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The big data paradigm presents a number of challenges for university curricula on
big data or data science related topics. On the one hand, new research, tools and
technologies are currently being developed to harness the increasingly large quan-
tities of data being generated within our society. On the other, big data curricula at
universities are still based on the computer science knowledge systems established in
the 1960s and 70s. The gap between the theories and applications is becoming larger,
as a result of which current education programs cannot meet the industry’s demands
for big data talents.

This series aims to refresh and complement the theory and knowledge framework
for data management and analytics, reflect the latest research and applications in big
data, and highlight key computational tools and techniques currently in develop-
ment. Its goal is to publish a broad range of textbooks, research monographs, and
edited volumes that will:

– Present a systematic and comprehensive knowledge structure for big data and
data science research and education

– Supply lectures on big data and data science education with timely and practical
reference materials to be used in courses

– Provide introductory and advanced instructional and reference material for stu-
dents and professionals in computational science and big data

– Familiarize researchers with the latest discoveries and resources they need to
advance the field

– Offer assistance to interdisciplinary researchers and practitioners seeking to learn
more about big data

The scope of the series includes, but is not limited to, titles in the areas of database
management, data mining, data analytics, search engines, data integration, NLP,
knowledge graphs, information retrieval, social networks, etc. Other relevant topics
will also be considered.

More information about this series at https://link.springer.com/bookseries/15869
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Foreword

With the continuous improvement in Global Positioning System (GPS) accuracy,
our location-based services have already gone deeply into all aspects of people’s life,
and the data containing spatial location information is increasing. In the face of the
continuous growth of massive spatial data, people are finding it difficult to fully
understand the data without knowledge assistance, and so spatial data mining
technology has emerged. Spatial co-location pattern mining is an important branch
of the field of spatial data mining. By mining the spatial co-location patterns, we can
find interesting relationships between spatial features and play a positive guiding
role in various location-based application domains.

Massive spatial data brings new challenges to spatial co-location pattern mining.
How can we find the compressed or condensed representation of spatial patterns
from a large number of mining results? How can we design appropriate preference
constraints for users in spatial co-location pattern mining? How do we derive some
pruning strategies from the preference constraints to improve the efficiency of the
preference-based mining algorithms? This monograph answers these questions
quite well.

Professor Wang’s research team has systematically and continuously researched
spatial co-location pattern mining since 2008. In particular, fruitful and pioneering
research on preference-based spatial co-location pattern mining has been conducted.
Many of their results have been published in internationally renowned journals and
conferences and have been accepted by the scholars in the world, of course,
including myself.

This monograph studies a series of preference-based pattern mining techniques,
including: maximal prevalent co-location pattern mining, maximal sub-prevalent
co-location pattern mining, SPI-closed co-location pattern mining, top-k prevalent
co-location pattern mining, dominant co-location pattern mining, non-redundant
co-location pattern mining, high-utility co-location pattern mining, interactive min-
ing, the similarity measurement between spatial co-location patterns, etc. The
research results are systematic and promising.
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Throughout the monograph, the author gives a clear explanation of the motivation
for the research, the definition of the problem, the key research, the statement and
analysis of the method, and the application evaluation, etc. It is believed that this
monograph may serve researchers and application developers in spatial data mining
technology and related fields and may help them explore this exciting field and
develop new methods and applications. It may also provide the current status of this
promising latest research theme, both for graduate students and other interested
readers.

I find the monograph is enjoyable to read and fully recommend this monograph
to you.

Renmin University of China, Beijing,
China
July, 2021

Xiaofeng Meng
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Preface

The development of information technology has enabled many different technolo-
gies to collect large amounts of spatial data every day. It is of very great significance
to discover implicit, non-trivial, and potentially valuable information from this
spatial data. Spatial co-location patterns expose the distribution rules of spatial
features, and their discovery can be of great value to application users. This book
is intended to provide commercial software developers with proven and effective
algorithms for detecting and filtering these implicit patterns, and easily-implemented
pseudocode is provided for all our algorithms. The book is also intended to provide a
base for further research in such a promising field. We take the demand from user
applications and provide a mathematical and systematic study of preference-based
spatial co-location pattern mining.

Spatial co-location pattern mining has broad prospects for spatial data owners.
Potential economic value has been found in mining the data from Earth science,
public safety, biological information processing, location-based personalized rec-
ommendation, geo-information system (GIS), and military strategy planning. We
know it has aroused strong interest amongst researchers, both at research institutions
(Google, Microsoft, IBM, etc.) and at universities (Stanford University, University
of Washington, University of Minnesota, Hong Kong University of Science and
Technology, etc.). High-level research results have emerged in authoritative inter-
national data engineering journals such as “IEEE Transactions on Knowledge and
Data Engineering (TKDE)” and at top academic conferences such as “ACM
SIGSPATIAL, ACM SIGKDD, and IEEE ICDE.”

The authors’ research team began conducting research on spatial pattern mining
in 2008. Since then it has been involved with 5 National Natural Science Fund
projects on spatial co-location pattern mining, has trained 7 doctoral students and
over 80 master students, and has published more than 90 relevant academic papers.
We have been given prizes from the Yunnan Science and Technology Award. The
research team led by the first author is called the innovation team of the “Yunnan
Province Spatial Big Data Mining and Decision Support Research Group,” the first
provincial innovation team of our college.
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Similar to frequent item set mining in transaction databases, spatial co-location
pattern mining often generates a huge number of prevalent co-location patterns, but
only a few of them satisfy user interests. User preferences are often subjective, and a
pattern preferred by one user may not be favored by another, and so cannot be
measured by objective-oriented prevalence measures. Therefore, the following
challenges and/or issues will be answered in this book:

• What is a natural criterion for ranking patterns and presenting the “best” patterns?
• How to find a condensed representation of spatial patterns from a huge number of

mined results.
• How to enable a user to have proper constraints/preferences in spatial co-location

pattern mining.
• How to derive pruning properties from the constraints which improve the effi-

ciency of the corresponding preference-based mining.

It is essential to study the theories and algorithms of preference-based co-location
pattern mining in order to solve these challenges and issues. Preference-based
co-location pattern mining refers to mining constrained or condensed co-location
patterns instead of mining all prevalent co-location patterns. Specifically, this book
includes problems such as maximal co-location pattern mining, closed co-location
pattern mining, top-k co-location pattern mining, non-redundant co-location pattern
mining, dominant co-location pattern mining, high utility co-location pattern mining,
and user-preferred co-location pattern mining.

For the above problem areas, this book details the relevant research, the basic
concepts, the resulting algorithms and their analysis, with experimental evaluation of
each algorithm. These techniques come from the latest results of our research in
recent years. For the convenience of readers, the chapters of this book are as
integrated as possible, so the reading order of each chapter is quite flexible. You
can find the corresponding chapter reading according to your interest. Of course, if
you read the book from beginning to end, you will find a small amount of repetitive
information intended to guarantee the relative independence of each chapter, but
absolutely not information redundancy, as we describe the same content in different
forms if possible. Indeed, readers are encouraged to read and study this book in
order.

This book can be used both as a textbook for learners and as a good reference for
professionals.

Although many people have contributed to this book, we first express our
gratitude to our families. Without their encouragement and support, it would have
been impossible to finish this book, and so this book is dedicated to them.

Secondly, we should sincerely thank Roger England, a colleague who helped
correct the English of the book and gave a lot of valuable comments. We would also
particularly like to thank Professor Xiaofeng Meng of Renmin University of China
for his guidance and help. After reading the first draft of the book, he not only gave
specific comments, but also gladly provided a foreword for the book; we would also
like to thank Ms. Xin Li of Science Press of China and Mr. Wei Zhu of Springer.
Their efforts have facilitated the smooth publication of the book.
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Thanks must also go to the National Natural Science Foundation Committee and
the Yunnan Provincial Department of Science and Technology for their long-term
project funding (Nos.: 61966036, 61472346, 61272126, 61662086, 61762090,
2018HC019). Without their funding for specific research objectives, it would have
been difficult to construct the systematic and forward-looking research results which
this book conveys.

This book involves an academic discipline frontier, so numerous references have
been given in the various chapters, but here we would like to particularly thank
S. Shekhar, Y. Huang, and J.S. Yoo for their pioneering work in the relevant fields.

In the research work, although the authors invested a lot of effort, and in the
writing of the book each chapter and every sentence has been carefully checked,
although limited to our research depth and knowledge level, errors in the book are
probably inevitable and we welcome the reader’s criticisms and corrections.

Kunming, China Lizhen Wang
Yuan Fang
Lihua Zhou

July 2021

Preface ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Background and Applications . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Evolution and Development . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The Challenges and Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Content and Organization of the Book . . . . . . . . . . . . . . . . . . . 8

2 Maximal Prevalent Co-location Patterns . . . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Why the MCHT Method Is Proposed for Mining MPCPs . . . . . 12
2.3 Formal Problem Statement and Appropriate Mining

Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Co-Location Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . 21

2.4 The Novel Mining Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 The Overall Mining Framework . . . . . . . . . . . . . . . . . 22
2.4.2 Bit-String-Based Maximal Clique Enumeration . . . . . . 23
2.4.3 Constructing the Participating Instance Hash Table . . . . 28
2.4.4 Calculating Participation Indexes and Filtering

MPCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 The Analysis of Time and Space Complexities . . . . . . . 32

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Experimental Objectives . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.3 Experimental Results and Analysis . . . . . . . . . . . . . . . 34

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Maximal Sub-prevalent Co-location Patterns . . . . . . . . . . . . . . . . . 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Basic Concepts and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 A Prefix-Tree-Based Algorithm (PTBA) . . . . . . . . . . . . . . . . . . 54

xi



3.3.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 Analysis and Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 A Partition-Based Algorithm (PBA) . . . . . . . . . . . . . . . . . . . . . 58
3.4.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Analysis of Computational Complexity . . . . . . . . . . . . 64

3.5 Comparison of PBA and PTBA . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . 67
3.6.2 Comparison of Computational Complexity Factors . . . . 67
3.6.3 Comparison of Expected Costs Involved in Identifying

Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.4 Comparison of Candidate Pruning Ratio . . . . . . . . . . . 69
3.6.5 Effects of the Parameter Clumpy . . . . . . . . . . . . . . . . . 70
3.6.6 Scalability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.7 Evaluation with Real Data Sets . . . . . . . . . . . . . . . . . . 72

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 SPI-Closed Prevalent Co-location Patterns . . . . . . . . . . . . . . . . . . . 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Why SPI-Closed Prevalent Co-locations Improve Mining . . . . . 81
4.3 The Concept of SPI-Closed and Its Properties . . . . . . . . . . . . . . 83

4.3.1 Classic Co-location Pattern Mining . . . . . . . . . . . . . . . 83
4.3.2 The Concept of SPI-Closed . . . . . . . . . . . . . . . . . . . . . 85
4.3.3 The Properties of SPI-Closed . . . . . . . . . . . . . . . . . . . 86

4.4 SPI-Closed Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Preprocessing and Candidate Generation . . . . . . . . . . . 89
4.4.2 Computing Co-location Instances and Their PI

Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 The SPI-Closed Miner . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Qualitative Analysis of the SPI-Closed Miner . . . . . . . . . . . . . . 95
4.5.1 Discovering the Correct SPI-Closed Co-location

Set Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.2 The Running Time of SPI-Closed Miner . . . . . . . . . . . 96

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6.1 Experiments on Real-life Data Sets . . . . . . . . . . . . . . . 97
4.6.2 Experiments with Synthetic Data Sets . . . . . . . . . . . . . 100

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Top-k Probabilistically Prevalent Co-location Patterns . . . . . . . . . . 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Why Mining Top-k Probabilistically Prevalent Co-location

Patterns (Top-k PPCPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xii Contents



5.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.1 Spatially Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.2 Prevalent Co-locations . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.3 Prevalence Probability . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.4 Min_PI-Prevalence Probabilities . . . . . . . . . . . . . . . . . 114
5.3.5 Top-k PPCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 A Framework of Mining Top-k PPCPs . . . . . . . . . . . . . . . . . . . 115
5.4.1 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.2 Analysis and Pruning of Algorithm 5.1 . . . . . . . . . . . . 116

5.5 Improved Computation of P(c, �min_PI) . . . . . . . . . . . . . . . . . 117
5.5.1 0-1-Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5.2 The Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.3 Polynomial Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Approximate Computation of P(c, �min_PI) . . . . . . . . . . . . . . 125
5.7 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7.1 Evaluation on Synthetic Data Sets . . . . . . . . . . . . . . . . 128
5.7.2 Evaluation on Real Data Sets . . . . . . . . . . . . . . . . . . . 134

5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Non-redundant Prevalent Co-location Patterns . . . . . . . . . . . . . . . . 137
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Why We Need to Explore Non-redundant Prevalent

Co-locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.1 Semantic Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.2 δ-Covered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.3 The Problem Definition and Analysis . . . . . . . . . . . . . 145

6.4 The RRclosed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.5 The RRnull Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.5.3 The Correctness Analysis . . . . . . . . . . . . . . . . . . . . . . 155
6.5.4 The Time Complexity Analysis . . . . . . . . . . . . . . . . . . 156
6.5.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.6.1 On the Three Real Data Sets . . . . . . . . . . . . . . . . . . . . 158
6.6.2 On the Synthetic Data Sets . . . . . . . . . . . . . . . . . . . . . 161

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Dominant Spatial Co-location Patterns . . . . . . . . . . . . . . . . . . . . . . 167
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.2 Why Dominant SCPs Are Useful to Mine . . . . . . . . . . . . . . . . . 168
7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.4 Preliminaries and Problem Formulation . . . . . . . . . . . . . . . . . . 172

Contents xiii



7.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.3 Formal Problem Formulation . . . . . . . . . . . . . . . . . . . 179
7.4.4 Discussion of Progress . . . . . . . . . . . . . . . . . . . . . . . . 179

7.5 Proposed Algorithm for Mining Dominant SCPs . . . . . . . . . . . . 180
7.5.1 Basic Algorithm for Mining Dominant SCPs . . . . . . . . 180
7.5.2 Pruning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.5.3 An Improved Algorithm . . . . . . . . . . . . . . . . . . . . . . . 186
7.5.4 Comparison of Complexity . . . . . . . . . . . . . . . . . . . . . 187

7.6 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.6.3 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.6.4 Real Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 High Utility Co-location Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.2 Why We Need High Utility Co-location Pattern Mining . . . . . . 202
8.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.3.1 Spatial Co-location Pattern Mining . . . . . . . . . . . . . . . 204
8.3.2 Utility Itemset Mining . . . . . . . . . . . . . . . . . . . . . . . . 205

8.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.5 A Basic Mining Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.6 Extended Pruning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.6.1 Related Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.6.2 Extended Pruning Algorithm (EPA) . . . . . . . . . . . . . . . 210

8.7 Partial Pruning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.7.1 Related Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.7.2 Partial Pruning Algorithm (PPA) . . . . . . . . . . . . . . . . . 217

8.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.8.1 Differences Between Mining Prevalent SCPs and High

Utility SCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.8.2 Effect of the Number of Total Instances n . . . . . . . . . . 219
8.8.3 Effect of the Distance Threshold d . . . . . . . . . . . . . . . . 219
8.8.4 Effect of the Pattern Utility Ratio Threshold ξ . . . . . . . 219
8.8.5 Effect of s in vss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.8.6 Comparing PPA and EPA with a Different Utility

Ratio Threshold ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9 High Utility Co-location Patterns with Instance Utility . . . . . . . . . . 223
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.2 Why We Need Instance Utility with Spatial Data . . . . . . . . . . . 224
9.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

xiv Contents



9.4 Related Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
9.5 A Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.6 Pruning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
9.7 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

9.7.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.7.2 The Quality of Mining Results . . . . . . . . . . . . . . . . . . 236
9.7.3 Evaluation of Pruning Strategies . . . . . . . . . . . . . . . . . 237

9.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

10 Interactively Post-mining User-Preferred Co-location Patterns
with a Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.2 Why We Need Interactive Probabilistic Post-mining . . . . . . . . . 242
10.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
10.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

10.4.1 Basic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.4.2 Subjective Preference Measure . . . . . . . . . . . . . . . . . . 247
10.4.3 Formal Problem Statement . . . . . . . . . . . . . . . . . . . . . 247

10.5 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.5.1 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.5.2 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

10.6 The Complete Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
10.6.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
10.6.2 Two Optimization Strategies . . . . . . . . . . . . . . . . . . . . 253
10.6.3 The Time Complexity Analysis . . . . . . . . . . . . . . . . . . 254

10.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.7.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.7.2 The Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.7.3 Accuracy Evaluation on Real Data Sets . . . . . . . . . . . . 257
10.7.4 Accuracy Evaluation on Synthetic Data Sets . . . . . . . . 262
10.7.5 Sample Co-location Selection . . . . . . . . . . . . . . . . . . . 263

10.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

11 Vector-Degree: A General Similarity Measure for Co-location
Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.2 Why We Measure the Similarity Between SCPs . . . . . . . . . . . . 266
11.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

11.3.1 Spatial Co-location Pattern (SCP) . . . . . . . . . . . . . . . . 268
11.3.2 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
11.3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

11.4 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
11.4.1 Maximal Cliques Enumeration Algorithm . . . . . . . . . . 270
11.4.2 A Representation Model of SCPs . . . . . . . . . . . . . . . . 274

Contents xv



11.4.3 Vector-Degree: the Similarity Measure of SCPs . . . . . . 278
11.4.4 Grouping SCPs Based on Vector-Degree . . . . . . . . . . . 279

11.5 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
11.5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
11.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

11.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

xvi Contents



Chapter 1
Introduction

As application areas such as earth science, public health, public transportation,
environmental management, social media services, location services, multimedia,
and so on started to produce large and rich datasets, it quickly became clear that there
was potentially valuable knowledge embedded in this data in the form of various
spatial features. Spatial co-location pattern mining developed to identify these
interesting but hidden relationships between spatial features (Shekhar & Huang,
2001; Huang et al., 2004; Shekhar et al., 2015).

Spatial co-location patterns (SCPs) represent subsets of spatial features (spatial
objects, events, or attributes), and SCP mining is essential to reveal the frequent
co-occurrence patterns among spatial features in various applications. For example,
these techniques can show that West Nile virus usually appears in areas where
mosquitoes are abundant and poultry are kept; or that botanists discover that 80%
of sub-humid evergreen broadleaved forests grow with orchid plants (Wang et al.,
2009b).

In this chapter, we first briefly look at the emergence, evolution, and development
of SCP mining; summarize the current major challenges and issues troubling SCP
mining techniques; and indicate how preference-based SCP mining may be the
future. Finally, an overview picture of the related content of the book is given and
the topics that will be covered in each chapter are briefly introduced.

1.1 The Background and Applications

The emergence of SCP mining techniques has been driven by three forces:

• First, with the development of general data mining techniques, the mined objects
extended from the initial relational and transactional data to spatial data. Spatial
data has become important and widely used data, containing richer and more
complex information than the traditional relation-based or transaction-based data.
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Although general data mining originated in relational and transactional databases,
the rich knowledge discovery from spatial databases has brought attention to the
available research on SCP data mining.

• Second, areas such as mobile computing, scientific simulations, business science,
environmental observation, climate measurements, geographic search logs, and
so on are continually producing enormous quantities of rich spatial data. Manual
analysis of these large spatial datasets is impractical, and there is a consequent
need for efficient computational analysis techniques for the automatic extraction
of the potentially valuable information. The emergence of data mining and
knowledge discovery would have been very constrained without the development
of geo-spatial data analysis.

• Third, differently to traditional data, spatial data is often inherently related, so the
closer is the location of two spatial objects, the more likely they are to have
similar properties. For example, the closer the geographical locations of cities are,
the more similar they are in natural resources, climate, temperature, and economic
status. However, because spatial data is combined with other characteristics in
massive, multi-dimension databases, possibly with uncertainty, it is necessary to
use specific and targeted techniques. At its simplest, spatial co-location pattern
discovery is directed toward processing data with spatial contexts to find subsets
of spatial features that are frequently located together.

Spatial co-location pattern (SCP) mining, as one important area in spatial data
mining, has been extensively researched for the past twenty years (Shekhar &
Huang, 2001; Huang et al., 2004; Huang et al., 2008; Yoo et al., 2004, Yoo &
Shekhar, 2006; Celik et al., 2007; Lin and Lim, 2008; Xiao et al., 2008; Wang et al.,
2008; Wang et al., 2009a, b; Yoo & Bow, 2011a, b, 2012, 2019; Wang et al.,
2013a, b; Barua & Sander, 2014; Qian et al., 2014; Andrzejewski & Boinski, 2015;
Li et al., 2016; Zhao et al., 2016; Ouyang et al., 2017; Wang et al., 2018a, 2018b, c;
Yao et al., 2018; Bao & Wang, 2019; Ge et al., 2021; Yoo et al., 2014, 2020; Liu
et al., 2020; Yao et al., 2021). An early paper described “a set of spatial features
(spatial objects, events, or attributes) which are frequently observed together in a
spatial proximity.” They also defined a distance-based interest measure called the
participation index to assess the prevalence of a co-location and some of the basic
nomenclature which has been used ever since.

Let F be the set of spatial features, S be the set of spatial instances. For a feature
f2F, the set of all instances of f is denoted as N( f ). Let R be a neighbor relationship
over pairwise instances. Given two instances i2S, i’2S, we say they have neighbor
relationship if the distance between them is no larger than a user-specified distance
threshold d, i.e., R(i, io’) , distance(i, i’) � d. A co-location c is a subset of the
feature set F, c ⊆ F. The number of features in c is called the size of c. A set of
instances RI is a row instance of c, if it satisfies the following two constraints, (1) RI
covers all features of c and no proper subset of RI does so, (2) R(oi, oj) holds for
every pairwise instances ii2RI, ij2RI, i.e., instances in RI form a clique.

Given a co-location c ¼ {f1, f2. . ., fk}, k � 2, where fi (1 � i � k) is a spatial
feature, the participation ratio of feature fi in c, denoted as PR(c, fi), is calculated by

2 1 Introduction



PR(c, fi) ¼ |N(c, fi)|/|N( fi)|, where |N(c, fi)| is the number of instances of fi occurring
in row instances of c, |N( fi)| is the total number of instances of fi; the participation
index of c, denoted as PI(c), is the minimum participation ratio of all features in c.

A co-location is prevalent if its participation index is no less than a specific
prevalence threshold min_prev, often user-supplied. The role of research, and the
subject of this book, is to establish reliable techniques for finding SCPs, and
validating the implications.

Example 1.1 Figure 1.1 is a simple example of a spatial data set. Different icons
represent different spatial features, such as “ ” for house. In this figure there are
five spatial features, and four instances of each spatial feature. From the figure, we
can see that there are two SCPs { , } and { , } whose instances
frequently appear adjacent. The intuitive implications are that “frequent forest fires
are associated with a large number of dead trees,” and that “houses and birds often
appear together, possibly indicating that people’s living environment has improved.”

Since the 2001 start there have been many useful applications.

• Ecology and environment: SCP mining techniques have helped answer the
following questions: “Which animals (plants) living (growing) spaces overlap?”,
“What is the link between epidemic generation and environmental pollution?”,
and “How does the introduction of new species affect biodiversity?” The data
sources for answering these questions have been GPS based sensors continually
collecting ecology and environmental data, so the answers typically came from
mining co-location patterns of these data.

• Biology and medicine: SCPs discovered in biologic and medical data can help
researchers to gain insights into the association between species or diseases in
spatial environments. For example, the SCP of “poor mosquito control site and
the presence of birds imply human cases of West Nile disease”was discovered by
analyzing a dataset of medical data records.

Fig. 1.1 An example of
spatial co-location patterns
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• Transportation: SCPs have been used to analyze the spatio-temporal correlation
between congested highway sections, used to identify the spatio-temporal distri-
bution patterns of congestion, or used to discover congestion propagation patterns
etc., where the congestion has spatio-temporal relevance and transitivity. The
propagation rule of traffic congestion is an important basis for formulating
targeted traffic management. In traffic congestion events, different treatment
schemes for traffic congestion will produce different congestion propagation
effects. Therefore, identifying the propagation path that plays a key role in
congestion propagation and effective management of relevant roads is an effec-
tive way to alleviate the urban traffic congestion.

• Business: Store-location planners would like to know the different types of
neighboring spatial objects (features) frequently appearing together. With this
knowledge, the planners can determine the expected profitability of similar stores
and its surrounding synergistic objects, and so make better decisions relating to
investment in new stores.

• Facilities search: Co-located searches from geographic search logs help search
suggestion. For example, popular hotel chains are good suggestions for a simple
search such as “hotel,” where the popular element is based on patterns mined
from logs. Learning the patterns may help with searches on a different space.
Thus, a popular casino-themed hotel “MGM Grand” may be returned for people
searching for Las Vegas hotels, because {“hotel”, “MGMGrand”} is a co-located
query pattern in Las Vegas, whereas “Ilikai hotel” may be suggested for people
searching for a hotel in the Hawaii area because {“hotel”, “Ilikai hotel”} is a
co-located query pattern in Hawaii, and the search strategies can be taken from
one to the other.

• User modeling and user experience: Like facilities search, SCPs discovered
from GPS logs can be used for user modeling. We can identify users sharing
co-located trajectories as a group of users having similar interests. Then, point of
interests (POIs) can be recommended to a user based on the historical trajectories
of other users in the same group.

• Mobile Apps: A mobile app developer may well be interested in knowing about
requested services ordered by users located close to one another in neighboring
areas. The knowledge of which services are frequently requested nearby areas can
be used for providing location-based services. It can also be used for providing
suitable location-sensitive advertisements, recommendations, and so on.

• Urban planning: SCPs are essential to the full consideration of the direction of
urban development, providing the basis for the balanced and reasonable layout of
urban residence, transportation, medical, education, and other infrastructure. For
example, the co-location patterns, “there are no postal services and telecoms near
to 60% of schools and residences” or “there are 49% of schools and pharmacies
occurring together, but no banks,” discovered from urban planning data indicate
that the planning of the postal services, telecoms, and banks may need to be
rethought, in order to reduce the radius of population flow, and further reduce the
traffic pressure of cities.

4 1 Introduction



• Others: Geologists and ecologists are typical, established users of SCP discov-
ery, and the techniques are rapidly spreading to other application areas. Some are
non-GPS applications, e.g., web page navigation, but spatially distributed data
remain at the core of the applications relevant to this book.

1.2 The Evolution and Development

Originally, spatial co-location pattern (SCP) mining was regarded as a special case of
spatial data mining, but SCPs turned out to present special challenges, in turn
attracting a lot of academic research (Morimoto, 2001; Huang et al., 2004; Zhang
et al., 2004; Yoo & Shekhar, 2006; Wang et al., 2008; Yao et al., 2016; and so on).
The following is the main line of development in the SCP mining field.

• Morimoto (2001) first defined the problem of finding frequent neighboring
co-locations in spatial databases. They used support, that is, the number of
instances of a co-location, to measure the degree of interest of a co-location.
Their approach uses a non-overlapping space partitioning scheme and identifies
instances of a size-k + 1 co-locations by grouping instances of a size-k
co-locations with instances of another feature. This early space partitioning
approach may miss co-location instances across partitions and therefore might
not find all patterns.

• Shekhar and Huang (2001) re-formulated the SCP mining problem, and Huang
et al. (2004) proposed a general framework for the SCP mining. They defined the
participation index, which is more statistically meaningful than support, to
measure the degree of interest of an SCP. The participation index not only has
statistical significance, but also satisfies the anti-monotone property which can be
employed to enhance algorithmic efficiency. Utilizing the anti-monotone prop-
erty, an Apriori-like search approach was proposed, called the join-based algo-
rithm (Huang et al., 2004). Multiple studies were later presented to further
improve the efficiency of SCP mining, such as the join-less approach (Yoo &
Shekhar, 2006), tree-based approaches (Wang et al., 2008), and clique-based
approaches (Yao et al., 2016; Bao &Wang, 2019; Tran et al., 2019a). In addition,
some parallel algorithms were designed for massive spatial data analysis, such as
MapReduce-based algorithms (Yang et al., 2018b, c, 2020; Yoo et al., 2020) and
GPU-based (Andrzejewski & Boinski, 2018; Andrzejewski & Boinski, 2019).

• Utilizing the basic participation index measure, some variants were proposed to
process different types of data or achieve different mining objectives. Xiao et al.
(2008) proposed a density-based approach to identifying co-location instances.
They divide spatial instances into partitions and identify co-location instances in
dense partitions first. Ge et al. (2021) addressed the problem of discovering
co-locations from extended spatial objects. Yang et al. (2019, 2021) proposed a
weighted participation index to discover SCPs from spatial data with rare fea-
tures. Hu et al. (2020) studied how to discover co-locations from dynamic spatial
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data. Wang et al. (2013a) proposed the discovery of SCPs from uncertain data. Lu
et al. (2018) further researched some interesting relationships among features in a
co-location, such as symbiotic, competitive, and causal relationships. Yao et al.
(2017) presented a kernel-density-estimation-based model to discover
co-locations by considering the distance decay effect. Tran et al. (2019b, c),
Tran and Wang 2020 and Wang et al. (2019a) studied ways to automatically
determine the neighbor relationship between spatial instances in spatial
co-location pattern mining. Fang et al. (2017) proposed dominant-feature
co-location mining to consider those features playing a dominant role in an
SCP. Wang et al. (2019b) studied sub-prevalent co-location mining to address
the issue that the participation index only considers clique instances and may
overlook some important spatial correlations. Chan et al. (2019) adapted the
participation index to a novel interest measure called Fraction-Score, which
calculated the contribution of objects in the form of a fraction, so that it could
alleviate the problem that the contribution of objects may be over-counted by the
participation index when multiple objects overlap.

• In addition to apriori-gen-based approaches, there are clustering-based SCP
discovery methods (Estivill-Castro and Murray, 1998; Estivill-Castro and Lee,
2001; Huang et al., 2005; Huang & Zhang, 2006). The method proposed by
Estivill-Castro and Murray (1998), Estivill-Castro and Lee (2001) first clusters
the objects of a class and approximates each cluster by a polygon, the method
then overlays the polygons of all classes together. The overlapping area of poly-
gons are used to measure how frequently different classes are neighbors. A
method proposed by Huang and Zhang (2006) constructs a proximity matrix
and applies existing clustering methods to find co-location class clusters. By
introducing fuzzy set theory, Lei et al. (2019) and Wang et al. (2021) defined the
fuzzy proximity between features based on the fuzzy proximity relation between
instances, and developed a fuzzy C-medoids clustering algorithm to cluster the
features for mining the SCPs. The common problem of the clustering based
methods is that the resulting patterns are not fixed. When different clustering
methods or parameters are used, the resulting patterns may be quite different.

• Researchers have studied the problem of maximal SCP mining (Wang et al.,
2009b; Yoo & Bow, 2011b; Yao et al., 2016; Yoo & Bow, 2019; Tran et al.,
2021). The concept of maximal SCPs is based on a lossy condensed representa-
tion, which infers the original collection of interesting co-locations but not their
participation index (PI) values. The introduction of closed SCPs creates a lossless
condensed representation (Yoo & Bow, 2011a, 2012; Wang et al., 2018b), which
can infer not only the original collection of prevalent SCPs but also their PI
values. The redundancy reduction problem of prevalent SCPs has been studied
(Wang et al., 2018a).

• Bao et al. (2016, 2021), Bao and Wang (2017) proposed an interactive approach,
OICM (ontology-based interesting co-location miner), to find interesting
co-location patterns, but the ontology-based method requires users to explicitly
construct a reasonably precise background knowledge, which is found to be
difficult in many real applications. To overcome this drawback, an interactive

6 1 Introduction



probabilistic post-mining method to discover user-preferred co-location patterns
is proposed in Wang et al. (2018c).

• Because different features may have different “value,” Yang et al. (2015) intro-
duced the concept of utility in SCP mining, defining the concepts of pattern utility
and pattern utility rate, and putting forward an efficient high utility SCP mining
method with appropriate algorithm. As the utility between different instances
under the same features may also be different, Wang et al. (2017a) extend
“utility” to the spatial instance level, define the internal utility rate and the
inter-utility rate to capture the global impact of each feature in the pattern, and
propose utility participation index as a measure of interest to mine high utility
SCPs from the spatial data sets with instance-specific utilities.

1.3 The Challenges and Issues

Faced with different spatial data, different objectives and different applications,
traditional SCP mining often encounters challenges and issues. We sum up the
current main challenges and issues as follows.

Too many mining results. Traditional algorithms for mining SCPs find all
prevalent SCPs. Often, in order not to lose interesting SCPs, the user sets a small
prevalence threshold, which will mine a large number of results in which only a
small proportion are interesting. This problem is further exacerbated by the down-
ward closure property that holds for the prevalence measure (the PI) in SCP mining,
whereby all of the 2l subsets of each l-size prevalent SCP are included in the result
set. In this book, we tackle the problem of too many mining results by answering the
following questions:

• How to find a condensed representation of SCPs from a huge number of mined
results?

• How to design a proper constraint/preference for the user in SCP mining?
• What is a natural criterion for ranking patterns and presenting the “best” SCPs?
• How can we derive some pruning properties from the constraints to improve the

efficiency of the corresponding preference-based mining?

Serviceability. SCP mining aims to guide applications and aid decision-making,
but the existing SCP mining methods rarely consider domain knowledge, application
background, or constraints, so they mine countless unrelated, incomprehensible, and
even abnormal SCPs. We need to know how to introduce constraints, background,
and domain knowledge into SCP mining so as to improve the serviceability of
mining results.

Dependability. When we face a massive spatial database, the SCP mining
technology should not only consider the appropriateness of mining algorithms, but
also consider their scalability. By dependability we mean appropriateness and
scalability. The dependability issue is not only a difficult problem in this book, but
also a continual challenge for researchers in the field of data mining technology.
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Gaps between the transaction pattern and the spatial pattern. Although SCP
mining is often compared to classical association rule mining, it is a more difficult
process to mine SCPs. Firstly, there is no concept of transaction or similar transac-
tion in spatial data. This leads not only to the difficulty of SCP mining, but also to the
challenge of mining preference-based SCPs. In association rule mining, transactions
are used to calculate the distance between two patterns P1 and P2,
(D P1,P2ð Þ ¼ 1� T P1ð Þ\T P2ð Þ

T P1ð Þ[T P2ð Þ, where T(P) is the set of transactions containing pattern

P). Note that the distance measure between two SCPs is not a straightforward
problem. Secondly, different instance distributions and different feature distributions
of spatial data are continuous and gradually changing, and there is not necessarily
any clear dividing line. For example, there is no obvious dividing line between
different natural geographical zones, such as different climatic zones or different
plant zones. Therefore, the neighbor measure of the instances becomes very impor-
tant and, depending on its choice, the pattern space searching requires much more
time and space.

1.4 Content and Organization of the Book

It is essential to study the theories and algorithms of preference-based SCP mining in
order to solve the challenges and issues mentioned in the previous section.
Preference-based SCP mining refers to mining constrained or condensed SCPs
instead of mining all prevalent SCPs. Specifically, this book includes problems
such as maximal SCP mining, closed SCP mining, top-k SCP mining,
non-redundant SCP mining, dominant SCP mining, high utility SCP mining, and
interactive SCP mining. The book’s organization is shown in Fig. 1.2 and below is a
brief introduction to the topics that will be covered in each chapter.

Chapters 2, 3, and 4: Based on the anti-monotonic constraint of the SCP
prevalence measure (the participation index (PI)), Chapters 2, 3, and 4 outline
“natural preference” or “best” SCPs. Chapter 2 presents a novel maximal SCP
mining framework based on maximal cliques and hash tables. In Chapter 3, a new
concept of the maximal sub-prevalent SCPs is given which replaces traditional
clique instances with star participation instances, and two efficient algorithms for
mining the maximal sub-prevalent SCPs are also presented. Chapter 4 proposes a
novel lossless condensed representation of prevalent SCPs, super participation
index-closed (SPI-closed) SCPs. An efficient SPI-closed Miner is designed to
effectively capture the SPI-closed SCPs.

Chapter 5: Setting suitable prevalence thresholds is an issue in SCP mining. One
effective way is to mine top-k SCPs, and Chapter 5 studies the top-k probabilistic
prevalent SCPs based on a possible world model. We find that top-k probabilistic
prevalent SCP mining can be regarded as a convenient alternative to the uncertainties
of mining all co-locations with a prevalence probability above a fixed threshold,
since the parameter k allows, in practice, for a better control on the size of output.

8 1 Introduction



Chapters 6 and 7: The prevalence of an SCP is determined by the spatial
distribution of its instances. Based on the information of the instance distribution
of the pattern, new concepts of non-redundant SCPs and dominant SCPs are shown
to mine optimized SCPs. Chapter 6 develops two algorithms to perform the redun-
dancy reduction of prevalent SCPs. The concept of dominant SCPs, where an SCP is
dominant if it is not dominated by another, is outlined in Chapter 7. An algorithm
called DCPMA (dominant co-location pattern mining algorithm) is presented to
implement the dominant SCP mining technique.

Chapters 8 and 9: In traditional SCP mining, the selection of result patterns is
generally based on a frequency framework, ignoring some interesting but low
frequency patterns, and mining a lot of frequent but uninteresting patterns. Chapters
8 and 9 therefore discuss the problem of high utility SCP mining. Chapter 8 studies
and resolves the problem of high utility SCP mining from spatial databases which
emphasize features, and chapter 9 studies the mining problem of spatial databases
which emphasize instances.

Chapter 10: All SCP mining is instigated by a user and the user rarely wants a
black-box process. To satisfy user preferences, Chapter 10 proposes an interactive
probabilistic post-mining method to discover user-preferred SCPs by iteratively
involving user feedback and probabilistically refining user-preferred patterns. The

Fig. 1.2 The content and organization of the book
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goal of this chapter is to show how the user can effectively post-mine preferred
co-location patterns. Rather than requiring the user to explicitly construct the entire
prior knowledge beforehand, we merely ask them to choose preferred co-location
patterns in a small set of sample co-location patterns.

Chapter 11: Chapters 2–10 we have developed several similarity measures for
co-location patterns. However, none of these can quantitatively measure the simi-
larity between any two SCPs. In Chapter 11, a new representation of SCPs based on
maximal cliques in spatial data sets is presented, whereby the spatial information of
the co-location instance can be saved without loss. A general similarity measure that
can calculate the similarity degree of any two SCPs without adding further domain
information is developed. Finally, a hierarchical clustering algorithm is used to
group SCPs by the proposed similarity measurement.

10 1 Introduction



Chapter 2
Maximal Prevalent Co-location Patterns

2.1 Introduction

In spatial co-location pattern mining, we use the participation index (PI) as a
prevalence measure, which satisfies the downward inclusion property (Huang
et al., 2004). That is, if a co-location pattern is prevalent with respect to a threshold
of PI, then all of its subsets will be found to be prevalent co-location patterns.
Unfortunately, as the number of spatial features increases, the search space of
co-location mining algorithms exponentially increases. This exponential complexity
increases the computational time of mining all prevalent co-location patterns and can
restrict the related algorithms to mine only spatial data sets of limited size.

In fact, the traditional Apriori-like method to generate size-k prevalence
co-locations after size-(k � 1) prevalence co-locations have been established gener-
ally suffers from the following two non-trivial costs:

1. It is costly to handle a huge number of candidate co-locations. For example, if
there are 103 spatial features, the Apriori-like algorithms will need to generate
more than 105 size-2 candidates and test their prevalence. If the user wants to
discover a prevalent co-location of size-100, such as {f1,. . ., f100}, about 10

30

candidates must be generated in total. This is an inherent cost of generating the set
of all prevalent co-location patterns, no matter what implementation technique is
applied.

2. It is wasteful to store excessive table instances of co-location patterns, especially
so when the number of table instances is very large.

From Tran, V., Wang, L.*, Chen, H., Xiao, Q.: MCHT: A maximal clique and hash table-based
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Can the number of co-location patterns generated in all prevalent co-location
pattern mining be substantially reduced while preserving the complete information
regarding the set of prevalent co-location patterns?

This question motivates this chapter’s study, how to mine onlymaximal prevalent
co-location patterns (MPCPs). Of course, a co-location pattern is maximal if and
only if it is prevalent and it does not have any prevalent super-set.

A novel MPCP mining framework based on maximal cliques and hash tables
(MCHT for short) is developed in this chapter. The MCHT algorithm first materi-
alizes neighbor relationships of instances into a set of maximal cliques. By
employing maximal cliques, it not only ensures that no neighboring instances are
lost, but it is also a compact storage strategy that reduces the memory space cost. To
accelerate the speed of enumeration of maximal cliques, the advantages of bit string
operations are fully utilized. Once obtained, these cliques are then converted to a
participating instance hash table structure which is carefully designed to efficiently
query and gather information about the participating instances of co-location pat-
terns. Finally, based on the hash table structure, the prevalence of each pattern can be
calculated and MPCPs quickly filtered.

This chapter proceeds as follows:

1. A novel MPCP mining framework is put forward to eliminate the shortcomings of
existing algorithms which follow the conventional generate-test-candidate model.

2. The proposed mining framework makes full use of the advantages of various data
structures, e.g., maximal cliques compress neighboring instances compactly, and
hash tables accelerate queries so that computational time and memory space costs
are efficiently reduced.

3. Bit string operations are adopted to improve the speed of enumerating maximal
cliques.

4. A series of experiments is designed to determine whether the proposed mining
framework can efficiently discover all MPCPs.

Figure 2.1 presents the organization of this chapter. Section 2.2 discusses why
MCHT is proposed for mining MPCPs. Section 2.3 gives a clear problem statement
and the consequent mining framework. Section 2.4 presents the proposed algorithm
in detail, and the time and space complexities of our algorithm are also analyzed
here. The performance of our algorithm is evaluated by a set of experiments
described in Sect. 2.5. Section 2.6 concludes this chapter.

2.2 Why the MCHT Method Is Proposed for Mining
MPCPs

Chapter 1 indicated some of the sources of spatially located information, and more
data and more sources appear every day. Prevalent spatial co-location pattern
mining, which refers to discovering a set of Boolean spatial features whose instances
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frequently occur in close proximity to each other, is an important branch of spatial
data mining. Co-location pattern mining technology has become a powerful tool to
expose relationships and distribution rules of spatial features in geographic space
and the technology is widely applied in many domains such as urban planning
(Yu et al., 2017), location-based services (Yu, 2016), ecology (Cai et al., 2018;
Deng et al., 2017), criminology (Li & Shekhar, 2018; Mohan et al., 2011; Phillips &
Lee, 2012), environmental management (Akbari et al., 2015), and social science
(Sierra & Stephens, 2012).

For example, Fig. 2.2(a) shows a distribution of a set of facility points in a
Californian city. There are four different facility types (spatial feature types) of
these points, i.e., hotel, restaurant, bank, and bus stop. Each point (spatial instance)
describes the position where an object of a particular facility type is set; e.g., A.1 is a
specific hotel with its location (x1, y1). Intuitively, if it is the case that in the nearby
geographic space of a hotel (e.g., A.2), a restaurant is usually observed (e.g., B.2),
then {hotel, restaurant} could be called a prevalent co-location pattern. After
performing a rigorous co-location pattern mining analysis, a list of frequent facility
groups (each frequent facility group will be a prevalent co-location pattern) is
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produced, such as the one listed in Fig. 2.2(c), and these are given to users, very often
for decision support. For example, a restaurant investor seeking to expand operations
may be interested in the particular pattern {hotel, restaurant, bank}. He or she may
suspect that a new restaurant should be located in the neighborhood of hotels and
banks for maximizing their profit, but wishes to investigate more fully the spatial
relationships and the distribution rule relevant to hotels, restaurants, and banks. If
they do decide to open a new restaurant, the pattern {hotel, restaurant, bank, bus
stop} may then be useful to transportation planners so that bus stops could be set up
in close proximity to clusters of hotels, restaurants, and banks where the visitor flow
rate is high, with the possible benefit of increasing the passenger load factor of urban
public transport.

Spatial co-location pattern mining typically generates large numbers of redundant
patterns, making it difficult to draw meaningful inferences. Thus the notion of

Fig. 2.2 An example of spatial co-location patterns: (a) distribution, (b) facility point, and (c)
patterns
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maximal prevalent co-location patterns was proposed (Wang et al., 2009b) whereby,
if a prevalent co-location pattern does not have any prevalent super-patterns, the
pattern is maximal. Maximal prevalent co-location patterns are a condensed and
concise representation of all the prevalent co-location patterns contained in the
mined results. An example is in Fig. 2.2(c), where {hotel, restaurant, bank, bus
stop} is a maximal prevalent co-location pattern because it does not have any
prevalent super-patterns. This pattern is considered the most concise description of
the total mining result and so only it is given to users, instead of the confusing set of
all 11 prevalent co-location patterns.

Many MPCP mining algorithms have been developed (Wang et al., 2009b; Yoo
& Bow, 2011b; Yao et al., 2016; Yoo & Bow, 2019). All these algorithms are based
on a candidate-generation-and-test mining framework (Huang et al., 2004) that
employs a size-wise search model as shown in Fig. 2.3. In practice, users supply a
spatial data set which includes instances of the characteristics of interest to the user,
where these instances may belong to different feature types. Very often they are also
asked to supply a neighbor relationship and a prevalence threshold. Then the
neighboring instances are calculated by the given neighbor relationship and candi-
date sets are generated. Next, co-location instances of each candidate are collected. A
co-location instance is a set of instances that belong to different feature types and
both of them satisfy the neighbor relationship. After that, the participation indexes of
the candidates are calculated, to measure its prevalence. Finally, the candidates
become prevalent co-location patterns if their participation index is not smaller
than the prevalence threshold. Furthermore, if the patterns have no super-patterns,
they are marked as maximal PCPs and they are given to the user.

Although algorithms of this kind can discover MPCPs correctly and completely
there are some shortcomings:

1. As indicated in the introduction to this chapter the number of candidates grows
exponentially as features are included (Mohan et al., 2011; Wang et al., 2009b).
Suppose that m is the number of feature types, then in the worst case, (2m � 1)
candidates will be generated. For realistic data sets, the computational time of
processing such a huge number of candidates is prohibitive.

2. Collecting co-location instances of candidates is the heaviest task and it takes up
the bulk of the execution time of the mining process. Figure 2.4 shows the
execution time of each phase in two typical algorithms, the joinless algorithm
(Yoo & Shekhar, 2006) and the improved co-location pattern instance tree
algorithm (iCPI-tree) (Wang et al., 2009a). Both of these two algorithms follow
the candidate-generate-test mining framework shown in Fig. 2.3.

Fig. 2.3 A common framework of mining maximal PCPs
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3. The flexibility of these algorithms is relatively poor. When users alter minimum
prevalence thresholds and/or distance thresholds in order to meet their application
needs, the candidate-generate-test framework has to be run again from the start
meaning that these algorithms must re-generate candidates, re-collect co-location
instances, and re-filter prevalent patterns. Since collecting co-location instances is
a very time-consuming task, users can be deterred from experimenting with their
input.

To eliminate these shortcomings, a novel MPCP mining framework based on
maximal cliques and hash tables (MCHT for short) is developed in this chapter. The
candidate-generate-test mining framework is completely abolished in the MCHT
framework. Our algorithm first materializes neighbor relationships of instances into
a set of maximal cliques. By employing maximal cliques, it not only ensures that no
neighboring instances are lost, but it is also a compact storage strategy that reduces
the memory consumption. In order to accelerate the speed of enumerating maximal
cliques, the advantages of bit string operations are utilized. These cliques are then
converted to a participating instance hash table structure which is designed to
efficiently query and gather information about participating instances of maximal
co-location patterns. Each key and each value of the hash table are the set of features
and instances of objects in maximal cliques, respectively. Finally, based on the hash
table structure, the participation index of each candidate pattern can be efficiently
calculated, and MPCPs are quickly filtered.

Fig. 2.4 The execution
time devoted to each phase
in (a) the joinless algorithm
and (b) the iCPI-tree
algorithm
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2.3 Formal Problem Statement and Appropriate Mining
Framework

In this section, the concepts of spatial co-location pattern mining are described
briefly, but formally, and then the problem of maximal prevalent co-location pattern
(MPCP) discovering is defined formally.

2.3.1 Co-Location Patterns

Definition 2.1 (Spatial feature and spatial instance) A spatial feature f is a type of
spatial data contained in a dataset. A spatial instance o is an object of a spatial feature
represented by a triple vector<spatial feature type, instance ID, location (x, y)> and
we use o.f to represent that instance o belongs to spatial feature type f.

In different domains, particular spatial features and particular spatial instances
depend on their context. In the ecology domain (Cai et al., 2018; Deng et al.,
2017), spatial instances are wetland species, e.g., Calamagrostis angustifolia,
Carex lasiocarpa, and each wetland species in a specific location refers to a spatial
instance, e.g., a piece of Calamagrostis angustifolia, a piece of Carex lasiocarpa.

In Fig. 2.2(a), we have Point of Interest (POI) data, whereby any points of interest
with a specific location such as a hotel, a restaurant, a bank, or a bus stop would be
considered as spatial instances. Each spatial instance belongs to different spatial
feature types; e.g., hotel A.1 belongs to the hotel spatial feature. There are four
different spatial feature types in Fig. 2.2(a): hotel (A), restaurant (B), bank (C), and
bus stop (D).

Definition 2.2 (Neighbor relationship) Given a set of spatial instances S, the
neighbor N(oi) of an instance oi 2 S is a set of instances that satisfy the distance
threshold d determined in advance by the user, i.e., N(oi) ¼ {oj | dist(oi, oj) � d ˄ oi.
f 6¼ oj.f}, where dist(oi, oj) is the distance between instances oi and oj.

For example, Fig. 2.5 shows the result after materializing neighbor relationships
of instances with a distance threshold d, for example, d ¼ 200 m. If two instances
have a neighbor relationship, they are connected by a solid line. Note that, according
to Definition 2.2 and the definition of a spatial co-location pattern (given in Defini-
tion 2.3 later), only instances that belong to different feature types can have a
neighbor relationship. Instances with the same feature types are not considered as
having the neighbor relationship, because we are looking for the co-located rela-
tionship of different features.

Definition 2.3 (Spatial co-location pattern) Given a set of spatial instances
S ¼ {S1, . . ., Sm}, where Si ¼ {o1, . . ., ot} is a set of instances of feature type
fi 2 F ¼ {f1, . . ., fm}, fi 6¼ fj, and a neighbor relationship NR, a spatial co-location
pattern is a subset of Boolean feature types, c ¼ {f1, . . ., fk} 2 F, 1 � k � m, whose
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instances frequently form a clique under the neighbor relationship NR. The number
of feature types in a spatial co-location pattern, k, is called the size of the pattern.

For example, as shown in Fig. 2.5, there are four different spatial feature types,
F ¼ {A, B, C, D}. The four feature types are combined into 11 possible feature type
sets, {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}, {A, B, C}, {A, B, D}, {A, C,
D}, {B, C, D}, and {A, B, C, D}. These feature type sets are called candidates.
Within these candidates, the size-3 candidates are {A, B, C}, {A, B, D}, {A, C, D},
{B, C, D}.

Definition 2.4 (Co-location instance and participating instance set) A
co-location instance I of a co-location pattern c ¼ {f1, . . ., fk} is the set of spatial
instances, I ¼ {o1, . . ., ok} 2 S, which includes all the feature types in c and each
instance pair has a neighbor relationship. The participating instance set of a pattern
c is the set of all co-location instances of c, π(c) ¼ {I1, . . ., It}. πf(c) is the set of
instances of feature type f that participates in π(c).

Definition 2.5 (Participation index) The participation index of a co-location
pattern c is used to quantify the prevalence of c and is calculated as PI(c) ¼ min

{jπ f cð Þj
jS f j }, f 2 c, where jπf(c)j is the number of non-repeating instances in the

participating instance set π(c) of f in c and jSfj is the total number of instances of
f in the input data set. We say an instance o of feature f participates in pattern c if
there is at least one co-location instance of c involving o.

Definition 2.6 (Prevalent co-location pattern) A pattern c ¼ {f1, . . ., fk} ⊆ F,
1 � k � m is prevalent if its participation index is not smaller than the prevalence
threshold μprev supplied by a user, i.e., PI(c) � μprev.

Fig. 2.5 An illustration of the spatial co-location pattern mining process
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Definition 2.7 (Maximal prevalent co-location pattern) Given that c is a preva-
lent co-location pattern if no super sets of c are prevalent, we say that c is a maximal
prevalent co-location pattern.

As plotted in Fig. 2.5, {A.4, C.3} is a co-location instance of pattern {A, C}. The
participation instance set of {A, D} is π({A, D}) ¼ ({A.2, D.2}, {A.2, D.3}, {A.3,
D.1}, {A.5, D.1}) and thus, πA({A, D})¼ {A.2, A.3, A.5), πD({A, D})¼ {D.2, D.3,
D.1}. Features A and D have 5 and 3 instances, respectively. Hence, the participation
index of {A, D} is PI({A, D})¼min(jπA A,Df gð Þj

jSAj , jπD A,Df gð Þj
jSDj )¼ (35 ,

3
3)¼ 0.6. Figure 2.5

also lists all participating instance sets of the other 10 candidates and their partici-
pation indexes. If a user set a prevalence threshold μprev ¼ 0.5, {A, B}, {A, C}, {A,
D}, {B, C}, {B, D}, {C, D}, {A, B, C}, {A, B, D}, {B, C, D} would be selected and
they are prevalent co-location patterns. Furthermore, we can mark {A, B, C}, {A, B,
D}, and {B, C, D} as maximal prevalent co-location patterns since they have no
super-patterns that are prevalent. While {A, B}, {A, C}, {B, C} are also prevalent,
they are subsets of pattern {A, B, C} and, therefore, these three prevalent patterns are
not maximal patterns. In the same way, {A, D}, {B, D}, {C, D} are also not maximal
patterns. Normally, only maximal prevalent co-location patterns are presented to
users.

To summarize, the problem statement of discovering maximal prevalent
co-location pattern is as follows: given a spatial data set S, a distance threshold d,
and a prevalence threshold μprev, the requirement is to develop an algorithm to
efficiently find all maximal prevalent co-location patterns (MPCPs), efficient in
both the computational time and memory consumption.

2.3.2 Related Work

The concept of co-location patterns was formally presented by Huang et al. (2004)
where the join-based algorithm was proposed. This algorithm uses an expensive join
operation to generate co-location instances of candidates. To avoid that weakness,
many other mining algorithms without join operations have been subsequently
developed. The partial-join algorithm (Yoo & Shekhar, 2006) partitions neighboring
instances into a set of separate cliques, all instances in a clique having a neighbor
relationship with each other, and co-location instances can be directly formed based
on these cliques. However, the partial-join algorithm needs to additionally maintain
the instances that are cut off between cliques, and collecting co-location instances
still requires the join operation. The following algorithms have all been proposed to
completely eliminate join operations, the joinless (Yoo & Shekhar, 2006), the
co-location pattern instance tree (CPI-tree) (Wang et al., 2008), the improved
co-location pattern instance tree (iCPI-tree) (Wang et al., 2009a), and the overlap
maximal clique partitioning (OMCP) (Tran et al., 2019a). In these algorithms,
joinless and iCPI-tree employ the generate-test candidate mining framework, while
CPI-tree and OMCP directly collect co-location instances without generating
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candidates. However, both of these two algorithms need a very large memory space
to hold all co-location instances at the same time.

Users in different domains will have data sets with different characteristics, and
some co-location pattern mining algorithms have been designed to process specific
data sets, examples being interval data (Wang et al., 2010), uncertain data (Wang
et al., 2013a, b), fuzzy data (Ouyang et al., 2017), and dynamic data (Duan et al.,
2018; Hu et al., 2020). As these data sets carry not only spatial location information
but also other data-specific attributes, it becomes harder to extract new knowledge
from these data sets.

In terms of the general spatial co-location pattern mining techniques we have
outlined, users need to give two thresholds, one being a distance threshold which
determines the spatial neighbor relationship between instances and the other being a
minimum prevalence threshold for filtering prevalent co-location patterns. However,
for ordinary users, it is problematic to give appropriate values to the two thresholds,
so co-location pattern mining algorithms without thresholds have been proposed,
such as distance threshold-free algorithms (Qian et al., 2014; Tran & Wang, 2020)
and non-minimum prevalence threshold algorithms (Barua & Sander, 2014).

So far, all of the mentioned co-location pattern mining algorithms are executed in
the main memory, but if the volume of data is large, these algorithms are impossible
to run because of their inability to load sufficient data into the available memory.
Indeed, discovering co-location patterns in the era of big data has become a major
challenge. To face this challenge, parallel co-location pattern mining algorithms
have been developed and then run on different platforms such as MapReduce (Yoo
et al., 2014; Yang et al., 2018b, c, 2020), Hadoop (Sheshikala et al., 2017), NoSQL
(Yoo et al., 2020), and the graphic processing unit (GPU) (W. Andrzejewski &
Boinski, 2018; Witold Andrzejewski & Boinski, 2015, 2019; Sainju et al., 2018).

Another major challenge is that as the mining normally results in many redundant
patterns, difficult for a user to manage or utilize, so the condensed co-location pattern
mining algorithms have been proposed. Yoo and Bow proposed an algorithm to
discover top-k closed co-location patterns (Yoo & Bow, 2011a, 2019). Two inter-
esting algorithms have been designed to discover condensed co-location patterns,
one reducing redundancy co-location patterns (Wang et al., 2018a) and the other
efficiently discovering lossless condensed prevalent co-location patterns (Wang
et al., 2018b).

Another compact representation of compressed co-location patterns is maximal
patterns. A maximal pattern is the most concise representation of the mining result
with the least number of patterns. The first maximal co-location pattern mining
algorithm was developed by Yoo and Bow (2011b) and named MaxColoc. This
algorithm first converts a set of neighboring instance transactions (Yoo & Shekhar,
2006) to a set of feature type neighboring transactions. Then a lexicographic subset
tree is constructed to prune candidates. Thus, unsatisfied prevalent candidates are
deleted in advance to reduce the number of candidates. After that, co-location
instances of each candidate are gathered by using the neighboring instance trans-
actions. In the MaxColoc algorithm, although the number of candidates is reduced, it
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is still time-consuming to collect co-location instances of the remaining candidates,
especially when the number of neighboring instances of each instance is large.

Wang et al. (2009b) proposed an order-clique-based (OCB) approach for mining
maximal co-location patterns. The OCB generates a set of candidates of maximal
co-location patterns by compressing the size-2 prevalent patterns (the number of
features in each pattern is 2) into a prefix-tree which is called a prevalence size-2
co-location header relationship tree (P2-tree). Then, co-location instances of each
candidate are identified by constructing a co-location instance-identifying tree for
each candidate (Ins-tree), where each branch of the tree is a co-location instance. The
Ins-tree is built based on another tree structure, the neighbor relationship tree (Neib-
tree), whose design is based on a set of ordered neighbor relationship sets of all
instances of each feature type. The OCB reduces the number of candidates and does
not need to store the co-location instances of size-k patterns in order to gather size-
(k + 1) patterns, so reducing the space required for mining maximal co-location
patterns. However, the copy sub-tree operation in Neib-tree needs to construct
Ins-tree for each candidate and is used very frequently. Thus, as OCB needs to
hold Neib-tree in main memory, the OCB algorithm is not appropriate with dense or
big data sets.

More recently, a sparse-graph and condensed tree-based maximal co-location
algorithm (SGCT) has been proposed (Yao et al., 2016) to tackle the drawback of the
OCB algorithm. To generate candidates of maximal co-location patterns, the SGCT
algorithm treats as a sparse graph those neighboring features which are determined
by the features in their size-2 prevalent patterns. A maximal co-location candidate is
a maximal clique in the sparse graph. To collect co-location instances of these
candidates, SGCT adopts a hierarchical verification approach to build a condensed
instance tree that stores co-location instances for each candidate. Each time the
co-location instances of a candidate are collected, only one condensed tree is kept
in memory, and thus SGCT reduces the requirement for memory space. However, if
the size of candidates is large and/or the data is dense and/or very big, the compu-
tational cost of the hierarchical verification phase becomes very expensive, so the
performance of the SGCT algorithm deteriorates rapidly.

2.3.3 Contributions and Novelties

In summary, the MaxColoc, OCB, SGCT algorithms improve the efficiency of
maximal co-location pattern mining from two design aspects: reducing the number
of candidates and designing a data structure to store the neighbor relationships of
instances enabling the quick collection of the co-location instances of these candi-
dates. However, they still adopt the generate-test candidate mining framework, and
most of the execution time is still occupied by collecting co-location instances of
candidates. Thus, the improvement in the performance of these algorithms is limited,
especially when dealing with large and/or dense spatial data sets. In order to remedy
the shortcomings of the generate-test candidate mining framework, in this book we
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propose a novel maximal co-location pattern mining framework, named MCHT,
which has a design based on maximal cliques and hash tables.

MCHT abolishes the candidate generation phase and the calculation of
co-location instances by directly calculating the participation indexes of
co-location patterns.

The main contributions of this approach to co-location mining are to be as
follows:

1. To propose a novel maximal prevalent co-location pattern mining framework.
Our mining framework will no longer use the generating candidate and collecting
co-location instances scheme.

2. The proposed mining framework will make full use of the advantages of various
data structures; e.g., maximal cliques materialize spatial neighboring instances,
hash tables accelerate the queries of maximal cliques, and thereby the computa-
tional time and memory consumption are reduced.

3. Bit-string operations will be adopted to improve the speed of enumerating
maximal cliques.

4. A series of experiments will be designed to demonstrate that the proposed mining
framework can efficiently discover all maximal prevalent co-location patterns.

2.4 The Novel Mining Solution

2.4.1 The Overall Mining Framework

Figure 2.6 shows the MCHT mining framework proposed in this study. It has five
phases, where the first and the last phases are the same as in the candidate-generate-
test mining framework. Enumerating maximal cliques is performed in the second
phase. The third phase compresses these maximal cliques into a participating
instance hash table structure. Although the function of the fourth phase is the same
as in previous algorithms, the implementation method is completely different. In
MCHT, the participation index of each pattern can be calculated by querying and
collecting information about participating instances from the hash table. Comparing
MCHT with the candidate-generate-test framework shown in Fig. 2.3, the superior-
ity of the MCHT framework is reflected by the two aspects: (1) it does not generate
candidates and (2) it does not collect co-location instances of candidates.

Fig. 2.6 The maximal clique and hash table–based MPCP mining framework
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In essence, spatial co-location pattern mining is a statistical process: it finds a
possible set of spatial features, based on the input data set and the neighbor
relationship, collects the instances that belong to this feature set and forms cliques
(each instance pair in a clique has to satisfy the neighbor relationship), and then
counts the number of non-repeating instances under each feature type that participate
in these cliques. So, in order to discover a complete result, the conventional
candidate-generate-test framework needs to validate the possibility of every
feature-type set. This is a mining framework from spatial feature’s point of view.

The proposed mining framework shown in Fig. 2.6 differs from the above
statistical method, as MCHT is designed from the viewpoint of maximal instance
cliques. Looking at the data in Fig. 2.5, we find that {A.2, B.2, C.4, D.2} is a
maximal clique and we can extract many co-location instances of different candi-
dates from the maximal clique; i.e., {A.2, B.2}, {A.2, C.4}, {A.2, D.2}, {B.2, C.4},
{B.2, D.2}, {C.4, D.2}, {A.2, B.2, C.4}, {A.2, B.2, D.2}, {A.2, C.4, D.2}, {B.2,
C.4, D.2}, and {A.2, B.2, C.4, D.2} are a co-location instance of {A, B}, {A, C},
{A, D}, {B, C}, {B, D}, {C, D}, {A, B, C}, {A, B, D}, {A, C, D}, {B, C, D}, and
{A, B, C, D}, respectively. Clearly one maximal clique {A.2, B.2, C.4, D.2} can
hold many co-location instances of candidates, so we only need to obtain and save
the one maximal clique instead of generating and saving all co-location instances of
candidates. Thus, we can immediately reduce storage space requirements.

After obtaining all the maximal cliques of a spatial data set, the question is raised
of how to gather participating instance sets of patterns from these maximal cliques.
To solve this question, we devise a participating instance hash table that compactly
stores the maximal cliques. As analyzed above, it only needs to count the number of
non-repeating instances under each feature type of a pattern, so the generation of all
co-location instances is now redundant. We can take advantage of the efficient query
of the hash table structure to get the number of participating instances in each
pattern. A quick query operation replaces the collection process contained in the
candidate-generate-test framework, so the efficiency of calculating participation
indexes can be radically improved.

2.4.2 Bit-String-Based Maximal Clique Enumeration

In this section, we describe the method of enumerating maximal cliques after
calculating neighbor relationships between instances under a distance threshold
d given by a user.

Definition 2.8 A neighboring instance graph, G(V, E), is an undirected graph which
is constructed by considering the neighbors of instances, where V¼ {oi}, 8oi 2 S is a
set of instances of the input data set and E ¼ {(oi, oj) | oj 2 N(oi) } is a set of edges
that connect neighboring instances.
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Taking the data set in Fig. 2.5 as an example, after executing the first phase, the
neighboring instances are connected by dotted lines and a neighboring instance
graph is generated.

Although the enumeration of maximal cliques is recognized as an NP-hard
problem, many efficient algorithms for enumerating maximal cliques have been
proposed (Cheng et al., 2012a; Eppstein et al., 2010; Eppstein & Strash, 2011;
Schmidt et al., 2009; Tomita, 2017; Tomita et al., 2016). For our purposes, we utilize
an efficient algorithm for listing all maximal cliques in large sparse real-world graphs
in near-optimal time which was developed by Eppstein et al. (2010). Algorithm 2.1
describes the pseudocode of the basic maximal clique enumerating algorithm used in
our work. Instances in graph G are sorted by their degeneracy (Step 1), where the
degeneracy of a graph G is the smallest value deg such that every non-empty
subgraph of G contains a vertex of degree of at most deg (Eppstein et al., 2010).
P is a set of instances which have not been considered yet, and X is a set of instances
that have already been considered to add to R, as R is a clique. If P [ X ¼ Ø,
R becomes a maximal clique because there are no instances that might be considered
to add into R to form a larger clique at this stage (Steps 7–9). For each instance ot in P
\N(oj), Algorithm 2.1 makes a recursive call for R [ {ot} and restricts P and X to the
neighbors of ot (Steps 11–12). Then, instance ot is deleted from P, P\{ot}, and is
appended to X, X [ {ot} (Steps 13–14).

Algorithm 2.1: Enumerating maximal cliques
function BRONKERBOSCHDEG()
Input: G(V, E)
Output: a set of maximal cliques, MCs
1). for oi in a degeneracy ordering o0,...,on of G(V, E) do
2).       P ← N(oi) ∩ {oi+1,...,on}
3).       X ← N(oi) ∩ {o0,...,oi-1}
4).       BRONKERBOSCHPIVOT(P, {oi}, X)
5). end for
6). end function

function BRONKERBOSCHPIVOT(P, R, X)
7). if P∪X = Ø then
8).     MCs.add(R)
9). else
10).     choose a pivot instance ∈ ∪ with ∩ = max∈ ∪ | ∩ ( )|
11).     for ∈ \ ( ) do
12).            BRONKERBOSCHPIVOT(P ∩ N(ot), R ∪ {ot}, X ∩ N(ot))
13).            P ← P \ {ot}
14).            X ← X ∪ {ot}
15).      end for
16). end if
17). end function
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For example, Table 2.1 lists all maximal cliques yielded after performing Algo-
rithm 2.1 on the data set shown in Fig. 2.5.

It can be seen that in Algorithm 2.1 the operations of the intersection (Steps 2, 3,
10, and 12) and the difference (Steps 11 and 13) of two sets are frequently used. If
the input data set is large and/or dense, these operations become very expensive.
However, we can take advantage of efficiency of bit string operations to improve the
performance of Algorithm 2.1.

Definition 2.9 Given two instances oi and oj, oi is smaller than oj if one of the
following conditions are satisfied:

1. The feature type of oi is smaller than the feature type of oj in a lexicographic
order.

2. If oi and oj belong to the same feature type, the instance ID of oi is smaller than the
instance ID oj.

Our bit-string-based maximal clique enumeration is designed as follows: First, all
instances in S are sorted according to Definition 2.9 (see Fig. 2.7(a), Line 1). Next,
these instances are represented by their indexes in a sorted list (Fig. 2.7(b), Line 1).
Then neighboring instances of each instance oi, N(oi), are also described by the
indexes (Fig. 2.7(a), Line 3 and Fig. 2.7(b), Line 3). The degeneracy ordering of the
neighboring instance graph (deg_order) is also converted to the indexes of instances
(Fig. 2.7(a), Line 2 and Fig. 2.7(b), Line 2). In the same way, cliques are also
represented by instance indexes, e.g., R ¼ {6} (Fig. 2.7(b), Line 6).

Subsequently, bit strings with their length equal to the size of S are created and the
set of neighboring instances and the degeneracy ordering are all converted to bit
strings. The indexes of bits in bit strings are exactly the elements in the set of
neighboring instances and the degeneracy ordering, so we set these bits to 1, while
all other bits are set to 0. For example, at a certain state of Algorithm 2.1, oi¼ B.2, its
neighbor represented by indexes is N(6) ¼ {1, 12, 14} (Fig. 2.7(b), Line 3), so
N(6) is converted to the bit string, N(oi)bit-string (Fig. 2.7(c), Line 1). Other instances
in the degeneracy ordering are also converted to bit strings, {o0,. . ., oi � 1}bit-string
and {oi + 1,. . ., on}bit-string (Fig. 2.7(c), Lines 2 and 3).

To find the intersection and difference of two sets, we simply perform (&) and
(&~) operations on these bit strings, respectively. For example, for the intersection
operations of Steps 2 and 3 in Algorithm 2.1, P N(oi) \ {oi + 1,...,on}, Pbit-string

 N(oi)bit-string & {oi + 1,. . ., on}bit-string (see Fig. 2.7(c), line 4) and X  N(oi) \
{o0,...,oi-1} , Xbit-string  N(oi)bit-string & {o1,. . ., oi-1}bit-string (giving Line 6 of
Fig. 2.7(c)). Another example of the difference operation is in Step 11 of Algorithm

Table 2.1 All maximal
cliques listed from Fig. 2.5

Maximal cliques Maximal cliques

A.1, B.4, C.2 A.3, B.1, C.3

A.2, B.2, C.4, D.2 A.4, B.1, C.3

A.2, C.1, D.3 A.5, B.3, D.1

A.3, B.1, C.1, D.1 B.1, C.1, D.3
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Fig. 2.7 An illustration of
enumerating maximal
cliques based on bit string
operations, where (a) an
example used to sort the
instances in S; (b) an
example that the instances
represented by their index in
the sorted list; (c) create a bit
string for the instances;
(d) (e) (f) examples of string
operations
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2.1, P\ N(oj), Pbit-string & ~ N(oj)bit-string (Fig. 2.7(d), Line 4). Figure 2.7(e) shows
the result of the intersection operation of the two sets in Step 12 of Algorithm 2.1.

To remove an element in a set, we just reset the bit in the bit string where the
index of the bit corresponds to the element. For example, in Step 13 of Algorithm
2.1, P \ {ot} is performed by setting the bit of index oi in Pbit-string to 0 (Fig. 2.7(f),
Line 3). Adding an element to a set is performed by setting to 1 the bit of the element
in the bit string equal to the index, e.g., X [ {ot} � sets the bit at t in Xbit-string to
1. For our example, the result is shown in Line 5 of Fig. 2.7(f).

Finally, we can obtain maximal cliques as their instances are represented by the
indexes, so we only need to map to the sorted instance list in the first step to get the
instances themselves. For example, a maximal clique R is {1, 6, 12, 14} and it
corresponds to {A.2, B.2, C.4, D.2} after mapping to S in Fig. 2.7(a).

Algorithm 2.2: Enumerating maximal cliques based on bit strings.
function BRONKERBOSCHDEGBIT()
Input: G(V, E), 
Output: a set of maximal cliques, MCs
1). Sindex ← sortAndConvertIndexDataset(S)
2). deg_orderindex ← convertIndex(deg_order)
3). Nindex ← covertIndex(N)
4). for i ∈ deg_orderindex do
5).       {i+1,..., n}bit-string ← setBit({i+1,..., n})
6).       {0,..., i-1}bit-string ← setBit({0,..., i-1}) 
7).        N(i)bit-string ← setBit(N(i))
8).        Pbit-string ← N(i)bit-string & {i+1,..., n}bit-string
9).        Xbit-string ← N(i)bit-string & {0,..., i-1}bit-string
10).      BRONKERBOSCHPIVOTBIT(Pbit-string, {i}, Xbit-string)
11). end for
12). end function

function BRONKERBOSCHPIVOTBIT(Pbit-string, Rindex, Xbit-string)
13). if all bits in (Pbit-string |  Xbit-string ) are 0 then
14).     R ← mapIndex(Rindex)
15).     MCs.add(R)
16). else
17).     j ← mapIndex( max∈ ( | ) | & ( ) |)
18).    N(j)bit-string ← setBit(N(j))
19).    for t ∈ mapIndex(Pbit-string &~ N(j)bit-string ) do
20).          N(t)bit-string ← setBit(N(t))
21).   BRONKERBOSCHPIVOTBIT(Pbit-string & N(t)bit-string , Rindex ∪ {t}, Xbit-string & 
N(t)bit-string)
22).          Pbit-string.reset[t]
23).          Xbit-string.set[t]
24).      end for
25). end if
26). end function

To sum up, Algorithm 2.2 describes the pseudocode of our three-phase algorithm
designed to efficiently enumerate maximal cliques based on bit string operations.
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The first phase is a preparation process, including sorting and representing the input
data set by indexes (Step 1), and then converting the degeneracy ordering (Step 2)
and neighbors (Step 3) to indexes. The second phase scans each element in the
degeneracy ordering represented by indexes and converts the neighbor of the
element to a bit string (Step 7). Pbit-string and Xbit-string are initialized by the AND
(&) operation of bit strings (Steps 8–9). The third phase calls the
BRONKERBOSCHPIVOTBIT function to add new elements into Rindex to form a
maximal clique (Step 10). First, the OR (|) operation of Pbit-string and Xbit-string is
executed to validate whether Rindex becomes a maximal clique (Step 13). If Rindex is a
maximal clique, it is mapped to S to get instances (Step 14) and added to the result
(Step 15). Next, we choose a pivot instance j (Step 17) and convert the neighbor of
j into a bit string, N( j)bit-string (Step 18). To find the difference between Pbit-string and
N( j)bit-string, the (&~) operation is performed (Step 19). Then for each element in the
resulting difference of the two bit strings (Step 19), a recursive call is made with
Rindex[{t}, so restricting Pbit-string and Xbit-string to N(t)bit-string (Step 21). After that,
the bit with the index t is deleted from Pbit-string (Step 22) and added to Xbit-string (Step
23).

2.4.3 Constructing the Participating Instance Hash Table

In most situations, hash tables turn out to be more efficient than other lookup
structures, so after all maximal cliques have been listed, a participating instance
hash table is designed to compactly keep these cliques and accelerate queries about
participating instances of patterns.

Definition 2.10 A participating instance hash table is a hash data structure where
the key is a set of feature types and the value is a list of instance sets of objects in
maximal cliques.

For example, from maximal clique {A.1, B.4, C.2}, an item in the participating
instance hash table is constructed as shown in Fig. 2.8(a), ABC: [{1}, {4}, {2}].
Figure 2.8(b) describes the complete participating instance hash table based on all
the maximal cliques listed in Table 2.1.

It is a unidirectional process to build the participating instance hash table from
maximal cliques, meaning that we cannot go back to the maximal cliques from the
hash table, but all the participating instances of patterns are completely retained for
future computing of the participation index of patterns. Instances of a feature that
participate in maximal cliques are accessed by the index of the feature in the key. For
example, to obtain instances of feature A, which participated in the maximal cliques
formed by feature set {A, B, C}, based on Fig. 2.8(b), the index of A in key ABC is
0, and the value corresponding to the key is value ¼ [{1, 3, 4}, {1, 4}, {2, 3}], and
thus the participation instance of A is value[0] ¼ {1, 3, 4}.

Algorithm 2.3 gives the pseudocode to construct the participating instance hash
table. The algorithm scans each maximal clique (Step 1) and creates a key based on
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the feature types of instances in the current maximal clique (Step 2). If the key
already exists in the participating instance hash table (Step 3), the value of the key is
updated by putting instances of the current maximal clique into the corresponding
position (Steps 4–5). Otherwise, if the clique with the key has not yet created a value
in the hash table, the value of the key is built (Steps 8–9) and the key and the value
are added as new items into the hash table (Step 11).

Algorithm 2.3: Constructing the participating instance hash table structure
function CONSTRUCTHASH()
Input: a set of maximal cliques, MCs
Output: a participating instance hash table, CoLHT
1). for R ∈ MCs do
2).       key ← buildKey(R)
3).       if ∃ ∈ CoLHT then
4).            for oi ∈ R do
5).                 CoLHT.update(key, oi)
6).            end for
7).       else
8).            for oi ∈ R do
9).                 value[oi.feature] = {oi.ID}  
10).          end for
11).          CoLHT.add(key, value)
12).     end if
13). end for
14). end function

It can be seen that there are two advantages to be gained by using the participating
instance hash table. First, maximal cliques are compactly compressed into a hash
table structure without losing any neighboring instances. Second, the high-efficiency
query property of hash tables is utilized to accelerate the gathering of information

Fig. 2.8 An illustration of
enumerating maximal
cliques based on bit string
operations, where (a) an
example of a maximal clique
being transformed; (b) the
complete participating
instance hash table based on
all the maximal cliques
listed in Table 2.1
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about participating instances of patterns. The next section describes strategies for
collecting information about participating instances, how to calculate participation
indexes, and the filtering of maximal prevalent co-location patterns from the partic-
ipating instance hash table.

2.4.4 Calculating Participation Indexes and Filtering MPCPs

The following two lemmas will be used to query and gather information about
participating instances of patterns and to calculate their participation indexes from
the participating instance hash table.

Lemma 2.1 Any maximal prevalent co-location patterns can be generated from the
keys of the participating instance hash table.

Proof It is obvious that if a pattern has no co-location instances, its participation
index is equal to 0 and it is not a prevalent pattern in any situation. A pattern can
verify the prevalence if and only if the pattern has at least one co-location instance.
Since neighbor relationships between instances are compressed to a set of maximal
cliques, the co-location instance must be either a maximal clique or a subset of a
maximal clique. The keys in the participating instance hash table record the feature
types of maximal cliques. Thus, if the co-location instance is a maximal clique, the
co-location instance must belong to the pattern represented by the key created by the
feature types of the instances in the maximal clique. Alternatively, if the co-location
instance is not a maximal clique, it must be a sub-clique of one or more maximal
cliques, and the co-location instance belongs to the pattern that is the sub-set of the
key made by the feature types of the instances in the maximal cliques. Hence, any
prevalent co-location patterns can be produced from the keys of the participating
instance hash table structure.

Lemma 2.2 Given a maximal co-location pattern c, the information about partici-
pating instances of c can be queried and gathered from the values of keys where
these keys are c itself (if c is a key in the hash table) or c’s super-keys. The
participation index of pattern c is calculated as.

PI(c) ¼ min{jπ f cð Þj
jS f j }, f 2 c, where |πf(c)| is total number of instances of feature f in

values of key c, or the keys are super-sets of c and jSfj is the total number of instances
of f in the input data set.

Proof Assume that c¼ {f1, . . ., fk} is a pattern, then according to Lemma 2.1, cmust
be a key or a sub-set of the keys in the participating instance hash table. If c is a key
of the hash table, the value of the key represents instances that participate in
co-location instances of c. If c is not a key in the hash table, c is identified as a
sub-set of the keys of the hash table. Each feature f in c that participates in the
co-location instances of c has its information queried according to the corresponding
part of the values of the keys. In other words, the information of participating
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instances of c is incorporated into all of the values of the super-keys of c, or c on its
own, in the participating instance hash table.

For example, let us calculate the participation index of pattern c ¼ {A, C, D},
supposing I(c) records information about participating instances of c. Since c is a key
in the participating instance hash table, the value of the key directly provides support
for the participating instances of c, I(c) ¼ {{2}, {1}, {3}}. The collected super-keys
of c are {{A, B, C, D}}, so the participating instances of each feature in c are also
gathered from the corresponding part of the value of key ABCD, meaning that the
instances of A, B, C in the value of key ABCD are gathered to I(c)¼ [{2, 3}, {1, 4},
{1, 2, 3}]. Finally, the participation index of c is PI(c) ¼ min{25 ,

2
4 ,

3
3} ¼ 0.4.

Algorithm 2.4: Calculating participation indexes and filtering maximal prevalent 
co-location patterns.
function CALCPISANDFILPATTERN()
Input: a participating instance hash table, CoLHT

a minimum prevalence threshold, 
Output: a set of maximal prevalent co-location patterns, MPCPs
1). keys ← CoLHT.getKeys()
2). keyssorted ← sortBySizeOfKey(keys)
3). while keyssorted ≠ Ø do
4).       c ← keyssorted.popFirst()
5).       csuper ← findSuperKeys(c, CoLHT)
6).       for f ∈ c do
7).             Ic[f] ← queryInstances(c, csuper, CoLHT)
8).        end for
9).        PI ← calculatePI(Ic)
10).      if (PI ≥ ) then
11).           MPCPs.add(c)
12).           keyssorted ← deleteSubPatterns(c, keyssorted)
13).      else
16).            csub ← generateDirectSubPatterns(c)
17).            keyssorted ← addNewPatterns(csub)
18).      end if
19). end while
20). end function

Based on Lemmas 2.1 and 2.2, Algorithm 2.4 has been designed to gather
information about participating instances of patterns, calculate participation indexes,
and filter maximal prevalent co-location patterns. Algorithm 2.4 has the three
requisite phases. The first phase collects all keys in the participating instance hash
table (Step 1) and sorts these keys by their size (Step 2). The second phase first scans
each pattern c in the sorted list of keys (Steps 3–4) and finds all super-keys of c in the
participating instance hash table (Step 5). Then the information about participating
instances of c is queried and gathered by the values of c and its super-keys (Steps
6–8). Variable Ic is used to record information about participating instances of a
pattern. The third phase measures the prevalence of c by calculating the participation
index of c, PI (Step 9). If PI is not smaller than the minimum prevalence threshold
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given by users, μprev, c is marked as a maximal prevalent co-location pattern and
added to the mining result (Steps 10–11). Since, if c is a maximal prevalent
co-location pattern it does not need to validate the prevalence of all its
sub-patterns in the sorted list of keys, these sub-patterns can be deleted (Step 12).
Alternatively, if c is not a maximal prevalent co-location pattern, the direct sub-sets
of c will be considered, and hence all sub-sets of c are generated (Step 16) and added
to the sorted list of keys as new patterns (Step 17).

2.4.5 The Analysis of Time and Space Complexities

In this section, we analyze the time and space complexities of the MCHT algorithm.
The whole algorithm is divided into the following four main parts for analysis:

1. Compute the neighbor relationships of instances: Assume that the number of
instances of the input data set is n and the spatial frame size is D� D. We impose
a grid with the cell size d � d (where d is the distance threshold) on the data set.

The space of the input data set is then divided into D
d

� �2
cells, so the average

number of instances in each cell is n d
D

� �2
. To determine the neighbors of an

instance in a cell, we only need to evaluate the distance between the instance and
any other instances that fall into the nine cells around the current cell. Thus, the

time complexity of this phase is about O n d
D

� �2 � 9 D
d

� �2� �
� O nð Þ and the space

complexity is also about O(n).
2. List maximal cliques: As it has been proved by (Eppstein et al., 2010), the time

complexity of enumerating all maximal cliques is O deg� n� 3
deg
3

� �
in the worst

case, where deg� n is the degeneracy of the neighboring instance graph obtained
by Definition 2.2. Supposing that |R|avg is the average number of instances in a
maximal clique and |MCs| is the total number of maximal cliques obtained after
Algorithm 2.2 is performed, then the number of recursive function calls (Line 4 of
Algorithm 2.1) is equal to |R|avg. Thus the space complexity for this part is about
O(|R|avg � j MCs j ).

3. Construct a participating instance hash table: The time and space complexities for
constructing participating instance hash tables for all maximal cliques are O(|
MCs| ).

4. Calculating the participation indexes and filter prevalent patterns: In the worst
case, a pattern (key) is not prevalent and the direct sub-sets of the pattern are
considered as new patterns that need to have their participation indexes calcu-
lated. Supposing kavg is the average size of keys in the participating instance hash
table then the upper boundary of the number of sub-sets is (2kavg � 1). If |CoLHT|
is the number of the participating instances’ hash table, the upper boundary of
time complexity of is O((2kavg � 1) � |CoLHT|) � O((2kavg � 1) � |MCs|). The
space complexity of this part is about O(|CoLHT|) � O(|MCs|).
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Combining the analysis of these four parts, the time complexity of the MCHT
algorithm is about O(n + deg� n� 3

deg
3 + |R|avg � j MCsj+2kavg�|MCs|). Since after

each phase is completed, memory is released immediately, we only need to consider
the peak storage space. Hence, the space complexity of MCHT is about O(|
R|avg � j MCs j ). Note that, |R|avg�n and 2kavg � n , so the largest part of the
computational time of the proposed algorithm is the enumeration of maximal
cliques, which will be clearly shown in our experiments.

2.5 Experiments

In this section, we evaluate the performance of the MCHT algorithm using a series of
synthetic data sets with different densities, and using the case studies relating to the
point of interest (POI) data sets. MCHT is compared with all three algorithms
mentioned in the related work section, including OCB (Wang et al., 2009b),
SGCT (Yao et al., 2016), and MaxColoc (Yoo & Bow, 2019) to demonstrate that
the performance of the MCHT algorithm is more efficient than those existing
algorithms. All algorithms are coded in C++ and performed on computer running
Windows 10 with Intel(R) Core(TM) i7–3770 3.4GHz CPU and 16GB of main
memory.

2.5.1 Data Sets

2.5.1.1 Synthetic Data Sets

A set of synthetic data sets is generated by using a data generator developed by (Yoo
& Shekhar, 2006). The parameters of these data sets are different for different
experimental objectives. Table 2.2 lists these data sets in detail.

Table 2.2 Parameters of synthetic data sets

Table/
Figure no.

Spatial area
size

Number of
instances

Number of
features d μprev Clumpiness

Fig. 2.10 2 k � 2 k * 15 20 – 1

Tables 2.4 and
2.5

1 k � 1 k 25 k, 40 k, 55 k 15 14 0.6 1

Fig. 2.11,
Fig. 2.13

1 k � 1 k
10 k � 10 k

* 15 10 0.4 1

Fig. 2.12(a) 5 k � 5 k 50 k * 30 0.3 1

Fig. 2.12 (b) 10 k � 10 k 50 k 15 10 0.25 *

Fig. 2.14(a, b) 5 k � 5 k 50 k 15 * 0.4 1

Fig. 2.15(a, b) 5 k � 5 k 50 k 15 40 * 1

*: variables, k ¼ 1000, �: not applicable
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2.5.1.2 Real Data Sets

The performance of the MCHT algorithm is also examined by using case studies of
POI data sets from Shenzhen, Guangzhou, Beijing, and Shanghai. These data sets
are related to facility points such as fast food outlets, parking lots, and residential
areas. Table 2.3 gives a statistical summary and Fig. 2.9 is the distribution of these
data sets, respectively. It can be seen that the distribution of these data sets has
different properties, including clustered, zonal, concentrated, and uniform. The
discovery of maximal prevalent co-location patterns from these POI data sets should
provide new insights into the interaction of city facilities.

2.5.2 Experimental Objectives

To evaluate completely the performance of the proposed mining framework, we set
five objectives for our experiments: (1) investigate the improvement in the enumer-
ation of maximal cliques brought about by using bit string operations; (2) assess the
improvement in the general performance of the MCHT algorithm; (3) evaluate the
scalability of the proposed algorithm; (4) examine the memory consumption of the
proposed framework; and (5) investigate how our algorithm responds to changes in
user queries.

2.5.3 Experimental Results and Analysis

2.5.3.1 The Effect of Bit Strings on Enumerating Maximal Cliques

In the first experiment, we survey the effect on enumerating maximal cliques by
utilizing bit strings. Algorithm 2.2 is named BK-Deg-Bit. Another four enumerating
maximal clique algorithms are also chosen for comparison, including the Bron-
Kerbosch algorithm (BK for short) (Schmidt et al., 2009), the Bron–Kerbosch pivot
algorithm (BK-Pivot for short) (Eppstein & Strash, 2011), the Bron-Kerbosch
degeneracy (BK-Deg for short) (Eppstein et al., 2010), and the SeqMCE algorithm
(Cheng et al., 2012a, b).

Table 2.3 A summary of the real POI data sets

Name
Spatial frame size
(m2)

Number of
instances

Number of
features Property

Shenzhen 28,400 � 88,600 31,827 13 Dense, clustered

Guangzhou 104,000 � 113,500 45,489 15 Dense, zonal

Beijing 134,000 � 229,000 54,198 13 Dense,
concentrated

Shanghai 65,500 � 115,300 66,865 15 Dense, uniform
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Figure 2.10 shows the execution times of these algorithms with different numbers
of spatial instances. As expected, all the execution times increase with the number of
instances. The BK-Pivot algorithm is a development based on the BK algorithm but
using a pivoting heuristic that can reduce the number of recursive calls in
BK. BK-Deg improves on BK-Pivot by utilizing the degeneracy ordering of
instances, limiting the size of the set of instances which have not been considered,
and so improving performance. Generally, the performance ordering is BK-Deg,
BK-Pivot, BK, although when the number of instances is 150 k, the BK algorithm
becomes impractical to run. SeqMCE is a variant of BK-Pivot, and is designed to
deal with large data sets that cannot be fitted into limited memory. However, even
when the data can be fitted in memory, SeqMCE will lose efficiency as instances
increase because it has to scan the input data many times (Cheng et al., 2012a, b).
Overall, BK-Deg-Bit shows better performance than the other algorithms.

Fig. 2.9 The distributions of the real data sets used in our experiments. (a) Shenzhen, (b)
Guangzhou, (c) Beijing, and (d) Shanghai
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2.5.3.2 The Comparative Performance of the MCHT Algorithm

Tables 2.4 and 2.5 list the execution time taken in each phase in the OCB, SGCT,
MaxColoc, and MCHT algorithms over different sizes of synthetic data sets. It can
be seen that, as expected from the analysis in Sect. 2.3, for the non-MCHT algo-
rithms the most time-consuming phase is devoted to the collection of co-location
instances of candidates. In more detail, Neib- and Ins-tree construction, condensed
instance tree construction, and finding co-location instances take the most execution
time in the OCB, SGCT, and MaxColoc algorithms, respectively. The MCHT
algorithm avoids this phase. As analyzed in Sect. 2.4, listing maximal cliques is
the heaviest task for the MCHT algorithm. In all the situations provided by the
synthetic data sets, the MCHT algorithm takes less computational time than the other
algorithms.

We list the memory usages of the four algorithms in the last row of Tables 2.4 and
2.5. It can be seen that the MCHT algorithm takes less storage space than the other
three algorithms. This is because MCHT compresses the neighbor relationship of
instances into a set of maximal cliques, and these maximal cliques are then further
condensed by a carefully designed hash table, so MCHT can efficiently reduce
memory consumption while the OCB, SGCT, and MaxColoc algorithms need to
hold all co-location instances of current candidates in memory at the same time, so
needing more storage space. Moreover, OCB also has to keep the Neib- and Inst-
trees in memory, where Nei-tree holds all neighboring instances and Ins-trees keeps
the co-location instances of the current candidate. As shown in Table 2.4, when a
data set is large and/or dense (in our experiment when the number of instances is set
to 55 k the data set becomes very dense), the OCB algorithm runs out of memory.

We also evaluated the comparative improvement in the performance of the
MCHT algorithm on real data sets. Tables 2.6 and 2.7 record the execution time of
each phase of the OCB, SGCT, MaxColoc and MCHT algorithms on the real data
sets. Clearly, the largest portion of execution time portion is still devoted to
collecting co-location instances of those candidates in OCB, SGCT, and MaxColoc
that belong to the candidate-generate-test mining framework. When the data set is
dense and its instances form a zonal or clustered distribution, the computational

Fig. 2.10 The effect of the
number of instances in the
different enumerating
maximal clique algorithms
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times of the OCB and SGCT algorithms increase while the performance of
MaxColoc is poor when dealing with zonally distributed data. However, MCHT
shows relatively stable performance on the differently distributed data sets.

Overall, MCHT, the proposed mining algorithm, efficiently reduces both the
computational time and memory consumption.

2.5.3.3 The Scalability of the MCHT Algorithm

In this experiment, we evaluated the scalability of the proposed algorithm on
different numbers of instances, different numbers of feature types, and different
numbers of neighboring instances.

Figure 2.11 shows the effects of the number of instances on the execution times of
the four algorithms on synthetic data sets. The spatial area size is fixed, so the data
sets become denser when increasing the number of instances. As shown in Fig. 2.11
(b), if the data sets are sparse, the difference between the algorithms is small.
However, the gap between the effects of the four algorithms becomes larger when
the data sets are large as plotted in Fig. 2.11(a). As can be seen, the performance of
OCB and SGCT deteriorate rapidly under large/dense data sets. In particular, when
the data set is larger than 60 k, OCB cannot complete since it runs out of memory,
and if the number of instances is larger than 80 k, SGCT takes too long to complete,
while the execution time of MCHT rises slowly. MaxColoc shows a better perfor-
mance than OCB and SCGT because it utilizes an upper participation index,
whereby a candidate can be judged whether it is a prevalent pattern early in the
algorithm and, if the upper participation index of a candidate is smaller than the
prevalence threshold, this candidate cannot be prevalent. MaxColoc will then no

Table 2.5 The execution time of each phase of the four algorithms on different volumes of data
sets (Part 2: MaxColoc and MHCT)

Algorithm MaxColoc MHCT

Factor (s)

Number of instances

25 k 40 k 55 k 25 k 40 k 55 k

T_ materialize_neighbors 0.365 0.767 1.39 0.295 0.74 1.318

T_find_size_2_patterns – – – – – –

T_ gen_candidates 13.517 22.005 39.911 – – –

T_constr_Neib-&Inst-tree – – – – – –

T_constr_condensed-inst-tree – – – – – –

T_find_colocation_instances 305.482 717.832 6730.47 – – –

T_enum_maximal_cliques – – – 57.103 84.855 224.328
T_constr_co-
location_hashtable

– – – 5.675 7.505 20.3

T_call_PIs_filter_patterns 1.401 4.333 48.431 19.265 35.543 44.444

T_total 320.765 744.937 6820.141 82.338 128.643 289.903

Memory consumption (MB) 260.20 671.57 6675.06 49.84 94.21 143.25

–: not applicable, �: unrepresentable
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longer collect co-location instances of this candidate, and directly jumps to the next
candidate. OCB and SGCT have to first collect all co-location instances of a
candidate before judging its prevalence, and so OCB and SGCT have longer
execution times.

The effects of the number of feature types on the execution times of these
algorithms are plotted in Fig. 2.12(a). In this experiment, the spatial frame size,
the number of instances, the distance threshold, and the prevalence threshold are
fixed (as Table 2.2), while the number of feature types is increased. The plots show
that the execution times of these algorithms increase with the number of feature
types. This is because, first, with an increase in the number of feature types, more
instances are likely to form the neighbor relationship. Second, the average number of
instances for each feature decreases and, eventually the participation indexes of
candidates will be larger, size-2 prevalent patterns will grow in number, and more
and more long size candidates will be generated. Hence constructing Nei-tree and
Ins-tree in OCB, and processing hierarchical verification needed to construct con-
densed instance trees in SGCT, and finding co-location instances in MaxColoc for
these long-size candidates take more computational time.

Figure 2.12(b) describes the computational times of the four algorithms as a
function of the number of neighboring instances. The clumpiness is a factor to
control the number of neighboring instances (Huang et al., 2004); it represents the
number of overlaying co-location instances within the same neighborhood area. The
higher the clumpiness value, the greater the number of co-location instances. As
shown in Fig. 2.12(b), the execution times increased with the number of neighboring
instances, but MCHT shows better performance overall.

2.5.3.4 Memory Consumption

Figure 2.13 compares the memory usages of OCB, SGCT, MaxColoc, and MCHT as
performed on synthetic data sets with different numbers of instances. On the whole,
with the increase of the number of instances, the required storage spaces of the four

Fig. 2.11 The execution times of the four algorithms on synthetic data sets with different numbers
of instances. (a) dense and (b) sparse
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algorithms also increases. For dense datasets, as can be seen in Fig. 2.13(a), the
memory usage of the OCB algorithm is the highest, and when the number of
instances approaches 80 k, it runs out of memory. So, when the data set is small,
the required storage space of SGCT is less than that of MCHT, but as the number of
instances increases, the memory usage of SGCT increases and then exceeds
MCHT’s. This is also the point at which the condensed instance tree in SGCT
becomes more complex, so needing more storage to hold the tree. In our experiment,
when the number of instances was larger than 80 k, although SGCT did not suffer
memory overflow, its execution time was too long. MaxColoc, of course, required
more and more storage space to hold all the co-location instances of each candidate.
If data sets are sparse, the memory usage of the four algorithms increases slowly, as
shown in Fig. 13(b).

2.5.3.5 The Evaluation of Response to Changing User Requests

This section examines the ability to respond to the changing requests of users, for
instance, if they want to change distance and/or prevalence thresholds. At the same

Fig. 2.12 The execution times of the four algorithms on synthetic data sets with different numbers
of (a) feature types and (b) neighboring instances

Fig. 2.13 The memory usages of the four algorithms on synthetic data sets with different numbers
of instances: (a) dense and (b) sparse
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time, the memory consumption of MCHT is also compared with the existing
algorithms.

Figure 2.14 represents the execution times and memory consumption of the OCB,
SGCT, MaxColoc, and MCHT algorithms with an increase in the distance thresholds
on both the synthetic and real data sets. Note that, when the distance threshold
increases to a large value, OCB shows poor performance, running out of memory
and failing to give mining results. We set d � 40 in Fig. 2.14(a), d � 300 m in
Fig. 2.14(c), d � 250 m in Fig. 2.14(e), and d � 350 m in Fig. 2.14 (g, i).

In all the experiments, the execution time of the SGCT algorithm increases
dramatically with the increase of the distance threshold. Since increasing distance
thresholds makes neighborhood areas larger, more and more instances will satisfy
the neighbor relationship and so SGCT requires more time to perform the necessary
hierarchical validation to construct the condensed instance tree for each candidate. In
addition, as shown in Fig. 2.14(b, d, f, h, j), the memory consumption of SGCT
becomes larger than that of MCHT when increasing the distance threshold. With
large values of the distance threshold, neighboring instances will have grown in
number, and more and more instances are stored repeatedly in SGST’s condensed
instance tree, in requiring extensive storage space.

Similarly, as shown in Fig. 2.14(a, c, e, g, i), with an increase in the distance
threshold, MaxColoc shows better performance than OCB and SGCT. This is
because, if the distance threshold is made larger, size 2 prevalent patterns grow in
number, and more and more longer size candidates are generated. Early in the
algorithm MaxColoc uses an upper participation index to terminate the collection
of the co-location instances of these candidates. However, OCB and SGCT need to
collect all co-location instances of these candidates before deciding whether the
candidates are prevalent, eventually making the performance of the two algorithms
impractical.

Overall, the execution time and memory consumption increases for all four
algorithms with an increase of the distance threshold, although MCHT shows less
of an increase in both its execution time and memory usage.

The execution times and memory consumption of the four compared algorithms
with changes over the prevalence threshold are shown in Fig. 2.15. As can be seen,
both the execution time and memory consumption of the candidate generate-test
mining framework, represented by the OCB, SGCT, and MaxColoc algorithms,
decrease with an increase of the prevalence threshold. Again, our proposed algo-
rithm, MCHT, shows a stable performance.

With smaller values of prevalence thresholds, the number of size-2 patterns
becomes large, due to the formation of more long size (large cardinality) candidates.
Thus, constructing Nei-tree and Inst-tree in OCB, and the hierarchical verification
process of SGCT, becomes very time-consuming. Moreover, as these trees become
more complex, a large amount of storage space is required. Thus, OCB and SGCT
take more computational time, and have high memory consumption. As can be seen
in Fig. 2.15 (a, c, e, g), when the prevalence threshold is set low, at 0.3, 0.5, and 0.55
for the synthetic, Shenzhen and Guangzhou data sets, respectively, OCB runs out of
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Fig. 2.14 Response of the compared algorithms in different distance thresholds. (a, b) synthetic
data sets; (c, d) Shenzhen; (e, f) Guangzhou; (g, h) Beijing; (i, j) Shanghai (μprev ¼ 0.4 for all data
sets)
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Fig. 2.15 Response of the compared algorithms in different prevalence thresholds. On synthetic
data set (a) execution time, (b) memory consumption, d¼ 40 ; Shenzhen, d¼ 350 m, (c) execution
time, (d) memory consumption; Guangzhou, d ¼ 350 m, (e) execution time, (f) memory consump-
tion; Beijing, d ¼ 400 m, (g) execution time, (h) memory consumption; Shanghai, d ¼ 350 m, (i)
execution time, (j) memory consumption
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memory. If the prevalence threshold is set smaller than 0.45 for the Guangzhou data
set, the execution time of SGCT becomes impossibly long, as shown in Fig. 2.15(e).

MaxColoc also shows poor performance when the prevalence threshold is set to a
small value because the utility of its upper participation index in MaxColoc will
degenerate quickly.

In contrast, MCHT only needs to re-calculate and re-filter maximal prevalent
co-location patterns from the participating instance hash table. As shown in
Tables 2.4–2.7, its two parts only take a small portion of the execution time and
so, with an increase in the value of the prevalence threshold, the execution time and
memory usage of MCHT are relatively stable.

Further, the execution times of the OCB, SGCT, and MaxColoc algorithms are
not only governed by their distance and prevalence thresholds but also depend on the
distribution of data sets. For example, for smaller values of the prevalence threshold,
if the distribution of instances is clustered (e.g., the POI data set of Shenzhen) or
zonal (e.g., the POI data set of Guangzhou or Beijing), both OCB and SGCT require
more execution time and more storage space than for a uniform distribution of data
sets (e.g., the POI data set of Shanghai). In contrast, the MCHT algorithm shows
relatively stable performance for these differently distributed data sets.

Overall, the proposed maximal co-location pattern mining framework is able to
quickly respond to changes made by users, compared with conventional algorithms.

2.5.3.6 Analysis of Mining Results on the Real Data Sets

In this section, the mining results on the real data sets are also analyzed to reflect the
different phenomena of facilities in these cities, using the same values of distance
and minimum prevalence threshold as with the synthetic data sets. As the participa-
tion index is used to measure the prevalence of a pattern, and the higher the
participation index of a pattern the more prevalent the pattern, and we sort the
patterns from the mining results by their participation index, in descending order,
and present the top-10 patterns in Tables 2.8 and 2.9. In the two tables, the distance
threshold is set to 250 meters, and the minimum prevalence threshold is set to 0.3.
From Tables 2.8 and 2.9, we can roughly draw three conclusions as follows:

1. At the same level of the distance and prevalence thresholds, the maximal prev-
alent co-location patterns mined on the four POI data sets are different. The same
facilities are presumably distributed differently in different cities, and their spatial
interaction is also different. For example, in Shenzhen city, clothing stores and
training institutions frequently appear together, but not so in Guangzhou, while
beverage shops are often located near schools in Guangzhou city but not in
Shanghai. Note that the co-location parking lot, shopping center is a maximal
prevalent co-location pattern in Beijing, but it only is a sub-pattern in Shanghai.

2. Where we have large places with high visitor flow rates such as farmers’ markets,
furniture markets, and shopping centers, the service industry appears relatively
developed, e.g., fast foods, beauty salons, and convenience stores.
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3. More long-size maximal co-location patterns are discovered in Shanghai than
elsewhere. That may indicate that the physical layout of facilities in Shanghai is in
larger blocks and so more services are provided in one place.

2.6 Chapter Summary

In this chapter, a novel maximal prevalent co-location pattern (MPCP) mining
framework, based on maximal cliques and hash tables, has been developed (called
the MCHT framework). The proposed algorithm eliminates the drawbacks of
existing algorithms, e.g., without generating and testing candidates, without

Table 2.8 The top-10 patterns mined in the real-world data sets of Shenzhen and Guangzhou cities

Shenzhen Guangzhou

Clothing store, Training institution Beverage shop, Training institution

Beauty salon, Parking lot Residential area, Training institution

Clothing store, Farmers’ market Furniture market, Convenience store

Clothing store, Parking lot Farmers’ market, Beverage shop

Beauty salon, Farmers’ market Convenience store, Farmers’ market

Fast food, Clothing store, China restaurant Parking lot, Training institution

Fast food, Clothing store, Beauty salon Company, Furniture market, Fast food

Fast food, Furniture market, China restaurant Parking lot, Farmers’ market

Company, Fast food, Convenience store Furniture market, Parking lot

Residential area, Parking lot Fast food, Beauty salon, Farmers’ market

Table 2.9 The top-10 patterns mined from the real-world data sets of Beijing and Shanghai cities

Beijing Shanghai

Parking lot, Shopping center Residential area, Shopping center, Fast food, Local
service

Shopping center, Local service Company, Shopping center, Fast food, Local
service

China restaurant, Residential area, Parking
lot

Company, Residential area, Local service

Convenience store, Hotel Company, Residential area, Shopping center

Convenience store, Furniture market Company, Residential area, Fast food

China restaurant, Convenience store,
Beauty salon

Parking lot, School

Parking lot, Hotel Shopping, Bank

China restaurant, Local service Local service, Parking lot

China restaurant, Residential area, Beauty
salon

Fast food, Bank

China restaurant, Parking Lot, Convenience
store

Shopping center, Fast food, Parking lot

2.6 Chapter Summary 47



collecting co-location instances. First, neighbor relationships of instances are
divided into a set of maximal cliques. In order to accelerate enumerating maximal
cliques, a bit-string based maximal clique enumerating algorithm is designed. Then,
a specially designed participating instance hash table is employed to store these
maximal cliques and to further condense neighbor relationships of instances. In
addition, the hash table accelerates the queries information about the participating
instances of patterns, so that the participation indexes of patterns can be calculated
and MPCPs filtered efficiently. The performance of the proposed framework is
examined on a series of both synthetic and real data sets. The experimental results
show that the proposed MHCT can efficiently discover MPCPs and its time and
space requirements are greatly reduced, compared to existing algorithms. Addition-
ally, MHCT has the ability to quickly respond to user requests, for instance when
they change thresholds to accommodate different application domains. Theoretical
and experimental analysis of the proposed algorithm has been presented.

In Chap. 3, a new concept of sub-prevalent SCPs is introduced, which replaces
traditional clique instances with star instances in prevalence metrics of SCPs.
Because we note that in some applications, we cannot require neighbors with a
spatial feature to be adjacent to each other. The sub-prevalent SCPs can help people
to gain insight into another distribution of spatial features in space.

A traditional prevalent SCP must be a sub-prevalent SCP, but not vice versa. That
is to say, the set of sub-prevalent SCP will be larger, so we plan to mining “natural
preference” or “best” sub-prevalent SCPs, instead of mining all sub-prevalent SCPs.
Fortunately, the sub-prevalence satisfies the downward inclusion property, this
allows the maximum sub-prevalent SCPs mining to be studied in the next chapter.
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Chapter 3
Maximal Sub-prevalent Co-location
Patterns

3.1 Introduction

Spatial co-location pattern (SCP) mining is essential to reveal the frequent
co-occurrence patterns among spatial features in various applications. For example,
a co-location pattern may show that the region where mosquitoes are abundant and
poultry are kept usually has West Nile virus around (Huang et al., 2004); or botanists
discover that 80% of sub-humid evergreen broadleaved forests grow with orchid
plants (Wang et al., 2009b).

The traditional model of mining prevalent SCPs was proposed by Shekhar and
Huang (Shekhar & Huang, 2001; Huang et al., 2004). In this model, the prevalence
measure of SCPs is defined based on clique instances under spatial neighbor
relationships. In detail, the prevalence of a co-location c is the minimum participa-
tion ratio Pr( fi, c) among all features fi in c. The participation ratio Pr( fi, c) of feature
fi in a co-location c is the fraction of the instances of fi that participate in a co-location
instance (a clique instance, where the set of instances has a clique relationship) of c.
Figure 3.1 shows an example of data sets with three spatial features {A, B, C} where
two spatial instances are connected with a solid line if their corresponding distance is
smaller than the given threshold and A.i denotes the i-th instance of feature A. The
co-location pattern {A, B, C} in Fig. 3.1 is not prevalent when the minimum
prevalence threshold min_prev is given 0.4, because there is only one clique instance
{A.1, B.1, C.1} for the pattern {A, B, C} and the prevalence of {A, B, C} is only 0.2.
But we can see that there are three out of four instances of A which are neighbors to
instances of B and C, and that B has two out of the five instances which are neighbors
to instances of A and C, and C has two out of three. That is to say, at least 40% of
instances of each spatial feature in {A, B, C} are close to instances of the other

From Wang, L., Bao, X., Zhou, L., and Chen, H.: Mining Maximal Sub-prevalent Co-location
Patterns. World Wide Web 22(5), 1971–1997 (2019).
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features. This implies that instances from A, B, and C are spatially correlated, which
is neglected if we only consider the clique instances.

Discovering patterns that are similar to {A, B, C} in Fig. 3.1 can help people to
gain insight into other distributions of spatial features in space. Two examples are
given here.

First, suppose pattern {A, B, C} is discovered from the distributional data set of
vegetation in a certain region, then other vegetation appears in the neighborhood of
growing any vegetation in {A, B, C}, and represents symbiotic vegetation in the
region. Such patterns can be useful in practical applications. For example, they can
help vegetation distribution analysis, or in the site selection for investigating vege-
tation, or in vegetation protection.

Second, and in a different context, suppose feature A represents “hospital,” B is
“resident area,” and C is “bus station” in Fig. 3.1. If we analyze the distribution of
instances of spatial feature set {“hospital,” “resident area,” “bus station”}, we can
see that the resident area “B.3” is near to the hospital “A.4” as well as the bus stations
“C.2” and “C.3”, while the bus stations “C.2” and “C.3” are not in the neighborhood
of the hospital “A.4”, but “A.4” is near to another bus station “C.1.” The layout of
the three spatial features within the dotted line contains a co-located correlation.

Again, we can also take spatial features A, B, and C into the consideration of plant
diseases. Here, those plant diseases which coexist may not form clique instances due
to the effect of the wind and/or altitudes affecting their spatial distribution.

The problem in the traditional models of mining prevalent SCPs is that they only
choose clique instances as the measure of interests. However, the statement that “the
presence of B and C in the neighborhood of an instance of the spatial feature A”
obviously does not necessarily imply that instances of B and C are neighbors. To
tackle the problem, this chapter advocates a new concept of sub-prevalent SCPs, by
replacing clique instances with star participation instances.

We will see that a traditional clique-based prevalent SCP must be a sub-prevalent
SCP, but not vice versa. That is to say, the set of sub-prevalent SCPs will be larger,
and the user may face a larger number of patterns and often not know what course to
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take. A key observation is that the downward inclusion property is satisfied by
sub-prevalence. This enables maximal sub-prevalent SCP mining to be studied in
this chapter.

Thus, our contributions in this chapter are as follows:

1. First, we define a new concept of sub-prevalent SCPs by introducing star
participation instances, and the anti-monotonic property of sub-prevalent SCPs
is proved. Following the maximal SCP mining of Chap. 2, instead of mining all
sub-prevalent SCPs, we mine the maximal sub-prevalent SCPs in this chapter.

2. Second, we propose two novel maximal sub-prevalent SCP mining algorithms,
namely, the prefix-tree-based algorithm (PTB algorithm) and the partition-based
algorithm (PB algorithm). At the same time, an intersection-based method is
proposed to compute the interest measures of the patterns containing star partic-
ipation instances.

3. Third, the advantages and disadvantages of the two algorithms are analysed in
depth, and we experimentally evaluate our works on synthetic and real data sets.
The experimental results show that our algorithms are scalable and the mined
patterns are longer than the traditional results and can capture the star-correlations
of the spatial features.

Figure 3.2 presents the organization of this chapter. Section 3.2 defines the related
concepts of sub-prevalent SCP mining and proves the anti-monotonic property of
sub-prevalent SCPs. Two novel maximal sub-prevalent SCP mining algorithms are
presented in Sections 3.3 and 3.4, respectively. In Sect. 3.5, a comparison of the two
algorithms is presented. We show the experimental evaluation in Sect. 3.6 and
related work in Sect. 3.7. Finally, we summarize the chapter in Sect. 3.8.

3.2 Basic Concepts and Properties

We first present the basic concepts of maximal sub-prevalent SCP mining and
discuss its anti-monotonic property.

In a spatial data set, let F be a set of n features F ¼ {f1,f2,. . .fn}. Let S be a set of
instances of F. Let NR be a neighbor relationship over locations of instances. NR is
symmetric and reflexive. We again use the Euclidean distance with a distance
threshold d as a neighbor relationship in this chapter.

A co-location c is a subset of spatial features, i.e., c ⊆ F.
We use the star neighborhoods instance, which was introduced in the join-less

algorithm (Yoo & Shekhar, 2006), as the method for materializing the neighbor
relationship between spatial instances. The star neighborhoods instance is a set
comprising a center instance and other instances in its neighborhood. It has a formal
definition.

Definition 3.1 (Star neighborhoods instance, SNsI) SNsI(oi) ¼ {oj|distance(oi,
oj) � d, where d is a neighbor relationship distance threshold} is the star neighbor-
hoods instance of oi, and oi is the label of SNsI(oi). In other words, SNsI(oi) is the set
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consisting of oi and the other spatial instances located within distance d from oi, i.e.,
having neighbor relationships with oi.

In Fig. 3.1, a point represents an instance and a solid line between two points
represents the neighbor relationship between two instances. X.i is the i-th instance of
the feature X. As can be seen in Fig. 3.1, SNsI(A.1) ¼ {A.1, B.1, C.1}, and SNsI(-
B.3) ¼ {A.4, B.3, C.2, C.3}.

Based on the concept of star neighborhoods instance, the concept of star partic-
ipation instances is defined, and then we use the participation ratio and the partic-
ipation index defined by Huang et al. (2004) to characterize how frequently instances
of different features in a co-location pattern are neighbors.

Definition 3.2 (Star participation instance, SPIns) SPIns( fi,c) ¼ {oi|oi is an
instance of feature fi and SNsI(oi) contains instances of all features in c} is the star
participation instance of feature fi in c. In other words, SPIns( fi,c) is the set
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consisting of instances of fi whose star neighborhoods instances contain all features
in c.

Definition 3.3 (Star participation ratio,
SPR) SPR f i, cð Þ ¼ SPIns f i, cð Þj j= j S f i j is the star participation ratio of feature
fi in a co-location c, where S f i is the set of instances of fi. In other words, SPR(fi,c) is
the fraction of instances of fi that occur in the star participation instance of fi in c.

Definition 3.4 (Star participation index, SPI) SPI(c) ¼ minf 2 c{SPR( f,c)} is the
star participation index of a co-location c. In other words, SPI(c) is the minimum star
participation ratio SPR(fi,c) among all features fi in c.

Definition 3.5. (Sub-prevalent SCP) A co-location c is a sub-prevalent SCP, if its
star participation index is no less than a given sub-prevalence threshold min_sprev,
that is, SPI(c) � min_sprev.

For example, in Fig. 3.1, the star participation instance SPIns(A, {A, B, C}) of
feature A in {A, B, C} is {A.1, A.3, A.4}, SPIns(B, {A, B, C}) ¼ {B.1, B.3}, and
SPIns(C, {A, B, C}) ¼ {C.1, C.2}. Thus, the star participation ratio SPR(A, {A, B,
C}) of A in {A, B, C} is 3/4 because 3 out of 4 instances of A occur in the star
participation instance of A in {A, B, C}. Similarly, SPR(B, {A, B, C}) ¼ 2/5, and
SPR(C, {A, B, C}) ¼ 2/3. Therefore, SPI({A, B, C}) ¼ min{3/4, 2/5, 2/3} ¼ 2/
5 ¼ 0.4. If the sub-prevalence threshold min_sprev is set by the user at no more than
40%, {A, B, C} is a sub-prevalent SCP.

Lemma 3.1 (Monotonicity of SPR and SPI) Let c and c0 be two co-locations such
that c0 ⊆ c. Then, for each feature f 2 c0, SPR( f, c0) � SPR( f, c). Furthermore,
SPI(c0) � SPI(c).

Proof For the first claim in the lemma, we only need to show that for a spatial
feature f2c0, |SPIns( f, c0)| � |SPIns( f, c)|.

Since c0 ⊆ c, every star participation instance of feature f in c contains instances
of all features in c0. Thus, the inequality holds.

The second claim follows from the fact that SPI(c0) ¼ minf2c0{SPR( f,
c0)} � minf2c{SPR( f,c)} ¼ SPI(c).

This lemma establishes the downward closure property of SPR and SPI.
It is obvious that we can mine longer co-location patterns after introducing the

sub-prevalent concept. But the mined results might be massive and mutually inclu-
sive. Maximal sub-prevalent SCP mining can resolve this problem.

Definition 3.6 (Maximal sub-prevalent SCP) Given a sub-prevalent SCP
c ¼ {fl,. . .,fv} in a set of spatial features F ¼ {f1,. . .,fn}, l,v2{1,2,. . .,n}, if none of
c’s super-patterns are sub-prevalent, then c is called a maximal sub-prevalent SCP.

The set of maximal sub-prevalent SCPs is a compact representation of a large
number of sub-prevalent SCPs. The maximal sub-prevalent SCPs form the minimal
set which can lead to all the sub-prevalent SCPs.

Based on Lemma 3.1, two novel mining algorithms are proposed, respectively,
presented in Sect. 3.3 and Sect. 3.4, to discover the complete set of maximal
sub-prevalent SCPs from a spatial data set.
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3.3 A Prefix-Tree-Based Algorithm (PTBA)

A prefix-tree-based algorithm (PTBA) is developed in this section. In PTBA, in
order to efficiently perform candidate pruning, all maximal sub-prevalent candidates
generated from 2-size sub-prevalent SCPs are organized into a prefix tree. At the
same time, an intersection-based method to compute the SPIs of candidates is
presented. Finally, the performance of PTBA is analyzed, and then a pruning
lemma is given.

3.3.1 Basic Idea

First, we note that star neighborhood instances are equivalent to each other, i.e., if
oj2SNsI(oi), then oi2SNsI(oj). So, our algorithm firstly collects those pair of
instances which are neighbors to each other, and then selects 2-size sub-prevalent
SCPs by comparison with a user-given sub-prevalence threshold min_sprev.

Then, due to Lemma 3.1, maximal sub-prevalent candidates can be generated
from the set of 2-size sub-prevalent SCPs by detecting feature sets which can form
cliques. For example, if there was a set of 2-size sub-prevalent SCPs: SPCP2 ¼ {{A,
B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}, {C, E}, {D, E}}, the feature set {A, B,
C, D} is a 4-size sub-prevalent candidate because it forms a clique under the 2-size
sub-prevalent relationship, while the feature set {B, C, D, E} does not belong to the
4-size candidate set because {B, E} is not a 2-size sub-prevalent SCP.

We use a lexicographic order–based method for generating all maximal
sub-prevalent candidates. In order to reduce the candidate search space dynamically
in the mining process, all generated candidates are organized into a prefix tree. In the
prefix tree, a branch is created for a candidate and a new branch shares common
prefixes. For example, the prefix tree of a set of all candidates {{ABCD, ABC, ABD,
ACD, AC, AD}, {BCD, BC, BD}, {CDE, CE}, {DE}} is shown in Fig. 3.3, where
the candidate {A, B, C, D} leads to the first branch of the candidate search space tree.
The second candidate {A, B, C} does not form a new branch because it shares
common prefixes with the first branch, while {A, B, D} forms a new branch because
it shares two common prefixes, etc.

The feature set identifying each node will be referred to as the node’s head, while
possible extensions of the node are called the tail. For example, consider nodes Y0

and Y00 in Fig. 3.3; their head is {A} and {A, B}, respectively, and the tail is the set
{B, C, D} and {C, D}, respectively. The Head Union the Tail (HUT) of Y0 is {A, B,
C, D}.

Our mining method starts with the longest l ¼ lmax maximal sub-prevalent
candidates in the search space and determines whether they are maximal
sub-prevalent SCPs as specified in Definitions 3.5 and 3.6. Once the algorithm
determines that a candidate is maximal, the algorithm can begin a pruning process.
That is, the algorithm checks breadth-first whether the HUT of each node in the
candidate search space tree is a subset of a current maximal set. If the HUT is a
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subset of any of the maximal sub-prevalent SCPs, the sub-tree whose root is the node
is pruned. For example, in Fig. 3.3(a), let’s assume that {A, B, C, D} is a maximal
sub-prevalent SCPs. Then the algorithm checks breadth-first for candidates to prune
in the search space tree. In the first level, the HUT of node A is {A, B, C, D}. Since it
is a subset of {A, B, C, D}, the algorithm prunes the sub-tree whose root is A. The
next node at that level is node B whose HUT is {B, C, D}. Since this candidate is a
subset of {A, B, C, D}, the algorithm prunes this sub-tree as well. The pruning
continues with the rest of the nodes in the first level. Then the algorithm starts
pruning the next level until the subset tree resembles Fig. 3.3(b).

Finding maximal sub-prevalent SCPs and running the pruning scheme happens at
each l-size until there are no more candidates to process.

In the method discussed above, computing the sub-prevalence measure of a
candidate c, i.e., SPI(c), is a core problem. Based on the 2-size co-location instances
(neighborhoods instances’ pairs), we can compute the sub-prevalence measure of
any k-size pattern (k > 2) by the following Lemma 3.2.

Lemma 3.2 (The sub-prevalence measure of k-size SCPs (k > 2)) Given the
2-size co-location instances of a spatial data set, the star participation index of a k-
size SCP c ¼ {f1,. . .fk} can be calculated as follows:

SPIðcÞ¼minfj \
j¼2,...k

SPInsð f 1,f f 1, f jgÞj=jS f 1 j, ...j \
j¼1,...k�1

SPInsð f k ,f f k , f jgÞj=jS f k jg

ð3:1Þ

Proof For c ¼ {f1,. . .fk}, according to Definition 3.2, SPIns f i, cð Þ ¼
\

j¼1, ...k, j6¼i
SPIns f i, f i, f j

� �� �
. From Definitions 3.3 and 3.4, Eq. (3.1) for calcu-

lating SPI(c) is obvious.
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For example, for the spatial data set in Fig. 3.1, given c ¼ {A, B, C}, then SPI
(c) ¼ min{|{A.1, A.3, A.4}\{A.1, A.3, A.4}|/4, |{B.1, B.2, B.3}\{B.1, B.3}|/5, |
{C.1, C.2}\{C.1, C.2, C.3}|/3} ¼ min{3/4, 2/5, 2/3} ¼ 0.4.

This method is a typical candidate generate-and-test method. We call it a prefix-
tree-based algorithm (PTBA) due to the fundamental nature of the method’s candi-
date search space tree.

3.3.2 Algorithm

The pseudo-code of PTBA to mine all maximal sub-prevalent SCPs is shown in
Algorithm 3.1.

Algorithm 3.1  Prefix-tree-based Mining Algorithm
Input

F={f1,f2,…,fn}: a set of spatial feature types;
S: a spatial data set;
d: a spatial neighbor distance threshold;
min_sprev: a minimum sub-prevalence threshold;

Output
MSPCP: A set of all maximal sub-prevalent SCPs;

Variables
SI2: a set of 2-size co-location instances; l: a co-location size of interest; C: a set of 

all candidate sets; Cl: a set of l-size candidates; spi: Star participation index; lmax: the 
longest size of candidate c; MSPCPl: a set of size l maximal sub-prevalent SCPs;
MSPCP: a set of all maximal sub-prevalent SCPs;
Steps

//Preprocess and candidate generation
1. SI2=gen_2-size_co-loc_ins (S, F, d);
2. SPCP2=sel_2-size_sub-prev_co-loc (min_sprev, SI2);
3. MSPCP=null;
4. C=gen_maxi_candi (SPCP2);        //candidates are organized into a prefix tree

//MSPCP mining
5. lmax =longest_size(C); 
6. l = lmax;
7. while ( l > 2 or Cl ≠f ) do
8.    Cl = get_l_candi (C, l);
9.    for each candidate c in Cl do
10.       spi = calculate_spi(c, SI2);    //using Lemma 3.2
11.      if spi ≥ min_sprev
12.          Insert(c, MSPCPl);
13.    end for
14.    MSPCP = MSPCP MSPCPl; 
15.    Subset_Pruning( MSPCPl, C );
16.    l = l − 1;
17. end while
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1. Preprocessing and candidate generation (Steps 1–4): Given an input spatial data
set S and a neighbor distance threshold d, we firstly find all neighboring instance
pairs (all 2-size co-location instances) using a geometric method such as plane
sweep, or a spatial query method using quaternary trees or R-Trees. We then
compute their star participation index (SPI) and determine whether a 2-size
co-location is sub-prevalent, by comparing its SPI to a user-defined
sub-prevalence threshold min_sprev, and include it as the result set of MSPCP2.
Based onMSPCP2, all maximal sub-prevalent candidates are generated using the
lexicographic order method.

2. Select l-size ( from lmax to 2) co-location candidates (Steps 5–8): First, the longest
size of candidates is set to lmax. The maximal sub-prevalent SCP mining is
processed starting from size l ¼ lmax. Select l-size candidates Cl from the
candidate pool.

3. Calculate l-size sub-prevalent co-locations (Steps 9–13): For each candidate c in
Cl, based on the related 2-size co-location instances SI2, SPI(c) is calculated by
Lemma 3.2. If SPI(c) � min_sprev, insert c into the l-size maximal sub-prevalent
SCP set MSPCPl.

4. Update result set and prune the subsets (Steps 14–15): Update the maximal
sub-prevalent result set MSPCP, and all subsets of the maximal set MSPCPl are
pruned.

5. Return the final result set (Steps 16–17): The procedure from Step 7 to Step 17 is
repeated continually until l ¼ 3 or the candidate set is empty. The final result can
then be returned.

3.3.3 Analysis and Pruning

The main cost of performing the prefix-tree-based algorithm (PTBA) occurs with
procedures gen_2-size_co-loc_ins, gen_max_candi, and the loop of Step 7. Suppose
the total number of spatial instances is m, the number of features is n, and Am denotes
the average number of instances in all features. Then the cost of procedure gen_2-
size_co-loc_ins is at most O(m2log2m), and procedure gen_max_candi is at most
O(n2) if we suppose that computing an order string needs only a unit time by the
lexicographic order method.

For the loop of Step 7, the procedures calculate_spi and Subset_Pruning are the
dominant costs. If we calculate the SPI of candidates using Lemma 3.2, the proce-

dure calculate_spi would cost at most O
Plmax

k¼3
jCkj�k2 � Am

� �
, where |Ck| is the number

of k-size candidates. The computational complexity of procedure Subset_Pruning is
related to the number of candidates, and the effects of pruning. The smaller is the size
of maximal sub-prevalent SCPs, the fewer is the number to be pruned, and so higher
is the cost of Subset_Pruning.
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The number of candidates may become exponential 2n, and if the longest size of
maximal sub-prevalent SCPs is not long enough, the effect of the procedure
Subset_Pruning would not be ideal. As an improvement, we propose the following
pruning lemma to prune sub-trees or nodes in a candidate search space tree when a
candidate is not a maximal sub-prevalent SCP.

Lemma 3.3 (Depth-First Pruning) If a candidate c¼ c0[{X}[{Y} is not maximal
sub-prevalent, then

1. The node “Y” can be pruned;
2. If SPI(c0[{X}[{Y}) ¼ SPI(c0[{X}), then the sub-tree whose root is node “X”

can be pruned;
3. If SPI(c0) ¼ SPI(c0[{X}), then the node “Y” which is a brother of the node “X”

can be pruned.

Proof Case (1) is obvious because the candidate c is not a maximal sub-prevalent
SCPs; For case (2) SPI(c0[{X}[{Y}) ¼ SPI(c0[{X}), because SPI(c0[{X}) ¼ SPI(-
c0[{X}[{Y})< min_sprev, according to case (1), the sub-tree whose root is “X” can
be pruned; For case (3) SPI(c0) ¼ SPI(c0[{X}), because SPI(c0[{Y}) ¼ SPI(c0[
{X}[{Y}) < min_sprev, according to case (1), the node “Y” in c0[{Y} can also be
pruned.

For example, Figs. 3.4(a) and (b), respectively, show the pruning results of cases
(2) and (3) in Lemma 3.3 after finding {A, C, D, E} is not a maximal sub-prevalent
SCP.

We have presented a PBTA for mining all maximal sub-prevalent SCPs, but the
large number of candidates in the candidate search space tree and the computational
complexity of sub-prevalence measures for long patterns limit the scale of spatial
data sets that can be handled. In the next section, a novel partitioning technique is
proposed that can resolve these problems efficiently.

3.4 A Partition-Based Algorithm (PBA)

3.4.1 Basic Idea

This section presents an interesting method called partition-based algorithm (PBA),
which adopts a divide-and-conquer strategy as follows. First, it divides the set of
2-size sub-prevalent SCPs into the set of lexicographic order strings by the relation
¼head. It then mines each string separately based on a core pattern method. We first
define the related concepts as follows.

Definition 3.7 (Partition pattern (PP) and core pattern (CP)) A 2-size pattern
contained in a SCP c is called a partition pattern (PP) of c, if its star participation
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index (SPI) is the largest of all the 2-size co-locations of c. The two sub-patterns of c,
which are divided by the PP, are called core patterns (CPs) of c.

For example, if the PP of c¼ {A, B, C, D, G} is {C, D}, then CPs of c are {A, B,
C, G} and {A, B, D, G}. Because the SPI of PP is the largest of the 2-size
co-locations of c, the CPs of c may be key patterns deciding on whether c is
sub-prevalent or not.

Lemma 3.4 Given a l-size co-location c ¼ {f1, f2,. . .fl} and its PP {fl-1, fl}, we
divide c into two (l-1)-size CPs {f1,. . .,fl-2, fl-1} and {f1,. . .,fl-2, fl} by {fl-1, fl}. If two
CPs {f1,. . .,fl-2, fl-1} and {f1,. . .,fl-2, fl} are sub-prevalent, and the two additional
conditions shown below are also satisfied, then it can be determined that c is a
sub-prevalent SCP.

The additional condition (1): |SPIns( fl-1,{f1,. . .,fl-2,fl-1}) \ SPIns( fl-1,{fl-1, fl})|/|
Sfl-1| � min_sprev and |SPIns( fl, {f1,. . ., fl-2, fl}) \ SPIns( fl, {fl-1, fl})|/|Sfl
| � min_sprev.

The additional condition (2): min{|SPIns( f1,{f1,. . .,fl-2,fl-1})\SPIns( f1,{f1,. . .,fl-2,
fl})|/|Sf1|,. . .|SPIns( fl-2, {f1,. . .,fl-2,fl-1})\SPIns( fl-2, {f1,. . .,fl-2,fl})|/|Sfl-2
|} � min_sprev.

Proof By Definitions 3.3 and 3.4, SPI(c) ¼ min{|SPIns( f1,{f1,. . .,fl-2,fl-1}) \
SPIns( f1, {f1,. . .,fl-2,fl})| / |Sf1|,. . . | SPIns( fl-2,{f1,. . .,fl-2,fl-1}) \ SPIns( fl-2, {f1,. . .,
fl-2,fl})| / |Sfl-2|, |SPIns( fl-1,{f1,. . .,fl-2,fl-1}) \ SPIns( fl-1,{fl-1, fl})|/|Sfl-1|, | SPIns( fl,
{f1,. . .,fl-2,fl}) \ SPIns( fl, {fl-1, fl})| / |S fl |}.

The idea of Lemma 3.4 is shown in Fig. 3.5 visually.

A B C D

B C D C

C D

D E

E

E

D

E

E

(a) If the case 

SPI({A,C,D,E})=SPI({A,C,D})
(b) If the case 

SPI({A,C})=SPI({A,C,D})

A B C D

B C D C

C D

D E

E

E

D

E

E

Fig. 3.4 Pruning results after finding {A, C, D, E} is not maximally sub-prevalent, where (a) if SPI
({A,C,D,E})¼SPI({A,C,D}); (b) if SPI({A,C})¼SPI({A,C,D})
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To identify the two CPs {f1,. . .,fl-2, fl-1} and {f1,. . .,fl-2, fl}, we deal with them
recursively using the core pattern method. In fact, the core pattern method employs a
bottom-up iteration strategy, which starts from identifying 3-size core patterns, then
to 4-size core patterns,. . .up to the l-size pattern.

With the following example, we will illustrate how the PB method works in
detail.

Suppose there is the set of 2-size sub-prevalent SCPs: SPCP2¼ {{A, B}, {A, C},
{A, D}, {A, F}, {A, G}, {B, C}, {B, D}, {B, G}, {C, D}, {C, F}, {C, G}, {D, E},
{D, F}, {D, G}, {E, F}} in a certain spatial data set whose feature set is {A, B, C, D,
E, F, G}.

We first partition SPCP2 into the set of lexicographically ordered strings under
the relation ¼ head. This resulting set is denoted L1. Thus, we have
L1 ¼ {δhead(A) ¼ ABCDFG, δhead(B) ¼ BCDG, δhead(C) ¼ CDFG,
δhead(D) ¼ DEFG, δhead(E)¼ EF, δhead(F) ¼ F, δhead(G) ¼ G}. We call this partition
Partition_1.

Then, according to 2-size non-sub-prevalent SCPs, the ordered strings in L1
are divided further. In our example, there are 2-size non-sub-prevalent SCPs
SPCP2 ¼ {AE, BE, BF, CE, EG}. So, the ordered string δhead(A) ¼ ABCDFG is
further divided into two strings ABCDG and ACDFG by BF. We continue to divide
these sub-strings, respectively, until there exists no 2-size non-SPCP in them or their
size is less than 2. Thus, L1 is replaced with L¼ {ABCDG, ACDFG, BCDG, CDFG,
DEF, DFG, EF}. The non-sub-prevalent-based partition is called Partition_2.

Next, we deal with strings in L, one by one, using the core pattern method to
obtain whole maximal sub-prevalent SCPs. For our example, we first consider the
ordered string “ABCDG.” Suppose {C, D} is the PP of c¼ {A, B, C, D, G}, then the

{f1 … fl-2, fl-1} {f1 … fl-2, fl}
Partition by 

{fl-1,fl}

{f1… fl-2, fl-1} is 
sub-prevalent

Identifying 

sub-patterns

Result

{f1… fl-2, fl} is 
sub-prevalent

Additional condition (1) 

is satisfied.

Additional condition (2) 

is satisfied.

{f1… fl} is sub-prevalent

Additional 

conditions

Fig. 3.5 The idea of the core pattern method
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CPs of c are {A, B, C, G} and {A, B, D, G}. Continuing to partition, we may get
3-size CPs {A, B, C} and {A, B, G} for {A, B, C, G}, and {A, B, D} and {A, B, G}
for {A, B, D, G}. We call Partition_3 the partition obtaining CPs based on PP. The
solid line part in Fig. 3.6 is the result of partitioning {A, B, C, D, G} by Partition_3.

We can directly compute the SPI values of 3-size core patterns using Lemma 3.2,
using the results of 3-size core patterns to identify the related 4-size core patterns by
Lemma 3.4, and then 5-size patterns. For our example:

If two 3-size core patterns {A, B, C} and {A, B, G} are sub-prevalent, and their
additional conditions (1) and (2) are satisfied, then we can determine that the 4-size
co-location {A, B, C, G} is sub-prevalent. Similarly, we can identify {A, B, D, G},
and then identify {A, B, C, D, G}.

Once the 5-size pattern {A, B, C, D, G} is not a sub-prevalent SCP, the rest of the
4-size patterns with the same head (beside two CPs) {A, B, C, D} and {A, C, D, G}
(see the dotted line part in Fig. 3.6) need to be identified. From Fig. 3.6, we note that
there are common patterns for identifying higher-size patterns. For example, {A, B,
G} is common for identifying {A, B, C, G} and {A, B, D, G}, and {A, B, C} is
common for identifying {A, B, C, G} and {A, B, C, D}. Thus it is better to store the
results of lower-size patterns. In addition, if the 5-size pattern {A, B, C, D, G} is
sub-prevalent, then the remaining 4-size patterns need not be identified.

When finishing the processing of judging the prevalence of ordered string
“ABCDG,” the next ordered string “ACDFG” in δhead(A) is dealt with. Then we
obtain the set MSPCPA of maximal sub-prevalent SCPs with the head of “A,” and
then prune all subsets of MSPCPA in L. In the following, the ordered strings with a
head of “B” in L are handled.

ABCG ABDG ABCD ACDG

ABC ABG ACGABD

ABCDG

ADG ACD

Fig. 3.6 {A, B, C, D, G} and its sub-sets with head of “A”

3.4 A Partition-Based Algorithm (PBA) 61



3.4.2 Algorithm

Algorithm 3.2 summarizes this mining process.

Algorithm 3.2 Partition-Based Mining Algorithm
Input and Output is the same as Algorithm 3.1
Variables

SI2: a set of 2-size co-location instances; SPCP2: a set of 2-size sub-prevalent SCPs;
L: a set of ordered strings of SPCP2 under Partition_1and Partition_2; Li: a set of or-
dered strings with the head “i” in L; MSPCPi: a set of maximal sub-prevalent SCPs 
with the head of “i”; B: a mark array to indicate whether a pattern has been identified 
or not; MSPCP: a set of all maximal sub-prevalent SCPs;
Steps

//Preprocessing
1. SI2=gen_2-size_co-loc_ins (S, F, d);
2. SPCP2=sel_2-size_sub-prev_co-loc (min_sprev, SI2);
3. MSPCP=null;
4. L=Partitioning_1_2(SPCP2); //by Partition_1 and Partition_2

//Main program
5. for i=1 to m //m features corresponding to digits 1-m
6.  Li =get_head_i(L);         //Li is the set with the head of “i” in L
7.  MSPCPi=null;
8.  mark array B is set to initial value 0;
9.  while (Li≠f ) do
10.    get a pattern c from Li;
11.    HSc =null;            //HSc is the set of all maximal sub-prevalent SCPs of c
12.    CPD(c, |c|);
13.    HSc ← Deal with the results of c;
14.    MSPCPi = MSPCPi merge HSc;      
15.  endwhile
16. MSPCP = MSPCP MSPCPi; 
17.    Subset_Pruning(MSPCPi, L); 
18. endfor

Preprocessing (Steps 1–4): First, compute the instances set SI2 of 2-size
co-locations, and select all 2-size SPCP2. Then, based on Partition_1 and Parti-
tion_2, we obtain a set L of ordered strings.

Get the ordered strings with the head of “i” (Steps 5–8): First, the set of ordered
strings with the head of “i” in L is put to Li. The set MSPCPi of all maximal
sub-prevalent SCPs with the head of “i” is set to “null”. The mark array B is
initialized to 0 (B prevents repeat computation), and the value of B is 1 if the
corresponding pattern is sub-prevalent, otherwise �1. “i” runs from the first feature
to the last feature.

Deal with ordered strings in Li by the core pattern method (Steps 9–15): For each
ordered string c in Li, compute the set HSc of all maximal sub-prevalent SCPs in c by
the recursive procedure CPD(c, |c|). The design of the recursive procedure is based
on the core pattern method. For Step 13, according to the computational results of
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CPD(c, |c|), we can obtain maximal sub-prevalent SCPs of c. For example, if B(Hash
(c)) ¼ 1 then c ! HSc. Either c is a unique maximal sub-prevalent SCP in c, or else
we have to check the two core patterns c0 and c00 of c. Next, we merge the
computational result HSc into the result set MSPCPi with the head of “i”. In the
merging operation of Step 14, we need to delete patterns which are the sub-sets of
other patterns. Then the next ordered string in Li is dealt with until there are no
ordered strings left.

Update result set and prune the subsets (Steps 16–17): Update maximal
sub-prevalent result set MSPCP, and all subsets of MSPCPi in L are also pruned.

Return the final result set (Step 18): The set of ordered strings with the head of the
next feature is dealt with until there are no ordered strings left in L. Finally, return the
final result set MSPCP of maximal sub-prevalent SCPs.

The recursive procedure CPD(c, |c|) in Algorithm 3.2 is shown below.

Procedure CPD(c, k) 
       1.  if B(Hash(c))<>0 then Return;       //c has been identified 
       2.   if k=3 then  
       3.       directly calculate SPI(c) by Lemma 3.2; 
       4.       if SPI(c)≥min_sprev then B(Hash(c))=1; 
       5.       else  B(Hash(c))=-1;  
       6.   else CPD(c′, k-1);                //c′ and c′′ are two CPs of c 
       7.          CPD(c′′, k-1); 
       8.          if B(Hash(c′))=1 and B(Hash(c′′))=1 then 
       9.                calculate SPI(c) by core pattern method  
       10.              if SPI(c)≥min_sprev then B(Hash(c))=1 
       11.              else B(Hash(c))=-1; 
       12.              for each rest (k-1)-size c′′′ with the head of “i” in c  
       13.                   CPD(c′′′, k-1); 
       14.                   HSc ← Deal with the results of c′′′  
       15.              endfor  
       16.        else B(Hash(c))=-1; 
       17.              for each rest (k-1)-size c′′′ with the head of “i” in c 
       18.                 CPD(c′′′, k-1); 
       19.                 HSc ←Deal with the results of c′′′  
       20.              endfor  
       21.        endif 

          22.  endif 

In CPD, if c has been identified (i.e., c is a common pattern), then return; Steps
2–5 exit the recursive procedure; Steps 6 and 7 recursively call CPD with the two
core patterns c0 and c00 of c; Steps 8–15 are for dealing with the case that two core
patterns c0 and c00 of c are sub-prevalent, while Steps 16–20 deal with the case that c0

and c00 are not all sub-prevalent, whereas Steps 12–14 and Steps 17–19 are for
dealing with patterns other than the two core patterns, marked as dotted lines in
Fig. 3.6.
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3.4.3 Analysis of Computational Complexity

The main cost of Algorithm 3.2 comes from performing Partition_1, Partition_2 and
the recursive procedure CPD. The cost of Partition_1 + Partition_2 is about O(n2)
because we scan all 2-size sub-prevalent patterns in Partition_1, and because all
2-size non-sub-prevalent patterns are scanned in Partition_2, the total number of
2-size patterns is n(n � 1)/2, where n is the number of spatial features.

For the cost of recursive procedure CPD, if we suppose the worst cost of

computing a k-size pattern c is T(k), then T(k) satisfies: T kð Þ ¼
3 k ¼ 3

k � 1ð ÞT k � 1ð Þ k > 3

�
.

A 3-size pattern needs 3 times the intersection operations, and when k > 3, in the
worst case, all (k � 1)-size sub-patterns are recursively called in CPD, and for a k-
size pattern c, there are k � 1 sub-patterns which are of (k � 1)-size and with the
same head of c.

Thus T(k) is about
Qk�1

i¼3
3 � i. This is the worst case and includes large amounts of

repeated computation. Fortunately, repeated computation has been avoided in the
core pattern method.

3.5 Comparison of PBA and PTBA

The core problems of the PTBA presented in Sect. 3.3 are: (1) the candidate search
space tree might be too large to store and search when we confront a data set which
has a large number of features; (2) the total cost to compute the SPIs of candidate
patterns by Lemma 3.2 might be too expensive due to a large number of intersection
operations. The PBA is aimed to relieve these two problems.

First, we divide candidates into equivalent classes by Partition_1 and Partition_2,
and deal with a pattern in an equivalent class which has the same head each time, so
as to resolve the problem of the candidate search space tree being too large.

Second, differing from the PTBA which starts with the identification of the
longest patterns, the PBA is performed step by step from 3-size core patterns.
With regard to the expected cost of the intersection operations as a whole, the core
pattern method is better than the PTBA. For example, for a 6-size pattern c¼ {A, B,
C, D, E, F}, the cost of directly computing SPI(c) by Lemma 3.2 is 24 intersection
operations. Because computing the star participation instance SPIns(A, c) of feature
A in c needs 4 times the intersection operations, if c is not sub-prevalent, then the
cost of computing a 5-size sub-set of c is 15, and the cost of a 4-size is 8. But if we
use PBA, then a 3-size pattern costs 3. To compute a 4-size pattern based on two
3-size core patterns needs 4 times the intersection operations. Similarly, the cost of a
5-size is 5 and 6-size’s is 6. Thus, the expected cost of the PTBA for a 6-size pattern
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c is (24 + 54 + 78 + 90)/4 ¼ 61.5, while the expected cost by the PBA is
(12 + 24 + 34+ 40)/4 ¼ 27.5. In fact, we have the following Lemma 3.5.

Lemma 3.5 The expected cost ratio of the core pattern method versus the PTB
method in identifying a size k (k > 2) co-location pattern is about 2

k�1.

Proof In the following proof, we only consider the computational cost of the two
methods where their computational volume is similar to Fig. 3.7, where a 6-size
pattern contains 2 size-5 sub-patterns, 3 size-4 sub-patterns, and 4 size-3
sub-patterns.

For the PBA, the total cost of a k-size pattern is
Pk
i¼3

i � k � iþ 1ð Þ2
� �

. For

example, with a 6-size pattern c, it is (3�42 + 4�32 + 5�22 + 6�12) ¼ 110. So, the

expected cost of identifying c is
Pk
i¼3

i � k � iþ 1ð Þ2
� �

= k � 2ð Þ .
For the PTBA, the expected cost of a k-size pattern is
Pk
i¼3

i � i� 2ð Þ2 � k � iþ 1ð Þ
� �

= k � 2ð Þ . For example, with a 6-size pattern c, it is

(3�12�4 + 4�22�3 + 5�32�2 + 6�42�1)/4 ¼ 246/4 ¼ 61.5.
Consequently, the expected cost ratio τ of two methods is
Pk
i¼3

i� k�iþ1ð Þ2
� �

= k�2ð Þ

Pk
i¼3

i� i�2ð Þ2� k�iþ1ð Þ
� �

= k�2ð Þ
¼

Pk
i¼3

i� k�iþ1ð Þ2

Pk
i¼3

i� i�2ð Þ2� k�iþ1ð Þ
. We note that τ is approximately equal

to the ratio of their medoids. That is τ �
kþ3
2 � k�kþ3

2 þ1ð Þ2
kþ3
2 � kþ3

2 �2ð Þ2� k�kþ3
2 þ1ð Þ ¼

k�kþ3
2 þ1ð Þ

kþ3
2 �2ð Þ2 ¼ 2 k�1ð Þ

k�1ð Þ2 ¼
2

k�1.

The explanation of formula
Pk
i¼3

i � k � iþ 1ð Þ2
� �

: In the core pattern method,

for a k-size pattern c, we need to compute 3 patterns of k � 2 size and, at least,
4 patterns of k� 3 size. In general, i patterns of (k� i + 1) size need to be computed,
until we get a k-size pattern c. Furthermore, the computational cost of a size i pattern
is i, and the computation of a size i pattern is based on size i� 1 core patterns. So, the
cost i of a size i pattern is repeatedly counted (k � i + 1) times.

The explanation of formula
Pk
i¼3

i � i� 2ð Þ2 � k � iþ 1ð Þ
� �

: In the prefix-tree-

based method, for a k-size pattern c, we also need to compute i patterns (i ¼ 3,. . .k)
of (k � i + 1) size where the computational cost of a size i pattern is i�(i � 2) in the
prefix-tree-based method. When we compute a size i pattern, we must have already
computed all higher patterns, so the cost i�(i � 2) of a size i pattern is repeatedly
counted (i � 2) times.

Third, if a pattern considered is not sub-prevalent, PBA could find it sooner
because Partition_3 is based on a partition pattern in which SPI is the biggest in all
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the 2-size co-locations with respect to it. In addition, the middle computational
results could either be maximal sub-prevalent SCPs or be used in the computation
of other corresponding patterns. For example, in Fig. 3.6, if the computation comes
to 5-size {A, B, C, D, G} (i.e., its two 4-size core patterns are sub-prevalent), and that
it is not sub-prevalent has been determined, then we can declare that the two core
patterns {A, B, C, G} and {A, B, D, G} are maximally sub-prevalent up to now. At
the same time, the computational results of 3-size patterns {A, B, C} and {A, B, D}
could also be used to identify the remaining 4-size patterns marked by dotted lines in
Fig. 3.6.

3.6 Experimental Evaluation

In this section, we evaluate the performance of the proposed two algorithms and
analyze the difference in the results from the traditional maximal prevalent SCP
mining. To aid analysis, we have improved the join-less algorithm (Yoo & Shekhar,
2006) so as to mine all maximal prevalent SCPs. The improved algorithm is called
the M-join-less algorithm. We have optimized the implementation of M-join-less
and, compared with other algorithms for mining maximal prevalent SCPs, it seems
M-join-less can deal with more data for the same run-time.

All algorithms are memory-based and implemented using C# with Intel i3–3240
@3.4 GHz CPU and 4GB of memory. As these are experiments, we have manually
verified that the results of all algorithms presented in this section are the expected
results.
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(b) The computational cost of core 

pattern method
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Fig. 3.7 The comparison of a 6-size pattern’s computation cost, where (a) the PTBA; (b) the PBA
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3.6.1 Synthetic Data Generation

Synthetic data sets were generated using a spatial data generator similar to (Huang
et al., 2004; Yoo & Shekhar, 2006). Synthetic data sets allow greater control over
studying the effects of interesting parameters.

Table 3.1 describes the parameters used for our data generation. First, we
generated F features, and then generated R 2-size core patterns, where the feature
types of each 2-size core pattern were randomly chosen from F features. Next, the
average number of P 2-size co-location instances per 2-size core pattern was
generated. The total number of instances was N. For locating 2-size instances, we
randomly chose S 2-size core patterns as a 2-size cluster, and then chose a point
randomly in the spatial frame (D � D), and located a cluster instance within an area
(d � d ) whose center is the chosen point, and where cluster instances are united by
2-size co-location instances in a cluster.

To generate our specialized data sets, first, the spatial frame size D � D controls
overall data density. For a fixed total number of instances N, the smaller D was, the
denser the data was. Second, the data density in neighborhood areas was controlled
by a parameter clumpy. When a point was randomly chosen for locating a 2-size
cluster instances, a clumpy number of cluster instances were generated in the d � d
area. The default clumpy value is 1. Finally, the number of instances overlapped in
different cluster instances was controlled by the parameter overlap, and N� overlap
instances were randomly selected. The parameter values for the synthetic data set
used in each experiment are described in Table 3.1.

3.6.2 Comparison of Computational Complexity Factors

We examined the costs of the computational complexity factors using 3 synthetic
data sets of different density. A sparse data set generated 6-size maximal
sub-prevalent SCPs out of 20 features while a dense data set generated 9-size
maximal sub-prevalent SCPs out of 20 features. In order to observe the advantage
of PTBA compared with PBA, a dense* (see Table 3.2) data set was generated which
generated 13 maximal sub-prevalent SCPs out of 15 features. In Table 3.2, all data
values except total execution time represent percent values. Overall, we can see that
M-join-less algorithm is always slower than our two algorithms, because M-join-less
computes prevalence measures of candidates by identifying clique instances, and the
cost of computing clique instances is more expensive than that of intersection
operations. Thus we discarded M-join-less and only discuss PBA and PTBA in
our later comparisons.

With a very dense data set like dense*, PTBA shows much better performance
than PBA, but in both sparse and dense data, PBA shows better performance than
PTBA. This is because PBA is a bottom-up method and, if a data set is sparse, it will
stop more quickly than PTBA, while PTBA is a top-down method, and it can find
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long maximal sub-prevalent SCPs more quickly. Also we see that in the PTBA, the
denser a data set is, the more the percentage Tprunning costs. Similarly, the better
performance PTBA shows, the worse PBA shows. In addition, we notice that
Tgen_mspcp and Tpruning take a much bigger portion of total costs than any other
costs. Clearly, the different candidate identification methods are the core distinction
between two algorithms. Note that the factor Torder_features is merely for selecting the
core patterns of candidates in PBA.

Table 3.1 Experimental parameters and their values in each experiment

Parameter Definition

Experiment tables or figs.

T.3.2/F3.8 F.3.9 F.3.10
F.3.11
(a)

F.3.11
(b)

F.3.11
(c)

F.3.11
(d)

R Number of
2-size core
co-locations

60 60 60 60 60 60 60

S Size of a cluster
formed by
2-size core
co-locations

6 6 6 6 6 6 6

P Average num-
ber of 2-size
instances in
2-size core
co-locations

200 200 200 N/100 200 200 200

N Number of
instances

20 K,15 K 20 K 20 K * 20 K 20 K 20 K

F Number of
features

20,15 20 20 * 20 20 20

D Spatial frame
size(D � D)

* 1 K 2 K 2 K 2 K 5 K 1 K

d Neighborhood
distance
threshold

15 15 15 15 15 * 15

Min_sprev Sub-prevalence
threshold

0.3 0.2 0.3 0.3 0.3 0.3 *

Clumpy Number of
cluster
instances gener-
ated in a same
neighborhood
area

1 1 * 1 1 1 1

Overlap Ratio of points
overlapped in
different cluster
instances over
all points

0 * 0 0 0 0 0

*Variable values
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3.6.3 Comparison of Expected Costs Involved in Identifying
Candidates

From Table 3.2, we saw that no one method has the absolute advantage in the two
candidate identification methods, so we compared the expected costs of identifying
candidates in PBA with those in PTBA.

We used a dense data set and a sparse data set to evaluate the expected perfor-
mance ratio. The spatial frame sizeD�D is chosen as 1000� 1000 and 5000� 5000
for the dense and sparse data sets, respectively. We selected all k-size candidates for
each data set, where size k is 6, 8, 10, 12, 14, 16, and 18. Then, we set min_sprev as
0.2, 0.4, 0.6, and 0.8, respectively, obtained each candidate’s execution time, and
then calculated the average execution time per size for all min_sprev. In Fig. 3.8, the
y-axis represents the ratio of the average execute time of PBA to the average execute
time of PTBA. The results show that, as the size of candidate increases, the expected
cost ratio is reduced overall, especially for the sparse data set. At the same time, we
also note that the experimental results are basically consistent with the analysis in
Sect. 3.5.

3.6.4 Comparison of Candidate Pruning Ratio

We studied the effect of candidate pruning ratios with the overlap ratio, which
controls the false maximal sub-prevalent candidates generated from our 2-size
sub-prevalent SCPs. In order to make our results more efficient, we reduced the
range D and min_sprev in order to make sure that the candidate sets are dense
enough to perform our experiments.

As Fig. 3.9 shows, as the overlap ratio increases, the pruning ratio also increases
in both PTBA and PBA, but PTBA can do better pruning than PBA although PBA

Table 3.2 Comparison of computational complexity factors

Method M-join-less PTBA PBA

Factor (%)

Data type

Sparse Dense Sparse Dense Dense* Sparse Dense Dense*

Tgen_2_prev_col 6.12 0.6 0.2 0.001 3.40 16.25 0.9 1.87

Tgen_candi 2.58 3.85 1.96 0.29 0.44 – – –

Tgen_candi-tree – – 6.49 0.74 0.74 – – –

Tgen_2-non_prev_col – – – – – 2.52 0.001 0.001

Torder_features – – – – – 13.89 0.002 0.001

TPart_1 + Part_2 – – – – – 1.77 0.002 0.002

TPruning – – 3.12 39.21 61.53 8.59 4.16 0.26

Tgen_mspcp 91.29 95.64 88.19 59.76 33.88 56.89 94.94 97.88

Total execution
time (s)

3.03 108.36 0.65 102.17 1.32 0.48 7.23 9.17

3.6 Experimental Evaluation 69



algorithm has a good performance too. This is explained by the fact that when all the
2-size patterns are all sub-prevalent, the PTBA has 2^|F| – (|F| + 1) candidates while
PBA only has |F| candidates, and if the longest candidate from a prefix-tree gener-
ated in PTBA is prevalent, it will prune the whole tree because the remaining
candidates are subsets of this candidate. We can also see that the candidate pruning
ratio of PTBA is over 90% when the degree of overlap is bigger than 15%, and that
of PBA is also over 90% when the degree of overlap is 20%.

3.6.5 Effects of the Parameter Clumpy

We examined the effects of the parameter clumpy for PTBA and PBA. Clumpy
shows the number of cluster instances generated in a same neighborhood area. The
bigger the clumpy degree is, the more cluster instances gather in the same neigh-
borhood area. As Fig. 3.10 shows, as clumpy increases, PTBA and PBA all increase
very slowly. In fact, their Tgen_max_prev_coloc is almost the same for different clumpy
values. Only Tgen_2-prev_coloc is affected as the clumpy degree increases. So, both
PTBA and PBA have good robustness with respect to the parameter clumpy.

3.6.6 Scalability Tests

We examined the scalability of PTBA and PBA with several workloads, e.g.,
different numbers of instances, numbers of features, neighbor distance thresholds,
and sub-prevalence thresholds. We compared the total computation time for finding
all maximal sub-prevalent SCPs.
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Effect of the number of instances. First, we compared the effect of the number of
instances in PTBA and PBA. In order to ensure that each data set generates around
10-size prevalent patterns, we increased P (the average number of 2-size instances in
2-size core co-locations, see Table 3.1) with the increase of the number of instances.
As shown in Fig. 3.11(a), when the number of instances is fewer, PBA shows better
time performance than PTBA, but as the data set grows denser and denser, PBA
spends more and more time on calculation while PTBA drops after 80 K (80,000)
instances. When the number of instances reaches 120 K, the data set is dense enough
that the longest candidate pattern is sub-prevalent, so PTBA and PBA stop quickly,
having spent most time on generating 2-size prevalent patterns. Because PTBA costs
more time on creating the prefix tree than PBA costs on Partition_1 and Partition_2,
PTBA costs a little more than PBA. The space costs of both algorithms increase as
the number of instances increases, and the main reason why PTBA costs much more
than PBA when the number of instances is over 100 K is that the data set gets dense
enough that PTBA may generate many long-size non-prevalent candidates to be
checked while PBA can discard them by checking lower-size subsets. Figure 3.11(a)
shows that both algorithms scale to large dense data sets.

Effect of the number of features. In the second experiment, we compared the
performance of PTBA and PBA as a function of the number of features. Figure 3.11
(b) shows the results. PTBA is better than PBA on running time when the number of
features is over 30. As the number of features increased, the execution time of PTBA
decreased, while that of PBA increased. The reason is that, under the same number of
instances, the increase of features causes the number of instances per feature to be
decreased, which in turn may lead to a decrease in the number of instances per 2-size
pattern. PBA spends much more time on Partition_2 and obtains more shorter-size
candidates, because the number of non-prevalent 2-size patterns becomes larger. The
space costs of the two algorithms are much the same because the data set is sparse
and the average size of result co-locations and the average number of row-instances
per co-location are quite low, which means that the main space cost of both
algorithms is the storage of row-instances. In sparse data sets, PBA may cost more
space than PTBA mainly because of the recursive process. Overall, the two
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algorithms both show good performance even if the number of features reaches 50. It
needs to be said that when N > 300,000 and the number of features reaches 40, a
memory overflow occurred in the implementation of PTBA.

Effect of neighbor distances. The third experiment examined the effect of differ-
ent neighbor distances. As Fig. 3.11(c) shows, when the distance threshold is below
100, the time costs of PTBA and PBA both increase quickly because the increase of
neighbor distance makes the neighborhood areas larger and increases the number of
size-2 co-location instances, although PBA performs better than PTBA. When the
distance reaches 120, PTBA becomes a little better than PBA because the neighbor-
hood area is large enough that PTBA can stop earlier than PBA. The space costs of
the two algorithms increase as the neighbor distances increase, because a denser data
set makes longer size candidates and a larger count of row-instances, and in dense
data, PBA performs much better than PTBA.

Effect of sub-prevalence threshold. In the final scalability experiment, we exam-
ined the performance effect of different sub-prevalence threshold min_sprev. Over-
all, the execution time decreases for both algorithms as the sub-prevalence threshold
increases, as shown in Fig. 3.11(d). However, the PBA method reduces the compu-
tation time by a larger magnitude for lower threshold values. With the increase of
thresholds, the space costs decrease because a higher threshold may cause fewer
candidates with less size and row-instances. When the threshold is low, PTBA will
generate much more long candidates than PBA; thus, PBA performs better
than PTBA.

3.6.7 Evaluation with Real Data Sets

The experimental real data sets come from the rare plant distribution data sets of the
“Three Parallel Rivers of Yunnan Protected Areas.” Figure 3.12 gives the distribu-
tion of plant data in two-dimensional space, where the X and Y coordinates represent
the instances’ locations. We can see that this is a zonal plant distribution data,
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because plants are affected by the effects of altitude or river formations. Zonal data
are common in natural ecological studies.

First, we tested the mining result difference between maximal sub-prevalent SCPs
with star participation instances and maximal prevalent SCPs with clique instances.
In the experiment, the rare plant distribution data set in Fig. 3.12 was chosen, where
the number of features (plants) is 31 and the number of instances is 336. We used a
rectangular spatial framework of size 130 K � 130 K, a neighbor distance threshold
d ¼ 12,000 m, and prevalence thresholds min_sprev ¼ min_prev ¼ 0.3. Table 3.3
shows the number of maximal sub-prevalent SCPs/maximal prevalent SCPs with
different lengths.

From Table 3.3 we can see that, with the same data set and parameter settings, the
maximal sub-prevalent SCP mining method can generate longer patterns than the
maximal prevalent SCP mining method. This is because, if an instance occurs in a
clique instance, it must be in a star participation instance, but a star neighbor
relationship may not be a clique relationship. From the table, we also found that
the percentage of long patterns in maximal sub-prevalent SCPs is greater than that in
maximal prevalent SCPs. There are 15.5% maximal sub-prevalent SCPs whose size
is over 7, compared to only 4.1% maximal prevalent SCPs. Generally, users are
more interested in long patterns, because long patterns contain more interesting
information and short patterns usually are obvious.

Let us take some mined results to analyze in detail. Three mined 11-size maximal
sub-prevalent SCPs are {B, G, J, O, Q, R, T, V, W, c, e}, {G, J, O, Q, R, T, V, W, a,
c, e}, and {G, H, J, O, Q, R, V, W, a, c, e}, while three mined 10-size maximal
prevalent SCPs are {G, J, O, R, T, V, W, a, c, e}, {G, J, Q, R, T, V, W, a, c, e}, and

(a) By number of instances (b) By number of features

(c) By neighbor distance (d) By sub-prevalence thresholds
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{J, O, Q, R, T, V, W, a, c, e}. We note that each 10-size maximal prevalent SCP is a
sub-set of one of the 11-size maximal sub-prevalent SCPs. We mark the rare plant
“O” with dashed circles in Fig. 3.12, and we can see that it is basically distributed in
an axial line which is the focus area of growing plants. That is why it occurs in three
mined 11-size maximal sub-prevalent SCPs, and similarly the plants “G” and “Q.”

Second, we used a large-scale vegetation distribution data set in the “Three
Parallel Rivers of Yunnan Protected Area” to examine the efficiency of the PBA
method. In this data set, the total number of features is 15, and the total number of
instances is 487,857. We used 0.3 as min_sprev, and 1000, 3000, and 5000 m as the
neighborhood distance thresholds, respectively. The running time of PBA is respec-
tively 148.26 (sec), 1967.84 (sec), and 7906.74 (sec).

3.7 Related Work

Koperski and Han (1995) first proposed the problem of mining association rules
based on spatial relationships. The work discovers the subsets of spatial features
frequently associated with a specific reference feature. A set of neighboring objects
of each reference object is converted to a transaction. A top-down, progressive
refinement method to discover all rules from the transactions was presented in
Koperski and Han (1995), and Wang et al. (2005) proposed a novel method based
on the partition of spatial relationships for mining multilevel spatial association rules
from the transactions. In this method, the introduction of an equivalence partition
tree method makes the discovery of rules efficient.

Morimoto (2001) discovered frequent co-located features sets using a support
count measure. This approach uses a space partitioning and non-overlap grouping
scheme for identifying co-located instances. However, the explicit space partitioning
approach may miss co-location instances across partitions. Shekhar and Huang
(2001) and Huang et al. (2004) proposed the minimum participation ratio based
on clique instances to measure the frequency of a co-location pattern. This is a
statistically meaningful interest measure for spatial co-location pattern mining.
Based on the interest measure, many mining algorithms were proposed (Huang
et al., 2004, 2005, 2006; Wang et al., 2008, 2009a, b, 2013a, 2018a, Xiao et al.,
2008; Yao et al., 2016, 2017, 2021; Yoo & Shekhar, 2006; Yoo & Bow, 2011a,
2012, 2019; Li & Shekhar, 2018; Bao & Wang, 2019; Li et al., 2020). Specifically,
Huang et al. (2004) presented a classic join-basedmining algorithm. The core idea of
this approach is to find size k clique instances by joining the instances of its size
k � 1 co-locations where the first k � 2 objects are common and then checking the
neighbor relationship between the k � 1th objects. Yoo and Shekhar (2006) pro-
posed a star-neighborhood-based joinless algorithm. The joinless method uses an
instance-lookup scheme instead of the instance join operation as used in the join-
based method for identifying clique instances. Wang et al. (2008) put forward a CPI-
tree algorithm which uses a tree-structure to store the neighbor relationships between
spatial instances, with the benefit that the clique instances of candidate patterns can
be quickly generated by CPI-tree.
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In terms of uncertain data, Liu and Huang (2013) utilized a probability density
function to describe the uncertainty of spatial instances’ locations, defined as the
expected distance between instances and proposed the UJoin-based algorithm.
Based on the concept of semantic proximity neighborhoods under the fuzzy equiv-
alent classes of instances, Wang et al. (2010) studied the problem of discovering
co-location patterns from interval data. Wang et al. (2013a, b) considered the
uncertainty of spatial instances’ existence, defined a prevalence probability and
expected participation index based on a possible world model, and then provided
exact and approximation algorithms that mine probabilistic prevalent co-location
patterns. Ouyang et al. (2017) proposed two new kinds of co-location pattern mining
for fuzzy objects, single co-location pattern mining (SCP) and range co-location
pattern mining (RCP), for mining co-location patterns at a membership threshold or
within a membership range.

To deal with the situation where there exists a rare feature in the data sets (i.e., the
number of instances with this feature is significantly smaller than those with other
features), Huang et al. (2006) proposed a maximal participation ratio (maxPR)
interest measure and a maxPrune algorithm based on a weak monotonicity property
of the maxPR measure, and Yang et al. (2019, 2021) defined a minimum weighted
participation ratio interest measure and gave a mining algorithm based on this ratio,
which can not only mine the prevalent co-location patterns with rare features, but
also exclude the non-prevalent patterns.

In some cases, co-location patterns are not prevalent globally, or some low
participation index patterns are still prevalent in a specific region. Therefore,
regional co-location pattern mining has become a research focus (Akbari et al.,
2015; Celik et al., 2007). Clearly, the huge size of prevalent co-location patterns
does not help the user easily retrieve relevant information, and this observation leads
to various definitions of redundancy in order to limit the number of spatial prevalent
co-location patterns (Wang et al., 2009b, 2018a, b; Yoo & Bow, 2011a, b, 2012).
Recently domain-driven spatial co-location pattern discovery has been attracting
more researchers (Fang et al., 2017; Lu et al., 2017, 2018; Wang et al., 2017a).

Although there has been a lot of research about the spatial co-location pattern
mining, the problem of sub-prevalent co-location pattern mining was first tackled by
us in Wang et al. (2017b), and the enlarged work was then published in Wang et al.
(2019b).

Our work on the interest measure lies between the reference object model of
Koperski and Han (1995) and the minimum participation ratio measure of Shekhar

Table 3.3 Mining results on the plant data set in Fig. 3.12

Size No. of MSPCPs No. of MPCPs Size No. of MSPCPs No. of MPCPs

2 5 15 7 23 31

3 41 70 8 35 9

4 64 115 9 10 5

5 95 98 10 7 3

6 72 73 11 3 –
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and Huang (2001, 2004). With no specific reference feature, directly applying the
model of Koperski and Han (1995) for co-location mining may not capture the
co-locations found by the techniques in this chapter, while the measure in Shekhar
and Huang (2001, 2004) may miss some reasonable and useful co-located patterns in
practical applications due to its requirement of clique instances. In the designs of the
algorithms for mining maximal sub-prevalent SCPs, the idea of using a prefix-tree
structure to store all maximal candidates comes from the work presented in Wang
et al. (2009b); the idea of pruning breadth-first in candidate space search tree can be
traced back to Yoo and Bow (2011a) and Yoo and Bow (2012). In the literature we
have found no mention of his chapter’s core pattern method based on partitions.

3.8 Chapter Summary

In this chapter, we have analyzed the limit of the traditional clique instances–based
measure in some practical applications. A new concept of sub-prevalent co-location
patterns based on star participation instances has been defined. It was especially
important to show that the proposed star participation ratio (SPR) and star partici-
pation index (SPI) obey the downward closure property, thus allowing maximal
sub-prevalent SCP mining and interactive pruning.

The sub-prevalent co-location miner, which contains two novel algorithms
(PTBA and PBA) for mining maximal sub-prevalent SCPs, was presented. PTBA
adopts a typical candidate generate-and-test method starting from candidates with
the longest pattern-size, while PBA is performed step by step from 3-size core
patterns.

The proposed algorithms were evaluated using theoretical and experimental
methods. Empirical evaluation shows that the PBA performs much better than the
PTBA when we confront sparse data sets but it becomes slower in very dense data
sets. Compared with the M-join-less algorithm for mining maximal prevalent SCPs,
our miner is more efficient.

The concept ofmaximal prevalent SCPs discussed in Chaps. 2 and 3 is based on a
lossy condensed representation, which can infer the original collection of prevalent
SCPs but not their PI values. Similar to the closed frequent itemsets in transactional
data sets, Yoo and Bow (2011b) define a prevalent co-location c as closed if there
exists no proper prevalent co-location c0 such that c ⊂ c0 and PI(c) ¼ PI(c0). The
introduction of closed prevalent SCPs creates a lossless condensed representation,
which can infer not only the original collection of prevalent SCPs but also their PI
values.

In Chap. 4, we will discuss a novel method of mining closed prevalent SCPs
which effectively has a lossless condensed representation of all prevalent SCPs.
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Chapter 4
SPI-Closed Prevalent Co-location Patterns

4.1 Introduction

A spatial co-location pattern is a set of spatial features frequently co-occuring in
nearby geographic spaces. Similar to closed frequent itemset mining, closed
co-location pattern (CCP) mining was proposed for lossless condensed collections
of all prevalent co-location patterns. However, the state-of-the-art methods for
mining condensed CCPs are derived from closed frequent itemset mining and do
not consider the intrinsic characteristics of spatial co-location patterns, e.g., the
spatial feature interactions in the prevalence metrics of co-location patterns, thus
causing serious inclusion issues in CCP mining.

This problem drives the content of this chapter. The main contributions of this
chapter to spatial co-location patterns mining will be:

(1) A novel losslessly condensed representation of spatially prevalent co-location
patterns, super participation index-closed (SPI-closed) is proposed.

(2) An efficient SPI-closed Miner is designed to effectively capture the SPI-closed
prevalent co-locations, alongside the development of three additional pruning
strategies to make the SPI-closed Miner more efficient. This method captures
richer feature interactions in spatial co-locations and solves the inclusion issue
found in existing CCP methods.

(3) A performance evaluation conducted on both synthetic and real-life data sets
shows that SPI-closed Miner reduces the number of CCPs by up to 50%, and
runs much faster than the baseline CCP mining algorithm described in Yoo and
Bow (2011a).

Figure 4.1 presents the organization of this chapter. Section 4.2 discusses why the
SPI-closed prevalent co-location is developed for mining lossless co-locations.

From Wang, L., Bao, X., Chen, H. and Cao L.: Effective Lossless Condensed Representation and
Discovery of Spatial Co-location Patterns, Information Sciences 436 (2018), 197–213.
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Section 4.3 defines the concept of super participation index-closed (SPI-closed) and
analyzes its properties. In Sect. 4.4, a SPI-closed Miner is presented and three
pruning strategies to make SPI-closed Miner efficient are introduced. Section 4.5
carries out the qualitative analysis of the SPI-closed Miner. Section 4.6 presents the
work related to the high-quality representation of the prevalent co-location patterns.
The experimental results are presented in Sect. 4.7. Section 4.8 summarizes the
chapter.

Section 4.8Chapter Summary
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Experiments Section 4.6

Section 4.1Introduction
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Why SPI-closed prevalent co-locations improve mining Section 4.2
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4.2 Why SPI-Closed Prevalent Co-locations Improve
Mining

Application areas such as earth science (Verhein & Al-Naymat, 2007), public health
(Li et al., 2016), public transportation (An et al., 2016; Yu, 2016; Moosavi et al.,
2019; Yang &Wang, 2020; Wang et al., 2020), environmental management (Akbari
et al., 2015), social media services (Song et al., 2015; Zhang et al., 2016), location
services (Chang et al., 2017; Wang et al., 2015b; Yang et al., 2018a), multimedia
(Chang et al., 2016; Ma et al., 2017; Zhu et al., 2015a, b, 2016, 2017), and so on
produce large and rich spatial data. Potentially valuable knowledge is embedded in
such data in various spatial features, and spatial co-location pattern mining has been
developed to identify interesting but hidden relationships between spatial features
(Shekhar & Huang, 2001; Huang et al., 2004).

A spatial co-location pattern (co-location) represents a set of spatial features that
frequently co-occur in spatial proximity (Shekhar & Huang, 2001). For example,
West Nile Virus often appears in the regions with poor mosquito control and the
presence of birds. Spatial co-location patterns yield an important insight for various
applications such as urban facility distribution analysis (Yu, 2016), e-commerce
(Zhang et al., 2004), and ecology (Wang et al., 2013b). A common framework of
spatial co-location pattern mining uses the frequencies of a set of spatial features
participating in a co-location to measure the prevalence (known as participation
index (Huang et al., 2004), or PI for short) and requires a user-specified minimum PI
thresholdM to find interesting co-locations. M determines the level of prevalence of
identified co-locations and M may have to be small to avoid overlooking
co-locations. However, a small M might induce a larger number of co-locations
with lower actionability (Cao, 2010; Cao, 2015; Khan et al., 2017), so it is difficult
for a user to determine a suitable value for M.

Figure 4.2(a) shows an example spatial data set. There are four different spatial
features F ¼ {A, B, C, D} with each instance denoted by a feature type and a
numeric ID value, e.g., A.1. Edges among the instances indicate spatial neighboring
relationships. Feature A has four instances, B has five instances, C has three
instances, and D has four instances in the data set. Figure 4.2(b) lists all possible
co-locations in F, and their co-location instances and their corresponding PI (the
definitions of co-location instances and PI are provided in Sect. 4.3). IfM is given as
0.3, we can see that the prevalent co-location set of this data set is {{A, B, C, D},
{A, B, C}, {A, B, D}, {A, C, D}, {B, C, D}, {A, B}, {A, C}, {A, D}, {B, C}, {B,
D}, {C, D}} since all their PI values are no less than 0.3.

Condensed representations describe small collections of prevalent co-locations
such that it is possible to infer the original collection of prevalent co-locations. The
concept of maximal co-locations (Wang et al., 2009b; Yoo & Bow, 2011b) is based
on a lossy condensed representation, which infers the original collection of prevalent
co-locations but not their PI values. The introduction of closed prevalent co-location
patterns (CCPs) creates a lossless condensed representation (Yoo & Bow, 2011a,
2012), which can infer not only the original collection of prevalent co-locations but
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also their PI values. A prevalent co-location c is closed if there exists no proper
prevalent co-location c0 such that c ⊂ c0 and PI(c) ¼ PI(c0) (Yoo & Bow, 2011a).
This concept is similar to the closed frequent itemsets found in transactional data sets
(Pei et al., 2000; Wang et al., 2003; Zaki & Hsiao, 2002). For example, the CCPs of
the data set in Fig. 4.2(a) are {A, B, C, D}, {A, B, D}, {A, C, D}, {B, C, D}, {A, B},
{A, D}, {B, D}, and {C, D} because PI({A, B, C, D })¼ PI({A, B, C}), PI({A, C, D
}) ¼ PI({A, C}) and PI({B, C, D }) ¼ PI({B, C}).

Nevertheless, the above methods can cause serious confusion in mining CCPs as
illustrated by the problem in Fig. 4.2(b). The co-location instance of measuring the
PI value of pattern {A, B, D} is contained by the co-location instance of its super-
pattern {A, B, C, D} (as shown in the dotted boxes in the co-location instances of
{A, B, C, D} and {A, B, D}). The same situation occurs in the co-location instances
of {A, C, D} and {A, D}. That means the PI values of {A, B, D} and {A, D} can be
inferred from their super-pattern {A, B, C, D} and {A, C, D}, respectively. How-
ever, PI({A, B, D}) 6¼ PI({A, B, C, D}) and PI({A, D}) 6¼ PI({A, C, D}), so {A, B,
C, D}, {A, B, D}, {A, C, D}, and {A, D} are all in the set of CCPs.

The above confusion is essentially caused by the direct transplant to CCP mining
of the concept of closed frequent itemsets used in transactional data, where the CCP
mining is a lossless condensed representation of the prevalent co-locations. How-
ever, spatial feature interactions are different from the feature relations in transac-
tional data, and spatial co-location pattern mining is different from frequent itemset

(a) An example spatial data set
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PI=min{3/5,2/3,3/4}=3/5

(see Sect. 3)

(b) Co-location instances and their PR & PI values of all possible co-locations in F={A, B, C, D}

Size 3: (PI=1/3)

A B C

A.1 B.1 C.1

A.2 B.1 C.1
A.2 B.2 C.1

2/4 2/5    1/3

(PI=2/3)

A C D

A.1 C.1 D.1

A.2 C.1 D.2
A.4 C.3 D.4

3/4 2/3   3/4

（PI=3/5）

B C D

B.1 C.1 D.1

B.1 C.1 D.2

B.2 C.1 D.2
B.4 C.2 D.3

3/5 2/3    3/4

Size 2: (PI=3/5)

A B

A.1 B.1
A.2 B.1

A.2 B.2

A.3 B.3

3/4    3/5

(PI=2/3)

A C

A.1 C.1

A.2 C.1

A.4 C.3

3/4 2/3

(PI=3/4)

A D

A.1 D.1
A.2 D.2

A.4 D.4

3/4 3/4

(PI=3/5)

B C

B.1 C.1

B.2 C.1
B.4 C.2

3/5 2/3

(PI=3/4)

B D

B.1 D.1

B.1 D.2

B.2 D.2
B.4 D.3

B.5 D.3

4/5 3/4

(PI=1)

C D

C.1 D.1

C.1 D.2

C.2 D.2
C.2 D.3

C.3 D.4

1 1

PR:

PR:

Size 4: (PI=1/3)

A B C D

A.1 B.1 C.1 D.1

A.2 B.1 C.1 D.2
A.2 B.2 C.1 D.2

2/4 2/5    1/3    2/4

(PI=2/5)

A B D

A.1 B.1 D.1

A.2 B.1 D.2

A.2 B.2 D.2

2/4 2/5    2/4
They are the same

Fig. 4.2 An illustrative example, where (a) an example spatial data set; (b) co-location instances
and their PR & PI values
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mining. CCP involves not only a participation index to measure the prevalence of
co-locations but also a participation ratio to measure the prevalence of spatial
features in co-locations, and so differs from the support/confidence measures of
frequent itemset mining.

To address the intrinsic characteristics of spatial feature interactions and CCP
mining in spatial co-locations, we first define the concept of a super participation
index SPI(c|c'), which is the participation index of the co-location pattern c in its
super-pattern c'. The concept of SPI-closed is then introduced to more effectively
and losslessly condense the collections of prevalent co-location patterns. We show
that the SPI-covered relationship (see Definition 4.7) is a pseudo partial order in the
prevalent co-location set. A theoretical analysis is provided which shows that
SPI-closed reduces the number of closed co-locations by up to 50% compared to
existing methods when the number of spatial features is sufficiently large. Lastly, an
efficient SPI-closed Miner is proposed to mine SPI-closed prevalent co-locations,
and three pruning strategies are developed to make the SPI-closed Miner more
efficient.

Our experimental evaluation shows that SPI-closed Miner runs much faster than
the closed prevalent co-location pattern mining algorithm in Yoo and Bow (2011a),
which itself is a very fast closed prevalent co-location mining method and also the
only one available in current literature. This is because our method manages to
capture richer information in spatial feature interactions and spatial co-locations.

4.3 The Concept of SPI-Closed and Its Properties

The definitions related to classic co-location pattern mining are first reviewed; then
the concept of super participation index-closed (SPI-closed) is defined and its
properties are analyzed.

4.3.1 Classic Co-location Pattern Mining

A spatial feature fi represents a specific aspect of information in a spatial region. For
example, the species of a plant in a geographical area is a feature. An occurrence of fi
at a location is called an instance of fi. For example, a plant of certain species is an
instance. The spatial neighbor relationship NR describes the relationships between
spatial feature instances. Two spatial feature instances i1 and i2 form an NR, denoted
as NR(i1, i2), if distance(i1, i2) � d, where d is a distance threshold to determine how
close the neighbors are.

Given a spatial feature set F, a spatial co-location pattern c is a subset of the
feature set F. The number of features in c is called the size of c. For example, if
F ¼ {A, B, C}, and {A, B} co-occurs more than a threshold M, then it is a prevalent
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co-location with size 2. The spatial prevalent co-location pattern (PCP) mining
problem can be formulated as follows.

Definition 4.1 (PCP mining) Given a co-location pattern set CP and a quality
predicate (or a prevalence predicate) q (q! {0, 1}, where 0 refers to non-prevalent,
and 1 indicates prevalent) that measures the quality of CP, PCP mining discovers all
prevalent co-location patterns {c1,c2,. . .cn}, which have q(ci) ¼ 1.

In practice, to make the predicate q more flexible and applicable for real-life
applications, q is usually defined by a quality measure ∂: CP ! [0, 1] in terms of a
domain-specific threshold value M 2 [0, 1]:

q cð Þ ¼ 1 if ∂ cð Þ � M

0 otherwise

�
ð4:1Þ

The minimum participation ratio (PR) (renamed the participation index (PI)) is a
frequently used quality measure, as in (Huang et al., 2004; Wang et al., 2008; etc.).
Before defining PR and PI, we define the concepts of row instance and co-location
instance. If there is a set of instances I ¼ {i1,i2,. . .,im} such that {NR(ij, ik) |
1 � j � m, 1�k�m}, then I is called an NR clique. If an NR clique I contains all
the features in a co-location pattern c, but there is not a proper subset of I containing
all the features in c, then I is called a row instance of c. The set of all row instances of
c is called a co-location instance (or more often called a table instance) of c, denoted
as T(c).

Definition 4.2 (Participation ratio) The participation ratio PR(c, fi) of feature fi in
a co-location c is the fraction of instances of fi that occur in T(c), i.e.,

PR c, f ið Þ ¼ Number of distinct instances of f i in T cð Þ
Number of instances of f i

ð4:2Þ

Definition 4.3 (Participation index) The participation index PI(c) of a co-location
pattern c is the minimum participation ratio PR(c, fi) among all features {fi} in c, i.e.,

PI cð Þ ¼ min fi2c PR c, f ið Þf g ð4:3Þ

A co-location c is considered prevalent if PI(c) � M, where M is a user-specified
prevalence threshold.

For example, for the pattern c¼ {A, B, C, D} in Fig. 4.2, the co-location instance
T(c)¼ {{A.1, B.1, C.1, D.1}, {A.2, B.1, C.1, D.2}, {A.2, B.2, C.1, D.2}}. Feature A
has a participation ratio PR(c, A) of 2/4 since only A.1 and A.2 among the four
instances participate in its co-location instance, and PR(c, B), PR(c, C) and PR(c, D)
are 2/5, 1/3 and 2/4, respectively. The participation index of c is the minimum of
these four participation ratios, i.e., PI(c) ¼ 1/3.

The PR measures the prevalence strength of a feature in a co-location pattern, and
the PI measures the prevalence strength of a co-location pattern. Wherever a feature
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in a co-location pattern c is observed, all other features in c can be observed in the
feature’s neighborhood with a probability of PI(c) � M. The PI and PR measures
satisfy the anti-monotonicity property (a downward closure property, i.e., PI(c)� PI
(c') for any c ⊂ c0), which enables level-wise search (like Apriori) (Huang et al.,
2004). This kind of search method has good performance when a given threshold
M is high and the neighborhood relations of spatial data are sparse. Unfortunately, an
Apriori-based co-location discovery algorithm not only examines all of the 2k sub-
sets of each size k feature set but also generates numerous irrelevant patterns.

Lossless condensed representations are the diminished descriptions of the prev-
alent co-location collections such that it is possible to infer the original collection of
prevalent co-locations and their PI values by inference methods. The introduction of
closed co-location patterns (CCP) creates a lossless condensed representation (Yoo
& Bow, 2011a), which can not only infer the original collection of PCPs but their PI
values as well. However, the condensing power of CCP mining methods is quite
limited.

4.3.2 The Concept of SPI-Closed

By analyzing the properties of the PR and PI measures of spatial co-location
patterns, such as their anti-monotonicity, we introduce a new lossless condensed
representation method of PCPs, i.e., super participation index closed (SPI-closed)
co-locations, which effectively improves the condensing power when mining CCPs.
The related definitions are as follows.

Definition 4.4 (The super participation index SPI(c|c')) Let c and c0 be two
co-locations, and c ⊂ c0. The super participation index SPI(c|c') of c in super-
pattern c' is defined as the minimum PR(c', fi) among all features {fi} in c, i.e.,

SPI cjc0ð Þ ¼ min PR c0, f ið Þ, f i 2 cf g ð4:4Þ

Example 4.1 In the data set of Fig. 4.2(a), SPI({A, C, D}|{A, B, C, D})¼min{PR
({A, B, C, D}, A)¼2/4, PR({A, B, C, D}, C)¼1/3, PR({A, B, C, D}, D)¼ 2/4}¼ 1/
3. Similarly, SPI({A, B, D}|{A, B, C, D})¼2/5.

Definition 4.5 (SPI-closed co-location) A co-location c is SPI-closed if and only if
its PI value is greater than the SPI value of c in any of its super-patterns c' which are
SPI-closed, i.e., if and only if

c ⊂ c0ð Þ and c0 is SPI � closed ! PI cð Þ > SPI cjc0ð Þð Þ ð4:5Þ

The SPI-closed definition is recursive in this presented form. This is to ensure that an
SPI-closed co-location set not only can infer the original collection of prevalent
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co-locations but their PI values as well. Accordingly, the discovery of SPI-closed
co-locations has to progress from the largest size to size 2.

Recall the traditional concept of closed co-location defined in Yoo and Bow
(2011a): A co-location c is closed if and only if its PI value is greater than the PI
value of any of its super-patterns c', i.e., if and only if

c ⊂ c0 ! PI cð Þ > PI c0ð Þ ð4:6Þ

In the remainder of this chapter, we call such closed co-locations PI-closed
co-locations to distinguish the classic closed co-locations from our defined SPI-
closed co-locations.

Example 4.2 Taking the example data set in Fig. 4.2(a), if M ¼ 0.3, then {A, B, C,
D} is an SPI-closed co-location since PI({A, B, C}) ¼ SPI({A, B, C}|{A, B, C,
D}) ¼ PI({A, B, C, D}) and PI({A, B, D}) ¼ SPI({A, B, D}|{A, B, C, D}) > PI
({A, B, C, D}), so {A, B, C} and {A, B, D} are both non-SPI-closed co-locations,
but {A, B, D} is PI-closed.

Definition 4.6 (SPI-closed prevalent co-location) An SPI-closed co-location c is
an SPI-closed prevalent co-location if c is SPI-closed and PI(c) � M, where M is a
user-specified threshold.

For simplicity, we use SPI-closed co-locations to represent SPI-closed prevalent
co-location patterns.

4.3.3 The Properties of SPI-Closed

In this sub-section, we analyze the properties of SPI-closed.

Definition 4.7 (SPI-covered (or PI-covered)) For a co-location c, if there is a
co-location c' such that c ⊂ c0 and PI(c)¼ SPI(c|c') (PI(c)¼ PI(c')), we say c is SPI-
covered (or PI-covered) by c'.

Lemma 4.1 If c ⊂ c0 and c is PI-covered by c', then c must be SPI-covered by c'.

Proof If c' PI-covers c, then PI(c) ¼ PI(c'). According to the anti-monotonicity of
PR and PI, PI(c) � SPI(c|c') � PI(c'). Therefore, PI(c) ¼ SPI(c|c') holds, i.e., c'
SPI-covers c.

Lemma 4.2 The SPI-covered relationship is a pseudo partial order in the prevalent
co-location pattern set, such that:

(1) c is SPI-covered by c itself. (reflexivity).
(2) if c is SPI-covered by c0 and c0 is SPI-covered by c, then c ¼ c0 (anti-symmetry).
(3) if c ⊂ c0 ⊂ c", PI(c) ¼ PI(c0) and c0 is SPI-covered by c", then c must be SPI-

covered by c" (pseudo-transitivity).
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Proof By the concept of SPI-covered, it is easy to verify that the first two properties
are true. We prove the third statement below.

According to the conditions of the third statement and related definitions, if c is
not SPI-covered by c", then

PI(c) > min{PR(c", fi), fi 2 c}
� min{PR(c", fi), fi 2 c'} (c ⊂ c0)
¼ min{PR(c', fi), fi 2 c'} (by c' is SPI-covered by c" )
¼ PI(c') (by the PI definition)
) PI(c) > PI(c'), contradiction.

Hence, c must be SPI-covered by c".

We note that the PI-covered relationship satisfies transitivity, but the SPI-covered
relationship does not. That is why the condition “c' is SPI-closed” is put into
Definition 4.5. Otherwise, the main point of the closure, which is able to deduce
the prevalence of deleted patterns by looking at the remaining patterns, will be lost.
The process of discovering SPI-closed co-locations still has to progress from the
largest size down to size 2, but our new SPI-closed outperforms the traditional
concept of PI-closed defined in Yoo and Bow (2011a), i.e., the set of SPI-closed
co-locations SSPI-closed is smaller than the set of PI-closed co-locations SPI-closed.

Lemma 4.3 If c 2 SSPI-closed, then c 2 SPI-closed. However, c 2 SSPI-closed might not
hold when c 2 SPI-closed.

Proof If c 2 SSPI-closed, for any of c’s super-patterns c' which are in SSPI-closed, we
have PI(c) > SPI(c|c'). According to the anti-monotonicity of PR and PI, SPI(c|
c') � PI(c'). Therefore, PI(c) > PI(c'). For any of c’s super-patterns c" which comes
from SSPI-closed, if PI(c) ¼ PI(c") then there exists c"’s super-pattern c"' which is in
SSPI-closed, and c is SPI-covered by c"' (by Lemma 4.2(3)), so we infer c =2 SSPI-closed
(contradiction). Thus, PI(c) > PI(c"). In summary, c 2 SPI-closed.

Conversely, we give a counter example: {A, B, D} is a PI-closed co-location in
the data set of Fig. 4.2(a), i.e., {A, B, D} 2 SPI-closed, but it is not SPI-closed, i.e.,
{A, B, D} =2 SSPI-closed.

Accordingly, can we estimate how many fewer co-locations are in SSPI-closed than
in SPI-closed. For a k-size co-location c, if PI(c) ¼ min{PR(c, fi), fi 2c} ¼ PR(c, fs),
there are k � 1 (k � 1)-size co-locations containing feature fs but only one (k � 1)-
size co-location that does not contain it. We call co-locations that do not contain the
minimum PR feature of their super-patterns should-be-closed co-locations since the
probability that they are PI-closed is generally higher. Other co-locations are called
might-be-closed co-locations. For the data set in Fig. 4.2(a) where PI({A, B, C,
D}) ¼ PR({A, B, C, D}, C), C is the minimum PR feature of the 4-size co-location
{A, B, C, D}. Thus 3-size co-locations {A, B, C}, {A, C, D} and {B, C, D}
containing C are might-be-closed, and {A, B, D}, which does not contain C, is a
3-size should-be-closed co-location.

Some of the should-be-closed co-locations might be non-SPI-closed. We denote
them as not-SPI-closed. It may be that the fraction of should-be-closed co-locations
compared to not-SPI-closed co-locations (denoted as FR(should-be-closed, not-SPI-
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closed)) is almost equal to FR(should-be-closed + might-be-closed, not-PI-closed),
when the following lemma is useful.

Lemma 4.4 If |F| ¼ n and FR(should-be-closed, not-SPI-closed) � FR (should-be-
closed + might-be-closed, not-PI-closed), then (|SPI-closed| � |SSPI-closed|)/|SPI-
closed| � (2n-1 � n)/(2n � (n + 1)).

Proof
(1) If |F| ¼ n, there are 2n � (n + 1) possible co-locations in F. For example, if n¼4,

there are 11 possible co-locations (should-be-closed + might-be-closed) in
F ¼ {A, B, C, D}.

(2) There are at most 2n-1 � n should-be-closed co-locations in 2n� (n + 1) possible
co-locations. For example, if F ¼ {A, B, C, D}, there is one 3-size should-be-
closed co-location and three 2-size should-be-closed co-locations in 11 possible
co-locations (see Fig. 4.3).

Combining (1) with (2), under the condition that FR(should-be-closed, not-SPI-
closed) � FR(should-be-closed + might-be-closed, not-PI-closed), we have (|SPI-
closed| � |SSPI-closed|)/|SPI-closed| � (2n-1 � n)/(2n � (n + 1)).

In general, FR(should-be-closed, not-SPI-closed) � FR (should-be-
closed + might-be-closed, not-PI-closed), hence, (|SPI-closed| � |SSPI-closed|)/|SPI-
closed| � (2n-1 � n)/(2n � (n + 1)) holds.

For example, in Fig. 4.2(a), |F| ¼ 4, accordingly, (2n-1 � n)/(2n � (n + 1)) ¼ 4/
11 ¼ 0.36. If M ¼ 0.3, (|SPI-closed| � |SSPI-closed|)/|SPI-closed| ¼ (8 – 6)/8 ¼ 0.25 (see
Fig. 4.2(b)).

We note that (2n-1 � n)/(2n � (n + 1))� 1/2 when n is large enough. It means that
the introduction of SPI-closed can reduce the number of PI-closed co-locations by
about 50% under the conditions that FR(should-be-closed, not-SPI-closed) � FR
(should-be-closed + might-be-closed, not-PI-closed) and that the number of spatial
features n is large enough.

Distinct from the discovery of frequent itemsets in transactional databases, we
can obtain not only PI(c) for a spatial co-location pattern c, but {PR(c, fi), fi 2 c} as
well. However, the concept of the traditional PI-closed co-locations as in Yoo and
Bow (2011a) only applies to the PI values. The proposed concept of SPI-closed
co-locations in Definitions 4.5 and 4.6 includes information from both PI and PR,

ABD

AD

ABCD

ACD BCD

AB BD CD

ABC

AC BC

should-be-closed

Others: might-be-closed

Fig. 4.3 The should-be-closed and might-be-closed patterns of the data set in Fig. 4.2(a)
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and hence the power of the corresponding lossless condensing approach to prevalent
co-location collection is effectively strengthened.

4.4 SPI-Closed Miner

Based on Lemmas 4.1, 4.2, and 4.3, a direct approach to discovering all SPI-closed
co-locations involves the identification of all PI-closed co-locations and then the
pruning of non-SPI-closed co-locations. This approach first has to compute the
PI-closed co-location set, which is larger than the SPI-closed co-location set. We
introduce SPI-closed Miner, which adopts an FP-growth-like method for directly
mining SPI-closed co-locations, and we then develop three pruning strategies to
make SPI-closed Miner efficient.

4.4.1 Preprocessing and Candidate Generation

To generate the smallest possible candidate set of SPI-closed co-locations, the input
spatial data set will undergo the following preprocessing: converting the input data
to neighborhood transactions, and then extracting features in the converted neigh-
borhood transactions. We explain these stages below.

(1) Converting the input data to neighborhood transactions
Given a spatial instance f.i 2 S, the neighborhood transaction of f.i is defined

as a set that consists of f.i and all other spatial instances having neighborhood
relationships with f.i, i.e., NT( f.i) ¼ {f.i, g.j 2 S | NR( f.i, g.j) ¼ true and f 6¼ g},
where NR is a neighborhood relationship.

For example, the neighborhood transaction of A.1 in Fig. 4.2(a) is {A.1, B.1,
C.1, D.1}. Fig. 4.4(a) shows the neighborhood transactions of the data in Fig. 4.2
(a). Each instance in the transaction has a neighborhood relationship with the
first instance, which is called a reference instance.

The data structure for storing the neighborhood information was first intro-
duced in Yoo and Shekhar (2006). It has several advantages for SPI-closed
co-location mining. First, neighborhood transactions do not lose any instances,
nor do any neighborhood relationships of the original data. Second, neighbor-
hood transactions can be easily constructed from the paired neighboring
instances in the input data. Third, they can be used to filter the SPI-closed
candidate set.

(2) Extracting features in neighborhood transactions
We name the lexicographic set of distinct features in the neighborhood

transactions, neighborhood transaction features. For example, Fig. 4.4(b)
shows the neighborhood transaction features of the neighborhood transactions
shown in Fig. 4.4(a).
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We generate the feature sets for SPI-closed candidates based on these neighbor-
hood transaction features. For the convenience of generating and pruning the
SPI-closed candidates, we use a lexicographic prefix-tree structure to store the
neighborhood transaction features. This kind of data structure was also used in
Yoo and Bow (2011a) to generate top-k PI-closed co-location candidates. Here,
we revise the process that Yoo and Bow (2011a) employed to generate SPI-closed
candidates. Our process for generating and pruning the SPI-closed candidates is
described below.

First, the lexicographic prefix-tree structure is described as follows:

(1) It consists of a root, labeled the reference feature, and a set of feature neighbor-
hood relationships as the children of the root.

(2) Each node consists of three fields: feature-type, count, and node-link, where
feature-type denotes a feature this node represents, count records the number of
neighborhood transaction features represented by the portion of the path
reaching this node, and node-link holds the link to the next node in the tree
carrying the same feature-type.

For example, the lexicographic prefix-tree constructed from the neighborhood
transaction features in Fig. 4.4(b) is shown in Fig. 4.5(a). We can see that one prefix-
tree is built for each reference feature.

Second, all feature sets having a neighborhood relationship with the root node
(reference feature) are generated. We call the generated feature sets star SPI-closed
candidates since all features in a set have neighborhood relationships with their first
feature. The output also includes the prevalence information, which indicates the
likelihood of its first feature having a neighborhood relationship with all other
features in the set. This represents the upper bound of the participation ratio
(upper PR, or UPR for short). If the UPR of a star SPI-closed candidate is equal to

Trans. No. Neighborhood instances

extract
→

Trans. No. Neighborhood features
1 A.1 B.1,C.1,D.1 1 A B,C,D

2 A.2 B.1,B.2,C.1,D.2 2 A B,C,D

3 A.3 B.3 3 A B

4 A.4 C.3,D.4 4 A C,D

5 B.1 A.1,A.2,C.1,D.1,D.2 5 B A,C,D

6 B.2 A.2,C.1,D.2 6 B A,C,D

7 B.3 A.3 7 B A

8 B.4 C.2,D.3 8 B C,D

9 B.5 D.3 9 B D

10 C.1 A.1,A.2,B.1,B.2,D.1,D2 10 C A,B,D

11 C.2 B.4,D.3 11 C B,D

12 C.3 A.4,D.4 12 C A,D

13 D.1 A.1,B.1,C.1 13 D A,B,C

14 D.2 A.2,B.1,B.2,C.1 14 D A,B,C

15 D.3 B.4,B.5,C.2 15 D B,C

16 D.4 A.4,C.3 16 D A,C

(a) Neighborhood transactions (b) Neighborhood transaction features

Fig. 4.4 Neighborhood transactions and neighborhood transaction features of the data set in
Fig. 4.2(a), where (a) neighborhood transactions; (b) neighborhood transaction features
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the UPR of any super star SPI-closed candidate in the same reference feature set, we
mark it in boldface. If the UPR of a star SPI-closed candidate is smaller than M, we
delete it from the set of star SPI-closed candidates.

For example, in the prefix-tree of feature A of Fig. 4.5(a), we generate all feature
sets having a relationship with A and their UPR values: {A, B, C, D}: 2/4, {A, B, C}:
2/4, {A, B, D}: 2/4, {A, C, D}: 3/4, {A, B}: 3/4, {A, C}: 3/4, {A, D}: 3/4. If
M ¼ 0.3, no star SPI-closed candidates can be pruned. The feature sets marked in
boldface are {A, B, C}: 2/4, {A, B, D}: 2/4, {A, C}: 3/4 and {A, D}: 3/4. The star
SPI-closed candidates generated by prefix-trees in Fig. 4.4(a) are shown in Fig. 4.5
(b) (assuming M ¼ 0.3).

Third, the star SPI-closed candidates are combined to filter clique SPI-closed
candidates. This is done as follows. First, k star SPI-closed candidates are combined

By Pruning 4.3

upper PI, or UPI

By Pruning 4.2

(a) Lexicographic prefix-trees of features of the data set in Fig. 4.2(a)

{A,B,C,D}:2/4 {B,A,C,D}:2/5  {C,A,B,D}:1/3    {D,A,B,C}:2/4
{A,B,C}:2/4 {B,A,C}:2/5 {C,A,B}:1/3     {D,A,B}:2/4
{A,B,D}:2/4 {B,A,D}:2/5  {C,A,D}:2/3 {D,A,C}:3/4
{A,C,D}:3/4 {B,C,D}:3/5 {C,B,D}:2/3     {D,B,C}:3/4
{A,B}:3/4     {B,A}:3/5 {C,A}:2/3   {D,A}:3/4
{A,C}:3/4 {B,C}:3/5   {C,B}:2/3 {D,B}:3/4
{A,D}:3/4  {B,D}:4/5      {C,D}:3/3           {D,C}:4/4

(b) Star SPI-closed candidates

{A,B,C,D}= min{2/4,2/5,1/3,2/4}=1/3
{A,B,C}= min{2/4,2/5,1/3}=1/3
{A,B,D}= min{2/4,2/5,2/4}=2/5
{A,C,D}= min{3/4,2/3,3/4}=2/3
{B,C,D}= min{3/5,2/3,3/4}=3/5

{A,B}= min{3/4,3/5}=3/5
{A,C}= min{3/4,2/3}=2/3
{A,D}= min{3/4,3/4}=3/4
{B,C}= min{3/5,2/3}=3/5
{B,D}= min{4/5,3/4}=3/4
{C,D}= min{3/3,4/4}=1

(c) Clique SPI-closed candidates

upper PR, or 

UPR

Marked boldface 
because its UPR 

is equal to the 

UPR of {A,C,D}

D:1

D:2

C:2

C:3

A:2

D:1

B:1

D:1

B:1 D:1

B:5

C:1A:3 D:1

D:1

D:4

B:1A:3

C:1B:2
C:1

C:2

C:2

A:4

B:3 C:1

D:2

Fig. 4.5 Candidate generation, where (a) the lexicographic prefix-tree structure; (b) star SPI-closed
candidates; (c) clique SPI-closed candidates
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to a k-size clique SPI-closed candidate, and the minimum value of k UPR values
forms the upper participation index (upper PI, or UPI) of this clique SPI-closed
candidate. The super participation index SPI(c|c') (c ⊂ c0), which is calculated from
UPRs, is called upper SPI(c|c') (or USPI(c|c')).

Three pruning strategies are incorporated into the above combination process:
non-prevalent pruning and two strategies for non-SPI-closed pruning.

Pruning 4.1 (Non-prevalent pruning) If a co-location c is not the star SPI-closed
candidate of a certain prefix-tree fi ( fi 2 c), c can be pruned.

Proof For a spatial feature fi 2 c, if c is not in the set of star SPI-closed candidates of
the prefix-tree fi, then UPR(c, fi) < M. We have PI(c) < UPI(c) < UPR(c, fi) < M.
Hence, c can be pruned.

For example, if M ¼ 0.4, co-locations {C, A, B, D} and {C, A, B} in the prefix-
tree C are not star SPI-closed candidates. Then {A, B, C, D} and {A, B, C} cannot be
combined in the clique SPI-closed candidate generation.

Pruning 4.2 (Non-SPI-closed pruning strategy 1) If the UPI value of a clique
SPI-closed candidate c is marked in boldface, and UPI(c) ¼ UPI(c') (c ⊂ c0, where
c0 is a clique SPI-closed candidate), then c can be pruned.

Proof In the process of generating star SPI-closed candidates, a candidate c is
marked in boldface when its UPR is equal to that of its certain super star
SPI-closed candidate in the same reference feature set. Therefore, if and only if
UPI(c) is marked in boldface, the value of UPI(c) might be equal to that of its super-
patterns. When UPI(c) ¼ UPI(c') (c ⊂ c0, c0 is a clique SPI-closed candidate), c is
not a clique SPI-closed candidate, then c can be pruned.

For example, in Fig. 4.5(c), UPI({A, B, C})¼UPI({A, B, C, D}), if {A, B, C, D}
is a clique SPI-closed candidate, so {A, B, C} can be pruned, and the same applies to
{A, C} and {B, C}.

Pruning 4.3 (Non-SPI-closed pruning strategy 2) If the UPI value of a clique
SPI-closed candidate c is in boldface, and UPI(c)¼USPI(c|c') (c ⊂ c0, c0 is a clique
SPI-closed candidate), then c can be pruned.

Proof First, if UPI(c) is not in boldface, it is not possible that UPI(c) ¼ USPI(c|c')
(c ⊂ c0). Then, if UPI(c) ¼ USPI(c|c') (c ⊂ c0), according to Definitions 4.5 and
4.6 c is a non-SPI-closed pattern when c' is an SPI-closed pattern. Therefore, c can be
pruned if c' has already been a candidate. □

For example, in Fig. 4.5(c), UPI({A, B, D}) ¼ USPI({A, B, D}|{A, B, C,
D}) ¼ 2/5, and if {A, B, C, D} is a clique SPI-closed candidate, then {A, B, D}
can be pruned, and the same applies for {A, D}. However, {B, D} cannot be pruned
since UPI({B, D}) 6¼ USPI({B, D}|{B, C, D}).

As shown in Fig. 4.5(c), if M ¼ 0.3, the generated clique SPI-closed candidates
and their UPI values are {A, B, C, D}: 1/3, {A, C, D}: 2/3, {B, C, D}: 2/3}, {A, B}:
3/5, {B, D}: 3/4 and {C, D}: 1. We note that all non-SPI-closed co-locations have
been pruned in the combination phase for the data set in Fig. 4.2(a).

92 4 SPI-Closed Prevalent Co-location Patterns



In addition, we note that the Pruning 4.3 strategy contains the Pruning 4.2
strategy, i.e., the co-locations pruned by the Pruning 4.2 strategy will always be
pruned by the Pruning 4.3 strategy. The reasons for keeping Pruning 4.2 are: (1) the
computational complexity of Pruning 4.2 is lower than that of Pruning 4.3 because
we can use a value search strategy in Pruning 4.2; (2) there are generally more
co-locations satisfying Pruning 4.2.

4.4.2 Computing Co-location Instances and Their PI Values

Once the clique SPI-closed candidates have been generated, the co-location
instances of each clique SPI-closed candidate and their true PI values need to be
computed. The computation process starts from the largest size candidates.

The candidate co-location instances of clique SPI-closed candidates are gathered
by scanning neighborhood transactions (e.g., Fig. 4.4(a)). They are not the true
co-location instances. True co-location instances can be filtered from the candidate
co-location instances by examining a clique relationship between other instances,
except for the first instance of the candidate co-location instance. For example, in
Fig. 4.4(a), {A.2, B.2, C.1, D.2} is a true co-location instance of candidate {A, B, C,
D}, but {A.2, B.1, C.1, D.2} is not.

For a k-size candidate c, if PI(c) ¼ UPI(c) then c must be an SPI-closed
co-location. Otherwise, we first need to generate all pruned (k � 1)-size sub-sets
of c. Next, if PI(c) < M then c can be pruned; otherwise, we need to check whether
c is an SPI-closed co-location according to Definitions 4.5 and 4.6.

Note that the UPI values of size 2 co-locations are their true PI values.

4.4.3 The SPI-Closed Miner

We propose the SPI-closed Miner to enable the above process. The pseudocode
below describes its main process.

4.4 SPI-Closed Miner 93



Algorithm 4.1 SPI-closed Miner
Inputs:
(1) A feature set, F={f1, f2, …, fn}; 
(2) A spatial data set, D; 
(3) A spatial neighborhood distance threshold, d; and 
(4) A minimum participation index threshold, M.
Output:
The SPI-closed co-location set Ω.
Method: 
// Preprocess and generate star SPI-closed candidates
1)  NP =find_neighbor_pairs(D,d);
2)  (NT,ENT)=gen_neighbor_transactions(NP);
3) for i=1 to n
4) Treei=build_prefix-tree(fi,ENT); 
5)    SNCCi=gen_candi_and_cal_upr (Treei,M); //Generating the star SPI-closed candi-

dates of Treei and calculate their UPR
6)    if UPR(c, fi)<M //c∈SNCCi

then c is pruned from SNCCi;
7) if UPR(c, fi)=UPR(c′, fi)                //c, c′∈SNCCi and c⊂c′

then c is marked in boldface;  
//Filter clique SPI-closed candidates by combining star SPI-closed candidates
8)   z=1;
9)   While z<n do
10) l = largest size of SNCCz

11) while (l>1 and SNCCz ≠f ) do
12)       for each l-size candidate c in SNCCz ;
13)         CNCC←combine_and_cal_upi (SNCCz+1, …, SNCCn); //CNCC is the set of 

clique SPI-closed candidates
14)         if UPI(c) is boldface and UPI(c)=USPI(c|c')) //c′∈CNCC and c⊂c′

then c is pruned from CNCC;
15) l=l-1;
16)  z=z+1;
//Calculate true PIs of candidates and obtain the SPI-closed set Ω
17)  Ω←size 2 candidates in CNCC;
18)  l=largest size of CNCC;
19) while (l>2 and CNCC≠f) do
20) for each l-size candidate c in CNCC;
21)        SIc=find_star_instances(c, NT);
22)        CIc=filter_clique_instances(SIc, NT);
23) PI(c)=calculate_true_pi(CIc); 
24) if PI(c)=UPI(c)

then move c from CNCC into Ω
25) else CNCC ← gen_pruned_(l-1)-sub-sets(c, CNCC);
26) if PI(c)<M or non-SPI-closed(c) //per Definitions 4.5 & 4.6

then prune c from CNCC
27) else  move c from CNCC into Ω
28) l=l-1;
29)  Output Ω
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The algorithm SPI-closed Miner contains three phases. The first one preprocesses
and generates star SPI-closed candidates, the second combines star SPI-closed
candidates as clique SPI-closed candidates, and the third generates the SPI-closed
co-location set Ω by calculating the true PI values of the candidates.

In the first phase, we find all neighboring instance pairs for a given input spatial
data set and a neighborhood distance threshold d. The instance neighborhood trans-
actions NT are generated by grouping the neighboring instances for each instance.
The feature neighborhood transactions ENT are then obtained from NT. Next, a
prefix-tree Treei of the feature fi is built based on the neighborhood transaction
features of the feature fi in ENT, where i¼ 1,2,. . .,n. Lastly, the set of star SPI-closed
candidates SNCCi is generated by using Treei, and their UPR values are calculated at
the same time. For a candidate c in SNCCi, if UPR(c, fi) < M, then c cannot be
prevalent, and we can prune c from SNCCi. If UPR(c, fi) ¼ UPR(c0, fi) for c,
c0 2 SNCCi and c ⊂ c0, c is marked in boldface.

In the second phase, the set of clique SPI-closed candidates CNCC is filtered by
combining the star SPI-closed candidates in SNCC1, SNCC2,. . ., SNCCn. The UPI of
each candidate in CNCC is computed at the same time. The boldface marks of UPRs
are maintained in the combination process. The combination process starts from the
largest size of SNCC1, and ends when no patterns in SNCC1, SNCC2,. . ., SNCCn can
be combined. If the minimum UPR value (i.e., UPI) is a boldface one for a candidate
c in CNCC, and UPI(c) ¼ USPI(c|c') (where c0 2 CNCC and c ⊂ c0), c can be
pruned from CNCC by pruning strategies Pruning 4.2 and Pruning 4.3.

The third phase calculates the true PI values of candidates in CNCC and discovers
the SPI-closed prevalent co-location set Ω. First, the star co-location instances of a
candidate are found by scanning NT. The clique co-location instances can then be
filtered from the star co-location instances by examining a clique relationship among
other instances except for the first instance of the star instance. Next, the true PIs can
be calculated based on the clique co-location instances of candidates. For a candidate
c, if PI(c) ¼ UPI(c), then the candidate can be moved from CNCC to the SPI-closed
co-location set Ω. However, if PI(c) 6¼ UPI(c), we have to take a number of further
steps, as shown in SPI-closed Miner (Steps 25–27). For a l-size co-location c, if PI
(c) 6¼ UPI(c) then all those l � 1-size co-locations which were pruned by Pruning
strategies 2 or 3 need to be recovered. If PI(c)<M or PI(c)¼ SPI(c|c') (c ⊂ c0 and c'
is SPI-closed), c can be pruned since it is not prevalent or SPI-closed per Definitions
4.5 and 4.6; otherwise, c must be a prevalent SPI-closed co-location.

4.5 Qualitative Analysis of the SPI-Closed Miner

Below, we provide a qualitative analysis of the ability of SPI-closed Miner to
accurately discover SPI-closed co-locations.
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4.5.1 Discovering the Correct SPI-Closed Co-location Set Ω

SPI-closed Miner can discover the correct SPI-closed co-location set Ω. First, a
co-location instance must be a star neighborhood instance and correspond to a
neighborhood transaction feature in Miner. Thus, the star SPI-closed candidates
and clique SPI-closed candidates can be introduced into SPI-closed Miner, as
shown in Step 6 and Step 14.

Second, in the case of PI(c) 6¼ UPI(c), we first generate all pruned (l � 1)-size-
candidates of c in CNCC in Step 25, following which c is checked and then dealt
with based on Definitions 4.5 and 4.6 in Steps 26–27. In addition, the process of the
third phase starts from the largest size of CNCC.

Third, to avoid duplicative combination, we adopt a backward combination of
SNCC (the star candidates of feature z) at Step 13. Step 9 guarantees the correctness
of the combination phase.

4.5.2 The Running Time of SPI-Closed Miner

The running time of SPI-closed Miner is much faster than that of traditional
PI-closed co-location mining methods. First, the SPI-closed condition is stronger
than the PI-closed condition. Accordingly the candidate set generated in SPI-closed
Miner must be smaller than that mined by classic PI-closed co-location mining
methods.

Second, the majority of the running time in spatial co-location mining is con-
sumed during the generation of co-location instances and in calculating the PI
values. Hence, it is preferable to prune non-SPI-closed patterns when generating
candidates as far as possible. This is the method adopted in SPI-closed Miner and the
top-k closed co-location mining (Yoo & Bow, 2011a). For the data set in Fig. 4.2(a),
all non-SPI-closed co-locations have been pruned in the combination step.

Third, when there are many star co-location instances that are not true co-location
instances, the work of generating and checking their sub-sets is time-consuming.
However, a corresponding problem is also evident in PI-closed co-location mining.
Therefore in this case, the running time of SPI-closed Miner is still faster than that of
PI-closed co-location mining methods.

4.6 Experimental Evaluation

Various experiments are conducted to verify the effectiveness and efficiency of the
proposed SPI-closed concept and SPI-closed Miner on both synthetic and real data
sets. All algorithms are implemented in Visual C++ in a computer with Intel Core i5
3337U @ 1.80GHz, 2GB RAM, and in Microsoft Windows 7.
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To the best of our knowledge, the only algorithm to identify closed co-location
patterns, as discussed in this paper, is the Top-k closed co-location mining algorithm
presented in Yoo and Bow (2011a). Accordingly, we create PI-closed Miner based
on the Top-k CCP mining algorithm presented in Yoo and Bow (2011a) as follows.
First, top-k Miner finds k CCPs with the highest prevalence values, so it has no
prevalence threshold, while PI-closed Miner finds all CCPs with PI values not less
than a given threshold. PI-closed Miner can therefore prune candidate CCPs
according to the given threshold. Second, top-kMiner traverses the candidate subset
tree in a breadth-first manner by raising an internal prevalence threshold to prune
candidate co-locations, as it has no pre-determined prevalence threshold, whereas
PI-closed Miner uses the depth-first search strategy to discover all CCPs, saving
considerable time and space.

4.6.1 Experiments on Real-life Data Sets

This section examines the performance of the proposed algorithms on three real-life
data sets. A summary of the three real data sets is presented in Table 4.1. The data set
Real-1 concerns the rare plant data of the Three Parallel Rivers of Reserved Areas in
Yunnan Province, China. It contains 32 features and only 355 instances with a zonal
distribution in a 130,000 m � 80,000 m area as shown in Fig. 4.6(a). Real-2 is a
spatial distribution data set with urban elements, which has more instances than
Real-1; the distribution of its instances is even and dense in a 50,000 m � 80,000 m
area as shown in Fig. 4.6(b). Real-3 is a vegetation distribution data set of the Three
Parallel Rivers of Reserved Areas in Yunnan Province, China. It has the least
number of features and the largest number of instances, and its instance distribution
is both scattered and clustered in an area of 110 000 m � 160,000 m as shown in
Fig. 4.6(c).

Table 4.1 A summary of the three real data sets

Name
Number of
features

Number of
instances (Max, min)

The distribution area of spatial
instances (m2)

Real-
1

32 335 (63, 3) 130,000 � 80,000

Real-
2

20 377,834 (60000, 347) 50,000 � 80,000

Real-
3

15 501,046 (55646, 8706) 110,000 � 160,000

(Max, Min): The maximum and minimum number respectively of the feature’s instances in the data
sets
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4.6.1.1 The Effectiveness of SPI-Closed Miner

For each real data set, we vary the values of parameters M (the minimum participa-
tion index threshold) and d (the spatial neighbor distance threshold) to verify the
condensation power of the SPI-closed co-location mining relative to the result of
PI-closed co-location mining using Formula (4.7):

jSPI�closedj � jSSPI�closedjð Þ= j SPI�closed j ð4:7Þ

where SPI-closed is the set of PI-closed co-locations and SSPI-closed is the set of
SPI-closed co-locations. The larger the condensation power given by Formula
(4.7), the better is the performance of SPI-closed Miner. The experimental results
are shown in Figs. 4.7(a, b). In this experiment, we set the default d value of Real-1
as 10,000, Real-2 as 4000, and Real-3 as 10,000. The default M value is 0.3 for all
three real data sets.

We make the following observations from our experiments. First, on all three real
data sets, the condensation power is between 10% and 50%, and the mean value is
about 30%. The condensation power is highest on the Real-2 data set, and the mean
condensation power almost reaches 40%. This is because Real-2 is an even distri-
bution data set. Second, the condensation power increases whenM becomes smaller
or d becomes larger. This was anticipated, because there are more prevalent
co-locations mined under lower M or larger d. Third, when M or d changes, Real-
3 faces fewer changes than Real-2. This is because Real-3 is a clustered distribution
data set.

Fig. 4.6 Spatial distribution of the three real data sets, where (a) Real-1; (b) Real-2; (c) Real-3
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Figs. 4.8(a)–(c) shows the number of mined SPI-closed co-locations compared
with the number of PI-closed co-locations by co-location size on the three real data
sets using default parameter values. As can be seen, the number of SPI-closed
co-locations is less, sometimes much less, than the number of PI-closed co-locations.
The largest difference appears in the middle sizes for Real-2 and Real-3, e.g., size

(a) By minimum participation index threshold M               (b) By neighborhood distance threshold d
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Fig. 4.7 Analysis of the effectiveness of SPI-closed Miner over the three real data sets,
where (a) vary the minimum participation index thresholdM; (b) vary the spatial neighbor distance
threshold d (In (b), di¼ 10,000–1000*(4� i) for Real-1, di¼ 4000� 1000*(4� i) for Real-2, and
di ¼ 11,000 – 2000*(4 – i) for Real-3)

(a) On Real-1 (d=10000, M=0.3) (b) On Real-2 (d=4000, M=0.3)  

(c) On Real-3 (d=10000, M=0.3)

0

50

100

150

200

250

2 3 4 5 6 7 8N
um

be
r 

of
 co

- lo
ca

tio
ns

size of co-locations

PI-closed

SPI-closed

0

500

1000

1500

2000

2500

2 3 4 5 6 7

N
um

be
r 

of
 co

-lo
ca

tio
ns

size of co-locations

PI-closed SPI-closed

0

100

200

300

400

500

600

700

2 3 4 5 6 7 8

N
um

be
r 

of
 co

-lo
ca

tio
ns

size of co-locations

PI-closed

SPI-closed
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4 and size 5 in Figs. 4.8(b, c), whereas for Real-1 with zonal distribution, there is
little difference when size is bigger than 5.

We can find some intuitive insights obtained from the experiments over the real data
sets. For example, in the results of Real-2 data set of urban facilities, there are both
co-location {Educational institution, bus station, snack bar, small supermarket} and
{bus station, snack bar, small supermarket} in the set of PI-closed co-locations, but
only {Educational institution, bus station, snack bar, small supermarket} appears in the
set of SPI-closed co-locations. This is because the all row instances of the 3-size {bus
station, snack bar, small supermarket} appear in that of 4-size {educational institution,
bus station, snack bar, small supermarket}. This means that the occurrence of {bus
station, snack bar, small supermarket} is due to the occurrence of educational institution
in the data set. In other words, the feature “educational institution” is the key feature in
co-location {educational institution, bus station, snack bar, small supermarket}.

4.6.1.2 The Efficiency of SPI-Closed Miner

The running time of SPI-closed Miner and PI-closed Miner is shown in Figs. 4.9(a)–
(f). Figure 4.9 shows that SPI-closed Miner runs much faster than PI-closed Miner
whenM is small and d is large. We also observe that SPI-closed Miner runs twice as
fast as PI-closed Miner in Real-2 when M ¼ 0.1 and M ¼ 0.2 in Fig. 4.9(b) or
d ¼ 5000 in Fig. 4.9(e), and three times faster in Real-3 whenM ¼ 0.1 in Fig. 4.9(c)
or d ¼ 13,000 in Fig. 4.9(f). In addition, SPI-closed Miner is also more space
efficient because it avoids the checking of many candidates.

Table 4.2 compares the number of generated candidates and final results over
different sizes by the two algorithms when parameters are set as the default values.
For example, the pair value (165/149, 134/108) of size 2 in Table 4.2 indicates that
the number of PI-closed candidates is 165 and the number of PI-closed co-locations
is 149, and the related number of SPI-closed is 134 and 108, respectively. As can be
seen, the number of SPI-closed Miner candidates is much smaller than the number of
PI-closed Miner candidates. Further, we can see that as the size of the candidates
grows, the number of SPI-closed Miner-identified candidates is close to the final
number in the results. We know that checking a long pattern costs much more time
than checking a short one.

4.6.2 Experiments with Synthetic Data Sets

This section examines the scalability of SPI-closed Miner and PI-closed Miner in
several scenarios, i.e., different numbers of spatial instances, numbers of spatial
features, neighbor distance thresholds, and prevalence thresholds. Synthetic data sets
were generated using a spatial data generator (Huang et al., 2004; Yoo & Shekhar,
2006). Such synthetic data sets allow greater control in studying the effect of
corresponding parameters.

100 4 SPI-Closed Prevalent Co-location Patterns



The running time of PI-closed Miner exceeds the time limit (20 ks
(kiloseconds) > 5 h) when the number of spatial instances is 600,000, as shown in
Fig. 4.10(a), and when the distance threshold is 10,000, as shown in Fig. 4.9(c). As
shown in Figs. 4.10(a)–(d), SPI-closed Miner is scalable to large dense data sets,
lowerM, and larger d. It performs better than PI-closed Miner in all the experiments.
This is because the set of PI-closed co-locations is larger than that of the SPI-closed
co-locations and the SPI-closed candidates set is smaller than that of the PI-closed
candidates due to the application of the Pruning 4.3.

Figure 4.10(b) shows interesting cost information: both algorithms cost more
time until they reach a peak time cost as the number of features increases, then

(a) On Real-1 (d=10000)                             (b) On Real-2 (d=4000) 

(c) On Real-3 (d=10000) (d) On Real-1 (M=0.3)                                  

 (e) On Real-2 (M=0.3)                              (f) On Real-3 (M=0.3) 
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Fig. 4.9 Running time of SPI-closed Miner and PI-closed Miner over three real data sets, where
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running time is reduced when the number of features increases further. This is
because, as the number of features grows, more time is spent on the prefix-trees of
features; when the number of features reaches 40, it drops because the data set is too
sparse to have longer prevalent patterns when the total number of spatial instances is
fixed. In addition, we can see that the cost difference between the two algorithms in
Fig. 4.10(b) is the smallest of all the figures. This is because the prefix-tree operation
becomes a major factor in SPI-closed Miner when the number of features grows but
the total number of spatial instances is fixed.

We also note that, when the number of spatial instances is 500,000 in Fig. 4.10(a),
SPI-closed Miner runs almost three times faster than PI-closed Miner. At that point,
if we compare the number of SPI-closed candidates with the number of PI-closed
candidates w.r.t. the co-location size, as shown in Fig. 4.11, we can see that the
number of SPI-closed candidates is far fewer than the number of PI-closed candi-
dates at all sizes, which is why our SPI-closed Miner is so efficient in such situations.

  (a)                                 (b) 

(c)                                                                             (d) 
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4.7 Related Work

Spatial co-location pattern mining was first discussed in the paper by Shekhar and
Huang (2001), in which the authors formulated the co-location pattern mining
problem and developed a co-location mining algorithm. An extended version of
the work was presented in the paper by Huang et al. (2004). Zhang et al. (2004)
enhanced the co-location pattern in the paper Shekhar and Huang (2001) and
proposed an approach to find spatial star, clique, and generic patterns. Approaches
to reduce expensive join operations used for finding co-location instances in papers
by Shekhar and Huang (2001) and Huang et al. (2004) were proposed in papers by
Yoo and Shekhar (2006), Wang et al. (2008), and Xiao et al. (2008). The work in
papers by Wang et al. (2009b) and Yoo and Bow (2011b) studied the problem of
maximal co-location pattern mining. The problem of co-location pattern mining with
spatially uncertain data sets was presented in papers by Wang et al. (2013a, b), Liu
and Huang (2013), Wang et al. (2016a), and Ouyang et al. (2017). The spatial
instance distribution information was integrated into prevalence metrics in the
paper by Sengstock et al. (2012). The incremental mining and competitive pairs
mining of co-location patterns were studied in papers by Lu et al. (2015, 2017). The
concept and mining methods of spatial high utility co-location patterns were
presented in Wang et al. (2017a) and Yang et al. (2015). Prevalent co-location
redundancy reduction problem was studied in Wang et al. (2018a). Considering
the spatial auto-correlation property in co-location pattern detection approaches,
Barua and Sander (2011) studied the problem of discovering statistically significant
co-location patterns, and Yao et al. (2017) studied the problem of co-location pattern
mining considering detailed relationships of instances in a continuous space.

Limited work is available on closed co-location pattern mining. By contrast,
many algorithms were proposed for finding closed frequent itemsets, such as
CLOSET (Pei et al., 2000), CLOSET+ (Wang et al., 2003), and CHARM (Zaki &
Hsiao, 2002). However, to the best of our knowledge, only the top-k closed
co-location pattern mining method is presented by Yoo and Bow (2011a), which
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on the 500,000 instances in
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identifies closed co-location patterns as focused on in this paper. Although their
algorithm is very efficient for mining closed co-locations, it was essentially built on
extending the concept of closed frequent itemsets and so leads to a lossy condensed
representation of spatial co-locations by the proposed top-k PI-closed co-location
mining. The algorithms for mining closed frequent itemsets cannot be directly used
to mine closed co-location patterns because, in contrast to closed frequent itemset
mining in transactional data, spatial objects are embedded in a continuous space
without transactional information. Our proposed SPI-closed co-location Miner cap-
tures spatial feature interactions and co-locations by introducing a lossless con-
densed representation and an efficient discovery process.

4.8 Chapter Summary

This paper presents a new lossless condensed representation of all prevalent
co-location collections and an efficient algorithm super participation index-closed
(SPI-closed) Miner. Both theoretical and experimental analyses show that the
proposed SPI-closed concept and its corresponding SPI-closed Miner significantly
improve the lossless condensation power of identified spatial co-locations and the
efficiency of its execution.

We note that the first k most probabilistically prevalent co-location mining
problem is meaningful in the context of uncertain data sets because they have
particular semantics. In other words, the top-k probabilistically prevalent
co-location mining problem can be regarded as an ideal alternative to computing
all probabilistically prevalent co-locations with prevalence probability above a fixed
threshold, since the parameter k allows, in practice, for a better control on the
output size.

In the next chapter, we will study the extraction of the top-k probabilistically
prevalent co-locations to present the “best” set of all probabilistically prevalent
co-location patterns. This is an important part of preference-based spatial
co-location pattern mining.
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Chapter 5
Top-k Probabilistically Prevalent
Co-location Patterns

5.1 Introduction

We note that top-k problems, including top-k queries and top-k frequent itemset
mining, are meaningful in the context of uncertain data sets, because of their
particular semantics. For the spatial co-location mining problem, finding the first
k most probabilistically prevalent co-locations is even more meaningful. In this
chapter, we focus on mining top-k probabilistically prevalent co-location patterns
(PPCPs) and make the following contributions:

(1) The concept of the top-k PPCPs based on a possible world model is defined.
(2) A framework for discovering the top-k PPCPs is set up.
(3) A matrix method is proposed to improve the computation of the prevalence

probability of a top-k candidate, and two pruning rules of the matrix block are
given to accelerate the search for exact solutions.

(4) A polynomial matrix is developed to further speed up the top-k candidate
refinement process.

(5) An approximate algorithm with compensation factor is introduced so that a
relatively big data can be processed quickly.

Figure 5.1 presents the organization of this chapter. Section 5.2 discusses why we
consider the top-k PPCP mining. Section 5.3 gives the related definitions for the
top-k PPCP mining problem. A framework of mining top-k PPCPs is presented in
Sect. 5.4. The basic matrix method and polynomial matrix method for top-k PPCP
mining appear in Sect. 5.5. Section 5.6 gives an approximate algorithm to deal with
larger data sets. An experimental study is performed in Sect. 5.7. Section 5.8 ends
this chapter with some conclusive remarks.

From Wang, L., Han, J., Chen, H., and Lu, J.: Top-k Probabilistic Prevalent Co-location Mining in
Spatially Uncertain Data Sets. Frontiers of Computer Science 10(3), 488-503 (2016).
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5.2 Why Mining Top-k Probabilistically Prevalent
Co-location Patterns (Top-k PPCPs)

Finding spatial co-location patterns (SCPs) is an important spatial data mining task.
SCPs represent subsets of spatial features whose instances are frequently located in
spatial neighborhoods. For example, the symbiotic plant species “Picea Brachytyla,”
“Picea Likiangensis,” and “Tsuga Dumosa” grow frequently in an alpine terrain of
the “Three Parallel Rivers of Yunnan Protected Areas.” Co-location rules “Picea
Brachytyla ! Picea Likiangensis and Tsuga Dumosa” can be obtained and used to
predict that “Picea Likiangensis” and “Tsuga Dumosa” probably appear in areas
where “Picea Brachytyla” exists. Application domains of mining SCPs include Earth
science, public health, public transportation, biological information processing, GIS,
individual market strategies, military system engineering, and so on.

Due to its importance in a wide range of spatial applications, the topic of finding
SCPs has been extensively studied (Huang et al., 2004; Yoo & Shekhar, 2006, Wang
et al., 2008; Yao et al., 2016; and so on). Shekhar and Huang (2001) proposed

Section 5.7Experimental study

Section 5.3

Section 5.1Introduction

A framework of mining top-k PPCPs

Section 5.2Why mining Top-k probabilistically prevalent co-location patterns

(PPCPs)

Definitions

Section 5.5

Section 5.4

Section 5.8Chapter Summary

Approximate computation of prevalence

Improved computation of prevalence

Section 5.6

Fig. 5.1 The organization of Chap. 5
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statistically meaningful interest measures for SCPs and a join-based algorithm (Huang
et al., 2004), the FP-CM algorithm (Huang et al., 2005), the clustering-based mining
algorithm (Huang& Zhang, 2006), and the mining of SCPs with rare features based on
introducing the maxPR measure (Huang et al., 2006). Yoo and Shekhar (2006)
thoroughly studied the theories and algorithms of SCP mining over spatially precise
data sets. They proposed the partial-join method (Yoo et al., 2004), the join-less
method (Yoo & Shekhar, 2006), the top-k closed SCPs mining algorithm (Yoo &
Bow, 2011a), the maximally prevalent SCP mining algorithm (Yoo & Bow, 2011b),
and the first Nmost prevalent SCP mining algorithm (Yoo & Bow, 2012). Wang et al.
(2009b, 2013a, 2013b, 2018a) comprehensively studied SCP mining on precise and
uncertain data sets. They proposed three prefix-tree-based SCP mining algorithms on
precise data sets: the CPI-tree (co-location pattern instances tree) method (Wang et al.,
2008), the iCPI-tree (improved co-location pattern instances tree) method (Wang et al.,
2009a), and the order-clique-based method (Wang et al., 2009b). They also studied
SCP mining over uncertain data sets, including SCP mining on interval data (Wang
et al., 2010), probabilistically prevalent co-location mining (Wang et al., 2013a), and
expected prevalent co-location mining (Lu et al., 2009; Lu et al., 2010). Notably,
Wang et al. (2013a) presented a dynamic programming algorithm and pruning
strategies to find all PPCPs. Considering the exponential complexity problem under
a possible world model, an approximate computation method was developed in the
paper of Wang et al. (2013a).

We note that top-k problems, including top-k queries and top-k frequent itemset
mining, are meaningful in the context of uncertain data sets, because of their
particular semantics (Yi et al., 2008; Beskales et al., 2008; Hua et al., 2008; Liu
et al., 2010; Pietracaprina et al., 2010; Wu et al., 2012; Zhu et al., 2011). For the SCP
mining problem, finding the first k most probabilistically prevalent SCPs is even
more meaningful. Let us consider a co-location candidate c which contains 10 fea-
tures and 100 spatial instances with existential probabilities. If the occurrence of
instances is independent, there would be 2100 possible worlds in the candidate c.
Then the probability of a possible world in all possible worlds of c would be a tiny
value, and so setting a prevalence probability threshold to mine PPCPs becomes
troublesome. Small changes in setting the thresholds may change the number of
mined results, and hence many different thresholds may need to be explored in order
to mine the appropriate number of PPCPs. In other words, the top-k PPCP mining
problem can be regarded as a convenient alternative to the uncertain SCP mining
problem of computing all SCPs with prevalence probability above a fixed threshold,
since the parameter k allows, in practice, for a better control on the output size.

A threshold-based PPCP mining is addressed in the paper of Wang et al. (2013a),
where a dynamic programming algorithm to compute the prevalence probability of a
candidate is proposed. The computation in threshold-based mining will be deter-
mined once the sum of prevalence probabilities exceeds the given threshold. So, the
exponential possible worlds do not need to be scanned in the most time. But when
we use the method of Wang et al. (2013a) in the top-k PPCP mining, the effect is not
just as one wish. The method proposed in this chapter groups the exponential of
possible worlds by using matrix. This method not only makes us could prune some
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matrix, but also combines the computation of the same columns (the possible worlds
of having the same results). Based on the basic matrix method with pruning
strategies, a polynomial matrix and an approximate algorithm could be presented.
Compared with studying in Wang et al. (2013a), the method proposed in this chapter
is a novel and more efficient method.

5.3 Definitions

This section defines the spatially uncertain data sets formally, and then under the
possible worlds semantic, the prevalent co-locations, prevalence probabilities, and
top-k probabilistic prevalent co-location patterns (top-k PPCPs) are defined.

5.3.1 Spatially Uncertain Data

When compared with spatially precise data set, each spatially uncertain data set
contains uncertain features, while an uncertain feature contains spatial instances and
their existential probabilities. The existential probability P(T.i) of the i-th instance of
the feature T indicates the likelihood of the instance T.i appearing in a certain given
location. We use a vector <instance-id, spatial feature, location, existential proba-
bility> to describe a spatially uncertain instance.

Figure 5.2 is an example of the spatially uncertain data sets. As can be seen, the
locations of instances are depicted in Fig. 5.2(a). In this figure, a point represents a
spatial instance and each instance is uniquely identified by T.i, where T is the feature
and i is the unique id inside each feature. For example, A.2 represents the second
instance of the feature A. A solid line between two points represents the neighbor
relationship between two instances.

The neighbor relationship in SCP mining is an important concept. Given a
reflexive and symmetric neighbor relationship NR over a set S of spatial instances,

B.1
·

A.1
·

C.1
·

B.2
·

A.2
·

·
A.3

Instance-id Spatial feature location P(T.i)
1 A in Fig. 5.2(a) 0.5

2 A … 0.4

3 A … 0.9

1 B … 0.1

2 B … 1

1 C … 0.1

(a) Spatial instances’ distribution
(b) The uncertain data set of the corresponding

spatial instances in (a)

Fig. 5.2 An example of the spatially uncertain data sets, where (a) spatial instances’ distribution;
(b) the corresponding uncertain data set
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a NR-proximity neighborhood is a set I ⊆ S of instances that form a clique under the
relation NR. The relation NR should be defined based on the semantics of the
application domains. For example, the NRmay be defined using spatial relationships
(e.g., connected, adjacent), metric relationships (e.g., Euclidean distance), or a
combination (e.g., shortest-path distance in a graph such as a roadmap).

This kind of spatially uncertain data set can be observed over many real applica-
tions. For example, epiphytology experts may highly suspect (but cannot guarantee)
that a plant growing in a certain location suffers from mildew (a plant disease). It is
obvious that the uncertainty attached to such suspicion can be expressed by an
existential probability. Here is another example, the heavy metal pollution data in a
city can be obtained by sampling, but pollution information at a sampling point is
associated with a likelihood measure or an existential probability due to measure-
ment error or noise.

Using the “possible world” interpretation of spatially uncertain data, there are two
worlds for a spatial instance T.i in a set c of features: (a) the possible world w1 where
T.i is an instance of c and (b) the possible world w2 where T.i is not an instance of c.
Although it is uncertain which of two worlds is the true world, the probability of w1

being the true world is P(T.i) and that of w2 is 1 � P(T.i). Take a set c ¼ {f1,. . .fz} of
features, and a set S ¼ S f 1 , S f 2 , . . . , S f z

� �
of their instances, where S f i (1 � i � z)

is the set of all instances of feature fi. If we assume that instances are independent,
each world is a combination of instances in c and there are 2jSj ¼ 2jS f 1 jþ...jS f z j

possible worlds at most. Each possible world w is associated with a probability
P(w), where a possible world is called the true world if its probability is larger than
0, and P(w) can be computed by:

P wð Þ ¼
Yz
i¼1

Y
e2S f i , e2w

P eð Þ �
Y

e2S f i , e=2w
1� P eð Þð Þ

0
@

1
A ð5:1Þ

Example 5.1 For the feature set {A, B} in Fig. 5.2, its instance set is {A.1, A.2, A.3,
B.1, B.2}. There are 25 combinations of instances, but there are only 24 combina-
tions whose probability is larger than 0 as the probability of instance B.2 is 1. So
there are 24 true worlds corresponding to {A, B}. These worlds and their probabil-
ities are shown in Table 5.1. For a possible world w ¼ {A.1, A.3, B.2}, P(w) ¼ P(-
A.1)�P(A.3)�P(B.2)�(1 � P(A.2))�(1 � P(B.1)) ¼ 0.243.

In the general case, the existence of instances may be mutually dependent. If the
dependency is known, it can also be used in the possible world model (Hua et al.,
2008; Liu et al., 2010; Bartolini et al., 2012) For example, if instances A.1 and A.2
are mutually exclusive, the feature set {A, B} in Fig. 5.2 will be instantiated into
12 possible worlds, because the worlds {A1, A2, B2}, {A2, A2, A3, B2}, {A1, A2,
B1, B2}, and {A1, A2, A3, B1, B2} in Table 5.1 will not be possible worlds. In this
paper, we only consider the case that the occurrence of instances is independent.
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5.3.2 Prevalent Co-locations

Given a spatially uncertain data set D, where F is a set of features, and S is a set of
instances of F, let NR be a neighbor relationship between instances. A co-location c
is a subset of features, c ⊆ F. The size of c is the number of features in c. Under the
possible worlds semantic, a possible world instantiated from instances’ set Sc of all
features in c is called a possible world of c. Let W be the set of all possible worlds
of c.

We first define row instance and table instance of c in a possible world; then the
participation ratio and participation index in a possible world are defined to charac-
terize the prevalence of a co-location in a possible world of c.

Definition 5.1 For a possible world w 2W, a set of instances I ⊆ Sc is called a row
instance of c, if (1) I contains instances of all features in c and no proper subset of
I does so, and (2) I is a NR-proximity neighborhood. The table instance,
table_instancew(c), of c in the possible world w is the collection of all row instances
of c.

Definition 5.2 In a possible world w 2 W, the participation ratio PRw(c, fi) of the
feature fi in a z-size co-location c ¼ {f1, f2 . . ., fz} is defined as:

PRw c, f ið Þ ¼
1 if j table instancew f if gð Þ j¼ 0

j π f i table instancew cð Þð Þ j
j table instancew f if gð Þ j otherwise

8<
:

ð5:2Þ

where π is the relational projection operation with duplication elimination.

Definition 5.3 The participation index PIw(c) of a z-size co-location c ¼ {f1,. . .,fz}
in a possible world w 2 W is defined as:

PIw cð Þ ¼ min z
i¼1 PRw c, f ið Þð Þ ð5:3Þ

Table 5.1 The 16 possible worlds of the feature set {A, B} and their probabilities

w P(w) w P(w) w P(w) w P(w)

{B2} 0.027 {A1,A2,B2} 0.018 {B1,B2} 0.003 {A1,A2,B1,B2} 0.002

{A1,
B2}

0.027 {A1,A3,B2} 0.243 {A1,B1,
B2}

0.003 {A1,A3,B1,B2} 0.027

{A2,
B2}

0.018 {A2,A3,B2} 0.162 {A2,B1,
B2}

0.002 {A2,A3,B1,B2} 0.018

{A3,
B2}

0.243 {A1,A2,A3,
B2}

0.162 {A3,B1,
B2}

0.027 {A1,A2,A3,B1,
B2}

0.018
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Definition 5.4 For a user-specified prevalence threshold min_PI, a co-location c is
called a min_PI-prevalent co-location in a possible world w 2 W if

PIwðcÞ � min PI ð5:4Þ

Example 5.2 For Fig. 5.2, given c ¼ {A, B}, w ¼ {A.1, A.2, A.3, B.2}, then
table_instancew({A, B})¼ {{A.1, B.2}}, PRw(c, A)¼ 0.333 because 1 instance out
of 3 instances participates in table instances of c in w. Similarly, PRw(c, B) ¼ 1
because all of B’s instances participate in the table instances of c. Therefore,
PIw(c) ¼ min(0.333, 1) ¼ 0.333. If the user-specified prevalence threshold min_PI
is 0.4, then c is not a 0.4-prevalent co-location in w.

5.3.3 Prevalence Probability

We introduce the prevalence probability to further characterize the prevalence
degree of a co-location c in all possible worlds W of c.

Definition 5.5 Given a prevalence value prev, the prevalence probability P(c, prev)
of a co-location c is the probability that the participation index (PI) of c is prev in all
worlds W, defined as:

P c, prevð Þ ¼
X

w2W ,PIw cð Þ¼prev
P wð Þ ð5:5Þ

Intuitively, P(c, prev) denotes the probability that the prevalence of c is exactly prev
in W. The prevalence probabilities associated with a co-location c for different
prevalence values form the prevalence probability distribution of c. It satisfies the
following statement:

X
0�prev�1

P c, prevð Þ ¼ 1 ð5:6Þ

Example 5.3 Again consider Fig. 5.2. For the co-location c ¼ {A, B}, P(c,
0.5) ¼ 0.308 as PI{A1,A2,B2}(c) ¼ 0.5, PI{A1,A3,B2}(c)¼0.5, PI{A3,B1,B2}(c)¼0.5 and
PI{A1,A2,B1,B2}(c) ¼0.5. Using similar calculations Fig. 5.3 shows the prevalence
probability distribution of c.

If a co-location c¼{f1, f2,. . .,fz} and a related uncertain instance set S ¼
S f 1 , S f 2 , . . . , S f z

� �
, where S f i (1 � i � z) is a set of instances of feature fi, then

the number of possible worlds is |W| that need to be considered for the computation

of P(c, prev) is O 2
Pz

i¼1
jS f i j

� �
. It is extremely large.
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5.3.4 Min_PI-Prevalence Probabilities

We are interested in the probability that the prevalence of a co-location is at least
min_PI. We have the following definition.

Definition 5.6 Given a co-location c and a user specified prevalence threshold
min_PI, P(c, �min_PI) denotes the probability that the PI of c is at least min_PI,
that is:

Pðc, � min PIÞ ¼
X

min PI�prev�1
Pðc, prevÞ ð5:7Þ

We call the probability P(c, �min_PI) the min_PI-prevalence probability of c.

Example 5.4 Again considering the spatially uncertain data set shown in Fig. 5.2,
the min_PI-prevalence probabilities of c ¼ {A, B} are shown in Fig. 5.4. From
Fig. 5.4, we can see that the 0.5-prevalence probability of c is 0.383, and its 0.667-
prevalence probability is 0.075.

0

0.1

0.2

0.3

0.4

0.5

0 0.333 0.5 0.667 1

P
({

A
,B

}
, 
p

re
v

)

participation index PI

Fig. 5.3 The prevalence
probability distribution of
{A, B}
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0.6

0.8
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P
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A
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}
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m
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Fig. 5.4 The min_PI-
prevalence probabilities of
{A, B}

114 5 Top-k Probabilistically Prevalent Co-location Patterns



5.3.5 Top-k PPCPs

After introducing the min_PI-prevalence probability of a co-location, we introduce
the concept of top-k PPCPs, which can effectively avoid the specification of min_PI-
prevalence probability thresholds.

Definition 5.7 (Top-k PPCP mining) For a given prevalence threshold min_PI,
return the k co-locations whose prevalence is at least min_PI and that have highest
min_PI-prevalence probability, where k is specified by the user.

Thus the top-kmining not only makes the approach free of the parameter min_PI-
prevalence probability threshold and ensures that co-locations with the highest
probability of being prevalent are output first, but also enables the design of more
efficient algorithms to mine PPCPs.

5.4 A Framework of Mining Top-k PPCPs

In this section, we present a basic mining algorithm to find top-k PPCPs over
spatially uncertain data sets, and then analyze its performance and give a pruning
lemma.

5.4.1 Basic Algorithm

We now give a lemma for dynamically finding the top-k PPCPs.

Lemma 5.1 8c0 ⊆ c : P(c0,� min_PI) � P(c,� min_PI).

Proof Firstly, based on Definitions 5.5 and 5.6, we have P c0,� min PIð Þ ¼
PjWc0 j

i¼1
P wið Þ � IPIwi c0ð Þ�min PI , where Wc0 is the set of all possible worlds of c

0, and Ip

is an indicator variable that is 1 when p ¼ true and 0 otherwise.
Secondly, for 8c0 ⊆ c, according to Definitions 5.2 and 5.3, we have

PIwi c
0ð Þ � PIwi cð Þ in a possible world wi. Therefore, IPIwi c0ð Þ�min PI � IPIwi cð Þ�min PI

holds in wi.
Thirdly, for 8c0 ⊆ c, the set of all possible worlds of c contains the set of all

possible worlds of c0, i.e., Wc0 ⊆ Wc . For a possible world w0 2 Wc0 , if PIw0 c0ð Þ �
min PI, then there are a group of possible worlds wi 2 Wc (1 � i � l, l � 0) satisfy
w0 ⊆ wi and PIwi cð Þ � min PI. Thus,

P w0ð Þ ¼ P w0ð Þ � 1 ¼ P w0ð Þ � Pall [l
i¼1

wi � w0
� �

, where Pall(S) denotes the sum

of probabilities of all possible worlds of the set S, it is one.
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The set of wi 2Wc (1� i� l, l� 0) is the subset of the combination of w0 and the

power set [l
i¼1

wi � w0, so we have P w0ð Þ � Pall [l
i¼1

wi � w0
� �

� Pl
i¼1

P wið Þ.
In summary, 8c0 ⊆ c : P(c0,� min_PI) � P(c,� min_PI). □

Using Lemma 5.1, we can design a basic algorithm (Algorithm 5.1) to mine top-k
PPCPs. In Algorithm 5.1, we keep an Active Co-locations Queue (ACQ) and
constrain the length of the ACQ to k. The ACQ is sorted by min_PI-prevalence
probability in descending order. Without the loss of generality, co-locations are
represented in lexicographical order to conveniently perform the joining operation in
generating candidates. In a z-size iteration of the algorithm (z is started from 2, since
all singleton co-location patterns have both participation index and prevalence
probability equal to 1, and do not need to be checked.), the z-size candidates are
inserted into the ACQ after their related min_PI-prevalence probabilities are com-
puted, and then the (z + 1)-size candidates are generated based on z-size co-locations
in ACQ. Any co-locations for which their subsets do not exist in ACQ can safely be
ignored. The rationale behind this approach is that if a co-location c does not belong
in the results of top-k, then all supersets of c cannot belong in the top-k’s results
either, i.e., Lemma 5.1. Consequently, Algorithm 5.1 will correctly return top-k
PPCPs.

5.4.2 Analysis and Pruning of Algorithm 5.1

The main cost of performing Algorithm 5.1 is the computation of the value P(c,
�min_PI). Due to the design of Algorithm 5.1, at least the 2-size candidates need to
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be computed. The number of 2-size candidates is jFj jFj�1ð Þ
2 , where |F| is the number of

features in the uncertain data set D. If we denote the average number of instances of
all features in D as Am, a 2-size candidate has 22A

m
possible worlds on average. So, at

least O jFj jFj�1ð Þ
2 22A

m
� �

time needs to be spent in mining the top-k PPCPs.

We note that some k-size candidates could be generated for k � 3 and that the
computational complexity of Algorithm 5.1 is then much greater than the value

O jFj jFj�1ð Þ
2 22A

m
� �

. But by using the following pruning lemma, some candidates’

computation may be avoided.

Lemma 5.2 (Pruning candidates) For a candidate c, if (1 � P(c,0)) < ACQ[k].
Prob, where ACQ[k].Prob is the min_PI-prevalence probability of the k-th item in
ACQ, then the candidate c cannot be a top-k PPCP under a min_PI > 0.

Proof Because P(c,�min_ PI)� (1� P(c, 0)) < ACQ[k]. prob, and ACQ[k].Prob is
the k-th min_PI-prevalence probability in ACQ, it is impossible to insert c into ACQ.
□

We can order all z-size candidates with the value P(c, 0), i.e., the probability that
the prevalence of c is exactly zero in all possible worlds.Once one candidate satisfies
the condition of Lemma 5.2, the remaining z-size candidates can be pruned.

Example 5.5 For the uncertain data set in Fig. 5.2, the 2-size candidates are {A, B}
(P({A, B}, 0) ¼ 0.455), {A, C} (P({A, C}, 0) ¼ 0.903), and {B, C} (P({B, C}, 0)
¼0.99). If k ¼ 2 and min_PI ¼ 0.5, after calculating P({A, B}, �0.5) ¼ 0.383 and
P({A, C}, �0.5) ¼ 0.097, the candidate {B, C} may be pruned due to (1 � P({B,
C}, 0)) < 0.097.

The pruning of Lemma 5.2 is significant, because we observe that the cost of
computing P(c, �min_PI) is exponential and increases further as the number of
instances of features in c increases.

5.5 Improved Computation of P(c, �min_PI)

To compute P(c,� min_PI) in Algorithm 5.1, we can sum all possible worlds
satisfying the min_PI condition. This naïve method is very inefficient, however,
and we can speed this up significantly by the following techniques.

5.5.1 0-1-Optimization

First, we do not need to consider the spatial instances which have a probability of
0 because the corresponding worlds’ probability will be 0. Note that if P(T.i)¼ 1, we
do not need to compute any possible worlds that the instance T.i is absent.
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Second, if there is not certain feature’s instance in a possible w of c, then w can be
ignored due to PIw(c) ¼ 0. For example, considering PIw({A, B}) of the data set
shown in Fig. 5.1, if w ¼ {B2} or w ¼ {A1, A2}. . ., then PIw({A, B}) ¼ 0.

Beside 0-1-optimization, a matrix method is introduced for further improving the
computation of P(c,� min_PI).

5.5.2 The Matrix Method

In computing P(c, �min_PI), we need to identify PIw(c) � min_PI for each w 2W.
According to Definitions 5.2 and 5.3, the value PIw(c) can be obtained based on
table_instancew(c). We know that the problem of computing table instances is
troublesome in the SCP mining. A matrix method is introduced in this subsection
to solve this problem.

First, a z-dimension matrix of a z-size co-location c’s instance relationship is
computed, called basic matrix and denoted Mb. As shown in Fig. 5.5, Mb of
co-location {A, B} for the uncertain data set in Fig. 5.2 is a 3 � 2 2-d matrix. In
the basic matrix, there is information about all possible worlds only containing one
instance for each feature in c and their corresponding prevalence values. For
example, in Mb shown in Fig. 5.5, the value “1” in the row {A1} and the column
{B2} represents PIw¼{A1,B2}({A, B})¼ 1. Therefore, by scanning this matrix we can
compute the probabilities of these possible worlds wi in which PIwi cð Þ � min PI.

Second, we combine instances of the dimension in Mb to compute PIw(c) of the
other possible world w. For convenience, features (dimensions) are represented in
lexicographical order to avoid dealing with them more than once. The character “fi

x
”

means x-instances’ combination in feature fi. For example, “A3
” means the combi-

nation of three instances pertaining to feature A. Matrices are used to store the types
of combinations. As shown in Fig. 5.5, the matrixMA2B is the combination in which
feature A has two instances and B has one instance. According to the prevalence
definition (i.e., Definitions 5.4 and 5.5), by Lemma 5.3 we can compute new values
in new matrices from the basic matrix Mb.

Lemma 5.3 A value of the new matrix M f
x1
1 ,... f xzz

S f
x1
1
, . . . S f xzz

h i
for a z-size

co-location c can be calculated as follows:

M f
x1
1 ,... f xzz

S f
x1
1
, . . . S f xzz

h i
¼ min z

i¼1

X
int2S

f
xi
i

ΩMb . . . , int, . . .½ �ð Þ=jS f
xi
i
j

0
B@

1
CA

where the operation “Ω” is defined as: Ωm
i¼1Ai ¼

1 if any Ai ¼ 1 1 � i � mð Þ
0 otherwise

�
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Proof Based on Definition 5.4, it is easy to verify that the valueP
int2S

f
xi
i

ΩMb . . . , int, . . .½ �ð Þ= j S f
xi
i
j in Lemma 5.3 is the value

PR
S

f
x1
1
,...S f

xz
z

n o c, f ið Þ, which is the participation ratio of feature fi in c in a possible

world w ¼ S f
x1
1
[ . . . [ S f xzz . According to Definition 5.5, we have PIw cð Þ ¼

min z
i¼1 PR c, f ið Þð Þ.

So Lemma 5.3 is correct. □

Example 5.6 Considering the uncertain data set in Fig. 5.2, Fig. 5.5 depicts the
computation process of the value P({A, B},� min_ PI) by using the matrix method.
As shown in Fig. 5.5,

MA2B2 A2,A3f g, B1,B2f g½ �
¼min Mb A2,B1½ �ΩMb A2,B2½ �ð Þð

þ Mb A3,B1½ �ΩMb A3,B2½ �ð Þ
2
Mb A2,B1½ �ΩMb A3,B1½ �ð Þþ Mb A2,B2½ �ΩMb A3,B2½ �ð Þ

2

0
B@

1
CA¼min 0:5,0:5ð Þ¼0:5

{B1} {B2}

{A1} 1 1

{A2} 0 0

{A3} 1 0

{B1} {B2}

{A1,A2} 0.5 0.5

{A1,A3} 1 0.5

{A2,A3} 0.5 0

MAB
2

{B1,B2}

{A1,A2} 0.5

{A1,A3} 1

{A2,A3} 0.5

MA
2

B

Basic matrix Mb Prev{A1,B2}({A,B})=1

MA
2

B
2

{B1} {B2}

{A1,A2,A3} 0.667 0.333

MA
3

B

{B1,B2}

{A1,A2,A3} 0.667

MA
3

B
2

M[{A2,A3},{B1,B2}]=min((Mb[{A2},{B1}]∩Mb[{A2},{B2}]+ 

Mb[{A3},{B1}]∩MB[{A3},{B2}])/2, (Mb[{A2},{B1}]∩MB[{A3},{B1}]+ 

Mb[{A2},{B2}]∩Mb[{A3},{B2}])/2)=min(0.5,0.5)=0.5.

The participation index of {A, B} in possible world w={A2,A3,B1,B2}

{B1,B2}

{A1} 1

{A2} 0

{A3} 0.5

Fig. 5.5 Illustration of the matrix method
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Third, we adopt a backtracking method to generate all matrices in order to perform
pruning by virtue of Lemma 5.4 and Lemma 5.5. For the example in Fig. 5.5, the
solution space tree of using backtracking method to generate all matrices is shown in
Fig. 5.6. So, the matrices in Fig. 5.5 are calculated in the order AB, AB2, A2B, A2B2,
A3B, A3B2.

Lemma 5.4 (Pruning matrix 1) For a z-size co-location c, if
PI f 11,... f

xi
i ,... f

1
zf g cð Þ < min PI, then PI

f 11,... f
xiþl
i ,... f 1zf g cð Þ < min PI l � 1ð Þ.

Proof We note that a spatial instance of feature fi that participates in a row instance
of c under f xiþl

i also participates in a row instance of c under f xii . So, if
PI

f 11,... f
xiþl
i ,... f 1zf g cð Þ � min PI l � 1ð Þ, then PI f 11,... f

xi
i ,... f

1
zf g cð Þ � min PI. □

From Lemma 5.4, if the maximum value in MA2B is smaller than min_PI, the
matrix MA3B, MA4B can be pruned.

Lemma 5.5 (Pruning matrix 2) For a z-size co-location c, if certain xi >
jtable instance cð Þj

min PI 1 � i � zð Þ, then matrix M f
x1
1 ,... f xzz

can be pruned.

Proof According to Definition 5.2, in any a possible world w combined by

f x11 , . . . f
xz
z , PRw c, f ið Þ � jtable instance cð Þj

xi
. If xi >

jtable instance cð Þj
min PI , then PRw(c,

fi) < min_PI. Therefore, PI f
x1
1 ,... f xzzf g cð Þ < min PI holds. □

For example, let c ¼ {A, B, C}, where the feature A has 30 instances, B has
20, and C has 25. Min_PI is specified as 0.5. If we suppose that there are 8 row
instances in c, then because 8/0.5¼16, matrix A17B3C2, A5B17C13, . . . can be
pruned.

MAB
2

MA
2
B MA

2
B

2 MA
3
B MA

3
B

2

1

2 5 8

3 4 6 7 9 10

Which instance 

of the feature A

Which instance 

of the feature B

1
2

3

1 2 1 2 1 2

MAB

Fig. 5.6 The solution space tree of {A, B}
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Based on the discussion above, a procedure for computing P(c, �min_PI) of z-
size candidate c using the matrix method is presented.

The key idea in the matrix method is to group all the possible worlds for the
computation of P(c,� min_ PI). For example, there are 6 groups (matrices) in the
example of Fig. 5.5. Note that for computing P(c,� min_PI) of a z-size co-location

c, the number of matrices is
Qz
i¼1

li , where li is the number of instances in the i-th

dimension. So we have Lemma 5.6 for the complexity of the matrix method.

Lemma 5.6 The computation of P(c,� min_ PI) by the matrix method requires at

most O
Qz
i¼1

2li � 1
	 
� �

time and at most
Qz
i¼1

li space.

Proof Using the matrix method as shown in Fig. 5.5, the computational complexity
of P(c,� min_ PI) is bounded by the number and size of the matrices. If a value in a
matrix computed by Lemma 5.3 is performed in O(1) time, the computational

complexity of computing P(c,� min_PI) is at most O
Qz
i¼1

2li � 1
	 
� �

, where 2li �
1 is the number of ways of combining the dimension i in all the matrices. The
computation of each matrix only requires information of the basic matrix. Therefore,

only the basic matrix needs to be preserved requiring at most
Qz
i¼1

li space. □

In the computation of Example 5.6, the matrix method needs 21 computational
time units including basic matrix Mb as there exist 21 values in 6 matrices for
co-location {A, B}. Note that the matrix method can efficiently compute the
prevalence PIw(c) of a co-location c, but suffers from the exponential possible worlds
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of c. To further improve the run time of the algorithm so that it can be processed
quickly, we further combine matrices in the matrix method by a polynomial matrix.

5.5.3 Polynomial Matrices

A polynomial method to further efficiently compute P(c,� min_PI) is presented in
this section. This method is based on constructing a polynomial matrix that enables
efficient computing the value of P(c,� min_PI) over relatively larger data sets. We
first introduce the polynomial matrix concept.

Definition 5.8 The basic matrix Mb represented by polynomials is called a polyno-
mial basic matrix PMb, where a value in basic matrix Mb is represented by a
polynomial Fe(x):

Fe xð Þ ¼ P eð Þxþ 1� P eð Þð Þ Mb ef g, . . .½ � ¼ 1

P eð Þx�1 þ 1� P eð Þð Þ Mb ef g, . . .½ � ¼ 0

�
ð5:8Þ

where e is an instance of feature f1 in a top-k candidate c ¼ {f1, . . .fz}, P(e) is the
existential probability of e.

Based on Definition 5.8, the basic matrixMb of the example in Fig. 5.5 is changed
into polynomial basic matrix PMb in Fig. 5.7. Each value in PMb is a polynomial
which contains the existential probability of an instance of f1 in c and also its
prevalence. For example, the polynomial “0.9x + 0.1” in the row {A3} and the
column {B1} of PMb indicates that A3 participates in table_instance(c) with its
existential probability of 0.9, while its absence probability is 0.1.

After obtaining PMb represented by polynomials, the multiplication of two poly-
nomials in the same column represents the combinations’ probabilities and their
prevalence of the two instances in f1. In Fig. 5.7, the multiplication of the three
polynomials in column {B1} contains the information of matrices AB, A2B, and
A3B in the example of Fig. 5.5. This result is denoted as A*B in Fig. 5.7.

By multiplying polynomials directly, the computational complexity of our algo-
rithm cannot be reduced. However, for a z-size co-location c ¼ {f1, . . .fz}, let W

0 be
the set of possible worlds of {f2, . . .fz}. The method of multiplying polynomials can
then be discussed as follows.

(1) Consider the case A*B in example of Fig. 5.7, i.e., the case in which each
feature in the possible world w 2 W0 only contains one spatial instance.

We note that there are only two kinds of polynomials in this case. One is “ax + b”
when there is neighbor relationship between instances, and the other is “ax-1 + b”
when there is not. For example, the polynomials of Column {B1} in PMb can be
divided into R+ ¼ {Row {A1}, Row {A3}} and R- ¼ {Row {A2}}.

Multiplying polynomials in R+ can be computed efficiently by using the follow-
ing iterated procedure. It costs at most O(|R+|2). The result is denoted MPr+.
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Example 5.7 Suppose there are three polynomials in R+: a1x + b1, a2x + b2 and
a3x + b3. The iterated result is MPr+ ¼ MPr+[0]x3 + MPr+[1]x2 + MPr+[2]
x1 + MPr+[3], where MPr+[0] ¼ a1a2a3, MPr+[1] ¼ a1b2a3 + a1a2b3 + b1a2a3,
MPr+[2] ¼ b1b2a3 + a1b2b3 + b1a2b3, MPr+[3] ¼ b1b2b3.

The polynomials in R- may be computed similarly in polynomial time O(|R�|2).
The result is MPr-. We can combine the two polynomials MPr+ and MPr- into MPr
in polynomial time. But by using Lemma 5.7, the value of P(c,� min_PI)|w can be

{B1} {B2}

{A1} 0.5X+0.5 0.5X+0.5

{A2} 0.4X-1+0.6 0.4X-1+0.6

{A3} 0.9X+0.1 0.9X-1+0.1

A*B2 {B1,B2}
A/min_PI=
1

MPr+: 0.45x2+0.05x+0.05
MPr-: 0.4x-1+0.6

A /0.5,0.3 MPr+: 0.45x2+0.5x+0.05
MPr-: 0.4x-1+0.6

A*B {B1} {B2}

A MPr+: 0.45x2+0.5x+0.05
MPr-: 0.4x-1+0.6

MPr+: 0.5x+0.5
MPr-: 0.36x-2+0.58x-1+0.06

min_PI P(c, ≥min_PI)|{B2}

1 0.03*0.9
0.5 0.32*0.9

0.3 0.5*0.9

Polynomial basic 
matrix PMb

AB2 {B1,B2}

{A1} 0.5X(1,1) +0.5

{A2} 0.4X(-1,-1) +0.6

{A3} 0.9X(1,-1)+0.1

min_PI P(c, ≥min_PI)|{B1,B2}

1 0.3*0.1

0.5 0.95*0.1

0.3 0.95*0.1

min_PI P(c, ≥min_PI)

1 0.057

0.5 0.383

0.3 0.545

Fig. 5.7 Illustration of the polynomial matrix
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computed directly based on the two polynomialsMPr+ and MPr-, where w 2 W0,W0

is the set of possible worlds of {f2, . . .fz}.

Lemma 5.7

P c,� min PIð Þjw ¼ Plþ1
i¼1

MPrþ lþ1 � i
� �� Pmin

1�min PI
min PI �i

j k
, l�1

� �

j¼0

0
BB@ -

MPr� l�1 � j
� �Þ � P wð Þ, where lþ=�

1 ¼j Rþ=� j.
Proof First, if lþ1 ¼j Rþ j¼ 0, then P(c,� min_PI)|w ¼ 0. In general, jR+ j 6¼ 0 is
supposed and so PI(c)|w ¼ PR(c, f1)|w (by Definition 5.3)

Then, we note that the value MPrþ lþ1 � i
� �

is the probability of i instances of f1
appearing in table_instance(c)|w and MPr� l�1 � j

� �
is that of j instances of f1 not

being in table_instance(c)|w. According to Definition 5.2, PR c, f 1ð Þjw ¼ i
iþj. If PR(c,

f1)|w � min_PI, then j � min 1�min PI
min PI � i

j k
, l�1

� �
. Note that we do not need to

compute the inner sum
Pmin

1�min PI
min PI �i

j k
, l�1

� �

j¼0
MPr� l�1 � j

� �
in Lemma 5.7 from scratch

for each i. As i increases, this sum can be calculated incrementally, taking O lþ1
	 


time
in total. □

Example 5.8 As shown in Fig. 5.7, if min_PI ¼ 0.3, then

P c ¼ A,Bf g,� 0:3Þð j B2f g ¼
Pz
i¼1

MPrþ 1� i½ � � Pmin 1�0:5
0:5 �ib c, 2ð Þ
j¼0

MPr� 2� j½ �
0
@

1
A-

�P wð Þ¼ 0.5� (0.06 + 0.58 + 0.36)� P(w)¼ 0.5� 0.9, where P(w¼ {B2})¼ 0.9,
MPr+: 0.5x + 0.5, MPr-: 0.36x-2 + 0.58x-1 + 0.06.

(2) Consider the case A*B2 in example of Fig. 5.7, a complex general case where
there are more than one spatial instances in each feature of the possible world
w 2 W0.

Firstly we can divide instances of f1 into two groups. One is the instances where
all polynomials are of the type “x-1”, and the other is the remainder. For example, to
compute A*B2, the instances of f1 are divided into R+ ¼ {A1, A3} and R- ¼ {A2}.

Secondly, instances in R+ need to be partitioned further. The first class contains
such instances as e where min z

i¼2 PR ef g[w c, f ið Þ	 
 � min PI . For example, the
“A1” in R+ belongs to this class when min_PI > 0.5. The second class contains the
instances that cannot appear in a possible world alone. For example, when comput-
ing A*B2, the “A3” in R+ cannot alone appear in a possible world when min_PI > 0.5
because PIw ¼ {A3, B1, B2}(c) ¼ min (PRw(c, A), PRw(c, B)) ¼ 0.5. A third class
contains instances where their appearance is mutually inclusive. For example, if the
polynomial of row {A1} of “AB2

” in Fig. 5.7 was “0.5x(-1,1) + 0.5”, then “A1” also
could not appear alone, but at that time “A1” and “A3” can appear together since
PIw ¼ {A1, A3, B1, B2}(c) ¼ 1.
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Thirdly, we can compute MPr+ and MPr- similarly, but we compute MPr+ with
constraints because of the above discussion.

Therefore, the multiplying operation in the polynomial matrix method can be
performed in polynomial time. At the same time, we note that if the values in
Column {B2} are same as in Column {B1}, then the results of multiplying poly-
nomials in Column {B2} and in Column {B1, B2} will be same as in Column {B1}.

As shown in Fig. 5.7, for computing P({A, B},� min_PI), three columns (three
combinations of feature B) need be performed. But Column {B1} can be pruned
since P(B2) ¼ 1.

From the process of multiplying polynomials in R+, we can see that the poly-
nomials need not actually be preserved. They are just conceptual and the values
stored in PMb are still 1 or 0. So the polynomial method can save computational time
but at no more space cost. In fact, we have Lemma 5.8 for the complexity of the
polynomial matrix.

Lemma 5.8 Computing the value P(c,� min_PI) by the polynomial matrix method

requires at most O
Qz
i¼2

2li � 1
	 
� �

time and at most
Qz
i¼1

li space.

Proof Using the polynomial matrix as shown in Fig. 5.7, the computational com-
plexity of computing P(c,� min_PI) is bounded by the number of the columns. We
note that the multiplying operation in the polynomial method can be completed in
polynomial time. So the computational complexity of P(c,� min_PI) is at most

O
Qz
i¼2

2li � 1
	 
� �

, where 2li � 1 is the number of combinations of the dimension i.

The computation of each new column only requires information from the polyno-

mial basic matrix. Therefore, only O
Qz
i¼1

li

� �
polynomial space is required in our

polynomial matrix method. □

Compared to Lemma 5.6, the new method seems cut down one dimension only.
This is significant. Firstly, due to Lemma 5.1, the top-k mining can deal with greater
sizes in the least time. Secondly, once there are columns in a polynomial basic matrix
with the same value, the computational complexity of the polynomial method will be
reduced significantly.

5.6 Approximate Computation of P(c, �min_PI)

The polynomial matrix gives us a chance to approximately compute the value P(c,�
min_PI) using a similar approach presented in Wang et al. (2013a). At first, we note
that the polynomial method has reduced the problem of one dimension (a feature),
but suffers from an exponentially increasing number jW0j, where W0 is the set of
possible worlds of {f2, . . .fz}. Then we settle for an approximate value of the P(c,
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�min_PI) by using an error threshold ε to control the number of possible worlds
selected from W0. This has an impact on the method’s accuracy, that is, on its
possible error bound.

Take a z-size candidate c¼{f1,. . .,fz} with its a prevalence threshold min_PI and
the prevalence probability ACQ[k].Prob of the k-th result in ACQ. In the computa-
tion of the P(c, �min_PI), we only generate l ¼
3 ln 1

ε

	 

= min PI2 � ACQ k½ �:Prob2	 


possible worlds from W0, say w1, w2, . . ., wl.

For convenient analysis, let Yc
i ¼ P c,� min PIð Þ

wi
and Gc ¼ Pl

i¼1
Yc
i . If G

c > ACQ

[k]. Prob, we can insert the candidate c into the top-k queue ACQ; otherwise we
assert that c does not belong to the top-k probabilistic prevalent co-locations. We
now prove that for any candidate c, the approximate method incorrectly selects it
with probability at most ε.

Lemma 5.9 For any candidate c, if P(c, �min_PI) > ACQ[k].Prob, then Gc > ACQ
[k]. Prob with probability at least 1 � ε.

Proof First, let μ ¼ E Yc
i

� �
for 1 � i � l. According to the Chernoff inequality, we

have

P Gc � ACQ k½ �:Probð Þ ¼ P jGc � l � μj� l � μ� ACQ k½ �:Probð Þð Þ
� e4�

l�μ�ACQ k½ �:Prob
lð ð5:9Þ

Second, we use RW to denote a random possible world instantiated from the
instances of features in a z-size c. Since PIRW(c) is a random variable, we have:

P c,� min PIð Þ ¼ P PIRW cð Þ � min PI
	 


P(PIRW(c) � min_PI) � P(PRRW(c, fi) � min_PI) for 1 � i � z (Definition 5.3)

PRRW c, f ið Þ ¼ jπ f i table instanceRW cð Þð Þj
jtable instanceRW f if gð Þj (Definition 5.2)

We denote table _ instanceRW({fi}) as f RWi and π f i table instanceRW cð Þð Þ as
f RWi cð Þ for short, then

P c,� min PIð Þ � P j f RWi cð Þj� min PIj f RWi j	 


We decompose the event j f RWi cð Þ j� min PI j f RWi j into two disjoint events,
where 0 < t < 1 is an arbitrary constant:

j f RWi cð Þj� min PIj f RWi j	 
 \ j f RWi j� 1� tð ÞE j f RWi j� �	
and

j f RWi cð Þj� min PIj f RWi j	 
 \ j f RWi j< 1� tð ÞE j f RWi j� �	
We then bound their probabilities, respectively.

(1) P j f RWi cð Þj� min PIj f RWi j	 
 \ j f RWi j� 1� tð ÞE j f RWi j� �	 
	 


126 5 Top-k Probabilistically Prevalent Co-location Patterns



� P j f RWi cð Þj� min PI � 1� tð Þ � E j f RWi j� �	 

� E j f RWi j½ �

min PI� 1�tð Þ�E j f RWi j½ � (Markov inequality)

(2) P j f RWi cð Þj� min PIj f RWi j	 
 \ j f RWi j< 1� tð ÞE j f RWi j� �	 
	 

< P j f RWi j< 1� tð ÞE j f RWi j� �	 

� e�

t2
2 E j f RWi j½ � (Chernoff inequality)

Therefore, P c,� min PIð Þ < E j f RWi cð Þj½ �
min PI� 1�tð Þ�E j f RWi j½ � þ e�

t2
2E j f RWi j½ �.

With no loss generally, t¼1/2 can be chosen. If E j f RWi j� �
is large enough,

e�E j f RWi j½ � � 1=E j f RWi j� �
is satisfied. So, we obtain that P c,� min PIð Þ <

3�E j f RWi cð Þj½ �
min PI�E j f RWi j½ � for 1 � i � z.

If P(c,� min_PI) > ACQ[k]. Prob, we obtain

μ >
min PI � ACQ k½ �:Prob

3
ð5:10Þ

If we plug l ¼ 3 ln 1
ε

	 

= min PI2 � ACQ k½ �:Prob2	 


and inequality (5.10) into
inequality (5.9), we then get

P Gc � ACQ k½ �:Probð Þ < ε

Therefore, we have Gc > ACQ[k]. Prob with probability at least 1 � ε when P
(c,� min_PI) > ACQ[k]. Prob. □

Lemma 5.9 tells us that if we choose l ¼ 3 ln 1
ε

	 

= min PI2 � ACQ k½ �:Prob2	 


,
the overall error as to whether a candidate could be inserted into the top-k queue
would be bounded by ε. So we have Lemma 5.10 for the computational complexity
of the approximate algorithm.

Lemma 5.10 The approximate algorithm spends at most
O l21 � 3 ln 1

ε

	 

= min PI2 � ACQ k½ �:Prob2	 
	 
	 


time to compute the P
(c,� min_prev) for a candidate c ¼ {f1,. . .fz}, where l1 is the number of instances
of the feature f1.

Proof For a possible world generated by instances of features f2,. . .fz, the polyno-
mial method costs at most O l21

	 

. The approximate algorithm only generates l ¼

3 ln 1
ε

	 

= min PI2 � ACQ k½ �:Prob2	 


possible worlds. □

In the approximate computation of P(c,� min_PI), the approximate value
P0(c,� min_PI) is always less than the original value. We have, though,
P0(c,� min_PI) > ACQ[k]. Prob with probability at least 1-ε when P-
(c,� min_PI) > ACQ[k]. Prob. To advance the approximation quality, we can
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introduce a compensation factor δ to amend the value P0(c,� min_PI) by the value
P0(c,� min_PI) + P0(c,� min_PI) � δ.

5.7 Experimental Evaluations

In this section, we attempt to evaluate the performance of the basic top-k mining
algorithm (BA) against its competitors, namely, the matrix method (MA), the
polynomial method (PA), and the proximate method (PPA) through a series of
experiments on both real and synthetic data sets. All algorithms are implemented
and compiled by Microsoft’s Visual Studio C# 2008 and run on a normal PC with
Intel Core i3-2100 @ 3.1 GHz CPU, 4GB of memory and Microsoft Windows 7.

5.7.1 Evaluation on Synthetic Data Sets

Table 5.2 shows the characteristics of the randomly synthesized three uncertain data
sets used in experimental evaluations. From our theoretical analysis of Lemmas 5.6,
5.8, and 5.9, we note that the number of instances of features in candidates is a
primary factor in determining the algorithms’ running time. So, the experimental
synthetic data sets consider mainly the population distribution of spatial instances.
The population distribution is either “not skewed” or “skewed.” The distribution
area of spatial instances is in a 1000 � 1000 area.

data-1: The instances’ population distribution is not skewed, and it has a maximum
number of 12 instances and a minimum of seven instances. For each feature, the
number of instances follows a normal distribution with mean Am ¼ 10. The
probability values of instances lie in [0, 1] randomly.

data-2: This data set has an average number of 10 instances, a maximum number of
20 instances and a minimum of three instances. To generate a much skewed data
set, we divide the 20 features into two parts. One part contains 15 features and the
other 5. The part with 15 features has an average number of seven instances,
while the part with five features has an average number of 18. The probability
values of instances are also generated randomly.

data-3: This is a relatively larger synthetic data set. Its average number of instances
is 20. The maximum number of instances is 26, and the minimum is 13. In
selecting the number of instances, an average number of 17 instances are given to

Table 5.2 Characteristics of
the three synthetic data sets

Name |F| Am (Max, Min) Popul distr

data-1 20 10 (12, 7) Not skew

data-2 20 10 (20,3) Strong skew

data-3 20 20 (26,13) Skew
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15 features, and an average number of 24 for the other five features. The
probability values of instances are also generated randomly.

The sparseness or denseness of data sets will be regulated by the parameter d,
which is a distance threshold that is used when determining neighbor relationships
between spatial instances in experiments. Besides the parameter d, there is either the
parameter k for the top-k or the minimum prevalence threshold min_PI. For the
approximation algorithm, there are also parameters for the possible error threshold ε
and the compensation factor δ. Considering the efficiency of polynomial matrix
method and approximation algorithm compared to the basic algorithm and matrix
method, the default values of d, k and min_PI are respectively changed in the
experiments. Table 5.3 summarizes the parameters’ default values used in
experiments.

5.7.1.1 Main Memory Cost of Algorithms

First, we run all algorithms on three synthetic data sets to see their memory cost
using the default parameter settings. The results are shown in Fig. 5.8. As expected,
the memory cost of the four algorithms only slightly differs. MA, PA, and PPA can
avoid storing table instances above 3-size. On the other hand, MA reduces some
calculations of possible worlds by grouping and pruning, PA further combines
possible worlds, and PPA directly cuts out some possible worlds. So, in relatively
larger data sets, MA is superior to BA, but MA is the loser if compared to
PA. Moreover PPA spends the least among the four algorithms.

5.7.1.2 Running Time of Algorithms

We now study the running time of algorithms on the three synthetic data sets.
Figure 5.9 shows all the results with an exponential scale. Figure 5.9(a)–(c) are the
results of the four algorithms obtained by varying d from 80 to 160 in data-1, data-2
and data-3, respectively. Figure 5.9(d)–8(f) are the results of varying k from 10 to
50, and Fig. 5.9(g)–(i) show the results by varying min_PI from 0.8 to 0.3. We can

Table 5.3 Parameter settings in experimental evaluations

Parameters
Default values in Section
5.7.1.1–5.7.1.2 / 5.7.1.3 / 5.7.1.4

Neighbor distance d 120 / 150 / 150

Number of results k 40 / 80 / 70

Minimum prevalence Min_PI 0.4 / 0.4 / 0.3

Possible error threshold ε 0.0001 / 0.0001 / 0.0001

Compensation factor δ 0.02 / 0.02 / 0.02

Neighbor distance d 120 / 150 / 150
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observe that PA is always the fastest in the three exact algorithms, but compared to
PPA, it is a loser. The superiority of PPA is more obvious in the larger data set
data-3. From Fig. 5.9(a), (d), and (g), we can see that the running time of four
algorithms does not exceed 3 hours in data-1. But in data-2, as shown in Fig. 5.9(b),
(e), and (h), the running time of BA has exceeded 30 hours with the same parameters
settings. At the same time, the running time of BA andMA exceeds 30 hours in data-
3 even on the lowest parameter settings.

Effect of d. From Fig. 5.9(a)–(c), we can observe that the running time of the
algorithms basically goes up when d increases, but PA and PPA do not always go
up. This is because increasing d makes the neighbor areas larger, so increasing the
number of row instances in the candidates’ table instances. But in the top-kmining, a
situation may occur where the number of candidates goes down when d increases,
because candidates are generated from the top-k queue. This is a difference between
top-k co-location mining and prevalent co-location mining. In addition, we find that
the matrix method based on the table instances is sensitive to d in the strong skew
data sets (see Fig. 5.9(b)). Moreover, we observe that the advantages of PA and PPA
become more obvious as d increases.

Effect of k. According to Fig. 5.9(d)–(f), the performance of all algorithms
deteriorate as k increases. This is due to the fact that the number of above 3-size
candidates increases as k increases. On the other hand, MA and PA are less sensitive
to variations of k in the relatively smaller data sets data-1 and data-2. The pruning of
Lemma 5.5 makes the cost of computing above 3-size candidates smaller relatively
to that of all 2-size candidates.

Effect of min_PI. Observe Fig. 5.9(g)–(i). Firstly, we note that the execution time
of all algorithms goes up generally as min_PI decreases. The reason is that the
computing cost of any candidate reduces in any possible world since min_PI is
larger. The impact of min_PI on MA is especially significant because of the pruning
by Lemmas 5.4 and 5.5. Secondly, we note that the number of 3-size candidates
decreases asmin_PI decreases on the three synthetic data sets. But the larger features
which contain more spatial instances go into 3-size candidates after min_PI < 0.5.
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Fig. 5.8 Memory cost analysis
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(a) Data-1 / Diff. d (b) Data-2 / Diff. d

(c) Data-3 / Diff. d (d) Data-1 / Diff. k

(e) Data-2 / Diff. k (f) Data-3 / Diff. k

(g) Data-1 / Diff. min_PI (h) Data-2 / Diff. min_PI

(i) Data-3 / Diff. min_PI

0.1

1

10

100

1000

10000

8 0 1 0 0 1 2 0 1 4 0 1 6 0

ru
nn

in
g 

tim
e/

s

d

BA MA

PA PPA

0.1

10

1000

100000

8 0 1 0 0 1 2 0 1 4 0 1 6 0

ru
nn

in
g 

tim
e/

s

d

BA
MA
PA
PPA

1

10

100

1000

10000

100000

1000000

8 0 1 0 0 1 2 0 1 4 0 1 6 0

ru
nn

in
g 

tim
e/

s

d

PA

PPA

0.1

1

10

100

1000

10000

1 0 2 0 3 0 4 0 5 0
ru

nn
in

g 
tim

e/
s

k

BA
MA
PA
PPA

0.1

10

1000

100000

1 0 2 0 3 0 4 0 5 0

ru
nn

in
g 

tim
e/

s

k

BA MA

PA PPA

1

10

100

1000

10000

1 0 2 0 3 0 4 0 5 0

ru
nn

in
g 

tim
e/

s

k

PA

AA

0.01

1

100

10000

0 . 8 0 . 7 0 . 6 0 . 5 0 . 4 0 . 3

ru
nn

in
g 

tim
e/

s

min_PI

BA
MA
PA
PPA

0.1

1

10

100

1000

10000

100000

1000000

0 . 8 0 . 7 0 . 6 0 . 5 0 . 4 0 . 3

ru
nn

in
g 

tim
e/

s

min_PI

BA MA
PA PPA

1

10

100

1000

10000

100000

0 . 8 0 . 7 0 . 6 0 . 5 0 . 4 0 . 3

ru
nn

in
g 

tim
e/

s

min_PI

PA PPA

Fig. 5.9 Running time analysis, where (a) Data-1 / Diff. d; (b) Data-2 / Diff. d; (c) Data-3 / Diff. d;
(d) Data-1 / Diff. k; (e) Data-2 / Diff. k; (f) Data-3 / Diff. k; (g) Data-1 / Diff. min_PI; (h) Data-2 /
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This can be used to explain why the run-time goes down when varying min_PI from
0.7 to 0.6 in Fig. 5.9(g), and the rapidly increasing run-times of BA and MA in
Fig. 5.9(h). Lastly, we note that the cost of PA is small and less variable on the
smaller data sets data-1 and data-2. On the other hand, its cost gets worse when
min_PI decreases on the larger data set data-3.

5.7.1.3 Accuracy of the Approximation Algorithm

Besides offering efficient run time and memory cost, the approximation accuracy is
the more important target for the approximately top-k probabilistic prevalent
co-location mining algorithm PPA. We use equal jAR\ERj

k to measure the accuracy
of PPA. Note that AR means the result generated from the approximate algorithm
PPA, and ER is the result generated from the exact algorithm PA. Tables 5.4–5.6
show the accuracy of PPA in the three synthetic data sets by varying d,min_PI and k,
respectively. We find that the accuracy is almost 1 in our all experiments. In data-1,
we observe that there is no false positive in any of the experiments. We also find that
the accuracy of the strong skew data set data-2 is the worst in all three data sets. This
is due to the fact that our PPA design is based on an optimization for the expected
participation ratio. So, the bigger is the variance in the number of instances in
features, the worse is the accuracy of PPA. On the other hand, we note that the
accuracy may reduce as d increases or min_PI decreases, but it can be raised as
k increases. This is due to the missing probabilistic prevalent patterns which may be
found when k is larger, while the accuracy of PPA is 1 when k is less than or equal to
60 since there are then fewer of the higher sizes’ co-locations in the results.

Table 5.4 Accuracy/d d 110 130 150 170 180

data-1 1 1 1 1 1

data-2 1 1 0.9875 0.975 0.9625

data-3 1 1 1 0.9875 0.9875

Table 5.6 Accuracy/k k 40 60 80 100 120 150

data-1 1 1 1 1 1 1

data-2 1 1 0.9875 1 1 1

data-3 1 1 1 1 0.99167 0.9867

Table 5.5 Accuracy/min_PI min_PI 0.8 0.7 0.6 0.5 0.4 0.3

data-1 1 1 1 1 1 1

data-2 1 1 1 1 0.9875 0.975

data-3 1 1 1 1 1 1
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5.7.1.4 Effect of ε and δ

We also study the impact of error threshold and compensation factor by varying ε
from 0.1 to 0.00001 and δ from 0.02 to 0.2, respectively. Firstly, as shown in
Table 5.7, the accuracies for varying ε in data-1 and data-3 are always 1. This is
due to: (1) for the relatively smaller data set data-1, the number of generated possible
worlds l ¼ 3 ln 1

ε

	 

= min PI2 � ACQ k½ �:Prob2	 


represents all the possible worlds
even with ε ¼ 0.1 since the value ACQ[k]. Prob2) in l formula is too small; (2) for
data-3, there are a few above 3-size co-location patterns in the top-k mining results
with a setting of k ¼ 70, and the computation of 2-size candidates is almost exact
using the parameters’ default values. The above explanations can also be verified by
Fig. 5.10. Secondly, from the results of data-2 in Table 5.7 we can see that the
missing prevalent pattern in the top-k results can be found as ε is increased. Then, the
results of Table 5.8 illustrate that a reasonable value of δ can raise the accuracy of
PPA. Our experimental study suggests that for typical values of k, d, and min_PI,
setting ε with 0.0001 and δ with 0.02 are good enough. Finally, we find that the
running time of PPA is linear on varying ε. We have only tested the run time on
varying ε because the influence of δ is far less.

Table 5.7 Impact on accu-
racy for varying ε

ε 0.1 0.01 0.001 0.0001 0.00001

data-1 1 1 1 1 1

data-2 0.9857 1 1 1 1

data-3 1 1 1 1 1
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Fig. 5.10 Effect of the error
threshold on the
running time

Table 5.8 Impact on accu-
racy for varying δ

δ 0.02 0.05 0.1 0.15 0.2

data-1 1 1 1 1 1

data-2 1 1 0.9857 0.9857 0.9857

data-3 1 1 1 1 1
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5.7.2 Evaluation on Real Data Sets

In this section, we mainly evaluate the accuracy and efficiency of the approximate
algorithm PPA in the real data sets. The real data sets come from the vegetation
distribution data sets of the “Three Parallel Rivers of Yunnan protected Areas.” As
shown in Fig. 5.11, if we select the yellow area as the sample data, and a sample
point is the 250 meter * 250 meter cell, the number of samples in the yellow area is
115*242.4 ¼ 27876. The range of samples in the yellow area covers the 14 types of
vegetations and the area of 0.25 * 115 * 0.25 * 242.4 ¼ 1742.25 sq. km.

5.7.2.1 Running Time of Algorithms

The size of a cell affects the quality of sample data. As shown in Fig. 5.12, there are
three kinds of vegetation in a 250 * 250 cell. Although we can refine cells into
smaller cells, the problem is essentially unchanged beyond increasing the number of
samples. The best approach is that the uncertainty of a cell value is expressed by a
confidence probability. Therefore, in the data sets used in experiments, each of
vegetation is a feature and a cell value is a spatial instance of the vegetation with
its associated confidence probability expressing the likelihood that this cell is the
specific vegetation

Table 5.9 summarizes three real data sets used in our experiments. They are all
from yellow area in Fig. 5.11. The difference is the size of cells. A 1000 * 1000 cell
is selected in real-1, a 500 * 500 cell is for real-2 and the 250*250 cell is for real-3.

In the following, we report the accuracy of mining results on real-1 and real-2 by
using the results of real-3 as the benchmark, because a cell in real-2 and real-1
corresponds to 4 cells and 16 cells in real-3, respectively. Then, we present the run
time of PPA over real-1, real-2, and real-3. We see that PPA provides high
approximation quality for minor computational effort. Finally, we analyze the
scalability of PPA as well. The default values of the parameters are min_PI¼0.4,
d ¼ 1, ε ¼ 0.0001, and δ ¼ 3.

Fig. 5.11 The location of
the vegetation samples
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Approximation quality vs. run time. Faced with the real data sets in Table 5.9,
even the polynomial algorithm PA can do nothing with it due to the exponential
complexity of PA. We note that as the cells become smaller, the uncertainty of the
data lessens, the data size rises sharply, and the computational complexity becomes
too high. However, the approximate algorithm PPA can achieve good accuracy
when the cell size is enlarged. Table 5.10 reports the accuracy of the top-k mining
results on real-1, real-2 based on real-3, and Fig. 5.13 is the run time of the
corresponding mining processes. We find that PPA can mine the highly accurate
results with minor computational effort. Thus, our mining algorithm which has high-
quality approximation could perhaps settle the big data mining problem. In addition,
we observe that the approximation quality and run time of PPA are less sensitive to
the variation of k from Table 5.10 and Fig. 5.13 when varying k from 10 to 25.

Scalability. We further analyze the scalability of PPA. In Fig. 5.14, varying the
number of spatial instances in the data sets from 10k to 40k, we find the run time of
PPA with k ¼ 10/20 are linear.

Fig. 5.12 There are three
distinct vegetations in a
250 * 250 cell

Table 5.9 Characteristics of the three real data sets

Name |F| Total No. of instances (Max, Min) Size of a cell

real-1 14 3089 (632, 9) 1000 * 1000

real-2 14 9098 (2048,20) 500 * 500

real-3 14 27,876 (6621,50) 250 * 250

Table 5.10 Accuracy in real
data sets

Accuracy k ¼ 10 k ¼ 15 k ¼ 20 k ¼ 25

real-1 1 14/15 18/20 23/25

real-2 1 1 1 1

real-3 1 1 1 1
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5.8 Chapter Summary

In this chapter, we studied the extraction of the top-k PPCPs over spatially uncertain
data sets. We presented a basic framework for efficiently mining top-k PPCPs from
spatially uncertain data sets with existential probabilities under the possible world
semantics. The proposed novel matrix method and polynomial strategy exhibited
their superiority, as was shown both theoretically and experimentally. Furthermore,
based on the polynomial method, the approximate algorithm in Wang et al. (2013a)
is alternated to compute the prevalence probability of a top-k candidate with minimal
computational effort and the results are highly accurate.

In the next chapter, we will discuss the redundancy reduction problem of the
spatial prevalent co-location patterns by further application of distribution informa-
tion from co-location instances.
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Chapter 6
Non-redundant Prevalent Co-location
Patterns

6.1 Introduction

Spatial co-location pattern (SCP) mining is an interesting and important task in
spatial data mining which discovers the sets of spatial features frequently observed
together in nearby geographic space. However, the traditional framework of mining
prevalent co-location patterns produces numerous redundant co-location patterns,
which makes it hard for users to understand or apply.

This chapter is an attempt to address this issue by the following contributions:

1. A semantic distance metric between a co-location and its super-patterns is
proposed, and shows it is a sub-valid distance metric.

2. A concept of δ-covered to estimate the redundancy degree of a SCP is defined.
3. We propose two algorithms: RRclosed, which follows existing redundancy

reduction techniques to adopt the post-mining framework that reduces redundant
SCPs from the set of closed prevalent co-locations; RRnull, which employs a
mine-and-reduce framework to discover non-redundant results directly from the
spatial data sets and runs much faster than the closed co-location mining algo-
rithm in Yoo and Bow (2011a), itself a very fast closed co-location mining
method.

Our performance study shows that the introduction of δ-covered can effectively
reduce the number of closed co-locations. In addition, users can control the redun-
dancy reduction power by adjusting the coverage measure δ (0 � δ � 1).

Figure 6.1 presents the organization of this chapter. Section 6.2 discusses the
needs of exploring non-redundant SCPs. In Sect. 6.3, we give the related definitions
for non-redundant SCP mining. Section 6.4 presents the RRclosed method, and the

From Wang, L., Bao, X., Zhou, L.: Redundancy Reduction for Prevalent Co-Location Patterns,
IEEE Transactions on Knowledge and Data Engineering (TKDE) 30(1), 142–155 (2018).
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RRnullmethod is proposed in Sect. 6.5. Our performance study is presented in Sect.
6.6. The related work is discussed in Sects. 6.7 and 6.8 concludes.

Section 6.3
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Chapter summary
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Fig. 6.1 The organization of this chapter
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6.2 Why We Need to Explore Non-redundant Prevalent
Co-locations

Mining spatial co-location patterns (SCPs) is an interesting and important spatial
data mining task with a broad range of applications including Earth science (Verhein
& Al-Naymat, 2007), public health (Li et al., 2016), public transportation (Yu, 2016;
He et al., 2018), environmental studies (Akbari et al., 2015), and et al. In the paper of
Yao et al. (2017), for example, the extracted patterns in the public-service facilities
of developed cities can be used to plan layouts or arrange new facilities in cities.

An SCP is a group of spatial features whose instances are frequently located close
to each other (Huang et al., 2004). Examples of SCPs include symbiotic species, e.g.,
West Nile Virus and stagnant water sources in public health, and interdependent
incidents, e.g., traffic jams, car accidents, ambulances, and police in public
transportation.

The traditional framework of SCP mining uses the frequencies of a set of spatial
features participating in a SCP to measure the prevalence (known as participation
index (Huang et al., 2004), or PI for short) and requires a user-specified minimum PI
threshold to find interesting SCPs. The meaning of PI is that wherever a feature in a
SCP c is observed, all other features in c can be observed in its neighborhood with a
probability of at least PI(c). Similar to the support metric in frequent itemset mining,
the PI metric satisfies the anti-monotonicity property. That is, if a SCP is prevalent
with respect to a threshold of PI, then all of its subsets (sub-patterns) will be
discovered as prevalent SCPs. Traditional frameworks generate numerous redundant
SCPs which jeopardize the usability of the technique, as it then demands great effort
to discern or understand the discovered knowledge.

Two major approaches have been developed to aid the user: lossless and lossy
redundancy reduction. The former, using closed prevalent co-locations (Yoo &
Bow, 2011a) (a prevalent SCP c is closed if there is no SCP c0 such that c ⊂ c0

and PI(c) ¼ PI(c0)), concentrates too much on the PI information of SCPs so that its
redundancy reduction power is quite limited. The latter, using maximal prevalent
co-locations (Wang et al., 2009b; Yoo & Bow, 2011b) (a prevalent SCP c is
maximal if there is no prevalent SCP c0 such that c ⊂ c0), may significantly reduce
the number of SCPs, but it loses PI information from most of the SCPs, leaving
difficulties for the user. This paper presents a new, improved, redundancy reduction
framework for detecting prevalent SCPs, utilizing the spatial distributed information
of co-location instances while retaining some useful features of the non-redundant
co-location sets.

An explanatory example is shown below.

Example 6.1 Figure 6.2(a) shows an example spatial data set, where instances of
four spatial features, A, B, C and D, are denoted by the feature type and a numeric id
value, e.g. A.1, and edges connecting two instances indicate spatial neighboring
relationships. Figure 6.2(b) lists the co-location instances, the PRs and the PIs of all
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possible SCPs in the data set (the definitions of co-location instance, PR and PI are
provided in Sect. 6.3).

If a minimum PI threshold is 0.3, maximal prevalent co-location mining will only
report the 4-size SCP {A, B, C, D}. In contrast, the result of closed prevalent
co-location mining will be {{A, B, C, D}, {A, B, D}, {A, C, D}, {B, C, D}, {A,
B}, {A, D}, {B, D}, {C, D}}. However, we observe that each SCP in the set {{A, B,
D}, {A, C, D}, {B, C, D}, {A, B}, {A, D}, {B, D}, {C, D}} is significantly different
with respect to their PI values from {A, B, C, D}. Additionally, closed prevalent
co-location mining is too prolific, as we note that the co-location instance T({A, D})
of {A, D} is fully contained in co-location instance T({A, C, D}) of its super-pattern
{A, C, D} (as shown in the dotted boxes in T({A, D}) and T({A, C, D})). We say {A,
D} is covered by {A, C, D} with respect to the distributed information of co-location
instances (see Definition 6.7). Similarly, SCPs {A, B, D} and {B, D} are covered by
{A, B, C, D} and {B, C, D}, respectively, and the co-location instance information
of {A, C, D} and {B, C, D} covers that of {C, D}. The high-quality non-redundant
result is {{A, B, C, D}, {A, C, D}, {B, C, D}, {A, B}} for this example data set.

(a) An example spatial data set
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Fig. 6.2 A motivating example, where (a) an example spatial data set; (b) the co-location
instances, the PRs and the PIs of all possible SCPs in the data set
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A strategy for improving the redundancy reduction power in closed prevalent
co-locations is to identify redundant SCPs according to certain similarity measures.
However, there are three crucial questions which need to be answered:

1. How to measure the similarity between the SCPs?
2. How to efficiently and completely eliminate redundant SCPs and, for research

purposes?
3. How to estimate the redundancy degree of SCPs?

This chapter is an attempt to offer answers to these questions. We first introduce
the concept of semantic distance between a SCP and its super-SCPs, and then define
redundant SCPs by introducing the concept of δ-covered, where δ (0 � δ � 1) is a
coverage measure. We develop two algorithms RRclosed and RRnull to perform
the redundancy reduction for prevalent SCPs. Our performance studies on the
synthetic and real-world data sets demonstrate that our method effectively reduces
the size of the original collection of closed co-location patterns by about 50%.
Furthermore, the RRnull method runs much faster than the related closed
co-location pattern mining algorithm.

6.3 Problem Definition

In this section, we first introduce a semantic distance metric to measure the similarity
between the SCPs, and then the non-redundant prevalent SCP mining problem is
defined formally, based on a new δ-covered concept, where δ (0 � δ � 1) is a
coverage measure.

6.3.1 Semantic Distance

To improve the redundancy reduction power in the set of closed prevalent
co-locations, we introduce a semantic distance metric to measure the similarity
between two closed prevalent co-locations based on their co-location instances,
which contain the neighbor relationship information of their spatial instances.

Definition 6.1 (Semantic distance, SD) Let c and c0 be two closed prevalent
co-locations, and c ⊂ c0. The semantic distance between c and c0 is defined as:

SD c, c0ð Þ ¼ min f i2c 1� j Π f iT c0ð Þ j
j Π f iT cð Þ j

� �� �
ð6:1Þ

where Π f iT cð Þ is the set of distinct instances of fi in T(c), and T(c) is the co-location
instance of c.
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Let us apply the SD measure to the SCPs in Fig. 6.2 to see whether it reasonably
reflects the distance between SCPs in term of redundancy. Firstly, we consider
c ¼ {A, D} and c0 ¼ {A, C, D}. According to Definition 6.1, |∏AT(c)| ¼ |{A.1,
A.2, A.4}|¼ 3, |∏DT(c)|¼ |{D.1, D.2, D.4}|¼ 3, |∏AT(c0)|¼ |{A.1, A.2, A.4}|¼ 3,
|∏DT(c0)| ¼ |{D.1, D.2, D.4}| ¼ 3, so SD(c, c0) ¼ min{1–3/3, 1–3/3} ¼ 0. This
means the co-location instance information of {A, D}, which shows the prevalence
information of a SCP, is fully contained in that of {A, C, D} (i.e., when the instances
of features A and D are observed in a neighborhood, the instance of feature C must
occur in this neighborhood too). That is, {A, D} is a redundant SCP relative to
{A, C, D}. Secondly, let us consider c ¼ {A, B} and c0 ¼ {A, B, C, D}. We can
calculate SD(c, c0) ¼ min{1–2/3, 1–2/3} ¼ 1/3, which indicates that {A, B} have
extra row instance distribution information relative to {A, B, C, D}. Finally, let us
illustrate the meaning of the “min” in Eq. (6.3). We observe that SD({B, D}, {B, C,
D}) ¼ 0 but T({B, D}) has not been fully contained in T({B, C, D}). In fact, there is
no extra instance of feature D in T({B, D}) which occurs relative to T({B, C, D}). As
far as the distribution of co-location instances is concerned, T({B, D}) does not
contain extra information relative to T({B, C, D}). (Because D.3 in the row instance
{B.5, D.3} has occurred in row instance {B.4, C.2, D.3} of T({B, C, D}), {B.5, D.3}
is not a new distribution of row instances.) Thus we see that the SDmeasure captures
the redundancy power between a SCP and its super-SCP.

Theorem 6.1 The semantic distance SD is a sub-valid distance metric, such that:

1. SD(c, c0) � 0, 8c ⊂ c0.
2. SD(c, c0) ¼ 0,8c ¼ c0.
3. For 8c ⊂ c0 ⊂ c
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then SD(c, c0) + SD(c0, c00) � SD(c, c00).

Proof By the definition of SD, it is easy to verify that the first two properties are
true. We prove the third statement as below.

To simplify the presentation, we define the variables:

x ¼ max f2c

Q
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Plug in all the variables into the distance definition.
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SD c, c0ð Þ þ SD c0, c00ð Þ � SD c, c00ð Þ , 1� xð Þ þ 1� yð Þ � 1� zð Þ ð6:2Þ

If c ⊂ c0 then every row instance of c0 contains a subset of instances which is a
row instance of c. So |∏fT(c)| � |∏fT(c

0)| for f 2 c.
We can assume x¼ b/a and y¼ c/b in Eq. (6.2) based on the condition of the third

statement. Therefore,
If z ¼ c/a, we have a � b � c due to c ⊂ c0 ⊂ c00.
Then, (1 � b/a) + (1 � c/b) ¼ (1 � (b/a � ((b � c)/b))) � (1 � (b/a � ((b � c)/

a))) (by a � b) ¼ (1 � c/a).
So, Eq. (6.2) is true in this case.

Else, the values a and c in z are different from that in x and y. Since z ¼

max f2c

Q
f
T c00ð Þ

��� ���Q
f
T cð Þ

��� ���
8<
:

9=
;, 1 � z � 1 � c/a. Eq. (6.2) is still true.

Thus the third statement is true. □

Remark (1) Although the SD can reasonably reflect the distance between SCPs in
term of redundancy, it is sub-valid since there is a condition on the third statement in
Theorem 6.1. (2) The SD can be extended to general prevalent SCPs excepting that,
for a non-closed co-location c, there is a closed co-location c0 such that c ⊂ c0 and
SD(c, c0) ¼ 0. This is because from the condition PI(c) ¼ PI(c0) of a non-closed
co-location c, we can infer that there exists a feature fi in c such that PR(c, fi)¼ PR(c0,
fi), and therefore SD(c, c0) ¼ 0 holds.

6.3.2 δ-Covered

Based on the SD metric, we can define a covered relationship between SCPs, and
then the concept of δ-covered is introduced further.

Definition 6.2 (Covered (or non-covered)) For an SCP c, if there exists (does not
exist) an SCP c0 such that c ⊂ c0 and SD(c, c0)¼ 0.We say c is covered by c0 (c is a
non-covered SCP).

For example, SCP {A, D} is covered by {A, C, D} in the data set of Fig. 6.2(a). If
{A, C, D} has been in the set of closed prevalent co-locations, {A, D} is a redundant
CPC with respect to the distribution of co-location instances. By contrast, the SCP
{A, B} in the data set of Fig. 6.2(a) is a non-covered SCP since its row instance {A.3,
B.3} cannot be contained in any of its super-SCPs.

Obviously, we can use the covered concept to prune redundant closed prevalent
co-locations in the set of closed prevalent co-locations. For example, in Fig. 6.2, if
M¼ 0.3, the closed prevalent co-location set is {{A, B, C, D}, {A, B, D}, {A, C, D},
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{B, C, D}, {A, B}, {A, D}, {B, D}, {C, D}}. So closed prevalent co-locations
{A, B, D}, {A, D}, and {B, D} can be pruned since they are covered by {A, B, C,
D}, {A, C, D}, and {B, C, D}, respectively.

In order to achieve a more succinct compression of the non-covered prevalent
SCPs, we extend the concept of covered in two ways, as follows.

First, let c0 be a set of the super-SCPs of c, say c0 ¼ {c1, c2,. . ., ct}, and we then
have the following extended concept of SD:

Definition 6.3 (Extended semantic distance, ESD) Let c be a closed prevalent
co-location and {c1, c2,. . ., ct} (t � 1) be a set of closed prevalent co-locations, and
c ⊂ ci (1�i � t). The extended semantic distance between c and {c1, c2,. . ., ct} is
defined as:

ESD c, c1, c2, . . . , ctf gð Þ ¼ min f i2c 1�
[t
j¼1

Q
f i
T c j

� �����
����Q

f i
T cð Þ

��� ���
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BB@

1
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8>><
>>:

9>>=
>>; ð6:3Þ

where
Q

f i
T cð Þ is the set of distinct instances of fi in T(c), and T(c) is the co-location

instance of c.

Naturally, the SD in Definition 6.2 can be extended to ESD, and then more SCPs
in closed prevalent co-locations could be eliminated.

Example 6.2 In Fig. 6.2, ifM ¼ 0.3, for {C, D} in closed prevalent co-location set,
there are two closed prevalent co-locations {A, C, D} and {B, C, D}, such that
SD({C, D}, {{A, C, D}, {B, C, D}}) ¼ min 1� 3

3, 1� 4
4

	 
 ¼ 0. {C, D} is covered
by its super-SCP set {{A, C, D}, {B, C, D}}. That is to say, if {A, C, D} and {B, C,
D} are in the closed prevalent co-location set, {C, D} is deemed to be redundant and
it should be eliminated so as to further reduce the number of non-covered SCPs in
the set of closed prevalent co-locations.

Accordingly, for the data set of Fig. 6.2(a), the closed prevalent co-locations set is
reduced to {{A, B, C, D}, {A, C, D}, {B, C, D}, {A, B}}. We regard this as the ideal
non-redundancy result, because each pattern has extra information (i.e., an extra
co-location instance, see Fig. 6.2(a)).

Second, we extend the covered concept to δ-covered to further reduce the number
of non-covered SCPs in the set of closed prevalent co-locations by adjusting the
coverage measure δ (0 � δ � 1), where δ is a user specified coverage measure
threshold.

Definition 6.4 (δ-covered) A co-location c is δ-covered by a set of SCPs {c1, c2,. . .,
ct} (t�1) if c ⊂ ci (1 � i � t) and ESD(c, {c1, c2,. . ., ct}) � δ (0 � δ � 1).
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6.3.3 The Problem Definition and Analysis

Based on the above discussion, the prevalent SCP redundancy reduction problem is
formally defined as follows.

Definition 6.5 (Non-redundant prevalent SCP discovery problem) Given a
spatial data set D (a collection of instances S of a set of spatial feature F), a minimum
PI threshold M and a coverage measure δ, the non-redundant prevalent SCP
discovery problem is to find a minimal set of non-covered prevalent SCPs Ω,
such that for any prevalent SCP c in D, i.e., PI(c) � M, there exists a set of SCPs
{c1, c2,. . ., ct} (t � 1) in Ω s.t. c ⊂ ci and ESD(c, {c1, c2,. . ., ct}) � δ.

We note that the size of Ω is no less than the number of the maximal prevalent
SCPs. This is because a maximal prevalent SCP can only be covered by itself. On the
other hand, the size of Ω is no larger than the number of the closed prevalent
co-locations since a non-closed prevalent co-location must be covered by a closed
prevalent co-location.

Theorem 6.2 The δ-covered relationship is a limited partial order in the prevalent
SCP set, such that:

1. c is δ-covered by c (reflexivity).
2. if c is δ-covered by c0 and c0 is δ-covered by c, then c ¼ c0 (anti-symmetry).

3. if c is covered by c0 and c0 is δ-covered by {c1, c2, . . ., ct}, and f � ¼

arg f max
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c must be δ-covered by {c1, c2, . . ., ct} (limited-transitivity).

Proof By the definition of δ-covered, it is easy to verify that the first two properties
are true. We prove the third statement here.

According to the conditions of the third statement, we have

SD c, c0ð Þ ¼ 1� max f2c

Q
f T c0ð Þ

��� ���Q
f T cð Þ

��� ���
8<
:

9=
; ¼ 0 and
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ESD c0, c1, . . . ctf gð Þ ¼ 1� max f2c0
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CCA � δ: □

The semantic distance, a sub-valid distance metric, leads to the limited-transitivity
expressed in Theorem 6.2, and it means that there may exist SCPs that do not satisfy
transitivity. We call these hard SCPs.

Definition 6.6 (Hard SCP) For a prevalent SCP c, if c is covered by its super-SCP
c0 and c0 is δ-covered by its super-SCP set {c1, c2, . . ., ct}, but c cannot be δ-covered
by {c1, c2, . . ., ct}, c is called a hard SCP of c0.

For example, in Fig. 6.2, if the co-location instance of SCP {A, B, C, D} became
{{A.1, B.1, C.1, D.1}, {A.2, B.1, C.1, D.2}, {A.2, B.2, C.1, D.3}}, the SCP {B, C,
D} was covered by {A, B, C, D} (δ ¼ 0). But the SCP {B, C} cannot be covered by
{A, B, C, D}. Thus, {B, C} is a hard SCP of {B, C, D}.

For a non-closed prevalent co-location c, there is a closed prevalent co-location c0

such that and c ⊂ c0 and SD(c, c0) ¼ 0, so we have the following lemma, proof
omitted.

Lemma 6.1 Given a spatial data set D, a minimum PI threshold M and a coverage
measure δ, if any SCP in the “closed+hard” SCP set is δ-covered by SCPs inΩ, then
any prevalent SCP in D can be δ-covered by SCPs in Ω.

Accordingly, the discovery of the non-covered prevalent SCP set Ω has to start
from the largest size of closed prevalent co-locations. At the same time, hard SCPs
need to be added dynamically.

For the convenience of computing ESD and identifying non-covered SCPs, we
introduce a new concept and a Lemma.

Definition 6.7 (Set participation ratio) The set participation ratio SPR ({c1,
c2,. . ., ct}, f ) of the common feature f in {c1, c2,. . ., ct} is the fraction of instances of f

that occur in [t
j¼1

Q
f i
T c j

� �
, that is,
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SPR c1, c2, . . . , ctf g, f ið Þ ¼
[t
j¼1

Q
f i
T c j

� �����
����

Total number of instances of f i
ð6:4Þ

where
Q

f i
T cð Þ is the set of distinct instances of fi in T(c), and T(c) is the co-location

instance of c.

For example, consider the data set in Fig. 6.2(a), and c1 ¼ {A, C, D} and
c2 ¼ {B, C, D} in Fig. 6.2(b). Since ∏cT(c1) ¼ {C.1, C.3}, ∏cT(c2) ¼ {C.1, C.2}
and C has three instances, we have SPR ({c1, c2}, C) ¼ 3/3 ¼ 1.

Lemma 6.2 For any SCP c in Ω, if its super-SCP set is {c1, c2,. . ., ct}, then bM <

1 � δ holds, where bM ¼ max f i2c
SPR c1, c2, ..., ctf g, f ið Þ

PR c, f ið Þ
n o

.

Proof Since c 2 Ω, we have ESD(c, {c1, c2,. . ., ct}) > δ. So,

δ < ESD c, c1, c2, . . . , ctf gð Þ ¼ min f i2c 1�
[t
j¼1

Q
f i
T c j

� �����
����Q

f i
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��� ���
0
BB@

1
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>>:
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>>;

¼ 1� max f i2c
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Q
f i
T c j

� �����
����Q

f i
T cð Þ

��� ���
8>><
>>:

9>>=
>>; ¼ 1� bM,

where bM ¼ max f i2c
SPR c1, c2, ..., ctf g, f ið Þ

PR c, f ið Þ
n o

.

That is, bM < 1 � δ holds. □

According to Definitions 6.4 and 6.5 and the proof of Lemma 6.2, the conditionbM < 1 � δ is an iff condition with respect to whether a SCP c remains in Ω.

Discussion:

1. The number of hard SCPs in a data set is usually hard to estimate. From a large
number of experiments in Sect. 6.6, we found this number to be very small.

2. Because of the limited-transitivity in Theorem 6.2, the set of non-covered prev-
alent SCPs Ω of a spatial data set D should not be unique. Finding the optimal
solution is NP-hard, so the two algorithms presented in Sects. 6.4 and 6.5 are
aimed at obtaining a reduced result with respect to the original collection of
closed prevalent co-locations.
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6.4 The RRclosed Method

In this section, we present the RRclosed method which adopts a post-mining
framework to implement the prevalent SCP redundancy reduction from CPC
which is a collection of closed prevalent co-locations.

The RRclosed method consists of two phases. Phase 1 constructs a net structure
NET of CPC according to the relationship of SCPs and super-SCPs in order to
facilitate the next phase, and Phase 2 reduces redundant SCPs that are δ-covered by
their super-SCPs.

In Phase 1, we adopt a method beginning from the largest-size SCPs of CPC.
When inserting a size-l SCP c into NET, we computeDEC(c), which is the collection
of the super-SCPs of c, by using the intersection operation of c with l + 1 size SCPs
in NET. If DEC(c) ¼ ϕ, l + 2 size SCPs are considered, until reaching the root of
NET. For example, for the spatial data set in Fig. 6.2(a), if M ¼ 0.3 then
CPC ¼ {{A, B, C, D}, {A, B, D}, {A, C, D}, {B, C, D}, {A, B}, {A, D}, {B,
D}, {C, D}}. The NET of CPC is shown in Fig. 6.3.

In Phase 2, we check SCPs in NET starting from the largest size minus one.
According to Lemma 6.2, we calculate bM of checked SCP c and prune it from NET ifbM� (1� δ). In the realization, we can sort all features in c in the ascending order of
the PR values, and the negative condition in Lemma 6.2 (i.e., bM � (1 � δ)) may be
satisfied earlier. When an SCP c is pruned from NET, it is necessary to revise the
relationships of SCPs and super-SCPs affected by c, and insert the hard co-locations
of c into NET. For example, in Fig. 6.3, if {A, B, D} is covered by its super-SCP
{A, B, C, D}, its sub-SCP {A, B} will be directly connected to {A, B, C, D} (see the
dotted line in Fig. 6.3) because {A, B, D} is a unique super-SCP of {A, B}.

The full RRclosed algorithm is summarized in Algorithm 6.1.

NETSize

4

3

2

{A,B,D}

{A,D}

{A,B,C,D}

{A,C,D} {B,C,D}

{A,B} {C,D} {B,D}

Fig. 6.3 The NET of CPC
for the data set in Fig. 6.2(a)
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The computational cost of RRclosed mainly comes from the second phase, whose
coarse computation complexity is O(∑c 2 CPC|T(c)|

r), where T(c) is the co-location
instance of c, r is the average time of scanning T(c) (some T(c) may be scanned many
times for calculating bM in Step 11, but the average scanning time r is not too big, just
slightly greater than 1 time unit in general). The running time of RRclosed is
principally affected by the minimum PI threshold M and spatial neighbor distance
threshold d, because they control T(c), the number of CPC and the largest size
of CPC.

However, RRclosed needs to first compute the CPC. To improve the computation
of the set Ω, a new method RRnull is presented in the next section.
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6.5 The RRnull Method

In this section, we introduce a new method called RRnull which pushes the redun-
dancy (coverage) validation into the prevalent SCP mining process.

6.5.1 The Method

Computing the closed prevalent co-locations and their co-location instances is
necessary for RRclosed, since the method checks coverage information based on
the mined closed prevalent co-locations. To develop a much more efficient method,
we introduce a lexicographic prefix-tree structure to store feature neighborhood
transactions. We start with the generation of non-covered SCP candidates.

According to the related definitions, the coverage metrics are based on the
co-location instances that contain the spatial neighbor relationships of instances in
SCPs. So, we convert the input data to neighborhood transactions. The calculation of
the neighbor relationship of the input data can be performed using a sweeping-based
spatial join approach (Arge et al., 1998).

Definition 6.8 (Neighborhood transaction (NT)) Given a spatial instance f.i 2 S,
the neighborhood transaction (NT) of f.i is defined as a set consisting of f.i and the
other spatial instances having neighbor relationships with f.i, i.e., NT( f,i)¼ {f.i, g.j 2
S | NR( f.i, g.j) ¼ true \ f 6¼ g}, where NR is a spatial neighbor relationship.

For example, in Fig. 6.2(a), the neighbor transaction of A.1 is {A.1, B.1 C.1,
D.1}, including itself as shown in Fig. 6.4(b). Note that each instance in the
transaction has a neighbor relationship with the first instance, which is called a
reference instance.

This data structure was first introduced in Yoo and Shekhar (2006) and Yoo and
Bow (2011a). It gives several advantages for non-covered SCP mining. First, the
neighborhood transactions do not lose any instances, nor lose any neighbor relation-
ships of the original data. Second, the neighborhood transactions can be easily
constructed from the neighboring instance pairs of the input data. Third, the neigh-
borhood transactions can give the information about the upper bound value of the PI
of a candidate. Finally, the feature neighborhood transactions, which are the set of
distinct features in the neighborhood transactions, can be used to generate non-
covered SCP candidates.

Definition 6.9 (Feature neighborhood transaction (FNT)) The lexicographic set
of distinct features in NT is called feature neighborhood transaction (FNT).

The feature neighborhood transactions relative to the neighborhood transactions
in Fig. 6.4(b) are shown in Fig. 6.4(a).

The candidate generation method in Yoo and Bow (2011a) considers feature sets
having possible clique relationships as candidates. However, here we consider
feature sets having “non-covered + possible clique relationships” as candidates.
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For this, we revise the procedure proposed in Yoo and Bow (2011a) in three ways, as
follows.

Firstly, we generate feature sets for star non-covered candidates from FNTs
using a lexicographic prefix-tree structure. This lexicographic prefix-tree is defined
as follows: (1) It consists of one root labeled as a reference feature and a set of feature
neighbor relationships as the children of the root, (2) each node consists of three
fields: feature-type, count, and node-link, where feature-type denotes a feature that
this node represents, count registers the number of neighborhood transactions
represented by the portion of the path reaching this node, and node-link links to
the next node in the tree carrying the same feature-type. As shown in Fig. 6.5(a), one
prefix-tree per feature is built.

Definition 6.10 (Star non-covered candidate (SNCC) and upper participation
ratio (UPR)) A feature set having relationships with the root node (reference
feature) in a lexicographic prefix-tree is called a star non-covered candidate
(SNCC) if its star participation ratio is greater than or equal to M and it has not
been δ-covered by longer candidates in this prefix-tree. The star participation ratio
represents the upper bound of the participation ratio of the reference features, which
is the fraction of the count of reference feature in the count of neighborhood trans-
actions of all other features in a candidate. It is called the upper participation ratio
(UPR).

SNCCs are generated using the following method.

1. Each branch in a lexicographic prefix-tree forms a SNCC if its UPR is greater
than or equal to M.

Trans. No. Neighbor features Trans. No. Neighbor instances
1 A B,C,D 1 A.1 B.1,C.1,D.1

2 A B,C,D 2 A.2 B.1,B.2,C.1,D.2

3 A B 3 A.3 B.3

4 A C,D 4 A.4 C.3,D.4

5 B A,C,D 5 B.1 A.1,A.2,C.1,D.1,D.2

6 B A,C,D 6 B.2 A.2,C.1,D.2

7 B A 7 B.3 A.3

8 B C,D 8 B.4 C.2,D.3

9 B D 9 B.5 D.3

10 C A,B,D 10 C.1 A.1,A.2,B.1,B.2,D.1,D2

11 C B,D 11 C.2 B.4,D.3

12 C A,D 12 C.3 A.4,D.4

13 D A,B,C 13 D.1 A.1,B.1,C.1

14 D A,B,C 14 D.2 A.2,B.1,B.2,C.1

15 D B,C 15 D.3 B.4,B.5,C.2

16 D A,C 16 D.4 A.4,C.3

(a) feature neighborhood transactions (FNT) (b) neighborhood transactions (NT)

Fig. 6.4 The feature neighborhood transactions and neighborhood transactions of the data set in
Fig. 6.2(a)
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2. The sub-sets of the branches, which contain the root node, form SNCCs if they
are not δ-covered by generated longer size candidates in the prefix-tree.

For example, in the prefix-tree of feature A, we can generate two candidates
{A, B, C, D}: 2/4 and {A, C, D}: 3/4 from the two branches {A, B, C, D} and {A, C,
D}, and if δ ¼ 0 then the sub-set {A, B} of branch {A, B, C, D} is also a candidate
{A, B}: 3/4 since UPR A,B, C, Df g, Að Þ

UPR A,Bf g, Að Þ ¼ 2
3 < 1� δ (see Lemma 6.2). The star neighbor-

hood information of the remaining sub-sets, which contain the root node, has been
δ-covered by generated candidates. For example, the star neighborhood information
of the sub-sets {A, B, C}, {A, B, D} in branch {A, B, C, D} is the same as that of
{A, B, C, D}, while the star neighborhood information of the sub-sets {A, C}, {A,
D} is covered by the candidates {A, B, C, D} and {A, C, D}. To form sub-sets in a
branch, we conduct breadth-first enumerations in the branch set except for the
root node.

Secondly, the SNCCs are combined for filtering the clique non-covered candi-
dates (CNCCs).

B:3

A:4

C:2

C:1

D:1

D:2

B:5

C:1

C:2

D:2

D:1

D:1A:3

C:3

A:2

D:1

B:1

D:1

B:1 D:1

D:4

A:3

B:2

B:1

C:2

C:1 C:1

{A,B,C,D}:2/4
{A,C,D}:3/4
{A,B}:3/4 

Upper participation ratio

Upper participation 

index

{A,B,C,D} δ-covers 

{A,B,C} and {A,B,D}, 

while {A,C}and{A,D} 

are δ-covered by 

{{A,B,C,D}, {A,C,D}} 

(if δ=0)

{A,B,C,D}=min{2/4,2/5,1/3,2/4}=1/3
{A,C,D}=min{3/4,2/3,3/4}=2/3
{B,C,D}=min{3/5,2/3,3/4}=2/3

{A,B}=min{3/4,3/5}=3/5

(b) Clique non-covered candidates

{B,A,C,D}:2/5
{B,C,D}:3/5
{B,D}:4/5
{B,A}:3/5

{C,A,B,D}:1/3
{C,A,D}:2/3
{C,B,D}:2/3

{D,C,A,B}:2/4
{D,C,A}:3/4
{D,C,B}:3/4

(a) Star non-covered candidates

Fig. 6.5 Candidate generation, where (a) generating star non-covered candidates; (b) generating
clique non-covered candidates
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Definition 6.11 (Clique non-covered candidate (CNCC) and upper participation
index (UPI)) A size-k candidate combining from k size-k SNCCs in the prefix-trees
is called a size-k clique non-covered candidate (CNCC). The minimum value of
k UPRs is called the upper participation index (UPI).

For example, in Fig. 6.5(b), to be {A, B, C, D}, which is a clique non-covered
candidate, four SNCCs {A, B, C, D}, {B, A, C, D}, {C, A, B, D}, and {D, A, B, C}
are needed. The sub-set {B, D} is a star non-covered candidate in prefix-tree B, but
{D, B} is not a star non-covered candidate in prefix-tree D. After the combining step,
{B, D} is pruned.

Once a candidate is pruned, its covered sub-sets need to be generated. For
example, if M ¼ 0.4, the generated candidate set in the prefix-tree C would be
{{C, A, D}: 2/3, {C, B, D}: 2/3, {C, D}: 3/3}. The clique non-covered candidate
{A, B, C, D} cannot be formed in the combining step, as the covered sub-sets {A, B,
C}: 2/4 and {A, B, D}: 2/4 of the {A, B, C, D} in the prefix-tree A need to be
generated. Prefix-tree B and D are treated similarly. The process of filtering CNCCs
is conducted by dynamically changing SNCCs.

Thirdly, the true PIs of candidates are computed starting from the largest size
candidates. The candidate co-location instances of candidates are gathered by
scanning NTs in Fig. 6.4(b), even though they are not the true co-location instances.
True co-location instances can be filtered from the candidate instances by examining
clique relationships among other instances of the candidate co-location instance,
except for the first instance. For example, in Fig. 6.4(b), {A2, B2, C1, D2} is a true
co-location instance of candidate {A, B, C, D}, but {A2, B1, C1, D2} is not.

For a candidate c, if PI(c) ¼ UPI(c), then c must be a non-covered co-location.
Otherwise, we first need to generate the covered sub-sets of c since these sub-sets
have been pruned assuming the condition UPI(c) ¼ PI(c); next, if PI(c) < M then
c can be pruned out; else, we need to check whether c is δ-covered by its super-SCPs
or not.

Note that the UPI values of size 2 SCPs are the true PI values.

6.5.2 The Algorithm

Algorithm 6.2 shows the pseudo code of the RRnull method.
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Algorithm 6.2 contains three phases. The first one is to preprocess and generate
SNCC, the second one is to combine SNCC as CNCC, and the third one is to
calculate true PI values of candidates. In the second and the third phases, once a
candidate can be pruned out, its covered sub-SCs need to be generated.

In Phase 1, we first find all neighboring instance pairs for a given input spatial
data set. The neighborhood transactions are generated by grouping the neighboring
instances per instance. Then, a prefix-tree per feature is built with the lexicographic
neighborhood transactions. The set of SNCCs is generated based on the prefix-trees.

In Phase 2, the set of CNCCs is filtered by combining the SNCCs. The UPI of
each candidate in CNCC is computed. In this phase, if candidates in SNCC cannot be
combined, their smaller size covered sub-SCPs are generated. The combining step
starts from the largest size of SNCC.

The third phase is to calculate the true PIs of candidates in CNCC. First, the star
instances of a candidate are found by scanning neighborhood transactions. Then, the
clique instances can be filtered from the star instances by examining a clique
relationship among other instances, except for the first instance of the star instance.
Next, the true PIs can be calculated based on the clique instances of candidates. For a
candidate c, if PI(c) ¼ UPI(c), then the candidate can be moved from CNCC to the
non-covered prevalent SCP set Ω. However, if PI(c) 6¼ UPI(c), we have to do some
further work as shown in Algorithm 6.2.

6.5.3 The Correctness Analysis

Although Algorithm 6.2 seems simple, it can completely eliminate redundancy and
get the correct non-covered prevalent SCP set Ω, i.e., Algorithm 6.2 works. The
reasons are as follows:

1. A co-location instance must be a star neighborhood instance, and it corresponds
to a feature neighborhood transaction in Algorithm 6.2.

2. According to the concept of δ-covered, for a SCP c, if the all instances of one
feature in T(c) are δ-covered by its super-SCP, c is δ-covered. So we can
introduce the SNCC and CNCC in Algorithm 6.2.

3. For the sub-SCPs δ-covered by a set of super-SCPs, because the generation of
SNCC is based on the prefix-tree of the reference feature, if the co-location
instances of the reference feature are δ-covered by its super-SCPs, then it must
not appear in the SNCC. That is why we have Step 22 in Algorithm 6.2.

4. When PI(c) 6¼ UPI(c), Step 23 generates (l-1)-size sub-SCPs covered by c, and
Step 26 checks whether c is δ-covered by its super-SCPs or not.
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6.5.4 The Time Complexity Analysis

Algorithm 6.2 has three main parts: generating SNCC (Steps 1–5), filtering CNCC
(Steps 6–13), and calculating the true PIs (Steps 14–29). The complexity analysis of
the three parts is shown as follows.

Generating SNCC: In order to generate SNCC, RRNull first generates NT and
FNT (Steps 1–2), and then builds the prefix-trees for each feature (Steps 3–4).
Finally, SNCC is generated from the prefix-trees (Step 5).

1. Generating NT and FNT: A grid-based method is used to calculate the neighbor-
hood relationships. The whole space is divided into grids with area d*d (d is the
spatial neighbor distance threshold), such that every instance in a certain grid g is
only compared with the instances located in 4 grids around g (east, southeast,
south, and southwest). FNT is generated during the generation of NT, and a
neighborhood relationship will be added to both NT and FNT, so that the
computational complexity of generating NT and FNT is about:

O n2 � d2

A

� �
d2

A � 1
� �

, where d is the distance threshold, n is the number of

instances, and A is the area of the whole space.
2. Building prefix-trees: If the number of features is m, m prefix-trees are built based

on FNT. We note that the upper value of the number of FNT is n (n is the number
of instances). Thus, to build m prefix-trees based on the FNT, the computational
complexity is about: O(sizeavg(FNT)*|FNT|), where sizeavg(FNT) is the average
size of the transactions in FNT, and |FNT| � n.

3. Generating SNCC: SNCCs are always found from the leaf nodes in RRnull, for
example, for the first prefix-tree in Fig. 6.5(a), there are 2 leaf nodes (D: 2 and D:
1), for the leaf node D: 2, we generate an SNCC {A, B, C, D}: 2/4, remove D:
2 and the count value of the leaf node’s ancestors minus the leaf node’s count
value of 2. Then every node with a count value 0 is removed from the prefix-tree
(covered). Thus, an SNCC {A, B, C, D}: 2/4 is generated and the node C: 2 is
removed. The process will continue until the prefix-tree is empty. The method
performs well and the computational complexity in the worst case where only the
leaf node is removed when getting a SNCC is:O((sizeavg(FNT))

2 * n0), where n0 is
the number of branches of the all prefix-trees (n0 < n).

In summary, the computational complexity of generating SNCC is about:

O n2 � d
2

A

� �
þ O sizeavg FNTð Þ� �2 � n� �

:

Filtering CNCC: In the process of generating SNCC, the participation ratio of
each SNCC is stored in a hash set h wherein the key of h is the SNCC, and the value
is the set of participation indexes whose first value is the minimum value of the
whole set. For example, if {A, B, C, D} is generated from the first prefix-tree in
Fig. 6.5(a), its participation ratio will be added to h as [key: {A, B, C, D}, value: {2/
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4, 2/4}]. If the participation ratio of {A, B, C, D} calculated from the second prefix-
tree in Fig. 6.5(a) is 2/5, it will be added to h as [key: {A, B, C, D}, value: {2/5, 2/4,
2/5}]. After the process of generating SNCC, h is used to filter CNCC. If the number
of participation ratios of one candidate c is less than the size of c, c will be pruned.
Otherwise, the UPI of c can be quickly obtained from the first element of the value
attribute of c in h, and then c is regarded as a CNCC. The main cost of this process is
the traverse of h, so the computational complexity of this part is about: O(|SNCC|).

Calculating the true PIs: To calculate the true PI of an SCP c, the co-location
instance T(c) of c is needed. For each candidate c in CNCC, based on NT, a joinless
approach is used to generate T(c). The computational complexity is about:O(|CNCC|
*(sizeavg(CNCC))

2* lavg(CNCC|instance)), where sizeavg(CNCC) is the average size of
the candidates in CNCC (the average size of candidates in CNCC is close to the
average size of transactions in FNT), and lavg(CNCC|instance) is the average count of
the co-location instances of candidates in CNCC, and that in general
(lavg(CNCC|instance) > n).

Combining the above analysis of the three parts in RRNull, the final computa-

tional complexity of RRNull is about: O n2 � d2

A

� �
+ O((sizeavg(FNT))

2 � n) + O(|

SNCC| ) + O(|CNCC|�(sizeavg(CNCC))2 � lavg(CNCC|instance)) � O(|CNCC|�
(sizeavg(CNCC))

2 � lavg(CNCC|instance)).
Obviously, the computational complexity of RRnull is dominated by the

third part.

6.5.5 Comparative Analysis

The running time of RRnull is much faster than that of closed prevalent co-location
mining. The comparative analysis is as follows.

If an SCP is covered by its super-SCPs, it might be eliminated in the generating
star non-covered candidates’ phase, in the combining phase, or in the phase of
calculating true PIs. If the eliminated SCPs were equally distributed in the three
phases, about 2/3 of the co-location instances of the covered SCPs are no longer
calculated. Indeed, more covered SCPs may be eliminated in advance. For the data
set in Fig. 6.2(a), all covered SCPs have been eliminated before the combining step:

1. The non-covered condition is stronger than the closed condition, so the candidate
set generated in Algorithm 6.2 must be smaller than that in closed prevalent
co-location mining.

2. The size of the covered SCPs is smaller than that of their super-SCPs. We note
that the smaller the size of SCPs, the larger the number of co-location instances.

3. When there are plenty of star co-location instances that are not true co-location
instances, the work of generating and checking their sub-SCPs is time consum-
ing. However, the corresponding problem also appears in closed prevalent
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co-location mining. Therefore, in this case the running time of Algorithm 6.2 is
still faster than that of the closed prevalent co-location mining.

6.6 Experimental Results

In this section, we design sets of experiments to test the performance of the proposed
algorithms. We use three real data sets and a series of synthetic data sets in our
experiments. The proposed algorithms are implemented in Visual C#. All of our
experiments are performed on an Intel PC running Windows 7 with Intel Core i5
3337U @ 1.80GHz CPU and 2GB-memory.

6.6.1 On the Three Real Data Sets

This section examines the performance of the proposed algorithms on the three real
data sets. The first tests the redundancy reduction power, and the second measures
the computational performance of the proposed algorithms. A summary of the
selected three real data sets is presented in Table 6.1. Real-1 is from the rare plant
data of the Three Parallel Rivers of Yunnan Protected Areas whose instances form a
zonal distribution as shown in Fig. 6.6(a). Real-2 is a spatial distribution data set of
urban elements whose instances’ distribution is both even and dense as shown in
Fig. 6.6(b). Real-3 is a vegetation distribution data set of the Three Parallel Rivers of
Yunnan Protected Areas, which has the fewest features but the most instances, its
instance distribution being various clusters as shown in Fig. 6.6(c).

1. The Power of Redundancy Reduction
For each real data set, we vary the values of parameters M (the minimum PI

threshold), d (the spatial neighbor distance threshold), and δ (the coverage
measure threshold), respectively, to verify the redundancy reduction power of
our method with respect to the original closed prevalent co-locations (|

Table 6.1 A summary of the three real data sets

Name
N. of
features

N. of
instances (Max, min)

The distribution area of spatial instances
(m2)

Real-
1

32 335 (63, 3) 80,000 	 130,000

Real-
2

20 377,834 (60,000,
347)

50,000 	 80,000

Real-
3

15 501,046 (55,646,
8706)

110,000 	 160,000

(Max, Min): are respectively the maximum number and the minimum number of the feature’s
instances in the data sets
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Sclosed| � |Ω|)/|Sclosed|, where Sclosed is the set of closed prevalent co-locations and
Ω is the non-covered prevalent SCP set produced by Algorithm 6.1 or Algorithm
6.2. The experimental results are shown in Fig. 6.7(a) to Fig. 6.7(f).

We have the following observations: First, RRclosed and RRnull generate the
same results on all real data sets; second, on all three real data sets, the redun-
dancy reduction power is between 10% and 85%, the mean value being about
56%. On the Real-2 data set, the effect of redundancy reduction is the best, and its
mean redundancy reduction power reaches 65%. This is because our redundancy
reduction method is based on utilizing distributed information about co-location
instances, and Real-2 is an evenly distributed data set; third, the redundancy
reduction power becomes large when M is low or d is large. That is expected
because there are more closed prevalent co-locations mined under lower M or
larger d; fourth, as we expected, the redundancy reduction power increases when
the value of δ increases. But the difference is not very big. This result illustrates
that the value of δ is not the main factor that affects the redundancy reduction
power. In the experiments, we set δ as 0, 0.1, 0.2, and 0.3, respectively.

The comparisons of the redundancy reduction power over different sizes of
patterns are shown in Fig. 6.8(a) to Fig. 6.8(c). As can be seen, the longest closed
prevalent co-locations are kept because no patterns can contain them, while for
each size from maxlen-1, the number of kept SCPs is less, or even much less, than
the number of closed prevalent co-locations. Usually, SCPs are reduced mostly in
the middle sizes, e.g., SCPs with size 4 and size 5 in Fig. 6.8(b) are reduced
the most.

Fig. 6.6 Spatial distribution of the three real data sets, where (a) is for Real-1; (b) is for Real-2;
(c) is for Real-3
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2. The Running Time
The corresponding running time of the three methods, RRclosed, RRnull, and

Closed which is a closed prevalent co-location mining algorithm presented in
Yoo and Bow (2011a) is shown from Fig. 6.9(a) to Fig. 6.9(f). The running time
of RRclosed includes the Closed procedure, which we have optimized.

Fig. 6.7 The power of redundancy reduction over the three real data sets, where (a) with varying
minimum PI threshold M on Real-1; (b) with varying minimum PI threshold M on Real-2; (c) with
varying minimum PI threshold M on Real-3; (d) with varying neighbor distance threshold d on
Real-1; (e) with varying neighbor distance threshold d on Real-2; (f) with varying neighbor
distance threshold d on Real-3
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The results show that RRclosed is much slower than RRnull, especially when
M is low and d large. Comparing RRnull and Closed, we observe that RRnull runs
much better than Closed especially on dense data sets (a larger d makes a denser
data set). This is because RRnull examines the δ-covered co-locations, while
Closed examines the co-locations’ closeness, and the former condition is stronger
than the latter’s. We further observe that RRnull runs two times faster than Closed
in Real-2 when M ¼ 0.3 in Fig. 6.9(b), or when d ¼ 3000 m and 4000 m in
Fig. 6.9(e), and three times faster in Real-2 whenM ¼ 0.1 in Fig. 6.9(b), or when
d¼ 5000 m in Fig. 6.9(e). Because RRnull avoids identifying many candidates, it
also saves much space. Finally, from the running times of RRclosed and Closed
which are almost identical, we can verify that Algorithm 6.1 is efficient for
redundancy reduction.

6.6.2 On the Synthetic Data Sets

This section examines the scalability of the RRnull and the RRclosed with the
varying numbers of spatial instances, numbers of spatial features, neighbor distance
thresholds, prevalence thresholds, and coverage measure thresholds.
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Fig. 6.8 Comparison of the redundancy reduction power over different sizes of patterns, where
(a) on Real-1; (b) on Real-2; (c) on Real-3
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Synthetic data sets were generated using a spatial data generator similar to Huang
et al. (2004) and Yoo and Shekhar (2006). Table 6.2 describes the parameters used
for the data generation in the related experiments. First, the distribution area of
spatial instances was determined with D*D. The whole area was divided into grids

Fig. 6.9 Running time of Closed, RRclosed, and RRnull over three real data sets, where (a) with
varying minimum PI threshold M on Real-1; (b) with varying minimum PI threshold M on Real-2;
(c) with varying minimum PI threshold M on Real-3; (d) with varying neighbor distance thresh-
old d on Real-1; (e) with varying neighbor distance threshold d on Real-2; (f) with varying neighbor
distance threshold d on Real-3
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with d*d where d is the spatial neighbor distance threshold. Then, we generated
P initial core patterns whose average size was Q. The feature types of each core
pattern were randomly chosen from F features. An average of I instances per core
pattern was generated. The total number of instances was around S. Finally, the
co-location instances for each initial pattern were distributed. To locate a co-location
instance, we first randomly chose a grid, and all points of the instance were then
randomly located within the chosen grid.

As shown in Fig. 6.10(a) to Fig. 6.10(e), the RRnull algorithm shows scalability
to large dense sets, at lower M, larger d and lower δ, and it performs better than
RRclosed in all the experiments. This is because RRclosed considers feature sets
having “possible clique relationships” as candidates, while RRnull takes
“non-covered + possible clique relationships” as candidates. When the number of
spatial instances is 500,000 as in Fig. 6.10(a), RRnull runs almost five times faster
than RRclosed. We compare the number of closed prevalent co-locations, the
number of RRnull candidates, and the number of non-covered co-locations over
different sizes in Fig. 6.11. From the figure, we can see that the number of RRnull
candidates is much lower than that of closed prevalent co-locations. Also, we can see
that with the size of candidates growing, the number of RRnull candidates gets closer
and closer to the final result. Clearly, checking a longer pattern costs much more time
than checking a shorter one.

In addition, we notice that the trend in Fig. 6.10(b) does not increase progres-
sively as the number of features grows. This is because we have fixed the total
number of instances, so the number of instances for each feature reduces succes-
sively when the number of features grows. When the number of features exceeds
40, the number of co-location instances and the number of candidates decreases
sharply.

We have further investigated the reason for speed increase of the RRnull algo-
rithm. Table 6.3 compares the numbers of the generated candidates by RRnull and

Table 6.2 Parameters and their values in experiments

Parameter Definition

Experiment figures

F.6.10
(a)

F.6.10
(b)

F.6.10
(c)

F.6.10
(d)

F6.10
(e)

D Spatial area (D 	 D) 10,000 10,000 10,000 10,000 10,000

P Number of ♀co-locations 20 20 20 20 20

Q Average size of ♀co-locations 5 5 5 5 5

I Average number of ♀co-loca-
tion instances

S/100 2000 2000 2000 2000

S Number of instances * 200,000 200,000 200,000 200,000

F Number of features 20 * 20 20 20

d Spatial neighbor distance
threshold

1000 1000 * 1000 1000

M Minimum PI threshold 0.2 0.2 0.2 * 0.2

δ Measure of coverage 0.2 0.2 0.2 0.2 *

♀: initial core co-location, *: variable values
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Fig. 6.10 Scalability analysis on the synthetic data sets, where (a) number of instances; (b) number
of features; (c) neighbor distance threshold d; (d) minimum PI threshold M; (e) measure of
coverage δ
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Closed at several special places found in Fig. 6.10. We can see that RRnull identifies
about 50% of the false candidates before calculating their true co-location instances.

6.7 Related Work

In Sect. 6.2, we have discussed the connection of our work with previous prevalent
SCP mining, with maximal prevalent SCP mining and with closed prevalent SCP
mining. A closely related work is the top-k closed SCP mining problem studied in
Yoo and Bow (2011a), where the criterion of the top-k SCPs is to provide best
prevalence estimation of those SCPs that are closed and not selected. This paper’s
approach is more sophisticated since the SCPs reduced by our method are δ-covered
by their super-SCPs with respect to their distributed information about the
co-location instances.

The motivation for our work is the same as that in papers (Xin et al., 2005, 2006;
Yan et al., 2005; Mielikäinen &Mannila, 2003) but now our redundant SCP concept
is based on spatial distribution information of co-location instances, dissimilar to the
techniques used in transaction data sets. Further, our proposed new algorithms can
reduce the size of the original collection of closed SCPs by about 50%.

Our work shares some common interests with the work in papers (Sengstock
et al., 2012; Qian et al., 2014; Mohan et al., 2011; Celik et al., 2007; Barua & Sander,
2014) because they all take spatial distribution of co-location instances into
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Fig. 6.11 Further analysis of the 500,000 instances in Fig. 6.10(a)

Table 6.3 Comparison of the number of candidates generated by RRnull and Closed

N. of
candidates

|S| ¼ 500,000 in
Fig. 6.10(a)

|F| ¼ 30 in
Fig. 6.10(b)

d ¼ 8000 in
Fig. 6.10(c)

M ¼ 0.1 in
Fig. 6.10(d)

δ ¼ 0 in
Fig. 6.10(e)

RRnull 2039 3201 2573 1236 1319

Closed 5285 5396 5538 2651 2944
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consideration. However, our work is totally different from these works, in which the
spatial instance distribution information is integrated into prevalence metrics or
neighborhood distance measures. We did not change the classical prevalence metrics
expressed in papers (Verhein & Al-Naymat, 2007). What we have studied is the
relationship between SCPs by introducing the δ-covered concept based on the spatial
distribution of co-location instances. Our purpose is to discover more succinct
compression of the non-redundant SCP sets.

Recently domain-driven pattern mining has been attracting more researchers.
Many efforts (Wang et al., 2013a; Wang et al., 2016b; Wang et al., 2017a; Ouyang
et al., 2017; Lu et al., 2017; Wang & Wang, 2017) have been devoted into prevalent
SCP mining, which have extended the prevalent SCP mining problem. We expect
that the study of domain-driven prevalent SCP redundancy reduction will also prove
to be significant.

6.8 Chapter Summary

This chapter discussed the non-redundant prevalent co-location pattern mining
problem by applying distribution information from co-location instances. It is
worth mentioning that the proposed method not only solves the redundancy reduc-
tion problem but also provides high efficiency.

It is worth mentioning that this chapter and Chap. 5 are based on co-location
instance information, but Chap. 5 focuses on the PI value of SCPs, and the mining
results need to be able to derive all prevalent SCPs and their PI values. Whilst this
chapter focuses on mining non-redundant SCPs, that is, in terms of co-location
instance distribution, the results of this chapter seek a minimum set of prevalent
SCPs that can cover all co-location instances of prevalent SCPs.

In the next chapter, we will discuss to mine high-quality co-location patterns (call
Dominant Spatial Co-location Patterns (Dominant SCPs)) by combining the preva-
lence and completeness of co-location patterns.
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Chapter 7
Dominant Spatial Co-location Patterns

7.1 Introduction

It may well be that users are not only interested in identifying the prevalence of a
feature set, but also its completeness, namely, the portion of co-location instances
that a pattern occupies in their neighborhood. Combining the prevalence and com-
pleteness of co-location patterns, we can provide users with a set of higher quality
co-location patterns called dominant spatial Cc-location patterns (Dominant SCPs).
In this chapter, we focus on mining dominant SCPs, and so make the following
contributions to the general field of spatial co-location mining:

1. A new relationship, called a connected neighbor relationship, is presented to
divide the instances of co-location pattern into non-overlapping neighborhoods.
The definitions of spatial occupancy ratio and spatial occupancy index are then
proposed as new metrics to measure the completeness of co-location patterns.

2. The dominant SCP mining problem is formulated by combining prevalence and
completeness metrics, and a weight parameter between occupancy and preva-
lence is provided to allow users to obtain their specific mining results according to
different preferences. An algorithm called DSCPMA (dominant spatial
co-location pattern mining algorithm) is then developed to solve the dominant
SCP mining problem.

3. For improving the efficiency of DSCPMA, the properties of the upper bound of
spatial occupancy for dominant SCPs are explored. Furthermore, a novel data
structure, a co-location neighborhood table, is designed to store instances and a
series of pruning strategies is developed to help reduce the search space.

4. The efficiency and effectiveness of the new algorithms are evaluated on a series of
synthetic data sets and three real data sets. Specifically, the effect of different
parameters supplied to the proposed algorithms and the proposed pruning strat-
egies are examined by varying parameter settings on several synthetic data sets
with different data densities and data scales. The algorithm’s scalability is then
explored by increasing the number of features and instances, respectively.
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L. Wang et al., Preference-based Spatial Co-location Pattern Mining, Big Data
Management, https://doi.org/10.1007/978-981-16-7566-9_7

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7566-9_7&domain=pdf
https://doi.org/10.1007/978-981-16-7566-9_7#DOI


Experiments on three real-world data sets demonstrate the effectiveness of
DSCPMA, and the practical significance of dominant SCP mining is discussed
in two real-world applications.

Figure 7.1 presents the organization of this chapter. Section 7.2 discusses the
reasons for developing dominant SCP mining. Section 7.3 give an overview of the
related work on SCP mining and occupancy-based pattern recommendations.
Section 7.4 presents the formulation of the dominant SCP mining problem. The
details of DSCPMA for dominant SCP mining, especially on how to calculate the
upper bounds on occupancy, are discussed in Sect. 7.5. The experimental evaluation
is discussed in Sect. 7.6, and Sect. 7.7 ends this chapter with some concluding
remarks.

7.2 Why Dominant SCPs Are Useful to Mine

Spatial co-location pattern (SCP) mining aims to find the groups of spatial features
where their instances are located together, prevailing in the same neighborhoods
(Shekhar & Huang, 2001). As a critical component of spatial association rule mining
(Soltani & Akbarzadeh, 2014; Wang et al., 2005), the idea of SCP mining originates

Section 7.6Experimental study

Section 7.3

Section 7.1Introduction

The formulation of the Dominant SCP mining 

Section 7.2Why Dominant SCPs are useful to mine

Related work

Proposed algorithm for mining dominant SCPs

Section 7.4

Section 7.7Chapter Summary

Section 7.5

Fig. 7.1 The organization of this chapter

168 7 Dominant Spatial Co-location Patterns



from Tobler’s First Law: “Everything is related to everything else, but near things
are more related to each other.” An example in a real geographic space would be that
the plant Matsutakes usually grows under the plant Abies Georgei Orr, giving rise to
a co-location pattern {Matsutake, Abies Georgei Orr}, which may be obvious to one
botanist, but not to all. SCP mining techniques have been used to discover implicit
but interesting knowledge hidden in spatial data, as “hidden information” can
revealed, extracted from the complex distribution of spatial objects. Extracting
correlated spatial features has been used extensively in domains such as ecology
(Shekhar & Huang, 2001; Huang et al., 2004), public health and service (Li et al.
2016; Yao et al., 2017; Vaezpour et al., 2016), decision-making (Zhou & Wang,
2012), location-based recommendations (Yu, 2016), etc.

In general, SCP mining process requires collecting the instance groups located in
the same neighborhood and to which belong a specific group of features (i.e.,
co-location instance). As in previous chapters, the prevalence of this group of
features is evaluated by its participation ratio (PR) and its participation index
(PI) (the definitions of PR and PI are recalled in Sect. 7.4). For example, Fig. 7.2
(a) shows a simple distribution data set, where instances of six spatial features, A,
B, C, D, E and F, are denoted by a vertex and marked by the feature type and an
instance ID value (e.g., A.1). The edges among the instances represent neighbor
relationships under a neighbor relationship R. Figure 7.2(b) lists the co-location
instances, PRs and PI of {A, B, C} in the data set of Fig. 7.2(a). Setting the
prevalence threshold to 0.3, for instance, gives {A, B, C} as a prevalent SCP.

The prevalence measurement perfectly reflects the strength of the co-existence of
group features in a geo-space. However, a prevalence-based mining process fails to
capture the completeness information of co-location instances. As shown in Fig. 7.2
(a), there are some non-pattern instances in each neighborhood of the co-location
instance {A, B, C} (the green circular area) such as E1, D1, D2, E4, etc. Because a
prevalence-based SCP mining identifies only the neighbor relationships between
feature instances of the pattern, the co-location instance of {A, B, C} fails to provide

A B C
A.1 B.1 C.1

A.2 B.1 C.2

A.2 B.2 C.2

A.3 B.3 C.3

A.5 B.4 C.5

PR(A,{A,B,C})=4/6

PR(B,{A,B,C})= 5/6

PR(C,{A,B,C})=4/6

PI ({A,B,C})=4/6

(a) The sample distribution dataset       (b) The co-location instances

Fig. 7.2 An explanatory example, where (a) the sample distribution dataset; (b) the co-location
instances
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complete instance information in the neighborhood formed by its co-located
instances. In some real applications of co-location mining, users are not only
interested in the prevalence of a group of co-location patterns, but also in the
completeness, namely, the portion of co-location instances of pattern occupied in
their neighborhood. To indicate the significance of considering both prevalence and
completeness in the co-location pattern mining, we shall now describe two applica-
tions which require information about the completeness of patterns.

The first application which requires information about the completeness of
patterns is that of plant diversity research. In this area, biologists require that a
group of features (a pattern) is sufficiently prevalent to ensure the co-existence
strength of this pattern, meanwhile the co-location instances of the pattern should
occupy a portion as large as possible in their located neighborhood so that this
pattern can reflect feature types in their located areas as completely as possible to
ensure the biologists will not miss diversity information from this pattern. Further-
more, according to Tobler’s first law, if spatial objects in a neighborhood are
correlated, the instances of a co-location pattern will probably be affected by other
instances, located in the same neighborhood but which do not belong to the pattern.
Though biologists can frequently obtain groups of plant species co-located in
different neighborhoods by the standard prevalence-based co-location mining tech-
niques, they still need completeness information to determine whether the associa-
tion among these species is limited to only these groups, or is also affected by other
species.

The second application relates to urban facility planning, where city planners try
to manipulate public facilities in urban areas to include the most common facility
types, as well as a variety of facilities to benefit residents’ lives. A prevalence metrics
can support the universality of a group of facility types, but there is a need for a new
measurement to reflect the completeness of this group of facilities. Moreover, due to
the high-density distribution and strong autocorrelation of urban POI data,
prevalence-based SCP mining techniques are likely to give mined results which
may have high prevalence but no valid correlation among pattern features.

To cope with situations like the above, we introduce a new spatial occupancy
metrics, defined later, which was first proposed in the paper by Tang et al. (2012).
Combining the prevalence and completeness of a co-location pattern, we provide
users with a set of higher quality co-location patterns called Dominant SCPs.
Compared with the traditional SCPs, these types of patterns can provide users with
considerably more comprehensive information.

Conducting dominant SCPs mining is challenging. Firstly, in a transaction data
mining task, the completeness of a frequent pattern is generally measured by the ratio
the pattern occupies to its supporting transactions. However, due to the continuity of
space, the same spatial instance quite often participates in different co-location
instances, possibly causing the neighborhoods formed by the co-location instances
of a pattern to overlap each other. As shown in Fig. 7.2(a), for co-location pattern
{A, B, C}, the neighborhoods of co-location instances: {A.1, B.1, C.1}, {A.2, B.1,
C.2}, and {A.2, B.2, C.2} overlap each other. To avoid repeated calculations leading
to erroneous results, we need to reduce the overlaps of the neighborhoods formed by
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the instances of a pattern, a first challenge. Furthermore, the measure of spatial
occupancy satisfies neither monotony nor anti-monotony, so a second challenge is to
combine the participation index and the measure of spatial occupancy to efficiently
mine the dominant SCPs.

7.3 Related Work

Spatial co-location patterns represent frequent co-occurrences of a subset of Boolean
spatial features (Shekhar & Huang, 2001). Although Boolean spatial features can be
thought of as item types, there is no concept of transactions in spatial co-location
pattern mining due to the continuity of the underlying space. Huang et al. (2004)
proposed a notion of user-specified neighborhoods in place of transactions to specify
groups of items, and also defined a prevalence measure which possesses the desir-
able anti-monotone property, the participation index, to measure the co-occurrence
frequency of a spatial feature set; meanwhile an Apriori-like algorithm called join-
base algorithm was developed to discover all prevalent SCPs. After that, in view of
the large number of instance-joining operations performed by the join-base algo-
rithm will reduce its performance on dense data sets. A series of methods were
developed to improve the efficiency of join-based algorithm (Yoo et al., 2004; Yoo
& Shekhar, 2006; Wang et al., 2008; Yao et al., 2016; Andrzejewski & Boinski,
2018; Bao & Wang, 2019). However, the effectiveness of SCP mining was limited
by the large number of mined results, which users found hard to understand or to
apply in real applications. Further studies on improving the effectiveness of SCP
mining mainly included data-driven methods and domain-driven methods. Data-
driven methods focus on mining co-location pattern on various different data types
such as co-location mining on uncertain data (Wang et al., 2013a), fuzzy objects
(Ouyang et al., 2017; Wang et al., 2019c, 2019e), extended objects (Bembenik et al.,
2017), spatio-temporal data (Akbari et al., 2015; Huang et al., 2008; Wang et al.,
2020), and co-location condensed representation (Wang et al., 2018a). The
co-location condensed representation included lossy condensation using maximal
co-location mining methods (Wang et al., 2009b; Yao et al., 2016; Bao & Wang,
2019; Mohan et al., 2011) and lossless condensation used closed co-location mining
methods (Wang et al., 2018b; Yoo & Bow, 2011a). Domain-driven co-location
pattern mining became widely studied due to new and interesting measures and
domain constraints (Flouvat et al., 2015) which could fulfil the need of various
domains such as mining co-location patterns with high utility (Wang et al., 2017a),
co-location patterns with dominant features (Fang et al., 2017), regional co-location
patterns (Mohan et al., 2011; Qian et al., 2014), dynamic co-location patterns
(Hu et al., 2020), co-location patterns with specific relationships (Lu et al., 2017,
2018), etc.

The concept of occupancy was proposed by Tang et al. (2012) as an interesting
new measure and constraint, aiming to capture the completeness of a pattern in
market-basket mining. Occupancy is applied to measure the degree to which the
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pattern occupies its supporting transactions. Then, Zhang et al. (2015) extended the
occupancy measure to sequence data for mining qualified sequence patterns. Gan
et al. (2019) introduced the occupancy concept into high utility pattern mining and
proposed a measure called utility occupancy to measure the contribution of a pattern
within a transaction. Shen et al. (2016) combined user preferences in terms of
frequency, utility, and occupancy to mine high utility occupancy patterns. As each
object may have different importance in these real-world applications, Zhang et al.
(2017) incorporated weights into occupancy and produced highly qualified patterns
with both frequency and weight occupancy. Compared to traditional maximal
patterns which used an absolute size of a pattern as a constraint, an occupancy
measure can be seen as more flexible, being the relative size of a pattern to its
supporting transactions. Occupancy measurement was successfully used in many
real applications which require completeness information concerning mined results,
such as web page-area recommendations (Tang et al., 2012), web print task recom-
mendations (Li et al., 2013, 2014), travel route recommendations (Zhang et al.,
2015), goods match recommendations (Zhang et al., 2017), etc.

The task of dominant spatial co-location pattern mining looks similar to the
occupancy-based itemset mining problem but in fact is very different because of
the lack of a transaction concept in spatial data sets. Firstly, the measure of
occupancy in spatial data is different from that of frequent itemset mining work.
The traditional occupancy measure in frequent itemset mining work is based on a
transaction concept where the transactions are independent of each other. However,
instances of spatial features are inherently embedded in continuous space and share a
variety of spatial relationships (e.g., neighbor relationship) with each other. Thus, we
have developed a new spatial occupancy measure for spatial co-location pattern
mining, detailed later. Secondly, the goal of dominant SCP mining is different from
that of transaction data mining. Traditional occupancy-based transaction data mining
sets out to find patterns which are frequent and occupy a large portion of its
supporting transactions. However, dominant SCP mining aims to find a set of
co-location patterns which are complete in their neighborhoods as well as truly
correlated among features. Thirdly, the technique for mining dominant SCPs differs
from that of transaction data mining. The dominant SCP mining framework is based
on neighborhoods in space rather than on transactions in market-basket data, so a
new algorithm and a new data structure needed to be developed for dominant SCP
mining. Further, the spatial occupancy metric does not satisfy monotonic or anti-
monotonic properties, so new pruning methods need be explored to improve the
efficiency of dominant SCP mining.

7.4 Preliminaries and Problem Formulation

In this section, we first give some preliminaries relating to the traditional SCP mining
framework, and we then formally propose the connected neighbor relationship,
giving formal definitions of spatial occupancy ratio and index. We can then measure
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the completeness of a co-location pattern and so, finally, we formulate the dominant
SCP mining problem which includes prevalence and occupancy. The main notations
used in this chapter are listed in Table 7.1.

7.4.1 Preliminaries

Given a set of spatial features F ¼ {f1, f2 . . ., fn}, and a set of their spatial instances
S ¼ S1 [ S2 [ . . . [ Sn, where Si (1 � i � n) is a set of instances of feature fi, and a
reflexive and symmetric neighbor relationship R over S, where a Euclidean metric is
used for R with a distance threshold d, two spatial instances are neighbors if the
Euclidean distance between them is not greater than d. A k-size co-location pattern
ck ¼ {f1, f2 . . ., fk} is a subset of F (ck ⊆ F), whose instances frequently form
cliques under R. A set of instances which includes the instances of all features in ck
and forms a clique is called a co-location instance or row instance of ck. A collection
of all co-location instances T(ck) is called a table instance of ck.

For example, as shown in Fig. 7.2(a), for a co-location pattern {A, B, C}, {A.1,
B.1, C.1} is a co-location instance, and the table instance of {A, B, C} is shown in
Fig. 7.2(b). It is worth mentioning that a single feature can be seen as a 1-size
co-location pattern and that its table instance is the set of all instances of this feature.

Table 7.1 List of notations frequently used throughout the chapter

Variable Explanation

F ¼ {f1, f2 . . ., fn} A set of n spatial features

ck ¼ {f1, f2 . . ., fk} A k-size co-location pattern

oi (2S) A spatial instance in spatial instance set S

li (2 T(ck)) A co-location instance in table instance T(ck)

tpi A co-location instance class of ck
ipi A instance class of ck
pni A neighborhood set of instance class ipi,

IN(oi) A set of neighborhood of oi
T(ck) A set of co-location instance of ck
RN(l ) A set of co-location instance neighbor of l

TN (ck) Table instance neighbor set of ck:

PR(ck, fi) Participation ratio of feature fi in ck
PI(ck) Participation index of ck
TP(ck) A set of co-location instance classes of ck
CIP(ck) A set of instance classes of ck
PN(ck) A neighborhood set of ck
OR(ck, ipi) Spatial occupancy ratio of instance class ipi in ck
OI(ck) Spatial occupancy index of ck
Quality(ck) Quality value of ck
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The prevalence of a k-size co-location ck is measured by its participation ratio and its
participation index as follows.

Definition 7.1 (Participation ratio and Participation index) Given a co-location
pattern ck ¼ {f1, f2 . . ., fk}, and a spatial instance set S, the Participation ratio for
feature type fi in ck is the fraction of instances of fi that participate in T(ck). The
participation ratio is defined as: PR ck , f ið Þ ¼j π f i T ckð Þð Þ j = j T f if gð Þ j, where π is
the relational projection operation. The participation index PI(ck) of ck is the
minimum participation ratio PR(ck, fi) of all features fi in ck: PI ckð Þ ¼
min k

i¼1 PR ck , f ið Þð Þ f 2 ckð Þ.
Definition 7.2 (Prevalent co-location pattern) Given a user-specified prevalence
threshold min_prev, c is prevalent if PI (c) � min_prev.

For example, as shown in Fig. 7.2(b), PI ({A, B, C}) ¼ 4/6, and supposing
min_prev ¼ 0.3, then {A, B, C} is a prevalent co-location pattern.

Lemma 7.1 Anti-monotone property. Following Shekhar and Huang (2001) the
participation ratio and participation index are monotonically non-increasing as the
size of co-locations increases.

7.4.2 Definitions

The definition of participation index is used to capture the prevalence of co-location
patterns. In this subsection, we firstly propose the concepts of a connected neighbor
relationship and a connected neighborhood to divide the instances of a co-location
pattern into non-overlapping neighborhood sets, and then give suitable definitions of
spatial occupancy and dominant SCPs.

Definition 7.3 (Instance neighborhood) Given a set of spatial features F ¼ {f1, f2
. . ., fn}, and a set of instances S, where oi is an instance of feature fi., the neighbor-
hood of oi is a set which is defined as:

IN oið Þ ¼ o j 2 Sjoi ¼ o j _ f i 6¼ f j ^ R oi, o j

� �� �� � ð7:1Þ

where fj 2 F is feature type of oj and R is a neighbor relationship.

Definition 7.4 (Co-location Neighborhood) Given a k-size co-location pattern
ck ¼ {f1, f2, . . ., fk}, for each co-location instance (row instance) l ¼ {o1, o2, . . .,
ok} of ck, the co-location neighborhood of l is defined as the set of spatial instances:

RN lð Þ ¼ \k
i¼1IN oið Þ oi 2 lð Þ ð7:2Þ
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Correspondingly, for the table instance T(ck) ¼ {l1, l2, . . ., lh}, the table instance
neighborhood is the collection of co-location neighborhoods of ck: TN (ck)¼ {RN(l1),
RN(l2), . . ., RN(lh)}.

Example 7.1 Figure 7.2’s TN ({A, B, C}) is listed in Table 7.2.

With these definitions of co-location instance and co-location instance neighbor-
hood, it seems feasible to imitate the traditional occupancy definition and regard
each co-location instance as an item set, and the neighborhood of this co-location
instance as a supporting transaction. However, a transaction is disjoint in the sense of
not sharing instances whereas co-location instances always overlap in space because
an instance may be shared by multiple co-location instances, and so lead to duplicate
counting of instances in same locations. As shown in Fig. 7.3(a), it can be easily seen
that the co-location instances {A.1, B.1, C.1}, {A.2, B.1, C.2}, {A.2, B.2, C.2}
overlap in space. How to avoid the instance overlap but not lose any neighbor
relationship contributing to form co-location instances is a crucial task of dominant
SCP mining. To solve this problem, we develop a partitioning strategy which
replaces clique-based neighbor relationships by an equivalence relationship, so the
instance of a pattern can be partitioned into a set of equivalence classes to form
disjoint neighborhoods of co-location patterns.

Definition 7.5 (Connected neighbor relationship) Given a set of spatial instances
S, for any instances op and oq in S, if there exists at least a path {op, ov1, . . ., oq} from

Table 7.2 Table instance
neighborhoods of {A, B, C}

RN 1 A.1, B.1, C.1, D.1, E.1
Pn1 RN 2 A.2, B.1, C.2

RN 3 A.2, B.2, C.2
Pn2 RN 4 A.3, B.3, C.3, D.2
Pn3 RN 5 A.5, B.4, C.5

Fig. 7.3 Sample distribution data sets of {A, B, C}. (a) Co-location instances of {A, B, C}. (b)
Instance partition neighborhoods of {A, B, C}
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op to oq [i.e., there is a set of neighbor relationship pairs (op, ov1), (ov1, ov2), . . ., (ovm,
oq)], op and oq satisfy a connected neighbor relationship, denoted as CR (op, oq):

CR op, oq
� � , R op, ov1

� �
,R ov1, ov2ð Þ, . . . ,R ovm, oq

� �� � ð7:3Þ

For a set of spatial instances O ¼ {o1, . . ., ot} (t � 2), if every instance pair in
O are connected neighbors, O is called a Connected Neighborhood.

Theorem 7.1 The connected neighbor relationship is a logical equivalence rela-
tionship in the spatial instances, such that:

1. An instance op is a connected neighbor of op (reflexivity)
2. For instances op and oq (op, oq 2 S), CR(op, oq) , CR(oq, op) (symmetry)
3. For instances op, oq and or (op, oq, or 2 S), if they satisfy CR(op, oq) and CR(oq,

or), then CR(op, or) holds (transitivity)

Proof It is easy to verify that the first two properties are true by the concept of a
connected neighbor relationship. We prove the third statement below.

According to the definition of connected neighbor relationship, if op, oq and or
satisfy CR (op, oq), then:

CR op, oq
� � , R op, ov1

� �
,R ov1, ov2ð Þ, . . . ,R ovm, oq

� �� �

CR oq, or
� � , R oq, oh1

� �
,R oh1, oh2ð Þ, . . . ,R ohn, orð Þ� �

R op, ov1
� �

,R ov1, ov2ð Þ, . . . ,R ovm, oq
� �

,R oq, oh1
� �

,R oh1, oh2ð Þ, . . . ,R ohn, orð Þ� �
, CR op, or

� �

Thus, also considering the first two properties above, the theorem holds.

Lemma 7.2 Given a co-location table instance T(ck) ¼ {l1, l2, . . ., lh}, for any
co-location instance li ¼ {o1, o2, . . ., ok} (li 2 T(ck)), all instances in li belong to an
equivalence class under the connected neighbor relationship.

Proof Given two instances op and oq (op, oq 2 li), since the co-location instance is
formed by clique neighbor relationship, there exists {R(op, oq)}. According to
Theorem 1, it follows that R(op, oq) , CR(op, oq)), so that op and oq are connected
neighbors. Consequently, all instances of li belong to an equivalence class under the
connected neighbor relationship.

Lemma 7.3 Given a co-location table instance T(ck) ¼ {l1, l2, . . ., lh}, for two
co-location instances li and lj (li, lj 2 T(ck)), if li \ lj 6¼ ∅, then all instances of li [ lj
must belong to an equivalence class under the connected neighbor relationship.
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Proof Assume li \ lj¼ {op}, then according to Theorem 7.1, any instance in li and lj
can be connected by op. Thus, all instances in li [ lj must belong to an equivalence
class under the connected neighbor relationship.

Definition 7.6 (Co-location instance partition) Given a k-size co-location pattern
ck¼ {f1, f2,. . .,fk}, its table instance T(ck)¼ {l1, l2, . . ., lh} can be divided into a set of
equivalence classes under a connected neighbor relationship: TP(ck) ¼ {tp1,tp2, . . .,
tpm}(tpi 6¼ ∅ , tpi \ tpj ¼ ∅ , 1 � i < j � m) and is called the co-location instance
partition of ck, where tpi¼{l1, l2, . . ., lt}(tpi ⊆ T(ck), t� h) is an equivalence class of
T(ck). Correspondingly, the instance partition classes of co-location pattern are
defined as the collection: CIP(ck) ¼ {ip1, ip2, . . ., ipm}, where ipi¼ {l1 [ l2[,
⋯,[lt} is the set of distinct instances of tpi.

The instance equivalence classes of a co-location pattern ck satisfy that:

1. All instances in an equivalence class of ck are connected neighbors to each other.
2. Two instances op and oq (op 2 ipi, oq 2 ipj, i 6¼ j) which belong to different

equivalence classes of ck cannot satisfy the connected neighbor relationship.
3. Any instance of T(ck) must belong to, and only belong to, one of the instance

equivalence classes of ck.

Note that TP(ck) is the collection of row-instances, and CIP(ck) is the collection of
instances.

Example 7.2 From Table 7.2, and according to Lemmas 7.2 and 7.3, the
co-location instance partition of TP ({A, B, C}) ¼ {{l1, l2, l3}, {l4}, {l5}}, CIP
({A, B, C})¼ {{A.1, A.2, B.1, B.2, C.1, C.2}, {A.3, B.3, C.3}, {A.5, B.4, C.5}}, all
instance partitions and their neighbors of {A, B, C} are as shown in Fig. 7.3(b), and
represented by yellow circular areas. As shown in Fig. 7.3(b), we represent a
connected neighbor relation of co-location pattern {A, B, C} by solid lines.

Definition 7.7 (Instance partition neighborhood of a co-location pattern) Given
a k-size co-location pattern ck ¼ {f1, f2, . . ., fk}, the co-location partition of the
co-locaton pattern TP(ck) ¼ {tp1, tp2, . . ., tpm}, the instance partition set CIP(-
ck) ¼ {ip1, ip2, . . ., ipm}, then for an instance partition class ipi (ipi ⊆ CIP(ck)), the
neighborhood of ipi is defined as the set:

pni ¼ [
lx2tpi

RN lxð Þ ð7:4Þ

The instance partition neighborhood of a co-location pattern is defined as the
collection of neighborhoods of the instance partition class of ck: PN (ck)¼ {pn1, pn2,
. . ., pnm}.

Example 7.3 According to Example 7.2, TP({A, B, C}) ¼ {{l1, l2, l3}, {l4}, {l5}},
PN ({A, B, C})¼ {pn1, pn2, pn3}, pn1¼ RN (l1)[RN (l2)[RN (l3)¼ {A.1, A.2, B.1,
B.2, C.1, D.1, E.1}, pn2¼ {A.3, B.3, C.3, D.2}, pn3¼ {A.5, B.4, C.5}. As shown in
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Fig. 7.3(b), the areas of the co-location pattern neighborhoods of {A, B, C} are
marked by a yellow circle.

According to Definitions 7.6 and 7.7, all instances of a pattern can be assigned
into disjoint subsets under the connected neighbor relationship, so solving the
instance overlap problem under the traditional neighbor relationship. Notice that
although the instance partition classes are disjoint, their neighborhood sets are
allowed to share the same neighbor instances.

Definition 7.8 (Occupancy ratio and occupancy index) Given a spatial
co-location pattern ck, if the instance partition set of ck: CIP(ck) ¼ {ip1, ip2, . . .,
ipm}, and if the neighbor set PN(ck) ¼ {pn1, pn2, . . ., pnm}, then the spatial
occupancy ratio of ipi in CIP(ck) can be defined as follows:

OR ck , ipið Þ ¼ j ipi j
j pni j

ð7:5Þ

The spatialOccupancy Index of ck is the minimum spatial occupancy ratioOR(ck,
ipi) in all instance partition classes CIP(ck) ¼ {ip1, ip2, . . ., ipm} of ck:

OI ckð Þ ¼ min m
i¼1 OR ck , ipið Þf g ipi 2 IP ckð Þð Þ ð7:6Þ

The minimum occupancy ratio (occupancy index) is intended to capture the
worst-case of the completeness, and evaluate as accurately as possible the influence
of non-pattern features on the co-location pattern to ensure there exists true corre-
lation among the pattern features.

Example 7.4 Let c ¼ {A, B, C}, then according to Example 7.2 and Example 7.3,
OR (c,ip1) ¼ |{A.1, A.2, B.1, B.2, C.1, C.2}|/|{A.1, A.2, B.1, B.2, C.1, C.2, D.1,
E.1}| ¼ 0.75, and OI (c) ¼ min{0.75, 0.75, 1} ¼ 0.75.

According to Definition 7.8, the completeness of a co-location pattern can be
measured by counting those instances directly participating in the pattern, and
comparing the count of how many instances are left in the neighborhood of pattern.
Thus, with the definition of participation index and spatial occupancy index, we can
obtain a set of co-location patterns which are both prevalent and complete under the
threshold constraints. To suit different application domains, a quality metric is
proposed which allows users to obtain a sorted result by flexibly combining these
two factors.

Definition 7.9 (Quality) Given a co-location pattern ck, a weight parameter ω, the
quality of ck is defined as follows:

Quality ckð Þ ¼ ωPI ckð Þ þ 1� ωð ÞOI ckð Þ ð7:7Þ

Example 7.5 Suppose weight parameter ω ¼ 0.4, then the quality value of
co-location pattern {A, B, C}: Quality ({A, B, C}) ¼ 0.4*0.66 + 0.6*75 ¼ 0.65.
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7.4.3 Formal Problem Formulation

By considering both the prevalence and the completeness metrics of a co-location
pattern, we can provide a high-quality co-location patterns, the dominant SCPs. The
following is the problem formulation for mining dominant SCPs.

Definition 7.10 (Dominant spatial co-location pattern (dominant SCP)) Given a
set of spatial features F, a set of their spatial instances S, a neighbor relationship R, a
prevalence threshold min_prev (0 � min_prev � 1), a spatial occupancy threshold
min_occ (0 � min_occ � 1), then a co-location pattern ck is a dominant SCP if it
satisfies the following conditions: (1) PI(ck)� min _ prev, (2) OI(ck)� min _ occ.

The problem of dominant SCP mining (DSCPM) is to discover the complete set in
which each SCP satisfies both min_prev and min_occ conditions and to sort the
result by the quality value (Definition 7.9).

Example 7.6 Suppose min_prev ¼ 0.3, min_occ ¼ 0.3, weight parameter α ¼ 0.4,
then for co-location pattern {A, B, C} in Fig. 7.2, PI({A, B, C})¼ 0.66> min_prev,
OI({A, B, C}) ¼ 0.75 > min_occ, so {A, B, C} is a dominant SCP with quality
value 0.65.

7.4.4 Discussion of Progress

This chapter’s goal is to find a set of dominant SCPs which are not only prevalent but
also complete. As spatial data lacks an explicit transaction concept, a series of
operations has been developed for measuring the completeness of co-location
patterns, differing from the traditional definition of occupancy. These new opera-
tions transform the occupancy of the traditional transaction into one of spatial
occupancy. Firstly, we proposed an equivalence relationship called a connected
neighbor relationship to solve the instance overlap problem in co-location instances.
Then we gave the equivalence partition of co-location instances under the connected
neighbor relationship. Next, we collected the neighbors for each co-location
instances into an equivalence class. By means of these operations, we developed a
spatial occupancy ratio and an occupancy index for evaluating the completeness of a
co-location pattern. Their definitions allowed us to formulate the dominant SCPs
mining problem. Although similar to an occupancy metric measuring transaction
data, a spatial occupancy metric also does not satisfy monotonic or anti-monotonic
properties, so the next section will explore two upper bounds of spatial occupancy to
improve the efficiency of dominant SCP mining.

In addition, readers may be interested in the difference between our work and
maximal co-location pattern mining. These two works are quite different in both
mining purpose and methods. Maximal co-locations aim to find a set of long-size
prevalent co-location patterns which can infer all prevalent co-location patterns, and
use the size of co-location patterns as a measure. However, dominant SCP mining
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aims to find a set of co-location patterns which are both prevalent in the space and
complete in their located neighborhoods. We use the ratio of the number of instances
in a partition to all instances in the partition neighborhoods as a measure of
occupancy ratio, and use the minimum occupancy ratio as an occupancy index to
evaluate the completeness of a co-location pattern. Although high occupancy seems
to imply a longer size of co-location patterns, a maximal co-location pattern may still
have lower occupancy when there are a large number of neighbors in its co-location
neighborhoods. Furthermore, by considering spatial occupancy and prevalence as
measures of interest, the mined results of dominant SCPs may be more useful in real-
world applications, which we will illustrate in Sect. 7.6.

7.5 Proposed Algorithm for Mining Dominant SCPs

7.5.1 Basic Algorithm for Mining Dominant SCPs

We first develop a basic algorithm for mining dominant spatial co-location patterns
(DSCPMA).
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The workings of this algorithm can be summarized as follows:

1. Materializing the input spatial data into the instance neighborhood model we
gave in Definition 7.4 (Step 1). This process can be seen as a variant of the star
neighborhood instance model in Yoo ang Shekhar (2006).

2. Generate candidate dominant SCPs (Steps 2–4): We initialize all features to
1-size prevalent co-locations by the definition of a participation index. A k-size
(k > 1) candidate is generated from the (k � 1)-size prevalent co-location pattern
set Pk�1 (Lemma 7.1). The candidates will be pruned if any k� 1 sub-patterns are
not prevalent (Step 4).

3. Prevalence filtering (Steps 5–8): The 2-size candidate co-location instances can
be directly obtained from instance neighborhoods of the first feature instances for
each co-location instance since our neighbor relationship is symmetric. For 3 or
more size, we need to check the clique relationship between instances before we
generate the table instance (Step 6). Next we calculate the participation ratio and
participation index of candidates, and if the participation index is greater than
min_prev, we add this candidate to the k-size prevalent pattern set Pk (Steps 7–8).

4. Occupancy filtering (Steps 9–13): According to Definition 7.5, we can divide the
equivalence classes of a table instance of a candidate co-location pattern and so
obtain the corresponding instance partition set (Theorem 7.1). This process is
presented in Algorithm 7.2 which uses a recursive strategy to divide table
instances (Step 11). Then we gather the neighborhood of each instance partition
class (Step 12) to calculate the occupancy ratio and index of the candidate, and so
select dominant SCPs (Step 13).

5. Sorting dominant SCPs by quality (Steps 15–16): We can calculate the quality
value of a dominant SCP by a weight parameter, and insert this dominant SCP in
the dominant SCP set DSCP by descending order of quality value.
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7.5.2 Pruning Strategies

Algorithm 7.1 gives a straightforward solution to the dominant SCP mining prob-
lem. In this subsection, we explore two upper bounds of spatial occupancy index to
help in pruning the dominant SCPs search space, and a new data structure is
designed to improve the efficiency of dominant SCP mining with prevalence and
completeness filters.

1. Co-location Neighborhood Table
To facilitate the dominant SCP mining process and reduce the redundant

information, a new data structure called a Co-location Neighborhood Table is
designed to store the co-location instance neighbors of co-location patterns.
Based on this new data structure, we can build a mapping relationship between
features to speed up both the prevalence and the completeness calculation
processes.

Definition 7.11 (Co-location neighborhood table) Given a k-size co-location
pattern ck, a co-location neighborhood table (CNT) of co-location pattern ck is
organized by three components:

1. The table instance neighborhood (Definition 7.4) TN (ck) ¼ {RN(l1), RN(l2), . . .,
RN(lh)} with row index.

2. The feature types in TN (ck) include the pattern feature set ck ¼ {f1, f2 . . ., fk} and
the neighbor feature set of ck: NF(ck) ¼ {fk + 1, . . ., fo}.

3. The instance count of each feature participating in CNT(ck).

As shown in Fig. 7.4, the parameter k in the grids lists the co-location instances,
and those instances that are the neighbors of a co-location instance are grouped by

Fig. 7.4 Co-location neighborhood table
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their feature types and stored as an enumeration set structure, since instances that
belong to the same neighbor feature are always of size greater than size-1.

Next, we will show how this new data structure helps to facilitate both the
prevalence and completeness filtering.

2. Prevalence Filter
The CNT(ck) contains all information of those k + 1 size candidate co-location

patterns which are prefixed by ck. Thus, we can directly find all k + 1 size
candidates which are prefixed by ck by combining ck and its neighbor features
in CNT(ck), and then filter candidates by testing the participation ratio of the
neighbor feature in CNT(ck):

Pruning strategy 1 According to Lemma 7.1, given a neighbor feature set of a k-
size co-location pattern NF(ck), for any k + 1 size candidate ck+1 ¼ ck [ f ( f 2 NF), if
jπf(CNT(ck)) j / j T( f ) j � min _ prev, then the ck+1 candidate can be pruned.

To calculate the participation ratio/index of all the k + 1 size candidates without
generating their table instances, we also build a mapping relationship between the
features.

Firstly, from definitions in other literature (Wang et al., 2015a), two set informa-
tion functions can be given to describe the relationship between features and
co-location neighborhoods:

α f i : 2
TN ! 2Si , α f i TN

0ð Þ ¼ π f i RNxð ÞjRNx 2 TN 0Þ� �
TN 0 ⊆ TNð Þ ð7:8Þ

β f i
: 2Si ! 2TN , β f i

Si
0ð Þ ¼ RNxjπ f i RNxð Þ 2 Si

0Þ� �
Si

0 ⊆ Sið Þ ð7:9Þ

Based on the two information functions (7.8) and (7.9), a feature mapping
function is given as follows.

Definition 7.12 (Feature mapping function) Given a k-size prevalent co-location
ck ¼ {f1, f2 . . ., fk}, features fi and fj in CNT(ck) can be mapped as follows:

φ f i! f j
Si

0ð Þ ¼ α f j
β f i

Si
0ð Þ

� �
ð7:10Þ

For example, the instance subset of neighbor feature C in CNT({A, B}) is
πC(CNT({A, B})) ¼{C.1,C.2,C.3,C.5}, and the instances of feature A which are
located in the same row as the C instances are:

φC!A C:1, C:2, C:3, C:5f gð Þ ¼ αA βC C:1, C:2, C:3, C:5f gð Þ
¼ αA l1, l3, l4, l5, l7f gð Þ ¼ A:1, A:2, A:3, A:5f g:
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According to Definition 7.12, given a neighbor feature set of a k-size co-location
pattern NF(ck), for any k + 1 size candidate ck+1 ¼ ck [ f ( f 2 NF(ck)), then the
participation index of ck+1 can be calculated directly as:

PI ck [ fð Þ j¼ min
f j2ck

jφ f j!f π f CNT pk�1ð Þð Þ� �j=jT f j

� �� �jn o
f 2 NF ckð Þð Þ:

Based on Definition 7.12, we can prune the search space of prevalent co-location
patterns and simply calculate all those k + 1 size candidates which are prefixed by ck
from CNT(ck) directly, without generating their table instances.

3. Occupancy Filter
Although the occupancy index metric does not satisfy monotonicity or anti-

monotonicity, we can still explore the upper bound of the occupancy index metric
to reduce the search space when mining dominant SCPs.

Lemma 7.4 (Upper bound of occupancy index) Given a k-size co-location pattern
ck ¼ {f1, f2, . . ., fk}, its instance partition set CIP(ck) ¼ {ip1, ip2, . . ., ipm}, and
co-location pattern neighborhood PN(ck) ¼ {pn1, pn2, . . ., pnm}, there exists an

upper bound of OI(ck): OI ckð Þ �
Pm

i
jipijPm

i
jpnij

ipi 2 CIP ckð Þ, pni 2 PN ckð Þð Þ.

Proof We will prove by induction that for all m 2 Ζ+

(*) OI ckð Þ ¼ min m
i¼1 OR jipij

jpnij
� �n o

¼ min m
i¼1

jipij
jpnij

n o
�

Pm

i
jipijPm

i
jpnij

holds

1. Base case: When m ¼ 1, we have jip1j
jpn1j ¼

jip1j
jpn1j, both sides are equal and (*) holds

for m ¼ 1.
2. Induction: Let n 2 Ζ+ be given and suppose (*) is true for m ¼ n, we have:

min nþ1
i¼1

j ipi j
j pni j

� 	
¼ min min n

i¼1
j ipi j
j pni j

� 	
,
j ipnþ1 j
j pnnþ1 j

� 	
by recurrence for mð Þ

Assuming that min n
i¼1

jipij
jpnij

n o
¼ jip jj

jpn jj 1 � j � nð Þ, there are two situations:

(2.1) when min n
i¼1

jipij
jpnij

n o
� jipnþ1j

jpnnþ1j,
jip jj
jpn jj �

jipnþ1j
jpnnþ1j and

jip jj
jpn jj �

Pn

i
ipiPn

i
pni
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)j ip j j � j pnnþ1 j�j pn j j � j ipnþ1 j and j ip j j �
Xn

i
pni �j pn j j �

Xn

i
ipi

)j ip j j � jpnnþ1jþ
Xn

i
pni

� �
�j pn j j � jipnþ1jþ

Xn

i
ipi

� �

) j ip j j
j pn j j

� jipnþ1jþ
Pn

i ipi
� �
jpnnþ1jþ

Pn
i pni

� � ¼
Pnþ1

i ipiPnþ1
i pni

Thus, min m
i¼1

jipij
jpnij

n o
�

Pm

i
ipiPm

i
pni

holds

(2.2) When jipnþ1j
jpnnþ1j � min n

i¼1
jipij
jpnij

n o

j ipnþ1 j
j pnnþ1 j

�
Pn

i ipiPn
i pni

)j ipnþ1 j �
Xn

i
pni �j pnnþ1 j �

Xn

i
ipi

)j ipnþ1 j �
Xn

i
pniþ j ipnþ1 j � j pnnþ1 j�j pnnþ1 j �

Xn

i
ipi j þ j ipnþ1 j � j pnnþ1 j

)j ipnþ1 j �
Xn

i
pniþjpnnþ1j

� �
�j pnnþ1 j �

Xn

i
ipiþjipnþ1j

� �

) j ipnþ1 j
j pnnþ1 j

�
Pn

i ipiþ j ipnþ1 jPn
i pniþ j pnnþ1 j

¼
Pnþ1

i ipiPnþ1
i pni

Then min nþ1
i¼1

jipij
jpnij

n o
¼ jipnþ1j

jpnnþ1j �
Pnþ1

i
ipiPnþ1

i
pni

holds.

According to (2.1) and (2.2), (*) holds for m ¼ n + 1 and the proof of the
induction step is completed. By the principle of induction (*) is true and the pruning
strategy 1 is valid.

Pruning strategy 2 Given a k-size co-location pattern ck ¼ {f1, f2, . . ., fk}, a set of
instance partition CIP(ck) ¼ {tp1, tp2, . . ., tpm}, and a spatial occupancy threshold
min_occ. According to Lemma 7.4, the upper bound of spatial occupancy index

Upp_occ(ck) ¼
Pm

i
jipijPm

i
jpnij

, so if Upp_occ(ck) � min_occ, then this candidate can be

pruned.

Based on CNT(ck), Upp_occ(ck) can be simply calculated as: Upp occ ckð Þ ¼
P
1�i�k

jπ f i CNT ckð Þð ÞjP
1<j<m

P
kþ1�i�o

jπ f i tp jð Þj f i 2 ckð Þ

According to Lemma 7.4, candidates can be pruned by Pruning strategy 2 before
the process of generating an instance partition neighborhood. However, the table
instance dividing process still takes a large amount of computation. Further filtering
of the candidates before the instance partition process would be useful, so we also
develop a loose upper bound to the occupancy index.
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Lemma 7.5 (Loose upper bound of occupancy index) Given a k-size co-location
pattern ck ¼ {f1, f2, . . ., fk}, its instance partition CIP(ck) ¼ {ip1, ip2, . . ., ipm}, and
partition neighborhood PN(ck)¼ {pn1, pn2. . ., pnm}, there exist a loose upper bound
of OI(ck):

OI ckð Þ � Number of distinct instances of IP ckð Þ
Number of distinct instances of PN ckð Þ

Proof According to Lemma 7.4:

OI ckð Þ �
Pm

i ipij jPm
i pnij j ipi 2 CIP ckð Þ, pni 2 PN ckð Þð Þ

1. Due to the instance partition CIP(ck)¼ {ip1, . . ., ipm} are disjoint partitions under
the connected neighbor relationship:

Pm
i ipij j ¼ the number of instances of ck.

2. As neighboring instances may participate in one or more sub-neighborhoods of
ck, if no any neighboring instance belongs to two or more sub neighborhoods of
ck, then the number of neighboring instances of ck ¼

Pm
i pnij j ; otherwise the

number of neighboring instances of ck <
Pm

i pnij j.

Pruning strategy 3 According to Lemma 7.5, given a k-size co-location pattern
ck ¼ {f1, f2, . . ., fk} and a spatial occupancy threshold min_occ, the loose upper
bound of spatial occupancy index ck can be simply calculated as:

Loose Upp Occ ckð Þ ¼

P
1�i�k

π f i CNT ckð Þð Þ

 


P

1�j<k�m
π f j

CNT ckð Þð Þ



 


 f i, f j 2 CNT ckð Þ� �

If Loose_Upp_occ(ck) � min_occ, this candidate can be pruned.

7.5.3 An Improved Algorithm

With the new data structures and the three pruning strategies, an improved algorithm
for dominant SCP mining can be developed, denoted DSCPMA (IA), which
improves the generation of candidates, their prevalence filter, and their completeness
filter processes. This improved algorithm is presented in Algorithm 7.3.

1. Generating candidate co-location patterns: for a prevalent co-location patter pk-1,
its candidate k-size co-locations which extend from pk-1 can be selected from the
CNT( pk�1). According to pruning strategy 1, we filter the k + 1 size candidates by
testing the participation ratio of each extended feature, obtained directly from
CNT( pk�1).
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2. Prevalence filter: We calculate the participation index of a k-size candidate
co-location combined with a feature extended from CNT( pk�1). According to
Definition 7.11, we can calculate the participation index of k-size candidate
co-locations without generating table instances of candidates.

3. Completeness filter: With pruning strategy 3, the candidate ck can be filtered by
its loose upper bound. The pruning strategy 2 then helps to prune the search space
of candidate dominant SCPs and so avoid the cost of generating instance parti-
tions for the candidate whose upper bound of spatial occupancy is less than
min_occ.

7.5.4 Comparison of Complexity

In this section, the two algorithms Basic_ DSCPMA (BA) and Improved_ DSCPMA
(IA) are compared. Both algorithms involve five phases: (1) materializing spatial
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data into instance neighborhood model, (2) generating candidate co-location pat-
terns, (3) selecting SCPs, (4) selecting dominant SCPs, and (5) sorting dominant
SCPs by quality value. The greatest fraction of computation time is devoted to
Phases 2–4.

1. Generating candidate process: In BA, this process is only pruned according to
Lemma 1, so avoiding generating unnecessary table instances. In IA, for a
prevalent co-location pk-1, a co-location neighborhood table of pk-1 is used to
store the information needed to prune and filter all k size candidates ck which are
extended by pk-1, but without generating table instances. This process saves the
storage space of unnecessary co-location candidates and their table instances.

2. Prevalence filter process: In IA, for each candidate co-location ck ¼ pk-1[fi, the
participation ratio of fi can be directly obtained from CNT( pk-1), and the partic-
ipation ratio of other features in ck can be calculated by a mapping function, so it
only costs O(m), m being the number of rows where there exist extended features
as co-location instance neighbors. Thus, in the improved algorithm, we save
computation space and time, both for generating table instances and for calculat-
ing participation indexes of candidate co-locations.

3. Completeness filter process:we calculate the upper bound of spatial occupancy to
prune the search space, based on the last row of the co-location neighborhood
table which stores the projection of features participating in the table instance, so
the upper bound can be directly calculated. The cost of the pruning strategies we
have developed is a constant time consumption. However, the strategies can help
prune the search space of dominant SCPs in the three main mining processes. The
next section shows this improvement, as we present the efficiency of the algo-
rithm on different data sets.

7.6 Experimental Study

In this section, we show the results of extensive experiments to evaluate the
proposed algorithms from multiple perspectives on both synthetic and real data
sets. All the algorithms are implemented in Visual C#. All of our experiments are
performed on a 2.4GHZ, 8GB-memory and Intel Core i7 computer.

7.6.1 Data Sets

We use three real-world data sets and a series of synthetic data sets in our experi-
ments to evaluate the efficiency and effectiveness of the algorithms.

1. Synthetic data generation: The synthetic data sets are randomly generated in a
given range according to the Poisson distribution function for simulating the
distribution of space instances in real geographical space. The distribution range
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of spatial instances, D*D, was divided into grids of d*d where d is the spatial
neighbor distance threshold. Dataset-1, Dataset-2, and Dataset-3 were generated
in a 1000 � 1000 space, Dataset-4 is generated in a 2000 � 2000 space, and
Datasets 5 ~ 12 is generated in 100,000 � 100,000 spaces. Note that although
Dataset-2 contains fewer instances than Dataset-3, Dataset-2 has a higher density
than Dataset-3 due to a smaller distribution range.

2. Real-world data: A summary of the three real-world data sets is presented in
Table 7.3. Real-1 data set is a spatial distribution data set of Beijing POI (Point Of
Interest) data, which contains around 26,546 instances and 16 features. As shown
in Fig. 7.5(a), the distribution of its instances is even and dense and the number of
instances is quite different for different features. The Real-2 data set is rare plant
data from the “Three Parallel Rivers of Yunnan Protected Areas,” which contains
32 features and only 355 instances with a zonal distribution as shown in Fig. 7.5
(b). Real-3 is another vegetation distribution data set of the Three Parallel Rivers
of Yunnan Protected Areas, which contains 25 features and 13,350 instances with
a block distribution as shown in Fig. 7.5(c). Table 7.3 lists the details and default
parameters of all the real data sets used in our experiments.

7.6.2 Efficiency

This subsection examines the efficiency of the two algorithms, basic-dominant
DSCPMA (BA), and improved-DSCPMA (IA), on a series of synthetic data sets
with several workloads, i.e., different distance thresholds, different minimum prev-
alence thresholds, different minimum occupation thresholds, and different weight
parameters.

The effect of prevalence threshold: The running time comparison of BA and IA at
four different minimum prevalence thresholds (min_prev) on four data sets is shown
in Fig. 7.6. The results of BA and IA are represented by solid and dotted lines,
respectively. Different colors represent the results with different data sets; e.g., BA-1
presents the performance of BA on Dataset-1. For each data set, the running times of
both BA and IA decrease as min_prev increases. Note that for Dataset-1, 2, 3, the
running time of BA and IA is similar at min_prev ¼ 0.6 and BA is more efficient
than IA at min_prev ¼ 0.8. This is because a high min_prev constraint leads to the
generation of fewer prevalent patterns and most of those are short-size patterns. As
the pruning strategies make no contribution to the 2-size co-locations, the pruning
strategies with IA consume even more computation time than with BA. For
Dataset-1 and Dataset-2, the efficiency decreases as the number of features increases,
so the running time of Dataset-2 is longer than that of Dataset 1. The running time of
Dataset-3 is much longer than that of Dataset-4, indicating that the efficiency is
mainly affected by the data density. Compared to the influence of the number of
instances and the number of features on the algorithms, data density has a more
significant effect on the algorithms. For Dataset-3, the effect of min_prev on
algorithm performance is particularly evident since low threshold and dense data
leads to huge numbers of high-size candidates, and so the pruning strategies perform
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better. The lower min_prev is, the more effective the pruning strategies are, espe-
cially on dense data sets.

The effect of distance threshold: Fig. 7.7 presents the comparison of running
times of BA and IA on Datasets-1, 2, 3, 4 with respect to their variations of distance
threshold, respectively. The effect of higher distance thresholds on algorithm per-
formance is especially obvious, indicating that the performance of the algorithms is
mainly affected by the data density. For Dataset-1 and Dataset-2, the running times
are similar at d¼ 12, meaning that when the distance threshold is lower, there is little
difference in the efficiency of BA and IA. As the distance threshold continues to
increase, the performance of IA algorithm becomes progressively more efficient than
BAs due to the series of pruning strategies in IA efficiently avoiding the generation
of complete neighbor tables for all candidates, and then repeatedly partitioning the
pattern space. The running time on Dataset-3 is much more than the running time on

Table 7.3 The experimental data sets and default parameters

dataset
Instance
amount

Feature
amount Spatial area (D*D)

Default
distance
threshold

Default
min
prev

Default
min
occ

Default
Weight
α

Dataset-
1

20,000 20 1000 � 1000 10 0.2 0.1 0.5

Dataset-
2

20,000 50 1000 � 1000 10 0.2 0.1 0.5

Dataset-
3

40,000 25 1000 � 1000 10 0.2 0.1 0.5

Dataset-
4

40,000 25 2000 � 2000 10 0.2 0.1 0.5

Dataset-
5

100,000 30 100,000 � 10,0000 400 0.2 0.1 0.5

Dataset-
6

100,000 40 100,000 � 100,000 400 0.2 0.1 0.5

Dataset-
7

100,000 50 100,000 � 100,000 400 0.2 0.1 0.5

Dataset-
8

100,000 60 100,000 � 100,000 400 0.2 0.1 0.5

Dataset-
9

200,000 30 100,000 � 100,000 400 0.2 0.1 0.5

Dataset-
10

300,000 30 100,000 � 100,000 400 0.2 0.1 0.5

Dataset-
11

400,000 30 100,000 � 100,000 400 0.2 0.1 0.5

Dataset-
12

500,000 30 100,000 � 100,000 400 0.2 0.1 0.5

Real-1 26,546 16 20,000 � 12,000 40 0.2 0.1 0.5

Real-2 13,350 25 5000 � 80,000 230 0.2 0.2 0.5

Real-3 335 32 8000 � 13,000 6000 0.2 0.2 0.5
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Dataset-4 which indicates that the developed algorithm is sensitive to the density of
data, although the number of instances has little influence on the algorithms.

The effect of co-location occupancy threshold: Fig. 7.8 shows the respective
running time of the BA and IA algorithms on the four Datasets-1, 2, 3, 4 with
respect to variations of the occupancy threshold (min_occ). Comparing the running
time on the four data sets, it is obvious the running time does not fluctuate greatly
with the increase of occupancy threshold on each data set. This is because the

Fig. 7.5 Distribution of real data sets, where (a) Real-1; (b) Real-2; (c) Real-3
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Fig. 7.6 The variation of min_prev on different data sets
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occupancy index does not satisfy monotonicity or anti-monotonicity. If the partic-
ipation index of a co-location is no less than min_prev, even though the occupancy
index of this co-location is less than min_occ, its super co-locations still need be
calculated. For each data set, then, IA is more efficient than BA since IA can filter
many candidates by using two upper bounds and reducing the computational
requirement of the pattern area partitioning process. For Dataset-1 and Dataset-2,
the efficiency of computation on Dataset-1 is better than on Dataset-2 because the
number of features in Dataset-2 is more than in Dataset-1, yet the difference in
efficiency is not obvious. The results from Dataset-3 and Dataset-4 indicate that the
efficiency improvement is particularly evident for the performance of IA on dense
data sets.

The scalability of proposed algorithms. This subsection examines the scalability
of BA and IA in several scenarios, i.e., different numbers of spatial instances, and
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different numbers of spatial features on the synthetic Datasets 5–12. The running
time of BA exceeds the time limit (2,400,000 ms > 40,000 h) when the number of
spatial instances reaches 500,000, and the running time for IA exceeds the time limit
(1,240,000 ms > 26,000 h) as shown in Fig. 7.9(a). That means IA is more efficient
than BA as the instances increase. Figure 7.9(b) shows the running time of both BA
and IA on different numbers of features. As the number of features increases, the
running time decreases, because, as the number of features grows, more time is spent
on the prefix-trees of features. When the number of features reaches 20, the running
time drops because the data set is too sparse to have larger-size prevalent patterns if
the total number of spatial instances is fixed.

7.6.3 Effectiveness

As we discussed in Sect. 7.6.2, the parameter prevalence threshold (i.e., min_prev)
and distance threshold (i.e. d ) are the main factors affecting the efficiency of the
developed algorithms. In this subsection, we will discuss the parameters which affect
the effectiveness of the algorithms and explain the practical application of dominant
SCP mining on real data sets. Three real-world data sets are used in our experiments
to demonstrate the effectiveness of our algorithm. Compared to the synthetic data,
mining results on real data sets are generally more reliable and meaningful.

The concept of spatial occupancy can be regarded as an interesting new measure
and constraint. Since, according to the definition of a dominant SCP, a dominant
SCP needs to meet prevalence and spatial occupancy constraints, it can be easily
inferred that the mining results of dominant SCPs wheremin_occ¼ 0 are the same as
traditional prevalent spatial co-location patterns (SCPs) under the same min_prev
and d. Thus, we conduct experiments by changing the prevalence threshold (i.e.,
min_prev), the occupancy threshold (i.e., min_occ), and weight (i.e. ω) to reveal the
effect of parameter settings on the results of dominant SCP mining.
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The effect of min_prev on dominant SCP and SCP mining results. As the
experiments show in Fig. 7.10, we set min_occ ¼ 0 to obtain the SCPs on three
real data sets, and we set min_occ¼ 0.1 to obtain dominant SCP results on the Real-
1 and Real-2 data sets. We set min_occ ¼ 0.2 to obtain dominant SCP results on the
Real-3 data set, and the other default parameters are shown in Table 7.3. In Fig. 7.10,
we present the mining results of SCPs and dominant SCPs with different min_prev
and record the number of patterns of different size for each mining result. It can be
seen that on each data set, the number of dominant SCPs and SCPs both decrease
with an increase of min_prev and that the number of SCP mining results are much
more than those of the dominant SCP mining results under same min_prev. It is
worth noting that as min_prev increases, the proportion of short-size patterns in the
SCP results becomes higher and higher. For each data set, the number of both the
higher size and smaller size dominant SCPs are less, and the proportion of middle-
size dominant SCPs is the largest.

The effect of min_occ on dominant SCP mining results. Figure 7.11 presents the
mining results of dominant SCPs with different min_occ under the same prevalence
threshold where min_prev ¼ 0.2, and the other default parameters are as shown in
Table 7.3. For each data set in the experimental results shown in Fig. 7.11, the SCP
mining result is represented by a stacked column where min_occ¼ 0, and a different
color represents a different pattern size. It can be seen that for each data set, the

(a)Real-1 dataset (b)Real-2 dataset (c)Real-3 dataset 
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number of dominant SCPs decreases rapidly with the increasing of min_occ, espe-
cially for the shorter size patterns. To the contrary, as min_occ increases, long size
patterns keep being retained in the dominant SCP results. This retention indicates
even though the spatial occupancy metric is not strictly monotonic, the longer a
pattern size is, the higher its spatial occupancy index may be. The experimental
results shown in Fig. 7.11 can further explain the differences between the SCP and
dominant SCP mining results in Fig. 7.10. For each data set, even though some high-
size patterns are filtered by the prevalence threshold constraints, most of those of
short size are also filtered by the spatial occupancy threshold.

The effect of ω on dominant SCP mining results. Figure 7.12 shows the change of
dominant SCP mining results using different weights (i.e., changing ω). According
to Definition 7.9 in Sect. 7.4, the weight parameter ω only participates in the quality
value calculation part of the dominant SCP mining process. Thus, it can only affect
the sorted representation of the dominant SCP results rather than affect the collection
of mining results. In the experiment shown in Fig. 7.12, we select only the top-20
quality-valued dominant SCPs to observe the effect of the weight on the dominant
SCP mining sorting results where min_prev¼ 0.2, min_occ¼ 0.1. For each data set,
as ω increases, the proportion of longer-size dominant SCPs in the top-20 mining
results decreases and the proportion of shorter-size dominant SCPs in the mining
results increases. Also, under the same min_prev and min_occ, the top-20 dominant
SCP results are similar to the top-20 SCP results with a high ω. For example, the
proportion of patterns of different sizes in the dominant SCP result where ω¼ 0.8 in
Fig. 7.12(a) is similar to the SCP results in Fig. 7.11(a), and the proportion of
patterns of different sizes in the dominant SCP result where ω ¼ 0.2 in Fig. 7.12
(c) is similar to the dominant SCP results in Fig. 7.11(c) where min_occ ¼ 0.3.
Evidently, the higher the ω, the more prevalence metrics contribute to the quality of
the dominant SCPs. That indicates that the role of ω is in adjusting the contribution
of spatial occupancy and prevalence to the quality of dominant SCP as well as
sorting the dominant SCP mining results.
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7.6.4 Real Applications

For the experimental results shown in Figs. 7.13 and 7.14, we discussed the effect of
prevalence threshold, spatial occupancy threshold, and the quality weight on the
dominant SCP mining results, respectively. Now, we consider the dominant SCP
and SCP mining results, respectively, on real-world data sets and explore the
practical significance in real applications of dominant SCP mining.

The biodiversity analysis application of dominant SCP: Table 7.4 lists the result
of the top-5 quality-valued dominant SCPs and Table 7.5 lists the top 5 PI-valued
SCPs on data set Real-3 (i.e., vegetation data). Compared with the dominant SCP

Fig. 7.13 The distribution of {Pterocarya delavayi Franch(A), Magnolia sieboldii(D), Anisodus
acutangulus(I), Hemsleya lijiangensis(M)}

Fig. 7.14 The distribution of {Chinese Food (F), Hotel(H), Parking Lot (P), Clothing Store(C)}
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mining results, the top-5 SCPs are shorter-size patterns, while longer size patterns
come from the dominant SCPs as that process considers both completeness and
prevalence of a pattern. For example, the distribution of the co-location pattern
{Pterocarya Delavayi Franch, Magnolia Sieboldii, Anisodus Acutangulus,
Hemsleya Lijiangensis} is shown in Fig. 7.13. It can be seen that in the areas of
the co-location instances, the pattern instances are densely distributed, and occupy a
large fraction of all instances in the neighborhoods. This observation indicates that
the mining methods developed in this chapter should find qualified dominant SCPs.
Further, the occupancy measurement solves the problem that botanists cannot rule
out, by prevalence alone, the effects and interference of other features in their
distribution area. For example, the dominant SCP {Psammosilene Tunicoides,
Metanemone Ranunculoides} is a 2-size dominant spatial co-location pattern, mean-
ing that this pattern is both prevalent and complete, and the plant co-existence
relationship is strictly limited to these two.

Application of dominant SCPs to Urban Facility Planning: Table 7.6 lists the
result of top-5 quality-valued dominant SCPs and Table 7.7 lists top-5 PI-valued

Table 7.4 The results of TOP-5 dominant SCPs on Real-3 data set

Dominant SCPs PI OCI Q

1 {Pterocarya delavayi Franch, Magnolia sieboldii, Anisodus
acutangulus, Hemsleya lijiangensis}

0.33 0.54 0.44

2 {Golden buckwheat, Glycyrrhiza yunnanensis, Anisodus acutangulus} 0.58 0.27 0.42

3 {Triosteum himalayanum Wall, Golden buckwheat, Glycyrrhiza
yunnanensis, Hemsleya lijiangensis}

0.42 0.42 0.42

4 {Psammosilene tunicoides, Metanemone ranunculoides} 0.5 0.33 0.42

5 {Davidia involucrata Baill, Anisadenia pubescens Griff, Trillium
tschonoskii Maxim, Saussurea gossypiphora}

0.26 0.54 0.4

Table 7.5 The results of TOP-5 SCPs on Real-3 data set

SCPs PI

1 {Magnolia sieboldii, Anisodus acutangulus} 0.78

2 {Magnolia sieboldii, Hemsleya lijiangensis} 0.69

3 {Triosteum himalayanum Wall, Hemsleya lijiangensis} 0.67

4 {Golden buckwheat, Glycyrrhiza yunnanensis} 0.67

5 {Davidia involucrata Baill, Pterocarya delavayi Franch} 0.65

Table 7.6 The results of TOP-5 dominant SCPs on Real-1 data set

Dominant SCPs PI OCI Q

1 {Chinese Food, Hotel, Parking Lot, Clothing Store} 0.29 0.29 0.29

2 {Chinese Food, Hotel, Hostel, Parking Lot} 0.4 0.12 0.26

3 {Chinese Food, Coffee shop, Parking Lot} 0.42 0.11 0.26

4 {Chinese Food, Hostel, Parking Lot, Clothing Store} 0.29 0.2 0.24

5 {Coffee shop, Parking Lot, Clothing Store} 0.26 0.17 0.22
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SCPs for the Real-1 (i.e., Beijing POI) data set. Compared to the dominant SCP
mining results, the top-5 SCPs are generally shorter-size patterns, and the informa-
tion contained in these patterns is either common sense or not representative. The
dominant SCP mining results, however, provide comprehensive co-location patterns
with more pattern information for users. For example, the distribution of the
co-location pattern {Chinese Food, Hotel, Parking Lot, Clothing Store} is shown
in Fig. 7.14. It is easily seen that the co-location instances of this pattern are widely
distributed in the data set, indicating that the pattern appears prevalently in space. As
shown in the diagram enlarged in the upper left corner in Fig. 7.14, that pattern’s
co-location instances occupy a large portion of their located neighborhood and the
pattern is indeed a dominant spatial co-location pattern which is both prevalent and
complete.

These demonstration scenarios show the effectiveness of the DSCPMA algorithm
for mining both POI data and plant data, and could be further applied in other
application areas similar to urban planning and biodiversity analysis application.

7.7 Chapter Summary

Most studies on the spatial co-location pattern mining take the prevalence of
co-locations as the measure of interest. However, in some real-world applications,
users are not only interested in the prevalence of co-location patterns, but also focus
on their completeness. In this chapter, we have introduced a new spatial occupancy
metric to evaluate the completeness of co-location patterns, using the ratio of the
co-location instances occupied in their instance neighbor set and have formulated the
problem of dominant SCP mining by considering both completeness and prevalence.
For solving the co-location instance overlap in space, we developed a connected
neighbor relationship to partition the co-location instances into instance partition
sets. We also developed an efficient algorithm, DSCPMA, to discover the dominant
SCPs, and then explored the use of two upper bounds of the spatial occupancy index
and a compact data structure to develop three pruning strategies for pruning the
DSCP search space. Finally, we evaluated the efficiency and effectiveness of the
algorithms on a series of synthetic data sets and three real-world data sets. The mined
results on two real-world applications demonstrate that dominant SCP mining is
practical and produces significant results.

Table 7.7 The results of
TOP-5 SCPs on Real-1
data set

SCPs PI

1 {Chinese Food, Hotel, Parking Lot} 0.78

2 {Hotel, Parking Lot} 0.76

3 {Chinese Food, Hotel,} 0.75

4 {Chinese Food, Hotel, Parking Lot} 0.64

5 {Coffee Shop, Clothing Store} 0.56
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So far, we have considered the prevalence and the completeness of SCPs, but the
importance or value of each feature in SCPs has not been distinguished and studied.
In the next chapter, we will incorporate utility into the SCP mining through the
concept of pattern utility, and discuss a spatial high utility co-location pattern mining
problem.
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Chapter 8
High Utility Co-location Patterns

8.1 Introduction

In our previous chapters on spatial co-location pattern mining, the importance of
different features was regarded as the same. However, in many spatial databases the
importance of the different features is not the same. What’s more, previous work on
spatial co-location pattern mining has focused on the participation ratio of each
spatial feature whereby the selection of interesting patterns is generally based on a
frequency framework. This ignores some interesting but low prevalence patterns, as
well as unfortunately mining a lot of prevalent but not interesting patterns.

This chapter starts to remedy the situation by including the following:

1. By incorporating utility into spatial pattern mining through the concept of pattern
utility, a general framework for high utility spatial co-location pattern (high utility
SCP) mining is defined.

2. We define a concept of extended pattern utility ratio, and of partial extended
pattern utility ratio, and also present an extended pruning algorithm (EPA) and a
partial pruning algorithm (PPA) to prune down the number of candidates as well
as obtain a complete set of high utility SCPs. Both EPA and PPA should improve
the mining performance and accelerate the generation of high utility SCPs under
different parameter-driven environments.

3. Using synthetic and real-world databases, substantial experiments show that, as
expected, EPA and PPA effectively and efficiently identify high utility SCPs.

Figure 8.1 presents the organization of this chapter. We first discuss why we need
to discover high utility SCPs in Sect. 8.2, and Sect. 8.3 gives the related work. Then
the formal problem definition for mining high utility SCPs is presented in Sect. 8.4.

From Yang, S., Wang, L., Bao, X., et al.: A framework for mining spatial high utility co-location
patterns. In: Proceedings of the 12th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD 2015), IEEE, Zhangjiajie, China, pp. 595–601 (2015).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
L. Wang et al., Preference-based Spatial Co-location Pattern Mining, Big Data
Management, https://doi.org/10.1007/978-981-16-7566-9_8
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Section 8.5 gives a basic mining algorithm for high utility SCPs. In Sect. 8.6, we
present an extended pruning algorithm based on the property of extended pattern
utility ratio. A partial pruning approach is described in Sect. 8.7. Experimental
results and evaluations are shown in Sect. 8.8. Finally, we conclude this chapter in
Sect. 8.9.

8.2 Why We Need High Utility Co-location Pattern Mining

A spatial co-location pattern (SCP) is a set of spatial features whose instances are
frequently co-located in the same region. For example, West Nile Virus often
appears in regions with poor mosquito control and the presence of birds. SCP mining
is an important task of spatial data mining.

In SCP mining, different features all have the same importance. However, we
know intuitively that the importance of different features is not the same in many
spatial databases. A related problem is that previous work on SCP mining
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Algorithm 8.2
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A basic mining 
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Section 8.1Introduction
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Algorithm 8.1
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Fig. 8.1 The organization of this chapter
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concentrated on the participation ratio of each spatial feature has ignored interesting
but low prevalence SCPs, as well as mining a lot of prevalent SCPs of no real interest
to the user.

For instance, in location-based services (LBS), various services provided by a
mobile telecoms operator bring different profits, and each service has a number of
service points in different geographical locations. Here, the services are equivalent to
spatial features, and the service points are equivalent to spatial instances. For a
telecoms operator, point of service A might bring a profit of v(A) per month, while
point of service B brings v(B), where v(A) >> v(B). The combination of services
generating a huge profit, i.e., which contains A, may be ignored if the combination/
pattern appears infrequently and we are using a method based on frequency to mine
interesting co-location service combinations/patterns. It could be that the service
combination with a low profit, i.e., which contains B, is selected only because it
appears frequently.

We can see this effect clearly in Tables II(c) and II(d) in Fig. 8.2 where, with a
method based on prevalence, the participation index of {A, B, C} is 75% and {D, E}
is 33.3%. But, according to Table I in Fig. 8.2, the sum of values of the instances of
{D, E} is 1� 5 + 3� 45¼ 140 and those of {A, B, C} is 3� 4 + 2� 7 + 2� 1¼ 28.
Obviously, from the view of economic profit, {D, E} is more significant than {A, B,
C}. On the one hand, the classic prevalence-based method often finds many SCPs,
most of which are not informative enough for businesses, such as {A, B, C}. On the
other hand, a lot of SCPs are ignored as their prevalence values are low. So, for the
first time, we incorporate utility into the SCP mining framework, to ensure that high
utility SCPs are mined.

In general, the challenges of mining high utility SCPs lie in two aspects.

1. How to identify and measure high utility SCPs
Conventional techniques often ignore the differences between the utility of

different features, as they often only pay attention to whether SCPs are prevalent
or not. Measures based on prevalence are often not suitable for mining high
utility SCPs.

Table I unit profit of five kinds of trees

Table II table-instances of a part of co-location patterns

(a) (b) (c) (d)
A B
a1 b1

a2 b1

a2 b2

a4 b1

A C
a1 c1

a2 c1

a2 c2

a4 c1

D E
d2 e1

d2 e2

d2 e3

33% 75%

A B C
a1 b1 c1

a2 b1 c1

a2 b2 c2

a4 b1 c1

75% 100% 100%

Participation index

Fig. 8.2 A specific example to illustrate the problem
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Our contributions. We incorporate utility into the mining of SCPs and
propose a new measure, pattern utility, by which a user can determine an SCP’s
interest.

2. How to mine the high utility SCPs
We consider an SCP as high utility SCP, if and only if its pattern utility ratio is

higher than a minimum pattern utility ratio threshold. In classic SCP mining
based on a prevalence framework, the downward closure property, also named
anti-monotonicity, plays a key role in pruning down the number of eligible
candidates. This is because the value of such a measure, such as the participation
ratio, decreases with an increasing size of SCPs. Through examples, we will show
that the downward closure property does not work in utility-based SCP mining,
implying that most of the existing algorithms based on prevalence cannot be
directly transferred from prevalent SCP mining to high utility SCP mining.

Our contributions. First, we propose a basic algorithm for mining high utility
SCPs. It is complete but inefficient. Second, we define a new concept, extended
pattern utility ratio. We then show that the extended pattern utility ratio is an
upper bound of the pattern utility ratio. Based on this property, we develop two
pruning methods, expressed in an extended pruning algorithm (EPA) and in a
partial pruning algorithm (PPA). Compared with the basic algorithm, in which a
pattern utility ratio threshold is applied to the mining process, both EPA and PPA
should be more efficient. From our experimental analysis, it can be seen that EPA
and PPA are both efficient in environments with differing parameters.

8.3 Related Work

8.3.1 Spatial Co-location Pattern Mining

The problem of mining spatial association rules based on spatial relationships was
first discussed in Koperski and Han (1995). Statistically meaningful interest mea-
sures were proposed in Shekhar and Huang (2001) for SCP mining, and a join-based
SCP mining algorithm was presented in Huang et al. (2004). Join-less SCP mining
algorithm was introduced in Yoo and Shekhar (2006), using an instance-lookup
scheme for identifying co-location instances. Some studies (Yang et al., 2018a,
2018b) were conducted to explore the MapReduce-based approach and to address
the problem of mining SCPs from massive spatial databases.

There exists some other interesting work on mining different kinds of SCPs.
Maximal SCP mining was studied in Wang et al. (2009b) and Yao et al. (2016).
Research on closed SCP mining was presented in Yoo and Bow (2011a) and Wang
et al. (2018b). Wang et al. (2018a) proposed non-redundant SCPs which are subsets
of prevalent SCPs where each SCP cannot cover any other one by considering their
row-instances. The problem of interactively extracting user-preferred SCPs was
studied in Bao et al. (2021) and Wang et al. (2018c).

204 8 High Utility Co-location Patterns



High utility SCP mining was first presented in Yang et al. (2015). Their algorithm
is a size-order traversal algorithm that would show a less obvious pruning effect
when it traverses low-size SCPs compared to when it traverses high-size SCPs.
Based on the concept of high utility SCPs in Yang et al. (2015), the problem of
incrementally mining high utility SCPs was studied in Wang et al. (2016) and Wang
et al. (2019d). Differing from the work in Yang et al. (2015), Wang et al. (2017a)
takes instances with utilities as study objects and combines the intra-utility ratio and
the inter-utility ratio into a utility participation index for identifying high
utility SCPs.

8.3.2 Utility Itemset Mining

Utility itemset mining was first discussed in Yao et al. (2004). Every item in the
itemset is associated with an additional value, called the internal utility which is a
numeric quantity related to the item. A UMining algorithm was proposed by Yao et
al. (2006) which uses an estimation method to prune the search space. Although it is
shown to have good performance, it cannot capture the complete set of high utility
itemsets since some high utility patterns may be pruned during the process. The two-
phase algorithm presented in Liu et al. (2005) efficiently prunes down the number of
candidates, through the transaction-weighted downward closure property. Also the
algorithms (Tseng et al., 2010, 2013; Song et al., 2016) have been developed for
efficient mining high utility itemsets, and the concise and lossless representation of
high utility itemsets have also been studied (Tseng et al., 2015, 2016; Duong et al.,
2016).

An incremental mining algorithm (Lin et al., 2012) for efficiently mining high
utility itemsets was proposed to handle the environment of intermittent data. Ahmed
et al. (2011) introduced frequency affinity based on utility to mine high utility
itemsets, items inside of which have strong correlations. UP-Growth proposed in
Tseng et al. (2010) enhanced the mining performance in utility mining by
maintaining the information of high utility itemsets with a UP-tree. Shie et
al. (2010) applied utility mining to data stream environments. A generic framework
was proposed in Yin et al. (2012) for mining high utility sequential patterns by
combining utility with sequence. Ahmed et al. (2009) and Hong et al. (2012)
maintained high utility patterns in an incremental environment by avoiding multiple
scans of the databases.
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8.4 Problem Definition

In this section, we describe the basic concepts of high utility SCP mining. Defini-
tions 8.1–8.4 relate to concepts of traditional SCP mining and high utility itemsets
mining as preliminaries, while Definitions 8.5–8.12 relate to the concepts presented
in this chapter for high utility SCP mining.

We can divide the data in a spatial database into various spatial features, similar to
the items in a traditional transaction database. Figure 8.2 shows five spatial features,
A-E, each of which has many instances. For example, a1 and a2 are instances of
feature A.

Definition 8.1 (Neighbor Relationship R) Let a and b be an instance of feature A
and B, respectively, and the neighbor relationship R between them expressed by a
Euclidean distance metric. In this chapter, with a threshold value d, we define the
neighbor relationship R: two spatial instances are neighbors if they satisfy the
Euclidean distance between them not exceeding d, i.e., R(a, b),(distance(a, b)� d ).
When two spatial instances of diverse features satisfy the neighbor relationship R,
we connect them with a line in the spatial diagram, such as in Fig. 8.2.

Definition 8.2 (Size) Let F ¼ {f1,. . ., fn} be the feature set of spatial database S. A
co-location is a subset of F and a co-location is called a k-co-location, i.e., its size is
k, if there are k features in the SCP.

For example, the SCP c ¼ {A, B, C} is a 3-co-location.

Definition 8.3 (Row instance and table instance) A row instance I of an SCP c is a
set of instances including instances of all the features in c and which forms a clique
relationship with R, but without repeating the feature types of instances in I. The set
of all row instances of c is called a table instance of c, denoted as T(c).

For example, in Fig. 8.2, {a1, b1, c1} is a row instance of SCP {A, B, C} since the
feature type of a1 is A, the feature type of b1 is B, and the feature type of c1 is C, and
R(a1, b1), R(b1, c1), and R(a1, c1) hold.

Definition 8.4 (External utility) The external utility is used to describe the impor-
tance (e.g., price) of different feature. We denote the external utility of a feature fi 2
F as v( fi).

For example, in location-based services, the profit brought by a service point is
the external utility of the service. From a different environment, forestry, the unit
economic profit of a kind of tree is the external utility of the tree. Indeed, Table I in
Fig. 8.2 is a table of external utilities for differing kinds of tree.

Definition 8.5 (Internal utility) The quantity of different instances of feature fi
appearing in the table-instance of c is internal utility of fi in c, defined as q( fi,
c) ¼ |∏fiT(c)|, where∏ is the projection operation. If c ¼ {fi}, then q( fi, {fi}) means
the quantity of all instances of feature fi in S.

For example, in Fig. 8.2, Tables II(c) and II(d) show the table instances of SCP
{D, E} and {A, B, C}, respectively. Thus the internal utility of D in {D, E} is q(D,
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{D, E}) ¼ |∏DT({D, E})| ¼ 1, and the internal utility of A in {A, B, C} is q (A,
{A, B, C}) ¼ |∏AT({A, B, C})| ¼ 3.

From Definitions 8.4 and 8.5, we can see that the external utility v( fi) of a feature
fi is the value of an instance of fi, while the internal utility q( fi, c) of fi in an SCP c is
the number of different instances of fi in the table-instance of c. We can immediately
define the utility of fi in c as in Definition 8.6.

Definition 8.6 (Utility of a feature in an SCP) Given a k-co-location c ¼ {f1,. . .,
fk}, we define the product of the external utility and the internal utility of fi in c as the
utility of fi in c, denoted as

v f i, cð Þ ¼ v f ið Þ � q f i, cð Þ ð8:1Þ

For example, the utility of A in {A, B, C} is v(A, {A, B, C}) ¼ v(A) � q (A,
{A, B, C}) ¼ 4 � 3 ¼ 12, and the utility of B in {A, B, C} is v(B, {A, B,
C}) ¼ v(B) � q (B, {A, B, C}) ¼ 7 � 2 ¼ 14. Note that if c ¼ {fi}, then v ( fi,
{fi}) ¼ v( fi) � q ( fi, {fi}) means the total utility of all instances of feature fi in S.

Definition 8.7 (Pattern utility) Given a k-co-location c ¼ {f1, . . ., fk}, the pattern
utility of c is the sum of the utilities of all features in c. The formal definition is as
follows:

u cð Þ ¼
X
f i2c

v f i, cð Þ ð8:2Þ

For example, the pattern utility of {A, B, C} is u({A, B, C}) ¼ v(A, {A, B,
C}) + v(B, {A, B, C}) + v(C, {A, B, C}) ¼ 12 + 14 + 1 � 2 ¼ 28.

Definition 8.8 (Total utility of database) Given a spatial database S and the feature
set F ¼ {f1, . . ., fn}, the total utility of data set S is the sum of total utilities of all
features, denoted as:

U Sð Þ ¼
X
f i2F

v f i, f if gð Þ ð8:3Þ

For example, according to the data set S in Fig. 8.2, the total utility of S is
U(S) ¼ v(A, {A}) + v(B, {B}) + v(C, {C}) + v(D, {D}) + v(E,
{E}) ¼ 4 � 4 + 7 � 2 + 1 � 2 + 5 � 3 + 45 � 4 ¼ 227.

In a spatial database, we call a co-location a high utility SCP if its pattern utility is
high enough. How high the pattern utility of an SCP should be such that it is
considered as a high utility SCP is problematic and needs a threshold somehow
specified by the user.

Definition 8.9 (Pattern utility ratio) Given a spatial database S and an SCP c, the
total utility of S is U(S), and the pattern utility of c is u(c). The pattern utility ratio of
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c is defined as λ(c) ¼ u(c)/U(S), the ratio of the utility of c to the total utility of S. In
other words, λ(c) indicates the percentage of the utility that c contributes to S. A large
λ(c) indicates that c is more valuable in S and of more interest to the user.

For example, according to Table II(d) in Fig. 8.2, the pattern utility ratio of {A, B,
C} is λ({A, B, C}) ¼ u({A, B, C})/U(S) ¼ 28/227 ¼ 12.3%.

Definition 8.10 (Pattern utility ratio threshold) The pattern utility ratio threshold
is a constant between 0 and 1, denoted as ξ (0 � ξ � 1), which is generally specified
by users. We consider an SCP c as a high utility SCP if λ(c) � ξ.

8.5 A Basic Mining Approach

Our goal is to mine all the high utility SCPs in databases, the λ of which are above ξ.
A basic approach is designed as three steps: First, identify table instances of all the
SCPs; second, calculate the pattern utility ratios of them; third, compare them with ξ
in order to judge which of the SCPs are high utility SCPs.

SCPs of size 1 cannot generate rules such as (A) ! (B, C), as there is only one
feature in them and so they are not considered further. Given a spatial database S
with n features, the approach (we call it Algorithm 8.1) needs to obtain table
instances of all 2n – n � 1 SCPs, except for SCPs of size 1, and calculate the λ of
them. This approach, which tests all SCPs of size 2 and above, is complete.
Unfortunately, it is also inefficient, as the calculations of table instances of all
SCPs are horrendous. Therefore, we hope there is an upper bound of λ, comparing
it with ξ could prune low utility SCPs without calculating their table-instances and λ.
We might hope λ is anti-monotonic, similar to the participation ratio in prevalence-
based traditional SCP mining methods. Unfortunately, neither λ nor u is anti-
monotonic. The following example illustrates this situation.

With the example in Definition 8.7, we obtain u({A, B, C}) ¼ 28, u({A,
B}) ¼ v(A, {A, B}) + v(B, {A, B}) ¼ 4 � 4 + 7 � 2 ¼ 30, and u({A, C}) ¼ v(A,
{A, C}) + v(C, {A, C}) ¼ 4 � 3 + 2 � 1 ¼ 14. So u({A, B, C}) < u({A, B}) while
u({A, B, C}) > u({A, C}). This demonstrates that that the pattern utility u is neither
monotonic nor anti-monotonic, and so neither is λ.

8.6 Extended Pruning Approach

In this section, we present an extended pruning algorithm based on the property of
extended pattern utility ratio which will prune low utility SCPs.
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8.6.1 Related Definitions

Definition 8.11 (Single feature table instance of SCP) We define a single feature
table instance of an SCP as the set of instances of feature f appearing in all subsets of
an SCP c, denoted as Tas( f, c). In other words, if the feature f belongs to SCP c, we
then get all the subsets of c which contain f, in order to get the projections of table
instances of them on f. The intersection of these projections is Tas( f, c) whose formal
definition is

Tas f , cð Þ ¼ \
c0 ⊂ c^f2c0\c

Y
f

T c0ð Þ
 !

ð8:4Þ

Furthermore, the quantity of instances of f appearing in all subsets of c are
denoted as

qas f , cð Þ ¼j Tas f , cð Þ j ð8:5Þ

And the utility of f appearing in all subsets of c is denoted as

vas f , cð Þ ¼ v fð Þ � qas f , cð Þ ð8:6Þ

For example, according to Fig. 8.2, the SCP {A, B, C} has {A, B}, {A, C} and
{A} as three subsets which contain feature A. ∏A T({A}) is equal to the table
instance of {A}, which is {a1, a2, a3, a4}.∏A T({A, B}) is {a1, a2, a3, a4} and∏AT
({A, C}) is {a1, a2, a4}. Therefore, Tas(A, {A, B, C}) ¼ {a1, a2, a4}, qas (A, {A, B,
C}) ¼ 3, and vas (A, {A, B, C}) ¼ v(A) � qas (A, {A, B, C}) ¼ 4 � 3 ¼ 12.

Theorem 8.1 If c0 ⊂ c and f 2 c0 \ c, then v (f, c) � v(f, c0).

Proof As f is a common feature of c and c0, if an instance o of feature f appears in T
(c), then it must appear in T(c0). So the number of instances of f in T(c) is no more
than that in T(c0), i.e., q( f, c) � q( f, c0). Therefore, according to Definition 8.6, the
utility of feature f in co-location c is no more than that in c0, i.e., v( f, c) � v( f, c0). □

Theorem 8.2 The utility of feature f in SCP c is no more than vas(f, c).

Proof Given an SCP c, which contains feature f, suppose c’ is any subset of c, which
also contains f. As f is a common feature of c and c’, if an instance o of feature f
appears in T(c), then it must appear in T(c0) and must also appear in ∏f T(c0). In

general, the instance o must appear in Tas f , cð Þ ¼ \
c0 ⊂ c^f2c0\c

Q
fT c0ð Þ

� �
. That is to

say, the quantity (internal utility) of instances of f in c is no more than qas( f, c), i.e.,
q( f, c) � qas( f, c). Therefore, according to Definition 8.6, the utility of feature f in
SCP c is no more than vas( f, c), i.e., v ( f, c) � vas( f, c). □
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In order to reduce the cost of computing, by adding a positive integer variable s, we
extend Tas( f, c) to Tss( f, c, s), meaning the set of instances of f appearing in some
subsets of c. i.e.,

Tss f , c, sð Þ ¼ \
cs ⊂ c^f2cs\c

Y
f

T csð Þ
 !

ð8:7Þ

where cs is one of top-s subsets of c, which are ordered by size in descending order

and then in lexicographical order. For example, Tss A, A, B, C, Df g, 4ð Þ ¼

\
c4 ⊂ c^f2c4\c

Q
fT c4ð Þ

� �
, where c4 is {A, B, C}, {A, B, D}, {A, C, D} and {A, B}.

Accordingly, we extend qas ( f, c) to qss ( f, c, s)¼ |Tss( f, c, s)|, and extend vas( f,
c) to vss( f, c, s) ¼ v( f ) � qss( f, c, s).

Theorem 8.3 The utility of feature f in SCP c is no more than vss( f, c, s).

Proof Obviously, Tas( f, c) ⊂ Tss( f, c, s), which means qas ( f, c) � qss ( f, c, s).
Therefore, vas( f, c) � vss( f, c, s). As v ( f, c) � vas( f, c) according to Theorem 8.2,
the inequality v ( f, c) � vss( f, c, s) is true. □

Definition 8.12 (Extended pattern utility ratio) Given a feature set F ¼ {f1,. . .,
fn}, and a SCP c. We define the extended pattern utility ratio of c as the sum of λ(c)
and the ratio of

P
f i2f�c

vss f i, c [ f i, sð Þ to U(S). The formal definition is:

EPUR cð Þ ¼ λ cð Þ þ
X
f i2f�c

vss f i, c [ f i, sð Þ=U Sð Þ ð8:8Þ

Theorem 8.4 If c is a subset of c’, then the pattern utility ratio of c’ is no more than
the extended pattern utility ratio of c.

Proof λ(c’) ¼ u(c’)/U(S) ¼ P
f i2c0

v f i, c
0ð Þ=U Sð Þ ¼ (

P
f i2c

v f i, c
0ð Þ + P

f i2c0�c
v f i, c

0ð Þ)/
U(S). According to Theorem 8.1,

P
f i2c

v f i, c
0ð Þ � P

f i2c
v f i, cð Þ ¼ u cð Þ. According to

Theorem 8.1 and Theorem 8.3,
P

f i2c0�c
v f i, c

0ð Þ � P
f i2c0�c

v f i, c [ f ið Þ �P
f i2c0�c

vss f i, c [ f i, sð Þ � P
f i2F�c

vss f i, c [ f i, sð Þ. Therefore, λ(c0) � EPUR(c). □

8.6.2 Extended Pruning Algorithm (EPA)

EPUR(c) is an upper bound of λ(c0), where c0 is any superset of c. Therefore, if EPUR
(c) < ξ, c can be pruned from candidates, as all supersets of c are low utility SCPs.
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Using this property, we propose an extended pruning algorithm (EPA), described as
follows:

8.1
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Initialization (Steps 1–5)
Given an input spatial data set and a neighbor relationship R, we first calculate

U(S) according to Definition 8.8. We initialize Ci and Ui, where i is from 2 to n.
Then we generate C2 and the table instances of each SCP c in C2 by finding all the
neighboring instance pairs using a geometric method such as plane sweep (Arge
et al., 1998).

The generation of candidates (Steps 6–8)
The T(c) of each c whose size is 2, is implicitly generated in step 5. For k > 2,

size k candidate co-locations and their table instances are generated from size k-1
candidates through the joinless algorithm approach of Yoo and Shekhar (2006).

Calculating the pattern utility ratio (Steps 9–10)
We calculate u(c) and λ(c), according to Definitions 8.7 and 8.9. If and only if

λ(c) � ξ, the co-location c is considered as a high utility SCP and put into the set
of high utility SCPs.

Pruning low utility patterns with EPUR (Steps 11–14)
If c is a low utility co-location, we further check whether its supersets could be

pruned. By calculating vss and EPUR, if EPUR(c)< ξ, we can prune all supersets
of c, by removing c from the candidate set. In particular, the value of s in vss( fi,
c, s) will highly influence the efficiency of pruning. With a higher s, we obtain
lower vss and EPUR, which helps to increase the chances of pruning. However,
calculating vss leads to more costly computing. Further considerations about s
will be discussed in Sect. 8.7.

In EPA, if the SCP c is a low utility pattern, whether its supersets will be pruned
depends on whether the EPUR(c) is low enough. However, when the size of c is low
(e.g. 2 or 3-co-location), the number of row-instances of c is generally high, which
may lead to the vss and EPUR of c being too high.

Therefore, when we check a low-size SCP c, many low utility supersets will be
missed by EPA, as EPUR(c) is too high, (EPUR(c) > ξ). So we need another
approach which will be efficient when it prunes the low utility supersets of a low
size SCP.

8.7 Partial Pruning Approach

8.7.1 Related Definitions

Definition 8.13 (Partial extended pattern utility ratio) Given two SCPs c and c0,
where c ⊂ c0, we define the partial extended pattern utility ratio of c in c0 as the sum
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of λ(c) and the ratio of
P

f i2c0�c
vss f i, c [ f i, sð Þ over U(S). Here, vss( fi, c [ fi, s) is the

utility of fi appearing in the top-s subsets of c [ fi. The formal definition is

PEPUR c, c0ð Þ ¼ λ cð Þ þ
X
f i2c0�c

vss f i, c [ f i, sð Þ=U Sð Þ ð8:9Þ

Theorem 8.5 If c is a subset of c0, then the pattern utility ratio of c0 does not exceed
the partial extended pattern utility ratio of c in c0.

Proof λ(c0) ¼ u(c0)/U(S)¼ P
f i2c0

v f i, c
0ð Þ/U(S) ¼ P

f i2c
v f i, c

0ð Þ þ P
f i2c0�c

v f i, c
0ð Þ

 !

/U(S). According to Theorem 8.1,
P
f i2c

v f i, c
0ð Þ � P

f i2c
v f i, cð Þ ¼ u cð Þ. According to

Theorems 8.1 and 8.3,
P

f i2c0�c
v f i, c

0ð Þ � P
f i2c0�c

v f i, c [ f ið Þ �P
f i2c0�c

vss f i, c [ f i, sð Þ . Therefore, λ(c0) ¼ (
P
f i2c

v f i, c
0ð Þ +

P
f i2c0�c

v f i, c
0ð Þ )/

U(S) � (u(c) +
P

f i2c0�c
vss f i, c [ f i, sð Þ )/U(S) ¼ λ(c) +

P
f i2c0�c

vss f i, c [ f i, sð Þ /
U(S) ¼ PEPUR(c, c’), i.e., λ(c0) � PEPUR(c, c0). The implication is that if
PEPUR(c, c0) < ξ, then c0 can be pruned as a low utility SCP. □

To make sure the pattern c is a low utility pattern, we first sort the f in descending
order by vss( f, c [ f, s). We can then define the relationship between same level
patterns.

Definition 8.14 (Same level patterns and their relationship) Given two k-co-
location patterns ck and ck’. When c ⊂ ck0 \ ck, we say ck and ck0 are same level
patterns about c. Moreover, if the vss of each f in ck0-c is less than or equal to that of
each f in corresponding position in ck � c and ck0 6¼ ck, we say ck0 is lower than ck,
i.e., ck0 < ck.

For example, Given three SCPs, c ¼ {f5, f8}, c5 ¼ {f3, f5, f7, f8, f10}, c50 ¼ {f3, f5,
f8, f9, f12}, then we say c50 < c5, because c5-c ¼ {f3, f7, f10}, and c50-c ¼ {f3, f9, f12}.
Here, f in the patterns is sorted in the descending order of vss. It is important to note
that if there is c500 ¼ {f3, f5, f6, f8, f12}, we cannot say either c5”< c5 or c500 > c5. This
is because c5 � c ¼ {f3, f7, f10} and c500 � c ¼ {f3, f6, f12}, and vss( f10, c [ f10,
s) > vss( f12, c [ f12, s) while vss( f7, c [ f7, s) < vss( f6, c [ f6, s).

Obviously, if ck and ck0 are the same level SCPs about c and ck0 < ck, then PEPUR
(c, ck0)< PEPUR(c, ck), because

P
f i2c0k�c

vss f i, c [ f i, sð Þ< P
f i2ck�c

vss f i, c [ f i, sð Þ.
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Therefore, if PEPUR(c, ck) < ξ, then PEPUR(c, ck0) < ξ when ck is pruned, but ck is
a superset of c, so all other k-supersets of c which are less than ck should be pruned
too. For example, in Fig. 8.3, features have been sorted by vss in descending order,
where c¼ {f1, f2}, c4¼ {f1, f2, f3, f4}. We can see that {f1, f2, f3, f5}, {f1, f2, f3, f6}, {f1,
f2, f4, f5}, {f1, f2, f4, f6} and {f1, f2, f5, f6} are the same level patterns of c4, and less
than c4. So, if λ(c) < ξ, and PEPUR(c, c4) < ξ, then we can prune all of them
including c4.

Definition 8.15 (Sub-pattern, max-size sub-pattern, highest utility max-size
sub-pattern) Suppose ci and ck are supersets of c, and ci ⊂ ck. Then we say that
ci is a sub-pattern of ck about c. When the size i ¼ k � 1, we say that ci is a max-size
sub-pattern of ck about c. Suppose ck�1 is a max-size superset of ck about c, and
fi ¼ ck � ck�1. If fi is the feature whose vss is the least in ck � c, then we say ck�1 is
the highest utility max-size sub-pattern of ck about c.

Fig. 8.3 The rule of partial pruning algorithm
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For example, if c¼ {f3, f9}, c5¼ {f1, f3, f5, f7, f9}, c4¼ {f1, f3, f5, f9}, then c4 is the
highest utility max-size sub-pattern of c5 about c because f7 ¼ c5 � c4 and f7 is the
least in c5 � c. Here f is sorted in the descending order of vss.

Obviously, when c’ is a sub-pattern of ck about c, PEPUR(c, c0) < PEPUR(c, ck),
because

P
f i2c0�c

vss f i, c [ f i, sð Þ <
P

f i2ck�c
vss f i, c [ f i, sð Þ . Therefore, if PEPUR

(c, ck)< ξ, then PEPUR(c, c0)< ξ, that is to say, if ck is pruned, all of its sub-patterns
about c should be pruned, too. For example, in Fig. 8.3, c ¼ {f1, f2}, c4 ¼ {f1, f2, f3,
f4}. We can see that {f1, f2, f3} and {f1, f2, f4} are sub-patterns of c4 about c. So, if
λ(c) < ξ, and PEPUR(c, c4) < ξ, then we can prune {f1, f2, f3}, {f1, f2, f4} and c4.

Notice that if ck-1 is the highest utility max-size sub-pattern of ck about c, then
ck�1 has the most same-level patterns which are less than it.

Definition 8.16 (Nepotism pattern) Given patterns c and c’, and c ⊂ c0, we define
sub-patterns of c’ about c and their same level patterns less than them as nepotism
patterns of c’.

According to Theorem 8.5, Definitions 8.14 and 8.15, if PEPUR(c, c0)< ξ, then c0

and the nepotism patterns of it should be pruned, even if EPUR(c)> ξ. For example,
in Fig. 8.3, all of the gray patterns are nepotism patterns of {f1, f2, f3, f4, f6} about {f1,
f2}.

Definition 8.17 (Pivot superset) When c is a low utility pattern, in order to prune
more other low utility SCPs, we hope to find a superset ck0 of c, which meets the
following conditions:

1. PEPUR(c, ck0) < ξ, which ensures ck0 can be pruned.
2. The nepotism patterns of ck0 about c should be as many as possible.

There are two aspects relating to condition (2) to consider:

(a) ck0 should be as high as possible for a fixed k. This is because when k is fixed, the
higher ck0 is, the more same-level patterns of ck0 there are, which are lower than
ck0. Moreover, the higher ck0 is, the higher the highest utility max-size sub-
pattern of ck0 is. This aspect should ensure that there are as many nepotism
patterns of ck0 as possible in a horizontal direction.

(b) k should be as high as possible. The higher the k, the more varied is the size of the
sub-patterns of ck0. This aspect should ensure there are as many nepotism
patterns of ck0 as possible in a vertical direction.

However, we must decide how to choose the pivot superset ck0 from so many
supersets of c and how to ensure that the chosen pivot superset ck0 can meet those
two conditions.
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Condition (1) is easy. With inequality PEPUR(c, ck0) < ξ, we getP
f i2c0k�c

vss f i, c [ f i, sð Þ < (ξ-λ(c)) � U(S).

For a given c, the right side of the inequality is constant. We denote it as

Mc ¼ ξ� λ cð Þð Þ � U Sð Þ

So, Condition (1) is equal to
P

f i2c0k�c
vss f i, c [ f i, sð Þ < Mc.

As mentioned earlier, in order to meet Condition (2), there are two aspects to be
considered: (a) the pivot superset should be as high as possible in its size. (b) k
should be as high as possible. However, aspect (a) and aspect (b) contradict to each
other when Condition (1) is true. The contradiction occurs because a higher ck0

generally means a higher vss of the features of ck0, which must lead to a lower k, as
the inequality

P
f i2c0k�c

vss f i, c [ f i, sð Þ < Mc does not allow there to be too many

features in ck0.

Therefore, we compromise and convert the problem into a kind of subset sum
problem, which can be described as follows: If c is a low utility pattern, we can find
the subset G of F-c. The sum of the vss of all features in G is no more than, but is the
nearest to Mc. ck0 ¼G [ c is called pivot superset. For example, {f1, f2, f3, f4, f6} is the
pivot superset of {f1, f2}. By dynamic programming, the subset sum problem can be
solved within pseudo polynomial time.

For the patterns that cannot be pruned, we get their table instances through a star
neighborhood set, then calculate their pattern utility ratios to judge whether they are
high utility SCPs or not.
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8.7.2 Partial Pruning Algorithm (PPA)

PPA is described as follows:

8.2
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Generate SN (Step 2)
Use a geometric method to find all neighbor instance pairs, then convert the

spatial data set into a joinless star neighborhood set (Yoo & Shekhar, 2006).
Initialization and generate Ck (Steps 3–6)

Step 3 initializes Ck, Cpk, Tc, Uk as empty sets. The method
gen_candidate_colocations in Step 6 is used to generate Ck by Cpk and the
combinations of features in F.

Verify high utility SCPs (Steps 7–10)
For each pattern c in Ck, calculate the table instance of c from the joinless star

neighborhood set. If λ(c) � ξ, then put it into the set of high utility SCPs.
Verify the pivot superset and prune the nepotism patterns (Steps 12–19)

If λ(c) � ξ, then find its pivot superset c’ to prune more low utility patterns.
First, calculate Mc, then Steps 13–15 sort features in F-c by vss in descending
order. The method subset_sum_problem in Step 16 is used to solve the subset
sum problem and find the pivot superset c’, where j is the number of features in c’.
Steps 17–19 are used to prune nepotism patterns of c’ by incrementally looping
by size.

8.8 Experiments

The algorithms EPA and PPA were implemented in C# of Visual Studio 2013. All
experiments were conducted on a desktop computer with Intel Core 5 CPU of
2.30GHz, 4GB memory and Windows 7.

We used a synthetic data set and a real plant data set in the experiments. The
synthetic data set was randomly generated and the real plant data set was collected
from “Three Parallel Rivers of Yunnan Protected Areas,” where the spatial range is
1000*1000 and the number of spatial features is 15 (|F| ¼ 15).

8.8.1 Differences Between Mining Prevalent SCPs and High
Utility SCPs

We set the number of all instances from 5000 to 20,000. With the same parameters of
d ¼ 25, ξ ¼ 20%, we compare results of mining by a prevalence-based method (the
joinless algorithm) and a utility-based method (the basic approach of Algorithm 8.1).
As Table 8.1 shows, the SCPs which frequently appear are not always high utility
SCPs, and vice versa. That means the method used for mining frequently appearing
SCPs is not appropriate for mining high utility SCPs.
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8.8.2 Effect of the Number of Total Instances n

We compared the performance of EPA and the basic algorithm. In Fig. 8.4(a),
d ¼ 20, s ¼ 4, ξ ¼ 15% and we see that, due to the increasing number of total
instances, the distance calculations among instances are more frequent and the cost
of the join operation is increased, so the running times of both algorithms are
increased. As the function of EPUR is to prune down a lot of low utility patterns,
the performance of EPA outweighs that of the basic algorithm.

8.8.3 Effect of the Distance Threshold d

In Fig. 8.4(b), n ¼ 10,000, s ¼ 4, ξ ¼ 25%. The performance of EPA is still better
than that of the basic algorithm, as there is a pruning strategy in EPA. Similarly, total
running time increases as d increases because a big value of d means more instances
could generate cliques, which brings more join operations.

8.8.4 Effect of the Pattern Utility Ratio Threshold ξ

In Fig. 8.5(a), n ¼ 10,000, s ¼ 4, d ¼ 35. With an increase of ξ, more low utility
patterns are pruned in the earlier stages of the running process, helping to enhance
the efficiency of EPA. In particular, if ξ ¼ 0, EPA would degenerate to the state
below that of the basic algorithm, as there is the extra cost of calculating intersections
in vss, which is part of EPA.

8.8.5 Effect of s in vss

In Fig. 8.5(b), n ¼ 10,000, d ¼ 30, ξ ¼ 15%. As s passes a certain point, with an
increasing s, the running time of EPA does not decrease and the performance of EPA

Table 8.1 The number of SCPs mined by using joinless and Algorithm 8.1

d ¼ 25, ξ ¼ 20% 5000 10,000 15,000 20,000

Number of high utility patterns 43 201 427 1395

Number of prevalently appearing patterns 155 482 1711 6057

Number of repeated patterns 29 79 239 848

Ratio of repeated patterns to high utility patterns 67.4% 39.3% 56.0% 60.8%

Ratio of repeated patterns to prevalently appearing
patterns

18.7% 16.4% 14.0% 14.0%
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becomes worse. This is because a large value of s brings about a large cost from
calculating the intersections in vss.

8.8.6 Comparing PPA and EPA with a Different Utility Ratio
Threshold ξ

The major difference in time cost between PPA and EPA appears when the utility
ratio threshold changes. In Fig. 8.6, n ¼ 15,000, s ¼ 4, d ¼ 30. When EPA checks
low size and low utility patterns, vss and EPUR are too high, because the number of
instances of a low size pattern is generally large. Therefore, when ξ is low, it is
difficult for EPA to show its advantage, as many low utility patterns are missed when
EPA checks these low size patterns. However, PPA is more adaptable when ξ is low

Fig. 8.4 Effects of total number of total instances n and the distance threshold d, where (a) vary
the number of instances; (b) vary the distance threshold

Fig. 8.5 Effect of the pattern utility ratio threshold ξ and the s in vss, where (a) vary the pattern
utility ratio threshold ξ; (b) vary the s in vss
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as it can prune a lot of those low utility patterns missed by EPA when checking low
size patterns. So when ξ is low, PPA is more efficient than EPA.

When ξ increases to an extent, though, more low utility patterns can be pruned by
EPA at an earlier stage. That leads to an improved efficiency of EPA. Meanwhile, the
efficiency of PPA is also improved, because Mc increases with the increase of ξ,
leading to more nepotism patterns being pruned. However, as the calculating subset
sum problem brings an extra time cost, the increase of efficiency of PPA is not as
obvious as for EPA. Overall, the efficiency of EPA is better than PPA, but only as ξ
increases to a certain extent. With the parameters given above, the inflection point of
ξ is 40%, when running these two algorithms with a real dataset.

8.9 Chapter Summary

In this chapter, we incorporated utility into the framework of SCP mining, and
developed two algorithms, EPA and PPA, for mining high utility SCPs.

The EPA algorithm performs efficiently and effectively in most cases, as proved
through experiments. However, in EPA, if a pattern c is a low utility SCP, whether or
not its supersets can be pruned depends on EPUR(c). Therefore, we defined the new
concept of PEPUR, which helps to find low utility supersets while checking low-size
patterns. In addition, the new concepts of nepotism patterns and pivot superset are
defined in this chapter, and we used them to find as many as possible low utility
patterns that were missed by EPA. A series of experiments showed that the problems
of mining frequently appearing patterns and of mining high utility patterns are
completely different. Experiments also showed the effects of various parameters
on the efficiency of methods based on utility. The efficiencies of EPA and PPA
running with the same parameters were analyzed.

Fig. 8.6 Effects of the pattern utility ratio threshold ξ in PPA and EPA; where (a) synthetic dataset;
(b) real dataset
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This chapter has made developments on the assumption that different features
have different utilities. However, in the real world, even different instances of the
same feature have different utilities. For example, the fresh apple is always more
expensive than stale one. The grown oak is always more worthy than the oak sapling.
So in the next chapter, we will explore the problem of mining high utility SCPs
based on a utility difference between instances.
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Chapter 9
High Utility Co-location Patterns
with Instance Utility

9.1 Introduction

In this chapter, we present a new measure for mining interesting high utility spatial
co-location patterns (high utility SCPs) from spatial data sets with instance-specific
utilities. Differing from the developments of the last chapter, this chapter makes the
following contributions to the mining process:

First, we take instances with their associated utilities as study objects, and
consequently the importance of features and instances is treated differently.

Second, we propose a new measure to identify interesting high utility SCPs in
spatial data sets with instance-specific utilities.

Third, we present a basic algorithm to mine the high utility SCPs with instance
utility. In order to reduce the computational cost, some pruning strategies are given.

Finally, extensive experiments on synthetic and real-world data sets verify that
the proposed methods are both effective and efficient.

Figure 9.1 presents the organization of this chapter. Section 9.2 discusses the
needs of taking the utility value of each instance into account in SCP mining. Related
work is presented in Sect. 9.3. Section 9.4 gives the related concepts for mining high
utility SCPs from spatial data sets with instance-specific utilities, and a basic mining
algorithm is presented in Sect. 9.5. In Sect. 9.6, the new pruning strategies are
detailed. Experimental results and evaluation are shown in Sect. 9.7 and the conclu-
sions are given in Sect. 9.8.
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9.2 Why We Need Instance Utility with Spatial Data

In recent years, spatial data has been rapidly generated and the size of spatial data
sets is getting continues to increase. For example, currently NASA’s Earth Observ-
ing System generates more than 1 TB of spatial data per day. As the number of
mobile devices increases, so data associated with location information increases
faster and faster. The vast amounts of this spatial data contain potentially valuable
information which can help us make important decisions, but only if the interesting
patterns in the data can be extracted, or mined. A lot of researches have already taken
place on spatial data mining, including spatial association rule analysis, spatial
clustering, spatial classification, and so on.

In spatial data, if the distance between two spatial instances is no more than a
given distance threshold, then the two instances are said to satisfy the neighbor
relationship. Traditional spatial co-location pattern (SCP) mining aims at finding the
subsets of spatial features whose instances are frequently located in neighborhoods.
A row instance of an SCP c represents a subset of instances, which includes an
instance of each feature in c and forms a clique under the neighbor relationship. All
the row instances of an SCP c make up its table instance denoted as T(c). A

Section 9.8Chapter Summary

Section 9.3

A basic mining algorithm Section 9.5

Section 9.1Introduction

Three pruning strategies

Section 9.2Why we need instance utility with spatial data

Related work

Experimental
Analysis Section 9.7

Section 9.6

Section 9.4Related concepts
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participation index (PI) is used to evaluate the prevalence of SCPs, similar to the
support measures in association rules mining (ARM). The PI of an SCP c is defined
as PI(c) ¼ minfi 2 c{PR(c, fi)}, where PR(c, fi) is the participation ratio (PR) of

feature fi in an SCP c, that is PR c, f ið Þ ¼ π f i T cð Þj j
Number of instances of f i

, where π is the relational

projection operation with duplication elimination. Participation ratio is used to
evaluate the prevalence of features, and the participation index, which is the measure
of interest normally used in traditional SCP mining, measures the prevalence
of SCPs.

Mining SCPs is very significant in the real world. For example, botanists have
found that there are orchids in 80% of the area where the middle-wetness green-
broad-leaf forest grows. A mobile service provider may be interested in those mobile
service patterns frequently requested by geographically neighboring users. Other
applications include Earth science, public health, biology, transportation, etc.

In most previous studies, the importance of all features and instances are treated
similarly. However, often there exist differences between features and even instances
belonging to the same feature. For instance, the economic value of rosewood is much
greater than that of ordinary pine. What’s more, the value of different sizes of
rosewood is also different. So, only checking the prevalence of SCPs may be
insufficient for identifying really interesting patterns. Traditional SCP mining suffers
from not finding some low prevalence but highly interesting patterns (Yang et al.,
2015), but finding many prevalent patterns which just reflect common sense and are
worthless to users.

Here, we use an example to illustrate the problem. Figure 9.2 shows the locations
of instances of six kinds of plants (features), and each instance is denoted by the
plant type and a numeric id, e.g., A.1, and edges among instances indicate neigh-
boring relationships. The superscript of each instance represents its utility value,
which can easily be considered as its price. Table 9.1 gives the total utility value of
each kind of plant which is the sum of utility value of all instances belonging to the
plant type.

A.110 F.21

E.22C.41

C.11B.37

C.29 B.48

B.58

A.37

D.19

D.21

A.28

F.12

E.32

B.11

A.43

E.110

B.21

C.31

D.33

F.315

Fig. 9.2 An example
spatial data set
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From Fig. 9.2, according to the traditional SCP mining, for the co-location {A, B,
C}, PI({A, B, C}) ¼ 1/4 and if the prevalence threshold is 0.3, {A, B, C} would be
regarded as a non-interesting SCP. However, according to T({A, B, C}) ¼ {{A.110,
B.48, C.29}, {A.37, B.58, C.29}}, the utility value of feature A’s instances in {A, B,
C} is 17, which accounts for 17/28 of total utility value of A. Similarly, the
proportion of B is 16/25 and C is 9/12. So the utility of each feature in {A, B, C}
accounts for a large proportion of the total utility, suggesting that {A, B, C} may
well be an interesting pattern. However, as to the pattern {E, F}, PI({E, F}) ¼ 2/3,
T({E, F}) ¼ {{E.22, F.21}, {E.32, F.12}}. The proportion of E is only 4/14 and F is
only 3/18 so the utility of each feature in {E, F} is less than 30%. In comparison to
{A, B, C}, {E, F} is probably non-interesting to the user.

Therefore, we see that traditional measures may not find interesting SCPs because
the utilities of features and instances are ignored. In this chapter, we remedy that
situation by focusing on mining high utility SCPs from spatial data sets with
instance-specific utilities.

9.3 Related Work

The problem of mining spatial association rules was first discussed in Koperski and
Han (1995). The participation index for prevalent SCP mining and join-based
algorithm was presented in Shekhar and Huang (2001) and Huang et al. (2004). A
lot of existing work about prevalent SCP mining is based on the participation index
which satisfies the downward closure property. The join-less algorithm was intro-
duced in Yoo and Shekhar (2006), using a novel model to materialize spatial
neighbor relationships and an instance-lookup scheme to reduce the computational
cost of identifying table instances. An efficient algorithm based on iCPI-Tree was
proposed in Wang et al. (2009a). In order to mine SCPs with rare features, a new
prevalence measure, the maximal participation ratio, was proposed in Huang et al.
(2006). A new general class of measures of interest based on the spatial distribution
of SCPs and information entropy was proposed in Sengstock et al. (2012). Proba-
bilistically prevalent SCP mining was introduced inWang et al. (2013a) to find SCPs
in the context of uncertain data. Wang et al. (2010) studied co-location rule mining
on interval data and defined new related concepts based on a semantic proximity
neighborhood. An optimal candidate generation method was proposed in Lin and

Table 9.1 Total utility value
of each plant in Fig. 9.2

Features Instances Total utility values

A A.110, A.28, A.37, A.43 28

B B.11, B.21, B.37, B.48, B.58 25

C C.11, C.29, C.31, C.41 12

D D.19, D.21, D.33 13

E E.110, E.22, E.32 14

F F.12, F.21, F.315 18
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Lim (2009). The SCP mining to deal with complex spatial relationships was
introduced in Verhein and Al-Naymat (2007).

Research on high utility pattern mining was first discussed in Yao et al. (2004),
where the utility of each item consists of an internal utility and an external utility.
The internal utility represents the quantity of items in transactions and the external
utility is the unit profit values of items. But the utility of itemsets doesn’t satisfy the
downward closure property which is used to improve mining efficiency, and so a
two-phase algorithm for the fast mining of high utility itemsets was proposed in Liu
et al. (2005). Ahmed et al. (2011) introduced a novel framework to mine interesting
high utility patterns with strong frequency affinities. An incremental mining algo-
rithm for efficiently mining high utility itemsets was proposed to handle intermittent
data environments in Hong et al. (2012). UP-Growth proposed in Tseng et al. (2010)
enhanced mining performance by maintaining the information of high utility
itemsets with a UP-tree. A novel algorithm named GUIDE and a special data
structure named TMUI-tree were proposed for mining temporal maximal utility
itemsets from data stream environments (Shie et al., 2010). Yin et al. (2012)
introduced an efficient algorithm named USpan to mine high utility sequences
from large-scale data with very low minimum utility.

There are more and more studies on SCP mining and high utility itemsets mining,
but rarely is there literature about high utility SCP mining (Yang et al., 2015; Wang
et al., 2016b, 2019d). Similar to the work of Yao et al. (2004), Yang et al. (2015)
divided the utility of features in an SCP into external utility and internal utility. The
external utility represents the unit profile and the internal utility represents the
quantity of different instances of features in a table instance. The utility of a feature
in an SCP is equal to the product of external and internal utilities. A framework for
mining high utility SCPs was thus proposed (Yang et al., 2015). By following the
definitions in Yang et al. (2015), Wang et al. (2016a, 2016b, 2019c, 2019d)
discussed the problem of updating high utility SCP mining on evolving spatial
databases.

In some real-world data, the utilities of features are different from each other and
even instances belonging to the same feature may have an obvious difference in their
utilities. Furthermore, in some cases, the data set does not map into a model of
external and internal utility. Considering the complexity of real-world data, there
exist two major challenges in high utility SCP mining from spatial data sets with
instance-specific utilities. One is how to define the measure of interest reasonably so
as to judge high utility SCPs with instance utility, and the other is how to efficiently
mine high utility SCPs with instance utility. This chapter tackles both these
challenges.
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9.4 Related Concepts

In the real world, the importance of each instance may be different, so we take the
instances with utilities as study objects and assume the utilities reflect their impor-
tance. The related concepts for mining high utility SCPs are given in this section, and
Table 9.2 summarizes notations frequently used throughout the chapter.

Definition 9.1 (Spatial instance with utility value) Given a set of spatial features
F and a set of their instances S, let spatial instance fi.j

v 2 S be the j-th instance of
feature fi 2 F. The utility value of fi.j

v is expressed by the superscript v and we denote
the utility of spatial instance fi.j

v as u( fi.j) ¼ v.
According to Definition 9.1, every instance may have a distinct utility, even if

they belong to the same feature. Using our rosewood example, the feature A may
represent the rosewood in general. A.11000 is a 100-year-old rosewood and worth
$1000, i.e., u(A.1) ¼ 1000. A.225 is a 10-year-old rosewood, which is worth $25,
i.e. u(A.2) ¼ 25.

The total utility of a feature fi 2 F is the sum of utilities of its instances, denoted as
u f ið Þ ¼ Pm

j¼1u f i � jð Þ , where m is the number of instances belonging to fi. For
example, the total utilityof featureA inFig. 9.2 isu(A)¼u(A.1)+u(A.2)+u(A.3)+u(-
A.4) ¼10 + 8 + 7 + 3 ¼ 28.

Definition 9.2 (Utility of feature in SCP) Given a size k SCP c¼ {f1, f2,. . .,fk}, we
define the sum of utilities of instances belonging to feature fi 2 c in table instance
T(c) as the utility of fi in c, denoted as:

u f i, cð Þ ¼
X

f i:j2π f i T cð Þð ÞU f i � jð Þ ð9:1Þ

where π is the relational projection operation with duplication elimination.

Table 9.2 Summary of notation

Notation Definition Notation Definition

F Set of spatial features u( fi) Utility of feature fi
fi i-th spatial feature u( fi, c) Utility of feature fi in co-location c

S Set of features’ instances IntraUR( fi,
c)

Intra-utility ratio of fi in c

fi.j
v j-th instance with utility

v of fi
InterUR( fi,
c)

Inter-utility ratio of fi in c

c A co-location pattern UPR( fi, c) Utility participation ratio of fi in c

k Size of c UPI(c) Utility participation index of c

R A spatial neighbor
relationship

w1 Weighted value of IntraUR in computing
UPR

T(c) Table instance of c w2 Weighted value of InterUR in computing
UPR

u( fi.j) Utility of instance fi.j M A UPI threshold
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For example, for c ¼ {A, B, C} in Fig. 9.2, T(c) ¼ {{A.110, B.48, C.29}, {A.37,
B.58, C.29}}. The utility of A in c is u(A, c) ¼ u(A.1) + u(A.3) ¼ 10 + 7 ¼ 17.

Definition 9.3 (Intra-utility ratio) Given a size k SCP c ¼ {f1, f2,. . ., fk}, the intra-
utility ratio of feature fi in c is defined as the proportion of fi’s utility in c to its total
utility as follows:

IntraUR f i, cð Þ ¼ u f i, cð Þ
u f ið Þ ð9:2Þ

IntraUR( fi, c) indicates the direct utility of feature fi in SCP c, which can be
regarded as its direct influence on c.

For example, for c ¼ {A, B, C} in Fig. 9.2, T(c) ¼ {{A.110, B.48, C.29}, {A.37,
B.58, C.29}}. The intra-utility ratio of each feature in c is calculated as:

IntraUR A, cð Þ ¼ u A:1ð Þ þ u A:3ð Þ
u Að Þ ¼ 17=28, IntraUR B, cð Þ ¼ u B:2ð Þ þ u B:5ð Þ

u Bð Þ

¼ 16=25, IntraUR C, cð Þ ¼ u C:2ð Þ
u Cð Þ ¼ 9=12:

Definition 9.4 (Inter-utility ratio) Given a size k SCP c ¼ {f1, f2,. . ., fk}, the inter-
utility ratio of feature fi in c is defined as:

InterUR f i, cð Þ ¼
P

f j2c,j6¼iu f j, c
� �

P
f j2c,j 6¼iu f j

� � ð9:3Þ

The inter-utility ratio is regarded as the influence of feature fi on other features in
SCP c, which is an indirect influence of fi on c. In an SCP, some instances of features
often co-occur in neighborhoods. Thus, in an SCP c ¼ {f1, f2,. . ., fk}, any change of
feature fi 2 c probably impacts the utility of other features in c. For example, in
location-based services the sales of service A might promote the sales of service
B. So, we use the inter-utility ratio to indicate the effect of a feature on other features
in an SCP. In Fig. 9.2, the effect of feature A in SCP {A, B, C} on other features B

and C is computed as: InterUR A, cð Þ ¼ u B, cð Þþu C, cð Þ
u Bð Þþu Cð Þ ¼ 25=37.

We split the influence of feature fi into two parts to evaluate an SCP
c comprehensively and reasonably. One part is the influence of its utility in c,
denoted as IntraUR( fi, c), the other part being the indirect influence of fi on c,
denoted as InterUR( fi, c).

Definition 9.5 (Utility participation ratio, UPR) Given a size k SCP c ¼ {f1,
f2,. . ., fk}, the weighted sum of IntraUR( fi, c) and InterUR( fi, c) is defined as the
utility participation ratio of feature fi in c, denoted as UPR( fi, c). Note that UPR( fi,
c) ¼ w1 � IntraUR( fi, c) + w2 � InterUR( fi, c), where 0 � w1, w2 � 1 and
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w1 + w2 ¼ 1, w1 representing the weighted value of IntraUR( fi, c) and w2

representing that of InterUR( fi, c).
The w1 and w2 in Definition 9.5 are expected to be assigned specific values by the

application user and can be used to adjust the effects of IntraUR and InterUR. For
example, in supermarket sales, if we are more concerned about promoted sales of
different goods, w1 � w2 may be reasonable. Usually, w1 and w2 satisfy w1 � w2.

For example, in Fig. 9.2, if we suppose w1 ¼ 0.7 and w2 ¼ 0.3, then the UPR of
each feature in c ¼ {A, B, C} is computed as:

UPR A, cð Þ ¼ 0:7� IntraUR A, cð Þ þ 0:3� InterUR A, cð Þ
¼ 0:7� 17=28ð Þ þ 0:3� 25=37ð Þ ¼ 0:628:

UPR B, cð Þ ¼ 0:7� IntraUR B, cð Þ þ 0:3� InterUR B, cð Þ
¼ 0:7� 16=25ð Þ þ 0:3� 26=40ð Þ ¼ 0:643:

UPR C, cð Þ ¼ 0:7� IntraUR C, cð Þ þ 0:3� InterUR C, cð Þ
¼ 0:7� 9=12ð Þ þ 0:3� 33=53ð Þ ¼ 0:711:

Definition 9.6 (Utility participation index, UPI) Given a size k SCP c¼ {f1, f2,. . .,
fk}, We define the minimum utility participation ratio among all features in c as the
utility participation index of c, i.e., UPI(c) ¼ min{UPR( fi, c), fi 2 c}.

A SCP c is a high utility SCP if and only if UPI(c) � M holds, whereM is a UPI
threshold given by the user.

The UPI measure extends the traditional PI measure based on prevalence only. If
the utilities of instances and the influence between features in an SCP are ignored,
UPI is equal to the traditional PI.

Prevalent patterns may not be high utility patterns and the high utility patterns
may not be prevalent as well, which can be proved by SCPs {E, F} and {A, B, C} in
Fig. 9.2. If w1 ¼ w2 ¼ 0.5 and M ¼ 0.3, UPI({E, F}) ¼ 0.226 and PI({E,
F}) ¼ 0.667, while UPI({A, B, C}) ¼ 0.628 and PI({A, B, C}) ¼ 0.25. Because
of the full consideration into the difference of each instance, our measure of interest
is more reasonable. However, different from the traditional measures of interest, UPI
does not satisfy the downward closure property which has been found to be a very
efficient pruning strategy for mining prevalent SCPs. Therefore, finding all high
utility SCPs directly is time-consuming. For example, for c ¼ {A, D} in Fig. 9.2,
T(c)¼ {{A.37, D.19}}. Given w1 ¼ w2 ¼ 0.5, we can get UPI({A, D})¼ 0.471. But
the super pattern c0 ¼ {A, C, D} of c, T(c0) ¼ {{A.37, C.29, D.19}}, and UPI({A, C,
D}) ¼ 0.485. So, we have the inequality UPI(c0) > UPI(c).
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9.5 A Basic Algorithm

In this section, we present a basic algorithm for mining the high utility SCPs defined
in Sect. 9.4. The basic algorithm has three phases. The first phase is to materialize the
spatial neighbor relationships. The spatial data set is converted into the star neigh-
borhood partition model in Yoo and Shekhar (2006). The second phase is to generate
candidate high utility SCPs and compute their table instances. The third phase is to
compute the UPI of each candidate and find high utility SCPs. The second and third
phases are repeated by incrementing the co-locations’ size. Algorithm 9.1 shows the
pseudocode of the basic algorithm.

Initialization (Steps 1–2): Given a spatial data set and a spatial neighbor relation-
ship, we need to find all neighboring instance pairs using a geometric method
such as mesh generation or plane sweep (Yoo & Shekhar, 2006). The star
neighborhoods can be generated from the neighbor instance pairs in lexicograph-
ical order (Yoo & Shekhar, 2006). After generating the star neighborhood set
(SN), we initialize all size 1 co-locations to a utility participation index of 1.0,
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which means all size 1 co-locations are high utility SCPs. We then add all size
1 co-locations into H1.

Generating candidate co-locations (Step 4): A size k (k � 2) candidate high utility
SCPs in Ck is generated from a size k-1 co-location c in Hk-1 or NonHk-1 as well as
a new feature fs which is not included in c and which is greater than all features of
c in lexicographical order, i.e., Ck ¼ {c0| c0 ¼ c [ {fs}, 8c 2 Hk � 1 [ NonHk � 1,
fs > 8 fi 2 c}.

The size 2 candidates in C2 can be generated from the star neighborhood set
directly.

Calculating the UPIs of candidates (Steps 5–6): The size 2 co-locations’ table
instances can be gathered from the star neighborhood set directly. For size
k (k > 2) co-locations, their table instances need to be extended by the size k-1
co-locations’ table instances. For example, the table instance of co-location
{A, B, C} can be generated from the table instance of co-location {A, B}.
Then, we can compute the UPI of each candidate co-location according to
Definitions 9.5 and 9.6.

Identifying high utility SCPns (Steps 7–8): We can filter high utility SCPs by the
UPIs of candidates and the given UPI thresholdM. Then the high utility SCPs are
added into Hk and the non-high utility SCPs are added into NonHk.

Steps 3–10 are repeated by incrementing the size of k.
In Fig. 9.2, if w1 ¼ w2 ¼ 0.5 and M ¼ 0.5, we can get the high utility SCPs {A,

B}, {A, C}, {A, B, C}, {B, C}, {B, D}, {C, D}, and {C, E}. The algorithm
developed so far, the basic algorithm tests all possible patterns, computes their
UPIs accurately and is complete and correct, but it is inefficient. In the next section,
we give some needed pruning strategies to improve the efficiency of the basic
algorithm.

9.6 Pruning Strategies

In this section, we introduce some pruning strategies which promote the efficiency of
the basic algorithm. Similar to traditional SCP mining, the most time-consuming
component in mining high utility SCPs is to generate the table instances of candidate
patterns. Traditional SCP mining based on PI can efficiently find all prevalent SCPs
due to the downward closure property, but there is no a similar method to find all
high utility SCPs due to the non-existence of the downward closure property. In
order to improve the efficiency of the basic algorithm, then, we have to identify early
in the mining process some non-high utility candidate co-locations, but without
generating their table instances. The following pruning strategies are used to facil-
itate this early pruning of non-high utility candidate patterns.
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Lemma 9.1 For n1 � m1 > 0, n2 � m2 > 0, there exists the following inequality:

m1 þ m2

n1 þ n2
� max

m1

n1
,
m2

n2

� �

Proof Given n1 � m1 > 0, n2 � m2 > 0. If m1
n1

� m2
n2
, then there exists m1þm2

n1þn2
�

m1
n1

¼ m2n1�m1n2
n1 n1þn2ð Þ � 0. So, m1þm2

n1þn2
� m1

n1
holds.

Similarly, if m2
n2

� m1
n1
, then m1þm2

n1þn2
� m2

n2
.

Therefore, m1þm2
n1þn2

� max m1
n1
, m2
n2

n o
holds. □

Corollary 9.1 For k (k > 1) pairs mi and ni (i ¼ 1, 2, . . ., k), if ni � mi > 0, there

exists the following inequality:
Pk

i¼1
miPk

i¼1
ni
� max k

i¼1
mi
ni

n o
.

Definition 9.7 (Non-high utility feature set) Given a size k co-location c ¼ {f1,
f2,. . .,fk}, the set of all features in c whose UPR is less than the UPI threshold M we
call the non-high utility feature set of c.

For example, for c ¼ {A, B, D} in Fig. 9.2, if M ¼ 0.4 and w1 ¼ w2 ¼ 0.5, then
UPR(A, c)¼0.257,UPR(B, c)¼ 0.215 andUPR(C, c)¼ 0.422. The non-high utility
feature set of c is {A, B}.

Theorem 9.1 If c1 and c2 are two non-high utility SCPs, and they have one and only
one common feature fi and it is also a non-high utility feature, then the pattern c¼ c1
[ c2 must be a non-high utility SCP, i.e., c ¼ c1 [ c2 can be pruned.

Proof Because fi is a non-high utility feature in c1 and c2, we have:

UPR f i, c1ð Þ ¼ w1
u f i, c1ð Þ
u f ið Þ þ w2

m1

n1
< M ð9:4Þ

where m1 ¼
P

f j2c1,j 6¼iu f j, c1
� �

and n1 ¼
P

f j2c1,j 6¼iu f j

� �
. And

UPR f i, c2ð Þ ¼ w1
u f i, c2ð Þ
u f ið Þ þ w2

m2

n2
< M ð9:5Þ

where m2 ¼
P

f j2c2,j 6¼iu f j, c2
� �

and n2 ¼
P

f j2c2,j 6¼iu f j

� �
.

For the co-location c ¼ c1 [ c2, the UPR of fi in c satisfies:

UPR f i, cð Þ ¼ w1
u f i, cð Þ
u f ið Þ þ w2

m1 þ m2

n1 þ n2
ð9:6Þ

due to fi being the unique common feature in c1 and c2.
According to Definition 9.2 and the concept of table instance, we have u( f,

c) � u( f, c0) if f is the common feature in co-locations c and c0, and c0 ⊆ c.
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According to Lemma 9.1, m1þm2
n1þn2

� max m1
n1
, m2
n2

n o
.

Therefore, we can infer UPR( fi, c) < M by (9.4), (9.5) and (9.6), and so decide
that c ¼ c1 [ c2 is a non-high utility co-location. □

For example, for c1¼ {A, B, D} and c2¼ {B, E} in Fig. 9.2, if w1¼ w2¼ 0.5 and
M ¼ 0.5, T(c1) ¼ {{A.37, B.11, D.19}} and T(c2) ¼ {{B.48, E.32}}. The UPRs of
common feature B in c1 and c2 are UPR(B, c1) ¼ 0.215 < M and UPR(B,
c2)¼ 0.231<M, respectively UPR(B, c2)¼ 0.231< λ, which satisfy the conditions
of Theorem 9.2. So, c1 [ c2 ¼ {A, B, C, D} must be a non-high utility SCP and can
be pruned.

According to the Theorem 9.1 and Corollary 9.1, we can infer Corollary 9.2.

Corollary 9.2 For size 2 non-high utility SCPs c1, c2,. . ., ck (k > 1), if they have a
common non-high utility feature f, then the pattern c ¼ c1 [ c2 [ . . . [ ck must be a
non-high utility SCP, i.e., c can be pruned.

When the spatial data set is sparse or the UPI threshold M is high, there often are
large amounts of size 2 non-high utility SCPs, so we can prune a large number of
higher size non-high utility SCPs by combining those size 2 non-high utility SCPs.

In Fig. 9.2, if w1¼ w2¼ 0.5 andM¼ 0.5, the size 2 non-high utility SCPs are {A,
E}, {B, E}, {D, E} and {E, F}. As E is a non-high utility feature, Corollary 9.2
enables us to prune {A, B, E}, {A, D, E}, {A, E, F}, {B, D, E}, {B, E, F}, {D, E, F},
{A, B, D, E}, {A, B, E, F}, {A, D, E, F}, {B, D, E, F}, and {A, B, D, E, F}.

According to Definition 9.2, for a size k co-location c ¼ {f1, f2,. . ., fk} and fi 2 c,
then u( fi, c) � u( fi, c0) holds, where c0 is an arbitrary size k � 1 sub-pattern of
c including fi. We call the minimum of the utilities of those fi in size k � 1
sub-patterns of c which include fi as the upper bound utility of fi in c, the
upbound_u( fi, c).

For example, for c¼ {A, B, C} in Fig. 9.2, the upper bound utility of feature A in
c is upbound_u(A, c) ¼ min{u(A, {A, C}), u(A, {A, B})} ¼ min{17, 28} ¼ 17.

Lemma 9.2 Given a size k co-location c ¼ {f1, f2,. . ., fk} and its size k + 1 super-
pattern c0 ¼ c [ {fk + 1}, the upper bound of UPI(c0) is computed as follows:

min w1
u f i, cð Þ
u f ið Þ þ w2

P
f j2c,j6¼iu f j, c

� �þ upbound u f kþ1, c
0� �

P
f j2c,j6¼iu f j

� �þ u f kþ1

� � , 1 � i � k

( )

Proof If c ¼ {f1, f2,. . ., fk} and c0 ¼ c [ {fk+1}, then for any feature fi 2 c, the
inequality u( fi, c0) � u( fi, c) holds.

So, we have UPR f i, c
0ð Þ � w1

u f i , cð Þ
u f ið Þ þ w2

P
f j2c,j 6¼i

u f j , cð Þþupbound u f kþ1, c
0ð ÞP

f j2c,j 6¼i
u f jð Þþu f kþ1ð Þ .

Based on Definition 9.6, we can infer that:
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UPR c0ð Þ �

min w1
u f i, cð Þ
u f ið Þ þw2

P
f j2c,j 6¼iu f j, c

� �þ upbound u f kþ1, c
0� �

P
f j2c,j 6¼iu f j

� �þ u f kþ1

� � , 1 � i � k

( )
: □

Theorem 9.2 Given a size k non-high utility SCP c¼ {f1, f2,. . ., fk} and its size k + 1
super-pattern c0 ¼ c [ {fk+1}, if there is a non-high utility feature fi 2 cwhich satisfiesP

f j2c,j 6¼i
u f j, cð ÞP

f j2c,j 6¼i
u f jð Þ >

upbound u f kþ1, c
0ð Þ

u f kþ1ð Þ , then c0 is a non-high utility SCP, i.e., c can be

pruned.

Proof For a non-high utility SCP c ¼ {f1, f2,. . ., fk} and c0 ¼ c [ {fk+1}, if fi is a
non-high utility feature in c and M is the UPI threshold, we have

UPR f i, cð Þ ¼ w1
u f i, cð Þ
u f ið Þ þ w2

m
n
< M ð9:7Þ

where m ¼ P
f j2c,j6¼iu f j, c

� �
and n ¼ P

f j2c,j 6¼iu f j

� �
.

According to Lemma 9.2, the UPR of fi in c0 satisfies the following inequality:

UPR f i, c
0ð Þ � w1

u f i, cð Þ
u f ið Þ þ w2

mþ upbound u f kþ1, c
0� �

nþ u f kþ1

� �
According to Lemma 9.1, we have

mþ upbound u f kþ1, c
0� �

nþ u f kþ1

� � � max
m
n
,
upbound u f kþ1, c

0� �
u f kþ1

� �
( )

If m
n >

upbound u f kþ1, c
0ð Þ

u f kþ1ð Þ , the following inequality holds:

UPR f i, c
0ð Þ � w1

u f i, cð Þ
u f ið Þ þ w2

m
n

Based on Inequality (9.7), we can infer that UPR( fi, c0) < M. So, c0 must be a
non-high utility SCP. □

For example, for c ¼ {B, C, D} in Fig. 9.2, if w1 ¼ w2 ¼ 0.5 and M ¼ 0.5, c is a
non-high utility SCP because T(c) ¼ {{B.48, C.29, D.21}}, UPR(B, c) ¼ 0.36,
UPR(C, c) ¼ 0.493 and UPR(D, c) ¼ 0.268. For the super-pattern c0 ¼ {B, C, D,
E} of c, upbound_u(E, c0) ¼ min{u(E, {B, C, E}) + u(E, {B, D, E}) + u(E, {C, D,
E})} ¼ min{2, 2, 2} ¼ 2. As to the feature B in {B, C, D}, we have
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u C, cð Þ þ u D, dð Þ
u Cð Þ þ u Dð Þ ¼ 9þ 1

12þ 13
>

upbound u E, c0ð Þ
u Eð Þ ¼ 1

14

So, based on the results of computing the size 3 SCPs, we can infer that the size
4 SCP {B, C, D, E} must be a non-high utility SCP.

Theorem 9.1, Corollary 9.2 and Theorem 9.2 become the three pruning strategies
to identify some non-high utility SCPs early in the mining process.

9.7 Experimental Analysis

This section verifies the effect and efficiency of the basic algorithm and of the
algorithm with pruning strategies on both synthetic and real data sets. The algorithms
are implemented in Java 1.7 and run on a windows 8 operating system with 3.10GHz
Intel Core i5 CPU and 4GB memory.

9.7.1 Data Sets

We conducted the experiments on synthetic data sets and on a plant data set of the
“Three Parallel Rivers of Yunnan Protected Areas.”. Synthetic data sets were
generated using a spatial data generator similar to Huang et al. (2004) and Yoo
and Shekhar (2006), and the utilities of instances were assigned randomly between
0 and 20. In the plant data sets, we computed the utilities of plant instances according
to the plant price associated with that size and kind of plant. The efficiency of the
basic algorithm and of the algorithm with pruning strategies are examined on both
data sets.

9.7.2 The Quality of Mining Results

This chapter aims at finding the high utility SCPs whose instances are frequently
located together in geographic space and which have high utilities, so we take the
criterion Q(c) ¼ ∑f 2 cu( f, c)/∑f 2 cu( f ) to evaluate the quality of a mined SCP c.

To show that the UPI measure of interest is reasonable we compare the quality of
mining results identified by different measures of interest. These are the traditional
participation index measure (PI), the traditional pattern utility ratio (PUR) proposed
in Yang et al. (2015) and the UPI proposed here.

In the experiments which produce Fig. 9.3, we take the number of spatial features
|F| as 15, the total number of instances |S| as 10,000, the neighboring distance
threshold d as 30, and w1 ¼ 0.9, w2 ¼ 0.1. Figure 9.3(a) shows the sum of the
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quality of the top-k interesting SCPs identified by the PI, PUR and UPI measures.
Figure 9.3(b) shows the average quality of top-20 interesting patterns identified by
the three measures over different sizes. The results show that our UPI measure can
identify higher quality SCPs, and it can extract top SCPs with higher average utility.

9.7.3 Evaluation of Pruning Strategies

On synthetic and real data sets, we evaluated the effect of pruning strategies with
several workloads, e.g., different numbers of instances, neighbor distance thresh-
olds, UPI thresholds, and pruned rate.

1. Influence of the number of instances
We compared the running time of the basic algorithm and the algorithm with

pruning strategies on the synthetic and real data sets. We set |F| ¼ 20, d ¼ 20,
M ¼ 0.3, w1 ¼ w2 ¼ 0.5, and measured the running time of two algorithms as
the number of instances increased, as shown in Fig. 9.4. The performance of the
algorithm with pruning strategies is better than the basic algorithm on both the
synthetic and real data sets. Compared with synthetic data sets, the neighbor
relationships of real data sets are relatively fewer, which results in fewer row
instances being computed explaining why the runtime of the algorithms on the
real data set was less than that on the synthetic data set in our experiments.

2. Influence of the distance threshold d
In the experiment producing Fig. 9.5, we set |F| ¼ 20, |S| ¼ 10,000, M ¼ 0.3,

w1¼ w2¼ 0.5. We compared the running time of two algorithms by changing the
distance threshold d, and we can see that the algorithm with pruning strategies
was still faster than the basic algorithm. However, both algorithms may have a
huge time-cost associated with increases in d. This is because, as d increases there
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are more cliques formed, resulting in huge numbers of row instances having to be
computed and more time consumed.

3. Influence of the UPI threshold M
We set |F| ¼ 20, |S| ¼ 10,000, d ¼ 15, w1 ¼ w2 ¼ 0.5 in this experiment. The

running time of two algorithms with the changes of the UPI thresholdM is shown
in Fig. 9.6. With an increase of M, more non-high utility co-locations are pruned
early, which improves the efficiency of the algorithm with pruning strategies.

4. Pruned rate
In order to examine the efficiency of the three pruning strategies (Theorem 9.1,

Corollary 9.2, and Theorem 9.2), we counted the number of candidates pruned by
each pruning strategy, respectively. In this experiment, we set |F| ¼ 15, |
S| ¼ 4000, d ¼ 20, M ¼ 0.3, w1 ¼ w2 ¼ 0.5, and we randomly generated
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5 different data sets whose size is similar to each other. We independently ran the
algorithm with pruning strategies on the five different data sets and computed the
average proportion of the candidates pruned by each strategy. The proportions are
shown in Fig. 9.7.

The results show that the pruning strategies are very efficient. However, it seems
the efficiency of pruning strategies need not be further improved, for two reasons.
First, the process of pruning candidates costs some time. Second, some pruned
co-locations may be used to generate the table instances of super co-locations, so
we might have to generate the table instances of pruned co-locations, which would
have a negative effect on the algorithm. Fortunately, these effects rarely occurred in
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the experiments and the average efficiency of the pruning strategies we have
developed so far is obvious.

In addition, the basic algorithm and the algorithm with pruning strategies
presented in this paper convert spatial data sets into the star neighborhood partition
model (Yoo & Shekhar, 2006). Algorithms in both papers store spatial neighbor
relationships and table instances of current candidates. Therefore, the memory cost
of our algorithms is similar to the join-less algorithm in Yoo and Shekhar (2006).
Due to the non-existence of the downward closure property, the scalability of the
basic algorithm requires improvement. From Figs. 9.4, 9.5, 9.6, and 9.7, we can see
that the pruning strategies significantly reduce the overall runtime of the basic
algorithm, although in some extreme cases less so. Further improvement of algo-
rithm scalability is left for future work.

9.8 Chapter Summary

Different from the last chapter, we take the instances with utilities as study objects
which more closely reflect the real world and a new measure of interest is proposed
in this chapter. We combine the intra-utility ratio and the inter-utility ratio into a
utility participation index for identifying high utility SCPs, which is comprehensive
and reasonable. Because the utility participation index does not satisfy the down-
ward closure property, we developed some effective pruning strategies to improve
the efficiency of finding high utility SCPs. The experiments on synthetic and real
data sets show that these pruning strategies significantly reduce the overall runtime
of the basic algorithm. Although the algorithm with pruning strategies is better than
the basic algorithm, it also shows less improvement in some extreme cases.

All SCP mining is instigated by users and users rarely want a black box process.
To better satisfy user preferences, Chap. 10 proposes an interactive probabilistic
post-mining method to discover user-preferred SCPs.
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Chapter 10
Interactively Post-mining User-Preferred
Co-location Patterns with a Probabilistic
Model

10.1 Introduction

We have seen that spatial co-location pattern (SCP) mining is an important task in
spatial data mining. However, traditional mining frameworks often produce too
many prevalent patterns of which only a small proportion may be truly interesting
to end users, which is an unsatisfactory situation. This chapter proposes an interac-
tive probabilistic post-mining method to discover user-preferred SCPs by iteratively
involving user feedback and probabilistically refining user-preferred SCPs.

The chapter’s work proceeds as follows:

1. A framework of interactively post-mining SCPs is developed which helps users
effectively discover preferred SCPs according to their specific interests. In the
framework, we introduce a probabilistic model method to measure the user’s
subjective preference for an SCP. To further improve the method, two effective
computation methods for the distribution probabilities of 2-size SCPs are devel-
oped which involve some adjusting factors.

2. We develop a simple and effective algorithm to implement the post-mining
process. In this algorithm, an initially selected sample of SCPs is based on their
prevalence, and the selection of subsequent sample SCPs is based on their
probability related to the user feedback. Two optimization strategies for selecting
sample SCPs are also devised to further improve the efficiency of the interactive
process.

3. We set up an experimental environment called Simulator to simulate user feed-
back. With Simulator, we evaluate the performance of the developed algorithms
on both synthetic and real data sets and show that the proposed approaches are
effective in discovering user-preferred SCPs.

From Wang, L., Bao, X., Cao, L.: Interactive Probabilistic Post-mining of User-preferred Spatial
Co-location Patterns. In: Proceedings of the 34th IEEE International Conference on Data
Engineering (ICDE 2018), IEEE Press, Paris, French, pp. 1256–1259 (2018).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
L. Wang et al., Preference-based Spatial Co-location Pattern Mining, Big Data
Management, https://doi.org/10.1007/978-981-16-7566-9_10
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Figure 10.1 presents the organization of this chapter. Section 10.2 discusses why
we may need an interactive probabilistic post-mining method to discover user-
preferred SCPs. Section 10.3 is the related work. Section 10.4 presents the problem
statement. Section 10.5 discusses the probabilistic model which discovers the
preferred result set for a user, and the complete algorithm is shown in Sect. 10.6.
The experimental evaluation is conducted in Sect. 10.7. Section 10.8 ends this
chapter with some conclusive remarks.

10.2 Why We Need Interactive Probabilistic Post-mining

The extraction of spatial co-location patterns (SCPs) is a rising and promising field in
spatial data mining. An SCP is composed of a set of spatial features frequently
observed together within geographical neighborhoods (Shekhar & Huang, 2001;
Zhang et al., 2004). SCP mining yields important insights for various applications
such as Earth science (Verhein & Al-Naymat, 2007), public transportation (Yu,
2016), and air pollution (Akbari et al., 2015). Examples of SCPs include symbiotic
species, e.g., the Nile Crocodile and Egyptian Plover in ecology (Huang et al., 2004),
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Fig. 10.1 The organization of this chapter
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and interdependent incidents, e.g., traffic jams caused by car accidents and the
relevant ambulance and police actions (Yu, 2016).

Typically, SCP mining methods use the frequencies of a set of spatial features
participating in an SCP to measure a pattern’s prevalence (known as participation
index, PI for short) and require a user-specified minimum prevalence threshold,
min_prev, to filter prevalent SCPs (Shekhar & Huang, 2001; Zhang et al., 2004;
Huang et al., 2004). However, determining an appropriate min_prev is not trivial for
users. To avoid missing interesting SCPs, very low thresholds are often set, resulting
in a large number of prevalent SCPs of which only a small proportion is interesting.
This problem is further exacerbated by the downward closure property that holds for
the PI measure, whereby all of the 2l subsets of each l-size prevalent SCP are
included in the result set. Consequently, a huge number of prevalent SCPs are
often generated, but only a small number of them may satisfy user preferences.
User preferences are often subjective, and a pattern preferred by one user may not be
favored by another, and so cannot be measured by objective-oriented PI measures.
Therefore, it is necessary and advantageous to involve user preferences and filter
user-preferred SCPs.

For example, in the field of the environment and vegetation protection, to study
the influence of vegetation distribution on the environment one can mine the
prevalent SCPs of vegetation distribution data in a region. Similarly, a user who
studies urban air quality will be interested in SCPs that include vegetation which
regulates the climate and purifies the air. However, a user paying attention to soil and
water conservation probably would not think these co-locations are intriguing
co-location patterns at all, and would prefer to reanalyze the data with their own
interests in mind.

Similar ideas have been explored in the studies of interesting frequent itemset
mining (Xin et al., 2009; Bhuiyan & Hasan, 2016). These works follow a common
interactive process: a limited number of sample patterns selected from candidate
patterns are fed to the user at the beginning of each iteration, the user then feeds back
his/her preferences on the sample patterns, then candidate patterns are updated by
learning models according to the user’s feedback, and new samples are selected for
the next iteration. For example, Xin et al. (2009) proposed a framework to learn user
prior knowledge from interactive feedback. In their work, users needed to rank the
supplied sample frequent itemsets, and the user prior knowledge was learned from
the interactive feedback of a log-linear model or biased belief model. Bhuiyan and
Hasan (2016) proposed an interactive pattern discovery framework named PRIIME
which identifies a set of interesting patterns for a specific user without requiring any
prior input concerning measures of interest in patterns from the user. In their work, a
softmax classification-based iterative learning algorithm that used a limited amount
of interactive feedback from the user was proposed to learn the user prior knowl-
edge. However, both of these two frameworks suggest adopting Jaccard distance,
based on transactions, to measure a patterns’ interest and to select sample patterns for
the user. Their frequent itemsets, however, are generated from transactions. Because
there are no transactions or concept-like transactions in spatial data, SCPs are
generated from a list of instances with locations and so a Jaccard distance is
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irrelevant. Also Bhuiyan et al. (2012) and Boley et al. (2013) on interactively post-
mining frequent itemsets use transactions in their calculations, so that work similarly
cannot be applied to the post-mining of SCPs.

There is a limited amount of work on the post-mining of SCPs. Utilizing
ontology, where ontology was used to estimate the semantic similarity between
two SCPs, Bao et al. (2015), Bao and Wang (2017), and Bao et al. (2021) proposed
an approach to identify user-preferred SCPs by explicitly constructing reasonably
precise background knowledge, but its construction makes it hard to use.

This chapter develops a framework to discover user-preferred SCPs by iteratively
involving user feedback and probabilistically quantifying user preferences for
co-locations. We assume that a set of candidate co-location patterns (i.e., prevalent
co-locations or closed co-locations) has already been mined so our goal here is to
help the user effectively post-mine preferred SCPs. Rather than requiring the user to
explicitly construct the prior knowledge beforehand, we merely ask them to choose
preferred SCPs from a small set of sample SCPs.

Our proposed framework for interactively post-mining user-preferred SCPs is
shown in Fig. 10.2.

Our system takes a set PC of prevalent or closed SCPs as input. First, the top-k
(e.g., k ¼ 5, in prevalence value order) prevalent SCPs in PC are presented to the
user as sample co-location patterns, and the system then asks the user for their
preferences. The user chooses a set of preferred SCPs from the sample co-location
patterns and so the first set PCfeedback of selected SCPs is collected. Based on
PCfeedback, the prevalent SCPs in PC are estimated for their subjective preferences
by a probabilistic model, and ranked by their estimated preferences, where the
estimation relates their probability to the user feedback. Then the top-k
co-locations (in estimated subjective preference order) are fed to the user again.
After several rounds of the interactive process, as shown in Fig. 10.2 the system
produces a refined output that is close to the user preferences for SCPs.

The probabilistic model is a content-based model, which can calculate the
probabilities of preference-related SCPs. It has the advantage that the results can
be ranked in a descending order of their relative probabilities. This is the approach to
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similar applications widely used in uncertainty reasoning (Baral et al., 2002),
information retrieval (Cai & Chen, 2016), and data mining (Zhang et al., 2008;
Wang et al., 2013a, 2013b).

10.3 Related Work

In Sect. 10.2, we mentioned the connection of our work with some previous related
works. In this section, we discuss the work related to this chapter in a more
comprehensive and detailed way.

The problem of SCP mining was first introduced byMorimoto (Morimoto, 2001),
where a support metric was defined as the number of instances of an SCP and was
used to measure the prevalence of an SCP. Shekhar and Huang (2001) proposed
using minimum participation ratio (called participation index) as the interest mea-
sures that are more statistically meaningful. An extended version of the work in
Shekhar and Huang (2001) was presented in Huang et al. (2004). Zhang et al. (2004)
enhanced the SCP in Shekhar and Huang (2001) and proposed an approach to find
spatial star, clique, and generic patterns. Approaches to reduce expensive join
operations used for finding co-location instances in Shekhar and Huang (2001)
and Huang et al. (2004) were proposed in Yoo and Shekhar (2006) and Xiao et al.
(2008). The work in Wang et al. (2009b), Yoo and Bow (2011b), and Yao et al.
(2017) studied the problem of maximal SCP mining. The concept of maximal SCPs
is based on a lossy condensed representation, which can infer the original collection
of interesting SCPs, but not their PI values. The introduction of closed SCPs created
a lossless condensed representation (Yoo & Bow, 2011a; Wang et al., 2018b), which
could infer not only the original collection of prevalent SCPs but also their PI values.
The redundancy reduction problem of prevalent SCPs determined by applying
distribution information from co-location instances was studied in Wang et al.
(2018a).

Since the pattern of a user’s interest strongly depends on the user knowledge and
preferences, post-mining interesting patterns involving user feedback have been
studied extensively in traditional frequent itemset mining, for example, in Xin
et al. (2009), Bhuiyan and Hasan (2016), Bhuiyan et al. (2012), and Boley et al.
(2013). Although these studies achieved satisfactory results, again they cannot be
directly applied to the interactive post-mining of SCPs due to the lack of transaction
concepts in spatial data sets. In these itemset mining papers, transactions are used to
calculate the distance between two patterns P1 and P2, (D P1,P2ð Þ ¼ 1� T P1ð Þ\T P2ð Þ

T P1ð Þ[T P2ð Þ,
where T(P) is the set of transactions containing pattern P).

Limited work is available on discovering interesting SCPs by involving user
feedback. Bao et al. (2016) and Bao and Wang (2017) proposed an interactive
approach, OICM (ontology-based interesting co-location miner), to find interesting
SCPs, but the ontology-based method requires users to explicitly construct a rea-
sonably precise background knowledge, which is found to be difficult in many real
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applications. To overcome this drawback, our proposed probabilistic model is
simple but results in a good outcome, namely that it can help the user effectively
discover his/her preferred SCPs according to his/her specific preferences. We took
the first step of introducing an interactive probabilistic post-mining method to
discover user-preferred SCPs in Wang et al. (2018c). We extend that work here.
The extended contents include more detailed application background analysis,
theoretical analysis of the proposed method, complete experimental evaluation, etc.

10.4 Problem Statement

We first present the concepts and preliminaries for SCP mining. We then discuss the
subjective preference measure of the users. Finally, the problem is formally stated so
that solutions can be developed.

10.4.1 Basic Concept

In a spatial database, let F be a set of n features F ¼ {f1, f2, . . ., fn}, S be a set of
instances of F, where each instance is a triple<feature type, instance ID, location>,
and R be a neighbor relationship over locations of instances, where R is symmetric
and reflexive. With a distance threshold value d, we define the neighbor relationship
R: two spatial instances are neighbors if they satisfy the condition that the Euclidean
distance between them does not exceed d, i.e., R(a, b) , (distance(a, b) � d ).

A spatial co-location pattern (SCP) c is a subset of the feature set F. The
number of features in c is called the size of c. For F¼ {A, B, C}, {A, B} is a SCP of
size 2.

In SCP mining, the participation index (PI) proposed by Huang et al. (2004) is
commonly adopted to characterize how frequently the instances of different features
in an SCP are neighbors.

A SCP c is a prevalent SCP, if its participation index PI is no less than a given
prevalence threshold min_prev, i.e., PI(c) � min prev.

PI measures the prevalence strength of an SCP. Wherever a feature in a SCP c is
observed, all other features in c can be observed in the feature’s neighborhood with a
probability PI(c) � min prev. The PI measure satisfies the anti-monotonicity
property (downward closure property), i.e., PI(c)� PI(c0) for any c ⊂ c0, enabling
level-wise search (like Apriori) (Huang et al., 2004). This kind of search has good
performance when the given threshold, min_prev, is high and the neighborhood
relations of spatial data are sparse. However, an Apriori-based SCP discovery
algorithm has to examine all of the 2k subsets of each size k feature set and generates
numerous irrelevant patterns.

Lossless ccondensed representations are the diminished descriptions of prevalent
SCP collections such that it is possible to infer the original collection of prevalent
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SCPs and their PI values by inference methods. The introduction of closed SCPs
enables a lossless condensed representation to be created. A prevalent SCP c is
closed if there is no SCP c0 such that c ⊂ c0 and PI(c)¼ PI(c0) (Yoo & Bow, 2011a;
Wang et al., 2018b).

10.4.2 Subjective Preference Measure

We assume that a set PC of prevalent or closed SCPs has already been mined, which
will form the input to our system. Each co-location c 2 PC consists of the features in
c and its participation index (PI(c)), which indicates the prevalence of c. In PC, we
suppose that there is a set PCI of ideal SCPs of interest to the user, so that PCI is the
preferred co-location set and PCII ¼ PC � PCI is the non-preferred co-location set.

In traditional prevalent SCP mining the value PI(c) (c 2 PC) is an objective
interest measure. In practice, though, it is not possible that objective interest can be
substituted for subjective preference. PC might contain a large number of mined
prevalent SCPs, which may not be actionable or useful for users, since they may just
be general knowledge, or their prevalence may have been enhanced by the instances’
autocorrelation, or they are just regarded as irrelevant by the user.

In our approach the user feedback (the selected SCPs) is combined into a set of
user-preferred SCPs, denoted as PCfeedback. The set PCfeedback is updated whenever
the system obtains user feedback. In the interactive process, we use a similarity
measure SIM(c, PCfeedback) between an SCP c in PC and the selected SCPs PCfeedback

to evaluate the degree of subjective preference of any SCP c which has not yet been
judged.

10.4.3 Formal Problem Statement

The problem of post-mining user-preferred SCPs through interactive feedback can
be stated as follows. Given a set of prevalent or closed SCPs, can the system return
the ideal SCPs of user preference, according to user feedback about preferred SCPs,
but at the same time minimize the user efforts in providing feedback?

Due to the uncertainties of the user’s ideal preferences, in this chapter, we use a
classic probabilistic model method to model the prior knowledge of the user. The
basic idea of this method is that, given a set PC of prevalent or closed SCPs, there
will exist a set PCI of ideal preference SCPs in PC for a user. Clearly, the system
does not know the characteristics of the set PCI at the beginning of the interactive
process and it needs to make a guess. According to this guess, the system will
identify a result set PCI as an initial hit. Then the user or system judges the initial
result PCI. Based on this feedback, the system can optimize and improve the initial
result PCI incrementally in the interactive process until, after repeated interactions,
the resultant PCI should be close to the user’s ideal preference result set.
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The essence of the above probabilistic model is to estimate the similarity measure
SIM(c, PCfeedback) between the selected SCPs PCfeedback per user feedback and an
SCP c in the set of prevalent or closed co-locations PC, whose preference level has
not yet been judged.

10.5 Probabilistic Model

In this section, we discuss the probabilistic model which will help discover the
preferred result set PCI for a user.

10.5.1 Basic Assumptions

The basic assumptions of the probabilistic model are:

1. A user-preferred SCP c contained in PC is not related to other SCPs in PC. In
other words, that an SCPn is preferred by a user is only because of itself, and not
due to the existence of other SCPs in PC.

2. The subjective preference of an SCP is binary; i.e., there is only “prefer” or “not
prefer,” so an SCP either belongs to the user ideal preference set PCI or it
does not.

10.5.2 Probabilistic Model

Assume, for a user, there exists a preferred co-location set PCI and also a
non-preferred co-location set PCII in the prevalent or closed co-location set PC.
After obtaining a set PCfeedback of user feedback, the similarity SIM(c, PCfeedback)
between an SCP c in PC and the set PCfeedback per user feedback is defined as the
ratio of the probability of c being user-preferred to the probability of c not being
user-preferred, i.e.,

SIM c,PCfeedback

� � ¼ P PCI jcð Þ
P PCII jcð Þ ð10:1Þ

where P(PCI |c) represents the probability that c is preferred by the user and P(PCII |
c) represents the probability that c is not preferred by the user.

Since the values of P(PCI |c) and P(PCII |c) cannot be computed directly, they
need to be estimated with known values. Assume there is an initial guess about the
user’s ideal preference set PCI, then Eq. (10.1) can be converted by the Bayes’ rule:
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SIM c,PCfeedback

� � ¼ P cjPCIð Þ � P PCIð Þ
P cjPCIIð Þ � P PCIIð Þ ð10:2Þ

where P(c | PCI) represents the probability that PCI contains c; P(c | PCII) represents
the probability that PCII contains c, and P(PCI), and P(PCII) represents the prior
probabilities that any SCP in PC belongs to PCI or PCII, respectively.

Given a set of prevalent or closed SCPs PC, the two values P(PCI) and P(PCII)
are related only to the user and, as we only need be concerned about the relative
values in computing SIM, Eq. (10.2) can be simplified to:

SIM c,PCfeedback

� � ¼ P cjPCIð Þ
P cjPCIIð Þ ð10:3Þ

Since an SCP is a set of spatial features which are frequently observed together in
nearby geographic space, 1-size SCP mining is meaningless, unlike the situation in
transactional databases. The set of 2-size SCPs is the basis for mining all higher-size
SCPs, because the measurement of co-location prevalence can be based on the clique
relationship of instances. Hence, the probability that PCI or PCII contains c can be
calculated by the distribution of each 2-size SCP ci in PCI and PCII:

P cjPCIð Þ ¼
Ym

i¼1
p cijPCIð Þwi cð ÞP cijPCIð Þ 1�wi cð Þð Þ ð10:4Þ

P cjPCIIð Þ ¼
Ym

i¼1
p cijPCIIð Þwi cð ÞP cijPCIIð Þ 1�wi cð Þð Þ ð10:5Þ

where n is the number of features in F, m represents the number of 2-size SCPs in F,
andm¼ n(n� 1)/2. We define wi(c) 2 {0, 1} such that wi(c)¼ 1 when the i-th 2-size
SCP ci in F is contained in PCfeedback and c at the same time; otherwise wi(c)¼ 0, and
ci represents “not containing 2-size SCP ci.”

Equation (10.4) can now be interpreted as follows: when the 2-size SCP ci is in
PCfeedback and c at the same time, i.e., wi(c) ¼ 1, the probability that an SCP in PCI

contains ci is regarded as a contribution to the probability that PCI contains c. In the
contrary situation, when the 2-size SCP ci is not contained in either PCfeedback or c,
the probability that any SCP in PC I does not contain ci is also regarded as a
contribution. The interpretation of Eq. (10.5) is similar.

There are two reasons why we use 2-size SCPs ci (1� i�m,m¼ n(n� 1)/2, and
n is the number of features in F) to judge the contribution:

1. The 2-size SCP contained in the SCP c is the minimum unit of the combination of
features in c.

2. The user preference for an SCP c implies that there exists a combination of
features in c preferred by the user.

Based on Eqs. (10.4) and (10.5), Eq. (10.3) can be converted to:
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SIM c,PCfeedback

� � ¼ Qm
i¼1p cijPCIð Þwi cð ÞP cijPCIð Þ 1�wi cð Þð ÞQm
i¼1p cijPCIIð Þwi cð ÞP cijPCIIð Þ 1�wi cð Þð Þ ð10:6Þ

From the meanings of P(ci|PCI) and P cijPCIð Þ , we have P cijPCIð Þ þ
P cijPCIð Þ ¼ 1. Similarly, P cijPCIIð Þ þ P cijPCIIð Þ ¼ 1 holds. We take these rela-
tions into Eq. (10.6) and by taking logarithms, convert it to:

SIM c,PCfeedback

� � ¼ Xm

i¼1
wi cð Þ log 10

p cijPCIð Þ 1� P cijPCIIð Þð Þ
p cijPCIIð Þ 1� P cijPCIð Þð Þ

þ
Xm

i¼1
log 10

1� p cijPCIð Þ
1� p cijPCIIð Þ ð10:7Þ

In Eq. (10.7), the expression
Pm

i¼1 log 10
1�p cijPCIð Þ
1�p cijPCIIð Þ is not related to the SCP c, so

Eq. (10.7) can be further simplified to:

SIM c,PCfeedback

� � ¼ Xm

i¼1
wi cð Þ log 10

p cijPCIð Þ 1� P cijPCIIð Þð Þ
p cijPCIIð Þ 1� P cijPCIð Þð Þ ð10:8Þ

Equation 10.8 enables us to compute the similarity between any SCP c in the
candidates and PCfeedback by Eq. (10.8), and rank them by the values SIM(c,
PCfeedback). However, as mentioned before, the user preference set PCI is not
known initially, so we need a method to calculate the probabilistic values p(ci |
PCI) and p(ci | PCII).

A simple method for calculating the probabilistic values p(ci | PCI) and p(ci | PCII)
is that:

p cijPCIð Þ ¼ 0:5

p cijPCIIð Þ ¼ ni=N

�
ð10:9Þ

where ni and N represent the number of SCPs containing 2-size SCP ci and the
number of total SCPs in PC respectively. We can then calculate the SIM(c,
PCfeedback) for each c in PC by Eq. (10.8) and rank them by the values SIM(c,
PCfeedback) as the initial result.

The explanation of Eq. (10.9) is that the initial value of the probability that an
SCP in PCI contains a 2-size pattern ci is put at 0.5, and the initial value of the
probability that an SCP in PCII contains a 2-size pattern ci is put at ni/N, since N is the
number of total SCPs in PC, and ni is the number of SCPs containing a 2-size pattern
ci. Obviously, the larger the ni, the larger the probability p(ci|PCII).

We use V to represent the top-r SCPs in the initial result (r is a pre-specified
threshold), Vi to represent the set of SCPs in V that contains a 2-size SCP ci, and the
number of SCPs in Vi is denoted ri. In order to improve the computational result and
help minimize the user efforts in providing feedback, Eq. (10.9) for calculating the
probabilistic values p(ci | PCI) and p(ci | PCII) can be improved. After obtaining user
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feedback information, we can use two improved methods (Eqs. (10.10) and (10.11))
for calculating p(ci | PCI) and p(ci | PCII):

p cijPCIð Þ ¼ ri þ 0:5ð Þ= r þ 1ð Þ
p cijPCIIð Þ ¼ ni � ri þ 0:5ð Þ= N � r þ 1ð Þ

�
ð10:10Þ

p cijPCIð Þ ¼ ri þ ni=Nð Þ= r þ 1ð Þ
p cijPCIIð Þ ¼ ni � ri þ ni=Nð Þ= N � r þ 1ð Þ

�
ð10:11Þ

where r and ri are adjustment factors added to the formula based on the feedback
principle.

The explanation of Eqs. (10.10) and (10.11) is that we have considered r SCPs
that are user-preferred, because r is the number of the top-r SCPs in the initial result.
Thus, there are N � r candidates left in PCII, and as ri is the number of SCPs
containing the 2-size SCP ci in the top-r SCPs, we can build the basic formula
((ni � ri)/(N � r)) of Eqs. (10.10) and (10.11). To be less arbitrary, we use ni/N
instead of 0.5 in Eq. (10.11).

Note that Eq. (10.9) needs to be used at the beginning of the interactive process
before using Eq. (10.10) or (10.11).

10.5.3 Discussion

In essence, the probabilistic model is a kind of decision-making process handling
uncertainty. Its advantages include:

1. It has a strict theory foundation, based on mathematics and deduction.
2. It has an inherent correlation feedback mechanism and adopts a rigorous

decision-making method.
3. It incurs a very small user burden in the interactive process, particularly as the

results can be sorted in the descending order of the SIM values (the probability
related to the user preference).

4. It supports a strategy for top-k SCP selection from the SIM values for repeatedly
feeding to the user.

However, the probabilistic model also has some limitations, as below:

1. It is difficult to accurately estimate the values p(ci | PCI) and p(ci | PCII), and to
partition the prevalent co-location set into the user ideal interest set PCI and the
non-interest set PCII at the beginning of the interactive process.

2. The weights of 2-size SCPs are assumed to be just two values. The difference of
the 2-size patterns’weights in different SCPs, or with a different user choice set of
PCfeedback, is not considered, leading to results which do not reflect some of the
known uncertainty.
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3. It assumes that the user interests in particular SCPs are independent of each other
in the probabilistic model, so there is no consideration of possible relationships
between them.

Overall, the probabilistic method we have been describing theoretically seems a
simple, yet effective method for interactively post-mining user-preferred SCPs, but it
has to be proved, which we will do later in this chapter.

10.6 The Complete Algorithm

In this section, we first give the complete algorithm for post-mining user-preferred
SCPs interactively based on the probabilistic model introduced in Sect. 10.5. Then
two optimization strategies are presented to improve the efficiency of the interactive
process. Finally, we make a computational complexity analysis of the algorithm.

10.6.1 The Algorithm

We have discussed the probabilistic model method to measure the SIM value of an
SCP and the user-preferred sample SCPs. In Algorithm 10.1 we outline the complete
algorithm for pattern ranking with user feedback.

Algorithm 10.1: Post-mining User-preferred SCPs Interactively
Input: A set of n spatial features, F={f1, f2, …, fn};

A set of prevalent / closed SCPs, PC;
Number of sample SCPs for feedback, k;
Number of iterations of feedback, iter;
Number of top-r SCPs from the values SIM(c, PCfeedback), r;

Output: Ranked Co-location List.
Method: 
1)  ψ =Sort(PC, PIs);
2) for (i=0; i<iter; i++)
3) PCfeedback = Present top-k in ψ to request user feedback; 
4)        PC=PC - PCfeedback;   

//remove the k selected patterns from PC
5)        Ω =Ω + PCfeedback;  // Ω is the user feedback set
6)     Cal_SIM(PC, Ω); //calculate the similarity SIM(c, Ω) between a SCP c in 

PC and the set Ω by Formula (10.8)
7) ψ= Sort(PC, SIMs);

//re-rank SCPs in PC by their values of similarity
8)  Return Ω + ψ
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The algorithm takes the entire collection of prevalent or closed SCPs as input.
Users can also specify the number of iterations they would like to provide as
feedback and how many SCPs they would like to judge at each round. The algorithm
works as follows.

The input prevalent or closed SCPs’ set PC is sorted by its participation index
(PI) values (Line 1). Line 3 presents the top-k SCPs (with their current ranking) to get
the user feedback. Line 4 removes the user’s selected SCPs from PC so that their
similarities will not be calculated, and they will not be selected again in the following
iterations. Line 5 collects the user feedback in Ω. Line 6 calculates the similarity
SIM(c, Ω) between an SCP c in PC and the set Ω of the user feedback by using
Eq. (10.8). The remaining SCPs in PC are re-ranked according to their SIM values
(Line 7). After the algorithm repeats iter times, the ranked results are output.

10.6.2 Two Optimization Strategies

1. Maintaining a minimum prevalence value for selecting top-k co-locations
Line 1 (sort) of Algorithm 10.1 is for selecting the top-k SCPs in PC according to
their PIs, so we propose a simple and efficient method to reduce its computational
complexity. During the top-k selection, we first use a minimum prevalence value
θ in the top-k result set and, after we obtain at least k SCPs in the result set, we use
θ to determine whether an SCP can be included in the top-k result set or not. We
can also prune all those super-sets of an SCP which cannot be included in the
top-k result set according to the anti-monotonicity property of PI (Huang et al.,
2004). In the worst case, the computational complexity of sorting s SCPs is
O(slog2s), and the computational complexity of the optimization strategy is
only O(ks) (where k is generally between 5 or 10, and s is the number of SCPs
in PC). In practice, the improvement effect becomes clearer if we deal with the
SCPs of PC in the ascending order of sizes.

2. A Value-based partition method for selecting top-r SCPs
For selecting top-r SCPs in PC per the values SIM(c, PCfeedback), which are

used in Line 7 + Line 3 or in the computation of Eq. (10.10) or (10.11), we
propose a new value-based partition method as follows.
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Procedure SELECT (r, PC)
begin
1) Choose a SCP c randomly from PC;
2) Let S1, S2, and S3 be the sub-sets of SCPs in PC, respectively greater than, equal 

to, and less than the value SIM(c, Ω);
3) case
4) : | S1 | > r: return (SELECT (r, S1))
5) : | S1 | + | S2 | ≥ r: return (S1 followed by S2);
6) : else: return (S1 followed by S2, and followed by SELECT (r-| S1 | - | S2 |, S3))
7) endcase
end

SELECT imitates the order statistics method and is an O(s) expected computa-
tional time algorithm (s is the number of SCPs in PC).

10.6.3 The Time Complexity Analysis

The main cost of Algorithm 10.1 comprises two parts: getting top-k SCP in ψ (it is in
Algorithm 10.1 that is a set of the input prevalent or closed SCPs’ set PC is sorted by
its participation index (PI) values) in order to ask for the user feedback and
calculating the similarity SIM(c, Ω).

In getting the top-k SCPs, by using procedure SELECT, the cost is about O(s)
expected time orO(s2) in the worst case (s is the number of SCPs in PC), and the cost
of getting top-k SCPs according to their PIs for the first time is O(ks).

In the calculation of the similarity SIM(c, Ω), if using Eq. (10.9) to calculate the
probabilistic values p(ci | PCI) and p(ci | PCII), the cost is at most O(m � s) at each
iteration (round), where m is the number of 2-size SCPs in F and m ¼ n n�1ð Þ

2 (n is the
number of features in F). The cost of Eq. (10.9) is at most O(m � s), and once it has
been calculated in the first round, only minor changes are needed in subsequent
calculations. If using Eq. (10.10) or (10.11), we incur extra cost to calculate ni and ri
at each round. The cost of Eq. (10.10) or (10.11) is about O(m � s + s2) in the worst
case at each round. Thus, the worst computational cost of calculating the similarity
SIM(c, Ω) becomes O(m � s + s2) at each round when using Eq. (10.10) or (10.11).

In summary, the cost of Algorithm 10.1 is at most O(m � s � iter) when using
Eq. (10.9), or O((m � s + s2)� iter) when using Eq. (10.10) or (10.11), where iter is
the number of feedback iterations, m is the number of 2-size SCPs in F, and s is the
number of SCPs in PC.
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10.7 Experimental Results

We conducted comprehensive experiments to evaluate the proposed approach from
multiple perspectives on both real and synthetic data sets. All the algorithms are
implemented in C# and they are all memory-based. All the experiments are
performed on a Windows 10 system with 4.0GB memory and a 3.30GHz CPU.

10.7.1 Experimental Setting

We set up an experimental environment, called Simulator, to simulate user feedback.
Its basis is that a user may consider an SCP interesting because he/she prefers some
of the spatial features co-located in the pattern. Hence, we randomly generate some
spatial features’ combinations and deem them to be thought of as having some rules
that can be used to select preference SCPs. A target co-location set which is used to
simulate user prior knowledge can be generated based on these rules. Since our goal
is to discover user-preferred SCPs interactively and rank the results, our accuracy
measure favors high-rank SCPs in the results. If top-l (learned_set) be the top-l
results reported by the ranking learned from the interactive feedback, and target_set
be the results in the target SCPs constructed by our Simulator, then the accuracy
measure is defined as follows:

Accurary ¼ top� l learned setð Þ \ target setj j
l

ð10:12Þ

where l is given t/5, 2t/5, 3t/5, 4t/5 or t (t ¼ |target_set|) in the experiments. It is
obvious that the accuracy values in Eq. (10.12) are the percentages of the top-l
ranked SCPs in the target_set.

10.7.2 The Simulator

The Simulator generates a set of target (user-preferred) SCPs, target_set, and
simulates user feedback. It is based on the hypothesis that a user prefers a pattern
because some preferred combinations of spatial features co-occur in this pattern.
Thus, given a set of prevalent or closed SCPs, PC, and its spatial feature set F, the
pseudo code of Simulator is shown below.
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Procedure SIMULATOR(PC, F)
Input: A set of n spatial features, F={f1, f2, …, fn};

A set of prevalent/closed SCPs, PC;
Output: User-preferred SCPs, target_set.
Method: 

// Generating user-prefered rules (some features’ combinations)
1) maxRuleCount = || F ;
2) maxRuleSize = /2|| F ;
3) RuleCount = random(1, maxRuleCount);
4) For (i=0; i<RuleCount; i++)
5) RuleSize = random(2, maxRuleSize);
6) Rules.add(generateRandomRule(RuleSize));

// Generating target_set (simulated preference co-location set)
7) result.add(Rules);
8) for (each co-location c in PC)
9) countHash = generateHashSet(c, Rules);
10) for (i=RuleCount; i>0; i--)
11) result.add(getCo-locations(countHash,i))
12) If (result.count ≥ 2/|| 2F ) then break;
13) return result

The Simulator contains two main stages, explained below.
Stage 1 is to generate user-preferred rules. Lines 1 and 2 initialize the maximum

values of the number and the size of rules. Then the features’ combinations (rules)
are generated in Lines 3–6 randomly.

Stage 2 is to select a simulated preference co-location set (target_set) based on the
rules generated in Stage 1 from the set of prevalent or closed SCPs PC. At first, each
rule is a user-preferred pattern which is added into target_set (Line 7). Then, the
count values of SCPs in PC are computed and stored in a hash structure <count, list
of co-locations> (Lines 8–9). The count of an SCP c is the number of rules contained
in c, which is used to measure the similarity of the SCP c with the rules. Finally, the
SCPs with larger counts are added to target_set (Lines 10–12). Line 12 is used to
control the number of generated SCPs in target_set.

Figure 10.3 illustrates the process of Simulator. Suppose a closed co-location set
PC is shown in the first (left) column in Fig. 10.3, and it randomly generates
3 (suppose RuleCount ¼ 3) features’ combinations (or rules), listed in the second
column in Fig. 10.3. Then the three rules {A, B}, {C, E} and {B, C, F} will be added
into target_set, and a hash table will be created to store SCPs and their count values.
For example, {A, B, C, E} contains the 2 rules AB and CE. Finally, target_set can be
generated based on the hash table.
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10.7.3 Accuracy Evaluation on Real Data Sets

Using the Simulator discussed above, our first task is to examine the accuracy of the
results learned from the interactive feedback. We use three real data sets with
different distributions in the experiments. A summary of the three real data sets is
presented in Table 10.1. Real-1 is from the rare plant data of the Three Parallel
Rivers of Yunnan Protected Areas whose instances form the zonal distribution
shown in Fig. 10.4a, which has a small quantity of instances. Real-2 is a spatial
distribution data set of urban elements whose instances’ distribution is both even and
dense as shown in Fig. 10.4b, and which also has a large quantity of features as well
as instances. Real-3 is a vegetation distribution data set of the Three Parallel Rivers
of Yunnan Protected Areas, which has the fewest features but the most instances of
the three data sets, and its instance distribution presents various clusters as shown in
Fig. 10.4c. The experimental settings for these real data sets can be found in
Table 10.2, and each experiment was performed 10 times to obtain an average
accuracy.

1. On Real-1
The first experiment is run on the Real-1 data set. By setting the parameters

shown in Table 10.2, we mine 3984 prevalent SCPs and 1259 closed SCPs. The
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Fig. 10.3 An example of simulator

Table 10.1 A summary of the three real data sets

Name
N. of
features

N. of
instances (Max, Min)

The distribution area of spatial instances
(m2)

Real-
1

32 335 (63, 3) 110,000 � 160,000

Real-
2

20 377,834 (60,000,
347)

50,000 � 80,000

Real-
3

15 501,046 (55,646,
8706)

110,000 � 160,000

(Max, Min): are respectively the maximum number and the minimum number of the feature’s
instances in the data sets
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accuracy estimation of our algorithm with different parameters on Real-1 is
shown in Fig. 10.5. In these figures F-9, F-10, and F-11 mean using
Eqs. (10.9), (10.10) and (10.11) respectively, to calculate the probabilistic values
p(ci | PCI) and p(ci | PCII) and so calculate the similarity of an SCP c with
PCfeedback, by Eq. (10.8). From Fig. 10.5 we can observe that both F-10 and F-11
have better accuracy than F-9 because F-10 and F-11 add adjusting factors in
computing p(ci | PCI) and p(ci | PCII). The accuracy of F-11 is a little better than
F-10 because of the more reasonable probabilistic values. The accuracies esti-
mated with closed SCPs are better than those with prevalent SCPs because closed
SCPs are a form of compression of prevalent SCPs, which can aid the effective
discovery of interesting SCPs. From Fig. 10.5(a and d) we find that, as iter
increases, the accuracy increases, and this is because each iteration supplies

Fig. 10.4 Spatial distribution of the three real data sets ((a) part of the distribution of Real-1; (b)
part of the distribution of Real-2; (c) part of the distribution of Real-3)

Table 10.2 Experimental parameters and their values in the experiments on real data sets

Parameter Definition

Experiment figure

F.5/6/7a,d F.5/6/7b,e
F.5/6/
7c,f

min_prev Prevalence threshold 0.1 0.1 0.1

iter Number of iterations of feedback * 10 10

k Number of sample co-locations for feeding to
user

10 * 10

l Number to get top-l(learned_set) for accuracy
measure in experiments

t (|
target_set|)

t (|
target_set|)

*

r Number to get top-r co-locations under the
values SIM

0.5* |PC| 0.5* |PC| 0.5* |
PC|

*: Variable values
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new samples to the user, and the new feedback from the user updates the SIM
values of SCPs in PC, bringing them closer and closer to the user’s real prefer-
ence. Figure 10.5(b and e) show that a larger k causes a higher accuracy because
more samples can be fed to the user per iteration. Figure 10.5(c and f) demonstrate
that a smaller l can reach higher accuracy because the SCPs in the front of
target_set have been already chosen by the user.

2. On Real-2
In this subsection, we examine the learned accuracy on the Real-2 dataset.

With the settings shown in Table 10.2, 298,845 prevalent SCPs and 247,698

Fig. 10.5 Accuracy evaluation on Real-1

10.7 Experimental Results 259



closed SCPs are discovered, and the accuracy estimation of our algorithms with
different parameters on Real-2 is shown in Fig. 10.6. The main observations are
similar to Real-1, although the accuracy estimated for Real-2 is higher than that
for Real-1 with the same parameter values, but the accuracy gap between
prevalent SCPs and closed SCPs is not as obvious as Real-1, because the
compression of Real-2’s closed SCPs is much lower than that of Real-1, which
makes a smaller gap between them. Note that in Fig. 10.6(c and f) when l� 2 t/5,
the accuracy reaches as high as 100%, meaning that the top 40% of learned SCPs
on Real-2 are fully preferred by the user.

Fig. 10.6 Accuracy evaluation on Real-2

260 10 Interactively Post-mining User-Preferred Co-location Patterns with a. . .



3. On Real-3
From the Real-3 data set, 568 prevalent SCPs and 196 closed SCPs are

discovered. The accuracy estimation on Real-3 is shown in Fig. 10.7. Figure 10.7
(a and d) show that the accuracy can reach 100% within a few rounds; even in
Fig. 10.7b, only 5 rounds are required to reach 100% accuracy. The reason for the
high accuracy in Real-3 is that there are as few as 15 features in it, and the smaller
number of features makes it easier to find the combinations preferred by a user.
The cluster distribution means closed SCPs have better compression, in turn
making the accuracy with closed SCPs much higher than for prevalent SCPs
with the same parameter settings. Thus, in Real-3, the probabilistic model is able
to return the ideal preference SCPs according to the user’s feedback and the
chapter’s objectives have been largely achieved for this real data set.

Fig. 10.7 Accuracy evaluation on Real-3
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10.7.4 Accuracy Evaluation on Synthetic Data Sets

In this section, synthetic data sets are generated to test the accuracy and efficiency of
our algorithm. Synthetic data sets are generated by using a spatial data generator
similar to Huang et al. (2004), where the average number of instances of each feature
is 10,000 with a Poisson distribution, the neighborhood distance is 10,000, and all
the instances are randomly located within a frame size 500000 * 500000. The
prevalence threshold min_prev is set as 0.1, the number of iterations of feedback
iter as 10, the number of sample SCPs for user feedback k is set as 15 and r (the
number to get top-r SCPs under the values SIM(c, PCfeedback)) is set as half of the
number of closed SCPs generated by the synthetic data set. Each experiment uses the
Simulator introduced in Sect. 10.7.2 to perform the accuracy test.

Figure 10.8 shows the algorithm’s accuracy and efficiency with respect to
different numbers of features. In order to get a more accurate result, each experiment
with the same number of features is performed 10 times to get the average accuracy
and running time. Note that Simulator generates a different target_set (a set of user-
preferred SCPs) each time.

Fig. 10.8 Evaluations on synthetic data sets with different number of features
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We observe the following results:

1. As the number of features increases and the data set gets denser, Fig. 10.8a shows
that the accuracy in a dense data set is higher than that in a sparse data set. This is
because dense data sets can generate longer-size SCPs which have a greater
chance of containing the preferred combination of features (rules), which
means that preferred SCPs can be selected more easily in each round, further
improving the accuracy of our algorithm.

2. As the number of features increases, F-10 and F-11 show much better accuracy
than F-9 in Fig. 10.8a, and the gap inaccuracy between F-10/F-11 and F-9 also
increases. This is because the adjusting factors added in F-10 and F-11 play a
bigger role as the data set gets bigger. Note that in this experiment there are about
1,000,000 spatial instances with 100 features.

3. Figure 10.8b shows the average running time of F-9, F-10 and F-11 per round and
the number of closed SCPs (PC_Count). It can be seen that F-9 has a much higher
efficiency than either F-10 or F-11. When the number of closed SCPs reaches
almost 700,000, F-9 only takes less than 20 s, and this is because F-9 only needs
to calculate ni, which can be updated based on the value from the last round. For
example, if n(AB) ¼ 14, meaning that there are 14 candidates containing AB, if
ABC is selected as a preferred SCP, n(AB) should be updated to 13. F-10 and
F-11 calculate not only ni but also ri, although ri cannot be updated as can ni. In
each round the top-r SCPs based on SIM values may change greatly, meaning
that ri has to be recalculated in each round, thus increasing the running time.
However, even with 100 features (1,000,000 spatial instances and almost 700,000
closed co-locations), the running time per round is only around 70 s.

Overall, although F-10 and F-11 have better accuracies than F-9, they need more
running time. Taking effectiveness and efficiency into consideration, the three
formulas have their advantages in different situations. If a user cannot wait to find
the preferred SCPs, she/he can choose to use the F-9 formula which has high
efficiency and also has a useful result. If a user wants a more precise result, she/he
can use F-10 or F-11.

10.7.5 Sample Co-location Selection

In this subsection, we test the effectiveness of various learning strategies to select
sample co-locations for feedback. The Real-2 data set is used to perform the
evaluation because it has the most features, and so well demonstrates the learning
effectiveness of the various strategies.

The selection strategy proposed and used so far in this paper is that, in the first
round, the samples are selected based only on PI, and in the following rounds, the
samples are selected based on the subjective preference order (i.e., the order of the
similarity SIM(c, PCfeedback) between a co-location pattern c in PC and the set
PCfeedback of the user feedback). We denote this strategy as St_3.
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We have further designed two sample selection strategies to compare them with
the sample selection strategy St-3:

1. The strategy denoted as St_1 is to select sample co-locations by using their
participation index PI values and user feedback so that in the first round the
samples are selected only based on PI, and in the following rounds the
co-locations containing feedback and having higher PI are selected first.

2. Strategy (St_2) uses long co-locations first so that, in the first round, the samples
are selected only based on the size of co-locations, and in the following rounds
those co-locations containing feedback and having longer size are selected first.
We denote this strategy as St_2.

The setting of this experiment is the same as that used to get Fig. 10.6d, using
Eq. (10.9) and with closed SCPs generated from the Real-2 data set. Each experi-
ment was performed ten times to get the average accuracy. Figure 10.9 shows that
sample selection strategy has an important effect on the accuracy, and that the
sample selection strategy St_3, as initially proposed in this chapter, has the highest
accuracy.

10.8 Chapter Summary

Existing SCP mining methods generally produce many prevalent SCPs of which
only a small proportion are of real interest to a user. In this chapter, we have
developed a framework of interactive post-mining of SCPs which will help a user
effectively discover those prevalent SCPs which are of particular interest to the user.
In the framework, we introduce a probabilistic model to measure the user’s subjec-
tive interest in an SCP. The performance of the proposed approach is tested on
various data sets, showing that the approach is effective in discovering user-
preferred SCPs. This gives the user useful information containing subjective prefer-
ences, but the user still needs to assess the relative importance of the returned SCPs.

Problems such as SCPs’ compression, summary, selection, and ordering essen-
tially measure the similarity between SCPs and so, in the next and last chapter of this
book, we will develop and investigate similarity metrics between any two SCPs.

Fig. 10.9 Effect of sample
co-locations selection
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Chapter 11
Vector-Degree: A General Similarity
Measure for Co-location Patterns

11.1 Introduction

Similarity measures between spatial co-location patterns (SCPs) are used to solve
problems such as pattern compression, pattern summarization, pattern selection, and
pattern ordering. A lot of recent research has produced various similarity measures,
all providing a more concise set of SCPs. Unfortunately, these measures suffer from
various weaknesses; e.g., some measures can only calculate the similarity between
super-patterns and sub-patterns, while others require additional domain knowledge.
In this chapter, we develop a general similarity measure for any two SCPs:

1. We propose a new representation model of SCPs based on maximal cliques in
spatial data sets, ensuring that the spatial information about the instances of the
pattern can be saved without loss.

2. We provide two materializing methods for the proposed representation model,
which we call the 0–1 vector and the key-value vector. We also discuss the
characteristics of our materialization methods and the complexity of the materi-
alization process.

3. Based on the two materialization methods, we propose a general similarity
measure that can calculate the similarity degree of any two SCPs without adding
extra domain information. We analytically prove our similarity is reasonable and
versatile, by comparing it with existing similarity measures.

4. Finally, the similarity is used to group SCPs by a hierarchical clustering algo-
rithm. The experimental results on both synthetic and real-world data sets show
the effectiveness and efficiency of these methods.

From Wu P., Wang L.*, and Zhou M.: Vector-Degree: A General Similarity Measure for
Co-Location Patterns. In: Proc. of the 2019 IEEE International Conference on Big
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Figure 11.1 presents the organization of this chapter. Section 11.2 discusses why
we measure the similarity between two SCPs. We use a toy example to explain the
precise problem to be solved and present the preliminaries for solving the problem in
Sect. 11.3. Section 11.4 details the implementation. The experimental results and
analysis are presented in Sect. 11.5, and Sect. 11.6 summarizes the chapter.

11.2 Why We Measure the Similarity Between SCPs

Spatial co-location pattern (SCP) mining has a wide range of applications such as
smart city planning (Yao et al., 2017), environmental criminology (Yue et al., 2017),
public health (Li et al., 2016), location-based services (Yu, 2016), and so
on. Traditional mining frameworks, however, produce too many SCPs, so it makes
sense to reduce the number of SCPs provided to users. Besides the methods
described in this book numerous others have worked on this issue with different
techniques including pattern compression (Yoo & Bow, 2012; Silvestri et al., 2015;
Bao &Wang, 2017; Wang et al., 2018a, 2018b), pattern ordering (Yuan et al., 2016),
pattern summarization (Liu et al., 2015; Yang et al., 2018a), and so on. All these
prior works have in common that a similarity measure between SCPs is considered
one of the fundamental problems. Yoo and Bow (2011a) proposed a covered
relationship to measure the similarity between a super-pattern and its sub-pattern
whereby if a sub-pattern is covered by its super-pattern, the two patterns are deemed

Section 11.5Experimental study

Section 11.1Introduction

The preliminaries

Section 11.2Why we measure the similarity between SCPs 

Algorithms Section 11.4

Section 11.3

Section 11.6Chapter Summary

Fig. 11.1 The organization of the chapter
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similar. Two looser relationships are proposed in Wang et al. (2018b) and Silvestri
et al. (2015), respectively, where they define the similarity based only on information
about the participation index (a definition of participation index is provided in Sect.
11.3). Wang et al. (2018a) first proposed a semantic distance measure to evaluate the
strength of dissimilarity between SCPs, and presented a δ-covered relationship
between two SCPs, where δ a coefficient that controls how loose is the covered
relationship. Feature distance was defined in Liu et al. (2015), calculating the
distance between SCPs having the same features. Bao and Wang (2017) proposed
a similarity measure based on ontology information. An interactive post-mining
method was presented which reduced mining results by incorporating user-preferred
information, detailed in Wang et al. (2018c). Unfortunately, all these similarity
measures suffer from various weaknesses, the principal ones being:

1. Poor generality. Existing similarity measures only consider the relationship
between two specific SCPs. For example, if Pα, Pβ are two SCPs, and if Pα 6� Pβ

and Pβ 6� Pα, then the covered relation between Pα and Pβ cannot be calculated
(Yoo & Bow, 2011a). For this similarity measure, if the feature distance between
Pα and Pβ is 1, then the similarity is 0 when Pα \ Pβ ¼∅. However, if instances
of Pα and Pβ often appear in the same cluster, can we be sure there really no
relationship between Pα and Pβ?

2. Lack of quantitative analysis. Some measures can only answer whether Pα has a
relationship with Pβ, but not the degree of relevance of Pα to Pβ. For instance, we
can only answer whether Pα possesses a δ-covered relationship with Pβ in Wang
et al. (2018a), not the strength of that relationship.

Thus, although previous works have done a good job of condensing the repre-
sentation of SCPs, none of the developed methods quantitatively measure the
similarity between any two SCPs.

In the context of spatial data, a spatial occurrence (a row instance) of an SCP is
essentially a clique. Consider the example data set in Fig. 11.2, where Pα ¼ {A, B,

Fig. 11.2 A toy example
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C}, Pβ ¼ {B, C, D} are two SCPs. The row instance {A3, B1, C4} carries all the
features in Pα corresponding to an occurrence of Pα (for detailed definitions see Sect.
11.3), while {B1, C4, D3} is a row instance of Pβ, and both {A3, B1, C4} and {B1,
C4, D3} belong to the same maximal clique {A3, B1, C4, D3}. This provides us
with the evidence of that there exists a similarity relationship between Pα and Pβ.
Intuitively, the more there are row instances of SCPs belonging to the same maximal
cliques, the more similar we expect the SCPs to be.

As the maximal clique is the minimum unit of SCP information, we have now
developed a novel lossless representation, the maximal clique vector, to efficiently
represent the spatial information of an SCP. The correctness and the completeness of
a maximal clique vector representation have been analyzed. An advantage of this
development is that a vector space composed of multiple vectors can act as the input
to the post-mining of SCPs.

The core work contained in a maximal clique vector representation will be the
enumeration of maximal cliques and the generation of vectors. To effectively build a
representational model, an ordered maximal clique enumeration method and two
materializations of the representation model have been developed. Maximal clique
enumeration is a fundamental problem in graph databases and there is recent work
that investigates this problem in the context of spatial databases (for instance, Bao &
Wang, 2019; Zhang et al., 2019; Al-Naymat, 2008). Bao and Wang (2019) proposed
two efficient schemas, an instances-driven schema and a neighborhood-driven
schema, both using tree structures to find cliques. An efficient algorithm, Grid-
Clique, was proposed by Al-Naymat (2008) to generate maximal cliques from
Sloan Digital Sky Survey data. Zhang et al. (2019) proved, though, that we may

have 2
m
2b c maximal spatial cliques for m instances, and hence there is no polynomial

time solution for this problem in the worst case. Learning from this previous work
we have developed a depth-first method to mine order maximal cliques based on grid
structures in the context of star neighborhood relationships. Its scalability has been
tested on several synthetic datasets, and is presented in Sect. 11.5.

11.3 Preliminaries

11.3.1 Spatial Co-location Pattern (SCP)

In a spatial dataset D, different kinds of real objects can be regarded as features, and
the occurrence of a feature is deemed an instance. Let F be a set of n features, and
I be a collection of instances of F. I arranged in lexicographic order. R is a neighbor
relationship over I, such that two instances, i and i’are neighbors, that is, R(i, i0), if the
Euclidean distance between them is not greater than a distance threshold given by the
user. An SCP is a subset of set F.

A clique is a set of instances in which any two instances satisfy R. A maximal
clique is a clique all of whose supersets are not a clique. A row instance of an SCP Pα
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is a clique under R that contains the instance of all features in Pα, and the row
instance RIα represents a common occurrence of feature instances in Pα. In addition,
the set of row instances of Pα is called table instance TIα of Pα, that is, RIα 2 TIα.

Definition 11.1 Let f be a feature, Pα be an SCP, and f 2 Pα. The participation
ratio for f in Pα is the fraction of instances of f participating in TIα, that is:

PR f , αð Þ ¼ Number of distinct instances of f in TIα
Number of instances of f

ð11:1Þ

The participation index of Pα is the minimum participation ratio among all
features f in Pα, i.e., PI αð Þ ¼ min f2Pα PR f , αð Þf g.

Traditional mining frameworks usually employ participation indexes to compute
the prevalence of SCPs. An SCP is prevalent if its participation index is no less than
a given PI threshold. The collection of prevalent SCPs is denoted as Σ ¼ {Pα,Pβ,
Pγ, . . .}.

11.3.2 A Toy Example

Figure 11.2 shows 5 features F ¼ {A, B, C, D, E} and several instances which are
marked as small circles, and denoted by the feature type and a numeric id value, e.g.,
A1. Edges in Fig. 11.2 are generated by calculating the distance between instances,
and if two instances satisfy the neighbor relationship, an edge will be created. A
clique is a set having instances that are close to each other, such as {B3, C2, D2}.
However, {B3, C2, D2} is not a maximal clique because it has a superset {A2, B3,
C2, D2} that is a clique.

Note that the spatial neighbor relationship R can be usefully materialized as star
neighborhood partition model (Yoo & Shekhar, 2006), and the star neighbors of an
instance i, denoted as i.stars ¼ {i0| i < i0 AND R(i, i0)} (see Table 11.1).

Table 11.1 Star
Neighborhood

Instance Star neighbors Instance Star neighbors

A1 B4, C1 B5

A2 B3, B5, C2, D2 C1

A3 B1, C4, D3, E2 C2 D2

A4 C3 C3

B1 C4, D3, E2 C4 D3, E1

B2 D1 D1

B3 C2, D2 D2

B4 C1 D3 E1
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11.3.3 Problem Statement

The core problem of grouping SCPs meaningfully is how to quantify the similarity
of the various SCPs. Any similarity measure should take the spatial information into
count, preferably quantitatively. Once the similarity can be measured, the SCPs
grouping problem can be solved by a clustering algorithm. This chapter develops a
new measure, vector-degree, based on the observation that the spatial information of
an SCP can be represented by maximal cliques of features in the SCPs.

11.4 The Method

In this section, the new representation of SCPs is presented, and the similarity
measure between SCPs is introduced, leading to an improved clustering algorithm
to meaningfully group SCPs.

11.4.1 Maximal Cliques Enumeration Algorithm

Following the work in Wang et al. (2009b), we develop a method, GenClique, to
mine ordered maximal cliques based on the star neighbor concept. The GenClique
algorithm is divided into two parts: the generation of ordered cliques (Algorithm
11.2) and the filtering of ordered cliques (Line 4 in Algorithm 11.1). Observation
1 (below) provides the means of generating the ordered cliques. Two filtering
strategies are provided in Verification 1 and Verification 2.

Definition 11.2 Let i_CL be an ordered clique in which the first instance is i, and all
ordered cliques with their first instance i are denoted as i_CLs.

For example, in Fig. 11.2, clique {A2, B3, C2, D2} is a A2_CL because the first
instance in the clique is A2.

Observation 1 Let i be any instance of an ordered clique, then the instances to the
right of i in the ordered clique form a subset of the star neighbors of i.

For example, in Fig. 11.2, the instance set to the right of B3 in clique {A2, B3,
C2, D2} is {C2, D2}, and {C2, D2} is a subset of the star neighbors of B3, while
{B3, C2, D2} is a subset of the star neighbors of A2. In the other word, the clique is
the result of A2.stars \ B3.stars \ C2.stars \ D2.stars, where A2.stars \ B3.stars is
essentially equal to the intersection of instances that ranked to the right of B3 in A2.
stars and B3.stars. Therefore, a clique can be obtained by constantly finding the
intersection of star neighbors. The generating process of A2_CLs, which contains
five cliques, is explained in Fig. 11.3, where the order in which the cliques are
produced is indicated by numbers.
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Algorithm 11.1: GenClique(Stars, I)
Input: Stars:  star neighbors, I: the instance set
Output: all maximal cliques
Variables: clique : an order clique started with i, that is, i_CL
i.stars: the star neighborhood of instance i
Method: 
(1) for all instance i in I
(2) { clique.Add(i);   //trying to extend i to find i_CLs
(3) GenOneClique (i, clique, Stars, i.stars);
(4) Filtering( );}

To generate A2_CLs, we search the star neighbors of A2 at the beginning, and
inspect the intersection level by level within a depth-first search until the intersection
is null. Then we search back to the next instance in the last intersection until all star-
neighborhood instances are checked. Algorithms 11.1 and 11.2 show the
pseudocodes.

Taking Fig. 11.3 as an example, we call the function GenOneClique (A2, clique,
Stars, A2.stars) in Line 3 of Algorithm 11.1 to generate A2_CLs. To work through
this function, let i0 be an instance of the A2.stars, e.g., B2, i0. rights be the set of
instances that are on the right side of i0 in the A2.stars, e.g., {B5, C2, D2}, and then i0.
stars \ i0. rights ¼ {C2, D2} is the input for the next layer of search. With a depth-
first search, take an instance of the intersection, e.g., D2 and continue the above

Fig. 11.3 The process of generating A2_CLs
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search until the intersection is empty, so getting a clique, e.g., {A2, B3, D2}. An
orderly search of all intersections produces A2_CLs.

We need to be clear about the order of the clusters generated by Algorithm 11.1.
Let cl1, cl2 be two cliques generated by Algorithm 11.1. If cl1 ⊂ cl2, then cl2 was
searched before cl1 (for a detailed proof, see Lemmas 11.1 and 11.2 below). For
example, {A2, C2, D2} was searched before {A2, D2} in Fig. 11.3. Alternatively, if
cl1 6� cl2 and cl2 6� cl1, then we search for these cliques in lexicographic order. We let
cl1<Ocl2 express that cl1 was searched before cl2 by Algorithm 11.1.

In the first three statements of the algorithm GenClique, through multiple calls of
the GenOneClique method, we can get i_CLs, where i 2 I. However, not all i_CLs
are maximal cliques. For example, {A2, B3, D2} in Fig. 11.3 is not a maximal
clique. To check whether a clique is maximal, a filtering function is called in Step
4 of Algorithm 11.1, the function being based on Verifications 1 and 2 as given
below.

Definition 11.3 Let FTsi be a set of cliques whose first instance is before i, that is,
FTsi ¼ {i0 _ CLs| i0 < i}. In addition, let i + 1 be the instance following i, then
FTsi + 1 ¼ FTsi [ i _ CLs.

Lemma 11.1 Any super set of a clique i_CL is included in either FTsi or i_CLs.

Proof The super set of an i_CL is i _ CL [ i0 _ CL. If i ¼ i0, then the super set
(i _ CL [ i0 _ CL) 2 i _ CLs. Otherwise if i0 < i, then the super set
(i _ CL [ i0 _ CL) 2 FTsi, or if i < i0, then (i _ CL [ i0 _ CL) 2 i _ CLs. □

Lemma 11.2 Any super set of i_CL is produced before i_CL by the GenClique
method.

Proof Let cl1 and cl2 be two cliques, cl1, cl2 2 i _ CLs and cl1 ⊂ cl2. Let i
0 and i

00
be

the first different instances of the two cliques, then i
00
must be less than i0, because i0<
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i
00
. In cl2, instances that follow i

00
(including i

00
) are a i

00
_CL¼ i

00
. stars \ i

00
. rights, that

is, i0 =2 i
00
_ CL when i0< i

00
. When i

00
< i0, according to Line 1 of Algorithm 11.2, cl2 is

produced before cl1. On the other hand, Line 1 of Algorithm 11.1 guarantees that all
the cliques in FTsi are searched before i_CLs. Combined with Lemma 11.1, Lemma
11.2 is thus proved. □

Verification 1 According to Lemma 11.2, all supersets of an i_CL are produced
before i_CL by the GenClique method. In other words, we check if all pre-searched
cliques before i_CL are not supersets of i_CL. If not, i_CL is a maximal clique.

Verification 2 To inspect whether a clique is a maximal clique, we divide the space
into a grid structure and place each clique into its particular grid cell. The grid cell
size is d � d, where d is a distance threshold given by the user. The superset of a
clique can then only exist in the content of the nine neighbor cells, as Fig. 11.2
depicts, and the number of checked cliques is cut down. The efficiency of the process
will depend on the density of the grid.

The filtering function calls these two verifications and removes all non-maximal
cliques in i_CLs, where i 2 I. At last, we get all our verified maximal cliques, now
denoted VE(i_CLs). Similarly, FTsi is called VE(FTsi) after verification. The veri-
fication process does not change the order in which cliques are generated, so Lemma
11.2 is still valid after any verification.

Algorithm complexity analysis. Figure 11.4 generates the worst case of search
tree, a full tree, for an instance containing 4 star neighbors. The numbers of nodes of
the four sub-trees from right to left in the search tree are 20, 21, 22and 23, respec-
tively. Therefore, in the worst case, the instance containing 4 star neighbors has a
search space of 24–1. This indicates that the time complexity of the algorithm is
related to the number of star neighbors in each instance. Assuming that the data is
divided into G grids according to the distance threshold in Fig. 11.2, each grid
averages dm/Ge instances, so the number of star neighbors of one instance will not
exceed 9 � dm/Ge. Thus the time complexity is O(29 � dm/Ge). The verification
function of Line 4 in Algorithm 11.1 verifies whether the generated clique is a
maximal clique. Assuming that each instance has T maximal cliques, its worst case
verification is of 9� dm/Ge � T maximal cliques and its complexity will not exceed
O(9 � dm/Ge � T � L ), where L is the average size of the maximal cliques.

Fig. 11.4 A full search tree
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11.4.2 A Representation Model of SCPs

Conforming to the definition of row instances, an occurrence of an SCP Pα is
mapped to a clique in spatial data sets. Immediately we can see that the more row
instances of SCPs that belong to the same clique, the more similar the SCPs are. A
maximal clique is a clique that does not belong to any other clique by the definition
of maximal cliques and we have now developed a new representation of SCPs based
on maximal cliques. Observation 2 analyzes the claim that this representation, based
on maximal cliques, is a lossless representation, while Lemma 11.3 discusses the
characteristics of the representation.

Observation 2 Any row instance RIα of an SCP Pα in a spatial data set D must be
contained in a maximal clique of D.

Suppose that there exists a row instance RIα not contained in any maximal clique,
that is, RIα 6� clx, 1� x� h, where h is the number of maximal cliques inD produced
by Algorithm GenClique. According to the definition of row instances, RIα is a
clique. That is, the clique is not contained in any maximal clique, which is a false
proposition. By implication, any row instance is contained in a maximal clique. On
the basis of Observation 2, then a maximal clique vector representation is a lossless
representation that carries all the instance information of its SCPs.

Lemma 11.3 Let il be the last instance of the first feature in SCP Pα, then any
maximal clique that contains any row instance of Pα can only appear in VE(il_CLs)
[VE(FTsil).
Proof Let if be the first instance of the first feature in SCP Pα. Then any row
instance of Pα should be a i_CL, where if � i � il. Let i0 _ CL be any clique that
contains i_CL, and, by Lemma 11.1, i0 _ CL is included in either FTsi or i_CLs. Also
i0 � i. If i0 _ CL is a maximal clique, then it is included in VE(FTsi)[VE(i_CLs).
Otherwise, any clique that contains i0 _ CL is included in either FTsi0 or i

0 _ CLs.
Because i0 � i, both FTsi0 ⊆ FTsi and i0 _ CLs ⊆ FTsi are true. Therefore, any
clique that contains i0 _ CL is included in either FTsi or i_CLs. That is, any maximal
clique that contains i0 _ CL is included in VE(FTsi) [ VE(i_CLs). So, any maximal
clique that contains i_CL is also included inVE(FTsi)[VE(i_CLs) because if� i� il,
FTsi ⊆ FTsil, and i _ CLs ⊆ FTsil is true. Hence, any maximal clique that contains
any row instance of Pα can only appear in VE(il_CLs) [VE(FTsil), and Lemma 11.3
is proved.

Two materializations of the representation of the 0–1 maximal clique vector and
the key-value maximal clique vector, are developed as follows.

0–1 maximal clique vector. According to Observation 2, if we list all of the
maximal cliques ofD, then for each row instance of a SCP Pα, we can find a maximal
clique that contains the row instance. Therefore, let v(α) be the 0–1 maximal clique
vector of Pα, v(α) 2 ℜh where h denotes the number of maximal cliques in D:

v αð Þ ¼< μ cl1, αð Þ, μ cl2, αð Þ, . . . , μ clh, αð Þ > ð11:2Þ
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μ cli, αð Þ ¼ 1,∃RIα 2 TIα AND RIα ⊆ clx
0, otherwise

�
ð11:3Þ

If clx is a maximal clique, where x¼ 1, 2,. . ., h and RIα is a row instance of Pα and
TIα is the table instance of Pα, then μ(clx, α) ¼ 1 if there are Pα occurrences in the
maximal clique clx.

A vector space, composed of multiple vectors corresponding to SCPs Σ ¼ {Pα,
Pβ,Pγ, . . .}, can act as input to the post-mining of SCPs. The process is shown in
Fig. 11.5.

Observation 3 By Lemma 11.3, let |v0(α)| be the number of 0 s (zeroes) in the 0–1
maximal clique vector of Pα, and then:

v0 αð Þj j � h� VE il CLsð Þj j � VE FTsilð Þj j ¼ h� VE FTsilþ1ð Þj j

Let jv1(α)j be the number of 1 in the 0–1 vector of Pα, and then |v1(α)| � |VE
(FTsil + 1)|.

Eight maximal cliques are shown in Table 11.2 and the 0–1 maximal clique
vector is represented by a vector of magnitude 8. Table 11.3 lists five of the SCPs as
examples where each column corresponds to a maximal clique, and each row is the
0–1 maximal clique vector of an SCP.

Key-value maximal clique vector. According to Observation 3, it can be seen
that a 0–1 vector contains a lot of zeroes and the calculations need to traverse the
whole vector. Therefore, a new materialization, a key-value maximal clique vector,

Fig. 11.5 Binary vector space

Table 11.2 All maximal
cliques in Fig. 11.2

Maximal cliques

A1_CLs A1, B4, C1

A2_CLs A2, B3, C2, D2/A2, B5

A3_CLs A3, B1, C4, D3/A3, B1, E2

A4_CLs A4, C5

B2_CLs B2, D1

C4_CLs C4, D3, E1
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has been developed to improve the retrieval efficiency. Let ev αð Þ be the key-value
maximal clique vector of Pα:

ev αð Þ ¼<< i,ev i, αð Þ > , < i0,ev i0, αð Þ > , . . . , < i00,ev i00, αð Þ >> ð11:4Þ

where ev αð Þ is composed of several key-value pairs, let < i,ev i, αð Þ > be a key-value
pair in ev αð Þ, then the key in the pair is the instance i, i 2 I, and the value ev i, αð Þ is the
set of numeric ids that correspond to the ordered maximal clique containing a row
instance of Pα, that is, ev i, αð Þ ¼ xj∃RIα 2 TIα AND RIα ⊆ clx, clx 2 VE i CLsð Þf g.
Key-value pairs are constructed only when ev i, αð Þ 6¼ ∅.

Taking Pα ¼ {A, B} in Table 11.3 for example, the key-value maximal clique
vector ev αð Þ ¼ << A1,ev A1, αð Þ > , < A2,ev A2, αð Þ > , < A3,ev A3, αð Þ >> ¼
< < A1, {1} > , < A2, {2, 3} > , < A3, {4, 5} > >.

Where<A2, {2, 3}> shows that there are two maximal cliques, it is clear that cl2,
cl3 2 VE(A2_CLs) and cl2, cl3 contain row instances of Pα.

By Lemma 11.3, let il be the last instance of the first feature in the co-location
pattern Pα, and i be the instance where il<Oi, then none of the row instances of Pα

will be contained in i_CLs. The generation process for the key-value maximal
cliques vector of an SCP Pα is shown in Algorithm 11.3.

The algorithm takes the entire collection of maximal cliques and an SCP as input.
The algorithm checks the input and then works as follows. First, Line 4 is a pruning
step based on Lemma 11.3. Then, Line 5 confirms whether the maximal clique
contains a row instance of Pα. If the maximal clique VE(i_CL) contains any row
instance of Pα, we add 1 to the count value (Line 6). If the key instance i is not
included in Dic (Line 7), the key-value pair is added, and then the maximal clique is
added to the set value listi corresponding to the key i.

Algorithm 11.3: Genvector ( Pα ,CLs) 
Input: Pα : a SCP. CLs: all VE(i_CLs), where i I   
Output: Dic: key-value <i, listi > maximal cliques vector of Pα  
Count: number of key-value pairs of Pα  
listi: the set value corresponding to the key i in Dic. 
Variables: il: the last instance of the first feature in Pα  
Method:  
count=0; 
(1) for all maximal cliques VE(i_CL) in CLs  
(2) {//calculate <i, listi > pair 
(3) if  Oil i<  then break; // pruning by Lemma 11.3 
(4) if VE(i_CL).Contain( Pα ) then 
(5)        count++; 
(6)         if !Dic.ContainKey(i) then  
(7)               Dic.Create(i, listi)// The initial value of listi is null 
(8)        Dic[i].Add(i_CL);} 
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It is worth noting that in order to improve efficiency, in Line 5, we do not need to
check row instances of Pα, provided we confirm that all the features of Pα in the
maximal clique VE(i_CL) are included. That is, if the set of features of VE(i_CL)
contains the set of features of Pα, the maximal clique VE(i_CL) contains row
instances of Pα, and vice versa. This means the computational time spent is reduced
to O(||Pα|), where |Pα| is the length of the pattern Pα.

Time complexity analysis of Algorithm 11.3: With a hash structure, the time
complexity of the three operations on Lines 7, 8, and 9 is O(1), and the number of
executions for the entire loop is O(|VE(il_CLs) [ VE(FTsil)|), so the total time
complexity is O(|Pα| * |VE(il_CLs) [ VE(FTsil)|).

11.4.3 Vector-Degree: the Similarity Measure of SCPs

Definition 11.4 Let Pα, Pβ, Pγ be three SCPs in Σ, let v(α), v(β), v(γ) 2 ℜh be their
0–1 maximal clique vectors. Let sim(v(�), v(�)) be a similarity function of two SCPs
such that Pα is more similar to Pβ than to Pγ by sim(v(�), v(�)) when sim(v(α),
v(β)) > sim(v(α), v(γ)).

Another measure, cosine similarity, has been widely used to compute the similarity
between vectors. Formally, the cosine similarity is defined as:

sim v αð Þ, v βð Þð Þ ¼

Ph
j¼1

μ cl j,Pα

� �� μ cl j,Pβ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
j¼1

μ2 cl j,Pα

� �s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
j¼1

μ2 cl j,Pβ

� �s ð11:5Þ

In the definition, if v(α)¼ v(β), then sim(v(α), v(β))¼ 1. Let 1� sim(v(α), v(β)) be
the distance between Pα and Pβ. Let ev αð Þ, ev βð Þ be key-value maximal clique vectors

of Pα and Pβ. Then, sim ev αð Þ,ev βð Þð Þ ¼ P
i¼i0, i, i02I

ev i, αð Þ\ev i0 , βÞð jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2I

ev i, αð Þj j
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i02I

ev i0, βð Þj j
r

��������
.

Meanwhile, the upper bound of sim ev αð Þ,ev βð Þð Þ is
min

P
i2I

ev i, αð Þj j,P
i02I

ev i0 , βð Þj j
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2I

ev i, αð Þj j
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i02I

ev i0, βð Þj j
r .

The comparison of vector-degree with other similarity definitions is shown in
Table 11.4. Similarity measures that require additional parameters or additional
input information are not in the comparison in Table 11.4. Each column in
Table 11.4 corresponds to a similarity measure, and each row is two SCPs from
Fig. 11.2 which are to be measured for similarity. “-” in Table 11.4 indicates that
similarity cannot be calculated. In general, vector-degree has the best versatility and
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can calculate the similarity of any two SCPs, feature similarity (Liu et al., 2015)
comes second in versatility, and semantic similarity third. For the SCPs {A, B} and
{C, D}, all the similarity measures except vector-degree fail to calculate their
distance. In fact, in Fig. 11.2, they have two sets of instances appearing in the
same maximal clique. For the SCPs {A, B} and {A, C}, the feature similarity
measure treats {A2, B5} and {A2, C2} as evidence of their similarity although the
two instance sets do not form a clique. The covered relationship similarity measure
provided by Yoo and Bow (2011a) is interesting because it indicates that all the
cliques in which these two SCPs are located are the same, so we can use it as the
minimum standard of similarity and we will further compare it with vector-degree in
the part of this chapter dealing with experiments.

11.4.4 Grouping SCPs Based on Vector-Degree

We can use an agglomerative hierarchical clustering method to group SCPs effec-
tively based on the vector-degree.

For every SCP Pα, let aα be the average distance between Pα and the other SCPs
of the cluster to which Pα belongs. Let bα be the minimum average distance from Pα

to all the clusters that do not contain Pα. A silhouette coefficient can be used to
evaluate the quality of clustering, i.e., savg ¼ 1

m

P
Pα2Σ

bα�aα
max aα, bαf g.

Hierarchical clustering merges the two clusters with the minimum average
distance.

11.5 Experimental Evaluations

The evaluation has been conducted on both real and synthetic data sets. First, the
reason for using a vector-degree similarity measure is confirmed by comparing it
with the covered relationship on both real and synthetic data sets. Then, the effec-
tiveness and efficiency of our clustering algorithms based on 0–1 vector and
key-value vector are discussed. The two materialization methods are compared
and, finally, the scalability of the method is tested on multiple synthetic data sets.

Table 11.4 The comparison with other similarity measures

Covered
relationship

Semantic
similarity

Feature
similarity

Vector
degree

{A,B},{C,D} – – – 0.63

{A,B},{A,C} – – 0.75 0.67

{B,C},{A,B,C} Y 1 1 1

{B,C},{A,B,C,
D}

N 0.67 0.67 0.82
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All algorithms were implemented in C# and conducted on a Windows platform with
a 3.70GHZ machine and 16GB RAM.

11.5.1 Data Sets

In our experiments we use both synthetic and real data sets. The real data set is
extracted from POI data sets from Beijing with its category and location in a
20,000 � 16,000 size spatial area. The synthetic data sets are generated as follows.
First, we generate several sets of maximal cliques with different distance thresholds
d. Second, we randomly sample a certain number of SCPs to create a grouping
problem. The spatial density is controlled by the D1� D2 size frame; see Table 11.5
for details.

Figure 11.6 shows the number of maximal cliques mined by Syn1 and Syn2 at
different distance thresholds. The data distribution of the real data set is shown in
Fig. 11.7.

11.5.2 Results

1. Effectiveness
In this section, we study the algorithm’s effectiveness by verifying whether the
SCP pairs that satisfy a covered relationship are contained in the same group. The
comparison is shown in Table 11.6. To obtain all SCPs that satisfy the relation-
ship; we set the prevalence threshold to zero for the first and second data sets. The
number of SCPs that satisfy the covered relationship are recorded by the number
of closed pattern pairs. In the third data set, the prevalence threshold is not zero,
so the mined results, i.e., 360 co-location patterns, have a certain correlation.
After grouping, the degree of separation between the groups is relatively small, so
their silhouette coefficient is lower than that of the other two groups. In all three
data sets, the number of covered relationship patterns pairs assigned to the two
groups is 0.

2. Effect of the number of maximal cliques
Synthetic data set Syn1 produces 570, 930, 1634, 8182 maximal cliques. We

sampled 20 groups of 400 SCPs and computed their silhouette coefficients by our

Table 11.5 Data sets

Real data set Synthetic data sets

name Real1 Syn1 Syn2

D1 � D2 20,000 � 16,000 5000 � 5000 20,000 � 20,000

Number of instances 23k 300 5k

Number of features 16 15 25
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method, and then calculated the average silhouette coefficient. The other groups
were calculated in the same way. The results are shown in Fig. 11.8. When the
number of maximal cliques is relatively small, i.e., 570 in Fig. 11.8, the patterns
are rarely contained in the same maximal cliques, especially the higher-size
patterns, so their silhouette coefficient values are low, meaning that the SCPs
are not well distinguished. What is also interesting from Fig. 11.8 is that if the
maximal clique number is greatly enlarged, more and more SCPs are included in
the same maximal clique, and so the maximal clique carries less information and
has a lower coefficient. It can also be seen that this mining method on the set of
patterns from 400 to 1600 is relatively smooth.
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3. Performance
The most time-consuming aspect of performance is the formation of the

maximal clique vectors and grouping. We can divide the execution time into
three parts, mining maximal cliques, forming vectors, and grouping, and observe
the time consumption of each part. Figure 11.9(a) shows the variation of the
runtime of the three parts over the synthetic data set Syn1 as the distance
threshold increases based on a 0–1 vector. The number of randomly generated

Table 11.6 Comparison

Real1 Syn1

Input information Distance threshold 20 600 600

Prevalence threshold 0 0 0.2

Mining patterns information Number of patterns 539 5933 360

Number of closed pattern pairs 130 4965 22

Clustering results Number of cluster 129 1556 148

Silhouette coefficient 0.76 0.80 0.27

Effectiveness Number of misassignments 0 0 0
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patterns to be grouped is 1200. Figure 11.9(b) shows the time consumption of
each part when grouping 2000 random patterns from Syn2 with the key-value
vector. It can be seen from both Fig. 11.9(a) and (b) that, as the distance threshold
increases and the number of maximal clique increases, the time for generating the
maximal cliques increases rapidly, whereas the time spent in the clustering part is
relatively stable. In particular, the vector generation portion takes much less time
than the other two parts and so is almost invisible on the figures.

Figure 11.10(a) shows the time consumption of the three parts with the
increase of the number of SCPs, in which the number of maximum cliques is
8182 from Syn1. Figure 11.10(b) shows the effect when the distance threshold is
750 in Syn2. In general, as the number of modes increases, the time spent in the
grouping part rises slowly.

4. Comparison of 0–1 vector with key-value vector
Figure 11.11 shows the results on 1200 SCPs chosen randomly from Syn2.

According to Fig. 11.11, the run times of both vector methods increase as the
distance increases (i.e., the number of maximal cliques increases). The time
consumed by the 0–1 vector increases much faster than that of the key-value
vector.
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5. Scalability test
We generated synthetic data sets with sizes {50k, 100k, 150k, 200k, 250k} all

within a spatial frame 20,000 � 20,000. The distance threshold d was set to
20 and 40. Figure 11.12 shows the results, and we can see that our method,
especially the key-value vector method, can scale to large data sets.

11.6 Chapter Summary

In this chapter, we studied the problem of grouping SCPs. We developed a novel
general representation model of SCPs to flexibly calculate the similarity between any
SCPs. To prove how useful and effective the representation model is we conducted
extensive experiments over both real and synthetic data sets. The experimental
results demonstrated that our solution is effective. There are still many challenges
worthy of further research, for example, parallel computation for the generation of
maximal cliques.
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