
SpringerBriefs in Computer Science

Sanaa Kaddoura

A Primer on Generative
Adversarial Networks

SpringerBriefs in Computer Science

Series Editors
Stan Zdonik, Brown University, Providence, RI, USA
Shashi Shekhar, University of Minnesota, Minneapolis, MN, USA
Xindong Wu, University of Vermont, Burlington, VT, USA
Lakhmi C. Jain, University of South Australia, Adelaide, SA, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, IL, USA
Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada
Borko Furht, Florida Atlantic University, Boca Raton, FL, USA
V. S. Subrahmanian, University of Maryland, College Park, MD, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, PA, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, VA, USA
Newton Lee, Institute for Education, Research and Scholarships,
Los Angeles, CA, USA

SpringerBriefs present concise summaries of cutting-edge research and practical
applications across a wide spectrum of fields. Featuring compact volumes of 50 to
125 pages, the series covers a range of content from professional to academic.

Typical topics might include:

• A timely report of state-of-the art analytical techniques
• A bridge between new research results, as published in journal articles, and a

contextual literature review
• A snapshot of a hot or emerging topic
• An in-depth case study or clinical example
• A presentation of core concepts that students must understand in order to make

independent contributions

Briefs allow authors to present their ideas and readers to absorb them with minimal
time investment. Briefs will be published as part of Springer’s eBook collection,
with millions of users worldwide. In addition, Briefs will be available for individual
print and electronic purchase. Briefs are characterized by fast, global electronic
dissemination, standard publishing contracts, easy-to-use manuscript preparation
and formatting guidelines, and expedited production schedules. We aim for
publication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts
are considered for publication in this series.

**Indexing: This series is indexed in Scopus, Ei-Compendex, and zbMATH **

Sanaa Kaddoura

A Primer on Generative
Adversarial Networks

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-3-031-32660-8 ISBN 978-3-031-32661-5 (eBook)
https://doi.org/10.1007/978-3-031-32661-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Sanaa Kaddoura
Zayed University
Abu Dhabi, United Arab Emirates

https://doi.org/10.1007/978-3-031-32661-5
https://orcid.org/0000-0002-4384-4364

v

Preface

Generative Adversarial Networks, or GANs, are a type of artificial neural network
that has taken the field of machine learning to another level. Ian Goodfellow and his
colleagues invented it in June 2014. GANs have the unique ability to generate new,
realistic data that closely mimics the distribution of the original dataset they were
trained on it. GANs can create images, videos, and even music. It revolutionized
many domains, such as computer vision, natural language processing, and robotics.
GANs can produce photos of human faces that cannot be differentiated from the
photo taken by a camera.

This book, A Primer on Generative Adversarial Networks, is designed for read-
ers who want to learn GAN without going into their mathematical background.
Also, the book considers the straightforward applications of GANs, which allows a
beginner reader in this topic to learn it. The book suits researchers, developers, stu-
dents, and anyone wanting to practice GANs. The author assumes the reader is
familiar with machine learning and neural networks. The book will include some
ready-to-run scripts that can be used for further research. The programming lan-
guage used in the book is python. So, it is assumed that the reader is familiar with
the basics of this language.

The book starts with an overview of GAN architecture, explaining the idea of
generative models. Then it goes into the most straightforward GAN architecture that
is utilized to explain how GANs work, including the generator and discriminator
concepts. Next, the book delves into more advanced applications of GANs from the
real world such as human faces generation, deep fake, CycleGANs, and others.

By the end of this book, the readers will be able to write their own GAN code
after understanding how GAN works and its potential applications. The reader can
employ GANs as a solution in their projects. Whether the reader is a beginner or a
seasoned machine learning practitioner, I hope this book will suit you.

All the codes of the book can be downloaded from: https://github.com/
sn-code-inside/A-Primer-on-GNAs

Zayed University, Abu Dhabi, United Arab Emirates Sanaa Kaddoura
April 2023

https://github.com/sn-code-inside/A-Primer-on-GNAs
https://github.com/sn-code-inside/A-Primer-on-GNAs

vii

Acknowledgments

I am grateful to Ms. Reem Nassar who supported the technical part of this book. She
also contributed in writing the codes of the book.

ix

Contents

 1 Overview of GAN Structure . 1
 1.1 Introduction . 1
 1.2 Generative Models . 3
 1.3 GANS . 5

Overview of GAN Structure . 5
The Discriminator . 6
The Generator . 7
Training the GAN . 8
Loss Function . 9
GANs Weaknesses . 10

References . 11

 2 Your First GAN . 13
 2.1 Preparing the Environment . 13

Hardware Requirements . 13
Software Requirements . 14
Importing Required Modules and Libraries 14
Prepare and Preprocess the Dataset . 15

 2.2 Implementing the Generator . 16
 2.3 Implementing the Discriminator . 17
 2.4 Training Stage . 19

Model Construction . 19
Loss Function . 19
Plot Generated Data Samples . 20
Training GAN . 21
Common Challenges While Implementing GANs 25

References . 26

 3 Real-World Applications . 27
 3.1 Human Faces Generation . 27

Data Collection and Preparation . 28
Model Design . 30

x

Training . 34
Evaluation and Refinement . 35
Deployment . 37

 3.2 Deep Fake . 38
Data Collection and Preparation . 38
Model Design . 39
Training . 40

 3.3 Image-to-Image Translation . 40
Data Collection and Preparation . 41
Model Design . 42
Training . 46

 3.4 Text to Image . 48
Module Requirements . 49
Dataset . 50
Model Design . 54
Training Stage . 59
Evaluation and Refinement . 61

 3.5 CycleGAN . 62
Dataset . 65
Model Design . 65
Training Stage . 67

 3.6 Enhancing Image Resolution . 68
Dataset . 68
Model Design . 69
Training Stage . 70

 3.7 Semantic Image Inpainting . 71
Dataset . 71
Model Design . 72
Training . 74

 3.8 Text to Speech . 74
Dataset . 75
Model Design . 76
Training . 79

References . 80

 4 Conclusion . 83

Contents

1

Chapter 1
Overview of GAN Structure

Abstract This chapter will introduce generative adversarial networks (GANs), a
type of neural network that can generate new data samples that resemble a given
dataset. The chapter will discuss the difference between generative and discrimina-
tive models, an overview of the basic architecture of GANs, which consists of a
generator and a discriminator, and how they are trained using an adversarial pro-
cess. We also discuss the weaknesses of GANs and highlight some of their current
challenges and limitations.

1.1 Introduction

Machine learning is an ever-evolving research area under artificial intelligence (AI).
It allows the machine to imitate the human learning process to predict unseen data
without being explicitly programmed accurately. Machine learning algorithms usu-
ally find patterns in the data to make predictions. The machine can learn from expe-
rience to improve accuracy by recognizing these patterns. Exploring specific
patterns in data and making accurate decisions without being explicitly programmed
has made it one of the most exciting fields of study in recent years.

It is important to note that the field of machine learning is vast, and there are dif-
ferent types of machine learning algorithms. For example, generative learning is the
most recent innovation that focuses on creating new data similar to the existing one.
Here is where generative adversarial networks (GANs) come into play.

GANs have been AI’s most exciting idea in the last decade. They have revolu-
tionized the deep learning paradigm leading to some of the most significant techno-
logical advances in AI history. GANs are considered a significant breakthrough in
AI because they can generate new data that is not just a copy of the training data.

GANs were first introduced by J. Goodfellow and other co-authors [1]. They are
composed of two neural networks, a generator and a discriminator, competing
against each other in a zero-sum game. This process is called adversarial training,
where the generator or the discriminator wins, and the other loses.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Kaddoura, A Primer on Generative Adversarial Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-031-32661-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32661-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-32661-5_1

2

Fig. 1.1 Generated human faces by GAN

Fig. 1.2 Generated cats by GAN

GANs have a broad scope of applications in several areas. Below is one of the
most popular and well-known GANs based on the research work in [2]. They used
GANs to generate images through a website created by the researchers.1 The pro-
posed GAN model generates real human faces for people who do not exist. The
generated images are almost identical to real faces. All faces in Fig. 1.1 are GAN-
generated images and do not belong to any actual person. Similarly, the cats in
Fig. 1.2 are not real; a GAN model generates them. The website can also generate
houses, vessels, resumes, and others.

GANs can reach these highly realistic images by utilizing two networks: a gen-
erator and a discriminator. The generator generates image instances from a random
noise vector in this case. However, the discriminator is responsible for recognizing
whether the image is actual or generated by the generator. Throughout this process,
the generator will work on deceiving the discriminator, and the discriminator will
try not to be deceived.

GANs have experienced substantial enhancements and progress since their
inception in 2014. These developments include improving GAN stability which
authors achieve in [3] through utilizing different loss functions. Now, it can generate
more realistic photos with high resolution. As shown in Fig. 1.3, the generated
image quality was enhanced over time until it reached an acceptable quality in 2017.
Now, it has been more potent in generating better-quality images. The photos from
2014 to 2017 in Fig. 1.3 are taken from the papers in [1, 4–6], respectively [7]. The
photo of 2018 was taken from [8]. The photos of 2019 and 2021 are taken from [9].
The author generated the photo of 2023.

This book introduces GANs and their applications. After preparing the environ-
ment for coding, the reader will learn to implement a basic GAN from scratch.
Then, real-world applications of GANs are introduced along with their

1 Kashish Hora, “This x Does Not Exist”, https://thisxdoesnotexist.com/. [Accessed: 13-Dec-2022].

1 Overview of GAN Structure

https://thisxdoesnotexist.com/

3

Fig. 1.3 Development of GANs from 2014 to 2023

implementation. The reader is expected to know the basics of machine learning
algorithms and their implementations.

1.2 Generative Models

Understanding the difference between the two types of machine learning models is
important before explaining GANs. Machine learning models are either discrimina-
tive or generative. One can distinguish how generative models differ from discrimi-
native ones. Discriminative is a term used for models that are used for classification;
generative is a term used for models that generate new data. As shown in Fig. 1.4,
the discriminative model is a classifier. It is uncertain about the input data and does
not consider how the data was generated. A discriminative model takes the data
instances to learn a function that maps input data to classes and then predicts the
class of new instances. However, a generative model can generate new data com-
pared to the discriminative model.

Assume that a convolutional neural network (CNN) model is built to classify
images of dogs and cats. The CNN model will input cat and dog images, each hav-
ing a class label to differentiate between them. By assigning weights and biases to
each image, the CNN model gives the class an output, whether a dog or a cat. What
if the problem was in the opposite direction? The model generates images based on
a class label input; this is where generative models come. These models generate
output based on input given to the machine. They are based on unsupervised
machine learning algorithms. The generative model will be first trained using a
training dataset. Then it learns the patterns in the input data to generate new data

1.2 Generative Models

4

Fig. 1.5 Discriminative vs. generative model

Fig. 1.4 Abstract
definition of discriminative
and generative models

(image, text, video, speech) from the acquired knowledge. As shown in Fig. 1.4, the
discriminative model is a classifier, such as classifying an image as a dog or cat.
However, generating an image of a dog or a cat is a generative problem.

The discriminative model calculates the conditional probability p(X|Y). The
variable X is the set of features of the target-generated object, such as a big nose,
long hair, whether it meows or not, or other feature sets. The variable Y says whether
it is a cat or a dog. So, given a set of features X, determine the probability of class Y.

The generative model calculates the joint probability p(X, Y) or p(X) without
labels. For example, it learns how to create realistic images of dogs or cats. The
input of this model is a random number or set of numbers referred to as noise, such
as [−3, 3.2, 5]. Also, sometimes it takes a class Y, such as dogs or cats. Given these
inputs, the model will generate the features set X that will resemble Y. The noise is
needed to generate different images every time.

As shown in Fig. 1.5, discriminative models draw a decision boundary between
data. The decision boundary drawn by discriminative models separates different
classes. However, the generative model tries to know how data is located in space.

1 Overview of GAN Structure

5

By drawing the decision boundary, the discriminative model tries to tell the differ-
ence between a cat and a dog picture. If the boundary is drawn accurately, the model
can recognize a cat photo from a dog photo without knowing the data samples’
placement. On the other hand, a generative model tries to generate persuasive pho-
tos of cats and dogs that are close to the authentic images in the data space. Thus,
the generative model needs to model the data all over the data space.

1.3 GANS

In this section, a full explanation of GANs will be displayed. The subsequent sec-
tions will delve deeper into GANs and discuss their architecture, the generator, the
discriminator, the training stage, the loss function, and weaknesses.

 Overview of GAN Structure

The terms generator/generative and discriminator/discriminative will be frequently
used. They are opposite but will be used together since they are the two primary
components of a GAN. The generator and discriminator are neural networks that
aim to analyze the variations in the dataset. GAN treats the unsupervised generative
task using the two neural networks as supervised. The generator is the model
responsible for generating new reasonable examples from the problem domain. The
discriminator is the model responsible for classifying examples as real belonging to
the problem domain or fake generated by the generator. For example, if the problem
is generating automobile images, the discriminator will tell whether the image is an
automobile.

The generator learns to produce plausible data, while the discriminator learns to
differentiate real from fake data. The discriminator is trained on actual samples to
classify the input as real or fake. It uses the generated data from the generator as the
negative training examples. The discriminator penalizes the generator every time it
produces non-reasonable results by giving it a score. From the scores given by the
discriminator, the generator will learn how to enhance the generated data.

Figure 1.6 shows that the generator is trying to generate fake automobile data
images. It starts generating fake images when the training process starts. The dis-
criminator quickly classifies them as fake. As the training process moves forward,
the generator generates images closer to the real ones. However, the discriminator
can still identify the images as fake, as shown in Fig. 1.7. When the training stage of
the generator reaches an advanced level; the generator will generate images that
look like real ones. Realistic-generated images will trick the discriminator that can-
not distinguish fake from real images. Thus, it will classify fake images as real ones,
as shown in Fig. 1.8. Now, the complete GAN structure can be formed.

1.3 GANS

6

Fig. 1.6 The beginning of the training process

Fig. 1.7 Progress in training stage of generator

Fig. 1.8 Advanced generator training stage

 The Discriminator

The discriminator is a vital component of the GAN architecture, as it tries to classify
whether the input data is real or fake. It can be any architecture, typically neural
networks. Most discriminative models in GANs are made of a convolutional neural
network (CNN). The discriminator model is trained on real-world data samples to
learn specific patterns found in the real samples.

During training, the discriminator receives data that combines two sources. The
first source is real data from the problem domain itself. Real data can be real-world
images, text, or a combination of text and images. To illustrate, if the problem is

1 Overview of GAN Structure

7

generating realistic photographs of human faces, the discriminator receives authen-
tic images of human faces. However, if the problem is to generate images from text
data, the discriminator will receive a combination of text with its corresponding
image sample as input. This data source can be called the positive samples since
they are real. The second data source is the samples coming out from the generator.
These are fake data; hence they can be called negative samples.

Once the input data is fed to the discriminator, it will pass through the layers to
produce a binary output. The binary output indicates whether the input is an actual
or generated (fake) data sample. While the discriminator is in the training stage, the
generator weights are frozen. At this stage, the generator feeds the discriminator
with data to train on. The loss function used by the discriminator is binary cross-
entropy, which measures the difference between the generator output and the input
data sample’s actual label.

The discriminator detection accuracy increases through backpropagation. Thus,
it will better differentiate between real and fake samples. As the discriminator
becomes more powerful than before, the generator improves its generated samples.
This iterative process continues until the generator produces samples indistinguish-
able from real ones.

The discriminator architecture is presented in Fig. 1.9. The grey box shows that
it is composed of several down-sampling layers. The down-sampling layers are rep-
resented by multiple rectangles placed beside each other with reducing size. The left
side of the figure represents the real or fake input data to the discriminator. The right
side of the figure represents the binary classes out from the discriminator, either
fake or real.

 The Generator

The generator is the main component in GANs, responsible for data generation. It
can be any architecture, typically a neural network. Generally, GANs generator
model is made of several up-sampling layers. The input data sample is passed

Fig. 1.9 Discriminator architecture

1.3 GANS

8

through these layers to reach the desired shape. For example, if the aim is to gener-
ate images of a human face with shape (224,224,3), the last layer in the generator
will generate an image with this shape. Usually, the generator’s input is based on the
task required. To illustrate, in image generation, it will be a noise. In text-to-image
translation, input will be a combination of text and noise. In the case of image-to-
image translation, the input will be the source image.

The generator receives the input data during training and produces the desired
output. It will start by producing random noise far from the actual data. It aims to
fool the discriminator by evaluating the quality of its generated images using a spe-
cific loss function. The generator aims to reduce the loss function by updating
weights and biases to make high-quality data.

The generator loss at the first stage of training is high. While training the genera-
tor, the discriminator weights are frozen. However, the generator updates its weights
based on how much the discriminator model is accurate. Similarly, the generator is
trained using backpropagation.

During the training, the generator keeps updating its weights based on the feed-
back given by the discriminator. At the end of the training process, the generator
model can generate fake samples that look like real ones. The generator also aims
not to overfit the training data.

Figure 1.10 displays the generator structure. The grey box demonstrates the sev-
eral up-sampling layers of the generator model. The up-sampling layers are repre-
sented by multiple rectangles placed beside each other with increasing sizes. The
input to the generator, usually a random noise, is shown on the left side of the figure.
The generated fake samples are presented on the right side of the figure.

 Training the GAN

Training the GAN means training its components, the generator, and the discrimina-
tor networks. This process involves alternating between training both networks in a
way that leads to an equilibrium between them. The training process in GANs is
responsible for updating the weights in the generator and the discriminator. It ends
when both models reach convergence.

Fig. 1.10 Generator architecture

1 Overview of GAN Structure

9

GAN training aims to reach a state where the discriminator cannot distinguish
between generated and real data. In addition, the generator outputs high-quality data
similar to the real one. This state is called Nash equilibrium, where neither network
can improve its performance further.

Achieving good-quality data requires a robust neural network model. Thus, care-
ful hyperparameter tuning, correct model architecture, and an appropriate number
of layers are required. Building the generator model with optimized architecture
does not need to be achieved through a single try. The training process is the longest
part of GANs, where it is done over epochs and takes time to finish. The generated
data quality increases as the number of epochs increases, but there might be a risk
of overfitting. In addition, some GAN applications use progressive training, starting
by producing new data with low resolution and then passing it to another GAN
model to produce high-resolution data. It is usually applied to image generation so
that the model learns the data features gradually and converges to a better solution.
Figure 1.11 presents the GAN training architecture.

 Loss Function

In general, the GAN loss function is known as min-max loss. It was described first
in [1]. The generator aims to minimize the loss to produce high-quality data, while
the discriminator aims to maximize it. GANs use two loss functions to train their
components: generator loss and discriminator loss.

The generator loss function is used to evaluate the quality of generated data. In
other words, it measures how well the generator generates fake images that resem-
ble the real ones. The generator model aims to minimize this loss function and
produce better images.

The discriminator loss function evaluates the model’s ability to generate real
data. Alternatively, it measures how well the discriminator can discriminate between
real and fake data samples. The discriminator model aims to maximize this loss
function to enhance its ability to distinguish between the two types of data samples.

Fig. 1.11 GAN training

1.3 GANS

10

Various loss functions could serve the aim of GANs. The most used functions are
binary cross-entropy loss, mean squared error, and the Wasserstein loss. The binary
cross-entropy loss is a popular choice that is usually used to calculate the loss
between the discriminator output and the real/fake label. The binary cross-entropy
loss is measured using Eq. 1.1 [10]. The mean squared error is usually used to mea-
sure the difference between generated and real data samples. The equation of mean
squared error is presented in Eq. 1.2 [11]. The Wasserstein loss is used in Wasserstein
GANs (WGANs) to measure the distance between the generated and real data sam-
ples. The mathematical formulation for Wasserstein loss is shown in Eq. 1.3 [12].

BCE � � �� � � �� � � � �� �

�
�1 1 1

1n
y p y y p y

i

n

i i i ilog log

(1.1)

BCE is the binary cross-entropy loss, y is the label (either 1 or 0), p(y) is the
predicted output, and n is the total number of samples.

MSE

n
real fake� � �� �1 2

(1.2)

MSE is the mean squared error, real is the real data sample values, fake is the
generated data sample values, and n is the total number of samples.

Critic Loss D x D G z_ � � � � � �� �

(1.3)

D(x) is the average critic score on real images, D(G(z)) is the average critic score
on generated images, and G(z) is the generator’s output.

Reconstruction loss and regularization loss are other loss functions that can be
used in GANs. The first is utilized in variational autoencoder-GAN (VAE-GAN)
[13] to measure the similarity between generated and real images. The latter pre-
vents overfitting and improves the model’s generalization by adding penalties to the
network weights during training.

 GANs Weaknesses

While GANs field is exciting, they experience some limitations and weaknesses.
Some of the limitations are stability, diversity, and interpretability. These comprise
difficulties in training, which can result in mode collapse or oscillation. In addition,
GANs require a large amount of training data. Besides, bias can be introduced into
the generated data due to the limitations and biases of the training data. Thus the
real data representation will be unfair and misleading.

One of the challenges of evaluating GANs is the lack of concrete theoretical
intrinsic evaluation metrics. The usual method of inspecting features across gener-
ated and real samples is an approximate and unreliable estimate. Furthermore, GAN

1 Overview of GAN Structure

11

training can be unstable and time-consuming, requiring a degree of artistry. For
example, mode collapse can result in the generator producing only a limited set of
outputs. Lastly, GANs are not typically designed to be invertible, meaning it is
impossible to determine the noise vector that maps onto a given image. However,
new methods have emerged to address this issue. Some models do the opposite of
the GAN or the implementation of cycleGANs that learn both directions simultane-
ously. Inversion can be helpful for image editing, allowing for applying controllable
generation skills to any image’s noise vector.

References

1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial networks. Commun. ACM. 63, 139–144 (2020)

2. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative Adversarial
Networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4401–4410 (2019)

3. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training
of Wasserstein GANs. In: 31st International Conference of Neural Information Systems,
pp. 5769–5779, USA (2017)

4. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. https://arxiv.org/abs/1511.06434 (2017)

5. Liu, M.-Y., Tuzel, O.: Coupled Generative Adversarial Networks. https://arxiv.org/
abs/1606.07536 (2016)

6. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive Growing of Gans for Improved Quality,
Stability, and Variation. https://arxiv.org/abs/1710.10196 (2017)

7. Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., & Amodei, D.: The
malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv preprint
arXiv:1802.07228. https://arxiv.org/abs/1802.07228 (2018)

8. Hermosilla, G., Tapia, D.I.H., Allende-Cid, H., Castro, G.F., Vera, E.: Thermal face generation
using StyleGAN. IEEE Access. 9, 80511–80523 (2021)

9. Generative adversarial network: In Wikipedia. https://en.wikipedia.org/wiki/Generative_
adversarial_network (2023)

10. Setia, M.: Binary Cross Entropy aka Log Loss-the cost function used
in logistic regression, https://www.analyticsvidhya.com/blog/2020/11/
binary- cross- entropy- aka- log- loss- the- cost- function- used- in- logistic- regression/

11. M, P.: End-to-end introduction to evaluating Regression Models, https://www.analyticsvidhya.
com/blog/2021/10/evaluation- metric- for- regression- models/

12. Loss functions, https://developers.google.com/machine- learning/gan/loss
13. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, Os.: Autoencoding beyond Pixels

Using a Learned Similarity Metric. https://arxiv.org/abs/1512.09300 (2016)

References

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1606.07536
https://arxiv.org/abs/1606.07536
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1802.07228
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://www.analyticsvidhya.com/blog/2020/11/binary-cross-entropy-aka-log-loss-the-cost-function-used-in-logistic-regression/
https://www.analyticsvidhya.com/blog/2020/11/binary-cross-entropy-aka-log-loss-the-cost-function-used-in-logistic-regression/
https://www.analyticsvidhya.com/blog/2021/10/evaluation-metric-for-regression-models/
https://www.analyticsvidhya.com/blog/2021/10/evaluation-metric-for-regression-models/
https://developers.google.com/machine-learning/gan/loss
https://arxiv.org/abs/1512.09300

13

Chapter 2
Your First GAN

Abstract This chapter will delve deeper into implementing generative adversarial
networks (GANs). Chapter 1 presented a comprehensive overview of GANs, high-
lighting their versatility and promising results in various applications, including
image, video, audio, and text generation. This chapter will focus on the most basic
implementation of GANs, starting with the most straightforward code that gener-
ates a straight line “y = x”. This approach will provide a fundamental understanding
of the components and workings of GANs and how they can be utilized for 1D
GAN. By the end of this chapter, the reader will better appreciate GANs and their
capabilities.

2.1 Preparing the Environment

It is essential to prepare the environment properly before implementing a GAN. This
process includes choosing the proper hardware and software requirements for
implementing GANs. Hardware requirements are based on the size and complexity
of the model, along with the size of the dataset. GANs typically require significant
computational resources, especially for large-scale applications.

 Hardware Requirements

The minimum hardware requirement for GAN implementation is a modern com-
puter with a CPU with good speed processing and a dedicated GPU. These require-
ments provide enough computational power to train relatively small models on
relatively small datasets. However, larger models or datasets may require a high-end
computer or multi-GPU system. A higher-end GPU with more memory and a fast-
processing speed will allow the GAN to process and train on larger datasets faster.

The amount of memory required is another crucial aspect to consider when train-
ing GANs. These models can consume significant memory resources, resulting in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Kaddoura, A Primer on Generative Adversarial Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-031-32661-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32661-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-32661-5_2

14

slow training or memory-related problems. To avoid these issues, ensuring that the
system to train GAN has adequate memory capacity is essential. Upgrading to a
more powerful CPU and increasing the amount of RAM can significantly improve
the training time. Although a minimum of 8GB RAM is recommended, it is always
better to have more.

If the hardware requirements are unavailable, cloud-based platforms can be used.
Amazon Web Services (AWS) [1], Google Cloud [2], and Microsoft Azure [3] pro-
vide access to GPUs and other resources required to train GANs. Additionally, there
are online services such as FloydHub [4], Paperspace [5], and Google Colab [6] that
offer free access to GPUs for a limited amount of time. These platforms are great for
trying out GANs or running small projects.

Typically, training a GAN can take several hours to several days or even longer.
The training duration depends on several factors, such as the size and complexity of
the dataset, the architecture of GAN, the hardware used for training, the optimizer,
and hyperparameter selection. These details will be explained later in this chapter.

 Software Requirements

Once the hardware requirements for training a GAN have been satisfied, it is imper-
ative to fulfill the software requirements. These requirements are divided into the
programming language and the required libraries to implement the GAN model. It
is vital to note that the choice of programming language and library will signifi-
cantly impact the efficiency and ease of the implementation process. Popular pro-
gramming languages for implementing GANs include Python, MATLAB, R, and
C++. In addition to the programming language, it is vital to have a deep understand-
ing of relevant deep-learning libraries such as PyTorch [7], Keras [8], MXNet [9],
and TensorFlow [10]. The selection of these libraries should be based on the pro-
gramming language used and the specific requirements of the GAN implementa-
tion, including the type of data being used and the desired output.

This book uses the Python programming language and the Keras library, which
is integrated as part of the TensorFlow library. The implementation of a GAN model
requires adhering to the following steps sequentially:

 1. Install the required libraries, including TensorFlow and any other dependencies.
 2. Import the necessary modules/packages and libraries into the programming

environment.
 3. Check if the imported libraries and modules are ready to be used.

 Importing Required Modules and Libraries

One can use the package manager pip to install required libraries in Python.
Figure 2.1 shows the syntax to install a library using the pip package manager.

2 Your First GAN

15

Fig. 2.1 Library installation syntax

Fig. 2.2 Importing required libraries and modules

Implementing a 1D GAN necessitates the utilization of imperative libraries that
are indispensable for numerical computing, data visualization, and data analysis and
manipulation. By importing these libraries, the user can acquire the essential tools
and functionalities required to implement the GAN model successfully. Figure 2.2
presents a detailed illustration of the procedures for importing these libraries into a
Python environment.

 Prepare and Preprocess the Dataset

Having a high-quality dataset is critical for the successful training of a GAN. A
GAN model needs the information within the dataset to generate new data resem-
bling real data. To create a straight line “y = x”, one can generate two random vari-
ables with equal values evenly spaced over a specified interval. The same procedure
can be followed for test data. Having good-quality data is a crucial step as it affects
the quality of generated outputs and the stability of the training process.

In this chapter, the “y = x” dataset is prepared using NumPy linespace. The data-
set comprises 1000 different values between [−1,1]. This data is formatted as a
NumPy array. The data set is a single array comprising a stack of x and y sequences.
The sequences of input arrays are placed horizontally (i.e., column-wise). Figure 2.3
illustrates a sample row of the dataset is shown.

This section will explore the process of preparing and preprocessing the “y = x”
dataset for use in training the GAN model. Lines 2 and 4 in Fig. 2.4 present the first
step in building a variable x with 1000 values between [−1, 1]. Then, creating a
variable y equal to x is shown in line 6. A crucial aspect of this process is to combine
both variables using horizontal stacking in a single array. These steps are demon-
strated in lines 1 to 6 of the code presented in Fig. 2.4.

2.1 Preparing the Environment

16

Fig. 2.3 Visualizing the
first five rows in the dataset

Fig. 2.4 Create the dataset

2.2 Implementing the Generator

The generator produces two points, x and y, with equal values. It is implemented
using a fully connected deep neural network. This network is trained to learn the
underlying patterns in the training data in Fig. 2.4. After successful training, the
generator can generate new examples that appear to belong to the training data. The
implemented generator starts by passing the generated random noise vector through
several layers to produce two output points.

The generator’s architecture may vary depending on the specific problem being
addressed. Generally, it comprises numerous up-sampling and fully connected lay-
ers to increase the output’s resolution. In the 1D GAN model implemented, the
generator is constructed using a sequential Keras model. It commences with an
input layer that takes a random noise vector as input, with the noise dimension set
to 100. While other values can be employed, a value of 100 is frequently used in
GAN implementation literature. The input is then processed through a Dense layer
with 16 units. A LeakyReLU activation function is then applied with an alpha value
of 0.01 to handle negative input values.

In GANs, various activation functions, including ReLU, Tanh, Sigmoid, Linear,
and LeakyReLU, can be employed. The activation function selection depends on the
specific problem to be addressed. The final Dense layer has a Linear activation func-
tion and two output units. A Linear activation function is utilized in the output layer
of the generator to generate continuous output values without any limiting range. In
contrast to activation functions such as Sigmoid or Tanh, which restrict output values
to a particular range, Linear activation allows the output values to take any real num-
ber value. Although the input data lies between −1 and 1, it can be altered to fit

2 Your First GAN

17

Fig. 2.5 GAN generator architecture

Fig. 2.6 Generator model

between any real value. Therefore, employing a Linear activation function in the
output layer of the generator is deemed appropriate in this scenario. The complete
implementation of the generator is shown in Fig. 2.5, demonstrating how the input
noise is inputted and processed through the layers to generate two points where “y =
x”. The dense layer is represented with a 2D block because the dense layer outputs a
2D tensor where the first dimension represents the batch size and the second repre-
sents the output units. The dense layer will be represented with a 2D block for the
rest of the chapters. The complete implementation of the code is presented in Fig. 2.6.

2.3 Implementing the Discriminator

The discriminator in GAN will evaluate the authenticity of the generated points and
classify them as either real or fake. It is trained to predict the probability of whether
given points are real (drawn from the actual dataset) or fake (generated by the gen-
erator). The discriminator is implemented using a fully connected deep neural

2.3 Implementing the Discriminator

18

network with binary classification output. The input to the discriminator is trained
on real data to maximize the probability of classifying it as real. The architecture of
the discriminator is similar to that of the standard classifier, with multiple fully con-
nected layers to extract features from input data points and to make the final clas-
sification. The activation function used in the discriminator can be ReLU or
LeakyReLU, and the loss function is typically binary cross-entropy.

The construction of a GAN discriminator utilizes the sequential model of the
Keras library. The process starts with adding a fully connected layer containing
32 units, followed by applying the LeakyReLU activation function with an alpha
value of 0.01. The output tensor from the fully connected layer is then reduced by
entering another fully connected layer with eight units. A LeakyReLU activation
layer with an alpha value of 0.01 also follows this layer. Finally, a Dense layer with
a Sigmoid activation function and a single unit is added to generate the final binary
classification result. The architecture of the discriminator can be found in Fig. 2.6,
while the complete implementation of the code is in Figs. 2.7 and 2.8.

Fig. 2.7 GAN discriminator architecture

Fig. 2.8 Discriminator model

2 Your First GAN

19

2.4 Training Stage

The GAN plays a game of probabilities between the generator and the discrimina-
tor. The generator tries to generate x and y that resembles real data, while the dis-
criminator tries to distinguish real x and y points from the generated ones. The
discriminator and the generator work in an adversarial manner, competing with each
other in a two-player minimax game to improve their abilities over time. The gen-
erator improves its ability to generate points that can fool the discriminator. The
discriminator improves its ability to distinguish it from real points generated to
draw a straight line. The goal is to achieve a state where the generator produces
random points capable of drawing a straight line.

 Model Construction

Before training the GAN model and custom the training loop, it is necessary to
construct the model and create loss functions. A GAN comprises two separate mod-
els: a generator and a discriminator, combined into a third model called the adver-
sarial. The discriminator has been placed on top of the generator to custom the
adversarial model. Optimization algorithms such as Stochastic Gradient Descent
(SGD), Adam Optimizer, RMSprop, and Adagrad can be used for GAN training.
Adam Optimizer is commonly used, while RMSprop and Adagrad can be used if
SGD struggles to converge. Two loss functions are used for GAN training, one for
the generator model and another for the discriminator model. The generator tries to
minimize the loss, while the discriminator tries to maximize it. The generator’s loss
function is typically binary cross-entropy loss, while binary cross-entropy loss or
hinge loss can be used for the discriminator model. The discriminator and adver-
sarial models are compiled with the Adam optimizer and binary cross-entropy loss.
The code snippets for constructing the models are displayed in Fig. 2.9. To construct
the adversarial model, called GAN in line 10; the discriminator is set as not train-
able first, as shown in line 9. This means that only the generator will be updated
during the adversarial model training.

 Loss Function

The next step is to create the loss functions used during the training process to com-
pute discriminator and generator losses. Figure 2.10 shows the complete implemen-
tation of loss functions. In this stage, the train_on_batch function, presented in lines
4 and 8, trains a model on a single batch of data with its corresponding labels. Then
the model parameters are updated based on the loss calculated between the pre-
dicted and true labels. The discriminator loss function takes data X, a combination
of real and fake data points, and their labels y as input. The generator loss takes the
noise generated with real labels as input.

2.4 Training Stage

20

Fig. 2.9 Model construction

Fig. 2.10 Loss functions

 Plot Generated Data Samples

Prior to initiating the training of the GAN model, it is necessary to establish a func-
tion that facilitates the visualization of the generated points. This function will be
called during the training phase to evaluate the model’s performance based on the
quality of the generated points. Figure 2.11 displays the code for data visualization.
Generated and actual points are plotted using a scatter plot, as shown in lines 9 and
10. It will plot all samples where real ones are represented in red and generated ones
are represented in blue. Figures 2.16, 2.17, 2.18, and 2.19, displayed later in the
chapter, are drawn using this function.

2 Your First GAN

21

Fig. 2.11 Data visualization

 Training GAN

In the training of GAN models, the utilization of epochs and batches is a widespread
approach. The number of epochs determines the time the model is exposed to the
training data, with a higher number leading to improved performance and a higher
risk of overfitting. On the other hand, the batch size determines the portion of the
training data used for updating the model’s weights, affecting both the training
speed and stability. A larger data size generally leads to better performance but
requires more computing resources and processing time.

In each epoch, the generator and discriminator are trained alternately using a
batch of the real and generated data points. This process is repeated for multiple
epochs (chosen to be 600) to optimize the weights and achieve desired performance.
The number of batches per epoch and the number of epochs is determined based on
data size, model complexity, and the target performance. The complexity of the
model, such as the number of layers and nodes, also affects its performance. A more
complex model can achieve better results but may be more susceptible to overfitting.

The training stops when the generator produces y and x samples indistinguish-
able from real data points. In this case, the generator successfully deceives the dis-
criminator with high accuracy. The model performance will be visualized by
plotting the point in a 2D axis showing increasing epochs. Figures 2.12, 2.13, and
2.14 represent the discriminator’s training stage, the training stage of the generator,
and the training loop. The training process can be described as follows:

 1. Generate a random normal noise as shown in line 5 in Fig. 2.14.

2.4 Training Stage

22

Fig. 2.12 Training stage in the discriminator

Fig. 2.13 Training stage in the generator

 2. Generate fake data points from this noise through the generator as in line 7 in
Fig. 2.14.

 3. Sample a batch of the real data points from training data; refer to line 11 in
Fig. 2.14.

 4. Create labels for real data samples as 0.9 (line 13) and generated data samples as
zeros as in line 15 in Fig. 2.14.

 5. Train the discriminator and compute the loss in both generated and real data with
their correct labels refer to lines 16 and 19 in Fig. 2.14. Figure 2.12 shows the
discriminator training.

 6. Generate another number of random data samples in line 23 in Fig. 2.14.

2 Your First GAN

23

Fig. 2.14 GAN training process

 7. Train the GAN model on the newly generated data samples with labels equal to
one to trick the discriminator, as represented in line 27 in Fig. 2.14. The genera-
tor training architecture is presented in Fig. 2.13.

 8. Repeat steps 1 to 7 for several epochs to improve the generator and discriminator
further.

In order to launch the training process, it is necessary first to call the training
function and construct the models. Figure 2.15 outlines the code written to start
training. Within this figure, it is also essential to set the batch size and the number
of epochs, as they are crucial parameters in the training process.

As previously mentioned, the performance of the generative model during the
training process is closely related to the number of training iterations, commonly
referred to as epochs. With each increasing epoch, the generated data points become
more realistic and resemble the training data. This is due to the improvement of the
generator’s ability to fool the discriminator. Multiple examples are presented to

2.4 Training Stage

24

Fig. 2.16 Generated points at epoch 0

Fig. 2.17 Generated points at epoch 200

Fig. 2.15 Calling the training function

highlight the relationship between the increasing epochs and the generated data
points. Figures 2.16, 2.17, 2.18, and 2.19 demonstrate the progress of the generated
data points as the resolution improves. One can observe the improvement in the

2 Your First GAN

25

Fig. 2.18 Generated points at epoch 400

Fig. 2.19 Generated points at epoch 600

generator’s ability to deceive the discriminator by comparing Figs. 2.16 and 2.19,
for instance, and comparing the blue line (generated data points) with the red one
(real data points).

 Common Challenges While Implementing GANs

Several obstacles and errors can arise while building and training a GAN model.
These include model collapse, where the generator produces limited output and fails
to capture the diversity of the data. The instability of the model training, where the

2.4 Training Stage

26

generator and discriminator oscillate instead of converging to a stable solution, is
another common error. Additionally, the vanishing gradient problem, where the gra-
dients in the training process become too small, can also hinder the model’s train-
ing. A common obstacle is overfitting, where the model is too complex and
memorizes the training data. Selecting an appropriate model architecture, hyperpa-
rameter tuning, and regularization techniques can help resolve these issues.

References

1. Cloud computing services - amazon web services (AWS), https://signin.aws.amazon.com/
2. Google Cloud - Google, https://cloud.google.com/
3. Cloud computing services: Microsoft Azure, https://azure.microsoft.com/en- us
4. FloydHub blog, https://blog.floydhub.com/
5. Cloud computing, evolved, https://www.paperspace.com/
6. Google Colab, https://colab.research.google.com/
7. Pytorch, https://pytorch.org/
8. Team, K.: Simple. flexible. powerful, https://keras.io/
9. Apache MXNet, https://mxnet.apache.org/

10. Tensorflow, https://www.tensorflow.org/

2 Your First GAN

https://signin.aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us
https://blog.floydhub.com/
https://www.paperspace.com/
https://colab.research.google.com/
https://pytorch.org/
https://keras.io/
https://mxnet.apache.org/
https://www.tensorflow.org/

27

Chapter 3
Real-World Applications

Abstract This chapter explores the practical applications of GANs in the real
world. As previously discussed, GANs are deep neural networks capable of generat-
ing new data resembling a target distribution, such as images and audio signals.
GANs have garnered much attention in machine learning in recent years due to their
versatile usage across various industries.

This chapter will delve into the various ways in which GANs have been employed
in real-world applications. They include but are not limited to the generation of
synthetic data for training machine learning models, the creation of photorealistic
images and videos, the generation of human faces, the production of fake videos,
image-to-image translation, text-to-image translation, CycleGAN, enhancement of
image resolution, semantic image inpainting, and text-to-speech.

A comprehensive overview of the exciting possibilities of GANs and their impact
on various industries will be provided. By the end of the chapter, the reader will
clearly understand the practical applications of GANs and their potential to shape
the future.

3.1 Human Faces Generation

GANs have emerged as a popular method for image generation, using two deep
neural networks: a generator and a discriminator. The generator creates realistic
images that can fool the discriminator. The discriminator tries to classify images
accurately as real or fake. This competition leads to generating highly realistic
images, including natural landscapes, animals, abstract art, and synthetic data for
training machine learning models in computer vision.

However, one of the most challenging tasks in image generation using GANs is
the creation of realistic human faces. Human faces have a high degree of complex-
ity, including subtle variations in color, texture, and shape. This task requires a
complex generator model to ensure the production of high-resolution face images.

The practical applications of generating realistic human faces include virtual
characters in the gaming and entertainment industry, biometric authentication

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Kaddoura, A Primer on Generative Adversarial Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-031-32661-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32661-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-32661-5_3

28

systems, and data augmentation to increase the size of training datasets, improving
facial recognition systems’ performance. GAN-generated human faces can preserve
privacy and anonymity in applications where real human faces may not be suitable.
It also leads to new forms of self-expression and can be used in scientific studies and
experiments where large datasets of real faces may not be feasible.

Generating realistic and high-quality human faces using GANs requires signifi-
cant data and computational resources. The minimum requirements for training a
GAN model for human face generation include a large dataset of high-resolution
human face images, sufficient computational resources, a well-designed GAN
architecture optimized for generating high-quality human faces, proper tuning of
hyperparameters, and a generator model with enough capacity to learn the complex
patterns and variations in human faces.

Implementing GANs for generating human faces requires a meticulous approach,
as the architecture of GANs is complex and demands a large volume of high-quality
training data. The typical process of generating human faces using GANs entails the
following steps: data collection and preparation, model design, training, evaluation
and refinement, and deployment. The capability of GANs to generate realistic
human faces makes it a fascinating and promising development area.

Any GAN-based image generation model can be used to generate human faces.
However, the quality of the generated faces may not be as good as those produced
by a GAN model designed explicitly for human face generation, as human faces
have unique complex features. General GAN models can achieve promising results
in generating human faces.

In order to generate human faces, one approach is to use any image generation
model with a human faces dataset. There are several publicly available datasets,
including “Generate Realistic Human Face using GAN” [1] and “Generating Fake
Faces using GANs” [2], that can be used for human face generation. This section
will present a general simple DCGAN model that generates handwritten images of
the letter A. This model can be considered a base GAN model for human face gen-
eration. It can be improved to generate high-resolution human face images because
human faces possess unique and complex features.

The first step in implementing any machine learning model is to import the
required modules. Figure 3.1 includes all the required modules for implementing
image generation GAN.

 Data Collection and Preparation

The first step in generating handwritten images of the letter “A” GANs entails the
collection of a substantial dataset of real handwritten letters. This dataset will serve
as the basis for training the GAN. The “A-Z Handwritten Alphabets” dataset, which
is readily accessible to the public [3], is used. The dataset comprises all the alpha-
bets stored in CSV files containing each image’s pixel values. The images in the
dataset are in grayscale, with a single channel and a size of 28x28. The pixel values

3 Real-World Applications

29

Fig. 3.1 Importing required libraries and modules

Fig. 3.2 Visualizing the first five rows in the dataset

of the images in the dataset represent the intensity of each pixel, with values ranging
from 0 (black) to 255 (white). There are 28 x 28 = 784 pixels in a 28 x 28 grayscale
image. By utilizing this dataset, the implementation process is simplified. Figure 3.2
illustrates sample rows of the dataset, with the first column representing the image
number and the remaining columns representing the pixels. Utilizing this publicly
available dataset is an alternative to collecting a large dataset from scratch.

This section will explore the process of preparing and preprocessing the “A-Z
Handwritten Alphabets” dataset to be used in the training of the GAN model.
Figure 3.3 presents the first step in this process: loading the dataset using the Pandas
module. Loading data is followed by a sequence of preprocessing procedures
designed to format and normalize the images to align with the model’s require-
ments. A crucial aspect of this process is data visualization, which encompasses
plotting the data in various forms to comprehend the distribution of pixel values and
detect any anomalies that may hinder the model’s performance. A visual representa-
tion for printing some rows in the training dataset is noted in Line 6 of the code of
Fig. 3.3.

In the pursuit of implementing a simple GAN model capable of generating the
alphabet “A,” it is necessary to preprocess the data in a way that removes all other
alphabets and retains only this letter. This step is demonstrated in lines 7 to 14 of the
code presented in Fig. 3.3.

3.1 Human Faces Generation

30

Fig. 3.3 Load and pre-process the dataset

The same data preprocessing steps will be followed to generate a GAN model
capable of producing all human faces. If the data is given as an image instead of
numerical pixels in Fig. 3.2, it must be transformed into a floating-point tensor.

 Model Design

The next step is to design the GAN model. GANs consist of two main components:
a generator and a discriminator. The generator generates handwritten images of the
letter A that resemble the real data in [3]. It is implemented using a deep neural
network. This network is trained to learn the underlying patterns in the training data
[3]. The discriminator in GAN will evaluate the authenticity of the generated hand-
written images of letter A and classify it as either real or fake. It is trained to predict
the probability of whether a given image is real (drawn from the actual dataset [3])
or fake (generated by the generator).

3 Real-World Applications

31

Fig. 3.4 GAN generator architecture

 The Generator Model

A combination of fully connected and Convolutional Transpose layers was used in
the case of the “A” alphabet GAN generator to enable the generator to generate
high-resolution images. The Convolutional Transpose is also known as
Deconvolution, a prevalent method for up-sampling low-resolution representations.
During training, the transpose layer acquires weights that enable the generator to
produce letter A images similar to those in the training dataset.

The complete implementation of the generator is shown in Fig. 3.4. It demon-
strates how it starts by passing the generated random noise vector through several
layers to produce an output image of the letter A. Unlike dense layer representation,
the convolution transpose layer is represented by a 3D block. This representation is
chosen because the transposed convolutional layer outputs a 3D tensor in the case
of image generation, similarly for the convolutional layer. This representation will
be used in the following chapters.

The complete implementation of the code is presented in Fig. 3.5. The generator
in the GAN model is implemented using a sequential model in TensorFlow. It begins
with a Dense input layer (Line 5), which inputs a random noise vector. The input is
then processed through a LeakyReLU activation function (Line 7) with an alpha
value of 0.01 to handle negative input values. The shape of the input is reshaped to
7x7x128 (Line 9), and padding is applied to the transpose convolutional layers.

The model includes two Conv2DTranspose layers for up-sampling the input to
28x28, with batch normalization and LeakyReLU activation functions in between
(lines 11 to 13). Different activation functions, such as ReLU, Tanh, Sigmoid, and
LeakyReLU, can be used in GANs, and the choice depends on the problem being
solved. In this case, the LeakyReLU activation function is used in Convolution
Transpose layers to avoid the “dead neurons” problem. In traditional ReLU activa-
tion, if the input is negative, the output will be 0, resulting in the corresponding

3.1 Human Faces Generation

32

Fig. 3.5 Generator model

neuron not contributing to the learning process during training. However, as the data
is normalized between 0 and 1, LeakyReLU and ReLU can be used.

The model ends with a Conv2D layer (Line 19) as the output layer, with a 5x5
kernel size and Sigmoid activation function. The output layer has a shape of
28x28x1, representing an image’s height, width, and depth.

 The Discriminator Model

The discriminator is implemented using convolutional neural network (CNN) with
binary classification output. The input to the discriminator is trained on real data to
maximize the probability of classifying it as real. The architecture of the discrimina-
tor is similar to that of the standard image classifier. A typical image classifier con-
sists of convolutional and pooling layers to extract features from input images and
fully connected layers to make the final classification. The activation function used
in the discriminator can be ReLU or LeakyReLU, and the loss function is typically
binary cross-entropy.

Figure 3.6 displays the discriminator’s architecture. The figure shows the input
images and output labels to the discriminator. The complete implementation of the
code is presented in Fig. 3.7. The TensorFlow library’s sequential model is used to
construct a GAN discriminator. The process begins by adding a convolutional layer
with 128 filters (Line 5) and applying the LeakyReLU activation function with an
alpha value of 0.02 (Line 6). The output tensor from the convolutional layer is then

3 Real-World Applications

33

Fig. 3.6 GAN discriminator architecture

Fig. 3.7 Discriminator model

reduced using MaxPooling2D with a stride of 2 (Line 8). This sequence is repeated
twice with filters for convolutional layers 64 and 32. Following the final
MaxPooling2D layer, the output tensor is flattened and transformed into a 1D vector
through the Flatten layer (line 20). Then, a Dropout layer is used with a rate of 0.5
to mitigate overfitting. Finally, a Dense layer (Line 24) with a single unit and a
Sigmoid activation function is added to generate the final binary classification result.

3.1 Human Faces Generation

34

 Training

Once the model has been designed, it must be trained on the handwritten images of
the letter “A” dataset. During training, the generator produces letter A images, and
the discriminator evaluates each one, providing feedback to the generator on how to
improve. This back-and-forth process continues until the generator produces faces
indistinguishable from real human faces. The human handwritten letter A genera-
tion training process using GANs follows the same procedure described in Fig. 2.14
of Chap. 2. Start by constructing the models, creating loss functions, plot functions,
and custom the training loop.

Fig. 3.8 presents a comprehensive framework for implementing GANs for letter
A generation. It provides a clear illustration of the training process of the model.
The generator and the discriminator work together in a continuous loop. The gen-
erator produces fake images, and the discriminator determines the authenticity of
these images. As the model trains, the generator and the discriminator improve their
performance. The generator becomes better at producing images that fool the dis-
criminator. The training process is demonstrated through backpropagation. In this
way, the model continually improves its performance and becomes better at produc-
ing high-quality human-like faces.

During the training process, a batch size of 128 was used, and the training was
repeated for 200 epochs. To assess the performance of the GAN model in generating
the letter A, 100 generated samples were produced every ten epochs. Figs. 3.9, 3.10,
3.11, and 3.12 depict the model’s progress in generating the letter A as the number
of epochs increases. The results show that the model can generate clear images of
the letter A in the later epochs.

Fig. 3.8 Implemented framework of face GAN

3 Real-World Applications

35

Fig. 3.9 Generated images
at epoch 60

Fig. 3.10 Generated
images at epoch 10

 Evaluation and Refinement

The generator and discriminator, in Figs. 3.5 and 3.7, respectively, are implemented
for generating the handwritten letter “A,” demonstrating their capability in image
generation tasks. However, the complexity of the model architecture may vary

3.1 Human Faces Generation

36

Fig. 3.11 Generated
images at epoch 130

Fig. 3.12 Generated
images at epoch 200

based on the difficulty of the task at hand. When generating human faces, it may be
necessary to fine-tune the model by modifying parameters and adding addi-
tional layers.

After training, the GAN must be evaluated to determine its performance. The
first step is to train the letter A generation GAN model on a human face dataset.
When training is completed, the performance will be evaluated. Model evaluation

3 Real-World Applications

37

Fig. 3.13 Random baby
face generated using GANs

typically involves the comparison of generated faces to real human faces and the
evaluation of metrics such as visual quality, diversity, and consistency. The imple-
mentation of the model may not be optimal from the initial attempt. Thus it may be
necessary to refine the GAN by making changes to its architecture or retraining it on
a larger dataset.

The evaluation and refinement of the model result in images that cannot be dif-
ferentiated from real human faces. Figure 3.13 presents fake images generated by
the GAN, which cannot be distinguished from real human images. These images are
produced by the AI face generator powered by StyleGAN, a neural network devel-
oped by Nvidia in 2018 [4].

The discriminative model illustrated in Fig. 3.6 also applies to any binary-output
image generation GAN model. Thus, it can be utilized for generating faces.
However, due to the difference in size and structure of the data, the architecture
might need to be modified, such as adjusting the hyperparameters or increasing the
number of layers. The generative model also is capable of generating images
from noise.

The output size of the generator needs to be adjusted to match the size of the
training data images. As shown in Fig. 3.5, the generator generated images of size
28x28x1. However, human faces are typically represented as RGB images, so the
generator’s output size must be adjusted to accommodate the width, height, and
three-color channels.

 Deployment

The final step is to deploy the trained GAN in a practical application. Practical
deployment of human face generation using GANs involves several steps, including
training a GAN model, deploying the trained model to a production environment,
and integrating it into an application. Once the model has been trained, it can be
deployed to a production environment such as a cloud platform like AWS or Google
Cloud or run on a local server.

3.1 Human Faces Generation

38

Once the model has been deployed, it can be integrated into an application
through APIs or embedding it. For example, the generated human faces could be
used in a virtual try-on application for cosmetics, or they could be used to generate
characters in a video game. The exact integration method will depend on the spe-
cific use case and the application’s requirements.

It is important to note that the steps for generating human faces using GANs have
been outlined in this section. These steps include the acquisition of appropriate
datasets and the design of the model architecture. Numerous online resources pro-
vide code for human face generation using libraries such as PyTorch, TensorFlow,
and Keras. Additionally, the model presented for image generation can be fine-tuned
to suit individual needs and requirements.

3.2 Deep Fake

Deep fakes refer to media files that have been manipulated and can be used to spread
false information or create fake news. Despite their potential positive applications in
many fields, such as entertainment and virtual assistants, the negative implications
of deep fakes far outweigh the positive ones. Deepfakes can be utilized to manipu-
late public opinion, spread misinformation during elections, create fake news sto-
ries, and even blackmail individuals. These actions can have significant and
detrimental consequences for society, including eroding trust in information sources
and disrupting public discourse.

Several measures need to be taken to prevent the misuse of deep fakes. Detection
techniques must be developed for authenticating media content. Media literacy and
critical thinking skills must be promoted among the public. Additionally, laws and
regulations should be implemented to deter the creation and distribution of deep
fakes for malicious purposes. Addressing the potential harms of deep fakes is cru-
cial in maintaining the integrity of information and ensuring a healthy democracy.

Deep fakes generation using GANs is a common practice. GANs can create real-
istic images and videos of individuals who do not exist or manipulate existing media
files to create deep fakes. In a GAN, the generator network creates images or videos,
while the discriminator network distinguishes between real and fake media files.

 Data Collection and Preparation

Various GAN models can be used in deep fake video generation, such as speech-to-
video or video-to-video GANs. Speech-to-video deep fake GANs mean generating
videos of talking faces based on audio files and images of the target. On the other
hand, video-to-video GANs involve generating counterfeit videos for a target indi-
vidual with source and target person as a requirement. Thus, GAN will swap faces
and voices in a video. In this section, video-to-video GANs will be explained.

3 Real-World Applications

39

To create a deep fake video, a dataset of videos of a real person is fed into the
GANs. One way is to collect a large and diverse dataset of real videos, which can be
the basis for generating fake videos. The dataset should have sufficient variability
regarding different viewpoints, lighting conditions, backgrounds, and other relevant
factors. Additionally, the dataset should be annotated to facilitate training and evalu-
ation of the model. The dataset must contain different videos of the source and tar-
get speaker. The vocals and image of target speaker B should replace the vocals and
image of source speaker A. Another way is to use public datasets. Various video
datasets are available for this purpose, such as the FaceForensics++ dataset [5],
which contains multiple individuals’ real and deep fake videos. The VoxCeleb data-
set [6] is another viable option. It includes over 1,000 hours of audio and video
recordings of individuals, making it suitable for training deep fakes that involve
audio and video. There are various datasets online; however, VoxCeleb serves the
problem. It consists of short clips of human speech extracted from interview videos
uploaded to YouTube.

Once the dataset is collected, it must be preprocessed and formatted for training
the GAN model. This includes resizing the videos to a consistent resolution, nor-
malizing the pixel values, cropping the videos to remove unwanted parts of the
frame, such as black borders, and splitting the videos into individual frames.
Splitting the videos into individual frames is essential since working with entire
videos can be computationally intensive and time-consuming. The frames can be
further augmented to increase the variability in the training data by applying ran-
dom rotations, zooms, and flips.

 Model Design

Compared to image GANs, video GANs require different treatments due to the
complexity of video data, which includes multiple images and the additional time
dimension. There are four strategies commonly used by video GAN generators:
RNN architecture combined with 2D convolutional networks [7], 3D convolutional
networks [8], coarse-to-fine strategy [9], and two-stream architecture [8, 10].

An encoder-decoder pair is required to create a deep fake video generator. Deep
learning models consist of layers, each representing a mathematical abstraction of
the previous one, resulting in a latent representation. The encoder extracts latent
features from the source data (source videos), while the decoder uses this informa-
tion to reconstruct new data [11].

The discriminator in video GANs may use the same strategy as the generator. It
also might adopt other strategies, such as two-stream or a 3D convolutional network
[8, 10]. In deep fakes, the goal is to generate a talking person with a different face
than the input face while maintaining the motion from the input video. This has
been proposed in previous research, where the model disentangles the video repre-
sentations of the source and target videos into distinct parameters that can be com-
bined to produce a retargeted video [12].

3.2 Deep Fake

40

 Training

Generative models like GANs have shown promising results in various domains,
including images, videos, audio, and texts. However, the current state of video
GANs is not as advanced as other domains due to the high computational power
required to handle high-dimensional video data. Video GANs require a complex
architecture that considers spatial and temporal data and involves collecting domain-
specific videos that are time-consuming and expensive. As an illustration, DVD-
GAN employs a single TPU, while TGANv2 utilizes 8 GPUs [12]. Nevertheless,
video GANs have many applications, including speech animation, prediction, and
retargeting. The paper aims to review and categorize different video GAN models
based on their applications and highlight their differences.

3.3 Image-to-Image Translation

The image-to-image translation is a type of computer vision task that involves trans-
lating an input image into an output image that has some desired properties or char-
acteristics. This can include converting a black-and-white image into a colored
image or generating a realistic image from a low-resolution input.

Image-to-image translation using GANs has a broad range of applications across
different fields. In medical imaging, GANs can generate synthetic images to enhance
medical images and train machine-learning models for image segmentation, detec-
tion, and classification. GANs can design new fashion products, generate product
images, and create virtual try-on experiences in fashion. Gaming can benefit from
GANs by generating realistic images of game characters and environments.
Architecture can use GANs to visualize 3D models of buildings and cities, while
autonomous vehicles can be trained with GAN-generated realistic road scenes and
objects. Additionally, GANs can create new art forms, such as realistic portraits and
abstract images. Overall, GAN-based image-to-image translation has the potential
to revolutionize many industries by providing new tools and capabilities for creat-
ing, designing, and analyzing images.

The process of training a GAN for image-to-image translation involves several
steps. The first step is to collect and preprocess a large dataset of paired input-output
images. Next, the generator and discriminator architectures are defined as convolu-
tional neural networks with skip connections. The generator is trained to minimize
the difference between the generated and real output images. In contrast, the dis-
criminator is trained to distinguish between real and fake output images. Once the
GAN is trained, it can be evaluated and used for image-to-image translation on new
input images. The generated output images can be used for various applications
such as image enhancement, colorization, or style transfer.

3 Real-World Applications

41

 Data Collection and Preparation

Depending on the specific task and application, several datasets are available for
image-to-image GAN training. Cityscapes is a popular dataset for urban street
scenes [13], CelebA for celebrity faces [1], Maps for Google Maps satellite images
[14], Horse2zebra for horse and zebra images [15], and Edges2shoes for shoes
images and their corresponding edge maps [16]. These datasets are publicly avail-
able for research and development purposes, but ensuring compliance with appli-
cable data licensing agreements and ethical considerations is essential.

Preparing data for image-to-image translation using GANs is similar to other
image-generation tasks using GANs. Initially, the image data is transformed into
floating pixels and then normalized to a specific range, either [0, 1] or [-1, 1], based
on the task requirements. The Cityscapes dataset is employed in this case. It consists
of source and target images merged with a size of 256x512, as depicted in Fig. 3.14.
Thus, the primary step is to isolate the source from the target images or, in other
words, the original photograph on the left half of the image, along with the semantic
segmentation output on the right half.

Figure 3.15 displays the code snippets written to load the train image data, nor-
malize the pixels and split the images. Two lines of code are written to split images,
as presented in lines 14 and 15. Figure 3.15 displays the images after the splitting
process. The exact process is applied to the test data.

Figure 3.16 presents the source and target image after preprocessing. Now the
single image presented in Fig. 3.14 is represented by two: the ground truth image
(photograph) to the left and the representation to the right.

Fig. 3.14 Sample image from Cityscapes dataset

3.3 Image-to-Image Translation

42

Fig. 3.15 Load image from Cityscapes dataset

Fig. 3.16 Image files after splitting

 Model Design

Like any GAN model, the image-to-image translation model comprises a generator
and a discriminator. The generator is responsible for generating the target images.
In this case, the real photograph taken in the city street from the source semantic

3 Real-World Applications

43

segmentation image is input. The discriminator is responsible for differentiating
between the original images in the Cityscapes dataset from the generated images.

 The Generator Model

In the case of Cityscapes image-to-image translation, the generator takes the seman-
tic segmentation image as an input to generate the original photograph of the streets.
The generator follows an encoder-decoder architecture with skip connections. An
encoder-decoder generator is a specific type of generator used in GANs that consists
of two parts: an encoder and a decoder. The encoder takes the semantic segmenta-
tion image as an input and encodes it into a lower-dimensional latent space. On the
other hand, the decoder takes the encoded image and decodes it into a high-
dimensional image that closely resembles the original street image.

Figure 3.17 presents the generator architecture. It shows how the source input
image is passed through different deep neural network layers to extract features and
generate the target image. A 3D block presents the concatenate function because it
takes two 3D tensors as input to produce a single 3D numerical tensor.

The implementation of the generator model is presented in Python as shown in
Fig. 3.18. The encoder model uses a for loop from line 2 to line 23, where the input
is passed through several convolutional layers with progressively increasing chan-
nels and down-sampling. Each convolutional layer is followed by batch normaliza-
tion and a LeakyReLU activation function. The output of each convolutional layer is
stored in a list called encoder_tensor. After the final convolutional layer, the output
is passed through another layer with 512 channels.

The decoder model is defined using a for loop from lines 24 to 39 in Fig. 3.18.
The input is passed through several transposed convolutional layers with

Fig. 3.17 Generator model architecture

3.3 Image-to-Image Translation

44

Fig. 3.18 Generator Model

3 Real-World Applications

45

progressively decreasing channels and up-sampling. Batch normalization and a
LeakyReLU activation function follow each transposed convolutional layer. Then
the output is concatenated with the corresponding layer from the encoder. The out-
put from the decoder model’s final convolutional layer is passed through a trans-
posed convolutional layer with three channels. A Sigmoid activation function is
applied to generate the final output image. The full encoder-decoder model is
defined in line 28, and it takes the input image and generates the output image with
the exact dimensions.

 The Discriminator Model

The discriminator in image-to-image translation aims to differentiate between real
and fake generated images from the generator. Figure 3.19 illustrates the discrimi-
nator model architecture, followed by the code snippets in Fig. 3.20. It takes two
images as input, a source image and a target image, and predicts whether the image
is real or fake. The model consists of several layers. First, a concatenate function
merges source and target images into a single tensor (Line 6). Then this tensor is
down-sampled using multiple convolutional layers. This is done to extract features
from the image that can be used to classify whether it is real or fake. Specifically,
the discriminator applies four convolutional layers with increasing filters. Each
layer has a kernel size of 4 and a stride of 2 to reduce the spatial dimensions of the
tensor while increasing the number of filters to capture more complex features. This
is shown in lines 1 to 3 in Fig. 3.20. Then the output from the last convolutional
layer is flattened and passed through a fully connected layer (Dense) with a single
output neuron and a Sigmoid activation function. This final layer outputs a probabil-
ity score between 0 and 1, representing the probability that the target image is real.
Finally, the discriminator model is compiled using the binary cross-entropy loss
function and the Adam optimizer with a learning rate of 0.0002 and a beta_1 of 0.5.
The discriminator loss is weighted equally with the generator loss in the combined
model by setting the loss_weights to [0.5].

Fig. 3.19 Discriminator architecture

3.3 Image-to-Image Translation

46

Fig. 3.20 Discriminator model

 The Adversarial Network

The generator and discriminator models must be combined to train the generative
adversarial network (GAN). The discriminator model is set to be non-trainable, as it is
used solely to evaluate the generated images produced by the generator model. The
generator loss is then computed based on the discriminator’s evaluation, and its weights
are updated through backpropagation. Similarly, as in the discriminator, the adversarial
network is compiled. However, this network is compiled using two types of losses
“binary cross-entropy” and “mean square error.” Adam optimizer with a learning rate
of 0.0002 and a beta_1 of 0.5 is used. Figure 3.21 shows the adversarial network.

 Training

The training process in image-to-image translation closely resembles that of tradi-
tional GAN models. During training, the generator and discriminator weights are
updated through backpropagation. When the generator updates its weights, the
 discriminator is set to non-trainable.

3 Real-World Applications

47

Fig. 3.21 Adversarial network

Fig. 3.22 Image generated by the GAN model at epoch 0

Fig. 3.23 Image generated by the GAN model at epoch 70

The training process was carried out over 10,000 epochs, with a batch size of
128. The steps per epoch are equal to the length of the data divided by the batch size.
The generator and discriminator losses were computed during each step, and their
weights were updated. To monitor the progress of the generator output, a plot that
shows its output every ten epochs is generated. The generated images were visually
inspected to evaluate the model’s progress. The images generated by the model
show an increase in resolution with each epoch, as shown in Figs. 3.22, 3.23, 3.24,
3.25, and 3.26, indicating that the generator is learning to produce more accurate
and realistic images.

3.3 Image-to-Image Translation

48

Fig. 3.24 Image generated by the GAN model at epoch 170

Fig. 3.25 Image generated by the GAN model at epoch 5000

Fig. 3.26 Image generated by the GAN model at epoch 10000

3.4 Text to Image

Text-to-image translation using GANs has gained much attention in recent years.
This technology is used to generate images based on textual descriptions. It has
numerous applications in various domains, such as computer graphics, gaming, and
advertising. Text-to-image translation has been used in several real-world

3 Real-World Applications

49

applications. One example is generating product images for e-commerce websites,
where the textual description of products can be transformed into a visual represen-
tation of the product. Another use case is in generating graphical illustrations for
educational or technical documents. It can also be used to generate synthetic data
for training and improving the accuracy of computer vision algorithms.

The importance of text-to-image translation lies in its ability to convert textual
descriptions into visually appealing images. This helps to overcome the limitations
of traditional text-based representation and allows for a more immersive and inter-
active experience.

Text-to-image translation using GANs requires computational resources and
complex models to perform well. Generating high-quality images from textual
description requires the model to understand the relationships between the textual
description and the corresponding visual representation. The complexity of the
model increases with the amount of detail and diversity in the images being gener-
ated. Additionally, the large amount of data needed for training, along with the com-
putationally intensive nature of GANs, requires significant computational resources
and can be quite demanding regarding hardware requirements. It is often necessary
to use powerful GPUs and distribute the computation across multiple machines to
achieve good results.

This section provides a complete elucidation of the procedure to implement text-
to- image GAN. The process starts by importing required modules till reaching
deployment in addition to a basic code illustration. The code implementation
requires minimal computational resources and is considered the most straightfor-
ward approach to initiate text-to-image GAN.

 Module Requirements

The process of text-to-image translation begins with importing the necessary mod-
ules. This application of GAN has two different types of data: text and images.
Thus, it is necessary to import multiple modules, and each is used for a specific
purpose. To illustrate, implementing GAN deep learning models requires deep
learning frameworks such as TensorFlow, PyTorch, or Keras. In addition, deep
learning models understand input data in a specific numerical format.

For this reason, additional modules that can preprocess image and text data are
required. Figure 3.27 shows a sample code that includes importing the preprocess-
ing libraries that can be used in text-to-image GANs. This code imports various
required libraries for text preprocessing using the Keras API of the Tensorflow
Library. The code also imports libraries such as Numpy, Pandas, and Matplotlib and
various packages from the Natural Language Toolkit (nltk) for cleaning text data.
The code also downloads the required packages for text processing, such as the
Punkt tokenizer, WordNet Lemmatizer, and the averaged perceptron tagger.

3.4 Text to Image

50

Fig. 3.27 Importing required modules for data preparation

 Dataset

Once the modules are imported, the next step is typically to load the dataset that will
be used for training and evaluating the model. This dataset can be created from an
extensive collection of images paired with textual descriptions. It will train the gen-
erative model to generate new images from textual descriptions. Several datasets are
commonly used for text-to-image translation using GANs. These datasets can also
be used for implementing an image captioning deep learning model. COCO
Captions is an example of these datasets, which includes the Common Objects in
Context (COCO) dataset and their corresponding captions [17]. Flickr30k is another
dataset which includes images and their corresponding images and captions written
by human annotators [18]. Flickr8k is similar to Flikr30k but includes 8000 images
instead of 30000 [19]. Pascal Sentences dataset consists of images from the Pascal
Visual Object Classes Challenge and captions describing the objects within the

3 Real-World Applications

51

images [20]. Oxford-102 Flowers contains images of 102 different flower species
and captions describing the flowers’ species and attributes [21].

The datasets mentioned above require high computational resources. However,
the aim is to understand the implementation of text-to-image GAN. Other datasets
comprising images with textual descriptions, such as MNIST Fashion and
CIFAR-10, can be used to implement a simpler model. These datasets will simplify
the implementation so that the model input text will be a single word, such as “coat”
in MNIST Fashion and “airplane” in CIFR-10. The model will generate an image
that depicts the word. The following sections will present text-to-image implemen-
tation using the MNIST Fashion dataset.

It is crucial to preprocess the data and to prepare it for use in the model, as this
will significantly impact the performance and accuracy of the model. Next, an
explanation of preprocessing and preparing the text data to form the GAN model
will be presented. This procedure can be applied to any textual data preceding text
implementation to image GAN. Additionally, loading and preprocessing image files
will be presented.

 Data Preprocessing

Preparing text and image data is the initial step in implementing any deep learning
model, including text-to-image GANs. This process involves preprocessing the text
data and transforming it into numerical representations. In this regard, a compre-
hensive description of preparing the data for text-to-image GANs, explicitly focus-
ing on MNIST Fashion data, will be presented in this section.

To begin with, the text data found in datasets comprises a combination of differ-
ent words that describe the images, which are primarily written by humans. In
English, a sentence typically starts with a capital letter and ends with a period, while
it may also include other punctuation, such as commas. Additionally, English sen-
tences may have multiple words with similar meanings but different types, neces-
sitating lemmatization. Lemmatization reduces words to their base or dictionary
form to simplify the analysis of text data. For example, the words “coming,” “came”
and “comes” would be reduced to the lemma “come.”

Once the text data has been cleaned, the next step is to transform it into numeri-
cal representations. Tokenization is applied to break down the text into individual
tokens or words. It allows text to be presented numerically and processed by
machine learning models. However, representing words as numbers and sentences
as a sequence of numbers is not enough. In text-to-image GANs, each image is
represented by a specific sentence, but the representations are of different lengths.
Padding is used to ensure that all input sequences have the same length, as most
machine-learning models require fixed-size inputs. Padding with zeros is typically
used and can be placed at the beginning or end of the sequence.

Figure 3.28 demonstrates text preprocessing code to prepare text data for text-to-
image GAN. The first function, which starts at line 2, is used for text cleaning where
the punctuations are removed in line 4, all words are transformed to lower letters in

3.4 Text to Image

52

Fig. 3.28 Data cleaning and preprocessing

line 6, and the lemmatization is done between lines 12 and 14. The second function
starts at line 16 for tokenization and padding. Tokenization is represented between
lines 18 and 19 and padding between lines 24 and 25.

The second step is to load and preprocess the image data. Image data must be
converted into a numerical array, including the image’s pixel values. The image
array values must be normalized between [0, 1] or [-1,1]. Figure 3.15, in the previ-
ous section, discussed how to load and process image files. The same procedure will
be followed, and all target images must be saved in a list.

Figure 3.29 illustrates loading text images and mapping them to their corre-
sponding text description. The images are loaded and normalized between lines 6
and 18. Then each image is mapped to its corresponding id using a dictionary, as
illustrated in line 20. In addition to loading image data, the corresponding text labels
must be mapped to each image. This mapping is done by loading the labels and

3 Real-World Applications

53

Fig. 3.29 Image loading and mapping to labels

arranging the image list in the same order as the image labels. Loading images and
mapping them to descriptions is shown between lines 22 and 29.

As stated before, to start with a simple text-to-image GAN model, the MNIST
Fashion dataset is used. MNIST Fashion dataset can be loaded with Keras.
Figure 3.30 presents a code fragment on loading and preprocessing the dataset. It is
divided into train and test images, each with its label. Each train and test image is
represented by an array of pixel values between 0 and 255. This image data must be
normalized between [0,1], as shown in lines 7 and 8. The label in the dataset belongs
to 10 classes a T-shirt/top, trouser/pant, pullover shirt, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot, as shown in line 10. Each one of the labels is

3.4 Text to Image

54

Fig. 3.30 Loading and preprocessing MNIST Fashion dataset

represented by a numerical value between [0,9] respectively. To map images with
corresponding labels, “y_train” and “y_test” are transformed into a single-column
list with multiple rows, as shown in lines 12 and 13. This dataset will simplify the
loading and preprocessing of text and image data.

 Model Design

The text-to-image GAN is similar to any GAN model composed of a generator and
discriminator. The generator is composed of multiple layers. It is responsible for
generating images that describe the labels. The discriminator is also made of mul-
tiple layers with binary output. It aims to differentiate between generated images
and real samples from MNIST Fashion.

 Generator Model

In text-to-image GANs, the generator model will take two inputs: noise and label.
Before combining the two inputs, the label data represented numerically must pass
through an Embedding layer. The generator architecture is presented in Fig. 3.31. A
2D block represents the embedding and LSTM layers in the architecture. This rep-
resentation is chosen based on the output tensor from each layer. The code imple-
mentation for the generator model is presented in Fig. 3.32. This Embedding layer
will map the input values into a high-dimensional fixed-length space vector. Each
dimension in the dense vector represents a feature or attribute of the input. An

3 Real-World Applications

55

Fig. 3.31 Test-to-image generator architecture

Embedding layer is often used to capture the relationships between input data, the
labels in this case, in a way that allows the model to learn the underlying patterns
and structures.

A Dropout layer in line 8 follows the Embedding layer that is in line 6. This layer
is used as a regularization technique to prevent overfitting. It randomly drops out or
turns off a fraction of neurons from the Embedding layer. The Dropout layer pre-
vents the model from relying too heavily on specific Embedding dimensions. The
Dropout layer is followed by a long short-term memory (LSTM) layer (refer to line
10). This LSTM layer is added to capture the temporal structure of the data out from
the Embedding layer. LSTM is usually used because in text-to-image GAN the input
labels might be a sequence of words or tokens that describe the image. So, the
sequence might be quite complex, and it is difficult for the model to capture the
relevant information from the text using only a superficial Embedding layer. In con-
clusion, an Embedding layer followed by an LSTM layer is a common technique for
preprocessing text data in deep learning models.

The noise input is chosen to have a size of 100, as in previous applications.
However, the two inputs must have the exact dimensions to concatenate them. For
this reason, the input noise is fed to a Dense layer (Line 14) with a number of neu-
rons equal to that of the Embedding layer. Then the data is passed through multiple
up-sampling layers to reach the desired output image size (28,28,1). The up-
sampling layers can be built using convolutional transpose or the Upsampling2D in
Keras followed by a convolutional layer with a stride of 1. To show how these two
up-sampling methods work, text-to-image GANs to build the generator upsam-
pling2D, followed by a convolutional layer, are utilized. The size of two in the up-
sampling layer means double the previous layer’s output. The activation function
used is Sigmoid to output data between [0,1] as the normalized images. If the images
are normalized between [-1, 1], Tanh activation function will be used.

3.4 Text to Image

56

Fig. 3.32 Test-to-image generator code implementation

3 Real-World Applications

57

 Discriminator Model

The discriminator model is composed of several down-sampling layers. In the con-
text of text-to-image GANs, the input to the discriminator will be the image output
from the generator with the corresponding label. Thus, the model will be fed by the
same label fed to the generator to generate an image x with the image x. The com-
plete architecture and implementation of the discriminator are presented in Figs. 3.33
and 3.34, respectively. Similarly, as in the generator, the input label is fed to an
Embedding layer (Line 7) followed by a Dropout layer (Line 9) and then LSTM
(Line 10). However, the two inputs have different dimensions. The image has three
dimensions, whereas the labels have only one.

For this reason, the output from the LSTM layer is reshaped to have three dimen-
sions. This reshaped layer is followed by two up-sampling layers (lines 12 to 18)
using convolution transpose to reach the image size (28, 28, 1). Now both inputs, the
image and label, have the exact dimensions. So, they are concatenated (Line 20).

After adding the two inputs, several down-sampling layers using convolution
with a stride of 2 are used (lines 22 to 35). To reach a binary output Flatten layer is
used to flatten the output from the convolutional layer to have only one dimension.
The output from Flatten layer is passed through a final dense layer with a single
output and Sigmoid activation function. The discriminator model is then compiled
using binary cross-entropy loss and Adam optimizer with a learning rate of 0.002.

Fig. 3.33 Test-to-image discriminator architecture

3.4 Text to Image

58

Fig. 3.34 Test-to-image discriminator code implementation

3 Real-World Applications

59

 Adversarial Model

The adversarial model, GAN, is built to assess the generator and update its weight.
Figure 3.35 illustrates how the GAN model is built. It shows that the discriminator
and the generator are placed on top of each other. The discriminator’s weights are
frozen in the GAN model, as presented in Line 8. In this case, the discriminator is
non-trainable and will act by only giving feedback to the generator to update its
weights. The GAN model takes two inputs, image label and noise, and outputs the
generated image and predicted labels from the discriminator.

 Training Stage

The training stage in text-to-image GAN is similar to any training stage in the previ-
ous GAN models. The weights of the generator and discriminator are updated using
backpropagation. It is illustrated in the previous chapter, Figure 2.14, how to custom
the training loop. The training loop is repeated for n epochs, where n = 100.

At each epoch, a random batch of size = 128 from training data is chosen to train
the model. Each time the discriminator and generator are trained, their losses are
computed using the train_on_batch method. In text-to-image GAN, the discrimina-
tor loss comprises real, fake, and wrong loss. The real loss is the discriminator loss

Fig. 3.35 Test-to-image GAN model code implementation

3.4 Text to Image

60

on actual image data from the training dataset. The fake loss is the discriminator
loss on generated images. The wrong loss is an additional loss computed to guaran-
tee that the output image from the generator describes the input label. The wrong
loss refers to the state when the discriminator model is tested using the generated
images from the generator with wrong random labels. Figure 3.36 illustrates the
discriminator losses computed during the training process.

However, the generator loss is computed by comparing the real and the generated
image. Figure 3.37 illustrates the generator loss computed during the training pro-
cess. The generator loss is computed using the GAN model. It takes the image labels
and noise as input to generate images and then computes the loss between real and
generated images.

Fig. 3.36 Discriminator loss

Fig. 3.37 Generator loss

3 Real-World Applications

61

The model effectiveness is tested by feeding the generator with a random sample
from test data labels. The output images are plotted to assess the model performance
visually instead of only depending on loss values. Figures. 3.38, 3.39, 3.40, and 3.41
show how the model performance is enhanced with increasing epochs.

 Evaluation and Refinement

Model evaluation and refinement is the last step in any GAN model. Evaluation
means assessing the model’s ability to generate realistic images that match the
labels. Refinement means performing hyperparameter tuning and optimization if
needed. If the model can generate realistic data that cannot be distinguished from
real data, then it does not need optimization. The model efficiency and robustness

Fig. 3.38 Generated images at epoch 0

3.4 Text to Image

62

Fig. 3.39 Generated images at epoch 10

can be assessed from the values of losses in addition to the printed images. A more
complex model is needed when the model cannot generate realistic images. Model
tuning can be done by adding layers to the models, changing the hyperparameter
values of the models, changing the optimizer type, or changing the learning rate.

3.5 CycleGAN

CycleGAN, also known as Cycle-Consistent GAN, is a type of generative adver-
sarial network (GAN) introduced in 2017 by Zhu et al. [22]. It was designed to
overcome the limitations of traditional image-to-image translation by achieving
success in this task without the need for paired training data. Like other GAN mod-
els, CycleGAN consists of a generator and discriminator.

3 Real-World Applications

63

Fig. 3.40 Generated images at epoch 50

One of the main applications of CycleGAN is style transfer, which allows for
transforming images into different artistic styles. It can also be used for domain
adaptation, where the source image is translated into another domain. For example,
it can translate a dog image into a cat or a spring image into autumn. CycleGAN has
also demonstrated success in voice conversion, as shown by Kaneko et al. [23], and
can be used for enhancing image resolution, removing noise from images, and
image segmentation.

CycleGAN has several advantages over traditional GANs, including creating
high-quality images with minimal training data and handling complex image trans-
lations without manual intervention. However, its unsupervised nature can lead to
unpredictable results and is limited to specific tasks such as image-to-image transla-
tion and voice conversion. Moreover, it can only perform one-to-one translation and
cannot generate multiple images from a single input. Recently GANs have been
used for medical purposes, such as COVID-19 detection by Bargshady et al. [24].

3.5 CycleGAN

64

Fig. 3.41 Generated images at epoch 100

CycleGAN translates images in two domains, X and Y, and learns mapping in
both directions, i.e., G: X to Y and F: Y to X [22]. It ensures that these mappings are
reverses of each other and that both mappings are bijections by using cycle consis-
tency loss, which encourages F(G(x)) ≈ x and G(F(y)) ≈ y [22]. In other words,
CycleGAN consists of two GANs, with two generators and two discriminators.

Finally, the most straightforward code for image-to-image translation using
GANs will be illustrated in this section. It will illustrate how cycleGAN can extract
image features from a specific domain and translate them into another domain.
CycleGAN can do this even when paired training examples are unavailable.

3 Real-World Applications

65

 Dataset

CycleGAN can translate images without relying on paired training examples.
However, datasets containing paired source and target images can be used. The
reason for using paired images is because cycleGANs translate source to target
images and target to source using two GANs. Thus, it consists of two generators and
two discriminators. The first generator translates the source image into the target
image, while the second generator performs the inverse translation. The first dis-
criminator distinguishes between the real and generated target images from genera-
tor 1. However, the second discriminator aims to differentiate between the real
source image and the image generated from generator 2. Therefore, paired images
are essential in this context. The dataset loading and preprocessing process is dis-
cussed in Figs. 3.15 and 3.29. This involves loading all images from a specific path,
transforming them into numerical arrays, and normalizing them. It is worth noting
that the loading and preprocessing of images in cycleGAN follow the same proce-
dure as in any GAN model.

 Model Design

Assuming the image-to-image translation task involves transforming an elephant
image into a rhinoceros image, the first generator of the cycleGAN is responsible
for generating rhinoceros images from elephant images. Conversely, the second
generator generates elephant images from rhinoceros images. The first discrimina-
tor distinguished between real rhinoceros images and generated rhinoceros images.
Similarly, the second discriminator differentiates between real and generated ele-
phant images.

 Generator Model

The generator model used in cycleGAN for image-to-image translation follows the
same approach as other GAN models used for image translation. The generator
models comprise an encoder-decoder architecture. In this context, generators 1 and
2 are referred to as F and H, respectively. Both generators have the same number of
layers, the same model architecture, and the same hyperparameters. They follow the
generator model discussed in Fig. 3.18. However, unlike batch normalization used
in lines 24, 30, 34, and 43, cycleGAN uses instance normalization. Instance normal-
ization is preferred because it normalizes each sample independently, unlike batch
normalization, which normalizes samples in a batch. By normalizing the activations
of each feature map across spatial dimensions, instance normalization stabilizes and
speeds up the training process of CycleGAN.

3.5 CycleGAN

66

Fig. 3.42 Generator model architecture

The image-to-image translation process in CycleGAN involves an elephant
image (E) and a rhinoceros image (R). Generator F extracts feature from image E
and use them to generate an image R. In contrast, generator H extracts features from
image R and uses them to generate image E. The generator process, illustrated in
Fig. 3.42, shows the architecture of the generator model labeled as (F). Generator
(H) has the same architecture but with inversed input and output.

 Discriminator Model

In CycleGAN, the discriminator is crucial in distinguishing real from fake images.
As with any other GAN discriminator, it is responsible for assessing the authenticity
of the images presented to it. In particular, in CycleGAN, two discriminators are
used, Discriminator 1 and Discriminator 2.

Discriminator 1, labeled DR, differentiates between real images (R) and the gen-
erated F(E). F(E) means rhinoceros-generated images by applying generator F on
elephant images. On the other hand, Discriminator 2, labeled as DE, is responsible
for distinguishing between real images (E) and the generated images H(R). H(R)
means elephant-generated images by applying generator H on rhinoceros images.
This setup lets the model learn the mappings between two domains and achieve
cycle consistency.

In terms of implementation, the same discriminator model used in traditional
GAN image-to-image translation can be used for CycleGAN. This was discussed in
detail in Sect. 3.3. The model should have the same number of convolutional layers,
hyperparameters, and input and output specifications. The code can be implemented
similarly to that presented in Fig. 3.20. However, in contrast to the batch normaliza-
tion used in the generator, instance normalization will be utilized in lines 11, 14, and
17. Figure 3.43 presents the DE architecture similar to that illustrated in Fig. 3.19.

3 Real-World Applications

67

Fig. 3.43 Discriminator model architecture

The architecture of DR is similar to DE, whereas the input will be real and fake
images of the rhinoceros.

 Training Stage

During the training stage of cycleGAN, the generator is fed with data to produce
fake images. The training data is divided into random batches. At each epoch, data
of batch size is inputted into the generator. The generator loss and discriminator loss
are computed in the training loop. The discriminator loss is computed using binary
cross-entropy, a common loss function for GAN models. CycleGAN differs in the
generator loss, where a cycle-consistency loss is introduced in addition to the binary
cross-entropy loss. Previously, the image-to-image translation generator model dis-
cussed in Sect. 3.3 was evaluated based on two losses: binary cross-entropy and
mean squared error. However, in CycleGAN, the cycle-consistency loss is used
instead of the mean squared error. The goal of cycleGAN is to ensure that the gener-
ated images are consistent in both directions, which means that H(F(E)) ≈ E and
F(H(R)) ≈ R, where E and R are real images of elephants and rhinoceros, respec-
tively. The cycle-consistency loss computes the difference between the generated
and the corresponding input images. For example, the real elephant image has to be
almost similar to the image generated by generator H while passing the fake rhinoc-
eros image generated by generator F from the real elephant image. Therefore, the
cycle-consistency loss is calculated at each epoch. Figure 3.44 illustrates the cycle-
consistency loss.

3.5 CycleGAN

68

Fig. 3.44 Cycle-consistency loss

3.6 Enhancing Image Resolution

Enhancing image resolution means increasing the size of an image while maintain-
ing high quality. This is also known as recovering high-resolution images while
maintaining details from low-resolution ones. Improving image quality is not lim-
ited to photographs, medical images, paintings, or compressed images. Many tradi-
tional methods have been used, such as reducing the noise, adjusting the color,
interpolating images, and up-scaling.

Deep neural networks have succeeded in many fields, especially in image pro-
cessing. This success has enabled GANs to increase image resolution through train-
ing on a pair of images. The image pairs include low and their corresponding
high-resolution label. After successful training, the GAN model will produce a
high-resolution image without its corresponding high-resolution label.

Improving image quality through GANs is used to solve the limitations of tradi-
tional methods. Although traditional algorithms are easier to implement, they might
generate distorted or blurry images instead of improving the resolution. The impor-
tance of improving image translation lies in the model’s ability to learn features
from low-resolution images and generate high-resolution ones. This section will
discuss implementing a GAN model to improve high-resolution image resolution.

 Dataset

To enhance image resolution using the GAN model, a dataset of paired low-
resolution images and their corresponding high-resolution images is needed. Many
image datasets can be used as DIV2K [25, 26] and super image resolution [27].
These datasets are publicly available for research and development purposes.

The process of preparing data for improving the resolution of images using
GANs is similar to that of other image generation tasks using GANs. Initially, the

3 Real-World Applications

69

image data is transformed into floating tensor pixels and then normalized to a spe-
cific range, either [0, 1] or [-1, 1], based on the task requirements. Loading and
preprocessing image data is similar to that presented in previous sections, as dis-
cussed in Fig. 3.15, lines 6 to 12 and Fig. 3.29, lines 6 to 18.

 Model Design

The GAN model is composed of a generator and a discriminator. The generator
model is responsible for producing high-resolution images. It takes low-resolution
images as input and produces high-resolution images as output. On the other hand,
the discriminator’s objective is to differentiate real high-resolution images from
generated ones.

 Generator Model

The low-resolution images are passed as input to the generator. The generator model
is composed of several residual blocks. These blocks are composed of convolutional
layers, batch normalization, and parametrized ReLU (PReLU). Using parametric
ReLU has an advantage over LeakyReLU in enhancing image resolution GAN gen-
erator. In parametric ReLU, the slope for negative inputs is a learnable parameter,
which the neural network figures out itself. It will speed up the network training and
solve the “dying ReLU” problem. These residual blocks are skipped connection
blocks that learn from residual functions concerning the layer inputs instead of
learning unreferenced functions. They are introduced as a part of the ResNet archi-
tecture. Several up-sampling layers follow the residual blocks to reach the desired
image dimensions. The up-sampling layers can be built using the Upsampling2D
function followed by a convolutional layer with a stride of 1 or built using convolu-
tion transpose. The batch normalization layer and LeakyReLU activation function
follow the up-sampling layers. Finally, as any other generator model, it will end
with a Sigmoid activation function if images are normalized between [0,1] or Tanh
if the input images are normalized between [-1,1]. The general architecture of the
generator is provided in Fig. 3.45. The code implementation will follow the same
implementation procedure of generator models discussed before while following
the architecture in the figure.

 Discriminator Model

The discriminator model is similar to any discriminator GAN model. The binary
classification deep convolutional layer model states whether the high-resolution
images are real or generated. The discriminator model takes two input images, the
fake high-resolution image, with the real one. Thus, the enhancing image resolution

3.6 Enhancing Image Resolution

70

Fig. 3.45 Generator model architecture

discriminator model is similar to that implemented for image-to-image translation.
The model architecture and implementation code are presented in Figs. 3.19 and
3.20, respectively. First, the two input images are merged into a single tensor using
the concatenate function. To concatenate inputs, they must have the same size. In
enhancing image resolution, the generator outputs high-resolution images with
sizes equal to actual high-resolution images, so no previous steps are required. Then
the output image tensor is passed through multiple down-sampling layers, i.e., con-
volutional layers with increasing filters followed by batch normalization and
LeakyReLU. The down-sampling layers will allow for extracting features from the
image. These features can be used to classify whether the generated image is real or
fake. Precisely, to measure how the generated images are similar to actual ones.

 Training Stage

Training the enhancing image resolution is similar to any image-to-image transla-
tion GAN model. The data is divided into batches trained over several epochs. In
each epoch, the generator model will generate high-resolution images from the ran-
dom low-resolution images chosen from the training dataset. The discriminator
assesses the generator’s ability to produce realistic images. It is trained on both
generated and real images and computes the discriminator loss, a binary cross-
entropy loss function. Then the generator loss will be computed to assess how much
the generator can fool the discriminator. In any image, to image translation, two
GAN losses are computed the binary cross-entropy, which sees how much the gen-
erator is fooling the discriminator and the mean squared error, which measures how
much the generated image resembles the realistic ones. The training stage ends
when the GAN model reaches convergence. Figure 3.46 shows an example of a
high-resolution generated image from a low-resolution image. GAN succeeded in
enhancing the resolution of the image.

3 Real-World Applications

71

Fig. 3.46 Enhancing image resolution GAN model output

3.7 Semantic Image Inpainting

Ancient images are distorted in multiple ways and are highly damaged. Sometimes
images will be torn or missing a specific region, thereby requiring correction by
completing the missing region based on the image data. Traditionally, image distor-
tion was fixed with the help of an artist. However, this technique requires much
effort and takes much time to complete. Repairing damaged images was tiring, with
much attention to image details and imagination to complete the missing parts.

With the progress of time, multiple tools that can help repair images have been
suggested. These tools can help restore images, fix anomalies, remove watermarks,
and remove unwanted objects. For example, tools like Adobe Photoshop and GNU
Image Manipulation Program (GIMP) can help in photo editing by removing or
adding objects. However, these tools might fail in case of significant damage to
the image.

GANs have shown their success in many image applications as they can produce
high-quality images. They can generate images from text, enhance the resolution of
images, translate images, or even produce new unseen images. These GAN capa-
bilities have enabled it to repair images, such as filling a specific missing image
region. This process is known as semantic image inpainting.

 Dataset

A dataset containing distorted images with their corresponding corrected labels
must be used to build a GAN model. Additionally, image-to-image datasets can also
be used for semantic image inpainting. These datasets must include input images
with missing objects or parts. Moreover, a dataset of single complete images can be

3.7 Semantic Image Inpainting

72

used. Nevertheless, this dataset requires preprocessing to create training and test
data image pairs. Figure 3.47 illustrates a Python code for creating an image data
pair for semantic image inpainting GAN. The code starts by defining the directory,
which includes the original images and the other directory in which the distorted
images will be saved (lines 2 and 3). The original image is distorted by zeros filling
the pixels in specific regions. Choosing the region and filling zero pixels can be
found in lines 23 to 36. The code output for a single image is presented in Fig. 3.48.
The image used to test the code was taken from the Adobe website1. This code can
build training and test data for a semantic image in painting the GAN model from a
dataset of single images. The original image presented on the left side of Fig. 3.48
is the target image needed to be produced by the generator. The distorted image
presented to the right of Fig. 3.48 is the input image to the generator, which needs
to be enhanced.

 Model Design

The GAN model for enhancing image resolution is composed of a generator and
discriminator. The generator model is responsible for correcting distorted images by
getting distorted images as input. At the same time, the discriminator model aims to
differentiate between actual original images and corrected generated images.

 Generator Model

The semantic image inpainting GAN generator model is similar to the model imple-
mented before for image-to-image translation. It is made up of an encoder-decoder
model. The encoder model is composed of many down-sampling. In contrast, the
decoder model is composed of multiple up-sampling layers. The model architecture
and code are in Figs. 3.17 and 3.18, respectively. The encoder comprises several
convolutional layers with batch normalization and ReLU activation functions. The
decoder model comprises multiple up-sampling layers to reach the target image
size. The output from the generator is a restored image from the distorted input image.

 Discriminator Model

The image inpainting discriminator model has similarities with any other GAN dis-
criminator model. It combines actual original and generated restored images as
input. It consists of several down-sampling layers, including convolutional layers,

1 “Convert a Color Image into Black and White”, https://helpx.adobe.com/photoshop/using/
convert- color-image-black-white.html

3 Real-World Applications

https://helpx.adobe.com/photoshop/using/convert-color-image-black-white.html
https://helpx.adobe.com/photoshop/using/convert-color-image-black-white.html

73

Fig. 3.47 Removing specific region from image

3.7 Semantic Image Inpainting

74

Fig. 3.48 Original and distorted images

batch normalization, and LeakyReLU. It will proceed in the same way as the design
and discriminator code in Figs. 3.19 and 3.20. The deep convolutional layer model
uses binary classification to determine whether the corrected images are fake or
genuine.

 Training

Training an image inpainting translation model is comparable to training any other
image-to-image translation model. The data is split up into training batches that
span several epochs. The generator model will create a batch every epoch to replace
any damaged or missing portions of the input pictures picked from the training
dataset. The discriminator, trained on both generated and real images, will evaluate
the ability of the generator to create realistic images. It also calculates the discrimi-
nator loss, which is a binary cross-entropy. The generator loss will then be calcu-
lated to determine how well the generator can trick the discriminator. The binary
cross-entropy, which determines how much the generator is deceiving the discrimi-
nator, is calculated as one of two GAN losses in any image-to-image translation.
The training process stops when both the generator and discriminator models con-
verge. To illustrate, when the generator can restore distorted images in a way that
the discriminator cannot differentiate between generated and original images.

3.8 Text to Speech

Text-to-speech means transforming input text data into audio signals. This transfor-
mation type is a sequence-to-sequence model, where discrete data (text) is trans-
formed into continuous data (audio signals). A male or a female voice can speak this
audio. The voice used must be natural and represent an authentic human voice.

Many deep learning techniques have been used in literature to transform text data
into speech signals. Some of the proposed models are WaveNet [16], SampleRNN

3 Real-World Applications

75

[17], DeepVoice 1 [18], DeepVoice 2 [19], DeepVoice 3 [20], and WaveRNN [21].
The WaveNet model uses CNN to convert text to voice but is very slow. For this
reason, RNN models such as SampleRNN and DeepVoice have been introduced. To
improve text-to-speech synthesis, DeepVoice 1 has been updated to DeepVoice 2
and 3 to demonstrate significant audio quality improvement and allow multi-speaker
text-to-speech synthesis. However, traditional deep learning models have limita-
tions as they might produce a nonrealistic voice. Hence, GAN was introduced.

Using text-to-speech GAN, a model can generate high-quality audio signals
from a given text sequence. The text-to-speech GAN model is like any other one,
consisting of a generator and a discriminator. The model needs a training dataset to
learn and generate speech data from any text model.

 Dataset

Any dataset consisting of audio clips and their corresponding text is considered
beneficial for the text-to-speech GAN model. Some dataset suggestions for imple-
menting the model are:

 1. The LJ Speech Dataset comprises 13,100 short audio recordings for an individ-
ual speaker. The dataset comprises the audio recordings and the transcrip-
tion [28].

 2. The Common Voice Dataset consists of audio recordings and corresponding text
labels. Unlike the LJ speech dataset, the audio snippets ate taken from 60,000
contributors instead of a single speaker [29].

 3. LibriSpeech Dataset contains audio segments for 2,484 speakers. It is available
for non-commercial use [30].

Multiple publicly available datasets can be used for transforming text to speech.
However, textual representations and audio must be preprocessed before training
the text-to-speech synthesis model.

 Data Preprocessing

Data preprocessing in the text-to-speech model is divided into two components:
preprocessing text and preprocessing audio. Processing the text labels is similar to
preprocessing the text data in the text-to-image GAN model. It includes lowercase/
uppercase all input words, removes punctuations as commas, ends each utterance by
a period, for example, and conveys a particular emotional tone to words. Adding
emotion to words involves giving scores to words where happy words have high
scores and sad words have low scores. The second step in text preprocessing is pho-
nology. This step is where phonetic transcriptions are assigned to processed words.
The transformation of preprocessed text data into phonetics requires using a specific
module. The publicly available module “nltk” can be used. This module is

3.8 Text to Speech

76

Fig. 3.49 Text preprocessing sample output

implemented using Python. It is able to transform words into their corresponding
written pronunciation based on CMU pronouncing dictionary. Figure 3.49 visually
illustrates the steps to reach a preprocessed text sample from the LJ speech dataset.
Figure 3.50 presents a code snippet that shows how to use the module to transform
the text into phonetics. It starts by loading the text data into a data frame (line 2),
preprocessing the text (lines 4 to 13), transforming it to phonetics (lines 15 to 27),
and then to numerical sequences (lines 29 to 38). The text phonemes are trans-
formed into a sequence of numbers because deep learning models are able to pro-
cess numerical data.

The audio data have to be also preprocessed. It must be preprocessed to ensure it
is in the correct format for text-to-speech translation. The sound signals can be rep-
resented in the time or frequency domains. The use of the frequency domain is more
popular than the time domain. Sound preprocessing involves resampling, which
means converting the audio into a standard sample rate like 16kHz or 24kHz. Then,
the features are extracted from audio data by transforming the audio waves to a
sequence using short-term Fourier transform (STFT) or Mel-frequency cepstral
coefficients (MFCCs). Thus, the audio waves will transform into feature vectors.
Fig. 3.51 shows sound preprocessing by transforming the sound waves to a mel-
spectogram. For example, the mel-spectogram is normalized between [-1, 1].

 Model Design

Like any other GAN model, the text-to-speech synthesis GAN comprises a genera-
tor and discriminator. The generator aims to produce audio snippets for correspond-
ing text labels. The discriminator aims to differentiate between real audio segments
and generated ones.

3 Real-World Applications

77

Fig. 3.50 Text preprocessing

3.8 Text to Speech

78

Fig. 3.51 Audio preprocessing

 Generator Model

The generative text-to-speech model is a sequence-to-sequence model. It maps dis-
crete data into a continuous time/frequency domain. The input to the generator
model is the sequence of numerical data representing the phonemes. The generator
model is composed of multiple deep neural network layers. The numerical sequence
passes through an encoder model in order to extract embeddings from phonemes.
Then the text embeddings will pass through multiple up-sampling convolutional
layers followed by the ReLU activation function and batch normalization. The out-
put from the up-sampling layers will be a sequence representing audio samples.
Figure 3.52 shows the sample architecture for the text-to-speech generator. All
arrows labeled “1” indicates Batch Normalization with ReLU activation function.

 Discriminator Model

The discriminator model is a binary classification model with two real or fake out-
puts. The discriminator model will take the mel-spectograms as input. It also can be
implemented by taking two inputs: the numerical text representation and the audio

3 Real-World Applications

79

Fig. 3.52 Generator architecture

spectrograms. Using two inputs in a text-to-speech discriminator will ensure that
the produced audio signals describe the written text. It consists of multiple down-
sampling layers that consist of convolutional layers followed by ReLU activation
functions. The output from the discriminator will state whether the visual represen-
tation of audio, mel-spectograms are real or fake. The discriminator architecture is
similar to that presented in Fig. 3.6 however, instead of the letter A images, it accepts
spectrograms as inputs. However, if the generator is designed to be fed with two
inputs, namely text representations and spectrograms, the process would be similar
to text-to-image translation presented in Fig. 3.33, with the only difference being
that the second input being imaged is spectrograms.

 Training

The training process is similar to any GAN model. During training, two types of
losses have computed the generator and discriminator loss. The generator loss will
measure the difference between generated and real audio segments. While the dis-
criminator will measure how much the generated audio segment is realistic and
similar to real ones. Throughout the training stage, the generator updates its weights
based on the feedback taken from the discriminator. The generator will continue
updating its weights and improve its output quality while the discriminator is able
to distinguish between real and generated speech signals. When the model reaches
convergence, the spectrograms produced by the generator can be transformed back
into audio signals. The mean opinion score will be utilized to better assess the text-
to- speech model. It is a numerical measure between 1 and 5 that assesses the quality
of generated audio waves. The higher the mean opinion score, the better the audio
signal quality is.

3.8 Text to Speech

80

References

1. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: 2015 IEEE
International Conference on Computer Vision (ICCV), pp. 2380–7504 (2015)

2. Kottarathil, P.: Face Mask Lite Dataset, Kaggle, Kaggle Data. https://www.kaggle.com/datas-
ets/prasoonkottarathil/face- mask- lite- dataset (2020)

3. Patel, S.: A-Z Handwritten Alphabets in. CSV Format, Kaggle, Kaggle Data. https://www.
kaggle.com/datasets/sachinpatel21/az- handwritten- alphabets- in- csv- format(2018)

4. Sashaborm: Thispersondoesnotexist - Random AI Generated Photos of Fake Persons, This
Person Does Not Exist - Random Face Generator, Google. https://this- person- does- not- exist.
com/en (2021)

5. Lytic: FaceForensics++, Kaggle, Kaggle Data. https://www.kaggle.com/datasets/sorokin/face-
forensics (2020)

6. VoxCeleb: A Large Scale Audio-Visual Dataset of Human Speech. https://www.robots.ox.ac.
uk/~vgg/data/voxceleb/ (2018)

7. Tulyakov, S., Liu, M.-Y., Yang, X., Kautz, J.: Mocogan: decomposing motion and content
for video generation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2018)

8. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating Videos with Scene Dynamics. https://
arxiv.org/abs/1609.02612 (2016)

9. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive Growing of Gans for improved Quality,
Stability, and Variation. https://arxiv.org/abs/1710.10196 (2018)

10. Sun, X., Xu, H., Saenko, K.: Twostreamvan: Improving motion modeling in video generation.
In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) (2020)

11. Finger, L.: Overview of How To Create Deepfakes – It’s Scarily Simple, Forbes. Forbes
Magazine. https://www.forbes.com/sites/lutzfinger/2022/09/08/overview- of- how- to- create-
deepfakesits- scarily- simple/?sh=73b154b12bf1 (2022)

12. Aldausari, N., Sowmya, A., Marcus, N., Mohammadi, G.: Video generative adversarial net-
works: a review. ACM Comput. Surv. 55, 1–25 (2022)

13. The cityscapes dataset, Cityscapes dataset, https://www.cityscapes- dataset.com/
14. Saha, A.: Satellite-Googlemaps-Masks, Kaggle, Kaggle Data. https://www.kaggle.com/datas-

ets/arka47/satellitegooglemapsmasks (2021)
15. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-

consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV) (2017)

16. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional
adversarial networks. In: IEEE conference on computer vision and pattern recognition,
pp. 1125–1134. IEEE (2017)

17. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,
C.L.: Microsoft Coco: Common Objects in Context. Computer Vision – ECCV. 2014,
740–755 (2014)

18. Hsankesara: Flickr Image Dataset, Kaggle. Kaggle Data. https://www.kaggle.com/datasets/
hsankesara/flickr- image- dataset (2018)

19. Adityajn105: Flickr 8K Dataset, Kaggle. Kaggle Data. https://www.kaggle.com/datasets/
adityajn105/flickr8k (2020)

20. Rashtchian, C., Young, P., Hodosh, M., Hockenmaier, J.: Collecting Image Annotations Using
Amazon’s Mechanical Turk. In: Proceedings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechanical Turk, vol. 2010,

21. 102 category Flower Dataset, Visual Geometry Group - University of Oxford, https://www.
robots.ox.ac.uk/~vgg/data/flowers/102/

22. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV)., pp. 2223–2232 (2017)

3 Real-World Applications

https://www.kaggle.com/datasets/prasoonkottarathil/face-mask-lite-dataset
https://www.kaggle.com/datasets/prasoonkottarathil/face-mask-lite-dataset
https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format
https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format
https://this-person-does-not-exist.com/en
https://this-person-does-not-exist.com/en
https://www.kaggle.com/datasets/sorokin/faceforensics
https://www.kaggle.com/datasets/sorokin/faceforensics
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
https://arxiv.org/abs/1609.02612
https://arxiv.org/abs/1609.02612
https://arxiv.org/abs/1710.10196
https://www.forbes.com/sites/lutzfinger/2022/09/08/overview-of-how-to-create-deepfakesits-scarily-simple/?sh=73b154b12bf1
https://www.forbes.com/sites/lutzfinger/2022/09/08/overview-of-how-to-create-deepfakesits-scarily-simple/?sh=73b154b12bf1
https://www.cityscapes-dataset.com/
https://www.kaggle.com/datasets/arka47/satellitegooglemapsmasks
https://www.kaggle.com/datasets/arka47/satellitegooglemapsmasks
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

81

23. Kaneko, T., Kameoka, H.: Parallel-data-free voice conversion using cycle-consistent adver-
sarial networks. https://arxiv.org/abs/1711.11293

24. Bargshady, G., Zhou, X., Barua, P.D., Gururajan, R., Li, Y., Acharya, U.R.: Application of
cyclegan and transfer learning techniques for automated detection of COVID-19 using X-ray
images. Pattern Recognit. Lett. U.S. National Library Med. 153, 67–74 (2022)

25. Agustsson, E., Timofte, R.: NTIRE 2017 Challenge on Single Image Super-resolution: Dataset
and study. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) (2017)

26. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.-H., Zhang, L., Lim, B.: NTIRE 2017 chal-
lenge on single image super-resolution: methods and results. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

27. Kapse, A.D.: Super Image Resolution, Kaggle, Kaggle Data. https://www.kaggle.com/datas-
ets/akhileshdkapse/super- image- resolution (2020)

28. The LJ speech dataset, Keith Ito. https://keithito.com/LJ- Speech- Dataset/
29. Mozilla Common Voice, Common Voice. https://commonvoice.mozilla.org/en/datasets
30. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus based on

public domain audio books. In: 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2015)

References

https://arxiv.org/abs/1711.11293
https://www.kaggle.com/datasets/akhileshdkapse/super-image-resolution
https://www.kaggle.com/datasets/akhileshdkapse/super-image-resolution
https://keithito.com/LJ-Speech-Dataset/
https://commonvoice.mozilla.org/en/datasets

83

Chapter 4
Conclusion

GANs are a type of deep learning model subset of machine learning that has been a
hot area of research in recent years. Its architecture comprises two networks: the
generator and the discriminator are mainly made up of a deep neural network. The
generator model aims to generate new data that looks like the real one. Typically, the
generator model is composed of multiple up-sampling layers. The discriminator
aimed to differentiate between actual data and generated one. The discriminative
model is made of multiple down-sapling layers. The discriminator is a typical binary
classifier deep neural network. The discriminator gives the generator feedback to
update its weights and yield more realistic results.

In the previous chapters, multiple real-world applications have been discussed.
Chapter two starts by introducing how to build and train GAN models. The most
straightforward GAN application has been chosen to enhance the reader’s under-
standing of GANs. GAN can be applied to generate 1D output as a single point, text,
images, and speech. It has shown success in many applications. The input to the
generator model could be either noise or specific input.

This book comprehensively explains some popular applications and code snip-
pets to help improve understanding. Although GAN has succeeded in many real-
world applications, it has some weaknesses. To produce high-resolution data similar
to the actual one requires high computational resources, a large dataset, and a long
time to converge.

Researchers and developers encounter several challenges when implementing
GANs and conducting the study. One of the main issues is the high computational
cost of training GANs, which can make them hard to scale and lead to long training
periods. The size and complexity of the training dataset, the model’s architecture,
and the training algorithm all affect how much computing power is needed and how
long it takes to train a model. GANs usually require a high-end computer or a clus-
ter of computers with powerful CPUs and GPUs. Additionally, the GAN model is
trained over several epochs, this might increase the training time and make them
prone to overfitting, which can limit their ability to generalize to new data.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Kaddoura, A Primer on Generative Adversarial Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-031-32661-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32661-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-32661-5_4

84

Another issue with GANs is that meticulous hyperparameter tuning, which can
be time-consuming and labor-intensive. Nevertheless, it is highly needed for the
generator and discriminator models in order to produce realistic results. Moreover,
GANs frequently need a lot of training data to produce high-quality results, which
can be a constraint in some uses. Some GAN applications lack the availability of
publicly available datasets, which can result in the need to implement a large data-
set. This process may take days, especially if the dataset is collected from scratch.

Despite these limitations, GANs have demonstrated excellent potential in pro-
ducing lifelike images, videos, and other kinds of data. Ongoing GAN research
aims to overcome these challenges and raise GAN models’ general efficiency and
scalability.

4 Conclusion

	Preface
	Acknowledgments
	Contents
	Chapter 1: Overview of GAN Structure
	1.1 Introduction
	1.2 Generative Models
	1.3 GANS
	Overview of GAN Structure
	The Discriminator
	The Generator
	Training the GAN
	Loss Function
	GANs Weaknesses

	References

	Chapter 2: Your First GAN
	2.1 Preparing the Environment
	Hardware Requirements
	Software Requirements
	Importing Required Modules and Libraries
	Prepare and Preprocess the Dataset

	2.2 Implementing the Generator
	2.3 Implementing the Discriminator
	2.4 Training Stage
	Model Construction
	Loss Function
	Plot Generated Data Samples
	Training GAN
	Common Challenges While Implementing GANs

	References

	Chapter 3: Real-World Applications
	3.1 Human Faces Generation
	Data Collection and Preparation
	Model Design
	The Generator Model
	The Discriminator Model

	Training
	Evaluation and Refinement
	Deployment

	3.2 Deep Fake
	Data Collection and Preparation
	Model Design
	Training

	3.3 Image-to-Image Translation
	Data Collection and Preparation
	Model Design
	The Generator Model
	The Discriminator Model
	The Adversarial Network

	Training

	3.4 Text to Image
	Module Requirements
	Dataset
	Data Preprocessing

	Model Design
	Generator Model
	Discriminator Model
	Adversarial Model

	Training Stage
	Evaluation and Refinement

	3.5 CycleGAN
	Dataset
	Model Design
	Generator Model
	Discriminator Model

	Training Stage

	3.6 Enhancing Image Resolution
	Dataset
	Model Design
	Generator Model
	Discriminator Model

	Training Stage

	3.7 Semantic Image Inpainting
	Dataset
	Model Design
	Generator Model
	Discriminator Model

	Training

	3.8 Text to Speech
	Dataset
	Data Preprocessing

	Model Design
	Generator Model
	Discriminator Model

	Training

	References

	Chapter 4: Conclusion

