 … t … p
In Exercises 27–32, find a parametrization for the curve.

 27. The line through the points 1-2, 52 and 14, 22
 28. The line through the points 1-3, -32 and 15, 12
 29. The line segment with endpoints 13, 42 and 16, -32
 30. The line segment with endpoints 15, 22 and 1-2, -42
 31. The circle with center 15, 22 and radius 3

 32. The circle with center 1-2, -42 and radius 2

SECTION 6.3 Exercises

In Exercises 1–4, match the parametric equation with its graph. Identify 
the viewing window that seems to have been used.

(a)     (b)

(c)     (d)

 1. x = 4 cos3 t, y = 2 sin3 t

 2. x = 3 cos t, y = sin 2t

 3. x = 2 cos t + 2 cos2 t, y = 2 sin t + sin 2t

 4. x = sin t - t cos t, y = cos t + t sin t

In Exercises 5 and 6, (a) complete the table for the parametric equa-
tions and (b) plot the corresponding points.

 5. x = t + 2, y = 1 + 3>t
t -2 -1 0 1 2
x
y

 6. x = cos t, y = sin t

t 0 p>2 p 3p>2 2p

x
y
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 SECTION 6.3 Parametric Equations and Motion 499

Exercises 33–36 refer to the graph of the parametric equations

x = 2 - 0 t 0 , y = t - 0.5, -3 … t … 3

shown below. Find the values of the parameter t that produces the graph 
in the indicated quadrant.

[25, 5] by [25, 5]

 33. Quadrant I

 34. Quadrant II

 35. Quadrant III

 36. Quadrant IV

 37. Simulating a Foot Race Ben can sprint at the rate of  
24 ft>sec. Jerry sprints at 20 ft>sec. Ben gives Jerry a 10-ft 
head start. These parametric equations can be used to model  
a race:

 x1 = 20t,   y1 = 3

 x2 = 24t - 10,  y2 = 5

(a) Find a viewing window to simulate a 100-yd dash. Graph 
simultaneously with t starting at t = 0 and Tstep = 0.05.

(b) Who is ahead after 3 sec and by how much?

 38. Capture the Flag Two opposing players in “Capture the 
Flag” are 100 ft apart. On a signal, they run to capture a flag 
that is on the ground midway between them. The faster runner, 
however, hesitates for 0.1 sec. The following parametric equa-
tions model the race to the flag:

 x1 = 101t - 0.12,  y1 = 3

 x2 = 100 - 9t,  y2 = 3

(a) Simulate the game in a 30, 1004  by 3-1, 104  viewing 
window with t starting at 0. Graph simultaneously.

(b) Who captures the flag and by how many feet?

50 ft 50 ft

 39. Famine Relief Air Drop A relief agency drops food 
 containers from an airplane on a war-torn famine area. The 
drop was made from an altitude of 1000 ft above ground level.

(a) Use an equation to model the height of the containers  
(during free fall) as a function of time t.

(b) Use Parametric mode to simulate the drop during the first  
6 sec.

(c) After 4 sec of free fall, parachutes open. How many feet 
above the ground are the food containers when the para-
chutes open?

 40. Height of a Pop-up A baseball is hit straight up from a 
height of 5 ft with an initial velocity of 80 ft>sec.

(a) Write an equation that models the height of the ball as a 
function of time t.

(b) Use Parametric mode to simulate the pop-up.

(c) Use Parametric mode to graph height against time.
[Hint: Let x1t2 = t.]

(d) How high is the ball after 4 sec?

(e) What is the maximum height of the ball? How many sec-
onds does it take to reach its maximum height?

 41. The complete graph of the parametric equations x = 2 cos t, 
y = 2 sin t is the circle of radius 2 centered at the origin. Find 
an interval of values for t so that the graph is the given portion 
of the circle.

(a) The portion in the first quadrant

(b) The portion above the x-axis

(c) The portion to the left of the y-axis

 42. Writing to Learn Consider the two pairs of parametric 
equations x = 3 cos t, y = 3 sin t and x = 3 sin t, y = 3 cos t 
for 0 … t … 2p.

(a) Give a convincing argument that the graphs of the pairs of 
parametric equations are the same.

(b) Explain how the parametrizations are different.

 43. Hitting a Baseball Consider Kevin’s hit discussed in 
Example 9.

(a) Approximately how many seconds after the ball is hit does 
it hit the wall?

(b) How high up the wall does the ball hit?

(c) Writing to Learn Explain why Kevin’s hit might be 
caught by an outfielder. Then explain why his hit probably 
would not be caught by an outfielder if it were hit at a  
20° angle with the horizontal.

 44. Hitting a Baseball Kirby hits a ball when it is 4 ft above 
the ground with an initial velocity of 120 ft>sec. The ball 
leaves the bat at a 30° angle with the horizontal and heads 
toward a 30-ft fence 350 ft from home plate.

(a) Does the ball clear the fence?

(b) If so, by how much does it clear the fence? If not, could 
the ball be caught?

 45. Hitting a Baseball Suppose that the moment Kirby hits the 
ball in Exercise 44, there is a 5-ft>sec split-second wind gust. 
Assume the wind acts in the horizontal direction out with the ball.

(a) Does the ball clear the fence?

(b) If so, by how much does it clear the fence? If not, could 
the ball be caught?
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 46. Two-Softball Toss Chris and Linda warm up in the out-
field by tossing softballs to each other. Suppose both tossed a 
ball at the same time from the same height, as illustrated in the 
figure. Find the minimum distance between the two balls and 
when this minimum distance occurs.

41 ft/sec45 ft/sec

Linda Chris5 ft

78 ft

44° 39°

 47. Yard Darts Tony and Sue are launching yard darts 20 ft 
from the front edge of a circular target of radius 18 in. on the 
ground. If Tony throws the dart directly at the target, and 
releases it 3 ft above the ground with an initial velocity of 
30 ft>sec at a 70° angle, will the dart hit the target?

 48. Yard Darts In the game of darts described in Exercise 47, 
Sue releases the dart 4 ft above the ground with an initial velocity 
of 25 ft>sec at a 55° angle. Will the dart hit the target?

 49. Hitting a Baseball Orlando hits a ball when it is 4 ft 
above ground level with an initial velocity of 160 ft>sec. The 
ball leaves the bat at a 20° angle with the horizontal and heads 
toward a 30-ft fence 400 ft from home plate. How strong must 
a split-second wind gust be (in feet per second) that acts 
directly with or against the ball in order for the ball to hit 
within a few inches of the top of the wall? Estimate the answer 
graphically and solve algebraically.

 50. Hitting Golf Balls Nancy hits golf balls off the practice tee 
with an initial velocity of 180 ft>sec with four different clubs. 
How far down the fairway does the ball hit the ground  
if it comes off the club making the specified angle with the 
 horizontal?

(a) 15°   (b) 20°   (c) 25°   (d) 30°

 51. Analysis of a Ferris Wheel Ron is on a Ferris wheel  
of radius 35 ft that turns counterclockwise at the rate of  
one revolution every 12 sec. The lowest point of the Ferris 
wheel (6 o’clock) is 15 ft above ground level at the point 
10, 152 on a rectangular coordinate system. Find parametric 
equations for the position of Ron as a function of time t (in 
seconds) if the Ferris wheel starts 1t = 02 with Ron at the 
point 135, 502.

 52. Revisiting Example 5 Eliminate the parameter t from the 
parametric equations of Example 5 to find an equation in x and 
y for the line. Prove that the line passes through the points A 
and B of the example.

 53. Cycloid The graph of the parametric equations x = t - sin t, 
y = 1 - cos t  is a cycloid.

[22, 16] by [21, 10]

(a) What is the maximum value of y = 1 - cos t ? How is 
that value related to the graph?

(b) What is the distance between neighboring x-intercepts?

 54. Hypocycloid The graph of the parametric equations 
x = 2 cos t + cos 2t, y = 2 sin t - sin 2t is a hypocycloid. 
The graph is the path of a point P on a circle of radius 1 rolling 
along the inside of a circle of radius 3, as illustrated in the figure.

3

–3

y

x
–3 3

C1

P
t

(a) Graph simultaneously this hypocycloid and the circle of 
radius 3.

(b) Suppose the large circle had a radius of 4. Experiment! 
How do you think the equations in part (a) should be 
changed to obtain defining equations? What do you think 
the hypocycloid would look like in this case? Check your 
guesses.

Group Activity In Exercises 55–58, a particle moves along a hori-
zontal line so that its position at any time t is given by s1t2. Write a 
description of the motion. [Hint: See Example 7.]

 55. s1t2 = - t2 + 3t, -2 … t … 4

 56. s1t2 = - t2 + 4t, -1 … t … 5

 57. s1t2 = 0.51t3 - 7t2 + 2t2, -1 … t … 7

 58. s1t2 = t3 - 5t2 + 4t, -1 … t … 5

Standardized Test Questions
 59. True or False The two sets of parametric equations 

x1 = t - 1, y1 = 3t + 1 and x2 = 12>32t - 4>3, y2 = 2t 
correspond to the same rectangular equation. Justify your 
answer.

 60. True or False The graph of the parametric equations 
x = t - 1, y = 2t - 1, 1 … t … 3 is a line segment with 
 endpoints 10, 12 and 12, 52. Justify your answer.
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In Exercises 61–64, solve the problem without using a calculator.

 61. Multiple Choice Which of the following points corre-
sponds to t = -1 in the parametrization x = t2 - 4, 

y = t +
1
t
?

(A) 1-3, -22 (B) 1-3, 02 (C) 1-5, -22
(D) 1-5, 02 (E) 13, 22

 62. Multiple Choice Which of the following values of t 
 produces the same point as t = 2p>3 in the parametrization 
x = 2 cos t, y = 2 sin t?

(A) t = -  
4p
3

 (B) t = -  
2p
3

 (C) t =
-p
3

(D) t =
4p
3

 (E) t =
7p
3

 63. Multiple Choice A rock is thrown straight up from level 
ground with its position above ground at any time t Ú 0 given 
by x = 5, y = -16t2 + 80t + 7. At what time(s) will the rock 
be 91 ft above ground?

(A) 1.5 sec (B) 2.5 sec

(C) 3.5 sec (D) 1.5 sec and 3.5 sec

(E) The rock never goes that high.

 64. Multiple Choice Which of the following describes the 
graph of the parametric equations x = 1 - t, y = 3t + 2, 
t Ú 0?

(A) A straight line

(B) A line segment

(C) A ray

(D) A parabola

(E) A circle

Explorations
 65. Parametrizing Circles Consider the parametric equations

x = a cos t, y = a sin t, 0 … t … 2p.

(a) Graph the parametric equations for a = 1, 2, 3, 4 in the 
same square viewing window.

(b) Eliminate the parameter t in the parametric equations to 
prove that they are all circles. What is the radius of each?

Now consider the parametric equations

x = h + a cos t, y = k + a sin t, 0 … t … 2p.

(c) Graph the equations for a = 1 using the following pairs of 
values for h and k:

h 2 -2 -4 3
k 3 3 -2 -3

(d) Eliminate the parameter t in the parametric equations and 
identify the graph.

(e) Write a parametrization for the circle with center 1-1, 42 
and radius 3.

 66. Group Activity Parametrization of Lines Consider 
the parametrization

x = at + b, y = ct + d,

where a and c are not both zero.

(a) Graph the curve for a = 2, b = 3, c = -1, and d = 2.

(b) Graph the curve for a = 3, b = 4, c = 1, and d = 3.

(c) Writing to Learn Eliminate the parameter t and write 
an equation in x and y for the curve. Explain why its graph 
is a line.

(d) Writing to Learn Find the slope, y-intercept, and 
x-intercept of the line if they exist. If not, explain why not.

(e) Under what conditions will the line be horizontal? 
 Vertical? 

 67. Throwing a Ball at a Ferris Wheel A 20-ft Ferris 
wheel turns counterclockwise one revolution every 12 sec (see 
figure). Eric stands at point D, 75 ft from the base of the 
wheel. At the instant Jane is at point A, Eric throws a ball at 
the Ferris wheel, releasing it from the same height as the bot-
tom of the wheel. If the ball’s initial speed is 60 ft>sec and it 
is released at an angle of 120° with the horizontal, does Jane 
have a chance to catch the ball? Follow the steps below to 
obtain the answer.

(a) Assign a coordinate system so that the bottom car of the 
Ferris wheel is at 10, 02 and the center of the wheel is at 
10, 202. Then Eric releases the ball at the point 175, 02. 
Explain why parametric equations for Jane’s path are

x1 = 20 cosap
6

 tb , y1 = 20 + 20 sinap
6

 tb , t Ú 0.

(b) Explain why parametric equations modeling the path of the 
ball are

x2 = -30t + 75, y2 = -16t2 + 130232t, t Ú 0.

(c) Graph the two paths simultaneously and determine whether 
Jane and the ball arrive at the point of intersection of the 
two paths at the same time.

(d) Find a formula for the distance d1t2 between Jane and the 
ball at any time t.

(e) Writing to Learn Use the graph of the parametric 
equations x3 = t, y3 = d1t2, to estimate the minimum dis-
tance between Jane and the ball and when it occurs. Do 
you think Jane has a chance to catch the ball?

75 ft

A

D
20 ft
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502 CHAPTER 6 Applications of Trigonometry

 68. Throwing a Ball at a Ferris Wheel A 71-ft-radius Fer-
ris wheel turns counterclockwise one revolution every 20 sec. 
Tony stands at a point 90 ft to the right of the base of the 
wheel. At the instant when Matthew’s position is at “3 o’clock” 
(point A in the diagram for Exercise 67), Tony throws a ball 
toward the Ferris wheel with an initial velocity of 88 ft>sec at 
an angle with the horizontal of 100°. Find the minimum dis-
tance between the ball and Matthew.

Extending the Ideas
 69. Two-Ferris-Wheels Problem Chang is on a Ferris wheel 

of center 10, 202 and radius 20 ft turning counterclockwise at 
the rate of one revolution every 12 sec. Kuan is on a Ferris 
wheel of center 115, 152 and radius 15 turning counterclock-
wise at the rate of one revolution every 8 sec. Find the mini-
mum distance between Chang and Kuan if both start out 
1t = 02 at 3 o’clock.

 70. Two-Ferris-Wheels Problem Chang and Kuan are riding 
the Ferris wheels described in Exercise 69. Find the minimum 
distance between Chang and Kuan if Chang starts out 1t = 02 
at 3 o’clock and Kuan at 6 o’clock.

Exercises 71–73 refer to the graph C of the parametric equations

x = tc + 11 - t2a, y = td + 11 - t2b
where P11a, b2 and P21c, d2 are two fixed points.

 71. Using Parametric Equations in Geometry Prove that 
the point P1x, y2 on C is equal to

(a) P11a, b2 when t = 0.

(b) P21c, d2 when t = 1.

 72. Using Parametric Equations in Geometry Prove that 
if t = 0.5, the corresponding point 1x, y2 on C is the midpoint 
of the line segment with endpoints 1a, b2 and 1c, d2.

 73. What values of t will find two points that divide the line seg-
ment P1P2 into three equal pieces? Four equal pieces?
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 SECTION 6.4 Polar Coordinates 503

What you’ll learn about
• Polar Coordinate System

• Coordinate Conversion

• Equation Conversion

• Finding Distance Using Polar 
 Coordinates

... and why
Use of polar coordinates sometimes 
simplifies complicated rectangular 
equations, and they are useful in 
calculus.

Polar Coordinate System
A polar coordinate system is a plane with a point O, the pole, and a ray from O, 
the polar axis, as shown in Figure 6.35. Each point P in the plane is assigned  
polar coordinates 1r, U2 as follows: r is the directed distance from O to P, and u  
is the directed angle whose initial side is the polar axis and whose terminal side is 
the ray OP 

>
.

As in trigonometry, we measure u as positive when moving counterclockwise and neg-
ative when moving clockwise. If r 7 0, then P is on the terminal side of u. If r 6 0, 
then P is on the terminal side of u + p. We can use radian or degree measure for the 
angle u as illustrated in Example 1.

6.4 Polar Coordinates

Plotting Points in the Polar Coordinate System
Plot the points with the given polar coordinates.

(a) P12, p>32 (b) Q1-1, 3p>42 (c) R13, -45°2
SOLUTION Figure 6.36 shows the three points. Now try Exercise 7.

EXAMPLE 1 

Each polar coordinate pair determines a unique point. However, the polar coordinates 
of a point P in the plane are not unique.

Finding All Polar Coordinates for a Point
If the point P has polar coordinates 13, p>32, find all polar coordinates for P.

SOLUTION Point P is shown in Figure 6.37. Two additional pairs of polar coordi-
nates for P are

a3, 
p

3
+ 2pb = a3, 

7p
3
b  and  a-3, 

p

3
+ pb = a-3, 

4p
3
b .

We can use these two pairs of polar coordinates for P to write the rest of the 
possibilities:

 a3, 
p

3
+ 2npb = a3, 

16n + 12 p
3

b  or

 a-3, 
p

3
+ 12n + 12pb = a-3, 

16n + 42 p
3

b ,

where n is any integer. Now try Exercise 23.

EXAMPLE 2 

O

Pole

Polar axis

P(r, u)

u

Figure 6.35 The polar coordinate 
system.

O

2

(a)

b2, Pa p
3

p
3

    

O
1

(b)

b–1, Qa 3p
4

3p
4

    

O

3

(c)

–45°

R(3, –45°)

Figure 6.36 The three points in Example 1.
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Coordinate Conversion
When we use both polar coordinates and Cartesian coordinates, the pole is the origin 
and the polar axis is the positive x-axis as shown in Figure 6.38. By applying trigonom-
etry we can find equations that relate the polar coordinates 1r, u2 and the rectangular 
coordinates 1x, y2 of a point P.

Coordinate Conversion Equations

Let the point P have polar coordinates 1r, u2 and rectangular coordinates  
1x, y2. Then

 x = r cos u,  r2 = x2 + y2,

 y = r sin u,  tan u =
y
x

 .

Finding All Polar Coordinates of a Point

Let P have polar coordinates 1r, u2. Any other polar coordinate of P must be of 
the form

1r, u + 2np2 or 1-r, u + 12n + 12p2,
where n is any integer. In particular, the pole has polar coordinates 10, u2, 
where u is any angle.

The coordinates 1r, u2, 1r, u + 2p2, and 1-r, u + p2 all name the same point. In gen-
eral, the point with polar coordinates 1r, u2 also has the following polar coordinates:

These relationships allow us to convert from one coordinate system to the other.

Converting from Polar to Rectangular 
Coordinates

Use an algebraic method to find the rectangular coordinates of the points with  
given polar coordinates. Approximate exact solution values with a calculator when 
appropriate.

(a) P13, 5p>62 (b) Q12, -200°2
SOLUTION 

(a) For P13, 5p>62, r = 3 and u = 5p>6:

x = r cos u  y = r sin u

x = 3 cos 
5p
6

 and y = 3 sin 
5p
6

x = 3 a-  
23
2
b ≈ -2.60  y = 3 a1

2
b = 1.5

The rectangular coordinates for P are 1-323>2, 1.52 ≈ 1-2.60, 1.52 (Figure 6.39a).

(b) For Q12, -200°2, r = 2 and u = -200°:

x = r cos u
x = 2 cos1-200°2 ≈ -1.88

    and    
y = r sin u
y = 2 sin1-200°2 ≈ 0.68

The rectangular coordinates for Q are approximately 1-1.88, 0.682 (Figure 6.39b).
 Now try Exercise 15.

EXAMPLE 3 

O

3

b3, Pa

4p
3

p
3

p
3

Figure 6.37 The point P in  
Example 2.

y

x
Pole

Polar axis

P(x, y)

x

r
y

O(0, 0)

P(r, u)

u

Figure 6.38 Polar and rectangular 
coordinates for P.

y

x

(a)

5p
63

b3, Pa 5p
6

y

x

(b)

Q(2, –200°)

–200°

2

Figure 6.39 The points P and Q in  
Example 3.
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Equation Conversion
Simple-looking polar equations can become quite complicated when converted to rect-
angular form, and vice versa. Certainly, a curve that is expressible as a function in one 
coordinate system is not always expressible as a function in the other. Nonetheless, all 
we need to know to attempt such a conversion are the coordinate conversion equations. 
The trick is to set up the substitutions with a little algebra.

When converting rectangular coordinates to polar coordinates, we must remember that 
there are infinitely many possible polar coordinate pairs. In Example 4 we report two of 
the possibilities.

Converting from Rectangular  
to Polar Coordinates

Find two polar coordinate pairs for the points with given rectangular coordinates.

(a) P1-1, 12 (b) Q1-3, 02
SOLUTION 

(a) For P1-1, 12, x = -1 and y = 1:

 r2 = x2 + y2   tan u =
y
x

 r2 = 1-122 + 1122  tan u =
1

-1
= -1

 r = ±22   u = tan-11-12 + np = -
p

4
+ np

We use the angles -p>4 and -p>4 + p = 3p>4. Because P is on the ray opposite 
the terminal side of -p>4, the value of r corresponding to this angle is negative  
(Figure 6.40). Because P is on the terminal side of 3p>4, the value of r corresponding 
to this angle is positive. So two polar coordinate pairs of point P are

a-22, -  
p

4
b  and  a22, 

3p
4
b .

(b) For Q1-3, 02, x = -3 and y = 0. Thus, r = ±3 and u = np. We use the 
angles 0 and p. So two polar coordinate pairs for point Q are

1-3, 02  and  13, p2.
 Now try Exercise 27.

EXAMPLE 4 

Using a Calculator to Convert Coordinates

Most calculators have the capability to convert polar coordinates to rectangular 
coordinates, and vice versa. Usually they give just one possible polar coordinate 
pair for a given rectangular coordinate pair.

 1. Use a calculator to check the conversions in Examples 3 and 4.

 2. Use a calculator to convert the polar coordinate pairs 12, p>32,  
1-1, p>2), 12, p2, 1-5, 3p>22, 13, 2p2 to rectangular coordinate 
pairs. 

 3. Use a calculator to convert the rectangular coordinate pairs 
1-1, -232, 10, 22, 13, 02, 1-1, 02, 10, -42 to polar coordinate 
pairs. 

EXPLORATION 1 

y

x

P(–1, 1)
2

tan–1(–1) = –

p + tan–1(–1) = 3p
4

p
4

Figure 6.40 The point P in Example 4a.
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For example, the polar equation r = 4 cos u can be converted to rectangular form as 
follows:

 r = 4 cos u

 r2 = 4r cos u Multiply both sides by r.

 x2 + y2 = 4x  r2 = x2 + y2, r cos u = x

 x2 - 4x + 4 + y2 = 4  Subtract 4x and add 4.

 1x - 222 + y2 = 4  Factor.

Thus the graph of r = 4 cos u is all or part of the circle with center 12, 02 and radius 2.

Figure 6.41 shows the graph of r = 4 cos u for 0 … u … 2p obtained using the Polar 
graphing mode of our grapher. So, the graph of r = 4 cos u is the entire circle.

Just as with parametric equations, the domain of a polar equation in r and u is under-
stood to be all values of u for which the corresponding values of r are real numbers. 
You must also select a value for u min and u max to graph in Polar mode.

You may be surprised by the polar form for a vertical line in Example 5.

Converting from Polar Form to Rectangular Form
Convert r = 4 sec u to rectangular form and identify the graph. Support your answer 
with a polar graphing utility.

SOLUTION 

 r = 4 sec u

 
r

sec u
= 4  Divide by sec u.

 r cos u = 4  cos u =
1

sec u
 x = 4  r cos u = x

The graph is the vertical line x = 4 (Figure 6.42). Now try Exercise 35.

EXAMPLE 5 

Converting from Rectangular Form  
to Polar Form

Convert 1x - 322 + 1y - 222 = 13 to polar form.

SOLUTION 

 1x - 322 + 1y - 222 = 13

 x2 - 6x + 9 + y2 - 4y + 4 = 13

 x2 + y2 - 6x - 4y = 0

Substituting r2 for x2 + y2, r cos u for x, and r sin u for y gives the following:

 r2 - 6r cos u - 4r sin u = 0

 r1r - 6 cos u - 4 sin u2 = 0

 r = 0 or r - 6 cos u - 4 sin u = 0

The graph of r = 0 consists of a single point, the origin, which is also on the graph 
of r - 6 cos u - 4 sin u = 0. Thus, the polar form is

r = 6 cos u + 4 sin u.

The graph of r = 6 cos u + 4 sin u for 0 … u … 2p is shown in Figure 6.43 and 
appears to be a circle with center 13, 22 and radius 213, as expected.
 Now try Exercise 43.

EXAMPLE 6 

[24.7, 4.7] by [23.1, 3.1]

Figure 6.41 The graph of the polar  
equation r = 4 cos u in 0 … u … 2p.

[22, 8] by [210, 10]

Figure 6.42 The graph of the vertical  
line r = 4 sec u 1x = 42. (Example 5)

[25, 10] by [22, 8]

Figure 6.43 The graph of the circle 
r = 6 cos u + 4 sin u. (Example 6)
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Finding Distance Using Polar Coordinates
A radar tracking system sends out high-frequency radio waves and receives their 
reflection from an object. The distance and direction of the object from the radar is 
often given in polar coordinates.

Using a Radar Tracking System
Radar detects two airplanes at the same altitude. Their polar coordinates are (8 mi, 
110°) and (5 mi, 15°). (See Figure 6.44.) How far apart are the airplanes?

SOLUTION By the Law of Cosines (Section 5.6),

 d2 = 82 + 52 - 2 # 8 # 5 cos1110° - 15°2
 d = 282 + 52 - 2 # 8 # 5 cos 95°
 d ≈ 9.80

The airplanes are about 9.80 mi apart. Now try Exercise 51.

EXAMPLE 7 

y

x

(5, 15°)

(8, 110°)

Figure 6.44 The distance and direction of 
two airplanes from a radar source. (Example 7)

We can also use the Law of Cosines to derive a formula for the distance between points 
in the polar coordinate system. See Exercise 61.

10
60°

12
6

40°

9

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, determine the quadrants containing the terminal 
side of the angles.

 1. (a) 5p>6 (b) -3p>4
 2. (a) -300°  (b) 210°

In Exercises 3–6, find a positive and a negative angle coterminal with 
the given angle.

 3. -p>4  4. p>3
 5. 160°  6. -120°

In Exercises 7 and 8, write a standard form equation for the circle.

 7. Center 13, 02 and radius 2

 8. Center 10, -42 and radius 3

In Exercises 9 and 10, use the Law of Cosines to find the measure of 
the third side of the given triangle.

 9.  10. 

QUICK REVIEW 6.4 (For help, go to Sections P.2, 4.3, and 5.6.)
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 29. P = 1-2, 52 30. P = 1-1, -22
In Exercises 31–34, use your grapher to match the polar equation with 
its graph.

(a)    (b)

(c)    (d)

 31. r = 5 csc u  32. r = 4 sin u

 33. r = 4 cos 3u  34. r = 4 sin 3u

In Exercises 35–42, convert the polar equation to rectangular form 
and identify the graph. Support your answer by graphing the polar 
equation.

 35. r = 3 sec u 36. r = -2 csc u

 37. r = -3 sin u 38. r = -4 cos u

 39. r csc u = 1 40. r sec u = 3

 41. r = 2 sin u - 4 cos u 42. r = 4 cos u - 4 sin u

In Exercises 43–50, convert the rectangular equation to polar form. 
Sketch the graph of the rectangular equation (do not use a grapher), and 
then support your hand sketch by graphing the polar equation with your 
grapher.

 43. x = 2 44. x = 5

 45. 2x - 3y = 5 46. 3x + 4y = 2

 47. 1x - 322 + y2 = 9 48. x2 + 1y - 122 = 1

 49. 1x + 322 + 1y + 322 = 18

 50. 1x - 122 + 1y + 422 = 17

 51. Tracking Airplanes The polar coordinates of the loca-
tions of two planes approaching the Charles de Gaulle Inter-
national Airport in France are 13 mi, 11°2 and 13 mi, 75°2. 
Find the distance between the airplanes. 

 52. Tracking Ships The locations of two ships from Mays 
Landing Lighthouse, given in polar coordinates, are 13 mi, 
170°2 and 15 mi, 150°2. Find the distance between the ships.

 53. Using Polar Coordinates in Geometry A square with 
sides of length a and center at the origin has two sides parallel 
to the x-axis. Find polar coordinates of the vertices.

 54. Using Polar Coordinates in Geometry A regular pen-
tagon whose center is at the origin has one vertex on the posi-
tive x-axis at a distance a from the center. Find polar 
coordinates of the vertices.

SECTION 6.4 Exercises

In Exercises 1–4, the polar coordinates of a point are given. Find its 
rectangular coordinates.

 1.  2. y

x

b3, a 2p
3

y

x

b–4, a 5p
4

 3.  4. y

x

(–2, 60°)

y

x
(–1, 315°)

In Exercises 5 and 6, (a) complete the table for the polar equation and 
(b) plot the corresponding points.

 5. r = 3 sin u

u p>4 p>2 5p>6 p 4p>3 2p

r

 6. r = 2 csc u

u p>4 p>2 5p>6 p 4p>3 2p

r

In Exercises 7–14, plot the point with the given polar coordinates.

 7. 13, 4p>32 8. 12, 5p>62
 9. 1-1, 2p>52 10. 1-3, 17p>102
 11. 12, 30°2 12. 13, 210°2
 13. 1-2, 120°2 14. 1-3, 135°2
In Exercises 15–22, use an algebraic method to find the rectangular 
coordinates of the point with the given polar coordinates. Approximate 
the exact solution values with a calculator when appropriate.

 15. 11.5, 7p>32 16. 12.5, 17p>42
 17. 1-3, -29p>72 18. 1-2, -14p>52
 19. 1-2, p2  20. 11, p>22
 21. 13, -180°2  22. 1-3, 360°2
In Exercises 23–26, polar coordinates of point P are given. Find all of 
its polar coordinates.

 23. P = 14, p>62 24. P = 11, -p>42
 25. P = 11.5, -20°2 26. P = 1-2.5, 50°2
In Exercises 27–30, rectangular coordinates of a point P are given. Use 
an algebraic method, and approximate exact solution values with a cal-
culator when appropriate, to find all polar coordinates of P that satisfy

(a) 0 … u … 2p  (b) -p … u … p  (c) 0 … u … 4p.

 27. P = 11, 12 28. P = 11, 32
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 SECTION 6.4 Polar Coordinates 509

Standardized Test Questions
 55. True or False Every point in the plane has exactly two 

polar coordinates. Justify your answer.

 56. True or False If neither r1 nor r2 is 0, and if 1r1, u2 and 
1r2, u + p2 represent the same point in the plane, then 
r1 = -r2. Justify your answer.

In Exercises 57–60, solve the problem without using a calculator.

 57. Multiple Choice If r ≠ 0, which of the following polar 
coordinate pairs represents the same point as the point with 
polar coordinates 1r, u2?
(A) 1-r, u2 (B) 1-r, u + 2p2 (C) 1-r, u + 3p2
(D) 1r, u + p2 (E) 1r, u + 3p2

 58. Multiple Choice Which of the following are the rectangular 
coordinates of the point with polar coordinates 1-2, -p>32?
(A) 1-23, 12 (B) 1-1, -232 (C) 1-1, 232
(D) 11, -232 (E) 11, 232

 59. Multiple Choice Which of the following polar coordinate 
pairs represents the same point as the point with polar coordi-
nates 12, 110°2?
(A) 1-2, -70°2 (B) 1-2, 110°2 (C) 1-2, -250°2
(D) 12, -70°2 (E) 12, 290°2

 60. Multiple Choice Which of the following polar coordinate 
pairs does not represent the point with rectangular coordinates 
1-2, -22?
(A) 1222, -135°2 (B) 1222, 225°2
(C) 1-222, -315°2 (D) 1-222, 45°2
(E) 1-222, 135°2

Explorations
 61. Polar Distance Formula Let P1 and P2 have polar coordi-

nates 1r1, u12 and 1r2, u22, respectively.

(a) If u1 - u2 is a multiple of p, write a formula for the dis-
tance between P1 and P2.

(b) Use the Law of Cosines to prove that the distance between 
P1 and P2 is given by

d = 2r1 

2 + r2 

2 - 2r1r2 cos1u1 - u22.
(c) Writing to Learn Does the formula in part (b) agree 

with the formula(s) you found in part (a)? Explain.

 62. Watching Your U-Step Consider the polar curve 
r = 4 sin u. Describe the graph for each of the following.

(a) 0 … u … p>2 (b) 0 … u … 3p>4
(c) 0 … u … 3p>2 (d) 0 … u … 4p

In Exercises 63–66, use the results of Exercise 61 to find the distance 
between the points with the given polar coordinates.

 63. 12, 10°2, 15, 130°2
 64. 14, 20°2, 16, 65°2
 65. 1-3, 25°2, 1-5, 160°2
 66. 16, -35°2, 18, -65°2

Extending the Ideas
 67. Graphing Polar Equations Parametrically Find 

 parametric equations for the polar curve r = ƒ1u2.
Group Activity In Exercises 68–71, use what you learned in  
Exercise 67 to write parametric equations for the given polar equation. 
Support your answers graphically.

 68. r = 2 cos u 69. r = 5 sin u

 70. r = 2 sec u 71. r = 4 csc u
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510 CHAPTER 6 Applications of Trigonometry

What you’ll learn about
• Polar Curves and Parametric Curves

• Symmetry

• Analyzing Polar Graphs

• Rose Curves

• Limaçon Curves

• Other Polar Curves

... and why
Graphs that have circular or 
 cylindrical symmetry often have 
 simple polar equations, which is 
very useful in calculus.

Polar Curves and Parametric Curves
Polar curves are actually just special cases of parametric curves. Keep in mind that 
polar curves are graphed in the xy-plane, despite the fact that they are given in terms  
of r and u. That is why the polar graph of r = 4 cos u is a circle (see Figure 6.41 in 
Section 6.4) rather than a cosine curve.

In Function mode, points are determined by a vertical coordinate that changes as the 
horizontal coordinate moves left to right. In Polar mode, points are determined by a 
directed distance from the pole that changes as the angle sweeps around the pole. The 
connection between rectangular and polar coordinates is provided by the coordinate 
conversion equations from Section 6.4, which demonstrate that the graph of r = ƒ1u2 
is the graph of the parametric equations

 x = ƒ1u2 cos u

 y = ƒ1u2 sin u

for all values of u in some parameter interval that suffices to produce a complete graph. 
(In many of our examples, 0 … u 6 2p will do.)

Because modern graphers produce these graphs so easily in Polar mode, we are going 
to assume that you do not have to sketch them by hand. Instead we will concentrate on 
analyzing the properties of the curves. In later courses you can discover further proper-
ties of the curves using the tools of calculus.

Symmetry
You learned algebraic tests for symmetry for equations in rectangular form in Section 1.2. 
Algebraic tests also exist for equations in polar form.

Figure 6.45 on the next page shows a rectangular coordinate system superimposed on a 
polar coordinate system, with the origin and the pole coinciding and the positive x-axis 
and the polar axis coinciding.

The three types of symmetry figures to be considered have

 1. The x-axis (polar axis) as a line of symmetry (Figure 6.45a).

 2. The y-axis (the line u = p>2) as a line of symmetry (Figure 6.45b).

 3. The origin (the pole) as a point of symmetry (Figure 6.45c).

All three algebraic tests for symmetry in polar forms require replacing the pair 1r, u2, 
which satisfies the polar equation, with another coordinate pair and determining 
whether it also satisfies the polar equation.

6.5 Graphs of Polar Equations

Symmetry Tests for Polar Graphs

The graph of a polar equation has the indicated symmetry if either replacement 
produces an equivalent polar equation.

To Test for Symmetry Replace By

1. about the x-axis, 1r, u2 1r, -u2 or 1-r, p - u2.
2. about the y-axis, 1r, u2 1-r, -u2 or 1r, p - u2.
3. about the origin, 1r, u2 1-r, u2 or 1r, u + p2.
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 SECTION 6.5 Graphs of Polar Equations 511

Analyzing Polar Graphs
We analyze graphs of polar equations in much the same way that we analyze graphs of 
rectangular equations. For example, the function r of Example 1 is a continuous func-
tion of u. Also r = 0 when u = 0 and when u is any integer multiple of p>3. The 
domain of this function is the set of all real numbers.

TRACE can be used to help determine the range of this polar function (Figure 6.47), 
but you should realize that it is the interval 3-4, 44 .

[26, 6] by [24, 4]

Figure 6.46 The graph of r = 4 sin 3u is 
symmetric about the y-axis. (Example 1)

y

x

(a)

(r, u)

–u

u

(r, –u) = (–r, p –u)

  

y

x

(b)

(r, u)(r, p – u) = (–r, –u)

p – u

u

  

y

x

(c)

(r, u)

u

(–r, u) = (r, u + p)

u + p

Figure 6.45 Symmetry with respect to (a) the x-axis (polar axis), (b) the y-axis (the line u = p>2), and (c) the origin (the pole).

Testing for Symmetry
Use the appropriate symmetry test to prove that the graph of r = 4 sin 3u is symmet-
ric about the y-axis.

SOLUTION Figure 6.46 suggests that the graph of r = 4 sin 3u is symmetric about 
the y-axis and not symmetric about the x-axis or origin.

 r = 4 sin 3u

 -r = 4 sin 31-u2 Replace 1r, u2 by 1-r, -u2.
 -r = 4 sin1-3u2
 -r = -4 sin 3u  sin u is an odd function of u.

 r = 4 sin 3u  (Same as original)

Because the equations -r = 4 sin 31-u2 and r = 4 sin 3u are equivalent, there is 
symmetry about the y-axis. Now try Exercise 13.

EXAMPLE 1 

1

R=4 u =.52359878

(a)

[26, 6] by [25, 3]

  

1

  R=−4 u =1.5707963

(b)

[26, 6] by [25, 3]

Figure 6.47 The values of r in r = 4 sin 3u vary from (a) 4 to (b) -4.
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512 CHAPTER 6 Applications of Trigonometry

The graphs of most of the interesting polar functions (as you will see later in this section) 
fit within a bounded 1x, y2 viewing window that contains the pole 10, 02. The distance 
from the pole for such a function (that is, �  r �) is bounded, and knowing the maximum ∣  r ∣  
value is helpful for finding a good graphing window. The maximum �  r �  value can often 
be discerned easily by analyzing the trigonometric functions involved, but a little graphical 
analysis can be helpful, too. We illustrate this in the following two examples.

[20.5, 6.5] by [20.5, 4.5]

Figure 6.48 The graph of 
y = �  2 + 2 cos x �  on the interval 30,  2p4  
supports the conclusion that the maximum  
�  r �  value for the polar function 
r = 2 + 2 cos u is 4. (Example 2)

[26, 6] by [24, 4]

Figure 6.49 The graph of r = 2 + 2 cos u. 
The viewing window of 3-4,  44  by 3-4,  44  
is stretched to a “square” window with an x:y 
ratio of 3:2. (Example 2)

(a)

[20.5, 6.5] by [20.1, 3.1]

  

(3, 0)

(b)

[24.5, 4.5] by [23, 3]

(23, 3p/2)

(23, p/2)

(3, p) (3, 2p)

Figure 6.50 The points on the polar graph (b) of r = 3 cos 2u that are farthest from the pole 
10, 02 correspond to the local maximum points on the rectangular graph (a) of y = �  3 cos 2x � . 
Note that the red points correspond to negative values of r on the polar graph. (Example 3)

Finding a Maximum ∣ r ∣  Value

Find the maximum �  r �  value of r = 2 + 2 cos u and use it to find an appropriate 
viewing window for the graph.

SOLUTION We know that -1 …  cos u … 1, from which it follows that 
0 … 2 + 2 cos u … 4. Thus 0 … r … 4 and the maximum �  r �  value is 4. A standard 
rectangular graph of y = 0 2 + 2 cos x 0  on the interval 30,  2p4  shows a maximum 
value of 4, supporting our algebraic analysis (Figure 6.48).

A viewing window of 3-4,  44  by 3-4,  44  would enclose the entire curve, but an x:y 
aspect ratio with the same proportions as the grapher’s viewport (typically about 3:2) 
produces a more accurate image, so we use the window 3-6,  64  by 3-4,  44   
(Figure 6.49). Now try Exercise 21.

EXAMPLE 2 

Finding Another Maximum ∣ r ∣  Value
Find the maximum �  r �  value of r = 3 cos 2u and use it to find an appropriate viewing 
window for the graph. Identify the points on the graph that are farthest from the pole.

SOLUTION We know that -1 …  cos 2u … 1, from which it follows that 
-3 … 3 cos 2u … 3. Thus -3 … r … 3 and the maximum �  r �  value is 3. A rectan-
gular graph of y = 0 3 cos  2x 0  shows a maximum value of 3, supporting our algebraic 
analysis (Figure 6.50a).

A viewing window of 3-3,  34  by 3-3,  34  would enclose the entire curve, but we use 
the larger, “square” window of 3-4.5,  4.54  by 3-3,  34  (Figure 6.50b). The four 
points that are farthest from the pole on the graph in Figure 6.49b correspond to the 
local maximum points on the graph in Figure 6.50a. Note that the points 10, 32 and 
1p, 32 on the rectangular graph correspond to 13, 02 and 13, p2 on the polar curve 
because r is positive at those points, but the points 1p>2, 32 and 13p>2, 32 correspond 
to points 1-3,  p>22 and 1-3,  3p>22 because r is negative at those points. Both 13, 02 
and 13, 2p2 represent the same point in the polar plane. Now try Exercise 23.

EXAMPLE 3 

Rose Curves
The curve in Example 1 is a 3-petal rose curve, and the curve in Example 3 is a 4-petal rose 
curve. The graphs of the polar equations r = a cos nu and r = a sin nu, where n is an 
integer greater than 1, are rose curves. If n is odd there are n petals, and if n is even there 
are 2n petals. (In fact, the graph always produces n petals as u goes from 0 to p, then n  
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 SECTION 6.5 Graphs of Polar Equations 513

Limaçon Curves
The limaçon curves are graphs of polar equations of the form

r = a ± b sin u and r = a ± b cos u,

where a 7 0 and b 7 0. Limaçon, pronounced “LEE-ma-sohn,” is Old French for 
“snail.” There are four different shapes of limaçons, as illustrated in Figure 6.52.

more petals as u goes from p to 2p. When n is odd, however, the second group of n petals 
retraces the first set exactly.)

A ROSE IS A ROSE...
Budding botanists like to point out that the rose 
curve doesn’t look much like a rose. However, 
consider the beautiful stained-glass window 
shown here, which is a feature of many great 
buildings and is called a “rose window.”

Analyzing a Rose Curve
Analyze the graph of the rose curve r = 3 sin 4u.

SOLUTION Figure 6.51 shows the graph of the 8-petal rose curve r = 3 sin 4u. The 
maximum �r�  value is 3. The graph appears to be symmetric about the x-axis, the 
y-axis, and the origin. For example, to prove that the graph is symmetric about the 
x-axis we replace 1r, u2 by 1-r, p - u2:

 r = 3 sin 4u

 -r = 3 sin 41p - u2
 -r = 3 sin14p - 4u2
 -r = 33sin 4p cos 4u - cos 4p sin 4u4  Sine difference identity

 -r = 33102 cos 4u - 112 sin 4u4  sin 4p = 0, cos 4p = 1

 -r = -3 sin 4u

 r = 3 sin 4u

Because the new polar equation is the same as the original equation, the graph is 
symmetric about the x-axis. In a similar way, you can prove that the graph is sym-
metric about the y-axis and the origin. (See Exercise 58.)

Domain: 1-∞, ∞2
Range: 3-3, 34
Continuous
Symmetric about the x-axis, the y-axis, and the origin
Bounded
Maximum �r�  value: 3
No asymptotes Now try Exercise 29.

EXAMPLE 4 

Here are the general characteristics of rose curves. You will investigate these curves in 
more detail in Exercises 67 and 68.

Graphs of Rose Curves

The graphs of r = a cos nu and r = a sin nu, where n 7 1 is an integer, have 
the following characteristics:

Domain: 1-∞, ∞2
Range: 3- 0 a 0 , 0 a 0 4
Continuous
Symmetry: n even, symmetric about x-axis, y-axis, and the origin
 n odd, r = a cos nu symmetric about x-axis
 n odd, r = a sin nu symmetric about y-axis
Bounded
Maximum �r�  value: 0 a 0
No asymptotes
Number of petals: n, if n is odd
 2n, if n is even

[24.7, 4.7] by [23.1, 3.1]

Figure 6.51 The graph of 8-petal rose 
curve r = 3 sin 4u. (Example 4)
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514 CHAPTER 6 Applications of Trigonometry

=4.712389R=6

1

[27, 7] by [28, 2]

u

Figure 6.53 The graph of the cardioid  
of Example 5.

Limaçon with an inner loop:

          (a)

a
b

< 1

    

Cardioid:

          (b)

a
b

= 1

    

Dimpled limaçon: 1 <

          (c)

a
b

< 2

    

Convex limaçon:

          (d)

a
b

≥ 2

Figure 6.52 The four types of limaçons.

Analyzing a Limaçon Curve
Analyze the graph of r = 3 - 3 sin u.

SOLUTION We can see from Figure 6.53 that the curve is a cardioid with maximum 
�r � value 6. The graph is symmetric only about the y-axis.

Domain: 1-∞, ∞2
Range: 30, 64
Continuous
Symmetric about the y-axis
Bounded
Maximum �r � value: 6
No asymptotes Now try Exercise 33.

EXAMPLE 5

Analyzing a Limaçon Curve
Analyze the graph of r = 2 + 3 cos u.

SOLUTION We can see from Figure 6.54 that the curve is a limaçon with an inner 
loop and maximum �r � value 5. The graph is symmetric only about the x-axis.

Domain: 1-∞, ∞2
Range: 3-1, 54
Continuous
Symmetric about the x-axis
Bounded
Maximum �r � value: 5
No asymptotes Now try Exercise 39.

EXAMPLE 6

Graphs of Limaçon Curves

The graphs of r = a ± b sin u and r = a ± b cos u, where a 7 0 and b 7 0, 
have the following characteristics:

Domain: 1-∞, ∞2
Range: 3a - b, a + b4
Continuous
Symmetry: r = a ± b sin u, symmetric about y-axis
 r = a ± b cos u, symmetric about x-axis
Bounded
Maximum �r�  value: a + b
No asymptotes

=0R=5

1

u

[23, 8] by [24, 4]

Figure 6.54 The graph of a limaçon with  
an inner loop. (Example 6)
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 SECTION 6.5 Graphs of Polar Equations 515

Other Polar Curves
All the polar curves we have graphed so far have been bounded. The spiral in Example 7 
is unbounded.

Limaçon Curves

Try several values for a and b to convince yourself of the characteristics of 
 limaçon curves listed in the box at the bottom of the previous page.

EXPLORATION 1 

Analyzing the Spiral of Archimedes
Analyze the graph of r = u.

SOLUTION

We can see from Figure 6.55 that the curve has no maximum �r�  value.

Domain: 1-∞, ∞2
Range: 1-∞, ∞2
Continuous
No symmetry
Unbounded
No maximum 0 r 0  value
No asymptotes Now try Exercise 41.

EXAMPLE 7 

The lemniscate curves are graphs of polar equations of the form

r2 = a2 sin 2u and r2 = a2 cos 2u.

Analyzing a Lemniscate Curve
Analyze the graph of r2 = 4 cos 2u for 30, 2p4 .
SOLUTION It turns out that you can get the complete graph using r = 22cos 2u. 
You also need to choose a very small u step to produce the graph in Figure 6.56.

Domain: 30, p>44 ∪ 33p>4, 5p>44 ∪ 37p>4, 2p4
Range: 3-2, 24
Symmetric about the x-axis, the y-axis, and the origin
Continuous (on its domain)
Bounded
Maximum 0 r 0  value: 2
No asymptotes Now try Exercise 43.

EXAMPLE 8 

[24.7, 4.7] by [23.1, 3.1]

Figure 6.56 The graph of the lemniscate 
r2 = 4 cos 2u. (Example 8)

[230, 30] by [220, 20]

(a)

[230, 30] by [220, 20]

(b)

Figure 6.55 The graph of r = u for  
(a) u Ú 0 1set umin = 0, umax = 45, 
ustep = 0.12 and (b) u … 0 1set umin = -45, 
umax = 0, ustep = 0.12. (Example 7)
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516 CHAPTER 6 Applications of Trigonometry

Revisiting Example 8

 1. Prove that u values in the intervals 1p>4, 3p>42 and 15p>4, 7p>42 are not in 
the domain of the polar equation r2 = 4 cos 2u.

 2. Explain why r = -22cos 2u produces the same graph as r = 22cos 2u in 
the interval 30, 2p4 .

 3. Use the symmetry tests to prove that the graph of r2 = 4 cos 2u is symmetric 
about the x-axis.

 4. Use the symmetry tests to prove that the graph of r2 = 4 cos 2u is symmetric 
about the y-axis.

 5. Use the symmetry tests to prove that the graph of r2 = 4 cos 2u is symmetric 
about the origin.

EXPLORATION 2 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1– 4, find the absolute maximum value and absolute mini-
mum value in 30, 2p4  and where they occur.

 1. y = 3 cos 2x 2. y = 2 + 3 cos x

 3. y = 22cos 2x 4. y = 3 - 3 sin x

In Exercises 5 and 6, determine whether the graph of the function is 
symmetric about the (a) x-axis, (b) y-axis, or (c) origin.

 5. y = sin 2x  6. y = cos 4x

In Exercises 7–10, use trig identities to simplify the expression.

 7. sin1p - u2
 8. cos1p - u2
 9. cos 21p + u2
 10. sin 21p + u2

QUICK REVIEW 6.5 (For help, go to Sections 1.2 and 5.3.)

 7. The graphs of which equations are shown?

r1 = 3 cos 6u r2 = 3 sin 8u r3 = 3 0 cos 3u 0
 8. Use trigonometric identities to explain which of these curves is 

the graph of r = 6 cos 2u sin 2u.

In Exercises 9–12, match the equation with its graph without using 
a grapher.

[24.7, 4.7] by [24.1, 2.1]

(a)    

[24.7, 4.7] by [23.1, 3.1]

(b)

[23.7, 5.7] by [23.1, 3.1]

(c)    

[24.7, 4.7] by [24.1, 2.1]

(d)

SECTION 6.5 Exercises

In Exercises 1 and 2, (a) complete the table for the polar equation, and 
(b) plot the corresponding points.

 1. r = 3 cos 2u

u 0 p>4 p>2 3p>4 p 5p>4 3p>2 7p>4
r

 2. r = 2 sin 3u

u 0 p>6 p>3 p>2 2p>3 5p>6 p

r

In Exercises 3–6, draw a graph of the rose curve. State the smallest  
u-interval 10 … u … k2 that will produce a complete graph.

 3. r = 3 sin 3u 4. r = -3 cos 2u

 5. r = 3 cos 2u 6. r = 3 sin 5u

Exercises 7 and 8 refer to the curves in the given figure.

[24.7, 4.7] by [23.1, 3.1]

(a)    

[24.7, 4.7] by [23.1, 3.1]

(b)
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 SECTION 6.5 Graphs of Polar Equations 517

 9. Does the graph of r = 2 + 2 sin u or r = 2 - 2 cos u appear 
in the figure? Explain.

 10. Does the graph of r = 2 + 3 cos u or r = 2 - 3 cos u appear 
in the figure? Explain.

 11. Is the graph in (a) the graph of r = 2 - 2 sin u or 
r = 2 + 2 cos u? Explain.

 12. Is the graph in (d) the graph of r = 2 + 1.5 cos u or 
r = 2 - 1.5 sin u? Explain.

In Exercises 13–20, use the polar symmetry tests to determine whether 
the graph is symmetric about the x-axis, the y-axis, or the origin. 
 Support your algebraic solution with a grapher.

 13. r = 3 + 3 sin u 14. r = 1 + 2 cos u

 15. r = 4 - 3 cos u 16. r = 1 - 3 sin u

 17. r = 5 cos 2u 18. r = 7 sin 3u

 19. r =
3

1 + sin u
 20. r =

2
1 - cos u

In Exercises 21–24, identify the points for 0 … u … 2p where maxi-
mum 0 r 0  values occur on the graph of the polar equation.

 21. r = 2 + 3 cos u 22. r = -3 + 2 sin u

 23. r = 3 cos 3u 24. r = 4 sin 2u

In Exercises 25–44, analyze the graph of the polar curve.

 25. r = 3 26. r = -2

 27. u = p>3 28. u = -p>4
 29. r = 2 sin 3u 30. r = -3 cos 4u

 31. r = 5 + 4 sin u 32. r = 6 - 5 cos u

 33. r = 4 + 4 cos u 34. r = 5 - 5 sin u

 35. r = 5 + 2 cos u 36. r = 3 - sin u

 37. r = 2 + 5 cos u 38. r = 3 - 4 sin u

 39. r = 1 - cos u 40. r = 2 + sin u

 41. r = 2u 42. r = u>4
 43. r2 = sin 2u, 0 … u … 2p

 44. r2 = 9 cos 2u, 0 … u … 2p

In Exercises 45–48, find the length of each petal of the polar curve.

 45. r = 3 + 6 cos 2u 46. r = 2 - 7 sin 2u

 47. r = 5 - 9 cos 3u 48. r = 1 + 8 sin 3u

In Exercises 49–52, select the two equations whose graphs are the same 
curve. Then, even though the graphs of the equations are identical, 
describe how the two paths are different as u increases from 0 to 2p.

 49. r1 = 1 + 3 sin u, r2 = -1 + 3 sin u, r3 = 1 - 3 sin u

 50. r1 = 1 + 2 cos u, r2 = -1 - 2 cos u, r3 = -1 + 2 cos u

 51. r1 = 1 + 2 cos u, r2 = 1 - 2 cos u, r3 = -1 - 2 cos u

 52. r1 = 2 + 2 sin u, r2 = -2 + 2 sin u, r3 = 2 - 2 sin u

In Exercises 53–56, (a) describe the graph of the polar equation,  
(b) state any symmetry that the graph possesses, and (c) state its 
 maximum �r�  value if it exists.

 53. r = 2 sin2 2u + sin 2u 54. r = 3 cos 2u - sin 3u

 55. r = 1 - 3 cos 3u 56. r = 1 + 3 sin 3u

 57. Group Activity Analyze the graphs of the polar equations 
r = a cos nu and r = a sin nu when n is an even integer.

 58. Revisiting Example 4 Use the polar symmetry tests to 
prove that the graph of the curve r = 3 sin 4u is symmetric 
about the y-axis and the origin.

 59. Writing to Learn Revisiting Example 5 Confirm the 
range stated for the polar function r = 3 - 3 sin u of Example 5 
by graphing y = 3 - 3 sin x for 0 … x … 2p. Explain why 
this works.

 60. Writing to Learn Revisiting Example 6 Confirm  
the range stated for the polar function r = 2 + 3 cos u of 
Example 6 by graphing y = 2 + 3 cos x for 0 … x … 2p. 
Explain why this works.

Standardized Test Questions
 61. True or False A polar curve is always bounded. Justify 

your answer.

 62. True or False The graph of r = 2 + cos u is symmetric 
about the x-axis. Justify your answer.

In Exercises 63–66, solve the problem without using a grapher.

 63. Multiple Choice Which of the following gives the number 
of petals of the rose curve r = 3 cos 2u?

(A) 1  (B) 2  (C) 3  (D) 4  (E) 6

 64. Multiple Choice Which of the following describes the 
 symmetry of the rose graph of r = 3 cos 2u?

(A) Symmetric only about the x-axis

(B) Symmetric only about the y-axis

(C) Symmetric only about the origin

(D) Symmetric about the x-axis, the y-axis, and the origin

(E) Not symmetric about the x-axis, the y-axis, or the origin

 65. Multiple Choice Which of the following is a maximum �r�  
value for r = 2 - 3 cos u?

(A) 6 (B) 5 (C) 3

(D) 2 (E) 1

 66. Multiple Choice Which of the following is the number of 
petals of the rose curve r = 5 sin 3u?

(A) 1 (B) 3 (C) 6

(D) 10 (E) 15

Explorations
 67. Analyzing Rose Curves Consider the polar equation 

r = a cos nu for n, an odd integer.

(a) Prove that the graph is symmetric about the x-axis.

(b) Prove that the graph is not symmetric about the y-axis.

(c) Prove that the graph is not symmetric about the origin.

(d) Prove that the maximum �r�  value is 0 a 0 .
(e) Analyze the graph of this curve.
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518 CHAPTER 6 Applications of Trigonometry

 68. Analyzing Rose Curves Consider the polar equation 
r = a sin nu for n, an odd integer.

(a) Prove that the graph is symmetric about the y-axis.

(b) Prove that the graph is not symmetric about the x-axis.

(c) Prove that the graph is not symmetric about the origin.

(d) Prove that the maximum �r�  value is 0 a 0 .
(e) Analyze the graph of this curve.

 69. Extended Rose Curves The graphs of r1 = 3 sin17u>22 
and r2 = 3 cos17u>22 may be called rose curves.

(a) Determine the smallest u-interval that will produce a 
 complete graph of r1; of r2.

(b) How many petals does each graph have?

Extending the Ideas
In Exercises 70–72, graph each polar equation. Describe how they are 
related to each other.

 70. (a) r1 = 3 sin 3u (b) r2 = 3 sin 3au +
p

12
b

(c) r3 = 3 sin 3au +
p

4
b

 71. (a) r1 = 2 sec u (b) r2 = 2 secau -
p

4
b

(c) r3 = 2 secau -
p

3
b

 72. (a) r1 = 2 - 2 cos u (b) r2 = r1au +
p

4
b

(c) r3 = r1au +
p

3
b

 73. Writing to Learn Describe how the graphs of r = ƒ1u2, 
r = ƒ1u + a2, and r = ƒ1u - a2 are related. Explain why 
you think this generalization is true.
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 SECTION 6.6 De Moivre’s Theorem and nth Roots 519

Example 1 shows how the complex plane representation of complex number addition is 
virtually the same as the Cartesian plane representation of vector addition. Another 
similarity between complex numbers and two-dimensional vectors is the definition of 
absolute value.

What you’ll learn about
• The Complex Plane

• Polar Form of Complex Numbers

• Multiplication and Division of  
Complex Numbers

• Powers of Complex Numbers

• Roots of Complex Numbers

... and why
This material extends your  
equation-solving technique to 
include equations of the form  
zn = c, n an integer and c a  
complex number.

The Complex Plane
You might be curious as to why we addressed complex numbers in Sections P.6 and 
2.5, but generally have ignored them elsewhere. (Indeed, after this section we will 
pretty much ignore them again.) This is because the key to understanding precalculus is 
the graphing of functions in the Cartesian plane, which consists of two perpendicular 
real number lines.

Complex numbers can be represented geometrically. Just as every real number is asso-
ciated with a point of the real number line, every complex number can be associated 
with a point of the complex plane. This idea evolved through the work of Caspar  
Wessel (1745–1818), Jean-Robert Argand (1768–1822), and Carl Friedrich Gauss 
(1777–1855). Real numbers are placed along the horizontal axis (the real axis) and 
imaginary numbers along the vertical axis (the imaginary axis), thus associating the 
complex number a + bi with the point 1a, b2. As shown in Figure 6.57a, any point 
1a, b2 in the complex plane can be named or labeled a + bi. Figure 6.57b shows the 
location of the specific complex number 2 + 3i.

6.6 De Moivre’s Theorem and nth Roots

Plotting Complex Numbers
Plot u = 1 + 3i, v = 2 - i, and u + v in the complex plane. These three points 
and the origin determine a quadrilateral. Is it a parallelogram?

SOLUTION First notice that u + v = 11 + 3i2 + 12 - i2 = 3 + 2i. The numbers 
u, v, and u + v are plotted in Figure 6.58a. The quadrilateral is a parallelogram 
because the arithmetic is exactly the same as in vector addition (Figure 6.58b).
 Now try Exercise 1.

EXAMPLE 1 

Is There a Calculus of Complex 
Functions?
There is a calculus of functions of complex vari-
ables. If you study it someday, it should be after 
acquiring a pretty firm algebraic and geometric 
understanding of the calculus of functions of real 
variables.

a

a + bi
bi

(a)

Imaginary axis

Real
axis

2

(b)

2 + 3i
3i

Imaginary axis

Real
axis

Figure 6.57 Plotting points in the 
complex plane.

Imaginary axis

Real
axisO

u = 1 + 3i

u + v = 3 + 2i

v = 2 – i

(a)  

y

x
O

u =  1, 3 

u + v =  3, 2

v =   2, –1  

(b)

Figure 6.58 (a) Two numbers and their sum are plotted in the complex plane. (b) The 
arithmetic is the same as in vector addition. (Example 1)
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520 CHAPTER 6 Applications of Trigonometry

An angle u for the polar form of z can always be chosen so that 0 … u … 2p, although 
any angle that is coterminal with u could be used. Consequently, the angle u and argument 
of a complex number z are not unique. It follows that the polar form of a complex num-
ber z is not unique.

z  = a + bi

r
b = r sin u

a = r cos u

Imaginary axis

Real
axis

u

Figure 6.59 If r is the distance of z = a + bi from the origin and u is the directional angle 
shown, then z = r1cos u + i sin u2, which is the polar form of z.

DEFINITION Absolute Value (Modulus) of a Complex Number

The absolute value or modulus of a complex number z = a + bi is

0 z 0 = 0 a + bi 0 = 2a2 + b2 .

In the complex plane, 0 a + bi 0  is the distance of a + bi from the origin.

DEFINITION Polar Form of a Complex Number

The polar form of the complex number z = a + bi is

z = r1cos u + i sin u2,
where a = r cos u, b = r sin u, r = 2a2 + b2, and tan u = b>a. The number 
r is the absolute value or modulus of z, and u is an argument of z.

Polar Form of Complex Numbers
Figure 6.59 shows the graph of z = a + bi in the complex plane. The distance r from 
the origin is the modulus of z. If we define a direction angle u for z just as we did with 
vectors, we see that a = r cos u and b = r sin u. Substituting these expressions for a 
and b gives us the polar form (or trigonometric form) of the complex number z.Polar Form 

What’s in a cis?

Polar (or trigonometric) form appears frequently 
enough in scientific texts to have an abbreviated 
form. The expression “cos u + i sin u” is often 
shortened to “cis u” (pronounced “sis u” or 
“kiss u”). Thus z = r cis u. Leonhard Euler 
proved that reiu = r cis u, giving an exponential 
version of polar form. (See Exercise 73.)

Finding Polar Forms
Use an algebraic method to find the polar form with 0 … u 6 2p for the complex 
number. Approximate exact values with a calculator when appropriate.

(a) 1 - 23 i (b) -3 - 4i

SOLUTION 

(a) For 1 - 23i,

r = 0 1 - 23 i 0 = 31122 + 1-2322 = 2.

EXAMPLE 2 
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1 – 3i

Imaginary axis

Real
axis

u

u9

Figure 6.60 The complex number for 
Example 2a.

–3 – 4i

Imaginary axis

Real
axis

u

u9

Figure 6.61 The complex number for 
Example 2b.

The proof of the product formula relies on two sum identities:

 z1
# z2 = r11cos u1 + i sin u12 # r21cos u2 + i sin u22

 = r1r231cos u1 cos u2 - sin u1 sin u22 + i 1sin u1 cos u2 + cos u1 sin u224
 = r1r23cos1u1 + u22 + i sin1u1 + u224

You will be asked to prove the quotient formula in Exercise 63.

Because the reference angle u′ for u is -p>3 (Figure 6.60),

u = 2p + a-p
3
b =

5p
3

 .

Thus,

1 - 23 i = 2 cos 
5p
3

+ 2i sin 
5p
3

 .

(b) For -3 - 4i,

0-3 - 4i 0 = 21-322 + 1-422 = 5.

The reference angle u′ for u (Figure 6.61) satisfies the equation

 tan u′ =
4
3

 , so

 u′ = tan-1 
4
3

= 0.927. c

Because the terminal side of u is in the third quadrant, we conclude that

u = p + u′ ≈ 4.07.

Therefore,

-3 - 4i ≈ 51cos 4.07 + i sin 4.072.
 Now try Exercise 5.

Multiplication and Division of Complex Numbers
The polar form for complex numbers is particularly convenient for multiplying and 
dividing complex numbers. The product involves the product of the moduli and the 
sum of the arguments. (Moduli is the plural of modulus.) The quotient involves the 
quotient of the moduli and the difference of the arguments.

Product and Quotient of Complex Numbers

Let z1 = r11cos u1 + i sin u12 and z2 = r21cos u2 + i sin u22. Then

1. z1
# z2 = r1r23cos1u1 + u22 + i sin1u1 + u224 .

2. 
z1

z2
=

r1

r2
 3cos1u1 - u22 + i sin1u1 - u224 , r2 ≠ 0.

 SECTION 6.6 De Moivre’s Theorem and nth Roots 521
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522 CHAPTER 6 Applications of Trigonometry

Powers of Complex Numbers
We can use the product formula to raise a complex number to a power. For example, let 
z = r1cos u + i sin u2. Then

 z2 = z # z

 = r 1cos u + i sin u2 # r 1cos u + i sin u2
 = r23cos1u + u2 + i sin1u + u24
 = r21cos 2u + i sin 2u2

Figure 6.62 gives a geometric interpretation of squaring a complex number: Its argu-
ment is doubled, and its distance from the origin is multiplied by a factor of r, increased 
if r 7 1 or decreased if r 6 1.

We can find z3 by multiplying z by z2:

 z3 = z # z2

 = r 1cos u + i sin u2 # r21cos 2u + i sin 2u2
 = r33cos1u + 2u) + i sin1u + 2u24
 = r31cos 3u + i sin 3u2

Imaginary axis

Real
axis

z2

r2 r
z

2u

u

Figure 6.62 A geometric  
interpretation of z2.

Multiplying Complex Numbers
Use an algebraic method to express the product of z1 and z2 in standard form. 
Approximate exact values with a calculator when appropriate.

z1 = 2522acos 
-p
4

+ i sin 
-p
4
b ,  z2 = 14acos 

p

3
+ i sin 

p

3
b

SOLUTION 

 z1
# z2 = 2522acos 

-p
4

+ i sin 
-p
4
b # 14acos 

p

3
+ i sin 

p

3
b

 = 25 # 1422 c cosa-p
4

+
p

3
b + i sina-p

4
+
p

3
b d

 = 35022 acos 
p

12
+ i sin 

p

12
b

 ≈ 478.11 + 128.11i Now try Exercise 19.

EXAMPLE 3 

Dividing Complex Numbers
Use an algebraic method to express the product z1>z2 in standard form. Approximate 
exact values with a calculator when appropriate.

z1 = 2221cos 135° + i sin 135°2,  z2 = 61cos 300° + i sin 300°2
SOLUTION 

 
z1

z2
=

222 1cos 135° + i sin 135°2
61cos 300° + i sin 300°2

 =
22
3

 3cos1135° - 300°2 + i sin1135° - 300°24

 =
22
3

 3cos1-165°2 + i sin1-165°24
 ≈ -0.46 - 0.12i Now try Exercise 23.

EXAMPLE 4 
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Imaginary axis

Real
axis

2

1

1 + i   3

3

Figure 6.63 The complex number in 
Example 5.

i

Normal Sci Eng
Float 0123456789
Radian Degree
Func Par Pol Seq
Connected Dot
Sequential Simul
Real a+bi re^
Full Horiz G–T

(a)

u

 

(1+i (3))3
–8

(b)

Figure 6.64 (a) Setting a graphing calculator in Complex number mode.  

(b) Computing 11 + i 2323 with a graphing calculator.

Similarly,

 z4 = r41cos 4u + i sin 4u2
 z5 = r51cos 5u + i sin 5u2

 f

This pattern can be generalized to the following theorem, named after the mathemati-
cian Abraham De Moivre (1667–1754), who also made major contributions to the field 
of probability.

Using De Moivre’s Theorem
Find 11 + i2323 using De Moivre’s Theorem.

SOLUTION 

Solve Algebraically See Figure 6.63. The argument of z = 1 + i23 is u = p>3, 
and its modulus is 0 1 + i23 0 = 21 + 3 = 2. Therefore,

 z = 2acos 
p

3
+ i sin 

p

3
b

 z3 = 23 c cosa3 # p
3
b + i sina3 # p

3
b d

 = 81cos p + i sin p2
 = 81-1 + 0i2 = -8

Support Numerically Figure 6.64a sets the graphing calculator we use in Complex 
number mode. Figure 6.64b supports the result obtained algebraically.
 Now try Exercise 31.

EXAMPLE 5 

De Moivre’s Theorem

Let z = r 1cos u + i sin u2 and let n be a positive integer. Then

zn = 3r 1cos u + i sin u24n = rn1cos nu + i sin nu2.

Using De Moivre’s Theorem
Find 31-22>22 + i122>2248 using De Moivre’s Theorem.

SOLUTION The argument of z = 1-22>22 + i122>22 is u = 3p>4, and its 
modulus is 2 -22

2
+ i 
22
2

2 = A1
2

+
1
2

= 1.

EXAMPLE 6 

(continued)

 SECTION 6.6 De Moivre’s Theorem and nth Roots 523
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524 CHAPTER 6 Applications of Trigonometry

We use De Moivre’s Theorem to develop a general formula for finding the nth roots of 
a nonzero complex number. Suppose that v = s1cos a + i sin a2 is an nth root of 
z = r1cos u + i sin u2. Then

 vn = z

 3s1cos a + i sin a24n = r1cos u + i sin u2
 sn1cos na + i sin na2 = r1cos u + i sin u2 (1)

Next, we take the absolute value of both sides:

 0 sn1cos na + i sin na2 0 = 0 r1cos u + i sin u2 0
 2s2n 1cos2 na + sin2 na2 = 2r21cos2 u + sin2 u2

 2s2n = 2r2

 sn = r  s 7 0, r 7 0

 s = 2n r

Substituting sn = r into Equation (1), we obtain

cos na + i sin na = cos u + i sin u.

Therefore, na can be any angle coterminal with u. Consequently, for any integer k, v is 
an nth root of z if s = 2n r and

na = u + 2pk

a =
u + 2pk

n
.

The expression for v takes on n different values for k = 0, 1, c, n - 1, and the 
 values start to repeat for k = n, n + 1, c.

We summarize this result.

Therefore,

 z = cos 
3p
4

+ i sin 
3p
4

 z8 = cosa8 # 3p
4
b + i sina8 # 3p

4
b

 = cos 6p + i sin 6p

 = 1 + i # 0 = 1 Now try Exercise 35.

Roots of Complex Numbers
The complex number 1 + i23 in Example 5 is a solution of z3 = -8, and the  

complex number 1-22>22 + i122>22 in Example 6 is a solution of z8 = 1. The 

complex number 1 + i23 is a third root of -8, and 1-22>22 + i122>22 is an 
eighth root of 1.

DEFINITION nth Root of a Complex Number

A complex number v = a + bi is an nth root of z if

vn = z.

If z = 1, then v is an nth root of unity.
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Finding Fourth Roots
Find the fourth roots of z = 51cos1p>32 + i sin1p>322.
SOLUTION The fourth roots of z are the complex numbers24 5 acos 

p>3 + 2pk

4
+ i sin 

p>3 + 2pk

4
b

for k = 0, 1, 2, 3.

Taking into account that 1p>3 + 2pk2>4 = p>12 + pk>2, the list becomes

 z1 = 24 5 c cosap
12

+
0
2
b + i sinap

12
+

0
2
b d

 = 24 5 c cos 
p

12
+ i sin 

p

12
d

 z2 = 24 5 c cosap
12

+
p

2
b + i sinap

12
+
p

2
b d

 = 24 5 c cos 
7p
12

+ i sin 
7p
12
d

 z3 = 24 5 c cosap
12

+
2p
2
b + i sinap

12
+

2p
2
b d

 = 24 5 c cos 
13p
12

+ i sin 
13p
12
d

 z4 = 24 5 c cosap
12

+
3p
2
b + i sinap

12
+

3p
2
b d

 = 24 5 c cos 
19p
12

+ i sin 
19p
12
d

 Now try Exercise 45.

EXAMPLE 7 

Finding Cube Roots
Find the cube roots of -1 and plot them.

SOLUTION First we write the complex number z = -1 in polar form:

z = -1 + 0i = cos p + i sin p

The third roots of z = -1 = cos p + i sin p are the complex numbers

cos 
p + 2pk

3
+ i sin 

p + 2pk
3

, 

EXAMPLE 8 

(continued)

 SECTION 6.6 De Moivre’s Theorem and nth Roots 525

Finding nth Roots of a Complex Number

If z = r1cos u + i sin u2, then the n distinct complex numbers2n r acos 
u + 2pk

n
+ i sin 

u + 2pk
n

b ,

where k = 0, 1, 2, c, n - 1, are the nth roots of the complex number z.
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Imaginary axis

2

2i

Real
axis

z4

z6

z2

z8

z1z5

z3

z7

Figure 6.66 The eight eighth roots of 
unity are evenly spaced on a unit circle. 
(Example 9)

z1

z2

z3

[22.4, 2.4] by [21.6, 1.6]

Figure 6.65 The three cube roots z1, z2, 
and z3 of -1 displayed on the unit circle 
(dashed). (Example 8)

for k = 0, 1, 2. The three complex numbers are

z1 = cos 
p

3
+ i sin 

p

3
 =

1
2

+
23
2

 i

z2 = cos 
p + 2p

3
+ i sin 

p + 2p
3

= -1 + 0i

z3 = cos 
p + 4p

3
+ i sin 

p + 4p
3

=
1
2

-
23
2

 i

Figure 6.65 shows the graph of the three cube roots z1, z2, and z3. They are evenly 
spaced (2p>3 rad apart) around the unit circle.
 Now try Exercise 57.

Finding Roots of Unity
Find the eight eighth roots of unity.

SOLUTION First we write the complex number z = 1 in polar form:

z = 1 + 0i = cos 0 + i sin 0

The eighth roots of z = 1 + 0i = cos 0 + i sin 0 are the complex numbers

cos 
0 + 2pk

8
+ i sin 

0 + 2pk
8

,

for k = 0, 1, 2, c, 7.

z1 = cos 0 + i sin 0 = 1 + 0i

z2 = cos 
p

4
+ i sin 

p

4
 =

22
2

+
22
2

 i

z3 = cos 
p

2
+ i sin 

p

2
 = 0 + i

z4 = cos 
3p
4

+ i sin 
3p
4

= -  
22
2

+
22
2

 i

z5 = cos p + i sin p = -1 + 0i

z6 = cos 
5p
4

+ i sin 
5p
4

= -  
22
2

-
22
2

 i

z7 = cos 
3p
2

+ i sin 
3p
2

= 0 - i

z8 = cos 
7p
4

+ i sin 
7p
4

=
22
2

-
22
2

 i

Figure 6.66 shows the eight points. They are spaced 2p>8 = p>4 rad apart.
 Now try Exercise 59.

EXAMPLE 9 
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, write the roots of the equation in a + bi form.

 1. x2 + 13 = 4x

 2. 51x2 + 12 = 6x

In Exercises 3 and 4, write the complex number in standard form 
a + bi.

 3. 11 + i25
 4. 11 - i24
In Exercises 5–8, find an angle u in 0 … u 6 2p that satisfies both 
equations.

 5. sin u =
1
2
  and  cos u = -  

23
2

 6. sin u = -  
22
2

  and  cos u =
22
2

 7. sin u = -  
23
2

  and  cos u = -  
1
2

 8. sin u = -  
22
2

  and  cos u = -  
22
2

In Exercises 9 and 10, find all real solutions.

 9. x3 - 1 = 0

 10. x4 - 1 = 0

QUICK REVIEW 6.6 (For help, go to Sections P.5, P.6, and 4.3.)

In Exercises 19–22, find the product of z1 and z2. Leave the answer in 
polar form.

 19. z1 = 71cos 25° + i sin 25°2
  z2 = 21cos 130° + i sin 130°2
 20. z1 = 221cos 118° + i sin 118°2
  z2 = 0.53cos1-19°2 + i sin1-19°24

 21. z1 = 5acos 
p

4
+ i sin 

p

4
b  z2 = 3acos 

5p
3

+ i sin 
5p
3
b

 22. z1 = 23 acos 
3p
4

+ i sin 
3p
4
b  z2 =

1
3

 acos 
p

6
+ i sin 

p

6
b

In Exercises 23–26, find the polar form of the quotient.

 23. 
21cos 30° + i sin 30°2
31cos 60° + i sin 60°2 24. 

51cos 220° + i sin 220°2
21cos 115° + i sin 115°2

 25. 
61cos 5p + i sin 5p2
31cos 2p + i sin 2p2 26. 

cos1p>22 + i sin1p>22
cos1p>42 + i sin1p>42

In Exercises 27–30, find the product z1
# z2 and quotient z1>z2 in two 

ways, (a) using the polar form for z1 and z2 and (b) using the standard 
form for z1 and z2.

 27. z1 = 3 - 2i  and  z2 = 1 + i

 28. z1 = 1 - i  and  z2 = 23 + i

 29. z1 = 3 + i  and  z2 = 5 - 3i

 30. z1 = 2 - 3i  and  z2 = 1 - 23i

In Exercises 31–38, use De Moivre’s Theorem to find the indicated power 
of the complex number. Write your answer in standard form a + bi.

 31. acos 
p

4
+ i sin 

p

4
b

3

 32. c 3acos 
3p
2

+ i sin 
3p
2
b d

5

SECTION 6.6 Exercises

In Exercises 1 and 2, plot all four points in the same complex plan.

 1. 1 + 2i, 3 - i, -2 + 2i, i

 2. 2 - 3i, 1 + i, 3, -2 - i

In Exercises 3–12, find the polar form of the complex number where 
the argument satisfies 0 … u 6 2p.

 3. 3i 4. -2i

 5. 2 + 2i 6. 23 + i

 7. -2 + 2i23 8. 3 - 3i

 9. 3 + 2i 10. 4 - 7i

 11. 

30°
3

z

 12. 

45°
4

z

In Exercises 13–18, write the complex number in standard form a + bi.

 13. 31cos 30° - i sin 30°2
 14. 81cos 210° + i sin 210°2
 15. 53cos1-60°2 + i sin1-60°24

 16. 5acos 
p

4
+ i sin 

p

4
b

 17. 22 acos 
7p
6

+ i sin 
7p
6
b

 18. 27 acos 
p

12
+ i sin 

p

12
b

 SECTION 6.6 De Moivre’s Theorem and nth Roots 527
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528 CHAPTER 6 Applications of Trigonometry

 33. c 2acos 
3p
4

+ i sin 
3p
4
b d

3

 34. c 6acos 
5p
6

+ i sin 
5p
6
b d

4

 35. 11 + i25
 36. 13 + 4i220

 37. 11 - 23i23  38. a1
2

+ i 
23
2
b

3

Use an algebraic method in Exercises 39–44 to find the cube roots 
of the complex number. Approximate exact solution values when 
appropriate.

 39. 21cos 2p + i sin 2p2 40. 2acos 
p

4
+ i sin 

p

4
b

 41. 3acos 
4p
3

+ i sin 
4p
3
b  42. 27acos 

11p
6

+ i sin 
11p

6
b

 43. 3 - 4i 44. -2 + 2i

In Exercises 45–50, find the fifth roots of the complex number.

 45. cos p + i sin p 46. 32acos 
p

2
+ i sin 

p

2
b

 47. 2acos 
p

6
+ i sin 

p

6
b  48. 2acos 

p

4
+ i sin 

p

4
b

 49. 2i 50. 1 + 23 i

In Exercises 51–56, find the nth roots of the complex number for the 
specified value of n.

 51. 1 + i,  n = 4 52. 1 - i,  n = 6

 53. 2 + 2i,  n = 3 54. -2 + 2i,  n = 4

 55. -2i,  n = 6 56. 32,  n = 5

In Exercises 57–60, express the roots of unity in standard form a + bi. 
Graph each root in the complex plane.

 57. Cube roots of unity 58. Fourth roots of unity

 59. Sixth roots of unity 60. Square roots of unity

 61. Determine z and the three cube roots of z if one cube root of z 
is 1 + 23i.

 62. Determine z and the four fourth roots of z if one fourth root of z 
is -2 - 2i.

 63. Quotient Formula Let z1 = r11cos u1 + i sin u12 and 
z2 = r21cos u2 + i sin u22, r2 ≠ 0. Prove that 
z1>z2 = r1>r2 3cos1u1 - u22 + i sin1u1 - u224 .

 64. Group Activity nth Roots Prove that the nth roots of the 
complex number r1cos u + i sin u2 are spaced 2p>n radians 

apart on a circle with radius 2n r.

Standardized Test Questions
 65. True or False The polar form of a complex  

number is unique. Justify your answer.

 66. True or False The complex number i is a cube root of - i.  
Justify your answer.

In Exercises 67–70, do not use technology to solve the problem.

 67. Multiple Choice Which of the following is a polar form of 
the complex number -1 + 23i?

(A) 2acos 
p

3
+ i sin 

p

3
b  (B) 2acos 

2p
3

+ i sin 
2p
3
b

(C) 2acos 
4p
3

+ i sin 
4p
3
b  (D) 2acos 

5p
3

+ i sin 
5p
3
b

(E) 2acos 
7p
3

+ i sin 
7p
3
b

 68. Multiple Choice Which of the following is the number of 
distinct complex number solutions of z5 = 1 + i ?

(A) 0 (B) 1 (C) 3 (D) 4 (D) 5

 69. Multiple Choice Which of the following is the standard 
form for the product of 22 acos 

p

4
+ i sin 

p

4
b  and 22 acos 

7p
4

+ i sin 
7p
4
b?

(A) 2 (B) -2 (C) -2i (D) -1 + i (E) 1 - i

 70. Multiple Choice Which of the following is not a fourth  
root of 1?

(A) i2 (B) - i2 (C) 2-1  (D) -2-1 (E) 2i

Explorations
 71. Complex Conjugates The complex conjugate of 

z = a + bi is z = a - bi. Let z = r 1cos u + i sin u2.
(a) Prove that z = r 3cos1-u2 + i sin1-u24 .
(b) Use the polar form to find z # z.

(c) Use the polar form to find z>  z, if z ≠ 0.

(d) Prove that -z = r 3cos1u + p2 + i sin1u + p24 .
 72. Modulus of Complex Numbers Let 

z = r1cos u + i sin u2.
(a) Prove that 0 z 0 = 0 r 0 .
(b) Use the polar form for the complex numbers z1 and z2 to 

prove that 0 z1
# z2 0 = 0 z1 0 # 0 z2 0 .

Extending the Ideas
 73. Using Polar Form on a Calculator The complex  

number r1cos u + i sin u2 can be entered in polar form on 
some calculators as reiu.

(a) Support the result of Example 3 by entering the complex 
numbers z1 and z2 in polar form on a calculator and 
computing the product using the calculator.

(b) Support the result of Example 4 by entering the complex 
numbers z1 and z2 in polar form on a calculator and com-
puting the quotient using the calculator.

(c) Support the result of Example 5 by entering the complex 
number in polar form on a calculator and computing the 
power using the calculator.
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 CHAPTER 6 Key Ideas 529

 74. Visualizing Roots of Unity Set your grapher in Paramet-
ric mode with 0 … T … 8, Tstep = 1, Xmin = -2.4, 
Xmax = 2.4, Ymin = -1.6, and Ymax = 1.6.

(a) Let x = cos112p>82t2 and y = sin112p>82t2. Use 
TRACE to visualize the eight eighth roots of unity. We say 
that 2p>8 generates the eighth roots of unity. (Try both 
Dot mode and Connected mode.)

(b) Replace 2p>8 in part (a) by the arguments of other eighth 
roots of unity. Do any others generate the eighth roots of 
unity?

(c) Repeat parts (a) and (b) for the fifth, sixth, and seventh 
roots of unity, using appropriate functions for x and y.

(d) What would you conjecture about an nth root of unity that 
generates all the nth roots of unity in the sense of part (a)?

 75. Parametric Graphing Write parametric equations that 
represent 122 + i2n for n = t. Draw and label an accurate 
spiral representing 122 + i2n for n = 0, 1, 2, 3, 4.

 76. Parametric Graphing Write parametric equations that 
represent 1-1 + i2n for n = t. Draw and label an accurate  
spiral representing 1-1 + i2n for n = 0, 1, 2, 3, 4.

 77. Explain why the triangles formed 
by 0, 1, and z1, and by 0, z2, and 
z1z2 shown in the figure are simi-
lar triangles.

 78. Compass and Straightedge 
Construction Using only a 
compass and straightedge, con-
struct the location of z1z2 given 
the location of 0, 1, z1, and z2.

In Exercises 79–84, find all solutions of the equation (real and complex).

 79. x3 - 1 = 0 80. x4 - 1 = 0

 81. x3 + 1 = 0 82. x4 + 1 = 0

 83. x5 + 1 = 0 84. x5 - 1 = 0

10

z1

z2

z1z2

Procedures

Resolving a Vector into Its Components 476
Finding All Polar Coordinates of a Point 504
Symmetry Tests for Polar Graphs 510
Finding nth Roots of a Complex Number 525

CHAPTER 6 Key Ideas

Properties, Theorems, and Formulas

Head Minus Tail (HMT) Rule for Vectors 473
Properties of the Dot Product 483
Angle Between Two Vectors 484
Projection of the Vector u onto the Vector v 486
Coordinate Conversion Equations 504
Product and Quotient of Complex Numbers 521
De Moivre’s Theorem 523

Gallery of Functions

Rose Curves: r = a cos nu and r = a sin nu

[26, 6] by [24, 4]
r = 4 sin 3u

[24.7, 4.7] by [23.1, 3.1]
r = 3 sin 4u

Limaçon Curves: r = a ± b sin u and r = a ± b cos u with a 7 0 and b 7 0

Limaçon with an inner loop: a
b

< 1 Cardioid: a
b

= 1
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530 Chapter 6 Applications of Trigonometry

Dimpled limaçon: 1 < a
b

< 2 Convex limaçon: a
b

≥ 2

Spiral of Archimedes: Lemniscate Curves: r2 = a2 sin 2u and r2 = a2 cos 2u

[230, 30] by [220, 20]
r = u, 0 ≤  u ≤ 45

[24.7, 4.7] by [23.1, 3.1]
r2 = 4 cos 2u

 17. 1-2, 5p2
 18. 11, -p2
In Exercises 19 and 20, polar coordinates of point P are given. Find all 
of its polar coordinates.

 19. P = 13, p>42 20. P = 1-2, 5p>62
Use an algebraic method in Exercises 21–24 to find the polar coordi-
nates of the given rectangular coordinates of point P that satisfy the 
stated conditions. Approximate exact values with a calculator when 
appropriate.

(a) 0 … u … 2p (b) -p … u … p (c) 0 … u … 4p

 21. P = 12, -32 22. P = 1-10, 02
 23. P = 15, 02 24. P = 10, -22
In Exercises 25–30, eliminate the parameter t and identify the graph. 
Support your answer with a grapher.

 25. x = 3 - 5t, y = 4 + 3t

 26. x = sin2 t, y =
sin3t
cos t

 27. x =
t

1 + t3, y =
t2

1 + t3

 28. x = sec t, y = tan t

 29. x = e2t - 1, y = et

 30. x = t3, y = ln t, t 7 0

In Exercises 31 and 32, find a parametrization for the curve.

 31. The line through the points 1-1, -22 and 13, 42
 32. The line segment with endpoints 1-2, 32 and 15, 12

Chapter 6 review exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–6, let u = 82, -19, v = 84, 29, and w = 81, -39 be 
vectors. Find the indicated expression.

 1. u - v  2. 2u - 3w

 3. 0 u + v 0  4. 0w - 2u 0
 5. u # v  6. u # w

In Exercises 7–10, let A = 12, -12, B = 13, 12, C = 1-4, 22, and 
D = 11, -52. Find the component form and magnitude of the vector.

 7. 3AB 
>

 8. AB 
>

+ CD 
>

 9. AC  

>
+ BD 

>
 10. CD 

>
- AB 

>

In Exercises 11 and 12, find (a) a unit vector in the direction of AB 
>
 and 

(b) a vector of magnitude 3 in the opposite direction.

 11. A = 14, -32, B = 18, -62
 12. A = 13, 12, B = 15, 12
In Exercises 13 and 14, find (a) the direction angles of u and v and  
(b) the angle between u and v.

 13. u = 84, 39, v = 82, 59 14. u = 8-2, 49, v = 86, 49
Use an algebraic method in Exercises 15–18 to convert the polar 
 coordinates to rectangular coordinates. Approximate exact values  
with a calculator when appropriate.

 15. 1-2.5, 25°2
 16. 11, -30°2
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Exercises 33 and 34 refer to the complex number z1 shown in the figure.

4i

Imaginary axis

Real
axis–3

z1

 33. If z1 = a + bi, find a, b, and 0 z1 0 .
 34. Find the polar form of z1.

In Exercises 35–38, write the complex number in standard form.

 35. 61cos 30° + i sin 30°2 36. 31cos 150° + i sin 150°2

 37. 2.5acos 
4p
3

+ i sin 
4p
3
b  38. 41cos 2.5 + i sin 2.52

Use an algebraic method in Exercises 39–42 to find the polar form with 
0 … u 6 2p for the given complex number. Then write three other 
possible polar forms for the number. Approximate exact values with a 
calculator when appropriate.

 39. 3 - 3i 40. -1 + i22

 41. 
1 + 2i
1 - 3i

 42. -2 - 2i

In Exercises 43 and 44, write the complex numbers z1
# z2 and z1>z2 in 

polar form.

 43. z1 = 31cos 30° + i sin 30°2 and z2 = 41cos 60° + i sin 60°2
 44. z1 = 51cos 20° +  i sin 20°2 and z2 = -21cos 45° +  i sin 45°2
In Exercises 45–48, use De Moivre’s Theorem to find the indicated 
power of the complex number. Write your answer in (a) polar form and 
(b) standard form.

 45. c 3acos 
p

4
+ i sin 

p

4
b d

5

 46. c 2acos 
p

12
+ i sin 

p

12
b d

8

 47. c 5acos 
5p
3

+ i sin 
5p
3
b d

3

 48. c 7acos 
p

24
+ i sin 

p

24
b d

6

In Exercises 49–52, find and graph the nth roots of the complex number 
for the specified value of n.

 49. 3 + 3i,  n = 4 50. 8,  n = 3

 51. 1,  n = 5 52. -1,  n = 6

 53. r = 3 sin 4 u  54. r = 2 + sin u

 55. r = 2 + 2 sin u  56. r = 3 0 sin 3u 0
 57. r = 2 - 2 sin u  58. r = 1 - 2 cos u

 59. r = 3 cos 5u  60. r = 3 - 2 tan u

In Exercises 61–64, convert the polar equation to rectangular form 
and identify the graph.

 61. r = -2 62. r = -2 sin u

 63. r = -3 cos u - 2 sin u 64. r2 sin 2u = 4

In Exercises 65–68, convert the rectangular equation to polar form. 
Graph the polar equation.

 65. y = -4 66. y2 = 2x

 67. 1x - 322 + 1y + 122 = 10

 68. 2x - 3y = 4

In Exercises 69–72, analyze the graph of the polar curve.

 69. r = 2 - 5 sin u 70. r = 4 - 4 cos u

 71. r = 2 sin 3u 72. r2 = 2 sin 2u, 0 … u … 2p

 73. Graphing Lines Using Polar Equations

(a) Explain why r = a sec u is a polar form for the line x = a.

(b) Explain why r = b csc u is a polar form for the line y = b.

(c) Let y = mx + b. Prove that

r =
b

sin u - m cos u

 is a polar form for the line. What is the domain of r?

(d) Illustrate the result in part (c) by graphing the line 
y = 2x + 3 using the polar form from part (c).

 74. Flight Engineering An airplane is flying on a bearing  
of 80° at 540 mph. A wind is blowing with the bearing 100° 
at 55 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual speed and direction of the airplane.

(a) (b)

(c) (d)

 CHAPTER 6 Review Exercises 531

In Exercises 53–60, decide whether the graph of the given polar equa-
tion appears among the four graphs shown.
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532 CHAPTER 6 Applications of Trigonometry

 75. Flight Engineering An airplane is flying on a bearing  
of 285° at 480 mph. A wind is blowing with the bearing 265°  
at 30 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual speed and direction of the airplane.

 76. Combining Forces A force of 120 lb acts on an object  
at an angle of 20°. A second force of 300 lb acts on the object 
at an angle of -5°. Find the direction and magnitude of the 
resultant force.

 77. Braking Force A 3000-lb car is parked on a street that  
makes an angle of 16° with the horizontal (see figure).

(a) Find the force required to keep the car from rolling down 
the hill.

(b) Find the component of the force perpendicular to the street.

16°

 78. Work Find the work done by a force F of 36 lb acting in the 
direction given by the vector 83, 59 in moving an object 10 ft 
from 10, 02 to 110, 02.

 79. Height of an Arrow Stewart shoots an arrow straight up 
from the top of a building with initial velocity of 245 ft>sec. 
The arrow leaves from a point 200 ft above level ground.

(a) Write an equation that models the height of the arrow as a 
function of time t.

(b) Use parametric equations to simulate the flight of the arrow.

(c) Use parametric equations to graph height against time.

(d) How high is the arrow after 4 sec?

(e) What is the maximum height of the arrow? When does it 
reach its maximum height?

(f) How long will it be before the arrow hits the ground?

 80. Ferris Wheel Problem Lucinda is on a Ferris wheel of 
radius 35 ft that turns at the rate of one revolution every 20 sec. 
The lowest point of the Ferris wheel (6 o’clock) is 15 ft above 
ground level at the point 10, 152 of a rectangular coordinate 
system. Find parametric equations that model Lucinda’s posi-
tion as a function of time t in seconds if she starts 1t = 02 at 
the point 135, 502.

 81. Ferris Wheel Problem The lowest point of a Ferris wheel 
(6 o’clock) of radius 40 ft is 10 ft above the ground, and the 
center is on the y-axis. Find parametric equations that model 
Henry’s position as a function of time t in seconds if his start-
ing position 1t = 02 is the point 10, 102 and the wheel turns at 
the rate of one revolution every 15 sec.

 82. Ferris Wheel Problem Sarah rides the Ferris wheel 
described in Exercise 81. Find parametric equations that model 
Sarah’s position as a function of time t in seconds if her start-
ing position 1t = 02 is the point 10, 902 and the wheel turns at 
the rate of one revolution every 18 sec.

 83. Epicycloid The graph of the parametric equations

x = 4 cos t - cos 4t,  y = 4 sin t - sin 4t

is an epicycloid. The graph is the path of a point P on a circle 
of radius 1 rolling along the outside of a circle of radius 3, as 
suggested in the figure.

(a) Graph simultaneously this epicycloid and the circle of 
radius 3.

(b) Suppose the large circle has a radius of 4. Experiment! 
How do you think the equations in part (a) should be 
changed to obtain defining equations? What do you think 
the epicycloid would look like in this case? Check your 
guesses.

3

–3

y

x
–3 3

t

C P
1

 84. Throwing a Baseball Sharon releases a baseball 4 ft 
above the ground with an initial velocity of 66 ft>sec at an 
angle of 5° with the horizontal. How many seconds after the 
ball is thrown will it hit the ground? How far from Sharon will 
the ball be when it hits the ground?

 85. Throwing a Baseball Diego releases a baseball 3.5 ft 
above the ground with an initial velocity of 66 ft>sec at an 
angle of 12° with the horizontal. How many seconds after the 
ball is thrown will it hit the ground? How far from Diego will 
the ball be when it hits the ground?

 86. Field Goal Kicking Spencer practices kicking field goals 
40 yd from a goal post with a crossbar 10 ft high. If he kicks 
the ball with an initial velocity of 70 ft>sec at a 45° angle with 
the horizontal (see figure), will Spencer make the field goal if 
the kick sails “true”?

70
 ft

/se
c

45°

40 yd

 87. Hang Time An NFL place-kicker kicks a football down-
field with an initial velocity of 85 ft>sec. The ball leaves his 
foot at the 15-yd line at an angle of 56° with the horizontal. 
Determine the following:

(a) The ball’s maximum height above the field.

(b) The “hang time” (the total time the football is in the air).

 88. Baseball Hitting Brian hits a baseball straight toward a 
15-ft-high fence that is 400 ft from home plate. The ball is hit 
when it is 2.5 ft above the ground and leaves the bat at an angle 
of 30° with the horizontal. Find the initial velocity needed for 
the ball to clear the fence.
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 89. Throwing a Ball at a Ferris Wheel A 60-ft-radius 
 Ferris wheel turns counterclockwise one revolution every  
12 sec. Sam stands at a point 80 ft to the left of the bottom  
(6 o’clock) of the wheel. At the instant Kathy is at 3 o’clock, 
Sam throws a ball with an initial velocity of 100 ft>sec and an 
angle with the horizontal of 70°. He releases the ball from the 
same height as the bottom of the Ferris wheel. Find the mini-
mum distance between the ball and Kathy.

 90. Yard Darts Gretta and Lois are launching yard darts 20 ft 
from the front edge of a circular target of radius 18 in. If Gretta 
releases the dart 5 ft above the ground with an initial velocity 
of 20 ft>sec and at a 50° angle with the horizontal, will the dart 
hit the target?

Understand the problem. Use a motion detector to collect  
distance, velocity, and time data for a pendulum. Determine 
how a resulting plot of velocity versus displacement (called a 
phase-space plot) can be modeled using parametric equations.

Collecting the Data

Construct a simple pendulum by fastening about 1 m of string to 
the end of a ball. Collect time, distance, and velocity readings 
for between 2 sec and 4 sec (enough time to capture at least one 
complete swing of the pendulum). Start the pendulum swinging 
in front of the detector, then activate the system. The table below 
provides a sample set of data collected as a pendulum swung 
back and forth in front of a CBR, where t is total elapsed time in 
seconds, d = distance from the CBR in meters, and v = veloc-
ity in meters per second.

CHAPTER 6 Modeling Project

Parametrizing Ellipses

As you discovered in the Chapter 4 Modeling Project, it is possi-
ble to model the displacement of a swinging pendulum using a 
sinusoidal equation of the form

x = a sin1b1t - c22 + d .

Identify the variables Let x represent the pendulum’s distance 
from a fixed point and t represents total elapsed time. In fact,  
a pendulum’s velocity behaves sinusoidally as well: 

y = ab cos1b1t - c22,
where y represents the pendulum’s velocity and a, b, and c are 
constants common to both the displacement and velocity 
equations.

t d v t d v t d v

0 1.021 0.325 0.7 0.621 -0.869 1.4 0.687 0.966
0.1 1.038 0.013 0.8 0.544 -0.654 1.5 0.785 1.013
0.2 1.023 -0.309 0.9 0.493 -0.359 1.6 0.880 0.826
0.3 0.977 -0.598 1.0 0.473 -0.044 1.7 0.954 0.678
0.4 0.903 -0.819 1.1 0.484 0.263 1.8 1.008 0.378
0.5 0.815 -0.996 1.2 0.526 0.573 1.9 1.030 0.049
0.6 0.715 -0.979 1.3 0.596 0.822 2.0 1.020 -0.260

Explorations

 1. Create a scatter plot of distance versus time for the data you 
collected or the data above.

 2. Carry out the mathematics. With your grapher in Function 
mode, find values for a, b, c, and d so that the equation

y = a sin1b1x - c22 + d,

  where y is distance and x is time, fits the distance-versus-time 
data plot.

 3. Assess the solution. Make a scatter plot of velocity versus 
time. Using the same a, b, and c values you found in (2), 
verify that the equation

y = ab cos1b1x - c22,
  where y is velocity and x is time, fits the velocity-versus-time 

data plot.

 4. Analyze the solution. What do you think a plot of velocity 
versus distance (with velocity on the vertical axis and  
distance on the horizontal axis) would look like? Make a 
rough sketch of your prediction, then create a scatter plot of 
velocity versus distance. How well did your predicted graph 
match the actual data plot?

 5. With your grapher in Parametric mode, graph the curve given 
by the parametric equations

 x = a sin1b1t - c22 + d 

 y = ab cos1b1t - c22
 0 … t … 2,

  where x represents distance, y represents velocity, and t is the 
time parameter. How well does this curve match the scatter 
plot of velocity versus time?

 CHAPTER 6 Modeling Project 533
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A buckminsterfullerene, or buckyball, is a C60 molecule that is shaped like a 

soccer ball, as depicted here. Buckyballs are bound together to form larger 

molecules that have applications in nanotechnology. To study the computer 

images of such molecules, researchers often rotate, translate, reflect, or dilate 

the images. Designers of computer graphics use matrix operations to trans-

form the images in these ways. See a related problem on page 554.

 7.1 Solving Systems  
of Two Equations

 7.2 Matrix Algebra

 7.3 Multivariate Linear 
Systems and Row 
Operations

 7.4 Systems of Inequalities 
in Two Variables

Systems and Matrices

CHAPTER 7
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 SECTION 7.1 Solving Systems of Two Equations 535

Chapter 7 Overview
Many applications in science, engineering, and business use systems of equations or 
inequalities as models. These systems involve two or more variables. We investigate 
several techniques used to solve such systems. Matrices play a central role in some of 
these techniques and are essential for solving large systems. We explore numerous 
applications, including linear programming, a method used to solve problems in man-
agement science.

What you’ll learn about
• Method of Substitution

• Solving Systems Graphically

• Method of Elimination

• Applications

... and why
Many applications in business  
and science can be modeled using 
systems of equations.

Method of Substitution
Here is an example of a system of two linear equations in the two variables x and y:

 2x - y = 10

 3x + 2y = 1

A solution of a system of two equations in two variables is an ordered pair of real 
numbers that is a solution of each equation. For example, the ordered pair 13, -42 is a 
solution to the given system. We can verify this by showing that 13, -42 is a solution 
of each equation. Substituting x = 3 and y = -4 into each equation, we obtain

 2x - y = 2132 - 1-42 = 6 + 4 = 10

3x + 2y = 3132 + 21-42 = 9 - 8 = 1

Thus, both equations are satisfied.

We solve a system of equations when we find all of its solutions.

7.1 Solving Systems of Two Equations

Using the Substitution Method
Solve the system:

 2x - y = 10

 3x + 2y = 1

SOLUTION 

Solve Algebraically Solving the first equation for y yields y = 2x - 10. Then 
substitute the expression for y into the second equation.

 3x + 2y = 1  Second equation

 3x + 212x - 102 = 1  Replace y by 2x - 10.

 3x + 4x - 20 = 1  Distributive property

 7x = 21  Collect like terms.

 x = 3  Divide by 7.

 y = -4 Use y = 2x - 10.

EXAMPLE 1 

(continued)
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536 CHAPTER 7 Systems and Matrices

Intersection
X=3  Y=–4

[25, 10] by [220, 20]

Figure 7.1 The two lines y = 2x - 10  
and y = -1.5x + 0.5 intersect in the point 
13, -42. (Example 1)

y

x

Figure 7.2 The rectangular garden in 
Example 2.

Support Graphically The graph of each equation is a line. Figure 7.1 shows that 
the two lines intersect in the single point 13, -42.
Interpret The solution of the system is x = 3, y = -4, or the ordered pair 13, -42.
 Now try Exercise 5.

Sometimes we can apply the method of substitution even when the equations in the 
system are not linear, as illustrated in Examples 2 and 3.

Solving a Nonlinear System by Substitution
Find the dimensions of a rectangular garden that has a perimeter of 100 ft and an area 
of 300 ft2.

SOLUTION

Model Let x and y be the lengths of adjacent sides of the garden (Figure 7.2). Then

 2x + 2y = 100 Perimeter is 100.

 xy = 300 Area is 300.

Solve Algebraically Solving the first equation for y yields y = 50 - x. Then sub-
stitute the expression for y into the second equation.

 xy = 300  Second equation

 x150 - x2 = 300  Replace y by 50 - x.

 50x - x2 = 300  Distributive property

 x2 - 50x + 300 = 0

 x =
50 ± 21-5022 - 413002

2
 Quadratic formula

 x ≈ 6.97  or  x ≈ 43.03 Evaluate.

 y ≈ 43.03 or   y ≈ 6.97  Use y = 50 - x.

Support Graphically Figure 7.3 shows that the graphs of y = 50 - x and 
y = 300>x have two points of intersection.

Interpret The two ordered pairs produce the same rectangle, the dimensions of 
which are approximately 7 ft by 43 ft. Now try Exercise 11.

EXAMPLE 2 

Intersection
X=6.9722436   Y=43.027756

[0, 60] by [220, 60]

Figure 7.3 We can assume x Ú 0 and y Ú 0 because x and y are lengths. (Example 2)
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Solving Systems Graphically
Sometimes the method of substitution leads to an equation in one variable that we are 
not able to solve using the algebraic techniques that we have studied in this text. In 
these cases we can solve the system graphically by finding intersections, as illustrated 
in Exploration 1.

Rounding at the End
In Example 2, we did not round the values found 
for x until we computed the values for y. For the 
sake of accuracy, do not round intermediate 
results. Carry all decimals on your calculator 
computations and then round the final answer(s).

 

 

Solving a System Graphically

Consider the system

 y = ln x

 y = x2 - 4x + 2

 1. Draw the graphs of the two equations in the 30, 104  by 3-5, 54  viewing 
 window.

 2. Use the graph in part 1 to find the coordinates of the points of intersection 
shown in the viewing window.

 3. Use your knowledge about the graphs of logarithmic and quadratic functions to 
explain why this system has exactly two solutions.

EXPLORATION 1 

[25, 5] by [215, 15]

Figure 7.4 The graphs of y = x3 - 6x  
and y = 3x have three points of intersection. 
(Example 3)

Solving a Nonlinear System Algebraically
Solve the system:

 y = x3 - 6x

 y = 3x

Support your solution graphically.

SOLUTION Substituting the value of y from the first equation into the second 
 equation yields

 x3 - 6x = 3x

 x3 - 9x = 0

 x1x - 321x + 32 = 0

 x = 0, x = 3, x = -3 Zero factor property

 y = 0, y = 9, y = -9 Use y = 3x.

The system of equations has three solutions: 1-3, -92, 10, 02, and 13, 92.
Support Graphically The graphs in Figure 7.4 of the two equations suggest that 
the three solutions found algebraically are correct. Now try Exercise 13.

EXAMPLE 3 

Substituting the expression for y of the first equation of Exploration 1 into the second 
equation yields

ln x = x2 - 4x + 2.

We have no standard algebraic technique to solve this equation.

Method of Elimination
Consider a system of two linear equations in x and y. To solve by elimination, we 
rewrite the two equations as two equivalent equations so that one of the variables has 
opposite coefficients. Then we add the two equations to eliminate that variable.
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538 CHAPTER 7 Systems and Matrices

An easy way to determine the number of solutions of a system of two linear equations in 
two variables is to look at the graphs of the two lines. There are three possibilities. The 
two lines can intersect in a single point, producing exactly one solution as in Examples 1 
and 4. The two lines can be parallel, producing no solution as in Example 5. The two 
lines can coincide, producing infinitely many solutions as illustrated in Example 6.

Using the Elimination Method
Solve the system:

 2x + 3y = 5

 -3x + 5y = 21

SOLUTION

Solve Algebraically Multiply the first equation by 3 and the second equation by  
2 to obtain the equivalent system:

 6x + 9y = 15

 -6x + 10y = 42

Then add the two equations to eliminate the variable x.

19y = 57

Next divide by 19 to solve for y.

y = 3

Finally, substitute y = 3 into either of the two original equations to determine that 
x = -2.

The solution of the original system is 1-2, 32. Now try Exercise 19.

EXAMPLE 4 

Finding No Solution
Solve the system:

 x - 3y = -2

 2x - 6y = 4

SOLUTION We use the elimination method.

Solve Algebraically 

 -2x + 6y = 4 Multiply first equation by -2.

 2x - 6y = 4 Second equation

 0 = 8 Add.

The last equation is true for no values of x and y, so the system has no solution.

Support Graphically Figure 7.5 suggests that the two lines that are the graphs of 
the two equations in the system are parallel. Solving for y in each equation yields

 y =
1
3

 x +
2
3

 y =
1
3

 x -
2
3

The two lines have the same slope and different y-intercepts, and are therefore paral-
lel. Hence, they do not intersect, which confirms the algebraic findings.
 Now try Exercise 23.

EXAMPLE 5 

[24.7, 4.7] by [23.1, 3.1]

Figure 7.5 The graph of the two lines in 
Example 5 in this square viewing window 
appear to be parallel.
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Table 7.1 Populations of Two California Cities, 1980–2015

Time 
(years)

Population of San Francisco 
(thousands)

Population of San Jose 
(thousands)

1980 679.0  629.4
1990 724.0  782.2
2000 776.7  894.9
2010 805.2  945.9
2015 864.8 1026.9

Source: U.S. Census Bureau.

Finding Infinitely Many Solutions
Solve the system:

 4x - 5y = 2

 -12x + 15y = -6

SOLUTION 

 12x - 15y = 6  Multiply first equation by 3.

 -12x + 15y = -6 Second equation

 0 = 0  Add.

The last equation is true for all values of x and y. Thus, every ordered pair that satisfies 
one equation satisfies the other equation. The system has infinitely many solutions.

Another way to see that there are infinitely many solutions is to solve each equation 
for y. Both equations yield

y =
4
5

 x -
2
5

 .

The two equations yield the same line. Now try Exercise 25.

EXAMPLE 6 

Applications
San Francisco and San Jose are major northern California cities that are less than 50 mi 
apart. Table 7.1 shows that San Jose’s population has been growing faster than  
San Francisco’s since 1980.

Finding When San Jose Overtook  
San Francisco in Population

(a) Compute linear regression models for the populations of both cities using the 
data in Table 7.1. Superimpose their graphs on a scatter plot of the data.

(b) Use the linear population models to estimate when San Jose surpassed San Francisco 
in population as well as the common population of the two cities at that time.

SOLUTION 

(a) Let x represent time in years since 1980. Let ySF be the population of San Francisco 
and ySJ be the population of San Jose, both in thousands of residents. Using a 
grapher, we obtain the following linear models:

 ySF ≈ 4.94x + 676.01

 ySJ ≈ 10.65x + 653.54

Figure 7.6 shows the graphs of these two models.

EXAMPLE 7 

(continued)

[25, 40] by [500, 1200]

Figure 7.6 The graph of 
ySF ≈ 4.94x + 676.01 in blue and 
ySJ ≈ 10.65x + 653.54 in red.
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540 CHAPTER 7 Systems and Matrices

Suppliers will usually increase production, x, if they can get higher prices, p, for their 
products. So, as one variable increases, the other also increases. Normal mathematical 
practice would be to use p as the independent variable and x as the dependent variable. 
However, most economists put x on the horizontal axis and p on the vertical axis. In 
keeping with this practice, we write p = ƒ1x2 for a supply curve. On the one hand, as 
the price increases (vertical axis), so does the willingness of suppliers to increase pro-
duction x (horizontal axis).

On the other hand, the demand, x, for a product by consumers will decrease as the 
price, p, goes up. So, as one variable increases, the other decreases. Again economists 
put x (demand) on the horizontal axis and p (price) on the vertical axis. In keeping with 
this practice, we write p = g1x2 for a demand curve.

Finally, a point where the supply curve and demand curve intersect is an equilibrium 
point. The corresponding price is the equilibrium price.

[25, 40] by [500, 1200]

Y = 695.44989

Y2 = 10.65X+653.54

Intersection
X = 3.9352014

Figure 7.7 The graphs of the two population 
models intersect near 14, 6952.

(b) Figure 7.7 shows that the populations were the same roughly 4 years after 1980, 
that is, in 1984. San Jose’s population has been greater than San Francisco’s 
since 1984, when they both had about 695,000 residents.

 Now try Exercise 45.

Determining the Equilibrium Price
Nibok Manufacturing has determined that the production and price of a new tennis 
shoe should be geared to the equilibrium point for this system of equations.

 p = 160 - 5x Demand curve

 p = 35 + 20x Supply curve

The price, p, is in dollars and the number of shoes, x, is in millions of pairs. Find the 
equilibrium point.

SOLUTION We use substitution to solve the system.

 160 - 5x = 35 + 20x

 25x = 125

 x = 5

Substitute this value of x into the demand curve and solve for p.

 p = 160 - 5x

 p = 160 - 5152 = 135

The equilibrium point is 15, 1352. The equilibrium price is $135, the price for which 
supply and demand will be equal at 5 million pairs of tennis shoes.
 Now try Exercise 43.

EXAMPLE 8 
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 SECTION 7.1 Solving Systems of Two Equations 541

In Exercises 1 and 2, solve for y in terms of x.

 1. 2x + 3y = 5 2. xy + x = 4 

In Exercises 3–6, solve the equation algebraically.

 3. 3x2 - x - 2 = 0 4. 2x2 + 5x - 10 = 0

 5. x3 = 4x  6. x3 + x2 = 6x

 7. Write an equation for the line through the point 1-1, 22 and 
parallel to the line 4x + 5y = 2.

 8. Write an equation for the line through the point 1-1, 22 and 
perpendicular to the line 4x + 5y = 2.

 9. Write an equation equivalent to 2x + 3y = 5 with the coeffi-
cient of x equal to -4.

 10. Find the points of intersection of the graphs of y = 2x and 
y = x3 - 2x graphically.

QUICK REVIEW 7.1 (For help, go to Sections P.4 and P.5.)

In Exercises 13–18, solve the system algebraically.

 13. y = 6x2

 x + y = 2

 14. y = 2x2 + x
2x + y = 20

 15. y = x3 - x2

y = 2x2

 16. y = x3 + x2

 y = -x2

 17.  x2 + y2 = 9
 x - 3y = -1

 18.  x2 + y2 = 16
 4x + 7y = 13

In Exercises 19–26, solve the system by elimination.

 19.  x - y = 10
 x + y = 6

 20. 3x + 2y = 10
7x + 5y = 20

 21. 7x + 8y = 19
6x - 3y = -33

 22. 17x + 42y = 16
13x + 14y = -24

 23.  2x - 4y = -10
 -3x + 6y = -21

 24.  2x - 4y = 8
 -x + 2y = -4

 25.  2x - 3y = 5
 -6x + 9y = -15

 26.  2x - y = 3
 -4x + 2y = 5

SECTION 7.1 Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, determine whether the ordered pair is a solution 
of the system.

 1. 5x - 2y = 8
  2x - 3y = 1

(a) 10, 42 (b) 12, 12
(c) 1-2, -92

 2. y = x2 + 4x - 9
y = 9 - 3x

(a) 12, 32 (b) 1-6, 272
(c) 1-9, 362

In Exercises 3–12, solve the system by substitution.

 3.  x - 3y = -5
 y = 4

 4.            x = -6 
 3x + 4y = 2

 5. 3x + y = 10
x - 6y = 54

 6.  2x - y = 5
x + 2y = 0

 7.  5x + 3y = 1
 x - 2y = 8

 8. x + 3y = 9
2x + y = 8

 9.     x - 4y = 3
 3x - 12y = 16

 10.  3x + 2y = 9
 x - y = 8

 11.      y = x2

 y - 121 = 0

 12.  x =
1
2

 (1 - 3y)

 3x + 5y2 = 11y
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In Exercises 31–34, use graphs of the equations to determine the num-
ber of solutions for the system.

 31. 3x + 5y = 7
  4x - 2y = -3

 32. 3x - 9y = 6
2x - 6y = 1

 33. 2x - 4y = 6
3x - 6y = 9

 34. x - 7y = 9
3x + 4y = 1

In Exercises 35–42, solve the system graphically. Support your answer 
numerically using substitution and a calculator.

 35. y = ln x
1 = 2x + y

 36. y = 3 cos x
1 = 2x - y

 37. y = x3 - 4x
4 = x - 2y

 38. y = x2 - 3x - 5
1 = 2x - y

 39.  x2 + y2 = 4
 x + 2y = 2

 40.  x2 + y2 = 4
 x - 2y = 2

 41.  x2 + y2 = 9
 y = x2 - 2

 42.  x2 + y2 = 9
 y = 2 - x2

In Exercises 43 and 44, find the equilibrium point for the given demand 
and supply curves.

 43.  p = 200 - 15x Demand curve
 p = 50 + 25x  Supply curve

In Exercises 27–30, use the graph to estimate any solutions of the sys-
tem. Confirm by substitution.

 27. y = 1 + 2x - x2

y = 1 - x

[23, 5] by [23, 3]

 28.  6x - 2y = 7
 2x + y = 4

[23, 5] by [23, 3]

 44.  p = 15 -
7

100
 x Demand curve

 p = 2 +
3

100
 x  Supply curve

 45. City Population Table 7.2 shows the populations (in 
 thousands) of Philadelphia and Phoenix for selected years.  
Let x represent time in years since 1980.

(a) Compute linear regression models for the populations of 
both cities using the data in Table 7.2. Superimpose their 
graphs on a scatter plot of the data.

(b) Use the linear population models from part (a) to estimate 
when the populations of the two cities were the same as well 
as the common population of the two cities at that time.

Table 7.2 Populations of Two U.S. Cities

Time  
(years)

Philadelphia  
(thousands)

Phoenix 
(thousands)

1980 1688  790
1990 1586  983
2000 1517 1321
2010 1526 1446
2015 1567 1563

Source: U.S. Census Bureau.

 46. City Population Table 7.3 shows the populations (in 
 thousands) of San Antonio and San Diego for selected years. 
Let x represent time in years since 1980.

(a) Compute linear regression models for the populations of 
both cities using the data in Table 7.3. Superimpose their 
graphs on a scatter plot of the data.

(b) Use the linear population models from part (a) to estimate 
when the populations of the two cities were the same as well 
as the common population of the two cities at that time.

Table 7.3 Populations of Two U.S. Cities

Time  
(years)

San Antonio  
(thousands)

San Diego  
(thousands)

1980  786  876
1990  935 1111
2000 1145 1223
2010 1327 1307
2015 1480 1395

Source: U.S. Census Bureau.

 47. Population Table 7.4 gives the populations (in thousands) 
of Florida and Indiana for selected years. Let x be the number 
of years since 1980.

(a) Find a linear regression equation for the population of 
Florida.

(b) Find a linear regression equation for the population of 
Indiana.

(c) Graph the models from parts (a) and (b), and use these 
models to determine when the populations of the two states 
were about the same.

 29.  x + 2y = 0
 0.5x + y = 2

[25, 5] by [23, 5]

 30.  x2 + y2 = 16
 y + 4 = x2

[29.4, 9.4] by [26.2, 6.2]
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 48. Group Activity Describe all possibilities for the number of 
solutions to a system of two equations in two variables if the 
graphs of the two equations are (a) a line and a circle, and (b) a 
circle and a parabola.

 49. Garden Problem Find the dimensions of a rectangle with 
a perimeter of 200 m and an area of 500 m2.

 50. Cornfield Dimensions Find the dimensions of a 
 rectangular cornfield with a perimeter of 220 yd and an  
area of 3000 yd2.

 51. Rowing Speed Hank can row a boat 1 mi upstream 
(against the current) in 24 min. He can row the same distance 
downstream in 13 min. If both the rowing speed and current 
speed are constant, find Hank’s rowing speed and the speed of 
the current.

 52. Airplane Speed An airplane flying with the wind from 
Los Angeles to New York City takes 3.75 hr. Flying against the 
wind, the airplane takes 4.4 hr for the return trip. If the air dis-
tance between Los Angeles and New York is 2500 mi and the 
airplane speed and wind speed are constant, find the airplane 
speed and the wind speed.

 53. Food Prices At Philip’s convenience store the total cost of 
one medium and one large soda is €1.74. The large soda costs 
€0.16 more than the medium soda. Find the cost of each 
soda.

 54. Nut Mixture A 5-lb nut mixture is worth €3.92 per pound. 
The mixture contains peanuts worth €2.38 per pound and 
cashews worth €6.37 per pound. How many pounds of each type 
of nut are in the mixture?

 55. Connecting Algebra and Functions Determine a and b 
so that the graph of y = ax + b contains the two points 
1-1, 42 and 12, 62.

 56. Connecting Algebra and Functions Determine a and b 
so that the graph of ax + by = 8 contains the two points 
12, -12 and 1-4, -62.

 57. Rental Van Pedro has two plans to choose from to rent a 
van.

Company A: a flat fee of $40 plus 10 cents a mile.

Company B: a flat fee of $25 plus 15 cents a mile.

(a) How many miles can Pedro drive in order to be charged 
the same amount by the two companies?

(b) Writing to Learn Give reasons why Pedro might 
choose one plan over the other. Explain.

Table 7.4 Populations of Two U.S. States

Year
Florida  

(thousands)
Indiana  

(thousands)

1980 9,746 5,490
1990 12,938 5,544
2000 15,982 6,080
2010 18,801 6,483

Source: U.S. Census Bureau.

 58. Salary Package Stephanie is offered two different salary 
options to sell major household appliances.

Plan A: a $300 weekly salary plus 5% of her sales.

Plan B: a $600 weekly salary plus 1% of her sales.

(a) What must Stephanie’s weekly sales be to earn the same 
amount on the two plans?

(b) Writing to Learn Give reasons why Stephanie might 
choose one plan over the other. Explain.

Standardized Test Questions
 59. True or False Let a and b be real numbers. The following 

system of equations can have exactly two solutions:

2x + 5y = a
3x - 4y = b

Justify your answer.

 60. True or False If the resulting equation after using elimina-
tion correctly on a system of two linear equations in two vari-
ables is 7 = 0, then the system has infinitely many solutions. 
Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

 61. Multiple Choice Which of the following is a solution of 
the system

 2x - 3y = 12
 x + 2y = -1? 

(A) 1-3, 12 (B) 1-1, 02 (C) 13, -22
(D) 13, 22 (E) 16, 02

 62. Multiple Choice Which of the following cannot be the 
number of solutions of a system of two equations in two 
 variables whose graphs are a circle and a parabola?

(A) 0 (B) 1 (C) 2

(D) 3 (E) 5

 63. Multiple Choice Which of the following cannot be the 
number of solutions of a system of two equations in two vari-
ables whose graphs are parabolas?

(A) 1 (B) 2 (C) 4

(D) 5 (E) Infinitely many

 64. Multiple Choice Which of the following is the number of 
solutions of a system of two linear equations in two variables if 
the resulting equation after using elimination correctly is 
4 = 4?

(A) 0 (B) 1 (C) 2

(D) 3 (E) Infinitely many
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Explorations
 65. An Ellipse and a Line Consider the system of equations

 
x2

4
+

y2

9
= 1

 x + y = 1

(a) Solve the equation x2>4 + y2>9 = 1 for y in terms  
of x to determine the two functions determined by the 
equation.

(b) Solve the system of equations graphically.

(c) Use substitution to confirm the solutions found in part (b).

 66. A Hyperbola and a Line Consider the system of 
 equations

 
x2

4
-

y2

9
= 1

 x - y = 0

(a) Solve the equation x2>4 - y2>9 = 1 for y in terms  
of x to determine the two functions determined by the 
equation.

(b) Solve the system of equations graphically.

(c) Use substitution to confirm the solutions found in part (b).

Extending the Ideas
In Exercises 67 and 68, use the elimination method to solve the system 
of equations.

 67. x2 - 2y = -6
x2 + y = 4 

 68. x2 + y2 = 1
x2 - y2 = 1 

In Exercises 69 and 70, p1x2 is the demand curve. The total revenue if 
x units are sold is R = px. Find the number of units sold that gives the 
maximum revenue.

 69. p = 100 - 4x

 70. p = 80 - x2
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Each element, or entry, aij, of the matrix uses double subscript notation. The row sub-
script is the first subscript i, and the column subscript is j. The element aij is in the ith 
row and jth column. In general, the order of an m : n matrix is m * n. If m = n, the 
matrix is a square matrix. Two matrices are equal matrices if they have the same 
order and their corresponding elements are equal.

What you’ll learn about
• Matrices

• Matrix Addition and Subtraction

• Matrix Multiplication

• Identity and Inverse Matrices

• Determinant of a Square Matrix

• Applications

... and why
Matrix algebra provides a powerful 
technique to manipulate large data 
sets and solve the related problems 
that are modeled by the matrices.

Matrices
A matrix is a rectangular array of numbers. Matrices provide an efficient way to solve 
systems of linear equations and to record data. The tables of data presented in this text 
are examples of matrices.

7.2 Matrix Algebra

DEFINITION Matrix

Let m and n be positive integers. An m : n matrix (read “m by n matrix”) is a 
rectangular array of m horizontal rows and n vertical columns of real numbers.D a11 a12 c a1n

a21 a22 c a2n

f f f
am1 am2 c amn

T
We can use the shorthand notation 3aij4  for this matrix.

Historical Note
Methods used by the Chinese between 200 bce 
and 100 bce to solve problems involving several 
unknowns were similar to modern methods that 
use matrices. Matrices were formally developed 
in the 18th century by several mathematicians, 
including Leibniz, Cauchy, and Gauss.

Determining the Order of a Matrix

(a) The matrix c1 -2 3
2 0 4

d  has order 2 * 3.

(b) The matrix D1 -1
0 14
2 -1
3 62

T  has order 4 * 2.

(c) The matrix C1 2 3
4 5 6
7 8 9

S  has order 3 * 3 and is a square matrix.

 Now try Exercise 1.

EXAMPLE 1 

Matrix Addition and Subtraction
We add or subtract two matrices of the same order by adding or subtracting their cor-
responding entries. Matrices of different orders cannot be added or subtracted.

DEFINITION Matrix Addition and Matrix Subtraction

Let A = 3aij4  and B = 3bij4  be matrices of order m * n.

1. The sum A + B is the m * n matrix

A + B = 3aij + bij4 .
2. The difference A − B is the m * n matrix

A - B = 3aij - bij4 .
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When we work with matrices, real numbers are scalars. The product of the real number 
k and the m * n matrix A = 3aij4  is the m * n matrix

k # A = kA = 3kaij4 .

The matrix kA = 3kaij4  is a scalar multiple of A, where k is the scalar.

Power of Matrix Algebra
The result in Example 2 is fairly simple, but it is 
significant that we found (essentially) 24 pieces 
of information with a single mathematical opera-
tion. That is the power of matrix algebra.

Using Matrix Addition
In 2005 the verbal section of the SAT became critical reading, and a writing section 
was added. (Sources: The College Board; World Almanac and Book of Facts 2017.) 
Matrix V gives the mean SAT verbal (or critical reading) scores for selected years for 
the six New England states. Matrix M gives the mean SAT mathematics scores for the 
same years and states. Express the mean combined scores for these years and states.

EXAMPLE 2 

 2000 2005 2010 2015

V =

CT
ME
MA
NH
RI

VT

 F508 517 509 504
504 509 468 468
511 520 512 516
520 525 520 525
505 503 494 494
513 521 519 523

V  2000 2005 2010 2015

M =

CT
ME
MA
NH
RI

VT

 F509 517 514 506
500 505 467 473
513 527 526 529
519 525 524 530
500 505 495 494
508 517 521 524

V
SOLUTION We obtain the combined scores by adding the two matrices:

 2000 2005 2010 2015

V + M =

CT
ME
MA
NH
RI

VT

 F1017 1034 1023 1010
1004 1014 935 941
1024 1047 1038 1045
1039 1050 1044 1055
1005 1008 989 988
1021 1038 1040 1047

V
 Now try Exercise 13, parts (a) and (b).

Using Scalar Multiplication
A consumer advocacy group has computed the mean retail prices for brand name 
products and generic products at three different stores in a major city. The prices in 
dollars are shown in the following 3 * 2 matrix:

 Brand Generic

Store A
Store B
Store C

 C3.97 3.64
3.78 3.69
3.75 3.67

S
The city has a combined sales tax of 7.25%. Construct a matrix showing the compar-
ative prices with sales tax included.

SOLUTION Multiply the original matrix by the scalar 1.0725 to add the sales tax to 
every price.

 Brand Generic

1.0725 * C3.97 3.64
3.78 3.69
3.75 3.67

S ≈
Store A
Store B
Store C

 C4.26 3.90
4.05 3.96
4.02 3.94

S
 Now try Exercise 13, parts (c) and (d).

EXAMPLE 3 
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Matrices inherit many properties possessed by the real numbers. Let A = 3aij4  be any 
m * n matrix. The m * n matrix O = 304  consisting entirely of zeros is the zero matrix 
because A + O = A. In other words, O is the additive identity for the set of all m * n 
matrices. The m * n matrix B = 3-aij4  consisting of the additive inverses of the 
entries of A is the additive inverse of A because A + B = O. We also write B = -A.

Subtraction can be defined using such an additive inverse:

A - C = 3aij - cij4 = 3aij + 1-cij24 = 3aij4 + 3-cij4 = A + 1-C2
Thus, subtracting C from A is the same as adding A to the additive inverse of C.

Computing with Matrices

Let A = 3aij4  and B = 3bij4  be 2 * 2 matrices with aij = 3i - j and 

bij = i2 + j2 - 3 for i = 1, 2 and j = 1, 2.

 1. Determine A and B.

 2. Determine the additive inverse -A of A and verify that A + 1-A2 = 304 . 
What is the order of 304?

 3. Determine 3A - 2B.

EXPLORATION 1 

DEFINITION Matrix Multiplication

Let A = 3aij4  be an m * r matrix and B = 3bij4  an r * n matrix.
The product A # B = 3cij4  is the m * n matrix, where 
cij = ai1b1j + ai2b2j + g + airbrj. Often we write the product A # B as AB.

Matrix Multiplication
To form the product AB of two matrices, the number of columns of the matrix A on the 
left must be equal to the number of rows of the matrix B on the right. In this case, any 
row of A has the same number of entries as any column of B. Each entry of the product 
is obtained by summing the products of the entries of a row of A by the corresponding 
entries of a column of B.

The key to understanding how to form the product of any two matrices is first to con-
sider the product of a 1 * r matrix A = 3a1j4  with an r * 1 matrix B = 3bj14 . 
According to the definition, AB = 3c114  is the 1 * 1 matrix where 
c11 = a11b11 + a12b21 + g  +  a1rbr1. For example, the product AB of the 1 * 3 
matrix A and the 3 * 1 matrix B, where

A = 31 2 34 and B = C4
5
6
S ,

is

A # B = 31 2 34 # C4
5
6
S = 31 # 4 + 2 # 5 + 3 # 64 = 3324 .

Then, the ij-entry of the product AB of an m * r matrix and an r * n matrix is the 
product of the ith row of A, considered as a 1 * r matrix, and the jth column of B, 
 considered as an r * 1 matrix, as illustrated in Example 4.
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Finding the Product of Two Matrices
Find the product AB if possible, where

(a) A = c2 1 -3
0 1 2

d  and B = C1 -4
0 2
1 0

S .

(b) A = c2 1 -3
0 1 2

d  and B = c3 -4
2 1

d .

SOLUTION 

(a) The number of columns of A is 3 and the number of rows of B is 3, so the prod-
uct AB is defined. The product AB = 3cij4  is a 2 * 2 matrix where

 c11 = 32 1 -34  C1
0
1
S = 2 # 1 + 1 # 0 + 1-32 # 1 = -1

 c12 = 32 1 -34  C-4
2
0
S = 2 # 1-42 + 1 # 2 + 1-32 # 0 = -6

 c21 = 30 1 24  C1
0
1
S = 0 # 1 + 1 # 0 + 2 # 1 = 2

 c22 = 30 1 24  C-4
2
0
S = 0 # 1-42 + 1 # 2 + 2 # 0 = 2

Thus, AB = c-1 -6
2 2

d . Figure 7.8 supports this computation.

(b) The number of columns of A is 3 and the number of rows of B is 2, so the prod-
uct AB is not defined. Now try Exercise 19.

EXAMPLE 4 

Using Matrix Multiplication
Belleville Blooms makes three flower arrangements for Mother’s Day (I, II, and III), 
each including roses, carnations, and lilies. Matrix A shows the number of each type 
of flower used in each arrangement.

 I II III

A =
Roses

Carnations
Lilies

 C5 8 7
6 6 7
4 3 3

S
Belleville Blooms can buy flowers from two wholesalers (W1 and W2), but wants to 
give all of its business to one or the other. The costs (in dollars) of the three flower 
types from the two wholesalers are shown in matrix B.

 W1 W2

B =
Roses

Carnations
Lilies

 C1.50 1.35
0.95 1.00
1.30 1.35

S
Construct a matrix showing the cost of making each of the three flower arrangements 
from flowers supplied by the two wholesalers.

EXAMPLE 5 

[A] [B]
–1  –6
2  2  

Figure 7.8 The matrix product AB of 
Example 4.
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Identity and Inverse Matrices
In a square matrix A, the elements aii form the main diagonal of the matrix. The n * n 
matrix In with 1’s on the main diagonal and 0’s elsewhere is the identity matrix of 
order n * n:

In = E 1 0 0 g 0
0 1 0 g 0
0 0 1 g 0
f f f f
0 0 0 g 1

U
For example,

I2 = c 1 0
0 1

d , I3 = C1 0 0
0 1 0
0 0 1

S , and I4 = D1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T .

If A = 3aij4  is any n * n matrix, we can prove (see Exercise 56) that

AIn = InA = A,

that is, In is the multiplicative identity for the set of n * n matrices.

If a is a nonzero real number, then a-1 = 1>a is the multiplicative inverse of a, that is, 
aa-1 = a11>a2 = 1. The definition of the multiplicative inverse of a square matrix is 
analogous.

SOLUTION We can use the labeling of the matrices to help us. We want the columns 
of A to match up with the rows of B (because that’s how the matrix multiplication 
works). We therefore switch the rows and columns of A to get the flowers along the 
columns. (The new matrix is the transpose of A, denoted by AT.) We then find the 
product ATB (Figure 7.9):

 Rose Carn Lily W1 W2 W1 W2

I
II

III
 C5 6 4

8 6 3
7 7 3

S *
Rose
Carn
Lily

 C1.50 1.35
0.95 1.00
1.30 1.35

S =
I

II
III

 C18.40 18.15
21.60 20.85
21.05 20.50

S
Belleville Blooms should do business with wholesaler W2 because it can make the 
Mother’s Day arrangements for a lower cost in all three cases (I, II, and III).
 Now try Exercise 47.

DEFINITION Inverse of a Square Matrix

Let A = 3aij4  be an n * n matrix. If there is a matrix B such that

AB = BA = In,

then B is the inverse of A. We write B = A-1 (read “A inverse”).

We will see in Example 7 that not every square matrix has an inverse. If a square 
matrix A has no inverse, then A is singular. If a square matrix A has an inverse, then A 
is nonsingular, as in Example 6.

[A]T[B]
18.4
21.6
21.05

18.15
20.85
20.5

Figure 7.9 The product ATB for the  
matrices A and B of Example 5.
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Determinant of a Square Matrix
There is a simple test that determines whether a 2 * 2 matrix has an inverse.

[A] [B]

[B] [A]

1  0
0  1
1  0
0  1

Figure 7.10 Showing that A and B are 
inverse matrices. (Example 6)

Verifying an Inverse Matrix
Prove that

A = c 3 -2
-1 1

d and B = c1 2
1 3

d

are inverse matrices.

SOLUTION Figure 7.10 shows that AB = BA = I2. Thus, B = A-1 and A = B-1.
 Now try Exercise 33.

EXAMPLE 6 

Showing a Matrix Has No Inverse

Prove that the matrix A = c6 3
2 1

d  is singular, that is, A has no inverse.

SOLUTION Suppose A has an inverse B = c x y
z w

d . Then, AB = I2.

 AB = c6 3
2 1

d c x y
z w

d = c1 0
0 1

d

 = c6x + 3z 6y + 3w
2x + z 2y + w

d = c1 0
0 1

d

Using equality of matrices we obtain

 6x + 3z = 1  6y + 3w = 0

 2x + z = 0  2y + w = 1

We focus on the two equations on the left. Notice that 2x + z = 0 is equivalent to 
6x + 3z = 0. There are no values for x and z for which the value of 6x + 3z is both 
0 and 1. Thus, A does not have an inverse. Now try Exercise 37.

EXAMPLE 7 

Inverse of a 2 : 2 Matrix

If ad - bc ≠ 0, then

ca b
c d

d
-1

=
1

ad - bc
 c d -b

-c a
d .

In Exercise 55 we ask you to prove the theorem above. The number ad - bc is the 

determinant of the 2 * 2 matrix A = ca b
c d

d  and is denoted

det A = ` a b
c d

` = ad - bc.

To define the determinant of a higher-order square matrix, we need to introduce the minors 
and cofactors associated with the entries of a square matrix. Let A = 3aij4  be an n * n 
matrix. The minor (short for “minor determinant”) Mij corresponding to the element aij is 
the determinant of the 1n - 12 * 1n - 12 matrix obtained by deleting the row and col-
umn containing aij. The cofactor corresponding to aij is Aij = 1-12i+ jMij.
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If A = 3aij4  is a 3 * 3 matrix, then, using the definition of determinant applied to the 
second row, we obtain

 3 a11 a12 a13

a21 a22 a23

a31 a32 a33

3 = a21A21 + a22A22 + a23A23

 = a211-123 ` a12 a13

a32 a33
` + a221-124 ` a11 a13

a31 a33
`

 + a231-125 ` a11 a12

a31 a32
`

 = -a211a12a33 - a13a322 + a221a11a33 - a13a312
 - a231a11a32 - a12a312

The determinant of a 3 * 3 matrix involves three determinants of 2 * 2 matrices, the 
determinant of a 4 * 4 matrix involves four determinants of 3 * 3 matrices, and so 
forth. This is a tedious definition to apply. Most of the time we use a grapher to evalu-
ate determinants in this text, as shown in the margin note.

Investigating the Definition of Determinant

 1. Complete the expansion of the determinant of the 3 * 3 matrix A = 3aij4  
started above. Explain why each term in the expansion contains an element 
from each row and each column.

 2. Use the first row of the 3 * 3 matrix to expand the determinant and compare 
to the expression in 1.

 3. Prove that the determinant of a square matrix with a zero row or a zero column 
is zero.

EXPLORATION 2 

DEFINITION Determinant of a Square Matrix

Let A = 3aij4  be a matrix of order n * n 1n 7 22. The determinant of A, 
denoted by det A or 0A 0 , is the sum of the entries in any row or any column 
multiplied by their respective cofactors. For example, expanding by the ith 
row gives

det A = 0A 0 = ai1Ai1 + ai2Ai2 + g + ainAin.

We can now state the condition under which square matrices have inverses.

THEOREM Inverses of n : n  Matrices

An n * n matrix A has an inverse if and only if det A ≠ 0.

There are complicated formulas for finding the inverses of nonsingular matrices of 
order 3 * 3 or higher. We will use a grapher instead of these formulas to find inverses 
of square matrices.

Computing Determinants
We expect you to compute the determinant of  
a 2 * 2 matrix mentally or using paper and 
 pencil. For instance, in Example 8a, 
det A = 3 # 2 - 1 # 4 = 6 - 4 = 2.

Using a grapher for higher-dimension matrices is 
appropriate. For instance, in Example 8b, we 
compute a 3 * 3 determinant using a grapher 
(Figure 7.11).

[B]

det([B])

 1   2  –1  
 2  –1   3  
–1   0    1  

–10

Figure 7.11 The determinant of a 3 * 3 
matrix B.
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Applications
Points in the Cartesian coordinate plane can be represented by 1 * 2 matrices. For 
example, the point 12, -32 can be represented by the 1 * 2 matrix 32 -34 . We can 
calculate the images of points acted upon by some of the transformations studied in 
Section 1.6 using matrix multiplication, as illustrated in Example 9.

det([B])

[B]–1

.1  .2  –.5

.5   0   .5

.1  .2    .5

–10

Figure 7.12 The matrix B is nonsingular and 
so has an inverse. (Example 8b)

Finding Inverse Matrices
Determine whether the matrix has an inverse. If so, find its inverse matrix.

(a) A = c3 1
4 2

d  (b) B = C 1 2 -1
2 -1 3

-1 0 1
S

SOLUTION 

(a) Because det A = ad - bc = 3 # 2 - 1 # 4 = 2 ≠ 0, we conclude that A has an 
inverse. Using the formula for the inverse of a 2 * 2 matrix, we obtain

 A-1 =
1

ad - bc
 c d -b

-c a
d =

1
2

 c 2 -1
-4 3

d

 = c 1 -0.5
-2 1.5

d

You can check that A-1A = AA-1 = I2.

(b) Figure 7.12 shows that det B = -10 ≠ 0 and

B-1 = C0.1 0.2 -0.5
0.5 0 0.5
0.1 0.2 0.5

S .

You can use your grapher to check that B-1B = BB-1 = I3.
 Now try Exercise 41.

EXAMPLE 8 

We list five of the important properties of matrices, some of which you will be asked to 
prove in the exercises.

Properties of Matrices

Let A, B, and C be matrices whose orders are such that the following sums, 
 differences, and products are defined.

1. Commutative property  
Addition:
A + B = B + A
Multiplication:
(Does not hold in general)

2. Associative property 
Addition:
1A + B2 + C = A + 1B + C2
Multiplication:
1AB2C = A1BC2

3. Identity property 
Addition: A + O = A
Multiplication: order of 
A = n * n
AIn = In A = A

4. Inverse property 
Addition: A + 1-A2 = O
Multiplication: order of 
A = n * n
AA-1 = A-1A = In, 0A 0 ≠ 0

5. Distributive property 

Multiplication over addition
A1B + C2 = AB + AC
1A + B2C = AC + BC

  Multiplication over subtraction
A1B - C2 = AB - AC
1A - B2C = AC - BC
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Reflecting with Respect to the x-Axis  
as Matrix Multiplication

Prove that the image of a point under a reflection across the x-axis can be obtained 

by multiplying by c1 0
0 -1

d .

SOLUTION The image of the point 1x, y2 under a reflection across the x-axis is 
1x, -y2. The product

3x y4 c1 0
0 -1

d = 3x -y4

shows that the point 1x, y2 (in matrix form 3x y4 ) is moved to the point 1x, -y2 (in 
matrix form 3x -y4 ). Now try Exercise 57.

EXAMPLE 9 

Figure 7.13 shows the xy-coordinate system rotated through the angle a to obtain the 
x′y′-coordinate system. In Example 10, we see that the coordinates of a point in the 
x′y′-coordinate system can be obtained by multiplying the coordinates of the point in 
the xy-coordinate system by an appropriate 2 * 2 matrix. In Exercise 71, you will see 
that the reverse is also true.

Rotating a Coordinate System
Prove that the 1x′, y′2 coordinates of P in Figure 7.13 are related to the 1x, y2 coordi-
nates of P by the equations

 x′ = x cos a + y sin a

 y′ = -x sin a + y cos a

Then prove that the coordinates 1x′, y′2 can be obtained from the 1x, y2 coordinates 
by matrix multiplication. We use this result in Section 8.4 when we study conic 
sections.

SOLUTION Using the right triangle formed by P and the x′y′-coordinate system, we 
obtain

x′ = r cos1u - a2 and y′ = r sin1u - a2.
Expanding the above expressions for x′ and y′, using trigonometric identities for 
cos1u - a2 and sin1u - a2, yields

 x′ = r cos u cos a + r sin u sin a

 y′ = r sin u cos a - r cos u sin a

It follows from the right triangle formed by P and the xy-coordinate system that 
x = r cos u and y = r sin u. Substituting these values for x and y into the above pair 
of equations yields

 x′ = x cos a + y sin a and y′ = y cos a - x sin a

 = -x sin a + y cos a,

which is what we were asked to prove. Finally, matrix multiplication shows that

3x′ y′4 = 3x y4 c cos a -sin a
sin a cos a

d .
 Now try Exercise 71.

EXAMPLE 10 y

x

x9

y9

P

r

a

u

Figure 7.13 Rotating the xy-coordinate 
system through the angle a to obtain the  
x′y′-coordinate system. (Example 10)
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CHAPTER OPENER  Problem (from page 534)

Problem: If we have a triangle with vertices at 10, 02, 11, 12, and 12, 02, and we 
want to double the lengths of the sides of the triangle, where will the vertices of 
the enlarged triangle be?

Solution: Given a triangle with vertices at 10, 02, 11, 12, and 12, 02, as in  
Figure 7.14, we can find the vertices of a new triangle whose sides are twice  
as long by multiplying by the scale matrix.

c2 0
0 2

d

For the point 10, 02, we have

3x′ y′4 = 30 04 c2 0
0 2

d = 30 04 .

For the point 11, 12, we have

3x′ y′4 = 31 14 c2 0
0 2

d = 32 24 .

And for the point 12, 02, we have

3x′ y′4 = 32 04 c2 0
0 2

d = 34 04 .

So the new triangle has vertices 10, 02, 12, 22, and 14, 02, as Figure 7.15 shows.

1

1

2

3

4

2 3 4
x

y

(1, 1)
(2, 0)

(0, 0)

Figure 7.14 Original triangle.

1

1

2

3

4

2 3 4
x

y

(2, 2)

(4, 0)

(0, 0)

Figure 7.15 Transformed triangle.

In Exercises 1–4, the points (a) 13, -22 and (b) 1x, y2 are reflected 
across the given line. Find the coordinates of the reflected points.

 1. The x-axis  2. The y-axis

 3. The line y = x 4. The line y = -x

In Exercises 5 and 6, express the coordinates of P in terms of u.

 5. y

x

3

P(x, y)

u

 6. y

x

r

P(x, y)

u

In Exercises 7–10, expand the expression.

 7. sin 1a + b2 8. sin 1a - b2
 9. cos 1a + b2 10. cos 1a - b2

QUICK REVIEW 7.2 (For help, go to Sections 1.5, 5.3, and 6.4.)
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 21. A = C-1 0 2
4 1 -1
2 0 1

S , B = C 2 1 0
-1 0 2

4 -3 -1
S

 22. A = C-2 3 0
1 -2 4
3 2 1

S , B = C 4 -1 2
0 2 3

-1 3 -1
S

In Exercises 23–28, find (a) AB and (b) BA, or state that the product is 
not defined. Support your answer using the matrix feature of your 
grapher.

 23. A = 32 -1 34 , B = C-5
4
2
S

 24. A = C-2
3

-4
S , B = 3-1 2 44

 25. A = c-1 2
3 4

d , B = 3-3 54

 26. A = D-1 3
0 1
1 0

-3 -1

T , B = c 5 -6
2 3

d

 27. A = C0 0 1
0 1 0
1 0 0

S , B = C 1 2 1
2 0 1

-1 3 4
S

 28. A = D0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

T , B = D-1 2 3 -4
2 1 0 -1

-3 2 1 3
4 0 2 -1

T
In Exercises 29–32, solve for a and b.

 29. c a -3
4 2

d = c 5 -3
4 b

d

 30. c 1 -1 0
a -2 1

d = c 1 b 0
3 -2 1

d

 31. C 2 a - 1
2 3

-1 2
S = C 2 -3

b + 2 3
-1 2

S
 32. c a + 3 2

0 5
d = c 4 2

0 b - 1
d

In Exercises 33 and 34, verify that the matrices are inverses of each 
other.

 33. A = c 2 1
3 4

d , B = c 0.8 -0.2
-0.6 0.4

d

 34. A = C-2 1 3
1 2 -2
0 1 -1

S , B = C0 1 -2
0.25 0.5 -0.25
0.25 0.5 -1.25

S

SECTION 7.2 Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, determine the order of the matrix. Indicate whether 
the matrix is square.

 1. c 2 3 -1
1 0 5

d  2. c 1 3
-1 2

d  3. C 5 6
-1 2

0 0
S

 4. 3-1 0 64  5. C 2
-1

0
S  6. 304

In Exercises 7–10, identify the element specified for the following 
matrix. C-2 0 3 4

3 1 5 -1
1 4 -1 3

S
 7. a13  8. a24  9. a32  10. a33

In Exercises 11–16, find (a) A + B, (b) A - B, (c) 3A, and  
(d) 2A - 3B.

 11. A = c 2 3
-1 5

d , B = c 1 -3
-2 -4

d

 12. A = C-1 0 2
4 1 -1
2 0 1

S , B = C 2 1 0
-1 0 2

4 -3 -1
S

 13. A = C-3 1
0 -1
2 1

S , B = C 4 0
-2 1
-3 -1

S
 14. A = c 5 -2 3 1

-1 0 2 2
d , B = c-2 3 1 0

4 0 -1 -2
d

 15. A = C-2
1
0
S , B = C-1

0
4
S

 16. A = 3-1 -2 0 34 , and B = 31 2 -2 04
In Exercises 17–22, use the definition of matrix multiplication to find 
(a) AB and (b) BA. Support your answer with the matrix feature of your 
grapher.

 17. A = c-3 4
6 -6

d , B = c 5 8
-5 -2

d

 18. A = c 1 -4
2 6

d , B = c 5 1
-2 -3

d

 19. A = c 2 0 1
1 4 -3

d , B = C 1 2
-3 1

0 -2
S

 20. A = c 1 0 -2 3
2 1 4 -1

d , B = D 5 -1
0 2

-1 3
4 2

T
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In Exercises 35–40, find the inverse of the matrix if it has one, or state 
that the inverse does not exist.

 35. c 2 3
2 2

d  36. c 6 3
10 5

d

 37. C1 2 -1
2 -1 3
3 1 2

S  38. C 2 3 -1
-1 0 4

0 1 1
S

 39. A = 3aij4 , aij = 1-12i+ j, 1 … i … 4, 1 … j … 4

 40. B = 3bij4 , bij = 0 i - j 0 , 1 … i … 3, 1 … j … 3

In Exercises 41 and 42, use the definition to evaluate the determinant of 
the matrix.

 41. C 2 1 1
-1 0 2

1 3 -1
S  42. D1 0 2 0

0 1 2 3
1 -1 0 2
1 0 0 3

T
In Exercises 43 and 44, solve for X.

 43. 3X + A = B, where A = c 1
3
d  and B = c 4

2
d .

 44. 2X + A = B, where A = c-1 2
0 3

d  and B = c 1 4
1 -1

d .

 45. Symmetric Matrix The matrix below gives the road mile-
ages between Atlanta (A), Baltimore (B), Cleveland (C), and 
Denver (D). (Source: AAA Road Atlas)

 A B C D
A
B
C
D

 D 0 689 774 1406
689 0 371 1685
774 371 0 1340

1406 1685 1340 0

T
(a) Writing to Learn Explain why the entry in the ith row 

and jth column is the same as the entry in the jth row and 
ith column. A matrix with this property is symmetric.

(b) Writing to Learn Why are the entries along the 
 diagonal all 0’s?

 46. Production Jordan Manufacturing has two factories, each 
of which manufactures three products. The number of units of 
product i produced at factory j in one week is represented by aij 
in the matrix

A = C120 70
150 110
80 160

S .

  If production levels are increased by 10%, write the new pro-
duction levels as a matrix B. How is B related to A?

 47. Egg Production Happy Valley Farms produces three types 
of eggs: 1 (large), 2 (X-large), 3 (jumbo). The number of doz-
ens of type i eggs sold to grocery store j is represented by aij in 
the matrix

A = C100 60
120 70
200 120

S .

  The price per dozen that Happy Valley Farms charges for egg 
type i is represented by bi1 in the matrix

B = C$0.80
$0.85
$1.00

S .

(a) Find the product BTA.

(b) Writing to Learn What does the matrix BTA represent?

 48. Inventory Jekell-Heid, Inc. sells four models of “all-in-one 
fax, printer, copier, and scanner machine” at three retail stores. 
The inventory at store i of model j is represented by sij in the 
matrix

S = C16 10 8 12
12 0 10 4
4 12 0 8

S .

  The wholesale and retail prices of model i are represented by 
pi1 and pi2, respectively, in the matrix

P = D$180 $269.99
$275 $399.99
$355 $499.99
$590 $799.99

T .

(a) Determine the product SP.

(b) Writing to Learn What does the matrix SP represent?

 49. Profit Fast Buck Furniture sells four types of 5-piece bed-
room sets. The price charged for a bedroom set of type j is rep-
resented by a1j in the matrix

A = 3$398 $598 $798 $9984 .
  The number of sets of type j sold in one period is represented 

by b1j in the matrix

B = 335 25 20 104 .
  The cost to the furniture store for a bedroom set of type j is 

given by c1j in the matrix

C = 3$199 $268 $500 $6704 .
(a) Write a matrix product that gives the total revenue made 

from the sale of the bedroom sets in the one period.

(b) Write an expression using matrices that gives the profit 
produced by the sale of the bedroom sets in the one period.

 50. Construction A building contractor has agreed to build  
six ranch-style houses, seven Cape Cod–style houses, and  
14 colonial-style houses. The numbers of units of raw materials 
that go into each type of house are shown in matrix R:

 Steel Wood Glass Paint Labor

R =
Ranch

Cape Cod
Colonial

 C5 22 14 7 17
7 20 10 9 21
6 27 8 5 13

S
  Assume that steel costs $1600 a unit, wood $900 a unit, glass 

$500 a unit, paint $100 a unit, and labor $1000 a unit.

(a) Write a 1 * 3 matrix B that represents the number of each 
type of house to be built.
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(b) Write a matrix product that gives the number of units of 
each raw material needed to build the houses.

(c) Write a 5 * 1 matrix C that represents the per unit cost of 
each type of raw material.

(d) Write a matrix product that gives the cost of each house.

(e) Writing to Learn Compute the product BRC. What 
does this matrix represent?

 51. Rotating Coordinate Systems The xy-coordinate system 
is rotated through the angle 30° to obtain the x′y′-coordinate 
system.

(a) If the coordinates of a point in the xy-coordinate system are 
11, 12, what are the coordinates of the rotated point in the 
x′y′-coordinate system?

(b) If the coordinates of a point in the x′y′-coordinate system 
are 11, 12, what are the coordinates of the point in the  
xy-coordinate system that was rotated to it?

 52. Group Activity Let A, B, and C be matrices whose orders 
are such that the following expressions are defined. Prove that 
the following properties are true.

(a) A + B = B + A

(b) 1A + B2 + C = A + 1B + C2
(c) A1B + C2 = AB + AC

(d) 1A - B2C = AC - BC

 53. Group Activity Let A and B be m * n matrices and let c 
and d be scalars. Prove that the following properties are true.

(a) c1A + B2 = cA + cB (b) 1c + d2A = cA + dA

(c) c1dA2 = 1cd2A  (d) 1 # A = A

 54. Writing to Learn Explain why the definition given for the 
determinant of a square matrix agrees with the definition given 
for the determinant of a 2 * 2 matrix. (Assume that the deter-
minant of a 1 * 1 matrix is the entry.)

 55. Inverse of a 2 : 2 Matrix Prove that the inverse of the 
matrix

A = c a b
c d

d is A-1 =
1

ad - bc
 c d -b

-c a
d

provided ad - bc ≠ 0.

 56. Identity Matrix Let A = 3aij4  be an n * n matrix. Prove 
that AIn = In A = A.

In Exercises 57–61, prove that the image of a point under the given 
transformation of the plane can be obtained by matrix multiplication.

 57. A reflection across the y-axis

 58. A reflection across the line y = x

 59. A reflection across the line y = -x

 60. A vertical stretch or shrink by a factor of a

 61. A horizontal stretch or shrink by a factor of c

Standardized Test Questions
 62. True or False Every square matrix has an inverse. Justify 

your answer.

 63. True or False The determinant 0A 0  of the square matrix A 
is greater than or equal to 0. Justify your answer.

In Exercises 64–67, solve the problem without using a calculator.

 64. Multiple Choice Which of the following is equal to the 

determinant of A = c 2 4
-3 -1

d ?

(A) 4  (B) -4  (C) 10  (D) -10  (E) -14

 65. Multiple Choice Let A be a matrix of order 3 * 2 and B a 
matrix of order 2 * 4. Which of the following gives the order 
of the product AB?

(A) 2 * 2  (B) 3 * 4   (C) 4 * 3  (D) 6 * 8

(E) The product is not defined.

 66. Multiple Choice Which of the following is the inverse of 

the matrix c 2 7
1 4

d ?

(A) c-4 7
1 -2

d  (B) c 2 -7
-1 4

d  (C) c 2 -1
-7 4

d

(D) c 4 -1
-7 2

d  (E) c 4 -7
-1 2

d

 67. Multiple Choice Which of the following is the value of a13 

in the matrix 3aij4 = C1 2 3
4 5 6
7 8 9

S ?

(A) -7  (B) 7  (C) -3  (D) 3  (E) 10

Explorations
 68. Continuation of Exploration 2 Let A = 3aij4  be an 

n * n matrix.

(a) Prove that the determinant of A changes sign if two rows 
or two columns are interchanged. Start with a 3 * 3 
matrix and compare the expansion by expanding by the 
same row (or column) before and after the interchange. 
[Hint: Compare without expanding the minors.] How can 
you generalize from the 3 * 3 case?

(b) Prove that the determinant of a square matrix with two 
identical rows or two identical columns is zero.

(c) Prove that if a scalar multiple of a row (or column) is 
added to another row (or column), the value of the deter-
minant of a square matrix is unchanged. [Hint: Expand by 
the row (or column) being added to.]

 69. Continuation of Exercise 68 Let A = 3aij4  be an 
n * n matrix.

(a) Prove that if every element of a row or column of a matrix 
is multiplied by the real number c, then the determinant of 
the matrix is multiplied by c.

(b) Prove that if all the entries above the main diagonal (or all 
below it) of a matrix are zero, then the determinant is the 
product of the elements on the main diagonal.

 70. Writing Equations for Lines Using Determinants  
Consider the equation 3 1 x y

1 x1 y1

1 x2 y2

3 = 0.
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(a) Prove that the equation is linear in x and y.

(b) Prove that the two points 1x1, y12 and 1x2, y22 lie on the 
line in part (a).

(c) Use a determinant to state that the point 1x3, y32 lies on the 
line in part (a).

(d) Use a determinant to state that the point 1x3, y32 does not 
lie on the line in part (a).

 71. Continuation of Example 10 The xy-coordinate system 
is rotated through the angle a to obtain the x′y′-coordinate sys-
tem (see Figure 7.13).

(a) Prove that the inverse of the matrix

A = c cos a -sin a
sin a cos a

d

 of Example 10 is

A-1 = c cos a sin a
-sin a cos a

d .

(b) Prove that the 1x, y2 coordinates of P in Figure 7.13 are 
related to the 1x′, y′2 coordinates of P by the equations

 x = x′ cos a - y′ sin a

 y = x′ sin a + y′ cos a

(c) Prove that the coordinates 1x, y2 can be obtained from the 
1x′, y′2 coordinates by matrix multiplication. How is this 
matrix related to A?

Extending the Ideas
 72. Characteristic Polynomial Let A = 3aij4  be a 2 * 2 

matrix and define ƒ1x2 = det 1xI2 - A2.
(a) Expand the determinant to show that ƒ1x2 is a polynomial 

of degree 2 (the characteristic polynomial of A).

(b) How is the constant term of ƒ1x2 related to det A?

(c) How is the coefficient of x related to A?

(d) Prove that ƒ1A2 = 0.

 73. Characteristic Polynomial Let A = 3aij4  be a 3 * 3 
matrix and define ƒ1x2 = det 1xI3 - A2.
(a) Expand the determinant to show that ƒ1x2 is a polynomial 

of degree 3 (the characteristic polynomial of A).

(b) How is the constant term of ƒ1x2 related to det A?

(c) How is the coefficient of x2 related to A?

(d) Prove that ƒ1A2 = 0.
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Gaussian Elimination
Transforming a system to triangular form is Gaussian elimination, named after the 
famous German mathematician Carl Friedrich Gauss (1777–1855). Here are the opera-
tions needed to transform a system of linear equations into triangular form.

What you’ll learn about
• Triangular Form for Linear Systems

• Gaussian Elimination

• Elementary Row Operations and 
Row Echelon Form

• Reduced Row Echelon Form

• Solving Systems Using Inverse 
Matrices

• Partial Fraction Decomposition

• Other Applications

... and why
Many applications in business and 
science are modeled by systems of 
linear equations in three or more 
variables.

Triangular Form for Linear Systems
The method of elimination used in Section 7.1 can be extended to systems of linear 
(first-degree) equations in more than two variables. The goal of the elimination method 
is to rewrite the system as an equivalent system of equations whose solution is obvious. 
Two systems of equations are equivalent if they have the same solution.

A triangular form of a system is an equivalent form from which the solution is easy to 
read, as illustrated in Example 1.

7.3 Multivariate Linear Systems and Row Operations

Back Substitution
The method of solution used in Example 1 is 
sometimes referred to as back substitution.

Solving by Substitution
Solve the system:

 x - 2y + z = 7

 y - 2z = -7

 z = 3

SOLUTION The third equation tells us that z = 3. We substitute this value of z into 
the second equation to determine y.

 y - 2z = -7 Second equation

 y - 2132 = -7 Substitute z = 3.

 y = -1

Finally, we substitute the values for y and z into the first equation to determine x.

 x - 2y + z = 7 First equation

 x - 21-12 + 3 = 7 Substitute y = -1, z = 3.

 x = 2

The solution of the system is x = 2, y = -1, z = 3, or the ordered triple 12, -1, 32.
 Now try Exercise 1.

EXAMPLE 1 

Equivalent Systems of Linear Equations

The following operations produce an equivalent system of linear equations:

1. Interchange any two equations of the system.

2. Multiply (or divide) one of the equations by any nonzero real number.

3. Add a multiple of one equation to any other equation in the system.
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For a system of equations that has exactly one solution, the final system in Example 2 
is in triangular form. In this case, the leading term of each equation has coefficient 1; 
the third equation has one variable 1z2; the second equation has at most two variables, 
including one not in the third equation 1y2; and the first equation contains the remain-
ing variable, x in this case.

It Pays to Check
It is easy to make mistakes when performing 
Gaussian elimination, so check answers by sub-
stituting them back into the original equations.

Observe how we use property 3 to bring the system in Example 2 to triangular form.

Using Gaussian Elimination
Solve the system:

 x - 2y + z = 7

 3x - 5y + z = 14

 2x - 2y - z = 3

SOLUTION Each step in the following process leads to a system of equations equiv-
alent to the original system.

We multiply the first equation by -3 and add the result to the second equation, 
replacing the second equation. (We leave the first and third equations unchanged.)

 x - 2y + z = 7   -3x + 6y - 3z = -21

 y - 2z = -7 3x - 5y + z = 14

 2x - 2y - z = 3

We multiply the first equation by -2 and add the result to the third equation, replac-
ing the third equation.

 x - 2y + z = 7   -2x + 4y - 2z = -14

 y - 2z = -7

 2y - 3z = -11  2x - 2y - z = 3

We multiply the second equation by -2 and add the result to the third equation, 
replacing the third equation.

 x - 2y + z = 7

 y - 2z = -7  -2y + 4z = 14

 z = 3   2y - 3z = -11

This is the system that was solved in Example 1. It is a triangular form of the original 
system. We know from Example 1 that the solution is 12, -1, 32.
 Now try Exercise 3.

EXAMPLE 2 

Finding No Solution
Solve the system:

 x - 3y + z = 4

 -x + 2y - 5z = 3

 5x - 13y + 13z = 8

EXAMPLE 3 
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Elementary Row Operations  
and Row Echelon Form
When we solve a system of linear equations using Gaussian elimination, all the action 
is really on the coefficients of the variables. Matrices can be used to record the coeffi-
cients as we go through the steps of the Gaussian elimination process. We illustrate 
with the system of Example 2.

 x - 2y + z = 7

 3x - 5y + z = 14

 2x - 2y - z = 3

The augmented matrix of this system of equations isC1 -2 1 7
3 -5 1 14
2 -2 -1 3

S .

The entries in the last column are the numbers on the right-hand sides of the equations. 
The coefficient matrix of this system isC1 -2 1

3 -5 1
2 -2 -1

S .

Here the entries are the coefficients of the variables. We use coefficient matrices to 
solve linear systems later in this section.

We now repeat the Gaussian elimination process used in Example 2 and record the cor-
responding action on the augmented matrix.

SOLUTION Use Gaussian elimination.

 x - 3y + z = 4

 -y - 4z = 7  Add first equation to second equation.

 5x - 13y + 13z = 8

 x - 3y + z = 4

 -y - 4z = 7

 2y + 8z = -12  Multiply first equation by -5 and add  
to third equation.

 x - 3y + z = 4

 -y - 4z = 7

 0 = 2   Multiply second equation by 2 and add  
to third equation.

Because 0 = 2 is never true, we conclude that this system has no solution.
 Now try Exercise 5.
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The augmented matrix above, which corresponds to the triangular form of the original 
system of equations, is a row echelon form of the augmented matrix of the original sys-
tem of equations. In general, the last few rows of a row echelon form of a matrix can 
consist of all 0’s.

 x - 2y + z = 7

 y - 2z = -7

 2y - 3z = -11
C1 -2 1 7

0 1 -2 -7
0 2 -3 -11

S Multiply eq. 1 (row 1) by -2;  
add result to eq. 3 (row 3), 
replacing eq. 3 (row 3).

 x - 2y + z = 7

 y - 2z = -7

 z = 3
C1 -2 1 7

0 1 -2 -7
0 0 1 3

S Multiply eq. 2 (row 2) by -2;  
add result to eq. 3 (row 3), 
replacing eq. 3 (row 3).

System of Equations Augmented Matrix

 x - 2y + z = 7

 y - 2z = -7

 2x - 2y - z = 3
C1 -2 1 7

0 1 -2 -7
2 -2 -1 3

S Multiply eq. 1 (row 1) by -3;  
add result to eq. 2 (row 2), 
replacing eq. 2 (row 2).

Another way to phrase parts 2 and 3 of the above definition is to say that the leading 1’s 
move to the right as we move down the rows.

Our goal is to take a system of equations, write the corresponding augmented matrix, 
and transform it to row echelon form without carrying along the equations. From there 
we can read off the solutions to the system fairly easily.

The operations that we use to transform a linear system to equivalent triangular form 
correspond to elementary row operations of the corresponding augmented matrix of the 
linear system.

Example 4 illustrates how we can transform the augmented matrix to row echelon form 
to solve a system of linear equations.

DEFINITION Row Echelon Form of a Matrix

A matrix is in row echelon form if the following conditions are satisfied.

1. Rows consisting entirely of 0’s (if there are any) occur at the bottom of the 
matrix.

2. The first nonzero entry in any row with nonzero entries is 1.

3. The column subscript of the leading 1’s increases as the row subscript 
increases.

Elementary Row Operations on a Matrix 

A combination of the following operations will transform a matrix to row eche-
lon form:

1. Interchange any two rows.

2. Multiply all elements of a row by a nonzero real number.

3. Add a multiple of one row to another row, replacing the latter row.
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Reduced Row Echelon Form
If we continue to apply elementary row operations to a row echelon form of a matrix, 
we can obtain a matrix in which every column that has a leading 1 has 0’s elsewhere. 
This is the reduced row echelon form of the matrix. It is usually easier to read the 
solution from the reduced row echelon form.

We apply elementary row operations to the row echelon form found in Example 4 until 
we find the reduced row echelon form.C1 -1 2 -3

0 1 -1 4
0 0 1 3

S  
  112R2+R1   T C1 0 1 1

0 1 -1 4
0 0 1 3

S  
  1-12R3+R1  TC1 0 0 -2

0 1 -1 4
0 0 1 3

S  
   112R3+R2  T C1 0 0 -2

0 1 0 7
0 0 1 3

S
From this reduced row echelon form, we can immediately read the solution to the sys-
tem of Example 4: x = -2, y = 7, z = 3. Figure 7.16 shows that the above final 
matrix is the reduced row echelon form of the augmented matrix of Example 4.

Row Echelon Form
A word of caution! You can use your grapher to 
find a row echelon form of a matrix. However, 
row echelon form is not unique. Your grapher 
may produce a row echelon form different from 
the one you obtained by paper and pencil. Fortu-
nately, all row echelon forms produce the same 
solution to the system of equations. (Correspond-
ingly, a triangular form of a linear system is also 
not unique.)

Notation

1. Rij indicates interchanging the ith and jth rows 
of a matrix.

2. kRi indicates multiplying the ith row by the 
nonzero real number k.

3. kRi + Rj indicates adding k times the ith row 
to the jth row, replacing the jth row.

rref([A])
1  0  0  –2
0   1  0    7
0  0  1    3

Figure 7.16 A is the augmented matrix of 
the system of linear equations in Example 4. 
“rref “ stands for the grapher-produced 
reduced row echelon form of A.

Finding a Row Echelon Form
Solve the system:

 x - y + 2z = -3

 2x + y - z = 0

 -x + 2y - 3z = 7

SOLUTION We apply elementary row operations to find a row echelon form of the 
augmented matrix. The elementary row operations used are recorded above the 
arrows, using the notation explained in the margin.C 1 -1 2 -3

2 1 -1 0
-1 2 -3 7

S  
  1-22R1+R2  

T C 1 -1 2 -3
0 3 -5 6

-1 2 -3 7
S  

 112R1+R3  TC1 -1 2 -3
0 3 -5 6
0 1 -1 4

S  
         R23          T C1 -1 2 -3

0 1 -1 4
0 3 -5 6

S  
1-32R2+R3 

TC1 -1 2 -3
0 1 -1 4
0 0 -2 -6

S  
    1-1>22R3    T C1 -1 2 -3

0 1 -1 4
0 0 1 3

S
The last matrix is in row echelon form. Then we convert each row, beginning with 
the last, into equation form and complete the solution by substitution.

z = 3   y - z = 4   x - y + 2z = -3

 y - 3 = 4   x - 7 + 2132 = -3

 y = 7   x = -2

The solution of the original system of equations is 1-2, 7, 32.
 Now try Exercise 33.

EXAMPLE 4 
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We can solve linear systems with more than three variables, or more than three equa-
tions, or both, by finding a row (or reduced row) echelon form. The solution set may 
become more complicated, as illustrated in Example 6.

Finding Infinitely Many Solutions
Solve the system:

 x + y + z = 3

 2x + y + 4z = 8

 x + 2y - z = 1

SOLUTION Figure 7.17 shows the reduced row echelon form for the augmented 
matrix of the system. So, the following system of equations is equivalent to the 
 original system.

 x + 3z = 5

 y - 2z = -2

 0 = 0

Solving the first two equations for x and y in terms of z yields

 x = -3z + 5

 y = 2z - 2

This system has infinitely many solutions because for every value of z we can use 
these two equations to find corresponding values for x and y.

Interpret The solution is the set of all ordered triples of the form 1-3z + 5, 2z - 2, z2 
where z is any real number. Now try Exercise 39.

EXAMPLE 5 

Finding Infinitely Many Solutions
Solve the system:

x + 2y - 3z = -1

2x + 3y - 4z + w = -1

3x + 5y - 7z + w = -2

SOLUTION The 3 * 5 augmented matrix isC1 2 -3 0 -1
2 3 -4 1 -1
3 5 -7 1 -2

S .

Figure 7.18 shows the reduced row echelon form from which we can read that

 x = -z - 2w + 1

 y = 2z + w - 1

This system has infinitely many solutions because for every pair of values for z and 
w we can use these two equations to find corresponding values for x and y.

Interpret The solution is the set of all ordered 4-tuples of the form 1-z - 2w + 1, 
2z + w - 1, z, w2 where z and w are any real numbers.
 Now try Exercise 43.

EXAMPLE 6 

rref([A])
1  0  3   5  
0   1  –2  –2
0 0  0   0  

Figure 7.17 The reduced row echelon form 
for the augmented matrix of Example 5.

rref([A])
1  0  1   2   1  
0   1  –2  –1  –1
0 0  0   0  0 

Figure 7.18 The reduced row echelon form 
for the augmented matrix of Example 6.
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Linear Equations
If a and b are real numbers with a ≠ 0, the lin-
ear equation ax = b has a unique solution 
x = a-1b. A similar statement holds for the lin-
ear matrix equation AX = B when A is a nonsin-
gular square matrix. (See the Invertible Square 
Linear Systems Theorem.)

Solving Systems Using Inverse Matrices
If a linear system consists of the same number of equations as variables, then the coef-
ficient matrix is square. If this square matrix is nonsingular, then we can solve the system 
using the technique illustrated in Example 7.

Solving a System Using Inverse Matrices
Solve the system:

 3x - 2y = 0

 -x + y = 5

SOLUTION First we write the system as a matrix equation. Let

A = c 3 -2
-1 1

d ,  X = c x
y
d ,  and  B = c0

5
d .

Then

A # X = c 3 -2
-1 1

d # c x
y
d = c3x - 2y

-x + y
d

so

AX = B,

where A is the coefficient matrix of the system. You can easily check that det A = 1, 
so A-1 exists. From Figure 7.19, we obtain

X = A-1B = c10
15
d .

The solution of the system is x = 10, y = 15, or 110, 152. Now try Exercise 49.

EXAMPLE 7 

Examples 7 and 8 are two instances of the following theorem.

[A]–1[B]
10
15

Figure 7.19 The solution of the matrix 
equation of Example 7.

THEOREM Invertible Square Linear Systems

Let A be the coefficient matrix of a system of n linear equations in n variables 
given by AX = B, where X is the n * 1 matrix of variables and B is the n * 1 
matrix of numbers on the right-hand side of the equations. If A-1 exists, then 
the system of equations has the unique solution

X = A-1B.

Solving a System Using Inverse Matrices
Solve the system:

 3x - 3y + 6z = 20

 x - 3y + 10z = 40

 -x + 3y - 5z = 30

SOLUTION Let

A = C 3 -3 6
1 -3 10

-1 3 -5
S ,  X = C x

y
z
S ,  and  B = C20

40
30

S .

EXAMPLE 8 

(continued)

The Order Is Important
Remember that A-1 is multiplied on the left of 
each expression; matrix multiplication is not 
commutative.
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Partial Fraction Decomposition
In Section 2.5 we saw that a polynomial with real coefficients can be factored into a 
product of factors with real coefficients, each of which is either a linear factor or an 
irreducible quadratic factor. Similarly, a rational expression can be written as a sum of 
rational expressions in which each denominator is a power of a linear factor or a power 
of an irreducible quadratic factor.

For example,

3x - 4

x2 - 2x
=

2
x

+
1

x - 2
 .

Each fraction in the sum is a partial fraction, and the sum is a partial fraction 
decomposition of the original rational expression. Example 9 illustrates this method 
for the simplest case, when the denominator factors into distinct linear factors.

det([A])

[A]–1[B]
18         
39.3333
14         

–30

Figure 7.20 The solution of the system 
in Example 8.

The system of equations can be written as

A # X = B.

Figure 7.20 shows that det A = -30 ≠ 0. Thus A-1 exists and, as suggested by 
 Figure 7.20,

X = A-1B = C18
39.3
14

S .

Interpret The solution of the system of equations is x = 18, y = 118
3 , and z = 14, 

or 118, 39.3, 142. Now try Exercise 51.

Decomposing a Rational Expression into 
Partial Fractions

Find the partial fraction decomposition of

5x - 1

x2 - 2x - 15
 .

SOLUTION The denominator factors into 1x + 321x - 52. We write

5x - 1

x2 - 2x - 15
=

A
x + 3

+
B

x - 5

and then “clear the fractions” by multiplying both sides of the above equation by 
x2 - 2x - 15 to obtain

 5x - 1 = A1x - 52 + B1x + 32
 5x - 1 = 1A + B2x + 1-5A + 3B2.

Comparing coefficients on the left and right sides of the above equation, we obtain 
the following system of two equations in the two variables A and B:

 A + B = 5

 -5A + 3B = -1

We can write this system in matrix form as CX = D, where

C = c 1 1
-5 3

d , X = cA
B
d ,  and  D = c 5

-1
d ,

and read from Figure 7.21 that

X = c2
3
d .

EXAMPLE 9 

[C]–1[D]
2
3

Figure 7.21 The solution of the system  
of equations in Example 9.
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Other Applications
Any three noncollinear points with distinct x-coordinates determine exactly one 
 second-degree polynomial, as illustrated in Example 10. Recall that the graph of a 
 second-degree (quadratic) polynomial is a parabola.

Thus A = 2, B = 3, and

5x - 1

x2 - 2x - 15
=

2
x + 3

+
3

x - 5
 .

Support Graphically Figure 7.22 suggests that the following two functions are the 
same:

ƒ1x2 =
5x - 1

x2 - 2x - 15
 and g1x2 =

2
x + 3

+
3

x - 5

 Now try Exercise 67.

Sometimes we can solve for the variables introduced in a partial fraction decomposi-
tion by substituting strategic values for x, as illustrated in Exploration 1.

Revisiting Example 9

When we cleared fractions in Example 9 we obtained the equation 
5x - 1 = A1x - 52 + B1x + 32.

 1. Substitute x = 5 into this equation and solve for B. 

 2. Substitute x = -3 into this equation and solve for A. 

EXPLORATION 1 

Fitting a Parabola to Three Points
Determine a, b, and c so that the points 1-1, 52, 12, -12, and 13, 132 are on the 
graph of ƒ1x2 = ax2 + bx + c.

SOLUTION

Model We must have ƒ1-12 = 5, ƒ122 = -1, and ƒ132 = 13:

 ƒ1-12 = a - b + c = 5

 ƒ122 = 4a + 2b + c = -1

 ƒ132 = 9a + 3b + c = 13

The above system of three linear equations in the three variables a, b, and c can be 
written in matrix form AX = B, where

A = C1 -1 1
4 2 1
9 3 1

S ,  X = Ca
b
c
S ,  and  B = C 5

-1
13

S .

Solve Numerically Figure 7.23a on the next page shows that

X = A-1B = C 4
-6
-5

S .

Thus a = 4, b = -6, and c = -5. The second-degree polynomial 
ƒ1x2 = 4x2 - 6x - 5 contains the points 1-1, 52, 12, -12, and 13, 132  
(Figure 7.23b on the next page). Now try Exercise 83.

EXAMPLE 10 

[210, 10] by [210, 10]

Figure 7.22 The graphs of 
ƒ1x2 = 15x - 12>1x2 - 2x - 152 and 
g1x2 = 2>1x + 32 + 3>1x - 52 appear to  
be the same. (Example 9)
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[A]–1[B]
4  
–6
–5

(a)

  

[25, 5] by [215, 20]

(b)

Figure 7.23 (a) The solution of the matrix equation in Example 10. (b) A graph of 
ƒ1x2 = 4x2 - 6x - 5 superimposed on a scatter plot of the three points 1-1, 52, 12, -12,  
and 13, 132.

Mixing Solutions

Aileen’s Drugstore needs to prepare a 60-L mixture that is 40% acid, using three 
concentrations of acid. The first concentration is 15% acid, the second is 35% 
acid, and the third is 55% acid. Because of the amounts of acid solution on hand, 
they need to use twice as much of the 35% solution as of the 55% solution. How 
much of each solution should they use?

Let x = the number of liters of 15% solution used, y = the number of liters of 
35% solution used, and z = the number of liters of 55% solution used.

 1. Explain how the equation x + y + z = 60 is related to the problem.

 2. Explain how the equation 0.15x + 0.35y + 0.55z = 24 is related to the 
 problem.

 3. Explain how the equation y = 2z is related to the problem.

 4. Write the system of three equations obtained from parts 1–3 in the form 
AX = B, where A is the coefficient matrix of the system. What are A, B, and X?

 5. Solve the matrix equation in part 4.

 6. Interpret the solution in part 5 in terms of the problem situation.

EXPLORATION 2 

In Exercises 1 and 2, find the amount of pure acid in the solution.

 1. 40 L of a 32% acid solution

 2. 60 mL of a 14% acid solution

In Exercises 3 and 4, find the amount of water in the solution.

 3. 50 L of a 24% acid solution

 4. 80 mL of a 70% acid solution

In Exercises 5 and 6, determine which points are on the graph of the 
function.

 5. ƒ1x2 = 2x2 - 3x + 1

(a) 1-1, 62 (b) 12, 12

 6. ƒ1x2 = x3 - 4x - 1

(a) 10, -12 (b) 1-2, -172
In Exercises 7 and 8, solve for x or y in terms of the other variables.

 7. y + z - w = 1

 8. x - 2z + w = 3

In Exercises 9 and 10, find the inverse of the matrix.

 9. c 1 3
-2 -2

d

 10. C 0 0 2
-2 1 3

0 2 -2
S

QUICK REVIEW 7.3 (For help, go to Sections 1.2 and 7.2.)
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In Exercises 17–20, find a row echelon form for the matrix.

 17. C 1 1 -5
3 -2 5

-5 3 0
S  18. C 1 2 -3

-3 -6 10
-2 -4 7

S
 19. C 1 2 3 -4

-2 6 -6 2
3 12 6 12

S  20. c 3 6 9 -6
2 5 5 -3

d

In Exercises 21–24, find the reduced row echelon form for the matrix.

 21. C1 0 2 1
3 2 4 7
1 3 -1 7

S
 22. D 1 -2 2 1 1

3 -5 6 3 -1
-2 4 -3 -2 5

3 -5 6 4 -3

T
 23. c 1 2 3 1

-3 -5 -7 -4
d  24. C 3 -6 3 -3

2 -4 2 -2
-3 6 -3 3

S
In Exercises 25–28, write the augmented matrix corresponding to the 
system of equations.

SECTION 7.3 Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, use substitution to solve the system of equations.

 1.  x - 3y + z = 0
 2y + 3z = 1

 z = -2

 2.  3x - y + 2z = -2
 y + 3z = 3

 2z = 4

 3.  x - y + z = 0
 2x - 3z = -1

 -x - y + 2z = -1

 4.  2x - y = 0
 x + 3y - z = -3

 3y + z = 8

 5.  x + y + z = -3
 4x - y = -5

 -3x + 2y + z = 4

 6.  x + y - 3z = -1
 2x - 3y + z = 4

 3x - 7y + 5z = 4

In Exercises 9–12, perform the indicated elementary row operation on 
the matrix C 2 -6 4

1 2 -3
-3 1 -2

S .

 9. 13>22R1 + R3  10. 11>22R1

 11. 1-22R2 + R1  12. 112R1 + R2

In Exercises 13–16, what elementary row operations applied toC-2 1 -1 2
1 -2 3 0
3 1 -1 2

S
will yield the given matrix?

 13. C 1 -2 3 0
-2 1 -1 2

3 1 -1 2
S

 14. C0 -3 5 2
1 -2 3 0
3 1 -1 2

S
 15. C-2 1 -1 2

1 -2 3 0
0 7 -10 2

S
 16. C-2 1 -1 2

1 -2 3 0
0.75 0.25 -0.25 0.5

S

In Exercises 3–8, use Gaussian elimination to solve the system of 
 equations.

 7.  x + y - z = 4
 y + w = -4
 x - y = 1

 x + z + w = 1

 8.  
1
2

 x - y + z - w = 1

 -x + y + z + 2w = -3
 x - z = 2

 y + w = 0

 25.  2x - 3y + z = 1
 -x + y - 4z = -3

 3x - z = 2

 26.  3x - 4y + z - w = 1
 x + z - 2w = 4

 27.  2x - 5y + z - w = -3
 x - 2z + w = 4

 2y - 3z - w = 5

 28.  3x - 2y = 5
 -x + 5y = 7

In Exercises 29–32, write the system of equations corresponding to the 
augmented matrix.

 29. c 3 2 -1
-4 5 2

d  30. C 1 0 -1 2 -3
2 1 0 -1 4

-1 1 2 0 0
S

 31. C 2 0 1 3
-1 1 0 2

0 2 -3 -1
S  32. c 2 1 -2 4

-3 0 2 -1
d

In Exercises 33–34, solve the system of equations by finding a row 
 echelon form for the augmented matrix.

 33.  x - 2y + z = 8
 2x + y - 3z = -9

 -3x + y + 3z = 5

 34.  3x + 7y - 11z = 44
 x + 2y - 3z = 12

 4x + 9y - 13z = 53

In Exercises 35–44, solve the system of equations by finding the 
reduced row echelon form for the augmented matrix.

 35.  x + 2y - z = 3
 3x + 7y - 3z = 12

 -2x - 4y + 3z = -5

 36.  x - 2y + z = -2
 2x - 3y + 2z = 2
 4x - 8y + 5z = -5
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 53.  2x - y + z + w = -3
 x + 2y - 3z + w = 12
 3x - y - z + 2w = 3

 -2x + 3y + z - 3w = -3

 54.  2x + y + 2z = 8
 3x + 2y - z - w = 10

 -2x + y - 3w = -1
 4x - 3y + 2z - 5w = 39

 63.  2x + y + z + 2w = -3.5
 x + y + z + w = -1.5

 64.  2x + y + 4w = 6
 x + y + z + w = 5

 65.  x + y - z + 2w = 0
 y - z + 2w = -1
 x + y + 3w = 3

 2x + 2y - z + 5w = 4

 66.  x + y + w = 2
 x + 4y + z - 2w = 3
 x + 3y + z - 3w = 2

 x + y + w = 2

In Exercises 67 and 68, use inverse matrices to find the partial fraction 
decomposition.

 67. 
x + 22

1x + 421x - 22 =
A

x + 4
+

B
x - 2

 68. 
x - 3

x1x + 32 =
A

x + 3
+

B
x

In Exercises 69–72, find the partial fraction decomposition. Confirm 
your answer algebraically by combining the partial fractions.

 69. 
2

1x - 521x - 32 70. 
4

1x + 321x + 72

 71. 
4

x2 - 1
 72. 

6

x2 - 9

In Exercises 73–76, find the partial fraction decomposition. Support 
your answer graphically.

 73. 
2

x2 + 2x
 74. 

-6

x2 - 3x

 75. 
-x + 10

x2 + x - 12
 76. 

7x - 7

x2 - 3x - 10

Use an algebraic method in Exercises 77 and 78 to find a partial frac-
tion decomposition.

 77. 
x + 17

2x2 + 5x - 3
 78. 

4x - 11

2x2 - x - 3

In Exercises 79–82, use division to write the rational function in the form 
q1x2 + r1x2>d1x2, where the degree of r1x2 is less than the degree of 
d1x2. Then find the partial fraction decomposition of r1x2>d1x2. Com-
pare the graphs of the rational function with the graphs of its terms in the 
partial fraction decomposition.

 79. 
2x2 + x + 3

x2 - 1
 80. 

3x2 + 2x

x2 - 4

 81. 
x3 - 2

x2 + x
 82. 

x3 + 2

x2 - x

In Exercises 83–86, determine ƒ so that its graph contains the given points.

 83. Curve Fitting ƒ1x2 = ax2 + bx + c
  1-1, 32, 11, -32, 12, 02
 84. Curve Fitting ƒ1x2 = ax3 + bx2 + cx + d  

1-2, -372, 1-1, -112, 10, -52, 12, 192
 59.  x - y + z = 6

 x + y + 2z = -2
 60.  x - 2y + z = 3

 2x + y - z = -4

 61.  2x + y + z + 4w = -1
 x + 2y + z + w = 1
 x + y + z + 2w = 0

 62.  2x + 3y + 3z + 7w = 0
 x + 2y + 2z + 5w = 0
 x + y + 2z + 3w = -1

 51.  2x - y + z = -6
 x + 2y - 3z = 9
 3x - 2y + z = -3

 52.  x + 4y - 2z = 0
 2x + y + z = 6

 -3x + 3y - 5z = -13

 49.  2x - 3y = -13
 4x + y = -5

 50.  x + 2y = -2
 3x - 4y = 9

 37.  x + y + 3z = 2
 3x + 4y + 10z = 5

 x + 2y + 4z = 3

 38.  x - z = 2
 -2x + y + 3z = -5

 2x + y - z = 3

 39.  x + z = 2
 2x + y + z = 5

 40.  x + 2y - 3z = 1
 -3x - 5y + 8z = -29

 43.  x + y - 3z = 1
 x - z - w = 2

 2x + y - 4z - w = 3

 44.  x - y - z + 2w = -3
 2x - y - 2z + 3w = -3
 x - 2y - z + 3w = -6

 45.  2x + 5y = -3
 x - 2y = 1

 46.  5x - 7y + z = 2
 2x - 3y - z = 3

 x + y + z = -3

 41.  x + 2y = 4
 3x + 4y = 5
 2x + 3y = 4

 42.  x + y = 3
 2x + 3y = 8
 2x + 2y = 6

In Exercises 45 and 46, write the system of equations as a matrix equa-
tion AX = B, with A as the coefficient matrix of the system.

In Exercises 47 and 48, write the matrix equation as a system of equations.

 47. c 3 -1
2 4

d c x
y
d = c-1

3
d  

 

 48. C 1 0 -3
2 -1 3

-2 3 -4
S C x

y
z
S = C 3

-1
2
S  

 
 

In Exercises 49–54, solve the system of equations by using an inverse 
matrix.

 55.  2x - y = 10
 x - z = -1
 y + z = -9

 56.  1.25x + z = -2
 y - 5.5z = -2.75

 3x - 1.5y = -6

In Exercises 55–66, use a method of your choice to solve the system of 
equations.

 57.  x + 2y + 2z + w = 5
 2x + y + 2z = 5

 3x + 3y + 3z + 2w = 12
 x + z + w = 1

 58.  x - y + w = -4
 -2x + y + z = 8
 2x - 2y - z = -10

 -2x + z + w = 5
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 85. Family of Curves ƒ1x2 = ax2 + bx + c  
1-1, -42, 11, -22

 86. Family of Curves ƒ1x2 = ax3 + bx2 + cx + d  
1-1, -62, 10, -12, 11, 22

 87. Population Table 7.5 gives the populations (in thousands) 
of two fast-growing suburbs in the Dallas–Forth Worth 
 Metroplex: Garland and Irving. Let x be the number of years 
since 1980.

(a) Find a linear regression equation for the population of 
 Garland.

(b) Find a linear regression equation for the population of 
Irving.

(c) Graph the models from parts (a) and (b), and use these 
models to determine when the populations of the two cities 
will be about the same. 

Table 7.5 Populations of Two Cities

Year
Garland 

(thousands)
Irving  

(thousands)

1980 139 110
1990 181 155
2000 216 192
2010 227 216

Source: U.S. Census Bureau.

Table 7.6 Populations of Two Cities

Year
Anaheim 

(thousands)
Anchorage 
(thousands)

1970 166  48
1980 219 174
1990 266 226
2000 328 260
2010 336 292

Source: U.S. Census Bureau.

 88. Population Table 7.6 gives the populations (in thousands) 
of Anaheim, California, and Anchorage, Alaska, for selected 
years. Let x be the number of years since 1970.

(a) Find a linear regression equation for the population of 
Anaheim.

(b) Find a linear regression equation for the population of 
Anchorage.

(c) Graph the models from parts (a) and (b), and use these 
models to determine when the populations of the two cities 
will be about the same. 

 89. Train Tickets At the Pittsburgh zoo, children ride a train 
for 25 cents, adults pay $1.00, and senior citizens 75 cents. On 
a given day, 1400 passengers paid a total of $740 for the rides. 
There were 250 more child riders than all other riders. Find the 
number of child, adult, and senior riders.

 90. Manufacturing Stewart’s 
Metals has three silver alloys 
on hand. One is 22% silver, 
another is 30% silver, and the 
third is 42% silver. What 
weight of each alloy, in 
grams, is required to produce 
80 g of a new alloy that is 
34% silver if the amount of 30% alloy used is twice the 
amount of 22% alloy used?

 91. Investment Sophia receives an $80,000 inheritance. She 
invests part of it in CDs (certificates of deposit) earning 
6.7% APY (annual percentage yield), part in bonds earning 
9.3% APY, and the remainder in a growth fund earning 
15.6% APY. She invests three times as much in the growth 
fund as in the other two combined. How much does she 
have in each investment if she receives $10,843 interest the 
first year?

 92. Investments Mateo invests $20,000 in three invest-
ments earning 6% APY, 8% APY, and 10% APY. He invests 
$9000 more in the 10% investment than in the 6% invest-
ment. How much does he have invested at each rate if he 
receives $1780 interest the first year?

 93. Investments Nicolas has $50,000 to invest and wants to 
receive $5000 interest the first year. He puts part in CDs earn-
ing 5.75% APY, part in bonds earning 8.7% APY, and the rest 
in a growth fund earning 14.6% APY. How much should he 
invest at each rate if he puts the least amount possible in the 
growth fund?

 94. Mixing Acid Solutions Stephanie’s Drugstore needs  
to prepare a 40-L mixture that is 32% acid from three solu-
tions: a 10% acid solution, a 25% acid solution, and a  
50% acid solution. How much of each solution should be 
used if Stephanie’s wants to use as little of the 50% solution 
as possible?

 95. Loose Change Lucas has 74 coins consisting of nickels, 
dimes, and quarters in his coin box. The total value of the 
coins is $8.85. If the number of nickels and quarters is four 
more than the number of dimes, find how many of each coin 
Lucas has in his coin box.

 96. Vacation Money Diana has saved $177 to take with 
her on the family vacation. She has 51 bills consisting of 
$1, $5, and $10 bills. If the number of $5 bills is three 
times the number of $10 bills, find how many of each bill 
she has.

In Exercises 97 and 98, use inverse matrices to find the equilibrium 
point for the demand and supply curves.

 97.  p = 100 - 5x Demand curve
 p = 20 + 10x Supply curve

 98.  p = 150 - 12x Demand curve
 p = 30 + 24x  Supply curve

 99. Writing to Learn Explain why adding one row to 
another row in a matrix is an elementary row operation.

 100. Writing to Learn Explain why subtracting one  
row from another row in a matrix is an elementary row 
operation.
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Standardized Test Questions
 101. True or False Every nonzero square matrix has an inverse. 

Justify your answer.

 102. True or False The reduced row echelon form of the aug-
mented matrix of a system of three linear equations in three 
variables must be of the formC1 0 0 a

0 1 0 b
0 0 1 c

S ,

where a, b, c, are real numbers. Justify your answer.

In Exercises 103–106, you may use a graphing calculator to solve the 
problem.

 103. Multiple Choice Which of the following is the determinant 

of the matrix c 2 2
-1 3

d ?

(A) 0  (B) 4  (C) -4  (D) 8  (E) -8

 104. Multiple Choice Which of the following is the augmented 
matrix of the system of equations

 x + 2y + z = -1
 2x - y + 3z = -4?
 3x + y - z = -2

(A) C1 2 1 -1
2 -1 3 -4
3 1 -1 -2

S  (B) C1 2 1 1
2 -1 3 4
3 1 -1 2

S
(C) C1 2 1 0

2 -1 3 0
3 1 -1 0

S  (D) C1 2 1
2 -1 3
3 1 -1

S
(E) C1 2 -1

2 -1 -3
3 1 1

S
 105. Multiple Choice The matrix  C1 2 3

2 1 0
7 8 9

S  was obtained from C1 2 3
4 5 6
7 8 9

S  by an elemen-

tary row operation. Which of the following describes the 
 elementary row operation?

(A) 1-22R1 (B) 1-22R1 + R2 (C) 1-22R2 + R1

(D) 122R1 + R2 (E) 122R2 + R1

 106. Multiple Choice Which of the following is the reduced 
row echelon form for the augmented matrix of

 x + 2y - z = 8
 -x + 3y + 2z = 3  ?

 2x - y + 3z = -19

(A) C1 2 0 4
0 1 0 3
0 0 1 -4

S  (B) C1 0 0 2
0 1 0 -3
0 0 0 4

S

(C) C1 0 0 -2
0 1 0 3
0 0 0 -4

S  (D) C1 0 0 2
0 1 0 -3
0 0 1 4

S
(E) C1 0 0 -2

0 1 0 3
0 0 1 -4

S
Explorations
 107. Group Activity Investigating the Solution of a 

 System of Three Linear Equations in Three 
 Variables Assume that the graph of a linear equation in 
three variables is a plane in 3-dimensional space. (You will 
study these in Chapter 8.)

(a) Explain geometrically how such a system can have a 
unique solution.

(b) Explain geometrically how such a system can have no 
solution. Describe several possibilities.

(c) Explain geometrically how such a system can have infi-
nitely many solutions. Describe several possibilities. Con-
struct physical models if you find that helpful.

Extending the Ideas
 108. Writing to Learn Explain why a row echelon form of a 

matrix is not unique. That is, show that a matrix can have two 
unequal row echelon forms. Give an example.

The roots of the characteristic polynomial C1x2 = det 1xIn - A2 of the 
n * n matrix A are the eigenvalues of A (see Section 7.2, Exercises 72 
and 73). Use this information in Exercises 109 and 110.

 109. Let A = c 3 2
1 5

d .

(a) Find the characteristic polynomial C1x2 of A.

(b) Find the graph of y = C1x2.
(c) Find the eigenvalues of A.

(d) Compare det A with the y-intercept of the graph of 
y = C1x2.

(e) Compare the sum of the main diagonal elements of  
A with the sum of the eigenvalues.

 110. Let A = c 2 -1
-5 2

d .

(a) Find the characteristic polynomial C1x2 of A.

(b) Find the graph of y = C1x2.
(c) Find the eigenvalues of A.

(d) Compare det A with the y-intercept of the graph of 
y = C1x2.

(e) Compare the sum of the main diagonal elements of  
A with the sum of the eigenvalues.
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The graph of the linear inequality y 7 ax + b or y 6 ax + b is a half-plane. The 
graph of the line y = ax + b is the boundary of each of these half-plane regions.

What you’ll learn about
• Graph of an Inequality

• Systems of Inequalities

• Linear Programming

... and why
Linear programming is used in 
 business and industry to maximize 
profits, minimize costs, and help 
management make decisions.

Graph of an Inequality
An ordered pair 1a, b2 of real numbers is a solution of an inequality in x and y if the 
substitution x = a and y = b satisfies the inequality. For example, the ordered pair 
12, 52 is a solution of y 6 2x + 3 because

5 6 2122 + 3 = 7.

However, the ordered pair 12, 82 is not a solution because

8 ( 2122 + 3 = 7.

When we have found all the solutions, we have solved the inequality.

The graph of an inequality in x and y consists of all pairs 1x, y2 that are solutions of 
the inequality. The graph of an inequality involving two variables typically is a region 
of the coordinate plane.

The point 12, 72 is on the graph of the line y = 2x + 3 but is not a solution of 
y 6 2x + 3. A point 12, y2 below the line y = 2x + 3 is on the graph of y 6 2x + 3, 
and those above it are not. The graph of y 6 2x + 3 is the set of all points below the 
line y = 2x + 3. The graph of the line y = 2x + 3 is the boundary of the region  
(Figure 7.24).

We can summarize our observations about the graph of an inequality in two variables 
with the following procedure.

7.4 Systems of Inequalities in Two Variables

Steps for Drawing the Graph of an Inequality in Two Variables

1. Draw the graph of the equation obtained by replacing the inequality sign 
by an equality sign. Use a dashed line if the inequality is 6 or 7 . Use a 
solid line if the inequality is … or Ú .

2. Check a point in each of the two regions of the plane determined by the 
graph of the equation. If the point satisfies the inequality, then shade the 
region containing the point.

Graphing a Linear Inequality
Draw the graph of y Ú 2x + 3. State the boundary of the region.

SOLUTION 

Step 1. Because of “Ú ,” the graph of the line y = 2x + 3 is part of the graph of the 
inequality and should be drawn as a solid line.

Step 2. The point 10, 42 is above the line and satisfies the inequality because

4 Ú 2102 + 3 = 3.

Thus, the graph of y Ú 2x + 3 consists of all points on or above the line 
y = 2x + 3. The boundary is the graph of y = 2x + 3 (Figure 7.25).
 Now try Exercise 9.

EXAMPLE 1 

10
8
6
4

–2
–4
–6
–8

–10

y

x
–10–8 –6 –4 642 8 10

y = 2x + 3

Figure 7.24 A graph of y = 2x + 3 
(dashed line) and y 6 2x + 3 (shaded area). 
The line is dashed to indicate it is not part of 
the solution of y 6 2x + 3.

[210, 10] by [210, 10]

Figure 7.25 The graph of y Ú 2x + 3, 
shown in pink. (Example 1)
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Systems of Inequalities
A solution of a system of inequalities in x and y is an ordered pair 1x, y2 that satisfies 
each inequality in the system. When we have found all the common solutions, we have 
solved the system of inequalities.

The technique for solving a system of inequalities graphically is similar to that for solv-
ing a system of equations graphically. We graph each inequality and determine the 
points common to the individual graphs.

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 31 4 5

(a)    

5
4
3
2
1

–1
–2

–4
–5

y

x
–5 –4 –3 –2 –1 321 4 5

(b)

Figure 7.26 The graphs of (a) x Ú 2 and (b) y 6 -3. (Example 2)

[25, 5] by [25, 15]

Figure 7.27 The graph of y Ú x2 - 3, 
shown in pink and red. (Example 3)

Graphing Linear Inequalities
Draw the graph of the inequality. State the boundary of the region.

(a) x Ú 2 (b) y 6 -3

SOLUTION 

(a) Step 1. Replacing “Ú” by “=” we obtain the equation x = 2, whose graph is a 
vertical line.

Step 2. The graph of x Ú 2 is the set of all points on and to the right of the ver-
tical line x = 2 (Figure 7.26a). The line x = 2 is the boundary of the region.

(b) Step 1. Replacing “6” by “=” we obtain the equation y = -3, whose graph is 
a horizontal line.

 Step 2. The graph of y 6 -3 is the set of all points below the horizontal line 
y = -3 (Figure 7.26b). The line y = -3 is the boundary of the region.

 Now try Exercise 7.

EXAMPLE 2 

Graphing a Quadratic Inequality
Draw the graph of y Ú x2 - 3. State the boundary of the region.

SOLUTION 

Step 1. Replacing “Ú” by “=” we obtain the equation y = x2 - 3, whose graph is 
a parabola.

Step 2. The pair 10, 12 is a solution of the inequality because

1 Ú 1022 - 3 = -3.

Thus, the graph of y Ú x2 - 3 is the parabola together with the region above the 
parabola (Figure 7.27). The parabola is the boundary of the region.
 Now try Exercise 11.

EXAMPLE 3 
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 SECTION 7.4 Systems of Inequalities in Two Variables 575

Linear Programming
Sometimes decision making in management science requires finding a minimum or a 
maximum of a linear function

ƒ = a1x1 + a2x2 + g+  anxn,

called an objective function, over a set of points. Such a problem is a linear programming 
problem. In two dimensions, the objective function ƒ takes the form ƒ = ax + by, and the  

Shading Graphs
Most graphers are capable of shading solutions 
to inequalities. For details, see the owner’s 
 manual or online tech support.

Solving a System of Inequalities
Solve the system:

 2x + y … 10

 2x + 3y … 14

 x Ú 0

 y Ú 0

SOLUTION The solution includes part of the first quadrant and parts of both axes 
because x Ú 0 and y Ú 0; it lies on and below parts of 2x + y = 10 and 
2x + 3y = 14. The solution includes all of its boundary points (Figure 7.30).
 Now try Exercise 23.

EXAMPLE 5 

Solving a System of Inequalities Graphically
Solve the system:

 y 7 x2

 2x + 3y 6 4

SOLUTION The graph of y 7 x2 is shaded in Figure 7.28a. It does not include its 
boundary y = x2. The graph of 2x + 3y 6 4 is shaded in Figure 7.28b. It does not 
include its boundary 2x + 3y = 4. The solution to the system is the intersection of 
these two graphs, as shaded in Figure 7.28c.

EXAMPLE 4 

Support with a Grapher Figure 7.29 shows what some graphers produce when we 
shade above the curve y = x2 and below the curve 2x + 3y = 4. The shaded portion 
appears to be identical to the shaded portion in Figure 7.28c.
 Now try Exercise 19.

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 321 4 5

(a)       

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 21 4 5

(b)       

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 21 4 5

(c)

Figure 7.28 The graphs of (a) y 7 x2, (b) 2x + 3y 6 4, and (c) the system that they form (Example 4).

[23, 3] by [22, 5]

Figure 7.29 The solution (shaded in pink) of 
the system in Example 4 does not include the 
red lines. Many graphers cannot distinguish 
between dashed and solid boundaries.

2x + y = 10

2x + 3y = 14

[0, 10] by [0, 10]

Figure 7.30 The solution (shaded in pink) 
of the system in Example 5. The solution 
includes the quadrilateral that bounds the pink 
region. Two sides of this boundary are shown 
in red and two in black.
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576 CHAPTER 7 Systems and Matrices

There is another way to analyze the linear programming problem in Example 6: By 
assigning positive values to ƒ in ƒ = 5x + 8y, we obtain parallel lines whose distances 
from the origin increase as ƒ increases. (See Exercise 47.) This family of lines sweeps 
across the feasible region. Geometrically, we can see that there are minimum and maxi-
mum values for ƒ if the line ƒ = 5x + 8y is to intersect the feasible region.

Intersection
X=4         Y=2

[0, 10] by [25, 10]

Figure 7.31 The lines 2x + 3y = 14 and 
2x + y = 10 intersect at 14, 22. (Example 6)

Making a Sketch by Hand
It is usually easier to draw a hand sketch of the 
lines in the examples and exercises in this chap-
ter (by using the x- and y-intercept method) than 
to use a grapher. You can support your sketches 
using a grapher.

set of points is specified via a system of inequalities, called constraints. The solution 
of the system of inequalities is the set of feasible points 1x, y2 for the optimization 
problem. This set of feasible points is the feasible region for the problem.

It can be proved that if a linear programming problem has a solution, it occurs at one of 
the vertex points, or corner points, on the boundary of the feasible region. We use this 
information in Examples 6 and 7.

Solving a Linear Programming Problem
Find the maximum and minimum values of the objective function ƒ = 5x + 8y, 
 subject to the constraints given by the system of inequalities.

 2x + y … 10

 2x + 3y … 14

 x Ú 0

 y Ú 0

SOLUTION The feasible region is graphed in Figure 7.30. Figure 7.31 shows that 
the two lines 2x + 3y = 14 and 2x + y = 10 intersect at 14, 22. Thus, the corner 
points of the feasible region are as follows:

10, 02
10, 14>32, the y-intercept of 2x + 3y = 14

15, 02, the x-intercept of 2x + y = 10

14, 22, the point of intersection of 2x + 3y = 14 and 2x + y = 10

The following table evaluates ƒ at the corner points of the feasible region.

1x, y2 10, 02 10, 4.62 14, 22 15, 02
ƒ 0 37.3 36 25

The maximum value of ƒ is 37.3, which occurs at 10, 4.62. The minimum value is 0, 
which occurs at 10, 02.
 Now try Exercise 31.

EXAMPLE 6 

Purchasing Fertilizer
Gsegner’s Produce is purchasing fertilizer with two nutrients: N (nitrogen) and  
P (phosphorus). It needs at least 180 units of N and 90 units of P. Its supplier sells 
two brands of fertilizer. Brand A costs $10 a bag and has 4 units of N and 1 unit of P. 
Brand B costs $5 a bag and has 1 unit of each nutrient. Gsegner’s Produce can pay at 
most $800 for the fertilizer. How many bags of each brand should be purchased to 
minimize cost?

SOLUTION 

Model

Let x = number of bags of Brand A.

Let y = number of bags of Brand B.

EXAMPLE 7 
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The region in Example 8 is unbounded. Using the discussion following Example 6, we 
can see geometrically that the linear programming problem in Example 8 does not have 
a maximum value but, fortunately, does have a minimum value.

Then C = the total cost = 10x + 5y is the objective function to be minimized. The 
constraints are

 4x + y Ú 180 Amount of N is at least 180.

 x + y Ú  90  Amount of P is at least 90.

 10x + 5y … 800 Total cost is to be at most $800.

 x Ú 0, y Ú 0

Solve Graphically The feasible region is the intersection of the graphs of 
4x + y Ú 180, x + y Ú 90, and 10x + 5y … 800 in the first quadrant  
(Figure 7.32).

The region has three corner points, which are at the points of intersections of the 
lines 4x + y = 180, x + y = 90, and 10x + 5y = 800: 110, 1402, 170, 202, and  
130, 602. The values of the objective function C at the corner points are as follows:

 C110, 1402 = 101102 + 511402 = 800

 C170, 202 = 101702 + 51202 = 800

 C130, 602 = 101302 + 51602 = 600

Interpret The minimum cost for the fertilizer is $600 when 30 bags of Brand A and 
60 bags of Brand B are purchased. For this purchase, Gsegner’s Produce gets exactly 
180 units of nutrient N and 90 units of nutrient P.
 Now try Exercise 37.

Minimizing Operating Cost
Vela Manufacturing has two factories that produce three grades of paper: low-grade, 
medium-grade, and high-grade. Vela needs to supply 24 tons of low-grade, 6 tons of 
medium-grade, and 30 tons of high-grade paper. Factory A produces 8 tons of low-
grade, 1 ton of medium-grade, and 2 tons of high-grade paper daily, and costs $2000 
per day to operate. Factory B produces 2 tons of low-grade, 1 ton of medium-grade, 
and 8 tons of high-grade paper daily, and costs $4000 per day to operate. How many 
days should each factory operate to fill the orders at minimum cost?

SOLUTION 

Model

Let x = the number of days Factory A operates.

Let y = the number of days Factory B operates.

Then C = total operating cost =  2000x + 4000y is the objective function to be 
minimized. The constraints are

 8x + 2y Ú 24 Amount of low-grade is at least 24.

 x + y Ú 6  Amount of medium-grade is at least 6.

 2x + 8y Ú 30 Amount of high-grade is at least 30.

 x Ú 0, y Ú 0

Solve Graphically The region of feasible points is the intersection of the graphs of 
8x + 2y Ú 24, x + y Ú 6, and 2x + 8y Ú 30 in the first quadrant.

EXAMPLE 8 

(continued)

4x + y = 180

x + y = 90

10x + 5y = 800

[0, 100] by [0, 200]

Gsegner’s Produce

Figure 7.32 The feasible region, shaded in 
pink and bounded in red, for Example 7.
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0

5

10

15

5 10 15 20
x

y

(0, 12)

(2, 4)
(3, 3)

(15, 0)

Figure 7.33 The graph of the feasible 
region, showing the coordinates of the four 
vertex points. (Example 8)

As shown in Figure 7.33, this feasible region has four corner points:

10, 122, the y-intercept of 8x + 2y = 24

12, 42, the point of intersection of 8x + 2y = 24 and x + y = 6

13, 32, the point of intersection of x + y = 6 and 2x + 8y = 30

115, 02, the x-intercept of 2x + 8y = 30

The values of the objective function C at the corner points are given below:

 C10, 122 = 2000102  + 40001122 = 48,000

 C12, 42 = 2000122  + 4000142  = 20,000

 C13, 32 = 2000132  + 4000132  = 18,000

 C115, 02 = 20001152 + 4000102  = 30,000

Interpret The minimum operational cost is $18,000 when the two factories are 
operated for 3 days each. The two factories will produce 30 tons of low-grade, 6 tons 
of medium-grade, and 30 tons of high-grade paper. They will have a surplus of 6 tons of 
low-grade paper. Now try Exercise 39.

In Exercises 1–4, find the x- and y-intercepts of the line and draw its 
graph.

 1. 2x - 3y = 6  2. 5x + 10y = 30

 3. 
x

20
+

y

50
= 1 4. 

x
30

-
y

20
= 1

In Exercises 5–9, find the point of intersection of the two lines. (We 
used these values in Examples 7 and 8.)

 5. 4x + y = 180 and x + y = 90

 6. x + y = 90 and 10x + 5y = 800

 7. 4x + y = 180 and 10x + 5y = 800

 8. 8x + 2y = 24 and x + y = 6

 9. x + y = 6 and 2x + 8y = 30

 10. Solve the system of equations:

 y = x2

 2x + 3y = 4

QUICK REVIEW 7.4 (For help, go to Sections P.4 and 7.1.)

SECTION 7.4 Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–6, match the inequality with its graph, shaded in pink. 
Indicate whether the boundary is included in or excluded from the 
graph. All graphs are drawn in 3-4.7, 4.74  by 3-3.1, 3.14 .
 1. x … 3 2. y 7 2

 3. 2x - 5y Ú 2 4. y 7 11>22x2 - 1

 5. y Ú 2 - x2 6. x2 + y2 6 4

  (a)   (b)

(c) (d)

(e) (f)
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In Exercises 7–16, draw a hand sketch of the inequality. State the 
boundary of the region.

 7. x … 4 8. y Ú -3

 9. 2x + 5y … 7 10. 3x - y 7 4

 11. y 6 x2 + 1 12. y Ú x2 - 3

 13. x2 + y2 6 9 14. x2 + y2 Ú 4

 15. y 7 2x 16. y 6 sin x

Use an algebraic method in Exercises 17–22 to solve the system of 
inequalities. Support with a grapher.

 17.  5x - 3y 7 1
 3x + 4y … 18

 18.  4x + 3y … -6
 2x - y … -8

 19. y … 2x + 3
y Ú x2 - 2

 20.  x - 3y - 6 6 0
 y 7 -x2 - 2x + 2

 21.  y Ú x2

 x2 + y2 … 4

 22.  x2 + y2 … 9
 y Ú 0 x 0

Use an algebraic method in Exercises 23–26 to solve the system of 
inequalities. Support with a grapher.

In Exercises 23–26, solve the system of inequalities.

 23.  2x + y … 80
 x + 2y … 80

 x Ú 0
 y Ú 0

 24.  3x + 8y Ú 240
 9x + 4y Ú 360

 x Ú 6
 y Ú 0

 25.  5x + 2y … 20
 2x + 3y … 18

 x + y Ú 2
 x Ú 0
 y Ú 0

 26.  7x + 3y … 210
 3x + 7y … 210

 x + y Ú 30

In Exercises 27–30, write a system of inequalities whose solution is the 
region shaded in pink in the given figure. All boundaries are to be 
included.

 27. Group Activity  28. Group Activity 

[24.7, 4.7] by [23.1, 3.1] [24.7, 4.7] by [23.1, 3.1]

(4, 3)

[21, 8] by [21, 8]

(2, 1)

[21, 8] by [21, 8]

 29. Group Activity  30. Group Activity 

In Exercises 31–36, find the minimum and maximum, if they exist, of 
the objective function ƒ, subject to the constraints.

 31. Objective function: ƒ = 4x + 3y
Constraints:  x + y … 80

  x - 2y … 0
  x Ú 0, y Ú 0

 32. Objective function: ƒ = 10x + 11y
  Constraints:  x + y … 90
  3x - y Ú 0
  x Ú 0, y Ú 0

 33. Objective function: ƒ = 7x + 4y
Constraints:  5x + y Ú 60

  x + 6y Ú 60
  4x + 6y Ú 204
  x Ú 0, y Ú 0

 34. Objective function: f = 15x + 25y
Constraints:  3x + 4y Ú 60

  x + 8y Ú 40
  11x + 28y … 380
  x Ú 0, y Ú 0

 35. Objective function: ƒ = 5x + 2y
Constraints:  2x + y Ú 12

  4x + 3y Ú 30
  x + 2y Ú 10
  x Ú 0, y Ú 0

 36. Objective function: ƒ = 3x + 5y
Constraints:  3x + 2y Ú 20

  5x + 6y Ú 52
  2x + 7y Ú 30
  x Ú 0, y Ú 0

 37. Mining Ore Gehrke’s Metals mines two ores: R and S. The 
company extracts minerals A and B from each type of ore. It 
costs $50 per ton to extract 
80 lb of A and 160 lb of B 
from ore R. It costs $60 per 
ton to extract 140 lb of A 
and 50 lb of B from ore S. 
Gehrke’s must produce  
at least 4000 lb of A and  
3200 lb of B. How much of 
each ore should be processed 
to minimize cost? What is 
the minimum cost?

 38. Planning a Diet Mary’s diet is to contain at least 24 units 
of carbohydrates and 16 units of protein. Food substance A 
costs $1.40 per unit and each unit contains 3 units of carbohy-
drates and 4 units of protein. Food substance B costs $0.90 
per unit and each unit contains 2 units of carbohydrates and  
1 unit of protein. How many units of each food substance 
should she purchase in order to minimize cost? What is the 
minimum cost?
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 39. Producing Gasoline Two oil refineries produce three 
grades of gasoline: A, B, and C. At each refinery, the three 
grades of gasoline are produced in a single operation in the fol-
lowing proportions: Refinery 1 produces 1 unit of A, 2 units of 
B, and 1 unit of C; Refinery 2 produces 1 unit of A, 4 units of B, 
and 4 units of C. For the production of one operation, Refinery 1 
charges $300 and Refinery 2 charges $600. A customer needs 
100 units of A, 320 units of B, and 200 units of C. How should 
the orders be placed if the customer is to minimize its cost?

 40. Maximizing Profit A theater in London is presenting a pro-
gram on drinking and driving for students and their parents or 
other responsible adults. The proceeds will be donated to a local 
alcohol information center. Admission is €8 for adults and €4 
for students. However, this situation has two constraints: The 
theater can hold no more than 150 people and for every two 
adults, there must be at least one student. How many adults and 
students should attend to raise the maximum amount of money?

Standardized Test Questions
 41. True or False The graph of a linear inequality in x and y is 

a half-line. Justify your answer.

 42. True or False The boundary of the solution of 2x - 3y 6 5 
is the graph of 3y = 2x - 5. Justify your answer.

In Exercises 43–46, you may use a graphing calculator to solve the 
problem.

For Exercises 43–44, use the figure below, which shows the graphs of 
the two lines 3x + 4y = 5 and 2x - 3y = 4.

I

II
III

IV

 43. Multiple Choice Which of the following represents the 
solution of the system 3x + 4y Ú 5

 2x - 3y … 4?

(A) Region I plus its boundary

(B) Region I without its boundary

(C) Region II plus its boundary

(D) Region II without its boundary

(E) Region IV plus its boundary

 44. Multiple Choice Which of the following represents the 
solution of the system 3x + 4y 6 5

 2x - 3y 7 4?

(A) Region II plus its boundary

(B) Region III plus its boundary

(C) Region III without its boundary

(D) Region IV plus its boundary

(E) Region IV without its boundary

Exercises 45 and 46 refer to the following linear programming problem:

Objective function: ƒ = 5x + 10y
Constraints:  2x + y … 10

  x + 3y … 12
  x Ú 0, y Ú 0

 45. Multiple Choice Which of the following is not a corner 
point?

(A) 10, 02 (B) 15, 02
(C) 10, 42 (D) 13, 42
(E) 13.6, 2.82

 46. Multiple Choice What is the maximum value of ƒ in the 
feasible region of the problem?

(A) 0  (B) 25  (C) 40  (D) 46  (E) 55

Explorations
 47. Revisiting Example 6 Consider the objective function 

ƒ = 5x + 8y of Example 6.

(a) Prove that for any two real number values for ƒ, the two 
lines are parallel.

(b) Writing to Learn For ƒ 7 0, give reasons why the 
line moves farther away from the origin as the value of 
ƒ increases.

(c) Writing to Learn Give a geometric explanation of 
why the region of Example 6 must contain a minimum 
and a maximum value for ƒ.

 48. Writing to Learn Describe all the possible ways that 
two distinct parabolas of the form y = ƒ1x2 can intersect. 
Give examples.

Extending the Ideas
 49. Implicit Functions The equation

x2

9
+

y2

4
= 1

defines y as two functions of x. Solve for y to find the two 
functions.

 50. Implicit Functions The equation

x2 - y2 = 4

defines y as two functions of x. Solve for y to find the two 
functions.

 51. Solve the system of inequalities:

 
x2

9
+

y2

4
… 1

 y Ú x2 - 1

  [Hint: See Exercise 49.]

 52. Graph the inequality x2 - y2 … 4. [Hint: See Exercise 50.]
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Linear Programming 575–578

CHAPTER 7 Key Ideas

Properties, Theorems, and Formulas

Inverse of a 2 * 2 Matrix 550
Inverses of n * n Matrices 551
Properties of Matrices 552
Invertible Square Linear Systems 565

In Exercises 9 and 10, use multiplication to verify that the matrices 
are inverses.

 9. A = D1 -2 1 1
1 -1 0 3
1 -1 2 2
2 -4 2 3

T ,  B = D 8 1.5 0.5 -4.5
2 0.5 0.5 -1.5

-1 -0.5 0.5 0.5
-2 0 0 1

T
 10. A = C-1 1 1

2 1 0
-1 0 2

S ,  B = C-0.4 0.4 0.2
0.8 0.2 -0.4

-0.2 0.2 0.6
S

In Exercises 11 and 12, find the inverse of the matrix if it has one. If it 
does, use multiplication to support your result.

 11. D2 1 -1 -2
4 0 -2 1
3 -2 2 0
1 3 2 -1

T  12. C1 -2 1
2 3 -3
3 1 -1

S
In Exercises 13 and 14, evaluate the determinant of the matrix.

 13. C1 15 3
2 15 3
1 -9 -3

S  14. C1 -2 15
2 -1 15
1 1 -9

S
In Exercises 15–18, find the reduced row echelon form of the matrix.

 15. C1 0 2
3 1 5
1 -1 3

S  16. C 2 1 1 1
-3 -1 -2 1

5 2 2 3
S

 17. C1 2 3 1
2 3 3 -2
1 2 4 6

S  18. C 1 -2 0 4
-2 5 3 -6

2 -4 1 9
S

In Exercises 19–22, state whether the system of equations has a  
solution. If it does, solve the system.

CHAPTER 7 Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter 
test.

In Exercises 1 and 2, find (a) A + B, (b) A - B, (c) -2A, and  
(d) 3A - 2B.

 1. A = C3 -1 1
2 3 1
3 1 -2

S , B = C 0 1 -2
5 -3 4

-1 2 -5
S

 2. A = C2 3 -1 2
1 4 -2 -3
0 -3 2 1

S ,  B = C-1 2 0 4
2 -1 3 3

-2 4 1 3
S

In Exercises 3–8, find the products AB and BA, or state that a given 
product is not possible.

 3. A = C3 -1 1
2 3 1
3 1 -2

S , B = C 0 1
5 -3

-1 2
S

 4. A = C 1 -2 5
-3 0 1

2 4 -9
S ,  B = C1 -1 -12

1 -8 -6
0 -2 -14

S
 5. A = 3-1  44 ,  B = c 5 -3

2 1
d

 6. A = c-1 1
0 1

d ,  B = D3 -4
1 2
3 1
1 1

T
 7. A = C0 1 0

1 0 0
0 0 1

S ,  B = C 2 -3 4
1 2 -3

-2 1 -1
S

 8. A = D0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

T ,  B = D-2 1 0 1
3 0 2 1

-1 1 2 -1
3 -2 1 0

T  19. 3x - y = 1 
x + 2y = 5

 20.  x - 2y = -1
 -2x + y = 5

 21. x + 2y = 1
4y - 4 = -2x

 22.  x - 2y = 9

 3y -
3
2

 x = -9

 CHAPTER 7 Review Exercises 581
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In Exercises 23–28, use Gaussian elimination to solve the system of 
equations.

In Exercises 39–44, solve the system of equations graphically.

 23.  x + z + w = 2
 x + y + z = 3

 3x + 2y + 3z + w = 8

 24.  x + w = -2
 x + y + z + 2w = -2

 -x - 2y - 2z - 3w = 2

 25.  x + y - 2z = 2
 3x - y + z = 4

 -2x - 2y + 4z = 6

 26.  x + y - 2z = 2
 3x - y + z = 1

 -2x - 2y + 4z = -4

 27.  -x - 6y + 4z - 5w = -13
 2x + y + 3z - w = 4

 2x + 2y + 2z = 6
 -x - 3y + z - 2w = -7

 28.  -x + 2y + 2z - w = -4
 y + z = -1

 -x + 2y + 2z - 2w = -6
 -x + 3y + 3z - w = -5

In Exercises 29–32, solve the system of equations by using inverse 
matrices.

 29.  x + 2y + z = -1
 x - 3y + 2z = 1
 2x - 3y + z = 5

 30.    3x1 - x2 + x3 = 1
 2x1 + 3x2 + x3 = 4
 3x1 + x2 - 2x3 = 6

 31.  2x + y + z - w = 1
 2x - y + z - w = -2
 -x + y - z + w = -3
 x - 2y + z - w = 1

 32.  x - 2y + z - w = 2
 2x + y - z - w = -1
 x - y + 2z - w = -1
 x + 3y - z + w = 4

In Exercises 33–36, solve the system of equations by finding the 
reduced row echelon form of the augmented matrix.

 33.  x + 2y - 2z + w = 8 
 2x + 3y - 3z + 2w = 13

 34.  x + 2y - 2z + w = 8
 2x + 7y - 7z + 2w = 25

 x + 3y - 3z + w = 11

 35.  x + 2y + 4z + 6w = 6
 3x + 4y + 8z + 11w = 11
 2x + 4y + 7z + 11w = 10

 3x + 5y + 10z + 14w = 15

 36.  x + 2z - 2w = 5
 2x + y + 4z - 3w = 7
 4x + y + 7z - 6w = 15
 2x + y + 5z - 4w = 9

In Exercises 37 and 38, find the equilibrium point for the demand and 
supply curves.

 37. p = 100 - x2 Demand curve
  p = 20 + 3x  Supply curve

 38. p = 80 -
1
10

 x2 Demand curve

  p = 5 + 4x  Supply curve 

 39.  3x - 2y = 5
 2x + y = -2

 40.  y = x - 1.5
 y = 0.5x2 - 3

 41.  y = -0.5x2 + 3
 y = 0.5x2 - 1

 42.  x2 + y2 = 4
 y = 2x2 - 3

 43.  y = 2 sin x
 y = 2x - 3

 44.  y = ln 2x
 y = 2x2 - 12x + 15

In Exercises 45 and 46, find the coefficients of the function so that its 
graph goes through the given points.

 45. Curve Fitting ƒ1x2 = ax3 + bx2 + cx + d 
12, 82, 14, 52, 16, 32, 19, 42

 46. Curve Fitting ƒ1x2 = ax4 + bx3 + cx2 + dx + e 
1-2, -42, 11, 22, 13, 62, 14, -22, 17, 82

In Exercises 47–52, find the partial fraction decomposition of the  
rational function.

 47. 
3x - 2

x2 - 3x - 4
 48. 

x - 16

x2 + x - 2

 49. 
x + 14

x2 + 7x + 10
 50. 

-2x - 14

x2 + 6x + 8

 51. 
2x2 - 12x + 12

x3 - 6x2 + 11x - 6
 52. 

4x2 - 3x - 19

x3 - 4x2 + x + 6

In Exercises 53–56 match the inequality with its graph, shaded in pink. 
Indicate whether the boundary is included in or excluded from the 
graph. All graphs are drawn in the window 3-4.7, 4.74  by 3-3.1, 3.14 .

(a) (b)

(c) (d)

 53. x 7 3

 54. y … 2

 55. y … 2 - x2

 56. y 6 x2>2 - 1

In Exercises 57 and 58, graph the inequality.

 57. 2x - y … 1  58. x + 3y 6 2
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In Exercises 59–64, solve the system of inequalities. Give the coordi-
nates of any corner points.

(a) Find a linear regression model and superimpose its graph 
on a scatter plot of the data.

(b) Find a logistic regression model and superimpose its graph 
on a scatter plot of the data.

(c) Find when the models in parts (a) and (b) predict the same 
disbursement amounts.

(d) Writing to Learn Which model appears to be a better 
fit for the data? Which model would you choose to make 
predictions beyond 2020? Explain.

 71. Population Table 7.8 gives the populations (in thousands) 
of Hawaii and Idaho for selected years. Let x be the number of 
years since 1980.

 59.  4x + 9y Ú 360
 9x + 4y Ú 360

 x + y … 90

 60.  7x + 10y … 70
 2x + y … 10
 x + y Ú 3

 x Ú 0
 y Ú 0

 61.  x - 3y + 6 6 0
 y 7 x2 - 6x + 7

 62.  x + 2y Ú 4
 y … 9 - x2

 63.  x2 + y2 … 4
 y Ú x2

 64.  y … x2 + 4
 x2 + y2 Ú 4

In Exercises 65–68, find the minimum and maximum, if they exist, of 
the objective function ƒ, subject to the constraints.

 65. Objective function: ƒ = 7x + 6y
Constraints:

7x + 5y Ú 100
2x + 5y Ú  50
x Ú 0, y Ú  0

 66. Objective function: ƒ = 11x + 5y
Constraints:

5x + 2y Ú 60
5x + 8y Ú 120
x Ú 0, y Ú 0

 67. Objective function: ƒ = 3x + 7y
Constraints:

5x + 2y Ú 100
x + 4y Ú 110

5x + 11y … 460
x Ú 0, y Ú 0

 68. Objective function: ƒ = 9x + 14y
Constraints:

x + y … 120
9x + 2y Ú 240

3x + 10y Ú 360

 69. Rotating Coordinate Systems The xy-coordinate  
system is rotated through the angle 45° to obtain the  
x′y′-coordinate system.

(a) If the coordinates of a point in the xy-coordinate system are 
11, 22, what are the coordinates of the rotated point in the 
x′y′-coordinate system?

(b) If the coordinates of a point in the x′y′-coordinate system 
are 11, 22, what are the coordinates of the point in the  
xy-coordinate system that was rotated to it?

 70. Medicare Disbursements Table 7.7 shows the combined 
Medicare disbursements in billions of dollars for the Supple-
mental Medical Insurance and Hospital Insurance trust funds. 
Let x be time in years since 2000.

Table 7.7 Medicare Disbursements

Time  
(years)

Disbursements  
(billions of $)

2005 336.9
2010 521.2
2011 560.3
2012 550.1
2013 581.7
2014 600.3
2015 638.1

Source: U.S. Department of Health and Human Services.

Table 7.8 Populations of Two U.S. States

Time  
(years)

Hawaii 
(thousands)

Idaho 
(thousands)

1980 965 944
1990 1108 1007
2000 1212 1294
2010 1360 1568

Source: U.S. Census Bureau.

(a) Find a linear regression equation for the population of 
Hawaii.

(b) Find a linear regression equation for the population of 
Idaho.

(c) Graph the models from parts (a) and (b), and use these 
models to determine when the populations of the two states 
were about the same. 

(d) Writing to Learn Do these models seem appropriate 
for these data? Might a nonlinear model be more appropri-
ate in either case? If so, which nonlinear model would you 
select? Explain.

 CHAPTER 7 Review Exercises 583
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584 CHAPTER 7 Systems and Matrices

 72. (a)  The 2010 population data for three states are listed below. 
Use the 2010 data in Table 7.9 on the next page to create a 
3 * 2 matrix that estimates the number of males and 
females in these three states.

State Population (millions)

California 37.3
Florida 18.8
Rhode Island 1.1

(b) Write the data from the 2010 Census table below in the 
form of a 3 * 2 matrix.

State
% Pop. Under 

18 Years
% Pop. 65 Years 

or Older

California 25.0 11.4
Florida 21.3 17.3
Rhode Island 22.3 14.3

(c) Multiply your 3 * 2 matrix in part (b) by the scalar 0.01 to 
change the values from percentages to decimals.

(d) Use matrix multiplication to multiply the transpose of the 
matrix from part (c) by the matrix from part (a). What 
information does the resulting matrix provide?

(e) How many males under age 18 lived in these three states in 
2010? How many females age 65 or older lived in these 
three states? 

 73. Using Matrices A stockbroker sold a customer 200 shares 
of stock A, 400 shares of stock B, 600 shares of stock C, and 
250 shares of stock D. The prices per share of A, B, C, and D 
are $80, $120, $200, and $300, respectively.

(a) Write a 1 * 4 matrix N representing the number of shares 
of each stock the customer bought.

(b) Write a 1 * 4 matrix P representing the price per share of 
each stock.

(c) Write a matrix product that gives the total cost of the 
stocks that the customer bought.

 74. Basketball Attendance At Whetstone High School  
452 tickets were sold for the first basketball game. There were 
two ticket prices: $0.75 for students and $2.00 for nonstudents. 
How many tickets of each type were sold if the total revenue 
from the sale of tickets was $429?

 75. HDTV Deliveries Hix’s Discount Electronics has three 
sizes of high-definition televisions (HDTVs) on sale: small 
(19-in.), medium (32-in.), and large (47-in.). Hix’s has three 
types of vehicles that they use for deliveries: minivans, vans, 
and trucks. The minivans can carry 8 small, 3 medium, and  
2 large HDTVs; the vans, 15 small, 10 medium, and 6 large; 
the trucks, 22 small, 20 medium, and 5 large. On the last day of 
the sale, Hix’s has 115 small, 85 medium, and 35 large HDTVs 
to deliver. How many vehicles of each type are needed to 
deliver all of these?

 76. Investments Rebecca invests $38,000; part at 7.5% simple 
interest and the remainder at 6% simple interest. If her annual 
interest income is $2600, how much does she have invested at 
each rate?

 77. Business Loans Mitcham’s Furniture Store borrowed 
$650,000 to expand its facilities and extend its product line. 
Some of the money was borrowed at 4%, some at 6.5%, and 
the rest at 9%. How much was borrowed at each rate if the 
annual interest was $46,250 and the amount borrowed at 9% 
was twice the amount borrowed at 4%?

 78. Home Remodeling Sanchez Remodeling has three paint-
ers: Sue, Esther, and Murphy. Working together they can paint 
a large room in 4 hr. Sue and Murphy can paint the same size 
room in 6 hr. Esther and Murphy can paint the same size room 
in 7 hr. How long would it take each of them to paint the room 
alone?

 79. Swimming Pool Three 
pipes, A, B, and C, are con-
nected to a swimming pool. 
When all three pipes are 
running, the pool can be 
filled in 3 hr. When only A 
and B are running, the pool 
can be filled in 4 hr. When 
only B and C are running, 
the pool can be filled in  
3.75 hr. How long would it 
take each pipe running alone to fill the pool?

 80. Writing to Learn If the products AB and BA are defined 
for the n * n matrix A, what can you conclude about the order 
of matrix B? Explain.

 81. Writing to Learn If A is an m * n matrix and B is a p * q 
matrix, and if AB is defined, what can you conclude about their 
orders? Explain.
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population ever greater than the female population? Are 
there enough data to create a model for 100 years or 
more? Explain your answers.

 4. Notice that the data in Table 7.9 give information for a span 
of only 16 years. This is not enough information to answer 
accurately the questions in part 3. Data over a small period 
often appear to be linear and can be modeled with a linear 
equation that works well over that limited domain. Table 7.10 
gives more data. Now use these data to plot the number of 
males versus time and the number of females versus time, 
using 1900 as Year 0.

 5. Iterate. Notice that the data in Table 7.10 do not seem to be 
linear. Often, you may remember from Chapter 3, a logistic 
model is used to model population growth. Find the logistic 
regression model for each data plot. Do these models seem 
reasonable in the long run? Explain.

 6. Go to the U.S. Census Bureau Web site (www.census.gov). 
How well does your model predict the populations for the 
current year?

 7. Use the census data for 2010. What percentage of the popu-
lation was male, and what percentage was female?

 8. Go to the U.S. Census Bureau Web site (www.census.gov) 
and use the most recent data, along with the concepts from 
this chapter, to collect and analyze other data.

CHAPTER 7 Modeling Project

Examine the male and female population data from 2000 
through 2016 in Table 7.9.

Table 7.9 U.S. Male and Female Population 
Data, 2000–2016

Time (years) Male (millions) Female (millions)

2000 138.1 143.4
2002 141.5 146.4
2004 144.5 149.2
2006 147.5 151.9
2008 149.9 154.2
2010 151.8 157.0
2012 154.5 159.5
2014 156.8 161.8
2016 159.1 164.0

Source: U.S. Census Bureau.

 1. Carry out the mathematics. Plot the data using 2000 as 
Year 0. Find a linear regression model for each.

 2. Analyze the solution. What do the slope and y-intercept 
mean in each equation?

 3. Assess the solution. What conclusions can you draw? 
According to these models, will the male population ever 
become greater than the female population? Was the male 

Table 7.10 U.S. Male and Female Population Data, 1900–2010

Time 
(years)

Male 
(millions)

Female 
(millions)

Time 
(years)

Male  
(millions)

Female  
(millions)

1900 38.8 37.2 1960 88.3 91.0
1910 47.3 44.6 1970 98.9 104.3
1920 53.9 51.8 1980 110.1 116.5
1930 62.1 60.6 1990 121.3 127.5
1940 66.0 65.6 2000 138.1 143.4
1950 75.2 76.1 2010 151.8 157.0

Source: U.S. Census Bureau.

 CHAPTER 7 Modeling Project 585
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The oval lawn behind the White House in Washington, DC, is called the 

Ellipse. It has views of the Washington Monument, the Jefferson Memorial, 

the Department of Commerce, and the Old Post Office Building. The Ellipse is 

616 ft long and 528 ft wide and is in the shape of a conic section. Its shape 

can be modeled using the methods of this chapter. See page 606.

 8.1 Conic Sections and a 
New Look at Parabolas

 8.2 Circles and Ellipses

 8.3 Hyperbolas

 8.4 Quadratic Equations  
with xy Terms

 8.5 Polar Equations of Conics

 8.6 Three-Dimensional 
Cartesian Coordinate 
System

Analytic Geometry in Two 
and Three Dimensions

CHAPTER 8
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 SECTION 8.1 Conic Sections and a New Look at Parabolas 587

Chapter 8 Overview
By now you should be fairly comfortable thinking about functions graphically and 
algebraically, since connecting those two representations has been a consistent goal of 
this text. We now want to devote one chapter to a brief look at two interesting exten-
sions of this algebra-geometry connection. The first is an extension from linear equa-
tions in x and y (the graphs of which are always lines) to quadratic equations in x and y 
(the graphs of which are always curves called conic sections). The second is an exten-
sion from coordinates in 2-space (planar geometry) to coordinates in 3-space (solid 
geometry). In both cases we will temporarily abandon the interpretations that depend 
on y being a function of x, although you may revisit some other connections to func-
tions in future math courses.

The marriage of algebra and geometry, known as analytic geometry, grew out of the 
work of Frenchmen René Descartes (1596–1650) and Pierre de Fermat (1601–1665). 
They developed a systematic approach that could be used to solve algebra problems 
geometrically and geometry problems algebraically—two major themes of this course. 
It was analytic geometry that opened the door for Newton and Leibniz to develop the 
fundamental techniques of calculus less than half a century later.

History of Conic Sections
Parabolas, ellipses, and hyperbolas had been 
studied for many years when Apollonius  
(c. 250–175 bce) wrote his eight-volume Conic 
Sections. Apollonius, born in Perga, Asia Minor, 
was the first to unify these three curves as cross 
sections of a cone and to view the hyperbola as 
having two branches. Interest in conic sections 
was renewed in the 17th century when Galileo 
proved that projectiles follow parabolic paths and 
Johannes Kepler (1571–1630) discovered that 
planets travel in elliptical orbits.

What you’ll learn about
• Conic Sections

• Geometry of a Parabola

• Translations of Parabolas

• Reflective Property of a Parabola

... and why
Conic sections are the paths of 
nature: Any free-moving object in a 
gravitational field follows the path of 
a conic section.

Conic Sections
The connection between algebra and geometry is impressively simple in the case of 
lines in the xy-plane: Every first-degree (linear) equation Ax + By + C = 0 (assum-
ing A and B are not both 0) has a graph that is a line in the plane, and every line in the 
plane is the graph of some linear equation.

A second-degree (quadratic) equation in two variables is an equation of the form 
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (assuming A, B, and C are not all 0). The 
geometric connection between these quadratic equations and their graphs is not as 
simple as it is for linear equations, but it is no less impressive. In fact, every such equa-
tion has a graph that is a conic section, linking quadratic equations to a class of geomet-
ric curves studied extensively by the mathematician Apollonius (c. 250–175 bce).

Imagine two nonperpendicular lines intersecting at a point V. If we fix one of the lines 
as an axis and rotate the other line (the generator) around the axis, then the generator 
sweeps out a right circular cone with vertex V, as illustrated in Figure 8.1. Notice that 
the cone consists of two parts, called nappes, joined at the vertex. Each nappe resem-
bles a pointed ice-cream cone, except that these ice-cream cones extend infinitely as 
you move away from the vertex.

A conic section (or conic for short) is the intersection of a plane with one of these right 
circular cones. Figure 8.2 shows some of the possible curves that can result. The three 
most obvious conic sections (Figure 8.2a) are the parabola, the ellipse (of which we 
can consider the circle to be a special case), and the hyperbola. Less obvious are the 
so-called degenerate conic sections (Figure 8.2b), including a line, a point, and two 
intersecting lines. (Two other degenerate conics, two parallel lines and the empty set, 
can result from intersecting a plane with a cylinder. A cylinder can be viewed as a 
degenerate cone with its vertex at infinity. See Exercise 73.) These eight possibilities 
appear to be so different from one another that you might have easily concluded that 
they have nothing in common geometrically, had you not seen that each can be realized 
as the intersection of a plane with a (possibly degenerate) right circular cone.

We now want to take a deeper look at the geometric properties of the three basic conic 
sections (parabolas, ellipses, and hyperbolas), using the tools of analytic geometry to 

8.1 Conic Sections and a New Look at Parabolas

Axis
Generator

Upper
nappe

Lower
nappe

V

Figure 8.1 A right circular cone  
(of two nappes).
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588 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

connect them to quadratic equations in x and y. Some of the properties of these curves 
have real-world applications that have been exploited by scientists and engineers since 
the days of Apollonius.

Geometry of a Parabola
When the intersecting plane is parallel to the generator of the cone, the conic section 
formed is a parabola (the leftmost picture in Figure 8.2a). In Section 2.1 you encoun-
tered parabolas as the graphs of quadratic functions, a connection that proves to be use-
ful in solving problems involving free fall and projectile motion. What we need now is 
a purely geometric definition of a parabola as a set of points in the plane (known in 
geometry courses as a locus definition).

Parabola
(plane parallel to generator)

(a)

(b)

Closed curve
(ellipse or circle)

Two hyperbolas
(plane parallel to axis or not)

Single line
(plane tangent to cone)

Single point
(plane through vertex only)

Two intersecting lines
(other plane through vertex)

Figure 8.2 Conic sections: (a) standard and (b) degenerate. Two additional degenerate cases 
(two parallel lines and the empty set) are discussed in Exercise 73.

A Degenerate Parabola
If the focus F lies on the directrix l, the parabola 
“degenerates” to the line through F perpendicu-
lar to l. Henceforth, we will assume F does not 
lie on l.

DEFINITION Parabola

A parabola is the set of all points in a plane equidistant from a particular line 
(the directrix) and a particular point (the focus) in the plane (Figure 8.3).
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Point on the parabola

Dist. to focus
Axis

Focus

Vertex

Directrix

Dist. to directrix

Figure 8.3 Structure of a Parabola. Each point on the parabola is the same distance from the 
focus as it is from the directrix.

y

x

(0, 1)

Figure 8.4 The geometry of a parabola. 
Note that each point lies on a circle centered 
at the focus. The radius of the circle is the 
distance between the point and the directrix.

We can generalize the situation in Exploration 1 to prove that an equation for the 
parabola with focus 10, p2 and directrix y = -p is x2 = 4py (Figure 8.5).

We must prove first that a point P1x, y2 that is equidistant from F10, p2 and the line 
y = -p satisfies the equation x2 = 4py, and then that a point satisfying the equation 
x2 = 4py is equidistant from F10, p2 and the line y = -p:

Let P1x, y2 be equidistant from F10, p2 and the line y = -p. Notice that

 21x - 022 + 1y - p22 =  distance from P1x, y2 to F10, p2, and

 21x - x22 + 1y - 1-p222 =  distance from P1x, y2 to y = -p.

Understanding the Definition of Parabola

 1. Prove that the vertex of the parabola with focus 10, 12 and directrix y = -1  
is 10, 02 (Figure 8.4).

 2. Find an equation for the parabola shown in Figure 8.4. 

 3. Find the coordinates of the points of the parabola that are highlighted in  
Figure 8.4.

EXPLORATION 1 

Locus of a Point
Before the word set was used in mathematics, 
the Latin word locus, meaning “place,” was often 
used in geometric definitions. The locus of a 
point was the set of possible places a point could 
be and still fit the conditions of the definition. 
Sometimes, conics are still defined in terms of 
loci.

As you can see in Figure 8.3, the line passing through the focus and perpendicular to 
the directrix is the (focal) axis of the parabola. The axis is the line of symmetry for the 
parabola. The point where the parabola intersects its axis is the vertex of the parabola. 
The vertex is located midway between the focus and the directrix and is the point of the 
parabola that is closest to both the focus and the directrix.
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Equating these distances and squaring yields

 1x - 022 + 1y - p22 = 1x - x22 + 1y - 1-p222
 x2 + 1y - p22 = 0 + 1y + p22  Simplify.

 x2 + y2 - 2py + p2 = y2 + 2py + p2  Expand.

 x2 = 4py  Combine like terms.

By reversing the above steps, we see that a solution 1x, y2 of x2 = 4py is equidistant 
from F10, p2 and the line y = -p.

The equation x2 = 4py is the standard form of the equation of an upward- or down-
ward opening parabola with vertex at the origin. If p 7 0, the parabola opens upward; 
if p 6 0, it opens downward. An alternative algebraic form for such a parabola is 
y = ax2, where a = 1>14p2. So the graph of x2 = 4py is also the graph of the qua-
dratic function ƒ1x2 = ax2.

When the equation of an upward- or downward-opening parabola is written as x2 = 4py, 
the value p is interpreted as the focal length of the parabola—the directed distance 
from the vertex to the focus of the parabola. A line segment with endpoints on a parab-
ola is a chord of the parabola. The value 0 4p 0  is the focal width of the parabola—the 
length of the chord through the focus and perpendicular to the axis.

Parabolas that open to the right or to the left are inverse relations of upward- or down-
ward opening parabolas. Therefore, equations of parabolas with vertex 10, 02 that open 
to the right or to the left have the standard form y2 = 4px. If p 7 0, the parabola 
opens to the right, and if p 6 0, it opens to the left (Figure 8.6).

Parabolas with Vertex 10, 02
• Standard equation x2 = 4py y2 = 4px

• Opens Upward or  To the right or  
 downward to the left

• Focus 10, p2 1p, 02
• Directrix y = -p x = -p

• Axis y-axis x-axis

• Focal length p p

• Focal width 0 4p 0  0 4p 0
See Figures 8.5 and 8.6.

y

x

y2 = 4px
Directrix:

x = –p

Vertex

(a)

Focus

F(p, 0)O

y

x

y2 = 4px
Directrix:

x = –p

Vertex

(b)

Focus

F(p, 0) O

Figure 8.6 Graph of y2 = 4px with  
(a) p 7 0 and (b) p 6 0.

y

x

x2 = 4py

Directrix:  y = –p

Focus

(a)

F(0, p)

D(x, –p)
l

P(x, y)p

p

The vertex lies
halfway between

directrix and focus.

   

y

x

x2 = 4py

Directrix:  y = –p

Vertex at origin

(b)

F(0, p)

Focus

Figure 8.5 Graphs of x2 = 4py with 1a2 p 7 0 and 1b2 p 6 0.

Name Game
The chord of the parabola that defines the focal 
width is called the latus rectum. Latin students 
should note that latus (side) is the noun, and 
 rectum (right) is the adjective. Everyone else can 
stop snickering. Ellipses and hyperbolas also 
have latera recta, which are always chords 
through the foci perpendicular to the axes that 
pass through the vertices.
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y

x

(a)

(h, k + p)

(h, k)

  

y

x

(b)

(h + p, k)

(h, k)

Figure 8.7 Parabolas with vertex 1h, k2 and focus on (a) x = h and (b) y = k.

Finding the Focus, Directrix, and Focal Width
Find the focus, the directrix, and the focal width of the parabola y = -11>32x2.

SOLUTION Multiplying both sides of the equation by -3 yields the standard form 
x2 = -3y. The coefficient of y is 4p = -3; thus p = -3>4. So the focus is 10, p2 =  
10, -3>42. Because -p = -1-3>42 = 3>4, the directrix is the line y = 3>4. The 
focal width is 0 4p 0 = 0-3 0 = 3. Now try Exercise 1.

EXAMPLE 1 

Finding an Equation of a Parabola
Find an equation in standard form for the parabola whose directrix is the line x = 2 
and whose focus is the point 1-2, 02.
SOLUTION Because the directrix is x = 2 and the focus is 1-2, 02, the focal length 
is p = -2 and the parabola opens to the left. The equation of the parabola in standard 
form is y2 = 4px or, more specifically, y2 = -8x. Now try Exercise 15.

EXAMPLE 2 

Translations of Parabolas
When a parabola with the equation x2 = 4py or y2 = 4px is translated horizontally by 
h units and vertically by k units, the vertex of the parabola moves from 10, 02 to 1h, k2 
(Figure 8.7). Such a translation does not change the focal length, the focal width, or the 
direction the parabola opens.

Parabolas with Vertex 1h, k2
• Standard equation 1x - h22 = 4p1y - k2 1y - k22 = 4p1x - h2
• Opens Upward or To the right or  

 downward  to the left

• Focus 1h, k + p2 1h + p, k2
• Directrix y = k - p x = h - p

• Axis x = h y = k

• Focal length p p

• Focal width 0 4p 0  0 4p 0
See Figure 8.7.
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592 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Sometimes it is best to sketch a parabola by hand, as in Exploration 2; this helps us see 
the structure and relationships of the parabola and its features. At other times, we may 
want or need an accurate, active graph. If we wish to graph a parabola using a function 
grapher, we need to solve the equation of the parabola for y, as illustrated in Example 4.

Building a Parabola

Carry out the following steps using a sheet of rectangular graph paper.

 1. Let the focus F of a parabola be 12, -22 and its directrix be y = 4. Draw the  
x- and y-axes on the graph paper. Then sketch and label the focus and directrix 
of the parabola.

 2. Locate, sketch, and label the axis of the parabola. What is the equation of the 
axis?

 3. Locate and plot the vertex V of the parabola. Label it by name and coordinates.

 4. What are the focal length and focal width of the parabola?

 5. Use the focal width to locate, plot, and label the endpoints of a chord of the 
parabola that parallels the directrix.

 6. Sketch the parabola.

 7. Which direction does it open? 

 8. What is its equation in standard form? 

EXPLORATION 2

Finding an Equation of a Parabola
Find the standard form of the equation for the parabola with vertex 13, 42 and focus 
15, 42.
SOLUTION The axis of the parabola is the line passing through the vertex 13, 42 and 
the focus 15, 42. This is the line y = 4. So the equation has the form

1y - k22 = 4p1x - h2.
Because the vertex 1h, k2 = 13, 42, h = 3 and k = 4. The directed distance from the 
vertex 13, 42 to the focus 15, 42 is p = 5 - 3 = 2, so 4p = 8. Thus the equation we 
seek is

1y - 422 = 81x - 32.
Now try Exercise 21.

EXAMPLE 3 

Graphing a Parabola with a Horizontal Axis
Use a function grapher to graph the parabola 1y - 422 = 81x - 32 of Example 3.

SOLUTION 

 1y - 422 = 81x - 32
 y - 4 = ±281x - 32  Extract square roots.

 y = 4 ± 281x - 32 Add 4.

Let Y1 = 4 + 281x - 32 and Y2 = 4 - 281x - 32, and graph the two equations 
in a window centered at the vertex, as shown in Figure 8.8. Now try Exercise 45.

EXAMPLE 4 

When solving a problem like Example 3, it is a good idea to sketch the vertex, the 
focus, and other features of the parabola as we solve the problem. This makes it easy to 
see whether the axis of the parabola is horizontal or vertical and the relative positions 
of its features. Exploration 2 “walks us through” this process.
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[21, 7] by [22, 10]

Figure 8.8 The graphs of Y1 = 4 + 28 1x - 32 and Y 2 = 4 - 28 1x - 32  
together form the graph of 1y - 422 = 81x - 32. (Example 4)

SEARCHLIGHT

Outgoing

rays of lig
ht

 Filament
(light source)
 at focus

(a)

RADIO TELESCOPE

Incoming radio signals

concentrate at focus

Parabolic radio
wave reflector

(b)

Figure 8.9 Examples of parabolic 
reflectors.

y

x
V(0, 0)

F(0, p)
(–1.5, 1) (1.5, 1)

Figure 8.10 Cross section of parabolic 
reflector in Example 6.

Reflective Property of a Parabola
The main applications of parabolas involve their use as reflectors of sound, light, radio 
waves, and other electromagnetic waves. If we rotate a parabola in three-dimensional 
space about its axis, the parabola sweeps out a paraboloid of revolution. If we place a 
signal source at the focus of a reflective paraboloid, the signal reflects off the surface in 
lines parallel to the axis of symmetry, as illustrated in Figure 8.9a. This property is used 
in flashlights, headlights, searchlights, microwave relays, and satellite up-links.

The principle works for signals traveling in the reverse direction as well (Figure 8.9b); 
signals arriving parallel to a parabolic reflector’s axis are directed toward the reflec-
tor’s focus. This property is used to intensify signals picked up by radio telescopes and 
television satellite dishes, to focus arriving light in reflecting telescopes, to concentrate 
heat in solar ovens, and to magnify sound for sideline microphones at football games.

Closing the Gap
In Figure 8.8, we centered the graphing window 
at the vertex 13, 42 of the parabola to ensure that 
this point would be plotted. This avoids the com-
mon grapher error of leaving a gap between the 
two upper and lower parts of the conic section 
being plotted.

Using Standard Forms with a Parabola
Prove that the graph of y2 - 6x + 2y + 13 = 0 is a parabola, and find its vertex, 
focus, and directrix.

SOLUTION Because this equation is quadratic in the variable y, we complete the 
square with respect to y to obtain a standard form.

 y2 - 6x + 2y + 13 = 0

 y2 + 2y = 6x - 13  Isolate the y terms.

 y2 + 2y + 1 = 6x - 13 + 1 Complete the square.

 1y + 122 = 6x - 12

 1y + 122 = 61x - 22
This equation is in the standard form 1y - k22 = 4p1x - h2, where h = 2, k = -1, 
and p = 6>4 = 3>2 = 1.5. It follows that

• the vertex 1h, k2 is 12, -12;
• the focus 1h + p, k2 is 13.5, -12, or 17>2, -12;
• the directrix x = h - p is x = 0.5, or x = 1>2.
 Now try Exercise 49.

EXAMPLE 5 

Studying a Parabolic Microphone
On the sidelines of each of its televised football games, the FBTV network uses a 
parabolic reflector with a microphone at the reflector’s focus to capture the conversa-
tions among players on the field. If the parabolic reflector is 3 ft across and 1 ft deep, 
where should the microphone be placed?

EXAMPLE 6 

(continued)
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594 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Exercise numbers with a gray background indicate problems that  
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the distance between the given points.

 1. 1-1, 32 and 12, 52  2. 12, -32 and 1a, b2
In Exercises 3 and 4, solve for y in terms of x.

 3. 2y2 = 8x  4. 3y2 = 15x

In Exercises 5 and 6, complete the square to rewrite the equation in  
vertex form.

 5. y = -x2 + 2x - 7 6. y = 2x2 + 6x - 5

In Exercises 7 and 8, find the vertex and axis of the graph of ƒ. 
Describe how the graph of ƒ can be obtained from the graph of 
g1x2 = x2, and graph ƒ.

 7. ƒ1x2 = 3(x - 122 + 5 8. ƒ1x2 = -2x2 + 12x + 1

In Exercises 9 and 10, write an equation for the quadratic function 
whose graph contains the given vertex and point.

 9. Vertex 1-1, 32, point 10, 12
 10. Vertex 12,-52, point 15, 132

QUICK REVIEW 8.1 (For help, go to Sections P.2, P.5, and 2.1.)

SOLUTION We draw a cross section of the reflector as an upward-opening parabola 
in the Cartesian plane, placing its vertex V at the origin (Figure 8.10 on the previous 
page). We let the focus F have coordinates 10, p2 to yield the equation

x2 = 4py.

Because the reflector is 3 ft across and 1 ft deep, the points 1±1.5, 12 must lie on the 
parabola. The microphone should be placed at the focus, so we need to find the value 
of p. We do this by substituting the values we found into the equation:

 x2 = 4py

 1±1.522 = 4p112
 2.25 = 4p

 p =
2.25

4
= 0.5625

Because p = 0.5625 ft, or 6.75 in., the microphone should be placed inside the 
reflector along its axis and 6 34 in. from its vertex. Now try Exercise 59.

y

x

(a)

y

x

(b)

 7. x2 = 3y  8. x2 = -4y

 9. y2 = -5x  10. y2 = 10x

In Exercises 11–30, find an equation in standard form for the parabola 
that satisfies the given conditions.

 11. Vertex 10, 02, focus 1-3, 02
 12. Vertex 10, 02, focus 10, 22

SECTION 8.1 Exercises

In Exercises 1–6, find the vertex, focus, directrix, and focal width of the 
parabola.

 1. x2 = 6y 2. y2 = -8x

 3. (y - 4)2 = 12(x + 1) 4. 1x + 422 = -61y + 12
 5. 3x2 = -4y 6. 5y2 = 16x

In Exercises 7–10, match the graph with its equation.

y

x

(c)

y

x

(d)
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 13. Vertex 10, 02, directrix y = 4

 14. Vertex 10, 02, directrix x = -4

 15. Focus 10, 52, directrix y = -5

 16. Focus 1-4, 02, directrix x = 4

 17. Vertex 10, 02, opens to the left, focal width = 20

 18. Vertex 10, 02, opens to the left, focal width = 12

 19. Vertex 10, 02, opens downward, focal width = 6

 20. Vertex 10, 02, opens upward, focal width = 3

 21. Focus 1-2, -42, vertex 1-4,-42
 22. Focus 1-5, 32, vertex 1-5, 62
 23. Focus 13, 42, directrix y = 1

 24. Focus 12, -32, directrix x = 5

 25. Vertex 1-3, 52, directrix x = -12

 26. Vertex 13, 52, directrix y = 7

 27. Vertex 14, -42, opens upward, focal width = 8

 28. Vertex 1-3, 32, opens downward, focal width = 20

 29. Vertex 1-1, -42, opens to the left, focal width = 10

 30. Vertex 12, 32, opens to the right, focal width = 5

In Exercises 31–36, sketch the graph of the parabola by hand.

 31. y2 = -4x 32. x2 = 8y

 33. 1x + 422 = -121y + 12
 34. 1y + 222 = -161x + 32
 35. 1y - 122 = 81x + 32
 36. 1x - 522 = 201y + 22
In Exercises 37–48, graph the parabola using a function grapher.

 37. y = 4x2 38. y = -  
1
6

 x2

 39. x = -8y2 40. x = 2y2

 41. 121y + 12 = 1x - 322 42. 61y - 32 = 1x + 122
 43. 2 - y = 16(x - 322 44. 1x + 422 = -61y - 12
 45. 1y + 322 = 12(x - 22 46. 1y - 122 = -41x + 52
 47. 1y + 222 = -81x + 12 48. 1y - 622 = 161x - 42
In Exercises 49–52, prove that the graph of the equation is a parabola, 
and find its vertex, focus, and directrix.

 49. x2 + 2x - y + 3 = 0

 50. 3x2 - 6x - 6y + 10 = 0

 51. y2 - 2y - 16x + 129 = 0

 52. y2 - 2y + 4x - 12 = 0

In Exercises 53–56, write an equation for the parabola.

 53. y

x
(–6, –4)

(0, 2)

 54. 
y

x
(1, –3)

(5.5, 0)

 55. y

x

(0, –2)
(2, –1)

 56. y

x
(–1, 3)

(3, 5)

 57. Writing to Learn Explain why the derivation of x2 = 4py 
is valid regardless of whether p 7 0 or p 6 0.

 58. Writing to Learn Prove that an equation for the parabola 
with focus 1p, 02 and directrix x = -p is y2 = 4px.

 59. Designing a Flashlight Mirror The mirror of a flashlight 
is a paraboloid of revolution. Its diameter is 6 cm and its depth 
is 2 cm. How far from the vertex should the filament of the 
lightbulb be placed for the beam of the flashlight to run parallel 
to the axis of the flashlight’s mirror?

6 cm

2 cm

 60. Designing a Satellite Dish The reflector of a television 
satellite dish is a paraboloid of revolution with diameter 5 ft 
and a depth of 2 ft. How far from the vertex should the receiv-
ing antenna be placed?

5 ft

2 ft

 61. Parabolic Microphones 
The Sports Channel uses a 
 parabolic microphone to capture 
all the sounds from golf tourna-
ments throughout a season.  
If one of its microphones has a 
parabolic surface generated by 
the parabola x2 = 10y, locate 
the focus (the electronic 
receiver) of the parabola.

 62. Parabolic Headlights Stein Glass, Inc., makes parabolic 
headlights for a variety of automobiles. If one of its headlights 
has a parabolic surface generated by the parabola x2 = 12y, 
where should its light bulb be placed?

 63. Group Activity Designing a Suspension Bridge  
The main cables of a suspension bridge uniformly distribute 
the weight of the bridge when in the form of a parabola. The 
main cables of a particular bridge are attached to towers that 
are 600 ft apart. The cables are attached to the towers at a 
height of 110 ft above the roadway and are 10 ft above the 
roadway at their lowest points. If vertical support cables are at 
50-ft intervals along the level roadway, what are the lengths of 
these vertical cables? See art on the next page.
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596 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

 64. Group Activity Designing a Bridge Arch Parabolic 
arches are known to have greater strength than other arches.  
A bridge with a supporting parabolic arch spans 60 ft with a 
30-ft-wide road passing underneath the bridge. In order to 
have a minimum clearance of 16 ft, what is the maximum 
clearance?

  

60 ft

30 ft

Standardized Test Questions
 65. True or False Every point on a parabola is the same 

 distance from its focus and its axis. Justify your answer.

 66. True or False The directrix of a parabola is parallel to the 
parabola’s axis. Justify your answer.

In Exercises 67–70, solve the problem without using a calculator.

 67. Multiple Choice Which of the following curves is not a 
conic section?

(A) Circle

(B) Ellipse

(C) Hyperbola

(D) Oval

(E) Parabola

 68. Multiple Choice Which point do all conics of the form 
x2 = 4py have in common?

(A) 11, 12
(B) 11, 02
(C) 10, 12
(D) 10, 02
(E) 1-1, -12

  

600 ft

110 ft50 ft

 69. Multiple Choice The focus of y2 = 12x is

(A) 13, 32.
(B) 13, 02.
(C) 10, 32.
(D) 10, 02.
(E) 1-3, -32.

 70. Multiple Choice The vertex of 1y - 322 = -81x + 22 
is

(A) 1 3, -22.
(B) 1-3, -22.
(C) 1-3, 22.
(D) 1-2, 32.
(E) 1-2, -32.

Explorations
 71. Dynamically Constructing a Parabola Use a 

geometry software package, such as Cabri Geometry II™, 
The Geometer’s Sketchpad ®, or similar application on a 
handheld device, to construct a parabola geometrically from 
its definition. (See Figure 8.3.)

(a) Start by placing a line l (directrix) and a point F (focus) 
not on the line in the construction window.

(b) Construct a point A on the directrix, and then the seg-
ment AF.

(c) Construct a point P where the perpendicular bisector of 
AF meets the line perpendicular to l through A.

(d) What curve does P trace out as A moves?

(e) Prove that your answer to part (d) is correct.

 72. Constructing Points of a Parabola Use a 
 geometry software package, such as Cabri Geometry II™, The 
Geometer’s Sketchpad ®, or similar application on a handheld 
device, to construct Figure 8.4, associated with Exploration 1.

(a) Start by placing the coordinate axes in the construction 
window.

(b) Construct the line y = -1 as the directrix and the point 
10, 12 as the focus.

(c) Construct the horizontal lines and concentric circles 
shown in Figure 8.4.

(d) Construct the points where these horizontal lines and 
concentric circles meet.

(e) Prove these points lie on the parabola with directrix 
y = -1 and focus 10, 12.

 73. Degenerate Conics from a Degenerate 
Cone Figure 8.2 shows all the possible graph types that can 
result from intersecting a plane with a double-napped right cir-
cular cone. Still, there are two more possibilities for graphs of 
quadratic equations in two variables that must be considered.

(a) Consider the equation x2 - 2xy + y2 - 1 = 0. Prove 
algebraically that this equation is equivalent to 
1x - y + 121x - y - 12 = 0. What two lines form 
the graph of the solution set?
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(b) Why is the graph in (a) not covered by the cases in  
Figure 8.2?

(c) Consider the equation x2 + y2 + 1 = 0. What points 
1x, y2 solve the equation? (Remember that x and y are both 
real numbers.)

(d) Why is the graph of the solution in (c) not covered by the 
cases in Figure 8.2?

(e) We may imagine an infinitely extended cylinder to be a 
degenerate “cone” with a vertex at infinity. (This kind of 
re-imagining is useful in non-Euclidean geometry.) Draw a 
cylinder and show how each of the graphs in parts (a) and 
(c) can be realized as the intersection of the cylinder with 
an appropriate plane.

Extending the Ideas
 74. Tangent Lines A tangent line of a parabola is a line that 

intersects but does not cross the parabola. Prove that a line tan-
gent to the parabola x2 = 4py at the point 1a, b2 crosses the 
y-axis at 10, -b2.

 75. Focal Chords A focal chord of a parabola is a chord of the 
parabola that passes through the focus.

(a) Prove that the x-coordinates of the endpoints of a focal 

chord of x2 = 4py are x = 2p1m±2m2 + 12, where m 
is the slope of the focal chord. 

(b) Using part (a), prove that the minimum length of a focal 
chord is the focal width 0 4p 0 . 

 76. Latus Rectum The focal chord of a parabola perpendicular 
to the axis of the parabola is the latus rectum, which is Latin 
for “right chord.” Using the results from Exercises 74 and 75, 
prove:

(a) For a parabola, the two endpoints of the latus rectum and 
the point of intersection of the axis and directrix are the 
vertices of an isosceles right triangle.

(b) The legs of this isosceles right triangle are tangent to the 
parabola.
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Figure 8.12 shows a point P1x, y2 of an ellipse. The fixed points F1 and F2 are the foci 
of the ellipse, and the distances whose sum is constant are d1 and d2. We can construct 
an ellipse using a pencil, a loop of string, and two pushpins. Put the loop around the 
two pins placed at F1 and F2, pull the string taut with a pencil point P, and move the 
pencil around to trace out the ellipse (Figure 8.13).

We now use the definition to derive an equation for an ellipse. For some constants a 
and c with a 7 c Ú 0, let F11-c, 02 and F21c, 02 be the foci (Figure 8.14). Then an 
ellipse is defined by the set of points P1x, y2 such that

PF1 + PF2 = 2a.

Vertex Focus Center

Focal axis

Focus Vertex

Figure 8.11 Key points on the focal  
axis of an ellipse.

y

x
F1 F2

d2

d1

P

d1 + d2 = constant

Figure 8.12 Structure of an Ellipse. The 
sum of the distances from the foci to each 
point on the ellipse is a constant.

What you’ll learn about
• Transforming the Unit Circle

• Geometry of an Ellipse

• Translations of Ellipses

• Orbits and Eccentricity

• Reflective Property of an Ellipse

... and why
Ellipses are the paths of planets and 
comets around the Sun, or of 
moons around planets.

Transforming the Unit Circle
As was noted repeatedly in Chapters 4 and 5, the circle with radius 1 centered at 10, 02 
is the graph of the equation x2 + y2 = 1. If you stretch this circle horizontally and 
vertically by the same factor r and shift it h units horizontally and k units vertically, you 
get a circle of radius r centered at 1h, k2. Recall from Section 1.6 that we know exactly 
how these transformations will affect the algebraic equation: They will transform it to 
31x - h2>r42 + 31y - k2>r42 = 1. This is equivalent to the “standard form” equa-
tion 1x - h22 + 1y - k22 = r2 that we reviewed in Section P.2, where it was derived 
using the distance formula.

Now suppose that you stretch the unit circle horizontally by the factor a and vertically 
by the factor b before shifting the center to 1h, k2. If a and b are different numbers, the 
curve will be elliptical, stretched more in one direction than in the other. The equation, 
almost the same as for the circle, is 31x - h2>a42 + 31y - k2>b42 = 1, or, equiva-
lently, 1x - h22>a2 + 1y - k22>b2 = 1. That is the equation of an ellipse in standard 
form.

This quick and simple derivation of the general formula for an ellipse neatly explains 
why a circle can be thought of as a special case of an ellipse. However, because our 
goal is to understand the geometric properties of ellipses, we need to start with a geo-
metric definition, just as we did with the parabola in Section 8.1. Eventually we will 
arrive at the same algebraic formula, but with additional geometric understanding of a 
and b (not to mention a new variable, c).

Geometry of an Ellipse
When a plane intersects one nappe of a right circular cone in a simple closed curve, the 
curve is an ellipse. (It could also be a circle, which we will consider to be a special case 
of an ellipse).

8.2 Circles and Ellipses

DEFINITION Ellipse

An ellipse is the set of all points in a plane whose distances from two fixed 
points in the plane have a constant sum. The fixed points are the foci (plural of 
focus) of the ellipse. The line through the foci is the focal axis. The point on the 
focal axis midway between the foci is the center. The points where the ellipse 
intersects its axis are the vertices of the ellipse (Figure 8.11).
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F1 F2

P(x, y)

Figure 8.13 How to draw an ellipse.

Using the distance formula, the equation becomes21x + c22 + 1y - 022 + 21x - c22 + 1y - 022 = 2a.

 21x - c22 + y2 = 2a - 21x + c22 + y2 Rearrange terms.

 x2 - 2cx + c2 + y2 = 4a2 - 4a21x + c22 + y2 + x2 + 2cx + c2 + y2

Square.

 a21x + c22 + y2 = a2 + cx Simplify.

 a21x2 + 2cx + c2 + y22 = a4 + 2a2cx + c2x2 Square.

 1a2 - c22x2 + a2y2 = a21a2 - c22 Simplify.

Letting b2 = a2 - c2, we have

b2x2 + a2y2 = a2b2,

which is usually written as
x2

a2 +
y2

b2 = 1.

Because these steps can be reversed, a point P1x, y2 satisfies this last equation if and 
only if the point lies on the ellipse defined by PF1 + PF2 = 2a, provided that 
a 7 c Ú 0 and b2 = a2 - c2. The Pythagorean relation b2 = a2 - c2 can be written 
many ways, including c2 = a2 - b2 and a2 = b2 + c2.

The equation x2>a2 + y2>b2 = 1 is the standard form of the equation of an ellipse 
centered at the origin with the x-axis as its focal axis. An ellipse centered at the origin 
with the y-axis as its focal axis is the inverse of x2>a2 + y2>b2 = 1 and thus has an 
equation of the form

y2

a2 +
x2

b2 = 1.

As with circles and parabolas, a line segment with endpoints on an ellipse is a chord of 
the ellipse. The chord lying on the focal axis is the major axis of the ellipse. The chord 
through the center perpendicular to the focal axis is the minor axis of the ellipse. The 
length of the major axis is 2a and of the minor axis is 2b. The number a is the semima-
jor axis, and b is the semiminor axis.

Axis Alert
For an ellipse, the word axis is used in several 
ways. The focal axis is a line. The major and 
minor axes are line segments. The semimajor and 
semiminor axes are numbers.

Ellipses with Center (0, 0)

• Standard equation 
x2

a2 +
y2

b2 = 1 
y2

a2 +
x2

b2 = 1

• Focal axis x-axis y-axis

• Foci 1±c, 02 10, ±c2
• Vertices 1±a, 02 10, ±a2
• Semimajor axis a a

• Semiminor axis b b

• Pythagorean relation a2 = b2 + c2 a2 = b2 + c2

See Figure 8.15 on the next page.

Finding the Vertices and Foci of an Ellipse
Find the vertices and the foci of the ellipse 4x2 + 9y2 = 36.

SOLUTION Dividing both sides of the equation by 36 yields the standard form 
x2>9 + y2>4 = 1. Because the larger number is the denominator of x2, the focal axis 
is the x-axis. So a2 = 9, b2 = 4, and c2 = a2 - b2 = 9 - 4 = 5. Thus the vertices 
are 1±3, 02, and the foci are 1±25, 02. Now try Exercise 1.

EXAMPLE 1 

y

xCenter
Focus Focus
F1(–c, 0) F2(c, 0)O

b

a

P(x, y)

Figure 8.14 The ellipse defined by 
PF1 + PF2 = 2a is the graph of the equation 
x2>a2 + y2>b2 = 1, where b2 = a2 - c2.
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An ellipse centered at the origin with its focal axis on a coordinate axis is symmetric 
with respect to the origin and both coordinate axes. Such an ellipse can be sketched by 
first drawing a guiding rectangle centered at the origin with sides parallel to the coordi-
nate axes and then sketching the ellipse inside the rectangle, as shown in the Drawing 
Lesson.

y

x

b

c

a

(a)

(c, 0) (a, 0)(–c, 0)(–a, 0)

(0, b)

(0, –b)

   

y

x
b

c
a

(b)

(b, 0)(–b, 0)

(0, c)

(0, a)

(0, –c)

(0, –a)

Figure 8.15 Ellipses centered at the origin with foci on (a) the x-axis and (b) the y-axis.  
In each case, a right triangle illustrating the Pythagorean relation is shown.

Drawing Lesson

How to Sketch the Ellipse x2>a2 + y2>b2 = 1

1. Sketch line segments at  
x = ±a and y = ±b and  
complete the rectangle  
they determine.

2. Inscribe an ellipse that is  
tangent to the rectangle at  
1±a, 02 and 10, ±b2.

y

x

b

–b

a–a

y

x

b

–b

a–a

If we wish to graph an ellipse using a function grapher, we need to solve the equation 
of the ellipse for y, as illustrated in Example 2.

Finding an Equation and Graphing an Ellipse
Find an equation of the ellipse with foci 10, -32 and 10, 32 whose minor axis has 
length 4. Sketch the ellipse and support your sketch with a grapher.

SOLUTION The center is 10, 02. The foci are on the y-axis with c = 3. The semimi-
nor axis is b = 4>2 = 2. Using a2 = b2 + c2, we have a2 = 22 + 32 = 13. So the 
standard form of the equation for the ellipse is

y2

13
+

x2

4
= 1.

Using a = 213 ≈ 3.61 and b = 2, we can sketch a guiding rectangle and then the 
ellipse itself, as explained in the Drawing Lesson. (Try doing this.) To graph the 
ellipse using a function grapher, we solve for y in terms of x.

EXAMPLE 2 
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[26, 6] by [24, 4]

(a)   

[24.7, 4.7] by [23.1, 3.1]

(b)   

[29.4, 9.4] by [26.2, 6.2]

(c)

Figure 8.16 Three views of the ellipse y2>13 + x2>4 = 1. All of the windows are square or approximately square viewing windows 
so we can see the true shape. Notice that the gaps between the upper and lower function branches do not occur when the grapher 
window includes columns of pixels whose x-coordinates are ±2 as in (b) and (c). (Example 2)

y

x

(a)

(h – a, k)

(h – c, k)

(h, k)

(h + c, k)

(h + a, k)

y

x

(b)

(h, k)

(h, k + a)

(h, k – c)

(h, k + c)

(h, k – a)

Figure 8.17 Ellipses with center 1h, k2  
and foci on (a) y = k and (b) x = h.

Translations of Ellipses
When an ellipse with center 10, 02 is translated horizontally by h units and vertically by 
k units, the center of the ellipse moves from 10, 02 to 1h, k2, as shown in Figure 8.17. 
Such a translation does not change the length of the major or minor axis or the Pythag-
orean relation.

That 3:2 Ratio Again
Notice that we chose square viewing windows in 
Figure 8.16. A nonsquare window would give a 
distorted view of an ellipse, due to the different 
horizontal and vertical scales.

 
y2

13
= 1 -

x2

4

 y2 = 1311 - x2>42
 y = ±21311 - x2>42

Figure 8.16 shows three views of the graphs of

Y1 = 21311 - x2>42  and  Y2 = -21311 - x2>42.
We must select the viewing window carefully to avoid grapher failure.
 Now try Exercise 17.

Ellipses with Center 1h, k2

• Standard 
1x - h22

a2 +
1y - k22

b2 = 1 
1y - k22

a2 +
1x - h22

b2 = 1 
equation

• Focal axis y = k x = h

• Foci 1h ± c, k2 1h, k ± c2
• Vertices 1h ± a, k2 1h, k ± a2
• Semimajor a a 

axis

• Semiminor b b 
axis

• Pythagorean a2 = b2 + c2 a2 = b2 + c2 
relation

See Figure 8.17.
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602 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

With the information found about the ellipse in Example 4 and knowing that its semi-
minor axis b = 29 = 3, we could easily sketch the ellipse. Obtaining an accurate 
graph of the ellipse using a function grapher is another matter. Generally, the best way 
to graph an ellipse using a grapher is to use parametric equations.

y

x

(–2, –1) (8, –1)8

6

10

Figure 8.18 Given information for  
Example 3.

Finding an Equation of an Ellipse
Find the standard form of the equation for the ellipse whose major axis has endpoints 
1-2, -12 and 18, -12 and whose minor axis has length 8.

SOLUTION Figure 8.18 shows the major axis endpoints, the minor axis, and the 
center of the ellipse. The standard equation of this ellipse has the form

1x - h22
a2 +

1y - k22
b2 = 1,

where the center 1h, k2 is the midpoint 13, -12 of the major axis. The semimajor axis 
and semiminor axis are

a =
8 - 1-22

2
= 5  and  b =

8
2

= 4.

So the equation we seek is

 
1x - 322

52 +
1y - 1-1222

42 = 1,

 
1x - 322

25
+
1y + 122

16
= 1.

 Now try Exercise 31.

EXAMPLE 3 

Locating Key Points of an Ellipse
Find the center, vertices, and foci of the ellipse

1x + 222
9

+
1y - 522

49
= 1.

SOLUTION The standard equation of this ellipse has the form

1y - 522
49

+
1x + 222

9
= 1.

The center 1h, k2 is 1-2, 52. Because the semimajor axis a = 249 = 7, the vertices 
1h, k ±  a2 are

 1h, k + a2 = 1-2, 5 + 72 = 1-2, 122  and

 1h, k - a2 = 1-2, 5 - 72 = 1-2, -22.
Because

c = 2a2 - b2 = 249 - 9 = 240,

the foci 1h, k ±  c2 are 1-2, 5 ±  2402, or approximately 1-2, 11.322 and  
1-2, -1.322. Now try Exercise 37.

EXAMPLE 4 
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Center

Sun at
focus

Semimajor axis a

Orbiting
object

a – c a + c

Perihelion

Aphelion

Figure 8.19 Many celestial objects have elliptical orbits around the Sun.

Orbits and Eccentricity
Kepler’s First Law of Planetary Motion, published in 1609, states that the path of a 
planet’s orbit is an ellipse with the Sun at one of the foci. Asteroids, comets, and other 
bodies that orbit the Sun follow elliptical paths. The closest point to the Sun in such an 
orbit is the perihelion, and the farthest point is the aphelion (Figure 8.19). The shape of 
an ellipse is related to its eccentricity.

A New e
Try not to confuse the eccentricity e with the nat-
ural base e used in exponential and logarithmic 
functions. The context should make it clear 
which meaning is intended.

Graphing an Ellipse Using Its  
Parametric Equations

 1. Use the Pythagorean trigonometry identity cos2 t + sin2 t = 1 to prove that 
the parametrization x = -2 + 3 cos t, y = 5 + 7 sin t, 0 … t … 2p, will 
produce a graph of the ellipse 1x + 222>9 + 1y - 522>49 = 1.

 2. Graph x = -2 + 3 cos t, y = 5 + 7 sin t, 0 … t … 2p, in a square viewing 
window to support part 1 graphically.

 3. Create parametrizations for the ellipses in Examples 1, 2, and 3.

 4. Graph each of your parametrizations in part 3 and check the features of the 
obtained graph to see whether they match the expected geometric features of 
the ellipse. Revise your parametrization and regraph until all features match.

 5. Prove that each of your parametrizations is valid.

EXPLORATION 1 

DEFINITION Eccentricity of an Ellipse

The eccentricity of an ellipse is

e =
c
a

=
2a2 - b2

a
,

where a is the semimajor axis, b is the semiminor axis, and c is the distance 
from the center of the ellipse to either focus.

The noun eccentricity comes from the adjective eccentric, which means off-center. 
Mathematically, the eccentricity is the ratio of c to a. The larger c is, compared to a, the 
more off-center the foci are.
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604 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

In any ellipse, a 7 c Ú 0. Dividing this inequality by a establishes that 0 … e 6 1. 
So the eccentricity of an ellipse is between 0 and 1, or is 0 if the ellipse is a circle.

Ellipses with highly off-center foci are elongated and have eccentricities close to 1; for 
example, the orbit of Halley’s comet has eccentricity e ≈ 0.97. Ellipses with foci near 
the center are almost circular and have eccentricities close to 0; for instance, Venus’s 
orbit has an eccentricity of 0.0068.

What happens when the eccentricity e = 0? In an ellipse, because a is positive, 
e = c>a = 0 implies that c = 0 and thus a = b. In this case, the ellipse degenerates 
into a circle. Because the ellipse is a circle when a = b, it is customary to denote this 
common value as r and call it the radius of the circle.

Surprising things happen when an ellipse is nearly but not quite a circle, as in the orbit 
of our planet, Earth.

Analyzing Earth’s Orbit
Earth’s orbit has a semimajor axis a ≈ 149.598 Gm (gigameters) and an eccentricity 
of e ≈ 0.0167. Calculate and interpret b and c.

SOLUTION Because e = c>a, c = ea ≈ 0.0167 * 149.598 = 2.4982866 and

b = 2a2 - c2 ≈ 2149.5982 - 2.49828662 ≈ 149.577.

The semiminor axis b ≈ 149.577 Gm is only 0.014% shorter than the semimajor 
axis a ≈ 149.598 Gm. The aphelion distance of Earth from the Sun is 
a + c ≈ 149.598 +  2.498 = 152.096 Gm, and the perihelion distance is 
a - c ≈ 149.598 - 2.498 =147.100 Gm.

Thus Earth’s orbit is nearly a perfect circle, but the distance between the center of the 
Sun at one focus and the center of Earth’s orbit is c ≈ 2.498 Gm, more than 2 orders 
of magnitude greater than a - b. The eccentricity as a percentage is 1.67%; this 
measures how far off-center the Sun is. Now try Exercise 53.

EXAMPLE 5 

Constructing Ellipses to Understand 
Eccentricity

Each group will need a pencil, a centimeter ruler, scissors, some string, several 
sheets of unlined paper, two pushpins, and a foam board or other appropriate 
backing material.

 1. Make a closed loop of string that is 20 cm in circumference.

 2. Place a sheet of unlined paper on the backing material, and carefully place the 
two pushpins 2 cm apart near the center of the paper. Construct an ellipse using 
the loop of string and a pencil as shown in Figure 8.13. Measure and record the 
resulting values of a, b, and c for the ellipse, and compute the ratios e = c>a 
and b>a for the ellipse.

 3. On separate sheets of paper repeat step 2 three more times, placing the push-
pins 4, 6, and 8 cm apart. Record the values of a, b, c and the ratios e and b>a 
for each ellipse.

 4. Write your observations about the ratio b>a as the eccentricity ratio e 
increases. Which of these two ratios measures the shape of the ellipse? Which 
measures how off-center the foci are?

 5. Plot the ordered pairs 1e, b>a2, determine a formula for the ratio b>a as a func-
tion of the eccentricity e, and overlay this function’s graph on the scatter plot.

EXPLORATION 2 
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 SECTION 8.2 Circles and Ellipses 605

Ellipsoids are used in health care to avoid surgery in the treatment of kidney stones.  
An elliptical lithotripter emits underwater ultrahigh-frequency (UHF) shock waves 
from one focus, with the patient’s kidney carefully positioned at the other focus  
(Figure 8.21).

F2F1

Figure 8.20 The reflective property of an ellipse.

Patient’s
kidney
stone

Source of
UHF shock
waves

   

y

(0, 0)

F2

F1

Kidney
Stone

Source

Figure 8.21 How a lithotripter breaks up kidney stones.

Whispering Galleries
In architecture, ceilings in the shape of an 
 ellipsoid are used to create whispering galleries. 
A person whispering at one focus can be heard 
across the room by a person at the other focus. 
An ellipsoid is part of the design of the Texas 
state capitol; a hand clap made in the center of 
the main vestibule (at one focus of the ellipsoid) 
bounces off the inner elliptical dome, passes 
through the other focus, bounces off the dome  
a second time, and returns to the person as a 
 distinct echo.

Reflective Property of an Ellipse
Because of their shape, ellipses are used to make reflectors of sound, light, and other 
waves. If we rotate an ellipse in three-dimensional space about its focal axis, the ellipse 
sweeps out an ellipsoid of revolution. If we place a signal source at one focus of a 
reflective ellipsoid, the signal reflects off the elliptical surface to the other focus, as 
illustrated in Figure 8.20. This property is used to make mirrors for optical equipment 
and to study aircraft noise in wind tunnels.

Focusing a Lithotripter
The ellipse used to generate the ellipsoid of a lithotripter has a major axis of 12 ft and 
a minor axis of 5 ft. How far from the center are the foci?

SOLUTION From the given information, we know a = 12>2 = 6 and 
b = 5>2 = 2.5. So

c = 2a2 - b2 ≈ 262 - 2.52 ≈ 5.4544.

The foci are about 5 ft 5.5 in. from the center of the lithotripter.
 Now try Exercise 59.

EXAMPLE 6 
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606 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

CHAPTER OPENER  Problem (from page 586)

Problem: If the Ellipse at the White House is 616 ft long and 528 ft wide, what 
is its equation?

Solution: For simplicity’s sake, we model the Ellipse as centered at 10, 02 with 
the x-axis as its focal axis. Because the Ellipse is 616 ft long, a = 616>2 = 308, 
and because the Ellipse is 528 ft wide, b = 528>2 = 264. Using 
x2>a2 + y2>b2 = 1, we obtain

 
x2

3082 +
y2

2642 = 1,

 
x2

94,864
+

y2

69,696
= 1.

Other models are possible.

The Ellipse
616 ft

528 ft

White House

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the distance between the given points.

 1. 1-3, -22 and 12, 42
 2. 1-3, -42 and 1a, b2
In Exercises 3 and 4, solve for y in terms of x.

 3. 
y2

9
+

x2

4
= 1 4. 

x2

36
+

y2

25
= 1

In Exercises 5–8, solve for x algebraically.

 5. 23x + 12 + 23x - 8 = 10

 6. 26x + 12 - 24x + 9 = 1

 7. 26x2 + 12 + 26x2 + 1 = 11

 8. 22x2 + 8 + 23x2 + 4 = 8

In Exercises 9 and 10, find exact solutions by completing the square.

 9. 2x2 - 6x - 3 = 0 10. 2x2 + 4x - 5 = 0

QUICK REVIEW 8.2 (For help, go to Sections P.2 and P.5.)

y

x

(c)   

y

x

(d)

 7. 
x2

25
+

y2

16
= 1  8. 

y2

36
+

x2

9
= 1

 9. 
1y - 222

16
+
1x + 322

4
= 1

 10. 
1x - 122

11
+ 1y + 222 = 1

In Exercises 11–16, sketch the graph of the ellipse by hand.

 11. 
x2

64
+

y2

36
= 1 12. 

x2

81
+

y2

25
= 1

SECTION 8.2 Exercises

In Exercises 1–6, find the vertices and foci of the ellipse.

 1. 
x2

16
+

y2

7
= 1 2. 

y2

25
+

x2

21
= 1

 3. 
y2

36
+

x2

27
= 1 4. 

x2

11
+

y2

7
= 1

 5. 8x2 + 9y2 = 72 6. 9x2 + 4y2 = 36

In Exercises 7–10, match the graph with its equation, given that the tick 
marks on all axes are 1 unit apart.

y

x

(a)   

y

x

(b)
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 SECTION 8.2 Circles and Ellipses 607

 13. 
y2

9
+

x2

4
= 1 14. 

y2

49
+

x2

25
= 1

 15. 
1x + 322

16
+
1y - 122

4
= 1 16. 

1x - 122
2

+
1y + 322

4
= 1

In Exercises 17–20, graph the ellipse using a function grapher.

 17. 
x2

36
+

y2

16
= 1 18. 

y2

64
+

x2

16
= 1

 19. 
1x + 222

5
+ 21y - 122 = 1

 20. 
1x - 422

16
+ 161y + 422 = 8

In Exercises 21–36, find an equation in standard form for the ellipse 
that satisfies the given conditions.

 21. Major axis length 6 on y-axis, minor axis length 4

 22. Major axis length 14 on x-axis, minor axis length 10

 23. Foci 1±5, 02, major axis length 14

 24. Foci 10, ±32, major axis length 10

 25. Endpoints of axes are 1±8, 02 and 10, ±22
 26. Endpoints of axes are 1±7, 02 and 10, ±42
 27. Major axis endpoints 10, ±62, minor axis length 8

 28. Major axis endpoints 1±5, 02, minor axis length 4

 29. Minor axis endpoints 10, ±42, major axis length 10

 30. Minor axis endpoints 1±12, 02, major axis length 26

 31. Major axis endpoints 11, -42 and 11, 82, minor axis length 8

 32. Major axis endpoints 1-2, -32 and 1-2, 72, minor axis  
length 4

 33. Foci 11, -42 and 15, -42, major axis endpoints 10, -42 and  
16, -42

 34. Foci 1-2, 12 and 1-2, 52, major axis endpoints 1-2, -12  
and 1-2, 72

 35. Major axis endpoints 13, -72 and 13, 32, minor axis  
length 6

 36. Major axis endpoints 1-5, 22 and 13, 22, minor axis  
length 6

In Exercises 37–40, find the center, vertices, and foci of the ellipse.

 37. 
1x + 122

25
+
1y - 222

16
= 1

 38. 
1x - 322

11
+
1y - 522

7
= 1

 39. 
1y + 322

81
+
1x - 722

64
= 1

 40. 
1y - 122

25
+
1x + 222

16
= 1

In Exercises 41–44, graph the ellipse using a parametric grapher.

 41. 
y2

25
+

x2

4
= 1 42. 

x2

30
+

y2

20
= 1

 43. 
1x + 322

12
+
1y - 622

5
= 1 44. 

1y + 122
15

+
1x - 222

6
= 1

In Exercises 45–48, prove that the graph of the equation is an ellipse, 
and find its vertices, foci, and eccentricity.

 45. 9x2 + 4y2 - 18x + 8y - 23 = 0

 46. 3x2 + 5y2 - 12x + 30y + 42 = 0

 47. 9x2 + 16y2 + 54x - 32y - 47 = 0

 48. 4x2 + y2 - 32x + 16y + 124 = 0

In Exercises 49 and 50, write an equation for the ellipse.

 49. y

(2, 6)

(2, 3)
(6, 3)

x

 50. y

(0, 2)
(24, 2)

(24, 5)

x

 51. Writing to Learn Prove that an equation for the ellipse 
with center 10, 02, foci 10, ±c2, and semimajor axis a 7 c Ú 0 
is y2>a2 + x2>b2 = 1, where b2 = a2 - c2. [Hint: Refer to 
the derivation at the beginning of the section.]

 52. Writing to Learn Dancing Among the Stars Using 
the data in Table 8.1, prove that the object with the most eccen-
tric orbit sometimes is closer to the Sun than the planet with 
the least eccentric orbit.

Table 8.1 Semimajor Axes and Eccentricities 
of the Planets and Pluto

Object Semimajor Axis (Gm) Eccentricity

Mercury 57.9 0.2056
Venus 108.2 0.0068
Earth 149.6 0.0167
Mars 227.9 0.0934
Jupiter 778.3 0.0485
Saturn 1427 0.0560
Uranus 2869 0.0461
Neptune 4497 0.0050
Pluto 5900 0.2484

Source: Shupe et al., National Geographic Atlas of the World  
(rev. 6th ed.). Washington, DC: National Geographic Society,  
1992, plate 116, and other sources.

 53. The Moon’s Orbit The Moon’s apogee (farthest distance 
from Earth) is 252,710 mi, and its perigee (closest distance to 
Earth) is 221,463 mi. Assuming the Moon’s orbit of Earth is 
elliptical with Earth at one focus, calculate a, b, c, and e.

 54. Hot Mercury Given that the diameter of the Sun is  
about 1.392 Gm, how close does Mercury get to the Sun’s 
 surface?

 55. Saturn Find the perihelion and aphelion distances of  
Saturn.

 56. Venus and Mars Write equations for the orbits of Venus 
and Mars in the form x2>a2 + y2>b2 = 1.

 57. Sungrazers One comet group, known as the sungrazers, 
passes within a Sun’s diameter 11.392 Gm2 of the solar sur-
face. What can you conclude about a - c for orbits of the 
 sungrazers?
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608 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

 58. Halley’s Comet The orbit of Halley’s comet is 36.18 AU 
long and 9.12 AU wide. What is its eccentricity?

 59. Lithotripter For an ellipse that generates the ellipsoid of a 
lithotripter, the major axis has endpoints 1-8, 02 and 18, 02. 
One endpoint of the minor axis is 10, 3.52. Find the coordinates 
of the foci.

 60. Lithotripter (Refer to Figure 8.21.) A lithotripter’s shape is 
formed by rotating the portion of an ellipse below its minor 
axis about its major axis. If the length of the major axis is  
26 in. and the length of the minor axis is 10 in., where should 
the shock-wave source and the patient be placed for maximum 
effect?

  Group Activities In Exercises 61 and 62, solve the system 
of equations algebraically and support your answer graphically.

 61. 
x2

4
+

y2

9
= 1

x2 + y2 = 4

 62. 
x2

9
+ y2 = 1

x - 3y = -3

 63. Group Activity Consider the system of equations 
 x2 + 4y2 = 4

 y = 2x2 - 3

(a) Solve the system graphically.

(b) If you have access to a grapher that also does symbolic 
algebra, use it to find the exact solutions to the system.

 64. Writing to Learn Look up the adjective eccentric in a 
dictionary and read its various definitions. Notice that the 
word is derived from ex-centric, meaning “out-of-center” or 
“off-center.” Explain how this is related to the word’s every-
day meanings as well as to its mathematical meaning for 
ellipses.

Standardized Test Questions
 65. True or False The distance from a focus of an ellipse to the 

closer vertex is a11 + e2, where a is the semimajor axis and e 
is the eccentricity. Justify your answer.

 66. True or False The distance from a focus of an ellipse to 
either endpoint of the minor axis is half the length of the major 
axis. Justify your answer.

In Exercises 67–70, you may use a graphing calculator to solve the 
problem.

 67. Multiple Choice One focus of x2 + 4y2 = 4 is

(A) 14, 02. (B) 12, 02. (C) 123, 02.
(D) 122, 02. (E) 11, 02.

 68. Multiple Choice The focal axis of 
1x - 222

25
+
1y - 322

16
= 1 is

(A) y = 1. (B) y = 2. (C) y = 3.

(D) y = 4. (E) y = 5.

 69. Multiple Choice The center of 
9x2 + 4y2 - 72x - 24y + 144 = 0 is

(A) 14, 22. (B) 14, 32. (C) 14, 42.
(D) 14, 52. (E) 14, 62.

 70. Multiple Choice The perimeter of a triangle with one ver-
tex on the ellipse x2>a2 + y2>b2 = 1 and the other two verti-
ces at the foci of the ellipse would be

(A) a + b.  (B) 2a + 2b. (C) 2a + 2c. 

(D) 2b + 2c. (E) a + b + c.

Explorations
 71. Area and Perimeter The area of an ellipse is A = pab, 

but the perimeter cannot be expressed so simply:

P ≈ p1a + b2a3 -
213a + b21a + 3b2

a + b
b

(a) Prove that when a = b = r, these become the familiar for-
mulas for the area and perimeter (circumference) of a circle.

(b) Find a pair of ellipses such that the one with greater area 
has smaller perimeter.

 72. Writing to Learn Kepler’s Laws We have encountered 
Kepler’s first and third laws (pages 198 and 603). Using a 
library or the Internet, respond to the following.

(a) Read about Kepler’s life, and write in your own words 
how he came to discover his three laws of planetary 
motion.

(b) What is Kepler’s Second Law? Explain it with both pic-
tures and words.

 73. Pendulum Velocity vs. Position As a pendulum swings 
toward and away from a motion detector, its distance (in 
meters) from the detector is given by the position function 
x1t2 = 3 + cos12t - 52, where t represents time (in seconds). 
The velocity (in m>sec) of the pendulum is given by 
y1t2 = -2 sin12t - 52.
(a) Using Parametric mode on your grapher, plot the 1x, y2 

relation for velocity versus position for 0 … t … 2p.

(b) Write the equation of the resulting conic in standard form, 
in terms of x and y, and eliminating the parameter t.

 74. Pendulum Velocity vs. Position A pendulum that 
swings toward and away from a motion detector has a distance 
(in feet) from the detector of x1t2 = 5 + 3 sin1pt + p>22 
and a velocity (in ft>sec) of y1t2 = 3p cos1pt + p>22, where 
t represents time (in seconds).

(a) Prove that the plot of velocity versus position (distance) is 
an ellipse.

(b) Writing to Learn Describe the motion of the  pendulum.

Extending the Ideas
 75. Prove that a nondegenerate graph of the equation

Ax2 + Cy2 + Dx + Ey + F = 0

is an ellipse if AC 7 0.

 76. Writing to Learn The graph of the equation

1x - h22
a2 +

1y - k22
b2 = 0

is considered to be a degenerate ellipse. Describe the graph.
  How is it like a full-fledged ellipse, and how is it different?
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 SECTION 8.3 Hyperbolas 609

What you’ll learn about
• Geometry of a Hyperbola

• Translations of Hyperbolas

• Eccentricity and Orbits

• Reflective Property of a Hyperbola

• Long-Range Navigation

... and why
The hyperbola is the least-known 
conic section, yet it is used in 
astronomy, optics, and navigation.

Geometry of a Hyperbola
When a plane intersects both nappes of a right circular cone, the intersection is a hyper-
bola. (Figure 8.2a shows that the intersecting plane does not need to be parallel to the 
axis of the cone. If the plane intersects both nappes and does not contain the vertex, the 
intersection is a hyperbola.) The definition, features, and formula derivation for a 
hyperbola closely resemble those for an ellipse; indeed, it is helpful to make 
 comparisons with the ellipse as you go through this section in order to notice the differ-
ences. As before, we begin with a geometric definition of the curve and use it to derive 
an algebraic formula.

8.3 Hyperbolas

DEFINITION Hyperbola

A hyperbola is the set of all points in a plane whose distances from two fixed 
points in the plane have a constant difference. The fixed points are the foci of 
the hyperbola. The line through the foci is the focal axis. The point on the focal 
axis midway between the foci is the center. The points where the hyperbola 
intersects its focal axis are the vertices of the hyperbola (Figure 8.22).

Figure 8.23 shows a hyperbola centered at the origin with its focal axis on the x-axis. 
The vertices are at 1-a, 02 and 1a, 02, where a is some positive constant. The fixed 
points F11-c, 02 and F21c, 02 are the foci of the hyperbola, with c 7 a.

Notice that the hyperbola has two branches. For a point P1x, y2 on the right-hand 
branch, PF1 - PF2 = 2a. On the left-hand branch, PF2 - PF1 = 2a. Combining 
these two equations gives us

PF1 - PF2 = ±2a.

Using the distance formula, the equation becomes21x + c22 + 1y - 022 - 21x - c22 + 1y - 022 = ±2a.

 21x - c22 + y2 = ±2a + 21x + c22 + y2 Rearrange terms.

 x2 - 2cx + c2 + y2 = 4a2 ± 4a21x + c22 + y2 + x2 + 2cx + c2 + y2

Square.

 ∓ a21x + c22 + y2 = a2 + cx Simplify.

 a21x2 + 2cx + c2 + y22 = a4 + 2a2cx + c2x2 Square.

 1c2 - a22x2 - a2y2 = a21c2 - a22 Multiply by -1 and simplify.

Letting b2 = c2 - a2, we have

b2x2 - a2y2 = a2b2,

which is usually written as

x2

a2 -
y2

b2 = 1.

Because these steps can be reversed, a point P1x, y2 satisfies this last equation if and 
only if the point lies on the hyperbola defined by PF1 - PF2 = ±2a, provided that 

VertexFocus

Center

Focal axis

FocusVertex

Figure 8.22 Key points on the focal axis  
of a hyperbola.

y

x
F1(–c, 0) F2(c, 0)O

P(x, y)

x = ax = –a

Figure 8.23 Structure of a Hyperbola.  
The difference of the distances from the foci 
to each point on the hyperbola is a constant.
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610 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

c 7 a 7 0 and b2 = c2 - a2. The Pythagorean relation b2 = c2 - a2 can be written 
many ways, including a2 = c2 - b2 and c2 = a2 + b2.

The equation x2>a2 - y2>b2 = 1 is the standard form of the equation of a hyperbola 
centered at the origin with the x-axis as its focal axis. A hyperbola centered at the origin 
with the y-axis as its focal axis is the inverse relation of x2>a2 - y2>b2 = 1 and thus 
has an equation of the form

y2

a2 -
x2

b2 = 1.

As with other conics, a line segment with endpoints on a hyperbola is a chord of the 
hyperbola. The chord lying on the focal axis connecting the vertices is the transverse 
axis of the hyperbola. The length of the transverse axis is 2a. The line segment of 
length 2b that is perpendicular to the focal axis and that has the center of the hyperbola 
as its midpoint is the conjugate axis of the hyperbola. The number a is the semitrans-
verse axis, and b is the semiconjugate axis.

The hyperbola

x2

a2 -
y2

b2 = 1

has two asymptotes. These asymptotes are slant lines that can be found by replacing the 
1 on the right-hand side of the hyperbola’s equation by a 0:

x2

a2 -
y2

b2 = 1 S  
x2

a2 -
y2

b2 = 0 S  y = ±
b
a

 x
 (1111)11+* (1111)11+* (111)1+*
 hyperbola Replace 1 by 0. asymptotes

A hyperbola centered at the origin with its focal axis one of the coordinate axes is sym-
metric with respect to the origin and both coordinate axes. Such a hyperbola can be 
sketched by drawing a rectangle centered at the origin with sides parallel to the coordi-
nate axes, then drawing the asymptotes through opposite corners of the rectangle, and 
finally sketching the hyperbola using the central rectangle and asymptotes as guides, as 
shown in the Drawing Lesson.

Naming Axes
The word “transverse” comes from the Latin 
trans vertere: to go across. The transverse axis 
“goes across” from one vertex to the other. The 
conjugate axis is the transverse axis for the 
 conjugate hyperbola, defined in Exercise 73.

Drawing Lesson

How to Sketch the Hyperbola x2 ,a2 − y2 ,b2 = 1

1. Sketch line segments at x = ±a  
and y = ±b, and complete the  
rectangle they determine.

2. Sketch the asymptotes by  
extending the rectangle’s  
diagonals.

3. Use the rectangle and asymptotes  
to guide your drawing.

y

x–a a

–b

b

y

x–a a

–b

b
y = – xb

a
y = xb

a

y

x–a a

–b

b = 1–x2

a2
y2

b2
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y

x

(a)

(a, 0)(–a, 0)(–c, 0) (c, 0)

y = xb
a

y = – xb
a

= 1–x2

a2
y2

b2

y

x

(b)

y = xa
b

y = – xa
b

= 1–y2

a2
x2

b2

(0, c)

(0, a)

(0, –a)

(0, –c)

Figure 8.24 Hyperbolas centered at the 
origin with foci on (a) the x-axis and (b) the 
y-axis.

Hyperbolas with Center (0, 0)

1. Standard equation 
x2

a2 -
y2

b2 = 1 
y2

a2 -
x2

b2 = 1

2. Focal axis x-axis y-axis

3. Foci 1±c, 02 10, ±c2
4. Vertices 1±a, 02 10, ±a2
5. Semitransverse axis a a

6. Semiconjugate axis b b

7. Pythagorean relation c2 = a2 + b2 c2 = a2 + b2

8. Asymptotes y = ±
b
a

 x  y = ±
a
b

 x

See Figure 8.24.

Finding the Vertices and Foci of a Hyperbola
Find the vertices and the foci of the hyperbola 4x2 - 9y2 = 36.

SOLUTION Dividing both sides of the equation by 36 yields the standard form 
x2>9 - y2>4 = 1. So a2 = 9, b2 = 4, and c2 = a2 + b2 = 9 + 4 = 13. Thus the 
vertices are 1±3, 02, and the foci are 1±213, 02. Now try Exercise 1.

EXAMPLE 1 

If we wish to graph a hyperbola using a function grapher, we need to solve the equation 
of the hyperbola for y, as illustrated in Example 2.

Finding an Equation and Graphing a Hyperbola
Find an equation of the hyperbola with foci 10, -32 and 10, 32 whose conjugate axis 
has length 4. Sketch the hyperbola and its asymptotes, and support your sketch with a 
grapher.

SOLUTION The center is 10, 02. The foci are on the y-axis with c = 3. The semi-
conjugate axis is b = 4>2 = 2. Thus a2 = c2 - b2 = 32 - 22 = 5. The standard 
form of the equation for the hyperbola is

y2

5
-

x2

4
= 1.

Using a = 25 ≈ 2.24 and b = 2, we can sketch the central rectangle, the asymp-
totes, and the hyperbola itself. Try doing this. To graph the hyperbola using a func-
tion grapher, we solve for y in terms of x.

 
y2

5
= 1 +

x2

4
 Add 

x2

4
 .

 y2 = 511 + x2>42  Multiply by 5.

 y = ±2511 + x2>42 Extract square roots.

Figure 8.25 shows the graphs of

y1 = 2511 + x2>42  and  y2 = -2511 + x2>42,
together with the asymptotes of the hyperbola

y3 =
25
2

 x  and  y4 = -  
25
2

 x.

 Now try Exercise 17.

EXAMPLE 2 

[29.4, 9.4] by [26.2, 6.2]

Figure 8.25 The hyperbola 
y2>5 - x2>4 = 1, shown with its asymptotes. 
(Example 2)
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612 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

y

x

(–2, –1) (8, –1)8

6

10

Figure 8.27 Given information for  
Example 3.

y

x

(a)

(h + c, k)
(h + a, k)(h, k)

y = k

(h – c, k)
(h – a, k)

(x – h) + ky = b
a

(x – h) + ky = – b
a

y

x

(b)

(h, k)

x = h

(x – h) + ky = a
b

(x – h) + ky = – a
b

(h, k + c)
(h, k + a)
(h, k – a)
(h, k – c)

Figure 8.26 Hyperbolas with center  
1h, k2 and foci on (a) y = k and (b) x = h.

In Example 2, because the hyperbola had a vertical focal axis, selecting a viewing rect-
angle was easy. When a hyperbola has a horizontal focal axis, we try to select a view-
ing window to include the two vertices in the plot and thus avoid gaps in the graph of 
the hyperbola.

Translations of Hyperbolas
When a hyperbola with center 10, 02 is translated horizontally by h units and vertically 
by k units, the center of the hyperbola moves from 10, 02 to 1h, k2, as shown in Figure 
8.26. Such a translation does not change the length of the transverse or conjugate axis 
or the Pythagorean relation.

Hyperbolas with Center 1h, k2

• Standard 
1x - h22

a2 -
1y - k22

b2 = 1 
1y - k22

a2 -
1x - h22

b2 = 1 
equation

• Focal axis y = k x = h

• Foci 1h ± c, k2 1h, k ± c2
• Vertices 1h ± a, k2 1h, k ± a2
• Semitransverse a a 

axis

• Semiconjugate b b 
axis

• Pythagorean c2 = a2 + b2 c2 = a2 + b2 
relation

• Asymptotes y = ±
b
a

 1x - h2 + k y = ±
a
b

 1x - h2 + k

See Figure 8.26.

Finding an Equation of a Hyperbola
Find the standard form of the equation for the hyperbola whose transverse axis has 
endpoints 1-2, -12 and 18, -12 and whose conjugate axis has length 8.

SOLUTION Figure 8.27 shows the transverse axis endpoints, the conjugate axis, and 
the center of the hyperbola. The standard equation of this hyperbola has the form

1x - h22
a2 -

1y - k22
b2 = 1,

where the center 1h, k2 is the midpoint 13, -12 of the transverse axis. The semitrans-
verse axis and semiconjugate axis are

a =
8 - 1-22

2
= 5  and  b =

8
2

= 4.

So the equation we seek is

 
1x - 322

52 -
1y - 1-1222

42 = 1,

 
1x - 322

25
-
1y + 122

16
= 1.

 Now try Exercise 31.

EXAMPLE 3 
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 SECTION 8.3 Hyperbolas 613

Locating Key Points of a Hyperbola
Find the center, vertices, and foci of the hyperbola

1x + 222
9

-
1y - 522

49
= 1.

SOLUTION The center 1h, k2 is 1-2, 52. Because the semitransverse axis 
a = 29 = 3, the vertices are

1h + a, k2 = 1-2 + 3, 52 = 11, 52  and

1h - a, k2 = 1-2 - 3, 52 = 1-5, 52.
Because c = 2a2 + b2 = 29 + 49 = 258, the foci 1h ± c, k2 are 

1-2 ±  258, 52, or approximately 15.62, 52 and 1-9.62, 52. Now try Exercise 39.

EXAMPLE 4 

With the information found about the hyperbola in Example 4, and knowing that its 
semiconjugate axis b = 249 = 7, we could easily sketch the hyperbola. Obtaining an 
accurate graph of the hyperbola using a function grapher is another matter. Often, the 
best way to graph a hyperbola using a grapher is to use parametric equations.

Graphing a Hyperbola Using Its Parametric 
Equations

 1. Use the Pythagorean trigonometry identity sec2 t - tan2 t = 1 to prove that 
the parametrization x = -1 + 3>cos t, y = 1 + 2 tan t 10 … t … 2p2 will 
produce a graph of the hyperbola 1x + 122>9 - 1y - 122>4 = 1.

 2. Using Dot graphing mode, graph x = -1 + 3>cos t, y = 1 + 2 tan t 
10 … t … 2p2 in a square viewing window to support part 1 graphically. 
Switch to Connected graphing mode, and regraph the equation. What do you 
observe? Explain.

 3. Create parametrizations for the hyperbolas in Examples 1, 2, 3, and 4.

 4. Graph each of your parametrizations in part 3 and check the features of the 
obtained graph to see whether they match the expected geometric features of 
the hyperbola. If necessary, revise your parametrization and regraph until all 
features match.

 5. Prove that each of your parametrizations is valid.

EXPLORATION 1 

Eccentricity and Orbits

DEFINITION Eccentricity of a Hyperbola

The eccentricity of a hyperbola is

e =
c
a

=
2a2 + b2

a
,

where a is the semitransverse axis, b is the semiconjugate axis, and c is the dis-
tance from the center to either focus.

For a hyperbola, because c 7 a, the eccentricity e 7 1. In Section 8.2 we learned that 
the eccentricity of an ellipse satisfies the inequality 0 … e 6 1 and that, for e = 0, the 
ellipse is a circle. In Section 8.5 we will generalize the concept of eccentricity to all 
types of conics and learn that the eccentricity of a parabola is e = 1.
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614 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Kepler’s First Law of Planetary Motion says that a planet’s orbit is elliptical with the 
Sun at one focus. Since 1609, astronomers have generalized Kepler’s Law; the current 
theory states: A celestial body that travels within the gravitational field of a much more 
massive body follows a path that closely approximates a conic section that has the 
more massive body as a focus. Two bodies that do not differ greatly in mass (such as 
Earth and the Moon, or Pluto and its moon Charon) actually revolve around their bal-
ance point, or barycenter. In theory, a comet can approach the Sun from interstellar 
space, make a partial loop about the Sun, and then leave the solar system, returning to 
deep space; such a comet follows a path that is one branch of a hyperbola.

y

400 Gm

x
Sun (170, 0)

90 Gm
281.25 Gm

Path of
comet

Figure 8.28 The graph of one branch of 
x2>6400 - y2>22,500 = 1. (Example 5)

Primary mirror

Parabola

Ellipse

Hyperbola

FP = FH

FH = FE

FE

Figure 8.29 Cross section of a reflecting 
telescope.

Analyzing a Comet’s Orbit
A comet following a hyperbolic path about the Sun has a perihelion distance of  
90 Gm. When the line from the comet to the Sun is perpendicular to the focal axis of 
the orbit, the comet is 281.25 Gm from the Sun. Calculate a, b, c, and e. What are the 
coordinates of the center of the Sun if we coordinatize space so that the hyperbola is 
given by

x2

a2 -
y2

b2 = 1?

SOLUTION The perihelion distance is c - a = 90. When x = c, y = ±b2>a (see 
Exercise 74). So b2>a = 281.25, or b2 = 281.25a. Because b2 = c2 - a2, we have 
the system

c - a = 90  and  c2 - a2 = 281.25a,

which yields the equation

 1a + 9022 - a2 = 281.25a

 a2 + 180a + 8100 - a2 = 281.25a

 8100 = 101.25a

 a = 80

Therefore, a = 80 Gm, b = 150 Gm, c = 170 Gm, and e = 17>8 = 2.125  
(Figure 8.28). If the comet’s path is the branch of the hyperbola with positive  
x-coordinates, then the Sun is at the focus 1c, 02 = 1170, 02. Now try Exercise 55.

EXAMPLE 5 

Reflective Property of a Hyperbola
Like other conics, a hyperbola can be used to make a reflector of sound, light, and other 
waves. If we rotate a hyperbola in three-dimensional space about its focal axis, the 
hyperbola sweeps out a hyperboloid of revolution. If a signal is directed toward a focus 
of a reflective hyperboloid, the signal reflects off the hyperbolic surface to the other 
focus. In Figure 8.29 light reflects off a primary parabolic mirror toward the mirror’s 
focus FP = FH, which is also the focus of a small hyperbolic mirror. The light is then 
reflected off the hyperbolic mirror, toward the hyperboloid’s other focus FH = FE, 
which is also the focus of an elliptical mirror. Finally the light is reflected into the 
observer’s eye, which is at the second focus of the ellipsoid FE.

Reflecting telescopes date back to the 1600s when Isaac Newton used a primary para-
bolic mirror in combination with a flat secondary mirror, slanted to reflect the light out 
the side to the eyepiece. French optician G. Cassegrain was the first to use a hyperbolic 
secondary mirror, which directed the light through a hole at the vertex of the primary 
mirror (see Exercise 70). Today, reflecting telescopes such as the Hubble Space Tele-
scope have become quite sophisticated and must have nearly perfect mirrors to focus 
properly.
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 SECTION 8.3 Hyperbolas 615

100 mi

80 mi

R

QO

Figure 8.30 Strategically located LORAN 
transmitters O, Q, and R. (Example 6)

[2200, 400] by [2200, 400]

Figure 8.31 Graphs for Example 6.

Long-Range Navigation
Hyperbolas and radio signals are the basis of the LORAN (long-range navigation) sys-
tem. Example 6 illustrates this system using the definition of hyperbola and the fact 
that radio signals travel 980 ft per microsecond (1 microsecond = 1 msec = 10-6 sec).

Using the LORAN System
Radio signals are sent simultaneously from transmitters located at points O, Q, and R 
(Figure 8.30). R is 100 mi due north of O, and Q is 80 mi due east of O. The LORAN 
receiver on the sloop Gloria receives the signal from O 323.27 msec after the signal 
from R, and 258.61 msec after the signal from Q. What is the sloop’s bearing and 
 distance from O?

SOLUTION Denote the Gloria’s position as point G. The time difference between 
the reception of the signals from O and R is 323.27 m sec, so

OG - RG = 323.27 msec *
980 ft
1 msec

*
1 mi

5280 ft
≈ 60 mi.

The set of possible points G such that OG - RG = 60 is a branch of a hyperbola 
with foci O and R and 2a = 60. Because OR = 2c = 100, we conclude that a = 30, 
c = 50, and b = 2c2 - a2 = 40. The center of the hyperbola is (0, 50), the mid-
point of OR. Using this information, we know that G lies on a branch of the hyper-
bola with equation

1y - 5022
302 -

x2

402 = 1.

Similarly, G lies on a branch of a hyperbola with foci O and Q. In this hyperbola, the 

center is (40, 0), c = 40, and 2a = 258.61 msec *
980 ft
1 msec

*
1 mi

5280 ft
≈ 48 mi. 

Thus a = 24 and b = 2c2 - a2 = 32. Using this information, we know that G lies 
on a branch of a hyperbola with equation

1x - 4022
242 -

y2

322 = 1.

We use a grapher (Figure 8.31) to find the first-quadrant intersection point of the two 
hyperbolas: G ≈ 1187.09, 193.492. The bearing of G from point O is

u ≈ 90° - tan-1a193.49
187.09

b ≈ 44.04°,

and the distance of G from point O is OG ≈ 2187.092 + 193.492 ≈ 269.15.

So the Gloria is about 187.1 mi east and 193.5 mi north of point O on a bearing of 
roughly 44°, and the sloop is about 269 mi from point O. Now try Exercise 57.

EXAMPLE 6 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the distance between the given points.

 1. 14, -32 and 1-7, -82
 2. 1a, -32 and 1b, c2
In Exercises 3 and 4, solve for y in terms of x.

 3. 
y2

16
-

x2

9
= 1 4. 

x2

36
-

y2

4
= 1

In Exercises 5–8, solve for x.

 5. 23x + 12 - 23x - 8 = 10

 6. 24x + 12 - 2x + 8 = 1

 7. 26x2 + 12 - 26x2 + 1 = 1

 8. 22x2 + 12 - 23x2 + 4 = -8

In Exercises 9 and 10, solve the system of equations.

 9. c - a = 2 and c2 - a2 = 16a>3
 10. c - a = 1 and c2 - a2 = 25a>12

QUICK REVIEW 8.3 (For help, go to Sections P.2, P.5, and 7.1.)
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616 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

In Exercises 23–38, find an equation in standard form for the hyperbola 
that satisfies the given conditions.

 23. Foci 1±3, 02, transverse axis length 4

 24. Foci 10, ±32, transverse axis length 4

 25. Foci 10, ±152, transverse axis length 8

 26. Foci 1±5, 02, transverse axis length 3

 27. Center at 10, 02, a = 5, e = 2, horizontal focal axis

 28. Center at 10, 02, a = 4, e = 3>2, vertical focal axis

 29. Center at 10, 02, b = 5, e = 13>12, vertical focal axis

 30. Center at 10, 02, c = 6, e = 2, horizontal focal axis

 31. Transverse axis endpoints 12, 32 and 12, -12, conjugate axis 
length 6

 32. Transverse axis endpoints 15, 3) and 1-7, 32, conjugate axis 
length 10

 33. Transverse axis endpoints 1-1, 1) and 15, 12, slope of one 
asymptote 4>3

 34. Transverse axis endpoints 1-2, -2) and 1-2, 72, slope of one 
asymptote 4>3

 35. Foci 1-4, 22 and 12, 22, transverse axis endpoints 1-3, 22 and 
11, 22

 36. Foci 1-3, -112 and 1-3, 02, transverse axis endpoints  
1-3, -92 and 1-3, -22

 37. Center at 1-3, 62, a = 5, e = 2, vertical focal axis

 38. Center at 11, -42, c = 6, e = 2, horizontal focal axis

In Exercises 39–42, find the center, vertices, and the foci of the 
 hyperbola.

 39. 
1x + 122

144
-
1y - 222

25
= 1

 40. 
1x + 422

12
-
1y + 622

13
= 1

 41. 
1y - 222

9
-
1x - 122

16
= 1

 42. 
1y - 122

25
-
1x + 522

11
= 1

In Exercises 43–46, graph the hyperbola using a parametric grapher in 
Dot graphing mode.

 43. 
y2

25
-

x2

4
= 1 44. 

x2

30
-

y2

20
= 1

 45. 
1x + 322

12
-
1y - 622

5
= 1

 46. 
1y + 122

15
-
1x - 222

6
= 1

In Exercises 47–50, graph the hyperbola, and find its vertices, foci, and 
eccentricity.

 47. 41y - 122 - 91x - 322 = 36

 48. 41x - 222 - 91y + 422 = 1

SECTION 8.3 Exercises

In Exercises 1–6, find the vertices and foci of the hyperbola.

 1. 
x2

16
-

y2

7
= 1 2. 

y2

25
-

x2

21
= 1

 3. 
x2

64
-

y2

81
= 1 4. 

x2

9
-

y2

16
= 1

 5. 3x2 - 4y2 = 12 6. 9x2 - 4y2 = 36

In Exercises 7–10, match the graph with its equation.

y

x

(a)   

y

x

(b)

y

x

(c)   

y

x

(d)

 7. 
x2

25
-

y2

16
= 1

 8. 
y2

4
-

x2

9
= 1

 9. 
1y - 222

4
-
1x + 322

16
= 1

 10. 
1x - 222

9
- 1y + 122 = 1

In Exercises 11–16, sketch the graph of the hyperbola by hand.

 11. 
x2

49
-

y2

25
= 1 12. 

y2

64
-

x2

25
= 1

 13. 
y2

25
-

x2

16
= 1 14. 

x2

169
-

y2

144
= 1

 15. 
1x + 322

16
-
1y - 122

4
= 1

 16. 
1x - 122

2
-
1y + 322

4
= 1

In Exercises 17–22, graph the hyperbola using a function grapher.

 17. 
x2

36
-

y2

16
= 1 18. 

y2

64
-

x2

16
= 1

 19. 
x2

4
-

y2

9
= 1 20. 

y2

16
-

x2

9
= 1

 21. 
x2

4
-
1y - 322

5
= 1 22. 

1y - 322
9

-
1x + 222

4
= 1
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 SECTION 8.3 Hyperbolas 617

 49. 9x2 - 4y2 - 36x + 8y - 4 = 0

 50. 25y2 - 9x2 - 50y - 54x - 281 = 0

In Exercises 51 and 52, write an equation for the hyperbola.

 51. y

x
(–2, 0) (2, 0)

(3, 2)

 52. y

x
(2, –2)

ba0, 2

ba0, – 2

 53. Writing to Learn Prove that an equation for the hyperbola 
with center 10, 02, foci 10, ±c2, and semitransverse axis a is 
y2>a2 - x2>b2 = 1, where c 7 a 7 0 and b2 = c2 - a2. 
[Hint: Refer to the derivation at the beginning of the section.]

 54. Degenerate Hyperbolas Graph the degenerate 
 hyperbola.

(a) 
x2

4
- y2 = 0 (b) 

y2

9
-

x2

16
= 0

 55. Rogue Comet A comet following a hyperbolic path about 
the Sun has a perihelion of 120 Gm. When the line from the 
comet to the Sun is perpendicular to the focal axis of the orbit, 
the comet is 250 Gm from the Sun. Calculate a, b, c, and e. 
What are the coordinates of the center of the Sun if the center 
of the hyperbolic orbit is 10, 02 and the Sun lies on the positive 
x-axis?

 56. Rogue Comet A comet following a hyperbolic path about 
the Sun has a perihelion of 140 Gm. When the line from the 
comet to the Sun is perpendicular to the focal axis of the orbit, 
the comet is 405 Gm from the Sun. Calculate a, b, c, and e. 
What are the coordinates of the center of the Sun if the center 
of the hyperbolic orbit is (0, 0) and the Sun lies on the positive 
x-axis?

 57. Long-Range Navigation Three LORAN radio transmit-
ters are positioned as shown in the figure, with R due north of 
O, and Q due east of O. The cruise ship Princess Ann receives 
simultaneous signals from the three transmitters. The signal 
from O arrives 323.27 msec after the signal from R, and  
646.53 msec after the signal from Q. Determine the ship’s 
 bearing and distance from point O.

  

80 mi

200 mi

R

QO

 58. Gun Location Observers are located at positions A, B, and 
C with A due north of B. A cannon is located somewhere in the 
first quadrant, as illustrated in the figure. A hears the sound of 
the cannon 2 sec before B, and C hears the sound 4 sec before 
B. Determine the bearing and distance of the cannon from 
point B. (Assume that sound travels at 1100 ft>sec.)

  CB 7000 ft

4000 ft

A

y

x

Group Activities In Exercises 59 and 60, solve the system of 
equations algebraically and support your answer graphically.

 59. 
x2

4
-

y2

9
= 1

  x -
223

3
 y = -2

 60. 
x2

4
- y2 = 1

  x2 + y2 = 9

 61. Group Activity Consider the system of equations

x2

4
-

y2

25
= 1

x2

25
+

y2

4
= 1

(a) Solve the system graphically.

(b) If you have access to a grapher that also does symbolic 
algebra, use it to find the the exact solutions to the system.

 62. Writing to Learn Escape of the Unbound When 
NASA launches a space probe, the probe reaches a speed 
sufficient for it to become unbound from Earth and escape 
along a hyperbolic trajectory. Look up escape speed in an 
astronomy text or on the Internet, and write a paragraph in 
your own words about what you find.

Standardized Test Questions
 63. True or False The distance from a focus of a hyperbola 

to the closer vertex is a1e - 12, where a is the semitrans-
verse axis and e is the eccentricity. Justify your answer.

 64. True or False Unlike that for an ellipse, the Pythagorean 
relation for a hyperbola is the usual a2 + b2 = c2.  Justify 
your answer.

In Exercises 65–68, you may use a grapher to solve the problem.

 65. Multiple Choice One focus of x2 - 4y2 = 4 is

(A) 14, 02.
(B) 125, 02.
(C) 12, 02.
(D) 123, 02.
(E) 11, 02.
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618 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

 66. Multiple Choice The focal axis of 
1x + 522

9
-
1y - 622

16
= 1 is

(A) y = 2.

(B) y = 3.

(C) y = 4.

(D) y = 5.

(E) y = 6.

 67. Multiple Choice The center of 
4x2 - 12y2 - 16x - 72y - 44 = 0 is

(A) 12, -22.
(B) 12, -32.
(C) 12, -42.
(D) 12, -52.
(E) 12, -62.

 68. Multiple Choice The slopes of the asymptotes of the 

 hyperbola 
x2

4
-

y2

3
= 1 are

(A) ±1.

(B) ±3>2.

(C) ±23>2.

(D) ±2>3.

(E) ±4>3.

Explorations
 69. Constructing Points of a Hyperbola Use a geometry 

software package, such as Cabri Geometry II ™, The Geome-
ter’s Sketchpad ®, or a similar application on a handheld device, 
to carry out the following construction.

(a) Start by placing the coordinate axes in the construction 
window.

(b) Construct two points on the x-axis at 1±5, 02 as the foci.

(c) Construct concentric circles of radii r = 1, 2, 3, c , 12 
centered at these two foci.

(d) Construct the points where these concentric circles meet 
and have a difference of radii of 2a = 6, and overlay the 
conic that passes through these points if the software has a 
conic tool.

(e) Find the equation whose graph includes all of these points.
 

 70. Cassegrain Telescope A Cassegrain telescope as 
described in the section has the dimensions shown in the 
 figure. Find the standard form for the equation of the hyperbola 
centered at the origin with the x-axis as the focal axis.

  

Primary Parabolic Mirror

Eyepiece

Secondary Hyperbolic Mirror

120 cm

100 cm

80 cm

FH
FP 5 FH

Extending the Ideas
 71. Prove that a nondegenerate graph of the equation

Ax2 + Cy2 + Dx + Ey + F = 0

is a hyperbola if AC 6 0.

 72. Writing to Learn The graph of the equation

1x - h22
a2 -

1y - k22
b2 = 0

is considered to be a degenerate hyperbola. Describe the graph.
  How is it like a full-fledged hyperbola, and how is it different?

 73. Conjugate Hyperbolas The hyperbolas

1x - h22
a2 -

1y - k22
b2 = 1 and 

1y - k22
b2 -

1x - h22
a2 = 1

obtained by switching the order of subtraction in their standard 
equations are conjugate hyperbolas. Prove that these hyperbo-
las have the same asymptotes and that the conjugate axis of 
each of these hyperbolas is the transverse axis of the other 
hyperbola.

 74. Focal Width of a Hyperbola Prove that for the hyperbola

x2

a2 -
y2

b2 = 1,

if x = c, then y = ±b2>a. Why is it reasonable to define the 
focal width of such hyperbolas to be 2b2>a?

 75. Writing to Learn If a plane intersects only one nappe of a 
cone and the intersection extends infinitely, the curve is a 
parabola. When the angle of the plane is changed slightly so 
that it intersects both nappes, the intersection results in two 
curves that extend infinitely, and we call the graph a hyperbola. 
You might conclude from all this that a hyperbola consists of 
two parabolas, one on each nappe. Give several good reasons 
why this conclusion cannot be true.
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 SECTION 8.4 Quadratic Equations with xy Terms 619

What distinguishes the graph of this hyperbola from the ones we encountered in 
 Section 8.3 is its orientation in the plane: It is neither horizontal nor vertical. Still, we hope 
you were able to find the vertices, asymptotes, and foci of this hyperbola in Exploration 1 
by adapting what you know about horizontal hyperbolas to a hyperbola with y = x as its 
focal axis. In fact, if we were to declare the line y = x to be the “u-axis” and the line 
y = -x to be the “v-axis,” then (using the a and b values from Exploration 1) the equation 
of the hyperbola would be u2>2 - v2>2 = 1. (See Figure 8.33 on the next page.)

Notice that the equation in the 1u, v2 coordinate system has no uv term (known as the 
cross-product term), and so it can be analyzed using techniques from earlier in this 
chapter. This suggests a general (although possibly tedious) approach to handling qua-
dratic equations with xy terms:

 1. Find a rotated 1u, v2 coordinate system in which the graph is horizontal or vertical.

 2. Express the equation in the new 1u, v2 system by applying rotation formulas.

 3. Analyze the graph of the 1u, v2 quadratic equation as usual.

 4. Express the 1u, v2 points in terms of x and y by applying the same rotation 
formulas.

1

1

[25.1, 5.1] by [23.4, 3.4]

Figure 8.32 The graph of the reciprocal 
function y = 1>x, one of our Twelve Basic 
Functions, is a conic section. (Exploration 1)

A Familiar Conic with an xy Term

The equation of the reciprocal function y =
1
x
 can be written in the form 

xy - 1 = 0, which is a quadratic equation in x and y. Therefore, its graph is a 
conic section.

 1. Judging from the graph (Figure 8.32), what type of conic section is it?

 2. What points are the vertices?

 3. What point is the center?

 4. What line is the focal axis?

 5. What is the distance between the vertices?

 6. What is a?

 7. What roles do the coordinate axes play?

 8. Judging from the graph, what is b?

 9. Use a and b to find c.

 10. Use c to find the foci.

EXPLORATION 1 

What you’ll learn about
• Quadratic Equations Revisited

• Axis Rotation Formulas

• Discriminant Test

... and why
You will see ellipses, hyperbolas, 
and parabolas as members of the 
family of conic sections rather than 
as separate types of curves.

Quadratic Equations Revisited
Let us now revisit an important fact that we used at the beginning of this chapter to 
motivate our study of conic sections: Every quadratic equation in two variables, that 
is, every equation of the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (assuming A, 
B, and C are not all 0), has a conic section as its graph, and every conic section in the 
xy-plane is the graph of a quadratic equation in two variables. If you compare this 
general quadratic equation with the conic equations we have developed so far, you 
will probably note that we have not yet encountered an equation with an xy term. 
There is a reason for that, but before we reveal what it is, see if you can analyze the 
graph of one such equation. It just happens to be one of our Twelve Basic Functions 
from Section 1.3.

8.4 Quadratic Equations with xy Terms
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620 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Axis Rotation Formulas
The equations we used in Example 1 to write x and y in terms of the “new” coordinates 
u and v were linear equations with carefully chosen coefficients. If we denote the linear 
equations by x = a # u + b # v and y = c # u + d # v, the coefficients a, b, c, and d are 
numbers that depend on the first-quadrant angle u between the x-axis and the u-axis, 
which we will call the angle of rotation.

Look carefully at Figure 8.34. It shows two points on the unit circle with their 1x, y2 
coordinates in black and their 1u, v2 coordinates in blue. Can you see how the 1x, y2
coordinates were determined? Now, suppose the linear transformations converting 
1u, v2 to 1x, y2 are brought about by the linear equations x = a # u + b # v and 
y = c # u + d # v.

1

1

v y

x

u

[25.1, 5.1] by [23.4, 3.4]

Figure 8.33 In the 1u, v2 coordinate  
system (the blue coordinate axes), the 
hyperbola xy - 1 = 0 has equation 
u2>2 - v2>2 = 1. Example 1 shows how to 
make this transformation algebraically with a 
pair of rotation equations.

Before we show you how to determine the rotation formulas, let us see how this strat-
egy plays out with the hyperbola in Exploration 1. In this example we will give you the 
rotation formulas you will need.

Revisiting Exploration 1
Use rotation formulas to express the equation xy - 1 = 0 in a 1u, v2 coordinate sys-
tem in which the u-axis is the focal axis. Find the foci in the 1u, v2 system and use 
the same rotation formulas to convert the foci to 1x, y2 coordinates.

SOLUTION The required rotation formulas are

x =
u22

-
v22

 

y =
u22

+
v22

Using these substitutions, xy - 1 = 0 becomes

1u>22 - v>2221u>22 + v>222 - 1 = 0,

which simplifies to u2>2 - v2>2 = 1. Analyzing this “horizontal” hyperbola in the 

usual way, we conclude that a = 22, b = 22, and c = 2. Therefore, the foci are 
12, 02 and 1-2, 02. To convert the foci back to 1x, y2 coordinates, we use the same 
rotation formulas.

When 1u, v2 = 12, 02,

 x =
u22

-
v22

=
222

-
022

= 22 

 y =
u22

+
v22

=
222

+
022

= 22 

So 1x, y2 = 122, 222.
When 1u, v2 = 1-2, 02,

 x =
u22

-
v22

=
-222

-
022

= -22 

 y =
u22

+
v22

=
-222

+
022

= -22 

So 1x, y2 = 1-22, -222.
 Now try Exercise 1.

EXAMPLE 1 
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Considering the x-coordinates at the two points, we have

  cos u = a112 + b102 1 a = cos u
  1 x = u cos u - v sin u
  -sin u = a102 + b112 1 b = -sin u

Considering the y-coordinates at the two points, we have

  sin u = c112 + d102 1 c = sin u
  1 y = u sin u + v cos u
  cos u = c102 + d112 1 d = cos u

We have established the axis rotation formulas.

y

x

v

u
(–sin u, cos u) 4 (0, 1)

(cos u, sin u) 4 (1, 0)
u

Figure 8.34 With a rotation angle of u, the 1u, v2 points 11, 02 and 10, 12 correspond to  
the 1x, y2 points 1cos u, sin u2 and 1-sin u, cos u2, respectively.

Applying the Rotation Formulas
Consider the conic section with equation 13x2 - 623xy + 7y2 = 16.

(a) Use u =
p

3
 as the angle of rotation to write the equation in a rotated 1u, v2 coor-

dinate system with no uv term.

(b) Identify the type of conic and find its vertices, foci, and eccentricity in the 1u, v2 
coordinate system.

(c) Write the information in part (b) in the original coordinate system.

SOLUTION 

(a) Because cos 
p

3
=

1
2

 and sin 
p

3
=
23
2

 , the rotation formulas are

x =
u
2

-
23 v

2
 

y =
23 u

2
+

v
2

 

EXAMPLE 2 

(continued)

Axis Rotation Formulas

If the u-axis makes a first-quadrant angle of u with the x-axis, then the axis 
rotation formulas are

x = u cos u - v sin u

y = u sin u + v cos u

 SECTION 8.4 Quadratic Equations with xy Terms 621
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622 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Now that you know how to rotate the axes through an angle of rotation u, all you need 
is a way to find the value of u that will make the graph of a given quadratic equation in 
two variables either horizontal or vertical. (In Example 2, we told you up front that the 
angle was p>3.)

Given the equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 and the substitutions 
x = u cos u - v sin u and y = u sin u + v cos u, what value of u will result in a 1u, v2 
equation with no uv term? The straightforward (but admittedly tedious) way to find out 
is to make the substitutions, expand everything, gather and simplify, and see what turns 
out to be the coefficient of uv. We will leave the details to you as an exercise if you are 
interested, but suffice it to say that the coefficient of uv turns out to be 
B cos 2u + 1C - A2sin 2u. Now all we need to do is find the (acute) angle u that 
makes that coefficient zero:

 B cos 2u + 1C - A2sin 2u = 0

 1A - C2sin 2u = B cos 2u

 cot 2u =
A - C

B

y

x

v

u

u

Figure 8.35 The graph of the ellipse with 

equation 13x2 - 623xy + 7y2 = 16. The 
1x, y2 coordinates for the vertices (black dots) 

are 11, 232 and 1-1, -232, and for the the 
foci (red dots) are 123>2, 3>22 and 

1-23>2, -3>22. The vertices and foci are 
found by analyzing the curve in a rotated 
coordinate system (blue axes). (Example 2)

Substituting for x and y in the given equation, we have

13au
2

-
23v

2
b

2

- 623au
2

-
23v

2
b a23u

2
+

 v
2
b + 7a23u

2
+

 v
2
b

2

= 16.

Expanding, gathering, and simplifying, we get

 13au
2

4
-
23uv

2
+

3v2

4
b - 623a23u2

4
-

uv
2

-
23v2

4
b + 7a3u2

4
+
23uv

2
+

v2

4
b = 16

 u2a13
4

-
18
4

+
21
4
b + uva-1323

2
+ 323 +

723
2
b + v2a39

4
+

18
4

+
7
4
b = 16

 4u2 + 0 # uv + 16v2 = 16

 
u2

4
+

v2

1
= 1

(b) In the 1u, v2 system, the curve is an ellipse centered at 10, 02 with major  
axis on the u-axis. Because a = 2, the vertices are1u, v2 = 1±2,  02. Because 
c = 24 - 1 = 23, the foci are 1u, v2 = 1±23, 02. The eccentricity is 
c>a = 23>2.

(c) In the 1x, y2 system, the curve is still an ellipse centered at 10, 02. We use the 
rotation equations to convert the vertices and foci to 1x, y2 coordinates.

x =
±2
2

-
23 # 0

2
= ±1

1 vertices are 11, 232 and 1-1, -232
y =

231±22
2

+
0
2

= ±23

x =
±23

2
-
23 # 0

2
= ±

23
2

 

1  foci are a23
2

, 
3
2
b  and a-  

23
2

, -  
3
2
b

y =
231±232

2
+

0
2

= ±
3
2

The eccentricity is still c>a = 23>2. Eccentricity is a geometric invariant that 
is not dependent on which of the two coordinate systems we use.

Figure 8.35 shows the graph of the ellipse. Now try Exercise 5.
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Angle of Rotation to Eliminate the Cross-Product Term

Given the equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, a rotation angle 
u that will result in a transformed equation with no cross-product term is the 
angle u such that

cot 2u =
A - C

B
 and 0 6 u 6

p

2
.

Happily, it is not actually necessary to find u; what we need are sin u and cos u, which 
can be found directly from cot 2u with a little trigonometry.

The restriction 0 6 u 6
p

2
 is not necessary, but it is always possible to choose an 

acute angle u, which helps to simplify a complicated situation, as we see in Example 3.

Putting It All Together
Use rotation formulas to eliminate the cross-product term from the quadratic equa-
tion x2 + 4xy + 4y2 - 30x - 90y + 450 = 0. What kind of conic section is its 
graph?

SOLUTION The angle of rotation must satisfy cot 2u =
A - C

B
=

1 - 4
4

= -  
3
4

 .

Because u is acute, 0 6 2u 6 p, and thus cos 2u = -  
3
5

 .

We now apply the half-angle identities from Section 5.4, knowing that both cos u 
and sin u are positive because u is acute.

 cos u = A1 + cos 2u
2

= B1 + 1-3>52
2

=
125

 

 sin u = A1 - cos 2u
2

= B1 - 1-3>52
2

=
225

Thus

 x =
u25

-
2v25

 

 y =
2u25

+
v25

We make these substitutions:

a u25
-

2v25
b

2

+ 4a u25
-

2v25
b a 2u25

+
v25
b + 4a 2u25

+
v25
b

2

- 30a u25
-

2v25
b - 90a 2u25

+
v25
b + 450 = 0

Next we expand and gather:

u2a1
5

+
8
5

+
16
5
b + uva-  

4
5

-
12
5

+
16
5
b + v2a4

5
-

8
5

+
4
5
b

+ u1-625 - 36252 + v11225 - 18252 + 450 = 0

The complicated equation simplified to 5u2 - 4225 u - 625 v + 450 = 0.

EXAMPLE 3 

(continued)

 SECTION 8.4 Quadratic Equations with xy Terms 623
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624 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

As you can see, it can be an algebraic struggle to analyze a quadratic equation with a 
cross-product term. It also can be difficult to produce a graph on a grapher, although it 
is possible with some clever algebra. For example, the equation of the parabola in 
Example 3 can be written in the form

4y2 + 14x - 902y + 1x2 - 30x + 4502 = 0,

which is a quadratic equation in the variable y. The quadratic formula can then be used 
to show that (in simplified form)

y =
45 - 2x ± 2225 - 60x

4
,

giving us two equations of the form y = ƒ1x2 that can be graphed in the same viewing 
window to produce a reasonable graph of the tilted parabola (Figure 8.37).

Discriminant Test
Example 3 demonstrates that the algebra of rotation can get ugly. Fortunately, we can 
determine which type of conic a second-degree equation represents by looking at the 
sign of the discriminant B2 - 4AC.

y

x

(u, v) ≈ (9.4, 0.7)v

u

u

Figure 8.36 The graph of the parabola 
x2 + 4xy + 4y2 -  30x - 90y + 450 = 0. 
The point 1u, v2 ≈ 19.4, 0.72 is the  
vertex, which can be represented as 
1x, y2 ≈ 13.6, 8.72. (Example 3)

[223, 23] by [25, 25]

(a)

X=3.75  Y=9.375
[223, 23] by [25, 25]

(b)

Figure 8.37 The graph of the parabola 
x2 + 4xy + 4y2 - 30x - 90y + 450 = 0 
(a) with a gap and (b) with the TRACE feature 
activated at the connecting point. (Example 4)

Completing the square yields 1u - 21>2522 = 6>251v - 325>102. This  
is a parabola with its axis parallel to the v-axis and with 1u, v2 vertex 
121>25, 325>102 ≈ 19.4, 0.72. This vertex has 1x, y2 coordinates of approxi-
mately (3.6, 8.7). Figure 8.36 shows the graph of the parabola with both pairs of 
coordinate axes. Now try Exercise 37.

Discriminant Test

The second-degree equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 graphs as

• a hyperbola if B2 - 4AC 7 0,

• a parabola if B2 - 4AC = 0,

• an ellipse if B2 - 4AC 6 0, 

except for degenerate cases.

This test hinges on the fact that the discriminant B2 - 4AC is invariant under 
 rotation; in other words, even though A, B, and C do change when we rotate the coor-
dinate axes, the combination B2 - 4AC maintains its value.

Revisiting Examples 1, 2, and 3
Use the Discriminant Test to identify the conic sections in Examples 1, 2, and 3.

SOLUTION In Example 1, B2 - 4AC = 12 - 4102102 = 1 with the 1x, y2 
 coefficients, and (immediately following the rotation) B2 - 4AC = 02 -
411>221-1>22 = 1 with the 1u, v2 coefficients. The positive discriminant identifies 
the graph as a hyperbola.

In Example 2, B2 - 4AC = 1-62322 - 41132172 = -256 with the 1x, y2 coeffi-
cients, and (immediately following the rotation) B2 - 4AC = 02 - 41421162 = -256 
with the 1u, v2 coefficients. The negative discriminant identifies the graph as an ellipse.

In Example 3, B2 - 4AC = 42 - 4112142 = 0 with the 1x, y2 coefficients, and 
(immediately following the rotation) B2 - 4AC = 02 - 41520 = 0 with the 1u, v2 
coefficients. The zero discriminant identifies the graph as a parabola.
 Now try Exercise 45.

EXAMPLE 4 
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Table 8.2 Conics and the Equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

Conic Sample Equation A B C D E F
Sign of 

Discriminant

Hyperbola x2 - 2y2 = 1 1   -2     -1 Positive

Intersecting lines x2 + xy = 0 1 1         Positive

Parabola x2 = 2y 1       -2   Zero

Parallel lines x2 = 4 1         -4 Zero

One line y2 = 0     1       Zero

No graph x2 = -1 1         1 Zero

Ellipse x2 + 2y2 = 1 1   2     -1 Negative

Circle x2 + y2 = 9 1   1     -9 Negative

Point x2 + y2 = 0 1   1       Negative

No graph x2 + y2 = -1 1   1     1 Negative

Not only is the discriminant B2 - 4AC invariant under rotation, but also its sign is 
invariant under translation and under algebraic manipulations that preserve the equiva-
lence of the equation, such as multiplying both sides of the equation by a nonzero 
constant.

The discriminant test can be applied to degenerate conics. Table 8.2 displays the three 
basic types of conic sections grouped with their associated degenerate conics. For each 
conic or degenerate conic, the table includes a sample equation and the sign of the 
equation’s discriminant.

 1. 
1x - 122

9
+
1y - 222

7
= 0

 2. y2 - x2 = 0

 3. y2 + 2xy + x2 = 0

 4. 1y - x22 = 1

 5. 1x - 122 + 1y - 322 = -4

A. The empty set

B. A single line

C. A single point

D. Two parallel lines

E. Two intersecting lines

Identifying Degenerate Conic Sections
Match each quadratic equation with the appropriate graph description.

EXAMPLE 5 

SOLUTION Equation 1 looks like the standard equation of an ellipse, but notice the 
0 on the right-hand side where the 1 should be. The only point that can satisfy this 
equation is 11, 22, because any other x or y value will make the left-hand side posi-
tive. The match (a degenerate ellipse) is C.

Equation 2 would be a hyperbola by the Discriminant Test, but again, notice the 0 
where the 1 should be. The equation factors as 1y - x21y + x2 = 0, so y = x or 
y = -x. The match (a degenerate hyperbola) is E.

Equation 3 would be a parabola by the Discriminant Test, but it factors as 
1y + x22 = 0. The only solution is the line y = -x. The match (a degenerate parab-
ola) is B.

Equation 4 would also be a parabola by the Discriminant Test, but it is equivalent to 
y - x = ±1. The two possibilities give the lines y = x + 1 and y = x - 1. The 
match (a degenerate parabola) is D.

Equation 5 looks almost like a circle, but notice the -4 where the square of the 
radius should be. In fact, the sum of two squares cannot be negative at all. The match 
(a degenerate circle, hence a degenerate ellipse) is A. Now try Exercises 53–56.
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M09_DEMA8962_10_GE_C08.indd   625 22/06/22   18:00



626 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–10, use trigonometric identities and assume 0 6 u 6
p

2
 .

 1. Given that cot 2u = 5>12, find cos 2u.

 2. Given that cot 2u = 8>15, find cos 2u.

 3. Given that cot 2u = 1>23, find cos 2u.

 4. Given that cot 2u = 2>25, find cos 2u.

 5. Given that cot 2u = 0, find u.

 6. Given that cot 2u = 23, find u.

 7. Given that cot 2u = 3>4, find  cos u.

 8. Given that cot 2u = 3>27, find cos u.

 9. Given that cot 2u = 5>211, find sin u.

 10. Given that cot 2u = 45>28, find sin u.

QUICK REVIEW 8.4 (For help, go to Sections 4.7 and 5.4.)

 32. 2x2 + 23 xy + 3y2 - 2y + 5 = 0

 33. 24xy - 7y2 - 4x + 5 = 0

 34. 4x2 + 24xy - 3y2 + 17 = 0

In Exercises 35–40, the graph of each equation is a conic section.

 (a) Identify the type of conic section.

 (b) Use axis rotation formulas for x and y to transform the qua-
dratic equation to an equation in 1u, v2 coordinates with no 
cross-product term.

 (c) Find the vertex or vertices in the 1u, v2 system

 (d) Write the vertex or vertices in the 1x, y2 system.

 35. xy = 8 36. 3xy + 15 = 0

 37. 2x2 + 23xy + y2 - 10 = 0

 38. x2 + xy + y2 = 3

 39. 9x2 + 24xy + 16y2 + 20x - 15y + 75 = 0

 40. 9x2 - 24xy + 16y2 - 20x - 15y = 50

 41. Backward Rotation Find and simplify the axis rotation 
formulas for a rotation angle of -u.

 42. Converting Back If the usual axis rotation formulas are 
used to convert an 1x, y2 equation into a 1u, v2 equation, find 
two linear equations that will convert the 1u, v2 equation back 
into the 1x, y2 equation. [Hint: Look at Exercise 41.]

In Exercises 43–52, use the discriminant B2 - 4AC to decide whether 
the equation represents a parabola, an ellipse, or a hyperbola.

 43. x2 - 4xy + 10y2 + 2y - 5 = 0

 44. x2 - 4xy + 3x + 25y - 6 = 0

 45. 9x2 - 6xy + y2 - 7x + 5y = 0

 46. -xy + 3y2 - 4x + 2y + 8 = 0

 47. 8x2 - 4xy + 2y2 + 6 = 0

 48. 3x2 - 12xy + 4y2 + x - 5y - 4 = 0

 49. x2 - 3y2 - y - 22 = 0

 50. 5x2 + 4xy + 3y2 + 2x + y = 0

 51. 4x2 - 2xy + y2 - 5x + 18 = 0

 52. 6x2 - 4xy + 9y2 - 40x + 20y - 56 = 0

SECTION 8.4 Exercises

In Exercises 1–4, find the vertices and foci of the conic section without axis 
rotation by analyzing the graph geometrically in the xy-plane. (Note that all 
four graphs are symmetric about the lines y = x and y = -x.)

 1. The hyperbola xy = 4

 2. The hyperbola xy = -4

 3. The ellipse 5x2 - 6xy + 5y2 = 16

 4. The ellipse 5x2 + 6xy + 5y2 = 16

In Exercises 5–8, use the substitutions x = u>22 - v>22 and  
y = u>22 + v>22 to convert the equation to a 1u, v2 equation with 
no cross-product term.

 5. xy = 4 6. xy = -4

 7. 4x2 - 5xy + 4y2 = 180 8. 5x2 + 6xy + 5y2 = 16

In Exercises 9–16, find the linear equations that can be used to convert an 
1x, y2 equation to a 1u, v2 equation using the given angle of rotation u.

 9. u = p>6 10. u = p>3
 11. u = cos-113>52 12. u = tan-115>122
 13. u such that cot 2u = 4>3 14. u such that cot 2u = -7>24

 15. u = 88° 16. u = 70°

In Exercises 17–24, quadratic equations have been transformed using 
the rotation equations x = 0.8u - 0.6v and y = 0.6u + 0.8v. Convert 
the given points from 1u, v2 coordinates back to 1x, y2 coordinates.

 17. parabola vertex 15, 02 18. parabola focus 14, 22
 19. ellipse vertices 10, ±42 20. hyperbola foci 1±5, 02
 21. parabola vertex 13, 72 22. parabola focus 1-4, 62
 23. ellipse center 112, 52 24. hyperbola center 18, -22
In Exercises 25–34, determine axis rotation formulas for x and y that 
will transform the quadratic equation to an equation in 1u, v2 coordi-
nates with no cross-product term. (You do not need to find the trans-
formed equation.)

 25. 3xy + 17 = 0 26. -5xy + 22 = 0

 27. 9x2 - 18xy + 9y2 - 23 = 0 28. x2 - 3xy + y2 + y = 0

 29. x2 - 6xy + y2 + x + y = 0

 30. 4x2 + 3xy + 4y2 - 5x + 30 = 0

 31. x2 + 223 xy + 3y2 - x + 3 = 0
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In Exercises 53–56, match the equation on the left with the degenerate 
conic section on the right that would describe its graph. The matching 
is one-to-one.

 53. y2 + 4x2 = -1 A. A single point

 54. y2 - 4x2 = 0 B. Two intersecting lines

 55. y2 + 4x2 = 0 C. Two parallel lines

 56. y2 - 4 = 0 D. The empty set

Standardized Test Questions
 57. True or False The graph of the equation Ax2 + Cy2 +  

Dx + Ey + F = 0 (A and C not both zero) has a focal axis 
aligned with the coordinate axes. Justify your answer.

 58. True or False The graph of the equation x2 + y2 + Dx +  
Ey + F = 0 is a circle or a degenerate circle. Justify your 
answer.

 59. Multiple Choice Which of the following is likely to change 
when the equation of a hyperbola is transformed by rotation to 
eliminate the cross-product term?

(A) The length of the transverse axis

(B) The eccentricity

(C) The distance between the foci

(D) The slope of the focal axis

(E) The angle at which the asymptotes intersect

 60. Multiple Choice Which of the following is not a reason to 
rotate the axes of a conic?

(A) To simplify its equation

(B) To eliminate the cross-product term

(C) To place its center or vertex at the origin

(D) To make it easier to identify its type

(E) To make it easier to sketch by hand

 61. Multiple Choice The graph of the quadratic equation 
1y - 2x + 422 = 0 is degenerate. What does it consist of?

(A) A single point

(B) Two intersecting lines

(C) Two parallel lines

(D) A single line

(E) The empty set

 62. Multiple Choice The asymptotes of the hyperbola xy = 4 
are

(A) y = x, y = -x.

(B) y = 2x, y = -  
x
2

.

(C) y = -2x, y =
x
2

.

(D) y = 4x, y = -  
x
4

.

(E) the coordinate axes.

Explorations
 63. The Effect of Rotation on Asymptotes The equation 

of a hyperbola has been transformed from 1x, y2 coordinates to 
1u, v2 coordinates using the axis rotation formulas for 
u = p>6. If the asymptotes in the 1u, v2 system have slopes 
±1, find the slopes of the asymptotes in the 1x, y2 system.

 64. The Discriminant Determine what happens to the sign of 
B2 - 4AC within the equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

when

(a) the axes are translated h units horizontally and k units 
 vertically;

(b) both sides of the equation are multiplied by the same 
 nonzero constant k.

Extending the Ideas
 65. Group Activity Use the axis rotation formulas to transform 

the general quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

  into an equation in 1u, v2. Working together, prove that the new 
equation can be simplified to form a new quadratic equation

A′u2 + B′uv + C′v2 + D′u + E′v + F′ = 0

  in which

A′ = A cos2 u + B cos u sin u + C sin2 u

B′ = B cos 2u + 1C - A2sin 2u

C′ = C cos2 u - B cos u sin u + A sin2 u

D′ = D cos u +  E sin u

E′ = E cos u - D sin u

F′ = F

 66. Identifying a Conic Develop a way to decide whether 
Ax2 + Cy2 + Dx + Ey + F = 0, with A and C not both 0, 
represents a parabola, an ellipse, or a hyperbola. Write an 
example to illustrate each of the three cases.

 67. Rotational Invariant Using the formulas in Exercise 65, 
prove that

B′2 - 4A′C′ = B2 - 4AC,

that is, that the discriminant is invariant under axis rotation.

 68. Other Rotational Invariants Prove that all of the 
 following are invariants under rotation:

(a) F   (b) A + C   (c) D2 + E2

 69. Degenerate Conics Graph all of the degenerate conics 
listed in Table 8.2. Recall that degenerate cones occur when the 
generator and axis of the cone are parallel or perpendicular. 
(See Figure 8.2.) Explain the occurrence of all of the degener-
ate conics listed on the basis of cross sections of typical or 
degenerate right circular cones.

 SECTION 8.4 Quadratic Equations with xy Terms 627
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628 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

The line passing through the focus and perpendicular to the directrix is the (focal) axis 
of the conic section. The axis is a line of symmetry for the conic. Each point where the 
conic intersects its axis is a vertex of the conic. If P is a point of the conic, F is the 
focus, and D is the point of the directrix closest to P, then the constant ratio PF>PD is 
the eccentricity e of the conic (see Figure 8.38). A parabola has one focus and one 
directrix. Ellipses and hyperbolas have two focus-directrix pairs, and either focus-
directrix pair can be used with the eccentricity to generate the entire conic section.

What you’ll learn about
• Eccentricity Revisited

• Writing Polar Equations for Conics

• Analyzing Polar Equations of Conics

• Orbits Revisited

... and why
You will learn the approach to 
 conics used by astronomers.

Eccentricity Revisited
Eccentricity and polar coordinates provide ways to see once again that parabolas, 
ellipses, and hyperbolas are a unified family of interrelated curves. We can define these 
three curves simultaneously by generalizing the focus-directrix definition of a parabola 
given in Section 8.1.

8.5 Polar Equations of Conics

Focus-Directrix Definition of a Conic Section

A conic section is the set of all points in a plane whose distances from a partic-
ular point (the focus) and a particular line (the directrix) in the plane have a 
constant ratio (Figure 8.38). (We assume that the focus does not lie on the 
directrix.)

Conic
section

Focus
Directrix

Vertex

Focal
axis

D

P

F

Figure 8.38 The geometric structure of a conic section.

Focus-Directrix-Eccentricity Relationship

If P is a point of a conic section, F is the conic’s focus, and D is the point of the 
directrix closest to P, then

e =
PF
PD

  and  PF = e # PD,

where e is a constant and the eccentricity of the conic. Moreover, the conic is

• a hyperbola if e 7 1,

• a parabola if e = 1,

• an ellipse if e 6 1.
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 SECTION 8.5 Polar Equations of Conics 629

In this approach to conic sections, the eccentricity e is a strictly positive constant, and 
there are no circles or other degenerate conics.

Writing Polar Equations for Conics
Our focus-directrix definition of conics works best in combination with polar coordi-
nates. Recall that in polar coordinates the origin is the pole and the x-axis is the polar 
axis. To obtain a polar equation for a conic section, we position the pole at the conic’s 
focus and the polar axis along the focal axis with the directrix to the right of the pole 
(Figure 8.39). If the distance from the focus to the directrix is k, the Cartesian equation 
of the directrix is x = k. From Figure 8.39, we see that

PF = r  and  PD = k - r cos u.

So the equation PF = e # PD becomes

r = e1k - r cos u2,
which when solved for r is

r =
ke

1 + e cos u
.

In Exercise 53, you are asked to prove that this equation is still valid if r 6 0 or  
r cos u 7  k. This one equation can produce all sizes and shapes of nondegenerate conic 
sections. Figure 8.40 shows three typical graphs for this equation. In Exploration 1, you 
will investigate how changing the value of e affects the graph of r = ke>(1 + e cos u2.

Remarks

• To be consistent with our work on parabolas, 
we could use 2p for the distance from the 
focus to the directrix, but following George B. 
Thomas, Jr., we use k for this distance. This 
simplifies our polar equations of conics.

• Rather than exclusively using polar coordi-
nates and equations, we use a mixture of the 
polar and Cartesian systems. So, for example, 
we use x = k for the directrix, rather than 
r cos u = k or r = k sec u.

Conic
section

Focus at
the pole

Directrix

D

r

F
x

x = k

k – r cos u

P(r, u)

u

r cos u

Figure 8.39 A conic section in the polar 
plane.

x

y

Directrix

e = < 1
PD
PF

(a)

Ellipse

x = k

F(0, 0)

P D

  

x

Directrix

e = = 1
PD
PF

(b)

Parabola

x = k

F(0, 0)

P D

y

  

x

Directrix

e = > 1
PD
PF

(c)

Hyperbola

x = k

F(0, 0)

P D

y

Figure 8.40 The three types of conics possible for r = ke>11 + e cos u2.

Graphing Polar Equations of Conics

Set your grapher to Polar and Dot graphing modes, and to Radian mode. Using 
k = 3, an xy window of 3-12, 244  by 3-12, 124 , umin = 0, umax =2p, and 
ustep = p>48, graph

r =
ke

1 + e cos u

for e = 0.7, 0.8, 1, 1.5, and 3. Identify the type of conic section obtained for 
each e value. Overlay the five graphs, and explain how changing the value of e 
affects the graph of r = ke>11 + e cos u2. Explain how the five graphs are  
similar and how they are different.

EXPLORATION 1 
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630 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Polar Equations for Conics

The four standard orientations of a conic in the polar plane are as follows.

(a) r =
ke

1 + e cos u
 (b) r =

ke
1 - e cos u

 

Focus at pole
x

Directrix x = k

(a)

y

 

Focus at pole
x

Directrix x = –k

(b)

y

(c) r =
ke

1 + e sin u
 (d) r =

ke
1 - e sin u

 

Focus
at pole

y

Directrix y = k

(c)

x

 

Focus
at pole

y

Directrix y = –k

(d)

x

Writing and Graphing Polar Equations  
of Conics

Given that the focus is at the pole, write a polar equation for the specified conic and 
graph it.

(a) Eccentricity e = 3>5, directrix x = 2.

(b) Eccentricity e = 1, directrix x = -2.

(c) Eccentricity e = 3>2, directrix y = 4.

SOLUTION 

(a) Setting e = 3>5 and k = 2 in r =
ke

1 + e cos u
 yields

 r =
213>52

1 + 13>52 cos u

 =
6

5 + 3 cos u

Figure 8.41a shows this ellipse and the given directrix.

EXAMPLE 1 
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 SECTION 8.5 Polar Equations of Conics 631

Analyzing Polar Equations of Conics
The first step in analyzing the polar equations of a conic section is to use the eccentric-
ity to identify which type of conic the equation represents. Then we determine the 
equation of the directrix.

(b) Setting e = 1 and k = 2 in r =
ke

1 - e cos u
 yields

r =
2

1 - cos u
.

Figure 8.41b shows this parabola and its directrix.

(c) Setting e = 3>2 and k = 4 in r =
ke

1 + e sin u
 yields

 r =
413>22

1 + 13>22 sin u

 =
12

2 + 3 sin u

Figure 8.41c shows this hyperbola and the given directrix. Now try Exercise 1.

All of the geometric properties and features of parabolas, ellipses, and hyperbolas 
developed in Sections 8.1–8.3 still apply in the polar coordinate setting. In Example 3 
we use this prior knowledge.

Identifying Conics from Their Polar Equations
Determine the eccentricity, the type of conic, and the directrix.

(a) r =
6

2 + 3 cos u
 (b) r =

6
4 - 3 sin u

SOLUTION 

(a) Dividing numerator and denominator by 2 yields r = 3>11 + 1.5 cos u2. So the 
eccentricity e = 1.5, and thus the conic is a hyperbola. The numerator ke = 3, 
so k = 2, and thus the equation of the directrix is x = 2.

(b) Dividing numerator and denominator by 4 yields r = 1.5>11 - 0.75 sin u2. So the 
eccentricity e = 0.75, and thus the conic is an ellipse. The numerator ke = 1.5, so 
k = 2, and thus the equation of the directrix is y = -2. Now try Exercise 7.

EXAMPLE 2 

[24.7, 4.7] by [23.1, 3.1]

(a)    

[24.7, 4.7] by [23.1, 3.1]

(b)    

[215, 15] by [25, 15]

(c)

Figure 8.41 Graphs for Example 1.
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632 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Orbits Revisited
Polar equations for conics are used extensively in celestial mechanics, the branch of 
astronomy based on the work of Kepler and others who have studied the motion of 
celestial bodies. The polar equations of conic sections are well suited to the two-body 
problem of celestial mechanics for several reasons. First, the same equations are used 
for ellipses, parabolas, and hyperbolas—the paths of one body traveling about another. 
Second, a focus of the conic is always at the pole. This arrangement has two immediate 
advantages:

• The pole can be thought of as the center of the larger body, such as the Sun, with the 
smaller body, such as Earth, following a conic path about the larger body.

• The coordinates given by a polar equation are the distance r between the two bodies 
and the direction u from the larger body to the smaller body relative to the axis of 
the conic path of motion.

For these reasons, polar coordinates are preferred over Cartesian coordinates for study-
ing orbital motion.

To use the data in Table 8.3 to create polar equations for the elliptical orbits of the plan-
ets, we need to express the equation r = ke>11 + e cos u2 in terms of a and e. We 
apply the formula PF = e # PD to the ellipse shown in Figure 8.43:

 e # PD = PF

e1c + k - a2 = a - c  From Figure 8.43

 e1ae + k - a2 = a - ae  Use e = c>a.

 ae2 + ke - ae = a - ae  Distribute the e.

 ae2 + ke = a  Add ae.

 ke = a - ae2  Subtract ae2.

 ke = a11 - e22 Factor.

Analyzing a Conic
Analyze the conic section given by the equation r = 16>15 - 3 cos u2. Include in 
the analysis the values of e, a, b, and c.

SOLUTION Dividing numerator and denominator by 5 yields

r =
3.2

1 - 0.6 cos u
.

So the eccentricity e = 0.6, and thus the conic is an ellipse. Figure 8.42 shows this 
ellipse. The vertices (endpoints of the major axis) have polar coordinates 18, 02 and 
12, p2. So 2a = 8 + 2 = 10, and thus a = 5.

The vertex 12, p2 is 2 units to the left of the pole, and the pole is a focus of the 
ellipse. So a - c = 2, and thus c = 3. An alternative way to find c is to use the fact 
that the eccentricity of an ellipse is e = c>a, and thus c = ae = 5 # 0.6 = 3.

To find b we use the Pythagorean relation of an ellipse:

b = 2a2 - c2 = 225 - 9 = 4

With all of this information, we can write the Cartesian equation of the ellipse:

1x - 322
25

+
y2

16
= 1

 Now try Exercise 31.

EXAMPLE 3

[25, 10] by [25, 5]

Figure 8.42 Graph of the ellipse 
r = 16>15 - 3 cos u2. (Example 3)

Focus
at poleCenter

Vertex

x

Directrix
x = k

C F P D

c
a
c + k

Figure 8.43 Geometric relationships  
within an ellipse.
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 SECTION 8.5 Polar Equations of Conics 633

So the equation r = ke>11 + e cos u2 can be rewritten as follows.

Table 8.3 Semimajor Axes and Eccentricities of the Planets

Planet Semimajor Axis (Gm) Eccentricity

Mercury 57.9 0.2056
Venus 108.2 0.0068
Earth 149.6 0.0167
Mars 227.9 0.0934
Jupiter 778.3 0.0485
Saturn 1427 0.0560
Uranus 2869 0.0461
Neptune 4497 0.0050

Source: Shupe, et al., National Geographic Atlas of the World (rev. 6th ed.).  
Washington, DC: National Geographic Society, 1992, plate 116, and other sources.

Ellipse with Eccentricity e and Semimajor Axis a

r =
a11 - e22

1 + e cos u

In this form of the equation, when e = 0, the equation reduces to r = a, the equation 
of a circle with radius a.

Analyzing a Planetary Orbit
Using data from Table 8.3, find a polar equation for the orbit of Mercury, and use it 
to approximate that planet’s aphelion (farthest distance from the Sun) and perihelion 
(closest distance to the Sun).

SOLUTION Setting e = 0.2056 and a = 57.9 in

r =
a11 - e22

1 + e cos u
  yields  r =

57.911 - 0.205622
1 + 0.2056 cos u

.

Mercury’s aphelion is

r =
57.911 - 0.205622

1 - 0.2056
≈ 69.8 Gm.

Mercury’s perihelion is

r =
57.911 - 0.205622

1 + 0.2056
≈ 46.0 Gm.

 Now try Exercise 41.

EXAMPLE 4 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, solve for r.

 1. 13, u2 = 1r, u + p2
 2. 1-2, u2 = 1r, u + p2
In Exercises 3 and 4, solve for u.

 3. 11.5, p>62 = 1-1.5, u2, -2p … u … 2p

 4. 1-3, 4p>32 = 13, u2, -2p … u … 2p

In Exercises 5 and 6, find the focus and directrix of the parabola.

 5. x2 = 16y 6. y2 = -12x

In Exercises 7–10, find the foci and vertices of the conic.

 7. 
x2

9
+

y2

4
= 1 8. 

y2

25
+

x2

9
= 1

 9. 
x2

16
-

y2

9
= 1 10. 

y2

36
-

x2

4
= 1

QUICK REVIEW 8.5 (For help, go to Section 6.4.)

M09_DEMA8962_10_GE_C08.indd   633 22/06/22   18:01



634 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

 27. a2.4, 
p

2
b  and a-12, 

3p
2
b

 28. a-6, 
p

2
b  and a2, 

3p
2
b

In Exercises 29 and 30, find a polar equation for the conic with a focus 
at the pole and the given polar coordinates for the intercepts shown.

 29. y

x
(0.75, 0)(3, p)

 30. Note: y

x

b1, 
2

a p

e = 1

In Exercises 31–36, graph the conic, and find the values of e, a, b, and c.

 31. r =
21

5 - 2 cos u
 32. r =

11
6 - 5 sin u

 33. r =
24

4 + 2 sin u
 34. r =

16
5 + 3 cos u

 35. r =
16

3 + 5 cos u
 36. r =

12
1 - 5 sin u

In Exercises 37 and 38, determine a Cartesian equation for the given 
polar equation.

 37. r =
4

2 - sin u
 38. r =

6
1 + 2 cos u

In Exercises 39 and 40, use the fact that k = 2p is twice the focal 
length and half the focal width to determine a Cartesian equation of the 
parabola whose polar equation is given.

 39. r =
4

2 - 2 cos u
 40. r =

12
3 + 3 cos u

 41. Halley’s Comet Halley’s 
comet orbits the Sun, and its 
elliptical path has a semimajor 
axis of 18.09 AU and an eccen-
tricity of 0.97. Compute the 
perihelion and  aphelion dis-
tances for this famous comet.

 42. Uranus The orbit of the planet Uranus has a semimajor axis 
of 19.18 AU and an orbital eccentricity of 0.0461. Compute its 
perihelion and aphelion distances.

In Exercises 43 and 44, the velocity of an object traveling in a circular 
orbit of radius r (distance from center of planet in meters) around a 
planet is given by

v = B3.99 * 1014 k
r

 m>sec,

where k is a constant related to the mass of the planet and the orbiting 
object.

SECTION 8.5 Exercises

In Exercises 1–6, find a polar equation for the conic with a focus at the pole 
and the given eccentricity and directrix. Identify the conic, and graph it.

 1. e = 1, x = -2 2. e = 5>4, x = 4

 3. e = 3>5, y = 4 4. e = 1, y = 2

 5. e = 7>3, y = -1 6. e = 2>3, x = -5

In Exercises 7–14, determine the eccentricity, type of conic, and directrix.

 7. r =
2

1 + cos u
 8. r =

6
1 + 2 cos u

 9. r =
5

2 - 2 sin u
 10. r =

2
4 - cos u

 11. r =
20

6 + 5 sin u
 12. r =

42
2 - 7 sin u

 13. r =
6

5 + 2 cos u
 14. r =

20
2 + 5 sin u

In Exercises 15–20, match each polar equation with its graph, and iden-
tify the viewing window.

(a)    (b)

(c)    (d)

(e)    (f)

 15. r =
8

3 - 4 cos u
 16. r =

4
3 + 2 cos u

 17. r =
5

2 - 2 sin u
 18. r =

9
5 - 3 sin u

 19. r =
15

2 + 5 sin u
 20. r =

15
4 + 4 cos u

In Exercises 21–24, find a polar equation for the ellipse with a focus at the 
pole and the given polar coordinates as the endpoints of its major axis.

 21. 14.80, 02 and 1120, p2 22. 11.5, 02 and 11, p2
 23. 11, p>22 and 13, 3p>22 24. 13, p>22 and 10.75, -p>22
In Exercises 25–28, find a polar equation for the hyperbola with a focus 
at the pole and the given polar coordinates as the endpoints of its trans-
verse axis.

 25. 13, 02 and 1-15, p2 26. 1-3, 02 and 11.5, p2
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 43. Group Activity Lunar Module A lunar excursion 
 module is in a circular orbit 250 km above the surface of the 
Moon. Assume that the Moon’s radius is 1740 km and that 
k = 0.012. Find the following.

(a) The velocity of the lunar module

(b) The length of time required for the lunar module to circle  
the Moon once 

 44. Group Activity Mars Satellite A satellite is in a  
circular orbit 1000 mi above Mars. Assume that the radius of 
Mars is 2100 mi and that k = 0.11. Find the velocity of the 
 satellite.

Standardized Test Questions
 45. True or False The equation r = ke>11 + e cos u2 yields 

no true circles. Justify your answer.

 46. True or False The equation r = a11 - e22>11 + e cos u2 
yields no true parabolas. Justify your answer.

In Exercises 47–50, solve the problem without using a calculator.

 47. Multiple Choice Which ratio of distances is constant for a 
point on a nondegenerate conic?

(A) Distance to center : distance to directrix

(B) Distance to focus : distance to vertex

(C) Distance to vertex : distance to directrix

(D) Distance to focus : distance to directrix

(E) Distance to center : distance to vertex

 48. Multiple Choice Which type of conic section has an 
 eccentricity greater than one?

(A) An ellipse

(B) A parabola

(C) A hyperbola

(D) Two parallel lines

(E) A circle

 49. Multiple Choice For a conic expressed by 
r = ke>11 + e sin u2, which point is located at the pole?

(A) The center

(B) A focus

(C) A vertex

(D) An endpoint of the minor axis

(E) An endpoint of the conjugate axis

 50. Multiple Choice Which of the following is not a polar 
equation of a conic?

(A) r = 1 + 2 cos u

(B) r = 1>11 + sin u2
(C) r = 3

(D) r = 1>12 - cos u2
(E) r = 1>11 + 2 cos u2

Explorations
 51. Planetary Orbits Use the polar equation 

r = a11 - e22>11 + e cos u2 in completing the following 
activities.

(a) Use the fact that -1 … cos u … 1 to prove that the perihe-
lion distance of any planet is a11 - e2 and the aphelion 
distance is a11 + e2.

(b) Use e = c>a to prove that a11 - e2 = a - c and 
a11 + e2 = a + c.

(c) Use the formulas a11 - e2 and a11 + e2 to compute the 
perihelion and aphelion distances of each planet listed in 
Table 8.4.

(d) For which of these planets is the difference between the 
perihelion and aphelion distances the greatest?

Table 8.4 Semimajor Axes and Eccentricities 
of the Six Innermost Planets

Planet Semimajor Axis (AU) Eccentricity

Mercury 0.3871 0.206
Venus 0.7233 0.007
Earth 1.0000 0.017
Mars 1.5237 0.093
Jupiter 5.2026 0.048
Saturn 9.5547 0.056

Source: Encrenaz & Bibring. The Solar System (2nd ed.). New York: 
Springer, p. 5.

 52. Using the Astronomer’s Equation for Conics Using 
Dot mode, a = 2, an xy window of 3-13, 54  by 3-6, 64 , 
u min = 0, u max = 2p, and ustep = p>48, graph 
r = a 11 - e22>11 + e cos u2 for e = 0, 0.3, 0.7, 1.5, and 3. 
Identify the type of conic section obtained for each e value. 
What happens when e = 1?

Extending the Ideas
 53. Revisiting Figure 8.39 In Figure 8.39, if r 6 0 or  

r cos u 7 k, then we must use PD = 0 k - r cos u 0  and 
PF = 0 r 0 . Prove that even in these cases, the resulting  
equation is still r = ke>11 + e cos u2.

 54. Deriving Other Polar Forms for Conics Using  
Figure 8.39 as a guide, draw an appropriate diagram for the 
equation and derive it.

(a) r =
ke

1 - e cos u

(b) r =
ke

1 + e sin u

(c) r =
ke

1 - e sin u

 55. Revisiting Example 3 Use the formulas x = r cos u and 

x2 + y2 = r2 to transform the polar equation r =
16

5 - 3 cos u
 

into the Cartesian equation 
1x - 322

25
+

y2

16
= 1.
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636 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

 56. Focal Widths Using polar equations, derive formulas for 
the focal width of an ellipse and the focal width of a hyperbola. 
Begin by defining focal width for these conics in a manner 
analogous to the definition of the focal width of a parabola 
given in Section 8.1.

 57. Prove that for a hyperbola the formula r = ke>11 - e cos u2 is 
equivalent to r = a1e2 - 12>11 - e cos u2, where a is the 
semitransverse axis of the hyperbola.

 58. Connecting Polar to Rectangular Consider the ellipse  

x2

a2 +
y2

b2 = 1,

where half the length of the major axis is a, and the foci are 
1±c, 02 such that c2 = a2 - b2. Let L be the vertical line 
x = a2>c.

(a) Prove that L is a directrix for the ellipse. [Hint: Prove that 
PF>PD is the constant c>a, where P is a point on the 
ellipse, and D is the point on L such that PD is perpendicu-
lar to L.]

(b) Prove that the eccentricity is e = c>a.

(c) Prove that the distance from F to L is a>e - ea.

D

L

y

x

(a, 0)

(–a, 0)

F(c, 0)
(–c, 0)

P(x, y)

x = a2

c

 59. Connecting Polar to Rectangular Consider the 
 hyperbola

x2

a2 -
y2

b2 = 1,

where half the length of the transverse axis is a, and the foci 
are 1±c, 02 such that c2 = a2 + b2. Let L be the vertical line 
x = a2>c.

(a) Prove that L is a directrix for the hyperbola. [Hint: Prove 
that PF>PD is the constant c>a, where P is a point on the 
hyperbola, and D is the point on L such that PD is perpen-
dicular to L.]

(b) Prove that the eccentricity is e = c>a.

(c) Prove that the distance from F to L is ea - a>e.

y

x

(a, 0)
(–c, 0)

(–a, 0)

F(c, 0)

x = a2

c

D

DP

P

L
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Notice that Figure 8.44 exhibits several important features of the three-dimensional 
Cartesian coordinate system:

• The axes are labeled x, y, and z, and these three coordinate axes form a right-
handed coordinate frame: When you hold your right hand with fingers curving 
from the positive x-axis toward the positive y-axis, your thumb points in the direc-
tion of the positive z-axis.

• A point P in space uniquely corresponds to an ordered triple 1x, y, z2 of real num-
bers. The numbers x, y, and z are the Cartesian coordinates of P.

• Points on the axes have the form 1x, 0, 02, 10, y, 02, or 10, 0, z2, with 1x, 0, 02 on the 
x-axis, 10, y, 02 on the y-axis, and 10, 0, z2 on the z-axis.

In Figure 8.45, the axes are paired to determine the coordinate planes:

• The coordinate planes are the xy-plane, the xz-plane, and the yz-plane, and they 
have equations z = 0, y = 0, and x = 0, respectively.

• Points on the coordinate planes have the form 1x, y, 02, 1x, 0, z2, or 10, y, z2, with 
1x, y, 02 on the xy-plane, 1x, 0, z2 on the xz-plane, and 10, y, z2 on the yz-plane.

• The coordinate planes meet at the origin, 10, 0, 02.
• The coordinate planes divide space into eight regions called octants, with the first 

octant containing all points in space with three positive coordinates.

What you’ll learn about
• Three-Dimensional Cartesian 

 Coordinates

• Distance and Midpoint Formulas

• Equation of a Sphere

• Planes and Other Surfaces

• Vectors in Space

• Lines in Space

... and why
This is the analytic geometry of our 
physical world.

Three-Dimensional Cartesian Coordinates
In Sections P.2 and P.4, we studied Cartesian coordinates and the associated basic for-
mulas and equations for the two-dimensional plane; we now extend these ideas to 
three-dimensional space. In the plane, we use two axes and ordered pairs to name 
points; in space, we use three mutually perpendicular axes and ordered triples of real 
numbers to name points (Figure 8.44).

8.6 Three-Dimensional Cartesian Coordinate System

z

x x 5 constant

y 5 constant

z 5 constant

(x, y, 0)

(0, y, z)

(0, y, 0)

P(x, y, z)

(0, 0, z)

(x, 0, z)

(x, 0, 0)
y

Figure 8.44 The point P1x, y, z2 in Cartesian space.

z 5 0

y 5 0

x 5 0

y

Origin

(0, 0, 0)

z

x

Figure 8.45 The coordinate planes divide 
space into eight octants.
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638 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Distance and Midpoint Formulas
The distance and midpoint formulas for space are natural extensions of the correspond-
ing formulas for the plane.

y

(2, 0, 0) (0, 3, 0)
0

(0, 0, 5)

Line x 5 2, y 5 3

Line x 5 2, z 5 5

Line y 5 3, z 5 5

Plane y 5 3

Plane z 5 5

Plane x 5 2

z

x

(2, 3, 5)

Figure 8.46 The planes x = 2, y = 3, and z = 5 determine the point 12, 3, 52. (Example 1)

Distance Formula (Cartesian Space)

The distance d1P, Q2 between the points P1x1, y1, z12 and Q1x2, y2, z22 in  
space is

d1P, Q2 = 21x1 - x222 + 1y1 - y222 + 1z1 - z222.

Midpoint Formula (Cartesian Space)

The midpoint M of the line segment PQ with endpoints P1x1, y1, z12 and 
Q1x2, y2, z22 is

M = ax1 + x2

2
, 

y1 + y2

2
, 

z1 + z2

2
b .

Locating a Point in Cartesian Space
Draw a sketch that shows the point 12, 3, 52.
SOLUTION To locate the point 12, 3, 52, we first sketch a right-handed three- 
dimensional coordinate frame. We then draw the planes x = 2, y = 3, and z = 5, 
which parallel the coordinate planes x = 0, y = 0, and z = 0, respectively. The 
point 12, 3, 52 lies at the intersection of the planes x = 2, y = 3, and z = 5, as 
shown in Figure 8.46. Now try Exercise 1.

EXAMPLE 1 

Just as in the plane, the coordinates of the midpoint of a line segment are the averages 
for the coordinates of the endpoints of the segment.
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Calculating a Distance and Finding a Midpoint
Find the distance between the points P1-2, 3, 12 and Q14, -1, 52, and find the mid-
point of line segment PQ.

SOLUTION The distance is given by

 d1P, Q2 = 21-2 - 422 + 13 + 122 + 11 - 522
 = 236 + 16 + 16

 = 268 ≈ 8.25

The midpoint is

 M = a-2 + 4
2

, 
3 - 1

2
, 

1 + 5
2
b = 11, 1, 32.

 Now try Exercises 5 and 9.

EXAMPLE 2 

Drawing Lesson

How to Draw Three-Dimensional Objects to Look Three-Dimensional

1. Make the angle between the  
positive x-axis and the  
positive y-axis large enough.

2. Break lines. When one line  
passes behind another, break  
it to show that it doesn’t  
touch and that part of it is  
hidden.

3. Dash or omit hidden portions  
of lines. Don’t let the line  
touch the boundary of the  
parallelogram that represents  
the plane, unless the line lies  
in the plane.

4. Spheres: Draw the sphere  
first (outline and equator);  
draw axes, if any, later.  
Use line breaks and dashed  
lines.

z

x

y

z

x

y

This Not this

A

C

B

D
A

C

B

D
A

C

B

D

Intersecting CD behind AB AB behind CD

Line below plane Line above plane Line in plane

Hidden part
dashed

Sphere first Axes later

Break

A contact dot
sometimes helps

z

x

y

Break
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640 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Equation of a Sphere
A sphere is the three-dimensional analogue of a circle: In space, the set of points that 
lie a fixed distance from a fixed point is a sphere. The fixed distance is the radius, and 
the fixed point is the center of the sphere. The point P1x, y, z2 is a point of the sphere 
with center 1h, k, l2 and radius r if and only if21x - h22 + 1y - k22 + 1z - l22 = r.

Squaring both sides gives the standard equation shown below.

z

x

y

(5, 0, 0)

(0, 4, 0)

(0, 0, 3)

12x + 15y + 20z = 60

Figure 8.47 The intercepts 15, 0, 02,
10, 4, 02, and 10, 0, 32 determine the plane 
12x + 15y + 20z = 60. (Example 4)

Standard Equation of a Sphere

A point P1x, y, z2 is on the sphere with center 1h, k, l2 and radius r if and only if

1x - h22 + 1y - k22 + (z - l22 = r2.

Equation for a Plane in Cartesian Space

Every plane can be written as

Ax + By + Cz + D = 0,

where A, B, and C are not all zero. Conversely, every first-degree equation in 
three variables represents a plane in Cartesian space.

Finding the Standard Equation of a Sphere
The standard equation of the sphere with center 12, 0, -32 and radius 7 is

1x - 222 + y2 + 1z + 322 = 49.
 Now try Exercise 13.

EXAMPLE 3 

Planes and Other Surfaces
In Section P.4, we learned that every line in the Cartesian plane can be written as a 
first-degree (linear) equation in two variables; that is, every line can be written as

Ax + By + C = 0,

where A and B are not both zero. Conversely, every first-degree equation in two vari-
ables represents a line in the Cartesian plane.

In an analogous way, every plane in Cartesian space can be written as a first-degree 
equation in three variables:

Sketching a Plane in Space
Sketch the graph of 12x + 15y + 20z = 60.

SOLUTION Because this is a first-degree equation, its graph is a plane. Three points 
determine a plane. To find three points, we first divide both sides of 
12x + 15y + 20z = 60 by 60:

x
5

+
y

4
+

z
3

= 1

In this form, it is easy to see that the points 15, 0, 02, 10, 4, 02, and 10, 0, 32 satisfy 
the equation. These are the points where the graph crosses the coordinate axes.  
Figure 8.47 shows the completed sketch.
 Now try Exercise 17.

EXAMPLE 4 
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Equations in the three variables x, y, and z generally graph as surfaces in three-dimensional 
space. Just as in the plane, second-degree equations are of particular interest. Recall that 
second-degree equations in two variables yield conic sections in the Cartesian plane. In 
space, second-degree equations in three variables yield quadric surfaces: The parabo-
loids, ellipsoids, and hyperboloids of revolution that have special reflective properties are 
all quadric surfaces, as are such exotic-sounding surfaces as hyperbolic paraboloids and 
elliptic hyperboloids.

Other surfaces of interest include graphs of functions of two variables, whose equa-
tions have the form z = ƒ1x, y2. Some examples are z = x ln y, z = sin1xy2, and 
z = 21 - x2 - y2. The last equation graphs as a hemisphere (Exercise 63). Equa-
tions of the form z = ƒ1x, y2 can be graphed using some handheld graphers and most 
computer algebra software. Quadric surfaces and functions of two variables are studied 
in most university-level calculus course sequences.

Vectors in Space
In space, just as in the plane, the sets of equivalent directed line segments (or arrows) 
are vectors. They are used to represent forces, displacements, and velocities in three 
dimensions. In space, we use ordered triples to denote vectors:

v = 8v1, v2, v39
The zero vector is 0 = 80, 0, 09, and the standard unit vectors are i = 81, 0, 09, 
j = 80, 1, 09, and k = 80, 0, 19. As shown in Figure 8.48, the vector v can be 
expressed in terms of these standard unit vectors:

v = 8v1, v2, v39 = v1i + v2j + v3k

The vector v that is represented by the arrow from P1a, b, c2 to Q1x, y, z2 is
v = PQ

>
= 8x - a, y - b, z - c9 = 1x - a2i + 1y - b2j + 1z - c2k.

A vector v = 8v1, v2, v39 can be multiplied by a scalar (real number) c as follows.

cv = c8v1, v2, v39 = 8cv1, cv2, cv39
Many other properties of vectors extend in a natural way when we move from two to 
three dimensions:

z

x

y
70, 1, 08

71, 0, 08

70, 0, 18
7v1, v2, v38

i

v

j

k

v1

v2

v3

Figure 8.48 The vector v = 8v1, v2, v39.

Vector Relationships in Space

For vectors v = 8v1, v2, v39 and w = 8w1, w2, w39,
• Equality: v = w if and only if v1 = w1, v2 = w2, and v3 = w3

• Addition: v + w = 8v1 + w1, v2 + w2, v3 + w39
• Subtraction: v - w = 8v1 - w1, v2 - w2, v3 - w39
• Magnitude: 0 v 0 = 2v1

2 + v2
2 + v3

2

• Dot product: v # w = v1w1 + v2w2 + v3w3

• Unit vector: u = v> 0 v 0 , v ≠ 0, is the unit vector in the direction of v.

Computing with Vectors

(a) 38-2, 1, 49 = 83 # 1-22, 3 # 1, 3 # 49 = 8-6, 3, 129
(b) 80, 6, -79 + 8-5, 5, 89 = 80 - 5, 6 + 5, -7 + 89 = 8-5, 11, 19
(c) 81, -3, 49 - 8-2, -4, 59 = 81 + 2, -3 + 4, 4 - 59 = 83, 1, -19
(d) � 82, 0, -69 � = 222 + 02 + 62 = 240 ≈ 6.32

(e) 85, 3, -19 # 8-6, 2, 39 = 5 # 1-62 + 3 # 2 + 1-12 # 3 = -30 + 6 - 3 = -27
 Now try Exercises 23–26.

EXAMPLE 5 
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642 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

In Exercise 64, you will be asked to interpret the meaning of the velocity vector 
obtained in Example 6.

Lines in Space
We have seen that first-degree equations in three variables graph as planes in space. So 
how do we get lines? There are several ways. First notice that to specify the x-axis, 
which is a line, we could use the pair of first-degree equations y = 0 and z = 0. As 
alternatives to using a pair of Cartesian equations, we can specify any line in space 
using

• one vector equation, or

• a set of three parametric equations.

Suppose / is a line through the point P01x0, y0, z02 and in the direction of a nonzero vec-
tor v = 8a, b, c9 (Figure 8.49). Then for any point P1x, y, z9 on /,

P0P
>

= tv

for some real number t. The vector v is a direction vector for line /. If r = OP
>
 =  

8x, y, z9 and r0 = OP0
>

= 8x0, y0, z09, then r - r0 = tv. So an equation of the line / is 
r = r0 + tv.

Using Vectors in Space
A jet airplane just after takeoff is pointed due east. Its air velocity vector makes an 
angle of 30° with flat ground with an airspeed of 250 mph. If the wind is out of the 
southeast at 32 mph, calculate a vector that represents the plane’s velocity relative to 
the point of takeoff.

SOLUTION Let i point east, j point north, and k point up. The plane’s air velocity is

a = 8250 cos 30°, 0, 250 sin 30°9 ≈ 8216.506, 0, 1259,
and the wind velocity, which is pointing northwest, is

w = 832 cos 135°, 32 sin 135°, 09 ≈ 8-22.627, 22.627, 09.
The velocity relative to the ground is v = a + w, so

 v ≈ 8216.506, 0, 1259 + 8-22.627, 22.627, 09
 ≈ 8193.88, 22.63, 1259
 = 193.88i + 22.63j + 125k

 Now try Exercise 33.

EXAMPLE 6 

Equations for a Line in Space

If / is a line through the point P01x0, y0, z02 in the direction of a nonzero vector 
v = 8a, b, c9, then a point P1x, y, z2 is on / if and only if

• Vector form: r = r0 + tv, where r = 8x, y, z9 and r0 = 8x0, y0, z09; or

• Parametric form: x = x0 + at, y = y0 + bt, and z = z0 + ct,

where t is a real number.

Finding Equations for a Line
The line through P014, 3, -12 with direction vector v = 8-2, 2, 79 can be written

• in vector form as r = 84, 3, -19 + t8-2, 2, 79; or

• in parametric form as x = 4 - 2t, y = 3 + 2t, and z = -1 + 7t.
 Now try Exercise 35.

EXAMPLE 7 

z

x

y

v = 7a, b, c8

P0(x0, y0, z0)

P(x, y, z)

,

Figure 8.49 The line / is parallel to the 
direction vector v = 8a, b, c9.
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Finding Equations for a Line
Using the standard unit vectors i, j, and k, write a vector equation for the line con-
taining the points A13, 0, -22 and B1-1, 2, -52, and compare it to the parametric 
equations for the line.

SOLUTION The line is in the direction of

v = AB
>

= 8-1 - 3, 2 - 0, -5 + 29 = 8-4, 2, -39.
Using r0 = OA

>
, the vector equation of the line becomes

 r = r0 + tv

 8x, y, z9 = 83, 0, -29 + t8-4, 2, -39
 8x, y, z9 = 83 - 4t, 2t, -2 - 3t9

 xi + yj + zk = 13 - 4t2i + 2tj + 1-2 - 3t2k
The parametric equations are the three component equations

x = 3 - 4t, y = 2t, and z = -2 - 3t.
 Now try Exercise 41.

EXAMPLE 8 

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–3, let P1x, y2 and Q12, -32 be points in the xy-plane.

 1. Compute the distance between P and Q.

 2. Find the midpoint of the line segment PQ.

 3. If P is 5 units from Q, describe the position of P.

In Exercises 4–6, let v = 8-4, 59 = -4i + 5j be a vector in the  
xy-plane.

 4. Find the magnitude of v.

 5. Find a unit vector in the direction of v.

 6. Find a vector 7 units long in the direction of -v.

 7. Give a geometric description of the graph of 
1x + 122 + 1y - 522 = 25 in the xy-plane.

 8. Give a geometric description of the graph of 
x = 2 - t, y = -4 + 2t in the xy-plane.

 9. Find the center and radius of the circle 
x2 + y2 + 2x - 6y + 6 = 0 in the xy-plane.

 10. Find a vector from P12, 52 to Q1-1, -42 in the xy-plane.

QUICK REVIEW 8.6 (For help, go to Sections 6.1 and 6.3.)

In Exercises 13–16, write an equation for the sphere with the given 
point as its center and the given number as its radius.

 13. 15, -1, -22, 8 14. 1-1, 5, 82, 25

 15. 11, -8, 82, 2b, b 7 0 16. 1p, q, r2, 6
In Exercises 17–22, sketch a graph of the equation. Label all intercepts.

 17. x + y + 3z = 9 18. x + y - 2z = 8

 19. x + z = 3 20. 2y + z = 6

 21. x - 3y = 6 22. x = 3

In Exercises 23–32, evaluate the expression using r = 81, 0, -39, 
v = 8-3, 4, -59, and w = 84, -3, 129.
 23. r + v  24. r - w

 25. v ~ w  26. 0w 0
 27. r ~ 1v + w2  28. 1r ~ v2 + 1r ~ w2
 29. w> 0w 0  30. i ~ r
 31. 8i ~ v, j ~ v, k ~ v9 32. 1r ~ v2w

SECTION 8.6 Exercises

In Exercises 1–4, draw a sketch that shows the point.

 1. 13, 4, 22 2. 12, -3, 62
 3. 11, -2, -42 4. 1-2, 3, -52
In Exercises 5–8, compute the distance between the points.

 5. 1-1, 2, 52, 13, -4, 62
 6. 12, -1, -82, 16, -3, 42
 7. 1a, b, c2, 11, -3, 22
 8. 1x, y, z2, 1p, q, r2
In Exercises 9–12, find the midpoint of the segment PQ.

 9. P1-1, 2, 52, Q13, -4, 62
 10. P12, -1, -82, Q16, -3, 42
 11. P12x, 2y, 2z2, Q1-2, 8, 62
 12. P1-a, -b, -c2, Q13a, 3b, 3c2
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644 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

In Exercises 33 and 34, let i point east, j point north, and k point up.

 33. Three-Dimensional Velocity An airplane just after take-
off is headed west and is climbing at a 20° angle relative to flat 
ground with an airspeed of 200 mph. If the wind is out of the 
northeast at 10 mph, calculate a vector v that represents the 
plane’s velocity relative to the point of takeoff.

 34. Three-Dimensional Velocity A rocket soon after takeoff 
is headed east and is climbing at an 80° angle relative to flat 
ground with an airspeed of 12,000 mph. If the wind is out of 
the southwest at 8 mph, calculate a vector v that represents the 
rocket’s velocity relative to the point of takeoff.

In Exercises 35–38, write the vector and parametric forms of the line 
through the point P0 in the direction of v.

 35. P012, -1, 52, v = 83, 2, -79
 36. P01-3, 8, -12, v = 8-3, 5, 29
 37. P016, -9, 02, v = 81, 0, -49
 38. P010, -1, 42, v = 80, 0, 19
In Exercises 39–48, use the points A1-1, 2, 42, B10, 6, -32, and 
C12, -4, 12.
 39. Find the distance from A to the midpoint of BC.

 40. Find the vector from A to the midpoint of BC.

 41. Write a vector equation of the line through A and B.

 42. Write a vector equation of the line through A and the midpoint 
of BC.

 43. Write parametric equations for the line through A and C.

 44. Write parametric equations for the line through B and C.

 45. Write parametric equations for the line through B and the  
midpoint of AC.

 46. Write parametric equations for the line through C and the mid-
point of AB.

 47. Is ∆ABC equilateral, isosceles, or scalene?

 48. If M is the midpoint of BC, what is the midpoint of AM?

Writing to Learn In Exercises 49–52, (a) sketch the line defined by 
the pair of equations, and (b) give a geometric description of the line, 
including its direction and its position relative to the coordinate frame.

 49. x = 0, y = 0

 50. x = 0, z = 2

 51. x = -3, y = 0

 52. y = 1, z = 3

 53. Write a vector equation for the line through the distinct points 
P1x1, y1, z12 and Q1x2, y2, z22.

 54. Write parametric equations for the line through the distinct 
points P1x1, y1, z12 and Q1x2, y2, z22.

 55. Generalizing the Distance Formula 
Prove that the distance d1P, Q2 between the points  
P1x1, y1, z12 and Q1x2, y2, z22 in space is 21x1 - x222 + 1y1 - y222 + 1z1 - z222 by using the point 
R1x2, y2, z12, the two-dimensional distance formula within the 
plane z = z1, the one-dimensional distance formula within the 
line r = 8x2, y2, t9, and the Pythagorean Theorem. [Hint: A 
sketch may help you visualize the situation.]

 56.  Generalizing a Property of the Dot Product Prove 
u # u = 0 u 0 2, where u is a vector in three-dimensional space.

Standardized Test Questions
 57. True or False x2 + 4y2 = 1 represents a surface in space. 

Justify your answer.

 58. True or False The parametric equations x = 1 + 0t, 
y = 2 - 0t, z = -5 + 0t represent a line in space. Justify 
your answer.

In Exercises 59–62, you may use a grapher to solve the problem.

 59. Multiple Choice A first-degree equation in three variables 
graphs as

(A) a line.

(B) a plane.

(C) a sphere.

(D) a paraboloid.

(E) an ellipsoid.

 60. Multiple Choice Which of the following is not a quadric 
surface?

(A) A plane

(B) A sphere

(C) An ellipsoid

(D) An elliptic paraboloid

(E) A hyperbolic paraboloid

 61. Multiple Choice If v and w are vectors and c is a scalar, 
which of these is a scalar?

(A) v + w

(B) v - w

(C) v # w

(D) cv

(E) 0 v 0w
 62. Multiple Choice The parametric form of the line 

r = 82, -3, 09 + t81, 0, -19 is
(A) x = 2 - 3t, y = 0 + 1t, z = 0 - 1t.

(B) x = 2t, y = -3 + 0t, z = 0 - 1t.

(C) x = 1 + 2t, y = 0 - 3t, z = -1 + 0t.

(D) x = 1 + 2t, y = -3, z = -1t.

(E) x = 2 + t, y = -3, z = - t.

Explorations
 63. Group Activity Writing to Learn The figure shows a 

graph of the ellipsoid x2>9 + y2>4 + z2>16 = 1 drawn in a 
box using Mathematica computer software.

(a) Describe its cross sections in each of the three coordinate 
planes, that is, for z = 0, y = 0, and x = 0. In your 
description, include the name of each cross section and its 
position relative to the coordinate frame.
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(b) Explain algebraically why the graph of 

z = 21 - x2 - y2 is half of a sphere. What is the equa-
tion of the related whole sphere?

(c) By hand, sketch the graph of the hemisphere 

z = 21 - x2 - y2. Check your sketch using a 3D 
grapher if you have access to one.

(d) Explain how the graph of an ellipsoid is related to the 
graph of a sphere and why a sphere is a degenerate  
ellipsoid.

–2
–1

0
1

2

–2

0

2

–4

–2

0

2

4

 64. Revisiting Example 6 Read Example 6. Then, using 
v = 193.88i + 22.63j + 125k, establish the following:

(a) The plane’s compass bearing is 83.34°.

(b) Its speed downrange (that is, ignoring the vertical compo-
nent) is 195.2 mph.

(c) The plane is climbing at an angle of 32.63°.

(d) The plane’s overall speed is 231.8 mph.

Extending the Ideas
The cross product u : v of the vectors u = u1i + u2 j + u3k and 
v = v1i + v2 j + v3k is

 u * v = 3 i j k
u1 u2 u3

v1 v2 v3

3
 = 1u2v3 - u3v22i + 1u3v1 - u1v32j + 1u1v2 - u2v12k.

Use this definition in Exercises 65–68.

 65. 81, -2, 39 * 8-2, 1, -19
 66. 84, -1, 29 * 81, -3, 29
 67. Prove that i * j = k.

 68. Assuming the theorem about angles between vectors (Section 6.2) 
holds for three-dimensional vectors, prove that u * v is per-
pendicular to both u and v if they are nonzero.

Midpoint Formula (Cartesian Space) 638
Standard Equation of a Sphere 640
Equation for a Plane in Cartesian Space 640
Vector Relationships in Space 641
Equations for a Line in Space 642

Procedures

How to Sketch the Ellipse x2

a2 + y2

b2 = 1 600

How to Sketch the Hyperbola x2

a2 - y2

b2 = 1 610

Rotation of Axes 619–624
How to Draw Three-Dimensional Objects to Look  

Three-Dimensional 639

CHAPTER 8 Key Ideas

Properties, Theorems, and Formulas

Parabolas with Vertex 10, 02  590
Parabolas with Vertex 1h, k2 591
Ellipses with Center 10, 02  599
Ellipses with Center 1h, k2 601
Hyperbolas with Center 10, 02  611
Hyperbolas with Center 1h, k2 612
Axis Rotation Formulas 621
Angle of Rotation to Eliminate the Cross-Product Term 623
Discriminant Test 624
Focus-Directrix-Eccentricity Relationship 628
Polar Equations for Conics 630
Ellipse with Eccentricity e and Semimajor Axis a 633
Distance Formula (Cartesian Space) 638

 CHAPTER 8 Key Ideas 645
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646 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

 13. y2 = -3x  14. 
1x - 222

4
+ y2 = 1

 15. 
y2

5
- x2 = 1  16. 

x2

9
-

y2

25
= 1

 17. 
y2

3
+ x2 = 1  18. x2 = y

 19. x2 = -4y  20. y2 = 6x

In Exercises 21–28, identify the conic. Then complete the square to 
write the conic in standard form, and sketch the graph.

 21. x2 - 6x - y - 3 = 0 22. x2 + 4x + 3y2 - 5 = 0

 23. x2 - y2 - 2x + 4y - 6 = 0

 24. x2 + 2x + 4y - 7 = 0 25. y2 - 6x - 4y - 13 = 0

 26. 3x2 - 6x - 4y - 9 = 0

 27. 2x2 - 3y2 - 12x - 24y + 60 = 0

 28. 12x2 - 4y2 - 72x - 16y + 44 = 0

 29. Prove that the parabola with focus 10, p2 and directrix y = -p 
has the equation x2 = 4py.

 30. Prove that the equation y2 = 4px represents a parabola with 
focus 1p, 02 and directrix x = -p.

In Exercises 31–34, identify the conic. Solve the equation for y and 
graph it.

 31. 3x2 - 8xy + 6y2 - 5x - 5y + 20 = 0

 32. 10x2 - 8xy + 6y2 + 8x - 5y - 30 = 0

 33. 3x2 - 2xy - 5x + 6y - 10 = 0

 34. 5xy - 6y2 + 10x - 17y + 20 = 0

In Exercises 35 and 36, (a) identify the type of conic; (b) find rotation 
formulas that will convert the 1x, y2 equation to a 1u, v2 equation with 
no cross-product term; (c) write the 1u, v2 equation in standard form; 
(d) find the vertices and foci in the 1u, v2 system; and (e) write the  
vertices and foci in 1x, y2 coordinates.

 35. x2 + 2xy + y2 + 422 x - 422 y + 8 = 0

 36. 91x2 - 24xy + 84y2 = 300

In Exercises 37–48, find the equation for the conic in standard form.

 37. Parabola: vertex 10, 02, focus 12, 02
 38. Parabola: vertex 10, 02, opens downward, focal width = 12

 39. Parabola: focus 1-1, 12, directrix x + y + 1 = 0

CHAPTER 8 Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–4, find the vertex, focus, directrix, and focal width of the 
parabola, and sketch the graph.

 1. y2 = 12x 2. x2 = -8y

 3. 1x + 222 = -41y - 12 4. 1y + 222 = 16x

In Exercises 5–12, identify the type of conic. Find the center, vertices, 
and foci of the conic, and sketch its graph.

 5. 
y2

8
+

x2

5
= 1 6. 

y2

16
-

x2

49
= 1

 7. 
x2

25
-

y2

36
= 1 8. 

x2

49
-

y2

9
= 1

 9. 
1x + 322

18
-
1y - 522

28
= 1

 10. 
1y - 322

9
-
1x - 722

12
= 1

 11. 
1x - 222

16
+
1y + 122

7
= 1

 12. 
y2

36
+
1x + 622

20
= 1

In Exercises 13–20, match the equation with its graph.

y

x

(a)

y

x

(b)

y

x

(c)

y

x

(d)

y

x

(e)

y

x

(f)

y

x

(g)

y

x

(h)
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 40. Parabola: vertex 11, -22, opens to the left, focal length = 2

 41. Ellipse: center 10, 02, foci 1±12, 02, vertices 1±13, 02
 42. Ellipse: center 10, 02, foci 10, ±22, vertices 10, ±62
 43. Ellipse: center 10, 22, semimajor axis = 3, one focus is  

12, 22. 
 44. Ellipse: center 1-3, -42, semimajor axis = 4, one focus is 

10, -42.
 45. Hyperbola: foci 1±3, 02, vertices 1±2, 02
 46. Hyperbola: center 10, 02, vertices 1±2, 02, asymptotes 

y = ±2x

 47. Hyperbola: center 12, 12, vertices 12±3, 12, one asymptote is 
y = 14>321x - 22 + 1

 48. Hyperbola: center 1-5, 02, one focus is 1-5, 32, one vertex is 
1-5, 22.

In Exercises 49–54, find the equation for the conic in standard form.

 49. x = 6 cos t, y = 3 sin t, 0 … t … 2p

 50. x = 4 sin t, y = 6 cos t, 0 … t … 4p

 51. x = -2 + cos t, y = 4 + sin t, 2p … t … 4p

 52. x = 5 + 3 cos t, y = -3 + 3 sin t, -2p … t … 0

 53. x = 2 sec t , y = 5 tan t, 0 … t … 2p

 54. x = 4 sec t, y = 3 tan t, 0 … t … 2p

In Exercises 55–62, identify and graph the conic, and rewrite the  
equation in Cartesian coordinates.

 55. r =
4

1 + cos u
 56. r =

5
1 - sin u

 57. r =
4

3 - cos u
 58. r =

3
4 + sin u

 59. r =
35

2 - 7 sin u
 60. r =

15
2 + 5 cos u

 61. r =
2

1 + cos u
 62. r =

4
4 - 4 cos u

In Exercises 63–74, use the points P1-1, 0, 32 and Q13, -2, -42 and 
the vectors v = 8-3, 1, -29 and w = 83, -4, 09.
 63. Compute the distance from P to Q.

 64. Find the midpoint of segment PQ.

 65. Compute v + w.

 66. Compute v - w.

 67. Compute v # w.

 68. Compute the magnitude of v.

 69. Write the unit vector in the direction of w.

 70. Compute 1v # w21v + w2.
 71. Write an equation for the sphere centered at P with radius 4.

 72. Write parametric equations for the line through P and Q.

 73. Write a vector equation for the line through P in the direction 
of v.

 74. Write parametric equations for the line in the direction of w 
through the midpoint of PQ.

 75. Parabolic Microphones B-Ball Network uses a parabolic 
microphone to capture all the sounds from the basketball play-
ers and coaches during each regular season game. If one of its 
microphones has a parabolic surface generated by the parabola 
18y = x2, locate the focus (the electronic receiver) of the 
parabola.

 76. Parabolic Headlights Specific Electric makes parabolic 
headlights for a variety of automobiles. If one of its headlights 
has a parabolic surface generated by the parabola y2 = 15x 
(see figure), where should its light bulb be placed?

Focus Light
rays

 77. Writing to Learn Elliptical 
Billiard Table Elliptical  
billiard tables have been  
constructed with spots marking 
the foci. Suppose such a table 
has a major axis of 6 ft and a 
minor axis of 4 ft.

(a) Explain the strategy that a “pool shark” who knows conic 
geometry would use to hit a blocked spot on this table.

(b) If the table surface is coordinatized so that 10, 02 repre-
sents the center of the table and the x-axis is along the 
focal axis of the ellipse, at which point(s) should the ball 
be aimed?

 78. Weather Satellite The Nimbus weather satellite travels in 
a north-south circular orbit 500 m above Earth. Find the fol-
lowing. (Assume Earth’s radius is 6380 km.)

(a) The velocity of the satellite using the formula for velocity v 
given for Exercises 43 and 44 in Section 8.5 with 
k = 1

(b) The time required for Nimbus to circle Earth once

 79. Elliptical Orbits The velocity of a body in an elliptical 
Earth orbit at a distance r (in meters) from the focus (the center 
of Earth) is

v = B3.99 * 1014a2
r

-
1
a
b  m>sec,

  where a is the semimajor axis of the ellipse. An Earth satellite 
has a maximum altitude (at apogee) of 18,000 km and has a 
minimum altitude (at perigee) of 170 km. Assuming Earth’s 
radius is 6380 km, find the velocity of the satellite at its apogee 
and perigee.

 80. Icarus The asteroid Icarus is about 1 mi wide. It revolves 
around the Sun once every 409 Earth days and has an orbital 
eccentricity of 0.83. Use Kepler’s first and third laws to  
determine Icarus’s semimajor axis, perihelion distance, and 
aphelion distance.

 CHAPTER 8 Review Exercises 647

M09_DEMA8962_10_GE_C08.indd   647 22/06/22   18:02



648 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Explorations

 1. If you collected data using a CBR, a plot of distance versus 
time may be shown on your grapher screen. Go to the plot 
setup screen and create a scatter plot of velocity versus dis-
tance. If you do not have access to a CBR, use the distance 
and velocity data from the table below to create a scatter 
plot.

 2. Carry out the mathematics. Find values for a, b, h, and k 
so that the equation

1x - h22
a2 +

1y - k22
b2 = 1 or 

1y - k22
a2 +

1x - h22
b2 = 1

 fits the velocity-versus-position data plot. To graph this 
model, you will have to solve the appropriate equation for  
y and enter it into the grapher in Y1 and Y2.

 3. Analyze the solution. With respect to the ellipse modeled 
above, what do the variables a, b, h, and k represent?

 4. Assess the solution. What are the physical meanings of a, b, 
h, and k with respect to the motion of the pendulum?

 5. Set up plots of distance versus time and velocity versus 
time. Find models for both of these plots and use them to 
graph the plot of the ellipse using parametric equations.

CHAPTER 8 Modeling Project

Ellipses as Models of Pendulum Motion

Understand the problem and identify variables. As a simple 
pendulum swings back and forth, a plot of its velocity versus its 
position is elliptical in nature and can be modeled using a stan-
dard form of the equation of an ellipse,

1x - h22
a2 +

1y - k22
b2 = 1 or 

1y - k22
a2 +

1x - h22
b2 = 1,

where x represents the pendulum’s position relative to a fixed 
point and y represents the pendulum’s velocity. In this project, 
you will use a motion detection device to collect position  
(distance) and velocity data for a swinging pendulum, then find 
a mathematical model that describes the pendulum’s velocity 
with respect to position.

Collecting the Data

Construct a simple pendulum by fastening about 0.5 m of string 
to a ball. Set up a Calculator-Based Ranger (CBR) system to 
collect distance and velocity readings for 4 sec (enough time to 
capture at least one complete swing of the pendulum). See the 
printed or online CBR guidebook for specific setup instructions. 
Start the pendulum swinging toward and away from the detector, 
then activate the CBR system. The table below contains a  
sample set of data collected in the manner just described.

Time  
(sec)

Distance from 
the CBR (m)

Velocity  
(m>sec)

  Time  
(sec)

Distance from 
the CBR (m)

Velocity  
(m>sec)

0.000 0.682 -0.300   0.647 0.454 0.279

0.059 0.659 -0.445   0.706 0.476 0.429
0.118 0.629 -0.555   0.765 0.505 0.544
0.176 0.594 -0.621   0.824 0.540 0.616
0.235 0.557 -0.638   0.882 0.576 0.639
0.294 0.521 -0.605   0.941 0.612 0.612
0.353 0.489 -0.523   1.000 0.645 0.536
0.412 0.463 -0.400   1.059 0.672 0.418
0.471 0.446 -0.246   1.118 0.690 0.266
0.529 0.438 -0.071   1.176 0.699 0.094
0.588 0.442   0.106   1.235 0.698 -0.086
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As the use of cellular telephones, modems, pagers, and fax machines has 

grown in recent years, the increasing demand for unique telephone numbers 

has necessitated the creation of new area codes in many parts of the 

United States. Counting the number of possible telephone numbers in a 

given area code is a combinatorial problem, and such problems are solved 

using the techniques of discrete mathematics. See page 656 for more on the 

subject of telephone area codes.

 9.1 Basic Combinatorics

 9.2 Binomial Theorem

 9.3 Sequences

 9.4 Series

 9.5 Mathematical Induction

Discrete Mathematics

CHAPTER 9
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650 CHAPTER 9 Discrete Mathematics

Chapter 9 Overview
The branches of mathematics known broadly as algebra, analysis, and geometry come 
together so beautifully in calculus that it has been difficult over the years to squeeze 
other mathematics into the curriculum. Consequently, for many students, worthwhile 
topics such as probability, combinatorics, graph theory, and numerical analysis that 
could easily be introduced in high school are either first seen in college electives or 
never seen at all. This situation is changing as the applications of noncalculus mathe-
matics become increasingly important in our modern, computerized, data-driven soci-
ety. Therefore, besides introducing important topics like sequences and series and the 
Binomial Theorem, this chapter will touch on other topics of discrete mathematics that 
might prove useful to you in the near future.

A

C

B

A

A

A

A

C

B

C

B

C

B

C

B

Figure 9.1 A tree diagram for ordering the 
letters ABC. (Example 1)

What you’ll learn about
• Discrete Versus Continuous

• The Importance of Counting

• The Multiplication Principle of 
Counting

• Permutations

• Combinations

• Subsets of an n-Set

... and why
Counting large sets is easy if you 
know the correct formula.

Discrete Versus Continuous
A point has no length and no width, and yet intervals on the real line—which are made 
up of these dimensionless points—have length! This little mystery illustrates the dis-
tinction between continuous and discrete mathematics. Any interval 1a, b2 contains a 
continuum of real numbers, which is why you can zoom in on an interval repeatedly 
and there will still be an interval there. Calculus concepts like limits and continuity 
depend on the mathematics of the continuum. In discrete mathematics, we are con-
cerned with properties of numbers and algebraic systems that do not depend on that 
kind of analysis. Many of these properties relate to the first kind of mathematics that 
most of us ever did, namely counting. Counting is what we will do for the rest of this 
section.

The Importance of Counting
We begin with a relatively simple counting problem.

9.1 Basic Combinatorics

Arranging Three Objects in Order
In how many different ways can three distinguishable objects be arranged in order?

SOLUTION It is not difficult to list all the possibilities. If we call the objects A, B, 
and C, the orderings are ABC, ACB, BAC, BCA, CAB, and CBA. A good way to visu-
alize the six choices is with a tree diagram, as in Figure 9.1. Notice that we have 
three choices for the first letter. Then, branching off each of those three choices are 
two choices for the second letter. Finally, branching off each of the 3 * 2 = 6 
branches formed so far is one choice for the third letter. By beginning at the “root” of 
the tree, we can proceed to the right along any of the 3 * 2 * 1 = 6 branches and 
get a different ordering each time. We conclude that there are six ways to arrange 
three distinguishable objects in order. Now try Exercise 3.

EXAMPLE 1 

Scientific studies will usually manipulate one or more explanatory variables and 
observe the effect of that manipulation on one or more response variables. The key to 
understanding the significance of the effect is to know what is likely to occur by chance 
alone, and that often depends on counting. For example, Exploration 1 provides a real-
world application of Example 1.
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 SECTION 9.1 Basic Combinatorics 651

The Multiplication Principle of Counting
Probably you would not want to draw the tree diagram for ordering five objects (ABCDE), 
but you should convince yourself that it would have 5 * 4 * 3 * 2 * 1 = 120 
branches. A tree diagram is a geometric representation of a fundamental counting principle 
known as the Multiplication Principle.

Questionable Product Claims

A salesperson for a copying machine company is trying to convince a client to 
buy the company’s €2000 machine instead of a competitor’s €5000 machine. To 
make their point, the salesperson lines up an original document, a copy made by 
their machine, and a copy made by the competitor’s machine on a table and asks 
60 office workers to identify which is which. To everyone’s surprise, not a single 
worker identifies all three correctly. The salesperson states triumphantly that this 
proves that all three documents look the same to the naked eye and that therefore 
the client should buy their company’s €2000 machine.

What do you think?

 1. Each worker is essentially being asked to put the three documents in the 
 correct order. How many ways can the three documents be ordered? 

 2. Suppose all three documents really do look alike. What fraction of the workers 
would you expect to put them in the correct order by chance alone? 

 3. If 0 persons out of 60 put the documents in the correct order, should we 
 conclude that “all three documents look the same to the naked eye”? 

 4. Can you suggest a more likely conclusion that we might draw from the results 
of the salesperson’s experiment? 

EXPLORATION 1 

Multiplication Principle of Counting

If a procedure P has a sequence of stages S1, S2, c, Sn and if

S1 can occur in r1 ways,

S2 can occur in r2 ways,
f
Sn can occur in rn ways,

then the number of ways that the procedure P can occur is the product

r1r2grn.

It is important to be mindful of how the choices at each stage are affected by the choices 
at preceding stages. For example, when choosing an order for the letters ABC we have  
3 choices for the first letter, but only 2 choices for the second and 1 for the third.

Using the Multiplication Principle
A Tennessee license plate consists of three letters of the alphabet followed by three 
numerical digits (0 through 9). Find the number of different license plates that can be 
formed

(a) if there is no restriction on the letters or digits that can be used;

(b) if no letter or digit can be repeated.

EXAMPLE 2 

(continued)
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Permutations
One important application of the Multiplication Principle of Counting is to count the 
number of ways that a set of n objects (called an n-set) can be arranged in order. Each 
such ordering is called a permutation of the set. Example 1 showed that there are 
3! = 6 permutations of a 3-set. In fact, if you understood the tree diagram in Figure 9.1, 
you can probably guess how many permutations there are of an n-set.

Permutations of an n-set

There are n! permutations of an n-set.

Factorials
If n is a positive integer, the symbol n!  
(read “n factorial”) represents the product 
n1n - 121n - 221n - 32g2 # 1. We  
also define 0! = 1.

License Plate Restrictions
Although prohibiting repeated letters and digits 
as in Example 2 would make no practical sense 
(why rule out more than 6 million possible plates 
for no good reason?), states do impose some 
restrictions on license plates. They rule out cer-
tain letter progressions that could be considered 
obscene or offensive.

SOLUTION Consider each license plate as having six blanks to be filled in: three let-
ters followed by three numerical digits.

(a) If there are no restrictions on letters or digits, then we can fill in the first blank  
26 ways, the second blank 26 ways, the third blank 26 ways, the fourth blank  
10 ways, the fifth blank 10 ways, and the sixth blank 10 ways. By the Multiplication 
Principle, we can fill in all six blanks in 26 * 26 * 26 * 10 * 10 * 10 =
17,576,000 ways. There are 17,576,000 possible license plates with no restrictions 
on letters or digits. (In actual practice, there are restrictions. See the margin note.)

(b) If no letter or digit can be repeated, then we can fill in the first blank 26 ways, 
the second blank 25 ways, the third blank 24 ways, the fourth blank 10 ways, the 
fifth blank 9 ways, and the sixth blank 8 ways. By the Multiplication Principle, 
we can fill in all six blanks in 26 * 25 * 24 * 10 * 9 * 8 = 11,232,000 
ways. There are 11,232,000 possible license plates with no letters or digits 
repeated. Now try Exercise 23.

Usually the elements of a set are distinguishable from one another, but we can adjust 
our counting when they are not, as we see in Example 3.

Distinguishable Permutations
Count the number of distinct 9-letter “words” (don’t worry about whether they’re in 
the dictionary) that can be formed using the letters in each word.

(a) DRAGONFLY    (b) BUTTERFLY    (c) BUMBLEBEE

SOLUTION 

(a) Each permutation of the 9 letters forms a different word. There are 9! = 362,880 
such permutations.

(b) There are also 9! permutations of these letters, but a simple permutation of the 
two T’s does not result in a new word. We correct for the overcount by dividing 

by 2!. There are 
9!
2!

= 181,440 distinguishable permutations of the letters in 

BUTTERFLY.

(c) Again there are 9! permutations, but the three B’s are indistinguishable, as are 
the three E’s, so we divide by 3! twice to correct for the overcount. There are 
9!

3!3!
= 10,080 distinguishable permutations of the letters in BUMBLEBEE.

 Now try Exercise 9.

EXAMPLE 3 
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Notice that nPn = n!>1n - n2! = n!>0! = n!>1 = n!, which we have already seen is 
the number of permutations of a complete set of n objects. This is why we define 
0! = 1.

Distinguishable Permutations

There are n! distinguishable permutations of an n-set containing n distinguish-
able objects.

If an n-set contains n1 objects of a first kind, n2 objects of a second kind, and so 
on, with n1 + n2 + g+  nk = n, then the number of distinguishable permuta-
tions of the n-set is

n!
n1!n2!n3!gnk!

.

Permutation Counting Formula

The number of permutations of n objects taken r at a time is denoted nPr and is 
given by

nPr =
n!

1n - r2!  for  0 … r … n.

If r 7 n, then nPr = 0.

Permutations on a Calculator
Most modern calculators have an nPr selection 
built in. They also can compute factorials, but 
remember that factorials get very large. If you 
want to count the number of permutations of 90 
objects taken 5 at a time, be sure to use the nPr 
feature. The expression 90! >85! is likely to lead 
to an overflow error.

In many counting problems, we are interested in using n objects to fill r blanks in order, 
where r 6 n. These are permutations of n objects taken r at a time. The procedure 
for counting them is the same as before, only this time we run out of blanks before we 
run out of objects.

The first blank can be filled in n ways, the second in n - 1 ways, and so on until we come 
to the rth blank, which can be filled in n - 1r - 12 ways. By the Multiplication Principle, 
we can fill all r blanks in n1n - 121n - 22g1n - r + 12 ways. This expression can 
be written in a more compact (but less easily computed) way as n!>1n - r2!.

Counting Permutations
Evaluate each expression without a calculator.

(a) 6P4      (b) 11P3      (c) nP3

SOLUTION 

(a) By the formula, 6P4 = 6!>16 - 42! = 6!>2! = 16 # 5 # 4 # 3 # 2!2>2! =
6 # 5 # 4 # 3 = 360.

(b) Although you could use the formula again, you might prefer to apply the Multi-
plication Principle directly. We have 11 objects and 3 blanks to fill:

11P3 = 11 # 10 # 9 = 990

(c) This time it is definitely easier to use the Multiplication Principle. We have n 
objects and 3 blanks to fill; so, assuming n Ú 3,

nP3 = n1n - 121n - 22.
 Now try Exercise 15.

EXAMPLE 4 
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We can verify the nCr formula with the Multiplication Principle. Because every permu-
tation can be thought of as an unordered selection of r objects followed by a particular 
ordering of the objects selected, the Multiplication Principle gives nPr = nCr

# r!.

Therefore,

nCr = nPr

r!
=

1
r!

# n!
1n - r2! =

n!
r!1n - r2! .

Combination Counting Formula

The number of combinations of n objects taken r at a time is denoted nCr and is 
given by

nCr =
n!

r!1n - r2!  for  0 … r … n.

If r 7 n, then nCr = 0.

Combinations on a Calculator
Most modern calculators have an nCr selection 
built in. As with permutations, it is better to use 
the nCr feature than to use the formula 

n!
r!1n - r2! because the individual factorials can 

get too large for the calculator.

A Word on Notation
Some texts use P1n, r2 instead of nPr and  
C1n, r2 instead of nCr. Much more  

common is the notation an
r
b  for nCr. Both  

an
r
b  and nCr are often read “n choose r.”

Applying Permutations
Sixteen actors answer a casting call to try out for roles as dwarfs in a production of 
Snow White and the Seven Dwarfs. In how many different ways can the director cast 
the seven roles?

SOLUTION The 7 different roles can be thought of as 7 blanks to be filled, and we 
have 16 actors with which to fill them. The director can cast the roles in 
16P7 = 57,657,600 ways. Now try Exercise 12.

EXAMPLE 5 

Combinations
When we count permutations of n objects taken r at a time, we consider different order-
ings of the same r selected objects as being different permutations. In many applica-
tions we are interested only in the ways to select the r objects, regardless of the order in 
which we arrange them. These unordered selections are combinations of n objects 
taken r at a time.

Distinguishing Combinations  
from Permutations

In each of the following scenarios, tell whether permutations (ordered) or combina-
tions (unordered) are being described.

(a) A president, vice president, and secretary are chosen from a 25-member garden 
club.

(b) A cook chooses 5 potatoes from a bag of 12 potatoes to make a potato salad.

(c) A teacher makes a seating chart for 22 students in a classroom with 30 desks.

SOLUTION 

(a) Permutations. Order matters because it matters who gets which office.

(b) Combinations. The salad is the same no matter in what order the potatoes are 
chosen.

(c) Permutations. A different ordering of students in the same seats results in a dif-
ferent seating chart.

Notice that once you know what is being counted, getting the correct numerical answer 
is easy with a calculator. The number of possible choices in the scenarios above are

(a) 25P3 = 13,800, (b) 12C5 = 792, and (c) 30P22 ≈ 6.5787 * 1027.
 Now try Exercise 19.

EXAMPLE 6 
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The solution to Example 9b suggests a general rule that will be our last counting for-
mula of the section.

Counting Combinations
In the Miss America pageant, 51 contestants must be narrowed down to 10 finalists 
who will compete on national television. In how many possible ways can the 10 
finalists be selected?

SOLUTION Notice that the order of the finalists does not matter at this phase; all 
that matters is which women are selected. So we count combinations rather than 
 permutations.

51C10 =
51!

10!41!
= 12,777,711,870

The 10 finalists can be chosen in 12,777,711,870 ways. Now try Exercise 27.

EXAMPLE 7 

Picking Lottery Numbers
The Georgia Jumbo Bucks Lotto requires players to pick 6 integers between 1 and 47, 
inclusive. The order in which a player selects them does not matter; indeed, the lot-
tery tickets are printed with the numbers in ascending order. How many distinct lot-
tery choices are possible?

SOLUTION There are 47C6 = 10,737,573 possible lottery picks of this type. (That’s 
roughly one choice for each person in the state of Georgia!)
 Now try Exercise 29.

EXAMPLE 8 

Subsets of an n-Set
As a final application of the counting principle, consider the pizza topping problem.

Selecting Pizza Toppings
Armando’s Pizzeria offers patrons any combination of up to ten different toppings: 
pepperoni, mushroom, sausage, onion, green pepper, bacon, prosciutto, black olive, 
green olive, and anchovies. How many different pizzas can be ordered

(a) if we can choose any three toppings?

(b) if we can choose any number of toppings (0 through 10)?

SOLUTION 

(a) Order does not matter (for example, the sausage-pepperoni-mushroom pizza is 
the same as the pepperoni-mushroom-sausage pizza), so the number of possible 
pizzas is 10C3 = 120.

(b) We could add up all the numbers of the form 10Cr for r = 0, 1, c , 10, but 
there is an easier way to count the possibilities. Consider the ten options to be 
lined up as in the statement of the problem. In considering each option, we have 
two choices: yes or no. (For example, the pepperoni-mushroom-sausage pizza 
would correspond to the sequence YYYNNNNNNN.) By the Multiplication 
Principle, the number of such sequences is 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 = 1024, 
which is the number of possible pizzas. Now try Exercise 37.

EXAMPLE 9 

Formula for Counting Subsets of an n-Set

There are 2n subsets of a set with n objects (including the empty set and the 
entire set).
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Why Are There Not 1000 Possible 
Area Codes?
Although there are 1000 three-digit numbers 
between 000 and 999, not all of them are avail-
able for use as area codes. For example, area 
codes cannot begin with 0 or 1, and numbers of 
the form abb have been reserved for other pur-
poses. We are likely to run out of three-digit 
codes by the middle of this century.

Analyzing an Advertised Claim
A national hamburger chain used to advertise that it fixed its hamburgers “256 ways,” 
because patrons could order whatever toppings they wanted. How many toppings 
must have been available?

SOLUTION We need to solve the equation 2n = 256 for n. We could solve this eas-
ily enough by trial and error, but we will solve it using logarithms just to keep the 
method fresh in our minds.

 2n = 256

 log 2n =  log 256

 n log 2 =  log 256

 n =
log 256

log 2
 n = 8

There must have been 8 toppings from which to choose.
 Now try Exercise 39.

EXAMPLE 10 

CHAPTER OPENER  Problem (from page 649)

Problem: There are 677 three-digit numbers that are available for use as area 
codes in North America. As of 2017, 417 of them were actually in use. How many 
additional three-digit area codes are available for use? Within a given area code, 
how many unique telephone numbers are theoretically possible?

Solution: There are 677 - 417 = 260 additional area codes available. Within a 
given area code, each telephone number has seven digits chosen from the ten dig-
its 0 through 9. Because each digit can theoretically be any of these ten, there are

10 # 10 # 10 # 10 # 10 # 10 # 10 = 107 = 10,000,000

telephone numbers possible within a given area code.

Putting these two results together, we see that the unused area codes in 2017 
 represented an additional 2.6 billion possible telephone numbers!

In Exercises 1–10, give the number of objects described. In some cases 
you might have to do a little research or ask a friend.

 1. The number of cards in a standard deck

 2. The number of cards of each suit in a standard deck

 3. The number of faces on a cubical die

 4. The number of possible totals when two dice are rolled

 5. The number of vertices of a decagon

 6. The number of musicians in a string quartet

 7. The number of players on a soccer team

 8. The number of prime numbers between 1 and 10, inclusive

 9. The number of squares on a chessboard

 10. The number of cards in a contract bridge hand

QUICK REVIEW 9.1
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 22. 4 actors are chosen to play the Beatles in a film biography.

 23. License Plates How many different license plates begin 
with two digits, followed by two letters and then three digits, if 
no letters or digits are repeated?

 24. License Plates How many different license plates consist 
of five symbols, either digits or letters?

 25. Tumbling Dice Suppose that two dice, one red and one 
green, are rolled. How many different outcomes are possible 
for the pair of dice?

 26. Coin Toss How many different sequences of heads and tails 
are there if a coin is tossed 10 times?

 27. Forming Committees A 3-woman committee is to be 
elected from a 25-member sorority. How many different com-
mittees can be elected?

 28. Straight Poker In the original version of poker known  
as “straight” poker, a five-card hand is dealt from a standard 
deck of 52. How many different straight poker hands are 
 possible?

 29. Buying Discs Juan has money to buy only three of the  
48 compact discs available. How many different sets of discs 
can he purchase?

 30. Coin Toss A coin is tossed 20 times and the heads and  
tails sequence is recorded. From among all the possible 
sequences of heads and tails, how many have exactly seven 
heads?

 31. Drawing Cards How many different 13-card hands include 
the ace and king of spades?

 32. Job Interviews The head of the personnel department 
interviews eight applicants for three identical openings. How 
many different groups of three can be employed?

 33. Scholarship Nominations Six seniors at Rydell High 
School meet the qualifications for a competitive honor scholar-
ship at a major university. The university allows the school to 
nominate up to three candidates, and the school always nomi-
nates at least one. How many different choices could the nomi-
nating committee make?

 34. Pu-pu Platters A Chinese 
restaurant will make a Pu-pu 
platter “to order” containing any 
one, two, or three selections 
from its appetizer menu. If  
the menu offers five types of 
appetizers, how many different 
platters can be made?

 35. Yahtzee In the game of Yahtzee, five dice are tossed simul-
taneously. How many outcomes can be distinguished if all the 
dice are different colors?

 36. Indiana Jones and the Final Exam Professor Indiana 
Jones gives his class 20 study questions, from which he will 
select 8 to be answered on the final exam. How many ways can 
he select the questions?

SECTION 9.1 Exercises

In Exercises 1–4, count the number of ways that each procedure can be 
done.

 1. Line up three friends for a photograph.

 2. Prioritize four pending jobs from most to least important.

 3. Arrange five books from left to right on a bookshelf.

 4. Award ribbons for first place through fifth place to the top 
5 dogs in a dog show.

 5. Debate Partners The ninth-grade class at a local school 
has 14 girls and 10 boys for a debate championship. How many 
different boy-girl partners can be arranged?

 6. Possible Routes There are three roads from town A to 
town B and four roads from town B to town C. How many dif-
ferent routes are there from A to C by way of B?

 7. Permuting Letters How many 9-letter “words” (not 
necessarily in any dictionary) can be formed from the letters 
of the word LOGARITHM? (Curiously, one such arrange-
ment spells another word related to mathematics. Can you 
name it?)

 8. Three-Letter Crossword Entries Excluding J, Q, X, 
and Z, how many 3-letter crossword puzzle entries can be 
formed that contain no repeated letters? (It has been conjec-
tured that all of them have appeared in puzzles over the years, 
sometimes with painfully contrived definitions.)

 9. Permuting Letters How many distinguishable  
11-letter “words” can be formed using the letters in 
 MISSISSIPPI?

 10. Permuting Letters How many distinguishable  
11-letter “words” can be formed using the letters in 
 CHATTANOOGA?

 11. Electing Officers The 13 members of the East Brainerd 
Garden Club are electing a President, Vice President, and Sec-
retary from among their members. How many different ways 
can this be done?

 12. City Government From among 12 projects under consid-
eration, the mayor must put together a prioritized (that is, 
ordered) list of 6 projects to submit to the city council for fund-
ing. How many such lists can be formed?

In Exercises 13–18, evaluate each expression without a calculator. Then 
check with your calculator to see if your answer is correct.

 13. 6!  14. 13!210!2
 15. 6P2  16. 9P2

 17. 8C5  18. 10C3

In Exercises 19–22, tell whether permutations (ordered) or combina-
tions (unordered) are being described.

 19. 13 cards are selected from a deck of 52 to form a bridge 
hand.

 20. 7 digits are selected (without repetition) to form a telephone 
number.

 21. 4 students are selected from the senior class to form a commit-
tee to advise the cafeteria director about food.
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 37. Salad Bar Mary’s lunch always consists of a full plate of 
salad from Ernestine’s salad bar. She always takes equal 
amounts of each salad she chooses, but she likes to vary her 
selections. If she can choose among nine different salads, how 
many essentially different lunches can she create?

 38. Buying a New Car A new car customer has to choose 
from among 3 models, each of which comes in 4 exterior col-
ors, in 3 interior colors, and with any combination of up to 6 
optional accessories. In how many essentially different ways 
can the customer order the car?

 39. Pizza Possibilities Luigi sells one size of pizza, but he 
claims that his selection of toppings allows for “more than 
4000 different choices.” What is the smallest number of top-
pings Luigi could offer?

 40. Proper Subsets A subset of set A is called proper if it is 
neither the empty set nor the entire set A. How many proper 
subsets does an n-set have?

 41. True-False Tests How many different answer keys are 
possible for a 10-question true-false test?

 42. Multiple-Choice Tests How many different answer keys 
are possible for a 10-question multiple-choice test in which 
each question leads to choice a, b, c, d, or e?

Standardized Test Questions
 43. True or False If a and b are positive integers such that 

a + b = n, then an
a
b = an

b
b . Justify your answer.

 44. True or False If a, b, and n are integers such that 

a 6 b 6 n, then an
a
b 6 an

b
b . Justify your answer.

You may use a calculator for Exercises 45–48.

 45. Multiple Choice Lunch at the Gritsy Palace consists of an 
entrée, two vegetables, and a dessert. If there are four entrées, 
six vegetables, and six desserts from which to choose, how 
many essentially different lunches are possible? 

(A) 16

(B) 25

(C) 144

(D) 360

(E) 720

 46. Multiple Choice How many different ways can the judges 
choose fifth through first places from 10 Miss America finalists?

(A) 50

(B) 120

(C) 252

(D) 30,240

(E) 3,628,800

 47. Multiple Choice Assuming r and n are positive integers 
with r 6 n, which of the following numbers does not equal 1?

(A) 1n - n2!
(B) nPn

(C) nCn

(D) an
n
b

(E) an
r
b , a n

n - r
b

 48. Multiple Choice An organization is electing 3 new board 
members by approval voting. Members are given ballots with 
the names of 5 candidates and are allowed to check off the 
names of all candidates whom they would approve (which 
could be none, or even all five). The three candidates with the 
most checks overall are elected. In how many different ways 
can a member fill out the ballot?

(A) 10

(B) 20

(C) 32

(D) 125

(E) 243

Explorations
 49. Group Activity For each of the following numbers, make 

up a counting problem that has the number as its answer.

(a) 52C3

(b) 12C3

(c) 25P11

(d) 25

(e) 3 # 210

 50. Writing to Learn You have a fresh carton containing one 
dozen eggs and you need to choose two for breakfast. Give a 
counting argument based on this scenario to explain why 

12C2 = 12C10.

 51. Factorial Riddle The number 50! ends in a string of con-
secutive 0’s.

(a) How many 0’s are in the string?

(b) How do you know?

 52. Group Activity Diagonals of a Regular Polygon  
In Exploration 1 of Section 1.7, you reasoned from data points 
and quadratic regression that the number of diagonals of a reg-
ular polygon with n vertices was 1n2 - 3n2>2.

(a) Explain why the number of segments connecting all pairs 
of vertices is nC2.

(b) Use the result from part (a) to prove that the number of 
diagonals is 1n2 - 3n2>2.
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Extending the Ideas
 53. Writing to Learn Suppose that a chain letter (illegal if 

money is involved) is sent to five addressees the first week of 
the year. Each of these five persons sends a copy of the letter to 
five others during the second week of the year. Assume that 
everyone who receives a letter participates. Explain how you 
know with certainty that someone will receive a second copy of 
this letter later in the year.

 54. A Round Table How many different seating arrangements 
are possible for four persons sitting around a round table?

 55. Colored Beads Four beads—red, blue, yellow, and 
green—are arranged on a string to make a simple necklace as 
shown in the figure. How many arrangements are possible?

Red

Yellow Green

Blue

 56. Casting a Play A director is casting a play with two 
female leads and wants to have a chance to audition the 
actresses two at a time to get a feeling for how well they 
would work together. His casting director and his adminis-
trative assistant both prepare charts to show the amount of 
time that would be required, depending on the number of 
actresses who come to the audition. Which time chart is 
more reasonable, and why?

Number  
Who  

Audition

Time  
Required  

(min)

Number  
Who  

Audition

Time  
Required  

(min)

 3  10  3  10
 6  45  6  30
 9 110  9  60
12 200 12 100
15 320 15 150

 57. Bridge Around the World Suppose that a contract bridge 
hand is dealt somewhere in the world every second. What is the 
fewest number of years required for every possible bridge hand 
to be dealt? (See Quick Review item 10.)

 58. Basketball Lineups Each NBA basketball team has  
13 players available to play in any particular game. If each 
coach chooses 5 starters without regard to position, how many 
different sets of 10 players can start when two given teams play 
a game?
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By now you are probably ready to conclude that the binomial coefficients in the expan-
sion of 1a + b2n are just the values of nCr for r = 0, 1, 2, 3, 4, c, n. We hope you are 
wondering why this is true.

The expansion of

1a + b2n = 1a + b21a + b21a + b2g1a + b2
 (+++++++)+++++++*
 n factors

consists of all possible products that can be formed by taking one letter (either a or 
b) from each factor 1a + b2. The number of ways to form the product arbn- r is the 
same as the number of ways to choose r factors to contribute an a because the rest of 
the factors will contribute a b. The number of ways to choose r factors from n fac-
tors is nCr.

What you’ll learn about
• Powers of Binomials

• Pascal’s Triangle

• Binomial Theorem

• Factorial Identities

... and why
The Binomial Theorem is a 
 marvelous study in combinatorial 
patterns.

Powers of Binomials
Many mathematical discoveries have begun with the study of patterns. In this section, 
we introduce an important polynomial theorem called the Binomial Theorem. We set 
the stage for this theorem by observing some patterns.

If you expand 1a + b2n for n = 0, 1, 2, 3, 4, and 5, here is what you get:

1a + b20 =  1

1a + b21 =  1a1b0 + 1a0b1

1a + b22 =  1a2b0 + 2a1b1 + 1a0b2

1a + b23 =  1a3b0 + 3a2b1 + 3a1b2 + 1a0b3

1a + b24 =  1a4b0 + 4a3b1 + 6a2b2 + 4a1b3 + 1a0b4

1a + b25 =  1a5b0 + 5a4b1 + 10a3b2 + 10a2b3 + 5a1b4 + 1a0b5

Can you observe the patterns and predict what the expansion of 1a + b26 will be? You 
can probably predict the following:

 1. The powers of a will decrease from 6 to 0 by 1’s.

 2. The powers of b will increase from 0 to 6 by 1’s.

 3. The first two coefficients will be 1 and 6.

 4. The last two coefficients will be 6 and 1.

At first you might not see the pattern that would enable you to find the other so-called 
binomial coefficients, but you should see it after you complete the following Exploration.

9.2 Binomial Theorem

Exploring the Binomial Coefficients

 1. Compute 3C0, 3C1, 3C2, and 3C3. Where can you find these numbers in the 
binomial expansions above?

 2. Compute 4Cr letting r be the list 50, 1, 2, 3, 46 . Where can you find these 
numbers in the binomial expansions above?

 3. Now compute 5Cr letting r be the list 50, 1, 2, 3, 4, 56 . Where can you find 
these numbers in the binomial expansions above?

EXPLORATION 1 
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Pascal’s Triangle
If we eliminate the plus signs, the variables a and b, and their powers from the list of 
polynomials at the beginning of the section, we obtain the following “triangular” array 
of binomial coefficients:

 1 Row 0

 1  1 Row 1

 1  2  1 Row 2

 1  3  3  1 Row 3

 1  4  6  4  1 Row 4

  1  5  10  10  5  1 Row 5.                .                ..                 .                 ..                  .                  .

This array of numbers is called Pascal’s triangle in honor of Blaise Pascal (1623–1662), 
who used it in his work but certainly did not discover it. It appeared in 1303 in a  
Chinese text, the  Precious Mirror, by Chu Shih-chieh, who referred to it even then as a 
“diagram of the old method for finding eighth and lower powers.”

For convenience, we refer to the top “1” in Pascal’s triangle as row 0. That allows us to 
associate the numbers along row n with the expansion of 1a + b2n.

Pascal’s triangle is so rich in patterns that people still write about them today. One of 
the simplest patterns is the pattern we use for getting from one row to the next, as in the 
following example.

DEFINITION Binomial Coefficient

Each coefficient in the expansion of 1a + b2n is a binomial coefficient, which 
equals nCr for some r = 0, 1, 2, 3, c, n.

A standard notation for nCr , especially in the context of binomial coefficients, 

is an
r
b . Both notations are read “n choose r.”

Example 1 Alternatives
The technology that you use may work differ-
ently from the description given in Example 1. 
If your calculating tool has a Table feature, try 
using it. For example, let Y1 = 5 nCr X, and set 
TblStart = 0 and ∆Tbl = 1 to display the  
binomial coefficients for 1a + b25.

The Name Game
The fact that Pascal’s triangle was not discovered 
by Pascal is ironic, but hardly unusual in the annals 
of mathematics. We mentioned in Chapter 5 that 
Heron did not discover Heron’s Formula, and 
Pythagoras did not even discover the Pythago-
rean Theorem. The history of mathematics is 
filled with similar injustices.

Using nCr  to Expand a Binomial
Expand 1a + b25, using a calculator to compute the binomial coefficients.

SOLUTION Enter 5 nCr 50, 1, 2, 3, 4, 56  into the calculator to find the binomial 
coefficients for n = 5. The calculator returns the list 51, 5, 10, 10, 5, 16 . Using 
these coefficients, we construct the expansion:

1a + b25 = 1a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + 1b5

 Now try Exercise 3.

EXAMPLE 1 

Extending Pascal’s Triangle
Show how row 5 of Pascal’s triangle can be used to obtain row 6, and use this infor-
mation to write the expansion of 1x + y26.

SOLUTION The two outer numbers of every row are 1’s. Each number between 
them is the sum of the two numbers immediately above it. So row 6 can be found 
from row 5 as follows:

1 5 10 10 5

61 15 20 15 6 1

1

1 1 1 1 1

   

Row 5

Row 6

EXAMPLE 2 

(continued)
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662 CHAPTER 9 Discrete Mathematics

Here’s why it works. Suppose we choose r objects from n objects. This can be done in 
nCr ways. Now identify one of the n objects with a special tag. How many ways can we 
choose r objects if the tagged object is among them? Well, we have r - 1 objects yet 
to be chosen from among the n - 1 that are untagged, so n-1Cr-1. How many ways 
can we choose r objects if the tagged object is not among them? This time we must 
choose all r objects from among the n - 1 without tags, so n-1Cr. Because our selec-
tion of r objects must either contain the tagged object or not contain it, n-1Cr-1 + n-1Cr 
counts all the possibilities. Therefore, nCr = n-1Cr-1 + n-1Cr.

It is not necessary to construct Pascal’s triangle to find specific binomial coefficients 
because we already have a formula for computing them:

nCr = an
r
b =

n!
r!1n - r2!

This formula can be used to give an algebraic formula for the recursive formula above, 
but we will leave that as an exercise for the end of the section.

Binomial Theorem  
in g  Notation
In summation notation the Binomial Theorem 
becomes

1a + b2n = a
n

r=0
an

r
ban- rbr.

Those who are not familiar with this notation 
will learn about it in Section 9.4.

Binomial Theorem

For any positive integer n,

1a + b2n = an
0
ban + an

1
ban-1b + g+ an

r
ban- rbr + g+  an

n
bbn,

where

an
r
b = nCr =

n!
r!1n - r2! .

These are the binomial coefficients for 1x + y26, so

1x + y26 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.
 Now try Exercise 7.

The technique of Example 2 generalizes to the following recursive formula:

Recursive Formula for Pascal’s Triangle

an
r
b = an - 1

r - 1
b + an - 1

r
b  or, equivalently, nCr = n-1Cr-1 + n-1Cr.

Computing Binomial Coefficients and Terms
The term that contains x10 in the expansion of 1x + 2215 is 15C10 x

1025. Rearranging 
the factors yields

15!
10!5!

# 25 # x10 = 3003 # 32 # x10 = 96,096 x10.

Thus, the coefficient of x10 is 96,096. Now try Exercise 15.

EXAMPLE 3 

Binomial Theorem
We now state formally the theorem about expanding powers of binomials, known as 

the Binomial Theorem. For tradition’s sake, we will use the symbol an
r
b  instead of nCr.
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Expanding a Binomial
Expand 12x - y224.

SOLUTION We use the Binomial Theorem to expand 1a + b24, where a = 2x and 
b = -y2.

 1a + b24 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

 12x - y224 = 12x24 + 412x231-y22 + 612x221-y222
 + 412x21-y223 + 1-y224

 = 16x4 - 32x3y2 + 24x2y4 - 8xy6 + y8

 Now try Exercise 17.

EXAMPLE 4 

Factorial Identities
Expressions involving factorials combine to give some interesting identities. Most of 
them rely on the basic identities given below. (These actually are two versions of the 
same identity.)

Basic Factorial Identities

For any integer n Ú 1, n! = n1n - 12!
For any integer n Ú 0, 1n + 12! = 1n + 12n!

Proving an Identity with Factorials

Prove that an + 1
2
b - an

2
b = n for all integers n Ú 2.

SOLUTION 

 an + 1
2
b - an

2
b =

1n + 12!
2!1n + 1 - 22! -

n!
2!1n - 22! Combination counting formula

 =
1n + 121n21n - 12!

21n - 12! -
n1n - 121n - 22!

21n - 22!   Basic factorial  
identities

 =
n2 + n

2
-

n2 - n
2

 =
2n
2

 = n Now try Exercise 33.

EXAMPLE 5 

In Exercises 1–10, use the distributive property to expand the binomial.

 1. 1x + y22  2. 1a + b22
 3. 15x - y22  4. 1a - 3b22

 5. 13s + 2t22 6. 13p - 4q22
 7. 1u + v23 8. 1b - c23
 9. 12x - 3y23 10. 14m + 3n23

QUICK REVIEW 9.2 (Prerequisite skill Section A.2)
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664 CHAPTER 9 Discrete Mathematics

 33. Prove that an
2
b + an + 1

2
b = n2 for all integers n Ú 2.

 34. Prove that a n
n - 2

b + an + 1
n - 1

b = n2 for all integers n Ú 2.

Standardized Test Questions
 35. True or False The coefficients in the polynomial expansion 

of 1x - y250 alternate in sign. Justify your answer.

 36. True or False The sum of any row of Pascal’s triangle is an 
even integer. Justify your answer.

You may use a graphing calculator for Exercises 37–40.

 37. Multiple Choice What is the coefficient of x4 in the expan-
sion of 12x + 128?

(A) 16

(B) 256

(C) 1120

(D) 1680

(E) 26,680

 38. Multiple Choice Which of the following numbers does not 
appear on row 10 of Pascal’s triangle?

(A) 1

(B) 5

(C) 10

(D) 120

(E) 252

 39. Multiple Choice The sum of the coefficients of 
13x - 2y210 is

(A) 1. (B) 1024.

(C) 58,025. (D) 59,049.

(E) 9,765,625.

 40. Multiple Choice 1x + y23 + 1x - y23 =
(A) 0. (B) 2x3.

(C) 2x3 - 2y3. (D) 2x3 + 6xy2.

(E) 6x2y + 2y3.

Explorations
 41. Triangular Numbers Numbers of the form 

1 + 2 + g+  n are triangular numbers because they count 
numbers in triangular arrays, as shown below:

  

SECTION 9.2 Exercises

In Exercises 1–4, expand the expression using a calculator to find the 
binomial coefficients.

 1. 1a + b24 2. 1a + b26
 3. 1x + y27 4. 1x + y210

In Exercises 5–8, expand the expression using Pascal’s triangle to find 
the coefficients.

 5. 1x + y23 6. 1x + y25
 7. 1p + q28 8. 1p + q29
In Exercises 9–12, evaluate the expression by hand (using the formula) 
before checking your answer on a grapher.

 9. a10
6
b  10. a15

11
b

 11. a87
87
b  12. a166

0
b

In Exercises 13–16, what is the coefficient of the given term in the 
expansion of the expression after the comma?

 13. x11y3 term, 1x + y214

 14. x5y8 term, 1x + y213

 15. x4 term, 1x - 2212

 16. x7 term, 1x - 3211

In Exercises 17–20, use the Binomial Theorem to find a polynomial 
expansion for the function.

 17. ƒ1x2 = 1x - 225 18. g1x) = 1x + 326
 19. h1x2 = 12x - 127 20. ƒ1x2 = 13x + 425
In Exercises 21–26, use the Binomial Theorem to expand each expression.

 21. 1x + 2y26 22. 12y - 3x25
 23. 12x + 2226 24. 12x + 2324
 25. 1x-3 + x324 26. 1a - b-327
 27. Determine the largest integer n for which your calculator will 

compute n!.

 28. Determine the largest integer n for which your calculator will 

compute a n
100
b .

 29. Prove that an
1
b = a n

n - 1
b = n for all integers n Ú 1.

 30. Prove that an
r
b = a n

n - r
b  for all integers n Ú r Ú 0.

 31. Use the formula an
r
b =

n!
r!1n - r2! to prove that 

an
r
b = an - 1

r - 1
b + an - 1

r
b . (This is the pattern in Pascal’s 

triangle that appears in Example 2.)

 32. Find a counterexample to prove that each statement is false.

(a) 1n + m2! = n! + m!

(b) 1nm2! = n!m!
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(a) Compute the first 10 triangular numbers.

(b) Where do the triangular numbers appear in Pascal’s 
 triangle?

(c) Writing to Learn Explain why the diagram below 
shows that the nth triangular number can be written as 
n1n + 12>2.

(d) Write the formula in part (c) as a binomial coefficient. 
(This is why the triangular numbers appear as they do in 
Pascal’s triangle.)

 42. Group Activity Exploring Pascal’s Triangle Break 
into groups of two or three. Just by looking at patterns in 
 Pascal’s triangle, guess the answers to the following questions. 
(It is easier to make a conjecture from a pattern than it is to 
construct a proof!)

(a) What positive integer appears the least number of times?

(b) What number appears the greatest number of times?

(c) Is there any positive integer that does not appear in 
 Pascal’s triangle?

(d) If you go along any row alternately adding and subtracting 
the numbers, what is the result?

(e) If p is a prime number, what do all the interior numbers 
along the pth row have in common?

(f) Which rows have all even interior numbers?

(g) Which rows have all odd numbers?

(h) What other patterns can you find? Share your discoveries 
with the other groups.

Extending the Ideas
 43. Use the Binomial Theorem to prove that the sum of the entries 

along the nth row of Pascal’s triangle is 2n. That is,

an
0
b + an

1
b + an

2
b  + g+  an

n
b = 2n.

  [Hint: Use the Binomial Theorem to expand 11 + 12n.]

 44. Use the Binomial Theorem to prove that the alternating sum 
along any row of Pascal’s triangle is zero. That is,

an
0
b - an

1
b + an

2
b  - g+  1-12n an

n
b = 0.

 45. Use the Binomial Theorem to prove that

an
0
b + 2an

1
b + 4an

2
b  + g+  2nan

n
b = 3n.
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What you’ll learn about
• Infinite Sequences

• Limits of Infinite Sequences

• Arithmetic and Geometric 
Sequences

• Sequences and Technology

... and why
Infinite sequences, especially those 
with finite limits, are involved in 
some key concepts of calculus.

Infinite Sequences
One of the most basic patterns in mathematics is an ordered progression of numbers, 
called a sequence. Here are some examples of sequences:

1. 5, 10, 15, 20, 25

2. 2, 4, 8, 16, 32, c , 2k,c

3. e 1
k
; k = 1, 2, 3, . . . f

4. 5a1, a2, a3, c , ak, c6 , which is sometimes abbreviated 5ak6
The first of these is a finite sequence, and the other three are infinite sequences. 
Notice that in 122 and 132 we were able to give a rule that defines the kth number in the 
sequence (called the kth term) as a function of k. In 142 we do not have a rule, but 
notice how we can use subscript notation 1ak2 to identify the kth term of a “general” 
infinite sequence. In this sense, an infinite sequence can be thought of as a function that 
assigns a unique number 1ak2 to each natural number k.

9.3 Sequences

Defining a Sequence Explicitly
Find the first 6 terms and the 100th term of the sequence 5ak6  in which 
ak = k2 - 1.

SOLUTION Because we know the kth term explicitly as a function of k, we need 
only evaluate the function to find the required terms:

a1 = 12 - 1 = 0, a2 = 3, a3 = 8, a4 = 15, a5 = 24, a6 = 35,  and

a100 = 1002 - 1 = 9999
 Now try Exercise 1.

EXAMPLE 1 

Explicit formulas are the easiest to work with, but there are other ways to define 
sequences. For example, we can specify values for the first term (or terms) of a 
sequence, then define each of the following terms recursively by a formula relating it 
to previous terms. Example 2 shows how this is done.

Defining a Sequence Recursively
Find the first 6 terms and the 100th term for the sequence defined recursively by the 
conditions

 b1 = 3

 bn = bn-1 + 2 for all n 7 1

SOLUTION We proceed one term at a time, starting with b1 = 3 and obtaining each 
succeeding term by adding 2 to the term just before it:

 b1 = 3

 b2 = b1 + 2 = 5

 b3 = b2 + 2 = 7

etc.

Eventually it becomes apparent that we are building the sequence of odd natural 
numbers beginning with 3:

53, 5, 7, 9, c6

EXAMPLE 2 

Agreement on Sequences
Because we will be dealing primarily with 
 infinite sequences in this text, the word sequence 
will mean an infinite sequence unless otherwise 
specified.
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It might help to review the rules for finding the end behavior asymptotes of rational 
functions (page 239 in Section 2.6) because those same rules apply to sequences that 
are rational functions of n, as in Example 4.

The 100th term is 99 terms beyond the first, which means that we can get there 
quickly by adding 99 2’s to the number 3:

b100 = 3 + 99 * 2 = 201
 Now try Exercise 5.

Limits of Infinite Sequences
Just as we were interested in the end behavior of functions, we also are interested in the 
end behavior of sequences.

Finding Limits of Sequences
Determine whether the sequence converges or diverges. If it converges, give the limit.

(a) 
1
1

, 
1
2

, 
1
3

, 
1
4

, c , 
1
n

,c

(b) 
2
1

, 
3
2

, 
4
3

, 
5
4

,c

(c) 2, 4, 6, 8, 10,c
(d) -1, 1, -1, 1, c , 1-12n,c
SOLUTION 

(a) lim
xS∞

 
1
n

= 0, so the sequence converges to a limit of 0.

(b) Although the nth term is not explicitly given, we can see that an =
n + 1

n
. 

lim
xS∞

 
n + 1

n
=  lim

nS∞
a1 +

1
n
b = 1 + 0 = 1. The sequence converges to a limit 

of 1.

(c) This time we see that an = 2n. Because lim
nS∞

2n = ∞, the sequence diverges.

(d) This sequence alternates forever between two values and hence has no limit. The 
sequence diverges. Now try Exercise 13.

EXAMPLE 3 

Finding Limits of Sequences
Determine whether the sequence converges or diverges. If it converges, give the limit.

(a) e 3n
n + 1

f

(b) e 5n2

n3 + 1
f

(c) e n3 + 2

n2 + n
f

EXAMPLE 4 

(continued)

DEFINITION Limit of a Sequence

Let 5an6  be a sequence of real numbers. If the limit lim
nS∞

an is a finite number 
L, the sequence converges and L is the limit of the sequence. If the limit is 
infinite or nonexistent, the sequence diverges.
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DEFINITION Arithmetic Sequence

A sequence 5an6  is an arithmetic sequence if it can be written in the form

5a, a + d, a + 2d, c, a + 1n - 12d, c6  for some constant d.

The number a = a1 is the first term, and the number d is the common difference.
Each term in an arithmetic sequence can be obtained recursively from its pre-
ceding term by adding d:

an = an-1 + d 1for all n Ú 22

Pronunciation Tip
The word arithmetic is probably more familiar to 
you as a noun, referring to the mathematics you 
studied in elementary school. As a noun, the sec-
ond syllable (“rith”) is accented. When used as 
an adjective, the third syllable (“met”) gets the 
accent. (For the sake of comparison, a similar 
shift of accent occurs when going from the noun 
analysis to the adjective analytic.)

SOLUTION 

(a) Because the degree of the numerator is the same as the degree of the denomina-
tor, the limit is the ratio of the leading coefficients.

Thus lim
nS∞

 
3n

n + 1
=

3
1

= 3. The sequence converges to a limit of 3.

(b) Because the degree of the numerator is less than the degree of the denominator, 

the limit is zero. Thus lim
nS∞

 
5n2

n3 + 1
= 0. The sequence converges to 0.

(c) Because the degree of the numerator is greater than the degree of the denomina-

tor, the limit is infinite. Thus lim
nS∞

 
n3 + 2

n2 + n
 is infinite. The sequence diverges.

 Now try Exercise 15.

Arithmetic and Geometric Sequences
There are all kinds of rules by which we can construct sequences, but two particular 
types of sequences dominate in mathematical applications: those in which all pairs of 
successive terms have a common difference (arithmetic sequences), and those in which 
all pairs of successive terms have a common ratio (geometric sequences). We will 
study these in this section.

Defining Arithmetic Sequences
For each of the following arithmetic sequences, find (a) the common difference, (b) the 
tenth term, (c) a recursive rule for the nth term, and (d) an explicit rule for the nth term.

(1) -6, -2, 2, 6, 10,c  (2) ln 3, ln 6, ln 12, ln 24,c
SOLUTION 

(1) (a) The difference between successive terms is 4.

 (b) a10 = -6 + 110 - 12142 = 30

 (c)  The sequence is defined recursively by a1 = -6 and an = an-1 + 4 for all 
n Ú 2.

 (d)  The sequence is defined explicitly by an = -6 + 1n - 12142 = 4n - 10.

(2) (a) This sequence might not look arithmetic at first, but

 ln 6 - ln 3 = ln 
6
3

 = ln 2 (by a law of logarithms), and the difference 

between successive terms continues to be ln 2.

 (b)  a10 = ln 3 + 110 - 12ln 2 = ln 3 + 9 ln 2 = ln13 # 292 = ln 1536

 (c)  The sequence is defined recursively by a1 = ln 3 and an = an-1 + ln 2 for 
all n Ú 2.

 (d)  The sequence is defined explicitly by an = ln 3 + 1n - 12ln 2 
=  ln13 # 2n-12. Now try Exercise 21.

EXAMPLE 5 
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DEFINITION Geometric Sequence

A sequence 5an6  is a geometric sequence if it can be written in the form

5a, a # r, a # r2, c , a # r n-1, c6  for some constant r ≠ 0.

The number a = a1 is the first term, and the number r is the common ratio.
Each term in a geometric sequence can be obtained recursively from its preced-
ing term by multiplying by r:

an = an-1
# r 1for all n Ú 22

Defining Geometric Sequences
For each of the following geometric sequences, find (a) the common ratio, (b) the tenth 
term, (c) a recursive rule for the nth term, and (d) an explicit rule for the nth term.

(1) 3, 6, 12, 24, 48,c   (2) 10-3, 10-1, 101, 103, 105,c
SOLUTION 

(1) (a) The ratio between successive terms is 2.

 (b) a10 = 3 # 210-1 = 3 # 29 = 1536

 (c) The sequence is defined recursively by a1 = 3 and an = 2an-1 for n Ú 2.

 (d) The sequence is defined explicitly by an = 3 # 2n-1.

(2) (a)  Applying a law of exponents, 
10-1

10-3 = 10-1-1-32 = 102, and the ratio 

between successive terms continues to be 102.

 (b) a10 = 10-3 # 1102210-1 = 10-3+18 = 1015

 (c)  The sequence is defined recursively by a1 = 10-3 and an = 102an-1 for
n Ú 2.

 (d)  The sequence is defined explicitly by an = 10-311022n-1 = 10-3+2n-2 =  
102n-5. Now try Exercise 25.

EXAMPLE 6 

Constructing Sequences
The second and fifth terms of a sequence are 3 and 24, respectively. Find explicit and 
recursive formulas for the sequence if it is (a) arithmetic and (b) geometric.

SOLUTION 

(a) If the sequence is arithmetic, then a2 = a1 + d = 3 and a5 = a1 + 4d = 24. 
Subtracting, we have

 1a1 + 4d2 - 1a1 + d2 = 24 - 3

 3d = 21

 d = 7

Then a1 + d = 3 implies a1 = -4.

The sequence is defined explicitly by an = -4 + 71n - 12, or an = 7n - 11.

The sequence is defined recursively by a1 = -4 and an = an-1 + 7 for n Ú 2.

(b) If the sequence is geometric, then a2 = a1
# r1 = 3 and a5 = a1

# r4 = 24. 
 Dividing, we have

 
a1

# r4

a1
# r1 =

24
3

 r3 = 8

 r = 2

EXAMPLE 7 

(continued)
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Then a1
# r1 = 3 implies a1 = 1.5.

The sequence is defined explicitly by an = 1.5122n-1, or an = 3122n-2.

The sequence is defined recursively by a1 = 1.5 and an = 2 # an-1.
 Now try Exercise 29.

Sequence Graphing
Most graphers enable you to graph in “Sequence 
mode.” Check your owner’s manual to see how 
to use this mode. Your grapher may work differ-
ently from the descriptions on this page and the 
next page.

Sequences and Technology
As with other kinds of functions, it helps to be able to represent a sequence graphically. 
There are at least two ways to obtain the graph of a sequence using a grapher. One way 
to graph explicitly defined sequences is as scatter plots of points of the form 1k, ak2. A 
second way is to use the Sequence graphing mode.

Graphing a Sequence Defined Explicitly
Use a grapher to produce a graph of the sequence 5ak6  in which ak = k2 - 1.

Method 1 (Scatter Plot) The command seq1K, K, 1, 102S L1 puts the first 10 nat-
ural numbers in list L1. (You could change the 10 if you wanted to graph more or 
fewer points.)

The command L1
2 - 1 S L2 puts the corresponding terms of the sequence in list L2. 

A scatter plot of L1, L2 produces the graph in Figure 9.2a.

Method 2 (Sequence Mode) With your grapher in Sequence mode, enter the 
sequence ak = k2 - 1 in the Y =  list as u1n) = n2 - 1 with nMin = 1, nMax = 10, 
and u1nMin2 = 0. (You could change the 10 if you wanted to graph more or fewer 
points.) Figure 9.2b shows the graph in the same window as Figure 9.2a.

EXAMPLE 8 

 Now try Exercise 33.

X=6 Y=35
[21, 15] by [210, 100]

(a)   

X=6 Y=35
n=6

1

[21, 15] by [210, 100]

(b)

Figure 9.2 The sequence ak = k2 - 1 graphed (a) as a scatter plot and (b) using the 
Sequence graphing mode. Tracing along the points gives values of ak for k = 1, 2, 3, .c
(Example 8)

Generating Sequences Using a Calculator
Use a calculator to generate the first 4 terms of the following sequences:

(a) (Explicit) ak = 3k - 5 for k = 1, 2, 3,c
(b) (Recursive) a1 = -2 and an = an-1 + 3 for n = 2, 3, 4, c

EXAMPLE 9 
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SOLUTION 

(a) On the calculating screen, type the two commands shown in Figure 9.3. The first 
command establishes a seed value for the term number. The second command 
will generate the terms of the sequence as you press the ENTER key repeatedly.

(b) On the calculating screen, type the two commands shown in Figure 9.4. The first 
command gives the value of a1. The second command will generate the remain-
ing terms of the sequence as you press the ENTER key repeatedly.

Notice that these two definitions generate the very same sequence!
 Now try Exercises 1 and 5 on your grapher.

Fibonacci Numbers
The numbers in the Fibonacci sequence have fas-
cinated professional and amateur mathematicians 
since the 13th century. Not only is the sequence, 
like Pascal’s triangle, a rich source of curious 
internal patterns, but the Fibonacci numbers 
seem to appear everywhere in nature. If you 
count the leaflets on a leaf, the leaves on a stem, 
the whorls on a pine cone, the rows on an ear of 
corn, the spirals in a sunflower, or the branches 
from a trunk of a tree, they tend to be Fibonacci 
numbers. (Check phyllotaxy in a biology book.)

A recursive definition of an can be made in terms of any combination of preceding terms, 
provided the preceding terms have already been determined. A famous example is the 
Fibonacci sequence, named for Leonardo of Pisa (ca. 1170–1250), who wrote under the 
name Fibonacci. You can generate it with the two commands shown in Figure 9.5.

The Fibonacci sequence can be defined recursively using three statements.

0   K

K+1   K:3K–5

1
–2

0

7
4

Figure 9.3 Typing these two commands  
(on the left of the viewing screen) will 
generate the terms of the explicitly defined 
sequence ak = 3k - 5. (Example 9a)

–2

Ans+3

4
1

–2

7

Figure 9.4 Typing these two commands  
(on the left of the viewing screen) will 
generate the terms of the recursively defined 
sequence with a1 = -2 and an = an-1 + 3. 
(Example 9b)

0   A:1   B

A+B   C:A   B:C   A
1

2
3

1
1

Figure 9.5 The two commands on the left will generate the Fibonacci sequence as the  
ENTER key is pressed repeatedly.

DEFINITION The Fibonacci Sequence

The Fibonacci sequence can be defined recursively by

 a1 = 1

 a2 = 1

 an = an-2 + an-1

for all positive integers n Ú 3.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, evaluate each expression when a = 3, d = 4, and 
n = 5.

 1. a + 1n - 12d  2. 
n
2

 12a + 1n - 12d2

In Exercises 3 and 4, evaluate each expression when a = 5, r = 4, and 
n = 3.

 3. a # rn-1  4. 
a11 - rn2

1 - r

In Exercises 5–10, find a10.

 5. ak =
k

k + 1
 6. ak = 5 + 1k - 123

 7. ak = 5 # 2k-1

 8. ak =
4
3

 a1
2
b

k-1

 9. ak = 32 - ak-1 and a9 = 17

 10. ak =
k2

2k

QUICK REVIEW 9.3 (For help, see Section P.1.)

M10_DEMA8962_10_GE_C09.indd   671 22/06/22   18:20
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 29. The fourth and seventh terms of an arithmetic sequence are -8 
and 4, respectively. Find the first term and a recursive rule for 
the nth term.

 30. The fifth and ninth terms of an arithmetic sequence are -5 and 
-17, respectively. Find the first term and a recursive rule for 
the nth term.

 31. The second and eighth terms of a geometric sequence are 3 and 
192, respectively. Find the first term, common ratio, and an 
explicit rule for the nth term.

 32. The third and sixth terms of a geometric sequence are -75 and 
-9375, respectively. Find the first term, common ratio, and an 
explicit rule for the nth term.

In Exercises 33–36, graph the sequence.

 33. an = 2 -
1
n

 34. bn = 2n - 3

 35. cn = n2 - 5 36. dn = 3 + 2n

 37. Rain Forest Growth The 
bungy-bungy tree in the Amazon 
rain forest grows an average 2.3 cm 
per week. Write a sequence that 
represents the weekly height of  
a bungy-bungy over the course  
of 1 year if it is 7 m tall today. 
 Display the first four terms and 
the last two terms.

 38. Half-Life (See Section 3.2) Thorium-232 has a half-life of 
14 billion years. Make a table showing the half-life decay of a 
sample of thorium-232 from 16 g to 1 g; list the time (in years, 
starting with t = 0) in the first column and the mass (in grams) 
in the second column. Which type of sequence is each column 
of the table?

 39. Arena Seating The first row of seating in section J of the 
Athena Arena has 7 seats. In all, there are 25 rows of seats in 
section J, each row containing two more seats than the row pre-
ceding it. How many seats are in section J?

 40. Patio Construction Pat designs a patio with a trapezoid- 
shaped deck consisting of 16 rows of congruent slate tiles. The 
numbers of tiles in the rows form an arithmetic sequence. The 
first row contains 15 tiles and the last row contains 30 tiles. 
How many tiles are used in the deck?

 41. Group Activity Pair up with a partner to create a sequence: 
Each of you picks five random digits from 1 to 9 (with repeti-
tions, if you wish). Merge your digits to make a list of ten. Now 
each of you constructs a different ten-digit number using 
exactly the digits in your list.

  Let a1 = the (positive) difference between your two numbers.

  Let an+1 = the sum of the digits of an for n Ú 1.

  This sequence converges because it is eventually constant. 
What is the limit? (Remember, you can check your answer in 
the back of the text.)

SECTION 9.3 Exercises

In Exercises 1–4, find the first 6 terms and the 100th term of the 
 explicitly defined sequence.

 1. un =
n + 1

n
 2. vn =

4
n + 2

 3. cn = n3 - 8n 4. dn = n2 - 5n

In Exercises 5–10, find the first 4 terms and the eighth term of the 
recursively defined sequence.

 5. a1 = 8 and an = an-1 - 4 for n Ú 2

 6. u1 = -3 and uk+1 = uk + 10 for k Ú 1

 7. a1 = 1 and an+1 = 3an for n Ú 1

 8. v1 = 0.75 and vn = 1-22vn-1 for n Ú 2

 9. c1 = 2, c2 = -1, and ck+2 = ck + ck+1 for k Ú 1

 10. c1 = -2, c2 = 3, and ck = ck-2 + ck-1 for k Ú 3

In Exercises 11–20, determine whether the sequence converges or 
diverges. If it converges, give the limit.

 11. 0.2, 0.4, 0.6, 0.8, c , 0.2n,c

 12. 
1
2

, 
1
4

, 
1
8

, 
1
16

, c , 
1
2n , c

 13. 
1
1

, 
1
4

, 
1
9

, 
1
16

, c

 14. 53n - 16

 15. e 3n - 1
2 - 3n

f

 16. e 2n - 1
n + 1

f

 17. 510.52n6
 18. 511.52n6
 19. a1 = 1 and an+1 = an + 3 for n Ú 1

 20. u1 = 1 and un+1 =
un

3
 for n Ú 1

In Exercises 21–24, the sequences are arithmetic. Find

 (a) the common difference,

 (b) the tenth term,

 (c) a recursive rule for the nth term, and

 (d) an explicit rule for the nth term.

 21. 6, 10, 14, 18,c  22. -4, 1, 6, 11,c
 23. -12, 0, 12, 24,c  24. -7, 4, 15, 26,c
In Exercises 25–28, the sequences are geometric. Find

 (a) the common ratio,

 (b) the eighth term,

 (c) a recursive rule for the nth term, and

 (d) an explicit rule for the nth term.

 25. 2, 6, 18, 54 ,c  26. 3, 6, 12, 24 ,c
 27. 1, -5, 25, -125,c
 28. -2, 2, -2, 2 ,c
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 42. Group Activity Some recursively defined sequences are 
mathematical magic: Join up with three or four classmates and, 
without telling it to the others, pick a word from this sentence. 
Then, with care, count the letters in your word. Move ahead 
that many words in the text to come to a new word. Count the 
letters in the new word. Move ahead again, and so on. When 
you come to a point when your next move would take you out 
of this problem, stop. Share your last word with your friends. 
Are they all the same?

Standardized Test Questions
 43. True or False If the first two terms of a geometric 

sequence are negative, then so is the third. Justify your answer.

 44. True or False If the first two terms of an arithmetic 
sequence are positive, then so is the third. Justify your answer.

You may use a graphing calculator when solving Exercises 45–48.

 45. Multiple Choice The first two terms of an arithmetic 
sequence are 2 and 8. The fourth term is

(A) 20.  (B) 26.  (C) 64.  (D) 128.  (E) 256.

 46. Multiple Choice Which of the following sequences is 
divergent?

(A) e n + 100
n

f  (B) 52n6   (C) 5p-n6  

(D) e 2n + 2
n + 1

f  (E) 5n-26

 47. Multiple Choice A geometric sequence 5an6  begins  

2, 6, c . What is 
a6

a2
?

(A) 3  (B) 4  (C) 9  (D) 12  (E) 81

 48. Multiple Choice Which of the following rules for n Ú 1 
will define a geometric sequence if a1 ≠ 0?

(A) an+1 = an + 3 (B) an+1 = an - 3

(C) an+1 = an , 3 (D) an+1 = an
3 (E) an+1 = an

# 3n-1

Explorations
 49. Rabbit Populations Assume that 2 months after birth, 

each male-female pair of rabbits begins producing one new 
male-female pair of rabbits each month. Further assume that 
the rabbit colony begins with one newborn male-female pair of 
rabbits and no rabbits die for 12 months. Let an represent the 
number of pairs of rabbits in the colony after n - 1 months.

(a) Writing to Learn Explain why a1 = 1, a2 = 1, and 
a3 = 2.

(b) Find a4, a5, a6, c , a13.

(c) Writing to Learn Explain why the sequence 5an6 , 
1 … n … 13, is a model for the size of the rabbit colony 
for a 1-year period.

 50. Fibonacci Sequence Compute the first seven terms of the 
sequence whose nth term is

an =
125

 a1 + 25
2

b
n

-
125

 a1 - 25
2

b
n

.

  How do these seven terms compare with the first seven terms 
of the Fibonacci sequence?

 51. Connecting Geometry and Sequences In the follow-
ing sequence of diagrams, regular polygons are inscribed in 
unit circles with at least one side of each polygon perpendicu-
lar to the positive x-axis.

  

(a) (b)

(c) (d)

y y

y y

x x

x x

1 1

1 1

(a) Prove that the perimeter of each polygon in the sequence is 
given by an = 2n sin1p>n2, where n is the number of 
sides in the polygon.

(b) Investigate the value of an for n = 10, 100, 1000, and 
10,000. What conclusion can you draw?

 52. Recursive Sequence The population of Centerville was 
525,000 in 1992 and is growing annually at the rate of 1.75%. 
Write a recursive sequence 5Pn6  for the population. State the 
first term P1 for your sequence.

 53. Writing to Learn If 5an6  is a geometric sequence with all 
positive terms, explain why 5log an6  must be arithmetic.

 54. Writing to Learn If 5bn6  is an arithmetic sequence, 
explain why 510bn6  must be geometric.

Extending the Ideas
 55. A Sequence of Matrices Write out the first seven terms 

of the “geometric sequence” with the first term the matrix 

31  14  and the common ratio the matrix c 0 1
1 1

d . How is this 

sequence of matrices related to the Fibonacci sequence?

 56. Another Sequence of Matrices Write out the first 
seven terms of the “geometric sequence” which has for its first 
term the matrix 31  a4  and for its common ratio the matrix 

c 1 d
0 1

d . How is this sequence of matrices related to the arith-

metic sequence?
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Although you probably computed them correctly, there is more going on in number 4 
and number 5 in the above exploration than first meets the eye. We will have more to 
say about these “infinite” summations toward the end of this section.

Sums of Arithmetic and Geometric Sequences
One of the most famous legends in the lore of mathematics concerns the German math-
ematician Karl Friedrich Gauss (1777–1855), whose mathematical talent was apparent 
at an early age. One version of the story has Gauss, at age 10, being in a class that was 
challenged by the teacher to add up all the numbers from 1 to 100. While his classmates 
were still writing down the problem, Gauss walked to the front of the room to present 
his slate to the teacher. The teacher, certain that Gauss could only be guessing, refused 
to look at his answer. Gauss simply placed it face down on the teacher’s desk, declared 
“There it is,” and returned to his seat. Later, after all the slates had been collected, the 
teacher looked at Gauss’s work, which consisted of a single number: the correct 
answer. No other student (the legend goes) got it right.

The important feature of this legend for mathematicians is how the young Gauss got the 
answer so quickly. We’ll let you reproduce his technique in Exploration 2.

Summations on a Calculator
If you think of summations as summing the 
terms of a sequence, it is not hard to translate 
sigma notation into calculator syntax. Here, in 
calculator syntax, are the first three summations 
in Exploration 1. First calculate each sum using 
paper and pencil; then use your calculator.

1. sum1seq13K, K, 1, 522
2. sum1seq1K^2, K, 5, 822
3. sum1seq1cos1Np2, N, 0, 1222

What you’ll learn about
• Summation Notation

• Sums of Arithmetic and Geometric 
Sequences

• Infinite Series

• Convergence of Geometric Series

... and why
Summation is important in Statistics, 
and series are essential in Calculus.

Summation Notation
We want to look at the formulas for summing the terms of arithmetic and geometric 
sequences, but first we need a notation for writing the sum of an indefinite number of 
terms. The capital Greek letter sigma 1g2 provides our shorthand notation for a 
“summation.”

9.4 Series

DEFINITION Summation Notation

In summation notation, the sum of the terms of the sequence 5a1, a2, c, an6  
is denoted

a
n

k=1
ak,

which is read “the sum of ak from k = 1 to n.”

The variable k is called the index of summation.

Summing with Sigma

Sigma notation is even more versatile than the definition above suggests. To see 
how, determine the number represented by each of the following expressions.

 1. a
5

k=1
3k  2. a

8

k=5
k2  3. a

12

n=0
cos1np2  4. a∞

n=1
sin1np2  5. a∞

k=1
 

3

10k 

[If you’re having trouble with part 5, here’s a hint: Write the sum as a decimal.]

EXPLORATION 1 
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Proof

We can construct the sequence forward by starting with a1 and adding d each time, or 
we can construct the sequence backward by starting at an and subtracting d each time. 
We thus get two expressions for the sum we seek:

a
n

k=1
ak = a1 + 1a1 + d2 + 1a1 + 2d2 + g+  1a1 + 1n - 12d2

a
n

k=1
ak = an + 1an - d2 + 1an - 2d2 + g+  1an - 1n - 12d2

Summing vertically, we get

 2a
n

k=1
ak = 1a1 + an2 + 1a1 + an2 + g+  1a1 + an2

 2a
n

k=1
ak = n1a1 + an2

 a
n

k=1
ak = naa1 + an

2
b

Gauss’s Insight

Your challenge is to find the sum of the natural numbers from 1 to 100 without a 
calculator.

 1. On a wide piece of paper, write the sum 

“1 + 2 + 3 + g+  98 + 99 + 100.”

 2. Underneath this sum, write the sum 

“100 + 99 + 98 + g+  3 + 2 + 1.”

 3. Add the numbers two-by-two in vertical columns and notice that you get the 
same identical sum 100 times. What is it? 

 4. What is the sum of the 100 identical numbers referred to in part 3? 

 5. Explain why half the answer in part 4 is the answer to the challenge. Can you 
find it without a calculator? 

EXPLORATION 2 

THEOREM Sum of a Finite Arithmetic Sequence

Let 5a1, a2, c , an6  be a finite arithmetic sequence with common difference d.
Then the sum of the terms of the sequence is

 a
n

k=1
ak = a1 + a2 + g+  an

 = naa1 + an

2
b

=
n
2

 12a1 + 1n - 12d2

If this story is true, then the youthful Gauss had discovered a fact that his elders knew 
about arithmetic sequences. If you write a finite arithmetic sequence forward on one 
line and backward on the line below it, then all the pairs stacked vertically sum to the 
same number. Multiplying this number by the number of terms n and dividing by 2 
gives us a shortcut to the sum of the n terms. We state this result as a theorem.
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Proof

Because the sequence is geometric, we have

a
n

k=1
ak = a1 + a1

# r + a1
# r2 + g+  a1

# rn-1.

Therefore,

r # a
n

k=1
ak = a1

# r + a1
# r2 + g+  a1

# rn-1 + a1
# rn.

Word of Warning
Your technology may work differently from the 
descriptions given in Examples 1 and 2.

If we substitute a1 + 1n - 12d for an, we get an alternative formula:

a
n

k=1
ak =

n
2

 12a1 + 1n - 12d2

Summing the Terms of an Arithmetic 
Sequence

A corner section of a stadium has 8 seats along the front row. Each successive row 
has two more seats than the row preceding it. If the top row has 24 seats, how many 
seats are in the entire section?

SOLUTION The numbers of seats in the rows form an arithmetic sequence with

a1 = 8,  an = 24,  and  d = 2.

Solving an = a1 + 1n - 12d, we find that

 24 = 8 + 1n - 12122
 16 = 1n - 12122
 8 = n - 1

 n = 9

Applying the Sum of a Finite Arithmetic Sequence Theorem, the total number of 
seats in the section is 918 + 242>2 = 144.

We can support this answer numerically using technology:

sum1seq18+1N-122, N, 1, 92 = 144
 Now try Exercise 7.

EXAMPLE 1 

As you might expect, there is also a convenient formula for summing the terms of a 
finite geometric sequence.

THEOREM Sum of a Finite Geometric Sequence

Let 5a1, a2, a3, c , an6  be a finite geometric sequence with common ratio 
r ≠ 1.
Then the sum of the terms of the sequence is

 a
n

k=1
ak = a1 + a2 + g+  an

 =
a111 - rn2

1 - r
.
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As one practical application of the Sum of a Finite Geometric Sequence Theorem, we 
will tie up a loose end from Section 3.6, wherein you learned that the future value FV 
of an ordinary annuity consisting of n equal periodic payments of R dollars at an inter-
est rate i per compounding period (payment interval) is

FV = R 
11 + i2n - 1

i
.

We can now consider the mathematics underlying this formula. The n payments remain 
in the account for different lengths of times, so they earn different amounts of interest. 
The total value of the annuity after n payments (see Example 8 in Section 3.6) is

FV = R + R11 + i2 + R11 + i22 + g+  R11 + i2n-1.

The terms of this sum form a geometric sequence with first term R and common ratio 
11 + i2. Applying the Sum of a Finite Geometric Sequence Theorem yields the sum

 FV =
R11 - 11 + i2n2

1 - 11 + i2
 = R 

1 - 11 + i2n
- i

 = R 
11 + i2n - 1

i

If we now subtract the lower summation from the one above it, we have (after eliminat-
ing a lot of zeros)

 aa
n

k=1
akb - r # aa

n

k=1
akb = a1 - a1

# rn

 aa
n

k=1
akb11 - r2 = a111 - rn2

 a
n

k=1
ak =

a111 - rn2
1 - r

Summing the Terms of a Geometric Sequence
Find the sum of the geometric sequence 4, -4>3, 4>9, -4>27, c , 41-1>3210.

SOLUTION We can see that a1 = 4 and r = -1>3. The nth term is 41-1>3210, 
which means that n = 11. (Remember that the exponent on the nth term is n - 1, 
not n.) Applying the Sum of a Finite Geometric Sequence Theorem, we find that

a
11

n=1
4a-  

1
3
b

n-1

=
411 - 1-1>32112

1 - 1-1>32 ≈ 3.000016935.

We can support this answer using technology:

sum1seq141-1>32^1N-12, N, 1, 112 = 3.000016935
 Now try Exercise 13.

EXAMPLE 2 

Infinite Series
If you change the “11” in the calculator sum in Example 2 to higher and higher num-
bers, you will find that the sum approaches a value of 3. This is no coincidence. In the 
language of limits,

  lim
xS∞a

n

k=1
4a-  

1
3
b

k-1

= lim
xS∞

411 - 1-1>32n2
1 - 1-1>32

 =
411 - 02

4>3  Because lim
nS∞
1-1>32n = 0

 = 3
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This gives us the opportunity to extend the usual meaning of the word sum, which 
always applies to a finite number of terms being added together. By using limits, we 
can make sense of expressions in which an infinite number of terms are added together. 
Such expressions are called infinite series.

DEFINITION Infinite Series

An infinite series is an expression of the form

a∞
n=1

an = a1 + a2 + g+  an + g.

The first thing to understand about an infinite series is that it is not a true sum. There 
are properties of real number addition that allow us to extend the definition of a + b to 
sums like a + b + c + d + e + f, but not to “infinite sums.” For example, we can 
add any finite number of 2’s together and get a real number, but if we add an infinite 
number of 2’s together we do not get a real number at all. Sums do not behave that 
way.

What makes series so interesting is that sometimes (as in Example 2) the sequence of 
partial sums, all of which are true sums, approaches a finite limit S:

 lim
nS∞a

n

k=1
ak = lim

nS∞
1a1 + a2 + g+  an2 = S

In this case we say that the series converges to S, and it makes sense to define S as the 
sum of the infinite series. In sigma notation,

a∞
k=1

ak = lim
nS∞a

n

k=1
ak = S.

If the limit of partial sums does not exist, then the series diverges and has no sum.

Looking at Limits of Partial Sums
For each of the following series, find the first five terms in the sequence of partial 
sums. Which of the series appear to converge?

(a) 0.1 + 0.01 + 0.001 + 0.0001 + g
(b) 10 + 20 + 30 + 40 + g
(c) 1 - 1 + 1 - 1 + g
SOLUTION 

(a) The first five partial sums are 0.1, 0.11, 0.111, 0.1111, 0.11111. The partial 
sums appear to be approaching a limit of 0.1 = 1>9, which would suggest that 
the series converges to a sum of 1>9.

(b) The first five partial sums are 10, 30, 60, 100, 150. The partial sums increase 
without bound and do not approach a limit. The series diverges and has no sum.

(c) The first five partial sums are 1, 0, 1, 0, 1. The partial sums alternate and do not 
approach a limit. The series diverges and has no sum.

 Now try Exercise 23.

EXAMPLE 3 

You might have been tempted to “pair off “ the terms in Example 3c to get an infinite 
summation of 0’s (and hence a sum of 0), but you would be applying a rule (namely the 
associative property of addition) that works on finite sums but not, in general, on infi-
nite series. The sequence of partial sums does not have a limit, so any manipulation of 
the series in Example 3c that appears to result in a sum is actually meaningless.
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Proof

Let a ≠ 0. If r = 1, the series is a + a + a + g, which is unbounded and hence 
diverges. If r = -1, the series is a - a + a - a + g, which diverges. (See   
Example 3c.) If r ≠ 1, then by the Sum of a Finite Geometric Sequence Theorem, the 
nth partial sum of the series is gn

k=1 a # rk-1 = a11 - rn2>11 - r2. The limit of the 
partial sums is limnS∞3a11 - rn2>11 - r24 , which converges if and only if 
limnS∞ r

n is a finite number. But limnS∞ r
n is 0 when 0 r 0 6 1 and unbounded when 

0 r 0 7 1. Therefore, the sequence of partial sums converges if and only if 0 r 0 6 1, in 
which case the sum of the series is

lim
nS∞
3a11 - rn2>11 - r24 = a11 - 02>11 - r2 = a>11 - r2.

THEOREM Sum of an Infinite Geometric Series

The geometric series g∞
k=1 a # rk-1, a ≠ 0, converges if and only if 0 r 0 6 1. If 

it does converge, the sum is a>11 - r2.

Convergence of Geometric Series
Determining the convergence or divergence of infinite series is an important part of a 
calculus course, in which series are used to represent functions. Most of the conver-
gence tests are well beyond the scope of this course, but we are in a position to settle 
the issue completely for geometric series.

Summing Infinite Geometric Series
Determine whether the series converges. If it converges, give the sum.

(a) a∞
k=1

310.752k-1 (b) a∞
n=0
a-  

4
5
b

n

(c) a∞
n=1
ap

2
b

n

 (d) 1 +
1
2

+
1
4

+
1
8

 + g

SOLUTION 

(a) Because 0 r 0 = 0 0.75 0 6 1, the series converges. The first term is 310.7520 = 3, 
so the sum is a>11 - r2 = 3>11 - 0.752 = 12.

(b) Because 0 r 0 = 0-4>5 0 6 1, the series converges. The first term is 1-4>520 = 1, 
so the sum is a>11 - r2 = 1>11 - 1-4>522 = 5>9.

(c) Because 0 r 0 = 0p>2 0 7 1, the series diverges.

(d) Because 0 r 0 = 0 1>2 0 6 1, the series converges. The first term is 1, so the sum is 
a>11 - r2 = 1>11 - 1>22 = 2. Now try Exercise 25.

EXAMPLE 4 

Converting a Repeating Decimal  
to Fraction Form

Express 0.234 = 0.234234234 c in fraction form.

SOLUTION We can write this number as a sum: 0.234 + 0.000234 +  
0.000000234 + g.

This is a convergent infinite geometric series in which a = 0.234 and r = 0.001. 
The sum is

a
1 - r

=
0.234

1 - 0.001
=

0.234
0.999

=
234
999

=
26
111

.

 Now try Exercise 31.

EXAMPLE 5 
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Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–4, 5an6  is arithmetic. Use the given information to  
find a10.

 1. a1 = 4; d = 2  2. a1 = 3; a2 = 1

 3. a3 = 6; a8 = 21

 4. a5 = 3; an+1 = an + 5 for n Ú 1

In Exercises 5–8, 5an6  is geometric. Use the given information to  
find a10.

 5. a1 = 1; a2 = 2  6. a4 = 1; a6 = 2

 7. a7 = 5; r = -2  8. a8 = 10; a12 = 40

 9. Find the sum of the first 5 terms of the sequence 5n26 .

 10. Find the sum of the first 5 terms of the sequence 52n - 16 .

QUICK REVIEW 9.4 (For help, see Section 9.4.)

 23. Find the first six partial sums of the following infinite series. If 
the sums have a finite limit, write “convergent.” If not, write 
“divergent.”

(a) 0.3 + 0.03 + 0.003 + 0.0003 + g
(b) 1 - 2 + 3 - 4 + 5 - 6 + g

 24. Find the first six partial sums of the following infinite series. If 
the sums have a finite limit, write “convergent.” If not, write 
“divergent.”

(a) -2 + 2 - 2 + 2 - 2 + g
(b) 1 - 0.7 - 0.07 - 0.007 - 0.0007 - g

In Exercises 25–30, determine whether the infinite geometric series 
converges. If it does, find its sum.

 25. 6 + 3 +
3
2

+
3
4

 + g 26. 4 +
4
3

+
4
9

+
4
27

 + g

 27. 
1
64

+
1
32

+
1
16

+
1
8

 + g

 28. 
1
48

+
1
16

+
3
16

+
9
16

 + g

 29. a∞
k=1

7 a1
4
b

k-1

 30. a∞
n=1

5 a2
3
b

n

In Exercises 31–34, express the rational number as a fraction of integers.

 31. 7.14141414 c
 32. 5.93939393 c
 33. -17.268268268c
 34. -12.876876876c
 35. Savings Account The table below shows the December 

balance in a fixed-rate compound savings account each year 
from 2014 through 2018.

Year 2014 2015 2016 2017 2018
Balance $20,000 $22,000 $24,200 $26,620 $29,282

(a) The balances form a geometric sequence. What is r?

(b) Write a formula for the balance in the account n years after 
December 2014.

(c) Find the sum of the December balances from 2014 to 2024, 
inclusive.

SECTION 9.4 Exercises

In Exercises 1–6, write each sum using summation notation, assuming 
the suggested pattern continues.

 1. -13 - 9 - 5 - 1 + g+  31

 2. 2 + 5 + 8 + 11 + g+  29

 3. 1 + 4 + 9 + g+  1n + 122
 4. 1 + 8 + 27 + g+  1n + 123
 5. 6 - 12 + 24 - 48 + g
 6. 5 - 15 + 45 - 135 + g
In Exercises 7–12, find the sum of the arithmetic sequence.

 7. -7, -3, 1, 5, 9, 13

 8. -8, -1, 6, 13, 20, 27

 9. -11, -14, -17, -20, c , -74

 10. 2, 4, 6, 8, c , 70

 11. 116, 109, 102, 95, c , 39

 12. 111, 108, 105, c , 27

In Exercises 13–16, find the sum of the geometric sequence.

 13. 3, 6, 12, c , 12,288

 14. 5, 15, 45, c , 98,415

 15. 42, 7, 
7
6

 ,c , 42a1
6
b

8

 16. 42, -7, 
7
6

 ,c , 42a-  
1
6
b

9

In Exercises 17–22, find the sum of the first n terms of the sequence. 
The sequence is either arithmetic or geometric.

 17. 2, 5, 8, c ; n = 10

 18. 14, 8, 2, c ; n = 9

 19. 4, -2, 1, -  
1
2

 , c ; n = 12 

 20. 6, -3, 
3
2

 ,-  
3
4

 , c ; n = 11

 21. -1, 11, -121, c ; n = 9

 22. -2, 24, -288, c ; n = 8
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 36. Savings Account The table below shows the December 
balance in a simple interest savings account each year from 
2014 through 2018.

Year 2014 2015 2016 2017 2018
Balance $18,000 $20,016 $22,032 $24,048 $26,064

(a) The balances form an arithmetic sequence. What is d?

(b) Write a formula for the balance in the account n years after 
December 2014.

(c) Find the sum of the December balances from 2014 to 2024, 
inclusive.

 37. Annuity Mr. O’Hara deposits $120 at the end of each month 
into an account that pays 7% interest compounded monthly. 
After 10 years, the balance in the account, in dollars, is

120a1 +
0.07
12
b

0

+ 120a1 +
0.07
12
b

1

 + g

+ 120a1 +
0.07
12
b

119

.

(a) This is a geometric series. What is the first term? What is 
the common ratio r? 

(b) Use the formula for the sum of a finite geometric sequence 
to find the balance.

 38. Annuity Ms. Argentieri deposits $100 at the end of each 
month into an account that pays 8% interest compounded 
monthly. After 10 years, the balance in the account, in 
 dollars, is

100a1 +
0.08
12
b

0

+ 100a1 +
0.08
12
b

1

 + g

+ 100a1 +
0.08
12
b

119

.

(a) This is a geometric series. What is the first term? What is 
the common ratio r?

(b) Use the formula for the sum of a finite geometric sequence 
to find the balance.

 39. Group Activity Follow the Bouncing Ball When 
“superballs” sprang upon the scene in the 1960s, kids across 
the United States were amazed that these hard rubber balls 
could bounce to 90% of the height from which they were 
dropped. If a superball is dropped from a height of 2 m, how 
far does it travel until it stops bouncing? [Hint: The ball goes 
down to the first bounce, then up and down thereafter.]

 40. Writing to Learn The Trouble with Flubber In the 
1961 movie classic The Absent Minded Professor, Prof. Ned 
Brainard discovers flubber (flying rubber). If a “super duper 
ball” made of flubber is dropped, it rebounds to an ever greater 
height with each bounce. How far does it travel if allowed to 
keep bouncing?

Standardized Test Questions
 41. True or False If all terms of a series are positive, the series 

sums to a positive number. Justify your answer.

 42. True or False If a∞
n=1

an and a∞
n=1

bn both diverge, then 

a∞
n=1
1an + bn2 diverges. Justify your answer.

You should solve Exercises 43–46 without the use of a calculator.

 43. Multiple Choice The series 3-1 + 3-2 + 3-3 + g+  
3-n + g
(A) converges to 1>2. (B) converges to 1>3.

(C) converges to 2>3. (D) converges to 3>2.

(E) diverges.

 44. Multiple Choice If a∞
n=1

xn = 4, then x =

(A) 0.2.  (B) 0.25.  (C) 0.4.  (D) 0.8.  (E) 4.0.

 45. Multiple Choice The sum of an infinite geometric series 
with first term 3 and second term 0.75 is

(A) 3.75.  (B) 2.4.  (C) 4.  (D) 5.  (E) 12.

 46. Multiple Choice a∞
n=0

4a-  
5
3
b

n

=

(A) -6  (B) -  
5
2

  (C) 
3
2

  (D) 10  (E) Divergent

Explorations
 47. Population Density The National Geographic Picture 

Atlas of Our Fifty States groups the states into 10 regions. The 
two largest groupings are the Heartland (Table 9.1) and the 
Southeast (Table 9.2). Population and area data for the two 
regions are given in the tables. The populations are official 
2010 U.S. Census figures.

(a) What is the total population of each region?

(b) What is the total area of each region?

(c) What is the population density (in persons per square mile) 
of each region?

(d) Writing to Learn For the two regions, compute the 
population density of each state. What is the average of the 
seven state population densities for each region? Explain 
why these answers differ from those found in part (c).

Table 9.1 The Heartland

State Population Area 1mi22
Iowa 3,046,355 56,275
Kansas 2,853,118 82,277
Minnesota 5,303,925 84,402
Missouri 5,988,927 69,697
Nebraska 1,826,341 77,355
North Dakota  672,591 70,703
South Dakota  814,180 77,116
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 48. Finding a Pattern Write the finite series 
-1 + 2 + 7 + 14 + 23 + g+  62 in summation notation.

Extending the Ideas
 49. Fibonacci Sequence and Series Complete the follow-

ing table, where Fn is the nth term of the Fibonacci sequence 
and Sn is the nth partial sum of the Fibonacci series. Make a 
conjecture based on the numerical evidence in the table.

Sn = a
n

k=1
Fk

Table 9.2 The Southeast

State Population Area 1mi22
Alabama 4,779,736 51,705
Arkansas 2,915,918 53,187
Florida 18,801,310 58,644
Georgia 9,687,653 58,910
Louisiana 4,533,372 47,751
Mississippi 2,967,297 47,689
South Carolina 4,625,364 31,113

 50. Triangular Numbers Revisited Exercise 41 in 
 Section 9.2 introduced triangular numbers as numbers 
that count objects arranged in triangular arrays:

 1 3 6 10 15

  In that exercise, you gave a geometric argument that the nth 
triangular number was n1n + 12>2. Prove that formula 
algebraically using the Sum of a Finite Arithmetic Sequence 
Theorem.

 51. Square Numbers and Triangular Numbers Prove 
that the sum of two consecutive triangular numbers is a 
square number; that is, prove

Tn-1 + Tn = n2

for all positive integers n Ú 2. Use both a geometric and an 
algebraic approach.

 52. Harmonic Series Graph the sequence of partial sums 
of the harmonic series:

1 +
1
2

+
1
3

+
1
4

 + g+  
1
n

 + g

  Overlay on it the graph of ƒ1x2 = ln x. The resulting 
 picture should support the claim that

1 +
1
2

+
1
3

+
1
4

 + g+  
1
n

Ú ln n,

for all positive integers n. Make a table of values to further 
support this claim. Explain why the claim implies that the 
harmonic series must diverge.

n Fn Sn Fn+2 - 1
1 1
2 1
3 2
4
5
6
7
8
9
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Proof

(Anchor) First, we note that the assertion is true when n = 1. We can move the one 
washer to the right peg in (minimally) one move, and 21 - 1 = 1.

(Inductive hypothesis) Now let us assume that the assertion holds for n = k; that is, 
the minimum number of moves required to move k washers is 2k - 1. (So far the only 
k we are sure of is 1, but keep reading.)

(Inductive step) We next consider the case when n = k + 1 washers. To get at the 
bottom washer, we must first move the entire stack of k washers sitting on top of it. By 
the assumption we just made, this will take a minimum of 2k - 1 moves. We can then 
move the bottom washer to the free peg (1 move). Finally, we must move the stack of k 
washers back onto the bottom washer—again, by our assumption, a minimum of 
2k - 1 moves. Altogether, moving k + 1 washers requires

12k - 12 + 1 + 12k - 12 = 2 # 2k - 1 = 2k+1 - 1

moves. Because that agrees with the formula in the theorem, we have proved the asser-
tion to be true for n = k + 1 washers—under the assumption that it is true for n = k.

Remarkably, we are finished. Recall that we did prove the theorem to be true for 
n = 1. Therefore, by the inductive step, it must also be true for n = 2. By the inductive 
step again, it must be true for n = 3. And so on, for all positive integers n.

If we apply the Tower of Hanoi Solution to the legendary Tower of Hanoi Problem, the 
monks will need 264 - 1 seconds to move the 64 golden washers. The largest current 
conjecture for the age of the universe is something on the order of 20 billion years. If 
you convert 264 - 1 seconds to years, you will find that the end of time (at least 
according to this particular legend) is not exactly imminent. In fact, you might be sur-
prised at how much time is left!

What you’ll learn about
• Tower of Hanoi Problem

• Principle of Mathematical Induction

• Induction and Deduction

... and why
The principle of mathematical  
induction is a valuable technique  
for proving combinatorial  
formulas.

Tower of Hanoi Problem
You might be familiar with a game that is played with a stack of round washers of dif-
ferent diameters and a stand with three vertical pegs (Figure 9.6). The game is not dif-
ficult to win once you get the hang of it, but it takes a while to move all the washers 
even when you know what you are doing. A mathematician, presented with this game, 
wants to figure out the minimum number of moves required to win the game—not 
because of impatience, but because it is an interesting mathematical problem.

In case mathematics is not sufficient motivation to study the problem, there is a legend 
attached to the game that provides a sense of urgency. The legend has it that a game of 
this sort with 64 golden washers was created at the beginning of time. A special order 
of Far Eastern monks has been moving the washers at one move per second ever since, 
always using the minimum number of moves required to win the game. When the final 
washer is moved, that will be the end of time. The Tower of Hanoi Problem exists sim-
ply to figure out how much time we have left!

We will solve the problem by proving a general theorem that gives the minimum num-
ber of moves for any number of washers. The technique of proof we use is the principle 
of mathematical induction, the topic of this section.

9.5 Mathematical Induction

Figure  9.6 The Tower of Hanoi Game.  
The object is to move the entire stack of 
washers to the rightmost peg, one washer at a 
time, never placing a larger washer on top of a 
smaller washer.

THEOREM Tower of Hanoi Solution

The minimum number of moves required to move a stack of n washers in a 
Tower of Hanoi game is 2n - 1.

Tower of Hanoi History
The legend notwithstanding, the Tower of Hanoi 
dates back to 1883, when Édouard Lucas mar-
keted the game as “La Tour de Hanoï,” brought 
back from Asia by “Professor N. Claus de 
Siam”—an anagram of “Professor Lucas 
d’Amiens.” The legend appeared shortly there-
after. The game has been a favorite among com-
puter programmers, so a Web search on “Tower 
of Hanoi” will bring up multiple sites that allow 
you to play it on a computer.
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Winning the Game

One thing that the Tower of Hanoi Solution does not settle is how to get the 
stack to finish on the rightmost peg rather than the middle peg. Predictably, it 
depends on where you move the first washer, but it also depends on the height of 
the stack. Using a Web site game, or coins of different sizes, or even the physical 
game if you have one, play the game with 1 washer, then 2, then 3, then 4, and so 
on, keeping track of what your first move must be in order to have the stack wind 
up on the rightmost peg in 2n - 1 moves. What is the general rule for a stack 
of n washers?

EXPLORATION 1 

Principle of Mathematical Induction

Let Pn be a statement about the integer n. Then Pn is true for all positive  
integers n provided the following conditions are satisfied:

1. (Anchor) P1 is true.

2. (Inductive hypothesis and step) If Pk is true, then Pk+1 is true.

Principle of Mathematical Induction
The proof of the Tower of Hanoi Solution used a technique known as the Principle of 
Mathematical Induction (or as mathematical induction). It is a powerful tool for prov-
ing many theorems about positive integers. We anchor the proof by establishing the 
truth of the theorem for 1, and then, via the inductive hypothesis and inductive step, we 
demonstrate that “true for k” implies “true for k + 1.”

Figure  9.7 The Principle of Mathematical 
Induction visualized by dominoes. The 
toppling of domino 1 guarantees the toppling 
of domino n for all positive integers n.

A good way to visualize how the principle works is to imagine an infinite sequence of 
dominoes stacked upright, each one close enough to its neighbor so that any kth domino, 
if it falls, will knock over the 1k + 12st domino (Figure 9.7). Given that condition, the 
toppling of domino 1 guarantees the toppling of the entire infinite sequence of dominoes.

Let us use the principle to prove a fact that we already know.

Condition 2
Notice that the second condition in the Principle 
of Mathematical Induction combines the  
inductive hypothesis and the inductive step. 
To prove that if Pk is true, then Pk+1 is true, we 
first assume that Pk is true, and then we use it to 
establish that Pk+1 is true.

Using Mathematical Induction
Prove that 1 + 3 + 5 + g+  12n - 12 = n2 is true for all positive integers n.

SOLUTION Call the statement Pn. We could verify Pn by using the formula for the 
sum of an arithmetic sequence, but here is how we prove it by mathematical induction.

(Anchor) For n = 1, the equation reduces to P1: 1 = 12, which is true.

(Inductive hypothesis) Assume that the equation is true for n = k. That is, assume

Pk: 1 + 3 + g+  12k - 12 = k2 is true.

(Inductive step) The next term on the left-hand side would be 21k + 12 - 1. We 
add this to both sides of Pk and get

 1 + 3 + g+  12k - 12 + 121k + 12 - 12 = k2 + 12 1k + 12 - 12
 = k2 + 2k + 1

 = 1k + 122
This is exactly the statement Pk+1, so the equation is true for n = k + 1. Therefore, 
Pn is true for all positive integers, by mathematical induction.
 Now try Exercise 1.

EXAMPLE 1 
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Applications of mathematical induction can be quite different from the first two exam-
ples. Here is one involving divisibility.

Notice that we did not plug in k + 1 on both sides of the equation Pn in order to verify 
the inductive step; if we had done that, there would have been nothing to verify. If you 
find yourself verifying the inductive step without using the inductive hypothesis, you 
have gone astray, and you should redo your proof.

Using Mathematical Induction
Prove that 12 + 22 + 32 + g+  n2 = 1n1n + 1212n + 122>6 is true for all  
positive integers n.

SOLUTION Let Pn be the statement 12 + 22 + 32 + g+  n2 =
1n1n + 1212n + 122>6.

(Anchor) P1 is true because 12 = 1112213)2>6.

(Inductive hypothesis) Assume that Pk is true, so that

12 + 22 + g+  k2 =
k1k + 1212k + 12

6
.

(Inductive step) The next term on the left-hand side would be 1k + 122. We add 
this to both sides of Pk and get

 12 + 22 + g+  k2 + 1k + 122 =
k1k + 1212k + 12

6
+ 1k + 122

 =
k1k + 1212k + 12 + 61k + 122

6

 =
1k + 1212k2 + k + 6k + 62

6

 =
1k + 121k + 2212k + 32

6

 =
1k + 1211k + 12 + 12121k + 12 + 12

6

This is exactly the statement Pk+1, so the equation is true for n = k + 1. Therefore, 
Pn is true for all positive integers, by mathematical induction.
 Now try Exercise 13.

EXAMPLE 2 

Proving Divisibility
Prove that 4n - 1 is evenly divisible by 3 for all positive integers n.

SOLUTION Let Pn be the statement that 4n - 1 is evenly divisible by 3 for all posi-
tive integers n.

(Anchor) P1 is true because 41 - 1 = 3 is divisible by 3.

(Inductive hypothesis) Assume that Pk is true, so that 4k - 1 is divisible by 3.

(Inductive step) We need to prove that 4k+1 - 1 is divisible by 3. Using a little 
algebra, we see that 4k+1 - 1 = 4 # 4k - 1 = 414k - 12 + 3. By the inductive 
hypothesis, 4k - 1 is divisible by 3. So is 3. Thus, 414k - 12 + 3 is a sum of multi-
ples of 3, and hence is divisible by 3.

This is exactly the statement Pk+1, so Pk+1 is true. Therefore, Pn is true for all posi-
tive integers, by mathematical induction.
 Now try Exercise 19.

EXAMPLE 3 
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Induction and Deduction
The words induction and deduction are usually used to contrast two patterns of logical 
thought. We reason by induction when we use evidence derived from particular exam-
ples to draw conclusions about general principles. We reason by deduction when we 
reason from general principles to draw conclusions about specific cases.

When mathematicians prove theorems, they use deduction. Even a “proof by mathe-
matical induction” is a deductive proof because it applies a general principle to a par-
ticular formula. We have been careful to use the term mathematical induction in this 
section to distinguish it from inductive reasoning, which is often good for inspiring 
conjectures—but not for proving general principles.

Exploration 2 illustrates why mathematicians do not rely on inductive reasoning.

The Four-Color Map Theorem
In 1852, Francis Guthrie conjectured that any 
map on a flat surface could be colored in at most 
four colors so that no two bordering regions 
would share the same color. Mathematicians 
tried unsuccessfully for almost 150 years to 
prove (or disprove) the conjecture, until  
Kenneth Appel and Wolfgang Haken finally 
proved it in 1976.

Is n2 + n + 41 Prime for All n?

 1. Plug in the numbers from 1 to 10. Are the results all prime?

 2. Repeat for the numbers from 11 to 20.

 3. Repeat for the numbers from 21 to 30. (Ready to make your  
conjecture?)

 4. What is the smallest value of n for which n2 + n + 41 is not prime?

EXPLORATION 2 

There is one situation in which (nonmathematical) induction can constitute a proof. In 
enumerative induction, one reasons from specific cases to the general principle by 
considering all possible cases. This is simple enough when proving a theorem like “All 
one-digit prime numbers are factors of 210,” but it can involve some very elegant 
mathematics when the number of cases is seemingly infinite. Such was the case in the 
proof of the Four-Color Map Theorem, in which all possible cases were settled with the 
help of a clever computer program.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–3, expand the product.

 1. n1n + 52  2. 1n + 221n - 32
 3. k1k + 121k + 22
In Exercises 4–6, factor the polynomial.

 4. n2 + 2n - 3

 5. k3 + 3k2 + 3k + 1

 6. n3 - 3n2 + 3n - 1

In Exercises 7–10, evaluate the function at the given domain values or 
variable expressions.

 7. ƒ1x2 = x + 4; ƒ112, ƒ1t2, ƒ1t + 12

 8. ƒ1n2 =
n

n + 1
 ; ƒ112, ƒ1k2, ƒ1k + 12

 9. P1n2 =
2n

3n + 1
 ; P112, P1k2, P1k + 12

 10. P1n2 = 2n2 - n - 3; P112, P1k2, P1k + 12

QUICK REVIEW 9.5 (Prerequisite skill Sections A.2 and 1.2)

 3. 6 + 10 + 14 + g+  14n + 22 = n12n + 42
 4. 14 + 18 + 22 + g+  14n + 102 = 2n1n + 62

SECTION 9.5 Exercises

In Exercises 1–4, use mathematical induction to prove that the state-
ment holds for all positive integers.

 1. 2 + 4 + 6 + g+  2n = n2 + n

 2. 8 + 10 + 12 + g+  12n + 62 = n2 + 7n
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In Exercises 5–8, state an explicit rule for the nth term of the recursively 
defined sequence. Then use mathematical induction to prove the rule.

 5. an = an-1 + 5, a1 = 3 6. an = an-1 + 2, a1 = 7

 7. an = 4an-1, a1 = 5 8. an = 5an-1, a1 = 3

In Exercises 9–12, write the statements P1, Pk, and Pk+1. (Do not write a 
proof.)

 9. Pn: 1 + 2 + g+  n =
n1n + 12

2

 10. Pn: 12 + 32 + 52 + g+  12n - 122 =
n12n - 1212n + 12

3

 11. Pn: 
1

1 # 2
+

1
2 # 3

 + g+  
1

n # 1n + 12 =
n

n + 1

 12. Pn: a
n

k=1
 k

4 =
n1n + 1212n + 1213n2 + 3n - 12

30

In Exercises 13–20, use mathematical induction to prove that the state-
ment holds for all positive integers.

 13. 1 + 5 + 9 + g+  14n - 3) = n12n - 12
 14. 1 + 2 + 22 + g+  2n-1 = 2n - 1

 15. 
1

1 # 2
+

1
2 # 3

+
1

3 # 4
 + g+  

1
n1n + 12 =

n
n + 1

 16. 
1

1 # 3
+

1
3 # 5

 + g+  
1

12n - 1212n + 12 =
n

2n + 1

 17. 2n Ú 2n 18. 3n Ú 3n

 19. 3 is a factor of n3 + 2n. 20. 6 is a factor of 7n - 1.

In Exercises 21 and 22, use mathematical induction to prove that the 
statement holds for all positive integers. (We have already seen each 
statement proved in another way.)

 21. The sum of the first n terms of a geometric sequence with first 
term a1 and common ratio r ≠ 1 is a111 - rn2>11 - r2.

 22. The sum of the first n terms of an arithmetic sequence with first 
term a1 and common difference d is

Sn =
n
2

 32a1 + 1n - 12d4 .

In Exercises 23 and 24, use mathematical induction to prove that the 
formula holds for all positive integers.

 23. Triangular Numbers a
n

k=1
 k =

n1n + 12
2

 24. Sum of the First n Cubes a
n

k=1
 k

3 =
n21n + 122

4

[Note that if you put the results from Exercises 23 and 24 together, you 
obtain the pleasantly surprising equation

13 + 23 + 33 + g+  n3 = 11 + 2 + 3 + g+  n22.4
In Exercises 25–30, use the results of Exercises 21–24 and Example 2 
to find the sums.

 25. 1 + 2 + 3 + g+  500 26. 12 + 22 + g+  2502

 27. 4 + 5 + 6 + g+  n  28. 13 + 23 + 33 + g+  753

 29. 1 + 2 + 4 + 8 + g+  234

 30. 1 + 8 + 27 + g+  3375

In Exercises 31–34, use the results of Exercises 21–24 and Example 2 
to find the sum in terms of n.

 31. a
n

k=1
 1k2 - 3k + 42 32. a

n

k=1
 12k2 + 5k - 22

 33. a
n

k=1
 1k3 - 12 34. a

n

k=1
 1k3 + 4k - 52

 35. Group Activity Here is a proof by mathematical  
induction that any gathering of n persons must all have the  
same blood type.

  (Anchor) If there is 1 person in the gathering, everyone in the 
gathering obviously has the same blood type.

  (Inductive hypothesis) Assume that any gathering of k  
persons must all have the same blood type.

  (Inductive step) Suppose k + 1 persons are gathered. Send 
one of them out of the room. The remaining k persons must all 
have the same blood type (by the inductive hypothesis). Now 
bring the first person back and send someone else out of the 
room. You get another gathering of k persons, all of whom 
must have the same blood type. Therefore all k + 1 persons 
must have the same blood type, and we are done by mathemati-
cal induction.

  This result is obviously false, so there must be something 
wrong with the proof. Explain where the proof goes wrong.

 36. Writing to Learn Kitty is having trouble understanding 
mathematical induction proofs because she does not understand 
the inductive hypothesis. If we can assume it is true for k, she 
asks, why can’t we assume it is true for n and be done with it? 
After all, a variable is a variable! Write a response to Kitty to 
clear up her confusion.

Standardized Test Questions
 37. True or False The goal of mathematical induction is to 

prove that a statement Pn is true for all real numbers n. Justify 
your answer.

 38. True or False If Pn is the statement “1n + 122 = 4n,” then 
P1 is true. Justify your answer.

You may use a graphing calculator when solving Exercises 39–42.

 39. Multiple Choice In a proof by mathematical induction that 

1 + 2 + 3 + g+  n =
n1n + 12

2
 for all positive integers n, 

the inductive hypothesis would be to assume that

(A) n = 1.

(B) k = 1.

(C) 1 =
111 + 12

2
.

(D) 1 + 2 + 3 + g+  n =
n1n + 12

2
 for all positive  

integers n.

(E) 1 + 2 + 3 + g+  k =
k1k + 12

2
 for some positive  

integer k.
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 40. Multiple Choice The first step in a proof by mathematical 
induction is to prove

(A) the anchor.

(B) the inductive hypothesis.

(C) the inductive step.

(D) the inductive principle.

(E) the inductive foundation.

 41. Multiple Choice Which of the following could be used to 
prove that 1 + 3 + 5 + g+  12n - 12 = n2 for all positive 
integers n?

  I. Mathematical induction

 II. The formula for the sum of a finite arithmetic sequence

III. The formula for the sum of a finite geometric sequence

(a) I only

(b) I and II only

(c) I and III only

(d) II and III only

(e) I, II, and III

 42. Multiple Choice Mathematical induction can be used to 

prove that, for any positive integer n, a
n

k=1
 k3 =

(A) 
n1n + 12

2
. (B) 

n21n + 122
2

.

(C) 
n21n + 122

4
. (D) 

n31n + 123
2

.

(E) 
n31n + 123

8
.

Explorations
 43. Use mathematical induction to prove that 2 is a factor of 

1n + 121n + 22 for all positive integers n.

 44. Use mathematical induction to prove that 6 is a factor of 
n1n + 121n + 22 for all positive integers n. (You may assume 
the assertion in Exercise 43 to be true.)

 45. Give an alternative proof of the assertion in Exercise 43 based 
on the fact that 1n + 121n + 22 is a product of two consecu-
tive integers.

 46. Give an alternative proof of the assertion in Exercise 44 based 
on the fact that n1n + 121n + 22 is a product of three consec-
utive integers.

Extending the Ideas
In Exercises 47 and 48, use mathematical induction to prove that the 
statement holds for all positive integers.

 47. Fibonacci Sequence and Series 

Fn+2 - 1 = a
n

k=1
 Fk, where 5Fn6  is the Fibonacci sequence.

 48. If 5an6  is the sequence 22, 32 + 22,

  42 + 32 + 22, c , then an 6 2.

 49. Let a be any integer greater than 1. Use mathematical induction 
to prove that a - 1 divides an - 1 evenly for all positive  
integers n.

 50. Give an alternative proof of the assertion in Exercise 49 based 
on the Factor Theorem of Section 2.4.

It is not necessary to anchor a mathematical induction proof at n = 1; 
we might be interested in the integers greater than or equal to some 
integer c other than 1. In this case, we simply modify the anchor and 
the inductive hypothesis and step as follows:

• Anchor: Pc is true.

•  Inductive hypothesis and step: If Pk is true for some k Ú c, then 
Pk+1 is true.

This is the Extended Principle of Mathematical Induction. Use this 
principle to prove the statements in Exercises 51 and 52.

 51. 3n - 4 Ú n, for all n Ú 2

 52. 2n Ú n2, for all n Ú 4

 53. Proving the Interior Angle Formula Use extended 
mathematical induction to prove Pn for n Ú 3. Pn: The sum of 
the interior angles of an n-sided polygon is 180°1n - 22.
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Binomial Theorem 662
Basic Factorial Identities 663
Sum of a Finite Arithmetic Sequence 675
Sum of a Finite Geometric Sequence 676
Sum of an Infinite Geometric Series 679
Tower of Hanoi Solution 683
Principle of Mathematical Induction 684

CHAPTER 9 Key Ideas

Properties, Theorems, and Formulas

Multiplication Principle of Counting 651
Permutations of an n-set 652
Distinguishable Permutations 653
Permutation Counting Formula 653
Combination Counting Formula 654
Formula for Counting Subsets of an n-Set 655
Recursive Formula for Pascal’s Triangle 662

 16. A Pocket of Coins Sean tells Moira that he has less than 
50 cents in American coins in his pocket and no two coins of 
the same denomination. How many possible total amounts 
could be in Sean’s pocket?

 17. Permutations Find the number of distinguishable permu-
tations that can be made from the letters in

(a) GERMANY

(b) PRESBYTERIANS

  In each case, can you find a permutation that spells the first and 
last names of a female entertainer?

 18. Permutations Find the number of distinguishable permu-
tations that can be made from the letters in

(a) FLORIDA

(b) TALLAHASSEE

In Exercises 19–24, expand each expression.

 19. 12x + y25  20. 14a - 3b27

 21. 13x2 + y325 22. a1 +
1
x
b

6

 23. 12a3 - b229 24. 11 + x26 - 11 - x26

 25. Find the coefficient of the constant in the expansion of ax +
1
x
b

8

.

 26. Find the coefficient of x2y6 in the expansion of 12x + y28.

In Exercises 27 and 28, find the first 6 terms and the 40th term.

 27. an =
n2 - 1
n + 1

 28. bk =
1-22k
k + 1

In Exercises 29–34, find the first 6 terms and the 12th term.

 29. a1 = -1 and an = an-1 + 3, for n Ú 2

 30. b1 = 5 and bk = 2bk-1, for k Ú 2

 31. Arithmetic sequence, with a1 = -5 and d = 1.5

 32. Geometric sequence, with a1 = 3 and r = 1>3
 33. v1 = -3, v2 = 1, and vk = vk-2 + vk-1, for k Ú 3

 34. w1 = -3, w2 = 2, and wk = wk-2 + wk-1, for k Ú 3

CHAPTER 9 Review Exercises

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–6, evaluate the expression by hand, then check your 
result with a calculator.

 1. a12
5
b  2. a789

787
b

 3. 18C12  4. 15C2 + 15C3

 5. 12P7  6. 15P8

 7. Seating Order In how many ways can five children sit in a 
row provided two of those children, Katrina and Alia, are 
always seated next to each other?

 8. Scheduling Trips A travel agent is trying to schedule a 
 client’s trip from city A to city B. There are three direct flights, 
three flights from A to a connecting city C, and four flights from 
this connecting city C to city B. How many trips are possible?

 9. License Plates How many license plates begin with two 
letters followed by four digits or begin with three digits fol-
lowed by three letters? Assume that no letters or digits are 
repeated.

 10. Forming Committees A club has 45 members, and its 
membership committee has three members. How many differ-
ent membership committees are possible?

 11. Queues In how many ways can six boys and six girls form 
a queue provided no boy is adjacent to another boy and no girl 
is adjacent to another girl?

 12. Bridge Hands How many 13-card bridge hands include all 
four aces and exactly one king?

 13. Coin Toss Suppose that a coin is tossed five times. How 
many different outcomes include at least two heads?

 14. Colored Marbles A box contains 6 red marbles and 5 
green marbles. If 6 marbles are selected at random, how many 
different arrangements are possible if there must be at least 
2 marbles of each color?

 15. Code Words How many code words of any length can be 
spelled out using game tiles of five different letters (including 
single-letter code words)?

 CHAPTER 9 Review Exercises 689
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In Exercises 35–42, the sequences are arithmetic or geometric. Find an 
explicit formula for the nth term. State the common difference or ratio.

 35. 1, -1, 1, -1, 1,c  36. -5, -1, 3, 7,c

 37. 10, 12, 14.4, 17.28,c  38. 
1

8
, -  

1

4
, 

1

2
, -1,c

 39. a1 = -11 and an = an-1 + 4.5 for n Ú 2

 40. b1 = 7 and bn = 11>42 bn-1 for n Ú 2

 41. The fourth and ninth terms of a geometric sequence are -192 
and 196,608, respectively.

 42. The fourth term of an arithmetic sequence is 13 and the seventh 
term is five times the second term.

In Exercises 43–46, find the sum of the terms of the arithmetic sequence.

 43. -11, -8, -5, -2, 1, 4, 7, 10

 44. 13, 9, 5, 1, -3, -7, -11

 45. 2.5, -0.5, -3.5, c, -75.5

 46. -5, -3, -1, 1, c, 55

In Exercises 47–50, find the sum of the terms of the geometric sequence.

 47. 4, -2, 1, -  
1

2
, 

1

4
, -  

1

8

 48. -3, -1, -  
1

3
, -  

1

9
, -  

1

27

 49. 2, 6, 18, c , 39,366

 50. 1, -2, 4, -8, c , -8192

In Exercises 51 and 52, find the sum of the first 10 terms of the arith-
metic or geometric sequence.

 51. 2187, 729, 243,c  52. 94, 91, 88,c

In Exercises 53 and 54, graph the sequence.

 53. an = 1 +
1-12n

n
 54. an = 2n2 - 1

 55. annuity Mr. Adabor pays $150 at the end of each month 
into an account that pays 8% interest compounded monthly. At 
the end of 10 years, the balance in the account, in dollars, is

150a1 +
0.08

12
b

0

+ 150a1 +
0.08

12
b

1

+ g + 150a1 +
0.08

12
b

119

  Use the formula for the sum of a finite geometric series to find 
the balance.

 56. annuity What is the minimum monthly payment at month’s 
end that must be made into an account that pays 8% interest 
compounded monthly if the balance at the end of 10 years is to 
be at least $30,000?

In Exercises 57–62, determine whether the geometric series converges. 
If it does, find its sum.

 57. a∞
i=0

 a 123
b

i

 58. a∞
n=1

 2a3
5
b

n

 59. a∞
n=0

 e-3n  60. a∞
k=1

 5a6
5
b

k

 61. a∞
k=1

 310.52k  62. a∞
k=1

 11.22k

In Exercises 63–66, write the sum using sigma notation.

 63. -8 - 3 + 2 + g + 92

 64. 4 - 8 + 16 - 32 + g - 2048

 65. 12 + 32 + 52 + g

 66. 1 +
1

2
+

1

22 +
1

23 + g 

In Exercises 67–70, use summation formulas to evaluate the expression.

 67. a
n

k=1
 13k + 12

 68. a
n

k=1
 1n2 + 3i2

 69. a
25

k=1
 1k2 - 3k + 42

 70. a
175

k=1
 13k2 - 5k + 12

In Exercises 71–76, use mathematical induction to prove that the  
statement is true for all positive integers n.

 71. 1 + 3 + 6 + g +
n1n + 12

2
=

n1n + 121n + 22
6

 72. 1 # 2 + 2 # 3 + 3 # 4 + g + n1n + 12 =
n1n + 121n + 22

3

 73. 2n-1 … n!

 74. 23n - 1 is divisible by 7, for all n 7 0.

 75. Find row 9 of Pascal’s triangle.

 76. Prove algebraically that

nPk
#

n-kPj = nPk+ j.
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CHAPTER 9 Modeling Project

Modeling Population Growth with Sequences

In this project, you will use recursive formulas and their associ-
ated sequences to explore trends in human and animal popula-
tions. In fact, you will use some of the modeling techniques that 
demographers and wildlife biologists use.

Explorations

 1. U.S. Population. An arithmetic sequence is the discrete ana-
log to a linear function. Both an arithmetic sequence and a 
linear function assume a constant additive rate of change.

(a)  According to the U.S. Census Bureau, the official U.S. 
population was 248.7 million in 1990 and 308.7 million 
in 2010. What was the average change in population per 
year from 1990 through 2010?

(b)  The official U.S. population was 281.4 million in 2000. 
Let pn be an arithmetic sequence that represents the 
U.S. population (in millions of persons) n years  
after 2000. Verify that p0 = 281.4. This is the initial 
condition for the sequence.

(c)  Use your answer from part (a) to write a recursive  
formula for the sequence pn.

(d)  Write an explicit formula for the arithmetic sequence pn 
assuming that p0 = 281.4.

(e)  Use the information from parts (b), (c), and (d) to esti-
mate the U.S. population in 2010, 2020, and 2030.

 2. World Population. The following table shows U.S. Census 
Bureau estimates for key world population benchmarks. A 
geometric sequence is the discrete analog to an exponent 
function. Both a geometric sequence and an exponent func-
tion assume a constant multiplicative rate of change. Let wn 
be a geometric sequence that represents the world popula-
tion (in billions of persons) n years after 1959. Use 
w0 = 3.00 as the initial condition for the sequence.

(c)  Use the formulas from parts (a) and (b) to estimate the 
world population in 2010, 2020, and 2030.

(d)  The actual annual growth rate in world population 
slowed from 2.22% in 1963 to 1.09% in 2013, so a 
logistic growth model may be more appropriate than an 
exponential model. Use the data in the table and logistic 
regression to estimate the world population in 2010, 
2020, and 2030.

 3. Bluegill Population. There are 1100 bluegill in Lake 
Tawaga at present (Year 0). Each year the population 
decreases by 25% from the combined effects of reproduc-
tion, deaths, and harvesting, and at the end of each year,  
800 bluegill are added to the lake. Let bn be a sequence that 
represents the bluegill population n years into the future.

(a)  Write a recursive formula for the sequence bn.
(b)  Graph the sequence bn as a time plot (that is, as a 

 function of time n).
(c)  Use mathematical induction to prove that 

bn = 3,200 - 2,10010.752n is an explicit formula for 
the sequence.

(d)  What is the population of the bluegill in the long run?

 4. Predator-Prey Population Model. In the wild, the population 
of a predator species, such as foxes, depends on prey species, 
such as rabbits, so the populations are interrelated. Let

un = rabbit population at time n = un-1
# 11 + a - b # vn-12

vn = fox population at time n = vn-1
# 11 + c # un-1 - d2

  where

a =  growth rate of rabbit population when there are no 
foxes = 0.047

b =  rate at which foxes kill rabbits = 0.0011
c =  growth rate of fox population when there are  

rabbits = 0.00019
d = death rate of foxes when there are no rabbits = 0.032

  Let the initial conditions be u0 = 288 rabbits and  
w0 = 63 foxes.

(a)  Graph the sequences un and vn as functions of time n on 
the same set of axes.

(b)  Graph the relation vn versus un on the same set of axes. 
(Either use the uv format in Sequence graphing mode, 
or use Parametric graphing mode.)

(c)  Write a few sentences to describe your findings. Do you 
think either population will die out? Why, or why not? If 
the foxes were to die out, what would happen to the rab-
bit population? Explain this based on the model.

 
Year

Population 
(billions)

1959 3
1974 4
1987 5
1999 6
2012 7

(a)  Assuming an annual percentage increase of 1.62% in 
world population, write a recursive formula for the 
sequence wn.

(b)  Write an explicit formula for the geometric sequence wn 
in part (a). Use exponential regression to confirm the 
accuracy of this model.

 CHAPTER 9 Modeling Project 691
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“All you need is a dollar and a dream,” it’s said, and big lottery payouts make 

big news. Bigger than the payouts, though, are the profits for the states that 

run these lotteries and apply the millions of dollars spent on losing tickets to 

fund education and other worthy endeavors. Those profits arise because 

most people who play a lottery lose.

The games typically require that you pick several numbers (often 6) from 

a large sequence (sometimes as many as 56). If your picks correctly match a 

winning set chosen at random, you’re a winner. We all know that’s unlikely, 

but just what are your chances? See that calculation on page 697.

Many people think they can improve their chances by betting “lucky” 

numbers. Or numbers that seem to come up more often than others. Or num-

bers that have not come up recently. See page 743 for an analysis of historical 

data suggesting that some numbers may be less likely to make you a winner.

 10.1 Probability

 10.2 Statistics (Graphical)

 10.3 Statistics (Numerical)

 10.4 Random Variables and 
Probability Models

 10.5 Statistical Literacy

Statistics and Probability

CHAPTER 10
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 SECTION 10.1 Probability 693

Chapter 10 Overview
We live in a world awash in data. Businesses collect information on consumer prefer-
ences and spending habits to create and market products. Governments base public 
policy decisions on census and economic data. Medical researchers run experiments 
and collect information on patients to determine what treatments may be safe and effec-
tive. Weather forecasters tell us the chances for rain on our picnic, and pollsters tell us 
who’ll win the upcoming election. In every walk of life, informed decisions are based 
on statistical analyses of data coupled with a clear understanding of probability. This 
chapter will present concepts and skills that provide a useful introduction to these 
increasingly important ways of understanding the world.

What you’ll learn about
• Sample Spaces and Probability 

Functions

• Determining Probabilities

• Venn Diagrams

• Tree Diagrams

• Conditional Probability

... and why
Everyone should know how 
 mathematical the “laws of  
chance” really are.

Sample Spaces and Probability Functions
Most people have an intuitive sense of probability. Unfortunately, this sense is not 
often based on a foundation of mathematical principles, so people become victims of 
scams, misleading statistics, and false advertising. In this section, we want to build on 
your intuitive sense of probability and give it a mathematical foundation.

Perhaps the simplest example of probability involves tossing a coin. What do we mean 
when we say there’s a 50-50 chance of the coin landing heads (or, the probability of 
heads is 1>2)? Certainly we are not claiming that a coin tossed twice must land heads 
once and tails once. And we’re not saying (even though many people mistakenly 
believe this) that after 10 tosses that land 8 heads and 2 tails the coin is somehow more 
likely to land tails until things even out a bit. To understand this better, imagine tossing 
a coin hundreds of times and keeping a running record of the percent that were heads. 
A computer simulation of 200 tosses produced the table and graph below.

10.1 Probability

Toss No. Outcome
No. of 
Heads

%  
So Far

1 H 1 100
2 H 2 100
3 T 2 66.7
4 H 3 75
5 H 4 80
6 H 5 83
7 T 5 71.4
8 H 6 75
9 H 7 77.8

10 H 8 80
f      

100 T 54 54
f      

200 H 104 52

Toss Number
0 15012575 20050 10025

0

20

40

60

C
um
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e 
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rc

en
t

80

100

175

Even though the coin started out with a lot of heads, as the number of tosses increases 
we see a trend toward 50% heads. That occurs not because the coin starts favoring tails; 
in fact, tosses 11–100 were 46>90 ≈ 51% heads, and tosses 101–200 were 50% 
heads. Rather, seemingly strange short-term results are simply overwhelmed by the 
long-term behavior of the coin. It’s that long-term behavior that we refer to as the 
probability.
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Notice that in each case we first counted the number of possible outcomes of the ran-
dom phenomenon in question. The set of all possible outcomes is the sample space of 
a random phenomenon. An event is a subset of the sample space. If the sample space 
contains finitely many outcomes and if the outcomes are equally likely, then we are 
able to model the probability of an event by counting.

DEFINITION Probability of an Event

The probability of an event E is the value that its relative frequency of occur-
rence approaches in the long run.

Because we can’t toss a coin an infinite number of times to see what the probability of 
heads turns out to be, we use some intuition to say that because there are two possible 
outcomes 5H, T6  and because it seems they should be equally likely, in the long run 
heads should occur with a probability of 1>2.

Be careful with this line of reasoning, though. The probability of your house being hit 
by a meteor before your bedtime is not 1>2, even though there are also two possible 
outcomes, 5hit, not hit6 . This intuition-based approach works only if the outcomes are 
equally likely to occur.

Is Probability Just for Games?
Probability theory got its start in letters between 
Blaise Pascal (1623–1662) and Pierre de Fermat 
(1601–1665) concerning games of chance, but it 
has come a long way since then. Modern mathe-
maticians like David Blackwell (1919–2010), the 
first African-American to receive a fellowship to 
the Institute for Advanced Study at Princeton, 
have greatly extended both the theory and the 
applications of probability, especially in the areas 
of statistics, quantum physics, and information 
theory. Moreover, the work of John Von Neu-
mann (1903–1957) has led to a separate branch 
of modern discrete mathematics called game the-
ory, which really is about games.

Testing Your Intuition About Probability
Find the probability of each of the following events.

(a) Tossing two heads in a row on two tosses of a fair coin

(b) Drawing a queen from a standard deck of 52 cards

(c) Rolling a sum of 4 on a single roll of two fair dice

(d) Having tendonitis, if your doctor tells you that further tests are needed to determine 
whether your sore knee is caused by tendonitis, bursitis, arthritis, or a torn meniscus

SOLUTION 

(a) There are four equally likely outcomes: 5TT, TH, HT, HH6 . The probability is 
1>4.

(b) There are 52 equally likely outcomes, 4 of which are queens. The probability is 
4>52, or 1>13.

(c) By the Multiplication Principle of Counting (Section 9.1), there are 6 * 6 = 36 
equally likely outcomes. Of these, three 511, 32, 13, 12, 12, 226  yield a sum of 4 
(Figure 10.1). The probability is 3>36, or 1>12.

(d) Because these 4 outcomes may not be equally likely, the probability cannot be 
determined from this information. Now try Exercise 5.

EXAMPLE 1 

Probability of an Event (Equally Likely Outcomes)

If E is an event in a finite, nonempty sample space S of equally likely outcomes,  
then we model the probability of the event E as

P1E2 =
the number of outcomes in E
the number of outcomes in S

 .

Figure 10.1 A sum of 4 on a  
roll of two dice. (Example 1c)

The hypothesis of equally likely outcomes is critical here. Many people guess wrongly 
on the probability in Example 1c because they figure that there are 11 possible out-
comes for the sum on two fair dice: 52, 3, 4, 5, 6, 7, 8, 9, 10, 11, 126  and that 4 is one 
of them. (That reasoning is correct so far.) The reason why 1>11 is not the probability 
of rolling a sum of 4 is that all those sums are not equally likely.
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 SECTION 10.1 Probability 695

On the other hand, we can assign probabilities to the 11 outcomes in this smaller sam-
ple space in a way that is consistent with the number of ways each total can occur. The 
table below at right shows a probability distribution, in which each sum in the middle 
table is assigned a unique probability based on the underlying sample space of 36 
equally likely outcomes, shown in the table at left.

All 36 
Outcomes

Second Die

1 2 3 4 5 6

Fi
rs

t D
ie

1 11,12 11,22 11,32 11,42 11,52 11,62
2 12,12 12,22 12,32 12,42 12,52 12,62
3 13,12 13,22 13,32 13,42 13,52 13,62
4 14,12 14,22 14,32 14,42 14,52 14,62
5 15,12 15,22 15,32 15,42 15,52 15,62
6 16,12 16,22 16,32 16,42 16,52 16,62

SUM
Second Die

1 2 3 4 5 6

Fi
rs

t D
ie

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Sum Probability

2 1>36 
3 2>36 
4 3>36 
5 4>36 
6 5>36 
7 6>36 
8 5>36 
9 4>36 

10 3>36 
11 2>36 
12 1>36 

We see that the sums are not equally likely, but we can find the probabilities of events by 
adding up the probabilities of the outcomes in the event, as in the following example.

Notice that this method would also have worked just fine with our 36-outcome sample 
space, in which every outcome has probability 1>36. In general, it is easier to work 
with sample spaces of equally likely events because it is not necessary to write out the 
probability distribution. When outcomes do have unequal probabilities, we need to 
know what probabilities to assign to the outcomes.

Not every function that assigns numbers to outcomes qualifies as a probability function.

Empty Set
A set with no elements is the empty set, denoted 
by ∅.

The probability of any event can then be modeled in terms of the probability function.

Rolling the Dice
Find the probability of rolling a sum divisible by 3 on a single roll of two fair dice.

SOLUTION The event E is the set of the outcomes 53, 6, 9, 126 . To compute the 
probability of E, we add up the probabilities of the outcomes in E (see the table of 
the probability distribution):

P1E2 =
2
36

+
5
36

+
4
36

+
1
36

=
12
36

=
1
3

.

 Now try Exercise 7.

EXAMPLE 2 

DEFINITION Probability Function

A probability function is a function P that assigns a real number to each out-
come in a sample space S subject to the following conditions:

1. 0 … P1O2 … 1 for every outcome O;

2. the sum of the probabilities of all outcomes in S is 1;

3. P1∅2 = 0.

Probability of an Event (Generalized)

Let S be a finite, nonempty sample space in which every outcome has a proba-
bility assigned to it by a probability function P. If E is any event in S, the 
 probability of the event E is the sum of the probabilities of all the outcomes 
contained in E.
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Ordered or Unordered?
Notice that in Example 4 we have a sample  
space in which order is disregarded, whereas in 
Example 2 we had a sample space in which  
order matters. (For example, 3 + 1 and 1 + 3 
are distinct outcomes.) The order matters in 
Example 2 because we are considering the prob-
abilities of two events (first die, second die) with 
distinguishable outcomes. In Example 4, we are 
simply counting unordered combinations.

Testing a Probability Function
Prior to the Final Four basketball tournament, a sports analyst considers the strengths 
and weaknesses of the 4 remaining teams and suggests the probability distribution 
shown for their chances of winning the championship.

Team Probability

1 2>5 

2 1>3 

3 1>6 

4 1>8 

SOLUTION

This is not a valid probability function because 2>5 + 1>3 + 1>6 + 1>8 ≠ 1.
 Now try Exercise 9a.

EXAMPLE 3 

Determining Probabilities
It is not always easy to determine probabilities, but the arithmetic involved is fairly 
simple. It usually comes down to multiplication, addition, and (most important) counting. 
Here is the strategy we will follow:

Strategy for Determining Probabilities

1. Determine the sample space of all possible outcomes. When possible, 
choose outcomes that are equally likely.

2. If the sample space has equally likely outcomes, the probability of an event 
E is determined by counting:

P1E2 =
the number of outcomes in E
the number of outcomes in S

3. If the sample space does not have equally likely outcomes, determine the 
probability function. (This is not always easy to do.) Check to be sure that 
the conditions of a probability function are satisfied. Then the probability 
of an event E is determined by adding up the probabilities of all the out-
comes contained in E.

Choosing Chocolates
Sal opens a box of a dozen chocolate-covered cremes and generously offers two of 
them to Val. Val likes vanilla cremes the best, but all the chocolates look alike on the 
outside. If four of the twelve cremes are vanilla, what is the probability that both of 
Val’s picks turn out to be vanilla?

SOLUTION The experiment in question is the selection of two chocolates, without 
regard to order, from a box of 12. There are 12C2 = 66 outcomes of this experiment, 
and all of them are equally likely. We can therefore determine the probability by 
counting.

The event E consists of all possible pairs of 2 vanilla cremes that can be chosen, 
without regard to order, from 4 vanilla cremes available. There are 4C2 = 6 ways to 
form such pairs.

Therefore, P1E2 = 6>66 = 1>11. Now try Exercise 25.

EXAMPLE 4 
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Independent Events
Two events are independent if the occurrence 
(or non-occurrence) of one does not affect the 
probability of the other.

CHAPTER OPENER Problem, part 1 (from page 692)

Problem: Typical of many lotteries, Wisconsin’s Megabucks game requires 
players to correctly choose 6 numbers from 1 to 49. What’s the probability of win-
ning the big prize?

Solution: There are 49C6 = 13,983,816 equally likely ways that 6 numbers can 
be chosen from 49 numbers without regard to order. Only one of these wins the 
grand prize, so the probability of winning is 1>13,983,816 ≈ 0.0000000715.

Numbers like this are more easily understood by recasting them in more familiar 
terms. If you stayed at the sales terminal 24 hr a day and purchased one ticket per 
minute, you could expect to win this Megabucks game about once every 26.5 years.

Many probability problems require that we think of events happening in succession, 
often with the occurrence of one event affecting the probability of the occurrence of 
another event. In these cases, we use a law of probability called the Multiplication 
 Principle of Probability.

If the events A and B are independent, we can omit the phrase “under the assumption 
that A occurs” because that assumption would not matter.

Calculating Probabilities
According to the American Red Cross, the distribution of blood types in the U.S. 
population is 45% Type O, 40% Type A, 11% Type B, and 4% Type AB.

If 2 persons are chosen at random, find the probability that

(a) both have Type O;

(b) neither has Type A;

(c) both have the same blood type.

SOLUTION Note that the four blood types are not equally likely, so we need to con-
sider the distribution of probabilities. Also note that choosing people at random 
makes their blood types independent. Without random selection this would not be 
true, because family members may share blood types, and frequencies vary across 
ethnic groups.

(a) Applying the Multiplication Principle, P1OO2 = 10.45210.452 = 0.2025.

(b) Let event N = ”not A.” Because P1A2 = 0.4, P1N2 = 1 - 0.4 = 0.6, and thus 
P1NN2 = 10.6210.62 = 0.36.

(c) The event S = ”same blood type” consists of the outcomes 
5OO, AA, BB, AB_AB6 , so we find the probability of S by adding up four 
 probabilities.

 P1S2 = P1OO2 + P1AA2 + P1BB2 + P1AB_AB2
 = 10.45210.452 + 10.4210.42 + 10.11210.112 + 10.04210.042
 = 0.2025 + 0.16 + 0.0121 + 0.0016

 = 0.3762
 Now try Exercise 45.

EXAMPLE 5 

Multiplication Principle of Probability

Suppose an event A has probability p1 and an event B has probability p2 under the 
assumption that A occurs. Then the probability that both A and B occur is p1p2.
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Venn Diagrams
We have seen many instances in which geometric models help us to understand alge-
braic models more easily, and probability theory is yet another setting in which this is 
true. Venn diagrams, associated mainly with the world of set theory, are good for 
visualizing relationships among events within sample spaces.

John Venn
John Venn (1834–1923) was an English logician 
and clergyman, just like his contemporary, 
Charles L. Dodgson. Although both men used 
overlapping circles to illustrate their logical 
 syllogisms, it is Venn whose name lives on in 
connection with these diagrams. Dodgson’s 
name barely lives on at all, yet he is by far the 
more famous of the two! Under the pen name 
Lewis Carroll, he wrote Alice’s Adventures in 
Wonderland and Through the Looking Glass.

The Inclusive “Or”
Note that in mathematics we always use the 
word or in the inclusive sense, to mean “one or 
the other or both.” That’s often what people 
mean in everyday speech, too. If you can win a 
card game by drawing an ace or a heart, getting 
the ace of hearts counts. But sometimes people 
use or in an exclusive sense, as in “Tonight let’s 
go to a movie or the game.” In mathematics we’d 
need to add “but not both” if that’s what we 
really meant.

Using a Venn Diagram, Part 1
At Pascal High School, 54% of the students are girls and 62% of the students play 
sports. Half of the girls at the school play sports.

(a) What percentage of the students who play sports are boys?

(b) If a student is chosen at random, what is the probability that this student is a boy 
who does not play sports?

SOLUTION To organize the categories, we draw a large rectangle to represent the 
sample space (all students at the school) and two overlapping regions to represent 
“girls” and “sports” (Figure 10.2). We fill in the percentages (Figure 10.3) using the 
following logic:

• The overlapping (green) region contains half the girls, or 10.52154%2 = 27% of 
the students.

• The yellow region (the rest of the girls) then contains 154 - 272% = 27% of the 
students.

• The blue region (the rest of the sports players) then contains 162 - 272% = 35% 
of the students.

• The white region (the rest of the students) then contains 1100 - 892% = 11% of 
the students. These are boys who do not play sports.

We can now answer the two questions by looking at the Venn diagram.

(a) We see from the diagram that the ratio of boys who play sports to all students 

who play sports is 
0.35
0.62

 , which is about 56.45%.

(b) We see that 11% of the students are boys who do not play sports, so 0.11 is the 
probability. Now try Exercises 27a–c.

EXAMPLE 6 

Girls Sports

Figure 10.2 Venn diagram for  
Example 6. The overlapping region  
common to both circles represents “girls  
who play sports.” The region outside both 
circles (but inside the rectangle) represents 
“boys who do not play sports.”

Girls Sports

0.27 0.27 0.35

0.11

Figure 10.3 Venn diagram for  
Example 6 with the probabilities filled in.

What’s the probability that a student at Pascal High School (Example 6) is a girl or plays 
sports? To find the probability of rolling a sum of 10 or 11 on two dice, we simply add: 
P1112 + P1122 = 2>36 + 1>36 = 3>36. But adding P1Girl2 + P1Sports2 = 0.54 +  
0.62 = 1.16, and that’s not a legitimate probability. A careful look at the Venn diagram in 
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When A and B don’t intersect, this reduces to the familiar P1A or B2 = P1A2 + P1B2. 
We call such non-intersecting events mutually exclusive (or disjoint).

Note also that the Venn diagram in Figure 10.3 suggests the alternative approach of 
adding the probabilities for the yellow, green, and blue regions:

P1Girl or Sports2 = 0.27 + 0.27 + 0.35 = 0.89.

Figure 10.3 reveals the problem: Adding the probabilities represented by the two circles 
counts the overlapping region twice. To find the correct probability, we need to subtract 
the amount of overlap from the sum: P1Girl or Sports2 = 0.54 + 0.62 - 0.27 = 0.89.

Addition Principle of Probability

For events A and B in a sample space, P1A or B2 = P1A2 + P1B2 - P1A and B2.

Using a Venn Diagram, Part 2
At Pascal High School (Example 6), 68% of the students have a cell phone, 77% 
have an iPod, and 62% have both a cell phone and an iPod. What’s the probability 
a student has

(a) a cell phone or an iPod?

(b) a cell phone or an iPod, but not both?

SOLUTION First we construct a Venn diagram (Figure 10.4). It’s usually easiest to 
start with the overlapping region (62% have both devices) and then determine the 
percentage that provides the correct total in each circle 168% - 62% = 6% and
77% - 62% = 15%2.
(a) We let events C = cell phone and I = iPod; then,

 P1C or I2 = P1C2 + P1I2 - P1C and I2 = 0.68 + 0.77 - 0.62 = 0.83.

Alternatively, P1C or I2 = 0.06 + 0.62 + 0.15 = 0.83.

(b) P1C or I, but not both2 = 0.06 + 0.15 = 0.21 Now try Exercise 27d.

EXAMPLE 7 

Tree Diagrams
Tree diagrams, which we first met in Section 9.1 as a way to visualize the Multiplica-
tion Principle of Counting, are good for visualizing the Multiplication Principle of 
Probability as well.

Using a Tree Diagram
Two identical cookie jars are on a counter. Jar A contains 2 chocolate chip and 2 peanut 
butter cookies, and jar B contains 1 chocolate chip cookie. We select a cookie at random. 
What is the probability that it is a chocolate chip cookie?

SOLUTION It is tempting to say 3>5 because there are 5 cookies in all, 3 of which 
are chocolate chip. Indeed, this would be the answer if all the cookies were in the 
same jar. However, the fact that they are in different jars means that the 5 cookies are 
not equally likely outcomes. That lone chocolate chip cookie in jar B has a much bet-
ter chance of being chosen than any of the cookies in jar A. We need to think of this 
as a two-step experiment: First pick a jar, then pick a cookie from that jar.

EXAMPLE 8 

(continued)

Cell
phone iPod 0.17 

0.06 0.62 0.15

Figure 10.4 Venn diagram for Example 7 
with the probabilities filled in.
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Conditional Probability
The probability of drawing a chocolate chip cookie in Example 8 is an example of 
 conditional probability because the “cookie” probability depends on the “jar” outcome. 
A convenient symbol to use with conditional probability is P1A 0B2, pronounced “P of 
A given B,” meaning “the probability of the event A, given that event B occurs.” In the 
cookie jars of Example 8,

P1chocolate chip � jar A2 =
2
4
  and  P1chocolate chip � jar B2 = 1.

(In the tree diagram, these are the probabilities along the branches that come out of the 
two jars, not the probabilities at the ends of the branches.)

The Multiplication Principle of Probability can be stated succinctly with this notation 
as follows:

P1A and B2 = P1A2 # P1B �A2
This is how we found the numbers at the ends of the branches in Figure 10.6.

In Example 4 we solved a probability problem by counting the number of equally 
likely events in a sample space. We will now solve the same problem using a tree dia-
gram and conditional probability.

Jar
A

Jar
B

CC

PB

CC

CC

PB

Figure 10.5 A tree diagram.

Jar
A

Jar
B

CC

PB

CC

CC

PB

0.5

0.5

0.25

0.25

0.25

0.25

0.125

0.125

0.125

0.125

0.5
1

Figure 10.6 The tree diagram with 
the probabilities filled in.

Figure 10.5 gives a visualization of the two-step process. In Figure 10.6, we have 
filled in the probabilities along each branch, first of picking the jar, then of picking 
the cookie. The probability at the end of each branch is obtained by multiplying the 
probabilities from the root to the branch. (This is the Multiplication Principle.)
Notice that the probabilities of the 5 cookies (as predicted) are not all equal.

The event “chocolate chip” is a set containing three outcomes. We add their proba-
bilities together to get the correct probability:

P1chocolate chip2 = 0.125 + 0.125 + 0.5 = 0.75 Now try Exercise 29.

Choosing Chocolates, Revisited
Sal opens a box of a dozen chocolate-covered cremes and generously offers two of 
them to Val. Val likes vanilla cremes the best, but all the chocolates look alike on the 
outside. If four of the twelve cremes are vanilla, what is the probability that both of 
Val’s picks turn out to be vanilla?

SOLUTION As far as Val is concerned, there are two kinds of chocolate cremes: 
vanilla 1V2 and nonvanilla 1N2. When choosing two chocolates, there are four 
 possible outcomes: VV, VN, NV, and NN, as shown in the tree diagram, Figure 10.7.

EXAMPLE 9 
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As our final example of a probability problem, we will show how to use the Multiplica-
tion Principle formula in a different but equivalent form, sometimes called the 
 conditional probability formula:

V

V -------VV

N -------VN

N -------NN

V -------NV

N

Figure 10.7 The tree diagram for  
Example 9.

We need to determine the probability of the outcome VV. The probability of picking 
a vanilla creme on the first draw is 4>12. The conditional probability of picking a 
vanilla creme on the second draw, given that a vanilla creme was drawn on the first, 
is 3>11. By the Multiplication Principle, the probability of drawing a vanilla creme 
on both draws is

4
12

# 3
11

=
1
11

.

Because this is the probability we are looking for, we do not need to compute the 
probabilities of the other outcomes. However, you should verify that the other proba-
bilities would be as follows.

 P1VN2 =
4
12

# 8
11

=
8
33

 P1NV2 =
8
12

# 4
11

=
8
33

 P1NN2 =
8
12

# 7
11

=
14
33

Notice that P1VV2 + P1VN2 + P1NV2 + P1NN2 = 11>112 + 18>332 + 18>332 +  
114>332 = 1, so the probability function checks out. Now try Exercise 33.

In Example 9, the probability of getting a second vanilla creme changed, because that out-
come depended on what the first candy was. When rolling a die, however, the outcome on 
the second roll does not depend on the first roll, so the probability does not change.

Independent Events

Events A and B are independent if and only if P1B 0A2 = P1B2.
Therefore, for independent events, P1A and B2 = P1A2 # P1B2.

Conditional Probability Formula

If the event B depends on the event A, then P1B �A2 =
P1A and B2

P1A2 .

Using the Conditional Probability Formula
Suppose we have drawn a cookie at random from one of the jars described in Example 8. 
Given that it is chocolate chip, what is the probability that it came from jar A?

SOLUTION By the formula,

 P1 jar A �chocolate chip2 =
P1jar A and chocolate chip2

P1chocolate chip2
 =
11>2212>42

0.75
=

0.25
0.75

=
1
3

 Now try Exercise 31.

EXAMPLE 10 
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In Exercises 1–8, tell how many outcomes are possible for the 
 experiment.

 1. A single coin is tossed.

 2. A single 6-sided die is rolled.

 3. Three different coins are tossed.

 4. Three different 6-sided dice are rolled.

 5. Five different cards are drawn from a standard deck of 52.

 6. Two chips are drawn simultaneously from a jar containing  
10 chips.

 7. Five children are lined up for a photograph.

 8. Three-digit numbers are formed from the numbers 
51, 2, 3, 4, 56  without repetition.

In Exercises 9 and 10, evaluate the expression by pencil and paper. 
Verify your answer with a calculator.

 9. 5C3

10C3
 10. 5C2

10C2

QUICK REVIEW 10.1 (Prerequisite skill Section 9.1)

 4. The sum is less than 6.

 5. Both numbers are odd.

 6. Both numbers are even.

 7. The sum is prime.

 8. The sum is 7 or 11.

SECTION 10.1 Exercises

In Exercises 1–8, a red die and a green die have been rolled. What is the 
probability of each of the following events?

 1. The sum is 7.

 2. The sum is even.

 3. The number on the red die is greater than the number on the 
green die.

Testing Positive for HIV

As of the year 2013, the probability of an adult in the United States having 
HIV>AIDS was 0.0047 (Source: HIV Surveillance Report, Centers for Disease 
Control). The ELISA test is used to detect the virus antibody in blood. If the 
antibody is present, the test reports positive with probability 0.997 and 
 negative with probability 0.003. If the antibody is not present, the test reports 
positive with probability 0.015 and negative with probability 0.985.

 1. Draw a tree diagram with branches to nodes “antibody present” and “antibody 
absent” branching from the root. Fill in the probabilities for U.S. adults along 
the branches. (Note that these two probabilities must add up to 1.)

 2. From the node at the end of each of the two branches, draw branches to 
 “positive” and “negative.” Fill in the probabilities along the branches.

 3. Use the Multiplication Principle to fill in the probabilities at the ends of the 
four branches. Check to see that they add up to 1.

 4. Find the probability of a positive test result. (Note that this event consists of 
two outcomes.) 

 5. Use the conditional probability formula to find the probability that a person 
with a positive test result actually has the antibody; that is, determine 
P(antibody present �positive). 

You might be surprised that the answer to part 5 is so low, but it should be com-
pared with the probability of the antibody being present before seeing the posi-
tive test result, which was 0.006. Nonetheless, that is why a positive ELISA test 
is followed by further testing before a diagnosis of HIV>AIDS is made. This is 
the case with many diagnostic tests.

EXPLORATION 1 
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 9. Writing to Learn Alrik’s gerbil cage has four compart-
ments, A, B, C, and D. After careful observation, he estimates 
the proportion of time the gerbil spends in each compartment 
and constructs the table below.

Compartment A B C D
Proportion 0.25 0.20 0.35 0.30

(a) Is this a valid probability function? Explain.

(b) Is there a problem with Alrik’s reasoning? Explain.

 10. (Continuation of Exercise 9) Suppose Alrik determines that his 
gerbil spends time in the four compartments A, B, C, and D in 
the ratio 4:3:2:1. What proportions should he fill in the table 
above? Is this a valid probability function?

The maker of a popular chocolate candy that is covered in a thin 
colored shell has released information about the overall color pro-
portions in its production of the candy, which is summarized in the 
following table.

Color Brown Red Yellow Green Orange Tan
Proportion 0.3 0.2 0.2 0.1 0.1 0.1

In Exercises 11–16, a single candy of this type is selected at random 
from a newly opened bag. What is the probability that the candy has the 
given color(s)?

 11. Brown or tan  12. Red, green, or orange

 13. Red  14. Not red

 15. Neither orange nor yellow 16. Neither brown nor tan 

A peanut version of the same candy has all the same colors except tan. 
The proportions of the peanut version are given in the following table.

Color Brown Red Yellow Green Orange
Proportion 0.3 0.2 0.2 0.2 0.1

In Exercises 17–22, a candy of this type is selected at random from 
each of two newly opened bags. What is the probability that the two 
candies have the given color(s)?

 17. Both are brown.

 18. Both are orange.

 19. One is red, and the other is green.

 20. The first is brown, and the second is yellow.

 21. Neither is yellow.

 22. The first is not red, and the second is not orange.

Exercises 23–26 concern a version of the card game “bid Euchre” 
that uses a pack of 24 cards, consisting of ace, king, queen, jack, 10, 
and 9 in each of the four suits (spades, hearts, diamonds, and clubs). 
In bid Euchre, a hand consists of 6 cards. Find the probability of 
each event.

 23. Euchre A hand is all spades.

 24. Euchre All six cards are from the same suit.

 25. Euchre A hand includes all four aces.

 26. Euchre A hand includes two jacks of the same color (called 
the right and left bower).

 27. Using Venn Diagrams A and B are events in a sample space  
S such that P1A2 = 0.6, P1B2 = 0.5, and P1A and B2 = 0.3.

(a) Draw a Venn diagram showing the overlapping sets A and 
B, and fill in the probabilities of the four regions formed.

(b) Find the probability that A occurs but B does not.

(c) Find the probability that neither A nor B occurs.

(d) Find the probability that A or B occurs.

(e) Are events A and B independent? (That is, does 
P1A �B2 = P1A2?2

 28. Using Venn Diagrams A and B are events in a sample 
space S such that P1A2 = 0.7, P1B2 = 0.4, and 
P1A and B2 = 0.2.

(a) Draw a Venn diagram showing the overlapping sets A and 
B, and fill in the probabilities of the four regions formed.

(b) Find the probability that A occurs but B does not.

(c) Find the probability that neither A nor B occurs.

(d) Find the probability that A or B occurs.

(e) Are events A and B independent? 1That is, does 
P1A �B2 = P1A2?2

In Exercises 29 and 30, it will help to draw a tree diagram.

 29. Piano Lessons If it rains tomorrow, the probability is 0.8 
that John will practice his piano lesson. If it does not rain 
tomorrow, there is only a 0.4 chance that John will practice. 
Suppose that the chance of rain tomorrow is 60%. What is the 
probability that John will practice his piano lesson?

 30. Predicting Cafeteria Food If the school cafeteria serves 
meat loaf, there is a 70% chance that it will serve peas. If it does 
not serve meat loaf, there is a 30% chance that it will serve peas 
anyway. The students know that meat loaf will be served exactly 
once during the 5-day week, but they do not know which day. If 
tomorrow is Monday, what is the probability that

(a) the cafeteria serves meat loaf?

(b) the cafeteria serves meat loaf and peas?

(c) the cafeteria serves peas?

 31. Conditional Probability There are two precalculus sec-
tions at West High School. Mr. Abel’s class has 12 girls and 8 
boys, and Mr. Bonitz’s class has 10 girls and 15 boys. If a West 
High precalculus student chosen at random happens to be a 
girl, what is the probability she is from Mr. Abel’s class? 
[Hint: The answer is not 12>22.]

 32. Group Activity Conditional Probability Two boxes are 
on the table. One box contains a normal coin and a two-headed 
coin; the other box contains three normal coins. A friend reaches 
into a box, removes a coin, and shows you one side: a head. What 
is the probability that it came from the box with the two-headed 
coin?

 33. Renting Cars Floppy Jalopy Rent-a-Car has 25 cars avail-
able for rental—20 big bombs and 5 midsize cars. If two cars 
are selected at random, what is the probability that both are big 
bombs?

 34. Defective Calculators Dull Calculators, Inc., knows that 
a unit coming off an assembly line has a probability of 0.037 of 
being defective. If four units are selected at random during the 
course of a workday, what is the probability that none of the 
units is defective?
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 35. Causes of Death The government designates a single 
cause for each death in the United States. The resulting data 
indicate that 45% of deaths are due to heart and other cardio-
vascular disease and 22% are due to cancer.

(a) What is the probability that the death of a randomly selected 
person will be due to cardiovascular disease or cancer?

(b) What is the probability that the death will be due to some 
other cause?

 36. Yahtzee On the first roll in a game of Yahtzee, five dice are 
tossed simultaneously. What is the probability of rolling five of 
a kind (which is Yahtzee!) on the first roll?

 37. Writing to Learn Explain why the following statement 
cannot be true. The probabilities that a computer salesperson 
will sell zero, one, two, or three computers in any one day are 
0.12, 0.45, 0.38, and 0.15, respectively.

 38. HIV Testing A particular test for HIV, the virus that causes 
AIDS, is 0.7% likely to produce a false positive result—a result 
indicating that the human subject has HIV when in fact the per-
son is not carrying the virus. If 60 individuals who are HIV-
negative are tested, what is the probability of obtaining at least 
one false result?

 39. Graduate School Survey The Earmuff Junction College 
Alumni Office surveys selected members of the class of 2000. Of 
the 254 who graduated that year, 172 were women, 124 of whom 
went on to graduate school. Of the male graduates, 58 went on to 
graduate school. What is the probability of the given event?

(a) The graduate is a woman.

(b) The graduate went on to graduate school.

(c) The graduate was a woman who went on to graduate 
school.

 40. Indiana Jones and the Final Exam Professor Indiana 
Jones gives his class a list of 20 study questions, from which he 
will select 8 to be answered on the final exam. If a given stu-
dent knows how to answer 14 of the questions, what is the 
probability that the student will be able to answer the given 
number of questions correctly?

(a) All 8 questions

(b) Exactly 5 questions

(c) At least 6 questions

 41. Graduation Requirement To complete the kinesiology 
requirement at Palpitation Tech you must pass two classes cho-
sen from aerobics, aquatics, defense arts, gymnastics, racket 
sports, recreational activities, rhythmic activities, soccer, and 
volleyball. If you decide to choose your two classes at random 
by drawing two class names from a box, what is the probability 
that you will take racket sports and rhythmic activities?

 42. Writing to Learn During July in Gunnison, Colorado, the 
probability of at least 1 hr a day of sunshine is 0.78, the proba-
bility of at least 30 min of rain is 0.44, and the probability that 
it will be cloudy all day is 0.22. Write a paragraph explaining 
whether this statement could be true.

 43. Writing to Learn After diagnosing an athlete’s knee injury, 
a doctor tells her there is a 90% chance she will make a full 
recovery after surgery. Where do you think that probability 
comes from?

 44. Writing to Learn The TV weather reporter says there is a 
30% chance of rain during your picnic tomorrow afternoon. 
How do you think such predictions are made?

 45. Handedness By the age of 1, many infants display a 
 tendency to favor one hand over the other. About 60%  
favor their right hands, about 10% favor their left hands,  
and the rest show no preference yet. Suppose you observe  
3 unrelated year-old infants at a day care center. What’s the 
probability that

(a) none shows any preference?

(b) all show a preference for one hand or the other?

(c) all show a preference for the same hand?

 46. Gumballs A vending machine contains 12 red gumballs,  
5 white ones, and 3 blue ones. You insert 3 coins, getting one 
gumball after another after another. What’s the probability that 
you end up with

(a) no red ones?

(b) 3 of the same color?

(c) a set of red, white, and blue?

 47. Blood Recall from Example 5 that the distribution of  
U.S. blood types is 45% Type O, 40% Type A, 11% Type B, 
and 4% Type AB. At a blood drive, what is the probability that 
the first Type A donor is the fourth person in line?

 48. Blue Gumball Suppose your little sister insists on having a 
blue gumball from the machine described in Exercise 46. You 
need to buy gumballs until you get a blue one. What’s the prob-
ability that you have to buy 5 of them?

 49. Homes A realtor reports that 30% of houses currently listed 
for sale have garages, 55% have basements, and 25% have both 
a garage and a basement.

(a) What’s the probability that a house for sale has neither a 
garage nor a basement?

(b) What’s the probability that a house for sale has a garage or 
a basement?

(c) If a house for sale has a basement, what’s the probability 
that it has a garage?

(d) What’s the probability that a house for sale with a garage 
has a basement?

(e) Are having a basement and having a garage independent 
events? Explain.

 50. Courses At a large high school, 75% of the sophomores 
take Spanish, 60% take biology, and 45% take both courses.

(a) What’s the probability that a sophomore doesn’t take either 
course?

(b) What’s the probability that a sophomore takes Spanish or 
biology?

(c) If a sophomore takes Spanish, what’s the probability that 
she takes biology?

(d) What’s the probability that a sophomore taking biology 
takes Spanish?

(e) Among sophomores, are taking Spanish and taking biology 
independent? Explain.
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Standardized Test Questions
 51. True or False A sample space consists of equally likely 

events. Justify your answer.

 52. True or False The probability of an event can be greater 
than 1. Justify your answer.

Evaluate Exercises 53–56 without using a calculator.

 53. Multiple Choice The probability of rolling a total of 5 on a 
pair of fair dice is

(A) 
1
4

. (B) 
1
5

.

(C) 
1
6

. (D) 
1
9

.

(E) 
1
11

.

 54. Multiple Choice Which of the following numbers could 
not be the probability of an event?

(A) 0 (B) 0.95

(C) 
23
4

 (D) 
3
p

(E) 
p

2

 55. Multiple Choice If A and B are independent events, then 
P1A �B2 =
(A) P1A2. (B) P1B2.
(C) P1B �A2. (D) P1A2 #  P1B2.
(E) P1A2 + P1B2.

 56. Multiple Choice A fair coin is tossed three times in suc-
cession. What is the probability that exactly one of the coins 
shows heads?

(A) 
1
8

 (B) 
1
3

(C) 
3
8

 (D) 
1
2

(E) 
2
3

Explorations
 57. Empirical Probability In real applications, it is often nec-

essary to approximate the probabilities of the various outcomes 
of an experiment by performing the experiment a large number 
of times and recording the results. Barney’s Bread Basket 
offers five different kinds of bagels. Barney records the sales of 
the first 500 bagels in a given week in the table shown below:

Type of Bagel Number Sold
Plain 185
Onion  60
Rye  55
Cinnamon Raisin 125
Sourdough  75

(a) Use the observed sales number to approximate the proba-
bility that a random customer buys a plain bagel. Do the 
same for each other bagel type and make a table showing 
the approximate probability distribution.

(b) Assuming independence of the events, find the proba-
bility that three customers in a row all order plain 
bagels.

(c) Writing to Learn Do you think it is reasonable to 
assume that the orders of three consecutive customers actu-
ally are independent? Explain.

 58. Straight Poker In the original version of poker known as 
“straight” poker, a 5-card hand is dealt from a standard deck of 
52 cards. What is the probability of the given event?

(a) A hand will contain at least one king.

(b) A hand will be a “full house” (any three of one kind and a 
pair of another kind).

 59. Politics The Republican chairperson of a county legislature 
had to select 4 of the members to represent the city at a big 
event. To avoid the appearance of partisanship, she drew names 
from a hat. When all 4 turned out to be Republicans, the Demo-
crats cried foul. They pointed out that the legislature had 7 
Democrats and 10 Republicans and suggested that the choice 
might have been rigged somehow.

(a) Is it plausible that a fairly chosen group could be all 
Republicans, or is there a good reason to be suspicious?

(b) On what assumption did you base your calculation? 
Explain why that assumption may (or may not) be 
 warranted.

 60. Group Activity Investigating Red Lights The city 
claims that the new traffic light it just installed at the end of 
your street is on a cycle that makes it green in your direction 
for 15 sec>min and yellow for another 5 sec. Nonetheless, this 
week you hit a red light there all 5 mornings when you left 
home.

(a) Could this be attributed merely to a run of bad luck, or is 
there reason to suspect something is wrong with the light? 
Explain.

(b) On what assumption did you base your calculation? 
Explain why that assumption is (or is not) warranted here.

Extending the Ideas
 61. Expected Value If the outcomes of an experiment are 

given numerical values (such as the total on a roll of two dice, 
or the payoff on a lottery ticket), we define the expected value 
to be the sum of all the numerical values times their respective 
probabilities.

  For example, suppose we roll a fair die. If we roll a multiple of 
3, we win $3; otherwise we lose $1. The probabilities of the 
two possible payoffs are shown in the table below:

Value Probability
+3 2>6 
-1 4>6 

  The expected value is

  3 * 12>62 + 1-12 * 14>62 = 6>6 - 4>6 = 1>3.
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  We interpret this to mean that we would win an average of 1>3 
dollar per game in the long run.

(a) A game is called fair if the expected value of the payoff is 
zero. Assuming that we still win $3 for a multiple of 3, 
what should we pay for any other outcome in order to 
make the game fair?

(b) Suppose we roll two fair dice and look at the total under 
the original rules. That is, we win $3 for rolling a multiple 
of 3 and lose $1 otherwise. What is the expected value of 
this game?

 62. Expected Value (Continuation of Exercise 61) Gladys has 
a personal rule never to enter the lottery (picking 6 numbers 
from 1 to 49) until the Megabucks payoff reaches 5 million 
dollars. When it does reach 5 million, she always buys ten dif-
ferent $1 tickets.

(a) Assume that the payoff for a winning ticket is 5 million 
dollars. What is the probability that Gladys holds a win-
ning ticket? (Refer to the Chapter Opener Problem of this 
section for the probability of any ticket winning.)

(b) Fill in the probability distribution for Gladys’s possible 
payoffs in the table below. (Note that we subtract $10 
from the $5 million because Gladys has to pay for her 
tickets even if she wins.)

Value Probability

-10  

+4,999,990  

(c) Find the expected value of the game for Gladys.

(d) Writing to Learn In terms of the answer in part (b), 
explain to Gladys the long-term implications of her strategy.
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Categorical Data
Government agencies keep detailed records on many aspects of public health, includ-
ing deaths. A simplified data table might have entries like these:

What you’ll learn about
• Statistics

• Categorical Data

• Quantitative Data: Stemplots

• Frequency Tables

• Histograms

• Describing Distributions: Shape

• Time Plots

... and why
Graphical displays of data are 
increasingly prevalent in professional 
and popular media. We all need to 
understand them.

Statistics
The aim of Statistics is to draw meaning from data and communicate it to others. We 
begin by looking at data.

The objects described by a set of data are individuals, which may be people, animals, or 
things. The characteristic of the individuals being identified or measured is a variable. 
Variables are either categorical or quantitative. If we use the data to identify each indi-
vidual as belonging to a distinct class, such as male or female, then the variable is a cate-
gorical variable. If we use the data as numerical values measuring the characteristic in 
some kind of units, then the variable is a quantitative variable. Examples of quantitative 
variables are heights of people and weights of lobsters. Variables such as eye color are 
clearly categorical, but numerical data may also be treated as categorical. Movie reviewers 
often rate films using a 5-star scale. When we look up the average rating for a film we’re 
thinking of seeing, we’re treating ratings as a quantitative variable. When we talk about 
how many 4-star films we’ve seen, we’re treating the ratings as a categorical variable.

It’s hard to understand what the data may tell us about a given situation by just looking 
at the data themselves. We seek meaning by summarizing the data three ways: graphi-
cally, numerically, and verbally. Graphical summaries like pie charts and histograms 
provide a picture of the data, often revealing important insights or surprising anoma-
lies. Numerical summaries called statistics describe properties of the data, such as 
counts, percentages, or averages. Our verbal summaries communicate to others the 
meaning we’ve drawn from the data.

10.2 Statistics (Graphical)

Name State Sex Age Cause

Abbott, Aaron WY M 63 Cancer
Babbitt, Barbara ME F 27 Accident
Cocker, Kirk AK M 83 Stroke

f        

With over 2,000,000 deaths in the United States annually, it would be nearly impossi-
ble to reach any conclusions about the causes of death in America by looking at such a 
massive table. Instead, each year the Centers for Disease Control and Prevention sum-
marizes the categorical variable “cause of death” with statistics: the count and propor-
tion (percentage) of individuals in each category, as shown in Table 10.1.

Table 10.1 Leading Causes of Death in the United States in 2014

Cause of Death Number of Deaths Percentage

Heart disease 614,348 23.4
Cancer 591,699 22.5
Respiratory diseases 147,101 5.6
Accidents 136,053 5.2
Stroke 133,103 5.1
Other 1,004,114 38.2

Source: Health–United States, Centers for Disease Control and Prevention, 2015.

The statistics (counts and percentages) communicate information about the categorical 
variable by telling us the distribution of the causes of death in the 2014 population.
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We can get that information directly from the numbers, but it is very helpful to see the 
comparative sizes visually. This is why you will often see categorical data displayed 
graphically, as a bar chart (Figure 10.8a) or a pie chart (Figure 10.8b), sometimes called 
a circle graph. For variety, the popular press also makes use of picture graphs suited to 
the categories being displayed. For example, the bars in Figure 10.8a could be made to 
look like tombstones of different sizes to emphasize that these are causes of death. In each 
case, the graph provides a visualization of the relative sizes of the categories, and the pie 
chart also reflects the fact that the categories are parts of a whole population.

Stroke
5.1%

Accidents
5.2%

Other
38.2%

Cancer
22.5%

Heart
Disease
23.4%

Cause of Death

Respiratory
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Figure 10.8 Causes of death in the United States in 2014 shown in (a) a bar graph and (b) a pie 
chart (circle graph).

In bar charts of categorical data, the y-axis has a numerical scale, but the x-axis is 
labeled by category. The rectangular bars are separated by spaces to show that no con-
tinuous numerical scale is implied. (In this respect, a bar graph differs from a histo-
gram, to be described later in this section.) A circle graph or pie chart consists of 
shaded or colored sections of a circle or “pie.” The central angles for the sectors are 
found by multiplying the percentages by 360°. For example, the angle for the sector 
representing cancer victims in Figure 10.8b is

22.5% # 360° = 81°.

It used to require time, skill, and mathematical savvy to draw data displays that were 
both visually appealing and geometrically accurate, but modern spreadsheet programs 
have made it possible for anyone with a computer to produce high-quality graphs from 
tabular data with the click of a button.

Table 10.2a Sports Students Prefer to Attend Live

Sport Number of Males Number of Females

Baseball  31  21
Basketball  54  96
Football 173 156
Hockey  76  87
Other  64  87
Total 398 447

Source: Sports Culture Among Undergraduates: A Study of Student Athletes and  
Students at the University of Michigan, MPublishing, University of Michigan, 2007.

Looking for an Association Between  
Categorical Variables

Table 10.2a summarizes data collected in a survey of 845 college students that asked 
them which sport was their favorite to attend live.

EXAMPLE 1 
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Quantitative Data: Stemplots
A quick way to organize and display a small set of quantitative data is with a stemplot, 
also called a stem-and-leaf plot. Each number in the data set is split into a stem, con-
sisting of its initial digit or digits, and a leaf, which is its final digit.

Because the students surveyed included so many more females than males, it’s hard 
to tell whether males and females have similar preferences for live sports. This 
becomes clearer when we express the distribution of preferences for each gender as 
percentages.

Table 10.2b Sports Students Prefer to Attend Live

Sport Percent of Males Percent of Females

Baseball 7.8 4.7
Basketball 13.5 21.5
Football 43.5 34.9
Hockey 19.1 19.5
Other 16.1 19.5
Total 100 100

A higher percentage of male students than female students prefer to attend football or 
baseball games, and female students were much more likely than males to prefer bas-
ketball. Because the distributions of sports preference are different for males and 
females, we say there is an association between sports preference and gender. Two 
categorical variables are independent if the distributions of one variable are the 
same (or very similar) for all the categories of the other variable.
 Now try Exercise 3.

Table 10.3 Percentages of State Residents in 2010 
Who Were 65 or Older
AL 13.8 HI 14.3 MA 13.8 NM 13.2 SD 14.3
AK 7.7 ID 12.4 MI 13.8 NY 13.5 TN 13.4
AZ 13.8 IL 12.5 MN 12.9 NC 12.9 TX 10.3
AR 14.4 IN 13.0 MS 12.8 ND 14.5 UT 9.0
CA 11.4 IO 14.9 MO 14.0 OH 14.1 VT 14.6
CO 10.9 KS 13.2 MT 14.8 OK 13.5 VA 12.2
CT 14.2 KY 13.3 NE 13.5 OR 13.9 WA 12.3
DE 14.4 LA 12.3 NV 12.0 PA 15.4 WV 16.0
FL 17.3 ME 15.9 NH 13.5 RI 14.4 WI 13.7
GA 10.7 MD 12.3 NJ 13.5 SC 13.1 WY 12.4

Source: U.S. Census Bureau, 2011.

Making a Stemplot
Table 10.3 gives the percentage of each state’s population that was 65 or older in the 
2010 Census. Make a stemplot for the data.

EXAMPLE 2 

SOLUTION To form the stem-and-leaf plot, we use the whole number part of each 
number as the stem and the tenths digit as the leaf. We write the stems in order down 

(continued)
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Using Information from a Stemplot

By looking at both the stemplot and the table, answer the following questions 
about the distribution of senior citizens among the 50 states.

 1. Judging from the stemplot, what was the approximate average national 
 percentage of residents who were 65 or older?

 2. In how many states were more than 15% of the residents 65 or older? 

 3. Which states were in the bottom tenth of all states in this statistic?

 4. The numbers 7.7 and 17.3 are so far above or below the other numbers in this 
stemplot that statisticians would call them outliers. Quite often there is some spe-
cial circumstance that sets outliers apart from the other individuals under study and 
explains the unusual data. What could explain the two outliers in this stemplot?

EXPLORATION 1 

the first column and, for each number, write the leaf in the appropriate stem row. It is 
often helpful to arrange the leaves in each stem row in ascending order. The final plot 
looks like this:

Stem Leaf

 7 7
 8  
 9 0
10 3 7 9
11 4
12 0 2 3 3 3 4 4 5 8 9 9
13 0 1 2 2 3 4 5 5 5 5 5 7 8 8 8 8 9
14 0 1 2 3 3 4 4 4 5 6 8 9
15 4 9
16 0
17 3

Notice that we include the “leafless” stem (8) in our plot, as empty gaps are signifi-
cant features of the distribution. For the same reason, be sure that each “leaf “ takes 
up the same space along the stem as every other. A branch with twice as many leaves 
should appear to be twice as long. Now try Exercise 7.

Sometimes the data are so tightly clustered that a stemplot has too few stems to give a 
meaningful visualization of the data distribution. In such cases we can spread the data 
out by splitting the stems, as in Example 3.

Table 10.4 Per Capita Federal Aid to State and Local 
Governments (2012) in Dollars, Top 20 States

AK 4035 NY 2562 MN 2256 IA 2035
WY 3954 NM 2557 ME 2236 SD 2013
VT 3134 LA 2492 OR 2068 MA 2003
MI 2664 WV 2368 AR 2061 OK 1987
ND 2571 RI 2266 DE 2038 KY 1895

Source: State Smart, National Priorities Project, 2014.

Making a Split-Stem Stemplot
The per capita federal aid to state and local governments for the top 20 states (in this 
category) in 2012 is shown in Table 10.4. Make a stemplot that provides a good rep-
resentation of the data distribution. What is the average of the 20 numbers? Why is 
the stemplot a better summary of the data than the average?

EXAMPLE 3 
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SOLUTION We truncate the data to $100 units, which does not affect the visualiza-
tion. Then, to spread out the data a bit, we split each stem, putting leaves 0–4 on the 
lower stem and leaves 5–9 on the upper stem.

Stem Leaf

1  
1 8 9
2 0 0 0 0 0 0 2 2 2 3 4
2 5 5 5 6
3 1
3 9
4 0

The average of the 20 numbers is $2460, but this is misleading. The table shows that 
twelve of the numbers are lower than that, and only eight are higher. It is better to 
observe that the distribution is clustered fairly tightly just over $2000, with the num-
bers for Wyoming and Alaska being outliers on the high end.
 Now try Exercise 11.

Sometimes it is easier to compare two sets of data if we have a visualization that allows 
us to view both stemplots simultaneously. Back-to-back stemplots use the same 
stems, but leaves from one set of data are added on the left, and leaves from another set 
are added on the right.

Making Back-to-Back Stemplots
Babe Ruth and Barry Bonds are two of the great sluggers in the history of baseball. 
For years “The Babe” held records for hitting 60 home runs in one season and 714 
for his legendary career. During the 2001 season Bonds hit 73 home runs, and he 
retired in 2007 with a career total of 762. Who was the better home run hitter?  
Table 10.5 shows the number of homers each hit during his productive seasons.

EXAMPLE 4 

Table 10.5 Season Totals for Home Runs

Babe Ruth Barry Bonds

 0  1  3  3 11 29 54 59 16 25 24 19 33 25 34 46
35 41 46 25 47 60 54 46 37 33 42 40 37 34 49 73
49 46 41 34 22  6     46 45 45  5 26 28    

Source: www.baseball-reference.com

SOLUTION We form a back-to-back stemplot with Ruth’s totals branching off to the 
left and Bonds’s branching off to the right.

Babe Ruth   Barry Bonds

6 3 3 1 0 0 5
1 1 6 9

9 5 2 2 4 5 5 6 8
5 4 3 3 3 4 4 7 7

9 7 6 6 6 1 1 4 0 2 5 5 6 6 9
9 4 4 5  

0 6  
  7 3

(continued)
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Histograms
A histogram, closely related to a stemplot, displays the information of a frequency 
table. Visually, a histogram is to quantitative data what a bar chart is to categorical 
data. Unlike a bar chart, however, both axes of a histogram have numerical scales, the 
rectangular bars cannot be rearranged, and bars on adjacent intervals have no inten-
tional gaps between them.

Table 10.6 Frequency Table for Babe Ruth’s Yearly 
Home Run Totals

Home Runs Frequency Home Runs Frequency

0–9 5 40–49 7
10–19 1 50–59 3
20–29 3 60–69 1
30–39 2    

    Total 22

Higher frequencies in a table correspond to longer leaf rows in a stemplot. Unlike 
a stemplot, a frequency table does not display what the numbers in each interval 
actually are.

The low-home-run years for each player can be explained by fewer times at bat. For 
the first 4 1>2 years of his career, Babe Ruth was a pitcher, and he didn’t play much 
during his final season. Barry Bonds missed most of the 2005 season with an injury. If 
those years are ignored as anomalies, we see that Bonds’s home run totals were typically 
lower than Ruth’s. Bonds often finished a season with fewer than 40 home runs, but 
Ruth rarely did. Ruth hit over 40 with great consistency, and he surpassed 50 home runs 
four times. Bonds achieved that feat just once. His record-setting 73 in 2001 was 
(and still is) an outlier of such magnitude that it actually inspired more skepticism 
than admiration among baseball fans. Now try Exercise 9.

Frequency Tables
The visual impact of a stemplot comes from the lengths of the various rows of leaves, 
which is just a way of seeing how many leaves branch off each stem. The number of 
leaves for a particular stem is the frequency of observations within each stem interval. 
Frequencies are often recorded in a frequency table. Table 10.6 shows a frequency 
table for Babe Ruth’s yearly home run totals (see Example 4). The table shows the 
 frequency distribution—literally the way that the total frequency of 22 is “distrib-
uted” among the various home run intervals. This same information is conveyed visu-
ally in a stemplot, but notice that the stemplot has the added numerical advantage of 
displaying what the numbers in each interval actually are.

Creating a Histogram on a Grapher
Make a histogram of Babe Ruth’s annual home run totals given in Table 10.5, using 
intervals of width 10.

To scale the x-axis to be consistent with the intervals of the table, let Xmin = 0, 
Xmax = 70, and Xscl = 10. Notice that the maximum frequency is 7 years (40–49 
home runs), so the y-axis ought to extend at least to 8. Enter the data from Table 10.5 
into list L1 and plot a histogram in the window 30, 704  by 3-1, 84 . (See Figure 10.9a.) 
Tracing along the histogram should reveal the same frequencies as in the frequency 
table we made. (Compare Figure 10.9b and Table 10.6.) Now try Exercise 19.

EXAMPLE 5 

[0, 70] by [21, 8]
(a)

n = 7
min = 40
max < 50

P1:L1

[0, 70] by [21, 8]
(b)

Figure 10.9 Grapher histograms for 
Babe Ruth’s yearly home run totals.
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Describing Distributions: Shape
An important step in drawing meaning from data comes from looking at the shape of 
the distribution. We describe two aspects of shape: modes and symmetry. A mode is an 
interval where data tend to cluster and to show up as longer leaf rows in a stemplot or 
higher bars in a histogram. Two examples are shown in Figure 10.10.

(a)   (b)

Figure 10.10 Distribution (a) is unimodal and symmetric; distribution (b) is bimodal.

A unimodal distribution has one cluster of data. An example is heights of adult males, 
most within a few inches of the average, with fewer individuals farther from average. A 
bimodal distribution usually indicates individuals from two different groups. An 
example is the ages of people attending a youth soccer game, where there are players of 
a certain age with a few younger and older siblings plus many parents there as specta-
tors. For bimodal data like those, subgroups should usually be analyzed separately.

The distribution in Figure 10.10a is symmetric because it looks approximately the same 
when reflected across a vertical line up the middle. The distribution in Figure 10.11a is 
unimodal and skewed right because it has a longer “tail” to the right. An example is 
family incomes, with the great majority of families earning relatively modest amounts 
and ever smaller numbers of families with increasingly large (very large!) incomes. The 
distribution in Figure 10.11b is unimodal and skewed left, because it has a longer tail 
extending off to the left. An example could be test scores, where there is an upper limit 
of 100% and most students do fairly well, but there are also a few low (and even lower) 
scores.

Time Plots
We have seen in this text many examples of functions in which the input variable is 
time. It is also quite common to consider quantitative data as a function of time. If we 
make a scatter plot of the data 1y2 against the time 1x2 when they were measured,  

(a)   (b)

Figure 10.11 Distribution (a) is skewed right; distribution (b) is skewed left.
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we can analyze the patterns as the variable changes over time. To help with the visu-
alization, the discrete points from left to right are connected by line segments, just 
as a grapher would do in Connect mode. The resulting line graph is a time plot.

Time plots reveal trends in data over time. These plots frequently appear in maga-
zines and newspapers and on the Internet, a typical example being the graph of  
the Dow Jones Industrial Average (DJIA) during America’s Great Recession, in 
Figure 10.12.

Table 10.7 Total U.S. Credit Card Debt (billions of dollars), 2004–2012

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012

$ 707 732 761 839 864 786 725 698 661

Source: Federal Reserve Bank.

Dow Jones Industrial Average

A Wild Ride for Wall Street

Data Source: FactSet
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12 Mar-13

6,300

7,300

8,300

9,300

10,300

12,300

11,300

14,300

13,300

October 9, 2007
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Figure 10.12 Time plot of the Dow Jones Industrial Average during the Great Recession. Investors get a good visualization of 
where the stock market has been, although the trick is to figure out where it is going.
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Figure 10.13 A time plot of U.S. credit card 
debt from 2004 through 2012. (Example 6)

Drawing a Time Plot
The Great Recession led many Americans to make changes in their spending habits. 
Table 10.7 shows their total credit card debt leading up to and following the reces-
sion. Display the data in a time plot and analyze the 9-year trend.

SOLUTION The horizontal axis represents time (in years) from 2004 through 2012. 
The vertical axis represents total credit card debt in billions of dollars. When working 
with data like these, it is often best to enter the years as 51, 2, 3, c, 106  to make 
any calculations more manageable. Proper labeling of the x-axis should display the 
actual years, as shown in Figure 10.13.

The time plot shows that credit card debt rose until the recession began in 2008 and then 
declined afterwards, falling below its 2004 level by 2012. Now try Exercise 25.

EXAMPLE 6 
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Table 10.8 Total Student Loan Debt (billions of dollars), 2004–2012

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012

$ 346 392 477 538 631 715 804 865 966

Source: Federal Reserve Bank.

Comparing Two Time Plots
Table 10.8 shows the total debt for student loans for each year from 2004 to 2012. 
Compare this debt to the trend in credit card debt by graphing both time plots on the 
same axes.

SOLUTION Figure 10.14 shows the two time plots. Through the Great Recession, 
total student loan debt continued to rise. Much lower than credit card debt in 2003, 
student loan debt surpassed credit card debt early in 2010, and by the end of 2012, it 
had grown to be nearly 50% larger. Now try Exercise 27.

EXAMPLE 7 
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Figure 10.14 A time plot comparing student loan 
debt to credit card debt from 2004 through 2012. 
(Example 7)

In Exercises 1–6, solve for the required value.

 1. 457 is what percent of 2953?

 2. 827 is what percent of 3950?

 3. 52° is what percent of 360°?

 4. 98° is what percent of 360°?

 5. 734 is 42.6% of what number?

 6. 5106 is 55.5% of what number?

In Exercises 7–10, round the given value to the nearest whole number 
in the specified units.

 7. $234,598.43 (thousands of dollars)

 8. 237,834,289 (millions)

 9. 848.36 thousands (millions)

 10. 1432 millions (billions)

QUICK REVIEW 10.2
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Table 10.10 Fate of Titanic Passengers

Ticket Class Survived Died Total

First class 202 123  325
Second class 118 167  285
Third class 178 528  706
Total 498 818 1316

Source: Titanic Passenger Survival Rates, http://www.dummies.com

Table 10.11 Regular Season Home Run 
Statistics for Roger Maris

Year Home Runs Year Home Runs

1957 14 1963 23
1958 28 1964 26
1959 16 1965  8
1960 39 1966 13
1961 61 1967  9
1962 33 1968  5

Source: The Baseball Encyclopedia, 7th ed., 1988.

Table 10.12 Regular Season Home Run 
Statistics for Alex Rodriguez

Year Home Runs Year Home Runs Year Home Runs

1994  0 2002 57 2010 30
1995  5 2003 47 2011 16
1996 36 2004 36 2012 18
1997 23 2005 48 2013  7
1998 42 2006 35 2014 (suspended)
1999 42 2007 54 2015 33
2000 41 2008 35 2016  9
2001 52 2009 30    

Source: www.baseball-reference.com

 5. An engineer designing a new electronic device needs to be sure 
that both left- and right-handed people can operate it success-
fully. She’ll have a test group try it out, and she plans to sum-
marize the results in a table like the one shown here. If ability 
to operate the device were independent of handedness, what 
would the counts in the table be?

SECTION 10.2 Exercises

 1. A January 2007 Gallup Poll asked people whether they planned 
to watch the Super Bowl and, if so, whether they were more 
interested in seeing the game or the commercials. Table 10.9 
summarizes the responses by gender.

(a) What percent of the people planned to skip the game?

(b) What percent of the people were men who planned to skip 
the game?

(c) What percent of the men planned to skip the game?

(d) What percent of the people who planned to skip the game 
were men?

Table 10.9 Super Bowl Preferences

Primary Interest Men Women Total

The game 279 200  479
The commercials  81 156  237
Won’t watch 132 160  292
Total 492 516 1008

Source: Americans and the Super Bowl Phenomenon, Gallup 
News Service, 2007.

 2. On her 1912 maiden voyage across the Atlantic the ocean liner 
Titanic famously struck an iceberg and sank, with great loss of 
life. Table 10.10 summarizes the fates of the passengers on 
board by the class of ticket they had purchased.

(a) What percent of the passengers died?

(b) What percent of the passengers were first-class ticket hold-
ers who died?

(c) What percent of the passengers who died had first-class 
tickets?

(d) What percent of the first-class passengers died?

 3. Use Table 10.9 to consider whether there is an association 
between gender and plans for watching the Super Bowl.

(a) Would it be better to compare men’s and women’s plans 
with pie charts or a stemplot? Explain.

(b) Are Super Bowl plans and gender independent? Explain.

 4. Use Table 10.10 to consider whether there is an association 
between passenger ticket class and fate on the Titanic.

(a) Would it be better to compare passenger fate by ticket 
class using a bar graph or a histogram? Explain.

(b) Were people’s fate and their ticket class independent? 
Explain.

  Successful Failed Total
Lefty (a) (b)  48
Righty (c) (d) 192
Total 210 30 240

 6. A pollster plans to survey a group of voters, asking them 
whether they favor or oppose the death penalty, and will sum-
marize the responses in a table like the one shown here. If 
opinion turned out to be independent of political party, what 
would the counts in the table be?

  Favor Oppose Total
Republican (a) (b) 220
Democrat (c) (d) 240
Other (e) (f) 140
Total 210 390 600

 7. Make a stemplot of the data in Table 10.11. Are there any 
 outliers?

 8. Make a stemplot of the data in Table 10.12. Are there any 
 outliers?
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Table 10.13 Life Expectancy by Gender 
for 12 Nations of South America

Nation Male Female

Argentina 73 80
Bolivia 65 69
Brazil 71 79
Chile 76 81
Colombia 72 79
Ecuador 72 78
Guyana 64 69
Paraguay 70 74
Peru 72 78
Suriname 68 74
Uruguay 73 80
Venezuela 72 78

Source: Population Reference Bureau, 2016.

 9. Make a back-to-back stemplot comparing the annual home run 
production of Roger Maris (Table 10.11) with that of Hank 
Aaron (Table 10.14 in Exercise 20). Write a brief interpretation 
comparing the distributions.

 10. Alex Rodriguez and Barry Bonds both played during baseball’s 
steroid era. Make a back-to-back stemplot comparing Rodriguez’s 
annual home run production with that of Bonds (Table 10.5  
on page 711). Write a brief interpretation comparing the 
 distributions.

In Exercises 11–13, construct the indicated stemplot from the data in 
Table 10.13. Then write a brief interpretation of the stemplot.

 11. A stemplot showing life expectancies of males in 12 nations of 
South America (Use split stems.)

 12. A stemplot showing life expectancies of females in the nations 
of South America (Use split stems.)

 13. A back-to-back stemplot for life expectancies of males and 
females in the nations of South America (Use split stems.)

 14. Using the data in Table 10.13, construct a frequency table of 
the difference between female and male life expectancies in the 
nations of South America.

In Exercises 15 and 16, use the data in Table 10.13 to construct the 
indicated frequency table, using intervals 60.0–64.9, 65.0–69.9, etc.

 15. Life expectancies of males in the nations of South America

 16. Life expectancies of females in the nations of South America

In Exercises 17–20, draw a histogram for the given table.

 17. The frequency table in Exercise 15

 18. The frequency table in Exercise 16

 19. Table 10.14 of Willie Mays’s annual home run totals, using 
intervals 1–5, 6–10, 11–15, etc.

 20. Table 10.14 of Mickey Mantle’s annual home run totals, using 
intervals 0–4, 5–9, 10–14, etc.

Table 10.14 Regular Season Home Run Statistics 
for Willie Mays, Mickey Mantle, and Hank Aaron

Year Mays Mantle Aaron Year Mays Mantle Aaron

1951 20 13   1964 52 35 24
1952  4 23   1965 37 19 32
1953 41 21   1966 22 23 44
1954 51 27 13 1967 23 22 39
1955 36 37 27 1968 13 18 29
1956 35 52 26 1969 28   44
1957 29 34 44 1970 18   38
1958 34 42 30 1971  8   47
1959 29 31 39 1972  6   34
1960 40 40 40 1973     40
1961 49 54 34 1974     20
1962 38 30 45 1975     12
1963 47 15 44 1976     10

Source: The Baseball Encyclopedia, 7th ed., 1988.

In Exercises 21–24, make a time plot for the indicated data.

 21. Willie Mays’s annual home run totals given in Table 10.14

 22. Mickey Mantle’s annual home run totals given in Table 10.14

 23. Alex Rodriguez’s home run totals given in Table 10.12 in 
 Exercise 8.

 24. Hank Aaron’s home run totals given in Table 10.14.

Table 10.15 shows the first place prize money (in units of $1000) won 
by the winners of the women’s (LPGA) and men’s (PGA) professional 
golf championships for selected years between 1970 and 2016.

Table 10.15 First Place Prize Money (in thousands 
of dollars) for the PGA and LPGA Championships

Year Men (PGA) Women (LPGA)

1970   40 4.5
1975   45 8
1980   60 22.5
1985  125 37.5
1990  225 150
1995  360 180
2000  900 210
2005 1170 270
2010 1350 337.5
2012 1445 375
2014 1800 337.5
2016 1800 525

Source: PGA/LPGA Media Guide, 2016.

 25. Make a time plot for the men’s winnings in Table 10.15. 
Write a brief interpretation of the time plot.

 26. Make a time plot for the women’s winnings in Table 10.15. 
Write a brief interpretation of the time plot.

 27. Compare the trends in Table 10.15 by overlaying the time 
plots. Write a brief interpretation.
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 28. Writing to Learn (Continuation of 
Exercise 27) The data in Table 10.15 
show that the earnings for the PGA 
winner rose by a modest 67% in the 
decade from 1970 to 1980, but  
the earnings for the top LPGA player 
rose by a whopping 400%. Although 
this was, in fact, a strong growth 
period for women’s sports, statisticians 
would be unlikely to draw any conclu-
sions from a comparison of these two 
numbers. Use the visualization from 
the comparative time plot in Exercise 27 to explain why.

In Exercises 29 and 30, compare performances by overlaying time 
plots.

 29. The time plots from Exercises 21 and 22 to compare the perfor-
mances of Mays and Mantle

 30. The time plots from Exercises 23 and 24 to compare the perfor-
mances of Rodriguez and Aaron

 31. The histogram shows the sugar content (as a percent of weight) 
of 49 brands of breakfast cereals.

In Exercises 33–36, analyze the data as indicated.

 33. The salaries of the workers in one department of Anderson and 
Rosche (given in thousands of euros) are as follows:

  30.5, 32.1, 30.8, 26.1, 33.7, 29.8, 28.7, 33.1, 30.5, 25.2, 31.8, 
30.5, 32.1, 26.7, 35.5, 29.7, 31.8, 31.2, 28.6, 32.4

(a) Explain why a bar graph will not work for these data.

(b) Complete a stemplot for this data set.

(c) Describe the shape of the distribution.

 34. The average wind speeds for one year at 44 climatic data cen-
ters around the United States are as follows:

  9.0, 6.9, 9.1, 9.2, 10.2, 12.5, 12.0, 11.2, 12.9, 10.3, 10.6, 10.9, 
8.7, 10.3, 11.0, 7.7, 11.4, 7.9, 9.6, 8.0, 10.7, 9.3, 7.9, 6.2, 8.3, 
8.9, 9.3, 11.6, 10.6, 9.0, 8.2, 9.4, 10.6, 9.5, 6.3, 9.1, 7.9, 9.7, 
8.8, 6.9, 8.7, 9.0, 8.9, 9.3

(a) Explain why a circle graph will not work for these data.

(b) Complete a stemplot for this data set.

(c) Describe the shape of the distribution.

 35. Use the Garcia Brothers salary data in Exercise 33.

(a) Create a frequency table for the data.

(b) Draw a histogram for the data.

(c) Describe the shape of the histogram.

 36. Use the wind speed data in Exercise 34.

(a) Create a frequency table for the data.

(b) Draw a histogram for the data.

(c) Describe the shape of the histogram.

In Exercises 37 and 38, compare by overlaying time plots for the data 
in Table 10.16.
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(a) Describe the shape of the distribution.

(b) What do you think might explain why the distribution has 
this shape?

 32. The histogram shows how many points the Super Bowl 
 champions have won the games by, starting with the very first 
contest in 1967 through Super Bowl XLVII in 2013.

(a) Describe the shape of the distribution.

(b) What does the shape of the distribution say about these 
football games?

Table 10.16 Census Populations (in millions) 
of Six Highly Populous U.S. States

Year CA FL IL NY PA TX

1900 1.5 0.5  4.8  7.3  6.3  3.0
1910 2.4 0.8  5.6  9.1  7.7  3.9
1920 3.4 1.0  6.5 10.4  8.7  4.7
1930 5.7 1.5  7.6 12.6  9.6  5.8
1940 6.9 1.9  7.9 13.5  9.9  6.4
1950 10.6 2.8  8.7 14.8 10.5  7.7
1960 15.7 5.0 10.1 16.8 11.3  9.6
1970 20.0 6.8 11.1 18.2 11.8 11.2
1980 23.7 9.7 11.4 17.6 11.9 14.2
1990 29.8 12.9 11.4 18.0 11.9 17.0
2000 33.9 16.0 12.4 19.0 12.3 20.9
2010 37.3 18.9 12.9 19.4 12.7 25.3

Source: U.S. Census Bureau.

 37. The populations of California, New York, and Texas from  
1990 through 2010

 38. The populations of Florida, Illinois, and Pennsylvania from 
1990 through 2010
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Standardized Test Questions
 39. True or False If the percentage of ninth-grade boys  

who eventually graduate from high school is the same as the 
 percentage of ninth-grade girls who do, then there’s an associa-
tion between graduation and gender. Justify your answer.

 40. True or False The highest and lowest numbers in a set of 
data are called outliers. Justify your answer.

Answer Exercises 41–44 without using a calculator.

 41. Multiple Choice A time plot is an example of a

(A) histogram. (B) bar graph.

(C) line graph. (D) pie chart.

(E) table.

 42. Multiple Choice A back-to-back stemplot is particularly 
useful for

(A) identifying outliers.

(B) comparing two data distributions.

(C) merging two sets of data.

(D) graphing home runs.

(E) distinguishing stems from leaves.

 43. Multiple Choice The histogram below would most likely 
result from which set of data?

(A) Scores in an amateur golf tournament

(B) Weights of children in a third-grade class

(C) Winning soccer scores for a team over the course of a 
 season

(D) Ages of all the people visiting the Bronx Zoo at a given 
point in time

(E) Prices of all the desserts on the menu at a certain 
 restaurant

 44. Multiple Choice A sector on a pie chart with a central 
angle of 45° corresponds to what percentage of the data?

(A) 8% (B) 12.5%

(C) 15% (D) 25%

(E) 45%

Explorations
 45. Group Activity Measure the resting pulse rates (beats 

per minute) of the members of your class. Make a stemplot 
for the data. Are there any outliers? Can they be explained?

 46. Group Activity Measure the heights (in inches) of the 
members of your class. Make a back-to-back stemplot to 
compare the distributions of the male heights and the 
female heights. Write a brief interpretation of the stemplot.

Extending the Ideas
 47. Time Plot of Periodic Data Some data are periodic 

functions of time (t). If data vary in an annual cycle, the 
period is 1 year. Use the information in Table 10.17 to  
create time plots for the monthly average daily high and low 
temperatures (in °C) for Beijing, China. Treat January as 
t = 1, February as t = 2, etc.

Table 10.17 Average Daily High and Low 
Temperatures for Beijing, China, by Month

Month High (°C) Low (°C)

January  1.6 -9.4
February  4.0 -6.9
March 11.3 -0.6
April 19.9  7.2
May 26.4 13.2
June 30.3 18.2
July 30.8 21.6
August 29.5 20.4
September 25.8 14.2
October 19.0  7.3
November 10.1 -0.4
December  3.3 -6.9

Source: www.climatemps.com, 2015

 48. Find a sinusoidal function of temperature (in °C) versus 
time (in months) that models each time plot in  Exercise 47. 
(See Sections 4.4 and 4.8.)
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Describing and Comparing Distributions
If you wanted to study the effect of chicken feed additives on the thickness of egg 
shells, you would need to sample many eggs from different hens under various feeding 
conditions. Suppose you were to gather data from 50 eggs from hens eating feed A and 
50 eggs from hens eating feed B. How would you compare the two? To effectively 
compare sets of data, we must think about three aspects of the distributions: shape, cen-
ter, and spread.

• The shape of a distribution may be unimodal or multimodal, symmetric or skewed, 
as we discussed in Section 10.2.

• The center of a distribution indicates what a typical measurement is.

• A spread of a distribution tells us whether measurements tend to be close together 
or vary widely for different individuals.

We can use several statistics to describe center and spread. We start by looking at the 
median and interquartile range.

What you’ll learn about
• Parameters and Statistics

• Describing and Comparing  
Distributions

• Five-Number Summary

• Boxplots

• The Mean (and When to Use It)

• Variance and Standard Deviation

• Normal Distributions

... and why
The language of Statistics is  
becoming more commonplace in 
our everyday world.

Parameters and Statistics
Numerical summaries of a data set are called statistics. They serve to describe the indi-
viduals from which the data come, so the gathering and processing of such numerical 
information is often called descriptive statistics. You saw many examples of descrip-
tive statistics in Section 10.2.

The science of Statistics comes in when we use descriptive statistics (like the results of 
a study of 1500 smokers) to make judgments, called inferences, about entire popula-
tions (like all smokers). Statisticians are really interested in numbers called parameters  
that describe entire populations. Because it is usually either impractical or impossible  
to measure entire populations, statisticians gather statistics from carefully chosen 
samples, then use the science of inferential statistics to make inferences about the 
parameters.

10.3 Statistics (Numerical)

Statistics and statistics
In this chapter we will capitalize “Statistics” 
when we refer to the branch of mathematics that 
collects and analyzes data. When we refer to 
numerical summaries of those data, we do not 
capitalize “statistics.”

Distinguishing a Parameter from a Statistic
A 2004 study called All Work and No Play? Listening to What Kids and Parents 
Really Want from Out-of-School Time reported that 32% of middle school and high 
school students wish there was an afterschool activity that offered homework help. 
The report was based on a survey of 609 randomly selected students in grades 6–12 
and had a margin of error of ±4%. (Source: Public Agenda.) Did the survey measure 
a parameter or a statistic, and what does that “margin of error” mean?

SOLUTION The survey did not contact all students in the population, so it did not 
measure a parameter. The researchers sampled 609 students at random and reported a 
statistic based on the data they collected. The statement “about 3 in 10 students say 
they would very much like an afterschool program that provides homework help 
(32%)” refers to the sample responses. To make an inference about all grade 6–12 
students, we must also look at the margin of error, which suggests that between 28% 
and 36% of all students in grades 6–12 would like an afterschool program that pro-
vides homework help. In other words, the statisticians are confident that their sample 
statistic is within ±4% of the population parameter—even though they sampled only 
609 teens, a tiny fraction of the population! That confidence is based on the laws of 
probability and is scientifically reliable, but we will not go into the mathematics here.
 Now try Exercise 1.

EXAMPLE 1 
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Notice that the median is not affected by the outlier representing Maris’s record-breaking 
season. The median would still have been 19.5 if he had hit only 41 home runs that 
season, or, indeed, if he had hit 81. We call a statistic resistant if it is not strongly 
affected by outliers. (See Exploration 1, Section 10.2.) Although the median is a resis-
tant measure of center, we’ll soon see that the mean is not.

Five-Number Summary
Measures of center tell only part of the story of a data set. They do not indicate how 
widely distributed or highly variable the data are. Measures of spread do. The simplest 
and crudest measure of spread is the range, which is the difference between the maxi-
mum and minimum values in the data set:

Range = maximum - minimum

For example, the range of numbers in Roger Maris’s annual home run production is 
61 - 5 = 56. Like the mean, the range is a statistic that is strongly influenced by outli-
ers, so it can be misleading. A more resistant (and therefore more useful) measure is the 
interquartile range, which is the range of the middle half of the data.

Just as the median separates the data into halves, the quartiles separate the data into 
fourths. The first quartile Q1 is the median of the lower half of the data, the second 
quartile is the median, and the third quartile Q3 is the median of the upper half of the 
data. The interquartile range 1IQR2 measures the spread between the first and third 
quartiles, comprising the middle half of the data:

IQR = Q3 - Q1

Taken together, the maximum, the minimum, and the three quartiles give a fairly com-
plete picture of both the center and the spread of a data set.

DEFINITION Median

The median of a list of n numbers 5x1, x2, c, xn6  arranged in order (either 
ascending or descending) is

• the middle number if n is odd, and

• the average of the two middle numbers if n is even.

Finding a Median
Find the median of the annual home run totals for Roger Maris’s major league career, 
1957–1968 (Table 10.11 on page 716).

SOLUTION According to Table 10.11, we are looking for the median of the follow-
ing list of 12 numbers: 514, 28, 16, 39, 61, 33, 23, 26, 8, 13, 9, 56 . First, we arrange 
the list in ascending order: 55, 8, 9, 13, 14, 16, 23, 26, 28, 33, 39, 616 . Because 
there are 12 numbers, the median is the average of the 6th and 7th numbers:

16 + 23
2

= 19.5 home runs

 Now try Exercise 5.

EXAMPLE 2 

Units = Meaning
Remember that the aim of Statistics is to find 
meaning in data. Including units in your answers 
is an important step toward that goal.

Finding Quartiles
When we are finding the quartiles for a data set 
with an odd number of values, we do not con-
sider the middle value to be included in either the 
lower or the upper half of the data.

DEFINITION Five-Number Summary

The five-number summary of a data set is the collection

5minimum, Q1, median, Q3, maximum6 .
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Boxplots
A boxplot (sometimes called a box-and-whisker plot) is a graph that depicts the five-
number summary of a data set. The plot consists of a central rectangle (box) that 
extends from the first quartile to the third quartile, with a vertical segment marking the 
median. Line segments (whiskers) extend at the ends of the box toward the minimum 
and maximum values, stopping short of any outliers, which are indicated separately.

In fact, a boxplot gives us a convenient way to think of an outlier: a number that makes 
one of the whiskers noticeably longer than the box. The usual rule of thumb for 
“noticeably longer” is 1.5 times as long. Because the length of the box is the IQR, that 
leads us to the following numerical check.

Computing Statistics on a 
Calculator
Many calculators can process lists of data and 
give statistics like the mean, median, and quar-
tiles with a push of a button. Consult the calcula-
tor’s manual or online information for details.

Five-Number Summary and Spread
Find the five-number summaries for the male and female life expectancies in South 
American nations (Table 10.13 on page 717) and compare the spreads.

SOLUTION Here are the lists in ascending order.

Males:

564, 65, 68, 70, 71, 72, 72, 72, 72, 73, 73, 766
Females:

569, 69, 74, 74, 78, 78, 78, 79, 79, 80, 80, 816
We have spaced the lists to show where the quartiles appear. The median of the 12 
values is midway between the 6th and 7th values. The first quartile is the median of 
the lower 6 values (i.e., midway between the 3rd and 4th), and the third quartile is 
the median of the upper 6 values (i.e., midway between the 9th and 10th).

The five-number summaries are shown below.

Males:   564, 69, 72, 72.5, 766
 Females: 569, 74, 78, 79.5, 816

The males have a range of 76 - 64 = 12 years and an IQR of 
72.5 - 69 =  3.5 years.

The females have a range of 81 - 69 = 12 years and an IQR of 
79.5 - 74 = 5.5 years.

Although the women live longer in general, there is more variability in their life 
expectancies (as measured by the IQR).
 Now try Exercise 19.

EXAMPLE 3 

Defining Outliers
The rule of thumb given here for identifying outli-
ers is not a universal definition. The only sure 
way to characterize an outlier is to say that it lies 
outside the usual behavior seen in the rest of the 
data, and “usual behavior” can be a judgment call.

Interpreting Histograms (Part I)

Look at the two histograms shown in Figure 10.15.

 1. Which distribution has the greater range?

 2. Which distribution has the greater IQR?

 3. Which histogram displays a data set with more variability?

EXPLORATION 1 

(a)

(b)

Figure 10.15 Which data set has more 
variability? (Exploration 1)

Outlier Guideline

A number in a data set may be considered an outlier if it is more than 
1.5 * IQR below the first quartile or above the third quartile.
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403020100 50 60 70

Figure 10.16 A Boxplot of Roger Maris’s 
annual home run totals.

Male

Female

60 65 70 75 80 85

Figure 10.17 Parallel boxplots comparing 
male and female life expectancies in the 
nations of South America provide a good 
visualization of the differences between the 
distributions.

Identifying an Outlier
When we look at Roger Maris’s annual home run totals 514, 28, 16, 39, 61, 33, 23, 
26, 8, 13, 9, 56 , we see that 61 is much larger than any of the others. Is 61 an outlier 
according to the 1.5 * IQR criterion?

SOLUTION Maris’s totals, in order: 55, 8, 9, 13, 14, 16, 23, 26, 28, 33, 39, 616
His five-number summary: 55, 11, 19.5, 30.5, 616
His IQR: 30.5 - 11 = 19.5

Thus,

Q3 + 1.5 * IQR = 30.5 + 1.5 * 19.5 = 59.75.

Because 61 7 59.75, the rule of thumb identifies 61 home runs as an outlier.
 Now try Exercise 11.

EXAMPLE 4 

Figure 10.16 displays a boxplot of Maris’s annual home run totals. We see the median 
indicated by the vertical segment at 19.5. The box representing the middle half of his 
season totals stands between Q1 (11) and Q3 (30.5). The left whisker extends to his 
minimum, 5 home runs. The right whisker ends at 39 home runs, the highest season 
total that was not an outlier, and a separate point shows the record-setting 61. Because 
the whisker and the portion of box to the right of the median are a bit longer than they 
are to the left, we see that the distribution is slightly skewed to the right.

For a simple plot, then, a boxplot displays a lot of information about a distribution. It 
offers a hint about the shape, marks the center, shows the spread, and identifies any 
outliers. It’s important to recognize outliers, because they can distort both our overall 
impression of the data and the values of nonresistant statistics we might calculate. 
(We’ll discuss more about that soon.) For this reason, statisticians need to spot outliers 
and decide how to handle them. Simply omitting them from your statistical displays 
and calculations can be risky. Although you want to omit a strange laboratory reading 
that arose through equipment error, you do not want to overlook a discovery that may 
lead to a Nobel Prize!

Comparing Boxplots
Draw the boxplots for the male and female life expectancy data in Example 3 and 
compare the distributions.

SOLUTION The boxplots are graphed simultaneously in Figure 10.17.

From this graph we see that in general, life expectancy is much higher for females 
than for males. In fact, it exceeds the maximum male life expectancy in over 50% of 
the countries. Both distributions appear to be somewhat skewed to the left, and life 
expectancies are less variable for females than for males.
 Now try Exercise 17.

EXAMPLE 5 

Using a Frequency Table (Part 1)
Mr. Funderburg gives a 10-point quiz and records the scores in a frequency table  
(Table 10.18) . Find the five-number summary and identify any outliers.

Table 10.18 Quiz Scores for Examples 6 and 8

Score 10 9 8 7 6 5 4 3 2 1 0
Frequency  2 2 3 8 4 3 3 2 1 1 1

EXAMPLE 6 

(continued)
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The Mean (and When to Use It)
A common way to describe the center of a distribution is to calculate the mean. This is 
what most people usually think of as “average.”

SOLUTION The total of the frequencies is 30, so there are 30 scores.

The median of 30 numbers will be the mean of the 15th and 16th numbers. The table 
is already arranged in descending order, so we sum the frequencies from left to right 
until we come to 15. We see that the 15th number is a 7 and the 16th number is a 6. 
The median, therefore, is 6.5 points.

With 15 values in each half of the data, the quartiles will be the eighth numbers in 
from each end of the distribution. Adding frequencies, we see that the eighth highest 
score is 7, so Q3 = 7. Similarly, the eighth score from the bottom is Q1 = 4.

The five-number summary of the quiz scores is 0, 4, 6.5, 7, 10.

To check for outliers, we see 1.5 # IQR = 1.517 - 42 = 4.5. Any outliers would 
have to be scores below 4 - 4.5 = -0.5 or above 7 + 4.5 = 11.5. None of the quiz 
scores is an outlier.
 Now try Exercise 13.

DEFINITION Mean

The mean of a list of n numbers 5x1, x2, c , xn6  is

x =
x1 + x2 + g + xn

n
=

1
n

 a
n

i=1
xi 

.

The mean is also called the arithmetic mean, arithmetic average, and average value.

Computing a Mean
Calculate the mean annual home run total for Roger Maris’s major league career,  
1957–1968 (Table 10.11 on page 716).

SOLUTION According to Table 10.11, we are looking for the mean of the following 
list of 12 numbers: 514, 28, 16, 39, 61, 33, 23, 26, 8, 13, 9, 56 .

x =
14 + 28 + 16 + g + 9 + 5

12
=

275
12

≈ 22.9 home runs

 Now try Exercise 23.

EXAMPLE 7 

As common as it is to use the mean as a measure of center, sometimes it can be mis-
leading. For example, if you were to find the mean annual salary of 1984 geography 
major graduates of the University of North Carolina, it would probably be a number in 
the millions of dollars. This is because the group being measured, which is not very 
large, includes an outlier named Michael Jordan.

Unlike the median, the mean is not a resistant measure of center. It can be affected by 
both outliers and skewness. If you pay attention to news about the economy, you will 
often encounter reports that refer to “median family income.” Why don’t they use the 
mean? The distribution of family incomes is unimodal and strongly skewed to the right. 
The vast majority of people earn relatively modest incomes, but there is a long upper 
tail of ever smaller numbers of families who earn ever greater amounts of money. 
Those high values pull the mean to the right, making it a less meaningful representation 
of a typical income than the median. Similarly, if a distribution is skewed to the left, the 
mean will be tugged away from the center toward the very small data values. Before 
relying on the mean as a description of center, always look at the distribution for signs 
of skewness or outliers.
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The formula for finding the mean of a list of numbers 5x1, x2, c , xn6  with their cor-
responding frequencies 5ƒ1, ƒ2, c , ƒn6  is

x =
x1ƒ1 + x2ƒ2 + g + xnƒn

ƒ1 + ƒ2 + g + ƒn
=

gxiƒigƒi
 .

This same formula can be used to find a weighted mean, in which the numbers x1, 
x2, c , xn are given weights before the mean is computed. The weights act the same 
way as frequencies.

Interpreting Histograms (Part 2)

Of the three histograms in Figure 10.18, which has a median less than its mean? 
Which has a median greater than its mean? Which has a median approximately 
equal to its mean?

EXPLORATION 2 

(a)   (b)   (c)

Figure 10.18 Which graph shows a data set in which the mean is less than the median? Greater than the median? Approximately 
equal to the median? (Exploration 2)

Using a Frequency Table (Part 2)
Table 10.19 repeats the frequency table of Mr. Funderburg’s quiz scores from Exam-
ple 6. Compute the mean score and compare it to the median we found in Example 6.

Table 10.19 Quiz Scores for Example 8 (Same Scores as in Example 6)

Score 10 9 8 7 6 5 4 3 2 1 0
Frequency  2 2 3 8 4 3 3 2 1 1 1

SOLUTION To find the mean x, we multiply each score by its frequency, add the 
products, and divide the total by 30, the number of scores:

x =
10 # 2 + 9 # 2 + 8 # 3 + 7 # 8 + 6 # 4 + 5 # 3 + 4 # 3 + 3 # 2 + 2 # 1 + 1 # 1 + 0 # 1

30
= 5.93 points

In Example 6 we found that the median is 6.5. The mean is a bit less than the median 
because the tail of low quiz scores extends farther from the center of the distribution 
than the upper tail. But the distribution is only slightly skewed to the left, so it is appro-
priate to use either the mean or the median as a measure of center for these quiz scores.
 Now try Exercise 29.

EXAMPLE 8 
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726 CHAPTER 10 Statistics and Probability

If we define the “deviation” of a data value to be how much it differs from the mean, 
then the variance is just the mean of the squared deviations. The standard deviation is 
the square root of the mean of the squared deviations, which is why it is sometimes 
called the root mean square deviation. The symbol “m” is the Greek letter mu, and “s” 
is a lowercase Greek letter sigma.

Calculating a standard deviation by hand can be tedious, but with modern calculators it 
is usually only necessary to enter the list of data and push a button. In fact, most calcu-
lators give you a choice of two standard deviations, one slightly larger than the other. 
The larger one (usually called s) is based on the formula

s = B 1
n - 1

 a
n

i=1
 1xi - x22 .

Figure 10.19 Histograms based on data 
gathered from real-world sources are often 
unimodal and symmetric, without outliers. 
The mean and standard deviation are most 
useful for describing the center and spread of 
distributions like these.

Working with a Weighted Mean
At Marty’s school, it is an administrative policy that the final exam must count 25% 
of the semester grade. If Marty has an 88.5 average going into the final exam, what is 
the minimum exam score that he needs to earn at least a 90 for the semester?

SOLUTION The preliminary average 188.52 is given a weight of 0.75 and the mini-
mum exam score needed 1x2 is given a weight of 0.25. We will assume that a semes-
ter average of 89.5 will be rounded to a 90 on the transcript. Therefore,

 
88.510.752 + x10.252

0.75 + 0.25
= 89.5

 0.25x = 89.5112 - 88.510.752
 x = 92.5

Interpreting the answer, we conclude that Marty needs to make a 93 or better on the 
final exam. Now try Exercise 31.

EXAMPLE 9 

Variance and Standard Deviation
The median and IQR are useful statistics for describing the center and spread of any 
distribution because they are resistant to the presence of skewness and outliers.

On the other hand, the mean is an excellent measure of center when outliers and skew-
ness are not present, which is quite often the case. Indeed, histograms of data from all 
kinds of real-world sources tend to look something like Figure 10.19, in which frequen-
cies are higher close to the mean and lower as you move away from the mean in either 
direction.

For roughly symmetric data, the mean is the preferred measure of center. There is also 
a measure of spread for such data called the standard deviation that is better than the 
IQR. Like the mean, the standard deviation is strongly affected by outliers and can be 
misleading if outliers are present.

DEFINITION Standard Deviation

The standard deviation of a population 5x1, x2, c , xn6  is

s = B1
n

 a
n

i=1
 1xi - m22 ,

where m denotes the population mean. The variance is s2, the square of the 
standard deviation.
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Normal Distributions
Although we use the word normal in many contexts to suggest typical behavior, in the 
context of statistics and data distributions it is really a technical term. If you graph the 
function

y = e-x2>2

in the window 3-3, 34  by 30, 14 , you will see what Normal means mathematically 
(Figure 10.22).

The shape models many distributions we commonly encounter. In fact this curve, 
called a Gaussian curve or Normal curve, is a precise mathematical model for normal 
behavior. That is where the mean and standard deviation come in.

The standard deviation of the curve in Figure 10.22 is 1. Using calculus, we can find 
that about 68% of the total area under this curve lies between -1 and 1 (Figure 10.23a). 
Because any Normal distribution has this shape, about 68% of the data in any Normal 
distribution lie within 1 standard deviation of the mean.

Similarly, we can find that about 95% of the total area under the Gaussian curve lies 
between -2 and 2 (Figure 10.23b), implying that about 95% of the data in any Normal 
distribution lie within 2 standard deviations of the mean.

[77, 98] by [0, 10]

Figure 10.20 The weights of the loon 
chicks in Example 10 appear to be normal, 
with no outliers or strong skewness. We 
conclude that the mean and standard deviation 
are appropriate measures of center and 
variability, respectively.

1–Var Stats

n=30

Sx=3.509823652
sx=3.450830818

∑x2=229992.25

x=87.49–
∑x=2624.7

Figure 10.21 Single-variable statistics in a 
typical calculator display. (Example 10)

y

x

Figure 10.22 The graph of y = e-x2>2  
This is a Gaussian (or Normal) curve.

The difference is that the s formula is for finding the true parameter, which means that 
it applies only when 5x1, x2, c , xn6  is the whole population. If 5x1, x2, c , xn6  is a 
sample from the population, then the s formula actually gives a better estimate of the 
parameter than the s formula does. So use the larger standard deviation when your data 
come from a sample (which is almost always the case).

Finding Standard Deviation with a Calculator
A researcher measured 30 newly hatched loon chicks and recorded their weights in 
grams as shown in Table 10.20.

Table 10.20 Weights in Grams of 30 Loon Chicks

79.5 87.5 88.5 89.2 91.6 84.5 82.1 82.3 85.7 89.8
84.0 84.8 88.2 88.2 82.9 89.8 89.2 94.1 88.0 91.1
91.8 87.0 87.7 88.0 85.4 94.4 91.3 86.4 85.7 86.0

Based on the sample, estimate the mean and standard deviation for the weights of 
newly hatched loon chicks. Are these measures useful in this case, or should we use 
the five-number summary?

SOLUTION We enter the list of data into a calculator. A histogram 1Xscl = 22 in 
the window 377, 984  by 30, 104  shows that the distribution is unimodal (as we 
would expect from nature), containing no outliers or strong skewness. Therefore, the 
mean and standard deviation are appropriate measures (Figure 10.20).

We calculate statistics of a single variable. Figure 10.21 shows one possible example 
of calculator output.

The mean is x = 87.49 g. For standard deviation, we choose Sx = 3.51 g because 
the calculations are based on a sample of loon chicks, not on the entire population of 
loon chicks. Now try Exercise 35.

EXAMPLE 10 
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728 CHAPTER 10 Statistics and Probability

If you study Statistics more deeply someday, you will learn that more is going on in 
Example 11 than meets the eye. For starters, we need to know that the chicks are really 
a random sample of all loon chicks (not, for example, from the same geographical 
area). Also, we lose some accuracy by using statistics to estimate the true mean and 
standard deviation. Statisticians have ways of taking that into account.

y

x

y

x

y

x
(a) (b) (c)

Figure 10.23 (a) About 68% of the area under a Gaussian curve lies within 1 unit of the mean. 
(b) About 95% of the area lies within 2 units of the mean. (c) About 99.7% of the area lies 
within 3 units of the mean. If we think of the units as standard deviations, this gives us a model 
for any Normal distribution.

Similarly, we can find that about 99.7% (nearly all) of the total area under the Gaussian 
curve lies between -3 and 3 (Figure 10.23c), implying that about 99.7% of the data in 
any Normal distribution lie within 3 standard deviations of the mean.

It’s NOT Normal
No data can actually be normally distributed. 
Ever. For one thing, the Gaussian curve 
approaches the x-axis as an asymptote, extending 
without bound toward ±∞. Nothing in the real 
world does that. The Normal model is just that: a 
model. But it’s a spectacularly useful model that 
describes the behavior of a wide variety of phe-
nomena amazingly well. When data are approxi-
mately Normal, we can use the 68-95-99.7 Rule 
to understand about what percentage of the val-
ues we’d expect to find within ±1, ±2, or ±3 
standard deviations of the mean.

The 68–95–99.7 Rule

If the data for a population are approximately normally distributed with mean m 
and standard deviation s, then

• about 68% of the data lie between m - 1s and m + 1s;

• about 95% of the data lie between m - 2s and m + 2s;

• about 99.7% of the data lie between m - 3s and m + 3s.

What makes this rule so useful is that Normal distributions are common in a wide vari-
ety of statistical applications. We close the section with a simple application.

Using the 68–95–99.7 Rule
Based on the research data presented in Example 10, would a loon chick weighing  
95 g be in the top 2.5% of all newly hatched loon chicks?

SOLUTION We assume that the distribution of weights of newly hatched loon 
chicks in the whole population is approximately Normal. Because we do not know 
the mean and standard deviation for the whole population 1the parameters m and s2, 
we use the sample statistics x = 87.49 and Sx = 3.51 as estimates.

Look at Figure 10.23b. The shaded region contains 95% of the area, so the two iden-
tical white regions at either end must each contain 2.5% of the area. That is, to be in 
the top 2.5%, a loon chick will have to weigh at least 2 standard deviations more than 
the mean:

x + 2Sx = 87.49 + 213.512 = 94.51 g

Because 95 7 94.51, a Normal model suggests that a 95-g loon chick is probably in 
the top 2.5%. Now try Exercise 43.

EXAMPLE 11 

M11_DEMA8962_10_GE_C10.indd   728 22/06/22   18:35



 SECTION 10.3 Statistics (Numerical) 729

In Exercises 1–6, write the sum in expanded form.

 1. a
7

i=1
 xi 2. a

5

i=1
 1xi - x2

 3. 
1
7

 a
7

i=1
 xi 4. 

1
5

 a
5

i=1
 1xi - x2

 5. 
1
5

 a
5

i=1
 1xi - x22 6. B1

5
 a

5

i=1
 1xi - x22

In Exercises 7–10, write the sum in sigma notation.

 7. x1ƒ1 + x2ƒ2 + x3ƒ3 + g + x8ƒ8

 8. 1x1 - x22 + 1x2 - x22 + g + 1x10 - x22

 9. 
1
50

 31x1 - x22 + 1x2 - x22 + g + 1x50 - x224
 10. B1

7
 31x1 - x22 + 1x2 - x22 + g + 1x7 - x224

QUICK REVIEW 10.3 (Prerequisite skill Section 9.4)

SECTION 10.3 Exercises

 7. Find the median of the following salaries for employees in one 
department of the Garcia Brothers Company (in thousands of 
dollars):

  33.5, 35.3, 33.8, 29.3, 36.7, 32.8, 31.7, 37.3, 33.5, 28.2, 34.8, 
33.5, 29.7, 38.5, 32.7, 34.8, 34.2, 31.6, 35.4

 8. Find the median of the following average annual wind speeds 
at 44 climatic data centers around the United States:

  9.0, 6.9, 9.1, 9.2, 10.2, 12.5, 12.0, 11.2, 12.9, 10.3, 10.6, 10.9, 
8.7, 10.3, 11.0, 7.7, 11.4, 7.9, 9.6, 8.0, 10.7, 9.3, 7.9, 6.2, 8.3, 
8.9, 9.3, 11.6, 10.6, 9.0, 8.2, 9.4, 10.6, 9.5, 6.3, 9.1, 7.9, 9.7, 
8.8, 6.9, 8.7, 9.0, 8.9, 9.3

 9. Find the range and the IQR of the salaries in Exercise 7.

 10. Find the range and the IQR of the wind speeds in Exercise 8.

 11. The five-number summary for the weights (in pounds) of the 
players on a high school soccer team is 5113, 143, 152, 165, 
2106 . Are there any outliers? Explain.

 12. The five-number summary for the number of miles (in thou-
sands) on a company’s fleet of cars is 57, 49, 66, 72, 986 . Are 
there any outliers? Explain.

In Exercises 1 and 2, indicate whether the number described is a 
parameter or a statistic.

 1. (a) The average score on last week’s quiz was 73.4.

(b) About 13% of the human population is left-handed.

 2. (a) The average American is about 23 lb overweight.

(b) In a study of laboratory rats, 93% became aggressive when 
deprived of sleep.

In Exercises 3 and 4, identify whether the average described is a mean 
or median.

 3. (a) The pitcher’s earned run average is 2.35.

(b) The choir lined up with tall people in the back, short  
people in the front, and people of average height in the 
middle.

 4. (a)  As the marathon runners crossed the finish line, the people 
in the middle of the pack finished in an average time of 
about 3 1>2 hr.

(b) Bob has a 3.27 grade point average.

In Exercises 5 and 6, find the median of the indicated data.

 5. The number of satellites (moons), from the data in  
Table 10.21.

Table 10.21 Planetary Satellites

Planet Number of Satellites

Mercury  0
Venus  0
Earth  1
Mars  2
Jupiter 67
Saturn 62
Uranus 27
Neptune 14

Source: www.go-astronomy.com, 2013.

 6. The area of the continents, from the data in Table 10.22.

Table 10.22 Size of Continent

Continent Area (km2)

Africa 30,065,000
Antarctica 13,209,000
Asia 44,579,000

Australia>Oceania 8,112,000
Europe 9,938,000
North America 24,474,000
South America 17,819,000

Source: Worldatlas.com, 2005.
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 13. Taking high-quality selfies requires a high-resolution “front 
camera.” The table below summarizes the numbers of front 
camera megapixels offered by 25 smartphone models.

Megapixels 1 2 3 4  5 6 7 8
Frequency 2 2 0 1 12 0 2 6

Source: Consumer Reports, March 2017.

  Find the five-number summary for these data and identify any 
outliers.

 14. National Football League teams play 16 games during the 
 regular season. In 2016–2017, the Patriots led the league 
with 14 wins while the Browns won just once. The frequency 
table below summarizes the numbers of games won by all  
32 teams that season.

Wins 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequency 1 1 2 1 2 2 4 4 5  3  3  2  1  1

Source: www.nfl.com

  Find the five-number summary for these data and identify any 
outliers.

 15. Before the Cavaliers beat them for the 2016–2017 NBA cham-
pionship, the Warriors won a league record 73 regular-season 
games. The stemplot below displays the numbers of games 
won by all 30 NBA teams that season.

1 0 7
2 1 3 9
3 0 2 3 3 3 5
4 0 1 1 2 2 2 4 4 5 8 8 8 8
5 3 5 6 7
6 7
7 3

Source: www.nba.com

  Find the five-number summary for these data and identify any 
outliers.

 16. Battery life is an important consideration when purchasing a 
tablet computer. The stemplot below summarizes test results 
for 24 highly rated tablets with 9- to 12-in. screens, showing a 
best-in-class lifespan of 13.4 hr.

 8 0 9 9
 9 5
10 0 5 6 7 7 9 9
11 0 1 3 4 5 5 6 6 7
12 4 6 9
13 4

Source: Consumer Reports, August 2013.

  Find the five-number summary for these data and identify any 
outliers.

 17. Writing to Learn How important is a home ice advantage 
in professional hockey? The boxplots in the next column show 
the numbers of games the 30 NHL teams won at home and 
away during the 2016–2017 season. Write a brief comparison 
of the two distributions.

 18. Writing to Learn How important is a home court advan-
tage in professional basketball? The boxplots below show the 
numbers of games the 32 NBA teams won at home and away 
during the 2016–2017 season. Write a brief comparison of the 
two distributions.

Games Won

Home

Away

5 10 15 20 25 30 35

Games Won

Away

Home

10 20 4030

In Exercises 19 and 20, determine the five-number summary, the range, and 
the interquartile range for the sets of data specified. Identify any outliers.

 19. The annual home run production data for Babe Ruth and Barry 
Bonds in Table 10.5 (page 711)

 20. The annual home run production data for Willie Mays and 
Mickey Mantle in Table 10.14 (page 717)

 21. Use your summary statistics from Exercise 19 to create simul-
taneous boxplots comparing season home run production by 
Babe Ruth and Barry Bonds.

 22. Use your summary statistics from Exercise 20 to create simul-
taneous boxplots comparing season home run production by 
Willie Mays and Mickey Mantle.

 23. Using the data in Table 10.21, find the mean number of moons 
for the planets in our solar system. Compare the mean to the 
median you found in Exercise 5.

 24. Using the data in Table 10.22, find the mean area of the conti-
nents. Compare the mean to the median you found in Exercise 6.

 25. Find the mean salary for the data in Exercise 7. Compare the 
mean to the median salary you found there.

 26. Find the mean wind speed for the data in Exercise 8. Compare 
the mean to the median weight you found there.
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 27. In 2016, a total of 308,215 students took the Advanced  
Placement examination in Calculus AB. From the frequency 
table below, find the mean score in Calculus AB in 2016. 
(Source: The College Board.)

AP Examination Grade Number of Students
5 76,486
4 53,467
3 53,533
2 30,017
1 94,712

 28. In 2016, a total of 124,931 students took the Advanced Place-
ment examination in Calculus BC. From the frequency table 
below, find the mean score in Calculus BC in 2016. (Source: 
The College Board.)

AP Examination Grade Number of Students
5 60,632
4 19,191
3 21,441
2 7,212
1 16,455

 29. Find the mean magnification power for the superzoom cameras 
described in Exercise 13. Which is the better summary of these 
data, the mean or the median? Explain.

 30. Using the frequency table in Exercise 14, find the mean num-
ber of games won by NFL teams during the 2016–2017 season. 
Which is the better summary of these data, the mean or the 
median? Explain.

In Exercises 31 and 32, use the data in Table 10.17 (page 719).

(a)  Find the average (mean) of the indicated temperatures for Beijing.

(b)  Find the weighted average using the number of days in the month 
as the weight. (Assume no leap year.)

(c)  Compare your results in parts (a) and (b). Do the weights have an 
effect on the average? Why or why not? Which average is the bet-
ter indicator for these temperatures?

 31. The monthly high temperatures

 32. The monthly low temperatures

In Exercises 33–38, find the standard deviation and variance of the data 
set. (Because data sets are almost always samples from some larger 
population, use s in each case, rather than s.)

 33. 523, 45, 29, 34, 39, 41, 19, 226
 34. 528, 84, 67, 71, 92, 37, 45, 32, 74, 966
 35. The credit card debt data in Table 10.7 (page 714)

 36. The student debt data in Table 10.8 (page 715)

 37. The salary data in Exercise 7

 38. The wind speeds data in Exercise 8

In Exercises 39 and 40, examine each pair of data sets.

(a)  Decide whether you think the standard deviation of the first set is 
smaller, equal to, or larger than the standard deviation of the   
second set. Explain why.

(b) Check your prediction by calculating both standard deviations.

 39. 54, 6, 8, 8, 8, 10, 126  and 54, 5, 7, 8, 9, 11, 126
 40. 510, 15, 20, 25, 306  and 550, 55, 60, 65, 70, 756

 41. Writing to Learn Is it possible for the standard deviation 
of a data set to be zero? Explain your answer.

 42. Writing to Learn Is it possible for the standard deviation 
of a set to be negative? Explain your answer.

 43. SAT Scores Scores on the Scholastic Aptitude Tests are 
scaled to a mean of 500 and a Normal model with a standard 
deviation of 100.

(a) Approximately what percentage of scores should be 
between 400 and 600?

(b) Approximately what percentage of scores should be  
below 300?

(c) In 2015, the national average on the SAT Math section was 
511. Is this number a parameter or a statistic?

 44. ACT Scores In 2015, the national mean ACT Math score was 
20.9, with an approximate standard deviation of 6. ACT scores in 
the general population approximate a Normal distribution.

(a) Approximately what percentage of the 2015 scores should 
be higher than 27?

(b) Approximately what ACT Math score would one have 
needed to make in 2015 to be ranked among the top  
2.5% of all who took the test?

(c) Writing to Learn Mean ACT scores are published 
state by state. If we add up the 50 state means and divide 
by 50, will the result be a good estimate for the national 
mean score? Explain your answer.

 45. The weights of eggs laid by mature turkeys are approximately 
normally distributed with a mean of 90 g and a standard devia-
tion of 5.5 g.

(a) Approximately what percent of all eggs should weigh more 
than 95.5 g?

(b) Approximately what percent of all eggs should weigh 
between 79 and 84.5 g?

(c) Approximately what weight would place an egg among the 
largest 2.5%?

(d) Explain why you would be very surprised to find a turkey 
egg that weighed only 72 g.

 46. Investors often consider volatility before buying stocks. Volatil-
ity is essentially the standard deviation of historical price fluc-
tuations, expressed as a percent of the stock’s price. Analysts 
use a Normal model to describe market projections. Suppose a 
certain stock has an annual volatility of 4% and is projected to 
increase by 7% this year.

(a) What’s the approximate probability of the stock’s value 
dropping by more than 1%?

(b) What’s the approximate probability of the stock’s value 
increasing by between 3% and 15%?

(c) What change in the stock’s price would represent approxi-
mately the worst 16% of anticipated outcomes?

(d) Explain why an investor would be foolish to daydream of a 
20% increase in this stock’s price.
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Standardized Test Questions
 47. True or False The median is strongly affected by outliers. 

Justify your answer.

 48. True or False The length of the box in a boxplot is the 
interquartile range. Justify your answer.

You may use a graphing calculator when solving Exercises 49–52.

 49. Multiple Choice The plot of a Normal distribution will be

(A) symmetric.

(B) skewed left.

(C) skewed right.

(D) lower in the middle than at the ends.

(E) of no predictable shape.

 50. Multiple Choice A frequency table for a set of 25 quiz 
grades is given below. What is the mean of the data?

Quiz Grade 10 9 8 7 6 5 4 3 2 1
Number of Students  3 3 5 6 4 3 1 0 0 0

(A) 7.00

(B) 7.28

(C) 7.35

(D) 7.60

(E) 7.86

 51. Multiple Choice Professor Mitchell grades the exams of 
his 30 students and finds that the scores have a mean of 81.3 
and a median of 80.5. He later determines that the top student 
deserves 9 extra points for a misgraded proof. After the error is 
corrected, the scores have

(A) a mean of 81.3 and a median of 80.5.

(B) a mean of 81.6 and a median of 80.5.

(C) a mean of 81.6 and a median of 80.8.

(D) a mean of 90.3 and a median of 80.5.

(E) a mean of 90.3 and a median of 89.5.

 52. Multiple Choice If the calorie contents of robin eggs are 
normally distributed with a mean of 25 and a standard devia-
tion of 1.2, then approximately 95% of all robin eggs should 
have a calorie content in the interval

(A) 321.4, 28.64 .
(B) 322, 284 .
(C) 322.6, 27.44 .
(D) 323, 274 .
(E) 323.8, 26.24 .

Explorations
 53. Group Activity List a set of data for which the inequality holds.

(a) Median 6 mean

(b) Mean 6 median

 54. Group Activity List a set of data for which the equation or 
inequality holds.

(a) Standard deviation 6 interquartile range

(b) Interquartile range 6 standard deviation

 55. Draw a boxplot for which the inequality holds.

(a) Median 6 mean

(b) 2 * interquartile range 6 range

(c) Range 6 2 * interquartile range

 56. Construct a set of data with median 5 and mean 7.

Extending the Ideas
Weighting Data by Population The average life expectancies for 
males and females in 12 South American nations were given in Table 
10.13 (page 717). To find an overall average life expectancy for males 
or females in all of these nations, we would need to weight the national 
data according to the various national populations. Table 10.23 is an 
extension of Table 10.13, showing the populations (in millions). Assume 
that males and females appear in roughly equal numbers in each nation.

Table 10.23 Life Expectancy by Gender and
Population (in millions) for 12 Nations
of South America

Nation Male Female Population

Argentina 73 80 42.2
Bolivia 65 69 11.0
Brazil 71 79 203.7
Chile 76 81 17.9
Colombia 72 79 49.5
Ecuador 72 78 16.2
Guyana 64 69 0.8
Paraguay 70 74 7.0
Peru 72 78 30.2
Suriname 68 74 0.5
Uruguay 73 80 3.4
Venezuela 72 78 31.3

Sources: World Health Organization, 2015.

In Exercises 57 and 58, use the data in Table 10.23 to find the mean life 
expectancy for each group.

 57. Women living in South American nations

 58. Men living in South American nations

 59. Quality Control A plant manufactures ball bearings to the 
purchaser’s specifications, rejecting any output with a diameter 
that deviates more than 0.1 mm from the specified value. The 
variability in such processes can be modeled by a Normal 
curve. If the ball bearings are produced with the specified mean 
and a standard deviation of 0.05 mm, what percentage of the 
output will be rejected?

 60. Quality Control A machine 
fills 12-oz cola cans with a 
mean of 12.08 oz of cola and a 
standard deviation of 0.04 oz 
The variability in such pro-
cesses can be modeled by a 
Normal curve. Approximately 
what percentage of the cans 
will actually contain less than  
the advertised 12 oz of cola?
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What you’ll learn about
• Probability Models and Expected 

Values

• Binomial Probability Models

• Normal Model

• Normal Approximation for Binomial 
Distributions

... and why
These topics enable us to decide on 
the best course of action when 
events unfold randomly, and to rec-
ognize when an outcome is so 
unusual that it provides evidence of 
an important phenomenon.

As we’ve said before, the aim of Statistics is to find meaning in data. In Sections 10.2 
and 10.3 you’ve taken the first steps: You’ve learned to describe data. You can now 
create informative displays, calculate summary statistics, and write appropriate conclu-
sions. One important step remains: comparing what you see in the data to what you 
expected might happen.

• A medical experiment tests a drug to determine whether it is effective for treating a 
certain condition. The subjects, 50 adults who have the condition, are randomly 
divided into two groups of 25. One group takes the drug for a month, and the other 
group takes a placebo (an identical-looking but inert pill). At the end of the month a 
doctor examines all the patients and finds improved conditions in 16 of the subjects 
who took the drug and in 10 of those who were given the placebo. If the drug is not 
effective, we’d expect the outcomes in the two groups to be the same. Does the 
somewhat better result among subjects who took the drug provide evidence that the 
drug actually worked, or could a difference like this just happen by chance? You’ll 
learn how to investigate that question in Section 10.5.

• You watch someone toss a coin 100 times. You expect that fair tossing will yield 
about 50 heads and 50 tails, but this person tosses 66 heads and only 34 tails. Could 
the tosser be cheating somehow? If the outcome had been 54 heads and 46 tails, you 
would probably think nothing of it. And if it had been 95 heads and 5 tails you’d be 
pretty sure that the tossing was not being done fairly. But is 66 heads vs. 34 tails 
evidence of foul play? You’ll learn to answer this question in this section.

To think clearly about comparing the results we observe to those we expected, we need 
to understand probability models.

Probability Models and Expected Values
If you roll a die 5 times and get the results 52, 6, 1, 5, 56 , the average outcome is 
x = 12 + 6 + 1 + 5 + 52>5 = 3.8. That’s the average of the data in this sample, 
something you already know how to find. Now we ask a different question: For all pos-
sible rolls of a die, what do we expect the average result to be in the long run? This 
question is not about the statistic x (the sample mean). It’s about the theoretical popula-
tion mean, the parameter m. You might find out by simply averaging the faces of the 
die: 11 + 2 + 3 + 4 + 5 + 62>6 = 3.5. This suggests that in the long run, when 
rolling a fair die, we expect the result to average 3.5. That’s correct, but the calculation 
works only because the six faces are equally likely to appear. What if the die is 
“loaded”—weighted so that some faces are more likely to turn up than others? To deal 
with that, we need a probability model for the random variable of die outcomes. We 
start with some definitions.

10.4 Random Variables and Probability Models

DEFINITION Random Variable

A random variable is a function that assigns a numerical value to each outcome 
in a sample space associated with some random phenomenon.

We denote random variables by capital letters, such as X, and the values they can 
assume by subscripted lower case letters, such as 5x1, x2, c , xn6 . If the random vari-
able X = the result of rolling a die, then X can have the values 51, 2, 3, 4, 5, 66 .

Many Random Variables?
We need to distinguish between an outcome in a 
sample space and the number assigned to it. For 
instance, an outcome of rolling two dice is really 
something like  . .  . , A random variable might 
assign to this outcome the number 2 + 1 = 3. 
A different random variable could assign to the 
same outcome the number 2 # 1 = 2, and yet 
another random variable might assign to it the 
number 21.
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Table 10.24 shows the probability model for a fair die:

DEFINITION Probability Model

A probability model is a random variable X together with a function that 

assigns to each possible outcome a probability P1xi2 such that a
n

i=1
P1xi2 = 1.

Table 10.24 The Probability Model for Rolling a Fair Die

X 1 2 3 4 5 6

P1X2 1
6

1
6

1
6

1
6

1
6

1
6

Earlier we calculated the mean by just adding the faces and dividing by 6. Distributing 
the denominator to each term provides an equivalent way to calculate this long-run 
average, which is the expected value of the random variable:

1 + 2 + 3 + 4 + 5 + 6
6

= 1a1
6
b + 2a1

6
b + 3a1

6
b + 4a1

6
b + 5a1

6
b + 6a1

6
b = 3.5

Expected Value of a Random Variable

If X is a random variable with probability function P1X2, the mean of the  
probability model 1m2 is the expected value of X, denoted E1X2. The  
expected value is the sum of the values of X times their corresponding 
probabilities:

m = E1X2 = a
n

i=1
xi

# P1xi2

A Loaded Die
A die is loaded to favor faces 5 and 6, as shown in the probability model below 
(Table 10.25). Find the expected value for this die and explain what that means.

EXAMPLE 1 

Table 10.25 A Probability Model for Rolling a Loaded Die

X 1 2 3 4 5 6

P1X2 0.1 0.1 0.1 0.1 0.2 0.4

SOLUTION The expected value is

 E1X2 = 110.12 + 210.12 + 310.12 + 410.12 + 510.22 + 610.42
 = 4.4.

If this die were tossed repeatedly, we would expect the long-run average of the out-
comes to be 4.4. Now try Exercise 1.

Note that the expected value calculation is simply a weighted average, as seen in  
Section 10.3.
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Sometimes we must do some probability calculations in order to create the model.

A Raffle
As a fundraiser, a student group sells 500 raffle tickets for $2 each. At the drawing, 
the top prize will be a gift certificate for $100. Second prize will be a $50 gift certifi-
cate, and there will be five third prizes, each a $20 gift certificate.

(a) Create a probability model for the raffle.

(b) Find the expected value of a ticket.

(c) Explain what the expected value means.

SOLUTION 

(a) The probability model (Table 10.26) lists all possible outcomes for a ticketholder 
(1st, 2nd, 3rd, or no prize), the value of each (taking into account the $2 paid for 
the ticket), and the corresponding probabilities.

EXAMPLE 2 

Table 10.26 The Probability Model for a Raffle

Outcome 1st Prize 2nd Prize 3rd Prize No prize

X = value 98 48 18 -2

P1X2 1
500

1
500

5
500

493
500

(b) The expected value is

 E1X2 = 98a 1
500
b + 48a 1

500
b + 18a 5

500
b + 1-22a493

500
b

 = -1.5.

(c) People who buy these raffle tickets lose an average of $1.50 each.
 Now try Exercise 3.

Check your model
It’s easy to overlook the outcome “No prize,” but 
without it the probabilities do not add up to 1. 
Verifying the sum is an important way to check a 
probability model.

Calculating the Probabilities for the Model
To attract more players on weekdays, a golf course offers players a chance at a Lucky 
Ace discount. When a player signs in, the manager shuffles the four aces and lays 
them face down on the counter. The player turns one card over. If it’s the ace of dia-
monds, the player golfs for free, saving the usual $50 fee. If it’s the ace of hearts, the 
player gets to turn over another card. If this second one is the ace of diamonds, the 
round of golf is half price. If either the first or second card is one of the black aces, 
the player gets a $10 discount. What’s the expected cost of a round of weekday golf?

SOLUTION First we find the probabilities of each outcome, letting D = diamonds, 
H = hearts, and B = black.

 P1D2 =
1
4

 P1H, then D2 =
1
4

# 1
3

=
1
12

 P1H, then B2 =
1
4

# 2
3

=
1
6

 P1B2 =
2
4

=
1
2

We check to be sure the probabilities total 1:

1
4

+
1
12

+
1
6

+
1
2

=
3
12

+
1
12

+
2
12

+
6
12

=
12
12

.

EXAMPLE 3 

(continued)
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Binomial Probability Models
Some probability models generalize to describe a wide range of random phenomena. In 
Section 10.3 you saw one example: the Normal curve. We’ll explore that model in 
more detail later in this section. Another common probability model describes random 
variables that count the number of successes in repeated trials of a simple event.

The probability model is shown in Table 10.27.

Table 10.27 The Probability Model for the Lucky Ace Discount

Outcome D H, then D H, then B B

X = cost 0 25 40 40

P1X2 1
4

1
12

1
6

1
2

With the Lucky Ace discount, the expected cost of a round of golf is

E1X2 = 0a1
4
b + 25a 1

12
b + 40a1

6
b + 40a1

2
b = $28.75.

 Now try Exercise 13.

Service Contracts

An office manager must decide whether to purchase a service plan for the copy-
ing machine. Past experience suggests this distribution (Table 10.28) for the 
annual number of service calls:

The options are

  •  Plan A: Pay a flat fee of $350 for the year and any service calls are free.

  •  Plan B: Pay $250 per service call.

  •  Plan C: Pay a $300 fee; then the first service call is free and any others cost 
$60 each.

Which of the three plans should the office manager expect would cost the least? 

EXPLORATION 1 

Table 10.28 The Distribution of Copier Service Calls Annually

No. of calls 0 1 2 3
Probability 0.2 0.4 0.3 0.1

Tumbling Dice
We roll a fair die four times. Find the probability that we roll

(a) All 3’s.     (b) No 3’s.     (c) Exactly two 3’s.

SOLUTION 

(a) We have a probability 1>6 of rolling a 3 each time. By the Multiplication  
Principle, the probability of rolling a 3 all four times is 11>624 ≈ 0.00077.

(b) There is a probability 5>6 of rolling something other than 3 each time. By 
the Multiplication Principle, the probability of rolling a non-3 all four times is 
15>624 ≈ 0.48225.

EXAMPLE 4 
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Recall that when we summarize any distribution, we’re always interested in shape, cen-
ter, and spread. For a binomial random variable, the easiest of these to understand is 
center. If, overall, Michael makes 90% of his free throws, what’s the expected number 
he’ll make when he takes 20 shots? It seems as though 90% of 20 = 18 should be the 
correct mean, but this simple calculation that multiplies the number of trials by the 
probability of success is not a formal calculation of the expected value. We investigate 
this shortcut with an easier example.

(c) The probability of rolling two 3’s followed by two non-3’s (again by the Multi-
plication Principle) is 11>62215>622 ≈ 0.01929. However, that is not the only 
outcome we must consider. In fact, the two 3’s could occur on any two of the 

four rolls, in exactly a4
2
b = 6 ways (listed at the left). That gives us 6 outcomes, 

each with probability 11>62215>622. The probability of the event “exactly two 

3’s” is therefore a4
2
b11>62215>622 ≈ 0.11574. Now try Exercise 17a.

Outcomes
33NN
3N3N
3NN3
N33N
N3N3
NN33

The random variable that counts the number of 3’s we get when we roll a die repeat-
edly has a binomial probability distribution.

DEFINITION Binomial Probability Distribution

Consider a simple event with these properties:

• Each trial has two possible outcomes, called success and failure.

•  The probability of success on each trial is the same. (We denote the probabil-
ity of success as p and the probability of failure as q. Note that q = 1 - p.)

• The trials are independent.

Let random variable X = the number of successes in n trials. Then the proba-
bility model for X is called the binomial distribution, and the probability of 

getting k successes in the n trials is P1X = k2 = an
k
bpkqn-k.

Shooting Free Throws
Suppose Michael makes 90% of his free throws. If he shoots 20 free throws, and if 
his chance of making each one is independent of the other shots (an assumption you 
might question in a game situation), what is the probability that he makes

(a) All 20?    (b) Exactly 18?    (c) At least 18?

SOLUTION We compute three binomial probabilities:

(a) P120 successes2 = 10.9220 ≈ 0.12158

(b) P118 successes2 = a20
18
b10.921810.122 ≈ 0.28518

(c) P1at least 18 successes2 = P1182 + P1192 + P1202
 = a20

18
b10.921810.122 + a20

19
b10.9219 10.12 + 10.9220

     ≈ 0.6769 Now try Exercise 17b and c.

EXAMPLE 5 Binomial Probabilities on a 
Calculator
Your calculator might be programmed to find 
values for the binomial probability distribution 
function (binompdf). The solutions to Example 5 
in one calculator’s syntax, for example, could be 
obtained as follows:
(a)  binompdf120, .9, 202 120 repetitions,

0.9 probability, 20 successes2
(b)  binompdf120, .9, 182 120 repetitions, 0.9 

probability, 18 successes2
(c)  1 - binomcdf120, .9, 172 11 minus 

the cumulative probability of 17 or fewer 
successes2

Check your owner’s manual for more  
information.
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Note that the expected value of 20 correct answers by just guessing is the mean, so in a 
large class of chimpanzees some “students” would get scores higher than 20 (and, of 
course, some lower). How lucky might some chimp get? To gauge that, we need to 
know how much variation there is in scores achieved by guessing. We measure spread 

Expected Value and Binomial Distributions
A fair coin is flipped five times. What is the expected number of heads?

SOLUTION Let random variable X = the number of heads when 5 coins are tossed. 
Then X takes on the values 50, 1, 2, 3, 4, 56 , and the probability model is a binomial 
distribution.

For example, P1X = 22 = a5
2
b11>22211>223 = 10>32. The rest of the model is 

shown in Table 10.29.

The expected value is

E1X2 = 0a 1
32
b + 1a 5

32
b + 2a10

32
b + 3a10

32
b + 4a 5

32
b + 5a 1

32
b = 2.5.

 Now try Exercise 54a and b.

EXAMPLE 6 

Table 10.29 The Probability Model for the Number of Heads 
When Tossing 5 Coins

X 0 1 2 3 4 5

P1X2 1
32

5
32

10
32

10
32

5
32

1
32

Half a Head?
No, we do not “expect” to ever get 2.5 heads 
when we toss five coins; that’s impossible. This 
is the long-run average. We expect that if we 
were to toss five coins many, many times, the 
average number of heads would be about 2.5.

The expected number of heads turns out to be exactly what the shortcut of multiplying 
the number of trials by the probability of success predicts: 510.52 = 2.5. We state the 
general case as a theorem

THEOREM Expected Value for a Binomial Distribution

If the binomial random variable X counts the number of successes in n indepen-
dent trials with probability of success p, then m = E1X2 = np.

In Example 5, Michael makes 90% of his free throws. If he shoots 20 free throws, we 
would expect him to make np = 2010.902 = 18 shots.

A Chimpanzee Takes Organic Chemistry
A chimpanzee is shown 100 questions from a multiple-choice test in organic chemis-
try. As each question appears on a screen, the chimp randomly presses one of five 
buttons (A, B, C, D, or E) to indicate its answer. What is the chimp’s expected score 
on the test?

SOLUTION If we assume the chimpanzee is unfamiliar with the material, does not 
read well, and is equally likely to press any of the answer buttons, the number of cor-
rect answers it will get is a binomial random variable with 100 independent trials and 
a probability of success p = 1>5. The expected number of correct answers is 
10011>52 = 20.
(Of course, this does not mean that the chimp knows 20% of organic chemistry. See 
the margin note.) Now try Exercise 25a.

EXAMPLE 7 The “Penalty” for Guessing
You may know that some standardized tests are 
scored with a so-called “guessing penalty  
formula.” For a test with five options, as in 
Example 7, the formula for R right answers and 
W wrong answers would be R - 11>42W . A 
chimp with the expected score of 20 would get 
an adjusted score of 20 - 11>4280 = 0. That’s 
a more accurate reflection of what the chimpan-
zee actually knew about organic chemistry, not 
really a penalty of any kind.
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Notice that we calculated these Normal probabilities by identifying intervals in terms 
of the number of standard deviations from the mean. Such units are called z-scores.

with standard deviation, and for binomial random variables we can determine that with 
a shortcut, as we did for the mean. This time, though, it’s not so intuitively obvious. We 
present the theorem here, and we will let you investigate further in the exercises.

THEOREM Standard Deviation for a Binomial Distribution

If the binomial random variable X counts the number of successes in n indepen-
dent trials with probability of success p, then the standard deviation of X is 
s = 2npq.

Variation in Chimpanzee Scores
If many chimpanzees take the 100-question multiple-choice test in organic chemistry, 
what is the standard deviation of the number of correct answers they would get?

SOLUTION Again we have the binomial random variable X = the number of correct 
answers on n = 100 questions with probability of success p = 1>5. The standard 
deviation of the number of correct answers is s = 2npq = 210010.2210.82 = 4.
 Now try Exercise 25b.

EXAMPLE 8 

With a mean of 20 correct answers and a standard deviation of 4, some lucky chimpan-
zees might be able to get 25 questions (or slightly more) right, but it seems that actually 
passing the test would be well out of reach.

Normal Model
In Section 10.3, when we first presented the Normal model, you learned the 68-95-99.7 
Rule. This handy guideline says that when data appear to be approximately normally 
distributed, about 68% of observations should fall within ±1 standard deviation of the 
mean, 95% within ±2 standard deviations, and 99.7% within ±3 standard deviations 
of the mean. These rules of thumb arise from looking at the area under a Normal curve 
that describes the probability model for a continuous random variable that is normally 
distributed. Calculators have a function that calculates such areas more accurately  
(Figure 10.24).

normal cdf (–1, 1)
 .6826894809

y

x

  

normal cdf (–2, 2)
 .954499876

y

x

  

normal cdf (–3, 3)
 .9973000656

y

x

Figure 10.24 A calculator finds more accurate Normal model areas than those  
approximated by the 68-95-99.7 Rule.

Continuous Random Variable
In Example 11 on page 728 we applied the 
68-95-99.7 Rule to the weights of loon chicks. 
These weights are values of a continuous  
random variable because a loon chick can  
assume any real number weight in an interval. 
Because Normal random variables are continu-
ous, their probability distributions are described 
using continuous curves.
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DEFINITION z-Score

A z-score measures distance from the mean in standard deviation units. If a ran-
dom variable X has mean m and standard deviation s, then for a given value of X,

z =
x - m
s

.

If we know that it’s appropriate to use a Normal model, we can use z-scores to find prob-
abilities. We identify the interval of interest by specifying the z-score for each endpoint, 
for example: 1.2 6 z 6 2.3. If we’re interested in an unbounded interval such as z 7 2, 
we simply specify a very extreme value such as 99 for the missing endpoint. With 
99.73% of the area in the interval -3 6 z 6 3, there’s virtually nothing beyond z = 99.

Finding Normal Probabilities
According to the National Health and Nutrition Examination Survey (NHANES), the 
heights of adult American men can be described by a Normal model with a mean of 
69.2 in. and standard deviation of 2.8 in. What’s the probability that a randomly 
selected adult American male is

(a) between 65 and 70 in. tall?

(b) over 6 ft tall?

(c) shorter than 5 ft 6 in. tall?

SOLUTION 

(a) First we find the z-scores:

 z =
65 - 69.2

2.8
= -1.5

 z =
70 - 69.2

2.8
≈ 0.29

Using the calculator, P1-1.5 6 z 6 0.292 = 0.547.

(b) For x = 72, z =
72 - 69.2

2.8
= 1.0

P1x 7 722 = P1z 7 12 = 0.159

(Note that the 68-95-99.7 Rule  
estimates that about 16% of adult  
American males should be more than  
1 standard deviation above average 
in height.)

(c) For x = 66, z =
66 - 69.2

2.8
= -1.14.

 We can use a calculator (without  
rounding off the z-score) to find 
P1x 6 662 ≈ 0.127.

 Now try Exercise 33.

EXAMPLE 9 

65 7069.2

normalcdf (1, 99)
 .1586552596

66 69.2
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Normal Approximation for Binomial Distributions
A binomial model and a Normal model are quite different. Binomial random variables 
are discrete: When tossing a coin, we can have only a whole number of heads. Normal 
random variables, on the other hand, are continuous: Heights can (and as you grow, 
they must) take on any value. Binomial random variables are bounded; in n trials, the 
number of successes must be between 0 and n. A Normal model extends without bound 
in either direction. Despite these differences, a binomial probability distribution based 
on a sufficiently large number of trials is approximately Normal. Figure 10.26a shows 
the binomial distribution for the number of 3’s seen in 10 rolls of a fair die. Because it 
is skewed to the right, a Normal model is not appropriate. In Figure 10.26b the number 
of rolls is increased to 100. The superimposed Normal curve is barely discernible, 
showing how good the approximation is now.

In each of the applications in Example 9 we have used a Normal model to find the 
probability that certain z-scores occur. It’s also possible to reverse the process: We can 
find the z-score that corresponds to a certain probability using the calculator’s inverse 
Normal function. Figure 10.25 shows that the bottom 90% of a Normal distribution is 
less than about 1.28 standard deviations above the mean. In other words, z = 1.28 rep-
resents the 90th percentile for a normally distributed random variable. A calculator’s 
inverse Normal function can find the z-score corresponding to any percentile.

Finding Normal Percentiles
Heights of adult American men can be described by a Normal model with a mean of 
69.2 in. and standard deviation of 2.8 in.

(a) The shortest 20% of American men are less than what height?

(b) How tall are the tallest 1% of American men?

SOLUTION 

(a) Using the calculator’s inverse Normal function, we find the 20th percentile at 
z = -0.842. This represents a height that is 0.842 standard deviation below the 
mean: 69.2 - 0.84212.82 ≈ 66.8 in. The shortest 20% of adult American men 
are less than 5 ft 6.8 in. tall.

(b) The cutoff height for the tallest 1% of all men is the 99th percentile, and the  
calculator finds that z-score to be z = 2.326. The height that is 2.326 standard 
deviations above average is 69.2 + 2.32612.82 ≈ 75.7 in. The tallest 1% of 
adult American men are over 6 ft 3.7 in. tall. Now try Exercise 35.

EXAMPLE 10 

invNorm (0.90)
 1.281551567

Figure 10.25 A calculator finds the 
z-score for the 90th percentile in a 
Normal distribution.

(a)   (b)

Figure 10.26 The binomial distribution for the number of 3’s in 10 rolls of a fair 
die (a) is skewed to the right, far from Normal. When there are 100 rolls (b), a Normal 
curve approximates the binomial distribution very well.
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The number of trials required for a Normal model to approximate a binomial distribu-
tion well depends on the probability of success. If p = 0.5, the binomial distribution is 
symmetric, an important attribute of normality, so a relatively small number of trials is 
sufficient. But if (as in the case of the die) p is far from 0.5, the binomial distribution 
will be skewed, and many more trials are needed. In one of the exercises you can 
explore why the following rule of thumb works.

Success-Failure Rule

If we expect at least 10 successes and 10 failures 1np Ú 10 and nq Ú 102, then 
the binomial distribution for the number of successes can be approximated by a 
Normal model with m = np and s = 2npq.

At the beginning of this section we posed a question about coin tosses. If you watch a 
person toss a coin 100 times and get 66 heads with only 34 tails, should you be suspi-
cious that the tosser is cheating somehow? The distribution of the number of heads is 
binomial, with n = 100 and p = 0.5. Because we expect 10010.52 = 50 heads and 
10010.52 = 50 tails, both at least 10, the distribution is approximately Normal. 
This  Normal model has mean m = np = 10010.52 = 50 and standard deviation  
s = 2npq = 210010.5210.52 = 5. In this model, 66 heads would be z = 3.2 stan-
dard deviations above the mean, a highly unusual result if the coin is being tossed 
fairly. This does not prove the tosser is cheating, but you would have every right to be 
very suspicious.

Outcomes like this, which are so unusual as to cast doubt on the underlying assump-
tions, are said to be statistically significant.

A Lucky Chimpanzee?
In Examples 7 and 8 we imagined chimpanzees choosing 1 of 5 answers at random 
on a 100-question multiple-choice test in organic chemistry. How high a score might 
a lucky chimpanzee be likely to get?

SOLUTION Guessing among five choices makes the number of correct answers a 
binomial random variable with n = 100 and probability of success p = 1>5.

We expect np = 10011>52 = 20 correct answers and nq = 10010.82 = 80 wrong 
answers. Because both are at least 10, this binomial probability distribution is approx-
imately Normal, with mean m = np = 20 and standard deviation s = 2npq =210010.2210.82 = 4. About 95% of all chimps should guess 20 ± 2142 answers 
correctly, earning scores between 12 and 28. Any score above 28 could be statisti-
cally significant evidence that the chimp actually understood something about 
organic chemistry or, more likely, that someone was helping with the answers. It 
would be highly unusual for a chimp to get more than 20 + 3142 = 32 answers 
right, and actually passing is so many standard deviations above average as to be vir-
tually impossible. Now try Exercise 39.

EXAMPLE 11 True-False
Suppose that instead of multiple choice, the test 
given to the chimps consisted of 100 true-false 
questions. Then the expected number of cor-
rect answers would be np = 10010.52 = 50 

and the standard deviation would be 2npq =  210010.5210.52 = 5. A passing score of 60 
would be 2 standard deviations above the mean. 
The 68-95-99.7 Rule estimates that even 2.5% of 
chimpanzees could pass this true-false test!
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CHAPTER OPENER Problem, part 2 (from page 692)

Problem: Are some lottery numbers more likely to win than others? That’s the 
impression one might get from historical data for Wisconsin’s Megabucks game, 
in which players choose 6 numbers from 1 to 49. Between the first drawing on 
June 21, 1992, and the 2205th drawing on July 27, 2013, a total of 13,230 numbers 
were chosen. The number 9 was a winner more often than any other, 295 times in 
all. Could this be just random variation, or is there statistically significant evidence 
that 9 actually is a lucky number?

Solution: Let the random variable X = the number of 9’s in n = 13,230 trials. 
The probability of drawing a 9 is p = 1>49, assuming all the lottery numbers are 
equally likely to appear.

We expect far more than ten of the numbers to be 9’s and even more not to be, so 
we can approximate the distribution of X with a Normal model.

We’d expect a mean of m = np = 13,23011>492 = 270 nines, with a standard 

deviation of s = 2npq = 213,23011>492148>492 ≈ 16.26.

The z-score for 295 9’s is z =
295 - 270

16.26
≈ 1.54.

An outcome 1.54 standard deviations above the mean is somewhat higher than 
expected, but not unusually so. Seeing the number 9 come up 295 times is not sta-
tistically significant. This result can be explained simply by random variation, so it 
is not evidence that there are lucky lottery numbers.

In Exercises 1–6, tell how many outcomes are possible for the ran-
dom phenomenon.

 1. A single coin is tossed.

 2. A coin is tossed 3 times.

 3. The number of heads when 3 coins are tossed.

 4. A set of 5 winning lottery numbers is chosen from 1– 44.

 5. Three different cards are drawn from a deck.

 6. Five teammates line up for a photograph.

In Exercises 7–10, evaluate the expression by hand. Verify your answer 
with a calculator.

 7. a4
2
b  8. a10

0
b

 9. a8
3
b  10. a100

98
b

QUICK REVIEW 10.4 (Prerequisite skill Section 9.1)

SECTION 10.4 Exercises

 4. A 6-sided die has been weighted so that face 6 will come up 
60% of the time. If the remaining faces are all equally likely to 
appear, what’s the expected value of a roll of this die?

 5. Many children’s games use spinners. Suppose a spinner has 5 
regions numbered 1–5. Regions 1, 2, and 3 are each a quarter-
circle, and regions 4 and 5 divide the remaining area equally. 
What’s the expected value of a spin?

 6. Some fantasy games use a 12-sided die. Suppose one such die 
has a 1 on seven of the faces, a 5 on three faces, and 10’s on 
the remaining two faces. What’s the expected value of a roll of 
this die?

 1. Find the expected value of this random variable:

X 10 20 30

P1X2 0.5 0.3 0.2

 2. Find the expected value of this random variable:

X 2 4 6 8

P1X2 0.1 0.2 0.3 0.4

 3. A game involves earning points by rolling a special 6-sided die 
that says 5 on three faces, 10 on two, and 25 on the sixth face. 
What’s the expected number of points a player will earn by 
rolling this die?
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 7. At a carnival, people pay The Great Flubini $2 each to try to 
guess their weights within 5 lb. If he guesses successfully, no 
prize is given. If he is off from 5 to 10 lb, participants get a 
prize worth $5. If he is off by more than 10 lb, participants get 
a $10 prize. The Great Flubini is correct 72% of the time, off 
from 5 to 10 lb 21% of the time, and off by more than 10 lb 7% 
of the time. If The Great Flubini guesses the weights of 300 
visitors per day, on average, is the carnival making money or 
losing money? How much per day?

 8. For $5, a carnival huckster will let you draw a card at random 
from a fair deck of 52. He will pay you a dollar times the value 
of your card 1ace = 12, but zero for a face card. What is the 
expected value of the payoff? Would you pay $5 to play this 
game?

 9. A bag contains twenty numbered balls. Five of the balls have 
the number 1 on them. Three balls have the number 2 on them. 
Seven balls have the number 3 on them. Four balls are marked 
with a 4. One ball has a 5 on it. Let Y be the random variable 
that gives the number on a ball chosen at random from the bag.

(a) Show the probability distribution for Y in a table.

(b) Calculate the expected value for Y.

 10. A circular spinner consists of eight identical sectors. The spin-
ner is equally likely to land in any of the eight sectors. Four of 
the eight yield no payout at all if the spinner lands there. Three 
of the eight pay $6 if the spinner lands there. One sector pays 
$10. It costs $5 to spin the spinner once. Use expected value to 
determine whether it is a wise idea to play this game.

 11. A three-year extended warranty on a laptop computer is offered 
for $79. Consumer reports show that typically, 4% of owners 
incur a $200 repair in that time and 1% of owners incur a $300 
repair in that time. Does the extended warranty have a positive 
expected value for the consumer who purchases it?

 12. For an extra $49 you can buy extended warranty protection on 
your new HDTV for three years. If the set requires mainte-
nance during that time, it will be free. You estimate that there is 
a 5% chance that you might need a $300 repair within three 
years and a 1% chance that you will need a $500 repair, but the 
chances are 94% that you will need no repair at all. Based on 
expected values, should you purchase the extended coverage?

 13. A married couple decides to have children until they get a girl, 
but they agree that they will not have more than 3 children even 
if all are boys.

(a) Assuming that boy and girl children are equally likely, cre-
ate a probability model for the number of children such 
couples may have.

(b) Find the expected number of children for these couples.

 14. In basketball, a player shooting “one-and-one” takes one foul 
shot, and if he makes the first one, he gets to shoot a second 
shot. Suppose that, overall, a certain player makes 80% of his 
foul shots.

(a) Create a probability model for the number of points the 
player may score on a one-and-one opportunity.

(b) Find the expected number of points.

 15. Games are considered “fair” if the expected value is 0. Suppose 
you pay $5 to draw a card from a deck. If it’s black, you lose. 
If it’s a heart, you win your $5 back. If it’s any diamond except 
the ace, you win $10. In order to make the game fair, what 
should be the prize for drawing the ace of diamonds?

 16. A state’s Daily Number lottery game offers a $250 payout on a 
50-cent ticket. To play, a person selects a 3-digit number. If the 
same number is drawn randomly by the state lottery that day, 
the person wins. On a typical day the state sells a million of 
these tickets. Find the state’s expected daily profit.

 17. You roll 4 dice. Find the probability of each of these outcomes.

(a) Exactly one 6

(b) Exactly two 6’s

(c) At least two 6’s

 18. You toss 10 coins. Find the probability of each of these outcomes.

(a) Exactly 5 heads

(b) Exactly 8 heads

(c) At least 8 heads

 19. Suppose a basketball player can make 80% of her foul shots. If 
she gets 6 foul shots during a game, find the probability that 
she makes

(a) exactly 5 of them.

(b) no more than 2 of them.

 20. About 12% of people are left-handed. Find the probability of 
each of these outcomes among a class of 15 students.

(a) Exactly 3 are left-handed.

(b) No more than 2 are left-handed.

 21. Suppose that the traffic light at the driveway leading into your 
school is red for 40% of its green-yellow-red cycle. During a 
10-day period, what is the probability that your school bus has 
to stop there

(a) on exactly 5 days?

(b) on at least 8 days?

 22. The American Red Cross reports that 11% of people have Type 
B blood. Find the probability that among 12 donors

(a) exactly 1 is Type B.

(b) at least 2 are Type B.

 23. Writing to Learn We will roll a single 6-sided die.

(a) Let random variable X = the number that comes up. 
Explain why the probability model for X is not binomial.

(b) In the context of rolling the die, define a random variable 
that would have a binomial probability model.

 24. Writing to Learn We will draw one card from a deck.

(a) We assign 1 point to the aces, 10 points to any face card, 
and points equal to the number on the card to the rest. Let 
random variable X = the number of points on the card 
we draw. Explain why the probability model for X is not 
binomial.

(b) In the context of drawing a card, define a random variable 
that would have a binomial probability model.
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 25. A baseball player with a career batting average of .300 comes 
up to bat 75 times in a month.

(a) What is the mean number of hits such players should get?

(b) What is the standard deviation?

 26. The probability a certain archer can hit the bull’s-eye is 0.85. If 
she shoots 50 arrows, what are the mean and standard deviation 
of the number of bull’s-eyes she might make?

 27. Writing to Learn On your math test, students averaged 82, 
with a standard deviation of 7 points. The English test scores 
averaged 86, with a standard deviation of only 4 points. You 
earned a 98 on each test. (Congratulations!) Explain which per-
formance was actually better.

 28. Writing to Learn One of the athletes at a track meet ran 
the 100-m dash in 10.2 sec and had a long jump of 22 ft. His-
torical records indicate that competitors this age (1) average 
10.4 sec for the dash, with a standard deviation of 0.3 sec, and 
(2) average 20 ft in the long jump, with a standard deviation of 
2.5 ft. Which performance by this athlete was better?

 29. Find each Normal probability using a calculator.

(a) P1z 7 1.52
(b) P1z 6 0.752
(c) P1-1.8 6 z 6 -0.52

 30. Find each Normal probability using a calculator.

(a) P1z 7 -1.22
(b) P1z 6 -0.62
(c) P1-2 6 z 6 1.252

 31. Use a calculator to find the z-score(s) bounding each region in 
a Normal distribution.

(a) The top 3%

(b) The 60th percentile

(c) The middle 80%

 32. Use a calculator to find the z-score(s) bounding each region in 
a Normal distribution.

(a) The 15th percentile

(b) The top 8%

(c) The middle 90%

 33. The distribution of heights of American women is approxi-
mately Normal, with a mean of 63.8 in. and a standard devia-
tion of 2.8 in. Find the probability of each.

(a) A randomly selected woman is taller than 5 ft 10 in.

(b) A randomly selected woman is shorter than 5 ft 6 in.

 34. SAT scores are modeled by a Normal curve with a mean of 500 
and standard deviation of 100. Find the probability that a ran-
domly selected student attained these scores.

(a) At least 650

(b) No more than 420

 35. Given the distribution of women’s heights described in  
Exercise 33, how tall are the shortest 5% of all adult American 
women?

 36. Given the distribution of SAT scores described in Exercise 34, 
above what value are the highest 2% of all SAT scores?

 37. A certain brand of AAA batteries lasts an average of 13 hr, 
with a standard deviation of 1.2 hr. The lifespans can be 
described by a Normal model.

(a) What fraction of these batteries should last at least 10 hr?

(b) What’s the probability that a battery will last between 14 
and 15 hr?

(c) The company wants to guarantee that these batteries will 
last a certain length of time. What guaranteed lifespan 
could be achieved by at least 96% of them?

 38. A certain type of tire will last for an average of 37,200 mi, with 
a standard deviation of 2650 mi. Suppose that the tread life can 
be described by a Normal model.

(a) What percent of these tires wear out before they reach 
40,000 mi?

(b) What’s the probability a tire will wear out between 32,000 
and 35,000 mi?

(c) For how many miles can the company guarantee these 
tires, if the company wants at least 90% of them to last that 
long?

 39. Many countries in Europe have adopted a common currency. 
When the “euro” coin was first introduced, several newspapers 
published an article claiming that it was biased. The story was 
based on reports that when someone spun a euro, it came up 
heads 140 times in 250 spins. Is this evidence of bias?

(a) Is it okay to use a Normal model to describe the possible 
number of heads in 250 spins?

(b) Find the mean and standard deviation of the number of 
heads in 250 spins of a fair coin.

(c) Do you think 140 heads is statistically significant?  
Explain.

 40. Before a blood drive, there was a public call for Type AB 
donors. Although only 4% of people have Type AB blood, the 
drive netted 26 Type AB donations among the 320 donations 
collected that day. Is this evidence that the public plea worked?

(a) Is it okay to use a Normal model to describe the possible 
number of Type AB donors among 320 donors?

(b) Find the mean and standard deviation of the number of 
Type AB donors.

(c) Do you think that the outcome of 26 Type AB donors is 
statistically significant? Explain.

 41. Writing to Learn To test a person who claims to “have 
ESP,” researchers use 4 cards with different symbols (a  
circle, a square, a triangle, and an X). Someone will pick a  
card at random and concentrate on it. The “mind reader”  
must then indicate what picture is on the card. The test will 
consist of 100 such trials. How many would the person  
have to get right to convince you that ESP actually exists? 
Explain.
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 42. Writing to Learn Biologists are concerned that environ-
mental changes are affecting a certain species of frog. In the 
past, about 1 frog in 12 exhibited a skin discoloration defect, 
but the scientists think this may be more prevalent now. To find 
out, they plan to catch and examine 150 of the frogs. How 
many frogs in this sample must exhibit the skin discoloration in 
order to provide statistically significant evidence that this 
defect is becoming more common? Explain.

Standardized Test Questions
 43. True or False The expected value of a random variable is a 

statistic calculated from sample data. Justify your answer.

 44. True or False In any data set, about 16% of the values 
will be more than one standard deviation larger than the mean. 
Justify your answer.

 45. Multiple Choice Given the probability model below, what 
is the expected value of the random variable?

X 50 20 5

P1X2 0.1 0.3 0.6

(A) 4.67 (B) 5

(C) 7.5 (D) 14

(E) 25

 46. Multiple Choice Which of these has a binomial probability 
model?

(a) The number of aces in a 5-card hand

(b) The number of persons with blue eyes in a random sample 
of 20 persons

(c) The total number of spots when two dice are rolled

(d) The number of times you roll a die in order to get a 6

(e) The length of the longest run of heads in 100 tosses of a 
fair coin

 47. Multiple Choice A fair coin is tossed three times in suc-
cession. What is the probability that exactly one of the coins 
shows heads?

(A) 
1
8

 (B) 
1
3

(C) 
3
8

 (D) 
1
2

(E) 
2
3

 48. Multiple Choice In a Normal model, approximately what 
percent of the observations lie within one half of a standard 
deviation from the mean?

(A) 31% (B) 34% (C) 38%

(D) 62% (E) 69%

Explorations
 49. Married Students Suppose that 23% of all college stu-

dents are married. Answer the following questions for a ran-
dom sample of eight college students.

(a) How many would you expect to be married?

(b) Would you regard it as unusual if the sample contained 
five married students?

(c) What is the probability that five or more of the eight 
 students are married?

 50. Investigating an Athletic Program A university widely 
known for its track and field program claims that 75% of its 
track athletes get degrees. A journalist investigates what hap-
pened to the 32 athletes who began the program over a 6-year 
period that ended 7 years ago. Of these athletes, 17 have gradu-
ated and the remaining 15 are no longer attending any college. 
If the university’s claim is true, the number of athletes who 
graduate among the 32 examined should have been governed 
by binomial probability with p = 0.75.

(a) What is the probability that exactly 17 athletes should have 
graduated?

(b) What is the probability that 17 or fewer athletes should 
have graduated?

(c) If you were the journalist, what would you say in your 
story on the investigation?

 51. Group Activity The Game Show Audience Suppose a 
TV game show host offers everyone in the audience the choice 
of three deals:

  Deal A:  Pick an envelope from five in his hand. The envelopes 
contain a ten dollar bill, a twenty dollar bill, a fifty 
dollar bill, a hundred dollar bill, and a check for five 
thousand dollars.

  Deal B:  Choose one of three suitcases. Two are empty and the 
third contains 240 twenty-dollar bills.

  Deal C:  Take $1000 with no strings attached.

  Which deal would you take? Which deal do the show sponsors 
hope you will take?

 52. Group Activity Strange Dice A game is to be played 
with two 6-sided dice, but not the ordinary kind. The faces of 
the red die show five 2’s and one 6. The faces of the green die 
show two 1’s and four 3’s. You will roll one of the dice and 
your opponent will roll the other.

(a) If the winner will be the person who rolls the higher num-
ber, which die do you want? Explain why.

(b) If the winner will be the person who has the highest total 
after 10 rolls, which die do you want? Explain why.

Extensions
 53. Standard Deviation The mean (m) of a random variable is 

the expected value. We can use the probability model to find 
the standard deviation (s) in much the same way we found the 
standard deviation for sample data. We calculate the square 
root of the expected value of squared deviations from the 

mean: s = Ba
n

i=1
1xi - m22 # P1xi2.

(a) Suppose a carnival game offers prizes described by the prob-
ability model below. Find the expected value of the game.

X = prize $0 $10 $50 $100

P1X2 0.80 0.15 0.04 0.01
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(b) Find the standard deviation of the value of the prizes.

(c) Writing to Learn Explain why the standard deviation 
is so large.

(d) Writing to Learn Would you be willing to pay $5 to 
play this game? Explain.

 54. Binomial Standard Deviation Let random variable 
X = the number of heads in 4 tosses of a fair coin.

(a) The possible values of X are 0, 1, 2, 3, and 4. Create a 
probability model for X.

(b) Use the expected value formula to find E1X2. 
(c) Use the formula given in Exercise 53 to calculate the stan-

dard deviation of the number of heads. 

(d) Verify that these are the same values found by the shortcut 
formulas m = np and s = 2npq.

 55. Margin of Error When pollsters try to predict the outcome 
of an election, they always report a “margin of error” as a per-
centage. What they don’t say is that the margin of error is 
based on a Normal model, and they are only 95% confident 
that the poll correctly predicts the outcome of the election.

  Suppose a pollster contacts a random sample of 625 registered 
voters, and 325 of them express a preference for Candidate A.

(a) What percent of the vote does the sample suggest this can-
didate will get?

(b) Using that percentage as an estimate of the probability that 
a voter contacted by a pollster supports Candidate A, what 
is the standard deviation of the number of supporters that 
pollsters might find in samples this size?

(c) Verify that a Normal model is appropriate here.

(d) What margin of error, expressed as a percent, would  
provide the pollsters with 95% confidence in their  
prediction?

(e) Writing to Learn Explain why the pollsters might say 
this election is “too close to call.”

 56. The Success-Failure Rule In any binomial probability 
distribution the number of successes must be at least 0 and at 
most n, the number of trials. Therefore, when we want to use a 
Normal model as an approximation, we must cut off the 
curve’s unbounded tails. That will not cause much inaccuracy 
if what we cut off lies more than 3 standard deviations from the 
mean. Verify that if np and nq are both at least 10, then 0 and n 
are both more than 3 standard deviations from the mean of a 
binomial distribution.
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Correlation Revisited
We mentioned r, the correlation coefficient, briefly at the end of Section 1.7, along 
with R2, the coefficient of determination. We suggested using the closeness of R2 to 1 
as a measure of how well a curve fits the points of a scatter plot. In Section 2.1 we 
noted that statisticians commonly use r for a similar purpose, but always as a measure 
of how close the data points are to a straight line. We now want to be a little more 
emphatic about that point. 

Figure 10.27 shows a positive association between the y-variable and the x-variable, as 
the higher y values are generally associated with the higher x values. Because the 
underlying relationship appears to be linear, it is appropriate to consider the correlation 
coefficient, r. It is positive (because the line’s slope is positive), and it is close to +1 
because the points are close to the line. It is appropriate to say that there is a strong 
positive correlation.

Figure 10.28 shows a definite negative association between the y-variable and the 
x-variable, as the higher y values are generally associated with the lower x values. 
Because the underlying relationship appears to be linear, it is appropriate to consider 
the correlation coefficient, r. It is negative (because the line’s slope is negative), but 
because the points are quite scattered, it is not very close to -1. It is appropriate to say 
that there is a moderately weak negative correlation.

What you’ll learn about
• Uses and Misuses of Statistics

• Correlation Revisited

• Importance of Randomness

• Samples, Surveys, and  
Observational Studies

• Experimental Design

• Using Randomness

• Simulations

... and why
Statistical literacy is important in 
today’s data-driven world.

Uses and Misuses of Statistics
Just as knowing a little bit about edible wild mushrooms can get you into trouble, so 
can knowing just a little about Statistics. Unfortunately, a lack of true understanding 
does not stop people from misusing statistics every day to draw conclusions, many of 
them totally unjustified, and then inflicting those conclusions on you. We will therefore 
end this chapter with a brief “consumer’s guide” to the most common uses and misuses 
of statistics.

10.5 Statistical Literacy

Test Your Statistical Savvy

Each one of the following scenarios contains at least one common misuse of  
statistics. How many can you catch?

 1. A researcher reported finding a high correlation between aggression in children 
and gender.

 2. Based on a survey of shoppers at the city’s busiest mall on two consecutive 
weekday afternoons, the mayor’s staff concluded that 68% of the voters would 
support his re-election.

 3. A doctor recommended vanilla chewing gum to headache sufferers, noting that 
he had tested it himself on 100 of his patients, 87 of whom reported feeling 
better within 2 hr.

 4. A school system studied absenteeism in its secondary schools and found a neg-
ative correlation between student GPA and student absences. They concluded 
that absences cause a student’s grade to go down.

 5. A medical experiment that tested a drug for effectiveness found improvement 
in 64% of the 25 subjects who took the drug, compared to only 40% of the 25 
subjects who were given a placebo (an identical-looking but inert pill). A news-
paper article proclaimed that the treatment had been proven effective.

EXPLORATION 1 

Figure 10.27 Strong positive 
correlation of r = 0.975.

Figure 10.28 Moderately weak 
negative correlation of r = -0.689.
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Figure 10.29 shows a strong association between the y-variable and the x-variable. 
The association is negative for the smaller x values and positive for the higher x values. 
Because the relationship is curved, the correlation coefficient in this case is an inappro-
priate measure. We should not even be talking about correlation here, because that 
would be treating this relationship as linear!

Figure 10.30 shows a very weak negative association between the y-variable and the 
x-variable. It may not be very useful to model this relationship with a line; indeed, we 
might wonder whether the down-up-down-up pattern suggests a periodic function. The 
correlation coefficient happens to be negative and close to 0, but we would be con-
cerned with it only if we believed a linear model to be appropriate. If that were our 
belief, then we could appropriately say that there is a very weak negative correlation.

Now that you know the terms, here are the things to watch for.

Transforming Data
Statisticians will often use function techniques to 
transform data to conform to linear models, pre-
cisely so that correlation analysis can be used. 
(We did this in Example 7 in Section 3.4.) When 
your calculator reports an r value for a nonlinear 
regression, it is using the transformed data.

Figure 10.29 Strong nonlinear 
association: Use of the correlation 
coefficient r is not appropriate.

Figure 10.30 Very weak negative 
association. A linear relationship may not 
exist: r = -0.227.

Figure 10.31 Per capita gross 
domestic product versus literacy rate 
for 17 nations. (Example 1a)

Correlation Correctness

Be sure both variables are quantitative. If no scatter plot is shown, ask yourself 
whether you could possibly have the data to make one.

Be sure the underlying pattern in the scatter plot is linear. Strength of correla-
tion is not an appropriate measure for data exhibiting nonlinear behavior.

Don’t confuse association with correlation. Association is a much broader term 
(even applicable to categorical data), whereas correlation should be used only 
for quantitative data to measure the strength of an association that we believe to 
be linear.

Correlation does not imply causation. If the points line up nicely, it is tempting 
to conclude that the variable y is reacting to the variable x. It might actually be 
the other way around, or both variables might be reacting to a third variable not 
under consideration.

Being Critical About Correlation
In each case, tell whether correlation is being used correctly. Identify any statistical 
errors.

(a) A graph of per capita gross domestic product 1y2 against literacy rate 1x2 for 17 
world countries is shown in Figure 10.31. The strong positive association (with 
r = 0.788) proves that raising a country’s literacy rate will improve its per capita 
gross domestic product.

(b) A research company reported a strong correlation between the religious affilia-
tion of American adults and the types of charitable organizations they support.

(c) A famous study of college freshmen once showed that the high school measure 
that had the highest positive correlation with freshman GPA in college was 
“number of mathematics courses taken in high school.” It showed that the best 
preparation for college was to take a lot of math courses.

(d) A researcher in 1990 measured the heights and the annual salaries of every  
person named Michael Jordan in Chicago. The correlation was an astounding 
0.97, suggesting a strong linear relationship between height and salary among 
the group.

EXAMPLE 1 

(continued)
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750 CHAPTER 10 Statistics and Probability

Importance of Randomness
As we’ve said before, the aim of Statistics is to draw meaning from data. The real goal 
extends beyond the data. Inferential statistics uses collected observations to draw con-
clusions about broader populations and real-world phenomena.

Statistical inference absolutely depends on randomness—ironically, because it is so pre-
dictable. Take another look at Example 11 in Section 10.3, which used the 68-95-99.7 
Rule (a rule based on the laws of probability) to infer a fact about loon chicks in the 
population. Because the inference was based on a sample of 30 loon chicks, it was vital 
that we trusted that these 30 chicks were typical of the overall population. Would we 
have trusted the sample if all 30 chicks had been born in the same wildlife preserve in 
northern Michigan? Probably not. Suppose a later study were to show that this particu-
lar preserve produced unusually large loon chicks. That would render our data useless 
for making inferences about the population of all loon chicks.

The only reasonable defense the statistician can use against this problem of potentially 
atypical samples is to ensure that the samples are chosen randomly from the population 
being studied. Then the laws of probability give us a measurable confidence that the 
atypical cases in the population will, by chance, occur with the same relative frequency 
in our sample as they do in the population.

SOLUTION 

(a) Although the reference to the “strong positive association” is correct, it may be 
inappropriate here to report the correlation coefficient r, because the slight 
upward bend suggests that the best model might not be linear. The biggest error, 
however, is jumping to the conclusion that an increase in literacy rate will cause 
an increase in per capita GDP.

(b) Although there might well be an association between these two variables, they 
are both categorical, so no correlation is possible.

(c) The error is in the conclusion that more math courses will cause the GPA to go 
up. In fact, both variables here are probably responding to a third variable, the 
academic motivation of the student.

(d) Everything here is actually correct, except that the researcher should not have 
been astounded. One of the Michaels had an unusually high salary and was 
unusually tall, causing the scatter plot to look somewhat like Figure 10.32. The 
only reason why the linear model looks so good is that one unusual point, which 
results in a misleading value of r and, in this case, a misleading regression equa-
tion. Beware of such points when analyzing correlation.

 Now try Exercise 5.

Analyzing Samples for Randomness
Which of the following sampling strategies will result in random samples from the 
population under consideration?

(a) Your school wants to pick 5 random seniors to represent the school on a district 
panel. The names of the seniors are written on slips of paper and placed in a 
bucket. After the class president shakes the bucket, the blindfolded principal 
draws five names.

(b) A group studying the increasing problem of obesity in America wants to esti-
mate the percentage of American teenagers who order hash browns with their 
breakfast sandwiches at a particular national fast food chain. They visit each of 
the chain’s restaurants in Idaho and gather data from the first 10 teenagers they 
see ordering breakfast sandwiches in each restaurant.

EXAMPLE 2 

Figure 10.32 Scatter plot of height 
versus salary for adults named Michael 
Jordan who were living in Chicago in 
1990. (Example 1d)
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Samples, Surveys, and Observational Studies
Recall that statisticians use statistics (numbers determined from samples) to estimate 
parameters (numbers associated with populations). You might think it would be safer 
to gather data from the entire population (in which case the study is called a census), 
but that is often impossible, or at least impractical. Instead, statisticians pay attention to 
their sampling methods so that they can use the laws of probability to make confident 
inferences about the population parameters. Some sampling designs can be quite com-
plicated, but the most basic requirement is that the sampling be free of bias. That is, 
there should be nothing in the sampling process that could systematically cause the 
sample to differ from the population with respect to the statistic being gathered. Sadly, 
biased sampling is one of the most common flaws in the world of bad statistics.

(c) The Miss America contest wants to choose 8 state representatives at random for a 
publicity shoot. Each of the 52 women is given a card from a well-shuffled deck of 
52 playing cards. The publicity chair then chooses 8 cards at random from another 
well-shuffled deck, and the women with the matching cards go to the shoot.

SOLUTION 

(a) This strategy rarely proves to be random because the names usually enter the 
bucket in nonrandom order (for example, alphabetically), and the typical shaking 
does not usually compensate for that. As a result, the names toward the end of the 
alphabet are still closer to the top and thus have a better chance of being chosen. 
(This phenomenon famously affected the 1969 Selective Service draft lottery.)

(b) Not random. There is no guarantee that Idaho is typical for the purposes of this 
study. (For example, people might be more partial to potatoes in Idaho than in, 
say, Georgia.) Also, sampling the “first 10 teenagers” at each site is not random, 
because friends who arrive together are more apt to be like-minded diners.

(c) This strategy is random. Notice that the method is quite carefully designed, but 
that is usually necessary for attaining randomness. We will return to this point at 
the end of this section. Now try Exercise 9.

Sample Surveys
A well-known example of sampling is a  
survey (such as a political poll), in which data 
are gathered by questioning a random sample 
of people.

Analyzing Samples for Bias
Each of the following studies suffers from a form of sampling bias. Point out the 
problem, and we will then give it a name for you.

(a) A local talk-show host wanted to assess the opinion of city residents on a pro-
posed tax increase for public education, so he invited listeners to phone in their 
opinions. According to his poll, 93% opposed the tax increase.

(b) A parent group opposed to the proposed renovation of their high school audito-
rium passed out a questionnaire at the football games with the question: “Should 
the school jeopardize vital school programs by diverting funds to improving an 
auditorium that is needed only a few times a year?” They reported that 89% of 
the people were opposed to the renovation.

(c) Seeking feedback on its new toothpaste flavor, a company supplied 500 dentists 
with free samples to give to their clients. With each sample came a stamped 
postcard asking the user to check one of two boxes: Like the new flavor or Don’t 
like the new flavor. The company received 897 postcards back, 85% of which 
reported that the user liked the new flavor.

(d) A biologist wanted to gather evidence that nuclear power plants caused genetic 
defects in frogs that fed in nearby ponds. He sampled 50 frogs in a pond near his 
local nuclear power plant and discovered that 8% of them had genetic defects. 
This was, in fact, considerably higher than the rate in the general frog popula-
tion, so he considered this to be good evidence supporting his assertion.

EXAMPLE 3 

(continued)
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In an observational study data are simply observed and recorded. Often this does not 
involve sampling a population at random. For example, in a wildlife study scientists 
have access only to the animals they are able to observe or capture. Other researchers 
may gather information from such available sources as doctors’ records, census data, or 
the Internet. Observational studies often suggest the presence of important associations 
between variables, but they cannot prove causation, and the lack of random sampling 
dictates caution when trying to reach conclusions about an entire population.

Observational studies are certainly useful, and it is possible to draw conclusions from 
the data up to a point. (You can argue about whether baseball standings determine the 
“best team,” but they certainly do reveal which team has won the higher percentage of 
games.) For years, observational studies suggested that there was a high positive asso-
ciation between smoking rates and lung cancer rates, but did this prove that the smok-
ing variable caused an increase in the cancer rate variable? No. Indeed, there was also a 
high positive association between coffee consumption and lung cancer rates! (Of 
course, many coffee drinkers used to enjoy a cigarette or two with their coffee.) To 
actually show causation, researchers must control confounding variables like coffee 
drinking. This requires experimentation.

Experimental Design
A well-designed experiment can show there is a cause-and-effect relationship between 
two variables by accounting for all other possible explanations. In an experiment, 
researchers impose treatments on subjects who are often volunteers. Each treatment is 
based on factors that might affect the response variable under study. By controlling the 
factors, the researchers hope to identify (with high probability) a causal relationship.

SOLUTION 

(a) For starters, the sample was not likely to include anybody not listening to the 
show. This is called undercoverage bias. Also, listeners had to be a little “fired 
up” about the question to go to the phone, and coming out against a tax increase 
fires people up. This is called voluntary response bias. The 93% number is 
likely to be much higher than the population parameter.

(b) Sampling at football games (an example of a convenience sample) is another 
source of undercoverage bias. (People who are more apt to go to the auditorium 
might be less apt to go to the stadium.) The question itself also created bias, as 
the wording was designed to provoke a negative response. Anything (intentional 
or unintentional) in the study design that influences responses is a form of 
response bias. The 89% is likely to be much higher than the parameter, the true 
level of support among the whole school community.

(c) Undercoverage was probably not a problem if the 500 dentists were a represen-
tative group. (People who did not go to dentists were underrepresented, but they 
were also less likely to buy toothpaste, so that was probably fine with the tooth-
paste company.) The real problem here was response bias, as the company may 
have unintentionally elicited a favorable response by giving the people free 
toothpaste. At the very least, people who slightly disliked it might have been less 
inclined to send back the card (more voluntary response bias). The 85% 
approval is probably higher than the parameter.

(d) This was another convenience sample; the sample of frogs he was able to catch 
was far from random. These frogs did appear to have a problem, but the fact that 
they all came from the same pond makes undercoverage bias a strong possibil-
ity. There are many possible explanations other than the nuclear power plant for 
the high defect rate in the sample. Now try Exercise 15.

Probability Experiments
The word experiment is often used loosely to 
describe a variety of investigations. The word 
has quite a different meaning in the context of 
Statistics (and other sciences), in which it is a 
procedure specifically designed to test causation.
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Four Important Principles of Experimental Design

1. Control. Variation between subject groups receiving different treatments 
should be limited to the factor we are purposely varying, and other condi-
tions are made as similar as possible. For example, if we are testing the 
effectiveness of a drug, everyone should get a pill, but only one group’s 
pills would contain the drug. (The “fake” pill is called a placebo.) The 
experiment should be blinded, meaning that neither group (or anyone in 
contact with them) should know which treatment they are getting until 
after the data are collected.

2. Randomization. Subjects must be assigned randomly to the different 
treatments so that variation arising from uncontrolled (often unknown)  
factors will be randomly spread among the different groups.

3. Replication. An effect must be observed in multiple subjects (the more 
the better) to be statistically convincing, and other researchers should be 
able to perform the same experiment on subjects from the same population 
with similar results.

4. Blocking. As a form of control, pre-existing differences among the sub-
jects that we think might affect the response variable (like gender or life-
style) should be deliberately spread evenly (but at random) among the 
treatment groups. For example, suppose there are 10 women and 40 men 
among the subjects for a two-treatment experiment, and we believe that 
men and women might respond differently to the treatments. We could  
randomly assign 5 women and 20 men to each group. If men and women 
did react differently to the treatments, we could take that variability into 
account when assessing the effects of the factor under study.

Designing an Experiment
A researcher wishes to test the effectiveness of vitamin C supplements for preventing 
flu. He has a diverse group of 200 men, women, and children who have volunteered 
for the study. Design an appropriate experiment that takes into account the likelihood 
that flu will affect different age groups differently.

SOLUTION There is only one factor, requiring two treatment groups (supplements 
and no supplements). A simple way to control for the age variable is to match volun-
teers of like ages together, then randomly assign one from each pair to each of the 
two treatments. (This spreads the age variability equally among both groups.) One 
group will take tablets containing vitamin C; the other group will take placebos. The 
subjects and their caregivers will be blinded as to which tablets they are taking. We 
monitor each group during flu season and record who gets the flu.

We can show the design of the experiment in a diagram (Figure 10.33):

 Now try Exercise 25.

EXAMPLE 4 

200 subjects,
paired by age

Random
assignment

Group 1
100 subjects

Group 2
100 subjects

Treatment 1
vitamin C

Treatment 2
placebo

Compare
flu rates

Figure 10.33 The flu experiment. (Example 4)
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Using Randomness
Whether choosing a sample from a population or assigning subjects to treatments for 
an experiment, we have seen that attention must be paid to randomness. But how do 
statisticians achieve randomness? It is actually harder than you might think. Not only 
are people notoriously bad at mimicking true randomness, but we are not even good at 
recognizing it when we see it. Before the days of computers, researchers relied on ran-
dom number tables, entire books filled with pages of digits (0 through 9) generated by 
cleverly harnessed random processes in nature. Today we usually rely on computers to 
generate pseudo-random numbers, which work well for most purposes (and which we 
will use in this text).

Analyzing Experimental Design
Each of the following experiments suffers from at least one flaw in design. Identify 
the flaws and tell how each experiment can be improved.

(a) In a study of multitasking, psychologists test the time it takes a group of volun-
teers to type the same 100-word text message, first listening to loud rock music, 
then listening to soft classical music, and finally listening to no music at all.

(b) To test the effectiveness of an expensive online homework service, a teacher with 
two sections of freshman algebra signs up his thirty A-period students for the service 
and teaches his thirty B-period students the same lessons, but without the service. At 
the end of the year he compares the grades of the two sections on the same tests.

(c) A drug company tests a new pain reliever on 100 arthritis patients, whom it ran-
domly splits into two groups. Half the patients are given the new pill, and the 
other half are told to continue their regularly prescribed medications. After 60 
days, the two groups are interviewed by representatives of the drug company to 
report their level of pain relief.

SOLUTION 

(a) Because the text message is the same each time, the texters are likely to pick up 
speed as they gain familiarity with it. The researchers should either work up three 
different 100-word messages or else randomly assign the music treatments in six 
different orders (RCN, RNC, CRN, CNR, NCR, NRC) and average the times.

(b) The subjects are not randomly assigned, so any difference in test scores might well 
be due to other variables related to the two sections. (Is one class in the morning 
and the other in the afternoon? Were all students taking an advanced science course 
forced into one of these classes?) The teacher should randomly choose 30 of his 60 
freshman algebra students to use the service, without regard to A or B period.

(c) The biggest flaw is that the subjects know which treatment they are getting. 
Those who get the new pill might feel better simply because they think they 
ought to feel better. The pills should be made to look the same so that the sub-
jects do not know whether they are taking their old medication or the new one. 
A second flaw is that the drug company representatives may unintentionally 
treat the subjects differently if they know which took the new pill. The person 
who interviews the subject at the end of the study should not know the subject’s 
treatment. [An experiment in which everyone participating in the experiment 
(subjects plus people in contact with them) and the data-gatherers are blinded is 
a double-blind experiment.] Now try Exercise 29.

EXAMPLE 5 

Using Random Numbers in Sampling
A school is asked to choose 10 sixth-graders at random to be part of a multi-year 
educational study. If there are 135 sixth-graders at the school, how can they be  
chosen without bias?

EXAMPLE 6 
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There’s another nice method of randomization that avoids the minor problem of having 
to skip repeated numbers. We demonstrate that approach in Example 7. Of course, one 
could use either method for both samples and experiments.

SOLUTION 

Method 1: Generating Random (Actually Pseudo-Random) Numbers Number 
the students from 1 to 135 (alphabetically, or in any order—this is not the random step). 
On a calculator enter the command “randInt11, 135, 102.” The calculator will return a 
list of 10 random integers between 1 and 135 inclusive (Figure 10.34). If it picks any 
number more than once, generate more until you have 10 distinct numbers.

Our list (we had to scroll to the right to see them all) consisted of the students num-
bered 4, 114, 84, 28, 133, 98, 41, 34, 128, 125. Now try Exercise 33.

Using Random Numbers in an Experiment
Fifty adults suffering from a certain medical condition have volunteered as subjects 
in an experiment to test the effectiveness of a new drug. Half will be treated with the 
drug, and the other half will receive a placebo. Explain how to randomly assign these 
50 subjects to the two treatments.

SOLUTION 

Method 2: Doing a Random (Actually Pseudo-Random) Sort Number the 
subjects 1 to 50. Enter the numbers 1 to 50 in list L1 using the command 
“seq1X, X, 1, 502S L1” and enter 50 random numbers in list L2 using the com-
mand “rand1502S L2.” Then sort the random numbers into ascending order, bring-
ing L1 along for the ride, using the command “SortA1L2, L12.” The numbers in list 
L1 are now in random order. (See Figure 10.35.)

Assign the subjects with the first 25 numbers in L1 (here starting with 18, 15, 27, …) 
to receive the new drug, and assign the remaining 25 subjects to get the placebo.
 Now try Exercise 37.

EXAMPLE 7 

seq(X, X, 1, 50)   L1
{1   2   3   4   5   6   7  :
rand(50)   L2
{.9435974025         .9
SortA(L2, L1)
 Done

  

L1
18
15
27
31
41
7

25

L2
.00626
.00784
.01257
.02882
.04279
.04399
.05259

L3
––––––

1

L1 = {18, 15, 27, 31…

Figure 10.35 Randomizing the order of 50 numbers on a calculator. (Example 7)

MATH NUM CPX PRB
1:rand
2:nPr
3:nCr
4: !
5:randInt(
6:randNorm(
7:randBin(   

randInt(1,135,10)
{4 114 84 28 13...

Figure 10.34 Use randInt11, 135, 102 to pick 10 random numbers between 1 and 
135 inclusive. (Example 6)

Planting a Random Seed
Calculators use a formula to move from one 
pseudo-random number to the next, so you might 
be generating the same pseudo-random list as 
your neighbor. To get a different list, start with a 
different seed. For example, the command 
“42 S rand” stores the seed 42. Different 
seeds will generate different pseudo-random 
sequences. (You could each enter the last 4 digits 
of your telephone number.)
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Simulations
Now that we have introduced you to random numbers, we will end this section with a 
quick look at how they can be used to simulate probability and assess statistical 
significance.

Free Throw Shooting
Fred is a 70% free throw shooter. How many shots will it typically take him to hit  
7 consecutive free throws?

SOLUTION We can simulate Fred’s free throw shooting with random digits. To 
model a 70% success rate, let digits 0 through 6 signify a made free throw, and let 7, 
8, and 9 signify a miss. Enter “randInt10, 92” in a calculator. Each time you press 
ENTER you will see a digit that represents the outcome of a free throw with the cor-
rect probability, and Fred never has to pick up a ball. The beginning screen is shown 
in the margin, and below are the first four sequences that we (honestly!) generated 
before getting 7 consecutive “hits.”

Sequence 1:
6 1 4 9 1 2 6 0 3 0 8 7 2 4 7 2 0 5 0 3 6 8 6 0 3 4 2 1 8 8 5 5 7 3 6 5 0 9 5 3
8 2 4 9 6 4 1 9 8 5 0 7 7 3 8 3 8 8 6 9 6 1 9 4 1 4 1 4 6 6

Sequence 2:
3 3 3 2 5 5 2

Sequence 3:
6 4 4 5 2 3 4

Sequence 4:
8 8 2 4 6 2 6 6 2

You can verify that poor Fred had to put up 70 shots in the first sequence before 
achieving the seven consecutive “hits” at the very end: 4141466. In the second and 
third sequences, though, Fred starts off with seven in a row! By running this simula-
tion many times, you can get an idea of the average number of free throws Fred 
would need to shoot before he hits seven in a row.

Incidentally, this set of results is pretty good evidence of how difficult it is for us to 
recognize true randomness. You could ask a thousand people to “make up” free 
throw sequences for this simulation, and nobody would ever give you a string of 70 
followed by two sequences in a row of only 7. Now try Exercise 41.

EXAMPLE 8 

randInt(0,9)
6
1
4
9
1
2

Figure 10.36 Keep pressing ENTER to 
generate random digits.

Assessing Statistical Significance
In Example 7 we saw how to randomly assign 50 subjects to treatments in an experi-
ment designed to test the effectiveness of a new drug. At the end of the experiment, 
64% of the 25 subjects who took the drug showed improvement, compared to only 
40% of the 25 subjects who were given a placebo. Could a difference as large as 
64% - 40% = 24% arise by random chance, or is that statistically significant  
evidence that the drug is indeed effective?

SOLUTION Because 64% of 25 = 16 and 40% of 25 = 10, overall 16 + 10 = 26 
subjects showed improvement; the other 24 did not. To simulate this experiment, we 
create a list of 26 1’s and 24 0’s to represent the outcomes, and then randomly split 
them into two groups of 25. We next look at the percentage of 1’s in each group to 
see how big a difference might occur just by chance. The table on the next page 
shows the results of the first few trials.

EXAMPLE 9 
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In Trial 1, by chance, the difference between the two groups was 8%. That makes the 
experiment’s actual outcome of 24% seem pretty large, perhaps significant. Neither 
Trial 2 nor Trial 3 produced a very large difference either. But Trial 4 is surprising: 
Shuffling the outcomes for 50 simulated subjects produced a difference of 40% just 
at random! Seeing this suggests that maybe the experiment’s 24% difference doesn’t 
really signify an effect of the drug. Of course, just as a fair coin could show lots of 
heads now and then by sheer luck, it’s possible that Trial 4 is a once-in-a-blue-moon 
longshot, an outlier we should not be concerned about.

To find out, we ran our simulation for 1000 trials. The histogram below shows the 
distribution of random differences that arose.

Table 10.30 Simulated Differences in the Percentage of Subjects Who 
Might Show Improvement If the Drug Being Tested Is Not Effective

 Number (Percent) of  
Simulated “Cures”

Difference in 
Percentages

Trial Drug Group Placebo Group (Drug - Placebo)
1 14 156%2 12 148%2    8%

2 11 144%2 15 160%2 -16%

3 13 152%2 13 152%2    0%

4 18 172%2  8 132%2   40%
f f f f
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Fr
eq

ue
nc

y

–40 –32 –24 –16 –8 0 8 16 24 32 40

0

50

100

150

200

7
17

65

118

183

217

190

112

63

20
8

Figure 10.37 A histogram of 1000 simulated differences in the percentage of subjects 
who might show improvement if the drug being tested is not effective.

Notice that differences at least as large as the 24% observed in this experiment are 
not uncommon. They happened 91 times in the 1000 simulated trials. That suggests 
there’s about a 9% chance that the experiment could have turned out this way even if 
the drug is worthless. This should make you skeptical that the drug actually works. 
The simulation shows us that with treatment groups this small, a difference of 24% is 
not large enough to be statistically significant. The experiment does not provide con-
vincing evidence that the drug actually works.

A common rule of thumb is that in order for an observed outcome to be considered 
statistically significant, there must be less than a 5% chance that it could have 
occurred randomly. Had the drug group outperformed the placebo group by 32% or 
more, we’d consider that to be evidence of the drug’s effectiveness. In the simulation, 
differences that large were quite rare; they arose by chance only 2.8% of the time.

(continued)
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That decision rule can vary with the gravity of the situation. If we’re simply curious to 
see whether the rate of smoking among middle school girls has changed in the past 20 
years, we might accept slightly less unusual results as offering some evidence. An out-
come with up to a 10% chance of occurring at random might be considered statisti-
cally significant. On the other hand, if we were testing the rivets that hold highway 
bridge girders in place, we’d accept only test results that could occur by chance less 
than 1 time in 1000 (or 10,000!) to be compelling evidence that they’re strong enough.
 Now try Exercise 45.

This chapter has offered only a brief glimpse into how statisticians use mathematics.  
If you are interested in learning more, we urge you to find a good statistics text and 
pursue the subject further!

Find the probability of each event:

 1. Rolling a 6 on a single fair die

 2. Rolling a total of 6 on a pair of fair dice

 3. Drawing a 6 if we draw a single card from a deck of  
52 cards

 4. A 6 appearing as the first digit in a randomly generated  
set of five digits

 5. A 6 appearing as the last digit in a randomly generated set of 
five digits

 6. A 6 appearing as the first digit and the last digit in a randomly 
generated set of five digits

 7. A randomly generated set of five digits consisting of all 6’s

 8. A randomly generated set of five digits containing no 6’s  
at all

 9. A randomly generated set of five digits containing at least 
one 6

 10. A randomly generated set of five digits containing at most 
one 6

QUICK REVIEW 10.5 (Prerequisite skill Sections 10.1 and 10.4)

In Exercises 1–6, tell whether correlation is being used correctly. Iden-
tify any statistical errors.

 1. A newspaper article reports that a high correlation has been 
discovered between beauty and intelligence in college women.

 2. Because the correlation coefficient 
for the data in the graph at the right is 
r = 0.9, a student announces that 0.9 
is the slope of the regression line that 
goes through the points.

 3. Sean has a theory that the average weight of an animal has a 
high correlation with the number of letters in its name. He 
checks his theory by gathering data on a rat, a bat, a fox, and a 
great blue whale. Sure enough, the correlation coefficient is 
higher than 0.99!

SECTION 10.5 Exercises

 4. Jenna says that the scatter plot at the 
right shows a negative association 
between the x-variable and the  
y-variable. She then adds that the 
regression line she found does not do 
a very good job of describing the 
relationship.

 5. Marcus says that the scatter plot at 
the right shows a weak negative 
association between the x-variable 
and the y-variable. He then adds that 
the low correlation 1r = -0.322 
indicates that there is no significant 
mathematical relationship.
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 6. A researcher theorizes that sea snakes need to drink rainwater 
floating on the top of the denser saltwater in order to avoid 
dehydration. Testing sites around the world, he finds a high 
correlation between a site’s annual rainfall and the size of its 
sea snake population, thus proving his theory to be true.

In Exercises 7–12, tell whether the sampling strategy will result in a 
random sample from the population under consideration. If it is not  
random, explain why it is not.

 7. The HR director of a large law firm wants to survey a random 
sample of the firm’s 326 employees. She numbers the employ-
ees alphabetically and uses her daughter’s calculator to choose 
50 distinct numbers with the command “randInt11, 326, 502.”

 8. To get a sample of 50 students for a student services survey, an 
assistant principal uses the calculator command “randInt11, 72, 52”  
to pick five numbers between 1 and 72. He goes to those five 
pages in the 72-page student directory and chooses the ten stu-
dents pictured on each of those five pages.

 9. To get a random sample of 50 Reno residents for a political 
poll, a worker starts at the beginning of the telephone book. For 
each name in the book, he flips a fair coin. If it comes up 
heads, he calls the person; if it comes up tails, he moves on. 
Once he has called 50 residents, he stops.

 10. When 50 qualified students audition for the five chorus roles in 
the school musical, the director decides to choose the five cho-
rus members randomly. He tells them to form five lines of  
10 students each; then he announces that the seventh student in 
each line will be in the chorus.

 11. To choose 9 random campers to represent Camp Pathfinder in a 
baseball game with Camp Ahmek, the counselors hold tryouts 
and choose the best 9 players.

 12. A talk-show hostess wants to give free automobiles to ten ran-
dom members of her audience. She instructs the ushers to go 
into the theater before the show and place special stickers 
under ten seats of their choice.

Writing to Learn In Exercises 13–18, each sampling method suf-
fers from a form of bias. Identify the bias, tell how the sample statistic 
might differ significantly from the population parameter, and suggest 
how the problem might be corrected.

 13. To gather feedback on his teaching, Professor Jones invites his 
students to visit his Web site and respond to a brief question-
naire. He is depressed to discover that 68% of those who 
respond are dissatisfied with his teaching.

 14. To assess consumer response to its new cereal flavor, a cereal 
company passes out free samples at a local mall and offers 
shoppers a $5.00 gift certificate if they will fill out a brief form 
evaluating the new product. They find that 94% of the respon-
dents like the new flavor.

 15. The dining committee of the student council surveys students 
in the lunch hall, asking them, “Do you prefer eating in the 
lunch hall to eating off campus or bringing your own lunch?” 
They are mildly surprised to learn that 93% of the students sur-
veyed prefer the lunch hall.

 16. A group seeking taxpayer support for a new playground sends 
pollsters to all the local PTA meetings to ask, “Do you support 
the use of city taxes to fund a new park that will provide a safe 
and convenient recreation facility for your children?” A gratify-
ing 88% respond yes.

 17. After getting a ticket for running a stop sign, a statistics profes-
sor polls a random sample of citizens to ask, “Should the gov-
ernment be allowed to limit the freedom of private citizens to 
use our neighborhood roads as we deem necessary?” He tells 
the judge at his hearing that 97% of the citizens polled are 
against stop signs.

 18. For twenty years, Mrs. Bohackett has kept a daily log of birds 
sighted at her backyard feeder. Over the last ten years, the first 
appearance of a white-throated sparrow in the spring has 
steadily moved earlier in the year by thirteen days. She attri-
butes the change to global warming.

In Exercises 19–24, identify which are experiments and which are 
observational studies.

 19. A health class analyzes 30 cereal products available at a local 
food store, recording various nutritional data for a typical 
1-cup serving of each.

 20. A school counselor looks at ten years of data to see whether 
students in some extracurricular activities make higher grades 
than students in others.

 21. The receptionist at a veterinarian’s office keeps a daily  
log to see whether more women than men accompany their 
pets to the vet.

 22. Laboratory rats are fed diets with three different levels of  
caffeine content, and observers record how much time the rats 
spend each day running on their treadmills.

 23. Members of the school swimming team practice for eight days 
under simulated racing conditions wearing three different 
brands of swimsuits to see whether any one brand leads to 
faster times.

 24. An English teacher offers extra credit points to students who 
will keep nightly logs of time spent watching television and 
time spent reading. She intends to use the data to see whether 
there is an association between either variable and a student’s 
success in her class.

 25. A farmer wishes to test the effectiveness of a new kind of fertil-
izer. He plants his crops on 24 plots of equal size. Design an 
experiment he can use to test the new fertilizer. (Be sure to 
explain how randomness will be used.)

 26. How would you amend the design in Exercise 25 if the farmer 
knows that some of his plots have been historically more pro-
ductive than others?

 27. How would you amend the design in Exercise 25 if the farmer 
can choose between two new fertilizers?

 28. How would you amend the design in Exercise 25 if the farmer 
wants to test the effectiveness of the new fertilizer on each of 
two different crops?

Writing to Learn In Exercises 29–32, each experiment suffers from 
at least one flaw in design. Identify each flaw and tell how the experi-
ment can be improved.

 29. Testing Golf Balls A company tests its new golf ball with 
100 experienced golfers. After having each golfer drive 20 of 
his current favorites to establish his current average distance, 
the company has him drive 20 of the new balls. The distances 
are then compared.
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 30. Testing Soft Drinks To test the rumor that her company’s 
bottled soft drinks are “fizzier” than the same drinks in cans, a 
researcher gives 50 volunteer tasters a can and a bottle of the 
same soft drink at the same temperature. They then identify 
which tastes fizzier to them.

 31. Testing Effect of Music As part of a study to see whether 
music affects babies in the womb, a researcher asks a group of 
expectant mothers to volunteer to play an hour a day of a par-
ticular music type for their babies in their last month of preg-
nancy. The mothers could choose classical, country, or rock. 
The researcher plans to gather developmental data on the  
children at 4-year intervals from birth until adulthood.

 32. Radio Advertising Researchers wish to test the effects of 
radio advertising on 100 volunteers between the ages of 18 and 
32. They use random numbers to split them into two groups. 
Both groups hear the same advertisements, but one group hears 
them delivered with all male voices and the other group hears 
them with all female voices. Both groups then take the same 
quiz about the products to see how much information they have 
retained.

 33. Finding a Random Sample From 500 guests who attend 
a banquet, the caterer plans to choose 50 at random to fill out a 
brief questionnaire about the service. The seats at the banquet 
have already been numbered 1 to 500. How can the caterer use 
a graphing calculator to select the random sample?

 34. Selecting Customers Approximately 400 customers are 
in line at a retail store for an advertised chance to buy the sea-
son’s most anticipated Christmas toy. To avoid unpleasantness, 
the store has promised that everyone who is in line when the 
doors open will have an equal chance to buy one of the 100 
available toys. How can the store use a graphing calculator to 
select the lucky 100 customers?

 35. Random Order A class of 32 students must present their 
class projects in what the teacher has promised to be “random 
order.” Tell how the teacher can use a graphing calculator to 
determine the order.

 36. Random Selection A teacher plans to pair his 28 students 
randomly to be partners for a collaborative quiz. So they will 
know it is random, he plans to pair them using a graphing cal-
culator with a student pushing the buttons. Explain how this 
can be done.

 37. Growing Tomatoes You plan to use your backyard for an 
experiment to see whether a new plant food offered by your 
local garden store will help grow tastier tomatoes. You bought 
16 tomato plants and will grow half of them with the plant food 
and half without. Explain how you will assign the plants to the 
two treatment groups.

 38. Firing Pottery An artist is trying to decide whether to buy 
a new kiln for firing her pottery, but wonders whether it will be 
any better than her current kiln. A friend who already owns one 
of the newer models offers to let her try it. She creates 10 
bowls and plans to fire half of them in her own kiln and the 
other half in her friend’s kiln so she can compare the results. 
Describe a way to randomly assign the bowls to the two kilns.

 39. Simulating a Spinner A spinner in a children’s game 
once worked to pick a number between 1 and 8, but the chil-
dren lost the pointer. How can they use a graphing calculator to 
simulate the spinner?

 40. Simulate Rolling Two Six-Sided Dice The Millers 
want to play Parcheesi, but they have lost the pair of six-sided 
dice that came with the game. How can they use a graphing 
calculator to simulate the roll of two dice?

 41. Blood Donors About 40% of the blood donors at a local 
facility give O-positive blood. In a typical hour the facility will 
process 20 donors. Design a simulation to estimate how many 
hours out of 9 hr of operation the facility will typically see 
fewer than 4 donors with O-positive blood.

 42. Simulate Drawing Cards Bapa wants to simulate the 
drawing of cards for a poker hand using his graphing calculator. 
Tell how the calculator can simulate the drawing of 5 random 
cards from a deck of 52.

 43. Rolling Twenty-One In this game, players accumulate 
points by rolling a die. The first person to reach a total of 
exactly 21 wins; rolls that would make the total higher than 21 
are ignored. Create a simulation to estimate the number of rolls 
a player might have to make in order to hit 21. Run five trials 
and report your result.

 44. Spinning Ten A child’s game has a spinner with four equal 
regions numbered 1, 2, 3, and 4. Players spin until they reach a 
total of exactly 10. If a spin would push the total above 10, that 
spin is subtracted from the previous total. For example, if a 
player with 8 points spins a 3, the player’s total is reduced to 5. 
Create a simulation to estimate the number of spins a player 
might have to make in order to hit 10. Run five trials and report 
your result.

 45. Writing to Learn Dice You just saw someone roll a die 
20 times and get eight 6’s. That seems like a lot. Is it evidence 
that something’s wrong? Maybe the person has a loaded die or 
is controlling the roll somehow? To find out, you simulate roll-
ing a fair die 20 times, counting the number of 6’s in each trial. 
Your simulation runs 500 trials and produces the results sum-
marized in the histogram below. Based on these outcomes, 
would you say there’s statistically significant evidence that the 
die rolling you just witnessed is unfair? Explain.
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 46. Writing to Learn Tasting Tomatoes Exercise 37 
describes a backyard experiment to see if a certain plant food 
can actually produce the tastier tomatoes it promises. After the 
harvest, a neighbor who did not know about the experiment 
tasted samples of tomatoes and rated them on a scale from 1 
(yuck) to 10 (fantastic). The ratings given tomatoes that grew 
with the plant food were 56, 5, 10, 9, 9, 7, 8, 86 , for an aver-
age of 7.75. The tomatoes grown without the plant food were 
rated 56, 9, 7, 6, 8, 4, 7, 96 , for an average of only 7.0. Do 
these results provide evidence that the plant food works?

  To investigate, a simulation randomly shuffled those taste rat-
ings into two groups to see how large a difference could arise 
by chance alone. This dotplot displays the random differences 
in the means seen in 500 trials.

(C) teacher recommendations.

(D) extracurricular activities.

(E) all of the above.

 50. Multiple Choice Randomness is important in experimental 
design in order to equalize (among the treatment groups)

(A) unforeseen variation.

(B) extraneous blocking.

(C) unnecessary placebos.

(D) noncausal correlation.

(E) expected behavior.

 51. Multiple Choice A survey question may lead to response 
bias if

(A) some people do not answer it.

(B) it is about a particular race or creed.

(C) it has an influence on the response.

(D) it elicits a voluntary response.

(E) it does not fit with the rest of the survey.

 52. Multiple Choice Which of the following is not a valid way of 
choosing a random sample of 5 students from a class of 13?

(A) Number the students from 1 to 13. Enter “randInt11, 132” 
on your calculator until you have five different numbers.

(B) Number the students from 5 to 17. Enter “randInt15, 172” 
on your calculator until you have five different numbers.

(C) Give each student a playing card from the heart suit  
(13 cards). Shuffle the spade suit thoroughly and draw  
5 cards. Pick the students whose hearts match the spades.

(D) Go through the 13 names alphabetically and flip a fair 
coin for each one. If it is heads, choose the student; other-
wise, move on. When you have 5 students, stop.

(E) Shuffle the 13 cards from the heart suit thoroughly 
and have each student draw a card. Line them up in 
order (ace through king) and pick the middle 5 students 
in the line.

Explorations
 53. Group Activity Attempting Randomness Try this 

experiment with your classmates. Without a calculator, write 
down what you think is a sequence of 50 random digits (0 
through 9). Count up how many times each digit appears in 
your sequence, then pool your tallies with those of your class-
mates. Did any digits appear unusually often?

 54. Group Activity Attempting Randomness (Continua-
tion of Exercise 53) Group your random sequence into 25 two-
digit numbers. Count how many of them consist of double 
digits (e.g., 11, 22, 33, etc.). Pool your tally with those of your 
classmates. By chance, approximately one-tenth of a random 
collection of two-digit numbers should consist of double digits. 
Did your class come close?

Di�erence in Means (plant food – none)

–2 –1 0 1 2 3

(a) Based on these simulated results, explain why the 
observed 0.75 difference in mean taste ratings is not  
statistically significant.

(b) How large would the difference in means have to be in 
order for you to believe there to be statistically significant 
evidence that the plant food caused tomatoes to taste bet-
ter? Explain.

Standardized Test Questions
 47. True or False An observational study, if carefully done, 

can usually establish causation. Justify your answer.

 48. True or False A correlation coefficient of 0.96 would indi-
cate that a linear model for the data is certainly appropriate. 
Justify your answer.

 49. Multiple Choice There could be a positive correlation 
among high school students between SAT scores and

(A) colleges of first choice.

(B) freshman science grades.

M11_DEMA8962_10_GE_C10.indd   761 22/06/22   18:36



762 CHAPTER 10 Statistics and Probability

 55. The Effects of Unusual Points Each of the three graphs 
below has an unusual point. If the unusual point is removed and 
the regression line is recalculated, predict what will happen to 
the correlation coefficient (increase, decrease, or remain about 
the same) and the slope of the regression line (increase, 
decrease, or remain about the same).

(a)

(b)

(c)

 56. Influential Points An unusual point in a scatter plot is 
called an influential point if the regression model changes sig-
nificantly when it is removed. Which of the unusual points in 
Exercise 55 are also influential points?

 57. Picture the Possibility Sketch a scatter plot that shows a 
positive association between x and y for small values of x, a 
positive association between x and y for large values of x, and a 
negative association between x and y overall. [Hint: Sketch two 
well-separated clusters of points.]

 58. Picture the Possibility Sketch a scatter plot that shows a 
negative association between x and y for small values of x, a 
negative association between x and y for large values of x, and 
a positive association between x and y overall.

Extending the Ideas
 59. Lurking Variables One good reason why we should never 

conclude causation from even the strongest correlation or asso-
ciation is that the association between x and y might be due to a 
third variable z that influences both x and y. If such a variable 
is not part of the study model, it is called a lurking variable. 
For each of the following actual associations, identify a possi-
ble lurking variable that could be causing it.

(a) There is a positive association between the size of a  
hospital and the death rate among its patients.

(b) There is a positive association between the number of 
seats on a commercial jet and the speed at which the  
aircraft travels.

(c) There is a positive association between shoe size and read-
ing level among elementary school students.

(d) There is a positive association between the number of  
firemen fighting a fire and the amount of damage that the 
fire causes.

(e) Among professional football players there is a negative 
association between body weight and annual income.

 60. More on Observational Studies An observational 
study is retrospective if it considers only existing data. It is 
prospective if the study design calls for data to be collected as 
time goes on. Tell which of the following observational studies 
are retrospective and which are prospective.

(a) A sample of moose in a national park are given ear tags so 
that naturalists can track their growth, movement, and 
physical condition during a ten-year study.

(b) To see whether crime rates are related to moon phases, a 
researcher looks at ten years of archived police blotter 
reports and compares them with moon charts from the 
same period.

(c) Out of curiosity, Mimi looks up the ages of all the Best 
Actress winners in the years they won their Oscars, and 
then gathers the same data for the Best Actor winners, to 
see whether male or female winners were, on the average, 
younger.

(d) In a study of post-traumatic stress disorder, soldiers 
who have been in combat are given biannual physical and 
psychological tests for five years after they return from 
active duty.

(e) Paxton devises a complicated formula based on game sta-
tistics for rating quarterbacks. He applies it to all NFL 
quarterbacks who played in the league between 1950 and 
2000 and concludes that the quarterbacks from the 1970s 
were the best overall.
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 9. College Amenities On one college campus 66% of dorm 
rooms have refrigerators, 41% have TVs, and 32% have both.

(a) What’s the probability that a randomly selected dorm room 
has a refrigerator or a TV?

(b) What’s the probability that a dorm room with a refrigerator 
has a TV?

 10. At the college described in Exercise 9, are having a refrigerator 
and having a TV independent? Explain.

 11. Chicken In 2007 Consumer Reports purchased samples of 
chicken offered for sale in 23 states and checked them for  
bacterial contamination. The magazine found that 81% of the 
packages were contaminated with campylobacter, 15% with 
salmonella, and 13% with both. What’s the probability that a 
package of chicken was bacteria-free?

 12. Given the findings reported in Exercise 11, does it appear that 
the two kinds of contamination are independent? Explain.

 13. Mixed Nuts Two cans of mixed nuts of different brands are 
open on a table. Brand A consists of 30% cashews, and brand 
B consists of 40% cashews. A can is chosen at random, and a 
nut is chosen at random from the can. Find the probability that 
the nut is

(a) from the brand A can.

(b) a brand A cashew.

(c) a cashew.

(d) from the brand A can, given that it is a cashew.

 14. Horse Racing If the track is wet, Mudder Earth has a 70% 
chance of winning the fifth race at Keeneland. If the track is 
dry, she only has a 40% chance of winning. Weather forecasts 
predict an 80% chance that the track will be wet. Find the 
probability that

(a) the track is wet and Mudder Earth wins.

(b) the track is dry and Mudder Earth wins.

CHAPTER 10 Review Exercises

The collection of exercises marked in red could be used as a chapter test.

 1. The sample space for a random variable X is 51, 2, 5, 106 . Is 
P112 = 0.45, P122 = 0.25, P152 = 0.15, and P1102 = 0.05 a 
valid probability function? Explain.

 2. The sample space for a random variable is 5A, B, C6 . Out-
come A is only half as likely as B but 3 times as likely as C. 
Find the probabilities of the three outcomes.

 3. Lottery In a state lottery, players must pick 5 winning num-
bers from 1 to 40. What’s the probability of winning for a 
player who buys a dozen different tickets?

 4. Poker Hand What’s the probability that a 5-card poker 
hand will contain all hearts?

 5. Candy A box of candies contains 6 caramels and 4 butter-
creams, all appearing identical. What’s the probability that a 
person who starts eating them one at a time won’t get a cara-
mel until the third candy?

 6. Celebration A bag contains 10 marbles: 5 red, 3 white, and 
2 blue. At a 4th of July carnival there’s a nice prize for anyone 
who can draw out red, white, and blue in that order. What’s the 
probability that a player wins the prize?

 7. Seatbelts Highway safety experts estimate that 85% of 
drivers wear seatbelts. If the police stop 5 cars at a roadblock, 
what’s the probability of each of these outcomes?

(a) All are wearing seatbelts.

(b) The 4th driver is the first one who is not belted in.

(c) At least one driver is not wearing a seatbelt.

 8. Bowling A certain bowler makes a strike in 40% of her 
frames. What’s the probability of each of these outcomes?

(a) Her first strike in a game comes in the third frame.

(b) She makes a strike in at least one of the first 5 frames.

(c) She bowls an entire game (10 frames) without a strike.

 CHAPTER 10 Review Exercises 763

M11_DEMA8962_10_GE_C10.indd   763 22/06/22   18:36



764 CHAPTER 10 Statistics and Probability

(c) Mudder Earth wins.

(d) (in retrospect) the track was wet, given that Mudder Earth 
won.

 15. Men’s Health Workers at a health clinic’s walk-in screen-
ing event examined 88 men to see whether they had high blood 
pressure and>or high cholesterol. The table summarizes the 
diagnoses:

B
lo

od
 

Pr
es

su
re

  Cholesterol  
Total   High OK

High 22 12 34
OK  6 48 54

Total 28 60 88

(a) What is the probability that a man who was examined had 
both high blood pressure and high cholesterol?

(b) What is the probability that a man with high blood pressure 
had high cholesterol?

(c) In this group, were having high blood pressure and having 
high cholesterol independent? Explain.

 16. Reading Pupils at an elementary school took a state profi-
ciency test to see whether they were reading at grade level. The 
results indicated that there was no association between reading 
proficiency and gender. Fill in the missing counts in the table 
below.

  Boys Girls Total
At or above grade level ? ? 150

Below grade level ? ?  30
Total 84 96 180

 17. Passing Yardage In 2015, after 13 seasons as a Colt and 4 
as a Bronco, Peyton Manning retired with 71,940 passing yards 
(over 40 mi), the NFL record. His regular season totals are 
shown in the table below.

 18. Based on the data in Exercise 17:

(a) Calculate the median, range, interquartile range, and five-
number summary.

(b) Calculate the mean and standard deviation.

(c) Would you summarize these data with the median and IQR 
or the mean and standard deviation? Why?

 19. Create a frequency table for the data in Exercise 17.

 20. Create a boxplot of the data in Exercise 17 and identify any 
outliers.

 21. Beatles Songs The lengths (in seconds) of 24 randomly 
selected Beatles songs that appeared on singles are as follows, 
in order of release date:

  143, 120, 120, 139, 124, 144, 131, 132, 148, 163, 140, 177, 
136, 124, 179, 131, 180, 137, 156, 202, 191, 197, 230, 190

  (Source: Personal collection.)

(a) Create a stemplot of these data.

(b) Describe the shape of the distribution.

 22. Based on the data in Exercise 21:

(a) Calculate the median, range, interquartile range, and  
five-number summary.

(b) Calculate the mean and standard deviation.

(c) Would you summarize these data with the median and IQR 
or the mean and standard deviation? Why?

 23. Create a frequency table for the data in Exercise 21.

 24. Create a boxplot of the data in Exercise 21 and identify any 
outliers.

 25. Make a back-to-back stemplot of the data in Exercise 21, 
showing the earlier 12 songs in one plot and the later 12 songs 
in the other. Write a sentence interpreting the stemplot.

 26. Make simultaneous boxplots of the data in Exercise 21, show-
ing the earlier 12 songs in one boxplot and the later 12 songs in 
the other.

(a) Which set of data has the greater range?

(b) Which set of data has the greater interquartile range?

 27. Time Plots Make a time plot for the data in Exercise 21, 
assuming equal time intervals between songs. Interpret the 
trend revealed in the time plot.

 28. Smoothed Time Plots Statisticians sometimes use a tech-
nique called smoothing to smooth out random fluctuations in a 
time plot. Find the mean of the first four numbers in Exercise 
21, the mean of the next four numbers, and so on. Then graph 
the six means as a function of time. Is there a clear trend?

 29. Popular Web Sites In 2017 the numbers of unique visi-
tors per month (in millions) to the top 25 U.S. Web sites were 
as follows:

  238, 211, 181, 177, 176, 146, 115, 115, 105, 98, 79, 67, 63, 62, 
55, 46, 46, 45, 44, 44, 43, 43, 40, 39, 35

  (Source: www.quantcast.com>top-sites.)

(a) Create a histogram of these data.

(b) Describe the shape of the distribution.

Table 10.31 Regular Season Passing 
Yardages for Peyton Manning

Year Yards Year Yards

1998 3739 2007 4040
1999 4135 2008 4002
2000 3313 2009 4500
2001 4131 2010 4700
2002 4200 2011 (injured)
2003 4267 2012 4659
2004 4557 2013 5477
2005 3747 2014 4727
2006 4397 2015 2249

Source: espn.com

(a) Create a stemplot of these data using split stems with inter-
vals of 500 yards.

(b) Describe the shape of the distribution.
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 30. Based on the data in Exercise 29:

(a) Calculate the median, range, interquartile range, and five-
number summary.

(b) Calculate the mean and standard deviation.

(c) Compare the mean and median and explain why the 
 relationship is true.

(d) Would you summarize these data with the median and IQR 
or the mean and standard deviation? Why?

 31. Create a frequency table for the data in Exercise 29.

 32. Create a boxplot of the data in Exercise 29 and identify any 
outliers.

 33. Real Estate Prices The median home sale prices (in 
thousands of $) for 2015 in 30 randomly selected metropolitan 
areas were as follows:

  122.7, 198.8, 189.2, 153.6, 180.4, 212.1, 171.8, 138.7, 305.4, 
129.3, 210.4, 152.6, 183.9, 199.4, 144.4, 105.5, 167.2, 245.8, 
183.8, 226.1, 175.5, 157.7, 281.8, 229.1, 149.9, 208, 108.5, 
216.5, 97.3, 175.3

  (Source: National Association of Realtors.)

(a) Create a histogram of these data.

(b) Describe the shape of the distribution.

 34. Based on the data in Exercise 33:

(a) Calculate the median, range, interquartile range, and  
five-number summary.

(b) Calculate the mean and standard deviation.

(c) Would you summarize these data with the median and IQR 
or the mean and standard deviation? Why?

 35. Create a frequency table for the data in Exercise 33.

 36. Create a boxplot of the data in Exercise 33 and identify any 
outliers.

 37. Batters In 2015 the batting averages of the 142 major 
league baseball players who were eligible for postseason 
awards (essentially the full season starting players) had a mean 
of 0.273 and a standard deviation of 0.026. Assuming the dis-
tribution of batting averages was approximately Normal, use 
the 68-95-99.7 Rule to estimate answers for these questions.

(a) About what percent of players hit 0.299 or below?

(b) In what interval would the batting averages of approxi-
mately 95% of the players be found?

(c) That year Miguel Cabrera of the Detroit Tigers won the 
batting title by hitting 0.338. Comment on how unusual 
that batting average is.

 38. Cattle According to the American Angus Association, the 
distribution of weights of mature Angus steers is approxi-
mately Normal with a mean of 1309 lb and a standard devia-
tion of 157 lb. Use the 68-95-99.7 Rule to estimate answers for 
these questions.

(a) In what interval do the weights of the middle 68% of these 
cattle fall?

(b) Above what weight are the heaviest 2.5% of these cattle?

(c) In 1988 the Denver champion bull named Dameron  
Linedrive (seriously) weighed 2527 lb. Why is that so 
remarkable?

 39. Find the expected value of the random variable defined by this 
probability model:

X 100 150 200 500

P1X2 0.4 0.3 0.2 0.1

 40. Fair Game The probability model for a game (below) 
shows some of the prizes a player may win and the losses the 
player risks. How much must the missing prize be in order to 
make the game fair?

X -$10 $1 $5 ?

P1X2 0.60 0.25 0.10 0.05

 41. Car Repair Automobile brakes work when a part called a 
caliper squeezes brake pads against a spinning disk to slow the 
rotation of the wheels. The brakes won’t work correctly if the 
caliper is not moving freely. At the brake shop, the simplest fix 
is to clean and lubricate the caliper. This costs $50 and will work 
in 35% of cases. In 90% of the cars with a more serious prob-
lem, the caliper must be replaced at a cost of $85 for the part and 
$75 for the labor to install it. The remaining cars need a com-
plete brake overhaul that costs $350. What’s the expected cost 
for car owners who come in for repair of this problem?

 42. Contracts A small construction company has bid on two 
contracts. Preparing the two bids cost the company $500. If it 
gets the smaller job, it expects to earn $8000. The larger job 
offers $12,000. The manager estimates there’s a 60% chance the 
company will get the smaller contract, a 35% chance it will get 
the larger one, and a 10% chance it will get both jobs. To orga-
nize the probabilities, the manager creates the Venn diagram 
shown below. What’s the company’s expected profit?
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 43. Coin Toss A fair coin is tossed five times. Find the proba-
bility of obtaining two heads and three tails.

 44. Coin Toss A fair coin is tossed four times. Find the proba-
bility of obtaining one head and three tails.

 45. Baseball Bats Suppose that the probability a bat company 
produces a defective baseball bat is 0.02. Four bats are selected 
at random. What is the probability that the lot of four bats con-
tains the following?

(a) No defective bats

(b) One defective bat

 46. A professional baseball team purchases 240 bats from the 
company described in Exercise 45. Find the mean and stan-
dard deviation of the number of defective bats the team  
may get.

 47. Would it be appropriate to use a Normal model to describe the 
distribution of the number of defective bats in batches like the 
one described in Exercise 46? Explain.
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 48. Light bulbs Suppose that the probability a certain manufac-
turer produces a defective light bulb is 0.0004. Ten light bulbs 
are selected at random. What is the probability that the lot of 
10 contains the following?

(a) No defective light bulbs

(b) Two defective light bulbs

 49. A large hardware supply chain purchases 100,000 light bulbs 
from the company described in Exercise 48. Find the mean and 
standard deviation of the number of defective bulbs in that 
order.

 50. Would it be appropriate to use a Normal model to describe the 
distribution of the number of defective light bulbs in orders like 
the one described in Exercise 49? Explain.

 51. Archery At a practice range a bowhunter had been able to 
hit 65% of his targets. Hoping to improve his accuracy, he 
bought a new bow. When he tested it, he hit 41 of the first 
50 targets.

(a) Find the mean and standard deviation of the number of tar-
gets he’d hit if the new bow were no more accurate than 
the old.

(b) Explain why a Normal model can be used to describe the 
distribution of targets hit.

(c) Is it plausible that his performance was just a run of good 
luck, or was this evidence that he is a much better shot 
with the new bow?

 52. Telemarketing A newly hired telemarketer’s pay will be 
based on the number of sales she makes. Her employer pre-
dicted she’d successfully sell the product to about 8% of the 
people she calls. At the end of the first week she had placed 
450 phone calls but made only 29 sales. Is this statistically sig-
nificant evidence that the 8% estimate was misleading?

 53. Angus Exercise 38 describes the distribution of weights of 
mature Angus steers as approximately Normal, with a mean of 
1309 lb and a standard deviation of 157 lb.

(a) Approximately what percent of the Angus steers weigh 
over 1500 lb?

(b) Approximately what percent of the animals weigh only 
1100–1250 lb?

(c) What does the model predict the smallest 10% of these ani-
mals should weigh?

 54. Estimate the interquartile range of the Angus steer weights 
described in Exercise 53.

 55. Golf Distances that professional golfers hit the ball off the 
tee (the “drive”) are approximately normally distributed with a 
mean of 287 yd and a standard deviation of 9 yd.

(a) Approximately what percent of drives carry at least 
275 yd?

(b) Approximately what percent of drives travel  
290–300 yd?

(c) How far does the model suggest the longest 1% of all 
drives travel?

 56. Estimate the interquartile range of the golf drives described in 
Exercise 55.

 57. Speeding Data collected for a study about traffic tickets 
revealed that even though white cars account for 25% of the 
vehicle population, they get only 19% of the speeding tickets. 
In reporting on these statistics, a newspaper article said there 
was a high correlation between the color of a car and the risk 
that the driver gets a speeding ticket. Explain the statistical 
error in that statement.

 58. The newspaper article described in Exercise 57 went on to 
speculate that the police don’t issue as many tickets to white 
cars because they are less likely to notice the non-flashy color.

(a) Explain the statistical error in that statement.

(b) Propose an alternative explanation for the association 
between the color and speeding tickets.

 59. A student calculates a correlation of r = -0.96 between two 
variables and concludes that the relationship is therefore linear. 
Explain the statistical error.

 60. Another student calculates a correlation of r = -0.164 for the 
data plotted below and says this indicates there is only a very 
weak association between the two variables. Explain the statis-
tical error.

 61. The HR director of a large law firm wants to survey a random 
sample of the firm’s 443 employees. She numbers the employ-
ees alphabetically and uses her daughter’s graphing calculator 
to choose 60 numbers with the command “randInt(1, 443, 60). 
Does this result in a random sample?

 62. To get a random sample of 50 Atlanta residents for a political 
poll, a worker starts at the beginning of the telephone book. For 
each name in the book, he flips a fair coin. If it comes up 
heads, he calls the person; if it comes up tails, he moves on. 
Once he has called 50 residents, he stops. Does this result in a 
random sample?

 63. To gather information about the popularity of a radio station, 
the station staff invites listeners to visit its Web site and 
respond to a short questionnaire. The station staff was 
depressed because only 45% of the respondents said they liked 
the radio station. Identify any bias in this sampling method.

 64. A social studies class analyzes 30 canned soups available at a 
local food store, recording various nutritional data for a typical 
1-cup serving. Is this an experiment or an observational study?
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 65. SAT Prep An organization offers special courses to help 
students to improve their scores on the SAT exam. It claims 
that students who participated in this course raised their scores 
by an average of 50 points when they retook the test. To verify 
this claim, a researcher has found 40 volunteers who have 
taken the SAT once and plan to do so again. Explain how you 
would design an experiment, including specific comments on 
replication, randomization, and control.

 66. Explain how you would randomize the 40 volunteers for the 
SAT experiment described in Exercise 65.

 67. Laundry To test the effectiveness of a new additive for its 
laundry detergent, a company’s researchers have prepared 20 
identical swatches of cloth with particularly hard-to-remove 
dirt and stains. Explain how you would design an experiment 
to find out whether the additive makes the detergent more 
effective. Include specific comments on replication, randomiza-
tion, and control.

 68. Explain how you would randomize the experiment described in 
Exercise 67.

 69. Marbles At a 4th of July celebration contestants draw mar-
bles from a bag containing 5 red ones, 3 white ones, and 2 blue 
ones. Players draw one marble at a time until they have a com-
plete set of red, white, and blue (in any order; for example, one 
outcome is RBRRBW). The player’s prize is $1 for each mar-
ble left in the bag. Explain how to use random numbers to cre-
ate a simulation that would be able to estimate the average 
amount players might win at this game.

 70. Dice In the game Yahtzee a player rolls 5 dice, getting points 
for various outcomes. One of those outcomes is a “full house”: 
3 dice showing the same face and the other two showing a dif-
ferent pair—for example, 25525. Explain how to design a sim-
ulation to estimate the probability of getting a full house on the 
first roll.

 71. The Hot Hand Many sports fans (and players, too) believe 
that when a basketball player makes several shots in a row that 
player is “in the zone,” and thus more likely to make the next 
shot, too. Do long streaks of success provide statistically sig-
nificant evidence of a “hot hand” phenomenon, or are they just 
random events? In an NBA season a good player might take 
1500 shots and make 55% of them. A simulation modeled a 
typical season, counting the number of streaks that occurred. 
The table below shows the distribution of the lengths of the  
374 streaks during that simulated season.

Length of 
Streak

Number of 
Times

1 173
2 96
3 61
4 23
5 5
6 6
7 4
8 3
9 1

10 1
13 1

(a) Based on these simulated results, do you think that a player 
who hits 5 shots in a row is “in the zone”? Explain.

(b) How many shots in a row would you consider to be statisti-
cally significant? Explain.

 72. Pigs A farmer wonders whether a new food supplement 
does lead to the rapid weight gain in pigs that it claims. To 
investigate, he selects 10 of his pigs that are all about the same 
size and randomly splits them into two groups. One group con-
tinues to get the regular feed, but the other group gets the feed 
with the supplement added. After several weeks he weighs the 
pigs, recording these results:

Regular Feed 194.0 205.5 199.2 172.4 184.0 169.5

Feed w>Supplement 190.7 203.5 203.5 206.5 222.5 209.4

  On average, the pigs fed the supplement weighed 18.6 lb more 
than those fed only the regular food, but is that difference sta-
tistically significant? To find out, a simulation divides the 10 
weights into two groups at random and calculates the differ-
ence in means. Here is a histogram of the random differences 
for 200 trials.
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  Does this simulation provide evidence that the feed supplement 
is effective? Explain.
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CHAPTER 10 Modeling Project

Analyzing Height Data

The height data in the table below were gathered from a class of 
30 precalculus students. Use this set of data or collect the 
heights for your own class and use that data set to see how well 
a Normal distribution would work as a model.

Heights of Students (in.)
66 69 72 64 68
70 71 66 65 63
72 59 64 63 66
68 63 64 71 71
69 62 61 67 69
64 73 75 61 70

Explorations

 1. Create a stem-and-leaf plot for the variable “Height” using 
split stems. From these data, what is the approximate aver-
age height of a student in the class?

 2. Create a frequency table for the data using an interval of 
2 in. What information does this give?

 3. Create a histogram for the data using an interval of 2 in. 
What conclusions can you draw from this representation of 
the data? Assess how well you can estimate the average 
height for males and the average height for females.

 4. Carry out the mathematics. Compute the mean and 
median for the data set.

 5. Analyze the results. Discuss whether each is a good mea-
sure of the average height of a student in the class. Is each 
a good predictor for average height of students in other 
precalculus classes? What does it suggest may be true 
about the distribution of the data if the mean and median 
values are close?

 6. Find the five-number summary for the class heights.
 7. Create a boxplot and explain what information it gives about 

the data set.
 8. A new student is now added to the class. He is a 7 ft 2 in. 

star basketball player. Add his height to the data set. Recal-
culate the mean, median, and five-number summary. Create 
a new boxplot and use your grapher to plot it underneath the 
boxplot for the original class. Analyze how this new  student 
affects the statistics?

 9. Explain why this new student would be considered an out-
lier and the importance of identifying outliers when calculat-
ing statistics and making predictions from them.

 10. Assess the effectiveness of a Normal model. Calculate the 
standard deviation of the original data. Determine what per-
centages of the data actually lie within ±1, ±2, and ±3 
standard deviations of the mean. What does this suggest 
about modeling these heights with a Normal curve?
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Windmills have long been used to pump water from wells, grind grain, and 

saw wood. More recently they are being used to produce electricity. The 

 propeller radius of these windmills ranges from 1 m to 100 m, and the power 

output ranges from 100 W to 1000 kW. See page 777 for more information 

and an opportunity to do some calculations about windmills.

 11.1 Limits and Motion:  
The Tangent Problem

 11.2 Limits and Motion:  
The Area Problem

 11.3 More on Limits

 11.4 Numerical Derivatives 
and Integrals

An Introduction to Calculus: 
Limits, Derivatives, and 
Integrals

CHAPTER 11
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Chapter 11 Overview
By the beginning of the 17th century, algebra and geometry had developed to the point 
where physical behavior could be modeled both algebraically and graphically, each 
type of representation providing deeper insights into the other. New discoveries about 
the solar system had opened up fascinating questions about gravity and its effects on 
planetary motion, so that finding the mathematical key to studying motion became the 
scientific quest of the day. The analytic geometry of René Descartes (1596–1650) put 
the final pieces into place, setting the stage for Isaac Newton (1642–1727) and  Gottfried 
Leibniz (1646–1716) to stand “on the shoulders of giants” and see beyond the algebraic 
boundaries that had limited their predecessors. With geometry showing them the way, 
they created the new form of algebra that would come to be known as calculus.

In this chapter we will look at the two central problems of motion much as Newton and 
Leibniz did, connecting them to geometric problems involving tangent lines and areas. 
We will see how the geometric solutions to both problems led to algebraic dilemmas, 
and how the algebraic dilemmas led to the discovery of calculus. The language of lim-
its, which we have used in this text to describe asymptotes, end behavior, and continu-
ity, will serve us well as we make this transition.

What you’ll learn about
• Average Velocity

• Instantaneous Velocity

• Limits Revisited

• The Connection to Tangent Lines

• The Derivative

... and why
The derivative allows us to analyze 
rates of change, which are funda-
mental to understanding physics, 
economics, engineering, and even 
history.

Average Velocity
Average velocity is the change in position divided by the change in time, as in the 
 following familiar-looking example.

11.1 Limits and Motion: The Tangent Problem

Computing Average Velocity
An automobile travels 120 mi in 2 hr 30 min. What is its average velocity over the 
entire 2 12-hr time interval?

SOLUTION The average velocity is the change in position (120 mi) divided by the 
change in time (2.5 hr). If we denote position by s and time by t, we have

vave =
∆s
∆t

=
120 mi
2.5 hr

= 48 mph.

 Now try Exercise 1.

EXAMPLE 1 

Notice that the average velocity does not tell us how fast the automobile is traveling at 
any given moment during the time interval. It could have gone at a constant 48 mph all 
the way, or it could have sped up, slowed down, or even stopped momentarily several 
times during the trip. Scientists like Galileo Galilei (1564–1642), who studied motion 
prior to Newton and Leibniz, were looking for formulas that would give velocity as a 
function of time—that is, formulas that would give instantaneous values of v for indi-
vidual values of t. The step from average to instantaneous sounds simple enough, but 
there were complications, as we shall see.
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You might want to visualize the ball being frozen at that moment, and then try to deter-
mine its velocity. Well, then the ball would have zero velocity, because it is frozen! 
This approach seems foolish because we know that the ball is moving.

Is this a trick question? On the contrary, it is actually quite profound—it is exactly the 
question that Galileo (among many others) was trying to answer. Notice how easy it is 
to find the average velocity:

vave =
∆s
∆t

=
16 ft
4 sec

= 4 ft>sec

Now, notice how inadequate our algebra becomes when we try to apply the same for-
mula to instantaneous velocity:

vave =
∆s
∆t

=
0 ft

0 sec
,

which involves division by 0—and is therefore undefined!

So Galileo did the best he could by making ∆t as small as experimentally possible, 
measuring the small values of ∆s, and then finding the quotients. It only approximated 
the instantaneous velocity, but finding the exact value appeared to be algebraically out 
of the question because division by zero was impossible.

Limits Revisited
Newton invented “fluxions” and Leibniz invented “differentials” to explain instanta-
neous rates of change without resorting to zero denominators. Both involved mysterious 
quantities that could be infinitesimally small without really being zero. (Their 17th-century 
colleague Bishop Berkeley called them “ghosts of departed quantities” and dismissed 
them as nonsense.) Though not well understood by many, the strange quantities mod-
eled the behavior of moving bodies so effectively that most scientists were willing to 
accept them on faith until a better explanation could be developed. That development, 
which took about a hundred years, led to our modern understanding of limits.

Because you are already familiar with limit notation, we can show you how this works 
with a simple example.

A Velocity Question

A ball rolls a distance of 16 ft in 4 sec. What is the instantaneous velocity of the 
ball at a moment of time 3 sec after it starts to roll?

A Disclaimer
Readers who know a little calculus will recog-
nize that the ball in A Velocity Question really 
does have a nonzero instantaneous velocity after 
3 sec (as we will eventually show). The point of 
the discussion is to show how difficult it is to 
demonstrate that fact at a single instant because 
both time and the position of the ball appear not 
to change.

Instantaneous Velocity
Galileo experimented with gravity by rolling a ball down an inclined plane and record-
ing its approximate velocity as a function of elapsed time. Here is what he might have 
asked himself when he began his experiments:

Using Limits to Avoid Zero Division
A ball rolls down a ramp so that its distance s from the top of the ramp after t sec-
onds is exactly t2 feet. What is its instantaneous velocity after 3 sec?

SOLUTION We might try to answer this question by computing average velocity 
over smaller and smaller time intervals.

EXAMPLE 2

(continued)
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Notice that t is not equal to 3 but is approaching 3 as a limit, which allows us to make 
the crucial cancellation in the second to last line of Example 2. If t were actually equal 
to 3, the algebra above would lead to the incorrect conclusion that 0>0 = 6. The differ-
ence between equaling 3 and approaching 3 as a limit is a subtle one, but it makes all 
the difference algebraically.

It is not easy to formulate a rigorous algebraic definition of a limit (which is why 
 Newton and Leibniz never really did). We have used an intuitive approach to limits so 
far in this text and will continue to do so, deferring the rigorous definitions until your 
calculus course. For now, we will use the following informal definition.

DEFINITION (INFORMAL) Limit at a

When we write “ lim
xSa

 ƒ1x2 = L,” we mean that ƒ1x2 gets arbitrarily close to L 

as x gets arbitrarily close (but not equal) to a.

0

1

2

3

4

1 2 3
t

s

Figure 11.1 The graph of s = t2 shows the 
distance s traveled by a ball rolling down a 
ramp as a function of the elapsed time t.

Arbitrarily Close
This definition is useless for mathematical proofs 
until one defines “arbitrarily close,” but if you 
have a sense of how it applies to the solution in 
Example 2 above, then you are ready to use lim-
its to study motion problems.

On the interval 33, 3.14 :
∆s
∆t

=
13.122 - 32

3.1 - 3
=

0.61
0.1

= 6.1 ft>sec

On the interval 33, 3.054 :
∆s
∆t

=
13.0522 - 32

3.05 - 3
=

0.3025
0.05

= 6.05 ft>sec

Continuing this process, we would eventually conclude that the instantaneous 
velocity must be 6 ft>sec.

However, we can see directly what is happening to the quotient by treating it as a 
limit of the average velocity on the interval 33, t4  as t approaches 3:

 lim
tS3

 
∆s
∆t

= lim
tS3

 
t2 - 32

t - 3

 = lim
tS3

 
1t + 321t - 32

t - 3
 Factor the numerator.

 = lim
tS3

 1t + 32 # t - 3
t - 3

 = lim
tS3

 1t + 32  Because t ≠ 3, 
t - 3
t - 3

= 1.

 = 6
 Now try Exercise 3.

The Connection to Tangent Lines
What Galileo discovered by rolling balls down ramps was that the distance traveled 
was proportional to the square of the elapsed time. For simplicity, let us suppose that 
the ramp was tilted just enough so that the relation between s, the distance from the top 
of the ramp, and t, the elapsed time, was given (as in Example 2) by

s = t2.

Graphing s as a function of t Ú 0 gives the right half of a parabola (Figure 11.1).

M12_DEMA8962_10_GE_C11.indd   772 22/06/22   18:40



 SECTION 11.1 Limits and Motion: The Tangent Problem 773

Exploration 1 suggests an important general fact: If 1a, s1a22 and 1b, s1b22 are two 
points on a distance-time graph, then the average velocity over the time interval 3a, b4  
can be thought of as the slope of the line connecting the two points. In fact, we desig-
nate both quantities with the same symbol: ∆s>∆t.

Galileo knew this. He also knew that he wanted to find instantaneous velocity by let-
ting the two points become one, resulting in ∆s>∆t = 0>0, an algebraic impossibility. 
The picture, however, told a different story geometrically. If, for example, we were to 
connect pairs of points closer and closer to 11, 12, our secant lines would look more 
and more like a line that is tangent to the curve at 11, 12 (Figure 11.2).

It seemed obvious to Galileo and the other scientists of his time that the slope of the 
tangent line was the long-sought-after answer to the quest for instantaneous veloc-
ity. They could see it, but how could they compute it without dividing by zero? That 
was the “tangent line problem” eventually solved for general functions by Newton 
and Leibniz in slightly different ways. We will solve it with limits as illustrated in 
Example 3.

Seeing Average Velocity

Copy Figure 11.1 on a piece of paper and connect the points 11, 12 and 12, 42 
with a straight line. (This is called a secant line because it connects two points 
on the curve.)

 1. Find the slope of the line. 

 2. Find the average velocity of the ball over the time interval 31, 24 . 
 3. What is the relationship between the numbers that answer questions 1  

and 2? 

 4. In general, how could you represent the average velocity of the ball over the 
time interval 3a, b4  geometrically?

EXPLORATION 1 

0

1

2

3

4

1 2 3
t

s

(1, 1)

Figure 11.2 A line tangent to the graph of 
s = t2 at the point 11, 12. The slope of this 
line appears to be the instantaneous velocity at 
t = 1, even though ∆s>∆t = 0>0. The 
geometry succeeds where the algebra fails!

Finding the Slope of a Tangent Line
Use limits to find the slope of the tangent line to the graph of s = t2 at the point 
11, 12 (Figure 11.2).

SOLUTION This will look a lot like the solution to Example 2.

 lim
tS1

 
∆s
∆t

=  lim
tS1

 
t2 - 12

t - 1

 = lim
tS1

 
1t + 121t - 12

t - 1
 Factor the numerator.

 = lim
tS1

 1t + 12 # t - 1
t - 1

 = lim
tS1

 1t + 12  Because t ≠ 1, 
t - 1
t - 1

= 1.

 = 2
 Now try Exercise 17(a).

EXAMPLE 3 

Comparing Example 3 to Example 2 should make it apparent that a method for solving 
the tangent line problem can be used to solve the instantaneous velocity problem, and 
vice versa. They are geometric and algebraic versions of the same problem!
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The Derivative
Velocity, the rate of change of position with respect to time, is only one application of 
the general concept of “rate of change.” If y = ƒ1x2 is any function, we can speak of 
how y changes as x changes.

DEFINITION Average Rate of Change

If y = ƒ1x2, then the average rate of change of y with respect to x on the 
interval 3a, b4  is

∆y

∆x
=

ƒ1b2 - ƒ1a2
b - a

.

Geometrically, this is the slope of the secant line through 1a, ƒ1a22 and 
1b, ƒ1b22.

DEFINITION Derivative at a Point

The derivative of the function ƒ at x = a, denoted by ƒ′1a2 and read “ƒ 
prime of a,” is

ƒ′1a2 = lim
xSa

 
ƒ1x2 - ƒ1a2

x - a
,

provided the limit exists.

Geometrically, this is the slope of the tangent line to the graph of ƒ at 1a, ƒ1a22.

DEFINITION Derivative at a Point (easier for computing)

The derivative of the function ƒ at x = a, denoted by ƒ′1a2 and read  
“ƒ prime of a,” is

ƒ′1a2 = lim
hS0

 
ƒ1a + h2 - ƒ1a2

h
,

provided the limit exists.

The Tangent Line Problem
Although we have focused on Galileo’s work 
with motion problems in order to follow a coher-
ent story, it was Pierre de Fermat (1601–1665) 
who first developed a “method of tangents” for 
general curves, recognizing its usefulness for 
finding relative maxima and minima. Fermat is 
best remembered for his work in number theory, 
particularly for Fermat’s Last Theorem, which 
states that there are no positive integers x, y, and 
z that satisfy the equation xn + yn = zn if n is an 
integer greater than 2. Fermat wrote in the mar-
gin of a textbook, “I have a truly marvelous 
proof that this margin is too narrow to contain,” 
but if he had one, he apparently never wrote it 
down. Although mathematicians tried for over 
330 years to prove (or disprove) Fermat’s Last 
Theorem, nobody succeeded until Andrew Wiles 
of Princeton University finally proved it in 1994.

Differentiability
We say a function is “differentiable” at a if  
ƒ′1a2 exists, because we can find the limit of the 
“quotient of differences.”

Using limits, we can proceed to a definition of the instantaneous rate of change of y 
with respect to x at the point where x = a. This instantaneous rate of change is called 
the derivative.

A more computationally useful formula for the derivative is obtained by letting x = a + h 
and looking at the limit as h approaches 0 (equivalent to letting x approach a).

The fact that the derivative of a function at a point can be viewed geometrically as the 
slope of the line tangent to the curve y = ƒ1x2 at that point provides us with some 
insight into how a derivative might fail to exist. Unless a function has a well-defined 
“slope” when you zoom in on it at a, the derivative at a will not exist. For example, 
Figure 11.3 shows three cases for which ƒ102 exists but ƒ′102 does not.
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The derivative can also be thought of as a function of x. Its domain consists of all val-
ues in the domain of ƒ for which ƒ is differentiable. The function ƒ′ can be defined by 
adapting one of our derivative-at-a-point definitions, as follows.

Figure 11.3 Three examples of functions defined at x = 0 but not differentiable at x = 0.

ƒ1x2 = 0 x 0  has a graph with  
no definable slope at x = 0.

ƒ1x2 = 23 x has a graph with a vertical 
tangent line (no slope) at x = 0.

ƒ1x2 = e x - 1 for x 6 0
1 for x Ú 0

  

has a graph with no definable  
slope at x = 0.

[24.7, 4.7] by [23.1, 3.1]

(a)       

[24.7, 4.7] by [23.1, 3.1]

(b)       

[24.7, 4.7] by [23.1, 3.1]

(c)

Finding a Derivative at a Point
Find ƒ′142 if ƒ1x2 = 2x2 - 3.

SOLUTION 

 ƒ′142 = lim
hS0

 
ƒ14 + h2 - ƒ142

h

 = lim
hS0

 
3214 + h22 - 34 - 12 # 42 - 32

h

 = lim
hS0

 
2116 + 8h + h22 - 32

h

 = lim
hS0

 
16h + 2h2

h
 = lim

hS0
 116 + 2h2  h

h
= 1, because h ≠ 0.

 = 16
 Now try Exercise 23.

EXAMPLE 4 

DEFINITION Derivative

If y = ƒ1x2, then the derivative of the function ƒ with respect to x is the 
function ƒ′ whose value at x is

ƒ′1x2 =  lim
hS0

 
ƒ1x + h2 - ƒ1x2

h
,

for all values of x where the limit exists.
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To emphasize the connection with slope ∆y>∆x, Leibniz used the notation dy>dx for 
the derivative. (The dy and dx were his “ghosts of departed quantities.”) This Leibniz 
notation has several advantages over the “prime” notation, as you will learn when you 
study calculus. We will use both notations in our examples and exercises.

Finding the Derivative of a Function

(a) Find ƒ′1x2 if ƒ1x2 = x2.

(b) Find 
dy

dx
 if y =

1
x
 .

SOLUTION 

(a)   ƒ′1x2 = lim
hS0

 
ƒ1x + h2 - ƒ1x2

h

 = lim
hS0

 
1x + h22 - x2

h

 = lim
hS0

 
x2 + 2xh + h2 - x2

h

 = lim
hS0

 
2xh + h2

h

 = lim
hS0

 
h
h

# 2x + h
1

 = lim
hS0

 12x + h2  Because h ≠ 0, 
h
h

= 1.

 = 2x

So ƒ′1x2 = 2x.

(b)   
dy

dx
= lim

hS0
 
ƒ1x + h2 - ƒ1x2

h

 = lim
hS0

 

1
x + h

-
1
x

h

 = lim
hS0

 

x - 1x + h2
x1x + h2

h

 = lim
hS0

 
-h

x1x + h2
# 1
h

 = lim
hS0

 
-1

x1x + h2

 = -  
1

x2

So 
dy

dx
= -  

1

x2 . Now try Exercise 29.

EXAMPLE 5 
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CHAPTER OPENER Problem (from page 769)

Problem: For an efficient windmill, the power generated, in watts, is given by 
the equation

P = kr2v3

where r is the radius of the propeller in meters, v is the wind velocity in meters per 
second, and k is a constant with units of kg>m3. The exact value of k depends on 
various characteristics of the windmill.

Suppose a windmill has a propeller with a radius of 5 m and k = 0.134 kg>m3.

(a) Find the function P1v2, which gives power as a function of wind velocity.

(b)  Find P′172, the rate of change in power generated with respect to wind 
 velocity, when the wind velocity is 7 m>sec.

SOLUTION:

(a) Because r = 5 m and k = 0.134 kg>m3, we have

P = kr2v3 = 10.13421522v3 = 3.35v3,

 so P1v2 = 3.35v3, where v is in meters per second and P is in watts.

(b)  P′172 = lim
hS0

 
P17 + h2 - P172

h

 = lim
hS0

 
3.3517 + h23 - 3.351723

h

 = lim
hS0

 
3.353173 + 147h + 21h2 + h32 - 734

h

 = lim
hS0

 
3.351147h + 21h2 + h32

h
 = lim

hS0
 33.351147 + 21h + h224

 = 3.3511472
 = 492.45

The rate of change in power generated is about 492 watts per m>sec.

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the slope of the line determined by the points.

 1. 1-2, 32, 15, -12  2. 1-3, -12, 13, 32
In Exercises 3–6, write an equation for the specified line.

 3. Through 1-2, 32 with slope = 3>2
 4. Through 11, 62 and 14, -12
 5. Through 11, 42 and parallel to y = 13>42x + 2

 6. Through 11, 42 and perpendicular to y = 13>42x + 2

In Exercises 7–10, simplify the expression assuming h ≠ 0.

 7. 
12 + h22 - 4

h

 8. 
13 + h22 + 3 + h - 12

h

 9. 
1>12 + h2 - 1>2

h

 10. 
1>1x + h2 - 1>x

h

QUICK REVIEW 11.1 (For help, go to Sections P.1 and P.4.)
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 16. Rocket Launch  
A toy rocket is 
launched straight up  
in the air from level 
ground. The distance 
(in ft) the rocket is 
above the ground (the 
position function) is 
ƒ1t2 = 170t - 16t2 at 
any time t (in sec). Find

(a) ƒ′102.
(b) The initial velocity of the rocket.

In Exercises 17–20, use the limit definition of the derivative.

(a) Find the slope of the graph of the function at the indicated point.

(b) Find an equation of the tangent line at the point.

(c)  Sketch a graph of the curve near the point without using a grapher.

 17. ƒ1x2 = 2x2 at x = -1

 18. ƒ1x2 = 2x - x2 at x = 2

 19. ƒ1x2 = 2x2 - 7x + 3 at x = 2

 20. ƒ1x2 =
1

x + 2
 at x = 1

In Exercises 21 and 22, estimate the slope of the tangent line to the 
graph of the function, if it exists, at the indicated points.

 21. ƒ1x2 = 0 x 0 at x = -2, 2, and 0.

 22. ƒ1x2 = tan-11x + 12 at x = -2, 2, and 0.

In Exercises 23–28, find the derivative, if it exists, of the function at the 
specified point.

 23. ƒ1x2 = 1 - x2 at x = 2

 24. ƒ1x2 = 2x +
1
2

 x2 at x = 2

 25. ƒ1x2 = 2x2 + 4 at x = -1

 26. ƒ1x2 = x2 - 3x + 1 at x = 1

 27. ƒ1x2 = 0 x + 9 0 at x = -9

 28. ƒ1x2 =
2

x + 9
 at x = -7

In Exercises 29–32, find the derivative of ƒ.

 29. ƒ1x2 = 2 - 3x

 30. ƒ1x2 = 2 - 3x2

 31. ƒ1x2 = 8x2 + 8x + 9

 32. ƒ1x2 =
1

x - 2

SECTION 11.1 Exercises

 1. Average Velocity A bicyclist travels 21 mi in 1 hr  
45 min. What is her average velocity during the entire 1 34-hr 
time interval?

 2. Average Velocity An automobile travels 540 km in 4 hr  
30 min. What is its average velocity over the entire 4 12-hr time 
interval?

In Exercises 3–6, the position of an object at time t is given by s1t2. 
Find the instantaneous velocity at the indicated value of t.

 3. s1t2 = 3t - 5 at t = 4

 4. s1t2 =
2

t + 2
 at t = 4

 5. s1t2 = 2at2 + 1 at t = 2

 6. s1t2 = 24t + 13 at t = 1
  [Hint: Rationalize the numerator.]

In Exercises 7–10, use the graph to estimate the slope of the tangent 
line, if it exists, to the graph at the given point.

 7. x = 0  8. x = 1

y

x
–4 –2

–2

4

2 4

y

x
–4

–2

2

4

2 4

 9. x = 2  10. x = 4

0 1

1

2

3

2
x

y y

x
2

4

In Exercises 11–14, graph the function in a square viewing window in 
Radian mode. Then, without doing any calculations, use the slope of 
the graph to determine whether ƒ′122 is positive, negative, or zero.

 11. ƒ1x2 = x  cos x

 12. ƒ1x2 = 1x + 12 sin x

 13. ƒ1x2 = x3 - 3x2 + 2

 14. ƒ1x2 = x cos1x22
 15. A Rock Toss A rock is thrown straight up from level 

ground. The distance (in ft) the rock is above the ground (the 
position function) is ƒ1t2 = 3 + 48t - 16t2 at any time t  
(in sec). Find

(a) ƒ′102.
(b) The initial velocity of the rock.
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 33. Average Speed A lead ball is held at water level and 
dropped from a boat into a lake. The distances the ball falls  
at 0.1-sec time intervals are given in Table 11.1.

Table 11.1 Distance Data of the Lead Ball

Time (sec) Distance (ft)

0 0
0.1 0.1
0.2 0.4
0.3 0.8
0.4 1.5
0.5 2.3
0.6 3.2
0.7 4.4
0.8 5.8
0.9 7.3

Table 11.2 Distance Data of the Ball

Time (sec) Distance (ft)

0.2 30.00
0.4 28.36
0.6 25.44
0.8 21.24
1.0 15.76
1.2  9.02
1.4  0.95

 36. ƒ1x2 = e1 + 1x - 222 if x … 2
1 - 1x - 222 if x 7 2

 at x = 2

 37. ƒ1x2 =
•
0 x - 2 0
x - 2

 if x ≠ 2

1     if x = 2
 at x = 2

 38. ƒ1x2 =
•

sin x
x

 if x ≠ 0

1    if x = 0
 at x = 0

In Exercises 39–42, sketch a possible graph for a function that has the 
stated properties.

 39. The domain of ƒ is 30, 54  and the derivative at x = 2 is 3.

 40. The domain of ƒ is 30, 54  and the derivative is 0 at both x = 2 
and x = 4.

 41. The domain of ƒ is 30, 54  and the derivative at x = 2 is 
 undefined.

 42. The domain of ƒ is 30, 54 , ƒ is nondecreasing on 30, 54 , and 
the derivative at x = 2 is 0.

 43. Writing to Learn Explain why you can find the deriva-
tive of ƒ1x2 = ax + b without doing any computations. What  
is ƒ′1x2?

 44. Writing to Learn Use the first definition of derivative at a 
point to express the derivative of ƒ1x2 = 0 x 0  at x = 0 as a 
limit. Then explain why the limit does not exist. (A graph of 
the quotient for x values near 0 might help.)

Standardized Test Questions
 45. True or False When a ball rolls down a ramp, its instanta-

neous velocity is always zero. Justify your answer.

 46. True or False If the derivative of the function ƒ exists at 
x = a, then the derivative is equal to the slope of the tangent 
line at x = a. Justify your answer.

In Exercises 47–50, choose the correct answer. You may use a 
 calculator.

 47. Multiple Choice If ƒ1x2 = x2 + 3x - 4, find ƒ′1x2.
(A) x2 + 3 (B) x2 - 4 (C) 2x - 1

(D) 2x + 3 (E) 2x - 3

 48. Multiple Choice If ƒ1x2 = 5x - 3x2, find ƒ′1x2.
(A) 5 - 6x (B) 5 - 3x (C) 5x - 6

(D) 10x - 3 (E) 5x - 6x2

 49. Multiple Choice If ƒ1x2 = x3, find the derivative of ƒ at 
x = 2.

(A) 3 (B) 6 (C) 12

(D) 18 (E) Does not exist

 50. Multiple Choice If ƒ1x2 =
1

x - 3
 , find the derivative of ƒ 

at x = 1.

(A) -  
1
4

 (B) 
1
4

 (C) -  
1
2

(D) 
1
2

 (E) Does not exist

(a) Compute the average speed from 0.5 to 0.6 sec and from 
0.8 to 0.9 sec.

(b) Find a quadratic regression model for the distance data and 
overlay its graph on a scatter plot of the data.

(c) Use the model in part (b) to estimate the depth of the lake 
if the ball hits the bottom after 2 sec.

 34. Finding Derivatives from Data A ball is dropped from 
the roof of a two-story building. The distance in feet above 
ground of the falling ball is given in Table 11.2, where time t is 
in seconds.

(a) Use the data to estimate the average velocity of the ball in 
the interval 0.8 … t … 1.

(b) Find a quadratic regression model s for the data in Table 11.2 
and overlay its graph on a scatter plot of the data.

(c) Find the derivative of the regression equation and use it to 
estimate the velocity of the ball at time t = 1.

In Exercises 35–38, complete the following.

(a) Draw a graph of the function.

(b) Find the derivative of the function at the given point if it exists.

(c)  Writing to Learn If the derivative does not exist at the point, 
explain why not.

 35. ƒ1x2 = e4 - x if x … 2
x + 3 if x 7 2

 at x = 2
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Explorations
Graph each function in Exercises 51–54 and then answer the following 
questions.

(a)  Writing to Learn Does the function have a derivative at  
x = 0? Explain.

(b)  Does the function appear to have a tangent line at x = 0? If so, 
what is an equation of the tangent line?

 51. ƒ1x2 = 0 x 0  52. ƒ1x2 = 0 x1>3 0
 53. ƒ1x2 = x1>3 54. ƒ1x2 = tan-1 x

 55. Free Fall A water balloon dropped from a window will fall 
a distance of s = 16t2 feet during the first t seconds. Find the 
balloon’s (a) average velocity during the first 3 sec of falling 
and (b) instantaneous velocity at t = 3.

 56. Free Fall on Another Planet It can be established by 
experimentation that heavy objects dropped from rest free-fall 
near the surface of another planet according to the formula 
y = gt2, where y is the distance in meters the object falls in t 
seconds after being dropped. An object falls from the top of a 
125-m spaceship that landed on the surface. It hits the surface 
in 5 sec.

(a) Find the value of g.

(b) Find the average speed for the fall of the object.

(c) With what speed did the object hit the surface?

Extending the Ideas
 57. Graphing the Derivative The graph of ƒ1x2 = x2e-x is 

shown below. Use your knowledge of the geometric interpreta-
tion of the derivative to sketch a rough graph of the derivative 
y = ƒ′1x2.

  [0, 10] by [21, 1]

 58. Group Activity The graph of y = ƒ′1x2 is shown below. 
Determine a possible graph for the function y = ƒ1x2.

  [25, 5] by [210, 10]
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So, given average velocity over a time interval, we can easily find distance traveled. 
But suppose we have a velocity function v1t2 that gives instantaneous velocity as a 
changing function of time. How can we use the instantaneous velocity function to find 
distance traveled over a time interval? This was the other intriguing problem about 
instantaneous velocity that puzzled the 17th-century scientists—and once again, alge-
bra was inadequate for solving it, as we shall see.

What you’ll learn about
• Distance from a Constant Velocity

• Distance from a Changing Velocity

• Limits at Infinity

• The Connection to Areas

• The Definite Integral

... and why
Like the tangent line problem, the 
area problem has many applica-
tions in every area of science, as 
well as historical and economic 
applications.

Distance from a Constant Velocity
“Distance equals rate times time” is one of the earliest problem-solving formulas that 
we learn in school mathematics. Given a velocity and a time period, we can use the 
formula to compute distance traveled—as in the following standard example.

11.2 Limits and Motion: The Area Problem

Computing Distance Traveled
An automobile travels at a constant rate of 48 mph for 2 hr 30 min. How far does the 
automobile travel?

SOLUTION We apply the formula d = rt:

d = 148 mi>hr212.5 hr2 = 120 mi
 Now try Exercise 1.

EXAMPLE 1 

The similarity to Example 1 in Section 11.1 is intentional. In fact, if we represent dis-
tance traveled (i.e., the change in position) by ∆s and the time interval by ∆t, the for-
mula becomes

∆s = 148 mph2 ∆t,

which is equivalent to

∆s
∆t

= 48 mph.

So the two Example 1’s are nearly identical—except that Example 1 of Section 11.1 
did not make an assumption about constant velocity. What we computed in that 
instance was the average velocity over the 2.5-hr interval. This suggests that we 
could have actually solved the following, slightly different problem to open this 
section.

Computing Distance Traveled
An automobile travels at an average rate of 48 mph for 2 hr 30 min. How far does the 
automobile travel?

SOLUTION The distance traveled is ∆s, the time interval has length ∆t, and  
∆s>∆t is the average velocity.

Therefore,

∆s =
∆s
∆t

# ∆t = 148 mph212.5 hr2 = 120 mi.

 Now try Exercise 5.

EXAMPLE 2 
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Distance from a Changing Velocity
When Galileo began his experiments, here’s what he might have asked himself about 
using a changing velocity to find distance:

Zeno’s Paradoxes
The Greek philosopher Zeno of Elea  
(490–425 bce) was noted for presenting para-
doxes similar to the Distance Question. One of 
the most famous concerns the race between 
Achilles and a slow-but-sure tortoise. Achilles 
sportingly gives the tortoise a head start, then 
sets off to catch him. He must first get halfway to 
the tortoise, but by the time he runs halfway to 
where the tortoise was when he started, the tor-
toise has moved ahead. Now Achilles must close 
half of that distance, but by the time he does, the 
tortoise has moved ahead again. Continuing this 
argument forever, we see that Achilles can never 
even catch the tortoise, let alone pass him, so the 
tortoise must win the race.

A Distance Question

Suppose a ball rolls down a ramp and its velocity is always 2t feet per second, 
where t is the number of seconds after it started to roll. How far does the ball 
travel during the first 3 sec?

DEFINITION (INFORMAL) Limit at Infinity

When we write “ lim
xS∞

 ƒ1x2 = L,” we mean that ƒ1x2 gets arbitrarily close to L 

as x gets arbitrarily large.

One might be tempted to offer the following “solution”:

Velocity times ∆t gives ∆s. But instantaneous velocity occurs at an instant of time, so 
∆t = 0. That means ∆s = 0. So, at any given instant of time, the ball doesn’t move. 
Because any time interval consists of instants of time, the ball never moves at all! (You 
might well ask: Is this another trick question?)

As was the case with the Velocity Question in Section 11.1, this foolish-looking exam-
ple conceals a very subtle algebraic dilemma—and, far from being a trick question, it is 
exactly the question that needed to be answered in order to compute the distance trav-
eled by an object whose velocity varies as a function of time. The scientists who were 
working on the tangent line problem realized that the distance-traveled problem must 
be related to it, but surprisingly, their geometry led them in another direction. The 
 distance-traveled problem led them not to tangent lines, but to areas.

Limits at Infinity
Before we see the connection to areas, let us revisit another limit concept that will 
make instantaneous velocity easier to handle, just as in the last section. We will again 
be content with an informal definition.

An Infinite Limit

A gallon of water is divided equally and poured into teacups. Find the amount in 
each teacup and the total amount in all the teacups if there are

 1. 10 teacups. 

 2. 100 teacups. 

 3. 1 billion teacups. 

 4. An infinite number of teacups. 

EXPLORATION 1

The preceding Exploration probably went pretty smoothly until you came to the infi-
nite number of teacups. At that point you were probably pretty comfortable in saying 
what the total amount would be, and probably a little uncomfortable in saying how 
much would be in each teacup. (Theoretically it would be zero, which is just one reason 
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why the actual experiment cannot be performed.) In the language of limits, the total 
amount of water in the infinite number of teacups would look like this:

lim
nS∞
an # 1

n
b = lim

nS∞
 
n
n

= 1 gal

The total amount in each teacup would look like this:

lim
nS∞

 
1
n

= 0 gal

Summing up an infinite number of nothings to get something is mysterious enough when 
we use limits; without limits it seems to be an algebraic impossibility. That is the dilemma 
that confronted the 17th-century scientists who were trying to work with instantaneous 
velocity. Once again, it was geometry that showed the way when the algebra failed.

Connection to Areas
If we graph the constant velocity v = 48 in Example 1 as a function of time t, we notice 
that the area of the shaded rectangle is the same as the distance traveled (Figure 11.4). 
This is no mere coincidence, either, as the area of the rectangle and the distance traveled 
over the time interval are both computed by multiplying the same two quantities:

148 mph212.5 hr2 = 120 mi

Now suppose we graph a velocity function that varies continuously as a function of 
time (Figure 11.5). Would the area of this irregularly shaped region still give the total 
distance traveled over the time interval 3a, b4?
Newton and Leibniz (and, actually, many others who had considered this question) were 
convinced that it would, and that is why they were interested in a calculus for finding 
areas under curves. They imagined the time interval being partitioned into many tiny 
subintervals, each one so small that the velocity over it would essentially be constant. 
Geometrically, this was equivalent to slicing the area into narrow strips, each one of 
which would be nearly indistinguishable from a narrow rectangle (Figure 11.6).

The idea of partitioning irregularly shaped areas into approximating rectangles was not 
new. Indeed, Archimedes had used that very method to approximate the area of a circle 
with remarkable accuracy. However, it was an exercise in patience and perseverance, 
as Example 3 will show.

Velocity (mph)

48

2.5
Time (hr)

Figure 11.4 For constant velocity, the  
area of the rectangle is the same as the 
distance traveled, because it represents  
the product of the same two quantities: 
148 mph212.5 hr2 = 120 mi.

Velocity

ba
Time

Figure 11.5 If the velocity varies over  
the time interval 3a, b4 , does the shaded 
region give the distance traveled?

Velocity

ba
Time

Figure 11.6 The region is partitioned into 
vertical strips. If the strips are narrow enough, 
they are almost indistinguishable from 
rectangles. The sum of the areas of these 
“rectangles” will give the total area and can be 
interpreted as distance traveled.

5

y

10

x
2 31

Figure 11.7 The area under the graph of ƒ1x2 = x2 is approximated by six rectangles,  
each with base 1>2. The height of each rectangle is the function value at the right-hand 
endpoint of the subinterval. (Example 3)

Approximating an Area with Rectangles
Use the six rectangles in Figure 11.7 to approximate the area of the region below the 
graph of ƒ1x2 = x2 over the interval 30, 34 .

EXAMPLE 3 

(continued)
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Figure 11.7 shows that the right rectangular approximation method (RRAM) in 
 Example 3 overestimates the true area. If we were to use the function values at the left-hand 
endpoints of the subintervals (LRAM), we would obtain a rectangular approximation 
(6.875 square units) that underestimates the true area (Figure 11.8). The average of the 
two approximations is 9.125 square units, which is actually a pretty good estimate of 
the true area of 9 square units. If we were to repeat the process with 20 rectangles, the 
average would be 9.01125. This method of converging toward an unknown area by 
refining approximations is tedious, but it works—Archimedes used a variation of it 
2200 years ago to estimate the area of a circle, and in the process demonstrated that the 
ratio of the circumference to the diameter is between 3.140845 and 3.142857.

The calculus step is to move from a finite number of rectangles (yielding an approxi-
mate area) to an infinite number of rectangles (yielding an exact area). This brings us to 
the definite integral.

The Definite Integral
In general, begin with a continuous function y = ƒ1x2 over an interval 3a, b4 . Divide 
3a, b4  into n subintervals of length ∆x = 1b - a2>n. Choose any value x1 in the first 
subinterval, x2 in the second, and so on. Compute ƒ1x12, ƒ1x22, ƒ1x32, c , ƒ1xn2, multi-
ply each value by ∆x, and sum up the products. In sigma notation, the sum of the products is

a
n

i=1
 ƒ1xi2∆x.

The limit of this sum as n approaches infinity is the exact solution to the area problem, 
and hence the solution to the problem of distance traveled. Indeed, it solves a variety of 
other problems as well, as you will learn when you study calculus. The limit, if it 
exists, is called a definite integral.

5

y

10

x
2 31

Figure 11.8 If we change the rectangles in 
Figure 11.7 so that their heights are determined 
by function values at the left-hand endpoints, 
we get an area approximation (6.875 square 
units) that underestimates the true area.

SOLUTION The base of each approximating rectangle is 1>2. The height is deter-
mined by the function value at the right-hand endpoint of each subinterval. The areas 
of the six rectangles and the total area are computed in the table below:

Subinterval
Base of  

Rectangle
Height of  
Rectangle

Area of  
Rectangle

30, 1>24 1>2 ƒ11>22 = 11>222 = 1>4 11>2211>42 = 0.125

31>2, 14 1>2 ƒ112 = 1122 = 1 11>22112 = 0.500

31, 3>24 1>2 ƒ13>22 = 13>222 = 9>4 11>2219>42 = 1.125

33>2, 24 1>2 ƒ122 = 1222 = 4 11>22142 = 2.000

32, 5>24 1>2 ƒ15>22 = 15>222 = 25>4 11>22125>42 = 3.125

35>2, 34 1>2 ƒ132 = 1322 = 9 11>22192 = 4.500

    Total Area: 11.375

The six rectangles give a (rather crude) approximation of 11.375 square units for the 
area under the curve from 0 to 3. Now try Exercise 11.

Riemann Sums

A sum of the form a
n

i=1
 ƒ1xi2∆x in which x1 is in 

the first subinterval, x2 is in the second, and so 
on, is called a Riemann sum, in honor of Georg 
Riemann (1826–1866), who determined the 
functions for which such sums had limits as 
n S ∞.

Definite Integral Notation
Notice that the notation for the definite integral 
(another legacy of Leibniz) parallels the sigma 
notation of the sum for which it is a limit. The 
“g” in the limit becomes a stylized “S,” for 
“sum.” The “∆x” becomes “dx” (as it did in the 
derivative), and the “ƒ1xi2” becomes simply 
“ƒ1x2” because we are effectively summing up 
all the ƒ1x2 values along the interval (times an 
arbitrarily small change in x), rendering the sub-
scripts unnecessary.

DEFINITION Definite Integral

Let ƒ be a function defined on 3a, b4  and let a
n

i=1
 ƒ1xi2∆x be defined as above. 

The definite integral of ƒ over 3a, b4 , denoted 1b
a  ƒ1x2 dx, is given by

L
b

a
 ƒ1x2 dx = lim

nS∞
 a

n

i=1
 ƒ1xi2∆x,

provided the limit exists. If the limit exists, we say ƒ is integrable on 3a, b4 .
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y

x
1 5

y = 2x

Figure 11.9 The area of the trapezoid equals 

15
1  2x dx. (Example 4)

The solution to Example 3 shows that it can be tedious to approximate a definite inte-
gral by working out the sum for a large value of n. One of the crowning achievements 
of calculus was to demonstrate how the exact value of a definite integral could be 
obtained without summing up any products at all. You will have to wait until you study 
calculus to see how that is done; meanwhile, you will learn in Section 11.4 how to use 
a grapher to take the tedium out of finding definite integrals by summing.

You can also use the area connection to your advantage, as shown in these next two 
examples.

Computing an Integral

Find L
5

1
2x dx.

SOLUTION This will be the area under the line y = 2x over the interval 31, 54 . The 
graph in Figure 11.9 shows that this is the area of a trapezoid.

Using the formula A = hab1 + b2

2
b , we find that

L
5

1
 2x dx = 4a2112 + 2152

2
b = 24.

 Now try Exercise 23.

EXAMPLE 4 

Computing an Integral
Suppose a ball rolls down a ramp so that its velocity after t seconds is always 2t feet 
per second. How far does it fall during the first 3 sec?

SOLUTION The distance traveled will be the same as the area under the velocity 
graph, v1t2 = 2t, over the interval 30, 34 . The graph is shown in Figure 11.10. Because 
the region is triangular, we can find its area: A = 11>22132162 = 9. The distance 
traveled in the first 3 sec, therefore, is ∆s = 11>2213 sec216 ft>sec2 = 9 ft.
 Now try Exercise 45.

EXAMPLE 5 

6

v

t
1 2 3

Figure 11.10 The area under the velocity graph v1t2 = 2t, over the interval 30, 34 , is the 
distance traveled by the ball in Example 5 during the first 3 sec.
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In Exercises 1 and 2, list the elements of the sequence.

 1. ak =
1
2

 a1
2

 kb
2

 for k = 1, 2, 3, 4, c , 9, 10

 2. ak =
1
4

 a2 +
1
4

 kb
2

 for k = 1, 2, 3, 4, c , 9, 10

In Exercises 3–6, find the sum.

 3. a
10

k=1
 
1
2

 1k + 12  4. a
n

k=1
 1k + 12 

 5. a
10

k=1
 
1
2

 1k + 122  6. a
n

k=1
 
1
2

 k2

 7. A truck travels at an average speed of 57 mph for 4 hr. How far 
does it travel?

 8. A pump working at 5 gal>min pumps for 2 hr. How many gal-
lons are pumped?

 9. Water flows over a spillway at a steady rate of 200 ft3>sec. 
How much water passes over the spillway in 6 hr?

 10. A country has a population density of 560 persons per square 
mile in an area of 35,000 mi2. What is the population of the 
country?

QUICK REVIEW 11.2 (For help, go to Sections 1.1 and 9.4.) 

 9. 

x

y

0
0

1

2

3

4

5

6

1 2 3 4 5

 10. 

x

y

0
0

1

2

3

4

5

6

1 2 3 4 5

In Exercises 11 and 12, use the 8 rectangles shown to approximate the 
area of the region below the graph of ƒ1x2 = 10 - x2 over the interval 
3-1, 34 .
 11.  12. 

SECTION 11.2 Exercises

In Exercises 1–6, explain how to represent the problem situation as an 
area question and then solve the problem.

 1. A train travels at 65 mph for 3 hr. How far does it  
travel?

 2. A pump working at 15 gal>min pumps for 0.5 hr. How many 
gallons are pumped?

 3. Water flows over a spillway at a steady rate of 150 cubic feet 
per second. How many cubic feet of water pass over the spill-
way in 1 hr?

 4. A city has a population density of 650 persons per square  
mile in an area of 20 mi2. What is the population of the 
city?

 5. An airplane travels at an average velocity of 640 km>hr for  
3 hr 24 min. How far does the airplane travel?

 6. A train travels at an average velocity of 24 mph for  
4 hr 50 min. How far does the train travel?

In Exercises 7–10, estimate the area of the region above the x-axis and 
under the graph of the function from x = 0 to x = 5.

 7. 

x

y

0
0

1

2

3

4

5

1 2 3 4 5

 8. 

x

y

0
0

1

2

3

4

5

1 2 3 4 5

5

y

2 31–1

5

y

2 31–1

In Exercises 13–16, partition the given interval into the indicated num-
ber of subintervals.

 13. 31, 34 ; 4 14. 30, 24 ; 8

 15. 31, 44 ; 6 16. 31, 54 ; 8
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In Exercises 17–20, complete the following.

(a)  Draw the graph of the function for x in the specified interval.  
Verify that the function is nonnegative in that interval.

(b)  On the graph in part (a), draw and shade the approximating rectan-
gles for the RRAM using the specified partition. Compute the 
RRAM area estimate without using a calculator.

(c)  Repeat part (b) using the LRAM.

(d)  Average the RRAM and LRAM approximations from parts (b) and 
(c) to find an average estimate of the area.

 17. ƒ1x2 = x2; 30, 44 ; 4 subintervals

 18. ƒ1x2 = x2 + 2; 30, 64 ; 6 subintervals

 19. ƒ1x2 = 4x - x2; 30, 44 ; 4 subintervals

 20. ƒ1x2 = x3; 30, 34 ; 3 subintervals

In Exercises 21–28, find the definite integral by computing an area. (It 
may help to look at a graph of the function.)

 21. L
7

3
 5 dx  22. L

4

-1
 6 dx

 23. L
5

0
 3x dx  24. L

7

1
 0.5x dx

 25. L
4

1
 1x + 32 dx  26. L

4

1
 13x - 22 dx

 27. L
2

-2
 24 - x2 dx  28. L

6

0
236 - x2 dx

It can be proved that the area enclosed between the x-axis and one arch 
of the sine curve is 2. Use this fact in Exercises 29–38 to compute the 
definite integral. (It may help to look at a graph of the function.)

 29. L
p

0
 sin x dx  30. L

p

0
 1sin x + 22 dx

 31. L
p+2

2
 sin1x - 22 dx  32. L

p>2

-p>2
 cos x dx

 33. L
p>2

0
 sin x dx  34. L

p>2

0
 cos x dx

 35. L
p

0
 2 sin x dx [Hint: All the rectangles are twice as tall.]

 36. L
2p

0
 sinax

2
b  dx [Hint: All the rectangles are twice as wide.]

 37. L
2p

0
 0 sin x 0  dx

 38. L
3p>2

-p
 0 cos x 0  dx

In Exercises 39–42, find the integral in terms of k, assuming that k is a 
number between 0 and 4.

 39. L
4

0
 1kx + 32 dx

 40. L
k

0
 14x + 32 dx

 41. L
2

0
 1x + k2 dx

 42. L
4

k
 14x + 32 dx

 43. Writing to Learn Let g1x2 = -ƒ1x2, where ƒ has nonneg-
ative function values on an interval 3a, b4 . Explain why the 
area above the graph of g is the same as the area under the 
graph of ƒ in the same interval.

 44. Writing to Learn Explain how you can find the area under 

the graph of ƒ1x2 = 216 - x2 from x = 0 to x = 4 by men-
tal computation only.

 45. Falling Ball Suppose a ball is dropped from a tower and its 
velocity after t seconds is always 32t feet per second. How far 
does the ball fall during the first 2 sec?

 46. Accelerating Automobile Suppose an automobile accel-
erates so that its velocity after t seconds is always 6t feet per 
second. How far does the car travel in the first 7 sec?

 47. Rock Toss A rock is thrown straight up from level  
ground. The velocity of the rock at any time t (sec) is 
v1t2 = 48 - 32t ft>sec.

(a) Graph the velocity function.

(b) At what time does the rock reach its maximum height?

(c) Find how far the rock has traveled at its maximum height.

 48. Rocket Launch A toy rocket is launched straight up from 
level ground. Its velocity function is ƒ1t2 = 170 - 32t feet per 
second, where t is the number of seconds after launch.

(a) Graph the velocity function.

(b) At what time does the rocket reach its maximum height?

(c) Find how far the rocket has traveled at its maximum 
height.

 49. Finding Distance Traveled as Area A ball is pushed 
off the roof of a three-story building. Table 11.3 gives the 
velocity (in feet per second) of the falling ball at 0.2-sec 
 intervals until it hits the ground 1.4 sec later.

Table 11.3 Velocity Data of the Ball

Time (sec) Velocity (ft>sec)

0.2 -5.05
0.4 -11.43
0.6 -17.46
0.8 -24.21
1.0 -30.62
1.2 -37.06
1.4 -43.47

(a) Draw a scatter plot of the data.

(b) Find the approximate building height using RRAM areas as 
in Example 3. Use the fact that if the velocity function is 
always negative, the distance traveled will be the same as if 
the absolute value of the velocity values were used.
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 50. Work Work is defined as force times distance. A full water 
barrel weighing 1250 lb has a significant leak and must be 
lifted 35 ft. Table 11.4 displays the weight of the barrel mea-
sured after each 5 ft of movement. Find the approximate work 
in foot-pounds done in lifting the barrel 35 ft.

Table 11.4 Weight of a Leaking Water Barrel

Distance (ft) Weight (lb)

 0 1250
 5 1150
10 1050
15  950
20  850
25  750
30  650

Explorations
 57. Group Activity You may have erroneously assumed that the 

function ƒ had to be positive in the definition of the definite 

integral. It is a fact that L
2p

0
 sin x dx = 0. Use the definition of 

the definite integral to explain why this is so. What does this 

imply about L
1

0
 1x - 12 dx?

 58. Area Under a Discontinuous Function Let

ƒ1x2 = e1 if x 6 2
x if x 7 2.

(a) Draw a graph of ƒ. Determine its domain and range.

(b) Writing to Learn How would you define the area 
under ƒ from x = 0 to x = 4? Does it make a difference if 
the function has no value at x = 2?

Extending the Ideas
Group Activity From what you know about definite integrals, 
decide whether each of the following statements is true or false for  
integrable functions (in general). Work with your classmates to justify 
your answers.

 59. L
b

a
 ƒ1x2 dx + L

b

a
 g1x2 dx = L

b

a
 1ƒ1x2 + g1x22 dx

 60. L
b

a
8 # ƒ1x2 dx = 8 # L

b

a
ƒ1x2 dx

 61. L
b

a
ƒ1x2 # g1x2 dx = L

b

a
ƒ1x2 dx # L

b

a
g1x2 dx

 62. L
c

a
ƒ1x2 dx + L

b

c
ƒ1x2 dx = L

b

a
ƒ1x2 dx for a 6 c 6 b

 63. L
b

a
ƒ1x2 = L

a

b
ƒ1x2

 64. L
a

a
ƒ1x2 dx = 0

Standardized Test Questions
 51. True or False When the area under a curve is estimated 

using LRAM, the accuracy typically improves as the number n 
of subintervals is increased.

 52. True or False The statement lim
xS∞

 ƒ1x2 = L means that 

ƒ1x2 gets arbitrarily large as x gets arbitrarily close to L.

It can be proved that the area of the region enclosed by the curve 
y = 2x, the x-axis, and the line x = 9 is 18. Use this fact in  
Exercises 53–56 to choose the correct answer. Do not use a calculator.

 53. Multiple Choice L
9

0
 22x dx

(A) 36 (B) 27 (C) 18 (D) 9 (E) 6

 54. Multiple Choice L
9

0
 12x + 52 dx

(A) 14 (B) 23 (C) 33 (D) 45 (E) 63

 55. Multiple Choice L
14

5
 12x - 52 dx

(A) 9 (B) 13 (C) 18 (D) 23 (E) 28

 56. Multiple Choice L
3

0
 23x dx

(A) 54 (B) 18 (C) 9 (D) 6 (E) 3
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What you’ll learn about
• A Little History

• Defining a Limit Informally

• Properties of Limits

• Limits of Continuous Functions

• One-Sided and Two-Sided Limits

• Limits Involving Infinity

... and why
Limits are essential concepts in the 
development of calculus.

A Little History
Progress in mathematics occurs gradually and without much fanfare in the early stages. 
The fanfare occurs much later, after the discoveries and innovations have been cleaned 
up and put into perspective. Calculus is certainly a case in point. Most of the ideas in 
this chapter predate Newton and Leibniz. Other investigators were solving calculus 
problems as far back as Archimedes of Syracuse (ca. 287–212 bce), long before calcu-
lus was “discovered.” What Newton and Leibniz did was to develop the rules of the 
game so that derivatives and integrals could be computed algebraically. Most impor-
tant, they developed what has come to be called the Fundamental Theorem of Calculus, 
which explains the connection between the “tangent line problem” and the “area 
problem.”

But the methods of Newton and Leibniz depended on mysterious “infinitesimal” quan-
tities that were small enough to vanish and yet were not zero. Jean Le Rond d’Alembert 
(1717–1783) was a strong proponent of replacing infinitesimals with limits (the strat-
egy that would eventually work), but these concepts were not well understood until 
Karl Weierstrass (1815–1897) and his student Eduard Heine (1821–1881) introduced 
the formal, unassailable definitions that are used in our higher mathematics courses 
today. By that time, Newton and Leibniz had been dead for over 150 years.

Defining a Limit Informally
There is nothing difficult about the following limit statements:

lim
xS3

 12x - 12 = 5  lim
xS∞

 1x2 + 32 = ∞  lim
nS∞

 
1
n

= 0

That is why we have used limit notation throughout this text. Particularly when elec-
tronic graphers are available, analyzing the limiting behavior of functions algebra-
ically, numerically, and graphically can tell us much of what we need to know about 
the functions.

What is difficult is to come up with an airtight definition of what a limit really is. If it 
had been easy, it would not have taken 150 years. The subtleties of the “epsilon-
delta” definition of Weierstrass and Heine are as beautiful as they are profound, but 
they are not the stuff of a precalculus course. Therefore, even as we look more 
closely at limits and their properties in this section, we will continue to refer to our 
“informal” definition of limit (essentially that of d’Alembert). We repeat it here for 
ready reference:

11.3 More on Limits

DEFINITION (INFORMAL) Limit at a

When we write “ lim
xSa

 ƒ1x2 = L,” we mean that ƒ1x2 gets arbitrarily close to L 

as x gets arbitrarily close (but not equal) to a.
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Properties of Limits
When limits exist, there is nothing unusual about the way they interact algebraically 
with each other. You could easily predict that the following properties would hold. 
These are all theorems that one could prove with a rigorous definition of limit, but we 
must state them without proof here.

What’s the Limit?

As a class, discuss the following two limit statements until you really understand 
why they are true. Look at them every way you can. Use graphers. Do you see 
how the definition on the previous page verifies that they are true? In particular, 
can you defend your position against the challenges that follow the statements? 
(This exploration is intended to be free-wheeling and philosophical. You can’t 
prove these statements without a stronger definition.)

 1. lim
xS2

 7x ≠ 14.000000000000000001

 Challenges:

• Isn’t 7x getting “arbitrarily close” to that number as x approaches 2?

• How can you tell that 14 is the limit and 14.000000000000000001 is not?

 2. lim
xS0

 
x2 + 2x

x
= 2

Challenges:

• How can the limit be 2 when the quotient isn’t even defined at 0?

• Won’t there be an asymptote at x = 0? The denominator equals 0 there.

• How can you tell that 2 is the limit and 1.99999999999999999999 is not?

EXPLORATION 1 

X=1.0212766 Y=3.0642825

1

[24, 4] by [22, 8]

Figure 11.11a A graph of 
ƒ1x2 = 1x3 - 12>1x - 12.

X

Y1 = (X3–1)/(X–1)

.997

.998

.999
1
1.001
1.002
1.003

2.991
2.994
2.997
ERROR
3.003
3.006
3.009

Y1

Figure 11.11b A table of values 
for ƒ1x2 = 1x3 - 12>1x - 12.

Finding a Limit

Find lim
xS1

 
x3 - 1
x - 1

 .

EXAMPLE 1 

Solve Graphically
The graph in Figure 11.11a suggests 
that the limit exists and is about 3.

Solve Numerically
The table also gives compelling 
evidence that the limit is 3.

Solve Algebraically

lim
xS1

 
x3 - 1
x - 1

= lim
xS1

 
1x - 121x2 + x + 12

x - 1

= lim
xS1

 1x2 + x + 12
= 1 + 1 + 1

  = 3

As convincing as the graphical and numerical evidence is, the best evidence is algebraic. The limit is 3.
 Now try Exercise 11.
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Properties of Limits

If lim
xSc

 ƒ1x2 and lim
xSc

 g1x2 both exist, then

1. Sum Rule lim
xSc

 1ƒ1x2 + g1x22 = lim
xSc

 ƒ1x2 + lim
xSc

 g1x2
2. Difference Rule lim

xSc
 1ƒ1x2 - g1x22 = lim

xSc
 ƒ1x2 - lim

xSc
 g1x2

3. Product Rule lim
xSc

 1ƒ1x2 # g1x22 = lim
xSc

 ƒ1x2 # lim
xSc

 g1x2
4. Constant Multiple Rule lim

xSc
 1k # g1x22 = k # lim

xSc
 g1x2

5. Quotient Rule lim
xSc

 
ƒ1x2
g1x2 =

 lim
xSc

 ƒ1x2
 lim
xSc

 g1x2 , provided  lim
xSc

 g1x2 ≠ 0

6. Power Rule  lim
xSc

 1ƒ1x22n = 1 lim
xSc

 ƒ1x22n for n  

a positive integer

7. Root Rule  lim
xSc

 2n ƒ1x2 = 2n lim
xSc

 ƒ1x2, for n Ú 2  

a positive integer, provided 2n lim
xSc

 ƒ1x2  
and lim

xSc
 2n ƒ1x2 are real numbers.

Using the Limit Properties

You will learn in Example 10 that lim
xS0

 
sin x

x
= 1. Use this fact, along with the limit 

properties, to find the following limits:

(a) lim
xS0

 
x + sin x

x
   (b)  lim

xS0
 
1 - cos2 x

x2    (c) lim
xS0

 
23 sin x23 x

SOLUTION

(a)  lim
xS0

 
x + sin x

x
= lim

xS0
 ax

x
+

sin x
x
b

  = lim
xS0

 
x
x

+ lim
xS0

 
sin x

x
 Sum Rule

  = 1 + 1

  = 2

(b) lim
xS0

 
1 - cos2 x

x2 = lim
xS0

 
sin2 x

x2  Pythagorean identity

   = lim
xS0

 asin x
x
b asin x

x
b

   = lim
xS0

 asin x
x
b # lim

xS0
 asin x

x
b  Product Rule

   = 1 # 1

   = 1

(c) lim
xS0

 
23 sin x23 x

= lim
xS0

 A3  
sin x

x

   = A3    lim
xS0

 
sin x

x
 Root Rule

   = 23 1

   Now try Exercise 19.

EXAMPLE 2 
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Limits of Continuous Functions
Recall from Section 1.2 that a function is continuous at a if lim

xSa
 ƒ1x2 = ƒ1a2. This 

means that the limit (at a) of a function can be found by “plugging in a” provided the 
function is continuous at a. (The condition of continuity is essential when employing this 
strategy. For example, plugging in 0 does not work on any of the limits in Example 2.)

Finding Limits by Substitution
Find the limits.

(a) lim
xS0

 
ex - tan x

cos2 x
     (b) lim

nS16
 
2n

log2 n

SOLUTION You might not recognize these functions as being continuous, but you 
can use the limit properties to write the limits in terms of limits of basic functions.

(a) lim
xS0

 
ex - tan x

cos2 x
=

lim
xS0

 1ex - tan x2
lim
xS0

 1cos2 x2  Quotient Rule

   =
lim
xS0

 ex - lim
xS0

 tan x

1 lim
xS0

 cos x22  Difference and Power Rules

   =
e0 - tan 0

1cos 022  Limits of continuous functions

   =
1 - 0

1

   = 1

(b) lim
nS16

 
2n

log2 n
=

lim
nS16

 2n

lim
nS16

 log2 n
 Quotient Rule

   =
216

log2 16
 Limits of continuous functions

   =
4
4

   = 1 Now try Exercise 23.

EXAMPLE 3 

Example 3 hints at some important properties of continuous functions that follow from 
the properties of limits. If ƒ and g are both continuous at x = a, then so are 
ƒ + g, ƒ - g, ƒg, and ƒ>g (with the assumption that g1a2 does not create a zero 
denominator in the quotient). Also, the nth power and the nth root of a function that is 
continuous at a will also be continuous at a (with the assumption that 2n ƒ1a2 is real).

One-Sided and Two-Sided Limits
We can see that the limit of the function in Figure 11.11 is 3 whether x approaches 1 
from the left or right. Sometimes the values of a function ƒ can approach different values 
as x approaches a number c from opposite sides. When this happens, the limit of ƒ as x 
approaches c from the left is the left-hand limit of ƒ at c, and the limit of ƒ as x 
approaches c from the right is the right-hand limit of ƒ at c. Here is the notation we use.

left-hand: lim
xSc- ƒ1x2 The limit of ƒ as x approaches c from the left

right-hand: lim
xSc+ ƒ1x2 The limit of ƒ as x approaches c from the right

M12_DEMA8962_10_GE_C11.indd   792 22/06/22   18:40



 SECTION 11.3 More on Limits 793

[22, 8] by [23, 7]

Figure 11.12 A graph of the piecewise-
defined function

ƒ1x2 = e-x2 + 4x - 1 x … 2
2x - 3 x 7 2

 
.

(Example 4)

[24.7, 4.7] by [25, 10]

Figure 11.13 A graph of the function in 
Example 5.

Finding Left- and Right-Hand Limits

Find lim
xS2- ƒ1x2 and lim

xS2+ ƒ1x2 where ƒ1x2 = e-x2 + 4x - 1 if x … 2 
2x - 3 if x 7 2.

SOLUTION Figure 11.12 suggests that the left- and right-hand limits of ƒ exist but 
are not equal. Using algebra we find

 lim
xS2- ƒ1x2 = lim

xS2- 1-x2 + 4x - 12 Definition of ƒ

  = -22 + 4 # 2 - 1

  = 3

  lim
xS2+ ƒ1x2 = lim

xS2+ 12x - 32 Definition of ƒ

  = 2 # 2 - 3

  = 1

You can use TRACE or tables to support the above results.
 Now try Exercise 27, parts (a) and (b).

EXAMPLE 4 

The limit lim
xSc

 ƒ1x2 is sometimes called the two-sided limit of ƒ at c to distinguish it 
from the one-sided left-hand and right-hand limits of ƒ at c. The following theorem 
indicates how these limits are related.

THEOREM One-Sided and Two-Sided Limits

A function ƒ1x2 has a limit as x approaches c if and only if the left-hand and 
right-hand limits at c exist and are equal. That is,

lim
xSc

 ƒ1x2 = L 3 lim
xSc- ƒ1x2 = L and lim

xSc+ ƒ1x2 = L.

The limit of the function ƒ of Example 4 as x approaches 2 does not exist, so ƒ is dis-
continuous at x = 2. However, discontinuous functions can have a limit at a point of 
discontinuity. The function ƒ of Example 1 is discontinuous at x = 1 because ƒ112 
does not exist, but it has the limit 3 as x approaches 1. Example 5 illustrates another 
way a function can have a limit and still be discontinuous.

Finding a Limit at a Point of Discontinuity
Let

ƒ1x2 = •
x2 - 9
x - 3

 if x ≠ 3

2    if x = 3.

Find  lim
xS3

 ƒ1x2 and prove that ƒ is discontinuous at x = 3.

SOLUTION Figure 11.13 suggests that the limit of ƒ as x approaches 3 exists. Using 
algebra we find

 lim
xS3

 
x2 - 9
x - 3

= lim
xS3

 
1x - 321x + 32

x - 3

 = lim
xS3

 1x + 32  We can assume x ≠ 3.

 = 6.

Because ƒ132 = 2 ≠ lim
xS3

 ƒ1x2, ƒ is discontinuous at x = 3.
 Now try Exercise 37.

EXAMPLE 5 
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[220, 20] by [22, 2]

Figure 11.15 The graph of 
ƒ1x2 = 1sin x2>x. (Example 7)

Notice that limits, whether at a or at infinity, are always finite real numbers; otherwise, 
the limits do not exist. For example, it is correct to write

lim
xS0

 
1

x2 does not exist,

because it approaches no real number L. In this case, however, it is convenient to write

lim
xS0

 
1

x2 = ∞,

which gives us a little more information about why the limit fails to exist. (It increases 
without bound.) Similarly, it is convenient to write

lim
xS0+ ln x = -∞,

because ln x decreases without bound as x approaches 0 from the right. In this context, 
the symbols “∞” and “-∞” are sometimes called infinite limits.

[25, 5] by [25, 5]

Figure 11.14 The graph of  
ƒ1x2 = int1x2. (Example 6)

Infinite Limits Are Not Limits
It is important to realize that an infinite limit is 
not a limit, despite what the name might imply. It 
describes a special case of a limit that does not 
exist. Recall that a sawhorse is not a horse and a 
hot dog is not a dog.

Finding One-Sided and Two-Sided Limits
Let ƒ1x2 = int1x2 (the greatest integer function). Find:

(a) lim
xS3- int1x2   (b) lim

xS3+ int1x2   (c) lim
xS3

 int1x2
SOLUTION Recall that int1x2 is equal to the greatest integer less than or equal to x. 
For example, int132 = 3. From the definition of ƒ and its graph in Figure 11.14, we 
can see that

(a) lim
xS3- int1x2 = 2

(b) lim
xS3+ int1x2 = 3

(c) lim
xS3

 int1x2 does not exist.
 Now try Exercise 41.

EXAMPLE 6 

Limits Involving Infinity
The informal definition that we have for a limit refers to lim

xSa
 ƒ1x2 = L, where both a 

and L are real numbers. In Section 11.2 we adapted the definition to apply to limits of 
the form lim

xS∞
 ƒ1x2 = L so that we could use this notation in describing definite inte-

grals. This is one type of “limit at infinity.” Notice that the limit itself (L) is a finite real 
number, assuming the limit exists, but that the values of x are approaching infinity.

Archimedes (c. 287–212 bce)
The Greek mathematician Archimedes found the 
area of a circle using a method involving infinite 
limits. See Exercise 89 for a modern version of 
his method.

DEFINITION (INFORMAL) Limits at Infinity

When we write “ lim
xS∞

 ƒ1x2 = L,” we mean that ƒ1x2 gets arbitrarily close to L 
as x gets arbitrarily large. We say that ƒ has a limit L as x approaches H.
When we write “ lim

xS-∞
 ƒ1x2 = L,” we mean that ƒ1x2 gets arbitrarily close to L 

as -x gets arbitrarily large. We say that ƒ has a limit L as x approaches −H.

Investigating Limits as x u ±H
Let ƒ1x2 = 1sin x2>x. Find lim

xS∞
 ƒ1x2 and lim

xS-∞
 ƒ1x2.

SOLUTION The graph of ƒ in Figure 11.15 suggests that

lim
xS∞

 
sin x

x
= lim

xS-∞
 
sin x

x
= 0.

 Now try Exercise 47.

EXAMPLE 7 
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[25, 5] by [25, 5]

Figure 11.17 The graph of the function 
ƒ1x2 = xe-x. (Example 8)

[24.7, 4.7] by [25, 5]

Figure 11.18 The graph of 
ƒ1x2 = 1>1x - 22 with its vertical 
asymptote overlaid.

In Section 1.3, we used limits to describe the unbounded behavior of the function 
ƒ1x2 = x3 as x S ±∞:

lim
xS∞

 x3 = ∞ and lim
xS-∞

 x3 = -∞

The behavior of the function g1x2 = ex as x S ±∞ can be described by the following 
two limits:

lim
xS∞

 ex = ∞ and lim
xS-∞

 ex = 0

The function g1x2 = ex has unbounded behavior as x S ∞ and has a finite limit as 
x S -∞.

Investigating a Logistic Function

Let ƒ1x2 =
50

1 + 23-x .

 1. Use tables and graphs to find lim
xS∞

 ƒ1x2 and  lim
xS-∞

 ƒ1x2.
 2. Identify any horizontal asymptotes.

 3. How is the numerator of the fraction for ƒ related to part 2?

EXPLORATION 2 

In Section 2.6 we used the graph of ƒ1x2 = 1>1x - 22 to state that

lim
xS2- 

1
x - 2

= -∞ and lim
xS2+ 

1
x - 2

= ∞.

Either one of these unbounded limits allows us to conclude that the vertical line x = 2 
is a vertical asymptote of the graph of ƒ (Figure 11.18).

X

Y2 = Xe^(–X)

0
10
20
30
40
50
60

0
4.5E–4
4.1E–8
3E–12
2E–16
1E–20
5E–25

Y2

(a)   

X

Y2 = Xe^(–X)

0
–10
–20
–30
–40
–50
–60

0
–2.2E5
–9.7E9
–3E14
–9E18
–3E23
–7E27

Y2

(b)

Figure 11.16 The table in (a) suggests that the values of ƒ1x2 = xe-x approach 0 as 
x S ∞, and the table in (b) suggests that the values of ƒ1x2 = xe-x approach -∞ as 
x S -∞. (Example 8)

Using Tables to Investigate Limits as x u ±H
Let ƒ1x2 = xe-x. Find lim

xS∞
 ƒ1x2 and lim

xS-∞
 ƒ1x2.

SOLUTION The tables in Figure 11.16 suggest that

lim
xS∞

 xe-x = 0 and lim
xS-∞

 xe-x = -∞.

EXAMPLE 8 

The graph of ƒ in Figure 11.17 supports these results.
 Now try Exercise 49.

M12_DEMA8962_10_GE_C11.indd   795 22/06/22   18:41



796 CHAPTER 11 An Introduction to Calculus: Limits, Derivatives, and Integrals

[24, 6] by [22, 10]

Figure 11.19 The graph of 
ƒ1x2 = 1>1x - 222 in Example 9.

X

Y1 = 1/(X–2)2

1.9
1.99
1.999
2
2.001
2.01
2.1

100
10000
1E6
ERROR
1E6
10000
100

Y1

Figure 11.20 A table of values 

for ƒ1x2 =
1

1x - 222 . (Example 9)

X

Y1 = sin(X)/X

–.03
–.02
–.01
0
.01
.02
.03

.99985

.99993

.99998
ERROR
.99998
.99993
.99985

Y1

Figure 11.21 A table of values for ƒ1x2 = 1sin x2>x. (Example 10)

Investigating Unbounded Limits
Find lim

xS2
 1>1x - 222.

SOLUTION The graph of ƒ1x2 = 1>1x - 222 in Figure 11.19 suggests that

lim
xS2- 

1

1x - 222 = ∞ and lim
xS2+ 

1

1x - 222 = ∞.

This means that the limit of ƒ as x approaches 2 does not exist. The table of values in 
Figure 11.20 agrees with this conclusion. The graph of ƒ has a vertical asymptote at 
x = 2. Now try Exercise 55.

EXAMPLE 9 

Not all zeros of denominators correspond to vertical asymptotes, as illustrated in 
Examples 5 and 7.

Investigating a Limit at x = 0
Find lim

xS0
 1sin x2>x.

SOLUTION The graph of ƒ1x2 = 1sin x2>x in Figure 11.15 suggests this limit 
exists. The table of values in Figure 11.21 suggests that

lim
xS0

 
sin x

x
= 1.

EXAMPLE 10 

 Now try Exercise 63.

In Exercises 1 and 2, find (a) ƒ1-22, (b) ƒ102, and (c) ƒ122.

 1. ƒ1x2 =
2x + 1

12x - 422 2. ƒ1x2 =
sin x

x

In Exercises 3 and 4, find (a) the vertical asymptotes and (b) the hori-
zontal asymptotes of the graph of ƒ, if any.

 3. ƒ1x2 =
2x2 + 3

x2 - 4
 4. ƒ1x2 =

x3 + 1

2 - x - x2

In Exercises 5 and 6, the end behavior asymptote of the function ƒ is 
one of the following. Which one is it?

 (a) y = 2x2 (b) y = -2x2 (c) y = x3 (d) y = -x3

 5. ƒ1x2 =
2x3 - 3x2 + 1

3 - x

 6. ƒ1x2 =
x4 + 2x2 + x + 1

x - 3

In Exercises 7 and 8, find (a) the points of continuity and (b) the points 
of discontinuity of the function.

 7. ƒ1x2 = 2x + 2 8. g1x2 =
2x + 1

x2 - 4

Exercises 9 and 10 refer to the piecewise-defined function

ƒ1x2 = e3x + 1 if x … 1
4 - x2 if x 7 1 .

 9. Draw the graph of ƒ.

 10. Find the points of continuity and the points of discontinuity 
of ƒ.

QUICK REVIEW 11.3 (For help, go to Sections 1.2 and 1.3.) 
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SECTION 11.3 Exercises

 29. (a) lim
xS3- ƒ1x2

(b) lim
xS3+ ƒ1x2

(c) lim
xS3

 ƒ1x2

Exercise numbers with a gray background indicate problems that 
the authors have designed to be solved without a calculator.

In Exercises 1–10, find the limit by direct substitution if it exists.

 1. lim
xS-1

 x 1x - 122  2. lim
xS3

 1x - 1212

 3. lim
xS2

 1x3 - 2x + 32  4. lim
xS-2

 1x3 - x + 52

 5. lim
xS4

 25x - 8  6. lim
xS-2

 1x - 422>3

 7. lim
xS0

 1px sin x2  8. lim
xSp

 lnasin 
x
2
b

 9. lim
xSa

 1x2 - 22  10. lim
xSa

 
x2 - 1

x2 + 1

In Exercises 11–18, (a) explain why you cannot use substitution to find 
the limit and (b) find the limit algebraically if it exists.

 11. lim
xS-3

 
x2 + 7x + 12

x2 - 9
 12. lim

xS3
 

x2 - 9

x2 + 2x - 15

 13. lim
xS-1

 
x3 + 1
x + 1

 14. lim
xS2

 
x3 - 2x2 + x - 2

x - 2

 15. lim
xS-2

 
x2 - 4
x + 2

 16. lim
xS-2

 
0 x2 - 4 0
x + 2

 17. lim
xS5

 2x - 6 18. lim
xS0

 
x - 2

x2

In Exercises 19–22, use the fact that lim
xS0

 
sin x

x
= 1, along with the limit 

properties, to find the following limits.

 19. lim
xS0

 
sin x

2x2 - x
  20. lim

xS0
 
sin 3x

x

 21. lim
xS0

 
sin2 x

x
 22. lim

xS0
 
x + sin x

2x

In Exercises 23–26, find the limits.

 23. lim
xS0

 
ex - 2x

log41x + 22  24. lim
xS0

 
3 sin x - 4 cos x
5 sin x + cos x

 25. lim
xSp>2 

ln12x2
sin2 x

 26. lim
xS27

 
2x + 9

log3 x

In Exercises 27–30, use the given graph to find the limits or to explain 
why the limits do not exist.

 27. (a) lim
xS2- ƒ1x2

(b) lim
xS2+ ƒ1x2

(c) lim
xS2

 ƒ1x2

0 1

1

2

3

2 3
x

y

 28. (a) lim
xS3- ƒ1x2

(b) lim
xS3+ ƒ1x2

(c) lim
xS3

 ƒ1x2

0 2

2
1

3

41 3
x

y

0 2

2

4
3

41 3
x

y

 30. (a) lim
xS1- ƒ1x2

(b) lim
xS1+ ƒ1x2

(c) lim
xS1

 ƒ1x2
0 2

2

4

1

1 3
x

y

In Exercises 31 and 32, the graph of a function y = ƒ1x2 is given. 
Which of the statements about the function are true and which are false?

 31. (a) lim
xS-1+ ƒ1x2 = 1

(b) lim
xS0- ƒ1x2 = 0

(c) lim
xS0- ƒ1x2 = 1

(d) lim
xS0- ƒ1x2 = lim

xS0+ ƒ1x2
(e) lim

xS0
 ƒ1x2 exists.  (f ) lim

xS0
 ƒ1x2 = 0

(g) lim
xS0

 ƒ1x2 = 1 (h) lim
xS1

 ƒ1x2 = 1

(i) lim
xS1

 ƒ1x2 = 0 (j) lim
xS2- ƒ1x2 = 2

 32. (a) lim
xS-1+ ƒ1x2 = 1

(b) lim
xS2

 ƒ1x2 does not exist.

(c) lim
xS2

 ƒ1x2 = 2

(d) lim
xS1- ƒ1x2 = 2

(e) lim
xS1+ ƒ1x2 = 1

(f) lim
xS1

 ƒ1x2 does not exist.

(g) lim
xS0+ ƒ1x2 = lim

xS0- ƒ1x2
(h) lim

xSc
 ƒ1x2 exists for every c in 1-1, 12.

(i) lim
xSc

 ƒ1x2 exists for every c in 11, 32.
In Exercises 33 and 34, use a graph of ƒ to find (a) lim

xS0- ƒ1x2,  
(b) lim

xS0+ ƒ1x2, and (c) lim
xS0

 ƒ1x2 if they exist.

 33. ƒ1x2 = 11 + x21>x
 34. ƒ1x2 = 11 + x21>12x2

 35. Group Activity Assume that lim
xS4

 ƒ1x2 = -1 and 
lim
xS4

 g1x2 = 4. Find the limit.

(a) lim
xS4

 1g1x2 + 22  (b) lim
xS4

 xƒ1x2

(c) lim
xS4

 g21x2 (d) lim
xS4

 
g1x2

ƒ1x2 - 1

 36. Group Activity Assume that lim
xSa

 ƒ1x2 = 2 and 
lim
xSa

 g1x2 = -3. Find the limit.

(a) lim
xSa

 1ƒ1x2 + g1x22  (b) lim
xSa

 1ƒ1x2 # g1x22

(c) lim
xSa

 13g1x2 + 12  (d)  lim
xSa

 
ƒ1x2
g1x2

–1 2

3

1 3
x

y

–1 2

2
3

1 3
x

y
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In Exercises 37–40, complete the following for the given piecewise- 
defined function ƒ.

 (a) Draw the graph of ƒ.

 (b) Determine lim
xSa+ ƒ1x2 and lim

xSa- ƒ1x2.
 (c)  Writing to Learn Does lim

xSa
 ƒ1x2 exist? If it does, give its 

value. If it does not exist, give an explanation.

 37. a = 2, ƒ1x2 = •
2 - x  if x 6 2
  1    if x = 2
x2 - 4  if x 7 2

 38. a = 1, ƒ1x2 = e2 - x if x 6 1
x + 1 if x Ú 1

 39. a = 0, ƒ1x2 = e 0 x - 3 0    if x 6 0
x2 - 2x  if x Ú 0

 40. a = -3, ƒ1x2 = e1 - x2 if x Ú -3
8 - x  if x 6 -3

In Exercises 41–46, find the limit.

 41. lim
xS2+ int1x2  42. lim

xS2- int1x2
 43. lim

xS0.009
 int1x2  44. lim

xS5>2- int12x2

 45. lim
xS7+ 

x - 7

0 x - 7 0  46. lim
xS0- 

5x

0 2x 0
In Exercises 47–54, find (a) lim

xS∞
 y and (b) lim

xS-∞
 y.

 47. y =
cos x
1 + x

 48. y =
x + sin x

x

 49. y = 1 + 2x  50. y =
x

1 + 2 x

 51. y = x + sin x 52. y = e-x + sin x

 53. y = -ex sin x 54. y = e-x cos x

In Exercises 55–60, use graphs and tables to find the limit and identify 
any vertical asymptotes.

 55. lim
xS3- 

1
x - 3

 56. lim
xS3+ 

x
x - 3

 57. lim
xS-2+ 

1
x + 2

 58. lim
xS-2- 

x
x + 2

 59. lim
xS5

 
1

1x - 522  60. lim
xS2

 
1

x2 - 4

In Exercises 61–64, determine the limit algebraically if possible.  
Support your answer graphically.

 61. lim
xS0

 
11 + x23 - 1

x
 62. lim

xS0
 
1>13 + x2 - 1>3

x

 63. lim
xS0

 
tan x

x
 64. lim

xS2
 
x - 4

x2 - 4

In Exercises 65–72, find the limit.

 65. lim
xS0

 
0 x 0
x2  66. lim

xS0
 
x2

0 x 0
 67. lim

xS0
 c x sina2

x
b d  68. lim

xS27
 cosa1

x
b

 69. lim
xS1

 
x2 + 1
x - 1

 70. lim
xS∞

 
ln x2

ln x

 71. lim
xS∞

 
ln x

ln x2  72. lim
xS∞

 3-x

Standardized Test Questions

 73. True or False If ƒ1x2 = e x + 2 if x … 3
8 - x if x 7 3

, then lim
xS3

 ƒ1x2 
is undefined. Justify your answer.

 74. True or False If ƒ1x2 and g1x2 are two functions and 
lim
xS0

 ƒ1x2 does not exist, then lim
xS0

 3ƒ1x2 # g1x24  cannot exist.

  Justify your answer.

Multiple Choice In Exercises 75–78, match the function y = ƒ1x2 
with the appropriate table. Do not use a calculator.

X

X=2.7

–52.3
–82.2
–172.1
ERROR
188.1
98.2
68.3

Y1

(a)

2.7
2.8
2.9
3
3.1
3.2
3.3

  

X

X=2.7

3.7
3.8
3.9
ERROR
4.1
4.2
4.3

Y1

(b)

2.7
2.8
2.9
3
3.1
3.2
3.3

X

X=2.7

23.7
33.8
63.9
ERROR
–55.9
–25.8
–15.7

Y1

(c)

2.7
2.8
2.9
3
3.1
3.2
3.3

  

X

X=2.7

24.39
25.24
26.11
ERROR
27.91
28.84
29.79

Y1

(d)

2.7
2.8
2.9
3
3.1
3.2
3.3

X

X = 2.7

3.7
3.8
3.9
4
4.1
4.2
4.3

Y1
2.7
2.8
2.9
3
3.1
3.2
3.3

(e)

 75. y =
x2 - 2x - 3

x - 3
 76. y =

x2 + 2x + 3
x - 3

 77. y =
x2 - 2x - 9

x - 3
 78. y =

x3 - 27
x - 3

Explorations
In Exercises 79–82, complete the following for the given piecewise-
defined function ƒ.

(a) Draw the graph of ƒ.

(b) At what points c in the domain of ƒ does lim
xSc

 ƒ1x2 exist?

(c) At what points c does only the left-hand limit exist?

(d) At what points c does only the right-hand limit exist?

 79. ƒ1x2 = e cos x   if -p … x 6 0
-cos x if 0 … x … p

 80. ƒ1x2 = e sin x if -p … x 6 0
csc x if 0 … x … p

 81. ƒ1x2 = d 21 - x2 if -1 … x 6 0
    x    if 0 … x 6 1
    2   if x = 1
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 82. ƒ1x2 = c x2 if -2 … x 6 0 or 0 6 x … 2
1   if x = 0
2x if x 6 -2 or x 7 2

 83. Rabbit Population The population of rabbits over a 2-year 
period in a certain county is given in Table 11.5.

(c) ƒ1x2 = ` 3
x - 1

` , g1x2 = 1x - 1)2, c = 1

(d) ƒ1x2 =
1

1x - 124, g1x2 = 1x - 1)2, c = 1

(e) Writing to Learn Suppose that lim
xSc

 ƒ1x2 = ∞ and 

lim
xSc

 g1x2 = 0. Based on your results in parts (a)–(d), what 

can you say about  lim
xSa

 1ƒ1x2 # g1x22?
 89. Limits and the Area of a Circle Consider an n-sided 

regular polygon made up of n congruent isosceles triangles, 
each with height h and base b. The figure shows an 8-sided 
 regular polygon.

  

bh

(a) Prove that the area of an 8-sided regular polygon is 
A = 4hb and the area of the n-sided regular polygon is 
A = 11>22nhb.

(b) Prove that the base b of the n-sided regular polygon is 
b = 2h tan1180°>n2.

(c) Prove that the area A of the n-sided regular polygon is 
A = nh2 tan1180°>n2.

(d) Let h = 1. Construct a table of values for n and A for 
n = 4, 8, 16, 100, 500, 1000, 5000, 10,000, and 100,000. 
Does A have a limit as n S ∞?

(e) Repeat part (d) with h = 3.

(f) Give a convincing argument that lim
nS∞

 A = ph2, the area 
of a circle of radius h.

 90. Continuous Extension of a Function Let

ƒ1x2 = e x2 - 3x + 3 if x ≠ 2
a           if x = 2.

(a) Sketch several possible graphs for ƒ.

(b) Find a value for a so that the function is continuous at 
x = 2.

In Exercises 91–93, (a) graph the function, (b) verify that the function 
has one removable discontinuity, and (c) give a formula for a continu-
ous extension of the function. [Hint: See Exercise 90.]

 91. y =
2x + 4
x + 2

 92. y =
x - 5
5 - x

 93. y =
x3 - 1
x - 1

Table 11.5 Rabbit Population

Beginning of Month Number (thousands)

0 10
2 12
4 14
6 16
8 22

10 30
12 35
14 39
16 44
18 48
20 50
22 51

(a) Draw a scatter plot of the 
data in Table 11.5.

(b) Find a logistic regression 
model for the data. Find the 
limit of that model as time 
approaches infinity.

(c) What can you conclude about 
the limit of the rabbit population growth in the county?

(d) Provide a reasonable explanation for the population  
growth limit.

Group Activity In Exercises 84–87, sketch a graph of a function 
y = ƒ1x2 that satisfies the stated conditions. Include any asymptotes.

 84. lim
xS0

 ƒ1x2 = ∞, lim
xS∞

 ƒ1x2 = ∞, lim
xS-∞

 ƒ1x2 = 2

 85. lim
xS4

 ƒ1x2 = -∞, lim
xS∞

 ƒ1x2 = -∞, lim
xS-∞

 ƒ1x2 = 2

 86. lim
xS∞

 ƒ1x2 = 2, lim
xS-2+ ƒ1x2 = -∞,

  lim
xS-2- ƒ1x2 = -∞, lim

xS-∞
 ƒ1x2 = ∞

 87. lim
xS1

 ƒ1x2 = ∞, lim
xS2+ ƒ1x2 = -∞,

  lim
xS2- ƒ1x2 = -∞, lim

xS-∞
 ƒ1x2 = ∞

Extending the Ideas
 88. Properties of Limits Find the limits of ƒ, g, and ƒg as x 

approaches c.

(a) ƒ1x2 =
2

x2 , g1x2 = x2, c = 0

(b) ƒ1x2 = ` 1
x
` , g1x2 = 23 x, c = 0
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What you’ll learn about
• Derivatives on a Calculator

• Definite Integrals on a Calculator

• Computing a Derivative from Data

• Computing a Definite Integral  
from Data

... and why
The numerical capabilities of a 
graphing calculator make it easy  
to perform many calculations that 
would have been exceedingly 
 difficult in the past.

Derivatives on a Calculator
As computers and sophisticated calculators have become indispensable tools for engi-
neers and mathematicians (and, ultimately, for students of mathematics), numerical 
techniques of differentiation and integration have re-emerged as primary methods of 
problem solving. This is no small irony, as it was precisely to avoid the tedious compu-
tations inherent in such methods that calculus was invented in the first place. Although 
nothing can diminish the magnitude of calculus as a significant human achievement, 
and although nobody can get far in mathematics or science without it, applying the old-
fashioned methods of limiting approximations—with the help of a calculator—now is 
often the most efficient way to solve a calculus problem.

Most graphing calculators have built-in algorithms that will approximate derivatives 
of functions numerically with good accuracy at most points of their domains. We will 
use the notation NDER ƒ1a2 to denote such a calculator derivative approximation  
to ƒ′1a2.
For small values of h, the regular difference quotient

ƒ1a + h2 - ƒ1a2
h

is often a good approximation of ƒ′1a2. However, the same value of h will usually pro-
duce a better approximation of ƒ′1a2 if we use the symmetric difference quotient

ƒ1a + h2 - ƒ1a - h2
2h

,

as illustrated in Figure 11.22.

Many graphing utilities use the symmetric difference quotient with a default value of 
h = 0.001 for computing NDER ƒ1a2. When we refer to the numerical derivative in 
this text, we will assume that it is the symmetric difference quotient with h = 0.001.

11.4 Numerical Derivatives and Integrals

DEFINITION Numerical Derivative

In this book, we define the numerical derivative of ƒ at a to be

NDER ƒ1a2 =
ƒ1a + 0.0012 - ƒ1a - 0.0012

0.002
.

Similarly, we define the numerical derivative of ƒ to be the function

NDER ƒ1x2 =
ƒ1x + 0.0012 - ƒ1x - 0.0012

0.002
.

Computing a Numerical Derivative
Let ƒ1x2 = x3. Compute NDER ƒ122 by calculating the symmetric difference quo-
tient with h = 0.001. Compare it to the actual value of ƒ′1x2.

EXAMPLE 1 

0
x

y

a – h a a + h

tangent line

m1 = 
2h

f (a + h) – f (a – h)

m2 = 
h

f (a + h) – f (a)

Figure 11.22 The symmetric difference 
quotient (slope m1) usually gives a better 
approximation of the derivative for a given 
value of h than does the regular difference 
quotient (slope m2).
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 SECTION 11.4 Numerical Derivatives and Integrals 801

The numerical derivative in this case is quite accurate. In practice, it is not necessary to 
key in the symmetric difference quotient, as it is done by the calculator with its built-in 
algorithm. Figure 11.23 shows the command that would be used on one such calculator 
to find the numerical derivative in Example 1. It is shown first in MATHPRINT mode 
and then in CLASSIC mode. The MATHPRINT version shows the Leibniz notation for 
the actual derivative evaluated at 2, but keep in mind that it is really the numerical 
derivative that is being calculated.

If ƒ′1a2 exists, then NDER ƒ1a2 usually gives a good approximation to the actual 
value. On the other hand, the algorithm will sometimes return a value for NDER ƒ1a2 
when ƒ′1a2 does not exist. (See Exercise 51.)

Definite Integrals on a Calculator
Recall from the history of the area problem (Section 11.2) that the strategy of summing 
up thin rectangles to approximate areas is ancient. The thinner the rectangles, the better 
the approximation—and, of course, the more tedious the computation. Today, thanks to 
technology, we can employ the ancient strategy without the tedium.

Many graphing calculators have built-in algorithms to compute definite integrals with 
great accuracy. We use the notation NINT1ƒ1x2, x, a, b2 to denote such a calculator 
approximation to 1b

a  ƒ1x2 dx. Unlike NDER, which uses a fixed value of ∆x, NINT 
will vary the value of ∆x until the numerical integral gets close to a limiting value, 
often resulting in an exact answer (at least to the number of digits in the calculator 
 display). Because the algorithm for NINT finds the definite integral by Riemann sum 
approximation rather than by calculus, we call it a numerical integral.

SOLUTION 

 NDER ƒ1x2 =
ƒ12 + 0.0012 - ƒ12 - 0.0012

0.002

 =
ƒ12.0012 - ƒ11.9992

0.002
 = 12.000001

The actual value is

 ƒ′122 = lim
hS0

 
12 + h23 - 23

h

 = lim
hS0

 
8 + 12h + 6h2 + h3 - 8

h
 = lim

hS0
 112 + 6h + h22

 = 12  Now try Exercise 3.

Finding a Numerical Integral
Use NINT to find the area of the region R enclosed between the x-axis and the graph 
of y = 1>x from x = 1 to x = 4.

SOLUTION The region is shown in Figure 11.24.

The area can be written as the definite integral L
4

1
 
1
x
 dx, which we find on a graphing 

calculator: NINT11>x, x, 1, 42 = 1.386294361. The exact answer (as you will learn 
in a calculus course) is ln 4, which agrees in every displayed digit with the NINT 
value! Figure 11.25 shows the command that would be used on one type of calculator 
to find the numerical integral in Example 2. It is shown first in MATHPRINT mode 
and then in CLASSIC mode. The MATHPRINT version shows the Leibniz notation 
for the actual integral, but keep in mind that it is really the numerical integral that is 
being calculated. Now try Exercise 13.

EXAMPLE 2 

nDeriv(X3,X,2)

d
dx

12.000001

12.000001

MATHPRINT:

CLASSIC:

(X3)|X = 2

Figure 11.23 The numerical derivative 
command on a graphing calculator, shown in 
MATHPRINT and CLASSIC modes. 
(Example 1)

y

x
1 4

R

Figure 11.24 The graph of ƒ1x2 = 1>x with 
the area under the curve between x = 1 and 
x = 4 shaded. (Example 2)

1.386294361

1.386294361

MATHPRINT:

CLASSIC:

fnInt(1/X,X,1,4)

∫
4

1
(1/X)dX

Figure 11.25 The numerical integral 
command on a graphing calculator, shown in 
MATHPRINT and CLASSIC modes. 
(Example 2)
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802 CHAPTER 11 An Introduction to Calculus: Limits, Derivatives, and Integrals

Remember that we were originally motivated to find areas because of their connection 
to the problem of distance traveled. To show just one of the many applications of inte-
gration, we use the numerical integral to solve a distance problem in Example 3.

A Do-It-Yourself Numerical Integrator

Recall that a definite integral is the limit at infinity of a Riemann sum—that is, a 

sum of the form a
n

k=1
 ƒ1xk2∆x. You can use a graphing calculator to evaluate sums 

of sequences using LIST commands. (It is not as accurate as NINT, and certainly 
not as easy, but at least you can see the summing that takes place.)

 1. The integral in Example 2 can be computed using the command

sum1seq11>11 + K # 3>502 # 3>50, K, 1, 5022.
  This uses 50 RRAM rectangles, each with width ∆x = 3>50. Find the sum on 

a graphing calculator and compare it to the NINT value.

 2. Study the command until you see how it works. Adapt the command to find the 
RRAM approximation for 100 rectangles and compute it on a graphing calcu-
lator. Does the approximation get better?

 3. What definite integral is approximated by the command

sum1seq1sin10 + K # p>502 # p>50, K, 1, 5022?
  Compute it on a graphing calculator and compare it to the NINT value for the 

same integral.

 4. Write a command that uses 50 RRAM rectangles to approximate 19
4 2x dx. 

Compute it on a graphing calculator and compare it to the NINT value for the 
same integral.

EXPLORATION 1

Finding Distance Traveled
An automobile is driven at a variable rate along a test track for 2 hr so that its veloc-
ity at any time t, 0 … t … 2, is given by v1t2 = 30 + 10 sin 6t miles per hour. How 
far does the automobile travel during the 2-hr test?

SOLUTION According to the analysis found in Section 11.2, the distance traveled is 
given by 12

0 130 + 10 sin16t22 dt. We use a calculator to find the numerical integral:

NINT130 + 10 sin16t2, t, 0, 22 ≈ 60.26

Interpreting the answer, we conclude that the automobile travels about 60.26 mi.
 Now try Exercise 21.

EXAMPLE 3

Computing a Derivative from Data
Sometimes all we are given about a problem situation is a scatter plot obtained from a 
set of data—a numerical model of the problem. There are two ways to get information 
about the derivative of the model.

 1. To approximate the derivative at a point: Remember that the average rate of  
change over a small interval, ∆y>∆x, approximates the derivative at points in that 
interval. (Generally, the approximation is better near the middle of the interval than 
it is near the endpoints.) The average rate of change on an interval between two 
data points can be computed directly from the data.
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 SECTION 11.4 Numerical Derivatives and Integrals 803

 2. To approximate the derivative function: Regression techniques can be used to fit a 
curve to the data, and then NDER can be applied to the regression model to 
approximate the derivative. Alternatively, the values of ∆y>∆x can be plotted, and 
then regression techniques can be used to fit a derivative approximation through 
those points.

Who’s Driving???
We will candidly admit that the conditions in 
Example 3 would be virtually impossible to rep-
licate in a real setting, even if one could imagine 
a reason for doing so. Mathematics texts are 
filled with such unreal real-world problems, but 
they do serve a purpose when students are being 
exposed to new material. Real real-world prob-
lems are often either too easy to illustrate the 
concept or too hard for beginners to solve.

Table 11.6 Falling Ball

Time (sec) Position 1ft2
0.04 6.80
0.08 6.40
0.12 5.95
0.16 5.45
0.20 4.90
0.24 4.30
0.28 3.60
0.32 2.90
0.36 2.15
0.40 1.30
0.44 0.40

Table 11.7 Change over Intervals 
from Table 11.6

Midpoint ∆s>∆t

0.06 -10.00
0.10 -11.25
0.14 -12.50
0.18 -13.75
0.22 -15.00
0.26 -17.50
0.30 -17.50
0.34 -18.75
0.38 -21.25
0.42 -22.50

Finding Derivatives from Data
Table 11.6 shows the height (in feet) of a falling ball above ground level as measured 
by a motion detector at time intervals of 0.04 sec.

(a) Estimate the instantaneous speed of the ball at t = 0.2 sec.

(b) Draw a scatter plot of the data and use quadratic regression to model the height s 
of the ball above the ground as a function of t.

(c) Use NDER to approximate s′10.22, and compare it to the value found in (a).

SOLUTION 

(a) Because 0.2 is the midpoint of the time interval 30.16, 0.244 , the average rate of 
change ∆s>∆t on the interval 30.16, 0.244  should give a good approximation to 
s′10.22.

s′10.22 ≈
∆s
∆t

=
4.30 - 5.45
0.24 - 0.16

= -14.375.

The speed is about 14.38 ft>sec at t = 0.2.

(b) The scatter plot is shown in Figure 11.26, along with the quadratic regression 
curve. A graphing calculator gives s1t2 ≈ -17.12t2 - 7.74t + 7.13 as the 
equation of the quadratic regression model.

(c) The calculator computes NDER s10.22 to be about -14.59, which agrees quite 
well with the approximation in (a). In fact, the difference is only 0.213 ft>sec, 
less than 1.5% of the speed of the ball. Now try Exercise 23.

EXAMPLE 4 

Finding Derivatives from Data
This example also uses the falling ball data in Table 11.6.

(a) Compute the average velocity, ∆s>∆t, on each subinterval of length 0.04. Make 
a table showing the midpoints of the subintervals in one column and the values 
of ∆s>∆t in the second column.

(b) Make a scatter plot showing the numbers in the second column as a function of 
the numbers in the first column, and find a linear regression model to model the 
data.

(c) Use the linear regression model in (b) to approximate the velocity of the ball at 
t = 0.2, and compare it to the values found in Example 4.

SOLUTION 

(a) The first subinterval, which begins at 0.04 and ends at 0.08, has a midpoint of 10.04 
+  0.082>2 = 0.06. On that interval, ∆s>∆t = 16.40 - 6.802>10.08 - 0.042 =  
-10.00. The rest of the midpoints and values of ∆s>∆t are computed similarly 
and are shown in Table 11.7.

(b) The scatter plot and the regression line are shown in Figure 11.27. A graphing 
calculator gives v(t2 = -34.470t - 7.727 as the regression line.

EXAMPLE 5 

(continued)

[0, 1] by [22, 10]

Figure 11.26 A scatter plot of the data in 
Table 11.6, together with its quadratic 
regression model. (Example 4)
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804 CHAPTER 11 An Introduction to Calculus: Limits, Derivatives, and Integrals

Computing a Definite Integral from Data
If we are given a set of data points, the x-coordinates of the points define subintervals 
between the smallest and largest x values in the data. We can form a Riemann sum

a
n

k=1
 ƒ1xk2 ∆x,

using the lengths of the subintervals for ∆x and either the left or right endpoints of the 
intervals as the xk>s. The Riemann sum then approximates the definite integral of  
the function over the interval.

Example 6 illustrates how this is done.

[0, 0.5] by [225, 27]

Figure 11.27 A scatter plot of the data in Table 11.7, together with its linear regression 
model. (Example 5)

(c) The linear regression model gives v10.22 ≈ -14.62, which is close to the values 
found in Example 4. Now try Exercise 25.

Table 11.8 Velocity of 
the Moving Body

Time (sec) Velocity (m>sec)

0.00 0.00
0.25 0.28
0.50 0.53
0.75 0.73
1.00 0.90
1.25 1.01
1.50 1.11
1.75 1.18
2.00 1.21
2.25 1.17
2.50 1.13
2.75 1.05
3.00 0.91
3.25 0.72
3.50 0.55
3.75 0.26

[20.25, 4] by [20.25, 1.5]

Figure 11.28 A scatter plot of the velocity data in Table 11.8. (Example 6)

Finding a Definite Integral Using Data
Table 11.8 shows the velocity of a moving body (in meters per second) measured at 
regular 0.25-sec intervals. Estimate the distance traveled by the body from 
t = 0 to t = 3.75.

SOLUTION Figure 11.28 gives a scatter plot of the velocity data.

EXAMPLE 6 

The distance traveled is 13.75
0  v1t2 dx, which we approximate with a Riemann sum 

constructed directly from the data. We sum up 15 products of the form v1tk2 ∆t, 
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using the right endpoint for tk each time. (This is the RRAM approximation in the 
notation of Section 11.2.) Note that ∆t = 0.25 for every subinterval.

 L
3.75

0
 v1t2 dx = a

15

k=1
 v1tk2 ∆t

 = 0.2510.28 + 0.53 + 0.73 + 0.90 + 1.01 + 1.11

 + 1.18 + 1.21 + 1.17 + 1.13 + 1.05 + 0.91 + 0.72

 + 0.55 + 0.262
 = 3.185

So the distance traveled by the body is about 3.2 m. Now try Exercise 27.

In Exercises 1–6, find ∆y>∆x on the interval 31, 44  under the given 
conditions.

 1. y = x2  2. y = 2x

 3. y = log2 x  4. y = 3x

 5. y = 2 when x = 1 and y = 11 when x = 4.

 6. The graph of y = ƒ1x2 passes through points 14, 102 and 
11, -22.

In Exercises 7–10, compute the quotient 1ƒ11 + h2 - ƒ11 - h22>12h2 
with the given ƒ and h.

 7. ƒ1x2 = sin x, h = 0.01

 8. ƒ1x2 = x4, h = 0.001

 9. ƒ1x2 = ln x, h = 0.001

 10. ƒ1x2 = ex, h = 0.0001

QUICK REVIEW 11.4 (For help, go to Sections P.4 and 1.3.) 

 14. ƒ1x2 = sin x, 3p, 2p4
 15. ƒ1x2 = cos x, 30, p4
 16. ƒ1x2 = 0 cos x 0 , 30, p4
 17. ƒ1x2 = 1>x, 31, e4
 18. ƒ1x2 = 1>x, 3e, 2e4

 19. ƒ1x2 =
2

1 + x2 , 30, 1084

 20. ƒ1x2 = sec2 x - tan2 x, 30, 104
 21. Travel Time A truck is driven at a variable rate for 3 hr  

so that its velocity at any time t 10 … t … 32 is given by 
v1t2 = 35 - 12 cos 4t mph. How far does the truck travel 
 during the 3 hr? Round your answer to the nearest 
 hundredth.

 22. Travel Time A bicyclist rides for 90 min, and her velocity 
at any time t hours 10 … t … 1.52 is given by 
v1t2 = 12 - 8 sin 5t mph. How far does she travel during the 
90 min? Round your answer to the nearest hundredth.

 23. Finding Derivatives from Data A ball is dropped from 
the roof of a 30-story building. The height in feet above the 
ground of the falling ball is measured at 0.5-sec intervals and 
recorded in the table on the next page.

SECTION 11.4 Exercises

In Exercises 1–10, use NDER on a graphing calculator to find the 
numerical derivative of the function at the specified point.

 1. ƒ1x2 = 1 - x2 at x = 2

 2. ƒ1x2 = 2x +
1
2

 x2 at x = 2

 3. ƒ1x2 = 3x2 + 2 at x = -2

 4. ƒ1x2 = x2 - 3x + 1 at x = 1

 5. ƒ1x2 = 0 x + 2 0  at x = -3

 6. ƒ1x2 =
1

x + 2
 at x = -1

 7. ƒ1x2 = ln 2x at x = 1

 8. ƒ1x2 = 2 ln x at x = 1 

 9. ƒ1x2 = 3 cos x at x = p>2
 10. ƒ1x2 = sin 3x at x = p
In Exercises 11–20, use NINT on a graphing calculator to find the 
numerical integral of the function over the specified interval.

 11. ƒ1x2 = x2, 30, 44
 12. ƒ1x2 = x2, 3-4, 04
 13. ƒ1x2 = sin x, 30, p4
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Time (sec) Height (ft)

0 500
0.5 495
1.0 485
1.5 465
2.0 435
2.5 400
3.0 355
3.5 305
4.0 245
4.5 175
5.0 100
5.5  15

Table 11.9 Population of Clark 
County, Nevada

Year Population

1910 3,321
1920 4,859
1930 8,532
1940 16,414
1950 48,289
1960 127,016
1970 273,288
1980 463,087
1990 741,368
2000 1,375,741
2010 1,951,269
2016 2,155,664

Source: U.S. Census Bureau.

(a) Find the average rate of change of the population (in per-
sons per year) from 1910 to 1950 and from 1950 to 1990.

(b) Plot the data in a scatter plot, with x being the number of 
years after 1900 and y being the population in that year. 
Decide whether the data are best described by an exponen-
tial model or a logistic model (Section 3.2). Overlay the 
appropriate regression graph on the scatter plot.

(c) Use the model in part (b) and NDER on a graphing calcu-
lator to estimate the instantaneous rate of change of the 
population at the point on the curve where it appears to be 
growing the fastest. In approximately what year does that 
fastest growth occur?

(a) Use the average velocity on the interval 31, 24  to estimate 
the velocity of the ball at t = 1.5 sec.

(b) Draw a scatter plot of the data.

(c) Find a quadratic regression model for the data.

(d) Apply NDER to the model in part (c) to estimate the veloc-
ity of the ball at t = 1.5 sec.

(e) Use the model to estimate how fast the ball is going when 
it hits the ground.

 24. Estimating Rate of Change from Data Table 11.9 
shows the population growth of Clark County, Nevada (which 
 contains the city of Las Vegas), from 1910 through 2016.

 25. Estimating Velocity Refer to the data in Exercise 23.

(a) Compute the average velocity, ∆y>∆x, on each subinterval 
of length 0.5. Make a table showing the midpoints of the 
subintervals in one column and the average velocities in 
the second column.

(b) Make a scatter plot showing the numbers in the second col-
umn as a function of the numbers in the first column, and 
find a linear regression model to model the data.

(c) Use the linear regression model in part (b) to approximate 
the velocity of the ball at t = 1.5 sec, and compare your 
result to the value found in Exercise 23(d).

 26. Analyzing Rate of Change from Data Refer to the 
data in Exercise 24.

(a) Compute the average rate of change, ∆y>∆x, on each sub-
interval. Make a table showing the midpoints of the subin-
tervals in one column and the average rates of change in 
the second column.

(b) Make a scatter plot showing the numbers in the second col-
umn as a function of the numbers in the first column. The 
plot shows that the growth rate of the population of Clark 
County increased steadily for almost a century before a 
sudden anomaly. Can you determine what happened, 
when, and why?

 27. Estimating Distance A stone is dropped from a cliff, and 
its velocity (in feet per second) at regular 0.5-sec intervals is 
shown in Table 11.10. Estimate the distance that the stone trav-
els from t = 0 to t = 2.5.

Table 11.10 Velocity of the Stone

Time (sec) Velocity (ft>sec)

0  0
0.5 16
1 32
1.5 48
2 64
2.5 80

Table 11.11 Velocity of the Object

Time (sec) Velocity (m>sec)

0 1.20
0.2 0.98
0.4 0.72
0.6 0.50
0.8 0.34
1.0 0.30
1.2 0.44
1.4 0.79
1.6 1.40

 28. Estimating Distance Table 11.11 shows the velocity of  
a moving object in meters per second, measured at regular  
0.2-sec intervals. Estimate the distance traveled by the body 
from t = 0 to t = 1.6.
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 SECTION 11.4 Numerical Derivatives and Integrals 807

 29. Writing to Learn Analyze the following program, which 
produces an LRAM approximation for the function entered in 
Y1 in the calculator. Then write a short paragraph explaining 
how it works.

  

PROGRAM:LRAM

:Input "B",B

:sum(seq(((B–A)/

:Disp "AREA =",C
)),K,0,N–1))SC

:Input "A",A

:Input "N",N

N)Y1(A+K((B–A)/N

 30. Writing to Learn Analyze the following program, which 
produces an RRAM approximation for the function entered in 
Y1 in the calculator. Then write a short paragraph explaining 
how it works.

  

PROGRAM:RRAM

:Input "B",B

:sum(seq(((B–A)/

:Disp "AREA =",C
)),K,1,N))SC

:Input "A",A

:Input "N",N

N)Y1(A+K((B–A)/N

In Exercises 31–42, complete the following for the indicated interval 
3a, b4 .
 (a) Verify that the given function is nonnegative.

 (b) Use a calculator to find the LRAM, RRAM, and average 
approximations for the area under the graph of the function 
from x = a to x = b with 10, 20, 50, and 100 approximating 
rectangles. (You may want to use the programs in Exercises 29 
and 30.)

 (c) Compare the average area estimate in part (b) using 100 
approximating rectangles with the calculator NINT area 
 estimate, if your calculator has this feature.

 31. ƒ1x2 = x2 - x + 1; 30, 44
 32. ƒ1x2 = 2x2 - 2x + 1; 30, 64
 33. ƒ1x2 = x2 - 2x + 1; 30, 44
 34. ƒ1x2 = x2 + x + 5; 30, 64
 35. ƒ1x2 = x2 + x + 5; 32, 64
 36. ƒ1x2 = x3 + 1; 31, 54
 37. ƒ1x2 = 2x + 2; 30, 44
 38. ƒ1x2 = 2x - 2; 33, 64
 39. ƒ1x2 = cos x; 30, p>24
 40. ƒ1x2 = x cos x; 30, p>24
 41. ƒ1x2 = xe-x; 30, 24

 42. ƒ1x2 =
1

x - 2
; 33, 54

Standardized Test Questions
 43. True or False The numerical derivative algorithm NDER 

always uses the same value of ∆x (or h) to complete its calcu-
lations. Justify your answer.

 44. True or False The numerical integral algorithm always 
uses the same value of ∆x to complete its calculations. Justify 
your answer.

In Exercises 45–48, choose the correct answer. Do not use a calculator.

 45. Multiple Choice Which of the following will typically pro-
duce the most accurate estimate of an area under a curve?

(A) NDER (B) NINT

(C) LRAM, 10 rectangles (D) RRAM, 25 rectangles

(E) LRAM, 60 rectangles

 46. Multiple Choice Given a continuous function ƒ, which of 
the following expressions will typically produce the most accu-
rate estimate of ƒ′1a2?

(A) 
ƒ1a + 0.052 - ƒ1a - 0.052

0.05

(B) 
ƒ1a + 0.052 - ƒ1a - 0.052

0.1

(C) 
ƒ1a + 0.012 - ƒ1a2

0.01

(D) 
ƒ1a + 0.012 - ƒ1a - 0.012

0.01

(E) 
ƒ1a + 0.012 - ƒ1a - 0.012

0.02

 47. Multiple Choice Which of the following cannot be esti-
mated using a numerical integral?

(A) The area under a curve that represents some function  
ƒ1x2

(B) The distance traveled, when the velocity function is 
known

(C) The instantaneous velocity of an object, when the position 
function is known

(D) The change in a city’s population over a 10-year period, 
when the rate-of-change function is known

(E) The change in a child’s height over a 4-year period, when 
the rate-of-change function is known

 48. Multiple Choice Which of the following cannot be 
 estimated using a numerical derivative?

(A) The instantaneous velocity of an object, when the position 
function is known

(B) The slope of a curve that represents some function g1x2
(C) The growth rate of a city’s population, when the popula-

tion is known as a function of time

(D) The area under a curve that represents some function ƒ1x2
(E) The rate of change of an airplane’s altitude, when the alti-

tude is known as a function of time
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Explorations
 49. Let ƒ1x2 = 2x2 + 3x + 1 and g1x2 = x3 + 1.

(a) Compute the derivative of ƒ.

(b) Compute the derivative of g.

(c) Using x = 2 and h = 0.001, compute the standard differ-
ence quotient

ƒ1x + h2 - ƒ1x2
h

 

 and the symmetric difference quotient

ƒ1x + h2 - ƒ1x - h2
2h

. 

(d) Using x = 2 and h = 0.001, compare the approximations 
to ƒ′122 in part (c). Which is the better approximation?

(e) Repeat parts (c) and (d) for g.

 50. When Are Derivatives and Areas Equal? Let 
ƒ1x2 = 1 + e x.

(a) Draw a graph of ƒ for 0 … x … 1.

(b) Use NDER on your calculator to compute the derivative of 
ƒ at 1. 

(c) Use NINT on your calculator to compute the area under  
ƒ from x = 0 to x = 1, and compare it to the answer in 
part (b).

(d) Group Activity What do you think the exact answers to 
parts (b) and (c) are?

 51. Calculator Failure Many calculators report that NDER of 
ƒ1x2 = 0 x 0  evaluated at x = 0 is equal to 0. Explain why this 
is incorrect. Explain why this error occurs.

 52. Grapher Failure Graph the function ƒ1x2 = 0 x 0 >x in the 
window 3-5, 54  by 3-3, 34  and explain why ƒ′102 does not 
exist. Find the value of NDER ƒ102 on the calculator and 
explain why it gives an incorrect answer.

Extending the Ideas
 53. Group Activity Finding Total Area The total area 

bounded by the graph of the function y = ƒ1x2 and the x-axis 
from x = a to x = b is the area below the graph of y = 0 ƒ1x2 0  
from x = a to x = b.

(a) Find the total area bounded by the graph of ƒ1x2 = sin x 
and the x-axis from x = 0 to x = 2p.

(b) Find the total area bounded by the graph of 
ƒ1x2 = x2 - 2x - 3, and the x-axis from x = 0 to x = 5.

 54. Writing to Learn If a function is unbounded in an interval 
3a, b4 , it may have finite area. Use your knowledge of limits at 
infinity to explain why this might be the case.

 55. Writing to Learn Let ƒ and g be two continuous functions 
with ƒ1x2 Ú g1x2 on an interval 3a, b4 . Devise a limit-of-sums 
definition of the area of the region between the two curves. 
Explain how to compute the area if the area under both curves 
is already known.

 56. Area as a Function Consider the function ƒ1t2 = 2t.

(a) Use NINT on a calculator to compute A1x2, where A is the 
area under the graph of ƒ from t = 0 to t = x for x = 0.25, 
0.5, 1, 1.5, 2, 2.5, and 3.

(b) Make a table of pairs 1x, A1x22 for the values of x given in 
part (a) and plot them using graph paper. Connect the plot-
ted points with a smooth curve.

(c) Use a quadratic regression equation to model the data in 
part (b) and overlay its graph on a scatter plot of the data.

(d) Make a conjecture about the exact value of A1x2 for any x 
greater than zero.

(e) Find the derivative of the A1x2 found in part (d). Record 
any observations.

 57. Area as a Function Consider the function ƒ1t2 = 3t2.

(a) Use NINT on a calculator to compute A1x2, where A is the 
area under the graph of ƒ from t = 0 to t = x for x = 0.25, 
0.5, 1, 1.5, 2, 2.5, and 3.

(b) Make a table of pairs 1x, A1x22 for the values of x given in 
part (a) and plot them using graph paper. Connect the plot-
ted points with a smooth curve.

(c) Use a cubic regression equation to model the data in part 
(b) and overlay its graph on a scatter plot of the data.

(d) Make a conjecture about the exact value of A1x2 for any x 
greater than zero.

(e) Find the derivative of the A1x2 found in part (d). Record 
any observations.

 58. Group Activity Based on Exercises 56 and 57, discuss how 
derivatives (slope functions) and integrals (area functions) may 
be connected.
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Procedures

Computing a Derivative from Data 802–804
Computing a Definite Integral from Data 804–805

CHAPTER 11 Key Ideas

Properties, Theorems, and Formulas

Properties of Limits 791
One-Sided and Two-Sided Limits 793

In Exercises 19–20, find the vertical and horizontal asymptotes, if any.

 19. ƒ1x2 =
2x + 5
x + 3

. 20. ƒ1x2 =
x2 + 1
2x - 4

In Exercises 21–26, find the limit algebraically.

 21. lim
xS1

 
x2 - 2x + 1

x2 - 1
 

 22. lim
xS1

 
x2 - 4x + 3

x - 1
 

 23. lim
xS0

 
1>1-3 + x2 + 1>3

x
 

 24. lim
xS2

 
tan13x - 62

x - 2
 

 25. lim
xS0

 
2a + x - 2a

x
 

 26. lim
xS3

 
1x - 322

x - 3
 

In Exercises 27 and 28, state a formula for the continuous extension of 
the function. (See Exercise 90, Section 11.3.)

 27. ƒ1x2 =
x3 - 1
x - 1

 28. ƒ1x2 =
x2 - 6x + 5

x - 5

In Exercises 29 and 30, use the limit definition to find the derivative of 
the function at the specified point, if it exists. Support your answer 
numerically with an NDER calculator estimate.

 29. ƒ1x2 = 1 - x - 2x2  at  x = 2 

 30. ƒ1x2 = 1x + 3)2  at  x = 2 

In Exercises 31 and 32, find (a) the average rate of change of the func-
tion over the interval 30, p>2 4  and (b) the instantaneous rate of 
change at x = 3.

 31. ƒ1x2 = x2 + 2x - 3 32. ƒ1x2 = 1 + sin x

In Exercises 33 and 34, find (a) the slope and (b) an equation of the line 
tangent to the graph of the function at the indicated point.

 33. ƒ1x2 = x3 - 2x + 1  at  x = 1 

 34. ƒ1x2 = 2x - 4  at  x = 7

In Exercises 35 and 36, find the derivative of ƒ.

 35. ƒ1x2 = 2x 36. ƒ1x2 = 2 - 8x + 3x2

CHAPTER 11 Review Exercises

The collection of exercises marked in red could be used as a chapter test.
In Exercises 1–4, use the graph of the function y = ƒ1x2 to find
(a) lim

xS1- ƒ1x2 and (b) lim
xS1

 ƒ1x2.
 1. y

x
–2–4

–2

2

4

2 4

 2. y

x
–2–4

–4

2

4

2 4

 3. y

x
–4

–2

–4

2

4

2 4

 4. y

x
–4

–2

–4

2

4

2 4

In Exercises 5–10, find the limit at the indicated point, if it exists. 
 Support your answer graphically.

 5. ƒ1x2 =
x - 1

x2 + 1
, x = -1 

 6. ƒ1x2 =
sin 5x

x
, x = 0 

 7. ƒ1x2 = e2 + x2  x 6 0
4 - 3x x Ú 0

, x = 0 

 8. ƒ1x2 = 0 x - 1 0 , x = 1 

 9. ƒ1x2 =
1 - cos x

x
, x = 0 

 10. ƒ1x2 =
2

1 - 2x , x = 0 

In Exercises 11–14, find the limit. Support your answer with an 
 appropriate table.

 11. lim
xS-∞

 
-1

1x + 222  12. lim
xS∞

 
x + 5
x - 3

 

 13. lim
xS∞

 
x

sin x
  14. lim

xS-∞
 

x2

x - 2
 

In Exercises 15–18, find the limit.

 15. lim
xS2- 

x - 2
�x - 2 �

  16. lim
xS2- 

1

x2 - 4
 

 17. lim
xS0

 
1>12 + x2 - 1>2

x
  18. lim

xS0
 
12 + x23 - 8

x
 

 CHAPTER 11 Review Exercises 809
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810 CHAPTER 11 An Introduction to Calculus: Limits, Derivatives, and Integrals

In Exercises 37 and 38, complete the following for the indicated 
 interval 3a, b4 .

(a) Verify that the given function is nonnegative.

(b)  Use a calculator to find the LRAM, RRAM, and average 
approximations for the area under the graph of the function 
from x = a to x = b with 50 approximating rectangles.

 37. ƒ1x2 = 1x - 522; 30, 44
 38. ƒ1x2 = 2x2 - 3x + 1; 31, 54
 39. Estimating Veal Consumption Table 11.12 shows the 

rate (in millions of pounds per year) of veal consumption in the 
United States for selected years from 1960 through 2015.

Table 11.12 U.S. Veal Consumption

Year Millions of Pounds per Year

1960 1118
1970 588
1980 400
1990 327
2000 225
2010 145
2015 88

Source: Economic Research Service, U.S. Dept. of 
Agriculture.

(a) Plot the data in a scatter plot, with x being the number of 
years after 1960 and y being the veal consumption rate (in 
millions of pounds per year).

(b) As it happens, a cubic model fits the data quite nicely. Find 
the cubic regression model using a calculator and overlay 
the graph on the scatter plot.

(c) Use the numerical integral command on your calculator 
and the cubic model to estimate the total U.S. veal con-
sumption for the years 1960 to 2015.

(d) Writing to Learn Although the cubic model is conve-
nient for our purpose (using a definite integral to estimate 
the total veal consumption on this particular time interval), 
it is not a realistic model for predicting future U.S. veal 
consumption. Why not?

(e) Group Activity Research some possible reasons for the 
decline in U.S. veal consumption and share your conclu-
sions with your classmates.

 40. An Interesting Connection  
Let A1x2 = NINT1cos t, t, 0, x2
(a) Draw a scatter plot of the pairs 1x, A1x22 for x = 0,  

0.4, 0.8, 0.12, c , 6.0, 6.4.

(b) Find a function that seems to model the data in part (a) and 
overlay its graph on a scatter plot of the data.

(c) Assuming that the function found in part (b) agrees with 
A1x2 for all values of x, what basic function appears to be 
the derivative of A1x2?

CHAPTER 11 Modeling Project

Estimating Population Growth Rates

Understand the situation. The table below shows the popula-
tion of Austin, Texas, for selected years. Notice that Austin has 
been experiencing rapid growth in recent years. In the past 
25 years the population of Austin has virtually doubled.

Year Population of Austin

1950 132,459
1970 253,539
1980 345,890
1990 465,622
2000 656,562
2015 931,830

Source: The World Almanac and Book of 
Facts, 2017, page 638.

Explorations

 1. Identify the variables. Create a scatter plot of population 
versus time using the data in the table. For time, let t = 50 
represent 1950, t = 70 represent 1970, and so forth.

 2. Carry out the mathematics. Find the average population 
growth rates for Austin from 1950 to 2015, from 1970 to 
2015, from 1980 to 2015, and from 2000 to 2015.

 3. Using the data in the table, compute a logistic regression model 
for the population of Austin as a function of time. Graph the 
model together with the scatter plot from part 1.

 4. Analyze and assess the solution. Explain why the logistic 
growth model of the population growth of Austin is more real-
istic than an exponential growth model of the population.

 5. Use the logistic regression model you found in part 3 and 
NDER to estimate the instantaneous population growth rate 
in 2015.

 6. Use the logistic regression model you found in part 3 to pre-
dict the population of Austin in the years 2020 and 2040.
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 APPENDIX A.1 Radicals and Rational Exponents 811

Appendices Overview
Appendix A extends Chapter P: Prerequisites and supports the methods used in Chapter 2 
to solve equations and inequalities. (Please read Section P.1 before reading Section A.1, 
and review Sections A.2 and A.3 before working through Sections 2.4–2.8.) Appendix B  
extends the ideas of Chapter 9: Discrete Mathematics. Appendix C provides a summary 
of key information and useful formulas for the entire text.

What you’ll learn about
• Radicals

• Simplifying Radical Expressions

• Rationalizing the Denominator

• Rational Exponents

... and why
You need to review these basic 
algebraic skills if you don’t remem-
ber them.

Radicals
If b2 = a, then b is a square root of a. For example, both 2 and -2 are square roots of 
4 because 22 = 1-222 = 4. Similarly, b is a cube root of a if b3 = a. For example, 2 is 
a cube root of 8 because 23 = 8.

A.1 Radicals and Rational Exponents

DEFINITION Real nth Root of a Real Number

Let n be an integer greater than 1, and let a and b be real numbers.

1. If bn = a, then b is an nth root of a.

2. If a has an nth root, the principal nth root of a is the nth root having the 
same sign as a.

The principal nth root of a is denoted by the radical expression 2n a. The posi-
tive integer n is the index of the radical and a is the radicand.

Every real number has exactly one real nth root whenever n is odd. For instance, 2 is the 
only real cube root of 8. When n is even, positive real numbers have two real nth roots 
and negative real numbers have no real nth roots. For example, the real fourth roots of 16 
are ±2, and -16 has no real fourth roots. The principal fourth root of 16 is 2.

When n = 2, special notation is used for roots. We omit the index and write2a instead 
of 22 a. If a is a positive real number and n a positive even integer, its two nth roots are 
denoted by 2n a and -2n a.

Finding Principal nth Roots

(a) 236 = 6 because 62 = 36.

(b) A3  
27
8

=
3
2

 because a3
2
b

3

=
27
8

.

(c) A3 -  
27
8

= -  
3
2

 because a-  
3
2
b

3

= -  
27
8

.

(d) 24 -625 is not a real number because the index 4 is even and the radicand -625 
is negative. (There is no real number whose fourth power is negative.)

Now try Exercises 7 and 9.

EXAMPLE 1 

Principal nth Roots 
and Calculators
Most calculators have a key for the principal nth 
root. Use this feature of your calculator to check 
the computations in Example 1.

Here are some properties of radicals, together with examples that help illustrate their 
meaning.
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812 APPENDIX A Algebra Review

Simplifying Radical Expressions
Many simplifying techniques for roots of real numbers have been rendered obsolete 
because of calculators. For example, when computing the decimal form of 1>22, it 
was once common first to change the fraction so that the radical was in the numerator:

122
=

122
# 2222

=
22
2

Using paper and pencil, it was then easier to divide a decimal approximation for 22 by 
2 than to divide that decimal into 1. Now either form is quickly computed with a calcu-
lator. However, these techniques are still valid for radicals involving algebraic expres-
sions and for numerical computations when you need exact answers. Example 2 
illustrates the technique of removing factors from radicands.

Properties of Radicals

Let u and v be real numbers, variables, or algebraic expressions, and let m and n 
be positive integers greater than 1. We assume that all the roots are real num-
bers and all the denominators are nonzero.

Property Example

1. 2n uv = 2n u # 2n v 275 = 225 # 3 

     = 225 # 23 = 523

2. An u
v

=
2n u2n v

 
24 9624 6

= A4  
96
6

= 24 16 = 2

3. 3m 2n u =
m #n2u 323 7 =

2 #327 = 26 7

4. 12n u2n = u 124 524 = 5

5. 2n um = 12n u2m 23 272 = 123 2722 = 32 = 9

6. 2n un = e �u� n even
u   n  odd

  21-622 = 0-6 0 = 6  
 23 1-623 = -6

Caution
Without the restriction that preceded the list, 
property 5 would need special attention. For 
example, 21-322 ≠ 12-322
because 2-3 on the right is not a real number.

Properties of Exponents
Check the Properties of Exponents on page 31 of 
Section P.1 to see why

16 = 24 and 9x4 = 13x222.

Removing Factors from Radicands

(a)  24 80 = 24 16 # 5  Find greatest fourth-power factor.

 = 24 24 # 5  16 = 24

 = 24 24 # 24 5 Property 1

 = 224 5  Property 6

(b)  218x5 = 29x4 # 2x  Find greatest square factor.

 = 213x222 # 2x 9x4 = 13x222

 = 3x222x  Properties 1 and 6

(c)  24 x4y4 = 24 1xy24 Find greatest fourth-power factor.

 = 0 xy 0  Property 6

(d)  23 -24y6 = 23 1-2y223 # 3 Find greatest cube factor.

 = -2y223 3  Properties 1 and 6

Now try Exercises 29 and 33.

EXAMPLE 2 
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 APPENDIX A.1 Radicals and Rational Exponents 813

Rationalizing the Denominator
The process of rewriting fractions containing radicals so that the denominator is free of 
radicals is rationalizing the denominator. When the denominator has the form 2n uk, 
multiplying numerator and denominator by 2n un-k and using property 6 will eliminate 
the radical from the denominator because2n uk # 2n un-k = 2n uk+n-k = 2n un.

Example 3 illustrates the process.

Rationalizing the Denominator

(a) A2
3

=
2223

=
2223

# 2323
=
26
3

(b) 
124 x

=
124 x

# 24 x324 x3
=
24 x324 x4

=
24 x3

0 x 0

(c) B5  
x2

y3 =
25 x225 y3

=
25 x225 y3

# 25 y225 y2
=
25 x2y225 y5

=
25 x2y2

y

Now try Exercise 37.

EXAMPLE 3 

Rational Exponents
We know how to handle exponential expressions with integer exponents (See Section 
P.1.) For example, x3 # x4 = x7, 1x322 = x6, x5>x2 = x3, x-2 = 1>x2, and so forth. But 
exponents can also be rational numbers. How should we define x1>2? If we assume that 
the same rules that apply for integer exponents also apply for rational exponents, we get 
a clue. For example, we want

x1>2 # x1>2 = x1.

This equation suggests that x1>2 = 2x. In general, we have the following definition.

The numerator of a rational exponent is the power to which the base is raised, and the 
denominator is the root to be taken. The fraction m>n needs to be in reduced form 
because, for instance,

u2>3 = 123 u22
is defined for all real numbers u (every real number has a cube root), but

u4>6 = 126 u24
is defined only for u Ú 0 (only nonnegative real numbers have sixth roots).

DEFINITION Rational Exponents

Let u be a real number, variable, or algebraic expression, and let n be an integer 
greater than 1. Then

u1>n = 2n u.

If m is a positive integer, m>n is in reduced form, and all roots are real num-
bers, then

um>n = 1u1>n2m = 12n u2m    and   um>n = 1um21>n = 2n um.
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Simplifying Radicals
If you also want the radical form in Example 4d 
to be simplified, then continue as follows:

12z3
=

12z3
# 2z2z

=
2z

z2

Converting Radicals to Exponentials  
and Vice Versa

(a) 21x + y23 = 1x + y23>2 (b) 3x25 x2 = 3x # x2>5 = 3x7>5

(c) x2>3y1>3 = 1x 

2y21>3 = 23 x2y (d) z-3>2 =
1

z3>2 =
12z3

Now try Exercises 43 and 47.

EXAMPLE 4 

Combining Radicals

(a)  2280 - 2125 = 2216 # 5 - 225 # 5 Find greatest square factors.

 = 825 - 525  Remove factors from radicands.

 = 325  Distributive property

(b)  24x2y - 2y3 = 212x22y - 2y2y Find greatest square factors.

 = 2 0 x 02y - 0 y 02y  Remove factors from radicands.

 = 12 0 x 0 - 0 y 0 22y  Distributive property

Now try Exercise 71.

EXAMPLE 6 

Simplifying Exponential Expressions

(a) 1x2y921>31xy22 = 1x2>3y321xy22 = x5>3y5

(b) a3x2>3

y1>2 b a
2x-1>2

y2>5 b =
6x1>6

y9>10

Now try Exercise 61.

EXAMPLE 5 

An expression involving powers is simplified if each factor appears only once, and all 
exponents are positive. Example 5 illustrates.

Example 6 suggests how to simplify a sum or difference of radicals.

Here’s a summary of the procedures we use to simplify expressions involving radicals.

Simplifying Radical Expressions

1. Remove factors from the radicand (see Example 2).

2. Eliminate radicals from denominators and denominators from radicands 
(see Example 3).

3. Combine sums and differences of radicals, if possible (see Example 6).

In Exercises 13–22, use a calculator to evaluate the expression.

 13. 24 256  14.  25 3125

 15. 23 15.625  16. 212.25

 17. 813>2  18. 165>4

 19. 32-2>5  20. 27-4>3

 21. a-  
1
8
b

-1>3
 22. a-  

125
64
b

-1>3

APPENDIX A.1 Exercises

In Exercises 1–6, find the indicated real roots.

 1. Square roots of 81  2. Fourth roots of 81

 3. Cube roots of 64  4. Fifth roots of 243

 5. Square roots of 16>9 6. Cube roots of -27>8
In Exercises 7–12, evaluate the expression without using a calculator.

 7. 2144  8. 2-16 9. 23 -216

 10. 23 216  11. A3 -  
64
27

 12. A64
25
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In Exercises 23–26, use the information from the grapher screens below 
to evaluate the expression.
1.5^3

4.41^2
3.375

19.4481

  

1.3^2

2.1^4
1.69

19.4481

 23. 21.69  24. 219.4481

 25. 24 19.4481  26. 23 3.375

In Exercises 27–36, simplify by removing factors from the radicand.

 27. 2288  28. 23 500

 29. 23 -250  30. 24 192

 31. 22x3y4  32. 23 -27x3y6

 33. 24 3x8y6  34. 23 8x6y4

 35. 25 96x10  36. 2108x4y9

In Exercises 37–42, rationalize the denominator.

 37. 
423 2

 38. 
125

 39. 
125 x2

 40. 
224 y

 41. C3  
x2

y
 42. C5  

a3

b2

In Exercises 43–46, convert to exponential form.

 43. 23 1a + 2b22  44. 25 x2y3

 45. 2x23 x2y  46. xy24 xy3

In Exercises 47–50, convert to radical form.

 47. a3>4b1>4  48. x2>3y1>3

 49. x-5>3  50. 1xy2-3>4

In Exercises 51–56, write using a single radical.

 51. 322x  52. 323 3x2

 53. 34 2xy  54. 33 2ab

 55. 
25 a223 a

 56. 2a23 a2

In Exercises 57–64, simplify the exponential expression.

 57. 
a3>5a1>3

a3>2  58. 1x2y421>2

 59. 1a5>3b3>4213a1>3b5>42 60. ax
1>2

y2>3b
6

 61. a-8x6

y-3 b
2>3

 62. 
1p2q421>2
127q3p621>3

 63. 
1x9y62-1>3

1x6y22-1>2  64. a2x1>2

y2>3 b a
3x-2>3

y1>2 b

In Exercises 65–74, simplify the radical expression.

 65. 29x-6y4  66. 216y8z-2

 67. C4  
3x8 y2

8x2  68. C5 4x6y

9x3

 69. C3  
4x2

y2
# C3  

2x2

y
 70. 25 9ab6 # 25 27a2b-1

 71. 3248 - 22108  72. 22175 - 4228

 73. 2x3 - 24xy2 74. 218x2y + 22y3

In Exercises 75–82, replace ~ with 6 , = , or 7 to make a true 
 statement.

 75. 22 + 6 ~ 22 + 26

 76. 24 + 29 ~ 24 + 9

 77. 13-22-1>2 ~ 3  78. 12-321>3 ~ 2

 79. 24 1-224 ~ -2  80. 23 1-223 ~ -2

 81. 22>3 ~ 33>4  82. 4-2>3 ~ 3-3>4

 83. The time t (in seconds) that it takes for a pendulum to complete 
one cycle is approximately t = 1.12L, where L is the length 
(in feet) of the pendulum. How long is the period of a pendu-
lum of length 10 ft?

 84. The time t (in seconds) that it takes for a rock to fall a distance 
d (in meters) is approximately t = 0.452d. How long does it 
take for the rock to fall a distance of 200 m?

 85. Writing to Learn Explain why 2n a and a real nth root of a 
need not have the same value.
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What you’ll learn about
• Adding, Subtracting, and Multiplying 

Polynomials

• Special Products

• Factoring Polynomials Using Special 
Products

• Factoring Trinomials

• Factoring by Grouping

... and why
You need to review these basic 
algebraic skills if you don’t 
 remember them.

Adding, Subtracting, and Multiplying Polynomials
A polynomial in x is any expression that can be written in the form

anxn + an-1xn-1 + g + a1x + a0,

where n is a nonnegative integer and an ≠ 0. The numbers an-1,c, a1, a0 are real 
numbers called coefficients. The degree of the polynomial is n and the leading 
 coefficient is an. Polynomials with one, two, or three terms are monomials, binomials, 
or trinomials, respectively. A polynomial written with powers of x in descending order 
is in standard form.

To add or subtract polynomials, we add or subtract like terms using the distributive 
property. Terms of polynomials that have the same variable each raised to the same 
power are like terms.

A.2 Polynomials and Factoring

Adding and Subtracting Polynomials
(a) 12x3 - 3x2 + 4x - 12 + 1x3 + 2x2 - 5x + 32
(b) 14x2 + 3x - 42 - 12x3 + x2 - x + 22
SOLUTION 

(a) We group like terms and then combine them as follows:

12x3 + x32 + 1-3x2 + 2x22 + 14x + 1-5x22 + 1-1 + 32
= 3x3 - x2 - x + 2

(b) We group like terms and then combine them as follows:

10 - 2x32 + 14x2 - x22 + 13x - 1-x22 + 1-4 - 22
= -2x3 + 3x2 + 4x - 6

Now try Exercises 9 and 11.

EXAMPLE 1 

To expand the product of two polynomials we use the distributive property. Here is 
what the procedure looks like when we multiply the binomials 3x + 2 and 4x - 5.

13x + 2214x - 52
= 3x14x - 52 + 214x - 52  Distributive property

= 13x214x2 - 13x2152 + 12214x2 - 122152 Distributive property

=   12x2 -  15x +  8x -  10 ()* ()* ()* ()*
 Product of Product of Product of Product of  
 First terms Outer terms Inner terms Last terms

In the above FOIL method for products of binomials, the outer (O) and inner (I) terms 
are like terms and can be added to give

13x + 2214x - 52 = 12x2 - 7x - 10.

Multiplying two polynomials requires multiplying each term of one polynomial by 
every term of the other polynomial. A convenient way to compute a product is to 
arrange the polynomials in standard form one on top of the other so their terms align 
vertically, as illustrated in Example 2.
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Multiplying Polynomials in Vertical Form
Write 1x2 - 4x + 321x2 + 4x + 52 in standard form.

SOLUTION 

x2 - 4x  + 3

x2 + 4x  + 5

x4 - 4x3 + 3x2 = x21x2 - 4x + 32
4x3 - 16x2 + 12x = 4x1x2 - 4x + 32

5x2 - 20x + 15 = 51x2 - 4x + 32
x4 + 0x3 - 8x2 - 8x + 15 Add.

Thus,

1x2 - 4x + 321x2 + 4x + 52 = x4 - 8x2 - 8x + 15.
Now try Exercise 33.

EXAMPLE 2 

Using Special Products
Expand the products.

(a)  13x + 8213x - 82 = 13x22 - 82

 = 9x2 - 64

(b)  15y - 422 = 15y22 - 215y2142 + 42

 = 25y2 - 40y + 16 

(c)  12x - 3y23 = 12x23 - 312x2213y2
+ 312x213y22 - 13y23

 = 8x3 - 36x2y + 54xy2 - 27y3

Now try Exercises 23, 25, and 27.

EXAMPLE 3 

Special Products
Certain products provide patterns that will be useful when we factor polynomials. Here 
is a list of some special products for binomials.

Special Binomial Products

Let u and v be real numbers, variables, or algebraic expressions.

1. Product of a sum and  
a difference: 1u + v21u - v2 = u2 - v2

2. Square of a sum: 1u + v22 = u2 + 2uv + v2

3. Square of a difference: 1u - v22 = u2 - 2uv + v2

4. Cube of a sum: 1u + v23 = u3 + 3u2v + 3uv2 + v3

5. Cube of a difference: 1u - v23 = u3 - 3u2v + 3uv2 - v3

Factoring Polynomials Using Special Products
When we write a polynomial as a product of two or more polynomial factors, we are 
factoring a polynomial. Unless specified otherwise, we factor polynomials into factors 
of lesser degree and with integer coefficients in this appendix. A polynomial that can-
not be factored using integer coefficients is a prime polynomial.
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818 APPENDIX A Algebra Review

A polynomial is completely factored if it is written as a product of its prime factors. For 
example,

2x2 + 7x - 4 = 12x - 121x + 42
and

x3 + x2 + x + 1 = 1x + 121x2 + 12
are completely factored (it can be proved that x2 + 1 is prime). However,

x3 - 9x = x1x2 - 92
is not completely factored because 1x2 - 92 is not prime. In fact, 
x2 - 9 = 1x - 321x + 32 and

x3 - 9x = x1x - 321x + 32
is completely factored.

The first step in factoring a polynomial is to remove common factors from its terms 
using the distributive property, as illustrated by Example 4.

Removing Common Factors
(a) 2x3 + 2x2 - 6x = 2x1x2 + x - 32 2x is the common factor.

(b) u3v + uv3 = uv1u2 + v22  uv is the common factor.

Now try Exercise 43.

EXAMPLE 4 

Recognizing the expanded form of the five special binomial products will help us factor 
them. The special form that is easiest to identify is the difference of two squares. The 
two binomial factors have opposite signs:

Two squares Square roots

u2 - v2 = 1u + v21u - v2.

Difference Opposite signs

          

               

Factoring the Difference of Two Squares
(a)  25x2 - 36 = 15x22 - 62  Difference of two squares

 = 15x + 6215x - 62 Factors are prime.

(b)  4x2 - 1y + 322 = 12x22 - 1y + 322  Difference of two squares

 = 32x + 1y + 324 32x - 1y + 324  Factors are prime.

 = 12x + y + 3212x - y - 32  Simplify.

Now try Exercise 45.

EXAMPLE 5 

A perfect square trinomial is the square of a binomial and has one of the two forms 
shown here. The first and last terms are squares of u and v, and the middle term is twice 
the product of u and v. The operation signs before the middle term and in the binomial 
factor are the same.

 Perfect square (sum) Perfect square (difference)

u2 + 2uv + v2 = 1u + v22  u2 - 2uv + v2 = 1u - v22

 Same signs Same signs
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Factoring Trinomials
Factoring the trinomial ax2 + bx + c into a product of binomials with integer coeffi-
cients requires factoring the integers a and c.

 Factors of a

ax2 + bx + c = 1□ x + □21□ x + □2

 Factors of c

Because the number of integer factors of a and c is finite, we can list all possible bino-
mial factors. Then we begin checking each possibility until we find a pair that works. 
(If no pair works, then the trinomial is prime.) Example 8 illustrates.

 

            

Factoring Perfect Square Trinomials
(a)  9x2 + 6x + 1 = 13x22 + 213x2112 + 12 u = 3x, v = 1

 = 13x + 122  

(b)  4x2 - 12xy + 9y2 = 12x22 - 212x213y2 + 13y22 u = 2x, v = 3y

 = 12x - 3y22  Now try Exercise 49.

EXAMPLE 6 

In the sum and difference of two cubes, notice the pattern of the signs.

 Same signs Same signs

u3 + v3 = 1u + v21u2 - uv + v22  u3 - v3 = 1u - v21u2 + uv + v22

 Opposite signs Opposite signs

                                               

                                           

Factoring the Sum and Difference of Two Cubes
(a)  x3 - 64 = x3 - 43  Difference of two cubes

 = 1x - 421x2 + 4x + 162 Factors are prime.

(b)  8x3 + 27 = 12x23 + 33  Sum of two cubes

 = 12x + 3214x2 - 6x + 92 Factors are prime.

Now try Exercise 55.

EXAMPLE 7 

Factoring a Trinomial with Leading 
Coefficient = 1

Factor x2 + 5x - 14.

SOLUTION The only factor pair of the leading coefficient is 1 and 1. The factor 
pairs of 14 are 1 and 14, and 2 and 7. Here are the four possible factorizations of the 
trinomial:

1x + 121x - 142    1x - 121x + 142
1x + 221x - 72     1x - 221x + 72

If you check the middle term from each factorization you will find that

x2 + 5x - 14 = 1x - 221x + 72.
Now try Exercise 59.

EXAMPLE 8 

With practice you will find that it usually is not necessary to list all possible binomial 
factors. Often you can test the possibilities mentally.
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Factoring a Trinomial with Leading 
Coefficient 3 1

Factor 35x2 - x - 12.

SOLUTION The factor pairs of the leading coefficient are 1 and 35, and 5 and 7. The 
factor pairs of 12 are 1 and 12, 2 and 6, and 3 and 4. The possible factorizations must 
be of the form

1x - *2135x + ?2,    1x + *2135x - ?2,
15x - *217x + ?2,    15x + *217x - ?2,

where * and ? are one of the factor pairs of 12. Because the two binomial factors 
have opposite signs, there are 6 possibilities for each of the four forms—a total of 24 
possibilities in all. If you try them, mentally and systematically, you should find that

35x2 - x - 12 = 15x - 3217x + 42.
Now try Exercise 63.

EXAMPLE 9 

Factoring Trinomials in x and y
Factor 3x2 - 7xy + 2y2.

SOLUTION The only way to get -7xy as the middle term is with 3x2 - 7xy +  
2y2 = 13x - *y21x - ?y2.
The signs in the binomials must be negative because the coefficient of y2 is positive 
and the coefficient of the middle term is negative. Checking the two possibilities, 
13x - y21x - 2y2 and 13x - 2y21x - y2, proves that

3x2 - 7xy + 2y2 = 13x - y21x - 2y2.
Now try Exercise 67.

EXAMPLE 10 

Factoring by Grouping
(a) 3x3 + x2 - 6x - 2

= 13x3 + x22 - 16x + 22  Group terms.

= x213x + 12 - 213x + 12 Factor each group.

= 13x + 121x2 - 22  Distributive property

(b) 2ac - 2ad + bc - bd

= 12ac - 2ad2 + 1bc - bd2 Group terms.

= 2a1c - d2 + b1c - d2  Factor each group.

= 1c - d212a + b2  Distributive property

Now try Exercise 69.

EXAMPLE 11 

We can extend the technique of Examples 8 and 9 to trinomials in two variables as 
illustrated in Example 10.

Factoring by Grouping
Notice that 1a + b21c + d2 = ac + ad + bc + bd. If a polynomial with four terms 
is the product of two binomials, we can group terms to factor. There are only three 
ways to group the terms, and two of them work. So if two of the possibilities fail, then 
the polynomial is not factorable.

Here is a checklist for factoring polynomials.
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Factoring Polynomials

1. Look for common factors.

2. Look for special polynomial forms.

3. Use factor pairs.

4. If there are four terms, try grouping.

 39. 1x - 221x2 + 2x + 42
 40. 1x + 121x2 - x + 12
In Exercises 41–44, factor out the common factor.

 41. 5x - 15  42. 5x3 - 20x

 43. yz3 - 3yz2 + 2yz 44. 2x1x + 32 - 51x + 32
In Exercises 45–48, factor the difference of two squares.

 45. z2 - 49

 46. 9y2 - 16

 47. 64 - 25y2

 48. 16 - 1x + 222
In Exercises 49–52, factor the perfect square trinomial.

 49. y2 + 8y + 16  50. 36y2 + 12y + 1

 51. 4z2 - 4z + 1  52. 9z2 - 24z + 16

In Exercises 53–58, factor the sum or difference of two cubes.

 53. y3 - 8

 54. z3 + 64

 55. 27y3 - 8

 56. 64z3 + 27

 57. 1 - x3

 58. 27 - y3

In Exercises 59–68, factor the trinomial.

 59. x2 + 9x + 14

 60. y2 - 11y + 30

 61. z2 - 5z - 24

 62. 6t2 + 5t + 1

 63. 14u2 - 33u - 5 64. 10v2 + 23v + 12

 65. 12x2 + 11x - 15 66. 2x2 - 3xy + y2

 67. 6x2 + 11xy - 10y2 68. 15x2 + 29xy - 14y2

In Exercises 69–74, factor by grouping.

 69. x3 - 4x2 + 5x - 20 70. 2x3 - 3x2 + 2x - 3

 71. x6 - 3x4 + x2 - 3 72. x6 + 2x4 + x2 + 2

 73. 2ac + 6ad - bc - 3bd

 74. 3uw + 12uz - 2vw - 8vz

APPENDIX A.2 Exercises

In Exercises 1–4, write the polynomial in standard form and state its 
degree.

 1. 2x - 1 + 3x2 2. x2 - 2x - 2x3 + 1

 3. 1 - x7  4. x2 - x4 + x - 3

In Exercises 5–8, state whether the expression is a polynomial.

 5. x3 - 2x2 + x-1  6. 
2x - 4

x

 7. 1x2 + x + 122  8. 1 - 3x + x4

In Exercises 9–18, simplify the expression. Write your answer in stan-
dard form.

 9. 1x2 - 3x + 72 + 13x2 + 5x - 32
 10. 1-3x2 - 52 - 1x2 + 7x + 122
 11. 14x3 - x2 + 3x2 - 1x3 + 12x - 32
 12. -1y2 + 2y - 32 + 15y2 + 3y + 42
 13. 2x1x2 - x + 32 14. y212y2 + 3y - 42
 15. -3u14u - 12  16. -4v12 - 3v32
 17. 12 - x - 3x2215x2 18. 11 - x2 + x4212x2
In Exercises 19–40, expand the product. Use vertical alignment in 
Exercises 33 and 34.

 19. 1x - 221x + 52
 20. 12x + 3214x + 12
 21. 13x - 521x + 22
 22. 12x - 3212x + 32
 23. 13x - y213x + y2
 24. 13 - 5x22
 25. 13x + 4y22 26. 1x - 123
 27. 12u - v23 28. 1u + 3v23
 29. 12x3 - 3y212x3 + 3y2 30. 15x3 - 122
 31. 1x2 - 2x + 321x + 42 32. 1x2 + 3x - 221x - 32
 33. 1x2 + x - 321x2 + x + 12
 34. 12x2 - 3x + 121x2 - x + 22
 35. 1x - 2221x + 222
 36. 1x1>2 - y1>221x1>2 + y1>22
 37. 12u + 2v212u - 2v2
 38. 1x2 - 2321x2 + 232
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In Exercises 75–90, factor completely.

 75. x3 + x  76. 4y3 - 20y2 + 25y

 77. 18y3 + 48y2 + 32y  78. 2x3 - 16x2 + 14x

 79. 16y - y3  80. 3x4 + 24x

 81. 5y + 3y2 - 2y3 82. z - 8z4

 83. 215x + 122 - 18 84. 512x - 322 - 20

 85. 12x2 + 22x - 20 86. 3x2 + 13xy - 10y2

 87. 2ac - 2bd + 4ad - bc 88. 6ac - 2bd + 4bc - 3ad

 89. x3 - 3x2 - 4x + 12 90. x4 - 4x3 - x2 + 4x

 91. Writing to Learn Prove that the grouping

12ac + bc2 - 12ad + bd2
  leads to the same factorization as in Example 11b. Explain why 

the third possibility,

12ac - bd2 + 1-2ad + bc2,
  does not lead to a factorization.
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Reducing Rational Expressions
Let u, v, and z be real numbers, variables, or algebraic expressions. We can write ratio-
nal expressions in simpler form using

uz
vz

=
u
v

,

provided z ≠ 0. This requires that we first factor the numerator and denominator into 
prime factors. When all factors common to numerator and denominator have been 
removed, the rational expression (or rational number) is in reduced form.

What you’ll learn about
• Algebraic Expressions and  

Their Domains

• Reducing Rational Expressions

• Operations with Rational 
 Expressions

• Compound Rational Expressions

... and why
You need to review these basic 
algebraic skills if you don’t 
 remember them.

Algebraic Expressions and Their Domains
A quotient of two algebraic expressions, besides being another algebraic expression, is 
a fractional expression, or simply a fraction. If the quotient can be written as the ratio 
of two polynomials, the fractional expression is a rational expression. Following are 
examples of each:

x2 - 5x + 22x2 + 1
    

2x3 - x2 + 1

5x2 - x - 3

The one on the left is a fractional expression but not a rational expression. The other is 
both a fractional expression and a rational expression.

Unlike polynomials, which are defined for all real numbers, some algebraic expressions 
are not defined for some real numbers. The set of real numbers for which an expression 
is defined is the domain of the expression.

A.3 Fractional Expressions

Finding Domains of Algebraic Expressions

(a) 3x2 - x + 5   (b) 2x - 1   (c) 
x

x - 2

SOLUTION 

(a) The domain of 3x2 - x + 5, like that of any polynomial, is the set of all real 
numbers.

(b) Because only nonnegative numbers have square roots, x - 1 Ú 0, or x Ú 1. In 
interval notation, the domain is 31, ∞2.

(c) Because division by zero is undefined, x - 2 ≠ 0, or x ≠ 2. The domain is 
the set of all real numbers except 2. Now try Exercises 11 and 13.

EXAMPLE 1 

Reducing Rational Expressions
Write 1x2 - 3x2>1x2 - 92 in reduced form.

SOLUTION 

 
x2 - 3x

x2 - 9
=

x1x - 32
1x + 321x - 32 Factor completely.

 =
x

x + 3
,  x ≠ 3  Remove common factors.

We include x ≠ 3 as part of the reduced form because 3 is not in the domain of the 
original rational expression and thus should not be in the domain of the final rational 
expression. Now try Exercise 35.

EXAMPLE 2 
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Two rational expressions are equivalent expressions if they have the same domain and 
have the same value for all numbers in the domain. The reduced form of a rational 
expression must have the same domain as the original rational expression. This is why 
we attached the restriction x ≠ 3 to the reduced form in Example 2.

Operations with Rational Expressions
Two fractions are equal, u>v = z >w, if and only if uw = vz. Here is how we operate 
with fractions.

Invert and Multiply
When doing the division step in operation 4, you 
invert the divisor (the fraction that follows the 
division symbol) and multiply the result by the 
dividend (the first fraction).

Operations with Fractions

Let u, v, w, and z be real numbers, variables, or algebraic expressions. All of 
the denominators are assumed to be different from zero.

Operation Example

1. 
u
v

+
w
v

=
u + w

v
 

2
3

+
5
3

=
2 + 5

3
=

7
3

2. 
u
v

+
w
z

=
uz + vw

vz
 

2
3

+
4
5

=
2 # 5 + 3 # 4

3 # 5
=

22
15

3. 
u
v
# w

z
=

uw
vz

 
2
3

# 4
5

=
2 # 4
3 # 5

=
8
15

4. 
u
v

,
w
z

=
u
v
# z
w

=
uz
vw

 
2
3

,
4
5

=
2
3

# 5
4

=
10
12

=
5
6

5. For subtraction, replace “+” by “-” in operations 1 and 2.

Multiplying and Dividing Rational Expressions

(a) 
2x2 + 11x - 21

x3 + 2x2 + 4x
# x3 - 8

x2 + 5x - 14

 =  
12x - 321x + 72
x1x2 + 2x + 42

# 1x - 221x2 + 2x + 42
1x - 221x + 72  Factor completely.

 =  
2x - 3

x
,  x ≠ 2,  x ≠ -7 Remove common factors.

(b) 
x3 + 1

x2 - x - 2
,

x2 - x + 1

x2 - 4x + 4

 =  
1x3 + 121x2 - 4x + 42
1x2 - x - 221x2 - x + 12 Invert and multiply.

 =  
1x + 121x2 - x + 121x - 222 

1

1x + 121x - 221x2 - x + 12  Factor completely.

 =  x - 2,  x ≠ -1,  x ≠ 2 Remove common factors.

Now try Exercises 49 and 55.

EXAMPLE 3 

Adding Rational Expressions

 
x

3x - 2
+

3
x - 5

=
x1x - 52 + 313x - 22
13x - 221x - 52  Definition of addition

 =
x2 - 5x + 9x - 6
13x - 221x - 52  Distributive property

 =
x2 + 4x - 6
13x - 221x - 52  Combine like terms.

Now try Exercise 59.

EXAMPLE 4 Note on Example
The numerator, x2 + 4x - 6, of the final  
expression in Example 4 is a prime polynomial. 
Thus, there are no common factors.
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 APPENDIX A.3 Fractional Expressions 825

If the denominators of fractions have common factors, then it is often more efficient to 
find the LCD before adding or subtracting the fractions. The LCD (least common 
denominator) is the product of all the prime factors in the denominators, where each 
factor is raised to the greatest power found in any one denominator for that factor.

Using the LCD
Write the following expression as a fraction in reduced form.

2

x2 - 2x
+

1
x

-
3

x2 - 4
SOLUTION The factored denominators are x1x - 22, x, and 1x - 221x + 22, 
respectively. The LCD is x1x - 221x + 2).

2

x2 - 2x
+

1
x

-
3

x2 - 4

 =
2

x1x - 22 +
1
x

-
3

1x - 221x + 22 Factor.

 =
21x + 22

x1x - 221x + 22 +
1x - 221x + 22
x1x - 221x + 22 -

3x
x1x - 221x + 22  Equivalent 

fractions

 =
21x + 22 + 1x - 221x + 22 - 3x

x1x - 221x + 22   Combine  

numerators.

 =
2x + 4 + x2 - 4 - 3x

x1x - 221x + 22  Expand terms.

 =
x2 - x

x1x - 221x + 22 Simplify.

 =
x1x - 12

x1x - 221x + 22 Factor.

 =
x - 1

1x - 221x + 22 ,  x ≠ 0 Reduce.

Now try Exercise 61.

EXAMPLE 5 

Compound Rational Expressions
Sometimes a complicated algebraic expression needs to be changed to a simpler form 
before we can easily work with it. A compound fraction (sometimes called a complex 
fraction), in which the numerators and denominators may themselves contain fractions, is 
such an example. One way to simplify a compound fraction is to write both the numerator 
and denominator as single fractions and then invert and multiply. If the fraction then takes 
the form of a rational expression, we write the expression in reduced or simplest form.

Simplifying a Compound Fraction

 
3 -

7
x + 2

1 -
1

x - 3

=

31x + 22 - 7

x + 2
1x - 32 - 1

x - 3

 Combine fractions.

 =

3x - 1
x + 2
x - 4
x - 3

 Simplify.

 =
13x - 121x - 32
1x + 221x - 42 ,  x ≠ 3 Invert and multiply.

Now try Exercise 63.

EXAMPLE 6 
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826 APPENDIX A Algebra Review

A second way to simplify a compound fraction is to multiply the numerator and 
denominator by the LCD of all fractions in the numerator and denominator, as illus-
trated in Example 7.

Simplifying Another Compound Fraction
Use the LCD to simplify the compound fraction

1

a2 -
1

b2

1
a

-
1
b

.

SOLUTION The LCD of the four fractions in the numerator and denominator is 
a2b2.

 

1

a2 -
1

b2

1
a

-
1
b

=
a 1

a2 -
1

b2ba2b2

a1
a

-
1
b
ba2b2

  Multiply numerator and  

denominator by LCD.

 =
b2 - a2

ab2 - a2b
 Simplify

 =
1b + a21b - a2

ab1b - a2  Factor.

 =
a + b

ab
,  a ≠ b  Reduce and commute.

Now try Exercise 69.

EXAMPLE 7 

In Exercises 19–26, find the missing numerator or denominator so that 
the two rational expressions are equal.

 19. 
2
3x

=
?

12x3  20. 
5
2y

=
15y

?

 21. 
x - 4

x
=

x2 - 4x
?

 22. 
x

x + 2
=

?

x2 - 4

 23. 
x + 3
x - 2

=
?

x2 + 2x - 8

 24. 
x - 4
x + 5

=
x2 - x - 12

?

 25. 
x2 - 3x

?
=

x - 3

x2 + 2x

 26. 
?

x2 - 9
=

x2 + x - 6
x - 3

Writing to Learn In Exercises 27–32, consider the original fraction 
and its reduced form from the specified example. Explain why the 
given restriction is needed on the reduced form.

 27. Example 3a, x ≠ 2, x ≠ -7

 28. Example 3b, x ≠ -1, x ≠ 2

 29. Example 4, none 30. Example 5, x ≠ 0

 31. Example 6, x ≠ 3 32. Example 7, a ≠ b

APPENDIX A.3 Exercises

In Exercises 1–8, rewrite as a single fraction.

 1. 
5
9

+
10
9

 2. 
17
32

-
9
32

 3. 
20
21

# 9
22

 4. 
33
25

# 20
77

 5. 
2
3

,
4
5

 6. 
9
4

,
15
10

 7. 
1
14

+
4
15

-
5
21

 8. 
1
6

+
6
35

-
4
15

In Exercises 9–18, find the domain of the algebraic expression.

 9. 5x2 - 3x - 7 10. 2x - 5 

 11. 2x - 4  12. 
22x + 3

 13. 
2x + 1

x2 + 3x

 14. 
x2 - 2

x2 - 4

 15. 
x

x - 1
,  x ≠ 2

 16. 
3x - 1
x - 2

,  x ≠ 0

 17. x2 + x-1

 18. x1x + 12-2
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In Exercises 33–44, write the expression in reduced form.

 33. 
18x3

15x
 34. 

75y2

9y4

 35. 
x3

x2 - 2x
 36. 

2y2 + 6y

4y + 12

 37. 
z2 - 3z

9 - z2  38. 
x2 + 6x + 9

x2 - x - 12

 39. 
y2 - y - 30

y2 - 3y - 18

 40. 
y3 + 4y2 - 21y

y2 - 49

 41. 
8z3 - 1

2z2 + 5z - 3
 42. 

2z3 + 6z2 + 18z

z3 - 27

 43. 
x3 + 2x2 - 3x - 6

x3 + 2x2  44. 
y2 + 3y

y3 + 3y2 - 5y - 15

In Exercises 45–62, simplify.

 45. 
3

x - 1
# x2 - 1

9

 46. 
x + 3

7
# 14
2x + 6

 47. 
x + 3
x - 1

# 1 - x

x2 - 9
 48. 

18x2 - 3x
3xy

# 12y2

6x - 1

 49. 
x3 - 1

2x2
# 4x

x2 + x + 1
 50. 

y3 + 2y2 + 4y

y3 + 2y2
# y2 - 4

y3 - 8

 51. 
2y2 + 9y - 5

y2 - 25
# y - 5

2y2 - y
 52. 

y2 + 8y + 16

3y2 - y - 2
# 3y2 + 2y

y + 4

 53. 
1
2x

,
1
4

 54. 
4x
y

,
8y

x

 55. 
x2 - 3x

14y
,

2xy

3y2 56. 
7x - 7y

4y
,

14x - 14y

3y

 57. 

2x2y

1x - 322
8xy

x - 3

 58. 

x2 - y2

2xy

y2 - x2

4x2y

 59. 
2x + 1
x + 5

-
3

x + 5

 60. 
3

x - 2
+

x + 1
x - 2

 61. 
3

x2 + 3x
-

1
x

-
6

x2 - 9

 62. 
5

x2 + x - 6
-

2
x - 2

+
4

x2 - 4

In Exercises 63–70, simplify the compound fraction.

 63. 

x

y2 -
y

x2

1

y2 -
1

x2

 64. 

1
x

+
1
y

1

x2 -
1

y2

 65. 
2x +

13x - 3
x - 4

2x +
x + 3
x - 4

 66. 
2 -

13
x + 5

2 +
3

x - 3

 67. 

1

1x + h22 -
1

x2

h
 68. 

x + h
x + h + 2

-
x

x + 2
h

 69. 

b
a

-
a
b

1
a

-
1
b

 70. 

1
a

+
1
b

b
a

-
a
b

In Exercises 71–74, write with positive exponents and simplify.

 71. a1
x

+
1
y
b1x + y2-1 72. 

1x + y2-1

1x - y2-1

 73. x-1 + y-1  74. 1x-1 + y-12-1
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828 APPENDIX B Logic

The statements “The shirt is blue” and “The shirt is green” are not negations of each 
other. A statement and its negation must have opposite truth values. If the shirt is actu-
ally red, then both of the above statements are false and, hence, cannot be negations of 
each other. However, the statements “The shirt is blue” and “The shirt is not blue” are 
negations of each other because they have opposite truth values no matter what color 
the shirt really is.

Some statements involve quantifiers and are more complicated to negate. Quantifiers 
include words such as all, some, every, and there exists.

The quantifiers all, every, and no refer to each and every element in a set and are  
universal quantifiers. The quantifiers some and there exists at least one refer to one or 

What you’ll learn about
• Statements

• Compound Statements

... and why
These topics are important in the 
study of logic.

Statements
Logic is a tool used in mathematical thinking and problem solving. In logic, a  
statement is a sentence that is either true or false, but not both.

The following sentences are not statements because their truth values cannot be deter-
mined without more information.

 1. She has blue eyes.
 2. x + 7 = 18
 3. 2y + 7 7 1

The sentences above become statements if, for sentence 1, “she” is identified, and, for 
sentences 2 and 3, values are assigned to x and y, respectively. However, a sentence 
involving he or she or x or y may already be a statement. For example, “If he is over 
210 cm tall, then he is over 2 m tall,” and “21x + y2 = 2x + 2y” are both statements 
because they are true no matter who he is or what the numerical values of x and y are.

Every statement has a negation. The negation of a given statement is a statement with a 
truth value opposite to that of the given statement. If a statement is true, its negation is 
false, and if a statement is false, its negation is true. Consider the statement “It is snow-
ing.” The negation of this statement may be stated simply as “It is not snowing.”

B.1 Logic: An Introduction

Negation of Statements
Negate each of the following statements:

(a) 2 + 3 = 5

(b) A hexagon has six sides.

(c) Today is not Monday.
SOLUTION 

(a) 2 + 3 ≠ 5

(b) A hexagon does not have six sides.

(c) Today is Monday.
Now try Exercise 5, parts (a), (b), and (c).

EXAMPLE 1 
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 APPENDIX B.1 Logic: An Introduction 829

more, or possibly all, of the elements in a set. Some and there exists are called  
existential quantifiers. Examples with universal and existential quantifiers follow:

 1. All roses are red. [universal]
 2. Every student is important. [universal]
 3. For each counting number x, x + 0 = x. [universal]
 4. Some roses are red. [existential]
 5. There exists at least one even counting number less than 3. [existential]
 6. There are women who are taller than 200 cm. [existential]

Venn diagrams can be used to illustrate statements involving quantifiers. For example, 
Figures B.1a and B.1b illustrate statements 1 and 4. The x in Figure B.1b is used to 
show that there must be at least one element of the set of roses that is red.

Red Objects

Roses

U U

Red ObjectsRoses x

 (a) (b)

Figure B.1 (a) All roses are red. (b) Some roses are red.

Consider the following statement involving the existential quantifier some. “Some pro-
fessors at Paxson University have blue eyes.” This means that at least one professor at 
Paxson University has blue eyes. It does not rule out the possibilities that all the Paxson 
professors have blue eyes or that some of the Paxson professors do not have blue eyes. 
Because the negation of a true statement is false, neither “Some professors at Paxson 
University do not have blue eyes” nor “All professors at Paxson have blue eyes” is a 
negation of the original statement. One possible negation of the original statement is 
“No professors at Paxson University have blue eyes.”

Statement Negation

Some a are b. No a is b.

Some a are not b. All a are b.

All a are b. Some a are not b.

No a is b. Some a are b.

Negation with Quantifiers
Negate each of the following statements:

(a) All students like hamburgers.

(b) Some people like mathematics.

(c) There exists a counting number x such that 3x = 6.

(d) For all counting numbers x, 3x = 3x.

EXAMPLE 2 

(continued)
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There is a symbolic system defined to help in the study of logic. If p represents a state-
ment, the negation of the statement p is denoted by ∼p. Truth tables are often used to 
show all possible true-false patterns for statements. Table B.1 summarizes the truth 
tables for p and ∼p.

If x is an element of the set P, then x is not an element of the complement of P, denoted 
P. The statements p and ∼p are analogous to the sets P and  P.

Compound Statements
From two given statements, it is possible to create a new, compound statement by 
using a connective such as and. For example, “It is snowing” and “The ski run is open” 
together with and give “It is snowing and the ski run is open.” Other compound state-
ments can be obtained by using the connective or. For example, “It is snowing or the 
ski run is open.”

The symbols ¿ and ¡ are used to represent the connectives and and or, respectively. 
For example, if p represents “It is snowing,” and if q represents “The ski run is open,” 
then “It is snowing and the ski run is open” is denoted by p ¿ q. Similarly, “It is snow-
ing or the ski run is open” is denoted by p ¡ q.

The truth value of any compound statement, such as p ¿ q, is defined using the truth 
table of each of the simple statements. Because each of the statements p and q may be 
either true or false, there are four distinct possibilities for the truth values of p and q, as 
shown in Table B.2. The compound statement p ¿ q is the conjunction of p and q and 
is defined to be true if, and only if, both p and q are true. Otherwise, it is false.

The compound statement p ¡ q—that is, p or q—is a disjunction. In everyday lan-
guage, or is not always interpreted in the same way. In logic, we use an inclusive or. 
The statement “I will go to a movie or I will read a book” means that I will either go to 
a movie, or read a book, or do both. Hence, in logic, p or q, symbolized as p ¡ q, is 
defined to be false if both p and q are false, and true in all other cases. This is summa-
rized in Table B.3.

830 APPENDIX B Logic

SOLUTION 

(a) Some students do not like hamburgers.

(b) No people like mathematics.

(c) For all counting numbers x, 3x ≠ 6.

(d) There exists a counting number x such that 3x ≠ 3x.
Now try Exercise 5, parts (e) and (f).

Table B.1 Negation

p ∼p

T F
F T

Table B.2 Conjunction

p q p ¿ q

T T T
T F F
F T F
F F F

Table B.3 Disjunction

p q p ¡ q

T T T
T F T
F T T
F F F

Conjunction and Disjunction
Given the following statements, classify each of the conjunctions and disjunctions as 
true or false:

p: 2 + 3 = 5 r : 5 + 3 = 9

q: 2 # 3 = 6 s: 2 # 4 = 9

(a) p ¿ q (b) p ¿ r (c) s ¿ q (d) r ¿ s

(e) ∼p ¿ q (f) ∼1p ¿ q2 (g) p ¡ q (h) p ¡ r

(i) s ¡ q (j) r ¡ s (k) ∼p ¡ q (l) ∼1p ¡ q2

EXAMPLE 3 
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There is an analogy between the connectives ¿ and ¡ and the set operations of inter-
section 1¨2 and union 1∪2. Just as the statement p ¿ q is true only when p and q are 
both true, so an element x belongs to the set P ¨ Q only when x belongs to both P and 
Q. Similarly, the statement p ¡ q is true when either p or q is true, and an element x 
belongs to the set P ∪ Q when x belongs to either P or Q.

SOLUTION 

(a) p is true and q is true, so p ¿ q is true.

(b) p is true and r is false, so p ¿ r is false.

(c) s is false and q is true, so s ¿ q is false.

(d) r is false and s is false, so r ¿ s is false.

(e) ∼p is false and q is true, so ∼p ¿ q is false.

(f) p ¿ q is true [part (a)], so ∼1p ¿ q2 is false.

(g) p is true and q is true, so p ¡ q is true.

(h) p is true and r is false, so p ¡ r is true.

(i) s is false and q is true, so s ¡ q is true.

(j) r is false and s is false, so r ¡ s is false.

(k) ∼p is false and q is true, so ∼p ¡ q is true.

(l) p ¡ q is true [part (g)], so ∼1p ¡ q2 is false.
Now try Exercise 7, parts (a) and (f).

Statements and Sets
Use set operations to construct a set that corresponds, by analogy, to each of the 
 following statements:

(a) p ¿ r (b) ∼r ¡ q (c) ∼1p ¿ q2 (d) ∼1p ¡ ∼r2
SOLUTION 

(a) P ¨ R (b) R ∪ Q (c) P ¨ Q (d) P ∪ R
Now try Exercise 9.

EXAMPLE 4 

Not only are truth tables used to summarize the truth values of compound statements, 
they also are used to determine whether two statements are logically equivalent. Two 
statements are logically equivalent if, and only if, they have the same truth values. For 
example, we could prove that p ¿ q is logically equivalent to q ¿ p by using a truth 
table as in Table B.4.

Table B.4

p q p ¿ q q ¿ p

T T T T
T F F F
F T F F
F F F F

› ›

Logical Equivalence
Use a truth table to determine whether ∼p ¡ ∼q and ∼1p ¿ q2 are logically  
equivalent.

SOLUTION Table B.5 shows headings and the four distinct possibilities for p and q. 
In the column headed ∼p, we write the negations of the p column. In the ∼q column, 
we write the negations of the q column. Next, we use the values in the ∼p and the ∼q 
columns to construct the ∼p ¡ ∼q column. To find the truth values for ∼1p ¿ q2, 
we use the p and q columns to find the truth values for p ¿ q and then negate p ¿ q.

EXAMPLE 5 

(continued)
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Table B.5

p q ∼p ∼q ∼p ¡ ∼q p ¿ q ∼1p ¿ q2
T T F F F T F
T F F T T F T
F T T F T F T
F F T T T F T

Because the values in the columns for ∼p ¡ ∼q and ∼1p ¿ q2 are identical, the 
statements are equivalent.

Now try Exercise 4, parts (b) and (d).

››

832 APPENDIX B Logic

APPENDIX B.1 Exercises

(i) For all natural numbers x, x + 3 = 3 + x.

(j) There exists a natural number x such that 
3 # 1x + 22 = 12.

(k) Every counting number is divisible by itself and 1.

(l) Not all natural numbers are divisible by 2.

(m) For all natural numbers x, 5x + 4x = 9x.

 6. If q stands for “This course is easy” and r stands for “Lazy stu-
dents do not study,” write each of the following in symbolic 
form:

(a) This course is easy and lazy students do not study. 

(b) Lazy students do not study or this course is not easy. 

(c) It is false that both this course is easy and lazy students do 
not study. 

(d) This course is not easy. 

 7. If p is false and q is true, find the truth values for each of the 
following:

(a) p ¿ q (b) p ¡ q

(c) ∼p (d) ∼q

(e) ∼1∼p2 (f) ∼p ¡ q

(g) p ¿ ∼q (h) ∼1p ¡ q2
(i) ∼1∼p ¿ q2 (j) ∼q ¿ ∼p

 8. Find the truth value for each statement in Exercise 7 if p is 
false and q is false.

 9. Use set operations to construct a set that corresponds, by anal-
ogy, to each of the following statements.

(a) r ¡ s (b) q ¿ ∼q

(c) ∼1r ¡ q2 (d) p ¿ 1r ¡ s2
 10. For each of the following, is the pair of statements logically 

equivalent?

(a) ∼1p ¡ q2 and ∼p ¡ ∼q

(b) ∼1p ¡ q2 and ∼p ¿ ∼q

(c) ∼1p ¿ q2 and ∼p ¿ ∼q

(d) ∼1p ¿ q2 and ∼p ¡ ∼q

 1. Determine which of the following are statements, and then 
classify each statement as true or false:

(a) 2 + 4 = 8  (b) Shut the window.

(c) Los Angeles is a state. (d) He is in town.

(e) What time is it?  (f) 5x = 15

(g) 3 # 2 = 6  (h) 2x2 7 x

(i) This statement is false. (j) Stay put!

 2. Writing to Learn Use quantifiers to make each of the fol-
lowing true where x is a natural number:

(a) x + 8 = 11  (b) x + 0 = x

(c) x2 = 4   (d) x + 1 = x + 2

 3. Writing to Learn Use quantifiers to make each equation in 
Exercise 2 false.

 4. Complete each of the following truth tables:

(a) p ∼p ∼1∼p2
T
F

(b) p ∼p p ¡ ∼p p ¿ ∼p

T
F

(c) Based on part (a), is p logically equivalent to ∼1∼p2?
(d) Based on part (b), is p ¡ ∼p logically equivalent to 

p ¿ ∼p?

 5. Write the negation for each of the following statements:

(a) The book has 500 pages.

(b) Six is less than eight.

(c) 3 # 5 = 15

(d) Some people have blond hair.

(e) All dogs have four legs.

(f) Some cats do not have nine lives.

(g) All squares are rectangles.

(h) Not all rectangles are squares.
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 11. (a)  Write two logical equivalences discovered in parts 10(a)–
(d). These equivalences are called DeMorgan’s Laws for 
“and” and “or.”

(b)  Write an explanation of the analogy between DeMorgan’s 
Laws for sets and those found in part (a).

 12. Complete the following truth table:

p q ∼p ∼q ∼p ¡ q

T T
T F
F T
F F

 13. Writing to Learn Restate the following in a logically 
equivalent form:

(a) It is not true that both today is Wednesday and the month 
is June.

(b) It is not true that yesterday I both ate breakfast and watched 
television.

(c) It is not raining or it is not July.
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  p q  

(1) T T Betty gets the raise; she takes you to dinner.
(2) T F Betty gets the raise; she does not take you to dinner.
(3) F T Betty does not get the raise; she takes you to dinner.
(4) F F Betty does not get the raise; she does not take you to dinner.

What you’ll learn about
• Forms of Statements

• Valid Reasoning

... and why
These topics are important in the 
study of logic.

Forms of Statements
Statements expressed in the form “if p, then q” are called conditionals, or  
implications, and are denoted by p S q. Such statements also can be read “p implies 
q.” The “if “ part of a conditional is called the hypotheses of the implication, and the 
“then” part is called the conclusion.

Many types of statements can be put in “if-then” form; an example follows.

 Statement: All first graders are 6 years old.

 If-then form: If a child is a first grader, then the child is 6 years old.

An implication may also be thought of as a promise. Suppose Betty makes the promise, 
“If I get a raise, then I will take you to dinner.” If Betty keeps her promise, the implica-
tion is true; if Betty breaks her promise, the implication is false. Consider the following 
four possibilities:

B.2 Conditionals and Biconditionals

834 APPENDIX B Logic

Table B.6 Implication

p q p S q

T T T
T F F
F T T
F F T

The only case in which Betty breaks her promise is when she gets her raise and fails to 
take you to dinner, case (2). If she does not get the raise, she can either take you to din-
ner or not without breaking her promise. The definition of implication is summarized in 
Table B.6. Observe that the only case for which the implication is false is when p is true 
and q is false.

An implication may be worded in several equivalent ways, as follows:

 1. If the sun shines, then the swimming pool is open. (If p, then q.)
 2. If the sun shines, the swimming pool is open. (If p, q.)
 3. The swimming pool is open if the sun shines. (q if p.)
 4. The sun shines implies the swimming pool is open. (p implies q.)
 5. The sun is shining only if the pool is open. (p only if q.)
 6. The sun’s shining is a sufficient condition for the swimming pool to be open. (p is 

a sufficient condition for q.)
 7. The swimming pool’s being open is a necessary condition for the sun to be shining. 

(q is a necessary condition for p.)

Any implication p S q has three related implication statements, as follows.

Statement: If p, then q. p S q
Converse: If q, then p. q S p
Inverse: If not p, then not q. ∼p S ∼q
Contrapositive: If not q, then not p. ∼q S ∼p
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Connecting a statement and its converse with the connective and gives 
1p S q2 ¿ 1q S p2. This compound statement can be written as p 4 q and usually is 
read “p if and only if q.” The statement “p if and only if q” is a biconditional. A truth 
table for p 4 q is given in Table B.8. Observe that p 4 q is true if and only if both 
statements are true or both are false.

Converse, Inverse, Contrapositive
Write the converse, the inverse, and the contrapositive for each of the following  
statements.

(a) If 2x = 6, then x = 3.

(b) If I am in San Francisco, then I am in California.
SOLUTION 

(a) Converse: If x = 3, then 2x = 6.
 Inverse: If 2x ≠ 6, then x ≠ 3.
 Contrapositive: If x ≠ 3, then 2x ≠ 6.

(b) Converse: If I am in California, then I am in San Francisco.
 Inverse: If I am not in San Francisco, then I am not in California.
 Contrapositive: If I am not in California, then I am not in San Francisco.

Now try Exercise 3, parts (a) and (b).

EXAMPLE 1 

Table B.7 shows that an implication and its converse do not always have the same truth 
value. However, an implication and its contrapositive always have the same truth value. 
Also, the converse and the inverse of a conditional statement are logically equivalent.

Table B.7 Converse, Inverse, Contrapositive

 
p

 
q

 
∼p

 
∼q

Implication 
p S q

Converse 
q S p

Inverse 
∼p S ∼q

Contrapositive 
∼q S ∼p

T T F F T T T T
T F F T F T T F
F T T F T F F T
F F T T T T T T

› ›

››

Table B.8 Biconditional

 
 
p

 
 
q

 
 

p S q

 
 

q S p

Biconditional 
1p S q2 ¿ 1q S p2 or 

p 4 q

T T T T T
T F F T F
F T T F F
F F T T T
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Now consider the following statement:

It is raining or it is not raining.

This statement, which can be modeled as p ¡ 1∼p2, is always true, as shown in 
Table B.9. A statement that is always true is called a tautology. One way to make a 
tautology is to take two logically equivalent statements such as p S q and ∼q S ∼p 
(from Table B.7) and form them into a biconditional as follows:

p S q 4 1∼q S ∼p2
Because p S q and ∼q S ∼p have the same truth values, 1p S q24 1∼q S ∼p2 is a 
tautology.

Valid Reasoning
In problem solving, the reasoning used is valid reasoning if the conclusion follows 
unavoidably from the hypotheses. Consider the following example.

 Hypotheses: All roses are red.
  This flower is a rose.

 Conclusion: Therefore, this flower is red.

The Venn diagrams in Figure B.2 illustrate the two hypotheses. The statement “All 
roses are red” can be written as the implication “If a flower is a rose, then it is red” 
(Figure B.2a).

Biconditionals
Given the following statements, classify each of the biconditionals as true or false.

p: 2 = 2 r: 2 = 1

q: 2 ≠ 1 s: 2 + 3 = 1 + 3

(a) p 4 q (b) p 4 r

(b) s 4 q (d) r 4 s
SOLUTION 

(a) p S q is true and q S p is true, so p 4 q is true.

(b) p S r is false and r S p is true, so p 4 r is false.

(c) s S q is true and q S s is false, so s 4 q is false.

(d) r S s is true and s S r is true, so r 4 s is true.
Now try Exercise 5, parts (a) and (f).

EXAMPLE 2 

Table B.9 A Tautology

p ∼p p ¡ 1∼p2
T F T
F T T

Red Objects Roses

Roses
This

Flower

U U

 (a) (b)

Figure B.2 (a) All roses are red. (b) This flower is a rose.

836 APPENDIX B Logic
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The statement “This flower is a rose” implies that this flower must belong to the circle 
containing roses, as illustrated in Figure B.2b. This flower also must belong to the cir-
cle containing red objects. Thus the reasoning is valid because it is impossible to draw a 
picture satisfying both hypotheses and contradicting the conclusion.

Consider the following argument.

 Hypotheses: All elementary school teachers are mathematically literate.
  Some mathematically literate people are not children.

 Conclusion: Therefore, no elementary school teacher is a child.

Let E be the set of elementary school teachers, M be the set of mathematically literate 
people, and C be the set of children. Then the statement “All elementary school teach-
ers are mathematically literate” can be illustrated as in Figure B.3a. The statement 
“Some mathematically literate people are not children” can be pictured in several ways. 
Three of these are illustrated in Figure B.3b–d.

E
M

C
E

M

C
E

M
C

E
M

 (a) (b) (c) (d)

Figure B.3 (a) All elementary school teachers are mathematically literate. (b)–(d) Some  
mathematically literate people are not children.

According to Figure B.3d, it is possible that some elementary school teachers are chil-
dren, and yet the given statements are satisfied. Therefore, the conclusion that “No ele-
mentary school teacher is a child” does not follow from the given hypotheses. Hence, 
the reasoning is not valid.

If a single picture can be drawn to satisfy the hypotheses of an argument and contradict 
the conclusion, the argument is not valid. However, to demonstrate that an argument is 
valid, all possible pictures must be considered to prove that there are no contradictions. 
There must be no way to satisfy the hypotheses and contradict the conclusion if the 
argument is valid.

Argument Validity
Determine whether the following argument is valid.

 Hypotheses: In Washington, DC, all senators wear power ties.
  No one in Washington, DC, over 6 ft tall wears a power tie.

 Conclusion: Persons over 6 ft tall are not senators in Washington, DC.

SOLUTION

If S represents the set of senators and P represents the set of people who wear power 
ties, the first hypothesis is illustrated in Figure B.4a. If T represents the set of people 
in Washington, DC, who are over 6 ft tall, the second hypothesis is illustrated in  
Figure B.4b. Because people over 6 ft tall are outside the circle representing power 
tie wearers, and senators are inside the circle P, the conclusion is valid and no person 
over 6 ft tall can be a senator in Washington, DC.

Now try Exercise 14(a).

EXAMPLE 3 

S
P

T
S

P

 (a) (b)

Figure B.4 (a) In Washington, DC,  
all senators wear power ties. (b) No one 
in Washington, DC, over 6 ft tall wears a 
power tie.
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A different method for determining whether an argument is valid uses direct reasoning 
and a form of argument called the Law of Detachment (or Modus Ponens). For exam-
ple, consider the following true statements:

 If the sun is shining, then we shall take a trip.

 The sun is shining.

Using these two statements, we can conclude that we shall take a trip. In general, the 
Law of Detachment is stated as follows:

  If a statement in the form “if p, then q” is true, and p is true, then q must 
also be true.

The Law of Detachment is sometimes described schematically as follows, where all 
statements above the horizontal line are true and the statement below the horizontal line 
is the conclusion.

p S q
p

q

The Law of Detachment follows from the truth table for p S q given in Table B.6. The 
only case in which both p and p S q are true is when q is true (line 1 in the table).

838 APPENDIX B Logic

Applications of the Law of Detachment
Determine whether each of the following arguments is valid.

 Hypotheses: If you eat spinach, then you will be strong.
  You eat spinach.

 Conclusion: Therefore, you will be strong.

 Hypotheses: If Claude goes skiing, he will break his leg.
  If Claude breaks his leg, he cannot enter the dance contest.
  Claude goes skiing.

 Conclusion: Therefore, Claude cannot enter the dance contest.

SOLUTION 

(a) Using the Law of Detachment, we see that the conclusion is valid.

(b) Using the Law of Detachment twice, we see that the conclusion is valid.
Now try Exercise 14(d).

EXAMPLE 4 

A different type of reasoning, indirect reasoning, uses a form of argument called 
Modus Tollens. For example, consider the following true statements:

If Chicken Little had been hit by a jumping frog, he would have thought Earth was rising.

Chicken Little did not think Earth was rising.

What is the conclusion? The conclusion is that Chicken Little did not get hit by a jump-
ing frog. This leads us to the general form of Modus Tollens:

If we have a conditional accepted as true, and we know the conclusion is false, then the 
hypothesis must be false.

Modus Tollens is sometimes schematically described as follows:

p S q
∼q

∼p

The validity of Modus Tollens also follows from the truth table for p S q given in 
Table B.6. The only case in which both p S q is true and q is false is when p is false 
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(line 4 in the table). The validity of Modus Tollens also can be established from the fact 
that an implication and its contrapositive are equivalent.

Applications of Modus Tollens
Determine conclusions for each of the following sets of true statements:

(a) If an old woman lives in a shoe, then she does not know what to do.
 Mrs. Pumpkin Eater, an old woman, knows what to do.

(b) If Jack is nimble, he will not get burned. Jack was burned.

SOLUTION 

(a) Mrs. Pumpkin Eater does not live in a shoe.

(b) Jack was not nimble.
Now try Exercise 13(a).

EXAMPLE 5 

People often make invalid conclusions based on advertising or other information. Con-
sider, for example, the statement “Healthy people eat Super-Bran cereal.” Are the fol-
lowing conclusions valid?

If a person eats Super-Bran cereal, then the person is healthy.
If a person is not healthy, the person does not eat Super-Bran cereal.

If the original statement is denoted by p S q, where p is “a person is healthy” and q is 
“a person eats Super-Bran cereal,” then the first conclusion is the converse of p S q—
that is, q S p—and the second conclusion is the inverse of p S q—that is, ∼p S ∼q. 
Table B.7 points out that neither the converse nor the inverse is logically equivalent to 
the original statement, and consequently the conclusions are not necessarily true.

The final form of argument to be considered here involves the Chain Rule. Consider 
the following statements:

If my wife works, I will retire early.
If I retire early, I will become lazy.

What is the conclusion? The conclusion is that if my wife works, I will become lazy. In 
general, the Chain Rule can be stated as follows:

If “if p, then q,” and “if q, then r” are true, then “if p, then r” is true.

The Chain Rule is sometimes schematically described as follows:

p S q
q S r
p S r

Notice that the Chain Rule states that implication is a transitive relation.

Applications of the Chain Rule
Determine conclusions for each of the following sets of true statements:

(a) If Alice follows the White Rabbit, she falls into a hole. If she falls into a hole, 
she goes to a tea party.

(b) If Chicken Little is hit by an acorn, we think the sky is falling. If we think the 
sky is falling, we will go to a fallout shelter. If we go to a fallout shelter, we will 
stay there a month.

SOLUTION 

(a) If Alice follows the White Rabbit, she goes to a tea party.

(b) If Chicken Little is hit by an acorn, we will stay in a fallout shelter for a month.
Now try Exercise 13(c).

EXAMPLE 6 

Remark
Note that in Example 6, the Chain Rule can be 
extended to contain several implications.
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APPENDIX B.2 Exercises

(c) 31p S q2 ¿ ∼q4 S ∼p Modus Tollens

(d) 31p S q2 ¿ 1q S r24 S 1p S r2 Chain Rule

 11. (a)  Suppose that p S q, q S r, and r S s are all true, but s is 
false. What can you conclude about the truth value of p?

(b) Suppose that 1p ¿ q2S r is true, r is false, and q is true. 
What can you conclude about the truth value of p?

(c) Writing to Learn Suppose that p S q is true and  
q S p is false. Can q be true? Why or why not?

 12. Writing to Learn Translate the following statements into 
symbolic form. Give the meanings of the symbols that you use.

(a) If Mary’s little lamb follows her to school, then its appear-
ance there will break the rules and Mary will be sent home.

(b) If it is not the case that Jack is nimble and quick, then Jack 
will not make it over the candlestick.

(c) If the apple had not hit Isaac Newton on the head, then the 
laws of gravity would not have been discovered.

 13. Writing to Learn For each of the following, form a conclu-
sion that follows logically from the given statements:

(a) All college students are poor.
 Helen is a college student.

(b) Some freshmen like mathematics.
 All people who like mathematics are intelligent.

(c) If I study for the final, then I will pass the final.
 If I pass the final, then I will pass the course.
 If I pass the course, then I will look for a teaching job.

(d) Every equilateral triangle is isosceles.
 There exist triangles that are equilateral.

 14. Investigate the validity of each of the following arguments:

(a) All women are mortal.
 Hypatia was a woman.
 Therefore, Hypatia was mortal.

(b) All squares are quadrilaterals.
 All quadrilaterals are polygons.
 Therefore, all squares are polygons.

(c) All teachers are intelligent.
 Some teachers are rich.
 Therefore, some intelligent people are rich.

(d) If a student is a freshman, then she takes mathematics.
 Jane is a sophomore.
 Therefore, Jane does not take mathematics.

 15. Writing to Learn Write the following in if-then form:

(a) Every figure that is a square is a rectangle.

(b) All integers are rational numbers.

(c) Figures with exactly three sides may be triangles.

(d) It rains only if it is cloudy.

 1. Write each of the following in symbolic form if p is the state-
ment “It is raining” and q is the statement “The grass is wet.”

(a) If it is raining, then the grass is wet.

(b) If it is not raining, then the grass is wet.

(c) If it is raining, then the grass is not wet.

(d) The grass is wet if it is raining.

(e) The grass is not wet implies that it is not raining.

(f) The grass is wet if, and only if, it is raining.

 2. Construct a truth table for each of the following:

(a) p S 1p ¡ q2 (b) 1p ¿ q2S q

(c) p 4 ∼1∼p2 (d) ∼1p S q2
 3. Writing to Learn For each of the following implications, 

state the converse, inverse, and contrapositive.

(a) If you eat Meaties, then you are good in sports.

(b) If you do not like this book, then you do not like  
mathematics.

(c) If you do not use Ultra Brush toothpaste, then you have 
cavities.

(d) If you are good at logic, then your grades are high.

 4. Can an implication and its converse both be false? Explain 
your answer.

 5. If p is true and q is false, find the truth values for each of the 
following:

(a) ∼p S ∼q  (b) ∼1 p S q2
(c) 1 p ¡ q2S 1 p ¿ q2  (d) p S ∼p

(e) 1 p ¡ ∼p2S p  (f) 1 p ¡ q24 1 p ¿ q2
 6. If p is false and q is false, find the truth values for each of the 

statements in Exercise 5.

 7. Iris makes the true statement “If it rains, then I am going to the 
movies.” Does it follow logically that if it does not rain, then 
Iris does not go to the movies?

 8. Consider the statement “If every digit of a number is 6, then 
the number is divisible by 3.” Determine whether each of the 
following is logically equivalent to the statement.

(a) If every digit of a number is not 6, then the number is not 
divisible by 3.

(b) If a number is not divisible by 3, then some digit of the 
number is not 6.

(c) If a number is divisible by 3, then every digit of the  
number is 6.

 9. Write a statement logically equivalent to the statement “If a 
number is a multiple of 8, then it is a multiple of 4.”

 10. Use truth tables to prove that the following are tautologies:

(a) 1p S q2S 31p ¿ r2S q4  Law of Added Hypothesis

(b) 31p S q2 ¿ p4 S q Law of Detachment

840 APPENDIX B Logic

Z01_DEMA8962_10_GE_APP.indd   840 10/06/2022   19:58



 APPENDIX C.1 Formulas from Algebra 841

Quadratic Formula

If a ≠ 0, the solutions of the equation ax2 + bx + c = 0 are 
given by

x =
-b ± 2b2 - 4ac

2a
.

Logarithms

If 0 6 b ≠ 1, 0 6 a ≠ 1, and x, R, S 7 0, then

y = logb x if and only if by = x

logb 1 = 0 logb b = 1

logb by = y blogbx = x

logb RS = logb R + logb S logb 
R
S

= logb R - logb S

logb Rc = c logb R logb x =
loga x

loga b

Determinants

` a b
c d

` = ad - bc

Arithmetic Sequences and Series

an = a1 + 1n - 12d
Sn = naa1 + an

2
b  or Sn =

n
2

 32a1 + 1n - 12d4

Geometric Sequences and Series

an = a1
# rn-1

Sn =
a111 - rn2

1 - r
 1r ≠ 12

S =
a1

1 - r
 1 0 r 0 6 12 Infinite Geometric Series

Factorial

n! = n # 1n - 12 # 1n - 2) #g# 3 # 2 # 1

n # 1n - 12! = n! if n = 1, 2, 3,c.
0! = 1

Binomial Coefficient

an
r
b =

n!
r!1n - r2! 1integers n and r, n Ú r Ú 02

Binomial Theorem

If n is a positive integer, then

1a + b2n = an
0
b  an + an

1
b  an-1 b + g+ an

r
b  an- rbr + g+ an

n
b  bn.

C Key Formulas

C.1 Formulas from Algebra
Exponents

If all bases are nonzero, then

umun = um+n 
um

un = um-n

u0 = 1 u-n =
1
un

1uv2m = umvm 1um2n = umn

au
v
b

m

=
um

vm

Radicals and Rational Exponents

If all roots are real numbers, then2n uv = 2n u # 2n v An u
v

=
2n u2n v

 1v ≠ 023m 2n u =
mn2u 12n u2n = u2n um = 12n u2m 2n un = e 0 u 0  n even

u  n odd

u1>n = 2n u um>n = 1u1>n2m = 12n u2m
um>n = 1um21>n = 2n um

Special Products

1u + v21u - v2 = u2 - v2

1u + v22 = u2 + 2uv + v2

1u - v22 = u2 - 2uv + v2

1u + v23 = u3 + 3u2v + 3uv2 + v3

1u - v23 = u3 - 3u2v + 3uv2 - v3

Factoring Polynomials

u2 - v2 = 1u + v21u - v2
u2 + 2uv + v2 = 1u + v22
u2 - 2uv + v2 = 1u - v22
u3 + v3 = 1u + v21u2 - uv + v22
u3 - v3 = 1u - v21u2 + uv + v22
Inequalities

If u 6 v and v 6 w, then u 6 w.

If u 6 v, then u + w 6 v + w.

If u 6 v and c 7 0, then uc 6 vc.

If u 6 v and c 6 0, then uc 7 vc.

If c 7 0, 0 u 0 6 c is equivalent to -c 6 u 6 c.

If c 7 0, 0 u 0 7 c is equivalent to u 6 -c or u 7 c.
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C.2 Formulas from Geometry
Triangle

h = a sin u

Area =
1
2

 bh 

ac
h

b
u

Trapezoid

Area =
h
2

 1a + b2 

a

h

b

Circle

Area = pr2

Circumference = 2pr 

r

Sector of Circle

Area =
ur2

2
 1u in radians2

s = ru 1u in radians2 
r

s

u

Right Circular Cone

Volume =
pr2h

3

Lateral surface area = pr2r2 + h2 

r

h

Right Circular Cylinder

Volume = pr2h

Lateral surface area = 2prh 

r

h

Right Triangle

Pythagorean Theorem:

c2 = a2 + b2 

a
c

b

Parallelogram

Area = bh h

b

Circular Ring (Annulus)

Area = p1R2 - r22 

R

r

Ellipse

Area = pab  a

b

Cone

Volume =
Bh
3

 1B = Area of base2 
B

h

Sphere

Volume =
4
3

 pr3

Surface area = 4pr2 

r

C.3 Formulas from Trigonometry

Angular Measure

p radians = 180°

So, 1 radian =
180
p

 degrees,

and 1 degree =
p

180
 radians.

Reciprocal Identities

sin x =
1

csc x
 csc x =

1
sin x

cos x =
1

sec x
 sec x =

1
cos x

tan x =
1

cot x
 cot x =

1
tan x

Quotient Identities

tan x =
sin x
cos x

 cot x =
cos x
sin x

Pythagorean Identities

sin2 x + cos2 x = 1

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x

Odd-Even Identities

sin1-x2 = -sin x csc1-x2 = -csc x

cos1-x2 = cos x sec1-x2 = sec x

tan1-x2 = - tan x cot1-x2 = -cot x
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Sum and Difference Identities

sin1u + v2 = sin u cos v + cos u sin v

sin1u - v2 = sin u cos v - cos u sin v

cos1u + v2 = cos u cos v - sin u sin v

cos1u - v2 = cos u cos v + sin u sin v

tan1u + v2 =
tan u + tan v

1 - tan u tan v

tan1u - v2 =
tan u - tan v

1 + tan u tan v

Cofunction Identities

cosap
2

- ub = sin u

sinap
2

- ub = cos u

tanap
2

- ub = cot u

cotap
2

- ub = tan u

secap
2

- ub = csc u

cscap
2

- ub = sec u

Double-Angle Identities

 sin 2u = 2 sin u cos u
 cos 2u = cos2 u - sin2 u

 = 2 cos2 u - 1
 = 1 - 2 sin2 u

 tan 2u =
2 tan u

1 - tan2 u

Power-Reducing Identities

sin2 u =
1 - cos 2u

2

cos2 u =
1 + cos 2u

2

tan2 u =
1 - cos 2u
1 + cos 2u

Half-Angle Identities

 sin 
u
2

= ±B1 - cos u
2

 cos 
u
2

= ±B1 + cos u
2

 tan 
u
2

= ±B1 - cos u
1 + cos u

 =
1 - cos u

sin u
=

sin u
1 + cos u

Triangles

C

A B

a

c

b

Law of Sines:
sin A

a
=

sin B
b

=
sin C

c

Law of Cosines:

a2 = b2 + c2 - 2bc cos A

b2 = a2 + c2 - 2ac cos B

c2 = a2 + b2 - 2ab cos C

Area:

 Area =
1
2

 bc sin A

 =
1
2

 ac sin B =
1
2

 ab sin C

 Area = 2s1s - a21s - b21s - c2,

where s =
1
2

 1a + b + c2.

Trigonometric Form of a Complex Number

 z = a + bi = 1r cos u2 + 1r sin u2i
 = r1cos u + i sin u2

De Moivre’s Theorem

 zn = 3r1cos u + i sin u24n

 = rn1cos nu + i sin nu2
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y

x

p

2
p

3
p

4
p

6

6
11

3
2p

4
3p

6
5p

6
7p

4
5p

3
4p

2
3p 3

5p 4
7p

p

p 2p

30°

45°
60°

90°

120°
135°

150°

180°

210°

225°

240°

270°

300°

315°

330°

360°

00°

(0, 1)

(0, –1)

(1, 0)(–1, 0)

2
, 3 b1

2
a–

2
, – 3 b1

2
a–

2
, – 3 b1

2
a

2
, 3 b1

2
a

2
,3 b1

2
a

2
,3 b1

2
a–

2
, –3 b1

2
a–

2
, –3 b1

2
a

2
,2

2
2 ba

2
,2

2
2 ba–

2
, –2

2
2 ba–

2
, –2

2
2 ba
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C.4 Formulas from Analytic Geometry

Basic Formulas

Distance d between points P1x1, y12 and Q1x2, y22:
d = 21x1 - x222 + 1y1 - y222

Midpoint: ax1 + x2

2
 , 

y1 + y2

2
b

Slope of a line: m =
y2 - y1

x2 - x1

Condition for parallel lines: m1 = m2

Condition for perpendicular lines: m2 =
-1
m1

Equations of a Line

The point-slope form, slope m and through 1x1, y12:
y - y1 = m1x - x12

The slope-intercept form, slope m and y-intercept b:

y = mx + b

Equation of a Circle

The circle with center 1h, k2 and radius r:

1x - h22 + 1y - k22 = r2

Parabolas with Vertex (h, k)

Standard  
equation 

1x - h22 = 4p1y - k2
 
1y - k22 = 4p1x - h2

Opens Upward or downward To the right or to the left

Focus 1h, k + p2 1h + p, k2
Directrix y = k - p x = h - p

Axis x = h y = k

Ellipses with Center (h, k) and a + b + 0

Standard   
equation 

1x - h22
a2 +

1y - k22
b2 = 1 

1y - k22
a2 +

1x - h22
b2 = 1

Focal axis y = k x = h

Foci 1h ± c, k2 1h, k ± c2
Vertices 1h ± a, k2 1h, k ± a2

Pythagorean a2 = b2 + c2 a2 = b2 + c2 
relation

y

x

(h, k + p)

(h, k)

y

x

(h + p, k)

(h, k)

y

x

(h – a, k)

(h – c, k)

(h, k)

(h + c, k)

(h + a, k)

y

x

(h, k)

(h, k + a)

(h, k – c)

(h, k + c)

(h, k – a)

Hyperbolas with Center 1h, k2
Standard  
equation 

1x - h22
a2 -

1y - k22
b2 = 1   

1y - k22
a2 -

1x - h22
b2 = 1

Focal axis y = k x = h

Foci 1h ± c, k2 1h, k ± c2
Vertices 1h ± a, k2 1h, k ± a2
Pythagorean c2 = a2 + b2 c2 = a2 + b2  
relation

Asymptotes y = ±
b
a

 1x - h2 + k y = ±
a
b

 1x - h2 + k

y

x

(h + c, k)
(h + a, k)(h, k)

y = k

(h – c, k)
(h – a, k)

(x – h) + ky = b
a

y = –   (x – h) + kb
a

y

x

(h, k)

x = h

(x – h) + ky = a
b

(x – h) + ky = – a
b

(h, k + c)
(h, k + a)
(h, k – a)
(h, k – c)
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C.5 Gallery of Basic Functions

Identity Function

ƒ1x2 = x

Domain = 1-∞, ∞2
Range = 1-∞, ∞2

[24.7, 4.7] by [23.1, 3.1]

Squaring Function

ƒ1x2 = x2

Domain = 1-∞, ∞2
Range = 30, ∞2

[24.7, 4.7] by [21, 5]

Cubing Function

ƒ1x2 = x3

Domain = 1-∞, ∞2
Range = 1-∞, ∞2

[24.7, 4.7] by [23.1, 3.1]

[24.7, 4.7] by [23.1, 3.1]

Reciprocal Function

ƒ1x2 =
1
x

Domain = 1-∞, 02 ∪ 10, ∞2
Range = 1-∞, 0) ∪ 10, ∞2

Absolute Value Function

ƒ1x2 = 0 x 0 = abs1x2
Domain = 1-∞, ∞2

Range = 30, ∞2

[26, 6] by [21, 7]

Square Root Function

ƒ1x2 = 2x

Domain = 30, ∞2
Range = 30, ∞2

[24.7, 4.7] by [23.1, 3.1]

Exponential Function

ƒ1x2 = ex

Domain = 1-∞, ∞2
Range = 10, ∞2

[24, 4] by [21, 5]

Logistic Function

ƒ1x2 =
1

1 + e-x

Domain = 1-∞, ∞2
Range = 10, 12

[24.7, 4.7] by [20.5, 1.5]

Natural Logarithmic Function

ƒ1x2 = ln x

Domain = 10, ∞2
Range = 1-∞, ∞2

[22, 6] by [23, 3]

Greatest Integer Function

ƒ1x2 = int(x2
Domain = 1-∞, ∞2
Range = all integers

[26, 6] by [24, 4]

Sine Function

ƒ1x2 = sin(x2
Domain = 1-∞, ∞2

Range = 3-1, 14

[22p, 2p] by [24, 4]

Cosine Function

ƒ1x2 = cos(x2
Domain = 1-∞, ∞2

Range = 3-1, 14

[22p, 2p] by [24, 4]
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Glossary

847

Absolute extremum An absolute maximum or an absolute  
minimum, pp. 111–112.

Absolute maximum A value ƒ1c2 is an absolute (or global) maximum  
value of ƒ if ƒ1c2 Ú ƒ1x2 for all x in the domain of ƒ, p. 112.

Absolute minimum A value ƒ1c2 is an absolute (or global) minimum 
value of ƒ if ƒ1c2 … ƒ1x2 for all x in the domain of ƒ, p. 112.

Absolute value function The function ƒ1x2 = abs1x2 = 0 x 0 , p. 122.

Absolute value of a complex number The absolute value  
(or modulus) of the complex number z = a + bi is 2a2 + b2, 
which is the length of the segment from the origin to z in the  
complex plane, p. 520.

Absolute value of a real number Denoted by 0 a 0 , is the number  
a if a Ú 0 or the positive number -a if a 6 0, p. 37.

Absolute value of a vector See Magnitude of a vector.

Acceleration due to gravity g ≈ 32 ft>sec2 ≈ 9.8 m>sec2, p. 185.

Acute angle An angle whose measure is between 0° and 90°,  
pp. 346–354.

Acute triangle A triangle in which all angles measure less than  
90°, p. 451.

Addition principle of probability For events A and B, 
P1A or B2 = P1A2 + P1B2 - P1A and B2. If A and B are  
mutually exclusive, P1A or B2 = P1A2 + P1B2, p. 699.

Addition property of equality If u = v and w = z, then 
u + w = v + z, p. 45.

Addition property of inequality If u 6 v, then u + w 6 v + w, p. 47.

Additive identity for the complex numbers 0 + 0i is the complex 
number zero, p. 73.

Additive inverse of a real number The opposite of b, or -b, p. 30.

Additive inverse of a complex number The opposite of a + bi, or 
-a - bi, p. 73.

Algebraic expression A combination of variables and constants 
involving addition, subtraction, multiplication, division, powers, 
and roots, p. 29.

Algebraic model An equation that relates variable quantities associ-
ated with phenomena being studied, p. 87.

Ambiguous case The case in which two sides and a nonincluded 
angle of a triangle are given, pp. 452–454.

Amplitude See Sinusoid.

Angle Union of two rays with a common endpoint (the vertex). The 
beginning ray (the initial side) can be rotated about its endpoint to 
obtain the final position (the terminal side), p. 356.

Angle between vectors The angle formed by two nonzero vectors 
sharing a common initial point, p. 484.

Angle of depression The acute angle formed by the line of sight 
(downward) and the horizontal, p. 405.

Angle of elevation The acute angle formed by the line of sight 
(upward) and the horizontal, p. 405.

Angular speed Speed of rotation, typically measured in radians per 
unit time or revolutions per unit time, p. 340.

Annual percentage rate (APR) The annual interest rate expressed 
as a percent, p. 328.

Annual percentage yield (APY) The rate that would give the same 
return if interest were computed just once a year, p. 325.

Annuity A sequence of equal periodic payments, p. 326.

Aphelion The farthest point from the Sun in an object’s orbit, p. 603.

Arc length formula The length of an arc in a circle of radius r inter-
cepted by a central angle of u radians is s = r u, pp. 339–340.

Arccosecant function See Inverse cosecant function.

Arccosine function See Inverse cosine function.

Arccotangent function See Inverse cotangent function.

Arcsecant function See Inverse secant function.

Arcsine function See Inverse sine function.

Arctangent function See Inverse tangent function.

Argument of a complex number The argument of a + bi is the 
direction angle of the vector 8a, b9, p. 520.

Arithmetic sequence A sequence 5an6  in which an = an-1 + d 
for every integer n Ú 2. The number a = a1 is the first term, and 
the number d is the common difference, p. 668.

Arrow The notation PQ 
>
 denoting the directed line segment with ini-

tial point P and terminal point Q, p. 472.

Association A relationship between two variables in which the dis-
tribution of one varies across values of the other, pp. 179, 709.

Associative properties a + 1b + c2 = 1a + b2 + c, 
a1bc2 = 1ab2c, pp. 30, 73, 552, 678.

Augmented matrix A matrix that represents a system of equations, 
p. 561.

Average rate of change of ƒ over [a, b] The number  
ƒ1b2 - ƒ1a2

b - a
, provided a ≠ b, p. 178.

Average velocity The change in position divided by the change in 
time, p. 770.

Axis of symmetry See Line of symmetry.

Back-to-back stemplot A stemplot with leaves on either side used 
to compare two distributions, p. 711.

Bar chart A rectangular graphical display of categorical data, p. 708.

Base See Exponential function, Logarithmic function, nth  
power of a.

Basic logistic function The function ƒ1x2 =
1

1 + e-x , pp. 276–277.
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848 GLOSSARY

Bearing Measure of the clockwise angle that the line of travel 
makes with due north, p. 338.

Bias A flaw in the design of a sampling process that systematically 
causes the sample to differ from the population with respect to the 
statistic being measured. Undercoverage bias results when the 
sample systematically excludes one or more segments of the popu-
lation. Voluntary response bias results when a sample consists 
only of those who volunteer their responses. Response bias results 
when the sampling design intentionally or unintentionally influ-
ences the responses, pp. 751–752.

Biconditional (statement) An if-and-only-if statement, pp. 835–836.

Binomial A polynomial with exactly two terms, p. 816.

Binomial coefficient A number in Pascal’s triangle: 

nCr = an
r
2 =

n!

r!1n - r2! , p. 660.

Binomial probability For a random event with two possible out-
comes, the probability of one outcome occurring k times in n inde-

pendent trials is P1E2 =
n!

k!1n - k2! p
k11 - p2n-k, where p is the 

probability of the outcome occurring once, pp. 736–739.

Binomial theorem A theorem that gives an expansion formula for 
1a + b2n, p. 660.

Blind experiment An experiment in which subjects do not know 
which treatment they have been given, p. 753.

Blocking A feature of some experimental designs that controls for 
potential differences between subject groups by applying treat-
ments randomly within homogeneous blocks of subjects, p. 753.

Boundary (of a region) The set of points on the “edge” of a  
region, p. 573.

Bounded A function ƒ is bounded if there are numbers b and B such 
that b … ƒ1x2 … B for all x in the domain of ƒ, p. 111.

Bounded above A function ƒ is bounded above if there is a number 
B such that ƒ1x2 … B for all x in the domain of ƒ, p. 111.

Bounded below A function ƒ is bounded below if there is a number 
b such that b … ƒ1x2 for all x in the domain of ƒ, p. 111.

Bounded interval An interval that has finite length (does not extend 
to ∞ or -∞), p. 28.

Boxplot (or box-and-whisker plot) A graph that displays a five-
number summary and identifies outliers, pp. 722–724.

Branches (of a hyperbola) The two separate curves that make up a 
hyperbola, p. 609.

Cardioid A limaçon whose polar equation is r = a ± a sin u, or 
r = a ± a cos u, where a 7 0, p. 514.

Cartesian coordinate system An association between the points in 
a plane and ordered pairs of real numbers; or an association 
between the points in three-dimensional space and ordered triples 
of real numbers, pp. 36, 637.

Categorical variable In Statistics, a variable (such as gender, hair 
color, or ZIP code) that identifies an individual as having a certain 
characteristic, p. 707.

Causation A relationship between two variables in which the values 
of the response variable are directly affected by the values of the 
explanatory variable, p. 180.

Census A survey or observational study that gathers data from an 
entire population, p. 751.

Center The central point of a geometric figure, pp. 39, 598, 609, 
640, 720.

Central angle An angle whose vertex is the center of a circle, p. 337.

Chain rule A rule of logic that states: An implication is a transitive 
relation, p. 839.

Characteristic polynomial of a square matrix A det1xIn - A2, 
where A is an n * n matrix, p. 558.

Chord of a conic A line segment with endpoints on the conic,  
pp. 590, 599, 610.

Circle A set of points in a plane that are equally distant from a fixed 
point called the center, p. 39.

Circle graph A circular graphical display of categorical data, p. 708.

Circular functions Trigonometric functions when applied to real 
numbers, p. 362.

Closed interval An interval that includes its endpoint(s), p. 28.

Coefficient The real number multiplied by the variable(s) in a poly-
nomial term, pp. 204, 816.

Coefficient matrix A matrix whose elements are the coefficients in 
a system of linear equations, p. 561.

Coefficient of determination The number r2 or R2 that measures 
how well a regression curve fits the data, p. 165.

Cofunction identity An identity that relates the sine, secant, or tan-
gent to the cosine, cosecant, or cotangent, respectively, p. 423.

Combination A collection of elements of a set, in which order is not 
important, p. 654.

Combinations of n objects taken r at a time There are 

nCr =
n!

r!1n - r2! such combinations, p. 654.

Combinatorics A branch of mathematics related to determining the 
number of elements of a set or the number of ways objects can be 
arranged or combined, pp. 650–659.

Common difference See Arithmetic sequence.

Common logarithm A logarithm with base 10, p. 293.

Common ratio See Geometric sequence.

Commutative properties a + b = b + a, ab = ba, pp. 30, 73, 552.

Complement of a set If x is an element of a set P, then x is not an 
element of the complement of P, p. 830.
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Complements or complementary angles Two angles of positive 
measure whose sum is 90°, p. 348.

Completing the square A method of adding a constant to an 
expression in order to form a perfect square, p. 65.

Complex conjugates Complex numbers a + bi and a - bi, p. 74.

Complex fraction See Compound fraction, p. 825.

Complex number An expression a + bi, where a (the real part) and 
b (the imaginary part) are real numbers, p. 72.

Complex plane A coordinate plane used to represent the set of com-
plex numbers. The x-axis of the complex plane is the real axis, and 
the y-axis is the imaginary axis, p. 519.

Component form of a vector If a vector’s representative in stan-
dard position has a terminal point 1a, b2 1or 1a, b, c22, then 8a, b9 
1or 8a, b, c92 is the component form of the vector, and a and b are 
the horizontal and vertical components of the vector (or a, b, and c 
are the x-, y-, and z-components of the vector), respectively, p. 472.

Components of a vector See Component form of a vector.

Composition of functions 1ƒ ∘ g21x2 = ƒ1g1x22, p. 131.

Compound fraction A fractional expression in which the numerator 
or denominator contains fractions, p. 825.

Compound interest Interest that becomes part of the investment,  
p. 322.

Compound statement A statement created by combining two or 
more statements using connectives such as and or or, p. 830.

Compounded annually See Compounded k times per year.

Compounded continuously Interest compounded using the formula 
A = Pert, p. 324.

Compounded k times per year Interest compounded using the for-

mula A = Pa1 +
r

k
b

kt

, where k = 1 is compounded annually, 

k = 4 is compounded quarterly, k = 12 is compounded monthly, 
etc., pp. 324–325.

Compounded monthly See Compounded k times per year.

Compounded quarterly See Compounded k times per year.

Conclusion The “then” portion of a conditional statement, p. 834.

Conditional probability The probability of an event B given that an 
event A has already occurred 1P1B 0A22, p. 700.

Conditional (statement) An if-then statement, p. 834.

Cone See Right circular cone.

Confounding variable A third variable that affects either of two 
variables being studied, making inferences about causation  
unreliable, p. 752.

Conic section (or conic) A curve obtained by intersecting a double-
napped right circular cone with a plane, pp. 587–588.

Conjugate axis of a hyperbola The line segment of length 2b that 
is perpendicular to the focal axis and has the center of the hyper-
bola as its midpoint, p. 610.

Conjunction A statement created by combining two statements 
using the connective and, p. 830.

Constant A letter or symbol that stands for a specific number, pp. 29, 109.

Constant function (on an interval) ƒ1x12 = ƒ1x22 for any x1 and 
x2 (in the interval), pp. 109, 178.

Constant of variation See Power function.

Constant term See Polynomial function, p. 179.

Constraints See Linear programming problem.

Continuous at x = a  A function f is continuous at x = a  
if lim

xSa
 ƒ1x2 = ƒ1a2, p. 107.

Continuous function A function that is continuous on its entire 
domain, p. 123.

Control The principle of experimental design that makes it possible 
to rule out other factors when making inferences about a particular 
explanatory variable, p. 753.

Convenience sample A sample that sacrifices randomness for  
convenience, p. 752.

Convergence of a sequence A sequence 5an6  converges to a if 
lim

nS∞
 an = a, p. 679.

Convergence of a series A series a∞
k=1

ak converges to a sum S if 

lim
nS∞

 a
n

k=1
ak = S, p. 678.

Conversion factor A ratio equal to 1, used for unit conversion, p. 162.

Coordinate(s) of a point The number associated with a point on a 
number line, the ordered pair associated with a point in the plane, 
or the ordered triple associated with a point in three-dimensional 
space, pp. 27, 36, 503, 637.

Coordinate plane See Cartesian coordinate system.

Correlation A measure of the strength and direction of a linear 
 association between two quantitative variables, pp. 165, 179–180 
748–750.

Cosecant function The function y = csc x, pp. 357, 381.

Cosine function The function y = cos x, pp. 122, 357, 368.

Cotangent function The function y = cot x, pp. 357, 379.

Coterminal angles Two angles having the same initial side and the 
same terminal side, p. 355.

Course See Bearing.

Cube root nth root, where n = 3 (see Principal nth root), p. 811.

Cubic A degree 3 polynomial function, p. 204.

Cycloid The graph of the parametric equations x = t - sin t, 
y = 1 - cos t, p. 500.
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Direct variation See Power function.

Directed angle See Polar coordinates.

Directed distance See Polar coordinates.

Directed line segment See Arrow.

Direction angle of a vector in the plane The angle that the vector 
makes with the positive x-axis, p. 503.

Direction vector for a line A vector in the direction of a line,  
pp. 476, 642.

Direction of an arrow in the plane The angle the arrow makes 
with the positive x-axis, p. 473.

Directrix of a parabola, ellipse, or hyperbola A line used to deter-
mine the conic, pp. 590, 591.

Discriminant For the equation ax2 + bx + c = 0, the expression 
b2 - 4ac; for the equation Ax2 + Bxy + Cy2 + Dx +  
Ey + F = 0, the expression B2 - 4AC, pp. 70, 74, 624.

Disjunction A statement created by combining two statements using 
the connective or, p. 830.

Distance (in a coordinate plane) The distance d1P, Q2 between 
P1x1, y12 and Q1x2, y22: d1P, Q2 = 21x1 - x222 + 1y1 - y222,  
p. 38.

Distance (in Cartesian space) The distance d1P, Q2 between 
P1x1, y1, z12 and Q1x2, y2, z22: 
d1P, Q2 = 21x1 - x222 + 1y1 - y222 + 1z1 - z222, p. 638.

Distance (on a number line) The distance between real numbers a 
and b: 0 a - b 0 , p. 37.

Distribution A variable’s data set considered as a whole, p. 707.

Distributive property a1b + c2 = ab + ac and related  
properties, pp. 30, 73, 552.

Divergence A sequence or series diverges if it does not converge, 
pp. 667, 678.

Division 
a

b
= aa1

b
b , b ≠ 0, p. 30.

Division algorithm for polynomials Given ƒ1x2 and divisor 
d1x2 ≠ 0, there are unique polynomials q1x2 (quotient) and r1x2 
(remainder) such that ƒ1x2 = d1x2q1x2 + r1x2 with either 
r1x2 = 0 or degree of r1x2 6 degree of d1x2, pp. 216–217.

Divisor of a polynomial See Division algorithm for polynomials.

DMS measure The measure of an angle in degrees, minutes, and 
seconds, pp. 337–338.

Domain of a function The set of all input values for a function,  
pp. 102–106, 236–237.

Domain of an expression The set of all real numbers for which an 
expression is defined, p. 823.

Domain of validity of an identity The set of values of the variable 
for which both sides of the identity are defined, p. 421.

Damping factor The factor Ae-at in an equation such as 
y = Ae-at cos bt, p. 390.

Data Facts collected for statistical purposes (singular form is 
datum), p. 86.

De Moivre’s Theorem  
1r1cos u + i sin u22n = rn1cos nu + i sin nu2, pp. 519–529.

Decreasing on an interval A function ƒ is decreasing on an inter-
val I if, for any two points in I, a positive change in x results in a 
negative change in ƒ1x2, p. 109.

Deductive reasoning The process of using general information to 
prove a specific hypothesis, p. 96.

Definite integral The definite integral of the function ƒ over 3a, b4  
is L

b

a
 ƒ1x2 dx = lim

nS∞
 a

n

i=1
 ƒ1xi2 ∆x, provided the limit  

exists, pp. 784–785, 801–802.

Degree Unit of measurement (represented by the symbol °) for 
angles or arcs, equal to 1>360 of a complete revolution, p. 337.

Degree of a polynomial (function) The largest exponent on the 
 variable in any of the terms of the polynomial (function), p. 176.

Demand curve p = g1x2, where x represents demand and p 
 represents price, p. 540.

Dependent variable Variable representing the range value  
(or output) of a function (usually y), p. 102.

Derivative of ƒ The function ƒ′ defined by 

ƒ′1x2 = lim
hS0

 
ƒ1x + h2 - ƒ1x2

h
 for all x’s for which the limit  

exists, p. 774.

Derivative of ƒ at x = a  ƒ′1a2 = lim
xSa

 
ƒ1x2 - ƒ1a2

x - a
 , provided the 

limit exists, p. 774.

Descriptive statistics The process of gathering and analyzing data, 
p. 720.

Determinant A number calculated using the minors of a square 
matrix, pp. 550–552.

Difference identity An identity involving a trigonometric function 
of u - v, pp. 438–444.

Difference of complex numbers 1a + bi2 - 1c + di2 =
1a - c2 + 1b - d2i, p. 72.

Difference of functions 1ƒ - g21x2 = ƒ1x2 - g1x2, p. 130.

Difference of two vectors 8u1, u29 - 8v1, v29 
= 8u1 - v1, u2 - v29 or 8u1, u2, u39 - 8v1, v2, v39 
= 8u1 - v1, u2 - v2, u3 - v39, p. 641.

Differentiable at x = a  ƒ′1a2 exists, p. 774.

Dihedral angle An angle formed by two intersecting planes, p. 463.

Direct reasoning Reasoning based on the Law of Detachment 
(Modus Ponens), p. 838.
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Dot product The sum found when the corresponding components of 
two vectors are multiplied and then added, p. 483.

Double-angle identity An identity involving a trigonometric func-
tion of 2u, p. 445.

Double-blind experiment A blind experiment in which the 
researcher gathering data from the subjects is not told which sub-
jects have received which treatment, p. 754.

Double inequality A statement that describes a bounded interval, 
such as 3 … x 6 5, pp. 28, 49.

Eccentricity A nonnegative number that specifies how off-center the 
focus of a conic is, pp. 603, 613.

Elementary row operations The following three row operations: 
Multiply all elements of a row by a nonzero constant; interchange 
two rows; and add a multiple of one row to another row, p. 561.

Elements of a matrix See Matrix element.

Elimination method A method of solving a system of linear  
equations, pp. 537–538.

Ellipse The set of all points in the plane such that the sum of the dis-
tances from a pair of fixed points (the foci) is a constant, p. 598.

Ellipsoid of revolution A surface generated by rotating an ellipse 
about one of its axes, p. 605.

Empty set A set with no elements, p. 695.

End behavior The behavior of a graph of a function as 0 x 0 S ∞,  
pp. 115–116, 206–208.

End behavior asymptote of a rational function A polynomial that 
the function approaches as 0 x 0 S ∞, pp. 239, 241.

Endpoint of an interval A real number that is a bounding value of 
the interval, p. 28.

Equal complex numbers Complex numbers whose real parts are 
equal and whose imaginary parts are equal, p. 72.

Equal matrices Matrices that have the same order and equal corre-
sponding elements, p. 545.

Equally likely outcomes Outcomes of a random phenomenon that 
have the same probability of occurring, p. 694.

Equation A statement of equality between two expressions, p. 45, 92.

Equilibrium point A point where the supply curve and demand 
curve intersect. The corresponding price is the equilibrium price,  
p. 540.

Equilibrium price See Equilibrium point.

Equivalent arrows Arrows that have the same magnitude and  
direction, p. 473.

Equivalent expressions Expressions with a common value 
throughout a common domain, p. 824.

Equivalent equations (inequalities) Equations (inequalities) that 
have the same solutions, p. 46.

Equivalent systems of equations Systems of equations that have 
the same solution, p. 559.

Equivalent vectors Vectors with the same magnitude and  
direction, p. 641.

Even function A function whose graph is symmetric about the 
y-axis 1ƒ1-x2 = ƒ1x2 for all x in the domain of ƒ2, p. 112.

Event A subset of a sample space, p. 694.

Existential quantifier A word or phrase, such as some or there is, 
that refers to a subset of a set that is cited in a statement, p. 829.

Expanded form of a series A series written explicitly as a sum of 
terms (not in summation notation), p. 30.

Expected value The mean, m, of a random variable X with probabil-
ity function P1X2, denoted E1X2, pp. 734–735.

Experiment A controlled study in which one or more treatments are 
imposed, p. 752.

Explanatory variable A variable that is associated with a response 
variable, p. 650.

Explicitly defined sequence A sequence in which the kth term is 
given as a function of k, p. 666.

Exponent See nth power of a, p. 31.

Exponential decay function Decay modeled by ƒ1x2 = a # bx, 
where a 7 0 with 0 6 b 6 1, p. 272.

Exponential form An equation written with exponents instead of 
logarithms, p. 292.

Exponential function A function of the form ƒ1x2 = a # bx, where 
a ≠ 0, b 7 0 and b ≠ 1, p. 270.

Exponential growth function Growth modeled by ƒ1x2 = a # bx, 
where a 7 0 and b 7 1, p. 272.

Exponential regression A procedure for fitting an exponential 
function to a set of data, p. 316.

Extracting square roots A method for solving equations in the 
form x2 = k, pp. 65, 67.

Extraneous solution Any solution of a resulting equation that is not 
a solution of the original equation, p. 247.

Extremum A maximum or minimum, pp. 111–112.

Factor (in algebra) A quantity being multiplied in a product, p. 220.

Factor (in Statistics) A variable that is controlled or manipulated in 
an experiment, p. 752.

Factor theorem x - c is a factor of a polynomial if and only if c is 
a zero of the polynomial, p. 218.

Factoring (a polynomial) Writing a polynomial as a product of two 
or more polynomial factors, pp. 817–819.

Feasible points Points that satisfy the constraints in a linear pro-
gramming problem, p. 576.

Feasible region Region of feasible points, p. 576
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Fibonacci numbers The terms of the Fibonacci sequence, p. 671.

Fibonacci sequence The sequence 1, 1, 2, 3, 5, 8, 13, . . . , p. 671.

Finite sequence A function whose domain is the first n positive 
integers for some fixed integer n, p. 666.

Finite series Sum of a finite number of terms, pp. 666, 675–676.

First-degree equation in x, y, and z An equation that can be writ-
ten in the form Ax + By + Cz + D = 0, p. 640.

First octant The points 1x, y, z2 in space with x 7 0, y 7 0, and 
z 7 0, p. 637.

First quartile See Quartile.

Fitting a line or curve to data Finding a line or curve that comes 
close to passing through all the points in a scatter plot, pp. 89, 163.

Five-number summary The minimum, first quartile, median, third 
quartile, and maximum of a data set, p. 721.

Focal axis The line through the focus (foci) and perpendicular to the 
directrix (directrices) of a conic, pp. 589, 598, 609, 628.

Focal length of a parabola The directed distance from the vertex 
to the focus, pp. 590–591.

Focal width of a parabola The length of the chord through the 
focus and perpendicular to the axis, pp. 590–591.

Focus, foci See Ellipse, Hyperbola, Parabola.

Fractional expression A quotient of two algebraic expressions, p. 823.

Frequency Reciprocal of the period of a sinusoid, pp. 370, 408, 712.

Frequency (in Statistics) The number of individuals or observa-
tions within a category or interval, p. 712.

Frequency distribution See Frequency table.

Frequency table (in Statistics) A table showing frequencies, p. 712.

Function A relation that associates each value in the domain with 
exactly one value in the range, pp. 102, 641.

Fundamental Theorem of Algebra A polynomial function of degree 
n 7 0 has n complex zeros (counting multiplicity), pp. 96, 228.

Future value of an annuity The total value of an annuity at some 
point in the future, pp. 326, 327.

Gaussian curve See Normal curve.

Gaussian elimination A method of solving a system of n linear 
equations in n unknowns, p. 559.

General form (of a line) Ax + By + C = 0, where A and B are 
not both zero, p. 54.

Geometric sequence A sequence 5an6  in which an = an-1
# r for 

every positive integer n Ú 2. The number a = a1 is the first term, 
and the nonzero number r is the common ratio, p. 669.

Geometric series A series whose terms form a geometric sequence, 
p. 669.

Graph of a function ƒ The set of all points in the coordinate plane 
corresponding to the pairs 1x, ƒ1x22 for x in the domain of ƒ, p. 103.

Graph of a polar equation The set of all points in the polar coordi-
nate system corresponding to the ordered pairs 1r, u2 that are solu-
tions of the polar equation, pp. 510–518, 629.

Graph of a relation The set of all points in the coordinate plane 
corresponding to the ordered pairs of the relation, p. 135.

Graph of an equation in x and y The set of all points in the coordi-
nate plane corresponding to the pairs 1x, y2 that are solutions of the 
equation, pp. 64–65, 91, 96.

Graph of an inequality in x and y The set of all points in the coor-
dinate plane corresponding to the solutions 1x, y2 of the inequality, 
pp. 573–574.

Graph of parametric equations The set of all points in the coordi-
nate plane corresponding to the ordered pairs determined by the 
parametric equations, p. 494.

Grapher or graphing utility Graphing calculator or a computer 
with graphing software, pp. 55, 575.

Graphical model A visual representation of a numerical or alge-
braic model, pp. 88–90.

Greatest integer function The function ƒ1x2 = int1x2, the greatest 
integer that is less than or equal to x, p. 122.

Half-angle identity Identity involving a trigonometric function of 
u>2, pp. 446–447.

Half-life The amount of time required for half of a radioactive sub-
stance to decay, p. 284.

Half-plane The graph of the linear inequality y Ú ax + b, 
y 7 ax + b, y … ax + b, or y 6 ax + b, p. 573.

Head minus tail (HMT) rule An arrow with initial point 1x1, y12  
and terminal point (x2, y2) represents the vector 8x2 - x1, y2 - y19,  
p. 473.

Heron’s Formula The area of △ ABC with semiperimeter s is given 
by 2s1s - a21s - b21s - c2, pp. 461–462, 661.

Higher-degree polynomial function A polynomial function whose 
degree is Ú 3, p. 204.

Histogram A graph that displays the distribution of a quantitative vari-
able using rectangular areas proportional to the frequencies, p. 712.

Horizontal asymptote The line y = b is a horizontal asymptote of 
the graph of a function ƒ if lim

xS-∞
 ƒ1x2 = b or lim

xS∞
 ƒ1x2 = b, p. 115.

Horizontal component See Component form of a vector.

Horizontal line A line of the form y = b, p. 54.

Horizontal line test A test for determining whether the inverse of a 
relation is a function, pp. 142, 292.

Horizontal shrink or stretch See Shrink, Stretch.

Horizontal translation A shift of a graph to the left or right, p. 148.
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Hyperbola A set of points in a plane, the absolute value of the dif-
ference of whose distances from two fixed points (the foci) is a 
constant, p. 609.

Hyperboloid of revolution A surface generated by rotating a hyper-
bola about one of its axes, p. 614.

Hypotenuse Side opposite the right angle in a right triangle, p. 347.

Hypothesis The “if” portion of a conditional statement, p. 834.

Identity An equation that is always true throughout its domain, p. 421.

Identity function The function ƒ1x2 = x, pp. 120, 190.

Identity matrix A square matrix with 1’s on the main diagonal and 
0’s elsewhere, p. 549.

Identity properties a + 0 = a, a # 1 = a, pp. 30, 552.

Imaginary axis See Complex plane.

Imaginary part of a complex number See Complex number.

Imaginary unit The complex number i = 2-1, p. 72.

Implication An if-then statement, p. 834.

Implicitly defined function A function that is a subset of a relation 
defined by an equation in x and y, pp. 134–136.

Implied domain The domain of a function’s algebraic expression,  
p. 104.

Increasing on an interval A function ƒ is increasing on an interval 
I if, for any two points in I, a positive change in x results in a posi-
tive change in ƒ1x2, p. 109.

Independent events Events A and B such that P1B 0A2 = P1B2,  
pp. 697, 701.

Independent variable Variable representing the domain value  
(or input) of a function (usually x), p. 102.

Index See Radical.

Index of summation See Summation notation.

Indirect reasoning Reasoning based on Modus Tollens, p. 838.

Inequality A statement that compares two quantities using an 
inequality symbol, p. 27.

Inequality symbol 6 , 7 , … , or Ú , p. 27.

Inferential statistics Use of the science of Statistics to make infer-
ences about the parameters in a population from information about 
a sample, p. 720.

Infinite discontinuity at x = a  lim
xSa +  ƒ(x2 = ±∞ or 

lim
xSa -  ƒ1x2 = ±∞, p. 107.

Infinite limit A special case of a limit that does not exist, p. 794.

Infinite sequence A function whose domain is the set of all natural 
numbers, p. 666.

Initial point See Arrow.

Initial side of an angle See Angle.

Initial value of a function ƒ102, p. 179.

Instantaneous rate of change See Derivative ƒ at x = a.

Instantaneous velocity The instantaneous rate of change of a posi-
tion function with respect to time, p. 772.

Integers The numbers . . . , -3, -2, -1, 0, 1, 2, . . . , p. 26.

Integrable over [a, b] L
b

a
 ƒ1x2 dx exists, p. 784.

Intercept Point where a curve crosses the x-, y-, or z-axis in a graph, 
pp. 53, 55, 92.

Intercepted arc Arc of a circle from the initial side through the ter-
minal side of a central angle, p. 340.

Intermediate Value Theorem If ƒ is a polynomial function and a 6 b,  
then ƒ assumes every value between ƒ1a2 and ƒ1b2, pp. 209–210.

Interquartile range (IQR) A measure of spread, found by subtract-
ing the first quartile from the third quartile, p. 721.

Interval Connected subset of the real number line with at least two 
points, p. 28.

Inverse composition rule The composition of a one-to-one func-
tion with its inverse results in the identity function, pp. 144, 397.

Interval notation Notation used to specify intervals, pp. 27–29.

Inverse cosecant function The function y = csc-1 x, pp. 399, 404.

Inverse cosine function The function y = cos-1 x, p. 397.

Inverse cotangent function The function y = cot-1 x, pp. 399, 403.

Inverse function The inverse relation of a one-to-one function,  
p. 142.

Inverse of a matrix The inverse of a square matrix A, if it exists, is 
a matrix B, such that AB = BA = I, where I is an identity matrix, 
pp. 549–550, 565–566.

Inverse properties a + 1-a2 = 0, a # 1
a

= 11a ≠ 02, pp. 30, 552.

Inverse reflection principle If the graph of a relation is reflected 
across the line y = x, the graph of the inverse relation results, p. 143.

Inverse relation (of the relation R ) A relation that consists of all 
ordered pairs 1b, a2 for which 1a, b2 belongs to R, pp. 141–145, 590.

Inverse secant function The function y = sec-1 x, pp. 399, 404.

Inverse sine function The function y = sin-1 x, p. 395.

Inverse tangent function The function y = tan-1 x, pp. 397–398.

Inverse variation See Power function.

Invertible linear system A system of n linear equations in n vari-
ables whose coefficient matrix has a nonzero determinant, p. 565.

Irrational numbers Real numbers that are not rational, p. 26.

Irrational zeros Zeros of a function that are irrational numbers,  
p. 220.
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Irreducible quadratic over the reals A quadratic polynomial  
with real coefficients that cannot be factored using real 
 coefficients, p. 232.

Jump discontinuity at x = a  lim
xSa -  ƒ1x2 and lim

xSa +  ƒ1x2 exist but are 
not equal, p. 107.

kth term of a sequence The kth expression in the sequence, p. 666.

Law of Cosines a2 = b2 + c2 - 2bc cos A,  
b2 = a2 + c2 - 2ac cos B, or c2 = a2 + b2 - 2ab cos C,  
p. 459.

Law of Detachment A law of logic that states: If an implication and 
its hypothesis are both true, then the conclusion must be true, p. 838.

Law of Sines 
sin A

a
=

sin B

b
=

sin C
c

 , p. 451.

Leading coefficient See Polynomial function in x.

Leading term See Polynomial function in x.

Leaf The last significant digit of a number in a stemplot, p. 709.

Least common denominator (LCD) The product of the prime fac-
tors across a set of denominators, for which each factor in the 
product is raised to the greatest power found in any one denomina-
tor for that factor, pp. 46, 825.

Least-squares line See Linear regression line.

Leibniz notation The notation dy>dx for the derivative of ƒ, p. 776.

Left-hand limit of ƒ at x = a  The limit of ƒ as x approaches a 
from the left, p. 792.

Lemniscate A graph of a polar equation of the form r2 = a2 sin 2u 
or r2 = a2 cos 2u, p. 515.

Length of an arrow See Magnitude of an arrow.

Length of a vector See Magnitude of a vector.

Like terms Terms of a polynomial that have the same variables 
raised to the same powers, p. 816.

Limaçon A graph of a polar equation r = a ± b sin u or 
r = a ± b cos u with a 7 0, b 7 0, p. 513.

Limit lim
xSa

 ƒ1x2 = L means that ƒ1x2 gets arbitrarily close to L as x 
gets arbitrarily close (but not equal) to a, pp. 789–790.

Limit to growth See Logistic growth function.

Limit at infinity lim
xS∞

 ƒ1x2 = L means that ƒ1x2 gets arbitrarily close to 

L as x gets arbitrarily large; lim
xS-∞

 ƒ1x2 = L means that ƒ1x2 gets arbi-

trarily close to L as -x gets arbitrarily large, pp. 782–783, 794–796.

Line graph A graph of data in which consecutive data points are 
connected by line segments, p. 714.

Line of symmetry A line over which a graph is the mirror image of 
itself, p. 182.

Line of travel The path along which an object travels, p. 338.

Linear combination of vectors u and v An expression au + bv, 
where a and b are real numbers, p. 476.

Linear equation in x An equation that can be written in the form 
ax + b = 0, where a and b are real numbers and a ≠ 0, pp. 45, 54.

Linear factorization theorem A polynomial ƒ1x2 of degree n 7 0 
has the factorization ƒ1x2 = a1x - z12 1x - z22g1x - zn2, 
where the zi are the (complex) zeros of ƒ, p. 228.

Linear function A function that can be written in the form 
ƒ1x2 = mx + b, where m ≠ 0 and b are real numbers, p. 177.

Linear inequality in two variables x and y An inequality that can 
be written in one of the following forms: y 6 mx + b, 
y … mx + b, y 7 mx + b, or y Ú mx + b, with m ≠ 0, p. 573.

Linear inequality in x An inequality that can be written in the form 
ax + b 6 0, ax + b … 0, ax + b 7 0, or ax + b Ú 0, where a 
and b are real numbers and a ≠ 0, p. 47.

Linear programming problem A method of solving certain prob-
lems involving maximizing or minimizing a function of two vari-
ables (called an objective function) subject to restrictions (called 
constraints), p. 575.

Linear regression A procedure for finding the straight line that is 
the best fit for the association between two variables, p. 316.

Linear regression equation Equation of a linear regression line,  
p. 164.

Linear regression line The line for which the sum of the squares of 
the residuals is the smallest possible, p. 164.

Linear system A system of linear equations, p. 535.

Local extremum A local maximum or a local minimum,  
pp. 111–112, 206.

Local maximum A value ƒ1c2 is a local (or relative) maximum of ƒ 
if there is an open interval I containing c such that ƒ1x2 … ƒ1c2 for 
all values of x in I, p. 112.

Local minimum A value ƒ1c2 is a local (or relative) minimum of ƒ 
if there is an open interval I containing c such that ƒ1x2 Ú ƒ1c2 for 
all values of x in I, p. 112.

Logarithm An expression of the form logb x (see Logarithmic 
 function), p. 292.

Logarithmic form An equation written with logarithms instead of 
exponents, p. 292.

Logarithmic function with base b The inverse of the exponential 
function y = bx, denoted by y = logb x, p. 292.

Logarithmic re-expression of data Transformation of a data set 
using logarithms, pp. 316–318.

Logarithmic regression See Natural logarithmic regression.

Logically equivalent (statements) Statements that have the same 
truth value, p. 831.
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Logistic growth function A model of population growth: 

ƒ1x2 =
c

1 + a # bx or ƒ1x2 =
c

1 + ae-kx
, where a, b, c, and k are 

positive with b 6 1. c is the limit to growth, p. 276.

Logistic regression A procedure for fitting a logistic curve to a set 
of data, p. 164.

Lower bound of ƒ Any number b for which b … ƒ1x2 for all x in 
the domain of ƒ, p. 111.

Lower bound for real zeros A number c is a lower bound for the 
set of real zeros of ƒ if ƒ1x2 ≠ 0 whenever x 6 c, pp. 221–223.

Lower bound test for real zeros A test for finding a lower bound 
for the real zeros of a polynomial, p. 221.

LRAM A Riemann sum approximation of the area under a curve ƒ1x2 
from x = a to x = b using xi as the left-hand endpoint of each sub-
interval, p. 784.

Magnitude of an arrow The magnitude of PQ 
>
 is the distance 

between P and Q, p. 474.

Magnitude of a real number See Absolute value of a real number.

Magnitude of a vector The magnitude of 8a, b9 is 2a2 + b2. The 

magnitude of 8a, b, c9 is 2a2 + b2 + c2, p. 641.

Main diagonal The elements aii from the top left to the bottom right 
of a square matrix, p. 549.

Major axis The line segment through the foci of an ellipse with end-
points on the ellipse, p. 599.

Mapping A function viewed as a correspondence of the elements of 
the domain onto the elements of the range, p. 102.

Mathematical model A mathematical structure that approximates a 
phenomenon for the purpose of studying or predicting its behavior, 
p. 86.

Mathematical induction A process for proving that a statement is 
true for all natural numbers n by showing that it is true for n = 1 
(the anchor) and that, if it is true for n = k (the inductive hypothesis), 
then it must be true for n = k + 1 (the inductive step), pp. 683–684.

Matrix, m : n  A rectangular array of m rows and n columns of 
numbers, p. 545.

Matrix element Any of the numbers in a matrix, p. 545.

Maximum r value The value of 0 r 0  at the point on the graph of a 
polar equation that has the maximum distance from the pole, p. 112.

Mean (of a set of data) The sum of all the data divided by the total 
number of items, pp. 724–726.

Measure of an angle The number of degrees or radians in an angle, 
p. 355.

Measure of center A measure of the typical, middle, or average 
value for a data set, p. 724.

Measure of spread A measure of variability in quantitative data,  
p. 723.

Median (of a data set) The middle number (or the mean of the two 
middle numbers) if the data are listed in order, p. 721.

Midpoint (in a coordinate plane) For the line segment with end-

points 1a, b2 and 1c, d2, aa + c

2
, 

b + d

2
2, p. 39.

Midpoint (on a number line) For the line segment with endpoints a 

and b, 
a + b

2
, p. 38.

Midpoint (in Cartesian space) For the line segment with endpoints 

1x1, y1, z12 and 1x2, y2, z22, a
x1 + x2

2
, 

y1 + y2

2
, 

z1 + z2

2
b , pp. 638–639.

Minor axis The perpendicular bisector of the major axis of an ellipse 
with endpoints on the ellipse, p. 599.

Minute Angle measure equal to 1>60 of a degree, p. 337.

Mode An interval within a distribution on which data are clustered, 
p. 713.

Modulus See Absolute value of a complex number.

Modus Ponens See Law of Detachment, p. 838.

Modus Tollens A law of logic that states: If an implication is true 
and its conclusion is false, then the hypothesis must be false, p. 838.

Monomial (function) A polynomial with exactly one term, p. 194.

Multiplication principle of counting A principle used to find the 
number of ways an event can occur, pp. 651–652.

Multiplication principle of probability If A and B are independent 
events, then P1A and B2 = P1A2 # P1B2. If B depends on A, then 
P1A and B2 = P1A2 # P1B �A2, p. 697.

Multiplication property of equality If u = v and w = z, then 
uw = vz, p. 45.

Multiplication property of inequality If u 6 v and c 7 0, then 
uc 6 vc. If u 6 v and c 6 0, then uc 7 vc, p. 47.

Multiplicative identity for matrices See Identity matrix.

Multiplicative inverse of a complex number The reciprocal of 

a + bi, or 
1

a + bi
=

a

a2 + b2 -
b

a2 + b2 i, ab ≠ 0, p. 74.

Multiplicative inverse of a matrix See Inverse of a matrix.

Multiplicative inverse of a real number The reciprocal of b, or 
1>b, b ≠ 0, p. 74.

Multiplicity The multiplicity of a zero c of a polynomial ƒ1x2 of 
degree n 7 0 is the number of times the factor 1x - c2 occurs in the 
linear factorization ƒ1x2 = a1x - zi2 1x - z22g1x - zn2, p. 208.

Nappe See Right circular cone.

Natural exponential function The function ƒ1x2 = ex, p. 275.

Natural logarithm A logarithm with base e, p. 295.

Natural logarithmic function The inverse of the exponential func-
tion y = ex, denoted by y = ln x, pp. 121, 296.
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Natural logarithmic regression A procedure for fitting a natural 
logarithmic curve to a set of data, p. 316.

Natural numbers The numbers 1, 2, 3, . . . , p. 26.

Nautical mile Length of 1 minute of arc along Earth’s equator, p. 341.

NDER ƒ(a) See Numerical derivative of ƒ at x = a, p. 800.

Negation A statement with a truth value opposite that of a given 
statement, p. 828.

Negative association A relationship between two quantitative vari-
ables in which greater values of one variable are generally associ-
ated with lesser values of the other variable, p. 748.

Negative angle Angle generated by clockwise rotation, p. 355.

Negative number A real number less than zero (shown to the left of 
the origin on a number line), p. 27.

Newton’s Law of Cooling T1t2 = Tm + 1T0 - Tm2e-kt, p. 314.

n factorial For any positive integer n, n factorial is 
n! = n # 1n - 12 # 1n - 22 # g # 3 # 2 # 1; zero factorial is 0! = 1, 
p. 652.

NINT (ƒ(x), x, a, b) A calculator approximation to L
b

a
 ƒ1x2dx,  

pp. 801–802.

Nonsingular matrix A square matrix with nonzero determinant, p. 549.

Normal curve The graph of ƒ1x2 = e-x2>2, p. 727.

Normal distribution See Normal model.

Normal model A theoretical probability distribution shaped like a 
Normal curve, pp. 739–741.

n-set A set of n objects, pp. 652, 655–656.

nth power of a The number an = a # a # g # a 1with n factors of 
a2, where n is the exponent and a is the base, p. 31.

nth root See Principal nth root.

nth root of a complex number z A complex number v such that 
vn = z, p. 524.

nth root of unity A complex number v such that vn = 1, p. 524.

Number line graph of a linear inequality The graph of the solu-
tions of a linear inequality 1in x2 on a number line, pp. 48–49.

Numerical derivative of ƒ at a NDER ƒ1a2 =
ƒ1a + 0.0012 - ƒ1a - 0.0012

0.002
, p. 800.

Numerical model A model determined by analyzing numbers or 
data in order to gain insight into a phenomenon, p. 86.

Objective function See Linear programming problem.

Oblique asymptote See Slant asymptote.

Oblique line See Slant line.

Observational study A process for gathering data from a subset of 
a population through current or past observations. This differs from 

a sample survey in that the subset may not be randomly chosen, 
and from an experiment in that no treatment is imposed, p. 752.

Obtuse triangle A triangle in which one angle is greater than 90°, 
p. 451.

Octants The eight regions of space determined by the coordinate 
planes, p. 637.

Odd-even identity For a basic trigonometric function ƒ, an identity 
relating ƒ 1x2 to ƒ 1-x2 p. 113.

Odd function A function whose graph is symmetric about the origin 
1ƒ1-x2 = -ƒ1x2 for all x in the domain of ƒ2, p. 113.

One-to-one function A function in which each element of the 
range corresponds to exactly one element in the domain, p. 142.

One-to-one rule of exponents x = y if and only if bx = by, p. 310.

One-to-one rule of logarithms For x 7 0 and y 7 0, x = y if and 
only if logb  x = logb  y, p. 310.

Open interval An interval that does not include its endpoints, p. 29.

Opens upward or downward A parabola y = ax2 + bx + c opens 
upward if a 7 0 and opens downward if a 6 0, p. 590.

Opposite See Additive inverse of a real number and Additive inverse 
of a complex number.

Order of magnitude (of n) log n, n 7 0, p. 312.

Order of an m : n  matrix The order of an m * n matrix is m * n, 
p. 545.

Ordered pair A pair of real numbers 1x, y2, p. 36.

Ordinary annuity An annuity in which deposits are made at the 
same time interest is posted, p. 326.

Origin The point corresponding to number zero on a number line, 
the point where the x- and y-axes cross in the Cartesian plane, or 
the point where the x-, y-, and z-axes cross in Cartesian three-
dimensional space, pp. 27, 36, 637.

Orthogonal vectors Two vectors u and v such that u # v = 0, p. 485.

Outcome An elemental result of a random phenomenon, p. 694.

Outlier A data value more than 1.5 # IQR less than the first quartile 
or more than 1.5 # IQR greater than the third quartile, p. 722.

Parabola The graph of a quadratic function, or the set of points in a 
plane that are equidistant from a fixed point (the focus) and a fixed 
line (the directrix), p. 588.

Paraboloid of revolution A surface generated by rotating a parab-
ola about its line of symmetry, p. 593.

Parallel lines Two lines that are both vertical or that have equal 
slopes, pp. 55–56.

Parallelogram representation of vector addition Geometric rep-
resentation of vector addition using the parallelogram determined 
by the position vectors, p. 474.

Parameter See Parametric equations.
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Parameter (in Statistics) A numerical description of a population 
or model, p. 720.

Parameter interval See Parametric equations.

Parametric curve The graph of a set of parametric equations, p. 491.

Parametric equations Equations of the form x = ƒ1t2 and 
y = g1t2 for all t in an interval I. The variable t is the parameter 
and I is the parameter interval, p. 491.

Parametric equations for a line in space The line through 
P01x0, y0, z02 in the direction of the nonzero vector v = 8a, b, c9 
has parametric equations x = x0 + at, y = y0 + bt, z = z0 + ct, 
pp. 493–494.

Parametrization A set of parametric equations for a curve, p. 491.

Partial fraction decomposition The process of expanding a  
fraction into a sum of fractions. The sum is the partial fraction 
decomposition of the original fraction, pp. 566–567.

Partial sum See Sequence of partial sums.

Pascal’s triangle A number pattern in which row n 1beginning with 
n = 02 consists of the coefficients of the expanded form of 
1a + b2n, p. 661.

Perihelion The closest point to the Sun in an object’s orbit, p. 603.

Period See Periodic function.

Periodic function A function ƒ for which there is a positive number c 
such that ƒ1t + c2 = ƒ1t2 for every value t in the domain of ƒ. The 
smallest such number c is the period of the function, pp. 362–363.

Permutation An arrangement of elements of a set, in which order is 
important, p. 652.

Permutations of n objects taken r at a time There are 

nPr =
n!

1n - r2! such permutations, p. 653.

Perpendicular lines Two lines that are at right angles to each other, 
pp. 55–56.

pH A logarithmic measure of acidity, p. 313.

Phase shift See Sinusoid.

Piecewise-defined function A function whose domain is divided 
into several parts with a different function rule applied to each part, 
p. 125.

Pie chart See Circle graph.

Placebo In an experimental study, an inactive treatment that is 
equivalent to the active treatment in every respect except for the 
factor about which an inference is to be made. Subjects in a blind 
experiment do not know whether they have been given the active 
treatment or the placebo, p. 753.

Plane in Cartesian space The graph of Ax + By + Cz + D = 0, 
where A, B, and C are not all zero, p. 36.

Point-slope form (of a line) y - y1 = m1x - x12, p. 53.

Polar axis See Polar coordinate system.

Polar coordinate system A coordinate system whose ordered pair is 
based on the directed distance from a central point (the pole) and 
the angle measured from a ray from the pole (the polar axis), p. 503.

Polar coordinates The numbers 1r, u2 that determine a point’s 
location in a polar coordinate system. The number r is the directed 
distance and u is the directed angle, p. 503.

Polar distance formula The distance between the points with polar 
coordinates 1r1, u12 and 1r2, u22 
=  2r1 

2 + r2 

2 - 2r1r2 cos1u1 - u22, p. 509.

Polar equation An equation in r and u, pp. 629–631.

Polar form of a complex number See Trigonometric form of a 
complex number.

Pole See Polar coordinate system.

Polynomial function A function in which ƒ1x2 is a polynomial in x, 
p. 176.

Polynomial in x An expression that can be written in the form 
an xn + an-1xn-1 + g + a1x + a0, where n is a nonnegative 
integer, the coefficients are real (or complex) numbers, and 
an ≠ 0. The degree of the polynomial is n, the leading coefficient 
is an, the leading term is an xn, and the constant term is a0.  
(The number 0 is the zero polynomial), pp. 176, 232, 816.

Polynomial interpolation The process of fitting a polynomial of 
degree n to 1n + 12 points, p. 211.

Position vector of the point (a, b) The vector 8a, b9, p. 472.

Positive angle Angle generated by a counterclockwise rotation,  
p. 355.

Positive association A relationship between two quantitative vari-
ables in which greater values of one variable are generally associ-
ated with greater values of the other variable, p. 748.

Positive number A real number greater than zero (shown to the 
right of the origin on a number line), p. 27.

Power function A function of the form ƒ1x2 = k # xa, where k and a 
are nonzero constants. k is the constant of variation, and a is the 
power, p. 193.

Power-reducing identity A trigonometric identity that reduces the 
power to which the trigonometric functions are raised, pp. 445–446.

Power regression A procedure for fitting a curve y = a # xb to a set 
of data, p. 316.

Power rule of logarithms logb R
c = c logb R, R 7 0, p. 301.

Present value of an annuity The current value of an investment 
put into an annuity, pp. 327–328.

Prime polynomial A polynomial that cannot be factored using inte-
ger coefficients, p. 817.

Principal nth root If bn = a, then b is an nth root of a. If bn = a 
and a and b have the same sign, b is the principal nth root of a (see 
Radical), p. 811.
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Principle of mathematical induction A principle related to mathe-
matical induction, p. 688.

Probability distribution The collection of probabilities of outcomes 
in a sample space assigned by a probability function, p. 695.

Probability model A random variable X together with a function  
P that assigns a real number to each outcome xi satisfying: 
0 … P1xi2 … 1, P1∅2 = 0, and the sum of the probabilities of all 
outcomes is 1, pp. 733–734.

Probability of an event The value that an event’s relative frequency 
of occurrence approaches in the long run, pp. 694–695.

Probability of an event modeled by a finite sample space of 

equally likely outcomes The number of outcomes in the event 
divided by the number of outcomes in the sample space, p. 694.

Product of complex numbers 1a + bi21c + di2
=  1ac - bd2 + 1ad + bc2i, pp. 73, 522.

Product of a scalar and a vector The product of a scalar k and a 
vector u = 8u1, u29 1or u = 8u1, u2, u392 is  
k # u = 8ku1, ku291or k # u = 8ku1, ku2, ku392, pp. 474, 641.

Product of functions 1ƒg21x2 = ƒ1x2g1x2, p. 130.

Product of matrices A and B The matrix in which each entry is 
obtained by multiplying the entries of a row of A by the corre-
sponding entries of a column of B and then adding, pp. 547–548.

Product rule of logarithms logb1RS2 = logb R + logb S, 
R 7 0, S 7 0, p. 301.

Projection of u onto v The vector projv u = au
# v

0 v 0 b
2

v, p. 486.

Proportional See Power function.

Pseudo-random numbers Computer-generated numbers that can 
be used to approximate true randomness in scientific studies. 
Because they depend on iterative computer algorithms, they are not 
truly random, p. 754.

Pythagorean identity sin2 u + cos2 u = 1, 1 + tan2 u = sec2 u,
or 1 + cot2 u = csc2 u, pp. 422–423.

Pythagorean Theorem In a right triangle with legs a and b and 
hypotenuse c, c2 = a2 + b2, p. 38.

Quadrant Any one of the four parts into which a plane is divided by 
the perpendicular coordinate axes, p. 36.

Quadrantal angle An angle in standard position whose terminal 
side lies on an axis, p. 359.

Quadratic equation in x An equation that can be written in the 
form ax2 + bx + c = 0, a ≠ 0, p. 65.

Quadratic equation in x and y See Second-degree equation in two 
variables.

Quadratic formula The formula x =
-b ± 2b2 - 4ac

2a
 used to 

solve ax2 + bx + c = 0, a ≠ 0, p. 66.

Quadratic function A function that can be written in the form 
ƒ1x2 = ax2 + bx + c, where a, b, and c are real numbers, and 
a ≠ 0, p. 182.

Quadratic regression A procedure for fitting a quadratic function 
to a set of data, p. 164.

Quadric surface The graph in three dimensions of a second-degree 
equation in three variables, p. 641.

Quantifier A word or phrase, such as all, some, or for any, that 
specifies all or part of a set that is referenced in a statement, p. 828.

Quantitative variable A variable (in Statistics) that takes on numer-
ical values for an attribute being measured, p. 707.

Quartic function A degree 4 polynomial function, p. 204.

Quartic regression A procedure for fitting a quartic function to a 
set of data, p. 164.

Quartile The first quartile is the median of the lesser half of a set of 
quantitative data, the second quartile is the median, and the third 
quartile is the median of the greater half of the data, p. 721.

Quotient identities tan u =
sin u

cos u
 and cot u =

cos u

sin u
, p. 421.

Quotient of complex numbers  
a + bi

c + di
=

ac + bd

c2 + d2 +
bc - ad

c2 + d2 i, pp. 74, 522.

Quotient of functions aƒ
g
b1x2 =

ƒ1x2
g1x2 , g1x2 ≠ 0, p. 130.

Quotient rule of logarithms logbaRSb = logb R - logb S, 

R 7 0, S 7 0, p. 301.

Quotient polynomial See Division algorithm for polynomials.

Radian The measure of a central angle whose intercepted arc has a 
length equal to the circle’s radius, p. 338.

Radian measure The measure of an angle in radians, or, for a cen-
tral angle, the ratio of the length of the intercepted arc to the radius 
of the circle, p. 339.

Radical expression An expression of the form 2n a; a is the 
 radicand, p. 811.

Radicand See Radical expression.

Radius The distance from a point on a circle (or a sphere) to the 
center of the circle (or the sphere), pp. 39, 640.

Random behavior Behavior that is determined only by the laws of 
probability, pp. 750–751.

Random numbers Numbers that can be used by researchers to sim-
ulate randomness in scientific studies (they are usually obtained 
from lengthy tables of decimal digits that have been generated by 
verifiably random natural phenomena), p. 754.

Random sample A subset of a population chosen in a way that 
makes each member of the population equally likely to be included 
in the sample, pp. 750–751.
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Random variable A function that assigns numerical values to 
each outcome in a sample space associated with some random  
phenomenon, p. 733.

Randomization The principle of experimental design that makes it 
possible to use the laws of probability when making inferences, p. 753.

Range of a function The set of all output values corresponding to 
elements in the domain, pp. 102–106.

Range (in Statistics) The difference maximum – minimum in a data 
set, p. 721.

Range screen See Viewing window.

Rational expression An expression that can be written as a ratio of 
two polynomials, p. 823.

Rational function Function of the form 
ƒ1x2
g1x2 , where ƒ1x2 and g1x2 

are polynomials and g1x2 is not the zero polynomial, p. 236.

Rational numbers Numbers that can be written as a>b, where a 
and b are integers, and b ≠ 0, p. 26.

Rational zeros Zeros of a function that are rational numbers, p. 220.

Rational zeros theorem A procedure for finding the possible ratio-
nal zeros of a polynomial, pp. 220–221.

Rationalizing the denominator A method to remove radicals from 
the denominator of a fractional expression, p. 813.

Real axis See Complex plane.

Real number Any number that can be written as a decimal, p. 26.

Real number line A line that represents the set of real numbers, p. 27.

Real part of a complex number See Complex number.

Real zeros Zeros of a function that are real numbers, p. 68.

Reciprocal function The function ƒ1x2 =
1
x

, p. 121.

Reciprocal identity An identity that equates a trigonometric func-
tion with the reciprocal of another trigonometric function, p. 421.

Reciprocal of a real number See Multiplicative inverse of a real 
number.

Rectangular coordinate system See Cartesian coordinate system.

Recursively defined sequence A sequence defined by giving the 
first term (or the first few terms) along with a procedure for finding 
the subsequent terms, p. 666.

Reduced form A rational number or rational expression with no 
factors common to numerator and denominator, p. 823.

Reduced row echelon form A matrix in row echelon form with 
every column that has a leading 1 having 0’s in all other positions, 
p. 563.

Re-expression of data A transformation of a data set, pp. 305–306.

Reference angle See Reference triangle.

Reference triangle For an angle u in standard position, a reference 
triangle is a triangle formed by the terminal side of angle u, the 
x-axis, and a perpendicular dropped from a point on the terminal 
side to the x-axis. The angle in a reference triangle at the origin is 
the reference angle, p. 358.

Reflection Two points that are symmetric with respect to a line or a 
point, p. 143.

Reflection across the x-axis 1x, y2 and 1x, -y2 are reflections of 
each other across the x-axis, p. 150.

Reflection across the y-axis 1x, y2 and 1-x, y2 are reflections of 
each other across the y-axis, p. 150.

Reflection through the origin 1x, y2 and 1-x, -y2 are reflections 
of each other through the origin, p. 150.

Reflexive property of equality a = a, p. 45.

Regression model An equation found by regression that can be 
used to predict unknown output values, p. 316.

Relation A set of ordered pairs of real numbers, p. 135.

Relevant domain The portion of the domain applicable to the situa-
tion being modeled, p. 104.

Remainder polynomial See Division algorithm for polynomials.

Remainder theorem If a polynomial ƒ1x2 is divided by x - c, the 
remainder is ƒ1c2, pp. 217–218.

Removable discontinuity at x = a lim
xSa- ƒ1x2 = lim

xSa+  
ƒ1x2, but either 

the common limit is not equal to ƒ1a2 or ƒ1a2 is not defined, pp. 106–107.

Repeated zeros Zeros of multiplicity Ú 2 (see Multiplicity), p. 209.

Replication The principle of experimental design that minimizes the 
effects of chance variation by repeating the experiment multiple 
times, p. 753.

Residual The difference y1 - 1ax1 + b2, where 1x1, y12 is a point in 
a scatter plot and y = ax + b is a line that fits the set of data, p. 191.

Resistant measure A statistical measure that does not change 
much in response to outliers, p. 721.

Resolving a vector Finding the horizontal and vertical components 
of a vector, p. 476.

Response variable A variable that is associated with an explana-
tory variable, p. 752.

Richter scale A logarithmic scale used to measure the intensity of 
an earthquake, p. 308.

Riemann sum A sum a
n

i=1
ƒ1xi2∆x, where the interval 3a, b4  is 

divided into n subintervals of equal length ∆x, and xi is in the ith 
subinterval, p. 784.

Right angle A 90° angle, p. 347.

Right circular cone The surface created when a line is rotated in three-
dimensional space about a second line in the same plane, p. 587.
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Right-hand limit of ƒ at x = a  The limit of ƒ as x approaches a 
from the right, p. 792.

Right triangle A triangle with a 90° angle, p. 356.

Rigid transformation A transformation that leaves the size and 
shape of a graph unchanged, p. 148.

Root of a number See Principal nth root.

Root of an equation A solution, p. 92.

Rose curve A graph of a polar equation r = a cos nu or 
r = a sin nu, p. 512.

Row echelon form A matrix in which rows consisting of all 0’s 
occur only at the bottom of the matrix, the first nonzero entry in 
any row with nonzero entries is 1, and the leading 1’s move to the 
right as we move down the rows, p. 562.

Row operations See Elementary row operations.

RRAM A Riemann sum approximation of the area under a curve 
ƒ1x2 from x = a to x = b using xi as the right-hand end point of 
each subinterval, p. 784.

Sample A subset of a population, usually random, from which data 
are collected, p. 720.

Sample space Set of all possible outcomes of a random  
phenomenon, p. 694.

Sample standard deviation The standard deviation computed 
using only a sample of the entire population, p. 727.

Scalar A real number, pp. 474, 546.

Scatter plot A plot of all the ordered pairs of a two-variable data set 
on a coordinate plane, p. 36.

Scientific notation A positive number written as c * 10m, where 
1 … c 6 10 and m is an integer, p. 32.

Secant function The function y = sec x, pp. 357, 361, 380.

Secant line of ƒ A line joining two points of the graph of ƒ, pp. 773–774.

Second Angle measure equal to 1>60 of a minute, p. 337.

Second-degree equation in two variables An equation of the 
form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, where A, B, and C 
are not all zero, p. 587.

Semimajor axis The distance from the center to a vertex of an 
ellipse, p. 599.

Semiminor axis The distance from the center of an ellipse to a point 
on the ellipse along a line perpendicular to the major axis, p. 599.

Semiperimeter of a triangle One-half of the sum of the lengths of 
the sides of a triangle, p. 462.

Sequence See Finite sequence, Infinite sequence.

Sequence of partial sums The sequence 5Sn6 , where Sn is the nth 
partial sum of the series—that is, the sum of the first n terms of the 
series, p. 678.

Series A finite or infinite sum of terms, pp. 674–682.

Shrink by a factor of c A transformation of a graph obtained by 
multiplying all the x-coordinates (horizontal shrink) or all of the 
y-coordinates (vertical shrink) by the constant c, 0 6 c 6 1,  
pp. 152–154.

Simple harmonic motion Motion described by d = a sin vt or 
d = a cos vt, p. 408.

Simulation A process that uses random numbers to model a real-
world phenomenon, pp. 756–758.

Sine function The function y = sin x, pp. 121, 357, 367.

Singular matrix A square matrix for which the determinant is zero, 
p. 549.

Sinusoid A function that can be written in the form 
ƒ1x2 = a sin1b1x - h22 + k or ƒ1x2 = a cos1b1x - h22+  k. 
The number 0 a 0  is the amplitude, and the number h is the phase 
shift, p. 369.

Sinusoidal regression A procedure for fitting a curve 
y = a sin1bx + c2 + d to a set of data, p. 164.

68-95-99.7 Rule An approximation of the percent of data values 
that lie within ±1, ±2, and ±3 standard deviations of the mean 
in a Normal distribution, p. 728.

Skewed distribution A distribution that is not symmetric; distribu-
tions with a longer tail to the left are skewed left, and those with a 
longer tail on the right are skewed right, p. 713.

Slant asymptote (or oblique asymptote) An end behavior asymp-
tote that is a slant line, p. 239.

Slant line (or oblique line) A line that is neither horizontal nor ver-
tical, p. 177.

Slope The ratio 
change in y

change in x
, p. 52.

Slope-intercept form (of a line) y = mx + b, p. 54.

Solution set of an inequality The set of all solutions of an  
inequality, p. 47.

Solution of a system in two variables An ordered pair of real 
numbers that satisfies all of the equations or inequalities in the  
system, p. 535.

Solution of an equation or inequality A value of the variable (or 
values of the variables) for which the equation or inequality is true, 
pp. 255–264.

Solve algebraically Use an algebraic method, including paper and 
pencil manipulation and obvious mental work, with no calculator 
or grapher use. When appropriate, the final exact solution may be 
approximated by a calculator, pp. 91, 405.

Solve graphically Use a graphical method, including use of a hand 
sketch or use of a grapher. When appropriate, the approximate 
solution should be confirmed algebraically, p. 91.
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Solve an equation or inequality Find all solutions of the equation 
or inequality, pp. 45, 47.

Solve a triangle Find all unknown sides or angles of a triangle,  
pp. 350, 451–452, 460–461.

Solve a system Find all solutions of a system, p. 535.

Solve by elimination A method for solving systems of linear  
equations, p. 537.

Solve by substitution A method for solving systems of linear  
equations, pp. 535–537.

Speed The magnitude of a velocity vector, p. 477.

Sphere A set of points in Cartesian space equally distant from a 
fixed point called the center, p. 640.

Spiral of Archimedes The graph of the polar curve r = u, p. 515.

Square matrix A matrix for which the number of rows equals the 
number of columns, p. 545.

Square root nth root, where n = 2 (see Principal nth root), p. 811.

Standard deviation A measure of spread in a quantitative data set 
or population model, p. 726.

Standard form:

  equation of a circle 1x - h22 + 1y - k22 = r2, pp. 72, 204, 
590, 599, 610, 816.

  equation of an ellipse 
1x - h22

a2 +
1y - k22

b2 = 1 or 

1y - k22
a2 +

1x - h22
b2 = 1, p. 599.

  equation of a hyperbola 
1x - h22

a2 -
1y - k22

b2 = 1 or 

1y - k22
a2 -

1x - h22
b2 = 1, p. 610.

  equation of a parabola 1x - h22 = 4p1y - k2 or 
1y - k22 = 4p1x - h2, p. 591.

  equation of a quadratic function  
ƒ1x2 = ax2 + bx + c1a ≠ 02, p. 182.

Standard form of a complex number a + bi, where a and b are 
real numbers, p. 72.

Standard form of a polar equation of a conic  

r =
ke

1 ± e cos u
 or r =

ke

1 ± e sin u
, pp. 629–630.

Standard form of a polynomial function  
ƒ1x2 = an xn + an-1xn-1 + g + a1x + a0, p. 204.

Standard position (angle) An angle positioned on a rectangular 
coordinate system with its vertex at the origin and its initial side on 
the positive x-axis, pp. 346, 355.

Standard representation of a vector A representative arrow with 
its initial point at the origin, p. 472.

Standard unit vectors In the plane, i = 81, 09 and j = 80, 19;  
in space, i = 81, 0, 09, j = 80, 1, 09, and k = 80, 0, 19,  
pp. 476, 641.

Statement A sentence that is either true or false, but not both, p. 828.

Statistic A numerical description of a variable in a sample from a 
population, pp. 707, 720.

Statistically significant An outcome so unlikely to have arisen by 
chance alone as to cast doubt on underlying assumptions, p. 742.

Statute mile 5280 ft, p. 341.

Stem The initial digit or digits of a number in a stemplot, p. 709.

Stemplot (or stem-and-leaf plot) An arrangement of a numerical 
data set into a specific tabular format, p. 709.

Stretch by a factor of c A transformation of a graph obtained by 
multiplying all the x-coordinates (horizontal stretch) or all of  
the y-coordinates (vertical stretch) of the points by a constant c,  
c 7 1, pp. 152–154.

Subtraction a - b = a + 1-b2, p. 30.

Sum identity An identity involving a trigonometric function of 
u + v, pp. 438–444.

Sum of a finite arithmetic series  

Sn = naa1 + an

2
2 =

n

2
 32a1 + 1n - 12d4 , p. 675.

Sum of a finite geometric series Sn =
a111 - rn2

1 - r
, p. 676.

Sum of an infinite geometric series Sn =
a

1 - r
, 0 r 0 6 1, p. 679.

Sum of an infinite series See Convergence of a series.

Sum of complex numbers 1a + bi2 + 1c + di2 =
1a + c2 + 1b + d2i, p. 72.

Sum of functions 1ƒ + g21x2 = ƒ1x2 + g1x2, p. 130.

Sum of two vectors 8u1, u29 + 8v1, v29 = 8u1 + v1, u2 + v29  
or 8u1, u2, u39 + 8v1, v2, v39 =  8u1 + v1, u2 + v2, u3 + v39,  
pp. 474, 641.

Summation notation The series a
n

k=1
ak, where n is a natural number 

1or ∞2 is in summation notation and is read “the sum of ak from 
k = 1 to n (or infinity).” k is the index of summation, and ak is the 
kth term of the series, p. 674.

Supply curve p = ƒ1x2, where x represents production and p 
 represents price, p. 540.

Symmetric about the origin A graph in which 1-x, -y2 is on the 
graph whenever 1x, y2 is; or a graph in which 1-r, u2 or 
1r, u + p2 is on the graph whenever 1r, u2 is, pp. 113, 510.

Symmetric about the x-axis A graph in which 1x, -y2 is on the 
graph whenever 1x, y2 is; or a graph in which 1r, -u2 or 
1-r, p - u2 is on the graph whenever 1r, u2 is, pp. 113, 510.
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Symmetric about the y-axis A graph in which 1-x, y2 is on the 
graph whenever 1x, y2 is; or a graph in which 1-r, -u2 or 
1r, p - u2 is on the graph whenever 1r, u2 is, pp. 113, 510.

Symmetric difference quotient of ƒ at a  
ƒ1a + h2 - ƒ1a - h2

2h
 , p. 800.

Symmetric distribution A data distribution that looks roughly the 
same when reflected about its center, p. 713.

Symmetric matrix A matrix A = 3aij4  with the property aij = aji 
for all i and j, p. 556.

Symmetric property of equality If a = b, then b = a, p. 45.

Synthetic division A procedure used to divide a polynomial by a 
linear expression of the form x - a, pp. 218–220.

System A set of equations or inequalities, p. 535.

Tangent function The function y = tan x, pp. 346, 357, 361, 378.

Tangent line to the graph of ƒ at x = a  The line through  
1a, ƒ1a22 with slope ƒ′1a2, provided ƒ′1a2 exists, pp. 597, 772–774.

Tautology A statement that is always true, p. 836.

Terminal point See Arrow.

Terminal side of an angle See Angle.

Term of a polynomial (function) An expression of the form anxn in 
a polynomial (function), p. 204.

Term of a sequence A range element of a sequence, p. 666.

Third quartile See Quartile.

Time plot A line graph in which time is measured on the horizontal 
axis, p. 714.

Transformation A function that maps points to points, p. 148.

Transitive property If a = b and b = c, then a = c. Similar prop-
erties hold for inequalities: 6 , … , 7 , Ú , pp. 45, 47.

Translation See Horizontal translation, Vertical translation.

Transpose of a matrix The matrix AT obtained by interchanging the 
rows and columns of A, p. 549.

Transverse axis The line segment whose endpoints are the vertices 
of a hyperbola, p. 610.

Tree diagram A pictorial representation of the Multiplication 
Principle of Probability, p. 699.

Triangular form A special form for a system of linear equations that 
facilitates finding the solution, p. 560.

Triangular number A number that is a sum of the arithmetic series 
1 + 2 + 3 + g + n for some natural number n, pp. 664, 682.

Trichotomy property For real numbers a and b, exactly one of the 
following is true: a 6 b, a = b, or a 7 b, p. 28.

Trigonometric form of a complex number r1cos u + i sin u2,  
pp. 520–521.

Trinomial A polynomial that has exactly three terms, p. 816.

Truth table A table used to show the true-false patterns of a  
statement, p. 830.

Unbounded interval An interval that extends to -∞ or ∞ (or both), 
p. 29.

Union of two sets A and B The set of all elements that belong to  
A or B or both, p. 78.

Unit circle A circle with radius 1 centered at the origin, p. 361.

Unit ratio See Conversion factor.

Unit vector Vector of length 1, pp. 475, 641.

Unit vector in the direction of a vector A unit vector that has the 
same direction as the given vector, pp. 475–476, 641.

Universal quantifier A word or phrase, such as all, none, or for 
any, that refers to an entire set that is cited in a statement, p. 828.

Upper bound for ƒ Any number B for which ƒ1x2 … B for all x in 
the domain of ƒ, p. 221.

Upper bound for real zeros A number d is an upper bound for the 
set of real zeros of ƒ if ƒ1x2 ≠ 0 whenever x 7 d, pp. 221–223.

Upper bound test for real zeros A test for finding an upper bound 
for the real zeros of a polynomial, p. 221.

Valid reasoning A form of argument for which the conclusion fol-
lows unavoidably from the hypothesis, p. 836.

Variable A letter that represents an unspecified number, p. 29.

Variable (in Statistics) A characteristic that is being identified or 
measured, p. 707.

Variance The square of the standard deviation, p. 726.

Variation See Power function.

Vector An ordered pair 8a, b9 of real numbers in the plane, or an 
ordered triple 8a, b, c9 of real numbers in space. A vector has both 
magnitude and direction, pp. 474, 641.

Vector equation for a line in space The line through P01x0, y0, z02 
in the direction of the nonzero vector v = 8a, b, c9 has vector 
equation r = r0 + tv, where r0 = 8x0, y0, z09, p. 641.

Velocity A vector that specifies an object’s speed and direction, p. 477.

Venn diagram A pictorial representation of the relationships among 
events within a sample space, p. 698.

Vertex of a cone See Right circular cone.

Vertex of a parabola The point of intersection of a parabola and its 
line of symmetry, pp. 182, 589.

Vertex of an angle See Angle.

Vertex form for a quadratic function ƒ1x2 = a1x - h22 + k, p. 183.

Vertical asymptote The line x = a is a vertical asymptote of the 
graph of a function ƒ if lim

xSa+ ƒ1x2 = ±∞ or lim
xSa- ƒ1x2 = ±∞,  

p. 115.
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Vertical component See Component form of a vector.

Vertical line A line of the form x = a, p. 54.

Vertical line test A test for determining whether a graph is a  
function, p. 103.

Vertical stretch or shrink See Stretch, Shrink.

Vertical translation A shift of a graph up or down, p. 148.

Vertices of an ellipse The points where an ellipse intersects its 
focal axis, p. 598.

Vertices of a hyperbola The points where a hyperbola intersects its 
focal axis, p. 609.

Viewing window The rectangular portion of the coordinate plane 
specified by the dimensions [Xmin, Xmax] by [Ymin, Ymax],  
p. 55.

Weighted mean A mean calculated in such a way that some ele-
ments of the data set have higher weights (that is, are counted more 
strongly in determining the mean) than others, p. 725.

Whole numbers The numbers 0, 1, 2, 3, . . . , p. 26.

Window dimensions The restrictions on x and y that specify a view-
ing window. See Viewing window.

Work The dot product of a force and direction vector, W = F # AB 
>
, 

p. 487.

Wrapping function The function that maps points on a real number 
line to points on the unit circle, p. 361.

x-axis Usually the horizontal coordinate line in a Cartesian coordi-
nate system with positive direction to the right, pp. 36, 637.

x-coordinate The directed distance from the y-axis 1yz-plane2 to  
a point in a plane (space), or the first number in an ordered pair 
(triple), pp. 36, 637.

x-intercept A point that lies on both the graph and the x-axis,  
pp. 55, 92, 239.

Xmax The x value of the right side of the viewing window, p. 55.

Xmin The x value of the left side of the viewing window, p. 55.

Xscl The scale of the tick marks on the x-axis in a viewing window, 
p. 55.

xy-plane The points 1x, y, 02 in Cartesian space, p. 637.

xz-plane The points 1x, 0, z2 in Cartesian space, p. 637.

y-axis Usually the vertical coordinate line in a Cartesian coordinate 
system with positive direction up, p. 36.

y-coordinate The directed distance from the x-axis 1xz-plane2 to a 
point in a plane (space), or the second number in an ordered pair 
(triple), pp. 36, 53, 54, 102, 150.

y-intercept A point that lies on both the graph and the y-axis,  
p. 53.

Ymax The y value of the top of the viewing window, p. 55.

Ymin The y value of the bottom of the viewing window, p. 55.

Yscl The scale of the tick marks on the y-axis in a viewing window, 
p. 55.

yz-plane The points 10, y, z2 in Cartesian space, p. 637.

z-axis Usually the third dimension in Cartesian space, p. 637.

z-coordinate The directed distance from the xy-plane to a point in 
space, or the third number in an ordered triple, p. 638.

z-intercept A point that lies on both the graph and the z-axis,  
p. 640.

z-score The number of standard deviations a value lies from the 
mean of its distribution, p. 740.

Zero factor property If ab = 0, then a = 0 or b = 0, pp. 65, 90–92.

Zero factorial 0! = 1. See n factorial.

Zero of a function A value in the domain of a function that makes 
the function value zero, pp. 92, 177, 228–232.

Zero matrix A matrix consisting entirely of zeros, p. 547.

Zero vector The vector 80, 09 or 80, 0, 09, pp. 472, 641.

Zoom out A procedure performed on a graphing utility to view 
more of the coordinate plane (used, for example, to find the end 
behavior of a function), p. 207.
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865

Selected Answers

CHAPTER P
Section P.1
Quick Review P.1

1. 1, 2, 3, 4, 5, 6  3. -3, -2, -1  5. (a) 1187.75 (b) -4.72  
7. -3; 1.375  9. 0, 1, 2, 3, 4, 5, 6  

Exercises P.1

1. -4.625 (terminates)  3. -2.16 (repeats)  

5. 
0 1 2 3 4 52122232425

;  All real numbers less than 
or equal to 2  

7. 
0 1 2 3 4 5 6 7 82122

;  All real numbers less than 
7  

9. 
0 1 2 3 4 52122232425

;  All real numbers less  
than 0  

11. -1 … x 6 1  13. x 6 5  15. -1 6 x 6 2  17. 1-3, ∞2  
19. 1-2, -12  21. 1-3, 44   
23. The real numbers greater than 4 and less than or equal to 9  
25. The real numbers greater than or equal to -3, or the real numbers 
that are at least -3  27. The real numbers greater than -1  
29. -3 6 x … 4; endpoints -3 and 4; bounded; half-open  
31. x 6 5; endpoint 5; unbounded; open  
33. x Ú 29 or 329, ∞2; x = Bill>s age in years  
35. 3.099 … x … 4.399 or 33.099, 4.3994 ; x = dollars per gallon of 
gasoline  
37. ax2 + ab  39. 1a + d2x2  41. p - 6  43. 5  
45. (a) Associative property of multiplication 
   (b) Commutative property of multiplication 
   (c) Additive inverse property 
   (d) Additive identity property 
   (e) Distributive property of multiplication over addition  

47. 
x2

y2  49. 
16

x4  51. x4y4  53. $5.35665 * 1011  

55. $1.7247 * 1010  57. 4.839 * 108 mi  
59. 0.000 000 033 3  61. 5,870,000,000,000 mi  
63. 2.4 * 10-8  
65. (a) Because am ≠ 0, ama0 = am+0 = am implies that a0 = 1. 
   (b)  Because am ≠ 0, ama-m = am-m = a0 = 1 implies that 

    a-m =
1

am.  

67. False. For example, the additive inverse of -5 is 5, which is positive.  
69. E  71. B  73. 0, 1, 2, 3, 4, 5, 6  
75. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6  

Section P.2
Quick Review P.2

1. 
1.50.5 2 2.5 31

  Distance: 27 - 22 ≈ 1.232  
3. 

0 1 2 3 4 52122232425
  

5. y

x

5

5

A

B

C

D

  

7. 5.5  9. 10  

Exercises P.2

1. A11, 02, B12, 42, C1-3, -22, D10, -22  
3. (a) First quadrant 
  (b) On the y-axis, between quadrants I and II 
  (c) Second quadrant 
  (d) Third quadrant  
5. 6  7. 6  9. 4 - p  11. 19.9  

13. 241 ≈ 6.403  15. 5  17. 7  

19. Perimeter = 2241 + 282 ≈ 21.862; area = 20.5  
21. Perimeter = 2220 + 16 ≈ 24.944; area = 32  

23. 0.65  25. 12, 62  27. a-  
1
3

, -  
3
4
b   

29. 

Time (years)

V
eh

ic
le

s 
(m

ill
io

ns
)
U.S. Motor Vehicle Productiony

x
2008 2010 2012 2014 2016

2

0

4
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14

  

31. 

Time (years)

Im
po

rt
s 

(b
ill

io
ns

 o
f 

$)

U.S. Imports from Mexicoy

x
2004 2006 2008 2012 20142010 2016

50

0

100

150

200
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300
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29. (a)  The figure shows that x = -2 is a solution of the equation 
2x2 + x - 6 = 0. 

   (b)  The figure shows that x =
3
2

 is a solution of the equation 

          2x2 + x - 6 = 0.  
31. (a)  33. (b) and (c)  
35. 

0 1 2 3 4 5 6 7 8 921

  x 6 6  
37. 

0 1 2 3 4 52122232425

  x Ú -2  
39. 

0 1 2 3 4 52122232425

  -4 … x 6 3  
41. 

0 1 2 3 4 5 6 7 82122

  x Ú 3  

43. x … -  
19
5

  45. -  
1
2

… y …
17
2

  47. -  
5
2

… z 6
3
2

  

49. x 7
21
5

  51. y 6
7
6

  53. x …
34
7

  55. x = 1  

57. x = 3, 4, 5, 6  
59. Multiply both sides of the first equation by 2.  
61. (a) No (b) Yes  
63. False. -6 6 -2 because -6 lies to the left of -2 on the number 
line.  
65. E  67. A  
69. (a) (no answer) (b) (no answer) (c) 800>801 7 799>800 
   (d) -103>102 7 -102>101 
   (e)  The value stored in x is not a solution of the inequality 

2x + 1 6 4.  

71. b1 =
2A
h

- b2  73. F =
9
5

 C + 32  

Section P.4
Exploration 1

1. The graphs of y = mx + b and y = mx + c have the same slope 
but different y-intercepts.  
3. 

m = 1

  

m = 3

  

m = 4

  

m = 5

In each case, the two lines appear to be at right angles 190°2 to one 
another.  

Quick Review P.4

1. x = -  
7
3

  3. x = 12  5. y =
2
5

 x -
21
5

  

7. y =
17
5

  9. 
2
3

  

33. 

Time (years)

E
xp

or
ts

 (
bi

lli
on

s 
of

 $
)

U.S. Exports to Chinay

x
2004 2006 2008 2010 2012 2014 2016

20

0

40

60

80

100

120

140

  

35. (a) About $2.60 (b) About $2.80 (c) About $3.40  

37. The three sides have lengths 5, 5, and 522. Because two sides 
have the same length, the triangle is isosceles.  

39. (a) 8; 5; 289 (b) 82 + 52 = 64 + 25 = 89 = 128922  
41. 1x - 122 + 1y - 222 = 25  43. 1x + 122 + 1y + 422 = 9  
45. Center: 13, 12; radius: 6  47. Center: 10, 02; radius: 25  
49. 0 x - 4 0 = 3  51. 0 x - c 0 6 d  53. 7; 6  

55. Midpoint is a5
2

, 
7
2
b . Distances from this point to vertices are 

equal to 218.5.  57. x … -8 or x Ú 2  

59. True. 
length of AM

length of AB
=

1
2

 because M is the midpoint of AB. By 

similar triangles, 
length of AM′
length of AC

=
length of AM

length of AB
=

1
2

, so M′ is the 

midpoint of AC.  61. C  63. E  
65. If the legs have lengths a and b, and the hypotenuse is c units 
long, then without loss of generality, we can assume the vertices are 
10, 02, 1a, 02, and 10, b2. Then the midpoint of the hypotenuse is 

aa + 0
2

, 
b + 0

2
b = aa

2
, 

b
2
b . The distance to the other vertices is B aa2b2

+ ab
2
b

2

= Ba2

4
+

b2

4
=

c
2

=
1
2

 c.  

67. Q1a, -b2  69. Q1-a, -b2  

Section P.3
Quick Review P.3

1. 4x + 5y + 9  3. 3x + 2y  

5. 
5
y
  7. 

2x + 1
x

  9. 
11x + 18

10
  

Exercises P.3

1. (a) and (c)  3. (b)  5. Yes  7. No  9. No  

11. x = 8  13. t = 4  15. x = 1  17. y = -  
4
5

= -0.8  

19. x =
7
4

= 1.75  21. x =
4
3

  23. z =
8
19

  

25. x =
17
10

= 1.7  27. t =
31
9
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61. False. The slope of a vertical line is undefined. For example, the 
vertical line through 13, 12 and 13, 62 would have slope 
16 - 12>13 - 32 = 5>0, which is undefined.  63. A  65. E  
67. (a) 

[–5, 5] by [–5, 5]

 (b) 

[–5, 5] by [–5, 5]

 

   (c) 

[–5, 5] by [–5, 5]

 (d)  a is the x-intercept and b is 
the y-intercept when c = 1. 

   (e) 

[–10, 10] by [–10, 10]

 

[–10, 10] by [–10, 10]

    

[–10, 10] by [–10, 10]

     a is half the x-intercept and b is half the y-intercept when 
c = 2. 

   (f)  When c = -1, a is the opposite of the x-intercept and b is the 
opposite of the y-intercept.  

69. As in the diagram, we can choose one point to be the origin and 
another to be on the x-axis. The midpoints of the sides, starting from 
the origin and working around counterclockwise in the diagram, are 

then Aaa
2

, 0b , Baa + b
2

, 
c
2
b , Cab + d

2
, 

c + e
2
b , and Dad

2
, 

e
2
b . The 

opposite sides are therefore parallel, since the slopes of the four lines 

connecting those points are mAB =
c
b

; mBC =
e

d - a
; mCD =

c
b

; and 

mDA =
e

d - a
.  

71. A has coordinates ab
2

, 
c
2
b , and B is aa + b

2
, 

c
2
b , so the line 

containing A and B is the horizontal line y =
c
2

, and the distance from 

A to B is ` a + b
2

-
b
2
` =

a
2

.  

Exercises P.4

1. -2  3. 
4
7

  5. 8  7. x = 2  9. y = 16  

11. y - 4 = 21x - 12  13. y + 4 = -21x - 52  
15. x - y + 5 = 0  17. y + 3 = 0  19. x - y + 3 = 0  

21. y = -3x +  5  23. y = -  
1
4

 x + 4  25. y = -  
2
5

 x +
12
5

  

27. 

[–5, 10] by [–10, 60]

  29. 

[–1, 5] by [–10, 80]

  

31. Graph (a): the slope is 1.5, compared to 1 in (b).  
33. x = 4; y = 21  35. x = -10; y = -7  
37. Ymin = -30, Ymax = 30, Yscl = 3  
39. Ymin = -20>3, Ymax = 20>3, Yscl = 2>3  

41. (a) y = 3x - 1 (b) y = -  
1
3

 x +
7
3

  

43. (a) y = -  
2
3

 x + 3 (b) y =
3
2

 x -
7
2

  

45. (a) 3187.5; 42,000 (b) 9.57 years 
 (c) 3187.5t + 42,000 = 74,000; t = 10.04 (d) 12 years  
47. 32,000 ft  

49. m =
3
8

7
4
12

, so asphalt shingles are acceptable.  

51. (a) y = 0.321x - 19902 + 3.8 
   (b) $8.6 trillion (c) $13.4 trillion 
   (d) 

[1985, 2020] by [0, 15]

  

53. (a) 

[–5, 40] by [0, 10,000]

 

   (b) 

[–5, 40] by [0, 10,000]

 y = 84x + 4453

   (c) 7.813 billion  
55. 9  57. b = 5; a = 6  
59. (a) No; perpendicular lines have slopes with opposite signs. 
   (b) No; perpendicular lines have slopes with opposite signs.  
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35. x2 + 2x - 1; x ≈ 0.41  37. 1.62; -0.62  
39. t = 6 or t = 10  
41. x = 1 or x = -6  43. x = -3 or x = 1  

45. (a)  y1 = 32x + 4 (the one that begins on the x-axis) and 
y2 = x2 - 1 

   (b) y = 32x + 4 - x2 + 1 
   (c)  The x-coordinates of the intersections in Figure (a) are the 

same as the x-coordinates where the graph in Figure (b) 
crosses the x-axis.  

47. x = -2 or x = 1  49. x = 3 or x = -2  
51. x ≈ -4.56 or x ≈ -0.44 or x = 1  

53. x = -2 ± 223  55. x ≈ -2.41 or x ≈ 2.91  
57. (a)  There must be 2 distinct real zeros, because b2 - 4ac 7 0 

    implies that ±2b2 - 4ac are 2 distinct real numbers. 
   (b)  There must be 1 real zero, because b2 - 4ac = 0 implies that 

    ±2b2 - 4ac = 0, so the root must be x = -  
b
2a

. 

   (c)  There must be no real zeros, because b2 - 4ac 6 0 implies 
that ±2b2 - 4ac are not real numbers.  

59. 80 yd wide; 110 yd long  61. ≈12 ft  
63. False. Notice that 21-322 = 18, so x could also be -3.  
65. B  67. E  
69. (a) c = 2 (b) c = 4 (c) c = 5 (d) c = -1 
   (e)  There is no other possible number of solutions of this equa-

tion. For any c, the solution involves solving two quadratic 
equations, each of which can have 0, 1, or 2 solutions.  

71. 2.5 ±
1
2
213, or approximately 0.697 and 4.303  

Section P.6
Quick Review P.6

1. x + 9  3. a + 2d  5. x2 - x - 6  7. x2 - 2  
9. x2 - 2x - 1  

Exercises P.6

1. 8 + 2i  3. 13 - 4i  5. 5 - 11 + 23 2i  7. -5 + i  
9. 7 + 4i  11. -5 - 14i  13. -48 - 4i  15. 5 - 10i  
17. 4i  19. 23i  21. x = 2, y = 3  23. x = 1, y = 2  
25. 5 + 12i  27. -1 + 0i  29. 13  31. 25  

33. 
2
5

-
1
5

 i  35. 
3
5

+
4
5

 i  37. 
1
2

-
7
2

 i  

39. 
7
5

-
1
5

 i  41. x = -1 ± 2i  43. x =
7
8

±
215

8
 i  

45. False. Any complex number bi has this property.  
47. E  49. A  
51. (a) i; -1; - i; 1; i; -1; - i; 1 (b) - i; -1; i; 1; - i; -1; i; 1 
   (c) 1 
   (d)  The integer powers of i are one of four values: 1, i, -1, or - i. 

They repeat in a cyclic pattern.  
53. 1a + bi2 - 1a - bi2 = 2bi, real part is zero.  
55. 1a + bi2 # 1c + di2 = 1ac - bd2 - 1ad + bc2i =  
1ac - bd2 - 1ad + bc2i and 
1a + bi2 # 1c + di2 = 1a - bi2 # 1c - di2 =  
1ac - bd2 - 1ad + bc2i are equal.  
57. 1- i22 - i1- i2 + 2 = 0, but 1i22 - i1i2 + 2 ≠ 0. Because the 
coefficient of x in x2 - ix + 2 = 0 is not a real number, the complex 
conjugate, i, of - i need not be a solution.  

Section P.5
Exploration 1

1. 

[–1, 4] by [–5, 10]

  

3. 

[–1, 4] by [–5, 10]

 

[–1, 4] by [–5, 10]
 By this method, we have zeros at 0.79 and 2.21.  
5. The answers in parts 2, 3, and 4 are the same.  
7. 0.792893; 2.207107  

Quick Review P.5

1. 9x2 - 24x + 16  3. 6x2 - 7x - 5  5. 15x - 222  

7. 13x + 121x2 - 52  9. 
1x - 221x + 12
12x + 121x + 32  

Exercises P.5

1. x = -4 or x = 5  3. x = 0.5 or x = 1.5  

5. x = -  
2
3

 or x = 3  7. x = ±
5
2

  9. x = -4 ± A8
3

  

11. y = ±A7
2

  13. x = -7 or x = 1  

15. x =
7
2

- 211 ≈ 0.18 or x =
7
2

+ 211 ≈ 6.82  

17. x = 2 or x = 6  
19. x = -4 - 322 ≈ -8.24 or x = -4 + 322 ≈ 0.24  
21. x = -1 or x = 4  

23. -  
5
2

+
273

2
≈ 1.77 or -  

5
2

-
273

2
≈ -6.77  

25. x-intercept: 3; y-intercept: -2  
27. x-intercepts: -2, 0, 2; y-intercept: 0  
29. 

[–5, 5] by [–5, 5]

 

[–5, 5] by [–5, 5]

  

31. 

[–5, 5] by [–5, 5]

  33. 

[–5, 5] by [–5, 5]
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   (b) 

[2007, 2017] by [500, 520]

 y = - 0.751x - 20082 + 514 

   (c) 505 
   (d)  No. The model does not seem to represent all of the available 

data.  
35. 2.5  37. x = -3  39. y = 3  

41. x = 2 - 27 ≈ -0.65; x = 2 + 27 ≈ 4.65  

43. x =
1
3

 or x = -  
3
2

  45. x =
7
2

 or x = -4  

47. x =
5
2

  49. x = 0, x = 3  51. 3 ± 2i  

53. x =
3
4

-
217

4
≈ -0.28 or x =

3
4

+
217

4
≈ 1.78  

55. x = 0 or x = -  
2
3

 or x = 7  57. x ≈ 2.36  

59. 1-6, 34  
0 2 4 6 8 1022242628210

61. a-∞, 
1
3
d   63. 1-∞, -24 ∪ c-  

2
3

, ∞b   

65. 1-∞, -0.372∪ 11.37, ∞2  
67. 1-∞, -2.824 ∪ 3-0.34, 3.154   
69. 1-∞, -172∪ 13, ∞2  71. 1-∞, ∞2  
73. 1 + 3i  75. 7 + 4i  77. 25 + 0i  79. 0 + 4i  
81. (a) t ≈ 8 sec (up); t ≈ 12 sec (down). 
   (b) When t is in the interval 10, 84  or 312, 204  (approximately). 
   (c) When t is in the interval 38, 124  (approximately).  
83. (a) When w is in the interval 10, 18.54 . 
   (b) When w is in the interval 122.19, ∞2 (approximately).  

cHAPter 1
Section 1.1
exploration 1

1. 0.7  3. 0.7406  5. €135.03  

exploration 2

1. The linear model increases without bound, whereas there is a finite 
limit to human life expectancy.  
3. In 1980, the life expectancies for females and males were 74.7 and 
69.8 years, respectively, while in 1970, they were 67.8 and 64.1 years. 
This indicates that the gap in life expectancy increased by 1.2 from 
3.7 years in 1970 to 4.9 years in 1980. However, the gap in life 
 expectancy at birth between males and females narrowed slightly from 
4.8 years in 2010 to 4.6 years in 2020. There are many factors that 
contributed to this, including the progress in medicine,  healthcare, and 
GDP per capita.  

Quick review 1.1

1. 1x + 421x - 42  3. 19y + 2219y - 22  
5. 14h2 + 9212h + 3212h - 32  7. 1x + 421x - 12  
9. 12x - 121x - 52  

Section P.7
Quick review P.7

1. -2 6 x 6 5  3. x = 1 or x = -5  5. x1x - 221x + 22  

7. 
z + 5

z
  9. 

4x2 - 4x - 1
1x - 1213x - 42  

exercises P.7

1. 
28 26 24 22 0 2 4 6 8210212

 1-∞, -94 ∪ 31, ∞2  

3. 
0 1 2 3 4 5 6 7 82122

 11, 52  

5. 
0 1 2 3 4 52122232425

 1-2>3, 10>32  

7. 
28 26 24 22 0 2 4 6 8210212

 1-∞, -114 ∪ 37, ∞2  

9. 3-7, -3>24   

11. 1-∞, -52∪ a3
2

, ∞b   13. 1-∞, -22∪ a1
3

, ∞b   

15. 3-1, 04 ∪ 31, ∞2  17. 1-0.24, 4.242  

19. a-∞, -  
1
2
b ∪ a4

3
, ∞b   21. 1-∞, -1.414 ∪ 30.08, ∞2  

23. a-∞, 
1
2
b ∪ a1

2
, ∞b   25. No solution  

27. 3-2.08, 0.174 ∪ 31.19, ∞2  29. 11.11, ∞2  
31. Answers may vary: (a) x2 + 1 7 0 (b) x2 + 1 6 0 
   (c) x2 … 0 (d) 1x + 221x - 52 … 0 
   (e) 1x + 121x - 42 7 0 (f) x1x - 42 Ú 0  
33. (a) t = 4 sec (up); t = 12 sec (down). 
   (b) When t is in the interval 34, 124  
   (c) When t is in the interval 10, 44  or 312, 162  
35. Reveals the boundaries of the solution set  
37. (a) 1 in. 6 x 6 34 in. 
   (b) When x is in the interval 11, 254   
39. No more than $100,000  
41. True. The absolute value of any real number is greater than or 
equal to zero.  
43. D  45. D  47. 1-5.69, -4.112∪ 10.61, 2.192  

chapter P review exercises
1. Endpoints 0 and 5; bounded  3. 2x2 - 2x  
5. v4  7. 3.68 * 109  9. 5,000,000,000  
11. (a) $8.035 * 1011 (b) $8.663 * 1011 (c) $9.559 * 1011 
   (d) $1.0710 * 1012 (e) $1.1555 * 1012  

13. 19; 4.5  15. 1212522 + 122022 = 1214522  
17. 1x - 022 + 1y - 022 = 22, or x2 + y2 = 4  
19. Center: 1-5, -4); radius: 3  

21. (a) 220 ≈ 4.47, 280 ≈ 8.94, 10 

   (b) 122022 + 128022 = 20 + 80 = 100 = 102  

23. a = 7; b = 9  25. y + 1 = -  
2
3

 1x - 22  

27. y =
4
5

 x - 4.4  29. y = 4  31. y = -  
2
5

 x -
11
5

  

33. (a) 

[2007, 2017] by [500, 520]
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43. 

[–5, 5] by [–10, 10]

   x ≈ 1.77  

exercises 1.1

1. (d)(q)  3. (a)(p)  5. (e)(l)  7. (g)(t)  9. (i)(m)  
11. (a)  Increasing steadily until 2000, then leveling off. It has slightly 

decreased since 2000. (b) 1975 to 1980  
13. Women 1+2, Men 1□2 

[–5, 55] by [30, 90]

  

15. Males: y = -0.254x + 83.4; females: y = 0.418x + 37.7  
17. The female data follow a linear model fairly well until 1995, but the 
lack of growth from 1995 to 2010 makes a linear model less likely. Possi-
ble explanations for the obvious change in the trend after 1995 will vary.
19. (a) and (b) L3

9.6965 10.324
9.7981 10.531
10.049 10.819
10.122 11.009
10.170 11.174

  

21. Square stones  

23. y = 1.2t2  25. The lower line shows the minimum salaries 
because they are lower than the average salaries.  27. Year 15. 
There is a drop in the average salary right after the 1994 strike.  

29. ±A13
3

  31. -1; 4  33. -1.5; 4  

35. -  
7
2
±
2105

2
  37. 5  

39. 

[–10, 10] by [–10, 10]

   x ≈ 3.91  

41. 

[–10, 10] by [–10, 10]

   x ≈ 1.33 or x = 4  

45. 

[–4, 4] by [–10, 10]

x ≈ -1.47

47. (a) $46.94 (b) 210 mi  
49. (a) y = 1x20021>200 = x200>200 = x1 = x for all x Ú 0. 
   (b) 

[0, 1] by [0, 1]

 (c) Yes 

   (d)  For values of x close to 0, x200 is so small that the grapher is 
unable to distinguish x200 from zero. Thus, the grapher 
returns a value of 01>200 = 0 rather than x.  

51. (a) -3 or 1.1 or 1.15 (b) -3  
53. Let n be any integer. n2 + 2n = n1n + 22, which is either the 
product of two odd integers or the product of two even integers. The 
product of two odd integers is odd. The product of two even integers  
is a multiple of 4 because each even integer in the product contributes  
a factor of 2 to the product. Therefore, n2 + 2n is either odd or a 
 multiple of 4.  
55. False; a product is zero if at least one factor is zero.  
57. C  59. B  
61. (a) March (b) $120 
   (c) June, after three months of poor performance 
   (d) About $2000 
   (e)  After reaching a low in June, the stock climbed back to a price 

near $140 by December. LaToya’s shares had gained $2000 
by that point. 

   (f)  Any graph that decreases steadily from March to December 
would favor Ahmad’s strategy over LaToya’s.  

63. (a) Subscribers Average Monthly Bill

 

[–2, 16] by [60, 425]

 

[–2, 16] by [43, 53]

 

   (b) y = 17.9x + 109.5 
   (c) Subscribers
 

[–2, 16] by [60, 425]

  The line appears to fit the data 
fairly well.

   (d)  There appears to be a clear oscillation from below the line to 
above the line and back below the line over time. Statisticians 
would describe this as a pattern in the residuals, and it would 
cause them to question the appropriateness of the linear 
model. 

   (e)  The average monthly bill begins a downward trend in 2005 
that continues until 2011. It then spikes up before declining 
again. The downward trend corresponds to the data points  
in the subscriber graph that are above the trend line. The 
 economic law of supply and demand predicts that such 
 oscillations in the marketplace will occur.  

Section 1.2
exploration 1

1. From left to right, the tables are (c) constant, (b) decreasing, and 
(a) increasing.  3. Positive; negative; 0  

Quick review 1.2

1. x = ±4  3. x 6 10  5. x = 16  
7. x 6 16  9. x 6 -2, x Ú  3  

exercises 1.2

1. Function  3. Not a function; y has two values for each positive 
value of x.  5. Yes  7. No  9. 1-∞, ∞2  
11. 1-∞, -32∪ 1-3, 12∪ 11, ∞2  
13. 1-∞, 02∪ 10, 52∪ 15, ∞2  15. 1-∞, -12∪ 1-1, 44   
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45.  Local maximum: y ≈ 9.16 at x ≈ -3.20.  
Local minimum: y = 0 at x = 0 and y = 0 at x = -4.

 

[–5, 5] by [0, 80]

  

47. Even  49. Even  51. Neither  53. Odd  
55. y = 1; x = 1  
57. y = -1; x = 3  59. y = 1; x = 1; x = -1  
61. y = 0; x = 2  63. (b)  65. (a)  
67. (a)  The graph of y = ƒ1x2 crosses the  

horizontal asymptote at 10, 02.

[–4.7, 4.7] by [–3.1, 3.1]

 

   (b)  The graph of y = g1x2 crosses the  
horizontal asymptote at 10, 02.

[–6, 6] by [–1, 1]

 

   (c)  The graph of y = h1x2 intersects the  
horizontal asymptote at 10, 02.

[–6, 6] by [–1, 1]

  

69. (a)  The vertical asymptote is x = 0, and this function is 
 undefined at x = 0 (because a denominator can’t be zero). 

   (b) 

[–6, 6] by [–2, 2]

 

 Add a point of the form 10, b2. 
   (c) Yes  
71. True; this is the definition of the graph of a function.  
73. B  75. C  
77. (a)  

[–3, 3] by [–2, 2]

 k = 1 

17. 1-∞, 104   19. 1-∞, -12∪ 30, ∞2  
21. Yes, nonremovable 
   

[–10, 10] by [–10, 10]

  
23. Yes, nonremovable 
  

[–10, 10] by [–2, 2]

  

25. Local maxima at 1-1, 42 and 15, 52, local minimum at 12, 22. The 
function increases on 1-∞, -14 , decreases on 3-1, 24 , increases on 
32, 54 , and decreases on 35, ∞2.  
27. 1-1, 32 and 13, 32 are neither, 11, 52 is a local maximum, and 
15, 12 is a local minimum. The function increases on 1-∞, 14 , 
decreases on 31, 54 , and increases on 35, ∞2.  
29.  Decreasing on 1-∞, -24 ;  

increasing on 3-2, ∞2

[–10, 10] by [–2, 18]

  

31.  Decreasing on 1-∞, -2];  
constant on 3-2, 14; increasing 
on 31, ∞2

 

[–10, 10] by [0, 20]

  

33. Increasing on 1-∞, 14 ; decreasing on 31, ∞2
 

[–4, 6] by [–25, 25]

  

35. Bounded  37. Bounded below  39. Bounded  
41. ƒ has a local minimum of y = 3.75 at x = 0.5. It has no maximum.

 

[–5, 5] by [0, 36]

  

43.  Local minimum: y ≈ -4.09 at x ≈ -0.82.  
Local maximum: y ≈ -1.91 at x ≈ 0.82.

 

[–5, 5] by [–50, 50]
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41. (a) Increasing on 32, ∞2; decreasing on 1-∞, 24  
   (b) Neither (c) Minimum of 0 at x = 2 
   (d) Absolute value function, shifted 2 units right  
43. y = 2, y = -2  
45. 

x

y

5

5

No points of discontinuity  

77. (b) 
x

1 + x2 6 1 3 x 6 1 + x2 3 x2 - x + 1 7 0; but the 

     discriminant of x2 - x + 1 is negative 1-32, so the graph 
never crosses the x-axis on the interval 10, ∞2. (c) k = -1 

   (d) 
x

1 + x2 7 -1 3 x 7  -1 - x2 3 x2 + x + 1 7 0; but the 

     discriminant of x2 + x + 1 is negative 1-32, so the graph 
never crosses the x-axis on the interval 1-∞, 02.  

79. (a) (b) (c) (d) (e) Answers vary.  
81. (a) (b) (c) (d) Answers vary.  
83. (a) 2. It is in the range. 
   (b) 3. It is not in the range. 
   (c) h1x2 is not bounded above. 
   (d) 2. It is in the range. 
   (e) 1. It is in the range.  
85. Because ƒ is odd, ƒ1-x2 = -ƒ1x2 for all x. In particular, 
ƒ1-02 = -ƒ102. This is equivalent to saying that ƒ102 = -ƒ102, and 
the only number that equals its opposite is 0. Therefore ƒ102 = 0, 
which means the graph must pass through the origin.  
87. (a)  ƒ is continuous on 3-2, 44 ; the maximum value is 13, which 

occurs at x = 4, and the minimum value is -3, which occurs 
at x = 0. 

   (b)  ƒ is continuous on 31, 54 ; the maximum value is 1, which 
occurs at x = 1, and the minimum value is 0.2, which occurs 
at x = 5. 

   (c)  ƒ is continuous on 3-4, 14 ; the maximum value is 5, which 
occurs at x = -4, and the minimum value is 2, which occurs 
at x = -1. 

   (d)  ƒ is continuous on 3-4, 44 ; the maximum value is 5, which 
occurs at both x = -4 and x = 4, and the minimum value is 
3, which occurs at x = 0.  

Section 1.3
Exploration 1

1. ƒ1x2 = 1>x, ƒ1x2 = ln x  
3. ƒ1x2 = 1>x, ƒ1x2 = ex, ƒ1x2 = 1>11 + e-x2  
5. No. There is a removable discontinuity at x = 0.  

Quick Review 1.3

1. 59.34  3. 7 - p  5. 0  7. 3  9. -4  

Exercises 1.3

1. (e)  3. (j)  5. (i)  7. (k)  9. (d)  11. (l)  
13. Ex. 8  15. Ex. 7, 8  17. Ex. 2, 4, 6, 10, 11, 12  
19. y = x, y = x3, y = 1>x, y = sin x  
21. y = x2, y = 1>x, y = 0 x 0   
23. y = 1>x, y = ex, y = 1>11 +  e-x2  
25. y = 1>x, y = sin x, y = cos x, y = 1>11 + e-x2  
27. y = x, y = x3, y = 1>x, y = sin x  
29. Domain: 1-∞, ∞2; Range: 3-5, ∞2  
31. Domain: 1-6, ∞2; Range: 1-∞, ∞2  
33. Domain: 1-∞, ∞2; Range: all integers  
35. (a) Increasing on 310, ∞2 (b) Neither 
   (c) Minimum value of 0 at x = 10 
   (d) Square root function, shifted 10 units right  
37. (a) Increasing on 1-∞, ∞2 (b) Neither (c) None 
   (d) Logistic function, stretched vertically by a factor of 3  
39. (a) Increasing on 30, ∞2; decreasing on 1-∞, 04  
   (b) Even (c) Minimum of -10 at x = 0 
   (d) Absolute value function, shifted 10 units down  

47. 

x

y

5

5

No points of discontinuity  

49. 

x

y

5

5

No points of discontinuity  

51. 

x

y

5

5

x = 0  

53. (a) 

[–5, 5] by [–5, 5]

 g1x2 = 0 x 0  

   (b) ƒ1x2 = 2x2 = 2 0 x 0 2 = 0 x 0 = g1x2  

55. (a) 

[–5, 5] by [–5, 5]

 ƒ1x2 = x 

   (b)  The fact that ln1ex2 = x shows that the natural logarithm 
function takes on arbitrarily large values. In particular, it takes 
on the value L when x = eL.  

57. Domain: 1-∞, ∞2; Range: all integers; Continuity: There is a dis-
continuity at each integer value of x; Increasing>decreasing behavior: 
constant on intervals of the form 3k, k + 12, where k is an integer; 
Symmetry: none; Boundedness: not bounded; Local extrema: every 
noninteger is both a local minimum and a local maximum; Horizontal 
asymptotes: none; Vertical asymptotes: none; End behavior: 
int1x2S -∞ as x S -∞ and int1x2S ∞ as x S ∞.  59. True; 
the asymptotes are x = 0 and x = 1.  61. D  63. E  
65. (a) Even (b) Even (c) Odd  
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g1ƒ1x22 = 21 - x4; 3-1, 14   21. ƒ1g1x22 =
3x
2

; 

1-∞, 02∪ 10, ∞2; g1ƒ1x22 =
2x
3

; 1-∞, 02∪ 10, ∞2  

23. One possibility: ƒ1x2 = 2x and g1x2 = x2 - 5x  
25. One possibility: ƒ1x2 = 0 x 0  and g1x2 = 3x - 2  
27. One possibility: ƒ1x2 = x5 + 2 and g1x2 = x - 3  

29. One possibility: ƒ1x2 = cos x and g1x2 = 2x  

31. V =
4
3

 pr3 =
4
3

 p148 + 0.03t23; 775,734.6 in.3   

33. t ≈ 3.63 sec  35. 13, -12  37. y = 225 - x2 and 

y = -225 - x2  39. y = 2x2 - 25 and y = -2x2 - 25  
41. y = 1 - x and y = x - 1  43. y = x and y = -x or y = 0 x 0  
and y = - 0 x 0   45. False; x is not in the domain of 1ƒ>g21x2 if 
g1x2 = 0.  47. C  49. E  
51. 

67. (a)  Pepperoni count ought to be proportional to the area of the 
pizza, which is proportional to the square of the radius. 

   (b) 0.75 (c) Yes, very well 
   (d)  The fact that the pepperoni count fits the expected quadratic 

model so perfectly suggests that the pizzeria uses such a 
chart. If repeated observations produced the same results, 
there would be little doubt.  

69. (a)  ƒ1x2 = 1>x, ƒ1x2 = ex, ƒ1x2 = ln x, ƒ1x2 = cos x, 
ƒ1x2 = 1>(1 + e-x2 

   (b) ƒ1x2 = x (c) ƒ1x2 = ex (d) ƒ1x2 = ln x 
   (e) The odd functions: x, x3, 1>x, sin x  

Section 1.4
Exploration 1

ƒ g ƒ ∘ g

2x - 3
x + 3

2
x

0 2x + 4 0 1x - 221x + 22
2

x22x x2 0 x 0
x5 x0.6 x3

x - 3 ln1e3x2 ln x

2 sin x cos x
x
2

sin x

1 - 2x2 sinax
2
b cos x

Quick Review 1.4

1. 1-∞, -32∪ 1-3, ∞2  3. 1-∞, 54   
5. 31, ∞2  7. 1-∞, ∞2  9. 1-1, 12  

Exercises 1.4

1. 1ƒ + g21x2 = 2x - 1 + x2; 1ƒ - g21x2 = 2x - 1 - x2; 
1ƒg21x2 = 12x - 121x22 = 2x3 - x2. There are no restrictions on 
any of the domains, so all three domains are 1-∞, ∞2.  

3. 1ƒ + g21x2 = 2x + sin x; 1ƒ - g21x2 = 2x - sin x; 

1ƒg21x2 = 2x sin x. Domain in each case is 30, ∞2.  

5. 1ƒ>g21x2 =
2x + 3

x2  ; x + 3 Ú 0 and x ≠ 0, so the domain is 

3-3, 02∪ 10, ∞2. 1g>ƒ21x2 =
x22x + 3

 ; x + 3 7 0, so the domain 

is 1-3, ∞2.  

7. 1ƒ>g21x2 = x2>21 - x2; 1 - x2 7 0, so x2 6 1; the domain is 

1-1, 12. 1g>ƒ21x2 = 21 - x2>x2; 1 - x2 Ú 0 and x ≠ 0; the 
domain is 3-1, 02∪ 10, 14 .  
9. 

[0, 5] by [0, 5]

  11. 5; -6  13. 8; 3  

15. ƒ1g1x22 = 3x - 1; 1-∞, ∞2; g1ƒ1x22 = 3x + 1; 1-∞, ∞2  

17. ƒ1g1x22 = x - 1; 3-1, ∞2; g1ƒ1x22 = 2x2 - 1; 
1-∞, -14 ∪ 31, ∞2  19. ƒ1g1x22 = 1 - x2; 3-1, 14 ; 

ƒ g D

ex 2 ln x 10, ∞2
1x2 + 222 2x - 2 32, ∞2
1x2 - 222 22 - x 1-∞, 24

1

1x - 122
x + 1

x
x ≠ 0

x2 - 2x + 1 x + 1 1-∞, ∞2

ax + 1
x
b

2 1
x - 1

x ≠ 1

  
53. (a) g1x2 = 0 (b) g1x2 = 1 (c) g1x2 = x  

55. 

[–9.4, 9.4] by [–6.2, 6.2]

   
y =

-x2 ± 2x4 + 20
2

  

Section 1.5
Exploration 1

1. T starts at -4, at the point 1-8, -32. It stops at T = 2, at the point 
18, 32. 61 points are computed.  3. The graph is less smooth 
because the plotted points are further apart.  5. The grapher skips 
directly from the point 10, -12 to the point 10, 12, corresponding to 
the T-values T = -2 and T = 0. The two points are connected by a 
straight line, hidden by the Y-axis.  7. Leave everything else the 
same, but change Tmin back to -4 and Tmax to -1.  

Quick Review 1.5

1. y =
1
3

 x + 2  3. y = ±2x - 4  5. y =
3x + 2
1 - x

  

7. y =
4x + 1
x - 2

  9. y = x2 - 3, y Ú -3, and x Ú 0  
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23. One-to-one

x

y

5

3

  

  (c) 

[–5, 5] by [–3, 3]

  

7. (a) 19, -52, 14, -42, 11, -32, 10, -22, 11, -12, 14, 02, 19, 12 
  (b) x = 1y + 222; it is not a function. 
  (c) 

[–1, 5] by [–5, 1]

  

9. (a) No (b) Yes  11. (a) Yes (b) Yes  

13. ƒ -11x2 =
1
3

 x + 2, 1-∞, ∞2  

15. ƒ -11x2 =
x + 3
2 - x

, 1-∞, 22∪ (2, ∞2  

17. ƒ -11x2 = x2 + 3, 30, ∞2  19. ƒ -11x2 = 23 x, 1-∞, ∞2  
21. ƒ -11x2 = x3 - 5, 1-∞, ∞2  

25. One-to-one
  

27. ƒ1g1x22 = 3 c 1
3

 1x + 22 d - 2 = x + 2 - 2 = x; 

g1ƒ1x22 =
1
3

 313x - 22 + 24 =
1
3

 13x2 = x  

29. 
ƒ1g1x22 = 31x - 121>343 + 1 = 1x - 121 + 1 = x - 1 + 1 = x; 
g1ƒ1x22 = 31x3 + 12 - 141>3 = 1x321>3 = x1 = x  
31. 

ƒ1g1x22 =

1
x - 1

+ 1

1
x - 1

= 1x - 12a 1
x - 1

+ 1b = 1 + x - 1 = x; 

g1ƒ1x22 =
1

x + 1
x

- 1
= § 1

x + 1
x

- 1
¥ # x

x
=

x
x + 1 - x

=
x
1

= x  

33. (a) 225 euros 

   (b) x =
y

0.9
=

10
9

 y. This converts euros 1y2 to dollars 1x2.
   (c) $40  
35. y = ex and y = ln x are inverses. If we restrict the domain of the 
function y = x2 to the interval 30, ∞2, then the restricted function and 

y = 2x are inverses.  37. y = 0 x 0   39. True. All the ordered 
pairs swap domain and range values.  41. E  43. C  
45. Answers can vary: 
   (a)  If the graph of ƒ is unbroken, its reflection in the line y = x 

will be also. 
   (b)  Both ƒ and its inverse must be one-to-one in order to be 

inverse functions. 
   (c)  Since ƒ is odd, 1-x, -y2 is on the graph whenever 1x, y2 is. 

This implies that 1-y, -x2 is on the graph of ƒ -1 whenever 
1y, x2 is. That implies that ƒ -1 is odd. 

   (d)  Let y = ƒ1x2. Since the ratio of ∆y to ∆x is positive, the ratio 
of ∆x to ∆y is positive. Any ratio of ∆y to ∆x on the graph of 
ƒ -1 is the same as some ratio of ∆x to ∆y on the graph of ƒ, 
hence positive. This implies that ƒ -1 is increasing.  

47. (a) y = 0.75x + 31 

   (b) y =
4
3

 1x - 312. It converts scaled scores to raw scores.  

49. (a) No (b) No (c) 45°; yes  
51. When k = 1, the scaling function is linear. Opinions on which is 
the best value of k will vary.  

Section 1.6
Exploration 1

1. They raise or lower the parabola along the y-axis.  3. Yes  

Exploration 2

1. Graph C. Points with positive y-coordinates remain unchanged,  
and points with negative y-coordinates are reflected across the 
x-axis.  3. Graph F. The graph will be a reflection across the 
y-axis of graph C.  

Exploration 3

1. 

[–4.7, 4.7] by [–1.1, 5.1]

  The 1.5 and the 2 stretch the graph 
vertically; the 0.5 and the 0.25 shrink 
the graph vertically.  

Quick Review 1.6

1. 1x + 122  3. 1x + 622  5. 1x - 5>222  
7. x2 - x + 2  9. x3 - 6x + 5  

Exercises 1.6

1. Vertical translation down 3 units  3. Horizontal translation left 
4 units  5. Horizontal translation to the right 100 units  
7. Horizontal translation to the right 1 unit, and vertical translation up 
3 units  9. Reflection across x-axis  11. Reflection across 
y-axis  13. Vertically stretch by 2.  15. Horizontally stretch by 
1

0.2
= 5, or vertically shrink by 0.23 = 0.008.  

17. Translate right 6 units to get g.  19. Translate left 4 units, and 
reflect across the x-axis to get g.  

Exercises 1.5

1. 16, 92  3. 115, 22  
5. (a) 1-6, -102, 1-4, -72, 1-2, -42, 10, -12, 12, 22, 14, 52, 16, 82 
  (b) 1.5x - 1; it is a function. 
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   (b)  Change the y-value by multiplying by the conversion rate 
from dollars to renminbi, a number that changes according to 
international market conditions. This results in a vertical 
stretch by the conversion rate.  

67. (a)  The original graph is on the left; the graph of y = 0 ƒ1x2 0  is 
on the right.

[–5, 5] by [–10, 10]

 

[–5, 5] by [–10, 10]

 

   (b)  The original graph is on the left; the graph of y = ƒ1 0 x 0 2 is 
on the right.

[–5, 5] by [–10, 10]

 

[–5, 5] by [–10, 10]

 

   
(c) y

x

 (d) y

x

  

Section 1.7
exploration 1

1. 

n = 3;  d = 0

 

n = 4;  d = 2

 

n = 5;  d = 5

 

n = 6;  d = 9

21. 
y

f g

h

x

10

6–2

  
23. 

y

h

f

g

x

3

6–6

–6

  

25. ƒ1x2 = 2x + 5  

27. ƒ1x2 = -2x + 2 + 3 = 3 - 2x + 2  
29. (a) -x3 + 5x2 + 3x - 2 (b) -x3 - 5x2 + 3x + 2  

31. (a) y = -ƒ1x2 = -123 8x2 = -223 x 

   (b) y = ƒ1-x2 = 23 81-x2 = -223 x  
33. Let ƒ be an odd function; that is, ƒ1-x2 = -ƒ1x2 for all xin the 
domain of ƒ. To reflect the graph of y = ƒ1x2 across the y-axis, we 
make the transformation y = ƒ1-x2. But ƒ1-x2 = -ƒ1x2 for all x in 
the domain of ƒ, so this transformation results in y = -ƒ1x2. That is 
exactly the translation that reflects the graph of ƒ across the x-axis, so 
the two reflections yield the same graph.  
35. 

x

y   37. 

x

y   

39. (a) 2x3 - 8x (b) 27x3 - 12x  
41. (a) 2x2 + 2x - 4 (b) 9x2 + 3x - 2  
43. Starting with y = x2, translate right 3 units, vertically stretch by 
2, and translate down 4 units.  45. Starting with y = x2, horizon-

tally shrink by 
1

3
 and translate down 4 units.  

47. y = 31x - 422  49. y = 2 0 x + 2 0 - 4  
51. y

x
–5

–5

5

5

  53. y

x

–5

–5

5

5

  

55. Reflections have more effect on points that are farther away from 
the line of reflection. Translations affect the distance of points from 
the axes, and hence change the effect of the reflections.  

57. First vertically stretch by 
9

5
, then translate up 32 units.  

59. False; it is translated left.  61. C  63. A  
65. (a) 

[0, 15] by [3.5, 6]
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   (f)  You should recommend stringing the rackets; fewer strung 
rackets need to be sold to begin making a profit (because the 
intersection of y2 and y4 occurs for smaller x than the  
intersection of y1 and y3).  

51. (a) 

[0, 22] by [100, 200]

 

   (b)  List L3 = 5112.3, 106.5, 101.5, 96.6, 92.0, 87.2,
83.1, 79.8, 75.0, 71.7, 68.0, 64.1, 61.5, 58.5, 
55.9, 53.0, 50.8, 47.9, 45.2, 43.26  

   (c) y = 118.07 * 0.951x. It fits the data extremely well.  

chapter 1 review exercises
1. d  3. i  5. b  7. g  9. a  

11. (a) [1, 4] (b) [23, 26]  
13. (a) [0, 1) (b) [0, ∞) or all nonnegative numbers since the 
square root of a number cannot be negative  
15. (a) All real numbers (b) 38, ∞2  
17. (a) All real numbers except 0 and 2 
   (b) All real numbers except 0  
19. Continuous  
21. (a) Vertical asymptotes at x = 0 and x = 5 (b) y = 0  
23. (a) None (b) y = 7 and y = -7  
25. 1-∞, ∞2  27. 1-∞, -12, 1-1, 12, 11, ∞2  
29. Not bounded  31. Bounded above  
33. (a) None (b) -7, at x = -1  
35. (a) -1, at x = 0 (b) None  
37. Even  39. Neither  41. 1x - 32>2  43. 2>x  
45. 

[–5, 5] by [–5, 5]

  47. 

[–5, 5] by [–5, 5]

  

49. 

[–5, 5] by [–5, 5]

  51. 

[–5, 5] by [–5, 5]

  

53. 1 ƒ ∘ g21x2 = 2x2 - 4; 1-∞, -24 ∪ 32, ∞2  

55. 1ƒ ∘ g21x2 = 2x1x2 - 42; 30, ∞2  

57. lim
xS∞

 2x = ∞  59. ps2>2  

61. 100ph  63. 40 - t>150p2  
65. (a) 

[0, 12] by [640, 3260]

 

 

n = 7;  d = 14

 

n = 8;  d = 20

 

n = 9;  d = 27

 

n = 10;  d = 35

3. Linear: r2 = 0.9758; power: r2 = 0.9903; quadratic: R2 = 1; cubic: 
R2 = 1; quartic: R2 = 1  5. Since the quadratic curve fits the points 
perfectly, there is nothing to be gained by adding a cubic term or a quar-
tic term. The coefficients of these terms in the regressions are zero.

Quick review 1.7

1. h = 21A>b2  3. h = V>1pr22  

5. r = A3 3V

4p
  7. h =

A - 2pr2

2pr
=

A

2pr
- r  

9. P =
A

11 + r>n2nt = A11 + r>n2-nt  

exercises 1.7

1. 3x + 5  3. 0.17x  5. 1x + 1221x2  7. 1.045x  
9. 0.60 x  11. Let C be the total cost and n be the number of items 
produced; C =  34,500 + 5.75n.  13. Let R be the revenue and n 
be the number of items sold: R = 3.75n.  15. V =  2pr3  

17. A = a2215>4  19. A = 24r2  
21. x + 4x = 620; x = 124; 4x = 496  
23. 1.035x = 36,432; x = 35,200  25. 88t = 352, so t = 4 hr.  
27. 0.601332 = 19.8, 0.751272 = 20.25; the $33 shirt is a better bar-
gain because the sale price is cheaper.  29. 228.57%  
31. (a) 0.10x + 0.451100 - x2 = 0.2511002 
   (b)  Use about 57.14 gal of the 10% solution and about 42.86 gal 

of the 45% solution.  
33. (a) V = x110 - 2x2118 - 2x2 (b) 10, 52 
   (c) Approx. 2.06 in. by 2.06 in.  35. 6 in.  37. Approx. 
21.36 in.  39. Approx. 11.42 mph  41. True; the correlation 
coefficient is close to 1 or -1 if there is a good fit.  43. C  45. B  
47. (a) C = 100,000 + 30x (b) R = 50x 
   (c) x = 5000 pairs of shoes 
   (d)  The point of intersection corresponds to the break-even point, 

where C = R.  
49. (a) y1 = u1x2 = 125,000 + 23x 
   (b) y2 = s1x2 = 125,000 + 31x 
   (c) y3 = Ru1x2 = 56x (d) y4 = Rs1x2 = 79x 
   (e) 

[0, 10,000] by [0, 500,000]

 

1. (continued)
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   (b)  The regression curve is y = 25.34x2 - 122.22x + 1117.38. 

[0, 12] by [640, 3260]

  The fit is almost unbelievably good for an economic time 
graph based on real data. We did not, however, make these 
numbers up. 

   (c) 5650  

67. (a) h = 223 - r2 

 

3

3 3h
2

r r

h

3 – r2h = 2

 

   (b) 2pr223 - r2 (c) 30, 234  
   (d) 

[0,    3] by [0, 20]

 

   (e) 12.57 in.3  

Chapter 1 Modeling Project

1. 

[4, 37] by [–3000, 25000]

  3. 33,105  

5. The logistic model is y =
28162

1 + 2745e-0.296x . The fit to the data is 

amazingly good.

[4, 37] by [–3000, 25000]

  

CHAPTER 2
Section 2.1
Exploration 1

1. -$2000>year  3. $50,000; $18,000  

Quick Review 2.1

1. y = 8x + 3.6  
3. y = -0.6x + 2.8 
  y

7

x
5

(3, 1)
(22, 4)

5. x2 + 6x + 9  7. 3x2 - 36x + 108  9. 21x - 122  

Exercises 2.1

1. Not a polynomial function because of the exponent -5  
3. Polynomial of degree 5 with leading coefficient 2   5. Not a 
polynomial function because it cannot be simplified into polynomial form

9. ƒ1x2 = -  
4
3

 x +
2
3

y

10

x
10

(–4, 6)

(–1, 2)

  

7. ƒ1x2 =
5
7

 x +
18
7

y

5

x
3

(2, 4)

(–5, –1)

  
11. ƒ1x2 = -x + 3

y

5

x
5

(0, 3)

(3, 0)

  

13. (a)  15. (b)  17. (e)  

19. Translate the graph of y = x2 3 units right and the result 2 units 
down.

x

y

10

10
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21. Translate the graph of y = x2 2 units left, vertically shrink the 

resulting graph by a factor of 
1
2

, and translate that graph 3 units down.

x

y

10

10

  
23. Vertex: 11, 32; axis: x = 1  25. Vertex: 18, -72; axis: x = 8  

27. Vertex: a-  
7
10

, -  
169
20
b ; axis: x = -  

7
10

; ƒ1x2 = 5ax +
7
10
b

2

-
169
20

29. Vertex: 14, 192; axis: x = 4; ƒ1x2 = -1x - 422 + 19  

31. Vertex: a3
5

, 
11
5
b ; axis: x =

3
5

; g1x2 = 5ax -
3
5
b

2

+
11
5

  

33.  ƒ1x2 = 1x - 222 + 2; vertex: 12, 22; axis: x = 2; opens upward; 
does not intersect x-axis

 [–4, 6] by [0, 20]   
35.  ƒ1x2 = -1x + 822 + 74; vertex: 1-8, 742; axis: x = -8;  

opens downward; intersects x-axis at roughly -16.602 and 0.602, 

 or 1-8 ± 2742

 [–20, 5] by [–100, 100]   

37. ƒ1x2 = 2ax +
3
2
b

2

+
5
2

;

   vertex: a-  
3
2

, 
5
2
b ; axis: x = -  

3
2

; opens upward; does not intersect 

   x-axis; vertically stretched by 2

 [–3.7, 1] by [2, 5.1]   

39. y = 21x + 122 - 3  41. y = -21x - 122 + 11  
43. y = 21x - 122 + 3  
45. Strong positive  47. Weak positive  
49. (a) 

[15, 45] by [20, 50]

 (b) Strong positive  

51. $940  
53. (a) The scatter plot shows evidence of a linear relationship. 
   (b)  y = 20.58 + 0.1175x. The slope suggests that fuel economy 

has been increasing at an average rate of about 0.1175 mpg 
per year. 

   (c) 24.1 mpg  
55. (a) 30, 1004  by 30, 10004  is one possibility. 
   (b) Either 107,335 units or 372,665 units  
57. 3.5 ft  
59. (a) R1x2 = 126,000 - 1000x210.50 + 0.05x2 
   (b) 

[0, 15] by [10,000, 17,000]

 (c) 90.>can; $16,200  

61. (a) About 215 ft above the field 
   (b) About 6.54 sec (c) About 117 ft>sec downward  
63. (a) h = -16t2 + 80t - 10

[0, 5] by [–10, 100]

 

 (b) 90 ft; 2.5 sec  
65. y ≈ 0.3221x2 + 3.853x + 108.557; 2009  
67. (a) 

[15, 45] by [20, 40]

  The relationship is approximately 
linear. 

   (b) y ≈ 0.68x + 9.01 

   (c) On average, the children gained 0.68 lb>month. 

   (d) 

[15, 45] by [20, 40]

 (e) ≈  29.41 lb  

69. (a) 

[0, 2] by [0, 500]

 (b)  Vertically stretch by 385.2, 
or horizontal shrink by  
1>385.2.  

71. (a) 

[0, 3] by [0, 120]

 (b)  Reflect in the x-axis, verti-
cally stretch by 16, and 
shift up 100 ft.  
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73. The Identity Function ƒ1x2 = x

 [–4.7, 4.7] by [–3.1, 3.1]

  Domain: 1-∞, ∞2; Range: 1-∞, ∞2; Continuous; Increasing for 
all x; Symmetric about the origin;

  Not bounded; No local extrema; No horizontal or vertical asymp-
totes; End behavior: lim

xS-∞ ƒ(x) = -∞, lim
xS∞ ƒ(x) = ∞  

75. False. The initial value is ƒ102 = -3.  77. E  79. B  
81. (a) (i), (iii), and (v) because they are slant lines. 
   (b) (i), (iii), (iv), (v), and (vi) because they are not vertical. 
   (c) (ii) is not a function because it is vertical.  
83. The line that minimizes the sum of the squares of the vertical dis-
tances to the points in a scatter plot is nearly always different from the line 
that minimizes the sum of the squares of the horizontal distances. For the 
data in Table 2.2, the regression line obtained from reversing the ordered 
pairs has a slope of -1>15,974.90, whereas the inverse of the function in 
Example 3 has a slope of -1>15,358.93—close but not the same slope.

85. (a) The two solutions are 
-b + 2b2 - 4ac

2a
 

    and 
-b - 2b2 - 4ac

2a
; their sum is 2a-  

b
2a
b = -  

b
a

. 

   (b) The product of the two solutions given above is 

    
b2 - (b2 - 4ac)

4a2 =
c
a

.  

87. aa + b
2

, -  
1a - b22

4
b   

89. Suppose ƒ1x2 = mx + b with m and b constants and m ≠ 0. Let x1 
and x2 be real numbers with x1 ≠ x2. Then the average rate of change of ƒ is 
ƒ1x22 - ƒ1x12

x2 - x1
=
1mx2 + b2 - 1mx1 + b2

x2 - x1
=

m1x2 - x12
x2 - x1

= m, 

a nonzero constant. On the other hand, suppose m and x1 are constants 
and m ≠ 0. Let x be a real number with x ≠ x1 and let ƒ be a 

function defined on all real numbers such that 
ƒ1x2 - ƒ1x12

x - x1
= m. 

Then ƒ1x2 - ƒ1x12 = m1x - x12 and ƒ1x2 = mx + 1ƒ1x12 - mx12. 
Notice that the expression ƒ1x12 - mx1 is a constant; call it b. Then 
ƒ1x12 - mx1 = b; so, ƒ1x12 = mx1 + b and ƒ1x2 = mx + b for all 
x ≠ x1. Thus ƒ is a linear function.  

Section 2.2
exploration 1

1. 

[–5, 5] by [–15, 15]  

[–20, 20] by [–200, 200]

[–2.35, 2.35] by [–1.5, 1.5]

Quick review 2.2

1. 23 x2  3. 1>d2  5. 1>25 q4  7. 3x3>2  9. ≈  1.71x-4>3  

exercises 2.2

1. Power = 5, constant = -  
1

2
  3. Not a power function  

5. Power = 1, constant = c2  7. Power = 2, constant =
g

2
  

9. Power = -2, constant = k  11. Degree = 0, coefficient = -4  
13. Degree = 7, coefficient = 7  15. Degree = 3, coefficient = 9p 
17. A = kr2  19. I = V>R  21. E = mc2  
23. The weight w of an object varies directly with its mass m, with the 
constant of variation g.  
25. The refractive index n of a medium is inversely proportional to v, 
the velocity of light in the medium, with constant of variation c, the 
velocity of light in free space.  
27.  Power = 4, constant = 2; Domain: 1-∞, ∞2; Range: 30, ∞2; 

Continuous; Decreasing on 1-∞, 02. Increasing on 10, ∞2; Even. 
Symmetric with respect to y-axis; Bounded below, but not above;

  Local minimum at x = 0; Asymptotes: none; End behavior: 
 lim

xS-∞
 2x4 = ∞, lim

xS∞
 2x4 = ∞.

 [–5, 5] by [–1, 49]   

29. Power =
1

4
, constant =

1

2
; Domain: 30, ∞2;

 Range: 30, ∞2; Continuous; Increasing on 30, ∞2;
 Bounded below; Neither even nor odd; Local minimum at 10, 02; 
 Asymptotes: none; End behavior: lim

xS∞
 
1

2
 24 x = ∞.

 [–1, 99] by [–1, 4]   

31. Shrink vertically by 
2

3
; ƒ is even.

 [–5, 5] by [–1, 19]   
33. Stretch vertically by 1.5 and reflect over the x-axis; ƒ is odd.

 [–5, 5] by [–20, 20]   

The pairs 10, 02, 11, 12 and 1-1, -12 are common to all three graphs.  
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35. Shrink vertically by 
1
4

; ƒ is even.

 [–5, 5] by [–1, 49]   
37. (g)  39. (d)  41. (h)  

43. k = 3, a =
1
4

. ƒ is increasing in Quadrant I. ƒ is undefined for 

x 6 0.  45. k = -2, a =
4
3

. ƒ is decreasing in Quadrant IV. ƒ is 

even.  47. k =
1
2

, a = -3. ƒ is decreasing in Quadrant I. ƒ is odd.  

49. y =
8

x2, power = -2, constant = 8  51. 2.21 L  

53. 1.24 * 108 m>sec  
55. (a) 

[–2, 71] by [50, 450]

 (b) r ≈ 231.204 # w-0.297 

59. False, because ƒ1-x2 = 1-x21>3 = -x1>3 = -ƒ1x2. The graph of 
ƒ is symmetric about the origin.  61. E  63. B  

65. (a) 

[0, 1] by [0, 5] [0, 3] by [0, 3] [–2, 2] by [–2, 2]

  The graphs of ƒ1x2 = x-1 and h1x2 = x-3 appear  
in the first and third quadrants only. The graphs of 
g1x2 = x-2 and k1x2 = x-4 appear in the first and 
second quadrants only. The pair 11, 12 is common to 
all four functions.

  ƒ g h k

Domain x ≠ 0 x ≠ 0 x ≠ 0 x ≠ 0

Range y ≠ 0 y 7 0 y ≠ 0 y 7 0

Continuous on its domain on its domain on its domain on its domain

Increasing   1-∞, 02   1-∞, 02
Decreasing 1-∞, 02, 10, ∞2 10, ∞2 1-∞, 02, 10, ∞2 10, ∞2
Symmetry w.r.t. origin w.r.t. y-axis w.r.t. origin w.r.t. y-axis

Bounded not below not below

Extrema none none none none

Asymptotes x-axis, y-axis x-axis, y-axis x-axis, y-axis x-axis, y-axis

End behavior lim
xS ±∞

 ƒ(x) = 0 lim
xS ±∞

 g(x) = 0 lim
xS ±∞

 h(x) = 0 lim
xS ±∞

 k1x2 = 0

 
   (b) 

[0, 1] by [0, 1] [0, 3] by [0, 2] [–3, 3] by [–2, 2]

  The graphs of ƒ1x2 = x1>2 and h1x2 = x1>4 appear 
in the first quadrant only. The graphs of g1x2 = x1>3 
and k1x2 = x1>5 appear in the first and third quad-
rants only. The pairs 10, 02 and 11, 12 are common 
to all four functions.

55. (c) 

[–2, 71] by [50, 450]

 (d)  Approximately 37.67  
beats>min, which is very 
close to Clark’s observed 
value  

57. (a) 

[0.8, 3.2] by [–0.3, 9.2]

 (b) y ≈ 7.932 # x-1.987; yes. 

   (c) 

[0.8, 3.2] by [20.3, 9.2]

 (d)  Approximately 2.76 W>m2 
and 0.697 W>m2, respectively  
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3. Shift y = x3 to the left by 1 unit, vertically shrink by 
1
2

, reflect over 

the x-axis, and then vertically shift up 2 units. y-intercept: a0, 
3
2
b

x

y

5

5

  
5. Shift y = x4 to the left 2 units, vertically stretch by 2, reflect over 
the x-axis, and vertically shift down 3 units. y-intercept: 10, -352

x

y

5

40

  
7. Local maximum: ≈  10.79, 1.192; zeros: x = 0 and x ≈ 1.26.  
9. (c)  11. (a)  

69. If ƒ1x2 is even, g1-x2 = 1>ƒ1-x2 = 1>ƒ1x2 = g1x2. If ƒ1x2 is 
odd, g1-x2 = 1>ƒ1-x2 = 1>1-ƒ1x22 = -1>ƒ1x2 = -g1x2. If 
g1x2 = 1>ƒ1x2, then ƒ1x2 # g1x2 = 1 and ƒ1x2 = 1>g1x2. So by the 
reasoning used above, if g1x2 is even, so is ƒ1x2, and if g1x2 is odd, so 
is ƒ1x2.  
71. (a)  The force F acting on an object varies jointly as the mass m of 

the object and the acceleration a of the object. 
   (b)  The kinetic energy KE of an object varies jointly as the mass 

m of the object and the square of the velocity v of the object. 
   (c)  The force of gravity F acting on two objects varies jointly as 

their masses m1 and m2 and inversely as the square of the dis-
tance r between their centers, with the constant of variation G, 
the universal gravitational constant.  

Section 2.3
exploration 1

1. (a) ∞; -∞ (b) -∞; ∞ (c) ∞; -∞ (d) -∞; ∞  
3. (a) -∞; ∞ (b) -∞; -∞ (c) ∞; ∞ (d) ∞; -∞  

exploration 2

1. y = 0.0061x3 + 0.0177x2 - 0.5007x + 0.9769  

Quick review 2.3

1. 1x - 421x + 32  3. 13x - 221x - 32  
5. x13x - 221x - 12  7. x = 0, x = 1  
9. x = -6, x = -3, x = 1.5  

exercises 2.3

1. Shift y = x3 to the right by 3 units, stretch vertically by 2.  
y-intercept: 10, -542

x

y

10

10

  

65. (b) (continued)

ƒ g h k

Domain 30, ∞2 1-∞, ∞2 30, ∞2 3-∞, ∞2
Range 30, ∞2 1-∞, ∞2 30, ∞2 1-∞, ∞2
Continuous yes yes yes yes

Increasing 30, ∞2 1-∞, ∞2 30, ∞2 1-∞, ∞2
Decreasing

Symmetry none w.r.t. origin none w.r.t. origin

Bounded below not below not

Extrema min at 10, 02 none min at 10, 02 none

Asymptotes none none none none

End behavior lim
xS∞

 ƒ1x2 = ∞ lim
xS∞

 g1x2 = ∞ lim
xS∞

 h1x2 = ∞ lim
xS∞

 k1x2 = ∞
    lim

xS-∞
 g1x2 = -∞   lim

xS-∞
 k1x2 = -∞

  
67. T ≈ a1.5. Squaring both sides shows that approximately T2 = a3.  

15. One possibility:

 [–50, 50] by [–200, 200]   

13. One possibility:

 [–100, 100] by [–150, 150]   
17. 

[–5, 3] by [–8, 3]

 lim
xS∞ ƒ1x2 = ∞; lim

xS-∞
 ƒ1x2 = -∞  
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45. 

[–3, 3] by [–10, 10]

 -2.47, -1.46, 1.94  

47. 

[–6, 4] by [–100, 20]

 -4.90, -0.45, 1, 1.35  

49. 0, -6, and 6  51. -5, 1, 11  
53. ƒ1x2 = x3 - 5x2 - 18x + 72  
55. ƒ1x2 = x3 - 4x2 - 3x + 12  
57. y = 0.25x3 - 1.25x2 - 6.75x + 19.75  
59. y = -2.21x4 + 45.75x3 - 339.79x2 + 1075.25x - 1231  
61. It follows from the Intermediate Value Theorem.  
63. (a) 

[0, 60] by [–10, 210]

 (b) y = 0.051x2 + 0.97x + 0.26 

   (c) 

[0, 60] by [–10, 210]

 (d) ≈  56.39 ft (e) 67.74 mph  

65. (a) 

[0, 0.8] by [0, 1.20]

 (b)  0.3391 cm  

67. 0 6 x … 0.929 or 3.644 … x 6 5  69. True. Because ƒ is 
continuous and ƒ112 = -2 and ƒ122 = 2, the Intermediate Value The-
orem assures us that the graph of ƒ crosses the x-axis between x = 1 
and x = 2.  71. C  73. B  75. The figure at left shows the 
end behavior and a zero of x ≈ 9, but hides the other four zeros. The 
figure at right shows zeros near -2, -1, 1, and 3, but hides the fifth 
zero and the end behavior.  77. The exact behavior near x = 1 is 
hard to see. A zoomed-in view around the point 11, 02 suggests that 
the graph just touches the x-axis at 0 without actually crossing it—that 
is, 11, 02 is alocal maximum. One possible window is 30.9999, 1.00014  
by 3-1 * 10-7, 1 * 10-74 .  79. A maximum and minimum are 
not visible in the standard window, but can be seen on the window 
30.2, 0.44  by 35.29, 5.34 .  81. The graph of y = 31x3 - x2 
increases, then decreases, then increases; the graph of y = x3 only 
increases. Therefore, this graph cannot be obtained from the graph of 
y = x3 by translations, reflections, and stretching/shrinking. Because 
the right side includes only these transformations, there can be no 
solution.  

19. 

[–8, 10] by [–120, 100]

 lim
xS∞ ƒ1x2 = -∞; lim

xS-∞
 ƒ1x2 = ∞  

21. 

[–5, 5] by [–14, 6]

 lim
xS∞ ƒ1x2 = ∞; lim

xS-∞
 ƒ1x2 = ∞  

23. 

[–3, 5] by [–50, 50]

 lim
xS∞ ƒ1x2 = ∞; lim

xS-∞
 ƒ1x2 = ∞  

25. ∞, ∞  27. -∞, ∞  
29. (a) There are 3 zeros: they are -2.5, 1, and 1.1.  
31. (c) There are 3 zeros: approximately 

    -0.273 aactually -  
3
11
b , -0.25, and 1.  

33. -4 and 2  35. -
1
4

 and 
7
2

  37. 0, -  
4
7

, and 4  

39. Degree 3; zeros: x = 0 (mult. 1, graph crosses x-axis), x = 3 
(mult. 2, graph is tangent)

x

y

6

10

  
41. Degree 5; zeros: x = 1 (mult. 3, graph crosses x-axis), x = -2 
(mult. 2, graph is tangent)

y

10

–10

x
–5 5

  

43. 

[–3, 2] by [–10, 10]

 -2.43, -0.74, 1.67  
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37. Numbers in last line—2, 2, 7, 19—are nonnegative, so 3 is an 
upper bound.  39. Numbers in last line—1, 1, 3, 7, 2—are nonneg-
ative, so 2 is an upper bound.  41. Numbers in last line—3, -7, 8, 
-5—have alternating signs, so –1 is a lower bound.  43. Numbers 
in last line—1, -4, 7, -2—have alternating signs, so 0 is a lower bound.  
45. No zeros outside window  47. There are zeros not shown 

1approx. -11.002 and 12.0032.  49. Rational zero: 
3
2

; irrational 

zeros: ±22  51. Rational: -3; irrational: 1 ± 23  

53. Rational: -1 and 4; irrational: ±22  55. Rational: -  
1
2
 and 4; 

irrational: none  57. $36.27; 54  59. -2  
61. (a)  4 is an upper bound because the numbers in the last line of 

synthetic division are nonnegative: 1, 6, 13, 39, 184. Simi-
larly, -5 is a lower bound because the numbers in the last line 
of synthetic division alternate in sign: 1, -3, 4, -33, 203.

   (b) 2 is a zero of ƒ1x2 (c) 1x - 221x3 + 4x2 - 3x - 192 
   (d) One irrational zero is x ≈ 2.04. 
   (e) ƒ1x2 ≈ 1x - 221x - 2.0421x2 + 6.04x + 9.31162  
63. False. 1x + 22 is a factor if and only if ƒ1-22 = 0.  
65. A  67. B  

69. (a) Volume of buoy =
4
3

 pr3 =
4
3

 p # 1123 =
4
3

 p 

   (b) 
4
3

 p # d
4

=
pd
3

 

   (c) V # d =
px
6

# 13r2 + x22 # d = pd # x13r2 + x22>6 

   (d) x ≈ 0.6527 m  
71. (a)  Shown is one possible view, on the window 30, 6004  by 

30, 5004 . 

[0, 600] by [0, 500]

   (b) The maximum population, after 300 days, is 460 turkeys. 
   (c) P = 0 when t ≈ 523.22—about 523 days after release. 
   (d) Answers will vary.  
73. (a) 0 or 2 positive zeros, 1 negative zero 
   (b) No positive zeros, 1 or 3 negative zeros 
   (c) 1 positive zero, no negative zeros 
   (d) 1 positive zero, 1 negative zero  
75. Answers will vary, but should include a diagram of the synthetic 
division and a summary: 

4x3 - 5x2 + 3x + 1 = ax -
1
2
b a4x2 - 3x +

3
2
b +

7
4

 

= 12x - 12a2x2 -
3
2

 x +
3
4
b +

7
4

  

77. (a) (b) -  
7
3

, 
1
2

, and 3 

   (c) There are no rational zeros.  
79. (a) Approximate zeros: -3.126, -1.075, 0.910, 2.291 
   (b)  g1x2 = 1x + 3.12621x + 1.07521x - 0.91021x - 2.2912 is 

an approximate factorization of ƒ1x2. 
   (c)  Graphically: Graph ƒ1x2 and g1x2 in a variety of windows to 

observe that the graphs are nearly congruent. Numerically: 
Compute ƒ1c2 and g1c2 for several values of c.  

83. (a)  Substituting x = 2, y = 7, we find that 7 = 512 - 22 + 7, 
so Q is on line L, and also ƒ122 = -8 + 8 + 18 - 11 = 7, 
so Q is on the graph of ƒ1x2. 

   (b) 

[1.8, 2.2] by [6, 8]

 

   (c) The line L also crosses the graph of ƒ1x2 at 1-2, -132.  

85. (a) 
8

D - u
=

x
D

 and 
8
u

=
y

D
 imply D - u =

uy

x
 ; 

8
u

=
y - 8

D - u
 

     implies D - u =
u1y - 82

8
. Combining these yields 

     
uy

x
=

u1y - 82
8

, which implies 
8
x

=
y - 8

y
. 

   (b) Equation (a) says 
8
x

= 1 -
8
y
. So, 

8
y

= 1 -
8
x

=
x - 8

x
. 

     Thus y =
8x

x - 8
. 

   (c)  By the Pythagorean Theorem, y2 + D2 = 900 and 
x2 + D2 = 400. Subtracting equal quantities yields 

    y2 - x2 = 500. So, 500 = a 8x
x - 8

b
2

- x2. Thus, 

     500 1x - 822 =  64x2 - x21x - 822, or 
500x2 - 8000x + 32000 = 64x2 - x4 + 16x3 - 64x2. This 
is equivalent to x4 - 16x3 + 500x2 - 8000x + 32,000 = 0. 

   (d)  Notice that 8 6 x 6 20. So, the solution we seek is 
x ≈ 11.71, which yields y ≈ 25.24 and D ≈ 16.21.  

Section 2.4
Quick review 2.4

1. x2 - 4x + 7  3. 7x3 + x2 - 3  5. x1x + 221x - 22  
7. 41x + 521x - 32  9. 1x + 221x + 121x - 12  

exercises 2.4

1. ƒ1x2 = 1x - 122 + 2; 
ƒ1x2

x - 1
= x - 1 +

2
x - 1

  

3. ƒ1x2 = 1x2 + x + 421x + 32 - 21; 
ƒ1x2

x + 3
= x2 + x + 4 -

21
x + 3

  

5. ƒ1x2 = 1x2 - 4x + 1221x2 + 2x - 12 - 32x + 18; 
ƒ1x2

x2 + 2x - 1
= x2 - 4x + 12 +

-32x + 18

x2 + 2x - 1
  

7. x2 - 6x + 9 +
-11

x + 1
  9. 2x2 - 10x - 3 -

4
x + 5

  

11. -5x3 - 20x2 - 80x - 316 +
-1265
4 - x

  13. 3  15. -43  

17. 5  19. Yes  21. No  23. Yes  
25. ƒ1x2 = 1x + 321x - 1215x - 172  

27. 2x3 - 6x2 - 12x + 16  29. 2x3 - 8x2 +
19
2

 x - 3  

31. ƒ1x2 = 31x + 421x - 321x - 52  

33. 
±1

±1, ±2, ±3, ±6
 ; 1  35. 

±1, ±3, ±9

±1, ±2
 ; 

3
2
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   (b)  11 + i27 = 8 - 8i 
11 + i28 = 16 
11 + i29 = 16 + 16i 
11 + i210 = 32i 

   (c) Reconcile as needed.  
61. ƒ1i2 = i3 - i1i22 + 2i1i2 + 2 = - i + i - 2 + 2 = 0  
63. Synthetic division shows that ƒ1i2 = 0 (the remainder), and at the 
same time gives ƒ1x2 , 1x - i2 = x2 + 3x - i = h1x2, so 

ƒ1x2 = 1x - i21x2 + 3x - i2.  65. 2, -1 + 23 i, -1 - 23 i  

Section 2.6
Exploration 1

Section 2.5
Exploration 1

1. ƒ12i2 = (2i22 - i(2i2 + 2 = -4 + 2 + 2 = 0; 
ƒ1- i2 = 1- i22 - i1- i2 + 2 = -1 - 1 + 2 = 0; no.  
3. The Complex Conjugate Zeros Theorem does not necessarily hold 
true for a polynomial function with complex coefficients.  

Quick Review 2.5

1. 1 + 3i  3. 7 + 4i  5. 12x - 321x + 12  

7. 
5
2

±
219

2
 i  9. ±1, ±2, ±1>3, ±2>3  

Exercises 2.5

1. x2 + 9; zeros: ±3i; x-intercepts: none  
3. x4 - 2x3 + 5x2 - 8x + 4; zeros: 1 1mult. 22, ±2i; x-intercept: 
x = 1  5. x2 + 1  7. x3 - x2 + 9x - 9  
9. x4 - 5x3 + 7x2 - 5x + 6  11. x3 - 11x2 + 43x - 65  
13. x5 + 4x4 + x3 - 10x2 - 4x + 8  
15. x4 - 10x3 + 38x2 - 64x + 40  17. (b)  19. (d)  
21. 2 complex zeros; none real  23. 3 complex zeros; 1 real  

25. 4 complex zeros; 2 real  27. Zeros: x = 1, x = -  
1
2

±
219

2
 i;

ƒ1x2 =
1
4

 1x - 1212x + 1 + 219i212x + 1 - 219i2  

29. Zeros: x = ±1, x = -  
1
2

±
223

2
 i; 

ƒ1x2 =
1
4

 1x - 121x + 1212x + 1 + 223i212x + 1 - 223i2  

31. Zeros: x = -  
7
3

, x =
3
2

, x = 1 ± 2i;

ƒ1x2 = 13x + 7212x - 321x - 1 + 2i21x - 1 - 2i2  

33. Zeros: x = ±23, x = 1 ± i;

ƒ1x2 = 1x - 2321x + 2321x - 1 + i21x - 1 - i2  

35. Zeros: x = ±22, x = 3 ± 2i; 

ƒ1x2 = 1x - 2221x + 2221x - 3 + 2i21x - 3 - 2i2  

37. 1x - 221x2 + x + 12  39. 1x - 1212x2 + x + 32  

41. 1x - 121x + 421x2 + 12  43. h ≈ 3.776 ft  
45. Yes, ƒ1x2 = 1x + 223 = x3 + 6x2 + 12x + 8.  
47. No, either the degree would be at least 5 or some of the coeffi-
cients would be nonreal.  
49. ƒ1x2 = -2x4 + 12x3 - 20x2 - 4x + 30  
51. (a) D ≈ -0.0820t3 + 0.9162t2 - 2.5126t + 3.3779 

[–1, 9] by [0, 5]

   (b)  Sally walks toward the detector, turns and walks away (or 
walks backward), then walks toward the detector again. 

   (c)  t ≈ 1.81 sec 1D ≈ 1.35 m2 and  
t ≈ 5.64 sec 1D ≈ 3.65 m2.  

53. False. If 1 - 2i is a zero, then 1 + 2i must also be a zero.  
55. E  57. C  

59. (a) Power Real Part Imaginary Part

7 8 -8
8 16 0
9 16 16

10 0 32
 

3. k1x2 =
3

x + 4
- 2

 [–8, 2] by [–5, 5]   

1. g1x2 =
1

x - 2

 [–3, 7] by [–5, 5]   

Quick Review 2.6

1. x = -3, x =
1
2

  3. x = ±2  5. x = 1  

7. 2; 7  9. 3; -5  

Exercises 2.6

1. Domain: all x ≠ -3; lim
xS-3- ƒ1x2 = -∞, lim

xS-3+  ƒ1x2 = ∞  

3. Domain: all x ≠ -2, 2; lim
xS-2- ƒ1x2 = -∞, lim

xS-2+ ƒ1x2 = ∞, 

 lim
xS2- ƒ1x2 = ∞, lim

xS2+ ƒ1x2 = -∞  

5. Translate right 3 units. Asymptotes: x = 3, y = 0

 

x

y

5

5

  
7.  Translate left 3 units, reflect across x-axis, vertically stretch by 7, 

translate up 2 units. Asymptotes: x = -3, y = 2

 

x

y

6

10
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31. (d); Xmin = -2, Xmax = 8, Xscl = 1, and Ymin = -3, 
Ymax = 3, Yscl = 1  33. (a); Xmin = -3, Xmax = 5, Xscl = 1, 
and Ymin = -5, Ymax = 10, Yscl = 1  35. (e); Xmin = -2, 
Xmax = 8, Xscl = 1, and Ymin = -3, Ymax = 3, Yscl = 1  

37. Intercept: a0, -  
2
3
b ; asymptotes: x = -1, x =

3
2

 , y = 0; 

  lim
xS -1- ƒ1x2 = ∞, lim

xS -1+ ƒ1x2 = -∞,  lim
xS(3>2)-

 
ƒ1x2 = -∞, 

 lim
xS(3>2)+

 
ƒ1x2 = ∞;

 Domain: x ≠ -1, 
3
2

; Range: a-∞, -  
16
25
d ∪ 10, ∞2; 

 Continuity: all x ≠ -1, 
3
2

 ;

 Increasing: 1-∞, -12, a-1, 
1
4
d ; 

 Decreasing: c 1
4

, 
3
2
b , a3

2
, ∞b ; Unbounded;

 Local maximum at a1
4

, -  
16
25
b ; Horizontal asymptote: y = 0;

 Vertical asymptotes: x = -1, x =
3
2

 ; 

 End behavior: lim
xS -∞

ƒ1x2 = lim
xS∞

ƒ1x2 =  0

 [–4.7, 4.7] by [–3.1, 3.1]   

39.  Intercepts: a0, 
1
12
b , 11, 02; asymptotes: 

x = -3, x = 4, y = 0; lim
xS-3- h1x2 = -∞, lim

xS-3+ h1x2 = ∞, 

 lim
xS4- h1x2 = -∞, lim

xS4+ h1x2 = ∞
 Domain: x ≠ -3, 4; Range: 1-∞, ∞2;
 Continuity: all x ≠ -3, 4;
 Decreasing: 1-∞, -32, 1-3, 42, 14, ∞2;
 No symmetry; Unbounded; No extrema;
 Horizontal asymptote: y = 0; Vertical asymptotes: x = -3, x = 4;
 End behavior: lim

xS-∞
 h1x2 = lim

xS∞
 h1x2 = 0

 [–5.875, 5.875] by [–3.1, 3.1]   

9.  Translate left 4 units, vertically stretch by 13, translate down 2 
units. Asymptotes: x = -4, y = -2

 

x

y

6

8

  
11. ∞  13. 0  15. ∞  17. 5  
19. Vertical asymptote: none; horizontal asymptote: y = 2; 

lim
xS-∞

 ƒ1x2 = lim
xS∞

 ƒ1x2 = 2  21. Vertical asymptotes: x = 0, 

x = 1; horizontal asymptote: y = 0; lim
xS0- ƒ1x2 = ∞, lim

xS0+ ƒ1x2 = -∞, 

lim
xS1- ƒ1x2 = -∞, lim

xS1+ ƒ1x2 = ∞, lim
xS-∞

 ƒ1x2 = lim
xS∞

 ƒ1x2 = 0  

23.  Intercepts: a0, 
2
3
b  and 12, 02; asymptotes: x = -1, x = 3, and 

 y = 0

 [–4, 6] by [–5, 5]   
25. No intercepts; asymptotes: x = -1, x = 0, x = 1, and y = 0

 [–4.7, 4.7] by [–10, 10]   
27.  Intercepts: 10, 22, 1-1.28, 02, and 10.78, 02; asymptotes: x = 1, 

x = -1, and y = 2

 [–5, 5] by [–4, 6]   

29. Intercept: a0, 
3
2
b ; asymptotes: x = -2, y = x - 4

 [–20, 20] by [–20, 20]   
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41. Intercepts: 1-2, 02, 11, 02, a0, 
2
9
b ; asymptotes: 

 x = -3, x = 3, y = 1; lim
xS-3- ƒ1x2 = ∞, lim

xS-3+ ƒ1x2 = -∞, 

 lim
xS3- ƒ1x2 = -∞, lim

xS3+ ƒ1x2 = ∞
 Domain: x ≠ -3, 3; Range: 1-∞, 0.2604 ∪ 11, ∞2; 
 Continuity: all x ≠ -3, 3;
 Increasing: 1-∞, -32, 1-3, -0.6752; 
 Decreasing: 1-0.675, 32, (3, ∞2;
 No symmetry; Unbounded; Local maximum at 1-0.675, 0.2602;
 Horizontal asymptote: y = 1; Vertical asymptotes: x = -3, x = 3;
 End behavior: lim

xS-∞
 ƒ1x2 = lim

xS∞
 ƒ1x2 = 1

 [–9.4, 9.4] by [–3, 3]   

43. Intercepts: 1-3, 02, 11, 02, a0, -  
3
2
b ; asymptotes: 

 x = -2, y = x; lim
xS-2- h1x2 = ∞, lim

xS-2+ h1x2 = -∞
 Domain: x ≠ -2, Range: 1-∞, ∞2;
 Continuity: all x ≠ -2;
 Increasing: 1-∞, -22, 1-2, ∞2;
 No symmetry; Unbounded; No extrema;
 Horizontal asymptote: none; Vertical asymptote: x = -2;
  Slant asymptote: y = x; End behavior: 

lim
xS-∞

 h1x2 = -∞, lim
xS∞

 h1x2 = ∞

 [–9.4, 9.4] by [–15, 15]   
45. y = x + 3 
   (a) 

[–10, 20] by [–10, 30]

 (b) 

[–500, 500] by [–500, 500]

  

47. y = x2 - 3x + 6 
   (a) 

[–10, 10] by [–30, 60]

 (b) 

[–50, 50] by [–1500, 2500]

  

49. y = x3 + 2x2 + 4x + 6 
   (a) 

[–5, 5] by [–100, 200]

 (b) 

[–20, 20] by [–5000, 5000]

  

51. Intercept: a0, 
4
5
b ;

 Domain: 1-∞, ∞2; Range: 30.773, 14.2274 ;
 Continuity: 1-∞, ∞2; Increasing: 3-0.245, 2.4454 ;
 Decreasing: 1-∞, -0.2454 , 32.445, ∞2;
 No symmetry; Bounded;
 Local max at 12.445, 14.2272, local min at 1-0.245, 0.7732;
 Horizontal asymptote: y = 3; Vertical asymptote: none;
 End behavior: lim

xS-∞
 ƒ1x2 = lim

xS∞
 ƒ1x2 = 3

 [–15, 15] by [–5, 15]   

53. Intercepts: 11, 02, a0, 
1
2
b ;

 Domain: x ≠ 2; Range: 1-∞, ∞2; Continuity: x ≠ 2;
 Increasing: 3-0.384, 0.4424 , 32.942, ∞2;
 Decreasing: 1-∞, -0.3844 , 30.442, 22, 12, 2.9424 ;
 No symmetry; Not bounded;
  Local max at 10.442, 0.5862, local min at 1-0.384, 0.4432 and 
12.942, 25.9702; Horizontal asymptote: none;

 Vertical asymptote: x = 2;
 End behavior: lim

xS-∞
 h1x2 = lim

xS∞
 h1x2 = ∞;

 End behavior asymptote: y = x2 + 2x + 4

 [–10, 10] by [–20, 50]   
55. Intercepts: 11.755, 02, 10, 12;
 Domain: x ≠

1
2

; Range: 1-∞, ∞2; Continuity: x ≠
1
2

;

 Increasing: J-0.184, 
1
2
b , a1

2
, ∞b ;

 Decreasing: 1-∞, -0.1844 ;
 No symmetry; Not bounded;
 Local min at 1-0.184, 0.9202;
 Horizontal asymptote: none;

 Vertical asymptote: x =
1
2

;

 End behavior: lim
xS-∞

 ƒ1x2 = lim
xS∞

 ƒ1x2 = ∞;

 End behavior asymptote: y =
1
2

 x2 -
3
4

 x +
1
8

 [–5, 5] by [–10, 10]   
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57. Intercept: 10, 12;
 Vertical asymptote: x = -1;
 End behavior asymptote:
 y = x3 - x2 + x - 1

 [–5, 5] by [–30, 30]   

59. Intercepts: 11, 02, a0, -  
1
2
b ;

 Vertical asymptote: x = -2;
 End behavior asymptote:
 y = x4 - 2x3 + 4x2 - 8x + 16

 [–5, 5] by [–200, 400]   
61. Intercepts: 1-1.476, 02, 10, -22;
 Vertical asymptote: x = 1;
 End behavior asymptote: y = 2

 [–5, 5] by [–5, 5]   

63. (a) 

[0, 2 3 107] by [0, 0]

 

   (b) The graph does pass through 12.43 * 106, 3.612. 
   (c) Horizontally stretch by 2.43 * 106, vertically stretch by 3.61.  
65. (a) lim

dS∞
 g1d2 = 0 

   (b)  The acceleration will approach 0 m>sec2 as the distance d 
from Earth approaches infinity.  

67. False. 
1

x2 + 1
 is a rational function and has no vertical asymptotes.  

69. E  71. D  
73. (a)  No: the domain of ƒ is 1-∞, 32∪ 13, ∞2; the domain of g is 

all real numbers. 
   (b)  No: although it is not defined at 3, it does not tend toward 

±∞ on either side. 
   (c)  Most grapher viewing windows do not reveal that ƒ is unde-

fined at 3. 
   (d) Almost—but not quite; they are equal for all x ≠ 3.  

75. (a)  The volume is ƒ1x2 = k>x, where x is pressure and k is a con-
stant. ƒ1x2 is a quotient of polynomials and hence is rational, 
but ƒ1x2 = k # x-1, so it is a power function with constant of 
variation k and power -1. 

   (b)  If ƒ1x2 = kxa, where a is a negative integer, then the power 
function ƒ is also a rational function. 

   (c) 4.22 L  
77. Horizontal asymptotes: y = -2 and y = 2; 

 intercepts: a0, -  
3
2
b , a3

2
 , 0b ; h1x2 = d 2x - 3

x + 2
x Ú 0

2x - 3
-x + 2

x 6 0

 [–5, 5] by [–5, 5]   
79. Horizontal asymptotes: y = ±3; 

 intercepts: a0, 
5
4
b , a5

3
 , 0b ; ƒ1x2 = d 5 - 3x

x + 4
x Ú 0

5 - 3x
-x + 4

x 6 0

 [–10, 10] by [–5, 5]   

81. The graph of ƒ is the graph y =
1
x
 shifted horizontally 

-d>c units, stretched vertically by a factor of 0 bc - ad 0 >c2, reflected 
across x-axis if and only if bc - ad 6 0, and then shifted vertically 
by a>c.  

Section 2.7
Quick Review 2.7

1. 2x2 + 8x  3. LCD: 36; -  
1
36

  

5. LCD: 12x + 121x - 32; x2 - 7x - 2
12x + 121x - 32  7. 

3 ± 217
4

  

9. 
-1 ± 27

3
  

Exercises 2.7

1. x = -1  3. x = 2 or x = -7  5. x = -4 or x = 3;  
the latter is extraneous.  7. x = 2 or x = 5  9. x = 3 or x = 4  

11. x =
1
2

 or x = -1; the latter is extraneous.  

13. x = -  
1
3

 or x = 2; the latter is extraneous.  

15. x = 5 or x = 0; the latter is extraneous.  
17. x = -2 or x = 0; both are extraneous. The equation has no 
solutions.  19. x = -2  21. Both  

23. x = 3 + 22 ≈ 4.414 or x = 3 - 22 ≈ 1.586  
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25. x = 1  27. No real solutions  

29. x ≈ -3.100 or x ≈ 0.661 or x ≈ 2.439  

31. (a)  The total amount of solution is 1125 + x2 mL; of this, the 
amount of acid is x plus 60% of the original amount, or 
x + 0.611252. 

   (b) y = 0.83 (c) C1x2 =
x + 75
x + 125

= 0.83; x ≈ 169.12 mL  

33. (a) C1x2 =
3000 + 2.12x

x
 (b) 4762 hats per week 

   (c) 6350 hats per week  

35. (a) P1x2 = 2x +
364

x
 (b) x ≈ 13.49 (a square); P ≈ 53.96  

37. (a) S =
2px3 + 1000

x
 

   (b)  Either x ≈ 1.12 cm and h ≈ 126.88 cm or x ≈ 11.37 cm 
and h ≈ 1.23 cm.  

39. (a) R1x2 =
2.3x

x + 2.3
 (b) x ≈ 6.52 ohms  

41. (a) D1t2 =
4.75 + t

4.75t
 (b) t ≈ 5.74 hr  

43. (a) 

[60, 110] by [0, 50]

 (b) About 10.6 years  

45. False. An extraneous solution is a solution of the equation cleared 
of fractions that is not a solution of the original equation.  
47. D  49. E  

51. (a) ƒ1x2 =
x2 + 2x

x2 + 2x
 (b) x ≠ 0, -2 

   (c) ƒ1x2 = e 1, x ≠ -2, 0
undefined, x = -2 or x = 0

 

   (d)  The graph appears to be the horizontal line y = 1 with holes 
at x = -2 and x = 0.

[–4.7, 4.7] by [–3.1, 3.1]   

53. x =
y

y - 1
  55. x =

2y - 3

y - 2
  

Section 2.8
Exploration 1

1. (a) 
Negative Negative Positive
(+)(–)(+) (+)(–)(+) (+)(+)(+)

2–3
x

 

  (b) 

[–5, 5] by [–250, 50]

  

3. (a) 
Positive Negative Negative
(+)(+) (–)(–) (+)(+) (+)(–) (+)(+) (+)(–)

2–4
x

 

  (b) 

[–5, 5] by [–3000, 2000]

  

Quick Review 2.8

1. lim
xS∞

 ƒ1x2 = ∞; lim
xS-∞

 ƒ1x2 = -∞  

3. lim
xS∞

 g1x2 = ∞, lim
xS-∞

 g1x2 = ∞  

5. 1x3 + 52>x  7. 
x2 - 7x - 2

2x2 - 5x - 3
  

9. (a) ±1, ±
1
2

 , ±3, ±
3
2

 (b) 1x + 1212x - 321x + 12  

Exercises 2.8

1. (a) x = -2, -1, 5 (b) -2 6 x 6 -1 or x 7 5 
  (c) x 6 -2 or -1 6  x 6 5  
3. (a) x = -7, -4, 6 (b) x 6 -7 or -4 6 x 6 6 or x 7 6 
  (c) -7 6 x 6 -4  
5. (a) x = 8, -1 (b) -1 6 x 6 8 or x 7 8 (c) x 6 -1  
7. 1-1, 32∪ 13, ∞2  9. 1-∞, -12∪ 11, 22  
11. 3-2, 1>24 ∪ 33, ∞2  13. 3-1, 04 ∪ 32, ∞2  
15. 1-1, 3>22∪ 12, ∞2  17. 3-1.15, ∞2  19. 13>2, 22  
21. (a) 1-∞, ∞2 (b) 1-∞, ∞2 
   (c) There are no solutions. (d) There are no solutions.  

23. (a) x ≠
4
3

 (b) 1-∞, ∞2 

   (c) There are no solutions. (d) x =
4
3

  

25. (a) x = 1 (b) x = -  
3
2

, 4 (c) -  
3
2

6 x 6 1 or x 7 4 

   (d) x 6 -  
3
2

, or 1 6 x 6 4  

27. (a) x = 0, -3 (b) x 6 -3 (c) x 7 0 (d) -3 6 x 6 0  

29. (a) x = -5 (b) x = -  
1
2

, x = 1, x 6 -5 

   (c) -5 6 x 6 -  
1
2

 or x 7 1 (d) -  
1
2

6 x 6 1  

31. (a) x = 3 (b) x = 4, x 6 3 (c) 3 6 x 6 4 or x 7 4 
   (d) ƒ1x2 is never negative.  
33. 1-∞, -22∪ 11, 22  35. 3-1, 14   
37. 1-∞, -42∪ 13, ∞2  39. 3-1, 04  ∪ 31, ∞2  

41. 10, 22∪ 12, ∞2  43. a-4, 
1
2
b   45. 10, 22  

47. 1-∞, 02∪ 123 2, ∞2  49. 1-∞, -12∪ 31, 32  
51. 3-3, ∞2  53. 35, ∞2  55. Answers will vary; can be 
solved graphically, numerically, and algebraically: 3-3.5, ∞2  
57. 1 in. 6 x 6 34 in.  59. 0 in. … x … 0.69 in. or 
4.20 in. … x … 6 in.  
61. (a) S = 2px2 + 1000>x 
   (b) 1.12 cm … x … 11.37 cm, 1.23 cm … h … 126.88 cm 
   (c) About 348.73 cm2  
63. (a)  The scatter plot suggests a linear relationship.
 (b) y ≈ 284.398 + 2.477x (c) Shortly before the end of 2018  
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65. False, because the factor x4 does not change sign at x = 0.  
67. C  69. D  
71. Vertical asymptotes: x = -1, x = 3; 

 x-intercepts: 1-2, 02, 11, 02; y-intercept: a0, 
4
3
b

 
Negative

3–1 1–2

0 un
de

fin
ed

0 un
de

fin
ed

x

(–)(–)2

(–)(–)

Negative

(–)(+)2

(–)(–)

Positive

(–)(+)2

(–)(+)

Negative

(+)(+)2

(–)(+)

Positive

(+)(+)2

(+)(+)

 Sketch:

 

x

y

105

30

–10

–30

 Grapher:

 [–5, 5] by [–5, 5]   [0, 10] by [–40, 40]   
73. (a)   0 x - 3 0 6 1>3 1 0 3x - 9 0 6 1  

 1 0 3x - 5 - 4 0 6 1 
 1 0 ƒ1x2 - 4 0 6 1.  

   (b)  If x stays within the dashed vertical lines, ƒ1x2 will stay 
within the dashed horizontal lines. 

   (c)   0 x - 3 0 6 0.01 1 0 3x - 9 0 6 0.03  
 1 0 3x - 5 - 4 0 6 0.03 
 1 0 ƒ1x2 - 4 0 6 0.03.

      The dashed lines would be closer when x = 3 and y = 4.  
75. 0 6 a 6 b 1 a2 6 ab and ab 6 b2; so, a2 6 b2.  

chapter 2 review exercises
1. y = -x - 5 

 

[–15, 5] by [–15, 5]

  

3. Starting from y = x2, translate right 2 units and vertically stretch 
by 3 (either order), then translate up 4 units.

x

y

6

10

  

5. Vertex: 1-3, 52; axis: x = -3  7. Vertex: 1-4, 12; axis: x = -4  
9. Translate ƒ1x2 left 1, reflect over the x-axis, then stretch vertically 
by a factor of 3, and translate up 5.  
11. Translate ƒ(x) right 6, and stretch vertically by a factor of 4.  

13. y = 15>921x + 222 - 3  15. y =
1
2

 1x - 322 - 2  

17. 

[–10, 7] by [–50, 10]

  19. 

[–4, 3] by [–30, 30]

  

21. S = kr2  23. The force F needed varies directly with the dis-
tance x from its resting position, with constant of variation k.  

25. k = 4, a =
1
3

, ƒ is increasing in the first quadrant, ƒ is odd.  

27. k = -2, a = -3, ƒ is increasing in the fourth quadrant, ƒ is odd.  

29. 2x2 - x + 1 -
2

x - 3
  31. 2x2 - 3x + 1 +

-2x + 3

x2 + 4
  

33. -39  35. Yes  

41. ±1, ±2, ±3, ±6, ±
1
2

, ±
3
2

; -  
3
2

 and 2 are zeros.  

43. -2 + 2i  45. i  47. 3±2i  49. (c)  51. (b)  

53. Rational: -4, -3, 1, and 3. No irrational zeros.  
No nonreal zeros.  
55. No rational zeros. Irrational: approximately 2.48. Two nonreal zeros.

57. -4, 
1
2

, 3; ƒ1x2 = 12x - 121x + 421x - 32

59. 1, -1, 
2
3

, and -  
5
2

; ƒ1x2 = 13x - 2212x + 521x - 121x + 12  

61. ƒ1x2 = 1x - 221x2 + x + 12  

63. ƒ1x2 = 12x - 321x - 121x2 - 2x + 52  

65. x3 - 3x2 - 5x + 15  67. 6x4 - 5x3 - 38x2 - 5x + 6  

69. x4 - 4x3 - 12x2 + 32x + 64  71. Translate right 5 units 
and vertically stretch by 2 (either order), then translate down 1 unit. 
Horizontal asymptote: y = -1; vertical asymptote: x = 5.  
73. Asymptotes: y = 1, x = -1, and x = 1; intercept: 10, -12

 [–5, 5] by [–5, 5]   
75. End behavior asymptote: y = x - 7; 

 vertical asymptote: x = -3; intercept: a0, 
5
3
b

 [–25, 25] by [–30, 20]   
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77. y-intercept: a0, 
5
2
b , x-intercept: 1-2.55, 02;

 Domain: x ≠ -2; Range: 1-∞, ∞2;
 Continuity: all x ≠ -2;
 Decreasing: 1-∞, -22, 1-2, 0.824 ;
 Increasing: 30.82, ∞2;
 Unbounded; Local minimum: 10.82, 1.632;
 Vertical asymptote: x = -2;
  End behavior asymptote: y = x2 - x; 

lim
xS -∞

ƒ1x2 =  lim
xS∞

ƒ1x2 = ∞

 [–5, 5] by [–10, 20]   

79. x =
3
2

 or x = 4  81. 1-∞, -5>22∪ 1-2, 32  

83. 3-3, -22∪ 12, ∞2  85. x = -3, x =
1
2

  

87. Yes; at approximately 10.0002.  
89. (a) V = x130 - 2x2170 - 2x2 in.3 
   (b) Either x ≈ 4.57 in. or x ≈ 8.63 in.  

91. (a) V =
4
3

 px3 + px21140 - 2x2 
   (b) 

[0, 70] by [0, 1,500,000]

 

   (c) The largest volume occurs when x = 70 (so it is actually a 

     sphere). This volume is 
4
3

 p17023 ≈ 1,436,755 ft3.  

93. (a) y = 57 + 0.01357x

[0, 70] by [57, 58]

 

   (b) y = 0.0001616x2 + 0.00323x + 57.11

[0, 70] by [57, 58]

 

   (c)  Quadratic: Errors seem smaller and more random; tempera-
tures will continue to increase.  

95. (a) P1152 = 325, P1702 = 600, P11002 = 648 

   (b) y =
640
0.8

= 800 

   (c) The deer population approaches (but never equals) 800.  

97. (a) C1x2 =
50

50 + x
 

   (b) About 33.33 oz. of distilled water

[0, 50] by [0, 1]  

   (c) x =
100
3

≈ 33.33  

99. (a) S = x2 +
4000

x
 

   (b)  20 ft by 20 ft by 2.5 ft or x ≈ 7.32 ft, giving approximate 
dimensions 7.32 ft by 7.32 ft by 18.66 ft. 

   (c)  7.32 ft 6 x 6 20 ft (lower bound approximate), so y must be 
between 2.5 ft and about 18.66 ft.  

Chapter 2 Modeling Project

Answers are based on the sample data shown in the table.

1. 

[0, 1.6] by [–0.1, 1]

3. The sign of a affects the direction the parabola opens. The magni-
tude of a affects the vertical stretch of the graph. Changes to h cause 
horizontal shifts to the graph, and changes to k cause vertical shifts.
5. y ≈ -4.968x2 - 10.913x - 5.160

CHAPTER 3
Section 3.1
Exploration 1

1. 10, 12 is in common; Domain: 1-∞, ∞2; Range: 10, ∞2;  
Continuous; Always increasing; Not symmetric; No local extrema; 
Bounded below by y = 0, which is also the only asymptote; 
lim

xS∞
 ƒ1x2 = ∞. lim

xS-∞
 ƒ1x2 = 0  

Exploration 2

1. 

[–4, 4] by [–2, 8]

  3. k ≈ 0.693  

Quick Review 3.1

1. -6  3. 9  5. 1>212  7. 1>a6  9. -1.4  
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exercises 3.1

1. Not exponential, a monomial function  3. Exponential function, 
initial value of 1 and base of 6   
5. Not exponential, variable base  
7. 7  9. -1125 7  11. 3>2 # 11>22x  13. 3 # 2x>2  
15. Translate ƒ1x2 = 2x by 3 units to the right.  17. Reflect 
ƒ1x2 = 4x over the y-axis.  19. Vertically stretch ƒ1x2 = 0.5x by a 
factor of 3 and then shift 4 units up.  21. Reflect ƒ1x2 = ex across 
the y-axis and horizontally shrink by a factor of 2.  23. Reflect 
ƒ1x2 = ex across the y-axis, horizontally shrink by a factor of 3, trans-
late 1 unit to the right, and vertically stretch by a factor of 2.  
25. Graph (a) is the only graph shaped and positioned like the graph 
of y = bx, b 7 1.  27. Graph (c) is the reflection of y = 2x across 
the x-axis.  29. Graph (b) is the graph of y = 3-x translated down 
2 units.  31. Exponential decay; lim

xS∞
 ƒ1x2 = 0, lim

xS-∞
 ƒ1x2 = ∞  

33. Exponential decay; lim
xS∞

 ƒ1x2 = 0, lim
xS-∞

 ƒ1x2 = ∞  

35. x 6 0  37. x 6 0  39. y1 = y3 because 
32x+4 = 321x+22 = 1322x+2 = 9x+2.  
41. 

[–10, 20] by [–5, 15]

 y-intercept: 10, 42
 Horizontal asymptotes: y = 0, y = 12  

43. 

[–5, 10] by [–5, 20]

 y-intercept: 10, 42
 Horizontal asymptotes: y = 0, y = 16  
45. 

[–3, 3] by [–2, 8]

  Domain: 1-∞, ∞2; Range: 10, ∞2; Continuous; Always  
increasing; Not symmetric; Bounded below by y = 0, which  
is also the only asymptote; No local extrema; 
lim

xS∞
 ƒ1x2 = ∞; lim

xS-∞
 ƒ1x2 = 0  

47. 

[–2, 2] by [–1, 9]

 Domain: 1-∞, ∞2; Range: 10, ∞2; Continuous;
 Always increasing; Not symmetric;
 Bounded below by y = 0, which is the only asymptote;
 No local extrema; lim

xS∞
 ƒ1x2 = ∞; lim

xS-∞
 ƒ1x2 = 0  

49. 

[–3, 4] by [–1, 7]

 Domain: 1-∞, ∞2; Range: 10, 52; Continuous;
 Always increasing; Symmetric about 10.69, 2.52;
  Bounded below by y = 0 and above by y = 5, both of which are 

asymptotes;
 No local extrema; lim

xS∞
 ƒ1x2 = 5; lim

xS-∞
 ƒ1x2 = 0  

51. In 2010  53. In 2009  55. In 1982  
57. (a) 100 (b) ≈6394  
59. False. If a 7 0 and 0 6  b 6 1, then ƒ1x2 = a # bx is  decreasing. 
61. E  63. A  
65. (a) 

[–5, 5] by [–2, 5]

 Domain: 1-∞, ∞2; Range: c-  
1
e
, ∞b ;

 Decreasing on 1-∞, -14 ; Increasing on 3-1, ∞2;
 Bounded below by y = -  

1
e
; Local minimum at a-1, -  

1
e
b ;

 Asymptote: y = 0; lim
xS∞

 ƒ1x2 = ∞; lim
xS-∞

 ƒ1x2 = 0 

 (b) 

[–3, 3] by [–7, 5]

  Domain: 1-∞, 02∪ 10, ∞2; Range: 1-∞, -e4 ∪ 10, ∞2;
  Increasing on 1-∞, -14 ; Decreasing on 3-1, 02∪ 10, ∞2;
  Not bounded; Local maximum at 1-1, -e2;
  Asymptotes: x = 0, y = 0; lim

xS∞
 g1x2 = 0; lim

xS-∞
 g1x2 = -∞  

67. (a)  64; generation 6 
 (b) y = 2n+2 
 (c) 256 
 (d) 227 = 134,217,728 
 (e)  It takes roughly 750 years to span 25 generations. Therefore, 

you could be directly related to about one-third of the world’s 
population in 1250, but you likely are directly related to far 
fewer, due to intermarriage of distant cousins.  

69. c = 2a: to the graph of 12a2x apply a vertical stretch by 2b because 
ƒ1ax + b2 = 2ax+b = 2ax2b = 12b212a2x.  71. a 6 0, c = 1  
73. a 7 0 and 0 6 b 6 1, or a 6 0 and b 7 1.  

Section 3.2
Quick review 3.2

1. 0.15  3. 23 # 1.07  5. ±2  7. 1.01  9. 0.61  
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Quick Review 3.3

1. 1>25 = 0.04  3. 1>5 = 0.2  5. 32  7. 51>2  9. e-1>2  

Exercises 3.3

1. 1  3. 5  5. 2>3  7. 18  9. -4  11. 1>5  13. 3
15. -1  17. 1>4  19. 3  21. 0.5  23. 6  
25. ≈0.975  27. Undefined  29. ≈1.399  
31. Undefined  33. 100  35. 0.1  37. (d)  39. (a)  

53. 

[–1, 9] by [–3, 3]

  Domain: 12, ∞2; Range: 1-∞, ∞2; 
 Continuous; Always increasing; 
 Not symmetric; Not bounded; 
 No local extrema; 
 Asymptote at x = 2; lim

xS∞ ƒ1x2 = ∞  

Exercises 3.2

1. Exponential growth, 9%  3. Exponential decay, 3.2%  
5. Exponential growth, 100%  7. 7 # 1.19x  9. 11 # 0.4x  
11. 42,600 # 0.985x  13. 18 # 1.052x  15. 0.6 # 2x>3  
17. 592 # 2-x>6  19. 2.3 # 1.25x  21. ≈4 # 1.15x  
23. 40>11 + 3 # 11>32x2  25. ≈128>11 + 7 # 0.844x2  

27. 
20

1 + 3 # 0.58x  29. In 2017  

31. (a) 12,315; 24,265 (b) 1967  

33. (a) y = 6.6 a1
2
b

t>14

, where t is time in days 

 (b) After roughly 38 days  
35. One possible answer: Exponential and linear functions are similar 
in that they are always increasing or always decreasing. However, the 
two functions vary in how quickly they increase or decrease. Although 
a linear function will increase or decrease at a steady rate over a given 
interval, the rate at which exponential functions increase or decrease 
over a given interval will vary.  37. One possible answer: From the 
graph, we see that doubling time for this model is 4 years. This is the time 
required to grow from 50,000 to 100,000, from 100,000 to 200,000, or 
from any population size to twice that size. Regardless of the population 
size, it takes 4 years for it to double.  39. When t = 1; every hour  
41. 2.14 lb>in.2  43. About 10.346 million. Logistic regression 
would fit the data better and yield a more accurate prediction.
45. (a) 16 (b) About 14 days (c) In about 17 days  
47. About 336.5 million  49. Model matches.  51. False. This 
holds true for logistic growth, not exponential.  53. C  55. D  
57. (a) About 327.2 million 
 (b) Overestimates actual population by 4.1 million. 
 (c) Logistic model  

59. sinh1-x2 =
e-x - e-1-x2

2
= -

ex - e-x

2
= -sinh1x2  

61. (a) 
sinh1x2
cosh1x2 =

1ex - e-x2>2
1ex + e-x2>2 =

ex - e-x

ex + e-x = tanh1x2 

 (b) tanh1-x2 =
sinh1-x2
cosh1-x2 =

-sinh1x2
cosh1x2 = - tanh1x2 

 (c)  ƒ1x2 = 1 + tanh 1x2
   = 1 +

ex - e-x

ex + e-x =
ex + e-x

ex + e-x +
ex - e-x

ex + e-x

   =
2ex

ex + e-x
# e-x

e-x =
2

1 + e-2x , which is logistic.  

Section 3.3
Exploration 1

1.   

  [–6, 6] by [–4, 4]

41.   Starting with y = ln x:  
shift left 3 units.

[–5, 5] by [–3, 3]

  

43.   Starting with y = ln x: reflect 
across the y-axis and translate 
up 3 units.

[–4, 1] by [–3, 5]

  

49.  Starting with y = log x: 
reflect across both axes and 
vertically stretch by 2.

 [–8, 1] by [–2, 3]   

45.  Starting with y = ln x: reflect 
across the y-axis and translate 
right 2 units.

[–7, 3] by [–3, 3]

   

51.  Starting with y = log x: 
reflect across the y-axis, trans-
late right 3 units, vertically 
stretch by 2, translate down  
1 unit.

 [–5, 5] by [–4, 2]   

47.  Starting with y = log x: shift 
down 1 unit.

 [–5, 15] by [–3, 3]   
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Quick Review 3.4

1. 2  3. -2  5. x3y2  7. 0 x 0 3> 0 y 0   9. 1>13 0 u 0 2  

Exercises 3.4

1. 3 ln 2 + ln x  3. log 3 - log x  5. 5 log2 y  

7. 3 log x + 2 log y  9. 2 ln x - 3 ln y  11. 
1
4

 log x -
1
4

 log y  

13. log xy  15. ln 1y>32  17. log 23 x  19. ln 1x2 y32  
21. log 1x4y>z32  23. 2.8074  25. 2.4837  27. -3.5850  
29. ln x>ln 3  31. ln 1a + b2>ln 2  33. log x>log 2  
35. - log 1x + y2>log 2  37. Let x = logb R and y = logb S. 

Then 
R
S

=
bx

by = bx-y. So logb aR
S
b = x - y = logb R - logb S.  

39.  Starting with g1x2 = ln x: vertically shrink by a factor of  
1

ln 4
≈ 0.72.

 

[–1, 10] by [–2, 2]

  

41.  Starting with g1x2 = ln x: reflect across the x-axis, then vertically   

shrink by a factor of 
1

ln 3
≈ 0.91.

 

[–1, 10] by [–2, 2]

  

43. (b): 3-5, 54  by 3-3, 34 , with Xscl = 1 and Yscl = 1  
45. (d): 3-2, 84  by 3-3, 34 , with Xscl = 1 and Yscl = 1  
47. 

[–1, 9] by [–1, 7]

 Domain: 10, ∞2; Range: 1-∞, ∞2; Continuous;
 Always increasing; Asymptote: x = 0; lim

xS∞ ƒ1x2 = ∞  

49. 

[–10, 10] by [–2, 3]

 Domain: 1-∞, 02∪ 10, ∞2; Range: 1-∞, ∞2;
 Discontinuous at x = 0; Decreasing on interval 1-∞, 02;
 Increasing on interval 10, ∞2; Asymptote: x = 0; 
 lim

xS∞ ƒ1x2 = ∞; lim
xS-∞

 ƒ1x2 = ∞  

51. (a) 0 (b) 10 (c) 60 (d) 80 (e) 100 (f) 120  
53. ≈9.66 lumens  55. Vertical stretch by a factor of roughly 0.9102

ƒ1x2 3x log3 x

Domain 1-∞, ∞2 10, ∞2
Range 10, ∞2 1-∞, ∞2
Intercepts 10, 12 11, 02
Asymptotes y =  0 x =  0

71. b = e2e: 1e, e2  73. Reflect across the x-axis  
75. 110-11, 12 for bels and 110-11, 102 for decibels  

Section 3.4
Exploration 1

1. 0.90309 = 0.30103 + 0.60206  3. 0.90309 = 3 * 0.30103  
5. 1.20412; 1.50515; 1.80618  

Exploration 2

1. False  3. True  5. False  7. False  

[–6, 6] by [–4, 4]   

55. 

[–2, 8] by [–3, 3]

 Domain: 11, ∞2; Range: 1-∞, ∞2;
 Continuous; Always decreasing;
 Not symmetric; Not bounded;
 No local extrema;
 Asymptote: x = 1; lim

xS∞ ƒ1x2 = -∞  

57. 

[–3, 7] by [–3, 3]

 Domain: 10, ∞2; Range: 1-∞, ∞2;
  Continuous; Always increasing on its domain; 
 Not symmetric; Not bounded;
 No local extrema;
 Asymptote: x = 0; lim

xS∞ x = ∞  

59. (a) 10 dB (b) 70 dB (c) 100 dB  
61. (a)  Magnitude 3 is 10 times more powerful than magnitude 2; 

magnitude 5 is 1000 times more powerful than magnitude 2. 
 (b) 

[0, 7] by [–100,000, 1,100,000]

 

 (c)  Ground motion y = 10x, where x is the magnitude of the 
earthquake. 

 (d)  Magnitude x = log y, where y is the ground motion of the 
earthquake. 

 (f) Yes  
63. True, by definition.  65. C  67. B  
69. 
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65. (a)

57. True, by the product rule for logarithms  59. B  61. A  
63. (a) y = 2.75x5.0 (b) 49,616 
 (c) ln1x2 1.39  1.87  2.14  2.30

ln1y2 7.94 10.37 11.71 12.52

[0, 3] by [0, 15]  

log1w2 -0.70 -0.52 0.30 0.70 1.48 1.70 1.85

log1r2   2.62   2.48 2.31 2.08 1.93 1.85 1.86

[–1, 2] by [1.6, 2.8]  

 (b) log r = 1-0.302 log w + 2.36 
 (c) 

[–1, 2] by [1.6, 2.8]

 

 (d) Roughly 36.6 beat>min. Yes.
 (e)  One possible answer: Consider the power function y = a # xb. 

Then log y = log 1a # xb2 = log a + log xb =
log a + b log x = b1log x2 +  log a, which is clearly a linear 
function of the form ƒ1t2 = mt + c, where m = b, 
c = log a, ƒ1t2 = log y, and t = log x. As a result, there is a 
linear relationship between log y and log x.  

67. Let x = 25 4581. Then log x =
1
5

 log 4581 ≈ 3.666 , 5 =

0.7322. Thus, x ≈ 5.40.  69. 31.26, 14.774   71. Given a, b, 
x 7 0, a ≠ 1, b ≠ 1, loga x = loga blogb x = logb x # loga b, which

yields the desired formula: logb x =
loga x

loga b
 .  

73. 

[–1, 9] by [–3, 2]

 (d) 1ln y2 = 5.00 1ln x2 + 1.01 
 (e) a ≈ 5, b ≈ 1 so ƒ1x2 = e1x5 = ex5 ≈ 2.72x5:
  The two equations are almost the same.  

Section 3.5
Exploration 1

1. 1.60206, 2.60206, 3.60206, 4.60206, 5.60206, 6.60206, 7.60206, 
8.60206, 9.60206, 10.60206  3. The decimal parts are exactly 
equal.  

Domain: 11, ∞2; Range: 1-∞, ∞2; 
Continuous; Increasing; Not 

symmetric; Vertical asymptote: 

x = 1; lim
xS∞

 ƒ1x2 = ∞; One-to-one, 

hence invertible: ƒ-11x2 = eex
  

Quick Review 3.5

1. ƒ1g1x22 = e2 ln1x1>22 = eln x = x and g1ƒ1x22 = ln1e2x21>2 =

ln1ex2 = x  3. ƒ1g1x22 =
1
3

 ln1e3x2 =
1
3
13x2 = x and 

g1ƒ1x22 = e311>3 ln x2 = eln x = x  5. 7.783 * 108 km  

7. 602,000,000,000,000,000,000,000  9. 5.766 * 1012  

Exercises 3.5

1. 10  3. 12  5. -3  7. 10,000  9. 5.25  
11. ≈24.2151  13. ≈39.6084  15. ≈-0.4055  
17. ≈4.3956  19. Domain: 1-∞, -12∪ 10, ∞2; graph (e)  
21. Domain: 1-∞, -12∪ 10, ∞2; graph (d)  23. Domain: 10, ∞2; 
graph (a)  25. x = 1000 or x = -1000  27. ±210  
29. x ≈ 3.5949  31. x ≈ ±2.0634  33. x ≈ -9.3780  
35. x ≈ 2.3028  37. 4  39. 3  41. 1.5  43. 3  
45. About 20 times greater  
47. (a) 1.26 * 10-4; 1.26 * 10-12 (b) 108 (c) 8  
49. ≈28.41 min  
51. (a) 

[0, 40] by [0, 80]

 

 (b) 

[0, 40] by [0, 80]

  T1x2 ≈ 79.47 # 0.93x 
 (c) lim

tS∞
 T1t2 = 10°C  

53. (a) 

[0, 20] by [0, 15]

 

 (b)  The scatter plot is better because it accurately represents the 
times between the measurements. The equal spacing on the 
bar graph suggests that the measurements were taken at 
equally spaced intervals, which distorts our perception of how 
the consumption has changed over time.  

55.  Logarithmic seems best—the scatterplot of 1x, y2 looks most 
 logarithmic. (The data can be modeled by y = 3 + 2 ln x.)

 

[0, 5] by [0, 7]
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57. Exponential—the scatterplot of 1x, y2 is exactly exponential. 

 aThe data can be modeled by y =
3
2

# 2x.b

 [0, 5] by [0, 30]   
59. False. The order of magnitude is its common logarithm.  
61. B  63. E  65. Logistic regression   
67. (a) As k increases, the bell curve stretches vertically. 
 (b) As c increases, the bell curve compresses horizontally.  

69. n = log 10n = logau
v
b = log u - log v; u is n orders of 

magnitude greater than v.  71. k ≈ 0.075  
73. y = cx a, where c = eb, exactly the power regression 
75. x ≈ 0.4073 or x ≈ 0.9333  77. x … -20.0855 (approx.)  
79. -1 6 x 6 5  

Section 3.6
Exploration 1

1.         A approaches a limit of about 1105.1.

Quick Review 3.6

1. 7  3. 1.8125%  5. 65%  7. 150  9. $315  

Exercises 3.6

1. $2251.10, $2130  3. $19,908.59, $18,300  5. $2122.17  
7. $86,496.26  9. $1728.31  11. $30,402.43  
13. $14,755.51  15. $70,819.63  17. $43,523.31  
19. $293.24  21. 6.63 years—round to 6 years 9 months  
23. 13.78 years—round to 13 years 10 months  25. ≈10.13%  
27. 7.07%  29. 12.14—round to 12 years 3 months  
31. 7.7016 years; $48,217.82  33. 17.33%; $127,816.26  
35. 17.42—round to 17 years 6 months  37. 15 years  
39. 9.99—round to 10 years  41. 9.90 years  43. ≈5.92,  
45. ≈4.80,  47. 5% continuously  49. $80,367.73  
51. $158.03  53. $145.74  55. $856.39  
57. (a) 22 years 2 months (b) $59,006.40  
59. One possible answer: The APR will be lower than the APY 
(except under annual compounding), so the bank’s offer looks more 
attractive when the APR is given. Assuming monthly compounding, 
the APY is about 4.594%; quarterly and daily compounding give 
approximately 4.577% and 4.602%, respectively.  

k A

10 1104.6

20 1104.9

30 1105

40 1105

50 1105.1

60 1105.1

70 1105.1

80 1105.1

90 1105.1

100 1105.1
  

61. (a)  Steve’s balance will always remain $1000 because interest is not 
added to it. Every year he receives 6% of that $1000 in inter-
est: 6% in the first year, then another 6% in the second year 
(for a total of 2 # 6% = 12%), then another 6% (totaling 
3 # 6% = 18%), etc. After t years, he has earned 6t% of the 
$1000 investment, meaning that altogether he has 
1000 + 1000 # 0.06t = 100011 + 0.06t2. 

 (b) 
Years

Not  
Compounded

Compounded

0 1000.00 1000.00

1 1060.00 1060.00

2 1120.00 1123.60

3 1180.00 1191.02

4 1240.00 1262.48

5 1300.00 1338.23

6 1360.00 1418.52

7 1420.00 1503.63

8 1480.00 1593.85

9 1540.00 1689.48

10 1600.00 1790.85
  

63. False. The limit is A = Pert = 100e0.05 ≈ $105.13.  65. B  
67. E  69. $364.38  
71. 

[0, 500] by [0, 300000]

Y = 249999.98X = 420.45455

  

73. (a) 8% (b) 12 (c) $200 (d) $23,910.86 
 (e) 

[0, 240] by [0, 70000]

Y = 23910.858
X = 240

  

Chapter 3 Review Exercises
1. -323 4  3. y = 3 # 2x>2  5. ƒ1x2 = 2-2x + 3—starting from 

2x, horizontally shrink by 
1
2
, reflect across y-axis, and translate up 3 units.  

7. ƒ1x2 = -2-3x - 3—starting from 2x, horizontally shrink by 
1
3

, reflect across y-axis, reflect across x-axis, translate down 3 units.  

9. Starting from ex, horizontally shrink by 
1
2

, then translate right 

3
2

 units—or translate right 3 units, then horizontally shrink by 
1
2

.  

11. y-intercept: 10, 12.52; Asymptotes: y = 0, y = 20  

13. Exp. decay; lim
xS∞

 ƒ1x2 = 2, lim
xS-∞

 ƒ1x2 = ∞  
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15. 

[–1, 4] by [–10, 30]
 Domain: 1-∞, ∞2; Range: 11, ∞2; Continuous;
 Always decreasing; Not symmetric;
 Bounded below by y = 1, which is also the only asymptote;
 No local extrema; lim

xS∞
 ƒ1x2 = 1; lim

xS-∞
 ƒ1x2 = ∞  

17. 

[–5, 10] by [–2, 8]

 Domain: 1-∞, ∞2; Range: 10, 62; Continuous;
 Increasing; Symmetric about 11.20, 32;
 Bounded by the asymptotes y = 0, y = 6;
 No extrema; lim

xS∞
 ƒ1x2 = 6; lim

xS-∞
 ƒ1x2 = 0  

19. ƒ1x2 = 24 # 1.053x  21. ƒ1x2 = 30,000 # 22x/15  

23. ƒ1x2 ≈ 30>11 + 1.5e-0.55x2  25. ƒ1x2 ≈
20

1 + 3e-0.37x  

27. 5  29. 1>3  31. ex = 2/3  33. y2 = xe3  
35. Translate left 4 units.  37. Translate right 1 unit, reflect across 
x-axis, and translate up 2 units.  
39. 

[–4.7, 4.7] by [–3.1, 3.1]

 Domain: 10, ∞2; Range: c-  
1
e
, ∞b ≈ 3-0.37, ∞2;

 Continuous; Decreasing on 10, 0.374 ;
 Increasing on 30.37, ∞2; Not symmetric;
 Bounded below;

 Local minimum at a1
e
, -  

1
e
b ; lim

xS∞
 ƒ1x2 = ∞  

41. 

[–5, 5] by [–5, 25]

 Domain: 1-∞, 02∪ 10, ∞2; Range: 3-0.18, ∞2;
 Discontinuous at x = 0;
 Decreasing on 1-∞, -0.614 , 10, 0.614 ;
 Increasing on 3-0.61, 02, 30.61, ∞2;
 Symmetric across y-axis; Bounded below;
 Local minima at 1-0.61, -0.182 and 10.61, -0.182;
 No asymptotes; lim

xS∞
 ƒ1x2 = ∞; lim

xS-∞
 ƒ1x2 = ∞  

43. log 4 ≈ 0.6021  45. ≈22.5171  47. y = 2  
49. 4  50. x = ± 8/5  51. ≈2.1049   
53. ≈99.5112  55. ln x>ln 2  57. log x>log 5   
59. (c)  61. (b)  63. $515.00  65. Pert  
67. €11,236  69. -0.3054  
71. P1t2 = 33.354211.01882t, P11302 ≈ 375.589 million
73. (a) 90 units (b) 32.87 units 
 (c) 

[0, 4] by [0, 90]

  

75. (a) P1t2 = 89,00010.9822t (b) 31.74 years  
77. (a) P1t2 = 20 # 2t (b) 81,920; 2.3058 * 1019 
 (c) In 9 months  
79. (a) S1t2 = S0

# 11>22t>1.5 (b) S0>2; S0>4 
 (c) 1,099,500 metric tons  
81. 6.31  83. ≈7.27 years  85. About 11 years 6 months  
87. ≈8.57%  89. ≈5.84 lumens  

91. 
1
10

6 b 6 10; 0 6 b 6
1
10

 or b 7 10  

93. (a) 16 (b) About 11 
1
2

 days (c) 8.7413—about 8 or 9 days  

95. ≈41.54 min  
97. (a) 9% (b) 4 (c) $100  
99. (a)  Grace’s balance will always remain $1000 because interest is 

not added to it. Every year she receives 5% of that $1000, in 
interest; after t years, she has been paid 5t% of the $1000 
investment, meaning that altogether she has 
1000 + 1000 # 0.05t = 100011 + 0.05t2. 

 (b) Years Not Compounded Compounded

0 1000.00 1000.00

1 1050.00 1051.27

2 1100.00 1105.17

3 1150.00 1161.83

4 1200.00 1221.40

5 1250.00 1284.03

6 1300.00 1349.86

7 1350.00 1419.07

8 1400.00 1491.82

9 1450.00 1568.31

10 1500.00 1648.72
  

Chapter 3 Modeling Project

Answers are based on the sample data shown in the table.
3. 

[–1, 6] by [0, 3]

  

5. y ≈ 2.7188 # 0.788x  7. A different ball would change the 
rebound percentage P.  9. y = Heln1P2x, so y = 2.7188e-0.238x.  
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Exploration 2

1. Let u = 60°. Then sin u =
23
2

 csc u =
223

=
223

3

cos u =
1
2

 sec u = 2

tan u = 23 ≈ 1.732  cot u =
123

=
23
3

  

3. The value of a trig function at u is the same as the value of its 
cofunction at 90° - u.  

Quick Review 4.2

1. 522  3. 6  5. 100.8 in.  7. 7.9152 km  
9. ≈1.0101 (no units)  

Exercises 4.2

1. sin u =
4
5

, cos u =
3
5

, tan u =
4
3

, csc u =
5
4

, sec u =
5
3

, cot u =
3
4

  

3. sin u =
12
13

, cos u =
5
13

, tan u =
12
5

, csc u =
13
12

, sec u =
13
5

, 

cot u =
5
12

  5. sin u =
72170

, cos u =
112170

, tan u =
7
11

, 

csc u =
2170

7
, sec u =

2170
11

, cot u =
11
7

  7. sin u =
257
11

, 

cos u =
8
11

, tan u =
257

8
, csc u =

11257
, sec u =

11
8

, cot u =
8257

  

9. cos u =
2210

7
, tan u =

3

2210
, csc u =

7
3

, sec u =
7

2210
, 

cot u =
2 210

3
  11. sin u =

426
11

, tan u =
426

5
, csc u =

11

426
, 

sec u =
11
5

, cot u =
5

426
  13. sin u =

52106
, cos u =

92106
, 

csc u =
2106

5
, sec u =

2106
9

, cot u =
9
5

  15. sin u =
32130

, 

cos u =
112130

, tan u =
3
11

, csc u =
2130

3
, sec u =

2130
11

, 

cot u =
11
3

  17. sin u =
9
23

, cos u =
827

23
, tan u =

9

827
, 

sec u =
23

827
, cot u =

827
9

  19. 
1
2

  21. 23  

23. 
22
2

  25. 22  27. 24>3 = 2>23 = 223>3  

29. ≈0.766  31. 0.943  33. 0.268  35. ≈1.179  

37. 0.810  39. 2.414  41. 30° =
p

6
  43. 60° =

p

3
  

45. 60° =
p

3
  47. 30° =

p

6
  49. 

15
sin 34°

≈ 26.82  

51. 
32

tan 57°
≈ 20.78  53. 

6
sin 35°

≈ 10.46  

55. b ≈ 33.79, c ≈ 35.96, b = 70°  
57. b ≈ 22.25, c ≈ 27.16, a = 35°  59. As u gets smaller and 
smaller, the side opposite u gets smaller and smaller, so its ratio to the 
hypotenuse approaches 0 as a limit.  61. ≈205 ft  
63. ≈74 ft2  65. ≈379 ft  67. False. This is true only  
if u is an acute angle in a right triangle.  69. E  71. D  

11.  The linear regression is y ≈ -0.253x + 1.005. Because 
ln y = 1ln P2x + ln H, the slope is ln P and the y-intercept is ln H.

 [–1, 6] by [–1.25, 1.25]   

CHAPTER 4
Section 4.1
Exploration 1

1. 2pr  3. No, not quite because the distance pr would require a 
piece of thread p times as long, and p 7 3.  

Quick Review 4.1

1. 5p in.  3. 
6
p

 m  5. (a) 47.52 ft (b) 39.77 km  

7. 88 ft>sec  9. 
p

 4
   

Exercises 4.1

1. 23.2°  3. 118.7375°  5. 21°12′  7. 118°19′12″  
9. p>4  11. 2p>3  13. ≈1.2518 rad  15. ≈1.0716 rad  
17. 30°  19. 18°  21. 140°  23. ≈114.59°  25. 90 m  
27. 6>p ft  29. 3 rad  31. 360>p cm  

33. u =
9
11

 rad and s2 = 36 cm  35. 24 in.  37. ≈5.4 in.  

39. (a) 45° (b) 22.5° (c) 247.5°  
41. ESE is closest at 112.5°.  43. ≈4.23 stat mi  
45. ≈275.02 rpm  47. ≈12,566 teeth  
49. 

4 mi

2 mi

38°

47°

  51. ≈778 naut mi  

53. (a) 16p ≈ 50.265 in. (b) 2p ≈ 6.283 ft  
55. (a) 4p rad>sec (b) 28p cm>sec (c) 7p rad>sec  
57. True. Horse A travels 2p12r2 = 212pr2 units of distance in the 
same amount of time as horse B travels 2pr units of distance, so it is 
moving twice as fast.  59. C  61. B  63. 146°43′  
65. 78°39′  67. 80 naut mi  69. 902 naut mi  
71. The whole circle’s area is pr2; the sector with central angle u 

makes up 
u

2p
 of that area, or 

u

2p
# pr2 =

1
2

 r2u.  

73. 

60 mi AB

37°

340°

  

Section 4.2
Exploration 1

1. sin and csc, cos and sec, and tan and cot  3. sec u  
5. sin u and cos u  
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73. Sine values should be increasing, cosine values should be decreas-
ing, and only tangent values can be greater than 1. Therefore, the first 
column is tangent, the second column is sine, and the third column is 
cosine.  75. The distance dA from A to the mirror is 5 cos 30°; the 
distance from B to the mirror is dB = dA - 2.

Then PB =
dB

cos b
=

dA - 2

cos 30°
= 5 -

2
cos 30°

= 5 -
423

≈ 2.69 m.  

77. One possible proof: 1sin u22 + 1cos u22 =

aa
c
b

2

+ ab
c
b

2

=
a2

c2 +
b2

c2 =
a2 + b2

c2 =
c2

c2 = 1 

1Pythagorean Theorem: a2 + b2 = c2.2  

Section 4.3
Exploration 1

1. The side opposite u in the triangle has length y and the hypotenuse 

has length r. Therefore, sin u =
opp

hyp
=

y

r
.  3. tan u = y>x  

Exploration 2

1. The x-coordinates on the unit circle lie between-1 -1 and 1, and 
cos t is always an x-coordinate on the unit circle.  3. The points 
corresponding to t and - t on the number line are wrapped to points 
above and below the x-axis with the same x-coordinates. Therefore, 
cos t and cos1- t2 are equal.  5. Because 2p is the distance around 
the unit circle, both t and t + 2p get wrapped to the same 
point.  7. By the observation in 162, tan t and tan1t + p2 are 

ratios of the form 
y

x
 and 

-y

-x
, which are either equal to each other or 

both undefined.  
9. Answers will vary. For example, similar statements can be made 
about the functions cot, sec, and csc.

Quick Review 4.3

1. -30°  3. 1125°  5. 23>3  7. 22  

9. cos u =
12
13

, tan u =
5
12

, csc u =
13
5

, sec u =
13
12

, cot u =
12
5

  

Exercises 4.3

1. 450°  3. sin u =
225

, cos u = -  
125

, tan u = -2, 

csc u =
25
2

 sec u = -25, cot u = -  
1
2

  5. sin u = -  
122

, 

cos u = -  
122

, tan u = 1, csc u = -22, sec u = -22, 

cot u = 1  7. sin u =
4
5

, cos u =
3
5

, tan u =
4
3

, csc u =
5
4

, 

sec u =
5
3

, cot u =
3
4

  9. sin u = 1, cos u = 0, tan u undefined, 

csc u = 1, sec u undefined, cot u = 0  11. sin u = -  
2229

, 

cos u =
5229

, tan u = -  
2
5

, csc u = -  
229

2
, sec u =

229
5

 , 

cot u = -  
5
2

  13. + , + , +   15. - , - , +   17. -   19. -   

21. (a)  23. (a)  25. -1>2  27. -  
223

3
  

29. 
1
2

  31. -23  33. 
23
2

  35. -  
23
2

  

37. (a) -1 (b) 0 (c) Undefined  
39. (a) 0 (b) -1 (c) 0  
41. (a) 1 (b) 0 (c) Undefined  

43. sin u =
25
3

; tan u =
25
2

  

45. tan u = -  
2221

; sec u =
5221

  

47. sec u = -  
5
4

; csc u =
5
3

  49. 1>2  51. 0  

53. The calculator’s value of the irrational number p is necessarily an 
approximation. When multiplied by a very large number, the slight 
error of the original approximation is magnified sufficiently to throw 

the trigonometric functions off.  55. m =
sin 83°
sin 36°

≈ 1.69  

57. (a) 0.4 in. (b) ≈0.1852 in.  
59. The difference in the elevations is 600 ft, so d = 600>sin u. Then,
 (a) ≈848.53 ft (b) 600 ft (c) ≈933.43 ft  
61. True. Acute angles determine reference triangles in QI, where 
cosine is positive, and obtuse angles determine reference triangles in 
QII, where cosine is negative.  63. E  65. A  67. 5p>6  
69. 7p>4  71. The two triangles are congruent: Both have hypote-
nuse 1, and the corresponding angles are congruent—the smaller acute 
angle has measure t in both triangles, and the two acute angles in a 
right triangle add up to p>2.  73. One possible answer: Starting 
from the point 1a, b2 on the unit circle—at an angle of t, so that cos 
t = a—then measuring a quarter of the way around the circle (which 
corresponds to adding p>2 to the angle), we end at 1-b, a2, so that 
sin1t + p>22 = a. For 1a, b2 in Quadrant I, this is shown in the  
figure; similar illustrations can be drawn for the other quadrants.
75. Starting from the point 1a, b2 on the unit circle—at an angle of t, 
so that cos t = a—then measuring a quarter of the way around the circle 
(which corresponds to adding p>2 to the angle), we end at 1-b, a2, so 
that sin(t + p>22 = a. This holds true when 1a, b2 is in Quadrant II, 
just as it did for Quadrant I.

y

x
(1, 0)

P(a, b)

Q(–b, a)

t + p
2

t

  

77. 0 u 0 6 0.2441 (approximately)  79. This Taylor polynomial is 
generally a good approximation for sin u—in fact, the relative error 
is less than 1% for 0 u 0 6 1 1approx.2. It is better for u close to 0; it 
is slightly larger than sin u when u 6 0 and slightly smaller when 
u 7 0.  

Section 4.4
Exploration 1

1. p>2 1at the point 10, 122  3. Both graphs cross the x-axis when 
the y-coordinate on the unit circle is 0.  5. The sine function tracks 
the y-coordinate of the point as it moves around the unit circle. After 
the point has gone completely around the unit circle (a distance of 2p), 
the same pattern of y-coordinates starts over again.  

Quick Review 4.4

1. In order: + , + , - , -   3. In order: + , - , + , -   5. -5p>6  
7. Vertically stretch by 3.  9. Vertically shrink by 0.5.  
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is y = sin1x + p2.  43. Starting with y = sin x, horizontally 

shrink by 
1
3

 and vertically shrink by 0.5.  45. Starting with 

y = cos x, horizontally stretch by 3, vertically shrink by 
2
3

, reflect 

across x-axis.  47. Starting with y = cos x, horizontally shrink by 
3

2p
 and vertically stretch by 3.  49. Starting with y1, vertically 

stretch by 
5
3

.  51. Starting with y1, horizontally shrink by 
1
2

.  

53. (a) and (b)  55. (a) and (b)  57. One possibility is 
y = 3 sin 2x.  59. One possibility is y = 1.5 sin 121x - 12.  

61. Amplitude 2, period 2p, phase shift 
p

4
, vertical translation 1 unit up  

63. Amplitude 5, period 
2p
3

, phase shift 
p

18
, vertical translation 0.5 unit up  

65. Amplitude 2, period 1, phase shift 0, vertical translation 1 unit up  

67. Amplitude 
7
3

, period 2p, phase shift -  
5
2

, vertical translation 1 unit 

down  69. y = 2 sin 2x 1a = 2, b = 2, h = 0, k = 02  
71. (a) two (b) 10, 12 and 12p, 1.3-2p2 ≈ 16.28, 0.192  
73. ≈15.90 sec
75. (a) 1:00 a.m. (b) 8.90 ft; 10.52 ft (c) 4:06 a.m.  
77. (a)  The maximum d is approximately 21.4 cm. The amplitude is 

7.1 cm; scatter plot:

  

[0, 2.1] by [7, 22]

 

 (b) ≈0.83 sec (c) d1t2 = -7.1 cosa2px

0.83
b + 14.3 

 (d) 

[0, 2.1] by [7, 22]

  

79. One possible solution is T = 22.5 cos ap
6

 1x - 72b + 56.5

 

[0, 13] by [20, 90]

  

81. False. y = sin 2x is a horizontal stretch of y = sin 4x by a factor 
of 2, so it has twice the period.  83. D  85. C  
87. (a) 

[–p, p] by [–1.1, 1.1]

 

 (b) 0.0246x4 + 0x3 -  0.4410x2 + 0x + 0.9703 
 (c) The coefficients are fairly similar.  

exercises 4.4

1. Amplitude 2; vertical stretch by a factor of 2  3. Amplitude 4; 
vertical stretch by a factor of 4, reflection across x-axis  
5. Amplitude 0.76; vertical shrink by a factor of 0.76  7. Period 
2p
3

; horizontal shrink by a factor of 
1
3

  9. Period 
2p
7

; horizontal 

shrink by a factor of 
1
7

, reflection across y-axis  11. Period: 2p>2; 

horizontal shrink by a factor of 
1
2

, vertical stretch by a factor of 6  

13. Amplitude 3, period 4p, frequency 
1

4p
 

y

x

2

4

–4

3p–3p

  

15. Amplitude 
3
2

, period p, frequency 
1
p

 
y

x

4

–4

–2

2

3p

–3p

  

17. y

x

2

–2

p–p

  19. y

x

3

–3

p–p

  

21. y

x

0.5

–0.5

p–p

  23. y

x

5

–5

1.5p

–1.5p

  

25. y

x

0.5

–0.5

p–p

  27. y

x

4

–4

12p

–12p

  

29. Period p; amplitude 1.5; 3-2p, 2p4  by 3-2, 24   31. Period 
p; amplitude 3; 3-2p, 2p4  by 3-4, 44   33. Period 6; amplitude 

4; 3-3, 34  by 3-5, 54   35. Maximum: 2 aat -  
3p
2

 and 
p

2
b ; 

minimum: -2 aat -  
p

2
 and 

3p
2
b ; zeros: 0, ±p, ±2p  

37. Maximum: 1 1at 0, ±p, ±2p2; minimum: 

-1 aat ±
p

2
 and ±

3p
2
b ; zeros: ±

p

4
, ±

3p
4

, ±
5p
4

, ±
7p
4

  

39. Maximum: 1 aat ±
p

2
 and ±

3p
2
b ; minimum: -1 1at 0, 

±p, ±2p2; zeros: ±
p

4
, ±

3p
4

, ±
5p
4

, ±
7p
4

  41. One possibility 
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7. 

[–      ,      ] by [–6, 6]
2p
 3

2p
 3

  Horizontal shrink of y = sec x by fac-
tor 1>3; asymptotes at odd multiples of 
p>6  

9. 

[–    ,     ] by [–6, 6]
p

2
p

2

  Horizontal shrink of y = cot x by fac-
tor 1>2; vertical stretch by factor 2; 
asymptotes at multiples of p>2  

11. 

[–4p, 4p] by [–6, 6]

  Horizontal stretch of y = csc x by fac-
tor 2; asymptotes at multiples of 2p  

13. Graph (a); Xmin = -p and Xmax = p  15. Graph (c); 
Xmin = -p and Xmax = p  17. Domain: All real numbers 
except integer multiples of p; Range: 1-∞, ∞2; Continuous on its 
domain; Decreasing on each interval in its domain; Symmetry with 
respect to the origin (odd); Not bounded above or below; No local 
extrema; No horizontal asymptotes; Vertical asymptotes: x = kp for 
all integers k; End behavior: lim

xS∞
 cot x and lim

xS-∞
 cot x do not exist.  

19. Domain: All real numbers except integer multiples of p; Range: 
1-∞, -14 ∪ 31, ∞2; Continuous on its domain; On each interval 

centered at x =
p

2
+ 2kp, where k is an integer, decreasing on the left 

half of the interval and increasing on the right; for x =
3p
2

+ 2kp, 

increasing on the first half of the interval and decreasing on the second 
half; Symmetric with respect to the origin (odd); Not bounded above 

or below; Local minimum 1 at each x =
p

2
+ 2kp and local maximum 

-1 at each x =
3p
2

+ 2kp, where k is an integer; No horizontal 

asymptotes; Vertical asymptotes: x = kp for all integers k; End  
behavior: lim

xS∞
 csc x and lim

xS-∞
 csc x do not exist.  21. Starting 

with y = tan x, vertically stretch by 3.  23. Starting with 
y = sec x, vertically stretch by 8.  25. Starting with y = cot x, 
horizontally stretch by 2, vertically stretch by 3, and reflect across 

x-axis.  27. Starting with y = tan x, horizontally shrink by 
2
p

, 

reflect across x-axis, and shift up by 2 units.  29. p>3  
31. 5p>6  33. 5p>2  35. x ≈ 0.92  37. x ≈ 5.25  
39. x ≈ 0.52 or x ≈ 2.62  
41. (a) The reflection of 1a, b2 across the origin is 1-a, -b2. 
 (b) Definition of tangent (c) tan t =

b
a

=
-b
-a

= tan1t - p2 
 (d)  Because points on opposite sides of the unit circle determine 

the same tangent ratio, tan1t ± p2 = tan t for all numbers t 
in the domain. Other points on the unit circle yield triangles 
with different tangent ratios, so no smaller period is possible.

89. (a) 1>262 sec (b) ƒ = 262 cycle>sec = 262 Hz 
 (c) 

[0, 0.025] by [–2, 2]

  

91. (a) a - b must equal 1. 
 (b) a - b must equal 2. 
 (c) a - b must equal k.  

93. B = 10, 32; C = a3p
4

, 0b   95. B = ap
4

, 2b ; C = a3p
4

, 0b   

97. (a)  If b is negative, then b = -B, where B is positive. Then 
y = a sin 3-B1x - H24 + k = -a sin3B1x - H24 + k 
because sine is an odd function. We will see in part (d) what 
to do if the number out front is negative. 

 (b)  A sine graph can be translated a quarter of a period to the left 
to become a cosine graph of the same sinusoid. Thus 

   y = a sin c ba1x - h2 +
1
4

# 2p
b
b d + k

   = a sin c bax - ah -
p

2b
b b d + k has the same graph as 

   y = a cos3b1x - h24 + k.

  We therefore choose H = h -
p

2b
. 

 (c)  The angles u + p and u determine diametrically opposite 
points on the unit circle, so they have point symmetry with 
respect to the origin. The y-coordinates are therefore oppo-
sites, so sin1u + p2 = -sin u. 

 (d)  By the identity in part (c), y = a sin3b1x - h2 + p4 +
  k = -a sin3b1x - h24 + k. We therefore choose 

  H = h -
p

b
. 

 (e)  Part (b) shows how to convert y = a cos3b1x - h24 + k to 
y = a sin3b1x - H24 + k, and parts (a) and (d) show how 
to ensure that a and b are positive.  

Section 4.5
Exploration 1

1. The graphs do not seem to intersect.  

Quick Review 4.5

1. p  3. 6p  5. Zero: 3; asymptote: x = -4  7. Zero: -1; 
asymptotes: x = 2 and x = -2  9. Even  

Exercises 4.5

1. The graph of y = 2 csc x must be vertically stretched by  
2 compared to y = csc x, so y1 = 2 csc x and y2 = csc x.  
3. y1 = 3 csc 2x, y2 = csc x  
5. 

[–     ,    ] by [–6, 6]
p

2
p

2

  Horizontal shrink of y = tan x by  
factor 1>2; asymptotes at multiples  
of p>4  
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 (e) The same argument that uses the ratio 
b
a

 above can be repeated 

  using the ratio 
a

b
, which is the cotangent ratio.  

43. For any x, a1
ƒ
b1x + p2 =

1
ƒ1x + p2 =

1
ƒ1x2 = a1

ƒ
b1x2. 

This is not true for any smaller value of p because this is the smallest 
value that works for ƒ.  
45. (a) d = 350 sec x (b) ≈16,831 ft  
47. ≈±0.905  49. ≈±1.107 or ≈±2.034  51. False. It is 
increasing only over intervals on which it is defined, that is, intervals 
bounded by consecutive asymptotes.  53. A  55. D  
57. About 1-0.44, 02∪ 10.44, p2 

[–p, p] by [–10, 10]

  

59. cot x is not defined at 0; the definition of “increasing on 1a, b2” 
requires that the function be defined everywhere in 1a, b2. Also, 
choosing a = -p>4 and b = p>4, we have a 6 b but ƒ1a2 = 1 7
ƒ1b2 = -1.

[–p, p] by [–10, 10]   

61. csc x = secax -
p

2
b   

63. d = 45 sec x =
45

cos x
 

[–1.5, 1.5] by [0, 500]

  

65. ≈0.8952 rad 1≈51.29°2  

Section 4.6
exploration 1
1. 

[–2p, 2p] by [–6, 6]

 Sinusoid

Quick review 4.6

1. Domain: 1-∞, ∞2; range: 3-3, 34   3. Domain: 31, ∞2;  
range: 30, ∞2  5. Domain: 1-∞, ∞2; range: 3-2, ∞2  
7. As x S -∞, ƒ1x2S ∞; as x S ∞, ƒ1x2S 0.  
9. 1ƒ ∘ g21x2 = x - 4, domain: 30, ∞2; 1g ∘ ƒ21x2 = 2x2 - 4, 
domain: 1-∞, -24 ∪ 32, ∞2  

exercises 4.6

1. Periodic

 [–2p, 2p] by [–1.5, 1.5]   

5. Not periodic

 [–2p, 2p] by [–6, 6]   

3. Not periodic

 [–2p, 2p] by [–5, 20]   

7. Periodic

 [–2p, 2p] by [–10, 10]   

3. 

[–2p, 2p] by [–6, 6]

 Not a sinusoid

5. 

[–2p, 2p] by [–6, 6]

 Sinusoid

9.  Because the period of cos x is 2p, we have cos21x + 2p2 =
1cos1x + 2p222 = 1cos x22 = cos2 x. The period is therefore an 
exact divisor of 2p, and we see graphically that it is p. A graph for 
-p … x … p is shown:

[–p, p] by [–1, 2]   
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35. 

[–p, p] by [–3.5, 3.5]

  37. 

[–p, p] by [–5, 5]

  

39. (a)  41. (c)  43. The damping factor is e-x, and the damp-
ing occurs as x S ∞.  45. No damping  47. The damping 
 factor is x3, and the damping occurs as x S 0.  
49. ƒ oscillates between 1.2-x and -1.2-x.
 As x S ∞, ƒ1x2S 0.

 [0, 4p] by [–1, 1]   

51. ƒ oscillates between 
1
x
 and -  

1
x
.

 As x S ∞, ƒ1x2S 0.

 [0, 4p] by [–1.5, 1.5]   

11. Because the period of cos x is 2p, we have 2cos21x + 2p2 =
  21cos1x + 2p222 = 21cos x22 = 2cos2 x. The period is 

therefore an exact divisor of 2p, and we see graphically that it is 
p. A graph for -p … x … p is shown:

 [–p, p] by [–1, 2]   
13. Domain: 1-∞, ∞2; range: 30, 14 ;

 

y

x

1

2

2p–2p
  

15. Domain: all x ≠ np, n an integer; range: 30, ∞2;

 

y

x

2

1

2p–2p
  

17. Domain: all x ≠
p

2
+ np, n an integer; range: 1-∞, 04 ;

 

y

x
1

–4

2p–2p

  
19. y = 2x - 1; y = 2x + 1

 [–10, 10] by [–20, 20]   
21. y = 1 - 0.3x; y = 3 - 0.3x

 [–10, 10] by [–4, 8]   
23. Yes  25. Yes  27. No  
29. a ≈ 3.61, b = 2, h ≈ 0.49  
31. a ≈ 2.24, b = p, h ≈ 0.35  
33. a ≈ 2.24, b = 1, h ≈ -1.11  

57. Period 2p

 [–4p, 4p] by [–1, 4]   

59. Not periodic

 [–4p, 4p] by [–13, 13]   

53. Period 2p

 [–2p, 2p] by [–3.4, 2.8]   

55. Period 2p

 [–2p, 2p] by [–3, 3]   

61. Not periodic

 [–4p, 4p] by [–7, 7]   
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Section 4.7
Exploration 1

1. x  3. 21 + x2  5. 21 + x2  

Quick Review 4.7

1. sin x: positive; cos x: positive; tan x: positive  3. sin x: negative; 
cos x: negative; tan x: positive  5. 1>2  7. -1>2  9. -1>2  

Exercises 4.7

1. p>3  3. 0  5. p>3  7. -p>4  9. -p>4  
11. p>2  13. 21.22°  15. -85.43°  17. 1.172  

19. -0.478  21. lim
xS∞

 tan-11x22 =
p

2
 and lim

xS-∞
  tan-11x22 =

p

2
  

23. 23>2  25. p>4  27. 1>2  29. p>6  31. 1>2  

33. Domain: 3-1, 14 ; Range: c-  
p

2
, 
p

2
d ; Continuous; Increasing; 

Symmetric with respect to the origin (odd); Bounded; Absolute 

maximum of 
p

2
, absolute minimum of -  

p

2
; No asymptotes; No end 

behavior (bounded domain)  35. Domain: 1-∞, ∞2; Range: 

a-  
p

2
, 
p

2
b ; Continuous; Increasing; Symmetric with respect to the 

origin (odd); Bounded; No local extrema; Horizontal asymptotes: 

y =
p

2
 and y = -  

p

2
; End behavior: lim

xS∞
  tan-1 x =

p

2
 and 

lim
xS-∞

  tan-1 x = -  
p

2
  37. Domain: c-  

1
2

, 
1
2
d ; Range: c-  

p

2
, 
p

2
d ;  

Starting with y = sin-1 x, horizontally shrink by 
1
2

.  

39. Domain: 1-∞, ∞2; Range: a-  
5p
2

, 
5p
2
b; Starting with y = tan-1 x, 

horizontally stretch by 2 and vertically stretch by 5 (either order).  

41. 1  43. 
p

6
+ 2np and 

5p
6

+ 2np, for all integers n   

45. 
1
6

  

47. x>21 + x2  49. x>21 - x2  51. 
121 + 4x2

  

53. (a) Answers vary.
   (b) 

[0, 25] by [0, 55]

 (c) 2 ft or 15 ft  

55. (a) u = tan-1 
s

200
 (b)  As s changes from 15 m to 30 m, u changes from about 

4.28915° to 8.53077°—it almost doubles (a 98.89% increase). 
As s changes from 100 m to 115 m, u changes from about 
26.56505° to 29.89890°—an increase of around 3.33°, and a 
small relative change (only about 12.55%).  

 (c)  The x-axis represents the height and the y-axis represents the 
angle: The angle cannot grow past 90° (in fact, it approaches 
but never exactly equals 90°).   

57. False. This is true only for -1 … x … 1, the domain of sin-1 x.  

63. Domain: 1-∞, ∞2; range: 1-∞, ∞2  65. Domain: 1-∞, ∞2; 
range: 31, ∞2  67. Domain: all real numbers x with 
2np … x … 12n + 12p, n an integer; range: 30, 14   69. Domain: 
1-∞, ∞2; range: 30, 14   
71. (a) 

[0, 12] by [–0.5, 0.5]

 (b) For t 7 0.51 (approximately).  

73. Not periodic  
75. (a)  77. Graph (d), shown on 3-2p, 2p] by 3-4, 44   
79. Graph (b), shown on 3-2p, 2p4  by 3-4, 44   81. False. For 
example, the function has a relative minimum of 0 at x = 0 that is not 
repeated anywhere else.  83. B  85. D  
87. (a) Answers will vary depending on the grapher used. 
 (b)  Period: p>125 = 0.0251c . Answers will vary for the last 

two questions. The graph produced will be inaccurate on 
many graphers because multiple cycles of the true graph 
occur from one pixel to the next.  

89. Domain: 1-∞, ∞2; range: 3-1, 14 ; horizontal asymptote: y = 1; 

 zeros at lnap
2

+ npb , n a nonnegative integer

 [–3, 3] by [–1.2, 1.2]   
91.  Domain: 30, ∞2; range: 1-∞, ∞2; zeros at np, n a nonnegative 

integer

 [–0.5, 4p] by [–4, 4]   
93.  Domain: 1-∞, 02∪ 10, ∞2; range: approximately 3-0.22, 12; 

horizontal asymptote: y = 0; zeros at np, n a nonzero integer

 [–5p, 5p] by [–0.5, 1.2]   
95. Domain: 1-∞, 02∪ (0, ∞2; range: approximately 3-0.22, 12; 
 horizontal asymptote: y = 1; zeros at 

1
np

, n a nonzero integer

 [–p, p] by [–0.3, 1.2]   
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17. Dist.: 6022 ≈ 84.85 naut mi; bearing is 140°.  
19. 1097 cot 19° ≈ 3186 ft  21. 375 tan 67° ≈ 883 ft  

23. 36.5 tan 15° ≈ 9.8 ft  25. 
550

cot 70° - cot 80°
≈ 2931 ft  

27. (a) 8 cycles>sec (b) d = 6 cos 16pt 
 (c) About 4.1 in. left of the starting position  
29. d = 3 cos 4pt cm  

31. (a) 25 ft (b) 33 ft (c) 
p

10
 rad>sec  

33. (a) p>6
 (b)  a = 181.5 - 49.22>2 = 16.15 and k = 81.5 - 16.15 = 65.35
 (c) 13 + 1 = 42 
 (d) 

[0, 13] by [40, 90]

 

 (e)  Setting 16.15 sinap
6
1t - 42b + 65.35 = 70, we get 

t = 4.57 or t = 9.44. These represent (approximately) days 
139 and 287 of a 365-day year, namely May 19 and October 14.  

35. (a) March (b) November  
37. True. Because the frequency and the period are reciprocals, the 
higher the frequency, the shorter the period.  39. D  41. D  
43. (a) 

[0, 0.0062] by [–0.5, 1]

 

 (b) The first is the best. 

 (c) About 
2464
2p

=
1232
p

≈ 392 oscillations>sec  

45. 2.5 cot 
p

7
≈ 5.2 cm  47. AC ≈ 33.6 in.; BD ≈ 12.9 in.  

49. tan-1 0.06 ≈ 3.4°  
51. (a) 

[0, 0.0092] by [–1.6, 1.6]

 

 (b)  y ≈ 1.51971 sin 124671t - 0.000222, that is, a ≈ 1.51971, 
b ≈ 2467, h ≈ 0.0002. Answers will vary but should be 
close to these values. 

 (c) Frequency: About 
2467
2p

≈ 393 Hz 

 (d) G

Chapter 4 Review Exercises
1. positive y-axis; 450°  3. QIII; -3p>4  5. QI; 7p>3  

7. QI; 15°  9. 270° or 
3p
2

 rad   

59. E  61. C  63. The cotangent function restricted to the 
interval 10, p2 is one-to-one and has an inverse. The unique angle y 
between 0 and p (noninclusive) such that cot y = x is called the 
inverse cotangent (or arccotangent) of x, denoted cot-1 x or arccot x. 
The domain of y = cot-1 x is 1-∞, ∞2 and the range is 10, p2.  
65. (a) Domain all reals, range 3-p>2, p>24 , period 2p

  [–2p, 2p] by [–0.5p, 0.5p]  
 (b) Domain all reals, range 30, p4 , period 2p

  [–2p, 2p] by [0, p]  
 (c)  Domain all reals except p>2 + np, n an integer, range 

1-p>2, p>22, period p.
  Discontinuity is not removable.

  [–2p, 2p] by [–p, p]   

67. y =
p

2
- tan-1 x  69. 

18
 p

 tan-1 x + 33  

71. (a) y = p>2 (b) y = p>2, y = 3p>2 
 (c) The graph on the left (d) The graph on the left  

Section 4.8
Exploration 1

1. The unit circle  3. Because the grapher is plotting points along 
the unit circle, it covers the circle at a constant speed. Toward the 
extremes its motion is mostly vertical, so not much horizontal progress 
(which is all that we see) occurs. Toward the middle, the motion is 
mostly horizontal, so it moves faster.

Quick Review 4.8

1. b = 15 cot 31° ≈ 24.964; c = 15 csc 31° ≈ 29.124  
3. b = 28 cot 28° - 28 cot 44° ≈ 23.665; 
 c = 28 csc 28° ≈ 59.642; a = 28 csc 44° ≈ 40.308  
5. Complement: 58°; supplement: 148°  7. 45°  9. Amplitude: 
3; period: p  

Exercises 4.8

1. 30023 ≈ 519.62 ft  3. 120 cot 10° ≈ 680.55 ft  
5. Wire length = 50 sec 80° ≈ 288 ft; 
tower height = 50 tan 80° ≈ 284 ft  
7. 185 tan 80°1′12″ ≈ 1051 ft  
9. 100 tan 83°12′ ≈ 839 ft  11. 10 tan 55° ≈ 14.3 ft  
13. 4.25 tan 35° ≈ 2.98 mi  
15. 2001tan 40° - tan 30°2 ≈ 52.35 ft  
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59.  Starting with y = sec x, horizontally stretch by 2, vertically 
stretch by 2, and reflect across x-axis (in any order).

 [–4p, 4p] by [–8, 8]   

61. Amplitude: 2; period: 
2p
3

; phase shift: 0; domain: 1-∞, ∞2; range: 

3-2, 24   63. Amplitude: 2; period: 2p; phase shift: p; domain: 
1-∞, ∞2; range: 3-2, 24   65. Amplitude: 4; period: p; phase 

shift: 
1
2

; domain: 1-∞, ∞2; range: 3-4, 44   67. a ≈ 4.47, b = 1, 

and h ≈ 1.11  69. ≈49.996° 1≈0.873 rad2  

71. 45° = p>4 rad  73. Starting with y = sin-1 x, horizontally 

shrink by 
1
3

. Domain: c-  
1
3

, 
1
3
d ; range: c-  

p

2
, 
p

2
d   75. Starting 

with y = sin-1 x, translate right 1 unit, horizontally shrink by 
1
3

, 

translate up 2 units. Domain: c 0, 
2
3
d ; range: c 2 -

p

2
, 2 +

p

2
d   

77. 3p>4  79. 3p>4  81. 3p>2  

83. As 0 x 0 S ∞, 
sin x

x2
S 0.  85. 1  87. 3>4  89. Periodic; 

period: p; domain: x ≠
p

2
+ np, n an integer; range: 31, ∞2  

91. Not periodic; domain: x ≠
p

2
+ np, n an integer; range: 1-∞, ∞2  

93. 4p>3  95. 100 tan 78° ≈ 470 m  
97. 1501cot 18° - cot 42°2 ≈ 295 ft  
99. 

23°

128°

north tower

south tower

  101. 62 tan 72°24′ ≈ 195.4 ft  

103. 22p>15 ≈ 4.6 in.  105. About 139 days, from day 128 
(May 8) through day 266 (September 23).  

chapter 4 Modeling Project

Answers are based on the sample data shown in the table.
1.   

3. The constant a represents half the distance the pendulum bob 
swings as it moves from its highest point to its lowest point; k repre-
sents the distance from the detector to the pendulum bob when it  
is in midswing.  5. y ≈ 0.22 sin13.87x - 0.162 + 0.71;  
Most grapher regression models are expressed in the form 
y = a sin1bx + p2 + k, where -p>b = h in the equation 
y = a sin1b1x - h22 + k. The latter equation form differs from 
y = a cos1b1x - h22 + k only in h.

11. 30° = p>6 rad  13. 120° = 2p>3 rad  
15. 360° + tan-11-22 ≈ 296.565° ≈ 5.176 rad  

17. 1>2  18. 23 19. 1  21. -
 23
  2

  23. 2  

25. -1  27. 0  29. sina-p
2
b = -1, cosa-p

2
b = 0, 

csca-p
2
b = -1, cota-p

2
b = 0 and tana-p

2
b , seca-p

2
b  are not 

defined

31. sin1-135°2 = -  
122

, cos1-135°2 = -  
122

, tan1-135°2 = 1, 

csc1-135°2 = -22, sec1-135°2 = -22, cot1-135°2 = 1

33. sin a =
5
13

, cos a =
12
13

, tan a =
5
12

, csc a =
13
5

, sec a =
13
12

, 

cot a =
12
5

  35. sin u =
15
17

, cos u =
8
17

, tan u =
15
8

, csc u =
17
15

, 

sec u =
17
8

, cot u =
8
15

  37. ≈  4.075 rad  

39. a = 45° , b = 2 tan
p

4
= 2, c =

2
cos 45°

= 222  

41. b = 7 tan 48° ≈ 7.774, c =
7

cos 48°
≈ 10.461, a = 42°  

43. a = 60°, a = 4 cot 30° = 423, c =
4

sin 30°
= 8

45. QIII  47. QII  49. sin u =
 225

, cos u = -  
125

, 

tan u = -2, csc u =
25
2

, sec u = -25, cot u = -  
1
2

  

51. sin u = -  
3234

 , cos u = -  
5234

, tan u =
3
5

, csc u = -  
234

3
, 

sec u = -  
234

5
, cot u =

5
3

  

53. Starting with y = sin x, translate left p units.

 [–2p, 2p] by [–1.2, 1.2]   

55. Starting with y = cos x, translate left 
p

2
 units, reflect across 

 x-axis, and translate up 4 units.

 [–2p, 2p] by [–1, 6]   

57. Starting with y = tan x, horizontally shrink by 
1
2

.

 [–0.5p, 0.5p] by [–5, 5]   
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CHAPTER 5
Section 5.1
Exploration 1

1. cos u =
1

sec u
, sec u =

1
cos u

, and tan u =
sin u
cos u

  

3. csc u =
1

sin u
, cot u =

1
tan u

, and cot u =
cos u
sin u

  

Quick Review 5.1

1. 1.1760 rad or 67.380°  3. 2.4981 rad or 143.130°  

5. 1a - b22  7. 12x + y21x - 2y2  9. 
y - 2x

xy
  11. xy  

Exercises 5.1

1. sin u = 3>5 and cos u = 4>5  3. tan u = -215 and 

cot u = -1>215 = -215>15  5. 0.23  7. -0.58  
9. sin x  11. 1  13. tan2 x  15. sin3 x cos2 x  17. -1
19. -1  21. 1  23. cos x  25. 2  27. sec x  
29. tan x  31. tan x  33. 2 csc2 x  35. -sin x  
37. cot x  39. 1cos x + 122  41. 11 - sin x22  
43. 12 cos x - 121cos x + 12  45. 12 tan x - 122  
47. 1 - sin x  49. 1 - cos x  51. p>6, p>2, 5p>6, 3p>2  

53. 0, p  55. p>3, 2p>3, 4p>3, 5p>3  57. ±
p

3
+ 2np, 

n = 0, ±1, ±2, . . .  59. np, n = 0, ±1, ±2, . . .  
61. np, n = 0, ±1, ±2, . . .  
63. 5±1.1918 + 2np �n = 0, ±1, ±2, . . .6   
65. 50.3047 + 2np or 2.8369 + 2np �n = 0, ±1, ±2, . . .6   
67. 5±0.8861 + np �n = 0, ±1, ±2, . . .6   
69. 0 sin u 0   71. 3 0 tan u 0   73. 9 0 sec u 0   75. True. Because 

secant is an even function, sec ax -
p

2
b = secap

2
- xb , which 

equals csc x by one of the cofunction identities.  77. D  79. C  

81. sin x, cos x = ±21 - sin2 x, tan x = ±
sin x21 - sin2 x

, 

csc x =
1

sin x
, sec x = ±

121 - sin2 x
, cot x = ±

21 - sin2 x
sin x

  

83. 

[–2p, 2p] by [–4, 4]

One graph is the vertical translation of the other by 1 unit.  
For any x, the vertical distance between the two graphs is 
sin2 x - 1-cos2 x2 = sin2 x + cos2 x = 1.

85. (a) 

[–6, 60] by [350, 410]

 

 (b) y ≈ 21.36 sin10.227x + 1.892 + 385
  

[–6, 60] by [350, 410]

 

 (c)  The period is approximately 2p>0.227 ≈ 27.7 days.  
This is very close to 27.3, the number of days that it takes the 
Moon to make one complete orbit of Earth (known as the 
sidereal period). 

 (d)  About 363,640 km using the curve, but 363,500 km using the 
data in Table 5.1. 

 (e)  There are two perigees within the given time frame. The first 
occurred very close to the data point 363.5 on March 31, and 
the fit through the nearby points does not suggest that the per-
igee could be much lower. The fit near the second perigee 
suggests that the curve could be steeper on each side of a 
lower perigee between day 36 and day 42. The actual perigee 
occurred on day 40, which was April 28. You can get good 
support for a minimum on day 40 by finding the sine regres-
sion based on the last five data points:

    
87. Factor the left-hand side:  
 sin4 u - cos4 u = 1sin2 u - cos2 u21sin2 u + cos2 u2

 = 1sin2 u - cos2 u2 # 1 = sin2 u - cos2 u  
89. Use the hint: 
 sin1p - x2 = sin1p>2 - 1x - p>222
 = cos1x - p>22  Cofunction identity
 = cos1p>2 - x2  Cosine is even.
  = sin x  Cofunction identity  
91. Because A, B, and C are angles of a triangle, A + B = p - C. 
Therefore, sin1A + B2 = sin1p - C2 = sin C.

Section 5.2
Exploration 1

1. The graphs lead us to conclude that this is not an identity.

[–2p, 2p] by [–4, 4]   
3. Yes  5. No. The graph window cannot show the full graphs, so 
they could differ outside the viewing window. Also, the function val-
ues could be so close that the graphs appear to coincide.  

Quick Review 5.2

1. 
sin x + cos x

sin x cos x
  3. 

1
sin x cos x

  5. 1  7. No. Any negative x.  

9. No. Any x for which sin x 6 0, e.g., x = -p>2.  11. Yes  
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exercises 5.2

1. One possible proof: 

 
x3 - x2

x
- 1x - 121x + 12 =

x1x2 - x2
x

- 1x2 - 12
 = x2 - x - 1x2 - 12
 = -x + 1 = 1 - x   

3. One possible proof: 

 
x2 - 4
x - 2

-
x2 - 9
x + 3

=
1x + 221x - 22

x - 2
-
1x + 321x - 32

x + 3
 = x + 2 - 1x - 32 = 5   

5. Yes  7. No  9. Yes  

11.  1cos x21tan x + sin x cot x2 = cos x # sin x
cos x

+ cos x sin x # cos x
sin x

  = sin x + cos2 x   
13.  11 - tan x22 = 1 - 2 tan x + tan2 x
  = 11 + tan2 x2 - 2 tan x = sec2 x - 2 tan x  

15. 
11 - cos u211 + cos u2

cos2 u
=

1 - cos2 u

cos2 u
=

sin2 u

cos2 u
= tan2 u  

17. 
cos2 x - 1

cos x
=

-sin2 x
cos x

= -  
sin x
cos x

 sin x = - tan x sin x  

19. Multiply out the expression on the left side.  
21. 1cos t - sin t22 + 1cos t + sin t22 = cos2 t - 2 cos t sin t +
sin2 t + cos2 t + 2 cos t sin t + sin2 t = 2 cos2 t + 2 sin2 t = 2  

23. 
1 + tan2 x

sin2 x + cos2 x
=

sec2 x
1

= sec2 x  

25.  
cos b

1 + sin b
=

cos2 b

cos b11 + sin b2 =
1 - sin2 b

cos b11 + sin b2
  =

11 - sin b211 + sin b2
cos b11 + sin b2 =

1 - sin b

cos b
  

27. 
sec u

1 - sin u
=

sec u(1 + sin u)

cos2 u
=

1

cos2 u
# 1 + sin u

cos u
=

1 + sin u

cos3 u
  

29.  cot2 x - cos2 x = acos x
sin x
b

2

- cos2 x

  =
cos2 x11 - sin2 x2

sin2 x
= cos2 x # cos2 x

sin2 x
  = cos2 x cot2 x   
31.  cos4 x - sin4 x = 1cos2 x + sin2 x21cos2 x - sin2 x2
  = 11cos2 x - sin2 x2 = cos2 x - sin2 x  

33. 1x sin a + y cos a22 + 1x cos a - y sin a22
 = 1x2 sin2 a + 2xy sin a cos a + y2 cos2 a2 
     + 1x2 cos2 a - 2xy cos a sin a + y2 sin2 a2  
 = x2 sin2 a + y2 cos2 a + x2 cos2 a + y2 sin2 a 
 = 1x2 + y221sin2 a + cos2 a2 
 = x2 + y2  

35.  
tan x

sec x - 1
=

tan x1sec x + 12
sec2 x - 1

=
tan x1sec x + 12

tan2 x

  =
sec x - 1

tan x
  

37.  
sin x - cos x
sin x + cos x

=
1sin x - cos x21sin x + cos x2

1sin x + cos x22

  =
sin2 x - cos2 x

sin2 x + 2 sin x cos x + cos2 x

  =
sin2 x - 11 - sin2 x2

1 + 2 sin x cos x
=

2 sin2 x - 1
1 + 2 sin x cos x

  

39.  
sin t

1 - cos t
+

1 + cos t
sin t

=
sin2 t + 11 + cos t211 - cos t2

1sin t211 - cos t2
  =

1 - cos2 t + 1 - cos2 t
1sin t211 - cos t2

  =
211 - cos2 t2
1sin t211 - cos t2

  =
211 + cos t2

sin t
  

41.  sin2 x cos3 x = sin2 x cos2 x cos x = sin2 x11 - sin2 x21cos x2
  = 1sin2 x - sin4 x21cos x2   

43.  cos5 x = cos4 x cos x = 1cos2 x221cos x2 = 11 - sin2 x22 1cos x2
  = 11 - 2 sin2 x + sin4 x21cos x2   

45.  
tan x

1 - cot x
+

cot x
1 - tan x

=
tan x

1 - cot x
# sin x
sin x

+
cot x

1 - tan x
# cos x
cos x

  = a sin2 x>cos x

sin x - cos x
+

cos2 x>sin x

cos x - sin x
b  

sin x cos x
sin x cos x

  =
sin3 x - cos3 x

sin x cos x1sin x - cos x2 =
sin2 x + sin x cos x + cos2 x

sin x cos x

  =
1 + sin x cos x

sin x cos x
=

1
sin x cos x

+ 1

  = csc x sec x + 1  

47. 
2 cot x

1 - cot2 x
+

1

1 - 2 cos2 x

  =
2 cot x

1 - cot2 x
# sin2 x

sin2 x
+

1

sin2 x - cos2 x

  =
2 sin x cos x

sin2 x - cos2 x
+

sin2 x + cos2 x

sin2 x - cos2 x

  =
sin2x + 2sin x cos x + cos2 x
1sin x + cos x21sin x - cos x2

 =
sin x + cos x
sin x - cos x

  

49. cos3 x = 1cos2 x21cos x2 = 11 - sin2 x21cos x2  

51.  sin5 x = 1sin4 x21sin x2 = 1sin2 x221sin x2
  = 11 - cos2 x221sin x2 = 11 - 2 cos2 x + cos4 x21sin x2  
53. (d)  55. (c)  57. (b)  
59. True. If x is in the domain of both sides of the equation, then 
x Ú 0. The equation holds for all x Ú 0, so it is an identity.  
61. E  63. B  65. sin x  67. 1  69. 1  
71. If A and B are complementary angles, then 
sin2 A + sin2 B = sin2 A + sin21p>2 - A2 = sin2 A + cos2 A = 1.  
73. Multiply and divide by 1 - sin t under the radical: 

 A1 - sin t
1 + sin t

# 1 - sin t
1 - sin t

= C11 - sin t22
1 - sin2 t

 = C11 - sin t22
cos2 t

=
0 1 - sin t 0
0 cos t 0  

since 2a2 = 0 a 0 . Now, since 1 - sin t Ú 0, we can dispense with the 
absolute value in the numerator, but it must stay in the denominator.  
75.  sin6 x + cos6 x = 1sin2 x23 + cos6 x

  = 11 - cos2 x23 + cos6 x

  = 11 - 3 cos2 x + 3 cos4 x - cos6 x2 + cos6 x
  = 1 - 3 cos2 x 11 - cos2 x2
  = 1 - 3 cos2 x sin2 x   
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77. ln 0 tan x 0 = ln 
0 sin x 0
0 cos x 0 = ln 0 sin x 0 - ln 0 cos x 0   

79. (a)  They are not equal. Shown is the window 3-2p, 2p4  by 
3-2, 24 ; graphing on nearly any viewing window does not 
show any apparent difference—but using TRACE, one finds 
that the y-coordinates are not identical. Likewise, a table of 
values will show slight differences; for example, when x = 1, 
y1 = 0.53988 and y2 = 0.54030.

  [–2p, 2p] by [–2, 2]  
 (b)  One choice for h is 0.001 (shown). The function y 3  is a com-

bination of three sinusoidal functions 11000 sin1x + 0.0012, 
1000 sin x, and cos x2, all with period 2p.

  [–2p, 2p] by [–0.001, 0.001]   
81. In the decimal window, the x-coordinates used to plot the graph 
on the calculator are (e.g.) 0, 0.1, 0.2, 0.3, etc.—that is, x = n>10, 
where n is an integer. Then 10px = pn, and the sine of integer multi-
ples of p is 0; therefore, cos x + sin 10px = cos x + sin pn =

cos x + 0 = cos x. However, for other choices of x, such as x =
1
p

, 

we have cos x + sin 10px = cos x + sin 10 ≠ cos x.  

Section 5.3
exploration 1

1. No  

3. tanap
3

+
p

3
b = -23, tan 

p

3
+ tan 

p

3
= 223. 

(Many other answers are possible.)  

Quick review 5.3

1. 45° - 30°  3. 210° - 45°  5. 2p>3 - p>4  
7. No  9. Yes  

exercises 5.3

1. 126 - 222>4  3. 126 + 222>4  5. 122 + 262>4  

7. 2 + 23  9. 122 - 262>4  11. -sin 1°  

13. sin 13p>42  15. tan 58°  17. cosap
7

- xb   19. sin 10x

21. tan12y + 3x2  

23.  sinax -
p

2
b = sin x cos 

p

2
- cos x sin 

p

2
  = sin x # 0 - cos x # 1 = -cos x  

25.  cosax -
p

2
b = cos x cos 

p

2
+ sin x sin 

p

2
  = cos x # 0 + sin x # 1 = sin x  

27.  sinax +
p

6
b = sin x cos 

p

6
+ cos x sin 

p

6

  = sin x # 23
2

+ cos x # 1
2

  

29.  tanau +
p

4
b =

tan u + tan1p>42
1 - tan u tan1p>42

  =
tan u + 1

1 - tan u # 1
=

1 + tan u
1 - tan u

  

31. Equations (b) and (f)  33. Equations (d) and (h)  
35. x = np, n = 0, ±1, ±2, . . .  

37.  sinap
2

- ub = sin 
p

2
 cos u - cos 

p

2
 sin u

  = 1 # cos u - 0 # sin u = cos u  

39.  cotap
2

- ub =
cos1p>2 - u2
sin1p>2 - u2 =

sin u
cos u

= tan u, 

 using Example 2.

41. cscap
2

- ub =
1

sin1p>2 - u2 =
1

cos u
= sec u, 

 using Exercise 37 or part (b) of Example 2.
43. y ≈ 5 sin1x + 0.92732  45. y ≈ 2.236 sin13x + 0.46362
47. sin1x - y2 + sin1x + y2 = 1sin x cos y - cos x sin y2

+ 1sin x cos y + cos x sin y2 = 2 sin x cos y  
49. sin 3x = sin[1x + x2 + x] = sin1x + x2 cos x + cos1x + x2 sin x

= 1sin x cos x + cos x sin x2 cos x + 1cos x cos x - sin x sin x2 sin x

= 2 sin x cos2x + cos2x sin x - sin3x = 3 sin x cos2x - sin3x  

51. sin x + sin 3x = sin12x - x2 + sin12x + x2
=  1sin 2x cos x -  cos 2x sin x2 + 1sin 2x cos x + cos 2x sin x2
=  2sin 2x cos x

53. cot (x + y) cos (x - y) = acot  x cot y - 1

cot y + cot  x
b # acot  x cot y + 1

cot y - cot  x
b

= acot2 x cot2 y - 1

cot2 y - cot2 x
b   

55. 
sin1x + y2
sin1x - y2 =

sin x cos y + cos x sin y

sin x cos y - cos x sin y

  =
sin x cos y + cos x sin y

sin x cos y - cos x sin y
# 1>1cos x cos y2
1>1cos x cos y2

  =
1sin x cos y2>1cos x cos y2 + 1cos x sin y2>1cos x cos y2
1sin x cos y2>1cos x cos y2 - 1cos x sin y2>1cos x cos y2

  =
1sin x>cos x2 + 1sin y>cos y2
1sin x>cos x2 - 1sin y>cos y2

  =
tan x + tan y

tan x - tan y
  

57. False. For example, cos 3p + cos 4p = 0, but 3p and 4p are not 
supplementary.  59. A  61. B  

63.  tan1u - v2 =
sin1u - v2
cos1u - v2 =

sin u cos v - cos u sin v
cos u cos v + sin u sin v

  =

sin u cos v
cos u cos v

-
cos u sin v
cos u cos v

cos u cos v
cos u cos v

+
sin u sin v
cos u cos v

=

sin u
cos u

-
sin v
cos v

1 +
sin u sin v
cos u cos v

  =
tan u - tan v

1 + tan u tan v
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65. The identity would involve tana3p
2
b , which does not exist. 

  tanax +
3p
2
b =

sinax +
3p
2
b

cosax +
3p
2
b

  =
sin x cos 

3p
2

+ cos x sin 
3p
2

cos x cos 
3p
2

- sin x sin 
3p
2

  =
sin x # 0 + cos x # 1-12
cos x # 0 - sin x # 1-12 = -cot x  

67.  
cos1x + h2 - cos x

h
=

cos x cos h - sin x sin h - cos x
h

  =
cos x 1cos h - 12 - sin x sin h

h

  = cos x acos h - 1
h

b - sin x 
sin h

h
  

69.  sin1A + B2 = sin1p - C2 = sin p cos C - cos p sin C
  = 0 # cos C - 1-12 sin C = sin C   

71. tan A + tan B + tan C =
sin A
cos A

+
sin B
cos B

+
sin C
cos C

 =
sin A1cos B cos C2 + sin B1cos A cos C2

cos A cos B cos C
+

sin C1cos A cos B2
cos A cos B cos C

 =
cos C1sin A cos B + cos A sin B2 + sin C1cos A cos B2

cos A cos B cos C

 =
cos C sin 1A + B2 + sin C1cos 1A + B2 + sin A sin B2

cos A cos B cos C

 =
cos C sin 1p - C2 + sin C1cos 1p - C2 + sin A sin B2

cos A cos B cos C

 =
cos C sin C + sin C1-cos C2 + sin C sin A sin B

cos A cos B cos C

 =
sin A sin B sin C
cos A cos B cos C

= tan A tan B tan C   

73.  This equation is easier to deal with after rewriting it as 
cos 5x cos 4x + sin 5x sin 4x = 0. The left side of this equation is 
the expanded form of cos15x - 4x2, which equals cos x; the 
graph shown is simply y = cos x. The equation 

 cos x = 0 is easily solved on the interval 3-2p, 2p4 : x = ±
p

2
 

 or x = ±
3p
2

. The original graph is so crowded that one cannot 

  see where crossings occur. 

 [–2p, 2p] by [–1.1, 1.1]   

75.  B = Bin + Bref =
E0

c  cosavt -
vx
c
b +

E0

c
 cosavt +

vx
c
b

  =
E0

c
 c cosavt -

vx
c
b + cosavt +

vx
c
b d

  =
E0

c
 a2 cos vt cos 

vx
c
b = 2 

E0

c
 cos vt cos 

vx
c

 The next-to-last step follows by the identity in Exercise 48.  

Section 5.4
exploration 1

1. sin2 
p

8
=

1 - cos1p>42
2

=
1 - 122>22

2
# 2
2

=
2 - 22

4
  

3. sin2 
9p
8

=
1 - cos19p>42

2
=

1 - 122>22
2

# 2
2

=
2 - 22

4
  

Quick review 5.4

1. x =
p

4
+ np, n = 0, ±1, ±2, . . .  

3. x =
p

2
+ np, n = 0, ±1, ±2, . . .  

5. x = -  
p

4
+ np, n = 0, ±1, ±2, . . .  

7.  x =
p

6
+ 2np or x =

5p
6

+ 2np or

  x = ±
2p
3

+ 2np, n = 0, ±1, ±2, . . .  

9. 10.5 sq units

exercises 5.4

1.  cos 2u = cos1u + u2 = cos u cos u - sin u sin u 
    = cos2 u - sin2 u   
3. Starting with the result of Exercise 1: 
cos 2u = cos2 u - sin2 u = 11 - sin2 u2 - sin2 u = 1 - 2 sin2 u  

5. 0, p  7. 
p

6
, 

5p
6

, 
3p
2

  9. 0, 
p

4
, 

3p
4

, p, 
5p
4

, 
7p
4

  

11. 2 sin u cos u + cos u or 1cos u212 sin u + 12  
13. 2 sin u cos u + 4 cos3 u - 3 cos u or 2 sin u cos u + cos3 u
- 3 sin2 u cos u  15. sin 34a = sin 2117a2 = 2sin 17a cos 17a

17. 
1

2 csc 2x
= cos2 x # sin x

cos x
= cos x sin x =

sin 2x
2

= cos2 x tan x

19. cos 3x = cos (2x + x) =  cos 2x cos x - sin 2x sin x
                 = 2 cos3 x - cos x - 2 sin2 x cos x 
                 = 2 cos3 x - cos x - (2 cos x -  2 cos3 x)
                 = 4 cos3 x - 3 cos x  
21.  cos 4x = cos1212x22 = 1 - 2 sin2 2x = 1 - 212 sin x cos x22
  = 1 - 8 sin2 x cos2 x   

23. 
p

3
, p, 

5p
3

  25. 
p

4
, 
p

2
, 

3p
4

, 
5p
4

, 
3p
2

, 
7p
4

  

27. 0, 
p

3
, 
p

2
, 

2p
3

, p, 
4p
3

, 
3p
2

, 
5p
3

  

29. 

[0, 2p] by [–2, 2]

 50.1p, 0.5p, 0.9p, 1.3p, 1.5p, 1.7p6   
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31. 11>2232 - 23  33. 11>2232 - 23  35. -2 - 23  
37. (a) Starting from the right side:

   
1
2

 11 - cos 2u2 =
1
2

 11 - 11 - 2 sin2 u22 

   =
1
2

 12 sin2 u2 = sin2 u  

 (b) Starting from the right side:

   
1
2

 11 + cos 2u2 =
1
2

 11 + 12 cos2 u - 122

   =
1
2

 12 cos2 u2 = cos2 u   

39.  sin4 x = 1sin2 x22 = a1
2

 11 - cos 2x2b
2

  =
1
4

 11 - 2 cos 2x + cos2 2x2

  =
1
4

 a1 - 2 cos 2x +
1
2

 11 + cos 4x2b

  =
1
8

 12 - 4 cos 2x + 1 + cos 4x2

  =
1
8

 13 - 4 cos 2x + cos 4x2   

41.  sin3 2x = sin 2x sin2 2x = 1sin 2x2 # 1
2

 11 - cos 4x2

  =
1
2

 1sin 2x211 - cos 4x2   

43. 
p

3
, p, 

5p
3

 ; ±
p

3
+ 2np or p + 2np, n = 0, ±1, ±2, . . .

45. 0, 
p

2
; 2np or 

p

2
+ 2np, n = 0, ±1, ±2, . . .

47. False. For example, ƒ1x2 = 2 sin x has period 2p and g1x2
= cos x has period 2p, but the product ƒ1x2 g1x2 = 2 sin x cos x
= sin 2x has period p.  49. D  51. E  

53. (a)  In the figure, the triangle with side lengths x>2 and R is a 
right triangle because R is given as the perpendicular distance. 
Then the tangent of the angle u>2 is the ratio “opposite over 

  adjacent”: tan 
u

2
=

x>2
R

. Solving for x gives the desired 

   equation. The central angle u is 2p>n because one full revolu-
tion of 2p rad is divided evenly into n sections.

 (b) 5.87 ≈ 2R tan 
u

2
, where u =

2p
11

, so R ≈ 5.87> a2 tan 
p

11
b

  ≈  9.9957; R = 10.  

55. u =
p

6
; the maximum value is about 12.99 ft3.  

57.  csc 2u =
1

sin 2u
=

1
2 sin u cos u

  =
1
2

# 1
sin u

# 1
cos u

=
1
2

 csc u sec u  

59.  sec 2u =
1

cos 2u
=

1

1 - 2 sin2 u

  = a 1

1 - 2 sin2 u
b acsc2 u

csc2 u
b =

csc2 u

csc2 u - 2
  

61.  sec 2u =
1

cos 2u
=

1

cos2 u - sin2 u

  = a 1

cos2 u - sin2 u
b asec2 u csc2 u

sec2 u csc2 u
b =

sec2 u csc2 u

csc2 u - sec2 u
  

63. (a) 

[0, 350] by [–150, 150]

 

 (b) 

[0, 350] by [–150, 150]

  Y1 = 94.0326 #  sin10.0172x - 1.32812 + 6.8154
   This is a fairly good fit, but not really as good as one might 

expect from data generated by a sinusoidal physical model. 
 (c)  The residual list: 5-0.9407, 11.1619, 9.6226, -2.9022,

-11.1246, -6.0682, 3.6606, 7.3318, 4.8411, 0.1799,  
-6.9315, -9.4057}

 (d) 

[0, 350] by [–15, 15]

   Y2 = 9.67 #  sin10.034x + 0.162 - 0.12 
    This is another fairly good fit, which indicates that the residu-

als are not due to chance. There is a periodic variation that is 
most probably due to physical causes. 

 (e)  The first regression indicates that the data are periodic and 
nearly sinusoidal. The second regression indicates that the 
variation of the data around the predicted values is also peri-
odic and nearly sinusoidal. Periodic variation around periodic 
models is a predictable consequence of bodies orbiting bod-
ies, but ancient astronomers had a difficult time reconciling 
the data with their simpler models of the universe.  

Section 5.5
exploration 1

1. If BC … AB, the segment will not reach from point B to the dotted 
line. On the other hand, if BC 7 AB, then a circle of radius BC will 
intersect the dotted line in a unique point. (Note that the line extends 
only to the left of point A.)  3. The second point 1C22 is the reflec-
tion of the first point 1C12 on the other side of the altitude.  5. If 
BC Ú AB, then BC can extend only to the right of the altitude, thus 
determining a unique triangle.  

Quick review 5.5

1. bc>d  3. ad>b  5. 13.314  7. 17.458°  9. 224.427°  

exercises 5.5

The numerical answers in this exercise set are rounded to one decimal 
place. Your teacher may want you to round differently.
1. C = 75°; a ≈ 4.5; c ≈ 5.1  3. B = 45°; b ≈ 15.8; c ≈ 12.8  
5. C = 107°; a ≈ 10.8; b ≈ 12.8 7. B = 36°; a ≈ 22.4; b ≈ 29 
9. B ≈ 20.1°; C ≈ 127.9°; c ≈ 25.3  
11. C ≈ 37.2°; A ≈ 72.8°; a ≈ 14.2  13. Zero  15. two  
17. one  19. B1 ≈ 72.7°; C1 ≈ 43.3°; c1 ≈ 12.2; B2 ≈ 107.3°; 
C2 ≈ 8.7°; c2 ≈ 2.7  21. A1 ≈ 78.2°; B1 ≈ 33.8°; b1 ≈ 10.8; 
A2 ≈ 101.8°; B2 ≈ 10.2°; b2 ≈ 3.4
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23. (a) 6.69 6 b 6 10 (b) b ≈ 6.69 or b Ú 10 (c) b 6 6.69  
25. (a) No, this is an SAS case. 
 (b) No, only two pieces of information are given.
27. No triangle is formed.  29. No triangle is formed.
31. A = 99°; a ≈ 28.3; b ≈ 19.1  33. A1 ≈ 24.6°; B1 ≈ 80.4°;  
a1 ≈ 20.7; A2 ≈ 5.4°; B2 ≈ 99.6°; a2 ≈ 4.7  35. Cannot be 
solved with Law of Sines (an SAS case).  
37. (a) 54.6 ft (b) 51.9 ft  
39. ≈24.9 ft  41. 1.9 ft  43. ≈108.9 ft  45. 36.6 mi to A; 

28.9 mi to B  47. True. By the Law of Sines, 
sin A

a
=

sin B
b

, 

which is equivalent to 
sin A
sin B

=
a
b

.  49. C  51. A  

53. (b)  Possible answers: a = 1, b = 23, c = 2 (or any set of three 
numbers proportional to these). 

 (c) Any set of three identical numbers.  
55. (a) h = AB sin A (b) BC 6 AB sin A 
 (c) BC Ú AB or BC = AB sin A (d) AB sin A 6 BC 6 AB  
57. AC ≈ 8.7 mi; BC ≈ 12.2 mi; h ≈ 5.2 mi  

Section 5.6
Exploration 1

1. 8475.742818 paces2  3. 0.0014714831 mi2  5. The esti-
mate of “a little over an acre” seems questionable, but the roughness 
of their measurement system does not provide firm evidence that it is 
incorrect. If Jim and Barbara wish to make an issue of it with the 
owner, they would be well advised to get some more reliable data.  

Quick Review 5.6

1. A ≈ 53.130°  3. A ≈ 132.844°  

5. (a) cos A =
x2 + y2 - 81

2xy
 (b) A = cos-1ax

2 + y2 - 81

2xy
b   

7. One answer: 1x - 121x - 22  
9. One answer: 1x - i21x + i2 = x2 + 1  

Exercises 5.6

1. A ≈ 30.7°; C ≈ 18.3°, b ≈ 19.2  3. A ≈ 76.8°; B ≈ 43.2°, 
C ≈ 60°  5. B ≈ 89.3°; C ≈ 35.7°, a ≈ 9.8  7. A ≈ 28.5°; 
B ≈ 56.5°, c ≈ 25.1  9. No triangles possible  
11. A ≈ 24.6°; B ≈ 99.2°, C ≈ 56.2  13. B1 ≈ 72.9°; 
C1 ≈ 65.1°, c1 ≈ 9.5; B2 ≈ 107.1°; C2 ≈ 30.9°, c2 ≈ 5.4  
15. No triangle  17. ≈222.33 ft2  19. ≈107.98 cm2  
21. ≈8.18  23. No triangle is formed  25. ≈216.15  
27. ≈314.05  29. ≈1.445 rad  31. ≈374.1 in.2  
33. ≈498.8 in.2  35. ≈130.42 ft  
37. (a) ≈42.5 ft 
 (b)  The home-to-second segment is the hypotenuse of a right 
  triangle, so the distance from the pitching rubber to second 

  base is 6022 - 40 ≈ 44.9 ft. 
 (c) ≈93.3°  
39. (a) tan-1 11>32 ≈ 18.4° (b) ≈4.5 ft (c) ≈7.6 ft  
41. ≈12.5 yd  43. ≈37.9°  45. True. By the Law of Cosines, 
b2 + c2 - 2bc cos A = a2, which is a positive number. Because 
b2 + c2 - 2bc cos A 7 0, it follows that 
b2 + c2 7 2bc cos A.  47. B  49. C  

51. Area = 1nr2>22 sin1360°>n2  

53. (a) Ship A: 
30.2 - 15.1

1 hr
= 15.1 knots; 

  Ship B: 
37.2 - 12.4

2 hr
= 12.4 knots 

 (b) 35.18° (c) 34.8 naut mi  
55. 6.9 in.2  

Chapter 5 Review Exercises
1. sin 200°  3. 0  
5.  cos 3x = cos12x + x2 = cos 2x cos x - sin 2x sin x 

  = 1cos2 x - sin2 x2 cos x - 12 sin x cos x2 sin x

  = cos3 x - 3 sin2 x cos x = cos3 x - 311 - cos2 x2cos x 

  = cos3 x - 3 cos x + 3 cos3 x = 4 cos3 x - 3 cos x   

7.  tan2 x - sin2 x = sin2 x a1 - cos2 x

cos2 x
b = sin2 x # sin2 x

cos2 x
  = sin2 x tan2 x   

9.  csc x - cos x cot x =
1

sin x
- cos x # cos x

sin x
=

1 - cos2 x
sin x

  =
sin2 x
sin x

= sin x   

11. 
1 + tan u
1 - tan u

+
1 + cot u
1 - cot u

  =
11 + tan u211 - cot u2 + 11 + cot u211 - tan u2

11 - tan u211 - cot u2
  =  

11 + tan u - cot u - 12 + 11 + cot u - tan u - 12
11 - tan u211 - cot u2

  =
0

11 - tan u211 - cot u2 = 0   

13.  cos2 
t
2

= c ±B1
2

 11 + cos t2 d
2

  =
1
2

 11 + cos t2 = a1 + cos t
2

b asec t
sec t
b =

1 + sec t
2 sec t

  

15. 
cos f

1 - tan f
+

sin f

1 - cot f

  = a cos f

1 - tan f
b acos f

cos f
b + a sin f

1 - cot f
b asin f

sin f
b

  =
cos2 f

cos f - sin f
+

sin2 f

sin f - cos f

  =
cos2 f - sin2 f

cos f - sin f
= cos f + sin f   

17.  B1 - cos y

1 + cos y
= D 11 - cos y22

11 + cos y211 - cos y2 = D11 - cos y22
1 - cos2 y

 

  = D11 - cos y22
sin2 y

=
0 1 - cos y 0
0 sin y 0

  =
1 - cos y

0 sin y 0 ; because 1 - cos y Ú 0,

 we can drop that absolute value.  
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19.  tanau +
3p
4
b =

tan u + tan13p>42
1 - tan u tan13p>42 

  =
tan u + 1-12

1 - tan u 1-12 =
tan u - 1
1 + tan u

  

21. 11 + cot g - csc g211 + tan g + sec g2
= a1 +

cos g
sin g

-
1

sin g
b a1 +

sin g
cos g

+
1

cos g
b

= a1sin g + cos g 2 - 1

sin g
b a1sin g + cos g 2 + 1

cos g
b

= a1sin g + cos g 22 - 1

1sin g  cos g 2 b =
12 sin g cos g2

sin g cos g
= 2

23.  Yes: sec x - sin x tan x =
1

cos x
-

sin2 x
cos x

  =
1 - sin2 x

cos x
=

cos2 x
cos x

= cos x  

25. For example, 1cos x - sin x211 + 4 sin x cos x2.  

27. For example, 1 - 4 sin2 x cos2 x - 2 sin x cos x.  

29. x =
p

9
+

2
3

 np or x =
5p
9

+
2
3

 np

31. x = -
p

4
+ np  33. tan23  

35. x ≈ 1.12 or x ≈ 5.16  37. x ≈ 1.15  

39. p>3, 5p>3  41. 
3p
2

  43. No solutions  

45. c 0, 
p

6
b ∪ a5p

6
, 

7p
6
b ∪ a11p

6
, 2pb   

47. 1p>3, 5p>32  49. y ≈ 5 sin 13x + 0.932  

51. C = 68°, b ≈ 3.9, c ≈ 6.6  53. No triangle is formed.  
55. C = 72°, a ≈ 2.9, b ≈ 5.1  
57. A ≈ 44.4°, B ≈ 78.5°, C ≈ 57.1°  59. ≈7.5  
61. (a) ≈5.6 6 b 6 12 (b) b ≈ 5.6 or b Ú 12 (c) b 6 5.6  
63. ≈1.2355 km  65. 1.25 rad  

67. (a) sin u +
1
2

 sin 2u (b) u = 60°; ≈1.30 square units  

69. (a) h = 4000 sec 
u

2
- 4000 mi (b) ≈35.51°  

71. Area of circle -  area of hexagon = 324p - 48623 ≈ 176.1 cm2  
73. 405p>24 ≈ 53.01 cm3

75. (a) By the product-to-sum formula in Exercise 74c, 

  2 sin 
u + v

2
 cos 

u - v
2

  =  2 # 1
2

 asin 
u + v + u - v

2
+ sin 

u + v - 1u - v2
2

b
  = sin u + sin v. 
 (b) By the product-to-sum formula in Exercise 74c, 

  2 sin 
u - v

2
 cos 

u + v
2

  = 2 # 1
2

 asin 
u - v + u + v

2
+ sin 

u - v - 1u + v2
2

b
  = sin u + sin1-v2 = sin u - sin v. 
 (c) By the product-to-sum formula in Exercise 74b, 

  2 cos 
u + v

2
 cos 

u - v
2

  =  2 # 1
2

 acos 
u + v - 1u - v2

2
+ cos 

u + v + u - v
2

b
   = cos v + cos u = cos u + cos v. 

 (d) By the product-to-sum formula in Exercise 74a, 

  -2 sin 
u + v

2
 sin 

u - v
2

  = -2 # 1
2

 acos 
u + v - 1u - v2

2
- cos 

u + v + u - v
2

b
  = -1cos v - cos u2 = cos u - cos v.  
77. (a)  Any inscribed angle that intercepts an arc of 180° is a right angle. 
 (b) Two inscribed angles that intercept the same arc are congruent. 

 (c) In right △A′BC, sin A′ =
opp

hyp
=

a
d

 .

 (d) Because ∠A′ and ∠A are congruent, 

   
sin A

a
=

sin A′
a

=
a>d

a
=

1
d

. 

 (e) Yes, they both equal 
sin A

a
 by the Law of Sines.  

chapter 5 Modeling Project

1. 

[–2, 34] by [–0.1, 1.1]

  

3. This graph should match the graph in part 2. Both graphs should fit 
the scatter plot fairly well.
5. One possible model is y ≈ 0.5 sin10.221x + 6.522 + 0.5.
7. This graph should match the graph in part 5. Both graphs should fit 
the scatter plot fairly well.

cHAPter 6
Section 6.1
exploration 1

1. 85, 29  3. 16, -72
Quick review 6.1

1. 
923

2
; 4.5  3. -5.36; -4.50  5. 33.85°  7. 60.95°

9. 180° + tan-115>22 ≈ 248.20°

exercises 6.1

1. Both vectors represent 83, -29 by the HMT Rule.   
3. Both vectors represent 8-2, -29 by the HMT Rule.   

5. 85, 29; 229  7. 8-5, 19; 226  9. 8-2, -249; 22145   

11. 8-11, -79; 2170  13. 81, 79  15. 8-3, 89  17. 84, -99   

19. 8-4, -189  21. 
225

 i +  
125

 j  23. -  
125

  i -
225

  j

25. (a) h 225
 i +

125
 ji  (b) 

225
 i +

125
 j

27. (a) h-  
4241

, -  
5241
i (b) -  

4241
 i -

5241
 j

29. ≈ 816.31, 7.619  31. ≈ 8-14.52, 44.709 
33. 25; ≈163.74°  35. 5; ≈306.87°  37. 7; 135° 
39. 822, -229   41. ≈ 8-223.99, 480.349 
43. (a) ≈ 8-111.16, 305.409 (b) ≈362.85 mph; bearing ≈ 337.84°  
45. (a) ≈ 83.42, 9.409 (b) The horizontal component is the (con-
stant) horizontal speed of the basketball as it travels toward the basket. 
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The vertical component is the vertical velocity of the basketball, 
affected by both the initial speed and the downward pull of gravity.
47. ≈ 82.20, 1.439  49. 0F 0 ≈100.33 lb and u ≈ -1.22°   
51. ≈342.86°; ≈9.6 mph  53. ≈13.66 mph; ≈7.07 mph   
55. True. u and -u have the same length but opposite directions. 
Thus, the length of -u is also 1.  57. D  59. A

Section 6.2
Exploration 1

1. 8-2 - x, -y9, 82 - x, -y9  3. Answers will vary.

Quick Review 6.2

1. 213  3. 1  5. 83, 239  7. 8-1, -239
9. h 4213

 , 
6213
i

Exercises 6.2

1. -15  3. -7  5. -23  7. -4  9. 13  11. 4   
13. ≈115.6°  15. ≈64.65°  17. 165°  19. 135°   
21. ≈94.86°  23. 12213>22 + 1321-12 = 0, so u is orthogonal to v. 

25. u = a-38
113
b  8-7, -89 + a 5

113
b  8-8, 79   

27. 
82
85

 89, 29; 82
85

 89, 29 +
29
85

 8-2, 99  

29. 47.73°, 74.74°, 57.53°
31. ≈-20.78  33. Parallel  35. Neither  37. Orthogonal
39. (a) 14, 02 and 10, -32 (b) 14.6, -0.82 or 13.4, 0.82   
41. (a) 17, 02 and 10, -32 (b) ≈17.39, -0.922 or ≈16.61, 0.922 
43. 8-1, 49 or h 53

13
, 

8
13
i  45. ≈140 lb

47. (a) ≈416 lb (b) ≈1960 lb
49. 14,300 ft-lb  51. ≈21 J  53. ≈85 J   

55. 100239 ≈ 620 ft-lb  61. False. If one of u or v is the zero 
vector, then u # v = 0 but u and v are not perpendicular.   
63. D  65. A  67. (a) 2 # 0 + 5 # 2 = 10 and 2 # 5 + 5 # 0 = 10

 (b) 
5
29

 85, -29; 1
29

 862, 1559 (c) 0w2 0 =
31229

29
 

 (d) d =
0 2x0 + 5y0 - 10 0229

 (e) d =
0 ax0 + by0 - c 02a2 + b2

  

Section 6.3
Exploration 1
1. 

[–10, 5] by [–5, 5]

  

3. t = 12  5. Tmin … -2 and Tmax Ú 5.5  

Exploration 2
3. 

[0, 450] by [0, 80]

  

[0, 450] by [0, 80]

   [0, 450] by [0, 80]   [0, 450] by [0, 80]

Quick Review 6.3

1. (a) 8-3, -29 (b) 84, 69 (c) 87, 89  

3. y + 2 =
8
7

  1x + 32 or y - 6 =
8
7

  1x - 42  

5. 

[–3, 7] by [–7, 7]

7. x2 + y2 = 4  9. 20p rad>sec

Exercises 6.3

1. (b) 3-5, 54  by 3-5, 54   3. (a) 3-5, 54  by 3-5, 54   

5. (a) t -2 -1 0 1 2

x 0 1 2 3 4

y -1>2 -2 und. 4 5>2
(b) y

5

x
8

(3, 4)

(1, –2)
a0, – b1

2

a4, b5
2

  

7. 

[–10, 10] by [–10, 10]

  9. 

[–10, 10] by [–10, 10]

11. y = x - 7: line through 10, -72 and 11, -62
13. y = -2x + 3, 3 … x … 7: line segment with endpoints 13, -32 
and 17, -112  15. x = 1y - 122: parabola that opens to right with 
vertex at 10, 12  17. y = x3 - 2x + 3: cubic polynomial   
19. x = 4 - y2 parabola that opens to left with vertex at 14, 02   

21. t = x + 3, so y =
2

x + 3
, -8 … x … 2, x ≠ -3   

23. x2 + y2 = 25, circle of radius 5 centered at 10, 02  
25. x2 + y2 = 4, three-fourths of a circle of radius 2 centered at 
10, 02 (not in Quadrant II)  27. x = 6t - 2; y = -3t + 5  

For Exercises 29–32, many answers are possible; one of the simplest 
is given.
29. x = 3t + 3, y = 4 - 7t, 0 … t … 1   
31. x = 5 + 3 cos t, y = 2 + 3 sin t, 0 … t … 2p   
33. 0.5 6 t 6 2  35. -3 … t 6 -2
37. (b) Ben is ahead by 2 ft.  
39. (a) y = -16t2 + 1000 (c) 744 ft
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41. (a) 0 6 t 6 p>2 (b) 0 6 t 6 p (c) p>2 6 t 6 3p>2  
43. (a) About 2.80 sec (b) ≈  7.18 ft  
45. (a) Yes (b) 1.59 ft  
47. No  49. v ≈ -10.00 ft>sec or 551.20 ft>sec  

51. x = 35 cosap
6

 tb  and y = 50 + 35 sinap
6

 tb   

53. (a)  When t = p 1or 3p, or 5p, etc.2, y = 2. This corresponds to 
the highest points on the graph. (b) 2p units

59. True. Both correspond to the rectangular equation y = 3x + 4.
61. A  63. D
65. (a) 

[–6, 6] by [–4, 4]

 (b) a

   (c) 

[–6, 6] by [–4, 4]

 (d)  1x - h22 + 1y - k22 = a2; 
circle of radius a centered 
at 1h, k2 

   (e) x = 3 cos t - 1; y = 3 sin t + 4

67. (a)  Jane is traveling in a circle of radius 20 ft and origin 10, 202, 
which yields x1 = 20 cos1nt2 and y1 = 20 + 20 sin1nt2. 
Because the Ferris wheel is making one revolution 12p2 every 

12 sec, 2p = 12n, so n =
2p
12

=
p

6
. Thus, x1 = 20 cosap

6
 tb  

and y1 = 20 + 20 sinap
6

 tb , in Radian mode. 

 (b)  Because the ball was released at 75 ft in the positive x-direc-

tion and gravity acts in the negative y-direction at 16 ft>s2, we 

have x2 = at + 75 and y2 = -16t2 + bt, where a is the 

 initial speed of the ball in the x-direction and b is the initial 

speed of the ball in the y-direction. The initial velocity vector 

of the ball is 608cos 120°, sin 120°9 = 8-30, 30239 ,  
so a = -30 and b = 3023. As a result, x2 = -30t + 75 

and y2 = -16t3 + 130232t are the parametric equations  

for the ball. 

 (c) 

[–50, 100] by [–50, 50]

   Jane and the ball will be  
close to each other, but not  
at the exact same point, at 
t = 2.2 sec.

 (d)  d1t2 = 21∆x22 + 1∆y22, where

  ∆x = 20 cosap
6

 tb + 30t - 75 and

  ∆y = 20 sinap
6

 tb + 16t2 - 3023 # t + 20

 (e)  The minimum distance occurs at t ≈ 2.2 sec, when 
d1t2 ≈ 1.64 ft. Jane will have a good chance of catching  
the ball.  

69. About 4.11 ft  73. t =
1
3

, 
2
3

; t =
1
4

, 
1
2

, 
3
4

  

Section 6.4
Exploration 1

3. 1-2, p>32, 12, p>22, 13, 02, 11, p2, 14, 3p>22
Quick Review 6.4

1. (a) II (b) III  3. 7p>4, -9p>4  5. 520°, -200°

7. 1x - 322 + y2 = 4  9. ≈11.14

Exercises 6.4

1. a-  
3
2

, 
323

2
b   3. 1-1, -232  

5. (a) u p>4 p>2 5p>6 p 4p>3 2p

r 322>2 3 3>2 0 -323>2 0

 (b) y

5

x
5

p
2
ba3, 

3
2

5p
6
b, a

4p
3
b, 

2
33a–

p
4 b, 

2
23a

(0, p)
(0, 2p)

  

7. 

3
4p ba3,

3
O

3
4p   9. 

O1

5
2p ba–1, 

5
2p

11. 

O

2
(2, 30°)
30°

  13. 

O 2

120°

(–2, 120°)

15. a3
4

, 
3
4

 23b  17. 1-2.70, 1.302  19. 12, 02  21. 1 -3, 02

23. a4, 
p

6
+  2npb  and a-4, 

p

6
+ 12n + 12pb , n is an 

integer  
25. 11.5, -20° + 360n°2 and 1-1.5, 160° + 360n°2, n an integer  

27. (a) a22, 
p

4
b  or a-22, 

5p
4
b  

 (b) a22, 
p

4
b  or a-22, -  

3p
4
b  

 (c) The answers from part (a), and also a22, 
9p
4
b or a-22, 

13p
4
b .

29. (a) 1229, 1.952 or 1-229, 5.092
 (b) 1-229, -1.192 or 1229, 1.952
 (c)  The answers from part (a), plus 1229, 8.232 or 

1-229, 11.382
31. (b)   33. (c)  35. x = 3: a vertical line  

37. x2 + ay +
3
2
b

2

=
9
4
: a circle centered at a0, -  

3
2
b  with radius 

3
2

39. x2 + ay -
1
2
b

2

=
1
4

: a circle centered at a0, 
1
2
b  with radius 

1
2

41. 1x + 222 + 1y - 122 = 5: a circle centered at 1-2, 12 with 

radius 25
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3. k = p

 [–5, 5] by [–4, 3]

5. k = 2p

 [–5, 5] by [–3, 3]   

43. r = 2>cos u = 2 sec u  45. r =
5

2 cos u - 3 sin u
47. r2 - 6r cos u = 0, so r = 6 cos u

 [–3, 9] by [–4, 4]

49. r2 + 6r cos u + 6r sin u = 0, so r = -6 cos u - 6 sin u

 [–12, 6] by [–9, 3]

51. 210.109 ≈ 3.18 mi  53. a a22
, 
p

4
b , a a22

, 
3p
4
b , a a22

, 
5p
4
b,

and a a22
, 

7p
4
b   55. False. 1r, u2 = 1r, u + 2np2 for any integer 

n. These are all distinct polar coordinates.  57. C  59. A
61. (a) If u1 - u2 is an odd integer multiple of p, then the distance is 
0 r1 + r2 0 . If u1 - u2 is an even integer multiple of p, then the distance 
is 0 r1 - r2 0 .
63. ≈6.24  65. ≈7.43  67. x = ƒ1u2 cos1u2, y = ƒ1u2 sin1u2
69. x = 51cos u21sin u2, y = 5 sin2 u  71. x = 4 cot u, y = 4

Section 6.5
Exploration 2

1.–5. Proofs and explanations vary.

Quick Review 6.5

1. Minimum: -3 at x = ep
2

, 
3p
2
f ; Maximum: 3 at x = 50, p, 2p6   

3. Minimum: 0 at x = ep
4

, 
3p
4

, 
5p
4

, 
7p
4
f ; Maximum: 2 at 

x = 50, p, 2p6   5. No; no; yes  7. sin u  9. -cos u  

Exercises 6.5

1. (a) 

u 0 p>4 p>2 3p>4 p 5p>4 3p>2 7p>4
r 3 0 -3 0 3 0 -3 0

7. r3 is graph (b).  9. Graph (b) is r = 2 - 2 cos u.

11. Graph (a) is r = 2 - 2 sin u.  13. Symmetric about the y-axis 
15. Symmetric about the x-axis  17. All three symmetries   
19. Symmetric about the y-axis  21. Maximum �r�  is 5 — 
when u = 2np for any integer n.  23. Maximum �r�  is 3 
1when r = ±32 — when u = 2np>3 for any integer n.   
25. Domain: (-∞, ∞)
 Range: r = 3
 Continuous
 Symmetric about the x-axis,  

y-axis, and origin
 Bounded
 Maximum �r�  value: 3
 No asymptotes

 [–6, 6] by [–4, 4]   

27. Domain: u = p>3
 Range: 1-∞, ∞2
 Continuous
 Symmetric about the origin
 Unbounded
 Maximum �r�  value: none
 No asymptotes

 [–4.7, 4.7] by [–3.1, 3.1]   

29. Domain: (-∞, ∞)
 Range: 3-2, 24
 Continuous
 Symmetric about the y-axis
 Bounded
 Maximum �r�  value: 2
 No asymptotes

 [–3, 3] by [–2, 2]   

31. Domain: (-∞, ∞)
 Range: 31, 94
 Continuous
 Symmetric about the y-axis
 Bounded
 Maximum �r�  value: 9
 No asymptotes

 [–9, 9] by [–2.5, 9.5]   

33. Domain: (-∞, ∞)
 Range: 30, 84
 Continuous
 Symmetric about the x-axis
 Bounded
 Maximum �r�  value: 8
 No asymptotes

 [–6, 12] by [–6, 6]   

35. Domain: (-∞, ∞)
 Range: 33, 74
 Continuous
 Symmetric about the x-axis
 Bounded
 Maximum �r�  value: 7
 No asymptotes

 [–7, 11] by [–6, 6]   

 (b) y

5

x
5

ba–3, 

ba–3, 

3p
4 3p

2

p
2

5p
4

7p
4

p
4

ba0, , ,,5 6

(3, 0)

(3, p)
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37. Domain: (-∞, ∞)
 Range: 3-3, 74
 Continuous
 Symmetric about the x-axis
 Bounded
 Maximum �r�  value: 7
 No asymptotes

 [–4, 8] by [–4, 4]   

39. Domain: (-∞, ∞)
 Range: 30, 24
 Continuous
 Symmetric about the x-axis
 Bounded
 Maximum �r�  value: 2
 No asymptotes

 [–3, 1.5] by [–1.5, 1.5]   

 (c) 

[–5, 5] by [–5, 5]

  

Section 6.6
Quick Review 6.6

1. 2 + 3i, 2 - 3i  3. -4 - 4i  5. u =
5p
6

  7. 
4p
3

  9. 1  

Exercises 6.6
1. 

1 + 2i

3 – i

–2 + 2i

i

3. 3acos 
p

2
+ i sin 

p

2
b   5. 222acos 

p

4
+ i sin 

p

4
b   

7. 4acos 
2p
3

+ i sin 
2p
3
b   9. ≈ 2131cos 0.59 + i sin 0.592 

11. 3acos 
p

6
+ i sin 

p

6
b  13. 

323
2

-
3
2

 i  15. 5>2 - 15>22 23i

17. 
26
2

-
22
2

 i  19. 14 1cos 155° + i sin 155°2  

21. 15acos 
23p
12

+ i sin 
23p
12
b   23. 

2
3

 1cos 30° - i sin 30°2  

25. 21cos p + i sin p2  

27. (a) 5 + i; 
1
2

-
5
2

 i (b) Same as part (a)  

29. (a) 18 - 4i; ≈  0.35 + 0.41i (b) Same as part (a)  

31. -  
22
2

+ i 
22
2

  33. 422 + 422 i  

35. -4 - 4i  37. -8  39. 
-1 + 23 i23 4

; 
-1 - 23 i23 4

; 23 2  

41.  23 3acos 
4p
9

+ i sin 
4p
9
b , 23 3acos 

10p
9

+ i sin 
10p

9
b , 23 3acos 

16p
9

+ i sin 
16p

9
b   

43.  ≈23 51cos 1.79 + i sin 1.792, ≈23 51cos 3.88 + i sin 3.882, 
≈23 51cos 5.97 + i sin 5.972  

45.  cos 
p

5
+ i sin 

p

5
, cos 

3p
5

+ i sin 
3p
5

, -1, cos 
7p
5

+ i sin 
7p
5

,  

cos 
9p
5

+ i sin 
9p
5

  

41. Domain: (-∞, ∞)
 Range: 30, ∞2
 Continuous
 No symmetry
 Unbounded
 Maximum �r�  value: none
 No asymptotes
 Graph for u Ú 0:

 [–45, 45] by [–30, 30]   

43. Domain: c 0, 
p

2
d ∪ cp, 

3p
2
d

 Range: 30, 14
 Continuous on domain
 Symmetric about the origin
 Bounded
 Maximum �r�  value: 1
 No asymptotes

 [–1.5, 1.5] by [–1, 1]   

45. {9,3,9,3}  47. {4,14,4,14,4,14}   
49. r1 and r2  51. r2 and r3  
53. (a) A 4-petal rose curve with 2 short petals of length 1, and 2 
long petals of length 3 (b) Symmetric about the origin  
(c) Maximum �r�  value: 3  
55.  (a) A 6-petal rose curve with 3 short petals of length 2, and 3 

long petals of length 4 (b) Symmetric about the x-axis  
(c) Maximum �r�  value: 4

61. False. The spiral r = u is unbounded.  63. D  65. B   
67. (e) Domain: (-∞, ∞)
 Range: 3- 0 a 0 , 0 a 0 4
 Continuous
 Symmetric about the x-axis
 Bounded
 Maximum �r�  value: 0 a 0
 No asymptotes  
69. (a)  For r1: 0 … u … 4p (or any interval that is 4p units long). For  

r2: same answer. 
 (b)  r1: 10 (overlapping) petals;  

r2: 14 (overlapping) petals  
71.  Starting with the graph of r1, if we rotate counterclockwise (cen-

tered at the origin) by p>4 rad 145°2, we get the graph of r2; rotat-
ing r1 counterclockwise by p>3 rad 160°2 gives the graph of r3.

 (a) 

[–5, 5] by [–5, 5]

 (b) 

[–5, 5] by [–5, 5]
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47.  25 2acos 
p

30
+ i sin 

p

30
b , 25 2acos 

13p
30

+ i sin 
13p
30
b , 25 2acos 

5p
6

+ i sin 
5p
6
b , 25 2acos 

37p
30

+ i sin 
37p
30
b , 25 2acos 

49p
30

+ i sin 
49p
30
b   

49.  25 2acos 
p

10
+ i sin 

p

10
b , 25 2i, 25 2acos 

9p
10

+ i sin 
9p
10
b , 25 2acos 

13p
10

+ i sin 
13p
10
b , 25 2acos 

17p
10

+ i sin 
17p
10
b   

51.  28 2acos 
p

16
+ i sin 

p

16
b , 28 2acos 

9p
16

+ i sin 
9p
16
b , 28 2acos 

17p
16

+ i sin 
17p
16
b , 28 2acos 

25p
16

+ i sin 
25p
16
b   

53. 22acos 
p

12
+ i sin 

p

12
b , -1 + i, 22acos 

17p
12

+ i sin 
17p
12
b

55.   
1 + i26 4

, 26 2acos 
7p
12

+ i sin 
7p
12
b , 26 2acos 

11p
12

+ i sin 
11p
12
b , 26 2acos 

5p
4

+ i sin 
5p
4
b , 26 2acos 

19p
12

+ i sin 
19p
12
b , 26 2acos 

23p
12

+ i sin 
23p
12
b   

75.  x1t2 = 1232t cos10.62t2 y1t2 = 1232t sin10.62t2

 [–7, 2] by [0, 6]

79. 1, -  
1
2

+
23
2

 i, -  
1
2

-
23
2

 i  81. -1, 
1
2

+
23
2

 i, 
1
2

-
23
2

 i  

83. -1, ≈  0.81 + 0.59i, 0.81 - 0.59i, -0.31 + 0.95i, -0.31 - 0.95i  

Chapter 6 Review Exercises
1. 8-2, -39  3. 237  5. 6  7. 83, 69; 325  

9. 8-8, -39; 273   

11. (a) h 4
5

, -
3
5
i  (b) h-  

12
5

, 
9
5
i

13. (a) tan-1a3
4
b ≈ 0.64; tan-1a5

2
b ≈ 1.19 (b) ≈0.55

15. ≈1-2.27, -1.062  17. (2, 0)  

19. a3, 
p

3
± 2npb  and a-3, 

-3p
4

± 2npb , n is an integer

21. (a)  a-213, p + tan-1a-  
3
2
b b ≈ 1-213, 2.162 or 

a213, 2p + tan-1a-  
3
2
b b ≈ 1213, 5.302

 (b)  a213, tan-1a-  
3
2
b b ≈ 1213, -0.982 or 

a-213, p +  tan-1a-  
3
2
b b ≈ 1-213, 2.162

 (c)  The answers from part (a), and also 

a-213, 3p + tan-1a-  
3
2
b b ≈ 1-213, 8.442 or 

a213, 4p +  tan-1a-  
3
2
b ≈ 1213, 11.582

23. (a)  15, 02 or 1-5, p2 or 15, 2p2 (b) 1-5, -p2 or 15, 02 or 
1-5, p2 (c) The answers from part (a), and also 1-5, 3p2 
or 15, 4p2

25. y = -  
3
5

 x +
29
5

: line through a0, 
29
5
b  with slope m = -  

3
5

27. x3 + y3 = xy  29. y = 2x + 1: square root function start-
ing at 1-1, 02  31. x = 4t - 1, y = 6t - 2  

33. a = -3, b = 4, 0 z1 0 = 5  35. 323 + 3i

37. -1.25 - 1.2523 i  39. 322acos 
7p
4

+ i sin 
7p
4
b . 

Other representations would use angles 
7p
4

+ 2np, n is an integer.  

41.  
122

 cos 
3p
4

+ i
122

 sin 
3p
4

. Other representations would use angles  

3p
4

+ 2np, n an integer.

43. 121cos 90° + i sin 90°2; 3
4

 1cos 330° + i sin 330°2

45. (a) 243acos 
5p
4

+ i sin 
5p
4
b  (b) -  

24322
2

-
24322

2
 i

47. (a) 1251cos p + i sin p2 (b) -125

57. 1, -  
1
2

±
23
2

 i

 

0.5i

0.5

  

59. ±1, 
1
2

±
23
2

 i, -
1
2

±
23
2

 i

 

0.5i

0.5

  

61. -8; -2 and 1 ± 23i  65. False. For example, the complex 
number 1 + i has infinitely many polar forms.

Here are two: 22acos 
p

4
+ i sin 

p

4
b , 22acos 

9p
4

+ i sin 
9p
4
b .  

67. B  69. A  71. (b) r2 (c) cos12u2 + i sin12u2  
73.  Set the calculator for rounding to 2 decimal places. In part (b), use 

Degree mode.

 (a)  (b)  

 (c)   
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49.  28 18acos 
p

16
+ i sin 

p

16
b , 28 18acos 

9p
16

+ i sin 
9p
16
b ,  28 18acos 

17p
16

+ i sin 
17p
16
b , 28 18acos 

25p
16

+ i sin 
25p
16
b

 

i

1

51.  1, cos 
2p
5

+ i sin 
2p
5

, cos 
4p
5

+ i sin 
4p
5

, 

cos 
6p
5

+ i sin 
6p
5

, cos 
8p
5

+ i sin 
8p
5

 

0.5i

0.5

53. (b)  55. (a)  57. Not shown  59. (c)   
61. x2 + y2 = 4: a circle with center 10, 02 and radius 2  

63. ax +
3
2
b

2

+ 1y + 122 =
13
4

: a circle of radius 
213

2
 with 

center a-  
3
2

, -1b

73. (d) 

[–9, 2] by [–6, 6]

  

75. (a) ≈ 8-463.64, 124.239 (b) ≈508.29 mph; bearing ≈283.84°
77. (a) ≈830 lb (b) ≈2900 lb
79. (a) h = -16t2 + 245t + 200 (b) Graph and trace: x = 17 and 
y = -16t2 + 245t + 200 with 0 … t … 16.1 (upper limit may vary) 
on 30, 184  by 30, 12004 . This graph will appear as a vertical line from 
about 117, 02 to about 117, 11382. Tracing shows how the arrow begins 
at a height of 200 ft, rises to over 1000 ft, then falls back to the ground. 

 (c) 

[0, 18] by [0, 1200]

 (d) ≈924 ft 
 (e)  ≈1138 ft; t ≈ 7.66 sec
 (f)  About 16.09 sec

81. x = 40 sina2p
15

 tb , y = 50 - 40 cosa2p
15

 tb

83. (a) 

[–7.5, 7.5] by [–5, 5]

 (b) All 4’s should be changed to 5’s.

85. t ≈ 1.06 sec, x ≈ 68.65 ft  
87. (a) ≈77.59 ft (b) ≈4.404 sec 
89. ≈17.65 ft

Chapter 6 Modeling Project

Answers are based on the sample data shown in the table.

1. 

[–0.1, 2.1] by [0, 1.1]

  

3. 

[–0.1, 2.1] by [–1.1, 1.1]

  

5. 

[0, 1.1] by [–1.1, 1.1]

65. r = -  
4

sin u
= -4 csc u

 [–10, 10] by [–10, 10]  

67. r = 6 cos u - 2 sin u

 [–3, 9] by [–5, 3]  

69. 

[–7.5, 7.5] by [–8, 2]

 

 Domain: (-∞, ∞)
 Range: 3-3, 74
 Continuous
 Symmetric about the y-axis
 Bounded
 Maximum �r�  value: 7
 No asymptotes  

71. 

[–3, 3] by [–2.5, 1.5]

 Domain: (-∞, ∞)
 Range: 3-2, 24
 Continuous
 Symmetric about the y-axis
 Bounded
 Maximum �r�  value: 2
 No asymptotes  
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cHAPter 7
Section 7.1
exploration 1
1. 

[0, 10] by [–5, 5]

3. y =  ln x is strictly increasing; the graph of y = x2 - 4x + 2 is an 
upward-opening parabola. The graph of y =  ln x is concave down, 
and the parabola is concave up. Thus, there can be at most two points 
of intersection. Because we have found two, there are exactly two.

Quick review 7.1

1. y =
5
3

-
2
3

 x  3. x = -  
2
3

, x = 1  5. 0, 2, -2  

7. 4x + 5y = 6  9. -4x - 6y = -10  

exercises 7.1

1. (a) No (b) Yes (c) No  3. (7, 4)  5. 16, -8 2  
7. 12, -3 2  9. No solution  11. 1±11, 1212  

13. 1-2>3, 8>32 and 11>2, 3>22  15. 10, 02 and 13, 182  

17. a-1 + 3289
10

, 
3 + 289

10
b  and a-1 - 3289

10
, 

3 - 289
10

b   

19. 18, -22  21. (-3, 5)  23. No solution   
25. Infinitely many solutions  27. 10, 12 and 13, -22   
29. No solution  31. One solution  33. Infinitely  
many solutions  35. ≈10.69, -0.372   
37. ≈1-2.32, -3.162, 10.47, -1.772 and 11.85, -1.082   
39. 1-1.2, 1.62 and 12, 02  41. ≈12.05, 2.192 and 1-2.05, 2.192 
43. 13.75, 143.752 
45. (a) Philadelphia: y ≈ -3.62x + 1645.64
  Phoenix: y ≈ 22.41x + 794.77

 [–5, 40] by [–500, 2000]  
 (b) The population of both cities was about 1.53 million around 2013.
47. (a) y ≈ 302.09x + 9835.4 (b) y ≈ 35.15x + 5372 
 (c) About 1963

 [–30, 40] by [–5000, 25000]

Intersection
X = –16.72061 Y = 4784.2705

  

49. ≈5.28 m * ≈94.72 m  51. Current speed ≈1.06 mph;  
rowing speed ≈3.56 mph  53. Medium: €0.79; large: €0.95   
55. a = 2>3 and b = 14>3
57. (a) 300 mi  
59. False. A system of two linear equations in two variables has  
either 0, 1, or infinitely many solutions.  61. C  63. D  

65. (a) y = 13>22 24 - x2, y = -13>2224 - x2 

 (b) 

[–4.7, 4.7 by –3.1, 3.1]

  ≈1-1.29, 2.292 or 11.91, -0.912

67. 1±22>3, 10>32  69. 12.5 units  

Section 7.2
exploration 1

1. A = c 2 1
5 4

d ; B = c-1 2
2 5

d   3. c 8 -1
11 2

d   

exploration 2

1.  det A = -a12a21a33 + a13a21a32 + a11a22a33 - a13a22a31 
 - a11a23a32 + a12a23a31  

3. Because each term in the expansion contains an element from each 
row and each column, at least one factor in each term is a zero. There-
fore, the expansion will be the sum of n zero terms, or zero.  

Quick review 7.2

1. 13, 22; 1x, -y2  3. 1-2, 32; 1y, x2  5. 13 cos u, 3 sin u2   
7. sin a cos b + cos a sin b  9. cos a cos b - sin a sin b  

exercises 7.2
1. 2 * 3; not square  3. 3 * 2; not square   
5. 3 * 1; not square  7. 3  9. 4

11. (a) c 3 0
-3 1

d  (b) c 1 6
1 9

d  (c) c 6 9
-3 15

d  (d) c 1 15
4 22

d   

13. (a) C 1 1
-2 0
-1 0

S  (b) C-7 1
2 -2
5 2

S  

 (c) C-9 3
0 -3
6 3

S  (d) C-18 2
6 -5

13 5
S   

15. (a) C-3
1
4
S  (b) C-1

1
-4

S  (c) C-6
3
0
S  (d) C -1

2
-12

S   

17. (a) c-35 -32
60 60

d  (b) c 33 -28
3 -8

d   

19. (a) c 2 2
-11 12

d  (b) C 4 8 -5
-5 4 -6
-2 -8 6

S   

21. (a) C6 -7 -2
3 7 3
8 -1 -1

S  (b) C 2 1 3
5 0 0

-18 -3 10
S   

23. (a) 3-84  (b) C-10 5 -15
8 -4 12
4 -2 6

S   

25. Not possible; 318 144   

27. (a) C-1 3 4
2 0 1
1 2 1

S  (b) C1 2 1
1 0 2
4 3 -1

S   
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29. a = 5, b = 2  31. a = -2, b = 0  

33. AB = BA = I2  35. c-1 1.5
1 -1

d   37. No inverse  

39. No inverse  41. -14  43. c 1
-1>3 d

45. (a) The distance from city X to city Y is the same as the distance 
from city Y to city X. (b) Each entry represents the distance from city 
X to city X.  
47. (a) 3$382 $227.504   

49. (a)  ABT or BAT (b) 1A - C2BT  

51. (a) ≈11.37 0.372 (b) ≈10.37 1.372  55. A # A-1 = I2

57. 3x  y4 c-1 0
0 1

d   59. 3x  y4 c 0 -1
-1 0

d

61. 3x  y4 c c 0
0 1

d   63. False. It can be negative. 

For example, the determinant of A = c 1 0
2 -1

d  is -1.  

65. B  67. D  
71. (a) A # A-1 = A-1 # A = I2 (c) It is the inverse of A.  
73. (b) The constant term equals -det A. (c) The coefficient of x2 
is the opposite of the sum of the elements of the main diagonal in A.

Section 7.3
Exploration 1

1. B = 3  

Exploration 2

1. x + y + z must equal 60 L.  3. The number of liters of 35% 
solution must equal twice the number of liters of 55% solution.  

5. C 3.75
37.5

18.75
S

Quick Review 7.3

1. 12.8 L  3. 38 L  5. 1-1, 62  

7. y = -z + w + 1  9. c-0.5 -0.75
0.5 0.25

d   

Exercises 7.3

1. a25
2

, 
7
2

, -2b   3. 11, 2, 12  5. No solution  

7. a9
2

, 
7
2

, 4, -  
15
2
b   9. C2 -6 4

1 2 -3
0 -8 4

S
11. C 0 -10 10

1 2 -3
-3 1 -2

S   13. R12  15. 1-32R2 + R3

For Exercises 17–20, possible answers are given.

17. C1 1 -5
0 1 -4
0 0 1

S   19. C1 2 3 -4
0 1 0 -0.6
0 0 1 -9.2

S   

21. C1 0 2 1
0 1 -1 2
0 0 0 0

S   23. c 1 0 -1 3
0 1 2 -1

d   

25. C 2 -3 1 1
-1 1 -4 -3

3 0 -1 2
S   27. C2 -5 1 -1 -3

1 0 -2 1 4
0 2 -3 -1 5

S
In Exercises 29–32, the variable names are arbitrary.
29. 3x + 2y = -1; -4x + 5y = 2  
31.  2x + z = 3;   -x + y = 2; 2y - 3z = -1  

33. 12, -1, 42; C1 -2 1 8
0 1 -1 -5
0 0 1 4

S   35. 1-2, 3, 12  

37. No solution  39. 12 - z, 1 + z, z2  41. No solution   
43. 1z + w + 2, 2z - w - 1, z, w2  

45. c 2 5
1 -2

d c x
y
d = c-3

1
d   

47.  3x - y = -1;  2x + 4y = 3  
49. 1-2, 32  51. 1-2, -5, -72  
53. 1-1, 2, -2, 32  55. 10, -10, 12  57. 13, 3, -2, 02
59. a2 -

3
2

  z, -  
1
2

 z - 4, zb   61. 1-2w - 1, w + 1, -w, w2  

63. 1-w - 2, -z + 0.5, z, w2  

65. No solution  67. 
-3

x + 4
+

4
x - 2

  69. 
1

x - 5
+

-1
x - 3

  

71. 
2

x - 1
+

-2
x + 1

  73. 
1
x

-
1

x + 2
  75. 

1
x - 3

+
-2

x + 4
  

77. 
-2

x + 3
+

5
2x - 1

  

79. 2 +
x + 5

x2 - 1
; 

3
x - 1

+
-2

x + 1
  Graph of 12x2 + x + 32>1x2 - 12:

 [–4.7, 4.7] by [–10, 10]

 Graph of 3>1x - 12:

 [–4.7, 4.7] by [–10, 10]

 Graph of -2>1x + 12:

 [–4.7, 4.7] by [–10, 10]

81. x - 1 +
x - 2

x2 + x
; 

3
x + 1

+
-2
x

  Graph of y = 1x3 - 22>1x2 + x2:

 [–4.7, 4.7] by [–10, 15]

 Graph of y = x - 1:

 [–4.7, 4.7] by [–10, 15]
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 Graph of y = 3>1x + 12:

 [–4.7, 4.7] by [–10, 15]

 Graph of y = -2>x:

 [–4.7, 4.7] by [–10, 15]

7. y

5

x
5

 Boundary x = 4 included  

9. y

5

x
5

  Boundary 2x + 5y = 7 
included

83. ƒ1x2 = 2x2 - 3x - 2

85. ƒ1x2 = 1-c - 32x2 + x + c, for any c  

87. (a) y ≈ 2.99x + 145.9 (b) y ≈ 3.55x + 115
 (c) About 2035

 [0, 70] by [100, 350]

 Intersection
 X = 55.178571 Y = 310.88393

  
89. 825 children, 410 adults, 165 senior citizens  91. $14,500 CDs, 
$5500 bonds, $60,000 growth funds  93. $0 CDs, $38,983.05 
bonds, $11,016.95 growth fund  95. 22 nickels, 35 dimes, and 17 
quarters  97. 116>3, 220>32  101. False. The determinant of 
the matrix must be not equal to zero.  103. D  105. D
109. (a) C1x2 = x2 - 8x + 13 

 (b) 

[–1, 8.4] by [–3.1, 3.1]

 

 (c) 4 ± 23

 (d) det A = C102 = 13 

 (e) a11 + a22 = 14 - 232 + 14 + 232 = 8  

Section 7.4
Quick Review 7.4

1. 13, 02; 10, -22

 

x

y

5

5

  

3. 120, 02; 10, 502

 

x

y

50

50

  

5. 130, 602  7. 110, 1402  9. 13, 32  

Exercises 7.4

1. Graph (c); boundary included  3. Graph (b); boundary included   
5. Graph (e); boundary included

11. y

9

x
5

  Boundary y = x2 + 1 
excluded

13. y

5

x
5

  Boundary x2 + y2 = 9 
excluded

15. 

6

6

y

x

 Boundary y = 2x excluded

17. y

10

x
10

19. y

16

x
10

21. y

5

x
5

23. y

90

x
90

25. y

9

x
9
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27. x2 + y2 … 4  
 y Ú -x2 + 1  

29. y … -  
1
2

 x + 5  

 y … -  
3
2

 x + 9  

 x Ú 0   
 y Ú 0  

57. y

5

x
5

  

31. The minimum is 0 at 10, 02; the maximum is 293.3 at 153.3, 26.62. 
33. The minimum is 162 at 16, 302; there is no maximum.   
35. The minimum is 24 at 10, 122; there is no maximum.   
37. ≈13.48 tons of ore R and ≈20.87 tons of ore S; $1926.20   
39. x operations at Refinery 1 and y operations at Refinery 2 such that  
2x + 4y = 320 with 40 … x … 120  41. False. It could be a half-
plane, but never a half-line.  43. A  45. D  

49. y1 = 2 B1 -
x2

9
; y2 = -2 B1 -

x2

9
  

51. y

5

x
5

  

Chapter 7 Review Exercises

1. (a) C3 0 -1
7 0 5
2 3 -7

S  (b) C 3 -2 3
-3 6 -3

4 -1 3
S  

 (c) C-6 2 -2
-4 -6 -2
-6 -2 7

S  (d) C 9 -5 7
-4 15 -5
11 -1 4

S   

3. C-6 8
14 -5

7 -4
S ; not possible.   5. 33  74 ; not possible  

 7. C 1 2 -3
2 -3 4

-2 1 -1
S ; C-3 2 4

2 1 -3
1 -2  -1

S   

 9. AB = BA = I4  11. 
1

145
 D 6 20 15 8

-10 15 -25 35
-19 -15 25 23
-62 35 -10 14

T
13. 18  15. C1 0 2

0 1 -1
0 0 0

S   17. C1 0 0 8
0 1 0 -11
0 0 1 5

S
19. 11, 22  21. No solution  23. 1-z - w + 2, w +  1, z, w2 
25. No solution  27. 1-2z + w + 1, z - w + 2, z, w2   
29. 19>4, -3>4, -7>42  31. No solution   
33. 1-w + 2, z + 3, z, w2  35. 1-2, 1, 3, -12   
37. 17.57, 42.712  39. 1x, y2 ≈ 10.14, -2.292   
41. 1x, y2 = 1-2, 12 or 1x, y2 = 12, 12   
43. 1x, y2 ≈ 12.27, 1.532 
45. 1a, b, c, d2 = 117>840, -33>280, -571>420, 386>352  

47. 
1

x + 1
+

2
x - 4

  49. 
4

x + 2
-

3
x + 5

51. 
4

x - 2
+

1
x - 1

-
3

x - 3
  53. Graph (a); boundary excluded

59. y

90

x
90

 Corners at 10, 902, 190, 02,  
 1360>13, 360>132
 Boundaries included  

61. y

7

x
8

 Corners at ≈10.92, 2.312  
 and ≈15.41, 3.802
 Boundaries excluded  

63. y

5

x
5

 Corners at ≈  1-1.25, 1.562  
 and ≈11.25, 1.562
 Boundaries included  

65. The minimum is 106 at 110, 62; there is no maximum.   
67. The minimum is 205 at 110, 252; the maximum is 292 at 14, 402.   
69. (a) ≈12.12, 0.712 (b) ≈1-0.71, 2.122  
71. (a) y ≈ 12.89x + 967.9 (b) y ≈ 21.59x + 879.4 
 (c) About 1990

 

[–5, 35] by [500, 1700]

 Intersection
 X = 10.172414 Y = 1099.0224

 (d)  A linear model seems appropriate 
for Hawaii’s population due to its 
fairly steady increases over this 
span of three decades. An expo-
nential or logistic model might be 
a better fit for Idaho’s population, 
which made big jumps from 1990 
to 2000 and from 2000 to 2010 
relative to the modest increase of 
63,000 persons from 1980 to 1990.  

73. (a) N = 3200  400  600  2504
 (b) P = 3$80 $120 $200 $3004  (c) NPT = $259,000  
75. Answers will vary.  77. $160,000 at 4%, $170,000 at 6.5%, 
$320,000 at 9%  79. Pipe A: 15 hr; Pipe B: ≈5.45 hr; Pipe C: 12 hr 
81. n must be equal to p.  

Chapter 7 Modeling Project
1. 

[–2, 18] by [130, 170]

 Male population: y ≈ 1.285x + 139.02
 Female population: y ≈ 1.286x + 143.87  
3. The population growth per year for both models is roughly 1.3 mil-
lion, so the gap between U.S. male and female populations appears to 

55. Graph (c); boundary included  
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Exercises 8.1

1. Vertex: 10, 02; focus: a0, 
3
2
b ; directrix: y = -  

3
2

; focal width: 6  

3. Vertex: 1-1, 42; focus: 12, 42; directrix: x = -4; focal width: 12  

5. Vertex: 10, 02; focus: a0, -  
1
3
b ; directrix: y =

1
3

; focal width: 
4
3

7. (c)  9. (a)  11. y2 = -12x   
13. x2 = -16y  15. x2 = 20y  17. y2 = -20x   
19. x2 = -6y  21. 1y + 422 = 81x + 42
23. 1x - 322 = 61y - 5>22  25. (y - 5)2 = 36(x + 3)   
27. 1x - 422 = 81y + 42  29. 1y + 422 = -101x + 12  

be remaining the same. Because these data span only 16 years, we 
cannot draw valid conclusions for the long-term male and female  
population patterns.  

5. Male population: y ≈
517.14

1 + 11.74e-0.0144x

 Female population: y ≈
315.75

1 + 7.473e-0.0182x

No, they predict that in the long run the male population will be much 
greater than the female population. This is unreasonable.   
7. Male: 49.16%; female: 50.84%

CHAPTER 8
Section 8.1
Exploration 1

1. The axis of the parabola with focus 10, 12 and directrix y = -1 is 
the y-axis because it is perpendicular to y = -1 and passes through 
10, 12. The vertex lies on this axis midway between the directrix and 
the focus, so the vertex is the point 10, 02.   

3. 51-226, 62, 1-225, 52, 1-4, 42, 1-223, 32, 1-222, 22, 
1-2, 12, 10, 02, 12, 12, 1222, 22, 1223, 32, 14, 42, 1225, 52, 
1226, 626   

Exploration 2
1. y

x

10

10
F(2, –2)

y = 4

  3. y

x

10

10
F(2, –2)

y = 4

x = 2

V(2, 1)

5. y

x

10

10
F(2, –2)

B(8, –2)A(–4, –2)

V(2, 1)

y = 4

x = 2

7. Downward  

Quick Review 8.1

1. 213  3. y = ±22x  5. y + 6 = -1x - 122  

7. Vertex: 11, 52; ƒ1x2 can be obtained from g1x2 by stretching x2 by 
3, shifting up 5 units, and shifting right 1 unit.

[–3, 4] by [–2, 20]

9. ƒ1x2 = -21x + 122 + 3  

31. y

5

x
5

  33. y

5

x
5

35. y

10

x
6

  37. 

[–4, 4] by [–2, 18]

39. 

[–8, 2] by [–2, 2]

  41. 

[–10, 15] by [–3, 7]

43. 

[–2, 6] by [–40, 5]

  45. 

[–22, 26] by [–19, 13]

47. 

[–13, 11] by [–10, 6]

49. Completing the square, the equation becomes 1x + 122 = y - 2, 
a parabola with vertex 1-1, 22, focus 1-1, 9>42, and directrix y = 7>4. 
51. Completing the square, the equation becomes 1y - 122 = 161x - 82,  
a parabola with vertex 18, 12, focus 112, 12, and directrix x = 4.   
53. 1y - 222 = -6x  55. 1x - 222 = -41y + 12   
57. The derivation requires only that p be a fixed real number.   
59. The filament should be placed 1.125 cm from the vertex along the 
axis of the mirror.  61. The electronic receiver is located 2.5 units 
from the vertex along the axis of the parabolic microphone.   
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63. Starting at the leftmost tower, the lengths of the cables are roughly 
79.44, 54.44, 35, 21.11, 12.78, 10, 12.78, 21.11, 35, 54.44, and 79.44. 
65. False. Every point on a parabola is the same distance from its 
focus and its directrix.  67. D  69. B

71. (a)–(c) y

x

A
PF

      l

 (d) Parabola

73. (a) The lines y = x + 1 and y = x - 1. (b) These lines are par-
allel, not intersecting. There is no way to intersect the cone in Figure 8.2 
with a plane and get two parallel lines. (c) There are no pairs that 
solve the equation because x2 + y2 cannot be negative. (d) The graph 
would be the empty set. Because the cone in Figure 8.2 extends  
infinitely, it has a nonempty intersection with every possible plane.

(e) 

Empty setTwo parallel lines

75. (a) Answers vary. (b) Answers vary.

Section 8.2
exploration 1

1. x = -2 + 3 cos t and y = 5 + 7 sin t; cos t =
x + 2

3
 and 

sin t =
y - 5

7
; cos2 t + sin2 t = 1 yields the equation

1x + 222
9

+
1y - 522

49
= 1.

3. Example 1: x = 3 cos t and y = 2 sin t

 Example 2: x = 2 cos t and y = 213 sin t
 Example 3: x = 3 + 5 cos t and y = -1 + 4 sin t
  (Other parametrizations are possible. For example, sin and cos can 

be swapped.)

5. Example 1:  x = 3 cos t, y = 2 sin t; cos t =
x
3

, sin t =
y

2
 ; cos2 t 

+  sin2 t = 1 yields 
x2

9
+

y2

4
= 1, or 4x2 + 9y2 = 36.

 Example 2:  x = 2 cos t, y = 213 sin t; cos t =
x
2

, sin t 

=  
y213

; sin2 t + cos2 t = 1 yields 
y2

13
+

x2

4
= 1.

Example 3: x = 3 + 5 cos t, y = -1 + 4 sin t; cos t =
x - 3

5
,  

sin t =
y + 1

4
; cos2 t + sin2 t = 1 yields 

1x - 322
25

+
1y + 122

16
= 1.

exploration 2
3. a = 8 cm, b ≈ 7.75 cm, c = 2 cm, e = 0.25, b>a ≈ 0.97;
 a = 7 cm, b ≈ 6.32 cm, c = 3 cm, e ≈ 0.43, b>a ≈ 0.90; a = 6 cm,
 b ≈ 4.47 cm, c = 4 cm, e ≈ 0.67, b>a ≈ 0.75

5. 

[–0.3, 1.5] by [0, 1.2]

 b>a = 21 - e2

Quick review 8.2

1. 261  3. y = ±
3
2
24 - x2  5. x = 8  

7. x = 2, x = -2  9. x =
3 ± 215

2

exercises 8.2

1. Vertices: 14, 02, 1-4, 02; foci: 13, 02, 1-3, 02  3. Vertices: 

10, 62, 10, -62; foci: 10, 32, 10, -32  5. Vertices: 13, 02, 1-3, 02; 
foci: 11, 02, 1-1, 02  7. (d)  9. (a)   

11. y

10

x
10

  13. y

5

x
5

  

15. y

8

x
4

  17. 

[–9.4, 9.4] by [–6.2, 6.2]

  

19. 

[–17, 4.7] by [–3.1, 3.1]

21. 
y2

9
+

x2

4
= 1  23. 

x2

49
+

y2

24
= 1

25. 
x2

64
+

y2

4
= 1  27. 

y2

36
+

x2

16
= 1  29. 

x2

25
+

y2

16
= 1

31. 
1y - 222

36
+
1x - 122

16
= 1

33. 1x - 322>9 + 1y + 422>5 = 1

35. 1y + 222>25 + 1x - 322>9 = 1
37. Center: 1-1, 22; vertices: 1-6, 22, 14, 22; foci: 1-4, 22, 12, 22
39. Center: 17, -32; vertices: 17, 62, 17, -122; foci: 17, -3 ± 2172
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41. 

[–8, 8] by [–6, 6]

 x = 2 cos t, y = 5 sin t

43. 

[–8, 2] by [0, 10]

 x = 223 cos t - 3,

 y = 25 sin t + 6

y2>5 - x2>4 = 1. Example 3: x = 3 + 5>cos t = 3 + 5 sec t,  
y = -1 + 4 tan t; sec t = 1x - 32>5, tan t = 1y + 12>4;
sec2 t - tan2 t = 1 yields 1x - 322>25 - 1y + 122>16 = 1.  
Example 4: x = -2 + 3>cos t = -2 + 3 sec t, y = 5 + 7 tan t;
sec t = 1x + 22>3, tan t = 1y - 52>7; sec2 t - tan2 t = 1 yields 
1x + 222>9 - 1y - 522>49 = 1.  

Quick Review 8.3

1. 2146  3. y = ±
4
3

 2x2 + 9

5. No solution  7. x = 2, x = -2  9. a = 3, c = 5

Exercises 8.3

1. Vertices: 1±4, 02; foci: 1±223, 02  3. Vertices: 1±8, 02; 
foci: 1±2145, 02  5. Vertices: 1±2, 02; foci: 1±27, 02   
7. (c)  9. (a)

45. Vertices: 11, -42, 11, 22; foci: 11, -1 ± 252; eccentricity: 
25
3

47. Vertices: 1-7, 12, 11, 12; foci: 1-3 ± 27, 12; eccentricity: 
27
4

49. 
1x - 222

16
+
1y - 322

9
= 1  51. Answers vary.

53. a = 237,086.5; b ≈ 236,571; c = 15,623.5; e ≈ 0.066
55. ≈ 1347 Gm; ≈ 1507 Gm  

57. a - c 6 1.511.3922 = 2.088 Gm  

59. 1±251.75. 02 ≈ 1±7.19, 02  61. 1-2, 02, 12, 02
63. (a) Approximate solutions: 1±1.04, -0.862, 1±1.37, 0.732

 (b)  a±
394 - 22161

8
, -  

1 + 2161
16

b , 

a±
394 + 22161

8
, 

-1 + 2161
16

b
65. False. The distance is a11 - e2.  67. C  69. B  
71. (a) When a = b = r, A = pab = prr = pr2 and 

P ≈ p12r2 # 13 - 214r214r2>12r22 = p12r2 # 13 - 22 = 2pr.
 (b) Answers vary.

73. (a) 

[–4.7, 4.7] by [–3.1, 3.1]

 (b) y2>4 + 1x - 322 = 1

75. Answers vary.  

Section 8.3
Exploration 1

1. x = -1 + 3>cos t = -1 + 3 sec t and 

y = 1 + 2 tan t; sec t =
x + 1

3
 and tan t =

y - 1

2
; sec2 t - tan2 t = 1  

yields the equation 
1x + 122

9
-
1y - 122

4
= 1.

3. Example 1: x = 3>cos t, y = 2 tan t; Example 2: x = 2 tan t, 

y = 25>cos t; Example 3: x = 3 + 5>cos t, y = -1 + 4 tan t;
Example 4: x = -2 + 3>cos t, y = 5 + 7 tan t
5. Example 1: x = 3>cos t = 3 sec t, y = 2 tan t;  
sec t = x>3, tan t = y>2; sec2 t - tan2 t = 1 yields 
x2>9 - y2>4 = 1, or 4x2 - 9y2 = 36.  

Example 2: x = 2 tan t, y = 25>cos t = 25 sec t;  

tan t = x>2, sec t = y>25; sec2 t - tan2 t = 1 yields

11. y

15

x
20

13. y

x

15

20

15. y

4

x
3

17. 

[–9.4, 9.4] by [–6.2, 6.2]

19. 

[–9.4, 9.4] by [–6.2, 6.2]

  21. 

[–9.4, 9.4] by [–3.2, 9.2]

23. x2>4 - y2>5 = 1  25. y2>16 - x2>209 = 1  

27. 
x2

25
-

y2

75
= 1  29. 

y2

144
-

x2

25
= 1

31. 
1y - 122

4
-
1x - 222

9
= 1  33. 

1x - 222
9

-
1y - 122

16
= 1

35. 
1x + 122

4
-
1y - 222

5
= 1  37. 

1y - 622
25

-
1x + 322

75
= 1

39. Center: 1-1, 22; vertices: 111, 22, 1-13, 22; foci: 112, 22, 1-14, 22
41. Center: 11, 22; vertices: 11, 52, 11, -12; foci: 11, 7211, -32
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43. 

[–14.1, 14.1] by [–9.3, 9.3]

  45. 

[–12.4, 6.4] by [–0.2, 12.2]

  Section 8.4
Exploration 1

1. It is a hyperbola.  3. The origin, (0, 0)   

5. 211 - 1-1222 + 11 - 1-1222 = 28 = 222  7. They are 

the asymptotes of the hyperbola.  9. c = 2a2 + b2 = 2  

Quick Review 8.4

1.  cos 2u = 5>13  3.  cos 2u = 1>2  5. u = p>4   

7.  cos u = 2>25  9.  sin u = 1>212  

Exercises 8.4

1. Vertices: 1±2, ±22; foci: 1±222,  ±2222   

3. Vertices: 1±2, ±22; foci: 1±23,  ±232   

5. u2 - v2 = 8  7. 
3u2

2
+

13v2

2
= 180  

9. x =
23 u

2
-

v
2
 and y =

u
2

+
23 v

2
  

11. x =
3u
5

-
4v
5

 and y =
4u
5

+
3v
5

  

13. x =
3u210

-
v210

 and y =
u210

+
3v210

  

15. x = 0.035u - 0.999v and y = 0.999u + 0.035v   
17. 14, 32  19. 1-2.4,  3.22 and 12.4,  -3.22   
21. 1-1.8,  7.42  23. 16.6, 11.22   

25. x =
u22

-
v22

 and y =
u22

+
v22

  

27. x =
u22

-
v22

 and y =
u22

+
v22

  

29. x =
u22

-
v22

 and y =
u22

+
v22

  

31. x =
u
2

 -
23 v

2
 and y =

23 u
2

 +
v
2

  

33. x =
4u
5

-
3v
5

 and y =
3u
5

+
4v
5

  

35. (a) Hyperbola

 (b) x =
u22

-
v22

 and y =
u22

+
v22

 1   
u2

16
-

v2

16
= 1 

 (c) 14,  02 and 1-4,  02 (d) 1222,  2222 and 1-222,  -2222
37. (a) Ellipse

 (b) x =
23 u

2
 -

v
2

 and y =
u
2

 +
23 v

2
 1  

v2

20
+

u2

4
= 1

 (c) 10,  2252 and 10,  -2252
 (d) 1-25,  2152 and 125,  -2152
39. (a) Parabola

 (b) x =
3
5

 u -
4
5

 v and y =
4
5

 u +
3
5

 v 1  v = u2 + 3

 (c) 10,  32 (d) 1-2.4,  1.82
41. x = u cos u + v sin u and y = -u sin u + v cos u
43. -24 6 0; ellipse  45. 0; parabola  47. -48 6 0; ellipse 
49. 12 7 0;  hyperbola  51. -12 6 0; ellipse  53. D  55. A 
57. True, because there is no xy term  59. D  61. D   
63. The asymptote with slope 1 in the 1x, y2 system forms an angle of 
p>4 with the x-axis. After the axes are rotated through an angle of p>6
, the same asymptote makes an angle of p>4 - p>6 = p>12 with the 

u-axis. The new slope will be tan 1p>122 =
26 - 2226 + 22

≈ 0.268.

47. 

[–9.4, 9.4] by [–5.2, 7.2]

  

Vertices: 13, -22, 13, 42; foci: 13, 1 ± 2132; e =
213

3
49. 

[–9.4, 9.4] by [–6.2, 6.2]

Vertices: 10, 12, 14, 12; foci: 12 ± 213, 12; e =
213

2

51. 
x2

4
-

5y2

16
= 1  53. Answers vary.

55. a = 1440, b = 600, c = 1560, e = 13>12; The Sun is centered 
at 11560, 02.  57. A bearing and distance of about 40.29° and 
1371.11 mi, respectively

59. 1-2, 02, 14, 3232

 [–9.4, 9.4] by [–4.2, 8.2]

61. (a) 

[–9.4, 9.4] by [–6.2, 6.2]

Four solutions: 1±2.13, ±1.812

 (b) a±10A 29
641

, ±10A 21
641
b

63. True, because c - a = ae - a.  
65. B  67. B

69. (a–d) y

x5

 (e) x2>9 - y2>16 = 1
71. Answers vary.  73.–75. Answers vary.
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The second asymptote, which is perpendicular to the first,  

must therefore have slope -  
26 + 2226 - 22

≈ -3.732.

65. With the substitutions, Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 
becomes

 A1u cos u - v sin u22 + B1u cos u - v sin u21u sin u + v cos u2
 + C1u sin u + v cos u22 + D1u cos u - v sin u2
 + E1u sin u + v cos u2 + F = 0

Expanding, we have

 u2 A cos2 u - uv2 A cos u sin u + v2 A sin2 u + u2 B cos u sin u
 + uvB cos2 u - uvB sin2 u - v2 B cos u sin u
 + u2C sin2 u + uv2C sin u cos u + v2C cos2 u
 + uD cos u - vD sin u + uE sin u + vE cos u + F = 0
Combining like terms, we have

 u21A cos2 u + B cos u sin u + C sin2 u2
 + uv1cos2 u - sin2 u + 1C - A22 sin u cos u2
 + v21C cos2 u - B cos u sin u + A sin2 u2
 + u1D cos u + E sin u2 + v1E cos u - D sin u2 + F = 0

Substitute cos 2u for cos2 u - sin2 u and sin 2u for 2 sin u cos u. Then, 
comparing these coefficients with the 1u, v2 coefficients, the formulas 
follow.  67. Answers vary.

Section 8.5
Exploration 1

[–12, 24] by [–12, 12]

e = 0.7, e = 0.8: an ellipse; e = 1: a parabola; e = 1.5,  
e = 3: a hyperbola
The graphs have a common focus, 10, 02, and a common directrix, the 
line x = 3. As e increases, the graphs move away from the focus and 
toward the directrix.

Quick Review 8.5

1. r = -3  3. u =
7p
6

 , u = -  
5p
6

  

5. The focus is 10, 42, and the directrix is y = -4.  7. Foci: 

1±25, 02; vertices: 1±3, 02  9. Foci: 1±5, 02; vertices: 1±4, 02
Exercises 8.5

69. Intersecting lines:

 [–4.7, 4.7] by [–3.1, 3.1]

 Parallel lines:

 [–4.7, 4.7] by [–3.1, 3.1]

A plane containing the axis of a cone intersects the cone.
A degenerate cone is created by a generator that is parallel to the axis, 
producing a cylinder. A plane parallel to a generator of the cylinder 
intersects the cylinder and its interior.

 One line:

 [–4.7, 4.7] by [–3.1, 3.1]

 No graph:

 [–4.7, 4.7] by [–3.1, 3.1]

A plane containing a generator of a cone intersects the cone.
A plane parallel to a generator of a cylinder fails to intersect the  
cylinder. Also, a degenerate cone is created by a generator that is 
perpendicular to the axis, producing a plane. A second plane perpen-
dicular to the axis of this degenerate cone fails to intersect it.

 Circle:

 [–4.7, 4.7] by [–3.1, 3.1]

 Point:

 [–4.7, 4.7] by [–3.1, 3.1]

A plane perpendicular to the axis of a cone intersects the cone but not 
its vertex.
A plane perpendicular to the axis of a cone intersects the vertex  
of the cone.

1. r =
2

1 - cos u
; parabola

 [–10, 20] by [–10, 10]

3. r =
12

5 + 3 sin u
; ellipse

 [–7.5, 7.5] by [–7, 3]

5. r =
7

3 - 7 sin u
; hyperbola

 [–5, 5] by [–4, 2]

31. 

[–6, 14] by [–7, 6]

e = 0.4, a = 5, b = 221, c = 2

33. 

[–13, 14] by [–13, 5]

e =
1
2

, a = 8, b = 423, c = 4

7. e = 1, parabola; directrix: x = 2  9. e = 1, parabola; directrix: 

y = -  
5
2

= -2.5  11. e =
5
6

, ellipse; directrix: y = 4  

13. e =
2
5

= 0.4, ellipse; directrix: x = 3  

15. (b); 3-15, 54  by 3-10, 104   17. (f); 3-5, 54  by 3-3, 34

19. (c); 3-10, 104  by 3-5, 104   21. r =
120

13 + 12 cos u

23. r =
3

2 + sin u
  25. r =

15
2 + 3 cos u

  27. r =
12

2 + 3 sin u
  

29. r =
6

5 + 3 cos u
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35. 

[–3, 12] by [–5, 5]

 e =
5
3

, a = 3, b = 4, c = 5

37. 
91y - 4>322

64
+

3x2

16
= 1  39. y2 = 41x + 12

41. Perihelion distance ≈ 0.54 AU; aphelion distance ≈ 35.64 AU
43. (a) About 1551 m>sec (b) About 2 hr 14 min
45. True. For a circle, e = 0, so the equation is r = 0, which graphs 
as a point.  47. D  49. B
51. (a) Answers vary. (b) Answers vary.
 (c) 

3. z

y

x (1, –2, –4)

  

5. 253  7. 21a - 122 + 1b + 322 + 1c - 222
9. 11, -1, 11>22  11. 1x - 1, y + 4, z + 32  
13. 1x - 522 + 1y + 122 + 1z + 222 = 64  

15. 1x - 122 + 1y + 822 + 1z - 822 = b  

17. z

5

y

x

10

10

(0, 9, 0)

(0, 0, 3)

(9, 0, 0)

19. 

(0, 0, 3)

(3, 0, 0)

z

6

y

x

5

6

21. 

(6, 0, 0)

(0, –2, 0)

z

5

y

x

5

10

23. 8-2, 4, -89  25. -84  27. -20

29. h 4
13

, -  
3
13

, 
12
13
i  31. 8-3, 4, -59

33. v = -195.01i - 7.07j + 68.40k
35.  r = 82, -1, 59 + t83, 2, -79; x = 2 + 3t,  

y = -1 + 2t, z = 5 - 7t

 
Planet

Perihelion  
Distance (AU)

Aphelion  
Distance (AU)

Mercury 0.307 0.467

Venus 0.718 0.728

Earth 0.983 1.017

Mars 1.382 1.665

Jupiter 4.953 5.452

Saturn 9.020 10.090

 (d) The difference is greatest for Saturn.
53. Answers vary.  
55. 5r - 3r cos u = 16 1 5r = 3x + 16, so 25r2 = 251x2 + y22

= 13x + 1622; 25x2 + 25y2 = 9x2 + 96x + 256 1
16x2 - 96x + 25y2 = 256. Completing the square yields 
1x - 322

25
+

y2

16
= 1, the desired result.

57. Answers vary.  59. Answers vary.  

Section 8.6
Quick Review 8.6

1. 21x - 222 + 1y + 322  3. P lies on the circle of radius 5 

centered at 12, -32.  5. h -4241
, 

5241
i  7. Circle of radius 5 

centered at 1-1, 52  9. Center: 1-1, 32; radius: 2

Exercises 8.6
1. z

8

y

x

8

8

(3, 4, 2)
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37. r = 86, -9, 09 + t81, 0, -49; x = 6 + t, y = -9, z = -  4t
39. 230  41. r = 8-1, 2, 49 + t81, 4, -79
43. x = -1 + 3t, y = 2 - 6t, z = 4 - 3t

45. x =
1
2

 t, y = 6 - 7t, z = -3 +
11
2

 t  47. Scalene

49. (a) z

5

y

x

5

5

 (b)  The z-axis; a line through 
the origin in the direction k

51. (a) z

5

y

x

5

5

 (b)  The intersection of the  
xz-plane 1y = 02 and the 
plane x = -3; a line paral-
lel to the z-axis through 
1-3, 0, 02

53. r = 8x1 + 1x2 - x12t, y1 + 1y2 - y12t, z1 + 1z2 - z12t9  
55. Answers vary.  57. True. The equation can be viewed as an 
equation in three variables, where the coefficient of z is zero. The surface 
is an elliptical cylinder.  59. B  61. C  65. 8-1, -5, -39
67.  i * j = 81, 0, 09 * 80, 1, 09 = 80 - 0, 0 - 0, 1 - 09  

   = 80, 0, 19 = k

Chapter 8 Review Exercises

9. y

20

x
10

  Hyperbola; center: 1-3, 52; 
vertices:

  1-3 ± 322, 52; foci: 

1-3 ± 246, 52

1. y

10

x
9

 Vertex: 10, 02; focus: 13, 02;
 directrix: x = -3; focal width: 12

3. y

2

x
8

 Vertex: 1-2, 12; focus: 1-2, 02;
 directrix: y = 2; focal width: 4

5. y

7

x
7

 Ellipse; center: 10, 02;
  vertices: 10, ±2222;  

foci: 10, ±232

7. y

10

x
10

 Hyperbola; center: 10, 02;
  vertices: 1±5, 02; foci: 

1±261, 02

11. y

x

4

6

  Ellipse; center: 12, -12; 
vertices:

  16, -12, 1-2, -12; foci: 
15, -12, 1-1, -12

13. (b)  15. (h)  17. (f)  19. (c)

21. y

40

x
10

 Parabola; 1x - 322 = y + 12

23. y

7

x
6

  Hyperbola; 
1x - 122

3
-
1y - 222

3
= 1

25. y

11

x
10

  Parabola; 

1y - 222 = 6ax +
17
6
b

27. 

x

y

–10 15

–15

10

  Hyperbola; 
1y + 422

30
-
1x - 322

45
= 1

29. See proof on pages 565–566.

31. 

[0, 25] by [0, 17]

 Ellipse; y =
1
12

 38x + 5 ± 2-8x2 + 200x - 4554
33. 

[–8, 12] by [–5, 15]

 Hyperbola; y =
3x2 - 5x - 10

2x - 6
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35. (a) Parabola (b) x =
u22

-
v22

 and y =
u22

+
v22

 (c) u2 = 41v - 12 (d) Vertex (0, 1); focus (0, 2)

 (e) Vertex a-22
2

,
22
2
b ; focus 1-22,222

37. y2 = 8x  39. x2 - 2xy + y2 + 2x - 6y + 3 = 0

41. 
x2

169
+

y2

25
= 1  43. x2>9 + 1y - 222>5 = 1

45. 5x2 - 4y2 = 20  47. 
1x - 222

9
-
1y - 122

16
= 1

49. 
x2

36
+

y2

9
= 1 51. 1x + 222 + 1y - 422 = 1 53. 

x2

4
+

y2

25
= 1

55. 

[–8, 3] by [–10, 10]

 Parabola; y2 = -81x - 22

57. 

[–3, 3] by [–2, 2]

  Ellipse; 
41x - 1>222

9
+

y2

2
= 1

59. 

[–8, 8] by [–11, 0]

  Hyperbola; 
811y + 49>922

196
-

9x2

245
= 1

61. 

[–20, 4] by [–8, 8]

 Parabola; y2 = -41x - 12

63. 269  65. 80, -3, -29
67. -13  69. 83>5, -4>5, 09  
71. 1x + 122 + y2 + 1z - 322 = 16
73. r = 8-1, 0, 39 + t8-3, 1, -29  75. 10, 4.52  
77. Answers vary.  79. At apogee, v ≈ 2633 m>sec; at perigee, 
v ≈ 9800 m>sec

chapter 8 Modeling Project

Answers are based on the sample data provided.

1. 

[0.4, 0.75] by [–0.7, 0.7]

3. With respect to the graph of the ellipse, 
the point 1h, k2 represents the center of 
the ellipse. The value a is the semimajor 
axis, and b is the semiminor axis.

5.  The parametric equations for the sample data set are  
x1T ≈ 0.131 sin14.80T + 2.102 + 0.569 and 
y1T ≈ 0.639 sin14.80T - 2.652.

 [0.4, 0.75] by [–0.7, 0.7][–0.1, 1.4] by [–1, 1]

cHAPter 9
Section 9.1
exploration 1

1. 6  3. No

Quick review 9.1

1. 52  3. 6  5. 10  7. 11  9. 64 (or 204 if you count 
squares of all sizes)

exercises 9.1

1. 6  3. 120  5. 140  7. 362,880 (ALGORITHM)   
9. 34,650  11. 1716  13. 720  15. 30   
17. 56  19. Combinations  21. Combinations   
23. 19,656,000  25. 36  27. 2300  29. 17,296   
31. 37,353,738,800  33. 41  35. 7776  37. 511  39. 12

41. 1024  43. True. Both equal 
n!

a! b!
.  45. D

47. B  49. Answers vary.
51. (a) 12 (b) There are 12 factors of 5 in 50!, one in each of 5, 10, 
15, 20, 30, 35, 40, and 45, and two in each of 25 and 50. Each factor 
of 5, when paired with one of the 47 factors of 2, yields a factor of 10 
and consequently a 0 at the end of 50!
55. 3  57. ≈20,123 years, based on 365.24 days/year

Section 9.2
exploration 1

1. 1, 3, 3, 1; These are (in order) the coefficients in the expansion of 
1a + b23.  3. 51, 5, 10, 10, 5, 16 ; These are (in order) the  
coefficients in the expansion of 1a + b25.

Quick review 9.2

1. x2 + 2xy + y2  3. 25x2 - 10xy + y2

5. 9s2 + 12st + 4t2  7. u3 + 3u2v + 3uv2 + v3

9. 8x3 - 36x2y + 54xy2 - 27y3

exercises 9.2

1. a4 + 4a3b + 6a2b2 + 4ab3 + b4

3. x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7

5. x3 + 3x2y + 3xy2 + y3  
7.  p8 + 8p7q + 28p6q2 + 56p5q3 + 70p4q4 + 56p3q5 

+ 28p2q6 + 8pq7 + q8  

9. 210  11. 1  13. 364  15. 126,720   
17. ƒ1x2 = x5 - 10x4 + 40x3 - 80x2 + 80x - 32  

19.  h1x2 = 128x7 - 448x6 + 672x5 - 560x4 + 280x3 
- 84x2 + 14x - 1

21. x6 + 12x5y + 60x4y2 + 160x3y3 + 240x2y4 + 192xy5 + 64y6

23. x3 + 6x222x + 30x2 + 4022x + 60x + 2422x + 8

25. 
1

x12 +
4

x6 + 6 + 4x6 + x12

27. Answers vary.

29. If n Ú 1, an
1
b =

n!
1!1n - 12! =

n!
1n - 12! 1!

= a n

n - 1
b .
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31.  an - 1
r - 1

b + an - 1
r
b =

1n - 12!
1r - 12!1n - r2! +

1n - 12!
r!1n - r - 12!

 =
r1n - 12!

r1r - 12!1n - r2! +
1n - r21n - 12!

r!1n - r21n - r - 12!

 =
3r + 1n - r241n - 12!

r!1n - r2!

 =
n1n - 12!
r!1n - r2!

 =
n!

r!1n - r2!
33. Let n Ú 2.  an

2
b + an + 1

2
b =

n!
21n - 22! +

1n + 12!
21n - 12!

  =
n1n - 121n - 22!

21n - 22! +
1n + 12n1n - 12!

21n - 12!
  =

n2 - n
2

+
n2 + n

2

  =
2n2

2
  = n2

35. True. The signs of the coefficients are determined by the powers 
of the 1-y2.  37. C  39. A
41. (a) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55
 (b)  They appear diagonally down the triangle, starting with either 

of the 1’s in row 2.
 (c)  The number of dots in the array is n1n + 12. Half of the dots 

are open circles and half are black disks. So the number of 
dots in each of these triangular numbers is n1n + 12>2.

 (d) an + 1
2
b

43.  2n = 11 + 12n = an
0
b  1n10 + an

1
b1n-111 + an

2
b1n-212 + g+  

an
n
b101n = an

0
b + an

1
b + an

2
b  + g+ an

n
b

Section 9.3
Quick Review 9.3

1. 19  3. 80  5. 10>11  7. 2560  9. 15  

Exercises 9.3

1. 2, 
3
2

, 
4
3

, 
5
4

, 
6
5

, 
7
6

 ; 
101
100

  3. -7, -8, 3, 32, 85, 168; 999,200

5. 8, 4, 0, -4; -20  7. 1, 3, 9, 27; 2187  9. 2, -1, 1, 0; 3
11. Diverges  13. Converges to 0  15. Converges to -1
17. Converges to 0  19. Diverges
21. (a) 4 (b) 42 (c) a1 = 6 and an = an-1 + 4 for n Ú 2  
 (d) an = 4n + 2
23. (a) 12 (b) 96 (c) a1 = -12 and an = an-1 + 12 for n Ú 2  
 (d) an = 12n - 24
25. (a) 3 (b) 4374 (c) a1 = 2 and an = 3an-1 for n Ú 2  
 (d) an = 2 # 3n-1

27. (a) -5 (b) -78, 125 (c) a1 = 1 and an = -5an-1 for n Ú 2  
 (d) an = 1-52n-1

29. a1 = -20; an = an-1 + 4 for n Ú 2

31. a1 = ±
3
2

, r = ±2, and an = 31±22n-2

33. 

[0, 5] by [–2, 5]

  35. 

[0, 10] by [–10, 100]

37. 700, 702.3, 704.6, 706.9, c , 815, 817.3  39. 775  41. 9 
43. True. The common ratio r must be positive, so the sign of the first 
term determines the sign of every number in the sequence. 
45. A  47. E
49. (b) 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
51. (b) an S 2p as n S ∞
55.  a1 = 31  14 , a2 = 31  24 , a3 = 32  34 , a4 = 33  54 , 

a5 = 35  84 , a6 = 38  134 , a7 = 313  214 . The entries in the 
terms of this sequence are successive pairs of terms from the 
Fibonacci sequence.

Section 9.4
Exploration 1

1. 45  3. 1  5. 1>3
Exploration 2

1. 1 + 2 + 3 + g+  99 + 100  3. 101  5. The sum in part 4 
involves two copies of the same progression, so it doubles the sum of 
the progression. The answer is 5050.

Quick Review 9.4

1. 22  3. 27  5. 512  7. -40  9. 55

Exercises 9.4

1. a
12

k=1
 14k - 172  3. a

n+1

k=1
 k2  5. a∞

k=0
 61-22k  

7. 18  9. -935  11. 930  13. 24,573  
15. 50.411 - 6-92 ≈ 50.4  17. 155  

19. 
8
3

 11 - 2-122 ≈ 2.666  21. -196,495,641

23. (a) 0.3, 0.33, 0.333, 0.3333, 0.33333, 0.333333; convergent 
 (b) 1, -1, 2, -2, 3, -3; divergent

25. Yes; 12  27. No  29. Yes; 
28
3

 

31. 707>99  33. -  
17,251

999
35. (a) 1.1 (b) 20,00011.12n (c) $370,623.34
37. (a) 120; 1 + 0.07>12 (b) $20,770.18
39. 38 m  41. False. The series might well diverge.  
43. A  45. C
47. (a) Heartland: 20,505,437 persons; Southeast: 48,310,650 persons
(b) Heartland: 517,825 mi2; Southeast: 348,999 mi2 (c) Heartland: 
≈39.60 persons>mi2; Southeast: ≈138.43 persons>mi2  
(d) Heartland: ≈40.18 persons>mi2; Southeast: ≈134.02  
persons>mi2. The answers in part (c) are the proper population densi-
ties; they account for the varying areas of the states. In general, rates 
should be averaged as in part (c), not as in part (d).
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49. 
11.  P1: 

1
1 # 2 

=
1

1 + 1 
. Pk: 

1
1 # 2 

+
1

2 # 3
 +  g 

+  
1

k1k + 12 =
k

k + 1 
.

  Pk+1: 
1

1 # 2
+

1
2 # 3 

+ g +
1

k1k + 12  

+  
1

1k + 121k + 22 =
k + 1
k + 2 

 .

13.  Pn: 1 + 5 + 9 + g + 14n - 32 = n12n - 12. P1 is true: 
4112 - 3 = 1 # 12 # 1 - 12.

  Now assume Pk is true: 1 + 5 + 9 + g+ 14k - 32 = k12k - 12.  
Add 41k + 12 - 3 = 4k + 1 to both sides: 1 + 5 + 9 + g 
+  14k - 32 + 341k + 12 - 34 = k12k - 12 + 4k + 1
=  2k2 + 3k + 1 = 1k + 1212k + 12 = 1k + 12321k + 12 - 14 , 
so Pk+1 is true. Therefore, Pn is true for all n Ú 1.

15. Pn: 
1

1 # 2 
+

1
2 # 3 

+ g +
1

n1n + 12 =
n

n + 1 
.   

P1 is true: 
1

1 # 2 
=

1
1 + 1 

.

Now assume Pk is true: 
1

1 # 2 
+

1
2 # 3 

+ g +
1

k1k + 12 =
k

k + 1 
.

Add 
1

1k + 121k + 22  to both sides: 
1

1 # 2 
+

1
2 # 3 

+ g 

+  
1

k1k + 12 +
1

1k + 121k + 22 =
k

k + 1 
+

1
1k + 121k + 22 

=  
k1k + 22 + 1

1k + 121k + 22 =
1k + 121k + 12
1k + 121k + 22 =

k + 1
k + 2

=
k + 1

1k + 12 + 1
,  

so Pk+1 is true. Therefore, Pn is true for all n Ú 1.
17.  Pn: 2n Ú 2n. P1 is true: 21 Ú 2 # 1 (in fact, they are equal). Now 

assume Pk is true: 2k Ú 2k.

  Then 2k+1 = 2 # 2k Ú 2 # 2k = 2 # 1k + k2 Ú 21k + 12, so Pk+1 
is true. Therefore, Pn is true for all n Ú 1.

19.  Pn: 3 is a factor of n3 + 2n. P1 is true: 3 is a factor of 
13 + 2 # 1 = 3. Now assume Pk is true: 3 is a factor of k3 + 2k.

  Then 1k + 123 + 21k + 12 = 1k3 + 3k2 + 3k + 12 + 12k + 22 
=  1k3 + 2k2 + 31k2 + k + 12. Because 3 is a factor of both  
terms, it is a factor of the sum, so Pk+1 is true. Therefore, Pn is 
true for all n Ú 1.

21.  Pn: The sum of the first n terms of a geometric sequence with first 

term a1 and common ratio r ≠ 1 is 
a111 - rn2 

1 - r
.

  P1 is true: a1 =
a111 - r12 

1 - r
. Now assume Pk is true so that 

a1 + a1r + g + a1rk-1 =
a111 - rk2 
11 - r2 .

  Add a1rk to both sides: a1 + a1r + g + a1r k-1 + a1r k 

=  
a111 - r k2 
11 - r2 + a1r k =

a111 - r k2 + a1r k11 - r2 
1 - r

  =  
a1 - a1r k + a1r k - a1r k+1

1 - r
=

a1 - a1r k+1

1 - r
, so Pk+1 is true. 

Therefore, Pn is true for all positive integers n.

23.  Pn: a
n

k=1
 k =

n1n + 12 
2

. P1 is true: a
1

k=1
 k = 1 =

1 # 2 
2

. Now 

assume Pk is true: a
k

i=1
 i =

k1k + 12 
2

.

Conjecture: Sn = Fn+2 - 1

n Fn Sn Fn+2 - 1

1  1  1  1

2  1  2  2

3  2  4  4

4  3  7  7

5  5 12 12

6  8 20 20

7 13 33 33

8 21 54 54

9 34 88 88

51. Geometric proof. Thinking of Tn-1 and Tn as triangular arrays, 
rotate one of the arrays 180°, and fit the two arrays together to form 
one n*n square array. Algebraic proof. Using the result from Exercise 
50, Tn-1 + Tn = 1n - 12n>2 + n1n + 12>2 = 1n2 - n2>2 
+ 1n2 + n2>2 = 2n2>2 = n2. 

Section 9.5
exploration 1

Start with the rightmost peg if n is odd and the middle peg if n is even.

exploration 2

1. Yes  3. Still all prime  

Quick review 9.5

1. n2 + 5n  3. k3 + 3k2 + 2k  5. 1k + 123

7. 5; t + 4; t + 5  9. 
1
2

 ; 
2k

3k + 1
 ; 

2k + 2
3k + 4

exercises 9.5

1.  Pn: 2 + 4 + 6 + g + 2n = n2 + n. P1 is true: 2112 = 12 + 1. 
Now assume Pk is true: 2 + 4 + 6 + g + 2k = k2 + k.

  Add 21k + 12 to both sides: 2 + 4 + 6 + g + 2k + 21k + 12
=  k2 + k + 21k + 12 = k2 + 3k + 2 = k2 + 2k + 1 + k + 1

  =  1k + 122 + 1k + 12, so Pk+1 is true. Therefore, Pn is true  
for all n Ú 1.

3.  Pn: 6 + 10 + 14 + g + 14n + 22 = n12n + 42. P1 is true: 
4112 + 2 = 112112 + 42.

  Now assume Pk is true: 6 + 10 + 14 + g + 14k + 22 
=  k12k + 42. Add 41k + 12 + 2 = 4k + 6 to both sides:

  6 + 10 + 14 + g + 14k + 22 + 341k + 12 + 24
=  k12k + 42 + 4k + 6 = 2k2 + 8k + 6 = 1k + 1212k + 62 
=  1k + 12321k + 12 + 44 , so Pk+1 is true. Therefore, Pn is true 
for all n Ú 1.

5.  Pn: an = 5n - 2. P1 is true: a1 = 5 # 1 - 2 = 3. Now assume Pk is 
true: ak = 5k - 2. To get ak+1, add 5 to ak; that is, 
ak+1 = 15k - 22 + 5 = 51k + 12 - 2. This proves that Pk+1 is 
true. Therefore, Pn is true for all n Ú 1.

7.  Pn: an = 5 # 4n-1. P1 is true: a1 = 5 # 41-1 = 5 # 40 = 5. Now 
assume Pk is true: ak = 5 # 4k-1. To get ak+1, multiply ak by 4; that 
is, ak+1 = 4 # 5 # 4k-1 = 5 # 4k = 5 # 41k+12-1. This proves that 
Pk+1 is true. Therefore, Pn is true for all n Ú 1.

9.  P1: 1 =
111 + 12 

2
. Pk: 1 + 2 + g + k =

k1k + 12 
2

. 

Pk+1: 1 + 2 + g + k + 1k + 12 =
1k + 121k + 22 

2
.
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  Add 1k + 12 to both sides, and we have a
k+1

i=1
 i =

k1k + 12 
2

 

+  1k + 12 =
k1k + 12 

2
+

21k + 12 
2

=
1k + 121k + 22 

2

  =  
1k + 1211k + 12 + 12

2
, so Pk+1 is true. Therefore, Pn is true 

for all n Ú 1.

25. 125,250  27. 
1n - 321n + 42 

2
  29. ≈3.44 * 1010

31. 
n1n2 - 3n + 82 

3
  33. 

n1n - 121n2 + 3n + 42 
4

35. The inductive step does not work for 2 persons. Sending them 
alternately out of the room leaves 1 person (and one blood type) each 
time, but we cannot conclude that their blood types will match each 
other.  37. False. Mathematical induction is used to prove that a 
statement Pn is true for all positive integers.  39. E  41. B   
43.  Pn: 2 is a factor of 1n + 121n + 22. P1 is true because 2 is a factor 

of 122132. Now assume Pk is true so that 2 is a factor of 
1k + 121k + 22. Then 31k + 12 + 14 31k + 12 + 24
=  1k + 221k + 32 = k2 + 5k + 6 = k2 + 3k + 2 + 2k + 4

  =  1k + 121k + 22 + 21k + 22. Because 2 is a factor of both 
terms of this sum, it is a factor of the sum, and so Pk+1 is true.

 Therefore, Pn is true for all positive integers n.
45.  Given any two consecutive integers, one of them must be even. 

Therefore, their product is even. Because n + 1 and n + 2 are 
consecutive integers, their product is even. Therefore, 2 is a factor 
of 1n + 121n + 22.

47.  Pn: Fn+2 - 1 = a
n

k=1
 Fk. P1 is true because 

F1+2 - 1 = F3 - 1 = 2 - 1 = 1, which equals a
1

k=1
 Fk = 1.

 Now assume that Pk is true: Fk+2 - 1 = a
k

i=1
 Fi. Then  

 F1k+12+2 - 1 = Fk+3 - 1 = Fk+1 + Fk+2 - 1

  =  1Fk+2 - 12 + Fk+1 = aa
k

i=1
 Fib +  Fk+1 = a

k+1

i=1
 Fi, so Pk+1 is 

true. Therefore, Pn is true for all n Ú 1.

49. Pn: a - 1 is a factor of an - 1. P1 is true because a - 1 is a factor 
of a - 1. Now assume Pk is true so that a - 1 is a factor of ak - 1.  
Then ak+1 - 1 = a # ak -  1 = a1ak - 12 + 1a - 12. Because 
a - 1 is a factor of both terms in the sum, it is a factor of the sum, and 
so Pk+1 is true. Therefore, Pn is true for all positive integers n.   
51. Pn: 3n - 4 Ú n for n Ú 2. P2 is true because 3 # 2 - 4 Ú 2. 
Now assume that Pk is true: 3k - 4 Ú k. Then  
31k + 12 -4 = 3k + 3 - 4 = 13k - 42 + 3 Ú k + 3  
Ú  k + 1, so Pk+1 is true. Therefore, Pn is true for all n Ú 2.   
53. Use P3 as the anchor and obtain the inductive step by representing 
any n-gon as the union of a triangle and an 1n - 12-gon.

chapter 9 review exercises
1. 792  3. 18,564  5. 3,991,680  7. 48   
9. 14,508,000  11. 1,036,800  13. 26  15. 325   
17. (a) 5040; Meg Ryan (b) 778,377,600; Britney Spears
19. 32x5 + 80x4y + 80x3y2 + 40x2y3 + 10xy4 + y5

21. 243x10 + 405x8y3 + 270x6y6 + 90x4y9 + 15x2y12 + y15

23.  512a27 - 2304a24b2 + 4608a21b4 - 5376a18b6 + 4032a15b8

- 2016a12b10 + 672a9b12 - 144a6b14 + 18a3b16 - b18

25. 70  27. 0, 1, 2, 3, 4, 5; 39
29. -1, 2, 5, 8, 11, 14; 32  31. -5, -3.5, -2, -0.5, 1, 2.5; 11.5

33. -3, 1, -2, -1, -3, -4; -76
35. Geometric with r = -1; an = (-1)n+1

37. Geometric with r = 1.2; an = 10 # 11.22n-1

39. Arithmetic with d = 4.5; an = 4.5n - 15.5   
41. an = 31-42n-1; r = -4
43. -4  45. -985.5  47. 21>8  49. 59,048  51. 3280.4
53. 

[0, 15] by [0, 2]

55. $27,441.91  57. Converges; 
2323 - 1

59. Converges; 
e3

e3 - 1
  61. converges; 3  63. a

21

k=1
15k - 132

65. a∞
k=0
12k + 122 or a∞

k=1
12k - 122

67. 
n13n + 52

2
  69. 4650  

71.  Pn: 1 + 3 + 6 + g +
n1n + 12

2
=

n1n + 121n + 22
6

. P1 is 

true: 
111 + 12

2
=

111 + 1211 + 22
6

.

  Now assume Pk is true: 1 + 3 + 6 + g +
k1k + 12

2
 

=  
k1k + 121k + 22

6
.

 Add 
1k + 121k + 22

2
 to both sides: 1 + 3 + 6 + g 

 +  
k1k + 12

2
+
1k + 121k + 22

2
 

 =  
k1k + 121k + 22

6
+
1k + 121k + 22

2

 =  1k + 121k + 22ak

6
+

1
2
b = 1k + 121k + 22ak + 3

6
b  

 =  
1k + 1211k + 12 + 1211k + 12 + 22

6
 , so Pk+1 is true.

 Therefore, Pn is true for all n Ú 1.
73.  Pn: 2n-1 … n!. P1 is true: 21-1 … 1! (They are equal!) Now 

assume Pk is true: 2k-1 … k!.

  Then 21k+12-1 = 2 # 2k-1 … 2 # k! … 1k + 12k! = 1k + 12!, so 
Pk+1 is true. Therefore, Pn is true for all n Ú 1.

75. 1 9 36 84 126 126 84 36 9 1

chapter 9 Modeling Project

1.  (a) 3.0 million persons>year (b) The year 2000 was 0 years after 
2000. (c) pn = pn-1 + 3 (d) pn = 3n + 281.4  
(e) 311.4 million, 341.4 million, 371.4 million

3. (a) bn = 0.75 # bn-1 + 800
 (b) 

[0, 47] by [0, 4000]
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3. (c)  Pn: bn = 3200 - 210010.752n. P0 is true because 
b0 = 3200 - 2100 = 1100. Now assume Pk is true: 
bk = 3200 - 210010.752k. By the recursive formula, 
bk+1 = 0.75 # 13200 - 210010.752k2 + 800
=  2400 - 210010.752k+1 + 800 = 3200 - 210010.752k+1. 
So P k+1 is true. Thus, Pn is true for all n Ú 0. (d) 3200

CHAPTER 10
Section 10.1
Exploration 1
1. 

p = 0.9953

p = 0.0047

Antibodies
present

Antibodies
absent

3. 

p = 0.9953

p = 0.0047

p = 0.997
p = 0.00469

p = 0.00001

p = 0.01493

p = 0.98037

p = 0.003

p = 0.015

p = 0.985

Antibodies
present

Antibodies
absent

+

–

+

–

5. ≈0.239

Quick Review 10.1

1. 2  3. 8  5. 2,598,960  7. 120  9. 
1
12

  

Exercises 10.1
1. 1>6  3. 5>12  5. 1>4  7. 5>12  9. (a) No; the numbers 

do not add up to 1. (b) Yes; assuming the gerbil cannot be in more than 
one compartment at a time, the proportions cannot sum to more than 1.

11. 0.4  13. 0.2  15. 0.7  17. 0.09  19. 0.08  
21. 0.64  23. 1>134,596  25. 5>3542
27. (a) 

0.3
0.3

0.2

0.2

A B

 (b) 0.3 (c) 0.2 (d) 0.8 (e) Yes

29. 0.64  31. 3>5  33. 19>30
35. (a) 0.67 (b) 0.33
39. (a) 86>127 (b) 91>127 (c) 62>127
41. 1>36
45. (a) 0.027 (b) 0.343 (c) 0.217
47. 0.0864
49. (a) 0.4 (b) 0.6 (c) 0.455 (d) 0.833 (e) No
51. False. A sample space consists of outcomes, which are not neces-
sarily equally likely.  53. D  55. A

57. (a) Type of Bagel Probability

Plain 0.37

Onion 0.12

Rye 0.11

Cinnamon Raisin 0.25

Sourdough 0.15

 (b) ≈0.051
59. (a)  8.8% chance; plausible but unlikely (b) All names equally 

likely to be chosen.
61. (a) $1.50 (b) 1>3

Section 10.2
Exploration 1

1. The average is about 13.3.  3. Alaska, Colorado, Georgia, 
Texas, and Utah

Quick Review 10.2

1. ≈15.48%  3. ≈14.44%  5. ≈1723   
7. $235 thousand  9. 1 million

Exercises 10.2

1. (a) 29% (b) 13.1% (c) 26.8% (d) 45.2%
3. (a) Pie charts; stemplots are not appropriate for categorical variables.
 (b)  No. Men are more likely than women to be interested in the 

game (57% to 39%); women are more likely than men to be 
interested in the commercials (30% to 16.5%) or not to watch 
at all (31% to 27%).

5.   Successful Failed Total
Lefty (a) 42 (b) 6  48
Righty (c) 168 (d) 24 192
Total 210 30 240

7. 0 5 8 9
1 3 4 6
2 3 6 8
3 3 9
4  
5  
6 1

61 is an outlier.

9. Maris   Aaron
9 8 5 0  
6 4 3 1 0 2 3
8 6 3 2 0 4 6 7 9

9 3 3 0 2 4 4 8 9 9
  4 0 0 4 4 4 4 5 7
  5  
1 6  

Except for Maris’s one record-breaking year, his home run output 
falls well short of Aaron’s.

11.   Males
6 4
6 5 8
7 0 1 2 2 2 2 3 3
7 6
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17. 

[55, 85] by [–1, 9]

  19. 

[0, 60] by [–1, 5]

21. 

[–1, 25] by [–5, 60]

  23. 

[–1, 25] by [–2, 60]

25. 

[1965, 2020] by [–100, 2000]

  The winner’s prize money for the PGA championship has been  
growing rapidly since 1995, faster than linearly.

27. 

[1965, 2020] by [–100, 2000]

  The women’s winner’s prize money grew at a rate similar to that 
of the men’s until 1995; then the men’s PGA purse began increas-
ing rapidly, leaving the LPGA purse far behind.

29. 

[–1, 25] by [–5, 60]

 The two home run hitters enjoyed similar success.

31. (a) Bimodal (b) Healthier cereals for adults and sugary cereals 
for children

33. (a) The data are quantitative
 (b) 

13. Males   Females
4 6  

8 5 6 9 9
3 3 2 2 2 2 1 0 7 4 4

6 7 8 8 8 9 9
  8 0 0 1

15. Life Expectancy 
(years)

Frequency 
(nations)

60.0–64.9 1

65.0–69.9 2

70.0–74.9 8

75.0–79.9 1

25 2
26 1 7
27  
28 6 7
29 7 8
30 5 5 5 8
31 2 8 8
32 1 1 4
33 1 7
34  
35 5

 (c) Unimodal and symmetric
35. (a) Interval Frequency

25.0–29.9 3
30.0–34.9 11
35.0–39.9 6

 (b) 

[20, 45] by [–1, 13]

 (c)  The distribution is  
unimodal and symmetric, 
with most salaries in the  
interval $30,000–34,999.

37. 

[1890, 2010] by [–4, 40]

 • =  CA; + = NY, ■ =  TX

39. False. If the graduation rates are the same, then the likelihood of 
graduating is independent of a student’s gender; there is no association.

41. C  43. A  47. 

[0, 13] by [–10, 40]

Section 10.3
Exploration 1

1. Approximately the same  3. Figure (b)

Exploration 2

Figure (b); Figure (c); Figure (a)

Quick Review 10.3

1. x1 + x2 + x3 + x4 + x5 + x6 + x7

3. 
1
7

 1x1 + x2 + x3 + x4 + x5 + x6 + x72

5. 
1
5

 31x1 - x22 + 1x2 - x22 + g + 1x5 - x224

7. a
8

i=1
 xiƒi  9. 

1
50

 a
50

i=1
 1xi - x 22
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Exercises 10.3

1. (a) Statistic (b) Parameter
3. (a) Mean (b) Median
5. 8 satellites  7. $33,500  9. Range: $10,300; 
IQR = $3,600  11. 210 lb (and any other weights over 198) 
13. 51, 5, 5, 7.5, 86 ; outliers: 1, 1  15. 510, 33, 42, 48, 736 ; 10 
and 73 are outliers.  17. In general, NHL teams do win more games 
at home than on the road; the median for home wins is about 4 games 
higher and is greater than the third quartile for away wins. With the 
exception of a couple of outliers, there’s much less variability in home 
wins, and over 75% of teams won fewer games on the road than the 
average for teams at home.  19. Babe Ruth: Five-number sum-
mary: 50, 11, 38, 47, 606 ; Range: 60; IQR: 36; No outliers; Barry 
Bonds: Five-number summary: 55, 25, 34, 45, 736 ; Range: 68; IQR: 
20; Outlier: 73 (perhaps)  
21. 

Ruth

Bonds

23. 21.625; much larger than the median because 2 planets have over 
60 moons  25. ≈$33,542; almost exactly the 
same  27. ≈2.96  29. ≈22.95; median; mean is pulled high 
because the distribution is skewed to the right.   
31. (a) ≈17.67°C (b) ≈17.74°C (c) The weighted average is 
the better indicator.
33. s ≈ 9.71; s  

2 ≈ 94.3  35. s ≈ $66.8 billion; s2 ≈ 4462
37. s ≈ $2673 ; s2 ≈ 7,150,000
39. (a) smaller; values closer to the mean (b) 2.58 6 2.94
43. (a) 68% (b) 2.5% (c) A statistic
45. (a) 16% (b) 13.5% (c) Over 101 g (d) Individuals more 
than 3 standard deviations below the mean are very rare.
47. False. The median is a resistant measure.  49. A  51. B   
53. There are many possible answers; examples are given.
(a) 52, 2, 2, 3, 6, 8, 206  (b) 5-20, 1, 1, 1, 2, 3, 4, 5, 66
57. 78.6 years  59. 5%  

Section 10.4
Exploration 1
Plan B

Quick Review 10.4

1. 2  3. 4  5. 22,100  7. 6  9. 56  

Exercises 10.4

1. 17  3. 10  5. 2.625  7. Making $75>day

9. (a) 

15. $75  17. (a) 0.386 (b) 0.116 (c) 0.132
19. (a) 0.393 (b) 0.017
21. (a) 0.201 (b) 0.012
25. (a) 22.5 (b) 3.97
29. (a) 0.067 (b) 0.773 (c) 0.273
31. (a) 1.88 (b) 0.25 (c) ±1.28
33. (a) 0.013 (b) 0.784  35. Less than 59.2 in.
37. (a) 99.4% (b) 0.155 (c) 10.9 hr
39. (a) Yes; 125 7 10. (b) 125, 7.91 (c) No; z 6 2.
43. False; expected value is a parameter calculated from the theoretical 
probability distribution.  45. D  47. C
49. (a) ≈2, (b) Yes (c) ≈1.913%
51. Highest expected winnings = $1600 for Deal B; lowest = $1000 
for Deal C.
53. (a) $4.50 (b) $13.96
55. (a) 52% (b) 12.49 (c) 325 and 300 are both 7 10 (d) ±4%

Section 10.5
Exploration 1

1. Correlation begins with a scatter plot, which requires numerical 
data from two quantitative variables (like height and weight).  
“Gender” is categorical.  3. The doctor’s “experiment” proves 
nothing about the effect of vanilla gum on headache pain unless we 
can compare these subjects with a similar group that does not use 
vanilla gum. Many headaches are gone in two hours anyway. 
5. The percentages make the difference seem large, but it actually amounts 
to only 6 of the 50 people. The results may not be statistically significant.

Quick Review 10.5

1. 
1
6

  3. 
4
52

=
1
13

  5. 
1
10

7. a 1
10
b

5

= 0.00001  9. 1 - a 9
10
b

5

= 0.40951

Exercises 10.5

1. Incorrect. Intelligence might be associated with some quantitative 
variable, but beauty is categorical.  3. Incorrect. The high correla-
tion coefficient does nothing to support Sean’s crazy theory, because the 
great blue whale (with a long name and a huge weight) is an unusual 
point that lies far away from the other three.  5. Incorrect. Marcus is 
OK with his first observation, but not with his second. Even though his 
linear model is a bad fit, he should not conclude that “there is no signifi-
cant mathematical relationship.” In fact, check out this sinusoidal fit:

7. This is random (technically pseudo-random), but it should suffice.   
9. This is not a random sample of all Reno residents. All 50 are likely 
to be from early in the alphabet.  11. This is not random, nor does 
it apparently try to be.  13. Voluntary response bias. The students 
most likely to respond were those who felt strongly about suggestions 
for improvement, so the rate of negative responses was probably 
higher than the parameter. He could have gotten a less biased response 
with an in-class census of all his students (ideally in multiple-choice 
form so that their handwriting would not betray their identities).   
15. Undercoverage bias. The survey systematically excluded the stu-
dents who were not actually eating in the dining hall, so the sample 

Y 1 2 3 4 5

P1Y2 5
20

3
20

7
20

4
20

1
20

 (b) 53>20 = 2.65
11. No; -$79, compared to -$11 without the warranty.
13. (a) 

Family G BG BBG BBB

X = children 1 2 3 3

P1X2 1
2

1
4

1
8

1
8

(b) 1.75
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19. 

statistic was bound to be higher than the population parameter. A bet-
ter method would have been to choose a random sample from the stu-
dent body first, then seek them out for the survey (perhaps in their 
homerooms).  17. Response bias. The question was designed to 
elicit a negative response, and it never even mentioned stop signs. The 
97% was much higher than it would have been with a simple question 
like, “Should citizens be allowed to ignore stop signs?”   
19. Observational study. No treatment imposed.  21. Observa-
tional study. No treatment imposed.  23. Experiment.   
25. Using random numbers, select 12 of the 24 plots to get the new 
fertilizer. Use the original fertilizer on the other 12 plots. Compare the 
yields at harvest time.  27. This requires three treatments. Split the 
24 plots randomly into three groups of 8: new fertilizer 1, new fertil-
izer 2, and original fertilizer.  29. Fatigue may be a factor after the 
golfers have driven 20 golf balls. They could gather the data on differ-
ent days, or they could randomly choose half the golfers to drive the 
new ball first.  31. The music assignment should be randomized, 
not left to the choice of the mother. Otherwise, the mother’s music 
preference (with possible lifestyle implications) becomes a potentially 
significant confounding variable.  33. One possible solution: Use 
the command “randInt11, 500, 502” to choose 50 random numbers 
from 1 to 500. If there are any repeat numbers in the list, use “rand-
Int11, 5002” to pick additional numbers until you have a sample of 
50.  35. One possible solution: Enter the numbers 1 to 32 in list 
L1 using the command “seq1X, X, 1, 322S L1” and enter 32 random 
numbers in list L2 using the command “rand1322S L2.” Then sort 
the random numbers into ascending order, bringing L1 along for the 
ride, using the command “SortA1L2, L12.” The numbers in list L1 are 
now in random order.  37. Number the plants 1–16. Use 
“randInt11, 162” to generate 8 distinct random numbers. Grow those 8 
plants with the plant food and the other 8 without it.  39. One pos-
sible solution: Use the command “randInt11, 82” to generate random 
numbers between 1 and 8.  41. One possible solution: Use the 
command “randInt11, 5, 202” to generate 20 random numbers from 1 
to 5. Let 1 and 2 designate donors with O-positive blood. Do this nine 
times and keep track of how many strings have fewer than four num-
bers that are 1 or 2.  43. Use “randInt11, 62” to generate a series of 
random rolls of the die. Keep a running total, but don’t add rolls that 
would make the sum greater than 21. Stop when the total equals 21. 
Report the number of rolls.  45. Yes, there is enough evidence to 
warrant suspicion. In only 10 of the 500 simulated trials did 8 or more 
6’s show up. There’s only a 2% chance that rolling a die fairly would 
produce a result like this.  47. False. Observational studies can 
find strong associations, but experiments would be required to estab-
lish causation.  49. B (Note that this is the only quantitative vari-
able among the choices.)  51. C  53. Answers will vary. Note 
that you should not expect all the counts to be exactly the same (that 
would suggest nonrandomness in itself), but “randomness” would pre-
dict an approximately equal distribution, especially for a large class.   
55. (a) Correlation coefficient will increase; slope will remain about 
the same. (b) Correlation coefficient will increase; slope will 
increase. (c) Correlation coefficient will decrease; slope will decrease.
57. One possible scatter plot:

 

2 2
3 3
3 7 7
4 0 0 1 1 2 2 3
4 5 5 6 7 7
5 4

 (b) Unimodal and slightly skewed left

Yardage Frequency
2500–2999 1
3000–3499 1
3500–3999 2
4000–4499 7
4500–4999 5
5000–5499 1

21. (a) 12 0 0 4 4
13 1 1 2 6 7 9
14 0 3 4 8
15 6
16 3
17 7 9
18 0
19 0 1 7
20 2
21  
22  
23 0

 (b) Unimodal, skewed to the right

59. (a) The size of the hospital is not affecting the death rates of the 
patients. The lurking variable is the patient’s condition. Bigger hospi-
tals tend to get the more critical cases, and critical cases have a higher 
death rate. (b) The number of seats is not affecting the speed of the 
jet. The lurking variable is the size of the aircraft. Larger jets generally 
have more seats and go faster. (c) The size of the shoe does not 
affect reading ability. The lurking variable is the age of the student. In 
general, older students have larger feet and read at a higher level.  
(d) The extra firemen are not causing more damage. The lurking 
 variable is the size of the fire. Larger fires cause more damage and 
require more firefighters. (e) The salary is not generally affected  
by the player’s weight. The lurking variable is the player’s position on 
the team. Linemen weigh more and tend to earn less money than the 
 (usually lighter) players in the so-called “skill” positions (e.g., quarter-
backs, running backs, receivers, and defensive backs).

Chapter 10 Review Exercises
1. No; sum ≠ 1  3. ≈ 0.00001824 
5. 1>10  7. (a) 0.444 (b) 0.092 (c) 0.556
9. (a) 0.75 (b) 0.48
11. 0.17
13. (a) 0.5 (b) 0.15 (c) 0.35 (d) ≈0.43
15. (a) 0.25 (b) 0.647 (c) No; the overall rate of high cholesterol 
was 31.8%, but it was 64.7% among men with high blood pressure.
17. (a) 
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59. Correlation does not measure straightness.  61. This will work. 
63. Voluntary response bias.  65. Randomly divide the students 
into two groups of 20 (replication). Have one group take the course 
and the other group study independently (control). Compare improve-
ment in scores.  67. Randomly divide the swatches into two 
groups of 10 (replication). Wash one group with the old detergent and 
the other with the new additive. Wash each in the same machine for 
the same length of time using the same temperature water (control). 
Compare the cleanliness of the swatches.  69. Use “randInt10, 92” 
to generate random digits, letting 0–4 = red, 5–7 = white, and 
8–9 = blue. Generate a series of digits until one marble of each color 
is seen. Record the number of marbles not drawn. Repeat many times 
and find the mean.
71. (a) No; 21 of the 374 streaks were runs of 5 or more in a row—
not unusual. (b) (Answers will vary.) 8 or more in a row seems 
unusual, but even very long runs can occur by chance.

Chapter 10 Modeling Project

Answers are based on the sample data shown in the table.
1. 

27. 

[–1, 25] by [100, 250]

  Again, the data demonstrate that songs appearing later tended to 
be longer.

29. (a) 

[0, 250] by [–2, 12]

 (b)  Unimodal and skewed to 
the right

31. Visitors (millions) Frequency
 25–49 10

50–74  4
75–99  2

100–124  3
125–149  1
150–174  0
175–199  3
200–224  1
225–249  1

33. (a) 

[0, 350] by [–2, 10]

 (b) Unimodal and roughly symmetric
35. Median price ($1000s) Frequency

75–99 1
100–124 3
125–149 4
150–174 5
175–199 8
200–224 4
225–249 3
250–274 0
275–299 1
300–324 1

37. (a) 84% (b) 0.221, 0.325
39. 175  41. $133.85  43. 5>16  
45. (a) ≈0.922 (b) ≈0.075
47. No. The number of expected defective bats is less than  
10 (only 4.8).  49. 40, 6.32  
51. (a) 32.5, 3.37 (b) Yes; the numbers of expected hits (32.5) and 
misses (17.5) are both greater than 10. (c) The z-score for 41 hits is 
2.52, statistically significant evidence of improvement.
53. (a) 11% (b) 26% (c) less than 1108 lb
55. (a) 91% (b) 29.5% (c) over 308 yd
57. “Correlation” is incorrect, because color is categorical.

5  
5 9
6 1 1 2 3 3 3 4 4 4 4
6 5 6 6 6 7 8 8 9 9 9
7 0 0 1 1 1 2 2 3
7 5

 66 in. or 67 in.

25. Earlier   Later

4 0 0 12 4

9 2 1 13 1 6 7

8 4 3 0 14  

  15 6

3 16  

7 17 9

  18 0

  19 0 1 7

  20 2

  21  

  22  

  23 0

 The songs released in the earlier years tended to be shorter.

Length (sec) Frequency
120–129 4
130–139 6
140–149 4
150–159 1
160–169 1
170–179 2
180–189 1
190–199 3
200–209 1
210–219 0
220–229 0
230–239 1

23. 
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3. 

[59, 78] by [–1, 7]

5. The distribution is somewhat symmetric and probably does not 
have an outlier.
7. 

[56, 78] by [–1, 7]

9. The new student is 86 in. tall. Including the new student, the IQR 
for height is 7 in. Notice that the new student is more than 1.5IQR 
above the third quartile value of 71 in. Thus he is an outlier in height, 
as suggested by the graph in part 8.
Identifying outliers is important because they greatly affect nonresis-
tant statistics, such as the range, which changes from 16 in. to 27 in. 
due to the addition of this one student to the precalculus class.

CHAPTER 11
Section 11.1
Exploration 1

1. 3  3. They are the same.
Quick Review 11.1

1. -4>7  3. y - 3 =
3
2

 1x + 22  5. y - 4 =
3
4

 1x - 12

7. h + 4  9. -  
1

21h + 22  

Exercises 11.1

1. 12 mph  3. 3  5. 8a  7. 1  9. No tangent  

39. Possible answer:

 

y

10

–10

–1
x

5

41. Possible answer:

 

y

5

–5

–1
x

5
11. f ′(2) is negative.

[–6.6, 6.6] by [–4.1, 4.1]

13. f ′(2) is zero.

[–6.6, 6.6] by [–4.1, 4.1]

15. (a) 48 (b) 48 ft>sec  
17. (a) -4 (b) y - 2 = -41x + 12
 (c) y

19

x
4

19. (a) 1 (b) y = x - 5
 (c) y

5

x
4

21. -1; 1; none  23. -4  25. -4  27. The derivative does 
not exist.  29. -3  31. 16x +  8
33. (a) 9 ft>sec; 15 ft>sec

 (b) ƒ1x2 = 8.94x2 + 0.05x + 0.01, x = time in seconds

  [–0.1, 1] by [–0.1, 8]

 (c) ≈35.9 ft
35. (a) y

9

x
5

 (b)  Because the graph of the  
function does not have a 
definable slope at x = 2, the 
derivative of ƒ does not exist 
at x = 2.

 (c)  Derivatives do not exist at 
points where functions have 
discontinuities.

37. (a) y

3

x
5

 (b)  Because the graph of the 
function does not have a 
definable slope at x = 2, the 
derivative of ƒ does not exist 
at x = 2.

 (c)  Derivatives do not exist at 
points where functions have 
discontinuities.

43. The slope of the line is a; ƒ′1x2 = a.
45. False; the instantaneous velocity is a limit of average velocities. It 
is nonzero when the ball is moving.  47. D  49. C
51. 

[–4.7, 4.7] by [–3.1, 3.1]

 

 (a)  No, there is no derivative because the graph has a corner  
at x = 0.

 (b) No
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53. 

[–4.7, 4.7] by [–3.1, 3.1]

 (a)  No, there is no derivative because 
the graph has a vertical tangent 
(no slope) at x = 0.

 (b) Yes, x = 0

55. (a) 48 ft>sec (b) 96 ft>sec
57. y

1

x
10

Section 11.2
Exploration 1

1. 0.1 gal; 1 gal  3. 0.000000001 gal; 1 gal

Quick Review 11.2

1. 
1
8

, 
1
2

, 
9
8

, 2, 
25
8

, 
9
2

, 
49
8

, 8, 
81
8

, 
25
2

  3. 
65
2

  5. 
505
2

  7. 228 mi

9. 4,320,000 ft3

Exercises 11.2

1. 195 mi  3. 540,000 ft3  5. 2176 km  7. 13; answers 
will vary.  9. 13; answers will vary.

11. 32.5  13. c 1, 
3
2
d , c  3

2
, 2 d , c 2, 

5
2
d , c 5

2
, 3 d

15. c 1, 
3
2
d , c  3

2
, 2 d , c 2, 

5
2

 d , c 5
2

, 3 d , c 3, 
7
2
d , c  7

2
, 4 d

17. (a) y

18

x
54321

 (b) y

18

x
54321

  RRAM: 30

 (c) y

18

x
54321

  LRAM: 14

19. (a) y

5

x
54321

 (b) y

5

x
54321

  RRAM: 10

 (c) y

5

x
54321

  LRAM: 10

 (d) Average: 10
21. 20  23. 37.5  25. 16.5  27. 2p  29. 2  
31. 2  33. 1  35. 4  37. 4  39. 8k + 12  
41. 2 + 2k  45. 64 ft  
47. (a) 

[0, 3] by [0, 50]

 (b) t = 1.5 sec (c) 36 ft
49. (a) 

[0, 2] by [–50, 0]

 (b) 33.86 ft

51. True; the exact area is given by the limit as n S ∞.  

53. A  55. C  57. L
1

0
 1x - 12 dx = -  

1
2

59. True  61. False  63. False  

Section 11.3
Exploration 2

1. 50; 0  

Quick Review 11.3

1. (a) -  
3
64

 (b) 
1
16

 (c) Undefined

3. (a) x = -2 and x = 2 (b) y = 2

5. (b)  7. (a) 3-2, ∞2 (b) None
 (d) Average: 22
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9. y

5

x
4

Exercises 11.3

1. -4  3. 7  5. 223  7. 0  9. a2 - 2  

11. (a) Division by zero (b) -  
1
6

13. (a) Division by zero (b) 3
15. (a) Division by zero (b) -4
17. (a) The square root of negative numbers is not defined in the real 
plane. (b) The limit does not exist.
19. -1  21. 0  23. 2  25. ln p  
27. (a) 3 (b) 1 (c) Not defined; lim

xS2- ƒ1x2 ≠ lim
xS2 +  ƒ1x2

29. (a) 4 (b) 4 (c) 4
31. (a) True (b) True (c) False (d) False (e) False  
 (f ) False (g) False (h) True (i) False (j) True
33. (a) ≈2.72 (b) ≈2.72 (c) ≈2.72
35. (a) 6 (b) -4 (c) 16 (d) -2
37. (a) y

9

x
4

 (b) 0; 0 (c) 0

39. (a) y

8

x
4

 (b)  0; 3 (c) Does not exist; 
lim

xS0- ƒ1x2 ≠ lim
xS0+ ƒ1x2

41. 2  43. 0  45. 1  47. 0; 0  49. ∞; 1  

51. (a) ∞ (b) -∞  53. (a) Undefined (b) 0
55. -∞; x = 3  57. ∞; x = -2  59. ∞; x = 5  

61. 3  63. 1  65. ∞  67. 0  

69. Undefined

71. 
1
2

  73. False; lim
xS3

 ƒ1x) = 5  75. B  77. C

79. (a) y

1

x
p

 (b) 1-p, 02∪ 10, p2
 (c) x = p (d) x = -p

81. (a) y

2

x
1

  (b) 1-1, 02∪ 10, 12 
(c) x = 1 (d) x = -1

83. (a) 

[–2, 25] by [0, 60]

  (b) ƒ1x2 ≈
57.71

1 + 6.39e-0.19x,  

where x = the number of months; 
lim

xS∞
 ƒ1x2 ≈ 57.71 

(c) It’s about 58,000.
 (d)  Habitat and resources impose 

limits on population growth.
85. y

5

x
15

y = 2

x = 4
  87. y

5

x
8

x = 2

x = 1

89. (d) 

 (e) 

n A

4 4
8 3.3137

16 3.1826
100 3.1426
500 3.1416

1,000 3.1416
5,000 3.1416

10,000 3.1416
100,000 3.1416

Yes, A S p as n S ∞.

n A

4 36
8 29.823

16 28.643
100 28.284
500 28.275

1,000 28.274
5,000 28.274

10,000 28.274
100,000 28.274

As n S ∞, A S 9p.
 (f)   One possible answer: 

lim
nS∞

 A = lim
nS∞

 nh2 tana180°
n
b  

 = h2 lim
nS∞

  n tana180°
n
b  

 = h2p = ph2

As the number of sides of the polygon increases, the distance between 
h and the edge of the circle becomes progressively smaller. As 
n S ∞, h S radius of the circle.
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37. (b) 

N LRAM RRAM Average

10 15.04 19.84 17.44
20 16.16 18.56 17.36
50 16.86 17.82 17.34

100 17.09 17.57 17.33

 (c) fnInt gives 17.33; the average is 17.3344 for N = 100.

33. (b) 

N LRAM RRAM Average

10 7.84 11.04 9.44
20 8.56 10.16 9.36
50 9.02 9.66 9.34

100 9.17 9.49 9.33

 (c) fnInt gives 9.33; the average is 9.3344 for N = 100.

35. (b) N LRAM RRAM Average

10 98.24 112.64 105.44
20 101.76 108.96 105.36
50 103.90 106.78 105.34

100 104.61 106.05 105.33

 (c) fnInt gives 105.33; the average is 105.3344 for N = 100.

N LRAM RRAM Average

10 7.70 8.12 7.91
20 7.81 8.02 7.91
50 7.87 7.95 7.91

100 7.89 7.93 7.91

 (c) fnInt gives 7.91, the same result as for N = 100.
39. (b) 

N LRAM RRAM Average

10 1.08 0.92 1.00
20 1.04 0.96 1.00
50 1.02 0.98 1.00

100 1.01 0.99 1.00

 (c) fnInt gives 1, the same result as for N = 100.

41. (b) N LRAM RRAM Average

10 0.56 0.62 0.59
20 0.58 0.61 0.59
50 0.59 0.60 0.59

100 0.59 0.60 0.59

 (c) fnInt = 0.59, the same result as for N = 100.

43. True; the notation NDER refers to a symmetric difference quo-
tient using h = 0.001.  45. B  47. C
49. (a) 4x + 3 (b) 3x2 (c) 11.002; 11 (d) The symmetric  
difference quotient provides a closer approximation. It is, in fact, 
the exact value. (e) 12.006001; 12.000001; symmetric
51. The values of ƒ10 + h2 and ƒ10 - h2 are the same.
53. (a) 4 (b) ≈19.67
55. Answers vary.

91. (a) y

x

5

5

  (b) y =
2x + 4
x + 2

=
21x + 22

x + 2
= 2 

(c) y = 2

93. (a) y

x

8

5

 (b) y =
x3 - 1
x - 1

= -  
1x - 121x2 + x + 12

x - 1
= x2 + x + 1 

 (c)  y = x2 + x + 1

Section 11.4
Exploration 1

1. 1.364075504  3. 1p0  sin x dx; 
sum1seq1sin10 + K*p>502*p>50, K, 1, 5022 = 1.999341983;  
fnInt1sin1X2, X, 0, p2 = 2

Quick Review 11.4

1. 5  3. 2>3  5. 3  7. ≈0.5403  9. ≈1.000  

Exercises 11.4

1. -4  3. -12  5. -1  7. ≈ 1.0000  9. ≈-3.0000
11. 64>3  13. 2  15. ≈0  16. 2  17. 1  
19. ≈3.1416  21. 106.61 mi
23. (a) -50 ft>sec  (b) 

[–1, 6] by [0, 550]

 (c) s1t2 = -16.08t2 + 0.36t + 499.77
 (d) ≈-47.88 ft>sec  (e) ≈179.28 ft>sec
25. (a) Midpoint ∆s>∆t

0.25 -10
0.75 -20
1.25 -40
1.75 -60
2.25 -70
2.75 -90
3.25 -100
3.75 -120
4.25 -140
4.75 -150
5.25 -170

 (b) 

[0, 6] by [–180, 20]

 (c)  Approximately -47.95 ft>sec; 
this is close to the results in 
Exercise 23.

27. 100 ft
31. (b) 
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x A1x2
0.25  0.0156
0.5  0.125
1  1
1.5  3.375
2  8
2.5 15.265
3 27

[0, 5] by [–5, 30]

 (c) y ≈ x3  

[–2, 5] by [–5, 30]

 (d)  The exact value 
of A1x2 for any  
x greater than zero 
appears to be x3.

 (e) A′1x2 = 3x2

chapter 11 review exercises
1. (a) 2 (b) Does not exist  3. (a) 2 (b) 2
5. -1  7. Does not exist  9. 0  11. 0 13. ∞  15. -1   

17. -  
1
4

  19. ƒ has a vertical asymptote at x = -3; ƒ has a hori-

zontal asymptote at y = 2.  21. 0  23. -  
1
9

  

25. 
1

22a
  27. y = •

x3 - 1
x - 1

if x ≠ 1

3 if x = 1

  29. -9

31. (a) 2p + 4 (b) 2

33. 1; y = x - 1  35. 
1

22x
37. LRAM: 42.2976; RRAM: 40.3776; 41.3376
39. (a) 

[–5, 70] by [–100, 1400]

 

 (b)  The cubic regression curve is  
y = -0.016x3 + 1.68x2 -  63.13x + 1104.2.

  

[–5, 70] by [–100, 1400]

 

 (c)  NINT1-0.016x3 + 1.68x2 -  63.13x + 1104.2, x, 0, 552  
≈ 21,814 million pounds.

 (d)  The cubic model predicts a negative veal consumption rate 
shortly after 2015, which is impossible. 

 (e) Answers will vary.

chapter 11 Modeling Project

1. 

[0, 250] by [0, 2,500,000]

57. (b) 3. y ≈ 2,344,614>11 + 118.11e -0.0379t2.

 [0, 250] by [0, 2,500,000]

5. NDER gives an instantaneous rate of change of 21,294 persons  
per year when x = 115.  

APPendIceS
Appendix A
Appendix A.1

1. 9 or -9  3. 4  5. 
4
3
 or -  

4
3

  7. 12  9. -6  

11. -  
4
3

  13. 4  15. 2.5  17. 729  19. 0.25  21. -2

23. 1.3  25. 2.1  27. 1222  29. -523 2  31. 0 x 0 y222x

33. x2 0 y 024 3y2  35. 2x225 3  37. 223 4  39. 
25 x3

x
  

41. 
23 x2y2

y
  43. 1a + 2b22>3  45. 2x5>3y1>3  47. 24 a3b

49. 23 x-5 = 1>23 x5  51. 24 2x  53. 28 xy  55. 215 a

57. a-17>30  59. 3a2b21b Ú 02  61. 4x4y2  63. 
0 x 0

x 0 y 0
65. 

3y2

0 x3 0   67. 
0 x 024 6x2y2

2
  69. 

2x23 x
y

  71. 0

73. 1x - 2 0 y 0 22x  75. 6   77. =   79. 7   81. 6
83. ≈3.48 sec  85. If n is even, then there are two real nth roots 

of a 1when a 7 02: 2n a and -2n a.

Appendix A.2

1. 3x2 + 2x - 1; degree 2  3. -x7 + 1; degree 7  5. No   
7. Yes  9. 4x2 + 2x + 4  11. 3x3 - x2 - 9x + 3
13. 2x3 - 2x2 + 6x  15. -12u2 + 3u  17. -15x3 - 5x2 + 10x
19. x2 + 3x - 10  21. 3x2 + x - 10  23. 9x2 - y2

25. 9x2 + 24xy + 16y2  27. 8u3 - 12u2v + 6uv2 - v3

29. 4x6 - 9y2  31. x3 + 2x2 - 5x + 12
33. x4 + 2x3 - x2 - 2x - 3  35. x2 - 2
37. u - v, u Ú 0 and v Ú 0  39. x3 - 8  41. 51x - 32
43. yz1z2 - 3z + 22  45. 1z + 721z - 72   
47. 18 + 5y218 - 5y2  49. 1y + 422  51. 12z - 122
53. 1y - 221y2 + 2y + 42  55. 13y - 2219y2 + 6y + 42
57. 11 - x211 + x + x22  59. 1x + 221x +  72
61. 1z - 821z + 32  63. 12u - 5217u + 12
65. 13x + 5214x - 32  67. 12x + 5y213x - 2y2   
69. 1x - 421x2 + 52  71. 1x2 - 321x4 + 12
73. 1c + 3d212a - b2  75. x1x2 + 12  77. 2y13y + 422   
79. y14 + y214 - y2  81. y11 + y215 - 2y2   
83. 215x + 4215x - 22  85. 212x + 5213x - 22   
87. 12a - b21c + 2d2  89. 1x - 321x + 221x - 22  
91.  12ac + bc2 - 12ad + bd2 = c12a + b2 - d12a + b2 =  
12a + b21c - d2; neither of the groupings 12ac - bd 2 or 
1-2ad + bc2 has a common factor to remove.
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5. (a) The book does not have 500 pages. (b) Six is not less than 
eight. (c) 3 # 5 ≠ 15 (d) No people have blond hair. (e) Some 
dogs do not have four legs. (f) All cats have nine lives. (g) Some 
squares are not rectangles. (h) All rectangles are squares. 
(i) There exists a natural number x such that x + 3 ≠ 3 + x. 
(j) For all natural numbers x, 3 # 1x + 22 ≠ 12. (k) Not every 
counting number is divisible by itself and 1. (l) All natural numbers 
are divisible by 2. (m) For some natural number x, 5x + 4x ≠ 9x.
7. (a) False (b) True (c) True (d) False (e) False  
(f) True (g) False (h) False (i) False (j) False
9. (a) R ∪ S (b) Q ¨ Q (c) R ∪ Q (d) P ¨ 1R ∪ S2
11. (a) The statements ∼1p ¡ q2 and ∼p ¿ ∼q are equivalent, and 
the statements ∼1p ¿ q2 and ∼p ¡ ∼q are equivalent. (b) The  
corresponding DeMorgan’s Laws for sets are P ∪ Q = P ¨ Q and 
P ¨ Q = P ∪ Q. The analogy comes from letting p mean “x is a 
member of P” and letting q mean “x is a member of Q.” Then, for the 
first law, ∼1p ¡ q2 means “x is a member of P ∪ Q,” which is equiva-
lent to “x is a member of P ¨ Q,” which translates into ∼p ¿ ∼q.
13. (a) Today is not Wednesday or the month is not June. (b) I did 
not eat breakfast yesterday, or I did not watch television yesterday. 
(c) It is not true both that it is raining and that it is July.

Appendix B.2

1. (a) p S q (b) ∼p S q (c) p S ∼q (d) p S q 
(e) ∼q S ∼p (f) q 4 p
3. (a) Converse: If you’re good in sports, then you eat Meaties; 
Inverse: If you don’t eat Meaties, then you’re not good in sports; Con-
trapositive: If you’re not good in sports, then you don’t eat Meaties. 
(b) Converse: If you don’t like mathematics, then you don’t like this 
book; Inverse: If you like this book, then you like mathematics; Con-
trapositive: If you like mathematics, then you like this book. 
(c) Converse: If you have cavities, then you don’t use Ultra Brush 
toothpaste; Inverse: If you use Ultra Brush toothpaste, then you don’t 
have cavities; Contrapositive: If you don’t have cavities, then you use 
Ultra Brush toothpaste. (d) Converse: If your grades are high, then 
you’re good at logic; Inverse: If you’re not good at logic, then your 
grades aren’t high; Contrapositive: If your grades aren’t high, then 
you’re not good at logic.
5. (a) T (b) T (c) F (d) F (e) T (f) F
7. No  9. If a number is not a multiple of 4, then it is not a  
multiple of 8.
11. (a) p is false. (b) p is false. (c) q can be true, and in fact q 
true and p false makes p S q true and is the only way for q S p to be 
false.
13. (a) Helen is poor. (b) Some freshmen are intelligent. (c) If I 
study for the final, then I will look for a teaching job. (d) There 
exist triangles that are isosceles.
15. (a) If a figure is a square, then it is a rectangle. (b) If a number 
is an integer, then it is a rational number. (c) If a figure has exactly 
three sides, then it may be a triangle. (d) If it rains, then it is cloudy. 

Appendix A.3

1. 
5
3

  3. 
30
77

  5. 
5
6

  7. 
1
10

  9. All real numbers  

11. x Ú 4 or 34, ∞2  13. x ≠ 0 and x ≠ -3   
15. x ≠ 2 and x ≠ 1  17. x ≠ 0  19. 8x2  21. x2   
23. x2 + 7x + 12  25. x3 + 2x2  27. 1x - 221x + 72 can-
cels out during simplification; the restriction indicates that the values 2 
and -7 were not valid in the original expression.  29. No factors 
were removed from the expression.  31. 1x - 32 ends up in the 
numerator of the simplified expression; the restriction reminds us that 
it began in the denominator, so 3 is not allowed.  

33. 
6x2

5
, x ≠ 0  35. 

x2

x - 2
, x ≠ 0  37. -  

z
z + 3

, z ≠ 3

39. 
y + 5

y + 3
, y ≠ 6  41. 

4z2 + 2z + 1
z + 3

, z ≠
1
2

  

43. 
x2 - 3

x2 , x ≠ -2  45. 
x + 1

3
, x ≠ 1  

47. -  
1

x - 3
, x ≠ 1 and x ≠ -3  49. 

21x - 12
x

51. 
1
y

, y ≠ 5, y ≠ -5, and y ≠
1
2

  53. 
2
x
  

55. 
31x - 32

28
, x ≠ 0 and y ≠ 0  57. 

x
41x - 32 , x ≠ 0 and y ≠ 0

59. 
2x - 2
x + 5

  61. 
1

3 - x
, x ≠ 0 and x ≠ -3

63. 
x2 + xy + y2

x + y
, x ≠ y, x ≠ 0, and y ≠ 0

65. 
x + 3
x - 3

, x ≠ 4 and x ≠
1
2

  67. -  
2x + h

x21x + h22 , h ≠ 0  

69. a + b, a ≠ 0, b ≠ 0, and a ≠ b  71. 
1
xy

, x ≠ -y

73. 
x + y

xy

Appendix B
Appendix B.1

1. (a) False statement (b) Not a statement (c) False statement 
(d) Not a statement (e) Not a statement (f) Not a statement 
(g) True statement (h) Not a statement (i) Not a statement 
(j) Not a statement
3. (a) There is no natural number x such that x + 8 = 11. 
(b) There exists a natural number x such that x + 0 ≠ x. 
(c) There is no natural number x such that x2 = 4. (d) There exists 
a natural number x such that x + 1 = x + 2.

Z04_DEMA8962_10_GE_ANS.indd   944 28/06/22   07:37



Page 5: Andy Dean Photography/Shutterstock; Page 5: NASA; Page 6: Ivan Aleshin/123RF; 
Page 7: PO2 Nathan Wilkes/www.defense.gov; Page 8: Fotomicar/Shutterstock; Page 9:  
KAMONRAT/shutterstock; Page 9: Sekar Balasubramanian/123RF; Page 10: J. Bernholc et al., 
NCSU/Science Source; Page 10: vacclav/123RF; Page 11: CREATISTA/Shutterstock; Page 12: 
Belish/Shutterstock; Page 12: Vaclav Volrab/123RF; Page 14: Courtesy of Ben Siegel; Page 14: 
Courtesy of Renee Hartshorn; Page 15: Courtesy of Jeff Spence; Page 15: Pearson Education, Inc.

Credits

Frontmatter

Chapter P

Chapter 1

Chapter 2

Page 25: NASA; Page 32: Alexey Repka/123RF; Page 34: National Center for Education Statis-
tics, U.S. Department of Education, as reported in The World Almanac and Book of Facts 2012;  
Page 36: U.S. Census Bureau, The World Almanac and Book of Facts 2017; Page 42: Automotive 
News Data Center and R.L. Polk Marketing System as reported in The World Almanac and Book 
of Facts 2017; Page 42: The World Almanac and Book of Facts 2017; Page 42: U.S. Census Bu-
reau, The World Almanac and Book of Facts 2017; Page 42: U.S. Department of Agriculture, The 
World Almanac and Book of Facts 2017; Page 51: Stefan Holm/Shutterstock; Page 57: Ignatius 
Wooster/Fotolia; Page 58: Texas Instruments; Page 58: U.S. Census Bureau, The World Almanac 
and Book of Facts 2017.; Page 61: U.S. Bureau of Economics Analysis, The World Almanac and 
Book of Facts 2017; Page 61: U.S. Census Bureau, The World Almanac and Book of Facts 2012; 
Page 62: Martin Barraud/Getty Images; Page 62: U.S. Census Bureau, The World Almanac and 
Book of Facts 2017; Page 62: U.S. Census Bureau; Page 83: The College Board, The World 
Almanac and Book of Facts 2017; Page 83: The World Almanac and Book of Facts 2017.

Page 85: Andy Dean Photography/Shutterstock; Page 86: https://stats.oecd.org; Page 87: U.K. 
Government Services and Information, U.K. armed forces biannual diversity statistics: 1 October 
2021; Page 87: U.K. Government Services and Information, U.K. armed forces biannual diversity
Statistics; Page 89: https://singstat.gov.sg; Page 92: GAIMME. Society for Industrial and Applied 
Mathematics; Page 92: GAISE. American Statistical Association; Page 92: George Poyla, How to 
Solve It: A New Aspect of Mathematical Method. Princeton University Press; Page 98: U.S. Bureau 
of Labor Statistics (www.bls.gov); Page 98: World Bank Data; Page 99: Based on Major League 
Baseball Players Association; Page 101: Cellular Communications and Internet Association; Page 118:  
Baylor School College Counselor; Page 129: Photodisc/Getty Images; Page 137: NOAA; Page 157:  
Ivan Cholakov/Alamy Stock Photo; Page 157: Yahoo! Finance; Page 163: AccuWeather, Inc.; 
Page 166: Bureau of Labor Statistics, U.S. Dept. of Labor; Page 168: CTIA, quoted in The World 
Almanac and Book of Facts 2009; Page 170: U.S. Department of Energy, as reported in The World 
Almanac and Book of Facts 2017; Page 173: Monthly Energy Review, Aug 2012, as reported in The 
World Almanac and Book of Facts 2013; Page 173: The World Almanac and Book of Facts 2017.

Page 175: Ivan Aleshin/123RF; Page 180: dmitrimaruta/123RF; Page 188: National Transporta-
tion Statistics 2015, U.S. Department of Transportation; Page 188: Social Security Administration, 
Trustees Report 2013; Page 189: U.S. Patent Statistics Table, U.S. Patent and Trademark Office, 
2016; Page 190: Historical Income Tables, U.S. Census Bureau, 2016; Page 198: iDesign2000/
Fotolia; Page 198: Shupe, Dorr, Payne, Hunsiker, et al., National Geographic Atlas of the World 
(rev. 6th ed.) Washington, DC: National Geographic Society, 1992, plate 116; Page 202: A.J. 
Clark, Comparative Physiology of the Heart. New York: Macmillan, 1927; Page 253: National 
Vital Statistics Reports, Vol. 56, No. 9, December 2007; Page 254: U.S. Department of Energy;  
Page 263: Getty Images; Page 263: U.S. Census Bureau, 2013; Page 263: U.S. Census Bureau, 
2016; Page 267: Global Climate Change, NASA, 2016; Page 267: The College Board, 2016.

Chapter 3 Page 269: Nathan Wilkes/www.defense.gov; Page 278: Texas Instrument; Page 278: U.S. Census  
Bureau; Page 279: Gabriele Maltinti/Shutterstock; Page 279: Texas Instruments; Page 280: The World 
Almanac and Book of Facts 2017; Page 286: U.S. Census Bureau; Page 287: U.S. Census Bureau; 
Page 288: Photodisc/Getty Images; Page 290: https://www.macrotrends.net; Page 290: https://
www.statista.com; Page 291: Statesman’s Yearbook and World Almanac and Book Facts; Page 298: 
Adapted from R.W. Reading, Exploring Physics: Concepts and Applications. Belmont, CA:  
Words worth, 1984; Page 299: Kerenby/Fotolia; Page 300: https://www.macrotrends.net; Page 305: 
Re-expression of data from: Shupe, et al., National geographic Atlas of the World (rev. 6th ed.). 
Washington, DC: National Geographic Society,1992, plate 116; Page 306: Robert Llewellyn/GettyIm-
ages; Page 308: J.J. Dwyer, College Physics. Belmont, CA: Wadsworth, 1984; and E. Connally et al., 
Functions Modeling Change. New York: Wiley, 2000; Page 309: A.J. Clark, Comparative Physiology 
of the Heart. New York: Macmillan, 1927; Page 309: byrdyak/Fotolia; Page 313: FrankBirds/Fotolia; 
Page 320: Science, Vol. 264, April 15, 1994, American Association for the Advancement of Science; 
Page 321: https://www.macrotrends.net.; Page 330: Digital Vision/Getty Images; Page 333:  https://
www.statista.com.

945

Z03_DEMA8962_10_GE_CRED.indd   945 11/06/2022   00:02

http://www.defense.gov
https://stats.oecd.org
https://singstat.gov.sg
http://www.bls.gov
http://www.defense.gov
https://www.macrotrends.net
https://www.statista.com
https://www.statista.com
https://www.macrotrends.net
https://www.macrotrends.net
https://www.statista.com
https://www.statista.com


946 CREDITS

Chapter 4

Chapter 6

Chapter 5

Chapter 8

Chapter 9

Chapter 7

Chapter 10

Chapter 11

Cover

Page 336: Fotomicar/Shutterstock; Page 343: Tirerack.com; Page 344:  https://www.gps-
coordinates.net; Page 373: Sablin/Fotolia; Page 376: Climate-zone.com, 2013; Page 385: Steve 
Allen/Getty Images; Page 413: Southeast Regional Climate Center, 2013.

Page 471: Sekar Balasubramanian/123RF; Page 478: CraigRJD/Getty Images; Page 496: Petty 
Officer 2nd Class Raymond D. Diaz III/U.S. Department of Defense; Page 507: Jirsak/Shutter-
stock; Page 513: silviemiskova/123RF.

Page 420: KAMONRAT/shutterstock; Page 429: Digital Vision/Getty Images; Page 429:  
TheSkyLive.com; Page 444: Awe Inspiring Images/Shutterstock; Page 450: timeanddate.com; 
Page 467: Monty Rakusen/Getty Images.

Page 586: vacclav/123RF; Page 595: Tony Roberts/Getty Images; Page 607: Shupe, et al., 
National Geographic Atlas of the World (rev. 6th ed.). Washington, DC: National Geographic 
Society, 1992, plate 116, and other sources; Page 614: NASA; Page 633: Shupe, et al., National 
Geographic Atlas of the World (rev. 6th ed.). Washington, DC: National Geographic Society, 
1992, plate 116, and other sources; Page 634: NASA; Page 635: Encrenaz & Bibring. The Solar 
System (2nd ed.). New York: Springer, p. 5; Page 647: Gregory D. Foley.

Page 649: CREATISTA/Shutterstock; Page 657: FoodCollection/SuperStock; Page 672: PMC/
Photodisc/Getty Images; Page 681: U.S. Census Bureau; Page 682: U.S. Census Bureau.

Page 534: J. Bernholc et al., NCSU/Science Source; Page 536: John Wang/Getty Images;  
Page 539: Texas Instruments; Page 539: U.S. Census Bureau; Page 540: Texas Instruments;  
Page 542: U.S. Census Bureau; Page 543: U.S. Census Bureau; Page 546: ESB Professional/
Shutterstock; Page 546: The College Board; World Almanac and Book of Facts2015/2017;  
Page 556: AAA Road Atlas; Page 571: Paul Fleet/Fotolia; Page 571: U.S. Census Bureau; Page 579: 
Jess Alford/Photodisc/Getty Images; Page 583: U.S. Census Bureau; Page 583: U.S. Department of 
Health and Human Services; Page 584: Yalcinsonat/Fotolia; Page 585: U.S. Census Bureau.

Page 692: Belish/Shutterstock; Page 697: lightwise/123RF; Page 700: C Squared Studios/Getty 
Images; Page 702: data from “HIV Surveillance Report,” Centers for Disease Control;  
Page 707: Health United States, Centers for Disease Control and Prevention, 2115; Page 708: 
data from “Sports Culture Among Undergraduates: A Study of Student Athletes and Students at 
the University of Michigan,” Mpublishing, University of Michigan, 2007; Page 709: U.S.  
Census Bureau, 2011; Page 710: State Smart, National Priorities Project, 2014; Page 711: 
data from Baseball-reference.com; Page 711: kornienko/123RF; Page 714: data from Federal 
Reserve Bank; Page 715: data from Federal Reserve Bank; Page 716: data from “American and 
Super Bowl Phenomenon,” Gallup News Service 2007; Page 716: data from Baseball-reference.
com; Page 716: data from The Baseball Encyclopedia, 7th edition, 1988; Page 716: data from 
“Titanic Passenger Survival Rates,” http://www.dummies.com; Page 717: data from PGA/LPGA 
Media Guide, 2016; Page 717: data from Population Reference Bureau, 2016; Page 717: data 
from The Baseball Encyclopedia, 7th edition, 1988; Page 718: Eric Simard/123RF; Page 718: 
U.S. Census Bureau; Page 719: data from www.climatemps.com, 2015; Page 729: data from 
Worldatlas.com, 2005; Page 729: data from www.go-astronomy.com, 2013; Page 730: data 
from Consumer Reports, August 2013; Page 730: data from Consumer Reports, March 2017; 
Page 730: www.nba.com; Page 730: www.nfl.com; Page 731: data from The College Board; 
Page 732: data from World Health Organization; Page 732: maxpetrov/Shutterstock; Page 734: 
Jonathan D. Wilson/Shutterstock; Page 735: Michael Brown/123RF; Page 739: Eric Isselée/
Fotolia; Page 741: Radius Images/Alamy Stock Photo; Page 750: Brian Lasenby/Shutterstock; 
Page 753: pixelbliss/123RF; Page 754: Milos Bekic/Shutterstock; Page 757: kasezo/123RF; 
Page 764: data from Personal Collection; Page 764: data from www.quantcast.com/top-sites; 
Page 764: espn.com; Page 765: data from National Association of Realtors.

Page 769: Vaclav Volrab/123RF; Page 778: CLEO Photo/Alamy Stock Photo; Page 779: Sub-
botina Anna/Fotolia; Page 802: Hans Dieter Seufert/culture-images GmbH/Alamy Stock Photo; 
Page 806: Population.us/county/nv/clark-county; Page 810: data from The World Almanac and 
Book of Facts, 2017, page 614; Page 810: Economic Research Service, U.S. Dept. of Agriculture.

Monana/Shutterstock

Z03_DEMA8962_10_GE_CRED.indd   946 11/06/2022   00:02

https://www.gps-coordinates.net
https://www.gps-coordinates.net
http://www.dummies.com
http://www.climatemps.com
http://www.go-astronomy.com
http://www.nba.com
http://www.nfl.com
http://www.quantcast.com/top-sites
http://Baseball-reference.com
http://Baseball-reference.com


947

Applications Index

Chemistry and Physical 
Sciences
Accelerating automobile, 787(46)
Acid mixtures, 249–250, 252(31), 268(97)
Airplane speed, 543(52)
Angular speed, 340
Archimedes’ Principle, 226–227(69–70)
Atmospheric pressure, 285, 290(41–42)
Boyle’s Law, 81(38), 202(51), 246(75)
Braking force, 532(77)
Carbon dating, 281(58), 290(40)
Carbon dioxide in atmosphere, 170(50)
Charles’s Law, 202(52)
Chemical acidity (pH), 313–314, 319(47–48)
Combining forces, 532(76)
Diamond refraction, 202(53)
Earthquake intensity, 299–300(61), 308(52), 

313, 319(45–46), 334(81)
Ebb and flow of tides, 373, 375(75)
Escape velocity, 617(62)
Flight engineering, 531–532(74–75)
Galileo’s gravity experiment, 89
Global temperature, 267(93)
Half-life, 672(38)
Latitude and longitude, 344–345(63–70)
Length of days, 394(88)
Light absorption, 299(60), 334(89)
Light intensity, 246(76), 308(53–54)
Melting snowball, 137(32)
Mixing solutions, 168(31), 568, 571(94)
Modeling a musical note, 410
Modeling temperature, 413(33), 418(105)
Newton’s Law of Cooling, 170(51), 314–316, 

319–320(49–52), 334(95–96)
Oscillating spring, 391–392, 393(71), 413(29)
Physics experiment, 98(23)
Potential energy, 321(70)
Radioactive decay, 284–285, 289(33–34), 

334(79–80)
Reflective property of a hyperbola, 614
Reflective property of a parabola, 593
Reflective property of an ellipse, 605
Refracted light, 365(55–56)
Resistors, 253(39), 263(62), 268(96)
Rowing speed, 543(51)
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and Other Mathematics
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Equilibrium price, 540
Exports to Canada, 42(34), 62(54)
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188(53)
Great Recession, 166, 714–715
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Questionable product claims, 651
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Salary package, 543(58)
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Starbucks Coffee, 174
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Total revenue, 188–189(55), 189(59)
Train tickets, 571(89)
U.S. motor vehicle production, 42(29)
Veal consumption, 810(39)
World motor vehicle production, 42(30)

Note: Numbers in parentheses refer to exercises 
on the pages indicated.
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Sciences
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Bacterial growth, 281(57), 284, 290(39)
Bear population, 253(34)
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Blood donors, 697, 704(47), 744(22), 745(40), 

760(41)
Blood pressure, 375(76)
Blood type, 704(47)
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Circulation of blood, 213(65)
Comparing age and weight, 188(49), 190(67)
Deer population, 268(95), 290(46), 334(94)
Drug absorption, 333(73)
Focusing a lithotripter, 605, 608(59–60)
Genealogy, 281(67)
Handedness, 704(45), 744(20)
Height data, 768
Heights of American adults, 741, 745(33)
HIV testing, 704(38)
Humidity, 175, 243
Life expectancy, 188(50), 253(43), 717(11–16), 

732(57–58)
Medicare expenditures, 583(70)
Penicillin use, 320(53–54)
Predatory-prey cycles, 273
Rabbit population, 334(77), 673(49)
Rain forest growth, 672(37)
Sleep cycles, 414–415(44)
Spread of flu, 290(45), 333(76)
Testing positive for HIV, 702
Weight and pulse rate of selected mammals, 

202(55), 309(65)
Weight loss, 414(36)
Weights of loon chicks, 727, 728, 750

Business, Economics, Industry, 
and Labor
5G Base Stations, 168(29)
Agriculture exports, 42(32)
Agriculture surplus, 42(33)
Americans’ income, 57–58, 61(50)
Americans’ spending, 61(51)
Analyzing an advertised claim, 656
Analyzing profit, 213(64)
Analyzing the stock market, 100–101(61)
Annual housing cost, 263(64)
Beverage business, 189(59)
Breaking even, 252(33), 267(94)
Buying a new car, 658(38)
Cash-flow planning, 81(39)
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Company wages, 262(56)
Comparing prices, 546
Costly doll making, 188(52)
Defective baseball bats, 765(45–47)
Defective calculators, 703(34)
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Light intensity, 202(57), 246(76)
Motion detector distance, 226(62), 234(51), 419
Tuning fork, 413(30), 414(43), 415(51)

Education
ACT scores, 731(44)
Advanced Placement Calculus exam scores, 

731(27–28)
Grade point averages, 118–119(78)
Graduate requirement, 704(41)
Graduate school survey, 704(39)
Indiana Jones and the final exam, 657(36), 

704(40)
Pell Grants, 267(92)
SAT Math scores, 83(33)
SAT scores, 546, 731(43)
Scaling grades, 147(47)
Spending, 34(53–56)
Student loan debt, 83(11)

Finance and Investments
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330(58–59), 334(87–88)
Annuities, 326–327, 329(50–51), 331(72–73), 

334(83–84), 335(98), 681(37–38), 
 690(63–64)

Business loans, 584(77)
Car loan, 328, 329(52–53)
Cellular phone subscribers, 101(63)
Comparing salaries, 718(33, 35), 729(7)
Comparing simple and compound interest, 

330(61), 335(99)
Compound interest, 322–325, 329(21–30), 

333(63–65)
Consumer price index, 165–166, 168(24)
Credit card debt, 714–715, 731(35)
Currency conversion, 146(33)
Employee benefits, 169(48)
Future value, 333(66), 674
House mortgage, 329–330(54–57), 334(85–86)
International finance, 157(65)
Investment planning, 61(46)
Investment returns, 168(38), 169(40)
Investments, 571(91–93), 584(76)
IRA account, 329(48–49)
Loan payoff (spreadsheet), 330–331(69–70)
Major League Baseball salaries, 99(25–28)
Present value, 333(67–68)
Savings account, 680–681(35–36)
Simple interest, 322, 330(62), 335(99)
Stock market volatility, 731(46)
Student loan debt, 715, 731(36)

Motion
Air conditioning belt, 344(55)
Automobile design, 343(44)
Average speed, 779(33)
Baseball throwing machine, 189(62)
Bicycle racing, 343(45), 345(74)
Bouncing ball, 681(39)
Bouncing block, 376(77)

Pool table, 354(76)
Reflecting graphs with matrices, 553
Rotating with matrices, 553, 557(51), 583(69)
Scaling triangles with matrices, 554
Simulate drawing cards, 760(42)
Simulate rolling two six-sided dice, 760(40)
Symmetric matrices, 556(45)
Taylor polynomials, 366(79–80)
Telephone area codes, 649, 656
Television coverage, 384(63)
Testing effects of music, 760(31)
Testing golf balls, 759(29)
Testing inequalities on a calculator, 51(69)
Testing soft drinks, 760(30)
Time-rate problem, 253(42)
Tire sizing, 343(46)
Tower of Hanoi, 683–684
Transformations and matrices, 557(57–61)
Verifying triangles, 40

Construction and Engineering
Architectural design, 412(23)
Architectural engineering, 227(72), 267(90)
Box with maximum volume, 159–160, 168(33)
Box with no top, 82(46)
Building construction, 556–557(50)
Building specifications, 61(49)
Cassegrain telescope, 618(70)
Civil engineering, 411(15), 412(21)
Designing a box, 210–211, 260, 262(59)
Designing a bridge arch, 596(64)
Designing a flashlight mirror, 595(59)
Designing a satellite dish, 595(60)
Designing a suspension bridge, 595(63)
Dimensions of a Norman window, 71(61)
Draining a cylindrical tank, 173(62–64)
Elliptical billiard table, 647(77)
Garden design, 353(66)
Grade of a highway, 61(48), 415(49)
Gun location, 617(58)
Height of a ladder, 71(60)
Industrial design, 253(37), 268(98)
Landscape design, 189(57)
Lighthouse coverage, 384(45), 402(54)
LORAN system, 615, 617(57)
Packaging a satellite dish, 160–161, 168(35)
Parabolic headlights, 595(62), 647(76)
Parabolic microphone, 593–594, 595(61), 

647(75)
Patio construction, 672(40)
Residential construction, 168(34)
Solar collector panel, 353(63)
Storage container, 267(91)
Swimming pool drainage, 253(41)
Volume of a box, 214(66–68), 267(89)

Data Collection (CBR™, CBL™)
Analyzing a bouncing ball, 335
Ellipses as models of pendulum motion, 533, 

608(73–74), 648
Free fall with a ball, 185–186, 199–200, 803
Free fall with a water balloon, 780(55)
Height of a bouncing ball, 268

Approximation and error analysis, 366(77)
Area of a sector, 345(71–72)
Bounded functions, 118(77)
Calculating a viewing angle, 401, 402(53)
Characteristic polynomial, 558(72–73)
Computer graphics, 534
Computer imaging, 137(34)
Computing definite integrals from data, 804–805
Conical tank of water, 168(37)
Connecting algebra and functions, 543(55–56)
Connecting algebra and geometry, 63(69–71), 

81(37), 84(83), 100(50–52), 192(86–88), 
262(57)

Connecting geometry and sequences, 673(51)
Constructing a cone, 262(60)
Curve fitting, 570(83–84), 582(45–46)
Designing a juice can, 250–251, 260–261, 262(61)
Designing a running track, 340, 344(52)
Designing a swimming pool, 253(38)
Designing an experiment, 753
Designing rectangles, 253(40)
Diagonals of a parallelogram, 40–41
Diagonals of a regular polygon, 165, 658(52)
Dividing a line segment into thirds, 44(64)
Eigenvalues of a matrix, 572(108–110)
Epicycloid, 532(83)
Expected value, 705–706(61–62)
Expressing distance, 40
Finding a maximum area, 188(54)
Finding a minimum perimeter, 250
Finding a random sample, 760(33)
Finding area, 418(102)
Finding derivatives from data, 779(34), 803–804, 

805–806(23)
Finding dimensions of a painting, 189(56)
Finding dimensions of a rectangular cornfield, 

543(50)
Finding dimensions of a rectangular garden, 536, 

543(49)
Finding distance, 353(65), 410(3),  

411(4–6), 412(19–20), 418(98)
Finding distance from a velocity, 806(27–28), 

807(47)
Finding distance traveled as area, 781, 783, 

787(49), 802
Finding height, 71(60), 351, 353(61–62), 

353(64), 406–407, 410(1–2), 411(7–12), 
412(22), 518(95–96)

Fitting a parabola to three points, 567
Harmonic series, 682(52)
Indirect measurements, 406
Inscribing a cylinder inside a sphere, 174(67)
Inscribing a rectangle under a parabola, 174(68)
Leaking storage bin, 161–162
Limits and area of a circle, 799(89)
Lottery, 655, 692, 705–706(61), 706(62), 743, 

744(16)
Minimizing perimeter, 253(35)
Mirrors, 354(75)
Modeling a rumor, 288
Normal distribution, 321(67)
Observational studies, 751, 762(60)
Page design, 253(36)
Permuting letters, 657(7–10)
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Population and matrices, 584(72)
Population decrease, 333(74–75)
Population density, 681–682(47)
Population growth, 289(29–32)
Residents 65 or older, 709–710
San Antonio, 279, 542(46)
San Diego, CA, 279, 542(46)
San Francisco, 539–540
San Jose, CA, 283, 539–540
Santiago, Chile, 290(43)
Size of continents, 729(6)
South Korea, 290(50)
Sri Lanka, 321(66)
Temperatures in Beijing, China, 719(47), 731(31–32)
The Philippines, 333(72)
U.S. population, 263(63), 286, 287, 290(47), 

291(57)
World population, 62(53)

Sports
Aaron, Hank, home runs, 717(24), 718(30)
Arena seating, 672(39)
Baseball batting averages, 765(37)
Basketball attendance, 584(74)
Basketball free throws, 737–738, 756
Basketball lineups, 659(58)
Bonds, Barry, home runs, 711–712, 730(19, 21)
Horse racing, 763(14)
Investigating an athletic program, 746(50)
LPGA golf, 717–718(25–28)
Manning, Peyton, passing yardage, 764(17)
Mantle, Mickey, home runs, 717(20, 22),  

730(20, 22)

Damped harmonic motion, 365(57)
Ferris wheel motion, 375(73), 413(31–32)
Field goal kicking, 532(86)
Fireworks planning, 189(63)
Foucault Pendulum, 344(54)
Free-fall motion, 98(22), 185–186, 189(61), 

203(68), 780(55–56)
Hang time, 532(87)
Harmonic motion, 407–409
Height of an arrow, 532(79)
Hitting a baseball, 532(88)
Hot-air balloon, 384(46), 403(55)
Landscape engineering, 189(64)
Launching a rock, 266(88)
Mechanical design, 412(27–28)
Mechanical engineering, 344(53)
Motion of a buoy, 375(72)
Navigation, 61(47), 84(82), 343(43), 345(73), 407, 

411(13), 412(17–18), 412(25–26), 418(99)
Path of a baseball, 147(49)
Pendulum, 365(58), 418(103), 419
Projectile motion, 80, 81(33–34), 84(81)
Riding on a Ferris Wheel, 532(80–82)
Rock toss, 778(15), 787(47)
Rocket launch, 778(16), 787(48)
Roller coaster, 418(106)
Rotating tire, 162, 168(39)
Ship’s propeller, 344(56)
Stopping distance, 213(63)
Throwing a ball at a Ferris Wheel, 533(89)
Throwing a baseball, 532(84–85)
Tool design, 343(47)
Travel time, 168(25), 805(21–22)
Tsunami wave, 375(74)
Turntable, 376(78)
Velocity in 3D space, 638, 644(33–34)
Windmill, 769, 770, 777
Yard darts, 533(90)

Planets and Satellites
Analyzing a comet’s orbit, 603–604
Analyzing a planetary orbit, 632, 633
Analyzing the Earth’s orbit, 604
Dancing planets, 607(52)
Elliptical orbits, 605, 647(79)
Halley’s Comet, 608(58), 634(41)
Icarus, 647(80)
Kepler’s Third Law, 305, 306
Lunar Module, 635(43)
Mars satellite, 635(44)
Mercury, 607(54)
Modeling planetary data, 198–199, 203(67)
Orbit periods, 305
Planetary orbits, 635(51)
Planetary satellites, 729(5)
Rogue comet, 617(55–56)
Saturn, 607(55)
Sungrazers, 607(57)
Television coverage, 415(50)
The Moon’s orbit, 607(53)
Uranus, 634(42)
Venus and Mars, 607(56)
Weather satellite, 647(78)
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Index
Area

limits and, 781–788
motion and, 781–788
problem, 781–788
total, 808
of triangle, 461–462

Argand, Jean-Robert (1768–1822), 519
Arguments, 520
Arithmetic sequence, 668–670

finite, 675
sum of, 674–677

“Ask” feature of graphing calculator, 94
Association

between categorical variables, 708
linear, 179–181
negative linear, 179, 180
positive linear, 179, 180
between quantities, 179

Associative property, 30
of addition, 678
for complex numbers, 73
of matrix, 552

Astronomical unit (AU), 305
Asymptote

end behavior, 239
in function, 114–115
horizontal, 114–115, 126
of hyperbola, 610
of rational function, 238–240
slant (oblique), 239
vertical, 114–115, 239

Augmented matrix, 561
Average rate of change, 178–179
Average velocity, 770, 773
Axis

of conic section, 628
conjugate, 610
coordinate, 637
of ellipse, 598, 599, 600
of hyperbola, 609–611
imaginary, 519
major, 599
minor, 599
of parabola, 589, 591
polar, 503
real, 519
rotation formulas, 620–624
semimajor, 599, 601, 633
semiminor, 599, 601
of symmetry, 182
transverse, 610
x-axis, 36, 113, 143, 150
y-axis, 36, 112, 143, 150

B
Back substitution, 559
Back-to-back stemplot, 711
Bar chart, 708
Barycenter, 614
Base

change of, 303–304
convenience sample, 752
of exponential function, 270, 275

Angle
acute, 346–354
calculator conversions, degree-minute-second 

(DMS), 338
central, 337
complementary, 348
coterminal, 355–356
degrees of, 337–339
of depression, 405
directed, 503
direction, 476
of elevation, 405
initial side of, 355
measures of, 337–345, 355
negative, 355
nonquadrantal, 358
positive, 355
quadrantal, 359–360
radians of, 337–339
reference, 358
of rotation, 623
in semicircles, 486
special, 479
standard position of, 355
terminal side of, 355
trigonometric function of any, 355–360
between vector, 484–486
vertex of, 355

Angle of incidence, 354
Angle of reflection, 354
Angular measure, 337
Angular motion, 340–341
Angular speed, 340
Annual percentage rate (APR), 328
Annual percentage yield (APY), 325
Annuities

future value of, 326
ordinary, 326
present value of, 327

Aphelion, 603
Apogee, 429, 607, 647
Apollonius of Perga (c. 250–175 bce), 587
Appel, Kenneth, 686
Approximate

vs. exact answers, 210
Approximately equal, 27
Approximate solution(s)

agreement about, 67
inequalities, 79–80
with table feature, 67–68

APR. See Annual percentage rate
APY. See Annual percentage yield
Arbitrarily close, 772
Arc, circular, 339–340
Arccosine, 397
Archimedes of Syracuse (287–212 bce), 

783–784, 789, 794
Arc length formula, 339–340

converting nautical, statute and land miles, 341
degree measure, 340
radian measure, 339

Arcsine, 395
composing trigonometric functions, 400–401

A
Absolute extremum(a), 111–112
Absolute maximum(a), 112
Absolute minimum(a), 112
Absolute value

of complex numbers, 520
compositions, 151–152
function, 122, 126
graphing compositions, 151–152
inequality, solving, 259
inequality involving, 77–78
properties of, 37
of real numbers, 36–37
of velocity, speed, 200

Acceleration due to gravity, 185
Acute angles, 346–354

standard position, 346
Addition

associative property of, 678
of complex numbers, 72
function, 130
matrix, 545–547
of polynomial, 816–817
principle of probability, 699
property of equality, 45
property of inequality, 47
of vector, 474, 641

Additive identity, 73
of algebraic expression, 30

Additive inverse, 73
of algebraic expression, 30
of matrix, 547

Agreement About Approximate Solutions, 67
Algebra

associative property, 30
basic properties of, 29–30
commutative property, 30
to describe the graph of a quadratic function, 

182–183
distributive property, 30
formulas from, 841
Fundamental Theorem of, 228
identity property, 30
inverse property, 30

Algebraically solving equations, 91
Algebraic expression, 29. See also Rational 

expression; Real number
domain of, 823
multiplicative inverse of, 30
trigonometric function and, 386–388

Algebraic function, 270
Algebraic models, 26, 86, 87–88

designing, 88
Algebraic relations in function, 134
Algorithms

common, 312
division, 216–217

Ambiguous case (SSA)
solving triangle, 452–454

Amplitude, 369
Analytic geometry, 587

formulas from, 844
Anchor, 683–684
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nth root of, 524
operations with, 72–74
polar form of, 520–521
power of, 522–524
root of, 524–526
solution(s), 228–232
zero of function, 228–232

Complex plane, 519–520
Complex root, 229
Complex solution, 229
Complex zero, 228–235
Component form of two-dimensional vector, 472
Composite trigonometric function, 386–394
Compound interest, 322

continuous, 324–325
per year, 322, 323–324

Compound rational expression, 825–826
Compound statement, 830–832
Conclusion, 834
Conditional probability, 700–702

formula, 701
Conditionals, 834
Cone

degenerate, 587
nappe of, 587
right circular, 587

Confounding variable, 752
Conic section, 587–588

analyzing, 631–632
degenerate, 587
eccentricity of, 628
focal axis of, 628
focus-directrix of, 628
geometric section of, 628
orbits, 632–633
polar equations of, 628–636
vertex of, 628

Conjugate axis of hyperbola, 610
Conjugate hyperbola, 618
Conjunction, 830
Constant, 29

of proportion, 193
of variation, 193

Constant function, 108, 109, 177, 179
of polynomial functions, 177

Constant of proportion, 193
Constant percentage rate, 283–284
Constant rate of change, 178
Constant term, 179
Constant of variation, 193
Constant velocity, 781
Constrained exponential growth, 276
Constraint, 576
Continuity of function, 106–108
Continuous, 650
Continuous function, 123

limits of, 792
Continuously compounded interest, 324–325
Continuum, 650
Control, 753
Convenience sample, 752
Convergence, 667

of geometric sequences, 679
of series, 678

Center, 39
of ellipse, 599, 601
of hyperbola, 609
of a sphere, 640

Central angle, 337
Chain Rule, 839
Change-of-base formula, 303
Characteristic polynomial, 558
Chord, 590

of ellipse, 599
of hyperbola, 610

Chu Shih-Cheih, 661
Cinch, 311. See also Hyperbolic sine function
Circle graph, 708
Circles, 598–608

equations of, 39–41
history of, Sumerians, 337
16-point unit, 363
standard form equation of, 39–40
unit, 361, 362

Circular arc length, 339–340
Circular function, 355–366

defined, 362
Closed curve, 588
Closed interval, 28
Coefficient

binomial, 660
correlation, 165
of determination, 165
leading, 176, 816
in polynomial function, 176, 204
real numbers, 231–232

Coefficient matrix, 561
Cofactor, 550
Cofunction identity, 423
Column subscript of matrix, 545
Combinations, 654–655
Combinatorics, basic, 650–659
Common algorithm, 312
Common difference, 668
Common logarithms, 293–294
Common ratios, 669
Commutative property, 30

of complex numbers, 73
of matrix, 552

Complement of a set, 830
Complementary angle, 348
Completing the square, 65–66
Complex conjugates, 74

zeros, 229–231
Complex fraction, 825
Complex function, 519
Complex number, 72–76

absolute value of, 520
associative property for, 73
commutative property of, 73
distributive property for, 73
division of, 74, 521–522
equal, 72
modulus of, 520
multiplication of, 73, 521–522
multiplicative identity for, 74
multiplicative inverse of, 74
nonreal, 228

exponential notation, 31
of logarithmic function, 292
natural, 274–276

Base 10—common logarithms, 293–294
Basic combinatorics, 650–659
Basic wave, 367–368
Bearing, 338
Bel

original unit for sound intensity  
level, 298

used for order of magnitude, 312
Bell, Alexander Graham (1847–1922), 298
Bernoulli, Jakob (1654–1705), 472
Bias, 751–752

response, 752
undercoverage, 752
voluntary response, 752

Biconditional statement, 835–836
Bimodal distribution, 713
Binomial, 816

coefficients, 660
normal approximation, 741–743
powers of, 660–661
theorem, 662–663

Binomial probability distribution, 737
expected value for, 738
standard deviation for, 739

Binomial probability model, 736–739
Blackwell, David (1919–2010), 694
Blind experiment, 753
Blocking, 753
Boundary, 573
Bounded function

above, 110, 111
below, 110, 111
on intervals, 111
not above, 110
not below, 110

Bounded interval, 28
Box-and-whisker plot, 722
Boxplot, 722–724
Boyle’s Law, 193
Branches of hyperbola, 609
Briggs, John, 302

C
Calculator evaluation

of cotangent function, 379
of definite integrals, 801–802
degree-minute-second function, 338
of derivatives, 800–801
of dot products, 484
errors in, 349–350
of permutations, 653
of trigonometric function, 348–349

Cartesian coordinate, 36, 637
Cartesian plane, 36

quadrants of, 356
standard position, 355

Cassegrain telescope, 614, 618
Categorical data, 707–709
Categorical variable, 707
Causation, 180
Census, 751
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Discrete, 650
Discriminant, 70

of quadratic equation, 74–75
test, 624–625

Disjunction, 830
Disproving non-identity, 433–434
Distance

from changing velocity, 782
from constant velocity, 781
polar coordinates in finding, 507

Distance conversion, 341
Distance formula, 37–38

three-dimensional Cartesian coordinate system, 
638–639

Distinguishable permutations, 653
Distribution, 707

bimodal, 713
binomial probability, 737, 738, 739
center of, 720
comparing, 720–721
describing, 720–721
frequency, 712
Normal, 727–728
probability, 695
shape of, 713, 720
skewed, 713
spread of, 720
symmetric, 713
unimodal, 713

Distributive property, 30
for complex numbers, 73
of matrix, 552

Divergence
of infinite sequences, 667
of series, 678

Dividend, 216
Division, 30

algorithm, 216–217
of complex numbers, 74, 521–522
long, 216–217
synthetic, 218–220

Divisor, 216
Domain

of function, 102–106
implied, 104
of a rational function, 236–237
relevant, 104
of validity of identities, 421

Dot product
on calculators, 484
of vectors, 483–490, 641

Double-angle identity, 445
Double-blind experiment, 754
Double inequality, 28, 49

E
Eccentricity

of conic section, 628
of ellipse, 603, 633
focus-directrix and, 628
of hyperbola, 613–614

Einstein, Albert, 59
Elements, 26

of matrices, 545

Decomposition, partial fraction, 566–567
Decreasing function, 108–110
Deduction, 686
Deductive reasoning, 96
de Fermat, Pierre (1601–1665), 587
Definite integral, 784–785, 801–802

data computation of, 804–805
notation, 784

Degenerate conic sections, 587
Degenerate parabola, 588
Degree-radian conversion, 339
Degrees of angles, 337–339

arc length formula, degree measure, 340
Demand curve, 540
De Moivre, Abraham (1667–1754), 523
De Moivre’s Theorem, 519–529
Denominator

least common, 825
rationalizing, 813

Dependent variable, 102
Depreciation, linear function modeling, 178
Depression, angle of, 405

solving algebraically, 405
Derivative, 774–777

on calculators, 800–801
data computation of, 802–804
of function, 775
numerical, 800–808
at points, 774

Descartes, Rene (1596–1650), 72, 587, 770
Descartes’ Rule of Signs, 227
Descriptive statistics, 720
Determinant

minor, 550
of square matrix, 550–552

Determination, coefficient of, 165
Diagonal

main, of matrix, 549
Diameter, 341
Difference

common, 668
of complex numbers, 72
cosine function of, 438–439
of functions, 130
sine function of, 440–441
of sinusoids, 388–390
tangent function of, 441

Difference identity, 438–444
Difference rule, 791
Differentiability, 774
Directed angle, 503
Directed line segment, 472
Direction, 474
Direction angle, 476–477
Direction vector, 476, 642
Direct reasoning, 838
Directrix, 588

of parabola, 590, 591
Direct variation, 193
Discontinuity

infinite, 107
jump, 107
points of, 106
removable, 106–107

Conversion factor, 162
Coordinate axis, 637
Coordinate of point, 27, 36, 503, 637
Coordinate plane

determining, 637
distance formula, 38
midpoint formulas, 39

Corner points, 576
Correlation, 179–180, 748–750
Correlation coefficient, 165

causation and, 180
properties of, 180

Cosecant curves
parabolas, 381

Cosecant function, 357
graphs of, 381
trigonometric, 346

Cosine function, 122, 357
of difference, 438–439
graphs of, 367–377
hyperbolic, 291
inverse, 397–399
of sums, 439
trigonometric, 346

Cotangent function, 357
on calculator, 379
graphs of, 379
trigonometric, 346

Coterminal angles, 355–356
finding, 356

Counting
combinations, 654
importance of, 650–651
multiplication principle of, 651–652
numbers, 26
permutation, 653
subsets of n-sets, 655–656

Course, 338
Cross-product term, 483, 619, 645

elimination of, 623, 631
Cube root, 811

function, 194
Cubic inequality

solving, 79–80
Cubic regression, 164
Cubing function, 121, 195
Curves, cosecant, 381

D
d’Alembert, Jean le Rond (1717–1783), 789
Damped oscillation, 390–392
Damping, 390
Damping factor, 390
Data, 86

categorical, 707–709
constant, 108
definite integrals computed with, 804–805
derivatives computed with, 802–804
function from, 162–165
quantitative, 709–712
re-expressing, 305–306

Decay factor, 272
Decibel, 298, 312
Decomposing function, 133–134
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Factoring, 65
by grouping, 820–821
polynomials, 817–819
with real number coefficients, 231–232
trinomials, 819–820

Factor Theorem
polynomial function and, 218
proof of, 218

Feasible point, 576
Feasible region, 576
Fermat, Pierre de (1601–1665), 694
Fibonacci. See Leonardo of Pisa
Fibonacci numbers, 671
Fibonacci sequence, 671
Finance, mathematics of, 322–331
Finite sequence, 666, 675–676
First-degree equation in three variables, 640
First quadrant trigonometry, 356
First quartile, 721
Five-number summary, 721–722
Focal axis

of conic section, 628
of ellipse, 598, 599, 601
of hyperbola, 609, 611
of parabola, 589

Focal chord, 597
Focal length, 590, 591
Focal width

of hyperbola, 618
of parabola, 590, 591

Focus, 588
of ellipse, 598, 601
of hyperbola, 609, 610
of parabola, 591

Focus-directrix
of conic section, 628
eccentricity and, 628

Formulas
from algebra, 841
from analytic geometry, 844
from geometry, 842
from trigonometry, 842–843

Foucault, Jean Bernard Leon (1819–1868), 59
Four-Color Map Theorem, 686
Fraction

complex, 825
equal, 824
operation with, 824–825
partial, 566–567
reduced form of, 823

Fractional expression, 823
Free-fall motion, vertical, 185
Frequency

distribution, 712
of simple harmonic motion, 408
of sinusoids, 369, 370
tables, 712

Function. See also Graph
absolute extremum(a) of, 111–112
absolute value, 122, 126
addition, 130
agreement, 104
algebraic, 270, 386–388
algebraic combination of, 130–131

Equivalent expression, 824
Equivalent inequality, 48
Equivalent systems of linear equations,  

559
Eratosthenes of Cyrene (276–194 bce), 337
Euler, Leonhard (1707–1783), 102, 121, 275
Even function, 112
Even multiplicity, 209
Events

independent, 697, 701
mutually exclusive, 699
probability of, 694

Exact answers, 210
Existence theorems, 228
Existential quantifiers, 829
Expanded form, 30
Expected value, 705–706

for binomial probability  
distribution, 738

of random variable, 734
Experimental design, 752–754
Explanatory variable, 650
Exponent

integer, 31–33
notation, 386
properties of, 31, 301
rational, 813–814

Exponential decay function, 272
Exponential decay models, 284–285
Exponential equation

one-to-one properties of, 310
solving, 310–311

Exponential form, 292
Exponential function, 121. See also Logarithmic 

function
base e, 275
base of, 270
constant percentage rate and, 283–284
graphs, 270–274
identifying, 270–271
inverses of, 292–293
logarithmic function and, 295
natural, 275
natural base e in, 274–276
transforming, 276

Exponential growth function, 272
Exponential growth model, 284–285
Exponential modeling, 283–287
Exponential notation, 31
Exponential population model, 278–279
Exponential regression, 164, 316, 317
Extended Principle of Mathematical  

Induction, 688
Extracting square roots, 65, 67
Extraneous solutions, 247–249
Extremum(a), 111–112

F
Factor

common, 220
in statistics, 752

Factored form, 30
Factorial identities, 563, 663
Factorials, 652

Elevation, angle of, 405
Elgenvalues, 572
Ellipse, 598–608

center of, 599, 601
chord of, 599
eccentricity of, 603, 633
focal axis of, 598, 599, 601
focus of, 598, 601
geometry of, 598–601
major axis of, 599
minor axis of, 599
orbits of, 603–604
Pythagorean relation of, 599, 600
reflective property of, 605–606
semimajor axis of, 599, 601, 633
semiminor axis of, 599, 601
sketching, 600
standard equation of, 601
standard form of, 599
structure of, 598
translations, 601–603
vertex of, 598, 599, 601

Ellipsoid of revolution, 605
End behavior

asymptote, 239, 241
of function, 115–116
leading term test for, 207
of polynomial function, 206–208
zooming on, 116

Endpoint, 28
Entry of matrix, 545
Enumerative induction, 686
Equal

approximately, 27
complex numbers, 72
fractions, 825
matrices, 545
vectors, 641

Equality, properties of, 45
Equally likely outcomes, 694
Equation, 45. See also Linear first degree 

equation; Polar equation; Solving 
equations; Solving systems of equations

conversion, 505–506
equivalent, 45–46
exponential, 310–311
logarithmic, 311–312
parametric, 491–502
polynomial, 65
quadratic, 65–67, 74–75
quadratic, in two variables, 587
rational, 247–248
real zeros of, 68
second-degree, in two variables, 587
solving in one variable, 255–264
solving trigonometric, 425–427, 447–448
of a sphere, 640
trigonometric, 424–427, 447–448

Equilateral triangle, 347–348
Equilibrium point, 540
Equilibrium price, 540
Equivalent, 45
Equivalent arrows, 473
Equivalent equation, 46
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of exponential functions, 270–274
of a function, 103
functions from, 160–161
of Limaçon curves, 514
line, 714
of linear functions, 177–178
of logarithmic functions, 295–297
of monomial functions, 194–196
not bounded above, 110
not bounded below, 110
picture, 708
of polar equations, 510–518
of polynomial functions, 204–206
of power functions, 196–197
quadratic functions, 182–184
rational function, analyzing, 240–242
of rational functions, 236–246
of rose curves, 513
of secant function, 380
shading, 575
from sign charts, 256
of sine function, 367–377
of sinusoids, 371
for solving systems of equations, 537
of tangent function, 378–379

Grapher, 55, 575
failure, 94–96
hidden behavior, 94–96
linear regression equation, display, 181
for local extremum(a), 112
motion simulated with, 494–497
polar coordinate conversion with, 505
sequences and, 670–671
table feature, 67
TRACE feature, 64

Graphically solving equation, 64–65, 67–68, 91
Graphical model, 88–90
Graphical statistics, 707–719
Graphical transformation, 148–158, 186
Graphing utility. See Grapher
Gravity, acceleration due to, 185
Greatest integer function, 122, 128, 852
Growth, limits to, 276
Growth factor, 272
Guessing penalty, 738
Guidelines for Assessment and Instruction 

in Mathematical Modeling Education 
(GAIMME), 92

Guidelines for Assessment and Instruction in 
Statistics Education (GAISE), 92

Guiding rectangle, 600
Guthrie, Francis, 686

H
Haken, Wolfgang, 686
Half-angle identity, 446–447
Half-life, 284
Half-plane, 573
Hand sketching, 576
Harmony of the World, the (Kepler), 198
Head minus tail (HMT) rule, 473
Height, 185

of projectile, finding, 80
Heine, Heinrich Eduard (1821–1881), 789

odd, 113
one-to-one, 142
periodic, 362–363
piecewise-defined, 125
polynomial, 176–177, 204–215, 232
power, 193–203
product of, 130
properties of, 102–119
quadratic, 177–192, 232
quotient of, 130
range, 102–106
rational, 236–246
reciprocal, 121, 237–238
relations, 134–136
secant, 346, 357, 380
sine, 121, 346, 357, 367–377, 395–396, 

440–441
square root, 121, 144, 198
squaring, 120
step, 122
sum of, 130
symmetry of, 112–114
tangent, 346, 357, 378–379, 441
transcendental, 270
trigonometric, 346–366, 381,  

386–394
of two variables, 641
upper bound of, 111
from verbal descriptions, 161–162
wrapping, 361
zero of, 91, 177, 228–232

Fundamental connection, 92
Fundamental identity, 421–429
Fundamental polynomial connection, 229
Fundamental Theorem of Algebra, 96, 228
Future value of annuity, 326

predicting, 327

G
Galilei, Galileo (1564–1642), 59, 89, 185, 587, 

770, 771, 772–773
Gauss, Carl Friedrich (1777–1855),  

72, 519, 674, 675
Gaussian curve, 727
Gaussian elimination, 559–561
General form of equation of line, 54
Geometric formula, 842
Geometric relation in function, 134
Geometric sequence, 668–670

convergence of, 679
finite, 676–677
sums of, 674–677

Geosynchronus orbits, 415
Global extremum(a), 112
Global maximum(a), 112
Global minimum(a), 112
Graph, 120. See also Function

of an equation, 55
bounded above, 110
bounded below, 110
circle, 708
of cosecant function, 381
of cosine function, 367–377
of cotangent function, 379

Function. (Continued)
algebraic relation in, 134
asymptote in, 114–115
basic, 120–129
bounded above, 111
bounded below, 111
boundedness of, 110–111
building, 130–138
circular, 355–366
complex, 519
composite trigonometric, 386–394
composition of, 131–134
constant, 108, 109, 177, 179
constant data and, 108
continuity of, 106–108
continuous, 123
cosecant, 346, 357, 381
cosine, 122, 346, 357, 367–377, 397–399, 438–439
cotangent, 346, 357, 379
cube root, 194
cubing, 121, 195
from data, 162–165
decomposing, 133–134
decreasing, 108–110
derivative, 775
difference of, 130
domains, 102–106
end behavior, 115–117
even, 112
exponential, 121, 270–274, 283–284, 292–293
exponential decay, 272
exponential growth, 272
from formulas, 159–160
geometric relations in, 134
graphical analysis of, 124–126
graph of, 103
from graphs, 160–161
greatest integer, 122, 126, 852
hyperbolic cosine, 291
hyperbolic sine, 291, 311
hyperbolic tangent, 291
identity, 120, 190
implicitly defined, 134–136
increasing, 108–110
intervals, 109
inverse, 141–145
inverse cosine, 397–399
inverse sine, 395–396
inverse tangent, 397–399
inverse trigonometric, 395–404
linear, 177–192
local extremum(a) of, 111–112
logarithmic, 292–297
logistic, 122, 276–278, 795
logistic decay, 276
logistic growth, 276
lower bounds of, 111
mapping, 102
modeling with, 159–166
monomial, 194–196
natural exponential, 275
natural logarithmic, 121
notation, 102–103, 142
objective, 575–578
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Initial value of f, 179
Inner product. See Dot product
Instantaneous velocity, 771–772
Integer, 26
Integer exponent, 31–32
Interest

compound, 322
compounded per year, 322, 323–324
continuously compounded, 324–325
simple, 322

Intermediate value theorem, 209–210
Interquartile range, 721
intersection, point of

solving equations by finding, 69
Interval

bounded, 28
closed, 28
endpoints, 28
function bounded on, 111
function on, 109
half-open, 28
notation, 27–29
open, 29
unbounded, 29

Invariant under rotation, 624
Inverse composition rule, 144, 397
Inverse cosine function, 397–399
Inverse exponential function, 292–293
Inverse function, 141–145
Inverse matrix, 549–550

solving systems with, 565–566
Inverse property, 30

of matrix, 552
Inverse reflection principle, 143
Inverse relations, 141–145, 590
Inverse sine function, 395–396
Inverse-square law, 193
Inverse tangent, 398
Inverse tangent function, 397–399
Inverse trigonometric function, 395–404

applications of, 401
Inverse variation, 193
Invertible square linear systems, 565
Irrational number, 26
Irrational zero of polynomial, 220
Irreducible over the reals, 232
Irreducible quadratic function, 232
Isosceles right triangle, 347

J
Joint variation, 203
Jump discontinuity, 107

K
Kepler, Johannes (1571–1630), 198,  

587, 632
Kepler’s First Law, 614
Kepler’s Third Law, 305, 306
Knot, 407
kth term sequence, 666

L
Land mile, 341
Latus rectum, 590, 597

Pythagorean, 422–423
quotient, 421
reciprocal, 421
sum, 438–444
trigonometric, 421–422, 430–437

Imaginary axis, 519
Imaginary number, 72
Imaginary part, 72
Imaginary unit, 72
Implications, 834
Implicitly defined function, 134–136
Implied domain, 104
Increasing function, 108–110
Independent events, 697, 701
Independent variable, 102, 709
Index, 811
Index of summation, 674
Indirect reasoning, 838
Induction

deduction and, 686
enumerative, 686
mathematical, 683–686

Inductive hypothesis, 683–684
Inductive step, 683–684
Inequality

absolute value, 77–78
addition of, 47
approximate solutions to, 79–80
direction of, 47
double, 49
equivalent, 48
to express distance, 40
graphs of, 573–574
linear, 45–51
multiplication of, 47
polynomial, 255–258
properties of, 47
quadratic, 78–79
rational, 258–259
solving, 47, 77–78
solving cubic, 79–80
solving in one variable, 255–264
symbol, 27
systems of, 574–575
transitive property, 47

Inferential statistics, 720
Infinite discontinuity, 107
Infinite limit, 794–796
Infinite sequence, 666

convergence of, 667
divergence of, 667
limits of, 667–668

Infinite series, 677–678
Infinitely repeating, 26
Infinity, limit at, 782–783
Infinity, negative 1-∞2, 29
Infinity, positive 1∞2, 29
Inflection, point of, 121
Influential point, 762
Informal limit, 772
Inhibited exponential growth, 276
Initial condition, 691
Initial point of vector, 473
Initial side of angle, 355

Heron’s formula, 461–462, 661
Hidden behavior, 94–96
Hipparchus of Nicaea (190–120 bce), 337
Hippocrates of Chois (470–410 bce), 337
Histograms, 712
HMT rule. See Head minus tail rule
Horizontal asymptote, 114–115, 126
Horizontal line, 54
Horizontal line test, 142, 292
Horizontal shrink, 152–154, 370
Horizontal stretch, 152–154, 370
Horizontal translation, 148–150
How to Solve It: A New Aspect of Mathematical 

Model (Polya), 92
Humidity, relative, 243
Hyperbola, 121, 588

asymptote of, 610
branches of, 609
center of, 609
chord of, 610
conjugate, 618
conjugate axis of, 610
eccentricity of, 613–614
focal axis of, 609, 611
focal width of, 618
focus of, 609, 611
geometry of, 609–612
graphing, 613
in long-range navigation, 615
orbits of, 613–614
Pythagorean relation of, 610
reflective property of, 614
semiconjugate axis of, 610, 611
semitransverse axis of, 610, 611
sketch of, 610
standard equation of, 611
standard form of, 610
translation of, 612–613
transverse axis of, 610
vertex of, 609, 611, 612

Hyperbolic cosine function, 291
Hyperbolic sine function, 291, 311
Hyperbolic tangent function, 291
Hyperboloid of revolution, 614
Hypothesis, 834

induction, 683–684

I
Identity

in calculus, 434
cofunction, 423
difference, 438–444
domain of validity of, 421
double-angle, 445
factorial, 663
function, 120, 190
fundamental, 421–429
half-angle, 446–447
matrix, 549–550
multiple-angle, 445–448
odd-even, 423–424
power-reducing, 445–446
property, 30
property of matrix, 552
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graph of, 295–297
properties of, 301–309

Logarithmic model, 312–314
Logarithmic re-expression, 316–318

regression models related by, 316
three types of, 317

Logic, 828–833
Logically equivalent, 831
Logistic decay function, 276
Logistic function, 122, 276–278, 795
Logistic growth function, 276
Logistic modeling, 283–288
Logistic regression, 164
Long division, 216–217
Long-range navigation, 615
Loop, 604
LORAN, 615
Lower bound

of function, 111
of real zero, 221–223
test, 221

LRAM. See Left rectangular  
approximation method

Lurking variable, 762

M
Magnitude, 35, 36–37

of the error, 366
order of, 312–314
in two-dimensional vector, 472
of vector, 641

Main diagonal, of matrix, 549
Major axis of ellipse, 599
Mapping, 102
Match, 753
Mathematical induction, 683–688

principle of, 683–684
Mathematical model, 86
Matrix, 545–558. See also Solving  

systems of equations
addition, 545–547
additive identity, 547
additive inverse, 547
associative property of, 552
augmented, 561
coefficient, 561
column subscript of, 545
commutative property of, 552
distributive property of, 552
elements of, 545
entries of, 545
equal, 545
identity, 549–550
identity property of, 552
inverse, 549–550
inverse property of, 552
multiplication, 547–549
multiplicative identity for, 549
nonsingular, 549
order of, 545
properties of, 552
row echelon form of, 562
row subscript of, 545
scalar, 546

single, 588
slant (oblique), 177
slope-intercept form, 53–54
slope of, 52–53
tangent, 597, 772–773
in three-dimensional Cartesian coordinate 

system, 642–643
of travel, 338
vertical, 54

Linear association, 179
types of, scatter plots, 179–180

Linear combination, 476
Linear correlation, 179–181
Linear Factorization Theorem, 228
Linear first degree equation, 45–51

equivalent system of, 559
graphing in two variables, 54–55
in one variable, 45
in two variables, 57–59

Linear function, 177–192
depreciation modeling with, 178
graphs of, 177–178
nature of, 179
of polynomial functions, 177

Linear inequality, 45–51
in one variable, 47–49
solution set of, 47
solving, 47
in x, 47

Linear modeling, 179–181
Linear motion, 340–341
Linear programming, 575–578
Linear regression, 164, 316
Linear speed, 340
Linear system

invertible square, 565
multivariate, 559–572
triangular form for, 559, 560

Line of sight, 405
Lithotripter, 605
Little, or no linear association scatter  

plot, 180
Loans, 327–328
Local extremum(a), 111–112

grapher for, 112
of polynomial function, 206

Local maximum(a), 112
Local minimum(a), 112
Logarithm

basic properties of, 292
change of base, 303–304
and computation, 302
history of, 302
natural, 296
power rule for, 301
product rule for, 301
properties of, 301–303
quotient rule for, 301

Logarithmic equation, 311–312
Logarithmic form, 292
Logarithmic function. See also Exponential 

function
base of, 292, 303–304
exponential function and, 295

Law of Cosines, 459–467
solving triangles with, 460–461

Law of Detachment, 838
Law of reflection, 354
Law of Sines, 451–458

solving triangles with, 451–452
LCD. See Least common denominator
Leading coefficient, 176, 816
Leading term

in polynomial function, 204
test for end behavior, 207

Leaf, 709
Least common denominator (LCD), 46, 825
Least-square lines, 191–192
Left-hand limit, 792
Left rectangular approximation method (LRAM), 

784
Leibnez, Gottfried Wilhelm (1646–1716), 102, 

770, 783, 789
Leibniz notation, 776
Lemniscate curve, 515
Leonardo of Pisa (c. 1170–1250), 671
Light, speed of, 59
Like terms, 816
Limaçon curve

graphs of, 514
in polar equations, 513–515

Limit
area and, 781–788
of continuous function, 792
defining, 789–790
Difference Rule for, 791
to growth, 276
history of, 789
infinite, 794
at infinity, 782–783, 794–796
involving infinity, 794–796
informal, 772
left-hand, 792
motion and, 770–788
notation of, 107
one-sided, 792–794
Power Rule for, 791
Product Rule for, 791
properties of, 790–791
Quotient Rule for, 791
rational function, 238–240
right-hand, 792
Root Rule for, 791
Sum Rule for, 791
two-sided, 792–794

Line
of best fit, 163–164
general form of equation of, 54
graph, 714
horizontal, 54
parallel, 55–56
in parametric equation, 493–494
perpendicular, 55–56
point-slope form, 53
regression, 163
secant, 773, 774
segment, 493–494
of sight, 405
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nth root, 524, 811
Number line, real, 27, 37–38
Numerical derivative, 800–808
Numerical integral, 801
Numerically solving equations, 91
Numerical model, 86–87
Numerical statistics, 720–732
Numerical support, 94

O
Objective function, 575–578
Objects, 26
Oblique asymptote, 239
Oblique line, 177
Observational studies, 751–752
Octant, 637
Odd degree, polynomial function of, 232
Odd-even identity, 423–424
Odd function, 113
Off-center, 603, 604
1-Radian angle, constructing, 338
One-sided limit, 792–794
One-to-one function, 142
One-to-one property, 310
Open intervals, 29
Open of parabola, 591
Opposite, 30

and number line, 28
Orbits

conic section, 632–633
of ellipses, 603–604
of hyperbola, 613–614

Order, 27–29
Ordered pair, 36
Order of magnitude, 312–314

measuring with bel, 312
negative, 313

Ordinary annuity, 326
Origin, 27, 637

of Cartesian plane, 36
reflection through, 150
symmetry with respect to, 113

“Or,” inclusive, 698
Orthogonal vector, 485
Outcome, 694, 856

equally likely, 694
Outer product. See Cross product
Outlier, 722

P
Parabola, 493

axis of, 591
cosecant curves, 381
degenerate, 588
directrix of, 590, 591
focal axis of, 589
focal chord of, 597
focal length of, 590, 591
focal width of, 590, 591
focus of, 591
geometry of, 588–591
graph of, 144
open of, 591
reflective property of, 593–594

Multiplication
of complex numbers, 73, 521–522
matrix, 547–549
of polynomials, 816–817
principle of probability, 697
property of equality, 45
property of inequality, 47
scalar, 474
vector, 474

Multiplication Principle of Counting, 651–652
Multiplicative identity

for complex number, 74
for matrix, 549

Multiplicative inverse
of algebraic expression, 30, 194
of complex numbers, 74

Multiplicity of zero of function, 208
Multivariate linear system, 559–572
Mutually exclusive event, 699

N
Napier, John (1550–1617), 292, 302
Nappe of cone, 587
Natural base e, 274–276
Natural exponential function, 275
Natural logarithm, 296

reading symbols correctly, 295
Natural logarithmic function, 121, 296
Natural logarithmic regression, 164, 316, 317
Natural number, 26
Nautical mile, 341
Negation, 828
Negative angle, 355
Negative association, 748
Negative linear association, 179, 180
Negative number, 27

vs. subtraction, 30
Negative orders of magnitude, 313
newton (N), 242
Newton, Isaac (1642–1727), 185, 242, 314–316, 

770–772, 783, 789
Newton’s Law of Cooling, 314–316
Non-identities, disproving, 433–434
Nonquadrantal angle, 358
Nonreal zero of polynomial, 228
Nonrelationship, 303
Nonrigid transformation, 148
Nonsingular matrix, 549
Normal approximation for binomial, 741–743
Normal curve, 727
Normal distribution, 727–728
Normal line, 354
Normal model, 739–741
Notation

of complex numbers, 524
definite integral, 784
exponent, 386
function, 102–103, 142
Leibniz, 776
of limits, 107
n-set, 652, 655–656
nth power of a, 31
nth root, 811
set-builder, 26

singular, 549
square, 545, 550–552
subtraction, 545–547
symmetry in, 556
systems of equations solved with,  

565–566
transpose, 549
zero, 547

Maximum(a), absolute, 112
Maximum(a), global, 112
Maximum(a), local, 112
Maximum(a), relative, 112
Maximum �r�  value, 512
Maximum sustainable population,  

286
Maximum value, 390
Mean, 724–726

weighted, 725
Measure of angle, 337–345
Median, 721
Midpoint formula

coordinate plane, 39
number line, 38
in three-dimensional Cartesian coordinate 

system, 638–639
Minimum(a), absolute, 112
Minimum(a), global, 112
Minimum(a), local, 112
Minimum(a), relative, 112
Minor axis of ellipse, 599
Minor determinant, 550
Minutes, 337
Mirror method, 144
Mode, 713
Model

algebraic, 87–88
exponential decay, 284–285
exponential growth, 284–285
with function, 159–166
graphical, 88–90
interpreting, 90
logarithmic, 312–314
mathematical, 86
numerical, 86–87
regression, 316
sinusoidal, 372–373

Modeling
angular, 340–341
area and, 781–788
exponential, 283–287
grapher simulation of, 494–497
limits and, 770–788
linear, 179–181, 340–341
linear model for demand, 181
logistic, 283–288
periodic behavior, 372–373
with power function, 198–200

Modulus of complex number, 520
Modus Ponens, 838–839
Monomial, 816
Monomial function, 194–196
Mortgage, 327–328
Motion, 491–502
Multiple-angle identity, 445–448
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Positive linear association, 179, 180
Positive number, 27
Positive x-axis, 143
Positive y-axis, 143
Power function

graphs of, 196–197
modeling with, 198–200

Power-reducing identity, 445–446
Power regression, 164, 316, 317
Power rule

for limits, 791
for logarithms, 301

Powers of complex number, 522–524
Precious Mirror (Chu), 661
Present value of annuity, 327–328
Prime polynomial, 817
Principal nth root, 811
Principle of mathematical induction, 683–684
Probability, 693–706

addition principle of, 699
conditional, 700–702
determining, 696–697
distribution, 695
of events, 694, 695
function, 693–696
multiplication principle of, 697

Probability model
binomial, 736–739
random variable, 733–747

Problem solving, 92–94
mathematical modeling (GAIMME), 92
statistical problem solving (GAISE), 92

Product rule
for limits, 791
for logarithms, 301

Products of function, 130
Projectile motion, 80
Projection of vector, 486–487
Proof, 96

of the factor theorem, 218
of identities, 430–437
of product formula, 521
reflections, 151
strategies, 430

Prospective, 762
Pseudo-random numbers, 754
Pythagoras, 661
Pythagorean identity, 422–423
Pythagorean relation

of ellipse, 599, 601
of hyperbola, 610

Pythagorean Theorem, 38, 40, 347, 348, 661

Q
Quadrant, 36

of the Cartesian plane, 356
Quadrantal angle, 359–360
Quadratic equation

complex solution of, 74–75
discriminant of, 74–75
solving, 65–67, 74–75
solving by completing the square, 65–66
in x and y, 587
with xy terms, 619–627

for distance, 507
equation conversion, 505–506
grapher conversion of, 505

Polar curve, 510
Polar equation

analyzing, 511–512, 631–632
of conic, 628–636
graph of, 510–518, 629
lemniscate curve in, 515
Limaçon curve in, 513–515
symmetry in, 510–511
writing, 629–631

Polar form. See Trigonometric form
Pole, 503
Polya, George (1887–1985), 92
Polygon, regular, 165
Polynomial. See also Rational function

addition of, 816–817
characteristic, 558
degree of, 816
equation, 65
factoring, 817–819
function, 176–177
inequality, 255–258
irrational zero of, 220
multiplication of, 816–817
nonreal zero of, 228
prime, 817
rational zero of, 220
subtraction of, 816–817
vocabulary of, 204

Polynomial equation, 65
Polynomial function, 176–177,  

204–215
coefficient in, 204
division algorithm and, 216–217
end behavior of, 206–208
Factor Theorem, 218
fundamental connection, 218
graph of, 204–206
identifying, 176–177
leading term in, 204
local extremum(a) of, 206
long division and, 216–217
of low degree, 177
multiplicity of zero of, 208
of no degree, 177
of odd degree, 232
Rational Zeros Theorem, 220–221
real zero of, 216–227
Remainder Theorem and,  

217–218
standard form of, 204
synthetic division and, 218–220
term, 204
zero of, 206, 208–209

Polynomial interpolation, 211
Population model, 278–279, 728

exponential, 278–279
regression in, 285–287
U.S. Census Bureau data, 278

Position vector, 472
Positive angle, 355
Positive association, 748

Parabola (Continued)
standard equation, 591
translation of, 591–593
vertex of, 589, 590

Paraboloid of revolution, 593
Parallel line, 55–56
Parallelogram representation of vector, 474
Parameter

elimination of, 492–493
interval, 491
in statistics, 720

Parametrically defined relation, 139–141
Parametric curve, 491
Parametric equations, 141, 491–502

line in, 493–494
Parametric form, 642
Parametric mode, 140
Parametrization, 491
Partial fraction, 566–567
Partial fraction decomposition, 566–567
Partial sums, 678
Pascal, Blaise (1623–1662), 661, 694
Pascal’s triangle, 661–662
Pendulum motion, 679
Perigee, 405, 583, 623
Perihelion, 603
Perimeter, 340
Period, of the function, 362
Period change

combining with a phase shift, 371
Periodic behavior modeling, 372–373
Periodic function, 362–363
Period of sinusoids, 369, 370
Permutation, 652–654

on calculator, 653
counting formula, 653
distinguishable, 653

Perpendicular line, 55–56
pH, 313
Phase shift, 369, 370, 371

combining with period change, 371
Picture graph, 708
Piecewise definition, 125
Pie chart, 708
Placebo, 753
Plane

complex, 519–520
equation of, 640
vector in, 472–482

Pluto, 607
Point

coordinates of, 27
corner, 576
derivatives at, 774
of discontinuity, 106
feasible, 576
of inflection, 121
of intersection, 69
single, 588
vertex, 576

Point-slope form, 53, 54
Polar axis, 503
Polar coordinate, 503–509

conversion, 504–505
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cubic, 164
exponential, 164, 316, 317
line, 163
linear, 164, 316
logistic, 164
model, 316
natural logarithmic, 164, 316, 317
in population model, 285–287
power, 164, 316, 317
quadratic, 164
quartic, 164
sinusoidal, 164

Regular polygon, 165
Relation

algebraic, 134
function, 134–136
geometric, 134
graphing, 135
inverse, 141–145
parametrically defined, 139–141

Relationships, discovering, 303
Relative extremum(a), 112
Relative humidity, 243
Relative maximum(a), 112
Relative minimum(a), 112
Relevant domain, 104
Remainder, 216
Remainder Theorem, 217–218
Removable discontinuity, 107–108
Repeated zeros, 209
Replacing translation, 149
Replication, 753
Resistant statistics, 721
Response bias, 752
Response variable, 650
Restricted exponential growth, 276
Retrospective, 762
Richter scale, 308, 313
Richter scale, the, 270
Riemann, Georg Bernhard (1826–1866), 784
Riemann sum, 784
Right circular cone, 587
Right-handed coordinate frame, 637
Right-hand limit, 792
Right rectangular approximation method 

(RRAM), 784
Right triangle

isosceles, 347
problems, 405–407
verifying, 40

Right triangle trigonometry,  
346–347

similarity, 346
solving, 350
standard position, 346

Rigid transformation, 148
Robert of Chester, 121
Root, 92

of complex number, 524–526
cube, 194, 811
nth root, 524, 811
real, 218
rule, 791
square, 65, 121, 144, 198, 811

limit, 238–240
transformations, 242–243
vertical asymptote, 239
x-intercept of, 239
y-intercept of, 239

Rational inequality, 258–259
Rationalizing denominator, 813
Rational number, 26
Rational zero of polynomial, 220
Rational Zeros Theorem, 220–221
Real axis, 519
Real number, 26–35. See also Algebraic 

expression; Rational expression
absolute value of, 36–37
bounded interval of, 28
coefficient, 231–232
representing, 26–27
trigonometric function of,  

361–362
Real number line, 27
Real part, 72
Real root, 218
Real solution, 218
Real zero of polynomial, 216–227

lower bound test, 221
rational and irrational zeros, 220
upper bound test, 221

Real zeros of equation, 68
Reasoning

direct, 838
indirect, 838
valid, 836–838

Reciprocal, 30
of complex numbers, 74

Reciprocal function, 121
transformation of, 237–238

Reciprocal identity, 421
Rectangle, guiding, 600
Rectangular approximation method, 784
Rectangular coordinate system, 36
Recursion formula for Pascal’s  

triangle, 562
Recursive, 666
Recursive formula, 272
Reduced form, 823
Reduced row echelon form, 563–564
Reduction formula, 441
Re-expressing data, 305–306
Re-expression, logarithmic, 316–318
Reference angle, 358
Reference triangle, 358
Reflection, 143

across axes, 150–152
origin, 150
proof, 151
x-axis, 150
y-axis, 150

Reflective property
of ellipse, 605–606
of hyperbola, 614
of parabola, 593–594

Reflexive property, 45
Regression, 200

analysis, 181

Quadratic formula, 66, 67
Quadratic function, 177–192

applications of, 184–186
characterizing, 184
graphs, 182–184
irreducible, 232
of polynomial functions, 177
standard form of, 182
vertex form of, 183

Quadratic inequality, 78–79
Quadratic regression, 164
Quadric surfaces, 641
Quantitative data, 709–712
Quantitative variable, 707
Quartic regression, 164
Quartiles, 721
Quotient, 216

of function, 130
identities, 421

Quotient rule
for limits, 791
for logarithms, 301

R
Radian, 338

degree-radian conversion, 339
measure, arc length formula, 339
units, 340

Radians of angles, 337–339
Radical, 811–812

inequality, solving, 259
Radical expression, 811

simplifying, 812
Radical fractions, 348
Radicand, 811
Radioactive decay, 284
Radius, 39

of a sphere, 640
Randomization, 753
Randomness, 750–751, 754–755
Random number tables, 754
Random sample, 750–751
Random variable, 733

binomial, 737–738
continuous, 739
expected value of, 734
probability model, 733–747

Range, 721
of function, 102–106

Rate of change, 178–179
Ratio, 178

common, 669
Rational equation, 247–248
Rational exponent, 813–814
Rational expression, 824–825

compound, 825–826
operations with, 824–825

Rational function, 236. See also  
Polynomial

analyzing graphs, 240–242
asymptote of, 238–240
end behavior asymptote of, 239, 241
finding domain, 236–237
graph of, 236–246
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Solving triangles, 350
with Law of Cosines, 460–461
with Law of Sines, 451–452

Sound, measuring
decibels, 298

Sound intensity, 298
Special angle, 479
Special product, 817–819
Special relativity

and the speed of light, 59
Speed, 203

angular, 340
of light, 59
linear, 340
of vector, 477

Sphere, 640
center, 640
radius, 640
standard equation of, 640

Spiral of Archimedes, 515
Square matrix, 545

determinants of, 550–552
inverse of, 549

Square root, 811
extracting to solve equations, 65, 67
finding, 65

Square root function, 121, 144, 198
Square root principle, 65
Square viewing window, 55
Squaring function, 120, 191

transforming, 182
SSA (ambiguous case)

solving triangle, 452–454, 460
SSS

solving triangle, 460–461
Standard deviation, 726–727

for binomial probability distribution, 739
Standard equation

of ellipse, 601
of hyperbola, 610
of parabola, 591
of a sphere, 640

Standard form equation, 72, 590, 816
of circles, 39–40
of ellipse, 599
of hyperbola, 610
of polynomial function, 204
quadratic, 182

Standard position
of angles, 355
in right triangle trigonometry, 346

Standard representation of vector, 472
Standard unit vector, 476, 483, 641
Standard vector in three-dimensional Cartesian 

coordinate system, 641
Statement, 828–833

forms of, 839
Statistical significance, 742, 756
Statistically significant, 742, 756
Statistics

descriptive, 720
graphical, 707–719
inferential, 720
literacy in, 748–762

Simple interest, 322
Simulation, 756–758
Sine function, 121, 357

of difference, 440–441
graph of, 367–377
hyperbolic, 291
inverse, 395–396
of sum, 440–441
trigonometric, 346

Single line, 588
Single point, 588
Singular matrix, 549
Sinusoidal model, 372–373

using time, 372
Sinusoidal regression, 164
Sinusoid function, 389–390

sums, 389
Sinusoids

amplitude of, 369
frequency of, 370
graphs of, 371
investigating, 388
periodic behavior modeling with, 372–373
period of, 370
sum and difference of, 388–390
transformation and, 369–372
verifying, 441–442

16-point unit circle, 363
68-95-99.7 rule, 728
Skewed distribution, 713
Slant asymptote, 239
Slant line, 177
Slide rule, 303
Slope-intercept form, 53–54
Slope of line, 52–53
Smoothing, 764
Solution, 67, 92. See also Approximate 

solution(s)
to complex numbers, 228–232

Solving equations, 45
algebraically, 90
approximating, graphically, 67–68
exponential, 310–311
extraneous solutions in, 247–249
graphically, 64–65, 91, 96
with intersections, 69
logarithmic, 311–312
numerically, 91
in one variable, 255–264
quadratic, 65–67
rational, 247–248
with tables, 67–68
with technology, 91
trigonometric, 425–427, 447–448

Solving inequalities, 573
absolute value, 77–78
approximating, 79–80
linear, 47
in one variable, 255–264

Solving systems of equations. See also Matrix
by elimination, 537–539
graphically, 537
with inverse matrices, 565–566
substitution method of, 535–537

Rose curve
graphs of, 513
in polar equation, 512–513

Rounding answers, 351
Row echelon form, 562

of matrix, 562
reduced, 563–564

Row operation, 559–568
elementary, 561–563

Row subscript of matrix, 545
RRAM. See Right rectangular approximation method

S
Sample, 720, 751–752

random, 728, 750–751
Sample space, 693–696
Scalar

matrix, 546
multiplication, 474

Scatter plot, 36
types of linear association, 180

Scientific notation, 32–33
compared to common algorithms, 312

Secant function, 357
graph of, 380
trigonometric, 346

Secant line, 773, 774
Second-degree equation, 587
Second quartile, 721
Seconds, 337
Semicircle, 486
Semiconjugate axis of hyperbola, 610
Semimajor axis of ellipse, 599, 601, 633
Semiminor axis of ellipse, 599, 601
Semiperimeter, 462
Semitransverse axis of hyperbola, 610
Sequence

arithmetic, 668–670
Fibonacci, 671
finite, 666, 675–676
geometric, 668–670
infinite, 666–668

Series, 674–682
convergence of, 678
divergence of, 678
geometric, 679
harmonic, 682
infinite, 677–678, 679

Set-builder notation, 26
Set, complement of a, 830
Sexagesimal system, circles, 337
Shrink, 152–154
Sigma notation, 674
Sign chart, 256
Significance, statistical, 742, 756
Significant, statistically, 742, 756
Significant digits

rounding criteria, 351
Similar geometric figures, 346
Simple harmonic motion, 407–409

calculating, 408, 409
frequency of, 408
period of, 408
watching, 408
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equilateral, 347–348
famous, 347–348
isosceles right, 347
reference, 358
right, 40, 346–347, 405–407
solving, 350, 451–452, 460–461

Triangular form for linear systems, 559, 560
Triangular number, 682
Trichotomy property, 28
Trigonometric equation, 425–427, 447–448
Trigonometric expression, 424–425
Trigonometric form, 520–521
Trigonometric function, 346, 357

of acute angle, 346–354
algebraic function and, 386–388
of an isosceles right triangle, 347
of any angle, 355–360
basic, 381
calculation errors, 349–350
calculator evaluation of, 348–349
circular functions, 362
of complementary angles, 348
composing, 399–401
composite, 386–394
damped oscillation, 390–392
of equilateral triangle, 347–348
exploring, 347
inverse, 395–404
of nonquadrantal angle, 358
of real numbers, 361–362
sine, 346
standard position in, 346

Trigonometric identities, 421–422,  
430–437

Trigonometry
first quadrant, 356
formulas from, 842–843
right triangle, 346–357
solving problems with, 405–415

Trinomial, 816
factoring, 819–820

Truth table, 830
Tstep, 141
Two-dimensional vector, 472–474

component form of, 472
initial point, 473
magnitude in, 472
standard representation of, 472
terminal point, 473

Two-sided limit, 792–794

U
Unbounded behavior, 795
Unbounded interval, 29
Undercoverage bias, 752
Unimodal distribution, 713
Union of two sets, 78
Unit circle, 361, 362

exploring, 362
16-point, 363
transforming, 598

Unit vector, 475–476, 641
standard, 476, 483

Unordered system, 27

Tail-to-head representation of  
vector, 474

Tangent function, 357
of difference, 441
graphs of, 378–379
hyperbolic, 291
inverse, 397–399
of sum, 441
trigonometric, 346

Tangent line, 597, 772–773
problem, 774

Tangent problem, 770–780
Tautology, 836
Taylor, Brook (1685–1731), 366
Taylor polynomials, 366
Term

constant, 179
cross-product, 619, 623
leading, 204
in polynomial function, 204

Terminal point of a vector, 473
Terminal side of angle, 355
Terminate, 26
Third quartile, 721
Three-dimensional Cartesian coordinate  

system, 637–645
distance formula, 638–639
drawing, 639
lines in, 642–643
midpoint formulas, 638–639
standard vector in, 641
vector in space, 641–642
zero vector, 641

Time plot, 713–715
Total area, 808
Tower of Hanoi problem,  

683, 684
TRACE feature, 64, 122–123
Transcendental function, 270
Transformation

combining, 154–155
constructing a sinusoid, 372
graphical, 148–158
nonrigid, 148
of reciprocal function, 237–238
rigid, 148
sinusoid and, 369–372
of unit circle, 598

Transitive property
of equality, 45
of inequality, 47

Translation
ellipses, 601–603
horizontal, 148–150
introducing, 148
of parabola, 591–593
replacing, 149
vertical, 148–150

Transpose of matrix, 549
Transverse axis of hyperbola, 610
Tree diagram, 699–700
Triangle

area of, 461–462
determining number, 452

parameters and, 720
resistant, 721
uses and misuses, 748

Statute mile, 341
Stem-and-leaf plot, 709
Stemplot, 709

back-to-back, 711
Step, inductive, 683–684
Step function, 122
Stretch, 152–154
Strong association, 749
Strong negative linear association

scatter plot, 180
Strong positive correlation, 748
Strong positive linear association

scatter plot, 180
Subject, 752
Substitution method, 535–537
Subtraction, 30

of complex numbers, 72
matrix, 545–547
of polynomials, 816–817
of vectors, 641

Success-failure rate, 742
Sum

of arithmetic sequences, 674–677
of complex numbers, 72
cosine function of, 439
of function, 130
of geometric sequences, 674–677
identity, 438–444
partial, 678
rule, 791
sine function of, 440–441
sinusoidal functions, 389
of sinusoids, 388–390
tangent function of, 441

Sumerians
history of dividing a circle, 337

Summation, index of, 674
Summation notation, 674
Supply curve, 540
Supported numerically, 94
Survey, 751–752
Symmetric difference quotient, 800
Symmetric distribution, 713
Symmetric matrix, 556
Symmetric property of equality, 45
Symmetry, 713

axis of, 182
of graph of a function, 112–114
of graph of a polar equation,  

510–511
matrix, 556
origin, 113, 510
x-axis, 113, 510
y-axis, 113, 510

Synthetic division, 218–220
Systems of equations, solving,  

535–544
Systems of inequalities, 574–575

T
Tables, 67–68
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Work, 487
Wrapping function, 361

X
x-axis, 36

positive, 143
reflection across, 150
symmetry with respect to, 113

x-coordinate, 36
x-intercept, 55, 64, 92

of rational functions, 239
xy-plane, 637
xz-plane, 637

Y
y-axis, 36

positive, 143
reflection across, 150
symmetry with respect  

to, 112
y-coordinate, 36
y-intercept, 53–54

of rational functions, 239
yz-plane, 637

Z
z-axis, 637
Zeno of Elea (c. 490–425 bce), 782
Zeno’s paradoxes, 782
Zero

complex, 228–235
complex conjugates, 229–231
of even multiplicity, 209
factor property, 65, 90–92
of function, 92, 177, 228–232
irrational, 220
matrix, 547
multiplicity of, 208
nonreal, 228
of odd multiplicity, 209
of polynomial functions, 177, 206, 208–209
real, 68, 216–227
repeated, 209

Zero vector, 472
in three-dimensional space, 641

Zooming on end behavior, 116
Zoom-in procedure, 67
Zoom out, 207

unit, 475–476, 641
velocity of, 477
zero, 472

Velocity
absolute value of, speed, 200
average, 770, 773
changing, 782
constant, 781
instantaneous, 771–772
as a vector, 477
vertical, 185

Venn, John (1834–1923), 698
Venn diagrams, 698–699
Verbal descriptions, 161–162
Vertex, 182, 183

of angle, 355
of conic section, 628
of ellipse, 606
form of quadratic function, 182
of hyperbola, 617
of parabola, 589, 590
points, 584
in right circular cone, 587

Vertex points, 576
Vertical asymptote, 114–115

rational function of, 239
Vertical free-fall motion, 185, 186
Vertical line, 54
Vertical line test, 103
Vertical shrink, 152–154

and amplitude of a sinusoid, 369
Vertical stretch, 152–154

and amplitude of a sinusoid, 369
Vertical translation, 148–150
Vertical velocity, 185
Very weak negative association, 749
Very weak negative correlation, 749
Viewing windows, 55
Voluntary response bias, 752
Von Neumann, John (1903–1957), 694

W
Weak negative correlation, 748
Weak negative linear association

scatter plot, 180
Weak positive linear association

scatter plot, 180
Weierstrass, Karl (1815–1897),  

789
Weighted mean, 725
Wessel, Caspar (1745–1818), 519
Whispering galleries, 605
Whole number, 26

Unrestricted growth
exponential, 276

Upper bound
of functions, 111
of real zeros, 221–223
tests, 221

V
Validity

domain of, 421
Valid reasoning, 836–838
Variable, 29

categorical and quantitative, 707
confounding, 752
continuous random, 728
dependent and independent, 102
explanatory and response, 650
lurking, 762
random, 695, 733–747

Variance, 726–727
Variation

constant of, 193
direct, 193
inverse, 193
in sign, 227

Varies, 193
jointly, 203

Vector
addition of, 474, 641
angles between, 484–486
arrow vs., 473
direction, 476, 642
dot product of, 483–490, 641
equality, 641
form, 642
as linear combinations, 476
magnitude of, 641
multiplication, 474
operations, 474–475
orthogonal, 485
parallelogram representation, 474
in plane, 472–482
position, 472
projecting, 486–487
relationships, 641
resolving, 476
speed of, 477
standard unit, 476, 483, 641
subtraction of, 641
tail-to-head representation, 474
in three-dimensional Cartesian coordinate 

system, 641–642
two-dimensional, 472–474
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